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Preface

‘Electrical Circuit Theory and Technology 3rd Edition’
provides coverage for a wide range of courses that contain
electrical principles, circuit theory and technology in their
syllabuses, from introductory to degree level.

New topics included in this edition are a complete update
on semiconductor diodes and transistors, and additional
material on batteries and fuel cells, relative and abso-
lute voltages, self and mutual inductance, virtual test
and measuring instruments, complex waveforms, Fourier
series and ABCD parameters. In addition, applications in
all areas are expanded and emphasised and new further
problems added.

A new feature is that a free Internet download is avail-
able of a sample (over 700) of the 1000 further problems
contained in the book — see below.

The text is set out in four parts as follows:

PART 1, involving Chapters 1 to 12, contains ‘Basic
Electrical Engineering Principles’ which any student
wishing to progress in electrical engineering would need
to know. An introduction to electrical circuits, resistance
variation, batteries, series and parallel circuits, capacitors
and capacitance, magnetic circuits, electromagnetism,
electromagnetic induction, electrical measuring instru-
ments and measurements, semiconductor diodes and
transistors are all included in this section.

PART 2, involving Chapters 13 to 22, contains ‘Elec-
trical Principles and Technology’ suitable for National
Certificate, National Diploma and City and Guilds courses
in electrical and electronic engineering. D.c. circuit the-
ory, alternating voltages and currents, single-phase series
and parallel circuits, d.c. transients, operational ampli-
fiers, three-phase systems, transformers, d.c. machines
and three-phase induction motors are all included in this
section.

PART 3, involving Chapters 23 to 45, contains
‘Advanced Circuit Theory and Technology’ suitable
for Degree, Foundation degree, Higher National Certifi-
cate/Diploma and City and Guilds courses in electrical
and electronic/telecommunications engineering. The two
earlier sections of the book will provide a valuable refer-
ence/revision for students at this level.
Complex numbers and their application to series and par-
allel networks, power in a.c. circuits, a.c. bridges, series
and parallel resonance and Q-factor, network analysis
involving Kirchhoff’s laws, mesh and nodal analysis,
the superposition theorem, Thévenin’s and Norton’s the-
orems, delta-star and star-delta transforms, maximum

power transfer theorems and impedance matching,
complex waveforms, harmonic analysis, magnetic materi-
als, dielectrics and dielectric loss, field theory, attenuators,
filter networks, magnetically coupled circuits, transmis-
sion line theory and transients and Laplace transforms are
all included in this section.

PART 4 provides a short, ‘General Reference’ for stan-
dard electrical quantities — their symbols and units, the
Greek alphabet, common prefixes and resistor colour
coding and ohmic values.

At the beginning of each of the 45 chapters learning
objectives are listed.

At the end of each of the first three parts of the text is a
handy reference of the main formulae used.

It is not possible to acquire a thorough understanding of
electrical principles, circuit theory and technology with-
out working through a large number of numerical prob-
lems. It is for this reason that ‘Electrical Circuit Theory
and Technology 3rd Edition’ contains some 800 detailed
worked problems, together with over 1000 further
problems (with answers), arranged within 175 Exercises
that appear every few pages throughout the text. Over 1100
line diagrams further enhance the understanding of the
theory.

Fourteen Revision Tests have been included, inter-
spersed within the text every few chapters. For example,
Revision Test 1 tests understanding of chapters 1 to
4, Revision Test 2 tests understanding of chapters 5 to 7,
Revision Test 3 tests understanding of chapters 8 to 12,
and so on. These Revision Tests do not have answers given
since it is envisaged that lecturers/instructors could set
the Revision Tests for students to attempt as part of their
course structure. Lecturers/instructors may obtain a com-
plimentary set of solutions of the Revision Tests in an
Instructor’s Manual available from the publishers via
the internet — see below.

I am very grateful to Mike Tooley for his help in updat-
ing chapters on Semiconductor diodes, Transistors, and
Measuring instruments and measurements.

‘Learning by Example’ is at the heart of ‘Electrical
Circuit Theory and Technology 3rd Edition’.

JOHN BIRD
Royal Naval School of Marine Engineering,

HMS Sultan, formerly University of Portsmouth
and Highbury College, Portsmouth
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Free web downloads

Sample of Worked Solutions to Exercises

Within the text are some 1000 further problems
arranged within 175 Exercises. A sample of over 700
worked solutions has been prepared and is available to
lecturers only at http://textbooks.elsevier.com

Instructor’s Manual

This provides full worked solutions and mark scheme
for all 14 Revision Tests in this book. The material
is for lecturers only. To access the lecturer material
on the text-book website please go to http://textbooks.
elsevier.com and search for the book and click on
the ‘manual’ link. If you do not have an account on
textbooks.elsevier.com already, you will need to reg-
ister and request access to the book’s subject area. If
you already have an account on textbooks, but do not
have access to the right subject area, please follow
the ‘request access’ link at the top of the subject area
homepage.
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PART

1
1 Units associated with basic electrical

quantities

At the end of this chapter you should be able to:
• state the basic SI units
• recognize derived SI units
• understand prefixes denoting multiplication and

division
• state the units of charge, force, work and power and

perform simple calculations involving these units

• state the units of electrical potential, e.m.f., resist-
ance, conductance, power and energy and perform
simple calculations involving these units

1.1 SI units

The system of units used in engineering and science is the
Système Internationale d’Unités (International system of
units), usually abbreviated to SI units, and is based on the
metric system. This was introduced in 1960 and is now
adopted by the majority of countries as the official system
of measurement.

The basic units in the SI system are listed with their
symbols, in Table 1.1.

Table 1.1 Basic SI Units

Quantity Unit

length metre, m
mass kilogram, kg
time second, s
electric current ampere, A
thermodynamic temperature kelvin, K
luminous intensity candela, cd
amount of substance mole, mol

Derived SI units use combinations of basic units and there
are many of them. Two examples are:

• Velocity — metres per second (m/s)
• Acceleration — metres per second squared (m/s2)

SI units may be made larger or smaller by using prefixes
which denote multiplication or division by a particular
amount. The six most common multiples, with their mean-
ing, are listed in Table 1.2. For a more complete list of
prefixes, see page 668.

Table 1.2

Prefix Name Meaning

M mega multiply by 1 000 000 (i.e. ×106)
k kilo multiply by 1000 (i.e. ×103)
m milli divide by 1000 (i.e. ×10−3)
µ micro divide by 1 000 000 (i.e. ×10−6)
n nano divide by 1 000 000 000 (i.e. ×10−9)
p pico divide by 1 000 000 000 000 (i.e. ×10−12)

1.2 Charge

The unit of charge is the coulomb (C) where one coulomb
is one ampere second. (1 coulomb = 6.24 × 1018 elec-
trons). The coulomb is defined as the quantity of electricity
which flows past a given point in an electric circuit when
a current of one ampere is maintained for one second.
Thus,

charge, in coulombs Q = It

where I is the current in amperes and t is the time in
seconds.

Problem 1. If a current of 5A flows for 2 minutes,
find the quantity of electricity transferred.

Quantity of electricity Q = It coulombs

I = 5A, t = 2 × 60 = 120 s

Hence Q = 5 × 120 = 600 C
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1.3 Force

The unit of force is the newton (N) where one newton
is one kilogram metre per second squared. The newton is
defined as the force which, when applied to a mass of one
kilogram, gives it an acceleration of one metre per second
squared. Thus,

force, in newtons F = ma

where m is the mass in kilograms and a is the acceler-
ation in metres per second squared. Gravitational force,
or weight, is mg, where g = 9.81 m/s2.

Problem 2. A mass of 5000 g is accelerated at 2 m/s2

by a force. Determine the force needed.

Force = mass × acceleration

= 5 kg × 2 m/s2 = 10
kg m

s2 = 10 N

Problem 3. Find the force acting vertically down-
wards on a mass of 200 g attached to a wire.

Mass = 200 g = 0.2 kg and
acceleration due to gravity, g = 9.81 m/s2

Force acting downwards = weight = mass × acceleration

= 0.2 kg × 9.81 m/s2

= 1.962 N

1.4 Work

The unit of work or energy is the joule (J) where one
joule is one newton metre. The joule is defined as the work
done or energy transferred when a force of one newton is
exerted through a distance of one metre in the direction of
the force. Thus

work done on a body, in joules W = Fs

where F is the force in newtons and s is the distance in
metres moved by the body in the direction of the force.
Energy is the capacity for doing work.

1.5 Power

The unit of power is the watt (W) where one watt is one
joule per second. Power is defined as the rate of doing
work or transferring energy. Thus,

power in watts, P = W
t

where W is the work done or energy transferred in joules
and t is the time in seconds. Thus

energy, in joules, W = Pt

Problem 4. A portable machine requires a force of
200 N to move it. How much work is done if the
machine is moved 20 m and what average power is
utilized if the movement takes 25 s?

Work done = force × distance = 200 N × 20 m

= 4000 Nm or 4 kJ

Power = work done

time taken
= 4000 J

25 s
= 160 J/s = 160 W

Problem 5. A mass of 1000 kg is raised through a
height of 10 m in 20 s. What is (a) the work done and
(b) the power developed?

(a) Work done = force × distance and
force = mass × acceleration

Hence, work done = (1000 kg × 9.81 m/s2) × (10 m)

= 98 100 Nm
= 98.1 kNm or 98.1 kJ

(b) Power = work done

time taken
= 98 100 J

20 s
= 4905 J/s

= 4905 W or 4.905 kW

Now try the following exercise.

Exercise 1 Further problems on units associated
with basic electrical quantities. (Take g = 9.81 m/s2

where appropriate)

1. What force is required to give a mass of 20 kg an
acceleration of 30 m/s2? [600 N]
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2. Find the accelerating force when a car having a
mass of 1.7 Mg increases its speed with a constant
acceleration of 3 m/s2 [5.1 kN]

3. A force of 40 N accelerates a mass at 5 m/s2.
Determine the mass. [8 kg]

4. Determine the force acting downwards on a mass
of 1500 g suspended on a string. [14.72 N]

5. A force of 4 N moves an object 200 cm in the
direction of the force. What amount of work is
done? [8 J]

6. A force of 2.5 kN is required to lift a load. How
much work is done if the load is lifted through
500 cm? [12.5 kJ]

7. An electromagnet exerts a force of 12 N and moves
a soft iron armature through a distance of 1.5 cm
in 40 ms. Find the power consumed.

[4.5 W]

8. A mass of 500 kg is raised to a height of 6 m in
30 s. Find (a) the work done and (b) the power
developed. [(a) 29.43 kNm (b) 981 W]

9. What quantity of electricity is carried by
6.24 × 1021 electrons? [1000 C]

10. In what time would a current of 1A transfer a
charge of 30 C? [30 s]

11. A current of 3 A flows for 5 minutes. What charge
is transferred? [900 C]

12. How long must a current of 0.1A flow so as to
transfer a charge of 30 C? [5 minutes]

13. Rewrite the following as indicated:
(a) 1000 pF = . . . . . . . . . nF
(b) 0.02 µF = . . . . . . . . .. pF
(c) 5000 kHz = . . . . . . . . . MHz
(d) 47 k�= . . . . . . .. M�
(e) 0.32 mA = . . . . . . . µA

[(a) 1 nF (b) 20 000 pF (c) 5 MHz
(d) 0.047 M� (e) 320 µA]

1.6 Electrical potential and e.m.f.

The unit of electric potential is the volt (V) where one
volt is one joule per coulomb. One volt is defined as the
difference in potential between two points in a conductor
which, when carrying a current of one ampere, dissipates
a power of one watt, i.e.

volts = watts

amperes
= joules/second

amperes

= joules

ampere seconds
= joules

coulombs

A change in electric potential between two points in an
electric circuit is called a potential difference. The elec-
tromotive force (e.m.f.) provided by a source of energy
such as a battery or a generator is measured in volts.

1.7 Resistance and conductance

The unit of electric resistance is the ohm (�) where one
ohm is one volt per ampere. It is defined as the resistance
between two points in a conductor when a constant electric
potential of one volt applied at the two points produces a
current flow of one ampere in the conductor. Thus,

resistance, in ohms R = V
I

where V is the potential difference across the two points
in volts and I is the current flowing between the two points
in amperes.

The reciprocal of resistance is called conductance and
is measured in siemens (S). Thus,

conductance, in siemens G = 1
R

where R is the resistance in ohms.

Problem 6. Find the conductance of a conductor of
resistance (a) 10 �, (b) 5 k� and (c) 100 m�.

(a) Conductance G = 1

R
= 1

10
siemen = 0.1 S

(b) G = 1

R
= 1

5 × 103 S = 0.2 × 10−3 S = 0.2 mS

(c) G = 1

R
= 1

100 × 10−3 S = 103

100
S = 10 S

1.8 Electrical power and energy

When a direct current of I amperes is flowing in an elec-
tric circuit and the voltage across the circuit is V volts,
then

power, in watts P = VI

Electrical energy = Power × time

=VIt Joules
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Although the unit of energy is the joule, when dealing with
large amounts of energy, the unit used is the kilowatt hour
(kWh) where

1 kWh = 1000 watt hour

= 1000 × 3600 watt seconds or joules

= 3 600 000 J

Problem 7. A source e.m.f. of 5V supplies a current
of 3A for 10 minutes. How much energy is provided
in this time?

Energy = power × time and power = voltage × current.
Hence
Energy =VIt = 5 × 3 × (10 × 60) = 9000 Ws or J

= 9 kJ

Problem 8. An electric heater consumes 1.8 MJ when
connected to a 250V supply for 30 minutes. Find the
power rating of the heater and the current taken from
the supply.

Energy = power × time, hence

power = energy

time

= 1.8 × 106 J

30 × 60 s
= 1000 J/s = 1000 W

i.e. Power rating of heater = 1 kW

Power P =VI, thus I = P

V
= 1000

250
= 4A

Hence the current taken from the supply is 4A

Now try the following exercise.

Exercise 2 Further problems on units associated
with basic electrical quantities.

1. Find the conductance of a resistor of resistance
(a) 10 � (b) 2 k� (c) 2 m�

[(a) 0.1 S (b) 0.5 mS (c) 500 S]

2. A conductor has a conductance of 50 µS. What is
its resistance? [20 k�]

3. An e.m.f. of 250V is connected across a resistance
and the current flowing through the resistance is 4A.
What is the power developed? [1 kW]

4. 450 J of energy are converted into heat in 1 minute.
What power is dissipated? [7.5 W]

5. A current of 10A flows through a conductor and
10 W is dissipated. What p.d. exists across the ends
of the conductor? [1V]

6. A battery of e.m.f. 12V supplies a current of 5A
for 2 minutes. How much energy is supplied in this
time? [7.2 kJ]

7. A dc electric motor consumes 36 MJ when con-
nected to a 250V supply for 1 hour. Find the power
rating of the motor and the current taken from the
supply. [10 kW, 40A]

1.9 Summary of terms, units and their symbols

Quantity Quantity Unit Unit symbol
Symbol

Length l metre m
Mass m kilogram kg
Time t second s
Velocity v metres per m/s or m s−1

second
Acceleration a metres per m/s2 or m s−2

second
squared

Force F newton N
Electrical charge Q coulomb C

or quantity
Electric current I ampere A
Resistance R ohm �

Conductance G siemen S
Electromotive E volt V

force
Potential V volt V

difference
Work W joule J
Energy E (or W) joule J
Power P watt W

As progress is made through Electrical Circuit Theory
and Technology many more terms will be met. A full list
of electrical quantities, together with their symbols and
units are given in Part 4, page 665.
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2 An introduction to electric circuits

At the end of this chapter you should be able to:
• recognize common electrical circuit diagram

symbols
• understand that electric current is the rate of move-

ment of charge and is measured in amperes
• appreciate that the unit of charge is the coulomb
• calculate charge or quantity of electricity Q from

Q = It
• understand that a potential difference between two

points in a circuit is required for current to flow
• appreciate that the unit of p.d. is the volt
• understand that resistance opposes current flow and

is measured in ohms
• appreciate what an ammeter, a voltmeter, an ohm-

meter, a multimeter and an oscilloscope measure
• distinguish between linear and non-linear devices

• state Ohm’s law as V = IR or I = V

R
or R = V

I• use Ohm’s law in calculations, including multiples
and sub-multiples of units

• describe a conductor and an insulator, giving
examples of each

• appreciate that electrical power P is given by

P = VI = I2R = V2

R
watts

• calculate electrical power
• define electrical energy and state its unit
• calculate electrical energy
• state the three main effects of an electric current,

giving practical examples of each
• explain the importance of fuses in electrical circuits

2.1 Standard symbols for electrical components

Symbols are used for components in electrical circuit dia-
grams and some of the more common ones are shown in
Figure 2.1.

Figure 2.1

2.2 Electric current and quantity of electricity

All atoms consist of protons, neutrons and electrons.
The protons, which have positive electrical charges, and
the neutrons, which have no electrical charge, are con-
tained within the nucleus. Removed from the nucleus
are minute negatively charged particles called electrons.
Atoms of different materials differ from one another by
having different numbers of protons, neutrons and elec-
trons. An equal number of protons and electrons exist
within an atom and it is said to be electrically balanced,
as the positive and negative charges cancel each other out.
When there are more than two electrons in an atom the
electrons are arranged into shells at various distances from
the nucleus.

All atoms are bound together by powerful forces of
attraction existing between the nucleus and its electrons.
Electrons in the outer shell of an atom, however, are
attracted to their nucleus less powerfully than are electrons
whose shells are nearer the nucleus.

It is possible for an atom to lose an electron; the
atom, which is now called an ion, is not now electrically
balanced, but is positively charged and is thus able to
attract an electron to itself from another atom. Electrons
that move from one atom to another are called free elec-
trons and such random motion can continue indefinitely.
However, if an electric pressure or voltage is applied
across any material there is a tendency for electrons to
move in a particular direction. This movement of free elec-
trons, known as drift, constitutes an electric current flow.
Thus current is the rate of movement of charge.
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Conductors are materials that contain electrons that
are loosely connected to the nucleus and can easily move
through the material from one atom to another.

Insulators are materials whose electrons are held
firmly to their nucleus.

The unit used to measure the quantity of elec-
trical charge Q is called the coulomb C (where 1
coulomb = 6.24 × 1018 electrons).

If the drift of electrons in a conductor takes place at
the rate of one coulomb per second the resulting current
is said to be a current of one ampere.
Thus, 1 ampere = 1 coulomb per second or 1 A = 1 C/s
Hence, 1 coulomb = 1 ampere second or 1 C = 1 As
Generally, if I is the current in amperes and t the time in
seconds during which the current flows, then I × t repre-
sents the quantity of electrical charge in coulombs, i.e.

quantity of electrical charge transferred,

Q = I × t coulombs

Problem 1. What current must flow if 0.24 coulombs
is to be transferred in 15 ms?

Since the quantity of electricity, Q = It, then

I = Q

t
= 0.24

15 × 10−3 = 0.24 × 103

15
= 240

15
= 16 A

Problem 2. If a current of 10A flows for four minutes,
find the quantity of electricity transferred.

Quantity of electricity, Q = It coulombs

I = 10 A; t = 4 × 60 = 240 s

Hence Q = 10 × 240 = 2400 C

Now try the following exercise.

Exercise 3 Further problems on electric current
and quantity of charge

1. In what time would a current of 10 A transfer a
charge of 50 C? [5 s]

2. A current of 6 A flows for 10 minutes. What charge
is transferred? [3600 C]

3. How long must a current of 100 mA flow so as to
transfer a charge of 80 C? [13 min 20 s]

2.3 Potential difference and resistance

For a continuous current to flow between two points in
a circuit a potential difference (p.d.) or voltage, V , is
required between them; a complete conducting path is
necessary to and from the source of electrical energy. The
unit of p.d. is the volt, V.

Figure 2.2 shows a cell connected across a filament
lamp. Current flow, by convention, is considered as flow-
ing from the positive terminal of the cell, around the circuit
to the negative terminal.

Figure 2.2

The flow of electric current is subject to friction. This
friction, or opposition, is called resistance R and is the
property of a conductor that limits current. The unit of
resistance is the ohm; 1 ohm is defined as the resistance
which will have a current of 1 ampere flowing through it
when 1 volt is connected across it, i.e.

resistance R = potential difference
current

2.4 Basic electrical measuring instruments

An ammeter is an instrument used to measure current and
must be connected in series with the circuit. Figure 2.2
shows an ammeter connected in series with the lamp to
measure the current flowing through it. Since all the cur-
rent in the circuit passes through the ammeter it must have
a very low resistance.
A voltmeter is an instrument used to measure p.d. and
must be connected in parallel with the part of the cir-
cuit whose p.d. is required. In Figure 2.2, a voltmeter is
connected in parallel with the lamp to measure the p.d.
across it. To avoid a significant current flowing through it
a voltmeter must have a very high resistance.
An ohmmeter is an instrument for measuring resistance.
A multimeter, or universal instrument, may be used to
measure voltage, current and resistance. An ‘Avometer’
and ‘fluke’ are typical examples.
The oscilloscope may be used to observe waveforms and
to measure voltages and currents. The display of an oscil-
loscope involves a spot of light moving across a screen.
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The amount by which the spot is deflected from its initial
position depends on the p.d. applied to the terminals of
the oscilloscope and the range selected. The displacement
is calibrated in ‘volts per cm’. For example, if the spot
is deflected 3 cm and the volts/cm switch is on 10V/cm
then the magnitude of the p.d. is 3 cm × 10V/cm, i.e. 30V
(See Chapter 10 for more detail about electrical measuring
instruments and measurements.)

2.5 Linear and non-linear devices

Figure 2.3 shows a circuit in which current I can be var-
ied by the variable resistor R2. For various settings of
R2, the current flowing in resistor R1, displayed on the
ammeter, and the p.d. across R1, displayed on the volt-
meter, are noted and a graph is plotted of p.d. against
current. The result is shown in Figure 2.4(a) where the
straight line graph passing through the origin indicates that
current is directly proportional to the p.d. Since the gradi-
ent i.e. (p.d./current) is constant, resistance R1 is constant.
A resistor is thus an example of a linear device.

Figure 2.3

Figure 2.4

If the resistor R1 in Figure 2.3 is replaced by a component
such as a lamp then the graph shown in Figure 2.4(b)
results when values of p.d. are noted for various current
readings. Since the gradient is changing, the lamp is an
example of a non-linear device.

2.6 Ohm’s law

Ohm’s law states that the current I flowing in a circuit is
directly proportional to the applied voltage V and inversely

proportional to the resistance R, provided the temperature
remains constant. Thus,

I = V
R

or V = IR or R = V
I

Problem 3. The current flowing through a resistor is
0.8 A when a p.d. of 20V is applied. Determine the
value of the resistance.

From Ohm’s law,
resistance

R = V

I
= 20

0.8
= 200

8
= 25 �

2.7 Multiples and sub-multiples

Currents, voltages and resistances can often be very large
or very small. Thus multiples and sub-multiples of units
are often used, as stated in Chapter 1. The most common
ones, with an example of each, are listed in Table 2.1

Table 2.1

Prefix Name Meaning Example

M mega multiply by 1 000 000 2 M�

(i.e. ×106) = 2 000 000 ohms
k kilo multiply by 1000 10 kV

(i.e. ×103) = 10 000 volts

m milli divide by 1000
(i.e. ×10−3)

25 mA = 25

1000
A

= 0.025 amperes

µ micro divide by 1 000 000
(i.e. ×10−6)

50 µV = 50

1 000 000
V

= 0.000 05 volts

A more extensive list of common prefixes are given on
page 668.

Problem 4. Determine the p.d. which must be applied
to a 2 k� resistor in order that a current of 10 mA may
flow.

Resistance R = 2 k� = 2 × 103 = 2000 �

Current I = 10 mA

= 10 × 10−3 A or
10

103 or
10

1000
A

= 0.01A
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From Ohm’s law, potential difference,
V = IR = (0.01) (2000) = 20V

Problem 5. A coil has a current of 50 mA flowing
through it when the applied voltage is 12V. What is
the resistance of the coil?

Resistance, R = V

I
= 12

50 × 10−3 = 12 × 103

50

= 12 000

50
= 240 �

Problem 6. A 100V battery is connected across a
resistor and causes a current of 5 mA to flow. Deter-
mine the resistance of the resistor. If the voltage is
now reduced to 25V, what will be the new value of the
current flowing?

Resistance R = V

I
= 100

5 × 10−3 = 100 × 103

5

= 20 × 103 = 20 k�

Current when voltage is reduced to 25V,

I = V

R
= 25

20 × 103 = 25

20
× 10−3 = 1.25 mA

Problem 7. What is the resistance of a coil which
draws a current of (a) 50 mA and (b) 200 µA from a
120V supply?

(a) Resistance R = V

I
= 120

50 × 10−3

= 120

0.05
= 12 000

5
= 2400 � or 2.4 k�

(b) Resistance R = 120

200 × 10−6 = 120

0.0002

= 1 200 000

2
= 600 000 � or 600 k�

or 0.6 M�

Problem 8. The current/voltage relationship for two
resistors A and B is as shown in Figure 2.5. Determine
the value of the resistance of each resistor.

Figure 2.5

For resistor A,

R = V

I
= 20 A

20 mA
= 20

0.02
= 2000

2
= 1000 � or 1 k�

For resistor B,

R = V

I
= 16 V

5 mA
= 16

0.005
= 16 000

5
= 3200 � or 3.2 k�

Now try the following exercise.

Exercise 4 Further problems on Ohm’s law

1. The current flowing through a heating element is
5A when a p.d. of 35V is applied across it. Find the
resistance of the element. [7 �]

2. A 60 W electric light bulb is connected to a 240V
supply. Determine (a) the current flowing in the bulb
and (b) the resistance of the bulb.

[(a) 0.25A (b) 960 �]

3. Graphs of current against voltage for two resistors P
and Q are shown in Figure 2.6. Determine the value
of each resistor. [2 m�, 5 m�]

Figure 2.6
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4. Determine the p.d. which must be applied to a 5 k�
resistor such that a current of 6 mA may flow.

[30V]

5. A 20V source of e.m.f. is connected across a circuit
having a resistance of 400 �. Calculate the current
flowing. [50 mA]

2.8 Conductors and insulators

A conductor is a material having a low resistance which
allows electric current to flow in it. All metals are con-
ductors and some examples include copper, aluminium,
brass, platinum, silver, gold and carbon.

An insulator is a material having a high resistance
which does not allow electric current to flow in it. Some
examples of insulators include plastic, rubber, glass,
porcelain, air, paper, cork, mica, ceramics and certain oils.

2.9 Electrical power and energy

Electrical power

Power P in an electrical circuit is given by the product of
potential difference V and current I , as stated in Chapter 1.
The unit of power is the watt, W. Hence

P = V × I watts (2.1)

From Ohm’s law, V = IR
Substituting for V in equation (2.1) gives:

P = (IR) × I

i.e. P = I2R watts

Also, from Ohm’s law, I = V

R
Substituting for I in equation (2.1) gives:

P = V × V

R

i.e. P = V2

R
watts

There are thus three possible formulae which may be used
for calculating power.

Problem 9. A 100 W electric light bulb is connected
to a 250V supply. Determine (a) the current flowing
in the bulb, and (b) the resistance of the bulb.

Power P = V × I , from which, current I = P

V

(a) Current I = 100

250
= 10

25
= 2

5
= 0.4A

(b) Resistance R = V

I
= 250

0.4
= 2500

4
= 625 �

Problem 10. Calculate the power dissipated when a
current of 4 mA flows through a resistance of 5 k�.

Power P = I2R = (4 × 10−3)2(5 × 103)

= 16 × 10−6 × 5 × 103 = 80 × 10−3

= 0.08 W or 80 mW

Alternatively, since I = 4 × 10−3 and R = 5 × 103

then from Ohm’s law,
voltage V = IR = 4 × 10−3 × 5 × 10−3 = 20V
Hence, power P = V × I = 20 × 4 × 10−3 = 80 mW

Problem 11. An electric kettle has a resistance of
30 �. What current will flow when it is connected to a
240V supply? Find also the power rating of the kettle.

Current, I = V

R
= 240

30
= 8A

Power, P =VI = 240 × 8 = 1920 W

= 1.92 kW

= power rating of kettle

Problem 12. A current of 5A flows in the winding of
an electric motor, the resistance of the winding being
100 �. Determine (a) the p.d. across the winding, and
(b) the power dissipated by the coil.

(a) Potential difference across winding,
V = IR = 5 × 100 = 500V

(b) Power dissipated by coil, P = I2R = 52 × 100

= 2500 W or 2.5 kW
(Alternatively, P = V × I = 500 × 5 = 2500 W or
2.5 kW)

Problem 13. The hot resistance of a 240V filament
lamp is 960 �. Find the current taken by the lamp and
its power rating.
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From Ohm’s law,

current I = V

R
= 240

960
= 24

96
= 1

4
A or 0.25A

Power rating P =VI = (240)

(
1

4

)
= 60 W

Electrical energy

Electrical energy = power × time

If the power is measured in watts and the time in seconds
then the unit of energy is watt-seconds or joules. If the
power is measured in kilowatts and the time in hours then
the unit of energy is kilowatt-hours, often called the ‘unit
of electricity’. The ‘electricity meter’ in the home records
the number of kilowatt-hours used and is thus an energy
meter.

Problem 14. A 12V battery is connected across a
load having a resistance of 40 �. Determine the cur-
rent flowing in the load, the power consumed and the
energy dissipated in 2 minutes.

Current I = V

R
= 12

40
= 0.3A

Power consumed, P =VI = (12)(0.3) = 3.6 W
Energy dissipated

= power × time
= (3.6 W)(2 × 60 s) = 432 J (since 1 J = 1 Ws)

Problem 15. A source of e.m.f. of 15V supplies a
current of 2A for six minutes. How much energy is
provided in this time?

Energy = power × time, and power = voltage × current

Hence energy =VIt = 15 × 2 × (6 × 60)
= 10 800 Ws or J = 10.8 kJ

Problem 16. Electrical equipment in an office takes
a current of 13A from a 240V supply. Estimate the
cost per week of electricity if the equipment is used
for 30 hours each week and 1 kWh of energy costs
13.56 p.

Power = VI watts = 240 × 13 = 3120 W = 3.12 kW

Energy used per week
= power × time
= (3.12 kW) × (30 h) = 93.6 kWh

Cost at 13.56 p per kWh = 93.6 × 13.56 = 1269.216 p

Hence weekly cost of electricity = £12.69

Problem 17. An electric heater consumes 3.6 MJ
when connected to a 250V supply for 40 minutes. Find
the power rating of the heater and the current taken
from the supply.

Power = energy

time
= 3.6 × 106

40 × 60

J

s
(or W) = 1500 W

i.e. Power rating of heater = 1.5 kW

Power P =VI, thus I = P

V
= 1500

250
= 6A

Hence the current taken from the supply is 6A

Problem 18. Determine the power dissipated by the
element of an electric fire of resistance 20 � when a
current of 10A flows through it. If the fire is on for
6 hours determine the energy used and the cost if 1 unit
of electricity costs 13 p.

Power P = I2R = 102 × 20 = 100 × 20 = 2000 Wor2 kW
(Alternatively, from Ohm’s law,V= IR = 10 × 20 = 200V,
hence power P = V × I = 200 × 10 = 2000 W = 2 kW)

Energy used in 6 hours
= power × time
= 2 kW × 6 h = 12 kWh

1 unit of electricity = 1 kWh
Hence the number of units used is 12
Cost of energy = 12 × 13 = £1.56

Problem 19. A business uses two 3 kW fires for an
average of 20 hours each per week, and six 150 W
lights for 30 hours each per week. If the cost of elec-
tricity is 14.25 p per unit, determine the weekly cost of
electricity to the business.

Energy = power × time
Energy used by one 3 kW fire in 20 hours

= 3 kW × 20 h = 60 kWh
Hence weekly energy used by two 3 kW fires

= 2 × 60 = 120 kWh
Energy used by one 150 W light for 30 hours

= 150 W × 30 h
= 4500 Wh = 4.5 kWh

Hence weekly energy used by six 150 W lamps
= 6 × 4.5 = 27 kWh

Total energy used per week = 120 + 27 = 147 kWh
1 unit of electricity = 1 kWh of energy
Thus weekly cost of energy at

14.25 p per kWh = 14.25 × 147 = 2094.75 p
= £20.95
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Now try the following exercise.

Exercise 5 Further problems on power and
energy

1. The hot resistance of a 250V filament lamp is
625 �. Determine the current taken by the lamp
and its power rating. [0.4A, 100 W]

2. Determine the resistance of a coil connected to
a 150V supply when a current of (a) 75 mA (b)
300 µA flows through it. [(a) 2 k� (b) 0.5 M�]

3. Determine the resistance of an electric fire which
takes a current of 12A from a 240V supply. Find
also the power rating of the fire and the energy
used in 20 h. [20 �, 2.88 kW, 57.6 kWh]

4. Determine the power dissipated when a current
of 10 mA flows through an appliance having a
resistance of 8 k�. [0.8 W]

5. 85.5 J of energy are converted into heat in nine
seconds. What power is dissipated? [9.5 W]

6. A current of 4A flows through a conductor and
10 W is dissipated. What p.d. exists across the ends
of the conductor? [2.5V]

7. Find the power dissipated when:
(a) a current of 5 mA flows through a resistance

of 20 k�
(b) a voltage of 400V is applied across a 120 k�

resistor
(c) a voltage applied to a resistor is 10 kV and the

current flow is 4 mA.
[(a) 0.5 W (b) 1.33 W (c) 40 W]

8. A battery of e.m.f. 15V supplies a current of
2A for 5 min. How much energy is supplied in
this time? [9 kJ]

9. In a household during a particular week three 2 kW
fires are used on average 25 h each and eight 100 W
light bulbs are used on average 35 h each. Deter-
mine the cost of electricity for the week if 1 unit
of electricity costs 12.82 p. [£22.82]

10. Calculate the power dissipated by the element of
an electric fire of resistance 30 � when a current
of 10A flows in it. If the fire is on for 30 hours
in a week determine the energy used. Determine
also the weekly cost of energy if electricity costs
12.50 p per unit. [3 kW, 90 kWh, £11.25]

2.10 Main effects of electric current

The three main effects of an electric current are:

(a) magnetic effect
(b) chemical effect
(c) heating effect

Some practical applications of the effects of an electric
current include:

Magnetic effect: bells, relays, motors, generators,
transformers, telephones, car-ignition
and lifting magnets

Chemical effect: primary and secondary cells and
electroplating

Heating effect: cookers, water heaters, electric fires,
irons, furnaces, kettles and
soldering irons

2.11 Fuses

If there is a fault in a piece of equipment then excessive
current may flow. This will cause overheating and possibly
a fire; fuses protect against this happening. Current from
the supply to the equipment flows through the fuse. The
fuse is a piece of wire which can carry a stated current;
if the current rises above this value it will melt. If the
fuse melts (blows) then there is an open circuit and no
current can then flow — thus protecting the equipment by
isolating it from the power supply.

The fuse must be able to carry slightly more than the
normal operating current of the equipment to allow for
tolerances and small current surges. With some equipment
there is a very large surge of current for a short time at
switch on. If a fuse is fitted to withstand this large current
there would be no protection against faults which cause the
current to rise slightly above the normal value. Therefore
special anti-surge fuses are fitted. These can stand 10 times
the rated current for 10 milliseconds. If the surge lasts
longer than this the fuse will blow.

A circuit diagram symbol for a fuse is shown in
Figure 2.1 on page 7.

Problem 20. If 5A, 10A and 13A fuses are avail-
able, state which is most appropriate for the following
appliances which are both connected to a 240V supply
(a) Electric toaster having a power rating of 1 kW
(b) Electric fire having a power rating of 3 kW.

Power P =VI, from which, current I = P

V
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(a) For the toaster,

current I = P

V
= 1000

240
= 100

24
= 4.17 A

Hence a 5A fuse is most appropriate

(b) For the fire,

current I = P

V
= 3000

240
= 300

24
= 12.5 A

Hence a 13A fuse is most appropriate

Now try the following exercise.

Exercise 6 Further problem on fuses

1. A television set having a power rating of 120 W
and electric lawn-mower of power rating 1 kW are
both connected to a 240V supply. If 3A, 5A and
10A fuses are available state which is the most
appropriate for each appliance. [3A, 5A]
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3 Resistance variation

At the end of this chapter you should be able to:

• appreciate that electrical resistance depends on four
factors

• appreciate that resistance R = ρl

a
, where ρ is the

resistivity
• recognize typical values of resistivity and its unit

• perform calculations using R = ρl

a• define the temperature coefficient of resistance, α
• recognize typical values for α
• perform calculations using Rθ = R0(1 + αθ)

3.1 Resistance and resistivity

The resistance of an electrical conductor depends on
4 factors, these being: (a) the length of the conductor,
(b) the cross-sectional area of the conductor, (c) the type
of material and (d) the temperature of the material.

Resistance, R, is directly proportional to length, l, of
a conductor, i.e. R ∝ l. Thus, for example, if the length of
a piece of wire is doubled, then the resistance is doubled.

Resistance, R, is inversely proportional to cross-
sectional area, a, of a conductor, i.e. R ∝ 1/a. Thus, for
example, if the cross-sectional area of a piece of wire is
doubled then the resistance is halved.

Since R ∝ l and R ∝ 1/a then R ∝ l/a. By inserting a
constant of proportionality into this relationship the type
of material used may be taken into account. The con-
stant of proportionality is known as the resistivity of the
material and is given the symbol ρ (Greek rho). Thus,

resistance R = ρl
a

ohms

ρ is measured in ohm metres (�m).
The value of the resistivity is that resistance of a unit

cube of the material measured between opposite faces of
the cube.

Resistivity varies with temperature and some typical
values of resistivities measured at about room temperature
are given below:

Copper 1.7 × 10−8 �m (or 0.017 µ�m)
Aluminium 2.6 × 10−8 �m (or 0.026 µ�m)
Carbon (graphite) 10 × 10−8 �m (or 0.10 µ�m)
Glass 1 × 1010 �m (or 104 µ�m)
Mica 1 × 1013 �m (or 107 µ�m)

Note that good conductors of electricity have a low value
of resistivity and good insulators have a high value of
resistivity.

Problem 1. The resistance of a 5 m length of wire is
600 �. Determine (a) the resistance of an 8 m length
of the same wire, and (b) the length of the same wire
when the resistance is 420 �.

(a) Resistance, R, is directly proportional to length, l, i.e.
R ∝ l

Hence, 600 � ∝ 5 m or 600 = (k)(5), where k is the
coefficient of proportionality. Hence,

k = 600

5
= 120

When the length l is 8 m, then resistance

R = kl = (120)(8) = 960 �

(b) When the resistance is 420 �, 420 = kl, from which,

length l = 420

k
= 420

120
= 3.5 m

Problem 2. A piece of wire of cross-sectional area
2 mm2 has a resistance of 300 �. Find (a) the resistance
of a wire of the same length and material if the cross-
sectional area is 5 mm2, (b) the cross-sectional area of
a wire of the same length and material of resistance
750 �.

Resistance R is inversely proportional to cross-sectional

area, a, i.e. R ∝ 1

a
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Hence 300 � ∝ 1

2 mm2 or 300 = (k)

(
1

2

)
,

from which, the coefficient of proportionality, k = 300 × 2
= 600

(a) When the cross-sectional area a = 5 mm2

then R = (k)

(
1

5

)
= (600)

(
1

5

)
= 120 �

(Note that resistance has decreased as the cross-
sectional is increased.)

(b) When the resistance is 750 � then 750 = (k)(1/a),
from which cross-sectional area,

a = k

750
= 600

750
= 0.8 mm2

Problem 3. A wire of length 8 m and cross-sectional
area 3 mm2 has a resistance of 0.16 �. If the wire
is drawn out until its cross-sectional area is 1 mm2,
determine the resistance of the wire.

Resistance R is directly proportional to length l, and
inversely proportional to the cross-sectional area, a, i.e.

R ∝ l

a
or R = k

(
l

a

)
, where k is the coefficient of

proportionality.

Since R = 0.16, l = 8 and a = 3, then 0.16 = (k)

(
8

3

)
,

from which

k = 0.16 × 3

8
= 0.06

If the cross-sectional area is reduced to 1
3 of its original

area then the length must be tripled to 3 × 8, i.e. 24 m

New resistance R = k

(
l

a

)
= 0.06

(
24

1

)
= 1.44 �

Problem 4. Calculate the resistance of a 2 km length
of aluminium overhead power cable if the cross-
sectional area of the cable is 100 mm2. Take the
resistivity of aluminium to be 0.03 × 10−6 �m.

Length l = 2 km = 2000 m; area, a = 100 mm2 = 100 ×
10−6 m2; resistivity ρ = 0.03 × 10−6 �m

Resistance R = ρl

a
= (0.03 × 10−6 �m)(2000 m)

(100 × 10−6 m2)

= 0.03 × 2000

100
�

= 0.6 �

Problem 5. Calculate the cross-sectional area, in
mm2, of a piece of copper wire, 40 m in length and
having a resistance of 0.25 �. Take the resistivity of
copper as 0.02 × 10−6 �m.

Resistance R = ρl

a
hence cross-sectional area a = ρl

R

= (0.02 × 10−6 �m)(40 m)

0.25 �

= 3.2 × 10−6 m2

= (3.2 × 10−6) × 106 mm2 = 3.2 mm2

Problem 6. The resistance of 1.5 km of wire of
cross-sectional area 0.17 mm2 is 150 �. Determine the
resistivity of the wire.

Resistance, R = ρl

a

hence, resistivity ρ = Ra

l
= (150 �)(0.17 × 10−6 m2)

(1500 m)

= 0.017×10−6 �m or 0.017 µ�m

Problem 7. Determine the resistance of 1200 m of
copper cable having a diameter of 12 mm if the
resistivity of copper is 1.7 × 10−8 �m.

Cross-sectional area of cable, a = πr2 = π
( 12

2

)2

= 36π mm2

= 36π × 10−6 m2

Resistance R = ρl

a
= (1.7 × 10−8 �m)(1200 m)

(36π × 10−6 m2)

= 1.7 × 1200 × 106

108 × 36π
� = 1.7 × 12

36π
�

= 0.180 �
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Now try the following exercise.

Exercise 7 Further problems on resistance and
resistivity

1. The resistance of a 2 m length of cable is 2.5 �.
Determine (a) the resistance of a 7 m length of the
same cable and (b) the length of the same wire when
the resistance is 6.25 �. [(a) 8.75 � (b) 5 m]

2. Some wire of cross-sectional area 1 mm2 has a resist-
ance of 20 �. Determine (a) the resistance of a wire
of the same length and material if the cross-sectional
area is 4 mm2, and (b) the cross-sectional area of a
wire of the same length and material if the resistance
is 32 �. [(a) 5 � (b) 0.625 mm2]

3. Some wire of length 5 m and cross-sectional area
2 mm2 has a resistance of 0.08 �. If the wire is drawn
out until its cross-sectional area is 1 mm2, determine
the resistance of the wire. [0.32 �]

4. Find the resistance of 800 m of copper cable of cross-
sectional area 20 mm2. Take the resistivity of copper
as 0.02 µ�m. [0.8 �]

5. Calculate the cross-sectional area, in mm2, of a piece
of aluminium wire 100 m long and having a resist-
ance of 2 �. Take the resistivity of aluminium as
0.03 × 10−6 �m. [1.5 mm2]

6. (a) What does the resistivity of a material mean?
(b) The resistance of 500 m of wire of cross-

sectional area 2.6 mm2 is 5 �. Determine the
resistivity of the wire in µ�m. [0.026 µ�m]

7. Find the resistance of 1 km of copper cable having
a diameter of 10 mm if the resistivity of copper is
0.017 × 10−6 �m. [0.216 �]

3.2 Temperature coefficient of resistance

In general, as the temperature of a material increases, most
conductors increase in resistance, insulators decrease in
resistance, whilst the resistance of some special alloys
remain almost constant.

The temperature coefficient of resistance of a mater-
ial is the increase in the resistance of a 1 � resistor of that
material when it is subjected to a rise of temperature of
1◦C. The symbol used for the temperature coefficient of
resistance is α (Greek alpha). Thus, if some copper wire
of resistance 1 � is heated through 1◦C and its resistance
is then measured as 1.0043 � then α = 0.0043 �/�◦C for
copper. The units are usually expressed only as ‘per ◦C’,

i.e. α = 0.0043/◦C for copper. If the 1 � resistor of copper
is heated through 100◦C then the resistance at 100◦C
would be 1 + 100 × 0.0043 = 1.43 �.

Some typical values of temperature coefficient of
resistance measured at 0◦C are given below:

Copper 0.0043/◦C Aluminium 0.0038/◦C
Nickel 0.0062/◦C Carbon −0.000 48/◦C
Constantan 0 Eureka 0.000 01/◦C

(Note that the negative sign for carbon indicates that its
resistance falls with increase of temperature.)

If the resistance of a material at 0◦C is known the
resistance at any other temperature can be determined
from:

Rθ = R0(1 + α0θ)

where R0 = resistance at 0◦C
Rθ = resistance at temperature θ◦C
α0 = temperature coefficient of resistance at 0◦C

Problem 8. A coil of copper wire has a resistance
of 100 � when its temperature is 0◦C. Determine its
resistance at 70◦C if the temperature coefficient of
resistance of copper at 0◦C is 0.0043/◦C.

Resistance Rθ = R0(1 + α0θ)

Hence resistance at 70◦C, R70 = 100[1 + (0.0043)(70)]

= 100[1 + 0.301]

= 100(1.301)

= 130.1 �

Problem 9. An aluminium cable has a resistance of
27 � at a temperature of 35◦C. Determine its resistance
at 0◦C. Take the temperature coefficient of resistance
at 0◦C to be 0.0038/◦C.

Resistance at θ◦C, Rθ = R0(1 + α0θ)

Hence resistance at 0◦C, R0 = Rθ

(1 + α0θ)

= 27

[1 + (0.0038)(35)]

= 27

1 + 0.133
= 27

1.133

= 23.83 �
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Problem 10. A carbon resistor has a resistance of
1 k� at 0◦C. Determine its resistance at 80◦C. Assume
that the temperature coefficient of resistance for carbon
at 0◦C is −0.0005/◦C.

Resistance at temperature θ◦C, Rθ = R0(1 + α0θ)

i.e. Rθ = 1000[1 + (−0.0005)(80)]

= 1000[1 − 0.040] = 1000(0.96)

= 960 �

If the resistance of a material at room temperature
(approximately 20◦C), R20, and the temperature coef-
ficient of resistance at 20◦C, α20, are known then the
resistance Rθ at temperature θ◦C is given by:

Rθ = R20[1 + α20(θ − 20)]

Problem 11. A coil of copper wire has a resistance of
10 � at 20◦C. If the temperature coefficient of resist-
ance of copper at 20◦C is 0.004/◦C determine the
resistance of the coil when the temperature rises to
100◦C.

Resistance at θ◦C, R = R20[1 + α20(θ − 20]

Hence resistance at 100◦C,

R100 = 10[1 + (0.004)(100 − 20)]

= 10[1 + (0.004)(80)]

= 10[1 + 0.32]

= 10(1.32)

= 13.2 �

Problem 12. The resistance of a coil of aluminium
wire at 18◦C is 200 �. The temperature of the wire
is increased and the resistance rises to 240 �. If the
temperature coefficient of resistance of aluminium is
0.0039/◦C at 18◦C determine the temperature to which
the coil has risen.

Let the temperature rise to θ◦

Resistance at θ◦C, Rθ = R18[1 + α18(θ − 18)]

i.e. 240 = 200[1 + (0.0039)(θ − 18)]

240 = 200 + (200)(0.0039)(θ − 18)

240 − 200 = 0.78(θ − 18)

40 = 0.78(θ − 18)

40

0.78
= θ − 18

51.28 = θ − 18, from which,

θ = 51.28 + 18 = 69.28◦C

Hence the temperature of the coil increases to 69.28◦C.

If the resistance at 0◦C is not known, but is known at
some other temperature θ1, then the resistance at any
temperature can be found as follows:

R1 = R0(1 + α0θ1) and R2 = R0(1 + α0θ2)

Dividing one equation by the other gives:

R1

R2
= 1 + α0θ1

1 + α0θ2

where R2 = resistance at temperature θ2.

Problem 13. Some copper wire has a resistance of
200 � at 20◦C. A current is passed through the wire
and the temperature rises to 90◦C. Determine the resist-
ance of the wire at 90◦C, correct to the nearest ohm,
assuming that the temperature coefficient of resistance
is 0.004/◦C at 0◦C.

R20 = 200 �, α0 = 0.004/◦C

R20

R90
= [1 + α0(20)]

[1 + α0(90)]

Hence R90 = R20[1 + 90α0]

[1 + 20α0]

= 200[1 + 90(0.004)]

[1 + 20(0.004)]

= 200[1 + 0.36]

[1 + 0.08]

= 200(1.36)

(1.08)
= 251.85 �

i.e. the resistance of the wire at 90◦C is 252 �.
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Now try the following exercise.

Exercise 8 Further problems on temperature
coefficient of resistance

1. A coil of aluminium wire has a resistance of 50 �
when its temperature is 0◦C. Determine its resis-
tance at 100◦C if the temperature coefficient of
resistance of aluminium at 0◦C is 0.0038/◦C.

[69 �]

2. A copper cable has a resistance of 30 � at a temper-
ature of 50◦C. Determine its resistance at 0◦C. Take
the temperature coefficient of resistance of copper
at 0◦C as 0.0043/◦C. [24.69 �]

3. The temperature coefficient of resistance for carbon
at 0◦C is −0.00048/◦C. What is the significance of
the minus sign? A carbon resistor has a resistance
of 500 � at 0◦C. Determine its resistance at 50◦C.

[488 �]

4. A coil of copper wire has a resistance of 20 � at
18◦C. If the temperature coefficient of resistance of
copper at 18◦C is 0.004/◦C, determine the resistance
of the coil when the temperature rises to 98◦C.

[26.4 �]

5. The resistance of a coil of nickel wire at 20◦C is
100 �. The temperature of the wire is increased
and the resistance rises to 130 �. If the tempera-
ture coefficient of resistance of nickel is 0.006/◦C
at 20◦C, determine the temperature to which the coil
has risen. [70◦C]

6. Some aluminium wire has a resistance of 50 �
at 20◦C. The wire is heated to a temperature of
100◦C. Determine the resistance of the wire at
100◦C, assuming that the temperature coefficient
of resistance at 0◦C is 0.004/◦C. [64.8 �]

7. A copper cable is 1.2 km long and has a cross-
sectional area of 5 mm2. Find its resistance at
80◦C if at 20◦C the resistivity of copper is
0.02 × 10−6 �m and its temperature coefficient of
resistance is 0.004/◦C. [5.952 �]
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4 Batteries

At the end of this chapter you should be able to:

• list practical applications of batteries
• understand electrolysis and its applications, includ-

ing electroplating
• appreciate the purpose and construction of a simple

cell
• explain polarization and local action
• explain corrosion and its effects
• define the terms e.m.f., E, and internal resistance, r,

of a cell
• perform calculations using V = E – Ir
• determine the total e.m.f. and total internal resis-

tance for cells connected in series and in parallel

• distinguish between primary and secondary cells
• explain the construction and practical applications of

the Leclanché, mercury, lead-acid and alkaline cells
• list the advantages and disadvantages of alkaline cells

over lead-acid cells
• understand the term ‘cell capacity’ and state its unit
• understand the importance of safe battery disposal
• appreciate advantages of fuel cells and their likely

future applications
• understand the implications of alternative energy

sources and state five examples

4.1 Introduction to batteries

A battery is a device that converts chemical energy to
electricity. If an appliance is placed between its terminals
the current generated will power the device. Batteries are
an indispensable item for many electronic devices and are
essential for devices that require power when no mains
power is available. For example, without the battery, there
would be no mobile phones or laptop computers.

The battery is now over 200 years old and batteries
are found almost everywhere in consumer and industrial
products. Some practical examples where batteries are
used include: in laptops, in cameras, in mobile phones,
in cars, in watches and clocks, for security equipment,
in electronic meters, for smoke alarms, for meters used
to read gas, water and electricity consumption at home,
to power a camera for an endoscope looking internally at
the body, and for transponders used for toll collection on
highways throughout the world.

Batteries tend to be split into two categories —
primary, which are not designed to be electrically
recharged, i.e. are disposable (see Section 4.6), and sec-
ondary batteries, which are designed to be recharged,
such as those used in mobile phones (see Section 4.7).

In more recent years it has been necessary to design
batteries with reduced size, but with increased lifespan
and capacity.

If an application requires small size and high power
then the 1.5V battery is used. If longer lifetime is
required then the 3 to 3.6V battery is used. In the 1970s
the 1.5V manganese battery was gradually replaced
by the alkaline battery. Silver oxide batteries were

gradually introduced in the 1960s and are still the preferred
technology for watch batteries today.

Lithium-ion batteries were introduced in the 1970s
because of the need for longer lifetime applications.
Indeed, some such batteries have been known to last well
over 10 years before replacement, a characteristic that
means that these batteries are still very much in demand
today for digital cameras, and sometimes for watches
and computer clocks. Lithium batteries are capable of
delivering high currents but tend to be expensive.

4.2 Some chemical effects of electricity

A material must contain charged particles to be able to
conduct electric current. In solids, the current is carried
by electrons. Copper, lead, aluminium, iron and carbon
are some examples of solid conductors. In liquids and
gases, the current is carried by the part of a molecule
which has acquired an electric charge, called ions. These
can possess a positive or negative charge, and examples
include hydrogen ion H+, copper ion Cu++ and hydroxyl
ion OH–. Distilled water contains no ions and is a poor
conductor of electricity whereas salt water contains ions
and is a fairly good conductor of electricity.

Electrolysis is the decomposition of a liquid compound
by the passage of electric current through it. Practi-
cal applications of electrolysis include the electroplating
of metals, the refining of copper and the extraction of
aluminium from its ore.
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An electrolyte is a compound which will undergo elec-
trolysis. Examples include salt water, copper sulphate and
sulphuric acid.

The electrodes are the two conductors carrying cur-
rent to the electrolyte. The positive-connected electrode
is called the anode and the negative-connected electrode
the cathode.

When two copper wires connected to a battery are
placed in a beaker containing a salt water solution, cur-
rent will flow through the solution. Air bubbles appear
around the wires as the water is changed into hydrogen
and oxygen by electrolysis.

Electroplating uses the principle of electrolysis to
apply a thin coat of one metal to another metal. Some
practical applications include the tin-plating of steel,
silver-plating of nickel alloys and chromium-plating of
steel. If two copper electrodes connected to a battery
are placed in a beaker containing copper sulphate as the
electrolyte it is found that the cathode (i.e. the electrode
connected to the negative terminal of the battery) gains
copper whilst the anode loses copper.

4.3 The simple cell

The purpose of an electric cell is to convert chemical
energy into electrical energy.

A simple cell comprises two dissimilar conductors
(electrodes) in an electrolyte. Such a cell is shown in Fig-
ure 4.1, comprising copper and zinc electrodes. An electric
current is found to flow between the electrodes. Other
possible electrode pairs exist, including zinc-lead and
zinc-iron. The electrode potential (i.e. the p.d. measured
between the electrodes) varies for each pair of metals. By
knowing the e.m.f. of each metal with respect to some
standard electrode the e.m.f. of any pair of metals may be
determined. The standard used is the hydrogen electrode.
The electrochemical series is a way of listing elements in
order of electrical potential, and Table 4.1 shows a number
of elements in such a series.

Figure 4.1

Table 4.1 Part of the electrochemical series

Potassium lead
sodium hydrogen
aluminium copper
zinc silver
iron carbon

In a simple cell two faults exist — those due to
polarization and local action.

Polarization

If the simple cell shown in Figure 4.1 is left connected for
some time, the current I decreases fairly rapidly. This is
because of the formation of a film of hydrogen bubbles on
the copper anode. This effect is known as the polarization
of the cell. The hydrogen prevents full contact between the
copper electrode and the electrolyte and this increases the
internal resistance of the cell. The effect can be overcome
by using a chemical depolarizing agent or depolarizer,
such as potassium dichromate which removes the hydro-
gen bubbles as they form. This allows the cell to deliver a
steady current.

Local action

When commercial zinc is placed in dilute sulphuric acid,
hydrogen gas is liberated from it and the zinc dissolves.
The reason for this is that impurities, such as traces of
iron, are present in the zinc which set up small primary
cells with the zinc. These small cells are short-circuited by
the electrolyte, with the result that localized currents flow
causing corrosion. This action is known as local action of
the cell. This may be prevented by rubbing a small amount
of mercury on the zinc surface, which forms a protective
layer on the surface of the electrode.

When two metals are used in a simple cell the electro-
chemical series may be used to predict the behaviour of
the cell:
(i) The metal that is higher in the series acts as the nega-

tive electrode, and vice-versa. For example, the zinc
electrode in the cell shown in Figure 4.1 is negative
and the copper electrode is positive.

(ii) The greater the separation in the series between the
two metals the greater is the e.m.f. produced by the
cell.

The electrochemical series is representative of the order
of reactivity of the metals and their compounds:
(i) The higher metals in the series react more readily with

oxygen and vice-versa.
(ii) When two metal electrodes are used in a simple cell

the one that is higher in the series tends to dissolve in
the electrolyte.
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4.4 Corrosion

Corrosion is the gradual destruction of a metal in a damp
atmosphere by means of simple cell action. In addition to
the presence of moisture and air required for rusting, an
electrolyte, an anode and a cathode are required for corro-
sion. Thus, if metals widely spaced in the electrochemical
series, are used in contact with each other in the presence
of an electrolyte, corrosion will occur. For example, if
a brass valve is fitted to a heating system made of steel,
corrosion will occur.

The effects of corrosion include the weakening of
structures, the reduction of the life of components and
materials, the wastage of materials and the expense of
replacement.

Corrosion may be prevented by coating with paint,
grease, plastic coatings and enamels, or by plating with
tin or chromium. Also, iron may be galvanized, i.e. plated
with zinc, the layer of zinc helping to prevent the iron
from corroding.

4.5 E.m.f. and internal resistance of a cell

The electromotive force (e.m.f.), E, of a cell is the p.d.
between its terminals when it is not connected to a load
(i.e. the cell is on ‘no load’).

The e.m.f. of a cell is measured by using a high resist-
ance voltmeter connected in parallel with the cell. The
voltmeter must have a high resistance otherwise it will pass
current and the cell will not be on no-load. For example, if
the resistance of a cell is 1 � and that of a voltmeter 1 M�
then the equivalent resistance of the circuit is 1 M� + 1 �,
i.e. approximately 1 M�, hence no current flows and the
cell is not loaded.

The voltage available at the terminals of a cell falls when
a load is connected. This is caused by the internal resist-
ance of the cell which is the opposition of the material of
the cell to the flow of current. The internal resistance acts
in series with other resistances in the circuit. Figure 4.2
shows a cell of e.m.f. E volts and internal resistance, r,
and XY represents the terminals of the cell.

When a load (shown as resistance R) is not connected,
no current flows and the terminal p.d., V = E. When R is
connected a current I flows which causes a voltage drop in

Figure 4.2

the cell, given by Ir. The p.d. available at the cell terminals
is less than the e.m.f. of the cell and is given by:

V = E − Ir

Thus if a battery of e.m.f. 12 volts and internal resis-
tance 0.01 � delivers a current of 100A, the terminal p.d.,

V = 12 − (100)(0.01)

= 12 − 1 = 11V

When different values of potential difference V , across a
cell or power supply are measured for different values of
current I , a graph may be plotted as shown in Figure 4.3.
Since the e.m.f. E of the cell or power supply is the p.d.
across its terminals on no load (i.e. when I = 0), then E is
as shown by the broken line.

Figure 4.3

Since V = E − Ir then the internal resistance may be
calculated from

r = E − V
I

When a current is flowing in the direction shown in
Figure 4.2 the cell is said to be discharging (E > V ).

When a current flows in the opposite direction to that
shown in Figure 4.2 the cell is said to be charging (V > E).

A battery is a combination of more than one cell. The
cells in a battery may be connected in series or in parallel.

(i) For cells connected in series:
Total e.m.f. = sum of cell’s e.m.f.’s
Total internal resistance = sum of cell’s internal
resistances
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(ii) For cells connected in parallel:
If each cell has the same e.m.f. and internal resistance:
Total e.m.f. = e.m.f. of one cell
Total internal resistance of n cells

= 1

n
× internal resistance of one cell

Problem 1. Eight cells, each with an internal resist-
ance of 0.2 � and an e.m.f. of 2.2V are connected
(a) in series, (b) in parallel. Determine the e.m.f. and
the internal resistance of the batteries so formed.

(a) When connected in series, total e.m.f.
= sum of cell’s e.m.f.

= 2.2 × 8 = 17.6 V
Total internal resistance

= sum of cell’s internal resistance

= 0.2 × 8 = 1.6 �

(b) When connected in parallel, total e.m.f.
= e.m.f. of one cell
= 2.2 V

Total internal resistance of 8 cells
= 1

8 × internal resistance of one cell

= 1
8 × 0.2 = 0.025 �

Problem 2. A cell has an internal resistance of 0.02 �
and an e.m.f. of 2.0V. Calculate its terminal p.d. if it
delivers (a) 5A, (b) 50A.

(a) Terminal p.d., V = E − Ir where E = e.m.f. of cell,
I = current flowing and r = internal resistance of cell

E = 2.0 V , I = 5A and r = 0.02 �

Hence V = 2.0 − (5)(0.02) = 2.0 − 0.1 = 1.9V
(b) When the current is 50A, terminal p.d.,

V = E − Ir = 2.0 − 50(0.02)

i.e. V = 2.0 − 1.0 = 1.0V
Thus the terminal p.d. decreases as the current drawn
increases.

Problem 3. The p.d. at the terminals of a battery
is 25V when no load is connected and 24V when a
load taking 10A is connected. Determine the internal
resistance of the battery.

When no load is connected the e.m.f. of the battery, E, is
equal to the terminal p.d., V , i.e. E = 25V

When current I = 10A and terminal p.d. V = 24V, then
V = E − Ir, i.e. 24 = 25 − (10)r

Hence, rearranging, gives 10r = 25 − 24 = 1 and the
internal resistance, r = 1

10 = 0.1 �

Problem 4. Ten 1.5V cells, each having an internal
resistance of 0.2 �, are connected in series to a load of
58 �. Determine (a) the current flowing in the circuit
and (b) the p.d. at the battery terminals.

(a) For ten cells, battery e.m.f., E = 10 × 1.5 = 15V, and
the total internal resistance, r = 10 × 0.2 = 2 �. When
connected to a 58 � load the circuit is as shown in
Figure 4.4.

Figure 4.4

Current I = e.m.f

total resistance
= 15

58 + 2

= 15

60
= 0.25A

(b) P.d. at battery terminals, V = E − Ir

i.e. V = 15 − (0.25)(2) = 14.5V

Now try the following exercise.

Exercise 9 Further problems on e.m.f. and inter-
nal resistance of cells

1. Twelve cells, each with an internal resistance of
0.24 � and an e.m.f. of 1.5V are connected (a) in
series, (b) in parallel. Determine the e.m.f. and
internal resistance of the batteries so formed.

[(a) 18V, 2.88 � (b) 1.5V, 0.02 �]

2. A cell has an internal resistance of 0.03 � and
an e.m.f. of 2.2V. Calculate its terminal p.d. if it
delivers (a) 1A, (b) 20A, (c) 50A.

[(a) 2.17V (b) 1.6V (c) 0.7V]

3. The p.d. at the terminals of a battery is 16V when
no load is connected and 14V when a load taking
8A is connected. Determine the internal resistance
of the battery. [0.25 �]

4. A battery of e.m.f. 20V and internal resistance
0.2 � supplies a load taking 10A. Determine the
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p.d. at the battery terminals and the resistance of
the load. [18V, 1.8 �]

5. Ten 2.2V cells, each having an internal resistance
of 0.1 � are connected in series to a load of 21 �.
Determine (a) the current flowing in the circuit, and
(b) the p.d. at the battery terminals.

[(a) 1A (b) 21V]

6. For the circuits shown in Figure 4.5 the resistors rep-
resent the internal resistance of the batteries. Find,
in each case: (a) the total e.m.f. across PQ (b) the
total equivalent internal resistances of the batteries.

Figure 4.5
[(a)(i) 6V (ii) 2V (b)(i) 4 � (ii) 0.25 �]

7. The voltage at the terminals of a battery is 52V
when no load is connected and 48.8V when a load
taking 80A is connected. Find the internal resis-
tance of the battery. What would be the terminal
voltage when a load taking 20A is connected?

[0.04 �, 51.2V]

4.6 Primary cells

Primary cells cannot be recharged, that is, the conversion
of chemical energy to electrical energy is irreversible and
the cell cannot be used once the chemicals are exhausted.
Examples of primary cells include the Leclanché cell and
the mercury cell.

Leclanché cell

A typical dry Leclanché cell is shown in Figure 4.6. Such
a cell has an e.m.f. of about 1.5V when new, but this

falls rapidly if in continuous use due to polarization. The
hydrogen film on the carbon electrode forms faster than
can be dissipated by the depolarizer. The Leclanché cell
is suitable only for intermittent use, applications includ-
ing torches, transistor radios, bells, indicator circuits, gas
lighters, controlling switch-gear, and so on. The cell is the
most commonly used of primary cells, is cheap, requires
little maintenance and has a shelf life of about 2 years.

Figure 4.6

Mercury cell

A typical mercury cell is shown in Figure 4.7. Such a
cell has an e.m.f. of about 1.3V which remains constant
for a relatively long time. Its main advantages over
the Leclanché cell is its smaller size and its long shelf
life. Typical practical applications include hearing aids,
medical electronics, cameras and for guided missiles.

Figure 4.7

4.7 Secondary cells

Secondary cells can be recharged after use, that is, the
conversion of chemical energy to electrical energy is
reversible and the cell may be used many times. Examples
of secondary cells include the lead-acid cell and the nickel
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cadmium and nickel-metal cells. Practical applications
of such cells include car batteries, emergency lighting,
mobile phones, laptop computers and personal stereos.

Lead-acid cell
A typical lead-acid cell is constructed of:

(i) A container made of glass, ebonite or plastic.
(ii) Lead plates

(a) the negative plate (cathode) consists of spongy
lead

(b) the positive plate (anode) is formed by pressing
lead peroxide into the lead grid.

The plates are interleaved as shown in the plan view of
Figure 4.8 to increase their effective cross-sectional
area and to minimize internal resistance.

Figure 4.8

(iii) Separators made of glass, celluloid or wood.
(iv) An electrolyte which is a mixture of sulphuric acid

and distilled water.
The relative density (or specific gravity) of a lead-acid

cell, which may be measured using a hydrometer, varies
between about 1.26 when the cell is fully charged to about
1.19 when discharged. The terminal p.d. of a lead-acid cell
is about 2V.

When a cell supplies current to a load it is said to be
discharging. During discharge:
(i) the lead peroxide (positive plate) and the spongy lead

(negative plate) are converted into lead sulphate, and
(ii) the oxygen in the lead peroxide combines with hydro-

gen in the electrolyte to form water. The electrolyte is
therefore weakened and the relative density falls.

The terminal p.d. of a lead-acid cell when fully discharged
is about 1.8V.

A cell is charged by connecting a d.c. supply to its
terminals, the positive terminal of the cell being connected
to the positive terminal of the supply. The charging current
flows in the reverse direction to the discharge current and
the chemical action is reversed. During charging:
(i) the lead sulphate on the positive and negative plates

is converted back to lead peroxide and lead respect-
ively, and

(ii) the water content of the electrolyte decreases as the
oxygen released from the electrolyte combines with
the lead of the positive plate. The relative density of
the electrolyte thus increases.

The colour of the positive plate when fully charged is dark
brown and when discharged is light brown. The colour of
the negative plate when fully charged is grey and when
discharged is light grey.

Nickel cadmium and nickel-metal cells

In both types of cells the positive plate is made of nickel
hydroxide enclosed in finely perforated steel tubes, the
resistance being reduced by the addition of pure nickel
or graphite. The tubes are assembled into nickel-steel
plates.

In the nickel-metal cell, (sometimes called the Edi-
son cell or nife cell), the negative plate is made of iron
oxide, with the resistance being reduced by a little mer-
curic oxide, the whole being enclosed in perforated steel
tubes and assembled in steel plates. In the nickel-cadmium
cell the negative plate is made of cadmium. The electrolyte
in each type of cell is a solution of potassium hydroxide
which does not undergo any chemical change and thus
the quantity can be reduced to a minimum. The plates are
separated by insulating rods and assembled in steel con-
tainers which are then enclosed in a non-metallic crate to
insulate the cells from one another. The average discharge
p.d. of an alkaline cell is about 1.2V.

Advantages of a nickel-cadmium cell or a nickel-iron cell
over a lead-acid cell include:

(i) More robust construction
(ii) Capable of withstanding heavy charging and dis-

charging currents without damage
(iii) Has a longer life
(iv) For a given capacity is lighter in weight
(v) Can be left indefinitely in any state of charge or

discharge without damage
(vi) Is not self-discharging

Disadvantages of nickel cadmium and nickel-metal cells
over a lead-acid cell include:

(i) Is relatively more expensive
(ii) Requires more cells for a given e.m.f.

(iii) Has a higher internal resistance
(iv) Must be kept sealed
(v) Has a lower efficiency

Nickel cells may be used in extremes of temperature, in
conditions where vibration is experienced or where duties
require long idle periods or heavy discharge currents.
Practical examples include traction and marine work,
lighting in railway carriages, military portable radios and
for starting diesel and petrol engines.
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4.8 Cell capacity

The capacity of a cell is measured in ampere-hours (Ah).
A fully charged 50Ah battery rated for 10 h discharge can
be discharged at a steady current of 5A for 10 h, but if
the load current is increased to 10A then the battery is
discharged in 3–4 h, since the higher the discharge current,
the lower is the effective capacity of the battery. Typical
discharge characteristics for a lead-acid cell are shown in
Figure 4.9.

Figure 4.9

4.9 Safe disposal of batteries

Battery disposal has become a topical subject in the UK
because of greater awareness of the dangers and implica-
tions of depositing up to 300 million batteries per annum –
a waste stream of over 20000 tonnes – into landfill sites.

Certain batteries contain substances which can be a haz-
ard to humans, wildlife and the environment, as well a
posing a fire risk. Other batteries can be recycled for their
metal content.

Waste batteries are a concentrated source of toxic heavy
metals such as mercury, lead and cadmium. If batteries
containing heavy metals are disposed of incorrectly, the
metals can leach out and pollute the soil and groundwater,
endangering humans and wildlife. Long term exposure to
cadmium, a known human carcinogen (i.e. a substance
producing cancerous growth), can cause liver and lung
disease. Mercury can cause damage to the human brain,
spinal system, kidneys and liver. Sulphuric acid in lead
acid batteries can cause severe skin burns or irritation upon
contact. It is increasingly important to correctly dispose
of all types of batteries.

4.10 Fuel cells

A fuel cell is an electrochemical energy conversion device,
similar to a battery, but differing from the latter in that it
is designed for continuous replenishment of the reactants
consumed, i.e. it produces electricity from an external
source of fuel and oxygen, as opposed to the limited
energy storage capacity of a battery. Also, the electrodes

within a battery react and change as a battery is charged or
discharged, whereas a fuel cells’ electrodes are catalytic
(i.e. not permanently changed) and relatively stable.

Typical reactants used in a fuel cell are hydrogen on the
anode side and oxygen on the cathode side (i.e. a hydro-
gen cell). Usually, reactants flow in and reaction products
flow out. Virtually continuous long-term operation is
feasible as long as these flows are maintained.

Fuel cells are very attractive in modern applications for
their high efficiency and ideally emission-free use, in con-
trast to currently more modern fuels such as methane or
natural gas that generate carbon dioxide. The only by-
product of a fuel cell operating on pure hydrogen is water
vapour.

Currently, fuel cells are a very expensive alterna-
tive to internal combustion engines. However, continued
research and development is likely to make fuel cell
vehicles available at market prices within a few years.

Fuel cells are very useful as power sources in remote
locations, such as spacecraft, remote weather stations, and
in certain military applications. A fuel cell running on
hydrogen can be compact, lightweight and has no moving
parts.

4.11 Alternative and renewable energy sources

Alternative energy refers to energy sources which could
replace coal, traditional gas and oil, all of which increase
the atmospheric carbon when burned as fuel.
Renewable energy implies that it is derived from a
source which is automatically replenished or one that is
effectively infinite so that it is not depleted as it is used.
Harnessing energy which have less damaging impacts on
the environment include the following:

(i) Solar energy could be used to run cars, power plants
and space ships; solar panels on roofs capture heat
in water storage systems. Photovoltaic cells, when
suitably positioned, convert sunlight to electricity.

(ii) Wind power can be used without producing by-
products that are harmful to nature. Like solar
power, harnessing the wind is highly dependent upon
weather and location.

(iii) Hydroelectricity is achieved by the damming of
rivers and utilising the potential energy in the water.
As the water stored behind a dam is released at high
pressure, its kinetic energy is transferred onto turbine
blades and used to generate electricity.

(iv) Tidal power utilises the natural motion of the tides
to fill reservoirs which are then slowly discharged
through electricity-producing turbines.

(v) Geothermal energy is obtained from the internal
heat of the planet and can be used to generate steam
to run a steam turbine which, in turn, generates
electricity.
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Revision test 1

This revision test covers the material contained in
Chapters 1 to 4.

The marks for each question are shown in brackets at
the end of each question.

1. An electromagnet exerts a force of 15 N and moves
a soft iron armature through a distance of 12 mm in
50 ms. Determine the power consumed. (4)

2. A d.c. motor consumes 47.25 MJ when connected to
a 250V supply for 1 hour 45 minutes. Determine the
power rating of the motor and the current taken from
the supply. (4)

3. A 100 W electric light bulb is connected to a 200V
supply. Calculate (a) the current flowing in the bulb,
and (b) the resistance of the bulb. (4)

4. Determine the charge transferred when a current of
5 mA flows for 10 minutes. (2)

5. A current of 12A flows in the element of an electric
fire of resistance 25 �. Determine the power dissi-
pated by the element. If the fire is on for 5 hours every

day, calculate for a one week period (a) the energy
used, and (b) cost of using the fire if electricity cost
13.5 p per unit. (6)

6. Calculate the resistance of 1200 m of copper cable of
cross-sectional area 15 mm2. Take the resistivity of
copper as 0.02 µ�m. (4)

7. At a temperature of 40◦C, an aluminium cable has a
resistance of 25 �. If the temperature coefficient of
resistance at 0◦C is 0.0038/◦C, calculate it’s resistance
at 0◦C. (4)

8. (a) State six typical applications of primary cells.
(b) State six typical applications of secondary cells.
(c) State the advantages of a fuel cell over a

conventional battery and state three practical
applications. (12)

9. Four cells, each with an internal resistance of 0.40 �
and an e.m.f. of 2.5 V are connected in series to a
load of 38.40 �. (a) Determine the current flowing in
the circuit and the p.d. at the battery terminals. (b) If
the cells are connected in parallel instead of in series,
determine the current flowing and the p.d. at the battery
terminals. (10)
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5 Series and parallel networks

At the end of this chapter you should be able to:
• calculate unknown voltages, currents and resis-

tances in a series circuit
• understand voltage division in a series circuit
• calculate unknown voltages, currents and resist-

ances in a parallel network
• calculate unknown voltages, currents and resist-

ances in series-parallel networks

• understand current division in a two-branch parallel
network

• understand and perform calculations on relative and
absolute voltages

• describe the advantages and disadvantages of series
and parallel connection of lamps

5.1 Series circuits

Figure 5.1 shows three resistors R1, R2 and R3 connected
end to end, i.e. in series, with a battery source of V volts.
Since the circuit is closed a current I will flow and the p.d.
across each resistor may be determined from the voltmeter
readings V1, V2 and V3

Figure 5.1

In a series circuit

(a) the current I is the same in all parts of the circuit and
hence the same reading is found on each of the two
ammeters shown, and

(b) the sum of the voltages V1, V2 and V3 is equal to the
total applied voltage, V , i.e.

V = V1 + V2 + V3

From Ohm’s law:

V1 = IR1, V2 = IR2, V3 = IR3 and V = IR

where R is the total circuit resistance.

Since V = V1 + V2 + V3

then IR = IR1 + IR2 + IR3

Dividing throughout by I gives

R = R1 + R2 + R3

Thus for a series circuit, the total resistance is obtained by
adding together the values of the separate resistances.

Problem 1. For the circuit shown in Figure 5.2, deter-
mine (a) the battery voltage V , (b) the total resistance
of the circuit, and (c) the values of resistance of resis-
tors R1, R2 and R3, given that the p.d.’s across R1, R2
and R3 are 5V, 2V and 6V respectively.

Figure 5.2

(a) Battery voltage V = V1 + V2 + V3

= 5 + 2 + 6 = 13 V

(b) Total circuit resistance R = V

I
= 13

4
= 3.25 �

(c) Resistance R1 = V1

I
= 5

4
= 1.25 �

Resistance R2 = V2

I
= 2

4
= 0.5 �

Resistance R3 = V3

I
= 6

4
= 1.5 �

(Check: R1+R2+R3 = 1.25+0.5+1.5 = 3.25� = R)
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Problem 2. For the circuit shown in Figure 5.3, deter-
mine the p.d. across resistor R3. If the total resistance
of the circuit is 100 �, determine the current flowing
through resistor R1. Find also the value of resistor R2.

Figure 5.3

P.d. across R3, V3 = 25 − 10 − 4 = 11 V

Current I = V

R
= 25

100
= 0.25A, which is the current

flowing in each resistor

Resistance R2 = V2

I
= 4

0.25
= 16 �

Problem 3. A 12V battery is connected in a circuit
having three series-connected resistors having resist-
ances of 4 �, 9 � and 11 �. Determine the current
flowing through, and the p.d. across the 9 � resistor.
Find also the power dissipated in the 11 � resistor.

The circuit diagram is shown in Figure 5.4.

Figure 5.4

Total resistance R = 4 + 9 + 11 = 24 �

Current I = V

R
= 12

24
= 0.5A, which is the current in the

9 � resistor.

P.d. across the 9 � resistor, V1 = I × 9 = 0.5 × 9

= 4.5V

Power dissipated in the 11 � resistor, P = I2R = 0.52(11)

= 0.25(11)

= 2.75 W

5.2 Potential divider

The voltage distribution for the circuit shown in
Figure 5.5(a) is given by:

V1 =
(

R1

R1 + R2

)
V

V2 =
(

R2

R1 + R1

)
V

Figure 5.5

The circuit shown in Figure 5.5(b) is often referred to
as a potential divider circuit. Such a circuit can consist
of a number of similar elements in series connected across
a voltage source, voltages being taken from connections
between the elements. Frequently the divider consists of
two resistors as shown in Figure 5.5(b), where

VOUT =
(

R2

R1 + R2

)
VIN

A potential divider is the simplest way of producing a
source of lower e.m.f. from a source of higher e.m.f., and
is the basic operating mechanism of the potentiometer,
a measuring device for accurately measuring potential
differences (see page 99).
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Problem 4. Determine the value of voltage V shown
in Figure 5.6.

Figure 5.6

Figure 5.6 may be redrawn as shown in Figure 5.7, and
voltage

V =
(

6

6 + 4

)
(50) = 30 V

Figure 5.7

Problem 5. Two resistors are connected in series
across a 24V supply and a current of 3A flows in the
circuit. If one of the resistors has a resistance of 2 �
determine (a) the value of the other resistor, and (b) the
p.d. across the 2 � resistor. If the circuit is connected
for 50 hours, how much energy is used?

The circuit diagram is shown in Figure 5.8

Figure 5.8

(a) Total circuit resistance R = V

I
= 24

3
= 8 �

Value of unknown resistance, Rx = 8 − 2 = 6 �

(b) P.d. across 2 � resistor, V1 = IR1 = 3 × 2 = 6 V
Alternatively, from above,

V1 =
(

R1

R1 + Rx

)
V =

(
2

2 + 6

)
(24) = 6V

Energy used = power × time

= V × I × t

= (24 × 3 W) (50 h)

= 3600 Wh = 3.6 kWh

Now try the following exercise.

Exercise 10 Further problems on series circuits

1. The p.d’s measured across three resistors connected
in series are 5V, 7 V and 10V, and the supply current
is 2A. Determine (a) the supply voltage, (b) the
total circuit resistance and (c) the values of the three
resistors.

[(a) 22 V (b) 11 � (c) 2.5 �, 3.5 �, 5 �]

2. For the circuit shown in Figure 5.9, determine
the value of V1. If the total circuit resistance is
36 � determine the supply current and the value
of resistors R1, R2 and R3.

[10V, 0.5A, 20 �, 10 �, 6 �]

Figure 5.9

3. When the switch in the circuit in Figure 5.10 is
closed the reading on voltmeter 1 is 30V and that
on voltmeter 2 is 10V. Determine the reading on
the ammeter and the value of resistor Rx .

[4A, 2.5 �]

Figure 5.10

4. Two resistors are connected in series across an 18V
supply and a current of 5A flows. If one of the
resistors has a value of 2.4 � determine (a) the
value of the other resistor and (b) the p.d. across the
2.4 � resistor. [(a) 1.2 � (b) 12V]
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5. An arc lamp takes 9.6A at 55V. It is operated from
a 120V supply. Find the value of the stabilizing
resistor to be connected in series. [6.77 �]

6. An oven takes 15A at 240V. It is required to reduce
the current to 12A. Find (a) the resistor which must
be connected in series, and (b) the voltage across
the resistor. [(a) 4 � (b) 48V]

5.3 Parallel networks

Figure 5.11 shows three resistors, R1, R2 and R3 connected
across each other, i.e. in parallel, across a battery source
of V volts.

Figure 5.11

In a parallel circuit:

(a) the sum of the currents I1, I2 and I3 is equal to the
total circuit current, I , i.e. I = I1 + I2 + I3, and

(b) the source p.d., V volts, is the same across each of the
resistors.

From Ohm’s law:

I1 = V

R1
, I2 = V

R2
, I3 = V

R3
and I = V

R

where R is the total circuit resistance.

Since I = I1 + I2 + I3

then
V

R
= V

R1
+ V

R2
+ V

R3

Dividing throughout by V gives:

1
R

= 1
R1

+ 1
R2

+ 1
R3

This equation must be used when finding the total resist-
ance R of a parallel circuit. For the special case of two
resistors in parallel

1

R
= 1

R1
+ 1

R2
= R2 + R1

R1R2

Hence R = R1R2

R1 + R2

(
i.e.

product

sum

)

Problem 6. For the circuit shown in Figure 5.12,
determine (a) the reading on the ammeter, and (b) the
value of resistor R2.

Figure 5.12

P.d. across R1 is the same as the supply voltage V .

Hence supply voltage, V = 8 × 5 = 40V

(a) Reading on ammeter, I = V

R3
= 40

20
= 2 A

(b) Current flowing through R2 = 11 − 8 − 2 = 1A

Hence, R2 = V

I2
= 40

1
= 40 �

Problem 7. Two resistors, of resistance 3 � and 6 �,
are connected in parallel across a battery having a volt-
age of 12V. Determine (a) the total circuit resistance
and (b) the current flowing in the 3 � resistor.
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The circuit diagram is shown in Figure 5.13.

Figure 5.13

(a) The total circuit resistance R is given by

1

R
= 1

R1
+ 1

R2
= 1

3
+ 1

6

1

R
= 2 + 1

6
= 3

6

Hence, R = 6

3
= 2 �

(
Alternatively, R = R1R2

R1 + R2
= 3 × 6

3 + 6
= 18

9
= 2 �

)

(b) Current in the 3 � resistance, I1 = V

R1
= 12

3
= 4 A

Problem 8. For the circuit shown in Figure 5.14, find
(a) the value of the supply voltage V and (b) the value
of current I .

Figure 5.14

(a) P.d. across 20 � resistor = I2R2 = 3 × 20 = 60V,
hence supply voltage V = 60V since the circuit is
connected in parallel.

(b) Current I1 = V

R1
= 60

10
= 6 A; I2 = 3 A

I3 = V

R3
= 60

60
= 1 A

Current I = I1+I2+I3 and hence I = 6+3+1 = 10 A

Alternatively,
1

R
= 1

60
+ 1

20
+ 1

10
= 1 + 3 + 6

60
= 10

60

Hence total resistance R = 60

10
= 6 �

Current I = V

R
= 60

6
= 10 A

Problem 9. Given four 1 � resistors, state how they
must be connected to give an overall resistance of
(a) 1

4 � (b) 1 � (c) 1 1
3 � (d) 2 1

2 �, all four resistors
being connected in each case.

(a) All four in parallel (see Figure 5.15),

since
1

R
= 1

1
+ 1

1
+ 1

1
+ 1

1
= 4

1
, i.e. R = 1

4
�

Figure 5.15

(b) Two in series, in parallel with another two in series
(see Figure 5.16), since 1 � and 1 � in series gives 2 �,

and 2 � in parallel with 2 � gives:
2 × 2

2 + 2
= 4

4
= 1 �

Figure 5.16

(c) Three in parallel, in series with one (see Fig-
ure 5.17), since for the three in parallel,

1

R
= 1

1
+ 1

1
+ 1

1
= 3

1
, i.e. R = 1

3
� and

1

3
� in series

with 1 � gives 1 1
3 �

Figure 5.17
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(d) Two in parallel, in series with two in series (see
Figure 5.18), since for the two in parallel

R = 1 × 1

1 + 1
= 1

2
�, and

1

2
�, 1 � and 1 � in series

gives 2
1

2
�

Figure 5.18

Problem 10. Find the equivalent resistance for the
circuit shown in Figure 5.19.

Figure 5.19

R3, R4 and R5 are connected in parallel and their equivalent
resistance R is given by:

1

R
= 1

3
+ 1

6
+ 1

18
= 6 + 3 + 1

18
= 10

18

Hence R = 18

10
= 1.8 �

The circuit is now equivalent to four resistors in series and
the equivalent circuit resistance = 1 + 2.2 + 1.8 + 4 = 9 �

5.4 Current division

For the circuit shown in Figure 5.20, the total circuit
resistance, RT is given by:

RT = R1R2

R1 + R2

Figure 5.20

and V = IRT = I

(
R1R2

R1 + R2

)

Current I1 = V

R1
= I

R1

(
R1R2

R1 + R2

)
=

(
R2

R1 + R2

)
(I)

Similarly,

current I2 = V

R2
= I

R2

(
R1R2

R1 + R2

)
=

(
R1

R1 + R2

)
(I)

Summarizing, with reference to Figure 5.20

I1 =
(

R2

R1 + R2

)
(I) and I2 =

(
R1

R1 + R2

)
(I)

Problem 11. For the series-parallel arrangement
shown in Figure 5.21, find (a) the supply current, (b)
the current flowing through each resistor and (c) the
p.d. across each resistor.

Figure 5.21

(a) The equivalent resistance Rx of R2 and R3 in paral-
lel is:

Rx = 6 × 2

6 + 2
= 12

8
= 1.5 �

The equivalent resistance RT of R1, Rx and R4 in
series is:

RT = 2.5 + 1.5 + 4 = 8 �

Supply current I = V

RT
= 200

8
= 25 A

(b) The current flowing through R1 and R4 is 25A
The current flowing through R2

=
(

R3

R2 + R3

)
I =

(
2

6 + 2

)
25

= 6.25A
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The current flowing through R3

=
(

R2

R2 + R3

)
I =

(
6

6 + 2

)
25

= 18.75A

(Note that the currents flowing through R2 and R3
must add up to the total current flowing into the
parallel arrangement, i.e. 25A)

(c) The equivalent circuit of Figure 5.21 is shown in
Figure 5.22.

p.d. across R1, i.e. V1 = IR1 = (25)(2.5) = 62.5V
p.d. across Rx , i.e. Vx = IRx = (25)(1.5) = 37.5V
p.d. across R4, i.e. V4 = IR4 = (25)(4) = 100V
Hence the p.d. across R2 = p.d. across R3 = 37.5V

Figure 5.22

Problem 12. For the circuit shown in Figure 5.23 cal-
culate (a) the value of resistor Rx such that the total
power dissipated in the circuit is 2.5 kW, and (b) the
current flowing in each of the four resistors.

Figure 5.23

(a) Power dissipated P = VI watts, hence 2500 = (250)(I)

i.e. I = 2500

250
= 10 A

From Ohm’s law, RT = V

I
= 250

10
= 25 �, where RT

is the equivalent circuit resistance.
The equivalent resistance of R1 and R2 in parallel is

15 × 10

15 + 10
= 150

25
= 6 �

The equivalent resistance of resistors R3 and Rx in
parallel is equal to 25 � − 6 �, i.e. 19 �.
There are three methods whereby Rx can be deter-
mined.

Method 1
The voltage V1 = IR, where R is 6 �, from above,
i.e. V1 = (10)(6) = 60 V

Hence V2 = 250 V − 60 V = 190 V = p.d. across R3

= p.d. across Rx

I3 = V2

R3
= 190

38
= 5 A. Thus I4 = 5 A also,

since I = 10 A

Thus Rx = V2

I4
= 190

5
= 38 �

Method 2
Since the equivalent resistance of R3 and Rx in
parallel is 19 �,

19 = 38Rx

38 + Rx

(
i.e.

product

sum

)

Hence 19(38 + Rx) = 38Rx

722 + 19Rx = 38Rx

722 = 38Rx − 19Rx = 19Rx

Thus Rx = 722

19
= 38 �

Method 3
When two resistors having the same value are con-
nected in parallel the equivalent resistance is always
half the value of one of the resistors. Thus, in
this case, since RT = 19 � and R3 = 38 �, then
Rx = 38 � could have been deduced on sight.

(b) Current I1 =
(

R2

R1 + R2

)
I =

(
10

15 + 10

)
(10)

=
(

2

5

)
(10) = 4 A

Current I2 =
(

R1

R1 + R2

)
I =

(
15

15 + 10

)
(10)

=
(

3

5

)
(10) = 6 A

From part (a), method 1, I3 = I4 = 5 A
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Problem 13. For the arrangement shown in Fig-
ure 5.24, find the current Ix .

Figure 5.24

Commencing at the right-hand side of the arrangement
shown in Figure 5.24, the circuit is gradually reduced in
stages as shown in Figure 5.25(a)–(d).

Figure 5.25

From Figure 5.25(d), I = 17

4.25
= 4 A

From Figure 5.25(b), I1 =
(

9

9 + 3

)
(I) =

(
9

12

)
(4) = 3 A

From Figure 5.24, Ix =
(

2

2 + 8

)
(I1) =

(
2

10

)
(3) = 0.6A

Now try the following exercise.

Exercise 11 Further problems on parallel
networks

1. Resistances of 4 � and 12 � are connected in paral-
lel across a 9V battery. Determine (a) the equivalent
circuit resistance, (b) the supply current, and (c) the
current in each resistor.

[(a) 3 � (b) 3A (c) 2.25A, 0.75A]

2. For the circuit shown in Figure 5.26 determine
(a) the reading on the ammeter, and (b) the value
of resistor R. [2.5A, 2.5 �]

Figure 5.26

3. Find the equivalent resistance when the following
resistances are connected (a) in series, (b) in parallel
(i) 3 � and 2 � (ii) 20 k� and 40 k�
(iii) 4 �,8 � and 16 � (iv) 800 �,4 k� and 1500 �

[(a) (i) 5 � (ii) 60 k� (iii) 28 � (iv) 6.3 k�
(b) (i) 1.2 � (ii) 13.33 k� (iii) 2.29 � (iv) 461.5 �]

4. Find the total resistance between terminals A and B
of the circuit shown in Figure 5.27(a) [8 �]

Figure 5.27
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5. Find the equivalent resistance between terminals C
and D of the circuit shown in Figure 5.27(b)

[27.5 �]

6. Resistors of 20 �, 20 � and 30 � are connected in
parallel. What resistance must be added in series
with the combination to obtain a total resistance of
10 �. If the complete circuit expends a power of
0.36 kW, find the total current flowing.[2.5 �, 6A]

7. (a) Calculate the current flowing in the 30 �
resistor shown in Figure 5.28.

Figure 5.28

(b) What additional value of resistance would have
to be placed in parallel with the 20 � and 30 �
resistors to change the supply current to 8A,
the supply voltage remaining constant.

[(a) 1.6A (b) 6 �]

8. Determine the currents and voltages indicated in
the circuit shown in Figure 5.29.

[I1 = 5 A, I2 = 2.5 A, I3 = 1 2
3 A, I4 = 5

6 A
I5 = 3 A, I6 = 2 A, V1 = 20 V, V2 = 5 V,

V3 = 6 V]

Figure 5.29

9. Find the current I in Figure 5.30. [1.8A]

Figure 5.30

10. A resistor of 2.4 � is connected in series with
another of 3.2 �. What resistance must be placed
across the one of 2.4 � so that the total resistance
of the circuit shall be 5 �? [7.2 �]

11. A resistor of 8 � is connected in parallel with one
of 12 � and the combination is connected in series
with one of 4 �. A p.d. of 10V is applied to the
circuit. The 8 � resistor is now placed across the
4 � resistor. Find the p.d. required to send the same
current through the 8 � resistor. [30V]

5.5 Relative and absolute voltages

In an electrical circuit, the voltage at any point can be
quoted as being ‘with reference to’ (w.r.t.) any other point
in the circuit. Consider the circuit shown in Figure 5.31.
The total resistance,

RT = 30 + 50 + 5 + 15 = 100 �

and current, I = 200

100
= 2 A

I = 2A

200 V

30 Ω 50 Ω

5 Ω

15 Ω

A B

C

Figure 5.31

If a voltage at point A is quoted with reference to
point B then the voltage is written as VAB. This is
known as a ‘relative voltage’. In the circuit shown in
Figure 5.31, the voltage at A w.r.t. B is I × 50, i.e.
2 × 50 = 100 V and is written as VAB = 100V.

It must also be indicated whether the voltage at A w.r.t.
B is closer to the positive terminal or the negative terminal
of the supply source. Point A is nearer to the positive
terminal than B so is written as VAB = 100V or VAB =
+100V or VAB = 100V + ve.

If no positive or negative is included, then the voltage
is always taken to be positive.

If the voltage at B w.r.t. A is required, then VBA is neg-
ative and written as VBA = −100V or VBA = 100V −ve.

If the reference point is changed to the earth point then
any voltage taken w.r.t. the earth is known as an ‘absolute
potential’. If the absolute voltage of A in Figure 5.31 is
required, then this will be the sum of the voltages across
the 50 � and 5 � resistors, i.e. 100 + 10 = 110 V and is
written as VA = 110V or VA = +110V or VA = 110V
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+ve, positive since moving from the earth point to point
A is moving towards the positive terminal of the source. If
the voltage is negative w.r.t. earth then this must be indi-
cated; for example, VC = 30V negative w.r.t. earth, and is
written as VC = −30V or VC = 30V −ve.

Problem 14. For the circuit shown in Fig. 5.32, cal-
culate (a) the voltage drop across the 4 k� resistor,
(b) the current through the 5 k� resistor, (c) the power
developed in the 1.5 k� resistor, (d) the voltage at point
X w.r.t. earth, and (e) the absolute voltage at point X.

X

1 kΩ 4 kΩ

5 kΩ

1.5 kΩ 24 V

Figure 5.32

(a) Total circuit resistance, RT = [(1 + 4)k� in parallel
with 5 k�] in series with 1.5 k�

i.e. RT = 5 × 5

5 + 5
+ 1.5 = 4 k�

Total circuit current, IT = V

RT
= 24

4 × 103 = 6 mA

By current division, current in top branch

=
(

5

5 + 1 + 4

)
× 6 = 3 mA

Hence, volt drop across 4 k� resistor
= 3 × 10−3 × 4 × 103 = 12 V

(b) Current through the 5 k� resistor

=
(

1 + 4

5 + 1 + 4

)
× 6 = 3 mA

(c) Power in the 1.5 k� resistor
= I2

T R = (6 × 10−3)2(1.5 × 103) = 54 mW
(d) The voltage at the earth point is 0 volts. The volt drop

across the 4 k� is 12V, from part (a). Since moving
from the earth point to point X is moving towards the
negative terminal of the voltage source, the voltage at
point X w.r.t. earth is −12V

(e) The ‘absolute voltage at point X’ means the ‘voltage
at point X w.r.t. earth’, hence the absolute voltage
at point X is −12V. Questions (d) and (e) mean the
same thing.

Now try the following exercise.

Exercise 12 Further problems on relative and
absolute voltages

1. For the circuit of Figure 5.33, calculate (a) the abso-
lute voltage at pointsA, B and C, (b) the voltage atA
relative to B and C, and (c) the voltage at D relative
to B and A.

[(a) +40V, +29.6V, +24V (b) +10.4V, +16V
(c) −5.6V, −16V]

A B

CD

100 V

15 Ω 13 Ω

5 Ω

6 Ω

7 Ω

Figure 5.33

2. For the circuit shown in Figure 5.34, calculate (a)
the voltage drop across the 7 � resistor, (b) the
current through the 30 � resistor, (c) the power
developed in the 8 � resistor, (d) the voltage at
point X w.r.t. earth, and (e) the absolute voltage
at point X.

[(a) 1.68V (b) 0.16A (c) 460.8 mW (d) +2.88V
(e) +2.88V]

8 Ω

18 Ω

7 Ω

30 Ω

12 V

5 ΩX

Figure 5.34

3. In the bridge circuit of Figure 5.35 calculate (a) the
absolute voltages at points A and B, and (b) the
voltage at A relative to B. [(a) 10V, 10V (b) 0V]

2 kΩ

B

A

30 V

1 kΩ

16 Ω 8 Ω

Figure 5.35
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5.6 Wiring lamps in series and in parallel

Series connection

Figure 5.36 shows three lamps, each rated at 240V,
connected in series across a 240V supply.

Figure 5.36

(i) Each lamp has only
240

3
V, i.e. 80V across it and thus

each lamp glows dimly.
(ii) If another lamp of similar rating is added in series

with the other three lamps then each lamp now has
240

4
V, i.e. 60V across it and each now glows even

more dimly.
(iii) If a lamp is removed from the circuit or if a lamp

develops a fault (i.e. an open circuit) or if the switch
is opened then the circuit is broken, no current flows,
and the remaining lamps will not light up.

(iv) Less cable is required for a series connection than for
a parallel one.

The series connection of lamps is usually limited to
decorative lighting such as for Christmas tree lights.

Parallel connection

Figure 5.37 shows three similar lamps, each rated at 240V,
connected in parallel across a 240V supply.

Figure 5.37

(i) Each lamp has 240V across it and thus each will glow
brilliantly at their rated voltage.

(ii) If any lamp is removed from the circuit or develops
a fault (open circuit) or a switch is opened, the
remaining lamps are unaffected.

(iii) The addition of further similar lamps in parallel does
not affect the brightness of the other lamps.

(iv) More cable is required for parallel connection than
for a series one.

The parallel connection of lamps is the most widely used
in electrical installations.

Problem 15. If three identical lamps are connected
in parallel and the combined resistance is 150 �, find
the resistance of one lamp.

Let the resistance of one lamp be R, then,

1

150
= 1

R
+ 1

R
+ 1

R
= 3

R
, from which, R = 3 × 150

= 450 �

Problem 16. Three identical lamps A, B and C are
connected in series across a 150V supply. State (a) the
voltage across each lamp, and (b) the effect of lamp C
failing.

(a) Since each lamp is identical and they are connected

in series there is
150

3
V, i.e. 50V across each.

(b) If lamp C fails, i.e. open circuits, no current will flow
and lamps A and B will not operate.

Now try the following exercise.

Exercise 13 Further problems on wiring lamps in
series and parallel

1. If four identical lamps are connected in parallel
and the combined resistance is 100 �, find the
resistance of one lamp. [400 �]

2. Three identical filament lamps are connected (a) in
series, (b) in parallel across a 210V supply. State
for each connection the p.d. across each lamp.

[(a) 70V (b) 210V]
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6 Capacitors and capacitance

At the end of this chapter you should be able to:
• appreciate some applications of capacitors
• describe an electrostatic field
• define electric field strength E and state its unit
• define capacitance and state its unit
• describe a capacitor and draw the circuit diagram

symbol

• perform simple calculations involving C = Q

V
and

Q = It
• define electric flux density D and state its unit
• define permittivity, distinguishing between ε0, εr

and ε

• perform simple calculations involving D = Q

A
,

E = V

D
and

D

E
= ε0εr

• understand that for a parallel plate capacitor,

C = ε0εrA(n − 1)

d• perform calculations involving capacitors connected
in parallel and in series

• define dielectric strength and state its unit
• state that the energy stored in a capacitor is given by

W = 1
2 CV2 joules

• describe practical types of capacitor
• understand the precautions needed when discharging

capacitors

6.1 Introduction to capacitors

A capacitor is an electrical device that is used to store elec-
trical energy. Next to the resistor, the capacitor is the most
commonly encountered component in electrical circuits.
Capacitors are used extensively in electrical and electronic
circuits. For example, capacitors are used to smooth rec-
tified a.c. outputs, they are used in telecommunication
equipment — such as radio receivers — for tuning to the
required frequency, they are used in time delay circuits,
in electrical filters, in oscillator circuits, and in magnetic
resonance imaging (MRI) in medical body scanners, to
name but a few practical applications.

6.2 Electrostatic field

Figure 6.1 represents two parallel metal plates, A and B,
charged to different potentials. If an electron that has a

Figure 6.1 Electrostatic field

negative charge is placed between the plates, a force will
act on the electron tending to push it away from the neg-
ative plate B towards the positive plate, A. Similarly, a
positive charge would be acted on by a force tending to
move it toward the negative plate. Any region such as that
shown between the plates in Figure 6.1, in which an elec-
tric charge experiences a force, is called an electrostatic
field. The direction of the field is defined as that of the
force acting on a positive charge placed in the field. In
Figure 6.1, the direction of the force is from the positive
plate to the negative plate.

Such a field may be represented in magnitude and
direction by lines of electric force drawn between the
charged surfaces. The closeness of the lines is an indica-
tion of the field strength. Whenever a p.d. is established
between two points, an electric field will always exist.
Figure 6.2(a) shows a typical field pattern for an isolated
point charge, and Figure 6.2(b) shows the field pattern
for adjacent charges of opposite polarity. Electric lines of
force (often called electric flux lines) are continuous and
start and finish on point charges. Also, the lines cannot
cross each other. When a charged body is placed close to
an uncharged body, an induced charge of opposite sign
appears on the surface of the uncharged body. This is
because lines of force from the charged body terminate
on its surface.

The concept of field lines or lines of force is used
to illustrate the properties of an electric field. However,
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Figure 6.2 (a) Isolated point charge; (b) adjacent
charges of opposite polarity

it should be remembered that they are only aids to the
imagination.

The force of attraction or repulsion between two elec-
trically charged bodies is proportional to the magnitude of
their charges and inversely proportional to the square of
the distance separating them,

i.e. force ∝ q1q2

d2 or force = k
q1q2

d2

where constant k ≈ 9 × 109 in air

This is known as Coulomb’s law.
Hence the force between two charged spheres in air

with their centres 16 mm apart and each carrying a charge
of +1.6 µC is given by:

force = k
q1q2

d2 ≈ (9 × 109)
(1.6 × 10−6)2

(16 × 10−3)2

= 90 newtons

6.3 Electric field strength

Figure 6.3 shows two parallel conducting plates separated
from each other by air. They are connected to opposite
terminals of a battery of voltage V volts.

Figure 6.3

There is therefore an electric field in the space between
the plates. If the plates are close together, the electric
lines of force will be straight and parallel and equally
spaced, except near the edge where fringing will occur
(see Figure 6.1). Over the area in which there is negligible
fringing,

Electric field strength, E = V
d

volts/metre

where d is the distance between the plates. Electric field
strength is also called potential gradient.

6.4 Capacitance

Static electric fields arise from electric charges, electric
field lines beginning and ending on electric charges. Thus
the presence of the field indicates the presence of equal
positive and negative electric charges on the two plates of
Figure 6.3. Let the charge be +Q coulombs on one plate
and −Q coulombs on the other. The property of this pair of
plates which determines how much charge corresponds to
a given p.d. between the plates is called their capacitance:

capacitance C = Q
V

The unit of capacitance is the farad F (or more usually
µF = 10−6 F or pF = 10−12 F), which is defined as the
capacitance when a p.d. of one volt appears across the
plates when charged with one coulomb.
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6.5 Capacitors

Every system of electrical conductors possesses capaci-
tance. For example, there is capacitance between the con-
ductors of overhead transmission lines and also between
the wires of a telephone cable. In these examples the
capacitance is undesirable but has to be accepted, min-
imized or compensated for. There are other situations
where capacitance is a desirable property.

Devices specially constructed to possess capacitance
are called capacitors (or condensers, as they used to
be called). In its simplest form a capacitor consists of
two plates which are separated by an insulating material
known as a dielectric. A capacitor has the ability to store
a quantity of static electricity.

The symbols for a fixed capacitor and a variable
capacitor used in electrical circuit diagrams are shown
in Figure 6.4.

Figure 6.4

The charge Q stored in a capacitor is given by:

Q = I × t coulombs

where I is the current in amperes and t the time in
seconds.

Problem 1. (a) Determine the p.d. across a 4 µF
capacitor when charged with 5 mC.

(b) Find the charge on a 50 pF capacitor when the
voltage applied to it is 2 kV.

(a) C = 4 µF = 4 × 10−6F; Q = 5 mC = 5 × 10−3 C

Since C = Q

V
then V = Q

C
= 5 × 10−3

4 × 10−6 = 5 × 106

4 × 103

= 5000

4

Hence p.d. = 1250V or 1.25 kV

(b) C = 50 pF = 50 × 10−12 F; V = 2 kV = 2000V

Q = CV = 50 × 10−12 × 2000 = 5 × 2

108

= 0.1 × 10−6

Hence charge = 0.1 µC

Problem 2. A direct current of 4 A flows into a previ-
ously uncharged 20 µF capacitor for 3 ms. Determine
the p.d. between the plates.

I = 4 A; C = 20 µF = 20 × 10−6 F;

t = 3 ms = 3 × 10−3s

Q = It = 4 × 3 × 10−3 C

V = Q

C
= 4 × 3 × 10−3

20 × 10−6 = 12 × 106

20 × 103 = 0.6 × 103

= 600V

Hence, the p.d. between the plates is 600 V

Problem 3. A 5 µF capacitor is charged so that the
p.d. between its plates is 800V. Calculate how long
the capacitor can provide an average discharge current
of 2 mA.

C = 5 µF = 5 × 10−6 F; V = 800V;

I = 2 mA = 2 × 10−3 A

Q = CV = 5 × 10−6 × 800 = 4 × 10−3 C

Also, Q = It. Thus, t = Q

I
= 4 × 10−3

2 × 10−3 = 2 s

Hence the capacitor can provide an average discharge
current of 2 mA for 2 s

Now try the following exercise.

Exercise 14 Further problems on charge and
capacitance

1. Find the charge on a 10 µF capacitor when the
applied voltage is 250V. [2.5 mC]

2. Determine the voltage across a 1000 pF capacitor
to charge it with 2 µC. [2 kV]
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3. The charge on the plates of a capacitor is 6 mC when
the potential between them is 2.4 kV. Determine the
capacitance of the capacitor. [2.5 µF]

4. For how long must a charging current of 2 A be
fed to a 5 µF capacitor to raise the p.d. between its
plates by 500V. [1.25 ms]

5. A steady current of 10 A flows into a previ-
ously uncharged capacitor for 1.5 ms when the p.d.
between the plates is 2 kV. Find the capacitance of
the capacitor. [7.5 µF]

6.6 Electric flux density

Unit flux is defined as emanating from a positive charge of
1 coulomb. Thus electric flux � is measured in coulombs,
and for a charge of Q coulombs, the flux � = Q coulombs.

Electric flux density D is the amount of flux pass-
ing through a defined area A that is perpendicular to the
direction of the flux:

electric flux density, D = Q
A

coulombs/metre2

Electric flux density is also called charge density, σ

6.7 Permittivity

At any point in an electric field, the electric field strength
E maintains the electric flux and produces a particular
value of electric flux density D at that point. For a field
established in vacuum (or for practical purposes in air),
the ratio D/E is a constant ε0, i.e.

D
E

= ε0

where ε0 is called the permittivity of free space or the
free space constant. The value of ε0 is 8.85 × 10−12 F/m.

When an insulating medium, such as mica, paper, plas-
tic or ceramic, is introduced into the region of an electric
field the ratio of D/E is modified:

D
E

= ε0εr

where εr , the relative permittivity of the insulating
material, indicates its insulating power compared with that
of vacuum:

relative permittivity εr = flux density in material

flux density in vacuum

εr has no unit. Typical values of εr include:
air, 1.00; polythene, 2.3; mica, 3–7; glass, 5–10;
water, 80; ceramics, 6–1000.
The product ε0εr is called the absolute permittivity, ε,
i.e.

ε = ε0εr

The insulating medium separating charged surfaces is
called a dielectric. Compared with conductors, dielectric
materials have very high resistivities. They are therefore
used to separate conductors at different potentials, such
as capacitor plates or electric power lines.

Problem 4. Two parallel rectangular plates measur-
ing 20 cm by 40 cm carry an electric charge of 0.2 µC.
Calculate the electric flux density. If the plates are
spaced 5 mm apart and the voltage between them is
0.25 kV determine the electric field strength.

Charge Q = 0.2 µC = 0.2 × 10−6 C;

Area A = 20 cm × 40 cm = 800 cm2 = 800 × 10−4 m2

Electric flux density D = Q

A
= 0.2 × 10−6

800 × 10−4 = 0.2 × 104

800 × 106

= 2000

800
× 10−6 = 2.5 µC/m2

Voltage V = 0.25 kV = 250 V; Plate spacing, d = 5 mm =
5 × 10−3 m

Electric field strength E = V

d
= 250

5 × 10−3 = 50 kV/m

Problem 5. The flux density between two plates sep-
arated by mica of relative permittivity 5 is 2 µC/m2.
Find the voltage gradient between the plates.

Flux density D = 2 µC/m2 = 2 × 10−6 C/m2;

ε0 = 8.85 × 10−12 F/m; εr = 5.
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D

E
= ε0εr ,

hence voltage gradient E = D

ε0εr

= 2 × 10−6

8.85 × 10−12 × 5
V/m

= 45.2 kV/m

Problem 6. Two parallel plates having a p.d. of 200V
between them are spaced 0.8 mm apart. What is the
electric field strength? Find also the flux density when
the dielectric between the plates is (a) air, and (b)
polythene of relative permittivity 2.3.

Electric field strength E = V

D
= 200

0.8 × 10−3 = 250 kV/m

(a) For air: εr = 1

D

E
= ε0εr . Hence

electric flux density D = Eε0εr

= (250 × 103 × 8.85 × 10−12 × 1) C/m2

= 2.213 µC/m2

(b) For polythene, εr = 2.3

Electric flux density D = Eε0εr

= (250 × 103 × 8.85 × 10−12 × 2.3) C/m2

= 5.089 µC/m2

Now try the following exercise.

Exercise 15 Further problems on electric field
strength, electric flux density and permittivity
(Where appropriate take ε0 as 8.85 × 10−12 F/m)

1. A capacitor uses a dielectric 0.04 mm thick and
operates at 30V. What is the electric field strength
across the dielectric at this voltage? [750 kV/m]

2. A two-plate capacitor has a charge of 25 C. If the
effective area of each plate is 5 cm2 find the electric
flux density of the electric field. [50 kC/m2]

3. A charge of 1.5 µC is carried on two parallel rect-
angular plates each measuring 60 mm by 80 mm.
Calculate the electric flux density. If the plates are
spaced 10 mm apart and the voltage between them
is 0.5 kV determine the electric field strength.

[312.5 µC/m2, 50 kV/m]

4. The electric flux density between two plates sep-
arated by polystyrene of relative permittivity 2.5
is 5 µC/m2. Find the voltage gradient between the
plates. [226 kV/m]

5. Two parallel plates having a p.d. of 250 V between
them are spaced 1 mm apart. Determine the electric
field strength. Find also the electric flux density
when the dielectric between the plates is (a) air and
(b) mica of relative permittivity 5.

[250 kV/m (a) 2.213 µC/m2 (b) 11.063 µC/m2]

6.8 The parallel plate capacitor

For a parallel plate capacitor, as shown in Figure 6.5(a),
experiments show that capacitance C is proportional to
the area A of a plate, inversely proportional to the plate
spacing d (i.e. the dielectric thickness) and depends on the
nature of the dielectric:

Capacitance, C = ε0εrA
d

farads

Figure 6.5
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where ε0 = 8.85 × 10−12 F/m (constant)

εr = relative permittivity

A = area of one of the plates, in m2, and

d = thickness of dielectric in m

Another method used to increase the capacitance
is to interleave several plates as shown in Fig-
ure 6.5(b). Ten plates are shown, forming nine capac-
itors with a capacitance nine times that of one pair of
plates.

If such an arrangement has n plates then capacitance
C ∝ (n − 1).

Thus capacitance C = ε0εrA(n − 1)

d
farads

Problem 7. (a) A ceramic capacitor has an effective
plate area of 4 cm2 separated by 0.1 mm of ceramic of
relative permittivity 100. Calculate the capacitance of
the capacitor in picofarads. (b) If the capacitor in part
(a) is given a charge of 1.2 µC what will be the p.d.
between the plates?

(a) Area A = 4 cm2 = 4 × 10−4 m2;
d = 0.1 mm = 0.1 × 10−3 m;
ε0 = 8.85 × 10−12 F/m; εr = 100

Capacitance C = ε0 εr A

d
farads

= 8.85 × 10−12 × 100 × 4 × 10−4

0.1 × 10−3 F

= 8.85 × 4

1010 F = 8.85 × 4 × 1012

1010 pF

= 3540 pF

(b) Q = CV thus V = Q

C
= 1.2 × 10−6

3540 × 10−12 V = 339V

Problem 8. A waxed paper capacitor has two par-
allel plates, each of effective area 800 cm2. If the
capacitance of the capacitor is 4425 pF determine
the effective thickness of the paper if its relative
permittivity is 2.5.

A = 800 cm2 = 800 × 10−4 m2 = 0.08 m2;

C = 4425 pF = 4425 × 10−12 F;

ε0 = 8.85 × 10−12 F/m; εr = 2.5

Since C = ε0εrA

d
then d = ε0εrA

C

Hence, d = 8.85 × 10−12 × 2.5 × 0.08

4425 × 10−12 = 0.0004 m

Hence the thickness of the paper is 0.4 mm

Problem 9. A parallel plate capacitor has nineteen
interleaved plates each 75 mm by 75 mm separated
by mica sheets 0.2 mm thick. Assuming the relative
permittivity of the mica is 5, calculate the capacitance
of the capacitor.

n = 19; n − 1 = 18;

A = 75 × 75 = 5625 mm2 = 5625 × 10−6 m2;

εr = 5; ε0 = 8.85 × 10−12 F/m;

d = 0.2 mm = 0.2 × 10−3 m

Capacitance C = ε0 εrA(n − 1)

d

= 8.85 × 10−12 × 5 × 5625 × 10−6 × 18

0.2 × 10−3 F

= 0.0224 µF or 22.4 nF

Now try the following exercise.

Exercise 16 Further problems on parallel
plate capacitors (Where appropriate take ε0 as
8.85 × 10−12 F/m)

1. A capacitor consists of two parallel plates each of
area 0.01 m2, spaced 0.1 mm in air. Calculate the
capacitance in picofarads. [885 pF]

2. A waxed paper capacitor has two parallel plates,
each of effective area 0.2 m2. If the capacitance is
4000 pF determine the effective thickness of the
paper if its relative permittivity is 2. [0.885 mm]
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3. Calculate the capacitance of a parallel plate capaci-
tor having 5 plates, each 30 mm by 20 mm and
separated by a dielectric 0.75 mm thick having a
relative permittivity of 2.3. [65.14 pF]

4. How many plates has a parallel plate capacitor hav-
ing a capacitance of 5 nF, if each plate is 40 mm by
40 mm and each dielectric is 0.102 mm thick with
a relative permittivity of 6. [7]

5. A parallel plate capacitor is made from 25 plates,
each 70 mm by 120 mm interleaved with mica of
relative permittivity 5. If the capacitance of the
capacitor is 3000 pF determine the thickness of the
mica sheet. [2.97 mm]

6. The capacitance of a parallel plate capacitor is
1000 pF. It has 19 plates, each 50 mm by 30 mm
separated by a dielectric of thickness 0.40 mm.
Determine the relative permittivity of the dielectric.

[1.67]

7. A capacitor is to be constructed so that its capaci-
tance is 4250 pF and to operate at a p.d. of 100V
across its terminals. The dielectric is to be polythene
(εr = 2.3) which, after allowing a safety factor, has
a dielectric strength of 20 MV/m. Find (a) the thick-
ness of the polythene needed, and (b) the area of a
plate. [(a) 0.005 mm (b) 10.44 cm2]

6.9 Capacitors connected in parallel and series

(a) Capacitors connected in parallel

Figure 6.6 shows three capacitors, C1, C2 and C3, con-
nected in parallel with a supply voltage V applied across
the arrangement.

Figure 6.6

When the charging current I reaches point A it divides,
some flowing into C1, some flowing into C2 and some
into C3. Hence the total charge QT (= I × t) is divided
between the three capacitors. The capacitors each store a
charge and these are shown as Q1, Q2 and Q3 respectively.
Hence

QT = Q1 + Q2 + Q3

But QT = CV , Q1 = C1V , Q2 = C2V and Q3 = C3V
Therefore CV = C1V + C2V + C3V where C is the total
equivalent circuit capacitance,

i.e. C = C1 + C2 + C3

It follows that for n parallel-connected capacitors,

C = C1 + C2 + C3 · · · + Cn

i.e. the equivalent capacitance of a group of parallel-
connected capacitors is the sum of the capacitances of the
individual capacitors. (Note that this formula is similar to
that used for resistors connected in series)

(b) Capacitors connected in series

Figure 6.7 shows three capacitors, C1, C2 and C3, con-
nected in series across a supply voltage V . Let the
p.d. across the individual capacitors be V1, V2 and V3
respectively as shown.

Figure 6.7

Let the charge on plate ‘a’ of capacitor C1 be
+Q coulombs. This induces an equal but opposite charge
of −Q coulombs on plate ‘b’. The conductor between
plates ‘b’ and ‘c’ is electrically isolated from the rest of
the circuit so that an equal but opposite charge of +Q
coulombs must appear on plate ‘c’, which, in turn, induces
an equal and opposite charge of −Q coulombs on plate ‘d’,
and so on.
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Hence when capacitors are connected in series the charge
on each is the same.

In a series circuit: V = V1 + V2 + V3

Since V = Q

C
then

Q

C
= Q

C1
+ Q

C2
+ Q

C3

where C is the total equivalent circuit capacitance,

i.e.
1
C

= 1
C1

+ 1
C2

+ 1
C3

It follows that for n series-connected capacitors:

1
C

= 1
C1

+ 1
C2

+ 1
C3

+ . . . + 1
Cn

i.e. for series-connected capacitors, the reciprocal of the
equivalent capacitance is equal to the sum of the recipro-
cals of the individual capacitances. (Note that this formula
is similar to that used for resistors connected in parallel.)

For the special case of two capacitors in series:

1

C
= 1

C1
+ 1

C2
= C2 + C1

C1C2

Hence C = C1C2

C1 + C2

(
i.e.

product

sum

)

Problem 10. Calculate the equivalent capacitance of
two capacitors of 6 µF and 4 µF connected (a) in
parallel and (b) in series.

(a) In parallel, equivalent capacitance C = C1 + C2 =
6 µF + 4 µF = 10 µF

(b) In series, equivalent capacitance C is given by:

C = C1C2

C1 + C2

This formula is used for the special case of two
capacitors in series.

Thus C = 6 × 4

6 + 4
= 24

10
=2.4 µF

Problem 11. What capacitance must be connected
in series with a 30 µF capacitor for the equivalent
capacitance to be 12 µF?

Let C = 12 µF (the equivalent capacitance), C1 = 30 µF
and C2 be the unknown capacitance.

For two capacitors in series
1

C
= 1

C1
+ 1

C2

Hence
1

C2
= 1

C
− 1

C1
= C1 − C

CC1

and C2 = CC1

C1 − C
= 12 × 30

30 − 12

= 360

18
= 20 µF

Problem 12. Capacitances of 1 µF, 3 µF, 5 µF and
6 µF are connected in parallel to a direct voltage supply
of 100V. Determine (a) the equivalent circuit capaci-
tance, (b) the total charge and (c) the charge on each
capacitor.

(a) The equivalent capacitance C for four capacitors in
parallel is given by:

C = C1 + C2 + C3 + C4

i.e. C = 1 + 3 + 5 + 6 = 15µF

(b) Total charge QT = CV where C is the equivalent
circuit capacitance

i.e. QT = 15 × 10−6 × 100 = 1.5 × 10−3C = 1.5 mC

(c) The charge on the 1 µF capacitor

Q1 = C1V = 1 × 10−6 × 100

= 0.1 mC

The charge on the 3 µF capacitor

Q2 = C2V = 3 × 10−6 × 100

= 0.3 mC

The charge on the 5 µF capacitor

Q3 = C3V = 5 × 10−6 × 100

= 0.5 mC

The charge on the 6 µF capacitor

Q4 = C4V = 6 × 10−6 × 100

= 0.6 mC

[Check: In a parallel circuit

QT = Q1 + Q2 + Q3 + Q4

Q1 + Q2 + Q3 + Q4 = 0.1 + 0.3 + 0.5 + 0.6

= 1.5 mC = QT ]

Problem 13. Capacitances of 3 µF, 6 µF and 12 µF
are connected in series across a 350V supply. Calculate
(a) the equivalent circuit capacitance, (b) the charge on
each capacitor and (c) the p.d. across each capacitor.
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The circuit diagram is shown in Figure 6.8.

Figure 6.8

(a) The equivalent circuit capacitance C for three capaci-
tors in series is given by:

1

C
= 1

C1
+ 1

C2
+ 1

C3

i.e.
1

C
= 1

3
+ 1

6
+ 1

12
= 4 + 2 + 1

12
= 7

12
Hence the equivalent circuit capacitance

C = 12
7

= 1
5
7

µF

(b) Total charge QT = CV ,

hence

QT = 12

7
× 10−6 × 350 = 600 µC or 0.6 mC

Since the capacitors are connected in series 0.6 mC
is the charge on each of them.

(c) The voltage across the 3 µF capacitor,

V1 = Q

C1
= 0.6 × 10−3

3×10−6

= 200 V

The voltage across the 6 µF capacitor,

V2 = Q

C2
= 0.6 × 10−3

6×10−6

= 100 V

The voltage across the 12 µF capacitor,

V3 = Q

C3
= 0.6 × 10−3

12×10−6

= 50 V

[Check: In a series circuit

V = V1 + V2 + V3
V1 + V2 + V3 = 200 + 100 + 50 = 350 V

= supply voltage.]

In practice, capacitors are rarely connected in series
unless they are of the same capacitance. The reason for
this can be seen from the above problem where the lowest
valued capacitor (i.e. 3 µF) has the highest p.d. across it

(i.e. 200V) which means that if all the capacitors have an
identical construction they must all be rated at the highest
voltage.

Now try the following exercise.

Exercise 17 Further problems on capacitors in
parallel and series

1. Capacitors of 2 µF and 6 µF are connected (a) in
parallel and (b) in series. Determine the equivalent
capacitance in each case. [(a) 8 µF (b) 1.5 µF]

2. Find the capacitance to be connected in series with
a 10 µF capacitor for the equivalent capacitance to
be 6 µF. [15 µF]

3. Two 6 µF capacitors are connected in series with
one having a capacitance of 12 µF. Find the total
equivalent circuit capacitance. What capacitance
must be added in series to obtain a capacitance of
1.2 µF? [2.4 µF, 2.4 µF]

4. Determine the equivalent capacitance when the fol-
lowing capacitors are connected (a) in parallel and
(b) in series:

(i) 2 µF, 4 µF and 8 µF
(ii) 0.02 µF, 0.05 µF and 0.10 µF

(iii) 50 pF and 450 pF
(iv) 0.01 µF and 200 pF

[(a) (i) 14 µF (ii) 0.17 µF (iii) 500 pF
(iv) 0.0102 µF (b) (i) 1.143 µF (ii) 0.0125 µF

(iii) 45 pF (iv) 196.1 pF]

5. For the arrangement shown in Figure 6.9 find (a) the
equivalent circuit capacitance and (b) the voltage
across a 4.5 µF capacitor. [(a) 1.2 µF (b) 100V]

Figure 6.9

6. Three 12 µF capacitors are connected in series
across a 750V supply. Calculate (a) the equivalent
capacitance, (b) the charge on each capacitor and
(c) the p.d. across each capacitor.

[(a) 4 µF (b) 3 mC (c) 250V]
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7. If two capacitors having capacitances of 3 µF and
5 µF respectively are connected in series across a
240V supply, determine (a) the p.d. across each
capacitor and (b) the charge on each capacitor.

[(a) 150V, 90V (b) 0.45 mC on each]

8. In Figure 6.10 capacitors P, Q and R are identical
and the total equivalent capacitance of the circuit is
3 µF. Determine the values of P, Q and R.

[4.2 µF each]

Figure 6.10

9. For the circuit shown in Figure 6.11, determine (a)
the total circuit capacitance, (b) the total energy
in the circuit, and (c) the charges in the capacitors
shown as C1 and C2.

[(a) 0.857 µF (b) 1.071 mJ (c) 42.85 µC on each]

2 µF 2 µF

2 µF

2 µF

2 µF

50 V

2 µF

2 µF2 µF

C1 C2

Figure 6.11

6.10 Dielectric strength

The maximum amount of field strength that a dielectric can
withstand is called the dielectric strength of the material.

Dielectric strength, Em = Vm

d

Problem 14. A capacitor is to be constructed so that
its capacitance is 0.2 µF and to take a p.d. of 1.25 kV
across its terminals. The dielectric is to be mica which,
after allowing a safety factor of 2, has a dielectric
strength of 50 MV/m. Find (a) the thickness of the
mica needed, and (b) the area of a plate assuming a
two-plate construction. (Assume εr for mica to be 6)

(a) Dielectric strength, E = V

d
, i.e. d = V

E

= 1.25 × 103

50 × 106 m

= 0.025 mm

(b) Capacitance, C = ε0εrA

d

hence area A = Cd

ε0εr

= 0.2 × 10−6 × 0.025 × 10−3

8.85 × 10−12 × 6
m2

= 0.09416 m2 = 941.6 cm2

6.11 Energy stored

The energy, W, stored by a capacitor is given by

W = 1
2 CV2 joules

Problem 15. (a) Determine the energy stored in a
3 µF capacitor when charged to 400V. (b) Find also the
average power developed if this energy is dissipated in
a time of 10 µs.

(a) Energy stored W = 1
2 CV2 joules

= 1
2 × 3 × 10−6 × 4002

= 3
2 × 16 × 10−2

= 0.24 J

(b) Power = Energy

time
= 0.24

10 × 10−6 W = 24 kW

Problem 16. A 12 µF capacitor is required to store
4 J of energy. Find the p.d. to which the capacitor must
be charged.
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Energy stored W = 1

2
CV2 hence V2 = 2W

C

and V =
√(

2W

C

)
=

√(
2 × 4

12 × 10−6

)
=

√(
2 × 106

3

)

= 816.5 V

Problem 17. A capacitor is charged with 10 mC. If
the energy stored is 1.2 J find (a) the voltage and (b) the
capacitance.

Energy stored W = 1

2
CV2 and C = Q

V

Hence W = 1

2

(
Q

V

)
V2 = 1

2
QV

from which V = 2W

Q

Q = 10 mC = 10 × 10−3C and W = 1.2 J

(a) Voltage V = 2W

Q
= 2 × 1.2

10 × 10−3 = 0.24 kV or 240 V

(b) Capacitance C = Q

V
= 10 × 10−3

240
F

= 10 × 106

240 × 103 µF = 41.67 µF

Now try the following exercise.

Exercise 18 Further problems on energy stored
(Where appropriate take ε0 as 8.85 × 10−12 F/m)

1. When a capacitor is connected across a 200V sup-
ply the charge is 4 µC. Find (a) the capacitance and
(b) the energy stored. [(a) 0.02 µF (b) 0.4 mJ]

2. Find the energy stored in a 10 µF capacitor when
charged to 2 kV. [20 J]

3. A 3300 pF capacitor is required to store 0.5 mJ of
energy. Find the p.d. to which the capacitor must
be charged. [550V]

4. A capacitor, consisting of two metal plates each
of area 50 cm2 and spaced 0.2 mm apart in air, is
connected across a 120V supply. Calculate (a) the
energy stored, (b) the electric flux density and (c)
the potential gradient.

[(a) 1.593 µJ (b) 5.31 µC/m2 (c) 600 kV/m]

5. A bakelite capacitor is to be constructed to have a
capacitance of 0.04 µF and to have a steady working
potential of 1 kV maximum. Allowing a safe value
of field stress of 25 MV/m find (a) the thickness
of bakelite required, (b) the area of plate required
if the relative permittivity of bakelite is 5, (c) the
maximum energy stored by the capacitor and (d) the
average power developed if this energy is dissipated
in a time of 20 µs.

[(a) 0.04 mm (b) 361.6 cm2 (c) 0.02 J (d) 1 kW]

6.12 Practical types of capacitor

Practical types of capacitor are characterized by the
material used for their dielectric. The main types include:
variable air, mica, paper, ceramic, plastic, titanium oxide
and electrolytic.

1. Variable air capacitors. These usually consist of two
sets of metal plates (such as aluminium) one fixed, the
other variable. The set of moving plates rotate on a
spindle as shown by the end view of Figure 6.12.

Figure 6.12

As the moving plates are rotated through half a revo-
lution, the meshing, and therefore the capacitance,
varies from a minimum to a maximum value. Variable
air capacitors are used in radio and electronic circuits
where very low losses are required, or where a vari-
able capacitance is needed. The maximum value of such
capacitors is between 500 pF and 1000 pF.

2. Mica capacitors. A typical older type construction is
shown in Figure 6.13.

Figure 6.13
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Usually the whole capacitor is impregnated with wax
and placed in a bakelite case. Mica is easily obtained
in thin sheets and is a good insulator. However, mica
is expensive and is not used in capacitors above about
0.2 µF. A modified form of mica capacitor is the sil-
vered mica type. The mica is coated on both sides
with a thin layer of silver which forms the plates.
Capacitance is stable and less likely to change with
age. Such capacitors have a constant capacitance with
change of temperature, a high working voltage rating
and a long service life and are used in high frequency
circuits with fixed values of capacitance up to about
1000 pF.

3. Paper capacitors. A typical paper capacitor is shown in
Figure 6.14 where the length of the roll corresponds to
the capacitance required. The whole is usually impreg-
nated with oil or wax to exclude moisture, and then
placed in a plastic or aluminium container for pro-
tection. Paper capacitors are made in various working
voltages up to about 150 kV and are used where loss is
not very important. The maximum value of this type of
capacitor is between 500 pF and 10 µF. Disadvantages
of paper capacitors include variation in capacitance with
temperature change and a shorter service life than most
other types of capacitor.

Figure 6.14

4. Ceramic capacitors. These are made in various forms,
each type of construction depending on the value of
capacitance required. For high values, a tube of ceramic
material is used as shown in the cross-section of Fig-
ure 6.15. For smaller values the cup construction is used

Figure 6.15

Figure 6.16

Figure 6.17

as shown in Figure 6.16, and for still smaller values the
disc construction shown in Figure 6.17 is used. Certain
ceramic materials have a very high permittivity and this
enables capacitors of high capacitance to be made which
are of small physical size with a high working voltage
rating. Ceramic capacitors are available in the range 1
pF to 0.1 µF and may be used in high frequency elec-
tronic circuits subject to a wide range of temperatures.

5. Plastic capacitors. Some plastic materials such as
polystyrene and Teflon can be used as dielectrics. Con-
struction is similar to the paper capacitor but using a
plastic film instead of paper. Plastic capacitors operate
well under conditions of high temperature, provide a
precise value of capacitance, a very long service life
and high reliability.

6. Titanium oxide capacitors have a very high capaci-
tance with a small physical size when used at a low
temperature.

7. Electrolytic capacitors. Construction is similar to the
paper capacitor with aluminium foil used for the plates
and with a thick absorbent material, such as paper,
impregnated with an electrolyte (ammonium borate),
separating the plates. The finished capacitor is usually
assembled in an aluminium container and hermetically
sealed. Its operation depends on the formation of a thin
aluminium oxide layer on the positive plate by elec-
trolytic action when a suitable direct potential is main-
tained between the plates. This oxide layer is very thin
and forms the dielectric. (The absorbent paper between
the plates is a conductor and does not act as a dielectric.)
Such capacitors must always be used on dc and must
be connected with the correct polarity; if this is not done
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the capacitor will be destroyed since the oxide layer will
be destroyed. Electrolytic capacitors are manufactured
with working voltage from 6V to 600V, although accu-
racy is generally not very high. These capacitors possess
a much larger capacitance than other types of capacitors
of similar dimensions due to the oxide film being only
a few microns thick. The fact that they can be used only
on dc supplies limit their usefulness.

6.13 Discharging capacitors

When a capacitor has been disconnected from the supply
it may still be charged and it may retain this charge for
some considerable time. Thus precautions must be taken
to ensure that the capacitor is automatically discharged
after the supply is switched off. This is done by connecting
a high value resistor across the capacitor terminals.
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7 Magnetic circuits

At the end of this chapter you should be able to:
• appreciate some applications of magnets
• describe the magnetic field around a permanent

magnet
• state the laws of magnetic attraction and repulsion

for two magnets in close proximity
• define magnetic flux, �, and magnetic flux density,

B, and state their units

• perform simple calculations involving B = �

A• define magnetomotive force, Fm, and magnetic field
strength, H, and state their units

• perform simple calculations involving Fm = NI and

H = NI

l

• define permeability, distinguishing between µ0, µr
and µ

• understand the B–H curves for different magnetic
materials

• appreciate typical values of µr• perform calculations involving B = µ0µrH
• define reluctance, S, and state its units

• perform calculations involving S = mmf

�
= l

µ0µrA• perform calculations on composite series magnetic
circuits

• compare electrical and magnetic quantities
• appreciate how a hysteresis loop is obtained and that

hysteresis loss is proportional to its area

7.1 Introduction to magnetism and magnetic
circuits

The study of magnetism began in the thirteenth cen-
tury with many eminent scientists and physicists such
as William Gilbert, Hans Christian Oersted, Michael
Faraday, James Maxwell, André Ampère and Wilhelm
Weber all having some input on the subject since. The
association between electricity and magnetism is a fairly
recent finding in comparison with the very first under-
standing of basic magnetism.

Today, magnets have many varied practical appli-
cations. For example, they are used in motors and
generators, telephones, relays, loudspeakers, computer
hard drives and floppy disks, anti-lock brakes, cameras,
fishing reels, electronic ignition systems, keyboards, t.v.
and radio components and in transmission equipment.

The full theory of magnetism is one of the most complex
of subjects; this chapter provides an introduction to the
topic.

7.2 Magnetic fields

A permanent magnet is a piece of ferromagnetic mater-
ial (such as iron, nickel or cobalt) which has properties
of attracting other pieces of these materials. A permanent
magnet will position itself in a north and south direction

when freely suspended. The north-seeking end of the mag-
net is called the north pole, N, and the south-seeking end
the south pole, S.

The area around a magnet is called the magnetic field
and it is in this area that the effects of the magnetic force
produced by the magnet can be detected. A magnetic
field cannot be seen, felt, smelt or heard and therefore
is difficult to represent. Michael Faraday suggested that
the magnetic field could be represented pictorially, by
imagining the field to consist of lines of magnetic flux,
which enables investigation of the distribution and density
of the field to be carried out.

The distribution of a magnetic field can be investigated
by using some iron filings. A bar magnet is placed on a flat
surface covered by, say, cardboard, upon which is sprin-
kled some iron filings. If the cardboard is gently tapped
the filings will assume a pattern similar to that shown in
Figure 7.1. If a number of magnets of different strength
are used, it is found that the stronger the field the closer are

Figure 7.1
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the lines of magnetic flux and vice-versa. Thus a magnetic
field has the property of exerting a force, demonstrated in
this case by causing the iron filings to move into the pat-
tern shown. The strength of the magnetic field decreases
as we move away from the magnet. It should be realized,
of course, that the magnetic field is three dimensional in
its effect, and not acting in one plane as appears to be the
case in this experiment.

If a compass is placed in the magnetic field in various
positions, the direction of the lines of flux may be deter-
mined by noting the direction of the compass pointer. The
direction of a magnetic field at any point is taken as that in
which the north-seeking pole of a compass needle points
when suspended in the field. The direction of a line of flux
is from the north pole to the south pole on the outside of the
magnet and is then assumed to continue through the mag-
net back to the point at which it emerged at the north pole.
Thus such lines of flux always form complete closed loops
or paths, they never intersect and always have a definite
direction. The laws of magnetic attraction and repulsion
can be demonstrated by using two bar magnets. In Fig-
ure 7.2(a), with unlike poles adjacent, attraction takes
place. Lines of flux are imagined to contract and the mag-
nets try to pull together. The magnetic field is strongest in
between the two magnets, shown by the lines of flux being
close together. In Figure 7.2(b), with similar poles adja-
cent (i.e. two north poles), repulsion occurs, i.e. the two
north poles try to push each other apart, since magnetic
flux lines running side by side in the same direction repel.

Figure 7.2

7.3 Magnetic flux and flux density

Magnetic flux is the amount of magnetic field (or the
number of lines of force) produced by a magnetic source.
The symbol for magnetic flux is � (Greek letter ‘phi’).
The unit of magnetic flux is the weber, Wb.

Magnetic flux density is the amount of flux passing
through a defined area that is perpendicular to the direction
of the flux:

Magnetic flux density = magnetic flux
area

The symbol for magnetic flux density is B. The unit
of magnetic flux density is the tesla, T, where 1 T =
1 Wb/m2. Hence

B = �

A
tesla where A(m2) is the area

Problem 1. A magnetic pole face has a rectangular
section having dimensions 200 mm by 100 mm. If the
total flux emerging from the pole is 150 µWb, calculate
the flux density.

Flux � = 150 µWb = 150 × 10−6 Wb

Cross-sectional area A = 200 × 100 = 20 000 mm2

= 20 000 ×10−6 m2

Flux density B = �

A
= 150 × 10−6

20 000 × 10−6

= 0.0075 T or 7.5 mT

Problem 2. The maximum working flux density of
a lifting electromagnet is 1.8 T and the effective area
of a pole face is circular in cross-section. If the total
magnetic flux produced is 353 mWb, determine the
radius of the pole face.

Flux density B = 1.8 T;
flux � = 353 mWb = 353 × 10−3 Wb

Since B = �

A
, cross-sectional area A = �

B

= 353 × 10−3

1.8
m2

= 0.1961 m2

The pole face is circular, hence area = πr2, where r is the
radius.
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Hence πr2 = 0.1961

from which r2 = 0.1961

π
and radius r =

√(
0.1961

π

)

= 0.250 m

i.e. the radius of the pole face is 250 mm

7.4 Magnetomotive force and magnetic field
strength

Magnetomotive force (mmf) is the cause of the existence
of a magnetic flux in a magnetic circuit,

mmf , Fm = NI amperes

where N is the number of conductors (or turns) and I is
the current in amperes. The unit of mmf is sometimes
expressed as ‘ampere-turns’. However since ‘turns’ have
no dimensions, the SI unit of mmf is the ampere.
Magnetic field strength (or magnetizing force),

H = NI/l ampere per metre

where l is the mean length of the flux path in metres.
Thus mmf = NI = Hl amperes.

Problem 3. A magnetizing force of 8000A/m is
applied to a circular magnetic circuit of mean diam-
eter 30 cm by passing a current through a coil wound
on the circuit. If the coil is uniformly wound around the
circuit and has 750 turns, find the current in the coil.

H = 8000A/m; l = πd = π × 30 × 10−2 m; N = 750 turns

Since H = NI

l
then, I = Hl

N
= 8000 × π × 30 × 10−2

750

Thus, current I = 10.05 A

Now try the following exercise.

Exercise 19 Further problems on flux, flux den-
sity, m.m.f. and magnetic field strength

1. What is the flux density in a magnetic field of cross-
sectional area 20 cm2 having a flux of 3 mWb?

[1.5 T]

2. Determine the total flux emerging from a magnetic
pole face having dimensions 5 cm by 6 cm, if the
flux density is 0.9 T. [2.7 mWb]

3. The maximum working flux density of a lifting elec-
tromagnet is 1.9 T and the effective area of a pole
face is circular in cross-section. If the total magnetic
flux produced is 611 mWb determine the radius of
the pole face. [32 cm]

4. A current of 5A is passed through a 1000-turn
coil wound on a circular magnetic circuit of radius
120 mm. Calculate (a) the magnetomotive force, and
(b) the magnetic field strength.

[(a) 5000 A (b) 6631 A/m]

7.5 Permeability and B–H curves

For air, or any non-magnetic medium, the ratio of mag-
netic flux density to magnetizing force is a constant, i.e.
B/H = a constant. This constant is µ0, the permeabil-
ity of free space (or the magnetic space constant) and
is equal to 4π × 10−7 H/m, i.e. for air, or any non-

magnetic medium, the ratio B/H = µ0 (Although

all non-magnetic materials, including air, exhibit slight
magnetic properties, these can effectively be neglected.)

For all media other than free space, B/H = µ0µr

where ur is the relative permeability, and is defined as

µr = flux density in material
flux density in a vacuum

µr varies with the type of magnetic material and, since it is
a ratio of flux densities, it has no unit. From its definition,
µr for a vacuum is 1.
µ0µr = µ, called the absolute permeability.
By plotting measured values of flux density B against
magnetic field strength H, a magnetization curve (or
B–H curve) is produced. For non-magnetic materials
this is a straight line. Typical curves for four magnetic
materials are shown in Figure 7.3.

The relative permeability of a ferromagnetic mat-
erial is proportional to the slope of the B–H curve and
thus varies with the magnetic field strength. The approxi-
mate range of values of relative permeability µr for some
common magnetic materials are:

Cast iron µr = 100–250 Mild steel µr = 200–800

Silicon iron µr = 1000–5000 Cast steel µr = 300–900

Mumetal µr = 200–5000 Stalloy µr = 500–6000
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Figure 7.3 B–H curves for four materials

Problem 4. A flux density of 1.2 T is produced in a
piece of cast steel by a magnetizing force of 1250A/m.
Find the relative permeability of the steel under these
conditions.

For a magnetic material:

B = µ0µr H

i.e. ur = B

µ0 H
= 1.2

(4π × 10−7)(1250)
= 764

Problem 5. Determine the magnetic field strength
and the mmf required to produce a flux density of
0.25 T in an air gap of length 12 mm.

For air: B = µ0 H (since µr = 1)

Magnetic field strength H = B

µ0
= 0.25

4π × 10−7

= 198 940A/m

mmf = Hl = 198 940 × 12 ×10−3

= 2387A

Problem 6. A coil of 300 turns is wound uniformly on
a ring of non-magnetic material. The ring has a mean
circumference of 40 cm and a uniform cross-sectional
area of 4 cm2. If the current in the coil is 5 A, calculate
(a) the magnetic field strength, (b) the flux density and
(c) the total magnetic flux in the ring.

(a) Magnetic field strength H = NI

l
= 300 × 5

40 × 10−2

= 3750 A/m

(b) For a non-magnetic material µr = 1, thus flux density
B = µ0H

i.e. B = 4π × 10−7 × 3750 = 4.712 mT

(c) Flux � = BA = (4.712 × 10−3)(4 × 10−4)
= 1.885 µWb

Problem 7. An iron ring of mean diameter 10 cm is
uniformly wound with 2000 turns of wire. When a cur-
rent of 0.25 A is passed through the coil a flux density
of 0.4 T is set up in the iron. Find (a) the magnetizing
force and (b) the relative permeability of the iron under
these conditions.

l = πd = π × 10 cm = π × 10 × 10−2 m; N = 2000 turns;
I = 0.25 A; B = 0.4 T

(a) H = NI

l
= 2000 × 0.25

π × 10 × 10−2 = 5000

π
= 1592 A/m

(b) B = µ0µrH, hence µr = B

µ0H

= 0.4

(4π × 10−7)(1592)
= 200

Problem 8. A uniform ring of cast iron has a cross-
sectional area of 10 cm2 and a mean circumference of
20 cm. Determine the mmf necessary to produce a flux
of 0.3 mWb in the ring. The magnetization curve for
cast iron is shown in Figure 7.3.

A = 10 cm2 = 10 × 10−4 m2; l = 20 cm = 0.2 m;
� = 0.3 × 10−3 Wb

Flux density B = �

A
= 0.3 × 10−3

10 × 10−4 = 0.3 T

From the magnetization curve for cast iron in Figure 7.3,
when B = 0.3 T, H = 1000A/m, hence
mmf = Hl = 1000 × 0.2 = 200 A

A tabular method could have been used in this problem.
Such a solution is shown on the next page.
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Part of Material � (Wb) A (m2) B = �

A
(T) H from l (m) mmf =

circuit graph Hl (A)

Ring Cast iron 0.3 × 10−3 10 × 10−4 0.3 1000 0.2 200

7.6 Reluctance

Reluctance S (or RM ) is the ‘magnetic resistance’ of a
magnetic circuit to the presence of magnetic flux.

Reluctance,

S = FM

�
= NI

�
= Hl

BA
= l

(B/H)A
= l

µ0µrA

The unit of reluctance is 1/H (or H−1) or A/Wb
Ferromagnetic materials have a low reluctance and can
be used as magnetic screens to prevent magnetic fields
affecting materials within the screen.

Problem 9. Determine the reluctance of a piece of
mumetal of length 150 mm and cross-sectional area
1800 mm2 when the relative permeability is 4000. Find
also the absolute permeability of the mumetal.

Reluctance S = l

µ0µrA

= 150 × 10−3

(4π × 10−7)(4000)(1800 × 10−6)

= 16 580/H or 16 580A/Wb or

16.58 kA/Wb

Absolute permeability, µ = µ0µr = (4π × 10−7)(4000)

= 5.027 × 10–3 H/m

Problem 10. A mild steel ring has a radius of 50 mm
and a cross-sectional area of 400 mm2. A current of
0.5 A flows in a coil wound uniformly around the ring
and the flux produced is 0.1 mWb. If the relative per-
meability at this value of current is 200 find (a) the
reluctance of the mild steel and (b) the number of turns
on the coil.

l = 2πr = 2 × π × 50 × 10−3 m; A = 400 × 10−6 m2;
I = 0.5A; � = 0.1 × 10−3 Wb; µr = 200

(a) Reluctance S = l

µ0µrA

= 2 × π × 50 × 10−3

(4π × 10−7)(200)(400 × 10−6)

= 3.125 × 106/H

(b) S = mmf

�
i.e. mmf = S�

so that NI = S� and

hence N = S�

I
= 3.125 × 106 × 0.1 × 10−3

0.5
= 625 turns

Now try the following exercise.

Exercise 20 Further problems on magnetic cir-
cuits (Where appropriate assume:
µ0 = 4π × 10−7 H/m)

1. Find the magnetic field strength and the magneto-
motive force needed to produce a flux density of
0.33 T in an air gap of length 15 mm.

[(a) 262 600 A/m (b) 3939 A]

2. An air gap between two pole pieces is 20 mm in
length and the area of the flux path across the gap is
5 cm2. If the flux required in the air gap is 0.75 mWb
find the mmf necessary. [23 870 A]

3. Find the magnetic field strength applied to a
magnetic circuit of mean length 50 cm when a coil
of 400 turns is applied to it carrying a current of
1.2 A. [960 A/m]

4. A solenoid 20 cm long is wound with 500 turns
of wire. Find the current required to establish a
magnetizing force of 2500A/m inside the solenoid.

[1 A]

5. A magnetic field strength of 5000A/m is applied to a
circular magnetic circuit of mean diameter 250 mm.
If the coil has 500 turns find the current in the coil.

[7.85 A]

6. Find the relative permeability of a piece of silicon
iron if a flux density of 1.3 T is produced by a
magnetic field strength of 700A/m [1478]

7. Part of a magnetic circuit is made from steel
of length 120 mm, cross-sectional area 15 cm2

and relative permeability 800. Calculate (a) the
reluctance and (b) the absolute permeability of the
steel. [(a) 79 580 /H (b) 1 mH/m]
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8. A steel ring of mean diameter 120 mm is uniformly
wound with 1500 turns of wire. When a current of
0.30 A is passed through the coil a flux density
of 1.5 T is set up in the steel. Find the relative
permeability of the steel under these conditions.

[1000]

9. A mild steel closed magnetic circuit has a mean
length of 75 mm and a cross-sectional area of
320.2 mm2. A current of 0.40 A flows in a coil
wound uniformly around the circuit and the flux
produced is 200 µWb. If the relative permeability
of the steel at this value of current is 400 find (a)
the reluctance of the material and (b) the number
of turns of the coil. [(a) 466 000/H (b) 233]

10. A uniform ring of cast steel has a cross-sectional
area of 5 cm2 and a mean circumference of 15 cm.
Find the current required in a coil of 1200 turns
wound on the ring to produce a flux of 0.8 mWb.
(Use the magnetization curve for cast steel shown
on page 55.) [0.60 A]

11. (a) A uniform mild steel ring has a diameter of
50 mm and a cross-sectional area of 1 cm2.
Determine the mmf necessary to produce a
flux of 50 µWb in the ring. (Use the B–H curve
for mild steel shown on page 55.)

(b) If a coil of 440 turns is wound uniformly
around the ring in part (a) what current would
be required to produce the flux?

[(a) 110 A (b) 0.25 A]

7.7 Composite series magnetic circuits

For a series magnetic circuit having n parts, the total
reluctance S is given by:

S = S1 + S2 + · · · + Sn

(This is similar to resistors connected in series in an
electrical circuit.)

Problem 11. A closed magnetic circuit of cast steel
contains a 6 cm long path of cross-sectional area 1 cm2

and a 2 cm path of cross-sectional area 0.5 cm2. A coil
of 200 turns is wound around the 6 cm length of the
circuit and a current of 0.4 A flows. Determine the flux
density in the 2 cm path, if the relative permeability of
the cast steel is 750.

For the 6 cm long path:

Reluctance S1 = l1
µ0µrA1

= 6 × 10−2

(4π × 10−7)(750)(1 × 10−4)

= 6.366 × 105/H

For the 2 cm long path:

Reluctance S2 = l2
µ0µrA2

= 2 × 10−2

(4π × 10−7)(750)(0.5 × 10−4)

= 4.244 × 105/H

Total circuit reluctance S = S1 + S2

= (6.366 + 4.244) × 105

= 10.61 × 105/H

S = mmf

�
, i.e. � = mmf

S
= NI

S

= 200 × 0.4

10.61 × 105
= 7.54 × 10−5 Wb

Flux density in the 2 cm path, B = �

A

= 7.54 × 10−5

0.5 × 10−4 = 1.51 T

Problem 12. A silicon iron ring of cross-sectional
area 5 cm2 has a radial air gap of 2 mm cut into it.
If the mean length of the silicon iron path is 40 cm,
calculate the magnetomotive force to produce a flux
of 0.7 mWb. The magnetization curve for silicon is
shown on page 55.

There are two parts to the circuit — the silicon iron and
the air gap. The total mmf will be the sum of the mmf’s
of each part.

For the silicon iron: B = �

A
= 0.7 × 10−3

5 × 10−4 = 1.4 T

From the B–H curve for silicon iron on page 55, when
B = 1.4 T, H = 1650At/m.

Hence the mmf for the iron path = Hl = 1650 × 0.4
= 660 A
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Part of Material � (Wb) A (m2) B (T) H (A/m) l (m) mmf =
circuit Hl (A)

Ring Silicon 0.7 × 10−3 5 × 10−4 1.4 1650 0.4 660
iron (from graph)

Air gap Air 0.7 × 10−3 5 × 10−4 1.4
1.4

4π × 10−7
2 × 10−3 2228

= 1 114 000
Total: 2888 A

For the air gap:
The flux density will be the same in the air gap as in
the iron, i.e. 1.4 T. (This assumes no leakage or fringing
occurring.)

For air, H = B

µ0
= 1.4

4π × 10−7

= 1 114 000 A/m

Hence the mmf for the air gap = Hl

= 1 114 000 × 2 × 10−3

= 2228 A

Total mmf to produce a flux of 0.7 mWb = 660 + 2228

= 2888 A

A tabular method could have been used as shown above.

Problem 13. Figure 7.4 shows a ring formed with
two different materials — cast steel and mild steel.
The dimensions are:

mean length cross-sectional area
Mild steel 400 mm 500 mm2

Cast steel 300 mm 312.5 mm2

Figure 7.4

Find the total mmf required to cause a flux of 500 µWb
in the magnetic circuit. Determine also the total circuit
reluctance.

A tabular solution is shown on the next page.

Total circuit reluctance S = mmf

�
= 2000

500 × 10−6

= 4 × 106/H

Problem 14. A section through a magnetic circuit of
uniform cross-sectional area 2 cm2 is shown in Fig-
ure 7.5. The cast steel core has a mean length of 25 cm.
The air gap is 1 mm wide and the coil has 5000 turns.
The B–H curve for cast steel is shown on page 55.
Determine the current in the coil to produce a flux
density of 0.80 T in the air gap, assuming that all the
flux passes through both parts of the magnetic circuit.

Figure 7.5

For the cast steel core, when B = 0.80 T, H = 750A/m
(from page 55)

Reluctance of core S1 = l1
µ0µrA1

and since B = µ0µrH,

then µr = B

µ0H
. Thus S1 = l1

µ0

(
B

µ0H

)
A

= l1H

BA

= (25 × 10−2)(750)

(0.8)(2 × 10−4)

= 1 172 000/H
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Part of Material � (Wb) A (m2) B (T) H (A/m) l (m) mmf = Hl
circuit (=�/A) (from (A)

graphs p 55)

A Mild steel 500 × 10−6 500 × 10−6 1.0 1400 400 × 10−3 560
B Cast steel 500 × 10−6 312.5 × 10−6 1.6 4800 300 × 10−3 1440

Total: 2000 A

For the air gap:

Reluctance, S2 = l2
µ0µrA2

= l2
µ0A2

(since µr = 1 for air)

= 1 × 10−3

(4π × 10−7)(2 × 10−4)

= 3 979 000/H

Total circuit reluctance S = S1 + S2

= 1 172 000 + 3 979 000

= 5 151 000/H

Flux � = BA = 0.80 × 2 × 10−4 = 1.6 × 10−4 Wb

S = mmf

�
, thus mmf = S�

Hence NI = S�

and current I = S�

N

= (5 151 000)(1.6 × 10−4)

5000
= 0.165 A

Now try the following exercise.

Exercise 21 Further problems on composite
series magnetic circuits (Where appropriate assume
µ0 = 4π × 10−7 H/m)

1. A magnetic circuit of cross-sectional area 0.4 cm2

consists of one part 3 cm long, of material having
relative permeability 1200, and a second part 2 cm
long of material having relative permeability 750.
With a 100 turn coil carrying 2 A, find the value of
flux existing in the circuit. [0.195 mWb]

2. (a) A cast steel ring has a cross-sectional area of
600 mm2 and a radius of 25 mm. Determine the

mmf necessary to establish a flux of 0.8 mWb
in the ring. Use the B–H curve for cast steel
shown on page 55.

(b) If a radial air gap 1.5 mm wide is cut in the
ring of part (a) find the mmf now necessary to
maintain the same flux in the ring.

[(a) 270 A (b) 1860 A]

3. For the magnetic circuit shown in Figure 7.6 find
the current I in the coil needed to produce a flux of
0.45 mWb in the air gap. The silicon iron magnetic
circuit has a uniform cross-sectional area of 3 cm2

and its magnetization curve is as shown on page 55.
[0.83 A]

Figure 7.6

4. A ring forming a magnetic circuit is made from
two materials; one part is mild steel of mean
length 25 cm and cross-sectional area 4 cm2, and
the remainder is cast iron of mean length 20 cm
and cross-sectional area 7.5 cm2. Use a tabular
approach to determine the total mmf required to
cause a flux of 0.30 mWb in the magnetic circuit.
Find also the total reluctance of the circuit. Use the
magnetization curves shown on page 55.

[550 A, 1.83 × 106/H]

5. Figure 7.7 shows the magnetic circuit of a relay.
When each of the air gaps are 1.5 mm wide find the
mmf required to produce a flux density of 0.75 T in
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the air gaps. Use the B–H curves shown on
page 55. [2970 A]

Figure 7.7

7.8 Comparison between electrical and magnetic
quantities

Electrical circuit Magnetic circuit

e.m.f. E (V) mmf Fm (A)
current I (A) flux � (Wb)
resistance R (�) reluctance S (H−1)

I = E

R
� = mmf

S

R = ρl

A
S = l

µ0µrA

7.9 Hysteresis and hysteresis loss

Hysteresis is the ‘lagging’ effect of flux density B when-
ever there are changes in the magnetic field strength H.
When an initially unmagnetized ferromagnetic material is
subjected to a varying magnetic field strength H, the flux
density B produced in the material varies as shown in Fig-
ure 7.8, the arrows indicating the direction of the cycle.
Figure 7.8 is known as a hysteresis loop.

From Figure 7.8, distance OX indicates the residual
flux density or remanence, OY indicates the coercive
force, and PP′ is the saturation flux density.

Figure 7.8

Hysteresis results in a dissipation of energy which
appears as a heating of the magnetic material. The energy
loss associated with hysteresis is proportional to the
area of the hysteresis loop.

The production of the hysteresis loop and hysteresis
loss are explained in greater detail in Chapter 38, Section
3, page 488.

The area of a hysteresis loop varies with the type of
material. The area, and thus the energy loss, is much
greater for hard materials than for soft materials.

For AC-excited devices the hysteresis loop is repeated
every cycle of alternating current. Thus a hysteresis loop
with a large area (as with hard steel) is often unsuitable
since the energy loss would be considerable. Silicon steel
has a narrow hysteresis loop, and thus small hysteresis
loss, and is suitable for transformer cores and rotating
machine armatures.
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Revision test 2

This revision test covers the material contained in
chapters 5 to 7.

The marks for each question are shown in brackets at
the end of each question.

1. Resistances of 5 �, 7 �, and 8 � are connected in
series. If a 10V supply voltage is connected across the
arrangement determine the current flowing through and
the p.d. across the 7 � resistor. Calculate also the power
dissipated in the 8 � resistor. (6)

2. For the series-parallel network shown in Figure RT2.1,
find (a) the supply current, (b) the current flowing
through each resistor, (c) the p.d. across each resis-
tor, (d) the total power dissipated in the circuit, (e) the
cost of energy if the circuit is connected for 80 hours.
Assume electrical energy costs 14 p per unit. (15)

3. The charge on the plates of a capacitor is 8 mC when
the potential between them is 4 kV. Determine the
capacitance of the capacitor. (2)

4. Two parallel rectangular plates measuring 80 mm by
120 mm are separated by 4 mm of mica and carry an

Figure RT2.1

electric charge of 0.48 µC. The voltage between the
plates is 500V. Calculate (a) the electric flux density,
(b) the electric field strength, and (c) the capacitance of
the capacitor, in picofarads, if the relative permittivity
of mica is 5. (7)

5. A 4 µF capacitor is connected in parallel with a 6 µF
capacitor. This arrangement is then connected in series
with a 10 µF capacitor. A supply p.d. of 250V is
connected across the circuit. Find (a) the equivalent
capacitance of the circuit, (b) the voltage across the
10 µF capacitor, and (c) the charge on each capacitor.

(7)

6. A coil of 600 turns is wound uniformly on a ring of
non-magnetic material. The ring has a uniform cross-
sectional area of 200 mm2 and a mean circumference
of 500 mm. If the current in the coil is 4 A, determine
(a) the magnetic field strength, (b) the flux density, and
(c) the total magnetic flux in the ring. (5)

7. A mild steel ring of cross-sectional area 4 cm2 has a
radial air gap of 3 mm cut into it. If the mean length of
the mild steel path is 300 mm, calculate the magneto-
motive force to produce a flux of 0.48 mWb. (Use the
B–H curve on page 55) (8)
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8 Electromagnetism

At the end of this chapter you should be able to:
• understand that magnetic fields are produced by

electric currents
• apply the screw rule to determine direction of mag-

netic field
• recognize that the magnetic field around a solenoid is

similar to a magnet
• apply the screw rule or grip rule to a solenoid to

determine magnetic field direction
• recognize and describe practical applications of an

electromagnet, i.e. electric bell, relay, lifting mag-
net, telephone receiver

• appreciate factors upon which the force F on a
current-carrying conductor depends

• perform calculations using F = BIl and F = BIl sin θ
• recognize that a loudspeaker is a practical application

of force F
• use Fleming’s left-hand rule to pre-determine direc-

tion of force in a current-carrying conductor
• describe the principle of operation of a simple d.c.

motor
• describe the principle of operation and construction

of a moving coil instrument
• appreciate the force Fon a charge in a magnetic field

is given by F = QvB
• perform calculations using F = QvB

8.1 Magnetic field due to an electric current

Magnetic fields can be set up not only by permanent mag-
nets, as shown in Chapter 7, but also by electric currents.

Let a piece of wire be arranged to pass vertically
through a horizontal sheet of cardboard, on which is
placed some iron filings, as shown in Figure 8.1(a).

Figure 8.1

If a current is now passed through the wire, then the iron
filings will form a definite circular field pattern with the
wire at the centre, when the cardboard is gently tapped.
By placing a compass in different positions the lines of
flux are seen to have a definite direction as shown in
Figure 8.1(b). If the current direction is reversed, the direc-
tion of the lines of flux is also reversed. The effect on
both the iron filings and the compass needle disappears

when the current is switched off. The magnetic field is
thus produced by the electric current. The magnetic flux
produced has the same properties as the flux produced by a
permanent magnet. If the current is increased the strength
of the field increases and, as for the permanent magnet,
the field strength decreases as we move away from the
current-carrying conductor.

In Figure 8.1, the effect of only a small part of the
magnetic field is shown.

If the whole length of the conductor is similarly inves-
tigated it is found that the magnetic field around a straight
conductor is in the form of concentric cylinders as shown
in Figure 8.2, the field direction depending on the direction
of the current flow.

Figure 8.2

When dealing with magnetic fields formed by elec-
tric current it is usual to portray the effect as shown in
Figure 8.3. The convention adopted is:

(i) Current flowing away from the viewer, i.e. into the
paper, is indicated by ⊕. This may be thought of
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as the feathered end of the shaft of an arrow. See
Figure 8.3(a).

Figure 8.3

(ii) Current flowing towards the viewer, i.e. out of the
paper, is indicated by �. This may be thought of as
the tip of an arrow. See Figure 8.3(b).

The direction of the magnetic lines of flux is best remem-
bered by the screw rule. This states that:

‘If a normal right-hand thread screw is screwed along the
conductor in the direction of the current, the direction of
rotation of the screw is in the direction of the magnetic
field.’

For example, with current flowing away from the
viewer (Figure 8.3(a)) a right-hand thread screw driven
into the paper has to be rotated clockwise. Hence the
direction of the magnetic field is clockwise.

A magnetic field set up by a long coil, or solenoid, is
shown in Figure 8.4(a) and is seen to be similar to that of
a bar magnet. If the solenoid is wound on an iron bar, as
shown in Figure 8.4(b), an even stronger magnetic field

Figure 8.4

is produced, the iron becoming magnetized and behaving
like a permanent magnet.

The direction of the magnetic field produced by the
current I in the solenoid may be found by either of two
methods, i.e. the screw rule or the grip rule.

(a) The screw rule states that if a normal right-hand
thread screw is placed along the axis of the solenoid
and is screwed in the direction of the current it
moves in the direction of the magnetic field inside the
solenoid. The direction of the magnetic field inside
the solenoid is from south to north. Thus in Figures
8.4(a) and (b) the north pole is to the right.

(b) The grip rule states that if the coil is gripped with the
right hand, with the fingers pointing in the direction
of the current, then the thumb, outstretched parallel
to the axis of the solenoid, points in the direction of
the magnetic field inside the solenoid.

Problem 1. Figure 8.5 shows a coil of wire wound on
an iron core connected to a battery. Sketch the magnetic
field pattern associated with the current-carrying coil
and determine the polarity of the field.

Figure 8.5

The magnetic field associated with the solenoid in Fig-
ure 8.5 is similar to the field associated with a bar magnet
and is as shown in Figure 8.6. The polarity of the field is
determined either by the screw rule or by the grip rule.
Thus the north pole is at the bottom and the south pole at
the top.

Figure 8.6
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8.2 Electromagnets

The solenoid is very important in electromagnetic theory
since the magnetic field inside the solenoid is practically
uniform for a particular current, and is also versatile,
inasmuch that a variation of the current can alter the
strength of the magnetic field. An electromagnet, based
on the solenoid, provides the basis of many items of
electrical equipment, examples of which include electric
bells, relays, lifting magnets and telephone receivers.

(i) Electric bell
There are various types of electric bell, including the
single-stroke bell, the trembler bell, the buzzer and a
continuously ringing bell, but all depend on the attrac-
tion exerted by an electromagnet on a soft iron armature.
A typical single-stroke bell circuit is shown in Figure 8.7.
When the push button is operated a current passes through
the coil. Since the iron-cored coil is energized the soft iron
armature is attracted to the electromagnet. The armature
also carries a striker which hits the gong. When the circuit
is broken the coil becomes demagnetized and the spring
steel strip pulls the armature back to its original position.
The striker will only operate when the push is operated.

Figure 8.7

(ii) Relay
A relay is similar to an electric bell except that con-
tacts are opened or closed by operation instead of a gong
being struck.A typical simple relay is shown in Figure 8.8,

Figure 8.8

which consists of a coil wound on a soft iron core. When
the coil is energized the hinged soft iron armature is
attracted to the electromagnet and pushes against two fixed
contacts so that they are connected together, thus closing
some other electrical circuit.

(iii) Lifting magnet
Lifting magnets, incorporating large electromagnets, are
used in iron and steel works for lifting scrap metal.
A typical robust lifting magnet, capable of exerting large
attractive forces, is shown in the elevation and plan view of
Figure 8.9 where a coil, C, is wound round a central core,
P, of the iron casting. Over the face of the electromagnet
is placed a protective non-magnetic sheet of material, R.
The load, Q, which must be of magnetic material is lifted
when the coils are energized, the magnetic flux paths, M,
being shown by the broken lines.

Figure 8.9

Figure 8.10
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(iv) Telephone receiver
Whereas a transmitter or microphone changes sound
waves into corresponding electrical signals, a telephone
receiver converts the electrical waves back into sound
waves. A typical telephone receiver is shown in Fig-
ure 8.10 and consists of a permanent magnet with coils
wound on its poles. A thin, flexible diaphragm of mag-
netic material is held in position near to the magnetic
poles but not touching them. Variation in current from the
transmitter varies the magnetic field and the diaphragm
consequently vibrates. The vibration produces sound
variations corresponding to those transmitted.

8.3 Force on a current-carrying conductor

If a current-carrying conductor is placed in a magnetic
field produced by permanent magnets, then the fields
due to the current-carrying conductor and the permanent
magnets interact and cause a force to be exerted on the
conductor. The force on the current-carrying conductor in
a magnetic field depends upon:

(a) the flux density of the field, B teslas
(b) the strength of the current, I amperes,
(c) the length of the conductor perpendicular to the mag-

netic field, l metres, and
(d) the directions of the field and the current.

When the magnetic field, the current and the conductor
are mutually at right angles then:

Force F = BIl newtons

When the conductor and the field are at an angle θ◦ to
each other then:

Force F = BIl sin θ newtons

Since when the magnetic field, current and conductor
are mutually at right angles, F = BIl, the magnetic flux
density B may be defined by B = F/Il, i.e. the flux density
is 1 T if the force exerted on 1 m of a conductor when the
conductor carries a current of 1A is 1 N.

Loudspeaker

A simple application of the above force is the moving coil
loudspeaker. The loudspeaker is used to convert electrical
signals into sound waves.

Figure 8.11 shows a typical loudspeaker having a mag-
netic circuit comprising a permanent magnet and soft iron
pole pieces so that a strong magnetic field is available in
the short cylindrical air gap. A moving coil, called the
voice or speech coil, is suspended from the end of a paper

or plastic cone so that it lies in the gap. When an electric
current flows through the coil it produces a force which
tends to move the cone backwards and forwards accord-
ing to the direction of the current. The cone acts as a
piston, transferring this force to the air, and producing the
required sound waves.

Figure 8.11

Problem 2. A conductor carries a current of 20A and
is at right-angles to a magnetic field having a flux dens-
ity of 0.9 T. If the length of the conductor in the field
is 30 cm, calculate the force acting on the conductor.
Determine also the value of the force if the conductor
is inclined at an angle of 30◦ to the direction of the
field.

B = 0.9 T; I = 20 A; l = 30 cm = 0.30 m

Force F = BIl = (0.9)(20)(0.30) newtons when the con-
ductor is at right-angles to the field, as shown in
Figure 8.12(a), i.e. F = 5.4 N

Figure 8.12

When the conductor is inclined at 30◦ to the field, as shown
in Figure 8.12(b), then force F = BIl sin θ

= (0.9)(20)(0.30) sin 30◦

i.e. F = 2.7 N

If the current-carrying conductor shown in Figure 8.3(a)
is placed in the magnetic field shown in Figure 8.13(a),
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then the two fields interact and cause a force to be exerted
on the conductor as shown in Figure 8.13(b). The field is
strengthened above the conductor and weakened below,
thus tending to move the conductor downwards. This
is the basic principle of operation of the electric motor
(see Section 8.4) and the moving-coil instrument (see
Section 8.5).

Figure 8.13

The direction of the force exerted on a conductor can be
pre-determined by using Fleming’s left-hand rule (often
called the motor rule) which states:

Let the thumb, first finger and second finger of the left
hand be extended such that they are all at right-angles to
each other (as shown in Figure 8.14). If the first finger
points in the direction of the magnetic field, the sec-
ond finger points in the direction of the current, then
the thumb will point in the direction of the motion of the
conductor.

Figure 8.14

Summarizing:

First finger - Field

SeCond finger - Current

ThuMb - Motion

Problem 3. Determine the current required in a
400 mm length of conductor of an electric motor, when
the conductor is situated at right-angles to a magnetic
field of flux density 1.2 T, if a force of 1.92 N is to be
exerted on the conductor. If the conductor is vertical,
the current flowing downwards and the direction of the
magnetic field is from left to right, what is the direction
of the force?

Force = 1.92 N; l = 400 mm = 0.40 m; B = 1.2 T

Since F = BIl, then I = F

Bl

hence current I = 1.92

(1.2)(0.4)
= 4A

If the current flows downwards, the direction of its mag-
netic field due to the current alone will be clockwise when
viewed from above. The lines of flux will reinforce (i.e.
strengthen) the main magnetic field at the back of the con-
ductor and will be in opposition in the front (i.e. weaken
the field).

Hence the force on the conductor will be from back
to front (i.e. toward the viewer). This direction may also
have been deduced using Fleming’s left-hand rule.

Problem 4. A conductor 350 mm long carries a cur-
rent of 10A and is at right-angles to a magnetic field
lying between two circular pole faces each of radius
60 mm. If the total flux between the pole faces is
0.5 mWb, calculate the magnitude of the force exerted
on the conductor.

l = 350 mm = 0.35 m; I = 10A;

Area of pole face A = πr2 = π(0.06)2 m2;

� = 0.5 mWb = 0.5 × 10−3 Wb

Force F = BIl, and B = �

A

hence force F =
(

�

A

)
Il

= (0.5 × 10−3)

π(0.06)2 (10)(0.35) newtons

i.e. force = 0.155 N
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Problem 5. With reference to Figure 8.15 determine
(a) the direction of the force on the conductor in Figure
8.15(a), (b) the direction of the force on the conductor
in Figure 8.15(b), (c) the direction of the current in
Figure 8.15(c), (d) the polarity of the magnetic system
in Figure 8.15(d).

Figure 8.15

(a) The direction of the main magnetic field is from north
to south, i.e. left to right. The current is flowing
towards the viewer, and using the screw rule, the
direction of the field is anticlockwise. Hence either
by Fleming’s left-hand rule, or by sketching the inter-
acting magnetic field as shown in Figure 8.16(a), the

Figure 8.16

direction of the force on the conductor is seen to be
upward.

(b) Using a similar method to part (a) it is seen that the
force on the conductor is to the right — see Figure
8.16(b).

(c) Using Fleming’s left-hand rule, or by sketching as in
Figure 8.16(c), it is seen that the current is toward the
viewer, i.e. out of the paper.

(d) Similar to part (c), the polarity of the magnetic system
is as shown in Figure 8.16(d).

Problem 6. A coil is wound on a rectangular for-
mer of width 24 mm and length 30 mm. The former is
pivoted about an axis passing through the middle of the
two shorter sides and is placed in a uniform magnetic
field of flux density 0.8 T, the axis being perpendicular
to the field. If the coil carries a current of 50 mA, deter-
mine the force on each coil side (a) for a single-turn
coil, (b) for a coil wound with 300 turns.

(a) Flux density B = 0.8 T; length of conductor lying
at right-angles to field l = 30 mm = 30 × 10−3 m;
current I = 50 mA = 50 × 10−3 A
For a single-turn coil, force on each coil side

F = BIl = 0.8 × 50 × 10−3 × 30 × 10−3

= 1.2 × 10−3N or 0.0012 N
(b) When there are 300 turns on the coil there are effect-

ively 300 parallel conductors each carrying a current
of 50 mA. Thus the total force produced by the current
is 300 times that for a single-turn coil. Hence force on
coil side F = 300 BIl = 300 × 0.0012 = 0.36 N

Now try the following exercise.

Exercise 22 Further problems on the force on a
current-carrying conductor

1. A conductor carries a current of 70A at right-angles
to a magnetic field having a flux density of 1.5 T. If
the length of the conductor in the field is 200 mm
calculate the force acting on the conductor. What
is the force when the conductor and field are at an
angle of 45◦? [21.0 N, 14.8 N]

2. Calculate the current required in a 240 mm length
of conductor of a d.c. motor when the conductor is
situated at right-angles to the magnetic field of flux
density 1.25 T, if a force of 1.20 N is to be exerted
on the conductor. [4.0A]

3. A conductor 30 cm long is situated at right-angles
to a magnetic field. Calculate the flux density of the
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magnetic field if a current of 15A in the conductor
produces a force on it of 3.6 N. [0.80 T]

4. A conductor 300 mm long carries a current of
13A and is at right-angles to a magnetic field
between two circular pole faces, each of diame-
ter 80 mm. If the total flux between the pole faces
is 0.75 mWb calculate the force exerted on the
conductor. [0.582 N]

5. (a) A 400 mm length of conductor carrying a
current of 25A is situated at right-angles to
a magnetic field between two poles of an elec-
tric motor. The poles have a circular cross-
section. If the force exerted on the conductor
is 80 N and the total flux between the pole faces
is 1.27 mWb, determine the diameter of a pole
face.

(b) If the conductor in part (a) is vertical, the cur-
rent flowing downwards and the direction of the
magnetic field is from left to right, what is the
direction of the 80 N force?

[(a) 14.2 mm (b) towards the viewer]

6. A coil is wound uniformly on a former having a
width of 18 mm and a length of 25 mm. The former
is pivoted about an axis passing through the middle
of the two shorter sides and is placed in a uniform
magnetic field of flux density 0.75 T, the axis being
perpendicular to the field. If the coil carries a current
of 120 mA, determine the force exerted on each coil
side, (a) for a single-turn coil, (b) for a coil wound
with 400 turns. [(a) 2.25 × 10−3 N (b) 0.9 N]

8.4 Principle of operation of a simple d.c. motor

A rectangular coil which is free to rotate about a fixed
axis is shown placed inside a magnetic field produced by
permanent magnets in Figure 8.17. A direct current is fed
into the coil via carbon brushes bearing on a commuta-
tor, which consists of a metal ring split into two halves
separated by insulation.

When current flows in the coil a magnetic field is set up
around the coil which interacts with the magnetic field pro-
duced by the magnets. This causes a force F to be exerted
on the current-carrying conductor which, by Fleming’s
left-hand rule, is downwards between points A and B and
upward between C and D for the current direction shown.
This causes a torque and the coil rotates anticlockwise.
When the coil has turned through 90◦ from the position
shown in Figure 8.17 the brushes connected to the posi-
tive and negative terminals of the supply make contact
with different halves of the commutator ring, thus revers-
ing the direction of the current flow in the conductor. If the

Figure 8.17

current is not reversed and the coil rotates past this posi-
tion the forces acting on it change direction and it rotates
in the opposite direction thus never making more than half
a revolution. The current direction is reversed every time
the coil swings through the vertical position and thus the
coil rotates anticlockwise for as long as the current flows.
This is the principle of operation of a d.c. motor which is
thus a device that takes in electrical energy and converts
it into mechanical energy.

8.5 Principle of operation of a moving
coil-instrument

A moving-coil instrument operates on the motor principle.
When a conductor carrying current is placed in a mag-
netic field, a force F is exerted on the conductor, given by
F = BIl. If the flux density B is made constant (by using
permanent magnets) and the conductor is a fixed length
(say, a coil) then the force will depend only on the current
flowing in the conductor.

In a moving-coil instrument a coil is placed centrally
in the gap between shaped pole pieces as shown by the
front elevation in Figure 8.18(a). (The air gap is kept as
small as possible, although for clarity it is shown exag-
gerated in Figure 8.18.) The coil is supported by steel
pivots, resting in jewel bearings, on a cylindrical iron core.
Current is led into and out of the coil by two phosphor
bronze spiral hairsprings which are wound in opposite
directions to minimize the effect of temperature change
and to limit the coil swing (i.e. to control the movement)
and return the movement to zero position when no cur-
rent flows. Current flowing in the coil produces forces as
shown in Fig 8.18(b), the directions being obtained by
Fleming’s left-hand rule. The two forces, FA and FB, pro-
duce a torque which will move the coil in a clockwise
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Figure 8.18

direction, i.e. move the pointer from left to right. Since
force is proportional to current the scale is linear.

When the aluminium frame, on which the coil is wound,
is rotated between the poles of the magnet, small currents
(called eddy currents) are induced into the frame, and
this provides automatically the necessary damping of the
system due to the reluctance of the former to move within
the magnetic field. The moving-coil instrument will meas-
ure only direct current or voltage and the terminals are
marked positive and negative to ensure that the current
passes through the coil in the correct direction to deflect
the pointer ‘up the scale’.

The range of this sensitive instrument is extended by
using shunts and multipliers (see Chapter 10).

8.6 Force on a charge

When a charge of Q coulombs is moving at a velocity of v
m/s in a magnetic field of flux density B teslas, the charge
moving perpendicular to the field, then the magnitude of
the force F exerted on the charge is given by:

F = QvB newtons

Problem 7. An electron in a television tube has
a charge of 1.6 × 10−19 coulombs and travels at
3 × 107 m/s perpendicular to a field of flux density
18.5 µT. Determine the force exerted on the electron
in the field.

From above, force F = QvB newtons, where

Q = charge in coulombs = 1.6 × 10−19 C;

v = velocity of charge = 3 × 107 m/s;

and B = flux density = 18.5 × 10−6 T

Hence force on electron F = 1.6 × 10−19 × 3 × 107

× 18.5 × 10−6

= 1.6 × 3 × 18.5 × 10−18

= 88.8 × 10−18

= 8.88× 10−17 N

Now try the following exercise.

Exercise 23 Further problems on force on a
charge

1. Calculate the force exerted on a charge of
2 × 10−18C travelling at 2 × 106 m/s perpendicular
to a field of density 2 × 10−7 T.

[8 × 10−19 N]

2. Determine the speed of a 10−19 C charge travelling
perpendicular to a field of flux density 10−7 T, if the
force on the charge is 10−20 N. [106 m/s]
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9 Electromagnetic induction

At the end of this chapter you should be able to:
• understand how an e.m.f. may be induced in a

conductor
• state Faraday’s laws of electromagnetic induction
• state Lenz’s law
• use Fleming’s right-hand rule for relative directions
• appreciate that the induced e.m.f., E = Blv or

E = Blv sin θ
• calculate induced e.m.f. given B, l, v and θ and

determine relative directions
• understand and perform calculations on rotation of

a loop in a magnetic field
• define inductance L and state its unit
• define mutual inductance

• appreciate that e.m.f. E = −N
d�

dt
= −L

dI

dt

• calculate induced e.m.f. given N , t, L, change of flux
or change of current

• appreciate factors which affect the inductance of an
inductor

• draw the circuit diagram symbols for inductors
• calculate the energy stored in an inductor using

W = 1
2 LI2 joules

• calculate inductance L of a coil, given L = N�

I
and

L = N2

S
• calculate mutual inductance using E2 = −M

dI1

dt
and

M = N1N2

S

9.1 Introduction to electromagnetic induction

When a conductor is moved across a magnetic field so as
to cut through the lines of force (or flux), an electromotive
force (e.m.f.) is produced in the conductor. If the conduc-
tor forms part of a closed circuit then the e.m.f. produced
causes an electric current to flow round the circuit. Hence
an e.m.f. (and thus current) is ‘induced’ in the conductor
as a result of its movement across the magnetic field. This
effect is known as ‘electromagnetic induction’.

Figure 9.1(a) shows a coil of wire connected to a centre-
zero galvanometer, which is a sensitive ammeter with the
zero-current position in the centre of the scale.

(a) When the magnet is moved at constant speed towards
the coil (Figure 9.1(a)), a deflection is noted on the gal-
vanometer showing that a current has been produced
in the coil.

(b) When the magnet is moved at the same speed as in (a)
but away from the coil the same deflection is noted
but is in the opposite direction (see Figure 9.1(b)).

(c) When the magnet is held stationary, even within the
coil, no deflection is recorded.

(d) When the coil is moved at the same speed as in (a)
and the magnet held stationary the same galvanometer
deflection is noted.

(e) When the relative speed is, say, doubled, the gal-
vanometer deflection is doubled.

Figure 9.1

(f) When a stronger magnet is used, a greater galvanome-
ter deflection is noted.

(g) When the number of turns of wire of the coil is
increased, a greater galvanometer deflection is noted.

Figure 9.1(c) shows the magnetic field associated with
the magnet. As the magnet is moved towards the coil,
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the magnetic flux of the magnet moves across, or cuts,
the coil. It is the relative movement of the magnetic
flux and the coil that causes an e.m.f. and thus cur-
rent, to be induced in the coil. This effect is known as
electromagnetic induction. The laws of electromagnetic
induction stated in Section 9.2 evolved from experiments
such as those described above.

9.2 Laws of electromagnetic induction

Faraday’s laws of electromagnetic induction state:

(i) ‘An induced e.m.f. is set up whenever the magnetic
field linking that circuit changes.’

(ii) ‘The magnitude of the induced e.m.f. in any circuit is
proportional to the rate of change of the magnetic flux
linking the circuit.’

Lenz’s law states:

‘The direction of an induced e.m.f. is always such that it
tends to set up a current opposing the motion or the change
of flux responsible for inducing that e.m.f.’.

An alternative method to Lenz’s law of determining rel-
ative directions is given by Fleming’s Right-hand rule
(often called the geneRator rule) which states:

Let the thumb, first finger and second finger of the right
hand be extended such that they are all at right angles to
each other (as shown in Figure 9.2).
If the first finger points in the direction of the magnetic
field, the thumb points in the direction of motion of the
conductor relative to the magnetic field, then the second
finger will point in the direction of the induced e.m.f.

Figure 9.2

Summarizing:

First finger — Field

ThuMb — Motion

SEcond finger — E.m.f.

In a generator, conductors forming an electric circuit are
made to move through a magnetic field. By Faraday’s law
an e.m.f. is induced in the conductors and thus a source of
e.m.f. is created. A generator converts mechanical energy
into electrical energy. (The action of a simple a.c. gener-
ator is described in Chapter 14.) The induced e.m.f. E set
up between the ends of the conductor shown in Figure 9.3
is given by:

E = Blv volts

where B, the flux density, is measured in teslas, l, the
length of conductor in the magnetic field, is measured
in metres, and v, the conductor velocity, is measured in
metres per second.

Figure 9.3

If the conductor moves at an angle θ◦ to the magnetic field
(instead of at 90◦ as assumed above) then

E = Blv sin θ volts

Problem 1. A conductor 300 mm long moves at a
uniform speed of 4 m/s at right-angles to a uniform
magnetic field of flux density 1.25 T. Determine the
current flowing in the conductor when (a) its ends are
open-circuited, (b) its ends are connected to a load of
20 � resistance.

When a conductor moves in a magnetic field it will have
an e.m.f. induced in it but this e.m.f. can only produce a
current if there is a closed circuit.

Induced e.m.f. E = Blv = (1.25)

(
300

1000

)
(4) = 1.5 V
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(a) If the ends of the conductor are open circuited no
current will flow even though 1.5V has been induced.

(b) From Ohm’s law, I = E

R
= 1.5

20
= 0.075 A or 75 mA

Problem 2. At what velocity must a conductor 75 mm
long cut a magnetic field of flux density 0.6 T if an
e.m.f. of 9V is to be induced in it? Assume the conduc-
tor, the field and the direction of motion are mutually
perpendicular.

Induced e.m.f. E = Blv, hence velocity v = E

Bl

Hence v = 9

(0.6)(75 × 10−3)
= 9 × 103

0.6 × 75
= 200 m/s

Problem 3. A conductor moves with a velocity of
15 m/s at an angle of (a) 90◦, (b) 60◦ and (c) 30◦ to
a magnetic field produced between two square-faced
poles of side length 2 cm. If the flux leaving a pole face
is 5 µWb, find the magnitude of the induced e.m.f. in
each case.

v = 15 m/s; length of conductor in magnetic field,
l = 2 cm = 0.02 m; A = 2 × 2 cm2 = 4 × 10−4 m2, � =
5 × 10−6 Wb

(a) E90 = Blv sin 90◦ =
(

�

A

)
lv sin 90◦

= (5 × 10−6)

(4 × 10−4)
(0.02)(15)(1)

= 3.75 mV
(b) E60 = Blv sin 60◦ = E90 sin 60◦ = 3.75 sin 60◦

= 3.25 mV
(c) E30 = Blv sin 30◦ = E90 sin 30◦ = 3.75 sin 30◦

= 1.875 mV

Problem 4. The wing span of a metal aeroplane is
36 m. If the aeroplane is flying at 400 km/h, deter-
mine the e.m.f. induced between its wing tips. Assume
the vertical component of the earth’s magnetic field is
40 µT.

Induced e.m.f. across wing tips, E = Blv

B = 40 µT = 40 × 10−6 T; l = 36 m

v = 400
km

h
× 1000

m

km
× 1 h

60 × 60 s
= (400)(1000)

3600

= 4000

36
m/s

Hence E = Blv = (40 × 10−6)(36)

(
4000

36

)

= 0.16 V

Problem 5. The diagram shown in Figure 9.4 rep-
resents the generation of e.m.f’s. Determine (i) the
direction in which the conductor has to be moved in
Figure 9.4(a), (ii) the direction of the induced e.m.f. in
Figure 9.4(b), (iii) the polarity of the magnetic system
in Figure 9.4(c).

Figure 9.4

The direction of the e.m.f., and thus the current due to the
e.m.f., may be obtained by either Lenz’s law or Fleming’s
Right-hand rule (i.e. GeneRator rule).

(i) Using Lenz’s law: The field due to the magnet and the
field due to the current-carrying conductor are shown
in Figure 9.5(a) and are seen to reinforce to the left
of the conductor. Hence the force on the conductor
is to the right. However Lenz’s law states that the
direction of the induced e.m.f. is always such as to
oppose the effect producing it. Thus the conductor
will have to be moved to the left.

(ii) Using Fleming’s right-hand rule:

First finger — Field, i.e. N → S, or right to left;

ThuMb — Motion, i.e. upwards;
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Figure 9.5

SEcond finger — E.m.f., i.e. towards the viewer or
out of the paper, as shown in Figure 9.5(b)

(iii) The polarity of the magnetic system of Figure 9.4(c)
is shown in Figure 9.5(c) and is obtained using
Fleming’s right-hand rule.

Now try the following exercise.

Exercise 24 Further problems on induced e.m.f.’s

1. A conductor of length 15 cm is moved at 750 mm/s
at right-angles to a uniform flux density of 1.2 T.
Determine the e.m.f. induced in the conductor.

[0.135V]

2. Find the speed that a conductor of length 120 mm
must be moved at right-angles to a magnetic field of
flux density 0.6 T to induce in it an e.m.f. of 1.8V.

[25 m/s]

3. A 25 cm long conductor moves at a uniform speed
of 8 m/s through a uniform magnetic field of flux
density 1.2 T. Determine the current flowing in the

conductor when (a) its ends are open-circuited,
(b) its ends are connected to a load of 15 ohms
resistance. [(a) 0 (b) 0.16 A]

4. A car is travelling at 80 km/h. Assuming the back
axle of the car is 1.76 m in length and the vertical
component of the earth’s magnetic field is 40 µT,
find the e.m.f. generated in the axle due to motion.

[1.56 mV]

5. A conductor moves with a velocity of 20 m/s at
an angle of (a) 90◦ (b) 45◦ (c) 30◦, to a magnetic
field produced between two square-faced poles of
side length 2.5 cm. If the flux on the pole face is
60 mWb, find the magnitude of the induced e.m.f.
in each case. [(a) 48V (b) 33.9V (c) 24V]

6. A conductor 400 mm long is moved at 70◦ to
a 0.85 T magnetic field. If it has a velocity of
115 km/h, calculate (a) the induced voltage, and
(b) force acting on the conductor if connected to
an 8 � resistor. [(a) 10.21V (b) 0.408 N]

9.3 Rotation of a loop in a magnetic field

Figure 9.6 shows a view of a looped conductor whose
sides are moving across a magnetic field.

S

N

+ −

l

Figure 9.6

The left-hand side is moving in an upward direction
(check using Fleming’s right-hand rule), with length l cut-
ting the lines of flux which are travelling from left to right.
By definition, the induced e.m.f. will be equal to Blv sin θ
and flowing into the page.

The right-hand side is moving in a downward direc-
tion (again, check using Fleming’s right-hand rule), with
length l cutting the same lines of flux as above. The
induced e.m.f. will also be equal to Blv sin θ but flowing
out of the page.

Therefore the total e.m.f. for the loop conductor =
2 Blv sin θ.

Now consider a coil made up of a number of turns N .
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The total e.m.f. E for the loop conductor is now given by:

E = 2N Blv sin θ

Problem 6. A rectangular coil of sides 12 cm and
8 cm is rotated in a magnetic field of flux density
1.4 T, the longer side of the coil actually cutting this
flux. The coil is made up of 80 turns and rotates at 1200
rev/min.

(a) Calculate the maximum generated e.m.f.
(b) If the coil generates 90V, at what speed will the

coil rotate?

(a) Generated e.m.f. E = 2 N Blv sin θ

where number of turns, N = 80, flux density,
B = 1.4 T,

length of conductor in magnetic field, l = 12 cm
= 0.12 m,

velocity, v = ωr =
(

1200

60
× 2π rad/s

) (
0.08

2
m

)

= 1.6π m/s,

and for maximum e.m.f. induced, θ = 90◦, from
which, sin θ = 1

Hence, maximum e.m.f. induced,

E = 2 N Blv sin θ

= 2 × 80 × 1.4 × 0.12 × 1.6π × 1 = 135.1 volts

(b) Since E = 2N Blv sin θ

then 90 = 2 × 80 × 1.4 × 0.12 × v × 1

from which, v = 90

2 × 80 × 1.4 × 0.12

= 3.348 m/s

v = ωr hence, angular velocity,

ω = v

r
= 3.348

0.08

2

= 83.7 rad/s

Speed of coil in rev/min = 83.7 × 60

2π

= 799 rev/min

An alternative method of determining (b) is by direct
proportion.

Since E = 2N Blv sin θ, then with N , B, l and θ being
constant, E α v

If from (a), 135.1V is produced by a speed of 1200
rev/min,

then 1V would be produced by a speed of
1200

135.1
=8.88 rev/min

Hence, 90V would be produced by a speed of
90 × 8.88 = 799 rev/min

Now try the following exercise

Exercise 25 Further problems on induced e.m.f.
in a coil

1. A rectangular coil of sides 8 cm by 6 cm is rotating
in a magnetic field such that the longer sides cut
the magnetic field. Calculate the maximum gener-
ated e.m.f. if there are 60 turns on the coil, the flux
density is 1.6 T and the coil rotates at 1500 rev/min.

[72.38V]

2. A generating coil on a former 100 mm long has 120
turns and rotates in a 1.4 T magnetic field. Calculate
the maximum e.m.f. generated if the coil, having a
diameter of 60 mm, rotates at 450 rev/min.

[47.50V]

3. If the coils in problems 1 and 2 generate 60V, cal-
culate (a) the new speed for each coil, and (b) the
flux density required if the speed is unchanged.
[(a) 1243 rev/min, 568 rev/min (b) 1.33 T, 1.77 T]

9.4 Inductance

Inductance is the name given to the property of a circuit
whereby there is an e.m.f. induced into the circuit by the
change of flux linkages produced by a current change.
When the e.m.f. is induced in the same circuit as that in
which the current is changing, the property is called self
inductance, L.
When the e.m.f. is induced in a circuit by a change of flux
due to current changing in an adjacent circuit, the property
is called mutual inductance, M.
The unit of inductance is the henry, H.

‘A circuit has an inductance of one henry when an e.m.f.
of one volt is induced in it by a current changing at the
rate of one ampere per second.’

Induced e.m.f. in a coil of N turns,

E = − N
d�

dt
volts
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where d� is the change in flux in Webers, and dt is the
time taken for the flux to change in seconds (i.e. d�/dt is
the rate of change of flux).

Induced e.m.f. in a coil of inductance L henrys,

E = − L
dI
dt

volts

where dI is the change in current in amperes and dt is the
time taken for the current to change in seconds (i.e. dI/dt
is the rate of change of current). The minus sign in each of
the above two equations remind us of its direction (given
by Lenz’s law).

Problem 7. Determine the e.m.f. induced in a coil of
200 turns when there is a change of flux of 25 mWb
linking with it in 50 ms.

Induced e.m.f. E = −N
d�

dt
= −(200)

(
25 × 10−3

50 × 10−3

)

= −100 volts

Problem 8. A flux of 400 µWb passing through a
150-turn coil is reversed in 40 ms. Find the average
e.m.f. induced.

Since the flux reverses, the flux changes from +400 µWb
to −400 µWb, a total change of flux of 800 µWb

Induced e.m.f. E = −N
d�

dt
= −(150)

(
800 × 10−6

40 × 10−3

)

= −
(

150 × 800 × 103

40 × 106

)

Hence the average e.m.f. induced E = −3 volts

Problem 9. Calculate the e.m.f. induced in a coil of
inductance 12 H by a current changing at the rate of
4A/s.

Induced e.m.f. E = −L
dI

dt
= −(12)(4) = −48 volts

Problem 10. An e.m.f. of 1.5 kV is induced in a coil
when a current of 4 A collapses uniformly to zero in
8 ms. Determine the inductance of the coil.

Change in current, dI = (4 − 0) = 4A;
dt = 8 ms = 8 × 10−3 s;

dI

dt
= 4

8 × 10−3 = 4000

8
= 500 A/s;

E = 1.5 kV = 1500 V

Since |E| = L

(
dI

dt

)

inductance, L = |E|
(dI/dt)

= 1500

500
= 3 H

(Note that |E| means the ‘magnitude of E’, which
disregards the minus sign)

Now try the following exercise.

Exercise 26 Further problems on inductance

1. Find the e.m.f. induced in a coil of 200 turns when
there is a change of flux of 30 mWb linking with it
in 40 ms. [−150V]

2. An e.m.f. of 25V is induced in a coil of 300 turns
when the flux linking with it changes by 12 mWb.
Find the time, in milliseconds, in which the flux
makes the change. [144 ms]

3. An ignition coil having 10 000 turns has an e.m.f.
of 8 kV induced in it. What rate of change of flux is
required for this to happen? [0.8 Wb/s]

4. A flux of 0.35 mWb passing through a 125-turn
coil is reversed in 25 ms. Find the magnitude of
the average e.m.f. induced. [3.5V]

9.5 Inductors

A component called an inductor is used when the property
of inductance is required in a circuit. The basic form of an
inductor is simply a coil of wire.

Factors which affect the inductance of an inductor
include:

(i) the number of turns of wire — the more turns the
higher the inductance

(ii) the cross-sectional area of the coil of wire —
the greater the cross-sectional area the higher the
inductance

(iii) the presence of a magnetic core — when the coil is
wound on an iron core the same current sets up a
more concentrated magnetic field and the inductance
is increased

(iv) the way the turns are arranged — a short thick coil
of wire has a higher inductance than a long thin one.
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Two examples of practical inductors are shown in
Figure 9.7, and the standard electrical circuit diagram
symbols for air-cored and iron-cored inductors are shown
in Figure 9.8.

Figure 9.7

Figure 9.8

An iron-cored inductor is often called a choke since,
when used in a.c. circuits, it has a choking effect, limiting
the current flowing through it. Inductance is often undesir-
able in a circuit. To reduce inductance to a minimum the
wire may be bent back on itself, as shown in Figure 9.9,
so that the magnetizing effect of one conductor is neutral-
ized by that of the adjacent conductor. The wire may be
coiled around an insulator, as shown, without increasing
the inductance. Standard resistors may be non-inductively
wound in this manner.

Figure 9.9

9.6 Energy stored

An inductor possesses an ability to store energy. The
energy stored, W , in the magnetic field of an inductor
is given by:

W = 1
2 LI2 joules

Problem 11. An 8 H inductor has a current of 3 A
flowing through it. How much energy is stored in the
magnetic field of the inductor?

Energy stored, W = 1
2 LI2 = 1

2 (8)(3)2 = 36 joules

Now try the following exercise.

Exercise 27 Further problems on energy stored

1. Calculate the value of the energy stored when a
current of 30 mA is flowing in a coil of inductance
400 mH. [0.18 mJ]

2. The energy stored in the magnetic field of an induc-
tor is 80 J when the current flowing in the inductor
is 2 A. Calculate the inductance of the coil. [40 H]

9.7 Inductance of a coil

If a current changing from 0 to I amperes, produces a
flux change from 0 to � Webers, then dI = I and d� = �.
Then, from Section 9.4, induced e.m.f. E = N�/t = LI/t,
from which

inductance of coil, L = N�

I
henrys

Since E = −L
dI

dt
= −N

d�

dt
then L = N

d�

dt

(
dt

dI

)

i.e. L = N
d�

dI

From Chapter 7, m.m.f. = �S from which, � = m.m.f.

S



Ch09-H8139.tex 30/3/2007 17: 33 page 77

Electromagnetic induction 77

PART

1

Substituting into L = N
d�

dI

gives L = N
d

dI

(
m.m.f.

S

)

i.e. L = N

S

d(NI)

dI
since m.m.f. = NI

i.e. L = N2

S

dI

dI
and since

dI

dI
= 1,

L = N2

S
henrys

Problem 12. Calculate the coil inductance when a
current of 4 A in a coil of 800 turns produces a flux of
5 mWb linking with the coil.

For a coil, inductance L = N�

I

= (800)(5 × 10−3)

4
= 1 H

Problem 13. A flux of 25 mWb links with a 1500
turn coil when a current of 3 A passes through the coil.
Calculate (a) the inductance of the coil, (b) the energy
stored in the magnetic field, and (c) the average e.m.f.
induced if the current falls to zero in 150 ms.

(a) Inductance, L = N�

I
= (1500)(25×10−3)

3
= 12.5 H

(b) Energy stored, W = 1
2 LI2 = 1

2 (12.5)(3)2 = 56.25 J

(c) Induced e.m.f., E = −L
dI

dt
= −(12.5)

(
3 − 0

150 × 10−3

)

= −250 V

(Alternatively, E = −N

(
d�

dt

)
= −(1500)

(
25 × 10−3

150 × 10−3

)

= −250 V

since if the current falls to zero so does the flux)

Problem 14. A 750 turn coil of inductance 3 H carries
a current of 2 A. Calculate the flux linking the coil and
the e.m.f. induced in the coil when the current collapses
to zero in 20 ms.

Coil inductance, L = N�

I
from which,

flux � = LI

N
= (3)(2)

750
= 8 × 10−3 = 8 mWb

Induced e.m.f. E = −L

(
dI

dt

)
= −3

(
2 − 0

20 × 10−3

)

= −300 V

(Alternatively, E = −N
d�

dt
= −(750)

(
8 × 10−3

20 × 10−3

)

= −300 V)

Problem 15. A silicon iron ring is wound with 800
turns, the ring having a mean diameter of 120 mm and
a cross-sectional area of 400 mm2. If when carrying a
current of 0.5 A the relative permeability is found to
be 3000, calculate (a) the self inductance of the coil,
(b) the induced e.m.f. if the current is reduced to zero
in 80 ms.

The ring is shown sketched in Figure 9.10.

d =120m
m

c.s.a = 400 mm2

I = 0.5 A
800 Turns

Figure 9.10

(a) Inductance, L = N2

S
and from Chapter 7,

reluctance, S = l

µ0µr A

i.e. S = π × 120 × 10−3

4π × 10−7 × 3000 × 400 × 10−6

= 250 × 103 A/Wb

Hence, self inductance, L = N2

S
= 8002

250 × 103

= 2.56 H

(b) Induced e.m.f., E = −L
dI

dt
= −(2.56)

(0.5 − 0)

80 × 10−3

= −16 V
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Now try the following exercise.

Exercise 28 Further problems on inductance
of a coil

1. A flux of 30 mWb links with a 1200 turn coil when a
current of 5 A is passing through the coil. Calculate
(a) the inductance of the coil, (b) the energy stored
in the magnetic field, and (c) the average e.m.f.
induced if the current is reduced to zero in 0.20 s.

[(a) 7.2 H (b) 90 J (c) 180V]

2. An e.m.f. of 2 kV is induced in a coil when a cur-
rent of 5 A collapses uniformly to zero in 10 ms.
Determine the inductance of the coil. [4 H]

3. An average e.m.f. of 60V is induced in a coil of
inductance 160 mH when a current of 7.5 A is
reversed. Calculate the time taken for the current
to reverse. [40 ms]

4. A coil of 2500 turns has a flux of 10 mWb linking
with it when carrying a current of 2 A. Calculate
the coil inductance and the e.m.f. induced in the
coil when the current collapses to zero in 20 ms.

[12.5 H, 1.25 kV]

5. A coil is wound with 600 turns and has a self induc-
tance of 2.5 H. What current must flow to set up a
flux of 20 mWb? [4.8A]

6. When a current of 2A flows in a coil, the flux linking
with the coil is 80 µWb. If the coil inductance is
0.5 H, calculate the number of turns of the coil.

[12 500]

7. A steady current of 5A when flowing in a coil of
1000 turns produces a magnetic flux of 500 µWb.
Calculate the inductance of the coil. The current of
5A is then reversed in 12.5 ms. Calculate the e.m.f.
induced in the coil. [0.1 H, 80V]

8. An iron ring has a cross-sectional area of 500 mm2

and a mean length of 300 mm. It is wound with 100
turns and its relative permeability is 1600. Calculate
(a) the current required to set up a flux of 500 µWb
in the coil, and (b) the inductance of the system, and
(c) the induced e.m.f. if the field collapses in 1 ms.

[(a) 1.492A (b) 33.51 mH (c) −50V]

9.8 Mutual inductance

Mutually induced e.m.f. in the second coil,

E2 = − M
dI1

dt
volts

where M is the mutual inductance between two coils, in
henrys, and dI1/dt is the rate of change of current in the
first coil.

The phenomenon of mutual inductance is used in trans-
formers (see Chapter 20, page 237). Mutual inductance is
developed further in Chapter 43 on magnetically coupled
circuits (see page 587).

Another expression for M

Let an iron ring have two coils, A and B, wound on it. If
the fluxes �1 and �2 are produced from currents I1 and
I2 in coils A and B respectively, then the reluctance could
be expressed as:

S = I1N1

�1
= I2N2

�2

If the flux in coilsA and B are the same and produced from
the current I1 in coil A only, assuming 100% coupling,
then the mutual inductance can be expressed as:

M = N2�1

I1

Multiplying by

(
N1

N1

)
gives: M = N2�1N1

I1N1

However, S = I1N1

�1

Thus, mutual inductance, M = N1N2

S

Problem 16. Calculate the mutual inductance
between two coils when a current changing at 200A/s
in one coil induces an e.m.f. of 1.5V in the other.

Induced e.m.f. |E2| = M
dI1

dt
, i.e. 1.5 = M(200)

Thus mutual inductance, M = 1.5

200

= 0.0075 H or 7.5 mH

Problem 17. The mutual inductance between two
coils is 18 mH. Calculate the steady rate of change
of current in one coil to induce an e.m.f. of 0.72V in
the other.

Induced e.m.f., |E2| = M
dI1

dt

Hence rate of change of current,
dI1

dt
= |E2|

M

= 0.72

0.018
= 40 A/s
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Problem 18. Two coils have a mutual inductance of
0.2 H. If the current in one coil is changed from 10A to
4A in 10 ms, calculate (a) the average induced e.m.f.
in the second coil, (b) the change of flux linked with
the second coil if it is wound with 500 turns.

(a) Induced e.m.f. E2 = −M
dI1

dt
= −(0.2)

(
10 − 4

10 × 10−3

)

= −120 V

(b) Induced e.m.f. |E2| = N
d�

dt
, hence d� = |E2|dt

N

Thus the change of flux, d� = 120(10 × 10−3)

500
= 2.4 mWb

Problem 19. In the device shown in Figure 9.11,
when the current in the primary coil of 1000 turns
increases linearly from 1A to 6A in 200 ms, an e.m.f.
of 15V is induced into the secondary coil of 480 turns,
which is left open circuited. Determine (a) the mutual
inductance of the two coils, (b) the reluctance of the
former, and (c) the self inductance of the primary coil.

NP = 1000 NS = 480

Figure 9.11

(a) ES = M
dIp

dt
from which,

mutual inductance, M = ES

dIP

dt

= 15(
6 − 1

200 × 10−3

)

= 15

25
= 0.60 H

(b) M = NP NS

S
from which,

reluctance, S = NP NS

M
= (1000)(480)

0.60

= 800 000 A/Wb or 800 kA/Wb

(c) Primary self inductance, LP = N2
P

S
= (1000)2

800 000
= 1.25 H

Now try the following exercise.

Exercise 29 Further problems on mutual
inductance

1. The mutual inductance between two coils is
150 mH. Find the magnitude of the e.m.f. induced in
one coil when the current in the other is increasing
at a rate of 30A/s. [4.5V]

2. Determine the mutual inductance between two coils
when a current changing at 50A/s in one coil
induces an e.m.f. of 80 mV in the other. [1.6 mH]

3. Two coils have a mutual inductance of 0.75 H. Cal-
culate the magnitude of the e.m.f. induced in one
coil when a current of 2.5A in the other coil is
reversed in 15 ms. [250V]

4. The mutual inductance between two coils is
240 mH. If the current in one coil changes from
15A to 6A in 12 ms, calculate (a) the average e.m.f.
induced in the other coil, (b) the change of flux
linked with the other coil if it is wound with 400
turns.

[(a) −180V (b) 5.4 mWb]

5. When the current in the primary coil of 400 turns of
a magnetic circuit, increases linearly from 10 mA to
35 mA in 100 ms, an e.m.f. of 75 mV is induced into
the secondary coil of 240 turns, which is left open
circuited. Determine (a) the mutual inductance of
the two coils, (b) the reluctance of the former, and
(c) the self inductance of the secondary coil.

[(a) 0.30 H (b) 320 kA/Wb (c) 0.18 H]
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10 Electrical measuring instruments and
measurements

At the end of this chapter you should be able to:
• recognize the importance of testing and measure-

ments in electric circuits
• appreciate the essential devices comprising an ana-

logue instrument
• explain the operation of an attraction and a repulsion

type of moving-iron instrument
• explain the operation of a moving coil rectifier

instrument
• compare moving coil, moving iron and moving coil

rectifier instruments
• calculate values of shunts for ammeters and multi-

pliers for voltmeters
• understand the advantages of electronic instruments
• understand the operation of an ohmmeter/megger
• appreciate the operation of multimeters/Avometers

/Flukes
• understand the operation of a wattmeter

• appreciate instrument ‘loading’ effect
• understand the operation of an oscilloscope for d.c.

and a.c. measurements
• calculate periodic time, frequency, peak to peak

values from waveforms on an oscilloscope
• appreciate virtual test and measuring instruments
• recognize harmonics present in complex waveforms
• determine ratios of powers, currents and voltages in

decibels
• understand null methods of measurement for a

Wheatstone bridge and d.c. potentiometer
• understand the operation of a.c. bridges
• understand the operation of a Q-meter
• appreciate the most likely source of errors in meas-

urements
• appreciate calibration accuracy of instruments

10.1 Introduction

Tests and measurements are important in designing, evalu-
ating, maintaining and servicing electrical circuits and
equipment. In order to detect electrical quantities such
as current, voltage, resistance or power, it is neces-
sary to transform an electrical quantity or condition
into a visible indication. This is done with the aid of
instruments (or meters) that indicate the magnitude of
quantities either by the position of a pointer moving
over a graduated scale (called an analogue instrument)
or in the form of a decimal number (called a digital
instrument).

The digital instrument has, in the main, become
the instrument of choice in recent years; in particular,
computer-based instruments are rapidly replacing items
of conventional test equipment, with the virtual storage
test instrument, the digital storage oscilloscope, being
the most common. This is explained later in this chapter,
but before that some analogue instruments, which are still
used in some installations, are explored.

10.2 Analogue instruments

All analogue electrical indicating instruments require
three essential devices:

(a) A deflecting or operating device. A mechanical force
is produced by the current or voltage which causes the
pointer to deflect from its zero position.

(b) A controlling device. The controlling force acts in
opposition to the deflecting force and ensures that the
deflection shown on the meter is always the same for
a given measured quantity. It also prevents the pointer
always going to the maximum deflection. There are
two main types of controlling device — spring control
and gravity control.

(c) A damping device. The damping force ensures that
the pointer comes to rest in its final position quickly
and without undue oscillation. There are three main
types of damping used — eddy-current damping, air-
friction damping and fluid-friction damping.

There are basically two types of scale — linear and
non-linear.



Ch10-H8139.tex 30/3/2007 17: 34 page 81

Electrical measuring instruments and measurements 81

PART

1

Figure 10.1

A linear scale is shown in Figure 10.1(a), where the
divisions or graduations are evenly spaced. The voltmeter
shown has a range 0–100V, i.e. a full-scale deflection
(f.s.d.) of 100V. A non-linear scale is shown in Fig-
ure 10.1(b). The scale is cramped at the beginning and
the graduations are uneven throughout the range. The
ammeter shown has a f.s.d. of 10A.

10.3 Moving-iron instrument

(a) An attraction type of moving-iron instrument is
shown diagrammatically in Figure 10.2(a). When

Figure 10.2

current flows in the solenoid, a pivoted soft-
iron disc is attracted towards the solenoid and
the movement causes a pointer to move across a
scale.

(b) In the repulsion type moving-iron instrument shown
diagrammatically in Figure 10.2(b), two pieces of
iron are placed inside the solenoid, one being
fixed, and the other attached to the spindle carry-
ing the pointer. When current passes through the
solenoid, the two pieces of iron are magnetized in
the same direction and therefore repel each other.
The pointer thus moves across the scale. The force
moving the pointer is, in each type, proportional
to I2. Because of this the direction of current
does not matter and the moving-iron instrument can
be used on d.c. or a.c. The scale, however, is
non-linear.

10.4 The moving-coil rectifier instrument

A moving-coil instrument, which measures only
d.c., may be used in conjunction with a bridge rectifier
circuit as shown in Figure 10.3 to provide an
indication of alternating currents and voltages (see
Chapter 14). The average value of the full wave recti-
fied current is 0.637 Im. However, a meter being used
to measure a.c. is usually calibrated in r.m.s. values.
For sinusoidal quantities the indication is (0.707 Im)/
(0.637 Im) i.e. 1.11 times the mean value. Rectifier
instruments have scales calibrated in r.m.s. quantities
and it is assumed by the manufacturer that the a.c. is
sinusoidal.

Figure 10.3
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10.5 Comparison of moving-coil, moving-iron and moving-coil rectifier instruments

Type of Moving-coil Moving-iron Moving-coil
instrument rectifier

Suitable for Direct current Direct and alternating Alternating current and
measuring and voltage currents and voltage (reading voltage (reads average

in rms value) value but scale is adjusted
to give rms value for
sinusoidal waveforms)

Scale Linear Non-linear Linear

Method of control Hairsprings Hairsprings Hairsprings

Method of damping Eddy current Air Eddy current

Frequency limits — 20–200 Hz 20–100 kHz

Advantages 1 Linear scale 1 Robust construction 1 Linear scale
2 High sensitivity 2 Relatively cheap 2 High sensitivity
3 Well shielded from 3 Measures dc and ac 3 Well shielded from

stray magnetic fields 4 In frequency range 20–100 Hz stray magnetic fields
4 Lower power consumption reads rms correctly regardless of 4 Low power consumption

supply waveform 5 Good frequency range

Disadvantages 1 Only suitable for dc 1 Non-linear scale 1 More expensive than
2 More expensive than 2 Affected by stray magnetic fields moving iron type

moving iron type 3 Hysteresis errors in dc circuits 2 Errors caused when
3 Easily damaged 4 Liable to temperature errors supply is non-sinusoidal

5 Due to the inductance of the
solenoid, readings can be
affected by variation of
frequency

(For the principle of operation of a moving-coil instrument, see Chapter 8, page 68).

10.6 Shunts and multipliers

An ammeter, which measures current, has a low resist-
ance (ideally zero) and must be connected in series with
the circuit.
A voltmeter, which measures p.d., has a high resistance
(ideally infinite) and must be connected in parallel with
the part of the circuit whose p.d. is required.

There is no difference between the basic instrument
used to measure current and voltage since both use a
milliammeter as their basic part. This is a sensitive
instrument which gives f.s.d. for currents of only a few
milliamperes. When an ammeter is required to measure
currents of larger magnitude, a proportion of the current is
diverted through a low-value resistance connected in par-
allel with the meter. Such a diverting resistor is called a
shunt.

From Figure 10.4(a), VPQ = VRS . Hence Iara = ISRS

Figure 10.4
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Thus the value of the shunt, Rs = Iara

Is
ohms

The milliammeter is converted into a voltmeter by con-
necting a high value resistance (called a multiplier)
in series with it as shown in Figure 10.4(b). From
Figure 10.4(b), V = Va + VM = Ira + IRM

Thus the value of the multiplier, RM = V − Ira

I
ohms

Problem 1. A moving-coil instrument gives a f.s.d.
when the current is 40 mA and its resistance is 25 �.
Calculate the value of the shunt to be connected in
parallel with the meter to enable it to be used as an
ammeter for measuring currents up to 50A.

The circuit diagram is shown in Figure 10.5,

Figure 10.5

where ra = resistance of instrument = 25 �,

Rs = resistance of shunt,

Ia = maximum permissible current flowing in

instrument = 40 mA = 0.04A,

Is = current flowing in shunt,

I = total circuit current required to give

f.s.d. = 50A

Since I = Ia + Is then Is = I − Ia = 50 − 0.04

= 49.96A

V = Iara = IsRs

Hence Rs = Iara

Is
= (0.04)(25)

49.96
= 0.02002 �

= 20.02 m�

Thus for the moving-coil instrument to be used as an
ammeter with a range 0–50A, a resistance of value

20.02 m� needs to be connected in parallel with the
instrument.

Problem 2. A moving-coil instrument having a resist-
ance of 10 �, gives a f.s.d. when the current is 8 mA.
Calculate the value of the multiplier to be connected
in series with the instrument so that it can be used as a
voltmeter for measuring p.d.’s up to 100V.

The circuit diagram is shown in Figure 10.6,

Figure 10.6

where ra = resistance of instrument = 10 �,

RM = resistance of multiplier,

I = total permissible instrument current

= 8 mA = 0.008A,

V = total p.d. required to give f.s.d. = 100V

V = Va + VM = Ira + IRM

i.e. 100 = (0.008)(10) + (0.008) RM

or 100 − 0.08 = 0.008 RM

thus RM = 99.92

0.008
= 12 490 � = 12.49 k�

Hence for the moving-coil instrument to be used as a volt-
meter with a range 0–100V, a resistance of value 12.49 k�
needs to be connected in series with the instrument.

Now try the following exercise.

Exercise 30 Further problems on shunts and
multipliers

1. A moving-coil instrument gives f.s.d. for a current of
10 mA. Neglecting the resistance of the instrument,
calculate the approximate value of series resistance
needed to enable the instrument to measure up to
(a) 20V (b) 100V (c) 250V.

[(a) 2 k� (b) 10 k� (c) 25 k�]
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2. A meter of resistance 50 � has a f.s.d. of 4 mA.
Determine the value of shunt resistance required
in order that f.s.d. should be (a) 15 mA (b) 20A
(c) 100A. [(a) 18.18 � (b) 10.00 m� (c) 2.00 m�]

3. A moving-coil instrument having a resistance of
20 �, gives a f.s.d. when the current is 5 mA. Cal-
culate the value of the multiplier to be connected in
series with the instrument so that it can be used as a
voltmeter for measuring p.d.’s up to 200V.

[39.98 k�]

4. A moving-coil instrument has a f.s.d. of 20 mA and a
resistance of 25 �. Calculate the values of resistance
required to enable the instrument to be used (a) as a
0–10A ammeter, and (b) as a 0–100V voltmeter.
State the mode of resistance connection in each
case.

[(a) 50.10 m� in parallel (b) 4.975 k� in series]

10.7 Electronic instruments

Electronic measuring instruments have advantages over
instruments such as the moving-iron or moving-coil
meters, in that they have a much higher input resistance
(some as high as 1000 M�) and can handle a much wider
range of frequency (from d.c. up to MHz).

The digital voltmeter (DVM) is one which provides a
digital display of the voltage being measured. Advantages
of a DVM over analogue instruments include higher accur-
acy and resolution, no observational or parallex errors (see
Section 10.21) and a very high input resistance, constant
on all ranges.

A digital multimeter is a DVM with additional circuitry
which makes it capable of measuring a.c. voltage, d.c. and
a.c. current and resistance.

Instruments for a.c. measurements are generally cali-
brated with a sinusoidal alternating waveform to indicate
r.m.s. values when a sinusoidal signal is applied to the
instrument. Some instruments, such as the moving-iron
and electro-dynamic instruments, give a true r.m.s. indi-
cation. With other instruments the indication is either
scaled up from the mean value (such as with the rectifier
moving-coil instrument) or scaled down from the peak
value.

Sometimes quantities to be measured have complex
waveforms (see Section 10.15), and whenever a quan-
tity is non-sinusoidal, errors in instrument readings can
occur if the instrument has been calibrated for sine waves
only.

Such waveform errors can be largely eliminated by
using electronic instruments.

10.8 The ohmmeter

An ohmmeter is an instrument for measuring electrical
resistance.

A simple ohmmeter circuit is shown in Figure 10.7(a).
Unlike the ammeter or voltmeter, the ohmmeter circuit
does not receive the energy necessary for its operation
from the circuit under test. In the ohmmeter this energy
is supplied by a self-contained source of voltage, such as
a battery. Initially, terminals XX are short-circuited and
R adjusted to give f.s.d. on the milliammeter. If current
I is at a maximum value and voltage E is constant, then
resistance R = E/I is at a minimum value. Thus f.s.d. on
the milliammeter is made zero on the resistance scale.
When terminals XX are open circuited no current flows
and R(= E/O) is infinity, ∞.

Figure 10.7

The milliammeter can thus be calibrated directly in
ohms. A cramped (non-linear) scale results and is ‘back
to front’, as shown in Figure 10.7(b). When calibrated,
an unknown resistance is placed between terminals XX
and its value determined from the position of the pointer
on the scale. An ohmmeter designed for measuring low
values of resistance is called a continuity tester. An ohm-
meter designed for measuring high values of resistance
(i.e. megohms) is called an insulation resistance tester
(e.g. ‘Megger’).

10.9 Multimeters

Instruments are manufactured that combine a moving-
coil meter with a number of shunts and series multi-
pliers, to provide a range of readings on a single scale
graduated to read current and voltage. If a battery is
incorporated then resistance can also be measured. Such
instruments are called multimeters or universal instru-
ments or multirange instruments. An ‘Avometer’ is
a typical example. A particular range may be selected
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either by the use of separate terminals or by a selec-
tor switch. Only one measurement can be performed at
a time. Often such instruments can be used in a.c. as
well as d.c. circuits when a rectifier is incorporated in the
instrument.

Digital Multimeters (DMM) are now almost uni-
versally used, the Fluke Digital Multimeter being an
industry leader for performance, accuracy, resolution,
ruggedness, reliability and safety. These instruments
measure d.c. currents and voltages, resistance and con-
tinuity, a.c. (r.m.s.) currents and voltages, temperature,
and much more.

10.10 Wattmeters

A wattmeter is an instrument for measuring electrical
power in a circuit. Figure 10.8 shows typical connections
of a wattmeter used for measuring power supplied to a
load. The instrument has two coils:

Figure 10.8

(i) a current coil, which is connected in series with the
load, like an ammeter, and

(ii) a voltage coil, which is connected in parallel with the
load, like a voltmeter.

10.11 Instrument ‘loading’ effect

Some measuring instruments depend for their operation
on power taken from the circuit in which measurements
are being made. Depending on the ‘loading’ effect of the
instrument (i.e. the current taken to enable it to operate),
the prevailing circuit conditions may change.

The resistance of voltmeters may be calculated since
each have a stated sensitivity (or ‘figure of merit’), often
stated in ‘k� per volt’ of f.s.d. A voltmeter should have as
high a resistance as possible (— ideally infinite).

In a.c. circuits the impedance of the instrument varies
with frequency and thus the loading effect of the instru-
ment can change.

Problem 3. Calculate the power dissipated by the
voltmeter and by resistor R in Figure 10.9 when
(a) R = 250 � (b) R = 2 M�. Assume that the volt-
meter sensitivity (sometimes called figure of merit) is
10 k�/V.

Figure 10.9

(a) Resistance of voltmeter, Rv = sensitivity × f.s.d.

Hence, Rv = (10 k�/V) × (200V) = 2000 k�

= 2 M�

Current flowing in voltmeter, Iv = V

Rv

= 100

2 × 106

= 50 × 10−6 A

Power dissipated by voltmeter = VIv

= (100)(50 × 10−6)

= 5 mW

When R = 250 �, current in resistor, IR = V

R
= 100

250

= 0.4A

Power dissipated in load resistor R = VIR

= (100)(0.4) = 40 W

Thus the power dissipated in the voltmeter is
insignificant in comparison with the power dissipated
in the load.

(b) When R = 2 M�, current in

resistor, IR = V

R
= 100

2 × 106 = 50 × 10−6 A

Power dissipated in load resistor R =VIR

= 100 × 50 × 10−6 = 5 mW

In this case the higher load resistance reduced the
power dissipated such that the voltmeter is using as
much power as the load.
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Problem 4. An ammeter has a f.s.d. of 100 mA and
a resistance of 50 �. The ammeter is used to meas-
ure the current in a load of resistance 500 � when the
supply voltage is 10V. Calculate (a) the ammeter read-
ing expected (neglecting its resistance), (b) the actual
current in the circuit, (c) the power dissipated in the
ammeter, and (d) the power dissipated in the load.

From Figure 10.10,

Figure 10.10

(a) expected ammeter reading = V

R
= 10

500
= 20 mA

(b) Actual ammeter reading = V

R + ra
= 10

500 + 50

= 18.18 mA

Thus the ammeter itself has caused the circuit condi-
tions to change from 20 mA to 18.18 mA

(c) Power dissipated in the ammeter
= I2ra = (18.18 × 10−3)2(50) = 16.53 mW

(d) Power dissipated in the load resistor
= I2R = (18.18 × 10−3)2(500) = 165.3 mW

Problem 5. A voltmeter having a f.s.d. of 100V and
a sensitivity of 1.6 k�/V is used to measure voltage
V1 in the circuit of Figure 10.11. Determine (a) the
value of voltage V1 with the voltmeter not connected,
and (b) the voltage indicated by the voltmeter when
connected between A and B.

Figure 10.11

Figure 10.12

(a) By voltage division, V1 =
(

40

40 + 60

)
100 = 40V

(b) The resistance of a voltmeter having a 100V f.s.d. and
sensitivity 1.6 k�/V is 100V × 1.6 k�/V = 160 k�.
When the voltmeter is connected across the 40 k�
resistor the circuit is as shown in Figure 10.12(a) and
the equivalent resistance of the parallel network is
given by

(
40 × 160

40 + 160

)
k� i.e.

(
40 × 160

200

)
� = 32 k�

The circuit is now effectively as shown in Figure 10.12(b).

Thus the voltage indicated on the voltmeter is

(
32

32 + 60

)
100 V = 34.78V

A considerable error is thus caused by the loading effect
of the voltmeter on the circuit. The error is reduced by
using a voltmeter with a higher sensitivity.

Problem 6. (a)A current of 20A flows through a load
having a resistance of 2 �. Determine the power dissi-
pated in the load. (b) A wattmeter, whose current coil
has a resistance of 0.01 � is connected as shown in
Figure 10.13. Determine the wattmeter reading.

Figure 10.13
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(a) Power dissipated in the load, P = I2R = (20)2(2)
= 800 W

(b) With the wattmeter connected in the circuit the total
resistance RT is 2 + 0.01 = 2.01 �
The wattmeter reading is thus I2RT = (20)2(2.01)

= 804 W

Now try the following exercise.

Exercise 31 Further problems on instrument
‘loading’ effects

1. A 0–1A ammeter having a resistance of 50 � is
used to measure the current flowing in a 1 k�
resistor when the supply voltage is 250V. Calculate:
(a) the approximate value of current (neglecting the
ammeter resistance), (b) the actual current in the cir-
cuit, (c) the power dissipated in the ammeter, (d) the
power dissipated in the 1 k� resistor.

[(a) 0.250A (b) 0.238A (c) 2.832 W (d) 56.64 W]

2. (a) A current of 15A flows through a load having
a resistance of 4 �. Determine the power dissi-
pated in the load. (b) A wattmeter, whose current
coil has a resistance of 0.02 � is connected (as
shown in Figure 10.13) to measure the power in the
load. Determine the wattmeter reading assuming the
current in the load is still 15A.

[(a) 900 W (b) 904.5 W]

3. A voltage of 240V is applied to a circuit consisting
of an 800 � resistor in series with a 1.6 k� resis-
tor. What is the voltage across the 1.6 k� resistor?
The p.d. across the 1.6 k� resistor is measured by
a voltmeter of f.s.d. 250V and sensitivity 100 �/V.
Determine the voltage indicated. [160V; 156.7V]

4. A 240V supply is connected across a load resistance
R. Also connected across R is a voltmeter having a
f.s.d. of 300V and a figure of merit (i.e. sensitiv-
ity) of 8 k�/V. Calculate the power dissipated by the
voltmeter and by the load resistance if (a) R = 100 �
(b) R = 1 M�. Comment on the results obtained.

[(a) 24 mW, 576 W (b) 24 mW, 57.6 mW]

10.12 The oscilloscope

The oscilloscope is basically a graph-displaying device —
it draws a graph of an electrical signal. In most applica-
tions the graph shows how signals change over time. From
the graph it is possible to:

• determine the time and voltage values of a signal
• calculate the frequency of an oscillating signal

• see the ‘moving parts’ of a circuit represented by the
signal

• tell if a malfunctioning component is distorting the
signal

• find out how much of a signal is d.c. or a.c.
• tell how much of the signal is noise and whether the

noise is changing with time

Oscilloscopes are used by everyone from television
repair technicians to physicists. They are indispensable for
anyone designing or repairing electronic equipment. The
usefulness of an oscilloscope is not limited to the world
of electronics. With the proper transducer (i.e. a device
that creates an electrical signal in response to physical
stimuli, such as sound, mechanical stress, pressure, light
or heat), an oscilloscope can measure any kind of phe-
nomena. An automobile engineer uses an oscilloscope to
measure engine vibrations; a medical researcher uses an
oscilloscope to measure brain waves, and so on.

Oscilloscopes are available in both analogue and digital
types. An analogue oscilloscope works by directly apply-
ing a voltage being measured to an electron beam moving
across the oscilloscope screen. The voltage deflects the
beam up or down proportionally, tracing the waveform
on the screen. This gives an immediate picture of the
waveform.

In contrast, a digital oscilloscope samples the wave-
form and uses an analogue to digital converter (see
Section 18.11, page 222) to convert the voltage being
measured into digital information. It then uses this digital
information to reconstruct the waveform on the screen.

For many applications either an analogue or digital
oscilloscope is appropriate. However, each type does pos-
sess some unique characteristics making it more or less
suitable for specific tasks.

Analogue oscilloscopes are often preferred when it is
important to display rapidly varying signals in ‘real time’
(i.e. as they occur).

Digital oscilloscopes allow the capture and viewing of
events that happen only once. They can process the digital
waveform data or send the data to a computer for process-
ing. Also, they can store the digital waveform data for
later viewing and printing. Digital storage oscilloscopes
are explained in Section 10.14.

Analogue oscilloscopes

When an oscilloscope probe is connected to a circuit, the
voltage signal travels through the probe to the vertical
system of the oscilloscope. Figure 10.14 shows a simple
block diagram that shows how an analogue oscilloscope
displays a measured signal.

Depending on how the vertical scale (volts/division
control) is set, an attenuator reduces the signal voltage or
an amplifier increases the signal voltage. Next, the signal
travels directly to the vertical deflection plates of the cath-
ode ray tube (CRT). Voltage applied to these deflection
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Figure 10.14

plates causes a glowing dot to move. (An electron beam
hitting phosphor inside the CRT creates the glowing dot).
A positive voltage causes the dot to move up while a nega-
tive voltage causes the dot to move down. The signal also
travels to the trigger system to start or trigger a ‘horizontal
sweep’. Horizontal sweep is a term referring to the action
of the horizontal system causing the glowing dot to move
across the screen. Triggering the horizontal system causes
the horizontal time base to move the glowing dot across
the screen from left to right within a specific time interval.
Many sweeps in rapid sequence cause the movement of
the glowing dot to blend into a solid line. At higher speeds,
the dot may sweep across the screen up to 500000 times
each second.

Together, the horizontal sweeping action (i.e. the X
direction) and the vertical deflection action (i.e. the Y
direction), traces a graph of the signal on the screen.
The trigger is necessary to stabilize a repeating signal.
It ensures that the sweep begins at the same point of a
repeating signal, resulting in a clear picture.

In conclusion, to use an analogue oscilloscope, three
basic settings to accommodate an incoming signal need
to be adjusted:

• the attenuation or amplification of the signal — use the
volts/division control to adjust the amplitude of the
signal before it is applied to the vertical deflection
plates

• the time base — use the time/division control to set the
amount of time per division represented horizontally
across the screen

• the triggering of the oscilloscope — use the trigger level
to stabilize a repeating signal, as well as triggering on
a single event.

Also, adjusting the focus and intensity controls enable
a sharp, visible display to be created.

(i) With direct voltage measurements, only the Y
amplifier ‘volts/cm’ switch on the oscilloscope is
used. With no voltage applied to theY plates the pos-
ition of the spot trace on the screen is noted. When a
direct voltage is applied to the Y plates the new pos-
ition of the spot trace is an indication of the magnitude
of the voltage. For example, in Figure 10.15(a), with
no voltage applied to the Y plates, the spot trace is in
the centre of the screen (initial position) and then the
spot trace moves 2.5 cm to the final position shown,
on application of a d.c. voltage. With the ‘volts/cm’
switch on 10 volts/cm the magnitude of the direct
voltage is 2.5 cm × 10 volts/cm, i.e. 25 volts.

(ii) With alternating voltage measurements, let a sinus-
oidal waveform be displayed on an oscilloscope
screen as shown in Figure 10.15(b). If the time/cm
switch is on, say, 5 ms/cm then the periodic time
T of the sinewave is 5 ms/cm × 4 cm, i.e. 20 ms or
0.02 s

Since frequency f = 1

T
, frequency = 1

0.02
= 50 Hz

If the ‘volts/cm’ switch is on, say, 20 volts/cm then
the amplitude or peak value of the sinewave shown
is 20 volts/cm × 2 cm, i.e. 40V.
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Figure 10.15

Since r.m.s. voltage = peak voltage√
2

, (see Chapter 14),

r.m.s. voltage = 40√
2

= 28.28 volts

Double beam oscilloscopes are useful whenever two
signals are to be compared simultaneously.
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Figure 10.16

The c.r.o. demands reasonable skill in adjustment and
use. However its greatest advantage is in observing the
shape of a waveform — a feature not possessed by other
measuring instruments.

Digital oscilloscopes

Some of the systems that make up digital oscilloscopes
are the same as those in analogue oscilloscopes; however,
digital oscilloscopes contain additional data processing
systems — as shown in the block diagram of Figure 10.16.
With the added systems, the digital oscilloscope collects
data for the entire waveform and then displays it.

When a digital oscilloscope probe is attached to a cir-
cuit, the vertical system adjusts the amplitude of the signal,
just as in the analogue oscilloscope. Next, the analogue to
digital converter (ADC) in the acquisition system samples
the signal at discrete points in time and converts the sig-
nals’voltage at these points to digital values called sample
points. The horizontal systems’ sample clock determines
how often the ADC takes a sample. The rate at which the
clock ‘ticks’ is called the sample rate and is measured in
samples per second.

The sample points from the ADC are stored in memory
as waveform points. More than one sample point may
make up one waveform point.

Together, the waveform points make up one waveform
record. The number of waveform points used to make a
waveform record is called a record length. The trigger
system determines the start and stop points of the record.
The display receives these record points after being stored
in memory.

Depending on the capabilities of an oscilloscope, add-
itional processing of the sample points may take place,
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enhancing the display. Pre-trigger may be available,
allowing events to be seen before the trigger point.

Fundamentally, with a digital oscilloscope as with an
analogue oscilloscope, there is a need to adjust vertical,
horizontal, and trigger settings to take a measurement.

Problem 7. For the oscilloscope square voltage
waveform shown in Figure 10.17 determine (a) the
periodic time, (b) the frequency and (c) the peak-
to-peak voltage. The ‘time/cm’ (or timebase control)
switch is on 100 µs/cm and the ‘volts/cm’ (or signal
amplitude control) switch is on 20V/cm.

Figure 10.17

(In Figures 10.17 to 10.20 assume that the squares shown
are 1 cm by 1 cm)

(a) The width of one complete cycle is 5.2 cm
Hence the periodic time,

T = 5.2 cm × 100 × 10−6 s/cm = 0.52 ms

(b) Frequency, f = 1

T
= 1

0.52 × 10−3 = 1.92 kHz

(c) The peak-to-peak height of the display is 3.6 cm,
hence the peak-to-peak voltage = 3.6 cm × 20V/cm

= 72V

Problem 8. For the oscilloscope display of a pulse
waveform shown in Figure 10.18 the ‘time/cm’ switch
is on 50 ms/cm and the ‘volts/cm’ switch is on
0.2V/cm. Determine (a) the periodic time, (b) the
frequency, (c) the magnitude of the pulse voltage.

Figure 10.18

(a) The width of one complete cycle is 3.5 cm
Hence the periodic time, T = 3.5 cm × 50 ms/cm

= 175 ms

(b) Frequency, f = 1

T
= 1

0.175
= 5.71 Hz

(c) The height of a pulse is 3.4 cm hence the magnitude
of the pulse voltage = 3.4 cm × 0.2V/cm = 0.68V

Problem 9. A sinusoidal voltage trace displayed by
an oscilloscope is shown in Figure 10.19. If the
‘time/cm’ switch is on 500 µs/cm and the ‘volts/cm’
switch is on 5V/cm, find, for the waveform, (a) the
frequency, (b) the peak-to-peak voltage, (c) the ampli-
tude, (d) the r.m.s. value.

Figure 10.19

(a) The width of one complete cycle is 4 cm. Hence the
periodic time, T is 4 cm × 500 µs/cm, i.e. 2 ms

Frequency, f = 1

T
= 1

2 × 10−3 = 500 Hz

(b) The peak-to-peak height of the waveform is 5 cm.
Hence the peak-to-peak voltage = 5 cm × 5V/cm

= 25V

(c) Amplitude 1
2 × 25 V = 12.5V

(d) The peak value of voltage is the amplitude, i.e. 12.5V.

r.m.s voltage = peak voltage√
2

= 12.5√
2

= 8.84V

Problem 10. For the double-beam oscilloscope dis-
plays shown in Figure 10.20 determine (a) their
frequency, (b) their r.m.s. values, (c) their phase dif-
ference. The ‘time/cm’ switch is on 100 µs/cm and the
‘volts/cm’ switch on 2V/cm.

Figure 10.20
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(a) The width of each complete cycle is 5 cm for both
waveforms. Hence the periodic time, T , of each
waveform is 5 cm × 100 µs/cm, i.e. 0.5 ms.

Frequency of each waveform, f = 1

T
= 1

0.5 × 10−3

= 2 kHz

(b) The peak value of waveformA is 2cm×2V/cm = 4V,

hence the r.m.s. value of waveformA = 4√
2

= 2.83V

The peak value of waveform B is 2.5 cm × 2V/cm =
5V,

hence the r.m.s. value of waveform B = 5√
2

= 3.54V

(c) Since 5 cm represents 1 cycle, then 5 cm represents
360◦,

i.e. 1 cm represents
360

5
= 72◦.

The phase angleφ = 0.5 cm = 0.5 cm × 72◦/cm = 36◦

Hence waveform A leads waveform B by 36◦

Now try the following exercise.

Exercise 32 Further problems on the oscilloscope

1. For the square voltage waveform displayed on an
oscilloscope shown in Figure 10.21, find (a) its
frequency, (b) its peak-to-peak voltage.

[(a) 41.7 Hz (b) 176V]

Figure 10.21

2. For the pulse waveform shown in Figure 10.22, find
(a) its frequency, (b) the magnitude of the pulse
voltage. [(a) 0.56 Hz (b) 8.4V]

Figure 10.22

3. For the sinusoidal waveform shown in Figure 10.23,
determine (a) its frequency, (b) the peak-to-peak
voltage, (c) the r.m.s. voltage.

[(a) 7.14 Hz (b) 220V (c) 77.78V]

Figure 10.23

10.13 Virtual test and measuring instruments

Computer-based instruments are rapidly replacing items
of conventional test equipment in many of today’s test and
measurement applications. Probably the most commonly
available virtual test instrument is the digital storage oscil-
loscope (DSO). Because of the processing power available
from the PC coupled with the mass storage capability,
a computer-based virtual DSO is able to provide a vari-
ety of additional functions, such as spectrum analysis and
digital display of both frequency and voltage. In addition,
the ability to save waveforms and captured measurement
data for future analysis or for comparison purposes can
be extremely valuable, particularly where evidence of
conformance with standards or specifications is required.
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Unlike a conventional oscilloscope (which is primarily
intended for waveform display) a computer-based vir-
tual oscilloscope effectively combines several test instru-
ments in one single package. The functions and available
measurements from such an instrument usually includes:

• real time or stored waveform display
• precise time and voltage measurement (using adjustable

cursors)
• digital display of voltage
• digital display of frequency and/or periodic time
• accurate measurement of phase angle
• frequency spectrum display and analysis
• data logging (stored waveform data can be exported in

formats that are compatible with conventional spread-
sheet packages, e.g. as .xls files)

• ability to save/print waveforms and other information
in graphical format (e.g. as .jpg or .bmp files).

Virtual instruments can take various forms including:

• internal hardware in the form of a conventional PCI
expansion card

• external hardware unit which is connected to the PC
by means of either a conventional 25-pin parallel port
connector or by means of a serial USB connector

The software (and any necessary drivers) is invariably
supplied on CD-ROM or can be downloaded from the
manufacturer’s web site. Some manufacturers also supply
software drivers together with sufficient accompanying
documentation in order to allow users to control virtual
test instruments from their own software developed using
popular programming languages such as VisualBASIC or
C++.

10.14 Virtual digital storage oscilloscopes

Several types of virtual DSO are currently available.
These can be conveniently arranged into three different
categories according to their application:

• Low-cost DSO
• High-speed DSO
• High-resolution DSO

Unfortunately, there is often some confusion between
the last two categories. A high-speed DSO is designed for
examining waveforms that are rapidly changing. Such an
instrument does not necessarily provide high-resolution
measurement. Similarly, a high-resolution DSO is useful
for displaying waveforms with a high degree of precision
but it may not be suitable for examining fast waveforms.
The difference between these two types of DSO should
become a little clearer later on.

Low-cost DSO are primarily designed for low fre-
quency signals (typically signals up to around 20 kHz) and
are usually able to sample their signals at rates of between
10K and 100K samples per second. Resolution is usually
limited to either 8-bits or 12-bits (corresponding to 256
and 4096 discrete voltage levels respectively).

High-speed DSO’s are rapidly replacing CRT-based
oscilloscopes. They are invariably dual-channel instru-
ments and provide all the features associated with a
conventional ‘scope including trigger selection, time-base
and voltage ranges, and an ability to operate in X–Y mode.

Additional features available with a computer-based
instrument include the ability to capture transient signals
(as with a conventional digital storage ‘scope) and save
waveforms for future analysis. The ability to analyse a
signal in terms of its frequency spectrum is yet another
feature that is only possible with a DSO (see later).

Upper frequency limit

The upper signal frequency limit of a DSO is determined
primarily by the rate at which it can sample an incoming
signal. Typical sampling rates for different types of virtual
instrument are:

Type of DSO Typical sampling rate

Low-cost DSO 20 K to 100 K per second
High-speed DSO 100 M to 1000 M per second
High-resolution DSO 20 M to 100 M per second

In order to display waveforms with reasonable accuracy
it is normally suggested that the sampling rate should be at
least twice and preferably more than five times the highest
signal frequency. Thus, in order to display a 10 MHz sig-
nal with any degree of accuracy a sampling rate of 50 M
samples per second will be required.

The ‘five times rule’ merits a little explanation. When
sampling signals in a digital to analogue converter we
usually apply the Nyquist criterion that the sampling fre-
quency must be at least twice the highest analogue signal
frequency. Unfortunately, this no longer applies in the case
of a DSO where we need to sample at an even faster rate
if we are to accurately display the signal. In practice we
would need a minimum of about five points within a single
cycle of a sampled waveform in order to reproduce it with
approximate fidelity. Hence the sampling rate should be
at least five times that of highest signal frequency in order
to display a waveform reasonably faithfully.

A special case exists with dual channel DSOs. Here
the sampling rate may be shared between the two chan-
nels. Thus an effective sampling rate of 20 M samples per
second might equate to 10 M samples per second for each
of the two channels. In such a case the upper frequency
limit would not be 4 MHz but only a mere 2 MHz.
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The approximate bandwidth required to display differ-
ent types of signals with reasonable precision is given in
the table below:

Signal Bandwidth required
(approx)

Low-frequency and power d.c. to 10 kHz
Audio frequency (general) d.c. to 20 kHz
Audio frequency (high-quality) d.c. to 50 kHz
Square and pulse waveforms d.c. to 100 kHz
(up to 5 kHz)
Fast pulses with small rise-times d.c. to 1 MHz
Video d.c. to 10 MHz
Radio (LF, MF and HF) d.c. to 50 MHz

The general rule is that, for sinusoidal signals, the band-
width should ideally be at least double that of the highest
signal frequency whilst for square wave and pulse sig-
nals, the bandwidth should be at least ten times that of the
highest signal frequency.

It is worth noting that most manufacturers define the
bandwidth of an instrument as the frequency at which a
sine wave input signal will fall to 0.707 of its true ampli-
tude (i.e. the −3 dB point). To put this into context, at the
cut-off frequency the displayed trace will be in error by a
whopping 29%!

Resolution

The relationship between resolution and signal accuracy
(not bandwidth) is simply that the more bits used in the
conversion process the more discrete voltage levels can be
resolved by the DSO. The relationship is as follows:

x = 2n

where x is the number of discrete voltage levels and n is
the number of bits. Thus, each time we use an additional
bit in the conversion process we double the resolution of
the DSO, as shown in the table below:

Number of bits, n Number of discrete
voltage levels, x

8-bit 256
10-bit 1024
12-bit 4096
16-bit 65536

Buffer memory capacity

A DSO stores its captured waveform samples in a buffer
memory. Hence, for a given sampling rate, the size of this
memory buffer will determine for how long the DSO can
capture a signal before its buffer memory becomes full.

The relationship between sampling rate and buffer
memory capacity is important. A DSO with a high
sampling rate but small memory will only be able to
use its full sampling rate on the top few time base
ranges.

To put this into context, it’s worth considering a simple
example. Assume that we need to display 10 000 cycles
of a 10 MHz square wave. This signal will occur in a time
frame of 1 ms. If applying the ‘five times rule’ we would
need a bandwidth of at least 50 MHz to display this signal
accurately.

To reconstruct the square wave we would need a min-
imum of about five samples per cycle so a minimum
sampling rate would be 5 × 10 MHz = 50 M samples per
second. To capture data at the rate of 50 M samples per
second for a time interval of 1 ms requires a memory that
can store 50000 samples. If each sample uses 16-bits we
would require 100 kbyte of extremely fast memory.

Accuracy

The measurement resolution or measurement accuracy of
a DSO (in terms of the smallest voltage change that can be
measured) depends on the actual range that is selected. So,
for example, on the 1V range an 8-bit DSO is able to detect
a voltage change of one two hundred and fifty sixth of a
volt or (1/256) V or about 4 mV. For most measurement
applications this will prove to be perfectly adequate as it
amounts to an accuracy of about 0.4% of full-scale.

Figure 10.24 depicts a PicoScope software display
showing multiple windows providing conventional oscil-
loscope waveform display, spectrum analyzer display,
frequency display, and voltmeter display.

Adjustable cursors make it possible to carry out
extremely accurate measurements. In Figure 10.25, the
peak value of the (nominal 10V peak) waveform is
measured at precisely 9625 mV (9.625V). The time to
reach the peak value (from 0V) is measured as 246.7 µs
(0.2467 ms).

Figure 10.24
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Figure 10.25

Figure 10.26

The addition of a second time cursor makes it possible
to measure the time accurately between two events. In
Figure 10.26, event ‘o’ occurs 131 ns before the trigger
point whilst event ‘x’ occurs 397 ns after the trigger point.
The elapsed time between these two events is 528 ns. The
two cursors can be adjusted by means of the mouse (or
other pointing device) or, more accurately, using the PC’s
cursor keys.

Autoranging

Autoranging is another very useful feature that is often
provided with a virtual DSO. If you regularly use a con-
ventional ‘scope for a variety of measurements you will
know only too well how many times you need to make
adjustments to the vertical sensitivity of the instrument.

High-resolution-DSO

High-resolution DSO’s are used for precision applications
where it is necessary to faithfully reproduce a waveform
and also to be able to perform an accurate analysis of noise

floor and harmonic content. Typical applications include
small signal work and high-quality audio.

Unlike the low-cost DSO, which typically has 8-bit
resolution and poor d.c. accuracy, these units are usu-
ally accurate to better than 1% and have either 12-bit or
16-bit resolution. This makes them ideal for audio, noise
and vibration measurements.

The increased resolution also allows the instrument to
be used as a spectrum analyzer with very wide dynamic
range (up to 100 dB). This feature is ideal for performing
noise and distortion measurements on low-level analogue
circuits.

Bandwidth alone is not enough to ensure that a DSO
can accurately capture a high-frequency signal. The goal
of manufacturers is to achieve a flat frequency response.
This response is sometimes referred to as a Maximally
Flat Envelope Delay (MFED). A frequency response of
this type delivers excellent pulse fidelity with minimum
overshoot, undershoot and ringing.

It is important to remember that, if the input signal is
not a pure sine wave it will contain a number of higher
frequency harmonics. For example, a square wave will
contain odd harmonics that have levels that become pro-
gressively reduced as their frequency increases. Thus, to
display a 1 MHz square wave accurately you need to take
into account the fact that there will be signal components
present at 3 MHz, 5 MHz, 7 MHz, 9 MHz, 11 MHz, and
so on.

Spectrum analysis

The technique of Fast Fourier Transformation (FFT) cal-
culated using software algorithms using data captured by
a virtual DSO has made it possible to produce frequency
spectrum displays. Such displays can be to investigate the
harmonic content of waveforms as well as the relationship
between several signals within a composite waveform.

Figure 10.27 shows the frequency spectrum of the
1 kHz sine wave signal from a low-distortion signal

Figure 10.27
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generator. Here the virtual DSO has been set to capture
samples at a rate of 4096 per second within a frequency
range of d.c. to 12.2 kHz. The display clearly shows the
second harmonic (at a level of −50 dB or −70 dB rela-
tive to the fundamental), plus further harmonics at 3 kHz,
5 kHz and 7 kHz (all of which are greater than 75 dB down
on the fundamental).

Problem 11. Figure 10.28 shows the frequency spec-
trum of a signal at 1184 kHz displayed by a high-speed
virtual DSO. Determine (a) the harmonic relationship
between the signals marked ‘o’ and ‘x’, (b) the dif-
ference in amplitude (expressed in dB) between the
signals marked ‘o’and ‘x’, and (c) the amplitude of the
second harmonic relative to the fundamental signal ‘o’.

Figure 10.28

(a) The signal x is at a frequency of 3553 kHz. This is
three times the frequency of the signal at ‘o’ which
is at 1184 kHz. Thus, x is the third harmonic of the
signal ‘o’

(b) The signal at ‘o’has an amplitude of +17.46 dB whilst
the signal at ‘x’ has an amplitude of −4.08 dB. Thus,
the difference in level = (+17.46) −(−4.08) =
21.54 dB

(c) The amplitude of the second harmonic (shown at
approximately 2270 kHz) = −5 dB

10.15 Waveform harmonics

(i) Let an instantaneous voltage v be represented by
v = Vm sin 2πft volts. This is a waveform which
varies sinusoidally with time t, has a frequency f ,
and a maximum value Vm. Alternating voltages are
usually assumed to have wave shapes which are sinu-
soidal where only one frequency is present. If the

Figure 10.29

waveform is not sinusoidal it is called a complex
wave, and, whatever its shape, it may be split up
mathematically into components called the funda-
mental and a number of harmonics. This process is
called harmonic analysis. The fundamental (or first
harmonic) is sinusoidal and has the supply frequency,
f ; the other harmonics are also sine waves having fre-
quencies which are integer multiples of f . Thus, if the
supply frequency is 50 Hz, then the third harmonic
frequency is 150 Hz, the fifth 250 Hz, and so on.

(ii) A complex waveform comprising the sum of the
fundamental and a third harmonic of about half
the amplitude of the fundamental is shown in Fig-
ure 10.29(a), both waveforms being initially in phase
with each other. If further odd harmonic waveforms
of the appropriate amplitudes are added, a good
approximation to a square wave results. In Fig-
ure 10.29(b), the third harmonic is shown having an
initial phase displacement from the fundamental. The
positive and negative half cycles of each of the com-
plex waveforms shown in Figures 10.29(a) and (b) are
identical in shape, and this is a feature of waveforms
containing the fundamental and only odd harmonics.

(iii) A complex waveform comprising the sum of the
fundamental and a second harmonic of about half
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the amplitude of the fundamental is shown in Fig-
ure 10.29(c), each waveform being initially in phase
with each other. If further even harmonics of appro-
priate amplitudes are added a good approximation to
a triangular wave results. In Figure 10.29(c) the neg-
ative cycle appears as a mirror image of the positive
cycle about point A. In Figure 10.29(d) the second
harmonic is shown with an initial phase displacement
from the fundamental and the positive and negative
half cycles are dissimilar.

(iv) A complex waveform comprising the sum of the fun-
damental, a second harmonic and a third harmonic
is shown in Figure 10.29(e), each waveform being
initially ‘in-phase’. The negative half cycle appears
as a mirror image of the positive cycle about point B.
In Figure 10.29(f), a complex waveform comprising
the sum of the fundamental, a second harmonic and a
third harmonic are shown with initial phase displace-
ment. The positive and negative half cycles are seen
to be dissimilar.

The features mentioned relative to Figures 10.29(a)
to (f ) make it possible to recognize the harmon-
ics present in a complex waveform displayed on an
oscilloscope.

More on complex waveforms may be found in Chapter
36, page 444.

10.16 Logarithmic ratios

In electronic systems, the ratio of two similar quan-
tities measured at different points in the system, are
often expressed in logarithmic units. By definition, if
the ratio of two powers P1 and P2 is to be expressed in
decibel (dB) units then the number of decibels, X, is
given by:

X = 10 lg
(

P2

P1

)
dB (10.1)

Thus, when the power ratio,
P2

P1
= 1 then the decibel power ratio

= 10 lg 1 = 0

when the power ratio,
P2

P1
= 100 then the decibel power ratio

= 10 lg 100 = +20

(i.e. a power gain),

and when the power ratio,

P2

P1
= 1

100
then the decibel power ratio

= 10 lg
1

100
= −20

(i.e. a power loss or attenuation).

Logarithmic units may also be used for voltage and current
ratios.
Power, P, is given by P = I2R or P = V2/R
Substituting in equation (10.1) gives:

X = 10 lg

(
I2
2 R2

I2
1 R1

)
dB or X = 10 lg

(
V2

2 /R2

V2
1 /R1

)
dB

If R1 = R2 then X = 10 lg

(
I2
2

I2
1

)
dB or X = 10 lg

(
V2

2

V2
1

)
dB

i.e. X = 20 lg
(

I2

I1

)
dB or X = 20 lg

(
V2

V1

)
dB

(from the laws of logarithms).

From equation (10.1), X decibels is a logarithmic ratio
of two similar quantities and is not an absolute unit of
measurement. It is therefore necessary to state a reference
level to measure a number of decibels above or below that
reference. The most widely used reference level for power
is 1 mW, and when power levels are expressed in decibels,
above or below the 1 mW reference level, the unit given
to the new power level is dBm.

A voltmeter can be re-scaled to indicate the power level
directly in decibels. The scale is generally calibrated by
taking a reference level of 0 dB when a power of 1 mW
is dissipated in a 600 � resistor (this being the natural
impedance of a simple transmission line). The reference
voltage V is then obtained from

P = V2

R
, i.e. 1 × 10−3 = V2

600
from which,

V = 0.775 volts.

In general, the number of dBm, X = 20 lg

(
V

0.775

)

Thus V = 0.20V corresponds to 20 lg

(
0.20

0.775

)

= −11.77 dBm and

V = 0.90V corresponds to 20 lg

(
0.90

0.775

)
= +1.3 dBm,

and so on.
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Figure 10.30

A typical decibelmeter, or dB meter, scale is shown in
Figure 10.30. Errors are introduced with dB meters when
the circuit impedance is not 600 �.

Problem 12. The ratio of two powers is (a) 3 (b) 20
(c) 400 (d) 1

20 . Determine the decibel power ratio in
each case.

From above, the power ratio in decibels, X, is given by:

X = 10 lg

(
P2

P1

)

(a) When
P2

P1
= 3, X = 10 lg(3) = 10(0.477) = 4.77 dB

(b) When
P2

P1
= 20, X = 10 lg(20) = 10(1.30) = 13.0 dB

(c) When
P2

P1
= 400, X = 10 lg(400) = 10(2.60)

= 26.0 dB

(d) When
P2

P1
= 1

20
= 0.05, X = 10 lg(0.05)

= 10(−1.30) = −13.0 dB

(a), (b) and (c) represent power gains and (d) represents a
power loss or attenuation.

Problem 13. The current input to a system is 5 mA
and the current output is 20 mA. Find the decibel cur-
rent ratio assuming the input and load resistances of
the system are equal.

From above, the decibel current ratio is

20 lg

(
I2

I1

)
= 20 lg

(
20

5

)

= 20 lg 4

= 20(0.60)

= 12 dB gain

Problem 14. 6% of the power supplied to a cable
appears at the output terminals. Determine the power
loss in decibels.

If P1 = input power and P2 = output power then
P2

P1
= 6

100
= 0.06

Decibel power ratio = 10 lg

(
P2

P1

)
= 10 lg(0.06)

= 10(−1.222) = −12.22 dB

Hence the decibel power loss, or attenuation, is
12.22 dB

Problem 15. An amplifier has a gain of 14 dB. Its
input power is 8 mW. Find its output power.

Decibel power ratio = 10 lg

(
P2

P1

)

where P1 = input power = 8 mW,

and P2 = output power

Hence 14 = 10 lg

(
P2

P1

)

1.4 = lg

(
P2

P1

)

and 101.4 = P2

P1
from the definition of a logarithm

i.e. 25.12 = P2

P1

Output power, P2 = 25.12P1 = (25.12)(8) = 201 mW or
0.201 W

Problem 16. The output voltage from an amplifier is
4V. If the voltage gain is 27 dB, calculate the value
of the input voltage assuming that the amplifier input
resistance and load resistance are equal.

Voltage gain in decibels = 27 = 20 lg

(
V2

V1

)

= 20 lg

(
4

V1

)

Hence
27

20
= lg

(
4

V1

)

1.35 = lg

(
4

V1

)

101.35 = 4

V1
, from which

V1 = 4

101.35
= 4

22.39
= 0.179V

Hence the input voltage V1 is 0.179V
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Now try the following exercise.

Exercise 33 Further problems on logarithmic
ratios

1. The ratio of two powers is (a) 3 (b) 10 (c) 20
(d) 10 000. Determine the decibel power ratio for
each.

[(a) 4.77 dB (b) 10 dB (c) 13 dB (d) 40 dB]

2. The ratio of two powers is (a) 1
10 (b) 1

3 (c) 1
40 (d)

1
100
Determine the decibel power ratio for each.

[(a) −10 dB (b) −4.77 dB (c) −16.02 dB
(d) −20 dB]

3. The input and output currents of a system are 2 mA
and 10 mA respectively. Determine the decibel cur-
rent ratio of output to input current assuming input
and output resistances of the system are equal.

[13.98 dB]

4. 5% of the power supplied to a cable appears at
the output terminals. Determine the power loss in
decibels. [13 dB]

5. An amplifier has a gain of 24 dB. Its input power is
10 mW. Find its output power. [2.51 W]

6. The output voltage from an amplifier is 7 mV. If the
voltage gain is 25 dB calculate the value of the input
voltage assuming that the amplifier input resistance
and load resistance are equal. [0.39 mV]

7. The scale of a voltmeter has a decibel scale added
to it, which is calibrated by taking a reference level
of 0 dB when a power of 1 mW is dissipated in a
600 � resistor. Determine the voltage at (a) 0 dB
(b) 1.5 dB and (c) −15 dB (d) What decibel reading
corresponds to 0.5V?
[(a) 0.775V (b) 0.921V (c) 0.138V (d) −3.807 dB]

10.17 Null method of measurement

A null method of measurement is a simple, accurate and
widely used method which depends on an instrument read-
ing being adjusted to read zero current only. The method
assumes:

(i) if there is any deflection at all, then some current is
flowing;

(ii) if there is no deflection, then no current flows (i.e. a
null condition).

Hence it is unnecessary for a meter sensing current flow
to be calibrated when used in this way. A sensitive
milliammeter or microammeter with centre-zero position
setting is called a galvanometer. Examples where the
method is used are in the Wheatstone bridge (see Sec-
tion 10.18), in the d.c. potentiometer (see Section 10.19)
and with a.c. bridges (see Section 10.20).

10.18 Wheatstone bridge

Figure 10.31 shows a Wheatstone bridge circuit which
compares an unknown resistance Rx with others of known
values, i.e. R1 and R2, which have fixed values, and R3,
which is variable. R3 is varied until zero deflection is
obtained on the galvanometer G. No current then flows
through the meter, VA = VB, and the bridge is said to be
‘balanced’.

Figure 10.31

At balance, R1Rx = R2R3, i.e. Rx = R2R3

R1
ohms

Problem 17. In a Wheatstone bridge ABCD, a gal-
vanometer is connected betweenA and C, and a battery
between B and D. A resistor of unknown value is con-
nected between A and B. When the bridge is balanced,
the resistance between B and C is 100 �, that between
C and D is 10 � and that between D and A is 400 �.
Calculate the value of the unknown resistance.

The Wheatstone bridge is shown in Figure 10.32 where
Rx is the unknown resistance. At balance, equating the
products of opposite ratio arms, gives:

(Rx)(10) = (100)(400)

and Rx = (100)(400)

10
= 4000 �

Hence the unknown resistance, Rx = 4 k�
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Figure 10.32

10.19 D.C. potentiometer

The d.c. potentiometer is a null-balance instrument used
for determining values of e.m.f.’s and p.d.s. by compari-
son with a known e.m.f. or p.d. In Figure 10.33(a), using
a standard cell of known e.m.f. E1, the slider S is moved
along the slide wire until balance is obtained (i.e. the
galvanometer deflection is zero), shown as length l1.

Figure 10.33

The standard cell is now replaced by a cell of unknown
e.m.f. E2 (see Figure 10.33(b)) and again balance is
obtained (shown as l2).

Since E1αl1 and E2αl2 then
E1

E2
= l1

l2

and E2 = E1

(
l2
l1

)
volts

A potentiometer may be arranged as a resistive two-
element potential divider in which the division ratio is
adjustable to give a simple variable d.c. supply. Such
devices may be constructed in the form of a resistive elem-
ent carrying a sliding contact which is adjusted by a rotary
or linear movement of the control knob.

Problem 18. In a d.c. potentiometer, balance is
obtained at a length of 400 mm when using a stand-
ard cell of 1.0186 volts. Determine the e.m.f. of a dry
cell if balance is obtained with a length of 650 mm.

E1 = 1.0186V, l1 = 400 mm, l2 = 650 mm

With reference to Figure 10.33,
E1

E2
= l1

l2

from which, E2 = E1

(
l2
l1

)
= (1.0186)

(
650

400

)

= 1.655 volts

Now try the following exercise.

Exercise 34 Further problems on the Wheatstone
bridge and d.c. potentiometer

1. In a Wheatstone bridge PQRS, a galvanometer is
connected between Q and S and a voltage source
between P and R. An unknown resistor Rx is
connected between P and Q. When the bridge is
balanced, the resistance between Q and R is 200 �,
that between R and S is 10 � and that between S
and P is 150 �. Calculate the value of Rx . [3 k�]

2. Balance is obtained in a d.c. potentiometer at a
length of 31.2 cm when using a standard cell of
1.0186 volts. Calculate the e.m.f. of a dry cell if
balance is obtained with a length of 46.7 cm.

[1.525V]

10.20 A.C. bridges

A Wheatstone bridge type circuit, shown in Figure 10.34,
may be used in a.c. circuits to determine unknown values
of inductance and capacitance, as well as resistance.

When the potential differences across Z3 and Zx (or
across Z1 and Z2) are equal in magnitude and phase, then
the current flowing through the galvanometer, G, is zero.

At balance, Z1Zx = Z2Z3, from which, Zx = Z2Z3

Z1
�
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Figure 10.34

There are many forms of a.c. bridge, and these include:
the Maxwell, Hay, Owen and Heaviside bridges for mea-
suring inductance, and the De Sauty, Schering and Wien
bridges for measuring capacitance. A commercial or
universal bridge is one which can be used to measure
resistance, inductance or capacitance.

A.c. bridges require a knowledge of complex numbers,
as explained in Chapter 23 and such bridges are discussed
in detail in Chapter 27.

10.21 Measurement errors

Errors are always introduced when using instruments to
measure electrical quantities. The errors most likely to
occur in measurements are those due to:

(i) the limitations of the instrument
(ii) the operator

(iii) the instrument disturbing the circuit

(i) Errors in the limitations of the instrument
The calibration accuracy of an instrument depends
on the precision with which it is constructed. Every
instrument has a margin of error which is expressed as
a percentage of the instruments full scale deflection.

For example, industrial grade instruments have an
accuracy of ±2% of f.s.d. Thus if a voltmeter has
a f.s.d. of 100V and it indicates 40V say, then the
actual voltage may be anywhere between 40 ± (2%
of 100), or 40 ± 2, i.e. between 38V and 42V.

When an instrument is calibrated, it is compared
against a standard instrument and a graph is drawn
of ‘error’ against ‘meter deflection’.

A typical graph is shown in Figure 10.35 where it
is seen that the accuracy varies over the scale length.
Thus a meter with a ±2% f.s.d. accuracy would tend
to have an accuracy which is much better than ±2%
f.s.d. over much of the range.

(ii) Errors by the operator
It is easy for an operator to misread an instrument.
With linear scales the values of the sub-divisions are

Figure 10.35

reasonably easy to determine; non-linear scale gradu-
ations are more difficult to estimate. Also, scales
differ from instrument to instrument and some meters
have more than one scale (as with multimeters)
and mistakes in reading indications are easily made.
When reading a meter scale it should be viewed from
an angle perpendicular to the surface of the scale at
the location of the pointer; a meter scale should not
be viewed ‘at an angle’. Errors by the operator are
largely eliminated using digital instruments.

(iii) Errors due to the instrument disturbing the
circuit
Any instrument connected into a circuit will affect
that circuit to some extent. Meters require some
power to operate, but provided this power is small
compared with the power in the measured cir-
cuit, then little error will result. Incorrect posi-
tioning of instruments in a circuit can be a source
of errors. For example, let a resistance be mea-
sured by the voltmeter-ammeter method as shown
in Figure 10.36. Assuming ‘perfect’ instruments, the
resistance should be given by the voltmeter reading
divided by the ammeter reading (i.e. R = V /I).

However, in Figure 10.36(a), V /I = R + ra and in
Figure 10.36(b) the current through the ammeter is
that through the resistor plus that through the volt-
meter. Hence the voltmeter reading divided by the

Figure 10.36
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ammeter reading will not give the true value of the
resistance R for either method of connection.

Problem 19. The current flowing through a resistor of
5 k� ± 0.4% is measured as 2.5 mA with an accuracy
of measurement of ±0.5%. Determine the nominal
value of the voltage across the resistor and its accuracy.

Voltage, V = IR = (2.5 × 10−3) (5 × 103) = 12.5V.

The maximum possible error is 0.4% + 0.5% = 0.9%

Hence the voltage, V = 12.5V ± 0.9% of 12.5V = 0.9/
100 × 12.5 = 0.1125 V = 0.11V correct to 2 significant
figures. Hence the voltage V may also be expressed as
12.5 ± 0.11 volts (i.e. a voltage lying between 12.39V
and 12.61V).

Problem 20. The current I flowing in a resistor R is
measured by a 0–10A ammeter which gives an indi-
cation of 6.25A. The voltage V across the resistor
is measured by a 0–50V voltmeter, which gives an
indication of 36.5V. Determine the resistance of the
resistor, and its accuracy of measurement if both instru-
ments have a limit of error of 2% of f.s.d. Neglect any
loading effects of the instruments.

Resistance, R = V

I
= 36.5

6.25
= 5.84 �

Voltage error is ±2% of 50 V = ±1.0V and expressed
as a percentage of the voltmeter reading gives
±1

36.5
× 100% = ±2.74%

Current error is ±2% of 10A = ±0.2A and expressed
as a percentage of the ammeter reading gives
±0.2

6.25
× 100% = ±3.2%

Maximum relative error = sum of errors = 2.74% +
3.2% = ±5.94%, and 5.94% of 5.84 � = 0.347 �

Hence the resistance of the resistor may be expressed as:

5.84 � ± 5.94%, or 5.84 ± 0.35 � (rounding off)

Problem 21. The arms of aWheatstone bridgeABCD
have the following resistances: AB: R1 = 1000 � ±
1.0%; BC: R2 = 100 � ± 0.5%; CD: unknown resis-
tance Rx; DA: R3 = 432.5 � ± 0.2%. Determine the
value of the unknown resistance and its accuracy of
measurement.

The Wheatstone bridge network is shown in Figure 10.37
and at balance:

Figure 10.37

R1Rx = R2R3, i.e. Rx = R2R3

R1
= (100)(432.5)

1000
= 43.25 �

The maximum relative error of Rx is given by the sum
of the three individual errors, i.e. 1.0% + 0.5% + 0.2% =
1.7%

Hence Rx = 43.25 � ± 1.7%

1.7% of 43.25 � = 0.74 � (rounding off).

Thus Rx may also be expressed as Rx = 43.25 ± 0.74 �

Now try the following exercise.

Exercise 35 Further problems on measurement
errors

1. The p.d. across a resistor is measured as 37.5V with
an accuracy of ±0.5%. The value of the resistor is
6 k� ± 0.8%. Determine the current flowing in the
resistor and its accuracy of measurement.

[6.25 mA ± 1.3% or 6.25 ± 0.08 mA]

2. The voltage across a resistor is measured by a 75V
f.s.d. voltmeter which gives an indication of 52V.
The current flowing in the resistor is measured by
a 20A f.s.d. ammeter which gives an indication of
12.5A. Determine the resistance of the resistor and
its accuracy if both instruments have an accuracy
of ±2% of f.s.d.

[4.16 � ± 6.08% or 4.16 ± 0.25 �]

3. A Wheatstone bridge PQRS has the following arm
resistances:

PQ, 1 k�± 2%; QR, 100 � ± 0.5%; RS, unknown
resistance; SP, 273.6 � ± 0.1%. Determine the
value of the unknown resistance, and its accuracy
of measurement.

[27.36 � ± 2.6% or 27.36 � ± 0.71 �]
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11 Semiconductor diodes

At the end of this chapter you should be able to:
• classify materials as conductors, semiconductors or

insulators
• appreciate the importance of silicon and germanium
• understand n-type and p-type materials
• understand the p-n junction
• appreciate forward and reverse bias of p-n junctions
• recognize the symbols used to represent diodes in

circuit diagrams

• understand the importance of diode characteristics
and maximum ratings

• know the characteristics and applications of various
types of diode — signal diodes, rectifiers, zener
diodes, silicon controlled rectifiers, light emitting
diodes, varactor diodes and Schottky diodes.

11.1 Types of material

Materials may be classified as conductors, semiconduc-
tors or insulators. The classification depends on the value
of resistivity of the material. Good conductors are usu-
ally metals and have resistivities in the order of 10−7 to
10−8 �m, semiconductors have resistivities in the order of
10−3 to 3 × 103 �m, and the resistivities of insulators are
in the order of 104 to 1014 �m. Some typical approximate
values at normal room temperatures are:

Conductors:

Aluminium 2.7 × 10−8 �m
Brass (70 Cu/30 Zn) 8 × 10−8 �m
Copper (pure annealed) 1.7 ×10−8 �m
Steel (mild) 15 × 10−8 �m

Semiconductors: (at 27◦C)

Silicon 2.3 × 103 �m
Germanium 0.45 �m

Insulators:

Glass ≥ 1010 �m
Mica ≥ 1011 �m
PVC ≥ 1013 �m
Rubber (pure) 1012 to 1014 �m

In general, over a limited range of temperatures, the resist-
ance of a conductor increases with temperature increase,
the resistance of insulators remains approximately con-
stant with variation of temperature and the resistance
of semiconductor materials decreases as the temperature
increases. For a specimen of each of these materials,
having the same resistance (and thus completely different

dimensions), at say, 15◦C, the variation for a small
increase in temperature to t◦C is as shown in Figure 11.1.

Conductor

Semiconductor

Insulator

R
es

is
ta

nc
e 

Temperature °C
15 t

Figure 11.1

As the temperature of semiconductor materials is raised
above room temperature, the resistivity is reduced and
ultimately a point is reached where they effectively
become conductors. For this reason, silicon should not
operate at a working temperature in excess of 150◦C to
200◦C, depending on its purity, and germanium should
not operate at a working temperature in excess of 75◦C
to 90◦C, depending on its purity. As the temperature
of a semiconductor is reduced below normal room tem-
perature, the resistivity increases until, at very low
temperatures the semiconductor becomes an insulator.

11.2 Semiconductor materials

From Chapter 2, it was stated that an atom contains both
negative charge carriers (electrons) and positive charge
carriers (protons). Electrons each carry a single unit of
negative electric charge while protons each exhibit a single
unit of positive charge. Since atoms normally contain an
equal number of electrons and protons, the net charge
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present will be zero. For example, if an atom has eleven
electrons, it will also contain eleven protons. The end
result is that the negative charge of the electrons will be
exactly balanced by the positive charge of the protons.

Electrons are in constant motion as they orbit around
the nucleus of the atom. Electron orbits are organized into
shells. The maximum number of electrons present in the
first shell is two, in the second shell eight, and in the third,
fourth and fifth shells it is 18, 32 and 50, respectively. In
electronics, only the electron shell furthermost from the
nucleus of an atom is important. It is important to note that
the movement of electrons between atoms only involves
those present in the outer valence shell.

If the valence shell contains the maximum number
of electrons possible the electrons are rigidly bonded
together and the material has the properties of an insu-
lator (see Figure 11.2). If, however, the valence shell does
not have its full complement of electrons, the electrons
can be easily detached from their orbital bonds, and the
material has the properties associated with an electrical
conductor.

Valence shell

Electrons

Nucleus

Figure 11.2

In its pure state, silicon is an insulator because the
covalent bonding rigidly holds all of the electrons leaving
no free (easily loosened) electrons to conduct current. If,
however, an atom of a different element (i.e. an impurity)
is introduced that has five electrons in its valence shell, a
surplus electron will be present (see Figure 11.3). These
free electrons become available for use as charge car-
riers and they can be made to move through the lattice by
applying an external potential difference to the material.

Similarly, if the impurity element introduced into the
pure silicon lattice has three electrons in its valence shell,
the absence of the fourth electron needed for proper
covalent bonding will produce a number of spaces into
which electrons can fit (see Figure 11.4). These spaces are
referred to as holes. Once again, current will flow when
an external potential difference is applied to the material.

Pentavalent
impurity atom

Free negative
charge carrier

Figure 11.3

Trivalent impurity
atom

Hole

Figure 11.4

Regardless of whether the impurity element produces
surplus electrons or holes, the material will no longer
behave as an insulator, neither will it have the proper-
ties that we normally associate with a metallic conductor.
Instead, we call the material a semiconductor — the term
simply serves to indicate that the material is no longer a
good insulator nor is it a good conductor but is somewhere
in between. Examples of semiconductor materials include
silicon (Si), germanium (Ge), gallium arsenide (GaAs),
and indium arsenide (InAs).

Antimony, arsenic and phosphorus are n-type
impurities and form an n-type material when any of
these impurities are added to pure semiconductor material
such as silicon or germanium. The amount of impu-
rity added usually varies from 1 part impurity in 105

parts semiconductor material to 1 part impurity to 108

parts semiconductor material, depending on the resistivity
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required. Indium, aluminium and boron are all p-type
impurities and form a p-type material when any of these
impurities are added to a pure semiconductor.

The process of introducing an atom of another (impur-
ity) element into the lattice of an otherwise pure material
is called doping. When the pure material is doped with
an impurity with five electrons in its valence shell (i.e.
a pentavalent impurity) it will become an n-type (i.e.
negative type) semiconductor material. If, however, the
pure material is doped with an impurity having three elec-
trons in its valence shell (i.e. a trivalent impurity) it will
become a p-type (i.e. positive type) semiconductor mate-
rial. Note that n-type semiconductor material contains an
excess of negative charge carriers, and p-type material
contains an excess of positive charge carriers.

In semiconductor materials, there are very few charge
carriers per unit volume free to conduct. This is because
the ‘four electron structure’ in the outer shell of the atoms
(called valency electrons), form strong covalent bonds
with neighbouring atoms, resulting in a tetrahedral (i.e.
four-sided) structure with the electrons held fairly rigidly
in place.

11.3 Conduction in semiconductor materials

Arsenic, antimony and phosphorus have five valency elec-
trons and when a semiconductor is doped with one of these
substances, some impurity atoms are incorporated in the
tetrahedral structure. The ‘fifth’ valency electron is not
rigidly bonded and is free to conduct, the impurity atom
donating a charge carrier.

Possible electron
movement

Hole

Impurity
atom

B

C

1 2 3 4

A

Figure 11.5

Indium, aluminium and boron have three valency elec-
trons and when a semiconductor is doped with one of
these substances, some of the semiconductor atoms are
replaced by impurity atoms. One of the four bonds asso-
ciated with the semiconductor material is deficient by one
electron and this deficiency is called a hole. Holes give
rise to conduction when a potential difference exists across
the semiconductor material due to movement of electrons
from one hole to another, as shown in Figure 11.5. In
this diagram, an electron moves from A to B, giving the
appearance that the hole moves from B toA. Then electron
C moves to A, giving the appearance that the hole moves
to C, and so on.

11.4 The p-n junction

A p-n junction is a piece of semiconductor material in
which part of the material is p-type and part is n-type. In
order to examine the charge situation, assume that separate
blocks of p-type and n-type materials are pushed together.
Also assume that a hole is a positive charge carrier and
that an electron is a negative charge carrier.

At the junction, the donated electrons in the n-type
material, called majority carriers, diffuse into the p-type
material (diffusion is from an area of high density to an
area of lower density) and the acceptor holes in the p-type
material diffuse into the n-type material as shown by the
arrows in Figure 11.6. Because the n-type material has
lost electrons, it acquires a positive potential with respect
to the p-type material and thus tends to prevent further
movement of electrons. The p-type material has gained
electrons and becomes negatively charged with respect to
the n-type material and hence tends to retain holes. Thus
after a short while, the movement of electrons and holes
stops due to the potential difference across the junction,
called the contact potential. The area in the region of
the junction becomes depleted of holes and electrons due
to electron-hole recombination, and is called a depletion
layer, as shown in Figure 11.7.

Figure 11.6
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Figure 11.7

Problem 1. Explain briefly the terms given below
when they are associated with a p-n junction: (a) con-
duction in intrinsic semiconductors, (b) majority and
minority carriers, and (c) diffusion.

(a) Silicon or germanium with no doping atoms added are
called intrinsic semiconductors. At room tempera-
ture, some of the electrons acquire sufficient energy
for them to break the covalent bond between atoms and
become free mobile electrons. This is called thermal
generation of electron-hole pairs. Electrons gener-
ated thermally create a gap in the crystal structure
called a hole, the atom associated with the hole being
positively charged, since it has lost an electron. This
positive charge may attract another electron released
from another atom, creating a hole elsewhere. When
a potential is applied across the semiconductor mater-
ial, holes drift towards the negative terminal (unlike
charges attract), and electrons towards the positive
terminal, and hence a small current flows.

(b) When additional mobile electrons are introduced by
doping a semiconductor material with pentavalent
atoms (atoms having five valency electrons), these
mobile electrons are called majority carriers. The
relatively few holes in the n-type material produced
by intrinsic action are called minority carriers.

For p-type materials, the additional holes are intro-
duced by doping with trivalent atoms (atoms having
three valency electrons). The holes are apparently
positive mobile charges and are majority carriers in the
p-type material. The relatively few mobile electrons
in the p-type material produced by intrinsic action are
called minority carriers.

(c) Mobile holes and electrons wander freely within the
crystal lattice of a semiconductor material. There are
more free electrons in n-type material than holes and
more holes in p-type material than electrons. Thus,

in their random wanderings, on average, holes pass
into the n-type material and electrons into the p-type
material. This process is called diffusion.

Problem 2. Explain briefly why a junction between
p-type and n-type materials creates a contact potential.

Intrinsic semiconductors have resistive properties, in that
when an applied voltage across the material is reversed
in polarity, a current of the same magnitude flows in the
opposite direction. When a p-n junction is formed, the
resistive property is replaced by a rectifying property,
that is, current passes more easily in one direction than
the other.

An n-type material can be considered to be a stationary
crystal matrix of fixed positive charges together with a
number of mobile negative charge carriers (electrons). The
total number of positive and negative charges are equal.
A p-type material can be considered to be a number of
stationary negative charges together with mobile positive
charge carriers (holes).

Again, the total number of positive and negative charges
are equal and the material is neither positively nor nega-
tively charged. When the materials are brought together,
some of the mobile electrons in the n-type material diffuse
into the p-type material. Also, some of the mobile holes
in the p-type material diffuse into the n-type material.

Many of the majority carriers in the region of the
junction combine with the opposite carriers to complete
covalent bonds and create a region on either side of the
junction with very few carriers. This region, called the
depletion layer, acts as an insulator and is in the order of
0.5 µm thick. Since the n-type material has lost electrons,
it becomes positively charged. Also, the p-type material
has lost holes and becomes negatively charged, creating a
potential across the junction, called the barrier or contact
potential.

11.5 Forward and reverse bias

When an external voltage is applied to a p-n junction mak-
ing the p-type material positive with respect to the n-type
material, as shown in Figure 11.8, the p-n junction is
forward biased. The applied voltage opposes the con-
tact potential, and, in effect, closes the depletion layer.
Holes and electrons can now cross the junction and a cur-
rent flows. An increase in the applied voltage above that
required to narrow the depletion layer (about 0.2V for
germanium and 0.6V for silicon), results in a rapid rise in
the current flow.

When an external voltage is applied to a p-n junction
making the p-type material negative with respect to the n-
type material as in shown in Figure 11.9, the p-n junction
is reverse biased. The applied voltage is now in the same
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Figure 11.8

Figure 11.9

sense as the contact potential and opposes the movement
of holes and electrons due to opening up the depletion
layer. Thus, in theory, no current flows. However, at nor-
mal room temperature certain electrons in the covalent
bond lattice acquire sufficient energy from the heat avail-
able to leave the lattice, generating mobile electrons and
holes. This process is called electron-hole generation by
thermal excitation.

The electrons in the p-type material and holes in the
n-type material caused by thermal excitation, are called
minority carriers and these will be attracted by the applied
voltage. Thus, in practice, a small current of a few
microamperes for germanium and less than one microam-
pere for silicon, at normal room temperature, flows under
reverse bias conditions.

Graphs depicting the current-voltage relationship for
forward and reverse biased p-n junctions, for both germa-
nium and silicon, are shown in Figure 11.10.

Problem 3. Sketch the forward and reverse charac-
teristics of a silicon p-n junction diode and describe
the shapes of the characteristics drawn.

Reverse current (µA)

Germanium

Reverse voltage (V)

−100 −50 −25−75

Silicon

Forward current (mA)

−3

−2

−1

 2

 4

 6

 8

 10

0.2 0.4 0.6 0.8

Germanium

Forward voltage (V)

Figure 11.10

A typical characteristic for a silicon p-n junction is shown
in Figure 11.10. When the positive terminal of the battery
is connected to the p-type material and the negative termi-
nal to the n-type material, the diode is forward biased. Due
to like charges repelling, the holes in the p-type material
drift towards the junction. Similarly the electrons in the n-
type material are repelled by the negative bias voltage and
also drift towards the junction. The width of the depletion
layer and size of the contact potential are reduced. For
applied voltages from 0 to about 0.6V, very little current
flows. At about 0.6V, majority carriers begin to cross the
junction in large numbers and current starts to flow. As the
applied voltage is raised above 0.6V, the current increases
exponentially (see Figure 11.10).

When the negative terminal of the battery is connected
to the p-type material and the positive terminal to the
n-type material the diode is reverse biased. The holes in
the p-type material are attracted towards the negative ter-
minal and the electrons in the n-type material are attracted
towards the positive terminal (unlike charges attract). This
drift increases the magnitude of both the contact potential
and the thickness of the depletion layer, so that only very
few majority carriers have sufficient energy to surmount
the junction.

The thermally excited minority carriers, however, can
cross the junction since it is, in effect, forward biased for
these carriers. The movement of minority carriers results
in a small constant current flowing. As the magnitude of
the reverse voltage is increased a point will be reached
where a large current suddenly starts to flow. The voltage
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at which this occurs is called the breakdown voltage. This
current is due to two effects:

(i) the zener effect, resulting from the applied volt-
age being sufficient to break some of the covalent
bonds, and

(ii) the avalanche effect, resulting from the charge car-
riers moving at sufficient speed to break covalent
bonds by collision.

Problem 4. The forward characteristic of a diode
is shown in Figure 11.11. Use the characteristic to
determine (a) the current flowing in the diode when
a forward voltage of 0.4V is applied, (b) the voltage
dropped across the diode when a forward current of
9 mA is flowing in it, (c) the resistance of the diode
when the forward voltage is 0.6V, and (d) whether the
diode is a Ge or Si type.

(b)

(c)

(a)
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Figure 11.11

(a) From Figure 11.11, when V = 0.4V, current flowing,
I = 1.9 mA

(b) When I = 9 mA, the voltage dropped across the
diode, V = 0.67V

(c) From the graph, when V = 0.6V, I = 6 mA.

Thus, resistance of the diode, R = V

I
= 0.6

6 × 10−3

= 0.1 × 103 = 100 �

(d) The onset of conduction occurs at approximately
0.2V. This suggests that the diode is a Ge type.

Problem 5. Corresponding readings of current, I , and
voltage, V , for a semiconductor device are given in the
table:

Vf (V) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
If (mA) 0 0 0 0 0 1 9 24 50

Plot the I/V characteristic for the device and identify
the type of device.

The I/V characteristic is shown in Figure 11.12. Since
the device begins to conduct when a potential of approxi-
mately 0.6V is applied to it we can infer that the semi-
conductor material is silicon rather than germanium.
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Figure 11.12

Problem 6. For the characteristic of Figure 11.12,
determine for the device (a) the forward current when
the forward voltage is 0.65V, and (b) the forward
voltage when the forward current is 35 mA.

(a) From Figure 11.12, when the forward voltage is
0.65V, the forward current = 16 mA

(b) When the forward current is 35 mA, the forward
voltage = 0.76V
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Now try the following exercise.

Exercise 36 Further problems on semiconductor
materials and p-n junctions

1. Explain what you understand by the term intrinsic
semiconductor and how an intrinsic semiconduc-
tor is turned into either a p-type or an n-type
material.

2. Explain what is meant by minority and majority
carriers in an n-type material and state whether
the numbers of each of these carriers are affected
by temperature.

3. A piece of pure silicon is doped with (a) pentava-
lent impurity and (b) trivalent impurity. Explain
the effect these impurities have on the form of
conduction in silicon.

4. With the aid of simple sketches, explain how pure
germanium can be treated in such a way that con-
duction is predominantly due to (a) electrons and
(b) holes.

5. Explain the terms given below when used in
semiconductor terminology: (a) covalent bond
(b) trivalent impurity (c) pentavalent impurity (d)
electron-hole pair generation.

6. Explain briefly why although both p-type and
n-type materials have resistive properties when
separate, they have rectifying properties when a
junction between them exists.

7. The application of an external voltage to a junc-
tion diode can influence the drift of holes and
electrons. With the aid of diagrams explain this
statement and also how the direction and magni-
tude of the applied voltage affects the depletion
layer.

8. State briefly what you understand by the terms: (a)
reverse bias (b) forward bias (c) contact potential
(d) diffusion (e) minority carrier conduction.

9. Explain briefly the action of a p-n junction diode:
(a) on open-circuit, (b) when provided with a for-
ward bias, and (c) when provided with a reverse
bias. Sketch the characteristic curves for both
forward and reverse bias conditions.

10. Draw a diagram illustrating the charge situation
for an unbiased p-n junction. Explain the change
in the charge situation when compared with that
in isolated p-type and n-type materials. Mark on
the diagram the depletion layer and the majority
carriers in each region.

11. The graph shown in Figure 11.13 was obtained
during an experiment on a diode. (a) What type
of diode is this? Give reasons. (b) Determine the
forward current for a forward voltage of 0.5V.
(c) Determine the forward voltage for a forward
current of 30 mA. (d) Determine the resistance of
the diode when the forward voltage is 0.4V.

[(a) Ge (b) 17 mA (c) 0.625V (d) 50 �]
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Figure 11.13

11.6 Semiconductor diodes

When a junction is formed between p-type and n-type
semiconductor materials, the resulting device is called
a semiconductor diode. This component offers an
extremely low resistance to current flow in one direction
and an extremely high resistance to current flow in the
other. This property allows diodes to be used in applica-
tions that require a circuit to behave differently according
to the direction of current flowing in it. Note that an ideal
diode would pass an infinite current in one direction and
no current at all in the other direction.

A semiconductor diode is an encapsulated p-n junction
fitted with connecting leads or tags for connection to exter-
nal circuitry. Where an appreciable current is present (as
is the case with many rectifier circuits) the diode may be
mounted in a metal package designed to conduct heat away
from the junction. The connection to the p-type material is
referred to as the anode while that to the n-type material
is called the cathode.

Various different types of diode are available for differ-
ent applications. These include rectifier diodes for use in
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power supplies, zener diodes for use as voltage reference
sources, light emitting diodes, and varactor diodes. Fig-
ure 11.14 shows the symbols used to represent diodes in
electronic circuit diagrams, where ‘a’ is the anode and ‘k’
the cathode.

k

a

(a) Signal or
     rectifier diode

(b) Zener diode (c) Silicon controlled
      rectifier (thyristor)

k

a

k

a

+

(d) Bridge rectifier (e) Triac

mt2

mt1

g

g

k

a

(f) Light emitting
 diode

k

(g) Photodiode

a

(h) Varactor diode

k

a

Figure 11.14

Table 11.1 Characteristics of some typical signal and rectifier diodes

Device Material Max repetitive Max forward Max reverse Application
code reverse voltage current current

(VRRM) (IF(max)) (IR(max))

1N4148 Silicon 100V 75 mA 25 nA General purpose
1N914 Silicon 100V 75 mA 25 nA General purpose
AA113 Germanium 60V 10 mA 200 µA RF detector
OA47 Germanium 25V 110 mA 100 µA Signal detector
OA91 Germanium 115V 50 mA 275 µA General purpose
1N4001 Silicon 50V 1A 10 µA Low voltage rectifier
1N5404 Silicon 400V 3A 10 µA High voltage rectifier
BY127 Silicon 1250V 1A 10 µA High voltage rectifier

11.7 Characteristics and maximum ratings

Signal diodes require consistent forward characteristics
with low forward voltage drop. Rectifier diodes need to
be able to cope with high values of reverse voltage and
large values of forward current, and consistency of char-
acteristics is of secondary importance in such applications.
Table 11.1 summarizes the characteristics of some com-
mon semiconductor diodes. It is worth noting that diodes
are limited by the amount of forward current and reverse
voltage they can withstand. This limit is based on the
physical size and construction of the diode.

A typical general-purpose diode may be specified as
having a forward threshold voltage of 0.6V and a reverse
breakdown voltage of 200V. If the latter is exceeded,
the diode may suffer irreversible damage. Typical val-
ues of maximum repetitive reverse voltage (VRRM) or
peak inverse voltage (PIV) range from about 50V to
over 500V. The reverse voltage may be increased until
the maximum reverse voltage for which the diode is
rated is reached. If this voltage is exceeded the junc-
tion may break down and the diode may suffer permanent
damage.

11.8 Rectification

The process of obtaining unidirectional currents and volt-
ages from alternating currents and voltages is called
rectification. Semiconductor diodes are commonly used
to convert alternating current (a.c.) to direct current (d.c.),
in which case they are referred to as rectifiers. The sim-
plest form of rectifier circuit makes use of a single diode
and, since it operates on only either positive or negative
halfcycles of the supply, it is known as a half-wave rec-
tifier. Four diodes are connected as a bridge rectifier —
see Figure 11.14(d) — and are often used as a full-wave
rectifier. Note that in both cases, automatic switching of
the current is carried out by the diode(s). For methods of
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half-wave and full-wave rectification, see Section 14.7,
page 166.

11.9 Zener diodes

Zener diodes are heavily doped silicon diodes that, unlike
normal diodes, exhibit an abrupt reverse breakdown
at relatively low voltages (typically less than 6V). A
similar effect, called avalanche breakdown, occurs in
less heavily doped diodes. These avalanche diodes also
exhibit a rapid breakdown with negligible current flowing
below the avalanche voltage and a relatively large cur-
rent flowing once the avalanche voltage has been reached.
For avalanche diodes, this breakdown voltage usually
occurs at voltages above 6V. In practice, however, both
types of diode are referred to as Zener diodes. The
symbol for a Zener diode is shown in Figure 11.14(b)
whilst a typical Zener diode characteristic is shown in
Figure 11.15.

Forward current (mA)

Reverse voltage 
(V)

Reverse current (mA)

Forward voltage 
(V)

−20 −15 −10 −5

20

10

0
1 2 3

−10

−20

−30

−40

Figure 11.15

Whereas reverse breakdown is a highly undesirable
effect in circuits that use conventional diodes, it can be
extremely useful in the case of Zener diodes where the
breakdown voltage is precisely known. When a diode is
undergoing reverse breakdown and provided its maximum

ratings are not exceeded the voltage appearing across it
will remain substantially constant (equal to the nominal
Zener voltage) regardless of the current flowing. This
property makes the Zener diode ideal for use as a voltage
regulator.

Zener diodes are available in various families (accord-
ing to their general characteristics, encapsulations and
power ratings) with reverse breakdown (Zener) voltages
in the range 2.4V to 91V.

Problem 7. The characteristic of a Zener diode is
shown in Figure 11.16. Use the characteristic to deter-
mine (a) the current flowing in the diode when a reverse
voltage of 30V is applied, (b) the voltage dropped
across the diode when a reverse current of 5 mA is
flowing in it, (c) the voltage rating for the Zener diode,
and (d) the power dissipated in the Zener diode when
a reverse voltage of 30V appears across it.
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Figure 11.16

(a) When V = −30V, the current flowing in the diode,
I = −32.5 mA

(b) When I = −5 mA, the voltage dropped across the
diode, V = −27.5V

(c) The characteristic shows the onset of Zener action
at 27V; this would suggest a Zener voltage rating
of 27V
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(d) Power, P = V × I , from which, power dissipated
when the reverse voltage is 30V,

P = 30 × (32.5 × 10−3) = 0.975 W = 975 mW

11.10 Silicon controlled rectifiers

Silicon controlled rectifiers (or thyristors) are three-
terminal devices which can be used for switching and
a.c. power control. Silicon controlled rectifiers can switch
very rapidly from conducting to a non-conducting state. In
the off state, the silicon controlled rectifier exhibits neg-
ligible leakage current, while in the on state the device
exhibits very low resistance. This results in very little
power loss within the silicon controlled rectifier even
when appreciable power levels are being controlled.

Once switched into the conducting state, the silicon
controlled rectifier will remain conducting (i.e. it is
latched in the on state) until the forward current is removed
from the device. In d.c. applications this necessitates
the interruption (or disconnection) of the supply before
the device can be reset into its non-conducting state.
Where the device is used with an alternating supply,
the device will automatically become reset whenever the
main supply reverses. The device can then be triggered
on the next half cycle having correct polarity to permit
conduction.

Like their conventional silicon diode counterparts, sil-
icon controlled rectifiers have anode and cathode connec-
tions; control is applied by means of a gate terminal, g.
The symbol for a silicon controlled rectifier is shown in
Figure 11.14(c).

In normal use, a silicon controlled rectifier (SCR) is
triggered into the conducting (on) state by means of the
application of a current pulse to the gate terminal — see
Figure 11.17. The effective triggering of a silicon con-
trolled rectifier requires a gate trigger pulse having a fast
rise time derived from a low-resistance source. Trigger-
ing can become erratic when insufficient gate current is
available or when the gate current changes slowly.

Controlled load, RL

RG

SCRGate trigger
pulse

AC or DC
supply

Figure 11.17

A typical silicon controlled rectifier for mains switch-
ing applications will require a gate trigger pulse of about
30 mA at 2.5V to control a current of up to 5A.

11.11 Light emitting diodes

Light emitting diodes (LED) can be used as general-
purpose indicators and, compared with conventional fil-
ament lamps, operate from significantly smaller voltages
and currents. LEDs are also very much more reliable than
filament lamps. Most LEDs will provide a reasonable level
of light output when a forward current of between 5 mA
and 20 mA is applied.

Light emitting diodes are available in various formats
with the round types being most popular. Round LEDs
are commonly available in the 3 mm and 5 mm (0.2 inch)
diameter plastic packages and also in a 5 mm × 2 mm rect-
angular format. The viewing angle for round LEDs tends
to be in the region of 20◦ to 40◦, whereas for rectangular
types this is increased to around 100◦. The peak wave-
length of emission depends on the type of semiconductor
employed but usually lies in the range 630 to 690 nm. The
symbol for an LED is shown in Figure 11.14(f).

11.12 Varactor diodes

It was shown earlier that when a diode is operated in
the reverse biased condition, the width of the depletion
region increases as the applied voltage increases. Varying
the width of the depletion region is equivalent to vary-
ing the plate separation of a very small capacitor such that
the relationship between junction capacitance and applied
reverse voltage will look something like that shown in Fig-
ure 11.18. The typical variation of capacitance provided
by a varactor is from about 50 pF to 10 pF as the reverse
voltage is increased from 2V to 20V. The symbol for a
varactor diode is shown in Figure 11.14(h).
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Figure 11.18
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11.13 Schottky diodes

The conventional p-n junction diode explained in Sec-
tion 11.4 operates well as a rectifier and switching device
at relatively low frequencies (i.e. 50 Hz to 400 Hz) but
its performance as a rectifier becomes seriously impaired
at high frequencies due to the presence of stored charge
carriers in the junction. These have the effect of momentar-
ily allowing current to flow in the reverse direction when
reverse voltage is applied. This problem becomes increas-
ingly more problematic as the frequency of the a.c. supply
is increased and the periodic time of the applied voltage
becomes smaller.

To avoid these problems a diode that uses a metal-
semiconductor contact rather than a p-n junction (see
Figure 11.19) is employed. When compared with con-
ventional silicon junction diodes, these Schottky diodes
have a lower forward voltage (typically 0.35V) and a
slightly reduced maximum reverse voltage rating (typic-
ally 50V to 200V). Their main advantage, however, is
that they operate with high efficiency in switched-mode
power supplies (SMPS) at frequencies of up to 1 MHz.
Schottky diodes are also extensively used in the construc-
tion of integrated circuits designed for high-speed digital
logic applications.

a k

Anode Cathode
Gold N

(silicon)

Barrier

Figure 11.19

Now try the following exercise.

Exercise 37 further problems on semiconductor
diodes

1. Identify the types of diodes shown in Figure 11.20.

(a) (b) (c) (d)

Figure 11.20

2. Sketch a circuit to show how a thyristor can be used
as a controlled rectifier.

3. Sketch a graph showing how the capacitance of a
varactor diode varies with applied reverse voltage.

4. State TWO advantages of light emitting diodes
when compared with conventional filament indi-
cating lamps.

5. State TWO applications for Schottky diodes.

6. The graph shown in Figure 11.21 was obtained
during an experiment on a zener diode.
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Figure 11.21

(a) Estimate the zener voltage for the diode. (b)
Determine the reverse voltage for a reverse current
of −20 mA. (c) Determine the reverse current for a
reverse voltage of −5.5V. (d) Determine the power
dissipated by the diode when the reverse voltage is
−6V.

[(a) 5.6 (b) −5.8V (c) −5 mA (d) 195 mW]
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12 Transistors

At the end of this chapter you should be able to:
• understand the structure of bipolar junction transis-

tors (BJT) and junction gate field effect transistors
(JFET)

• understand the action of BJT and JFET devices
• appreciate different classes and applications for BJT

and JFET devices
• draw the circuit symbols for BJT and JFET devices
• appreciate common base, common emitter and

common collector connections

• appreciate common gate, common source and com-
mon drain connections

• interpret characteristics for BJT and JFET devices
• appreciate how transistors are used as Class-A

amplifiers
• use a load line to determine the performance of a

transistor amplifier
• estimate quiescent operating conditions and gain from

transistor characteristics and other data

12.1 Transistor classification

Transistors fall into two main classes — bipolar and field
effect. They are also classified according to the semi-
conductor material employed — silicon or germanium,
and to their field of application (for example, general pur-
pose, switching, high frequency, and so on). Transistors
are also classified according to the application that they
are designed for, as shown in Table 12.1. Note that these
classifications can be combined so that it is possible, for

Table 12.1 Transistor classification

Low-frequency Transistors designed specifically for audio
low-frequency applications (below 100 kHz)

High-frequency Transistors designed specifically for high
radio-frequency applications (100 kHz
and above)

Switching Transistors designed for switching
applications

Low-noise Transistors that have low-noise characteristics
and which are intended primarily for the
amplification of low-amplitude signals

High-voltage Transistors designed specifically to handle
high voltages

Driver Transistors that operate at medium power
and voltage levels and which are often
used to precede a final (power) stage which
operates at an appreciable power level

Small-signal Transistors designed for amplifying small
voltages in amplifiers and radio receivers

Power Transistors designed to handle high currents
and voltages

example, to classify a transistor as a ‘low-frequency power
transistor’ or as a ‘low-noise high-frequency transistor’.

12.2 Bipolar junction transistors (BJT)

Bipolar transistors generally comprise n-p-n or p-n-p junc-
tions of either silicon (Si) or germanium (Ge) material.
The junctions are, in fact, produced in a single slice of sil-
icon by diffusing impurities through a photographically
reduced mask. Silicon transistors are superior when
compared with germanium transistors in the vast major-
ity of applications (particularly at high temperatures) and
thus germanium devices are very rarely encountered in
modern electronic equipment.

The construction of typical n-p-n and p-n-p transistors
is shown in Figures 12.1 and 12.2. In order to conduct the
heat away from the junction (important in medium- and
high-power applications) the collector is connected to the
metal case of the transistor.

Base

n np

Oxide layer 
(insulation)

Metal case
(conductor)

Collector

Emitter

Figure 12.1
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Base

Oxide layer
(insulation)

Metal case
(conductor)

Collector

Emitter

pnp

Figure 12.2

The symbols and simplified junction models for n-p-n
and p-n-p transistors are shown in Figure 12.3. It is impor-
tant to note that the base region (p-type material in the case
of an n-p-n transistor or n-type material in the case of a
p-n-p transistor) is extremely narrow.

Collector

Collector

Base Base

Emitter

Emitter

(a) n-p-n bipolar junction transistor (BJT)

n

n

p

Collector

Collector

Emitter

Emitter

Base Base

(b) p-n-p bipolar junction transistor (BJT)

n

p

p

Figure 12.3

12.3 Transistor action

In the n-p-n transistor, connected as shown in Fig-
ure 12.4(a), transistor action is accounted for as follows:

(a) the majority carriers in the n-type emitter material are
electrons

Emitter Collector

Base

n np

++− −

(a) n-p-n bipolar junction transistor

p n pEmitter Collector

Base

− −++

(b) p-n-p bipolar junction transistor

Figure 12.4

(b) the base-emitter junction is forward biased to these
majority carriers and electrons cross the junction and
appear in the base region

(c) the base region is very thin and only lightly doped
with holes, so some recombination with holes occurs
but many electrons are left in the base region

(d) the base-collector junction is reverse biased to holes
in the base region and electrons in the collector region,
but is forward biased to electrons in the base region;
these electrons are attracted by the positive potential
at the collector terminal

(e) a large proportion of the electrons in the base region
cross the base collector junction into the collector
region, creating a collector current

The transistor action for an n-p-n device is shown
diagrammatically in Figure 12.5(a). Conventional current
flow is taken to be in the direction of the motion of holes,
that is, in the opposite direction to electron flow. Around
99.5% of the electrons leaving the emitter will cross the
base collector junction and only 0.5% of the electrons will
recombine with holes in the narrow base region.

In the p-n-p transistor, connected as shown in Fig-
ure 12.4(b), transistor action is accounted for as follows:

(a) the majority carriers in the emitter p-type material are
holes

(b) the base-emitter junction is forward biased to the
majority carriers and the holes cross the junction and
appear in the base region
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Figure 12.5

(c) the base region is very thin and is only lightly doped
with electrons so although some electron-hole pairs
are formed, many holes are left in the base region

(d) the base-collector junction is reverse biased to elec-
trons in the base region and holes in the collector
region, but forward biased to holes in the base region;
these holes are attracted by the negative potential at
the collector terminal

(e) a large proportion of the holes in the base region cross
the base-collector junction into the collector region,
creating a collector current; conventional current flow
is in the direction of hole movement

The transistor action for a p-n-p device is shown dia-
grammatically in Figure 12.5(b). Around 99.5% of the
holes leaving the emitter will cross the base collector
junction and only 0.5% of the holes will recombine with
electrons in the narrow base region.

12.4 Leakage current

For an n-p-n transistor, the base-collector junction is
reversed biased for majority carriers, but a small leakage
current, ICBO, flows from the collector to the base due
to thermally generated minority carriers (holes in the
collector and electrons in the base), being present. The
base-collector junction is forward biased to these minority
carriers.

Similarly, for a p-n-p transistor, the base-collector
junction is reverse biased for majority carriers. However,

a small leakage current, ICBO, flows from the base to
the collector due to thermally generated minority carri-
ers (electrons in the collector and holes in the base), being
present. Once again, the base-collector junction is forward
biased to these minority carriers.

With modern transistors, leakage current is usually very
small (typically less than 100 nA) and in most applications
it can be ignored.

Problem 1. With reference to a p-n-p transistor,
explain briefly what is meant by the term ‘transis-
tor action’ and why a bipolar junction transistor is so
named.

For the transistor as depicted in Figure 12.4(b), the emitter
is relatively heavily doped with acceptor atoms (holes).
When the emitter terminal is made sufficiently positive
with respect to the base, the base-emitter junction is for-
ward biased to the majority carriers. The majority carriers
are holes in the emitter and these drift from the emitter to
the base.

The base region is relatively lightly doped with donor
atoms (electrons) and although some electron-hole recom-
binations take place, perhaps 0.5%, most of the holes
entering the base do not combine with electrons.

The base-collector junction is reverse biased to elec-
trons in the base region, but forward biased to holes in
the base region. Since the base is very thin and now
is packed with holes, these holes pass the base-emitter
junction towards the negative potential of the collector
terminal. The control of current from emitter to collector
is largely independent of the collector-base voltage and
almost wholly governed by the emitter-base voltage.

The essence of transistor action is this current control
by means of the base-emitter voltage. In a p-n-p transis-
tor, holes in the emitter and collector regions are majority
carriers, but are minority carriers when in the base region.
Also thermally generated electrons in the emitter and col-
lector regions are minority carriers as are holes in the base
region. However, both majority and minority carriers con-
tribute towards the total current flow (see Figure 12.6). It
is because a transistor makes use of both types of charge
carriers (holes and electrons) that they are called bipolar.
The transistor also comprises two p-n junctions and for
this reason it is a junction transistor; hence the name —
bipolar junction transistor.

12.5 Bias and current flow

In normal operation (i.e. for operation as a linear ampli-
fier) the base-emitter junction of a transistor is forward
biased and the collector-base junction is reverse biased.
The base region is, however, made very narrow so that
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Figure 12.6

carriers are swept across it from emitter to collector so
that only a relatively small current flows in the base. To
put this into context, the current flowing in the emitter cir-
cuit is typically 100 times greater than that flowing in the
base. The direction of conventional current flow is from
emitter to collector in the case of a p-n-p transistor, and
collector to emitter in the case of an n-p-n device, as shown
in Figure 12.7.

The equation that relates current flow in the collector,
base, and emitter circuits (see Figure 12.7) is:

IE = IB + IC

where IE is the emitter current, IB is the base current,
and IC is the collector current (all expressed in the same
units).

Problem 2. A transistor operates with a collector cur-
rent of 100 mA and an emitter current of 102 mA.
Determine the value of base current.

Emitter current, IE = IB + IC

from which, base current, IB = IE − IC

Hence, base current, IB = 102 − 100 = 2 mA
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− −+ +
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b
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(b) p-n-p bipolar junction transistor (BJT)

+ − + −

Figure 12.7

12.6 Transistor operating configurations

Three basic circuit configurations are used for transistor
amplifiers. These three circuit configurations depend upon
which one of the three transistor connections is made com-
mon to both the input and the output. In the case of bipolar
junction transistors, the configurations are known as com-
mon emitter, common collector (or emitter follower),
and common base, as shown in Figure 12.8.

Output

Input

Common

(a) Common emitter

Output

Input

Common

(b) Common collector

OutputInput

Common

(c) Common base

Figure 12.8
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12.7 Bipolar transistor characteristics

The characteristics of a bipolar junction transistor are usu-
ally presented in the form of a set of graphs relating voltage
and current present at the transistors terminals. Figure 12.9
shows a typical input characteristic (IB plotted against
VBE) for an n-p-n bipolar junction transistor operating in
common-emitter mode. In this mode, the input current is
applied to the base and the output current appears in the
collector (the emitter is effectively common to both the
input and output circuits as shown in Figure 12.8(a)).
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Figure 12.9

The input characteristic shows that very little base cur-
rent flows until the base-emitter voltage VBE exceeds 0.6V.
Thereafter, the base current increases rapidly – this char-
acteristic bears a close resemblance to the forward part of
the characteristic for a silicon diode.

Figure 12.10 shows a typical set of output (collec-
tor) characteristics (IC plotted against VCE) for an n-p-n
bipolar transistor. Each curve corresponds to a different
value of base current. Note the ‘knee’ in the characteris-
tic below VCE = 2V. Also note that the curves are quite
flat. For this reason (i.e. since the collector current does
not change very much as the collector-emitter voltage
changes) we often refer to this as a constant current
characteristic.

Figure 12.11 shows a typical transfer characteristic
for an n-p-n bipolar junction transistor. Here IC is plotted
against IB for a small-signal general-purpose transistor.
The slope of this curve (i.e. the ratio of IC to IB) is the
common-emitter current gain of the transistor which is
explored further in Section 12.9.
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A circuit that can be used for obtaining the common-
emitter characteristics of an n-p-n BJT is shown in
Figure 12.12. For the input characteristic, VR1 is set at
a particular value and the corresponding values of VBE
and IB are noted. This is repeated for various settings
of VR1 and plotting the values gives the typical input
characteristic of Figure 12.9.

For the output characteristics, VR1 is varied so that
IB is, say, 20 µA. Then VR2 is set at various values
and corresponding values of VCE and IC are noted. The
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graph of VCE/IC is then plotted for IB = 20 µA. This is
repeated for, say, IB = 40 µA, IB = 60 µA, and so on. Plot-
ting the values gives the typical output characteristics of
Figure 12.10.

12.8 Transistor parameters

The transistor characteristics met in the previous section
provide us with some useful information that can help
us to model the behaviour of a transistor. In particular,
the three characteristic graphs can be used to determine
the following parameters for operation in common-emitter
mode:

Input resistance (from the input characteristic, Figure 12.9)

Static (or d.c.) input resistance = VBE

IB
(from corre-

sponding points on the graph)

Dynamic (or a.c.) input resistance = �VBE

�IB
(from the

slope of the graph)

(Note that �VBE means ‘change of VBE’ and �IB means
‘change of IB’)

Output resistance (from the output characteristic,
Figure 12.10)

Static (or d.c.) output resistance = VCE

IC
(from corre-

sponding points on the graph)

Dynamic (or a.c.) output resistance = �VCE

�IC
(from the

slope of the graph)

(Note that �VCE means ‘change of VCE’ and �IC means
‘change of IC’)

Current gain (from the transfer characteristic, Fig-
ure 12.11)

Static (or d.c.) current gain = IC

IB
(from corresponding

points on the graph)

Dynamic (or a.c.) current gain = �IC

�IB
(from the slope

of the graph)

(Note that �IC means ‘change of IC’ and �IB means
‘change of IB’)

The method for determining these parameters from
the relevant characteristic is illustrated in the following
worked problems.

Problem 3. Figure 12.13 shows the input character-
istic for an n-p-n silicon transistor. When the base-
emitter voltage is 0.65V, determine (a) the value of
base current, (b) the static value of input resistance,
and (c) the dynamic value of input resistance.
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(a) From Figure 12.13, when VBE = 0.65V, base cur-
rent, IB = 250 µA (shown as (a) on the graph)

(b) When VBE = 0.65V, IB = 250 µA, hence,

the static value of input resistance

= VBE

IB
= 0.65

250 × 10−6 = 2.6 k�

(c) From Figure 12.13, VBE changes by 0.06V when IB
changes by 300 µA (as shown by (b) on the graph).
Hence,

dynamic value of input resistance

= �VBE

�IB
= 0.06

300 × 10−6 = 200 �
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Problem 4. Figure 12.14 shows the output char-
acteristic for an n-p-n silicon transistor. When the
collector-emitter voltage is 10V and the base current
is 80 µA, determine (a) the value of collector current,
(b) the static value of output resistance, and (c) the
dynamic value of output resistance.
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(a) From Figure 12.14, when VCE = 10V and IB = 80 µA,
(i.e. point (a, b) on the graph), the collector current,
IC = 10 mA

(b) When VCE = 10V and IB = 80 µA then IC = 10 mA
from part (a). Hence,

the static value of output resistance

= VCE

IC
= 10

10 × 10−3 = 1 k�

(c) When the change in VCE is 12V, the change in IC is
1.8 mA (shown as point (c) on the graph). Hence,

the dynamic value of output resistance

= �VCE

�IC
= 12

1.8 × 10−3 = 6.67 k�

Problem 5. Figure 12.15 shows the transfer charac-
teristic for an n-p-n silicon transistor. When the base
current is 2.5 mA, determine (a) the value of collector
current, (b) the static value of current gain, and (c) the
dynamic value of current gain.
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(a) From Figure 12.15, when IB = 2.5 mA, collector
current, IC = 280 mA (see point (a, b) on the graph)

(b) From part (a), when IB = 2.5 mA, IC = 280 mA hence,

the static value of current gain

= IC

IB
= 280 × 10−3

2.5 × 10−3 = 112

(c) In Figure 12.15, the tangent through the point (a, b)
is shown by the broken straight line (c). Hence,

the dynamic value of current gain

= �IC

�IB
= (460 − 110) × 10−3

(4.4 − 0.75) × 10−3 = 350

3.65
= 96

12.9 Current gain

As stated earlier, the common-emitter current gain is given
by the ratio of collector current, IC, to base current, IB.
We use the symbol hFE to represent the static value of
common-emitter current gain, thus:

hFE = IC

IB
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Table 12.2 Transistor characteristics and maximum ratings

Device Type IC max VCE max PTOT max hFE typical Application

BC108 n-p-n 100 mA 20V 300 mW 125 General-purpose small-signal amplifier
BCY70 n-p-n 200 mA −40V 360 mW 150 General-purpose small-signal amplifier
2N3904 n-p-n 200 mA 40V 310 mW 150 Switching
BF180 n-p-n 20 mA 20V 150 mW 100 RF amplifier
2N3053 n-p-n 700 mA 40V 800 mW 150 Low-frequency amplifier/driver
2N3055 n-p-n 15A 60V 115 W 50 Low-frequency power

Similarly, we use hfe to represent the dynamic value of
common-emitter current gain, thus:

hfe = �IC

�IB

As we showed earlier, values of hFE and hfe can be
obtained from the transfer characteristic (IC plotted
against IB). Note that hFE is found from corresponding
static values while hfe is found by measuring the slope
of the graph. Also note that, if the transfer characteris-
tic is linear, there is little (if any) difference between hFE
and hfe.

It is worth noting that current gain (hfe) varies with
collector current. For most small-signal transistors, hfe is
a maximum at a collector current in the range 1 mA and
l0 mA. Current gain also falls to very low values for power
transistors when operating at very high values of collector
current. Furthermore, most transistor parameters (particu-
larly common-emitter current gain, hfe) are liable to wide
variation from one device to the next. It is, therefore,
important to design circuits on the basis of the minimum
value for hfe in order to ensure successful operation with
a variety of different devices.

Problem 6. A bipolar transistor has a common-
emitter current gain of 125. If the transistor operates
with a collector current of 50 mA, determine the value
of base current.

Common-emitter current gain, hFE = IC

IB

from which, base current, IB = IC

hFE
= 50 × 10−3

125

= 400 µA

12.10 Typical BJT characteristics and
maximum ratings

Table 12.2 summarizes the characteristics of some typ-
ical bipolar junction transistors for different applications,
where IC max is the maximum collector current, VCE max
is the maximum collector-emitter voltage, PTOTmax is the
maximum device power dissipation, and hfe is the typical
value of common-emitter current gain.

Problem 7. Which of the bipolar transistors listed
in Table 12.2 would be most suitable for each of the
following applications: (a) the input stage of a radio
receiver, (b) the output stage of an audio amplifier, and
(c) generating a 5V square wave pulse.

(a) BF180, since this transistor is designed for use in radio
frequency (RF) applications

(b) 2N3055, since this is the only device in the list that
can operate at a sufficiently high power level

(c) 2N3904, since switching transistors are designed for
use in pulse and square wave applications

Now try the following exercise.

Exercise 38 Further problems on bipolar junction
transistors

1. Explain, with the aid of sketches, the operation
of an n-p-n transistor and also explain why the
collector current is very nearly equal to the emitter
current.

2. Describe the basic principle of operation of a
bipolar junction transistor, including why major-
ity carriers crossing into the base from the emitter
pass to the collector and why the collector current
is almost unaffected by the collector potential.
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3. Explain what is meant by ‘leakage current’ in a
bipolar junction transistor and why this can usually
be ignored.

4. For a transistor connected in common-emitter con-
figuration, sketch the typical output characteristics
relating collector current and the collector-emitter
voltage, for various values of base current. Explain
the shape of the characteristics.

5. Sketch the typical input characteristic relating base
current and the base-emitter voltage for a transistor
connected in common-emitter configuration and
explain its shape.

6. With the aid of a circuit diagram, explain how
the input and output characteristic of a common-
emitter n-p-n transistor may be produced.

7. Define the term ‘current gain’for a bipolar junction
transistor operating in common-emitter mode.

8. A bipolar junction transistor operates with a col-
lector current of 1.2A and a base current of 50 mA.
What will the value of emitter current be?

[1.25 A]

9. What is the value of common-emitter current gain
for the transistor in problem 8? [24]

10. Corresponding readings of base current, IB, and
base-emitter voltage, VBE, for a bipolar junction
transistor are given in the table below:

VBE (V) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
IB (µA) 0 0 0 0 1 3 19 57 130

Plot the IB/VBE characteristic for the device and
use it to determine (a) the value of IB when
VBE = 0.65V, (b) the static value of input resis-
tance when VBE = 0.65V, and (c) the dynamic
value of input resistance when VBE = 0.65V

[(a) 32.5 µA (b) 20 k� (c) 3 k�]

11. Corresponding readings of base current, IB, and
collector current, IC, for a bipolar junction tran-
sistor are given in the table below:

IB (µA) 0 10 20 30 40 50 60 70 80
IC (mA) 0 1.1 2.1 3.1 4.0 4.9 5.8 6.7 7.6

Plot the IC/IB characteristic for the device and use
it to determine the static value of common emitter
current gain when IB = 45 µA. [98]

12.11 Field effect transistors

Field effect transistors are available in two basic forms;
junction gate and insulated gate. The gate source junction
of a junction gate field effect transistor (JFET) is effec-
tively a reverse-biased p-n junction. The gate connection
of an insulated gate field effect transistor (IGFET), on
the other hand, is insulated from the channel and charge is
capacitively coupled to the channel. To keep things sim-
ple, we will consider only JFET devices. Figure 12.16
shows the basic construction of an n-channel JFET.

Gate

Source

Oxide  
layer

(insulation)

Drain

n+ n+p

n channel

p substrate

Figure 12.16

JFET transistors comprise a channel of p-type or n-type
material surrounded by material of the opposite polarity.
The ends of the channel (in which conduction takes place)
form electrodes known as the source and drain. The effect-
ive width of the channel (in which conduction takes place)
is controlled by a charge placed on the third (gate) elec-
trode. The effective resistance between the source and
drain is thus determined by the voltage present at the gate.
(The + signs in Figure 12.16 are used to indicate a region
of heavy doping thus n+ simply indicates a heavily doped
n-type region).

JFETs offer a very much higher input resistance when
compared with bipolar transistors. For example, the input
resistance of a bipolar transistor operating in common-
emitter mode is usually around 2.5 k�. A JFET transistor
operating in equivalent common-source mode would typ-
ically exhibit an input resistance of 100 M�! This feature
makes JFET devices ideal for use in applications where a
very high input resistance is desirable.

As with bipolar transistors, the characteristics of a FET
are often presented in the form of a set of graphs relating
voltage and current present at the transistors’ terminals.

12.12 Field effect transistor characteristics

A typical mutual characteristic (ID plotted against VGS)
for a small-signal general-purpose n-channel field effect
transistor operating in common-source mode is shown in
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Figure 12.17. This characteristic shows that the drain cur-
rent is progressively reduced as the gate-source voltage is
made more negative. At a certain value of VGS the drain
current falls to zero and the device is said to be cut-off.
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Figure 12.18 shows a typical family of output char-
acteristics (ID plotted against VDS) for a small-signal
general-purpose n-channel FET operating in common-
source mode. This characteristic comprises a family of
curves, each relating to a different value of gate-source
voltage VGS. You might also like to compare this char-
acteristic with the output characteristic for a transistor
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operating in common-emitter mode that you met earlier
in Figure 12.10.

As in the case of the bipolar junction transistor, the
output characteristic curves for an n-channel FET have a
‘knee’ that occurs at low values of VDS. Also, note how the
curves become flattened above this value with the drain
current ID not changing very significantly for a compara-
tively large change in drain-source voltage VDS. These
characteristics are, in fact, even flatter than those for a
bipolar transistor. Because of their flatness, they are often
said to represent a constant current characteristic.

The gain offered by a field effect transistor is normally
expressed in terms of its forward transconductance (gfs
or Yfs) in common-source mode. In this mode, the input
voltage is applied to the gate and the output current appears
in the drain (the source is effectively common to both the
input and output circuits).

In common-source mode, the static (or d.c.) forward
transfer conductance is given by:

gFS = ID

VGS
(from corresponding points on the graph)

whilst the dynamic (or a.c.) forward transfer conduct-
ance is given by:

gfs = �ID

�VGS
(from the slope of the graph)

(Note that �ID means ‘change of ID’ and �VGS means
‘change of VGS’)

The method for determining these parameters from the
relevant characteristic is illustrated in worked problem 8
below.

Forward transfer conductance (gfs) varies with drain
current. For most small-signal devices, gfs, is quoted for
values of drain current between 1 mA and 10 mA. Most
FET parameters (particularly forward transfer conduc-
tance) are liable to wide variation from one device to the
next. It is, therefore, important to design circuits on the
basis of the minimum value for gfs, in order to ensure
successful operation with a variety of different devices.
The experimental circuit for obtaining the common-source
characteristics of an n-channel JFET transistor is shown
in Figure 12.19.
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Problem 8. Figure 12.20 shows the mutual charac-
teristic for a junction gate field effect transistor. When
the gate-source voltage is −2.5V, determine (a) the
value of drain current, (b) the dynamic value of forward
transconductance.
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(a) From Figure 12.20, when VGS = −2.5V, the drain
current, ID = 5 mA

(b) From Figure 12.20,

gfs = �ID

�VGS
= (14.5 − 2.5) × 10−3

2.5

i.e. the dynamic value of forward transcon-

ductance = 12 × 10−3

2.5
= 4.8 mS (note the unit –

siemens, S)

Table 12.3 FET characteristics and maximum ratings

Device Type ID max VDS max PD max gfs typ Application

2N2819 n-chan. 10 mA 25V 200 mW 4.5 mS General purpose
2N5457 n-chan. 10 mA 25V 310 mW 1.2 mS General purpose
2N7000 n-chan. 200 mA 60V 400 mW 0.32 S Low-power switching
BF244A n-chan. 100 mA 30V 360 mW 3.3 mS RF amplifier
BSS84 p-chan. −130 mA −50V 360 mW 0.27 S Low-power switching
IRF830 n-chan. 4.5A 500V 75 W 3.0 S Power switching
MRF171A n-chan. 4.5A 65V 115 W 1.8 S RF power amplifier

Problem 9. A field effect transistor operates with a
drain current of 100 mA and a gate-source bias of −1V.
The device has a gfs value of 0.25. If the bias voltage
decreases to −1.1 V, determine (a) the change in drain
current, and (b) the new value of drain current.

(a) The change in gate-source voltage (VGS) is −0.1V
and the resulting change in drain current can be

determined from: gfs = �ID

�VGS

Hence, the change in drain current, �ID = gfs ×
�VGS = 0.25 × −0.1 = −0.025 A = −25 mA

(b) The new value of drain current = (100 − 25)
= 75 mA

12.13 Typical FET characteristics and maximum
ratings

Table 12.3 summarizes the characteristics of some typical
field effect transistors for different applications, where
ID max is the maximum drain current, VDS max is the
maximum drain-source voltage, PD max is the maximum
drain power dissipation, and gfs typ is the typical value
of forward transconductance for the transistor. The list
includes both depletion and enhancement types as well as
junction and insulated gate types.

Problem 10. Which of the field effect transistors
listed in Table 12.3 would be most suitable for each of
the following applications: (a) the input stage of a radio
receiver, (b) the output stage of a transmitter, and (c)
switching a load connected to a high-voltage supply.

(a) BF244A, since this transistor is designed for use in
radio frequency (RF) applications

(b) MRF171A, since this device is designed for RF power
applications

(c) IRF830, since this device is intended for switching
applications and can operate at up to 500V
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12.14 Transistor amplifiers

Three basic circuit arrangements are used for transistor
amplifiers and these are based on the three circuit con-
figurations that we met earlier (i.e. they depend upon
which one of the three transistor connections is made
common to both the input and the output). In the case of
bipolar transistors, the configurations are known as com-
mon emitter, common collector (or emitter follower) and
common base.

Where field effect transistors are used, the correspond-
ing configurations are common source, common drain
(or source follower) and common gate.

These basic circuit configurations depicted in
Figures 12.21 and 12.22 exhibit quite different
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Bipolar transistor amplifier circuit configurations

Figure 12.21

RL

TR

Input
Output

Common, 0 V

(a) Common source
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RL

TR

Input Output

Common, 0 V

+V

(b) Common drain

(c) Common gate

Field effect transistor amplifier circuit configurations

+V

Figure 12.22

performance characteristics, as shown in Tables 12.4 and
12.5 respectively.

A requirement of most amplifiers is that the output sig-
nal should be a faithful copy of the input signal or be
somewhat larger in amplitude. Other types of amplifier
are ‘non-linear’, in which case their input and output
waveforms will not necessarily be similar. In practice,
the degree of linearity provided by an amplifier can be
affected by a number of factors including the amount of
bias applied and the amplitude of the input signal. It is
also worth noting that a linear amplifier will become non-
linear when the applied input signal exceeds a threshold
value. Beyond this value the amplifier is said to be over-
driven and the output will become increasingly distorted
if the input signal is further increased.
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Table 12.4 Characteristics of BJT amplifiers

Bipolar transistor amplifiers (see Figure 12.21)

Parameter Common emitter Common collector Common base

Voltage gain medium/high (40) unity (1) high (200)
Current gain high (200) high (200) unity (1)
Power gain very high (8000) high (200) high (200)
Input resistance medium (2.5 k�) high (100 k�) low (200 �)
Output resistance medium/high (20 k�) low (100 �) high (100 k�)
Phase shift 180◦ 0◦ 0◦
Typical applications General-purpose, Impedance matching, RF and VHF

AF and RF amplifiers input and output stages amplifiers

Table 12.5 Characteristics of FET amplifiers

Field effect transistor amplifiers (see Figure 12.22)

Parameter Common source Common drain Common gate

Voltage gain medium/high (40) unity (1) high (250)
Current gain very high (200 000) very high (200 000) unity (1)
Power gain very high (8 000 000) very high (200 000) high (250)
Input resistance very high (1 M�) very high (1 M�) low (500 �)
Output resistance medium/high (50 k�) low (200 �) high (150 k�)
Phase shift 180◦ 0◦ 0◦
Typical applications General-purpose, AF Impedance matching RF and VHF

and RF amplifiers stages amplifiers

The optimum value of bias for linear (Class A) ampli-
fiers is that value which ensures that the active devices are
operated at the mid-point of their characteristics. In prac-
tice, this means that a static value of collector current will
flow even when there is no signal present. Furthermore,
the collector current will flow throughout the complete
cycle of an input signal (i.e. conduction will take place
over an angle of 360◦). At no stage should the transistor
be saturated (VCE ≈ 0V or VDS ≈ 0V) nor should it be
cut-off (VCE ≈ VCC or VDS ≈ VDD).

In order to ensure that a static value of collector current
flows in a transistor, a small current must be applied to the
base of the transistor. This current can be derived from the
same voltage rail that supplies the collector circuit (via
the collector load). Figure 12.23 shows a simple Class-A
common-emitter circuit in which the base bias resistor
R1, and collector load resistor, R2, are connected to a
common positive supply rail.

The a.c. signal is applied to the base terminal of the tran-
sistor via a coupling capacitor, C1. This capacitor removes
the d.c. component of any signal applied to the input ter-
minals and ensures that the base bias current delivered by
R1 is unaffected by any device connected to the input. C2
couples the signal out of the stage and also prevents d.c.
current flow appearing at the output terminals.

R1

C1

C2

R2

TR1

Input

Output

0 V

+Vcc

Simple Class - A amplifier

Figure 12.23

12.15 Load lines

The a.c. performance of a transistor amplifier stage can
be predicted using a load line superimposed on the rele-
vant set of output characteristics. For a bipolar transistor
operating in common-emitter mode the required charac-
teristics are IC plotted against VCE. One end of the load
line corresponds to the supply voltage (VCC) while the
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other end corresponds to the value of collector or drain
current that would flow with the device totally saturated
(VCE = 0V). In this condition:

IC = VCC

RL

where RL is the value of collector or drain load resistance.

Figure 12.24 shows a load line superimposed on a set of
output characteristics for a bipolar transistor operating in
common-emitter mode. The quiescent point (or operating
point) is the point on the load line that corresponds to the
conditions that exist when no-signal is applied to the stage.
In Figure 12.24, the base bias current is set at 20 µA so
that the quiescent point effectively sits roughly halfway
along the load line. This position ensures that the collector
voltage can swing both positively (above) and negatively
(below) its quiescent value (VCQ).

Ic (mA)

VCC

RL

Operating point
Input (base current)

signal

Output (collector current)
signal

IB = 40 µA

IB = 30 µA

IB = 20 µA

IB = 10 µA
Load line

VCCVCQ

ICQ

VCE(V)

Figure 12.24

The effect of superimposing an alternating base current
(of 20 µA peak-peak) to the d.c. bias current (of 20 µA)
can be clearly seen. The corresponding collector current
signal can be determined by simply moving up and down
the load line.

Problem 11. The characteristic curves shown in Fig-
ure 12.25 relate to a transistor operating in common-
emitter mode. If the transistor is operated with
IB = 30 µA, a load resistor of 1.2 k� and an 18V
supply, determine (a) the quiescent values of collec-
tor voltage and current (VCQ and ICQ), and (b) the
peak-peak output voltage that would be produced by
an input signal of 40 µA peak-peak.

IB = 50 µA

IB = 40 µA

IB = 30 µA

IB = 20 µA

IB = 10 µA

0 2 4 6 8 10 12 14 16

VCC = 18 V

VCC/RL = 15 mA 

ICQ = 7.3 mA 

VCQ = 9.2 V 

R
L = 1.2 kΩ 

20
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8

6

4

2

0

3.3 V 14.8 V

Collector-emitter voltage, VCE (V)

Collector current, IC mA

Operating point

Figure 12.25

(a) First we need to construct the load line on Fig-
ure 12.25. The two ends of the load line will corre-
spond to VCC, the 18V supply, on the collector-emitter
voltage axis and 18V/1.2 k�or 15 mA on the collector
current axis.

Next we locate the operating point (or quiescent
point) from the point of intersection of the IB = 30 µA
characteristic and the load line. Having located the
operating point we can read off the quiescent val-
ues, i.e. the no-signal values, of collector emitter
voltage (VCQ) and collector current (ICQ). Hence,
VCQ = 9.2V and ICQ = 7.3 mA.

(b) Next we can determine the maximum and minimum
values of collector-emitter voltage by locating the
appropriate intercept points on Figure 12.25. Note that
the maximum and minimum values of base current
will be (30 µA + 20 µA) = 50 µA on positive peaks of
the signal and (30 µA − 20 µA) = 10 µA on negative
peaks of the signal. The maximum and minimum val-
ues of VCE are, respectively, 14.8V and 3.3V. Hence,

the output voltage swing
= (14.8 V − 3.3 V) = 11.5V peak-peak

Problem 12. An n-p-n transistor has the following
characteristics, which may be assumed to be linear
between the values of collector voltage stated.

Base current Collector current (mA) for
(µA) collector voltages of:

1V 5V

30 1.4 1.6
50 3.0 3.5
70 4.6 5.2
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The transistor is used as a common-emitter amplifier
with load resistor RL = 1.2 k� and a collector supply
of 7V. The signal input resistance is 1 k�. If an input
current of 20 µA peak varies sinusoidally about a mean
bias of 50 µA, estimate (a) the quiescent values of col-
lector voltage and current, (b) the output voltage swing,
(c) the voltage gain, (d) the dynamic current gain, and
(e) the power gain.

The characteristics are drawn as shown in Figure 12.26.

70 µA

50 µA

30 µA

3.3

1.4

1 2

1

X

0

2

3

3

4

4

5

5
5.83

IC (mA)

VCE (V)

3.0 mA
pk–pk

3.6 V
pk–pk

6

6

7

3.1 4.9

Figure 12.26

The two ends of the load line will correspond to VCC,
the 7V supply, on the collector-emitter voltage axis and
7V/1.2 k�= 5.83 mA on the collector current axis.

(a) The operating point (or quiescent point), X, is located
from the point of intersection of the IB = 50 µA char-
acteristic and the load line. Having located the operat-
ing point we can read off the quiescent values, i.e. the
no-signal values, of collector emitter voltage (VCQ)
and collector current (ICQ). Hence, VCQ = 3.1V and
ICQ = 3.3 mA.

(b) The maximum and minimum values of collector-
emitter voltage may be determined by locating the
appropriate intercept points on Figure 12.26. Note
that the maximum and minimum values of base cur-
rent will be (50 µA + 20 µA) = 70 µA on positive
peaks of the signal and (50 µA − 20 µA) = 30 µA on
negative peaks of the signal. The maximum and min-
imum values of VCE are, respectively, 4.9V and 1.4V.
Hence,

the output voltage swing
= (4.9 V − 1.4 V) = 3.5V peak-peak

(c) Voltage gain = change in collector voltage

change in base voltage

The change in collector voltage = 3.5V from part (b).

The input voltage swing is given by: ibRi,

where ib is the base current swing = (70 − 30) = 40 µA
and Ri is the input resistance = 1 k�.

Hence, input voltage swing = 40 × 10−6 × 1 × 103

= 40 mV
= change in base

voltage.

Thus, voltage gain = change in collector voltage

change in base voltage

= �VC

�VB
= 3.5

40 × 10−3 = 87.5

(d) Dynamic current gain, hfe = �IC

�IB
From Figure 12.26, the output current swing, i.e. the
change in collector current, �IC = 3.0 mA peak to
peak. The input base current swing, the change in
base current, �IB = 40 µA.

Hence, the dynamic current gain,

hfe = �IC

�IB
= 3.0 × 10−3

40 × 10−6 = 75

(e) For a resistive load, the power gain is given by:

power gain = voltage gain × current gain

= 87.5 × 75 = 6562.5

Now try the following exercise.

Exercise 39 Further problems on transistors

1. State whether the following statements are true or
false:

(a) The purpose of a transistor amplifier is to
increase the frequency of the input signal.

(b) The gain of an amplifier is the ratio of the output
signal amplitude to the input signal amplitude.

(c) The output characteristics of a transistor relate
the collector current to the base current.

(d) If the load resistor value is increased the load
line gradient is reduced.

(e) In a common-emitter amplifier, the output volt-
age is shifted through 180◦ with reference to the
input voltage.

(f) In a common-emitter amplifier, the input and
output currents are in phase.
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(g) The dynamic current gain of a transistor is
always greater than the static current gain.

[(a) false (b) true (c) false
(d) true (e) true (f) true (g) true]

2. In relation to a simple transistor amplifier stage,
explain what is meant by the terms: (a) Class-A
(b) saturation (c) cut-off (d) quiescent point.

3. Sketch the circuit of a simple Class-A BJT amplifier
and explain the function of the components.

4. Explain, with the aid of a labelled sketch, how a
load line can be used to determine the operating
point of a simple Class-A transistor amplifier.

5. Sketch circuits showing how a JFET can be con-
nected as an amplifier in: (a) common source
configuration, (b) common drain configuration,
(c) common gate configuration. State typical val-
ues of voltage gain and input resistance for each
circuit.

6. The output characteristics for a BJT are shown in
Figure 12.27. If this device is used in a common-
emitter amplifier circuit operating from a 12V
supply with a base bias of 60 µA and a load resis-
tor of 1 k�, determine (a) the quiescent values of
collector-emitter voltage and collector current, and
(b) the peak-peak collector voltage when an 80 µA
peak-peak signal current is applied.

[(a) 5V, 7 mA (b) 8.5V]
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7. The output characteristics of a JFET are shown in
Figure 12.28. If this device is used in an amplifier
circuit operating from an 18V supply with a gate-
source bias voltage of −3V and a load resistance of
900 �, determine (a) the quiescent values of drain-
source voltage and drain current, (b) the peak-peak
output voltage when an input voltage of 2V peak-
peak is applied, and (c) the voltage gain of the stage.

[(a) 12.2V, 6.1 mA (b) 5.5V (c) 2.75]
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8. An amplifier has a current gain of 40 and a voltage
gain of 30. Determine the power gain. [1200]

9. The output characteristics of a transistor in
common-emitter mode configuration can be
regarded as straight lines connecting the following
points.

IB = 20 µA 50 µA 80 µA

VCE (v) 1.0 8.0 1.0 8.0 1.0 8.0
IC (mA) 1.2 1.4 3.4 4.2 6.1 8.1

Plot the characteristics and superimpose the load
line for a 1 k� load, given that the supply voltage
is 9V and the d.c. base bias is 50 µA. The signal
input resistance is 800 �. When a peak input current
of 30 µA varies sinusoidally about a mean bias of
50 µA, determine (a) the quiescent values of col-
lector voltage and current, (b) the output voltage
swing, (c) the voltage gain, (d) the dynamic current
gain, and (e) the power gain.

[(a) 5.2V, 3.7 mA (b) 5.1V (c) 106
(d) 87 (e) 9222]
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Revision test 3

This revision test covers the material contained in
chapters 8 to 12.

The marks for each question are shown in brackets at
the end of each question.

1. A conductor, 25 cm long, is situated at right-angles
to a magnetic field. Determine the strength of the
magnetic field if a current of 12 A in the conductor
produces a force on it of 4.5 N. (3)

2. An electron in a television tube has a charge of
1.5 × 10−19 C and travels at 3 × 107 m/s perpendicu-
lar to a field of flux density 20 µT. Calculate the force
exerted on the electron in the field. (3)

3. A lorry is travelling at 100 km/h. Assuming the verti-
cal component of the earth’s magnetic field is 40 µT
and the back axle of the lorry is 1.98 m, find the e.m.f.
generated in the axle due to motion. (4)

4. An e.m.f. of 2.5 kV is induced in a coil when a cur-
rent of 2 A collapses to zero in 5 ms. Calculate the
inductance of the coil. (4)

5. Two coils, P and Q, have a mutual inductance of
100 mH. If a current of 3 A in coil P is reversed in
20 ms, determine (a) the average e.m.f. induced in
coil Q, and (b) the flux change linked with coil Q if
it wound with 200 turns. (5)

6. A moving coil instrument gives a f.s.d. when the cur-
rent is 50 mA and has a resistance of 40 �. Determine
the value of resistance required to enable the instru-
ment to be used (a) as a 0–5 A ammeter, and (b) as a
0–200V voltmeter. State the mode of connection in
each case. (8)

7. An amplifier has a gain of 20 dB. It’s input power is
5 mW. Calculate it’s output power. (3)

8. A sinusoidal voltage trace displayed on an oscillo-
scope is shown in Figure RT3.1; the ‘time/cm’switch

Figure RT3.1

is on 50 ms and the ‘volts/cm’ switch is on 2V/cm.
Determine for the waveform (a) the frequency (b) the
peak-to-peak voltage (c) the amplitude (d) the r.m.s.
value. (7)

9. With reference to a p-n junction, briefly explain the
terms: (a) majority carriers (b) contact potential (c)
depletion layer (d) forward bias (e) reverse bias.

(10)

10. Briefly describe each of the following, drawing their
circuit diagram symbol and stating typical applica-
tions: (a) zenor diode (b) silicon controlled recti-
fier (c) light emitting diode (d) varactor diode (e)
Schottky diode. (20)

11. The following values were obtained during an exper-
iment on a varactor diode.

Voltage, V 5 10 15 20 25
Capacitance, pF 42 28 18 12 8

Plot a graph showing the variation of capacitance
with voltage for the varactor. Label your axes clearly
and use your graph to determine (a) the capacitance
when the reverse voltage is −17.5V, (b) the reverse
voltage for a capacitance of 35 pF, and (c) the change
in capacitance when the voltage changes from−2.5V
to −22.5V. (8)

12. Briefly describe, with diagrams, the action of an
n-p-n transistor. (7)

13. The output characteristics of a common-emitter tran-
sistor amplifier are given below. Assume that the
characteristics are linear between the values of col-
lector voltage stated.

IB = 10 µA 40 µA 70 µA

VCE (V) 1.0 7.0 1.0 7.0 1.0 7.0
IC (mA) 0.6 0.7 2.5 2.9 4.6 5.35

Plot the characteristics and superimpose the load line
for a 1.5 k� load and collector supply voltage of 8 V.
The signal input resistance is 1.2 k�. When a peak
input current of 30 µA varies sinusoidally about a
mean bias of 40 µA, determine (a) the quiescent val-
ues of collector voltage and current, (b) the output
voltage swing, (c) the voltage gain, (d) the dynamic
current gain, and (e) the power gain. (18)
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General

Charge Q = It Force F = ma

Work W = Fs Power P = W

t

Energy W = Pt

Ohm’s law V = IR or I = V

R
or R = V

I

Conductance G = 1

R

Power P =VI = I2R = V2

R
Resistance R = ρl

a

Resistance at θ◦C, Rθ = R0(1 + α0θ)

Terminal p.d. of source, V = E − Ir

Series circuit R = R1 + R2 + R3 + · · ·

Parallel network
1

R
= 1

R1
+ 1

R2
+ 1

R3
+ · · ·

Capacitors and capacitance

E = V

d
C = Q

V
Q = It D = Q

A
D

E
= ε0εr

C = ε0εrA(n − 1)

d

Capacitors in parallel C = C1 + C2 + C3 + · · ·
Capacitors in series

1

C
= 1

C1
+ 1

C2
+ 1

C3
+ · · ·

W = 1

2
CV2

Magnetic circuits

B = �

A
Fm = NI H = NI

l

B

H
= µ0µr

S = mmf

�
= l

µ0µrA

Electromagnetism

F = BIl sin θ F = QvB

Electromagnetic induction

E = Blv sin θ E = −N
d�

dt
= −L

dI

dt

W = 1

2
LI2

L = N�

I
= N2

S
E2 = −M

dI1

dt
M = N1N2

S

Measurements

Shunt Rs = Iara

Is
Multiplier RM = V − Ira

I

Power in decibels = 10 log
P2

P1
= 20 log

I2

I1
= 20 log

V2

V1

Wheatstone bridge Rx = R2R3

R1

Potentiometer E2 = E1

(
l2
l1

)



Ch13-H8139.tex 30/3/2007 17: 41 page 131

Part 2 Electrical principles and technology

13 D.c. circuit theory 133
14 Alternating voltages and currents 155

Revision test 4 167
15 Single-phase series a.c. circuits 168
16 Single-phase parallel a.c. circuits 185
17 D.c. transients 199
18 Operational amplifiers 212

Revision test 5 224
19 Three-phase systems 225
20 Transformers 237

Revision test 6 256
21 D.c. machines 257
22 Three-phase induction motors 277

Revision test 7 291
Main formulae for Part 2 292



This page intentionally left blank 



Ch13-H8139.tex 30/3/2007 17: 41 page 133

PART

2

13 D.c. circuit theory

At the end of this chapter you should be able to:
• state and use Kirchhoff’s laws to determine unknown

currents and voltages in d.c. circuits
• understand the superposition theorem and apply it

to find currents in d.c. circuits
• understand general d.c. circuit theory
• understand Thévenin’s theorem and apply a proced-

ure to determine unknown currents in d.c. circuits
• recognize the circuit diagram symbols for ideal

voltage and current sources

• understand Norton’s theorem and apply a procedure
to determine unknown currents in d.c. circuits

• appreciate and use the equivalence of the Thévenin
and Norton equivalent networks

• state the maximum power transfer theorem and use it
to determine maximum power in a d.c. circuit

13.1 Introduction

The laws which determine the currents and voltage drops
in d.c. networks are: (a) Ohm’s law (see Chapter 2), (b) the
laws for resistors in series and in parallel (see Chapter 5),
and (c) Kirchhoff’s laws (see Section 13.2 following). In
addition, there are a number of circuit theorems which
have been developed for solving problems in electrical
networks. These include:

(i) the superposition theorem (see Section 13.3),
(ii) Thévenin’s theorem (see Section 13.5),

(iii) Norton’s theorem (see Section 13.7), and
(iv) the maximum power transfer theorem (see Section

13.9).

13.2 Kirchhoff’s laws

Kirchhoff’s laws state:

(a) Current Law. At any junction in an electric circuit the
total current flowing towards that junction is equal to
the total current flowing away from the junction, i.e.
�I = 0
Thus, referring to Figure 13.1:

I1 + I2 = I3 + I4 + I5 or

I1 + I2 − I3 − I4 − I5 = 0

(b) Voltage Law. In any closed loop in a network, the
algebraic sum of the voltage drops (i.e. products of
current and resistance) taken around the loop is equal
to the resultant e.m.f. acting in that loop.

Figure 13.1

Thus, referring to Figure 13.2:
E1 − E2 = IR1 + IR2 + IR3

Figure 13.2

(Note that if current flows away from the positive
terminal of a source, that source is considered by
convention to be positive. Thus moving anticlockwise
around the loop of Figure 13.2, E1 is positive and E2
is negative.)

Problem 1. (a) Find the unknown currents marked in
Figure 13.3(a). (b) Determine the value of e.m.f. E in
Figure 13.3(b).
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Figure 13.3

(a) Applying Kirchhoff’s current law:

For junction B: 50 = 20 + I1. Hence I1 = 30 A
For junction C: 20 + 15 = I2. Hence I2 = 35 A
For junction D: I1 = I3 + 120

i.e. 30 = I3 + 120. Hence I3 = −90 A
(i.e. in the opposite direction to that shown in
Figure 13.3(a))

For junction E: I4 + I3 = 15

i.e. I4 = 15 − (−90).

Hence I4 = 105 A
For junction F: 120 = I5 + 40. Hence I5 = 80 A

(b) Applying Kirchhoff’s voltage law and moving clock-
wise around the loop of Figure 13.3(b) starting at
point A:

3 + 6 + E − 4 = (I)(2) + (I)(2.5) + (I)(1.5) + (I)(1)

= I(2 + 2.5 + 1.5 + 1)

i.e. 5 + E = 2(7), since I = 2 A
Hence E = 14 − 5 = 9 V

Problem 2. Use Kirchhoff’s laws to determine the
currents flowing in each branch of the network shown
in Figure 13.4.

Figure 13.4

Procedure

1. Use Kirchhoff’s current law and label current direc-
tions on the original circuit diagram. The directions
chosen are arbitrary, but it is usual, as a starting point,
to assume that current flows from the positive terminals
of the batteries. This is shown in Figure 13.5 where the
three branch currents are expressed in terms of I1 and
I2 only, since the current through R is I1 + I2.

Figure 13.5

2. Divide the circuit into two loops and apply Kirch-
hoff’s voltage law to each. From loop 1 of Figure 13.5,
and moving in a clockwise direction as indicated (the
direction chosen does not matter), gives

E1 = I1r1 + (I1 + I2)R, i.e. 4 = 2I1 + 4(I1 + I2),

i.e. 6I1 + 4I2 = 4 (1)

From loop 2 of Figure 13.5, and moving in an anticlock-
wise direction as indicated (once again, the choice of
direction does not matter; it does not have to be in the
same direction as that chosen for the first loop), gives:

E2 = I2r2 + (I1 + I2)R, i.e. 2 = I2 + 4(I1 + I2),

i.e. 4I1 + 5I2 = 2 (2)

3. Solve equations (1) and (2) for I1 and I2.

2 × (1) gives: 12I1 + 8I2 = 8 (3)

3 × (2) gives: 12I1 + 15I2 = 6 (4)

(3) – (4) gives: −7I2 = 2 hence I2 = −2

7
= −0.286 A

(i.e. I2 is flowing in the opposite direction to that shown
in Figure 13.5.)

From (1) 6I1 + 4(−0.286) = 4

6I1 = 4 + 1.144

Hence I1 = 5.144

6
= 0.857 A

Current flowing through resistance R is

I1 + I2 = 0.857 + (−0.286) = 0.571 A
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Note that a third loop is possible, as shown in Fig-
ure 13.6, giving a third equation which can be used as
a check:

E1 − E2 = I1r1 − I2r2

4 − 2 = 2I1 − I2

2 = 2I1 − I2

Figure 13.6

[Check: 2I1 − I2 = 2(0.857) − (−0.286) = 2]

Problem 3. Determine, using Kirchhoff’s laws, each
branch current for the network shown in Figure 13.7.

Figure 13.7

1. Currents, and their directions are shown labelled in Fig-
ure 13.8 following Kirchhoff’s current law. It is usual,
although not essential, to follow conventional current
flow with current flowing from the positive terminal of
the source.

Figure 13.8

2. The network is divided into two loops as shown in
Figure 13.8. Applying Kirchhoff’s voltage law gives:

For loop 1:

E1 + E2 = I1R1 + I2R2

i.e. 16 = 0.5I1 + 2I2 (1)

For loop 2:

E2 = I2R2 − (I1 − I2)R3

Note that since loop 2 is in the opposite direction to cur-
rent (I1 − I2), the volt drop across R3 (i.e. (I1 − I2)(R3))
is by convention negative.

Thus 12 = 2I2 − 5(I1 − I2) (2)

i.e. 12 = −5I1 + 7I2

3. Solving equations (1) and (2) to find I1 and I2:

10 × (1) gives 160 = 5I1 + 20I2 (3)

(2) + (3) gives 172 = 27I2 hence I2 = 172

27
= 6.37 A

From (1) : 16 = 0.5I1 + 2(6.37)

I1 = 16 − 2(6.37)

0.5
= 6.52 A

Current flowing in R3 = I1 − I2 = 6.52 − 6.3

= 0.15A

Problem 4. For the bridge network shown in Fig-
ure 13.9 determine the currents in each of the resistors.

Figure 13.9

Let the current in the 2 � resistor be I1, then by Kirchhoff’s
current law, the current in the 14 � resistor is (I − I1). Let
the current in the 32 � resistor be I2 as shown in Fig-
ure 13.10. Then the current in the 11 � resistor is (I − I2)
and that in the 3 � resistor is (I − I1 + I2).Applying Kirch-
hoff’s voltage law to loop 1 and moving in a clockwise
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Figure 13.10

direction as shown in Figure 13.10 gives:

54 = 2I1 + 11(I1 − I2)

i.e. 13I1 − 11I2 = 54 (1)

Applying Kirchhoff’s voltage law to loop 2 and moving
in an anticlockwise direction as shown in Figure 13.10
gives:

0 = 2I1 + 32I2 − 14(I − I1)

However I = 8 A

Hence 0 = 2I1 + 32I2 − 14(8 − I1)

i.e. 16I1 + 32I2 = 112 (2)

Equations (1) and (2) are simultaneous equations with two
unknowns, I1 and I2.

16 × (1) gives : 208I1 − 176I2 = 864 (3)

13 × (2) gives : 208I1 + 416I2 = 1456 (4)

(4) − (3) gives : 592I2 = 592

I2 = 1 A

Substituting for I2 in (1) gives:

13I2 − 11 = 54

I1 = 65

13
= 5 A

Hence,
the current flowing in the 2 � resistor = I1 = 5 A

the current flowing in the 14 � resistor = I − I1

= 8 − 5 = 3 A

the current flowing in the 32 � resistor = I2 = 1 A

the current flowing in the 11 � resistor = I1 − I2 = 5 − 1
= 4 A and

the current flowing in the 3 � resistor = I − I1 + I2

= 8 − 5 + 1

= 4 A

Now try the following exercise.

Exercise 40 Further problems on Kirchhoff’s
laws

1. Find currents I3, I4 and I6 in Figure 13.11
[I3 = 2A; I4 =− 1A; I6 = 3A]

Figure 13.11

2. For the networks shown in Figure 13.12, find the
values of the currents marked.

[(a) I1 = 4A, I2 = −1A, I3 = 13A
(b) I1 = 40A, I2 = 60A, I3 = 120A,

I4 = 100A, I5 = −80A]

Figure 13.12

3. Calculate the currents I1 and I2 in Figure 13.13.
[I1 = 0.8A, I2 = 0.5A]

0.5 A

0.2 A 0.5 A

I1

I2

4Ω

20Ω5Ω

10.5 V

Figure 13.13



Ch13-H8139.tex 30/3/2007 17: 41 page 137

D.c. circuit theory 137

PART

2

4. Use Kirchhoff’s laws to find the current flowing
in the 6 � resistor of Figure 13.14 and the power
dissipated in the 4 � resistor.

[2.162A, 42.07 W]

Figure 13.14

5. Find the current flowing in the 3 � resistor for the
network shown in Figure 13.15(a). Find also the p.d.
across the 10 � and 2 � resistors.

[2.715A, 7.410V, 3.948V]

Figure 13.15

6. For the network shown in Figure 13.15(b) find: (a)
the current in the battery, (b) the current in the 300 �
resistor, (c) the current in the 90 � resistor, and (d)
the power dissipated in the 150 � resistor.

[(a) 60.38 mA (b) 15.10 mA
(c) 45.28 mA (d) 34.20 mW]

7. For the bridge network shown in Figure 13.15(c),
find the currents I1 to I5.

[I1 = 1.26A, I2 = 0.74A, I3 = 0.16A
I4 = 1.42A, I5 = 0.58A]

13.3 The superposition theorem

The superposition theorem states:

‘In any network made up of linear resistances and contain-
ing more than one source of e.m.f., the resultant current
flowing in any branch is the algebraic sum of the cur-
rents that would flow in that branch if each source was
considered separately, all other sources being replaced at
that time by their respective internal resistances.’

Problem 5. Figure 13.16 shows a circuit containing
two sources of e.m.f., each with their internal resist-
ance. Determine the current in each branch of the
network by using the superposition theorem.

Figure 13.16

Procedure:

1. Redraw the original circuit with source E2 removed,
being replaced by r2 only, as shown in Figure 13.17(a).

Figure 13.17

2. Label the currents in each branch and their directions
as shown in Figure 13.17(a) and determine their values.
(Note that the choice of current directions depends on
the battery polarity, which, by convention is taken as
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flowing from the positive battery terminal as shown.)
R in parallel with r2 gives an equivalent resistance of:

4 × 1

4 + 1
= 0.8 �

From the equivalent circuit of Figure 13.17(b)

I1 = E1

r1 + 0.8
= 4

2 + 0.8
= 1.429A

From Figure 13.17(a)

I2 =
(

1

4 + 1

)
I1 = 1

5
(1.429) = 0.286A

and

I3 =
(

4

4 + 1

)
I1 = 4

5
(1.429)

= 1.143A by current division

3. Redraw the original circuit with source E1 removed,
being replaced by r1 only, as shown in Figure 13.18(a).

Figure 13.18

4. Label the currents in each branch and their directions
as shown in Figure 13.18(a) and determine their values.
r1 in parallel with R gives an equivalent resistance of:

2 × 4

2 + 4
= 8

6
= 1.333 �

From the equivalent circuit of Figure 13.18(b)

I4 = E2

1.333 + r2
= 2

1.333 + 1
= 0.857A

From Figure 13.18(a)

I5 =
(

2

2 + 4

)
I4 = 2

6
(0.857) = 0.286A

I6 =
(

4

2 + 4

)
I4 = 4

6
(0.857) = 0.571A

5. Superimpose Figure 13.18(a) on to Figure 13.17(a) as
shown in Figure 13.19.

Figure 13.19

6. Determine the algebraic sum of the currents flowing in
each branch.
Resultant current flowing through source 1, i.e.

I1 − I6 = 1.429 − 0.571

= 0.858 A (discharging)

Resultant current flowing through source 2, i.e.

I4 − I3 = 0.857 − 1.143

= −0.286 A (charging)

Resultant current flowing through resistor R, i.e.

I2 + I5 = 0.286 + 0.286

= 0.572A

The resultant currents with their directions are shown
in Figure 13.20.

Figure 13.20
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Problem 6. For the circuit shown in Figure 13.21,
find, using the superposition theorem, (a) the current
flowing in and the p.d. across the 18 � resistor, (b) the
current in the 8V battery and (c) the current in the 3V
battery.

Figure 13.21

1. Removing source E2 gives the circuit of Figure 13.22(a).

Figure 13.22

2. The current directions are labelled as shown in Fig-
ure 13.22(a), I1 flowing from the positive terminal of E1.

From Figure 13.22(b), I1 = E1

3 + 1.8
= 8

4.8
= 1.667A

From Figure 13.22(a), I2 =
(

18

2 + 18

)
I1

= 18

20
(1.667) = 1.500A

and I3 =
(

2

2 + 18

)
I1

= 2

20
(1.667) = 0.167A

3. Removing source E1 gives the circuit of Figure 13.23(a)
(which is the same as Figure 13.23(b)).

Figure 13.23

4. The current directions are labelled as shown in Fig-
ures 13.23(a) and 13.23(b), I4 flowing from the positive
terminal of E2

From Figure 13.23(c), I4 = E2

2 + 2.571
= 3

4.571

= 0.656A

From Figure 13.23(b), I5 =
(

18

3 + 18

)
I4 = 18

21
(0.656)

= 0.562A

I6 =
(

3

3 + 18

)
I4 = 3

21
(0.656)

= 0.094A

5. Superimposing Figure 13.23(a) on to Figure 13.22(a)
gives the circuit in Figure 13.24.

Figure 13.24
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6. (a) Resultant current in the 18 � resistor
= I3 − I6

= 0.167 − 0.094

= 0.073A

P.d. across the 18 � resistor

= 0.073 × 18 = 1.314V

(b) Resultant current in the 8V battery

= I1 + I5 = 1.667 + 0.562

= 2.229A (discharging)

(c) Resultant current in the 3V battery

= I2 + I4 = 1.500 + 0.656

= 2.156A (discharging)

Now try the following exercise.

Exercise 41 Further problems on the superposi-
tion theorem

1. Use the superposition theorem to find currents I1, I2
and I3 of Figure 13.25(a).

[I1 = 2A, I2 = 3A, I3 = 5A]

Figure 13.25

2. Use the superposition theorem to find the current in
the 8 � resistor of Figure 13.25(b). [0.385A]

3. Use the superposition theorem to find the cur-
rent in each branch of the network shown in
Figure 13.25(c).

[10V battery discharges at 1.429A
4V battery charges at 0.857A

Current through 10 � resistor is 0.571A]

4. Use the superposition theorem to determine the cur-
rent in each branch of the arrangement shown in
Figure 13.25(d).

[24V battery charges at 1.664A
52V battery discharges at 3.280A

Current in 20 � resistor is 1.616A]

13.4 General d.c. circuit theory

The following points involving d.c. circuit analysis need
to be appreciated before proceeding with problems using
Thévenin’s and Norton’s theorems:

(i) The open-circuit voltage, E, across terminals AB in
Figure 13.26 is equal to 10V, since no current flows
through the 2 � resistor and hence no voltage drop
occurs.

Figure 13.26

(ii) The open-circuit voltage, E, across terminals AB in
Figure 13.27(a) is the same as the voltage across the
6 � resistor. The circuit may be redrawn as shown
in Figure 13.27(b).

E =
(

6

6 + 4

)
(50)

by voltage division in a series circuit, i.e. E = 30V

Figure 13.27



Ch13-H8139.tex 30/3/2007 17: 41 page 141

D.c. circuit theory 141

PART

2

(iii) For the circuit shown in Figure 13.28(a)
representing a practical source supplying energy,
V = E − Ir, where E is the battery e.m.f., V is
the battery terminal voltage and r is the internal
resistance of the battery (as shown in Section
4.5). For the circuit shown in Figure 13.28(b),
V = E − (−I)r, i.e. V = E + Ir

Figure 13.28

(iv) The resistance ‘looking-in’ at terminals AB in Fig-
ure 13.29(a) is obtained by reducing the circuit in
stages as shown in Figures 13.29(b) to (d). Hence
the equivalent resistance across AB is 7 �

Figure 13.29

(v) For the circuit shown in Figure 13.30(a), the 3 �
resistor carries no current and the p.d. across the
20 � resistor is 10V. Redrawing the circuit gives
Figure 13.30(b), from which

E =
(

4

4 + 6

)
× 10 = 4V

(vi) If the 10V battery in Figure 13.30(a) is removed
and replaced by a short-circuit, as shown in

Figure 13.30

Figure 13.30(c), then the 20 � resistor may be
removed. The reason for this is that a short-
circuit has zero resistance, and 20 � in parallel
with zero ohms gives an equivalent resistance of:
(20 × 0/20 + 0), i.e. 0 �. The circuit is then as
shown in Figure 13.30(d), which is redrawn in Fig-
ure 13.30(e). From Figure 13.30(e), the equivalent
resistance across AB,

r = 6 × 4

6 + 4
+ 3 = 2.4 + 3 = 5.4 �

(vii) To find the voltage across AB in Figure 13.31:
Since the 20V supply is across the 5 � and 15 �
resistors in series then, by voltage division, the
voltage drop across AC,

Figure 13.31

VAC =
(

5

5 + 15

)
(20) = 5V

Similarly, VCB =
(

12

12 + 3

)
(20) = 16V.

VC is at a potential of +20V.

VA = VC − VAC = +20 − 5 = 15V and

VB = VC − VBC = +20 − 16 = 4V.
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Hence the voltage between AB is VA − VB =
15 − 4 = 11V and current would flow from A to
B since A has a higher potential than B.

(viii) In Figure 13.32(a), to find the equivalent resistance
across AB the circuit may be redrawn as in Fig-
ures 13.32(b) and (c). From Figure 13.32(c), the
equivalent resistance across AB

= 5 × 15

5 + 15
+ 12 × 3

12 + 3
= 3.75 + 2.4 = 6.15 �

Figure 13.32

(ix) In the worked problems in Sections 13.5 and 13.7
following, it may be considered that Thévenin’s
and Norton’s theorems have no obvious advantages
compared with, say, Kirchhoff’s laws. However,
these theorems can be used to analyse part of a cir-
cuit and in much more complicated networks the
principle of replacing the supply by a constant volt-
age source in series with a resistance (or impedance)
is very useful.

13.5 Thévenin’s theorem

Thévenin’s theorem states:

‘The current in any branch of a network is that which
would result if an e.m.f. equal to the p.d. across a break
made in the branch, were introduced into the branch,
all other e.m.f.’s being removed and represented by the
internal resistances of the sources.’

The procedure adopted when using Thévenin’s theorem
is summarized below. To determine the current in any
branch of an active network (i.e. one containing a source
of e.m.f.):

(i) remove the resistance R from that branch,
(ii) determine the open-circuit voltage, E, across the

break,
(iii) remove each source of e.m.f. and replace them by

their internal resistances and then determine the
resistance, r, ‘looking-in’ at the break,

(iv) determine the value of the current from the equivalent

circuit shown in Figure 13.33, i.e. I = E
R + r

Figure 13.33

Problem 7. Use Thévenin’s theorem to find the cur-
rent flowing in the 10 � resistor for the circuit shown
in Figure 13.34(a).

Following the above procedure:

(i) The 10 � resistance is removed from the circuit as
shown in Figure 13.34(b)

(ii) There is no current flowing in the 5 � resistor and
current I1 is given by:

I1 = 10

R1 + R2
= 10

2 + 8
= 1A

Figure 13.34
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P.d. across R2 = I1R2 = 1 × 8 = 8V
Hence p.d. across AB, i.e. the open-circuit voltage
across the break, E = 8V

(iii) Removing the source of e.m.f. gives the circuit of
Figure 13.34(c).

Resistance, r = R3 + R1R2

R1 + R2
= 5 + 2 × 8

2 + 8

= 5 + 1.6 = 6.6 �
(iv) The equivalent Thévenin’s circuit is shown in Fig-

ure 13.34(d).

Current I = E

R + r
= 8

10 + 6.6
= 8

16.6
= 0.482A

Hence the current flowing in the 10 � resistor of
Figure 13.34(a) is 0.482A

Problem 8. For the network shown in Figure 13.35(a)
determine the current in the 0.8 � resistor using
Thévenin’s theorem.

Following the procedure:

(i) The 0.8 � resistor is removed from the circuit as
shown in Figure 13.35(b).

(ii) Current I1 = 12

1 + 5 + 4
= 12

10
= 1.2A

P.d. across 4 � resistor = 4I1 = (4) (1.2) = 4.8V

Hence p.d. across AB, i.e. the open-circuit voltage
across AB, E = 4.8V

Figure 13.35

(iii) Removing the source of e.m.f. gives the circuit shown
in Figure 13.35(c). The equivalent circuit of Fig-
ure 13.35(c) is shown in Figure 13.35(d), from which,

resistance r = 4 × 6

4 + 6
= 24

10
= 2.4 �

(iv) The equivalent Thévenin’s circuit is shown in Figure
13.35(e), from which,

current I = E

r + R
= 4.8

2.4 + 0.8
= 4.8

3.2

I = 1.5A = current in the 0.8 � resistor

Problem 9. Use Thévenin’s theorem to determine the
current I flowing in the 4 � resistor shown in Fig-
ure 13.36(a). Find also the power dissipated in the 4 �
resistor.

Following the procedure:

(i) The 4 � resistor is removed from the circuit as shown
in Figure 13.36(b).

Figure 13.36
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(ii) Current I1 = E1 − E2

r1 + r2
= 4 − 2

2 + 1
= 2

3
A

P.d. across AB, E = E1 − I1r1 = 4 − ( 2
3

)
(2) = 2 2

3 V

(see Section 13.4(iii))

(Alternatively, p.d. across AB,

E = E2 − I1r2

= 2 − ( 2
3

)
(1) = 2 2

3 V

(iii) Removing the sources of e.m.f. gives the circuit
shown in Figure 13.36(c), from which resistance

r = 2 × 1

2 + 1
= 2

3
�

(iv) The equivalent Thévenin’s circuit is shown in Fig-
ure 13.36(d), from which,

current, I = E

r + R
= 2 2

3
2
3 + 4

= 8/3

14/3

= 8

14
= 0.571A

= current in the 4 � resistor

Power dissipated in 4 � resistor,
P = I2R = (0.571)2 (4) = 1.304 W

Problem 10. Use Thévenin’s theorem to determine
the current flowing in the 3 � resistance of the net-
work shown in Figure 13.37(a). The voltage source
has negligible internal resistance.

(Note the symbol for an ideal voltage source in Fig-
ure 13.37(a) which may be used as an alternative to the
battery symbol.)

Following the procedure

(i) The 3 � resistance is removed from the circuit as
shown in Figure 13.37(b).

(ii) The 1 2
3 � resistance now carries no current.

P.d. across 10 � resistor =
(

10

10 + 5

)
(24)

= 16V (see Section 13.4(v)).

Hence p.d. across AB, E = 16V
(iii) Removing the source of e.m.f. and replacing it by its

internal resistance means that the 20 � resistance is
short-circuited as shown in Figure 13.37(c) since its
internal resistance is zero. The 20 � resistance may
thus be removed as shown in Figure 13.37(d) (see
Section 13.4 (vi)).

Figure 13.37

From Figure 13.37(d), resistance,

r = 1
2

3
+ 10 × 5

10 + 5

= 1
2

3
+ 50

15
= 5 �

(iv) The equivalent Thévenin’s circuit is shown in Fig-
ure 13.37(e), from which

current, I = E

r + R
= 16

3 + 5
= 16

8
= 2A

= current in the 3 � resistance

Problem 11. A Wheatstone Bridge network is shown
in Figure 13.38(a). Calculate the current flowing in
the 32 � resistor, and its direction, using Thévenin’s
theorem. Assume the source of e.m.f. to have negligi-
ble resistance.
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Figure 13.38

Following the procedure:

(i) The 32 � resistor is removed from the circuit as
shown in Figure 13.38(b)

(ii) The p.d. between A and C,

VAC =
(

R1

R1 + R4

)
(E) =

(
2

2 + 11

)
(54) = 8.31V

The p.d. between B and C,

VBC =
(

R2

R2 + R3

)
(E) =

(
14

14 + 3

)
(54) = 44.47V

Hence the p.d. between A and B = 44.47 − 8.31 =
36.16V
Point C is at a potential of +54V. Between C and
A is a voltage drop of 8.31V. Hence the voltage at
point A is 54 − 8.31 = 45.69V. Between C and B is
a voltage drop of 44.47V. Hence the voltage at point
B is 54 − 44.47 = 9.53V. Since the voltage at A is
greater than at B, current must flow in the direction
A to B. (See Section 13.4 (vii)).

(iii) Replacing the source of e.m.f. with a short-circuit
(i.e. zero internal resistance) gives the circuit shown
in Figure 13.38(c). The circuit is redrawn and simpli-
fied as shown in Figure 13.38(d) and (e), from which
the resistance between terminals A and B,

r = 2 × 11

2 + 11
+ 14 × 3

14 + 3
= 22

13
+ 42

17
= 1.692 + 2.471 = 4.163 �

(iv) The equivalent Thévenin’s circuit is shown in Fig-
ure 13.38(f), from which,

current I = E

r + R5
= 36.16

4.163 + 32
= 1A

Hence the current in the 32 � resistor of Fig-
ure 13.38(a) is 1A, flowing from A to B

Now try the following exercise.

Exercise 42 Further problems on Thévenin’s
theorem

1. Use Thévenin’s theorem to find the current flow-
ing in the 14 � resistor of the network shown in
Figure 13.39. Find also the power dissipated in the
14 � resistor.

[0.434A, 2.64 W]

Figure 13.39
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2. Use Thévenin’s theorem to find the current flowing
in the 6 � resistor shown in Figure 13.40 and the
power dissipated in the 4 � resistor.

[2.162A, 42.07 W]

Figure 13.40

3. Repeat problems 1 to 4 of Exercise 41 on page 140
using Thevenin’s theorem.

4. In the network shown in Figure 13.41, the bat-
tery has negligible internal resistance. Find, using
Thévenin’s theorem, the current flowing in the 4 �
resistor.

[0.918A]

Figure 13.41

5. For the bridge network shown in Figure 13.42, find
the current in the 5 � resistor, and its direction, by
using Thévenin’s theorem.

[0.153A from B to A]

Figure 13.42

13.6 Constant-current source

A source of electrical energy can be represented by a
source of e.m.f. in series with a resistance. In Section
13.5, the Thévenin constant-voltage source consisted of
a constant e.m.f. E in series with an internal resistance
r. However this is not the only form of representation.
A source of electrical energy can also be represented by
a constant-current source in parallel with a resistance. It

may be shown that the two forms are equivalent. An ideal
constant-voltage generator is one with zero internal
resistance so that it supplies the same voltage to all loads.
An ideal constant-current generator is one with infinite
internal resistance so that it supplies the same current to
all loads.

Note the symbol for an ideal current source (BS 3939,
1985), shown in Figure 13.43.

Figure 13.43

13.7 Norton’s theorem

Norton’s theorem states:

‘The current that flows in any branch of a network is
the same as that which would flow in the branch if it
were connected across a source of electrical energy, the
short-circuit current of which is equal to the current that
would flow in a short-circuit across the branch, and
the internal resistance of which is equal to the resist-
ance which appears across the open-circuited branch
terminals.’

The procedure adopted when using Norton’s theorem is
summarized below.

To determine the current flowing in a resistance R of a
branch AB of an active network:

(i) short-circuit branch AB
(ii) determine the short-circuit current ISC flowing in the

branch
(iii) remove all sources of e.m.f. and replace them by

their internal resistance (or, if a current source exists,
replace with an open-circuit), then determine the
resistance r,‘looking-in’ at a break made between
A and B

(iv) determine the current I flowing in resistance R
from the Norton equivalent network shown in Fig-
ure 13.43, i.e.

I =
(

r
r + R

)
ISC
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Problem 12. Use Norton’s theorem to determine the
current flowing in the 10 � resistance for the circuit
shown in Figure 13.44(a).

Following the above procedure:

(i) The branch containing the 10 � resistance is short-
circuited as shown in Figure 13.44(b).

(ii) Figure 13.44(c) is equivalent to Figure 13.44(b).
Hence

ISC = 10

2
= 5A

(iii) If the 10V source of e.m.f. is removed from Fig-
ure 13.44(b) the resistance ‘looking-in’ at a break
made between A and B is given by:

r = 2 × 8

2 + 8
= 1.6 �

(iv) From the Norton equivalent network shown in Fig-
ure 13.44(d) the current in the 10 � resistance, by
current division, is given by:

I =
(

1.6

1.6 + 5 + 10

)
(5) = 0.482A

as obtained previously in problem 7 using Thévenin’s
theorem.

Figure 13.44

Problem 13. Use Norton’s theorem to determine
the current I flowing in the 4 � resistance shown in
Figure 13.45(a).

Figure 13.45

Following the procedure:

(i) The 4 � branch is short-circuited as shown in Fig-
ure 13.45(b).

(ii) From Figure 13.45(b), ISC = I1 + I2 = 4
2 + 2

1 = 4A
(iii) If the sources of e.m.f. are removed the resistance

‘looking-in’ at a break made between A and B is
given by:

r = 2 × 1

2 + 1
= 2

3
�

(iv) From the Norton equivalent network shown in Fig-
ure 13.45(c) the current in the 4 � resistance is
given by:

I =
[

2/3

(2/3) + 4

]
(4) = 0.571A,

as obtained previously in problems 2, 5 and 9 using
Kirchhoff’s laws and the theorems of superposition
and Thévenin.

Problem 14. Use Norton’s theorem to determine the
current flowing in the 3 � resistance of the network
shown in Figure 13.46(a). The voltage source has
negligible internal resistance.
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Figure 13.46

Following the procedure:

(i) The branch containing the 3 � resistance is short-
circuited as shown in Figure 13.46(b).

(ii) From the equivalent circuit shown in Figure 13.46(c),

ISC = 24

5
= 4.8A

(iii) If the 24V source of e.m.f. is removed the resist-
ance ‘looking-in’ at a break made between A and B
is obtained from Figure 13.46(d) and its equivalent
circuit shown in Figure 13.46(e) and is given by:

r = 10 × 5

10 + 5
= 50

15
= 3

1

3
�

(iv) From the Norton equivalent network shown in Fig-
ure 13.46(f) the current in the 3 � resistance is
given by:

I =
[

3 1
3

3 1
3 + 1 2

3 + 3

]
(4.8) = 2A,

as obtained previously in problem 10 usingThévenin’s
theorem.

Problem 15. Determine the current flowing in the 2 �
resistance in the network shown in Figure 13.47(a).

Figure 13.47

Following the procedure:

(i) The 2 � resistance branch is short-circuited as shown
in Figure 13.47(b).

(ii) Figure 13.47(c) is equivalent to Figure 13.47(b).

Hence ISC =
(

6

6 + 4

)
(15) = 9A by current division.

(iii) If the 15A current source is replaced by an open-
circuit then from Figure 13.47(d) the resistance
‘looking-in’at a break made betweenA and B is given
by (6 + 4) � in parallel with (8 + 7) �, i.e.

r = (10)(15)

10 + 15
= 150

25
= 6 �

(iv) From the Norton equivalent network shown in Fig-
ure 13.47(e) the current in the 2 � resistance is
given by:

I =
(

6

6 + 2

)
(9) = 6.75A
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Now try the following exercise.

Exercise 43 Further problems on Norton’s
theorem

1. Repeat problems 1 to 4 of Exercise 41 on page 140
using Norton’s theorem.

2. Repeat problems 1, 2, 4 and 5 of Exercise 42 on
page 145 using Norton’s theorem.

3. Determine the current flowing in the 6 � resistance
of the network shown in Figure 13.48 by using
Norton’s theorem. [2.5 mA]

Figure 13.48

13.8 Thévenin and Norton equivalent networks

The Thévenin and Norton networks shown in Figure 13.49
are equivalent to each other. The resistance ‘looking-in’
at terminals AB is the same in each of the networks,
i.e. r.

Figure 13.49

If terminals AB in Figure 13.49(a) are short-circuited,
the short-circuit current is given by E/r. If terminals
AB in Figure 13.49(b) are short-circuited, the short-
circuit current is ISC . For the circuit shown in Fig-
ure 13.49(a) to be equivalent to the circuit in Figure
13.49(b) the same short-circuit current must flow. Thus
ISC = E/r.

Figure 13.50 shows a source of e.m.f. E in series with
a resistance r feeding a load resistance R.

Figure 13.50

From Figure 13.50, I = E

r + R
= E/r

(r + R)/r
=

(
r

r + R

)
E

r

i.e. I =
(

r

r + R

)
ISC

From Figure 13.51 it can be seen that, when viewed from
the load, the source appears as a source of current ISC
which is divided between r and R connected in parallel.

Figure 13.51

Thus the two representations shown in Figure 13.49 are
equivalent.

Problem 16. Convert the circuit shown in Fig-
ure 13.52 to an equivalent Norton network.

Figure 13.52

If terminals AB in Figure 13.52 are short-circuited, the
short-circuit current ISC = 10

2 = 5A
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The resistance ‘looking-in’ at terminals AB is 2 �.
Hence the equivalent Norton network is as shown in
Figure 13.53.

Figure 13.53

Problem 17. Convert the network shown in Fig-
ure 13.54 to an equivalent Thévenin circuit.

Figure 13.54

The open-circuit voltage E across terminals AB in Fig-
ure 13.54 is given by: E = (ISC) (r) = (4) (3) = 12V.

The resistance ‘looking-in’ at terminals AB is 3 �.
Hence the equivalent Thévenin circuit is as shown in
Figure 13.55.

Figure 13.55

Problem 18. (a) Convert the circuit to the left of
terminals AB in Figure 13.56(a) to an equivalent
Thévenin circuit by initially converting to a Norton
equivalent circuit. (b) Determine the current flowing
in the 1.8 � resistor.

Figure 13.56

(a) For the branch containing the 12V source, converting
to a Norton equivalent circuit gives ISC = 12/3 = 4A
and r1 = 3 �. For the branch containing the 24V
source, converting to a Norton equivalent circuit
gives ISC2 = 24/2 = 12A and r2 = 2 �.

Thus Figure 13.56(b) shows a network equivalent to
Figure 13.56(a).

From Figure 13.56(b) the total short-circuit current
is 4 + 12 = 16A

and the total resistance is given by:
3 × 2

3 + 2
= 1.2 �

Thus Figure 13.56(b) simplifies to Figure 13.56(c).

The open-circuit voltage across AB of Fig-
ure 13.56(c), E = (16)(1.2) = 19.2V, and the resist-
ance ‘looking-in’at AB is 1.2 �. Hence the Thévenin
equivalent circuit is as shown in Figure 13.56(d).

(b) When the 1.8 � resistance is connected between ter-
minals A and B of Figure 13.56(d) the current I
flowing is given by:

I = 19.2

1.2 + 1.8
= 6.4A

Problem 19. Determine by successive conversions
between Thévenin and Norton equivalent networks a
Thévenin equivalent circuit for terminals AB of Fig-
ure 13.57(a). Hence determine the current flowing in
the 200 � resistance.

For the branch containing the 10V source, converting to
a Norton equivalent network gives

ISC = 10

2000
= 5 mA and r1 = 2 k�.
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Figure 13.57

For the branch containing the 6V source, converting to a
Norton equivalent network gives

ISC = 6

3000
= 2 mA and r2 = 3 k�.

Thus the network of Figure 13.57(a) converts to Fig-
ure 13.57(b).

Combining the 5 mA and 2 mA current sources gives
the equivalent network of Figure 13.57(c) where the short-
circuit current for the original two branches considered is
7 mA and the resistance is

2 × 3

2 + 3
= 1.2 k�.

Both of the Norton equivalent networks shown in Fig-
ure 13.57(c) may be converted to Thévenin equiva-
lent circuits. The open-circuit voltage across CD is:

(7 × 10−3) (1.2 × 103) = 8.4V and the resistance ‘looking-
in’ at CD is 1.2 k�.

The open-circuit voltage across EF is (1 × 10−3)
(600) = 0.6V and the resistance ‘looking-in’ at EF is
0.6 k�. Thus Figure 13.57(c) converts to Figure 13.57(d).
Combining the two Thévenin circuits gives

E = 8.4 − 0.6 = 7.8V and the resistance

r = (1.2 + 0.6) k� = 1.8 k�.

Thus the Thévenin equivalent circuit for terminals AB of
Figure 13.57(a) is as shown in Figure 13.57(e).

Hence the current I flowing in a 200 � resistance con-
nected between A and B is given by:

I = 7.8

1800 + 200
= 7.8

2000
= 3.9 mA

Now try the following exercise.

Exercise 44 Further problems on Thévenin and
Norton equivalent networks

1. Convert the circuits shown in Figure 13.58 to
Norton equivalent networks.

[(a) ISC = 25A, r = 2 �
(b) ISC = 2 mA, r = 5 �]

Figure 13.58

2. Convert the networks shown in Figure 13.59 to
Thévenin equivalent circuits.

[(a) E = 20V, r = 4 �
(b) E = 12 mV, r = 3 �]

Figure 13.59
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3. (a) Convert the network to the left of terminals
AB in Figure 13.60 to an equivalent Thévenin
circuit by initially converting to a Norton
equivalent network.

(b) Determine the current flowing in the 1.8 �
resistance connected between A and B in
Figure 13.60.

[(a) E = 18V, r = 1.2 � (b) 6A]

Figure 13.60

4. Determine, by successive conversions between
Thévenin and Norton equivalent networks, a
Thévenin equivalent circuit for terminalsAB of Fig-
ure 13.61. Hence determine the current flowing in
a 6 � resistor connected between A and B.

[E = 9 1
3 V, r = 1 �, 1 1

3 A]

Figure 13.61

13.9 Maximum power transfer theorem

The maximum power transfer theorem states:

‘The power transferred from a supply source to a load is
at its maximum when the resistance of the load is equal to
the internal resistance of the source.’

Hence, in Figure 13.62, when R = r the power transferred
from the source to the load is a maximum.

Figure 13.62

Typical practical applications of the maximum power
transfer theorem are found in stereo amplifier design,
seeking to maximize power delivered to speakers, and
in electric vehicle design, seeking to maximize power
delivered to drive a motor.

Problem 20. The circuit diagram of Figure 13.63
shows dry cells of source e.m.f. 6V, and internal resist-
ance 2.5 �. If the load resistance RL is varied from 0
to 5 � in 0.5 � steps, calculate the power dissipated by
the load in each case. Plot a graph of RL (horizontally)
against power (vertically) and determine the maximum
power dissipated.

Figure 13.63

When RL = 0, current I = E

r + RL
= 6

2.5
= 2.4A and

power dissipated in RL , P = I2RL ,

i.e. P = (2.4)2 (0) = 0 W

When RL = 0.5 �, current I = E

r + RL
= 6

2.5 + 0.5
= 2A

and P = I2RL = (2)2 (0.5) = 2 W

When RL = 1.0 �, current I = 6

2.5 + 1.0
= 1.714A

and P = (1.714)2 (1.0) = 2.94 W
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With similar calculations the following table is produced:

RL(�) I = E

r + RL
P = I2RL(W )

0 2.4 0
0.5 2.0 2.00
1.0 1.714 2.94
1.5 1.5 3.38
2.0 1.333 3.56
2.5 1.2 3.60
3.0 1.091 3.57
3.5 1.0 3.50
4.0 0.923 3.41
4.5 0.857 3.31
5.0 0.8 3.20

A graph of RL against P is shown in Figure 13.64. The
maximum value of power is 3.60 W which occurs when
RL is 2.5 �, i.e. maximum power occurs when RL = r,
which is what the maximum power transfer theorem states.

Figure 13.64

Problem 21. A d.c. source has an open-circuit voltage
of 30V and an internal resistance of 1.5 �. State the
value of load resistance that gives maximum power
dissipation and determine the value of this power.

The circuit diagram is shown in Figure 13.65. From the
maximum power transfer theorem, for maximum power
dissipation,

Figure 13.65

RL = r = 1.5 �

From Figure 13.65, current I = E

r + RL
= 30

1.5 + 1.5
= 10A

Power P = I2RL = (10)2(1.5) = 150 W = maximum power
dissipated

Problem 22. Find the value of the load resistor RL
shown in Figure 13.66(a) that gives maximum power
dissipation and determine the value of this power.

Figure 13.66

Using the procedure for Thévenin’s theorem:

(i) Resistance RL is removed from the circuit as shown
in Figure 13.66(b).

(ii) The p.d. across AB is the same as the p.d. across the
12 � resistor.

Hence E =
(

12

12 + 3

)
(15) = 12V

(iii) Removing the source of e.m.f. gives the circuit of
Figure 13.66(c),

from which resistance, r = 12 × 3

12 + 3
= 36

15
= 2.4 �

(iv) The equivalent Thévenin’s circuit supplying termin-
als AB is shown in Figure 13.66(d), from which,
current, I = E/(r + RL)

For maximum power, RL = r = 2.4 �.

Thus current, I = 12

2.4 + 2.4
= 2.5A.

Power, P, dissipated in load RL ,

P = I2RL = (2.5)2 (2.4) = 15 W
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Now try the following exercise.

Exercise 45 Further problems on the maximum
power transfer theorem

1. A d.c. source has an open-circuit voltage of 20 V and
an internal resistance of 2 �. Determine the value
of the load resistance that gives maximum power
dissipation. Find the value of this power.

[2 �, 50 W]

2. A d.c. source having an open-circuit voltage of 42V
and an internal resistance of 3 � is connected to
a load of resistance RL . Determine the maximum
power dissipated by the load. [147 W]

3. A voltage source comprising six 2V cells, each hav-
ing an internal resistance of 0.2 �, is connected to
a load resistance R. Determine the maximum power
transferred to the load. [30 W]

4. The maximum power dissipated in a 4 � load is
100 W when connected to a d.c. voltage V and
internal resistance r. Calculate (a) the current in the
load, (b) internal resistance r, and (c) voltage V.

[(a) 5A (b) 4 � (c) 40V]

5. Determine the value of the load resistance RL
shown in Figure 13.67 that gives maximum power
dissipation and find the value of the power.

[RL = 1.6 �, P = 57.6 W]

Figure 13.67
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14 Alternating voltages and currents

At the end of this chapter you should be able to:
• appreciate why a.c. is used in preference to d.c.
• describe the principle of operation of an a.c.

generator
• distinguish between unidirectional and alternating

waveforms
• define cycle, period or periodic time T and frequency

f of a waveform

• perform calculations involving T = 1

f• define instantaneous, peak, mean and rms values,
and form and peak factors for a sine wave

• calculate mean and rms values and form and peak
factors for given waveforms

• understand and perform calculations on the general
sinusoidal equation υ = Vm sin(ωt ± φ)

• understand lagging and leading angles
• combine two sinusoidal waveforms (a) by plotting

graphically, (b) by drawing phasors to scale and (c)
by calculation

• understand rectification, and describe methods of
obtaining half-wave and full-wave rectification

14.1 Introduction

Electricity is produced by generators at power stations
and then distributed by a vast network of transmission
lines (called the National Grid system) to industry and for
domestic use. It is easier and cheaper to generate alter-
nating current (a.c.) than direct current (d.c.) and a.c. is
more conveniently distributed than d.c. since its voltage
can be readily altered using transformers. Whenever d.c.
is needed in preference to a.c., devices called rectifiers are
used for conversion (see Section 14.7).

14.2 The a.c. generator

Let a single turn coil be free to rotate at constant angu-
lar velocity symmetrically between the poles of a magnet
system as shown in Figure 14.1.

Figure 14.1

An e.m.f. is generated in the coil (from Faraday’s
Laws) which varies in magnitude and reverses its direc-
tion at regular intervals. The reason for this is shown in
Figure 14.2. In positions (a), (e) and (i) the conductors
of the loop are effectively moving along the magnetic
field, no flux is cut and hence no e.m.f. is induced. In
position (c) maximum flux is cut and hence maximum
e.m.f. is induced. In position (g), maximum flux is cut
and hence maximum e.m.f. is again induced. However,
using Fleming’s right-hand rule, the induced e.m.f. is in
the opposite direction to that in position (c) and is thus
shown as −E. In positions (b), (d), (f) and (h) some flux is
cut and hence some e.m.f. is induced. If all such positions
of the coil are considered, in one revolution of the coil,
one cycle of alternating e.m.f. is produced as shown. This
is the principle of operation of the a.c. generator (i.e. the
alternator).

Figure 14.2
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14.3 Waveforms

If values of quantities which vary with time t are plotted to
a base of time, the resulting graph is called a waveform.
Some typical waveforms are shown in Figure 14.3. Wave-
forms (a) and (b) are unidirectional waveforms, for,
although they vary considerably with time, they flow in
one direction only (i.e. they do not cross the time axis
and become negative). Waveforms (c) to (g) are called
alternating waveforms since their quantities are contin-
ually changing in direction (i.e. alternately positive and
negative).

Figure 14.3

A waveform of the type shown in Figure 14.3(g) is
called a sine wave. It is the shape of the waveform of e.m.f.
produced by an alternator and thus the mains electricity
supply is of ‘sinusoidal’ form.
One complete series of values is called a cycle (i.e. from
O to P in Figure 14.3(g)).
The time taken for an alternating quantity to complete one
cycle is called the period or the periodic time, T, of the
waveform.
The number of cycles completed in one second is called the
frequency, f , of the supply and is measured in hertz, Hz.

The standard frequency of the electricity supply in Great
Britain is 50 Hz.

T = 1
f

or f = 1
T

Problem 1. Determine the periodic time for frequen-
cies of (a) 50 Hz and (b) 20 kHz.

(a) Periodic time T = 1

f
= 1

50
= 0.02 s or 20 ms

(b) Periodic time T = 1

f
= 1

20 000
= 0.000 05 s or 50 µs

Problem 2. Determine the frequencies for periodic
times of (a) 4 ms, (b) 4 µs.

(a) Frequency f = 1

T
= 1

4 × 10−3 = 1000

4
= 250 Hz

(b) Frequency f = 1

T
= 1

4 × 10−6 = 1 000 000

4

= 250 000 Hz or 250 kHz or 0.25 MHz

Problem 3. An alternating current completes 5 cycles
in 8 ms. What is its frequency?

Time for 1 cycle = 8

5
ms = 1.6 ms = periodic time T

Frequency f = 1

T
= 1

1.6 × 10−3 = 1 000

1.6
= 10 000

16

= 625 Hz

Now try the following exercise.

Exercise 46 Further problems on frequency and
periodic time

1. Determine the periodic time for the following
frequencies:
(a) 2.5 Hz (b) 100 Hz (c) 40 kHz

[(a) 0.4 s (b) 10 ms (c) 25 µs]
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2. Calculate the frequency for the following periodic
times:
(a) 5 ms (b) 50 µs (c) 0.2 s

[(a) 0.2 kHz (b) 20 kHz (c) 5 Hz]

3. An alternating current completes 4 cycles in 5 ms.
What is its frequency? [800 Hz]

14.4 A.c. values

Instantaneous values are the values of the alternating
quantities at any instant of time. They are represented by
small letters, i, υ, e, etc. (see Figures 14.3(f) and (g)).

The largest value reached in a half cycle is called the
peak value or the maximum value or the amplitude of
the waveform. Such values are represented by Vm, Im,
etc. (see Figures 14.3(f) and (g)). A peak-to-peak value
of e.m.f. is shown in Figure 14.3(g) and is the difference
between the maximum and minimum values in a cycle.

The average or mean value of a symmetrical alternat-
ing quantity, (such as a sine wave), is the average value
measured over a half cycle, (since over a complete cycle
the average value is zero).

Average or mean value = area under the curve
length of base

The area under the curve is found by approximate methods
such as the trapezoidal rule, the mid-ordinate rule or Simp-
son’s rule. Average values are represented by VAV , IAV , etc.

For a sine wave,
average value = 0.637 × maximum value
(i.e. 2/π × maximum value)

The effective value of an alternating current is that cur-
rent which will produce the same heating effect as an
equivalent direct current. The effective value is called the
root mean square (rms) value and whenever an alter-
nating quantity is given, it is assumed to be the rms
value. For example, the domestic mains supply in Great
Britain is 240V and is assumed to mean ‘240V rms’. The
symbols used for rms values are I , V , E, etc. For a non-
sinusoidal waveform as shown in Figure 14.4 the rms value
is given by:

I =
√(

i21 + i22 + . . . + i2n
n

)

where n is the number of intervals used.

Figure 14.4

For a sine wave,
rms value = 0.707 × maximum value
(i.e. 1/

√
2 × maximum value)

Form factor = rms value
average value

For a sine wave,
form factor = 1.11

Peak factor = maximum value
rms value

For a sine wave,
peak factor = 1.41

The values of form and peak factors give an indication of
the shape of waveforms.

Problem 4. For the periodic waveforms shown in
Figure 14.5 determine for each: (i) frequency (ii) aver-
age value over half a cycle (iii) rms value (iv) form
factor and (v) peak factor.

Figure 14.5
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(a) Triangular waveform (Figure 14.5(a))

(i) Time for 1 complete cycle = 20 ms = periodic
time, T

Hence frequency f = 1

T
= 1

20 × 10−3 = 1000

20

= 50 Hz

(ii) Area under the triangular waveform for a half
cycle

= 1
2 × base × height = 1

2 × (10 × 10−3) × 200

= 1 volt second

Average value of waveform

= area under curve

length of base
= 1 volt second

10 × 10−3 second

= 1000

10
= 100V

(iii) In Figure 14.5(a), the first 1/4 cycle is divided
into 4 intervals.

Thus rms value =
√(

v2
1 + v2

2 + v2
3 + v2

4

4

)

=
√(

252 + 752 + 1252 + 1752

4

)

= 114.6V

(Note that the greater the number of intervals chosen,
the greater the accuracy of the result. For example, if
twice the number of ordinates as that chosen above
are used, the rms value is found to be 115.6V)

(iv) Form factor = rms value

average value
= 114.6

100
= 1.15

(v) Peak factor = maximum value

rms value
= 200

114.6
= 1.75

(b) Rectangular waveform (Figure 14.5(b))

(i) Time for 1 complete cycle = 16 ms = periodic time,
T

Hence frequency, f = 1

T
= 1

16 × 10−3 = 1000

16
= 62.5 Hz

(ii) Average value over half a cycle = area under curve

length of base

= 10 × (8 × 10−3)

8 × 10−3

= 10A

(iii) The rms value =
√(

i21 + i22 + . . . + i2n
n

)
= 10A

however many intervals are chosen, since the wave-
form is rectangular.

(iv) Form factor = rms value

average value
= 10

10
= 1

(v) Peak factor = maximum value

rms value
= 10

10
= 1

Problem 5. The following table gives the correspond-
ing values of current and time for a half cycle of
alternating current.

time t 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
(ms)
current 0 7 14 23 40 56 68 76 60 5 0
i (A)

Assuming the negative half cycle is identical in shape
to the positive half cycle, plot the waveform and find
(a) the frequency of the supply, (b) the instantaneous
values of current after 1.25 ms and 3.8 ms, (c) the peak
or maximum value, (d) the mean or average value, and
(e) the rms value of the waveform.

The half cycle of alternating current is shown plotted in
Figure 14.6

(a) Time for a half cycle = 5 ms. Hence the time for
1 cycle, i.e. the periodic time, T = 10 ms or 0.01 s

Frequency, f = 1

T
= 1

0.01
= 100 Hz

(b) Instantaneous value of current after 1.25 ms is 19A,
from Figure 14.6

Instantaneous value of current after 3.8 ms is 70A,
from Figure 14.6

(c) Peak or maximum value = 76A

(d) Mean or average value = area under curve

length of base

Using the mid-ordinate rule with 10 intervals, each of
width 0.5 ms gives:

area under curve

= (0.5 × 10−3)[3 + 10 + 19 + 30 + 49 + 63

+73 + 72 + 30 + 2] (see Figure 14.6)

= (0.5 × 10−3)(351)
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Figure 14.6

Hence mean or average value = (0.5 × 10−3)(351)

5 × 10−3

= 35.1A

(e) rms value

=
√⎛

⎜⎜⎝
32 + 102 + 192 + 302 + 492 + 632+

732 + 722 + 302 + 22

10

⎞
⎟⎟⎠

=
√(

19 157

10

)
= 43.8A

Problem 6. Calculate the rms value of a sinusoidal
current of maximum value 20A.

For a sine wave, rms value = 0.707 × maximum value

= 0.707 × 20 = 14.14A

Problem 7. Determine the peak and mean values for
a 240V mains supply.

For a sine wave, rms value of voltage V = 0.707 × Vm

A 240V mains supply means that 240V is the rms value,
hence

Vm = V

0.707
= 240

0.707
= 339.5V = peak value

Mean value VAV = 0.637 Vm = 0.637 × 339.5 = 216.3V

Problem 8. A supply voltage has a mean value of
150V. Determine its maximum value and its rms value.

For a sine wave, mean value = 0.637 × maximum value

Hence maximum value = mean value

0.637
= 150

0.637
= 235.5V

rms value = 0.707 × maximum value = 0.707 × 235.5

= 166.5V

Now try the following exercise.

Exercise 47 Further problems on a.c values of
waveforms

1. An alternating current varies with time over half a
cycle as follows:

current 0 0.7 2.0 4.2 8.4 8.2 2.5 1.0 0.4 0.2 0
(A)
time 0 1 2 3 4 5 6 7 8 9 10
(ms)

The negative half cycle is similar. Plot the curve and
determine: (a) the frequency (b) the instantaneous
values at 3.4 ms and 5.8 ms (c) its mean value and
(d) its rms value

[(a) 50 Hz (b) 5.5A, 3.1A (c) 2.8A (d) 4.0A]

2. For the waveforms shown in Figure 14.7 determine
for each (i) the frequency (ii) the average value over
half a cycle (iii) the rms value (iv) the form factor
(v) the peak factor.

[(a) (i) 100 Hz (ii) 2.50A (iii) 2.87A (iv) 1.15
(v) 1.74

(b) (i) 250 Hz (ii) 20V (iii) 20V (iv) 1.0 (v) 1.0
(c) (i) 125 Hz (ii) 18A (iii) 19.56A (iv) 1.09

(v) 1.23
(d) (i) 250 Hz (ii) 25V (iii) 50V (iv) 2.0 (v) 2.0]

3. An alternating voltage is triangular in shape, rising
at a constant rate to a maximum of 300V in 8 ms
and then falling to zero at a constant rate in 4 ms.
The negative half cycle is identical in shape to the
positive half cycle. Calculate (a) the mean voltage
over half a cycle, and (b) the rms voltage

[(a) 150V (b) 170V]



Ch14-H8139.tex 30/3/2007 17: 44 page 160

160 Electrical Circuit Theory and Technology

4. Calculate the rms value of a sinusoidal curve of
maximum value 300V [212.1V]

5. Find the peak and mean values for a 200V mains
supply [282.9V, 180.2V]

6. A sinusoidal voltage has a maximum value of 120V.
Calculate its rms and average values.

[84.8V, 76.4V]

7. A sinusoidal current has a mean value of 15.0A.
Determine its maximum and rms values.

[23.55A, 16.65A]

Figure 14.7

14.5 The equation of a sinusoidal waveform

In Figure 14.8, OA represents a vector that is free to rotate
anticlockwise about 0 at an angular velocity of ω rad/s. A
rotating vector is known as a phasor.

Figure 14.8

After time t seconds the vector OA has turned through
an angle ωt. If the line BC is constructed perpendicular to
OA as shown, then

sin ωt = BC

OB
i.e. BC = OB sin ωt

If all such vertical components are projected on to a
graph of y against angle ωt (in radians), a sine curve
results of maximum value OA. Any quantity which varies
sinusoidally can thus be represented as a phasor.

A sine curve may not always start at 0◦. To show this a
periodic function is represented by y = sin(ωt ± φ),where
φ is the phase (or angle) difference compared with
y = sin ωt. In Figure 14.9(a), y2 = sin(ωt + φ) starts φ
radians earlier than y1 = sin ωt and is thus said to lead y1
byφ radians. Phasors y1 and y2 are shown in Figure 14.9(b)
at the time when t = 0.

Figure 14.9
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In Figure 14.9(c), y4 = sin(ωt−φ) starts φ radians later
than y3 = sin ωt and is thus said to lag y3 by φ radians.
Phasors y3 and y4 are shown in Figure 14.9(d) at the time
when t = 0.
Given the general sinusoidal voltage, v =Vmsin(ωt ± φ),
then

(i) Amplitude or maximum value = Vm
(ii) Peak-to-peak value = 2 Vm

(iii) Angular velocity = ω rad/s
(iv) Periodic time, T = 2π/ω seconds
(v) Frequency, f = ω/2π Hz (since ω = 2π f)

(vi) φ = angle of lag or lead (compared with
v = Vm sin ωt)

Problem 9. An alternating voltage is given by
v = 282.8 sin 314 t volts. Find (a) the rms voltage,
(b) the frequency and (c) the instantaneous value of
voltage when t = 4 ms.

(a) The general expression for an alternating voltage is

v = Vm sin(ωt ± φ).

Comparing v = 282.8 sin 314t with this general
expression gives the peak voltage as 282.8V

Hence the rms voltage = 0.707 × maximum value

= 0.707 × 282.8 = 200V

(b) Angular velocity, ω = 314 rad/s, i.e. 2πf = 314

Hence frequency, f = 314

2π
= 50 Hz

(c) When t = 4 ms, v = 282.8 sin(314 × 4 × 10−3)

= 282.8 sin(1.256) = 268.9V

(Note that 1.256 radians =
[

1.256 × 180

π

]◦

= 71.96◦

Hence v = 282.8 sin 71.96◦ = 268.9V)

Problem 10. An alternating voltage is given by

v = 75 sin(200πt − 0.25) volts.

Find (a) the amplitude, (b) the peak-to-peak value,
(c) the rms value, (d) the periodic time, (e) the fre-
quency, and (f ) the phase angle (in degrees and
minutes) relative to 75 sin 200πt.

Comparing v = 75 sin(200πt − 0.25) with the general
expression v = Vm sin(ωt ± φ) gives:

(a) Amplitude, or peak value = 75V
(b) Peak-to-peak value = 2 × 75 = 150V
(c) The rms value = 0.707 × maximum value

= 0.707 × 75 = 53V
(d) Angular velocity, ω = 200π rad/s

Hence periodic time, T = 2π

ω
= 2π

200π
= 1

100
= 0.01 s or 10 ms

(e) Frequency, f = 1

T
= 1

0.01
= 100 Hz

(f) Phase angle, φ = 0.25 radians lagging 75 sin 200πt

0.25 rads =
(

0.25 × 180

π

)◦
= 14.32 ◦ = 14◦19′

Hence phase angle = 14◦19′ lagging

Problem 11. An alternating voltage, v, has a periodic
time of 0.01 s and a peak value of 40V. When time t is
zero, v = −20V. Express the instantaneous voltage in
the form v = Vm sin(ωt ± φ).

Amplitude, Vm = 40V

Periodic time T = 2π

ω
hence angular velocity,

ω = 2π

T
= 2π

0.01
= 200π rad/s

v = Vm sin(ωt + φ) thus becomesv = 40 sin(200πt + φ)V

When time t = 0, v = −20V

i.e. −20 = 40 sin φ

so that sin φ = −20

40
= −0.5

Hence φ = sin−1 (−0.5) = −30◦ =
(
−30 × π

180

)
rads

= −π

6
rads

Thus v = 40 sin
(

200πt − π

6

)
V

Problem 12. The current in an a.c. circuit at any time
t seconds is given by:
i = 120 sin(100πt + 0.36) amperes. Find:

(a) the peak value, the periodic time, the frequency
and phase angle relative to 120 sin 100πt
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(b) the value of the current when t = 0
(c) the value of the current when t = 8 ms
(d) the time when the current first reaches 60A, and
(e) the time when the current is first a maximum

(a) Peak value = 120A

Periodic time T = 2π

ω
= 2π

100π
(since ω = 100π)

= 1

50
= 0.02 s or 20 ms

Frequency, f = 1

T
= 1

0.02
= 50 Hz

Phase angle = 0.36 rads =
(

0.36 × 180

π

)◦

= 20◦38′ leading

(b) When t = 0, i = 120 sin(0 + 0.36) = 120 sin 20◦38′
= 49.3A

(c) When t = 8 ms, i = 120 sin

[
100π

(
8

103

)
+ 0.36

]

= 120 sin 2.8733(=120 sin 164◦38′) = 31.8A

(d) When i = 60A, 60 = 120 sin(100πt + 0.36)

thus
60

120
= sin(100πt + 0.36)

so that (100πt + 0.36) = sin−1 0.5 = 30◦ = π

6
rads

= 0.5236 rads

Hence time, t = 0.5236 − 0.36

100π
= 0.521 ms

(e) When the current is a maximum, i = 120A

Thus 120 = 120 sin(100πt + 0.36)

1 = sin(100πt + 0.36)

(100πt + 0.36) = sin−1 1 = 90◦ = π

2
rads

= 1.5708 rads

Hence time, t = 1.5708 − 0.36

100π
= 3.85 ms

Now try the following exercise.

Exercise 48 Further problems on the equation of
a sinusoidal waveform

1. An alternating voltage is represented by
v = 20 sin 157.1 t volts. Find (a) the maxi-
mum value (b) the frequency (c) the periodic time.
(d) What is the angular velocity of the phasor
representing this waveform?

[(a) 20V (b) 25 Hz (c) 0.04 s (d) 157.1 rads/s]

2. Find the peak value, the rms value, the periodic
time, the frequency and the phase angle (in degrees
and minutes) of the following alternating quantities:

(a) v = 90 sin 400πt volts
[90V, 63.63V, 5 ms, 200 Hz, 0◦]

(b) i = 50 sin (100πt + 0.30) amperes
[50A, 35.35A, 0.02 s, 50 Hz, 17◦11′ lead]

(c) e = 200 sin (628.4t − 0.41) volts
[200V, 141.4V, 0.01 s, 100 Hz, 23◦29′ lag]

3. A sinusoidal current has a peak value of 30A and
a frequency of 60 Hz. At time t = 0, the current is
zero. Express the instantaneous current i in the form
i = Im sin ωt [i = 30 sin 120πt A]

4. An alternating voltage v has a periodic time of 20 ms
and a maximum value of 200V. When time t = 0,
v = −75 volts. Deduce a sinusoidal expression for
v and sketch one cycle of the voltage showing
important points.

[v = 200 sin (100πt − 0.384)V]

5. The instantaneous value of voltage in an a.c. circuit
at any time t seconds is given by:

v = 100 sin (50πt − 0.523)V.

Find:

(a) the peak-to-peak voltage, the periodic time, the
frequency and the phase angle

(b) the voltage when t = 0
(c) the voltage when t = 8 ms
(d) the times in the first cycle when the voltage is

60V
(e) the times in the first cycle when the voltage is

−40V, and
(f) the first time when the voltage is a maximum.
Sketch the curve for one cycle showing relevant
points.

[(a) 200V, 0.04 s, 25 Hz, 29◦58′ lagging
(b) −49.95V (c) 66.96V (d) 7.426 ms, 19.23 ms
(e) 25.95 ms, 40.71 ms (f) 13.33 ms]
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14.6 Combination of waveforms

The resultant of the addition (or subtraction) of two
sinusoidal quantities may be determined either:

(a) by plotting the periodic functions graphically (see
worked Problems 13 and 16), or

(b) by resolution of phasors by drawing or calculation
(see worked Problems 14 and 15).

Problem 13. The instantaneous values of two alter-
nating currents are given by i1 = 20 sin ωt amperes and
i2 = 10 sin(ωt + π/3) amperes. By plotting i1 and i2 on
the same axes, using the same scale, over one cycle,
and adding ordinates at intervals, obtain a sinusoidal
expression for i1 + i2.

i1 = 20 sin ωt and i2 = 10 sin
(
ωt + π

3

)
are shown plotted

in Figure 14.10.
Ordinates of i1 and i2 are added at, say, 15◦ intervals (a

pair of dividers are useful for this).

Figure 14.10

For example,

at 30◦, i1 + i2 = 10 + 10 = 20A

at 60◦, i1 + i2 = 8.7 + 17.3 = 26A

at 150◦, i1 + i2 = 10 + (−5) = 5A, and so on.

The resultant waveform for i1 + i2 is shown by the broken
line in Figure 14.10. It has the same period, and hence
frequency, as i1 and i2. The amplitude or peak value is
26.5A.

The resultant waveform leads the curve i1 = 20 sin ωt
by 19◦

i.e.
(

19 × π

180

)
rads = 0.332 rads

Hence the sinusoidal expression for the resultant i1 + i2 is
given by:

iR = i1 + i2 = 26.5 sin (ωt + 0.332)A

Problem 14. Two alternating voltages are
represented by v1 = 50 sin ωt volts and
v2 = 100 sin (ωt − π/6)V. Draw the phasor
diagram and find, by calculation, a sinusoidal
expression to represent v1 + v2.

Phasors are usually drawn at the instant when time t = 0.
Thus v1 is drawn horizontally 50 units long and v2 is drawn
100 units long lagging v1 by π/6 rads, i.e. 30◦. This is
shown in Figure 14.11(a) where 0 is the point of rotation
of the phasors.

Figure 14.11

Procedure to draw phasor diagram to represent v1 + v2:

(i) Draw v1 horizontal 50 units long, i.e. Oa of Fig-
ure 14.11(b)

(ii) Join v2 to the end of v1 at the appropriate angle, i.e.
ab of Figure 14.11(b)

(iii) The resultant vR = v1 + v2 is given by the length Ob
and its phase angle φ may be measured with respect
to v1

Alternatively, when two phasors are being added the
resultant is always the diagonal of the parallelogram, as
shown in Figure 14.11(c).
From the drawing, by measurement, vR = 145V and angle
φ = 20◦ lagging v1.
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A more accurate solution is obtained by calculation,
using the cosine and sine rules. Using the cosine rule on
triangle Oab of Figure 14.11(b) gives:

v2
R = v2

1 + v2
2 − 2v1v2 cos 150◦

= 502 + 1002 − 2(50)(100) cos 150◦

= 2500 + 10 000 − (−8660)

vR = √
(21 160) = 145.5 V

Using the sine rule,
100

sin φ
= 145.5

sin 150◦

from which sin φ = 100 sin 150◦

145.5
= 0.3436

and φ = sin−1 0.3436 = 20◦6′ = 0.35 radians, and lags v1

Hence vR = v1 + v2 = 145.5 sin(ωt − 0.35)V

Problem 15. Find a sinusoidal expression for
(i1 + i2) of Problem 13, (a) by drawing phasors, (b) by
calculation.

(a) The relative positions of i1 and i2 at time t = 0 are
shown as phasors in Figure 14.12(a). The phasor dia-
gram in Figure 14.12(b) shows the resultant iR ,and iR
is measured as 26A and angle φ as 19◦ or 0.33 rads
leading i1.

Hence, by drawing, iR = 26 sin(ωt + 0.33)A

Figure 14.12

(b) From Figure 14.12(b), by the cosine rule:

i2R = 202 + 102 − 2(20)(10)( cos 120◦)

from which iR = 26.46A

By the sine rule:
10

sin φ
= 26.46

sin 120◦

from which φ = 19.10◦ (i.e. 0.333 rads)

Hence, by calculation iR = 26.46 sin(ωt + 0.333)A

An alternative method of calculation is to use complex
numbers (see Chapter 23).

Then i1 + i2 = 20 sin ωt + 10 sin
(
ωt + π

3

)

≡ 20∠0 + 10∠π

3
rad

or 20∠0◦ + 10∠60◦

= (20 + j0) + (5 + j8.66)

= (25 + j8.66) = 26.46∠19.106◦

or 26.46∠0.333 rad

≡ 26.46 sin(ωt + 0.333)A

Problem 16. Two alternating voltages are given by
v1 = 120 sin ωt volts and v2 = 200 sin(ωt − π/4) volts.
Obtain sinusoidal expressions for v1 − v2 (a) by plot-
ting waveforms, and (b) by resolution of phasors.

(a) v1 = 120 sin ωt andv2 = 200 sin (ωt − π/4) are shown
plotted in Figure 14.13. Care must be taken when sub-
tracting values of ordinates especially when at least
one of the ordinates is negative. For example

Figure 14.13
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at 30◦, v1 − v2 = 60 − (−52) = 112V

at 60◦, v1 − v2 = 104 − 52 = 52V

at 150◦, v1 − v2 = 60 − 193 = −133V and so on

The resultant waveform, vR = v1 − v2, is shown by
the broken line in Figure 14.13. The maximum value
of vR is 143V and the waveform is seen to lead v1 by
99◦ (i.e. 1.73 radians)

Hence, by drawing, vR = v1−v2

= 143 sin(ωt + 1.73) volts

(b) The relative positions of v1 and v2 are shown at time
t = 0 as phasors in Figure 14.14(a). Since the resultant
of v1 − v2 is required, −v2 is drawn in the opposite
direction to +v2 and is shown by the broken line in
Figure 14.14(a). The phasor diagram with the result-
ant is shown in Figure 14.14(b) where −v2 is added
phasorially to v1
By resolution:

Figure 14.14

Sum of horizontal components of v1 and v2

= 120 cos 0◦ + 200 cos 135◦ = −21.42

Sum of vertical components of v1 and v2

= 120 sin 0◦ + 200 sin 135◦ = 141.4

From Figure 14.14(c), resultant

vR = √
[(−21.42)2 + (141.4)2] = 143.0,

and tan φ′ = 141.4

21.42
= tan 6.6013, from which

φ′ = tan−1 6.6013 = 81◦23′ and

φ = 98◦37′ or 1.721 radians

Hence, by resolution of phasors,

vR = v1 − v2 = 143.0 sin(ωt + 1.721) volts

Now try the following exercise.

Exercise 49 Further problems on the combination
of waveforms

1. The instantaneous values of two alternating volt-
ages are given by v1 = 5 sin ωt and
v2 = 8 sin(ωt − π/6). By plotting v1 and v2 on the
same axes, using the same scale, over one cycle,
obtain expressions for (a) v1 + v2 and (b) v1 − v2

[(a) v1 + v2 = 12.6 sin(ωt − 0.32)V
(b) v1 − v2 = 4 sin(ωt + 2.0)V]

2. Repeat Problem 1 by calculation
[(a) 12.58 sin(ωt − 0.324)
(b) 4.44 sin(ωt + 2.02)]

3. Construct a phasor diagram to represent i1 + i2
where i1 = 12 sin ωt and i2 = 15 sin (ωt + π/3). By
measurement, or by calculation, find a sinusoidal
expression to represent i1 + i2

[(23.43 sin(ωt + 0.588)]

4. Determine, either by plotting graphs and adding
ordinates at intervals, or by calculation, the follow-
ing periodic functions in the form
v = Vm sin (ωt ± φ)

(a) 10 sin ωt + 4 sin (ωt + π/4)
[13.14 sin (ωt + 0.217)]

(b) 80 sin (ωt + π/3) + 50 sin (ωt − π/6)
[94.34 sin (ωt + 0.489)]

(c) 100 sin ωt − 70 sin(ωt − π/3)
[88.88 sin (ωt + 0.751)]

5. The voltage drops across two components when
connected in series across an a.c. supply are
v1 = 150 sin 314.2t and v2 = 90 sin(314.2t − π/5)
volts respectively. Determine (a) the voltage of the
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supply, in trigonometric form, (b) the r.m.s. value
of the supply voltage, and (c) the frequency of the
supply.

[(a) 229 sin (314.2t − 0.233)V
(b) 161.9V (c) 50 Hz]

6. If the supply to a circuit is 25 sin 628.3t volts and the
voltage drop across one of the components is 18 sin
(628.3t −0.52) volts, calculate (a) the voltage drop
across the remainder of the circuit, (b) the supply
frequency, and (c) the periodic time of the supply.

[(a) 12.96 sin(628.3t + 0.762)V
(b) 100 Hz (c) 10 ms]

7. The voltages across three components in a series
circuit when connected across an a.c. supply are:

v1 = 30 sin
(

300πt − π

6

)
volts,

v2 = 40 sin
(

300πt + π

4

)
volts and

v3 = 50 sin
(

300πt + π

3

)
volts.

Calculate (a) the supply voltage, in sinusoidal form,
(b) the frequency of the supply, (c) the periodic
time, and (d) the r.m.s. value of the supply.

[(a) 97.39 sin(300πt + 0.620)V (b) 150 Hz
(c) 6.67 ms (d) 68.85V]

14.7 Rectification

The process of obtaining unidirectional currents and volt-
ages from alternating currents and voltages is called
rectification. Automatic switching in circuits is carried
out by diodes.

Using a single diode, as shown in Figure 14.15, half-
wave rectification is obtained. When P is sufficiently
positive with respect to Q, diode D is switched on and
current i flows. When P is negative with respect to Q,
diode D is switched off. Transformer T isolates the equip-
ment from direct connection with the mains supply and
enables the mains voltage to be changed.

Figure 14.15

Two diodes may be used as shown in Figure 14.16
to obtain full wave rectification. A centre-tapped

transformer T is used. When P is sufficiently positive with
respect to Q, diode D1 conducts and current flows (shown
by the broken line in Figure 14.16). When S is positive
with respect to Q, diode D2 conducts and current flows
(shown by the continuous line in Figure 14.16). The cur-
rent flowing in R is in the same direction for both half
cycles of the input. The output waveform is thus as shown
in Figure 14.16.

Figure 14.16

Four diodes may be used in a bridge rectifier circuit, as
shown in Figure 14.17 to obtain full wave rectification.
As for the rectifier shown in Figure 14.16, the current
flowing in R is in the same direction for both half cycles
of the input giving the output waveform shown.

Figure 14.17

To smooth the output of the rectifiers described above,
capacitors having a large capacitance may be connected
across the load resistor R. The effect of this is shown on
the output in Figure 14.18.

Figure 14.18
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Revision test 4

This revision test covers the material contained in
chapters 13 and 14.

The marks for each question are shown in brackets at
the end of each question.

1. Find the current flowing in the 5 � resistor of the circuit
shown in Figure RT4.1 using (a) Kirchhoff’s laws, (b)
the superposition theorem, (c) Thévenin’s theorem, (d)
Norton’s theorem. Demonstrate that the same answer
results from each method. Find also the current flowing
in each of the other two branches of the circuit. (27)

10 V 3 V

1 Ω

5 Ω

2 Ω

Figure RT4.1

2. A d.c. voltage source has an internal resistance of 2 �
and an open-circuit voltage of 24V. State the value of
load resistance that gives maximum power dissipation
and determine the value of this power. (5)

3. A sinusoidal voltage has a mean value of 3.0 A.
Determine it’s maximum and r.m.s. values. (4)

4. The instantaneous value of current in an a.c. circuit at
any time t seconds is given by:

i = 50 sin(100πt − 0.45)mA

Determine

(a) the peak to peak current, the frequency, the periodic
time, and the phase angle (in degrees and minutes)

(b) the current when t = 0
(c) the current when t = 8 ms
(d) the first time when the current is a maximum.

Sketch the current for one cycle showing relevant
points. (14)
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15 Single-phase series a.c. circuits

At the end of this chapter you should be able to:
• draw phasor diagrams and current and voltage wave-

forms for (a) purely resistive (b) purely inductive and
(c) purely capacitive a.c. circuits

• perform calculations involving XL = 2πfL and

XC = 1

2πfC• draw circuit diagrams, phasor diagrams and volt-
age and impedance triangles for R–L, R–C and
R–L–C series a.c. circuits and perform calculations
using Pythagoras’ theorem, trigonometric ratios and

Z = V

I• understand resonance
• derive the formula for resonant frequency and use it

in calculations

• understand Q-factor and perform calculations using
VL(or VC)

V
or

ωrL

R
or

1

ωrCR
or

1

R

√(
L

C

)

• understand bandwidth and half-power points

• perform calculations involving ( f2 − f1) = fr
Q• understand selectivity and typical values of Q-factor

• appreciate that power P in an a.c. circuit is given by
P =VI cos φ or I2

RR and perform calculations using
these formulae

• understand true, apparent and reactive power and
power factor and perform calculations involving these
quantities

15.1 Purely resistive a.c. circuit

In a purely resistive a.c. circuit, the current IR and applied
voltage VR are in phase. See Figure 15.1.

Figure 15.1

15.2 Purely inductive a.c. circuit

In a purely inductive a.c. circuit, the current IL lags the
applied voltage VL by 90◦ (i.e. π/2 rads). See Figure 15.2.

Figure 15.2

In a purely inductive circuit the opposition to the flow of
alternating current is called the inductive reactance, XL

XL = VL

IL
= 2πfL �

where f is the supply frequency, in hertz, and L is the
inductance, in henrys.
XL is proportional to f as shown in Figure 15.3.
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Figure 15.3

Problem 1. (a) Calculate the reactance of a coil of
inductance 0.32 H when it is connected to a 50 Hz sup-
ply. (b) A coil has a reactance of 124 � in a circuit with
a supply of frequency 5 kHz. Determine the inductance
of the coil.

(a) Inductive reactance, XL = 2πfL = 2π(50)(0.32)

= 100.5 �

(b) Since XL = 2πfL, inductance L = XL

2πf
= 124

2π(5000)
H

= 3.95 mH

Problem 2. A coil has an inductance of 40 mH and
negligible resistance. Calculate its inductive reactance
and the resulting current if connected to (a) a 240V,
50 Hz supply, and (b) a 100V, 1 kHz supply.

(a) Inductive reactance, XL = 2πfL = 2π(50)(40 × 10−3)

= 12.57 �

Current, I = V

XL
= 240

12.57
= 19.09A

(b) Inductive reactance, XL = 2π(1000)(40 × 10−3)

= 251.3 �

Current, I = V

XL
= 100

251.3
= 0.398A

15.3 Purely capacitive a.c. circuit

In a purely capacitive a.c. circuit, the current IC leads the
applied voltage VC by 90◦ (i.e. π/2 rads). See Figure 15.4.

In a purely capacitive circuit the opposition to the
flow of alternating current is called the capacitive react-
ance, XC

XC = VC

IC
= 1

2πfC
�

where C is the capacitance in farads.

Figure 15.4

XC varies with frequency f as shown in Figure 15.5.

Figure 15.5

Problem 3. Determine the capacitive reactance of
a capacitor of 10 µF when connected to a circuit of
frequency (a) 50 Hz (b) 20 kHz.

(a) Capacitive reactance XC = 1

2πfC

= 1

2π(50)(10 × 10−6)

= 106

2π(50)(10)
= 318.3 �

(b) XC = 1

2πfC
= 1

2π(20 × 103)(10 × 10−6)

= 106

2π(20 × 103)(10)
= 0.796 �

Hence as the frequency is increased from 50 Hz to 20 kHz,
XC decreases from 318.3 � to 0.796 � (see Figure 15.5).
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Problem 4. A capacitor has a reactance of 40 � when
operated on a 50 Hz supply. Determine the value of its
capacitance.

Since XC = 1

2πfC
, capacitance C = 1

2πfXC

= 1

2π(50)(40)
F

= 106

2π(50)(40)
µF

= 79.58 µF

Problem 5. Calculate the current taken by a 23 µF
capacitor when connected to a 240V, 50 Hz supply.

Current I = V

XC
= V(

1

2πfC

) = 2πfCV

= 2π(50)(23 × 10−6)(240)

= 1.73A

Now try the following exercise.

Exercise 50 Further problems on purely inductive
and capacitive a.c. circuits

1. Calculate the reactance of a coil of inductance 0.2 H
when it is connected to (a) a 50 Hz, (b) a 600 Hz,
and (c) a 40 kHz, supply.

[(a) 62.83 � (b) 754 � (c) 50.27 k�]

2. A coil has a reactance of 120 � in a circuit with a
supply frequency of 4 kHz. Calculate the inductance
of the coil. [4.77 mH]

3. A supply of 240V, 50 Hz is connected across a
pure inductance and the resulting current is 1.2A.
Calculate the inductance of the coil. [0.637 H]

4. An e.m.f. of 200V at a frequency of 2 kHz is applied
to a coil of pure inductance 50 mH. Determine
(a) the reactance of the coil, and (b) the current
flowing in the coil. [(a) 628 � (b) 0.318A]

5. Calculate the capacitive reactance of a capacitor of
20 µF when connected to an a.c. circuit of frequency
(a) 20 Hz, (b) 500 Hz, (c) 4 kHz

[(a) 397.9 � (b) 15.92 � (c) 1.989 �]

6. A capacitor has a reactance of 80 � when con-
nected to a 50 Hz supply. Calculate the value of its
capacitance. [39.79 µF]

7. A capacitor has a capacitive reactance of 400 �
when connected to a 100V, 25 Hz supply. Deter-
mine its capacitance and the current taken from the
supply. [15.92 µF, 0.25A]

8. Two similar capacitors are connected in parallel
to a 200V, 1 kHz supply. Find the value of each
capacitor if the circuit current is 0.628A.

[0.25 µF]

15.4 R–L series a.c. circuit

In an a.c. circuit containing inductance L and resistance R,
the applied voltage V is the phasor sum of VR and VL (see
Figure 15.6), and thus the current I lags the applied voltage
V by an angle lying between 0◦ and 90◦ (depending on
the values of VR and VL), shown as angle φ. In any a.c.
series circuit the current is common to each component
and is thus taken as the reference phasor.

Figure 15.6

From the phasor diagram of Figure 15.6, the ‘voltage
triangle’ is derived.

For the R–L circuit:

V = √
(V2

R + V2
L ) (by Pythagoras’ theorem)

and tan φ = VL

VR
(by trigonometric ratios)

In an a.c. circuit, the ratio
applied voltage V

current I
is called the

impedance Z, i.e.

Z = V
I

�

If each side of the voltage triangle in Figure 15.6 is divided
by current I then the ‘impedance triangle’ is derived.
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For the R–L circuit: Z = √
(R2 + X2

L)

tan φ = XL

R
, sin φ = XL

Z
and cos φ = R

Z

Problem 6. In a series R–L circuit the p.d. across the
resistance R is 12V and the p.d. across the inductance
L is 5V. Find the supply voltage and the phase angle
between current and voltage.

From the voltage triangle of Figure 15.6,

supply voltage V = √
(122 + 52) i.e. V = 13V

(Note that in a.c. circuits, the supply voltage is not the
arithmetic sum of the p.d.’s across components. It is, in
fact, the phasor sum.)

tan φ = VL

VR
= 5

12
, from which φ = tan−1

(
5

12

)

= 22.62◦

= 22◦37′ lagging

(‘Lagging’ infers that the current is ‘behind’ the voltage,
since phasors revolve anticlockwise.)

Problem 7. A coil has a resistance of 4 � and an
inductance of 9.55 mH. Calculate (a) the reactance,
(b) the impedance, and (c) the current taken from a
240V, 50 Hz supply. Determine also the phase angle
between the supply voltage and current.

R = 4 �; L = 9.55 mH = 9.55 × 10−3H;
f = 50 Hz; V = 240V

(a) Inductive reactance, XL = 2πfL

= 2π(50)(9.55 ×10−3) = 3 �

(b) Impedance, Z = √
(R2 + X2

L) = √
(43 + 32) = 5 �

(c) Current, I = V

Z
= 240

5
= 48A

The circuit and phasor diagrams and the voltage and
impedance triangles are as shown in Figure 15.6.

Since tan φ = XL

R
, φ = tan−1 XL

R
= tan−1 3

4
= 36.87◦

= 36◦52′ lagging

Problem 8. A coil takes a current of 2A from a
12V d.c. supply. When connected to a 240V, 50 Hz
supply the current is 20A. Calculate the resistance,
impedance, inductive reactance and inductance of the
coil.

Resistance R = d.c. voltage

d.c. current
= 12

2
= 6 �

Impedance Z = a.c. voltage

a.c. current
= 240

20
= 12 �

Since Z = √
(R2 + X2

L), inductive reactance,

XL = √
(Z2 − R2)

= √
(122 − 62)

= 10.39 �

Since XL = 2πfL, inductance L = XL

2πf
= 10.39

2π(50)

= 33.1 mH

This problem indicates a simple method for finding the
inductance of a coil, i.e. firstly to measure the current when
the coil is connected to a d.c. supply of known voltage,
and then to repeat the process with an a.c. supply.

Problem 9. A coil of inductance 318.3 mH and neg-
ligible resistance is connected in series with a 200 �
resistor to a 240V, 50 Hz supply. Calculate (a) the
inductive reactance of the coil, (b) the impedance of the
circuit, (c) the current in the circuit, (d) the p.d. across
each component, and (e) the circuit phase angle.

L = 318.3 mH = 0.3183 H; R = 200 �;
V = 240V; f = 50 Hz

The circuit diagram is as shown in Figure 15.6.

(a) Inductive reactance XL = 2πfL = 2π(50)(0.3183)
= 100 �

(b) Impedance Z = √
(R2 + X2

L) = √
[(200)2 + (100)2]

= 223.6 �

(c) Current I = V

Z
= 240

223.6
= 1.073A

(d) The p.d. across the coil, VL = IXL = 1.073 × 100
= 107.3V

The p.d. across the resistor, VR = IR = 1.073 × 200
= 214.6V

[Check:
√

(V2
R + V2

L ) = √
[(214.6)2 + (107.3)2] = 240V,

the supply voltage]

(e) From the impedance triangle, angle φ = tan−1 XL

R

= tan−1
(

100

200

)

Hence the phase angle φ = 26.57◦ = 26◦34′ lagging
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Problem 10. A coil consists of a resistance of 100 �
and an inductance of 200 mH. If an alternating voltage,
v, given by v = 200 sin 500t volts is applied across the
coil, calculate (a) the circuit impedance, (b) the current
flowing, (c) the p.d. across the resistance, (d) the p.d.
across the inductance and (e) the phase angle between
voltage and current.

Since v = 200 sin 500t volts then Vm = 200V and

ω = 2πf = 500 rad/s

Hence rms voltage V = 0.707 × 200 = 141.4V

Inductive reactance, XL = 2πfL = ωL
= 500 × 200 × 10−3 = 100 �

(a) Impedance Z = √
(R2 + X2

L)

= √
(1002 + 1002) = 141.4 �

(b) Current I = V

Z
= 141.4

141.4
= 1A

(c) p.d. across the resistance VR = IR = 1 × 100 = 100V
p.d. across the inductance VL= IXL= 1 × 100 = 100V

(e) Phase angle between voltage and current is given by:

tan φ =
(

XL

R

)

from which, φ = tan−1(100/100), hence φ = 45◦ or
π

4
rads

Problem 11. A pure inductance of 1.273 mH is con-
nected in series with a pure resistance of 30 �. If the
frequency of the sinusoidal supply is 5 kHz and the p.d.
across the 30 � resistor is 6V, determine the value of
the supply voltage and the voltage across the 1.273 mH
inductance. Draw the phasor diagram.

The circuit is shown in Figure 15.7(a).

Figure 15.7

Supply voltage, V = IZ

Current I = VR

R
= 6

30
= 0.20A

Inductive reactance XL = 2πfL

= 2π(5 × 103)(1.273 × 10−3)

= 40 �

Impedance, Z = √
(R2 + X2

L) = √
(302 + 402) = 50 �

Supply voltage V = IZ = (0.20)(50) = 10V
Voltage across the 1.273 mH inductance, VL = IXL

= (0.2)(40)

= 8V
The phasor diagram is shown in Figure 15.7(b).

(Note that in a.c. circuits, the supply voltage is not the
arithmetic sum of the p.d.’s across components but the
phasor sum.)

Problem 12. A coil of inductance 159.2 mH and
resistance 20 � is connected in series with a 60 �
resistor to a 240V, 50 Hz supply. Determine (a) the
impedance of the circuit, (b) the current in the circuit,
(c) the circuit phase angle, (d) the p.d. across the 60 �
resistor and (e) the p.d. across the coil. (f) Draw the
circuit phasor diagram showing all voltages.

The circuit diagram is shown in Figure 15.8(a). When
impedances are connected in series the individual resist-
ances may be added to give the total circuit resistance. The
equivalent circuit is thus shown in Figure 15.8(b).

Figure 15.8

Inductive reactance XL = 2πfL = 2π(50)(159.2 × 10−3)
= 50 �

(a) Circuit impedance, Z = √
(R2

T + X2
L) = √

(802 + 502)

= 94.34 �
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(b) Circuit current, I = V

Z
= 240

94.34
= 2.544A

(c) Circuit phase angle φ = tan−1
(

XL

R

)

= tan−1(50/80)

= 32◦ lagging

From Figure 15.8(a):

(d) VR = IR = (2.544)(60) = 152.6V
(e) VCOIL = IZCOIL, where ZCOIL = √

(R2
C + X2

L)

= √
(202 + 502)

= 53.85 �

Hence VCOIL = (2.544)(53.85) = 137.0V
(f) For the phasor diagram, shown in Figure 15.9,

Figure 15.9

VL = IXL = (2.544)(50) = 127.2V

VR COIL = IRC = (2.544)(20) = 50.88V

The 240V supply voltage is the phasor sum of VCOIL
and VR

Now try the following exercise.

Exercise 51 Further problems on R–L series a.c.
circuits

1. Determine the impedance of a coil which has a
resistance of 12 � and a reactance of 16 �.

[20 �]

2. A coil of inductance 80 mH and resistance 60 �
is connected to a 200V, 100 Hz supply. Calculate
the circuit impedance and the current taken from
the supply. Find also the phase angle between the
current and the supply voltage.

[78.27 �, 2.555A, 39.95◦ lagging]

3. An alternating voltage given by v = 100 sin 240t
volts is applied across a coil of resistance 32 �
and inductance 100 mH. Determine (a) the circuit
impedance, (b) the current flowing, (c) the p.d.
across the resistance, and (d) the p.d. across the
inductance.

[(a) 40 � (b) 1.77A (c) 56.64V (d) 42.48V]

4. A coil takes a current of 5A from a 20V d.c. sup-
ply. When connected to a 200V, 50 Hz a.c. supply
the current is 25A. Calculate the (a) resistance,
(b) impedance, and (c) inductance of the coil.

[(a) 4 � (b) 8 � (c) 22.05 mH]

5. A coil of inductance 636.6 mH and negligible resis-
tance is connected in series with a 100 � resistor to
a 250V, 50 Hz supply. Calculate (a) the inductive
reactance of the coil, (b) the impedance of the cir-
cuit, (c) the current in the circuit, (d) the p.d. across
each component, and (e) the circuit phase angle.

[(a) 200 � (b) 223.6 � (c) 1.118A
(d) 223.6V, 111.8V (e) 63.43◦ lagging]

15.5 R–C series a.c. circuit

In an a.c. series circuit containing capacitance C and
resistance R, the applied voltage V is the phasor sum of VR
and VC (see Figure 15.10) and thus the current I leads the
applied voltage V by an angle lying between 0◦ and 90◦
(depending on the values of VR and VC), shown as angle α.

Figure 15.10

From the phasor diagram of Figure 15.10, the ‘voltage
triangle’ is derived. For the R–C circuit:

V = √
(V2

R + V2
C) (by Pythagoras’ theorem)

and tan α = VC

VR
(by trigonometric ratios)

As stated in Section 15.4, in an a.c. circuit, the ratio
(applied voltage V )/(current I) is called the impedance

Z, i.e. Z = V

I
�

If each side of the voltage triangle in Figure 15.10 is
divided by current I then the ‘impedance triangle’ is
derived.

For the R–C circuit: Z = √
(R2 + X2

C)
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tan α = XC

R
, sin α = XC

Z
and cos α = R

Z

Problem 13. A resistor of 25 � is connected in series
with a capacitor of 45 µF. Calculate (a) the impedance,
and (b) the current taken from a 240V, 50 Hz supply.
Find also the phase angle between the supply voltage
and the current.

R = 25 �; C =45 µF=45×10−6 F;V = 240V; f = 50 Hz

The circuit diagram is as shown in Figure 15.10

Capacitive reactance, XC = 1

2πfC
= 1

2π(50)(45 × 10−6)

= 70.74 �

(a) Impedance Z = √
(R2 + X2

C) = √
[(25)2 + (70.74)2]

= 75.03 �

(b) Current I = V

Z
= 240

75.03
= 3.20A

Phase angle between the supply voltage and current,

α = tan−1
(

XC

R

)

hence α = tan−1
(

70.74

25

)
= 70.54◦ = 70◦32′ leading

(‘Leading’ infers that the current is ‘ahead’ of the voltage,
since phasors revolve anticlockwise.)

Problem 14. A capacitor C is connected in series with
a 40 � resistor across a supply of frequency 60 Hz.
A current of 3 A flows and the circuit impedance is
50 �. Calculate: (a) the value of capacitance, C, (b) the
supply voltage, (c) the phase angle between the supply
voltage and current, (d) the p.d. across the resistor,
and (e) the p.d. across the capacitor. Draw the phasor
diagram.

(a) Impedance Z = √
(R2 + X2

C)

Hence XC = √
(Z2 − R2) = √

(502 − 402) = 30 �

XC = 1

2πfC
hence C = 1

2πfXC
= 1

2π(60)30
F

= 88.42 µF

(b) Since Z = V

I
then V = IZ = (3)(50) = 150V

(c) Phase angle, α = tan−1 XC

R
= tan−1

(
30

40

)
= 36.87◦

= 36◦52′ leading

(d) P.d. across resistor, VR = IR = (3)(40) = 120V
(e) P.d. across capacitor, VC = IXC = (3)(30) = 90V

The phasor diagram is shown in Figure 15.11, where the
supply voltage V is the phasor sum of VR and VC .

Figure 15.11

Now try the following exercise.

Exercise 52 Further problem on R–C series a.c.
circuits

1. A voltage of 35V is applied across a C–R series
circuit. If the voltage across the resistor is 21V,
find the voltage across the capacitor. [28 V]

2. A resistance of 50 � is connected in series with a
capacitance of 20 µF. If a supply of 200V, 100 Hz
is connected across the arrangement find (a) the cir-
cuit impedance, (b) the current flowing, and (c) the
phase angle between voltage and current.

[(a) 93.98 � (b) 2.128A (c) 57.86◦ leading]

3. An alternating voltage v = 250 sin 800t volts is
applied across a series circuit containing a 30 �
resistor and 50 µF capacitor. Calculate (a) the cir-
cuit impedance, (b) the current flowing, (c) the p.d.
across the resistor, (d) the p.d. across the capaci-
tor, and (e) the phase angle between voltage and
current.

[(a) 39.05 � (b) 4.526A (c) 135.8V
(d) 113.2V (e) 39.81◦ leading]

4. A 400 � resistor is connected in series with a
2358 pF capacitor across a 12V a.c. supply. Deter-
mine the supply frequency if the current flowing in
the circuit is 24 mA. [225 kHz]

15.6 R–L–C series a.c. circuit

In an a.c. series circuit containing resistance R, inductance
L and capacitance C, the applied voltage V is the phasor
sum of VR, VL and VC (see Figure 15.12). VL and VC are
anti-phase, i.e. displaced by 180◦, and there are three pha-
sor diagrams possible — each depending on the relative
values of VL and VC .
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When XL > XC (Figure 15.12(b)):

Z = √
[R2 + (XL − XC)2]

and tan φ = (XL − XC)

R

Figure 15.12

When XC > XL (Figure 15.12(c)):

Z = √
[R2 + (XC − XL)2]

and tan α = (XC − XL)

R

When XL = XC (Figure 15.12(d)), the applied voltage V
and the current I are in phase. This effect is called series
resonance (see Section 15.7).

Problem 15. A coil of resistance 5 � and inductance
120 mH in series with a 100 µF capacitor, is connected
to a 300V, 50 Hz supply. Calculate (a) the current
flowing, (b) the phase difference between the supply
voltage and current, (c) the voltage across the coil and
(d) the voltage across the capacitor.

The circuit diagram is shown in Figure 15.13

Figure 15.13

XL = 2πfL = 2π(50)(120 × 10−3) = 37.70 �

XC = 1

2πfC
= 1

2π(50)(100 × 10−6)
= 31.83 �

Since XL is greater than XC the circuit is inductive.

XL − XC = 37.70 − 31.83 = 5.87 �

Impedance Z = √
[R2 + (XL − XC)2] = √

[(5)2 + (5.87)2]

= 7.71 �

(a) Current I = V

Z
= 300

7.71
= 38.91A

(b) Phase angle φ = tan−1
(

XL − XC

R

)
= tan−1 5.87

5

= 49.58◦

= 49◦35′

(c) Impedance of coil, ZCOIL

= √
(R2 + X2

L) = √
[(5)2 + (37.70)2] = 38.03 �

Voltage across coil VCOIL = IZCOIL = (38.91)(38.03)

= 1480V

Phase angle of coil = tan−1 XL

R
= tan−1

(
37.70

5

)

= 82.45◦

= 82◦27′ lagging

(d) Voltage across capacitor VC = IXC = (38.91)(31.83)

= 1239V

The phasor diagram is shown in Figure 15.14. The supply
voltage V is the phasor sum of VCOIL and VC
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Figure 15.14

Series connected impedances

For series connected impedances the total circuit
impedance can be represented as a single L–C–R circuit by
combining all values of resistance together, all values of
inductance together and all values of capacitance together,

(remembering that for series connected capacitors

1

C
= 1

C1
+ 1

C2
+ · · · ).

For example, the circuit of Figure 15.15(a) showing three
impedances has an equivalent circuit of Figure 15.15(b).

Figure 15.15

Problem 16. The following three impedances are
connected in series across a 40V, 20 kHz supply: (i) a
resistance of 8 �, (ii) a coil of inductance 130 µH and
5 � resistance, and (iii) a 10 � resistor in series with a
0.25 µF capacitor. Calculate (a) the circuit current, (b)
the circuit phase angle and (c) the voltage drop across
each impedance.

The circuit diagram is shown in Figure 15.16(a). Since
the total circuit resistance is 8 + 5 + 10, i.e. 23 �, an
equivalent circuit diagram may be drawn as shown in
Figure 15.16(b)

Figure 15.16

Inductive reactance, XL = 2πfL

= 2π(20 × 103)(130 × 10−6)

= 16.34 �

Capacitive reactance, XC = 1

2πfC

= 1

2π(20 × 103)(0.25 × 10−6)

= 31.83 �

Since XC > XL , the circuit is capacitive (see phasor
diagram in Figure 15.12(c)).

XC − XL = 31.83 − 16.34 = 15.49 �.

(a) Circuit impedance, Z = √
[R2 + (XC − XL)2]

= √
[232 + 15.492]

= 27.73 �

Circuit current, I = V

Z
= 40

27.73
= 1.442A
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(b) From Figure 15.12(c), circuit phase angle

φ = tan−1
(

XC − XL

R

)

i.e, φ = tan−1
(

15.49

23

)
= 33.96◦ = 33◦58′ leading

(c) From Figure 15.16(a), V1 = IR1 = (1.442)(8)

= 11.54V

V2 = IZ2 = I
√

(52 + 16.342) = (1.442)(17.09)

= 24.64V

V3 = IZ3 = I
√

(102 + 31.832) = (1.442)(33.36)

= 48.11V

The 40V supply voltage is the phasor sum of V1, V2
and V3

Problem 17. Determine the p.d.’s V1 and V2 for
the circuit shown in Figure 15.17 if the frequency of
the supply is 5 kHz. Draw the phasor diagram and
hence determine the supply voltage V and the circuit
phase angle.

Figure 15.17

For impedance Z1:

R1 = 4� and XL = 2πfL = 2π(5 × 103)(0.286 × 10−3)

= 8.985 �

V1 = IZ1 = I
√

(R2 + X2
L) = 5

√
(42 + 8.9852) = 49.18 V

Phase angle φ1= tan−1
(

XL

R

)

= tan−1
(

8.985

4

)
= 66◦0′ lagging

For impedance Z2:

R2 = 8 � and XC = 1

2πfC
= 1

2π(5 × 103)(1.273 × 10−6)

= 25.0 �

V2 = IZ2 = I
√

(R2 + X2
C) = 5

√
(82 + 25.02) = 131.2 V

Phase angle φ2 = tan−1
(

XC

R

)

= tan−1
(

25.0

8

)
= 72◦15′ leading

The phasor diagram is shown in Figure 15.18.

Figure 15.18

The phasor sum of V1 and V2 gives the supply voltage V
of 100 V at a phase angle of 53◦8′ leading. These values
may be determined by drawing or by calculation — either
by resolving into horizontal and vertical components or
by the cosine and sine rules.

Now try the following exercise.

Exercise 53 Further problems on R–L–C series
a.c. circuits

1. A 40 µF capacitor in series with a coil of resistance
8 � and inductance 80 mH is connected to a 200V,
100 Hz supply. Calculate (a) the circuit impedance,
(b) the current flowing, (c) the phase angle between
voltage and current, (d) the voltage across the coil,
and (e) the voltage across the capacitor.

[(a) 13.18 � (b) 15.17A (c) 52.63◦ lagging
(d) 772.1V (e) 603.6V]

2. Find the values of resistance R and inductance L in
the circuit of Figure 15.19.

[R = 131 �, L = 0.545 H]

240 V, 50 Hz

I = 1.5∠−35° A

R L 40 µF

Figure 15.19

3. Three impedances are connected in series across a
100V, 2 kHz supply. The impedances comprise:

(i) an inductance of 0.45 mH and 2 � resistance,
(ii) an inductance of 570 µH and 5 � resistance,

and
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(iii) a capacitor of capacitance 10 µF and resis-
tance 3 �.

Assuming no mutual inductive effects between the
two inductances calculate (a) the circuit impedance,
(b) the circuit current, (c) the circuit phase angle and
(d) the voltage across each impedance.

[(a) 11.12 � (b) 8.99A (c) 25.92◦ lagging
(d) 53.92V, 78.53V, 76.46V]

4. For the circuit shown in Figure 15.20 determine the
voltages V1 and V2 if the supply frequency is 1 kHz.
Draw the phasor diagram and hence determine the
supply voltage V and the circuit phase angle.

[V1 = 26.0V, V2 = 67.05V, V = 50V,
53.14◦ leading]

Figure 15.20

15.7 Series resonance

As stated in Section 15.6, for an R–L–C series circuit,
when XL = XC (Figure 15.12(d)), the applied voltage V
and the current I are in phase. This effect is called series
resonance. At resonance:

(i) VL = VC
(ii) Z = R (i.e. the minimum circuit impedance possible

in an L–C–R circuit)

(iii) I = V

R
(i.e. the maximum current possible in an

L–C–R circuit)

(iv) Since XL = XC , then 2πfrL = 1

2πfrC

from which, f 2
r = 1

(2π)2LC

and, fr = 1
2π

√
(LC)

Hz

where fr is the resonant frequency.
(v) The series resonant circuit is often described as an

acceptor circuit since it has its minimum impedance,
and thus maximum current, at the resonant frequency.

(vi) Typical graphs of current I and impedance Z against
frequency are shown in Figure 15.21.

Figure 15.21

Problem 18. A coil having a resistance of 10 � and
an inductance of 125 mH is connected in series with
a 60 µF capacitor across a 120V supply. At what fre-
quency does resonance occur? Find the current flowing
at the resonant frequency.

Resonant frequency, fr = 1

2π
√

(LC)
Hz

= 1

2π

√[(
125

103

) (
60

106

)] Hz

= 1

2π

√(
125 × 6

108

)

= 1

2π

√
[(125)(6)]

104

= 104

2π
√

[(125)(6)]
= 58.12 Hz

At resonance, XL = XC and impedance Z = R

Hence current, I = V

R
= 120

10
= 12A

Problem 19. The current at resonance in a series L–
C–R circuit is 100 µA. If the applied voltage is 2 mV
at a frequency of 200 kHz, and the circuit inductance is
50 µH, find (a) the circuit resistance, and (b) the circuit
capacitance.

(a) I = 100 µA = 100 × 10−6 A; V = 2 mV = 2 × 10−3 V

At resonance, impedance Z = resistance R
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Hence R = V

I
= 20 × 10−3

100 × 10−6 = 2 × 106

100 × 103 = 20 �

(b) At resonance XL = XC

i.e. 2πfL = 1

2πfC

Hence capacitance

C = 1

(2πf )2L

= 1

(2π × 200 × 103)2(50 × 10−6)
F

= (106)(106)

(4π)2(1010)(50)
µF

= 0.0127 µF or 12.7 nF

15.8 Q-factor

At resonance, if R is small compared with XL and XC , it
is possible for VL and VC to have voltages many times
greater than the supply voltage (see Figure 15.12(d)).

Voltage magnification at resonance

= voltage across L (or C)
supply voltage V

This ratio is a measure of the quality of a circuit (as a
resonator or tuning device) and is called the Q-factor.

Hence Q-factor = VL

V
= IXL

IR
= XL

R
= 2πfrL

R

Alternatively, Q-factor = VC

V
= IXC

IR
= XC

R
= 1

2πfrCR

At resonance fr = 1

2π
√

(LC)
i.e. 2πfr = 1√

(LC)

Hence Q-factor = 2πfrL

R
= 1√

(LC)

(
L

R

)
= 1

R

√(
L
C

)

(Q-factor is explained more fully in Chapter 28, page 349)

Problem 20. A coil of inductance 80 mH and negli-
gible resistance is connected in series with a capac-
itance of 0.25 µF and a resistor of resistance 12.5 �
across a 100V, variable frequency supply. Determine
(a) the resonant frequency, and (b) the current at reso-
nance. How many times greater than the supply voltage
is the voltage across the reactances at resonance?

(a) Resonant frequency fr

= 1

2π

√[(
80

103

) (
0.25

106

)] = 1

2π

√[
(8)(0.25)

108

]

= 104

2π
√

2

= 1125.4 Hz = 1.1254 kHz

(b) Current at resonance I = V

R
= 100

12.5
= 8A

Voltage across inductance, at resonance,

VL = IXL = (I)(2πfL)

= (8)(2π)(1125.4)(80 × 10−3)

= 4525.5 V

(Also, voltage across capacitor,

VC = IXC = I

2πfC
= 8

2π(1125.4)(0.25 × 10−6)

= 4525.5 V )

Voltage magnification at resonance = VL

V
or

Vc

V

= 4525.5

100
= 45.255V

i.e. at resonance, the voltage across the reactances are
45.255 times greater than the supply voltage. Hence
Q-factor of circuit is 45.255.

Problem 21. A series circuit comprises a coil of
resistance 2 � and inductance 60 mH, and a 30 µF
capacitor. Determine the Q-factor of the circuit at
resonance.

At resonance, Q-factor = 1

R

√(
L

C

)
= 1

2

√(
60 × 10−3

30 × 10−6

)

= 1

2

√(
60 × 106

30 × 103

)

= 1

2

√
(2000)

= 22.36
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Problem 22. A coil of negligible resistance and
inductance 100 mH is connected in series with a
capacitance of 2 µF and a resistance of 10 � across a
50V, variable frequency supply. Determine (a) the res-
onant frequency, (b) the current at resonance, (c) the
voltages across the coil and the capacitor at resonance,
and (d) the Q-factor of the circuit.

(a) Resonant frequency, fr = 1

2π
√

(LC)

= 1

2π

√[(
100

103

) (
2

106

)]

= 1

2π

√(
20

108

) = 1(
2π

√
20

104

)

= 104

2π
√

20

= 355.9 Hz

(b) Current at resonance I = V

R
= 50

10
= 5A

(c) Voltage across coil at resonance,

VL = IXL = I(2πfrL)

= (5)(2π × 355.9 × 100 × 10−3)

= 1118V

Voltage across capacitance at resonance,

VC = IXC = I

2πfrC

= 5

2π(355.9)(2 × 10−6)

= 1118V

(d) Q-factor (i.e. voltage magnification at resonance)

= VL

V
or

VC

V

= 1118

50
= 22.36

Q-factor may also have been determined by
2πfrL

R
or

1

2πfrCR
or

1

R

√ (
L

C

)

Now try the following exercise.

Exercise 54 Further problems on series resonance
and Q-factor

1. Find the resonant frequency of a series a.c. circuit
consisting of a coil of resistance 10 � and induc-
tance 50 mH and capacitance 0.05 µF. Find also the
current flowing at resonance if the supply voltage
is 100V. [3.183 kHz, 10A]

2. The current at resonance in a series L–C–R circuit
is 0.2 mA. If the applied voltage is 250 mV at a
frequency of 100 kHz and the circuit capacitance is
0.04 µF, find the circuit resistance and inductance.

[1.25 k�, 63.3 µH]

3. A coil of resistance 25 � and inductance 100 mH is
connected in series with a capacitance of 0.12 µF
across a 200V, variable frequency supply. Calcu-
late (a) the resonant frequency, (b) the current at
resonance and (c) the factor by which the volt-
age across the reactance is greater than the supply
voltage. [(a) 1.453 kHz (b) 8A (c) 36.51]

4. Calculate the inductance which must be connected
in series with a 1000 pF capacitor to give a resonant
frequency of 400 kHz. [0.158 mH]

5. A series circuit comprises a coil of resistance
20 � and inductance 2 mH and a 500 pF capacitor.
Determine the Q-factor of the circuit at resonance.
If the supply voltage is 1.5V, what is the voltage
across the capacitor? [100, 150V]

15.9 Bandwidth and selectivity

Figure 15.22 shows how current I varies with frequency
in an R–L–C series circuit. At the resonant frequency fr ,
current is a maximum value, shown as Ir . Also shown

Figure 15.22



Ch15-H8139.tex 30/3/2007 17: 45 page 181

Single-phase series a.c. circuits 181

PART

2

are the points A and B where the current is 0.707 of the
maximum value at frequencies f1 and f2. The power deliv-
ered to the circuit is I2R. At I = 0.707Ir , the power is
(0.707Ir)2R = 0.5I2

r R, i.e. half the power that occurs at
frequency fr . The points corresponding to f1 and f2 are
called the half-power points. The distance between these
points, i.e. ( f2 − f1), is called the bandwidth.
It may be shown that

Q = fr

f2 − f1
or ( f2 − f1) = fr

Q

(This formula is proved in Chapter 28, page 357 and 358)

Problem 23. A filter in the form of a series L–R–C
circuit is designed to operate at a resonant frequency of
5 kHz. Included within the filter is a 20 mH inductance
and 10 � resistance. Determine the bandwidth of the
filter.

Q-factor at resonance is given by

Qr = ωrL

R
= (2π5000)(20 × 10−3)

10
= 62.83

Since Qr = fr/( f2 − f1)

bandwidth, ( f2 − f1) = fr
Qr

= 5000

62.83
= 79.6 Hz

Selectivity is the ability of a circuit to respond more read-
ily to signals of a particular frequency to which it is tuned
than to signals of other frequencies. The response becomes
progressively weaker as the frequency departs from the
resonant frequency. The higher the Q-factor, the narrower
the bandwidth and the more selective is the circuit. Cir-
cuits having high Q-factors (say, in the order of 100 to
300) are therefore useful in communications engineering.
A high Q-factor in a series power circuit has disadvantages
in that it can lead to dangerously high voltages across the
insulation and may result in electrical breakdown.

(For more on bandwidth and selectivity see Chapter 28,
page 356–358)

15.10 Power in a.c. circuits

In Figures 15.23(a)–(c), the value of power at any instant
is given by the product of the voltage and current at that
instant, i.e. the instantaneous power, p = vi, as shown by
the broken lines.

Figure 15.23

(a) For a purely resistive a.c. circuit, the average power
dissipated, P, is given by:

P = VI = I2R = V2

R
watts

(V and I being rms values).

See Figure 15.23(a).
(b) For a purely inductive a.c. circuit, the average power

is zero. See Figure 15.23(b).
(c) For a purely capacitive a.c. circuit, the average power

is zero. See Figure 15.23(c).

Figure 15.24 shows current and voltage waveforms for an
R–L circuit where the current lags the voltage by angle
φ. The waveform for power (where p = vi) is shown by
the broken line, and its shape, and hence average power,
depends on the value of angle φ.
For an R–L, R–C or R–L–C series a.c. circuit, the average
power P is given by:

P = VI cos φ watts
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Figure 15.24

or

P = I2R watts (V and I being rms values)

The formulae for power are proved in Chapter 26,
page 327.

Problem 24. An instantaneous current, i = 250 sin ωt
mA flows through a pure resistance of 5 k�. Find the
power dissipated in the resistor.

Power dissipated, P = I2R where I is the rms value of
current.

If i = 250 sin ωt mA, then Im = 0.250A and rms current,
I = (0.707 × 0.250)A

Hence power P = (0.707 × 0.250)2(5000) = 156.2 watts

Problem 25. A series circuit of resistance 60 � and
inductance 75 mH is connected to a 110V, 60 Hz
supply. Calculate the power dissipated.

Inductive reactance,

XL = 2πfL = 2π(60)(75 × 10−3) = 28.27 �

Impedance,

Z = √
(R2 + X2

L) = √
[(60)2 + (28.27)2] = 66.33 �

Current, I = V

Z
= 100

66.33
= 1.658A

To calculate power dissipation in an a.c. circuit two
formulae may be used:

(i) P = I2R = (1.658)2(60) = 165 W

or (ii) P = VI cos φ where cos φ = R

Z

= 60

66.33
= 0.9046

Hence P = (110)(1.658)(0.9046) = 165 W

15.11 Power triangle and power factor

Figure 15.25(a) shows a phasor diagram in which the cur-
rent I lags the applied voltage V by angle φ. The horizontal
component of V is V cos φ and the vertical component of
V is V sin φ. If each of the voltage phasors is multiplied by
I , Figure 15.25(b) is obtained and is known as the ‘power
triangle’.

Figure 15.25

Apparent power, S = VI voltamperes (VA)
True or active power, P = VI cos φ watts (W)
Reactive power, Q = VI sin φ reactive

voltamperes (var)

Power factor = True power P
Apparent power S

For sinusoidal voltages and currents,

power factor = P

S
= VI cos φ

VI
, i.e.

p.f. = cos φ = R
Z

(from Figure 15.6)

The relationships stated above are also true when current
I leads voltage V . More on the power triangle and power
factor is contained in Chapter 26, page 329.

Problem 26. A pure inductance is connected to a
150V, 50 Hz supply, and the apparent power of the
circuit is 300VA. Find the value of the inductance.
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Apparent power S =VI

Hence current I = S

V
= 300

150
= 2A

Inductive reactance XL = V

I
= 150

2
= 75 �

Since XL = 2πfL, inductance L = XL

2πf
= 75

2π(50)
= 0.239 H

Problem 27. A transformer has a rated output of
200 kVA at a power factor of 0.8. Determine the rated
power output and the corresponding reactive power.

VI = 200 kVA = 200 × 103; p.f. = 0.8 = cos φ

Power output, P =VI cos φ = (200 ×103)(0.8)=160 kW

Reactive power, Q =VI sin φ

If cos φ = 0.8, then φ = cos−10.8 = 36.87◦

Hence sin φ = sin 36.87◦ = 0.6

Hence reactive power, Q = (200 × 103)(0.6) = 120 kvar

Problem 28. The power taken by an inductive circuit
when connected to a 120V, 50 Hz supply is 400 W and
the current is 8A. Calculate (a) the resistance, (b) the
impedance, (c) the reactance, (d) the power factor, and
(e) the phase angle between voltage and current.

(a) Power P = I2R. Hence R = P

I2 = 400

(8)2 = 6.25 �

(b) Impedance Z = V

I
= 120

8
= 15 �

(c) Since Z = √
(R2 + X2

L), then XL = √
(Z2 − R2)

= √
[(15)2 − (6.25)2]

= 13.64 �

(d) Power factor = true power

apparent power
= VI cos φ

VI

= 400

(120)(8)
= 0.4167

(e) p.f. = cos φ = 0.4167. Hence phase angle,

φ = cos−10.4167

= 65.37◦

= 65◦22′ lagging

Problem 29. A circuit consisting of a resistor in series
with a capacitor takes 100 watts at a power factor of
0.5 from a 100V, 60 Hz supply. Find (a) the current
flowing, (b) the phase angle, (c) the resistance, (d) the
impedance, and (e) the capacitance.

(a) Power factor = true power

apparent power

i.e. 0.5 = 100

(100)(I)
. Hence I = 100

(0.5)(100)
= 2 A

(b) Power factor = 0.5 = cos φ. Hence phase angle,

φ = cos−10.5 = 60◦ leading

(c) Power P = I2R. Hence resistance R = P

I2 = 100

(2)2

= 25 �

(d) Impedance Z = V

I
= 100

2
= 50 �

(e) Capacitive reactance, XC = √
(Z2 − R2)

= √
(502 − 252)

= 43.30 �

XC = 1

2πfC
hence capacitance,

C = 1

2πfXc
= 1

2π(60)(43.30)
F

= 61.26 µF

Now try the following exercise.

Exercise 55 Further problems on power in a.c.
circuits

1. A voltage v = 200 sin ωt volts is applied across
a pure resistance of 1.5 k�. Find the power
dissipated in the resistor. [13.33 W]

2. A 50 µF capacitor is connected to a 100V, 200 Hz
supply. Determine the true power and the apparent
power. [0, 628.3VA]

3. A motor takes a current of 10A when supplied
from a 250V a.c. supply. Assuming a power fac-
tor of 0.75 lagging find the power consumed. Find
also the cost of running the motor for 1 week
continuously if 1 kWh of electricity costs 12.20 p.

[1875 W, £38.43]

4. A motor takes a current of 12A when supplied
from a 240V a.c. supply. Assuming a power factor
of 0.70 lagging, find the power consumed.

[2.016 kW]

5. A substation is supplying 200 kVA and 150 kvar.
Calculate the corresponding power and power
factor. [132 kW, 0.66]
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6. A load takes 50 kW at a power factor of 0.8 lag-
ging. Calculate the apparent power and the reactive
power. [62.5 kVA, 37.5 kvar]

7. A coil of resistance 400 � and inductance 0.20 H
is connected to a 75V, 400 Hz supply. Calculate
the power dissipated in the coil. [5.452 W]

8. An 80 � resistor and a 6 µF capacitor are con-
nected in series across a 150V, 200 Hz supply.
Calculate (a) the circuit impedance, (b) the cur-
rent flowing and (c) the power dissipated in the
circuit. [(a) 154.9 � (b) 0.968A (c) 75 W]

9. The power taken by a series circuit containing
resistance and inductance is 240 W when con-
nected to a 200V, 50 Hz supply. If the current
flowing is 2A find the values of the resistance and
inductance. [60 �, 255 mH]

10. A circuit consisting of a resistor in series with
an inductance takes 210 W at a power factor of
0.6 from a 50V, 100 Hz supply. Find (a) the
current flowing, (b) the circuit phase angle, (c)
the resistance, (d) the impedance and (e) the
inductance.

[(a) 7A (b) 53.13◦ lagging (c) 4.286 �
(d) 7.143 � (e) 9.095 mH]

11. A 200V, 60 Hz supply is applied to a capacitive
circuit. The current flowing is 2A and the power
dissipated is 150 W. Calculate the values of the
resistance and capacitance.

[37.5 �, 28.61 µF]
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16 Single-phase parallel a.c. circuits

At the end of this chapter you should be able to:
• calculate unknown currents, impedances and cir-

cuit phase angle from phasor diagrams for (a) R–L
(b) R–C (c) L–C (d) LR–C parallel a.c. circuits

• state the condition for parallel resonance in an LR–C
circuit

• derive the resonant frequency equation for an LR–C
parallel a.c. circuit

• determine the current and dynamic resistance at
resonance in an LR–C parallel circuit

• understand and calculate Q-factor in an LR–C parallel
circuit

• understand how power factor may be improved

16.1 Introduction

In parallel circuits, such as those shown in Figures 16.1
and 16.2, the voltage is common to each branch of the
network and is thus taken as the reference phasor when
drawing phasor diagrams.

Figure 16.1

For any parallel a.c. circuit:

True or active power, P = VI cos φ watts (W)

or P = I2
RR watts

Apparent power, S = VI voltamperes (VA)

Reactive power, Q = VI sin φ reactive
voltamperes (var)

Power factor = true power

apparent power
= P

S
= cos φ

(These formulae are the same as for series a.c. circuits as
used in Chapter 15.)

16.2 R–L parallel a.c. circuit

In the two branch parallel circuit containing resistance
R and inductance L shown in Figure 16.1, the current
flowing in the resistance, IR, is in-phase with the supply
voltage V and the current flowing in the inductance, IL ,
lags the supply voltage by 90◦. The supply current I is the
phasor sum of IR and IL and thus the current I lags the
applied voltage V by an angle lying between 0◦ and 90◦
(depending on the values of IR and IL), shown as angle φ
in the phasor diagram.
From the phasor diagram:

I = √
(I2

R + I2
L), (by Pythagoras’ theorem)

where IR = V

R
and IL = V

XL

tan φ = IL

IR
, sin φ = IL

I
and

cos φ = IR

I
(by trigonometricratios)

Circuit impedance, Z = V

I

Problem 1. A 20 � resistor is connected in parallel
with an inductance of 2.387 mH across a 60V, 1 kHz
supply. Calculate (a) the current in each branch, (b) the
supply current, (c) the circuit phase angle, (d) the
circuit impedance, and (e) the power consumed.
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The circuit and phasor diagrams are as shown in Fig-
ure 16.1.

(a) Current flowing in the resistor IR = V

R
= 60

20
= 3A

Current flowing in the inductance

IL = V

XL
= V

2πfL

= 60

2π(1000)(2.387 × 10−3)

= 4A

(b) From the phasor diagram, supply current,

I = √
(I2

R + I2
L)

= √
(32 + 42)

= 5 A

(c) Circuit phase angle, φ = tan−1 IL

IR
= tan−1

(
4

3

)

= 53.13◦
= 53◦8′ lagging

(d) Circuit impedance, Z = V

I
= 60

5
= 12 �

(e) Power consumed P = VI cos φ = (60)(5)(cos53◦8′)
= 180 W

(Alternatively, power consumed P = I2
RR = (3)2(20)

= 180 W)

Now try the following exercise.

Exercise 56 Further problems on R–L parallel a.c.
circuits

1. A 30 � resistor is connected in parallel with a pure
inductance of 3 mH across a 110V, 2 kHz supply.
Calculate (a) the current in each branch, (b) the
circuit current, (c) the circuit phase angle, (d) the
circuit impedance, (e) the power consumed, and (f)
the circuit power factor.

[(a) IR = 3.67A, IL = 2.92A (b) 4.69A
(c) 38.51◦ lagging (d) 23.45 � (e) 404 W

(f) 0.782 lagging]

2. A 40 � resistance is connected in parallel with a coil
of inductance L and negligible resistance across a
200 V, 50 Hz supply and the supply current is found
to be 8 A. Sketch a phasor diagram and determine
the inductance of the coil. [102 mH]

16.3 R–C parallel a.c. circuit

In the two branch parallel circuit containing resistance R
and capacitance C shown in Figure 16.2, IR is in-phase
with the supply voltage V and the current flowing in
the capacitor, IC , leads V by 90˚. The supply current I
is the phasor sum of IR and IC and thus the current I leads
the applied voltage V by an angle lying between 0˚ and
90˚ (depending on the values of IR and IC), shown as angle
α in the phasor diagram.

Figure 16.2

From the phasor diagram:

I = √
(I2

R + I2
C), (by Pythagoras’ theorem)

where IR = V

R
and IC = V

XC

tan α = IC

IR
, sin α = IC

I
and cos α = IR

I
(by trigonometric

ratios)

Circuit impedance Z = V

I

Problem 2. A 30 µF capacitor is connected in paral-
lel with an 80 � resistor across a 240V, 50 Hz supply.
Calculate (a) the current in each branch, (b) the sup-
ply current, (c) the circuit phase angle, (d) the circuit
impedance, (e) the power dissipated, and (f) the
apparent power.

The circuit and phasor diagrams are as shown in Fig-
ure 16.2.

(a) Current in resistor, IR = V

R
= 240

80
= 3A
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Current in capacitor, IC = V

XC
= V(

1

2πfC

)

= 2πfCV

= 2π(50)(30 × 10−6)(240)

= 2.262A

(b) Supply current, I = √
(I2

R + I2
C) = √

(32 + 2.2622)

= 3.757A

(c) Circuit phase angle, α = tan−1 IC

IR
= tan−1

(
2.262

3

)

= 37◦1′ leading

(d) Circuit impedance, Z = V

I
= 240

3.757
= 63.88 �

(e) True or active power dissipated,

P =VI cos α

= 240(3.757) cos 37◦1′

= 720 W

(Alternatively, true power P = I2
RR = (3)2(80)

= 720 W)

(f) Apparent power, S = VI = (240)(3.757) = 901.7VA

Problem 3. A capacitor C is connected in parallel
with a resistor R across a 120V, 200 Hz supply. The
supply current is 2A at a power factor of 0.6 leading.
Determine the values of C and R.

The circuit diagram is shown in Figure 16.3(a).

Figure 16.3

Power factor = cos φ = 0.6 leading, hence
φ = cos−1 0.6 = 53.13◦ leading.

From the phasor diagram shown in Figure 16.3(b),

IR = I cos 53.13◦ = (2)(0.6)

= 1.2A

and IC = I sin 53.13◦ = (2)(0.8)

= 1.6A

(Alternatively, IR and IC can be measured from the scaled
phasor diagram.)

From the circuit diagram,

IR = V

R
from which R = V

IR
= 120

1.2
= 100 �

and IC = V

XC
= 2πfCV , from which, C = IC

2πfV

= 1.6

2π(200)(120)

= 10.61 µF

Now try the following exercise.

Exercise 57 Further problems on R–C parallel
a.c. circuits

1. A 1500 nF capacitor is connected in parallel with a
16 � resistor across a 10V, 10 kHz supply. Calcu-
late (a) the current in each branch, (b) the supply
current, (c) the circuit phase angle, (d) the circuit
impedance, (e) the power consumed, (f) the appar-
ent power, and (g) the circuit power factor. Sketch
the phasor diagram.

[(a) IR = 0.625A, IC = 0.943A (b) 1.131 A
(c) 56.46◦ leading (d) 8.84 � (e) 6.25 W

(f) 11.31VA (g) 0.553 leading]

2. A capacitor C is connected in parallel with a resis-
tance R across a 60V, 100 Hz supply. The supply
current is 0.6A at a power factor of 0.8 leading.
Calculate the values of R and C.

[R = 125 �, C = 9.55 µF]

16.4 L–C parallel a.c. circuit

In the two branch parallel circuit containing inductance L
and capacitance C shown in Figure 16.4, IL lags V by 90◦
and IC leads V by 90◦.
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Figure 16.4

Theoretically there are three phasor diagrams possi-
ble — each depending on the relative values of IL and IC :

(i) IL > IC (giving a supply current, I = IL − IC lagging
V by 90◦)

(ii) IC > IL (giving a supply current, I = IC − IL leading
V by 90◦)

(iii) IL = IC (giving a supply current, I = 0).

The latter condition is not possible in practice due to cir-
cuit resistance inevitably being present (as in the circuit
described in Section 16.5).

For the L–C parallel circuit, IL = V

XL
, IC = V

XC

I = phasor difference between IL and IC , and Z = V

I

Problem 4. A pure inductance of 120 mH is con-
nected in parallel with a 25 µF capacitor and the
network is connected to a 100V, 50 Hz supply. Deter-
mine (a) the branch currents, (b) the supply current and
its phase angle, (c) the circuit impedance, and (d) the
power consumed.

The circuit and phasor diagrams are as shown in Fig-
ure 16.4.

(a) Inductive reactance, XL = 2πfL

= 2π(50)(120 × 10−3)

=37.70 �

Capacitive reactance, XC = 1

2πfC

= 1

2π(50)(25 × 10−6)

=127.3 �

Current flowing in inductance, IL = V

XL
= 100

37.70

= 2.653A

Current flowing in capacitor, IC = V

XC
= 100

127.3

= 0.786A
(b) IL and IC are anti-phase. Hence supply current,

I = IL − IC = 2.653 − 0.786 = 1.867A and the cur-
rent lags the supply voltage V by 90◦ (see Fig-
ure 16.4(i))

(c) Circuit impedance, Z = V

I
= 100

1.867
= 53.56 �

(d) Power consumed, P =VI cos φ

= (100)(1.867)(cos 90◦)

= 0 W

Problem 5. Repeat Problem 4 for the condition when
the frequency is changed to 150 Hz.

(a) Inductive reactance, XL = 2π(150)(120 × 10−3)

= 113.1 �

Capacitive reactance, XC = 1

2π(150)(25 × 10−6)

= 42.44 �

Current flowing in inductance, IL = V

XL
= 100

113.1
= 0.844A

Current flowing in capacitor, IC = V

XC
= 100

42.44
= 2.356A

(b) Supply current, I = IC − IL = 2.356 − 0.884 =
1.472A leading V by 90◦ (see Figure 16.4(ii))

(c) Circuit impedance, Z = V

I
= 100

1.472
= 67.93 �

(d) Power consumed, P = VI cos φ = 0 W (since φ = 90◦)

From Problems 4 and 5:

(i) When XL < XC then IL > IC and I lags V by 90◦
(ii) When XL > XC then IL < IC and I leads V by 90◦
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(iii) In a parallel circuit containing no resistance the power
consumed is zero

Now try the following exercise.

Exercise 58 Further problems on L–C parallel a.c.
circuits

1. An inductance of 80 mH is connected in parallel
with a capacitance of 10 µF across a 60V, 100 Hz
supply. Determine (a) the branch currents, (b) the
supply current, (c) the circuit phase angle, (d) the
circuit impedance and (e) the power consumed.

[(a) IC = 0.377A, IL = 1.194A (b) 0.817A
(c) 90◦ lagging (d) 73.44 � (e) 0 W]

2. Repeat problem 1 for a supply frequency of 200 Hz.
[(a) IC = 0.754A, IL = 0.597A (b) 0.157 A

(c) 90◦ leading (d) 382.2 � (e) 0 W]

16.5 LR–C parallel a.c. circuit

In the two branch circuit containing capacitance C in par-
allel with inductance L and resistance R in series (such as
a coil) shown in Figure 16.5(a), the phasor diagram for the
LR branch alone is shown in Figure 16.5(b) and the phasor
diagram for the C branch is shown alone in Figure 16.5(c).
Rotating each and superimposing on one another gives the
complete phasor diagram shown in Figure 16.5(d).

Figure 16.5

The current ILR of Figure 16.5(d) may be resolved
into horizontal and vertical components. The horizontal
component, shown as op is ILR cos φ1 and the vertical

component, shown as pq is ILR sin φ1. There are three
possible conditions for this circuit:

(i) IC > ILR sin φ1 (giving a supply current I leading V
by angle φ — as shown in Figure 16.5(e))

(ii) ILR sin φ1 > IC (giving I lagging V by angle φ — as
shown in Figure 16.5(f ))

(iii) IC = ILR sin φ1 (this is called parallel resonance, see
Section 16.6).

There are two methods of finding the phasor sum of cur-
rents ILR and IC in Figures 16.5(e) and (f). These are: (i) by
a scaled phasor diagram, or (ii) by resolving each current
into their ‘in-phase’ (i.e. horizontal) and ‘quadrature’
(i.e. vertical) components, as demonstrated in problems
6 and 7.
With reference to the phasor diagrams of Figure 16.5:

Impedance of LR branch, ZLR = √
(R2 + X2

L)

Current, ILR = V

ZLR
and IC = V

XC

Supply current I = phasor sum of ILR and IC (by drawing)

= √{(ILR cos φ1)2 + (ILR sin φ1 ∼ IC)2}
(by calculation)

where ∼ means ‘the difference between’.

Circuit impedance Z = V

I

tan φ1 = VL

VR
= XL

R
, sin φ1 = XL

ZLR
and cos φ1 = R

ZLR

tan φ = ILRsinφ1 ∼ IC

ILR cos φ1
and cos φ = ILRcosφ1

I

Problem 6. A coil of inductance 159.2 mH and resist-
ance 40 � is connected in parallel with a 30 µF capac-
itor across a 240V, 50 Hz supply. Calculate (a) the
current in the coil and its phase angle, (b) the current
in the capacitor and its phase angle, (c) the supply
current and its phase angle,(d) the circuit impedance,
(e) the power consumed, (f ) the apparent power, and
(g) the reactive power. Draw the phasor diagram.

The circuit diagram is shown in Figure 16.6(a).

(a) For the coil, inductive reactance

XL = 2πfL

= 2π(50)(159.2 × 10−3)

= 50 �

Impedance Z1 = √
(R2 + X2

L) = √
(402 + 502)

= 64.03 �
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Figure 16.6

Current in coil, ILR = V

Z1
= 240

64.03
= 3.748A

Branch phase angle φ1 = tan−1 XL

R
= tan−1

(
50

40

)

= tan−1 1.25

= 51.34◦ = 51◦20′ lagging

(see phasor diagram in Figure 16.6(b))

(b) Capacitive reactance, XC = 1

2πfC

= 1

2π(50)(30 × 10−6)

= 106.1 �

Current in capacitor, IC = V

XC
= 240

106.1

= 2.262A leading the supply
voltage by 90◦

(see phasor diagram of Figure 16.6(b)).

(c) The supply current I is the phasor sum of ILR and IC .
This may be obtained by drawing the phasor diagram
to scale and measuring the current I and its phase angle
relative to V . (Current I will always be the diagonal
of the parallelogram formed as in Figure 16.6(b).)

Alternatively the current ILR and IC may be resolved
into their horizontal (or ‘in-phase’) and vertical (or
‘quadrature’) components. The horizontal component
of ILR is

ILR cos (51◦20′) = 3.748 cos 51◦20′ = 2.342 A

The horizontal component of IC is IC cos 90◦ = 0

Thus the total horizontal component, IH = 2.342A

The vertical component of ILR = −ILR sin(51◦20′)
= −3.748 sin 51◦20′
= −2.926A

The vertical component of IC = IC sin 90◦
= 2.262 sin 90◦
= 2.262A

Thus the total vertical component,

IV = −2.926 + 2.262
= −0.664A

IH and IV are shown in Figure 16.7, from which,

I = √
[2.342]2 + (−0.664)2] = 2.434 A

Figure 16.7

Angle φ = tan−1
(

0.664

2.342

)
= 15.83◦

= 15◦50′ lagging

Hence the supply current I = 2.434A lagging V by
15◦50′.

(d) Circuit impedance, Z = V

I
= 240

2.434
= 98.60 �

(e) Power consumed, P =VI cos φ

= (240)(2.434) cos 15◦50′

= 562 W
(Alternatively, P = I2

RR = I2
LRR (in this case)

= (3.748)2 (40) = 562 W)
(f ) Apparent power, S =VI = (240)(2.434)

= 584.2VA

(g) Reactive power, Q =VI sin φ

= (240)(2.434) (sin 15◦50′)
= 159.4 var

Problem 7. A coil of inductance 0.12 H and resist-
ance 3 k� is connected in parallel with a 0.02 µF
capacitor and is supplied at 40V at a frequency of
5 kHz. Determine (a) the current in the coil, and (b) the
current in the capacitor. (c) Draw to scale the phasor
diagram and measure the supply current and its phase
angle; check the answer by calculation. Determine
(d) the circuit impedance and (e) the power consumed.
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The circuit diagram is shown in Figure 16.8(a).

Figure 16.8

(a) Inductive reactance, XL = 2πfL = 2π(5000)(0.12)

= 3770 �

Impedance of coil, Z1 = √
(R2 + X2

L)

= √
[(3000)2 + (3770)2]

= 4818 �

Current in coil, ILR = V

Z1
= 40

4818
= 8.30 mA

Branch phase angle φ = tan−1 XL

R
= tan−1 3770

3000

= 51.5◦ lagging

(b) Capacitive reactance, XC = 1

2πfC

= 1

2π(5000)(0.02 × 10−6)

= 1592 �

Capacitor current, IC = V

XC
= 40

1592

= 25.13 mA leading V by 90◦

(c) Currents ILR and IC are shown in the phasor diagram
of Figure 16.8(b). The parallelogram is completed as
shown and the supply current is given by the diagonal
of the parallelogram. The current I is measured as
19.3 mA leading voltage V by 74.5◦

By calculation,

I = √
[(ILR cos 51.5◦)2+(IC − ILR sin 51.5◦)2]

= 19.34 mA

and φ = tan−1
(

IC − ILR sin 51.5◦

ILR cos 51.5◦

)
= 74.50◦

(d) Circuit impedance, Z = V

I
= 40

19.34 × 10−3

= 2.068 k�

(e) Power consumed, P = VI cos φ

= (40)(19.34 × 10−3)(cos74.50◦)

= 206.7 mW
(Alternatively, P = I2

RR = I2
LRR

= (8.30 × 10−3)2 (3000)

= 206.7 mW)

Now try the following exercise.

Exercise 59 Further problems on LR–C parallel
a.c. circuits

1. A coil of resistance 60 � and inductance 318.4 mH is
connected in parallel with a 15 µF capacitor across
a 200V, 50 Hz supply. Calculate (a) the current in
the coil, (b) the current in the capacitor, (c) the
supply current and its phase angle, (d) the circuit
impedance, (e) the power consumed, (f) the appar-
ent power and (g) the reactive power. Sketch the
phasor diagram.

[(a) 1.715A (b) 0.943A
(c) 1.028A at 30.88◦ lagging (d) 194.6 �

(e) 176.5 W (f) 205.6VA (g) 105.5 var]

2. A 25 nF capacitor is connected in parallel with a coil
of resistance 2 k� and inductance 0.20 H across a
100V, 4 kHz supply. Determine (a) the current in the
coil, (b) the current in the capacitor, (c) the supply
current and its phase angle (by drawing a phasor
diagram to scale, and also by calculation), (d) the
circuit impedance, and (e) the power consumed.

[(a) 18.48 mA (b) 62.83 mA
(c) 46.17 mA at 81.49◦ leading

(d) 2.166 k� (e) 0.683 W]

16.6 Parallel resonance and Q-factor

Parallel resonance

Resonance occurs in the two branch network containing
capacitance C in parallel with inductance L and resistance
R in series (see Figure 16.5(a)) when the quadrature (i.e.
vertical) component of current ILR is equal to IC . At this
condition the supply current I is in-phase with the supply
voltage V .
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Resonant frequency

When the quadrature component of ILR is equal to IC then:
IC = ILR sin φ1 (see Figure 16.9)

Figure 16.9

Hence
V

Xc
=

(
V

ZLR

) (
XL

ZLR

)
, (from Section 16.5)

from which, Z2
LR = XCXL = (2πfrL)

(
1

2πfrC

)
= L

C

(16.1)

Hence [
√

(R2 + X2
L)]2 = L

C
and R2 + X2

L = L

C

Thus (2πfrL)2 = L

C
− R2 and

2πfrL =
√(

L

C
− R2

)

and fr = 1

2πL

√ (
L

C
− R2

)

= 1

2π

√ (
L

L2C
− R2

L2

)

i.e. parallel resonant frequency,

fr = 1
2π

√(
1

LC
− R2

L2

)
Hz

(When R is negligible, then fr = 1

2π
√

(LC)
, which is the

same as for series resonance.)

Current at resonance

Current at resonance, Ir = ILR cos φ1 (from Figure 16.9)

=
(

V

ZLR

) (
R

ZLR

)

(from Section 16.5)

= VR

Z2
LR

However from equation (16.1), Z2
LR = L

C

hence Ir = VR
L
C

= VRC
L

(16.2)

The current is at a minimum at resonance.

Dynamic resistance

Since the current at resonance is in-phase with the volt-
age the impedance of the circuit acts as a resistance. This
resistance is known as the dynamic resistance, RD (or
sometimes, the dynamic impedance).

From equation (16.2), impedance at resonance

= V

Ir
= V(

VRC

L

) = L

RC

i.e. dynamic resistance, RD = L
RC

ohms

Rejector circuit

The parallel resonant circuit is often described as a
rejector circuit since it presents its maximum impedance
at the resonant frequency and the resultant current is a
minimum.

Applications of resonance

One use for resonance is to establish a condition of stable
frequency in circuits designed to produce a.c. signals.
Usually, a parallel circuit is used for this purpose, with
the capacitor and inductor directly connected together,
exchanging energy between each other. Just as a pen-
dulum can be used to stabilize the frequency of a clock
mechanism’s oscillations, so can a parallel circuit be used
to stabilize the electrical frequency of an a.c. oscillator
circuit.

Another use for resonance is in applications where the
effects of greatly increased or decreased impedance at a
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particular frequency is desired. A resonant circuit can be
used to ‘block’ (i.e. present high impedance toward) a
frequency or range of frequencies, thus acting as a sort of
frequency ‘filter’ to strain certain frequencies out of a mix
of others. In fact, these particular circuits are called filters,
and their design is considered in Chapter 42. In essence,
this is how analogue radio receiver tuner circuits work
to filter, or select, one station frequency out of the mix
of different radio station frequency signals intercepted by
the antenna.

Q-factor

Currents higher than the supply current can circulate
within the parallel branches of a parallel resonant cir-
cuit, the current leaving the capacitor and establishing
the magnetic field of the inductor, this then collapsing and
recharging the capacitor, and so on. The Q-factor of a
parallel resonant circuit is the ratio of the current circu-
lating in the parallel branches of the circuit to the supply
current, i.e. the current magnification.

Q-factor at resonance = current magnification

= circulating current

supply current

= IC

Ir
= ILR sin φ1

Ir

= ILR sin φ1

ILR cos φ1
= sin φ1

cos φ1

= tan φ1 = XL

R

i.e. Q-factor at resonance = 2πfrL
R

(which is the same as for a series circuit)

Note that in a parallel circuit the Q-factor is a measure
of current magnification, whereas in a series circuit it is
a measure of voltage magnification.

At mains frequencies the Q-factor of a parallel circuit is
usually low, typically less than 10, but in radio-frequency
circuits the Q-factor can be very high.

Problem 8. A pure inductance of 150 mH is con-
nected in parallel with a 40 µF capacitor across a 50V,
variable frequency supply. Determine (a) the resonant
frequency of the circuit and (b) the current circulating
in the capacitor and inductance at resonance.

The circuit diagram is shown in Figure 16.10.

(a) Parallel resonant frequency, fr = 1

2π

√ (
1

LC
− R2

L2

)

Figure 16.10

However, resistance R = 0. Hence,

fr = 1

2π

√ (
1

LC

)

= 1

2π

√ [
1

(150 × 10−3)(40 × 10−6)

]

= 1

2π

√ (
107

(15)(4)

)

= 103

2π

√ (
1

6

)
= 64.97 Hz

(b) Current circulating in L and C at resonance,

ICIRC = V

XC
= V(

1

2πfrC

) = 2πfrCV

Hence ICIRC = 2π(64.97)(40 × 10−6)(50) = 0.816A

(Alternating, ICIRC = V

XL
= V

2πfrL
= 50

2π(64.97)(0.15)

= 0.817A)

Problem 9. A coil of inductance 0.20 H and resist-
ance 60 � is connected in parallel with a 20 µF capac-
itor across a 20V, variable frequency supply. Calculate
(a) the resonant frequency, (b) the dynamic resistance,
(c) the current at resonance and (d) the circuit Q-factor
at resonance.

(a) Parallel resonant frequency,

fr = 1

2π

√ (
1

LC
− R2

L2

)

= 1

2π

√ (
1

(0.20)(20 × 10−6)
− (60)2

(0.2)2

)

= 1

2π

√
(250 000 − 90 000)
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= 1

2π

√
(160 000) = 1

2π
(400)

= 63.66 Hz

(b) Dynamic resistance, RD = L

RC
= 0.20

(60)(20 × 10−6)

= 166.7 �

(c) Current at resonance, Ir = V

RD
= 20

166.7
= 0.12 A

(d) Circuit Q-factor at resonance = 2πfrL

R

= 2π(63.66)(0.2)

60

= 1.33

Alternatively, Q-factor at resonance = current magni-

fication (for a parallel circuit) = Ic

Ir

Ic = V

Xc
= V(

1

2πfrC

) = 2πfrCV

= 2π(63.66)(20 × 10−6)(20)

= 0.16 A

Hence Q-factor = Ic

Ir
= 0.16

0.12
= 1.33, as obtained

above

Problem 10. A coil of inductance 100 mH and resist-
ance 800 � is connected in parallel with a variable
capacitor across a 12V, 5 kHz supply. Determine for
the condition when the supply current is a minimum:
(a) the capacitance of the capacitor, (b) the dynamic
resistance, (c) the supply current, and (d) the Q-factor.

(a) The supply current is a minimum when the parallel
circuit is at resonance.

Resonant frequency, fr = 1

2π

√ (
1

LC
− R2

L2

)

Transposing for C gives: (2πfr)2 = 1

LC
− R2

L2

(2πfr)2 + R2

L2 = 1

LC

C = 1

L

{
(2πfr)2 + R2

L2

}

When L = 100 mH, R = 800 � and fr = 5000 Hz,

C = 1

100 × 10−3

{
(2π5000)2 + 8002

(100 × 10−3)2

}

= 1

0.1[π2108 + (0.64)108]
F

= 106

0.1(10.51 × 108)
µF

= 0.009515 µF or 9.515 nF

(b) Dynamic resistance, RD = L

CR

= 100 × 10−3

(9.515 × 10−9)(800)

= 13.14 k�

(c) Supply current at resonance, Ir = V

RD

= 12

13.14 × 103

= 0.913 mA

(d) Q-factor at resonance = 2πfrL

R

= 2π(5000)(100 × 10−3)

800

= 3.93
Alternatively, Q-factor at resonance

= Ic

Ir
= V/Xc

Ir
= 2πfrCV

Ir

= 2π(5000)(9.515 × 10−9)(12)

0.913 × 10−3

= 3.93

Now try the following exercise.

Exercise 60 Further problems on parallel reson-
ance and Q-factor

1. A 0.15 µF capacitor and a pure inductance of 0.01 H
are connected in parallel across a 10V, variable
frequency supply. Determine (a) the resonant fre-
quency of the circuit, and (b) the current circulating
in the capacitor and inductance.

[(a) 4.11 kHz (b) 38.74 mA]
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2. A 30 µF capacitor is connected in parallel with a
coil of inductance 50 mH and unknown resistance
R across a 120V, 50 Hz supply. If the circuit has
an overall power factor of 1 find (a) the value of R,
(b) the current in the coil, and (c) the supply current.

[(a) 37.68 � (b) 2.94A (c) 2.714A]

3. A coil of resistance 25 � and inductance 150 mH is
connected in parallel with a 10 µF capacitor across
a 60V, variable frequency supply. Calculate (a) the
resonant frequency, (b) the dynamic resistance,
(c) the current at resonance and (d) the Q-factor at
resonance.

[(a) 127.2 Hz (b) 600 � (c) 0.10A (d) 4.80]

4. A coil of resistance 1.5 k� and 0.25 H inductance
is connected in parallel with a variable capaci-
tance across a 10V, 8 kHz supply. Calculate (a)
the capacitance of the capacitor when the supply
current is a minimum, (b) the dynamic resistance,
and (c) the supply current.

[(a) 1561 pF (b) 106.8 k� (c) 93.66 µA]

5. A parallel circuit as shown in Figure 16.11 is tuned
to resonance by varying capacitance C. Resistance,
R = 30 �, inductance, L = 400 µH, and the supply
voltage, V = 200V, 5 MHz.

ILR

IC

I
C

R L

Figure 16.11

Calculate (a) the value of C to give resonance
at 5 MHz, (b) the dynamic resistance, (c) the
Q-factor, (d) the bandwidth, (e) the current in each
branch, (f) the supply current, and (g) the power
dissipated at resonance.

[(a) 2.533 pF (b) 5.264 M� (c) 418.9
(d) 11.94 kHz (e) IC = 15.915∠90◦ mA,
ILR = 15.915∠ −89.863◦ mA (f) 38 µA

(g) 7.60 mW]

16.7 Power factor improvement

For a particular power supplied, a high power factor
reduces the current flowing in a supply system, which
consequently lowers losses (i.e. I2R losses) and hence
results in cheaper running costs. Supply authorities use
tariffs which encourage electricity consumers to operate
at a reasonably high power factor. Industrial loads such as

a.c. motors are essentially inductive (R–L) and may have
a low power factor. One method of improving (or correct-
ing) the power factor of an inductive load is to connect
a static capacitor C in parallel with the load (see Fig-
ure 16.12(a)). The supply current is reduced from ILR to I ,
the phasor sum of ILR and IC , and the circuit power factor
improves from cos φ1 to cos φ2 (see Figure 16.12(b)).

Figure 16.12

Problem 11. A single-phase motor takes 50A at a
power factor of 0.6 lagging from a 240V, 50 Hz supply.
Determine (a) the current taken by a capacitor con-
nected in parallel with the motor to correct the power
factor to unity, and (b) the value of the supply current
after power factor correction.

The circuit diagram is shown in Figure 16.13(a).

(a) A power factor of 0.6 lagging means that cos φ = 0.6
i.e. φ = cos−1 0.6 = 53◦8′

Hence IM lags V by 53◦8′ as shown in Fig-
ure 16.13(b).

If the power factor is to be improved to unity then
the phase difference between supply current I and
voltage V is 0◦, i.e. I is in phase with V as shown in
Figure 16.13(c). For this to be so, IC must equal the
length ab, such that the phasor sum of IM and IC is
I . ab = IM sin 53◦8′ = 50(0.8) = 40A

Hence the capacitor current Ic must be 40A for
the power factor to be unity.

(b) Supply current I = IM cos 53◦8′ = 50(0.6) = 30A
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Figure 16.13

Problem 12. A motor has an output of 4.8 kW, an
efficiency of 80% and a power factor of 0.625 lag-
ging when operated from a 240V, 50 Hz supply. It is
required to improve the power factor to 0.95 lagging
by connecting a capacitor in parallel with the motor.
Determine (a) the current taken by the motor, (b) the
supply current after power factor correction, (c) the
current taken by the capacitor, (d) the capacitance of
the capacitor, and (e) the kvar rating of the capacitor.

(a) Efficiency = power output

power input

hence
80

100
= 4800

power input

Power input = 4800

0.8
= 6000 W

Hence, 6000 =VIM cos φ = (240)(IM )(0.625),
since cosφ = p.f. = 0.625
Thus current taken by the motor,

IM = 6000

(240)(0.625)
= 40 A

The circuit diagram is shown in Figure 16.14(a).
The phase angle between IM and V is given by:
φ = cos−1 0.625 = 51.32◦ = 51◦19′, hence the pha-
sor diagram is as shown in Figure 16.14(b).

(b) When a capacitor C is connected in parallel with the
motor a current IC flows which leads V by 90◦. The

Figure 16.14

phasor sum of IM and IC gives the supply current
I , and has to be such as to change the circuit power
factor to 0.95 lagging, i.e. a phase angle of cos−10.95
or 18◦12′ lagging, as shown in Figure 16.14(c).

The horizontal component of IM (shown as oa)

= IM cos 51◦19′

= 40 cos 51◦19′

= 25 A

The horizontal component of I (also given by Oa)

= I cos 18◦12′

= 0.95 I
Equating the horizontal components gives: 25=0.95I

Hence the supply current after p.f. correction,

I = 25

0.95
= 26.32A

(c) The vertical component of IM (shown as ab)

= IM sin 51◦19′

= 40 sin 51◦19′

= 31.22A

The vertical component of I (shown as ac)

= I sin 18◦12′

= 26.32 sin 18◦12′

= 8.22A

The magnitude of the capacitor current IC (shown as
bc) is given by ab − ac, i.e. 31.22 − 8.22 = 23A
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(d) Current IC = V

Xc
= V(

1

2πfC

) = 2πfCV ,

from which, C = IC

2πfV
= 23

2π(50)(240)
F = 305 µF

(e) kvar rating of the capacitor = VIc

1000
= (240)(23)

1000

= 5.52 kvar

In this problem the supply current has been reduced
from 40A to 26.32A without altering the current or power
taken by the motor. This means that the I2R losses are
reduced, with an obvious saving in cost.

Problem 13. A 250V, 50 Hz single-phase supply
feeds the following loads (i) incandescent lamps taking
a current of 10A at unity power factor, (ii) fluorescent
lamps taking 8A at a power factor of 0.7 lagging, (iii) a
3 kVA motor operating at full load and at a power factor
of 0.8 lagging and (iv) a static capacitor. Determine,
for the lamps and motor, (a) the total current, (b) the
overall power factor and (c) the total power. (d) Find
the value of the static capacitor to improve the overall
power factor to 0.975 lagging.

A phasor diagram is constructed as shown in Figure
16.15(a), where 8A is lagging voltage V by cos−1 0.7,
i.e. 45.57◦, and the motor current is 3000/250, i.e. 12A
lagging V by cos−1 0.8, i.e. 36.87◦

Figure 16.15

(a) The horizontal component of the currents

= 10 cos 0◦ + 12 cos 36.87◦ + 8 cos 45.57◦

= 10 + 9.6 + 5.6 = 25.2 A

The vertical component of the currents

= 10 sin 0◦ − 12 sin 36.87◦ − 8 sin 45.57◦

= 0 − 7.2 − 5.713 = −12.91 A

From Figure 16.15(b), total current,

IL = √
[(25.2)2 + (12.91)2]

= 28.31A

at a phase angle of φ = tan−1
(

12.91

25.2

)
, i.e. 27.13◦

lagging
(b) Power factor = cos φ = cos 27.13◦ = 0.890 lagging
(c) Total power, P =VIL cos φ

= (250)(28.31)(0.890)

= 6.3 kW

(d) To improve the power factor, a capacitor is connected
in parallel with the loads. The capacitor takes a cur-
rent IC such that the supply current falls from 28.31A
to I , lagging V by cos−1 0.975, i.e. 12.84◦. The
phasor diagram is shown in Figure 16.16.

Figure 16.16

oa = 28.31cos 27.13◦ = I cos 12.84◦

Hence I = 28.31 cos 27.13◦

cos 12.84◦ = 25.84A

Current IC = bc = (ab − ac)

= 28.31 sin 27.13◦ − 25.84 sin 12.84◦

= 12.91 − 5.742

= 7.168 A

Ic = V

Xc
= V(

1

2πfC

) = 2πfCV

Hence capacitance C = Ic

2πfV

= 7.168

2π(50)(250)
F

= 91.27 µF
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Thus to improve the power factor from 0.890 to 0.975
lagging a 91.27 µF capacitor is connected in parallel
with the loads.

Now try the following exercise.

Exercise 61 Further problems on power factor
improvement

1. A 415V alternator is supplying a load of 55 kW at a
power factor of 0.65 lagging. Calculate (a) the kVA
loading and (b) the current taken from the alternator.
(c) If the power factor is now raised to unity find
the new kVA loading.

[(a) 84.6 kVA (b) 203.9A (c) 84.6 kVA]

2. A single-phase motor takes 30A at a power factor of
0.65 lagging from a 240V, 50 Hz supply. Determine
(a) the current taken by the capacitor connected in
parallel to correct the power factor to unity, and
(b) the value of the supply current after power factor
correction. [(a) 22.80A (b) 19.50A]

3. A 20 � non-reactive resistor is connected in series
with a coil of inductance 80 mH and negligible
resistance. The combined circuit is connected to
a 200V, 50 Hz supply. Calculate (a) the reactance
of the coil, (b) the impedance of the circuit, (c) the
current in the circuit, (d) the power factor of the
circuit, (e) the power absorbed by the circuit, (f )
the value of a power factor correction capacitor to
produce a power factor of unity, and (g) the value
of a power factor correction capacitor to produce a
power factor of 0.9.

[(a) 25.13 � (b) 32.12∠51.49◦ �
(c) 6.227∠ −51.49◦ A (d) 0.623 (e) 775.5 W

(f) 77.56 µF (g) 47.67 µF]

4. A motor has an output of 6 kW, an efficiency of 75%
and a power factor of 0.64 lagging when operated
from a 250V, 60 Hz supply. It is required to raise
the power factor to 0.925 lagging by connecting
a capacitor in parallel with the motor. Determine
(a) the current taken by the motor, (b) the supply
current after power factor correction, (c) the current
taken by the capacitor, (d) the capacitance of the
capacitor and (e) the kvar rating of the capacitor.

[(a) 50A (b) 34.59A (c) 25.28A (d) 268.2 µF
(e) 6.32 kvar]

5. A 200V, 50 Hz single-phase supply feeds the fol-
lowing loads: (i) fluorescent lamps taking a current
of 8A at a power factor of 0.9 leading, (ii) incandes-
cent lamps taking a current of 6A at unity power
factor, (iii) a motor taking a current of 12A at a
power factor of 0.65 lagging. Determine the total
current taken from the supply and the overall power
factor. Find also the value of a static capacitor con-
nected in parallel with the loads to improve the
overall power factor to 0.98 lagging.

[21.74A, 0.966 lagging, 21.74 µF]
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17 D.c. transients

At the end of this chapter you should be able to:
• understand the term ‘transient’
• describe the transient response of capacitor and

resistor voltages, and current in a series C–R d.c.
circuit

• define the term ‘time constant’
• calculate time constant in a C–R circuit
• draw transient growth and decay curves for a C–R

circuit
• use equations vC = V (1 − e−t/τ), vR = Ve−t/τ and

i = Ie−t/τ for a CR circuit
• describe the transient response when discharging a

capacitor

• describe the transient response of inductor and resistor
voltages, and current in a series L–R d.c. circuit

• calculate time constant in an L–R circuit
• draw transient growth and decay curves for an LR

circuit
• use equations vL = Ve−t/τ , vR = V (1 − e−t/τ) and

i = I(1 − e−t/τ)
• describe the transient response for current decay in an

LR circuit
• understand the switching of inductive circuits
• describe the effects of time constant on a rectangular

waveform via integrator and differentiator circuits

17.1 Introduction

When a d.c. voltage is applied to a capacitor C and resis-
tor R connected in series, there is a short period of time
immediately after the voltage is connected, during which
the current flowing in the circuit and voltages across C
and R are changing.

Similarly, when a d.c. voltage is connected to a circuit
having inductance L connected in series with resistance
R, there is a short period of time immediately after the
voltage is connected, during which the current flowing in
the circuit and the voltages across L and R are changing.

These changing values are called transients.

17.2 Charging a capacitor

(a) The circuit diagram for a series connected C–R circuit
is shown in Figure 17.1. When switch S is closed then
by Kirchhoff’s voltage law:

V = vC + vR (17.1)

Figure 17.1

(b) The battery voltage V is constant. The capacitor volt-
age vC is given by q/C, where q is the charge on the
capacitor. The voltage drop across R is given by iR,
where i is the current flowing in the circuit. Hence at
all times:

V = q

C
+ iR (17.2)

At the instant of closing S, (initial circuit condition),
assuming there is no initial charge on the capacitor,
q0 is zero, hence vCo is zero. Thus from equation
(17.1), V = 0+vRo, i.e. vRo = V . This shows that the
resistance to current is solely due to R, and the initial
current flowing, io = I = V/R.

(c) A short time later at time t1 seconds after closing S,
the capacitor is partly charged to, say, q1 coulombs
because current has been flowing. The voltage vC1 is
now q1/C volts. If the current flowing is i1 amperes,
then the voltage drop across R has fallen to i1R volts.
Thus, equation (17.2) is now V = (q1/C) + i1R.

(d) A short time later still, say at time t2 seconds after
closing the switch, the charge has increased to q2
coulombs and vC has increased to q2/C volts. Since
V = vC + vR and V is a constant, then vR decreases to
i2R. Thus vC is increasing and i and vR are decreasing
as time increases.

(e) Ultimately, a few seconds after closing S, (i.e. at
the final or steady state condition), the capacitor is
fully charged to, say, Q coulombs, current no longer
flows, i.e. i = 0, and hence vR = iR = 0. It follows
from equation (17.1) that vC = V .
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(f) Curves showing the changes in vC , vR and i with time
are shown in Figure 17.2.

Figure 17.2

The curve showing the variation of vC with time is
called an exponential growth curve and the graph is
called the ‘capacitor voltage/time’ characteristic. The
curves showing the variation of vR and i with time
are called exponential decay curves, and the graphs
are called ‘resistor voltage/time’ and ‘current/time’
characteristics respectively. (The name ‘exponential’
shows that the shape can be expressed mathematically
by an exponential mathematical equation, as shown in
Section 17.4).

17.3 Time constant for a C–R circuit

(a) If a constant d.c. voltage is applied to a series con-
nected C–R circuit, a transient curve of capacitor
voltage vC is as shown in Figure 17.2(a).

(b) With reference to Figure 17.3, let the constant voltage
supply be replaced by a variable voltage supply at

time t1 seconds. Let the voltage be varied so that the
current flowing in the circuit is constant.

Figure 17.3

(c) Since the current flowing is a constant, the curve will
follow a tangent, AB, drawn to the curve at point A.

(d) Let the capacitor voltage vC reach its final value of V
at time t2 seconds.

(e) The time corresponding to (t2 − t1) seconds is called
the time constant of the circuit, denoted by the Greek
letter ‘tau’, τ. The value of the time constant is CR
seconds, i.e. for a series connected C–R circuit,

time constant τ = CR seconds

Since the variable voltage mentioned in para (b) above
can be applied to any instant during the transient
change, it may be applied at t = 0, i.e. at the instant
of connecting the circuit to the supply. If this is done,
then the time constant of the circuit may be defined as:

‘the time taken for a transient to reach its final state
if the initial rate of change is maintained’.

17.4 Transient curves for a C–R circuit

There are two main methods of drawing transient curves
graphically, these being:

(a) the tangent method — this method is shown in
Problem 1 below and

(b) the initial slope and three point method, which is
shown in Problem 2, and is based on the following
properties of a transient exponential curve:
(i) for a growth curve, the value of a transient at a time

equal to one time constant is 0.632 of its steady
state value (usually taken as 63% of the steady
state value), at a time equal to two and a half time
constants is 0.918 if its steady state value (usually
taken as 92% of its steady state value) and at a time
equal to five time constants is equal to its steady
state value,
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(ii) for a decay curve, the value of a transient at a time
equal to one time constant is 0.368 of its initial
value (usually taken as 37% of its initial value),
at a time equal to two and a half time constants is
0.082 of its initial value (usually taken as 8% of
its initial value) and at a time equal to five time
constants is equal to zero.

The transient curves shown in Figure 17.2 have math-
ematical equations, obtained by solving the differential
equations representing the circuit. The equations of the
curves are:

growth of capacitor voltage, vC = V(1 − e−t/CR)

= V(1 − e−t/τ)

decay of resistor voltage, vR = Ve−t/CR

= Ve−t/τ and

decay of current flowing, i = Ie−t/CR = Ie−t/τ

These equations are derived analytically in Chapter 45.

Problem 1. A 15 µF uncharged capacitor is con-
nected in series with a 47 k� resistor across a 120V,
d.c. supply. Use the tangential graphical method to
draw the capacitor voltage/time characteristic of the
circuit. From the characteristic, determine the capac-
itor voltage at a time equal to one time constant after
being connected to the supply, and also two seconds
after being connected to the supply. Also, find the time
for the capacitor voltage to reach one half of its steady
state value.

To construct an exponential curve, the time constant of the
circuit and steady state value need to be determined.

Time constant = CR = 15 µF × 47 k�

= 15 × 10−6 × 47 × 103

= 0.705 s

Steady state value of vC = V ,

i.e. vC = 120 V.

With reference to Figure 17.4, the scale of the horizontal
axis is drawn so that it spans at least five time constants, i.e.
5 × 0.705 or about 3.5 seconds. The scale of the vertical
axis spans the change in the capacitor voltage, that is, from
0 to 120V. A broken line AB is drawn corresponding to
the final value of vC .

Point C is measured along AB so that AC is equal
to 1τ, i.e. AC = 0.705 s. Straight line OC is drawn.
Assuming that about five intermediate points are needed
to draw the curve accurately, a point D is selected on
OC corresponding to a vC value of about 20V. DE is
drawn vertically. EF is made to correspond to 1τ, i.e.

Figure 17.4

EF = 0.705 s. A straight line is drawn joining DF. This
procedure of

(a) drawing a vertical line through point selected,
(b) at the steady state value, drawing a horizontal line

corresponding to 1τ, and
(c) joining the first and last points,

is repeated for vC values of 40, 60, 80 and 100V, giving
points G, H, I and J.

The capacitor voltage effectively reaches its steady state
value of 120V after a time equal to five time constants,
shown as point K. Drawing a smooth curve through points
O, D, G, H, I, J and K gives the exponential growth curve
of capacitor voltage.

From the graph, the value of capacitor voltage at a time
equal to the time constant is about 75V. It is a characteris-
tic of all exponential growth curves, that after a time equal
to one time constant, the value of the transient is 0.632 of
its steady state value. In this problem, 0.632 × 120 =
75.84V. Also from the graph, when t is two seconds, vC is
about 115V. [This value may be checked using the equa-
tion vC(1 − e−t/τ), where V = 120 V, τ = 0.705 s and
t = 2 s. This calculation gives vC = 112.97V.]

The time for vC to rise to one half of its final value, i.e.
60V, can be determined from the graph and is about 0.5 s.
[This value may be checked using vC = V (1−e−t/τ) where
V = 120V, vC = 60V and τ = 0.705 s, giving t = 0.489 s.]

Problem 2. A 4 µF capacitor is charged to 24V
and then discharged through a 220 k� resistor. Use
the ‘initial slope and three point’ method to draw: (a)
the capacitor voltage/time characteristic, (b) the resis-
tor voltage/time characteristic and (c) the current/time
characteristic, for the transients which occur. From the
characteristics determine the value of capacitor volt-
age, resistor voltage and current one and a half seconds
after discharge has started.
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To draw the transient curves, the time constant of the
circuit and steady state values are needed.

Time constant, τ = CR = 4 × 10−6 × 220 × 103

= 0.88 s

Initially, capacitor voltage vC = vR = 24V,

i = V

R
= 24

220 × 103

= 0.109 mA

Finally, vC = vR = i = 0

(a) The exponential decay of capacitor voltage is from
24V to 0V in a time equal to five time constants,
i.e. 5 × 0.88 = 4.4 s. With reference to Figure 17.5, to
construct the decay curve:

(i) the horizontal scale is made so that it spans at
least five time constants, i.e. 4.4 s,

(ii) the vertical scale is made to span the change in
capacitor voltage, i.e. 0 to 24V,

(iii) point A corresponds to the initial capacitor
voltage, i.e. 24V,

(iv) OB is made equal to one time constant and line
AB is drawn. This gives the initial slope of the
transient,

(v) the value of the transient after a time equal
to one time constant is 0.368 of the initial
value, i.e. 0.368 × 24 = 8.83V; a vertical line is
drawn through B and distance BC is made equal
to 8.83V,

(vi) the value of the transient after a time equal to two
and a half time constants is 0.082 of the initial

Figure 17.5

value, i.e. 0.082 × 24 = 1.97V, shown as point
D in Figure 17.5,

(vii) the transient effectively dies away to zero after
a time equal to five time constants, i.e. 4.4 s,
giving point E.

The smooth curve drawn through points A, C, D and
E represents the decay transient. At 1 1

2 s after decay
has started, vC ≈ 4.4V. [This may be checked using
vC = Ve−t/τ , where V = 24, t = 1 1

2 and τ = 0.88,
giving vC = 4.36V]

(b) The voltage drop across the resistor is equal to
the capacitor voltage when a capacitor is dischar-
ging through a resistor, thus the resistor voltage/time
characteristic is identical to that shown in Figure 17.5.
Since vR = vC , then at 1 1

2 seconds after decay has
started, vR ≈ 4.4V (see (vii) above).

(c) The current/time characteristic is constructed in the
same way as the capacitor voltage/time characteristic,
shown in part (a) of this problem, and is as shown in
Figure 17.6. The values are:

point A: initial value of current = 0.109 mA
point C: at 1τ, i = 0.368 × 0.109 = 0.040 mA
point D: at 2.5τ, i = 0.082 × 0.109 = 0.009 mA
point E: at 5τ, i = 0

Figure 17.6

Hence the current transient is as shown. At a time
of 1 1

2 seconds, the value of current, from the char-
acteristic is 0.02 mA. [This may be checked using
i = Ie−t/τ where I = 0.109, t = 1 1

2 and τ = 0.88, giv-
ing i = 0.0198 mA or 19.8 µA]

Problem 3. A 20 µF capacitor is connected in series
with a 50 k� resistor and the circuit is connected to a
20V, d.c. supply. Determine

(a) the initial value of the current flowing,
(b) the time constant of the circuit,
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(c) the value of the current one second after
connection,

(d) the value of the capacitor voltage two seconds after
connection, and

(e) the time after connection when the resistor voltage
is 15V

Parts (c), (d) and (e) may be determined graphically, as
shown in Problems 1 and 2 or by calculation as shown
below.

V = 20 V, C = 20 µF = 20 × 10−6 F,

R = 50 k� = 50 × 103 V

(a) The initial value of the current flowing is

I = V

R
= 20

50 × 103 = 0.4 mA

(b) From Section 17.3 the time constant,

τ = CR = (20 × 10−6) × (50 × 103) = 1 s

(c) Current, i = Ie−t/τ

Working in mA units, i = 0.4e−1/1 = 0.4 × 0.368

= 0.147 mA

(d) Capacitor voltage, vC = V (1 − e−t/τ) = 20(1 − e−2/1)

= 20(1 − 0.135) = 20 × 0.865

= 17.3V

(e) Resistor voltage, vR = Ve−t/τ

Thus, 15 = 20e−t/1, 15
20 = e−t , i.e. et = 20

15 = 4
3

Taking natural logarithms of each side of the equation
gives

t = ln 4
3 = ln 1.3333

i.e. time, t = 0.288 s

Problem 4. A circuit consists of a resistor connected
in series with a 0.5 µF capacitor and has a time constant
of 12 ms. Determine (a) the value of the resistor, and (b)
the capacitor voltage 7 ms after connecting the circuit
to a 10V supply.

(a) The time constant τ = CR, hence R = τ

C

i.e. R = 12 × 10−3

0.5 × 10−6 = 24 × 103 = 24 k�

(b) The equation for the growth of capacitor voltage is:

vC = V (1 − e−t/τ)

Since τ = 12 ms = 12 × 10−3 s, V = 10V and

t = 7 ms = 7 × 10−3 s,

then vC = 10

[
1 − e

− 7×10−3

12×10−3

]
= 10(1 − e−0.583)

= 10(1 − 0.558) = 4.42V

Alternatively, the value of vC when t is 7 ms may be
determined using the growth characteristic as shown
in Problem 1.

Problem 5. A circuit consists of a 10 µF capacitor
connected in series with a 25 k� resistor with a switch-
able 100V d.c. supply. When the supply is connected,
calculate (a) the time constant, (b) the maximum cur-
rent, (c) the voltage across the capacitor after 0.5 s,
(d) the current flowing after one time constant, (e) the
voltage across the resistor after 0.1 s, (f) the time for
the capacitor voltage to reach 45V, and (g) the initial
rate of voltage rise.

(a) Time constant, τ = C × R = 10 × 10−6 × 25 × 103

= 0.25 s
(b) Current is a maximum when the circuit is first con-

nected and is only limited by the value of resistance
in the circuit, i.e.

Im = V

R
= 100

25 × 103 = 4 mA

(c) Capacitor voltage, vC = Vm(1 − e
−t
τ )

When time, t = 0.5 s, then
vC = 100(1 − e− 0.5

0.25 ) = 100(0.8647) = 86.47V

(d) Current, i = Ime− t
τ

and when t = τ, current, i = 4e− τ
τ = 4e−1 = 1.472 mA

Alternatively, after one time constant the capacitor
voltage will have risen to 63.2% of the supply voltage
and the current will have fallen to 63.2% of its final
value, i.e. 36.8% of Im.
Hence, i = 36.8% of 4 = 0.368 × 4 = 1.472 mA

(e) The voltage across the resistor, vR = Ve− t
τ

When t = 0.1 s, resistor voltage,

vR = 100e− 0.1
0.25 = 67.03V

(f) Capacitor voltage, vC = Vm(1 − e− t
τ )
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When the capacitor voltage reaches 45V, then:

45 = 100
(

1 − e− t
0.25

)
from which,
45

100
= 1 − e− t

0.25 and e− t
0.25 = 1 − 45

100
= 0.55

Hence,

− t

0.25
= ln 0.55 and time, t = −0.25 ln 0.55

= 0.149 s

(g) Initial rate of voltage rise = V

τ
= 100

0.25
= 400V/s

(i.e. gradient of the tangent at t = 0)

17.5 Discharging a capacitor

When a capacitor is charged (i.e. with the switch in pos-
ition A in Figure 17.7), and the switch is then moved to
position B, the electrons stored in the capacitor keep the
current flowing for a short time. Initially, at the instant
of moving from A to B, the current flow is such that
the capacitor voltage vC is balanced by an equal and
opposite voltage vR = iR. Since initially vC = vR = V ,
then i = I = V/R. During the transient decay, by apply-
ing Kirchhoff’s voltage law to Figure 17.7, vC = vR.
Finally the transients decay exponentially to zero, i.e.
vC = vR = 0. The transient curves representing the volt-
ages and current are as shown in Figure 17.8.

Figure 17.7

The equations representing the transient curves during
the discharge period of a series connected C–R circuit are:

decay of voltage, vC = vR = Ve(−t/CR) = Ve(−t/τ)

decay of current, i = Ie(−t/CR) = Ie(−t/τ)

When a capacitor has been disconnected from the sup-
ply it may still be charged and it may retain this charge for
some considerable time. Thus precautions must be taken
to ensure that the capacitor is automatically discharged
after the supply is switched off. This is done by connecting
a high value resistor across the capacitor terminals.

Figure 17.8

Problem 6. A capacitor is charged to 100V and then
discharged through a 50 k� resistor. If the time con-
stant of the circuit is 0.8 s, determine: (a) the value of
the capacitor, (b) the time for the capacitor voltage to
fall to 20V, (c) the current flowing when the capaci-
tor has been discharging for 0.5 s, and (d) the voltage
drop across the resistor when the capacitor has been
discharging for one second.

Parts (b), (c) and (d) of this problem may be solved graph-
ically as shown in Problems 1 and 2 or by calculation as
shown below.

V = 100 V, τ = 0.08 s, R = 50 k� = 50 × 103 �

(a) Since time constant, τ = CR, C = τ/R

i.e. C = 0.8

50 × 103 = 16 µF

(b) vC = Ve−t/τ

20 = 100e−t/0.8, i.e. 1
5 = e−t/0.8

Thus et/0.8 = 5 and taking natural logarithms of each
side, gives

t

0.8
= ln 5, i.e. t = 0.8 ln 5

Hence t = 1.29 s

(c) i = Ie−t/τ

The initial current flowing, I = V

R
= 100

50×103 =2 mA
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Working in mA units, i = Ie−t/τ = 2e(−0.5/0.8)

= 2e−0.625

= 2 × 0.535 = 1.07 mA

(d) vR = vC = Ve−t/τ

= 100e−1/0.8 = 100e−1.25

= 100 × 0.287 = 28.7V

Problem 7. A 0.1 µF capacitor is charged to 200V
before being connected across a 4 k� resistor. Deter-
mine (a) the initial discharge current, (b) the time
constant of the circuit, and (c) the minimum time
required for the voltage across the capacitor to fall to
less than 2V.

(a) Initial discharge current, i = V

R
= 200

4 × 103 = 0.05A

or 50 mA

(b) Time constant τ = CR = 0.1 × 10−6 × 4 × 103

= 0.0004 s or 0.4 ms

(c) The minimum time for the capacitor voltage to fall to
less than 2V, i.e. less than or 2

200 or 1% of the initial
value is given by 5 τ.

5τ = 5 × 0.4 = 2 ms

In a d.c. circuit, a capacitor blocks the current except
during the times that there are changes in the supply
voltage.

Now try the following exercise.

Exercise 62 Further problems on transients in
series connected C–R circuits

1. An uncharged capacitor of 0.2 µF is connected to
a 100V, d.c. supply through a resistor of 100 k�.
Determine, either graphically or by calculation the
capacitor voltage 10 ms after the voltage has been
applied. [39.35V]

2. A circuit consists of an uncharged capacitor con-
nected in series with a 50 k� resistor and has a time
constant of 15 ms. Determine either graphically or
by calculation (a) the capacitance of the capacitor
and (b) the voltage drop across the resistor 5 ms
after connecting the circuit to a 20V, d.c. supply.

[(a) 0.3 µF (b) 14.33V]

3. A 10 µF capacitor is charged to 120V and then
discharged through a 1.5 M� resistor. Determine
either graphically or by calculation the capacitor
voltage 2 s after discharging has commenced. Also
find how long it takes for the voltage to fall to 25V.

[105.0V, 23.53 s]

4. A capacitor is connected in series with a voltmeter
of resistance 750 k� and a battery. When the volt-
meter reading is steady the battery is replaced with
a shorting link. If it takes 17 s for the voltmeter
reading to fall to two-thirds of its original value,
determine the capacitance of the capacitor.

[55.9 µF]

5. When a 3 µF charged capacitor is connected to
a resistor, the voltage falls by 70% in 3.9 s.
Determine the value of the resistor. [1.08 M�]

6. A 50 µF uncharged capacitor is connected in series
with a 1 k� resistor and the circuit is switched to
a 100V, d.c. supply. Determine:

(a) the initial current flowing in the circuit,
(b) the time constant,
(c) the value of current when t is 50 ms and
(d) the voltage across the resistor 60 ms after

closing the switch.
[(a) 0.1A (b) 50 ms (c) 36.8 mA (d) 30.1V]

7. An uncharged 5 µF capacitor is connected in series
with a 30 k� resistor across a 110V, d.c. sup-
ply. Determine the time constant of the circuit and
the initial charging current. Determine the current
flowing 120 ms after connecting to the supply.

[150 ms, 3.67 mA, 1.65 mA]

8. An uncharged 80 µF capacitor is connected in
series with a 1 k� resistor and is switched across
a 110V supply. Determine the time constant of
the circuit and the initial value of current flowing.
Determine the value of current flowing after (a)
40 ms and (b) 80 ms.

[80 ms, 0.11A (a) 66.7 mA (b) 40.5 mA]

9. A 60 µF capacitor is connected in series with a
10 k� resistor and connected to a 120V d.c. sup-
ply. Calculate (a) the time constant, (b) the initial
rate of voltage rise, (c) the initial charging cur-
rent, and (d) the time for the capacitor voltage to
reach 50V.

[(a) 0.60 s (b) 200V/s (c) 12 mA (d) 0.323 s]

10. A 200V d.c. supply is connected to a 2.5 M� resis-
tor and a 2 µF capacitor in series. Calculate (a) the
current flowing 4 s after connecting, (b) the volt-
age across the resistor after 4 s, and (c) the energy
stored in the capacitor after 4 s.

[(a) 35.95 µA (b) 89.87V (c) 12.13 mJ]
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11. (a) In the circuit shown in Figure 17.9, with
the switch in position 1, the capacitor is
uncharged. If the switch is moved to position 2
at time t = 0 s, calculate (i) the initial current
through the 0.5 M�, (ii) the voltage across
the capacitor when t = 1.5 s, and (iii) the time
taken for the voltage across the capacitor to
reach 12V.

40 V

0.5 MΩ

1 MΩ

5 µF

2
1
3

Figure 17.9

(b) If at the time t = 1.5 s, the switch is moved
to position 3, calculate (i) the initial current
through the 1 M� resistor, (ii) the energy
stored in the capacitor 3.5 s later (i.e. when
t = 5 s).

(c) Sketch a graph of the voltage across the
capacitor against time from t = 0 to t = 5 s,
showing the main points.

[(a)(i) 80 µA (ii) 18.05V (iii) 0.892 s
(b)(i) 40 µA (ii) 48.30 µJ ]

17.6 Camera flash

The internal workings of a camera flash are an example
of the application of C–R circuits. When a camera is first
switched on, a battery slowly charges a capacitor to its full
potential via a C–R circuit. When the capacitor is fully
charged, an indicator (red light) typically lets the photog-
rapher know that the flash is ready for use. Pressing the
shutter button quickly discharges the capacitor through
the flash (i.e. a resistor). The current from the capacitor is
responsible for the bright light that is emitted. The flash
rapidly draws current in order to emit the bright light. The
capacitor must then be discharged before the flash can be
used again.

17.7 Current growth in an L–R circuit

(a) The circuit diagram for a series connected L–R circuit
is shown in Figure 17.10. When switch S is closed,

then by Kirchhoff’s voltage law:

V = vL + vR (17.3)

Figure 17.10

(b) The battery voltage V is constant. The voltage across
the inductance is the induced voltage, i.e.

vL = L × change of current

change of time
= L

di

dt

The voltage drop across R, vR is given by iR. Hence,
at all times:

V = L(di/dt) + iR (17.4)

(c) At the instant of closing the switch, the rate of
change of current is such that it induces an e.m.f.
in the inductance which is equal and opposite to V ,
hence V = vL + 0, i.e. vL = V . From equation (17.3),
because vL = V , then vR = 0 and i = 0

(d) A short time later at time t1 seconds after closing S,
current i1 is flowing since there is a rate of change
of current initially, resulting in a voltage drop of
i1R across the resistor. Since V (constant) = vL + vR
the induced e.m.f. is reduced, and equation (17.4)
becomes:

V = L
di1
dt1

+ i1R

(e) A short time later still, say at time t2 seconds after
closing the switch, the current flowing is i2, and the
voltage drop across the resistor increases to i2R. Since
vR increases, vL decreases.

(f) Ultimately, a few seconds after closing S, the current
flow is entirely limited by R, the rate of change of cur-
rent is zero and hence vL is zero. Thus V = iR. Under
these conditions, steady state current flows, usually
signified by I . Thus, I = V/R, vR = IR and vL = 0 at
steady state conditions.

(g) Curves showing the changes in vL , vR and i with time
are shown in Figure 17.11 and indicate that vL is a
maximum value initially (i.e equal to V ), decaying
exponentially to zero, whereas vR and i grow expo-
nentially from zero to their steady state values of V
and I = V/R respectively.
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Figure 17.11

17.8 Time constant for an L–R circuit

With reference to Section 17.3, the time constant of a
series connected L–R circuit is defined in the same way as
the time constant for a series connected C–R circuit, i.e.
it is the time taken to reach its final value if the initial rate
of change is maintained. Its value is given by:

time constant, τ = L/R seconds

17.9 Transient curves for an L–R circuit

Transient curves representing the induced voltage/time,
resistor voltage/time and current/time characteristics may
be drawn graphically, as outlined in Section 17.4. A
method of construction is shown in Problem 8. Each of the
transient curves shown in Figure 17.11 have mathematical
equations, and these are:

decay of induced voltage, vL = Ve(−Rt/L) = Ve(−t/τ)

growth of resistor voltage, vR = V(1 − e−Rt/L)

= V(1 − e−t/τ)

growth of current flow, i = I(1 − e−Rt/L)

= I(1 − e−t/τ)

These equations are derived analytically in Chapter 45.
The application of these equations is shown in Problem 10.

Problem 8. A relay has an inductance of 100 mH and
a resistance of 20 �. It is connected to a 60V, d.c. sup-
ply. Use the ‘initial slope and three point’ method to
draw the current/time characteristic and hence deter-
mine the value of current flowing at a time equal to
two time constants and the time for the current to grow
to 1.5A.

Before the current/time characteristic can be drawn, the
time constant and steady state value of the current have to
be calculated.

Time constant, τ = L

R
= 100 × 10−3

20
= 5 ms

Final value of current, I = V

R
= 60

20
= 3 A

The method used to construct the characteristic is the same
as that used in Problem 2.

(a) The scales should span at least five time constants
(horizontally), i.e. 25 ms, and 3A (vertically).

(b) With reference to Figure 17.12, the initial slope is
obtained by making AB equal to 1 time constant,
(5 ms), and joining 0B.

Figure 17.12

(c) At a time of 1 time constant, CD is 0.632 × I =
0.632 × 3 = 1.896A
At a time of 2.5 time constants, EF is 0.918 × I =
0.918 × 3 = 2.754A
At a time of 5 time constants, GH = 3A
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(d) A smooth curve is drawn through points 0, D, F and
H and this curve is the current/time characteristic.

From the characteristic, when t = 2τ, i ≈ 2.6A.
[This may be checked by calculation using i = I(1 − e−t/τ),
where I = 3 and t = 2τ, giving i = 2.59A].
Also, when the current is 1.5A, the corresponding time is
about 3.6 ms.
[This may be checked by calculation, using i = I(1 − e−t/τ)
where i = 1.5, I = 3 and τ = 5 ms, giving t = 3.466 ms.]

Problem 9. A coil of inductance 0.04 H and resist-
ance 10 � is connected to a 120V, d.c. supply. Deter-
mine (a) the final value of current, (b) the time constant
of the circuit, (c) the value of current after a time equal
to the time constant from the instant the supply voltage
is connected, (d) the expected time for the current to
rise to within 1% of its final value.

(a) Final steady current, I = V

R
= 120

10
= 12 A

(b) Time constant of the circuit, τ = L

R
= 0.04

10
= 0.004 s or 4 ms

(c) In the time τ s the current rises to 63.2% of its
final value of 12A, i.e. in 4 ms the current rises to
0.632 × 12 = 7.58A

(d) The expected time for the current to rise to within 1%
of its final value is given by 5 τ s, i.e. 5 × 4 = 20 ms

Problem 10. The winding of an electromagnet has an
inductance of 3 H and a resistance of 15 �. When it is
connected to a 120V, d.c. supply, calculate:

(a) the steady state value of current flowing in the
winding,

(b) the time constant of the circuit,
(c) the value of the induced e.m.f. after 0.1 s,
(d) the time for the current to rise to 85% of its final

value, and
(e) the value of the current after 0.3 s

(a) The steady state value of current is I = V/R, i.e.
I = 120/15 = 8A

(b) The time constant of the circuit, τ = L/R = 3/15 = 0.2 s
Parts (c), (d) and (e) of this problem may be deter-
mined by drawing the transients graphically, as shown
in Problem 7 or by calculation as shown below.

(c) The induced e.m.f., vL is given by vL = Ve−t/τ . The
d.c. voltage V is 120V, t is 0.1 s and τ is 0.2 s, hence

vL = 120e−0.1/0.2 = 120e−0.5 = 120 × 0.6065

i.e. vL = 72.78V

(d) When the current is 85% of its final value, i = 0.85I .

Also , i = I(1 − e−t/τ), thus 0.85I = I(1 − e−t/τ)

0.85 = 1 − e−t/τ and since τ = 0.2,

0.85 = 1 − e−t/0.2

e−t/0.2 = 1 − 0.85 = 0.15

et/0.2 = 1

0.15
= 6.6̇

Taking natural logarithms of each side of this equation
gives:

ln et/0.2 = ln 6.6̇, and by the laws of logarithms
t

0.2
ln e = ln 6.6̇. But ln e = 1, hence

t = 0.2 ln 6.6̇ i.e. t = 0.379 s

(e) The current at any instant is given by i = I(1 − e−t/τ)

When I = 8, t = 0.3 and τ = 0.2, then

i = 8(1 − e−0.3/0.2) = 8(1 − e−1.5)

= 8(1 − 0.2231) = 8 × 0.7769

i.e. i = 6.215A

17.10 Current decay in an L–R circuit

When a series connected L–R circuit is connected to a d.c.
supply as shown with S in position A of Figure 17.13, a
current I = V/R flows after a short time, creating a mag-
netic field (� ∝ I) associated with the inductor. When S
is moved to position B, the current value decreases, caus-
ing a decrease in the strength of the magnetic field. Flux
linkages occur, generating a voltage vL , equal to L(di/dt).
By Lenz’s law, this voltage keeps current i flowing in the
circuit, its value being limited by R. Thus vL = vR. The
current decays exponentially to zero and since vR is pro-
portional to the current flowing, vR decays exponentially
to zero. Since vL = vR, vL also decays exponentially to
zero. The curves representing these transients are similar
to those shown in Figure 17.8.

Figure 17.13

The equations representing the decay transient curves are:

decay of voltages, vL=vR = Ve(−Rt/L) = Ve(−t/τ)

decay of current, i=Ie(−Rt/L) = Ie(−t/τ)



Ch17-H8139.tex 29/3/2007 14: 15 page 209

D.c. transients 209

PART

2

Problem 11. The field winding of a 110V, d.c. motor
has a resistance of 15 � and a time constant of
2 s. Determine the inductance and use the tangential
method to draw the current/time characteristic when
the supply is removed and replaced by a shorting link.
From the characteristic determine (a) the current flow-
ing in the winding 3 s after being shorted-out and (b)
the time for the current to decay to 5A.

Since the time constant, τ = L

R
, L = Rτ

i.e. inductance L = 15 × 2 = 30 H

The current/time characteristic is constructed in a similar
way to that used in Problem 1.

(i) The scales should span at least five time constants
horizontally, i.e. 10 s, and I = V/R = 110/15 = 7.3̇A
vertically.

(ii) With reference to Figure 17.14, the initial slope is
obtained by making OB equal to 1 time constant,
(2 s), and joining AB.

Figure 17.14

(iii) At, say, i = 6A, let C be the point on AB correspond-
ing to a current of 6A. Make DE equal to 1 time
constant, (2 s), and join CE.

(iv) Repeat the procedure given in (iii) for current values
of, say, 4A, 2A and 1A, giving points F, G and H.

(v) Point J is at five time constants, when the value of
current is zero.

(vi) Join points A, C, F, G, H and J with a smooth curve.
This curve is the current/time characteristic.

(a) From the current/time characteristic, when
t = 3 s, i = 1.5A. [This may be checked by cal-
culation using i = Ie−t/τ , where I = 7.3̇, t = 3
and τ = 2, giving i = 1.64A.] The discrepancy

between the two results is due to relatively few
values, such as C, F, G and H, being taken.

(b) From the characteristic, when i = 5A, t = 0.70 s.
[This may be checked by calculation using
i = Ie−t/τ , where i = 5, I = 7.3̇, τ = 2, giving
t = 0.766 s.] Again, the discrepancy between the
graphical and calculated values is due to rela-
tively few values such as C, F, G and H being
taken.

Problem 12. A coil having an inductance of 6 H and
a resistance of R � is connected in series with a resistor
of 10 � to a 120V, d.c. supply. The time constant of the
circuit is 300 ms. When steady state conditions have
been reached, the supply is replaced instantaneously
by a short-circuit. Determine: (a) the resistance of the
coil, (b) the current flowing in the circuit one second
after the shorting link has been placed in the circuit,
and (c) the time taken for the current to fall to 10% of
its initial value.

(a) The time constant, τ = circuit inductance

total circuit resistance

= L

R + 10

Thus R = L

τ
− 10 = 6

0.3
= 10 = 10 �

Parts (b) and (c) may be determined graphically as
shown in Problems 8 and 11 or by calculation as shown
below.

(b) The steady state current, I = V

R
= 120

10 + 10
= 6A

The transient current after 1 second,

i = Ie−t/τ = 6e−1/0.3

Thus i = 6e−3.3̇ = 6 × 0.03567 = 0.214A

(c) 10% of the initial value of the current is (10/100) × 6,
i.e. 0.6A

Using the equation i = Ie−t/τ gives

0.6 = 6e−t/0.3

i.e.
0.6

6
= e−t/0.3

or

et/0.3 = 6

0.6
= 10

Taking natural logarithms of each side of this equation
gives:

t

0.3
= ln 10

t = 0.3 ln 10 = 0.691 s
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Problem 13. An inductor has a negligible resistance
and an inductance of 200 mH and is connected in series
with a 1 k� resistor to a 24V, d.c. supply. Determine
the time constant of the circuit and the steady state
value of the current flowing in the circuit. Find (a) the
current flowing in the circuit at a time equal to one time
constant, (b) the voltage drop across the inductor at a
time equal to two time constants and (c) the voltage
drop across the resistor after a time equal to three time
constants.

The time constant, τ = L

R
= 0.2

1000
= 0.2 ms

The steady state current I = V

R
= 24

1000
= 24 mA

(a) The transient current, i = I(1 − e−t/τ) and t = 1τ

Working in mA units gives, i = 24(1 − e−(1τ/τ))

= 24(1 − e−1)

= 24(1 − 0.368)

= 15.17 mA

(b) The voltage drop across the inductor, vL = Ve−t/τ

When t = 2τ, vL = 24e−2τ/τ = 24e−2

= 3.248V

(c) The voltage drop across the resistor, vR = V (1 − e−t/τ)

When t = 3τ, vR = 24(1 − e−3τ/τ) = 24(1 − e−3)

= 22.81V

Now try the following exercise.

Exercise 63 Further problems on transients in
series L–R circuits

1. A coil has an inductance of 1.2 H and a resistance of
40 � and is connected to a 200V, d.c. supply. Either
by drawing the current/time characteristic or by cal-
culation, determine the value of the current flowing
60 ms after connecting the coil to the supply.

[4.32 A]

2. A 25V d.c. supply is connected to a coil of induct-
ance 1 H and resistance 5 �. Either by using a
graphical method to draw the exponential growth
curve of current or by calculation, determine the

value of the current flowing 100 ms after being
connected to the supply. [1.97A]

3. An inductor has a resistance of 20 � and an induct-
ance of 4 H. It is connected to a 50V d.c. supply.
Calculate (a) the value of current flowing after 0.1 s
and (b) the time for the current to grow to 1.5A.

[(a) 0.984A (b) 0.183 s]

4. The field winding of a 200V d.c. machine has a
resistance of 20 � and an inductance of 500 mH.
Calculate:

(a) the time constant of the field winding,
(b) the value of current flow one time constant after

being connected to the supply, and
(c) the current flowing 50 ms after the supply has

been switched on.
[(a) 25 ms (b) 6.32A (c) 8.65A]

5. A circuit comprises an inductor of 9 H of negligible
resistance connected in series with a 60 � resistor
and a 240V d.c. source. Calculate (a) the time con-
stant, (b) the current after 1 time constant, (c) the
time to develop maximum current, (d) the time for
the current to reach 2.5A, and (e) the initial rate of
change of current.

[(a) 0.15 s (b) 2.528A (c) 0.75 s
(d) 0.147 s (e) 26.67A/s]

6. In the inductive circuit shown in Figure 17.15, the
switch is moved from position A to position B
until maximum current is flowing. Calculate (a)
the time taken for the voltage across the resistance
to reach 8 volts, (b) the time taken for maximum
current to flow in the circuit, (c) the energy stored
in the inductor when maximum current is flowing,
and (d) the time for current to drop to 750 mA after
switching to position C.
[(a) 64.38 ms (b) 0.20 s (c) 0.20 J (d) 7.67 ms]

A
B

C

10 V
400 mH

10Ω

5Ω

Figure 17.15
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17.11 Switching inductive circuits

Energy stored in the magnetic field of an inductor exists
because a current provides the magnetic field. When the
d.c. supply is switched off the current falls rapidly, the
magnetic field collapses causing a large induced e.m.f.
which will either cause an arc across the switch contacts
or will break down the insulation between adjacent turns of
the coil. The high induced e.m.f. acts in a direction which
tends to keep the current flowing, i.e. in the same direction
as the applied voltage. The energy from the magnetic field
will thus be aided by the supply voltage in maintaining
an arc, which could cause severe damage to the switch.
To reduce the induced e.m.f. when the supply switch is
opened, a discharge resistor RD is connected in parallel
with the inductor as shown in Figure 17.16. The magnetic
field energy is dissipated as heat in RD and R and arcing
at the switch contacts is avoided.

Figure 17.16

17.12 The effect of time constant on a
rectangular waveform

Integrator circuit

By varying the value of either C or R in a series connected
C–R circuit, the time constant (τ = CR), of a circuit can be
varied. If a rectangular waveform varying from +E to −E
is applied to a C–R circuit as shown in Figure 17.17, output
waveforms of the capacitor voltage have various shapes,
depending on the value of R. When R is small, t = CR is
small and an output waveform such as that shown in Fig-
ure 17.18(a) is obtained. As the value of R is increased, the
waveform changes to that shown in Figure 17.18(b). When
R is large, the waveform is as shown in Figure 17.18(c),
the circuit then being described as an integrator circuit.

Figure 17.17

Figure 17.18

Differentiator circuit

If a rectangular waveform varying from +E to −E is
applied to a series connected C–R circuit and the wave-
form of the voltage drop across the resistor is observed, as
shown in Figure 17.19, the output waveform alters as R is
varied due to the time constant, (τ = CR) altering. When
R is small, the waveform is as shown in Figure 17.20(a),
the voltage being generated across R by the capacitor
discharging fairly quickly. Since the change in capacitor
voltage is from +E to −E, the change in discharge current
is 2E/R, resulting in a change in voltage across the resistor
of 2E. This circuit is called a differentiator circuit. When
R is large, the waveform is as shown in Figure 17.20(b).

Figure 17.19

Figure 17.20
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18 Operational amplifiers

At the end of this chapter you should be able to:

• recognize the main properties of an operational
amplifier

• understand op amp parameters input bias current and
offset current and voltage

• define and calculate common-mode rejection ratio
• appreciate slew rate
• explain the principle of operation, draw the circuit

diagram symbol and calculate gain for the following
operational amplifiers:
– inverter

– non-inverter
– voltage follower (or buffer)
– summing
– voltage comparator
– integrator
– differentiator

• understand digital to analogue conversion
• understand analogue to digital conversion

18.1 Introduction to operational amplifiers

Operational Amplifiers (usually called ‘op amps’)
were originally made from discrete components, being
designed to solve mathematical equations electronically,
by performing operations such as addition and division in
analogue computers. Now produced in integrated-circuit
(IC) form, op amps have many uses, with one of the
most important being as a high-gain d.c. and a.c. voltage
amplifier.
The main properties of an op amp include:

(i) a very high open-loop voltage gain Ao of around 105

for d.c. and low frequency a.c., which decreases with
frequency increase

(ii) a very high input impedance, typically 106 � to
1012 �, such that current drawn from the device,
or the circuit supplying it, is very small and the
input voltage is passed on to the op amp with little
loss

(iii) a very low output impedance, around 100 �, such
that its output voltage is transferred efficiently to any
load greater than a few kilohms

The circuit diagram symbol for an op amp is shown in
Figure 18.1. It has one output, Vo, and two inputs; the
inverting input, V1, is marked−, and the non-inverting
input, V2, is marked+.

The operation of an op amp is most convenient from a
dual balanced d.c. power supply ± VS (i.e. +VS , 0, −VS);
the centre point of the supply, i.e. 0 V, is common to
the input and output circuits and is taken as their voltage
reference level. The power supply connections are not
usually shown in a circuit diagram.

Figure 18.1

An op amp is basically a differential voltage amplifier,
i.e. it amplifies the difference between input voltages V1
and V2. Three situations are possible:

(i) if V2 > V1, Vo is positive
(ii) if V2 < V1, Vo is negative

(iii) if V2 = V1, Vo is zero

In general, Vo =Ao(V2 −V1)

or A = Vo

V2 −V1

(18.1)
where Ao is the open-loop voltage gain

Problem 1. A differential amplifier has an open-loop
voltage gain of 120. The input signals are 2.45 V and
2.35 V. Calculate the output voltage of the amplifier.



Ch18-H8139.tex 29/3/2007 14: 15 page 213

Operational amplifiers 213

PART

2

From equation (18.1), output voltage,

Vo = Ao(V2 − V1) = 120(2.45 − 2.35)

= (120)(0.1) = 12 V

Transfer characteristic

A typical voltage characteristic showing how the output
Vo varies with the input (V2 − V1) is shown in Figure 18.2.

Figure 18.2

It is seen from Figure 18.2 that only within the very
small input range P0Q is the output directly proportional
to the input; it is in this range that the op amp behaves
linearly and there is minimum distortion of the amplifier
output. Inputs outside the linear range cause saturation and
the output is then close to the maximum value, i.e. +VS
or −VS . The limited linear behaviour is due to the very
high open-loop gain Ao, and the higher it is the greater is
the limitation.

Negative feedback

Operational amplifiers nearly always use negative feed-
back, obtained by feeding back some, or all, of the output
to the inverting (−) input (as shown in Figure 18.5 later).
The feedback produces an output voltage that opposes the
one from which it is taken. This reduces the new out-
put of the amplifier and the resulting closed-loop gain
A is then less than the open-loop gain Ao. However, as
a result, a wider range of voltages can be applied to
the input for amplification. As long as Ao >> A, negative
feedback gives:

(i) a constant and predictable voltage gain A, (ii)
reduced distortion of the output, and (iii) better frequency
response.

The advantages of using negative feedback outweigh
the accompanying loss of gain which is easily increased
by using two or more op amp stages.

Bandwidth

The open-loop voltage gain of an op amp is not constant
at all frequencies; because of capacitive effects it falls at
high frequencies. Figure 18.3 shows the gain/bandwidth
characteristic of a 741 op amp. At frequencies below 10 Hz
the gain is constant, but at higher frequencies the gain falls

Figure 18.3

at a constant rate of 6 dB/octave (equivalent to a rate of
20 dB per decade) to 0 dB.

The gain-bandwidth product for any amplifier is the
linear voltage gain multiplied by the bandwidth at that
gain. The value of frequency at which the open-loop gain
has fallen to unity is called the transition frequency fT .

fT = closed-loop voltage gain×bandwidth (18.2)

In Figure 18.3, fT = 106 Hz or 1 MHz; a gain of 20 dB (i.e.
20 log10 10) gives a 100 kHz bandwidth, whilst a gain of
80 dB (i.e. 20 log10 104) restricts the bandwidth to 100 Hz.

18.2 Some op amp parameters

Input bias current

The input bias current, IB, is the average of the cur-
rents into the two input terminals with the output at zero
volts, which is typically around 80 nA (i.e. 80 × 10−9 A)
for a 741 op amp. The input bias current causes a volt
drop across the equivalent source impedance seen by the
op amp input.

Input offset current

The input offset current, Ios, of an op amp is the difference
between the two input currents with the output at zero
volts. In a 741 op amp, Ios is typically 20 nA.

Input offset voltage

In the ideal op amp, with both inputs at zero there should be
zero output. Due to imbalances within the amplifier this is
not always the case and a small output voltage results. The
effect can be nullified by applying a small offset voltage,
Vos, to the amplifier. In a 741 op amp, Vos is typically 1 mV.

Common-mode rejection ratio

The output voltage of an op amp is proportional to the
difference between the voltages applied to its two input
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terminals. Ideally, when the two voltages are equal, the
output voltages should be zero. A signal applied to both
input terminals is called a common-mode signal and it
is usually an unwanted noise voltage. The ability of an
op amp to suppress common-mode signals is expressed in
terms of its common-mode rejection ratio (CMRR), which
is defined by:

CMRR = 20 log10

(
differential voltage gain

common mode gain

)
dB

(18.3)

In a 741 op amp, the CMRR is typically 90 dB.
The common-mode gain, Acom, is defined as:

Acom = Vo

Vcom
(18.4)

where Vcom is the common input signal

Problem 2. Determine the common-mode gain of an
op amp that has a differential voltage gain of 150 × 103

and a CMRR of 90 dB.

From equation (18.3),

CMRR = 20 log10

(
differential voltage gain

common-mode gain

)
dB

Hence 90 = 20 log10

(
150 × 103

common-mode gain

)

from which 4.5 = log10

(
150 × 103

common-mode gain

)

and 104.5 =
(

150 × 103

common-mode gain

)

Hence, common-mode gain = 150 × 103

104.5
= 4.74

Problem 3. A differential amplifier has an open-loop
voltage gain of 120 and a common input signal of 3.0V
to both terminals. An output signal of 24 mV results.
Calculate the common-mode gain and the CMRR.

From equation (18.4), the common-mode gain,

Acom = Vo

Vcom
= 24 × 10−3

3.0
= 8 × 10−3 = 0.008

From equation (18.3), the

CMRR = 20 log10

(
differential voltage gain

common-mode gain

)
dB

= 20 log10

(
120

0.008

)
= 20 log10 15000 = 83.52 dB

Slew rate

The slew rate of an op amp is the maximum rate of change
of output voltage following a step input voltage. Figure
18.4 shows the effects of slewing; it causes the output
voltage to change at a slower rate than the input, such that
the output waveform is a distortion of the input waveform.
0.5V/µs is a typical value for the slew rate.

Figure 18.4

18.3 Op amp inverting amplifier

The basic circuit for an inverting amplifier is shown in
Figure 18.5 where the input voltage Vi (a.c. or d.c.) to
be amplified is applied via resistor Ri to the inverting (−)
terminal; the output voltage Vo is therefore in anti-phase
with the input. The non-inverting (+) terminal is held
at 0 V. Negative feedback is provided by the feedback
resistor, Rf , feeding back a certain fraction of the output
voltage to the inverting terminal.

Figure 18.5



Ch18-H8139.tex 29/3/2007 14: 15 page 215

Operational amplifiers 215

PART

2

Amplifier gain

In an ideal op amp two assumptions are made, these being
that:

(i) each input draws zero current from the signal source,
i.e. their input impedances are infinite, and

(ii) the inputs are both at the same potential if the op amp
is not saturated, i.e. VA = VB in Figure 18.5.

In Figure 18.5, VB = 0, hence VA = 0 and point X is called
a virtual earth.

Thus, I1 = Vi − 0

Ri
and I2 = 0 − Vo

Rf
However, I1 = I2 from assumption (i) above.

Hence
Vi

Ri
= −Vo

Rf
,

the negative sign showing that Vo is negative when Vi is
positive, and vice versa.
The closed-loop gain A is given by:

A = Vo

Vi
= −Rf

Ri
(18.5)

This shows that the gain of the amplifier depends only on
the two resistors, which can be made with precise values,
and not on the characteristics of the op amp, which may
vary from sample to sample.
For example, if Ri = 10 k� and Rf = 100 k�, then the
closed-loop gain,

A = −Rf

Ri
= −100 × 103

10 × 103 = −10

Thus an input of 100 mV will cause an output change
of 1V.

Input impedance

Since point X is a virtual earth (i.e. at 0 V), Ri may be
considered to be connected between the inverting (−)
input terminal and 0 V. The input impedance of the cir-
cuit is therefore Ri in parallel with the much greater input
impedance of the op amp, i.e. effectively Ri. The cir-
cuit input impedance can thus be controlled by simply
changing the value of Ri.

Problem 4. In the inverting amplifier of Figure
18.5, Ri = 1 k � and Rf = 2 k�. Determine the out-
put voltage when the input voltage is: (a) +0.4V
(b) −1.2V.

From equation (18.5), Vo =
(−Rf

Ri

)
Vi

(a) When Vi = +0.4V, Vo =
(−2000

1000

)
(+0.4) = − 0.8 V

(b) When Vi = −1.2V, Vo =
(−2000

1000

)
(−1.2) = + 2.4 V

Problem 5. The op amp shown in Figure 18.6 has an
input bias current of 100 nA at 20◦C. Calculate (a) the
voltage gain, and (b) the output offset voltage due to
the input bias current. (c) How can the effect of input
bias current be minimized?

Figure 18.6

Comparing Figure 18.6 with Figure 18.5, gives
Ri = 10 k� and Rf = 1 M�

(a) From equation (18.5), voltage gain,

A = −Rf

Ri
= −1 × 106

10 × 103 = −100

(b) The input bias current, IB, causes a volt drop across
the equivalent source impedance seen by the op amp
input, in this case, Ri and Rf in parallel. Hence, the
offset voltage, Vos, at the input due to the 100 nA
input bias current, IB, is given by:

Vos = IB

(
RiRf

Ri + Rf

)

= (100 × 10−9)

(
10 × 103 × 1 × 106

(10 × 103) + (1 × 106)

)

= (10−7)(9.9 × 103) = 9.9 × 10−4 = 0.99 mV

(c) The effect of input bias current can be minimized
by ensuring that both inputs ‘see’ the same driv-
ing resistance. This means that a resistance of
value of 9.9 k� (from part (b)) should be placed
between the non-inverting (+) terminal and earth
in Figure 18.6.
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Problem 6. Design an inverting amplifier to have
a voltage gain of 40 dB, a closed-loop bandwidth of
5 kHz and an input resistance of 10 k�.

The voltage gain of an op amp, in decibels, is given by:
gain in decibels = 20 log10(voltage gain)

from Chapter 10

Hence 40 = 20 log10 A

from which, 2 = log10 A

and A = 102 = 100

With reference to Figure 18.5, and from equation (18.5),

A =
∣∣∣∣Rf

Ri

∣∣∣∣
i.e. 100 = Rf

10 × 103

Hence Rf = 100 × 10 × 103 = 1 M�

From equation (18.2),

frequency = gain × bandwidth = 100 × 5 × 103

= 0.5 MHz or 500 kHz

Now try the following exercise.

Exercise 64 Further problems on the introduction
to operational amplifiers

1. A differential amplifier has an open-loop voltage
gain of 150 when the input signals are 3.55V
and 3.40V. Determine the output voltage of the
amplifier. [22.5V]

2. Calculate the differential voltage gain of an op amp
that has a common-mode gain of 6.0 and a CMRR
of 80 dB. [6 × 104]

3. A differential amplifier has an open-loop voltage
gain of 150 and a common input signal of 4.0V to
both terminals. An output signal of 15 mV results.
Determine the common-mode gain and the CMRR.

[3.75 × 10−3, 92.04 dB]

4. In the inverting amplifier of Figure 18.5 (on page
214), Ri = 1.5 k� and Rf = 2.5 k�. Determine
the output voltage when the input voltage is: (a)
+ 0.6V (b) − 0.9V [(a) −1.0V (b) +1.5V]

5. The op amp shown in Figure 18.7 has an input bias
current of 90 nA at 20◦C. Calculate (a) the voltage
gain, and (b) the output offset voltage due to the
input bias current. [(a) −80 (b) 1.33 mV]

Figure 18.7

6. Determine (a) the value of the feedback resistor,
and (b) the frequency for an inverting amplifier
to have a voltage gain of 45 dB, a closed-loop
bandwidth of 10 kHz and an input resistance of
20 k�.

[(a) 3.56 M� (b) 1.78 MHz]

18.4 Op amp non-inverting amplifier

The basic circuit for a non-inverting amplifier is shown
in Figure 18.8 where the input voltage Vi (a.c. or d.c.)
is applied to the non-inverting (+) terminal of the op
amp. This produces an output Vo that is in phase with the
input. Negative feedback is obtained by feeding back to the
inverting (−) terminal, the fraction of Vo developed across
Ri in the voltage divider formed by Rf and Ri across Vo

Figure 18.8

Amplifier gain

In Figure 18.8, let the feedback factor,

β = Ri

Ri + Rf

It may be shown that for an amplifier with open-loop gain
Ao, the closed-loop voltage gain A is given by:

A = Ao

1 + βAo
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For a typical op amp, Ao = 105, thusβAo is large compared
with 1, and the above expression approximates to:

A = Ao

βAo
= 1

β
(18.6)

Hence A = Vo

Vi
= Ri + Rf

Ri
= 1 + Rf

Ri
(18.7)

For example, if Ri = 10 k� and Rf = 100 k�,

then A = 1 + 100 × 103

10 × 103 = 1 + 10 = 11

Again, the gain depends only on the values of Ri and Rf
and is independent of the open-loop gain Ao

Input impedance

Since there is no virtual earth at the non-inverting (+)
terminal, the input impedance is much higher (typically
50 M�) than that of the inverting amplifier. Also, it is
unaffected if the gain is altered by changing Rf and/or Ri.
This non-inverting amplifier circuit gives good matching
when the input is supplied by a high impedance source.

Problem 7. For the op amp shown in Figure 18.9,
R1 = 4.7 k� and R2 = 10 k�. If the input voltage is
−0.4V, determine (a) the voltage gain (b) the output
voltage

Figure 18.9

The op amp shown in Figure 18.9 is a non-inverting
amplifier, similar to Figure 18.8.

(a) From equation (18.7), voltage gain,

A = 1 + Rf

Ri
= 1 + R2

R1
= 1 + 10 × 103

4.7 × 103

= 1 + 2.13 = 3.13

(b) Also from equation (18.7), output voltage,

Vo =
(

1 + R2

R1

)
Vi

= (3.13)( − 0.4) = −1.25V

18.5 Op amp voltage-follower

The voltage-follower is a special case of the non-inverting
amplifier in which 100% negative feedback is obtained
by connecting the output directly to the inverting (−) ter-
minal, as shown in Figure 18.10. Thus Rf in Figure 18.8
is zero and Ri is infinite.

Vi
Vo

0V

−

+

Figure 18.10

From equation (18.6), A = 1/β (when Ao is very large).
Since all of the output is fed back, β = 1 and A ≈ 1. Thus
the voltage gain is nearly 1 and Vo = Vi to within a few
millivolts.

The circuit of Figure 18.10 is called a voltage-follower
since, as with its transistor emitter-follower equivalent,
Vo follows Vi. It has an extremely high input impedance
and a low output impedance. Its main use is as a buffer
amplifier, giving current amplification, to match a high
impedance source to a low impedance load. For example,
it is used as the input stage of an analogue voltmeter where
the highest possible input impedance is required so as not
to disturb the circuit under test; the output voltage is meas-
ured by a relatively low impedance moving-coil meter.

18.6 Op amp summing amplifier

Because of the existence of the virtual earth point, an op
amp can be used to add a number of voltages (d.c. or
a.c.) when connected as a multi-input inverting amplifier.
This, in turn, is a consequence of the high value of the
open-loop voltage gain Ao. Such circuits may be used
as ‘mixers’ in audio systems to combine the outputs of
microphones, electric guitars, pick-ups, etc. They are also
used to perform the mathematical process of addition in
analogue computing.

The circuit of an op amp summing amplifier having
three input voltages V1, V2 and V3 applied via input resis-
tors R1, R2 and R3 is shown in Figure 18.11. If it is assumed

Figure 18.11
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that the inverting (−) terminal of the op amp draws no
input current, all of it passing through Rf , then:

I = I1 + I2 + I3

Since X is a virtual earth (i.e. at 0V), it follows that:

−Vo

Rf
= V1

R1
+ V2

R2
+ V3

R3

Hence

Vo = −
(

Rf

R1
V1 + Rf

R2
V2 + Rf

R3
V3

)

= −Rf

(
V1

R1
+ V2

R2
+ V3

R3

) (18.8)

The three input voltages are thus added and amplified if
Rf is greater than each of the input resistors; ‘weighted’
summation is said to have occurred.
Alternatively, the input voltages are added and attenuated
if Rf is less than each input resistor.

For example, if
Rf
R1

= 4,
Rf
R2

= 3 and
Rf
R3

= 1 and
V1 = V2 = V3 = +1V, then

Vo = −
(

Rf

R1
V1 + Rf

R2
V2 + Rf

R3
V3

)
= −(4+3+1) = −8 V

If R1 = R2 = R3 = Ri, the input voltages are amplified or
attenuated equally, and

Vo = −Rf

Ri
(V1 + V2 + V3)

If, also, Ri = Rf then Vo = − (V1 + V2 + V3)
The virtual earth is also called the summing point of

the amplifier. It isolates the inputs from one another so
that each behaves as if none of the others existed and none
feeds any of the other inputs even though all the resistors
are connected at the inverting (−) input.

Problem 8. For the summing op amp shown in Figure
18.12, determine the output voltage, Vo

Figure 18.12

From equation (18.8),

Vo = −Rf

(
V1

R1
+ V2

R2
+ V3

R3

)

= −(50 × 103)

(
0.5

10 × 103 + 0.8

20 × 103 + 1.2

30 × 103

)

= −(50 × 103)(5 × 10−5 + 4 × 10−5 + 4 × 10−5)

= −(50 × 103)(13 × 10−5) = − 6.5V

18.7 Op amp voltage comparator

If both inputs of the op amp shown in Figure 18.13 are used
simultaneously, then from equation (18.1), page 212, the
output voltage is given by:

Vo = Ao(V2 − V1)

Figure 18.13

When V2 > V1 then Vo is positive, its maximum value
being the positive supply voltage +Vs, which it has
when (V2 − V1) ≥ Vs/Ao. The op amp is then saturated.
For example, if Vs = + 9V and Ao = 105, then saturation
occurs when (V2 − V1) ≥ 9/105 i.e. when V2 exceeds V1
by 90 µV and Vo ≈ 9V.

When V1 > V2, then Vo is negative and saturation
occurs if V1 exceeds V2 by Vs/Ao i.e. around 90 µV in
the above example; in this case, Vo ≈ −Vs = −9V.

A small change in (V2 − V1) therefore causes Vo to
switch between near +Vs and near to −Vs and enables
the op amp to indicate when V2 is greater or less than V1,
i.e. to act as a differential amplifier and compare two
voltages. It does this in an electronic digital voltmeter.

Problem 9. Devise a light-operated alarm circuit
using an op amp, a LDR, a LED and a ±15V supply.

A typical light-operated alarm circuit is shown in
Figure 18.14.

Resistor R and the light dependent resistor (LDR) form
a voltage divider across the +15/0/−15V supply. The
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Figure 18.14

op amp compares the voltage V1 at the voltage divider
junction, i.e. at the inverting (−) input, with that at the
non-inverting (+) input, i.e. with V2, which is 0V. In the
dark the resistance of the LDR is much greater than that
of R, so more of the 30V across the voltage divider is
dropped across the LDR, causing V1 to fall below 0V.
Now V2 > V1 and the output voltage Vo switches from
near −15V to near +15V and the light emitting diode
(LED) lights.

18.8 Op amp integrator

The circuit for the op amp integrator shown in Figure 18.15
is the same as for the op amp inverting amplifier shown in
Figure 18.5, but feedback occurs via a capacitor C, rather
than via a resistor.

Figure 18.15

The output voltage is given by:

Vo = − 1
CR

∫
Vi dt (18.9)

Since the inverting (−) input is used in Figure 18.15, Vo
is negative if Vi is positive, and vice-versa, hence the
negative sign in equation (18.9).

Since X is a virtual earth in Figure 18.15, i.e. at 0V, the
voltage across R is Vi and that across C is Vo. Assuming
again that none of the input current I enters the op amp
inverting (−) input, then all of current I flows through C
and charges it up. If Vi is constant, I will be a constant
value given by I = Vi/R. Capacitor C therefore charges
at a constant rate and the potential of the output side of
C (= Vo, since its input side is zero) charges so that the
feedback path absorbs I. If Q is the charge on C at time

t and the p.d. across it (i.e. the output voltage) changes
from 0 to Vo in that time then:

Q = −VoC = It

(from Chapter 6)

i.e. −VoC = Vi

R
t

i.e. Vo = − 1

CR
Vit

This result is the same as would be obtained from

Vo = − 1

CR

∫
Vi dt if Vi is a constant value.

For example, if the input voltage Vi = −2V and, say,
CR = 1 s, then

Vo = −(−2)t = 2t

A graph of Vo/t will be a ramp function as shown in Fig-
ure 18.16 (Vo = 2t is of the straight line form y = mx + c;
in this case y = Vo and x = t, gradient, m = 2 and vertical
axis intercept c = 0). Vo rises steadily by +2V/s in Fig-
ure 18.16, and if the power supply is, say, ± 9V, then Vo
reaches +9V after 4.5 s when the op amp saturates.

Figure 18.16

Problem 10. A steady voltage of −0.75V is applied
to an op amp integrator having component values of
R = 200 k� and C = 2.5 µF. Assuming that the initial
capacitor charge is zero, determine the value of the
output voltage 100 ms after application of the input.

From equation (18.9), output voltage,

Vo = − 1

CR

∫
Vi dt

= − 1

(2.5 × 10−6)(200 × 103)

∫
(−0.75) dt

= − 1

0.5

∫
(−0.75) dt = −2[−0.75t] = +1.5t



Ch18-H8139.tex 29/3/2007 14: 15 page 220

220 Electrical Circuit Theory and Technology

When time t = 100 ms, output voltage,

Vo = (1.5)(100 × 10−3) = 0.15V

18.9 Op amp differential amplifier

The circuit for an op amp differential amplifier is shown
in Figure 18.17 where voltages V1 and V2 are applied to
its two input terminals and the difference between these
voltages is amplified.

Figure 18.17

(i) Let V1 volts be applied to terminal 1 and 0V be
applied to terminal 2. The difference in the poten-
tials at the inverting (−) and non-inverting (+) op
amp inputs is practically zero and hence the inverting
terminal must be at zero potential. Then I1 = V1/R1.
Since the op amp input resistance is high, this cur-
rent flows through the feedback resistor Rf . The
volt drop across Rf , which is the output voltage
Vo = (V1/R1)Rf ; hence, the closed-loop voltage gain
A is given by:

A = Vo

V1
= −Rf

R1
(18.10)

(ii) By similar reasoning, if V2 is applied to terminal 2
and 0V to terminal 1, then the voltage appearing at
the non-inverting terminal will be (R3/(R2 + R3))V2
volts. This voltage will also appear at the inverting
(−) terminal and thus the voltage across R1 is equal
to − (R3/(R2 + R3))V2 volts.
Now the output voltage,

Vo =
(

R3

R2 + R3

)
V2 +

[
−

(
R3

R2 + R3

)
V2

] (
−Rf

R1

)

and the voltage gain,

A = Vo

V2
=

(
R3

R2 + R3

)
+

[
−

(
R3

R2 + R3

)](
−Rf

R1

)

i.e. A = Vo

V2
=

(
R3

R2 + R3

) (
1 + Rf

R1

)
(18.11)

(iii) Finally, if the voltages applied to terminals 1 and 2 are
V1 and V2 respectively, then the difference between
the two voltages will be amplified.
If V1 >V2, then:

Vo = (V1 −V2)

(
−Rf

R1

)
(18.12)

If V2 >V1, then:

Vo = (V2 −V1)
(

R3

R2 + R3

) (
1 + Rf

R1

)
(18.13)

Problem 11. In the differential amplifier shown in
Figure 18.17, R1 = 10 k�, R2 = 10 k�, R3 = 100 k�
and Rf = 100 k�. Determine the output voltage Vo if:

(a) V1 = 5 mV and V2 = 0
(b) V1 = 0 and V2 = 5 mV
(c) V1 = 50 mV and V2 = 25 mV
(d) V1 = 25 mV and V2 = 50 mV

(a) From equation (18.10),

Vo = −Rf

R1
V1 = −

(
100 × 103

10 × 103

)
(5) mV

= − 50 mV

(b) From equation (18.11),

Vo =
(

R3

R2 + R3

) (
1 + Rf

R1

)
V2

=
(

100

110

) (
1 + 100

10

)
(5) mV = + 50 mV

(c) V1 > V2 hence from equation (18.12),

Vo = (V1 − V2)

(
−Rf

R1

)

= (50 − 25)

(
−100

10

)
mV = −250 mV

(d) V2 > V1 hence from equation (18.13),

Vo = (V2 − V1)

(
R3

R2 + R3

) (
1 + Rf

R1

)

= (50 − 25)

(
100

100 + 10

) (
1 + 100

10

)
mV

= (25)

(
100

110

)
(11) = + 250 mV
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Now try the following exercise.

Exercise 65 Further problems on operational
amplifier calculations

1. If the input voltage for the op amp shown in Figure
18.18, is −0.5V, determine (a) the voltage gain (b)
the output voltage. [(a) 3.21 (b) −1.60V]

Figure 18.18

2. In the circuit of Figure 18.19, determine the value
of the output voltage, Vo, when (a) V1 = +1V and
V2 = +3V (b) V1 = +1V and V2 = −3V

[(a) −10V (b) +5V]

Figure 18.19

3. For the summing op amp shown in Figure 18.20,
determine the output voltage, Vo. [−3.9V]

Figure 18.20

4. A steady voltage of −1.25V is applied to an op amp
integrator having component values of R = 125 k�
and C = 4.0 µF. Calculate the value of the output
voltage 120 ms after applying the input, assuming
that the initial capacitor charge is zero. [0.3V]

5. In the differential amplifier shown in Figure
18.21, determine the output voltage, Vo, if: (a)
V1 = 4 mV and V2 = 0 (b) V1 = 0 and V2 = 6 mV
(c) V1 = 40 mV and V2 = 30 mV (d) V1 = 25 mV
and V2 = 40 mV [(a) −60 mV (b) +90 mV

(c) −150 mV (d) +225 mV]

Figure 18.21

18.10 Digital to analogue (D/A) conversion

There are a number of situations when digital signals have
to be converted to analogue ones. For example, a digital
computer often needs to produce a graphical display on
the screen; this involves using a D/A converter to change
the two-level digital output voltage from the computer,
into a continuously varying analogue voltage for the input
to the cathode ray tube, so that it can deflect the electron
beam to produce screen graphics.

A binary weighted resistor D/A converter is shown
in Figure 18.22 for a four-bit input. The values of the
resistors, R, 2R, 4R, 8R increase according to the binary
scale—hence the name of the converter. The circuit uses
an op amp as a summing amplifier (see Section 18.6)
with a feedback resistor Rf . Digitally controlled electronic
switches are shown as S1 to S4. Each switch connects the
resistor in series with it to a fixed reference voltage Vref
when the input bit controlling it is a 1 and to ground (0V)
when it is a 0. The input voltages V1 to V4 applied to the op
amp by the four-bit input via the resistors therefore have
one of two values, i.e. either Vref or 0 V.

Figure 18.22

From equation (18.8), page 218, the analogue output
voltage Vo is given by:

Vo = −
(

Rf

R
V1 + Rf

2R
V2 + Rf

4R
V3 + Rf

8R
V4

)
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Figure 18.23

Let Rf = R = 1 k�, then:

Vo =
(

V1 + 1

2
V2 + 1

4
V3 + 1

8
V4

)

With a four-bit input of 0001 (i.e. decimal 1), S4
connects 8R to Vref , i.e. V4 = Vref , and S1, S2 and S3
connect R, 2R and 4R to 0V, making V1 = V2 = V3 = 0.
Let Vref = − 8V, then output voltage,

Vo = −
(

0 + 0 + 0 + 1

8
(−8)

)
= +1 V

With a four-bit input of 0101 (i.e. decimal 5), S2 and
S4 connects 2R and 4R to Vref , i.e. V2 = V4 = Vref , and

Figure 18.24

S1 and S3 connect R and 4R to 0V, making V1 = V3 = 0.
Again, if Vref = − 8V, then output voltage,

Vo = −
(

0 + 1

2
(−8) + 0 + 1

8
(−8)

)
= +5 V

If the input is 0111 (i.e. decimal 7), the output voltage
will be 7V, and so on. From these examples, it is seen that
the analogue output voltage, Vo, is directly proportional
to the digital input.

Vo has a ‘stepped’ waveform, the waveform shape
depending on the binary input. A typical waveform is
shown in Figure 18.23.

18.11 Analogue to digital (A/D) conversion

In a digital voltmeter, its input is in analogue form and the
reading is displayed digitally. This is an example where
an analogue to digital converter is needed.

A block diagram for a four-bit counter type A/D con-
version circuit is shown in Figure 18.24. An op amp is
again used, in this case as a voltage comparator (see
Section 18.7). The analogue input voltage V2, shown in
Figure 18.25(a) as a steady d.c. voltage, is applied to
the non-inverting (+) input, whilst a sawtooth voltage V1
supplies the inverting (−) input.

The output from the comparator is applied to one input
of an AND gate and is a 1 (i.e. ‘high’) until V1 equals or
exceeds V2, when it then goes to 0 (i.e. ‘low’) as shown
in Figure 18.25(b). The other input of the AND gate is
fed by a steady train of pulses from a pulse generator, as
shown in Figure 18.25(c). When both inputs to the AND
gate are ‘high’, the gate ‘opens’ and gives a ‘high’ output,
i.e. a pulse, as shown in Figure 18.25(d). The time taken
by V1 to reach V2 is proportional to the analogue voltage
if the ramp is linear. The output pulses from the AND
gate are recorded by a binary counter and, as shown in
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Figure 18.25

Figure 18.25(e), are the digital equivalent of the analogue
input voltage V2. In practise, the ramp generator is a D/A
converter which takes its digital input from the binary
counter, shown by the broken lines in Figure 18.24. As
the counter advances through its normal binary sequence,
a staircase waveform with equal steps (i.e. a ramp) is built
up at the output of the D/A converter (as shown by the first
few steps in Figure 18.23.
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Revision test 5

This revision test covers the material contained in
chapters 15 to 18.

The marks for each question are shown in brackets at
the end of each question.

1. The power taken by a series inductive circuit when
connected to a 100V, 100 Hz supply is 250 W and
the current is 5A. Calculate (a) the resistance, (b) the
impedance, (c) the reactance, (d) the power factor, and
(e) the phase angle between voltage and current. (9)

2. A coil of resistance 20 � and inductance 200 mH is
connected in parallel with a 4 µF capacitor across a
50V, variable frequency supply. Calculate (a) the res-
onant frequency, (b) the dynamic resistance, (c) the
current at resonance, and (d) the Q-factor at resonance.

(10)

3. A series circuit comprises a coil of resistance 30 � and
inductance 50 mH, and a 2500 pF capacitor. Determine
the Q-factor of the circuit at resonance. (4)

4. The winding of an electromagnet has an inductance of
110 mH and a resistance of 5.5 �. When it is connected
to a 110V, d.c. supply, calculate (a) the steady state
value of current flowing in the winding, (b) the time
constant of the circuit, (c) the value of the induced
e.m.f. after 0.1 s, (d) the time for the current to rise to
75% of it’s final value, and (e) the value of the current
after 0.02 s. (11)

5. A single-phase motor takes 30 A at a power factor
of 0.65 lagging from a 300V, 50 Hz supply. Calculate

(a) the current taken by a capacitor connected in paral-
lel with the motor to correct the power factor to unity,
and (b) the value of the supply current after power
factor correction. (7)

6. For the summing operational amplifier shown in Figure
RT5.1, determine the value of the output voltage, Vo.

(3)

1.5 V
1.0 V

15 kΩ

10 kΩ

30 kΩ

Vo

+
−

Figure RT5.1

7. In the differential amplifier shown in Figure RT5.2,
determine the output voltage, Vo when: (a) V1 = 4 mV
and V2 = 0 (b) V1 = 0 and V2 = 5 mV (c) V1 = 20 mV
and V2 = 10 mV. (6)

V1

V2

Vo

120 kΩ

20 kΩ
120 kΩ

20 kΩ

OV

+
−1

2

Figure RT5.2
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19 Three-phase systems

At the end of this chapter you should be able to:
• describe a single-phase supply
• describe a three-phase supply
• understand a star connection, and recognize that

IL = Ip and VL = √
3Vp• draw a complete phasor diagram for a balanced, star

connected load
• understand a delta connection, and recognize that

VL = Vp and IL = √
3Ip

• draw a phasor diagram for a balanced, delta connected
load

• calculate power in three-phase systems using
P = √

3VLIL cos φ
• appreciate how power is measured in a three-phase

system, by the one, two and three-wattmeter methods
• compare star and delta connections
• appreciate the advantages of three-phase systems

19.1 Introduction

Generation, transmission and distribution of electricity via
the National Grid system is accomplished by three-phase
alternating currents.

The voltage induced by a single coil when rotated in
a uniform magnetic field is shown in Figure 19.1 and is
known as a single-phase voltage. Most consumers are fed
by means of a single-phase a.c. supply. Two wires are used,
one called the live conductor (usually coloured red) and
the other is called the neutral conductor (usually coloured
black). The neutral is usually connected via protective gear
to earth, the earth wire being coloured green. The standard
voltage for a single-phase a.c. supply is 240V. The major-
ity of single-phase supplies are obtained by connection to
a three-phase supply (see Figure 19.5, page 226).

Figure 19.1

19.2 Three-phase supply

A three-phase supply is generated when three coils are
placed 120◦ apart and the whole rotated in a uniform
magnetic field as shown in Figure 19.2(a). The result is
three independent supplies of equal voltages which are
each displaced by 120◦ from each other as shown in
Figure 19.2(b).

Figure 19.2

(i) The convention adopted to identify each of the phase
voltages is: R-red, Y-yellow, and B-blue, as shown in
Figure 19.2.

(ii) The phase-sequence is given by the sequence in
which the conductors pass the point initially taken
by the red conductor. The national standard phase
sequence is R, Y, B.

A three-phase a.c. supply is carried by three conductors,
called ‘lines’which are coloured red, yellow and blue. The
currents in these conductors are known as line currents (IL)
and the p.d.’s between them are known as line voltages
(VL). A fourth conductor, called the neutral (coloured
black, and connected through protective devices to earth)
is often used with a three-phase supply.

If the three-phase windings shown in Figure 19.2 are
kept independent then six wires are needed to connect
a supply source (such as a generator) to a load (such as
motor). To reduce the number of wires it is usual to inter-
connect the three phases. There are two ways in which
this can be done, these being:
(a) a star connection, and (b) a delta, or mesh, con-
nection. Sources of three-phase supplies, i.e. alternators,
are usually connected in star, whereas three-phase trans-
former windings, motors and other loads may be con-
nected either in star or delta.
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19.3 Star connection

(i) A star-connected load is shown in Figure 19.3 where
the three line conductors are each connected to a load
and the outlets from the loads are joined together at N
to form what is termed the neutral point or the star
point.

Figure 19.3

(ii) The voltages, VR, VY and VB are called phase volt-
ages or line to neutral voltages. Phase voltages are
generally denoted by Vp.

(iii) The voltages, VRY , VYB and VBR are called line
voltages.

(iv) From Figure 19.3 it can be seen that the phase currents
(generally denoted by Ip) are equal to their respective
line currents IR, IY and IB, i.e. for a star connection:

IL = Ip

(v) For a balanced system:

IR = IY = IB, VR = VY = VB
VRY = VYB = VBR, ZR = ZY = ZB

and the current in the neutral conductor, IN = 0.
When a star connected system is balanced, then the
neutral conductor is unnecessary and is often omitted.

(vi) The line voltage, VRY , shown in Figure 19.4(a) is
given by VRY =VR −VY (VY is negative since it is
in the opposite direction to VRY ). In the phasor dia-
gram of Figure 19.4(b), phasor VY is reversed (shown
by the broken line) and then added phasorially to
VR (i.e. VRY =VR + (−VY )). By trigonometry, or by

Figure 19.4

measurement, VRY = √
3VR, i.e. for a balanced star

connection:

VL = √
3 Vp

(See Problem 3 following for a complete phasor
diagram of a star-connected system.)

(vii) The star connection of the three phases of a supply,
together with a neutral conductor, allows the use of
two voltages — the phase voltage and the line voltage.
A 4-wire system is also used when the load is not bal-
anced. The standard electricity supply to consumers
in Great Britain is 415/240V, 50 Hz, 3-phase, 4-wire
alternating current, and a diagram of connections is
shown in Figure 19.5.

Figure 19.5

For most of the 20th century, the supply voltage in
the UK in domestic premises has been 240V a.c.
(r.m.s.) at 50 Hz. In 1988, a European-wide agree-
ment was reached to change the various national
voltages, which ranged at the time from 220V to
240V, to a common European standard of 230V.

As a result, the standard nominal supply voltage in
domestic single-phase 50 Hz installations in the UK
has been 230V since 1995. However, as an interim
measure, electricity suppliers can work with an asym-
metric voltage tolerance of 230V +10%/−6% (i.e.
216.2V to 253V). The old standard was 240V ± 6%
(i.e. 225.6V to 254.4V), which is mostly contained
within the new range, and so in practice suppliers have
had no reason to actually change voltages.

Similarly, the three-phase voltage in the UK had
been for many years 415V ± 6% (i.e. 390V to 440V).
European harmonization required this to be changed
to 400V +10%/−6% (i.e. 376V to 440V). Again,
since the present supply voltage of 415V lies within
this range, supply companies are unlikely to reduce
their voltages in the near future.
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Many of the calculations following are based on the
240V/415V supply voltages which have applied for
many years and are likely to continue to do so.

Problem 1. Three loads, each of resistance 30 �, are
connected in star to a 415V, 3-phase supply. Determine
(a) the system phase voltage, (b) the phase current and
(c) the line current.

A ‘415V, 3-phase supply’ means that 415V is the line
voltage, VL

(a) For a star connection, VL = √
3Vp

Hence phase voltage, Vp = VL√
3

= 415√
3

= 239.6V or 240V correct

to 3 significant figures

(b) Phase current, Ip = Vp

Rp
= 240

30
= 8A

(c) For a star connection, Ip = IL

Hence the line current, IL = 8A

Problem 2. A star-connected load consists of three
identical coils each of resistance 30 � and inductance
127.3 mH. If the line current is 5.08 A, calculate the
line voltage if the supply frequency is 50 Hz.

Inductive reactance XL = 2πfL

= 2π(50)(127.3 × 10−3)

= 40 �

Impedance of each phase Zp = √
(R2 + X2

L)

= √
(302 + 402) = 50 �

For a star connection IL = Ip = Vp

Zp

Hence phase voltage Vp = IpZp = (5.08)(50) = 254V

Line voltage VL = √
3Vp = √

3(254) = 440V

Problem 3. A balanced, three-wire, star-connected,
3-phase load has a phase voltage of 240V, a line current
of 5 A and a lagging power factor of 0.966. Draw the
complete phasor diagram.

The phasor diagram is shown in Figure 19.6.
Procedure to construct the phasor diagram:

(i) Draw VR = VY = VB = 240V and spaced 120◦ apart.
(Note that VR is shown vertically upwards — this

Figure 19.6

however is immaterial for it may be drawn in any
direction.)

(ii) Power factor = cos φ = 0.966 lagging. Hence the
load phase angle is given by cos−1 0.966, i.e. 15◦
lagging. Hence IR = IY = IB = 5A, lagging VR, VY
and VB respectively by 15◦.

(iii) VRY = VR − VY (phasorially). Hence VY is reversed
and added phasorially to VR. By measurement,
VRY = 415V (i.e.

√
3(240)) and leads VR by 30◦.

Similarly, VYB = VY − VB and VBR = VB − VR.

Problem 4. A 415V, 3-phase, 4 wire, star-connected
system supplies three resistive loads as shown in Fig-
ure 19.7. Determine (a) the current in each line and
(b) the current in the neutral conductor.

Figure 19.7
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(a) For a star-connected system VL = √
3Vp

Hence Vp = VL√
3

= 415√
3

= 240V

Since current I = Power P

Voltage V
for a resistive load

then IR = PR

VR
= 24 000

240
= 100A

IY = PY

VY
= 18 000

240
= 75A

and IB = PB

VB
= 12 000

240
= 50A

(b) The three line currents are shown in the phasor dia-
gram of Figure 19.8. Since each load is resistive the
currents are in phase with the phase voltages and are
hence mutually displaced by 120◦. The current in the
neutral conductor is given by:

IN = IR + IY + IB phasorially.

Figure 19.8

Figure 19.9 shows the three line currents added phasori-
ally. Oa represents IR in magnitude and direction. From
the nose of Oa, ab is drawn representing IY in magnitude
and direction. From the nose of ab, bc is drawn repre-
senting IB in magnitude and direction. Oc represents the
resultant, IN .

Figure 19.9

By measurement, IN = 43A

Alternatively, by calculation, considering IR at 90◦, IB at
210◦ and IY at 330◦:
Total horizontal component = 100 cos 90◦ + 75 cos 330◦

+ 50 cos 210◦ = 21.65

Total vertical component = 100 sin 90◦ + 75 sin 330◦

+ 50 sin 210◦ = 37.50

Hence magnitude of IN = √
(21.652 + 37.502)

= 43.3A

19.4 Delta connection

(i) A delta (or mesh) connected load is shown in Fig-
ure 19.10 where the end of one load is connected to
the start of the next load.

Figure 19.10

(ii) From Figure 19.10, it can be seen that the line volt-
ages VRY , VYB and VBR are the respective phase
voltages, i.e. for a delta connection:

VL = Vp

(iii) Using Kirchhoff’s current law in Figure 19.10, IR =
IRY − IBR = IRY + (−IBR). From the phasor diagram
shown in Figure 19.11, by trigonometry or by mea-
surement, IR = √

3IRY , i.e. for a delta connection:

IL = √
3Ip

Figure 19.11
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Problem 5. Three identical coils each of resistance
30 � and inductance 127.3 mH are connected in delta
to a 440V, 50 Hz, 3-phase supply. Determine (a) the
phase current, and (b) the line current.

Phase impedance, Zp = 50 � (from Problem 2) and for a
delta connection, Vp = VL

(a) Phase current, Ip = Vp

Zp
= VL

Zp
= 440

50

= 8.8A

(b) For a delta connection, IL = √
3Ip = √

3(8.8)

= 15.24A

Thus when the load is connected in delta, three times
the line current is taken from the supply than is taken
if connected in star.

Problem 6. Three identical capacitors are connected
in delta to a 415V, 50 Hz, 3-phase supply. If the line
current is 15 A, determine the capacitance of each of
the capacitors.

For a delta connection IL = √
3Ip

Hence phase current Ip = IL√
3

= 15√
3

= 8.66A

Capacitive reactance per phase, XC = Vp

Ip
= VL

Ip
(since for

a delta connection VL = Vp)

Hence XC = 415

8.66
= 47.92 �

XC = 1

2πfC
, from which capacitance,

C = 1

2πfXC
= 1

2π(50)(47.92)
F

= 66.43 µF

Problem 7. Three coils each having resistance 3 �
and inductive reactance 4 � are connected (i) in star
and (ii) in delta to a 415V, 3-phase supply. Calculate
for each connection (a) the line and phase voltages and
(b) the phase and line currents.

(i) For a star connection: IL = Ip and VL = √
3Vp

(a) A 415V, 3-phase supply means that the

line voltage, VL = 415 V

Phase voltage, Vp = VL√
3

= 415√
3

= 240V

(b) Impedance per phase, Zp = √
(R2 + X2

L)

= √
(32 + 42) = 5 �

Phase current, Ip = Vp

Zp
= 240

5
= 48A

Line current, IL = Ip = 48A

(ii) For a delta connection: VL = Vp and IL = √
3Ip

(a) Line voltage, VL = 415V

Phase voltage, Vp = VL = 415V

(b) Phase current, Ip = Vp

Zp
= 415

5
= 83A

Line current, IL = √
3Ip = √

3(83) = 144A

Now try the following exercise.

Exercise 66 Further problems on star and delta
connections

1. Three loads, each of resistance 50 � are connected
in star to a 400V, 3-phase supply. Determine (a) the
phase voltage, (b) the phase current and (c) the line
current. [(a) 231V (b) 4.62 A (c) 4.62 A]

2. If the loads in question 1 are connected in delta to
the same supply determine (a) the phase voltage,
(b) the phase current and (c) the line current.

[(a) 400V (b) 8 A (c) 13.86 A]

3. A star-connected load consists of three identical
coils, each of inductance 159.2 mH and resistance
50 �. If the supply frequency is 50 Hz and the line
current is 3A determine (a) the phase voltage and
(b) the line voltage. [(a) 212V (b) 367V]

4. Three identical capacitors are connected (a) in star,
(b) in delta to a 400V, 50 Hz, 3-phase supply. If
the line current is 12 A determine in each case the
capacitance of each of the capacitors.

[(a) 165.4 µF (b) 55.13 µF]

5. Three coils each having resistance 6 � and induc-
tance L H are connected (a) in star and (b) in delta,
to a 415V, 50 Hz, 3-phase supply. If the line current
is 30 A, find for each connection the value of L.

[(a) 16.78 mH (b) 73.84 mH]

6. A 400V, 3-phase, 4 wire, star-connected system
supplies three resistive loads of 15 kW, 20 kW and
25 kW in the red, yellow and blue phases respect-
ively. Determine the current flowing in each of the
four conductors.

[IR = 64.95A, IY = 86.60A
IB = 108.25A, IN = 37.50A]
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7. A 3-phase, star-connected alternator delivers a line
current of 65A to a balanced delta-connected load
at a line voltage of 380V. Calculate (a) the phase
voltage of the alternator, (b) the alternator phase
current and (c) the load phase current.

[(a) 219.4V (b) 65A (c) 37.53A]

8. Three 24 µF capacitors are connected in star across
a 400V, 50 Hz, 3-phase supply. What value of
capacitance must be connected in delta in order to
take the same line current? [8 µF]

19.5 Power in three-phase systems

The power dissipated in a three-phase load is given by
the sum of the power dissipated in each phase. If a load is
balanced then the total power P is given by: P = 3 × power
consumed by one phase.

The power consumed in one phase = I2
p Rp or VpIp cos φ

(where φ is the phase angle between Vp and Ip)

For a star connection, Vp = VL√
3

and Ip = IL hence

P = 3

(
VL√

3

)
IL cos φ

= √
3VLIL cos φ

For a delta connection, Vp = VL and Ip = IL√
3

hence

P = 3VL

(
IL√

3

)
cos φ

= √
3VLIL cos φ

Hence for either a star or a delta balanced connection the
total power P is given by:

P = √
3 VLIL cos φ watts or P = 3I2

pRp watts.

Total volt-amperes, S = √
3 VLIL volt-amperes

Problem 8. Three 12 � resistors are connected in star
to a 415V, 3-phase supply. Determine the total power
dissipated by the resistors.

Power dissipated, P = √
3VLIL cos φ or P = 3I2

p Rp

Line voltage, VL = 415V and

phase voltage Vp = 415√
3

= 240V

(since the resistors are star-connected)

Phase current, Ip = Vp

Zp
= Vp

Rp
= 240

12
= 20A

For a star connection IL = Ip = 20A

For a purely resistive load, the power factor = cos φ = 1

Hence power P = √
3VLIL cos φ = √

3(415)(20)(1)

= 14.4 kW

or power P = 3I2
p Rp = 3(20)2(12) = 14.4 kW

Problem 9. The input power to a 3-phase a.c. motor
is measured as 5 kW. If the voltage and current to the
motor are 400V and 8.6A respectively, determine the
power factor of the system.

Power, P = 5000 W; Line voltage VL = 400V; Line
current, IL = 8.6A

Power, P = √
3VLIL cos φ

Hence power factor = cos φ = P√
3VLIL

= 5000√
3(400)(8.6)

= 0.839

Problem 10. Three identical coils, each of resistance
10 � and inductance 42 mH are connected (a) in star
and (b) in delta to a 415V, 50 Hz, 3-phase supply.
Determine the total power dissipated in each case.

(a) Star connection
Inductive reactance XL = 2πfL = 2π(50)(42 × 10−3)

= 13.19 �

Phase impedance Zp = √
(R2 + X2

L)

= √
(102 + 13.192)

= 16.55 �

Line voltage VL = 415V and

phase voltage, Vp = VL√
3

= 415√
3

= 240V

Phase current, Ip = Vp

Zp
= 240

16.55
= 14.50A

Line current, IL = Ip = 14.50A

Power factor = cos φ = Rp

Zp
= 10

16.55

= 0.6042 lagging
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Power dissipated, P = √
3VLIL cos φ

= √
3(415)(14.50)(0.6042)

= 6.3 kW

(Alternatively, P = 3I2
p Rp = 3(14.50)2(10)

= 6.3 kW)
(b) Delta connection

VL = Vp = 415V, Zp = 16.55 �,

cos φ = 0.6042 lagging (from above).

Phase current, Ip = Vp

Zp
= 415

16.55
= 25.08A

Line current, IL = √
3Ip = √

3(25.08) = 43.44A

Power dissipated, P = √
3VLIL cos φ

= √
3(415)(43.44)(0.6042)

= 18.87 kW

(Alternatively, P = 3I2
p Rp = 3(25.08)2(10)

= 18.87 kW)

Hence loads connected in delta dissipate three times the
power than when connected in star, and also take a line
current three times greater.

Problem 11. A 415V, 3-phase a.c. motor has a power
output of 12.75 kW and operates at a power factor
of 0.77 lagging and with an efficiency of 85%. If
the motor is delta-connected, determine (a) the power
input, (b) the line current and (c) the phase current.

(a) Efficiency = power output

power input
,

hence
85

100
= 12 750

power input

from which, power input = 12 750 × 100

85

= 15 000 W or 15 kW

(b) Power, P = √
3VLIL cos φ, hence

line current, IL = P√
3VL cos φ

= 15 000√
3(415)(0.77)

= 27.10A

(c) For a delta connection, IL = √
3Ip,

hence phase current, Ip = IL√
3

= 27.10√
3

= 15.65A

19.6 Measurement of power in three-phase
systems

Power in three-phase loads may be measured by the
following methods:

(i) One-wattmeter method for a balanced load
Wattmeter connections for both star and delta are
shown in Figure 19.12.

Total power = 3 × wattmeter reading

Figure 19.12

(ii) Two-wattmeter method for balanced or unbal-
anced loads
A connection diagram for this method is shown
in Figure 19.13 for a star-connected load. Similar
connections are made for a delta-connected load.

Total power = sum of wattmeter readings
= P1 + P2

Figure 19.13

The power factor may be determined from:

tan φ = √
3

(
P1 − P2

P1 + P2

)
(see Problems
12 and 15 to 18)

It is possible, depending on the load power factor,
for one wattmeter to have to be ‘reversed’ to obtain a
reading. In this case it is taken as a negative reading
(see Problem 17).



Ch19-H8139.tex 29/3/2007 14: 16 page 232

232 Electrical Circuit Theory and Technology

(iii) Three-wattmeter method for a three-phase,
4-wire system for balanced and unbalanced loads
(see Figure 19.14).

Total power = P1 + P2 + P3

Figure 19.14

Problem 12. (a) Show that the total power in a 3-phase,
3-wire system using the two-wattmeter method of mea-
surement is given by the sum of the wattmeter readings.
Draw a connection diagram. (b) Draw a phasor dia-
gram for the two-wattmeter method for a balanced
load. (c) Use the phasor diagram of part (b) to derive
a formula from which the power factor of a 3-phase
system may be determined using only the wattmeter
readings.

(a) A connection diagram for the two-wattmeter method
of a power measurement is shown in Figure 19.15 for
a star-connected load.

Figure 19.15

Total instantaneous power, p = eRiR + eY iY + eBiB
and in any 3-phase system iR + iY + iB = 0. Hence
iB = −iR − iY

Thus, p = eRiR + eY iY + eB(−iR − iY )

= (eR − eB)iR + (eY − eB)iY

However, (eR − eB) is the p.d. across wattmeter 1
in Figure 19.15 and (eY − eB) is the p.d. across
wattmeter 2.

Hence total instantaneous power,

p = (wattmeter 1 reading) + (wattmeter 2 reading)
= p1 + p2

The moving systems of the wattmeters are unable
to follow the variations which take place at normal
frequencies and they indicate the mean power taken
over a cycle. Hence the total power, P = P1 + P2 for
balanced or unbalanced loads.

(b) The phasor diagram for the two-wattmeter method
for a balanced load having a lagging current is
shown in Figure 19.16, where VRB = VR − VB and
VYB = VY − VB (phasorially).

Figure 19.16

(c) Wattmeter 1 reads VRBIR cos(30◦ − φ) = P1

Wattmeter 2 reads VYBIY cos(30◦ + φ) = P2

P1

P2
= VRBIR cos(30◦ − φ)

VYBIY cos(30◦ + φ)
= cos(30◦ − φ)

cos(30◦ + φ)

since IR = IY and VRB = VYB for a balanced load.

Hence
P1

P2
= cos 30◦ cos φ + sin 30◦ sin φ

cos 30◦ cos φ − sin 30◦ sin φ

(from compound angle formulae, see ‘Higher Engi-
neering Mathematics’, J.O. Bird, 2006, 5th edition,
Elsevier.)
Dividing throughout by cos 30◦ cos φ gives:

P1

P2
= 1 + tan 30◦ tan φ

1 − tan 30◦ tan φ

=
1 + 1√

3
tan φ

1 − 1√
3

tan φ

(since
sin φ

cos φ
= tan φ)

Cross-multiplying gives:

P1 − P1√
3

tan φ = P2 + P2√
3

tan φ

Hence P1 − P2 = (P1 + P2)
tan φ√

3

from which tan φ = √
3

(
P1 − P2

P1 + P2

)
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φ, cos φ and thus power factor can be determined from
this formula.

Problem 13. A 400V, 3-phase star connected alter-
nator supplies a delta-connected load, each phase of
which has a resistance of 30 � and inductive reactance
40 �. Calculate (a) the current supplied by the alter-
nator and (b) the output power and the kVA of the
alternator, neglecting losses in the line between the
alternator and load.

A circuit diagram of the alternator and load is shown in
Figure 19.17.

Figure 19.17

(a) Considering the load: Phase current, Ip = Vp

Zp

Vp = VL for a delta connection. Hence Vp = 400V

Phase impedance, Zp = √
(R2

p + X2
L)

= √
(302 + 402) = 50 �

Hence Ip = Vp

Zp
= 400

50
= 8A

For a delta-connection, line current,
IL = √

3Ip = √
3(8) = 13.86A

Hence 13.86A is the current supplied by the
alternator.

(b) Alternator output power is equal to the power dissi-
pated by the load.

i.e. P = √
3VLIL cosφ, where cosφ = Rp

Zp
= 30

50
= 0.6

Hence P = √
3(400)(13.86)(0.6) = 5.76 kW

Alternator output kVA, S = √
3VLIL

= √
3(400)(13.86)

= 9.60 kVA

Problem 14. Each phase of a delta-connected load
comprises a resistance of 30 � and an 80 µF capaci-
tor in series. The load is connected to a 400V, 50 Hz,
3-phase supply. Calculate (a) the phase current, (b)

the line current, (c) the total power dissipated and (d)
the kVA rating of the load. Draw the complete phasor
diagram for the load.

(a) Capacitive reactance, XC = 1

2πfC

= 1

2π(50)(80 × 10−6)

= 39.79 �

Phase impedance, Zp = √
(R2

p + X2
C)

= √
(302 + 39.792)

= 49.83 �

Power factor = cos φ = Rp

Zp
= 30

49.83
= 0.602

Hence φ = cos−1 0.602 = 52◦59′ leading.

Phase current, Ip = Vp

Zp
and Vp = VL for a delta

connection

Hence Ip = 400

49.83
= 8.027A

(b) Line current IL = √
3Ip for a delta connection

Hence IL = √
3(8.207) = 13.90A

(c) Total power dissipated, P = √
3VLIL cos φ

= √
3(400)(13.90)(0.602)

= 5.797 kW

(d) Total kVA, S = √
3VLIL = √

3(400)(13.90)

= 9.630 kVA

The phasor diagram for the load is shown in Fig-
ure 19.18.

Figure 19.18
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Problem 15. Two wattmeters are connected to meas-
ure the input power to a balanced 3-phase load by the
two-wattmeter method. If the instrument readings are
8 kW and 4 kW, determine (a) the total power input
and (b) the load power factor.

(a) Total input power, P = P1 + P2 = 8 + 4 = 12 kW

(b) tan φ = √
3

(
P1 − P2

P1 + P2

)
= √

3

(
8 − 4

8 + 4

)

= √
3

(
4

12

)
= √

3

(
1

3

)
= 1√

3

Hence φ = tan−1 1√
3

= 30◦

Power factor = cos φ = cos 30◦ = 0.866

Problem 16. Two wattmeters connected to a 3-phase
motor indicate the total power input to be 12 kW. The
power factor is 0.6. Determine the readings of each
wattmeter.

If the two wattmeters indicate P1 and P2 respectively

then P1 + P2 = 12 kW (1)

tan φ = √
3

(
P1 − P2

P1 + P2

)
and power factor = 0.6 = cos φ

Angle φ = cos−1 0.6 = 53.13◦ and tan 53.13◦ = 1.3333

Hence 1.3333 =
√

3(P1 − P2)

12
, from which,

P1 − P2 = 12(1.3333)√
3

i.e. P1 − P2 = 9.237 kW (2)

Adding equations (1) and (2) gives: 2P1 = 21.237

i.e. P1 = 21.237

2
= 10.62 kW

Hence wattmeter 1 reads 10.62 kW

From equation (1), wattmeter 2 reads (12 − 10.62) =
1.38 kW

Problem 17. Two wattmeters indicate 10 kW and
3 kW respectively when connected to measure the
input power to a 3-phase balanced load, the reverse
switch being operated on the meter indicating the 3 kW
reading. Determine (a) the input power and (b) the load
power factor.

Since the reversing switch on the wattmeter had to be
operated the 3 kW reading is taken as −3 kW.

(a) Total input power, P = P1 + P2 = 10 + (−3) = 7 kW

(b) tan φ = √
3

(
P1 − P2

P1 + P2

)
= √

3

(
10 − (−3)

10 + (−3)

)

= √
3

(
13

7

)
= 3.2167

Angle φ = tan−1 3.2167 = 72.73◦

Power factor = cos φ = cos 72.73◦ = 0.297

Problem 18. Three similar coils, each having a resist-
ance of 8 � and an inductive reactance of 8 � are
connected (a) in star and (b) in delta, across a 415V,
3-phase supply. Calculate for each connection the
readings on each of two wattmeters connected to
measure the power by the two-wattmeter method.

(a) Star connection: VL = √
3Vp and IL = Ip

Phase voltage, Vp = VL√
3

= 415√
3

and

phase impedance, Zp = √
(R2

p + X2
L)

= √
(82 + 82) = 11.31 �

Hence phase current, Ip = Vp

Zp
= 415/

√
3

11.31
= 21.18A

Total power, P = 3I2
p Rp = 3(21.18)2(8) = 10 766 W

If wattmeter readings are P1 and P2 then

P1 + P2 = 10 766 (1)

Since Rp = 8 � and XL = 8 �, then phase angle
φ = 45◦ (from impedance triangle)

tan φ = √
3

(
P1 − P2

P1 + P2

)
, hence

tan 45◦ =
√

3(P1 − P2)

10 766

from which P1 − P2 = 10 766(1)√
3

= 6216 W (2)

Adding equations (1) and (2) gives:

2P1 = 10 766 + 6216

= 16 982 W

Hence P1 = 8491 W
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From equation (1), P2 = 10 766 − 8491 = 2275 W
When the coils are star-connected the wattmeter
readings are thus 8.491 kW and 2.275 kW.

(b) Delta connection: VL = Vp and IL = √
3Ip

Phase current, Ip = Vp

Zp
= 415

11.31
= 36.69A

Total power, P = 3I2
p Rp = 3(36.69)2(8) = 32 310 W

Hence P1 + P2 = 32 310 W (3)

tan φ = √
3

(
P1 − P2

P1 + P2

)
thus 1 =

√
3(P1 − P2)

32 310

from which, P1 − P2 = 32 310√
3

= 18 650 W (4)

Adding equations (3) and (4) gives:

2P1 = 50 960, from which P1 = 25 480 W

From equation (3), P2 = 32 310 − 25 480 = 6830 W

When the coils are delta-connected the wattmeter
readings are thus 25.48 kW and 6.83 kW.

Now try the following exercise.

Exercise 67 Further problems on power in
3-phase circuits

1. Determine the total power dissipated by three 20 �
resistors when connected (a) in star and (b) in delta
to a 440V, 3-phase supply.

[(a) 9.68 kW (b) 29.04 kW]

2. Determine the power dissipated in the circuit of
problem 3 of Exercise 66, page 229. [1.35 kW]

3. A balanced delta-connected load has a line voltage
of 400V, a line current of 8A and a lagging power
factor of 0.94. Draw a complete phasor diagram of
the load. What is the total power dissipated by the
load? [5.21 kW]

4. Three inductive loads, each of resistance 4 � and
reactance 9 � are connected in delta. When con-
nected to a 3-phase supply the loads consume
1.2 kW. Calculate (a) the power factor of the load,
(b) the phase current, (c) the line current and (d)
the supply voltage.

[(a) 0.406 (b) 10A (c) 17.32A (d) 98.53V]

5. The input voltage, current and power to a motor is
measured as 415V, 16.4A and 6 kW respectively.
Determine the power factor of the system.

[0.509]

6. A 440V, 3-phase a.c. motor has a power output
of 11.25 kW and operates at a power factor of 0.8
lagging and with an efficiency of 84%. If the motor
is delta connected determine (a) the power input,
(b) the line current and (c) the phase current.

[(a) 13.39 kW (b) 21.97A (c) 12.68A]

7. Two wattmeters are connected to measure the input
power to a balanced 3-phase load. If the wattmeter
readings are 9.3 kW and 5.4 kW determine (a) the
total output power, and (b) the load power factor.

[(a) 14.7 kW (b) 0.909]

8. 8 kW is found by the two-wattmeter method to be
the power input to a 3-phase motor. Determine the
reading of each wattmeter if the power factor of
the system is 0.85. [5.431 kW, 2.569 kW]

9. Three similar coils, each having a resistance of
4.0 � and an inductive reactance of 3.46 � are con-
nected (a) in star and (b) in delta across a 400V,
3-phase supply. Calculate for each connection the
readings on each of two wattmeters connected to
measure the power by the two-wattmeter method.
[(a) 17.15 kW, 5.73 kW (b) 51.46 kW, 17.18 kW]

10. A 3-phase, star-connected alternator supplies a
delta connected load, each phase of which has a
resistance of 15 � and inductive reactance 20 �.
If the line voltage is 400V, calculate (a) the cur-
rent supplied by the alternator and (b) the output
power and kVA rating of the alternator, neglecting
any losses in the line between the alternator and
the load.

[(a) 27.71A (b) 11.52 kW, 19.20 kVA]

11. Each phase of a delta-connected load comprises a
resistance of 40 � and a 40 µF capacitor in series.
Determine, when connected to a 415V, 50 Hz,
3-phase supply (a) the phase current, (b) the line
current, (c) the total power dissipated, and (d) the
kVA rating of the load.
[(a) 4.66A (b) 8.07A (c) 2.605 kW (d) 5.80 kVA]

19.7 Comparison of star and delta connections

(i) Loads connected in delta dissipate three times more
power than when connected in star to the same supply.

(ii) For the same power, the phase currents must be
the same for both delta and star connections (since
power = 3I2

p Rp), hence the line current in the delta-
connected system is greater than the line current in
the corresponding star-connected system. To achieve
the same phase current in a star-connected system as
in a delta-connected system, the line voltage in the
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star system is
√

3 times the line voltage in the delta
system.

Thus for a given power transfer, a delta system is
associated with larger line currents (and thus larger
conductor cross-sectional area) and a star system is
associated with a larger line voltage (and thus greater
insulation).

19.8 Advantages of three-phase systems

Advantages of three-phase systems over single-phase
supplies include:

(i) For a given amount of power transmitted through a
system, the three-phase system requires conductors

with a smaller cross-sectional area. This means a sav-
ing of copper (or aluminium) and thus the original
installation costs are less.

(ii) Two voltages are available (see Section 19.3(vii)).
(iii) Three-phase motors are very robust, relatively cheap,

generally smaller, have self-starting properties, pro-
vide a steadier output and require little maintenance
compared with single-phase motors.
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20 Transformers

At the end of this chapter you should be able to:
• understand the principle of operation of a

transformer
• understand the term ‘rating’ of a transformer

• use
V1

V2
= N1

N2
= I2

I1
in calculations on transformers

• construct a transformer no-load phasor diagram and
calculate magnetizing and core loss components of
the no-load current

• state the e.m.f. equation for a transformer
E = 4.44f �mN and use it in calculations

• construct a transformer on-load phasor diagram for
an inductive circuit assuming the volt drop in the
windings is negligible

• describe transformer construction

• derive the equivalent resistance, reactance and
impedance referred to the primary of a transformer

• understand voltage regulation
• describe losses in transformers and calculate

efficiency
• appreciate the concept of resistance matching and

how it may be achieved

• perform calculations using R1 =
(

N1

N2

)2

RL

• describe an auto transformer, its advantages/
disadvantages and uses

• describe an isolating transformer, stating uses
• describe a three-phase transformer
• describe current and voltage transformers

20.1 Introduction

A transformer is a device which uses the phenomenon
of mutual induction (see Chapter 9) to change the values
of alternating voltages and currents. In fact, one of the
main advantages of a.c. transmission and distribution is
the ease with which an alternating voltage can be increased
or decreased by transformers.

Figure 20.1

Losses in transformers are generally low and thus effi-
ciency is high. Being static they have a long life and are
very stable.

Transformers range in size from the miniature units
used in electronic applications to the large power trans-
formers used in power stations. The principle of operation
is the same for each.

A transformer is represented in Figure 20.1(a) as con-
sisting of two electrical circuits linked by a common
ferromagnetic core. One coil is termed the primary wind-
ing which is connected to the supply of electricity, and the
other the secondary winding, which may be connected
to a load. A circuit diagram symbol for a transformer is
shown in Figure 20.1(b).

20.2 Transformer principle of operation

When the secondary is an open-circuit and an alternating
voltage V1 is applied to the primary winding, a small cur-
rent — called the no-load current I0 — flows, which sets
up a magnetic flux in the core. This alternating flux links
with both primary and secondary coils and induces in them
e.m.f.’s of E1 and E2 respectively by mutual induction.
The induced e.m.f. E in a coil of N turns is given by

E = −N
d�

dt
volts,
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where d�/dt is the rate of change of flux. In an ideal
transformer, the rate of change of flux is the same for
both primary and secondary and thus E1/N1 = E2/N2, i.e.
the induced e.m.f. per turn is constant.
Assuming no losses, E1 = V1 and E2 = V2. Hence

V1

N1
= V2

N2
or

V1

V2
= N1

N2
(20.1)

V1/V2 is called the voltage ratio and N1/N2 the turns
ratio, or the ‘transformation ratio’ of the transformer. If
N2 is less than N1 then V2 is less than V1 and the device
is termed a step-down transformer. If N2 is greater then
N1 then V2 is greater than V1 and the device is termed a
step-up transformer.

When a load is connected across the secondary wind-
ing, a current I2 flows. In an ideal transformer losses are
neglected and a transformer is considered to be 100%
efficient.

Hence input power = output power, or V1I1 = V2I2,
i.e. in an ideal transformer, the primary and secondary
volt-amperes are equal.

Thus
V1

V2
= I2

I1
(20.2)

Combining equations (20.1) and (20.2) gives:

V1

V2
= N1

N2
= I2

I1
(20.3)

The rating of a transformer is stated in terms of the volt-
amperes that it can transform without overheating. With
reference to Figure 20.1(a), the transformer rating is either
V1I1 or V2I2, where I2 is the full load secondary current.

Problem 1. A transformer has 500 primary turns and
3000 secondary turns. If the primary voltage is 240V,
determine the secondary voltage, assuming an ideal
transformer.

For an ideal transformer, voltage ratio = turns ratio, i.e.

V1

V2
= N1

N2
, hence

240

V2
= 500

3000

Thus secondary voltage V2 = (3000)(240)

(500)

= 1440 V or 1.44 kV

Problem 2. An ideal transformer with a turns ratio of
2:7 is fed from a 240 V supply. Determine its output
voltage.

A turns ratio of 2:7 means that the transformer has 2 turns
on the primary for every 7 turns on the secondary (i.e. a
step-up transformer). Thus,

N1

N2
= 2

7

For an ideal transformer,
N1

N2
= V1

V2
; hence

2

7
= 240

V2

Thus the secondary voltage V2 = (240)(7)

(2)
= 840V

Problem 3. An ideal transformer has a turns ratio of
8:1 and the primary current is 3 A when it is supplied
at 240 V. Calculate the secondary voltage and current.

A turns ratio of 8:1 means
N1

N2
= 8

1
, i.e. a step-down

transformer.
N1

N2
= V1

V2
or secondary voltage V2 = V1

(
N2

N1

)

= 240

(
1

8

)

= 30 volts

Also,
N1

N2
= I2

I1
; hence secondary current I2 = I1

(
N1

N2

)

= 3

(
8

1

)

= 24 A

Problem 4. An ideal transformer, connected to a
240V mains, supplies a 12V, 150 W lamp. Calculate
the transformer turns ratio and the current taken from
the supply.

V1 = 240 V, V2 = 12 V, I2 = P

V2
= 150

12
= 12.5 A

Turns ratio = N1

N2
= V1

V2
= 240

12
= 20

V1

V2
= I2

I1
, from which, I1 = I2

(
V2

V1

)
= 12.5

(
12

240

)

Hence current taken from the supply, I1 = 12.5

20
= 0.625A

Problem 5. A 5 kVA single-phase transformer has a
turns ratio of 10:1 and is fed from a 2.5 kV supply.
Neglecting losses, determine (a) the full load sec-
ondary current, (b) the minimum load resistance which
can be connected across the secondary winding to give
full load kVA, (c) the primary current at full load kVA.
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(a)
N1

N2
= 10

1
and V1 = 2.5 kV = 2500V

Since
N1

N2
= V1

V2
, secondary voltage

V2 = V1

(
N2

N1

)
= 2500

(
1

10

)
= 250V

The transformer rating in volt-amperes = V2I2 (at full
load), i.e. 5000 = 250I2

Hence full load secondary current I2 = 5000

250
= 20 A

(b) Minimum value of load resistance, RL = V2

I2

= 250

20
= 12.5 �

(c)
N1

N2
= I2

I1
, from which primary current I1 = I2

(
N2

N1

)

= 20

(
1

10

)

= 2A

Now try the following exercise.

Exercise 68 Further problems on the transformer
principle of operation

1. A transformer has 600 primary turns connected to
a 1.5 kV supply. Determine the number of sec-
ondary turns for a 240V output voltage, assuming
no losses. [96]

2. An ideal transformer with a turns ratio of 2:9 is fed
from a 220V supply. Determine its output voltage.

[990V]

3. A transformer has 800 primary turns and 2000
secondary turns. If the primary voltage is 160V,
determine the secondary voltage assuming an ideal
transformer. [400V]

4. An ideal transformer has a turns ratio of 12:1 and is
supplied at 192V. Calculate the secondary voltage.

[16V]

5. An ideal transformer has a turns ratio of 15:1 and is
supplied at 180V when the primary current is 4A.
Calculate the secondary voltage and current.

[12V, 60 A]

6. A step-down transformer having a turns ratio of
20:1 has a primary voltage of 4 kV and a load of
10 kW. Neglecting losses, calculate the value of the
secondary current. [50A]

7. A transformer has a primary to secondary turns ratio
of 1:15. Calculate the primary voltage necessary
to supply a 240V load. If the load current is 3 A
determine the primary current. Neglect any losses.

[16V, 45 A]

8. A 10 kVA, single-phase transformer has a turns
ratio of 12:1 and is supplied from a 2.4 kV sup-
ply. Neglecting losses, determine (a) the full load
secondary current, (b) the minimum value of load
resistance which can be connected across the sec-
ondary winding without the kVA rating being
exceeded, and (c) the primary current.

[(a) 50 A (b) 4 � (c) 4.17 A]

9. A 20 � resistance is connected across the secondary
winding of a single-phase power transformer whose
secondary voltage is 150V. Calculate the primary
voltage and the turns ratio if the supply current is
5A, neglecting losses. [225 V, 3:2]

20.3 Transformer no-load phasor diagram

(i) The core flux is common to both primary and sec-
ondary windings in a transformer and is thus taken as
the reference phasor in a phasor diagram. On no-load
the primary winding takes a small no-load current I0
and since, with losses neglected, the primary winding
is a pure inductor, this current lags the applied volt-
age V1 by 90◦. In the phasor diagram assuming no
losses, shown in Figure 20.2(a), current I0 produces
the flux and is drawn in phase with the flux. The pri-
mary induced e.m.f. E1 is in phase opposition to V1
(by Lenz’s law) and is shown 180◦ out of phase with
V1 and equal in magnitude. The secondary induced
e.m.f. is shown for a 2:1 turns ratio transformer.

Figure 20.2

(ii) A no-load phasor diagram for a practical transformer
is shown in Figure 20.2(b). If current flows then
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losses will occur. When losses are considered then
the no-load current I0 is the phasor sum of two com-
ponents — (a) IM , the magnetizing component, in
phase with the flux, and (b) IC , the core loss com-
ponent (supplying the hysteresis and eddy current
losses). From Figure 20.2(b):

No-load current, I0 = √
(I2

M + I2
C), where

IM = I0 sin φ0

and IC = I0 cos φ0

Power factor on no-load = cos φ0 = IC

I0
The total core losses (i.e. iron losses) = V1I0 cos φ0

Problem 6. A 2400V/400V single-phase trans-
former takes a no-load current of 0.5A and the core loss
is 400 W. Determine the values of the magnetizing and
core loss components of the no-load current. Draw to
scale the no-load phasor diagram for the transformer.

V1 = 2400 V, V2 = 400 V, I0 = 0.5 A

Core loss (i.e. iron loss) = 400 = V1I0 cos φ0

i.e. 400 = (2400)(0.5) cos φ0

Hence cos φ0 = 400

(2400)(0.5)
= 0.3333

φ0 = cos−1 0.3333 = 70.53◦

The no-load phasor diagram is shown in Figure 20.3.

Figure 20.3

Magnetizing component, IM = I0 sin φ0 = 0.5 sin 70.53◦

= 0.471A

Core loss component, IC = I0 cos φ0 = 0.5 cos 70.53◦
= 0.167A

Problem 7. A transformer takes a current of 0.8A
when its primary is connected to a 240 volt, 50 Hz
supply, the secondary being on open circuit. If the
power absorbed is 72 watts, determine (a) the iron loss
current, (b) the power factor on no-load, and (c) the
magnetizing current.

I0 = 0.8 A, V1 = 240 V

(a) Power absorbed = total core loss = 72 = V1I0 cos φ0

Hence 72 = 240 I0 cos φ0

and iron loss current, IC = I0 cos φ0 = 72

240
= 0.30A

(b) Power factor at no load, cos φ0 = IC

I0
= 0.30

0.80
= 0.375

(c) From the right-angled triangle in Figure 20.2(b) and
using Pythagoras’ theorem, I2

0 = I2
C + I2

M
from which, magnetizing current,

IM = √
(I2

0 − I2
C) = √

(0.802 − 0.302)

= 0.74A

Now try the following exercise.

Exercise 69 Further problems on the no-load
phasor diagram

1. (a) Draw the phasor diagram for an ideal trans-
former on no-load.

(b) A 500 V/100V, single-phase transformer takes
a full load primary current of 4A. Neglecting
losses, determine (i) the full load secondary
current, and (ii) the rating of the transformer.

[(b) (i) 20A (ii) 2 kVA]

2. A 3300V/440V, single-phase transformer takes a
no-load current of 0.8A and the iron loss is 500 W.
Draw the no-load phasor diagram and determine the
values of the magnetizing and core loss components
of the no-load current. [0.786A, 0.152A]

3. A transformer takes a current of 1A when its
primary is connected to a 300V, 50 Hz supply,
the secondary being on open-circuit. If the power
absorbed is 120 watts, calculate (a) the iron loss
current, (b) the power factor on no-load, and (c) the
magnetizing current.

[(a) 0.40 A (b) 0.40 (c) 0.917A]
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20.4 E.m.f. equation of a transformer

The magnetic flux � set up in the core of a transformer
when an alternating voltage is applied to its primary
winding is also alternating and is sinusoidal.

Let �m be the maximum value of the flux and f be
the frequency of the supply. The time for 1 cycle of the
alternating flux is the periodic time T , where T = 1/f
seconds.
The flux rises sinusoidally from zero to its maximum value
in 1

4 cycle, and the time for 1
4 cycle is 1/4f seconds.

Hence the average rate of change of flux = �m

(1/4f )
=

4 f �m Wb/s, and since 1 Wb/s = 1 volt, the average e.m.f.
induced in each turn = 4 f �m volts.
As the flux � varies sinusoidally, then a sinusoidal e.m.f.
will be induced in each turn of both primary and secondary
windings.

For a sine wave, form factor = rms value

average value

= 1.11 (see Chapter 14)

Hence rms value = form factor × average value

= 1.11 × average value

Thus rms e.m.f. induced in each turn

= 1.11 × 4 f �m volts

= 4.44 f �m volts

Therefore, rms value of e.m.f. induced in primary,

E1 = 4.44 f�mN1 volts (20.4)

and rms value of e.m.f. induced in secondary,

E2 = 4.44 f�mN2 volts (20.5)

Dividing equation (20.4) by equation (20.5) gives:

E1

E2
= N1

N2
, as previously obtained in Section 20.2.

Problem 8. A 100 kVA, 4000V/200V, 50 Hz single-
phase transformer has 100 secondary turns. Determine
(a) the primary and secondary current, (b) the number
of primary turns, and (c) the maximum value of the
flux.

V1 = 4000V, V2 = 200V, f = 50 Hz, N2 = 100 turns

(a) Transformer rating = V1I1 = V2I2 = 100 000 VA

Hence primary current, I1 = 100 000

V1
= 100 000

4000
= 25 A

and secondary current, I2 = 100 000

V2
= 100 000

200

= 500 A

(b) From equation (20.3),
V1

V2
= N1

N2

from which, primary turns, N1 =
(

V1

V2

)
(N2)

=
(

4000

200

)
(100)

i.e. N1 = 2000 turns

(c) From equation (20.5), E2 = 4.44f �mN2

from which, maximum flux �m

= E2

4.44fN2
= 200

4.44(50)(100)

(assuming E2=V2)

= 9.01×10−3 Wb or 9.01 mWb

[Alternatively, equation (20.4) could have been used,

where E1 = 4.44f �mN1

from which, �m = E1

4.44 fN1
= 4000

4.44(50)(2000)

(assuming E1 = V1)

= 9.01 mWb, as above]

Problem 9. A single-phase, 50 Hz transformer has
25 primary turns and 300 secondary turns. The cross-
sectional area of the core is 300 cm2. When the primary
winding is connected to a 250V supply, determine
(a) the maximum value of the flux density in the core,
and (b) the voltage induced in the secondary winding.

(a) From equation (20.4),

e.m.f. E1 = 4.44 f �mN1 volts i.e.

250 = 4.44(50)�m(25)

from which, maximum flux density,

�m = 250

(4.44)(50)(25)
Wb

= 0.04505 Wb

However, �m = Bm × A, where Bm = maximum flux
density in the core and A = cross-sectional area of the
core (see Chapter 7).

Hence Bm × 300 × 10−4 = 0.04505
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from which, maximum flux density,

Bm = 0.04505

300 × 10−4 = 1.50 T

(b)
V1

V2
= N1

N2
, from which, V2 = V1

(
N2

N1

)

i.e. voltage induced in the secondary winding,

V2 = (250)

(
300

25

)
= 3000V or 3 kV

Problem 10. A single-phase 500V/100V, 50 Hz
transformer has a maximum core flux density of 1.5 T
and an effective core cross-sectional area of 50 cm2.
Determine the number of primary and secondary turns.

The e.m.f. equation for a transformer is E = 4.44 f �mN

and maximum flux, �m = B × A = (1.5)(50 × 10−4)

= 75 × 10−4 Wb

Since E1 = 4.44 f �mN1

then primary turns, N1 = E1

4.44 f �m

= 500

4.44(50)(75 × 10−4)
= 300 turns

Since E2 = 4.44 f �mN2

then secondary turns, N2 = E2

4.44f �m

= 100

4.44(50)(75 × 10−4)
= 60 turns

Problem 11. A 4500V/225V, 50 Hz single-phase
transformer is to have an approximate e.m.f. per turn
of 15V and operate with a maximum flux density of
1.4 T. Calculate (a) the number of primary and sec-
ondary turns and (b) the cross-sectional area of the
core.

(a) E.m.f. per turn = E1

N1
= E2

N2
= 15

Hence primary turns, N1 = E1

15
= 4500

15
= 300

and secondary turns, N2 = E2

15
= 225

15
= 15

(b) E.m.f. E1 = 4.44 f �mN1

from which, �m = E1

4.44 fN1
= 4500

4.44(50)(300)

= 0.0676 Wb

Now flux �m = Bm × A, where A is the cross-
sectional area of the core, hence

area A = �m

Bm
= 0.0676

1.4
= 0.0483 m2 or 483 cm2

Now try the following exercise.

Exercise 70 Further problems on the e.m.f.
equation

1. A 60 kVA, 1600V/100V, 50 Hz, single-phase trans-
former has 50 secondary windings. Calculate (a) the
primary and secondary current, (b) the number of
primary turns, and (c) the maximum value of the
flux. [(a) 37.5A, 600A (b) 800 (c) 9.0 mWb]

2. A single-phase, 50 Hz transformer has 40 primary
turns and 520 secondary turns. The cross-sectional
area of the core is 270 cm2. When the primary wind-
ing is connected to a 300 volt supply, determine
(a) the maximum value of flux density in the
core, and (b) the voltage induced in the secondary
winding.

[(a) 1.25 T (b) 3.90 kV]

3. A single-phase 800V/100V, 50 Hz transformer has
a maximum core flux density of 1.294 T and an
effective cross-sectional area of 60 cm2. Calculate
the number of turns on the primary and secondary
windings. [464, 58]

4. A 3.3 kV/110V, 50 Hz, single-phase transformer is
to have an approximate e.m.f. per turn of 22V and
operate with a maximum flux of 1.25 T. Calculate
(a) the number of primary and secondary turns,
and (b) the cross-sectional area of the core.

[(a) 150, 5 (b) 792.8 cm2]

20.5 Transformer on-load phasor diagram

If the voltage drop in the windings of a transformer are
assumed negligible, then the terminal voltage V2 is the
same as the induced e.m.f. E2 in the secondary. Similarly,
V1 = E1. Assuming an equal number of turns on primary
and secondary windings, then E1 = E2, and let the load
have a lagging phase angle φ2.

In the phasor diagram of Figure 20.4, current I2 lags
V2 by angle φ2. When a load is connected across the
secondary winding a current I2 flows in the secondary
winding. The resulting secondary e.m.f. acts so as to tend
to reduce the core flux. However this does not happen since
reduction of the core flux reduces E1, hence a reflected
increase in primary current I ′

1 occurs which provides a
restoring mmf. Hence at all loads, primary and secondary
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mmf’s are equal, but in opposition, and the core flux
remains constant. I ′

1 is sometimes called the ‘balancing’
current and is equal, but in the opposite direction, to cur-
rent I2 as shown in Figure 20.4. I0, shown at a phase angle
φ0 to V1, is the no-load current of the transformer (see
Section 20.3).

Figure 20.4

The phasor sum of I ′
1 and I0 gives the supply current I1

and the phase angle between V1 and I1 is shown as φ1.

Problem 12. A single-phase transformer has 2000
turns on the primary and 800 turns on the secondary. Its
no-load current is 5A at a power factor of 0.20 lagging.
Assuming the volt drop in the windings is negligible,
determine the primary current and power factor when
the secondary current is 100A at a power factor of 0.85
lagging.

Let I ′
1 be the component of the primary current which

provides the restoring mmf. Then

I ′
1N1 = I2N2

i.e. I ′
1(2000) = (100)(800)

from which, I ′
1 = (100)(800)

2000
= 40 A

If the power factor of the secondary is 0.85

then cos φ2 = 0.85, from which, φ2 = cos−1 0.85
= 31.8◦

If the power factor on no-load is 0.20,

then cos φ0 = 0.2 and φ0 = cos−1 0.2 = 78.5◦

In the phasor diagram shown in Figure 20.5, I2 = 100 A
is shown at an angle of φ2 = 31.8◦ to V2 and I ′

1 = 40A is
shown in anti-phase to I2.
The no-load current I0 = 5A is shown at an angle of
φ0 = 78.5◦ to V1.

Figure 20.5

Current I1 is the phasor sum of I ′
1 and I0 and by drawing

to scale, I1 = 44 A and angle φ1 = 37◦.

By calculation, I1 cos φ1 = oa + ob

= I0 cos φ0 + I ′
1 cos φ2

= (5)(0.2) + (40)(0.85)

= 35.0 A

and I1 sin φ1 = oc + od

= I0 sin φ0 + I ′
1 sin φ2

= (5) sin 78.5◦ + (40) sin 31.8◦

= 25.98 A

Hence the magnitude of I1 = √
(35.02+25.982) = 43.59A

and tan φ1 =
(

25.98

35.0

)
, from which, φ1 = tan−1

(
25.98

35.0

)

= 36.59◦

Hence the power factor of the primary = cos φ1 = cos 36.59◦
= 0.80

Now try the following exercise.

Exercise 71 Further problem on transformer
on-load

1. A single-phase transformer has 2400 turns on the
primary and 600 turns on the secondary. Its no-load
current is 4A at a power factor of 0.25 lagging.
Assuming the volt drop in the windings is negli-
gible, calculate the primary current and power
factor when the secondary current is 80A at a power
factor of 0.8 lagging. [23.26A, 0.73]
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20.6 Transformer construction

(i) There are broadly two types of single-phase double-
wound transformer constructions — the core type
and the shell type, as shown in Figure 20.6. The low
and high voltage windings are wound as shown to
reduce leakage flux.

Figure 20.6

(ii) For power transformers, rated possibly at several
MVA and operating at a frequency of 50 Hz in Great
Britain, the core material used is usually laminated
silicon steel or stalloy, the laminations reducing eddy
currents and the silicon steel keeping hysteresis loss
to a minimum.

Large power transformers are used in the main
distribution system and in industrial supply circuits.
Small power transformers have many applications,
examples including welding and rectifier supplies,
domestic bell circuits, imported washing machines,
and so on.

(iii) For audio frequency (a.f.) transformers, rated from
a few mVA to no more than 20VA, and operating at
frequencies up to about 15 kHz, the small core is
also made of laminated silicon steel. A typical appli-
cation of a.f. transformers is in an audio amplifier
system.

Figure 20.7

(iv) Radio frequency (r.f.) transformers, operating in
the MHz frequency region have either an air core,
a ferrite core or a dust core. Ferrite is a ceramic
material having magnetic properties similar to sili-
con steel, but having a high resistivity. Dust cores
consist of fine particles of carbonyl iron or permal-
loy (i.e. nickel and iron), each particle of which
is insulated from its neighbour. Applications of
r.f. transformers are found in radio and television
receivers.

(v) Transformer windings are usually of enamel-
insulated copper or aluminium.

(vi) Cooling is achieved by air in small transformers and
oil in large transformers.

20.7 Equivalent circuit of a transformer

Figure 20.7 shows an equivalent circuit of a transformer.
R1 and R2 represent the resistances of the primary and sec-
ondary windings and X1 and X2 represent the reactances of
the primary and secondary windings, due to leakage flux.

The core losses due to hysteresis and eddy currents are
allowed for by resistance R which takes a current IC , the
core loss component of the primary current. Reactance X
takes the magnetizing component IM .

In a simplified equivalent circuit shown in Figure 20.8,
R and X are omitted since the no-load current I0 is
normally only about 3–5% of the full load primary current.

It is often convenient to assume that all of the resistance
and reactance as being on one side of the transformer.

Resistance R2 in Figure 20.8 can be replaced by insert-
ing an additional resistance R′

2 in the primary circuit such
that the power absorbed in R′

2 when carrying the primary
current is equal to that in R2 due to the secondary current,
i.e. I2

1 R′
2 = I2

2 R2
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Figure 20.8

from which, R′
2 = R2

(
I2

I1

)2

= R2

(
V1

V2

)2

Then the total equivalent resistance in the primary circuit
Re is equal to the primary and secondary resistances of the
actual transformer. Hence

Re = R1 + R′
2, i.e. Re = R1 + R2

(
V1

V2

)2

(20.6)

By similar reasoning, the equivalent reactance in the
primary circuit is given by

Xe = X1 + X ′
2, i.e. Xe = X1 + X2

(
V1

V2

)2

(20.7)

The equivalent impedance Ze of the primary and sec-
ondary windings referred to the primary is given by

Ze = √
(R2

e + X2
e ) (20.8)

If φe is the phase angle between I1 and the volt drop I1Ze
then

cos φe = Re

Ze
(20.9)

The simplified equivalent circuit of a transformer is shown
in Figure 20.9.

Figure 20.9

Problem 13. A transformer has 600 primary turns
and 150 secondary turns. The primary and secondary
resistances are 0.25 � and 0.01 � respectively and the
corresponding leakage reactances are 1.0 � and 0.04 �
respectively. Determine (a) the equivalent resistance
referred to the primary winding, (b) the equivalent
reactance referred to the primary winding, (c) the
equivalent impedance referred to the primary winding,
and (d) the phase angle of the impedance.

(a) From equation (20.6), equivalent resistance

Re = R1 + R2

(
V1

V2

)2

i.e. Re = 0.25 + 0.01

(
600

150

)2

since
V1

V2
= N1

N2

= 0.41 �

(b) From equation (20.7), equivalent reactance,

Xe = X1 + X2

(
V1

V2

)2

i.e. Xe = 1.0 + 0.04

(
600

150

)2

= 1.64 �

(c) From equation (20.8), equivalent impedance,

Ze = √
(R2

e + X2
e )

= √
(0.412 + 1.642)

= 1.69 �

(d) From equation (20.9), cos φe = Re

Ze
= 0.41

1.69

Hence φe = cos−1
(

0.41

1.69

)
= 75.96◦
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Now try the following exercise.

Exercise 72 Further problem on the equivalent
circuit of a transformer

1. A transformer has 1200 primary turns and 200
secondary turns. The primary and secondary resis-
tances are 0.2 � and 0.02 � respectively and the
corresponding leakage reactances are 1.2 � and
0.05 � respectively. Calculate (a) the equivalent
resistance, reactance and impedance referred to the
primary winding, and (b) the phase angle of the
impedance.

[(a) 0.92 �, 3.0 �, 3.14 � (b) 72.95◦]

20.8 Regulation of a transformer

When the secondary of a transformer is loaded, the sec-
ondary terminal voltage, V2, falls. As the power factor
decreases, this voltage drop increases. This is called the
regulation of the transformer and it is usually expressed
as a percentage of the secondary no-load voltage, E2. For
full-load conditions:

Regulation =
(

E2 −V2

E2

)
× 100% (20.10)

The fall in voltage, (E2 − V2), is caused by the resistance
and reactance of the windings.

Typical values of voltage regulation are about 3% in
small transformers and about 1% in large transformers.

Problem 14. A 5 kVA, 200V/400V, single-phase
transformer has a secondary terminal voltage of 387.6
volts when loaded. Determine the regulation of the
transformer.

From equation (20.10):

regulation =
(No-load secondary voltage
− terminal voltage on load)

no-load secondary voltage
× 100%

=
[

400 − 387.6

400

]
× 100%

=
(

12.4

400

)
× 100% = 3.1%

Problem 15. The open-circuit voltage of a trans-
former is 240V.A tap-changing device is set to operate
when the percentage regulation drops below 2.5%.
Determine the load voltage at which the mechanism
operates.

Regulation =
(no load voltage
− terminal load voltage)

no load voltage
× 100%

Hence 2.5 =
[

240 − V2

240

]
100%

Therefore
(2.5)(240)

100
= 240 − V2

i.e, 6 = 240 − V2

from which, load voltage, V2 = 240 − 6 = 234 volts

Now try the following exercise.

Exercise 73 Further problems on regulation

1. A 6 kVA, 100V/500V, single-phase transformer
has a secondary terminal voltage of 487.5 volts
when loaded. Determine the regulation of the
transformer. [2.5%]

2. A transformer has an open-circuit voltage of 110
volts. A tap-changing device operates when the reg-
ulation falls below 3%. Calculate the load voltage
at which the tap-changer operates. [106.7 volts]

20.9 Transformer losses and efficiency

There are broadly two sources of losses in transformers
on load, these being copper losses and iron losses.

(a) Copper losses are variable and result in a heating
of the conductors, due to the fact that they possess
resistance. If R1 and R2 are the primary and sec-
ondary winding resistances then the total copper loss
is I2

1 R1 + I2
2 R2

(b) Iron losses are constant for a given value of frequency
and flux density and are of two types — hysteresis loss
and eddy current loss.

(i) Hysteresis loss is the heating of the core as a result
of the internal molecular structure reversals which
occur as the magnetic flux alternates. The loss is
proportional to the area of the hysteresis loop and
thus low loss nickel iron alloys are used for the
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core since their hysteresis loops have small areas.
(See Chapters 7 and 38)

(ii) Eddy current loss is the heating of the core due to
e.m.f.’s being induced not only in the transformer
windings but also in the core. These induced
e.m.f.’s set up circulating currents, called eddy cur-
rents. Owing to the low resistance of the core, eddy
currents can be quite considerable and can cause a
large power loss and excessive heating of the core.
Eddy current losses can be reduced by increasing
the resistivity of the core material or, more usually,
by laminating the core (i.e. splitting it into layers or
leaves) when very thin layers of insulating material
can be inserted between each pair of laminations.
This increases the resistance of the eddy current
path, and reduces the value of the eddy current.

Transformer efficiency, η = output power

input power

= input power − losses

input power

η = 1 − losses
input power

(20.11)

and is usually expressed as a percentage. It is not
uncommon for power transformers to have efficiencies
of between 95% and 98%.

Output power = V2I2 cos φ2,

total losses = copper loss + iron losses,

and input power = output power + losses

Problem 16. A 200 kVA rated transformer has a full-
load copper loss of 1.5 kW and an iron loss of 1 kW.
Determine the transformer efficiency at full load and
0.85 power factor.

Efficiency η = output power

input power
= input power − losses

input power

= 1 − losses

input power

Full-load output power = VI cos φ = (200)(0.85)
= 170 kW

Total losses = 1.5 + 1.0 = 2.5 kW
Input power = output power + losses = 170 + 2.5

= 172.5 kW

Hence efficiency =
(

1 − 2.5

172.5

)
= 1 − 0.01449

= 0.9855 or 98.55%

Problem 17. Determine the efficiency of the trans-
former in Problem 16 at half full load and 0.85 power
factor.

Half full-load power output = 1
2 (200)(0.85) = 85 kW

Copper loss (or I2R loss) is proportional to current
squared.

Hence the copper loss at half full load is
( 1

2

)2
(1500) =

375 W

Iron loss = 1000 W (constant)

Total losses = 375 + 1000 = 1375 W or 1.375 kW

Input power at half full load = output power at half full
load + losses

= 85 + 1.375 = 86.375 kW

Hence efficiency =
(

1 − losses

input power

)
=

(
1 − 1.375

86.375

)

= 1 − 0.01592 = 0.9841 or 98.41%

Problem 18. A 400 kVA transformer has a primary
winding resistance of 0.5 � and a secondary winding
resistance of 0.001 �. The iron loss is 2.5 kW and the
primary and secondary voltages are 5 kV and 320V
respectively. If the power factor of the load is 0.85,
determine the efficiency of the transformer (a) on full
load, and (b) on half load.

(a) Rating = 400 kVA = V1I1 = V2I2

Hence primary current, I1 = 400 × 103

V1
= 400 × 103

5000

= 80 A

and secondary current, I2 = 400 × 103

V2
= 400 × 103

320

= 1250 A

Total copper loss = I2
1 R1 + I2

2 R2,

(where R1 = 0.5 � and R2 = 0.001 �)

= (80)2(0.5) + (1250)2(0.001)

= 3200 + 1562.5 = 4762.5 watts

On full load, total loss = copper loss + iron loss

= 4762.5 + 2500

= 7262.5 W = 7.2625 kW

Total output power on full load = V2I2 cos φ2

= (400 × 103)(0.85)

= 340 kW
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Input power = output power + losses

= 340 kW + 7.2625 kW

= 347.2625 kW

Efficiency, η =
[

1 − losses

input power

]
× 100%

=
[

1 − 7.2625

347.2625

]
× 100%

= 97.91%

(b) Since the copper loss varies as the square of the
current, then total copper loss on half load =
4762.5 × ( 1

2

)2 = 1190.625 W

Hence total loss on half load = 1190.625 + 2500

= 3690.625 W or

3.691 kW

Output power on half full load = 1
2 (340) = 170 kW

Input power on half full load

= output power + losses

= 170 kW + 3.691 kW = 173.691 kW

Hence efficiency at half full load,

η =
[

1 − losses

input power

]
× 100%

=
[

1 − 3.691

173.691

]
× 100% = 97.87%

Maximum efficiency

It may be shown that the efficiency of a transformer is a
maximum when the variable copper loss (i.e. I2

1 R1 + I2
2 R2)

is equal to the constant iron losses.

Problem 19. A 500 kVA transformer has a full load
copper loss of 4 kW and an iron loss of 2.5 kW. Deter-
mine (a) the output kVA at which the efficiency of
the transformer is a maximum, and (b) the max-
imum efficiency, assuming the power factor of the load
is 0.75.

(a) Let x be the fraction of full load kVA at which the
efficiency is a maximum.

The corresponding total copper loss = (4 kW)(x2)

At maximum efficiency, copper loss = iron loss. Hence

4x2 = 2.5

from which x2 = 2.5

4
and x =

√ (
2.5

4

)
= 0.791

Hence the output kVA at maximum efficiency

= 0.791 × 500 = 395.5 kVA

(b) Total loss at maximum efficiency = 2 × 2.5 = 5 kW

Output power = 395.5 kVA × p.f. = 395.5 × 0.75

= 296.625 kW

Input power = output power + losses

= 296.625 + 5 = 301.625 kW

Maximum efficiency,

η =
[

1 − losses

input power

]
× 100%

=
[

1 − 5

301.625

]
× 100%

= 98.34%

Now try the following exercise.

Exercise 74 Further problems on losses and
efficiency

1. A single-phase transformer has a voltage ratio of
6:1 and the h.v. winding is supplied at 540V. The
secondary winding provides a full load current of
30A at a power factor of 0.8 lagging. Neglecting
losses, find (a) the rating of the transformer, (b) the
power supplied to the load, (c) the primary current.

[(a) 2.7 kVA, (b) 2.16 kW, (c) 5A]

2. A single-phase transformer is rated at 40 kVA. The
transformer has full load copper losses of 800 W
and iron losses of 500 W. Determine the transformer
efficiency at full load and 0.8 power factor.

[96.10%]

3. Determine the efficiency of the transformer in
problem 2 at half full load and 0.8 power factor.

[95.81%]

4. A 100 kVA, 2000V/400V, 50 Hz, single-phase
transformer has an iron loss of 600 W and a full
load copper loss of 1600 W. Calculate its efficiency
for a load of 60 kW at 0.8 power factor. [97.56%]

5. (a) What are eddy currents? State how their effect
is reduced in transformers.
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(b) Determine the efficiency of a 15 kVA trans-
former for the following conditions:

(i) full load, unity power factor
(ii) 0.8 full load, unity power factor

(iii) half full load, 0.8 power factor.

Assume that iron losses are 200 W and the full load
copper loss is 300 W.

[(a) 96.77% (ii) 96.84% (iii) 95.62%]

6. A 250 kVA transformer has a full load copper loss of
3 kW and an iron loss of 2 kW. Calculate (a) the out-
put kVA at which the efficiency of the transformer
is a maximum, and (b) the maximum efficiency,
assuming the power factor of the load is 0.80.

[(a) 204.1 kVA (b) 97.61%]

20.10 Resistance matching

Varying a load resistance to be equal, or almost equal,
to the source internal resistance is called matching.
Examples where resistance matching is important include
coupling an aerial to a transmitter or receiver, or in coup-
ling a loudspeaker to an amplifier, where coupling trans-
formers may be used to give maximum power transfer.

With d.c. generators or secondary cells, the internal
resistance is usually very small. In such cases, if an attempt
is made to make the load resistance as small as the source
internal resistance, overloading of the source results.

A method of achieving maximum power transfer
between a source and a load (see Section 13.9, page 152),
is to adjust the value of the load resistance to ‘match’ the
source internal resistance. A transformer may be used as
a resistance matching device by connecting it between
the load and the source.

The reason why a transformer can be used for this is
shown below. With reference to Figure 20.10:

Figure 20.10

RL = V2

I2 and R1 = V1

I1

For an ideal transformer, V1 =
(

N1

N2

)
V2 and I1 =

(
N2

N1

)
I2

Thus the equivalent input resistance R1 of the transformer
is given by:

R1 = V1

I1
=

(
N1

N2

)
V2(

N2

N1

)
I2

=
(

N1

N2

)2 (
V2

I2

)
=

(
N1

N2

)2

RL

i.e. R1 =
(

N1

N2

)2

RL

Hence by varying the value of the turns ratio, the equiva-
lent input resistance of a transformer can be ‘matched’
to the internal resistance of a load to achieve maximum
power transfer.

Problem 20. A transformer having a turns ratio of
4:1 supplies a load of resistance 100 �. Determine the
equivalent input resistance of the transformer.

From above, the equivalent input resistance,

R1 =
(

N1

N2

)2

RL =
(

4

1

)2

(100) = 1600 �

Problem 21. The output stage of an amplifier has
an output resistance of 112 �. Calculate the optimum
turns ratio of a transformer which would match a
load resistance of 7 � to the output resistance of the
amplifier.

The circuit is shown in Figure 20.11.

Figure 20.11

The equivalent input resistance, R1 of the transformer
needs to be 112 � for maximum power transfer.

R1 =
(

N1

N2

)2

RL

Hence

(
N1

N2

)2

= R1

RL
= 112

7
= 16

i.e.
N1

N2
= √

(16) = 4

Hence the optimum turns ratio is 4:1
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Problem 22. Determine the optimum value of load
resistance for maximum power transfer if the load is
connected to an amplifier of output resistance 150 �
through a transformer with a turns ratio of 5:1.

The equivalent input resistance R1 of the transformer
needs to be 150 � for maximum power transfer.

R1 =
(

N1

N2

)2

RL , from which, RL = R1

(
N2

N1

)2

= 150

(
1

5

)2

= 6 �

Problem 23. A single-phase, 220V/1760V ideal
transformer is supplied from a 220V source through
a cable of resistance 2 �. If the load across the sec-
ondary winding is 1.28 k� determine (a) the primary
current flowing and (b) the power dissipated in the load
resistor.

The circuit diagram is shown in Figure 20.12.

Figure 20.12

(a) Turns ratio
N1

N2
= V1

V2
= 220

1760
= 1

8

Equivalent input resistance of the transformer,

R1 =
(

N1

N2

)2

RL

=
(

1

8

)2

(1.28 × 103) = 20 �

Total input resistance, RIN = R + R1 = 2 + 20 = 22 �

Primary current, I1 = V1

RIN
= 220

22
= 10A

(b) For an ideal transformer
V1

V2
= I2

I1
, from which

I2 = I1

(
V1

V2

)

= 10

(
220

1760

)
= 1.25A

Power dissipated in load resistor RL ,

P = I2
2 RL = (1.25)2(1.28 × 103)

= 2000 watts or 2 kW

Problem 24. An a.c. source of 24V and internal
resistance 15 k� is matched to a load by a 25:1
ideal transformer. Determine (a) the value of the load
resistance and (b) the power dissipated in the load.

The circuit diagram is shown in Figure 20.13.

Figure 20.13

(a) For maximum power transfer R1 needs to be equal to
15 k�

R1 =
(

N1

N2

)2

RL , from which load resistance,

RL = R1

(
N2

N1

)2

= (15 000)

(
1

25

)2

= 24 �

(b) The total input resistance when the source is con-
nected to the matching transformer is RIN + R1, i.e.
15 k�+ 15 k�= 30 k�

Primary current, I1 = V

30 000
= 24

30 000
= 0.8 mA

N1

N2
= I2

I1
, from which, I2 = I1

(
N1

N2

)

= (0.8 × 10−3)

(
25

1

)

= 20 × 10−3 A

Power dissipated in the load RL ,

P = I2
2 RL = (20 × 10−3)2(24) = 9600 × 10−6 W

= 9.6 mW
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Now try the following exercise.

Exercise 75 Further problems on resistance
matching

1. A transformer having a turns ratio of 8:1 supplies
a load of resistance 50 �. Determine the equivalent
input resistance of the transformer. [3.2 k�]

2. What ratio of transformer turns is required to make
a load of resistance 30 � appear to have a resistance
of 270 �? [3:1]

3. A single-phase, 240V/2880V ideal transformer is
supplied from a 240V source through a cable of
resistance 3 �. If the load across the secondary
winding is 720 � determine (a) the primary current
flowing and (b) the power dissipated in the load
resistance. [(a) 30A (b) 4.5 kW]

4. A load of resistance 768 � is to be matched to an
amplifier which has an effective output resistance
of 12 �. Determine the turns ratio of the coupling
transformer. [1:8]

5. An a.c. source of 20V and internal resistance
20 k� is matched to a load by a 16:1 single-phase
transformer. Determine (a) the value of the load
resistance and (b) the power dissipated in the load.

[(a) 78.13 � (b) 5 mW]

20.11 Auto transformers

An auto transformer is a transformer which has part of its
winding common to the primary and secondary circuits.
Figure 20.14(a) shows the circuit for a double-wound
transformer and Figure 20.14(b) that for an auto trans-
former. The latter shows that the secondary is actually part
of the primary, the current in the secondary being (I2 − I1).
Since the current is less in this section, the cross-sectional
area of the winding can be reduced, which reduces the
amount of material necessary.

Figure 20.14

Figure 20.15 shows the circuit diagram symbol for an
auto transformer.

Figure 20.15

Problem 25. A single-phase auto transformer has a
voltage ratio 320V:250V and supplies a load of 20 kVA
at 250V.Assuming an ideal transformer, determine the
current in each section of the winding.

Rating = 20 kVA = V1I1 = V2I2

Hence primary current, I1 = 20 × 103

V1
= 20 × 103

320

= 62.5A

and secondary current, I2 = 20 × 103

V2
= 20 × 103

250

= 80A
Hence current in common part of the winding
= 80 − 62.5 = 17.5A
The current flowing in each section of the transformer is
shown in Figure 20.16.

Figure 20.16

Saving of copper in an auto transformer

For the same output and voltage ratio, the auto transformer
requires less copper than an ordinary double-wound
transformer. This is explained below.

The volume, and hence weight, of copper required in
a winding is proportional to the number of turns and to
the cross-sectional area of the wire. In turn this is propor-
tional to the current to be carried, i.e. volume of copper is
proportional to NI .

Volume of copper in an auto transformer
∝ (N1 − N2)I1 + N2(I2 − I1) see Figure 20.14(b)

∝ N1I1 − N2I1 + N2I2 − N2I1

∝ N1I1 + N2I2 − 2N2I1

∝ 2N1I1 − 2N2I1
(since N2I2 = N1I1)
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Volume of copper in a double-wound
transformer ∝ N1I1 + N2I2

∝ 2N1I1

(again, since N2I2 = N1I1)

Hence
volume of copper in an auto transformer

volume of copper in a double-wound transformer

= 2N1I1 − 2N2I1

2N1I1

= 2N1I1

2N1I1
− 2N2I1

2N1I1

= 1 − N2

N1

If
N2

N1
= x then

(volume of copper in auto transformer)

= (1 − x) (volume of copper in a double-wound
transformer) (20.12)

If, say, x = 4
5 then

(volume of copper in auto transformer)

= (
1 − 4

5

)
(volume of copper in a double-wound

transformer)

= 1
5 (volume in double-wound transfomer)

i.e. a saving of 80%

Similarly, if x = 1
4 , the saving is 25%, and so on.

The closer N2 is to N1, the greater the saving in copper.

Problem 26. Determine the saving in the volume of
copper used in an auto transformer compared with
a double-wound transformer for (a) a 200 V:150 V
transformer, and (b) a 500 V:100 V transformer.

(a) For a 200V:150V transformer, x = V2

V1
= 150

200
= 0.75

Hence from equation (20.12), (volume of copper in
auto transformer)

= (1 − 0.75) (volume of copper in double-wound
transformer)

= (0.25) (volume of copper in double-wound
transformer)

= 25% of copper in a double-wound transformer

Hence the saving is 75%

(b) For a 500V:100V transformer, x = V2

V1
= 100

500
= 0.2

Hence (volume of copper in auto transformer)

= (1 − 0.2) (volume of copper in double-wound
transformer)

= (0.8) (volume in double-wound transformer)

= 80% of copper in a double-wound transformer

Hence the saving is 20%

Now try the following exercise.

Exercise 76 Further problems on the auto
transformer

1. A single-phase auto transformer has a voltage ratio
of 480V:300V and supplies a load of 30 kVA at
300V. Assuming an ideal transformer, calculate the
current in each section of the winding.

[I1 = 62.5 A, I2 = 100 A, (I2 − I1) = 37.5 A]

2. Calculate the saving in the volume of copper used in
an auto transformer compared with a double-wound
transformer for (a) a 300V:240V transformer, and
(b) a 400V:100V transformer. [(a) 80% (b) 25%]

Advantages of auto transformers

The advantages of auto transformers over double-wound
transformers include:

1. a saving in cost since less copper is needed (see above)
2. less volume, hence less weight
3. a higher efficiency, resulting from lower I2R losses
4. a continuously variable output voltage is achievable if a

sliding contact is used
5. a smaller percentage voltage regulation.

Disadvantages of auto transformers

The primary and secondary windings are not electrically
separate, hence if an open-circuit occurs in the sec-
ondary winding the full primary voltage appears across
the secondary.

Uses of auto transformers

Auto transformers are used for reducing the voltage
when starting induction motors (see Chapter 22) and for
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interconnecting systems that are operating at approxi-
mately the same voltage.

20.12 Isolating transformers

Transformers not only enable current or voltage to be
transformed to some different magnitude but provide a
means of isolating electrically one part of a circuit from
another when there is no electrical connection between
primary and secondary windings. An isolating trans-
former is a 1:1 ratio transformer with several important
applications, including bathroom shaver-sockets, portable
electric tools, model railways, and so on.

20.13 Three-phase transformers

Three-phase double-wound transformers are mainly used
in power transmission and are usually of the core type.
They basically consist of three pairs of single-phase wind-
ings mounted on one core, as shown in Figure 20.17,
which gives a considerable saving in the amount of iron
used. The primary and secondary windings in Figure 20.17
are wound on top of each other in the form of concentric
cylinders, similar to that shown in Figure 20.6(a). The
windings may be with the primary delta-connected and
the secondary star-connected, or star-delta, star-star or
delta-delta, depending on its use.

Figure 20.17

A delta connection is shown in Figure 20.18(a) and a
star connection in Figure 20.18(b).

Figure 20.18

Problem 27. A three-phase transformer has 500 pri-
mary turns and 50 secondary turns. If the supply
voltage is 2.4 kV find the secondary line voltage on no-
load when the windings are connected (a) star-delta,
(b) delta-star.

(a) For a star connection, VL = √
3Vp (see Chapter 19)

Primary phase voltage, Vp1 = VL1√
3

= 2400√
3

= 1385.64 volts
For a delta connection, VL = Vp

N1

N2
= V1

V2
, from which,

secondary phase voltage, Vp2 = Vp1

(
N2

N1

)

= (1385.64)

(
50

500

)

= 138.6 volts
(b) For a delta connection, VL = Vp,

hence primary phase voltage Vp1 = 2.4 kV
= 2400 volts

Secondary phase voltage, Vp2 = Vp1

(
N2

N1

)

= (2400)

(
50

500

)

= 240V
For a star connection, VL = √

3Vp

hence the secondary line voltage = √
3(240)

= 416 volts
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Now try the following exercise.

Exercise 77 Further problem on three-phase
transformer

1. A three-phase transformer has 600 primary turns
and 150 secondary turns. If the supply voltage is
1.5 kV determine the secondary line voltage on no-
load when the windings are connected (a) delta-star,
(b) star-delta. [(a) 649.5 V (b) 216.5 V]

20.14 Current transformers

For measuring currents in excess of about 100A a cur-
rent transformer is normally used. With a d.c. moving-coil
ammeter the current required to give full scale deflection
is very small — typically a few milliamperes. When larger
currents are to be measured a shunt resistor is added to the
circuit (see Chapter 10). However, even with shunt resis-
tors added it is not possible to measure very large currents.
When a.c. is being measured a shunt cannot be used since
the proportion of the current which flows in the meter will
depend on its impedance, which varies with frequency.

In a double-wound transformer:
I1

I2
= N2

N1

from which, secondary current I2 = I1

(
N1

N2

)

In current transformers the primary usually consists of one
or two turns whilst the secondary can have several hundred
turns. A typical arrangement is shown in Figure 20.19.

Figure 20.19

If, for example, the primary has 2 turns and the
secondary 200 turns, then if the primary current is 500A,

secondary current, I2 = I1

(
N1

N2

)
= (500)

(
2

200

)
= 5 A

Current transformers isolate the ammeter from the main
circuit and allow the use of a standard range of ammeters
giving full-scale deflections of 1A, 2A or 5A.

For very large currents the transformer core can be
mounted around the conductor or bus-bar. Thus the pri-
mary then has just one turn. It is very important to
short-circuit the secondary winding before removing the
ammeter. This is because if current is flowing in the pri-
mary, dangerously high voltages could be induced in the
secondary should it be open-circuited.

Current transformer circuit diagram symbols are shown
in Figure 20.20.

Figure 20.20

Problem 28. A current transformer has a single turn
on the primary winding and a secondary winding of
60 turns. The secondary winding is connected to an
ammeter with a resistance of 0.15 �. The resistance
of the secondary winding is 0.25 �. If the current
in the primary winding is 300A, determine (a) the
reading on the ammeter, (b) the potential difference
across the ammeter and (c) the total load (in VA) on the
secondary.

(a) Reading on the ammeter, I2 = I1

(
N1

N2

)
= 300

(
1

60

)

= 5A

(b) P.d. across the ammeter
= I2RA, where RA is the ammeter resistance

= (5)(0.15) = 0.75 volts

(c) Total resistance of secondary circuit = 0.15 + 0.25

= 0.40 �

Induced e.m.f. in secondary = (5)(0.40) = 2.0V

Total load on secondary = (2.0)(5) = 10VA
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Now try the following exercise.

Exercise 78 Further problem on current
transformer

1. A current transformer has two turns on the primary
winding and a secondary winding of 260 turns.
The secondary winding is connected to an amme-
ter with a resistance of 0.2 �. The resistance of the
secondary winding is 0.3 �. If the current in the pri-
mary winding is 650A, determine (a) the reading
on the ammeter, (b) the potential difference across
the ammeter, and (c) the total load in VA on the
secondary. [(a) 5A (b) 1V (c) 7.5VA]

20.15 Voltage transformers

For measuring voltages in excess of about 500 V it is
often safer to use a voltage transformer. These are nor-
mal double-wound transformers with a large number of
turns on the primary, which is connected to a high voltage
supply, and a small number of turns on the secondary. A
typical arrangement is shown in Figure 20.21.

Figure 20.21

Since
V1

V2
= N1

N2

the secondary voltage, V2 =V1

(
N2

N1

)

Thus if the arrangement in Figure 20.21 has 4000 primary
turns and 20 secondary turns then for a voltage of 22 kV
on the primary, the voltage on the secondary,

V2 = V1

(
N2

N1

)
= 22 000

(
20

4000

)
= 110 volts
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Revision test 6

This revision test covers the material contained in
chapters 19 and 20.

The marks for each question are shown in brackets at
the end of each question.

1. Three identical coils each of resistance 40 � and induc-
tive reactance 30 � are connected (i) in star, and (ii)
in delta to a 400V, three-phase supply. Calculate for
each connection (a) the line and phase voltages, (b)
the phase and line currents, and (c) the total power
dissipated. (12)

2. Two wattmeters are connected to measure the input
power to a balanced three-phase load by the two-
wattmeter method. If the instrument readings are
10 kW and 6 kW, determine (a) the total power input,
and (b) the load power factor. (5)

3. An ideal transformer connected to a 250V mains, sup-
plies a 25V, 200 W lamp. Calculate the transformer
turns ratio and the current taken from the supply. (5)

4. A 200 kVA, 8000V/320V, 50 Hz single-phase trans-
former has 120 secondary turns. Determine (a) the
primary and secondary currents, (b) the number of
primary turns, and (c) the maximum value of flux. (9)

5. Determine the percentage regulation of an 8 kVA,
100V/200V, single-phase transformer when its sec-
ondary terminal voltage is 194V when loaded. (3)

6. A 500 kVA rated transformer has a full load copper
loss of 4 kW and an iron loss of 3 kW. Determine the
transformer efficiency (a) at full load and 0.80 power
factor, and (b) at half full load and 0.80 power factor.

(10)

7. Determine the optimum value of load resistance for
maximum power transfer if the load is connected to
an amplifier of output resistance 288 � through a
transformer with a turns ratio 6:1. (3)

8. A single-phase auto transformer has a voltage ratio of
250V:200V and supplies a load of 15 kVA at 200V.
Assuming an ideal transformer, determine the current
in each section of the winding. (3)
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21 D.c. machines

At the end of this chapter you should be able to:
• distinguish between the function of a motor and a

generator
• describe the action of a commutator
• describe the construction of a d.c. machine
• distinguish between wave and lap windings
• understand shunt, series and compound windings of

d.c. machines
• understand armature reaction
• calculate generated e.m.f. in an armature winding

using E = 2p�nZ

c
• describe types of d.c. generator and their

characteristics
• calculate generated e.m.f. for a generator using

E = V + IaRa

• state typical applications of d.c. generators
• list d.c. machine losses and calculate efficiency
• calculate back e.m.f. for a d.c. motor using

E = V − IaRa

• calculate the torque of a d.c. motor using T = EIa

2πn

and T = p�ZIa

πc
• describe types of d.c. motor and their characteristics
• state typical applications of d.c. motors
• describe a d.c. motor starter
• describe methods of speed control of d.c. motors
• list types of enclosure for d.c. motors

21.1 Introduction

When the input to an electrical machine is electrical
energy, (seen as applying a voltage to the electrical termin-
als of the machine), and the output is mechanical energy,
(seen as a rotating shaft), the machine is called an electric
motor. Thus an electric motor converts electrical energy
into mechanical energy.

The principle of operation of a motor is explained in
Section 8.4, page 68.

When the input to an electrical machine is mechan-
ical energy, (seen as, say, a diesel motor, coupled to the
machine by a shaft), and the output is electrical energy,
(seen as a voltage appearing at the electrical terminals of
the machine), the machine is called a generator. Thus, a
generator converts mechanical energy to electrical energy.

The principle of operation of a generator is explained
in Section 9.2, page 71.

21.2 The action of a commutator

In an electric motor, conductors rotate in a uniform mag-
netic field. A single-loop conductor mounted between
permanent magnets is shown in Figure 21.1. A voltage
is applied at points A and B in Figure 21.1(a).

Figure 21.1

A force, F, acts on the loop due to the interaction of the
magnetic field of the permanent magnets and the magnetic
field created by the current flowing in the loop. This force
is proportional to the flux density, B, the current flowing,
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I , and the effective length of the conductor, l, i.e. F = BIl.
The force is made up of two parts, one acting vertically
downwards due to the current flowing from C to D and the
other acting vertically upwards due to the current flowing
from E to F (from Fleming’s left-hand rule). If the loop is
free to rotate, then when it has rotated through 180◦, the
conductors are as shown in Figure 21.1(b). For rotation
to continue in the same direction, it is necessary for the
current flow to be as shown in Figure 21.1(b), i.e. from
D to C and from F to E. This apparent reversal in the
direction of current flow is achieved by a process called
commutation. With reference to Figure 21.2(a), when a
direct voltage is applied at A and B, then as the single-
loop conductor rotates, current flow will always be away
from the commutator for the part of the conductor adjacent
to the N-pole and towards the commutator for the part of
the conductor adjacent to the S-pole. Thus the forces act
to give continuous rotation in an anticlockwise direction.
The arrangement shown in Figure 21.2(a) is called a ‘two-
segment’ commutator and the voltage is applied to the
rotating segments by stationary brushes, (usually carbon
blocks), which slide on the commutator material, (usually
copper), when rotation takes place.

In practice, there are many conductors on the rotating
part of a d.c. machine and these are attached to many
commutator segments. A schematic diagram of a multi-
segment commutator is shown in Figure 21.2(b).

Figure 21.2

Poor commutation results in sparking at the trailing
edge of the brushes. This can be improved by using
interpoles (situated between each pair of main poles),
high resistance brushes, or using brushes spanning several
commutator segments.

21.3 D.c. machine construction

The basic parts of any d.c. machine are shown in Fig-
ure 21.3, and comprise:

Figure 21.3

(a) a stationary part called the stator having,
(i) a steel ring called the yoke, to which are attached

(ii) the magnetic poles, around which are the
(iii) field windings, i.e. many turns of a conductor

wound round the pole core; current passing
through this conductor creates an electromag-
net, (rather than the permanent magnets shown
in Figures 21.1 and 21.2),

(b) a rotating part called the armature mounted in
bearings housed in the stator and having,
(iv) a laminated cylinder of iron or steel called the

core, on which teeth are cut to house the
(v) armature winding, i.e. a single or multi-loop

conductor system and
(vi) the commutator, (see Section 21.2).

Armature windings can be divided into two groups,
depending on how the wires are joined to the commutator.
These are called wave windings and lap windings.

(a) In wave windings there are two paths in parallel irre-
spective of the number of poles, each path supplying
half the total current output. Wave wound generators
produce high voltage, low current outputs.

(b) In lap windings there are as many paths in parallel
as the machine has poles. The total current output
divides equally between them. Lap wound generators
produce high current, low voltage output.

21.4 Shunt, series and compound windings

When the field winding of a d.c. machine is connected in
parallel with the armature, as shown in Figure 21.4(a), the
machine is said to be shunt wound. If the field winding
is connected in series with the armature, as shown in Fig-
ure 21.4(b), then the machine is said to be series wound.
A compound wound machine has a combination of series
and shunt windings.
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Figure 21.4

Depending on whether the electrical machine is series
wound, shunt wound or compound wound, it behaves dif-
ferently when a load is applied. The behaviour of a d.c.
machine under various conditions is shown by means of
graphs, called characteristic curves or just characteris-
tics. The characteristics shown in the following sections
are theoretical, since they neglect the effects of armature
reaction.

Armature reaction is the effect that the magnetic field
produced by the armature current has on the magnetic
field produced by the field system. In a generator, armature
reaction results in a reduced output voltage, and in a motor,
armature reaction results in increased speed.

A way of overcoming the effect of armature reaction
is to fit compensating windings, located in slots in the
pole face.

21.5 E.m.f. generated in an armature winding

Let Z = number of armature conductors,

� = useful flux per pole, in webers

p = number of pairs of poles

and n = armature speed in rev/s

The e.m.f. generated by the armature is equal to the
e.m.f. generated by one of the parallel paths. Each con-
ductor passes 2p poles per revolution and thus cuts 2p�
webers of magnetic flux per revolution. Hence flux cut by
one conductor per second = 2p�n Wb and so the average
e.m.f. E generated per conductor is given by:

E = 2p�n volts (since 1 volt = 1 Weber per second)
Let c = number of parallel paths through the winding

between positive and negative brushes
c = 2 for a wave winding
c = 2p for a lap winding

The number of conductors in series in each path = Z

c
The total e.m.f. between brushes

= (average e.m.f./conductor)(number of conductors
in series per path)

= 2p�n
Z

c

i.e. generated e.m.f., E = 2p�n Z
c

volts (21.1)

Since Z , p and c are constant for a given machine, then
E ∝ �n. However 2πn is the angular velocity ω in radians
per second, hence the generated e.m.f. is proportional to
� and ω, i.e.

generated e.m.f., E ∝ �ω (21.2)

Problem 1. An 8-pole, wave-connected armature has
600 conductors and is driven at 625 rev/min. If the flux
per pole is 20 mWb, determine the generated e.m.f.

Z = 600, c = 2 (for a wave winding), p = 4 pairs

n = 625

60
rev/s, � = 20 × 10−3 Wb

Generated e.m.f., E = 2p�nZ

c

=
2(4)(20 × 10−3)

(
625

60

)
(600)

2
= 500 volts

Problem 2. A 4-pole generator has a lap-wound
armature with 50 slots with 16 conductors per slot.
The useful flux per pole is 30 mWb. Determine the
speed at which the machine must be driven to generate
an e.m.f. of 240V.

E = 240V, c = 2p (for a lap winding), Z = 50 × 16 = 800,

� = 30 × 10−3 Wb.

Generated e.m.f. E = 2p�nZ

c
= 2p�nZ

2p
= �nZ

Rearranging gives, speed, n = E

�Z
= 240

(30 × 10−3)(800)

= 10 rev/s or 600 rev/min

Problem 3. An 8-pole, lap-wound armature has 1200
conductors and a flux per pole of 0.03 Wb. Determine
the e.m.f. generated when running at 500 rev/min.

Generated e.m.f., E = 2p�nZ

c
= 2p�nZ

2p
for a lap-

wound machine, i.e.

E = �nZ = (0.03)

(
500

60

)
(1200) = 300 volts
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Problem 4. Determine the generated e.m.f. in Prob-
lem 3 if the armature is wave-wound.

Generated e.m.f. E = 2p�nZ

c
= 2p�nZ

2
(since c = 2 for wave-wound)

= p�nZ = (4)(�nZ)

= (4)(300) from Problem 3,

= 1200 volts

Problem 5. A d.c. shunt-wound generator running
at constant speed generates a voltage of 150V at a
certain value of field current. Determine the change in
the generated voltage when the field current is reduced
by 20%, assuming the flux is proportional to the field
current.

The generated e.m.f. E of a generator is proportional to
�ω, i.e. is proportional to �n, where � is the flux and n
is the speed of rotation.

It follows that E = k�n, where k is a constant.

At speed n1 and flux �1, E1 = k�1n1

At speed n2 and flux �2, E2 = k�2n2

Thus, by division:

E1

E2
= k�1n1

k�2n2
= �1n1

�2n2

The initial conditions are E1 = 150V, � = �1 and n = n1.
When the flux is reduced by 20%, the new value of flux is
80/100 or 0.8 of the initial value, i.e. �2 = 0.8�1. Since
the generator is running at constant speed, n2 = n1.

Thus
E1

E2
= �1n1

�2n2
= �1n1

0.8�1n1
= 1

0.8

that is, E2 = 150 × 0.8 = 120V

Thus, a reduction of 20% in the value of the flux reduces
the generated voltage to 120V at constant speed.

Problem 6. A d.c. generator running at 30 rev/s gen-
erates an e.m.f. of 200V. Determine the percentage
increase in the flux per pole required to generate 250V
at 20 rev/s.

From equation (21.2), generated e.m.f., E ∝�ω and since
ω = 2πn, E ∝ �n.

Let E1 = 200V, n1 = 30 rev/s and flux per pole at this
speed be �1

Let E2 = 250V, n1 = 20 rev/s and flux per pole at this
speed be �2

Since E ∝ �n then
E1

E2
= �1n1

�2n2

Hence
200

250
= �1(30)

�2(20)

from which, �2 = �1(30)(250)

(20)(200)
= 1.875 �1

Hence the increase in flux per pole needs to be 87.5%

Now try the following exercise.

Exercise 79 Further problems on generated e.m.f.

1. A 4-pole, wave-connected armature of a d.c.
machine has 750 conductors and is driven at
720 rev/min. If the useful flux per pole is 15 mWb,
determine the generated e.m.f. [270 volts]

2. A 6-pole generator has a lap-wound armature with
40 slots with 20 conductors per slot. The flux per
pole is 25 mWb. Calculate the speed at which the
machine must be driven to generate an e.m.f. of
300V. [15 rev/s or 900 rev/min]

3. A 4-pole armature of a d.c. machine has 1000 con-
ductors and a flux per pole of 20 mWb. Determine
the e.m.f. generated when running at 600 rev/min
when the armature is (a) wave-wound, (b) lap-
wound. [(a) 400 volts (b) 200 volts]

4. A d.c. generator running at 25 rev/s generates an
e.m.f. of 150V. Determine the percentage increase
in the flux per pole required to generate 180V at
20 rev/s. [50%]

21.6 D.c. generators

D.c. generators are classified according to the method of
their field excitation. These groupings are:

(i) Separately-excited generators, where the field
winding is connected to a source of supply other than
the armature of its own machine.

(ii) Self-excited generators, where the field winding
receives its supply from the armature of its own
machine, and which are sub-divided into (a) shunt,
(b) series, and (c) compound wound generators.
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21.7 Types of d.c. generator and their
characteristics

(a) Separately-excited generator

A typical separately-excited generator circuit is shown in
Figure 21.5.

Figure 21.5

When a load is connected across the armature terminals, a
load current Ia will flow. The terminal voltage V will fall
from its open-circuit e.m.f. E due to a volt drop caused by
current flowing through the armature resistance, shown as
Ra, i.e.

terminal voltage, V = E − IaRa

or generated e.m.f., E = V + IaRa (21.3)

Problem 7. Determine the terminal voltage of a gen-
erator which develops an e.m.f. of 200 V and has an
armature current of 30A on load. Assume the armature
resistance is 0.30 �.

With reference to Figure 21.5, terminal voltage,

V = E − IaRa = 200 − (30)(0.30) = 200 − 9

= 191 volts

Problem 8. A generator is connected to a 60 � load
and a current of 8 A flows. If the armature resistance
is 1 � determine (a) the terminal voltage, and (b) the
generated e.m.f.

(a) Terminal voltage, V = IaRL = (8)(60) = 480 volts
(b) Generated e.m.f.,

E = V + IaRa from equation (21.3)

= 480 + (8)(1) = 480 + 8 = 488 volts

Problem 9. A separately-excited generator develops
a no-load e.m.f. of 150V at an armature speed of
20 rev/s and a flux per pole of 0.10 Wb. Determine
the generated e.m.f. when (a) the speed increases to
25 rev/s and the pole flux remains unchanged, (b) the
speed remains at 20 rev/s and the pole flux is decreased
to 0.08 Wb, and (c) the speed increases to 24 rev/s and
the pole flux is decreased to 0.07 Wb.

(a) From Section 21.5, generated e.m.f. E ∝ �n

from which,
E1

E2
= �1n1

�2n2

Hence
150

E2
= (0.10)(20)

(0.10)(25)

from which, E2 = (150)(0.10)(25)

(0.10)(20)
= 187.5 volts

(b)
150

E3
= (0.10)(20)

(0.08)(20)

from which, e.m.f., E3 = (150)(0.08)(20)

(0.10)(20)

= 120 volts

(c)
150

E4
= (0.10)(20)

(0.07)(24)

from which, e.m.f. E4 = (150)(0.07)(24)

(0.10)(20)

= 126 volts

Characteristics

The two principal generator characteristics are the gen-
erated voltage/field current characteristics, called the
open-circuit characteristic and the terminal voltage/load
current characteristic, called the load characteristic. A
typical separately-excited generator open-circuit char-
acteristic is shown in Figure 21.6(a) and a typical load
characteristic is shown in Figure 21.6(b).

Figure 21.6

A separately-excited generator is used only in special
cases, such as when a wide variation in terminal p.d. is
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required, or when exact control of the field current is
necessary. Its disadvantage lies in requiring a separate
source of direct current.

(b) Shunt-wound generator

In a shunt wound generator the field winding is connected
in parallel with the armature as shown in Figure 21.7. The
field winding has a relatively high resistance and there-
fore the current carried is only a fraction of the armature
current.

Figure 21.7

For the circuit shown in Figure 21.7,

terminal voltage V = E − IaRa

or generated e.m.f., E = V + IaRa

Ia = If + I , from Kirchhoff’s current law,

where Ia = armature current

If = field current

(
= V

Rf

)

and I = load current

Problem 10. A shunt generator supplies a 20 kW load
at 200 V through cables of resistance, R = 100 m�.
If the field winding resistance, Rf = 50 � and the
armature resistance, Ra = 40 m�, determine (a) the
terminal voltage, and (b) the e.m.f. generated in
the armature.

(a) The circuit is as shown in Figure 21.8.

Load current, I = 20 000 watts

200 volts
= 100A

Volt drop in the cables to the load

= IR = (100)(100 × 10−3)

= 10V

Hence terminal voltage, V = 200 + 10 = 210 volts

(b) Armature current Ia = If + I

Field current, If = V

Rf
= 210

50
= 4.2A

I
R = 100 mΩ

Ia

If
E

Rf = 50 Ω

Ra = 40 mΩ

V200 VLOAD
20 kW

Figure 21.8

Hence Ia = If + I = 4.2 + 100 = 104.2A

Generated e.m.f. E = V + IaRa

= 210 + (104.2)(40 × 10−3)

= 210 + 4.168

= 214.17 volts

Characteristics

The generated e.m.f., E, is proportional to �ω, (see Sec-
tion 21.5), hence at constant speed, since ω = 2πn, E ∝ �.
Also the flux � is proportional to field current If until
magnetic saturation of the iron circuit of the generator
occurs. Hence the open circuit characteristic is as shown
in Figure 21.9(a).

Figure 21.9

As the load current on a generator having constant field
current and running at constant speed increases, the value
of armature current increases, hence the armature volt
drop, Ia Ra increases. The generated voltage E is larger
than the terminal voltage V and the voltage equation for
the armature circuit is V = E − IaRa. Since E is constant,
V decreases with increasing load. The load characteristic
is as shown in Figure 21.9(b). In practice, the fall in volt-
age is about 10% between no-load and full-load for many
d.c. shunt-wound generators.

The shunt-wound generator is the type most used in
practice, but the load current must be limited to a value that
is well below the maximum value. This then avoids exces-
sive variation of the terminal voltage. Typical applications
are with battery charging and motor car generators.
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(c) Series-wound generator

In the series-wound generator the field winding is
connected in series with the armature as shown in
Figure 21.10.

Figure 21.10

Characteristic

The load characteristic is the terminal voltage/current
characteristic. The generated e.m.f. E, is proportional to
�ω and at constant speed ω(= 2πn) is a constant. Thus E
is proportional to �. For values of current below magnetic
saturation of the yoke, poles, air gaps and armature core,
the flux � is proportional to the current, hence E ∝ I . For
values of current above those required for magnetic sat-
uration, the generated e.m.f. is approximately constant.
The values of field resistance and armature resistance in
a series-wound machine are small, hence the terminal
voltage V is very nearly equal to E. A typical load char-
acteristic for a series generator is shown in Figure 21.11.

Figure 21.11

In a series-wound generator, the field winding is in
series with the armature and it is not possible to have a
value of field current when the terminals are open cir-
cuited, thus it is not possible to obtain an open-circuit
characteristic.

Series-wound generators are rarely used in practise, but
can be used as a ‘booster’ on d.c. transmission lines.

(d) Compound-wound generator

In the compound-wound generator two methods of con-
nection are used, both having a mixture of shunt and
series windings, designed to combine the advantages
of each. Figure 21.12(a) shows what is termed a long-
shunt compound generator, and Figure 21.12(b) shows a
short-shunt compound generator. The latter is the most
generally used form of d.c. generator.

Figure 21.12

Problem 11. A short-shunt compound generator sup-
plies 80A at 200V. If the field resistance, Rf = 40 �,
the series resistance, RSe = 0.02 � and the arma-
ture resistance, Ra = 0.04 �, determine the e.m.f.
generated.

The circuit is shown in Figure 21.13.

Figure 21.13

Volt drop in series winding = IRSe = (80)(0.02) = 1.6V

P.d. across the field winding = p.d. across armature

= V1 = 200 + 1.6 = 201.6V

Field current If = V1

Rf
= 201.6

40
= 5.04A

Armature current, Ia = I + If = 80 + 5.04 = 85.04A

Generated e.m.f., E = V1 + IaRa

= 201.6 + (85.04)(0.04)

= 201.6 + 3.4016

= 205 volts
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Characteristics

In cumulative-compound machines the magnetic flux pro-
duced by the series and shunt fields are additive. Included
in this group are over-compounded, level-compounded
and under-compounded machines — the degree of com-
pounding obtained depending on the number of turns of
wire on the series winding.

A large number of series winding turns results
in an over-compounded characteristic, as shown in Fig-
ure 21.14, in which the full-load terminal voltage exceeds
the no-load voltage. A level-compound machine gives a
full-load terminal voltage which is equal to the no-load
voltage, as shown in Figure 21.14.

Figure 21.14

An under-compounded machine gives a full-load ter-
minal voltage which is less than the no-load voltage, as
shown in Figure 21.14. However even this latter character-
istic is a little better than that for a shunt generator alone.

Compound-wound generators are used in electric arc
welding, with lighting sets and with marine equipment.

Now try the following exercise.

Exercise 80 Further problems on the d.c.
generator

1. Determine the terminal voltage of a generator which
develops an e.m.f. of 240 V and has an arma-
ture current of 50 A on load. Assume the armature
resistance is 40 m�. [238 volts]

2. A generator is connected to a 50 � load and a cur-
rent of 10 A flows. If the armature resistance is
0.5 �, determine (a) the terminal voltage, and (b)
the generated e.m.f. [(a) 500 volts (b) 505 volts]

3. A separately excited generator develops a no-load
e.m.f. of 180 V at an armature speed of 15 rev/s and
a flux per pole of 0.20 Wb. Calculate the generated
e.m.f. when

(a) the speed increases to 20 rev/s and the flux per
pole remaining unchanged,

(b) the speed remains at 15 rev/s and the pole flux
is decreased to 0.125 Wb, and

(c) the speed increases to 25 rev/s and the pole flux
is decreased to 0.18 Wb.

[(a) 240 volts (b) 112.5 volts (c) 270 volts]

4. A shunt generator supplies a 50 kW load at 400V
through cables of resistance 0.2 �. If the field wind-
ing resistance is 50 � and the armature resistance is
0.05 �, determine (a) the terminal voltage, (b) the
e.m.f. generated in the armature.

[(a) 425 volts (b) 431.68 volts]

5. A short-shunt compound generator supplies 50A at
300V. If the field resistance is 30 �, the series resist-
ance 0.03 � and the armature resistance 0.05 �,
determine the e.m.f. generated. [304.5 volts]

6. A d.c. generator has a generated e.m.f. of 210V
when running at 700 rev/min and the flux per pole
is 120 mWb. Determine the generated e.m.f. (a) at
1050 rev/min, assuming the flux remains constant,
(b) if the flux is reduced by one-sixth at constant
speed, and (c) at a speed of 1155 rev/min and a flux
of 132 mWb. [(a) 315 V (b) 175 V (c) 381.2 V]

7. A 250V d.c. shunt-wound generator has an arma-
ture resistance of 0.1 �. Determine the generated
e.m.f. when the generator is supplying 50 kW,
neglecting the field current of the generator.[270V]

21.8 D.c. machine losses

As stated in Section 21.1, a generator is a machine for
converting mechanical energy into electrical energy and
a motor is a machine for converting electrical energy into
mechanical energy. When such conversions take place,
certain losses occur which are dissipated in the form
of heat.
The principal losses of machines are:

(i) Copper loss, due to I2R heat losses in the armature
and field windings.

(ii) Iron (or core) loss, due to hysteresis and eddy-
current losses in the armature. This loss can be
reduced by constructing the armature of silicon steel
laminations having a high resistivity and low hystere-
sis loss. At constant speed, the iron loss is assumed
constant.

(iii) Friction and windage losses, due to bearing and
brush contact friction and losses due to air resistance
against moving parts (called windage). At constant
speed, these losses are assumed to be constant.

(iv) Brush contact loss between the brushes and com-
mutator. This loss is approximately proportional to
the load current.
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The total losses of a machine can be quite significant
and operating efficiencies of between 80% and 90% are
common.

21.9 Efficiency of a d.c. generator

The efficiency of an electrical machine is the ratio of the
output power to the input power and is usually expressed
as a percentage. The Greek letter, ‘η’ (eta) is used to sig-
nify efficiency and since the units are power/power, then
efficiency has no units. Thus

efficiency, η =
(

output power
input power

)
× 100%

If the total resistance of the armature circuit (including
brush contact resistance) is Ra, then the total loss in the
armature circuit is I2

aRa
If the terminal voltage is V and the current in the shunt

circuit is If , then the loss in the shunt circuit is If V
If the sum of the iron, friction and windage losses is C

then the total losses is given by:

I2
aRa + IfV + C

(I2
a Ra + If V is, in fact,the ‘copper loss’)

If the output current is I , then the output power is VI
Total input power = VI +I2

a Ra + If V + C. Hence

efficiency, η = output
input

=
(

VI

VI + I2
aRa + IfV + C

)
× 100% (21.4)

The efficiency of a generator is a maximum when the
load is such that:

I2
aRa = VIf + C

i.e. when the variable loss = the constant loss

Problem 12. A 10 kW shunt generator having an
armature circuit resistance of 0.75 � and a field resist-
ance of 125 �, generates a terminal voltage of 250V
at full load. Determine the efficiency of the generator
at full load, assuming the iron, friction and windage
losses amount to 600 W.

The circuit is shown in Figure 21.15.

Figure 21.15

Output power = 10 000 W = VI

from which, load current I = 10 000

V
= 10 000

250
= 40A

Field current, If = V

Rf
= 250

125
= 2A

Armature current, Ia = If + I = 2 + 40 = 42A

Efficiency,

η =
(

VI

VI + I2
a Ra + If V + C

)
× 100%

=
(

10 000

10 000 + (42)2(0.75) + (2)(250) + 600

)
× 100%

= 10 000

12 423
× 100% = 80.50%

Now try the following exercise.

Exercise 81 Further problem on efficiency of a
d.c. generator

1. A 15 kW shunt generator having an armature cir-
cuit resistance of 0.4 � and a field resistance of
100 �, generates a terminal voltage of 240V at full
load. Determine the efficiency of the generator at
full load, assuming the iron, friction and windage
losses amount to 1 kW. [82.14%]

21.10 D.c. motors

The construction of a d.c. motor is the same as a d.c.
generator. The only difference is that in a generator the
generated e.m.f. is greater than the terminal voltage,
whereas in a motor the generated e.m.f. is less than the
terminal voltage.

D.c. motors are often used in power stations to drive
emergency stand-by pump systems which come into oper-
ation to protect essential equipment and plant should the
normal a.c. supplies or pumps fail.
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Back e.m.f.

When a d.c. motor rotates, an e.m.f. is induced in the
armature conductors. By Lenz’s law this induced e.m.f.
E opposes the supply voltage V and is called a back e.m.f.,
and the supply voltage, V is given by:

V = E + IaRa or E = V− IaRa (21.4)

Problem 13. A d.c. motor operates from a 240V sup-
ply. The armature resistance is 0.2 �. Determine the
back e.m.f. when the armature current is 50A.

For a motor, V = E + IaRa

hence back e.m.f., E = V − IaRa

= 240 − (50)(0.2) = 240 − 10

= 230 volts

Problem 14. The armature of a d.c. machine has a
resistance of 0.25 � and is connected to a 300V sup-
ply. Calculate the e.m.f. generated when it is running:
(a) as a generator giving 100A, and (b) as a motor
taking 80A.

(a) As a generator, generated e.m.f.,

E = V + IaRa, from equation (21.3),

= 300 + (100)(0.25)

= 300 + 25 = 325 volts

(b) As a motor, generated e.m.f. (or back e.m.f.),

E = V − IaRa, from equation (21.5),

= 300 − (80)(0.25) = 280 volts

Now try the following exercise.

Exercise 82 Further problems on back e.m.f.

1. A d.c. motor operates from a 350V supply. If the
armature resistance is 0.4 � determine the back
e.m.f. when the armature current is 60A.

[326 volts]

2. The armature of a d.c. machine has a resistance of
0.5 � and is connected to a 200V supply. Calculate
the e.m.f. generated when it is running (a) as a motor
taking 50A and (b) as a generator giving 70 A.

[(a) 175 volts (b) 235 volts]

3. Determine the generated e.m.f. of a d.c. machine
if the armature resistance is 0.1 � and it (a) is run-
ning as a motor connected to a 230V supply, the
armature current being 60 A, and (b) is running as
a generator with a terminal voltage of 230 V, the
armature current being 80A.

[(a) 224 V (b) 238 V]

21.11 Torque of a d.c. machine

From equation (21.5), for a d.c. motor, the supply voltage
V is given by

V = E + IaRa

Multiplying each term by current Ia gives:

VIa = EIa + I2
a Ra

The term VIa is the total electrical power supplied to
the armature, the term I2

a Ra is the loss due to armature
resistance, and the term EIa is the mechanical power
developed by the armature

If T is the torque, in newton metres, then the mechanical
power developed is given by Tω watts (see ‘Science for
Engineering’).

Hence Tω = 2πnT = EIa from which,

torque T = EIa

2πn
newton metres (21.5)

From Section 21.5, equation (21.1), the e.m.f. E generated
is given by

E = 2p�nZ

c

Hence 2πnT = EIa =
(

2p�nZ

c

)
Ia

and torque T =

(
2p�nZ

c

)
Ia

2πn

i.e. T = p�ZIa

πc
newton metres (21.6)

For a given machine, Z , c and p are fixed values

Hence torque, T ∝ �Ia (21.7)



Ch21-H8139.tex 29/3/2007 14: 17 page 267

D.c. machines 267

PART

2

Problem 15. An 8-pole d.c. motor has a wave-wound
armature with 900 conductors. The useful flux per
pole is 25 mWb. Determine the torque exerted when a
current of 30A flows in each armature conductor.

p = 4, c = 2 for a wave winding, � = 25 × 10−3 Wb,
Z = 900, Ia = 30A

From equation (21.7),

torque T = p�ZIa

πc

= (4)(25 × 10−3)(900)(30)

π(2)

= 429.7 Nm

Problem 16. Determine the torque developed by a
350V d.c. motor having an armature resistance of
0.5 � and running at 15 rev/s. The armature current
is 60A.

V = 350V, Ra = 0.5 �, n = 15 rev/s, Ia = 60A

Back e.m.f. E = V − Ia Ra = 350 − (60)(0.5) = 320V

From equation (21.6), torque T = EIa

2πn
= (320)(60)

2π(15)

= 203.7 Nm

Problem 17. A six-pole lap-wound motor is con-
nected to a 250V d.c. supply. The armature has 500
conductors and a resistance of 1 �. The flux per pole
is 20 mWb. Calculate (a) the speed and (b) the torque
developed when the armature current is 40A.

V = 250V, Z = 500, Ra = 1 �, � = 20 × 10−3 Wb,
Ia = 40A, c = 2p for a lap winding

(a) Back e.m.f. E = V − IaRa = 250 − (40)(1) = 210V

E.m.f. E = 2p�nZ

c

i.e. 210 = 2p(20 × 10−3)n(500)

2p

Hence speed n = 210

(20 × 10−3)(500)
= 21 rev/s

or (21 × 60) = 1260 rev/min

(b) Torque T = EIa

2πn
= (210)(40)

2π(21)
= 63.66 Nm

Problem 18. The shaft torque of a diesel motor driv-
ing a 100V d.c. shunt-wound generator is 25 Nm. The
armature current of the generator is 16 A at this value
of torque. If the shunt field regulator is adjusted so
that the flux is reduced by 15%, the torque increases
to 35 Nm. Determine the armature current at this new
value of torque.

From equation (21.8), the shaft torque T of a gener-
ator is proportional to �Ia, where � is the flux and Ia
is the armature current. Thus, T = k�Ia, where k is a
constant.

The torque at flux �1 and armature current Ia1 is
T1 = k�1Ia1.

Similarly, T2 = k�2Ia2

By division
T1

T2
= k�1Ia1

k�2Ia2
= �1Ia1

�2Ia2

Hence
25

35
= �1 × 16

0.85�1 × Ia2

i.e. Ia2 = 16 × 35

0.85 × 25
= 26.35A

That is, the armature current at the new value of
torque is 26.35 A

Problem 19. A 100V d.c. generator supplies a cur-
rent of 15A when running at 1500 rev/min. If the
torque on the shaft driving the generator is 12 Nm,
determine (a) the efficiency of the generator and (b)
the power loss in the generator.

(a) From Section 21.9, the efficiency of a

generator = output power

input power
× 100%

The output power is the electrical output, i.e.
VI watts. The input power to a generator is the
mechanical power in the shaft driving the genera-
tor, i.e. Tω or T (2πn) watts, where T is the torque in
Nm and n is speed of rotation in rev/s. Hence, for a
generator

efficiency, η = VI

T (2πn)
× 100%



Ch21-H8139.tex 29/3/2007 14: 17 page 268

268 Electrical Circuit Theory and Technology

i.e. η = (100)(15)(100)

(12)(2π)
(

1500
60

)

i.e. efficiency = 79.6%
(b) The input power = output power + losses

Hence, T (2πn) = VI + losses

i.e. losses = T (2πn) − VI

=
[

(12)(2π)

(
1500

60

)]

−[(100)(15)]

i.e. power loss = 1885 − 1500 = 385 W

Now try the following exercise.

Exercise 83 Further problems on losses, efficiency
and torque

1. The shaft torque required to drive a d.c. generator
is 18.7 Nm when it is running at 1250 rev/min. If
its efficiency is 87% under these conditions and the
armature current is 17.3A, determine the voltage at
the terminals of the generator. [123.1V]

2. A 220V, d.c. generator supplies a load of 37.5A and
runs at 1550 rev/min. Determine the shaft torque
of the diesel motor driving the generator, if the
generator efficiency is 78%. [65.2 Nm]

3. A 4-pole d.c. motor has a wave-wound armature with
800 conductors. The useful flux per pole is 20 mWb.
Calculate the torque exerted when a current of 40A
flows in each armature conductor. [203.7 Nm]

4. Calculate the torque developed by a 240V d.c. motor
whose armature current is 50A, armature resistance
is 0.6 � and is running at 10 rev/s. [167.1 Nm]

5. An 8-pole lap-wound d.c. motor has a 200V supply.
The armature has 800 conductors and a resistance of
0.8 �. If the useful flux per pole is 40 mWb and the
armature current is 30A, calculate (a) the speed and
(b) the torque developed.

[(a) 5.5 rev/s or 330 rev/min (b) 152.8 Nm]

6. A 150V d.c. generator supplies a current of 25A
when running at 1200 rev/min. If the torque on the
shaft driving the generator is 35.8 Nm, determine (a)
the efficiency of the generator, and (b) the power loss
in the generator. [(a) 83.4% (b) 748.8 W]

21.12 Types of d.c. motor and their characteristics

(a) Shunt-wound motor

In the shunt wound motor the field winding is in par-
allel with the armature across the supply as shown in
Figure 21.16.

Figure 21.16

For the circuit shown in Figure 21.16,

Supply voltage, V = E + IaRa

or generated e.m.f., E = V − IaRa

Supply current, I = Ia + If , from Kirchhoff’s
current law.

Problem 20. A 240V shunt motor takes a total cur-
rent of 30A. If the field winding resistance Rf = 150 �
and the armature resistance Ra = 0.4 � determine (a)
the current in the armature, and (b) the back e.m.f.

(a) Field current If = V

Rf
= 240

150
= 1.6A

Supply current I = Ia + If

Hence armature current, Ia = I − If = 30 − 1.6
= 28.4A

(b) Back e.m.f. E = V − IaRa

= 240 − (28.4)(0.4) = 228.64 volts

Characteristics

The two principal characteristics are the torque/armature
current and speed/armature current relationships. From
these, the torque/speed relationship can be derived.

(i) The theoretical torque/armature current characteris-
tic can be derived from the expression T ∝ �Ia, (see
Section 21.11). For a shunt-wound motor, the field
winding is connected in parallel with the armature cir-
cuit and thus the applied voltage gives a constant field
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current, i.e. a shunt-wound motor is a constant flux
machine. Since � is constant, it follows that T ∝ Ia,
and the characteristic is as shown in Figure 21.17.

Figure 21.17

(ii) The armature circuit of a d.c. motor has resistance due
to the armature winding and brushes, Ra ohms, and
when armature current Ia is flowing through it, there
is a voltage drop of IaRa volts. In Figure 21.16 the
armature resistance is shown as a separate resistor in
the armature circuit to help understanding. Also, even
though the machine is a motor, because conductors
are rotating in a magnetic field, a voltage, E ∝ �ω, is
generated by the armature conductors. From equation
(21.5), V = E + IaRa or E = V − IaRa

However, from Section 21.5, E ∝ �n, hence
n ∝ E/�, i.e.

speed of rotation, n ∝ E

�
∝ V − IaRa

�
(21.8)

For a shunt motor, V , � and Ra are constants, hence
as armature current Ia increases, IaRa increases and
V − IaRa decreases, and the speed is proportional to
a quantity which is decreasing and is as shown in
Figure 21.18. As the load on the shaft of the motor
increases, Ia increases and the speed drops slightly.
In practice, the speed falls by about 10% between
no-load and full-load on many d.c. shunt-wound
motors. Due to this relatively small drop in speed, the
d.c. shunt-wound motor is taken as basically being a
constant-speed machine and may be used for driving
lathes, lines of shafts, fans, conveyor belts, pumps,
compressors, drilling machines and so on.

Figure 21.18

(iii) Since torque is proportional to armature current, (see
(i) above), the theoretical speed/torque characteristic
is as shown in Figure 21.19.

Figure 21.19

Problem 21. A 200V, d.c. shunt-wound motor has an
armature resistance of 0.4 � and at a certain load has
an armature current of 30A and runs at 1350 rev/min.
If the load on the shaft of the motor is increased so that
the armature current increases to 45A, determine the
speed of the motor, assuming the flux remains constant.

The relationship E ∝ �n applies to both generators and
motors. For a motor,

E = V − IaRa, (see equation 21.5)

Hence E1 = 200 − 30 × 0.4 = 188V,

and E2 = 200 − 45 × 0.4 = 182V.

The relationship,
E1

E2
= �1n1

�2n2

applies to both generators and motors. Since the flux is
constant, �1 = �2

Hence
188

182
=

�1 ×
(

1350

60

)

�1 × n2
, i.e. n2 = 22.5 × 182

188
= 21.78 rev/s

Thus the speed of the motor when the armature current is
45A is 21.78 × 60 rev/min, i.e. 1307 rev/min

Problem 22. A 220V, d.c. shunt-wound motor runs
at 800 rev/min and the armature current is 30A. The
armature circuit resistance is 0.4 �. Determine (a) the
maximum value of armature current if the flux is sud-
denly reduced by 10% and (b) the steady state value of
the armature current at the new value of flux, assuming
the shaft torque of the motor remains constant.

(a) For a d.c. shunt-wound motor, E = V − IaRa. Hence
initial generated e.m.f., E1 = 220 − 30 × 0.4 = 208V.
The generated e.m.f. is also such that E ∝ �n, so at
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the instant the flux is reduced, the speed has not had
time to change, and E = 208 × 90/100 = 187.2V.
Hence, the voltage drop due to the armature resistance
is 220 − 187.2, i.e. 32.8V. The instantaneous value
of the current is 32.8/0.4, i.e. 82A. This increase
in current is about three times the initial value and
causes an increase in torque, (T ∝ �Ia). The motor
accelerates because of the larger torque value until
steady state conditions are reached.

(b) T ∝ �Ia and since the torque is constant,

�1Ia1 = �2Ia2. The flux � is reduced by 10%, hence

�2 = 0.9�1

Thus, �1 × 30 = 0.9�1 × Ia2

i.e. the steady state value of armature current,

Ia2 = 30

0.9
= 33

1
3

A

(b) Series-wound motor

In the series-wound motor the field winding is in series
with the armature across the supply as shown in Figure
21.20.

For the series motor shown in Figure 21.20,

Supply voltage V = E + I(Ra + Rf )

or generated e.m.f. E = V − I(Ra + Rf )

Figure 21.20

Characteristics

In a series motor, the armature current flows in the field
winding and is equal to the supply current, I .

(i) The torque/current characteristic
It is shown in Section 21.11 that torque T ∝ �Ia.
Since the armature and field currents are the same cur-
rent, I, in a series machine, then T ∝ �I over a limited
range, before magnetic saturation of the magnetic cir-
cuit of the motor is reached, (i.e. the linear portion of
the B–H curve for the yoke, poles, air gap, brushes
and armature in series). Thus � ∝ I and T ∝ I2. After
magnetic saturation, � almost becomes a constant

Figure 21.21

and T ∝ I . Thus the theoretical torque/current char-
acteristic is as shown in Figure 21.21.

(ii) The speed/current characteristic
It is shown in equation (21.9) that n ∝ (V − IaRa)/�.
In a series motor, Ia = I and below the magnetic sat-
uration level, � ∝ I . Thus n ∝ (V − IR)/I where R
is the combined resistance of the series field and
armature circuit. Since IR is small compared with
V , then an approximate relationship for the speed is
n ∝ V/I ∝ 1/I since V is constant. Hence the the-
oretical speed/current characteristic is as shown in
Figure 21.22. The high speed at small values of cur-
rent indicate that this type of motor must not be run
on very light loads and invariably, such motors are
permanently coupled to their loads.

Figure 21.22

(iii) The theoretical speed/torque characteristic may be
derived from (i) and (ii) above by obtaining the
torque and speed for various values of current and
plotting the co-ordinates on the speed/torque char-
acteristics. A typical speed/torque characteristic is
shown in Figure 21.23.

Figure 21.23

A d.c. series motor takes a large current on starting
and the characteristic shown in Figure 21.21 shows



Ch21-H8139.tex 29/3/2007 14: 17 page 271

D.c. machines 271

PART

2

that the series-wound motor has a large torque when
the current is large. Hence these motors are used for
traction (such as trains, milk delivery vehicles, etc.),
driving fans and for cranes and hoists, where a large
initial torque is required.

Problem 23. A series motor has an armature resist-
ance of 0.2 � and a series field resistance of 0.3 �. It
is connected to a 240V supply and at a particular load
runs at 24 rev/s when drawing 15 A from the supply.

(a) Determine the generated e.m.f. at this load.
(b) Calculate the speed of the motor when the load is

changed such that the current is increased to 30 A.
Assume that this causes a doubling of the flux.

(a) With reference to Figure 21.20, generated e.m.f., E,
at initial load, is given by

E1 = V − Ia(Ra + Rf )

= 240 − (15)(0.2 + 0.3) = 240 − 7.5

= 232.5 volts

(b) When the current is increased to 30 A, the generated
e.m.f. is given by:

E2 = V − Ia(Ra + Rf )

= 240 − (30)(0.2 + 0.3) = 240 − 15

= 225 volts

Now e.m.f. E ∝ �n

thus
E1

E2
= �1n1

�2n2

i.e.
232.5

225
= �1(24)

(2�1)(n2)
since �2 = 2�1

Hence speed of motor, n2 = (24)(225)

(232.5)(2)

= 11.6 rev/s

As the current has been increased from 15A to 30A,
the speed has decreased from 24 rev/s to 11.6 rev/s. Its
speed/current characteristic is similar to Figure 21.22.

(c) Compound-wound motor

There are two types of compound-wound motor:

(i) Cumulative compound, in which the series winding
is so connected that the field due to it assists that due
to the shunt winding.

(ii) Differential compound, in which the series winding
is so connected that the field due to it opposes that due
to the shunt winding.

Figure 21.24(a) shows a long-shunt compound motor and
Figure 21.24(b) a short-shunt compound motor.

Figure 21.24

Characteristics

A compound-wound motor has both a series and a shunt
field winding, (i.e. one winding in series and one in par-
allel with the armature), and is usually wound to have a
characteristic similar in shape to a series-wound motor
(see Figures 21.21–21.23). A limited amount of shunt
winding is present to restrict the no-load speed to a
safe value. However, by varying the number of turns on
the series and shunt windings and the directions of the
magnetic fields produced by these windings (assisting or
opposing), families of characteristics may be obtained to
suit almost all applications. Generally, compound-wound
motors are used for heavy duties, particularly in appli-
cations where sudden heavy load may occur such as for
driving plunger pumps, presses, geared lifts, conveyors,
hoists and so on.

Typical compound motor torque and speed character-
istics are shown in Figure 21.25.

Figure 21.25

21.13 The efficiency of a d.c. motor

It was stated in Section 21.9, that the efficiency of a d.c.
machine is given by:

efficiency, η = output power

input power
× 100%
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Also, the total losses = I2
a Ra + If V + C (for a shunt motor)

where C is the sum of the iron, friction and windage losses.

For a motor, the input power = VI

and the output power = VI − losses

= VI − I2
a Ra − If V − C

Hence

efficiency η =
(

VI − I2
aRa − If V − C

VI

)
× 100%

(21.9)

The efficiency of a motor is a maximum when the load
is such that:

I2
aRa = If V + C

Problem 24. A 320V shunt motor takes a total cur-
rent of 80A and runs at 1000 rev/min. If the iron,
friction and windage losses amount to 1.5 kW, the
shunt field resistance is 40 � and the armature resist-
ance is 0.2 �, determine the overall efficiency of the
motor.

The circuit is shown in Figure 21.26.

Figure 21.26

Field current, If = V

Rf
= 320

40
= 8 A

Armature current Ia = I − If = 80 − 8 = 72A

C = iron, friction and windage losses = 1500 W

Efficiency,

η =
(

VI − I2
a Ra − If V − C

VI

)
× 100%

=
(

(320)(80)− (72)2(0.2) − (8)(320)−1500

(320)(80)

)
×100%

=
(

25 600 − 1036.8 − 2560 − 1500

25 600

)
× 100%

=
(

20 503.2

25 600

)
× 100% = 80.1%

Problem 25. A 250V series motor draws a current
of 40A. The armature resistance is 0.15 � and the
field resistance is 0.05 �. Determine the maximum
efficiency of the motor.

The circuit is as shown in Figure 21.27.

Figure 21.27

From equation (21.10), efficiency,

η =
(

VI − I2
a Ra − If V − C

VI

)
× 100%

However for a series motor, If = 0 and the I2
a Ra loss needs

to be I2(Ra + Rf )

Hence efficiency, η =
(

VI − I2(Ra + Rf ) − C

VI

)
× 100%

For maximum efficiency I2(Ra + Rf ) = C

Hence efficiency,

η =
(

VI − 2I2(Ra + Rf )

VI

)
× 100%

=
(

(250)(40) − 2(40)2(0.15 + 0.05)

(250)(40)

)
× 100%

=
(

10 000 − 640

10 000

)
× 100%

=
(

9360

10 000

)
× 100% = 93.6%
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Problem 26. A 200V d.c. motor develops a shaft
torque of 15 Nm at 1200 rev/min. If the efficiency is
80%, determine the current supplied to the motor.

The efficiency of a motor = output power

input power
× 100%

The output power of a motor is the power available to
do work at its shaft and is given by Tω or T (2πn) watts,
where T is the torque in Nm and n is the speed of rotation
in rev/s. The input power is the electrical power in watts
supplied to the motor, i.e. VI watts.

Thus for a motor, efficiency,

η = T (2πn)

VI
× 100%

i.e.

80 =
[

(15)(2π)(1200/60)

(200)(I)

]
(100)

Thus the current supplied, I = (15)(2π)(20)(100)

(200)(80)

= 11.8 A

Problem 27. A d.c. series motor drives a load at
30 rev/s and takes a current of 10 A when the supply
voltage is 400V. If the total resistance of the motor is
2 � and the iron, friction and windage losses amount
to 300 W, determine the efficiency of the motor.

Efficiency, η =
(

VI − I2R − C

VI

)
× 100%

=
(

(400)(10) − (10)2(2) − 300

(400)(10)

)
× 100%

=
(

4000 − 200 − 300

4000

)
× 100%

=
(

3500

4000

)
× 100% = 87.5%

Now try the following exercise.

Exercise 84 Further problems on d.c. motors

1. A 240V shunt motor takes a total current of 80A. If
the field winding resistance is 120 � and the arma-
ture resistance is 0.4 �, determine (a) the current in
the armature, and (b) the back e.m.f.

[(a) 78A (b) 208.8V]

2. A d.c. motor has a speed of 900 rev/min when con-
nected to a 460V supply. Find the approximate
value of the speed of the motor when connected
to a 200V supply, assuming the flux decreases by
30% and neglecting the armature volt drop.

[559 rev/min]

3. A series motor having a series field resistance of
0.25 � and an armature resistance of 0.15 �, is con-
nected to a 220V supply and at a particular load runs
at 20 rev/s when drawing 20A from the supply. Cal-
culate the e.m.f. generated at this load. Determine
also the speed of the motor when the load is changed
such that the current increases to 25A. Assume the
flux increases by 25%. [212V, 15.85 rev/s]

4. A 500V shunt motor takes a total current of 100A
and runs at 1200 rev/min. If the shunt field resis-
tance is 50 �, the armature resistance is 0.25 �
and the iron, friction and windage losses amount to
2 kW, determine the overall efficiency of the motor.

[81.95%]

5. A 250V, series-wound motor is running at
500 rev/min and its shaft torque is 130 Nm. If its
efficiency at this load is 88%, find the current taken
from the supply. [30.94A]

6. In a test on a d.c. motor, the following data was
obtained. Supply voltage: 500V. Current taken
from the supply: 42.4A. Speed: 850 rev/min. Shaft
torque: 187 Nm. Determine the efficiency of the
motor correct to the nearest 0.5%. [78.5%]

7. A 300V series motor draws a current of 50A. The
field resistance is 40 m� and the armature resis-
tance is 0.2 �. Determine the maximum efficiency
of the motor. [92%]

8. A series motor drives a load at 1500 rev/min and
takes a current of 20A when the supply voltage is
250V. If the total resistance of the motor is 1.5 �
and the iron, friction and windage losses amount to
400 W, determine the efficiency of the motor.

[80%]

9. A series-wound motor is connected to a d.c. supply
and develops full load torque when the current is
30A and speed is 1000 rev/min. If the flux per
pole is proportional to the current flowing, find the
current and speed at half full load torque, when
connected to the same supply.

[21.2A, 1415 rev/min]

21.14 D.c. motor starter

If a d.c. motor whose armature is stationary is switched
directly to its supply voltage, it is likely that the fuses



Ch21-H8139.tex 29/3/2007 14: 17 page 274

274 Electrical Circuit Theory and Technology

protecting the motor will burn out. This is because the
armature resistance is small, frequently being less than
one ohm. Thus, additional resistance must be added to the
armature circuit at the instant of closing the switch to start
the motor.

As the speed of the motor increases, the armature con-
ductors are cutting flux and a generated voltage, acting
in opposition to the applied voltage, is produced, which
limits the flow of armature current. Thus the value of the
additional armature resistance can then be reduced.

When at normal running speed, the generated e.m.f.
is such that no additional resistance is required in the
armature circuit. To achieve this varying resistance in the
armature circuit on starting, a d.c. motor starter is used,
as shown in Figure 21.28.

Figure 21.28

The starting handle is moved slowly in a clockwise
direction to start the motor. For a shunt-wound motor, the
field winding is connected to stud 1 or to L via a slid-
ing contact on the starting handle, to give maximum field
current, hence maximum flux, hence maximum torque on
starting, since T ∝ �Ia.

A similar arrangement without the field connection is
used for series motors.

21.15 Speed control of d.c. motors

Shunt-wound motors

The speed of a shunt-wound d.c. motor, n, is proportional
to (V − IaRa)/� (see equation (21.9)). The speed is varied
either by varying the value of flux, �, or by varying the
value of Ra. The former is achieved by using a variable
resistor in series with the field winding, as shown in Fig-
ure 21.29(a) and such a resistor is called the shunt field
regulator. As the value of resistance of the shunt field
regulator is increased, the value of the field current, If , is
decreased.

This results in a decrease in the value of flux, �, and
hence an increase in the speed, since n ∝ 1/�. Thus only
speeds above that given without a shunt field regulator can

Figure 21.29

be obtained by this method. Speeds below those given by
(V − IaRa)/� are obtained by increasing the resistance in
the armature circuit, as shown in Figure 21.29(b), where

n ∝ V − Ia(Ra + R)

�

Since resistor R is in series with the armature, it carries
the full armature current and results in a large power loss
in large motors where a considerable speed reduction is
required for long periods.

These methods of speed control are demonstrated in the
following worked problem.

Problem 28. A 500V shunt motor runs at its normal
speed of 10 rev/s when the armature current is 120A.
The armature resistance is 0.2 �.

(a) Determine the speed when the current is 60A and
a resistance of 0.5 � is connected in series with
the armature, the shunt field remaining constant.

(b) Determine the speed when the current is 60A and
the shunt field is reduced to 80% of its normal
value by increasing resistance in the field circuit.

(a) With reference to Figure 21.29(b),
back e.m.f. at 120A,

E1 = V − IaRa = 500 − (120)(0.2)

= 500 − 24 = 476 volts

When Ia = 60 A, E2 = 500 − (60)(0.2 + 0.5)

= 500 − (60)(0.7)

= 500 − 42 = 458 volts

Now
E1

E2
= �1n1

�2n2

i.e.
476

458
= �1(10)

�1(n2)
since �2 = �1

from which, speed n2 = (10)(458)

(476)
= 9.62 rev/s
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(b) Back e.m.f. when Ia = 60A,
E2 = 500 − (60)(0.2)

= 500 − 12 = 488 volts

Now
E1

E2
= �1n1

�2n2

i.e.
476

488
= (�1)(10)

(0.8�1)(n3)
, since �2 = 0.8�1

from which, speed n3 = (10)(488)

(0.8)(476)
= 12.82 rev/s

Series-wound motors

The speed control of series-wound motors is achieved
using either (a) field resistance, or (b) armature resistance
techniques.

(a) The speed of a d.c. series-wound motor is given by:

n = k

(
V − IR

�

)

where k is a constant, V is the terminal voltage, R
is the combined resistance of the armature and series
field and � is the flux.
Thus, a reduction in flux results in an increase in speed.
This is achieved by putting a variable resistance in
parallel with the field winding and reducing the field
current, and hence flux, for a given value of supply cur-
rent. A circuit diagram of this arrangement is shown
in Figure 21.30(a). A variable resistor connected in
parallel with the series-wound field to control speed
is called a diverter. Speeds above those given with
no diverter are obtained by this method. Problem 29
below demonstrates this method.

Figure 21.30

(b) Speeds below normal are obtained by connecting a
variable resistor in series with the field winding and
armature circuit, as shown in Figure 21.30(b). This
effectively increases the value of R in the equation

n = k

(
V − IR

�

)

and thus reduces the speed. Since the additional resis-
tor carries the full supply current, a large power loss
is associated with large motors in which a consider-
able speed reduction is required for long periods. This
method is demonstrated in Problem 30.

Problem 29. On full-load a 300 V series motor takes
90A and runs at 15 rev/s. The armature resistance
is 0.1 � and the series winding resistance is 50 m�.
Determine the speed when developing full load torque
but with a 0.2 � diverter in parallel with the field wind-
ing. (Assume that the flux is proportional to the field
current.)

At 300 V, e.m.f. E1 = V − IR

= V − I(Ra + Rse)

= 300 − (90)(0.1 + 0.05)

= 300 − (90)(0.15)

= 300 − 13.5 = 286.5 volts

With the 0.2 � diverter in parallel with Rse (see Fig-
ure 21.30(a)),

the equivalent resistance,

R = (0.2)(0.05)

(0.2) + (0.05)
= (0.2)(0.05)

(0.25)
= 0.04 �

By current division, current If (in Figure 21.30(a))

=
(

0.2

0.2 + 0.05

)
I

= 0.8I

Torque, T ∝ Ia� and for full load torque, Ia1�1 = Ia2�2

Since flux is proportional to field current �1 ∝ Ia1 and
�2 ∝ 0.8Ia2 then (90)(90) = (Ia2)(0.8Ia2)

from which, I2
a2 = (90)2

0.8
and Ia2 = 90√

(0.8)
= 100.62A

Hence e.m.f. E2 = V − Ia2(Ra + R)

= 300 − (100.62)(0.1 + 0.04)

= 300 − (100.62)(0.14)

= 300 − 14.087 = 285.9 volts

Now e.m.f., E ∝ �n from which,
E1

E2
= �1n1

�2n2
= Ia1n1

0.8Ia2n2

Hence
286.5

285.9
= (90)(15)

(0.8)(100.62)n2



Ch21-H8139.tex 29/3/2007 14: 17 page 276

276 Electrical Circuit Theory and Technology

and new speed, n2 = (285.9)(90)(15)

(286.5)(0.8)(100.62)
= 16.74 rev/s

Thus the speed of the motor has increased from 15 rev/s
(i.e. 900 rev/min) to 16.74 rev/s (i.e. 1004 rev/min) by
inserting a 0.2 � diverter resistance in parallel with the
series winding.

Problem 30. A series motor runs at 800 rev/min when
the voltage is 400V and the current is 25A. The arma-
ture resistance is 0.4 � and the series field resistance
is 0.2 �. Determine the resistance to be connected in
series to reduce the speed to 600 rev/min with the same
current.

With reference to Figure 21.30(b), at 800 rev/min,

e.m.f., E1 = V − I(Ra + Rse) = 400 − (25)(0.4 + 0.2)

= 400 − (25)(0.6)

= 400 − 15 = 385 volts

At 600 rev/min, since the current is unchanged, the flux is
unchanged.

Thus E ∝ �n, or E ∝ n, and
E1

E2
= n1

n2

Hence
385

E2
= 800

600

from which, E2 = (385)(600)

(800)
= 288.75 volts

and E2 = V − I(Ra + Rse + R)

Hence 288.75 = 400 − 25(0.4 + 0.2 + R)

Rearranging gives: 0.6 + R = 400 − 288.75

25
= 4.45

from which, extra series resistance, R = 4.45 − 0.6

i.e. R = 3.85 �

Thus the addition of a series resistance of 3.85 � has
reduced the speed from 800 rev/min to 600 rev/min.

Now try the following exercise.

Exercise 85 Further problems on speed control of
d.c. motors

1. A 350V shunt motor runs at its normal speed of
12 rev/s when the armature current is 90A. The
resistance of the armature is 0.3 �.

(a) Find the speed when the current is 45A and a
resistance of 0.4 � is connected in series with the
armature, the shunt field remaining constant. (b)
Find the speed when the current is 45A and the
shunt field is reduced to 75% of its normal value by
increasing resistance in the field circuit.

[(a) 11.83 rev/s (b) 16.67 rev/s]

2. A series motor runs at 900 rev/min when the volt-
age is 420V and the current is 40A. The armature
resistance is 0.3 � and the series field resistance is
0.2 �. Calculate the resistance to be connected in
series to reduce the speed to 720 rev/min with the
same current. [2 �]

3. A 320V series motor takes 80A and runs at
1080 rev/min at full load. The armature resistance
is 0.2 � and the series winding resistance is 0.05 �.
Assuming the flux is proportional to the field cur-
rent, calculate the speed when developing full load
torque, but with a 0.15 � diverter in parallel with
the field winding. [1239 rev/min]

21.16 Motor cooling

Motors are often classified according to the type of enclos-
ure used, the type depending on the conditions under
which the motor is used and the degree of ventilation
required.

The most common type of protection is the screen-
protected type, where ventilation is achieved by fitting a
fan internally, with the openings at the end of the motor
fitted with wire mesh.

A drip-proof type is similar to the screen-protected
type but has a cover over the screen to prevent drips of
water entering the machine.

A flame-proof type is usually cooled by the conduction
of heat through the motor casing.

With a pipe-ventilated type, air is piped into the motor
from a dust-free area, and an internally fitted fan ensures
the circulation of this cool air.
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22 Three-phase induction motors

At the end of this chapter you should be able to:
• appreciate the merits of three-phase induction

motors
• understand how a rotating magnetic field is produced
• state the synchronous speed, ns = ( f/p) and use in

calculations
• describe the principle of operation of a three-phase

induction motor
• distinguish between squirrel-cage and wound rotor

types of motor
• understand how a torque is produced causing rotor

movement
• understand and calculate slip
• derive expressions for rotor e.m.f., frequency, resis-

tance, reactance, impedance, current and copper
loss, and use them in calculations

• state the losses in an induction motor and calculate
efficiency

• derive the torque equation for an induction motor,
state the condition for maximum torque, and use in
calculations

• describe torque-speed and torque-slip characteristics
for an induction motor

• state and describe methods of starting induction
motors

• state advantages of cage rotor and wound rotor types
of induction motor

• describe the double cage induction motor
• state typical applications of three-phase induction

motors

22.1 Introduction

In d.c. motors, introduced in Chapter 21, conductors on
a rotating armature pass through a stationary magnetic
field. In a three-phase induction motor, the magnetic
field rotates and this has the advantage that no external
electrical connections to the rotor need be made. Its name
is derived from the fact that the current in the rotor is
induced by the magnetic field instead of being supplied
through electrical connections to the supply. The result is
a motor which: (i) is cheap and robust, (ii) is explosion
proof, due to the absence of a commutator or slip-rings
and brushes with their associated sparking, (iii) requires
little or no skilled maintenance, and (iv) has self-starting
properties when switched to a supply with no additional
expenditure on auxiliary equipment. The principal disad-
vantage of a three-phase induction motor is that its speed
cannot be readily adjusted.

22.2 Production of a rotating magnetic field

When a three-phase supply is connected to symmetrical
three-phase windings, the currents flowing in the windings
produce a magnetic field. This magnetic field is constant in
magnitude and rotates at constant speed as shown below,
and is called the synchronous speed.

With reference to Figure 22.1, the windings are
represented by three single-loop conductors, one for each
phase, marked RSRF , YSYF and BSBF , the S and F sig-
nifying start and finish. In practice, each phase winding
comprises many turns and is distributed around the stator;
the single-loop approach is for clarity only.

When the stator windings are connected to a three-phase
supply, the current flowing in each winding varies with
time and is as shown in Figure 22.1(a). If the value of
current in a winding is positive, the assumption is made
that it flows from start to finish of the winding, i.e. if it is
the red phase, current flows from RS to RF , i.e. away from
the viewer in RS and towards the viewer in RF . When the
value of current is negative, the assumption is made that it
flows from finish to start, i.e. towards the viewer in an ‘S’
winding and away from the viewer in an ‘F’ winding. At
time, say t1, shown in Figure 22.1(a), the current flowing
in the red phase is a maximum positive value. At the same
time, t1, the currents flowing in the yellow and blue phases
are both 0.5 times the maximum value and are negative.

The current distribution in the stator windings is there-
fore as shown in Figure 22.1(b), in which current flows
away from the viewer, (shown as ⊗) in RS since it is posi-
tive, but towards the viewer (shown as �) in YS and BS ,
since these are negative. The resulting magnetic field is as
shown, due to the ‘solenoid’ action and application of the
corkscrew rule.

A short time later at time t2, the current flowing in
the red phase has fallen to about 0.87 times its maximum
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Figure 22.1

value and is positive, the current in the yellow phase is
zero and the current in the blue phase is about 0.87 times
its maximum value and is negative. Hence the currents and
resultant magnetic field are as shown in Figure 22.1(c). At
time t3, the currents in the red and yellow phases are 0.5
of their maximum values and the current in the blue phase
is a maximum negative value. The currents and resultant
magnetic field are as shown in Figure 22.1(d).

Similar diagrams to Figure 22.1(b), (c) and (d) can be
produced for all time values and these would show that
the magnetic field travels through one revolution for each
cycle of the supply voltage applied to the stator windings.
By considering the flux values rather than the current val-
ues, it is shown below that the rotating magnetic field

Figure 22.2

has a constant value of flux. The three coils shown in
Figure 22.2(a), are connected in star to a three-phase sup-
ply. Let the positive directions of the fluxes produced by
currents flowing in the coils, be φA, φB and φC respect-
ively. The directions of φA, φB and φC do not alter, but
their magnitudes are proportional to the currents flowing
in the coils at any particular time. At time t1, shown in
Figure 22.2(b), the currents flowing in the coils are:

iB, a maximum positive value, i.e. the flux is towards
point P;
iA and iC , half the maximum value and negative, i.e.
the flux is away from point P.

These currents give rise to the magnetic fluxes φA, φB
and φC , whose magnitudes and directions are as shown in
Figure 22.2(c). The resultant flux is the phasor sum of φA,
φB and φC , shown as � in Figure 22.2(c). At time t2, the
currents flowing are:

iB, 0.866 × maximum positive value, iC , zero, and
iA, 0.866 × maximum negative value.
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The magnetic fluxes and the resultant magnetic flux are as
shown in Figure 22.2(d).

At time t3, iB is 0.5 × maximum value and is positive
iA is a maximum negative value, and
iC is 0.5 × maximum value and is positive.

The magnetic fluxes and the resultant magnetic flux are as
shown in Figure 22.2(e).

Inspection of Figures 22.2(c), (d) and (e) shows that
the magnitude of the resultant magnetic flux, �, in each
case is constant and is 1 1

2 × the maximum value of φA,
φB or φC , but that its direction is changing. The process
of determining the resultant flux may be repeated for all
values of time and shows that the magnitude of the result-
ant flux is constant for all values of time and also that it
rotates at constant speed, making one revolution for each
cycle of the supply voltage.

22.3 Synchronous speed

The rotating magnetic field produced by three-phase wind-
ings could have been produced by rotating a permanent
magnet’s north and south pole at synchronous speed,
(shown as N and S at the ends of the flux phasors in Fig-
ures 22.1(b), (c) and (d)). For this reason, it is called a
2-pole system and an induction motor using three-phase
windings only is called a 2-pole induction motor.

If six windings displaced from one another by 60◦ are
used, as shown in Figure 22.3(a), by drawing the current
and resultant magnetic field diagrams at various time val-
ues, it may be shown that one cycle of the supply current
to the stator windings causes the magnetic field to move
through half a revolution. The current distribution in the
stator windings are shown in Figure 22.3(a), for the time
t shown in Figure 22.3(b).

It can be seen that for six windings on the stator, the
magnetic flux produced is the same as that produced by
rotating two permanent magnet north poles and two per-
manent magnet south poles at synchronous speed. This
is called a 4-pole system and an induction motor using
six-phase windings is called a 4-pole induction motor. By
increasing the number of phase windings the number of
poles can be increased to any even number.

In general, if f is the frequency of the currents in the
stator windings and the stator is wound to be equiva-
lent to p pairs of poles, the speed of revolution of the
rotating magnetic field, i.e. the synchronous speed, ns is
given by:

ns = f
p

rev/s

Figure 22.3

Problem 1. A three-phase two-pole induction motor
is connected to a 50 Hz supply. Determine the syn-
chronous speed of the motor in rev/min.

From above, ns = f/p rev/s, where ns is the synchronous
speed, f is the frequency in hertz of the supply to the stator
and p is the number of pairs of poles. Since the motor is
connected to a 50 hertz supply, f = 50. The motor has a
two-pole system, hence p, the number of pairs of poles is
one.

Thus, synchronous speed, ns = 50

1
= 50 rev/s

= 50 × 60 rev/min

= 3000 rev/min

Problem 2. A stator winding supplied from a three-
phase 60 Hz system is required to produce a magnetic
flux rotating at 900 rev/min. Determine the number of
poles.

Synchronous speed, ns = 900 rev/min = 900

60
rev/s

= 15 rev/s
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Since ns = f

p
then p = f

ns
= 60

15
= 4

Hence the number of pole pairs is 4 and thus the number
of poles is 8.

Problem 3. A three-phase 2-pole motor is to have
a synchronous speed of 6000 rev/min. Calculate the
frequency of the supply voltage.

Since ns = f

p
then frequency, f = (ns)( p)

=
(

6000

60

) (
2

2

)

= 100 Hz

Now try the following exercise.

Exercise 86 Further problems on synchronous
speed

1. The synchronous speed of a 3-phase, 4-pole induc-
tion motor is 60 rev/s. Determine the frequency of
the supply to the stator windings. [120 Hz]

2. The synchronous speed of a 3-phase induction
motor is 25 rev/s and the frequency of the supply to
the stator is 50 Hz. Calculate the equivalent number
of pairs of poles of the motor. [2]

3. A 6-pole, 3-phase induction motor is connected to
a 300 Hz supply. Determine the speed of rotation
of the magnetic field produced by the stator.

[100 rev/s]

22.4 Construction of a three-phase induction
motor

The stator of a three-phase induction motor is the station-
ary part corresponding to the yoke of a d.c. machine. It
is wound to give a 2-pole, 4-pole, 6-pole, . . . . . . rotating
magnetic field, depending on the rotor speed required. The
rotor, corresponding to the armature of a d.c. machine, is
built up of laminated iron, to reduce eddy currents.

In the type most widely used, known as a squirrel-cage
rotor, copper or aluminium bars are placed in slots cut in
the laminated iron, the ends of the bars being welded or
brazed into a heavy conducting ring, (see Figure 22.4(a)).
A cross-sectional view of a three-phase induction motor
is shown in Figure 22.4(b).

The conductors are placed in slots in the laminated
iron rotor core. If the slots are skewed, better starting

Figure 22.4

and quieter running is achieved. This type of rotor has
no external connections which means that slip-rings and
brushes are not needed. The squirrel-cage motor is cheap,
reliable and efficient.

Another type of rotor is the wound rotor. With this
type there are phase windings in slots, similar to those
in the stator. The windings may be connected in star or
delta and the connections made to three slip-rings. The
slip-rings are used to add external resistance to the rotor
circuit, particularly for starting (see Section 22.13), but
for normal running the slip-rings are short circuited.

The principle of operation is the same for both the
squirrel-cage and the wound rotor machines.

22.5 Principle of operation of a three-phase
induction motor

When a three-phase supply is connected to the stator
windings, a rotating magnetic field is produced. As the
magnetic flux cuts a bar on the rotor, an e.m.f. is induced
in it and since it is joined, via the end conducting rings, to
another bar one pole pitch away, a current flows in the bars.
The magnetic field associated with this current flowing in
the bars interacts with the rotating magnetic field and a
force is produced, tending to turn the rotor in the same
direction as the rotating magnetic field, (see Figure 22.5).

Figure 22.5
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Similar forces are applied to all the conductors on the rotor,
so that a torque is produced causing the rotor to rotate.

22.6 Slip

The force exerted by the rotor bars causes the rotor to turn
in the direction of the rotating magnetic field. As the rotor
speed increases, the rate at which the rotating magnetic
field cuts the rotor bars is less and the frequency of the
induced e.m.f.’s in the rotor bars is less. If the rotor runs
at the same speed as the rotating magnetic field, no e.m.f.’s
are induced in the rotor, hence there is no force on them
and no torque on the rotor. Thus the rotor slows down.
For this reason the rotor can never run at synchronous
speed.

When there is no load on the rotor, the resistive forces
due to windage and bearing friction are small and the
rotor runs very nearly at synchronous speed. As the rotor
is loaded, the speed falls and this causes an increase in
the frequency of the induced e.m.f.’s in the rotor bars and
hence the rotor current, force and torque increase. The dif-
ference between the rotor speed, nr , and the synchronous
speed, ns, is called the slip speed, i.e.

slip speed = ns − nr rev/s

The ratio (ns − nr)/ns is called the fractional slip or
just the slip, s, and is usually expressed as a percentage.
Thus

slip, s =
(

ns − nr

ns

)
× 100%

Typical values of slip between no load and full load are
about 4 to 5% for small motors and 1.5 to 2% for large
motors.

Problem 4. The stator of a 3-phase, 4-pole induc-
tion motor is connected to a 50 Hz supply. The rotor
runs at 1455 rev/min at full load. Determine (a) the
synchronous speed and (b) the slip at full load.

(a) The number of pairs of poles, p = 4/2 = 2

The supply frequency f = 50 Hz

The synchronous speed, ns = f

p
= 50

2
= 25 rev/s

(b) The rotor speed, nr = 1455

60
= 24.25 rev/s

The slip, s =
(

ns − nr

ns

)
× 100%

=
(

25 − 24.25

25

)
× 100% = 3%

Problem 5. A 3-phase, 60 Hz induction motor has 2
poles. If the slip is 2% at a certain load, determine
(a) the synchronous speed, (b) the speed of the rotor
and (c) the frequency of the induced e.m.f.’s in the
rotor.

(a) f = 60 Hz, p = 2

2
= 1

Hence synchronous speed, ns = f

p
= 60

1

= 60 rev/s

or 60 × 60 = 3600 rev/min

(b) Since slip, s =
(

ns − nr

ns

)
× 100%

2 =
(

60 − nr

60

)
× 100

Hence
2 × 60

100
= 60 − nr

i.e. nr = 60 − 20 × 60

100
= 58.8 rev/s

i.e. the rotor runs at 58.8 × 60 = 3528 rev/min

(c) Since the synchronous speed is 60 rev/s and that of
the rotor is 58.8 rev/s, the rotating magnetic field cuts
the rotor bars at (60 − 58.8), i.e. 1.2 rev/s.
Thus the frequency of the e.m.f.’s induced in the

rotor bars, f= nsp = (1.2)
(

2
2

)
= 1.2 Hz

Problem 6. A three-phase induction motor is sup-
plied from a 50 Hz supply and runs at 1200 rev/min
when the slip is 4%. Determine the synchronous speed.

Slip, s =
(

ns − nr

ns

)
× 100%

Rotor speed, nr =1200

60
= 20 rev/s, and s = 4

Hence 4 =
(

ns − 20

ns

)
× 100%

or 0.04 = ns − 20

ns
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from which, ns(0.04) = ns − 20

and 20 = ns − 0.04 ns = ns(1 − 0.04)

Hence synchronous speed, ns =
(

20

1 − 0.04

)

= 20.83̇ rev/s

= (20.83̇ × 60) rev/min

= 1250 rev/min

Now try the following exercise.

Exercise 87 Further problems on slip

1. A 6-pole, 3-phase induction motor runs at
970 rev/min at a certain load. If the stator is con-
nected to a 50 Hz supply, find the percentage slip at
this load. [3%]

2. A 3-phase, 50 Hz induction motor has 8 poles. If the
full load slip is 2.5%, determine (a) the synchronous
speed, (b) the rotor speed, and (c) the frequency of
the rotor e.m.f.’s.

[(a) 750 rev/min (b) 731 rev/min (c) 1.25 Hz]

3. A three-phase induction motor is supplied from a
60 Hz supply and runs at 1710 rev/min when the
slip is 5%. Determine the synchronous speed.

[1800 rev/min]

4. A 4-pole, 3-phase, 50 Hz induction motor runs at
1440 rev/min at full load. Calculate (a) the syn-
chronous speed, (b) the slip and (c) the frequency
of the rotor induced e.m.f.’s.

[(a) 1500 rev/min (b) 4% (c) 2 Hz]

22.7 Rotor e.m.f. and frequency

Rotor e.m.f.

When an induction motor is stationary, the stator and rotor
windings form the equivalent of a transformer as shown
in Figure 22.6.

Figure 22.6

The rotor e.m.f. at standstill is given by

E2 =
(

N2

N1

)
E1 (22.1)

where E1 is the supply voltage per phase to the stator.
When an induction motor is running, the induced e.m.f.

in the rotor is less since the relative movement between
conductors and the rotating field is less. The induced
e.m.f. is proportional to this movement, hence it must
be proportional to the slip, s.

Hence when running, rotor e.m.f. per phase

= Er = sE2 = s

(
N2

N1

)
E1 (22.2)

Rotor frequency

The rotor e.m.f. is induced by an alternating flux and the
rate at which the flux passes the conductors is the slip
speed. Thus the frequency of the rotor e.m.f. is given by:

fr = (ns − nr) p = (ns − nr)

ns
(nsp)

However

(
ns − nr

ns

)
is the slip s and nsp is the supply

frequency f , hence

f r = sf (22.3)

Problem 7. The frequency of the supply to the stator
of an 8-pole induction motor is 50 Hz and the rotor
frequency is 3 Hz. Determine (a) the slip, and (b) the
rotor speed.

(a) From equation (22.3), fr = sf

Hence 3 = (s)(50)

from which, slip, s = 3

50
= 0.06 or 6%

(b) Synchronous speed, ns = f

p
= 50

4
= 12.5 rev/s

or (12.5 × 60) = 750 rev/min

Slip, s =
(

ns − nr

ns

)
, hence 0.06 =

(
12.5 − nr

12.5

)

(0.06)(12.5) = 12.5 − nr

and rotor speed, nr = 12.5 − (0.06)(12.5)

= 11.75 rev/s or 705 rev/min
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Now try the following exercise.

Exercise 88 Further problems on rotor frequency

1. A 12-pole, 3-phase, 50 Hz induction motor runs at
475 rev/min. Determine (a) the slip speed, (b) the
percentage slip and (c) the frequency of rotor
currents. [(a) 25 rev/min (b) 5% (c) 2.5 Hz]

2. The frequency of the supply to the stator of a 6-pole
induction motor is 50 Hz and the rotor frequency is
2 Hz. Determine (a) the slip, and (b) the rotor speed
in rev/min. [(a) 0.04 or 4% (b) 960 rev/min]

22.8 Rotor impedance and current

Rotor resistance

The rotor resistance R2 is unaffected by frequency or slip,
and hence remains constant.

Rotor reactance

Rotor reactance varies with the frequency of the rotor
current.

At standstill, reactance per phase, X2 = 2πfL

When running, reactance per phase,

Xr = 2πfrL

= 2π(sf )L from equation (22.3)

= s(2πfL)

i.e. Xr = sX2 (22.4)

Figure 22.7 represents the rotor circuit when running.

Figure 22.7

Rotor impedance

Rotor impedance per phase, Zr = √
[R2

2 + (sX2)2]

(22.5)

At standstill, slip s = 1, then Z2 = √
[R2

2 + X2
2 ] (22.6)

Rotor current

From Figures 22.6 and 22.7,

at standstill, starting current, I2 = E2

Z2
=

(
N2

N1

)
E1

√
[R2

2 + X2
2 ]

(22.7)

and when running, current, Ir = Er

Zr
=

s
(

N2

N1

)
E1

√
[R2

2 + (sX2)2]

(22.8)

22.9 Rotor copper loss

Power P = 2πnT , where T is the torque in newton metres,
hence torque T = (P/2πn)

If P2 is the power input to the rotor from the rotating
field, and Pm is the mechanical power output (including
friction losses)

then T = P2

2πns
= Pm

2πnr

from which,
P2

ns
= Pm

nr
or

Pm

P2
= nr

ns

Hence 1 − Pm

P2
= 1 − nr

ns

P2 − Pm

P2
= ns − nr

ns
= s

P2 − Pm is the electrical or copper loss in the rotor, i.e.
P2 − Pm = I2

r R2

Hence slip, s = rotor copper loss
rotor input

= I2
r R2

P2
(22.9)

or power input to the rotor, P2 = I2
r R2

s
(22.10)
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Figure 22.8

22.10 Induction motor losses and efficiency

Figure 22.8 summarizes losses in induction motors.

Motor efficiency, η = output power

input power
= Pm

P1
× 100%

Problem 8. The power supplied to a three-phase
induction motor is 32 kW and the stator losses are
1200 W. If the slip is 5%, determine (a) the rotor cop-
per loss, (b) the total mechanical power developed by
the rotor, (c) the output power of the motor if friction
and windage losses are 750 W, and (d) the efficiency
of the motor, neglecting rotor iron loss.

(a) Input power to rotor = stator input power
− stator losses

= 32 kW − 1.2 kW = 30.8 kW

From equation (22.9), slip = rotor copper loss

rotor input

i.e.
5

100
= rotor copper loss

30.8

from which, rotor copper loss = (0.05)(30.8)

= 1.54 kW

(b) Total mechanical power developed by the rotor

= rotor input power − rotor losses

= 30.8 − 1.54 = 29.26 kW

(c) Output power of motor

= power developed by the rotor
− friction and windage losses

= 29.26 − 0.75 = 28.51 kW

(d) Efficiency of induction motor,

η =
(

output power

input power

)
× 100%

=
(

28.51

32

)
× 100% = 89.10%

Problem 9. The speed of the induction motor of Prob-
lem 8 is reduced to 35% of its synchronous speed by
using external rotor resistance. If the torque and stator
losses are unchanged, determine (a) the rotor copper
loss, and (b) the efficiency of the motor.

(a) Slip, s =
(

ns − nr

ns

)
× 100%

=
(

ns − 0.35 ns

ns

)
× 100%

= (0.65)(100) = 65%

Input power to rotor = 30.8 kW (from Problem 8)

Since s = rotor copper loss

rotor input

then rotor copper loss = (s)(rotor input)

=
(

65

100

)
(30.8) = 20.02 kW

(b) Power developed by rotor

= input power to rotor − rotor copper loss

= 30.8 − 20.02 = 10.78 kW

Output power of motor

= power developed by rotor
− friction and windage losses

= 10.78 − 0.75 = 10.03 kW
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Efficiency, η = output power

input power
× 100%

=
(

10.03

32

)
× 100%

= 31.34%

Now try the following exercise.

Exercise 89 Further problems on losses and
efficiency

1. The power supplied to a three-phase induction
motor is 50 kW and the stator losses are 2 kW. If
the slip is 4%, determine (a) the rotor copper loss,
(b) the total mechanical power developed by the
rotor, (c) the output power of the motor if friction
and windage losses are 1 kW, and (d) the efficiency
of the motor, neglecting rotor iron losses.

[(a) 1.92 kW (b) 46.08 kW (c) 45.08 kW
(d) 90.16%]

2. By using external rotor resistance, the speed of the
induction motor in Problem 1 is reduced to 40%
of its synchronous speed. If the torque and stator
losses are unchanged, calculate (a) the rotor copper
loss, and (b) the efficiency of the motor.

[(a) 28.80 kW (b) 36.40%]

22.11 Torque equation for an induction motor

Torque T = P2

2πns
=

(
1

2πns

) (
I2
r R2

s

)
(from equation

(22.10)

From equation (22.8), Ir = s(N2/N1)E1√
[R2

2 + (sX2)2]

Hence torque per phase,

T =
(

1

2πns

) [
s2(N2/N1)2E2

1

R2
2 + (sX2)2

] (
R2

s

)

i.e. T =
(

1

2πns

) [
s(N2/N1)2E2

1R2

R2
2 + (sX2)2

]

If there are m phases then

torque, T =
(

m

2πns

) [
s(N2/N1)2E2

1R2

R2
2 + (sX2)2

]

i.e. T =
[

m(N2/N1)2

2πns

] [
sE2

1R2

R2
2 + (sX2)2

]
(22.11)

= k

(
sE2

1R2

R2
2 + (sX2)2

)
, where k is a constant for

a particular machine,

i.e. torque T ∝ sE2
1R2

R2
2 + (sX2)2 (22.12)

Under normal conditions, the supply voltage is usually
constant, hence equation (22.12) becomes:

T ∝ sR2

R2
2 + (sX2)2

∝ R2

R2
2

s
+ sX2

2

The torque will be a maximum when the denominator is
a minimum and this occurs when R2

2/s = sX2
2

i.e. when s = R2

X2
or R2 = sX2 = Xr from equation (22.4)

Thus maximum torque occurs when rotor resistance and
rotor reactance are equal, i.e. R2 = Xr

Problems 10 to 13 following illustrate some of the
characteristics of three-phase induction motors.

Problem 10. A 415V, three-phase, 50 Hz, 4-pole,
star-connected induction motor runs at 24 rev/s on full
load. The rotor resistance and reactance per phase
are 0.35 � and 3.5 � respectively, and the effective
rotor-stator turns ratio is 0.85:1. Calculate (a) the syn-
chronous speed, (b) the slip, (c) the full load torque,
(d) the power output if mechanical losses amount to
770 W, (e) the maximum torque, (f) the speed at which
maximum torque occurs, and (g) the starting torque.

(a) Synchronous speed, ns = f

p
= 50

2

= 25 rev/s or (25 × 60)

= 1500 rev/min

(b) Slip, s =
(

ns − nr

ns

)
= 25 − 24

25
= 0.04 or 4%

(c) Phase voltage, E1 = 415√
3

= 239.6 volts
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Full load torque,

T =
[

m(N2/N1)2

2πns

] [
sE2

1R2

R2
2 + (sX2)2

]

from equation (22.11)

=
[

3(0.85)2

2π(25)

] [
0.04 (239.6)2 0.35

(0.35)2 + (0.04 × 3.5)2

]

= (0.01380)

(
803.71

0.1421

)
= 78.05 Nm

(d) Output power, including friction losses,

Pm = 2πnrT

= 2π(24)(78.05)

= 11 770 watts

Hence power output = Pm − mechanical losses

= 11 770 − 770 = 11 000 W

= 11 kW

(e) Maximum torque occurs when R2 = Xr = 0.35 �

Slip, s = R2

X2
= 0.35

3.5
= 0.1

Hence maximum torque,

Tm = (0.01380)

[
s E2

1 R2

R2
2 + (s X2)2

]
from part (c)

= (0.01380)

[
0.1(239.6)2 0.35

0.352 + 0.352

]

= (0.01380)

[
2009.29

0.245

]

= 113.18 Nm

(f) For maximum torque, slip s = 0.1

Slip, s =
(

ns − nr

ns

)
i.e. 0.1 =

(
25 − nr

25

)

Hence (0.1)(25) = 25 − nr and nr = 25 − (0.1)(25)

Thus speed at which maximum torque occurs,

nr = 25 − 2.5

= 22.5 rev/s or 1350 rev/min

(g) At the start, i.e. at standstill, slip s = 1

Hence starting torque =
[

m(N2/N1)2

2πns

] [
E2

1 R2

R2
2 + X2

2

]

from equation (22.11) with s = 1

= (0.01380)

[
(239.6)20.35

0.352 + 3.52

]

= (0.01380)

(
20092.86

12.3725

)

i.e. starting torque = 22.41 Nm

(Note that the full load torque (from part (c)) is 78.05 Nm
but the starting torque is only 22.41 Nm)

Problem 11. Determine for the induction motor in
Problem 10 at full load, (a) the rotor current, (b) the
rotor copper loss, and (c) the starting current.

(a) From equation (22.8), rotor current,

Ir =
s

(
N2

N1

)
E1

√
[R2

2 + (sX2)2]

= (0.04)(0.85)(239.6)√
[0.352 + (0.04 × 3.5)2]

= 8.1464

0.37696
= 21.61A

(b) Rotor copper loss per phase = I2
r R2

= (21.61)2(0.35)

= 163.45 W

Total copper loss (for 3 phases) = 3 × 163.45

= 490.35 W

(c) From equation (22.7), starting current,

I2 =

(
N2

N1

)
E1

√
[R2

2 + X2
2 ]

= (0.85)(239.6)√
[0.352 + 3.52]

= 57.90A

(Note that the starting current of 57.90 A is considerably
higher than the full load current of 21.61 A)

Problem 12. For the induction motor in Problems 10
and 11, if the stator losses are 650 W, determine (a) the
power input at full load, (b) the efficiency of the motor
at full load and (c) the current taken from the supply
at full load, if the motor runs at a power factor of 0.87
lagging.

(a) Output power Pm = 11.770 kW from part (d),
Problem 10

Rotor copper loss = 490.35 W = 0.49035 kW from
part (b), Problem 11
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Stator input power, P1 = Pm + rotor copper loss

+ rotor stator loss

=11.770+0.49035+0.650

= 12.910 kW

(b) Net power output = 11 kW from part (d), Problem 10

Hence efficiency, η = output

input
× 100%

=
(

11

12.910

)
× 100%

= 85.21%

(c) Power input, P1 = √
3VL IL cos φ (see Chapter 19)

and cos φ = p.f. = 0.87

hence, supply current, IL = P1√
3VL cos φ

= 12.910 × 1000√
3(415) 0.87

= 20.64A

Problem 13. For the induction motor of Problems 10
to 12, determine the resistance of the rotor winding
required for maximum starting torque.

From equation (22.4), rotor reactance Xr = sX2
At the moment of starting, slip, s = 1

Maximum torque occurs when rotor reactance
equals rotor resistance hence for maximum torque,
R2 = Xr = sX2 = X2 = 3.5 �

Thus if the induction motor was a wound rotor type
with slip-rings then an external star-connected resistance
of (3.5 − 0.35) � = 3.15 � per phase could be added to
the rotor resistance to give maximum torque at starting
(see Section 22.13).

Now try the following exercise.

Exercise 90 Further problems on the torque
equation

1. A 400V, three-phase, 50 Hz, 2-pole, star-connected
induction motor runs at 48.5 rev/s on full load. The
rotor resistance and reactance per phase are 0.4 �
and 4.0 � respectively, and the effective rotor-stator
turns ratio is 0.8:1. Calculate (a) the synchronous
speed, (b) the slip, (c) the full load torque, (d) the
power output if mechanical losses amount to 500 W,

(e) the maximum torque, (f) the speed at which
maximum torque occurs, and (g) the starting torque.

[(a) 50 rev/s or 3000 rev/min (b) 0.03 or 3%
(c) 22.43 Nm (d) 6.34 kW (e) 40.74 Nm

(f) 45 rev/s or 2700 rev/min (g) 8.07 Nm]

2. For the induction motor in Problem 1, calculate at
full load (a) the rotor current, (b) the rotor copper
loss, and (c) the starting current.

[(a) 13.27A (b) 211.3 W (c) 45.96A]

3. If the stator losses for the induction motor in Prob-
lem 1 are 525 W, calculate at full load (a) the power
input, (b) the efficiency of the motor and (c) the
current taken from the supply if the motor runs at a
power factor of 0.84.

[(a) 7.57 kW (b) 83.75% (c) 13.0A]

4. For the induction motor in Problem 1, determine
the resistance of the rotor winding required for
maximum starting torque. [4.0 �]

22.12 Induction motor torque–speed
characteristics

From Problem 10, parts (c) and (g), it is seen that the
normal starting torque may be less than the full load
torque. Also, from Problem 10, parts (e) and (f), it is seen
that the speed at which maximum torque occurs is deter-
mined by the value of the rotor resistance. At synchronous
speed, slip s = 0 and torque is zero. From these observa-
tions, the torque-speed and torque-slip characteristics of
an induction motor are as shown in Figure 22.9.

The rotor resistance of an induction motor is usu-
ally small compared with its reactance (for example,
R2 = 0.35 � and X2 = 3.5 � in the above Problems), so
that maximum torque occurs at a high speed, typically
about 80% of synchronous speed.

Curve P in Figure 22.9 is a typical characteristic for an
induction motor. The curve P cuts the full load torque
line at point X, showing that at full load the slip is
about 4–5%. The normal operating conditions are between
0 and X, thus it can be seen that for normal operation the
speed variation with load is quite small — the induction
motor is an almost constant-speed machine. Redrawing
the speed-torque characteristic between 0 and X gives the
characteristic shown in Figure 22.10, which is similar to
a d.c. shunt motor as shown in Chapter 21.

If maximum torque is required at starting then a high
resistance rotor is necessary, which gives characteristic Q
in Figure 22.9. However, as can be seen, the motor has
a full load slip of over 30%, which results in a drop in
efficiency. Also such a motor has a large speed variation
with variations of load. Curves R and S of Figure 22.9
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Figure 22.9

Figure 22.10

are characteristics for values of rotor resistances between
those of P and Q. Better starting torque than for curve
P is obtained, but with lower efficiency and with speed
variations under operating conditions.

A squirrel-cage induction motor would normally
follow characteristic P. This type of machine is highly
efficient and about constant-speed under normal running
conditions. However it has a poor starting torque and must
be started off-load or very lightly loaded (see Section
22.13 below). Also, on starting, the current can be four
or five times the normal full load current, due to the motor
acting like a transformer with secondary short circuited.
In Problem 11, for example, the current at starting was
nearly three times the full load current.

A wound-rotor induction motor would follow char-
acteristic P when the slip-rings are short-circuited, which
is the normal running condition. However, the slip-rings
allow for the addition of resistance to the rotor circuit
externally and, as a result, for starting, the motor can have
a characteristic similar to curve Q in Figure 22.9 and the
high starting current experienced by the cage induction
motor can be overcome.

In general, for three-phase induction motors, the power
factor is usually between about 0.8 and 0.9 lagging, and
the full load efficiency is usually about 80–90%.

From equation (22.12), it is seen that torque is propor-
tional to the square of the supply voltage. Any voltage

variations therefore would seriously affect the induction
motor performance.

22.13 Starting methods for induction motors

Squirrel-cage rotor

(i) Direct-on-line starting
With this method, starting current is high and may
cause interference with supplies to other consumers.

(ii) Auto transformer starting
With this method, an auto transformer is used to
reduce the stator voltage, E1, and thus the starting
current (see equation (22.7)). However, the starting
torque is seriously reduced (see equation (22.12)), so
the voltage is reduced only sufficiently to give the
required reduction of the starting current. A typical
arrangement is shown in Figure 22.11. A double-
throw switch connects the auto transformer in circuit
for starting, and when the motor is up to speed the

Figure 22.11
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switch is moved to the run position which connects
the supply directly to the motor.

(iii) Star-delta starting
With this method, for starting, the connections to
the stator phase winding are star-connected, so that
the voltage across each phase winding is 1/

√
3 (i.e.

0.577) of the line voltage. For running, the windings
are switched to delta-connection. A typical arrange-
ment is shown in Figure 22.12. This method of
starting is less expensive than by auto transformer.

Figure 22.12

Figure 22.13

Wound rotor

When starting on load is necessary, a wound rotor induc-
tion motor must be used. This is because maximum torque
at starting can be obtained by adding external resistance to
the rotor circuit via slip-rings, (see Problem 13). A face-
plate type starter is used, and as the resistance is gradually
reduced, the machine characteristics at each stage will be
similar to Q, S, R and P of Figure 22.13. At each resistance
step, the motor operation will transfer from one character-
istic to the next so that the overall starting characteristic
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will be as shown by the bold line in Figure 22.13. For very
large induction motors, very gradual and smooth starting
is achieved by a liquid type resistance.

22.14 Advantages of squirrel-cage induction
motors

The advantages of squirrel-cage motors compared with
the wound rotor type are that they:

(i) are cheaper and more robust
(ii) have slightly higher efficiency and power factor

(iii) are explosion-proof, since the risk of sparking is
eliminated by the absence of slip-rings and brushes.

22.15 Advantages of wound rotor induction motor

The advantages of the wound rotor motor compared with
the cage type are that they:

(i) have a much higher starting torque
(ii) have a much lower starting current

(iii) have a means of varying speed by use of external
rotor resistance.

22.16 Double cage induction motor

The advantages of squirrel-cage and wound rotor induc-
tion motors are combined in the double cage induction
motor. This type of induction motor is specially con-
structed with the rotor having two cages, one inside the
other. The outer cage has high resistance conductors so
that maximum torque is achieved at or near starting. The
inner cage has normal low resistance copper conductors

Figure 22.14

but high reactance since it is embedded deep in the iron
core. The torque-speed characteristic of the inner cage is
that of a normal induction motor, as shown in Figure 22.14.
At starting, the outer cage produces the torque, but when
running the inner cage produces the torque. The com-
bined characteristic of inner and outer cages is shown in
Figure 22.14. The double cage induction motor is highly
efficient when running.

22.17 Uses of three-phase induction motors

Three-phase induction motors are widely used in industry
and constitute almost all industrial drives where a nearly
constant speed is required, from small workshops to the
largest industrial enterprises.

Typical applications are with machine tools, pumps and
mill motors. The squirrel cage rotor type is the most widely
used of all a.c. motors.
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Revision test 7

This revision test covers the material contained in
chapters 21 and 22.

The marks for each question are shown in brackets at
the end of each question.

1. A 6-pole armature has 1000 conductors and a flux per
pole of 40 mWb. Determine the e.m.f. generated when
running at 600 rev/min when (a) lap wound (b) wave
wound. (6)

2. The armature of a d.c. machine has a resistance of 0.3 �
and is connected to a 200V supply. Calculate the e.m.f.
generated when it is running (a) as a generator giving
80A (b) as a motor taking 80A (4)

3. A 15 kW shunt generator having an armature circuit
resistance of 1 � and a field resistance of 160 � gener-
ates a terminal voltage of 240V at full load. Determine
the efficiency of the generator at full load assuming the
iron, friction and windage losses amount to 544 W.

(6)

4. A 4-pole d.c. motor has a wave-wound armature with
1000 conductors. The useful flux per pole is 40 mWb.
Calculate the torque exerted when a current of 25A
flows in each armature conductor. (4)

5. A 400V shunt motor runs at it’s normal speed of 20
rev/s when the armature current is 100A. The armature
resistance is 0.25 �. Calculate the speed, in rev/min
when the current is 50A and a resistance of 0.40 � is
connected in series with the armature, the shunt field
remaining constant. (7)

6. The stator of a three-phase, 6-pole induction motor is
connected to a 60 Hz supply. The rotor runs at 1155
rev/min at full load. Determine (a) the synchronous
speed, and (b) the slip at full load. (6)

7. The power supplied to a three-phase induction motor
is 40 kW and the stator losses are 2 kW. If the slip
is 4% determine (a) the rotor copper loss, (b) the
total mechanical power developed by the rotor, (c) the
output power of the motor if frictional and windage
losses are 1.48 kW, and (d) the efficiency of the motor,
neglecting rotor iron loss. (9)

8. A 400V, three-phase, 100 Hz, 8-pole induction motor
runs at 24.25 rev/s on full load. The rotor resistance and
reactance per phase are 0.2 � and 2 � respectively and
the effective rotor-stator turns ratio is 0.80:1. Calculate
(a) the synchronous speed, (b) the percentage slip, and
(c) the full load torque. (8)
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Main formulae for Part 2

A.c. theory:

T = 1

f
or f = 1

T
I =

√√√√
(

i21 + i22 + i23 + · · · + in
n

)

For a sine wave: IAV = 2

π
Im or 0.637Im

I = 1√
2

Im or 0.707Im

Form factor = rms

average
Peak factor = maximum

rms

General sinusoidal voltage: v = Vm sin (ωt ± φ)

Single-phase circuits:

XL = 2πfL XC = 1

2πfC
Z = V

I
= √

(R2 + X2)

Series resonance: fr = 1

2π
√

LC

Q = VL

V
or

VC

V
= 2πfrL

R
= 1

2πfrCR
= 1

R

√
L

C

Q = fr
f2 − f1

or ( f2 − f1) = fr
Q

Parallel resonance (LR-C circuit): fr = 1

2π

√
1

LC
− R2

L2

Ir = VRC

L
RD = L

CR
Q = 2πfrL

R
= IC

Ir

P = VI cos φ or I2R S = VI

Q = VI sin φ power factor = cos φ = R

Z

D.c. transients:

C − R circuit τ = CR

Charging: vC = V (1 − e−(t/CR)) vr = Ve−(t/CR)

i = Ie−(t/CR)

Discharging: vC = vR = Ve−(t/CR) i = Ie−(t/CR)

L − R circuit τ = L

R

Current growth: vL = Ve−(Rt/L)

vR = V (1 − e−(Rt/L))

i = I(1 − e−(Rt/L))

Current decay: vL = vR = Ve−(Rt/L) i = Ie−(Rt/L)

Operational amplifiers:

CMRR = 20 log10

(
differential voltage gain

common mode gain

)
dB

Inverter: A = Vo

Vi
= −Rf

Ri

Non-inverter: A = Vo

Vi
= 1 + Rf

Ri

Summing: Vo = −Rf

(
V1

R1
+ V2

R2
+ V3

R3

)

Integrator: Vo = − 1

CR

∫
Vidt

Differential: If V1 > V2 : Vo = (V1 − V2)

(
−Rf

R1

)

If V2 > V1 :

Vo = (V2 − V1)

(
R3

R2 + R3

) (
1 + Rf

R1

)

Three-phase systems:

Star IL = Ip VL = √
3Vp Delta VL = Vp IL = √

3Ip

P = √
3VLIL cos φ or P = 3I2

p Rp

Two-wattmeter method P = P1 + P2

tan φ = √
3

(P1 − P2)

(P1 + P2)

Transformers:

V1

V2
= N1

N2
= I2

I1
I0 =

√
(I2

M + I2
C)

IM = I0 sin φ0 IC = I0 cos φ0
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E = 4.44f �mN Regulation =
(

E2 − E1

E2

)
× 100%

Equivalent circuit: Re = R1 + R2

(
V1

V2

)2

Xe = X1 + X2

(
V1

V2

)2

Ze =
√

(R2
e + X2

e )

Efficiency, η = 1 − losses

input power

Output power = V2I2 cos φ2

Total loss = copper loss + iron loss

Input power = output power + losses

Resistance matching: R1 =
(

N1

N2

)2

RL

D.c. machines:

General e.m.f. E = 2p�nZ

c
∝ �ω

(c = 2 for wave winding, c = 2p for lap winding)

Generator: E = V + IaRa

Efficiency, η =
(

VI

VI + I2
a Ra + If V + C

)
× 100%

Motor: E = V − IaRa

Efficiency, η =
(

VI − I2
a Ra − If V − C

VI

)
× 100%

Torque = EIa

2πn
= p�ZIa

πc
∝ Ia�

Three-phase induction motors:

ns = f

p
s =

(
ns − nr

ns

)
× 100 fr = sf Xr = sX2

Ir = Er

Zr
=

s

(
N2

N1

)
E1

√
[R2

2 + (sX2)2]
s = I2

r R2

P2

Efficiency, η = Pm

Pl

=
input – stator loss – rotor copper loss

– friction & windage loss

input power

Torque, T =
(

m(N2/N1)2

2πns

) (
sE2

1R2

R2
2 + (sX2)2

)

∝ sE2
1R2

R2
2 + (sX2)2
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23 Revision of complex numbers

At the end of this chapter you should be able to:
• define a complex number
• understand the Argand diagram
• perform calculations on addition, subtraction, mul-

tiplication, and division in Cartesian and polar
forms

• use De Moivres theorem for powers and roots of
complex numbers

23.1 Introduction

A complex number is of the form (a + jb) where a is
a real number and jb is an imaginary number. Hence
(1 + j2) and (5 − j7) are examples of complex numbers.

By definition, j = √−1 and j2 = −1

Complex numbers are widely used in the analysis of
series, parallel and series-parallel electrical networks sup-
plied by alternating voltages (see Chapters 24 to 26), in
deriving balance equations with a.c. bridges (see Chap-
ter 27), in analysing a.c. circuits using Kirchhoff’s laws
(Chapter 30), mesh and nodal analysis (Chapter 31), the
superposition theorem (Chapter 32), with Thévenin’s and
Norton’s theorems (Chapter 33) and with delta-star and
star-delta transforms (Chapter 34) and in many other
aspects of higher electrical engineering. The advantage
of the use of complex numbers is that the manipulative
processes become simply algebraic processes.

A complex number can be represented pictorially on an
Argand diagram. In Figure 23.1, the line 0A represents
the complex number (2 + j3), 0B represents (3 − j), 0C
represents (−2 + j2) and 0D represents (−4 − j3).

A complex number of the form a + jb is called a
Cartesian or rectangular complex number. The sig-
nificance of the j operator is shown in Figure 23.2. In
Figure 23.2(a) the number 4 (i.e. 4 + j0) is shown drawn
as a phasor horizontally to the right of the origin on the real
axis. (Such a phasor could represent, for example, an alter-
nating current, i = 4 sin ωt amperes, when time t is zero.)

The number j4 (i.e. 0 + j4) is shown in Figure 23.2(b)
drawn vertically upwards from the origin on the imaginary
axis. Hence multiplying the number 4 by the operator
j results in an anticlockwise phase-shift of 90◦ without
altering its magnitude.

Figure 23.1 The Argand diagram

Multiplying j4 by j gives j24, i.e. −4, and is shown in
Figure 23.2(c) as a phasor four units long on the horizon-
tal real axis to the left of the origin — an anticlockwise
phase-shift of 90◦ compared with the position shown
in Figure 23.2(b). Thus multiplying by j2 reverses the
original direction of a phasor.

Multiplying j24 by j gives j34, i.e. −j4, and is shown in
Figure 23.2(d) as a phasor four units long on the vertical,
imaginary axis downward from the origin — an anticlock-
wise phase-shift of 90◦ compared with the position shown
in Figure 23.2(c).

Multiplying j34 by j gives j44, i.e. 4, which is the
original position of the phasor shown in Figure 23.2(a).

Summarizing, application of the operator j to any num-
ber rotates it 90◦ anticlockwise on the Argand diagram,
multiplying a number by j2 rotates it 180◦ anticlockwise,
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Figure 23.2

multiplying a number by j3 rotates it 270◦ anticlockwise
and multiplication by j4 rotates it 360◦ anticlockwise, i.e.
back to its original position. In each case the phasor is
unchanged in its magnitude.

By similar reasoning, if a phasor is operated on by
−j then a phase shift of −90◦ (i.e. clockwise direction)
occurs, again without change of magnitude.

In electrical circuits, 90◦ phase shifts occur between
voltage and current with pure capacitors and inductors;
this is the key as to why j notation is used so much in
the analysis of electrical networks. This is explained in
Chapter 24.

23.2 Operations involving Cartesian complex
numbers

(a) Addition and subtraction

(a + jb) + (c + jd) = (a + c) + j(b + d)

and (a + jb) − (c + jd) = (a − c) + j(b − d)

Thus, (3 + j2) + (2 − j4) = 3 + j2 + 2 − j4 = 5 − j2
and (3 + j2) − (2 − j4) = 3 + j2 − 2 + j4 = 1 + j6

(b) Multiplication

(a + jb)(c + jd) = ac + a( jd) + ( jb)c + ( jb)( jd)

= ac + jad + jbc + j2bd

But j2 = −1, thus

(a + jb)(c + jd) = (ac − bd) + j(ad + bc)

For example,

(3 + j2)(2 − j4) = 6 − j12 + j4 − j28

= (6 − (−1)8) + j(−12 + 4)

= 14 + j(−8) = 14 − j8

(c) Complex conjugate

The complex conjugate of (a + jb) is (a − jb). For
example, the conjugate of (3 − j2) is (3 + j2).

The product of a complex number and its complex con-
jugate is always a real number, and this is an important
property used when dividing complex numbers. Thus

(a + jb)(a − jb) = a2 − jab + jab − j2b2

= a2 − (−b2)

= a2 + b2 (i.e. a real number)

For example, (1 + j2)(1 − j2) = 12 + 22 = 5

and (3 − j4)(3 + j4) = 32 + 42 = 25
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(d) Division

The expression of one complex number divided by
another, in the form a + jb, is accomplished by multiply-
ing the numerator and denominator by the complex con-
jugate of the denominator. This has the effect of making
the denominator a real number. Hence, for example,

2 + j4

3 − j4
= 2 + j4

3 − j4
× 3 + j4

3 + j4
= 6 + j8 + j12 + j216

32 + 42

= 6 + j8 + j12 − 16

25

= −10 + j20

25

= −10
25

+ j
20
25

or

−0.4 + j0.8

The elimination of the imaginary part of the denomin-
ator by multiplying both the numerator and denominator
by the conjugate of the denominator is often termed
‘rationalizing’.

Problem 1. In an electrical circuit the total
impedance ZT is given by

ZT = Z1Z2

Z1 + Z2
+ Z3

Determine ZT in (a + jb) form, correct to two
decimal places, when Z1 = 5 − j3, Z2 = 4 + j7 and
Z3 = 3.9 − j6.7

Z1Z2 = (5 − j3)(4 + j7) = 20 + j35 − j12 − j221

= 20 + j35 − j12 + 21 = 41 + j23

Z1 + Z2 = (5 − j3) + (4 + j7) = 9 + j4

Hence
Z1Z2

Z1 + Z2
= 41 + j23

9 + j4
= (41 + j23)(9 − j4)

(9 + j4)(9 − j4)

= 369 − j164 + j207 − j292

92 + 42

= 369 − j164 + j207 + 92

97

= 461 + j43

97
= 4.753 + j0.443

Thus
Z1Z2

Z1 + Z2
+ Z3 = (4.753 + j0.443) + (3.9 − j6.7)

= 8.65 − j6.26, correct to two
decimal places.

Problem 2. Given Z1 = 3 + j4 and Z2 = 2 − j5 deter-
mine in Cartesian form correct to three decimal places:

(a)
1

Z1
(b)

1

Z2
(c)

1

Z1
+ 1

Z2
(d)

1

(1/Z1) + (1/Z2)

(a)
1

Z1
= 1

3 + j4
= 3 − j4

(3 + j4)(3 − j4)
= 3 − j4

32 + 42

= 3 − j4

25
= 3

25
− j

4

25
= 0.120 − j0.160

(b)
1

Z2
= 1

2 − j5
= 2 + j5

(2 − j5)(2 + j5)
= 2 + j5

22 + 52 = 2 + j5

29

= 2

29
+ j

5

29
= 0.069 + j0.172

(c)
1

Z1
+ 1

Z2
= (0.120 − j0.160) + (0.069 + j0.172)

= 0.189 + j0.012

(d)
1

(1/Z1) + (1/Z2)
= 1

0.189 + j0.012

= 0.189 − j0.012

(0.189 + j0.012)(0.189 − j0.012)

= 0.189 − j0.012

0.1892 + 0.0122

= 0.189 − j0.012

0.03587

= 0.189

0.03587
− j0.012

0.03587
= 5.269 − j0.335

Now try the following exercise.

Exercise 91 Further problems on operations
involving Cartesian complex numbers

In problems 1 to 5, evaluate in a + jb form assum-
ing that Z1 = 2 + j3, Z2 = 3 − j4, Z3 = −1 + j2 and
Z4 = −2 − j5

1. (a) Z1 − Z2 (b) Z2 + Z3 − Z4
[(a) −1 + j7 (b) 4 + j3]

2. (a) Z1Z2 (b) Z3Z4 [(a) 18 + j (b) 12 + j]

3. (a) Z1Z3Z4 (b) Z2Z3 + Z4
[(a) 21 + j38 (b) 3 + j5]
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4. (a)
Z1

Z2
(b)

Z1 + Z2

Z3 + Z4 [
(a) − 6

25
+ j

17

25
(b) −2

3
+ j

]

5. (a)
Z1Z2

Z1 + Z2
(b) Z1 + Z2

Z3
+ Z4[

(a)
89

26
+ j

23

26
(b) −11

5
− j

12

5

]

6. Evaluate

[
(1 + j)2 − (1 − j)2

j

]
[4]

7. If Z1 = 4 − j3 and Z2 = 2 + j evaluate x and y given

x + jy = 1

Z1 − Z2
+ 1

Z1Z2
[x = 0.188, y = 0.216]

8. Evaluate (a) (1 + j)4 (b)
2 − j

2 + j
(c)

1

2 + j3[
(a) −4 (b)

3

5
− j

4

5
(c)

2

13
− j

3

13

]

9. If Z = 1 + j3

1 − j2
evaluate Z2 in a + jb form.

[0 − j2]

10. In an electrical circuit the equivalent impedance Z
is given by

Z = Z1 + Z2Z3

Z2 + Z3

Determine Z is rectangular form, correct to two
decimal places, when Z1 = 5.91 + j3.15,
Z2 = 5 + j12 and Z3 = 8 − j15

[Z = 21.62 + j8.39]

11. Given Z1 = 5 − j9 and Z2 = 7 + j2, determine in
(a + jb) form, correct to four decimal places

(a)
1

Z1
(b)

1

Z2
(c)

1

Z1
+ 1

Z2
(d)

1

(1/Z1) + (1/Z2)

[(a) 0.0472 + j0.0849 (b) 0.1321 − j0.0377
(c) 0.1793 + j0.0472 (d) 5.2158 − j1.3731]

23.3 Complex equations

If two complex numbers are equal, then their real parts
are equal and their imaginary parts are equal. Hence, if
a + jb = c + jd then a = c and b = d. This is a useful prop-
erty, since equations having two unknown quantities can

be solved from one equation. Complex equations are used
when deriving balance equations with a.c. bridges (see
Chapter 27).

Problem 3. Solve the following complex equations:

(a) 3(a + jb) = 9 − j2
(b) (2 + j)(−2 + j) = x + jy
(c) (a − j2b) + (b − j3a) = 5 + j2

(a) 3(a + jb) = 9 − j2. Thus 3a + j3b = 9 − j2

Equating real parts gives: 3a = 9, i.e. a = 3

Equating imaginary parts gives:
3b = −2, i.e. b = −2/3

(b) (2 + j)(−2 + j) = x + jy

Thus −4 + j2 − j2 + j2 = x + jy

−5 + j0 = x + jy

Equating real and imaginary parts gives: x = −5,
y = 0

(c) (a − j2b) + (b − j3a) = 5 + j2

Thus (a + b) + j(−2b − 3a) = 5 + j2

Hence a + b = 5 (1)

and −2b − 3a = 2 (2)

We have two simultaneous equations to solve. Multi-
plying equation (1) by 2 gives:

2a + 2b = 10 (3)

Adding equations (2) and (3) gives −a = 12, i.e.
a = −12

From equation (1), b = 17

Problem 4. An equation derived from an a.c. bridge
network is given by

R1R3 = (R2 + jωL2)

[
1

(1/R4) + jωC

]

R1, R3, R4 and C4 are known values. Determine
expressions for R2 and L2 in terms of the known
components.
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Multiplying both sides of the equation by (1/R4 + jωC4)
gives

(R1R3)(1/R4 + jωC4) = R2 + jωL2

i.e. R1R3/R4 + jR1R3ωC4 = R2 + jωL2

Equating the real parts gives: R2 = R1R3/R4

Equating the imaginary parts gives:

ωL2 = R1R3ωC4, from which, L2 = R1R3C4

Now try the following exercise.

Exercise 92 Further problems on complex
equations

In problems 1 to 4 solve the given complex equations:

1. 4(a + jb) = 7 − j3

[
a = 7

4
, b = −3

4

]

2. (3 + j4)(2 − j3) = x + jy [x = 18, y = −1]

3. (a − j3b) + (b − j2a) = 4 + j6 [a = 18, b = −14]

4. 5 + j2 = √
(e + j f ) [e = 21, f = 20]

5. An equation derived from an a.c. bridge circuit is
given by

(R3)

[ −j

ωC1

]
=

[
Rx − j

ωCx

] [
R4(−j/(ωC4))

R4 − ( j/(ωC4))

]

Components R3, R4, C1 and C4 have known values.
Determine expressions for Rx and Cx in terms of the
known components. [

Rx = R3C4

C1
, Cx = C1R4

R3

]

23.4 The polar form of a complex number

In Figure 23.3(a), Z = x + jy = r cos θ + jr sin θ
from trigonometry,

= r( cos θ + j sin θ)

This latter form is usually abbreviated to Z = r∠θ, and is
called the polar form of a complex number.

r is called the modulus (or magnitude of Z) and is
written as mod Z or |Z|. r is determined from Pythagoras’s
theorem on triangle OAZ, i.e.

|Z| = r = √
(x2 + y2)

The modulus is represented on the Argand diagram by
the distance OZ. θ is called the argument (or amplitude)

Figure 23.3

of Z and is written as arg Z . θ is also deduced from triangle
OAZ: arg Z = θ = tan−1y/x

For example, the cartesian complex number (3 + j4) is
equal to r∠θ in polar form, where r = √

(32 + 42) = 5 and

θ = tan−1 4

3
= 53.13◦

Hence (3 + j4) = 5∠53.13◦

Similarly, (−3 + j4) is shown in Figure 23.3(b),

where r = √
(32 + 42) = 5, θ′ = tan−1 4

3
= 53.13◦

and θ = 180◦ − 53.13◦ = 126.87◦

Hence (−3 + j4) = 5∠126.87◦

23.5 Multiplication and division using complex
numbers in polar form

(a) Multiplication

(r1∠θ1)(r2∠θ2) = r1r2∠(θ1 + θ2)

Thus 3∠25◦ × 2∠32◦ = 6∠57◦,
4∠11◦ × 5∠−18◦ = 20∠−7◦,
2∠(π/3) × 7∠(π/6) = 14∠(π/2), and so on.
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(b) Division

r1∠θ1

r2∠θ2
= r1

r2
∠(θ1 + θ2)

Thus
8∠58◦

2∠11◦ = 4∠47◦,

9∠136◦

3∠−60◦ = 3∠(136◦ − −60◦)

= 3∠196◦ or 3∠−164◦,

and
10∠(π/2)

5∠(−π/4)
= 2∠(3π/4), and so on.

Conversion from Cartesian or rectangular form to polar
form, and vice versa, may be achieved by using the R → P
and P → R conversion facility which is available on most
calculators with scientific notation. This allows, of course,
a saving of time.

Problem 5. Convert 5∠−132◦ into a + jb form cor-
rect to four significant figures.

Figure 23.4 indicates that the polar complex number
5∠−132◦ lies in the third quadrant of theArgand diagram.

Figure 23.4

Using trigonometrical ratios,

x = 5 cos 48◦ = 3.346 and y = 5 sin 48◦ = 3.716

Hence 5∠−132◦ = −3.346 − j3.716

Alternatively,

5∠−132◦ = 5(cos −132◦ + j sin −132◦)

= 5 cos (−132◦) + j5 sin (−132◦)

= −3.346 − j3.716, as above.

With this latter method the real and imaginary parts are
obtained directly, using a calculator.

Problem 6. Two impedances in an electrical network
are given by Z1 = 4.7∠35◦ and Z2 = 7.3∠−48◦. Deter-
mine in polar form the total impedance ZT given that
ZT = Z1Z2/(Z1 + Z2).

Z1 = 4.7∠35◦ = 4.7 cos 35◦ + j4.7 sin 35◦

= 3.85 + j2.70

Z2 = 7.3∠−48◦ = 7.3 cos(−48◦) + j7.3 sin(−48◦)

= 4.88 − j5.42

Z1 + Z2 = (3.85 + j2.70) + (4.88 − j5.42)

= 8.73 − j2.72

= √
(8.732 + 2.722)∠tan−1

(−2.72

8.73

)

= 9.14∠−17.31◦

Hence

ZT = Z1Z2/(Z1 + Z2) = 4.7∠35◦ × 7.3∠−48◦

9.14∠−17.31◦

= 4.7 × 7.3

9.14
∠[35◦ − 48◦

− (−17.31◦)]

= 3.75∠4.31◦ or 3.75∠4◦19′

Now try the following exercise.

Exercise 93 Further problems on the polar form
of complex numbers

In problems 1 and 2 determine the modulus and the
argument of each of the complex numbers given.

1. (a) 3 + j4 (b) 2 − j5
[(a) 5, 53◦8′ (b) 5.385, −68◦12′]

2. (a) −4 + j (b) −5 − j3
[(a) 4.123, 165◦58′ (b) 5.831, −149◦2′]

In problems 3 and 4 express the given Cartesian com-
plex numbers in polar form, leaving answers in surd
form.

3. (a) 6 + j5 (b) 3 − j2 (c) −3
[(a)

√
61∠39◦48′ (b)

√
13∠−33◦41′

(c) 3∠180◦ or 3∠π]

4. (a) −5 + j (b) −4 − j3 (c) −j2
[(a)

√
26∠168◦41′ (b) 5∠−143◦8′

(c) 2∠−90◦ or 2∠−π/2]
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In problems 5 to 7 convert the given polar complex
numbers into (a + jb) form, giving answers correct to
four significant figures.

5. (a) 6∠30◦ (b) 4∠60◦ (c) 3∠45◦
[(a) 5.196 + j3.000 (b) 2.000 + j3.464

(c) 2.121 + j2.121]

6. (a) 2∠π/2 (b) 3∠π (c) 5∠(5π/6)
[(a) 0 + j2.000 (b) −3.000 + j0

(c) −4.330 + j2.500]

7. (a) 8∠150◦ (b) 4.2∠−120◦ (c) 3.6∠−25◦
[(a) −6.928 + j4.000 (b) −2.100 − j3.637

(c) 3.263 − j1.521]

In problems 8 to 10, evaluate in polar form.

8. (a) 2∠40◦ × 5∠20◦ (b) 2.6∠72◦ × 4.3∠45◦
[(a) 10∠60◦ (b) 11.18∠117◦]

9. (a) 5.8∠35◦ ÷ 2∠−10◦
(b) 4∠30◦ × 3∠70◦ ÷ 2∠−15◦

[(a) 2.9∠45◦ (b) 6∠115◦]

10. (a)
4.1∠20◦ × 3.2∠−62◦

1.2∠150◦
(b) 6∠25◦ + 3∠−36◦−4∠72◦

[(a) 10.93∠168◦ (b) 7.289∠−24◦35′]
11. Solve the complex equations, giving answers

correct to four significant figures.

(a)
12∠(π/2) × 3∠(3π/4)

2∠−(π/3)
= x + jy

(b) 15∠π/3 + 12∠π/2 − 6∠−π/3 = r∠θ

[(a) x = 4.659, y = −17.387
(b) r = 30.52, θ = 81◦31′]

12. The total impedance ZT of an electrical circuit is
given by

ZT = Z1 × Z2

Z1 + Z2
+ Z3

Determine ZT in polar form correct to three signifi-
cant figures when Z1 = 3.2∠−56◦, Z2 = 7.4∠25◦
and Z3 = 6.3∠62◦ [6.61∠37.24◦]

13. A star-connected impedance Z1 is given by

Z1 = ZAZB

ZA + ZB + ZC

Evaluate Z1, in both Cartesian and polar form,
given ZA = (20 + j0)�, ZB = (0 − j20)� and ZC =
(10 + j10)�

[(4 − j12)� or 12.65∠−71.57◦ �]

14. The current I flowing in an impedance is given by

I = (8∠60◦)(10∠0◦)

(8∠60◦ + 5∠30◦)
A

Determine the value of current in polar form,
correct to two decimal places. [6.36∠11.46◦A]

15. A delta-connected impedance ZA is given by

ZA = Z1Z2 + Z2Z3 + Z3Z1

Z2

Determine ZA, in both Cartesian and polar
form, given Z1 = (10 + j0)�, Z2 = (0 − j10)� and
Z3 = (10 + j10)�

[(10 + j20)�, 22.36∠63.43◦�]

23.6 De Moivre’s theorem — powers and
roots of complex numbers

De Moivre’s theorem, states:

[r∠θ]n = rn∠nθ

This result is true for all positive, negative or fractional val-
ues of n. De Moivre’s theorem is thus useful in determin-
ing powers and roots of complex numbers. For example,

[2∠15◦]6 = 26∠(6 × 15◦) = 64∠90◦ = 0 + j64

A square root of a complex number is determined as
follows:

√
[r∠θ] = [r∠θ]1/2 = r1/2∠ 1

2θ

However, it is important to realize that a real number has
two square roots, equal in size but opposite in sign. On an
Argand diagram the roots are 180◦ apart (see Problem 8
following).

Problem 7. Determine (−2 + j3)5 in polar and in
Cartesian form.

Z = −2 + j3 is situated in the second quadrant of the
Argand diagram.

Thus r = √
[(2)2 + (3)2] = √

13 and α = tan−13/2
= 56.31◦
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Hence the argument θ = 180◦ − 56.31◦ = 123.69◦

Thus −2 + j3 in polar form is
√

13∠123.69◦

(−2 + j3)5 = [
√

13∠123.69◦]5

= (
√

13)5∠(5 × 123.69◦)

from De Moivre’s theorem

= 135/2∠618.45◦

= 135/2∠258.45◦

(since 618.45◦ ≡ 618.45◦ − 360◦)

= 135/2∠−101.55◦ = 609.3∠−101◦33′

In Cartesian form,

609.3∠−101.55◦ = 609.3 cos(−101.55◦)

+ j609.3 sin(−101.55◦)

= −122 − j597

Problem 8. Determine the two square roots of the
complex number (12 + j5) in Cartesian and polar form,
correct to three significant figures. Show the roots on
an Argand diagram.

In polar form 12 + j5 = √
(122 + 52)∠tan−1(5/12), since

12 + j5 is in the first quadrant of the Argand diagram, i.e.
12 + j5 = 13∠22.62◦.

Since we are finding the square roots of 13∠22.62◦
there will be two solutions. To obtain the second
solution it is helpful to express 13∠22.62◦ also as
13∠(360◦ + 22.62◦), i.e. 13∠382.62◦ (we have merely
rotated one revolution to obtain this result). The reason
for doing this is that when we divide the angles by 2 we
still obtain angles less than 360◦, as shown below.

Hence
√

(12 + j5) = √
[13∠22.62◦] or

√
[13∠382.62◦]

= [13∠22.62◦]1/2 or [13∠382.62◦]1/2

= 131/2∠
( 1

2 × 22.62◦) or

131/2∠
( 1

2 × 382.62◦)
from De Moivre’s theorem,

= √
13∠11.31◦ or

√
13∠191.31◦

= 3.61∠11.31◦ or 3.61∠−168.69◦

i.e. 3.61∠11◦19′ or 3.61∠−168◦41′

These two solutions of
√

(12 + j5) are shown in the
Argand diagram of Figure 23.5. 3.61∠11◦19′ is in the
first quadrant of the Argand diagram.

Thus 3.61∠11◦19′ = 3.61(cos 11◦19′ + j sin 11◦19′)
= 3.540 + j0.708

3.61∠−168◦41′ is in the third quadrant of the
Argand diagram.

Figure 23.5

Thus 3.61∠−168◦41′ = 3.61[cos(−168◦41′)
+ j sin (−168◦41′)]

= −3.540 − j0.708

Thus in Cartesian form the two roots are±(3.540 + j0.708)
From the Argand diagram the roots are seen to be 180◦

apart, i.e. they lie on a straight line. This is always true
when finding square roots of complex numbers.

Now try the following exercise.

Exercise 94 Further problems on powers and
roots of complex numbers

In problems 1 to 4, evaluate in Cartesian and in polar
form.

1. (a) (2 + j3)2 (b) (4 − j5)2

[(a) −5 + j12; 13∠112◦37′ (b) −9 − j40;
41∠−102◦41′]

2. (a) (−3 + j2)5 (b) (−2 − j)3

[(a) 597 + j122; 609.3∠11◦33′
(b) −2 − j11; 11.18∠−100◦17′]

3. (a) (4∠32◦)4 (b) (2∠125◦)5

[(a) −157.6 + j201.7; 256∠128◦
(b) −2.789 − j31.88; 32∠−95◦]

4. (a) (3∠−π/3)3 (b) 1.5∠−160◦)4

[(a) −27 + j0; 27∠−π
(b) 0.8792 + j4.986; 5.063∠80◦]

In problems 5 to 7, determine the two square roots
of the given complex numbers in Cartesian form and
show the results on an Argand diagram.

5. (a) 2 + j (b) 3 − j2
[(a) ±(1.455 + j0.344) (b) ±(1.818 − j0.550)]

6. (a) −3 + j4 (b) −1 − j3
[(a) ±(1 + j2) (b) ±(1.040 − j1.442)]

7. (a) 5∠36◦ (b) 14∠3π/2
[(a) ±(2.127 + j0.691) (b) ±(−2.646 + j2.646)]

8. Convert 2 − j into polar form and hence evaluate
(2 − j)7 in polar form.

[
√

5∠−26◦34′; 279.5∠174◦3′]



Ch24-H8139.tex 30/3/2007 17: 52 page 305

PART

3

24 Application of complex numbers to
series a.c. circuits

At the end of this chapter you should be able to:
• appreciate the use of complex numbers in a.c.

circuits
• perform calculations on series a.c. circuits using

complex numbers

24.1 Introduction

Simple a.c. circuits may be analysed by using phasor dia-
grams. However, when circuits become more complicated
analysis is considerably simplified by using complex num-
bers. It is essential that the basic operations used with
complex numbers, as outlined in Chapter 23, are thor-
oughly understood before proceeding with a.c. circuit
analysis. The theory introduced in Chapter 15 is relevant;
in this chapter similar circuits will be analysed using j
notation and Argand diagrams.

24.2 Series a.c. circuits

(a) Pure resistance

In an a.c. circuit containing resistance R only (see Figure
24.1(a)), the current IR is in phase with the applied voltage
VR as shown in the phasor diagram of Figure 24.1(b).
The phasor diagram may be superimposed on the Argand
diagram as shown in Figure 24.1(c). The impedance Z of
the circuit is given by

Z = VR∠0◦

IR∠0◦ = R

(b) Pure inductance

In an a.c. circuit containing pure inductance L only (see
Figure 24.2(a)), the current IL lags the applied voltage VL
by 90◦ as shown in the phasor diagram of Figure 24.2(b).
The phasor diagram may be superimposed on the Argand
diagram as shown in Figure 24.2(c). The impedance Z of
the circuit is given by

Z = VL∠90◦

IL∠0◦ = VL

IL
∠90◦ = XL∠90◦ or jXL

Figure 24.1 (a) Circuit diagram (b) Phasor diagram
(c) Argand diagram

where XL is the inductive reactance given by

XL = ωL = 2πfL ohms

where f is the frequency in hertz and L is the inductance
in henrys.

(c) Pure capacitance

In an a.c. circuit containing pure capacitance only (see Fig-
ure 24.3(a)), the current IC leads the applied voltage VC
by 90˚ as shown in the phasor diagram of Figure 24.3(b).
The phasor diagram may be superimposed on the Argand
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Figure 24.2 (a) Circuit diagram (b) Phasor diagram
(c) Argand diagram

Figure 24.3 (a) Circuit diagram (b) Phasor diagram
(c) Argand diagram

diagram as shown in Figure 24.3(c). The impedance Z of
the circuit is given by

Z = VC∠−90◦

IC∠0◦ = VC

IC
∠−90◦ = XC∠−90◦ or−jXC

where XC is the capacitive reactance given by

XC = 1
ωC

= 1
2πfC

ohms

where C is the capacitance in farads.

[
Note: −jXC = −j

ωC
= −j( j)

ωC( j)
= −j2

jωC
= −(−1)

jωC
= 1

jωC

]

(d) R–L series circuit

In an a.c. circuit containing resistance R and inductance L
in series (see Figure 24.4(a)), the applied voltage V is the
phasor sum of VR and VL as shown in the phasor diagram
of Figure 24.4(b). The current I lags the applied voltage V
by an angle lying between 0◦ and 90◦ — the actual value
depending on the values of VR and VL , which depend on
the values of R and L. The circuit phase angle, i.e. the angle
between the current and the applied voltage, is shown as

Figure 24.4 (a) Circuit diagram (b) Phasor diagram
(c) Argand diagram
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angle φ in the phasor diagram. In any series circuit the cur-
rent is common to all components and is thus taken as the
reference phasor in Figure 24.4(b). The phasor diagram
may be superimposed on the Argand diagram as shown in
Figure 24.4(c), where it may be seen that in complex form
the supply voltage V is given by:

V = VR + jVL

Figure 24.5(a) shows the voltage triangle that is derived
from the phasor diagram of Figure 24.4(b) (i.e. triangle
Oab). If each side of the voltage triangle is divided by
current I then the impedance triangle of Figure 24.5(b) is
derived. The impedance triangle may be superimposed on
the Argand diagram, as shown in Figure 24.5(c), where
it may be seen that in complex form the impedance Z is
given by:

Z = R + jXL

Figure 24.5 (a) Voltage triangle (b) Impedance triangle
(c) Argand diagram

Thus, for example, an impedance expressed as (3 + j4) �
means that the resistance is 3 � and the inductive reactance
is 4 �
In polar form, Z = |Z| ∠ φ where, from the impedance
triangle, the modulus of impedance |Z| =√

(R2 + X2
L) and

the circuit phase angle φ = tan−1 (XL/R) lagging

(e) R–C series circuit

In an a.c. circuit containing resistance R and capacitance
C in series (see Figure 24.6(a)), the applied voltage V is the
phasor sum of VR and VC as shown in the phasor diagram
of Figure 24.6(b). The current I leads the applied voltage
V by an angle lying between 0◦ and 90◦ — the actual value
depending on the values of VR and VC , which depend on
the values of R and C. The circuit phase angle is shown as
angle φ in the phasor diagram. The phasor diagram may be
superimposed on the Argand diagram as shown in Figure
24.6(c), where it may be seen that in complex form the
supply voltage V is given by:

V = VR − jVC

Figure 24.6 (a) Circuit diagram (b) Phasor diagram
(c) Argand diagram

Figure 24.7(a) shows the voltage triangle that is derived
from the phasor diagram of Figure 24.6(b). If each
side of the voltage triangle is divided by current I, the
impedance triangle is derived as shown in Figure 24.7(b).
The impedance triangle may be superimposed on the
Argand diagram as shown in Figure 24.7(c), where it may
be seen that in complex form the impedance Z is given by

Z = R − jXC

Thus, for example, an impedance expressed as (9 − j14) �
means that the resistance is 9 � and the capacitive react-
ance XC is 14 �
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Figure 24.7 (a) Voltage triangle (b) Impedance triangle
(c) Argand diagram

In polar form, Z = |Z| ∠ φ where, from the impedance tri-
angle, |Z| =√

(R2 + X2
C) and φ = tan−1 (XC/R) leading

(f) R–L–C series circuit

In an a.c. circuit containing resistance R, inductance L and
capacitance C in series (see Figure 24.8(a)), the applied
voltage V is the phasor sum of VR, VL and VC as shown
in the phasor diagram of Figure 24.8(b) (where the con-
dition VL > VC is shown). The phasor diagram may be
superimposed on the Argand diagram as shown in Figure
24.8(c), where it may be seen that in complex form the
supply voltage V is given by:

V = VR + j(VL − VC)

From the voltage triangle the impedance triangle is derived
and superimposing this on the Argand diagram gives, in
complex form,

impedance Z = R + j(XL − XC) or Z =|Z | ∠φ

where,

|Z| =√
[R2 + (XL − XC)2] and φ = tan−1 (XL − XC)/R

When VL = VC , XL = XC and the applied voltage V and
the current I are in phase. This effect is called series
resonance and is discussed separately in Chapter 28.

Figure 24.8 (a) Circuit diagram (b) Phasor diagram
(c) Argand diagram

(g) General series circuit

In an a.c. circuit containing several impedances connected
in series, say, Z1, Z2, Z3, · · · , Zn, then the total equivalent
impedance ZT is given by

ZT = Z1 + Z2 + Z3 + · · · + Zn

Problem 1. Determine the values of the resistance
and the series-connected inductance or capacitance
for each of the following impedances: (a) (12 + j5) �
(b) −j40 � (c) 30∠60◦ � (d) 2.20 × 106∠−30◦ �.
Assume for each a frequency of 50 Hz.

(a) From Section 24.2(d), for an R–L series circuit,
impedance Z = R + jXL.

Thus Z = (12 + j5) � represents a resistance of 12 �
and an inductive reactance of 5 � in series.
Since inductive reactance XL = 2πfL,

inductance L = XL

2πf
= 5

2π(50)
= 0.0159 H

i.e. the inductance is 15.9 mH.
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Thus an impedance (12 + j5) � represents a
resistance of 12 � in series with an inductance of
15.9 mH.

(b) From Section 24.2(c), for a purely capacitive circuit,
impedance Z = −jXC .
Thus Z = −j40 � represents zero resistance and a
capacitive reactance of 40 �.
Since capacitive reactance XC = 1/(2πfC),

capacitance C = 1

2πfXC
= 1

2π(50)(40)
F

= 106

2π(50)(40)
µF = 79.6 µF

Thus an impedance −j40 � represents a pure
capacitor of capacitance 79.6 µF

(c) 30∠60◦ = 30( cos 60◦ + j sin 60◦) = 15 + j25.98

Thus Z = 30∠60◦ � = (15 + j25.98) � represents a
resistance of 15 � and an inductive reactance of
25.98 � in series (from Section 24.2(d)).
Since XL = 2πfL,

inductance L = XL

2πf
= 25.98

2π(50)

= 0.0827 H or 82.7 mH

Thus an impedance 30∠60◦ � represents a resist-
ance of 15 � in series with an inductance of
82.7 mH

(d) 2.20 × 106∠−30◦

= 2.20 × 106[cos(−30◦) + j sin (−30◦)]

= 1.905 × 106 − j1.10 × 106

Thus Z = 2.20 × 106∠−30◦ �
= (1.905 × 106 −j1.10 × 106) �

represents a resistance of 1.905 × 106 � (i.e.
1.905 M�) and a capacitive reactance of 1.10 × 106 �
in series (from Section 24.2(e)).

Since capacitive reactance XC = 1/(2πfC),

capacitance C = 1

2πfXC
= 1

2π(50)(1.10 × 106)
F

= 2.894 × 10−9 F or 2.894 nF

Thus an impedance 2.2 × 106∠−30 ◦� represents
a resistance of 1.905 M� in series with a 2.894 nF
capacitor.

Problem 2. Determine, in polar and rectangular
forms, the current flowing in an inductor of negli-
gible resistance and inductance 159.2 mH when it is
connected to a 250V, 50 Hz supply.

Inductive reactance

XL = 2πfL = 2π(50)(159.2 × 10−3) = 50 �

Thus circuit impedance Z = (0 + j50) � = 50∠90◦ �

Supply voltage, V = 250∠0◦ V (or (250 + j0)V)

(Note that since the voltage is given as 250V, this is
assumed to mean 250∠0◦ V or (250 + j0)V)

Hence current I = V

Z
= 250∠0◦

50∠90◦ = 250

50
∠(0◦ − 90◦)

= 5∠−90◦ A

Alternatively, I = V

Z
= (250 + j0)

(0 + j50)
= 250(−j50)

j50(−j50)

= −j(50)(250)

502 = −j5 A

which is the same as 5∠−90◦ A

Problem 3. A 3 µF capacitor is connected to a supply
of frequency 1 kHz and a current of 2.83∠90◦ A flows.
Determine the value of the supply p.d.

Capacitive reactance XC = 1

2πfC
= 1

2π(1000)(3 × 10−6)

= 53.05 �

Hence circuit impedance

Z = (0 − j53.05)� = 53.05∠−90◦ �

Current I = 2.83∠90◦ A (or (0 + j2.83)A)

Supply p.d., V = IZ = (2.83∠90◦)(53.05∠−90◦)

i.e. p.d. = 150∠0◦ V

Alternatively, V = IZ = (0 + j2.83)(0 − j53.05)

= − j2(2.83)(53.05) = 150V

Problem 4. The impedance of an electrical circuit is
(30 − j50) ohms. Determine (a) the resistance, (b) the
capacitance, (c) the modulus of the impedance, and
(d) the current flowing and its phase angle, when the
circuit is connected to a 240V, 50 Hz supply.

(a) Since impedance Z = (30 − j50) �, the resistance is
30 ohms and the capacitive reactance is 50 �

(b) Since XC = 1/(2πfC), capacitance,

C = 1

2πfXc
= 1

2π(50)(50)
= 63.66 µF
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(c) The modulus of impedance,

|Z| =√
(R2 + X2

C) = √
(302 + 502)

= 58.31 �

(d) Impedance Z = (30 − j50)� = 58.31∠ tan−1 XC

R

= 58.31∠−59.04◦ �

Hence current I = V

Z
= 240∠0◦

58.31∠−59.04◦

= 4.12∠59.04◦ A

Problem 5. A 200V, 50 Hz supply is connected
across a coil of negligible resistance and inductance
0.15 H connected in series with a 32 � resistor. Deter-
mine (a) the impedance of the circuit, (b) the current
and circuit phase angle, (c) the p.d. across the 32 �
resistor, and (d) the p.d. across the coil.

(a) Inductive reactance XL = 2πfL = 2π(50)(0.15)

= 47.1 �

Impedance Z = R + jXL

= (32 + j47.1)� or 57.0 ∠ 55.81◦�
The circuit diagram is shown in Figure 24.9

Figure 24.9

(b) Current I = V

Z
= 200∠0◦

57.0∠55.81◦ = 3.51∠−55.81◦ A

i.e. the current is 3.51 A lagging the voltage by
55.81◦

(c) P.d. across the 32 resistor,

VR = IR = (3.51∠−55.81◦)(32∠0◦)

i.e. VR = 112.3∠−55.81◦ V

(d) P.d. across the coil,

VL = IXL = (3.51∠−55.81◦)(47.1∠90◦)

i.e. VL = 165.3∠34.19◦ V

The phasor sum of VR and VL is the supply voltage V as
shown in the phasor diagram of Figure 24.10.

VR = 112.3∠−55.81◦ = (63.11 − j92.89) V

VL = 165.3∠34.19◦ V = (136.73 + j92.89) V

Figure 24.10

Hence

V = VR + VL = (63.11 − j92.89) + (136.73 + j92.89)

= (200 + j0) V or 200∠0◦ V, correct to three
significant figures.

Problem 6. Determine the value of impedance if a
current of (7 + j16)A flows in a circuit when the supply
voltage is (120 + j200)V. If the frequency of the sup-
ply is 5 MHz, determine the value of the components
forming the series circuit.

Impedance Z = V

I
= (120 + j200)

(7 + j16)
= 233.24∠59.04◦

17.464∠66.37◦

= 13.36∠−7.33 � or (13.25 − j1.705)�

The series circuit thus consists of a 13.25 � resistor and
a capacitor of capacitive reactance 1.705 �

Since XC = 1

2πfC

capacitance C = 1

2πf XC

= 1

2π(5 × 106)(1.705)

= 1.867 × 10−8 F = 18.67 nF
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Now try the following exercise.

Exercise 95 Further problems on series a.c.
circuits

1. Determine the resistance R and series inductance
L (or capacitance C) for each of the following
impedances, assuming the frequency to be 50 Hz.
(a) (4 + j7)� (b) (3 − j20)� (c) j10 � (d) −j3 k�
(e) 15∠(π/3)� (f) 6∠−45◦ M�

[(a) R = 4 �, L = 22.3 mH
(b) R = 3 �, C = 159.2 µF (c) R = 0, L = 31.8 mH
(d) R = 0,C = 1.061 µF (e) R = 7.5 �, L = 41.3 mH

(f) R = 4.243 M�, C = 0.750 nF]

2. A 0.4 µF capacitor is connected to a 250V, 2 kHz
supply. Determine the current flowing.

[1.257∠90◦ A or j1.257 A]

3. Two voltages in a circuit are represented
by (15 + j10)V and (12 − j4)V. Determine the mag-
nitude of the resultant voltage when these voltages
are added. [27.66V]

4. A current of 2.5∠−90◦ A flows in a coil of induct-
ance 314.2 mH and negligible resistance when con-
nected across a 50 Hz supply. Determine the value
of the supply p.d. [246.8∠0◦ V]

5. A voltage (75 + j90)V is applied across an
impedance and a current of (5 + j12)A flows. Deter-
mine (a) the value of the circuit impedance, and
(b) the values of the components comprising the
circuit if the frequency is 1 kHz.

[(a) Z = (8.61 − j2.66)� or 9.01∠−17.19◦ �
(b) R = 8.61 �, C = 59.83 µF]

6. A 30 µF capacitor is connected in series with a
resistance R at a frequency of 200 Hz. The result-
ing current leads the voltage by 30◦. Determine the
magnitude of R. [45.95 �]

7. A coil has a resistance of 40 � and an induc-
tive reactance of 75 �. The current in the coil is
1.70∠0◦ A. Determine the value of (a) the supply
voltage, (b) the p.d. across the 40 � resistance, (c)
the p.d. across the inductive part of the coil, and (d)
the circuit phase angle. Draw the phasor diagram.

[(a) (68 + j127.5)V or 144.5∠61.93◦ V
(b) 68∠0◦V (c) 127.5∠90◦V (d) 61.93◦ lagging]

8. An alternating voltage of 100V, 50 Hz is applied
across an impedance of (20 − j30)�. Calculate
(a) the resistance, (b) the capacitance, (c) the cur-
rent, and (d) the phase angle between current and
voltage [(a) 20 � (b) 106.1 µF (c) 2.774 A

(d) 56.31◦ leading]

9. A capacitor C is connected in series with a coil
of resistance R and inductance 30 mH. The cur-
rent flowing in the circuit is 2.5∠−40◦ A when
the supply p.d. is 200V at 400 Hz. Determine the
value of (a) resistance R, (b) capacitance C, (c)
the p.d. across C, and (d) the p.d., across the coil.
Draw the phasor diagram.

[(a) 61.28 � (b) 16.59 µF (c) 59.95∠−130◦ V
(d) 242.9∠10.90◦ V]

10. If the p.d. across a coil is (30 + j20)V at 60 Hz and
the coil consists of a 50 mH inductance and 10 �
resistance, determine the value of current flowing
(in polar and Cartesian forms).

[1.69∠−28.36◦A; (1.49 − j0.80)A]

24.3 Further worked problems on series
a.c. circuits

Problem 7. For the circuit shown in Figure 24.11,
determine the value of impedance Z2

Figure 24.11

Total circuit impedance

Z = V

I
= 70∠30◦

3.5∠−20◦
= 20∠50◦ � or (12.86 + j15.32)�

Total impedance Z = Z1 + Z2 (see Section 24.2(g)).

Hence (12.86 + j15.32) = (4.36 − j2.10) + Z2

from which, impedance

Z2 = (12.86 + j15.32) − (4.36 − j2.10)

= (8.50 + j17.42)� or 19.38∠63.99◦�

Problem 8. A circuit comprises a resistance of 90 �
in series with an inductor of inductive reactance 150 �.
If the supply current is 1.35 ∠0◦ A, determine (a) the
supply voltage, (b) the voltage across the 90 � resis-
tance, (c) the voltage across the inductance, and (d) the
circuit phase angle. Draw the phasor diagram.
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The circuit diagram is shown in Figure 24.12

Figure 24.12

(a) Circuit impedance Z = R + jXL = (90 + j150)� or
174.93∠59.04◦�
Supply voltage,

V = IZ = (1.35∠0◦)(174.93∠59.04◦)

= 236.2∠59.04◦ V or (121.5 + j202.5)V

(b) Voltage across 90 � resistor, VR = 121.5V (since
V = VR + jVL)

(c) Voltage across inductance, VL = 202.5V leading VR
by 90◦

(d) Circuit phase angle is the angle between the supply
current and voltage, i.e. 59.04◦ lagging (i.e. cur-
rent lags voltage). The phasor diagram is shown in
Figure 24.13.

Figure 24.13

Problem 9. A coil of resistance 25 � and induc-
tance 20 mH has an alternating voltage given by
v = 282.8 sin(628.4t + (π/3)) volts applied across it.
Determine (a) the rms value of voltage (in polar form),
(b) the circuit impedance, (c) the rms current flowing,
and (d) the circuit phase angle.

(a) Voltage v = 282.8 sin(628.4t + (π/3)) volts means
Vm = 282.8V, hence rms voltage

V = 0.707 × 282.8

[
or

1√
2

× 282.8

]

i.e. V = 200V

In complex form the rms voltage may be expressed as
200∠π/3V or 200∠60◦ V

(b) ω = 2πf = 628.4 rad/s, hence frequency

f = 628.4/(2π) = 100 Hz

Inductive reactance

XL = 2πfL = 2π(100)(20 × 10−3) = 12.57 �

Hence circuit impedance

Z = R + jXL = (25 + j12.57) � or 27.98∠26.69◦ �

(c) Rms current, I = V

Z
= 200∠60◦

27.98∠26.69◦

= 7.148∠33.31◦ A

(d) Circuit phase angle is the angle between current I and
voltage V , i.e. 60◦ − 33.31◦ = 26.69◦ lagging.

Problem 10. A 240V, 50 Hz voltage is applied across
a series circuit comprising a coil of resistance 12 � and
inductance 0.10 H, and 120 µF capacitor. Determine
the current flowing in the circuit.

The circuit diagram is shown in Figure 24.14.

Figure 24.14

Inductive reactance, XL = 2πfL = 2π(50)(0.10) = 31.4 �

Capacitive reactance,

XC = 1

2π fC
= 1

2π(50)(120 × 10−6)
= 26.5 �

Impedance Z = R + j(XL − XC) (see Section 24.2(f))

i.e. Z = 12 + j(31.4 − 26.5)
= (12 + j4.9)� or 13.0∠ 22.2◦ �

Current flowing, I = V

Z
= 240∠0◦

13.0∠22.2◦ = 18.5∠−22.2◦ A,

i.e. the current flowing is 18.5 A, lagging the voltage by
22.2◦.
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The phasor diagram is shown on the Argand diagram in
Figure 24.15

Figure 24.15

Problem 11. A coil of resistance R ohms and induc-
tance L henrys is connected in series with a 50 µF
capacitor. If the supply voltage is 225V at 50 Hz
and the current flowing in the circuit is 1.5∠ −30◦A,
determine the values of R and L. Determine also the
voltage across the coil and the voltage across the
capacitor.

Circuit impedance, Z = V

Z
= 225∠0◦

1.5∠−30◦

= 150∠30◦ � or (129.9 + j75.0)�

Capacitive reactance,

XC = 1

2πfC
= 1

2π(50)(50 × 10−6)
= 63.66 �

Circuit impedance Z = R + j(XL − XC)

i.e. 129.9 + j75.0 = R + j(XL − 63.66)

Equating the real parts gives: resistance R = 129.9 �.

Equating the imaginary parts gives: 75.0 = XL − 63.66,

from which, XL = 75.0 + 63.66 = 138.66 �

Since XL = 2πfL, inductance L = XL

2πf
= 138.66

2π(50)

= 0.441 H

The circuit diagram is shown in Figure 24.16.

Voltage across coil, VCOIL = IZCOIL

ZCOIL = R + jXL
= (129.9 + j138.66)� or 190∠46.87◦ �

Figure 24.16

Hence VCOIL = (1.5∠−30◦)(190∠46.87◦)

= 285∠16.87◦ V or 272.74 + j82.71)V

Voltage across capacitor,

VC = IXC = (1.5∠−30◦)(63.66∠−90◦)

= 95.49∠−120◦ V or ( − 47.75− j82.70)V

[Check: Supply voltage,

V = VCOIL + VC

= (272.74 + j82.71) + (−47.75 − j82.70)

= (225 + j0)V or 225∠0◦ V]

Problem 12. For the circuit shown in Figure 24.17,
determine the values of voltages V1 and V2 if the supply
frequency is 4 kHz. Determine also the value of the
supply voltage V and the circuit phase angle. Draw
the phasor diagram.

Figure 24.17
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For impedance Z1,

XC = 1

2πfC
= 1

2π(4000)(2.653 × 10−6)
= 15 �

Hence Z1 = (8 − j15)� or 17∠−61.93◦ �

and voltage V1 = IZ1 = (6∠0◦)(17∠−61.93◦)

= 102∠−61.93◦ V or (48 − j90)V

For impedance Z2,

XL = 2πfL = 2π(4000)(0.477 × 10−3) = 12 �

Hence Z2 = (5 + j12)� or 13∠67.38◦ �

and voltage V2 = IZ2 = (6∠0◦)(13∠67.38◦)

= 78∠67.38◦ V or (30 + j72)V

Supply voltage, V = V1 + V2 = (48 − j90) + (30 + j72)

= (78 − j18)V or 80 ∠−13◦ V

Circuit phase angle, φ = 13◦ leading. The phasor diagram
is shown in Figure 24.18.

Figure 24.18

Now try the following exercise.

Exercise 96 Further problems on series a.c.
circuits

1. Determine, in polar form, the complex impedances
for the circuits shown in Figure 24.19 if the fre-
quency in each case is 50 Hz.

[(a) 44.53∠−63.31◦ � (b) 19.77∠52.62◦ �
(c) 113.5 ∠−58.08◦�]

Figure 24.19

2. For the circuit shown in Figure 24.20 determine the
impedance Z in polar and rectangular forms.

[Z = (1.85 + j6.20)� or 6.47 ∠73.39◦ �]

Figure 24.20

3. A series circuit consists of a 10 � resistor, a coil
of inductance 0.09 H and negligible resistance, and
a 150 µF capacitor, and is connected to a 100V,
50 Hz supply. Calculate the current flowing and its
phase relative to the supply voltage.

[8.17A lagging V by 35.20◦]

4. A 150 mV, 5 kHz source supplies an a.c. circuit con-
sisting of a coil of resistance 25 � and inductance
5 mH connected in series with a capacitance of
177 nF. Determine the current flowing and its phase
angle relative to the source voltage.

[4.44∠42.31◦ mA]

5. Two impedances, Z1 = 5∠30◦ � and Z2 =
10∠45◦ � draw a current of 3.36 A when con-
nected in series to a certain a.c. supply. Determine
(a) the supply voltage, (b) the phase angle between
the voltage and current, (c) the p.d. across Z1, and
(d) the p.d. across Z2

[(a) 50V (b) 40.01◦ lagging (c) 16.8∠30◦ V
(d) 33.6∠45◦ V]

6. A 4500 pF capacitor is connected in series
with a 50 � resistor across an alternating voltage
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v = 212.1 sin(π106t + π/4) volts. Calculate (a) the
rms value of the voltage, (b) the circuit impedance,
(c) the rms current flowing, (d) the circuit phase
angle, (e) the voltage across the resistor, and (f) the
voltage across the capacitor.

[(a) 150∠45◦ V (b) 86.63∠−54.75◦ �
(c) 1.73∠99.75◦ A (d) 54.75◦ leading

(e) 86.50∠99.75◦ V (f) 122.38∠9.75◦ V]

7. Three impedances are connected in series across a
120V, 10 kHz supply. The impedances are:

(i) Z1, a coil of inductance 200 µH and resistance
8 �

(ii) Z2, a resistance of 12 �
(iii) Z3, a 0.50 µF capacitor in series with a 15 �

resistor.
Determine (a) the circuit impedance, (b) the circuit
current, (c) the circuit phase angle, and (d) the p.d.
across each impedance.

[(a) 39.95∠−28.82◦ � (b) 3.00∠28.82◦A
(c) 28.82◦ leading (d) V1 = 44.70∠86.35◦ V,

V2 = 36.00∠28.82◦ V,
V3 = 105.56∠−35.95◦ V]

8. Determine the value of voltages V1 and V2 in the
circuit shown in Figure 24.21, if the frequency of
the supply is 2.5 kHz. Find also the value of the
supply voltage V and the circuit phase angle. Draw
the phasor diagram.

[V1 = 164∠−12.68◦ V or (160 − j36)V
V2 = 104∠67.38˚ V or (40 + j96)V

V3 = 208.8∠16.70˚ V or (200 + j60)V
Phase angle = 16.70˚ lagging]

Figure 24.21

9. A circuit comprises a coil of inductance 40 mH and
resistance 20 � in series with a variable capacitor.
The supply voltage is 120V at 50 Hz. Determine
the value of capacitance needed to cause a current
of 2.0A to flow in the circuit. [46.04 µF]

10. For the circuit shown in Figure 24.22, determine
(i) the circuit current I flowing, and (ii) the p.d.
across each impedance.

[(i) 3.71∠−17.35◦ A
(ii) V1 = 55.65∠12.65◦ V,

V2 = 37.10∠−77.35◦V, V3 = 44.52∠32.65◦ V]

Figure 24.22
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25 Application of complex numbers to
parallel a.c. networks

At the end of this chapter you should be able to:
• determine admittance, conductance and susceptance

in a.c. circuits
• perform calculations on parallel a.c. circuits using

complex numbers

25.1 Introduction

As with series circuits, parallel networks may be analysed
by using phasor diagrams. However, with parallel net-
works containing more than two branches this can become
very complicated. It is with parallel a.c. network analysis
in particular that the full benefit of using complex numbers
may be appreciated. The theory for parallel a.c. networks
introduced in Chapter 16 is relevant; more advanced net-
works will be analysed in this chapter using j notation.
Before analysing such networks admittance, conductance
and susceptance are defined.

25.2 Admittance, conductance and susceptance

Admittance is defined as the current I flowing in an a.c.
circuit divided by the supply voltage V (i.e. it is the recip-
rocal of impedance Z). The symbol for admittance is Y .
Thus

Y = I
V

= 1
Z

The unit of admittance is the Siemen, S.
An impedance may be resolved into a real part R and

an imaginary part X, giving Z = R ± jX. Similarly, an
admittance may be resolved into two parts — the real
part being called the conductance G, and the imaginary
part being called the susceptance B — and expressed in
complex form. Thus admittance

Y = G ± jB

When an a.c. circuit contains:

(a) pure resistance, then

Z = R and Y = 1

Z
= 1

R
= G

(b) pure inductance, then

Z = jXL and Y = 1

Z
= 1

jXL
= −j

( jXL)(−j)

= −j

XL
= −jBL

thus a negative sign is associated with inductive
susceptance, BL

(c) pure capacitance, then

Z = −jXC and Y = 1

Z
= 1

−jXC
= j

(−jXC)( j)

= j

XC
= + jBC

thus a positive sign is associated with capacitive
susceptance, BC

(d) resistance and inductance in series, then

Z = R + jXL and Y = 1

Z
= 1

R + jXL

= (R − jXL)

R2 + X2
L

i.e. Y = R

R2 + X2
L

− j
XL

R2 + X2
L

or Y = R
|Z|2 − j

XL

|Z|2

Thus conductance, G = R/|Z|2 and inductive suscep-
tance, BL = −XL/|Z|2
(Note that in an inductive circuit, the imaginary
term of the impedance, XL , is positive, whereas the
imaginary term of the admittance, BL , is negative.)

(e) resistance and capacitance in series, then

Z = R − jXC and Y = 1

Z
= 1

R − jXC
= R + jXC

R2 + X2
C
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i.e. Y = R

R2 + X2
C

+ j
XC

R2 + X2
C

or

Y = R
|Z|2 + j

XC

|Z|2

Thus conductance, G = R/|Z|2 and capacitive suscep-
tance, BC = XC/|Z|2
(Note that in a capacitive circuit, the imaginary term
of the impedance, XC , is negative, whereas the
imaginary term of the admittance, BC , is positive.)

(f) resistance and inductance in parallel, then

1

Z
= 1

R
+ 1

jXL
= jXL + R

(R)( jXL)

from which, Z = (R)( jXL)

R + jXL

(
i.e.

product

sum

)

and Y = 1

Z
= R + jXL

jRXL
= R

jRXL
+ jXL

jRXL

i.e. Y = 1

jXL
+ 1

R
= (−j)

( jXL)(−j)
+ 1

R

or Y = 1
R

− j
XL

Thus conductance, G = 1/R and inductive suscep-
tance, BL = −1/XL.

(g) resistance and capacitance in parallel, then

Z = (R)(−jXC)

R − jXC

(
i.e.

product

sum

)

and Y = 1

Z
= R − jXC

−jRXC
= R

−jRXC
− jXC

−jRXC

i.e. Y = 1

−jXC
+ 1

R
= ( j)

(−jXC)( j)
+ 1

R

or Y = 1
R

+ j
XC

(25.1)

Thus conductance, G = 1/R and capacitive suscep-
tance, BC = l/XC
The conclusions that may be drawn from Sections (d)
to (g) above are:

(i) that a series circuit is more easily represented by an
impedance,

(ii) that a parallel circuit is often more easily represented
by an admittance especially when more than two
parallel impedances are involved.

Problem 1. Determine the admittance, conduc-
tance and susceptance of the following impedances:
(a) −j5 � (b) (25 + j40) � (c) (3 − j2) � (d) 50∠40◦ �

(a) If impedance Z = −j5 �, then

admittance Y = 1

Z
= 1

−j5
= j

(−j5)(j)
= j

5

= j 0.2 S or 0.2∠90◦ S

Since there is no real part, conductance, G = 0, and
capacitive susceptance, BC = 0.2 S

(b) If impedance Z = (25 + j40)� then

admittance Y = 1

Z
= 1

(25 + j40)
= 25 − j40

252 + 402

= 25

2225
− j40

2225
= (0.0112 − j0.0180)S

Thus conductance, G = 0.0112 S and inductive
susceptance, BL = 0.0180 S

(c) If impedance Z = (3 − j2)�, then

admittance Y = 1

Z
= 1

(3 − j2)
= 3 + j2

32 + 22

=
(

3

13
+ j

2

13

)
S or

(0.231 + j0.154) S

Thus conductance, G = 0.231 S and capacitive
susceptance, BC = 0.154 S

(d) If impedance Z = 50∠40◦ �, then

admittance Y = 1

Z
= 1

50∠40◦ = 1∠0◦

50∠40◦

= 1

50
∠−40◦ = 0.02 ∠−40◦ S or

(0.0153 − j0.0129)S

Thus conductance, G = 0.0153 S and inductive
susceptance, BL = 0.0129 S

Problem 2. Determine expressions for the impe-
dance of the following admittances: (a) 0.004∠30◦ S
(b) (0.001 − j0.002) S (c) (0.05 + j 0.08) S

(a) Since admittance Y = 1/Z , impedance Z = 1/Y .

Hence impedance Z = 1

0.004∠30◦ = 1∠0◦

0.004∠30◦

= 250 ∠−30◦ � or

(216.5 − j125)�
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(b) Impedance Z = 1

(0.001 − j0.002)

= 0.001 + j0.002

(0.001)2 + (0.002)2

= 0.001 + j0.002

0.000 005

= (200 + j400)� or 447.2∠63.43◦ �

(c) Admittance Y = (0.05 + j0.08) S = 0.094∠57.99◦ S

Hence impedance Z = 1

0.0094∠57.99◦

= 10.64∠ −57.99◦� or

(5.64 − j9.02) �

Problem 3. The admittance of a circuit is
(0.040 + j0.025) S. Determine the values of the
resistance and the capacitive reactance of the circuit if
they are connected (a) in parallel, (b) in series. Draw
the phasor diagram for each of the circuits.

(a) Parallel connection
Admittance Y = (0.040 + j0.025) S, therefore conduc-
tance, G = 0.040 S and capacitive susceptance, BC =
0.025 S. From equation (25.1) when a circuit consists
of resistance R and capacitive reactance in parallel, then
Y = (1/R) + ( j/XC).

Hence resistance R = 1

G
= 1

0.040
= 25 �

and capacitive reactance XC = 1

BC
= 1

0.025
= 40 �

The circuit and phasor diagrams are shown in Figure 25.1.

Figure 25.1 (a) Circuit diagram (b) Phasor diagram

(b) Series connection
Admittance Y = (0.040 + j0.025)S, therefore

impedance Z = 1

Y
= 1

0.040 + j0.025

= 0.040 − j0.025

(0.040)2 + (0.025)2

= (17.98 − j11.24)�

Thus the resistance, R = 17.98 � and capacitive
reactance, XC = 11.24 �.

The circuit and phasor diagrams are shown in Figure 25.2.

Figure 25.2 (a) Circuit diagram (b) Phasor diagram

The circuits shown in Figures 25.1(a) and 25.2(a) are
equivalent in that they take the same supply current I for a
given supply voltage V ; the phase angle φ between the cur-
rent and voltage is the same in each of the phasor diagrams
shown in Figures 25.1(b) and 25.2(b).

Now try the following exercise

Exercise 97 Further problems on admittance,
conductance and susceptance

1. Determine the admittance (in polar form), conduc-
tance and susceptance of the following impedances:
(a) j10 � (b) −j40 � (c) 32 ∠ −30◦ �
(d) (5 + j9)� (e) (16 − j10)�

[(a) 0.1∠−90◦ S, 0, 0.1 S
(b) 0.025∠90◦ S, 0, 0.025 S
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(c) 0.03125∠30◦ S, 0.0271 S, 0.0156 S
(d) 0.0971∠−60.93◦ S, 0.0472 S, 0.0849 S
(e) 0.0530∠32.04◦ S, 0.0449 S, 0.0281 S]

2. Derive expressions, in polar form, for
the impedances of the following admit-
tances: (a) 0.05∠40◦ S (b) 0.0016∠−25◦ S
(c) (0.1 + j0.4) S (d) (0.025 − j0.040) S

[(a) 20∠−40◦� (b) 625∠25◦�
(c) 2.425∠−75.96◦� (d) 21.20∠57.99◦�]

3. The admittance of a series circuit is
(0.010 − j0.004) S. Determine the values of
the circuit components if the frequency is 50 Hz.

[R = 86.21 �, L = 109.8 mH]

4. The admittance of a network is (0.05 − j0.08) S.
Determine the values of resistance and reactance in
the circuit if they are connected (a) in series, (b) in
parallel.

[(a) R = 5.62 �, XL = 8.99 �
(b) R = 20 �, XL = 12.5 �]

5. The admittance of a two-branch parallel network is
(0.02 + j0.05) S. Determine the circuit components
if the frequency is 1 kHz.

[R = 50 �, C = 7.958 µF]

6. Determine the total admittance, in rectangular and
polar forms, of each of the networks shown in
Figure 25.3.

Figure 25.3

[(a) (0.0154 − j0.0231) S or 0.0278∠−56.31◦ S
(b) (0.132 − j0.024) S or 0.134∠−10.30◦ S
(c) (0.08 + j0.01) S or 0.0806∠7.125◦ S
(d) (0.0596 − j0.0310) S or 0.0672∠−27.48◦ S]

25.3 Parallel a.c. networks

Figure 25.4 shows a circuit diagram containing three
impedances, Z1, Z2 and Z3 connected in parallel.
The potential difference across each impedance is the
same, i.e. the supply voltage V . Current I1 = V/Z1,
I2 = V/Z2 and I3 = V/Z3. If ZT is the total equivalent
impedance of the circuit then I = V/ZT . The supply
current, I = I1 + I2 + I3 (phasorially).

Figure 25.4

Thus
V

ZT
= V

Z1
+ V

Z2
+ V

Z3
and

1
ZT

= 1
Z1

+ 1
Z2

+ 1
Z3

or total admittance, YT = Y1 + Y2 + Y3
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In general, for n impedances connected in parallel,

YT = Y1 + Y2 + Y3 + · · · + Yn (phasorially)

It is in parallel circuit analysis that the use of admittance
has its greatest advantage.

Current division in a.c. circuits

For the special case of two impedances, Z1 and Z2,
connected in parallel (see Figure 25.5),

Figure 25.5

1

ZT
= 1

Z1
+ 1

Z2
= Z2 + Z1

Z1Z2

The total impedance, ZT = Z1Z2/(Z1 + Z2) (i.e. prod-
uct/sum).
From Figure 25.5,

supply voltage, V = IZT = I

(
Z1Z2

Z1 + Z2

)

Also, V = I1Z1 (and V = I2Z2)

Thus, I1Z1 = I

(
Z1Z2

Z1 + Z2

)

i.e. current I1 = I
(

Z2

Z1 + Z2

)

Similarly, current I2 = I
(

Z1

Z1 + Z2

)

Note that all of the above Circuit symbols infer complex
quantities either in Cartesian or polar form.

The following problems show how complex numbers are
used to analyse parallel a.c. networks.

Problem 4. Determine the values of currents I , I1 and
I2 shown in the network of Figure 25.6.

Figure 25.6

Total circuit impedance,

ZT = 5 + (8)( j6)

8 + j6
= 5 + ( j48)(8 − j6)

82 + 62

= 5 + j384 + 288

100

= (7.88 + j3.84)� or 8.77∠25.98◦ �

Current I = V

ZT
= 50∠0◦

8.77∠25.98◦ = 5.70∠−25.98◦ A

Current I1 = I

(
j6

8 + j6

)

= (5.70∠−25.98◦)

(
6∠90◦

10∠36.87◦

)

= 3.42∠27.15◦ A

Current I2 = I

(
8

8 + j6

)

= (5.70∠−25.98◦)

(
8∠0◦

10∠36.87◦

)

= 4.56∠−62.85◦ A

[Note: I = I1 + I2 = 3.42∠27.15◦ + 4.56∠−62.85◦

= (3.043 + j1.561) + (2.081 − j4.058)

= (5.124 − j2.497)A

= 5.70∠−25.98◦A]
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Problem 5. For the parallel network shown in
Figure 25.7, determine the value of supply current I
and its phase relative to the 40V supply.

Figure 25.7

Impedance Z1 = (5 + j12)�, Z2 = (3 − j4)� and Z3 = 8 �

Supply current I = V

ZT
= VYT where ZT = total circuit

impedance, and YT = total circuit admittance.

YT = Y1 + Y2 + Y3

= 1

Z1
+ 1

Z2
+ 1

Z3
= 1

(5 + j12)
+ 1

(3 − j4)
+ 1

8

= 5 − j12

52 + 122 + 3 + j4

32 + 42 + 1

8

= (0.0296 − j0.0710) + (0.1200 + j0.1600)

+ (0.1250)

i.e. YT = (0.2746 + j0.0890)S or 0.2887∠17.96◦ S

Current I = VYT = (40∠0◦)(0.2887∠17.96◦)

= 11.55∠17.96◦ A

Hence the current I is 11.55A and is leading the 40V
supply by 17.96◦

Alternatively, current I = I1 + I2 + I3

Current I1 = 40∠0◦

5 + j12
= 40∠0◦

13∠67.38◦

= 3.077∠ − 67.38◦ A or (1.183 − j2.840)A

Current I2 = 40∠0◦

3 − j4
= 40∠0◦

5∠−53.13◦ = 8∠53.13◦A

or (4.80 + j6.40)A

Current I3 = 40∠0◦

8∠0◦ = 5∠0◦ A or (5 + j0)A

Thus current I = I1 + I2 + I3

= (1.183 − j2.840) + (4.80 + j6.40)

+ (5 + j0)

= 10.983 + j3.560 = 11.55∠17.96◦ A,
as previously obtained.

Problem 6. An a.c. network consists of a coil, of
inductance 79.58 mH and resistance 18 �, in parallel
with a capacitor of capacitance 64.96 µF. If the supply
voltage is 250∠0◦ V at 50 Hz, determine (a) the total
equivalent circuit impedance, (b) the supply current,
(c) the circuit phase angle, (d) the current in the coil,
and (e) the current in the capacitor.

The circuit diagram is shown in Figure 25.8.

Figure 25.8

Inductive reactance, XL = 2πf L = 2π(50)(79.58 × 10−3)

= 25 �

Hence the impedance of the coil,

ZCOIL = (R + jXL) = (18 + j25)� or 30.81∠54.25◦ �

Capacitive reactance, XC = 1

2πfC

= 1

2π(50)(64.96 × 10−6)

= 49 �

In complex form, the impedance presented by the capac-
itor, ZC is −jXC , i.e. −j49 � or 49∠−90◦�

(a) Total equivalent circuit impedance,

ZT = ZCOILXC

ZCOIL + ZC

(
i.e.

product

sum

)
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= (30.81∠54.25◦)(49∠−90◦)

(18 + j25) + (−j49)

= (30.81∠54.25◦)(49∠−90◦)

18 − j24

= (30.81∠54.25◦)(49∠−90◦)

30∠−53.13◦

= 50.32∠(54.25◦− 90◦ − (−53.13◦))

= 50.32∠17.38◦ or (48.02 + j15.03)�

(b) Supply current I = V

ZT
= 250∠0◦

50.32∠17.38◦

= 4.97∠−17.38◦ A
(c) Circuit phase angle = 17.38◦ lagging, i.e. the current

I lags the voltage V by 17.38◦

(d) Current in the coil, ICOIL = V

ZCOIL
= 250∠0◦

30.81∠54.25◦
= 8.11 ∠−54.25◦ A

(e) Current in the capacitor, IC = V

ZC
= 250∠0◦

49∠−90◦

= 5.10∠90◦ A

Now try the following exercise

Exercise 98 Further problems on parallel a.c.
networks

1. Determine the equivalent circuit impedances of the
parallel networks shown in Figure 25.9.

Figure 25.9

[(a) (4 − j8)�or 8.94∠−63.43◦�
(b) (7.56 + j1.95) � or 7.81∠14.46◦�

(c) (14.04 − j0.74)� or 14.06∠−3.02◦�]

2. Determine the value and phase of currents I1 and I2
in the network shown in Figure 25.10.

Figure 25.10

[I1 = 8.94∠−10.30◦ A, I2 = 17.89∠79.70◦ A]

3. For the series-parallel network shown in
Figure 25.11, determine (a) the total network
impedance across AB, and (b) the supply current
flowing if a supply of alternating voltage 30∠20◦ V
is connected across AB.

Figure 25.11

[(a) 10∠36.87◦ � (b) 3∠−16.87◦ A]

4. For the parallel network shown in Figure 25.12,
determine (a) the equivalent circuit impedance,
(b) the supply current I , (c) the circuit phase angle,
and (d) currents I1 and I2

Figure 25.12



Ch25-H8139.tex 29/3/2007 18: 24 page 323

Application of complex numbers to parallel a.c. networks 323

PART

3

[(a) 10.33∠−6.31◦� (b) 4.84∠6.31◦ A
(c) 6.31◦ leading (d) I1 = 0.953∠−73.38◦ A,

I2 = 4.765∠17.66◦ A]

5. For the network shown in Figure 25.13, determine
(a) current I1, (b) current I2, (c) current I , (d)
the equivalent input impedance, and (e) the supply
phase angle.

Figure 25.13

[(a) 15.08∠90◦ A (b) 3.39∠−45.15◦ A
(c) 12.90∠79.33◦ A (d) 9.30∠−79.33◦ �

(e) 79.33◦ leading]

6. Determine, for the network shown in Figure
25.14, (a) the total network admittance, (b) the
total network impedance, (c) the supply current I ,
(d) the network phase angle, and (e) currents I1,
I2, I3 and I4.

Figure 25.14

[(a) 0.0733∠43.39◦ S (b) 13.64∠−43.39◦ �
(c) 1.833∠43.39◦ A (d) 43.39◦ leading

(e) I1 = 0.455∠−43.30◦ A, I2 = 1.863∠57.50◦ A,
I3 = 1∠0◦ A, I4 = 1.570∠90◦ A]

7. Four impedances of (10 − j20) �, (30 + j0) �,
(2 − j15) � and (25 + j12)� are connected in
parallel across a 250V a.c. supply. Find the supply
current and its phase angle. [32.62∠43.55◦ A]

8. In the network shown in Figure 25.15, the volt-
meter indicates 24V. Determine the reading on the
ammeter. [7.53A]

Figure 25.15

25.4 Further worked problems on parallel a.c.
networks

Problem 7. (a) For the network diagram of Fig-
ure 25.16, determine the value of impedance Z1 (b) If
the supply frequency is 5 kHz, determine the value of
the components comprising impedance Z1

Figure 25.16

(a) Total circuit admittance,

YT = I

V
= 31.4∠52.48◦

50∠30◦
= 0.628∠25.48◦S or

(0.58 + j0.24)S

YT = Y1 + Y2 + Y3

Thus (0.58 + j0.24) = Y1 + 1

(8 + j6)
+ 1

10

= Y1 + 8 − j6

82 + 62 + 0.1

i.e. 0.58 + j0.24 = Y1 + 0.08 − j0.06 + 0.1

Hence Y1 = (0.58 − 0.08 − 0.1)

+ j(0.24 + j0.06)

= (0.4 + j0.3)S or 0.5∠36.87◦S
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Thus impedance, Z1 = 1

Y1
= 1

0.5∠36.87◦

= 2∠−36.87◦ �

or (1.6 − j1.2)�

(b) Since Z1 = (1.6 − j1.2) �, resistance = 1.6 � and
capacitive reactance, XC = 1.2 �.

Since XC = 1

2πfC
, capacitance C = 1

2πfXC

= 1

2π(5000)(1.2)
F

i.e. capacitance = 26.53 µF

Problem 8. For the series-parallel arrangement
shown in Figure 25.17, determine (a) the equivalent
series circuit impedance, (b) the supply current I ,
(c) the circuit phase angle, (d) the values of voltages
V1 and V2, and (e) the values of currents IA and IB

Figure 25.17

(a) The impedance, Z , of the two branches connected in
parallel is given by:

Z = (5 + j7)(4 − j15)

(5 + j7) + (4 − j15)

= 20 − j75 + j28 − j2105

9 − j8

= 125 − j47

9 − j8
= 133.54∠−20.61◦

12.04∠−41.63◦

= 11.09∠−21.02◦ � or (10.35 + j3.98)�

Equivalent series circuit impedance,

ZT = (1.65 + j1.02) + (10.35 + j3.98)

= (12 + j5)� or 13∠ 22.62◦ �

(b) Supply current, I = V

Z
= 91∠0◦

13∠22.62◦

= 7∠ −22.62◦ A

(c) Circuit phase angle = 22.62◦ lagging

(d) Voltage V1 = IZ1, where Z1 = (1.65 + j1.02) � or
1.94∠31.72◦ �.

Hence V1 = (7∠−22.62◦)(1. 94∠31.72◦)

= 13.58∠9.10◦ V

Voltage V2 = IZ , where Z is the equivalent impedance
of the two branches connected in parallel.

Hence V2 = (7∠−22.62◦) (11.09∠21.02◦)

= 77.63∠−1.60◦ V

(e) Current IA = V2/ZA, where ZA = (5 + j7) � or

8.60∠54.46◦�.

Thus IA = 77.63∠−1.60◦

8.60∠54.46◦ = 9.03∠−56.06◦A

Current IB = V2/ZB,

where ZB = (4 − j15)� or 15.524∠−75.07◦�

Thus IB = 77.63∠−1.60◦

15.524 ∠− 75.07◦ = 5.00∠73.47◦ A

[Alternatively, by current division,

IA = I

(
ZB

ZA + ZB

)

= 7∠−22.62◦
(

15.524∠−75.07◦

(5 + j7) + (4 − j15)

)

= 7∠−22.62◦
(

15.524∠−75.07◦

9 − j8

)

= 7∠−22.62◦
(

15.524∠−75.07◦

12.04∠−41.63◦

)

= 9.03∠−56.06◦A
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IB = I

(
ZA

ZA + ZB

)

= 7∠−22.62◦
(

8.60∠54.46◦

12.04∠−41.63◦

)

= 5.00∠73.47◦A]

Now try the following exercise.

Exercise 99 Further problems on parallel a.c.
networks

1. Three impedances are connected in parallel to
a 100V, 50 Hz supply. The first impedance
is (10 + j12.5) � and the second impedance is
(20 + j8) �. Determine the third impedance if the
total current is 20∠−25◦ A.

[(9.74 + j1.82) � or 9.91∠10.56◦�]

2. For each of the network diagrams shown in Fig-
ure 25.18, determine the supply current I and their
phase relative to the applied voltages.

Figure 25.18

[(a) 1.632∠−17.10◦ A (b) 5.412∠−8.46◦ A]

3. Determine the value of current flowing in the
(12 + j9) � impedance in the network shown in
Figure 25.19.

Figure 25.19

[7.66∠33.63◦ A]

4. In the series-parallel network shown in Figure 25.20
the p.d. between points A and B is 50∠−68.13◦ V.
Determine (a) the supply current I , (b) the equiv-
alent input impedance, (c) the supply voltage V ,
(d) the supply phase angle, (e) the p.d. across points
B and C, and (f) the value of currents I1 and I2.

Figure 25.20

[(a) 11.99∠−31.81◦ A (b) 8.54∠20.56◦ �
(c) 102.4∠−11.25◦ V (d) 20.56◦ lagging

(e) 86.0∠17.91◦ V (f) I1 = 7.37∠−13.05◦ A
I2 = 5.54∠−57.16◦ A]

5. For the network shown in Figure 25.21, determine
(a) the value of impedance Z2, (b) the current flow-
ing in Z2, and (c) the components comprising Z2 if
the supply frequency is 2 kHz.

Figure 25.21

[(a) 6.25∠52.34◦� (b) 16.0∠7.66◦ A
(c) R = 3.819 �, L = 0.394 mH]
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6. Coils of impedance (5 + j8) � and (12 + j16) �
are connected in parallel. In series with this com-
bination is an impedance of (15 −j40) �. If the
alternating supply pd. is 150∠0◦ V, determine (a)
the equivalent network impedance, (b) the supply
current, (c) the supply phase angle, (d) the current
in the (5 + j8)� impedance, and (e) the current in
the (12 + j16)� impedance.

[(a) 39.31∠−61.84◦� (b) 3.816∠61.84◦ A
(c) 61.84◦ leading (d) 2.595∠60.28◦ A

(e) 1.224∠65.15◦ A]

7. For circuit shown in Figure 25.22, determine (a) the
input impedance, (b) the source voltage V , (c) the
p.d. between points A and B, and (d) the current in
the 10 � resistor.

2.43 Ω

5 Ω

20 Ω

15 Ω

10 Ω
j3.76 Ω

j8 Ω

�j10 Ω

l�15∠30° A

�j5 Ω

BA

V

Figure 25.22

[(a) 10.0∠36.87◦ �
(b) 150∠66.87◦ V

(c) 90∠51.92◦ V
(d) 2.50∠18.23◦ A]
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26 Power in a.c. circuits

At the end of this chapter you should be able to:
• determine active, apparent and reactive power in a.c.

series/parallel networks
• appreciate the need for power factor improvement

• perform calculations involving power factor
improvement

26.1 Introduction

Alternating currents and voltages change their polarity
during each cycle. It is not surprising therefore to find
that power also pulsates with time. The product of voltage
v and current i at any instant of time is called instantaneous
power p, and is given by:

p = vi

26.2 Determination of power in a.c. circuits

(a) Purely resistive a.c. circuits

Let a voltage v = Vm sin ωt be applied to a circuit compris-
ing resistance only. The resulting current is i = Im sin ωt,
and the corresponding instantaneous power, p, is given by:

p = vi = (Vm sin ωt)(Im sin ωt)

i.e. p = VmIm sin2 ωt

From trigonometrical double angle formulae,
cos 2A = 1–2 sin2A, from which,

sin2A = 1
2 (1 − cos 2A)

Thus sin2ωt = 1
2 (1 − cos 2ωt)

Then power p = VmIm
[ 1

2 (1 − cos 2ωt)
]

i.e. p = 1
2 VmIm(1 − cos 2ωt)

The waveforms of v, i and p are shown in Figure 26.1. The
waveform of power repeats itself after π/ω seconds and
hence the power has a frequency twice that of voltage and
current. The power is always positive, having a maximum
value of VmIm. The average or mean value of the power is
1
2 VmIm.

The rms value of voltage V = 0.707Vm, i.e.
V = Vm/

√
2, from which, Vm = √

2 V . Similarly, the rms

Figure 26.1 The waveforms of v, i and p

value of current, I = Im/
√

2, from which, Im = √
2 I .

Hence the average power, P, developed in a purely
resistive a.c. circuit is given by

P = 1
2 VmIm = 1

2 (
√

2 V )(
√

2 I) = VI watts

Also, power P = I2R or V2/R as for a d.c. circuit, since
V = IR.

Summarizing, the average power P in a purely resistive
a.c. circuit is given by

P =VI = I2R = V 2

R
watts

where V and I are rms values.

(b) Purely inductive a.c. circuits

Let a voltage v = Vm sin ωt be applied to a circuit con-
taining pure inductance (theoretical case). The resulting
current is i = Im sin(ωt − (π/2)) since current lags voltage
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by 90◦ in a purely inductive circuit, and the corresponding
instantaneous power, p, is given by:

p = vi = (Vm sin ωt)Im sin(ωt − (π/2))

i.e. p = VmIm sin ωt sin(ωt − (π/2))

However, sin(ωt − (π/2)) = − cos ωt

Thus p = − VmIm sin ωt cos ωt

Rearranging gives: p = − 1
2 VmIm (2 sin ωt cos ωt).

However, from the double-angle formulae,
2 sin ωt cos ωt = sin 2ωt.

Thus power, p = − 1
2 VmIm sin 2ωt

The waveforms of v, i and p are shown in Figure 26.2.
The frequency of power is twice that of voltage and cur-
rent. For the power curve shown in Figure 26.2, the area
above the horizontal axis is equal to the area below, thus
over a complete cycle the average power P is zero. It
is noted that when v and i are both positive, power p is
positive and energy is delivered from the source to the
inductance; when v and i have opposite signs, power p is
negative and energy is returned from the inductance to the
source.

Figure 26.2 Power in a purely inductive a.c. circuit

In general, when the current through an inductance is
increasing, energy is transferred from the circuit to the
magnetic field, but this energy is returned when the current
is decreasing.

Summarizing, the average power P in a purely induct-
ive a.c. circuit is zero.

(c) Purely capacitive a.c. circuits

Let a voltage v = Vm sin ωt be applied to a circuit
containing pure capacitance. The resulting current is
i = Im sin(ωt + (π/2)), since current leads voltage by 90◦

in a purely capacitive circuit, and the corresponding
instantaneous power, p, is given by:

p = vi = (Vm sin ωt)Im sin(ωt + (π/2))

i.e. p = VmIm sin ωt sin(ωt + (π/2))

However, sin(ωt + (π/2)) = cos ωt.

Thus P = VmIm sin ωt cos ωt

Rearranging gives p = 1
2 VmIm(2 sin ωt cos ωt).

Thus power, p = 1
2Vm Im sin 2ωt

The waveforms of v, i and p are shown in Figure 26.3.
Over a complete cycle the average power P is zero. When
the voltage across a capacitor is increasing, energy is trans-
ferred from the circuit to the electric field, but this energy
is returned when the voltage is decreasing.

Figure 26.3 Power in a purely capacitive a.c. circuit

Summarizing, the average power P in a purely capaci-
tive a.c. circuit is zero.

(d) R–L or R–C a.c. circuits

Let a voltage v = Vm sin ωt be applied to a circuit contain-
ing resistance and inductance or resistance and capaci-
tance. Let the resulting current be i = Im sin(ωt + φ),
where phase angle φ will be positive for an R–C cir-
cuit and negative for an R–L circuit. The corresponding
instantaneous power, p, is given by:

p = vi = (Vm sinωt)(Im sin (ωt + φ))

i.e. p = VmIm sin ωt sin(ωt + φ)

Products of sine functions may be changed into differences
of cosine functions by using:
sin A sin B = − 1

2 [cos(A + B) − cos(A − B)]
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Substituting ωt = A and (ωt + φ) = B gives:

power, p = VmIm
{− 1

2 [ cos (ωt + ωt + φ)

− cos (ωt − (ωt + φ))]
}

i.e. p = 1
2 VmIm[cos(−φ) − cos(2ωt + φ)]

However, cos(−φ) = cos φ.

Thus p = 1
2VmIm[cos φ − cos(2ωt + φ)]

The instantaneous power p thus consists of

(i) a sinusoidal term, − 1
2 VmIm cos(2ωt + φ), which has

a mean value over a cycle of zero, and
(ii) a constant term, 1

2 VmIm cos φ (since φ is constant for
a particular circuit).

Thus the average value of power, P = 1
2 VmIm cos φ.

Since Vm = √
2 V and Im = √

2 I ,

average power, P = 1
2 (

√
2 V )(

√
2 I) cos φ

i.e. P = VI cos φ watts

The waveforms of v, i and p, are shown in Figure 26.4 for
an R–L circuit. The waveform of power is seen to pulsate at
twice the supply frequency. The areas of the power curve
(shown shaded) above the horizontal time axis represent
power supplied to the load; the small areas below the axis
represent power being returned to the supply from the
inductance as the magnetic field collapses.

Figure 26.4 Power in a.c. circuit containing
resistance and inductive reactance.

A similar shape of power curve is obtained for an
R–C circuit, the small areas below the horizontal axis
representing power being returned to the supply from the
charged capacitor. The difference between the areas above
and below the horizontal axis represents the heat loss due
to the circuit resistance. Since power is dissipated only
in a pure resistance, the alternative equations for power,

P = I2
RR, may be used, where IR is the rms current flowing

through the resistance.

Summarizing, the average power P in a circuit con-
taining resistance and inductance and/or capacitance,
whether in series or in parallel, is given by P =VI cos φ
or P = I2

R R (V , I and IR being rms values).

26.3 Power triangle and power factor

A phasor diagram in which the current I lags the applied
voltage V by angle φ (i.e. an inductive circuit) is shown
in Figure 26.5(a). The horizontal component of V is
V cos φ, and the vertical component of V is V sin φ. If
each of the voltage phasors of triangle 0ab is multiplied by
I , Figure 26.5(b) is produced and is known as the ‘power
triangle’. Each side of the triangle represents a particular
type of power:

True or active power P = VI cos φ watts (W)
Apparent power S = VI voltamperes (VA)
Reactive power Q = VI sin φ vars (var)

Figure 26.5 (a) Phasor diagram, (b) Power triangle
for inductive circuit

The power triangle is not a phasor diagram since quan-
tities P, Q and S are mean values and not rms values of
sinusoidally varying quantities.

Superimposing the power triangle on an Argand dia-
gram produces a relationship between P, S and Q in
complex form, i.e.

S = P + jQ
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Apparent power, S, is an important quantity since a.c.
apparatus, such as generators, transformers and cables,
is usually rated in voltamperes rather than in watts. The
allowable output of such apparatus is usually limited not
by mechanical stress but by temperature rise, and hence
by the losses in the device. The losses are determined by
the voltage and current and are almost independent of the
power factor. Thus the amount of electrical equipment
installed to supply a certain load is essentially determined
by the voltamperes of the load rather than by the power
alone.

The rating of a machine is defined as the maximum
apparent power that it is designed to carry continuously
without overheating.

The reactive power, Q, contributes nothing to the net
energy transfer and yet it causes just as much loading of the
equipment as if it did so. Reactive power is a term much
used in power generation, distribution and utilization of
electrical energy.

Inductive reactive power, by convention, is defined as
positive reactive power; capacitive reactive power, by
convention, is defined as negative reactive power. The
above relationships derived from the phasor diagram of an
inductive circuit may be shown to be true for a capacitive
circuit, the power triangle being as shown in Figure 26.6.

Figure 26.6 Power triangle for capacitive circuit

Power factor is defined as:

power factor = active power P
apparent power S

For sinusoidal voltages and currents,

power factor = P

S
= VI cos φ

VI

= cos φ = R
Z

(from the impedance triangle)

A circuit in which current lags voltage (i.e. an inductive
circuit) is said to have a lagging power factor, and indicates
a lagging reactive power Q.
A circuit in which current leads voltage (i.e. a capacitive
circuit) is said to have a leading power factor, and indicates
a leading reactive power Q.

26.4 Use of complex numbers for determination
of power

Let a circuit be supplied by an alternating voltage V∠ α,
where

V∠α = V (cos α + j sin α) = V cos α + jV sin α = a + jb

(26.1)

Let the current flowing in the circuit be I∠β, where

I∠β = I(cos β + j sin β) = I cos β + j I sin β = c + jd

(26.2)

From Sections 26.2 and 26.3, power P = VI cos φ, where
φ is the angle between the voltage V and current I . If the
voltage is V∠α◦ and the current is I∠β◦, then the angle
between voltage and current is (α − β)◦

Thus power, P = VI cos(α − β)

From compound angle formulae,
cos(α − β) = cos α cos β + sin α sin β.

Hence power, P = VI[cos α cos β + sin α sin β]

Rearranging gives

P = (V cos α)(I cos β) + (V sin α)(I sin β), i.e.

P = (a)(c) + (b)(d) from equations (26.1) and (26.2)

Summarizing, if V = (a + jb) and I = (c + jd), then

power, P = ac + bd (26.3)

Thus power may be calculated from the sum of the prod-
ucts of the real components and imaginary components of
voltage and current.

Reactive power, Q =VI sin(α − β)

From compound angle formulae,

sin(α − β) = sin α cos β − cos α sin β.

Thus Q =VI[sin α cos β − cos α sin β]

Rearranging gives

Q = (V sin α)(I cos β) − (V cos α)(I sin β) i.e.

Q = (b)(c) − (a)(d) from equations (26.1) and (26.2).

Summarizing, if V = (a + jb) and I = (c + jd), then

reactive power, Q = bc − ad (26.4)

Expressions (26.3) and (26.4) provide an alternative
method of determining true power P and reactive power
Q when the voltage and current are complex quantities.
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From Section 26.3, apparent power S = P + jQ. However,
merely multiplying V by I in complex form will not give
this result, i.e. (from above)

S = VI = (a + jb)(c + jd) = (ac − bd) + j(bc + ad)

Here the real part is not the expression for power as
given in equation (26.3) and the imaginary part is not the
expression of reactive power given in equation (26.4).

The correct expression may be derived by multiplying
the voltage V by the conjugate of the current, i.e. (c − jd),
denoted by I∗. Thus

apparent power S =VI∗ = (a + jb)(c − jd)

= (ac + bd) + j(bc − ad)

i.e. S = P + jQ from equations (26.3) and (26.4).

Thus the active and reactive powers may be determined
if, and only if, the voltage V is multiplied by the conjugate
of current I . As stated in Section 26.3, a positive value of Q
indicates an inductive circuit, i.e. a circuit having a lagging
power factor, whereas a negative value of Q indicates a
capacitive circuit, i.e. a circuit having a leading power
factor.

Problem 1. A coil of resistance 5 � and inductive
reactance 12 � is connected across a supply voltage
of 52∠30◦ volts. Determine the active power in the
circuit.

The circuit diagram is shown in Figure 26.7.

Figure 26.7

Impedance Z = (5 + j12)� or 13∠67.38◦ �

Voltage V = 52∠30◦ V or (45.03 + j26.0)V

Current I = V

Z
= 52∠30◦

13∠67.38◦

= 4∠−37.38◦ A or (3.18 − j2.43)A

There are three methods of calculating power.

Method 1. Active power, P = VI cos φ, where φ is the
angle between voltage V and current I . Hence

P = (52)(4) cos[30◦ − (−37.38◦)]

= (52)(4) cos 67.38◦ = 80 W
Method 2. Active power, P = I2

RR = (4)2(5) = 80 W
Method 3. Since V = (45.03 + j26.0)V and

I = (3.18 − j2.43)A, then active power,

P = (45.03)(3.18) + (26.0)(−2.43)

from equation (26.3)

i.e. P = 143.2 − 63.2 = 80 W

Problem 2. A current of (15 + j8)A flows in a circuit
whose supply voltage is (120 + j200)V. Determine
(a) the active power, and (b) the reactive power.

(a) Method 1. Active power P = (120)(15) + (200)(8),
from equation (26.3), i.e.

P = 1800 + 1600 = 3400 W or 3.4 kW

Method 2. Current I = (15+ j8)A = 17∠28.07◦ A and

Voltage V = (120 + j200)V = 233.24∠59.04◦ V

Angle between voltage and current = 59.04◦ − 28.07◦

= 30.97◦

Hence power, P = VI cos φ = (233.24)(17) cos 30.97◦

= 3.4 kW
(b) Method 1. Reactive power, Q = (200)(15) − (120)(8)

from equation (26.4), i.e.

Q = 3000 − 960 = 2040 var or 2.04 kvar

Method 2. Reactive power,

Q =VI sin φ = (233.24)(17) sin 30.97◦

= 2.04 kvar

Alternatively, parts (a) and (b) could have been obtained
directly, using

Apparent power, S =VI∗ = (120 + j200)(15 − j8)

= (1800+1600)+j(3000 −960)

= 3400 + j2040 = P + jQ

from which, power P = 3400 W and reactive power,
Q = 2040 var

Problem 3. A series circuit possesses resistance R
and capacitance C. The circuit dissipates a power
of 1.732 kW and has a power factor of 0.866
leading. If the applied voltage is given by
v = 141.4 sin (104t + (π/9)) volts, determine (a) the
current flowing and its phase, (b) the value of resistance
R, and (c) the value of capacitance C.
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(a) Since v = 141.4 sin(104t + (π/9)) volts, then 141.4V
represents the maximum value, from which the rms
voltage, V = 141.4/

√
2 = 100V, and the phase angle

of the voltage = +π/9 rad or 20◦ leading. Hence as a
phasor the voltage V is written as 100∠20◦ V.

Power factor = 0.866 = cos φ, from which
φ = cos−1 0.866 = 30◦.
Hence the angle between voltage and current is 30◦.

Power P = VI cos φ.

Hence 1732 = (100)I cos 30◦ from which,

current, |I| = 1732

(100)(0.866)
= 20A

Since the power factor is leading, the current phasor
leads the voltage — in this case by 30◦. Since the
voltage has a phase angle of 20◦,

current, I = 20∠(20◦ + 30◦) A = 20∠50◦ A

(b) Impedance

Z = V

I
= 100∠20◦

20∠50◦ = 5∠−30◦ � or (4.33 − j2.5) �

Hence the resistance, R = 4.33 � and the capacitive
reactance, XC = 2.5 �.

Alternatively, the resistance may be determined from
active power, P = I2R. Hence 1732 = (20)2R, from
which,

resistance R = 1732

(20)2 = 4.33 �

(c) Since v = 141.4 sin(104t + (π/9)) volts, angular
velocity ω = 104 rad/s.
Capacitive reactance, XC = 2.5 �, thus

2.5 = 1

2πfC
= 1

ωC

from which, capacitance, C = 1

2.5ω
= 1

(2.5)(104)
F

= 40 µF

Problem 4. For the circuit shown in Figure 26.8,
determine the active power developed between points
(a) A and B, (b) C and D, (c) E and F.

Figure 26.8

Circuit impedance,

Z = 5 + (3 + j4)(−j10)

(3 + j4 − j10)
= 5 + (40 − j30)

(3 − j6)

= 5 + 50∠−36.87◦

6.71∠−63.43◦ = 5 + 7.45∠26.56◦

= 5 + 6.66 + j3.33 = (11.66 + j3.33) � or
12.13∠15.94◦ �

Current I = V

Z
= 100∠0◦

12.13 ∠ 15.94◦ = 8.24∠−15.94◦ A

(a) Active power developed between points A and
B = I2R = (8.24)2(5) = 339.5 W

(b) Active power developed between points C and D is
zero, since no power is developed in a pure capacitor.

(c) Current, I1 = I

(
ZCD

ZCD + ZEF

)

= 8.24∠−15.94◦
( −j10

3 − j6

)

= 8.24∠ −15.94◦
(

10∠−90◦

6.71∠−63.43◦

)

= 12.28∠−42.51◦ A

Hence the active power developed between points E
and F = I2

1 R = (12.28)2(3) = 452.4 W

[Check: Total active power developed = 339.5 +
452.4 = 791.9 W or 792 W, correct to three significant
figures.
Total active power, P = I2RT = (8.24)2(11.66) =
792 W (since 1l.66 � is the total circuit equivalent
resistance)
or P = VI cos φ = (100)(8.24) cos 15.94◦ = 792 W]

Problem 5. The circuit shown in Figure 26.9 dis-
sipates an active power of 400 W and has a power
factor of 0.766 lagging. Determine (a) the apparent
power, (b) the reactive power, (c) the value and phase
of current I , and (d) the value of impedance Z .

Figure 26.9
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Since power factor = 0.766 lagging, the circuit phase
angle φ = cos−10.766, i.e. φ = 40◦ lagging which means
that the current I lags voltage V by 40◦.

(a) Since power, P = VI cos φ, the magnitude of apparent
power,

S = VI = P

cos φ
= 400

0.766
= 522.2VA

(b) Reactive power, Q = VI sin φ = (522.2)(sin 40◦) =
335.7 var lagging. (The reactive power is lagging
since the circuit is inductive, which is indicated by the
lagging power factor.) The power triangle is shown in
Figure 26.10.

Figure 26.10

(c) Since VI = 522.2VA,

magnitude of current |I| = 522.2

V
= 522.2

100
= 5.222A

Since the voltage is at a phase angle of 30◦ (see Fig-
ure 26.9) and current lags voltage by 40◦, the phase
angle of current is 30◦ − 40◦ = −10◦. Hence current
I = 5.222∠−10◦ A.

(d) Total circuit impedance

ZT = V

I
= 100∠30◦

5.222∠−10◦

= 19.15 ∠ 40◦ � or (14.67 + j12.31) �

Hence impedance

Z = ZT − 4 = (14.67 + j12.31) − 4

= (10.67 + j12.31) � or 16.29∠49.08◦ �

Now try the following exercise.

Exercise 100 Further problems on power in a.c.
circuits

1. When the voltage applied to a circuit is given by
(2 + j5)V, the current flowing is given by (8 + j4)A.
Determine the power dissipated in the circuit.

[36 W]

2. A current of (12 + j5)A flows in a circuit when
the supply voltage is (150 + j220)V. Determine
(a) the active power, (b) the reactive power, and
(c) the apparent power. Draw the power triangle.

[(a) 2.90 kW (b) 1.89 kvar lagging (c) 3.46 kVA]

3. A capacitor of capacitive reactance 40 � and a resis-
tance of 30 � are connected in series to a supply
voltage of 200∠60◦ V. Determine the active power
in the circuit. [480 W]

4. The circuit shown in Figure 26.11 takes 81VA at a
power factor of 0.8 lagging. Determine the value of
impedance Z . [(4 + j3)] � or 5∠36.87◦ �]

Figure 26.11

5. A series circuit possesses inductance L and
resistance R. The circuit dissipates a power
of 2.898 kW and has a power factor of 0.966
lagging. If the applied voltage is given by
v = 169.7 sin(100t − (π/4)) volts, determine (a) the
current flowing and its phase, (b) the value of
resistance R, and (c) the value of inductance L.

[(a) 25∠−60◦ A (b) 4.64 � (c) 12.4 mH]

6. The p.d. across and the current in a certain cir-
cuit are represented by (190 + j40)V and (9 − j4)A
respectively. Determine the active power and the
reactive power, stating whether the latter is leading
or lagging. [1550 W; 1120 var lagging]

7. Two impedances, Z1 = 6∠40◦ � and
Z2 = 10∠30◦ � are connected in series and
have a total reactive power of 1650 var lagging.
Determine (a) the average power, (b) the apparent
power, and (c) the power factor.

[(a) 2469 W (b) 2970VA (c) 0.83 lagging]

8. A current i = 7.5 sin(ωt − (π/4)) A flows in a
circuit which has an applied voltage
v = 180 sin(ωt + (π /12))V. Determine (a) the
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circuit impedance, (b) the active power, (c) the
reactive power, and (d) the apparent power. Draw
the power triangle.

[(a) 24∠60◦ � (b) 337.5 W
(c) 584.6 var lagging (d) 675VA]

9. The circuit shown in Figure 26.12 has a power of
480 W and a power factor of 0.8 leading. Deter-
mine (a) the apparent power, (b) the reactive
power, and (c) the value of impedance Z .

[(a) 600VA (b) 360 var leading
(c) (3 − j3.6) � or 4.69∠−50.19◦ �]

Figure 26.12

10. For the network shown in Figure 26.13, determine
(a) the values of currents I1 and I2, (b) the total
active power, (c) the reactive power, and (d) the
apparent power.

[(a) I1 = 6.20∠29.74◦ A,
I2 = 19.86∠−8.92◦ A (b) 981 W

(c) 153.9 var leading (d) 992.8VA]

Figure 26.13

11. A circuit consists of an impedance 5∠−45◦ � in
parallel with a resistance of 10 �. The supply cur-
rent is 4A. Determine for the circuit (a) the active
power, (b) the reactive power, and (c) the power
factor.

[(a) 49.34 W (b) 28.90 var leading
(c) 0.863 leading]

12. For the network shown in Figure 26.14, determine
the active power developed between points (a) A
and B, (b) C and D, (c) E and F.

[(a) 254.1 W (b) 0 (c) 65.92 W]

Figure 26.14

26.5 Power factor improvement

For a particular power supplied, a high power factor
reduces the current flowing in a supply system, which con-
sequently lowers losses (i.e. I2R losses) and hence results
in cheaper running costs (as stated in Section 16.7, page
195). Supply authorities use tariffs which encourage con-
sumers to operate at a reasonably high power factor. One
method of improving the power factor of an inductive load
is to connect a bank of capacitors in parallel with the load.
Capacitors are rated in reactive voltamperes and the effect
of the capacitors is to reduce the reactive power of the sys-
tem without changing the active power. Most residential
and industrial loads on a power system are inductive, i.e.
they operate at a lagging power factor.

A simplified circuit diagram is shown in Figure 26.15(a)
where a capacitor C is connected across an inductive load.
Before the capacitor is connected the circuit current is ILR
and is shown lagging voltage V by angle φ1 in the phasor
diagram of Figure 26.15(b). When the capacitor C is con-
nected it takes a current IC which is shown in the phasor
diagram leading voltage V by 90◦. The supply current I in
Figure 26.15(a) is now the phasor sum of currents ILR and
IC as shown in Figure 26.15(b). The circuit phase angle,
i.e. the angle between V and I , has been reduced from φ1
to φ2 and the power factor has been improved from cos φ1
to cos φ2.

Figure 26.16(a) shows the power triangle for an induct-
ive circuit with a lagging power factor of cos φ1. In Figure
26.16(b), the angle φ1 has been reduced to φ2, i.e. the
power factor has been improved from cos φ1 to cos φ2
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Figure 26.15 (a) Circuit diagram (b) Phasor diagram

Figure 26.16 Effect of connecting capacitance in
parallel with the inductive load

by introducing leading reactive voltamperes (shown as
length ab) which is achieved by connecting capacitance
in parallel with the inductive load. The power factor has
been improved by reducing the reactive voltamperes; the
active power P has remained unaffected.

Power factor correction results in the apparent power S
decreasing (from 0a to 0b in Figure 26.16(b)) and thus the
current decreasing, so that the power distribution system
is used more efficiently.

Another method of power factor improvement, besides
the use of static capacitors, is by using synchronous
motors; such machines can be made to operate at leading
power factors.

Problem 6. A 300 kVA transformer is at full load with
an overall power factor of 0.70 lagging. The power
factor is improved by adding capacitors in parallel with
the transformer until the overall power factor becomes
0.90 lagging. Determine the rating (in kilovars) of the
capacitors required.

At full load, active power, P = VI cos φ = (300)(0.70)

= 210 kW.

Circuit phase angle φ = cos−10.70 = 45.57◦

Reactive power, Q = VI sin φ = (300)(sin 45.57◦)

= 214.2 kvar lagging.
The power triangle is shown as triangle 0ab in Fig-

ure 26.17. When the power factor is 0.90, the circuit
phase angle φ = cos−10.90 = 25.84◦. The capacitor rat-
ing needed to improve the power factor to 0.90 is given
by length bd in Figure 26.17.

Figure 26.17

Tan 25.84◦ = ad/210, from which, ad = 210 tan 25.84◦
= 101.7 kvar. Hence the capacitor rating, i.e.
bd = ab − ad = 214.2 − 101.7 = 112.5 kvar leading.

Problem 7. A circuit has an impedance
Z = (3 + j4) � and a source p.d. of 50 ∠ 30◦V at
a frequency of 1.5 kHz. Determine (a) the supply
current, (b) the active, apparent and reactive power,
(c) the rating of a capacitor to be connected in parallel
with impedance Z to improve the power factor of
the circuit to 0.966 lagging, and (d) the value of
capacitance needed to improve the power factor to
0.966 lagging.
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(a) Supply current, I = V

Z
= 50∠30◦

(3 + j4)
= 50∠30◦

5∠53.13◦

= 10∠−23.13◦ A

(b) Apparent power, S = VI∗ = (50∠30◦)(10∠23.13◦)

= 500∠53.13◦ VA

= (300 + j400) VA = P + jQ

Hence active power, P = 300 W

apparent power, S = 500 VA and

reactive power, Q = 400 var lagging.

The power triangle is shown in Figure 26.18.

Figure 26.18

(c) A power factor of 0.966 means that cos φ = 0.966.

Hence angle φ = cos−1 0.966 = 15◦

To improve the power factor from cos 53.13◦, i.e. 0.60,
to 0.966, the power triangle will need to change from
0cb (see Figure 26.19) to 0ab, the length ca repre-
senting the rating of a capacitor connected in parallel
with the circuit. From Figure 26.19, tan 15◦ = ab/300,
from which, ab = 300 tan 15◦ = 80.38 var.

Figure 26.19

Hence the rating of the capacitor,

ca = cb − ab

= 400 − 80.38

= 319.6 var leading.

(d) Current in capacitor, IC = Q

V
= 319.6

50
= 6.39A

Capacitive reactance, XC = V

IC
= 50

6.39
= 7.82 �

Thus 7.82 = 1/(2π fC), from which,

required capacitance C = 1

2π(1500)(7.82)
F

≡ 13.57 µF

Problem 8. A 30 � non-reactive resistor is connected
in series with a coil of inductance 100 mH and negligi-
ble resistance. The combined circuit is connected to a
300 V, 50 Hz supply. Calculate (a) the reactance of the
coil, (b) the impedance of the circuit, (c) the current in
the circuit, (d) the power factor of the circuit, (e) the
power absorbed by the circuit, and (f) the value of the
power factor correction capacitor to produce a power
factor of 0.85.

(a) Inductive reactance,

XL = 2π fL = 2π(50)(100 × 10−3) = 31.42 �

(b) Impedance, Z = R + jXL = (30 + j31.42)

= 43.44∠46.32◦ �

(c) Current, I = V

Z
= 300

43.44∠46.32◦
= 6.906 ∠−46.32◦ A

(d) Power factor = cos φ = cos 46.32◦ = 0.691

(e) Power, P = I2R = (6.906)2(30) = 1431 W

or P = VI cos φ = (300)(6.906) cos 46.32◦ = 1431 W
(f) To improve the power factor, a capacitor C is con-

nected in parallel with the R–L circuit as shown in
Figure 26.20. In the phasor diagram of Figure 26.21,
current ILR is shown as 6.906A at 46.32◦ lagging.

ILR

IC

I

30Ω 100 mH

C

300V, 50 Hz

Figure 26.20

If power factor is to be improved to 0.85, then
cos φ = 0.85 and φ = cos−10.85 = 31.79◦
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46.32°

31.79°
0

IC

I

a

b

c

ILR  �
 6.906 A

Figure 26.21

cos 46.32◦ = 0a

6.906
from which,

0a = 6.906 cos 46.32◦ = 4.769A

To improve the power factor to 0.85, a capacitor
is connected in parallel with the R–L circuit such
that the capacitor takes a current of IC which is
given by the length bc in the phasor diagram. Length
bc = ac − ab

tan 31.79◦ = ab

4.769
from which,

ab = 4.769 tan 31.79◦ = 2.956A

tan 46.32◦ = ac

4.769
from which,

ac = 4.769 tan 46.32◦ = 4.994A

Hence, length bc = ac − ab = 4.994 − 2.956
= 2.038A

Thus, capacitor current, IC = 2.038A

Now IC = V

XC
= V

1

2π fC

= 2π fCV

from which, capacitance, C = IC

2π fV
= 2.038

2π(50)(300)

= 21.62 µF

[In the phasor diagram, current I is the phasor sum of
ILR and IC . Thus, an alternative method of determining
IC is as follows:

cos 31.79◦ = 0a

0b
= 4.769

0b
from which,

0b = 4.769

cos 31.79◦ = 5.611A,

i.e. I = 5.611∠−31.79◦ A

Now I = ILR + IC i.e. IC = I − ILR and in complex
number form:

IC = 5.611∠−31.79◦ − 6.906∠−46.32◦

= (0 + j2.038)A or 2.038∠90◦ A, the magnitude of
which is the same as that obtained above]

Now try the following exercise.

Exercise 101 Further problems on power factor
improvement

1. A 600 kVA transformer is at full load with an overall
power factor of 0.64 lagging. The power factor is
improved by adding capacitors in parallel with the
transformer until the overall power factor becomes
0.95 lagging. Determine the rating (in kvars) of the
capacitors needed. [334.8 kvar leading]

2. A source p.d. of 130∠40◦ V at 2 kHz is applied to a
circuit having an impedance of (5 + j12) �. Deter-
mine (a) the supply current, (b) the active, apparent
and reactive powers, (c) the rating of the capaci-
tor to be connected in parallel with the impedance
to improve the power factor of the circuit to 0.940
lagging, and (d) the value of the capacitance of the
capacitor required.

[(a) 10∠−27.38◦ A (b) 500 W, 1300VA,
1200 var lagging (c) 1018.5 var leading

(d) 4.797 µF]

3. The network shown in Figure 26.22 has a total
active power of 2253 W. Determine (a) the total
impedance, (b) the supply current, (c) the appar-
ent power, (d) the reactive power, (e) the circuit
power factor, (f) the capacitance of the capacitor
to be connected in parallel with the network to
improve the power factor to 0.90 lagging, if the
supply frequency is 50 Hz.

[(a) 3.51 ∠ 58.40◦ � (b) 35.0A (c) 4300VA
(d) 3662 var lagging (e) 0.524 lagging

(f) 542.3 µF]

Figure 26.22
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4. The power factor of a certain load is improved to
0.92 lagging with the addition of a 30 kvar bank of
capacitors. If the resulting supply apparent power
is 200 kVA, determine (a) the active power, (b) the
reactive power before power factor correction, and
(c) the power factor before correction.

[(a) 184 kW (b) 108.4 kvar lagging
(c) 0.862 lagging]

5. A 15 � non-reactive resistor is connected in
series with a coil of inductance 75 mH and negligi-
ble resistance. The combined circuit is connected to
a 200V, 50 Hz supply. Calculate (a) the reactance
of the coil, (b) the impedance of the circuit, (c) the
current in the circuit, (d) the power factor of the
circuit, (e) the power absorbed by the circuit, and
(f) the value of the power factor correction capacitor
to produce a power factor of 0.92.

[(a) 23.56 � (b) 27.93∠57.52◦ �
(c) 7.16∠−57.52◦ A (d) 0.537

(e) 769 W (f) 70 µF]
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Revision test 8

This revision test covers the material contained in
chapters 23 to 26.

The marks for each question are shown in brackets at
the end of each question.

1. The total impedance ZT of an electrical circuit is
given by:

ZT = Z1 + Z2 × Z3

Z2 + Z3

Determine ZT in polar form, correct to 3 significant
figures, when

Z1 = 5.5∠−21◦ �, Z2 = 2.6∠30◦ � and

Z3 = 4.8∠71◦ � (8)

2. For the network shown in Figure RT8.1, determine

(a) the equivalent impedance of the parallel branches
(b) the total circuit equivalent impedance
(c) current I
(d) the circuit phase angle
(e) currents I1 and I2
(f) the p.d. across points A and B
(g) the p.d. across points B and C
(h) the active power developed in the inductive branch
(i) the active power developed across the −j10 �

capacitor
(j) the active power developed between points B

and C

I

A
I1

8 Ω

j 6 Ω

B

5 Ω

−j 3  Ω

C

170∠0° V

I2

−j 10 Ω

Figure RT8.1

(k) the total active power developed in the network
(l) the total apparent power developed in the network

(m) the total reactive power developed in the network
(27)

3. An inductive load takes a current of 60A at a power fac-
tor of 0.643 lagging when connected to a 240V, 50 Hz
supply. It is required to improve the power factor to
0.80 lagging by connecting a capacitor in parallel with
the load. Calculate (a) the new supply current, (b) the
capacitor current, and (c) the value of the power factor
correction capacitor. Draw the circuit phasor diagram.

(15)
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27 A.c. bridges

At the end of this chapter you should be able to:
• derive the balance equations of any a.c. bridge circuit
• state types of a.c. bridge circuit

• calculate unknown components when using an a.c.
bridge circuit

27.1 Introduction

A.C. bridges are electrical networks, based upon an exten-
sion of the Wheatstone bridge principle, used for the
determination of an unknown impedance by comparison
with known impedances and for the determination of fre-
quency. In general, they contain four impedance arms, an
a.c. power supply and a balance detector which is sensitive
to alternating currents. It is more difficult to achieve bal-
ance in an a.c. bridge than in a d.c. bridge because both the
magnitude and the phase angle of impedances are related
to the balance condition. Balance equations are derived
by using complex numbers. A.C. bridges provide precise
methods of measurement of inductance and capacitance,
as well as resistance.

27.2 Balance conditions for an a.c. bridge

The majority of well known a.c. bridges are classified as
four-arm bridges and consist of an arrangement of four
impedances (in complex form, Z = R ± jX) as shown in
Figure 27.1. As with the d.c. Wheatstone bridge circuit,
an a.c. bridge is said to be ‘balanced’ when the current
through the detector is zero (i.e. when no current flows
between B and D of Figure 27.1). If the current through the
detector is zero, then the current I1 flowing in impedance
Z1 must also flow in impedance Z2. Also, at balance,

Figure 27.1 Four-arm bridge

the current I4 flowing in impedance Z4, must also flow
through Z3.

At balance:

(i) the volt drop between A and B is equal to the volt drop
between A and D,

i.e. VAB = VAD

i.e. I1Z1 = I4Z4 (both in magnitude and in phase)
(27.1)

(ii) the volt drop between B and C is equal to the volt drop
between D and C,

i.e. VBC = VDC

i.e. I1Z2 = I4Z3 (both in magnitude and in phase)
(27.2)

Dividing equation (27.1) by equation (27.2) gives

I1Z1

I1Z2
= I4Z4

I4Z3

from which
Z1

Z2
= Z4

Z3

or Z1Z3 = Z2Z4 (27.3)

Equation (27.3) shows that at balance the products of the
impedances of opposite arms of the bridge are equal.

If in polar form, Z1 = |Z1|∠α1, Z2 = |Z2|∠α2,
Z3 = |Z3|∠α3, and Z4 = |Z4|∠α4, then from equa-
tion (27.3), (|Z1|∠α1)(|Z3|∠α3) = (|Z2|∠α2)(|Z4|∠α4),
which shows that there are two conditions to be satisfied
simultaneously for balance in an a.c. bridge, i.e.

|Z1| |Z3| = |Z2||Z4| and α1 + α3 = α2 + α4

When deriving balance equations of a.c. bridges, where
at least two of the impedances are in complex form, it
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is important to appreciate that for a complex equation
a + jb = c + jd the real parts are equal, i.e. a = c, and the
imaginary parts are equal, i.e. b = d.

Usually one arm of an a.c. bridge circuit contains the
unknown impedance while the other arms contain known
fixed or variable components. Normally only two compo-
nents of the bridge are variable. When balancing a bridge
circuit, the current in the detector is gradually reduced
to zero by successive adjustments of the two variable
components. At balance, the unknown impedance can be
expressed in terms of the fixed and variable components.

Procedure for determining the balance equations
of any a.c. bridge circuit

(i) Determine for the bridge circuit the impedance in
each arm in complex form and write down the balance
equation as in equation (27.3). Equations are usually
easier to manipulate if L and C are initially expressed
as XL and XC , rather than ωL or 1/(ωC).

(ii) Isolate the unknown terms on the left-hand side of
the equation in the form a + jb.

(iii) Manipulate the terms on the right-hand side of the
equation into the form c + jd.

(iv) Equate the real parts of the equation, i.e. a = c, and
equate the imaginary parts of the equation, i.e. b = d.

(v) Substitute ωL for XL and 1/(ωC) for Xc where appro-
priate and express the final equations in their simplest
form.

Types of detector used with a.c. bridges vary with the type
of bridge and with the frequency at which it is operated.
Common detectors used include:

(i) an oscilloscope, which is suitable for use with a very
wide range of frequencies;

(ii) earphones (or telephone headsets), which are suitable
for frequencies up to about 10 kHz and are used often
at about 1 kHz, in which region the human ear is very
sensitive;

(iii) various electronic detectors, which use tuned circuits
to detect current at the correct frequency; and

(iv) vibration galvanometers, which are usually used for
mains-operated bridges. This type of detector con-
sists basically of a narrow moving coil which is
suspended on a fine phosphor bronze wire between
the poles of a magnet. When a current of the cor-
rect frequency flows through the coil, it is set into
vibration. This is because the mechanical resonant
frequency of the suspension is purposely made equal
to the electrical frequency of the coil current.A mirror
attached to the coil reflects a spot of light on to a scale,
and when the coil is vibrating the spot appears as an
extended beam of light. When the band reduces to a
spot the bridge is balanced. Vibration galvanometers
are available in the frequency range 10 Hz to 300 Hz.

27.3 Types of a.c. bridge circuit

A large number of bridge circuits have been developed,
each of which has some particular advantage under cer-
tain conditions. Some of the most important a.c. bridges
include the Maxwell, Hay, Owen and Maxwell-Wien
bridges for measuring inductance, the De Sauty and Scher-
ing bridges for measuring capacitance, and the Wien
bridge for measuring frequency. Obviously a large number
of combinations of components in bridges is possible.

In many bridges it is found that two of the balancing
impedances will be of the same nature, and often consist
of standard non-inductive resistors.

For a bridge to balance quickly the requirement is
either:

(i) the adjacent arms are both pure components (i.e.
either both resistors, or both pure capacitors, or one
of each) — this type of bridge being called a ratio-
arm bridge (see, for example, paras (a), (c), (e) and
(g) below); or

(ii) a pair of opposite arms are pure components — this
type of bridge being called a product-arm bridge
(see, for example, paras (b), (d) and (f) below).

A ratio-arm bridge can only be used to measure
reactive quantities of the same type. When using a
product-arm bridge the reactive component of the balanc-
ing impedance must be of opposite sign to the unknown
reactive component.

A commercial or universal bridge is available and can
be used to measure resistance, inductance or capacitance.

(a) The simple Maxwell bridge

This bridge is used to measure the resistance and
inductance of a coil having a high Q-factor (where
Q-factor = ωL/R, see Chapters 15 and 28).

A coil having unknown resistance Rx and inductance
Lx is shown in the circuit diagram of a simple Maxwell
bridge in Figure 27.2. R4 and L4 represent a standard coil
having known variable values. At balance, expressions for
Rx and Lx may be derived in terms of known components
R2, R3, R4 and L4.

Figure 27.2 Simple Maxwell bridge
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The procedure for determining the balance equations
given in Section 27.2 may be followed.

(i) From Figure 27.2, Zx = Rx + jXLx , Z2 = R2, Z3 = R3
and Z4 = R4 + jXL4 .

At balance,

(Zx)(Z3) = (Z2)(Z4), from equation(27.3),

i.e. (Rx + jXLx
)(R3) = (R2)(R4 + jXL4

)

(ii) Isolating the unknown impedance on the left-hand,
side of the equation gives

(Rx + jXLx ) = R2

R3
(R4 + jXL4 )

(iii) Manipulating the right-hand side of the equation into
(a + jb) form gives

(Rx + jXLx ) = R2R4

R3
+ j

R2XL4

R3

(iv) Equating the real parts gives Rx = R2R4

R3

Equating the imaginary parts gives XLx = R2XL4

R3
(v) Since XL = ωL, then

ωLx = R2(ωL4)

R3
from which Lx = R2L4

R3

Thus at balance the unknown components in the simple
Maxwell bridge are given by

Rx = R2R4

R3
and Lx = R2L4

R3

These are known as the ‘balance equations’ for the
bridge.

(b) The Hay bridge

This bridge is used to measure the resistance and induct-
ance of a coil having a very high Q-factor. A coil having
unknown resistance Rx and inductance Lx is shown in the
circuit diagram of a Hay bridge in Figure 27.3.

Figure 27.3 Hay bridge

Following the procedure of Section 27.2 gives:

(i) From Figure 27.3, Zx = Rx + jXLx , Z2 = R2,
Z3 = R3 − jXC3 , and Z4 = R4

At balance (Zx)(Z3) = (Z2)(Z4), from equation (27.3),
i.e. (Rx + jXLx )(R3 − jXC3 ) = (R2)(R4)

(ii) (Rx + jXLx ) = R2R4

R3 − jXC3

(iii) Rationalizing the right-hand side gives

(Rx + jXLx ) = R2R4(R3 + jXC3 )

(R3 − jXC3 )(R3 + jXC3 )

= R2R4(R3 + jXC3 )

R2
3 + X2

C3

i.e. (Rx + jXLx ) = R2R3R4

R2
3 + X2

C3

+ j
R2R4XC3

R2
3 + X2

C3

(iv) Equating the real parts gives Rx = R2R3R4

R2
3 + X2

C3

Equating the imaginary parts gives XLx = R2R4XC3

R2
3 + X2

C3

(v) Since XC3 = 1

ωC3

Rx = R2R3R4

R2
3 + (1/(ω2C2

3 ))

= R2R3R4

(ω2C2
3R2

3 + 1)/(ω2C2
3 )

i.e. Rx = ω2C2
3R2R3R4

1 + ω2C2
3R2

3

Since XLx = ωLx ,

ωLx = R2R4(1/(ωC3))

(ω2C2
3R2

3 + 1)/(ω2C2
3 )

= ω2C2
3R2R4

ωC3(1 + ω2C2
3R2

3)

i.e. Lx = C3R2R4

(1 + ω2C2
3R2

3)
by cancelling.

Thus at balance the unknown components in the Hay
bridge are given by

Rx = ω2C2
3R2R3R4

(1 + ω2C2
3R2

3)
and Lx = C3R2R4

(1 + ω2C2
3R2

3)

Since ω(= 2πf ) appears in the balance equations, the
bridge is frequency-dependent.
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(c) The Owen bridge

This bridge is used to measure the resistance and induct-
ance of coils possessing a large value of inductance. A coil
having unknown resistance Rx and inductance Lx is shown
in the circuit diagram of an Owen bridge in Figure 27.4,
from which Zx = Rx + jXLx , Z2 = R2 − jXC2 , Z3 = −jXC3

and Z4 = R4

Figure 27.4 Owen bridge

At balance (Zx)(Z3) = (Z2)(Z4), from equation (27.3), i.e.

(Rx + jXLx )(−jXC3 ) = (R2 − jXC2 )(R4)

Rearranging gives Rx + jXLx = (R2 − jXC2 )R4

−jXC3

By rationalizing and equating real and imaginary parts
it may be shown that at balance the unknown components
in the Owen bridge are given by

Rx = R4C3

C2
and Lx = R2R4C3

(d) The Maxwell-Wien bridge

This bridge is used to measure the resistance and induct-
ance of a coil having a low Q-factor. A coil having
unknown resistance Rx and inductance Lx is shown in the
circuit diagram of a Maxwell-Wien bridge in Figure 27.5,
from which Zx = Rx + jXLx , Z2 = R2 and Z4 = R4

Arm 3 consists of two parallel-connected components.
The equivalent impedance Z3, is given either

(i) by
product

sum
i.e. Z3 = (R3)(−jXC3 )

(R3 − jXC3 )
or

Figure 27.5 Maxwell-Wien bridge

(ii) by using the reciprocal impedance expression,

1

Z3
= 1

R3
+ 1

−jXC3

from which Z3 = 1

(1/R3) + (1/(−jXC3 ))

= 1

(1/R3) + ( j/XC3 )

or Z3 = 1
1

R3
+ jωC3

since XC3 = 1

ωC3

Whenever an arm of an a.c. bridge consists of two
branches in parallel, either method of obtaining the
equivalent impedance may be used.

For the Maxwell-Wien bridge of Figure 27.5, at
balance

(Zx)(Z3) = (Z2)(Z4), from equation (27.3)

i.e. (Rx + jXLx )
(R3)(−jXC3 )

(R3 − jXC3 )
= R2R4

using method (i) for Z3. Hence

(Rx + jXLx ) = R2R4
(R3 − jXC3 )

(R3)(−jXC3 )

By rationalizing and equating real and imaginary
parts it may be shown that at balance the unknown
components in the Maxwell-Wien bridge are given by

Rx = R2R4

R3
and Lx = C3R2R4

(e) The de Sauty bridge

This bridge provides a very simple method of measur-
ing a capacitance by comparison with another known



Ch27-H8139.tex 29/3/2007 14: 20 page 344

344 Electrical Circuit Theory and Technology

capacitance. In the de Sauty bridge shown in Figure 27.6,
Cx is an unknown capacitance and C4 is a standard
capacitor.

Figure 27.6 De Sauty bridge

At balance (Zx)(Z3) = (Z2)(Z4)

i.e. (−jXCx )R3 = (R2)(−jXC4 )

Hence (XCx )(R3) = (R2)(XC4 )(
1

ωCx

)
(R3) = (R2)

(
1

ωC4

)

from which
R3

Cx
= R2

C4
or Cx = R3C4

R2

This simple bridge is usually inadequate in most practi-
cal cases. The power factor of the capacitor under test is
significant because of internal dielectric losses — these
losses being the dissipation within a dielectric material
when an alternating voltage is applied to a capacitor.

(f ) The Schering bridge

This bridge is used to measure the capacitance and equiv-
alent series resistance of a capacitor. From the measured
values the power factor of insulating materials and dielec-
tric losses may be determined. In the circuit diagram of a
Schering bridge shown in Figure 27.7, Cx is the unknown
capacitance and Rx its equivalent series resistance.

Figure 27.7 Schering bridge

From Figure 27.7, Zx = Rx − jXCx , Z2 = −jXC2

Z3 = (R3)(−jXC3 )

(R3 − jXC3 )
and Z4 = R4

At balance, (Zx)(Z3) = (Z2)(Z4) from equation (27.3),

i.e. (Rx − jXCx )
(R3)(−jXC3 )

R3 − jXC3

= (−jXC2 )(R4)

from which (Rx − jXCx ) = (−jXC2 R4)(R3 − jXC3 )

−jXC3 R3

= XC2 R4

XC3 R3
(R3 − jXC3 )

Equating the real parts gives

Rx = XC2 R4

XC3

= (1/ωC2)R4

(1/ωC3)
= C3R4

C2

Equating the imaginary parts gives

−XCx = −XC2 R2

R3

i.e.
1

ωCx
= (1/ωC2)R4

R3
= R4

ωC2R3

from which Cx = C2R3

R4

Thus at balance the unknown components in the Schering
bridge are given by

Rx = C3R4

C2
and Cx = C2R3

R4

The loss in a dielectric may be represented by either (a) a
resistance in parallel with a capacitor, or (b) a lossless
capacitor in series with a resistor.

If the dielectric is represented by an R-C circuit, as
shown by Rx and Cx in Figure 27.7, the phasor diagram
for the unknown arm is as shown in Figure 27.8. Angle φ
is given by

φ = tan−1 VCx

VRx

= tan−1 IxXCx

IxRx

i.e. φ = tan−1
(

1

ωCxRx

)

The power factor of the unknown arm is given by cos φ.

The angle δ (= 90◦ − φ) is called the loss angle and is
given by

δ = tan−1 VRx

VCx

= tan−1ωCxRx and

δ = tan−1
[
ω

(
C2R3

R4

) (
C3R4

C2

)]
from above

= tan−1(ωR3C3)

(See also Chapter 39, page 502)
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Figure 27.8 Phasor diagram for the unknown arm in
the Schering bridge

(g) The Wien bridge

This bridge is used to measure frequency in terms of
known components (or, alternatively, to measure capaci-
tance if the frequency is known). It may also be used as a
frequency-stabilizing network.

A typical circuit diagram of a Wien bridge is shown in
Figure 27.9, from which

Figure 27.9 Wien bridge

Z1 = R1, Z2 = 1

(1/R2) + jωC2
(see (ii), para (d),

page 343),

Z3 = R3 − jXC3 and Z4 = R4.

At balance, (Z1)(Z3) = (Z2)(Z4) from equation (27.3), i.e.

(R1)(R3 − jXC3 ) =
(

1

(1/R2) + jωC2

)
(R4)

Rearranging gives

(
R3 − j

ωC3

) (
1

R2
+ jωC2

)
= R4

R1

R3

R2
+ C2

C3
− j

(
1

ωC3R2

)
+ jωC2R3 = R4

R1

Equating real parts gives

R3

R2
+ C2

C3
= R4

R1
(27.4)

Equating imaginary parts gives

− 1

ωC3R2
+ ωC2R3 = 0

i.e. ωC2R3 = 1

ωC3R2

from which ω2 = 1

C2C3R2R3

Since ω = 2πf , frequency, f = 1
2π

√
(C2C3R2R3)

(27.5)
Note that if C2 = C3 = C and R2 = R3 = R,

frequency, f = 1

2π
√

(C2R2)
= 1

2πCR

27.4 Worked problems on a.c. bridges

Problem 1. The a.c. bridge shown in Figure 27.10
is used to measure the capacitance Cx and resistance
Rx . (a) Derive the balance equations of the bridge.
(b) Given R3 = R4, C2 = 0.2 µF, R2 = 2.5 k� and the
frequency of the supply is 1 kHz, determine the values
of Rx and Cx at balance.

Figure 27.10

(a) Since Cx and Rx are the unknown values and
are connected in parallel, it is easier to use
the reciprocal impedance form for this branch(

rather than
product

sum

)

i.e.
1

Zx
= 1

Rx
+ 1

−jXCx

= 1

Rx
+ j

XCx
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from which Zx = 1

(1/Rx) + jωCx

From Figure 27.10, Z2 = R2 − jXC2 , Z3 = R3 and
Z4 = R4

At balance, (Zx)(Z3) = (Z2)(Z4)
(

1

(1/Rx) + jωCx

)
(R3) = (R2 − jωXC2 )(R4)

hence
R3

R4(R2 − jXC2 )
= 1

Rx
+ jωCx

Rationalizing gives
R3(R2 + jXC2 )

R4(R2
2 + X2

C2
)

= 1

Rx
+ jωCx

Hence
1

Rx
+ jωCx = R3R2

R4(R2
2 + (1/ω2C2

2 )

+ jR3(1/ωC2)

R3(R2
2 + (1/ω2C2

2 ))

Equating the real parts gives

1

Rx
= R3R2

R4(R2
2 + (1/ω2C2

2 )

i.e. Rx = R4

R2R3

(
R2

2ω
2C2

2 + 1

ω2C2
2

)

and Rx = R4(1 + ω2 C2
2R2

2)

R2R3ω2C2
2

Equating the imaginary parts gives

ωCx = R3(1/ωC2)

R4(R2
2 + (1/ω2C2

2 ))

= R3

ωC2R4((R2
2ω

2C2
2 + 1)/ω2C2

2 )

i.e. ωCx = R3ω
2C2

2

ωC2R4(1 + ω2C2
2R2

2)

and Cx = R3C2

R4(1 + ω2 C2
2R2

2)

(b) Substituting the given values gives

Rx = (1 + ω2C2
2R2

2)

R2ω2C2
2

since R3 = R4

i.e. Rx = 1 + (2π1000)2(0.2 × 10−6)2(2.5 × 103)2

(2.5 × 103)(2π1000)2(0.2 × 10−6)2

= 1 + 9.8696

3.9478 × 10−3 ≡ 2.75 k�

Cx = C2

(1 + ω2C2
2R2

2)
since R3 = R4

= (0.2 × 10−6)

1 + 9.8696
F = 0.01840 µF or 18.40 nF

Hence at balance Rx = 2.75 k� and Cx = 18.40 nF

Problem 2. For the Wien bridge shown in
Figure 27.9, R2 = R3 = 30 k�, R4 = 1 k� and
C2 = C3 = 1 nF. Determine, when the bridge is bal-
anced, (a) the value of resistance R1, and (b) the
frequency of the bridge.

(a) From equation (27.4)

R3

R2
+ C2

C3
= R4

R1

i.e. 1 + 1 = 1000/R1, since R2 = R3 and C2 = C3,
from which

resistance R1 = 1000

2
= 500 �

(b) From equation (27.5),

frequency, f = 1

2π
√

(C2C3R2R3)

= 1

2π
√

[(10−9)2(30 × 103)2]

= 1

2π(10−9)(30 × 103)
≡ 5.305 kHz

Problem 3. A Schering bridge network is as shown
in Figure 27.7, page 344. Given C2 = 0.2 µF,
R4 = 200 �, R3 = 600 �, C3 = 4000 pF and the sup-
ply frequency is 1.5 kHz, determine, when the bridge
is balanced, (a) the value of resistance Rx , (b) the value
of capacitance Cx , (c) the phase angle of the unknown
arm, (d) the power factor of the unknown arm and
(e) its loss angle.

From para (f), the equations for Rx and Cx at balance are
given by

Rx = R4C3

C2
and Cx = C2R3

R4

(a) Resistance, Rx = R4C3

C2
= (200)(4000×10−12)

0.2 × 10−6 = 4 �

(b) Capacitance, Cx = C2R3

R4
= (0.2 × 10−6)(600)

(200)
F

= 0.6 µF
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(c) The phasor diagram for Rx and Cx in series is shown
in Figure 27.11.

Figure 27.11

Phase angle, φ = tan−1 VCx

VRx

= tan−1 IxXCx

IxRx

= tan−1 1

ωCxRx

i.e. φ = tan−1
(

1

(2π1500)(0.6 × 10−6)(4)

)

= tan−144.21 = 88.7◦ lead

(d) Power factor of capacitor = cos φ = cos 88.7◦
= 0.0227

(e) Loss angle, shown as δ in Figure 27.11, is given by
δ = 90◦ − 88.7◦ = 1.3◦

Alternatively, loss angle δ = tan−1ωCxRx (see para

(f), page 344)

= tan−1
(

1

44.21

)
from

(c) above,
i.e. δ = 1.3◦

Now try the following exercise.

Exercise 102 Further problems on a.c. bridges

1. A Maxwell-Wien bridge circuit ABCD has the fol-
lowing arm impedances: AB, 250 � resistance; BC,
2 µF capacitor in parallel with a 10 k� resistor;
CD, 400 � resistor; DA, unknown inductor having
inductance L in series with resistance R. Determine
the values of L and R if the bridge is balanced.

[L = 0.20 H, R = 10 �]

2. In a four-arm de Sauty a.c. bridge, arm 1 contains a
2 k� non-inductive resistor, arm 3 contains a loss-
free 2.4 µF capacitor, and arm 4 contains a 5 k�
non-inductive resistor. When the bridge is balanced,
determine the value of the capacitor contained in
arm 2. [6 µF]

3. A four-arm bridge ABCD consists of: AB — fixed
resistor R1; BC — variable resistor R2 in series with
a variable capacitor C2; CD — fixed resistor R3;
DA — coil of unknown resistance R and inductance
L. Determine the values of R and L if, at balance,
R1 = 1 k�, R2 = 2.5 k�, C2 = 4000 pF, R3 = 1 k�
and the supply frequency is 1.6 kHz.

[R = 4.00 �, L = 3.96 mH]

4. The bridge shown in Figure 27.12 is used to mea-
sure capacitance Cx and resistance Rx . Derive the
balance equations of the bridge and determine the
values of Cx and Rx when R1 = R4, C2 = 0.1 µF,
R2 = 2 k� and the supply frequency is 1 kHz.

[Cx = 38.77 nF, Rx = 3.27 k�]

Figure 27.12

5. In a Schering bridge network ABCD, the arms are
made up as follows: AB — a standard capacitor C1;
BC — a capacitor C2 in parallel with a resistor R2;
CD — a resistor R3; DA — the capacitor under test,
represented by a capacitor Cx in series with a resis-
tor Rx . The detector is connected between B and D
and the a.c. supply is connected between A and C.
Derive the equations for Rx and Cx when the bridge
is balanced. Evaluate Rx and Cx if, at balance,
C1 = 1 nF, R2 = 100 �, R3 = 1 k� and C2 = 10 nF.

[Rx = 10 k�, Cx = 100 pF]

6. The a.c. bridge shown in Figure 27.13 is balanced
when the values of the components are as shown.
Determine at balance, the values of Rx and Lx .

[Rx = 2 k�, Lx = 0.2 H]
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Figure 27.13

7. An a.c. bridge has, in arm AB, a pure capacitor of
0.4 µF; in arm BC, a pure resistor of 500 �; in arm
CD, a coil of 50 � resistance and 0.1 H inductance;
in arm DA, an unknown impedance comprising
resistance Rx and capacitance Cx in series. If the fre-
quency of the bridge at balance is 800 Hz, determine
the values of Rx and Cx .

[Rx = 500 �, Cx = 4 µF]

8. When the Wien bridge shown in Figure 27.9 is bal-
anced, the components have the following values:
R2 = R3 = 20 k�, R4 = 500 �, C2 = C3 = 800 pF.
Determine for the balance condition (a) the value
of resistance R1 and (b) the frequency of the bridge
supply. [(a) 250 � (b) 9.95 kHz]

9. The conditions at balance of a Schering bridge
ABCD used to measure the capacitance and loss
angle of a paper capacitor are as follows: AB — a
pure capacitance of 0.2 µF; BC — a pure capaci-
tance of 3000 pF in parallel with a 400 � resistance;
CD — a pure resistance of 200 �; DA — the capaci-
tance under test which may be considered as a
capacitance Cx in series with a resistance Rx . If the
supply frequency is 1 kHz determine (a) the value
of Rx , (b) the value of Cx , (c) the power factor of
the capacitor, and (d) its loss angle.

[(a) 3 � (b) 0.4 µF (c) 0.0075 (d) 0.432◦]

10. At balance, an a.c. bridge PQRS used to mea-
sure the inductance and resistance of an inductor
has the following values: PQ — a non-inductive
400 � resistor; QR — the inductor with unknown
inductance Lx in series with resistance Rx; RS —
a 3 µF capacitor in series with a non-inductive
250 � resistor; SP — a 15 µF capacitor. A detector
is connected between Q and S and the a.c. supply
is connected between P and R. Derive the balance
equations for Rx and Lx and determine their values.

[Rx = 2 k�, Lx = 1.5 H]

11. A 1 kHz a.c. bridge ABCD has the following com-
ponents in its four arms: AB — a pure capacitor of
0.2 µF; BC — a pure resistance of 500 �; CD —
an unknown impedance; DA — a 400 � resistor
in parallel with a 0.1 µF capacitor. If the bridge
is balanced, determine the series components
comprising the impedance in arm CD.

[R = 59.41 �, L = 37.6 mH]

12. An a.c. bridge ABCD has in arm AB a standard
lossless capacitor of 200 pF; arm BC, an unknown
impedance, represented by a loss-less capacitor Cx
in series with a resistor Rx; arm CD, a pure 5 k�
resistor; arm DA, a 6 k� resistor in parallel with
a variable capacitor set at 250 pF. The frequency
of the bridge supply is 1500 Hz. Determine for
the condition when the bridge is balanced (a) the
values of Rx and Cx , and (b) the loss angle.

[(a) Rx = 6.25 k�, Cx = 240 pF; (b) 0.81◦]

13. An a.c. bridge ABCD has the following com-
ponents: AB — a 1 k� resistance in parallel
with a 0.2 µF capacitor; BC — a 1.2 k� resis-
tance; CD — a 750 � resistance; DA — a 0.8 µF
capacitor in series with an unknown resistance.
Determine (a) the frequency for which the bridge
is in balance, and (b) the value of the unknown
resistance in arm DA to produce balance.

[(a) 649.7 Hz (b) 375 �]
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28 Series resonance and Q-factor

At the end of this chapter you should be able to:
• state the conditions for resonance in an a.c. series

circuit
• calculate the resonant frequency in an a.c. series

circuit,

fr = 1

2π
√

(LC)

• define Q-factor as
X

R
and as

VL

V
or

VC

V

• determine the maximum value of VC and VCOIL and
the frequency at which this occurs

• determine the overall Q-factor for two components in
series

• define bandwidth and selectivity
• calculate Q-factor and bandwidth in an a.c. series

circuit
• determine the current and impendance when the

frequency deviates from the resonant frequency

28.1 Introduction

When the voltage V applied to an electrical network
containing resistance, inductance and capacitance is in
phase with the resulting current I , the circuit is said to
be resonant. The phenomenon of resonance is of great
value in all branches of radio, television and communi-
cations engineering, since it enables small portions of the
communications frequency spectrum to be selected for
amplification independently of the remainder.

At resonance, the equivalent network impedance Z is
purely resistive since the supply voltage and current are
in phase. The power factor of a resonant network is unity
(i.e. power factor = cos φ = cos 0 = 1).

In electrical work there are two types of resonance —
one associated with series circuits (which was introduced
in Chapter 15), when the input impedance is a mini-
mum (which is discussed further in this chapter), and the
other associated with simple parallel networks, when the
input impedance is a maximum (which was discussed in
Chapter 16 and is further discussed in Chapter 29).

28.2 Series resonance

Figure 28.1 shows a circuit comprising a coil of inductance
L and resistance R connected in series with a capacitor C.
The R–L–C series circuit has a total impedance Z given
by Z = R + j(XL − XC) ohms, or Z = R + j(ωL − 1/ωC)
ohms where ω = 2πf . The circuit is at resonance when
(XL − XC) = 0, i.e. when XL = XC or ωL = 1/(ωC). The
phasor diagram for this condition is shown in Figure 28.2,
where |VL| = |VC |.

Figure 28.1 R–L–C series circuit

Figure 28.2 Phasor diagram |VL| = |VC |

Since at resonance

ωrL = 1

ωrC
, ω2

r = 1

LC
and ω = 1√

(LC)
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Thus resonant frequency,

f r = 1
2π

√
(LC)

hertz, since ωr = 2πfr

Figure 28.3 shows how inductive reactance XL and
capacitive reactance XC vary with the frequency. At
the resonant frequency fr , |XL| = |XC |. Since impedance
Z = R + j(XL − XC) and, at resonance, (XL − XC) = 0,
then impedance Z = R at resonance. This is the mini-
mum value possible for the impedance as shown in the
graph of the modulus of impedance, |Z|, against frequency
in Figure 28.4.

Figure 28.3 Variation of XL and XC with frequency

Figure 28.4 |Z| and I plotted against frequency

At frequencies less than fr , XL < XC and the circuit is
capacitive; at frequencies greater than fr , XL > XC and the
circuit is inductive.

Current I = V/Z . Since impedance Z is a minimum
value at resonance, the current I has a maximum value.
At resonance, current I = V/R. A graph of current against
frequency is shown in Figure 28.4.

Problem 1. A coil having a resistance of 10 � and
an inductance of 75 mH is connected in series with a
40 µF capacitor across a 200V a.c. supply. Determine
at what frequency resonance occurs, and (b) the current
flowing at resonance.

(a) Resonant frequency,

fr = 1

2π
√

(LC)

= 1

2π
√

[(75 × 10−3)(40 × 10−6)]

i.e. f r = 91.9 Hz

(b) Current at resonance, I = V

R
= 200

10
= 20 A

Problem 2. An R–L–C series circuit is comprised
of a coil of inductance 10 mH and resistance 8 �
and a variable capacitor C. The supply frequency is
1 kHz. Determine the value of capacitor C for series
resonance.

At resonance, ωrL = 1/(ωrC), from which, capacitance,
C = 1/(ω2

r L)

Hence capacitance C = 1

(2π1000)2(10 × 10−3)

= 2.53 µF

Problem 3. A coil having inductance L is connected
in series with a variable capacitor C. The circuit pos-
sesses stray capacitance CS which is assumed to be
constant and effectively in parallel with the variable
capacitor C. When the capacitor is set to 1000 pF the
resonant frequency of the circuit is 92.5 kHz, and when
the capacitor is set to 500 pF the resonant frequency
is 127.8 kHz. Determine the values of (a) the stray
capacitance CS , and (b) the coil inductance L.

For a series R–L–C circuit the resonant frequency fr is
given by:

fr = 1

2π
√

(LC)
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The total capacitance of C in parallel with CS is given by
(C + CS)

At 92.5 kHz, C = 1000 pF. Hence

92.5 × 103 = 1

2π
√

[L(1000 + CS)10−12]
(1)

At 127.8 kHz, C = 500 pF. Hence

127.8 × 103 = 1

2π
√

[L(500 + CS)10−12]
(2)

(a) Dividing equation (2) by equation (1) gives:

127.8 × 103

92.5 × 103 =
1

2π
√

[L(500 + CS)10−12]
1

2π
√

[L(1000 + CS)10−12]

i.e.
127.8

92.5
=

√
[L(1000 + CS)10−12]√
[L(500 + CS)10−12]

=
√(

1000 + CS

500 + CS

)

where CS is in picofarads, from which,

(
127.8

92.5

)2

= 100 + CS

500 + CS

i.e. 1.909 = 1000 + CS

500 + CS

Hence 1.909(500 + CS) = 1000 + CS

954.5 + 1.909CS = 1000 + CS

1.909CS − CS = 1000 − 954.5

0.909CS = 45.5

Thus stray capacitance CS = 45.5/0.909 = 50 pF

(b) Substituting CS = 50 pF in equation (1) gives:

92.5 × 103 = 1

2π
√

[L(1050 × 10−12)]

Hence (92.5 × 103 × 2π)2 = 1

L(1050 × 10−12)

from which, inductance

L = 1

(1050×10−12)(92.5 × 103 × 2π)2 H = 2.82 mH

Now try the following exercise.

Exercise 103 Further problems on series
resonance

1. A coil having an inductance of 50 mH and resistance
8.0 � is connected in series with a 25 µF capacitor
across a 100V a.c. supply. Determine (a) the res-
onant frequency of the circuit, and (b) the current
flowing at resonance.

[(a) 142.4 Hz (b) 12.5 A]

2. The current at resonance in a series R–L–C circuit
is 0.12 mA. The circuit has an inductance of 0.05 H
and the supply voltage is 24 mV at a frequency of
40 kHz. Determine (a) the circuit resistance, and (b)
the circuit capacitance.

[(a) 200 � (b) 316.6 pF]

3. A coil of inductance 2.0 mH and resistance 4.0 �
is connected in series with a 0.3 µF capacitor. The
circuit is connected to a 5.0V, variable frequency
supply. Calculate (a) the frequency at which reso-
nance occurs, (b) the voltage across the capacitance
at resonance, and (c) the voltage across the coil at
resonance.

[(a) 6.50 kHz (b) 102.1V (c) 102.2V]

4. A series R–L–C circuit having an inductance of
0.40 H has an instantaneous voltage,
v = 60 sin(4000t − (π/6)) volts and an instanta-
neous current, i = 2.0 sin 4000t amperes. Deter-
mine (a) the values of the circuit resistance and
capacitance, and (b) the frequency at which the
circuit will be resonant.

[(a) 26 �; 154.8 nF (b) 639.6 Hz]

5. A variable capacitor C is connected in series with
a coil having inductance L. The circuit possesses
stray capacitance CS which is assumed to be con-
stant and effectively in parallel with the variable
capacitor C. When the capacitor is set to 2.0 nF
the resonant frequency of the circuit is 86.85 kHz,
and when the capacitor is set to 1.0 nF the resonant
frequency is 120 kHz. Determine the values of (a)
the stray circuit capacitance CS , and (b) the coil
inductance L. [(a) 100 pF (b) 1.60 mH]

28.3 Q-factor

Q-factor is a figure of merit for a resonant device such as
an L–C–R circuit.

Such a circuit resonates by cyclic interchange of stored
energy, accompanied by energy dissipation due to the
resistance.
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By definition, at resonance

Q = 2π

(
maximum energy stored

energy loss per cycle

)

Since the energy loss per cycle is equal to (the average
power dissipated) × (periodic time),

Q = 2π

(
maximum energy stored

average power dissipated × periodic time

)

= 2π

(
maximum energy stored

average power dissipated × (1/fr)

)

since the periodic time T = 1/fr .

Thus Q = 2πfr

(
maximum energy stored

average power dissipated

)

i.e. Q = ωr

(
maximum energy stored

average power dissipated

)

where ωr is the angular frequency at resonance.
In an L–C–R circuit both of the reactive elements store

energy during a quarter cycle of the alternating supply
input and return it to the circuit source during the follow-
ing quarter cycle. An inductor stores energy in its magnetic
field, then transfers it to the electric field of the capacitor
and then back to the magnetic field, and so on. Thus the
inductive and capacitive elements transfer energy from
one to the other successively with the source of supply
ideally providing no additional energy at all. Practical
reactors both store and dissipate energy.

Q-factor is an abbreviation for quality factor and refers
to the ‘goodness’ of a reactive component.

For an inductor, Q = ωr

(
maximum energy stored

average power dissipated

)

= ωr

(
1
2 LI2

m

I2R

)
= ωr

( 1
2 LI2

m

)
(Im/

√
2)2R

= ωrL

R
(28.1)

For a capacitor, Q = ωr
( 1

2 CV2
m

)
(Im/

√
2)2R

= ωr
1
2 C(ImXC)2

(Im/
√

2)2R

= ωr
1
2 CI2

m(1/ωrC)2

(Im/
√

2)2R

i.e. Q = 1

ωrCR
(28.2)

From expressions (28.1) and (28.2) it can be deduced that

Q = XL

R
= XC

R
= reactance

resistance

In fact, Q-factor can also be defined as

Q-factor = reactance power

resistance
= Q

P

where Q is the reactive power which is also the peak rate
of energy storage, and P is the average energy dissipation
rate. Hence

Q-factor = Q

P
= I2XL(or I2XC)

I2R
= XL

R

(
or

XC

R

)

i.e. Q = reactance
resistance

In an R–L–C series circuit the amount of energy stored at
resonance is constant.
When the capacitor voltage is a maximum, the inductor
current is zero, and vice versa, i.e. 1

2 LI2
m = 1

2 CV2
m

Thus the Q-factor at resonance, Qr is given by

Qr = ωrL
R

= 1
ωrCR

(28.3)

However, at resonance ωr = 1/
√

(LC)

Hence Qr = ωrL

R
= 1√

(LC)

(
L

R

)

i.e. Qr = 1
R

√(
L
C

)

It should be noted that when Q-factor is referred to,
it is nearly always assumed to mean ‘the Q-factor at
resonance’.
With reference to Figures 28.1 and 28.2, at resonance,
VL = VC

VL = IXL = IωrL = V

R
ωrL =

(
ωrL

R

)
V = QrV

and VC = IXC = I

ωrC
= V/R

ωrC
=

(
1

ωrCR

)
V = QrV

Hence, at resonance, VL = VC = QrV

or Qr = VL (or VC)

V

The voltages VL and VC at resonance may be much greater
than that of the supply voltage V . For this reason Q is often
called the circuit magnification factor. It represents a
measure of the number of times VL or VC is greater than
the supply voltage.
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The Q-factor at resonance can have a value of several
hundreds. Resonance is usually of interest only in circuits
of Q-factor greater than about 10; circuits having Q con-
siderably below this value are effectively merely operating
at unity power factor.

Problem 4. A series circuit comprises a 10 � resis-
tance, a 5 µF capacitor and a variable inductance L.
The supply voltage is 20∠0◦ volts at a frequency of
318.3 Hz. The inductance is adjusted until the p.d.
across the 10 � resistance is a maximum. Determine
for this condition (a) the value of inductance L, (b) the
p.d. across each component and (c) the Q-factor.

(a) The maximum voltage across the resistance occurs
at resonance when the current is a maximum. At
resonance, ωrL = 1/(ωrC), from which

inductance L = 1

ω2
r C

= 1

(2π318.3)2(5 × 10−6)

= 0.050 H or 50 mH

(b) Current at resonance Ir = V

R
= 20∠0◦

10∠0◦ = 2.0∠0◦ A

p.d. across resistance, VR = IrR = (2.0∠0◦)(10)

= 20∠0◦ V

p.d. across inductance, VL = IXL

XL = 2π(318.3)(0.050) = 100 �

Hence VL = (2.0∠0◦)(100∠90◦) = 200∠90◦ V

p.d. across capacitor, VC = IXC

= (2.0∠0◦)(100∠−90◦)

= 200∠−90◦ V

(c) Q-factor at resonance, Qr = VL (or VC)

V
= 200

20
= 10

[
Alternatively, Qr = ωrL

R
= 100

10
= 10

or Qr = 1

ωrCR

= 1

2π(318.3)(5 × 10−6)(10)

= 10

or Qr = 1

R

√(
L

C

)

= 1

10

√(
0.050

5 × 10−6

)
= 10

]

28.4 Voltage magnification

For a circuit with a high value of Q (say, exceeding 100),
the maximum volt-drop across the coil, VCOIL, and the
maximum volt-drop across the capacitor, VC , coincide
with the maximum circuit current at the resonant fre-
quency fr , as shown in Figure 28.5(a). However, if a
circuit of low Q (say, less than 10) is used, it may be
shown experimentally that the maximum value of VC
occurs at a frequency less than fr while the maximum
value of VCOIL occurs at a frequency higher than fr , as
shown in Figure 28.5(b). The maximum current, however,

Figure 28.5 (a) High Q-factor (b) Low Q-factor

still occurs at the resonant frequency with low Q. This is
analysed below.

Since Qr = VC

V
then VC = VQr

However VC = IXC = I

( −j

ωC

)
= I

(
1

jωC

)
and since

I = V

Z

VC = V

Z

(
1

jωC

)
= V

( jωC)Z

Z = R + j

(
ωL − 1

ωC

)
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thus VC = V

( jωC)

[
R + j

(
ωL − 1

ωC

)]

= V

jωCR + j2ω2CL − j2 ωC

ωC

= V

jωCR − ω2LC + 1
= V

(1 − ω2LC) + jωCR

= V [(1 − ω2LC) − jωCR]

[(1 − ω2LC) + jωCR][(1 − ω2LC) − jωCR]

= V [(1 − ω2LC) − jωCR]

[(1 − ω2LC)2 + (ωCR)2]

The magnitude of VC ,

|VC | = V
√

[(1 − ω2LC)2 + (ωCR)2]

[(1 − ω2LC)2 + (ωCR)2]

from the Argand diagram

= V√
[(1 − ω2LC)2 + (ωCR)2]

(28.4)

To find the maximum value of VC , equation (28.4) is dif-
ferentiated with respect to ω, equated to zero and then
solved — this being the normal procedure for maximum/
minimum problems. Thus, using the quotient and function
of a function rules:

dVC

dω
=

√
[(1 − ω2LC)2 + (ωCR)2][0]
−[V ] 1

2 [(1 − ω2LC)2 + (ωCR)2]−1/2

×[2(1 − ω2LC)(−2ωLC) + 2ωC2R2]

{√[(1 − ω2LC)2 + (ωCR)2]}2

=
0 − V

2 [(1 − ω2LC)2 + (ωCR)2]−1/2

×[2(1 − ω2LC)(−2ωLC) + 2ωC2R2]

(1 − ω2LC)2 + (ωCR)2

= −V
2 [2(1 − ω2LC)2(−2ωLC) + 2ωC2R2]

[(1 − ω2LC)2 + (ωCR)2]3/2 = 0

for a maximum value.

Hence − V

2
[2(1 − ω2LC)(−2ωLC) + 2ωC2R2] = 0

and − V [(1 − ω2LC)(−2ωLC) + ωC2R2] = 0

and (1 − ω2LC)(−2ωLC) + ωC2R2 = 0

from which, ωC2R2 = (1 − ω2LC)(2ωLC)

i.e. C2R2 = 2LC(1 − ω2LC)

C2R2

LC
= 2 − 2ω2LC and 2ω2LC = 2 − CR2

L

Hence ω2 = 2

2LC
−

CR2

L
2LC

= 1

LC
− 1

2

(
R

L

)2

The resonant frequency, ωr = 1√
(LC)

from which,

ω2
r = 1

LC

Thus ω2 = ω2
r − 1

2

(
R

L

)2

(28.5)

Q = ωrL

R
from which

R

L
= ωr

Q
and

(
R

L

)2

= ω2
r

Q2

Hence, from equation (28.5) ω2 = ω2
r − 1

2

ω2
r

Q2

i.e. ω2 = ω2
r

(
1 − 1

2Q2

)
(28.6)

or ω = ωr

√ (
1 − 1

2Q2

)

or f = fr

√ (
1 − 1

2Q2

)
(28.7)

Hence the maximum p.d. across the capacitor does not
occur at the resonant frequency, but at a frequency slightly
less than fr as shown in Figure 28.5(b). If Q is large, then
f ≈ fr as shown in Figure 28.5(a).

From equation (28.4), |VC | = V√
[(1 − ω2LC)2 + (ωCR)2]

and substitutingω2 = ω2
r

(
1 − 1

2Q2

)
from equation (28.6)

gives maximum value of Vc,

VCm = V√ [(
1 − ω2

r

(
1 − 1

2Q2

)
LC

)2

+ω2
r

(
1 − 1

2Q2

)
C2R2

]

ω2
r = 1

LC
hence

VCm = V√ [(
1 − 1

LC

(
1 − 1

2Q2

)
LC

)2

+ 1

LC

(
1 − 1

2Q2

)
C2R2

]



Ch28-H8139.tex 30/3/2007 18: 0 page 355

Series resonance and Q-factor 355

PART

3

= V√ [(
1 −

(
1 − 1

2Q2

))2

+ CR2

L

(
1 − 1

2Q2

)]

= V√ [
1

4Q4 + CR2

L
− CR2

L

(
1

2Q2

)] (28.8)

Q = ωrL

R
= 1

ωrCR
hence

Q2 =
(

ωrL

R

) (
1

ωrCR

)
= L

CR2

from which,
CR2

L
= 1

Q2

Substituting in equation (28.8),

VCm = V√ (
1

4Q4 + 1

Q2 − 1

2Q4

)

= V√ (
1

Q2

[
1

4Q2 + 1 − 1

2Q2

])

= V

1

Q

√ [
1 − 1

4Q2

]

i.e. VCm = QV√ [
1 −

(
1

2Q

)2
] (28.9)

From equation (28.9), when Q is large, VCm ≈ QV
If a similar exercise is undertaken for the voltage across

the inductor it is found that the maximum value is given by:

VLm = QV√ [
1 −

(
1

2Q

)2
]

i.e. the same equation as for VCm , and frequency,

f = fr√[(
1 − 1

2Q2

)]

showing that the maximum p.d. across the coil does not
occur at the resonant frequency but at a value slightly
greater than fr , as shown in Figure 28.5(b).

Problem 5. A series L−R−C circuit has a sinusoidal
input voltage of maximum value 12V. If inductance,
L = 20 mH, resistance, R = 80 �, and capacitance,
C = 400 nF, determine (a) the resonant frequency,
(b) the value of the p.d. across the capacitor at the
resonant frequency, (c) the frequency at which the p.d.
across the capacitor is a maximum, and (d) the value
of the maximum voltage across the capacitor.

(a) The resonant frequency,

f r = 1

2π
√

(LC)
= 1

2π
√

[(20 × 10−3)(400 × 10−9)]

= 1779.4 Hz

(b) VC = QV and Q = ωrL

R

(
or

1

ωrCR
or

1

R

√
L

C

)

Hence Q = (2π1779.4)(20 × 10−3)

80
= 2.80

Thus VC = QV = (2.80)(12) = 33.60V

(c) From equation (28.7), the frequency f at which VC is
a maximum value,

f = fr

√ (
1 − 1

2Q2

)
= (1779.4)

√ (
1 − 1

2(2.80)2

)

= 1721.7 Hz

(d) From equation (28.9), the maximum value of the p.d.
across the capacitor is given by:

VCm = QV√ [
1 −

(
1

2Q

)2
] = (2.80)(12)√ [

1 −
(

1

2(2.80)

)2
]

= 34.15 V

28.5 Q-factors in series

If the losses of a capacitor are not considered as negligi-
ble, the overall Q-factor of the circuit will depend on the
Q-factor of the individual components. Let the Q-factor
of the inductor be QL and that of the capacitor be QC

The overall Q-factor, QT = 1

RT

√
L

C
from Section 28.3,

where RT = RL + RC

Since QL = ωrL

RL
then RL = ωrL

QL
and since

QC = 1

ωrCRC
then RC = 1

QCωrC
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Hence QT = 1

RL + RC

√
L

C
= 1(

ωrL

QL
+ 1

QCωrC

)
√

L

C

= 1⎡
⎢⎢⎣

(
1√

(LC)

)
L

QL
+ 1

QC

(
1√

(LC)

)
C

⎤
⎥⎥⎦

√
L

C

since ωr = 1√
(LC)

= 1

L

QLL1/2C1/2 + L1/2C1/2

QCC

√
L

C

= 1

1

QL

L1/2

C1/2 + 1

QC

L1/2

C1/2

√
L

C

= 1

1

QL

√
L

C
+ 1

QC

√
L

C

√
L

C

= 1√
L

C

(
1

QL
+ 1

QC

)
√

L

C

= 1
1

QL
+ 1

QC

= 1
QC + QL

QLQC

i.e. the overall Q-factor,

QT = QLQC

QL + QC

Problem 6. An inductor of Q-factor 60 is connected
in series with a capacitor having a Q-factor of 390.
Determine the overall Q-factor of the circuit.

From above, overall Q-factor,

QT = QLQC

QL + QC
= (60)(390)

60 + 390
= 23 400

450
= 52

Now try the following exercise.

Exercise 104 Further problems on Q-factor

1. A series R–L–C circuit comprises a 5 µF capacitor,
a 4 � resistor and a variable inductance L. The sup-
ply voltage is 10∠0◦ V at a frequency of 159.1 Hz.
The inductance is adjusted until the p.d. across the
4 � resistance is a maximum. Determine for this
condition (a) the value of inductance, (b) the p.d.
across each component, and (c) the Q-factor of the
circuit.

[(a) 200 mH (b) VR = 10∠0◦ V;
VL = 500∠90◦ V; VC = 500∠−90◦ V (c) 50]

2. A series L–R–C circuit has a supply input of
5 volts. Given that inductance, L = 5 mH, resis-
tance, R = 75 � and capacitance, C = 0.2 µF, deter-
mine (a) the resonant frequency, (b) the value of
voltage across the capacitor at the resonant fre-
quency, (c) the frequency at which the p.d. across
the capacitance is a maximum, and (d) the value of
the maximum voltage across the capacitor.

[(a) 5033 Hz (b) 10.54V
(c) 4741 Hz (d) 10.85V]

3. A capacitor having a Q-factor of 250 is connected
in series with a coil which has a Q-factor of 80.
Calculate the overall Q-factor of the circuit.

[60.61]

4. An R–L–C series circuit has a maximum current of
2 mA flowing in it when the frequency of the 0.1V
supply is 4 kHz. The Q-factor of the circuit under
these conditions is 90. Determine (a) the voltage
across the capacitor, and (b) the values of the circuit
resistance, inductance and capacitance.

[(a) 9V (b) 50 �; 0.179 H; 8.84 nF]

5. Calculate the inductance of a coil which must be
connected in series with a 4000 pF capacitor to give
a resonant frequency of 200 kHz. If the coil has a
resistance of 12 �, determine the circuit Q-factor.

[158.3 µH; 16.58]

28.6 Bandwidth

Figure 28.6 shows how current I varies with frequency f
in an R–L–C series circuit. At the resonant frequency fr ,
current is a maximum value, shown as Ir . Also shown
are the points A and B where the current is 0.707 of the
maximum value at frequencies f1 and f2. The power deliv-
ered to the circuit is I2R. At I = 0.707Ir , the power is
(0.707Ir)2R = 0.5 I2

r R, i.e. half the power that occurs at
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Figure 28.6 Bandwidth and half-power points f1 and f2

frequency fr . The points corresponding to f1 and f2 are
called the half-power points. The distance between these
points, i.e. ( f2 − f1), is called the bandwidth.

When the ratio of two powers P1 and P2 is expressed
in decibel units, the number of decibels X is given by:

X = 10 lg

(
P2

P1

)
dB (see Section 10.16, page 96)

Let the power at the half-power points be (0.707Ir)2R =
(I2

r R)/2 and let the peak power be I2
r R, then the ratio of

the power in decibels is given by:

10 lg

[
I2
r R/2

I2
r R

]
= 10 lg

1

2
= −3 dB

It is for this reason that the half-power points are often
referred to as ‘the −3 dB points’.

At the half-power frequencies, I = 0.707Ir , thus
impedance

Z = V

I
= V

0.707Ir
= 1.414

(
V

Ir

)
= √

2Zr = √
2R

(since at resonance Zr = R)

Since Z = √
2R, an isosceles triangle is formed by the

impedance triangles, as shown in Figure 28.7, where
ab = bc. From the impedance triangles it can be seen
that the equivalent circuit reactance is equal to the circuit
resistance at the half-power points.

At f1, the lower half-power frequency |XC | > |XL| (see
Figure 28.4)

Thus
1

2πf1C
− 2πf1L = R

from which, 1 − 4π2f 2
1 LC = 2πf1CR

i.e. (4π2LC)f 2
1 + (2πCR)f1 − 1 = 0

Figure 28.7 (a) Inductive impedance triangle
(b) Capacitive impedance triangle

This is a quadratic equation in f1. Using the quadratic
formula gives:

f1 = −(2πCR) ± √
[(2πCR)2 − 4(4π2LC)(−1)]

2(4π2LC)

= −(2πCR) ± √
[4π2C2R2 + 16π2LC]

8π2LC

= −(2πCR) ± √
[4π2C2(R2 + (4L/C))]

8π2LC

= −(2πCR) ± 2πC
√

[R2 + (4L/C)]

8π2LC

Hence f1 = −R ± √
[R2 + (4L/C)]

4πL

= −R + √
[R2 + (4L/C)]
4πL

(since
√

[R2 + (4L/C)] > R and f1 cannot be negative).

At f2, the upper half-power frequency |XL| > |XC | (see
Figure 28.4)

Thus 2πf2L − 1

2πf2C
= R

from which, 4π2f 2
2 LC − 1 = R(2πf2C)

i.e. (4π2LC)f 2
2 − (2πCR)f2 − 1 = 0

This is a quadratic equation in f2 and may be solved using
the quadratic formula as for f1, giving:

f2 = R+√
[R2 + (4L/C)]

4πL
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Bandwidth = ( f2 − f1)

=
{

R + √
[R2 + (4L/C)]

4πL

}

−
{−R + √

[R2 + (4L/C)]

4πL

}

= 2R

4πL
= R

2πL
= 1

2πL/R

= fr
2πfrL/R

= fr
Qr

from equation (28.3). Hence for a series R–L–C circuit

Qr = fr

f2 − f1
(28.10)

Problem 7. A filter in the form of a series L–R–C
circuit is designed to operate at a resonant frequency
of 20 kHz. Included within the filter is a 20 mH induc-
tance and 8 � resistance. Determine the bandwidth of
the filter.

Q-factor at resonance is given by

Qr = ωrL

R
= (2π20 000)(10 × 10−3)

8
= 157.08

Since Qr = fr/( f2 − f1),

bandwidth, ( f2 − f1) = fr
Qr

= 20 000

157.08
= 127.3 Hz

An alternative equation involving fr

At the lower half-power frequency f1:
1

ω1C
− ω1L = R

At the higher half-power frequency f2: ω2L − 1

ω2C
= R

Equating gives:
1

ω1C
− ω1L = ω2L − 1

ω2C

Multiplying throughout by C gives:

1

ω1
− ω1LC = ω2LC − 1

ω2

However, for series resonance, ω2
r = 1/(LC)

Hence
1

ω1
− ω1

ω2
r

= ω2

ω2
r

− 1

ω2

i.e.
1

ω1
+ 1

ω2
= ω2

ω2
r

+ ω1

ω2
r

= ω1 + ω2

ω2
r

Therefore
ω2 + ω1

ω1ω2
= ω1 + ω2

ω2
r

from which, ω2
r = ω1ω2 or ωr = √

(ω1ω2)

Hence 2πfr = √
[(2πf1)(2πf2)] and fr = √

( f1f2)

(28.11)

Selectivity is the ability of a circuit to respond more read-
ily to signals of a particular frequency to which it is tuned
than to signals of other frequencies. The response becomes
progressively weaker as the frequency departs from the
resonant frequency. Discrimination against other signals
becomes more pronounced as circuit losses are reduced,
i.e. as the Q-factor is increased. Thus Qr = fr/( f2 − f1)
is a measure of the circuit selectivity in terms of the
points on each side of resonance where the circuit cur-
rent has fallen to 0.707 of its maximum value reached at
resonance. The higher the Q-factor, the narrower the band-
width and the more selective is the circuit. Circuits having
high Q-factors (say, in the order 300) are therefore use-
ful in communications engineering. A high Q-factor in a
series power circuit has disadvantages in that it can lead to
dangerously high voltages across the insulation and may
result in electrical breakdown.

For example, suppose that the working voltage of a
capacitor is stated as 1 kV and is used in a circuit having
a supply voltage of 240V. The maximum value of the
supply will be

√
2(240), i.e. 340V. The working voltage

of the capacitor would appear to be ample. However, if
the Q-factor is, say, 10, the voltage across the capacitor
will reach 2.4 kV. Since the capacitor is rated only at 1 kV,
dielectric breakdown is more than likely to occur.

Low Q-factors, say, in the order of 5 to 25, may be
found in power transformers using laminated iron cores.

A capacitor-start induction motor, as used in domes-
tic appliances such as washing machines and vacuum-
cleaners, having a Q-factor as low as 1.5 at starting would
result in a voltage across the capacitor 1.5 times that of
the supply voltage; hence the cable joining the capacitor
to the motor would require extra insulation.

Problem 8. An R–L–C series circuit has a resonant
frequency of 1.2 kHz and a Q-factor at resonance of
30. If the impedance of the circuit at resonance is 50 �
determine the values of (a) the inductance, and (b) the
capacitance. Find also (c) the bandwidth, (d) the lower
and upper half-power frequencies and (e) the value of
the circuit impedance at the half-power frequencies.

(a) At resonance the circuit impedance, Z = R, i.e.
R = 50 �.
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Q-factor at resonance, Qr = ωrL/R

Hence inductance, L = QrR

ωr
= (30)(50)

(2π1200)

= 0.199 H or 199 mH

(b) At resonance ωrL = 1/(ωrC)

Hence capacitance, C = 1

ω2
r L

= 1

(2π1200)2(0.199)

= 0.088 µF or 88 nF

(c) Q-factor at resonance is also given by Qr = fr/( f2 − f1),
from which,

bandwidth, ( f2 − f1) = fr
Qr

= 1200

30
= 40 Hz

(d) From equation (28.11), resonant frequency,
fr = √

( f1f2), i.e. 1200 = √
( f1f2)

from which, f1 f2 = (1200)2 = 1.44 × 106 (28.12)

From part(c), f2 − f1 = 40 (28.13)

From equation (28.12), f1 = (1.44 × 106)/f2
Substituting in equation (28.13) gives:

f2 − 1.44 × 102

f2
= 40

Multiplying throughout by f2 gives:

f 2
2 − 1.44 × 106 = 40 f2

i.e. f 2
2 − 40 f2 − 1.44 × 106 = 0

This is a quadratic equation in f2. Using the quadratic
formula gives:

f2 = 40 ± √
[(40)2 − 4(1.44 × 106)]

2
= 40 ± 2400

2

= 40 + 2400

2
(since f2 cannot be negative)

Hence the upper half-power frequency,
f2 = 1220 Hz.
From equation (28.12), the lower half-power
frequency,

f1 = f2 − 40 = 1220 − 40 = 1180 Hz

Note that the upper and lower half-power frequency
values are symmetrically placed about the resonance
frequency. This is usually the case when the Q-factor
has a high value (say, >10).

(e) At the half-power frequencies, current I = 0.707 Ir

Hence impedance,

Z = V

I
= V

0.707 Ir
= 1.414

(
V

Ir

)
= √

2Zr = √
2R

Thus impedance at the half-power frequencies,

Z = √
2R = √

2(50) = 70.71 �

Problem 9. A series R−L−C circuit is connected to a
0.2V supply and the current is at its maximum value of
4 mA when the supply frequency is adjusted to 3 kHz.
The Q-factor of the circuit under these conditions is
100. Determine the value of (a) the circuit resistance,
(b) the circuit inductance, (c) the circuit capacitance,
and (d) the voltage across the capacitor.

Since the current is at its maximum, the circuit is at
resonance and the resonant frequency is 3 kHz.

(a) At resonance, impedance, Z = R = V

I

= 0.2

4 × 10−3 = 50 �

Hence the circuit resistance in 50 �

(b) Q-factor at resonance is given by Qr = ωrL/R, from
which,

inductance, L = QrR

ωr
= (100)(50)

2π3000
= 0.265 H or 265 mH

(c) Q-factor at resonance is also given by Qr = 1/(ωrCR),
from which,

capacitance, C = 1

ωrRQr
= 1

(2π3000)(50)(100)

= 0.0106 µF or 10.6 nF

(d) Q-factor at resonance in a series circuit represents the
voltage magnification, i.e. Qr = VC/V , from which,
VC = QrV = (100)(0.2) = 20V.

Hence the voltage across the capacitor is 20 V

(Alternatively, VC = IXC = I

ωrC

= 4 × 10−3

(2π3000)(0.0106 × 10−6)

= 20 V)

Problem 10. A coil of inductance 351.8 mH and
resistance 8.84 � is connected in series with a 20 µF
capacitor. Determine (a) the resonant frequency,
(b) the Q-factor at resonance, (c) the bandwidth, and
(d) the lower and upper −3 dB frequencies.
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(a) Resonant frequency, fr = 1

2π
√

(LC)

= 1

2π
√

[(0.3518)(20 × 10−6)]

= 60.0 Hz

(b) Q-factor at resonance,

Qr = 1

R

√
L

C
= 1

8.84

√ (
0.3518

20 × 10−6

)
= 15

[
Alternatively, Qr = ωrL

R
= 2π(60.0)(0.3518)

8.84
= 15

or Qr = 1

ωrCR

= 1

(2π60.0)(20 × 10−6)(8.84)

= 15
]

(c) Bandwidth, ( f 2 − f1) = fr
Qr

= 60.0

15
= 4 Hz

(d) With a Q-factor of 15 it may be assumed that the lower
and upper −3 dB frequencies, f1 and f2 are symmetri-
cally placed about the resonant frequency of 60.0 Hz.
Hence the lower −3 dB frequency, f1 = 58 Hz, and
the upper −3 dB frequency, f2 = 62 Hz.

[This may be checked by using ( f2 − f1) = 4 and
fr = √

( f1f2)]

28.7 Small deviations from the resonant
frequency

Let ω1 be a frequency below the resonant frequency ωr in
an L–R–C series circuit, and ω2 be a frequency above ωr
by the same amount as ω1 is below, i.e. ωr − ω1 = ω2 − ωr

Let the fractional deviation from the resonant frequency
be δ where

δ = ωr − ω1

ωr
= ω2 − ωr

ωr

Hence ωrδ = ωr − ω1 and ωrδ = ω2 − ωr

from which, ω1 = ωr − ωrδ and ω2 = ωr + ωrδ

i.e. ω1 = ωr(1 − δ) (28.14)

and ω2 = ωr(1 + δ) (28.15)

At resonance, Ir = V

R
and at other frequencies, I = V

Z
where Z is the circuit impedance.

Hence
I

Ir
= V/Z

V/R
= R

Z
= R

R + j

(
ωL − 1

ωC

)

From equation (28.15), at frequency ω2

I

Ir
= R

R + j

[
ωr(1 + δ)L − 1

ωr(1 + δ)C

]

= R/R
R

R
+ j

[
ωrL

R
(1 + δ) − 1

ωrRC(1 + δ)

]

At resonance,
1

ωrC
= ωrL hence

I

Ir
= 1

1 + j

[
ωrL

R
(1 + δ) − ωrL

R(1 + δ)

]

= 1

1 + j
ωrL

R

[
(1 + δ) − 1

(1 + δ)

]

Since
ωrL

R
= Q then

I

Ir
= 1

1 + jQ

[
(1 + δ)2 − 1

(1 + δ)

]

= 1

1 + jQ

[
1 + 2δ + δ2 − 1

(1 + δ)

]

= 1

1 + jQ

[
2δ + δ2

1 + δ

] = 1

1 + jδQ

[
2 + δ

1 + δ

]

If the deviation from the resonant frequency δ is very small
such that δ � 1

then
I

Ir
≈ 1

1 + jδQ
[ 2

1

] = 1
1 + j2δQ

(28.16)

and
I

Ir
= V/Z

V/Zr
= Zr

Z
= 1

1 + j2δQ

from which,
Z
Zr

= 1 + j2δQ (28.17)
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It may be shown that at frequency ω1,
I

Ir
= 1

1 − j2δQ
and

Z
Zr

= 1 − j2δQ

Problem 11. In an L–R–C series network, the induc-
tance, L = 8 mH, the capacitance, C = 0.3 µF, and the
resistance, R = 15 �. Determine the current flowing
in the circuit when the input voltages 7.5∠0◦ V and
the frequency is (a) the resonant frequency, (b) a fre-
quency 3% above the resonant frequency. Find also
(c) the impedance of the circuit when the frequency is
3% above the resonant frequency.

(a) At resonance, Zr = R = 15 �

Current at resonance, Ir = V

Zr
= 7.5∠0◦

15∠0◦ = 0.5∠0◦ A

(b) If the frequency is 3% above the resonant frequency,
then δ = 0.03

From equation (28.16),
I

Ir
= 1

1 + j2δQ

Q = 1

R

√
L

C
= 1

15

√(
8 × 10−3

0.3 × 10−6

)
= 10.89

Hence
1

0.5∠0◦ = 1

1 + j2(0.03)(10.89)

= 1

1 + j0.6534

= 1

1.1945∠33.16◦

and I = 0.5∠0◦

1.1945∠33.16◦
= 0.4186∠−33.16◦A

(c) From equation (28.17),
Z

Zr
= 1 + j2δQ

hence Z = Zr(1 + j2δQ) = R(1 + j2δQ)

= 15(1 + j2(0.03)(10.89))

= 15(1 + j0.6534)

= 15(1.1945∠33.16◦)

= 17.92∠33.16◦ �

Alternatively, Z = V

I
= 7.5∠0◦

0.4186∠−33.16◦
= 17.92∠33.16◦ �

Now try the following exercise.

Exercise 105 Further problems on bandwidth

1. A coil of resistance 10.05 � and inductance 400 mH
is connected in series with a 0.396 µF capacitor.
Determine (a) the resonant frequency, (b) the reso-
nant Q-factor, (c) the bandwidth, and (d) the lower
and upper half-power frequencies.

[(a) 400 Hz (b) 100 (c) 4 Hz
(d) 398 Hz and 402 Hz]

2. An R–L–C series circuit has a resonant frequency
of 2 kHz and a Q-factor at resonance of 40. If
the impedance of the circuit at resonance is 30 �
determine the values of (a) the inductance and
(b) the capacitance. Find also (c) the bandwidth,
(d) the lower and upper −3 dB frequencies, and (e)
the impedance at the −3 dB frequencies.

[(a) 95.5 mH (b) 66.3 nF (c) 50 Hz
(d) 1975 Hz and 2025 Hz (e) 42.43 �]

3. A filter in the form of a series L–C–R circuit is
designed to operate at a resonant frequency of
20 kHz and incorporates a 20 mH inductor and 30 �
resistance. Determine the bandwidth of the filter.

[238.7 Hz]

4. A circuit consists of a coil of inductance 200 µH
and resistance 8.0 � in series with a lossless 500 pF
capacitor. Determine (a) the resonant Q-factor, and
(b) the bandwidth of the circuit.

[(a) 79.06 (b) 6366 Hz]

5. A coil of inductance 200 µH and resistance 50.27 �
and a variable capacitor are connected in series
to a 5 mV supply of frequency 2 MHz. Determine
(a) the value of capacitance to tune the circuit to
resonance, (b) the supply current at resonance,
(c) the p.d. across the capacitor at resonance, (d)
the bandwidth, and (e) the half-power frequencies.

[(a) 31.66 pF (b) 99.46 µA (c) 250 mV
(d) 40 kHz (e) 2.02 MHz; 1.98 MHz]

6. A supply voltage of 3V is applied to a series
R–L–C circuit whose resistance is 12 �, inductance
is 7.5 mH and capacitance is 0.5 µF. Determine (a)
the current flowing at resonance, (b) the current
flowing at a frequency 2.5% below the resonant
frequency, and (c) the impedance of the circuit
when the frequency is 1% lower than the resonant
frequency.

[(a) 0.25A (b) 0.223∠27.04◦ A
(c) 12.25∠−11.54◦�]
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29 Parallel resonance and Q-factor

At the end of this chapter you should be able to:
• state the condition for resonance in an a.c. parallel

network
• calculate the resonant frequency in a.c. parallel

networks

• calculate dynamic resistance RD = L

CR
in an a.c.

parallel network

• calculate Q-factor and bandwidth in an a.c. parallel
network

• determine the overall Q-factor for capacitors con-
nected in parallel

• determine the impedance when the frequency deviates
from the resonant frequency

29.1 Introduction

A parallel network containing resistance R, pure induct-
ance L and pure capacitance C connected in parallel is
shown in Figure 29.1. Since the inductance and capaci-
tance are considered as pure components, this circuit is
something of an ‘ideal’ circuit. However, it may be used
to highlight some important points regarding resonance
which are applicable to any parallel circuit.
From Figure 29.1,

Figure 29.1 Parallel R–L–C circuit

the admittance of the resistive branch, G = 1

R

the admittance of the inductive branch, BL = 1

jXL
= −j

ωL

the admittance of the capacitive branch,

BC = 1

−jXC
= j

1/ωC
= jωC

Total circuit admittance, Y = G + j(BC − BL)

i.e. Y = 1

R
+ j

(
ωC − 1

ωL

)

The circuit is at resonance when the imaginary
part is zero, i.e. when ωC − (1/ωL) = 0. Hence at
resonance ωrC = 1/(ωrL) and ω2

r = 1/(LC), from which

ωr = 1/
√

(LC) and the resonant frequency

fr = 1
2π

√
(LC)

hertz

the same expression as for a series R−L−C circuit.
Figure 29.2 shows typical graphs of BC , BL , G and Y

against frequency f for the circuit shown in Figure 29.1.
At resonance, BC = BL and admittance Y = G = 1/R. This
represents the condition of minimum admittance for the
circuit and thus maximum impedance.

Figure 29.2 |Y | plotted against frequency

Since current I = V /Z = VY , the current is at a minimum
value at resonance in a parallel network.
From the ideal circuit of Figure 29.1 we have therefore
established the following facts which apply to any parallel
circuit. At resonance:

(i) admittance Y is a minimum
(ii) impedance Z is a maximum
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(iii) current I is a minimum
(iv) an expression for the resonant frequency fr may

be obtained by making the ‘imaginary’ part of the
complex expression for admittance equal to zero.

29.2 The LR–C parallel network

A more practical network, containing a coil of inductance
L and resistance R in parallel with a pure capacitance C,
is shown in Figure 29.3.

Figure 29.3

Admittance of coil, YCOIL = 1

R + jXL
= R − jXL

R2 + X2
L

= R

R2 + ω2L2 − jωL

R2 + ω2L2

Admittance of capacitor, YC = 1

−jXC
= j

Xc
= jωC

Total circuit admittance, Y = YCOIL + YC

= R

R2 + ω2L2 − jωL

R2 + ω2L2

+ jωC (29.1)

At resonance, the total circuit admittance Y is real
(Y = R/(R2 + ω2L2)), i.e. the imaginary part is zero.
Hence, at resonance:

−ωrL

R2 + ω2
r L2 + ωrC = 0

Therefore
ωrL

R2 + ω2
r L2 = ωrC and

L

C
= R2 + ω2

r L2

Thus ω2
r L2 = L

C
− R2

and ω2
r = L

CL2 − R2

L2 = 1

LC
− R2

L2 (29.2)

Hence ωr =
√ (

1

LC
− R2

L2

)

and resonant frequency, fr = 1
2π

√(
1

LC
− R2

L2

)

(29.3)

Note that when R2/L2 � 1/(LC) then fr = 1/2 π
√

(LC),
as for the series R−L−C circuit. Equation (29.3) is the
same as obtained in Chapter 16, page 192; however, the
above method may be applied to any parallel network as
demonstrated in Section 29.4 below.

29.3 Dynamic resistance

Since the current at resonance is in phase with the volt-
age, the impedance of the network acts as a resistance.
This resistance is known as the dynamic resistance, RD.
Impedance at resonance, RD = V /Ir , where Ir is the current
at resonance.

Ir = VYr = V

(
R

R2 + ω2
r L2

)

from equation (29.1) with the j terms equal to zero.

Hence RD = V

Ir
= V

VR/(R2 + ω2
r L2)

= R2 + ω2
r L2

R

= R2 + L2(1/LC) − (R2/L2)

R

from equation (29.2)

= R2 + (L/C) − R2

R
= L/C

R
= L

CR

Hence dynamic resistance, RD = L
CR

(29.4)

29.4 The LR–CR parallel network

A more general network comprising a coil of inductance
L and resistance RL in parallel with a capacitance C and
resistance RC in series is shown in Figure 29.4.
Admittance of inductive branch,

YL = 1

RL + jXL
= RL − jXL

R2
L + X2

L

= RL

R2
L + X2

L

− jXL

R2
L + X2

L
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Figure 29.4

Admittance of capacitive branch,

YC = 1

RC − jXC
= RC + jXC

R2
C + X2

C

= RC

R2
C + X2

C

+ jXC

R2
C + X2

C

Total network admittance,

Y = YL + YC = RL

R2
L + X2

L

− jXL

R2
L + X2

L

+ RC

R2
C + X2

C

+ jXC

R2
C + X2

C

At resonance the admittance is a minimum, i.e. when the
imaginary part of Y is zero. Hence, at resonance,

−XL

R2
L + X2

L

+ XC

R2
C + X2

C

= 0

i.e.
ωrL

R2
L + ω2L2

= 1/(ωrC)

R2
C + 1/ω2

r C2
(29.5)

Rearranging gives:

ωrL

(
R2

C + 1

ω2
r C2

)
= 1

ωrC
(R2

L + ω2
r L2)

ωrLR2
C + L

ωrC2 = R2
L

ωrC
+ ωrL2

C

Multiplying throughout by ωrC2 gives:

ω2
r C2LR2

C + L = R2
LC + ω2

r L2C

ω2
r (C2LR2

C − L2C) = R2
LC − L

ω2
r CL(CR2

C − L) = R2
LC − L

Hence ω2
r = (CR2

L − L)

LC(CR2
C − L)

i.e. ωr = 1√
(LC)

√ (
R2

L − (L/C)

R2
C − (L/C)

)

Hence

resonant frequency, fr = 1
2π

√
(LC)

√(
R2

L − (L/C)

R2
C − (L/C)

)

(29.6)

It is clear from equation (29.5) that parallel resonance may
be achieved in such a circuit in several ways — by varying
either the frequency f , the inductance L, the capacitance
C, the resistance RL or the resistance RC .

29.5 Q-factor in a parallel network

The Q-factor in the series R−L−C circuit is a measure
of the voltage magnification. In a parallel circuit, currents
higher than the supply current can circulate within the par-
allel branches of a parallel resonant network, the current
leaving the capacitor and establishing the magnetic field
of the inductance, this then collapsing and recharging the
capacitor, and so on. The Q-factor of a parallel resonant
circuit is the ratio of the current circulating in the paral-
lel branches of the circuit to the supply current, i.e. in
a parallel circuit, Q-factor is a measure of the current
magnification.

Circulating currents may be several hundreds of times
greater than the supply current at resonance. For the par-
allel network of Figure 29.5, the Q-factor at resonance is
given by:

Figure 29.5

Qr = circulating current
current at resonance

= capacitor current
current at resonance

= IC

Ir

Current in capacitor, IC = V /XC = VωrC
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Current at resonance, Ir = V

RD
= V

L/CR
= VCR

L

Hence Qr = IC

Ir
= VωrC

VCR/L
i.e. Qr = ωrL

R

the same expression as for series resonance.
The difference between the resonant frequency of a

series circuit and that of a parallel circuit can be quite
small. The resonant frequency of a coil in parallel with a
capacitor is shown in Equation (29.3); however, around
the closed loop comprising the coil and capacitor the
energy would naturally resonate at a frequency given by
that for a series R−L−C circuit, as shown in Chapter 28.
This latter frequency is termed the natural frequency,
f n, and the frequency of resonance seen at the terminals
of Figure 29.5 is often called the forced resonant fre-
quency, f r. (For a series circuit, the forced and natural
frequencies coincide.)

From the coil-capacitor loop of Figure 29.5, fn = 1

2π
√

(LC)

and the forced resonant frequency, fr = 1

2π

√(
1

LC
− R2

L2

)

Thus
fr
fn

=
1

2π

√ (
1

LC
− R2

L2

)

1

2π
√

(LC)

=

√ (
1

LC
− R2

L2

)

1√
(LC)

=
√ (

1

LC
− R2

L2

) √
(LC) =

√(
LC

LC
− LCR2

L2

)

=
√ (

1 − R2C

L

)

From Chapter 28, Q = 1

R

√ (
L

C

)
from which

Q2 = 1

R2

(
L

C

)
or

R2C

L
= 1

Q2

Hence
fr
fn

=
√ (

1 − R2C

L

)
=

√ (
1 − 1

Q2

)

i.e. fr = fn

√ (
1 − 1

Q2

)

Thus it is seen that even with small values of Q the dif-
ference between fr and fn tends to be very small. A high
value of Q makes the parallel resonant frequency tend to
the same value as that of the series resonant frequency.

The expressions already obtained in Chapter 28 for
bandwidth and resonant frequency, also apply to parallel
circuits,

i.e. Qr = fr/( f2 − f1) (29.7)

and fr = √
( f1 f2) (29.8)

The overall Q-factor QT of two parallel components
having different Q-factors is given by:

QT = QLQC

QL + QC
(29.9)

as for the series circuit.
By similar reasoning to that of the series R−L−C cir-

cuit it may be shown that at the half-power frequencies the
admittance is

√
2 times its minimum value at resonance

and, since Z = 1/Y , the value of impedance at the half-
power frequencies is 1/

√
2 or 0.707 times its maximum

value at resonance.
By similar analysis to that given in Chapter 28, it may

be shown that for a parallel network:

Y
Yr

= RD

Z
= 1 + j2δQ (29.10)

where Y is the circuit admittance, Yr is the admittance
at resonance, Z is the network impedance and RD is the
dynamic resistance (i.e. the impedance at resonance) and
δ is the fractional deviation from the resonant frequency.

Problem 1. A coil of inductance 5 mH and resistance
10 � is connected in parallel with a 250 nF capacitor
across a 50V variable-frequency supply. Determine
(a) the resonant frequency, (b) the dynamic resistance,
(c) the current at resonance, and (d) the circuit Q-factor
at resonance.

(a) Resonance frequency

fr = 1

2π

√ (
1

LC
− R2

L2

)
from equation (29.3),

= 1

2π

√ (
1

5 × 10−3 × 250 × 10−9 − 102

(5 × 10−3)2

)

= 1

2π

√
(800 × 106 − 4 × 106) = 1

2π

√
(796 × 106)

= 4490 Hz
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(b) From equation (29.4), dynamic resistance,

RD = L

CR
= 5 × 10−3

(250 × 10−9)(10)
= 2000 �

(c) Current at resonance, Ir = V

RD
= 50

2000
= 25 mA

(d) Q-factor at resonance, Qr = ωrL

R

= (2π 4490)(5 × 10−3)

10
= 14.1

Problem 2. In the parallel network of Figure 29.6,
inductance, L = 100 mH and capacitance, C = 40 µF.
Determine the resonant frequency for the network if
(a) RL = 0 and (b) RL = 30 �

Figure 29.6

Total circuit admittance,

Y = 1

RL + jXL
+ 1

−jXC
= RL − jXL

R2
L + X2

L

+ j

XC

= RL

R2
L + X2

L

− jXL

R2
L + X2

L

+ j

XC

The network is at resonance when the admittance is at
a minimum value, i.e. when the imaginary part is zero.
Hence, at resonance,

−XL

R2
L + X2

L

+ 1

XC
= 0 or ωrC = ωrL

R2
L + ω2

r L2
(29.11)

(a) When RL = 0, ωrC = ωrL

ω2
r L2

from which, ω2
r = 1

LC
and ωr = 1√

(LC)
Hence resonant frequency,

fr = 1

2π
√

(LC)
= 1

2π
√

(100 × 10−3 × 40 × 10−6)

= 79.6 Hz

(b) When RL = 30 �, ωrC = ωrL

302 + ω2
r L2 from equation

(29.11) above

from which, 302 + ω2
r L2 = L

C

i.e. ω2
r (100 × 10−3)2 = 100 × 10−3

40 × 10−6 − 900

i.e. ω2
r (0.01) = 2500 − 900 = 1600

Thus, ω2
r = 1600/0.01 = 160 000 and ωr = √

160 000

= 400 rad/s

Hence resonant frequency, f r = 400

2π
= 63.7 Hz

[Alternatively, from equation (29.3),

fr = 1

2π

√ (
1

LC
− R2

L2

)

= 1

2π

√ (
1

(100 × 10−3)(40 × 10−6)

− 302

(100 × 10−3)2

)

= 1

2π

√
(250 000 − 90 000) = 1

2π

√
160 000

= 1

2π
(400) = 63.7 Hz]

Hence, as the resistance of a coil increases, the resonant
frequency decreases in the circuit of Figure 29.6.

Problem 3. A coil of inductance 120 mH and resis-
tance 150 � is connected in parallel with a variable
capacitor across a 20V, 4 kHz supply. Determine for
the condition when the supply current is a minimum,
(a) the capacitance of the capacitor, (b) the dynamic
resistance, (c) the supply current, (d) the Q-factor,
(e) the bandwidth, (f) the upper and lower −3 dB fre-
quencies, and (g) the value of the circuit impedance at
the −3 dB frequencies.

(a) The supply current is a minimum when the parallel
network is at resonance.

Resonant frequency, fr = 1

2π

√ (
1

LC
− R2

L2

)
from

equation (29.3),

from which, (2πfr)2 = 1

LC
− R2

L2

Hence
1

LC
= (2πfr)2 + R2

L2 and
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capacitance

C = 1

L[(2πfr)2 + (R2/L2)]

= 1

120 × 10−3[(2π4000)2+
(1502/(120 × 10−3)2)]

= 1

0.12(631.65 × 106 + 1.5625 × 106)

= 0.01316 µF or 13.16 nF

(b) Dynamic resistance,

RD = L

CR
= 120 × 10−3

(13.16 × 10−9)(150)

= 60.79 k�

(c) Supply current at resonance,

Ir = V

RD
= 20

60.79 × 10−3 = 0.329 mA or 329 µA

(d) Q-factor at resonance,

Qr = ωrL

R
= (2π4000)(120 × 10−3)

150
= 20.11

[Note that the expressions Qr = 1

ωrCR
or

Qr = 1

R

√ (
L

C

)

used for the R − L − C series circuit may also be used
in parallel circuits when the resistance of the coil is
much smaller than the inductive reactance of the coil.

In this case R = 150 �
and XL = 2π(4000)(120 × 10−3) = 3016 �.
Hence, alternatively,

Qr = 1

ωrCR
= 1

(2π4000)(13.16 × 10−9)(150)

= 20.16

or Qr = 1

R

√ (
L

C

)
= 1

150

√ (
120 × 10−3

13.16 × 10−9

)

= 20.13]

(e) If the lower and upper −3 dB frequencies are f1 and f2
respectively then the bandwidth is (f2 − f1). Q-factor
at resonance is given by Qr = fr /(f2 − f1), from which,
bandwidth,

( f2 − f1) = fr
Qr

= 4000

20.11
= 199 Hz

(f ) Resonant frequency, fr = √
(f1 f2), from which

f1 f2 = f 2
r = (4000)2 = 16 × 106 (29.12)

Also, from part (e), f2 − f1 = 199 (29.13)

From equation (29.12), f1 = 16 × 106

f2
Substituting in equation (29.13) gives:

f2 − 16 × 106

f2
= 199

i.e. f 2
2 − 16 × 106 = 199 f2 from which,

f 2
2 − 199 f2 − 16 × 106 = 0

Solving this quadratic equation gives:

f2 = 199 ± √
[(199)2 − 4(−16 × 106)]

2

= 199 ± 8002.5

2

i.e. the upper 3 dB frequency, f 2 = 4100 Hz
(neglecting the negative answer).

From equation (29.12),

the lower −3 dB frequency, f1 = 10 × 106

f2

= 16 × 106

4100

= 3900 Hz

(Note that f1 and f2 are equally displaced about the
resonant frequency, fr , as they always will be when
Q is greater than about 10 — just as for a series
circuit)

(g) The value of the circuit impedance, Z , at the −3 dB
frequencies is given by

Z = 1√
2

Zr

where Zr is the impedance at resonance.

The impedance at resonance Zr = RD, the dynamic
resistance.

Hence impedance at the −3 dB frequencies

= 1√
2

(60.79 × 103)

= 42.99 k�

Figure 29.7 shows impedance plotted against fre-
quency for the circuit in the region of the resonant
frequency.
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�3 dB or Half-power
points

Zr � RD � 60.79 kΩ

Zr

Zr

Impedance

2

42.99 kΩ

Frequencyf2frf1

Figure 29.7

Now try the following exercise.

Exercise 106 Further problems on parallel res-
onance and Q-factor

1. A coil of resistance 20 � and inductance 100 mH is
connected in parallel with a 50 µF capacitor across
a 30V variable-frequency supply. Determine (a) the
resonant frequency of the circuit, (b) the dynamic
resistance, (c) the current at resonance, and (d) the
circuit Q-factor at resonance.

[(a) 63.66 Hz (b) 100 � (c) 0.30A (d) 2]

2. A 25V, 2.5 kHz supply is connected to a network
comprising a variable capacitor in parallel with a
coil of resistance 250 � and inductance 80 mH.
Determine for the condition when the supply
current is a minimum (a) the capacitance of the
capacitor, (b) the dynamic resistance, (c) the
supply current, (d) the Q-factor, (e) the bandwidth,
(f) the upper and lower half-power frequencies and
(g) the value of the circuit impedance at the −3 dB
frequencies.

[(a) 48.73 nF (b) 6.57 k� (c) 3.81 mA (d) 5.03
(e) 497.3 Hz (f) 2761 Hz; 2264 Hz (g) 4.64 k�]

3. A 0.1 µF capacitor and a pure inductance of 0.02 H
are connected in parallel across a 12V variable-
frequency supply. Determine (a) the resonant fre-
quency of the circuit, and (b) the current circulating
in the capacitance and inductance at resonance.

[(a) 3.56 kHz (b) 26.84 mA]

4. A coil of resistance 300 � and inductance 100 mH
and a 4000 pF capacitor are connected (i) in series
and (ii) in parallel. Find for each connection (a)
the resonant frequency, (b) the Q-factor, and (c)
the impedance at resonance.

[(i) (a) 7958 Hz (b) 16.67 (c) 300� ]
[(ii) (a) 7943 Hz (b) 16.64 (c) 83.33 k�]

5. A network comprises a coil of resistance 100 � and
inductance 0.8 H and a capacitor having capaci-
tance 30 µF. Determine the resonant frequency of

the network when the capacitor is connected (a) in
series with, and (b) in parallel with the coil.

[(a) 32.5 Hz (b) 25.7 Hz]

6. Determine the value of capacitor C shown in
Figure 29.8 for which the resonant frequency of
the network is 1 kHz. [2.30 µF]

Figure 29.8

7. In the parallel network shown in Figure 29.9,
inductance L is 40 mH and capacitance C is 5 µF.
Determine the resonant frequency of the circuit if
(a) RL = 0 and (b) RL = 40 �.

[(a) 355.9 Hz (b) 318.3 Hz]

Figure 29.9

29.6 Further worked problems on parallel
resonance and Q-factor

Problem 4. A two-branch parallel network is shown
in Figure 29.10. Determine the resonant frequency of
the network.

Figure 29.10
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From equation(29.6),

resonant frequency, fr = 1

2π
√

(LC)

√ (
R2

L − (L/C)

R2
C − (L/C)

)

where RL = 5 �, RC = 3 �, L = 2 mH and C = 25 µF.
Thus

fr = 1

2π
√

[(2 × 10−3)(25 × 10−6)]√ (
52 − ((2 × 10−3)/(25 × 10−6))

32 − ((2 × 10−3)/(25 × 10−6))

)

= 1

2π
√

(5 × 10−8)

√ (
25 − 80

9 − 80

)

= 104

2π
√

5

√ (−55

−71

)
= 626.5 Hz

Problem 5. Determine for the parallel network
shown in Figure 29.11 the values of inductance L for
which the network is resonant at a frequency of 1 kHz.

Figure 29.11

The total network admittance, Y , is given by

Y = 1

3 + jXL
+ 1

4 − j10
= 3 − jXL

32 + X2
L

+ 4 + j10

42 + 102

= 3

32 + X2
L

− jXL

32 + X2
L

+ 4

116
+ j10

116

=
(

3

32 + X2
L

+ 4

116

)
+ j

(
10

116
− XL

32 + X2
L

)

Resonance occurs when the admittance is a minimum, i.e.
when the imaginary part of Y is zero. Hence, at resonance,

10

116
− XL

32 + X2
L

= 0 i.e.
10

116
= XL

32 + X2
L

Therefore 10(9 + X2
L) = 116XL

i.e. 10X2
L − 116XL + 90 = 0

from which, X2
L − 11.6XL + 9 = 0

Solving the quadratic equation gives:

XL = 11.6 ± √
[(−11.6)2 − 4(9)]

2
= 11.6 ± 9.93

2
i.e. XL = 10.765 � or 0.835 �.
Hence 10.765 = 2 πfrL1, from which,

inductance L1 = 10.765

2π(1000)
= 1.71 mH

and 0.835 = 2 πfrL2 from which,

inductance, L2 = 0.835

2π(1000)
= 0.13 mH

Thus the conditions for the circuit of Figure 29.11 to
be resonant are that inductance L is either 1.71 mH or
0.13 mH

Problem 6. A capacitor having a Q-factor of 300 is
connected in parallel with a coil having a Q-factor
of 60. Determine the overall Q-factor of the parallel
combination.

From equation (29.9), the overall Q-factor is given by:

QT = QLQC

QL + QC
= (60)(300)

60 + 300
= 18000

360
= 50

Problem 7. In an LR−C network, the capacitance
is 10.61 nF, the bandwidth is 500 Hz and the resonant
frequency is 150 kHz. Determine for the circuit (a) the
Q-factor, (b) the dynamic resistance, and (c) the mag-
nitude of the impedance when the supply frequency is
0.4% greater than the tuned frequency.

(a) From equation (29.7), Q = fr
f2 − f1

= 150 × 103

500
= 300

(b) From equation (29.4), dynamic resistance, RD = L

CR

Also, in an LR−C network, Q = ωrL

R
from which,

R = ωrL

Q

Hence, RD = L

CR
= L

C

(
ωrL

Q

) = LQ

CωrL
= Q

ωrC

= 300

(2π150 × 103)(10.61 × 10−9)
= 30 k�

(c) From equation (29.10),
RD

Z
= 1 + j2δQ from which,

Z = RD

1 + j2δQ
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δ = 0.4% = 0.004 hence

Z = 30 × 103

1 + j2(0.004)(300)

= 30 × 103

1 + j2.4
= 30 × 103

2.6∠67.38◦

= 11.54∠−67.38◦ k�

Hence the magnitude of the impedance when the fre-
quency is 0.4% greater than the tuned frequency is
11.54 k�.

Now try the following exercise.

Exercise 107 Further problems on parallel reso-
nance and Q-factor

1. A capacitor of reactance 5 � is connected in series
with a 10 � resistor. The whole circuit is then con-
nected in parallel with a coil of inductive reactance
20 � and a variable resistor. Determine the value
of this resistance for which the parallel network is
resonant. [10 �]

2. Determine, for the parallel network shown in
Figure 29.12, the values of inductance L for which
the circuit is resonant at a frequency of 600 Hz.

[2.50 mH or 0.45 mH]

Figure 29.12

3. Find the resonant frequency of the two-branch
parallel network shown in Figure 29.13. [667 Hz]

Figure 29.13

4. Determine the value of the variable resistance R
in Figure 29.14 for which the parallel network is
resonant. [11.87 �]

Figure 29.14

5. For the parallel network shown in Figure 29.15,
determine the resonant frequency. Find also the
value of resistance to be connected in series with the
10 µF capacitor to change the resonant frequency
to 1 kHz. [928 Hz; 5.27 �]

Figure 29.15

6. Determine the overall Q-factor of a parallel arrange-
ment consisting of a capacitor having a Q-factor of
410 and an inductor having a Q-factor of 90.

[73.8]

7. The value of capacitance in an LR−C parallel net-
work is 49.74 nF. If the resonant frequency of the
circuit is 200 kHz and the bandwidth is 800 Hz,
determine for the network (a) the Q-factor, (b) the
dynamic resistance, and (c) the magnitude of the
impedance when the supply frequency is 0.5%
smaller than the tuned frequency.

[(a) 250 (b) 4 k� (c) 1.486 k�]
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Revision test 9

This revision test covers the material contained in
chapters 27 to 29.

The marks for each part of the question are shown in
brackets at the end of each question.

1. In a Schering bridge network PQRS, the arms are
made up as follows: PQ—a standard capacitor C1,
QR—a capacitor C2 in parallel with a resistor R2,
RS—a resistor R3, SP—the capacitor under test, rep-
resented by a capacitor Cx in series with a resistor Rx .
The detector is connected between Q and S and the
a.c. supply is connected between P and R.

(a) Sketch the bridge and derive the equations for Rx
and Cx when the bridge is balanced.

(b) Evaluate Rx and Cx if, at balance C1 = 5 nF,
R2 = 300 �, C2 = 30 nF and R3 = 1.5 k�. (16)

2. A coil of inductance 25 mH and resistance 5 � is con-
nected in series with a variable capacitor C. If the
supply frequency is 1 kHz and the current flowing is
2A, determine, for series resonance, (a) the value of
capacitance C, (b) the supply p.d., and (c) the p.d.
across the capacitor. (8)

3. An L–R–C series circuit has a peak current of 5 mA
flowing in it when the frequency of the 200 mV sup-
ply is 5 kHz. The Q-factor of the circuit under these

conditions is 75. Determine (a) the voltage across the
capacitor, and (b) the values of the circuit resistance,
inductance and capacitance. (8)

4. A coil of resistance 15 � and inductance 150 mH is
connected in parallel with a 4 µF capacitor across
a 50V variable-frequency supply. Determine (a) the
resonant frequency of the circuit, (b) the dynamic
resistance (c) the current at resonance, and (d) the
circuit Q-factor at resonance. (10)

5. For the parallel network shown in Figure RT9.1,
determine the value of C for which the resonant
frequency is 2 kHz. (8)

C

5 Ω

2 mH

Figure RT9.1
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30 Introduction to network analysis

At the end of this chapter you should be able to:
• appreciate available methods of analysing networks
• solve simultaneous equations in two and three

unknowns using determinants

• analyse a.c. networks using Kirchhoff’s laws

30.1 Introduction

Voltage sources in series-parallel networks cause currents
to flow in each branch of the circuit and corresponding
volt-drops occur across the circuit components. A.c. cir-
cuit (or network) analysis involves the determination of
the currents in the branches and/or the voltages across
components.

The laws which determine the currents and voltage
drops in a.c. networks are:

(a) current, I =V/Z, where Z is the complex impedance
and V the voltage across the impedance;

(b) the laws for impedances in series and parallel, i.e.
total impedance,

ZT = Z1 + Z2 + Z3 + · · · + Zn for n impedances con-
nected in series,

and
1

ZT
= 1

Z1
+ 1

Z2
+ 1

Z3
+ . . . + 1

Zn
for n impe-

dances connected in parallel; and
(c) Kirchhoff’s laws, which may be stated as:

(i) ‘At any point in an electrical circuit the phasor
sum of the currents flowing towards that junction
is equal to the phasor sum of the currents flowing
away from the junction.’

(ii) ‘In any closed loop in a network, the phasor sum
of the voltage drops (i.e. the products of current
and impedance) taken around the loop is equal to
the phasor sum of the e.m.f.’s acting in that loop.’

In any circuit the currents and voltages at any point may
be determined by applying Kirchhoff’s laws (as demon-
strated in this chapter), or by extensions of Kirchhoff’s
laws, called mesh-current analysis and nodal analysis (see
Chapter 31).

However, for more complicated circuits, a number of
circuit theorems have been developed as alternatives to
the use of Kirchhoff’s laws to solve problems involving
both d.c. and a.c. electrical networks. These include:

(a) the superposition theorem (see Chapter 32)
(b) Thévenin’s theorem (see Chapter 33)

(c) Norton’s theorem (see Chapter 33),
(d) the maximum power transfer theorems (see

Chapter 35).

In addition to these theorems, and often used as a prelim-
inary to using circuit theorems, star-delta (or T − π) and
delta-star (or π − T ) transformations provide a method for
simplifying certain circuits (see Chapter 34).

In a.c. circuit analysis involving Kirchhoff’s laws
or circuit theorems, the use of complex numbers is
essential.

The above laws and theorems apply to linear circuits,
i.e. circuits containing impedances whose values are inde-
pendent of the direction and magnitude of the current
flowing in them.

30.2 Solution of simultaneous equations using
determinants

When Kirchhoff’s laws are applied to electrical circuits,
simultaneous equations result which require solution.
If two loops are involved, two simultaneous equations
containing two unknowns need to be solved; if three
loops are involved, three simultaneous equations con-
taining three unknowns need to be solved and so on.
The elimination and substitution methods of solving
simultaneous equations may be used to solve such equa-
tions. However a more convenient method is to use
determinants.

Two unknowns

When solving linear simultaneous equations in two
unknowns using determinants:

(i) the equations are initially written in the form:

a1x + b1y + c1 = 0

a2x + b2y + c2 = 0
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(ii) the solution is given by:

x

Dx
= −y

Dy
= 1

D

where Dx =
∣∣∣∣b1 c1

b2 c2

∣∣∣∣
i.e. the determinant of the coefficients left when the
x-column is ‘covered up’,

Dy =
∣∣∣∣a1 c1

a2 c2

∣∣∣∣
i.e. the determinant of the coefficients left when the
y-column is ‘covered up’,

and D =
∣∣∣∣a1 b1

a2 b2

∣∣∣∣
i.e. the determinant of the coefficients left when the
constants-column is ‘covered up’.

A ‘2 × 2’ determinant

∣∣∣∣a d
b c

∣∣∣∣ is evaluated as ad − bc

Three unknowns

When solving linear simultaneous equations in three
unknowns using determinants:

(i) the equations are initially written in the form:

a1x + b1y + c1z + d1 = 0

a2x + b2y + c2z + d2 = 0

a3x + b3y + c3z + d3 = 0

(ii) the solution is given by:

x

Dx
= −y

Dy
= z

Dz
= −1

D

where Dx =
∣∣∣∣∣∣
b1 c1 d1

b2 c2 d2

b3 c3 d3

∣∣∣∣∣∣
i.e. the determinant of the coefficients left when the
x-column is ‘covered up’,

Dy =
∣∣∣∣∣∣
a1 c1 d1

a2 c2 d2

a3 c3 d3

∣∣∣∣∣∣
i.e. the determinant of the coefficients left when the
y-column is ‘covered up’,

Dz =
∣∣∣∣∣
a1 b1 d1
a2 b2 d2
a3 b3 d3

∣∣∣∣∣
i.e. the determinant of the coefficients left when the
z-column is ‘covered up’,

and D =
∣∣∣∣∣
a1 b1 c1
a2 b2 c2
a3 b3 c3

∣∣∣∣∣
i.e. the determinant of the coefficients left when the
constants-column is ‘covered up’.

To evaluate a 3 × 3 determinant:

(a) The minor of an element of a 3 by 3 matrix is the
value of the 2 by 2 determinant obtained by covering
up the row and column containing that element.

Thus for the matrix

(
1 2 3
4 5 6
7 8 9

)
the minor of element

4 is the determinant

∣∣∣∣2 3
8 9

∣∣∣∣
i.e. (2 × 9) − (3 × 8) = 18 − 24 = −6.

Similarly, the minor of element 3 is

∣∣∣∣4 5
7 8

∣∣∣∣ i.e.

(4 × 8) − (5 × 7) = 32 − 35 = −3

(b) The sign of the minor depends on its position within

the matrix, the sign pattern being

(+ − +
− + −
+ − +

)
. Thus

the signed minor of element 4 in the above matrix is

−
∣∣∣∣2 3
8 9

∣∣∣∣ = −(−6) = 6

The signed-minor of an element is called the cofactor
of the element.

Thus the cofactor of element 2 is

−
∣∣∣∣4 6
7 9

∣∣∣∣ =− (36 − 42) = 6

(c) The value of a 3 by 3 determinant is the sum of
the products of the elements and their cofactors of
any row or any column of the corresponding 3 by
3 matrix.

Thus a 3 by 3 determinant

∣∣∣∣∣
a b c
d e f
g h j

∣∣∣∣∣ is evaluated as

a

∣∣∣∣e f
h j

∣∣∣∣ − b

∣∣∣∣d f
g j

∣∣∣∣ + c

∣∣∣∣d e
g h

∣∣∣∣ using the top row,

or −b

∣∣∣∣d f
g j

∣∣∣∣ + e

∣∣∣∣a c
g j

∣∣∣∣ − h

∣∣∣∣a c
d f

∣∣∣∣ using the

second column.

There are thus six ways of evaluating a 3 by 3 determinant.
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Determinants are used to solve simultaneous equations
in some of the following problems and in Chapter 31.

30.3 Network analysis using Kirchhoff’s laws

Kirchhoff’s laws may be applied to both d.c. and a.c.
circuits. The laws are introduced in Chapter 13 for d.c.
circuits. To demonstrate the method of analysis, consider
the d.c. network shown in Figure 30.1. If the current flow-
ing in each branch is required, the following three-step
procedure may be used:

Figure 30.1

(i) Label branch currents and their directions on the cir-
cuit diagram. The directions chosen are arbitrary but,
as a starting-point, a useful guide is to assume that
current flows from the positive terminals of the volt-
age sources. This is shown in Figure 30.2 where the
three branch currents are expressed in terms of I1
and I2 only, since the current through resistance R,
by Kirchhoff’s current law, is (I1 + I2)

Figure 30.2

(ii) Divide the circuit into loops — two in this ease (see
Figure 30.2) and then apply Kirchhoff’s voltage law
to each loop in turn. From loop ABEF, and moving
in a clockwise direction (the choice of loop direction
is arbitrary), E1 = I1r + (I1 + I2)R (note that the two
voltage drops are positive since the loop direction is
the same as the current directions involved in the volt

drops). Hence

8 = I1 + 5(I1 + I2)

or 6I1 + 5I2 = 8 (1)

From loop BCDE in Figure 30.2, and moving in an
anticlockwise direction, (note that the direction does
not have to be the same as that used for the first loop),
E2 = I2r2 + (I1 + I2)R,

i.e. 3 = 2I2 + 5(I1 + I2)

or 5I1 + 7I2 = 3 (2)

(iii) Solve simultaneous equations (1) and (2) for I1 and I2
Multiplying equation (1) by 7 gives:

42I1 + 35I2 = 56 (3)

Multiplying equation (2) by 5 gives:

25I1 + 35I2 = 15 (4)

Equation (3) − equation (4) gives:

17I1 = 41

from which, current I1 = 41/17 = 2.412A = 2.41A,
correct to two decimal places.

From equation (1): 6(2.412) + 5I2 = 8, from which,

current I2 = 8 − 6(2.412)

5
= −1.294 A

= −1.29A, correct to two decimal places.

The minus sign indicates that current I2 flows in the
opposite direction to that shown in Figure 30.2.

The current flowing through resistance R is

(I1 + I2) = 2.412 + (−1.294) = 1.118A

= 1.12A, correct to two decimal places.

[A third loop may be selected in Figure 30.2, ( just as
a check), moving clockwise around the outside of the
network.
Then E1 − E2 = I1r1 − I2r2 i.e. 8 − 3 = I1 − 2I2. Thus
5 = 2.412 − 2(−1.294) = 5]

An alternative method of solving equations (1) and (2) is
shown below using determinants. Since

6I1 + 5I2 − 8 = 0 (1)

5I1 + 7I2 − 3 = 0 (2)

then
I1∣∣∣∣5 −8

7 −3

∣∣∣∣
= −I2∣∣∣∣6 −8

5 −3

∣∣∣∣
= 1∣∣∣∣6 5

5 7

∣∣∣∣
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i.e.
I1

−15 + 56
= −I2

−18 + 40
= 1

42 − 25

and
I1

41
= −I2

22
= 1

17

from which, I1 = 41/17 = 2.41A and I2 = −22/17 =
−1.29A, as obtained previously.

The above procedure is shown for a simple d.c. circuit
having two unknown values of current. The procedure
however applies equally well to a.c. networks and/or to
circuits where three unknown currents are involved. This
is illustrated in the following problems.

Problem 1. Use Kirchhoff’s laws to find the cur-
rent flowing in each branch of the network shown in
Figure 30.3.

Figure 30.3

(i) The branch currents and their directions are labelled
as shown in Figure 30.4

Figure 30.4

(ii) Two loops are chosen. From loop ABEF, and moving
clockwise,

25I1 + 20(I1 + I2) = 100∠0◦

i.e. 45I1 + 20I2 = 100 (1)

From loop BCDE, and moving anticlockwise,

10I2 + 20(I1 + I2) = 50∠90◦

i.e. 20I1 + 30I2 = j50 (2)

3 × equation (1) gives: 135I1 + 60I2 = 300 (3)

2 × equation (2) gives: 40I1 + 60I2 = j100 (4)

Equation (3) — equation (4) gives:

95I1 = 300 − j100

from which, current I1 = 300 − j100

95
= 3.329∠−18.43◦ A or

(3.158 − j1.052)A

Substituting in equation (1) gives:

45(3.158 − j1.052) + 20I2 = 100, from which,

I2 = 100 − 45(3.158 − j1.052)

20
= (−2.106 + j2.367)A or 3.168∠131.66◦ A

Thus

I1 + I2 = (3.158 − j1.052) + (−2.106 + j2.367)

= (1.052 + j1.315)A or 1.684∠51.34◦ A

Problem 2. Determine the current flowing in the 2 �
resistor of the circuit shown in Figure 30.5 using
Kirchhoff’s laws. Find also the power dissipated in
the 3 � resistance.

Figure 30.5

(i) Currents and their directions are assigned as shown
in Figure 30.6.

(ii) Three loops are chosen since three unknown currents
are required. The choice of loop directions is arbi-
trary. From loopABCDE, and moving anticlockwise,

5I1 + 6I2 + 4(I2 − I3) = 8

i.e. 5I1 + 10I2 − 4I3 = 8 (1)
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Figure 30.6

From loop EDGF, and moving clockwise,

6I2 + 2I3 − 1(I1 − I2) = 0

i.e. −I1 + 7I2 + 2I3 = 0 (2)

From loop DCHG, and moving anticlockwise,

2I3 + 3(I1 − I2 + I3) − 4(I2 − I3) = 0

i.e. 3I1 − 7I2 + 9I3 = 0

(iii) Thus 5I1 + 10I2 − 4I3 − 8 = 0

−I1 + 7I2 + 2I3 + 0 = 0

3I1 − 7I2 + 9I3 + 0 = 0

Hence, using determinants,

I1∣∣∣∣∣
10 −4 −8
7 2 0

−7 9 0

∣∣∣∣∣
= −I2∣∣∣∣∣

5 −4 −8
−1 2 0
3 9 0

∣∣∣∣∣
= I3∣∣∣∣∣

5 10 −8
−1 7 0
3 −7 0

∣∣∣∣∣
= −1∣∣∣∣∣

5 10 −4
−1 7 2
3 −7 9

∣∣∣∣∣
Thus

I1

−8

∣∣∣∣ 7 2
−7 9

∣∣∣∣
= −I2

−8

∣∣∣∣−1 2
3 9

∣∣∣∣
= I3

−8

∣∣∣∣−1 7
3 −7

∣∣∣∣
= −1

5

∣∣∣∣ 7 2
−7 9

∣∣∣∣ − 10

∣∣∣∣−1 2
3 9

∣∣∣∣ − 4

∣∣∣∣−1 7
3 −7

∣∣∣∣

I1

−8(63 + 14)
= −I2

−8(−9 − 6)
= I3

−8(7 − 21)

= −1

5(63 + 14) − 10(−9 − 6) − 4(7 − 21)
I1

−616
= −I2

120
= I3

112
= −1

591

Hence I1 = 616

591
= 1.042 A,

I2 = 120

591
= 0.203A and

I3 = −112

591
= −0.190 A

Thus the current flowing in the 2 � resistance is 0.190A
in the opposite direction to that shown in Figure 30.6.

Current in the 3 � resistance = I1 − I2 + I3

= 1.042 − 0.203 + (−0.190) = 0.649 A

Hencepower dissipated in the 3 � resistance,
I2(3) = (0.649)2(3) = 1.26 W

Problem 3. For the a.c. network shown in Figure
30.7, determine the current flowing in each branch
using Kirchhoff’s laws.

Figure 30.7

(i) Currents I1 and I2 with their directions are shown in
Figure 30.8.

Figure 30.8
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(ii) Two loops are chosen with their directions both
clockwise.
From loop ABEF,

(5 + j0) = I1(3 + j4) + (I1 − I2)(6 + j8)

i.e. 5 = (9 + j12) I1 − (6 + j8)I2 (1)

From loop BCDE,

(2 + j4) = I2(2 − j5) − (I1 − I2)(6 + j8)

i.e. (2 + j4) = −(6 + j8) I1 + (8 + j3)I2 (2)

(iii) Multiplying equation (1) by (8 + j3) gives:

5(8 + j3) = (8 + j3)(9 + j12)I1

−(8 + j3)(6 + j8)I2 (3)

Multiplying equation (2) by (6 + j8) gives:

(6 + j8)(2 + j4) = −(6 + j8)(6 + j8)I1

+(6 + j8)(8 + j3)I2 (4)

Adding equations (3) and (4) gives:

5(8 + j3) + (6 + j8)(2 + j4) = [(8 + j3)(9 + j12)

−(6 + j8)(6 + j8)]I1

i.e. (20 + j55) = (64 + j27)I1

from which, I1 = 20 + j55

64 + j27
= 58.52∠70.02◦

69.46∠22.87◦

= 0.842∠47.15◦ A

= (0.573 + j0.617)A

= (0.57 + j0.62)A, correct to two

decimal places.

From equation (1), 5 = (9 + j12)(0.573 + j0.617)

− (6 + j8)I2

5 = (−2.247 + j12.429) − (6 + j8)I2

from which, I2 = −2.247 + j12.429 − 5

6 + j8

= 14.39∠120.25◦

10∠53.13◦

= 1.439∠67.12◦ A = (0.559 + j1.326) A

= (0.56 + j1.33)A, correct to two

decimal places.

The current in the (6 + j8) � impedance,

I1 − I2 = (0.573 + j0.617) − (0.559 + j1.326)

= (0.014 − j0.709)A or 0.709∠ − 88.87◦A

An alternative method of solving equations (1) and (2) is
shown below, using determinants.

(9 + j12)I1 − (6 + j8)I2 − 5 = 0 (1)

−(6 + j8)I1 + (8 + j3)I2 − (2 + j4) = 0 (2)

Thus

I1∣∣∣∣−(6 + j8) −5
(8 + j3) −(2 + j4)

∣∣∣∣
= −I2∣∣∣∣(9 + j12) −5

−(6 + j8) −(2 + j4)

∣∣∣∣
= 1∣∣∣∣(9 + j12) −(6 + j8)

−(6 + j8) (8 + j3)

∣∣∣∣
I1

(−20 + j40) + (40 + j15)
= −I2

(30 − j60) − (30 + j40)

= 1

(36 + j123) − (−28 + j96)

I1

20 + j55
= −I2

−j100
= 1

64 + j27

Hence I1 = 20 + j55

64 + j27
= 58.52∠70.02◦

69.46∠22.87◦

= 0.842∠47.15◦ A

and I2 = 100∠90◦

69.46∠22.87◦ = 1.440∠67.13◦ A

The current flowing in the (6 + j8) � impedance is given
by:

I1 − I2 = 0.842∠47.15◦ − 1.440∠67.13◦ A

= (0.013 − j0.709)A or 0.709∠−88.95◦ A

Problem 4. For the network shown in Figure 30.9,
use Kirchhoff’s laws to determine the magnitude of
the current in the (4 + j3) � impedance.

Figure 30.9
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(i) Currents I1, I2 and I3 with their directions are shown in
Figure 30.10. The current in the (4 + j3) � impedance
is specified by one symbol only (i.e. I3), which means
that the three equations formed need to be solved for
only one unknown current.

Figure 30.10

(ii) Three loops are chosen. From loop ABGH, and
moving clockwise,

4I1 − j5I2 = 10 + 12 (1)

From loop BCFG, and moving anticlockwise,

−j5I2 − 8(I1 − I2 − I3) = 15 + 12 (2)

From loop CDEF, and moving clockwise,

−8(I1 − I2 − I3) + (4 + j3)(I3) = 15 (3)

Hence

4I1 − j5I2 + 0I3 − 22 = 0

−8I1 + (8 − j5)I2 + 8I3 − 27 = 0

−8I1 + 8I2 + (12 + j3)I3 − 15 = 0

Solving for I3 using determinants gives:

I3∣∣∣∣∣
4 −j5 −22

−8 (8 − j5) −27
−8 8 −15

∣∣∣∣∣
= −1∣∣∣∣∣

4 −j5 0
−8 (8 − j5) 8
−8 8 (12 + j3)

∣∣∣∣∣
Thus

I3

4

∣∣∣∣(8 − j5) −27
8 −15

∣∣∣∣ + j5

∣∣∣∣−8 −27
−8 −15

∣∣∣∣ − 22

∣∣∣∣−8 (8 − j5)
−8 8

∣∣∣∣
= −1

4

∣∣∣∣(8 − j5) 8
8 (12 + j3)

∣∣∣∣ + j5

∣∣∣∣−8 8
−8 (12 + j3)

∣∣∣∣

Hence

I3

384 + j700
= −1

308 − j304
from which,

I3 = −(384 + j700)

(308 − j304)

= 798.41∠−118.75

432.76∠−44.63◦
= 1.85∠−74.12◦ A

Hence the magnitude of the current flowing in the
(4 + j3)� impedance is 1.85A

Now try the following exercise.

Exercise 108 Further problems on network anal-
ysis using Kirchhoff’s laws

1. For the network shown in Figure 30.11, determine
the current flowing in each branch.

[50 V source discharges at 2.08 A,
20 V source charges at 0.62 A,

current through 20 � resistor is 1.46 A]

Figure 30.11

2. Determine the value of currents IA, IB and IC for
the network shown in Figure 30.12.

[IA = 5.38A, IB = 4.81A, IC = 0.58A]

Figure 30.12
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3. For the bridge shown in Figure 30.13, determine
the current flowing in (a) the 5 � resistance, (b) the
22 � resistance, and (c) the 2 � resistance.

[(a) 4A (b) 1A (c) 7A]

Figure 30.13

4. For the circuit shown in Figure 30.14, determine
(a) the current flowing in the 10V source, (b) the
p.d. across the 6 � resistance, and (c) the active
power dissipated in the 4 � resistance.

[(a) 1.59A (b) 3.72V (c) 3.79 W]

Figure 30.14

5. Use Kirchhoff’s laws to determine the current
flowing in each branch of the network shown in
Figure 30.15.

[40∠90◦ V source discharges at 4.40∠74.48◦ A
20∠0◦ V source discharges at 2.94∠53.13◦ A
current in 10 � resistance is 1.97∠107.35◦ A

(downward)]

Figure 30.15

6. For the network shown in Figure 30.16, use Kirch-
hoff’s laws to determine the current flowing in the
capacitive branch.

[1.58A]

Figure 30.16

7. Use Kirchhoff’s laws to determine, for the net-
work shown in Figure 30.17, the current flowing
in (a) the 20 � resistance, and (b) the 4 � resis-
tance. Determine also (c) the p.d. across the 8 �
resistance, and (d) the active power dissipated in
the 10 � resistance.

[(a) 0.14A (b) 10.1A (c) 2.27V (d) 1.81 W]

Figure 30.17

8. Determine the value of currents IA, IB and IC shown
in the network of Figure 30.18, using Kirchhoff’s
laws.

[IA = 2.80∠−59.59◦ A, IB = 2.71∠−58.78◦A,
IC = 0.097∠97.13◦ A]

Figure 30.18
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9. Use Kirchhoff’s laws to determine the cur-
rents flowing in (a) the 3 � resistance, (b) the 6 �
resistance and (c) the 4V source of the network
shown in Figure 30.19. Determine also the active
power dissipated in the 5 � resistance.

[(a) 0.27A (b) 0.70A (c) 0.29A discharging
(d) 1.60 W]

Figure 30.19

10. Determine the magnitude of the p.d. across the
(8 + j6) � impedance shown in Figure 30.20 by
using Kirchhoff’s laws.

[11.37V]

Figure 30.20
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31 Mesh-current and nodal analysis

At the end of this chapter you should be able to:
• solve d.c. and a.c. networks using mesh-current

analysis
• solve d.c. and a.c. networks using nodal analysis

31.1 Mesh-current analysis

Mesh-current analysis is merely an extension of the use
of Kirchhoff’s laws, explained in Chapter 30. Figure 31.1
shows a network whose circulating currents I1, I2 and I3
have been assigned to closed loops in the circuit rather
than to branches. Currents I1, I2 and I3 are called mesh-
currents or loop-currents.

Figure 31.1

In mesh-current analysis the loop-currents are all
arranged to circulate in the same direction (in Figure 31.1,
shown as clockwise direction). Kirchhoff’s second law is
applied to each of the loops in turn, which in the circuit of
Figure 31.1 produces three equations in three unknowns
which may be solved for I1, I2 and I3. The three equations
produced from Figure 31.1 are:

I1(Z1 + Z2) − I2Z2 = E1

I2(Z2 + Z3 + Z4) − I1Z2 − I3Z4 = 0

I3(Z4 + Z5) − I2Z4 = −E2

The branch currents are determined by taking the pha-
sor sum of the mesh currents common to that branch. For
example, the current flowing in impedance Z2 of Fig-
ure 31.1 is given by (I1 − I2) phasorially. The method
of mesh-current analysis, called Maxwell’s theorem, is
demonstrated in the following problems.

Problem 1. Use mesh-current analysis to determine
the current flowing in (a) the 5 � resistance, and (b) the
1 � resistance of the d.c. circuit shown in Figure 31.2.

Figure 31.2

The mesh currents I1, I2 and I3 are shown in Figure 31.2.
Using Kirchhoff’s voltage law:

For loop 1, (3 + 5)I1 − I2 = 4 (1)

For loop 2, (4 + 1 + 6 + 5)I2 − (5)I1 − (1)I3 = 0
(2)

For loop 3, (1 + 8)I3 − (1)I2 = −5 (3)

Thus

8I1 − 5I2 − 4 = 0 (1′)
−5I1 + 16I2 − I3 = 0 (2′)

− I2 + 9I3 + 5 = 0 (3′)

Using determinants,

I1∣∣∣∣∣
−5 0 −4
16 −1 0
−1 9 5

∣∣∣∣∣
= −I2∣∣∣∣∣

8 0 −4
−5 −1 0
0 9 5

∣∣∣∣∣
= I3∣∣∣∣∣

8 −5 −4
−5 16 0
0 −1 5

∣∣∣∣∣
= −1∣∣∣∣∣

8 −5 0
−5 16 −1
0 −1 9

∣∣∣∣∣
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I1

−5

∣∣∣∣−1 0
9 5

∣∣∣∣ − 4

∣∣∣∣16 −1
−1 9

∣∣∣∣
= −I2

8

∣∣∣∣−1 0
9 5

∣∣∣∣ − 4

∣∣∣∣−5 −1
0 9

∣∣∣∣
= I3

−4

∣∣∣∣−5 16
0 −1

∣∣∣∣ + 5

∣∣∣∣ 8 −5
−5 16

∣∣∣∣
= −1

8

∣∣∣∣16 −1
−1 9

∣∣∣∣ + 5

∣∣∣∣−5 −1
0 9

∣∣∣∣
I1

−5(−5) − 4(143)
= −I2

8(−5) − 4(−45)

= I3

−4(5) + 5(103)

= −1

8(143) + 5(−45)
I1

−547
= −I2

140
= I3

495
= −1

919

Hence I1 = 547

919
= 0.595 A,

I2 = 140

919
= 0.152A, and

I3 = −495

919
= −0.539 A

(a) Current in the 5 � resistance = I1 − I2

= 0.595 − 0.152

= 0.44A

(b) Current in the 1 � resistance = I2 − I3

= 0.152 − (−0.539)

= 0.69A

Problem 2. For the a.c. network shown in Figure 31.3
determine, using mesh-current analysis, (a) the mesh
currents I1 and I2 (b) the current flowing in the capaci-
tor, and (c) the active power delivered by the 100∠0◦ V
voltage source.

Figure 31.3

(a) For the first loop (5 − j4)I1 − (−j4I2) = 100∠0◦ (1)

For the second loop

(4 + j3 − j4)I2 − (−j4I1) = 0 (2)

Rewriting equations (1) and (2) gives:

(5 − j4)I1 + j4I2 − 100 = 0 (1′)
j4I1 + (4 − j)I2 + 0 = 0 (2′)

Thus, using determinants,

I1∣∣∣∣ j4 −100
(4 − j) 0

∣∣∣∣
= −I2∣∣∣∣(5 − j4) −100

j4 0

∣∣∣∣
= 1∣∣∣∣(5 − j4) j4

j4 (4 − j)

∣∣∣∣
I1

(400 − j100)
= −I2

j400
= 1

(32 − j21)

Hence I1 = (400 − j100)

(32 − j21)
= 412.31∠−14.04◦

38.28∠−33.27◦

= 10.77∠19.23◦ A = 10.8∠−19.2◦ A,

correct to one
decimal place

I2 = 400∠−90◦

38.28∠−33.27◦ = 10.45∠−56.73◦ A

= 10.5∠−56.7◦ A,

correct to one
decimal place

(b) Current flowing in capacitor

= I1 − I2

= 10.77∠19.23◦ − 10.45∠−56.73◦

= 4.44 + j12.28 = 13.1∠70.12◦ A,

i.e. the current in the capacitor is 13.1A

(c) Source power P =VI cos φ

= (100)(10.77) cos 19.23◦

= 1016.9 W = 1020 W,

correct to three significant figures.

(Check: power in 5 � resistor

= I2
1 (5) = (10.77)2(5) = 579.97 W

and power in 4� resistor

= I2
2 (4) = (10.45)2(4) = 436.81 W
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Thus total power dissipated

= 579.97 + 436.81

= 1016.8 W = 1020 W, correct

to three significant figures.)

Problem 3. A balanced star-connected 3-phase load
is shown in Figure 31.4. Determine the value of the line
currents IR, IY and IB using mesh-current analysis.

Figure 31.4

Two mesh currents I1 and I2 are chosen as shown in
Figure 31.4.

From loop 1,

I1(3 + j4) + I1(3 + j4) − I2(3 + j4) = 415∠120◦

i.e. (6 + j8)I1 − (3 + j4)I2 − 415∠120◦ = 0 (1)

From loop 2,

I2(3 + j4) − I1(3 + j4) + I2(3 + j4) = 415∠0◦

i.e. −(3 + j4)I1 + (6 + j8)I2 − 415∠0◦ = 0 (2)

Solving equations (1) and (2) using determinants gives:

I1∣∣∣∣−(3 + j4) −415∠120◦
(6 + j8) −415∠0◦

∣∣∣∣
= −I2∣∣∣∣ (6 + j8) −415∠120◦

−(3 + j4) −415∠0◦
∣∣∣∣

= 1∣∣∣∣ (6 + j8) −(3 + j4)
−(3 + j4) (6 + j8)

∣∣∣∣
I1

2075∠53.13◦ + 4150∠173.13◦

= −I2

−4150∠53.13◦ − 2075∠173.13◦

= 1

100∠106.26◦ − 25∠106.26◦
I1

3594∠143.13◦ = I2

3594∠83.13◦ = 1

75∠106.26◦

Hence I1 = 3594∠143.13◦

75∠106.26◦ = 47.9∠36.87◦ A

and I2 = 3594∠83.13◦

75∠106.26◦ = 47.9∠−23.13◦ A

Thus line current IR = I1 = 47.9∠36.87◦ A
IB = −I2 = −(47.9∠ − 23.23◦ A)

= 47.9∠156.87◦ A

and IY = I2 − I1 = 47.9∠−23.13◦

−47.96∠36.87◦

= 47.9∠−83.13◦ A

Now try the following exercise.

Exercise 109 Further problems on mesh-current
analysis

1. Repeat problems 1 to 10 of Exercise 108, page 378
using mesh-current analysis.

2. For the network shown in Figure 31.5, use mesh-
current analysis to determine the value of current I
and the active power output of the voltage source.

[6.96∠−49.94◦ A; 644 W]

Figure 31.5

3. Use mesh-current analysis to determine currents
I1, I2 and I3 for the network shown in Figure 31.6.

[I1 = 8.73∠−1.37◦ A, I2 = 7.02∠17.25◦ A,
I3 = 3.05∠−48.67◦ A]

Figure 31.6

4. For the network shown in Figure 31.7, determine the
current flowing in the (4 + j3)� impedance. [0]
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Figure 31.7

5. For the network shown in Figure 31.8, use mesh-
current analysis to determine (a) the current in the
capacitor, IC , (b) the current in the inductance, IL ,
(c) the p.d. across the 4 � resistance, and (d) the
total active circuit power.

[(a) 14.5A (b) 11.5A (c) 71.8V (d) 2499 W]

Figure 31.8

6. Determine the value of the currents IR, IY and IB in
the network shown in Figure 31.9 by using mesh-
current analysis.

[IR = 7.84∠71.19◦ A; IY = 9.04∠−37.50◦ A;
IB = 9.89∠−168.81◦ A]

Figure 31.9

7. In the network of Figure 31.10, use mesh-current
analysis to determine (a) the current in the capacitor,
(b) the current in the 5 � resistance, (c) the active
power output of the 15∠0◦ V source, and (d) the
magnitude of the p.d. across the j2 � inductance.

[(a) 1.03A (b) 1.48A (c) 16.28 W (d) 3.47V]

Figure 31.10

8. A balanced 3-phase delta-connected load is shown
in Figure 31.11. Use mesh-current analysis to deter-
mine the values of mesh currents I1, I2 and I3 shown
and hence find the line currents IR, IY and IB.

[I1 = 83∠173.13◦ A, I2 = 83∠53.13◦ A,
I3 = 83∠−66.87◦ A, IR = 143.8∠143.13◦ A,

IY = 143.8∠23.13◦ A, IB = 143.8∠−96.87◦ A]

Figure 31.11

9. Use mesh-circuit analysis to determine the value of
currents IA to IE in the circuit shown in Figure 31.12.

[IA = 2.40∠52.52◦ A; IB = 1.02∠46.19◦ A;
IC = 1.39∠57.17◦ A; ID = 0.67∠15.57◦ A;

IE = 0.996∠83.74◦ A]

Figure 31.12
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31.2 Nodal analysis

A node of a network is defined as a point where two or
more branches are joined. If three or more branches join
at a node, then that node is called a principal node or
junction. In Figure 31.13, points 1, 2, 3, 4 and 5 are
nodes, and points 1, 2 and 3 are principal nodes.

A node voltage is the voltage of a particular node with
respect to a node called the reference node. If in Fig-
ure 31.13, for example, node 3 is chosen as the reference
node then V13 is assumed to mean the voltage at node 1
with respect to node 3 (as distinct from V31). Similarly,
V23 would be assumed to mean the voltage at node 2 with
respect to node 3, and so on. However, since the node
voltage is always determined with respect to a particular
chosen reference node, the notation V1 for V13 and V2 for
V23 would always be used in this instance.

The object of nodal analysis is to determine the values of
voltages at all the principal nodes with respect to the refer-
ence node, e.g., to find voltages V1 and V2 in Figure 31.13.
When such voltages are determined, the currents flowing
in each branch can be found.

Kirchhoff’s current law is applied to nodes 1 and 2 in
turn in Figure 31.13 and two equations in unknowns V1
and V2 are obtained which may be simultaneously solved
using determinants.

Figure 31.13

Figure 31.14

The branches leading to node 1 are shown separately in
Figure 31.14. Let us assume that all branch currents are
leaving the node as shown. Since the sum of currents at a
junction is zero,

V1 − Vx

ZA
+ V1

ZD
+ V1 − V2

ZB
= 0 (1)

Similarly, for node 2, assuming all branch currents are
leaving the node as shown in Figure 31.15,

V2 − V1

ZB
+ V2

ZE
+ V2 + VY

ZC
= 0 (2)

Figure 31.15

In equations (1) and (2), the currents are all assumed to be
leaving the node. In fact, any selection in the direction of
the branch currents may be made — the resulting equa-
tions will be identical. (For example, if for node 1 the cur-
rent flowing in ZB is considered as flowing towards node
1 instead of away, then the equation for node 1 becomes

V1 − Vx

ZA
+ V1

ZD
= V2 − V1

ZB

which if rearranged is seen to be exactly the same as
equation (1).

Rearranging equations (1) and (2) gives:(
1

ZA
+ 1

ZB
+ 1

ZD

)
V1 −

(
1

ZB

)
V2 −

(
1

ZA

)
Vx = 0

(3)

−
(

1

ZB

)
V1 +

(
1

ZB
+ 1

ZC
+ 1

ZE

)
V2 +

(
1

ZC

)
VY = 0

(4)

Equations (3) and (4) may be rewritten in terms of
admittances (where admittance Y = l/Z):

(YA + YB + YD)V1 − YBV2 − YAVx = 0 (5)

−YBV1 + (YB + YC + YE)V2 + YCVY = 0 (6)

Equations (5) and (6) may be solved for V1 and V2 by
using determinants. Thus

V1∣∣∣∣ −YB −YA
(YB + YC + YE) YC

∣∣∣∣
= −V2∣∣∣∣(YA + YB + YD) −YA

−YB YC

∣∣∣∣
= 1∣∣∣∣(YA + YB + YD) −YB

−YB (YB + YC + YE)

∣∣∣∣
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Current equations, and hence voltage equations, may
be written at each principal node of a network with the
exception of a reference node. The number of equations
necessary to produce a solution for a circuit is, in fact,
always one less than the number of principal nodes.

Whether mesh-current analysis or nodal analysis is used
to determine currents in circuits depends on the number of
loops and nodes the circuit contains, Basically, the method
that requires the least number of equations is used. The
method of nodal analysis is demonstrated in the following
problems.

Problem 4. For the network shown in Figure 31.16,
determine the voltage VAB, by using nodal analysis.

Figure 31.16

Figure 31.16 contains two principal nodes (at 1 and B) and
thus only one nodal equation is required. B is taken as the
reference node and the equation for node 1 is obtained as
follows. Applying Kirchhoff’s current law to node 1 gives:

IX + IY = I

i.e.
V1

16
+ V1

(4 + j3)
= 20∠0◦

Thus V1

(
1

16
+ 1

4 + j3

)
= 20

V1

(
0.0625 + 4 − j3

42 + 32

)
= 20

V1(0.0625 + 0.16 − j0.12) = 20

V1(0.2225 − j0.12) = 20

from which, V1 = 20

(0.2225 − j0.12)
= 20

0.2528∠−28.34◦

i.e. voltage V1 = 79.1∠28.34◦ V

The current through the (4 + j3)�branch, IY = V1/(4 + j3)

Hence the voltage drop between points A and B, i.e. across
the 4 � resistance, is given by:

VAB = (IY )(4) = V1(4)

(4 + j3)
= 79.1∠28.34◦

5∠36.87◦ (4)

= 63.3∠−8.53◦ V

Problem 5. Determine the value of voltage VXY
shown in the circuit of Figure 31.17.

Figure 31.17

The circuit contains no principal nodes. However, if point
Y is chosen as the reference node then an equation may
be written for node X assuming that current leaves point
X by both branches.

Thus
VX − 8∠0◦

(5 + 4)
+ Vx − 8∠90◦

(3 + j6)
= 0

from which, VX

(
1

9
+ 1

3 + j6

)
= 8

9
+ j8

3 + j6

VX

(
1

9
+ 3 − j6

32 + 62

)
= 8

9
+ j8(3 − j6)

32 + 62

VX (0.1778 − j0.1333) = 0.8889 + 48 + j24

45
VX (0.2222∠−36.86◦) = 1.9556 + j0.5333

= 2.027∠15.25◦

Since point Y is the reference node,

voltage VX = VXY = 2.027∠15.25◦

0.2222∠−36.86◦
= 9.12∠52.11◦ V

Problem 6. Use nodal analysis to determine the
current flowing in each branch of the network
shown in Figure 31.18.

Figure 31.18

This is the same problem as Problem 1 of Chapter 30,
page 375, which was solved using Kirchhoff’s laws. A
comparison of methods can be made.
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There are only two principal nodes in Figure 31.18 so
only one nodal equation is required. Node 2 is taken as
the reference node.

The equation at node 1 is I1 + I2 + I3 = 0

i.e.
V1 − 100∠0◦

25
+ V1

20
+ V1 − 50∠90◦

10
= 0

i.e.

(
1

25
+ 1

20
+ 1

10

)
V1 − 100∠0◦

25
− 50∠90◦

10
= 0

0.19V1 = 4 + j5

Thus the voltage at node 1, V1 = 4 + j5

0.19
= 33.70∠51.34◦ V

or (21.05 + j26.32)V

Hence the current in the 25 � resistance,

I1 = V1 − 100∠0◦

25
= 21.05 + j26.32 − 100

25

= −78.95 + j26.32

25
= 3.33∠161.56◦ A flowing away

from node 1

(or 3.33∠(161.56◦ −180◦) A = 3.33∠−18.44◦ A flowing

toward node 1)

The current in the 20 � resistance,

I2 = V1

20
= 33.70∠51.34◦

20
= 1.69∠51.34◦ A

flowing from node 1 to node 2

The current in the 10 � resistor,

I3 = V1 − 50∠90◦

10
= 21.05 + j26.32 − j50

10

= 21.05 − j23.68

10
= 3.17∠−48.36◦ A away from node 1

(or 3.17∠(−48.36◦ − 180◦) = 3.17∠−228.36◦ A
= 3.17∠131.64◦ A toward

node 1)

Problem 7. In the network of Figure 31.19 use nodal
analysis to determine (a) the voltage at nodes 1 and 2,
(b) the current in the j4 � inductance, (c) the current in
the 5 � resistance, and (d) the magnitude of the active
power dissipated in the 2.5 � resistance.

Figure 31.19

(a) At node 1,
V1 − 25∠0◦

2
+ V1

−j4
+ V1 − V2

5
= 0

Rearranging gives:
(

1

2
+ 1

−j4
+ 1

5

)
V1 −

(
1

5

)
V2 − 25∠0◦

2
= 0

i.e. (0.7 + j0.25)V1 − 0.2V2 − 12.5 = 0
(1)

At node 2,
V2 − 25∠90◦

2.5
+ V2

j4
+ V2 − V1

5
= 0

Rearranging gives:

−
(

1

5

)
V1 +

(
1

2.5
+ 1

j4
+ 1

5

)
V2 − 25∠90◦

2.5
= 0

i.e. −0.2V1 + (0.6 − j0.25)V2 − j10 = 0
(2)

Thus two simultaneous equations have been formed
with two unknowns, V1 and V2. Using determin-
ants, if

(0.7 + j0.25)V1 − 0.2V2 − 12.5 = 0 (1)

and −0.2V1 + (0.6 − j0.25)V2 − j10 = 0 (2)

then
V1∣∣∣∣ −0.2 −12.5

(0.6 − j0.25) −j10

∣∣∣∣
= −V2∣∣∣∣(0.7 + j0.25) −12.5

−0.2 −j10

∣∣∣∣
= 1∣∣∣∣(0.7 + j0.25) −0.2

−0.2 (0.6 − j0.25)

∣∣∣∣
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i.e.

V1

( j2 + 7.5 − j3.125)
= −V2

(−j7 + 2.5 − 2.5)

= 1
(0.42 − j0.175 + j0.15 + 0.0625 − 0.04)

and
V1

7.584∠−8.53◦ = −V2

−7∠90◦

= 1

0.443∠−3.23◦

Thus voltage, V1 = 7.584∠−8.53◦

0.443∠−3.23◦

= 17.12∠−5.30◦ V

= 17.1∠−5.3◦ V, correct to
one decimal place,

and voltage, V2 = 7∠90◦

0.443∠−3.23◦

= 15.80∠93.23◦ V

= 15.8∠93.2◦ V, correct to
one decimal place

(b) The current in the j4 � inductance is given by:

V2

j4
= 15.80∠93.23◦

4∠90◦

= 3.95∠3.23◦ A flowing away from node 2

(c) The current in the 5 � resistance is given by:

I5 = V1 − V2

5

= 17.12∠−5.30◦ − 15.80∠93.23◦

5

i.e. I5 = (17.05 − j1.58) − (−0.89 + j15.77)

5

= 17.94 − j17.35

5
= 24.96∠−44.04◦

5

= 4.99∠−44.04◦ A flowing from
node 1 to node 2

(d) The active power dissipated in the 2.5 � resistor is
given by

P2.5 = (I2.5)2(2.5) =
(

V2 − 25∠90◦

2.5

)2

(2.5)

= (0.89 + j15.77 − j25)2

2.5
= (9.273∠−95.51◦)2

2.5

= 85.99∠−191.02◦

2.5
by de Moivre’s theorem

= 34.4∠169◦ W

Thus the magnitude of the active power dissipated in
the 2.5 � resistance is 34.4 W

Problem 8. In the network shown in Figure 31.20
determine the voltage VXY using nodal analysis.

Figure 31.20

Node 3 is taken as the reference node.

At node 1, 25∠0◦ = V1

4 + j3
+ V1 − V2

5

i.e.

(
4 − j3

25
+ 1

5

)
V1 − 1

5
V2 − 25 = 0

or (0.379∠−18.43◦)V1 − 0.2V2 − 25 = 0 (1)

At node 2,
V2

j10
+ V2

j20
+ V2 − V1

5
= 0

i.e. −0.2V1 +
(

1

j10
+ 1

j20
+ 1

5

)
V2 = 0

or −0.2V1 + (−j0.1 − j0.05 + 0.2)V2 = 0

i.e. −0.2V1 + (0.25∠−36.87◦)V2 + 0 = 0 (2)
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Simultaneous equations (1) and (2) may be solved for
V1 and V2 by using determinants. Thus,

V1∣∣∣∣ −0.2 −25
0.25∠−36.87◦ 0

∣∣∣∣

= −V2∣∣∣∣∣
0.379∠−18.43◦ −25

−0.2 0

∣∣∣∣∣

= 1∣∣∣∣∣
0.379∠−18.43◦ −0.2

−0.2 0.25∠−36.87◦

∣∣∣∣∣

i.e.
V1

6.25∠−36.87◦ = −V2

−5

= 1

0.09475∠−55.30◦ − 0.04

= 1

0.079∠−79.85◦

Hence voltage, V1 = 6.25∠−36.87◦

0.079∠−79.85◦

= 79.11∠42.98◦ V

and voltage, V2 = 5

0.079∠−79.85◦

= 63.29∠79.85◦ V

The current flowing in the (4 + j3)� branch is

V1/(4 + j3). Hence the voltage between point X and

node 3 is:

V1

(4 + j3)
( j3) = (79.11∠42.98◦)(3∠90◦)

5∠36.87◦

= 47.47∠96.11◦ V

Thus the voltage

VXY = VX − VY = VX − V2 = 47.47∠96.11◦

− 63.29∠79.85◦

= −16.21 − j15.10 = 22.15∠−137◦ V

Problem 9. Use nodal analysis to determine the volt-
ages at nodes 2 and 3 in Figure 31.21 and hence
determine the current flowing in the 2 � resistor and
the power dissipated in the 3 � resistor.

Figure 31.21

This is the same problem as Problem 2 of Chapter 30, page
375, which was solved using Kirchhoff’s laws.

In Figure 31.21, the reference node is shown at pointA.

At node 1,
V1 − V2

1
+ V1

6
+ V1 − 8 − V3

5
= 0

i.e. 1.367V1 − V2 − 0.2V3 − 1.6 = 0 (1)

At node 2,
V2

2
+ V2 − V1

1
+ V2 − V3

3
= 0

i.e. −V1 + 1.833V2 − 0.333V3 + 0 = 0 (2)

At node 3,
V3

4
+ V3 − V2

3
+ V3 + 8 − V1

5
= 0

i.e. −0.2V1 − 0.333V2 + 0.783V3 + 1.6 = 0 (3)

Equations (1) to (3) can be solved for V1, V2 and V3 by
using determinants. Hence

V1∣∣∣∣∣
−1 −0.2 −1.6

1.833 −0.333 0
−0.333 0.783 1.6

∣∣∣∣∣
= −V2∣∣∣∣∣

1.367 −0.2 −1.6
−1 −0.333 0

−0.2 0.783 1.6

∣∣∣∣∣
= V3∣∣∣∣∣

1.367 −1 −1.6
−1 1.833 0

−0.2 −0.333 1.6

∣∣∣∣∣
= −1∣∣∣∣∣

1.367 −1 −0.2
−1 1.833 −0.333

−0.2 −0.333 0.783

∣∣∣∣∣

Solving for V2 gives:

−V2

−1.6(−0.8496) + 1.6(−0.6552)

= −1

1.367(1.3244) + 1(−0.8496) − 0.2(0.6996)
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hence
−V2

0.31104
= −1

0.82093
from which,

voltage, V2 = 0.31104

0.82093
= 0.3789V

Thus the current in the 2 � resistor

= V2

2
= 0.3789

2
= 0.19A, flowing from node 2 to node A.

Solving for V3 gives:

V3

−1.6(0.6996) + 1.6(1.5057)
= −1

0.82093

hence
V3

1.2898
= −1

0.82093
from which,

voltage, V3 = −1.2898

0.82093
= −1.571V

Power in the 3 � resistor

= (I3)2(3) =
(

V2 − V3

3

)2

(3)

= (0.3789 − (−1.571))2

3
= 1.27 W

Now try the following exercise.

Exercise 110 Further problems on nodal analysis

1. Repeat problems 1, 2, 5, 8 and 10 of Exercise 108,
page 378 using nodal analysis.

2. Repeat problems 2, 3, 5 and 9 of Exercise 109, page
383 using nodal analysis.

3. Determine for the network shown in Figure 31.22
the voltage at node 1 and the voltage VAB

[V1 = 59.0∠−28.92◦ V; VAB = 45.3∠10.89◦ V]

Figure 31.22

4. Determine the voltage VPQ in the network shown
in Figure 31.23.

[VPQ = 55.87∠50.60◦ V]

Figure 31.23

5. Use nodal analysis to determine the currents IA, IB
and IC shown in the network of Figure 31.24.

[IA = 1.21∠150.96◦ A; IB = 1.06∠−56.32◦ A;
IC = 0.55∠32.01◦ A]

Figure 31.24

6. For the network shown in Figure 31.25 determine
(a) the voltages at nodes 1 and 2, (b) the current in
the 40 � resistance, (c) the current in the 20 � resis-
tance, and (d) the magnitude of the active power
dissipated in the 10 � resistance

[(a) V1 = 88.12∠33.86◦ V,
V2 = 58.72∠72.28◦ V

(b) 2.20∠33.86◦ A, away from node 1,
(c) 2.80∠118.65◦ A, away from node 1,

(d) 226 W]

Figure 31.25

7. Determine the voltage VAB in the network of
Figure 31.26, using nodal analysis.

[VAB = 54.23∠−102.52◦ V]

Figure 31.26
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32 The superposition theorem

At the end of this chapter you should be able to:
• solve d.c. and a.c. networks using the superposition theorem

32.1 Introduction

The superposition theorem states:

‘In any network made up of linear impedances and con-
taining more than one source of e.m.f. the resultant current
flowing in any branch is the phasor sum of the currents
that would flow in that branch if each source were con-
sidered separately, all other sources being replaced at that
time by their respective internal impedances.’

32.2 Using the superposition theorem

The superposition theorem, which was introduced in
Chapter 13 for d.c. circuits, may be applied to both d.c.
and a.c. networks. A d.c. network is shown in Figure 32.1
and will serve to demonstrate the principle of application
of the superposition theorem.

Figure 32.1

To find the current flowing in each branch of the circuit,
the following six-step procedure can be adopted:

(i) Redraw the original network with one of the sources,
say E2, removed and replaced by r2 only, as shown
in Figure 32.2.

(ii) Label the current in each branch and its direction as
shown in Figure 32.2, and then determine its value.
The choice of current direction for I1 depends on
the source polarity which, by convention, is taken as
flowing from the positive terminal as shown.

Figure 32.2

R in parallel with r2 gives an equivalent resistance of

(5 × 2)/(5 + 2) = 10/7 = 1.429 �

as shown in the equivalent network of Figure 32.3.

From Figure 32.3,

current I1 = E1

(r1 + 1.429)
= 8

2.429
= 3.294A

Figure 32.3

From Figure 32.2,

current I2 =
(

r2

R + r2

)
(I1) =

(
2

5 + 2

)
(3.294)

= 0.941A

and current I3 =
(

5

5 + 2

)
(3.294) = 2.353A

(iii) Redraw the original network with source E1 removed
and replaced by r1 only, as shown in Figure 32.4.
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Figure 32.4

(iv) Label the currents in each branch and their directions
as shown in Figure 32.4, and determine their values.

R and r1 in parallel gives an equivalent resistance of

(5 × 1)/(5 + 1) = 5/6 � or 0.833 �,

as shown in the equivalent network of Figure 32.5.

From Figure 32.5,

current I4 = E2

r2 + 0.833
= 3

2.833
= 1.059A

Figure 32.5

From Figure 32.4,

current I5 =
(

1

1 + 5

)
(1.059) = 0.177A

and current I6 =
(

5

1 + 5

)
(1.059) = 0.8825A

(v) Superimpose Figure 32.2 on Figure 32.4, as shown
in Figure 32.6.

Figure 32.6

(vi) Determine the algebraic sum of the currents flowing
in each branch. (Note that in an a.c. circuit it is the
phasor sum of the currents that is required.)

From Figure 32.6, the resultant current flowing
through the 8 V source is given by

I1 − I6 = 3.294 − 0.8825 = 2.41A (discharging, i.e.
flowing from the positive terminal of the source).

The resultant current flowing in the 3V source is
given by

I3 − I4 =2.353−1.059 = 1.29A (charging, i.e. flow-
ing into the positive terminal of the source).

The resultant current flowing in the 5 � resistance is
given by

I2 + I5 = 0.941 + 0.177 = 1.12 A

The values of current are the same as those obtained
on page 374 by using Kirchhoff’s laws.

The following problems demonstrate further the use of
the superposition theorem in analysing a.c. as well as d.c.
networks. The theorem is straightforward to apply, but is
lengthy. Thévenin’s and Norton’s theorems (described in
Chapter 33) produce results more quickly.

Problem 1. A.c. sources of 100∠0◦V and internal
resistance 25 �, and 50∠90◦V and internal resistance
10 �, are connected in parallel across a 20 � load.
Determine using the superposition theorem, the cur-
rent in the 20 � load and the current in each voltage
source.

(This is the same problem as problem 1 on page 375 and
problem 6 on page 386 and a comparison of methods may
be made.)

The circuit diagram is shown in Figure 32.7. Following
the above procedure:

Figure 32.7
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(i) The network is redrawn with the 50∠90◦V source
removed as shown in Figure 32.8

Figure 32.8

(ii) Currents I1, I2 and I3 are labelled as shown in
Figure 32.8.

I1 = 100∠0◦

25 + (10 × 20)/(10 + 20)
= 100∠0◦

25 + 6.667

= 3.518∠0◦ A

I2 =
(

10

10 + 20

)
(3.158∠0◦) = 1.053∠0◦ A

I3 =
(

20

10 + 20

)
(3.158∠0◦) = 2.105∠0◦ A

(iii) The network is redrawn with the 100∠0◦ V source
removed as shown in Figure 32.9

Figure 32.9

(iv) Currents I4, I5 and I6 are labelled as shown in
Figure 32.9.

I4 = 50∠90◦

10 + (25 × 20)/(25 + 20)
= 50∠90◦

10 + 11.111

= 2.368∠90◦ A or j2.368 A

I5 =
(

25

20 + 25

)
( j2.368) = j1.316 A

I6 =
(

20

20 + 25

)
( j2.368) = j1.052 A

(v) Figure 32.10 shows Figure 32.9 superimposed on
Figure 32.8, giving the currents shown.

Figure 32.10

(vi) Current in the 20 � load, I2 + I5 = (1.053 + j1.316)A
or 1.69∠51.33◦A

Current in the 100∠0◦ V source,
I1 − I6 = (3.158 − j1.052) A or 3.33∠− 18.42◦ A

Current in the 50∠90◦ V source,
I4 − I3 = (j2.368 − 2.105) or 3.17∠131.64◦ A

Problem 2. Use the superposition theorem to deter-
mine the current in the 4 � resistor of the network
shown in Figure 32.11.

Figure 32.11

(i) Removing the 20V source gives the network shown
in Figure 32.12.

Figure 32.12

(ii) Currents I1 and I2 are shown labelled in Figure 32.12.
It is unnecessary to determine the currents in all the
branches since only the current in the 4 � resistance
is required.

From Figure 32.12, 6 � in parallel with 2 � gives
(6 × 2)/(6 + 2) = 1.5 �, as shown in Figure 32.13.
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Figure 32.13

2.5 � in series with 1.5 � gives 4�, 4 � in parallel
with 4 � gives 2 �, and 2 � in series with 5 �
gives 7 �.

Thus current I1 = 12

7
= 1.714A and

current I2 =
(

4

4 + 4

)
(1.714) = 0.857A

(iii) Removing the 12V source from the original network
gives the network shown in Figure 32.14.

Figure 32.14

(iv) Currents I3, I4 and I5 are shown labelled in Figure
32.14.
From Figure 32.14, 5 � in parallel with 4 � gives
(5 × 4)/(5 + 4) = 20/9 = 2.222 �, as shown in Fig-
ure 32.15, 2.222 � in series with 2.5 � gives 4.722 �,
4.722 � in parallel with 6 � gives
(4.722 × 6)/(4.722 + 6) = 2.642 �, 2.642 � in series
with 2 � gives 4.642 �.

Figure 32.15

Hence I3 = 20

4642
= 4.308 A

I4 =
(

6

6 + 4.722

)
(4.308) = 2.411 A,

from Figure 32.15

I5 =
(

5

4 + 5

)
(2.411) = 1.339 A,

from Figure 32.14

(v) Superimposing Figure 32.14 on Figure 32.12 shows
that the current flowing in the 4 � resistor is given by
I5 − I2

(vi) I5 − I2 = 1.339 − 0.857 = 0.48A, flowing from B
toward A (see Figure 32.11)

Problem 3. Use the superposition theorem to obtain
the current flowing in the (4 + j3)� impedance of
Figure 32.16.

Figure 32.16

(i) The network is redrawn with V2 removed, as shown
in Figure 32.17.

Figure 32.17

(ii) Current I1 and I2 are shown in Figure 32.17. From
Figure 32.17, (4 + j3) � in parallel with −j10 �
gives an equivalent impedance of

(4 + j3)(−j10)

(4 + j3−j10)
= 30 − j40

4 − j7
= 50∠−53.13◦

8.062∠−60.26◦

= 6.202∠7.13◦ or

(6.154 + j0.770) �

Total impedance of Figure 32.17 is

6.154 + j0.770 + 4 = (10.154 + j0.770) � or

10.183∠4.34◦�

Hence current I1 = 30∠45◦

10.183∠4.34◦
= 2.946∠40.66◦ A
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and current I2 =
( −j10

4 − j7

)
(2.946∠40.66◦)

= (10∠−90◦)(2.946∠40.66◦)

8.062∠−60.26◦

= 3.654∠10.92◦ A or

(3.588 + j0.692)A

(iii) The original network is redrawn with V1 removed, as
shown in Figure 32.18.

Figure 32.18

(iv) Currents I3 and I4 are shown in Figure 32.18. From
Figure 32.18, 4 � in parallel with (4 + j3) � gives an
equivalent impedance of

4(4 + j3)

4 + 4 + j3
= 16 + j12

8 + j3
= 20∠36.87◦

8.544∠20.56◦

= 2.341∠16.31◦ � or

(2.247 + j0.657) �

Total impedance of Figure 32.18 is

2.247 + j0.657 − j10 = (2.247 − j9.343) � or

9.609∠−76.48◦ �

Hence current I3 = 30∠−45◦

9.609∠−76.48◦

= 3.122∠31.48◦ A

and current I4 =
(

4

8 + j3

)
(3.122∠31.48◦)

= (4∠0◦)(3.122∠31.48◦)

8.544∠20.56◦

= 1.462∠10.92◦ A or

(1.436 + j0.277)A

(v) If the network of Figure 32.18 is superimposed on
the network of Figure 32.17, it can be seen that

the current in the (4 + j3) � impedance is given by
I2 − I4

(vi) I2 − I4 = (3.588 + j0.692) − (1.436 + j0.277)
= (2.152 + j0.415)A or 2.192∠10.92◦ A,

flowing from A to B in Figure 32.16.

Now try the following exercise.

Exercise 111 Further problems on the superpos-
ition theorem

1. Repeat problems 1, 5, 8 and 9 of Exercise 108, page
378 using the superposition theorem.

2. Repeat problems 3 and 5 of Exercise 109, page 383
using the superposition theorem.

3. Repeat problem 5 of Exercise 110, page 390 using
the superposition theorem.

4. Two batteries each of e.m.f. 15V are connected in
parallel to supply a load of resistance 2.0 �. The
internal resistances of the batteries are 0.5 � and
0.3 �. Determine, using the superposition theorem,
the current in the load and the current supplied by
each battery. [6.86 A; 2.57 A; 4.29 A]

5. Use the superposition theorem to determine the
magnitude of the current flowing in the capacitive
branch of the network shown in Figure 32.19.

[2.584 A]

Figure 32.19

6. A.c. sources of 20∠90◦ V and internal resistance
10 � and 30∠0◦ V and internal resistance 12 � are
connected in parallel across an 8 � load. Use the
superposition theorem to determine (a) the current
in the 8 � load, and (b) the current in each voltage
source. [(a) 1.30∠38.68◦A downwards

(b) 20∠90◦ V source discharges at
1.58∠120.98◦ A, 30∠0◦ V source

discharges at 1.90∠−16.49◦ A]
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7. Use the superposition theorem to determine cur-
rent Ix flowing in the 5 � resistance of the network
shown in Figure 32.20. [0.529∠5.72◦ A]

Figure 32.20

32.3 Further worked problems on the
superposition theorem

Problem 4. For the a.c. network shown in Figure
32.21 determine, using the superposition theorem,
(a) the current in each branch, (b) the magnitude of
the voltage across the (6 + j8)� impedance, and (c)
the total active power delivered to the network.

Figure 32.21

(a) (i) The original network is redrawn with E2 removed,
as shown in Figure 32.22.

Figure 32.22

(ii) Currents I1, I2 and I3 are labelled as shown
in Figure 32.22. From Figure 32.22, (6 + j8)�
in parallel with (2 − j5)� gives an equivalent
impedance of

(6 + j8)(2 − j5)

(6 + j8) + (2 − j5)
= (5.123 − j3.671) �

From the equivalent network of Figure 32.23,

Figure 32.23

current I1 = 5 + j0

(3 + j4) + (5.123 − j3.671)

= (0.614 − j0.025) A

current

I2 =
[

(2 − j5)

(6 + j8) + (2 − j5)

]
(0.614 − j0.025)

= (−0.00731− j0.388) A

and current

I3 =
[

(6 + j8)

(6 + j8) + (2 − j5)

]
(0.614 − j0.025)

= (0.622 + j0.363) A

(iii) The original network is redrawn with E1 removed,
as shown in Figure 32.24.

Figure 32.24

(iv) Currents I4, I5 and I6 are shown labelled in
Figure 32.24 with I4 flowing away from the
positive terminal of the (2 + j4)V source.

From Figure 32.24, (3 + j4) � in parallel with
(6 + j8) � gives an equivalent impedance of

(3 + j4)(6 + j8)

(3 + j4) + (6 + j8)
= (2.00 + j2.667) �
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From the equivalent network of Figure 32.25,

Figure 32.25

current I4 = (2 + j4)

(2.00 + j2.667) + (2 − j5)

= (−0.062 + j0.964) A

From Figure 32.24,

current

I5 =
[

(3 + j4)

(3 + j4) + (6 + j8)

]
(−0.062 + j0.964)

= (−0.0207 + j0.321) A

and current

I6 =
[

6 + j8

(3 + j4) + (6 + j8)

]
(−0.062 + j0.964)

= (−0.041 + j0.643) A

(v) If Figure 32.24 is superimposed on Figure
32.22, the resultant currents are as shown in
Figure 32.26.

Figure 32.26

(vi) Resultant current flowing from (5 + j0)V source
is given by

I1 + I6 = (0.614 − j0.025) + (−0.041 + j0.643)
= (0.573 + j0.618)A or 0.843∠47.16◦ A

Resultant current flowing from (2 + j4)V source
is given by

I3 + I4 = (0.622 + j0.363) + (−0.062 + j0.964)
= (0.560 + j1.327)A or 1.440∠67.12◦ A

Resultant current flowing through the (6 + j8)�
impedance is given by

I2 − I5 = (−0.00731 − j0.388) − (−0.0207
+j0.321)

= (0.0134− j0.709)A or 0.709∠−88.92◦A

(b) Voltage across (6 + j8) � impedance is given by

(I2 − I5)(6 + j8)

= (0.709∠−88.92◦)(10∠53.13◦)

= 7.09∠−35.79◦ V

i.e. the magnitude of the voltage across the
(6 + j8)� impedance is 7.09V

(c) Total active power P delivered to the network is
given by

P = E1(I1 + I6) cos φ1 + E2(I3 + I4) cos φ2

where φ1 is the phase angle between E1 and
(I1 + I6) and φ2 is the phase angle between E2
and (I3 + I4), i.e.

P = (5) (0.843) cos (47.16◦ − 0◦) +
(
√

(22 + 42))(1.440) cos(67.12◦ − tan−1 4
2 )

= 2.866 + 6.427 = 9.293 W

= 9.3 W, correct to one dec. place.

(This value may be checked since total active power
dissipated is given by:

P = (I1 + I6)2(3) + (I2 − I5)2(6) + (I3 + I4)2(2)

= (0.843)2(3) + (0.709)2(6) + (1.440)2(2)

= 2.132 + 3.016 + 4.147 = 9.295 W

= 9.3 W, correct to one dec. place.)

Problem 5. Use the superposition theorem to deter-
mine, for the network shown in Figure 32.27, (a) the
magnitude of the current flowing in the capacitor, (b)
the p.d. across the 5 � resistance, (c) the active power
dissipated in the 20 � resistance and (d) the total active
power taken from the supply.

Figure 32.27
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(i) The network is redrawn with the 30∠90◦V source
removed, as shown in Figure 32.28.

Figure 32.28

(ii) Currents I1 to I5 are shown labelled in Figure 32.28.
From Figure 32.28, two 8 � resistors in parallel give
an equivalent resistance of 4 �.

Hence I1 = 50∠0◦

20 + (5(4 − j3)/(5 + 4 − j3))

= 2.220∠2.12◦ A

I2 = (4 − j3)

(5 + 4 − j3)
I1 = 1.170∠−16.32◦ A

I3 =
(

5

5 + 4 − j3

)
I1 = 1.170∠20.55◦ A

I4 =
(

8

8 + 8

)
I3 = 0.585∠20.55◦ A = I5

(iii) The original network is redrawn with the 50∠0◦V
source removed, as shown in Figure 32.29.

Figure 32.29

(iv) Currents I6 to I10 are shown labelled in Figure 32.29.
From Figure 32.29, 20 � in parallel with 5 � gives
an equivalent resistance of (20 × 5)/(20 + 5) = 4 �.

Hence I6 = 30∠90◦

8 + (8(4 − j3)/(8 + 4 − j3))

= 2.715∠96.52◦ A

I7 = (4 − j3)

(8 + 4 − j3)
I6 = 1.097∠73.69◦A

I8 =
(

8

8 + 4 − j3

)
I6 = 1.756∠110.56◦A

I9 =
(

20

20 + 5

)
I8 = 1.405∠110.56◦A

and I10 =
(

5

20 + 5

)
I8 = 0.351∠110.56◦A

(a) The current flowing in the capacitor is given by

(I3 − I8) = 1.170∠20.55◦ − 1.756∠110.56◦

= (1.712 − j1.233)A or

2.11∠−35.76◦A

i.e. the magnitude of the current in the capacitor
is 2.11A

(b) The p.d. across the 5 � resistance is given by
(I2 + I9) (5)

(I2 + I9) = 1.170∠−16.32◦ + 1.405∠110.56◦

= (0.629 + j0.987)A or 1.17∠57.49◦ A

Hence the magnitude of the pd. across the 5 �
resistance is (1.17) (5) = 5.85V

(c) Active power dissipated in the 20 � resistance is
given by (I1 − I10)2(20)

(I1 − I10) = 2.220∠2.12◦ − 0.351∠110.56◦

= (2.342 − j0.247)A or 2.355∠−6.02◦ A

Hence the active power dissipated in the 20 �
resistance is (2.355)2(20) = 111 W

(d) Active power developed by the 50∠0◦ V source

P1 = V (I1 − I10) cos φ1

= (50)(2.355) cos(6.02◦ − 0◦) = 117.1 W

Active power developed by 30∠90V source,

P2 = 30(I6 − I5) cos φ2

(I6 − I5) = 2.7156∠96.52◦ − 0.585∠20.55◦

= (−0.856 + j2.492)A or

2.635∠108.96◦A
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Hence P2 = (30)(2.635) cos(108.96◦ − 90◦)

= 74.8 W

Total power developed, P= P1 + P2 = 117.1 + 74.8

= 191.9 W

(This value may be checked by summing the I2R
powers dissipated in the four resistors.)

Now try the following exercise.

Exercise 112 Further problems on the superpos-
ition theorem

1. For the network shown in Figure 32.30, determine,
using the superposition theorem, (a) the current
flowing in the capacitor, (b) the current flowing
in the 2 � resistance, (c) the p.d. across the 5 �
resistance, and (d) the total active circuit power.

[(a) 1.28A (b) 0.74A (c) 3.01V (d) 2.91 W]

Figure 32.30

2. (a) Use the superposition theorem to determine
the current in the 12 � resistance of the net-
work shown in Figure 32.31. Determine also
the p.d. across the 8 � resistance and the power
dissipated in the 20 � resistance.

Figure 32.31

(b) If the 37.5V source in Figure 32.31 is reversed
in direction, determine the current in the 12 �
resistance.

[(a) 0.375A, 8.0V, 57.8 W (b) 0.625A]

3. For the network shown in Figure 32.32, use the
superposition theorem to determine (a) the current
in the capacitor, (b) the pd. across the 10 � resist-
ance, (c) the active power dissipated in the 20 �
resistance, and (d) the total active circuit power.

[(a) 3.97A (b) 28.7V (c) 36.4 W (d) 371.6 W]

Figure 32.32
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33 Thévenin’s and Norton’s theorems

At the end of this chapter you should be able to:
• understand and use Thévenin’s theorem to analyse

a.c. and d.c. networks
• understand and use Norton’s theorem to analyse a.c.

and d.c. networks

• appreciate and use the equivalence of Thévenin and
Norton networks

33.1 Introduction

Many of the networks analysed in Chapters 30, 31 and
32 using Kirchhoff’s laws, mesh-current and nodal analy-
sis and the superposition theorem can be analysed more
quickly and easily by using Thévenin’s or Norton’s the-
orems. Each of these theorems involves replacing what
may be a complicated network of sources and linear
impedances with a simple equivalent circuit. A set proced-
ure may be followed when using each theorem, the pro-
cedures themselves requiring a knowledge of basic circuit
theory. (It may be worth checking some general d.c. circuit
theory in Section 13.4. page 140, before proceeding)

33.2 Thévenin’s theorem

Thévenin’s theorem states:

‘The current which flows in any branch of a network
is the same as that which would flow in the branch if
it were connected across a source of electrical energy,
the e.m.f. of which is equal to the potential difference
which would appear across the branch if it were open-
circuited, and the internal impedance of which is equal to
the impedance which appears across the open-circuited
branch terminals when all sources are replaced by their
internal impedances.’

The theorem applies to any linear active network (‘linear’
meaning that the measured values of circuit components
are independent of the direction and magnitude of the cur-
rent flowing in them, and ‘active’ meaning that it contains
a source, or sources, of e.m.f.).

The above statement of Thévenin’s theorem simply
means that a complicated network with output terminals
AB, as shown in Figure 33.1(a), can be replaced by a single
voltage source E in series with an impedance z, as shown
in Figure 33.1(b). E is the open-circuit voltage measured
at terminals AB and z is the equivalent impedance of the
network at the terminals AB when all internal sources of

Figure 33.1 The Thévenin equivalent circuit

e.m.f. are made zero. The polarity of voltage E is chosen so
that the current flowing through an impedance connected
between A and B will have the same direction as would
result if the impedance had been connected betweenA and
B of the original network. Figure 33.1(b) is known as the
Thévenin equivalent circuit, and was initially introduced
in Section 13.4, page 140 for d.c. networks.

The following four-step procedure can be adopted
when determining, by means of Thévenin’s theorem, the
current flowing in a branch containing impedance ZL of
an active network:

(i) remove the impedance ZL from that branch;
(ii) determine the open-circuit voltage E across the

break;
(iii) remove each source of e.m.f. and replace it by its

internal impedance (if it has zero internal impedance
then replace it by a short-circuit), and then determine
the internal impedance, z, ‘looking in’ at the break;
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(iv) determine the current from the Thévenin equivalent
circuit shown in Figure 33.2, i.e.

current iL = E
ZL + z

Figure 33.2

A simple d.c. network (Figure 33.3) serves to demonstrate
how the above procedure is applied to determine the cur-
rent flowing in the 5 � resistance by using Thévenin’s
theorem. This is the same network as used in Chapter 30
when it was solved using Kirchhoff’s laws (see page 349),
and by means of the superposition theorem in Chapter 32
(see page 391). A comparison of methods may be made.

Figure 33.3

Using the above procedure:

(i) the 5 � resistor is removed, as shown in Fig-
ure 33.4(a).

(ii) The open-circuit voltage E across the break is now
required. The network of Figure 33.4(a) is redrawn

Figure 33.4

for convenience as shown in Figure 33.4(b), where
current,

I1 = E1 − E2

r1 + r2
= 8 − 3

1 + 2
= 5

3
or 1

2

3
A

Hence the open-circuit voltage E is given by

E = E1 − I1r1

i.e. E = 8 − (
1 2

3

)
(1) = 6 1

3 V

(Alternatively, E = E2 − (−I1)r2

= 3 + (
1 2

3

)
(2) = 6 1

3 V)

(iii) Removing each source of e.m.f. gives the network
of Figure 33.5. The impedance, z, ‘looking in’ at the
break AB is given by

z = (1 × 2)/(1 + 2) = 2
3 �

Figure 33.5

(iv) The Thévenin equivalent circuit is shown in Fig-
ure 33.6, where current iL is given by

iL = E

ZL + z
= 6 1

3

5 + 2
3

= 1.1177

= 1.12A, correct to two decimal places

Figure 33.6
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To determine the currents flowing in the other two
branches of the circuit of Figure 33.3, basic cir-
cuit theory is used. Thus, from Figure 33.7, voltage
V = (1.1177)(5) = 5.5885V

Figure 33.7

Then V = E1 − IAr1, i.e. 5.5885 = 8 − IA(1),

from which

current IA = 8 − 5.5885 = 2.41A

Similarly, V = E2 − IBr2, i.e. 5.5885 = 3 − IB(2),

from which

current IB = 3 − 5.5885

2
= −1.29A

(i.e. flowing in the direction opposite to that shown
in Figure 33.7).

The Thévenin theorem procedure used above may be
applied to a.c. as well as d.c. networks, as shown below.

An a.c. network is shown in Figure 33.8 where it
is required to find the current flowing in the (6 + j8) �
impedance by using Thévenin’s theorem.

Figure 33.8

Figure 33.9

Using the above procedure

(i) The (6 + j8) � impedance is removed, as shown in
Figure 33.9(a).

(ii) The open-circuit voltage across the break is now
required. The network is redrawn for convenience
as shown in Figure 33.9(b), where current

I1 = (5 + j0) + (2 + j4)

(3 + j4) + (2 − j5)
= (7 + j4)

(5 − j)

= 1.581∠41.05◦ A

Hence open-circuit voltage across AB,

E = E1 − I1(3 + j4), i.e.

E = (5 + j0) − (1.581∠41.05◦)(5∠53.13◦)

from which E = 9.657∠−54.73◦ V
(iii) From Figure 33.10, the impedance z ‘looking in’ at

terminals AB is given by

z = (3 + j4)(2 − j5)

(3 + j4) + (2 − j5)

= 5.281∠−3.76◦ � or (5.270 − j0.346) �

Figure 33.10

(iv) The Thévenin equivalent circuit is shown in Fig-
ure 33.11, from which current

iL = E

ZL + z
= 9.657∠−54.73◦

(6 + j8) + (5.270 − j0.346)

Thus, current in (6 + j8) � impedance,

iL = 9.657∠−54.73◦

13.623∠34.18◦ = 0.71∠−88.91◦ A
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Figure 33.11

The network of Figure 33.8 is analysed using Kirch-
hoff’s laws in problem 3, page 376, and by the super-
position theorem in problem 4, page 396. The above
analysis using Thévenin’s theorem is seen to be much
quicker.

Problem 1. For the circuit shown in Figure 33.12,
use Thévenin’s theorem to determine (a) the current
flowing in the capacitor, and (b) the p.d. across the
150 k� resistor.

Figure 33.12

(a) (i) Initially the (150 − j120) k� impedance is removed
from the circuit as shown in Figure 33.13.

Figure 33.13

Note that, to find the current in the capacitor, only
the capacitor need have been initially removed
from the circuit. However, removing each of the
components from the branch through which the
current is required will often result in a simpler
solution.

(ii) From Figure 33.13,

current I1 = 200∠0◦

(5000 + 20 000)
= 8 mA

The open-circuit e.m.f. E is equal to the p.d. across
the 20 k� resistor, i.e.

E = (8 × 10−3)(20 × 103) = 160V

(iii) Removing the 200∠0◦ V source gives the network
shown in Figure 33.14.

Figure 33.14

The impedance, z, ‘looking in’ at the open-
circuited terminals is given by

z = 5 × 20

5 + 20
k� = 4 k�

(iv) The Thévenin equivalent circuit is shown in Fig-
ure 33.15, where current iL is given by

iL = E

ZL + z
= 160

(150 − j120) × 103 + 4 × 103

= 160

195.23 × 103∠−37.93◦

= 0.82∠37.93◦ mA

Thus the current flowing in the capacitor is
0.82 mA.

Figure 33.15

(b) P.d. across the 150 k� resistor,

V0 = iLR = (0.82 × 10−3)(150 × 103) = 123V
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Problem 2. Determine, for the network shown in Fig-
ure 33.16, the value of current I . Each of the voltage
sources has a frequency of 2 kHz.

Figure 33.16

(i) The impedance through which current I is flowing
is initially removed from the network, as shown in
Figure 33.17.

Figure 33.17

(ii) From Figure 33.17,

current, I1 = 20 − 10

2 + 3
= 2 A

Hence the open circuit e.m.f.

E = 20 − I1(2) = 20 − 2(2) = 16V

(Alternatively, E = 10 + I1(3) = 10 + (2)(3) = 16V)
(iii) When the sources of e.m.f. are removed from the

circuit, the impedance, z, ‘looking in’ at the break is
given by

z = 2 × 3

2 + 3
= 1.2 �

(iv) The Thévenin equivalent circuit is shown in Fig-
ure 33.18, where inductive reactance,

XL = 2π fL = 2π(2000)(235 × 10−6) = 2.95 �

Hence current

I = 16

(1.2 + 1.5 + j2.95)
= 16

4.0∠47.53◦

= 4.0∠−47.53◦ A or (2.70 − j2.95)A

Figure 33.18

Problem 3. Use Thévenin’s theorem to determine the
power dissipated in the 48 � resistor of the network
shown in Figure 33.19.

Figure 33.19

The power dissipated by a current I flowing through a
resistor R is given by I2R, hence initially the current
flowing in the 48 � resistor is required.

(i) The (48 + j144)� impedance is initially removed
from the network as shown in Figure 33.20.

Figure 33.20

(ii) From Figure 33.20,

current, i = 50∠0◦

(300 − j400)
= 0.1∠53.13◦ A

Hence the open-circuit voltage

E = i(300) = (0.1∠53.13◦)(300) = 30∠53.13◦ V

(iii) When the 50∠0◦ V source shown in Figure 33.20 is
removed, the impedance, z, is given by

z = (−j400)(300)

(300 − j400)
= (400∠−90◦)(300)

500∠−53.13◦

= 240∠−36.87◦� or (192 − j144) �
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(iv) The Thévenin equivalent circuit is shown in Fig-
ure 33.21 connected to the (48 + j144) � load.

Figure 33.21

Current I = 30∠53.13◦

(192 − j144) + (48 + j144)

= 30∠53.13◦

240∠0◦ = 0.125∠53.13◦ A

Hence the power dissipated in the 48 � resistor

= I2R = (0.125)2(48) = 0.75 W

Problem 4. For the network shown in Figure 33.22,
use Thévenin’s theorem to determine the current flow-
ing in the 80 � resistor.

Figure 33.22

One method of analysing a multi-branch network as shown
in Figure 33.22 is to use Thévenin’s theorem on one part of
the network at a time. For example, the part of the circuit
to the left of AA may be reduced to a Thévenin equivalent
circuit.
From Figure 33.23,

E1 =
(

20

20 + 5

)
100 = 80V, by voltage division

and z1 = 20 × 5

20 + 5
= 4 �

Thus the network of Figure 33.22 reduces to that of Fig-
ure 33.24. The part of the network shown in Figure 33.24

Figure 33.23

Figure 33.24

to the left of BB may be reduced to a Thévenin equivalent
circuit, where

E2 =
(

50

50 + 46 + 4

)
(80) = 40 V

and z2 = 50 × 50

50 + 50
= 25 �

Thus the original network reduces to that shown in
Figure 33.25.

Figure 33.25

The part of the network shown in Figure 33.25 to the left
of CC may be reduced to a Thévenin equivalent circuit,
where

E3 =
(

60

60 + 25 + 15

)
(40) = 24 V

and z3 = (60)(40)

(60 + 40)
= 24 �
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Figure 33.26

Thus the original network reduces to that of Fig-
ure 33.26, from which the current in the 80 � resistor is
given by

I =
(

24

80 + 16 + 24

)
= 0.20A

Now try the following exercise.

Exercise 113 Further problems on Thévenin’s
theorem

1. Use Thévenin’s theorem to determine the current
flowing in the 10 � resistor of the d.c. network
shown in Figure 33.27. [0.85A]

Figure 33.27

2. Determine, using Thévenin’s theorem, the values
of currents I1, I2 and I3 of the network shown in
Figure 33.28. [I1 = 2.8A, I2 = 4.8A, I3 = 7.6A]

Figure 33.28

3. Determine the Thévenin equivalent circuit with
respect to terminals AB of the network shown in

Figure 33.29. Hence determine the magnitude of
the current flowing in a (4 − j7) � impedance con-
nected across terminalsAB and the power delivered
to this impedance. [E = 15.37∠−38.66◦V,

z = (3.20 + j4.00) �; 1.97A; 15.5 W]

Figure 33.29

4. For the network shown in Figure 33.30 use
Thévenin’s theorem to determine the current flow-
ing in the 3 � resistance. [1.17A]

Figure 33.30

5. Derive for the network shown in Figure 33.31 the
Thévenin equivalent circuit at terminals AB, and
hence determine the current flowing in a 20 �
resistance connected between A and B.

[E = 2.5V, r = 5 �; 0.10A]

Figure 33.31

33.3 Further worked problems on Thévenin’s
theorem

Problem 5. Determine the Thévenin equivalent cir-
cuit with respect to terminals AB of the circuit shown
in Figure 33.32. Hence determine (a) the magnitude
of the current flowing in a (3.75 + j11) � impedance
connected across terminals AB, and (b) the magnitude
of the p.d. across the (3.75 + j11) � impedance.
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Figure 33.32

Current I1 shown in Figure 33.32 is given by

I1 = 24∠0◦

(4 + j3 − j3)
= 24∠0◦

4∠0◦ = 6∠0◦ A

The Thévenin equivalent voltage, i.e. the open-circuit
voltage across terminals AB, is given by

E = I1(4 + j3) = (6∠0◦)(5∠36.87◦) = 30∠36.87◦ V

When the 24∠0◦ V source is removed, the impedance z
‘looking in’ at AB is given by

z = (4 + j3)(−j3)

(4 + j3 − j3)
= 9 − j12

4
= (2.25 − j3.0) �

Thus the Thévenin equivalent circuit is as shown in
Figure 33.33.

Figure 33.33

(a) When a (3.75 + j11) � impedance is connected across
terminals AB, the current I flowing in the impedance
is given by

I = 30∠36.87◦

(3.75 + j11) + (2.25 − j3.0)
= 30∠36.87◦

10∠53.13◦

= 3∠−16.26◦ A

Hence the current flowing in the (3.75 + j11) �
impedance is 3A.

(b) P.d. across the (3.75 + j11) � impedance is given by

V = (3∠−16.26◦)(3.75 + j11)

= (3∠−16.26◦)(11.62∠71.18◦)

= 34.86∠54.92◦ V

Hence the magnitude of the p.d. across the
impedance is 34.9V

Problem 6. Use Thévenin’s theorem to determine the
current flowing in the capacitor of the network shown
in Figure 33.34.

Figure 33.34

(i) The capacitor is removed from branch AB, as shown
in Figure 33.35.

Figure 33.35

(ii) The open-circuit voltage, E, shown in Figure 33.35,
is given by (I2)(5). I2 may be determined by cur-
rent division if I1 is known. (Alternatively, E may be
determined by the method used in problem 4.)

Current I1 = V/Z , where Z is the total circuit
impedance and V = 16.55∠−22.62◦ V.

Impedance, Z = 4 + ( j2)(8 + j6)

j2 + 8 + j6

= 4 + −12 + j16

8 + j8

= 4.596∠22.38◦ �

Hence I1 = 16.55∠−22.62◦

4.596∠22.38◦
= 3.60∠−45◦ A
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and I2 =
(

j2

j2 + 3 + j6 + 5

)
I1

= (2∠90◦)(3.60∠−45◦)

11.314∠45◦
= 0.636∠0◦ A

(An alternative method of finding I2 is to use Kirch-
hoff’s laws or mesh-current or nodal analysis on
Figure 33.35.)

Hence E = (I2)(5) = (0.636∠0◦)(5) = 3.18∠0◦ V

(iii) If the 16.55∠−22.62◦ V source is removed from Fig-
ure 33.35, the impedance, z, ‘looking in’ at AB is
given by

z = 5[((4 × j2)/(4 + j2)) + (3 + j6)]

5 + [((4 × j2)/(4 + j2)) + 3 + j6]

= 5(3.8 + j7.6)

8.8 + j7.6

i.e. z = 3.654∠22.61◦ � or (3.373 + j1.405) �

(iv) The Thévenin equivalent circuit is shown in Fig-
ure 33.36, where the current flowing in the capacitor,
I , is given by

I = 3.18∠0◦

(3.373 + j1.405) − j8
= 3.18∠0◦

7.408∠−62.91◦

= 0.43∠62.91◦ A in the direction from A to B

Figure 33.36

Problem 7. For the network shown in Figure 33.37,
derive the Thévenin equivalent circuit with respect
to terminals PQ, and hence determine the power
dissipated by a 2 � resistor connected across PQ.

Figure 33.37

Current I1 shown in Figure 33.37 is given by

I1 = 10∠0◦

(5 + 4 + j3)
= 1.054∠−18.43◦ A

Hence the voltage drop across the 5 � resistor is given
by VX = (I1)(5) = 5.27∠−18.43◦ V, and is in the direction
shown in Figure 33.37, i.e. the direction opposite to that
in which I1 is flowing.

The open-circuit voltage E across PQ is the phasor sum
of V1, Vx and V2, as shown in Figure 33.38.

Figure 33.38

Thus E = 10∠0◦ − 5∠45◦ − 5.27∠−18.43◦

= (1.465 − j1.869) V or 2.375∠−51.91◦ V

The impedance, z, ‘looking in’ at terminals PQ with the
voltage sources removed is given by

z = 8 + 5(4 + j3)

(5 + 4 + j3)
= 8 + 2.635∠18.44◦

= (10.50 + j0.833) �

The Thévenin equivalent circuit is shown in Figure 33.39
with the 2 � resistance connected across terminals PQ.

Figure 33.39

The current flowing in the 2 � resistance is given by

I = 2.375∠−51.91◦

(10.50 + j0.833) + 2
= 0.1896∠−55.72◦ A
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The power P dissipated in the 2 � resistor is given by

P = I2R = (0.1896)2(2) = 0.0719 W ≡ 72 mW,

correct to two significant figures.

Problem 8. For the a.c. bridge network shown in
Figure 33.40, determine the current flowing in the
capacitor, and its direction, by using Thévenin’s the-
orem. Assume the 30∠0◦ V source to have negligible
internal impedance.

Figure 33.40

(i) The −j25 � capacitor is initially removed from the
network, as shown in Figure 33.41.

Figure 33.41

(ii) P.d. between A and C,

VAC =
(

Z1

Z1 + Z4

)
V =

(
15

15 + 5 + j5

)
(30∠0◦)

= 21.83∠−14.04◦ V

s
P.d. between B and C,

VBC =
(

Z2

Z2 + Z3

)
V =

(
40

40 + 20 + j20

)
(30∠0◦)

= 18.97∠−18.43◦ V

Assuming that point A is at a higher potential than
point B, then the p.d. between A and B is

21.83∠−14.04◦ − 18.97∠−18.43◦

= (3.181 + j0.701)V or 3.257∠12.43◦ V,

i.e. the open-circuit voltage across AB is given by

E = 3.257∠12.43◦ V

Point C is at a potential of 30∠0◦ V. Between C and A
is a volt drop of 21.83∠−14.04◦ V. Hence the voltage
at point A is

30∠0◦ − 21.83∠−14.04◦ = 10.29∠30.98◦ V

Between points C and B is a voltage drop of
18.97∠−18.43◦ V. Hence the voltage at point B is
30∠0◦ − 18.97∠−18.43◦ = 13.42∠26.55◦ V.

Since the magnitude of the voltage at B is higher than
at A, current must flow in the direction B to A.

(iii) Replacing the 30∠0◦ V source with a short-circuit
(i.e. zero internal impedance) gives the network
shown in Figure 33.42(a). The network is shown
redrawn in Figure 33.42(b) and simplified in Fig-
ure 33.42(c). Hence the impedance, z, ‘looking in’ at
terminals AB is given by

z = (15)(5 + j5)

(15 + 5 + j5)
+ (40)(20 + j20)

(40 + 20 + j20)

= 5.145∠30.96◦ + 17.889∠26.57◦

i.e. z = (20.41 + j10.65) �

Figure 33.42
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(iv) The Thévenin equivalent circuit is shown in Fig-
ure 33.43, where current I is given by

I = 3.257∠12.43◦

(20.41 + j10.65) − j25
= 3.257∠12.43◦

24.95∠−35.11◦

= 0.131∠47.54◦ A

Figure 33.43

Thus a current of 131 mA flows in the capacitor
in a direction from B to A.

Now try the following exercise.

Exercise 114 Further problems on Thévenin’s
theorem

1. Determine for the network shown in Figure 33.44
the Thévenin equivalent circuit with respect to ter-
minalsAB, and hence determine the current flowing
in the (5 + j6) � impedance connected between
A and B.

[E = 14.32∠6.38◦V, z = (3.99 + j0.55) �; 1.29A]

Figure 33.44

2. For the network shown in Figure 33.45, derive
the Thévenin equivalent circuit with respect to ter-
minals AB, and hence determine the magnitude
of the current flowing in a (2 + j13) � impedance
connected between A and B. [1.157A]

Figure 33.45

3. Use Thévenin’s theorem to determine the power dis-
sipated in the 4 � resistance of the network shown
in Figure 33.46. [0.24 W]

Figure 33.46

4. For the bridge network shown in Figure 33.47 use
Thévenin’s theorem to determine the current flow-
ing in the (4 + j3) � impedance and its direction.
Assume that the 20∠0◦ V source has negligible
internal impedance. [0.12A from Q to P]

Figure 33.47

5. Repeat problems 1 to 10 of Exercise 108, page 378
using Thévenin’s theorem.

6. Repeat problems 2 and 3 of Exercise 109, page 383
using Thévenin’s theorem.

7. Repeat problems 3 to 7 of Exercise 110, page 390
using Thévenin’s theorem.

8. Repeat problems 4 to 7 of Exercise 111, page 395
using Thévenin’s theorem.

9. Repeat problems 1 to 3 of Exercise 112, page 398
using Thévenin’s theorem.

33.4 Norton’s theorem

A source of electrical energy can be represented by a
source of e.m.f. in series with an impedance. In Sec-
tion 33.2, the Thévenin constant-voltage source consisted
of a constant e.m.f. E, which may be alternating or direct,
in series with an internal impedance, z. However, this is
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not the only form of representation. A source of electri-
cal energy can also be represented by a constant-current
source, which may be alternating or direct, in parallel
with an impedance. It is shown in Section 33.5 that the
two forms are in fact equivalent.

Norton’s theorem states:

‘The current that flows in any branch of a network is the
same as that which would flow in the branch if it were
connected across a source of electrical energy, the short-
circuit current of which is equal to the current that would
flow in a short-circuit across the branch, and the internal
impedance of which is equal to the impedance which
appears across the open-circuited branch terminals.’

The above statement simply means that any linear
active network with output terminals AB, as shown in
Figure 33.48(a), can be replaced by a current source in
parallel with an impedance z as shown in Figure 33.48(b).
The equivalent current source ISC (note the symbol in Fig-
ure 33.48(b) as per BS 3939:1985) is the current through a
short-circuit applied to the terminals of the network. The
impedance z is the equivalent impedance of the network
at the terminals AB when all internal sources of e.m.f. are
made zero. Figure 33.48(b) is known as the Norton equiv-
alent circuit, and was initially introduced in Section 13.7,
page 146 for d.c. networks.

Figure 33.48 The Norton equivalent circuit

The following four-step procedure may be adopted
when determining the current flowing in an impedance
ZL of a branch AB of an active network, using Norton’s
theorem:

(i) short-circuit branch AB;
(ii) determine the short-circuit current ISC ;

(iii) remove each source of e.m.f. and replace it by its
internal impedance (or, if a current source exists,
replace with an open circuit), then determine the

impedance, z, ‘looking in’ at a break made between
A and B;

(iv) determine the value of the current iL flowing in
impedance ZL from the Norton equivalent network
shown in Figure 33.49, i.e.

iL =
(

z
ZL + z

)
ISC

Figure 33.49

A simple d.c. network (Figure 33.50) serves to demon-
strate how the above procedure is applied to determine
the current flowing in the 5 � resistance by using Norton’s
theorem:

Figure 33.50

(i) The 5 � branch is short-circuited, as shown in
Figure 33.51.

Figure 33.51

(ii) From Figure 33.51, ISC = I1 + I2 = 8
1 + 3

2 = 9.5A

(iii) If each source of e.m.f. is removed the impedance
‘looking in’ at a break made between A and B is
given by z = (1 × 2)/(1 + 2) = 2

3 �.
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(iv) From the Norton equivalent network shown in Fig-
ure 33.52, the current in the 5 � resistance is given
by IL = ( 2

3

/(
5 + 2

3

))
9.5 = 1.12A, as obtained pre-

viously using Kirchhoff’s laws, the superposition
theorem and by Thévenin’s theorem.

Figure 33.52

As with Thévenin’s theorem, Norton’s theorem may be
used with a.c. as well as d.c. networks, as shown below.

An a.c. network is shown in Figure 33.53 where it
is required to find the current flowing in the (6 + j8) �
impedance by using Norton’s theorem.
Using the above procedure:

Figure 33.53

(i) Initially the (6 + j8) � impedance is short-circuited,
as shown in Figure 33.54.

Figure 33.54

(ii) From Figure 33.54,

ISC = I1 + I2 = (5 + j0)

(3 + j4)
+ (−(2 + j4))

(2 − j5)

= 1∠−53.13◦ − 4.472∠63.43◦

5.385∠−68.20◦
= (1.152 − j1.421)A or 1.829∠−50.97◦ A

(iii) If each source of e.m.f. is removed, the impedance,
z, ‘looking in’ at a break made between A and B is
given by

z = (3 + j4)(2 − j5)

(3 + j4) + (2 − j5)

= 5.28∠−3.76◦ � or (5.269 − j0.346) �

(iv) From the Norton equivalent network shown in Fig-
ure 33.55, the current is given by

iL =
(

z

ZL + z

)
ISC

=
(

5.28∠−3.76◦

(6 + j8) + (5.269 − j0.346)

)
1.829∠−50.97◦

i.e. current in (6 + j8) � impedance,
iL = 0.71∠ −88.91◦ A

Figure 33.55

Problem 9. Use Norton’s theorem to determine the
value of current I in the circuit shown in Figure 33.56.

Figure 33.56

(i) The branch containing the 2.8 � resistor is short-
circuited, as shown in Figure 33.57.

(ii) The 3 � resistor in parallel with a short-circuit is the
same as 3 � in parallel with 0 giving an equivalent
impedance of (3 × 0)/(3 + 0) = 0. Hence the net-
work reduces to that shown in Figure 33.58, where
ISC = 5/2 = 2.5A
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Figure 33.57

Figure 33.58

(iii) If the 5V source is removed from the network the
input impedance, z, ‘looking-in’ at a break made in
AB of Figure 33.57 gives z = (2 × 3)/(2 + 3) = 1.2 �
(see Figure 33.59).

Figure 33.59

(iv) The Norton equivalent network is shown in Fig-
ure 33.60, where current I is given by

I =
(

1.2

1.2 + (2.8 − j3)

)
(2.5) = 3

4 − j3

= 0.60∠36.87◦ A

Figure 33.60

Problem 10. For the circuit shown in Figure 33.61
determine the current flowing in the inductive branch
by using Norton’s theorem.

Figure 33.61

(i) The inductive branch is initially short-circuited, as
shown in Figure 33.62.

Figure 33.62

(ii) From Figure 33.62,

ISC = I1 + I2 = 20

2
+ 10

3
= 13.3̇A

(iii) If the voltage sources are removed, the impedance,
z, ‘looking in’ at a break made in AB is given by
z = (2 × 3)/(2 + 3) = 1.2 �.

(iv) The Norton equivalent network is shown in Fig-
ure 33.63, where current I is given by

I =
(

1.2

1.2 + 1.5 + j2.95

)
(13.3̇) = 16

2.7 + j2.95

= 4.0∠−47.53◦A or (2.7 − j2.95)A

Figure 33.63
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Problem 11. Use Norton’s theorem to determine the
magnitude of the p.d. across the 1 � resistance of the
network shown in Figure 33.64.

Figure 33.64

(i) The branch containing the 1 � resistance is initially
short-circuited, as shown in Figure 33.65.

Figure 33.65

(ii) 4 � in parallel with −j2 � in parallel with 0 � (i.e. the
short-circuit) is equivalent to 0, giving the equivalent
circuit of Figure 33.66. Hence ISC = 10/4 = 2.5A.

Figure 33.66

(iii) The 10V source is removed from the network of
Figure 33.64, as shown in Figure 33.67, and the

Figure 33.67

impedance z, ‘looking in’ at a break made in AB is
given by

1

z
= 1

4
+ 1

4
+ 1

−j2
= −j − j + 2

−j4
= 2 − j2

−j4

from which

z = −j4

2 − j2
= −j4(2 + j2)

22 + 22 = 8 − j8

8
= (1 − j1) �

(iv) The Norton equivalent network is shown in Fig-
ure 33.68, from which current I is given by

I =
(

1 − j1

(1 − j1) + 1

)
(2.5) = 1.58∠−18.43◦ A

Figure 33.68

Hence the magnitude of the p.d. across the 1 �
resistor is given by

IR = (1.58)(1) = 1.58V.

Problem 12. For the network shown in Figure 33.69,
obtain the Norton equivalent network at terminals AB.
Hence determine the power dissipated in a 5 � resistor
connected between A and B.

Figure 33.69
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(i) Terminals AB are initially short-circuited, as shown
in Figure 33.70.

Figure 33.70

(ii) The circuit impedance Z presented to the 20∠0◦ V
source is given by

Z = 2 + (4 + j3)(−j3)

(4 + j3) + (−j3)
= 2 + 9 − j12

4

= (4.25 − j3) � or 5.202∠−35.22◦ �

Thus current I in Figure 33.70 is given by

I = 20∠0◦

5.202∠−35.22◦ = 3.845∠35.22◦ A

Hence

ISC =
(

(4 + j3)

(4 + j3) − j3

)
(3.845∠35.22◦)

= 4.806∠72.09◦ A

(iii) Removing the 20∠0◦ V source of Figure 33.69 gives
the network of Figure 33.71.

Figure 33.71

Impedance, z, ‘looking in’at terminalsAB is given by

z = −j3 + 2(4 + j3)

2 + 4 + j3
= −j3 + 1.491∠10.3◦

= (1.467 − j2.733) � or 3.102∠−61.77◦ �

(iv) The Norton equivalent network is shown in Fig-
ure 33.72.

Figure 33.72

Current IL =
(

3.102∠−61.77◦

1.467 − j2.733 + 5

)
(4.806∠72.09◦)

= 2.123∠33.23◦ A

Hence the power dissipated in the 5� resistor is

I2
LR = (2.123)2(5) = 22.5 W

Problem 13. Derive the Norton equivalent network
with respect to terminals PQ for the network shown in
Figure 33.73 and hence determine the magnitude of the
current flowing in a 2 � resistor connected across PQ.

Figure 33.73

This is the same problem as problem 7 on page 408 which
was solved by Thévenin’s theorem.
A comparison of methods may thus be made.

(i) Terminals PQ are initially short-circuited, as shown
in Figure 33.74.

Figure 33.74
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(ii) Currents I1 and I2 are shown labelled. Kirch-
hoff’s laws are used. For loop ABCD, and moving
anticlockwise,

10∠0◦ = 5I1 + (4 + j3)(I1 + I2)

i.e. (9 + j3)I1 + (4 + j3)I2 − 10 = 0 (1)

For loop DPQC, and moving clockwise,

10∠0◦ − 5∠45◦ = 5I1 − 8I2

i.e. 5I1 − 8I2 + (5∠45◦ − 10) = 0 (2)

Solving Equations (1) and (2) by using determinants
gives

I1∣∣∣∣(4 + j3) −10
−8 (5∠45◦ − 10)

∣∣∣∣
= −I2∣∣∣∣(9 + j3) −10

5 (5∠45◦ − 10)

∣∣∣∣
= I∣∣∣∣ (9 + j3) (4 + j3)

5 −8

∣∣∣∣
from which

I2 =
−

∣∣∣∣ (9 + j3) −10
5 (5∠45◦ − 10)

∣∣∣∣∣∣∣∣ (9 + j3) (4 + j3)
5 −8

∣∣∣∣
= −[(9 + j3)(5∠45◦ − 10) + 50]

[−72 − j24 − 20 − j15]

= −[22.52∠146.50◦]

[99.925∠−157.03◦]

= −0.225∠303.53◦ or −0.225∠−56.47◦

Hence the short-circuit current
ISC = 0.225∠−56.47◦ A flowing from P to Q.

(iii) The impedance, z, ‘looking in’ at a break made
between P and Q is given by

z = (10.50 + j0.833) � (see problem 7, page 408).

(iv) The Norton equivalent circuit is shown in Fig-
ure 33.75, where current I is given by

I =
(

10.50 + j0.833

10.50 + j0.833 + 2

)
(0.225∠−56.47◦)

= 0.19∠−55.74◦ A

Hence the magnitude of the current flowing in the
2 � resistor is 0.19A

Figure 33.75

Now try the following exercise.

Exercise 115 Further problems on Norton’s
theorem

1. Repeat problems 1 to 4 of Exercise 113, page 406
using Norton’s theorem.

2. Repeat problems 1 to 3 of Exercise 114, page 410
using Norton’s theorem.

3. Determine the current flowing in the 10 � resis-
tance of the network shown in Figure 33.76 by using
Norton’s theorem. [3.13A]

Figure 33.76

4. For the network shown in Figure 33.77, use
Norton’s theorem to determine the current flowing
in the 10 � resistance. [1.08A]

Figure 33.77

5. Determine for the network shown in Figure 33.78
the Norton equivalent network at terminals AB.
Hence determine the current flowing in a (2 + j4) �
impedance connected between A and B.

[ISC = 2.185∠−43.96◦ A,
z = (2.40 + j1.47) �; 0.88A]
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Figure 33.78

6. Repeat problems 1 to 10 of Exercise 108, page 378
using Norton’s theorem.

7. Repeat problem 2 and 3 of Exercise 109, page 383
using Norton’s theorem.

8. Repeat problem 3 to 6 of Exercise 110, page 390
using Norton’s theorem.

33.5 Thévenin and Norton equivalent networks

It is seen in Sections 33.2 and 33.4 that when Thévenin’s
and Norton’s theorems are applied to the same circuit,
identical results are obtained. Thus the Thévenin and Nor-
ton networks shown in Figure 33.79 are equivalent to each
other. The impedance ‘looking in’ at terminals AB is the
same in each of the networks, i.e. z.

Figure 33.79 Equivalent Thévenin and Norton circuits

If terminals AB in Figure 33.79(a) are short-circuited,
the short-circuit current is given by E/z.

If terminals AB in Figure 33.79(b) are short-circuited,
the short-circuit current is ISC .

Thus ISC = E/z

Figure 33.80 shows a source of e.m.f. E in series
with an impedance z feeding a load impedance ZL . From
Figure 33.80,

IL = E

z + ZL
= E/z

(z + ZL)/z
=

(
z

z + ZL

)
E

z

Figure 33.80

i.e. IL =
(

z
z + ZL

)
ISC , from above.

From Figure 33.81 it can be seen that, when viewed
from the load, the source appears as a source of current ISC
which is divided between z and ZL connected in parallel.

Figure 33.81

Thus it is shown that the two representations shown in
Figure 33.79 are equivalent.

Problem 14. (a) Convert the circuit shown in
Figure 33.82(a) to an equivalent Norton network.
(b) Convert the network shown in Figure 33.82(b) to
an equivalent Thévenin circuit.

Figure 33.82
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(a) If the terminals AB of Figure 33.82(a) are short cir-
cuited, the short-circuit current, ISC = 20/4 = 5A.
The impedance ‘looking in’ at terminals AB is 4 �.
Hence the equivalent Norton network is as shown in
Figure 33.83(a).

Figure 33.83

(b) The open-circuit voltage E across terminalsAB in Fig-
ure 33.82(b) is given by E = (ISC)(z) = (3)(2) = 6V.
The impedance ‘looking in’ at terminals AB is 2 �.

Hence the equivalent Thévenin circuit is as shown in
Figure 33.83(b).

Problem 15. (a) Convert the circuit to the left of ter-
minals AB in Figure 33.84 to an equivalent Thévenin
circuit by initially converting to a Norton equiv-
alent circuit. (b) Determine the magnitude of the
current flowing in the (1.8 + j4) � impedance con-
nected between terminals A and B of Figure 33.84.

Figure 33.84

(a) For the branch containing the 12V source, con-
version to a Norton equivalent network gives
ISC1 = 12/3 = 4A and z1 = 3 �. For the branch

containing the 24V source, conversion to a Nor-
ton equivalent circuit gives ISC2 = 24/2 = 12A and
z2 = 2 �.

Figure 33.85

Thus Figure 33.85 shows a network equivalent to Fig-
ure 33.84. From Figure 33.85, the total short-circuit
current is 4 + 12 = 16A, and the total impedance is
given by (3 × 2)/(3 + 2) = 1.2 �. Thus Figure 33.85
simplifies to Figure 33.86.

Figure 33.86

The open-circuit voltage across AB of Figure 33.86,
E = (16)(1.2) = 19.2V, and the impedance ‘looking
in’ at AB, z = 1.2 �. Hence the Thévenin equivalent
circuit is as shown in Figure 33.87.

Figure 33.87

(b) When the (1.8 + j4) � impedance is connected to ter-
minals AB of Figure 33.87, the current I flowing is
given by

I = 19.2

(1.2 + 1.8 + j4)
= 3.84∠−53.13◦ A

Hence the current flowing in the (1.8 + j4) �
impedance is 3.84A
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Problem 16. Determine, by successive conversions
between Thévenin’s and Norton’s equivalent networks,
a Thévenin equivalent circuit for terminals AB of
Figure 33.88. Hence determine the magnitude of the
current flowing in the capacitive branch connected to
terminals AB.

Figure 33.88

For the branch containing the 5V source, converting to
a Norton equivalent network gives ISC = 5/1000 = 5 mA
and z = 1 k�. For the branch containing the 10V source,
converting to a Norton equivalent network gives
ISC = 10/4000 = 2.5 mA and z = 4 k�. Thus the circuit
of Figure 33.88 converts to that of Figure 33.89.

Figure 33.89

The two Norton equivalent networks shown in Fig-
ure 33.89 may be combined, since the total short-circuit
current is (5 + 2.5) = 7.5 mA and the total impedance z
is given by (1 × 4)/(1 + 4) = 0.8 k�. This results in the
network of Figure 33.90.

Figure 33.90

Both of the Norton equivalent networks shown in
Figure 33.90 may be converted to Thévenin equivalent

circuits. Open-circuit voltage across CD is

(7.5 × 10−3)(0.8 × 103) = 6 V

and the impedance ‘looking in’ at CD is 0.8 k�. Open-
circuit voltage across EF is (1 × 10−3)(2 × 102) = 2V
and the impedance ‘looking in’ at EF is 2 k�. Thus
Figure 33.90 converts to Figure 33.91.

Figure 33.91

Combining the two Thévenin circuits gives e.m.f.
E = 6 − 2 = 4V, and impedance z = (0.8 + 2) = 2.8 k�.
Thus the Thévenin equivalent circuit for terminals AB of
Figure 33.88 is as shown in Figure 33.92.

Figure 33.92

If an impedance (200 − j4000)� is connected across
terminals AB, then the current I flowing is given by

I = 4

2800 + (200 − j4000)
= 4

5000∠−53.13◦

= 0.80∠53.13◦ mA
i.e. the current in the capacitive branch is 0.80 mA

Problem 17. (a) Determine an equivalent Thévenin
circuit for terminals AB of the network shown in Fig-
ure 33.93. (b) Calculate the power dissipated in a
(600 − j800)� impedance connected between A and
B of Figure 33.93.

Figure 33.93
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(a) Converting the Thévenin circuit to a Norton network
gives

ISC = 5

j1000
= −j5 mA or 5∠−90◦ mA and

z = j1 k�

Thus Figure 33.93 converts to that shown in Fig-
ure 33.94. The two Norton equivalent networks may
be combined, giving

ISC = 4 + 5∠−90◦

= (4 − j5) mA or 6.403∠−51.34◦ mA

and z = (2)( j1)

(2 + j1)
= (0.4 + j0.8) k� or

0.894∠63.43◦ k�

Figure 33.94

This results in the equivalent network shown in Fig-
ure 33.95. Converting to an equivalent Thévenin
circuit gives open circuit e.m.f. across AB,

E =
(6.403 × 10−3∠−51.34◦)(0.894 × 103∠63.43◦)

= 5.724∠12.09◦ V

Figure 33.95

and

impedance z = 0.894∠63.43◦ k� or (400 + j800)�

Thus the Thévenin equivalent circuit is as shown in
Figure 33.96.

(b) When a (600 − j800)� impedance is connected across
AB, the current I flowing is given by

I = 5.724∠12.09◦

(400 + j800) + (600 − j800)

= 5.724∠12.09◦ mA

Figure 33.96

Hence the power P dissipated in the (600 − j800) �
impedance is given by

P = I2R = (5.724 × 10−3)2(600) = 19.7 mW

Now try the following exercise.

Exercise 116 Further problems on Thévenin and
Norton equivalent networks

1. Convert the circuits shown in Figure 33.97 to
Norton equivalent networks.
[(a) ISC = 2.5A, z = 2 � (b) ISC = 2∠30◦, z = 5 �]

Figure 33.97

2. Convert the networks shown in Figure 33.98 to
Thévenin equivalent circuits.

[(a) E = 20V, z = 4 �; (b) E = 12∠50◦ V,
z = 3 �]

Figure 33.98
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3. (a) Convert the network to the left of terminals
AB in Figure 33.99 to an equivalent Thévenin
circuit by initially converting to a Norton equiv-
alent network.

Figure 33.99

(b) Determine the current flowing in the
(2.8 − j3) � impedance connected between A
and B in Figure 33.99.

[(a) E = 18V, z = 1.2 � (b) 3.6A]

4. Determine, by successive conversions between
Thévenin and Norton equivalent networks, a
Thévenin equivalent circuit for terminalsAB of Fig-
ure 33.100. Hence determine the current flowing in
a (2 + j4) � impedance connected betweenA and B.

[E = 9 1
3 V, z = 1 �; 1.87∠−53.13◦ A]

Figure 33.100

5. Derive an equivalent Thévenin circuit for terminals
AB of the network shown in Figure 33.101. Hence
determine the p.d. across AB when a (3 + j4) k�
impedance is connected between these terminals.

[E = 4.82∠−41.63◦ V, z = (0.8 + j0.4) k�;
4.15V]

Figure 33.101

6. For the network shown in Figure 33.102, derive
(a) the Thévenin equivalent circuit, and (b) the
Norton equivalent network. (c) A 6 � resistance is
connected between A and B. Determine the cur-
rent flowing in the 6 � resistance by using both the
Thévenin and Norton equivalent circuits.

[(a) E = 6.71∠−26.57◦ V, z = (4.50 + j3.75) �
(b) ISC = 1.15∠−66.38◦, z = (4.50 + j3.75) �

(c) 0.60A]

Figure 33.102
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Revision test 10

This revision test covers the material contained in
chapters 30 to 33.

The marks for each question are shown in brackets at
the end of each question.

For the network shown in Figure RT10.1, determine the
current flowing in each branch using:

(a) Kirchhoff’s laws (10)
(b) Mesh-current analysis (12)
(c) Nodal analysis (12)
(d) the superposition theorem (22)
(e) Thévenin’s theorem (14)
(f) Norton’s theorem (10)

Demonstrate that each method gives the same value for
each of the branch currents.

10∠0° V

20∠0° V

(3−j4) Ω

(3+j4) Ω

5 Ω

Figure RT10.1
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34 Delta-star and star-delta transformations

At the end of this chapter you should be able to:
• recognize delta (or π) and star (or T )

connections
• apply the delta-star and star-delta transformations

in appropriate a.c. and d.c. networks

34.1 Introduction

By using Kirchhoff’s laws, mesh-current analysis, nodal
analysis or the superposition theorem, currents and volt-
ages in many networks can be determined as shown in
Chapters 30 to 32. Thévenin’s and Norton’s theorems,
introduced in Chapter 33, provide an alternative method
of solving networks and often with considerably reduced
numerical calculations. Also, these latter theorems are
especially useful when only the current in a particular
branch of a complicated network is required. Delta-star
and star-delta transformations may be applied in certain
types of circuit to simplify them before application of
circuit theorems.

34.2 Delta and star connections

The network shown in Figure 34.1(a) consisting of three
impedances ZA, ZB and ZC is said to be π-connected.
This network can be redrawn as shown in Figure 34.1(b),
where the arrangement is referred to as delta-connected
or mesh-connected.

The network shown in Figure 34.2(a), consisting
of three impedances, Z1, Z2 and Z3, is said to be
T-connected. This network can be redrawn as shown in
Figure 34.2(b), where the arrangement is referred to as
star-connected.

34.3 Delta-star transformation

It is possible to replace the delta connection shown in Fig-
ure 34.3(a) by an equivalent star connection as shown in
Figure 34.3(b) such that the impedance measured between
any pair of terminals (1–2, 2–3 or 3–1) is the same in star
as in delta. The equivalent star network will consume the
same power and operate at the same power factor as the
original delta network. A delta-star transformation may
alternatively be termed ‘π to T transformation’.

Figure 34.1 (a) π-connected network, (b) Delta-
connected network

Figure 34.2 (a) T-connected network, (b) Star-
connected network
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Figure 34.3

Considering terminals 1 and 2 of Figure 34.3(a), the
equivalent impedance is given by the impedance ZB in
parallel with the series combination of ZA and ZC ,

i.e.
ZB(ZA + ZC)

ZB + ZA + ZC

In Figure 34.3(b), the equivalent impedance between
terminals 1 and 2 is Z1 and Z2 in series, i.e. Z1 + Z2
Thus,

Delta Star

Z12 = ZB(ZA + ZC)

ZB + ZA + ZC
= Z1 + Z2 (34.1)

By similar reasoning,

Z23 = ZC(ZA + ZB)

ZC + ZA + ZB
= Z2 + Z3 (34.2)

and

Z31 = ZA(ZB + ZC)

ZA + ZB + ZC
= Z3 + Z1 (34.3)

Hence we have three simultaneous equations to be solved
for Z1, Z2 and Z3.
Equation (34.1) – equation (34.2) gives:

ZAZB − ZAZC

ZA + ZB + ZC
= Z1 − Z3 (34.4)

Equation (34.3) + equation (34.4) gives:

2ZAZB

ZA + ZB + ZC
= 2Z1

from which Z1 = ZAZB

ZA + ZB + ZC

Similarly, equation (34.2) – equation (34.3) gives:

ZBZC − ZAZB

ZA + ZB + ZC
= Z2 − Z1 (34.5)

Equation (34.1) + equation (34.5) gives:

2ZBZC

ZA + ZB + ZC
= 2Z2

from which Z2 = ZBZC

ZA + ZB + ZC

Finally, equation (34.3) – equation (34.1) gives:

ZAZC − ZBZC

ZA + ZB + ZC
= Z3 − Z2 (34.6)

Equation (34.2) + equation (34.6) gives:

2ZAZC

ZA + ZB + ZC
= 2Z3

from which Z3 = ZAZC

ZA + ZB + ZC

Summarizing, the star section shown in Figure 34.3(b)
is equivalent to the delta section shown in
Figure 34.3(a) when

Z1 = ZAZB

ZA + ZB + ZC
(34.7)

Z2 = ZBZC

ZA + ZB + ZC
(34.8)

and Z3 = ZAZC

ZA + ZB + ZC
(34.9)

It is noted that impedance Z1 is given by the prod-
uct of the two impedances in delta joined to terminal
1 (i.e. ZA and ZB), divided by the sum of the three
impedances; impedance Z2 is given by the product of
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the two impedances in delta joined to terminal 2 (i.e. ZB
and ZC), divided by the sum of the three impedances;
and impedance Z3 is given by the product of the two
impedances in delta joined to terminal 3 (i.e. ZA and ZC),
divided by the sum of the three impedances.

Thus, for example, the star equivalent of the resistive
delta network shown in Figure 34.4 is given by

Z1 = (2)(3)

2 + 3 + 5
= 0.6 �

Z2 = (3)(5)

2 + 3 + 5
= 1.5 �

and Z3 = (2)(5)

2 + 3 + 5
= 1.0 �

Figure 34.4

Problem 1. Replace the delta-connected network
shown in Figure 34.5 by an equivalent star connection.

Figure 34.5

Let the equivalent star network be as shown in Fig-
ure 34.6. Then, from equation (34.7),

Z1 = ZAZB

ZA + ZB + ZC

= (20)(10 + j10)

20 + 10 + j10 − j20

= (20)(10 + j10)

(30 − j10)

= (20)(1.414∠45◦)

31.62∠−18.43◦

= 8.944∠63.43◦ � or (4 + j8)�

Figure 34.6

From equation (34.8),

Z2 = ZBZC

ZA + ZB + ZC

= (10 + j10)(−j20)

31.62∠ − 18.43◦

= (1.414∠45◦)(20∠ − 90◦)

31.62∠ − 18.43◦

= 8.944∠−26.57◦� or (8 − j4)�

From equation (34.9),

Z3 = ZAZC

ZA + ZB + ZC

= (20)(−j20)

31.62∠ − 18.43◦

= (400∠−90◦)

31.62∠ − 18.43◦

= 12.650∠−71.57◦� or (4 − j12)�
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Problem 2. For the network shown in Figure 34.7,
determine (a) the equivalent circuit impedance across
terminals AB, (b) supply current I and (c) the power
dissipated in the 10 � resistor.

Figure 34.7

(a) The network of Figure 34.7 is redrawn, as in Figure
34.8, showing more clearly the part of the network
1, 2, 3 forming a delta connection. This may be
transformed into a star connection as shown in
Figure 34.9.

Figure 34.8

Figure 34.9

From equation (34.7),

Z1 = ZAZB

ZA + ZB + ZC
= ( j10)( j15)

j10 + j15 + j25

= ( j10)( j15)

( j50)
= j3�

From equation (34.8),

Z2 = ZBZC

ZA + ZB + ZC
= ( j15))( j25)

j50
= j7.5�

From equation (34.9),

Z3 = ZAZC

ZA + ZB + ZC
= ( j10)( j25)

j50
= j5 �

The equivalent network is shown in Figure 34.10 and
is further simplified in Figure 34.11.

Figure 34.10

Figure 34.11

(10 + j5)� in parallel with −j5 � gives an equivalent
impedance of

(10 + j5)(−j5)

(10 + j5 − j5)
= (2.5 − j5) �

Hence the total circuit equivalent impedance across
terminals AB is given by

ZAB = (2.5 − j5) + j7.5 = (2.5 + j2.5)�
or 3.54∠45◦�

(b) Supply current I = V

ZAB
= 40∠0◦

3.54∠45◦
= 11.3∠− 45◦A

(c) Power P dissipated in the 10 � resistance of Figure
34.7 is given by (I1)2(10), where I1 (see Figure 34.11)
is given by:

I1 =
[ −j5

10 + j5 − j5

]
(11.3∠−45◦)

= 5.65∠−135◦A

Hence power P = (5.65)2(10) = 319 W
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Problem 3. Determine, for the bridge network shown
in Figure 34.12, (a) the value of the single equivalent
resistance that replaces the network between terminals
A and B, (b) the current supplied by the 52V source,
and (c) the current flowing in the 8 � resistance.

Figure 34.12

(a) In Figure 34.12, no resistances are directly in par-
allel or directly in series with each other. However,
ACD and BCD are both delta connections and either
may be converted into an equivalent star connec-
tion. The delta network BCD is redrawn in Figure
34.13(a) and is transformed into an equivalent star
connection as shown in Figure 34.13(b), where

Figure 34.13

Z1 = (8)(16)

8 + 16 + 40
= 2� (from equation (34.7))

Z2 = (16)(40)

8 + 16 + 40
= 10� (from equation (34.8))

Z3 = (8)(40)

8 + 16 + 40
= 5� (from equation (34.9))

The network of Figure 34.12 may thus be redrawn
as shown in Figure 34.14. The 4 � and 2 � resis-
tances are in series with each other, as are the 1 �
and 5 � resistors. Hence the equivalent network
is as shown in Figure 34.15. The total equivalent
resistance across terminals A and B is given by

RAB = (6)(6)

(6) + (6)
+ 10 = 13 �

Figure 34.14

Figure 34.15

(b) Current supplied by the 52V source, i.e. current I
in Figure 34.15, is given by

I = V

ZAB
= 52

13
= 4A

(c) From Figure 34.15,
current I1 = [6/(6 + 6)](I) =2A, and
current I2 = 2A also.
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From Figure 34.14, p.d. acrossAC, VAC = (I1)(4) =
8V and p.d. across AD, VAD = (I2)(1) = 2V. Hence
p.d. between C and D (i.e. p.d. across the 8 �
resistance of Figure 34.12) is given by (8 − 2) = 6V.

Thus the current in the 8� resistance is given by
VCD/8 = 6/8 = 0.75A

Problem 4. Figure 34.16 shows an Anderson bridge
used to measure, with high accuracy, inductance LX
and series resistance RX

Figure 34.16

(a) Transform the delta ABD into its equivalent
star connection and hence determine the balance
equations for RX and LX

(b) If R2 = R3 = 1 k � , R4 = 500 �, R5 = 200 � and
C = 2 µF, determine the values of RX and LX at
balance.

(a) The delta ABD is redrawn separately in Figure
34.17, together with its equivalent star connection
comprising impedances Z1, Z2 and Z3.
From equation (34.7),

Z1 = (R5)(−jXC)

R5 − jXC + R3
= −jR5XC

(R3 + R5) − jXC

From equation (34.8),

Z2 = (−jXC)(R3)

R5 − jXC + R3
= −jR3XC

(R3 + R5) − jXC

From equation (34.9),

Z3 = R5R3

(R3 + R5) − jXC

The network of Figure 34.16 is redrawn with the
star replacing the delta as shown in Figure 34.18,
and further simplified in Figure 34.19. (Note that

Figure 34.17

Figure 34.18

Figure 34.19

impedance Z1 does not affect the balance of the
bridge since it is in series with the detector.)
At balance,

(RX + jXLX )(Z2) = (R2)(R4 + Z3)

from Chapter 27,
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from which,

(RX + jXLX ) = R2

Z2
(R4 + Z3) = R2R4

Z2
+ R2Z3

Z2

= R2R4

−jR3XC/((R3 + R5) − jXC)

+R2(R5R3/((R3 + R5) − jXC))

−jR3XC/((R3 + R5) − jXC)

= R2R4((R3 + R5) − jXC)

−jR3XC
+ R2R5R3

−jR3XC

= jR2R4((R3 + R5) − jXC)

R3XC
+ jR2R5

XC

i.e. (RX + jXLX ) = jR2R4(R3 + R5)

R3XC
+ R2R4XC

R3XC

+ jR2R5

XC

Equating the real parts gives:

RX = R2R4

R3

Equating the imaginary parts gives:

XLX = R2R4(R3 + R5)

R3XC
+ R2R5

XC

i.e. ωLX = R2R4R3

R3(1/ωC)
+ R2R4R5

R3(1/ωC)
+ R2R5

(1/ωC)

= ωCR2R4 + ωCR2R4R5

R3
+ ωCR2R5

Hence LX = R2C
(

R4 + R4R5

R3
+ R5

)

(b) When R2 = R3 = 1 k �, R4 = 500 �, R5 = 200 �
and C = 2 µF, then, at balance

RX = R2R4

R3
= (1000)(500)

(1000)
= 500 �

and

LX = R2C

(
R4 + R4R5

R3
+ R5

)

= (1000)(2 × 10−6)

[
500 + (500)(200)

(1000)
+ 200

]

= 1.60 H

Problem 5. For the network shown in Figure 34.20,
determine (a) the current flowing in the (0 + j10)�
impedance, and (b) the power dissipated in the
(20 + j0)� impedance.

Figure 34.20

(a) The network may initially be simplified by trans-
forming the delta PQR to its equivalent star con-
nection as represented by impedances Z1, Z2 and
Z3 in Figure 34.21. From equation (34.7),

Z1 = (15 + j10)(25 − j5)

(15 + j10) + (25 − j5) + (20 − j30)

= (15 + j10)(25 − j5)

(60 − j25)

= (18.03∠33.69◦)(25.50∠−11.31◦)

65∠−22.62◦

= 7.07∠45◦� or (5 + j5)�

Figure 34.21
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From equation (34.8),

Z2 = (15 + j10)(20 − j30)

(65∠ − 22.62◦)

= (18.03∠33.69◦)(36.06∠−56.31◦)

65∠−22.62◦

= 10.0∠0◦ or (10 + j0)�

From equation (34.9),

Z3 = (25 − j5)(20 − j30)

(65∠ − 22.62◦)

= (25.50∠ − 11.31◦)(36.06∠−56.31◦)

65∠ − 22.62◦

= 14.15∠ − 45◦� or (10 − j10)�

The network is shown redrawn in Figure 34.22 and
further simplified in Figure 34.23, from which,

Figure 34.22

Figure 34.23

current I1 = 120∠0◦

7.5 + ((10)(30)/(10 + 30))

= 120∠0◦

15
= 8 A

current I2 =
(

10

10 + 30

)
(8) = 2 A

current I3 =
(

30

10 + 30

)
(8) = 6 A

The current flowing in the (0 + j10)� impedance
of Figure 34.20 is the current I3 shown in Figure
34.23, i.e. 6A

(b) The power P dissipated in the (20 + j0)�
impedance of Figure 34.20 is given by

P = I2
2 (20) = (2)2(20) = 80 W

Now try the following exercise.

Exercise 117 Further problems on delta-star
transformations

1. Transform the delta connected networks shown
in Figure 34.24 to their equivalent star-connected
networks.

[(a) Z1 = 0.4 �, Z2 = 2 �, Z3 = 0.5 �
(b) Z1=−j100 �, Z2 = j100 �, Z3 = 100 �]

Figure 34.24

2. Transform the π network shown in Figure 34.25 to
its equivalent star-connected network.

[Z1 = 5.12∠78.35◦ �, Z2 = 6.82∠−26.65◦ �,
Z3 = 10.23∠−11.65◦ �]

Figure 34.25

3. For the network shown in Figure 34.26 determine
(a) current I , and (b) the power dissipated in the
10 � resistance.

[(a) 7.32 ∠ 24.06◦ A (b) 668 W]
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Figure 34.26

4. A delta-connected network contains three
24∠60◦� impedances. Determine the impedances
of the equivalent star-connected network.

[Each impedance = 8∠60◦ �]

5. For the a.c. bridge network shown in Figure 34.27,
transform the delta-connected network ABC into
an equivalent star, and hence determine the current
flowing in the capacitor. [131 mA]

Figure 34.27

6. For the network shown in Figure 34.28 transform
the delta-connected network ABC to an equivalent
star-connected network, convert the 35A, 2 � Nor-
ton circuit to an equivalent Thévenin circuit and
hence determine the p.d. across the 12.5 � resistor.

[31.25V]

Figure 34.28

7. Transform the delta-connected network ABC
shown in Figure 34.29 and hence determine the
magnitude of the current flowing in the 20 �
resistance. [4.47A]

Figure 34.29
8. For the network shown in Figure 34.30 determine

(a) the current supplied by the 80 ∠ 0◦V source, and
(b) the power dissipated in the (2.00 − j0.916)�
impedance. [(a) 9.73A (b) 98.6 W]

Figure 34.30

34.4 Star-delta transformation

It is possible to replace the star section shown in Figure
34.31(a) by an equivalent delta section as shown in Fig-
ure 34.31(b). Such a transformation is also known as a ‘T
to π transformation’.

From equations (34.7), (34.8) and (34.9),

Z1Z2 + Z2Z3 + Z3Z1 = ZAZ2
BZC + ZAZBZ2

C + Z2
AZBZC

(ZA + ZB + ZC)2

= ZAZBZC(ZB + ZC + ZA)

(ZA + ZB + ZC)2

= ZAZBZC

(ZA + ZB + ZC)
(34.10)

i.e. Z1Z2 + Z2Z3 + Z3Z1 = ZA

(
ZBZC

ZA + ZB + ZC

)

= ZA(Z2)

from equation (34.8)
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Figure 34.31

Hence ZA = Z1Z2 + Z2Z3 + Z3Z1

Z2

From equation (34.10),

Z1Z2 + Z2Z3 + Z3Z1 = ZB

(
ZAZC

ZA + ZB + ZC

)
= ZB(Z3)

from equation (34.9)

Hence ZB = Z1Z2 + Z2Z3 + Z3Z1

Z3

Also from equation (34.10),

Z1Z2 + Z2Z3 + Z3Z1 = ZC

(
ZAZB

ZA + ZB + ZC

)
= ZC(Z1)

from equation (34.7)

Hence ZC = Z1Z2 + Z2Z3 + Z3Z1

Z1

Summarizing, the delta section shown in Figure 34.31(b)
is equivalent to the star section shown in Figure 34.31(a)
when

ZA = Z1Z2 + Z2Z3 + Z3Z1

Z2
(34.11)

ZB = Z1Z2 + Z2Z3 + Z3Z1

Z3
(34.12)

and ZC = Z1Z2 + Z2Z3 + Z3Z1

Z1
(34.13)

It is noted that the numerator in each expression is the
sum of the products of the star impedances taken in pairs.
The denominator of the expression for ZA, which is con-
nected between terminals 1 and 3 of Figure 34.31(b), is
Z2, which is connected to terminal 2 of Figure 34.31(a).
Similarly, the denominator of the expression for ZB
which is connected between terminals 1 and 2 of Fig-
ure 34.31(b), is Z3, which is connected to terminal 3 of
Figure 34.31(a). Also the denominator of the expression
for Zc which is connected between terminals 2 and 3 of
Figure 34.31(b), is Z1, which is connected to terminal 1 of
Figure 34.31(a).

Thus, for example, the delta equivalent of the resistive
star circuit shown in Figure 34.32 is given by:

ZA = (0.6)(1.5) + (1.5)(1.0) + (1.0)(0.6)

1.5
= 3.0

1.5
= 2 �,

ZB = 3.0

1.0
= 3 �, ZC = 3.0

0.6
= 5 �

Figure 34.32



Ch34-H8139.tex 29/3/2007 14: 27 page 433

Delta-star and star-delta transformations 433

PART

3

Problem 6. Determine the delta-connected equiva-
lent network for the star-connected impedances shown
in Figure 34.33

Figure 34.33

Figure 34.34(a) shows the network of Figure 34.33
redrawn and Figure 34.34(b) shows the equivalent delta
connection containing impedances ZA, ZB and Zc.
From equation (34.11),

ZA = Z1Z2 + Z2Z3 + Z3Z1

Z2

= (10)(20) + (20)( j5) + ( j5)(10)

20

= 200 + j150

20
= (10 + j7.5) �

From equation (34.12),

ZB = (200 + j150)

Z3
= (200 + j150)

j5

= −j5(200 + j150)

25
= (30 − j40) �

Figure 34.34

From equation (34.13),

ZC = (200 + j150)

Z1
= (200 + j150)

10
= (20 + j15) �

Problem 7. Three impedances, Z1 = 100∠0◦�,
Z2 = 63.25∠18.43◦ � and Z3 = 100∠−90◦� are con-
nected in star. Convert the star to an equivalent delta
connection.

The star-connected network and the equivalent delta net-
work comprising impedances ZA, ZB and ZC are shown in
Figure 34.35. From equation (34.11),

ZA = Z1Z2 + Z2Z3 + Z3Z1

Z2

=
(100∠0◦)(63.25∠18.43◦) + (63.25∠18.43◦)(100∠−90◦)

+(100∠−90◦)(100∠0◦)

63.25∠18.43◦

= 6325∠18.43◦ + 6325∠−71.57◦ + 10000∠−90◦

63.25∠18.43◦

= 6000 + j2000 + 2000 − j6000 − j10000

63.25∠18.43◦

= 8000 − j14 000

63.25∠18.43◦ = 16 124.5∠−60.26◦

63.25∠18.43◦

= 254.93∠−78.69◦� or (50 − j250)�

Figure 34.35

From equation (34.12),

ZB = Z1Z2 + Z2Z3 + Z3Z1

Z3

= 16 124.5∠−60.26◦

100∠−90◦
= 161.25∠29.74◦ � or (140 + j80)�
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From equation (34.13),

ZC = Z1Z2 + Z2Z3 + Z3Z1

Z1
= 16 124.5∠−60.26◦

100∠0◦

= 161.25∠−60.26◦ � or (80 − j140)�

Now try the following exercise.

Exercise 118 Further problems on star-delta
transformations

1. Determine the delta-connected equivalent net-
works for the star-connected impedances shown in
Figure 34.36

[(a) Z12 = 18 �, Z23 = 9 �, Z31 = 13.5 �
(b) Z12 = (10 + j0) �, Z23 = (5 + j5) �,

Z31 = (0 − j10)�]

Figure 34.36

2. Change the T -connected network shown in Figure
34.37 to its equivalent delta-connected network.

[Z12 = 35.93∠40.50◦ �,
Z23 = 53.89∠−19.50◦ �,
Z31 = 26.95∠−49.50◦ �]

Figure 34.37

3. Three impedances, each of (2 + j3)�, are con-
nected in star. Determine the impedances of the
equivalent delta-connected network.

[Each impedance = (6 + j9)�]

4. (a) Derive the star-connected network of three
impedances equivalent to the network shown
in Figure 34.38.

(b) Obtain the delta-connected equivalent network
for Figure 34.33.

[(a) 5 �, 6 �, 3 � (b) 21 �, 12.6 �, 10.5 �]

Figure 34.38
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35 Maximum power transfer theorems and
impedance matching

At the end of this chapter you should be able to:
• appreciate typical applications of the maximum

power transfer theorem
• appreciate the conditions for maximum power trans-

fer in a.c. networks
• apply the maximum power transfer theorems to a.c.

networks

• appreciate applications and advantages of impedance
matching in a.c. networks

• perform calculations involving matching transform-
ers for impedance matching in a.c. networks

35.1 Maximum power transfer theorems

As mentioned in Section 13.9 on page 152, the maximum
power transfer theorem has applications in stereo amplifier
design, where it is necessary to maximise power delivered
to speakers, and in electric vehicle design, where it is
necessary to maximise power delivered to drive a motor.

A network that contains linear impedances and one
or more voltage or current sources can be reduced to a
Thévenin equivalent circuit as shown in Chapter 33. When
a load is connected to the terminals of this equivalent
circuit, power is transferred from the source to the load.

A Thévenin equivalent circuit is shown in Figure 35.1
with source internal impedance, z = (r + jx)� and com-
plex load Z = (R + jX)�.

Figure 35.1

The maximum power transferred from the source to the
load depends on the following four conditions.

Condition 1. Let the load consist of a pure variable resis-
tance R (i.e. let X = 0). Then current I in the load is
given by:

I = E

(r + R) + jx

and the magnitude of current, |I| = E√
[(r + R)2] + x2]

The active power P delivered to load R is given by

P = |I|2R = E2R

(r + R)2 + x2

To determine the value of R for maximum power trans-
ferred to the load, P is differentiated with respect to R
and then equated to zero (this being the normal procedure
for finding maximum or minimum values using calculus).
Using the quotient rule of differentiation,

dP

dR
= E2

{
[(r + R)2 + x2](1) − (R)(2)(r + R)

[(r + R)2 + x2]2

}

= 0 for a maximum (or minimum) value.

For
dP

dR
to be zero, the numerator of the fraction must

be zero.

Hence (r + R)2 + x2 − 2R(r + R) = 0

i.e. r2 + 2rR + R2 + x2 − 2Rr − 2R2 = 0

from which, r2 + x2 = R2 (35.1)

or R = √
(r2 + x2) = |z|

Thus, with a variable purely resistive load, the maximum
power is delivered to the load if the load resistance R is
made equal to the magnitude of the source impedance.

Condition 2. Let both the load and the source impedance
be purely resistive (i.e. let x = X = 0). From equation



Ch35-H8139.tex 30/3/2007 18: 2 page 436

436 Electrical Circuit Theory and Technology

(35.1) it may be seen that the maximum power is trans-

ferred when R = r (this is, in fact, the d.c. condition

explained in Chapter 13, page 152)

Condition 3. Let the load Z have both variable resistance
R and variable reactance X. From Figure 35.1,

current I = E

(r + R) + j(x + X)
and

|I| = E√
[(r + R)2 + (x + x)2]

The active power P delivered to the load is given by
P = |I|2R (since power can only be dissipated in a resist-
ance) i.e.

P = E2R

(r + R)2 + (x + x)2

If X is adjusted such that X = −x then the value of power
is a maximum.

If X = −x then P = E2R

(r + R)2

dP

dR
= E2

{
(r + R)2(1) − (R)(2)(r + R)

(r + R)4

}

= 0 for a maximum value

Hence (r + R)2 − 2R(r + R) = 0

i.e. r2 + 2rR + R2 − 2Rr − 2R2 = 0

from which, r2 − R2 = 0 and R = r

Thus with the load impedance Z consisting of variable
resistance R and variable reactance X, maximum power

is delivered to the load when X = −x and R = r i.e.

when R + jX = r − jx. Hence maximum power is deliv-

ered to the load when the load impedance is the complex
conjugate of the source impedance.

Condition 4. Let the load impedance Z have variable
resistance R and fixed reactance X. From Figure 35.1,
the magnitude of current,

|I| = E√
[(r + R)2 + (x + X)2]

and the power dissipated in the load,

P = E2R

(r + R)2 + (x + X)2

dP

dR
= E2

{
[(r + R)2 + (x + X)2(1) − (R)(2)(r + R)]

[(r + R)2 + (x + X)2]2

}

= 0 for a maximum value

Hence (r + R)2 + (x + X)2 − 2R(r + R) = 0

r2 + 2rR + R2 + (x + X)2 − 2Rr − 2R2 = 0

from which, R2 = r2 + (x + X)2 and

R = √
[r2 + (x + X)2)]

Summary

With reference to Figure 35.1:

1. When the load is purely resistive (i.e. X = 0) and
adjustable, maximum power transfer is achieved when

R = |z| = √
(r2 + x2)

2. When both the load and the source impedance are
purely resistive (i.e. X = x = 0), maximum power

transfer is achieved when R = r

3. When the load resistance R and reactance X are both
independently adjustable, maximum power transfer is
achieved when

X = −x and R = r

4. When the load resistance R is adjustable with reactance
X fixed, maximum power transfer is achieved when

R = √
[r2 + (x + X )2]

The maximum power transfer theorems are primarily
important where a small source of power is involved —
such as, for example, the output from a telephone system
(see Section 35.2)

Problem 1. For the circuit shown in Figure 35.2
the load impedance Z is a pure resistance. Deter-
mine (a) the value of R for maximum power to
be transferred from the source to the load, and (b)
the value of the maximum power delivered to R.

Figure 35.2
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(a) From condition 1, maximum power transfer occurs
when R = |z|, i.e. when

R = |15 + j20| = √
(152 + 202) = 25 �

(b) Current I flowing in the load is given by
I = E/ZT , where the total circuit impedance
ZT = z + R = 15 + j20 + 25

= (40 + j20) � or 44.72 ∠26.57◦�

Hence I = 120∠0◦

44.72∠26.57◦ = 2.683∠–26.57◦ A

Thus maximum power delivered, P = I2R
= (2.683)2(25)

= 180 W

Problem 2. If the load impedance Z in Figure 35.2 of
Problem 1 consists of variable resistance R and variable
reactance X, determine (a) the value of Z that results
in maximum power transfer, and (b) the value of the
maximum power.

(a) From condition 3, maximum power transfer occurs
when X = −x and R = r.
Thus if z = r + jx = (15 + j20) � then

Z = (15 − j20)� or 25∠−53.13◦�

(b) Total circuit impedance at maximum power transfer
condition, ZT = z + Z , i.e.

ZT = (15 + j20) + (15 − j20) = 30�

Hence current in load, I = E

ZT
= 120∠0◦

30
= 4∠0◦ A

and maximum power transfer in the load,

P = I2R = (4)2 (15) = 240 W

Problem 3. For the network shown in Figure 35.3,
determine (a) the value of the load resistance
R required for maximum power transfer, and
(b) the value of the maximum power transferred.

Figure 35.3

(a) This problem is an example of condition 1, where
maximum power transfer is achieved when R = |z|.
Source impedance z is composed of a 100 � resistance
in parallel with a 1 µF capacitor.

Capacitive reactance, XC = 1

2πfC

= 1

2π(1000)(1 × 10−6)
= 159.15 �

Hence source impedance,

z = (100)(−j159.15)

(100 − j159.15)
= 159.15∠−90◦

187.96∠ − 57.86◦

= 84.67∠−32.14◦ � or (71.69 − j45.04)�

Thus the value of load resistance for maximum power
transfer is 84.67 � (i.e. |z|)

(b) With z = (71.69 − j45.04)� and R = 84.67 � for max-
imum power transfer, the total circuit impedance,

ZT = 71.69 + 84.67 − j45.04

= (156.36 − j45.04)� or 162.72∠−16.07◦ �

Current flowing in the load, I = V

ZT

= 200∠0◦

162.72∠ − 16.07◦

= 1.23∠16.07◦ A

Thus the maximum power transferred,

P = I2R = (1.23)2(84.67) = 128 W

Problem 4. In the network shown in Figure 35.4 the
load consists of a fixed capacitive reactance of 7 �
and a variable resistance R. Determine (a) the value
of R for which the power transferred to the load is a
maximum, and (b) the value of the maximum power.

Figure 35.4
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(a) From condition (4), maximum power transfer is
achieved when

R = √
[r2 + (x + X)2] = √

[42 + (10 − 7)2]

= √
(42 + 32) = 5 �

(b) Current I = 60∠0◦

(4 + j10) + (5 − j7)
= 60∠0◦

(9 + j3)

= 60∠0◦

9.487∠18.43◦ = 6.324∠−18.43◦ A

Thus the maximum power transferred,

P = I2R = (6.324)2(5) = 200 W

Problem 5. Determine the value of the load resis-
tance R shown in Figure 35.5 that gives maximum
power dissipation and calculate the value of this power.

Figure 35.5

Using the procedure of Thévenin’s theorem (see
page 400):

(i) R is removed from the network as shown in
Figure 35.6

Figure 35.6

(ii) P.d. across AB, E = (15/(15 + 5))(20) = 15V
(iii) Impedance ‘looking-in’at terminalsAB with the 20V

source removed is given by r = (5 × 15)/(5 + 15)
= 3.75 �

(iv) The equivalent Thévenin circuit supplying terminals
AB is shown in Figure 35.7. From condition (2), for
maximum power transfer, R = r, i.e. R = 3.75 �

Current I = E

R + r
= 15

3.75 + 3.75
= 2 A

Figure 35.7

Thus the maximum power dissipated in the load,

P = I2R = (2)2(3.75) = 15 W

Problem 6. Determine, for the network shown in
Figure 35.8, (a) the values of R and X that will result
in maximum power being transferred across termin-
als AB, and (b) the value of the maximum power.

Figure 35.8

(a) Using the procedure for Thévenin’s theorem:

(i) Resistance R and reactance X are removed from
the network as shown in Figure 35.9

Figure 35.9

(ii) P.d. across AB,

E =
(

5 + j10

5 + j10 + 5

)
(100∠30◦)

= (11.18∠63.43◦)(100∠30◦)

14.14∠45◦
= 79.07∠48.43◦ V
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(iii) With the 100∠30◦ V source removed the
impedance, z, ‘looking in’ at terminals AB is
given by:

z = (5)(5 + j10)

(5 + 5 + j10)
= (5)(11.18∠63.43◦)

(14.14∠45◦)

= 3.953∠18.43◦� or (3.75 + j1.25)�

(iv) The equivalent Thévenin circuit is shown in
Figure 35.10. From condition 3, maximum
power transfer is achieved when X = −x and
R = r, i.e. in this case when X = −1.25 � and
R = 3.75 �

Figure 35.10

(b) Current I = E

z + Z
= 79.07∠48.43◦

(3.75 + j1.25) + (3.75 − j1.25)

= 79.07∠48.43◦

7.5

= 10.543∠48.43◦ A

Thus the maximum power transferred,

P = I2R = (10.543)2(3.75) = 417 W

Now try the following exercise.

Exercise 119 Further problems on maximum
power transfer theorems

1. For the circuit shown in Figure 35.11 determine
the value of the source resistance r if the max-
imum power is to be dissipated in the 15 � load.
Determine the value of this maximum power.

[r = 9 �, P = 208.4 W]

Figure 35.11

2. In the circuit shown in Figure 35.12 the load
impedance ZL is a pure resistance R. Determine
(a) the value of R for maximum power to be trans-
ferred from the source to the load, and (b) the value
of the maximum power delivered to R.

[(a) 11.18 � (b) 151.1 W]

Figure 35.12

3. If the load impedance ZL in Figure 35.12 of problem
2 consists of a variable resistance R and variable
reactance X, determine (a) the value of ZL which
results in maximum power transfer, and (b) the
value of the maximum power.

[(a) (10 + j5) � (b) 160 W]

4. For the network shown in Figure 35.13 determine
(a) the value of the load resistance RL required for
maximum power transfer, and (b) the value of the
maximum power. [(a) 26.83 � (b) 35.4 W]

Figure 35.13

5. Find the value of the load resistance RL shown in
Figure 35.14 that gives maximum power dissipa-
tion, and calculate the value of this power.

[RL = 2.1 �, P = 23.3 W]

Figure 35.14
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6. For the circuit shown in Figure 35.15 determine
(a) the value of load resistance RL which results in
maximum power transfer, and (b) the value of the
maximum power. [(a) 16 � (b) 48 W]

Figure 35.15

7. Determine, for the network shown in Figure 35.16,
(a) the values of R and X which result in maximum
power being transferred across terminals AB, and
(b) the value of the maximum power.

[(a) R = 1.706 �, X = 0.177 � (b) 269 W]

Figure 35.16

8. A source of 120∠0◦ V and impedance (5 + j3)�
supplies a load consisting of a variable resistor R
in series with a fixed capacitive reactance of 8 �.
Determine (a) the value of R to give maximum
power transfer, and (b) the value of the maximum
power. [(a) 7.07 � (b) 596.5 W]

9. If the load ZL between terminals A and B of
Figure 35.17 is variable in both resistance and reac-
tance determine the value of ZL such that it will
receive maximum power. Calculate the value of the
maximum power.

[R = 3.47 �, X = −0.93 �, 13.6 W]

Figure 35.17

10. For the circuit of Figure 35.18, determine the value
of load impedance ZL for maximum load power if
(a) ZL comprises a variable resistance R and vari-
able reactance X, and (b) ZL is a pure resistance R.
Determine the values of load power in each case

[(a) R = 0.80 �, X = −1.40 �, P = 225 W
(b) R = 1.61 �, P = 149.2 W]

Figure 35.18

35.2 Impedance matching

It is seen from Section 35.1 that when it is nec-
essary to obtain the maximum possible amount of
power from a source, it is advantageous if the cir-
cuit components can be adjusted to give equality of
impedances. This adjustment is called ‘impedance
matching’ and is an important consideration in electronic
and communications devices which normally involve
small amounts of power. Examples where matching
is important include coupling an aerial to a trans-
mitter or receiver, or coupling a loudspeaker to an
amplifier. Also, the importance of matching a load to a
source for maximum power transfer is extremely impor-
tant in microwaves, as well as all manner of lower
frequency applications such as electrical generating plants
and solar cells.

The mains power supply is considered as infinitely
large compared with the demand upon it, and under such
conditions it is unnecessary to consider the conditions
for maximum power transfer. With transmission lines
(see Chapter 44), the lines are ‘matched’, ideally, i.e.
terminated in their characteristic impedance.

With d.c. generators, motors or secondary cells, the
internal impedance is usually very small and in such cases,
if an attempt is made to make the load impedance as
small as the source internal impedance, overloading of
the source results.

A method of achieving maximum power transfer
between a source and a load is to adjust the value of the
load impedance to match the source impedance, which
can be done using a ‘matching-transformer’.

A transformer is represented in Figure 35.19 supplying
a load impedance ZL .

Small transformers used in low power networks are
usually regarded as ideal (i.e. losses are negligible), such



Ch35-H8139.tex 30/3/2007 18: 2 page 441

Maximum power transfer theorems and impedance matching 441

PART

3

Figure 35.19 Matching impedance by means of a
transformer

that

V1

V2
= N1

N2
= I2

I1

From Figure 35.19, the primary input impedance |z| is
given by

|z| = V1

I1
= (N1/N2)V2

(N2/N1)I2
=

(
N1

N2

)2 V2

I2

Since the load impedance |ZL| = V2/I2

|z| =
(

N1

N2

)2

|ZL| (35.2)

If the input impedance of Figure 35.19 is purely resistive
(say, r) and the load impedance is purely resistive (say,
RL ) then equation (35.2) becomes

r =
(

N1

N2

)2

RL (35.3)

(This is the case introduced in Section 20.10, page 249).
Thus by varying the value of the transformer turns ratio,
the equivalent input impedance of the transformer can
be ‘matched’ to the impedance of a source to achieve
maximum power transfer.

Problem 7. Determine the optimum value of load
resistance for maximum power transfer if the load is
connected to an amplifier of output resistance 448 �
through a transformer with a turns ratio of 8:1

The equivalent input resistance r of the transformer must
be 448 � for maximum power transfer. From equation
(35.3), r = (N1/N2)2RL , from which, load resistance
RL = r(N2/N1)2 = 448(1/8)2 = 7 �

Problem 8. A generator has an output impedance of
(450 + j60)�. Determine the turns ratio of an ideal
transformer necessary to match the generator to a load
of (40 + j19)� for maximum transfer of power.

Let the output impedance of the generator be z,
where z = (450 + j60)� or 453.98∠7.59◦ �, and the
load impedance be ZL , where ZL = (40 + j19)� or
44.28∠25.41◦ �. From Figure 35.19 and equation (35.2),
z = (N1/N2)2ZL . Hence

transformer turns ratio

(
N1

N2

)
=

√
z

ZL
=

√
453.98

44.28

= √
(10.25) = 3.20

Problem 9. A single-phase, 240V/1920V ideal
transformer is supplied from a 240V source through
a cable of resistance 5 �. If the load across the sec-
ondary winding is 1.60 k� determine (a) the primary
current flowing, and (b) the power dissipated in the
load resistance.

The network is shown in Figure 35.20.

Figure 35.20

(a) Turns ratio,
N1

N2
= V1

V2
= 240

1920
= 1

8
Equivalent input resistance of the transformer,

r =
(

N1

N2

)2

RL =
(

1

8

)2

(1600) = 25 �

Total input resistance, RIN = R1 + r = 5 + 25 = 30 �.
Hence the primary current,
I1 = V1/RIN = 240/30 = 8A

(b) For an ideal transformer,
V1

V2
= I2

I1

from which, I2 = I1

(
V1

V2

)
= (8)

(
240

1920

)
= 1A

Power dissipated in the load resistance,

P = I2
2 RL = (I)2(1600) = 1.6 kW
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Problem 10. An a.c. source of 30∠0◦ V and internal
resistance 20 k� is matched to a load by a 20:1 ideal
transformer. Determine for maximum power transfer
(a) the value of the load resistance, and (b) the power
dissipated in the load.

The network diagram is shown in Figure 35.21.

Figure 35.21

(a) For maximum power transfer, r1 must be equal to
20 k�. From equation (35.3), r1 = (N1/N2)2RL from
which,

load resistance RL = r1

(
N2

N1

)2

= (20 000)

(
1

20

)2

= 50 �
(b) The total input resistance when the source is con-

nected to the matching transformer is (r + r1), i.e.
20 k�+ 20 k�= 40 k�. Primary current,

I1 = V/40 000 = 30/40 000 = 0.75 mA

N1

N2
= I2

I1
from which, I2 = I1

(
N1

N2

)

= (0.75 × 10−3)

(
20

1

)

= 15 mA

Power dissipated in load resistance RL is given by

P = I2
2 RL = (15 × 10−3)2(50)

= 0.01125 W or 11.25 mW

Now try the following exercise.

Exercise 120 Further problems on impedance
matching

1. The output stage of an amplifier has an output resist-
ance of 144 �. Determine the optimum turns ratio
of a transformer that would match a load resistance
of 9 � to the output resistance of the amplifier for
maximum power transfer. [4:1]

2. Find the optimum value of load resistance for max-
imum power transfer if a load is connected to
an amplifier of output resistance 252 � through a
transformer with a turns ratio of 6:1 [7 �]

3. A generator has an output impedance of
(300 + j45)�. Determine the turns ratio of an
ideal transformer necessary to match the generator
to a load of (37 + j19)� for maximum power
transfer. [2.70]

4. A single-phase, 240V/2880V ideal transformer is
supplied from a 240V source through a cable of
resistance 3.5 �. If the load across the secondary
winding is 1.8 k�, determine (a) the primary cur-
rent flowing, and (b) the power dissipated in the
load resistance. [(a) 15A (b) 2.81 kW]

5. An a.c. source of 20∠0◦ V and internal resistance
10.24 k� is matched to a load for maximum power
transfer by a 16:1 ideal transformer. Determine
(a) the value of the load resistance, and (b) the power
dissipated in the load.

[(a) 40 � (b) 9.77 mW]
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Revision test 11

This revision test covers the material in chapters
34 and 35.

The marks for each question are shown in brackets at
the end of each question.

1. Determine the delta-connected equivalent network
for the star-connected impedances shown in Fig-
ure RT11.1 (9)

(3+j4) Ω

(2+j5) Ω

(1+j ) Ω

Figure RT11.1

2. Transform the delta-connection in Figure RT11.2 to
it’s equivalent star connection. Hence determine for
the network shown in Figure RT11.3
(a) the total circuit impedance
(b) the current I
(c) the current in the 20 � resistor
(d) the power dissipated in the 20 � resistor. (17)

−j 40 Ω

−j 20 Ω
−j 20 Ω

Figure RT11.2

−j 40 Ω

−j 20 Ω −j 20 Ω

20 Ωj 15 Ω

I

50∠0° V

Figure RT11.3

3. If the load impedance Z in Figure RT11.4 consists of
variable resistance and variable reactance, find (a) the
value of Z that results in maximum power transfer, and
(b) the value of the maximum power. (6)

100∠0° V
Z

(4+j3) Ω

Figure RT11.4

4. Determine the value of the load resistance R in Fig-
ure RT11.5 that gives maximum power dissipation and
calculate the value of power. (9)

50 V

10 Ω

40 Ω R

Figure RT11.5

5. An a.c. source of 10∠0◦ V and internal resistance 5 k�
is matched to a load for maximum power transfer by
a 5:1 ideal transformer. Determine (a) the value of the
load resistance, and (b) the power dissipated in the
load. (9)
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36 Complex waveforms

At the end of this chapter you should be able to:
• define a complex wave
• recognize periodic functions
• recognize the general equation of a complex

waveform
• use harmonic synthesis to build up a complex wave
• recognize characteristics of waveforms containing

odd, even or odd and even harmonics, with or
without phase change

• determine Fourier series for simple functions

• calculate r.m.s. and mean values, and form factor of
a complex wave

• calculate power associated with complex waves
• perform calculations on single-phase circuits con-

taining harmonics
• define and perform calculations on harmonic

resonance
• list and explain some sources of harmonics

36.1 Introduction

In preceding chapters a.c. supplies have been assumed to
be sinusoidal, this being a form of alternating quantity
commonly encountered in electrical engineering. How-
ever, many supply waveforms are not sinusoidal. For
example, sawtooth generators produce ramp waveforms,
and rectangular waveforms may be produced by multi-
vibrators. A waveform that is not sinusoidal is called a
complex wave. Such a waveform may be shown to be
composed of the sum of a series of sinusoidal waves
having various interrelated periodic times.

A function f (t) is said to be periodic if f (t + T ) = f (t)
for all values of t, where T is the interval between two suc-
cessive repetitions and is called the period of the function
f (t). A sine wave having a period of 2π/ω is a familiar
example of a periodic function.

A typical complex periodic-voltage waveform, shown
in Figure 36.1, has period T seconds and frequency f hertz.
A complex wave such as this can be resolved into the sum
of a number of sinusoidal waveforms, and each of the
sine waves can have a different frequency, amplitude and
phase.

The initial, major sine wave component has a frequency
f equal to the frequency of the complex wave and this fre-
quency is called the fundamental frequency. The other
sine wave components are known as harmonics, these
having frequencies which are integer multiples of fre-
quency f . Hence the second harmonic has a frequency
of 2 f , the third harmonic has a frequency of 3 f , and so
on. Thus if the fundamental (i.e. supply) frequency of a
complex wave is 50 Hz, then the third harmonic frequency
is 150 Hz, the fourth harmonic frequency is 200 Hz, and
so on.

Figure 36.1 Typical complex periodic voltage waveform

36.2 The general equation for a complex
waveform

The instantaneous value of a complex voltage wave v act-
ing in a linear circuit may be represented by the general
equation

v = Vm sin(ωt + �1) + V2m sin(2ωt + �2)

+ · · · + Vnm sin(n ωt + �n)volts (36.1)

Here V1m sin(ωt + �1) represents the fundamental com-
ponent of which V1m is the maximum or peak value,
frequency, f = ω/2π and �1 is the phase angle with respect
to time, t = 0.

Similarly, V2m sin(2ωt + �2) represents the second
harmonic component, and Vnm sin(nωt + �n) represents
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the nth harmonic component, of which Vnm is the peak
value, frequency = nω/2π( = nf ) and �n is the phase
angle.

In the same way, the instantaneous value of a complex
current i may be represented by the general equation

i = I1m sin(ωt + θ1) + I2m sin(2ωt + θ2)

+· · · + Inm sin(n ωt + θn)amperes (36.2)

Where equations (36.1) and (36.2) refer to the voltage
across and the current flowing through a given linear cir-
cuit, the phase angle between the fundamental voltage and
current is φ1 = (�1 − θ1), the phase angle between the sec-
ond harmonic voltage and current is φ2 = (�2 − θ2), and
so on.

It often occurs that not all harmonic components are
present in a complex waveform. Sometimes only the fun-
damental and odd harmonics are present, and in others
only the fundamental and even harmonics are present.

The following worked problems help introduce com-
plex waveform equations and revise a.c. values from
chapter 14.

Problem 1. A complex voltage wave is given by:

v = 200 sin 100πt + 80 sin 300πt + 40 sin 500πt volts

Determine (a) which harmonics are present, (b) the
r.m.s. value of the fundamental, (c) the frequency of the
fundamental, (d) the periodic time of the fundamental,
(e) the frequencies of the harmonics.

(a) The first term, or fundamental, 200 sin 100πt, has
ω1 = 100π rad/s and maximum value 200V. The sec-
ond term, 80 sin 300πt, has an angular velocity of
300π rad/s, which is three times that for the funda-
mental.

Hence, 80 sin 300πt is the third harmonic term.

Similarly, 40 sin 500πt is the fifth harmonic term.

(b) R.m.s. value of the fundamental = 0.707 × 200
= 141.4V

(c) Frequency of fundamental, f1 = ω1

2π
= 100π

2π
= 50 Hz

(d) Periodic time of fundamental, T = 1

f1
= 1

50
= 0.02 s

or 20 ms
(e) Frequency of third harmonic = 3 × 50 = 150 Hz

(or = 300π

2π
= 150 Hz)

Frequency of fifth harmonic = 5 × 50 = 250 Hz

Problem 2. A complex current wave is repre-
sented by:

i = 60 sin 240πt + 24 sin
(

480πt − π

4

)

+15 sin
(

720πt + π

3

)
mA

Determine (a) the frequency of the fundamental, (b) the
percentage second harmonic, (c) the percentage third
harmonic, (d) the r.m.s. value of the second harmonic,
(e) the phase angles of the harmonic components, and
(f) mean value of the third harmonic.

Since 480 is twice 240, and 720 is three times 240, the
harmonics present in the given wave are the second and
third.

(a) Frequency of fundamental, f1 = 240π

2π
= 120 Hz

(b) Percentage second harmonic means expressing the
maximum value of the second harmonic as a percent-
age of the maximum value of the fundamental,

i.e. percentage second harmonic = 24

60
× 100%

= 40%

(c) Percentage third harmonic = 15

60
× 100% = 25%

(d) R.m.s value of second harmonic = 0.707 × 24
= 16.97 mA

(e) The second harmonic has a phase angle of
π

4
rad

lagging (or 45◦ lagging)

The third harmonic has a phase angle of
π

3
rad

leading (or 60◦ leading)
(f ) Mean or average value of third harmonic

= 0.637 × 15 = 9.56 mA

Now try the following exercise.

Exercise 121 Further problems on the equation
of a complex waveform

1. A complex voltage wave is given by:

v = 150 sin 200πt + 60 sin 400πt

+30 sin 800πt volts

Determine (a) which harmonics are present, (b) the
r.m.s. value of the fundamental, (c) the frequency
of the fundamental, (d) the periodic time of the fun-
damental, and (e) the frequencies of the harmonics.

[(a) 2nd and 4th (b) 106.1V (c) 100 Hz
(d) 10 ms (e) 200 Hz, 400 Hz]
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2. A complex current wave is represented by:

i = 20 sin 160πt + 8 sin
(

480πt + π

2

)

+ 2 sin
(

800πt − π

5

)
A

Determine (a) the frequency of the fundamental,
(b) the percentage third harmonic, (c) the percent-
age fifth harmonic, (d) the r.m.s. value of the third
harmonic, (e) the phase angles of the harmonic
components, and (f) the mean value of the fifth
harmonic. [(a) 80 Hz (b) 40% (c) 10% (d) 5.656A

(e) 3rd harmonic leading by
π

2
rad (i.e. leading

by 90◦), 5th harmonic lagging by
π

5
rad

(i.e. lagging by 36◦) (f ) 1.274A]

3. A complex waveform comprises a fundamental
voltage with a peak value of 30V and a frequency of
400 Hz together with a 3rd harmonic having a peak
value of 12V leading by 60◦. Write down an expres-
sion for the instantaneous value of the complex
voltage. [30 sin 800πt + 12 sin(2400πt + π/3)]

36.3 Harmonic synthesis

Harmonic analysis is the process of resolving a complex
periodic waveform into a series of sinusoidal components
of ascending order of frequency. Many of the wave-
forms met in practice can be represented by mathematical
expressions similar to those of equations (36.1) and (36.2),
and the magnitude of their harmonic components together
with their phase may be calculated using Fourier series
(see Sections 36.4 and 36.5). Numerical methods are
used to analyse waveforms for which simple mathemati-
cal expressions cannot be obtained. A numerical method
of harmonic analysis is explained in Chapter 37. In a
laboratory, waveform analysis may be performed using
a waveform analyser which produces a direct readout of
the component waves present in a complex wave.

By adding the instantaneous values of the fundamental
and progressive harmonics of a complex wave for given
instants in time, the shape of a complex waveform can
be gradually built up. This graphical procedure is known
as harmonic synthesis (synthesis meaning ‘the putting
together of parts or elements so as to make up a complex
whole’).

A number of examples of harmonic synthesis will now
be considered.

Example 1

Consider the complex voltage expression given by

va = 100 sin ωt + 30 sin 3ωt volts

Figure 36.2

The waveform is made up of a fundamental wave of
maximum value 100V and frequency, f = ω/2π hertz
and a third harmonic component of maximum value 30V
and frequency = 3ω/2π( = 3f ), the fundamental and third
harmonics being initially in phase with each other. Since
the maximum value of the third harmonic is 30V and
that of the fundamental is 100V, the resultant waveform
va is said to contain 30/100, i.e. ‘30% third harmonic’.
In Figure 36.2, the fundamental waveform is shown by the
broken line plotted over one cycle, the periodic time being
2π/ω seconds. On the same axis is plotted 30 sin 3ωt,
shown by the dotted line, having a maximum value of
30V and for which three cycles are completed in time
T seconds. At zero time, 30 sin 3ωt is in phase with
100 sin ωt.

The fundamental and third harmonic are combined by
adding ordinates at intervals to produce the waveform for
va as shown. For example, at time T /12 seconds, the fun-
damental has a value of 50V and the third harmonic a
value of 30V. Adding gives a value of 80V for wave-
form va, at time T /12 seconds. Similarly, at time T /4
seconds, the fundamental has a value of 100V and the
third harmonic a value of −30V. After addition, the resul-
tant waveform va is 70V at time T /4. The procedure is
continued between t = 0 and t = T to produce the complex
waveform for va. The negative half cycle of waveform va
is seen to be identical in shape to the positive half cycle.

Example 2

Consider the addition of a fifth harmonic component to
the complex waveform of Figure 36.2, giving a resultant
waveform expression

vb = 100 sin ωt + 30 sin 3ωt + 20 sin 5ωt volts

Figure 36.3 shows the effect of adding (100 sin ωt +
30 sin 3ωt) obtained from Figure 36.2 to 20 sin 5ωt. The
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Figure 36.3

shapes of the negative and positive half cycles are still
identical. If further odd harmonics of the appropriate
amplitude and phase were added to vb, a good approx-
imation to a square wave would result.

Example 3

Consider the complex voltage expression given by

vc = 100 sin ωt + 30 sin
(

3ωt + π

2

)
volts

This expression is similar to voltage va in that the peak
value of the fundamental and third harmonic are the same.
However the third harmonic has a phase displacement of
π/2 radian leading (i.e. leading 30 sin 3ωt by π/2 radian).
Note that, since the periodic time of the fundamental is
T seconds, the periodic time of the third harmonic is T /3
seconds, and a phase displacement of π/2 radian or 1

4
cycle of the third harmonic represents a time interval of
(T /3) ÷ 4, i.e. T /12 seconds.

Figure 36.4 shows graphs of 100 sin ωt and
30 sin(3ωt + (π/2)) over the time for one cycle of the fun-
damental. When ordinates of the two graphs are added at
intervals, the resultant waveform vc is as shown. The shape
of the waveform vc is quite different from that of wave-
form va shown in Figure 36.2, even though the percentage
third harmonic is the same. If the negative half cycle in
Figure 36.4 is reversed it can be seen that the shape of the
positive and negative half cycles are identical.

Example 4

Consider the complex voltage expression given by

vd = 100 sin ωt + 30 sin
(

3ωt − π

2

)
volts

The fundamental, 100 sin ωt, and the third harmonic com-
ponent, 30 sin(3ωt − (π/2)), are plotted in Figure 36.5, the

Figure 36.4

Figure 36.5

latter lagging 30 sin 3ωt by π/2 radian or T /12 seconds.
Adding ordinates at intervals gives the resultant waveform
vd as shown. The negative half cycle of vd is identical in
shape to the positive half cycle.

Example 5

Consider the complex voltage expression given by

ve = 100 sin ωt + 30 sin(3ωt + π) volts

The fundamental, 100 sin ωt, and the third harmonic
component, 30 sin(3ωt + π), are plotted as shown in
Figure 36.6, the latter leading 30 sin 3ωt by π radian or
T /6 seconds. Adding ordinates at intervals gives the resul-
tant waveform ve as shown. The negative half cycle of ve
is identical in shape to the positive half cycle.
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Figure 36.6

Figure 36.7

Example 6

Consider the complex voltage expression given by

vf = 100 sin ωt − 30 sin
(

3ωt + π

2

)
volts

The phasor representing 30 sin(3ωt + (π/2)) is shown in
Figure 36.7(a) at time t = 0. The phasor representing
−30 sin(3ωt + (π/2)) is shown in Figure 36.7(b) where
it is seen to be in the opposite direction to that shown in
Figure 36.7(a).

−30 sin(3ωt + (π/2)) is the same as 30 sin(3ωt − (π/2)).

Thus

vf = 100 sin ωt − 30 sin
(

3ωt + π

2

)

= 100 sin ωt + 30 sin
(

3ωt − π

2

)

Figure 36.8

The waveform representing this expression has already
been plotted in Figure 36.5.

General conclusions on examples 1 to 6

Whenever odd harmonics are added to a fundamental
waveform, whether initially in phase with each other or
not, the positive and negative half-cycles of the resultant
complex wave are identical in shape (i.e. in Figures 36.2
to 36.6, the values of voltage in the third quadrant —
between T /2 seconds and 3T /4 seconds — are identical
to the voltage values in the first quadrant — between 0
and T /4 seconds, except that they are negative, and the
values of voltage in the second and fourth quadrants are
identical, except for the sign change). This is a feature
of waveforms containing a fundamental and odd harmon-
ics and is true whether harmonics are added or subtracted
from the fundamental.

From Figures 36.2 to 36.6, it is seen that a waveform
can change its shape considerably as a result of changes
in both phase and magnitude of the harmonics.

Example 7

Consider the complex current expression given by

ia = 10 sin ωt + 4 sin 2ωt amperes

Current ia consists of a fundamental component, 10 sin ωt,
and a second harmonic component, 4 sin 2ωt, the compo-
nents being initially in phase with each other. Current ia
contains 40% second harmonic. The fundamental and sec-
ond harmonic are shown plotted separately in Figure 36.8.
By adding ordinates at intervals, the complex waveform
representing ia is produced as shown. It is noted that if
all the values in the negative half-cycle were reversed
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Figure 36.9

then this half-cycle would appear as a mirror image of
the positive half-cycle about a vertical line drawn through
time t = T /2.

Example 8

Consider the complex current expression given by

ib = 10 sin ωt + 4 sin 2ωt + 3 sin 4ωt amperes

The waveforms representing (10 sin ωt + 4 sin 2ωt) and
the fourth harmonic component, 3 sin 4ωt, are each shown
separately in Figure 36.9, the former waveform having
been produced in Figure 36.8. By adding ordinates at inter-
vals, the complex waveform for ib is produced as shown
in Figure 36.9. If the half-cycle between times T /2 and
T is reversed then it is seen to be a mirror image of the
half-cycle lying between 0 and T /2 about a vertical line
drawn through the time t = T /2.

Example 9

Consider the complex current expressions given by

ic = 10 sin ωt + 4 sin
(

2ωt + π

2

)
amperes

The fundamental component, 10 sin ωt, and the second
harmonic component, having an amplitude of 4A and
a phase displacement of π/2 radian leading (i.e. lead-
ing 4 sin 2ωt by π/2 radian or T /8 seconds), are shown
plotted separately in Figure 36.10. By adding ordinates
at intervals, the complex waveform for ic is produced
as shown. The positive and negative half-cycles of the
resultant waveform ic are seen to be quite dissimilar.

Figure 36.10

Figure 36.11

Example 10

Consider the complex current expression given by

id = 10 sin ωt + 4 sin(2ωt + π) amperes

The fundamental, 10 sin ωt, and the second harmonic
component which leads 4 sin 2ωt by π rad are shown sep-
arately in Figure 36.11. By adding ordinates at intervals,
the resultant waveform id is produced as shown. If the neg-
ative half cycle is reversed, it is seen to be a mirror image
of the positive half cycle about a line drawn vertically
through time t = T /2.

General conclusions on examples 7 to 10

Whenever even harmonics are added to a fundamental
component:

(a) if the harmonics are initially in phase or if there is
a phase shift of π rad, the negative half cycle, when
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Figure 36.12

reversed, is a mirror image of the positive half-cycle
about a vertical line drawn through time t = T /2;

(b) if the harmonics are initially out of phase with each
other (i.e. other than π rad), the positive and negative
half-cycles are dissimilar.

These are features of waveforms containing the funda-
mental and even harmonics.

Example 11

Consider the complex voltage expression given by

vg = 50 sin ωt + 25 sin 2ωt + 15 sin 3ωt volts

The fundamental and the second and third harmonics are
each shown separately in Figure 36.12. By adding ordi-
nates at intervals, the resultant waveform vg is produced
as shown. If the negative half-cycle is reversed, it appears
as a mirror image of the positive half-cycle about a vertical
line drawn through time = T /2.

Example 12

Consider the complex voltage expression given by

vh = 50 sin ωt + 25 sin(2ωt − π)

+ 15sin
(

3ωt + π

2

)
volts

The fundamental, the second harmonic lagging by π
radian and the third harmonic leading by π/2 radian are ini-
tially plotted separately, as shown in Figure 36.13. Adding
ordinates at intervals gives the resultant waveform vh as
shown. The positive and negative half-cycles are seen to
be quite dissimilar.

Figure 36.13

General conclusions on examples 11 and 12

Whenever a waveform contains both odd and even
harmonics:

(a) if the harmonics are initially in phase with each other,
the negative cycle, when reversed, is a mirror image
of the positive half-cycle about a vertical line drawn
through time t = T /2;

(b) if the harmonics are initially out of phase with each
other, the positive and negative half-cycles are dissim-
ilar.

Example 13

Consider the complex current expression given by

i = 32 + 50 sin ωt + 20 sin
(

2ωt − π

2

)
mA

The current i comprises three components — a 32 mA d.c.
component, a fundamental of amplitude 50 mA and a sec-
ond harmonic of amplitude 20 mA, lagging by π/2 radian.
The fundamental and second harmonic are shown sepa-
rately in Figure 36.14. Adding ordinates at intervals gives
the complex waveform 50 sin ωt + 20 sin(2ωt − (π/2)).

This waveform is then added to the 32 mA d.c. compo-
nent to produce the waveform i as shown. The effect of
the d.c. component is seen to be to shift the whole wave
32 mA upward. The waveform approaches that expected
from a half-wave rectifier (see Section 36.11).

Problem 3. A complex waveform v comprises a fun-
damental voltage of 240V r.m.s and frequency 50 Hz,
together with a 20% third harmonic which has a phase
angle lagging by 3π/4 rad at time = 0. (a) Write down
an expression to represent voltage v. (b) Use harmonic
synthesis to sketch the complex waveform repre-
senting voltage v over one cycle of the fundamental
component.
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Figure 36.14

(a) A fundamental voltage having an r.m.s value of 240V
has a maximum value, or amplitude of (

√
2)(240), i.e.

339.4V.
If the fundamental frequency is 50 Hz then

angular velocity, ω = 2πf = 2π(50) = 100π rad/s.
Hence the fundamental voltage is represented by
339.4 sin 100πt volts. Since the fundamental fre-
quency is 50 Hz, the time for one cycle of the
fundamental is given by T = 1/f = 1/50 s or 20 ms.

The third harmonic has an amplitude equal to
20% of 339.4V, i.e. 67.9V. The frequency of the
third harmonic component is 3 × 50 = 150 Hz, thus
the angular velocity is 2π (150), i.e. 300π rad/s.
Hence the third harmonic voltage is represented by
67.9 sin(300πt − (3π/4)) volts. Thus

voltage, v = 339.4 sin 100πt

+ 67.9 sin
(

300πt − 3π

4

)
volts

(b) One cycle of the fundamental, 339.4 sin 100πt,
is shown sketched in Figure 36.15, together
with three cycles of the third harmonic compo-
nent, 67.9 sin(300πt − (3π/4)) initially lagging by
3π/4 rad. By adding ordinates at intervals, the com-
plex waveform representing voltage is produced as
shown. If the negative half cycle is reversed, it is
seen to be identical to the positive half cycle, which
is a feature of waveforms containing the fundamental
and odd harmonics.

Figure 36.15

Problem 4. For each of the periodic complex wave-
forms shown in Figure 36.16, suggest whether odd or
even harmonics (or both) are likely to be present.

Figure 36.16

(a) If in Figure 36.16(a) the negative half cycle is
reversed, it is seen to be identical to the positive half
cycle. This feature indicates that the complex current
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waveform is composed of a fundamental and odd
harmonics only (see examples 1 to 6).

(b) In Figure 36.16(b) the negative half-cycle is quite
dissimilar to the positive half-cycle.
This indicates that the complex voltage waveform
comprises either
(i) a fundamental and even harmonics, initially out

of phase with each other (see example 9), or
(ii) a fundamental and odd and even harmonics, one

or more of the harmonics being initially out of
phase (see example 12).

(c) If in Figure 36.16(c) the negative half cycle is
reversed, it is seen to be a mirror image of the positive
half cycle about a vertical line drawn through time
T /2. This feature indicates that the complex e.m.f.
waveform comprises either:
(i) a fundamental and even harmonics initially in

phase with each other (see examples 7 and 8),
or

(ii) a fundamental and odd and even harmonics, each
initially in phase with each other (see exam-
ple 11).

Now try the following exercise.

Exercise 122 Further problems on harmonic
synthesis

1. A complex current waveform i comprises a fun-
damental current of 50A r.m.s and frequency
100 Hz, together with a 24% third harmonic, both
being in phase with each other at zero time.
(a) Write down an expression to represent current,
i. (b) Sketch the complex waveform of current
using harmonic synthesis over one cycle of the
fundamental.

[(a) i = (70.71 sin 628.3t + 16.97 sin 1885t)A]

2. A complex voltage waveform v is comprised of a
212.1V r.m.s fundamental voltage at a frequency of
50 Hz, a 30% second harmonic component lagging
by π/2 rad, and a 10% fourth harmonic component
leading by π/3 rad. (a) Write down an expression to
represent voltage v (b) Sketch the complex voltage
waveform using harmonic synthesis over one cycle
of the fundamental waveform.
[(a)v = 300 sin 314.2t + 90 sin(628.3t − (π/2)) +

30 sin(1256.6t + (π/3)) volts]

3. A voltage waveform is represented by

v = 20 + 50 sin ωt + 20 sin(2ωt − π/2) volts

Draw the complex waveform over one cycle of the
fundamental by using harmonic synthesis.

4. Write down an expression representing a current
having a fundamental component of amplitude 16A
and frequency 1 kHz, together with its third and
fifth harmonics being respectively one-fifth and
one-tenth the amplitude of the fundamental, all
components being in phase at zero time. Sketch
the complex current waveform for one cycle of the
fundamental using harmonic synthesis.

[i = (16 sin 2π103t + 3.2 sin 6π 103t
+ 1.6 sin π104t)A]

5. For each of the waveforms shown in Figure 36.17,
state which harmonics are likely to be present.

Figure 36.17

[(a) Fundamental and even harmonics, or all
harmonics present, initially in phase with each
other. (b) Fundamental and odd harmonics only.
(c) Fundamental and even harmonics, initially out
of phase with each other (or all harmonics present),
some being initially out of phase with each other.]

6. A voltage waveform is described by

v = 200 sin 377t + 80 sin(1131t + (π/4))

+ 20 sin(1885t − (π/3)) volts

Determine (a) the fundamental and harmonic fre-
quencies of the waveform, (b) the percentage third
harmonic and (c) the percentage fifth harmonic.
Sketch the voltage waveform using harmonic syn-
thesis over one cycle of the fundamental.

[(a) 60 Hz, 180 Hz, 300 Hz (b) 40% (c) 10%]
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36.4 Fourier series of periodic and
non-periodic functions

Fourier series provides a method of analysing periodic
functions into their constituent components. Alternating
currents and voltages, displacement, velocity and accel-
eration of slider-crank mechanisms and acoustic waves
are typical practical examples in engineering and science
where periodic functions are involved and often requiring
analysis. (The main topics of Fourier series are covered
here, but for more, see ‘Higher Engineering Mathematics
5th Edition’).

Periodic functions

As stated earlier in this chapter, a function f (x) is said to
be periodic if f (x + T ) = f (x) for all values of x, where
T is some positive number. T is the interval between
two successive repetitions and is called the period of the
functions f (x).

For example, y = sin x is periodic in x with period
2π since sin x = sin(x + 2π) = sin(x + 4π), and so on. In
general, if y = sin ωt then the period of the waveform is
2π/ω. The function shown in Figure 36.18 is also periodic
of period 2π and is defined by:

f (x) =
{−1, when −π < x < 0

1, when 0 < x < π

f (x)

0

1

−1

−π−2π π 2π x

Figure 36.18

If a graph of a function has no sudden jumps or breaks it is
called a continuous function, examples being the graphs
of sine and cosine functions. However, other graphs make
finite jumps at a point or points in the interval. The square
wave shown in Figure 36.18 has finite discontinuities at
x = π, 2π, 3π, and so on. A great advantage of Fourier
series over other series is that it can be applied to func-
tions which are discontinuous as well as those which are
continuous.

The basis of a Fourier series is that all functions of
practical significance which are defined in the interval
−π ≤ x ≤ π can be expressed in terms of a convergent

trigonometric series of the form:

f (x) = a0 + a1 cos x + a2 cos 2x + a3 cos 3x + · · ·
+ b1 sin x + b2 sin 2x + b3 sin 3x + · · ·

when a0, a1, a2, . . . b1, b2, . . . are real constants,

i.e. f (x) = a0 +
∞∑

n=1

(an cos nx + bn sin nx), (36.3)

where for the range−π to π :

a0 = 1
2π

∫ π

−π
f (x)dx (36.4)

an = 1
π

∫ π

−π
f (x) cos nx dx (n = 1, 2, 3, . . . ) (36.5)

and bn = 1
π

∫ π

−π
f (x) sin nx dx (n = 1, 2, 3, . . . ) (36.7)

a0, an and bn are called the Fourier coefficients of the
series and if these can be determined, the series of equa-
tion (36.3) is called the Fourier series corresponding
to f (x).
For the series of equation (36.3):

the term (a1 cos x + b1 sin x) or c1 sin(x + α1) is called
the first harmonic or the fundamental, the term
(a2 cos 2x + b2 sin 2x) or c2 sin(2x + α2) is called the
second harmonic, and so on.

For an exact representation of a complex wave, an infi-
nite number of terms are, in general, required. In many
practical cases, however, it is sufficient to take the first
few terms only. Obtaining a Fourier series for a periodic
function of period 2π is demonstrated in the following
worked problems.

Problem 5. Obtain a Fourier series for the periodic
function f (x) defined as:

f (x) =
{−k, when −π < x < 0
+k, when 0 < x < π

The function is periodic outside of this range with
period 2π

The square wave function defined is shown in Fig-
ure 36.19. Since f (x) is given by two different expressions
in the two halves of the range the integration is performed
in two parts, one from −π to 0 and the other from 0 to π.

From equation (36.4):

a0 = 1

2π

∫ π

−π

f (x)dx = 1

2π

[∫ 0

−π

−k dx +
∫ π

0
k dx

]

= 1

2π
{[−kx]0−π + [kx]π0 } = 0
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f(x)

0

k

−k

π−π 2π x

Figure 36.19

[a0 is in fact the mean value of the waveform over a
complete period of 2π and this value could have been
deduced on sight from Figure 36.19]

From equation (36.5):

an = 1

π

∫ π

−π

f (x) cos nx dx = 1

π

{∫ 0

−π

−k cos nx dx

+
∫ π

0
k cos nx dx

}

= 1

π

{[−k sin nx

n

]0

−π

+
[

k sin nx

n

]π

0

}
= 0

Hence a1, a2, a3, . . . are all zero (since sin 0 = sin(−nπ) =
sin nπ = 0), and therefore no cosine terms will appear in
the Fourier series.

From equation (36.6):

bn = 1

π

∫ π

−π

f (x) sin nx dx = 1

π

{∫ 0

−π

−k sin nx dx

+
∫ π

0
k sin nx dx

}

= 1

π

{[
k cos nx

n

]0

−π

+
[−k cos nx

n

]π

0

}

When n is odd:

bn = k

πn
{[(1) − (−1)] + [ − (−1) − (−1)]}

= k

πn
{2 + 2} = 4k

nπ

Hence, b1 = 4k

π
, b3 = 4k

3π
, b5 = 4k

5π
, and so on

When n is even:

bn = k

πn
{[1 − 1] + [−1 − (−1)]} = 0

Hence, from equation (36.3), the Fourier series for the
function shown in Figure 36.19 is given by:

f (x) = a0 +
∞∑

n=1

(an cos nx + bn sin nx)

= 0 +
∞∑

n=1

(0 + bn sin nx)

i.e. f (x) = 4k

π
sin x + 4k

3π
sin 3x + 4k

5π
sin 5x + · · · · · · .

i.e. f (x) = 4k
π

(
sin x + 1

3
sin 3x + 1

5
sin 5x + · · · · · ·

)

Problem 6. For the Fourier series of Problem 5, let
k = π. Show by plotting the first three partial sums of
this Fourier series that, as the series is added together
term by term, the result approximates more and more
closely to the function it represents.

If k = π in the above Fourier series, then

f (x) = 4

(
sin x + 1

3
sin 3x + 1

5
sin 5x + · · · · · ·

)

4 sin x is termed the first partial sum of the Fourier series
of f (x),(

4 sin x + 4

3
sin 3x

)
is termed the second partial sum of

the Fourier series, and(
4 sin x + 4

3
sin 3x + 4

5
sin 5x

)
is termed the third partial

sum, and so on.

Let P1 = 4 sin x, P2 =
(

4 sin x + 4

3
sin 3x

)
and

P3 =
(

4 sin x + 4

3
sin 3x + 4

5
sin 5x

)
.

Graphs of P1, P2 and P3, obtained by drawing up
tables of values, and adding waveforms, are shown in
Figures 36.20(a) to (c) and they show that the series
is convergent, i.e. continually approximating towards a
definite limit as more and more partial sums are taken,
and in the limit will have the sum f (x) = π.

Even with just three partial sums, the waveform is start-
ing to approach the rectangular wave the Fourier series
is representing.

Expansion of non-periodic functions

If a function f (x) is not periodic then it cannot be expanded
in a Fourier series for all values of x. However, it is
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0 π/2 π−π/2−π

−π
−4

π
4

f (x)

P1

f (x)

x

−π −π/2 0 π/2 π x

P2

P1
f (x)

f (x)

π

−π

4/3 sin 3x

f (x)

π

−π/2

−π π/20 π x
4/5 sin 5x

P2

P3

f (x)

(c)

(b)

(a)

−π

Figure 36.20

possible to determine a Fourier series to represent the
function over any range of width 2π.

Given a non-periodic function, a new function may
be constructed by taking the values of f (x) in the given
range and then repeating them outside of the given range
at intervals of 2π. Since this new function is, by construc-
tion, periodic with period 2π, it may then be expanded
in a Fourier series for all values of x. For example, the
function f (x) = x is not a periodic function. However, if
a Fourier series for f (x) = x is required then the func-
tion is constructed outside of this range so that it is

f(x)
f(x) = x

2π

−2π 2π 4π0 x

Figure 36.21

f(x)
f(x) = 2x

2π

−2π

0 π 2π 3π x−2π −π

Figure 36.22

periodic with period 2π as shown by the broken lines in
Figure 36.21.

For non-periodic functions, such as f (x) = x, the sum
of the Fourier series is equal to f (x) at all points in the
given range but it is not equal to f (x) at points outside of
the range.

For determining a Fourier series of a non-periodic
function over a range 2π, exactly the same formulae
for the Fourier coefficients are used as previously, i.e.
equations (36.4) to (36.6).

Problem 7. Determine the Fourier series to represent
the function f (x) = 2x in the range −π to +π

The function f (x) = 2x is not periodic. The function is
shown in the range −π to π in Figure 36.22 and is then
constructed outside of that range so that it is periodic of
period 2π (see broken lines) with the resulting saw-tooth
waveform.
For a Fourier series:

f (x) = a0 +
∞∑

n=1

(an cos nx + bn sin nx)

From equation (36.4),

a0 = 1

2π

∫ π

−π

f (x)dx = 1

2π

∫ π

−π

2x dx = 2

2π

[
x2

2

]π

−π

= 0 (i.e. the mean value)
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From equation (36.5),

an = 1

π

∫ π

−π

f (x) cos nx dx = 1

π

∫ π

−π

2x cos nx dx

= 2

π

[
x sin nx

n
−

∫
sin nx

n
dx

]π

−π

by integration by parts

= 2

π

[
x sin nx

n
+ cos nx

n2

]π

−π

= 2

π

[(
0 + cos nπ

n2

)
−

(
0 + cos n ( − π)

n2

)]
= 0

since cos nπ = cos (−nπ)

From equation (36.6),

bn = 1

π

∫ π

−π

f (x) sin nx dx = 1

π

∫ π

−π

2x sin nx dx

= 2

π

[−x cos nx

n
−

∫ (− cos nx

n

)
dx

]π

−π

by parts

= 2

π

[−x cos nx

n
+ sin nx

n2

]π

−π

= 2

π

[(−π cos nπ

n
+ sin nπ

n2

)

−
(−(−π) cos n(−π)

n
+ sin n (−π)

n2

)]

= 2

π

[−π cos nπ

n
− π cos (−nπ)

n

]

= −4

n
cos nπ since cos (−nπ) = cos nπ

When n is odd, bn = 4

n
. Thus, b1 = 4, b3 = 4

3
, b5 = 4

5
, and

so on.

When n is even, bn = −4

n
. Thus b2 = −4

2
, b4 = −4

4
,

b6 = −4

6
, and so on.

Thus, f (x) = 2x = 4 sin x − 4

2
sin 2x + 4

3
sin 3x − 4

4
sin 4x

+ 4

5
sin 5x − 4

6
sin 6x + · · · · · ·

i.e. 2x = 4
(

sin x − 1
2

sin 2x + 1
3

sin 3x − 1
4

sin 4x

+1
5

sin 5x − 1
6

sin 6x + · · ·
)

for values of f (x) between −π and π.

For values of f (x) outside the range −π to +π the sum
of the series is not equal to f (x).

Problem 8. Obtain a Fourier series for the function
defined by:

f (x) =
{

x, when 0 < x < π
0, when π < x < 2π

The defined function is shown in Figure 36.23 between 0
and 2π. The function is constructed outside of this range
so that it is periodic of period 2π, as shown by the broken
line in Figure 36.23.

−2π −π 0 π 3π2π

π

f (x) = xf(x)

x

Figure 36.23

For a Fourier series:

f (x) = a0 +
∞∑

n=1

(an cos nx + bn sin nx)

It is more convenient in this case to take the limits from 0
to 2π instead of from −π to +π. The value of the Fourier
coefficients are unaltered by this change of limits. Hence,

a0 = 1

2π

∫ 2π

0
f (x)dx = 1

2π

[∫ π

0
x dx +

∫ 2π

π

0 dx

]

= 1

2π

[
x2

2

]π

0
= 1

2π

(
π2

2

)
= π

4

an = 1

π

∫ 2π

0
f (x) cos nx dx

= 1

π

[∫ π

0
x cos nx dx +

∫ 2π

π

0 dx

]

= 1

π

[
x sin nx

n
+ cos nx

n2

]π

0
(from Problem 7, by parts)

= 1

π

{[
π sin nπ

n
+ cos nπ

n2

]
−

[
0 + cos 0

n2

]}

= 1

πn2 ( cos nπ − 1)

When n is even, an = 0
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When n is odd, an = −2

πn2 . Hence, a1 = −2

π
, a3 = −2

32π
,

a5 = −2

52π
, and so on

bn = 1

π

∫ 2π

0
f (x) sin nx dx

= 1

π

[∫ π

0
x sin nx dx −

∫ 2π

π

0 dx

]

= 1

π

[−x cos nx

n
+ sin nx

n2

]π

0

(from Problem 7, by parts)

= 1

π

{[−π cos nπ

n
+ sin nπ

n2

]
−

[
0 + sin 0

n2

]}

= 1

π

[−π cos nπ

n

]
= − cos nπ

n

Hence b1 = − cos π = 1, b2 = −1

2
, b3 = 1

3
, and so on

Thus the Fourier series is:

f (x) = a0 +
∞∑

n=1

(an cos nx +bn sin nx)

i.e. f (x) = π

4
− 2

π
cos x − 2

32π
cos 3x − 2

52π
cos 5x

− · · · + sin x − 1

2
sin 2x + 1

3
sin 3x − · · ·

i.e. f (x) = π

4
− 2

π

(
cos x + cos 3x

32
+ cos 5x

52
+ · · ·

)

+
(

sin x − 1
2

sin 2x + 1
3

sin 3x − · · ·
)

Now try the following exercise.

Exercise 123 Further problems on Fourier series
of periodic and non-periodic functions

1. Determine the Fourier series for the periodic

function: f (x) =
{−2, when −π < x < 0

+2, when 0 < x < π
which is

periodic outside this range of period 2π.[
f (x) = 8

π

(
sin x + 1

3
sin 3x + 1

5
sin 5x + · · · .

)]

2. Find the term representing the third harmonic for
the periodic function of period 2π given by:

f (x) =
{

0, when −π < x < 0
1, when 0 < x < π

[
2

3π
sin 3x

]

3. Determine the Fourier series for the periodic func-
tion of period 2π defined by:

f (t) =

⎧⎪⎪⎨
⎪⎪⎩

0, when −π < t < 0

1, when 0 < t <
π

2
−1, when

π

2
< t < π

The function has a period of 2π.

[
f (t) = 2

π

(
cos t − 1

3
cos 3t + 1

5
cos 5t − · · · .

+ sin 2t + 1

3
sin 6t + 1

5
sin 10t + · · · .

)]

4. Show that the Fourier series for the function
f (x) = x over the range x = 0 to x = 2π is given by:

f (x) = π − 2

(
sin x + 1

2
sin 2x + 1

3
sin 3x

+ 1

4
sin 4x + · · ·

)

5. Determine the Fourier series up to and including
the third harmonic for the function defined by:

f (x) =
{

x, when 0 ≤ x ≤ π
2π − x, when π ≤ x ≤ 2π

Sketch a graph of the function within and outside
of the given range, assuming the period is 2π.

[
f (t) = π

2
− 4

π

(
cos x + cos 3x

32 + cos 5x

52 + · · ·
)]

6. Find the Fourier series for the function f (x) = x + π
within the range −π < x < π

[
f (x) = π + 2

(
sin x − 1

2
sin 2x + 1

3
sin 3x − · · ·

)]

36.5 Even and odd functions and Fourier series
over any range

Even functions

A function y = f (x) is said to be even if f (−x) = f (x) for all
values of x. Graphs of even functions are always symmet-
rical about the y-axis (i.e. is a mirror image). y = cos x
is a typical example.
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Fourier cosine series

The Fourier series of an even periodic function f (x) hav-
ing period 2π contains cosine terms only (i.e. contains
no sine terms) and may contain a constant term.

Hence, f (x) = a0 +
∞∑

n=1

an cos nx (36.7)

where a0 = 1

2π

∫ π

−π

f (x)dx = 1
π

∫ π

0
f (x)dx (36.8)

(due to symmetry)

and an = 1

π

∫ π

−π

f (x) cos nx dx

= 2
π

∫ π

0
f (x)cos nx dx (36.9)

Problem 9. Determine the Fourier series for the
periodic function of period 2π defined by:

f (x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−2, when −π < x < −π

2

2, when −π

2
< x <

π

2

−2, when
π

2
< x < π

The square wave shown in Figure 36.24 is an even
function since it is symmetrical about the f (x) axis.
Hence from equation (36.7), the Fourier series is given by:

f (x) = a0 +
∞∑

n=1

an cos nx

(i.e. the series contains no sine terms)

f (x)

2

−3π/2 −π −π/2 π/2 π 3π/2 x0 2π

−2

Figure 36.24

From equation (36.8),

a0 = 1

π

∫ π

0
f (x)dx = 1

π

{∫ π/2

0
2dx +

∫ π

π/2
−2dx

}

= 1

π
{[2x]π/2

0 + [−2x]ππ/2}

= 1

π
{(π) + [(−2π) − (−π)]} = 0

(i.e. the mean value)

From equation (36.9),

an = 2

π

∫ π

0
f (x) cos nx dx

= 2

π

{∫ π/2

0
2 cos nx dx +

∫ π

π/2
−2 cos nx dx

}

= 4

π

{[
sin nx

n

]π/2

0
+

[− sin nx

n

]π

π/2

}

= 4

π

{(
sin(π/2)n

n
− 0

)
+

(
0 − −sin(π/2)n

n

)}

= 4

π

(
2 sin(π/2)n

n

)
= 8

πn

(
sin

nπ

2

)

When n is even, an = 0

When n is odd, an = 8

πn
for n = 1, 5, 9, . . .

and an = −8

πn
for n = 3, 7, 11, . . .

Hence, a1 = 8

π
, a3 = −8

3π
, a5 = 8

5π
, and so on

Hence, the Fourier series for the waveform of Figure 36.24
is given by:

f (x) = 8
π

(
cos x − 1

3
cos 3x + 1

5
cos 5x − 1

7
cos 7x+· · ·

)

Odd functions

A function y = f (x) is said to be odd if f (−x) = −f (x)
for all values of x. Graphs of odd functions are always
symmetrical about the origin. y = sin x is a typical
example.

Many functions are neither even nor odd.
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Fourier sine series

The Fourier series of an odd periodic function f (x) having
period 2π contains sine terms only (i.e. contains no
constant term and no cosine terms).

Hence, f (x) =
∞∑

n=1

bn sin nx (36.10)

where bn = 1

π

∫ π

−π

f (x) sin nx dx

= 2
π

∫ π

0
f (x) sin nx dx (36.11)

Problem 10. Obtain the Fourier series for the square
wave shown in Figure 36.25.

2

0

−2

π−π 2π 3π x

f (x)

Figure 36.25

The square wave shown in Figure 36.25 is an odd function
since it is symmetrical about the origin.
Hence, from equation (36.10), the Fourier series is
given by:

f (x) =
∞∑

n=1

bn sin nx

The function is defined by:

f (x) =
{−2, when −π < x < 0

2, when 0 < x < π

From equation (36.11),

bn = 2

π

∫ π

0
f (x) sin nx dx = 2

π

∫ π

0
2 sin nx dx

= 4

π

[− cos nx

n

]π

0

= 4

π

[(− cos nπ

n

)
−

(
−1

n

)]
= 4

πn
(1 − cos nπ)

When n is even, bn = 0.

When n is odd, bn = 4

πn
[1 − (−1)] = 8

πn

Hence, b1 = 8

π
, b3 = 8

3π
, b5 = 8

5π
, and so on

Hence the Fourier series is:

f (x) = 8
π

(
sin x + 1

3
sin 3x + 1

5
sin 5x + 1

7
sin 7x + · · ·

)

Expansion of a periodic function of period L

It may be shown that if f (x) is a periodic function of period
L, then the Fourier series is given by:

f (x) = a0 +
∞∑

n=1

[
an cos

(
2πnx

L

)
+ bn sin

(
2πnx

L

)]

(36.12)

where, in the range −L

2
to +L

2
:

a0 = 1
L

∫ L/2

−L/2
f (x) dx, (36.13)

an = 2
L

∫ L/2

−L/2
f (x) cos

(
2πnx

L

)
dx (36.14)

and bn = 2
L

∫ L/2

−L/2
f (x) sin

(
2πnx

L

)
dx (36.15)

The limits of integration may be replaced by any interval
of length L, such as from 0 to L.

Problem 11. The voltage from a square wave gener-
ator is of the form:

v(t) =
{

0, −4 < t < 0
and has a period of 8 ms.

10, 0 < t < 4

Find the Fourier series for this periodic function.

The square wave is shown in Figure 36.26.
From equation (36.12), the Fourier series is of the form:

v(t) = a0 +
∞∑

n=1

[
an cos

(
2πnt

L

)
+ bn sin

(
2πnt

L

)]
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v (t )

10

0 4 8−8 −4 12 t (ms)

Period L = 8 ms

Figure 36.26

From equation (36.13)

a0 = 1

L

∫ L/2

−L/2
v(t)dt = 1

8

∫ 4

−4
v(t)dt

= 1

8

{∫ 0

−4
0 dt +

∫ 4

0
10 dt

}
= 1

8
[10t]4

0 = 5

From equation (36.14),

an = 2

L

∫ L/2

−L/2
v(t) cos

(
2πnt

L

)
dt

= 2

8

∫ 4

−4
v(t) cos

(
2πnt

8

)
dt

= 1

4

{∫ 0

−4
0 cos

(
πnt

4

)
dt +

∫ 4

0
10 cos

(
πnt

4

)
dt

}

= 1

4

⎡
⎢⎢⎣

10 sin

(
πnt

4

)
(πn

4

)
⎤
⎥⎥⎦

4

0

= 10

πn
[ sin πn − sin 0] = 0

for n = 1, 2, 3, ..

From equation (36.15),

bn = 2

L

∫ L/2

−L/2
v(t) sin

(
2πnt

L

)
dt

= 2

8

∫ 4

−4
v(t) sin

(
2πnt

8

)
dt

= 1

4

{∫ 0

−4
0 sin

(
πnt

4

)
dt +

∫ 4

0
10 sin

(
πnt

4

)
dt

}

= 1

4

⎡
⎢⎢⎣

−10 cos

(
πnt

4

)
(πn

4

)
⎤
⎥⎥⎦

4

0

= −10

πn
[ cos πn − cos 0]

When n is even, bn = 0

When n is odd, b1 = −10

π
(−1 − 1) = 20

π
,

b3 = −10

3π
(−1 − 1) = 20

3π
, b5 = 20

5π
, and so on

Thus the Fourier series for the function v(t) is given by:

v(t) = 5 + 20
π

[
sin

(
πt
4

)
+ 1

3
sin

(
3πt
4

)

+ 1
5

sin
(

5πt
4

)
+ · · ·

]

Problem 12. Obtain the Fourier series for the func-
tion defined by:

f (x) =
{

0, when −2 < x < −1
5, when −1 < x < 1
0, when 1 < x < 2

The function is periodic outside of this range of
period 4.

The function f (x) is shown in Figure 36.27 where period,
L = 4. Since the function is symmetrical about the f (x)
axis it is an even function and the Fourier series contains
no sine terms (i.e. bn = 0)

−4 −3 −2 −1 0 1 2 3 4 5

L =  4

f(x )

5

x−5

Figure 36.27

Thus, from equation (36.12),

f (x) = a0 +
∞∑

n=1
an cos

(
2πnx

L

)

From equation (36.13),

a0 = 1

L

∫ L/2

−L/2
f (x)dx = 1

4

∫ 2

−2
f (x)dx

= 1

4

{∫ −1

−2
0 dx +

∫ 1

−1
5dx +

∫ 2

1
0 dx

}

= 1

4
[5x]1−1 = 1

4
[(5) − (−5)] = 10

4
= 5

2
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From equation (36.14),

an = 2

L

∫ L/2

−L/2
f (x) cos

(
2πnx

L

)
dx

= 2

4

∫ 2

−2
f (x) cos

(
2πnx

4

)
dx

= 1

2

{∫ −1

−2
0 cos

(πnx

2

)
dx +

∫ 1

−1
5 cos

(πnx

2

)
dx

+
∫ 2

1
0 cos

(πnx

2

)
dx

}

= 5

2

⎡
⎢⎣

sin
πnx

2
πn

2

⎤
⎥⎦

1

−1

= 5

πn

[
sin

(πn

2

)
− sin

(−πn

2

)]

When n is even, an = 0

When n is odd, a1 = 5

π
(1 − −1) = 10

π
,

a3 = 5

3π
(−1 − 1) = −10

3π
, a5 = 5

5π
(1 − −1) = 10

5π
,

and so on

Hence the Fourier series for the function f (x) is given by:

f (x) = 5
2

+ 10
π

[
cos

(πx
2

)
− 1

3
cos

(
3πx

2

)
+

1
5

cos
(

5πx
2

)
− 1

7
cos

(
7πx

2

)
+ · · ·

]

Now try the following exercise.

Exercise 124 Further problems on even and odd
functions and Fourier series over any range

1. Determine the Fourier series for the function
defined by:

f (x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−1, −π < x < −π

2
1, −π

2
< x <

π

2
−1,

π

2
< x < π

which is periodic outside of this range of period 2π[
f (x) = 4

π

(
cos x − 1

3
cos 3x + 1

5
cos 5x

− 1

7
cos 7x + · · ·

)]

2. Obtain the Fourier series of the function defined by:

f (t) =
{

t + π, −π < t < 0
t − π, 0 < t < π

which is periodic of period 2π. Sketch the given
function. [

f (t) = −2

(
sin t + 1

2
sin 2t + 1

3
sin 3t

+ 1

4
sin 4t + · · · .

)]

3. Determine the Fourier series defined by

f (x) =
{

1 − x, −π < x < 0
1 + x, 0 < x < π

which is periodic of period 2π.[
f (x) = π

2
+ 1 − 4

π

(
cos x + 1

32 cos 3x

+ 1

52 cos 5x + · · ·
)]

4. The voltage from a square wave generator is of the
form:

v(t) =
{

0, −10 < t < 0
5, 0 < t < 10

and is periodic of period 20.
Show that the Fourier series for the function is
given by:

v(t) = 5

2
+ 10

π

[
sin

(
πt

10

)
+ 1

3
sin

(
3πt

10

)

+ 1

5
sin

(
5πt

10

)
+ · · ·

]

5. Find the Fourier series for f (x) = x in the range
x = 0 to x = 5[

f (x) = 5

2
− 5

π

[
sin

(
2πx

5

)
+ 1

2
sin

(
4πx

5

)

+ 1

3
sin

(
6πx

5

)
+ · · ·

]]

6. A periodic function of period 2π is defined by:

f (x) =
{−3, −2 < x < 0

+3, 0 < x < 2

Sketch the function and obtain the Fourier series for
the function.[

f (x) = 12

π

(
sin

(πx

2

)
+ 1

3
sin

(
3πx

2

)

+1

5
sin

(
5πx

2

)
+ · · ·

)]
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36.6 Rms value, mean value and the form factor
of a complex wave

Rms value

Let the instantaneous value of a complex current, i, be
given by

i = I1m sin(ωt + θ1) + I2m sin(2ωt + θ2)

+ · · · + Inm sin(nωt + θn) amperes

The effective or rms value of this current is given by

I = √
(mean value of i2)

i2 = [I1m sin(ωt + θ1) + I2m sin(2ωt + θ2)

+ · · · + Inm sin(nωt + θn)]2

i.e. i2 = I2
1m sin2 (ωt + θ1) + I2

2m sin2 (2ωt + θ2)

+ · · · + I2
nm sin2 (nωt + θn)

+ 2I1mI2m sin(ωt + θ1) sin(2ωt + θ2) + · · ·
(36.16)

Without writing down all terms involved when squaring
current i, it can be seen that two types of term result, these
being:

(i) terms such as I2
1m sin2 (ωt + θ1), I2

2m sin2 (2ωt + θ2),
and so on, and

(ii) terms such as 2I1mI2m sin(ωt + θ1) sin(2ωt + θ2), i.e.
products of different harmonics.

The mean value of i2 is the sum of the mean values of each
term in equation (36.16).

Taking an example of the first type, say I2
1m sin2 (ωt + θ1),

the mean value over one cycle of the fundamental is deter-
mined using integral calculus:

Mean value of I2
1m sin2 (ωt + θ1)

= 1

2π

∫ 2π

0
I2
1m sin2(ωt + θ1) d(ωt)

(since the mean value of y = f (x) between x = a and x = b

is given by
1

b − a

∫ b
a y dx)

= I2
1m

2π

∫ 2π

0

{
1 − cos 2(ωt + θ1)

2

}
d(ωt),

(since cos 2x = 1 − 2 sin2 x, from which

sin2 x = (1 − cos 2x)/2),

= I2
1m

4π

[
ωt − sin 2(ωt + θ1)

2

]2π

0

= I2
1m

4π

[(
2π − sin 2(2π + θ1)

2

)
−

(
0 − sin 2(0 + θ1)

2

)]

= I2
1m

4π

[
2π − sin 2(2π + θ1)

2
+ sin 2θ1

2

]
= I2

1m

4π
(2π)

= I2
1m

2

Hence it follows that the mean value of I2
nm sin2 (nωt + θn)

is given by I2
nm/2

Taking an example of the second type, say,

2I1mI2m sin(ωt + θ1) sin(2ωt + θ2)

the mean value over one cycle of the fundamental is also
determined using integration:

Mean value of 2I1mI2m sin(ωt + θ1) sin(2ωt + θ2)

= 1

2π

∫ 2π

0
2I1mI2m sin(ωt + θ1) sin(2ωt + θ2)d(ωt)

= I1mI2m

π

∫ 2π

0

1

2
{cos (ωt + θ2 − θ1)

− cos (3ωt + θ2 + θ1)}d(ωt)

(since sin A sin B = 1
2 [ cos (A − B) − cos (A + B)],

and taking A = (2ωt + θ2) and B = (ωt + θ1))

= I1mI2m

2π

[
sin(ωt + θ2 − θ1) − sin(3ωt + θ2 + θ1)

3

]2π

0

= I1mI2m

2π

[(
sin(2π + θ2 − θ1) − sin(6π + θ2 + θ1)

3

)

−
(

sin(θ2 − θ1) − sin(θ2 + θ1)

3

)]

= I1mI2m

2π
[0] = 0 (36.17)

Hence it follows that all such products of different
harmonics will have a mean value of zero. Thus

mean value of i2 = I2
1m

2
+ I2

2m

2
+ · · · + I2

nm

2

Hence the rms value of current,

I =
√ (

I2
1m

2
+ I2

2m

2
+ · · · + I2

nm

2

)

i.e. I =
√ (

I2
1m + I2

2m + · · · + I2
nm

2

)
(36.18)
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For a sine wave, rms value = (1/
√

2) maximum value,
i.e. maximum value = √

2 rms value. Hence, for example,
I1m = √

2I1, where I1 is the rms value of the fundamen-
tal component, and (I1m)2 = (

√
2I1)2 = 2I2

1 . Thus, from
equation (36.18), rms current

I =
√ (

2I2
1 + 2I2

2 + · · · + 2I2
n

2

)

i.e. I = √
(I2

1 + I2
2 + · · · + I2

n) (36.19)

where I1, I2, . . . , In are the rms values of the respective
harmonics.
By similar reasoning, for a complex voltage waveform
represented by

v = V1m sin(ωt + �1) + V2m sin(2ωt + �2)

+ · · · + Vnm sin(nωt + �n) volts

the rms value of voltage, V , is given by

V =
√ (

V2
1m + V2

2m + · · · + V2
nm

2

)
(36.20)

or V = √
(V2

1 + V2
2 + · · · + V2

n) (36.21)

where V1, V2, …, Vn are the rms values of the respective
harmonics.

From equations (36.18) to (36.21) it is seen that the rms
value of a complex wave is unaffected by the relative phase
angles of the harmonic components. For a d.c. current or
voltage, the instantaneous value, the mean value and the
maximum value are equal. Thus, if a complex waveform
should contain a d.c. component I0, then the rms current
I is given by

I =
√ (

I2
0 + I2

1m + I2
2m + · · · + I2

nm

2

)

or I = √
(I2

0 + I2
1 + I2

2 + · · · + I2
n) (36.22)

Mean value

The mean or average value of a complex quantity whose
negative half-cycle is similar to its positive half-cycle is
given, for current, by

Iav = 1
π

∫ π

0
i d(ωt) (36.23)

and for voltage by vav = 1
π

∫ π

0
v d(ωt) (36.24)

each waveform being taken over half a cycle.

Unlike rms values, mean values are affected by the
relative phase angles of the harmonic components.

Form factor

The form factor of a complex waveform whose negative
half-cycle is similar in shape to its positive half-cycle is
defined as:

form factor = rms value of the waveform
mean value

(36.25)

where the mean value is taken over half a cycle.
Changes in the phase displacement of the harmon-

ics may appreciably alter the form factor of a complex
waveform.

Problem 13. Determine the rms value of the current
waveform represented by

i = 100 sin ωt + 20 sin(3ωt + π/6)
+ 10 sin (5ωt + 2π/3)mA

From equation (36.18), the rms value of current is given
by

I =
√ (

1002 + 202 + 102

2

)
=

√ (
10000 + 400 + 100

2

)

= 72.46 mA

Problem 14. A complex voltage is represented by

v = (10 sin ωt + 3 sin 3ωt + 2 sin 5ωt) volts

Determine for the voltage, (a) the rms value, (b) the
mean value and (c) the form factor.

(a) From equation (36.20), the rms value of voltage is
given by

V =
√ (

102 + 32 + 22

2

)
=

√ (
113

2

)
= 7.52 V

(b) From equation (36.24), the mean value of voltage is
given by

Vav = 1

π

∫ π

0
(10 sin ωt + 3 sin 3ωt + 2 sin 5ωt)d(ωt)

= 1

π

[
−10 cos ωt − 3 cos 3ωt

3
− 2 cos 5ωt

5

]π

0

= 1

π

[(
−10 cos π − cos 3π − 2

5
cos 5π

)

−
(

−10 cos 0 − cos 0 − 2

5
cos 0

)]
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= 1

π

[(
10 + 1 + 2

5

)
−

(
−10 − 1 − 2

5

)]

= 22.8

π
= 7.26 V

(c) From equation (36.25), form factor is given by

form factor = rms value of the waveform

mean value

= 7.52

7.26
= 1.036

Problem 15. A complex voltage waveform which has
an rms value of 240V contains 30% third harmonic and
10% fifth harmonic, both of the harmonics being ini-
tially in phase with each other. (a) Determine the rms
value of the fundamental and each harmonic. (b) Write
down an expression to represent the complex volt-
age waveform if the frequency of the fundamental is
31.83 Hz.

(a) From equation (36.21), rms voltage

V = √
(v2

1 + V2
3 + V2

5 )

Since V3 = 0.30 V1, V5 = 0.10 V1 and

V = 240V, then

240 = √
[V2

1 + (0.30 V1)2 + (0.10 V1)2]

i.e. 240 = √
(1.10 V2

1 ) = 1.049 V1

from which the rms value of the fundamental,

V1 = 240/1.049 = 228.8V

Rms value of the third harmonic,

V3 = 0.30 V1 = (0.30)(228.8) = 68.64V

and the rms value of the fifth harmonic,

V5 = 0.10 V1 = (0.10)(228.8) = 22.88V

(b) Maximum value of the fundamental,

V1m = √
2V1 = √

2(228.8) = 323.6V

Maximum value of the third harmonic,

V3m = √
2V3 = √

2(68.64) = 97.07V

Maximum value of the fifth harmonic,

V5m = √
2V5 = √

2(22.88) = 32.36V

Since the fundamental frequency is 31.83 Hz,
the fundamental voltage may be written as
323.6 sin 2π(31.83)t, i.e. 323.6 sin 200t volts
The third harmonic component is 97.07 sin 600t volts
and the fifth harmonic

component is 32.36 sin 1000t volts. Hence an expres-
sion representing the complex voltage waveform is
given by

v = (323.6 sin 200t + 97.07 sin 600t

+32.36 sin 1000t)volts

Now try the following exercise.

Exercise 125 Further problems on r.m.s. values,
mean values and form factor of complex waves

1. Determine the rms value of a complex current wave
represented by

i = 3.5 sin ωt + 0.8 sin
(

3ωt − π

3

)

+ 0.2 sin
(

5ωt + π

2

)
A

[2.54A]

2. Derive an expression for the rms value of a complex
voltage waveform represented by

v = V0 + V1m sin(ωt + φ1)

+V3m sin(3ωt + φ3) volts

Calculate the rms value of a voltage waveform
given by

v = 80 + 240 sin ωt + 50 sin
(

2ωt + π

4

)

+ 20 sin
(

4ωt − π

3

)
volts

[191.4V]

3. A complex voltage waveform is given by

v =150 sin 314t + 40 sin
(

942t − π

2

)

+ 30 sin(1570t + π) volts

Determine for the voltage (a) the third harmonic
frequency, (b) its rms value, (c) its mean value and
(d) the form factor.

[(a) 150 Hz (b) 111.8V (c) 91.7V (d) 1.22]

4. A complex voltage waveform has an rms value of
220V and it contains 25% third harmonic and 15%
fifth harmonic. (a) Determine the rms value of the
fundamental and each harmonic. (b) Write down an
expression to represent the complex voltage wave-
form if the frequency of the fundamental is 60 Hz.

[(a) 211.2V, 52.8V, 31.7V;
(b) v = 298.7 sin 377t + 74.7 sin 1131t

+ 44.8 sin 1885tV]
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5. Define the term ‘form factor’ when applied to a
symmetrical complex waveform. Calculate the
form factor of an alternating voltage which is
represented by

v = (50 sin 314t + 15 sin 942t + 6 sin 1570t) volts

[1.038]

36.7 Power associated with complex waves

Let a complex voltage wave be represented by

v = V1m sin ωt + V2m sin 2ωt + V3m sin 3ωt + · · · ,

and when this is applied to a circuit let the resulting current
be represented by

i = I1m sin(ωt − φ1) + I2m sin(2ωt − φ2)
+ I3m sin(3ωt − φ3) + · · ·

(Since the phase angles are lagging, the circuit in this case
is inductive.) At any instant in time the power p supplied
to the circuit is given by p = vi, i.e.

p = (V1m sin ωt + V2m sin 2ωt + · · · )(I1m sin(ωt − φ1)

+ I2m sin(2ωt − φ2) + · · · )

= V1mI1m sin ωt sin(ωt − φ1)

+V1mI2m sin ωt sin(2ωt − φ2) + · · ·
(36.26)

The average or active power supplied over one cycle is
given by the sum of the average values of each individ-
ual product term taken over one cycle. It is seen from
equation (36.17) that the average value of product terms
involving harmonics of different frequencies is always
zero. This means therefore that only products of volt-
age and current harmonics of the same frequency need
be considered in equation (36.26).
Taking the first term, for example, the average power P1
over one cycle of the fundamental is given by

P1 = 1

2π

∫ 2π

0
V1mI1m sin ωt sin(ωt − φ1)d(ωt)

= V1mI1m

2π

∫ 2π

0

1

2
{cos φ1 − cos (2ωt − φ1)}d(ωt)

since sin A sin B = 1

2
{cos (A − B) − cos (A + B)},

= V1mI1m

4π

[
(ωt) cos φ1 − sin(2ωt − φ1)

2

]2π

0

= V1mI1m

4π

[(
2π cos φ1 − sin(4π − φ1)

2

)

−
(

0 − sin( − φ1)

2

)]

= V1mI1m

4π
[2π cos φ1] = V1mI1m

2
cos φ1

V1m = √
2V1 and I1m = √

2I1, where V1 and I1 are rms
values, hence

P1 = (
√

2V1)(
√

2I1)

2
cos φ1

i.e. P1 = V1I1 cos φ1 watts

Similarly, the average power supplied over one cycle of
the fundamental for the second harmonic is V2I2 cos �2,
and so on. Hence the total power supplied by complex
voltages and currents is the sum of the powers supplied
by each harmonic component acting on its own. The aver-
age power P supplied for one cycle of the fundamental is
given by

P = V1I1 cos φ1 + V2I2 cos φ2 + · · · + VnIn cos φn

(36.27)

If the voltage waveform contains a d.c. component V0
which causes a direct current component I0, then the aver-
age power supplied by the d.c. component is V0I0 and the
total average power P supplied is given by

P = V0I0 +V1I1 cos φ1 +V2I2 cos φ2 +· · ·+VnIn cos φn

(36.28)

Alternatively, if R is the equivalent series resistance of a
circuit then the total power is given by

P = I2
0 R + I2

1 R + I2
2 R + I2

3 R + · · ·

i.e. P = I2R (36.29)

where I is the rms value of current i.

Power factor

When harmonics are present in a waveform the overall
circuit power factor is defined as

overall power factor

= total power supplied

total rms voltage × total rms current

= total power

volt amperes
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i.e. p.f . = V1I1 cos φ1 + V2I2 cos φ2 + · · ·
VI

(36.30)

Problem 16. Determine the average power in a 20 �
resistance if the current i flowing through it is of the
form

i = (12 sin ωt + 5 sin 3ωt + 2 sin 5ωt) amperes

From equation (36.18), rms current,

I =
√ (

122 + 52 + 22

2

)
= 9.30 A

From equation (36.29), average power,

P = I2R = (9.30)2(20) = 1730 W or 1.73 kW

Problem 17. A complex voltage v given by

v = 60 sin ωt + 15 sin
(

3ωt + π

4

)

+ 10 sin
(

5ωt − π

2

)
volts

is applied to a circuit and the resulting current i is
given by

i = 2 sin
(
ωt − π

6

)
+ 0.3 sin

(
3ωt − π

12

)

+ 0.1 sin

(
5ωt − 8π

9

)
amperes

Determine (a) the total active power supplied to the
circuit, and (b) the overall power factor.

(a) From equation (36.27), total power supplied,

P = V1I1 cos φ1 + V3I3 cos φ3 + V5I5 cos φ5

=
(

60√
2

) (
2√
2

)
cos

(
0 −

(
−π

6

))

+
(

15√
2

) (
0.3√

2

)
cos

(π

4
−

(
− π

12

))

+
(

10√
2

) (
0.1√

2

)
cos

(
−π

2
−

(
−8π

9

))

= 51.96 + 1.125 + 0.171 = 53.26 W

(b) From equation (36.18), rms current,

I =
√ (

22 + 0.32 + 0.12

2

)
= 1.43 A

and from equation (36.20), rms voltage,

V =
√ (

602 + 152 + 102

2

)
= 44.30 V

From equation (36.30),

overall power factor = 53.26

(44.30)(1.43)
= 0.841

(With a sinusoidal waveform,

power factor = power

volt-amperes
= VI cos φ

VI
= cos φ

Thus power factor depends upon the value of phase angle
φ, and is lagging for an inductive circuit and leading for
a capacitive circuit. However, with a complex waveform,
power factor is not given by cos φ. In the expression for
power in equation (36.27), there are n phase-angle terms,
φ1, φ2,…, φn, all of which may be different. It is for this
reason that it is not possible to state whether the overall
power factor is lagging or leading when harmonics are
present.)

Now try the following exercise.

Exercise 126 Further problems on power associ-
ated with complex waves

1. Determine the average power in a 50 � resistor if
the current i flowing through it is represented by

i = (140 sin ωt + 40 sin 3ωt + 20 sin 5ωt) mA
[0.54 W]

2. A voltage waveform represented by

v = 100 sin ωt + 22 sin
(

3ωt − π

6

)

+ 8 sin
(

5ωt − π

4

)
volts

is applied to a circuit and the resulting current i is
given by

i = 5 sin
(
ωt + π

3

)
+ 1.91 sin 3ωt

+0.76 sin(5ωt − 0.452) amperes

Calculate (a) the total active power supplied to the
circuit, and (b) the overall power factor.

[(a) 146.1 W (b) 0.526]
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3. Determine the rms voltage, rms current and average
power supplied to a network if the applied voltage
is given by

v =100 + 50 sin
(

400t − π

3

)

+ 40 sin
(

1200t − π

6

)
volts

and the resulting current is given by

i = 0.928 sin(400t + 0.424)
+ 2.14 sin(1200t +0.756) amperes

[109.8V, 1.65A, 14.60 W]

4. A voltage v = 40 + 20 sin 300t + 8 sin 900t +
3 sin 1500t volts is applied to the terminals of a
circuit and the resulting current is given by

i = 4 + 1.715 sin(300t − 0.540)

+ 0.389 sin (900t − 1.064)

+ 0.095 sin(1500t − 1.249)A

Determine (a) the rms voltage, (b) the rms current
and (c) the average power.

[(a) 42.85V (b) 4.189A (c) 175.5 W]

36.8 Harmonics in single-phase circuits

When a complex alternating voltage wave, i.e. one con-
taining harmonics, is applied to a single-phase circuit
containing resistance, inductance and/or capacitance (i.e.
linear circuit elements), then the resulting current will also
be complex and contain harmonics.
Let a complex voltage v be represented by
v = V1m sin ωt + V2m sin 2ωt + V3m sin 3ωt + · · ·

(a) Pure resistance

The impedance of a pure resistance R is independent of
frequency and the current and voltage are in phase for
each harmonic. Thus the general expression for current i
is given by

i = v

R
= V1m

R
sin ωt + V2m

R
sin 2ωt

+V3m

R
sin 3ωt + · · · (36.31)

The percentage harmonic content in the current wave is
the same as that in the voltage wave. For example, the per-
centage second harmonic content from equation (36.31) is

V2m/R

V1m/R
× 100%, i.e.

V2m

V1m
× 100%

the same as for the voltage wave. The current and voltage
waveforms will therefore be identical in shape.

(b) Pure inductance

The impedance of a pure inductance L, i.e. inductive reac-
tance XL(= 2πfL), varies with the harmonic frequency
when voltage v is applied to it. Also, for every harmonic
term, the current will lag the voltage by 90◦ or π/2 rad.
The current i is given by

i = v

XL
= V1m

ωL
sin

(
ωt − π

2

)
+ V2m

2ωL
sin

(
2ωt − π

2

)

+ V3m

3ωL
sin

(
3ωt − π

2

)
+ · · ·

(36.32)

since for the nth harmonic the reactance is nωL.
Equation (36.32) shows that for, say, the nth harmonic,

the percentage harmonic content in the current waveform
is only 1/n of the corresponding harmonic content in the
voltage waveform.

If a complex current contains a d.c. component then the
direct voltage drop across a pure inductance is zero.

(c) Pure capacitance

The impedance of a pure capacitance C, i.e. capacitive
reactance XC(= 1/(2πfC)), varies with the harmonic fre-
quency when voltage v is applied to it. Also, for each
harmonic term the current will lead the voltage by 90◦ or
π/2 rad. The current i is given by

i = v

XC
= V1m

1/ωC
sin

(
ωt + π

2

)
+ V2m

1/2ωC
sin

(
2ωt + π

2

)

+ V3m

1/3ωC
sin

(
3ωt + π

2

)
+ · · · ,

since for the nth harmonic the reactance is 1/(nωC).
Hence current,

i = V1m(ωC) sin
(
ωt + π

2

)
+ V2m(2ωC) sin

(
2ωt + π

2

)

+ V3m(3ωC) sin
(

3ωt + π

2

)
+ · · ·

(36.33)

Equation (36.33) shows that the percentage harmonic con-
tent of the current waveform is n times larger for the nth
harmonic than that of the corresponding harmonic voltage.

If a complex current contains a d.c. component then
none of this direct current will flow through a pure capac-
itor, although the alternating components of the supply
still operate.
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Problem 18. A complex voltage waveform repre-
sented by

v = 100 sin ωt + 30 sin
(

3ωt + π

3

)

+10 sin
(

5ωt − π

6

)
volts

is applied across (a) a pure 40 � resistance, (b) a pure
7.96 mH inductance, and (c) a pure 25 µF capacitor.
Determine for each case an expression for the current
flowing if the fundamental frequency is 1 kHz.

(a) From equation (36.31),

current i = v

R
= 100

40
sin ωt + 30

40
sin

(
3ωt + π

3

)

+ 10

40
sin

(
5ωt − π

6

)

i.e. i = 2.5 sin ωt + 0.75 sin
(

3ωt + π

3

)

+ 0.25 sin
(

5ωt − π

6

)
amperes

(b) At the fundamental frequency,

ωL = 2π(1000) (7.96 × 10−3) = 50 �.

From equation (36.19),

current i = 100

50
sin

(
ωt − π

2

)

+ 30

3 × 50
sin

(
3ωt + π

3
− π

2

)

+ 10

5 × 50
sin

(
5ωt − π

6
− π

2

)

i.e.

current i = 2 sin
(
ωt − π

2

)
+ 0.20 sin

(
3ωt − π

6

)

+ 0.04 sin
(

5ωt − 2π

3

)
amperes

(c) At the fundamental frequency,
ωC = 2π(1000) (25 × 10−6) = 0.157.
From equation (36.33),

current i = 100(0.157) sin
(
ωt + π

2

)

+ 30(3 × 0.157) sin
(

3ωt + π

3
+ π

2

)

+ 10(5 × 0.157) sin
(

5ωt − π

6
+ π

2

)

i.e. i = 15.70 sin
(
ωt + π

2

)
+ 14.13 sin

(
3ωt + 5π

6

)

+ 7.85 sin
(

5ωt + π

3

)
amperes

Problem 19. A supply voltage v given by

v = (240 sin 314t + 40 sin 942t + 30 sin 1570t) volts

is applied to a circuit comprising a resistance of 12 �
connected in series with a coil of inductance 9.55 mH.
Determine (a) an expression to represent the instanta-
neous value of the current, (b) the rms voltage, (c) the
rms current, (d) the power dissipated, and (e) the
overall power factor.

(a) The supply voltage comprises a fundamental,
240 sin 314t, a third harmonic, 40 sin 942t (third har-
monic since 942 is 3 × 314) and a fifth harmonic,
30 sin 1570t.

Fundamental

Since the fundamental frequency, ω1 = 314 rad/s,
inductive reactance,

XL1 = ω1L = (314)(9.55 × 10−3) = 3.0 �

Hence impedance at the fundamental frequency,

Z1 = (12 + j3.0) � = 12.37∠14.04◦ �

Maximum current at fundamental frequency

I1m = V1m

Z1
= 240∠0◦

12.37∠14.04◦

= 19.40∠−14.04◦ A

14.04◦ = 14.04 × (π/180) rad = 0.245 rad, thus

I1m = 19.40∠−0.245 A

Hence the fundamental current
i1 = 19.40 sin(314t − 0.245)A

(Note that with an expression of the form
R sin (ωt ± α), ωt is an angle measured in radi-
ans, thus the phase displacement, α, should also be
expressed in radians.)

Third harmonic

Since the third harmonic frequency, ω3 = 942 rad/s,
inductive reactance,

XL3 = 3XL1 = 9.0 �
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Hence impedance at the third harmonic frequency,

Z3 = (12 + j9.0)� = 15∠36.87◦�

Maximum current at the third harmonic frequency,

I3m = V3m

Z3
= 40∠0◦

15∠36.87◦

= 2.67∠−36.87◦ A

= 2.67∠−0.644 A

Hence the third harmonic current,
i3 = 2.67 sin(942t − 0.644)A

Fifth harmonic

Inductive reactance, XL5 = 5XL1 = 15 �
Impedance Z5 = (12 + j15)� = 19.21∠51.34◦ �

Current, I5m = V5m

Z5
= 30∠0◦

19.21∠51.34◦

= 1.56∠−51.34◦ A = 1.56∠−0.896 A

Hence the fifth harmonic current,

i5 = 1.56 sin(1570t − 0.896)A

Thus an expression to represent the instantaneous
current, i, is given by i = i1 + i3 + i5 i.e.

i=19.40 sin(314t−0.245) +2.67sin(942t−0.644)

+ 1.56 sin(1570t − 0.896) amperes

(b) From equation (36.20), rms voltage,

V =
√ (

2402 + 402 + 302

2

)
= 173.35 V

(c) From equation (36.18), rms current,

I =
√ (

19.402 + 2.672 + 1.562

2

)
= 13.89 A

(d) From equation (36.29), power dissipated,

P = I2R = (13.89)2(12) = 2315 W or 2.315 kW

(Alternatively, equation (36.27) may be used to
determine power.)

(e) From equation (36.30),

overall power factor = 2315

(173.35)(13.89)
= 0.961

Problem 20. An e.m.f. is represented by

e = 50 + 200 sin ωt + 40 sin
(

2ωt − π

2

)

+ 5 sin
(

4ωt + π

4

)
volts,

the fundamental frequency being 50 Hz. The e.m.f. is
applied across a circuit comprising a 100 µF capacitor
connected in series with a 50 � resistor. Obtain an
expression for the current flowing and hence determine
the rms value of current.

D.c. component

In a d.c. circuit no current will flow through a capacitor.
The current waveform will not possess a d.c. compo-
nent even though the e.m.f. waveform has a 50V d.c.
component. Hence i0 = 0.

Fundamental

Capacitive reactance,

XC1 = 1

2πfC
= 1

2π(50)(100 × 10−6)
= 31.83 �

Impedance Z1 = (50 − j31.83) � = 59.27∠−32.48◦ �

I1m = V1m

Z1
= 200∠0◦

59.27∠−32.48◦ = 3.374∠32.48◦ A

= 3.374∠0.567 A

Hence the fundamental current,
i1 = 3.374 sin(ωt + 0.567)A

Second harmonic

Capacitive reactance,

XC2 = 1

2(2πfC)
= 31.83

2
= 15.92 �

Impedance Z2 = (50 − j15.92)� = 52.47∠−17.66◦ �

I2m = V2m

Z2
= 40∠−π/2

52.47∠−17.66◦

= 0.762∠
(
−π

2
− (−17.66◦)

)
= 0.762∠−72.34◦ A

Hence the second harmonic current,

i2 = 0.762 sin(2ωt − 72.34◦)A

= 0.762 sin(2ωt − 1.263)A
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Fourth harmonic

Capacitive reactance, XC4 = 1

4
XC1 = 31.83

4
= 7.958 �

Impedance, Z4 = (50 − j7.958)� = 50.63∠−9.04◦ �

I4m = V4m

Z4
= 5∠π/4

50.63∠−9.04◦

= 0.099∠(π/4 − (−9.04◦))

= 0.099∠54.04◦ A

Hence the fourth harmonic current,

i4 = 0.099 sin(4ωt + 54.04◦)A
= 0.099 sin(4ωt + 0.943)A

An expression for current flowing is therefore given by
i = i0 + i1 + i2 + i4
i.e.

i = 3.374 sin(ωt + 0.567) + 0.762 sin(2ωt − 1.263)

+ 0.099 sin(4ωt + 0.943) amperes

From equation (36.18), rms current,

I =
√ (

3.3742 + 0.7622 + 0.0992

2

)
= 2.45A

Now try the following exercise.

Exercise 127 Further problems on harmonics in
single-phase circuits

1. A complex voltage waveform represented by

v = 240 sin ωt + 60 sin
(

3ωt − π

4

)

+ 30 sin
(

5ωt + π

3

)
volts

is applied across (a) a pure 50 � resistance, (b) a
pure 4.974 µF capacitor, and (c) a pure 15.92 mH
inductance. Determine for each case an expression
for the current flowing if the fundamental frequency
is 400 Hz.[

(a) i = 4.8 sin ωt + 1.2 sin
(

3ωt − π

4

)

+ 0.6 sin
(

5ωt + π

3

)
A

(b) i = 3 sin
(
ωt + π

2

)
+ 2.25 sin

(
3ωt + π

4

)

+ 1.875 sin

(
5ωt + 5π

6

)
A

(c) i = 6 sin
(
ωt − π

2

)
+ 0.5 sin

(
3ωt − 3π

4

)

+ 0.15 sin
(

5ωt − π

6

)
A

]

2. A complex current given by

i = 5 sin
(
ωt + π

3

)
+ 8 sin

(
3ωt + 2π

3

)
mA

flows through a pure 2000 pF capacitor. If the fre-
quency of the fundamental component is 4 kHz,
determine (a) the rms value of current, (b) an
expression for the p.d. across the capacitor, and
(c) the rms value of voltage.

[(a) 6.671 mA (b) v = 99.47 sin(ωt − (π/6))
+ 53.05 sin(3ωt + (π/6))V (c) 79.71V]

3. A complex voltage, v, given by

v = 200 sin ωt + 42 sin 3ωt + 25 sin 5ωt volts

is applied to a circuit comprising a 6 � resistance
in series with a coil of inductance 5 mH. Deter-
mine, for a fundamental frequency of 50 Hz, (a) an
expression to represent the instantaneous value of
the current flowing, (b) the rms voltage, (c) the rms
current, (d) the power dissipated, and (e) the overall
power factor.

[(a) i = 32.25 sin(314t − 0.256) +
5.50 sin(942t − 0.666)

+ 2.53 sin(1570t − 0.918)A
(b) 145.6V (c) 23.20A (d) 3.23 kW (e) 0.956]

4. An e.m.f. e is given by

e = 40 + 150 sin ωt + 30 sin
(

2ωt − π

4

)

+ 10 sin
(

4ωt − π

3

)
volts

the fundamental frequency being 50 Hz. The e.m.f.
is applied across a circuit comprising a 100 � resist-
ance in series with a 15 µF capacitor. Determine
(i) the rms value of voltage, (ii) an expression for
the current flowing and (iii) the rms value of current.

[(i) 115.5V (ii) i = 0.639 sin(ωt + 1.130) +
0.206 sin(2ωt + 0.030)

+ 0.088 sin(4ωt − 0.559)A (iii) 0.479A]

5. A circuit comprises a 100 � resistance in series with
a 1 mH inductance. The supply voltage is given by

v = 40 + 200 sin ωt + 50 sin
(

3ωt + π

4

)

+ 15 sin
(

5ωt + π

6

)
volts

where ω = 105 rad/s. Determine for the circuit
(a) an expression to represent the current flowing,
(b) the rms value of current and (c) the power
dissipated.

[(a) i = 0.40 + 1.414 sin (ωt − (π/4)) +
0.158 sin (3ωt − 0.464)

+ 0.029 sin(5ωt − 0.850) (b) 1.08A (c) 117 W]
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36.9 Further worked problems on harmonics in
single phase circuits

Problem 21. A complex voltage v is represented by:

v = 25 + 100 sin ωt + 40 sin
(

3ωt + π

6

)

+ 20 sin
(

5ωt + π

12

)
volts

where ω = 104 rad/s. The voltage is applied to a series
circuit comprising a 5.0 � resistance and a 500 µH
inductance.

Determine (a) an expression to represent the current
flowing in the circuit, (b) the rms value of current, cor-
rect to two decimal places, and (c) the power dissipated
in the circuit, correct to three significant figures.

(a) d. c. component

Inductance has no effect on a steady current. Hence
the d.c. component of the current, i0, is given by

i0 = v0

R
= 25

5.0
= 5.0 A

Fundamental

Inductive reactance,

XL1 = ωL = (104)(500 × 10−6) = 5 �

Impedance, Z1 = (5 + j5)� = 7.071∠45◦ �

I1m = V1m

Z1
= 100∠0◦

7.07∠45◦ = 14.14∠−45◦A

= 14.14∠−π/4A or 14.14∠−0.785 A

Hence fundamental current,
i1 = 14.14 sin(ωt − 0.785)A

Third harmonic

Inductive reactance at third harmonic frequency,

XL3 = 3XL1 = 15 �

Impedance, Z3 = (5 + j15) � = 15.81∠71.57◦�

I3m = V3m

Z3
= 40∠π/6

15.81∠71.57◦ = 2.53∠−41.57◦A

= 2.53∠−0.726 A

Hence the third harmonic current,

i3 = 2.53 sin(3ωt − 41.57◦)A
= 2.53 sin(3ωt − 0.726)A

Fifth harmonic

Inductive reactance at fifth harmonic frequency,
XL5 = 5XL1 = 25 �

Impedance, Z5 = (5 + j25)� = 25.495∠78.69◦�

I5 = V5m

Z5
= 20∠π/12

25.495∠78.69◦ = 0.784∠−63.69◦A

= 0.784∠−1.112 A

Hence the fifth harmonic current,

i5 = 0.784 sin (5ωt − 63.69◦)A

= 0.784 sin(5ωt − 1.112)A

Thus current, i = i0 + i1 + i3 + i5, i.e.

i = 5 + 14.14 sin(ωt − 0.785)

+ 2.43 sin(3ωt − 0.726)

+ 0.784 sin(5ωt − 1.112)A

(b) From equation (36.22), rms current,

I =
√ (

5.02 + 14.142 + 2.532 + 0.7842

2

)

= 11.3348 A = 11.33A,

correct to two decimal places.

(c) From equation (36.29), power dissipated,

P = I2R = (11.3348)2(5.0) = 642.4 W

= 642 W, correct to three significant figures

(Alternatively, from equation (36.28),

power P = (25)(5.0) +
(

100√
2

) (
14.14√

2

)
cos 45◦

+
(

40√
2

) (
2.53√

2

)
cos 71.57◦

+
(

20√
2

) (
0.784√

2

)
cos 78.69◦

= 125 + 499.92 + 16.00 + 1.54

= 642.46 W or 642 W,

(correct to three significant figures,

as above.)

Problem 22. The voltage applied to a particular
circuit comprising two components connected in
series is given by

v = (30 + 40 sin 103t + 25 sin 2 × 103t

+ 15 sin 4 × 103t) volts
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and the resulting current is given by

i = 0.743 sin(103t + 1.190)

+ 0.781 sin(2 × 103t + 0.896)

+ 0.636 sin(4 × 103t + 0.559) A

Determine (a) the average power supplied, (b) the
type of components present, and (c) the values of the
components.

(a) From equation (36.28), the average power P is
given by

P = (30)(0) +
(

40√
2

) (
0.743√

2

)
cos 1.190

+
(

25√
2

) (
0.781√

2

)
cos 0.896

+
(

15√
2

) (
0.636√

2

)
cos 0.559

i.e. P = 0 + 5.523 + 6.099 + 4.044 = 15.67 W

(b) The expression for the voltage contains a d.c. com-
ponent of 30V. However there is no corresponding
term in the expression for current. This indicates that
one of the components is a capacitor (since in a d.c.
circuit a capacitor offers an infinite impedance to a
direct current). Since power is delivered to the circuit
the other component is a resistor.

(c) From equation (36.8), rms current,

I =
√ (

0.7432 + 0.7812 + 0.6362

2

)
= 0.885 A

Average power P = I2R, from which,

resistance R = P

I2 = 15.67

(0.885)2 = 20 �

At the fundamental frequency, ω = 103 rad/s

impedance |Z1| = V1m

I1m
= 40

0.743
= 53.84 �

Impedance |Z1| =√
(R2 + X2

C1), from which

XC1 = √
(Z2

1 − R2) = √
(53.842 − 202) = 50 �

Hence 1/ωC = 50, from which

capacitance C = 1

ω(50)
= 1

103(50)
= 20 µF

Problem 23. In the circuit shown in Figure 36.28
the supply voltage is given by v = 300 sin 314t +
120 sin (942t + 0.698) volts. Determine (a) an expres-
sion for the supply current, i, (b) the percentage
harmonic content of the supply current, (c) the total
power dissipated, (d) an expression for the p.d. shown
as v1, and (e) an expression for current ic.

Figure 36.28

(a) Capacitive reactance of the 2.123 µF capacitor at the
fundamental frequency is given by

XC1 = 1

(314)(2.123 × 10−6)
= 1500 �

At the fundamental frequency the total circuit
impedance, Z1, is given by

Z1 = 560 + (2000)(−j1500)

(2000 − j1500)

= 560 + 3 × 106∠−90◦

2500∠−36.87◦

= 560 + 1200∠−53.13◦ = 560 + 720 − j960

= (1280 − j960)� = 1600∠−36.87◦�

= 1600∠−0.644 �

Since for the nth harmonic the capacitive reactance
is 1/(nωC), the capacitive reactance of the third har-
monic is 1

3 XC1 = 1
3 (1500) = 500 �. Hence at the

third harmonic frequency the total circuit impedance,
Z3, is given by

Z1 = 560 + (2000)(−j500)

(2000 − j500)

= 560 + 106∠−90◦

2061.55∠−14.04◦
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= 560 + 485.07∠−75.96◦

= 560 + 117.68 − j470.58

= (677.68 − j470.58)� = 825∠−34.78◦�
= 825∠−0.607 �

The fundamental current

i1 = v1

Z1
= 300∠0

1600∠−0.644
= 0.188∠0.644 A

The third harmonic current

i3 = v3

Z3
= 120∠0.698

825∠−0.607
= 0.145∠1.305 A

Thus, supply current,

i = 0.188 sin (314t + 0.644)

+ 0.145 sin (942t + 1.305)A

(b) Percentage harmonic content of the supply current is
given by

0.145

0.188
× 100% = 77%

(c) From equation (36.27), total active power

P =
(

300√
2

) (
0.188√

2

)
cos 0.644

+
(

120√
2

) (
0.145√

2

)
cos 0.607

i.e. P = 22.55 + 7.15 = 29.70 W

(d) Voltage v1 = iR = 560[0.188 sin(314t + 0.644)

+ 0.145 sin (942t + 1.305)]

i.e. v1 = 105.3 sin (314t + 0.644)

+ 81.2 sin (942t + 1.305) volts

(e) Current, ic = i1

(
R

R − jXC1

)
+ i3

(
R

R − jXC3

)

by current division

= (0.188∠0.644)

(
2000

2000 − j1500

)

+ (0.145∠1.305)

(
2000

2000 − j500

)

= (0.188∠0.644)

(
2000

2500∠−0.644

)

+ (0.145∠1.305)

(
2000

2061.55∠−0.245

)

= 0.150∠1.288 + 0.141∠1.550

Hence ic = 0.150 sin (314t + 1.288)
+ 0.141 sin(942t + 1.550)A

Now try the following exercise.

Exercise 128 Further problems on harmonics in
single-phase circuits

1. The e.m.f. applied to a circuit comprising two
components connected in series is given by

v = 50 + 150 sin(2 × 103t) + 40 sin(4 × 103t)

+ 20 sin(8 × 103t) volts

and the resulting current is given by

i = 1.011 sin(2 × 103t + 1.001)

+ 0.394 sin(4 × 103t + 0.663)

+ 0.233 sin(8 × 103t + 0.372)A

Determine for the circuit (a) the average power
supplied, and (b) the value of the two circuit
components.

[(a) 49.3 W (b) R = 80 �, C = 4 µF]

2. A coil having inductance L and resistance R is
supplied with a complex voltage given by

v = 240 sin ωt + V3 sin
(

3ωt + π

3

)

+ V5 sin
(

5ωt − π

12

)
volts

The resulting current is given by

i = 4.064 sin(ωt − 0.561)

+ 0.750 sin(3ωt − 0.036)

+ 0.182 sin(5ωt − 1.525)A

The fundamental frequency is 500 Hz. Determine
(a) the impedance of the circuit at the fundamental
frequency, and hence the values of R and L, (b) the
values of V3 and V5, (c) the rms voltage, (d) the
rms current, (e) the circuit power, and (f) the power
factor.

[(a) 59.06 �, R = 50 �, L = 10 mH (b) 80V,
30V (c) 180.1V (d) 2.93A (e) 427.8 W (f) 0.811]
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3. An alternating supply voltage represented by

v = (240 sin 300t − 40 sin 1500t + 60 sin 2100t)
volts

is applied to the terminals of a circuit containing
a 40 � resistor, a 200 mH inductor and a 25 µF
capacitor in series. (a) Derive the expression for
the current waveform and (b) calculate the power
dissipated by the circuit.

[(a) i = 2.873 sin(300t + 1.071) −
0.145 sin(1500t − 1.425) +

0.149 sin(2100t − 1.471)A (b) 166 W]

4. A voltage v represented by

v = 120 sin 314t + 25 sin
(

942t + π

6

)
volts

is applied to the circuit shown in Figure 36.29.
Determine (a) an expression for current i, (b) the
percentage harmonic content of the supply current,
(c) the total power dissipated, (d) an expression for
the p.d. shown as v1 and (e) expressions for the
currents shown as iR and iC

Figure 36.29

[(a) i = 0.134 sin(314t + 0.464)
+ 0.047 sin(942t + 0.988)A (b) 35.07% (c) 7.72 W

(d) v1 = 53.6 sin(314t + 0.464) +
18.8 sin(942t + 0.988)V

(e) iR = 0.095 sin(314t − 0.321)
+ 0.015 sin(942t − 0.261)A,
iC = 0.095 sin(314t + 1.249)
+ 0.045 sin(942t + 1.310)A]

36.10 Resonance due to harmonics

In industrial circuits at power frequencies the typical
values of L and C involved make resonance at the

fundamental frequency very unlikely. (An exception to
this is with the capacitor-start induction motor where
the start-winding can achieve unity power factor during
run-up.)

However, if the voltage waveform is not a pure sine
wave it is quite possible for the resonant frequency to be
near the frequency of one of the harmonics. In this case
the magnitude of the particular harmonic in the current
waveform is greatly increased and may even exceed that
of the fundamental. The effect of this is a great distortion
of the resultant current waveform so that dangerous volt
drops may occur across the inductance and capacitance in
the circuit.

When a circuit resonates at one of the harmonic fre-
quencies of the supply voltage, the effect is called selec-
tive or harmonic resonance.

For resonance with the fundamental, the condition is
ωL = 1/(ωC); for resonance at, say, the third harmonic,
the condition is 3ωL = 1/(3ωC); for resonance at the nth
harmonic, the condition is

nωL = 1/(nωC)

Problem 24. A voltage waveform having a funda-
mental of maximum value 400V and a third harmonic
of maximum value 10V is applied to the circuit shown
in Figure 36.30. Determine (a) the fundamental fre-
quency for resonance with the third harmonic, and
(b) the maximum value of the fundamental and third
harmonic components of current.

Figure 36.30

(a) Resonance with the third harmonic means that
3ωL = 1/(3ωC), i.e.

ω =
√ (

1

9LC

)
= 1

3
√

(0.5)(0.2 × 10−6)

= 1054 rad/s
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from which, fundamental frequency, f = ω

2π
= 1054

2π

= 167.7 Hz

(b) At the fundamental frequency,

impedance

Z1 = R + j

(
ωL − 1

ωC

)

= 2 + j

[
(1054)(0.5) − 1

(1054)(0.2 × 10−6)

]

= (2 − j4217)�

i.e. Z1 = 4217∠−89.97◦�

Maximum value of current at the fundamental
frequency,

I1m = V1m

Z1
= 400

4217
= 0.095A

At the third harmonic frequency,

Z3 = R + j

(
3ωL − 1

3ωC

)
= R

since resonance occurs at the third harmonic, i.e.
Z3 = 2 �
Maximum value of current at the third harmonic
frequency,

I3m = V3m

Z3
= 10

2
= 5A

(Note that the magnitude of I3m compared with I1m
is 5/0.095, i.e. × 52.6 greater.)

Problem 25. A voltage wave has an amplitude of
800V at the fundamental frequency of 50 Hz and
its nth harmonic has an amplitude 1.5% of the fun-
damental. The voltage is applied to a series circuit
containing resistance 5 �, inductance 0.369 H and
capacitance 0.122 µF. Resonance occurs at the nth har-
monic. Determine (a) the value of n, (b) the maximum
value of current at the nth harmonic, (c) the p.d. across
the capacitor at the nth harmonic and (d) the maximum
value of the fundamental current.

(a) For resonance at the nth harmonic, nωL = 1/(nωC),
from which

n2 = 1

ω2LC
and n = 1

ω
√

(LC)

Hence n = 1

2π50
√

(0.369)(0.122 × 10−6)
= 15

Thus resonance occurs at the 15th harmonic.

(b) At resonance, impedance Z15 = R = 5 �. Hence the
maximum value of current at the 15th harmonic,

I15m = V15m

R
= (1.5/100) × 800

5
= 2.4A

(c) At the 15th harmonic, capacitive reactance,

XC15 = 1

15ωC
= 1

15(2π50)(0.122 × 10−6)

= 1739 �

Hence the p.d. across the capacitor at the 15th
harmonic

= (I15m)(XC15) = (2.4)(1739) = 4.174 kV

(d) At the fundamental frequency, inductive reactance,

XL1 = ωL = (2π50)(0.369) = 115.9 �

and capacitive reactance,

XCl = 1

ωC
= 1

(2π50)(0.122 × 10−6)
= 26091 �

Impedance at the fundamental frequency,

|Z| = √
[R2 + (XC − XL)2] = 25975 �

Maximum value of current at the fundamental fre-
quency,

I1m = V1m

Z1
= 800

25975
= 0.031A or 31 mA
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Now try the following exercise.

Exercise 129 Further problems on harmonic
resonance

1. A voltage waveform having a fundamental of maxi-
mum value 250V and a third harmonic of maximum
value 20V is applied to a series circuit compris-
ing a 5 � resistor, a 400 mH inductance and a
0.5 µF capacitor. Determine (a) the fundamental
frequency for resonance with the third harmonic
and (b) the maximum values of the fundamental
and third harmonic components of the current.

[(a) 118.6 Hz (b) 0.105A, 4A]

2. A complex voltage waveform has a maximum value
of 500V at the fundamental frequency of 60 Hz and
contains a 17th harmonic having an amplitude of
2% of the fundamental. The voltage is applied to
a series circuit containing resistance 2 �, induc-
tance 732 mH and capacitance 33.26 nF. Determine
(a) the maximum value of the 17th harmonic cur-
rent, (b) the maximum value of the 17th harmonic
p.d. across the capacitor, and (c) the amplitude of
the fundamental current.

[(a) 5A (b) 23.46 kV (c) 6.29 mA]

3. A complex voltage waveform v is given by the
expression

v = 150 sin ωt + 25 sin
(

3ωt − π

6

)

+ 10 sin
(

5ωt + π

3

)
volts

where ω = 314 rad/s. The voltage is applied to
a circuit consisting of a coil of resistance 10 �
and inductance 50 mH in series with a variable
capacitor.

(a) Calculate the value of the capacitance which will
give resonance with the triple frequency component
of the voltage. (b) Write down the corresponding
equation for the current waveform. (c) Determine
the rms value of current. (d) Find the power
dissipated in the circuit.

[(a) 22.54 µF (b) i = 1.191 sin (314t + 1.491)
+ 2.500 sin (942t − 0.524)

+ 0.195 sin (1570t − 0.327)A
(c) 1.963A (d) 38.56 W]

4. A complex voltage of fundamental frequency 50 Hz
is applied to a series circuit comprising resist-
ance 20 �, inductance 800 µH and capacitance
74.94 µF. Resonance occurs at the nth harmonic.
Determine the value of n. [13]

5. A complex voltage given by v = 1200 sin ωt +
300 sin 3ωt + 100 sin 5ωt volts is applied to a cir-
cuit containing a 25 � resistor, a 12 µF capaci-
tor and a 37 mH inductance connected in series.
The fundamental frequency is 79.62 Hz. Determine
(a) the rms value of the voltage, (b) an expression
for the current waveform, (c) the rms value of cur-
rent, (d) the amplitude of the third harmonic voltage
across the capacitor, (e) the circuit power, and (f) the
overall power factor.

[(a) 877.5V (b) i = 7.991 sin (ωt + 1.404)
+ 12 sin 3ωt + 1.555 sin(5ωt − 1.171)A

(c) 10.25A (d) 666.4V (e) 2626 W (f) 0.292]

36.11 Sources of harmonics

(i) Harmonics may be produced in the output wave-
form of an a.c. generator. This may be due either
to ‘tooth-ripple’, caused by the effect of the slots that
accommodate the windings, or to the non-sinusoidal
airgap flux distribution.

Great care is taken to ensure a sinusoidal output
from generators in large supply systems; however,
non-linear loads will cause harmonics to appear in
the load current waveform. Thus harmonics are pro-
duced in devices that have a non-linear response to
their inputs. Non-linear circuit elements (i.e. those in
which the current flowing through them is not pro-
portional to the applied voltage) include rectifiers and
any large-signal electronic amplifier in which diodes,
transistors, valves or iron-cored inductors are used.

(ii) A rectifier is a device for converting an alternating or
an oscillating current into a unidirectional or approx-
imate direct current. A rectifier has a low impedance
to current flow in one direction and a nearly infinite
impedance to current flow in the opposite direction.
Thus when an alternating current is applied to a
rectifier, current will flow through it during the pos-
itive half-cycles only; the current is zero during the
negative half-cycles. A typical current waveform is
shown in Figure 36.31. This ‘half-wave rectification’

Figure 36.31 Typical current waveform containing a
fairly large second harmonic
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Figure 36.32

is produced by using a single diode. The waveform is
similar in shape to that shown in Figure 36.14, page
451, where the d.c. component brought the negative
half-cycle up to the zero current point. The waveform
shown in Figure 36.31 is typical of one containing a
fairly large second harmonic.

(iii) Transistors and valves are non-linear devices in that
sinusoidal input results in different positive and neg-
ative half cycle amplifications. This means that the
output half cycles have different amplitudes. Since
they have a different shape, even harmonic distortion
is suggested (see Section 36.3).

(iv) Ferromagnetic-cored coils are a source of harmonic
generation in a.c. circuits because of the non-linearity
of the B/H curve and the hysteresis loop, espe-
cially if saturation occurs. Let a sinusoidal voltage
v = Vm sin ωt be applied to a ferromagnetic-cored
coil (having low resistance relative to inductive react-
ance) of cross-section area A square metres and
possessing N turns.

If φ is the flux produced in the core then the
instantaneous voltage is given by v = N(dφ/dt).

If B is the flux density of the core, then, since � = BA,

v = N
d

dt
(BA) = NA

dB
dt

since area A is a constant for a particular core.
Separating the variables gives

∫
dB = 1

NA

∫
vdt

i.e. B = 1

NA

∫
Vm sin ωt dt = −Vm

ωNA
cos ωt

Since −cos ωt = sin(ωt − 90◦)

B = Vm

ωNA
sin(ωt − 90◦) (36.34)

Equation (36.34) shows that if the applied voltage is
sinusoidal, the flux density B in the iron core must
also be sinusoidal but lagging by 90◦.
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Figure 36.33

The condition of low resistance relative to induc-
tive reactance, giving a sinusoidal flux from a sinu-
soidal supply voltage, is called free magnetization.

Consider the application of a sinusoidal voltage to
a coil wound on a core with a hysteresis loop as shown
in Figure 36.32(a). The horizontal axis of a hysteresis
loop is magnetic field strength H, but since H = Ni/l
and N and l (the length of the flux path) are con-
stant, the axis may be directly scaled as current i (i.e.
i = Hl/N). Figure 36.32(b) shows sinusoidal voltage
v and flux density B waveforms, B lagging v by 90◦.

The current waveform is shown in Figure 36.32(c)
and is derived as follows. At time t1, point a on the
voltage curve corresponds to point b on the flux den-
sity curve and point c on the hysteresis loop. The cur-
rent at time t1 is given by the distance dc. Plotting this
current on a vertical time-scale gives the derived point
e on the current curve. A similar procedure is adopted
for times t2, t3 and so on over one cycle of the voltage.

(Note that it is important to move around the hys-
teresis loop in the correct direction.) It is seen from
the current curve that it is non-sinusoidal and that
the positive and negative half cycles are identical.
This indicates that the waveform contains only odd
harmonics (see Section (36.3)).

(v) If, in a circuit containing a ferromagnetic-cored coil,
the resistance is high compared with the inductive
reactance, then the current flowing from a sinusoidal
supply will tend to be sinusoidal. This means that
the flux density B of the core cannot be sinusoidal
since it is related to the current by the hysteresis
loop. This means, in turn, that the induced voltage
due to the alternating flux (i.e. v = NA(dB/dt)) will
not be sinusoidal. This condition is called forced
magnetization.

The shape of the induced voltage waveform under
forced magnetization is obtained as follows. The
current waveform is shown on a vertical axis in
Figure 36.33(a). The hysteresis loop corresponding
to the maximum value of circuit current is drawn
as shown in Figure 36.33(b). The flux density curve
which is derived from the sinusoidal current wave-
form is shown in Figure 36.33(c). Point a on the
current wave at time t1 corresponds to point b on
the hysteresis loop and to point c on the flux density
curve. By taking other points throughout the current
cycle the flux density curve is derived as shown.

The relationship between the induced voltagev and
the flux density B is given by v = NA(dB/dt). Here
dB/dt represents the rate of change of flux density
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Figure 36.34

with respect to time, i.e. the gradient of the B/t curve.
At point d the gradient of the B/t curve is a maximum
in the positive direction. Thus v will be maximum
positive as shown by point d′ in Figure 36.33(d). At
point e the gradient (i.e. dB/dt) is zero, thus v is zero,
as shown by point e′. At point f the gradient is maxi-
mum in a negative direction, thus v is maximum neg-
ative, as shown by point f ′. If all such points are taken
around the B/t curve, the curve representing induced
voltage, shown in Figure 36.33(d), is produced.
The resulting voltage waveform is non-sinusoidal.
The positive and negative half cycles are identical
in shape, indicating that the waveform contains a
fundamental and a prominent third harmonic.

(vi) The amount of power delivered to a load can
be controlled using a thyristor, which is a
semiconductor device. Examples of applications of
controlled rectification include lamp and heater con-

trols and the control of motor speeds. A basic circuit
used for single-phase power control is shown in Fig-
ure 36.34(a). The trigger module contains circuitry
to produce the necessary gate current to turn the
thyristor on. If the pulse is applied at time θ/ω,
where θ is the firing or triggering angle, then the
current flowing in the load resistor has a waveform
as shown in Figure 36.34(b). The sharp rise-time
(shown as ab in Figure 36.34(b)), however, gives rise
to harmonics.

(vii) In microelectronic systems rectangular waveforms
are common. Again, fast rise-times give rise to
harmonics, especially at high frequency. These har-
monics can be fed back to the mains if not filtered.

There are thus a large number of sources of
harmonics.
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37 A numerical method of harmonic analysis

At the end of this chapter you should be able to:
• use a tabular method to determine the Fourier series

for a complex waveform
• predict the probable harmonic content of a waveform

on inspection

37.1 Introduction

Many practical waveforms can be represented by simple
mathematical expressions, and, by using Fourier series,
the magnitude of their harmonic components determined.
For waveforms not in this category, analysis may be
achieved by numerical methods. Harmonic analysis is
the process of resolving a periodic, non-sinusoidal quan-
tity into a series of sinusoidal components of ascending
order of frequency.

37.2 Harmonic analysis on data given in
tabular or graphical form

A Fourier series is merely a trigonometric series of the
form:

f (x) = a0 + a1 cos x + a2 cos 2x + · · · + b1 sin x

+ b2 sin 2x + · · ·

i.e. f (x) = a0 +
∞∑

n=1

(an cos nx + bn sin nx)

The Fourier coefficients a0, an and bn all require functions
to be integrated, i.e.

a0 = 1

2π

∫ π

−π

f (x) dx = 1

2π

∫ 2π

0
f (x) dx

= mean value of f (x) in the range −π to π or 0 to 2π

an = 1

π

∫ π

−π

f (x) cos nx dx = 1

π

∫ 2π

0
f (x) cos nx dx

= twice the mean value of f (x) cos nx in the range

0 to 2π

bn = 1

π

∫ π

−π

f (x) sin nx dx = 1

π

∫ 2π

0
f (x) sin nx dx

= twice the mean value of f (x) sin nx in the range

0 to 2π

However, irregular waveforms are not usually defined by
mathematical expressions and thus the Fourier coefficients
cannot be determined by using calculus. In these cases,
approximate methods, such as the trapezoidal rule, can
be used to evaluate the Fourier coefficients.

Most practical waveforms to be analysed are periodic.
Let the period of a waveform be 2π and be divided into
p equal parts as shown in Figure 37.1. The width of
each interval is thus 2π/p. Let the ordinates be labelled
y0, y1, y2, . . . , yp (note that y0 = yp). The trapezoidal rule
states:

Area ≈
(

width of
interval

) [
1

2

(
first + last
ordinate

)
+

sum of
remaining
ordinates

]

≈ 2π

p

[
1

2
(y0 + yp) + y1 + y2 + y3 + · · ·

]

f (x)
y0 y1 y2 y3 y4

yp

x2ππ0
2π/p

Period = 2π

Figure 37.1
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Since y0 = yp, then
1

2
( y0 + yp) = y0 = yp

Hence area ≈ 2π

p

p∑
k=1

yk

Mean value = area

length of base

≈ 1

2π

(
2π

p

) p∑
k=1

yk ≈ 1

p

p∑
k=1

yk

However, a0 = mean value of f (x) in the range 0 to 2π.
Thus

a0 ≈ 1
p

p∑
k=1

yk (37.1)

Similarly, an = twice the mean value of f (x) cos nx in the
range 0 to 2π, thus,

an ≈ 2
p

p∑
k=1

yk cos nxk (37.2)

and bn = twice the mean value of f (x) sin nx in the range
0 to 2π, thus

bn ≈ 2
p

p∑
k=1

yk sin nxk (37.3)

Problem 1. The values of the voltage ν volts at
different moments in a cycle are given by:

θ degrees 30 60 90 120 150 180
ν (volts) 62 35 −38 −64 −63 −52

θ degrees 210 240 270 300 330 360
ν (volts) −28 24 80 96 90 70

Draw the graph of voltage ν against angle θ and analyse
the voltage into its first three constituent harmonics,
each coefficient correct to 2 decimal places.

The graph of voltage ν against angle θ is shown in
Figure 37.2. The range 0 to 2π is divided into 12 equal
intervals giving an interval width of 2π/12, i.e. π/6 or
30◦. The values of the ordinates y1, y2, y3, . . . are 62,
35, −38, . . . from the given table of values. If a larger num-
ber of intervals are used, results having a greater accuracy

y1
y2

y3 y4 y5 y6

y7

y8

y9 y11 y12

y10

270 360  degrees

90 180

80

60

40

20

0
−20

−40

−60

−80

V
ol

ta
ge

 v
 (

vo
lts

)

θ

Figure 37.2

are achieved. The data is tabulated in the proforma shown
in Table 37.1.

From equation (37.1), a0 ≈ 1

p

p∑
k=1

yk = 1

12
(212)

= 17.67 (since p = 12)

From equation (37.2), an ≈ 2

p

p∑
k=1

cos nxk

Hence a1 ≈ 2

12
(417.94) = 69.66

a2 ≈ 2

12
(−39) = −6.50

and a3 ≈ 2

12
(−49) = −8.17

From equation (37.3), bn ≈ 2

p

p∑
k=1

yk sin nxk

Hence b1 ≈ 2

12
(−278.53) = −46.42

b2 ≈ 2

12
(29.43) = 4.91

and b3 ≈ 2

12
(55) = 9.17

Substituting these values into the Fourier series:

f (x) = a0 +
∞∑

n=1

(an cos nx + bn sin nx)

gives: ν = 17.67 + 69.66 cos θ − 6.50 cos 2θ

− 8.17 cos 3θ + · · · − 46.42 sin θ

+ 4.91 sin 2θ + 9.17 sin 3θ + · · · (37.4)
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Table 37.1

Ordinates θ◦ v cos θ v cos θ sin θ v sin θ cos 2θ v cos 2θ sin 2θ v sin 2θ cos 3θ v cos 3θ sin 3θ v sin 3θ

y1 30 62 0.866 53.69 0.5 31 0.5 31 0.866 53.69 0 0 1 62
y2 60 35 0.5 17.5 0.866 30.31 −0.5 −17.5 0.866 30.31 −1 −35 0 0
y3 90 −38 0 0 1 −38 −1 38 0 0 0 0 −1 38
y4 120 −64 −0.5 32 0.866 −55.42 −0.5 32 −0.866 55.42 1 −64 0 0
y5 150 −63 −0.866 54.56 0.5 −31.5 0.5 −31.5 −0.866 54.56 0 0 1 −63
y6 180 −52 −1 52 0 0 1 −52 0 0 −1 52 0 0
y7 210 −28 −0.866 24.25 −0.5 14 0.5 −14 0.866 −24.25 0 0 −1 28
y8 240 24 −0.5 −12 −0.866 −20.78 −0.5 −12 0.866 −20.78 1 24 0 0
y9 270 80 0 0 −1 −80 −1 −80 0 0 0 0 1 80
y10 300 96 0.5 48 −0.866 −83.14 −0.5 −48 −0.866 −83.14 −1 −96 0 0
y11 330 90 0.866 77.94 −0.5 −45 0.5 45 −0.866 −77.94 0 0 −1 −90
y12 360 70 1 70 0 0 1 70 0 0 1 70 0 0

12∑
k=1

yk = 212
12∑

k=1

yk cos θk

12∑
k=1

yk sin θk

12∑
k=1

yk cos 2θk

12∑
k=1

yk sin 2θk

12∑
k=1

yk cos 3θk

12∑
k=1

yk sin 3θk

= 417.94 = −278.53 = −39 = 29.43 = −49 = 55
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Note that in equation (37.4), (−46.42 sin θ + 69.66 cos θ)
comprises the fundamental, (4.91 sin 2θ − 6.50 cos 2θ)
comprises the second harmonic and (9.17 sin 3θ − 8.17
cos 3θ) comprises the third harmonic.

It is shown in Higher Engineering Mathematics that

a sin ωt + b cos ωt ≡ R sin(ωt + α)

where a = R cos α, b = R sin α, R = √
(a2 + b2) and

α = tan−1 b

a

For the fundamental, R = √
[(−46.42)2 + (69.66)2]

= 83.71

If a = R cos α, then cos α = a

R
= −46.42

83.71
which is

negative,

and if b = R sin α, then sin α = b

R
= 69.66

83.71
which is

positive.

The only quadrant where cos α is negative and sin α is
positive is the second quadrant.

Hence

α = tan−1 b

a
= tan−1 69.66

−46.42
= 123.68◦ or 2.16 rad

Thus (−46.42 sin θ + 69.66 cos θ) = 83.71 sin(θ + 2.16)

By a similar method it may be shown that the second
harmonic

(4.91 sin 2θ − 6.50 cos 2θ) ≡ 8.15 sin(2θ − 0.92)
and the third harmonic
(9.17 sin 3θ − 8.17 cos 3θ) ≡ 12.28 sin(3θ − 0.73)

Hence equation (37.4) may be re-written as:

ν = 17.67 + 83.71 sin(θ + 2.16) + 8.15 sin(2θ − 0.92)

+ 12.28 sin(3θ − 0.73) volts

which is the form used in Chapter 36 with complex
waveforms.

Now try the following exercise.

Exercise 130 Further problems on harmonic
analysis on data given in tabular form

Determine the Fourier series to represent the periodic
functions given by the tables of values in Problems
1 to 3, up to and including the third harmonics and
each coefficient correct to 2 decimal places. Use 12
ordinates in each case.

1.

Angle θ◦ 30 60 90 120 150 180

Displacement y 40 43 38 30 23 17

Angle θ◦ 210 240 270 300 330 360

Displacement y 11 9 10 13 21 32

[y = 23.92 + 7.81 cos θ + 14.61 sin θ +
0.17 cos 2θ + 2.31 sin 2θ − 0.33 cos 3θ

+ 0.50 sin 3θ]

2.

Angle θ◦ 0 30 60 90 120 150

Voltage ν −5.0 −1.5 6.0 12.5 16.0 16.5

Angle θ◦ 180 210 240 270 300 330

Voltage ν 15.0 12.5 6.5 −4.0 −7.0 −7.5

[ν = 5.00 − 10.78 cos θ + 6.83 sin θ − 1.96 cos 2θ
+ 0.80 sin 2θ + 0.58 cos 3θ − 1.08 sin 3θ]

3.

Angle θ◦ 30 60 90 120 150 180

Current i 0 −1.4 −1.8 −1.9 −1.8 −1.3

Angle θ◦ 210 240 270 300 330 360

Current i 0 2.2 3.8 3.9 3.5 2.5

[i = 0.64 + 1.58 cos θ − 2.73 sin θ − 0.23 cos 2θ
− 0.42 sin 2θ + 0.27 cos 3θ + 0.05 sin 3θ]

37.3 Complex waveform considerations

It is sometimes possible to predict the harmonic con-
tent of a waveform on inspection of particular waveform
characteristics.

(i) If a periodic waveform is such that the area above
the horizontal axis is equal to the area below
then the mean value is zero. Hence a0 = 0 (see
Figure 37.3(a)).

(ii) An even function is symmetrical about the vertical
axis and contains no sine terms (see Figure 37.3(b)).

(iii) An odd function is symmetrical about the origin and
contains no cosine terms (see Figure 37.3(c)).

(iv) f (x) = f (x + π) represents a waveform which repeats
after half a cycle and only even harmonics are
present (see Figure 37.3(d)).

(v) f (x) = −f (x + π) represents a waveform for which
the positive and negative cycles are identical in
shape and only odd harmonics are present (see
Figure 37.3(e)).
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f (x)

0 π 2π x

(a) a0 = 0

2π x0

Contains no sine terms(b)

f (x)

−π π

−2π −π π0 x

Contains no cosine terms(c)

f (x)

2π

f (x)

−2π 0 x

(d) Contains only even harmonics

−π π 2π

2π

f (x)

 0  x

Contains only odd harmonics(e)

−π π

Figure 37.3

Problem 2. Without calculating Fourier coefficients
state which harmonics will be present in the waveforms
shown in Figure 37.4.

f (x)

2

−2

0 2π x

0 x

5

f (x)

(a)

(b)

−π π

2π−π π

Figure 37.4

(a) The waveform shown in Figure 37.4(a) is symmetrical
about the origin and is thus an odd function. An odd
function contains no cosine terms. Also, the waveform
has the characteristic f (x) = −f (x + π), i.e. the posi-
tive and negative half cycles are identical in shape.
Only odd harmonics can be present in such a wave-
form. Thus the waveform shown in Figure 37.4(a)
contains only odd sine terms. Since the area above
the x-axis is equal to the area below, a0 = 0.

(b) The waveform shown in Figure 37.4(b) is symmetrical
about the f (x) axis and is thus an even function. An
even function contains no sine terms. Also, the wave-
form has the characteristic f (x) = f (x + π), i.e. the
waveform repeats itself after half a cycle. Only even

harmonics can be present in such a waveform. Thus
the waveform shown in Figure 37.4(b) contains only
even cosine terms (together with a constant term, a0).

Problem 3. An alternating current i amperes is shown
in Figure 37.5. Analyse the waveform into its con-
stituent harmonics as far as and including the fifth
harmonic, correct to 2 decimal places, by taking 30◦
intervals.

y1 y2 y3 180 240 300 θ°

1501209060

5

0−90−150

−180 −120 −60

10

−5

−10

210 270 330
y8 y9

y10

y11

360

C
ur

re
nt

 i 
am

pe
re

s

y7

30

y4

y5

−30

Figure 37.5

With reference to Figure 37.5, the following characteris-
tics are noted:

(i) The mean value is zero since the area above the θ axis
is equal to the area below it. Thus the constant term,
or d.c. component, a0 = 0.

(ii) Since the waveform is symmetrical about the origin
the function i is odd, which means that there are no
cosine terms present in the Fourier series.

(iii) The waveform is of the form f (θ) = −f (θ + π) which
means that only odd harmonics are present.

Investigating waveform characteristics has thus saved
unnecessary calculations and in this case the Fourier series
has only odd sine terms present, i.e.

i = b1 sin θ + b3 sin 3θ + b5 sin 5θ + · · ·
A proforma, similar to Table 37.1, but without the ‘cosine
terms’columns and without the ‘even sine terms’columns
is shown in Table 37.2 up to, and including, the fifth har-
monic, from which the Fourier coefficients b1, b3 and b5
can be determined. Twelve coordinates are chosen and
labelled y1, y2, y3, . . . y12 as shown in Figure 37.5.

From equation (37.3), Section 37.2, bn ≈ 2

p

p∑
k=1

ik sin nθk ,

where p = 12.

Hence b1 ≈ 2

12
(48.24) = 8.04

b3 ≈ 2

12
(−12) = −2.00

and b5 ≈ 2

12
(−0.24) = −0.04
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Table 37.2

Ordinate θ◦ i sin θ i sin θ sin 3θ i sin 3θ sin 5θ i sin 5θ

y1 30 2 0.5 1 1 2 0.5 1
y2 60 7 0.866 6.06 0 0 −0.866 −6.06
y3 90 10 1 10 −1 −10 1 10
y4 120 7 0.866 6.06 0 0 −0.866 −6.06
y5 150 2 0.5 1 1 2 0.5 1
y6 180 0 0 0 0 0 0 0
y7 210 −2 −0.5 1 −1 2 −0.5 1
y8 240 −7 −0.866 6.06 0 0 0.866 −6.06
y9 270 −10 −1 10 1 −10 −1 10
y10 300 −7 −0.866 6.06 0 0 0.866 −6.06
y11 330 −2 −0.5 1 −1 2 −0.5 1
y12 360 0 0 0 0 0 0 0

12∑
k=1

ik sin θk

12∑
k=1

ik sin 3θk

12∑
k=1

ik sin 5θk

= 48.24 = −12 = −0.24

Thus the Fourier series for current i is given by:

i = 8.04 sin θ − 2.00 sin 3θ − 0.04 sin 5θ

Now try the following exercise.

Exercise 131 Further problems on complex wave-
form considerations

1. Without performing calculations, state which har-
monics will be present in the waveforms shown in
Figure 37.6.

[(a) only odd cosine terms present
(b) only even sine terms present]

f (t )

4

0

−4

−2π−π 2π 4π t

(a)

2π
0

y
10

−10

(b)

x

π

−π
π

Figure 37.6

2. Analyse the periodic waveform of displacement
y against angle θ in Figure 37.7(a) into its con-
stituent harmonics as far as and including the third
harmonic, by taking 30◦ intervals.

[y = 9.4 + 13.2 cos θ − 24.1 sin θ + 0.92 cos 2θ
− 0.14 sin 2θ + 0.83 cos 3θ + 0.67 sin 3θ]

3. For the waveform of current shown in Fig-
ure 37.7(b) state why only a d.c. component and
even cosine terms will appear in the Fourier series
and determine the series, using π/6 rad intervals,
up to and including the sixth harmonic.

[I = 4.00 − 4.67 cos 2θ + 1.00 cos 4θ
− 0.66 cos 6θ]

Figure 37.7
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38 Magnetic materials

At the end of this chapter you should be able to:
• recognize terms associated with magnetic circuits
• appreciate magnetic properties of materials
• categorize materials as ferromagnetic, diamagnetic

and paramagnetic
• explain hysteresis and calculate hysteresis loss
• explain and calculate eddy current loss

• explain a method of separation of hysteresis and eddy
current loss and determine the separate losses from
given data

• distinguish between non-permanent and permanent
magnetic materials.

38.1 Revision of terms and units used with
magnetic circuits

In Chapter 7, page 52, a number of terms used with mag-
netic circuits are defined. These are summarized below.

(a) A magnetic field is the state of the space in the vicinity
of a permanent magnet or an electric current through-
out which the magnetic forces produced by the magnet
or current are discernible.

(b) Magnetic flux � is the amount of magnetic field pro-
duced by a magnetic source. The unit of magnetic flux
is the weber, Wb. If the flux linking one turn in a cir-
cuit changes by one weber in one second, a voltage of
one volt will be induced in that turn.

(c) Magnetic flux density B is the amount of flux pass-
ing through a defined area that is perpendicular to the
direction of the flux.

Magnetic flux density = magnetic flux

area

i.e. B = �/A where A is the area in square

metres. The unit of magnetic flux density is the tesla
T, where 1 T = 1 Wb/m2.

(d) Magnetomotive force (mmf) is the cause of the
existence of a magnetic flux in a magnetic circuit.

mmf, Fm = NI amperes

where N is the number of conductors (or turns) and I is
the current in amperes. The unit of mmf is sometimes
expressed as ‘ampere-turns’. However since ‘turns’
have no dimension, the S.I. unit of mmf is the ampere.

(e) Magnetic field strength (or magnetizing force),

H = NI/l ampere per metre

where l is the mean length of the flux path in metres.

Thus mmf = NI = Hl amperes

(f) µ0 is a constant called the permeability of free space
(or the magnetic space constant). The value of µ0 is
4π × 10−7 H/m.

For air, or any non-magnetic medium, the ratio

B/H = µ0

(Although all non-magnetic materials, including air,
exhibit slight magnetic properties, these can effect-
ively be neglected.)

(g) µr is the relative permeability and is defined as

flux density in material

flux density in a vacuum

µr varies with the type of magnetic material and, since
it is a ratio of flux densities, it has no unit. From its
definition, µr for a vacuum is 1.

For all media other than free space, B/H = µ0µr

(h) Absolute permeability µ = µ0µr

(i) By plotting measured values of flux density B against
magnetic field strength H a magnetization curve (or
B/H curve) is produced. For non-magnetic materials
this is a straight line having the approximate gradient
of µ0. B/H curves for four materials are shown on
page 55.

( j) From (g), µr = B/(µ0H). Thus the relative permea-
bility µr of a ferromagnetic material is proportional
to the gradient of the B/H curve and varies with the
magnetic field strength H.
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(k) Reluctance S (or RM ) is the ‘magnetic resistance’ of
a magnetic circuit to the presence of magnetic flux.

Reluctance S = Fm

�
= NI

�
= Hl

BA
= l

(B/H)A

= l

µ0µrA

The unit of reluctance is 1/H (or H−1) or A/Wb
(l) Permeance is the magnetic flux per ampere of total

magnetomotive force in the path of a magnetic field.
It is the reciprocal of reluctance.

38.2 Magnetic properties of materials

The full theory of magnetism is one of the most complex
of subjects. However the phenomenon may be satisfac-
torily explained by the use of a simple model. Bohr and
Rutherford, who discovered atomic structure, suggested
that electrons move around the nucleus confined to a plane,
like planets around the sun. An even better model is to
consider each electron as having a surface, which may be
spherical or elliptical or something more complicated.

Magnetic effects in materials are due to the electrons
contained in them, the electrons giving rise to magnetism
in the following two ways:

(i) by revolving around the nucleus
(ii) by their angular momentum about their own axis,

called spin.

In each of these cases the charge of the electron can be
thought of as moving round in a closed loop and therefore
acting as a current loop.

The main measurable quantity of an atomic model is
the magnetic moment. When applied to a loop of wire
carrying a current,

magnetic moment = current × area of the loop

Electrons associated with atoms possess magnetic
moment which gives rise to their magnetic properties.

Diamagnetism is a phenomenon exhibited by mater-
ials having a relative permeability less than unity. When
electrons move more or less in a spherical orbit around the
nucleus, the magnetic moment due to this orbital is zero,
all the current due to moving electrons being considered as
averaging to zero. If the net magnetic moment of the elec-
tron spins were also zero then there would be no tendency
for the electron motion to line up in the presence of a mag-
netic field. However, as a field is being turned on, the flux
through the electron orbitals increases. Thus, considering
the orbital as a circuit, there will be, by Faraday’s laws, an
e.m.f. induced in it which will change the current in the
circuit. The flux change will accelerate the electrons in its

orbit, causing an induced magnetic moment. By Lenz’s
law the flux due to the induced magnetic moment will be
such as to oppose the applied flux. As a result, the net flux
through the material becomes less than in a vacuum. Since
relative permeability is defined as

flux density in material

flux density in vacuum

with diamagnetic materials the relative permeability
is less than one.

Paramagnetism is a phenomenon exhibited by mate-
rials where the relative permeability is greater than unity.
Paramagnetism occurs in substances where atoms have
a permanent magnetic moment. This may be caused by
the orbitals not being spherical or by the spin of the elec-
trons. Electron spins tend to pair up and cancel each other.
However, there are many atoms with odd numbers of elec-
trons, or in which pairing is incomplete. Such atoms have
what is called a permanent dipole moment. When a field
is applied to them they tend to line up with the field, like
compass needles, and so strengthen the flux in that region.
(Diamagnetic materials do not tend to line up with the field
in this way.) When this effect is stronger than the dia-
magnetic effect, the overall effect is to make the relative
permeability greater than one. Such materials are called
paramagnetic.

Ferromagnetic materials

Ferromagnetism is the phenomenon exhibited by mater-
ials having a relative permeability which is considerably
greater than 1 and which varies with flux density. Iron,
cobalt and nickel are the only elements that are ferro-
magnetic at ordinary working temperatures, but there
are several alloys containing one or more of these met-
als as constituents, with widely varying ferromagnetic
properties.

Consider the simple model of a single iron atom repre-
sented in Figure 38.1. It consists of a small heavy central
nucleus surrounded by a total of 26 electrons. Each elec-
tron has an orbital motion about the nucleus in a limited
region, or shell, such shells being represented by circles
K , L, M and N . The numbers in Figure 38.1 represent the
number of electrons in each shell.

Figure 38.1 Single iron atom
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The outer shell N contains two loosely held electrons,
these electrons becoming the carriers of electric current,
making iron electrically conductive. There are 14 elec-
trons in the M shell and it is this group that is responsible
for magnetism. An electron carries a negative charge and a
charge in motion constitutes an electric current with which
is associated a magnetic field. Magnetism would there-
fore result from the orbital motion of each electron in the
atom. However, experimental evidence indicates that the
resultant magnetic effect due to all the orbital motions in
the metal solid is zero; thus the orbital currents may be
disregarded.

In addition to the orbital motion, each electron spins
on its own axis. A rotating charge is equivalent to a cir-
cular current and gives rise to a magnetic field. In any
atom, all the axes about which the electrons spin are par-
allel, but rotation may be in either direction. In the single
atom shown in Figure 38.1, in each of the K , L and N
shells equal numbers of electrons spin in the clockwise
and anticlockwise directions respectively and therefore
these shells are magnetically neutral. However, in shell
M, nine of the electrons spin in one direction while five
spin in the opposite direction. There is therefore a resultant
effect due to four electrons.

The atom of cobalt has 15 electrons in the M shell,
nine spinning in one direction and six in the other. Thus
with cobalt there is a resultant effect due to 3 electrons.
A nickel atom has a resultant effect due to 2 electrons. The
atoms of the paramagnetic elements, such as manganese,
chromium or aluminium, also have a resultant effect for
the same reasons as that of iron, cobalt and nickel. How-
ever, in the diamagnetic materials there is an exact equality
between the clockwise and anticlockwise spins.

The total magnetic field of the resultant effect due to the
four electrons in the iron atom is large enough to influence
other atoms. Thus the orientation of one atom tends to
spread through the material, with atoms acting together in
groups instead of behaving independently. These groups
of atoms, called domains (which tend to remain per-
manently magnetized), act as units. Thus, when a field
is applied to a piece of iron, these domains as a whole
tend to line up and large flux densities can be produced.
This means that the relative permeability of such mater-
ials is much greater than one. As the applied field is
increased, more and more domains align and the induced
flux increases.

The overall magnetic properties of iron alloys and
materials containing iron, such as ferrite (ferrite is a
mixture of iron oxide together with other oxides —
lodestone is a ferrite), depend upon the structure and com-
position of the material. However, the presence of iron
ensures marked magnetic properties of some kind in them.
Ferromagnetic effects decrease with temperature, as do
those due to paramagnetism. The loss of ferromagnetism
with temperature is more sudden, however; the temper-
ature at which it has all disappeared is called the Curie
temperature. The ferromagnetic properties reappear on

cooling, but any magnetism will have disappeared. Thus
a permanent magnet will be demagnetized by heating
above the Curie temperature (1040 K for iron) but can be
remagnetized after cooling. Above the Curie temperature,
ferromagnetics behave as paramagnetics.

38.3 Hysteresis and hysteresis loss

Hysteresis loop

Let a ferromagnetic material which is completely demag-
netized, i.e. one in which B = H = 0 (either by heating
the sample above its Curie temperature or by reversing
the magnetizing current a large number of times while
at the same time gradually reducing the current to zero) be
subjected to increasing values of magnetic field strength
H and the corresponding flux density B measured. The
domains begin to align and the resulting relationship
between B and H is shown by the curve 0ab in Figure
38.2. At a particular value of H, shown as 0y, most of
the domains will be aligned and it becomes difficult to
increase the flux density any further. The material is said
to be saturated. Thus by is the saturation flux density.

Figure 38.2

If the value of H is now reduced it is found that the
flux density follows curve bc, i.e. the domains will tend to
stay aligned even when the field is removed. When H is
reduced to zero, flux remains in the iron. This remanent
flux density or remanence is shown as 0c in Figure 38.2.
When H is increased in the opposite direction, the domains
begin to realign in the opposite direction and the flux den-
sity decreases until, at a value shown as 0d, the flux density
has been reduced to zero. The magnetic field strength 0d
required to remove the residual magnetism, i.e. reduce B
to zero, is called the coercive force.

Further increase of H in the reverse direction causes
the flux density to increase in the reverse direction until
saturation is reached, as shown by curve de. If the reversed
magnetic field strength 0x is adjusted to the same value of
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0y in the initial direction, then the final flux density xe is
the same as yb. If H is varied backwards from 0x to 0y, the
flux density follows the curve efgb, similar to curve bcde.

It is seen from Figure 38.2 that the flux density changes
lag behind the changes in the magnetic field strength. This
effect is called hysteresis. The closed figure bcdefgb is
called the hysteresis loop (or the B/H loop).

Hysteresis loss

A disturbance in the alignment of the domains of a fer-
romagnetic material causes energy to be expended in
taking it through a cycle of magnetization. This energy
appears as heat in the specimen and is called the hyster-
esis loss. Let the hysteresis loop shown in Figure 38.3 be
that obtained for an iron ring of mean circumference l and
cross-sectional area a m2 and let the number of turns on
the magnetizing coil be N .

Figure 38.3

Let the increase of flux density be dB when the magnetic
field strength H is increased by a very small amount km
(see Figure 38.3) in time dt second, and let the current
corresponding to 0k be i amperes. Thus since H = NI/l
then 0k = Ni/l, from which,

i = l(0k)

N
(38.1)

The instantaneous e.m.f. e induced in the winding is
given by

e = −N
d�

dt
= −N

d(Ba)

dt
= −aN

dB

dt

The applied voltage to neutralize this e.m.f., v = aN
dB

dt

The instantaneous power supplied to a magnetic field,

p = vi = i

(
aN

dB

dt

)
watts

Energy supplied to the magnetic field in time dt seconds

= power × time = iaN
dB

dt
dt

= iaN dB joules =
(

l(0k)

N

)
aN dB from

equation (38.1)

= (0k) dB(la) joules = (area of shaded strip)

× (volume of ring)

i.e. energy supplied in time dt seconds = (area of shaded
strip) J/m3.

Hence the energy supplied to the magnetic field when H
is increased from zero to 0y = (area fgbzf ) J/m3.

Similarly, the energy returned from the magnetic field
when H is reduced from 0y to zero = (area bzcb) J/m3.

Hence net energy absorbed by the magnetic field
= (area fgbcf ) J/m3

Thus the hysteresis loss for a complete cycle

= area of loop efgbcde J/m3

If the hysteresis loop is plotted to a scale of
1 cm = α ampere/metre along the horizontal axis and
1 cm = β tesla along the vertical axis, and if A represents
the area of the loop in square centimetres, then

hysteresis loss/cycle = Aαβ joules per metre3

(38.2)

If hysteresis loops for a given ferromagnetic material are
determined for different maximum values of H, they are
found to lie within one another as shown in Figure 38.4.

Figure 38.4

The maximum sized hysteresis loop for a particular
material is obtained at saturation. If, for example, the
maximum flux density is reduced to half its value at sat-
uration, the area of the resulting loop is considerably less
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than half the area of the loop at saturation. From the areas
of a number of such hysteresis loops, as shown in Figure
38.4, the hysteresis loss per cycle was found by Stein-
metz (an American electrical engineer) to be proportional
to (Bm)n, where n is called the Steinmetz index and can
have a value between about 1.6 and 3.0, depending on the
quality of the ferromagnetic material and the range of flux
density over which the measurements are made.

From the above it is found that the hysteresis loss is pro-
portional to the volume of the specimen and the number
of cycles through which the magnetization is taken. Thus

hysteresis loss, Ph = khυf (Bm)n watts (38.3)

where v = volume in cubic metres, f = frequency in hertz,
and kh is a constant for a given specimen and given range
of B.

The magnitude of the hysteresis loss depends on the
composition of the specimen and on the heat treatment
and mechanical handling to which the specimen has been
subjected.

Figure 38.5 shows typical hysteresis loops for (a) hard
steel, which has a high remanence 0c and a large coercivity
0d, (b) soft steel, which has a large remanence and small
coercivity and (c) ferrite, this being a ceramic-like mag-
netic substance made from oxides of iron, nickel, cobalt,
magnesium, aluminium and manganese. The hysteresis of
ferrite is very small.

Figure 38.5

Problem 1. The area of a hysteresis loop obtained
from a ferromagnetic specimen is 12.5 cm2. The scales
used were: horizontal axis 1 cm = 500A/m; vertical
axis 1 cm = 0.2 T. Determine (a) the hysteresis loss per
m3 per cycle, and (b) the hysteresis loss per m3 at a
frequency of 50 Hz.

(a) From equation (38.2), hysteresis loss per cycle

= Aαβ = (12.5)(500)(0.2) = 1250 J/m3

(Note that, since α = 500A/m per centimetre and
β = 0.2 T per centimetre, then 1 cm2 of the loop
represents

500
A

m
× 0.2 T = 100

A

m

Wb

m2 = 100
AVs

m3

= 100
Ws

m3 = 100 J/m3

Hence 12.5 cm2 represents 12.5 × 100 = 1250 J/m3)

(b) At 50 Hz frequency, hysteresis loss

= (1250 J/m3)(50 1/s) = 62 500 W/m3

Problem 2. If in Problem 1, the maximum flux dens-
ity is 1.5 T at a frequency of 50 Hz, determine the
hysteresis loss per m3 for a maximum flux density of
1.1 T and frequency of 25 Hz. Assume the Steinmetz
index to be 1.6.

From equation (38.3), hysteresis loss Ph = khvf (Bm)n

The loss at f = 50 Hz and Bm = 1.5 T is 62 500 W/m3, from
Problem 1.

Thus 62 500 = kh(1)(50)(1.5)1.6,

from which, constant kh = 62 500

(50)(1.5)1.6 = 653.4

When f = 25 Hz and Bm = 1.1 T,

hysteresis loss, Ph = khvf (Bm)n

= (653.4)(1)(25)(1.1)1.6

= 19 026 W/m3

Problem 3. A ferromagnetic ring has a uniform
cross-sectional area of 2000 mm2 and a mean circum-
ference of 1000 mm. A hysteresis loop obtained for
the specimen is plotted to scales of 10 mm = 0.1 T
and 10 mm = 400A/m and is found to have an area of
104 mm2. Determine the hysteresis loss at a frequency
of 80 Hz.

From equation (38.2), hysteresis loss per cycle

= Aαβ

= (104 × 10−6 m2)

(
400 A/m

10 × 10−3 m

) (
0.1 T

10 × 10−3 m

)

= 4000 J/m3
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At a frequency of 80 Hz,

hysteresis loss = (4000 J/m)(80 1/s) = 320 000 W/m3

Volume of ring = (cross-sectional area)

× (mean circumference)

= (2000 × 10−6 m2)(1000 × 10−3 m)

= 2 × 10−3 m3

Thus hysteresis loss, Ph = (320 000 W/m3) (2 × 10−3 m3)

= 640 W

Problem 4. The cross-sectional area of a transformer
limb is 80 cm2 and the volume of the transformer core
is 5000 cm3.The maximum value of the core flux is
10 mWb at a frequency of 50 Hz. Taking the Steinmetz
constant as 1.7, the hysteresis loss is found to be 100 W.
Determine the value of the hysteresis loss when the
maximum core flux is 8 mWb and the frequency is
50 Hz.

When the maximum core flux is 10 mWb and the cross-
sectional area is 80 cm2,

maximum flux density, Bm1 = �1

A
= 10 × 10−3

80 × 10−4

= 1.25 T

From equation (38.3), hysteresis loss, Ph1 = khvf (Bm1)n

Hence 100 = kh(5000 × 10−6)(50)(1.25)1.7

from which, constant kh = 100

(5000 × 10−6)(50)(1.25)1.7

= 273.7

When the maximum core flux is 8 mWb,

Bm2 = 8 × 10−3

80 × 10−4 = 1 T

Hence hysteresis loss,

Ph2 = khv f (Bm2)n

= (273.7)(5000 × 10−6)(50)(1)1.7

= 68.4 W

Now try the following exercise.

Exercise 132 Further problems on hysteresis loss

1. The area of a hysteresis loop obtained from a speci-
men of steel is 2000 mm2. The scales used are: hor-
izontal axis 1 cm = 400A/m; vertical axis 1 cm =
0.5 T. Determine (a) the hysteresis loss per m3 per

cycle, (b) the hysteresis loss per m3 at a frequency
of 60 Hz. (c) If the maximum flux density is 1.2 T
at a frequency of 60 Hz, determine the hystere-
sis loss per m3 for a maximum flux density of
1 T and a frequency of 20 Hz, assuming the Stein-
metz index to be 1.7.

[(a) 4 kJ/m3 (b) 240 kW/m3 (c) 58.68 kW/m3]

2. A steel ring has a uniform cross-sectional area of
1500 mm2 and a mean circumference of 800 mm. A
hysteresis loop obtained for the specimen is plotted
to scales of 1 cm = 0.05 T and 1 cm = 100A/m and
it is found to have an area of 720 cm2. Determine
the hysteresis loss at a frequency of 50 Hz.

[216 W]

3. What is hysteresis? Explain how a hysteresis loop
is produced for a ferromagnetic specimen and how
its area is representative of the hysteresis loss.

The area of a hysteresis loop plotted for a fer-
romagnetic material is 80 cm2, the maximum flux
density being 1.2 T. The scales of B and H are such
that 1 cm = 0.15 T and 1 cm = 10A/m. Determine
the loss due to hysteresis if 1.25 kg of the material
is subjected to an alternating magnetic field of max-
imum flux density 1.2 T at a frequency of 50 Hz. The
density of the material is 7700 kg/m3 [0.974 W]

4. The cross-sectional area of a transformer limb is
8000 mm2 and the volume of the transformer core
is 4 × 106 mm3. The maximum value of the core
flux is 12 mWb and the frequency is 50 Hz. Assum-
ing the Steinmetz constant is 1.6, the hysteresis
loss is found to be 250 W. Determine the hysteresis
loss when the maximum core flux is 9 mWb, the
frequency remaining unchanged. [157.8 W]

5. The hysteresis loss in a transformer is 200 W
when the maximum flux density is 1 T and the
frequency is 50 Hz. Determine the hysteresis loss
if the maximum flux density is increased to 1.2 T
and the frequency reduced to 32 Hz. Assume the
hysteresis loss over this range to be proportional to
(Bm)1.6. [171.4 W]

6. A hysteresis loop is plotted to scales of 1 cm =
0.004 T and 1 cm = 10A/m and has an area of
200 cm2. If the ferromagnetic circuit for the loop
has a volume of 0.02 m3 and operates at 60 Hz
frequency, determine the hysteresis loss for the
ferromagnetic specimen. [9.6 W]

38.4 Eddy current loss

If a coil is wound on a ferromagnetic core (such as in a
transformer) and alternating current is passed through the
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coil, an alternating flux is set up in the core. The alternating
flux induces an e.m.f. e in the coil given by e = N(dφ/dt)
However, in addition to the desirable effect of inducing an
e.m.f. in the coil, the alternating flux induces undesirable
voltages in the iron core. These induced e.m.f.s set up
circulating currents in the core, known as eddy currents.
Since the core possesses resistance, the eddy currents heat
the core, and this represents wasted energy.

Eddy currents can be reduced by laminating the core,
i.e. splitting it into thin sheets with very thin layers
of insulating material inserted between each pair of the
laminations (this may be achieved by simply varnishing
one side of the lamination or by placing paper between
each lamination). The insulation presents a high resistance
and this reduces any induced circulating currents.

The eddy current loss may be determined as follows.
Let Figure 38.6 represent one strip of the core, having a
thickness of t metres, and consider just a rectangular prism
of the strip having dimensions t m × 1 m × 1 m as shown.
The area of the front face ABCD is (t × 1) m2 and, since
the flux enters this face at right angles, the eddy currents
will flow along paths parallel to the long sides.

Figure 38.6

Consider two such current paths each of width δx and
distance x m from the centre line of the front face.
The area of the rectangle enclosed by the two paths,
A = (2x)(1) = 2x m2. Hence the maximum flux entering
the rectangle,

�m = (Bm)(A) = (Bm)(2x) weber (38.4)

Induced e.m.f. e is given by e = N(dφ/dt). Since the flux
varies sinusoidally, φ = �m sin ωt. Thus

e.m.f. e = N
d

dt
(�m sin ωt) = Nω�m cos ωt

The maximum value of e.m.f. occurs when cos ωt = 1, i.e.
Em = Nω�m

Rms value of e.m.f., E = Em√
2

= Nω�m√
2

Now ω = 2πf hence

E =
(

2π√
2

)
fN�m = 4.44 f N�m

i.e. E = 4.44 f N(Bm)(A) (38.5)

From equation (38.4), �m = (Bm)(2x). Hence induced
e.m.f. E = 4.44 fN(Bm)(2x) and, since the number of turns
N = 1,

E = 8.88Bmfx volts (38.6)

Resistance R is given by R = ρl/a, where ρ is the resis-
tivity of the lamination material. Since the current set
up is confined to the two loop sides (thus l = 2 m and
a = (δx × 1) m2), the total resistance of the path is given by

R = ρ(2)

δx
= 2ρ

δx
(38.7)

The eddy current loss in the two strips is given by

E2

R
= 8.882B2

m f 2x2

2ρ/δx
from equations (38.6) and (38.7)

= 8.882B2
m f 2x2δx

2ρ

The total eddy current loss Pe in the rectangular prism
considered is given by

Pe =
∫ t/2

0

(
8.882B2

m f 2

2ρ

)
x2 dx =

(
8.882B2

m f 2

2ρ

)[
x3

3

]t/2

0

=
(

8.882B2
m f 2

2ρ

) (
t3

24

)
watts

i.e. Pe = ke(Bm)2f 2t3 watts (38.8)

where ke is a constant.

The volume of the prism is (t × 1 × 1) m3. Hence the
eddy current loss per m3 is given by

Pe = ke(Bm)2f 2t2 watts per m3 (38.9)
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From equation (38.9) it is seen that eddy current loss is
proportional to the square of the thickness of the core
strip. It is therefore desirable to make lamination strips
as thin as possible. However, at high frequencies where
it is not practicable to make very thin laminations, core
losses may be reduced by using ferrite cores or dust cores.
Ferrite is a ceramic material having magnetic properties
similar to silicon steel, and dust cores consist of fine par-
ticles of carbonyl iron or permalloy (i.e. nickel and iron),
each particle of which is insulated from its neighbour by
a binding material. Such materials have a very high value
of resistivity.

Problem 5. The eddy current loss in a particular mag-
netic circuit is 10 W/m3. If the frequency of operation
is reduced from 50 Hz to 30 Hz with the flux den-
sity remaining unchanged, determine the new value
of eddy current loss per cubic metre.

From equation (38.9), eddy current loss per cubic metre,
Pe = ke(Bm)2f 2t2 or Pe = kf 2, where k = ke(Bm)2t2, since
Bm and t are constant.

When the eddy current loss is 10 W/m3, frequency f is
50 Hz. Hence 10 = k(50)2, from which

constant k = 10

(50)2

When the frequency is 30 Hz, eddy current loss,

Pe = k(30)2 = 10

(50)2 (30)2 = 3.6 W/m3

Problem 6. The core of a transformer operating at
50 Hz has an eddy current loss of 100 W/m3and the
core laminations have a thickness of 0.50 mm. The
core is redesigned so as to operate with the same eddy
current loss but at a different voltage and at a frequency
of 250 Hz. Assuming that at the new voltage the max-
imum flux density is one-third of its original value and
the resistivity of the core remains unaltered, determine
the necessary new thickness of the laminations.

From equation (38.9), Pe = ke(Bm)2f 2t2 watts per m3.

Hence, at 50 Hz frequency,

100 = ke(Bm)2(50)2 (0.50 × 10−3)2, from which

ke = 100

(Bm)2(50)2(0.50 × 10−3)2

At 250 Hz frequency, 100 = ke

(
Bm

3

)2

(250)2(t)2 i.e.

100 =
(

100

(Bm)2(50)2(0.50 × 10−3)2

) (
Bm

3

)2

(250)2(t)2

= 100(250)2(t)2

(3)2(50)2(0.50 × 10−3)2

from which t2 = (100)(3)2(50)2(0.50 × 10−3)2

(100)(250)2

i.e. lamination thickness, t = (3)(50)(0.50 × 10−3)

250

= 0.3 × 10−3 m or 0.30 mm

Problem 7. The core of an inductor has a hysteresis
loss of 40 W and an eddy current loss of 20 W when
operating at 50 Hz frequency. (a) Determine the val-
ues of the losses if the frequency is increased to 60 Hz.
(b) What will be the total core loss if the frequency
is 50 Hz and the laminations are made one-half of
their original thickness? Assume that the flux density
remains unchanged in each case.

(a) From equation (38.3). hysteresis loss,
Ph = khvf (Bm)n= k1f (where k1 = khv(Bm)n), since
the flux density and volume are constant. Thus when
the hysteresis is 40 W and the frequency 50 Hz,

40 = k1(50)

from which, k1 = 40

50
= 0.8

If the frequency is increased to 60 Hz,

hysteresis loss, Ph = k1(60) = (0.8)(60) = 48 W
From equation (38.8),

eddy current loss, Pe = ke(Bm)2f 2t3

= k2f 2 (where k2 = keBm)2t3),

since the flux density and lamination thickness are
constant.

When the eddy current loss is 20 W the frequency is
50 Hz. Thus 20 = k2(50)2

from which k2 = 20

(50)2 = 0.008

If the frequency is increased to 60 Hz,

eddy current loss, Pe = k2(60)2 = (0.008)(60)2

= 28.8 W

(b) The hysteresis loss, Ph = khvf (Bm)n, is independent
of the thickness of the laminations. Thus, if the thick-
ness of the laminations is halved, the hysteresis loss
remains at 40 W

Eddy current loss Pe = ke(Bm)2f 2t3, i.e. Pe = k3f 2t3,
where k3 = ke(Bm)2.
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Thus 20 = k3(50)2t3

from which k3 = 20

(50)2t3

When the thickness is t/2,

Pe = k3(50)2(t/2)3 =
(

20

(50)2t3

)
(50)2(t/2)3 = 2.5 W

Hence the total core loss when the thickness of
the laminations is halved is given by hysteresis
loss + eddy current loss = 40 + 2.5 = 42.5 W.

Problem 8. When a transformer is connected to a
500V, 50 Hz supply, the hysteresis and eddy cur-
rent losses are 400 W and 150 W respectively. The
applied voltage is increased to 1 kV and the frequency
to 100 Hz. Assuming the Steinmetz index to be 1.6,
determine the new total core loss.

From equation (38.3), the hysteresis loss, Ph = khvf (Bm)n.
From equation (38.5), e.m.f., E = 4.44 fN(Bm)(A), from
which, Bmα(E/f ) since turns N and cross-sectional area,
A are constants. Hence Ph = k1f (E/f )1.6 = k1f −0.6E1.6

At 500V and 50 Hz, 400 = k1(50)−0.6(500)1.6,

from which, k1 = 400

(50)−0.6(500)1.6 = 0.20095

At 1000V and 100 Hz, hysteresis loss,

Ph = k1(100)−0.6(1000)1.6

= (0.20095)(100)−0.6(1000)−1.6 = 800 W

From equation (38.8)

eddy current loss, Pe = ke(Bm)2f 2t3 = k2(E/f )2f 2 = k2E2

At 500 V, 150 = k2(500)2, from which

k2 = 150

(500)2 = 6 × 10−4

At 1000V,

eddy current loss, Pe = k2(1000)2 = (6 × 10−4)(1000)2

= 600 W

Hence the new total core loss = 800 + 600 = 1400 W

Now try the following exercise.

Exercise 133 Further problems on eddy current
loss

1. In a magnetic circuit operating at 60 Hz, the eddy
current loss is 25 W/m3. If the frequency is reduced

to 30 Hz with the flux density remaining unchanged,
determine the new value of eddy current loss per
cubic metre. [6.25 W/m3]

2. A transformer core operating at 50 Hz has an eddy
current loss of 150 W/m3and the core laminations
are 0.4 mm thick. The core is redesigned so as to
operate with the same eddy current loss but at a dif-
ferent voltage and at 200 Hz frequency. Assuming
that at the new voltage the flux density is half of its
original value and the resistivity of the core remains
unchanged, determine the necessary new thickness
of the laminations. [0.20 mm]

3. An inductor core has an eddy current loss of 25 W
and a hysteresis loss of 35 W when operating at
50 Hz frequency. Assuming that the flux density
remains unchanged, determine (a) the value of the
losses if the frequency is increased to 75 Hz, and
(b) the total core loss if the frequency is 50 Hz and
the laminations are 2/5 of their original thickness.

[(a) Ph = 52.5 W, Pe = 56.25 W (b) 36.6 W]

4. A transformer is connected to a 400V, 50 Hz supply.
The hysteresis loss is 250 W and the eddy current
loss is 120 W. The supply voltage is increased to
1.2 kV and the frequency to 80 Hz. Determine the
new total core loss if the Steinmetz index is assumed
to be 1.6. [2173.6 W]

5. The hysteresis and eddy current losses in a mag-
netic circuit are 5 W and 8 W respectively. If the
frequency is reduced from 50 Hz to 30 Hz, the flux
density remaining the same, determine the new
values of hysteresis and eddy current loss.

[3 W; 2.88 W]

6. The core loss in a transformer connected to a 600V,
50 Hz supply is 1.5 kW of which 60% is hystere-
sis loss and 40% eddy current loss. Determine the
total core loss if the same winding is connected
to a 750V, 60 Hz supply. Assume the Steinmetz
constant to be 1.6. [2090 W]

38.5 Separation of hysteresis and eddy current
losses

From equation (38.3), hysteresis loss, Ph = khvf (Bm)n

From equation (38.8), eddy current loss, Pe = ke(Bm)2f 2t3

The total core loss Pc is given by Pc = Ph + Pe

If for a particular inductor or transformer, the core flux
density is maintained constant, then Ph = k1f , where
constant k1 = khv(Bm)n, and Pe = k2f 2, where constant
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k2 = ke(Bm)2t3. Thus the total core loss Pc = k1 f + k2 f 2

and

Pc

f
= k1 + k2 f

which is of the straight line form y = mx + c. Thus if
Pc/f is plotted vertically against f horizontally, a straight
line graph results having a gradient k2 and a vertical-axis
intercept k1.

If the total core loss Pc is measured over a range of fre-
quencies, then k1 and k2 may be determined from the graph
of Pc/f against f . Hence the hysteresis loss Ph(= k1f ) and
the eddy current loss Pe(= k2 f 2) at a given frequency may
be determined.

The above method of separation of losses is an approx-
imate one since the Steinmetz index n is not a constant
value but tends to increase with increase of frequency.
However, a reasonable indication of the relative magni-
tudes of the hysteresis and eddy current losses in an iron
core may be determined.

Problem 9. The total core loss of a ferromagnetic
cored transformer winding is measured at different
frequencies and the results obtained are:

Total core loss, Pc (watts) 45 105 190 305
Frequency, f (hertz) 30 50 70 90

Determine the separate values of the hysteresis and
eddy current losses at frequencies of (a) 50 Hz and
(b) 60 Hz.

To obtain a straight line graph, values of Pc/f are plotted
against f .

f (Hz) 30 50 70 90
Pc/f 1.5 2.1 2.7 3.4

A graph of Pc/f against f is shown in Figure 38.7. The
graph is a straight line of the form Pc/f = k1 + k2f

The vertical axis intercept at f = 0, k1 = 0.5

The gradient of the graph, k2 = a

b
= 3.7 − 0.5

100
= 0.032

Since Pc/f = k1 + k2f , then P = k1 f + k2f 2, i.e.

total core losses = hysteresis loss + eddy current loss.

(a) At a frequency of 50 Hz,

hysteresis loss = k1f = (0.5)(50) = 25 W

eddy current loss = k2f 2 = (0.032)(50)2 = 80 W

(b) At a frequency of 60 Hz,

hysteresis loss = k1f = (0.5)(60) = 30 W

eddy current loss = k2f 2 = (0.032)(60)2 = 115.2 W

Figure 38.7

Problem 10. The core of a synchrogenerator has total
losses of 400 W at 50 Hz and 498 W at 60 Hz, the flux
density being constant for the two tests. (a) Determine
the hysteresis and eddy current losses at 50 Hz. (b) If
the flux density is increased by 25% and the lami-
nation thickness is increased by 40%, determine the
hysteresis and eddy current losses at 50 Hz. Assume
the Steinmetz index to be 1.7

(a) From equation (38.3),

hysteresis loss, Ph = khvf (Bm)n = k1f

(if volume v and the maximum flux density are
constant)

From equation (38.8),

eddy current loss, Pe = ke(Bm)2f 2t3 = k2f 2

(if the maximum flux density and the lamination
thickness are constant)

Hence the total core loss Pc = Ph + Pe i.e.
Pc = k1f + k2 f 2

At 50 Hz frequency, 400 = k1(50) + k2(50)2 (1)

At 60 Hz frequency, 498 = k1(60) + k2(60)2 (2)

Solving equations (1) and (2) gives the values of k1
and k2.

6 × equation (1) gives: 2400 = 300k1 + 15 000k2 (3)

5 × equation (2) gives: 2490 = 300k1 + 18 000k2 (4)

Equation (4) – equation (3) gives: 90 = 3000k2 from
which,

k2 = 90/3000 = 0.03

Substituting k2 = 0.03 in equation (1) gives
400 = 50k1 + 75, from which k1 = 6.5
Thus, at 50 Hz frequency,
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hysteresis loss Ph = k1f = (6.5)(50) = 325 W

eddy current loss Pe = k2f 2 = (0.03)(50)2 = 75 W

(b) Hysteresis loss, Ph = khvf (Bm)n. Since at 50 Hz the
flux density is increased by 25%, the new hysteresis
loss is (1.25)1.7 times greater than 325 W,

i.e. Ph = (1.25)1.7(325) = 474.9 W

Eddy current loss, Pe = ke(Bm)2f 2t3. Since at 50 Hz
the flux density is increased by 25%, and the lami-
nation thickness is increased by 40%, the new eddy
current loss is (1.25)2(1.4)3 times greater than 75 W,

i.e. Pe = (1.25)2(1.4)3(75) = 321.6 W

Now try the following exercise.

Exercise 134 Further problems on separation of
hysteresis and eddy current losses

1. Tests to determine the total loss of the steel core
of a coil at different frequencies gave the following
results:

Frequency (Hz) 40 50 70 100

Total core loss (W) 40 57.5 101.5 190

Determine the hysteresis and eddy current losses at
(a) 50 Hz and (b) 80 Hz.

[(a) 20 W; 37.5 W (b) 32 W; 96 W]

2. Explain why, when steel is subjected to alternat-
ing magnetization energy, losses occur due to both
hysteresis and eddy currents.

The core loss in a transformer core at normal flux
density was measured at frequencies of 40 Hz and
50 Hz, the results being 40 W and 52.5 W respect-
ively. Calculate, at a frequency of 50 Hz, (a) the
hysteresis loss and (b) the eddy current loss.

[(a) 40 W (b) 12.5 W]

3. Results of a test used to separate the hysteresis and
eddy current losses in the core of a transformer
winding gave the following results:

Total core loss (W) 48 96 160 240

Frequency (Hz) 40 60 80 100

If the flux density is held constant throughout the
test, determine the values of the hysteresis and eddy
current losses at 50 Hz. [20 W; 50 W]

4. A transformer core has a total core loss of 275 W at
50 Hz and 600 W at 100 Hz, the flux density being
constant for the two tests. (a) Determine the hys-
teresis and eddy current losses at 75 Hz. (b) If the
flux density is increased by 40% and the lamination

thickness is increased by 20% determines the hys-
teresis and eddy current losses at 75 Hz. Assume
the Steinmetz index to be 1.6.

[(a) 375 W; 56.25 W (b) 642.4 W; 190.5 W]

38.6 Non-permanent magnetic materials

General

Nonpermanent magnetic materials are those in which
magnetism may be induced. With the magnetic circuits
of electrical machines, transformers and heavy current
apparatus a high value of flux density B is desirable so
as to limit the cross-sectional area A (� = BA) and there-
fore the weight and cost involved. At the same time the
magnetic field strength H (= NI/l) should be as small as
possible so as to limit the I2R losses in the exciting coils.
The relative permeability (µr = B/(µ0H)) and the satur-
ation flux density should therefore be high. Also, when
flux is continually varying, as in transformers, inductors
and armature cores, low hysteresis and eddy current losses
are essential.

Silicon-iron alloys

In the earliest electrical machines the magnetic circuit
material used was iron with low content of carbon and
other impurities. However, it was later discovered that the
deliberate addition of silicon to the iron brought about
a great improvement in magnetic properties. The lamin-
ations now used in electrical machines and in transformers
at supply frequencies are made of silicon-steel in which the
silicon in different grades of the material varies in amounts
from about 0.5% to 4.5% by weight. The silicon added to
iron increases the resistivity. This in turn increases the
resistance (R = ρl/A) and thus helps to reduce eddy cur-
rent loss. The hysteresis loss is also reduced; however, the
silicon reduces the saturation flux density.

A limit to the amount of silicon which may be added in
practice is set by the mechanical properties of the material,
since the addition of silicon causes a material to become
brittle. Also the brittleness of a silicon-iron alloy depends
on temperature. About 4.5% silicon is found to be the
upper practical limit for silicon-iron sheets. Lohys is a
typical example of a silicon-iron alloy and is used for the
armatures of d.c. machines and for the rotors and stators
of a.c. machines. Stalloy, which has a higher proportion
of silicon and lower losses, is used for transformer cores.

Silicon steel sheets are often produced by a hot-rolling
process. In these finished materials the constituent crystals
are not arranged in any particular manner with respect,
for example, to the direction of rolling or the plane of the
sheet. If silicon steel is reduced in thickness by rolling in
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the cold state and the material is then annealed it is possible
to obtain a finished sheet in which the crystals are nearly
all approximately parallel to one another. The material
has strongly directional magnetic properties, the rolling
direction being the direction of highest permeability. This
direction is also the direction of lowest hysteresis loss.
This type of material is particularly suitable for use in
transformers, since the axis of the core can be made to
correspond with the rolling direction of the sheet and thus
full use is made of the high permeability, low loss direction
of the sheet.

With silicon-iron alloys a maximum magnetic flux
density of about 2 T is possible. With cold-rolled silicon
steel, used for large machine construction, a maximum
flux density of 2.5 T is possible, whereas the maximum
obtainable with the hot-rolling process is about 1.8 T. (In
fact, with any material, only under the most abnormal of
conditions will the value of flux density exceed 3 T.)

It should be noted that the term ‘iron-core’ implies that
the core is made of iron; it is, in fact, almost certainly
made from steel, pure iron being extremely hard to come
by. Equally, an iron alloy is generally a steel and so it is
preferred to describe a core as being a steel rather than an
iron core.

Nickel-iron alloys

Nickel and iron are both ferromagnetic elements and when
they are alloyed together in different proportions a series of
useful magnetic alloys is obtained. With about 25%–30%
nickel content added to iron, the alloy tends to be very hard
and almost non-magnetic at room temperature. However,
when the nickel content is increased to, say, 75%–80%
(together with small amounts of molybdenum and cop-
per), very high values of initial and maximum permeabil-
ities and very low values of hysteresis loss are obtainable if
the alloys are given suitable heat treatment. For example,
Permalloy, having a content of 78% nickel, 3% molybde-
num and the remainder iron, has an initial permeability
of 20 000 and a maximum permeability of 100 000 com-
pared with values of 250 and 5000 respectively for iron.
The maximum flux density for Permalloy is about 0.8 T.
Mumetal (76% nickel, 5% copper and 2% chromium)
has similar characteristics. Such materials are used for
the cores of current and a.f. transformers, for magnetic
amplifiers and also for magnetic screening. However,
nickel-iron alloys are limited in that they have a low
saturation value when compared with iron. Thus, in appli-
cations where it is necessary to work at a high flux density,
nickel-iron alloys are inferior to both iron and silicon-iron.
Also nickel-iron alloys tend to be more expensive than
silicon-iron alloys.

Eddy current loss is proportional to the thickness of
lamination squared, thus such losses can be reduced by
using laminations as thin as possible. Nickel-iron alloy
strip as thin as 0.004 mm, wound in a spiral, may be used.

Dust cores

In many circuits high permeability may be unnecessary or
it may be more important to have a very high resistivity.
Where this is so, metal powder or dust cores are widely
used up to frequencies of 150 MHz. These consist of par-
ticles of nickel-iron-molybdenum for lower frequencies
and iron for the higher frequencies. The particles, which
are individually covered with an insulating film, are mixed
with an insulating, resinous binder and pressed into shape.

Ferrites

Magnetite, or ferrous ferrite, is a compound of ferric oxide
and ferrous oxide and possesses magnetic properties simi-
lar to those of iron. However, being a semiconductor,
it has a very high resistivity. Manufactured ferrites are
compounds of ferric oxide and an oxide of some other
metal such as manganese, nickel or zinc. Ferrites are free
from eddy current losses at all but the highest frequencies
(i.e. >100 MHz) but have a much lower initial permea-
bility compared with nickel-iron alloys or silicon-iron
alloys. Ferrites have typically a maximum flux density
of about 0.4 T. Ferrite cores are used in audio-frequency
transformers and inductors.

38.7 Permanent magnetic materials

A permanent magnet is one in which the material used
exhibits magnetism without the need for excitation by
a current-carrying coil. The silicon-iron and nickel-iron
alloys discussed in Section 38.6 are ‘soft’ magnetic mate-
rials having high permeability and hence low hysteresis
loss. The opposite characteristics are required in the ‘hard’
materials used to make permanent magnets. In permanent
magnets, high remanent flux density and high coercive
force, after magnetization to saturation, are desirable
in order to resist demagnetization. The hysteresis loop
should embrace the maximum possible area. Possibly the
best criterion of the merit of a permanent magnet is its
maximum energy product (BH)m, i.e. the maximum value
of the product of the flux density B and the magnetic field
strength H along the demagnetization curve (shown as
cd in Figure 38.2). A rough criterion is the product of
coercive force and remanent flux density, i.e. (0d)(0c) in
Figure 38.2. The earliest materials used for permanent
magnets were tungsten and chromium steel, followed by
a series of cobalt steels, to give both a high remanent flux
density and a high value of (BH)m.

Alni was the first of the aluminium-nickel-iron alloys
to be discovered, and with the addition of cobalt, titanium
and niobium, the Alnico series of magnets was developed,
the properties of which vary according to composition.
These materials are very hard and brittle. Many alloys with
other compositions and trade names are commercially
available.
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A considerable advance was later made when it was
found that directional magnetic properties could be
induced in alloys of suitable composition if they were
heated in a strong magnetic field. This discovery led to
the powerfulAlcomex and Hycomex series of magnets. By
using special casting techniques to give a grain-oriented
structure, even better properties are obtained if the field
applied during heat treatment is parallel to the colum-
nar crystals in the magnet. The values of coercivity, the

remanent flux density and hence (BH)m are high for these
alloys.

The most recent and most powerful permanent mag-
nets discovered are made by powder metallurgy tech-
niques and are based on an intermetallic compound of
cobalt and samarium. These are very expensive and
are only available in a limited range of small sizes.
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Revision test 12

This revision test covers the material in chapters 36
to 38.

The marks for each question are shown in brackets at
the end of each question.

1. A voltage waveform represented by

v = 50 sin ωt + 20 sin
(

3ωt + π

3

)

+ 5 sin
(

5ωt + π

6

)
volts

is applied to a circuit and the resulting current i is
given by

i = 2.0 sin
(
ωt − π

6

)
+ 0.462 sin 3ωt

+ 0.0756 sin (5ωt − 0.71) amperes.

Calculate (a) the r.m.s. voltage, (b) the mean value
of voltage, (c) the form factor for the voltage, (d) the
r.m.s. value of current, (e) the mean value of current,
(f) the form factor for the current, (g) the total active
power supplied to the circuit, and (h) the overall power
factor. (24)

2. Obtain a Fourier series to represent f (t) = t in the range
−π to +π. (15)

3. (a) Sketch a waveform defined by:

f (x) =
{

0 when −4 ≤ x ≤ −2
3 when −2 ≤ x ≤ 2
0 when 2 ≤ x ≤ 4

and is periodic outside of this range of period 8.

(b) State whether the waveform in (a) is odd, even or
neither odd nor even.

(c) Deduce the Fourier series for the function defined
in (a). (15)

4. The value of the current i (in mA) at different moments
in a cycle are given by:

θ degrees 0 30 60 90 120 150 180
i mA 50 75 165 190 170 100 −150

θ degrees 210 240 270 300 330 360
i mA −210 −185 −90 −10 35 50

Draw the graph of current i against θ and analyse the
current into its first three constituent components, each
coefficient correct to 2 decimal places. (30)

5. The cross-sectional area of a transformer limb is
8000 mm2 and the volume of the transformer core
is 4 × 106 mm3. The maximum value of the core flux is
12 mWb at a frequency of 50 Hz. Taking the Steinmetz
index as 1.6, the hysteresis loss is found to be 80 W.
Determine the value of the hysteresis loss when the
maximum core flux is 9 mWb and the frequency is
50 Hz. (6)

6. The core of an inductor has a hysteresis loss of 25 W and
an eddy current loss of 15 W when operating at 50 Hz
frequency. Determine (a) the values of the losses if the
frequency is increased to 70 Hz, and (b) the total core
loss if the frequency is 50 Hz and the laminations are
made three quarters of their original thickness. Assume
that the flux density remains unchanged in each case.

(10)
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39 Dielectrics and dielectric loss

At the end of this chapter you should be able to:
• understand electric fields, capacitance and

permittivity
• assess the dielectric properties of materials

• determine dielectric loss, loss angle, Q-factor and
dissipation factor of capacitors

39.1 Electric fields, capacitance and permittivity

Any region in which an electric charge experiences a force
is called an electrostatic field. Electric fields, Coulombs
law, capacitance and permittivity are discussed in Chap-
ter 6 — refer back to page 39. Summarizing the main
formulae:

Electric field strength, E = V
d

volts/metre

Capacitance C = Q
V

farads

Electric flux density, D = Q
A

coulombs/metre2

D
E

= ε0εr = ε

Relative permittivity εr = flux density in material
flux density in vacuum

The insulating medium separating charged surfaces is
called a dielectric. Compared with conductors, dielec-
tric materials have very high resistivities (and hence low
conductance, since ρ = 1/σ). They are therefore used
to separate conductors at different potentials, such as
capacitor plates or electric power lines.

For a parallel-plate capacitor,

capacitance C = ε0εrA(n − 1)
d

39.2 Polarization

When a dielectric is placed between charged plates, the
capacitance of the system increases. The mechanism by
which a dielectric increases capacitance is called polar-
ization. In an electric field the electrons and atomic nuclei

of the dielectric material experience forces in opposite
directions. Since the electrons in an insulator cannot flow,
each atom becomes a tiny dipole (i.e. an arrangement of
two electric charges of opposite polarity) with positive
and negative charges slightly separated, i.e. the material
becomes polarized.

Within the material this produces no discernible effects.
However, on the surfaces of the dielectric, layers of charge
appear. Electrons are drawn towards the positive poten-
tial, producing a negative charge layer, and away from
the negative potential, leaving positive surface charge
behind. Therefore the dielectric becomes a volume of neu-
tral insulator with surface charges of opposite polarity on
opposite surfaces. The result of this is that the electric
field inside the dielectric is less than the electric field caus-
ing the polarization, because these two charge layers give
rise to a field which opposes the electric field causing it.
Since electric field strength, E = V/d, the p.d. between
the plates, V = Ed. Thus, if E decreases when the dielec-
tric is inserted, then V falls too and this drop in p.d. occurs
without change of charge on the plates. Thus, since capaci-
tance C = Q/V , capacitance increases, this increase being
by a factor equal to εr above that obtained with a vacuum
dielectric.

There are two main ways in which polarization takes
place:

(i) The electric field, as explained above, pulls the elec-
trons and nuclei in opposite directions because they
have opposite charges, which makes each atom into an
electric dipole. The movement is only small and takes
place very fast since the electrons are very light. Thus,
if the applied electric field is varied periodically, the
polarization, and hence the permittivity due to these
induced dipoles, is independent of the frequency of
the applied field.

(ii) Some atoms have a permanent electric dipole as a
result of their structure and, when an electric field is
applied, they turn and tend to align along the field.
The response of the permanent dipoles is slower than
the response of the induced dipoles and that part of
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the relative permittivity which arises from this type of
polarization decreases with increase of frequency.

Most materials contain both induced and permanent
dipoles, so the relative permittivity usually tends to
decrease with increase of frequency.

39.3 Dielectric strength

The maximum amount of field strength that a dielectric
can withstand is called the dielectric strength of the mater-
ial. When an electric field is established across the faces
of a material, molecular alignment and distortion of the
electron orbits around the atoms of the dielectric occur.
This produces a mechanical stress which in turn generates
heat. The production of heat represents a dissipation of
power, such a loss being present in all practical dielectrics,
especially when used in high-frequency systems where the
field polarity is continually and rapidly changing.

A dielectric whose conductivity is not zero between
the plates of a capacitor provides a conducting path along
which charges can flow and thus discharge the capacitor.
The resistance R of the dielectric is given by R = ρl/a,
l being the thickness of the dielectric film (which may
be as small as 0.001 mm) and a being the area of the
capacitor plates. The resistance R of the dielectric may be
represented as a leakage resistance across an ideal capaci-
tor (see Section 39.8 on dielectric loss). The required lower
limit for acceptable resistance between the plates varies
with the use to which the capacitor is put. High-quality
capacitors have high shunt-resistance values. A measure
of dielectric quality is the time taken for a capacitor to
discharge a given amount through the resistance of the
dielectric. This is related to the product CR.

Capacitance, C ∝ area

thickness
and

1

R
∝ area

thickness

thus CR is a characteristic of a given dielectric. In prac-
tice, circuit design is considerably simplified if the shunt
conductance of a capacitor can be ignored (i.e. R → ∞)
and the capacitor therefore regarded as an open circuit for
direct current.

Since capacitance C of a parallel plate capacitor is
given by C = ε0εrA/d, reducing the thickness d of a
dielectric film increases the capacitance, but decreases
the resistance. It also reduces the voltage the capacitor
can withstand without breakdown (since V = Q/C). Any
material will eventually break down, usually destructively,
when subjected to a sufficiently large electric field. A spark
may occur at breakdown which produces a hole through
the film. The metal film forming the metal plates may be
welded together at the point of breakdown.

Breakdown depends on electric field strength E (where
E = V/d), so thinner films will break down with smaller
voltages across them. This is the main reason for limiting

the voltage that may be applied to a capacitor. All practical
capacitors have a safe working voltage stated on them,
generally at a particular maximum temperature. Figure
39.1 shows the typical shapes of graphs expected for elec-
tric field strength E plotted against thickness and for break-
down voltage plotted against thickness. The shape of the
curves depend on a number of factors, and these include:

(i) the type of dielectric material,
(ii) the shape and size of the conductors associated

with it,
(iii) the atmospheric pressure,
(iv) the humidity/moisture content of the material,
(v) the operating temperature.

Figure 39.1

Dielectric strength is an important factor in the design of
capacitors as well as transformers and high-voltage insu-
lators, and in motors and generators. Dielectrics vary in
their ability to withstand large fields. Some typical values
of dielectric strength, together with resistivity and rela-
tive permittivity are shown in Table 39.1. The ceramics
have very high relative permittivities and they tend to be
‘ferroelectric’, i.e. they do not lose their polarities when
the electric field is removed. When ferroelectric effects
are present, the charge on a capacitor is given by Q =
(CV ) + (remanent polarization). These dielectrics often
possess an appreciable negative temperature coefficient of

Table 39.1 Dielectric properties of some common
materials.

Material Resistivity, Relative Dielectric
ρ (�m) permittivity, strength

εr (V/m)

Air 1.0 3 × 106

Paper 1010 3.7 1.6 × 107

Mica 5 × 1011 5.4 108–109

Titaniumdioxide 1012 100 6 × 106

Polythene >1011 2.3 4 × 107

Polystyrene >1013 2.5 2.5 × 107

Ceramic (type 1) 4 × 1011 6–500 4.5 × 107

Ceramic (type 2) 106–1013 500–1000 2 × 106–107
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resistance. Despite this, a high permittivity is often very
desirable and ceramic dielectrics are widely used.

39.4 Thermal effects

As the temperature of most dielectrics is increased, the
insulation resistance falls rapidly. This causes the leakage
current to increase, which generates further heat. Eventu-
ally a condition known as thermal avalanche or thermal
runaway may develop, when the heat is generated faster
than it can be dissipated to the surrounding environment.
The dielectric will burn and thus fail.

Thermal effects may often seriously influence the
choice and application of insulating materials. Some
important factors to be considered include:

(i) the melting-point (for example, for waxes used in
paper capacitors),

(ii) aging due to heat,
(iii) the maximum temperature that a material will

withstand without serious deterioration of essential
properties,

(iv) flash-point or ignitability,
(v) resistance to electric arcs,

(vi) the specific heat capacity of the material,
(vii) thermal resistivity,

(viii) the coefficient of expansion,
(ix) the freezing-point of the material.

39.5 Mechanical properties

Mechanical properties determine, to varying degrees, the
suitability of a solid material for use as an insulator: ten-
sile strength, transverse strength, shearing strength and
compressive strength are often specified. Most solid insu-
lations have a degree of inelasticity and many are quite
brittle, thus it is often necessary to consider features such
as compressibility, deformation under bending stresses,
impact strength and extensibility, tearing strength,
machinability and the ability to fold without damage.

39.6 Types of practical capacitor

Practical types of capacitor are characterized by the mater-
ial used for their dielectric. The main types include:
variable air, mica, paper, ceramic, plastic, titanium oxide
and electrolytic. Refer back to Chapter 6, Section 12,
page 49, for a description of each type.

39.7 Liquid dielectrics and gas insulation

Liquid dielectrics used for insulation purposes are refined
mineral oils, silicone fluids and synthetic oils such as
chlorinated diphenyl. The principal uses of liquid
dielectrics are as a filling and cooling medium for trans-
formers, capacitors and rheostats, as an insulating and arc-
quenching medium in switchgear such as circuit breakers,
and as an impregnant of absorbent insulations — for
example, wood, slate, paper and pressboard, used mainly
in transformers, switchgear, capacitors and cables.

Two gases used as insulation are nitrogen and sulphur
hexafluoride. Nitrogen is used as an insulation medium in
some sealed transformers and in power cables, and sulphur
hexafluoride is finding increasing use in switchgear both
as an insulant and as an arc-extinguishing medium.

39.8 Dielectric loss and loss angle

In capacitors with solid dielectrics, losses can be attributed
to two causes:

(i) dielectric hysteresis, a phenomenon by which energy
is expended and heat produced as the result of the
reversal of electrostatic stress in a dielectric subjected
to alternating electric stress — this loss is analogous
to hysteresis loss in magnetic materials;

(ii) leakage currents that may flow through the dielectric
and along surface paths between the terminals.

The total dielectric loss may be represented as the loss
in an additional resistance connected between the plates.
This may be represented as either a small resistance in
series with an ideal capacitor or as a large resistance in
parallel with an ideal capacitor.

Series representation

The circuit and phasor diagrams for the series representa-
tion are shown in Figure 39.2. The circuit phase angle is
shown as angle φ. If resistance RS is zero then current I
would lead voltage V by 90◦, this being the case of a per-
fect capacitor. The difference between 90◦ and the circuit
phase angle φ is the angle shown as δ. This is known as
the loss angle of the capacitor, i.e.

loss angle, δ = (90◦− φ)

For the equivalent series circuit,

tan δ = VRS

VCS

= IRS

IXCS
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Figure 39.2 (a) Circuit diagram (b) Phasor diagram

i.e. tan δ = RS

1/(ωCS)
= RSωCS

Since from Chapter 28, Q = 1

ωCR
then

tan δ = RSωCS = 1
Q

(39.1)

Power factor of capacitor,

cos φ = VRS

V
= IRS

IZS
= RS

ZS
≈ RS

XCS

since XCS ≈ ZS when δ is small. Hence
power factor = cos φ ≈ RSωCS, i.e.

cos φ ≈ tan δ (39.2)

Dissipation factor, D is defined as the reciprocal of
Q-factor and is an indication of the quality of the dielectric,
i.e.

D = 1
Q

= tan δ (39.3)

Parallel representation

The circuit and phasor diagrams for the parallel represen-
tation are shown in Figure 39.3. From the phasor diagram,

tan δ = IRP

ICP

= V/RP

V/XCP

= XCP

RP

i.e. tan δ = 1
RPωCP

(39.4)

Figure 39.3 (a) Circuit diagram (b) Phasor diagram

Power factor of capacitor,

cos φ = IRP

I
= V/RP

V/ZP
= ZP

RP
≈ XCP

RP

since XCP ≈ ZP, when δ is small. Hence

power factor = cos φ ≈ 1

RPωCP

i.e. cos φ ≈ tan δ

(For equivalence between the series and the parallel circuit
representations,

CS ≈ CP = C and RSωCS ≈ 1

RPωCP

from which RS ≈ 1/RPω2C2)

Power loss in the dielectric = VI cos φ. From the phasor
diagram of Figure 39.3

cos δ = ICP

I
= V/XCP

I
= VωC

I
or I = VωC

cos δ

Hence power loss = VI cos φ = V

(
VωC

cos δ

)
cos φ

However, cos φ = sin δ (complementary angles), thus

power loss = V

(
VωC

cos δ

)
sin δ = V2ωC tan δ

(since sin δ / cos δ = tan δ)

Hence dielectric power loss = V2ωC tan δ (39.5)
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Problem 1. The equivalent series circuit for a particu-
lar capacitor consists of a 1.5 � resistance in series
with a 400 pF capacitor. Determine for the capacitor,
at a frequency of 8 MHz, (a) the loss angle, (b) the
power factor, (c) the Q-factor, and (d) the dissipation
factor.

(a) From equation (39.1), for a series equivalent circuit,

tan δ = RSωCS

= (1.5)(2π×8×106)(400×10−12) = 0.030159

Hence loss angle, δ = tan−1(0.030159)
= 1.727◦ or 0.030 rad.

(b) From equation (39.2),
power factor = cos φ ≈ tan δ = 0.030

(c) From equation (39.1), tan δ = 1

Q

hence Q = 1

tan δ
= 1

0.030159
= 33.16

(d) From equation (39.3), dissipation factor,

D = 1

Q
= 0.030159 or 0.030, correct to 3 decimal

places.

Problem 2. A capacitor has a loss angle of 0.025 rad,
and when it is connected across a 5 kV, 50 Hz sup-
ply, the power loss is 20 W. Determine the component
values of the equivalent parallel circuit.

From equation (39.5),

power loss = V2ωC tan δ

i.e. 20 = (5000)2(2π50)(C) tan(0.025)

from which capacitance C = 20

(5000)2(2π50) tan(0.025)

= 0.102 µF

(Note tan(0.025) means ‘the tangent of 0.025 rad’)
From equation (39.4), for a parallel equivalent circuit,

tan δ = 1

RPωCP

from which, parallel resistance,

RP = 1

ωCP tan δ
= 1

(2π50)(0.102 × 10−6) tan 0.025

i.e. RP = 1.248 M�

Problem 3. A 2000 pF capacitor has an alternating
voltage of 20V connected across it at a frequency
of 10 kHz. If the power dissipated in the dielectric is
500 µW, determine (a) the loss angle, (b) the equivalent
series loss resistance, and (c) the equivalent parallel
loss resistance.

(a) From equation (39.5), power loss = V2ωC tan δ, i.e.

500×10−6 = (20)2(2π10×103)(2000×10−12)tan δ

Hence tan δ = 500 × 10−6

(20)2(2π10 × 103)(2000 × 10−12)

= 9.947 × 10−3

from which, loss angle, δ = 0.57◦ or 9.95 × 10−3 rad.

(b) From equation (39.1), for an equivalent series cir-
cuit, tan δ = RSωCS , from which equivalent series
resistance,

RS = tan δ

ωCS
= 9.947 × 10−3

(2π10 × 103)(2000 × 10−12)

i.e. RS = 79.16 �

(c) From equation (39.4), for an equivalent parallel
circuit,

tan δ = 1

RPωCP

from which equivalent parallel resistance,

RP = 1

(tan δ)ωCP

= 1

(9.947×10−3)(2π10×103)(2000×10−12)

i.e. RP = 800 k�

Now try the following exercise.

Exercise 135 Further problems on dielectric loss
and loss angle

1. The equivalent series circuit for a capacitor con-
sists of a 3 � resistance in series with a 250 pF
capacitor. Determine the loss angle of the capac-
itor at a frequency of 5 MHz, giving the answer in
degrees and in radians. Find also for the capacitor,
(a) the power factor, (b) the Q-factor, and (c) the
dissipation factor.

[1.35◦ or 0.024 rad (a) 0.0236
(b) 42.4 (c) 0.0236]
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2. A capacitor has a loss angle of 0.008 rad and when it
is connected across a 4 kV, 60 Hz supply the power
loss is 15 W. Determine the component values of
(a) the equivalent parallel circuit, and (b) the
equivalent series circuit.

[(a) 0.311 µF, 1.066 M�
(b) 0.311 µF, 68.24 �]

3. A coaxial cable has a capacitance of 4 µF and a
dielectric power loss of 12 kW when operated at
50 kV and frequency 50 Hz. Calculate (a) the value
of the loss angle, and (b) the equivalent parallel
resistance of the cable.

[(a) 0.219◦ or 3.82 × 10−3 rad (b) 208.3 k�]

4. What are the main reasons for power loss in capaci-
tors with solid dielectrics? Explain the term ‘loss
angle’.

A voltage of 10V and frequency 20 kHz is con-
nected across a 1 nF capacitor. If the power dissi-
pated in the dielectric is 0.2 mW, determine (a) the
loss angle, (b) the equivalent series loss resistance,
and (c) the equivalent parallel loss resistance.

[(a) 0.912◦ or 0.0159 rad (b) 126.7 �
(c) 0.5 M�]

5. The equivalent series circuit for a capacitor consists
of a 0.5 � resistor in series with a capacitor of react-
ance 2 k�. Determine for the capacitor (a) the loss
angle, (b) the power factor, and (c) the equivalent
parallel resistance.

[(a) 0.014◦ or 2.5 × 10−4 rad (b) 2.5 × 10−4

(c) 8 M�]
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40 Field theory

At the end of this chapter you should be able to:
• understand field plotting by curvilinear squares
• show that the capacitance between concentric cylin-

ders, C = 2πε0εr

ln(b/a)
and calculate C given values of

radii a and b

• calculate dielectric stress E = V

r ln(b/a)• appreciate dimensions of the most economical cable
• show that the capacitance of an isolated twin line,

C = πε0εr

ln(D/a)
and calculate C given values of a and D

• calculate energy stored in an electric field
• show that the inductance of a concentric cylinder,

L = µ0µr

2π

(
1

4
+ ln

b

a

)
and calculate L given values

of a and b
• show that the inductance of an isolated twin line,

L = µ0µr

π

(
1

4
+ ln

D

a

)
and calculate L given values

of a a and D
• calculate energy stored in an electromagnetic field

40.1 Field plotting by curvilinear squares

Electric fields, magnetic fields and conduction fields (i.e.
a region in which an electric current flows) are analogous,
i.e. they all exhibit similar characteristics. Thus they may
all be analysed by similar processes. In the following the
electric field is analysed.

Figure 40.1 shows two parallel plates A and B. Let the
potential on plate A be +V volts and that on plate B be
−V volts. The force acting on a point charge of 1 coulomb
placed between the plates is the electric field strength E. It
is measured in the direction of the field and its magnitude
depends on the p.d. between the plates and the distance
between the plates. In Figure 40.1, moving along a line of
force from plate B to plate A means moving from −V to
+V volts. The p.d. between the plates is therefore 2V volts
and this potential changes linearly when moving from one
plate to the other. Hence a potential gradient is followed
which changes by equal amounts for each unit of distance
moved.

Figure 40.1 Lines of force intersecting equipotential
lines in an electric field

Lines may be drawn connecting together all points
within the field having equal potentials. These lines are

called equipotential lines and these have been drawn in
Figure 40.1 for potentials of 2

3 V, 1
3 V, 0, − 1

3 V and − 2
3 V.

The zero equipotential line represents earth potential and
the potentials on plates A and B are respectively above
and below earth potential. Equipotential lines form part
of an equipotential surface. Such surfaces are parallel to
the plates shown in Figure 40.1 and the plates themselves
are equipotential surfaces. There can be no current flow
between any given points on such a surface since all points
on an equipotential surface have the same potential. Thus
a line of force (or flux) must intersect an equipotential
surface at right angles. A line of force in an electrostatic
field is often termed a streamline.

An electric field distribution for a concentric cylinder
capacitor is shown in Figure 40.2. An electric field is set
up in the insulating medium between two good conduc-
tors. Any volt-drop within the conductors can usually be
neglected compared with the p.d.’s across the insulation
since the conductors have a high conductivity. All points
on the conductors are thus at the same potential so that the
conductors form the boundary equipotentials for the elec-
trostatic field. Streamlines (or lines of force) which must

Figure 40.2 Electric field distribution for a concentric
cylinder capacitor
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cut all equipotentials at right angles leave one boundary
at right angles, pass across the field, and enter the other
boundary at right angles.

In a magnetic field, a streamline is a line so drawn that
its direction is everywhere parallel to the direction of the
magnetic flux. An equipotential surface in a magnetic field
is the surface over which a magnetic pole may be moved
without the expenditure of work or energy.

In a conduction field, a streamline is a line drawn with
a direction which is everywhere parallel to the direction
of the current flow.

A method of solving certain field problems by a form
of graphical estimation is available which may only be
applied, however, to plane linear fields; examples include
the field existing between parallel plates or between two
long parallel conductors. In general, the plane of a field
may be divided into a number of squares formed between
the line of force (i.e. streamline) and the equipotential.
Figure 40.3 shows a typical pattern. In most cases true
squares will not exist, since the streamlines and equi-
potentials are curved. However, since the streamlines and
the equipotentials intersect at right angles, square-like fig-
ures are formed, and these are usually called ‘curvilinear
squares’. The square-like figure shown in Figure 40.3 is
a curvilinear square since, on successive sub-division by
equal numbers of intermediate streamlines and equipoten-
tials, the smaller figures are seen to approach a true square
form.

Figure 40.3 Curvilinear square

When sub-dividing to give a field in detail, and in some
cases for the initial equipotentials, ‘Moores circle’ tech-
nique can be useful in that it tends to eliminate the trial and
error process. If, say, two flux lines and an equipotential
are given and it is required to draw a neighbouring equipo-
tential, a circle tangential to the three given lines is
constructed. The new equipotential is then approximately
tangential to the circle, as shown in Figure 40.3.

Consider the electric field established between two par-
allel metal plates, as shown in Figure 40.4. The streamlines
and the equipotential lines are shown sketched and are
seen to form curvilinear squares. Consider a true square
abcd lying between equipotentials AB and CD. Let this
square be the end of x metres depth of the field forming
a flux tube between adjacent equipotential surfaces abfe
and cdhg as shown in Figure 40.5. Let l be the length of
side of the squares. Then the capacitance C1 of the flux
tube is given by

Figure 40.4

Figure 40.5

C1 = ε0εr (area of plate)

plate separation

i.e. C1 = ε0εr(lx)

l
= ε0εrx (40.1)

Thus the capacitance of the flux tube whose end is a true
square is independent of the size of the square.

Let the distance between the plates of a capacitor be
divided into an exact number of parts, say n (in Fig-
ure 40.4, n = 4). Using the same scale, the breadth of
the plate is divided into a number of parts (which is not
always an integer value), say m (in Figure 40.4, m = 10,
neglecting fringing). Thus between equipotentialsAB and
CD in Figure 40.4 there are m squares in parallel and so
there are m capacitors in parallel. For m capacitors con-
nected in parallel, the equivalent capacitance CT is given
by CT = C1 + C2 + C3 + · · · + Cm. If the capacitors have
the same value, i.e. C1 = C2 = C3 = · · · = Cm = Ct , then

CT = mCt (40.2)

Similarly, there are n squares in series in Figure 40.4 and
thus n capacitors in series.

For n capacitors connected in series, the equivalent
capacitance CT is given by

1

CT
= 1

C1
+ 1

C2
+ · · · + 1

Cn
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If C1 = C2 = · · · = Cn = Ct then 1/CT = n/Ct , from
which

CT = Ct

n
(40.3)

Thus if m is the number of parallel squares measured along
each equipotential and n is the number of series squares
measured along each streamline (or line of force), then the
total capacitance C of the field is given, from equations
(40.1)–(40.3), by

C = ε0εrx
m
n

farads (40.4)

For example, let a parallel-plate capacitor have plates
8 mm × 5 mm and spaced 4 mm apart (See Figure 40.6).
Let the dielectric have a relative permittivity 3.5. If the
distance between the plates is divided into, say, four
equipotential lines, then each is 1 mm apart. Hence n = 4.

Figure 40.6

Using the same scale, the number of lines of force from
plate P to plate Q must be 8, i.e. m = 8. This is, of course,
neglecting any fringing. From equation (40.4), capaci-
tance C = ε0εrx(m/n), where x = 5 mm or 0.005 m in this
case. Hence

C = (8.85 × 10−12)(3.5)(0.005)
( 8

4

) = 0.31 pF

(Using the normal equation for capacitance of a parallel-
plate capacitor,

C = ε0εrA

d
= (885 × 10−12)(3.5)(0.008 × 0.005)

0.004
= 0.31 pF

The capacitance found by each method gives the same
value; this is expected since the field is uniform between
the plates, giving a field plot of true squares.)

The effect of fringing may be considered by estimating
the capacitance by field plotting. This is described below.

In the side view of the plates shown in Figure 40.7,
RS is the medial line of force or medial streamline, by
symmetry. Also XY is the medial equipotential. The field
may thus be divided into four separate symmetrical parts.

Considering just the top left part of the field, the field
plot is estimated as follows, with reference to Figure 40.8:

(i) Estimate the position of the equipotential EF which
has the mean potential between that of the plate and

Figure 40.7

Figure 40.8

that of the medial equipotential XO. F is not taken
too far since it is difficult to estimate. Point E will lie
slightly closer to point Z than point O.

(ii) Estimate the positions of intermediate equipotentials
GH and IJ.

(iii) All the equipotential lines plotted are 2
4 , i.e. 0.5 mm

apart. Thus a series of streamlines, cutting the
equipotential at right angles, are drawn, the stream-
lines being spaced 0.5 mm apart, with the object of
forming, as far as possible, curvilinear squares.

It may be necessary to erase the equipotentials and redraw
them to fit the lines of force. The field between the plates
is almost uniform, giving a field plot of true squares in this
region. At the corner of the plates the squares are smaller,
this indicating a great stress in this region.

On the top of the plate the squares become very large,
indicating that the main field exists between the plates.
From equation (40.4),

total capacitance, C = ε0εrx
m

n
farads

The number of parallel squares measured along each
equipotential is about 13 in this case and the number of
series squares measured along each line of force is 4. Thus,
for the plates shown in Figure 40.7, m = 2 × 13 = 26 and
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n = 2 × 4 = 8. Since x is 5 mm,

total capacitance = ε0εrx
m

n

= (8.85 × 10−12)(3.5)(0.005)
26

8
= 0.50 pF

Problem 1. A field plot between two metal plates is
shown in Figure 40.9. The relative permeability of the
dielectric is 2.8. Determine the capacitance per metre
length of the system.

Figure 40.9

From equation (40.4), capacitance C = ε0εrx(m/n). From
Figure 40.9, m = 16, i.e. the number of parallel squares
measured along each equipotential, and n = 6, i.e. the
number of series squares measured along each line of
force. Hence capacitance for a 1 m length,

C = (8.85 × 10−12)(2.8)(1)
16

6
= 66.08 pF

Problem 2. A field plot for a cross-section of a con-
centric cable is shown in Figure 40.10. If the relative
permeability of the dielectric is 3.4, determine the
capacitance of a 100 m length of the cable.

Figure 40.10

From equation (40.4), capacitance C = ε0εrx(m/n). In
this case, m = 13 and n = 4. Also x = 100 m. Thus

capacitance C = (8.85 × 10−12)(3.4)(100)
13

4
= 9780 pF or 9.78 nF

Now try the following exercise.

Exercise 136 Further problems of field plotting
by curvilinear squares

1. (a) Explain the meaning of the terms (i) streamline
(ii) equipotential, with reference to an electric
field.

(b) A field plot between two metal plates is shown
in Figure 40.11. If the relative permittivity of the
dielectric is 2.4, determine the capacitance of a
50 cm length of the system. [23.4 pF]

Figure 40.11

2. A field plot for a concentric cable is shown in
Figure 40.12. The relative permittivity of the dielec-
tric is 5. Determine the capacitance of a 10 m length
of the cable. [1.66 nF]

Figure 40.12

3. The plates of a capacitor are 10 mm long and 6 mm
wide and are separated by a dielectric 3 mm thick
and of relative permittivity 2.5. Determine the
capacitance of the capacitor (a) when neglecting
any fringing at the edges, (b) by producing a field
plot taking fringing into consideration.

[(a) 0.44 pF (b) 0.60 pF – 0.70 pF,
depending on the accuracy of the plot]
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40.2 Capacitance between concentric cylinders

A concentric cable is one which contains two or more
separate conductors, arranged concentrically (i.e. hav-
ing a common centre), with insulation between them. In
a coaxial cable, the central conductor, which may be
either solid or hollow, is surrounded by an outer tubu-
lar conductor, the space in between being occupied by a
dielectric. If air is the dielectric then concentric insulating
discs are used to prevent the conductors touching each
other. The two kinds of cable serve different purposes.
The main feature they have in common is a complete
absence of external flux and therefore a complete absence
of interference with and from other circuits.

The electric field between two concentric cylinders
(i.e. a coaxial cable) is shown in the cross-section of
Figure 40.13. The conductors form the boundary equipo-
tentials for the field, the boundary equipotentials in
Figure 40.13 being concentric cylinders of radii a and b.
The streamlines, or lines of force, are radial lines cutting
the equipotentials at right angles.

Inner
conductor

r

b

aδr

Streamlines Equipotential

Outer
conductor

Figure 40.13 Electric field between two concentric
cylinders

Let Q be the charge per unit length of the inner conduc-
tor. Then the total flux across the dielectric per unit length
is Q coulombs/metre. This total flux will pass through the
elemental cylinder of width δr at radius r (shown in Fig-
ure 40.13) and a distance of 1 m into the plane of the paper.
The surface area of a cylinder of length 1 m within the
dielectric with radius r is (2πr × 1) m2.
Hence the electric flux density at radius r,

D = Q

A
= Q

2πr

The electric field strength or electric stress E, at radius r
is given by

E = D

ε0εr
= Q

2πrε0εr
volts/metre (40.5)

Let the p.d. across the element be δV volts. Since

E = voltage

thickness

voltage = E × thickness. Therefore

δV = Eδr = Q

2πrε0εr
δr

The total p.d. between the boundaries,

V =
b∫

a

Q

2πrε0εr
dr = Q

2πε0εr

b∫
a

1

r
dr

= Q

2πε0εr
[ ln r]b

a = Q

2πε0εr
[ln b − ln a]

i.e. V = Q

2πε0εr
ln

b

a
volts (40.6)

The capacitance per unit length,

C = charge per unit length

p.d.

Hence capacitance,

C = Q

V
= Q

(Q/(2πε0εr)) ln(b/a)

i.e. C = 2πε0εr

ln (b/a)
farads/metre (40.7)

Problem 3. A coaxial cable has an inner core radius
of 0.5 mm and an outer conductor of internal radius
6.0 mm. Determine the capacitance per metre length
of the cable if the dielectric has a relative permittivity
of 2.7.

From equation (40.7),

capacitance C = 2πε0εr

ln (b/a)
= 2π(8.85 × 10−12)(2.7)

ln (6.0/0.5)

= 60.4 pF

Problem 4. A single-core concentric cable has a
capacitance of 80 pF per metre length. The relative
permittivity of the dielectric is 3.5 and the core diam-
eter is 8.0 mm. Determine the internal diameter of the
sheath.

From equation (40.7), capacitance

C = 2πε0εr

ln(b/a)
F/m
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from which ln
b

a
= 2πε0εr

C
= 2π(8.85 × 10−12)(3.5)

(80 × 10−12)

= 2.433

Since the core radius, a = 8.0/2 = 4.0 mm,
ln(b/4.0) = 2.433 and b/4.0 = e2.433.
Thus the internal radius of the sheath,
b = 4.0e2.433 = 45.57 mm.
Hence the internal diameter of the sheath 2 × 45.57 =
91.14 mm.

Dielectric stress

Rearranging equation (40.6) gives:

Q

2πε0εr
= V

ln(b/a)

However, from equation (40.5),

E = Q

2πrε0εr

Thus dielectric stress,

E = V
r ln(b/a)

volts/metre (40.8)

From equation (40.8), the dielectric stress at any point is
seen to be inversely proportional to r, i.e. E ∝ 1/r.
The dielectric stress E will have a maximum value when
r is at its minimum, i.e. when r = a. Thus

Emax = V
a ln(b/a)

(40.9)

It follows that

Emin = V
b ln(b/a)

(40.9′)

Problem 5. A concentric cable has a core diameter
of 32 mm and an inner sheath diameter of 80 mm. The
core potential is 40 kV and the relative permittivity of
the dielectric is 3.5. Determine (a) the capacitance per
kilometre length of the cable, (b) the dielectric stress at
a radius of 30 mm, and (c) the maximum and minimum
values of dielectric stress.

(a) From equation (40.7), capacitance per metre length,

C = 2πε0εr

ln(b/a)

= 2π(8.85 × 10−12)(3.5)

ln(40/16)
= 212.4 × 10−12 F/km

= 212.4 × 10−12 × 103 F/km

= 212 nF/km or 0.212 µF/km

(b) From equation (40.8), dielectric stress at radius r,

E = V

r ln(b/a)
= 40 × 103

(30 × 10−3) ln(40/16)

= 1.46 × 106 V/m or 1.46 MV/m

(c) From equation (40.9), maximum dielectric stress,

Emax = V

a ln(b/a)
= 40 × 103

16 × 10−3 ln(40/16)

= 2.73 MV/m

From equation (40.9′), minimum dielectric stress,

Emin = V

b ln(b/a)
= 40 × 103

40 × 10−3 ln(40/16)

= 1.09 MV/m

Dimensions of most economical cable

It is important to obtain the most economical dimensions
when designing a cable. A relationship between a and b
may be obtained as follows. If Emax and V are both fixed
values, then, from equation (40.9),

V

Emax
= a ln

b

a

Letting V /Emax = k, a constant, gives

a ln
b

a
= k

from which ln (b/a) = k/a, b/a = ek/a and b = aek/a

(40.10)

For the most economical cable, b will be a minimum value.
Using the product rule of calculus,

db

da
= (ek/a)(1) + (a)

(
− k

a2 ek/a
)

= 0 for a minimum value.
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(Note, to differentiate ek/a with respect to a, an algebraic
substitution may be used, letting u = 1/a).

ek/a − k

a
ek/a = 0

Therefore ek/a
(

1 − k

a

)
= 0

from which a = k. Thus

a = V
Emax

(40.11)

From equation (40.10), internal sheath radius,
b = aek/a = ae1 = ae, i.e.

b = 2.718a (40.12)

Problem 6. A single-core concentric cable is to be
manufactured for a 60 kV, 50 Hz transmission system.
The dielectric used is paper which has a maximum
permissible safe dielectric stress of 10 MV/m rms and
a relative permittivity of 3.5. Calculate (a) the core and
inner sheath radii for the most economical cable, (b)
the capacitance per metre length, and (c) the charging
current per kilometre run.

(a) From equation (40.11),

core radius, a = V

Em
= 60 × 103 V

10 × 106 V/m

= 6 × 10−3 m = 6.0 mm

From equation (40.12), internal sheath radius,
b = ae = 6.0e = 16.3 mm

(b) From equation (40.7),

capacitance C = 2πε0εr

ln(b/a)
F/m

Since b = ae,

C = 2πε0εr

ln e
= 2πε0εr = 2π(8.85 × 10−12)(3.5)

= 195 × 10−12 F/m or

195 pF/m

(c) Charging current = V

XC
= V

1/(ωC)
= ωCV

= (2π50)(195×10−12) × (60 × 103)
= 3.68 × 10−3 A/m

Hence the charging current per kilometre = 3.68 A

Problem 7. A concentric cable has a core diameter
of 25 mm and an inside sheath diameter of 80 mm.
The relative permittivity of the dielectric is 2.5, the
loss angle is 3.5 × 10−3 rad and the working voltage
is 132 kV at 50 Hz frequency. Determine for a 1 km
length of the cable (a) the capacitance, (b) the charging
current and (c) the power loss.

(a) From equation (40.7),

capacitance C = 2πε0εr

ln(b/a)
F/m

= 2π(8.85 × 10−12)(2.5)

ln(40/12.5)
× 103 F/km

= 0.120 µF/km

Thus the capacitance for a 1 km length of the cable is
0.120 µF

(b) Charging current

I = V

XC
= V

1/(ωC)
= ωCV

= (2π50)(0.120 × 10−6)(132 × 103)

= 4.98A/km

(c) From equation (39.5), Chapter 39, power loss

= V2ωC tan δ

= (132 × 103)2(2π50)(0.120 × 10−6)

× tan (3.5 × 10−3)

= 2300 W

Concentric cable field plotting

Figure 40.14 shows a cross-section of a concentric cable
having a core radius r1 and a sheath radius r4. It was shown
in Section 40.1 that the capacitance of a true square is given
by C = ε0εr farads/metre.

θ rad

Line of
force r4

r3

r2

r1 
Equipotential
lines

Figure 40.14
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A curvilinear square is shown shaded in Figure 40.14.
Such squares can be made to have the same capacitance
as a true square by the correct choice of spacing between
the lines of force and the equipotential surfaces in the field
plot.

From equation (40.7), the capacitance between cylin-
drical equipotential lines at radii ra and rb is given by

C = 2πε0εr

ln(rb/ra)
farads/metre

Thus for a sector of θ radians (see Figure 40.14) the
capacitance is given by

C = θ

2π

(
2πε0εr

ln(rb/ra)

)
= θε0εr

ln(rb/ra)
farads/metre

Now if θ = ln(rb/ra) then C = ε0εr F/m, the same as for
a true square. If θ = ln(rb/ra), then eθ = (rb/ra). Thus
if, say, two equipotential surfaces are chosen within the
dielectric as shown in Figure 40.14, then eθ = r2/r1,
eθ = r3/r2 and eθ = r4/r3. Hence

(eθ)3 = r2

r1
× r3

r2
× r4

r3
, i.e. e3θ = r4

r1
(40.13)

It follows that e2θ = r3/r1
Equation (40.13) is used to determine the value of θ

and hence the number of sectors. Thus, for a concentric
cable having a core radius 8 mm and inner sheath radius
32 mm, if two equipotential surfaces within the dielectric
are chosen (and therefore form three capacitors in series
in each sector).

e3θ = r4

r1
= 32

8
= 4

Hence 3θ = ln 4 and θ = 1
3 ln 4 = 0.462 rad (or 26.47◦).

Thus there will be 2π/0.462 = 13.6 sectors in the field
plot. (Alternatively, 360◦/26.47◦ = 13.6 sectors.) From
above,

e2θ = r3/r1, i.e. r3 = r1e2θ = 8e2(0.462) = 20.15 mm

eθ = r2

r1

from which

r2 = r1eθ = 8e(0.462) = 12.70 mm

The field plot is shown in Figure 40.15. The number
of parallel squares measured along each equipotential is
13.6 and the number of series squares measured along
each line of force is 3. Hence in equation (40.4), where
C = ε0εrx(m/n), m = 13.6 and n = 3.

r1 = 8 mm

r2 = 12.70 mm

r3 = 20.15 mm

r4 = 32 mm

Figure 40.15

If the dielectric has a relative permittivity of, say, 2.5, then
the capacitance per metre length,

C = (8.85 × 10−12)(2.5)(1)
13.6

3
= 100 pF

(From equation (40.7),

C = 2πε0εr

ln(r4/r1)
F/m = 2π(8.85 × 10−12)(2.5)

ln(32/8)

= 100 F/m)

Thus field plotting using curvilinear squares provides
an alternative method of determining the capacitance
between concentric cylinders.

Problem 8. A concentric cable has a core diame-
ter of 20 mm and a sheath inside diameter of 60 mm.
The permittivity of the dielectric is 3.2. Using three
equipotential surfaces within the dielectric, determine
the capacitance of the cable per metre length by the
method of curvilinear squares. Draw the field plot for
the cable.

The field plot consists of radial lines of force dividing
the cable cross-section into a number of sectors, the
lines of force cutting the equipotential surfaces at right
angles. Since three equipotential surfaces are required in
the dielectric, four capacitors in series are found in each
sector of θ radians.

In Figure 40.16, r1 = 20/2 = 10 mm and r5 = 60/2 =
30 mm. It follows from equation (40.13) that
e4θ = r5/r1 = 30/10 = 3, from which 4θ = ln 3 and
θ = 1

4 ln 3 = 0.2747 rad.
Thus the number of sectors in the plot shown in

Figure 40.16 is 2π/0.2747 = 22.9.
The three equipotential lines are shown in Figure 40.16

at radii of r2, r3 and r4.
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0.2747 rad

r 1
r2

r3

r4

r5

Figure 40.16

From equation (40.13),

e3θ = r4

r1
, from which r4 = r1e3θ = 10e3(0.2747)

= 22.80 mm

e2θ = r3

r1
, from which r3 = r1e2θ = 10e2(0.2747)

= 17.32 mm

eθ = r2

r1
, from which r2 = r1eθ = 10e0.2747 = 13.16 mm

Thus the field plot for the cable is as shown in Figure 40.16.
From equation (40.4), capacitance C = ε0εrx(m/n).

The number of parallel squares along each equipotential,
m = 22.9 and the number of series squares measured along
each line of force, n = 4. Thus

capacitance C = (8.85 × 10−12)(3.2)(1)
22.9

4
= 162 pF

(Checking, from equation (40.7),

capacitance C = 2πε0εr

ln(r5/r1)
= 2π(8.85 × 10−12)(3.2)

ln(30/10)

= 162 pF)

Now try the following exercise.

Exercise 137 Further problems on capacitance
between concentric cylinders

1. A coaxial cable has an inner conductor of radius
0.4 mm and an outer conductor of internal radius
4 mm. Determine the capacitance per metre length
of the cable if the dielectric has a relative permit-
tivity of 2. [48.30 pF]

2. A concentric cable has a core diameter of 40 mm
and an inner sheath diameter of 100 mm. The rela-
tive permittivity of the dielectric is 2.5 and the core
potential is 50 kV. Determine (a) the capacitance per
kilometre length of the cable and (b) the dielectric
stress at radii of 30 mm and 40 mm.

[(a) 0.1517 µF (b) 1.819 MV/m, 1.364 MV/m]

3. A coaxial cable has a capacitance of 100 pF per
metre length. The relative permittivity of the dielec-
tric is 3.2 and the core diameter is 1.0 mm. Deter-
mine the required inside diameter of the sheath.

[5.93 mm]

4. A single-core concentric cable is to be manufac-
tured for a 100 kV, 50 Hz transmission system. The
dielectric used is paper which has a maximum safe
dielectric stress of 10 MV/m and a relative permit-
tivity of 3.2. Calculate (a) the core and inner sheath
radii for the most economical cable, (b) the capaci-
tance per metre length and (c) the charging current
per kilometre run.

[(a) 10 mm; 27.2 mm (b) 177.9 pF (c) 5.59A]

5. A concentric cable has a core diameter of 30 mm
and an inside sheath diameter of 75 mm. The rela-
tive permittivity is 2.6, the loss angle is 2.5 × 10−3

rad and the working voltage is 100 kV at 50 Hz
frequency. Determine for a 1 km length of cable
(a) the capacitance, (b) the charging current, and
(c) the power loss. [(a) 0.1578 µF (b) 4.957A

(c) 1239 W]

6. A concentric cable operates at 200 kV and 50 Hz.
The maximum electric field strength within the
cable is not to exceed 5 MV/m. Determine (a) the
radius of the core and the inner radius of the sheath
for ideal operation, and (b) the stress on the dielec-
tric at the surface of the core and at the inner surface
of the sheath. [(a) 40 mm, 108.7 mm

(b) 5 MV/m, 1.84 MV/m]

7. A concentric cable has a core radius of 20 mm and
a sheath inner radius of 40 mm. The permittivity
of the dielectric is 2.5. Using two equipotential
surfaces within the dielectric, determine the capac-
itance of the cable per metre length by the method
of curvilinear squares. Draw the field plot for the
cable. [200.6 pF]

40.3 Capacitance of an isolated twin line

The field distribution with two oppositely charged, long
conductors, A and B, each of radius a is shown in
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Figure 40.17. The distance D between the centres of the
two conductors is such that D is much greater than a.
Figure 40.18 shows the field of each conductor separately.

Figure 40.17

Figure 40.18

Initially, let conductorA carry a charge of+Q coulombs
per metre while conductor B is uncharged. Consider a
cylindrical element of radius r about conductor A having
a depth of 1 m and a thickness δr as shown in Figure 40.18.

The electric flux density D at the element (i.e. at radius r)
is given by

D = charge

area
= Q

(2πr × 1)
coulomb/metre2

The electric field strength at the element,

E = D

ε0εr
= Q/2πr

ε0εr
= Q

2πrε0εr
volts/metre

Since E = V/d, potential difference, V = Ed. Thus

p.d. at the element = Eδr = Qδr

2πrε0εr
volts

The potential may be considered as zero at a large dis-
tance from the conductor. Let this be at radius R. Then the
potential of conductor A above zero, VA1 , is given by

VA1 =
R∫

a

Qdr

2πrε0εr
= Q

2πε0εr

R∫
a

1

r
dr

= Q

2πε0εr
[ln r]R

a

= Q

2πε0εr
[ln R − ln a]

i.e. VA1 = Q

2πε0εr
ln

R

a

Since conductor B lies in the field of conductor A, by
reasoning similar to that above, the potential at conductor
B above zero, VB1 , is given by

VB1 =
R∫

D

Qdr

2πrε0εr
= Q

2πε0εr
[ln r]R

D = Q

2πε0εr
ln

R

D

Repeating the above procedure, this time assuming that
conductor B carries a charge of −Q coulombs per metre,
while conductor A is uncharged, gives

potential of conductor B below zero, VB2 = −Q

2πε0εr
ln

R

a

and the potential of conductor A below zero, due to the

charge on conductor B, VA2 = −Q

2πε0εr
ln

R

D
When both conductors carry equal and opposite

charges, the total potential of A above zero is given by

VA1 + VA2 =
(

Q

2πε0εr
ln

R

a

)
+

( −Q

2πε0εr
ln

R

D

)

= Q

2πε0εr

(
ln

R

a
− ln

R

D

)

= Q

2πε0εr

(
ln

R/a

R/D

)
= Q

2πε0εr
ln

D

a

and the total potential of B below zero is given by

VB1 + VB2 = Q

2πε0εr

(
ln

R

D
− ln

R

a

)

= Q

2πε0εr
ln

a

D
= −Q

2πε0εr
ln

D

a
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Hence the p.d. between A and B is

2

(
Q

2πε0εr
ln

D

a

)
volts/metre

The capacitance between A and B per metre length,

C = charge per metre

p.d.
= Q

2(Q/(2πε0εr)) ln(D/a)

i.e. C = 1
2

2πε0εr

ln(D/a)
farads/metre

or C = πε0εr

ln (D/a)
farads/metre (40.14)

Problem 9. Two parallel wires, each of diameter
5 mm, are uniformly spaced in air at a distance of
50 mm between centres. Determine the capacitance of
the line if the total length is 200 m.

From equation (40.14). capacitance per metre length,

C = πε0εr

ln(D/a)
= π(8.85 × 10−12)(1)

ln(50/(5/2))
since εr = 1 for air,

= π(8.85 × 10−12)

ln 20
= 9.28 × 10−12 F

Hence the capacitance of a 200 m length is

(9.28 × 10−12 × 200) F = 1860 pF or 1.86 nF

Problem 10. A single-phase circuit is composed of
two parallel conductors, each of radius 4 mm, spaced
1.2 m apart in air. The p.d. between the conductors at
a frequency of 50 Hz is 15 kV. Determine, for a 1 km
length of line, (a) the capacitance of the conductors,
(b) the value of charge carried by each conductor, and
(c) the charging current.

(a) From equation (40.14),

capacitance C = πε0εr

ln (D/a)
= π(8.85 × 10−12)(1)

ln (1.2/4 × 10−3)

= π(8.85 × 10−12)

ln 300
= 4.875 pF/m

Hence the capacitance per kilometre length is

(4.875 × 10−12)(103) F = 4.875 nF

(b) Charge Q = CV = (4.875 × 10−9)(15 × 103)

= 73.1 µC

(c) Charging current = V

XC
= V

(1/ωC)
= ωCV

= (2π50)(4.875 × 10−9)(15 × 103)

= 0.023A or 23 mA

Problem 11. The charging current for an 800 m run of
isolated twin line is not to exceed 15 mA. The voltage
between the lines is 10 kV at 50 Hz. If the line is air-
insulated, determine (a) the maximum value required
for the capacitance per metre length, and (b) the max-
imum diameter of each conductor if their distance
between centres is 1.25 m.

(a) Charging current I = V

XC
= V

(1/ωC)
= ωCV

from which,

capacitance C = I

ωV
= 15 × 10−3

(2π50)(10 × 103)

farads per 800 metre run

= 4.775 nF

Hence the required maximum value of capacitance

= 4.775 × 10−9

800
F/m = 5.97 pF/m

(b) From equation (40.14)

C = πε0εr

ln(D/a)

thus 5.97 × 10−12 = π(8.85 × 10−12)(1)

ln(1.25/a)

from which, ln

(
1.25

a

)
= π8.85

5.97
= 4.657

Hence
1.25

a
= e4.657 = 105.3

and radius a = 1.25

105.3
m = 0.01187 m

or 11.87 mm

Thus the maximum diameter of each conductor is

2 × 11.87, i.e. 23.7 mm
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Now try the following exercise.

Exercise 138 Further problems on capacitance of
an isolated twin line

1. Two parallel wires, each of diameter 5.0 mm, are
uniformly spaced in air at a distance of 40 mm
between centres. Determine the capacitance of a
500 m run of the line. [5.014 nF]

2. A single-phase circuit is comprised of two paral-
lel conductors each of radius 5.0 mm and spaced
1.5 m apart in air. The p.d. between the conductors
is 20 kV at 50 Hz. Determine (a) the capacitance per
metre length of the conductors, and (b) the charging
current per kilometre run.

[(a) 4.875 pF (b) 30.63 mA]

3. The capacitance of a 300 m length of an isolated
twin line is 1522 pF. The line comprises two air
conductors which are spaced 1200 mm between
centres. Determine the diameter of each conductor.

[10 mm]

4. An isolated twin line is comprised of two air-
insulated conductors, each of radius 8.0 mm, which
are spaced 1.60 m apart. The voltage between the
lines is 7 kV at a frequency of 50 Hz. Determine
for a 1 km length (a) the line capacitance, (b) the
value of charge carried by each wire, and (c) the
charging current.

[(a) 5.248 nF (b) 36.74 µC (c) 11.54 mA]

5. The charging current for a 1 km run of isolated twin
line is not to exceed 30 mA. The p.d. between the
lines is 20 kV at 50 Hz. If the line is air insulated
and the conductors are spaced 1 m apart, determine
(a) the maximum value required for the capacitance
per metre length, and (b) the maximum diameter
of each conductor. [(a) 4.775 pF (b) 5.92 mm]

40.4 Energy stored in an electric field

Consider the p.d. across a parallel-plate capacitor of
capacitance C farads being increased by dv volts in dt
seconds. If the corresponding increase in charge is dq
coulombs, then dq = Cdv. If the charging current at that
instant is i amperes, then dq = idt. Thus idt = Cdv, i.e.

i = C
dv

dt

(i.e. instantaneous current = capacitance × rate of change
of p.d.)

The instantaneous value of power to the capacitor,

p = vi watts = v

(
C

dv

dt

)
watts

The energy supplied to the capacitor during time dt

= power × time =
(

vC
dv

dt

)
(dt)

= Cv dv joules

Thus the total energy supplied to the capacitor when the
p.d. is increased from 0 to V volts is given by

Wf =
V∫

0

Cv dv = C

[
v2

2

]V

0

i.e. energy stored in the electric field,

Wf = 1
2 CV2 joules (40.15)

Consider a capacitor with dielectric of relative permit-
tivity εr , thickness d metres and area A square metres.
Capacitance C = Q/V , hence energy stored
= 1

2 (Q/V )V2 = 1
2 QV joules.

The electric flux density, D = Q/A, from which Q = DA.

Hence the energy stored = 1
2 (DA)V joules.

The electric field strength, E = V/d, from which V = Ed.

Hence the energy stored = 1
2 (DA)(Ed) joules. However

Ad is the volume of the field.

Hence energy stored per unit volume,

ωf = 1
2 DE joules/cubic metre (40.16)

Since D/E = ε0εr , then D = ε0εrE. Hence, from equa-
tion (40.16), the energy stored per unit volume,

ωf = 1
2 (ε0εrE)E

i.e. ωf = 1
2 ε0εrE2 joules/cubic metre (40.17)

Also, since D/E = ε0εr , then E = D/(ε0εr). Hence from
equation (40.16), the energy stored per unit volume,

ωf = 1

2
D

(
D

ε0εr

)
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i.e. ωf = D2

2ε0εr
joules/cubic metre (40.18)

Summarizing,

energy stored in a capacitor = 1
2 CV2 joules

and energy stored per unit volume of dielectric

= 1
2 DE = 1

2 ε0εrE2

= D2

2ε0εr
joules/cubic metre

Problem 12. Determine the energy stored in a 10 nF
capacitor when charged to 1 kV, and the average power
developed if this energy is dissipated in 10 µs.

From equation (40.15),

energy stored, Wf = 1
2 CV2 = 1

2 (10 × 10−9)(103)2

= 5 mJ

average power developed = energy dissipated, W

time, t

= 5 × 10−3 J

10 × 10−6 s
= 500 W

Problem 13. A capacitor is charged with 5 mC. If
the energy stored is 625 mJ, determine (a) the volt-
age across the plates and (b) the capacitance of the
capacitor.

(a) From equation (40.15),

energy stored, Wf = 1

2
CV2 = 1

2

(
Q

V

)
V2 = 1

2
QV

from which voltage across the plates,

V = 2 × energy stored

Q
= 2 × 0.625

5 × 10−3 = 250V

(b) Capacitance C = Q

V
= 5 × 10−3

250
F = 20 × 10−6 F

= 20 µF

Problem 14. A ceramic capacitor is to be constructed
to have a capacitance of 0.01 µF and to have a steady
working potential of 2.5 kV maximum.Allowing a safe
value of field stress of 10 MV/m, determine (a) the
required thickness of the ceramic dielectric, (b) the

area of plate required if the relative permittivity of the
ceramic is 10, and (c) the maximum energy stored by
the capacitor.

(a) Field stress E = V/d, from which thickness of
ceramic dielectric,

d = V

E
= 2.5 × 103

10 × 106 = 2.5 × 10−4 m = 0.25 mm

(b) Capacitance C = ε0εrA/d for a two-plate parallel
capacitor. Hence cross-sectional area of plate,

A = Cd

ε0εr
= (0.01 × 10−6)(0.25 × 10−3)

(8.85 × 10−12)(10)

= 0.0282 m2 or 282 cm2

(c) Maximum energy stored,

Wf = 1

2
CV2 = 1

2
(0.01 × 10−6)(2.5 × 103)2

= 0.0313 J or 31.3 mJ

Problem 15. A 400 pF capacitor is charged to a p.d.
of 100V. The dielectric has a cross-sectional area of
200 cm2 and a relative permittivity of 2.3. Calculate
the energy stored per cubic metre of the dielectric.

From equation (40.18), energy stored per unit volume of
dielectric,

ωf = D2

2ε0εr

Electric flux density

D = Q

A
= CV

A
= (400 × 10−12)(100)

200 × 10−4 = 2 × 10−6 C/m2

Hence energy stored,

ωf = D2

2ε0εr
= (2 × 10−6)2

2(8.85 × 10−12)(2.3)

= 0.0983 J/m3 or 98.3 mJ/m3

Now try the following exercise.

Exercise 139 Further problems on energy stored
in electric fields

1. Determine the energy stored in a 5000 pF capaci-
tor when charged to 800V and the average power
developed if this energy is dissipated in 20 µs.

[1.6 mJ; 80 W]
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2. A 0.25 µF capacitor is required to store 2 J of
energy. Determine the p.d. to which the capacitor
must be charged. [4 kV]

3. A capacitor is charged with 6 mC. If the energy
stored is 1.5 J determine (a) the voltage across the
plates, and (b) the capacitance of the capacitor.

[(a) 500V (b) 12 µF]

4. After a capacitor is connected across a 250V
d.c. supply the charge is 5 µC. Determine (a) the
capacitance, and (b) the energy stored.

[(a) 20 nF (b) 0.625 mJ]

5. A capacitor consisting of two metal plates each of
area 100 cm2 and spaced 0.1 mm apart in air is con-
nected across a 200V supply. Determine (a) the
electric flux density, (b) the potential gradient and
(c) the energy stored in the capacitor.

[(a) 17.7 µC/m2 (b) 2 MV/m (c) 17.7 µJ]

6. A mica capacitor is to be constructed to have a
capacitance of 0.05 µF and to have a steady work-
ing potential of 2 kV maximum. Allowing a safe
value of field stress of 20 MV/m, determine (a) the
required thickness of the mica dielectric, (b) the
area of plate required if the relative permittivity of
the mica is 5, (c) the maximum energy stored by
the capacitor, and (d) the average power developed
if this energy is dissipated in 25 µs.

[(a) 0.1 mm (b) 0.113 m2 (c) 0.1 J (d) 4 kW]

7. A 500 pF capacitor is charged to a p.d. of 100V. The
dielectric has a cross-sectional area of 200 cm2 and
a relative permittivity of 2.4. Determine the energy
stored per cubic metre in the dielectric.

[0.147 J/m3]

8. Two parallel plates each having dimensions 30 mm
by 50 mm are spaced 8 mm apart in air. If a voltage
of 40 kV is applied across the plates determine the
energy stored in the electric field. [1.328 mJ]

40.5 Induced e.m.f. and inductance

A current flowing in a coil of wire is accompanied by a
magnetic flux linking with the coil. If the current changes,
the flux linkage (i.e. the product of flux and the number
of turns) changes and an e.m.f. is induced in the coil. The
magnitude of the induced e.m.f. e in a coil of N turns is
given by

e = N
dφ

dt
volts

where dφ/dt is the rate of change of flux.

Inductance is the name given to the property of a circuit
whereby there is an e.m.f. induced into the circuit by the
change of flux linkages produced by a current change.
The unit of inductance is the henry, H. A circuit has an
inductance of 1 H when an e.m.f. of 1V is induced in it
by a current changing uniformly at the rate of 1A/s.

The magnitude of the e.m.f. induced in a coil of
inductance L henry is given by

e = L
di
dt

volts

where di/dt is the rate of change of current.
If a current changing uniformly from zero to I amperes

produces a uniform flux change from zero to φ webers
in t seconds then (from above) average induced e.m.f.,
Eav = Nφ/t = LI/t, from which

inductance of coil, L = Nφ

I
henry

Flux linkage means the product of flux, in webers, and the
number of turns with which the flux is linked. Hence flux
linkage = Nφ. Thus since L = Nφ/I , inductance = flux
linkages per ampere.

40.6 Inductance of a concentric cylinder
(or coaxial cable)

Skin effect

When a direct current flows in a uniform conductor the
current will tend to distribute itself uniformly over the
cross-section of the conductor. However, with alternating
current, particularly if the frequency is high, the current
carried by the conductor is not uniformly distributed over
the available cross-section, but tends to be concentrated
at the conductor surface. This is called skin effect. When
current is flowing through a conductor, the magnetic flux
that results is in the form of concentric circles. Some of
this flux exists within the conductor and links with the
current more strongly near the centre. The result is that the
inductance of the central part of the conductor is greater
than the inductance of the conductor near the surface. This
is because of the greater number of flux linkages existing
in the central region. At high frequencies the reactance
(XL = 2πfL) of the extra inductance is sufficiently large to
seriously affect the flow of current, most of which flows
along the surface of the conductor where the impedance
is low rather than near the centre where the impedance is
high.

Inductance due to internal linkages at low frequency

When a conductor is used at high frequency the depth of
penetration of the current is small compared with the con-
ductor cross-section. Thus the internal linkages may be
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considered as negligible and the circuit inductance is that
due to the fields in the surrounding space. However, at very
low frequency the current distribution is considered uni-
form over the conductor cross-section and the inductance
due to flux linkages has its maximum value.

Consider a conductor of radius R, as shown in Fig-
ure 40.19, carrying a current I amperes uniformly dis-
tributed over the cross-section. At all points on the
conductor cross-section

current density, J = current

area
=

(
I

πR2

)
amperes/metre2

Figure 40.19

Consider a thin elemental ring at radius r and width δr
contained within the conductor, as shown in Figure 40.19.
The current enclosed by the ring,

i = current density × area enclosed by the ring

=
(

I

πR2

)
(πr2)

i.e. i = Ir2

R2 amperes

Magnetic field strength, H = Ni/ l amperes/metre.
At radius r, the mean length of the flux path, l = 2πr (i.e.
the circumference of the elemental ring) and N = 1 turn.
Hence at radius r,

Hr = Ni

l
= (1)(Ir2/R2)

2πr
= Ir

2πR2 ampere/metre

and the flux density, Br = µ0µrHr = µ0µr

(
Ir

2πR2

)
tesla

Flux φ = BA webers. For a 1 m length of the conductor,
the cross-sectional area A of the element is (δr × 1) m2

(see Figure 40.19). Thus the flux within the element of
thickness δr,

φ =
(

µ0µrIr

2πR2

)
(δr) webers

The flux in the element links the portion πr2/πR2, i.e.
r2/R2 of the total conductor. Hence linkages due to the
flux within radius r

=
(

µ0µrIr

2πR2 δr

)
r2

R2 = µ0µrIr3

2πR4 δr weber turns

Total linkages per metre due to the flux in the conductor

=
∫ R

0

µ0µrIr3

2πR4 dr = µ0µrI

2πR4

∫ R

0
r3dr

= µ0µrI

2πR4

[
r4

4

]R

0
= µ0µrI

2πR4

[
R4

4

]

= 1

4

(
µ0µrI

2π

)
weber turns

Inductance per metre due to the internal flux = internal
flux linkages per ampere

= 1
4

(µ0µr

2π

)
or

µ

8π
henry/metre

It is seen that the inductance is independent of the
conductor radius R.

Inductance of a pair of concentric cylinders

The cross-section of a concentric (or coaxial) cable is
shown in Figure 40.20. Let a current of I amperes flow in
one direction in the core and a current of I amperes flow
in the opposite direction in the outer sheath conductor.

a

b

r

δr

Figure 40.20 Cross-section of a concentric cable

Consider an element of width δr at radius r, and let the
radii of the inner and outer conductor be a and b respec-
tively as shown. The magnetic field strength at radius r,

Hr = Ni

I
= (1)(I)

2πr
= I

2πr

The flux density at radius r, Br = µ0µrHr = µ0µrI

2πr
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For a 1 m length of the cable, the flux φ within the element
of width δr is given by

� = BrA =
(

µ0µrI

2πr

)
(δr × 1) = µ0µrI

2πr
δr webers

This flux links the loop of the cable formed by the core and
the outer sheath. Thus the flux linkage per metre length of
the cable is (µ0µrI/2πr))δr weber turns, and

total flux linkages per metre

=
∫ b

a

µ0µrI

2πr
dr = µ0µrI

2π

∫ b

a

1

r
dr

= µ0µrI

2π
[ln r]b

a = µ0µrI

2π
[ln b − ln a]

= µ0µrI

2π
ln

b

a
weber turns

Thus inductance per metre length

= flux linkages per ampere

= µ0µr

2π
ln

b
a

henry/metre (40.19)

At low frequencies the inductance due to the internal
linkages is added to this result.
Hence the total inductance per metre at low frequency is
given by

L = 1
4

(µ0µr

2π

)
+ µ0µr

2π
ln

b
a

henry/metre (40.20)

or L = µ

2π

(
1
4

+ ln
b
a

)
henry/metre (40.21)

Problem 16. A coaxial cable has an inner core of
radius 1.0 mm and an outer sheath of internal radius
4.0 mm. Determine the inductance of the cable per
metre length.

Assume that the relative permeability is unity.

From equation (40.21),

inductance L = µ

2π

(
1

4
+ ln

b

a

)
H/m

= µ0µr

2π

(
1

4
+ ln

4.0

1.0

)

= (4π × 10−7)(1)

2π
(0.25 + ln 4)

= 3.27 × 10−7 H/m or 0.327 µH/m

Problem 17. A concentric cable has a core diam-
eter of 10 mm. The inductance of the cable is
4 × 10−7 H/m. Ignoring inductance due to internal
linkages, determine the diameter of the sheath.Assume
that the relative permeability is 1.

From equation (40.19),

inductance per metre length = µ0µr

2π
ln

b

a

where b = sheath radius and a = core radius. Hence

4 × 10−7 = (4π × 10−7)(1)

2π
ln

(
b

5

)

from which 2 = ln

(
b

5

)
and e2 = b

5

Hence radius b = 5e2 = 36.95 mm
Thus the diameter of the sheath is 2 × 36.95 = 73.9 mm

Problem 18. A coaxial cable 7.5 km long has a core
10 mm diameter and a sheath 25 mm diameter, the
sheath having negligible thickness. Determine for the
cable (a) the inductance, assuming nonmagnetic mate-
rials, and (b) the capacitance, assuming a dielectric of
relative permittivity 3.

(a) From equation (40.21),

inductance per metre length

= µ

2π

(
1

4
+ ln

b

a

)

= µ0µr

2π

[
1

4
+ ln

(
12.5

5

)]

= (4π × 10−7)(1)

2π
(0.25 + ln 2.5)

= 2.33 × 10−7 H/m

Since the cable is 7500 m long,

the inductance = 7500 × 2.33 × 10−7 = 1.75 mH

(b) From equation (40.7),

capacitance, C = 2πε0εr

ln(b/a)
= 2π(8.85 × 10−12)(3)

ln(12.5/5)

= 182.06 pF/m

Since the cable is 7500 m long,

the capacitance = 7500 × 182.06 × 10−12

= 1.365 µF
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Now try the following exercise.

Exercise 140 Further problems on inductance of
concentric cylinders

1. A coaxial cable has an inner core of radius 0.8 mm
and an outer sheath of internal radius 4.8 mm.
Determine the inductance of 25 m of the cable.
Assume that the relative permeability of the mater-
ial used is 1. [10.2 µH]

2. A concentric cable has a core 12 mm diameter and
a sheath 40 mm diameter, the sheath having neg-
ligible thickness. Determine the inductance and
the capacitance of the cable per metre assuming
nonmagnetic materials and a dielectric of relative
permittivity 3.2. [0.291 µH/m, 147.8 pF/m]

3. A concentric cable has an inner sheath radius of
4.0 cm. The inductance of the cable is 0.5 µH/m.
Ignoring inductance due to internal linkages, deter-
mine the radius of the core. Assume that the relative
permeability of the material is unity. [3.28 mm]

4. The inductance of a concentric cable of core radius
8 mm and inner sheath radius of 35 mm is meas-
ured as 2.0 mH. Determine (a) the length of the
cable, and (b) the capacitance of the cable. Assume
that nonmagnetic materials are used and the relative
permittivity of the dielectric is 2.5.

[(a) 5.794 km (b) 0.546 µF]

40.7 Inductance of an isolated twin line

Consider two isolated, long, parallel, straight conductors
A and B, each of radius a metres, spaced D metres apart.
Let the current in each be I amperes but flowing in oppos-
ite directions. Distance D is assumed to be much greater
than radius a. The magnetic field associated with the con-
ductors is as shown in Figure 40.21. There is a force of
repulsion between conductors A and B.

It is easier to analyse the field by initially considering
each conductor alone (as in Section 40.3). At any radius r
from conductor A (see Figure 40.22),

magnetic field strength, Hr = Ni

l
= I

2πr
ampere/metre

and flux density, Br = µ0µrHr = µ0µrI

2πr
tesla

The total flux in 1 m of the conductor,

� = BrA =
(

µ0µrI

2πr

)
(δr × 1) = µ0µrI

2πr
δr webers

Figure 40.21

Figure 40.22

Since this flux links conductor A once, the linkages with

conductor A due to this flux = µ0µrI

2πr
δr weber turns.

There is, in fact, no limit to the distance from conductor
A at which a magnetic field may be experienced. However,
let R be a very large radius at which the magnetic field
strength may be regarded as zero. Then the total linkages
with conductorA due to current in conductorA is given by

∫ R

a

µ0µrI

2πr
dr = µ0µrI

2π

∫ R

a

dr

r
= µ0µrI

2π
[ln r]R

a

= µ0µrI

2π
[ln R − ln a] = µ0µrI

2π
ln

(
R

a

)

Similarly, the total linkages with conductor B due to the
current in A

=
∫ R

D

µ0µrI

2πr
dr = µ0µrI

2π
ln

R

D
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Now consider conductor B alone, carrying a current of
−I amperes. By similar reasoning to above, total linkages
with conductor B due to the current in B

= −µ0µrI

2π
ln

(
R

a

)

and total linkages with conductor A due to the current in B

= −µ0µrI

2π
ln

R

D

Hence total linkages with conductor A

=
(

µ0µrI

2π
ln

R

a

)
+

(−µ0µrI

2π
ln

R

D

)

= µ0µrI

2π

[
ln

R

a
− ln

R

D

]

= µ0µrI

2π

[
ln

R/a

R/D

]

= µ0µrI

2π
ln

D

a
weber-turns/metre

Similarly, total linkages with conductor B

= −µ0µrI

2π
ln

D

a
weber-turns/metre

For a 1 m length of the two conductors,

total inductance = flux linkages per ampere

= 2

(
µ0µr

2π
ln

D

a

)
henry/metre

i.e. total inductance = µ0µr

π
ln

D
a

henry/metre

(40.22)

Equation (40.22) does not take into consideration the
internal linkages of each line.
From Section (40.6), inductance per metre due to internal
linkages

= 1

4

(µ0µr

2π

)
henry/metre

Thus inductance per metre due to internal linkages of two
conductors

= 2

(
1

4

(µ0µr

2π

))
= µ0µr

4π
henry/metre

Therefore, at low frequency, total inductance per metre of
the two conductors

= µ0µr

4π
+ µ0µr

π
ln

D

a

i.e. L = µ0µr

π

(
1
4

+ ln
D
a

)
henry/metre (40.23)

(This is often referred to as the ‘loop inductance’).
In most practical lines the relative permeability, µr = 1.

Problem 19. A single-phase power line comprises
two conductors each with a radius 8.0 mm and spaced
1.2 m apart in air. Determine the inductance of the line
per metre length ignoring internal linkages. Assume
the relative permeability, µr = 1.

From equation (40.22), inductance

= µ0µr

π
ln

D

a

= (4π × 10−7)(1)

π
ln

(
1.2

8.0 × 10−3

)
= 4 × 10−7 ln 150

= 20.0 × 10−7 H/m or 2.0 µH/m

Problem 20. Determine (a) the loop inductance, and
(b) the capacitance of a 1 km length of single-phase
twin line having conductors of diameter 10 mm and
spaced 800 mm apart in air.

(a) From equation (40.23), total inductance per loop
metre

= µ0µr

π

(
1

4
+ ln

D

a

)

= (4π × 10−7)(1)

π

(
1

4
+ ln

800

10/2

)

= (4 × 10−7)(0.25 + ln 160)

= 21.3 × 10−7 H/m

Hence loop inductance of a 1 km length of line

= 21.3 × 10−7 H/m × 103 m

= 21.3 × 10−4 H or 2.13 mH

(b) From equation (40.14), capacitance per metre length

= πε0εr

ln(D/a)

= π(8.85 × 10−12)(1)

ln(800/5)

= 5.478 × 10−12 F/m
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Hence capacitance of a 1 km length of line

= 5.478 × 10−12 F/m × 103 m

= 5.478 nF

Problem 21. The total loop inductance of an isolated
twin power line is 2.185 µH/m. The diameter of each
conductor is 12 mm. Determine the distance between
their centres.

From equation (40.23),

total loop inductance = µ0µr

π

(
1

4
+ ln

D

a

)

Hence

2.185 × 10−6 = (4π × 10−7)(1)

π

(
1

4
+ ln

D

6

)

where D is the distance between centres in millimetres.

2.185 × 10−6

4 × 10−7 =
(

0.25 + ln
D

6

)

ln
D

6
= 5.4625 − 0.25 = 5.2125

D

6
= e5.2125

from which, distance D = 6e5.2125 = 1100 mm or 1.10 m

Now try the following exercise.

Exercise 141 Further problems on inductance of
an isolated twin line

1. A single-phase power line comprises two conduct-
ors each with a radius of 15 mm and spaced 1.8 m
apart in air. Determine the inductance per metre
length, ignoring internal linkages and assuming the
relative permeability, µr = 1. [1.915 µH/m]

2. Determine (a) the loop inductance, and (b) the
capacitance of a 500 m length of single-phase
twin line having conductors of diameter 8 mm and
spaced 60 mm apart in air. [(a) 0.592 mH

(b) 5.133 nF]

3. An isolated twin power line has conductors 7.5 mm
radius. Determine the distance between centres if
the total loop inductance of 1 km of the line is
1.95 mH. [765 mm]

4. An isolated twin line has conductors of diameter
d × 10−3 metres and spaced D millimetres apart
in air. Derive an expression for the total loop
inductance L of the line per metre length.[

L = µ0

π

(
1

4
+ ln

2D

d

)]

5. A single-phase power line comprises two conduc-
tors spaced 2 m apart in air. The loop inductance of
2 km of the line is measured as 3.65 mH. Determine
the diameter of the conductors. [53.6 mm]

40.8 Energy stored in an electromagnetic field

Magnetic energy in a nonmagnetic medium

For a nonmagnetic medium the relative permeability,
µr = 1 and B = µ0H.

Thus the magnetic field strength H is proportional to
the flux density B and a graph of B against H is a straight
line, as shown in Figure 40.23.

Figure 40.23

It was shown in Section 38.3 that, when the flux density
is increased by an amount dB due to an increase dH in the
magnetic field strength, then

energy supplied to the magnetic circuit

= area of shaded strip (in joules per cubic metre)

Thus, for a maximum flux density OY in Figure 40.23,

total energy stored in the magnetic field

= area of triangle OYX

= 1
2 × base × height

= 1
2 (OZ)(OY )
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If OY = B teslas and OZ = H ampere/metre, then the total
energy stored in a non-magnetic medium,

ωf = 1
2 HB joules/metre3 (40.24)

Since B = µ0H for a non-magnetic medium, the energy

stored, ωf = 1

2
H(µ0H)

i.e. ωf = 1
2 µ0H2 joules/metre3 (40.25)

Alternatively, H = B/µ0, thus the energy stored,

ωf = 1

2
HB = 1

2

(
B

µ0

)
B

i.e. ωf = B2

2µ0
joules/metre3 (40.26)

Magnetic energy stored in an inductor

Establishing a magnetic field requires energy to be
expended. However, once the field is established, the only
energy expended is that supplied to maintain the flow of
current in opposition to the circuit resistance, i.e. the I2R
loss, which is dissipated as heat.

For an inductive circuit containing resistance R and
inductance L (see Figure 40.24) the applied voltage V
at any instant is given by V = vR + vL

Figure 40.24

i.e. V = iR + L
di

dt

Multiplying throughout by current i gives the power
equation:

Vi = i2R + Li
di

dt

Multiplying throughout by time dt seconds gives the
energy equation:

Vi dt = i2Rdt + Li di

Vi dt is the energy supplied by the source in time dt, i2R dt
is the energy dissipated in the resistance and Lidi is the
energy supplied in establishing the magnetic field or the
energy absorbed by the magnetic field in time dt seconds.

Hence the total energy stored in the field when the
current increases from 0 to I amperes is given by

energy stored, Wf =
∫ I

0
Lidi = L

[
i2

2

]I

0

i.e. total energy stored, Wf = 1
2 LI

2
joules (40.27)

From Section 40.5, inductance L = Nφ/I , hence

total energy stored = 1

2

(
Nφ

I

)
I2 = 1

2
NφI joules

Also H = NI/l, from which, N = Hl/I, and φ = BA. Thus
the total energy stored,

Wf = 1

2
Nφl = 1

2

(
Hl

I

)
(BA)I

= 1

2
HBlA joules

or ωf = 1

2
HB joules/metre3

since lA is the volume of the magnetic field. This latter
expression has already been derived in equation (40.24).
Summarizing, the energy stored in a nonmagnetic
medium,

ωf = 1
2

BH = 1
2
µ0H2 = B2

2µ0
joules/metre3

and the energy stored in an inductor,

Wf = 1
2 LI2 joules

Problem 22. Calculate the value of the energy stored
when a current of 50 mA is flowing in a coil of induct-
ance 200 mH. What value of current would double the
energy stored?
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From equation (40.27), energy stored in inductor,

Wf = 1
2 LI2 = 1

2 (200 × 10−3)(50 × 10−3)2

= 2.5 × 10−4 J or 0.25 mJ or 250 µJ

If the energy stored is doubled, then
(2)(2.5 × 10−4) = 1

2 (200 × 10−3)I2 from which

current I =
√(

(4)(2.5 × 10−4)

(200 × 10−3)

)
= 70.71 mA

Problem 23. The airgap of a moving coil instru-
ment is 2.0 mm long and has a cross-sectional area of
500 mm2. If the flux density is 50 mT, determine the
total energy stored in the magnetic field of the airgap.

From equation (40.26), energy stored,

ωf = B2

2µ0
= (50 × 10−3)2

2(4π × 10−7)
= 9.95 × 102 J/m3

Volume of airgap = Al = (500 × 2.0) mm3

= 500 × 2.0 × 10−9m3.
Hence the energy stored in the airgap,

Wf = 9.95 × 102 J/m3 × 500 × 2.0 × 10−9 m3

= 9.95 × 10−4 J ≡ 0.995 mJ ≡ 995 µJ

Problem 24. Determine the strength of a uniform
electric field if it is to have the same energy as that
established by a magnetic field of flux density 0.8 T.
Assume that the relative permeability of the magnetic
field and the relative permittivity of the electric field
are both unity.

From equation (40.26), energy stored in magnetic field,

ωf = B2

2µ0
= (0.8)2

2(4π × 10−7)
= 2.546 × 105 J/m3

From equation (40.17), energy stored in electric field,

ωf = 1
2ε0εrE2

Hence, if the current stored in the magnetic and electric
fields is to be the same, then
1
2ε0εrE2 = 2.546 × 105, i.e.

1
2 (8.85 × 10−12)(1)E2 = 2.546 × 105

from which electric field strength,

E =
√(

(2)(2.546 × 105)

(8.85 × 10−12)

)
= √

(5.75 × 1016)

= 2.40 × 108 V/m

or 240 MV/m

Now try the following exercise.

Exercise 142 Further problems on energy stored
in an electromagnetic field

1. Determine the value of the energy stored when a
current of 120 mA flows in a coil of 500 mH. What
value of current is required to double the energy
stored? [3.6 mJ, 169.7 mA]

2. A moving-coil instrument has two airgaps each
2.5 mm long and having a cross-sectional area of
8.0 cm2. Determine the total energy stored in the
magnetic field of the airgaps if the flux density is
100 mT. [15.92 mJ]

3. Determine the flux density of a uniform mag-
netic field if it is to have the same energy as that
established by a uniform electric field of strength
45 MV/m. Assume the relative permeability of the
magnetic field and the relative permittivity of the
electric field are both unity. [0.15 T]

4. A long single core concentric cable has inner and
outer conductors of diameters D1 and D2 respec-
tively. The conductors each carry a current of I
amperes but in opposite directions. If the relative
permeability of the material is unity and the induct-
ance due to internal linkages is negligible, show
that the magnetic energy stored in a 4 m length of
the cable is given by

µ0I2

π
ln

(
D2

D1

)
joules

5. 1 mJ of energy is stored in a uniform magnetic field
having dimensions 20 mm by 10 mm by 1.0 mm.
Determine for the field (a) the flux density, and
(b) the magnetic field strength.

[(a) 0.112 T (b) 89200A/m]
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41 Attenuators

At the end of this chapter you should be able to:

• understand the function of an attenuator
• understand characteristic impedance and calculate

for given values
• appreciate and calculate logarithmic ratios
• design symmetrical T and symmetrical π attenu-

ators given required attenuation and characteristic
impedance

• appreciate and calculate insertion loss
• determine iterative and image impedances for asym-

metrical T and π networks
• appreciate and design the L-section attenuator
• calculate attenuation for two-port networks in

cascade
• understand and applyABCD parameters for networks

41.1 Introduction

An attenuator is a device for introducing a specified loss
between a signal source and a matched load without upset-
ting the impedance relationship necessary for matching.
The loss introduced is constant irrespective of frequency;
since reactive elements (L or C) vary with frequency, it
follows that ideal attenuators are networks containing pure
resistances. A fixed attenuator section is usually known as
a ‘pad’.

Attenuation is a reduction in the magnitude of a volt-
age or current due to its transmission over a line or through
an attenuator. Any degree of attenuation may be achieved
with an attenuator by suitable choice of resistance val-
ues but the input and output impedances of the pad must
be such that the impedance conditions existing in the cir-
cuit into which it is connected are not disturbed. Thus
an attenuator must provide the correct input and output
impedances as well as providing the required attenuation.

Attenuation sections are made up of resistances
connected as T or π arrangements (as introduced in
Chapter 34).

Two-port networks

Networks in which electrical energy is fed in at one pair
of terminals and taken out at a second pair of terminals
are called two-port networks. Thus an attenuator is a two-
port network, as are transmission lines, transformers and
electronic amplifiers. The network between the input port
and the output port is a transmission network for which
a known relationship exists between the input and output
currents and voltages. If a network contains only passive
circuit elements, such as in an attenuator, the network is
said to be passive; if a network contains a source of e.m.f.,
such as in an electronic amplifier, the network is said to
be active.

Figure 41.1(a) shows a T-network, which is termed
symmetrical if ZA = ZB and Figure 41.1(b) shows a
π-network which is symmetrical if ZE = ZF . If ZA �= ZB in
Figure 41.1(a) and ZE �= ZF in Figure 41.1(b), the sections
are termed asymmetrical. Both networks shown have one
common terminal, which may be earthed, and are there-
fore said to be unbalanced. The balanced form of the
T-network is shown in Figure 41.2(a) and the balanced
form of the π-network is shown in Figure 41.2(b).

Symmetrical T- and π-attenuators are discussed in Sec-
tion 41.4 and asymmetrical attenuators are discussed in
Sections 41.6 and 41.7. Before this it is important to under-
stand the concept of characteristic impedance, which

Figure 41.1 (a) T-network, (b) π-network

Figure 41.2 (a) Balanced T-network, (b) Balanced
π-network
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is explained generally in Section 41.2 (characteristic
impedances will be used again in Chapter 44), and
logarithmic units, discussed in Section 41.3. Another
important aspect of attenuators, that of insertion loss,
is discussed in Section 41.5. To obtain greater attenu-
ation, sections may be connected in cascade, and this is
discussed in Section 41.8.

Finally, in section 41.9, ABCD parameters are
explained.

41.2 Characteristic impedance

The input impedance of a network is the ratio of volt-
age to current (in complex form) at the input terminals.
With a two-port network the input impedance often varies
according to the load impedance across the output ter-
minals. For any passive two-port network it is found
that a particular value of load impedance can always
be found which will produce an input impedance hav-
ing the same value as the load impedance. This is called
the iterative impedance for an asymmetrical network
and its value depends on which pair of terminals is
taken to be the input and which the output (there are
thus two values of iterative impedance, one for each
direction). For a symmetrical network there is only one
value for the iterative impedance and this is called the
characteristic impedance of the symmetrical two-port
network. Let the characteristic impedance be denoted
by Z0. Figure 41.3 shows a symmetrical T-network
terminated in an impedance Z0

Let the impedance ‘looking-in’ at the input port also be
Z0. Then V1/I1 = Z0 = V2/I2 in Figure 41.3. From circuit
theory,

Z0 = V1

I1
= ZA + ZB(ZA + Z0)

ZB + ZA + Z0
, since (ZA + Z0) is in

parallel with ZB,

= Z2
A + ZAZB + ZAZ0 + ZAZB + ZBZ0

ZA + ZB + Z0

i.e. Z0 = Z2
A + 2ZAZB + ZAZ0 + ZBZ0

ZA + ZB + Z0

Thus

Z0(ZA + ZB + Z0) = Z2
A + 2ZAZB + ZAZ0 + ZBZ0

Z0ZA + Z0ZB + Z2
0 = Z2

A + 2ZAZB + ZAZ0 + ZBZ0

i.e. Z2
0 = Z2

A + 2ZAZB, from which

characteristic impedance, Z0 = √
(Z2

A + 2ZAZB)

(41.1)

If the output terminals of Figure 41.3 are open-circuited,
then the open-circuit impedance, ZOC = ZA + ZB. If the
output terminals of Figure 41.3 are short-circuited, then
the short-circuit impedance,

Figure 41.3

ZSC = ZA + ZAZB

ZA + ZB
= Z2

A + 2ZAZB

ZA + ZB

Thus

ZOCZSC = (ZA + ZB)

(
Z2

A + 2ZAZB

ZA + ZB

)
= Z2

A + 2ZAZB

Comparing this with equation (41.1) gives

Z0 = √
(ZOCZSC) (41.2)

Figure 41.4 shows a symmetrical π-network terminated
in an impedance Z0

Figure 41.4

If the impedance ‘looking in’ at the input port is also Z0,
then

V1

I1
= Z0 = (Z2) in parallel with [Z1 in series with

(Z0 and Z2) in parallel]

= (Z2) in parallel with

[
Z1 + Z0Z2

Z0 + Z2

]

= (Z2) in parallel with

[
Z1Z0 + Z1Z2 + Z0Z2

Z0 + Z2

]

i.e. Z0 = (Z2)((Z1Z0 + Z1Z2 + Z0Z2)/(Z0 + Z2))

Z2 + ((Z1Z0 + Z1Z2 + Z0Z2)/(Z0 + Z2))

= (Z1Z2Z0 + Z1Z2
2 + Z0Z2

2 )/(Z0 + Z2)

(Z2Z0 + Z2
2 + Z1Z0 + Z1Z2 + Z0Z2)/(Z0 + Z2)
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i.e. Z0 = Z1Z2Z0 + Z1Z2
2 + Z0Z2

2

Z2
2 + 2Z2Z0 + Z1Z0 + Z1Z2

Thus Z0(Z2
2 + 2Z2Z0 + Z1Z0 + Z1Z2)

= Z1Z2Z0 + Z1Z2
2 + Z0Z2

2

and 2Z2Z2
0 + Z1Z2

0 = Z1Z2
2

from which

characteristic impedance, Z0 =
√ (

Z1Z2
2

Z1 + 2Z2

)

(41.3)

If the output terminals of Figure 41.4 are open-circuited,
then the open-circuit impedance,

ZOC = Z2(Z1 + Z2)

Z2 + Z1 + Z2
= Z2(Z1 + Z2)

Z1 + 2Z2

If the output terminals of Figure 41.4 are short-circuited,
then the short-circuit impedance,

ZSC = Z2Z1

Z1 + Z2

Thus

ZOCZSC = Z2(Z1 + Z2)

(Z1 + 2Z2)

(
Z2Z1

Z1 + Z2

)
= Z1Z2

2

Z1 + 2Z2

Comparing this expression with equation (41.3) gives

Z0 = √
(ZOCZSC) (41.2′)

which is the same as equation (41.2).
Thus the characteristic impedance Z0 is given by
Z0 = √

(ZOCZSC) whether the network is a symmetrical
T or a symmetrical π.
Equations (41.1) to (41.3) are used later in this chapter.

41.3 Logarithmic ratios

The ratio of two powers P1 and P2 may be expressed in
logarithmic form as shown in Chapter 10.
Let P1 be the input power to a system and P2 the output
power.
If logarithms to base 10 are used, then the ratio is said
to be in bels, i.e. power ratio in bels = lg(P2/P1). The bel

is a large unit and the decibel (dB) is more often used,
where 10 decibels = 1 bel, i.e.

power ratio in decibels = 10 lg
P2

P1
(41.4)

For example:

P2/P1 Power ratio (dB)

1 10 lg 1 = 0

100 10 lg 100 = +20 (power gain)
1

10
10 lg

1

10
= −10 (power loss or attenuation)

If logarithms to base e (i.e. natural or Napierian loga-
rithms) are used, then the ratio of two powers is said to be
in nepers (Np), i.e.

power ratio in nepers = 1
2

ln
P2

P1
(41.5)

Thus when the power ratio P2/P1 = 5, the power ratio in
nepers = 1

2 ln 5 = 0.805 Np,
and when the power ratio P2/P1 = 0.1, the power ratio in
nepers = 1

2 ln 0.1 = −1.15 Np.
The attenuation of filter sections and along a trans-

mission line are of an exponential form and it is in such
applications that the unit of the neper is used (see Chapters
42 and 44).

If the powers P1 and P2 refer to power developed in
two equal resistors, R, then P1 = V2

1 /R and P2 = V2
2 /R.

Thus the ratio (from equation (41.4)) can be expressed,
by the laws of logarithms, as

ratio in decibels = 10 lg
P2

P1
= 10 lg

(
V2

2 /R

V2
1 /R

)

= 10 lg
V2

2

V2
1

= 10 lg

(
V2

V1

)2

i.e. ratio in decibels = 20 lg
V2

V1
(41.6)

Although this is really a power ratio, it is called the
logarithmic voltage ratio.

Alternatively, (from equation (41.5)),

ratio in nepers = 1

2
ln

P2

P1
= 1

2
ln

(
V2

2 /R

V2
1 /R

)
= 1

2
ln

(
V2

V1

)2

i.e. ratio in nepers = ln
V2

V1
(41.7)
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Similarly, if currents I1 and I2 in two equal resistors R give
powers P1 and P2 then (from equation (41.4))

ratio in decibels

= 10 lg
P2

P1
= 10 lg

(
I2
2 R

I2
1 R

)
= 10 lg

(
I2

I1

)2

i.e. ratio in decibels = 20 lg
I2

I1
(41.8)

Alternatively (from equation (41.5))

ratio in nepers = 1

2
ln

P2

P1
= 1

2
ln

(
I2
2 R

I2
1 R

)2

= 1

2
ln

(
I2

I1

)2

i.e. ratio in nepers = ln
I2

I1
(41.9)

In equations (41.4) to (41.9) the output-to-input ratio has
been used. However, the input-to-output ratio may also
be used. For example, in equation (41.6), the output-
to-input voltage ratio is expressed as 20 lg(V2/V1) dB.
Alternatively, the input-to-output voltage ratio may be
expressed as 20 lg(V1/V2) dB, the only difference in the
values obtained being a difference in sign.
If 20 lg(V2/V1) = 10 dB, say, then 20 lg(V1/V2) =
−10 dB. Thus if an attenuator has a voltage input V1 of
50 mV and a voltage output V2 of 5 mV, the voltage ratio
V2/V1 is 5/50 or 1/10. Alternatively, this may be expressed
as ‘an attenuation of 10’, i.e. V1/V2 = 10.

Problem 1. The ratio of output power to input power
in a system is

(a) 2 (b) 25 (c) 1000 and (d) 1
100

Determine the power ratio in each case (i) in decibels
and (ii) in nepers.

(i) From equation (41.4),
power ratio in decibels = 10 lg(P2/P1).

(a) When P2/P1 = 2, power ratio = 10 lg 2 = 3 dB

(b) When P2/P1 = 25, power ratio = 10 lg 25
= 14 dB

(c) When P2/P1 = 1000, power ratio = 10 lg 1000
= 30 dB

(d) When P2/P1 = 1
100 , power ratio = 10 lg 1

100
= −20 dB

(ii) From equation (41.5),
power ratio in nepers = 1

2 ln(P2/P1)

(a) When P2/P1 = 2, power ratio = 1
2 ln 2 = 0.347 Np

(b) When P2/P1 = 25, power ratio = 1
2 ln 25

= 1.609 Np

(c) When P2/P1 = 1000, power ratio = 1
2 ln 1000

= 3.454 Np

(d) When P2/P1 = 1
100 , power ratio = 1

2 ln 1
100

= −2.303 Np

The power ratios in (a), (b) and (c) represent power gains,
since the ratios are positive values; the power ratio in (d)
represents a power loss or attenuation, since the ratio is a
negative value.

Problem 2. 5% of the power supplied to a cable
appears at the output terminals. Determine the attenu-
ation in decibels.

If P1 = input power and P2 = output power, then

P2

P1
= 5

100
= 0.05

From equation (41.4), power ratio in decibels

= 10 lg(P2/P1) = 10 lg 0.05 = −13 dB

Hence the attenuation (i.e. power loss) is 13 dB.

Problem 3. An amplifier has a gain of 15 dB. If the
input power is 12 mW, determine the output power.

From equation (41.4), decibel power ratio = 10 lg(P2/P1).

Hence 15 = 10 lg(P2/12), where P2 is the output power in
milliwatts.

1.5 = lg

(
P2

12

)

P2

12
= 101.5

from the definition of a logarithm. Thus the output
power, P2 = 12(10)1.5 = 379.5 mW

Problem 4. The current output of an attenuator
is 50 mA. If the current ratio of the attenuator is
−1.32 Np, determine (a) the current input and (b) the
current ratio expressed in decibels. Assume that the
input and load resistances of the attenuator are equal.
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(a) From equation (41.9),

current ratio in nepers = ln(I2/I1).

Hence −1.32 = ln(50/I1), where I1 is the input
current in mA.

e−1.32 = 50

I1

from which, current input, I1 = 50

e−1.32 = 50e1.32

= 187.2 mA
(b) From equation (41.8),

current ratio in decibels = 20 lg
I2

I1
= 20 lg

(
50

187.2

)

= −11.47 dB

Now try the following exercise.

Exercise 143 Further problems on logarithmic
ratios

1. The ratio of two powers is (a) 3, (b) 10, (c) 30,
(d) 10000. Determine the decibel power ratio for
each.

[(a) 4.77 dB (b) 10 dB (c) 14.77 dB (d) 40 dB]

2. The ratio of two powers is (a) 1
10 , (b) 1

2 , (c) 1
40 ,

(d) 1
1000 . Determine the decibel power ratio for

each.
[(a) −10 dB (b) −3 dB (c) −16 dB (d) −30 dB]

3. An amplifier has (a) a gain of 25 dB, (b) an atten-
uation of 25 dB. If the input power is 12 mW,
determine the output power in each case.

[(a) 3.795 mW (b) 37.9 µW]

4. 7.5% of the power supplied to a cable appears at
the output terminals. Determine the attenuation in
decibels. [11.25 dB]

5. The current input of a system is 250 mA. If the cur-
rent ratio of the system is (i) 15 dB, (ii) −8 dB,
determine (a) the current output and (b) the current
ratio expressed in nepers.

[(i) (a) 1.406A (b) 1.727 Np
(ii) (a) 99.53 mA (b) −0.921 Np]

41.4 Symmetrical T- and π-attenuators

(a) Symmetrical T-attenuator

As mentioned in Section 41.1, the ideal attenuator is made
up of pure resistances. A symmetrical T-pad attenuator is
shown in Figure 41.5 with a termination R0 connected as
shown. From equation (41.1),

R0 = √
(R2

1 + 2R1R2) (41.10)

Figure 41.5 Symmetrical T-pad attenuator

and from equation (41.2) R0 = √
(ROCRSC) (41.11)

With resistance R0 as the termination, the input resistance
of the pad will also be equal to R0. If the terminating resist-
ance R0 is transferred to port A then the input resistance
looking into port B will again be R0.

The pad is therefore symmetrical in impedance in both
directions of connection and may thus be inserted into a
network whose impedance is also R0. The value of R0 is
the characteristic impedance of the section.

As stated in Section 41.3, attenuation may be expressed
as a voltage ratio V1/V2 (see Figure 41.5) or quoted in
decibels as 20 lg(V1/V2) or, alternatively, as a power ratio
as 10 lg(P1/P2). If a T-section is symmetrical, i.e. the
terminals of the section are matched to equal impedances,
then

10 lg
P1

P2
= 20 lg

V1

V2
= 20

I1

I2

since RIN = RLOAD = R0, i.e.

10 lg
P1

P2
= 10 lg

(
V1

V2

)2

= 10 lg

(
I1

I2

)2

from which
P1

P2
=

(
V1

V2

)2

=
(

I1

I2

)2

or

√ (
P1

P2

)
=

(
V1

V2

)
=

(
I1

I2

)

Let N = V1/V2 or I1/I2 or
√

(P1/P2), where N is the
attenuation. In Section 41.5, page 536, it is shown that,
for a matched network, i.e. one terminated in its charac-
teristic impedance, N is in fact the insertion loss ratio.
(Note that in an asymmetrical network, only the expres-
sion N = √

(P1/P2) may be used — see Section 41.7 on
the L-section attenuator).
From Figure 41.5,

current I1 = V1

R0

Voltage V = V1 − I1R1 = V1 −
(

V1

R0

)
R1

i.e. V = V1

(
1 − R1

R0

)
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Voltage V2 =
(

R0

R1 + R0

)
V by voltage division

i.e. V2 =
(

R0

R1 + R0

)
V1

(
1 − R1

R0

)

= V1

(
R0

R1 + R0

) (
R0 − R1

R0

)

Hence
V2

V1
= R0 − R1

R0 + R1
or

V1

V2
= N = R0 + R1

R0 − R1
(41.12)

From equation (41.12) and also equation (41.10), it is
possible to derive expressions for R1 and R2 in terms of N
and R0, thus enabling an attenuator to be designed to give
a specified attenuation and to be matched symmetrically
into the network. From equation (41.12),

N(R0 − R1) = R0 + R1

NR0 − NR1 = R0 + R1

NR0 − R0 = R1 + NR1

R0(N − 1) = R1(1 + N)

from which R1 = R0
(N − 1)

(N + 1)
(41.13)

From equation (41.10), R0 = √
(R2

1 + 2R1R2)

i.e. R2
0 = R2

1 + 2R1R2

from which, R2 = R2
0 − R2

1

2R1

Substituting for R1 from equation (41.13) gives

R2 = R2
0 − [R0(N − 1)/(N + 1)]2

2[R0(N − 1)/(N + 1)]

= [R2
0(N + 1)2 − R2

0(N − 1)2]/(N + 1)2

2R0(N − 1)/(N + 1)

i.e. = R2
0[(N + 1)2 − (N − 1)2]

2R0(N − 1)(N + 1)

= R0[(N2 + 2N + 1) − (N2 − 2N + 1)]

2(N2 − 1)

= R0(4N)

2(N2 − 1)

Hence R2 = R0

(
2N

N2 − 1

)
(41.14)

Thus if the characteristic impedance R0 and the attenuation
N (=V1/V2) are known for a symmetrical T-network then

values of R1 and R2 may be calculated. Figure 41.6 shows a
T-pad attenuator having input and output impedances of R0
with resistances R1 and R2 expressed in terms of R0 and N .

Figure 41.6

(b) Symmetrical π-attenuator

A symmetrical π-attenuator is shown in Figure 41.7
terminated in R0.

Figure 41.7 Symmetrical π-attenuator

From equation (41.3),

characteristic impedance R0 =
√ (

R1R2
2

R1 + 2R2

)

(41.15)

and from equation (41.2′), R0 = √
(ROCRSC) (41.16)

Given the attenuation factor N = V1

V2

(
= I1

I2

)

and the characteristic impedance R0, it is possible to
derive expressions for R1 and R2, in a similar way to the
T-pad attenuator, to enable a π-attenuator to be effectively
designed.
Since N = V1/V2 then V2 = V1/N . From Figure 41.7,

current I1 = IA + IB and current IB = IC + ID. Thus

current I1 = V1

R0
= IA + IC + ID

= V1

R2
+ V2

R2
+ V2

R0
= V1

R2
+ V1

NR2
+ V1

NR0

since V2 = V1/N ,

i.e.
V1

R0
= V1

(
1

R2
+ 1

NR2
+ 1

NR0

)



Ch41-H8139.tex 29/3/2007 14: 35 page 533

Attenuators 533

PART

3

Hence
1

R0
= 1

R2
+ 1

NR2
+ 1

NR0

1

R0
− 1

NR0
= 1

R2
+ 1

NR2

1

R0

(
1 − 1

N

)
= 1

R2

(
1 + 1

N

)

1

R0

(
N − 1

N

)
= 1

R2

(
N + 1

N

)

Thus R2 = R0
(N + 1)

(N − 1)
(41.17)

From Figure 41.7, current I1 = IA + IB, and since the p.d.
across R1 is (V1 − V2),

V1

R0
= V1

R2
+ V1 − V2

R1

V1

R0
= V1

R2
+ V1

R1
− V2

R1

V1

R0
= V1

R2
+ V1

R1
− V1

NR1
since V2 = V1/N

1

R0
= 1

R2
+ 1

R1
− 1

NR1

1

R0
− 1

R2
= 1

R1

(
1 − 1

N

)

1

R0
− (N − 1)

R0(N + 1)
= 1

R1

(
N − 1

N

)

from equation (41.17),

1

R0

(
1 − N − 1

N + 1

)
= 1

R1

(
N − 1

N

)

1

R0

(
(N + 1) − (N − 1)

(N + 1)

)
= 1

R1

(
N − 1

N

)

1

R0

(
2

N + 1

)
= 1

R1

(
N − 1

N

)

R1 = R0

(
N − 1

N

) (
N + 1

2

)

Hence R1 = R0

(
N2 − 1

2N

)
(41.18)

Figure 41.8 shows a π-attenuator having input and output
impedances of R0 with resistances R1 and R2 expressed in
terms of R0 and N .

Figure 41.8

There is no difference in the functions of the T- and
π-attenuator pads and either may be used in a particular
situation.

Problem 5. Determine the characteristic impedance
of each of the attenuator sections shown in Figure 41.9.

Figure 41.9

From equation (41.10), for a T-section attenuator the
characteristic impedance,

R0 = √
(R2

1 + 2R1R2)

(a) R0 = √
(82 + (2)(8)(21)) = √

400 = 20 �

(b) R0 = √
(102 + (2)(10)(15)) = √

400 = 20 �

(c) R0 = √
(2002 + (2)(200)(56.25)) = √

62500 = 250 �
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It is seen that the characteristic impedance of parts (a) and
(b) is the same. In fact, there are numerous combinations
of resistances R1 and R2 which would give the same value
for the characteristic impedance.

Problem 6. A symmetrical π-attenuator pad has a
series arm of 500 � resistance and each shunt arm
of 1 k� resistance. Determine (a) the characteristic
impedance, and (b) the attenuation (in dB) produced
by the pad.

The π-attenuator section is shown in Figure 41.10 termin-
ated in its characteristic impedance, R0.

Figure 41.10

(a) From equation (41.15), for a symmetrical
π-attenuator section,

characteristic impedance, R0 =
√ (

R1R2
2

R1 + 2R2

)

Hence R0 =
√ [

(500)(1000)2

500 + 2(1000)

]
= 447 �

(b) Attenuation = 20 lg(I1/I2) dB. From Figure 41.10,

current IX =
(

R2

R2 + R1 + (R2R0/(R2 + R0))

)
(I1),

by current division
i.e.

IX =
(

1000

1000 + 500 + ((1000)(447)/(1000 + 447))

)
I1

= 0.553I1

and current I2 =
(

R2

R2 + R0

)
IX =

(
1000

1000 + 447

)
IX

= 0.691IX

Hence I2 = 0.691(0.553I1) = 0.382I1

and I1/I2 = 1/0.382 = 2.617

Thus attenuation = 20 lg 2.617 = 8.36 dB

(Alternatively, since I1/I2 = N , then the formula

R2 = R0

(
N + 1

N − 1

)

may be transposed for N , from which attenua-
tion = 20 lg N)

Problem 7. For each of the attenuator networks
shown in Figure 41.11, determine (a) the input
resistance when the output port is open-circuited,
(b) the input resistance when the output port is
short-circuited, and (c) the characteristic impedance.

Figure 41.11

(i) For the T-network shown in Figure 41.11(i):

(a) ROC = 15 + 10 = 25 �

(b) RSC = 15 + 10 × 15

10 + 15
= 15 + 6 = 21 �

(c) From equation (41.11),
R0 = √

ROCRSC = √
[(25)(21)] = 22.9 �

(Alternatively, from equation (41.10),

R0 = √
(R2

1 + 2R1R2) = √
(152 + (2)(15)(10))

= 22.9 �)

(ii) For the π-network shown in Figure 41.11(ii):

(a) ROC = 5 × (15 + 5)

5 + (15 + 5)
= 100

25
= 4 �

(b) RSC = 5 × 15

5 + 15
= 75

20
= 3.75�

(c) From equation (41.16),

R0 = √
(ROCRSC) as for a T-network

= √
[(4)(3.75)] = √

15 = 3.87 �

(Alternatively, from equation (41.15),

R0 =
√ (

R1R2
2

R1 + 2R2

)
=

√ (
15(5)2

15 + 2(5)

)

= 3.87 �)

Problem 8. Design a T-section symmetrical attenu-
ator pad to provide a voltage attenuation of 20 dB and
having a characteristic impedance of 600 �.
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Voltage attenuation in decibels = 20 lg(V1/V2).

Attenuation, N = V1/V2, hence 20 = 20 lg N , from which
N = 10.
Characteristic impedance, R0 = 600 �

From equation (41.13),

resistance R1 = R0(N − 1)

(N + 1)
= 600(10 − 1)

(10 + 1)
= 491 �

From equation (41.14),

resistance R2 = R0

(
2N

N2 − 1

)
= 600

(
(2)(10)

102 − 1

)

= 121 �

Thus the T-section attenuator shown in Figure 41.12
has a voltage attenuation of 20 dB and a characteristic
impedance of 600 �. (Check: From equation (41.10))

R0 = √
(R2

1 + 2R1R2) = √
[4912 + 2(491)(121)]

= 600 �)

Figure 41.12

Problem 9. Design a π-section symmetrical attenu-
ator pad to provide a voltage attenuation of 20 dB and
having a characteristic impedance of 600 �.

From problem 8, N = 10 and R0 = 600 �

From equation (41.18),

resistance R1 = R0

(
N2 − 1

2N

)
= 600

(
102 − 1

(2)(10)

)

= 2970 � or 2.97 k�

From equation (41.17),

R2 = R0

(
N + 1

N − 1

)
= 600

(
10 + 1

10 − 1

)
= 733 �

Thus the π-section attenuator shown in Figure 41.13
has a voltage attenuation of 20 dB and a characteristic
impedance of 600 �.

Figure 41.13

(Check: From equation (41.15),

R0 =
√ (

R1R2
2

R1 + 2R2

)
=

√ (
(2970)(733)2

2970 + (2)(733)

)

= 600 �)

Now try the following exercise.

Exercise 144 Further problems on symmetrical
T- and π-attenuators

1. Determine the characteristic impedances of the
T-network attenuator sections shown in
Figure 41.14.

[(a) 26.46 � (b) 244.9 � (c) 1.342 k�]

Figure 41.14

2. Determine the characteristic impedances of the
π-network attenuator pads shown in Figure 41.15.

[(a) 7.45 � (b) 353.6 � (c) 189.7 �]
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Figure 41.15

3. A T-section attenuator is to provide 18 dB voltage
attenuation per section and is to match a 1.5 k�
line. Determine the resistance values necessary per
section. [R1 = 1165 �, R2 = 384 �]

4. A π-section attenuator has a series resistance of
500 � and shunt resistances of 2 k�. Determine
(a) the characteristic impedance, and (b) the attenu-
ation produced by the network.

[(a) 667 � (b) 6 dB]

5. For each of the attenuator pads shown in
Figure 41.16 determine (a) the input resistance when
the output port is open-circuited, (b) the input resist-
ance when the output port is short-circuited, and (c)
the characteristic impedance.

[(i) (a) 50 � (b) 42 � (c) 45.83 �
(ii) (a) 285.7 � (b) 240 � (c) 261.9 �]

Figure 41.16i

Figure 41.16ii

6. A television signal received from an aerial
through a length of coaxial cable of character-
istic impedance 100 � has to be attenuated by
15 dB before entering the receiver. If the input
impedance of the receiver is also 100 �, design a
suitable T-attenuator network to give the necessary
reduction. [R1 = 69.8 �, R2 = 36.7 �]

7. Design (a) a T-section symmetrical attenuator pad,
and (b) a π-section symmetrical attenuator pad, to
provide a voltage attenuation of 15 dB and having
a characteristic impedance of 500 �.

[(a) R1 = 349 �, R2 = 184 �
(b) R1 = 1.36 k�, R2 = 716 �]

8. Determine the values of the shunt and series
resistances for T-pad attenuators of characteristic
impedance 400 � to provide the following voltage
attenuations: (a) 12 dB (b) 25 dB (c) 36 dB

[(a) R1 = 239.4 �, R2 = 214.5 �
(b) R1 = 357.4 �, R2 = 45.13 �

(c) R1 = 387.5 �, R2 = 12.68 �]

9. Design a π-section symmetrical attenuator net-
work to provide a voltage attenuation of 24 dB and
having a characteristic impedance of 600 �.

[R1 = 4.736 k�, R2 = 680.8 �]

10. A d.c. generator has an internal resistance of 600 �
and supplies a 600 � load. Design a symmetrical
(a) T-network and (b) π-network attenuator pad,
having a characteristic impedance of 600 � which
when connected between the generator and load
will reduce the load current to 1

4 its initial value.

[(a) R1 = 360 �, R2 = 320 �
(b) R1 = 1125 �, R2 = 1000 �]

41.5 Insertion loss

Figure 41.17(a) shows a generator E connected directly to
a load ZL . Let the current flowing be IL and the p.d. across
the load VL . z is the internal impedance of the source.

Figure 41.17(b) shows a two-port network connected
between the generator E and load ZL .
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Figure 41.17

The current through the load, shown as I2, and the p.d.
across the load, shown as V2, will generally be less than
current IL and voltage VL of Figure 41.17(a), as a result of
the insertion of the two-port network between generator
and load.
The insertion loss ratio, AL, is defined as

AL =
voltage across load when connected

directly to the generator

voltage across load when the
two-port network is connected

i.e. AL =VL/V2 = IL/I2 (41.19)

since VL = ILZL and V2 = I2ZL . Since both VL and V2 refer
to p.d.’s across the same impedance ZL , the insertion loss
ratio may also be expressed (from Section 41.3) as

insertion loss ratio

= 20 lg
(

VL

V2

)
dB or 20 lg

(
IL

I2

)
dB (41.20)

When the two-port network is terminated in its character-
istic impedance Z0 the network is said to be matched. In
such circumstances the input impedance is also Z0, thus
the insertion loss is simply the ratio of input to output volt-
age (i.e. V1/V2). Thus, for a network terminated in its
characteristic impedance,

insertion loss = 20 lg
(

V1

V2

)
dB or 20 lg

(
I1

I2

)
dB

(41.21)

Problem 10. The attenuator shown in Figure 41.18
feeds a matched load. Determine (a) the characteristic
impedance R0, and (b) the insertion loss in decibels.

Figure 41.18

(a) From equation (41.10), the characteristic impedance
of a symmetric T-pad attenuator is given by

R0 = √
(R2

1 + 2R1R2) = √
[3002 + 2(300)(450)]

= 600 �.

(b) Since the T-network is terminated in its characteristic
impedance, then from equation (41.21),

insertion loss = 20 lg(V1/V2) dB or 20 lg(I1/I2) dB.

By current division in Figure 41.18,

I2 =
(

R2

R2 + R1 + R0

)
(I1)

Hence

insertion loss = 20 lg
I1

I2

= 20 lg

(
I1

(R2/(R2 + R1 + R0))I1

)

= 20 lg

(
R2 + R1 + R0

R2

)

= 20 lg

(
450 + 300 + 600

450

)

= 20 lg3 = 9.54 dB

Problem 11. A 0–3 k� rheostat is connected across
the output of a signal generator of internal resistance
500 �. If a load of 2 k� is connected across the
rheostat, determine the insertion loss at a tapping of
(a) 2 k�, (b) 1 k�.

The circuit diagram is shown in Figure 41.19. Without the
rheostat in the circuit the voltage across the 2 k� load, VL
(see Figure 41.20), is given by

VL =
(

2000

2000 + 500

)
E = 0.8 E

Figure 41.19

Figure 41.20
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(a) With the 2 k� tapping, the network of Figure 41.19
may be redrawn as shown in Figure 41.21, which in
turn is simplified as shown in Figure 41.22.

Figure 41.21

Figure 41.22

From Figure 41.22,

voltage V2 =
(

1000

1000 + 1000 + 500

)
E = 0.4 E

Hence, from equation (41.19), insertion loss ratio,

AL = VL

V2
= 0.8E

0.4E
= 2

or, from equation (41.20),

insertion loss = 20 lg(VL/V2) = 20 lg 2 = 6.02 dB

(b) With the 1 k� tapping, voltage V2 is given by

V2 =

⎛
⎜⎜⎝

(1000 × 2000)

(1000 + 2000)
((1000 × 2000)

(1000 + 2000))
+ 2000 + 500

⎞
⎟⎟⎠ E

=
(

666.7

666.7 + 2000 + 500

)
E = 0.211 E

Hence, from equation (41.19),

insertion loss ratio AL = VL

V2
= 0.8E

0.211E
= 3.79

or, from equation (41.20),

insertion loss in decibels = 20 lg

(
VL

V2

)
= 20 lg 3.79

= 11.57 dB

(Note that the insertion loss is not doubled by halving
the tapping.)

Problem 12. A symmetrical π-attenuator pad has a
series arm of resistance 1000 � and shunt arms each
of 500 �. Determine (a) its characteristic impedance,
and (b) the insertion loss (in decibels) when feeding a
matched load.

The π-attenuator pad is shown in Figure 41.23, terminated
in its characteristic impedance, R0.

Figure 41.23

(a) From equation (41.15), the characteristic impedance
of a symmetrical π-attenuator is given by

R0 =
√ (

R1R2
2

R1 + 2R2

)
=

√ (
(1000)(500)2

1000 + 2(500)

)

= 354 �

(b) Since the attenuator network is feeding a matched load,
from equation (41.21),

insertion loss = 20 lg

(
V1

V2

)
dB = 20 lg

(
I1

I2

)
dB

From Figure 41.23, by current division,

current IX =

⎧⎪⎪⎨
⎪⎪⎩

R2

R2 + R1 + (R2R0

(R2 + R0))

⎫⎪⎪⎬
⎪⎪⎭

(I1)

and current I2 =
(

R2

R2 + R0

)
Ix

=
(

R2

R2 + R0

) ⎛
⎜⎜⎝ R2

R2 + R1 + (R2R0

(R2 + R0))

⎞
⎟⎟⎠ I1
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i.e.

I2 =
(

500

500 + 354

)
⎛
⎜⎜⎝ 500

500 + 1000 + ((500)(354)

(500 + 354))

⎞
⎟⎟⎠ I1

= (0.5855)(0.2929)I1 = 0.1715I1

Hence I1/I2 = 1/0.1715 = 5.83

Thus the insertion loss in decibels = 20 lg (I1/I2)

= 20 lg 5.83

= 15.3 dB

Now try the following exercise.

Exercise 145 Further problems on insertion loss

1. The attenuator section shown in Figure 41.24 feeds
a matched load. Determine (a) the characteristic
impedance R0 and (b) the insertion loss.

[(a) 282.8 � (b) 15.31 dB]

Figure 41.24

2. A 0–10 k� variable resistor is connected across the
output of a generator of internal resistance 500 �.
If a load of 1500 � is connected across the variable
resistor, determine the insertion loss in decibels at
a tapping of (a) 7.5 k�, (b) 2.5 k�

[(a) 8.13 dB (b) 17.09 dB]

3. A symmetrical π attenuator pad has a series arm
resistance of 800 � and shunt arms each of 250 �.
Determine (a) the characteristic impedance of the
section, and (b) the insertion loss when feeding a
matched load. [(a) 196.1 � (b) 18.36 dB]

41.6 Asymmetrical T- and π-sections

Figure 41.25(a) shows an asymmetrical T-pad section
where resistance R1 �= R3. Figure 41.25(b) shows an
asymmetrical π-section where R2 �= R3.

When viewed from port A, in each of the sections,
the output impedance is ROB; when viewed from port B,
the input impedance is ROA. Since the sections are
asymmetrical ROA does not have the same value as ROB.

Figure 41.25 (a) Asymmetrical T-pad section, (b) Asym-
metrical π-section

Iterative impedance is the term used for the impedance
measured at one port of a two-port network when the
other port is terminated with an impedance of the same
value. For example, the impedance looking into port 1 of
Figure 41.26(a) is, say, 500 � when port 2 is terminated
in 500 � and the impedance looking into port 2 of Fig-
ure 41.26(b) is, say, 600 � when port 1 is terminated in
600 �. (In symmetric T- and π-sections the two iterative
impedances are equal, this value being the characteristic
impedance of the section.)

Figure 41.26

An image impedance is defined as the impedance
which, when connected to the terminals of a network,
equals the impedance presented to it at the opposite ter-
minals. For example, the impedance looking into port 1 of
Figure 41.27(a) is, say, 400 � when port 2 is terminated
in, say 750 �, and the impedance seen looking into port
2 (Figure 41.27(b)) is 750 � when port 1 is terminated
in 400 �. An asymmetrical network is correctly termin-
ated when it is terminated in its image impedance. (If the
image impedances are equal, the value is the characteristic
impedance.)

Figure 41.27

The following worked problems show how the iterative
and image impedances are determined for asymmetrical
T- and π-sections.
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Problem 13. An asymmetrical T-section attenuator
is shown in Figure 41.28. Determine for the sec-
tion (a) the image impedances, and (b) the iterative
impedances.

Figure 41.28

(a) The image impedance ROA seen at port 1 in
Figure 41.28 is given by equation (41.11):

ROA = √
(ROC)(RSC),

where ROC and RSC refer to port 2 being respectively
open-circuited and short-circuited.

ROC = 200 + 100 = 300 �

and RSC = 200 + (100)(300)

100 + 300
= 275 �

Hence ROA = √
[(300)(275)] = 287.2 �

Similarly, ROB = √
(ROC)(RSC), where ROC and RSC

refer to port 1 being respectively open-circuited and
short-circuited.

ROC = 300 + 100 = 400 �

and RSC = 300 + (200)(100)

200 + 100
= 366.7 �

Hence ROB = √
[(400)(366.7)] = 383 �.

Thus the image impedances are 287.2 � and 383 �
and are shown in the circuit of Figure 41.29.

Figure 41.29

(Checking:

ROA = 200 + (100)(300 + 383)

100 + 300 + 383
= 287.2 �

and ROB = 300 + (100)(200 + 287.2)

100 + 200 + 287.2
= 383 �)

(b) The iterative impedance at port 1 in Figure 41.30, is
shown as R1. Hence

R1 = 200 + (100)(300 + R1)

100 + 300 + R1

= 200 + 30 000 + 100R1

400 + R1

from which 400R1 + R2
1 = 80 000 + 200R1 + 30 000

+ 100R1
and R2

1 + 100R1 − 110 000 = 0

Figure 41.30

Solving by the quadratic formula gives

R1 = −100 ± √
[1002 − (4)(1)(−110 000)]

2

= −100 ± 670.8

2
= 285.4 �

(neglecting the negative value).

The iterative impedance at port 2 in Figure 41.31 is
shown as R2. Hence

R2 = 300 + (100)(200 + R2)

100 + 200 + R2

= 300 + 20 000 + 100R2

300 + R2

from which 300R2 + R2
2 = 90 000 + 300R2

+ 20 000 + 100R2

and R2
2 − 100R2 − 110 000 = 0

Thus

R2 = 100 ± √
[(−100)2 − (4)(1)(−110 000)]

2

= 100 ± 670.8

2
= 385.4 �

Figure 41.31
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Thus the iterative impedances of the section shown
in Figure 41.28 are 285.4 � and 385.4 �.

Problem 14. An asymmetrical π-section attenuator
is shown in Figure 41.32. Determine for the sec-
tion (a) the image impedances, and (b) the iterative
impedances.

Figure 41.32

(a) The image resistance ROA seen at port 1 is given by

ROA = √
[ROC)(RSC)

where the impedance at port 1 with port 2 open-
circuited,

ROC = (1000)(5000)

1000 + 5000
= 833 �

and the impedance at port 1, with port 2 short-
circuited,

RSC = (1000)(3000)

1000 + 3000
= 750 �

Hence ROA = √
[(833)(750) = 790 �.

Similarly, ROB = √
(ROC)(RSC), where the impedance

at port 2 with port 1 open-circuited,

ROC = (2000)(4000)

2000 + 4000
= 1333 �

and the impedance at port 2 with port 1 short-circuited,

RSC = (2000)(3000)

2000 + 3000
= 1200 �

Hence ROB = √
[(1333)(1200)] = 1265 �

Thus the image impedances are 790 � and 1265 �.

Figure 41.33

(b) The iterative impedance at port 1 in Figure 41.33 is
shown as R1. From circuit theory,

R1 = 1000[3000 + (2000R1/(2000 + R1))]

1000 + 3000 + (2000R1/(2000 + R1))

i.e. R1 = 3 × 106 + (2 × 106R1/(2000 + R1))

4000 + (2000R1/(2000 + R1))

4000R1 + 2000R2
1

2000 + R1
= 3 × 106 + 2 × 106R1

2000 + R1

8 × 106R1 + 4000R2
1 + 2000R2

1

= 6 × 109 + 3 × 106R1 + 2 × 106R1

6000R2
1 + 3 × 106R1 − 6 × 109 = 0

2R2
1 + 1000R1 − 2 × 106 = 0

Using the quadratic formula gives

R1 = −1000 ± √
[(1000)2 − (4)(2)(−2 × 106)]

4

= −1000 ± 4123

4
= 781 �

(neglecting the negative value).
The iterative impedance at port 2 in Figure 41.34 is
shown as R2

Figure 41.34

R2 = 2000[3000 + (1000R2/(1000 + R2))]

2000 + 3000 + (1000R2/(1000 + R2))

= 6 × 106 + (2 × 106R2/(1000 + R2))

5000 + (1000R2/(1000 + R2))
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Hence

5000R2 + 1000R2
2

1000 + R2
= 6 × 106 + 2 × 106R2

1000 + R2

5 × 106R2 + 5000R2
2 + 1000R2

2

= 6 × 109 + 6 × 106R2 + 2 × 106R2

6000R2
2 − 3 × 106R2 − 6 × 109 = 0

2R2
2 − 1000R2 − 2 × 106 = 0

from which

R2 = 1000 ± √
[(−1000)2 − (4)(2)(−2 × 106)]

4

= 1000 ± 4123

4
= 1281 �

Thus the iterative impedances of the section shown

in Figure 41.32 are 781 � and 1281 �.

Now try the following exercise.

Exercise 146 Further problems on asymmetrical
T- and π-sections

1. An asymmetric section is shown in Figure 41.35.
Determine for the section (a) the image impedances,
and (b) the iterative impedances. [(a) 144.9 �,

241.5 � (b) 143.6 �, 243.6 �]

Figure 41.35

2. An asymmetric π-section is shown in Figure 41.36.
Determine for the section (a) the image impedances,
and (b) the iterative impedances. [(a) 329.5 �,

285.6 � (b) 331.2 �, 284.2 �]

Figure 41.36

3. Distinguish between image and iterative
impedances of a network. An asymmetric T-
attenuator section has series arms of resistance
200 � and 400 � respectively, and a shunt arm
of resistance 300 �. Determine the image and
iterative impedances of the section. [(a) 430.9 �,

603.3 �; 419.6 �, 619.6 �]

41.7 The L-section attenuator

A typical L-section attenuator pad is shown in
Figure 41.37. Such a pad is used for matching purposes
only, the design being such that the attenuation introduced
is a minimum. In order to derive values for R1 and R2, con-
sider the resistances seen from either end of the section.

Figure 41.37 L-section attenuator pad

Looking in at port 1,

ROA = R1 + R2ROB

R2 + ROB

from which

ROAR2 + ROAROB = R1R2 + R1ROB + R2ROB (41.22)

Looking in at port 2,

ROB = R2(R1 + ROA)

R1 + ROA + R2

from which

ROBR1 + ROAROB + ROBR2 = R1R2 + R2ROA (41.23)

Adding equations (41.22) and (41.23) gives

ROAR2 + 2ROAROB + ROBR1 + ROBR2

= 2R1R2 + R1ROB + R2ROB + R2ROA

i.e. 2ROAROB = 2R1R2

and R1 = ROAROB

R2
(41.24)
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Substituting this expression for R1 into equation (41.22)
gives

ROAR2 + ROAROB =
(

ROAROB

R2

)
R2

+
(

ROAROB

R2

)
ROB + R2ROB

i.e. ROAR2 + ROAROB = ROAROB + ROAR2
OB

R2
+ R2ROB

from which R2(ROA − ROB) = ROAR2
OB

R2

R2
2(ROA − ROB) = ROAR2

OB

and resistance, R2 =
√(

ROAR2
OB

ROA − ROB

)
(41.25)

Thus, from equation (41.24),

R1 = ROAROB√
(ROAR2

OB/(ROA − ROB))

= ROAROB

ROB
√

(ROA/(ROA − ROB))

= ROA√
ROA

√
(ROA − ROB)

Hence resistance, R1 = √
[ROA(ROA − ROB)] (41.26)

Figure 41.38 shows an L-section attenuator pad with its
resistances expressed in terms of the input and output
resistances, ROA and ROB.

Figure 41.38

Problem 15. A generator having an internal resist-
ance of 500 � is connected to a 100 � load via an
impedance-matching resistance pad as shown in Fig-
ure 41.39. Determine (a) the values of resistance R1
and R2, (b) the attenuation of the pad in decibels, and
(c) its insertion loss.

Figure 41.39

(a) From equation (41.26), R1 = √
[500(500 − 100)]

= 447.2 �

From equation (41.25), R2 =
√(

(500)(100)2

500 − 100

)

= 111.8 �
(b) From section 41.3, the attenuation is given by

10 lg(P1/P2) dB. Note that, for an asymmetrical
section such as that shown in Figure 41.39, the
expression 20 lg(V1/V2) or 20 lg(I1/I2) may not be
used for attenuation since the terminals of the pad are
not matched to equal impedances. In Figure 41.40,

Figure 41.40

current I1 = E

500 + 447.2 + (111.8 × 100

(111.8 + 100))

= E

1000

and current

I2 =
(

111.8

111.8 + 100

)
I1 =

(
111.8

211.8

) (
E

1000

)

= E

1894.5

Thus input power,

P1 = I2
1 (500) =

(
E

1000

)2

(500)
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and output power,

P2 = I2
2 (100) =

(
E

1894.5

)2

(100)

Hence

attenuation = 10 lg
P1

P2

= 10 lg

{
[E/(1000)]2(500)

[E/(1894.5)]2(100)

}

= 10 lg

{(
1894.5

1000

)2

(5)

}
dB

i.e. attenuation = 12.54 dB

(c) Insertion loss AL is defined as

voltage across load when connected
directly to the generator

voltage across load when the two-port
network is connected

Figure 41.41 shows the generator connected directly
to the load.

Figure 41.41

Load current, IL = E

500 + 100
= E

600

and voltage, VL = IL(100) = E

600
(100) = E

6

From Figure 41.40 voltage,

V1 = E − I1(500) = E − (E/1000)500 from part (b)

i.e. V1 = 0.5 E

voltage, V2 = V1 − I1R1

= 0.5 E −
(

E

1000

)
(447.2) = 0.0528 E

insertion loss, AL = VL

V2
= E/6

0.0528E
= 3.157

In decibels, the insertion loss = 20 lg
VL

V2

= 20 lg 3.157 = 9.99 dB

Now try the following exercise.

Exercise 147 Further problems on L-section
attenuators

1. Figure 41.42 shows an L-section attenuator. The
resistance across the input terminals is 250 � and
the resistance across the output terminals is 100 �.
Determine the values R1 and R2.

[R1 = 193.6 �, R2 = 129.1 �]

Figure 41.42

2. A generator having an internal resistance of 600 �
is connected to a 200 � load via an impedance-
matching resistive pad as shown in Figure 41.43.
Determine (a) the values of resistances R1 and R2,
(b) the attenuation of the matching pad, and (c) its
insertion loss.

[(a) R1 = 489.9 �, R2 = 244.9 � (b) 9.96 dB
(c) 8.71 dB]

Figure 41.43

41.8 Two-port networks in cascade

Often two-port networks are connected in cascade, i.e.
the output from the first network becomes the input to the
second network, and so on, as shown in Figure 41.44. Thus
an attenuator may consist of several cascaded sections so
as to achieve a particular desired overall performance.

If the cascade is arranged so that the impedance
measured at one port and the impedance with which
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Figure 41.44 Two-port networks connected in cascade

the other port is terminated have the same value, then
each section (assuming they are symmetrical) will have
the same characteristic impedance Z0 and the last net-
work will be terminated in Z0. Thus each network will
have a matched termination and hence the attenuation
in decibels of section 1 in Figure 41.44 is given by
a1 = 20 lg(V1/V2). Similarly, the attenuation of section 2
is given by a2 = 20 lg(V2/V3), and so on.

The overall attenuation is given by

a = 20
V1

Vn

= 20 lg

(
V1

V2
× V2

V3
× V3

V4
× . . . × Vn−1

Vn

)

= 20 lg
V1

V2
+ 20 lg

V2

V3
+ . . . + 20 lg

Vn−1

Vn

by the laws of logarithms, i.e.

overall attenuation, a = a1 + a2 + · · · + an−1 (41.27)

Thus the overall attenuation is the sum of the attenuations
(in decibels) of the matched sections.

Problem 16. Five identical attenuator sections are
connected in cascade. The overall attenuation is
70 dB and the voltage input to the first section is
20 mV. Determine (a) the attenuation of each individ-
ual attenuation section, (b) the voltage output of the
final stage, and (c) the voltage output of the third stage.

(a) From equation (41.27), the overall attenuation is
equal to the sum of the attenuations of the indi-
vidual sections and, since in this case each sec-
tion is identical, the attenuation of each sec-
tion = 70/5 = 14 dB.

(b) If V1 = the input voltage to the first stage and
V0 = the output of the final stage, then the overall
attenuation = 20 lg(V1/V0), i.e.

70 = 20 lg

(
20

V0

)
where V0 is in millivolts

3.5 = lg

(
20

V0

)

103.5 = 20

V0

from which output voltage of final stage,

V0 = 20

103.5
= 6.32 × 10−3 mV

= 6.32 µV

(c) The overall attenuation of three identical stages is
3 × 14 = 42 dB. Hence 42 = 20 lg(V1/V3), where V3
is the voltage output of the third stage. Thus

42

20
= lg

(
20

V3

)
and 1042/20 = 20

V3

from which the voltage output of the third stage,

V3 = 20/102.1 = 0.159 mV

Problem 17. A d.c. generator has an internal resis-
tance of 450 � and supplies a 450 � load.

(a) Design a T-network attenuator pad having a char-
acteristic impedance of 450 � which, when con-
nected between the generator and the load, will
reduce the load current to 1

8 of its initial value.

(b) If two such networks as designed in (a) were con-
nected in series between the generator and the
load, determine the fraction of the initial current
that would now flow in the load.

(c) Determine the attenuation in decibels given by
four such sections as designed in (a).

The T-network attenuator is shown in Figure 41.45 con-
nected between the generator and the load. Since it is
matching equal impedances, the network is symmetrical.

Figure 41.45
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Figure 41.46

(a) Since the load current is to be reduced to 1
8 of its initial

value, the attenuation N = 8. From equation (41.13),

resistance, R1 = R0(N − 1)

(N + 1)
= 450

(8 − 1)

(8 + 1)
= 350 �

and from equation (41.14),

resistance, R2 = R0

(
2N

N2 − 1

)
= 450

(
2 × 8

82 − 1

)

= 114 �

(b) When two such networks are connected in series, as
shown in Figure 41.46, current I1 flows into the first
stage and 1

8 I1 flows out of the first stage into the
second.

Again, 1
8 of this current flows out of the second stage,

i.e. 1
8 × 1

8 I1, i.e. 1
64 of I1 flows into the load.

Thus 1
64 of the original current flows in the load.

(c) The attenuation of a single stage is 8. Expressed in
decibels, the attenuation is
20 lg(I1/I2) = 20 lg 8 = 18.06 dB.
From equation (41.27), the overall attenuation of four
identical stages is given by 18.06 + 18.06 + 18.06 +
18.06, i.e. 72.24 dB.

Now try the following exercise.

Exercise 148 Further problems on cascading two-
port networks

1. The input to an attenuator is 24V and the output is
4V. Determine the attenuation in decibels. If five
such identical attenuators are cascaded, determine
the overall attenuation. [(a) 15.56 dB, 77.80 dB]

2. Four identical attenuator sections are connected
in cascade. The overall attenuation is 60 dB. The
input to the first section is 50 mV. Determine (a)
the attenuation of each stage, (b) the output of the
final stage, and (c) the output of the second stage.

[(a) 15 dB (b) 50 µV (c) 1.58 mV]

3. A d.c. generator has an internal resistance of 300 �
and supplies a 300 � load.
(a) Design a symmetrical T network attenuator pad

having a characteristic impedance of 300 �
which, when connected between the generator
and the load, will reduce the load current to 1

3
its initial value.

(b) If two such networks as in (a) were connected
in series between the generator and the load,
what fraction of the initial current would the
load take?

(c) Determine the fraction of the initial current that
the load would take if six such networks were
cascaded between the generator and the load.

(d) Determine the attenuation in decibels provided
by five such identical stages as in (a).

[(a) R1 = 150 �, R2 = 225 �
(b) 1

9 (c) 1
729 (d) 44.71 dB]

41.9 ABCD parameters

As mentioned earlier, a two-port network has a pair
of input terminals, shown as PQ in Figure 41.47, and
a pair of output terminals, shown as RS. When a volt-
age V1 is applied to terminals PQ, the input and output
currents, I1 and I2, flow and an output voltage V2 is pro-
duced. There are therefore four variable quantities V1,
I1, V2 and I2 for a two-port network. If the elements are
assumed to be linear, then there are a number of ways in
which the relationships can be written. One such method
is termed ABCD parameters which we consider in this
chapter; there are others however, such as z-, y-, h- and
g-parameters that are not considered here.

Network

P

Q S

R
I1

V1 V2

I2

Figure 41.47
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For ABCD parameters, the input voltage V1 and the
input current I1 are specified in terms of the output voltage
V2 and current I2 as follows:

V1 = AV2 − BI2 (41.28)

I1 = CV2 − DI2 (41.29)

A, B, C and D are constants for a particular network and
called parameters.

In equation (41.28), when I2 = 0, then: A = V1

V2

and when V2 = 0, then: B = −V1

I2

In equation (41.29), when I2 = 0, then: C = I1

V2

and when V2 = 0, then: D = − I1

I2

Since A and D are ratios, they have no units, while B is an
impedance in ohms, and C an admittance in siemens.

These parameters are often called the general circuit
or transmission parameters and are generally used for
the analysis of two-port networks which are heavy current
circuits or power frequency transmission lines.

Problem 18. A two-port network has parameters
A = 2 + j, B = 5 �, C = (1 + j2)S and D = 4. If the
output is a current of 80 mA through a 20 � resistive
load, determine (a) the input voltage, and (b) the input
current.

Since I2 = 80 mA and R2 = 20 � then

V2 = I2R2 = 80 × 10−3 × 20 = 1.6V

(a) From equation (41.28), voltage,

V1 = AV2 − BI2

= (2 + j)(1.6) − (5)(80 × 10−3)

= 3.2 + j1.6 − 0.4 = 2.8 + j1.6

i.e. V1 = 3.22∠29.74◦V

(b) From equation (41.29), current,

I1 = CV2 − DI2

= (1 + j2)(1.6) − (4)(80 × 10−3)

= 1.6 + j3.2 − 0.32 = 1.28 + j3.2

i.e. I1 = 3.45∠68.20◦A

Problem 19. A two-port network has the following
transmission parameters: A = 5, B = 25 �, C = 0.04S
and D = 2. Determine the values of the input
impedance when the output is (a) open-circuited, (b)
short-circuited.

(a) From equation (41.28), voltage, V1 = AV2 − BI2

When the output is open-circuited, I2 = 0 and
V1 = AV2

From equation (41.29), current, I1 = CV2 − DI2

When I2 = 0, I1 = CV2
Thus, input impedance,

Z1OC = V1

I1
= AV2

CV2
= A

C
= 5

0.04
= 125 �

(b) From equation (41.28), voltage, V1 = AV2 − BI2

When the output is short-circuited, V2 = 0 and
V1 = −BI2

From equation (41.29), current, I1 = CV2 − DI2

When V2 = 0, I1 = −DI2

Thus, input impedance,

Z1SC = V1

I1
= −BI2

−DI2
= B

D
= 25

2
= 12.5 �

Transmission matrix
Since V1 = AV2 − BI2

and I1 = CV2 − DI2

then in matrix form:
(

V1
I1

)
=

(
A B
C D

) (
V2

−I2

)

(
A B
C D

)
is called the ABCD or transmission matrix.

(For more on matrices and solving simultaneous equations
using matrices see ‘Higher Engineering Mathematics 5th
Edition’, chapters 25 and 26).

Problem 20. For a two-port network:

V1 = 5V2 − 3I2

and I1 = 4V2 − 2I2

When V1 = 11V and I1 = 12A, determine (a) the
transmission matrix, and (b) the values of V2 and I2

(a) The transmission matrix is:

(
5 3
4 2

)

(b) Since V1 = 11V and I1 = 12A, then

11 = 5V2 − 3I2

12 = 4V2 − 2I2

In matrix form this becomes:(
11
12

)
=

(
5 3
4 2

) (
V2

−I2

)
(41.30)
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The inverse of a matrix

(
P Q
R S

)
is:

1

PS − RQ

(
S −Q

−R P

)

Hence the inverse of

(
5 3
4 2

)
is:

1

10 − 12

(
2 −3

−4 5

)
=

(−1 1.5
2 −2.5

)

Multiplying both sides of equation (41.30) by this
inverse matrix gives:

(−1 1.5
2 −2.5

)(
11
12

)
=

(−1 1.5
2 −2.5

)(
5 3
4 2

)(
V2

−I2

)

i.e.

(
(−11 + 18)

(22 − 30)

)
=

(
(−5+6) (−3+3)
(10−10) (6−5)

)(
V2

−I2

)

i.e.

(
7

−8

)
=

(
1 0
0 1

) (
V2

−I2

)

i.e.

(
7

−8

)
=

(
V2

−I2

)

from which, V2 = 7 V and I2 = 8 A

ABCD networks in cascade

Figure 41.48 shows two networks in cascade,

I1 I2 −I2 I3

V1 V2 V3
A2  B2
C2  D2

A1  B1
C1  D1

Figure 41.48

where for network 1,

(
V1

I1

)
=

(
A1 B1

C1 D1

) (
V2

−I2

)

and for network 2,(
V2

−I2

)
=

(
A2 B2

C2 D2

) (
V3

−I3

)

Hence,(
V1

I1

)
=

(
A1 B1

C1 D1

) (
A2 B2

C2 D2

) (
V3

−I3

)

=
(

(A1A2 + B1C2) (A1B2 + B1D2)

(C1A2 + D1C2) (C1B2 + D1D2)

) (
V3

−I3

)

Thus the cascaded network behaves as a network with the
parameters:

A = A1A2 + B1C2 B = A1B2 + B1D2

C = C1A2 + D1C2 and D = C1B2 + D1D2

Problem 21. A network has the transmission param-
eters of: (

(2 + j) 200
0.002j 1

)

Determine the parameters for two such networks in
cascade.

The parameters for two such networks in cascade will be
(

(2 + j) 200
0.002j 1

) (
(2 + j) 200
0.002j 1

)

=
(

[(2 + j)2+200(0.002j)] [(2+ j)(200)+200]
[0.002j(2+ j)+(1)(0.002j)] [(0.002j)(200)+(1)(1)]

)

=
(

(4 + j2 + j2 + j0.4) (400 + j200 + 200)
(0.004j + j20.002 + 0.002j) (0.4j + 1)

)

=
(

(3 + j2.4) (600 + j200)
(−0.002 + j0.006) (1 + j0.4)

)

Passive networks and reciprocity theorem

As stated earlier, the ABCD parameters for a two-port
network are:

V1 = AV2 − BI2 (41.28)

I1 = CV2 − DI2 (41.29)

Figure 41.49(a) represents a two-port network whose ter-
minals RS are short-circuited with an input voltage V
across terminals PQ. Then V2 in the above equations is
zero and the equations become:

(a)

P

Q S

R
I1

V

I2

(b)

P

Q S

R
I1�

V

I2�

Figure 41.49
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V = −BI2 (41.31)

and I1 = −DI2 (41.32)

Figure 41.49(b) represents a two-port network whose
terminals PQ are short-circuited with an input voltage
V now applied across terminals RS, then V1 in equa-
tion (41.28) is zero and the above equations become:

0 = AV − BI ′
2 (41.33)

I ′
1 = CV − DI ′

2 (41.34)

From equation (41.33),

I ′
2 =

(
A

B

)
V

Substituting in equation (41.34) gives:

I ′
1 = CV − D

(
A

B

)
V = (BC − AD)V

B
Substituting V = −BI2 from equation (41.31) gives:

I ′
1 = (BC − AD)(−BI2)

B
= (BC − AD)(−I2)

i.e. I1
′ = (AD − BC)I2

This is a theorem called the reciprocity theorem, which
states that if a voltage is applied to a linear passive network
at one terminal and produces a current at another, then the
same voltage applied to a second terminal will produce
the same current at the first terminal.

Since the same voltage has been applied at each of the
two terminals, then I ′

1 = I2

Thus, AD − BC = 1 (41.35)

This condition must be satisfied by any linear passive
network.

Problem 22. Tests on a passive two-port network
gave the following results:

Output open-circuited:

V1 = 20V, V2 = 10V, I1 = 0.5A

Output short-circuited:

V1 = 20V, I1 = 1A, I2 = 1A

Determine (a) the values of the ABCD parameters, and
(b) confirm that the network is passive.

(a) From equation (41.28),

V1 = AV2 − BI2

When the output is open-circuit,

V1 = AV2 since I2 = 0

Since V1 = 20V and V2 = 10V, then 20 = A(10)

from which, A = 2

From equation (41.29),

I1 = CV2 − DI2

When the output is open-circuit,

I1 = CV2 since I2 = 0

Since V2 = 10V and I1 = 0.5A, then 0.5 = C(10)

from which, C = 0.5

10
= 0.05 S

From equation (41.28),

V1 = AV2 − BI2

When the output is short-circuit,

V1 = −BI2 since V2 = 0

Since V1 = 20V and I2 = −1A, then 20 = −B(−1)

from which, B = 20 �

From equation (41.29),

I1 = CV2 − DI2

When the output is short-circuit,

I1 = −DI2 since V2 = 0

Since I1 = 1A and I2 = −1A, then 1 = −D(−1)

from which, D = 1
(b) For passive network, AD − BC = 1 from equation

(41.35)

Thus, when A = 2, B = 20, C = 0.05 and D = 1:

AD − BC = (2)(1) − (20)(0.05) = 2 − 1 = 1

Hence the network is passive.

Now try the following exercise.

Exercise 149 Further problems on ABCD
parameters

1. A two-port network has parameters A = (1 − j),
B = 10 �, C = (2 + j)S and D = 5. The output cur-
rent is 100 mA through a 50 � load. Determine
(a) the input voltage, and (b) the input current.

[(a)(4 − j5) V or 6.403∠−51.34◦V
(b)(9.5 + j5)A or 10.74∠27.76◦A]

2. A two-port network has the following parameters:
A = 10, B = 60 �, C = 5 mS and D = 4. Determine
the input impedance when the output is (a) open-
circuited, and (b) short-circuited.

[(a) 2 k� (b) 15 �]

3. A two-port network has the parameters: A = 2∠30◦,
B = 50∠25◦�, C = 0.05∠45◦S and D = 1∠60◦.
Determine the input impedance when the output
is (a) open-circuited, and (b) short-circuited.

[(a) 40∠−15◦� (b) 50∠−35◦�]
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4. For a two-port network:
V1 = 6V2 − 5I2

and I1 = 5V2 − 3I2

When V1 = 32V and I1 = 36A, determine (a) the
transmission matrix, and (b) the values of V2 and I2[

(a)

(
6 5
5 3

)
(b) V2 = 12V, I2 = 8 A

]

5. A network has the transmission matrix:
(

(1 + j) 2000
j0.001 1

)

Determine the parameters for two such networks
in cascade.[(

j4 (4000 + j2000)
(−0.001 + j0.002) (1 + j2)

)]

6. Tests on a passive two-port network gave the
following results:

Output open-circuited:

V1 = 40V, V2 = 20V, I1 = 20 mA

Output short-circuited:

V1 = 40V, I1 = 40 mA, I2 = 40 mA

(a) Determine the values of the ABCD parameters,
and (b) confirm that the network is passive.

[(a) A = 2, B = 1 k�, C = 1 mS and D = 1
(b) AD − BC = 1, hence the network is passive]

41.10 ABCD parameters for networks

(a) Series impedance

A series impedance, Z, is shown in Figure 41.50.

I1

V1 V2

I2

Z

Figure 41.50

By Kirchhoff’s voltage law:

V1 = V2 − ZI2 (41.36)

The input current I1 must equal −I2 for a passive network,

i.e. I1 = 0 − I2 (41.37)

Comparing equations (41.36) and (41.37) with equa-
tions (41.28) and (41.29),

i.e. V1 = AV2 − BI2 (41.28)

I1 = CV2 − DI2 (41.29)

shows that A = 1, B = Z , C = 0 and D = 1

and the transmission matrix

(
A B
C D

)
=

(
1 Z
0 1

)
(41.38)

(b) Shunt admittance

A shunt admittance, Y , is shown in Figure 41.51.

I1

V2V1

I2

Y

Figure 41.51

Hence, V1 = V2 + 0 (41.39)

and since the current through Y is I1 + I2

then I1 + I2 = YV2

from which, I1 = YV2 − I2 (41.40)

Comparing equations (41.39) and (41.40) with equa-
tions (41.28) and (41.29),

i.e. V1 = AV2 − BI2 (41.28)

I1 = CV2 − DI2 (41.29)

shows that A = 1, B = 0, C = Y and D = 1

and the transmission matrix

(
A B
C D

)
=

(
1 0
Y 1

)
(41.41)

(c) L-network

The L-network shown in Figure 41.52 can be considered
to be a cascade connection of the series impedance and
shunt admittance of (a) and (b) above.

I1

V2V1 

I2

Z

Y

Figure 41.52
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Thus, the transmission parameters,(
A B
C D

)
=

(
1 Z
0 1

) (
1 0
Y 1

)

from equations (41.38) and (41.41)

=
(

(1 + YZ) Z
Y 1

)
(41.42)

Problem 23. Determine the transmission parameters
for the L-network shown in Figure 41.53.

R1
L1

R2

Figure 41.53

From equation (41.42),

(
A B
C D

)
=

(
(1 + YZ) Z

Y 1

)

where shunt admittance, Y = 1

R2
and series impedance,

Z = R1 + jωL1

Hence the transmission parameters,

(
A B
C D

)
=

⎛
⎜⎝
(

1 +
(

1

R2

)
(R1 + jωL1)

)
(R1 + jωL1)

1

R2
1

⎞
⎟⎠

=

⎛
⎜⎜⎝

(
1 + R1 + jωL1

R2

)
(R1 + jωL1)

1
R2

1

⎞
⎟⎟⎠

(d) T-network

The T-network shown in Figure 41.54 can be considered
to be a cascade connection of a series impedance, a shunt
admittance and then another series impedance.

The transmission matrix for the T-network is comprised
of the products of the matrices given by equations (41.38),
(41.41) and (41.38),

i.e.

(
A B
C D

)
=

(
1 Z1
0 1

) (
1 0
Y 1

) (
1 Z2
0 1

)

=
(

(1 + YZ1) Z1
Y 1

) (
1 Z2
0 1

)

I1 I2

V1 V2

Z1 Z2

Y

Figure 41.54

=
(

(1 + YZ1) [(1 + YZ1)(Z2) + Z1]
Y (YZ2 + 1)

)

=
(

(1 + YZ1) (Z1 + Z2 + YZ1Z2
Y (1 + YZ2)

)
(41.43)

Problem 24. Determine the transmission parameters
for a symmetrical T-network which has series arm
impedances of (50 + j25)� and a shunt arm of −j50 �.

In equation (41.43), Z1 = Z2 = (50 + j25) and Y = 1

−j50
=

j

50
(by multiplying numerator and denominator by j)

Hence, transmission parameters,
(

A B
C D

)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

(
1+ j

50
(50 + j25)

)
(50 + j25 + 50 + j25

+ j

50
(50 + j25)(50 + j25))

j

50

(
1 + j

50
(50 + j25)

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=
(

(1 + j + j20.5) (100 + j50 + j(1 + j0.5)(50 + j25))

j0.02 (1 + j + j20.5)

)

=
(

(0.5 + j) (100 + j50 + j50 − 25 − 25 − j12.5)

j0.02 (0.5 + j)

)

=
(

(0.5 + j) (50 + j87.5)

j0.02 (0.5 + j)

)

(e) π-network

The π-network shown in Figure 41.55 can be considered
to be a cascade connection of a shunt admittance, a series
impedance, and another shunt admittance.
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I1 I2

V1 V2
Y1

Z

Y2

Figure 41.55

The transmission matrix for the π-network is comprised
of the products of the matrices given by equations (41.41),
(41.38) and (41.41),

i.e.

(
A B
C D

)
=

(
1 0
Y1 1

) (
1 Z
0 1

) (
1 0
Y2 1

)

=
(

1 Z
Y1 (Y1Z + 1)

) (
1 0
Y2 1

)

=
(

(1 + Y2Z) Z

(Y1 + Y2(Y1Z + 1)) (1 + Y1Z)

)

=
(

(1 + Y2Z) Z
(Y1 + Y2 + Y1Y2Z) (1 + Y1Z)

)

(41.44)

Problem 25. A symmetrical π-network has a series
impedance of 10∠60◦� and shunt admittances of
0.01∠75◦ S. Determine (a) the transmission matrix,
and (b) the input voltage and current when there is a
load resistance of 20 � across the output and the input
voltage produces a current of 1 mA through it.

(a) The transmission matrix is given by equation (41.44)
where Z = 10∠60◦ and Y1 = Y2 = 0.01∠75◦. Thus,
(

A B
C D

)

=
(

(1 + Y2Z) Z

(Y1 + Y2 + Y1Y2Z) (1 + Y1Z)

)

=

⎛
⎜⎜⎝

(1 + (0.01∠75◦)(10∠60◦)) 10∠60◦
(

(0.01∠75◦ + 0.01∠75◦
+(0.01∠75◦)(0.01∠75◦)

×(10∠60◦))

) (
(1 + (0.01∠75◦)

×(10∠60◦))

)
⎞
⎟⎟⎠

=
(

(1 + 0.1∠135◦) 10∠60◦

(0.02∠75◦ + 0.001∠210◦) (1 + 0.1∠135◦)

)

=
(

(0.929 + j0.0707) (5 + j8.660)
(0.0043 + j0.0188) (0.929 + j0.0707)

)
or

(
0.932∠4.35◦ 10∠60◦

0.0193∠77.12◦ 0.932∠4.35◦
)

(b) Output voltage,
V2 = I2R = 20 × 1 × 10−3 = 20 mV = 0.02V
Current, I2 = −1 mA = −0.001A

From equation (41.29),

V1 = AV2 − BI2

= (0.929 + j0.0707)(0.02)

−(5 + j8.660)(−0.001)

= 0.02358 + j0.0880

i.e. input voltage, V1 = 0.091∠75.00◦V

From equation (41.29),

I1 = CV2 − DI2

= (0.0043 + j0.0188)(0.02)

−(0.929 + j0.707)(−0.001)

= 0.00523 + j0.000447

i.e. input current, I1 = 0.00525∠4.89◦A

= 5.25∠4.89◦mA

(f) Pure mutual inductance

A two-port network which is a pure mutual inductance is
shown in Figure 41.56.

I1 I2

V1 V2

M

Figure 41.56

Applying Kirchhoff’s voltage law to the primary circuit
gives:

V1 + jωMI2 = 0 (this is explained in chapter 43,

page 592)

i.e. V1 = −jωMI2 (41.45)
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For the secondary circuit:

V2 = jωMI1

from which,

I1 =
(

1

jωM

)
V2 (41.46)

Comparing equations (41.45) and (41.46) with equa-
tions (41.28) and (41.29),

i.e. V1 = AV2 − BI2 (41.28)

I1 = CV2 − DI2 (41.29)

shows that A = 0, B = jωM, C = 1

jωM
and D = 0

and the transmission matrix

(
A B
C D

)
=

⎛
⎝ 0 jωM

1
jωM

0

⎞
⎠

(41.47)

(g) Symmetrical lattice

A symmetrical lattice two-port network is shown in
Figure 41.57.

I1 I2

V1 V2

Z1

Z1

Z2 Z2

Figure 41.57

The circuit is shown redrawn as a bridge circuit in
Figure 41.58.

I1

V1 V2

Z1

Z1
Z2

Z2

I2

Figure 41.58

With the output in Figure 41.58 open-circuited, I2 = 0

and I1 = V1

ZT
where ZT is (Z1 + Z2) in parallel with (Z1 + Z2), i.e.

ZT = 1

2
(Z1 + Z2) either from the reciprocal formula or

from product/sum.

Hence, I1 = V1

ZT
= V1

1

2
(Z1 + Z2)

In Figure 41.58, since the two arms have the same
impedance, i.e. (Z1 + Z2), the current through each will
be 1

2 I1.

Thus, V2 = 1

2
I1Z2 − 1

2
I1Z1

= 1

2
I1(Z2 − Z1) (41.48)

Substituting for I1 gives:

V2 = 1

2
I1(Z2 − Z1)

= 1

2

⎡
⎢⎣ V1

1

2
(Z1 + Z2)

⎤
⎥⎦ (Z2 − Z1)

i.e. V1 =
(

Z1 + Z2

Z2 − Z1

)
V2 (41.49)

From equation (41.28), V1 = AV2 − BI2

and when I2 = 0, V1 = AV2

Comparing this equation with equation (41.49) gives:

A =
(

Z1 + Z2

Z2 − Z1

)

Rearranging equation (41.48) gives:

I1 =
(

2

Z2 − Z1

)
V2 (41.50)

From equation (41.29), I1 = CV2 − DI2

and when I2 = 0, I1 = CV2

Comparing this equation with equation (41.50) gives:

C =
(

2

Z2 − Z1

)

If the output in Figure 41.58 is now short-circuited, then
V2 = 0.
The current I2 will be given by:

I2 = V

Z2
− V

Z1



Ch41-H8139.tex 29/3/2007 14: 35 page 554

554 Electrical Circuit Theory and Technology

where V is the volt-drop across both Z1 and Z2. If the
voltages across each were different, then V2 would not be

equal to zero. Since the network is symmetrical, V = 1

2
V1.

Therefore,

I2 =
1

2
V1

Z2
−

1

2
V1

Z1
= V1

2

(
1

Z2
− 1

Z1

)
= V1

2

(
Z1 − Z2

Z1Z2

)

Rearranging gives:

V1 =
(

2Z1Z2

Z1 − Z2

)
I2 (41.51)

From equation (41.28),

V1 = AV2 − BI2

and when V2 = 0,

V1 = −BI2

Comparing this equation with equation (41.51) gives:

B = −
(

2Z1Z2

Z1 − Z2

)
=

(
2Z1Z2

Z2 − Z1

)

Input current, I1 = V

Z1
+ V

Z2
= V1

2

(
1

Z1
+ 1

Z2

)

= V1

2

(
Z1 + Z2

Z1Z2

)

and substituting for V1 from equation (41.51) gives:

I1 = V1

2

(
Z1 + Z2

Z1Z2

)

= I2

2

(
2Z1Z2

Z1 − Z2

) (
Z1 + Z2

Z1Z2

)

i.e. I1 =
(

Z1 + Z2

Z1 − Z2

)
I2 (41.52)

From equation (41.29), I1 = CV2 − DI2

and when V2 = 0, I1 = −DI2

Comparing this equation with equation (41.52) gives:

D = −
(

Z1 + Z2

Z1 − Z2

)
=

(
Z1 + Z2

Z2 − Z1

)

Thus the transmission matrix for the symmetrical lattice is:

⎛
⎜⎜⎝

(
Z1 + Z2

Z2 − Z1

) (
2Z1Z2

Z2 − Z1

)
(

2
Z2 − Z1

) (
Z1 + Z2

Z2 − Z1

)
⎞
⎟⎟⎠ (41.53)

Problem 26. In the symmetrical lattice shown in Fig-
ure 41.57, Z1 = 25 � and Z2 = 35 �. Determine the
equivalent T-network.

From equation (41.43) the transmission matrix for a T-
network is:

(
(1 + YZ1) (Z1 + Z2 + YZ1Z2)

Y (1 + YZ2)

)

From equation (41.53) the transmission matrix for a
symmetrical lattice is:

⎛
⎜⎜⎝

(
Z1 + Z2

Z2 − Z1

) (
2Z1Z2

Z2 − Z1

)
(

2

Z2 − Z1

) (
Z1 + Z2

Z2 − Z1

)
⎞
⎟⎟⎠

=

⎛
⎜⎜⎜⎝

(
25 + 35

35 − 25

) (
2(25)(35)

35 − 25

)

(
2

35 − 25

) (
25 + 35

35 − 25

)

⎞
⎟⎟⎟⎠

when Z1 = 25 � and Z2 = 35 �

Since the lattice is symmetrical, the equivalent T-network
must also be symmetrical. Thus

(
(1 + YZ) (2Z + YZ2)

Y (1 + YZ)

)

=

⎛
⎜⎜⎜⎝

(
25 + 35

35 − 25

) (
2(25)(35)

35 − 25

)

(
2

35 − 25

) (
25 + 35

35 − 25

)

⎞
⎟⎟⎟⎠ =

(
6 175

0.2 6

)

Equating the terms gives:

Y = 0.2 S,

1 + YZ = 6

i.e. 1 + 0.2Z = 6

from which, Z = 6 − 1

0.2
= 25 �

Hence, the T-network shown in Figure 41.59(b) is equiva-
lent to the symmetrical lattice network shown in Fig-
ure 41.59(a).
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25Ω

25Ω

35Ω 35Ω

25Ω 25Ω

0.2 S

(a)

(b)

Figure 41.59

Now try the following exercise.

Exercise 150 Further problems on ABCD param-
eters for networks

1. Write down the transmission matrix for (a) a 5 �
series impedance, and (b) a 5 � shunt impedance.[

(a)

(
1 5
0 1

)
(b)

(
1 0

0.2 1

)]

2. Determine the transmission parameters for an
L-network having a 5 � series impedance and a 5 �
shunt impedance. [(

2 5
0.2 1

)]

3. An L-network has a shunt arm admittance of 0.5 S
and a series arm impedance of 10 � resistance and
318.3 µH inductor. If the frequency of the network
is 5 kHz, determine its transmission matrix.[(

(6 + j5) (10 + j10)
0.5 1

)]

4. Determine the transmission parameters for a sym-
metrical T-section which has a series impedance of
(1 + j2)k� and a shunt arm impedance of j1 k�.[(

(3 − j) (6 + j7)103

−j0.001 (3 − j)

)]

5. Determine the transmission parameters for a sym-
metrical T-section which has a series impedance
of 100∠30◦� and a shunt arm impedance of
100∠−90◦�. [(

1∠60◦ 173.2∠60◦
0.01∠90◦ 1∠60◦

)]

6. A symmetrical π-section has a series impedance
of (5 + j10)� and shunt arm admittances
of (0.01 + j0.02)S. Determine the transmission
parameters.[(

(0.85 + j0.20) (5 + j10)
(0.0145 + j0.039) (0.85 + j0.20)

)]

7. A symmetrical π-section has a series impedance
of 100∠30◦� and shunt arm admittances of
0.01∠60◦S. Determine (a) the transmission
matrix, and (b) the input voltage and current when
there is a load resistance of 100 � across the out-
put and the input voltage produces a current of
10 mA. [

(a)

(
1.414∠45◦ 100∠30◦

0.0224∠86.57◦ 1.414∠45◦
)]

(b) V1 = 2.394∠38.79◦V, I1 = 34.25∠70.67◦mA

8. A two-port network has a pure mutual inductance
of 3.979 mH at a frequency of 2 kHz. Determine
the transmission matrix. [(

0 j50
−j0.02 0

)]

9. A symmetrical lattice (as shown in Figure 41.57)
has Z1 = 10 � and Z2 = 20 �. Determine its trans-
mission parameters. [(

3 40
0.2 3

)]

10. For the symmetrical lattice of Problem 9, deter-
mine the equivalent symmetrical T-network.

[Y = 0.2 S, Z = 10 �]

11. A symmetrical π-network has a series impedance
of 10 � and shunt arm impedances of 5 �. Deter-
mine (a) its transmission parameters, and (b) the
equivalent symmetrical T-network.[

(a)

(
2 10

0.8 2

)
(b) Y = 0.8 S, Z = 1.25 �

]

41.11 Characteristic impedance in terms of
ABCD parameters

As stated previously, for a two-port network, the ABCD
parameters are specified as follows:

V1 = AV2 − BI2 (41.28)

I1 = CV2 − DI2 (41.29)
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From page 528, equation (41.2), characteristic impedance,

Z0 = √
(ZOCZSC)

When the output of a two-port network is open-
circuited, I2 = 0

and from equation (41.28), V1 = AV2

and from equation (41.29), I1 = CV2

Thus, input impedance, Z1OC = V1

I1
= AV2

CV2
= A

C

When the output of a two-port network is short-
circuited, V2 = 0

and from equation (41.28), V1 = −BI2

and from equation (41.29), I1 = −DI2

Thus, input impedance, Z1SC = V1

I1
= −BI2

−DI2
= B

D

It is noticed from the T- and π-networks that when they
are symmetrical, A = D

Thus, Z1SC = B

D
= B

A

Therefore, the characteristic impedance,

Z0 = √
(ZOCZSC) =

√[
A

C
× B

A

]
=

√
B
C

Problem 27. Find the characteristic impedance for
the symmetrical T-network of Problem 24 on page 551.

From Problem 24, B = (50 + j87.5) = 100.78∠60.26◦,
and C = j0.02 = 0.02∠90◦, from which, characteristic
impedance,

Z0 =
√

B

C
=

√
100.78∠60.26◦

0.02∠90◦

= √
5039∠−29.74◦

= 71∠−14.87◦�

using De Moivre’s theorem, which for square roots states:
√

r∠θ = [r∠θ]
1
2 = r

1
2 ∠1

2
θ = √

r∠ θ

2

Problem 28. Find the characteristic impedance for
the symmetricalπ-network of Problem 25 on page 552.

From Problem 25, B = 10∠60◦, and C = 0.0193∠77.12◦,
from which, characteristic impedance,

Z0 =
√

B

C
=

√
10∠60◦

0.0193∠77.12◦

= √
518.135∠−17.12◦

= 22.76∠−8.56◦�

Now try the following exercise.

Exercise 151 Further problems on the character-
istic impedance in terms of the ABCD Parameters

1. For the symmetrical T-network of Problem 5,
Exercise 150, page 555, find its characteristic
impedance. [131.6∠−15◦�]

2. For the symmetrical π-network of Problem 7,
Exercise 150, page 555, find its characteristic
impedance. [66.82∠−28.29◦�]

3. For the symmetrical lattice of Problem 9, Exercise
150, page 555, find its characteristic impedance.

[14.14 �]

4. For the symmetrical π-network of Problem 11,
Exercise 150, page 555, find its characteristic
impedance. [3.536 �]
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Revision test 13

This revision test covers the material contained in
chapters 39 to 41.

The marks for each question are shown in brackets at
the end of each question.

1. The equivalent series circuit for a particular capacitor
consists of a 2 � resistor in series with a 250 pF capac-
itor. Determine, at a frequency of 10 MHz (a) the loss
angle of the capacitor, and (b) the power factor of the
capacitor. (3)

2. A 50V, 20 kHz supply is connected across a 500 pF
capacitor and the power dissipated in the dielectric is
200 µW. Determine (a) the loss angle, (b) the equiva-
lent series loss resistance, and (c) the equivalent parallel
loss resistance. (9)

3. A coaxial cable, which has a core of diameter 12 mm
and a sheath diameter of 30 mm, is 10 km long. Cal-
culate for the cable (a) the inductance, assuming non-
magnetic materials, and (b) the capacitance, assuming
a dielectric of relative permittivity 5. (8)

4. A 50 km length single-phase twin line has conductors of
diameter 20 mm and spaced 1.25 m apart in air. Deter-
mine for the line (a) the loop inductance, and (b) the
capacitance. (8)

5. Find the strength of a uniform electric field if it is to
have the same energy as that established by a magnetic
field of flux density 1.15 T. (Assume that the rela-
tive permeability of the magnetic field and the relative
permittivity of the electric field are both unity.) (5)

6. 8% of the power supplied to a cable appears at the out-
put terminals. Determine the attenuation in decibels.

(3)

7. Design (a) a T-section attenuator, and (b) a π-attenuator
to provide a voltage attenuation of 25 dB and having a
characteristic impedance of 620 �. (14)

8. Determine the transmission parameters for the follow-
ing: (a) a symmetrical T-section which has a series
impedance of (2 + j5) � and a shunt arm impedance
of j2 �, (b) a symmetrical π-section which has a series
impedance of 100∠60◦ � and shunt arm admittances
of 0.01∠30◦ S. (c) For each of the above networks find
their characteristic impedance. (20)



Ch42-H8139.tex 30/3/2007 18: 9 page 558

42 Filter networks

At the end of this chapter you should be able to:
• appreciate the purpose of a filter network
• understand basic types of filter sections, i.e. low-

pass, high-pass, band-pass and band-stop filters
• understand characteristic impedance and attenuation

of filter sections
• understand low and high pass ladder networks

• design a low and high pass filter section
• calculate propagation coefficient and time delay in

filter sections
• understand and design ‘m-derived’ filter sections
• understand and design practical composite filters

42.1 Introduction

A filter is a network designed to pass signals having fre-
quencies within certain bands (called passbands) with
little attenuation, but greatly attenuates signals within
other bands (called attenuation bands or stopbands).

As explained in the previous chapter, an attenuator net-
work pad is composed of resistances only, the attenuation
resulting being constant and independant of frequency.
However, a filter is frequency sensitive and is thus com-
posed of reactive elements. Since certain frequencies are
to be passed with minimal loss, ideally the inductors and
capacitors need to be pure components since the presence
of resistance results in some attenuation at all frequencies.

Between the passband of a filter, where ideally the
attenuation is zero, and the attenuation band, where ide-
ally the attenuation is infinite, is the cut-off frequency,
this being the frequency at which the attenuation changes
from zero to some finite value.

A filter network containing no source of power is termed
passive, and one containing one or more power sources is
known as an active filter network.

The filters considered in this chapter are symmetrical
unbalanced T and π sections, the reactances used being
considered as ideal.

Filters are used for a variety of purposes in nearly every
type of electronic communications and control equipment.
The bandwidths of filters used in communications sys-
tems vary from a fraction of a hertz to many megahertz,
depending on the application.

42.2 Basic types of filter sections

(a) Low-pass filters

Figure 42.1 shows simple unbalanced T and π section fil-
ters using series inductors and shunt capacitors. If either
section is connected into a network and a continuously

increasing frequency is applied, each would have a
frequency-attenuation characteristic as shown in Figure
42.2(a). This is an ideal characteristic and assumes pure
reactive elements. All frequencies are seen to be passed
from zero up to a certain value without attenuation, this
value being shown as fc, the cut-off frequency; all values
of frequency above fc are attenuated. It is for this reason
that the networks shown in Figures 42.1(a) and (b) are
known as low-pass filters. The electrical circuit diagram
symbol for a low-pass filter is shown in Figure 42.2(b).

Figure 42.1

Figure 42.2

Summarizing, a low-pass filter is one designed to pass
signals at frequencies below a specified cut-off frequency.

When rectifiers are used to produce the d.c. supplies
of electronic systems, a large ripple introduces undesir-
able noise and may even mask the effect of the signal
voltage. Low-pass filters are added to smooth the output
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voltage waveform, this being one of the most common
applications of filters in electrical circuits.

Filters are employed to isolate various sections of a
complete system and thus to prevent undesired inter-
actions. For example, the insertion of low-pass decoupling
filters between each of several amplifier stages and a com-
mon power supply reduces interaction due to the common
power supply impedance.

(b) High-pass filters

Figure 42.3 shows simple unbalanced T and π section
filters using series capacitors and shunt inductors. If
either section is connected into a network and a con-
tinuously increasing frequency is applied, each would
have a frequency-attenuation characteristic as shown in
Figure 42.4(a).

Figure 42.3

Once again this is an ideal characteristic assuming pure
reactive elements. All frequencies below the cut-off fre-
quency fc are seen to be attenuated and all frequencies
above fc are passed without loss. It is for this reason that the
networks shown in Figures 42.3(a) and (b) are known as
high-pass filters. The electrical circuit-diagram symbol
for a high-pass filter is shown in Figure 42.4(b).

Figure 42.4

Summarizing, a high-pass filter is one designed to pass
signals at frequencies above a specified cut-off frequency.

The characteristics shown in Figures 42.2(a) and
42.4(a) are ideal in that they have assumed that there is
no attenuation at all in the passbands and infinite attenu-
ation in the attenuation bands. Both of these conditions
are impossible to achieve in practice. Due to resistance,
mainly in the inductive elements the attenuation in the
passband will not be zero, and in a practical filter section
the attenuation in the attenuation band will have a finite

value. Practical characteristics for low-pass and high-pass
filters are discussed in Sections 42.5 and 42.6. In addition
to the resistive loss there is often an added loss due to mis-
matching. Ideally when a filter is inserted into a network it
is matched to the impedance of that network. However the
characteristic impedance of a filter section will vary with
frequency and the termination of the section may be an
impedance that does not vary with frequency in the same
way. To minimize losses due to resistance and mismatch-
ing, filters are used under image impedance conditions as
far as possible (see Chapter 41).

(c) Band-pass filters

A band-pass filter is one designed to pass signals with
frequencies between two specified cut-off frequencies.
The characteristic of an ideal band-pass filter is shown
in Figure 42.5.

Figure 42.5

Such a filter may be formed by cascading a high-pass
and a low-pass filter. fCH is the cut-off frequency of the
high-pass filter and fCL is the cut-off frequency of the low-
pass filter. As can be seen, fCL > fCH for a band-pass filter,
the passband being given by the difference between these
values. The electrical circuit diagram symbol for a band-
pass filter is shown in Figure 42.6.

Figure 42.6

Crystal and ceramic devices are used extensively as
band-pass filters. They are common in the intermediate-
frequency amplifiers of vhf radios where a precisely-
defined bandwidth must be maintained for good
performance.

(d) Band-stop filters

A band-stop filter is one designed to pass signals with
all frequencies except those between two specified cut-off
frequencies. The characteristic of an ideal band-stop filter
is shown in Figure 42.7. Such a filter may be formed by
connecting a high-pass and a low-pass filter in parallel. As
can be seen, for a band-stop filter fCH > fCL , the stop-band
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being given by the difference between these values. The
electrical circuit diagram symbol for a band-stop filter is
shown in Figure 42.8.

Figure 42.7

Figure 42.8

Sometimes, as in the case of interference from 50 Hz
power lines in an audio system, the exact frequency of a
spurious noise signal is known. Usually such interference
is from an odd harmonic of 50 Hz, for example, 250 Hz.
A sharply tuned band-stop filter, designed to attenuate the
250 Hz noise signal, is used to minimize the effect of the
output. A high-pass filter with cut-off frequency greater
than 250 Hz would also remove the interference, but some
of the lower frequency components of the audio signal
would be lost as well.

42.3 The characteristic impedance and
the attenuation of filter sections

Nature of the input impedance

Let a symmetrical filter section be terminated in an
impedance ZO. If the input impedance also has a value of
ZO, then ZO is the characteristic impedance of the section.

Figure 42.9 shows a T section composed of reactive
elements XA and XB. If the reactances are of opposite
kind, then the input impedance of the section, shown as

Z0

XA

XB

XA

Input
port

Output
port

Figure 42.9

ZO, when the output port is open or short-circuited can be
either inductive or capacitive depending on the frequency
of the input signal.

For example, if XA is inductive, say jXL , and XB is
capacitive, say, −jXC , then from Figure 42.9,

ZOC = jXL − jXC = j(XL − XC)

and ZSC = jXL + (jXL)(−jXC)

( jXL) + (−jXC)
= jXL + (XLXC)

j(XL − XC)

= jXL − j

(
XLXC

XL − XC

)
= j
(

XL − XLXC

XL − XC

)

Since XL = 2πfL and XC = (1/2πfC) then ZOC and ZSC
can be inductive, (i.e. positive reactance) or capaci-
tive (i.e. negative reactance) depending on the value of
frequency, f .

Let the magnitude of the reactance on open-circuit be
XOC and the magnitude of the reactance on short-circuit be
XSC . Since the filter elements are all purely reactive they
may be expressed as jXOC or jXSC , where XOC and XSC are
real, being positive or negative in sign. Four combinations
of ZOC and ZSC are possible, these being:

(i) ZOC = +jXOC and ZSC = −jXSC

(ii) ZOC = −jXOC and ZSC = +jXSC

(iii) ZOC = +jXOC and ZSC = +jXSC

and (iv) ZOC = −jXOC and ZSC = −jXSC

From general circuit theory, input impedance ZO is
given by:

ZO = √
(ZOCZSC)

Taking either of combinations (i) and (ii) above gives:

ZO = √
(−j2XOCXSC) = √

(XOCXSC),

which is real, thus the input impedance will be purely
resistive.
Taking either of combinations (iii) and (iv) above gives:

ZO = √
( j2XOCXSC) = +j

√
(XOCXSC),

which is imaginary, thus the input impedance will be
purely reactive.

Thus since the magnitude and nature of ZOC and ZSC
depend upon frequency then so also will the magni-
tude and nature of the input impedance ZO depend upon
frequency.

Characteristic impedance

Figure 42.10 shows a low-pass T section terminated in its
characteristic impedance, ZO.

From equation (41.2), page 528, the characteristic
impedance is given by ZO = √

(ZOCZSC)
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I1

V1
Z0

V2 Z0

I2

Input
Port

Output
Port

Figure 42.10

The following statements may be demonstrated to be true
for any filter:

(a) The attenuation is zero throughout the frequency
range for which the characteristic impedance is purely
resistive.

(b) The attenuation is finite throughout the frequency
range for which the characteristic impedance is purely
reactive.

To demonstrate statement (a) above:

Let the filter shown in Figure 42.10 be operating over a
range of frequencies such that ZO is purely resistive.

From Figure 42.10, ZO = V1

I1
= V2

I2

Power dissipated in the output termination,
P2 = V2I2 cos φ2 = V2I2 (since φ2 = 0 with a purely resis-
tive load).
Power delivered at the input terminals,

P1 = V1I1 cos φ1 = V1I1 (since φ1 = 0)

No power is absorbed by the filter elements since they are
purely reactive.

Hence P2 = P1, V2 = V1 and I2 = I1

Thus if the filter is terminated in ZO and operating in a
frequency range such that ZO is purely resistive, then all
the power delivered to the input is passed to the output
and there is therefore no attenuation.

To demonstrate statement (b) above:

Let the filter be operating over a range of frequencies such
that ZO is purely reactive.

Then, from Figure 42.10,
V1

I1
= jZO = V2

I2

Thus voltage and current are at 90◦ to each other
which means that the circuit can neither accept nor
deliver any active power from the source to the load
(P = VI cos φ = VI cos 90◦ = VI(0) = 0). There is there-
fore infinite attenuation, theoretically. (In practise, the
attenuation is finite, for the condition (V1/I1) = (V2/I2)

can hold for V2 < V1 and I2 < I1, since the voltage and
current are 90◦ out of phase.)

Statements (a) and (b) above are important because they
can be applied to determine the cut-off frequency point of
any filter section simply from a knowledge of the nature of
ZO. In the pass band, ZO is real, and in the attenuation
band, ZO is imaginary. The cut-off frequency is therefore
at the point on the frequency scale at which ZO changes
from a real quantity to an imaginary one, or vice versa
(see Sections 42.5 and 42.6).

42.4 Ladder networks

Low-pass networks

Figure 42.11 shows a low-pass network arranged as a
ladder or repetitive network. Such a network may be con-
sidered as a number of T or π sections in cascade. In
Figure 42.12(a), a T section may be taken from the ladder
by removing ABED, producing the low-pass filter section
shown in Figure 42.13(a). The ladder has been cut in the
centre of each of its inductive elements hence giving L/2
as the series arm elements in Figure 42.13(a).

L L L L L L

C C CC C C

Figure 42.11

L L L L

C C C C C C

L
2

L
2

L
2

L
2

(a)

A D

B E G J

F H

L L L

C
2

C
2

C
2

C
2

(b)

G J

F H

Figure 42.12

Similarly, a π section may be taken from the ladder
shown in Figure 42.12(a) by removing FGJH, producing
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L
2

L
2

C

L

C
2

C
2

(a) (b)

Figure 42.13

the low-pass filter section shown in Figure 42.13(b). The
shunt element C in Figure 42.12(a) may be regarded as two
capacitors in parallel, each of value C/2 as shown in the
part of the ladder redrawn in Figure 42.12(b). (Note that
for parallel capacitors, the total capacitance CT is given by

CT = C1 + C2 + · · · . In this case
C

2
+ C

2
= C).

The ladder network of Figure 42.11 can thus either be
considered to be a number of the T networks shown in Fig-
ure 42.13(a) connected in cascade, or a number of the π
networks shown in Figure 42.13(b) connected in cascade.

It is shown in Section 44.3, page 605, that an infinite
transmission line may be reduced to a repetitive low-pass
filter network.

High-pass networks

Figure 42.14 shows a high-pass network arranged as a lad-
der. As above, the repetitive network may be considered
as a number of T or π sections in cascade.

L L L L L L

C C C C C

Figure 42.14

In Figure 42.15, a T section may be taken from the
ladder by removing ABED, producing the high-pass filter
section shown in Figure 42.16(a).

Note that the series arm elements are each 2C. This
is because two capacitors each of value 2C connected in
series gives a total equivalent value of C, (i.e. for series
capacitors, the total capacitance CT is given by

1

CT
= 1

C1
+ 1

C2
+ · · · )

Similarly, a π section may be taken from the ladder
shown in Figure 42.15 by removing FGJH, producing the

L LL L L L

A

B

C C C

F

G
(a)

CC

HD

E J

2L 2L 2L 2L

C

F

C C

G

(b)

H

J

Figure 42.15

high-pass filter section shown in Figure 42.16(b). The
shunt element L in Figure 42.15(a) may be regarded as
two inductors in parallel, each of value 2L as shown in the
part of the ladder redrawn in Figure 42.15(b). (Note that
for parallel inductance, the total inductance LT is given by

1

LT
= 1

L1
+ 1

L2
+ · · · . In this case,

1

2L
+ 1

2L
= 1

L
)

The ladder network of Figure 42.14 can thus be con-
sidered to be either a number of T networks shown in
Figure 42.16(a) connected in cascade, or a number of the π
networks shown in Figure 42.16(b) connected in cascade.

2C 2C

L

(a)

2L 2L

C

(b)

Figure 42.16

42.5 Low-pass filter sections

(a) The cut-off frequency

From equation (41.1), the characteristic impedance Z0 for
a symmetrical T network is given by:
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Z0 = √
(Z2

A + 2ZAZB). Applying this to the low-pass T
section shown in Figure 42.17,

Z0

L
2

L
2

Z0
C

Figure 42.17

ZA = jωL

2
and ZB = 1

jωC

Thus Z0 =
√[

j2ω2L2

4
+ 2

(
jωL

2

)(
1

jωC

)]

=
√(−ω2L2

4
+ L

C

)

i.e. Z0 =
√(

L

C
− ω2L2

4

)
(42.1)

Z0 will be real if
L

C
>

ω2L2

4

Thus attenuation will commence when
L

C
= ω2L2

4

i.e. when ω2
c = 4

LC
(42.2)

where ωc = 2πfc and fc is the cut-off frequency.

Thus (2π fc)2 = 4

LC

2π fc =
√(

4

LC

)
= 2√

(LC)

and fc = 2

2π
√

(LC)
= 1

π
√

(LC)

i.e. the cut-off frequency, f c = 1
π
√

(LC)
(42.3)

The same equation for the cut-off frequency is obtained for
the low-pass π network shown in Figure 42.18 as follows:

C
2

C
2

Z0

L

Z0

Figure 42.18

From equation (41.3), for a symmetrical π network,

Z0 =
√(

Z1Z2
2

Z1 + 2Z2

)

Applying this to Figure 42.18,

Z1 = jωL and Z2 = 1

jω
C

2

= 2

jωC

Thus Z0 =

√√√√√√√

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

( jωL)

(
2

jωC

)2

jωL + 2

(
2

jωC

)
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

=

√√√√√√√

⎧⎪⎪⎨
⎪⎪⎩

( jωL)

(
4

−ω2C2

)

jωL − j

(
4

ωC

)
⎫⎪⎪⎬
⎪⎪⎭

=

√√√√√√√

⎧⎪⎪⎨
⎪⎪⎩

−j
4L

ωC2

j

(
ωL − 4

ωC

)
⎫⎪⎪⎬
⎪⎪⎭

=

√√√√√√√
⎧⎪⎨
⎪⎩

4L

ωC2

4

ωC
− ωL

⎫⎪⎬
⎪⎭

=

√√√√√√√

⎧⎪⎪⎨
⎪⎪⎩

4L

ωC2

(
4

ωC
− ωL

)
⎫⎪⎪⎬
⎪⎪⎭

=
√√√√( 4L

4C − ω2LC2

)

i.e. Z0 =

√√√√√√√

⎛
⎜⎜⎝ 1

C

L
− ω2C2

4

⎞
⎟⎟⎠ (42.4)

Z0 will be real if
C

L
>

ω2C2

4

Thus attenuation will commence when
C

L
= ω2C2

4

i.e. when ω2
c = 4

LC

from which, cut-off frequency, fc = 1
π
√

(LC)

as in equation (42.3).

(b) Nominal impedance

When the frequency is very low, ω is small and the
term (ω2L2/4) in equation (42.1) (or the term (ω2C2/4)
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in equation (42.4)) may be neglected. The characteris-
tic impedance then becomes equal to

√
(L/C), which is

purely resistive. This value of the characteristic impedance
is known as the design impedance or the nominal
impedance of the section and is often given the symbol R0,

i.e. R0 =
√

L
C

(42.5)

Problem 1. Determine the cut-off frequency and the
nominal impedance of each of the low-pass filter
sections shown in Figure 42.19.

100 mH 100 mH

0.2 µF

0.4 H

200 pF 200 pF

(b)(a)

Figure 42.19

(a) Comparing Figure 42.19(a) with the low-pass T sec-
tion in Figure 42.17 shows that (L/2) = 100 mH,
i.e. inductance, L = 200 mH = 0.2 H and capacitance,
C = 0.2 µF = 0.2 × 10−6 F
From equation (42.3), cut-off frequency,

fc = 1

π
√

(LC)
= 1

π
√

(0.2 × 0.2 × 10−6)
= 103

π(0.2)

i.e. f c = 1592 Hz or 1.592 kHz
From equation (42.5), nominal impedance,

R0 =
√(

L

C

)
=
√(

0.2

0.2 × 10−6

)
= 1000 � or 1 k�

(b) Comparing Figure 42.19(b) with the low-pass π sec-
tion shown in Figure 42.18 shows that (C/2) = 200 pF,
i.e. capacitance, C = 400 pF = 400 × 10−12 F and
inductance, L = 0.4 H,
From equation (42.3), cut-off frequency,

fc = 1

π
√

(LC)
= 1

π
√

(0.4 × 400 × 10−12)

= 25.16 kHz

From equation (42.5), nominal impedance,

R0 =
√(

L

C

)
=
√(

0.4

400 × 10−12

)
= 31.62 k�

From equations (42.1) and (42.4) it is seen that the char-
acteristic impedance Z0 varies with ω, i.e. Z0 varies with
frequency. Thus if the nominal impedance is made to equal
the load impedance into which the filter feeds then the
matching deteriorates as the frequency increases from zero
towards fc. It is however convention to make the terminat-
ing impedance equal to the value of Z0 well within the
passband, i.e. to take the limiting value of Z0 as the fre-
quency approaches zero. This limit is obviously

√
(L/C).

This means that the filter is properly terminated at very
low frequency but as the cut-off frequency is approached
becomes increasingly mismatched. This is shown for a
lowpass section in Figure 42.20 by curve (a). It is seen
that an increasing loss is introduced into the passband.
Curve (b) shows the attenuation due to the same low-pass
section being correctly terminated at all frequencies. A
curve lying somewhere between curves (a) and (b) will
usually result for each section if several sections are cas-
caded and terminated in R0, or if a matching section is
inserted between the low-pass section and the load.

Attenuation

(a)
(b)

0 fc
Attenuation
     band

Frequency

Pass band

Figure 42.20

(c) To determine values of L and C given R0 and f c

If the values of the nominal impedance R0 and the cut-
off frequency fc are known for a low-pass T or π section
it is possible to determine the values of inductance and
capacitance required to form the section.

From equation (42.5), R0 =
√

L

C
=

√
L√
C

from which,

√
L = R0

√
C

Substituting in equation (42.3) gives:

fc = 1

π
√

L
√

C
= 1

π(R0
√

C)
√

C
= 1

πR0C

from which, capacitance C = 1
πR0 fc

(42.6)
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Similarly from equation (42.5),
√

C =
√

L

R0

Substituting in equation (42.3) gives: fc = 1

π
√

L

(√
L

R0

)

= R0

πL

from which, inductance, L = R0

πfc
(42.7)

Problem 2. A filter section is to have a characteristic
impedance at zero frequency of 600 � and a cut-off
frequency at 5 MHz. Design (a) a low-pass T section
filter, and (b) a low-pass π section filter to meet these
requirements.

The characteristic impedance at zero frequency is the nom-
inal impedance R0, i.e. R0 = 600 �; cut-off frequency,
fc = 5 MHz = 5 × 106 Hz.

From equation (42.6),

capacitance, C = 1

πR0fc
= 1

π(600)(5 × 106)
F = 106 pF

and from equation (42.7),

inductance, L = R0

πfc
= 600

π(5 × 106)
H = 38.2 µH

(a) A low-pass T section filter is shown in Figure 42.21(a),
where the series arm inductances are each L/2 (see
Figure 42.17), i.e. (38.2/2) = 19.1 µH

(b) A low-passπ section filter is shown in Figure 42.21(b),
where the shunt arm capacitances are each (C/2) (see
Figure 42.18), i.e. (106/2) = 53 pF

19.1 µH

106 pF

(a)

38.2 µH

53 pF 53 pF

(b)

19.1 µH

Figure 42.21

(d) ‘Constant-k’ prototype low-pass filter

A ladder network is shown in Figure 42.22, the ele-
ments being expressed in terms of impedances Z1 and Z2.

The network shown in Figure 42.22(b) is equivalent to
the network shown in Figure 42.22(a), where (Z1/2) in
series with (Z1/2) equals Z1 and 2Z2 in parallel with 2Z2
equals Z2. Removing sections ABED and FGJH from Fig-
ure 42.22(b) gives the T section shown in Figure 42.23(a),
which is terminated in its characteristic impedance ZOT ,
and the π section shown in Figure 42.23(b), which is
terminated in its characteristic impedance Z0π

Z1 Z1 Z1 Z1 Z1

Z2 Z2 Z2 Z2 Z2

Z1
2

Z1
2

Z1
2

Z1
2 Z1 Z1 Z1

Z2 Z2 2Z2 2Z2 2Z2 2Z2 Z2

(a)

(b)

A D F H

B E G J

Figure 42.22

Z1
2

Z1
2

Z2

Z0T Z0T

(a)

Z1

Z0π

2 2Z2Z 2

Z0π

(b)

Figure 42.23

From equation (41.1), page 528,

ZOT =
√[(

Z1

2

)2

+ 2

(
Z1

2

)
Z2

]

i.e. ZOT =
√(

Z2
1

4
+ Z1Z2

)
(42.8)
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From equation (41.3), page 529

Z0π =
√[

(Z1)(2Z2)2

Z1 + 2(2Z2)

]
=
√[

Z1(Z1)(4Z2
2 )

Z1(Z1 + 4Z2)

]

= 2Z1Z2√
(Z2

1 + 4Z1Z2)
= Z1Z2√(

Z2
1

4
+ Z1Z2

)

i.e. Z0π = Z1Z2

ZOT
from equation (42.8)

Thus Z0TZ0π = Z1Z2 (42.9)

This is a general expression relating the characteristic
impedances of T and π sections made up of equivalent
series and shunt impedances.

From the low-pass sections shown in Figures 42.17
and 42.18,

Z1 = jωL and Z2 = 1

jωC

Hence Z0T Z0π = ( jωL)

(
1

jωC

)
= L

C

Thus, from equation (42.5), Z0TZ0π = R2
0 (42.10)

From equations (42.9) and (42.10),

Z0T Z0π = Z1Z2 = R2
0 = constant (k).

A ladder network composed of reactances, the series react-
ances being of opposite sign to the shunt reactances (as
in Figure 42.23) are called ‘constant-k’ filter sections.
Positive (i.e. inductive) reactance is directly proportional
to frequency, and negative (i.e. capacitive) reactance is
inversely proportional to frequency. Thus the product of
the series and shunt reactances is independent of fre-
quency (see equations (42.9) and (42.10)). The constancy
of this product has given this type of filter its name.

From equation (42.10), it is seen that Z0T and Z0π will
either be both real or both imaginary together (since j2 =
−1). Also, when Z0T changes from real to imaginary at
the cut-off frequency, so will Z0π. The two sections shown
in Figures 42.17 and 42.18 will thus have identical cut-
off frequencies and thus identical passbands. Constant-k
sections of any kind of filter are known as prototypes.

(e) Practical low-pass filter characteristics

From equation (42.1), the characteristic impedance Z0T
of a low-pass T section is given by:

Z0T =
√(

L

C
− ω2L2

4

)

Rearranging gives:

Z0T =
√[

L

C

(
1 − ω2LC

4

)]
=
√(

L

C

)√(
1 − ω2LC

4

)

= R0

√(
1 − ω2LC

4

)
from equation (42.5)

From equation (42.2), ω2
c = 4

LC
, hence

Z0T = R0

√(
1 − ω2

ω2
c

)

i.e. Z0T = R0

√[
1 −

(
ω

ωc

)2
]

(42.11)

Also, from equation (42.10), Z0π = R2
0

Z0T

= R2
0

R0

√[
1 −

(
ω

ωc

)2
]

i.e. Z0π = R0√[
1 −

(
ω

ωc

)2
] (42.12)

(Alternatively, the expression for Z0π could have been
obtained from equation (42.4), where

Z0π =

√√√√√√√

⎛
⎜⎜⎝ 1

C

L
− ω2C2

4

⎞
⎟⎟⎠ =

√√√√√√√

⎡
⎢⎢⎢⎣

L

C
L

C

(
C

L
− ω2C2

4

)
⎤
⎥⎥⎥⎦

=

√
L

C√(
1 − ω2LC

4

) = R0√[
1 −

(
ω

ωc

)2
] as above).

From equations (42.11) and (42.12), when ω = 0 (i.e.
when the frequency is zero),

Z0T = Z0π = R0

At the cut-off frequency, fc, ω = ωc
and from equation (42.11), Z0T falls to zero,
and from equation (42.12), Z0π rises to infinity.
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These results are shown graphically in Figure 42.24,
where it is seen that Z0T decreases from R0 at zero fre-
quency to zero at the cut-off frequency; Z0π rises from its
initial value of R0 to infinity at fc

(At a frequency, f = 0.95fc, for example,

Z0π = R0√
(1 − 0.952)

= 3.2R0

from equation (42.12)).

  Nominal
Impedance

Frequency

Attenuation
band

R0

Z0T

Z0p

Z0

0 fc

Pass band

Figure 42.24

Note that since Z0 becomes purely reactive in the atten-
uation band, it is not shown in this range in Figure 42.24.

Figure 42.2(a), on page 558, showed an ideal low-pass
filter section characteristic. In practise, the character-
istic curve of a low-pass prototype filter section looks
more like that shown in Figure 42.25. The characteristic
may be improved somewhat closer to the ideal by con-
necting two or more identical sections in cascade. This
produces a much sharper cut-off characteristic, although
the attenuation in the pass band is increased a little.

Frequency

Attenuation
Band

Pass band

0 fc

Attenuation

Figure 42.25

Problem 3. The nominal impedance of a low-pass π
section filter is 500 � and its cut-off frequency is at
100 kHz. Determine (a) the value of the characteristic
impedance of the section at a frequency of 90 kHz,
and (b) the value of the characteristic impedance of
the equivalent low-pass T section filter.

At zero frequency the characteristic impedance of the
π and T section filters will be equal to the nominal
impedance of 500 �.

(a) From equation (42.12), the characteristic impedance
of the π section at 90 kHz is given by:

Z0π = R0√[
1 −

(
ω

ωc

)2
]

= 500√[
1 −

(
2π90 × 103

2π100 × 103

)2
]

= 500√
[1 − (0.9)2]

= 1147 �

(b) From equation (42.11), the characteristic impedance
of the T section at 90 kHz is given by:

Z0T = R0

√[
1 −

(
ω

ωc

)2
]

= 500
√

[1 − (0.9)2]

= 218 �

(Check: From equation (42.10),

Z0T Z0π = (218)(1147) = 250 000 = 5002 = R2
0)

Typical low-pass characteristics of characteristic
impedance against frequency are shown in Figure
42.24.

Problem 4. A low-pass π section filter has a nom-
inal impedance of 600 � and a cut-off frequency of
2 MHz. Determine the frequency at which the charac-
teristic impedance of the section is (a) 600 � (b) 1 k�
(c) 10 k�.

From equation (42.12), Z0π = R0√[
1 −

(
ω

ωc

)2
]

(a) When Z0π = 600 � and R0 = 600 �, then ω = 0, i.e.
the frequency is zero
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(b) When Z0π = 1000 �, R0 = 600 � and fc = 2 × 106 Hz

then 1000 = 600√[
1 −

(
2πf

2π2 × 106

)2
]

from which, 1 −
(

f

2 × 106

)2

=
(

600

1000

)2

= 0.36

and

(
f

2 × 106

)
= √

(1 − 0.36) = 0.8

Thus when Z0π = 1000 �,

frequency, f = (0.8)(2 × 106) = 1.6 MHz

(c) When Z0π = 10 k�, then

10 000 = 600√[
1 −

(
f

2

)2
]

where frequency, f is in megahertz.

Thus 1 −
(

f

2

)2

=
(

600

10 000

)2

= (0.06)2

and
f

2
= √

[1 − (0.06)2] = 0.9982

Hence when Z0π =10 k�, frequency f = (2)(0.9982)

= 1.996 MHz

The above three results are seen to be borne out in the char-
acteristic of Z0π against frequency shown in Figure 42.24.

Now try the following exercise.

Exercise 152 Further problems on low-pass filter
sections

1. Determine the cut-off frequency and the nominal
impedance of each of the low-pass filter sections
shown in Figure 42.26.

[(a) 1592 Hz; 5 k� (b) 9545 Hz; 600 �]

0.5 H 0.5 H

0.04 µF

20 mH

27.8 nF 27.8 nF

(a) (b)

Figure 42.26

2. A filter section is to have a characteristic impedance
at zero frequency of 500 � and a cut-off frequency
of 1 kHz. Design (a) a low-pass T section filter,
and (b) a low-pass π section filter to meet these
requirements. [(a) Each series arm 79.60 mH,

shunt arm 0.6366 µF (b) Series arm
159.2 mH, each shunt arm 0.3183 µF]

3. Determine the value of capacitance required in the
shunt arm of a low-pass T section if the inductance
in each of the series arms is 40 mH and the cut-off
frequency of the filter is 2.5 kHz. [0.203 µF]

4. The nominal impedance of a low-pass π section
filter is 600 � and its cut-off frequency is at 25 kHz.
Determine (a) the value of the characteristic
impedance of the section at a frequency of 20 kHz
and (b) the value of the characteristic impedance
of the equivalent low-pass T section filter.

[(a) 1 k� (b) 360 �]

5. The nominal impedance of a low-pass π section fil-
ter is 600 �. If the capacitance in each of the shunt
arms is 0.1 µF determine the inductance in the
series arm. Make a sketch of the ideal and the prac-
tical attenuation/frequency characteristic expec-
ted for such a filter section. [72 mH]

6. A low-pass T section filter has a nominal impedance
of 600 � and a cut-off frequency of 10 kHz. Deter-
mine the frequency at which the characteristic
impedance of the section is (a) zero, (b) 300 �,
(c) 600 � [(a) 10 kHz (b) 8.66 kHz (c) 0]

42.6 High-pass filter sections

(a) The cut-off frequency

High-pass T and π sections are shown in Figure 42.27, (as
derived in Section (42.4)), each being terminated in their
characteristic impedance.

Z0T

2C 2C

L Z0T

(a)

Z0π

C

Z0π

(b)

2L 2L

Figure 42.27

From equation (41.1), page 528, the characteristic
impedance of a T section is given by:

Z0T = √
(Z2

A + 2ZAZB)
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From Figure 42.27(a), ZA = 1

jω2C
and ZB = jωL

Thus Z0T =
√[(

1

jω2C

)2

+ 2

(
1

jω2C

)
(jωL)

]

=
√[

1

−4ω2C2 + L

C

]

i.e. Z0T =
√(

L

C
− 1

4ω2C2

)
(42.13)

Z0T will be real when
L

C
>

1

4ω2C2

Thus the filter will pass all frequencies above the point

where
L

C
= 1

4ω2C2

i.e. where ω2
c = 1

4LC
(42.14)

where ωc = 2πfc, and fc is the cut-off frequency.

Hence (2πfc)2 = 1

4LC

and the cut-off frequency, fc = 1
4π

√
(LC)

(42.15)

The same equation for the cut-off frequency is obtained
for the high-pass π network shown in Figure 42.27(b) as
follows:

From equation (41.3), page 529, the characteristic
impedance of a symmetrical π section is given by:

Z0π =
√(

Z1Z2
2

Z1 + 2Z2

)

From Figure 42.27(b), Z1 = 1

jωC
and Z2 = j2ωL

Hence Z0π =

√√√√√√√

⎧⎪⎪⎨
⎪⎪⎩

(
1

jωC

)
(j2ωL)2

1

jωC
+ 2j2ωL

⎫⎪⎪⎬
⎪⎪⎭

=

√√√√√√√

⎧⎪⎪⎨
⎪⎪⎩

j4
ωL2

C

j

(
4ωL − 1

ωC

)
⎫⎪⎪⎬
⎪⎪⎭

=

√√√√√√√

⎛
⎜⎜⎝

4L2

C

4L − 1

ω2C

⎞
⎟⎟⎠

i.e. Z0π =

√√√√√√√
⎛
⎜⎝ 1

C

L
− 1

4ω2L2

⎞
⎟⎠ (42.16)

Z0π will be real when
C

L
>

1

4ω2L2 and the filter will pass

all frequencies above the point where
C

L
= 1

4ω2L2 , i.e.

where ω2
c = 1

4LC
as above.

Thus the cut-off frequency for a high-pass π network is
also given by

fc = 1
4π

√
(LC)

(as in equation (42.15)) (42.15′)

(b) Nominal impedance

When the frequency is very high, ω is a very large value
and the term (1/4ω2C2) in equations (42.13) and (42.16)
are extremely small and may be neglected.

The characteristic impedance then becomes equal to√
(L/C), this being the nominal impedance. Thus for

a high-pass filter section the nominal impedance R0 is
given by:

R0 =
√(

L
C

)
(42.17)

the same as for the low-pass filter sections.

Problem 5. Determine for each of the high-pass fil-
ter sections shown in Figure 42.28 (i) the cut-off fre-
quency, and (ii) the nominal impedance.

(a) (b)

0.2 µF0.2 µF

100 mH

4000 pF

200 µH 200 µH

Figure 42.28
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(a) Comparing Figure 42.28(a) with Figure 42.27(a)
shows that:

2C = 0.2 µF, i.e. capacitance, C = 0.1 µF

= 0.1 × 10−6 F

and inductance, L = 100 mH = 0.1 H

(i) From equation (42.15),

cut-off frequency, fc = 1

4π
√

(LC)

= 1

4π
√

[(0.1)(0.1 × 10−6)]

i.e. fc = 103

4π(0.1)
= 796 Hz

(ii) From equation (42.17),

nominal impedance, R0 =
√(

L

C

)

=
√(

0.1

0.1 × 10−6

)

= 1000 � or 1 k�

(b) Comparing Figure 42.28(b) with Figure 42.27(b)
shows that:

2L = 200 µH, i.e. inductance, L = 100 µH

= 10−4 H

and capacitance C = 4000 pF

= 4 × 10−9 F

(i) From equation (42.15′),

cut-off frequency, f c = 1

4π
√

(LC)

= 1

4π
√

[(10−4)(4 × 10−9)]

= 126 kHz

(ii) From equation (42.17),

nominal impedance, R0 =
√(

L

C

)

=
√(

10−4

4 × 10−9

)

=
√(

105

4

)
= 158 �

(c) To determine values of L and C given R0 and f c

If the values of the nominal impedance R0 and the cut-off
frequency fc are known for a high-pass T or π section it
is possible to determine the values of inductance L and
capacitance C required to form the section.

From equation (42.17), R0 =
√

L

C
=

√
L√
C

from which,
√

L = R0
√

C

Substituting in equation (42.15) gives:

fc = 1

4π
√

L
√

C
= 1

4π(R0
√

C)
√

C
= 1

4πR0C

from which, capacitance C = 1
4πR0 fc

(42.18)

Similarly, from equation (42.17),
√

C =
√

L

R0
Substituting in equation (42.15) gives:

fc = 1

4π
√

L

(√
L

R0

) = R0

4πL

from which, inductance, L = R0

4πfc
(42.19)

Problem 6. A filter is required to pass all frequencies
above 25 kHz and to have a nominal impedance of
600 �. Design (a) a high-pass T section filter and (b) a
high-pass π section filter to meet these requirements.

Cut-off frequency, fc = 25 × 103 Hz and nominal
impedance, R0 = 600 �
From equation (42.18),

C = 1

4πR0 fc
= 1

4π(600)(25 × 103)
F

= 1012

4π(600)(25 × 103)
pF

i.e. C = 5305 pF or 5.305 nF

From equation (42.19), inductance,

L = R0

4πfc
= 600

4π(25 × 103)
H = 1.91 mH
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(a) (b)

10.61 nF

1.91 mH

10.61 nF 5.305 nF

3.82 mH 3.82 mH

Figure 42.29

(a) A high-pass T section filter is shown in Fig-
ure 42.29(a) where the series arm capacitances are
each 2 C (see Figure 42.27(a)), i.e. 2 × 5.305 =
10.61 nF

(b) A high-pass π section filter is shown in Fig-
ure 42.29(b), where the shunt arm inductances are
each 2 L (see Figure 42.27(b)), i.e. 2×1.91 = 3.82 mH

(d) ‘Constant-k’ prototype high-pass filter

It may be shown, in a similar way to that shown in
Section 42.5(d), that for a high-pass filter section:

Z0TZ0π = Z1Z2 = R2
0

where Z1 and Z2 are the total equivalent series and shunt
arm impedances. The high-pass filter sections shown in
Figure 42.27 are thus ‘constant-k’prototype filter sections.

(e) Practical high-pass filter characteristics

From equation (42.13), the characteristic impedance Z0T
of a high-pass T section is given by:

Z0T =
√(

L

C
− 1

4ω2C2

)

Rearranging gives:

Z0T =
√[

L

C

(
1 − 1

4ω2LC

)]

=
√(

L

C

)√(
1 − 1

4ω2LC

)

From equation (42.14), ω2
c = 1

4LC

Thus Z0T = R0

√[
1 −

(ωc

ω

)2
]

(42.20)

Also, since Z0T Z0π = R2
0

then Z0π = R2
0

Z0T
= R2

0

R0

√[
1 −

(ωc

ω

)2
]

i.e. Z0π = R0√[
1 −

(ωc

ω

)2
] (42.21)

From equation (42.20),

when ω < ωc, Z0T is reactive,

when ω = ωc, Z0T is zero,

and when ω > ωc, Z0T is real, eventually increasing to

R0 when ω is very large.

Similarly, from equation (42.21),

when ω < ωc, Z0π is reactive,

when ω = ωc, Z0π = ∞ (i.e.
R0

0
= ∞)

and when ω > ωc, Z0π is real, eventually decreasing to

R0 when ω is very large.

Curves of Z0T and Z0π against frequency are shown in
Figure 42.30.

Nominal
impedance

Frequency

Pass band

R0

Z0T

Z0p

Z0

0 fc

Attenuation
band

Figure 42.30

Figure 42.4(a), on page 559, showed an ideal high-pass fil-
ter section characteristic of attenuation against frequency.
In practise, the characteristic curve of a high-pass pro-
totype filter section would look more like that shown in
Figure 42.31.
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Figure 42.31

Problem 7. A low-pass T section filter having a cut-
off frequency of 15 kHz is connected in series with a
high-pass T section filter having a cut-off frequency
of 10 kHz. The terminating impedance of the filter is
600 �.

(a) Determine the values of the components compris-
ing the composite filter.

(b) Sketch the expected attenuation against frequency
characteristic.

(c) State the name given to the type of filter described.

(a) For the low-pass T section filter: fcL = 15 000 Hz
From equation (42.6),

capacitance, C = 1

πR0 fc
= 1

π(600)(15 000)

≡ 35.4 nF

From equation (42.7),

inductance, L = R0

πfc
= 600

π(15 000)
≡ 12.73 mH

Thus from Figure 42.17, the series arm inductances
are each L/2, i.e. (12.73/2) = 6.37 mH and the shunt
arm capacitance is 35.4 nF.

For a high-pass T section filter: fCH = 10 000 Hz
From equation (42.18),

capacitance, C = 1

4πR0 fc
= 1

4π(600)(10 000)

≡ 13.3 nF

From equation (42.19),

inductance, L = R0

4πfc
= 600

4π10 000
≡ 4.77 mH

Thus from Figure 42.27(a), the series arm capaci-
tances are each 2 C, i.e. 2 × 13.3 = 26.6 nF, and the
shunt arm inductance is 4.77 mH.

The composite filter is shown in Figure 42.32.

6.37 mH 6.37 mH

35.4 nF

26.6 nF 26.6 nF

4.77 mH 600 Ω

Figure 42.32

(b) A typical characteristic expected of attenuation
against frequency is shown in Figure 42.33.

Figure 42.33

(c) The name given to the type of filter described is a
band-pass filter. The ideal characteristic of such a
filter is shown in Figure 42.5 on page 559.

Problem 8. A high-pass T section filter has a cut-
off frequency of 500 Hz and a nominal impedance of
600 �. Determine the frequency at which the charac-
teristic impedance of the section is (a) zero, (b) 300 �,
(c) 590 �.

From equation (42.20), Z0T = R0

√[
1 −

(ωc

ω

)2
]

(a) When Z0T = 0, then (ωc/ω) = 1, i.e. the frequency is
500 Hz, the cut-off frequency.

(b) When Z0T = 300 �, R0 = 600 � and fc = 500 Hz

300 = 600

√[
1 −

(
2π500

2πf

)2
]
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from which

(
300

600

)2

= 1 −
(

500

f

)2

and
500

f
=
√[

1 −
(

300

600

)2
]

= √
0.75

Thus when Z0T = 300 �, frequency, f = 500√
0.75

= 577.4 Hz

(c) When Z0T = 590 �, 590 = 600

√[
1 −

(
500

f

)2
]

500

f
=
√[

1 −
(

590

600

)2
]

= 0.1818

Thus when Z0T = 590 �, frequency, f = 500

0.1818
= 2750 Hz

The above three results are seen to be borne out in
the characteristic of Z0T against frequency shown in
Figure 42.30.

Now try the following exercise.

Exercise 153 Further problems on high-pass filter
sections

1. Determine for each of the high-pass filter sections
shown in Figure 42.34 (i) the cut-off frequency, and
(ii) the nominal impedance.

[(a) (i) 22.51 kHz (ii) 14.14 k�
(b) (i) 281.3 Hz (ii) 1414 �]

500 pF 500 pF

50 mH

0.2 µF

800 mH 800 mH

(a) (b)

Figure 42.34

2. A filter is required to pass all frequencies above
4 kHz and to have a nominal impedance of 750 �.
Design (a) an appropriate T section filter, and
(b) an appropriate π section filter to meet these
requirements. [(a) Each series arm = 53.06 nF,

shunt arm = 14.92 mH
(b) Series arm = 26.53 nF,

each shunt arm = 29.84 mH]

3. The inductance in each of the shunt arms of a
high-pass π section filter is 50 mH. If the nominal
impedance of the section is 600 �, determine the
value of the capacitance in the series arm.

[69.44 nF]

4. Determine the value of inductance required in the
shunt arm of a high-pass T section filter if in each
series arm it contains a 0.5 µF capacitor. The cut-
off frequency of the filter section is 1500 Hz. Sketch
the characteristic curve of characteristic impedance
against frequency expected for such a filter section.

[11.26 mH]

5. A high-pass π section filter has a nominal
impedance of 500 � and a cut-off frequency of
50 kHz. Determine the frequency at which the char-
acteristic impedance of the section is (a) 1 k�
(b) 800 � (c) 520 �.

[(a) 57.74 kHz (b) 64.05 kHz (c) 182 kHz]

6. A low-pass T section filter having a cut-off fre-
quency of 9 kHz is connected in series with a
high-pass T section filter having a cut-off frequency
of 6 kHz. The terminating impedance of the filter is
600 �.
(a) Determine the values of the components com-

prising the composite filter.
(b) Sketch the expected attenuation/frequency char-

acteristic and state the name given to the type
of filter described.

[(a) Low-pass T section: each series arm
10.61 mH, shunt-arm 58.95 nF]

High-pass T section: each series arm
44.20 nF, shunt arm 7.96 mH

(b) Band-pass filter]

42.7 Propagation coefficient and time delay in
filter sections

Propagation coefficient

In Figure 42.35, let A, B and C represent identical filter
sections, the current ratios (I1/I2), (I2/I3) and (I3/I4) being
equal.

I1  = 1 A I2  = A1
2

I3 A1
4

I4 = A1
8

 =

A B C

Figure 42.35

Although the rate of attenuation is the same in each
section (i.e. the current output of each section is one half
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of the current input) the amount of attenuation in each is
different (section A attenuates by 1

2 A, B attenuates by 1
4

A and C attenuates by 1
8 A). The attenuation is in fact in

the form of a logarithmic decay and

I1

I2
= I2

I3
= I3

I4
= eγ (42.22)

where γ is called the propagation coefficient or the
propagation constant.

From equation (42.22), propagation coefficient,

γ = ln
I1

I2
nepers (42.23)

(See Section 41.3, page 529, on logarithmic units.)
Unless Sections A, B and C in Figure 42.35 are purely

resistive there will be a phase change in each section. Thus
the ratio of the current entering a section to that leaving it
will be a phasor quantity having both modulus and argu-
ment. The propagation constant which has no units is a
complex quantity given by:

γ = α + jβ (42.24)

where α is called the attenuation coefficient, measured
in nepers, and β the phase shift coefficient, measured in
radians. β is the angle by which a current leaving a section
lags behind the current entering it.
From equations (42.22) and (42.24),

I1

I2
= eγ = eα+jβ = (eα)(ejβ)

Since ex = 1 + x + x2

2! + x3

3! + x4

4! + x5

5! + · · · · · ·

then ejβ = 1 + ( jβ) + ( jβ)2

2! + ( jβ)3

3! + ( jβ)4

4!
+ ( jβ)5

5! + · · · · · ·

= 1 + jβ − β2

2! − j
β3

3! + β4

4! + j
β5

5! + · · · · · ·
since j2 = −1, j3 = −j, j4 = +1, and so on.

Hence ejβ =
(

1 − β2

2! + β4

4! − · · · ·
)

+ j

(
β − β3

3! + β5

5! − · · · ·
)

= cos β + j sin β from the power series for

cos β and sin β

Thus
I1

I2
= eαejβ = eα(cos β + j sin β) = eα∠β in abbrevi-

ated polar form,

i.e.
I1

I2
= eα∠β (42.25)

Now eα =
∣∣∣∣ I1

I2

∣∣∣∣
from which

attenuation coefficient,

α = ln

∣∣∣∣ I1

I2

∣∣∣∣ nepers or 20 lg

∣∣∣∣ I1

I2

∣∣∣∣ dB

If in Figure 42.35 current I2 lags current I1 by, say, 30◦, i.e.
(π/6) rad, then the propagation coefficient γ of Section A
is given by:

γ = α + jβ = ln

∣∣∣∣∣∣∣
1
1

2

∣∣∣∣∣∣∣
+ j

π

6

i.e. γ = (0.693 + j0.524)

If there are n identical sections connected in cascade and
terminated in their characteristic impedance, then

I1

In+1
= (eγ )n = enγ = en(α+jβ) = enα∠nβ . . .. . .

(42.26)

where In+1 is the output current of the n’th section.

Problem 9. The propagation coefficients of two filter
networks are given by

(a) γ = (1.25 + j0.52), (b) γ = 1.794∠−39.4◦

Determine for each (i) the attenuation coefficient, and
(ii) the phase shift coefficient.

(a) If γ = (1.25 + j0.52)
then (i) the attenuation coefficient, α, is given by the
real part,

i.e. α = 1.25 Np

and (ii) the phase shift coefficient, β, is given by the
imaginary part,

i.e. β = 0.52 rad
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(b) γ = 1.794∠−39.4◦ = 1.794[cos(−39.4◦)
+ jsin(−39.4◦)]

= (1.386 − j1.139)

Hence (i) the attenuation coefficient, α = 1.386 Np
and (ii) the phase shift coefficient, β = −1.139 rad

Problem 10. The current input to a filter section is
24∠10◦ mA and the current output is 8∠−45◦ mA.
Determine for the section (a) the attenuation coef-
ficient, (b) the phase shift coefficient, and (c) the
propagation coefficient. (d) If five such sections are
cascaded determine the output current of the fifth stage
and the overall propagation constant of the network.

Let I1 = 24∠10◦ mA and I2 = 8∠−45◦ mA, then

I1

I2
= 24∠10◦

8∠−45◦ = 3∠55◦= eα∠β from equation (42.25).

(a) Hence the attenuation constant, α, is obtained from
3 = eα, i.e. α = ln 3 = 1.099 Np

(b) The phase shift coefficientβ = 55◦× π

180
= 0.960 rad

(c) The propagation coefficient
γ = α + jβ = (1.099 + j0.960) or 1.459∠41.14◦

(d) If I6 is the current output of the fifth stage, then from
equation (42.26),

I1

I6
= (eγ )n = [3∠55◦]5 = 243∠275◦

(by De Moivre’s theorem)

Thus the output current of the fifth stage,

I6 = I1

243∠275◦ = 24∠10◦

243∠275◦
= 0.0988∠−265◦ mA or 98.8∠95◦µA

Let the overall propagation coefficient be γ ′

then
I1

I6
= 243∠275◦ = eγ ′ = eα′∠β′

The overall attenuation coefficient α′ = ln 243 = 5.49

and the overall phase shift coefficient

β′ = 275◦ × π

180◦ = 4.80 rad

Hence the overall propagation coefficient

γ ′ = (5.49 + j4.80) or 7.29∠41.16◦

Problem 11. For the low-pass T section filter shown
in Figure 42.36 determine (a) the attenuation coef-
ficient, (b) the phase shift coefficient and (c) the
propagation coefficient γ .

I1 XL   = j 5 Ω XL   = j 5 Ω I2

XC = −j 10 Ω 
RL = 12 Ω

Figure 42.36

By current division in Figure 42.36, I2 =
(

XC

XC + XL + RL

)
I1

from which
I1

I2
= XC + XL + RL

XC
= −j10 + j5 + 12

−j10

= −j5 + 12

−j10
= −j5

−j10
+ 12

−j10

= 0.5 + j12

−j210
= 0.5 + j1.2

= 1.3∠67.38◦ or 1.3∠1.176

From equation (42.25),
I1

I2
= eα∠β = 1.3∠1.176

(a) The attenuation coefficient, α = ln 1.3 = 0.262 Np
(b) The phase shift coefficient, β = 1.176 rad
(c) The propagation coefficient,

γ = α + jβ = (0.262 + j1.176) or 1.205∠77.44◦

Variation in phase angle in the passband of a filter

In practise, the low and high-pass filter sections dis-
cussed in Sections 42.5 and 42.6 would possess a phase
shift between the input and output voltages which varies
considerably over the range of frequency comprising the
passband.

Let the low-pass prototype T section shown in
Figure 42.37 be terminated as shown in its nominal
impedance R0. The input impedance for frequencies much
less than the cut-off frequency is thus also equal to R0 and

I1
L
2

L
2

VL1 VL2

VCV1
C

V2 R0

I2

Figure 42.37
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is resistive. The phasor diagram representing Figure 42.37
is shown in Figure 42.38 and is produced as follows:

a

VL1

0 β
2

I1 β
2

β
V1

VC

c

VL2

I2

V2

d

b

Figure 42.38

(i) V1 and I1 are in phase (since the input impedance is
resistive).

(ii) Voltage VL1 = I1XL = I1

(
ωL

2

)
, which leads I

by 90◦.
(iii) Voltage V1 is the phasor sum of VL1 and VC . Thus

VC is drawn as shown, completing the parallelogram
oabc.

(iv) Since no power is dissipated in reactive elements
V1 = V2 in magnitude.

(v) Voltage VL2 = I2

(
ωL

2

)
= I1

(
ωL

2

)
= VL1

(vi) Voltage VC is the phasor sum of VL2 and V2 as shown
by triangle ocd, where VL2 is at right angles to V2

(vii) Current I2 is in phase with V2 since the output
impedance is resistive. The phase lag over the sec-
tion is the angle between V1 and V2 shown as angle
β in Figure 42.38,

where tan
β

2
= oa

ob
= VL1

V1
=

I1

(
ωL

2

)

I1R0
=

ωL

2
R0

From equation (42.5), R0 =
√

L

C
,

thus tan
β

2
=

ωL

2√
L

C

= ω
√

(LC)

2

For angles of β up to about 20◦, tan
β

2
≈ β

2
radians

Thus when β < 20◦,
β

2
= ω

√
(LC)

2

from which, phase angle, β = ω
√

(LC) radian

(42.27)

Since β = 2πf
√

(LC) = (2π
√

(LC))f then β is propor-
tional to f and a graph of β (vertical) against frequency
(horizontal) should be a straight line of gradient 2π

√
(LC)

and passing through the origin. However in practise this
is only usually valid up to a frequency of about 0.7 fc for
a low-pass filter and a typical characteristic is shown in
Figure 42.39. At the cut-off frequency, β = π rad. For fre-
quencies within the attenuation band, the phase shift is
unimportant, since all voltages having such frequencies
are suppressed.

Phase angle
b (rad)

2

0
0.7 fc fc Frequency

Ideal characteristic

Practical curve

Pass band Attenuation
band

p

p

Figure 42.39

A high-pass prototype T section is shown in Fig-
ure 42.40(a) and its phasor diagram in Figure 42.40(b),
the latter being produced by similar reasoning to above.

From Figure 42.40(b), tan
β

2
= VC1

V1
=

I1

(
1

ω2C

)

I1R0

= 1

2ωCR0
= 1

2ωC

√
L

C

= 1

2ω
√

(LC)

i.e. β = 1

ω
√

(LC)
= 1

(2π
√

(LC)) f
for small angles.

Thus the phase angle is inversely proportional to fre-
quency. The β/f characteristics of an ideal and a practical
high-pass filter are shown in Figure 42.41.

Time delay

The change of phase that occurs in a filter section depends
on the time the signal takes to pass through the section.
The phase shift β may be expressed as a time delay. If the
frequency of the signal is f then the periodic time is (1/f )
seconds.

Hence the time delay = β

2π
× 1

f
= β

ω
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I1
2C 2C I2

VC1 VC2

VL
LV1 V2

R0

(a)

I2

V2
VC2

 

I1

VL

V1

VC1

(b)

 
2
b

b

Figure 42.40

0 fc Frequency

 

Phase
angle
b (rad)

Ideal
characteristic

Practical
curve

Attenuation
band

Pass band

p

Figure 42.41

From equation (42.27), β = ω
√

(LC). Thus

time delay = ω
√

(LC)

ω
= √

(LC) (42.28)

when angle β is small.

Equation (42.28) shows that the time delay, or tran-
sit time, is independent of frequency. Thus a phase shift

which is proportional to frequency (equation (42.27))
results in a time delay which is independent of frequency.
Hence if the input to the filter section consists of a com-
plex wave composed of several harmonic components of
differing frequency, the output will consist of a complex
wave made up of the sum of corresponding components
all delayed by the same amount. There will therefore be no
phase distortion due to varying time delays for the separate
frequency components.

In practise, however, phase shift β tends not to be con-
stant and the increase in time delay with rising frequency
causes distortion of non-sinusoidal inputs, this distor-
tion being superimposed on that due to the attenuation
of components whose frequency is higher than the cut-off
frequency.

At the cut-off frequency of a prototype low-pass filter,
the phase angle β = π rad. Hence the time delay of a signal
through such a section at the cut-off frequency is given by

β

ω
= π

2πfc
= 1

2fc
= 1

2
1

π
√

(LC)

from equation (42.3),

i.e. at fc, the transit time = π
√

(LC)

2
seconds

(42.29)

Problem 12. Determine for the filter section shown in
Figure 42.42, (a) the time delay for the signal to pass
through the filter, assuming the phase shift is small,
and (b) the time delay for a signal to pass through the
section at the cut-off frequency.

0.5 H 0.5 H

2 nF

Figure 42.42

Comparing Figure 42.42 with the low-pass T section of
Figure 42.13(a), shows that

L

2
= 0.5 H, thus inductance L = 1 H, and capacitance

C = 2 nF

(a) From equation (42.28),

time delay = √
(LC) = √

[(1)(2 × 10−9)] = 44.7 µs
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(b) From equation (42.29), at the cut-off frequency,

time delay = π

2

√
(LC) = π

2
(44.7) = 70.2 µs

Problem 13. A filter network comprising n identical
sections passes signals of all frequencies up to 500 kHz
and provides a total delay of 9.55 µs. If the nominal
impedance of the circuit into which the filter is inserted
is 1 k�, determine (a) the values of the elements in each
section, and (b) the value of n.

Cut-off frequency, fc = 500 × 103 Hz and nominal
impedance R0 = 1000 �.

Since the filter passes frequencies up to 500 kHz then it is
a low-pass filter.

(a) From equations (42.6) and (42.7), for a low-pass filter
section,

capacitance, C = 1

πR0 fc
= 1

π(1000)(500 × 103)

≡ 636.6 pF

and inductance, L = R0

πfc
= 1000

π(500 × 103)

≡ 636.6 µH

Thus if the section is a low-pass T section
then the inductance in each series arm will be
(L/2) = 318.3 µH and the capacitance in the shunt arm
will be 636.6 pF.

If the section is a low-pass π section then the induct-
ance in the series arm will be 636.6 µH and the capac-
itance in each shunt arm will be (C/2) = 318.3 pF

(b) From equation (42.28), the time delay for a single
section

= √
(LC) = √

[(636.6 × 10−6)(636.6 × 10−12)]

= 0.6366 µs

For a time delay of 9.55 µs therefore, the number of
cascaded sections required is given by

9.55

0.6366
= 15, i.e. n = 15

Problem 14. A filter network consists of 8 sections
in cascade having a nominal impedance of 1 k�. If
the total delay time is 4 µs, determine the component
values for each section if the filter is (a) a low-pass T
network, and (b) a high-pass π network.

Since the total delay time is 4 µs then the delay time of
each of the 8 sections is 4

8 , i.e. 0.5 µs
From equation (42.28), time delay = √

(LC)

Hence 0.5 × 10−6 = √
(LC) (i)

Also, from equation (42.5),

√
L

C
= 1000 (ii)

From equation (ii),
√

L = 1000
√

C

Substituting in equation (i) gives:

0.5 × 10−6 = (1000
√

C)
√

C = 1000 C

from which, capacitance C = 0.5 × 10−6

1000
= 0.5 nF

From equation (ii),
√

C =
√

L

1000

Substituting in equation (i) gives:

0.5 × 10−6 = (
√

L)

( √
L

1000

)
= L

1000

from which, inductance, L = 500 µH

(a) If the filter is a low-pass T section then, from Fig-
ure 42.13(a), each series arm has an inductance of
L/2, i.e. 250 µH and the shunt arm has a capacitance
of 0.5 nF

(b) If the filter is a high-pass π network then, from
Figure 42.16(b), the series arm has a capacitance of
0.5 nF and each shunt arm has an inductance of 2 L,
i.e. 1000 µH or 1 mH.

Now try the following exercise.

Exercise 154 Further problems on propagation
coefficient and time delays

1. A filter section has a propagation coefficient given
by (a) (1.79 − j0.63) (b) 1.378∠51.6◦. Determine
for each (i) the attenuation coefficient and (ii) the
phase angle coefficient. [(a) (i) 1.79 Np

(ii) −0.63 rad (b) (i) 0.856 Np (ii) 1.08 rad]

2. A filter section has a current input of 200∠20◦ mA
and a current output of 16∠−30◦ mA. Determine
(a) the attenuation coefficient (b) the phase shift
coefficient, and (c) the propagation coefficient.
(d) If four such sections are cascaded determine the
current output of the fourth stage and the overall
propagation coefficient. [(a) 2.526 Np

(b) 0.873 rad (c) (2.526 + j0.873) or
2.673∠19.07◦ (d) 8.19∠−180◦ µA,
(10.103 + j3.491) or 10.69∠19.06◦]
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3. Determine for the high-pass T section filter shown
in Figure 42.43, (a) the attenuation coefficient, (b)
the phase shift coefficient, and (c) the propagation
coefficient. [(a) 1.61 Np (b) −2.50 rad

(c) (1.61 − j2.50) or 2.97∠−57.22◦]

Xc  = −j1 kΩ Xc = −j1 kΩ

XL = j 200 Ω RL  = 600Ω

Figure 42.43

4. A low-pass T section filter has an inductance of
25 mH in each series arm and a shunt arm capaci-
tance of 400 nF. Determine for the section (a) the
time delay for the signal to pass through the filter,
assuming the phase shift is small, and (b) the time
delay for a signal to pass through the section at the
cut-off frequency. [(a) 141.4 µs (b) 222.1 µs]

5. A T -section filter network comprising n identical
sections passes signals of all frequencies over 8 kHz
and provides a total delay of 69.63 µs. If the charac-
teristic impedance of the circuit into which the filter
is inserted is 600 �, determine (a) the values of the
components comprising each section, and (b) the
value of n.

[(a) Each series arm 33.16 nF;
shunt arm 5.97 mH (b) 7]

6. A filter network consists of 15 sections in cascade
having a nominal impedance of 800 �. If the total
delay time is 30 µs determine the component value
for each section if the filter is (a) a low-pass π
network, (b) a high-pass T network.

[(a) Series arm 1.60 mH, each shunt arm 1.25 nF
(b) Each series arm 5 nF, shunt arm 1.60 mH]

42.8 ‘m-derived’ filter sections

(a) General

In a low-pass filter a clearly defined cut-off frequency
followed by a high attenuation is needed; in a high-pass
filter, high attenuation followed by a clearly defined cut-
off frequency is needed. It is not practicable to obtain
either of these conditions by wiring appropriate prototype

constant-k sections in cascade. An equivalent section is
therefore required having:

(i) the same cut-off frequency as the prototype but with
a rapid rise in attenuation beyond cut-off for a low-
pass type or a rapid decrease at cut-off from a high
attenuation for the high-pass type,

(ii) the same value of nominal impedance R0 as the proto-
type at all frequencies (otherwise the two forms could
not be connected together without mismatch).

If the two sections, i.e. the prototype and the equivalent
section, have the same value of R0 they will have identical
passbands.

The equivalent section is called an ‘m-derived’ filter
section (for reasons as explained below) and is one which
gives a sharper cut-off at the edges of the passband and a
better impedance characteristic.

(b) T sections

A prototype T section is shown in Figure 42.44(a). Let
a new section be constructed from this section having a
series arm of the same type but of different value, say mZ1,
where m is some constant. (It is for this reason that the
new equivalent section is called an ‘m-derived’ section.)
If the characteristic impedance Z0T of the two sections is
to be the same then the value of the shunt arm impedance
will have to be different to Z2
Let this be Z ′

2 as shown in Figure 42.44(b).

Z1

2

Z1

2

Z2

mZ1

2

mZ1

2

Z ′ 2

(a) (b)

Figure 42.44

The value of Z ′
2 is determined as follows:

From equation (41.1), page 528, for the prototype shown
in Figure 42.44(a):

Z0T =
√[(

Z1

2

)2

+ 2

(
Z1

2

)
Z2

]

i.e. Z0T =
√(

Z2
1

4
+ Z1Z2

)
(a)

Similarly, for the new section shown in Figure 42.44(b),

Z0T =
√[(

mZ1

2

)2

+ 2

(
mZ1

2

)
Z ′

2

]

i.e. Z0T =
√(

m2Z2
1

4
+ mZ1Z ′

2

)
(b)
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Equations (a) and (b) will be identical if:

Z2
1

4
+ Z1Z2 = m2Z2

1

4
+ mZ1Z ′

2

Rearranging gives: mZ1Z ′
2 = Z1Z2 + Z2

1

4
(1 − m2)

i.e. Z′
2 = Z2

m
+ Z1

(
1−m2

4m

)

(42.30)

Thus impedance Z ′
2 consists of an impedance Z2/m in

series with an impedance Z1((1 − m2)/4m). An additional
component has therefore been introduced into the shunt
arm of the m-derived section. The value of m can range
from 0 to 1, and when m = 1, the prototype and the m-
derived sections are identical.

(c) π sections

A prototype π section is shown in Figure 42.45(a). Let a
new section be constructed having shunt arms of the same
type but of different values, say Z2/m, where m is some
constant. If the characteristic impedance Z0π of the two
sections is to be the same then the value of the series arm
impedance will have to be different to Z1.
Let this be Z ′

1 as shown in Figure 42.45(b).

Z1

2Z2 2Z2

Z ′ 1

2Z2

m

2Z2

m

(a) (b)

Figure 42.45

The value of Z ′
1 is determined as follows:

From equation (42.9), Z0T Z0π = Z1Z2
Thus the characteristic impedance of the section shown in
Figure 42.45(a) is given by:

Z0π = Z1Z2

Z0T
= Z1Z2√(

Z2
1

4
+ Z1Z2

) (c)

from equation (a) above.
For the section shown in Figure 42.45(b),

Z0π =
Z ′

1
Z2

m√(
(Z ′

1)2

4
+ Z ′

1
Z2

m

) (d)

Equations (c) and (d) will be identical if

Z1Z2√(
Z2

1

4
+ Z1Z2

) =
Z ′

1
Z2

m√(
(Z ′

1)2

4
+ Z ′

1
Z2

m

)

Dividing both sides by Z2 and then squaring both sides
gives:

Z2
1

Z2
1

4
+ Z1Z2

=
(Z ′

1)2

m2

(Z ′
1)2

4
+ Z ′

1Z2

m

Thus Z2
1

(
(Z ′

1)2

4
+ Z ′

1Z2

m

)
= (Z ′

1)2

m2

(
Z2

1

4
+ Z1Z2

)

i.e.
Z2

1 (Z ′
1)2

4
+ Z2

1 Z ′
1Z2

m
= (Z ′

1)2Z2
1

4m2 + (Z ′
1)2Z1Z2

m2

Multiplying throughout by 4m2 gives:

m2Z2
1 (Z ′

1)2 + 4mZ2
1 Z ′

1Z2 = (Z ′
1)2Z2

1 + 4(Z ′
1)2Z1Z2

Dividing throughout by Z ′
1 and rearranging gives:

4mZ2
1 Z2 = Z ′

1(Z2
1 + 4Z1Z2 − m2Z2

1 )

Thus Z ′
1 = 4mZ2

1 Z2

4Z1Z2 + Z2
1 (1 − m2)

i.e. Z′
1 = 4mZ1Z2

4Z2 + Z1(1 − m2)
(42.31)

An impedance mZ1 in parallel with an impedance
(4mZ2/1 − m2) gives (using (product/sum)):

(mZ1)
4mZ2

1 − m2

mZ1 + 4mZ2

1 − m2

= (mZ1)4mZ2

mZ1(1 − m2) + 4mZ2

= 4mZ1Z2

4Z2 + Z1(1 − m2)

Hence the expression for Z ′
1 (equation (42.31)) represents

an impedance mZ1 in parallel with an impedance
(4m/1 − m2)Z2

(d) Low-pass ‘m-derived’ sections

The ‘m-derived’ low-pass T section is shown in Fig-
ure 42.46(a) and is derived from Figure 42.13(a), Fig-
ure 42.44 and equation (42.30). If Z2 represents a pure
capacitor in Figure 42.44(a), then Z2 = (1/ωC).
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mL
2

mC

mL

(a) (b)

mL
2

1−m2

4 m

1−m2

4 m
L

C
mC
2

mC
2

Figure 42.46

A capacitance of value mC shown in Figure 42.46(a) has
an impedance

1

ωmC
= 1

m

(
1

ωC

)
= Z2

m
as in equation (42.30).

The ‘m-derived’ low-pass π section is shown in Fig-
ure 42.46(b) and is derived from Figure 42.13(b), Fig-
ure 42.45 and from equation (42.31).

Note that a capacitance of value

(
1 − m2

4m

)
C has an

impedance of

1

ω

(
1 − m2

4m

)
C

=
(

4m

1 − m2

)(
1

ωC

)
=
(

4m

1 − m2

)
Z2

where Z2 is a pure capacitor.
In Figure 42.46(a), series resonance will occur in the

shunt arm at a particular frequency — thus short-circuiting
the transmission path. In the prototype, infinite attenuation
is obtained only at infinite frequency (see Figure 42.25).

In the m-derived section of Figure 42.46(a), let the fre-
quency of infinite attenuation be f∞, then at resonance:
XL = XC

i.e. ω∞
(

1 − m2

4m

)
L = 1

ω∞mC

from which, ω2∞ = 1

(mC)

(
1 − m2

4m

)
L

= 4

LC(1 − m2)

From equation (42.2),

4

LC
= ω2

c , thus ω2∞ = ω2
c

(1 − m2)

where ωc = 2πfc, fc being the cut-off frequency of the
prototype.

Hence ω∞ = ωc√
(1 − m2)

(42.32)

Rearranging gives: ω2∞(1 − m2) = ω2
c

ω2∞ − m2ω2∞ = ω2
c

m2 = ω2∞ − ω2
c

ω2∞
= 1 − ω2

c

ω2∞

i.e. m =
√[

1 −
(

f c

f ∞

)2
]

(42.33)

In the m-derived π section of Figure 42.46(b), resonance
occurs in the parallel arrangement comprising the series
arm of the section when

ω2 = 1

mL

(
1 − m2

4m

)
C

, when ω2 = 4

LC(1 − m2)

as in the series resonance case (see Chapter 28).
Thus equations (42.32) and (42.33) are also applicable to
the low-pass m-derived π section.
In equation (42.33), 0 < m < 1, thus f ∞ > fc.
The frequency of infinite attenuation f∞ can be placed
anywhere within the attenuation band by suitable choice
of the value of m; the smaller m is made the nearer is f∞
to the cut-off frequency, fc.

Problem 15. A filter section is required to have a
nominal impedance of 600 �, a cut-off frequency
of 5 kHz and a frequency of infinite attenuation at
5.50 kHz. Design (a) an appropriate ‘m-derived’ T
section, and (b) an appropriate ‘m-derived’ π section.

Nominal impedance R0 = 600 �, cut-off frequency,
fc = 5000 Hz and frequency of infinite attenuation,
f∞ = 5500 Hz. Since f∞ > fc the filter section is low-pass.
From equation (42.33),

m =
√[

1 −
(

fc
f∞

)2
]

=
√[

1 −
(

5000

5500

)2
]

= 0.4166

For a low-pass prototype section:
from equation (42.6), capacitance,

C = 1

πR0fc
= 1

π(600)(5000)

≡ 0.106 µF

and from equation (42.7), inductance,

L = R0

πfc
= 600

π(5000)

≡ 38.2 mH
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(a) For an ‘m-derived’ low-pass T section:
From Figure 42.46(a), the series arm inductances are
each

mL

2
= (0.4166)(38.2)

2
= 7.957 mH,

and the shunt arm contains a capacitor of value mC,
i.e. (0.4166)(0.106) = 0.0442 µF or 44.2 nF, in
series with an inductance of

value

(
1 − m2

4m

)
L =

(
1 − 0.41662

4(0.4166)

)
(38.2)

= 18.95 mH
The appropriate ‘m-derived’ T section is shown in

Figure 42.47.

7.957 mH 7.957 mH

44.2 nF

18.95 mH

Figure 42.47

(b) For an ‘m-derived’ low-pass π section:
From Figure 42.46(b) the shunt arms each contain
capacitances equal to mC/2,

i.e.
(0.4166)(0.106)

2
= 0.0221 µF or 22.1 nF

and the series arm contains an inductance of value
m L, i.e. (0.4166)(38.2) = 15.91 mH in parallel with
a capacitance of

value

(
1 − m2

4m

)
C =

(
1 − 0.41662

4(0.4166)

)
(0.106)

= 0.0526 µF or 52.6 nF

The appropriate ‘m-derived’ π section is shown in
Figure 42.48.

15.91 mH

22.1 nF
52.6 nF

22.1 nF

Figure 42.48

(e) High-pass ‘m-derived’ sections

Figure 42.49(a) shows a high-pass prototype T section and
Figure 42.49(b) shows the ‘m-derived’high-pass T section
which is derived from Figure 42.16(a), Figure 42.44 and
equation (42.30).

Figure 42.50(a) shows a high-pass prototype π sec-
tion and Figure 42.50(b) shows the ‘m-derived’ high-pass
π section which is derived from Figure 42.16(b), Fig-
ure 42.45 and equation (42.31). In Figure 42.49(b),
resonance occurs in the shunt arm when:

ω∞
L

m
= 1

ω∞
(

4m

1 − m2

)
C

i.e. when ω2∞ = 1 − m2

4LC
= ω2

c (1 − m2)

from equation (42.14)

i.e. ω∞ = ωc
√

(1 − m2) (42.34)

Hence
ω2∞
ω2

c
= 1 − m2

from which, m =
√[

1 −
(

f∞
fc

)2
]

(42.35)

For a high-pass section, f∞ < fc.
It may be shown that equations (42.34) and (42.35)

also apply to the ‘m-derived’ π section shown in Fig-
ure 42.50(b).

Problem 16. Design (a) a suitable ‘m-derived’T sec-
tion, and (b) a suitable ‘m-derived’ π section having a
cut-off frequency of 20 kHz, a nominal impedance of
500 � and a frequency of infinite attenuation 16 kHz.

Nominal impedance R0 = 500 �, cut-off frequency,
fc = 20 kHz and the frequency of infinite attenuation,
f∞ = 16 kHz. Since f∞< fc the filter is high-pass.

From equation (42.35), m =
√[

1 −
(

f∞
fc

)2
]

=
√[

1 −
(

16

20

)2
]

= 0.60
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Z1
2

Z1
2

Z2

2C 2C

L

2C
m

2C
m

 L
m

4m
1 −m2

C

(a) (b)

Figure 42.49

Z1

2Z2 2Z2

(a)

C

2L 2L 2L
m

C
m

4 m
1 − m2 L

2L
m

(b)

Figure 42.50

For a high-pass prototype section:
From equation (42.18), capacitance,

C = 1

4πR0 fc
= 1

4π(500)(20 000)
≡ 7.958 nF

and from equation (42.19), inductance,

L = R0

4πfc
= 500

4π(20 000)
≡ 1.989 mH

(a) For an ‘m-derived’ high-pass T section:

From Figure 42.49(b), each series arm contains a
capacitance of value 2C/m, i.e. 2(7.958)/0.60, i.e.
26.53 nF, and the shunt arm contains an inductance
of value L/m, i.e. (1.989/0.60) = 3.315 mH in series
with a capacitance of value

(
4m

1 − m2

)
C i.e.

(
4(0.60)

1 − 0.602

)
(7.958) = 29.84 nF

A suitable ‘m-derived’ T section is shown in
Figure 42.51.

(b) For an ‘m-derived’ high-pass π section:
From Figure 42.50(b), the shunt arms each contain
inductances equal to 2L/m, i.e. (2(1.989)/0.60), i.e.
6.63 mH and the series arm contains a capacitance of

26.53 nF 26.53 nF

3.315 mH

29.84 nF

Figure 42.51

value C/m, i.e. (7.958/0.60) = 13.26 nF in parallel
with an inductance of value (4m/1 − m2)L,

i.e.

(
4(0.60)

1 − 0.602

)
(1.989) ≡ 7.459 mH

A suitable ‘m-derived’ π section is shown in Fig-
ure 42.52.

13.26 nF

7.459 mH

6.63 mH 6.63 mH

Figure 42.52
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Now try the following exercise.

Exercise 155 Further problems on ‘m-derived’
filter sections

1. A low-pass filter section is required to have a nom-
inal impedance of 450 �, a cut-off frequency of
150 kHz and a frequency of infinite attenuation
at 160 kHz. Design an appropriate ‘m-derived’ T
section filter.

[Each series arm 0.166 mH; shunt arm
comprises 1.641 nF capacitor in series

with 0.603 mH inductance]

2. In a filter section it is required to have a cut-off
frequency of 1.2 MHz and a frequency of infinite
attenuation 1.3 MHz. If the nominal impedance of
the line into which the filter is to be inserted is
600 �, determine suitable component values if the
section is an ‘m-derived’π type.

[Each shunt arm 85.0 pF; series arm contains
61.21 µH inductance in parallel with

244.9 pF capacitor]

3. Determine the component values of an ‘m-derived’
T section filter having a nominal impedance of
600 �, a cut-off frequency of 1220 Hz and a fre-
quency of infinite attenuation of 1100 Hz.

[Each series arm 0.503 µF; series arm
comprises 90.49 mH inductance in

series with 0.231 µF capacitor]

4. State the advantages of an ‘m-derived’ filter section
over its equivalent prototype.
A filter section is to have a nominal impedance of
500 �, a cutoff frequency of 5 kHz and a frequency
of infinite attenuation of 4.5 kHz. Determine the
values of components if the section is to be an
‘m-derived’ π filter.

[Each shunt arm 36.51 mH inductance;
series arm comprises 73.02 nF capacitor

in parallel with 17.13 mH inductance]

42.9 Practical composite filters

In practise, filters to meet a given specification often have
to comprise a number of basic networks. For example, a
practical arrangement might consist of (i) a basic proto-
type, in series with (ii) an ‘m-derived’ section, with (iii)
terminating half-sections at each end. The ‘m-derived’sec-
tion improves the attenuation immediately after cut-off,

the prototype improves the attenuation well after cut-off,
whilst the terminating half-sections are used to obtain a
constant match over the passband.

Figure 42.53(a) shows an ‘m-derived’ low-pass T sec-
tion, and Figure 42.53(b) shows the same section cut
into two halves through AB, each of the two halves
being termed a ‘half-section’. The ‘m-derived’ half sec-
tion also improves the steepness of attenuation outside
the passband.

Z0T Z0T

mL
2

mL
2

mC

1 −m2

4 m

(a)

Z0T

mC
2

mC
2

L

Z0T

Z0T

(b)

1 − m2

2 m
L1 −m2

2 m L 

mL
2

mL
2A

B

Z0T

Figure 42.53

As shown in Section 42.8, the ‘m-derived’ filter sec-
tion is based on a prototype which presents its own
characteristic impedance at its terminals. Hence, for
example, the prototype of a T section leads to an ‘m-
derived’ T section and Z0T = Z0T (m) where Z0T is the
characteristic impedance of the prototype and Z0T (m) is
the characteristic impedance of the ‘m-derived’ section.
It is shown in Figure 42.24 that Z0T has a non-linear
characteristic against frequency; thus Z0T (m) will also be
non-linear.

Since from equation (42.9), Z0π = (Z1Z2/Z0T ), then
the characteristic impedance of the ‘m-derived’ π
section,

Z0π(m) = Z ′
1Z ′

2

Z0T (m)
= Z ′

1Z ′
2

Z0T

where Z ′
1 and Z ′

2 are the equivalent values of impedance
in the ‘m-derived’ section.
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From Figure 42.44, Z ′
1 = mZ1 and from equation (42.30),

Z ′
2 = Z2

m
+
(

1 − m2

4m

)
Z1

Thus Z0π(m) =
mZ1

[
Z2

m
+
(

1 − m2

4m

)
Z1

]

Z0T

= Z1Z2

Z0T

[
1 +

(
1 − m2

4Z2

)
Z1

]
(42.36)

or Z0π(m) = Z0π

[
1 +

(
1 − m2

4Z2

)
Z1

]
(42.37)

Thus the impedance of the ‘m-derived’ section is related
to the impedance of the prototype by a factor of
[1 + (1 − m2/4Z2)Z1] and will vary as m varies.

When m = 1, Z0π(m) = Z0π

When m = 0, Z0π(m) = Z1Z2

Z0T

[
1 + Z1

4Z2

]

from equation (42.36)

= 1

Z0T

[
Z1Z2 + Z2

1

4

]

However from equation (42.8), Z1Z2 + Z2
1

4
= Z2

0T

Hence, when m = 0, Z0π(m) = Z2
0T

Z0T
= Z0T

Thus the characteristic of impedance against frequency
for m = 1 and m = 0 shown in Figure 42.54 are the same
as shown in Figure 42.24. Further characteristics may be
drawn for values of m between 0 and 1 as shown.

Z0

R0

ZOT

Z 0π
 =

Z 0π (m
)

m
 =

 1

m
 =

 0
.8

m
 =

 0
.6

m = 0.4

Z
OT =Z

0π (m)

m = 0

0 fc Frequency

Pass band
Attenuation

band

Nominal
impedance

Z0π(m)

Figure 42.54

It is seen from Figure 42.54 that when m = 0.6 the
impedance is practically constant at R0 for most of the
pass-band. In a composite filter, ‘m-derived’ half-sections
having a value of m = 0.6 are usually used at each end to
provide a good match to a resistive source and load over
the pass-band.

Figure 42.54 shows characteristics of ‘m-derived’ low-
pass filter sections; similar curves may be constructed for
m-derived high-pass filters with the two curves shown in
Figure 42.30 representing the limiting values of m = 0 and
m = 1.

The value of m needs to be small for the frequency
of input attenuation, f∞, to be close to the cut-off
frequency, fc. However, it is not practical to make m
very small, below 0.3 being very unusual. When m = 0.3,
f∞ ≈ 1.05fc (from equation (42.32)) and when m = 0.6,
f∞ = 1.25fc. The effect of the value of m on the fre-
quency of infinite attenuation is shown in Figure 42.55
although the ideal curves shown would be modified a little
in practise by resistance losses.

Attenuation

m = 0.3

m = 0.6

m = 1

fc 1.05fc 1.25fc Frequency

Figure 42.55

Problem 17. It is required to design a composite fil-
ter with a cut-off frequency of 10 kHz, a frequency of
infinite attenuation 11.8 kHz and nominal impedance
of 600 �. Determine the component values needed if
the filter is to comprise a prototype T section, an ‘m-
derived’ T section and two terminating ‘m-derived’
half-sections.

R0 = 600 �, fc = 10 kHz and f∞ = 11.8 kHz. Since
fc< f∞ the filter is a low-pass T section.

For the prototype:

From equation (42.6), capacitance,

C = 1

πfcR0
= 1

π(10 000)(600)
≡ 0.0531 µF,
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and from equation (42.7), inductance,

L = R0

πfc
= 600

π(10 000)
≡ 19 mH

Thus, from Figure 42.13(a), the series arm components are
(L/2) = (19/2) = 9.5 mH and the shunt arm component is
0.0531 µF.

For the ‘m-derived’ section:

From equation (42.33),

m =
√[

1 −
(

fc
f∞

)2
]

=
√[

1 −
(

10 000

11800

)2
]

= 0.5309

Thus from Figure 42.43(a), the series arm components are

mL

2
= (0.5309)(19)

2
= 5.04 mH

and the shunt arm comprises mC = (0.5309)(0.0531) =
0.0282 µF in series with
(

1 − m2

4m

)
L =

(
1 − 0.53092

4(0.5309)

)
(19) = 6.43 mH

For the half-sections a value of m = 0.6 is taken to obtain
matching. Thus from Figure 42.53.

mL

2
= (0.6)(19)

2
= 5.7 mH,

mC

2
= (0.6)(0.0531)

2

≡ 0.0159 µF

and

(
1 − m2

2m

)
L =

(
1 − 0.62

2(0.6)

)
(19) ≡ 10.13 mH

The complete filter is shown in Figure 42.56.

5.7 mH 9.5 mH 9.5 mH 5.04 mH 5.04 mH 5.7 mH

0.0159 µF

10.13 mH
0.0531 µF

0.0282 µF

6.43 mH

0.0159 µF

10.13 mH

Half section Prototype section "m-derived" section Half section

Figure 42.56

Now try the following exercise.

Exercise 156 Further problems on practical com-
posite filter sections

1. A composite filter is to have a nominal impedance
of 500 �, a cut-off frequency of 1500 Hz and a
frequency of infinite attenuation of 1800 Hz. Deter-
mine the values of components required if the filter
is to comprise a prototype T section, an ‘m-derived’
T section and two terminating half-sections (use
m = 0.6 for the half-sections).

[Prototype: Each series arm 53.1 mH;
shunt arm comprises 0.424 µF

‘m-derived’: Each series arm 29.3 mH;
shunt arm comprises 0.235 µF

capacitor in series with 33.32 mH inductance.
Half-sections: Series arm 31.8 mH;

shunt arm comprises 0.127 µF
capacitor in series with 56.59 mH inductance]

2. A filter made up of a prototype π section, an ‘m-
derived’π section and two terminating half-sections
in cascade has a nominal impedance of 1 k�, a
cut-off frequency of 100 kHz and a frequency of
infinite attenuation of 90 kHz. Determine the val-
ues of the components comprising the composite
filter and explain why such a filter is more suit-
able than just the prototype. (Use m = 0.6 for the
half-sections.)

[Prototype: Series arm 795.8 pF,
each shunt arm 1.592 mH ‘m-derived’: Each

shunt arm 3.651 mH; series arm 1.826 nF
capacitor in parallel with 1.713 mH inductance.

Half-sections: Shunt arm 2.653 mH; series
arm 2.653 nF capacitor in parallel

with 1.492 mH inductance]
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43 Magnetically coupled circuits

At the end of this chapter you should be able to:
• define mutual inductance

• deduce that E2 = −M
dI1

dt
, M = N2

d�2

dI1
, M = N1

d�1

dI2
and perform calculations

• show that M = k
√

(L1L2) and perform calculations

• perform calculations on mutually coupled coils in
series

• perform calculations on coupled circuits
• describe and use the dot rule in coupled circuit

problems.

43.1 Introduction

When the interaction between two loops of a circuit takes
place through a magnetic field instead of through com-
mon elements, the loops are said to be inductively or
magnetically coupled. The windings of a transformer,
for example, are magnetically coupled (see Chapter 20).

43.2 Self-inductance

It was shown in Chapter 9, that the e.m.f. E induced in a
coil of inductance L henrys is given by:

E = −L
di
dt

volts where
di

dt
is the rate of change of

current,

the magnitude of the e.m.f. induced in a coil of N turns is
given by:

E = −N
d�

dt
volts where

d�

dt
is the rate of change

of flux,

and the inductance of a coil L is given by:

L = N�

I
henrys

43.3 Mutual inductance

Mutual inductance is said to exist between two circuits
when a changing current in one induces, by electromag-
netic induction, an e.m.f. in the other. An ideal equivalent
circuit of a mutual inductor is shown in Figure 43.1.

CIRCUIT
1

CIRCUIT
2

N1 N2

M

L1 L2

Figure 43.1

L1 and L2 are the self inductances of the two circuits
and M the mutual inductance between them. The mutual
inductance M is defined by the relationship:

E2 = −M
dI1

dt
or E1 = −M

dI2

dt
(43.1)

where E2 is the e.m.f. in circuit 2 due to current I1 in
circuit 1 and E1 is the e.m.f. in circuit 1 due to the current
I2 in circuit 2.
The unit of M is the henry.

From Section 43.2, E2 = −N2
d�2

dt
or

E1 = −N1
d�1

dt
(43.2)
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Equating the E2 terms in equations (43.1) and (43.2) gives:

−M
dI1

dt
= −N2

d�2

dt

from which M = N2
d�2

dI1
(43.3)

Equating the E1 terms in equations (43.1) and (43.2) gives:

−M
dI2

dt
= −N1

d�1

dt

from which M = N1
d�1

dI2
(43.4)

If the coils are linked with air as the medium, the flux and
current are linearly related and equations (43.3) and (43.4)
become:

M = N2�2

I1
and M = N1�1

I2
(43.5)

Problem 1. A and B are two coils in close proximity.
A has 1200 turns and B has 1000 turns. When a current
of 0.8A flows in coil A a flux of 100 µWb links with
coil A and 75% of this flux links coil B. Determine
(a) the self inductance of coil A, and (b) the mutual
inductance.

(a) From Section (43.2),

self inductance of coil A,

LA = NA�A

IA
= (1200)(100 × 10−6)

0.80

= 0.15 H

(b) From equation (43.5),

mutual inductance, M

= NB�B

IA
= (1000)(0.75 × 100 × 10−6)

0.80

= 0.09375 H or 93.75 mH

Problem 2. Two circuits have a mutual inductance of
600 mH. A current of 5A in the primary is reversed in
200 ms. Determine the e.m.f. induced in the secondary,
assuming the current changes at a uniform rate.

Secondary e.m.f., E2 = −M
dI1

dt
, from equation (43.1).

Since the current changes from +5A to −5A, the change
of current is 10A.

Hence
dI1

dt
= 10

200 × 10−3 = 50A/s

Hence secondary induced e.m.f.,

E2 = −M
dI1

dt
= −(600 × 10−3)(50)

= −30 volts

Now try the following exercise.

Exercise 157 Further problems on mutual
inductance

1. If two coils have a mutual inductance of 500 µH,
determine the magnitude of the e.m.f. induced in
one coil when the current in the other coil varies at
a rate of 20 × 103 A/s [10V]

2. An e.m.f. of 15V is induced in a coil when the
current in an adjacent coil varies at a rate of 300A/s.
Calculate the value of the mutual inductance of the
two coils [50 mH]

3. Two circuits have a mutual inductance of 0.2 H.
A current of 3A in the primary is reversed in 200 ms.
Determine the e.m.f. induced in the secondary,
assuming the current changes at a uniform rate.

[−6V]

4. A coil, x, has 1500 turns and a coil, y, situated close
to x has 900 turns. When a current of 1A flows in
coil x a flux of 0.2 mWb links with x and 0.65 of this
flux links coil y. Determine (a) the self inductance
of coil x, and (b) the mutual inductance between the
coils. [(a) 0.30 H (b) 0.117 H]

43.4 Coupling coefficient

The coupling coefficient k is the degree or fraction of
magnetic coupling that occurs between circuits.

k = flux linking two circuits

total flux produced

When there is no magnetic coupling, k = 0. If the mag-
netic coupling is perfect, i.e. all the flux produced in
the primary links with the secondary then k = 1. Coup-
ling coefficient is used in communications engineering to
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denote the degree of coupling between two coils. If the
coils are close together, most of the flux produced by cur-
rent in one coil passes through the other, and the coils are
termed tightly coupled. If the coils are spaced apart, only
a part of the flux links with the second, and the coils are
termed loosely-coupled.

From Section 43.2, the inductance of a coil is given by

L = N�

I

Thus for the circuit of Figure 43.1, L1 = N1�1

I1

from which, �1 = L1I1

N1
(43.6)

From equation (43.5), M = (N2�2/I1), but the flux that
links the second circuit, �2 = k�1

Thus M = N2�2

I1
= N2(k�1)

I1
= N2k

I1

(
L1I1

N1

)
from

equation (43.6)

i.e. M = kN2L1

N1
from which,

N2

N1
= M

kL1
(43.7)

Also, since the two circuits can be reversed,

M = kN1L2

N2
from which,

N2

N1
= kL2

M
(43.8)

Thus from equations (43.7) and (43.8),

N2

N1
= M

kL1
= kL2

M

from which,

M2 = k2L1L2 and M = k
√

(L1L2) (43.9)

or, coefficient of coupling, k = M√
(L1L2)

(43.10)

Problem 3. Two coils have self inductances of
250 mH and 400 mH respectively. Determine the mag-
netic coupling coefficient of the pair of coils if their
mutual inductance is 80 mH.

From equation (43.10), coupling coefficient,

k = M√
(L1L2)

= 80 × 10−3

√
[(250 × 10−3)(400 × 10−3)]

= 80 × 10−3

√
(0.1)

= 0.253

Problem 4. Two coils, X and Y, having self induct-
ances of 80 mH and 60 mH respectively, are magnet-
ically coupled. Coil X has 200 turns and coil Y has
100 turns. When a current of 4A is reversed in coil X
the change of flux in coil Y is 5 mWb. Determine (a)
the mutual inductance between the coils, and (b) the
coefficient of coupling.

(a) From equation (43.3),

mutual inductance, M = NY
d�Y

dIX

= (100)(5 × 10−3)

(4 − −4)

= 0.0625 H or 62.5 mH

(b) From equation (43.10),

coefficient of coupling, k = M√
(LXLY )

= 0.0625√
[(80 × 10−3)(60 × 10−3)]

= 0.902

Now try the following exercise.

Exercise 158 Further problems on coupling
coefficient

1. Two coils have a mutual inductance of 0.24 H. If
the coils have self inductances of 0.4 H and 0.9 H
respectively, determine the magnetic coefficient of
coupling. [0.40]

2. Coils A and B are magnetically coupled. Coil A
has a self inductance of 0.30 H and 300 turns, and
coil B has a self inductance of 0.20 H and 120 turns.
A change of flux of 8 mWb occurs in coil B when
a current of 3A is reversed in coil A. Determine
(a) the mutual inductance between the coils, and
(b) the coefficient of coupling.

[(a) 0.16 H (b) 0.653]

43.5 Coils connected in series

Figure 43.2 shows two coils 1 and 2 wound on an insu-
lating core with terminals B and C joined. The fluxes in
each coil produced by current i are in the same direction
and the coils are termed cumulatively coupled.

Let the self inductance of coil 1 be L1 and that of coil 2
be L2 and let their mutual inductance be M.
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COIL 1

COIL 2

A

B

C

D

i

Figure 43.2

If in dt seconds, the current increases by di amperes
then the e.m.f. induced in coil 1 due to its self inductance
is L1(di/dt) volts, and the e.m.f. induced in coil 2 due
to its self inductance is L2(di/dt) volts. Also, the e.m.f.
induced in coil 1 due to the increase of current in coil 2 is
M(di/dt) volts and the e.m.f. induced in coil 2 due to the
increase of current in coil 1 is M(di/dt).
Hence the total e.m.f. induced in coils 1 and 2 is:

L1
di

dt
+ L2

di

dt
+ 2

(
M

di

dt

)
volts

= (L1 + L2 + 2M)
di

dt
volts

If the winding between terminals A and D in Figure 43.2
are considered as a single circuit having a self inductance
LA henrys then if the same increase in dt seconds is di
amperes then the e.m.f. induced in the complete circuit is
LA(di/dt) volts.

Hence LA
di

dt
= (L1 + L2 + 2M)

di

dt

i.e. LA = L1 + L2 + 2M (43.11)

If terminals B and D are joined as shown in Figure 43.3
the direction of the current in coil 2 is reversed and the
coils are termed differentially coupled. In this case, the
total e.m.f. induced in coils 1 and 2 is:

L1
di

dt
+ L2

di

dt
− 2M

di

dt

The e.m.f. M(di/dt) induced in coil 1 due to an increase di
amperes in dt seconds in coil 2 is in the same direction as
the current and is hence in opposition to the e.m.f. induced
in coil 1 due to its self inductance. Similarly, the e.m.f.
induced in coil 2 by mutual inductance is in opposition to
that induced by the self inductance of coil 2.

i

COIL 1

COIL 2

A

B

C

D

Figure 43.3

If LB is the self inductance of the whole circuit between
terminals A and C in Figure 43.3 then:

LB
di

dt
= L1

di

dt
+ L2

di

dt
− 2M

di

dt

i.e. LB = L1 + L2 − 2M (43.12)

Thus the total inductance L of inductively coupled circuits
is given by:

L = L1 + L2 ± 2M (43.13)

Equation (43.11) − equation (43.12) gives:

LA − LB = (L1 + L2 + 2M) − (L1 + L2 − 2M)

i.e. LA − LB = 2M − (−2M) = 4 M

from which, mutual inductance, M = LA − LB

4

(43.14)

An experimental method of determining the mutual
inductance is indicated by equation (43.14), i.e. con-
nect the coils both ways and determine the equivalent
inductances LA and LB using an a.c. bridge. The mutual
inductance is then given by a quarter of the difference
between the two values of inductance.

Problem 5. Two coils connected in series have self
inductance of 40 mH and 10 mH respectively. The total
inductance of the circuit is found to be 60 mH. Deter-
mine (a) the mutual inductance between the two coils,
and (b) the coefficient of coupling.
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(a) From equation (43.13), total inductance,
L = L1 + L2 ± 2M

Hence 60 = 40 + 10 ± 2M

Since (L1 + L2) < L then 60 = 40 + 10 + 2M

from which 2M = 60 − 40 − 10 = 10

and mutual inductance, M = 10

2
= 5 mH

(b) From equation (43.10), coefficient of coupling,

k = M√
(L1L2)

= 5 × 10−3

√
[(40 × 10−3)(10 × 10−3)]

= 5 × 10−3

0.02

i.e. coefficient of coupling, k = 0.25

Problem 6. Two mutually coupled coils X and Y are
connected in series to a 240V d.c. supply. Coil X has
a resistance of 5 � and an inductance of 1 H. Coil Y
has a resistance of 10 � and an inductance of 5 H. At a
certain instant after the circuit is connected, the current
is 8A and increasing at a rate of 15A/s. Determine
(a) the mutual inductance between the coils and (b)
the coefficient of coupling.

The circuit is shown in Figure 43.4.

i

V = 240 V

COIL X

COIL Y

M

Rx  = 5 Ω
 Lx  = 1 H

Ry  = 10  Ω
 Ly  = 5 H

Figure 43.4

(a) From Kirchhoff’s voltage law:

V = iR + L
di

dt

i.e. 240 = 8(5 + 10) + L(15)

i.e. 240 = 120 + 15L

from which, L = 240 − 120

15
= 8 H

From equation (43.11),

L = LX + LY + 2M

Hence 8 = 1 + 5 + 2M

from which, mutual inductance, M = 1 H
(b) From equation (43.10),

coefficient of coupling, k = M√
(LXLY )

= 1√
[(1)(5)]

= 0.447

Problem 7. Two coils are connected in series and
their effective inductance is found to be 15 mH. When
the connection to one coil is reversed, the effective
inductance is found to be 10 mH. If the coefficient of
coupling is 0.7, determine (a) the self inductance of
each coil, and (b) the mutual inductance.

(a) From equation (43.13),

total inductance, L = L1+ L2 ± 2M

and from equation (43.9), M = k
√

(L1L2)

hence L = L1 + L2 ± 2k
√

(L1L2)

Since in equation (43.11),

LA = 15 mH, 15 = L1 + L2 + 2k
√

(L1L2)

(43.15)
and since in equation (43.12),

LB = 10 mH, 10 = L1 + L2 − 2k
√

(L1L2)

(43.16)
Equation (43.15) + equation (43.16) gives:

25 = 2L1 + 2L2 and 12.5 = L1 + L2 (43.17)

From equation (43.17), L2 = 12.5 − L1

Substituting in equation (43.15), gives:

15 = L1 + (12.5 − L1)

+2(0.7)
√

[L1(12.5 − L1)]

i.e. 15 = 12.5 + 1.4
√

(12.5L1 − L2
1)

15 − 12.5

1.4
= √

(12.5L1 − L2
1)

and

(
15 − 12.5

1.4

)2

= 12.5L1 − L2
1

i.e. 3.189 = 12.5L1 − L2
1



Ch43-H8139.tex 29/3/2007 14: 36 page 592

592 Electrical Circuit Theory and Technology

from which, L2
1 − 12.5L1 + 3.189 = 0

Using the quadratic formula:

L1 = −(−12.5) ± √
[(−12.5)2 − 4(1)(3.189)]

2(1)

i.e. L1 = 12.5 ± (11.98)

2
= 12.24 mH or 0.26 H

From equation (43.17):

L2 = 12.5 − L1 = (12.5 − 12.24) = 0.26 mH

or (12.5 − 0.26) = 12.24 mH

(b) From equation (43.14),

mutual inductance, M = LA − LB

4

= 15 − 10

4
= 1.25 mH

Now try the following exercise.

Exercise 159 Further problems on coils connected
in series

1. Two coils have inductances of 50 mH and 100 mH
respectively. They are placed so that their mutual
inductance is 10 mH. Determine their effective
inductance when the coils are (a) in series aid-
ing (i.e. cumulatively coupled), and (b) in series
opposing (i.e. differentially coupled).

[(a) 170 mH (b) 130 mH]

2. The total inductance of two coils connected in series
is 0.1 H. The coils have self inductance of 25 mH
and 55 mH respectively. Determine (a) the mutual
inductance between the two coils, and (b) the
coefficient of coupling.

[(a) 10 mH (b) 0.270]

3. A d.c. supply of 200V is applied across two mutu-
ally coupled coils in series, A and B. Coil A has
a resistance of 2 � and a self inductance of 0.5 H;
coil B has a resistance of 8 � and a self induct-
ance of 2 H. At a certain instant after the circuit is
switched on, the current is 10A and increasing at
a rate of 25A/s. Determine (a) the mutual induc-
tance between the coils, and (b) the coefficient of
coupling. [(a) 0.75 H (b) 0.75]

4. A ferromagnetic-cored coil is in two sections.
One section has an inductance of 750 mH and
the other an inductance of 148 mH. The coeffi-
cient of coupling is 0.6. Determine (a) the mutual

inductance, (b) the total inductance when the sec-
tions are connected in series aiding, and (c) the total
inductance when the sections are in series opposing.

[(a) 200 mH (b) 1.298 H (c) 0.498 H]

5. Two coils are connected in series and their total
inductance is measured as 0.12 H, and when the
connection to one coil is reversed, the total induct-
ance is measured as 0.04 H. If the coefficient of
coupling is 0.8, determine (a) the self inductance of
each coil, and (b) the mutual inductance between
the coils.

[(a) L1 = 71.22 mH or 8.78 mH,
L2 = 8.78 mH or 71.22 mH

(b) 20 mH]

43.6 Coupled circuits

The magnitude of the secondary e.m.f. E2 in Figure 43.5
is given by:

E2 = M
dI1

dt
, from equation (43.1)

If the current I1 is sinusoidal, i.e. I1 = I1m sin ωt

then E2 = M
d

dt
(I1m sin ωt) = MωI1m cos ωt

Since cos ωt = sin (ωt + 90◦) then cos ωt = j sin ωt in
complex form.

Hence E2 = MωI1m(j sin ωt) = jωM(I1m sin ωt)

i.e. E2 = jωMI1 (43.18)

If L1 is the self inductance of the primary winding in Fig-
ure 43.5, there will be an e.m.f. generated equal to jωL1I1
induced into the primary winding since the flux set up by
the primary current also links with the primary winding.

E1

I1

E2

Magnetic flux

Figure 43.5
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(a) Secondary open-circuited

Figure 43.6 shows two coils, having self inductances of
L1 and L2 which are inductively coupled together by a
mutual inductance M. The primary winding has a voltage
generator of e.m.f. E1 connected across its terminals. The
internal resistance of the source added to the primary resis-
tance is shown as R1 and the secondary winding which is
open-circuited has a resistance of R2.

I1

R1 R2

E1

L1 L2

M

Figure 43.6

Applying Kirchhoff’s voltage law to the primary circuit
gives:

E1 = I1R1 + L1
dI1

dt
(43.19)

If E1 and I1 are both sinusoidal then equation (43.19)
becomes:

E1 = I1R1 + L1
d

dt
(I1m sin ωt)

= I1R1 + L1ωI1m cos ωt

= I1R1 + L1ω( jI1m sin ωt)

i.e. E1 = I1R1 + jωI1L1 = I1(R1 + jωL1)

i.e. I1 = E1

R1 + jωL1
(43.20)

From equation (43.18), E2 = jωMI1

from which, I1 = E2

jωM
(43.21)

Equating equations (43.20) and (43.21) gives:

E2

jωM
= E1

R1 + jωL1

and E2 = jωME1

R1 + jωL1
(43.22)

Problem 8. For the circuit shown in Figure 43.7,
determine the p.d. E2 which appears across the
open-circuited secondary winding, given that
E1 = 8 sin 2500t volts.

I1

E1

15 Ω 15 Ω

E2

5 mH 5 mH

M = 0.1 mH

Figure 43.7

Impedance of primary,

Z1 = R1 + jωL1 = 15 + j(2500)(5 × 10−3)

= (15 + j12.5)� or 19.53∠39.81◦�

Primary current I1 = E1

Z1
= 8∠0◦

19.53∠39.81◦

From equation (43.18),

E2 = jωMI1 = jωME1

(R1 + jωL1)

= j(2500)(0.1 × 10−3)(8∠0◦)

19.53∠39.81◦

= 2∠90◦

19.53∠39.81◦ = 0.102∠50.19◦ V

Problem 9. Two coils x and y, with negligible resis-
tance, have self inductances of 20 mH and 80 mH
respectively, and the coefficient of coupling between
them is 0.75. If a sinusoidal alternating p.d. of 5V
is applied to x, determine the magnitude of the open
circuit e.m.f. induced in y.

From equation (43.9), mutual inductance,

M = k
√

(LxLy) = 0.75
√

[(20 × 10−3)(80 × 10−3)]

= 0.03 H
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From equation (43.22), the magnitude of the open circuit
e.m.f. induced in coil y,

|Ey| = jωMEx

Rx + jωLx

When R1 = 0, |Ey| = jωMEx

jωLx
= MEx

Lx
= (0.03)(5)

20 × 10−3

= 7.5V

(b) Secondary terminals having load impedance

In the circuit shown in Figure 43.8 a load resistor RL is con-
nected across the secondary terminals. Let R′

2 + RL = R2

I1

E1

R1

E2

L1

M

L2

R2′

RL

I2

Figure 43.8

When an e.m.f. is induced into the secondary winding
a current I2 flows and this will induce an e.m.f. into the
primary winding.

Applying Kirchhoff’s voltage law to the primary wind-
ing gives:

E1 = I1(R1 + jωL1) ± jωMI2 (43.23)

Applying Kirchhoff’s voltage law to the secondary wind-
ing gives:

0 = I2(R2 + jωL2) ± jωMI1 (43.24)

From equation (43.24), I2 = ∓jωMI1

(R2 + jωL2)
Substituting this in equation (43.23) gives:

E1 = I1(R1 + jωL1) ± jωM

( ∓jωMI1

(R2 + jωL2)

)

i.e. E1 = I1

[
(R1 + jωL1) + ω2M2

(R2 + jωL2)

]
since j2= −1

= I1

[
(R1 + jωL1) + ω2M2(R2 − jωL2)

R2
2 + ω2L2

2

]

= I1

[
R1 + jωL1 + ω2M2R2

R2
2 + ω2L2

2

− jω3M2L2

R2
2 + ω2L2

2

]

The effective primary impedance Z1(eff) of the circuit is
given by:

Z1(eff) = E1

I1

= R1+ ω2M2R2

R2
2 + ω2L2

2

+j

(
ωL1 − ω3M2L2

R2
2 + ω2L2

2

)

(43.25)

In equation (43.25), the primary impedance is

(R1 + jωL1). The remainder,

i.e.

(
ω2M2R2

R2
2 + ω2L2

2

− j
ω3M2L2

R2
2 + ω2L2

2

)

is known as the reflected impedance since it represents
the impedance reflected back into the primary side by the
presence of the secondary current.

Hence reflected impedance

= ω2M2R2

R2
2 + ω2L2

2

− j
ω3M2L2

R2
2 + ω2L2

2

= ω2M2

(
R2 − jωL2

R2
2 + ω2L2

2

)

= ω2M2 (R2 − jωL2)

(R2 + jωL2)(R2 − jωL2)
= ω2M2

R2 + jωL2

i.e. reflected impedance, Zr = ω2M2

Z2
(43.26)

Problem 10. For the circuit shown in Figure 43.9,
determine the value of the secondary current I2 if

E1 = 2∠0◦ volts and the frequency is
103

π
Hz.

I1 16 Ω 16 Ω I2

50 Ω4 Ω

E1

10 mH 10 mH

M = 2 mH

Figure 43.9
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From equation (43.25), R1(eff) is the real part of Z1(eff),

i.e. R1(eff) = R1 + ω2M2R2

R2
2 + ω2L2

2

= (4+16)+

(
2π

103

π

)2

(2×10−3)2(16+50)

662 +
(

2π
103

π

)2

(10×10−3)2

= 20+ 1056

4756
= 20.222 �

and X1(eff) is the imaginary part of Z1(eff), i.e.

X1(eff) = ωL1 − ω3M2L2

R2
2 + ω2L2

2

=
(

2π
103

π

)
(10 × 10−3)

−

(
2π

103

π

)3

(2 × 10−3)2(10 × 10−3)

662 +
(

2π
103

π

)2

(10 × 10−3)2

= 20 − 320

4756
= 19.933 �

Hence primary current,

I1 = E1

Z1(eff)
= 2∠0◦

(20.222 + j19.933)

= 2∠0◦

28.395∠44.59◦ = 0.0704∠−44.59◦ A

From equation (43.18),

E2 = jωMI1

= j

(
2π

103

π

)
(2 × 10−3)(0.0704∠−44.59◦)

= (4∠90◦)(0.0704∠−44.59◦)

= 0.282∠45.41◦ V

Hence secondary current,

I2 = E2

Z2
= 0.282∠45.41◦

66 + j

(
2π

103

π

)
(10 × 10−3)

= 0.282∠45.41◦

(66 + j20)

= 0.282∠45.41◦

68.964∠16.86◦ = 4.089 × 10−3∠28.55◦ A

i.e. I2 = 4.09∠28.55◦ mA

Problem 11. For the coupled circuit shown in Figure
43.10, calculate (a) the self impedance of the primary
circuit, (b) the self impedance of the secondary circuit,
(c) the impedance reflected into the primary circuit,
(d) the effective primary impedance, (e) the primary
current, and (f) the secondary current.

I1 300 Ω 0.2 H

50∠0° V

v = 500 rad/s

0.5 H 0.3 H

I2

500 Ω

5 µF

M = 0.2 H

Figure 43.10

(a) Self impedance of primary circuit,

Z1 = 300 + j(500)(0.2 + 0.5)

i.e. Z1 = (300 + j350) �

(b) Self impedance of secondary circuit,

Z2 = 500 + j

[
(500)(0.3) − 1

(500)(5 × 10−6)

]

= 500 + j(150 − 400)

i.e. Z2 = (500 − j250)�

(c) From equation (43.26),

reflected impedance, Zr = ω2M2

Z2

= (500)2(0.2)2

(500 − j250)

= 104(500 + j250)

5002 + 2502

= (16 + j8) �

(d) Effective primary impedance,

Z1(eff) = Z1 + Zr (note this is equivalent to

equation 43.25)

= (300 + j350) + (16 + j8)

i.e. Z1(eff) = (316 + j358) �
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(e) Primary current, I1 = E1

Z1(eff)
= 50∠0◦

(316 + j358)

= 50∠0◦

477.51∠48.57◦

= 0.105∠−48.57◦ A

(f) Secondary current, I2 = E2

Z2
, where

E2 = jωMI1 from equation (43.18)

Hence I2 = jωMI1

Z2
= j(500)(0.2)(0.105∠−48.57◦)

(500 − j250)

= (100∠90◦)(0.105∠−48.57◦)

559.02∠−26.57◦

= 0.0188∠68◦ A or 18.8∠68◦ mA

(c) Resonance by tuning capacitors

Tuning capacitors may be added to the primary and/or
secondary circuits to cause it to resonate at partic-
ular frequencies. These may be connected either in
series or in parallel with the windings. Figure 43.11
shows each winding tuned by series-connected capaci-
tors C1 and C2. The expression for the effective primary
impedance Z1(eff), i.e. equation (43.25) applies except
that ωL1 becomes (ωL1 − (1/ωC1)) and ωL2 becomes
(ωL2 − (1/ωC2))

I1

C1
R1

L1 L2

C2

I2

E1 R2

M

Figure 43.11

Problem 12. For the circuit shown in Figure 43.12
each winding is tuned to resonate at the same fre-
quency. Determine (a) the resonant frequency, (b) the
value of capacitor C2, (c) the effective primary
impedance, (d) the primary current, (e) the voltage
across capacitor C2 and (f) the coefficient of coupling.

I1

400 pF 30 Ω

1 mH 0.2 mH

50 Ω

I2

C2

15 Ω

M = 10 µH

E1 = 20∠0° V

Figure 43.12

(a) For resonance in a series circuit, the resonant fre-
quency, fr , is given by:

fr = 1

2π
√

(LC)
Hz

Hence fr = 1

2π
√

(L1C1)

= 1

2π
√

(1 × 10−3)(400 × 10−12)

= 251.65 kHz

(b) The secondary is also tuned to a resonant frequency
of 251.65 kHz.

Hence fr = 1

2π
√

(L2C2)
i.e. (2πfr)2 = 1

L2C2

and capacitance,

C2 = 1

L2(2πfr)2

= 1

(0.2 × 10−3)[2π(251.65 × 103)]2

= 2.0 × 10−9 F or 2.0 nF

(Note that since fr = 1

2π
√

(L1C1)
= 1

2π
√

(L2C2)

then L1C1 = L2C2

and C2 = L1C1

L2
= (1 × 10−3)(400 × 10−12)

0.2 × 10−3

= 2.0 nF)

(c) Since both the primary and secondary circuits are res-
onant, the effective primary impedance Z1(eff), from
equation (43.25) is resistive,

i.e. Z1(eff) = R1 + ω2M2R2

R2
2 +

(
ωL1 − 1

ωC1

)2

= R1 + ω2M2R2

R2
2
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= R1 + ω2M2

R2

= (15 + 30) + [2π(251.65 × 103)]2(10 × 10−6)2

50

= 45 + 5 = 50 �

(d) Primary current, I1 = E1

Z1(eff)

= 20∠0◦

50

= 0.40∠0◦ A

(e) From equation (43.18), secondary voltage

E2 = jωMI1

= j(2π)(251.65 × 103)(10 × 10−6)(0.40∠0◦)

= 6.325∠90◦ V

Secondary current, I2 = E2

Z2
= 6.325∠90◦

50∠0◦

= 0.1265∠90◦ A

Hence voltage across capacitor C2

= (I2)(XC2) = (I2)

(
1

ωC2

)

= (0.1265∠90◦)

×
(

1

[2π(251.65 × 103)](2.0 × 10−9)
∠−90◦

)

= 40∠0◦ V

(f) From equation (43.10), the

coefficient of coupling, k = M√
(L1L2)

= 10 × 10−6

√
(1 × 10−3)(0.2 × 10−3)

= 0.0224

Now try the following exercise.

Exercise 160 Further problems on coupled
circuits

1. Determine the value of voltage E2 which appears
across the open circuited secondary winding of
Figure 43.13. [0.93∠68.20◦ V]

5 Ω 10 Ω

2 mH 3 mH E2
E1 =

10 sin 1000 t volts

M = 0.5 mH

Figure 43.13

2. The coefficient of coupling between two coils
having self inductances of 0.5 H and 0.9 H respec-
tively is 0.85. If a sinusoidal alternating voltage of
50 mV is applied to the 0.5 H coil, determine the
magnitude of the open-circuit e.m.f. induced in the
0.9 H coil. [57 mV]

3. Determine the value of (a) the primary current, I1,
and (b) the secondary current I2, for the circuit
shown in Figure 43.14.

[(a) 0.197∠−71.91◦ A (b) 0.030∠−48.48◦ A]

I1 20 Ω 25 Ω

I2

40 Ω
20 mH 30 mH

10 Ω

v = 5000 rad/s

20∠0° V

M = 5 mH

Figure 43.14

4. For the magnetically coupled circuit shown in
Figure 43.15, determine (a) the self impedance
of the primary circuit, (b) the self impedance of
the secondary circuit, (c) the impedance reflected
into the primary circuit, (d) the effective primary
impedance, (e) the primary current, and (f) the
secondary current.

[(a) (100 + j200)�
(b) (40 + j80)� (c) (40.5 − j81.0)�

(d) (140.5 + j119)� (e) 0.543∠−40.26◦ A
(f) 0.546∠−13.69◦ A]
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I1
80 mH

100 Ω

120 mH 100 mH

I2

50 µF

40 Ω

M = 90 mH

100∠0° V

v = 1000 rad/s

Figure 43.15

5. In the coupled circuit shown in Figure 43.16, each
winding is tuned to resonance at the same fre-
quency. Calculate (a) the resonant frequency, (b) the
value of CS , (c) the effective primary impedance,
(d) the primary current, (e) the secondary cur-
rent, (f) the p.d. across capacitor CS , and (g) the
coefficient of coupling.

[(a) 14.235 kHz (b) 12.5 nF (c) 1659.9 �
(d) 18.07∠0◦ mA (e) 80.94∠90◦ mA

(f) 72.40∠0◦ V (g) 0.253]

I1

50 Ω
5 nF 80 Ω

I2

CS

25 mH 10 mH

10 Ω

M = 4 mH

30∠0° V

Figure 43.16

43.7 Dot rule for coupled circuits

Applying Kirchhoff’s voltage law to each mesh of the
circuit shown in Figure 43.17 gives:

I1

R1

I2

R2

L1 L2 RLE1

M

Figure 43.17

E1 = I1(R1 + jωL1) ± jωMI2

and 0 = I2(R2 + RL + jωL2) ± jωMI1

In these equations the ‘M’ terms have been written as
± because it is not possible to state whether the mag-
netomotive forces due to currents I1 and I2 are added
or subtracted. To make this clearer a dot notation is
used whereby the polarity of the induced e.m.f. due
to mutual inductance is identified by placing a dot
on the diagram adjacent to that end of each equiva-
lent winding which bears the same relationship to the
magnetic flux.

The dot rule determines the sign of the voltage of
mutual inductance in the Kirchhoff’s law equations shown
above, and states:

(i) when both currents enter, or both currents leave,
a pair of coupled coils at the dotted terminals, the
signs of the ‘M’ terms will be the same as the signs
of the ‘L’ terms, or

(ii) when one current enters at a dotted terminal and one
leaves by a dotted terminal, the signs of the ‘M’terms
are opposite to the signs of the ‘L’ terms.

Thus Figure 43.18 shows two cases in which the signs of
M and L are the same, and Figure 43.19 shows two cases
where the signs of M and L are opposite. In Figure 43.17,
therefore, if dots had been placed at the top end of coils L1
and L2 then the terms jωMI2 and jωMI1 in the Kirchhoff’s
equation would be negative (since current directions are
similar to Figure 43.19(a)).

(a) (b)

Figure 43.18

(a) (b)

Figure 43.19
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Problem 13. For the coupled circuit shown in Figure
43.20, determine the values of currents I1 and I2

I1 I2M = j10 Ω

 j50 Ω  j50 Ω

10 Ω 10 Ω

50 Ω250∠0°V

Figure 43.20

The position of the dots and the current directions corres-
pond to Figure 43.19(a), and hence the signs of the M and
L terms are opposite. Applying Kirchhoff’s voltage law to
the primary circuit gives:

250∠0◦ = (10 + j50)I1 − j10I2 (1)

and applying Kirchhoff’s voltage law to the secondary
circuit gives:

0 = (10 + 50 + j50)I2 − j10I1 (2)

From equation (2), j10I1 = (60 + j50)I2

and I1 = (60 + j50)I2

j10

=
(

60

j10
+ j50

j10

)
I2 = (−j6 + 5)I2

i.e. I1 = (5 − j6)I2 (3)

Substituting for I1 in equation (1) gives:

250∠0◦ = (10 + j50)(5 − j6)I2 − j10I2

= (50 − j60 + j250 + 300 − j10)I2

= (350 + j180)I2

from which, I2 = 250∠0◦

(350 + j180)
= 250∠0◦

393.57∠27.22◦

= 0.635∠−27.22◦ A
From equation (3),

I1 = (5 − j6)I2

= (5 − j6)(0.635∠−27.22◦)

= (7.810∠−50.19◦)(0.635∠−27.22◦)

i.e. I1 = 4.959∠−77.41◦ A

Problem 14. The circuit diagram of an air-cored
transformer winding is shown in Figure 43.21. The
coefficient of coupling between primary and secondary
windings is 0.70. Determine for the circuit (a) the
mutual inductance M, (b) the primary current I1 and
(c) the secondary terminal p.d.

I1 I2

R1 = 5 Ω R2 = 40 Ω

L1 = 1 mH L2 = 6 mH

M

40∠0°V ZL= 200∠−60° Ω

20 kHz

Figure 43.21

(a) From equation (43.9),

mutual inductance, M =k
√

(L1L2)

= 0.70
√

[(1×10−3)(6×10−3)]

= 1.715 mH

(b) The two mesh equations are:

40∠0◦ = (R1 + jωL1)I1 − jωMI2 (1)

and 0 = (R2 + jωL2 + ZL)I2 − jωMI1 (2)

(Note that with the dots and current directions shown,
the jωMI terms are negative)

R1 + jωL1 = 5 + j2π(20 × 103)(1 × 10−3)

= (5 + j125.66) � or 125.76∠87.72◦ �

jωM = j2π(20 × 103)(1.715 × 10−3)

= j215.51 � or 215.51∠90◦ �

R2 + jωL2 + ZL = 40 + j2π(20 × 103)(6 × 10−3)

+200∠−60◦

= 40 + j753.98 + 100 − j173.21

= (140 + j580.77) � or

597.41∠76.45◦ �

Hence 40∠0◦ = 125.76∠87.72◦I1 − 215.51∠90◦I2

(3)

0 = −215.51∠90◦I1 + 597.41∠76.45◦I2

(4)
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From equation (4), I2 = 215.51∠90◦

597.41∠76.45◦ I1

= 0.361∠13.55◦I1 (5)

Substituting for I2 in equation (3) gives:

40∠0◦ = 125.76∠87.72◦I1

−(215.51∠90◦)(0.361∠13.55◦I1)

= I1(125.76∠87.72◦ − 77.80∠103.55◦)

= I1[(5 + j125.66) − (−18.23 + j75.63)]

= I1(23.23 − j50.03)

i.e. 40∠0◦ = I1(55.16∠−65.09◦)

Hence primary current, I1 = 40∠0◦

55.16∠−65.09◦

= 0.725∠65.09◦ A

(c) From equation (5), I2 = 0.361∠13.55◦I1

= (0.361∠13.55◦)(0.725∠65.09◦)

= 0.262∠78.64◦ A
Hence secondary terminal p.d.

= I2ZL

= (0.262∠78.64◦)(200∠−60◦)

= 52.4∠18.64◦ V

Problem 15. A mutual inductor is used to couple a
20 � resistive load to a 50∠0◦ V generator as shown
in Figure 43.22. The generator has an internal resist-
ance of 5 � and the mutual inductor parameters are
R1 = 20 �, L1 = 0.2 H, R2 = 25 �, L2 = 0.4 H and
M = 0.1 H. The supply frequency is (75/π) Hz. Deter-
mine (a) the generator current I1 and (b) the load
current I2

I1
R1 = 20 Ω R2 = 25 Ω

I2
E1 = 
50∠0°V

L1 = 0.2 H

r = 5 Ω M = 0.1 H

L2 = 0.4 H RL = 20 Ω

Figure 43.22

(a) Applying Kirchhoff’s voltage law to the primary
winding gives:

I1(r + R1 + jωL1) − jωMI2 = 50∠0◦

i.e. I1

[
5 + 20 + j2π

(
75

π

)
(0.2)

]

−j2π

(
75

π

)
(0.1)I2 = 50∠0◦

i.e. I1(25 + j30) − j15I2 = 50∠0◦ (1)

Applying Kirchhoff’s voltage law to the secondary
winding gives:

− jωMI1 + I2(R2 + RL + jωL2) = 0

i.e. − j2π

(
75

π

)
(0.1)I1

+I2

[
25 + 20 + j2π

(
75

π

)
(0.4)

]
= 0

i.e. − j15I1 + I2(45 + j60) = 0 (2)

Hence the equations to solve are:

(25 + j30)I1 − j15I2 − 50∠0◦ = 0 (1)′

and −j15I1 + (45 + j60)I2 = 0 (2)′

Using determinants:

I1∣∣∣∣ −j15 −50∠0◦
(45 + j60) 0

∣∣∣∣
= −I2∣∣∣∣(25 + j30) −50∠0◦

−j15 0

∣∣∣∣
= 1∣∣∣∣(25 + j30) −j15

−j15 (45 + j60)

∣∣∣∣
i.e.

I1

50(45 + j60)
= −I2

−50(j15)

= 1

(25 + j30)(45 + j60) − (j15)2

I1

50(75∠53.13◦)
= I2

750∠90◦

= 1

(39.05∠50.19◦)(75∠53.13◦)+225
I1

3750∠53.13◦ = I2

750∠90◦

= 1

2928.75∠103.32◦ + 225
I1

3750∠53.13◦ = I2

750∠90◦

= 1

(−449.753 + j2849.962)
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I1

3750∠53.13◦ = I2

750∠90◦

= 1

2885.23∠98.97◦

(a) Generator current, I1 = 3750∠53.13◦

2885.23∠98.97◦
= 1.30∠−45.84◦ A

(b) Load current, I2 = 750∠90◦

2885.23∠98.97◦
= 0.26∠−8.97◦ A

Problem 16. The mutual inductor of problem 15 is
connected to the circuit of Figure 43.23. Determine the
source and load currents for (a) the windings as shown
(i.e. with the dots adjacent), and (b) with one winding
reversed (i.e. with the dots at opposite ends).

E1 =
50∠0°V
f = 75 Hz 

r = 5 Ω

R1 = 20 Ω R2 = 25 Ω

M = 0.1 H

L1 = 0.2 H L2 = 0.4 H

L = 0.1H

I1
I2

R = 8 Ω

RL = 20 Ω
p

Figure 43.23

(a) The left hand mesh equation in Figure 43.23 is:

E1 = I1(r + R1 + R + jωL1 + jωL)

−jωMI2 − I2(R + jωL)

(Note that with the dots as shown in Figure 43.23, and
the chosen current directions as shown, the jωMI2 is
negative — see Figure 43.19(a)). Hence

50∠0◦ = I1

[
5 + 20 + 8 + j2π

(
75

π

)
(0.2)

c +j2π

(
75

π

)
(0.1)

]
− j2π

(
75

π

)
(0.1)I2

−I2

[
8 + j2π

(
75

π

)
(0.1)

]

i.e. 50∠0◦ = I1(33+ j30+ j15)− j15I2 − I2(8+ j15)
(i)

i.e. 50∠0◦ = (33 + j45)I1 − (8 + j30)I2 (1)

The right hand mesh equation in Figure 43.23 is:

0 = I2(R + R2 + RL + jωL2 + jωL)

−jωMI1 − I1(R + jωL)

i.e. 0 = I2

[
8 + 25 + 20 + j2π

(
75

π

)
(0.4)

+j2π

(
75

π

)
(0.1)

]
− j2π

(
75

π

)
(0.1)I1

−I1

[
8 + j2π

(
75

π

)
(0.1)

]

i.e. 0 = I2(53 + j60 + j15) − j15I1 − I1(8 + j15)

(ii)

i.e. 0 = (53 + j75)I2 − (8 + j30)I1 (iii)

Hence the simultaneous equations to solve are:

(33 + j45)I1 − (8 + j30)I2 − 50∠0◦ = 0 (1)

−(8 + j30)I1 + (53 + j75)I2 = 0 (2)

Using determinants gives:

I1∣∣∣∣−(8 + j30) −50∠0◦

(53 + j75) 0

∣∣∣∣
= −I2∣∣∣∣ (33 + j45) −50∠0◦

−(8 + j30) 0

∣∣∣∣

= 1∣∣∣∣ (33 + j45) −(8 + j30)

−(8 + j30) (53 + j75)

∣∣∣∣
i.e.

I1

50(53 + j75)
= −I2

−50(8 + j30)

= 1

(33 + j45)(53 + j75) − (8 + j30)2

i.e.
I1

50(91.84∠54.75◦)
= I2

50(31.05∠75.07◦)

= 1[
(55.80∠53.75◦)(91.84∠54.75◦)

−(31.05∠75.07◦)2

]

I1

4592∠54.75◦ = I2

1552.5∠75.07◦

= 1

5124.672∠108.50◦ − 964.103∠150.14◦
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I1

4592∠54.75◦ = I2

1552.5∠75.07◦

= 1

−789.97 + j4379.84

= 1

4450.51∠100.22◦

Hence source current, I1 = 4592∠54.75◦

4450.51∠100.22◦

= 1.03∠−45.47◦A

and load current, I2 = 1552.5∠75.07◦

4450.51∠100.22◦

= 0.35∠−25.15◦ A

(b) When one of the windings of the mutual inductor is
reversed, with, say, the dots as shown in Figure 43.24,
the jωMI terms change sign, i.e. are positive. With
both currents entering the dot ends of the windings
as shown, it compares with Figure 43.18(a), which
indicates that the ‘L’and ‘M’terms are of similar sign.

I1

I2

Figure 43.24

Thus equations (i) and (ii) of part (a) become:

50∠0◦ = I1(33 + j30 + j15) + j15I2 − I2(8 + j15)

and 0 = I2(53 + j60 + j15) + j15I1 − I1(8 + j15)

i.e. I1(33 + j45) − I2(8) − 50∠0◦ = 0

and − I1(8) + I2(53 + j75) = 0

Using determinants:

I1∣∣∣∣ −8 −50∠0◦
(53 + j75) 0

∣∣∣∣
= −I2∣∣∣∣ (33 + j45) −50∠0◦

−8 0

∣∣∣∣
= 1∣∣∣∣ (33 + j45) −8

−8 (53 + j75)

∣∣∣∣

i.e.
I1

50(53 + j75)
= −I2

−400∠0◦

= 1

(33 + j45)(53 + j75) − 64

I1

4592∠54.75◦ = I2

400∠0◦

= 1

5124.672∠108.50◦ − 64

= 1

−1690.08 + j4859.85

= 1

5145.34∠109.18◦

Hence source current, I1 = 4592∠54.75◦

5145.34∠109.18◦

= 0.89∠−54.43◦ A

and load current, I2 = 400∠0◦

5145.34∠109.18◦

= 0.078∠−109.18◦ A

Now try the following exercise.

Exercise 161 Further problems on the dot rule for
coupled circuits

1. Determine the values of currents Ip and Is in the
coupled circuit shown in Figure 43.25.

[Ip = 893.3∠−60.57◦ mA,
Is = 99.88∠2.86◦ mA]

Ip Is

5 Ω 15 Ω

j 10 Ω j 20 Ω

10∠0° V

M = j 5 Ω

25 Ω

Figure 43.25

2. The coefficient of coupling between the primary
and secondary windings for the air-cored trans-
former shown in Figure 43.26 is 0.84. Calculate
for the circuit (a) the mutual inductance M, (b) the
primary current Ip, (c) the secondary current Is, and
(d) the secondary terminal p.d.
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[(a) 13.28 mH (b) 1.603∠−28.97◦ A
(c) 0.913∠17.71◦ A (d) 73.04∠−27.29◦ V]

M

Ip Is

10 mH 25 mH

20 Ω 50 Ω

100∠0° V
1 kHz

ZL = 80∠−45° Ω

Figure 43.26

3. A mutual inductor is used to couple a 50 � resistive
load to a 250∠0◦ V generator as shown in Figure
43.27. Calculate (a) the generator current Ig and
(b) the load current IL

[(a) Ig = 9.653∠−36.03◦ A
(b) IL = 1.084∠27.28◦ A]

250∠0° V
50 Hz

5 Ω

50 mH 120 mH

Ig 15 Ω 25 Ω

IL

50 Ω

M = 30 mH

Figure 43.27

4. The mutual inductor of problem 3 is connected to
the circuit as shown in Figure 43.28. Determine
(a) the source current, and (b) the load current. (c)
If one of the windings is reversed, determine the
new value of source and load currents.

[(a) 6.658∠−28.07◦ A (b) 1.444∠−7.79◦ A
(c) 6.087∠−35.38◦ A, 0.931∠−73.25◦ A]

50 Ω15 Ω

20 mH

120 mH

25 Ω15 Ω

5 Ω

50 mH

M = 30 mH

250∠0° V
50 Hz

Figure 43.28
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44 Transmission lines

At the end of this chapter you should be able to:
• appreciate the purpose of a transmission line
• define the transmission line primary constants R, L,

C and G
• calculate phase delay, wavelength and velocity of

propagation on a transmission line
• appreciate current and voltage relationships on a

transmission line
• define the transmission line secondary line constants

Z0, γ , α and β

• calculate characteristic impedance and propagation
coefficient in terms of the primary line constants

• understand and calculate distortion on transmission
lines

• understand wave reflection and calculate reflection
coefficient

• understand standing waves and calculate standing
wave ratio

44.1 Introduction

A transmission line is a system of conductors connect-
ing one point to another and along which electromagnetic
energy can be sent. Thus telephone lines and power distri-
bution lines are typical examples of transmission lines; in
electronics, however, the term usually implies a line used
for the transmission of radio-frequency (r.f.) energy such
as that from a radio transmitter to the antenna.

An important feature of a transmission line is that it
should guide energy from a source at the sending end to
a load at the receiving end without loss by radiation. One
form of construction often used consists of two similar
conductors mounted close together at a constant separ-
ation. The two conductors form the two sides of a balanced
circuit and any radiation from one of them is neutralized
by that from the other. Such twin-wire lines are used for
carrying high r.f. power, for example, at transmitters. The
coaxial form of construction is commonly employed for
low power use, one conductor being in the form of a cylin-
der which surrounds the other at its centre, and thus acts
as a screen. Such cables are often used to couple f.m. and
television receivers to their antennas.

At frequencies greater than 1000 MHz, transmission
lines are usually in the form of a waveguide which may be
regarded as coaxial lines without the centre conductor, the
energy being launched into the guide or abstracted from
it by probes or loops projecting into the guide.

44.2 Transmission line primary constants

Let an a.c. generator be connected to the input terminals of
a pair of parallel conductors of infinite length. A sinusoidal

wave will move along the line and a finite current will flow
into the line. The variation of voltage with distance along
the line will resemble the variation of applied voltage with
time. The moving wave, sinusoidal in this case, is called
a voltage travelling wave. As the wave moves along the
line the capacitance of the line is charged up and the mov-
ing charges cause magnetic energy to be stored. Thus the
propagation of such an electromagnetic wave constitutes
a flow of energy.

After sufficient time the magnitude of the wave may
be measured at any point along the line. The line does
not therefore appear to the generator as an open circuit
but presents a definite load Z0. If the sending-end voltage
is VS and the sending-end current is IS then Z0 = VS/IS .
Thus all of the energy is absorbed by the line and the line
behaves in a similar manner to the generator as would a
single ‘lumped’ impedance of value Z0 connected directly
across the generator terminals.

There are four parameters associated with transmis-
sion lines, these being resistance, inductance, capacitance
and conductance.

(i) Resistance R is given by R = ρl/A, where ρ is the
resistivity of the conductor material, A is the cross-
sectional area of each conductor and l is the length
of the conductor (for a two-wire system, l represents
twice the length of the line). Resistance is stated in
ohms per metre length of a line and represents the
imperfection of the conductor. A resistance stated in
ohms per loop metre is a little more specific since
it takes into consideration the fact that there are two
conductors in a particular length of line.

(ii) Inductance L is due to the magnetic field surround-
ing the conductors of a transmission line when a
current flows through them. The inductance of an
isolated twin line is considered in Section 40.7. From
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equation (40.23), page 523, the inductance L is
given by

L = µ0µr

π

{
1

4
+ ln

D

a

}
henry/metre

where D is the distance between centres of the con-
ductor and a is the radius of each conductor. In most
practical lines µr = 1. An inductance stated in henrys
per loop metre takes into consideration the fact that
there are two conductors in a particular length of line.

(iii) Capacitance C exists as a result of the electric
field between conductors of a transmission line. The
capacitance of an isolated twin line is considered in
Section 40.3. From equation (40.14), page 516, the
capacitance between the two conductors is given by

C = πε0εr

ln(D/a)
farads/metre

In most practical lines εr = 1
(iv) Conductance G is due to the insulation of the line

allowing some current to leak from one conductor to
the other. Conductance is measured in siemens per
metre length of line and represents the imperfection
of the insulation. Another name for conductance is
leakance.

Each of the four transmission line constants, R, L, C
and G, known as the primary constants, are uniformly
distributed along the line.

From Chapter 41, when a symmetrical T-network is
terminated in its characteristic impedance Z0, the input
impedance of the network is also equal to Z0. Similarly, if
a number of identical T-sections are connected in cascade,

Figure 44.1

Figure 44.2

the input impedance of the network will also be equal
to Z0.

A transmission line can be considered to consist of a net-
work of a very large number of cascaded T-sections each
a very short length (δl ) of transmission line, as shown in
Figure 44.1. This is an approximation of the uniformly
distributed line; the larger the number of lumped param-
eter sections, the nearer it approaches the true distributed
nature of the line. When the generator VS is connected,
a current IS flows which divides between that flowing
through the leakage conductance G, which is lost, and that
which progressively charges each capacitor C and which
sets up the voltage travelling wave moving along the trans-
mission line. The loss or attenuation in the line is caused
by both the conductance G and the series resistance R.

44.3 Phase delay, wavelength and velocity of
propagation

Each section of that shown in Figure 44.1 is simply a
low-pass filter possessing losses R and G. If losses are
neglected, and R and G are removed, the circuit simpli-
fies and the infinite line reduces to a repetitive T-section
low-pass filter network as shown in Figure 44.2. Let a
generator be connected to the line as shown and let the
voltage be rising to a maximum positive value just at the
instant when the line is connected to it. A current IS flows
through inductance L1 into capacitor C1. The capacitor
charges and a voltage develops across it. The voltage sends
a current through inductance L′

1 and L2 into capacitor C2.
The capacitor charges and the voltage developed across it
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sends a current through L′
2 and L3 into C3, and so on. Thus

all capacitors will in turn charge up to the maximum input
voltage. When the generator voltage falls, each capaci-
tor is charged in turn in opposite polarity, and as before
the input charge is progressively passed along to the next
capacitor. In this manner voltage and current waves travel
along the line together and depend on each other.

The process outlined above takes time; for example, by
the time capacitor C3 has reached its maximum voltage,
the generator input may be at zero or moving towards its
minimum value. There will therefore be a time, and thus a
phase difference between the generator input voltage and
the voltage at any point on the line.

Phase delay

Since the line shown in Figure 44.2 is a ladder network of
low-pass T-section filters, it is shown in equation (42.27),
page 576, that the phase delay, β, is given by:

β = ω
√

(LC) radians/metre (44.1)

where L and C are the inductance and capacitance per
metre of the line.

Wavelength

The wavelength λ on a line is the distance between a given
point and the next point along the line at which the voltage
is the same phase, the initial point leading the latter point
by 2π radian. Since in one wavelength a phase change of
2π radians occurs, the phase change per metre is 2π/λ.
Hence, phase change per metre, β = 2π/λ

or wavelength, λ = 2π

β
metres (44.2)

Velocity of propagation

The velocity of propagation, u, is given by u = f λ, where
f is the frequency and λ the wavelength. Hence

u = fλ = f (2π/β) = 2πf
β

= ω

β
(44.3)

The velocity of propagation of free space is the same
as that of light, i.e. approximately 300 × 106 m/s. The
velocity of electrical energy along a line is always less than
the velocity in free space. The wavelength λ of radiation
in free space is given by λ = c/f where c is the velocity of
light. Since the velocity along a line is always less than c,
the wavelength corresponding to any particular frequency
is always shorter on the line than it would be in free space.

Problem 1. A parallel-wire air-spaced transmis-
sion line operating at 1910 Hz has a phase shift of
0.05 rad/km. Determine (a) the wavelength on the line,
and (b) the speed of transmission of a signal.

(a) From equation (44.2), wavelength λ = 2π/β

= 2π/0.05

= 125.7 km

(b) From equation (44.3), speed of transmission,

u = f λ = (1910)(125.7)

= 240 × 103 km/s or 240 × 106 m/s

Problem 2. A transmission line has an inductance
of 4 mH/loop km and a capacitance of 0.004 µF/km.
Determine, for a frequency of operation of 1 kHz,
(a) the phase delay, (b) the wavelength on the line, and
(c) the velocity of propagation (in metres per second)
of the signal.

(a) From equation (44.1), phase delay,

β = ω
√

(LC)

= (2π1000)
√

[(4 × 10−3)(0.004 × 10−6)]

= 0.025 rad/km

(b) From equation (44.2), wavelength λ = 2π/β

= 2π/0.025

= 251 km

(c) From equation (44.3), velocity of propagation,

u = f λ = (1000)(251) km/s = 251 × 106 m/s

Now try the following exercise.

Exercise 162 Further problems on phase delay,
wavelength and velocity of propagation

1. A parallel-wire air-spaced line has a phase-shift of
0.03 rad/km. Determine (a) the wavelength on the
line, and (b) the speed of transmission of a signal
of frequency 1.2 kHz.

[(a) 209.4 km (b) 251.3 ×106 m/s]

2. A transmission line has an inductance of 5 µH/m
and a capacitance of 3.49 pF/m. Determine, for an
operating frequency of 5 kHz, (a) the phase delay,
(b) the wavelength on the line and (c) the velocity
of propagation of the signal in metres per second.

[(a) 0.131 rad/km (b) 48 km (c) 240 × 106 m/s]
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3. An air-spaced transmission line has a capacitance
of 6.0 pF/m and the velocity of propagation of a
signal is 225 × 106 m/s. If the operating frequency
is 20 kHz, determine (a) the inductance per metre,
(b) the phase delay, and (c) the wavelength on the
line. [(a) 3.29 µH/m (b) 0.558 × 10−3 rad/m

(c) 11.25 km]

44.4 Current and voltage relationships

Figure 44.3 shows a voltage source VS applied to the input
terminals of an infinite line, or a line terminated in its char-
acteristic impedance, such that a current IS flows into the
line. At a point, say, 1 km down the line let the current
be I1. The current I1 will not have the same magnitude
as IS because of line attenuation; also I1 will lag IS by
some angle β. The ratio IS/I1 is therefore a phasor quan-
tity. Let the current a further 1 km down the line be I2,
and so on, as shown in Figure 44.3. Each unit length of
line can be treated as a section of a repetitive network, as
explained in Section 44.2. The attenuation is in the form
of a logarithmic decay and

IS

I1
= I1

I2
= I2

I3
= eγ

where γ is the propagation constant, first introduced in
Section 42.7, page 573. γ has no unit.

Figure 44.3

The propagation constant is a complex quantity given
by γ = α + jβ, where α is the attenuation constant,
whose unit is the neper, and β is the phase shift coef-
ficient, whose unit is the radian. For n such 1 km sections,
IS/IR = enγ where IR is the current at the receiving end.

Hence
IS

IR
= en(α + jβ) = e(nα + jnβ) = enα∠nβ

from which, IR = ISe−nγ = ISe−nα∠−nβ (44.4)

In equation (44.4), the attenuation on the line is given by
nα nepers and the phase shift is nβ radians.

At all points along an infinite line, the ratio of voltage
to current is Z0, the characteristic impedance. Thus from
equation (44.4) it follows that:

receiving end voltage,

VR = VSe−nγ = VSe−nα∠−nβ (44.5)

Z0, γ , α, and β are referred to as the secondary line
constants or coefficients.

Problem 3. When operating at a frequency of 2 kHz,
a cable has an attenuation of 0.25 Np/km and a phase
shift of 0.20 rad/km. If a 5V rms signal is applied at
the sending end, determine the voltage at a point 10 km
down the line, assuming that the termination is equal
to the characteristic impedance of the line.

Let VR be the voltage at a point n km from the sending end,
then from equation (44.5), VR = VSe−nγ = VSe−nα∠−nβ

Since α = 0.25 Np/km, β = 0.20 rad/km, VS = 5V and
n = 10 km, then

VR = (5)e−(10)(0.25)∠−(10)(0.20) = 5e−2.5∠−2.0 V

= 0.41∠−2.0 V or 0.41∠−114.6◦ V

Thus the voltage 10 km down the line is 0.41V rms
lagging the sending end voltage of 5V by 2.0 rad or 114.6◦.

Problem 4. A transmission line 5 km long has a
characteristic impedance of 800∠−25◦ 
. At a par-
ticular frequency, the attenuation coefficient of the
line is 0.5 Np/km and the phase shift coefficient is
0.25 rad/km. Determine the magnitude and phase of
the current at the receiving end, if the sending end
voltage is 2.0∠0◦ V r.m.s.

The receiving end voltage (from equation (44.5)) is
given by:

VR = VSe−nγ = VSe−nα∠−nβ

= (2.0∠0◦)e−(5)(0.5)∠−(5)(0.25)

= 2.0e−2.5∠−1.25 = 0.1642∠−71.62◦ V

Receiving end current,

IR = VR

Z0
= 0.1642∠−71.62◦

800∠−25◦

= 2.05 × 104∠(−71.62◦ − (−25◦)) A

= 0.205∠−46.62◦ mA or 205∠−46.62◦µA
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Problem 5. The voltages at the input and at the output
of a transmission line properly terminated in its charac-
teristic impedance are 8.0V and 2.0V rms respectively.
Determine the output voltage if the length of the line
is doubled.

The receiving-end voltage VR is given by VR =VSe−nγ .

Hence 2.0 = 8.0e−nγ , from which, e−nγ = 2.0/8.0 = 0.25

If the line is doubled in length, then

VR = 8.0e−2nγ = 8.0(e−nγ )2

= 8.0(0.25)2 = 0.50V

Now try the following exercise.

Exercise 163 Further problems on current and
voltage relationships

1. When the working frequency of a cable is 1.35 kHz,
its attenuation is 0.40 Np/km and its phase-shift
is 0.25 rad/km. The sending-end voltage and cur-
rent are 8.0V rms and 10.0 mA rms. Determine
the voltage and current at a point 25 km down the
line, assuming that the termination is equal to the
characteristic impedance of the line.

[VR = 0.363∠−6.25 mV or 0.363∠1.90◦ mV
IR = 0.454∠−6.25 µA or 0.454∠1.90◦ µA]

2. A transmission line 8 km long has a charac-
teristic impedance 600∠−30◦ 
. At a particular
frequency the attenuation coefficient of the line
is 0.4 Np/km and the phase-shift coefficient is
0.20 rad/km. Determine the magnitude and phase
of the current at the receiving end if the sending-end
voltage is 5∠0◦ V rms. [0.340∠−61.67 mA]

3. The voltages at the input and at the output of a trans-
mission line properly terminated in its characteristic
impedance are 10V and 4V rms respectively. Deter-
mine the output voltage if the length of the line is
trebled. [0.64V]

44.5 Characteristic impedance and
propagation coefficient in terms of
the primary constants

Characteristic impedance

At all points along an infinite line, the ratio of voltage
to current is called the characteristic impedance Z0. The
value of Z0 is independent of the length of the line; it
merely describes a property of a line that is a function of

the physical construction of the line. Since a short length
of line may be considered as a ladder of identical low-
pass filter sections, the characteristic impedance may be
determined from equation (41.2), page 528, i.e.

Z0 = √
(ZOCZSC) (44.6)

since the open-circuit impedance ZOC and the short-circuit
impedance ZSC may be easily measured.

Problem 6. At a frequency of 1.5 kHz the open-
circuit impedance of a length of transmission line
is 800∠−50◦ 
 and the short-circuit impedance is
413∠−20◦
. Determine the characteristic impedance
of the line at this frequency.

From equation (44.6), characteristic impedance

Z0 = √
(ZOCZSC)

= √
[(800∠−50◦)(413∠−20◦)]

= √
(330 400∠−70◦) = 575∠−35◦ �

by de Moivre’s theorem.

The characteristic impedance of a transmission line
may also be expressed in terms of the primary constants,
R, L, G and C. Measurements of the primary constants
may be obtained for a particular line and manufacturers
usually state them for a standard length.

Let a very short length of line δl metres be as shown
in Figure 44.4 comprising a single T-section. Each series
arm impedance is Z1 = 1

2 (R + jwL)δl ohms, and the shunt
arm impedance is

Z2 = 1

Y2
= 1

(G + jωC)δl

Figure 44.4

[i.e. from Chapter 25, the total admittance Y2 is the sum
of the admittance of the two parallel arms, i.e. in this case,
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the sum of

Gδl and

(
1

1/(jωC)

)
δl]

From equation (41.1), page 528, the characteristic
impedance Z0 of a T-section having in each series arm
an impedance Z1 and a shunt arm impedance Z2 is given
by: Z0 =√

(Z2
1 + 2Z1Z2).

Hence the characteristic impedance of the section shown
in Figure 44.4 is

Z0 =
√ {[

1

2
(R + jωL)δl

]2

+ 2

[
1

2
(R + jωL)δl

] [
1

(G + jωC)δl

] }

The term Z2
1 involves δl2 and, since δl is a very short length

of line, δl2 is negligible. Hence

Z0 =
√

R + jωL
G + jωC

ohms (44.7)

If losses R and G are neglected, then

Z0 = √
(L/C) ohms (44.8)

Problem 7. A transmission line has the following pri-
mary constants: resistance R = 15 
/loop km, induct-
ance L = 3.4 mH/loop km, conductance G = 3 µS/km
and capacitance C = 10 nF/km. Determine the charac-
teristic impedance of the line when the frequency is
2 kHz.

From equation (44.7),

characteristic impedance Z0 =
√

R + jωL

G + jωC
ohms

R + jωL = 15 + j(2π2000)(3.4 × 10−3)

= (15 + j42.73) 
 = 45.29∠70.66◦ 


G + jωC = 3 × 10−6 + j(2π2000)(10 × 10−9)

= (3 + j125.66)10−6 S

= 125.7 × 10−6∠88.63◦ S

Hence Z0 =
√

45.29∠70.66◦

125.7 × 10−6∠88.63◦

= √
[0.360 × 106∠−17.97◦] 


i.e. characteristic impedance, Z0 = 600∠−8.99◦ �

Propagation coefficient

Figure 44.5 shows a T-section with the series arm
impedances each expressed as ZA/2 ohms per unit length
and the shunt impedance as ZB ohms per unit length. The
p.d. between points P and Q is given by:

VPQ = (I1 − I2)ZB = I2

(
ZA

2
+ Z0

)

i.e. I1ZB − I2ZB = I2ZA

2
+ I2Z0

Hence I1ZB = I2

(
ZB + ZA

2
+ Z0

)

from which
I1

I2
= ZB + (ZA/2) + Z0

ZB

Figure 44.5

From equation (41.1), page 528, Z0 = √
(Z2

1 + 2Z1Z2).
In Figure 44.5, Z1 ≡ ZA/2 and Z2 ≡ ZB

Thus Z0 =
√√√√

[(
ZA

2

)2

+ 2

(
ZA

2

)
ZB

]

=
√√√√

(
Z2

A

4
+ ZAZB

)

Hence
I1

I2
=

ZB + (ZA/2) +
√

(ZAZB + (Z2
A/4))

ZB

= ZB

ZB
+ (ZA/2)

ZB
+

√
(ZAZB + (Z2

A/4))

ZB

= 1 + 1

2

(
ZA

ZB

)
+

√√√√
(

ZAZB

Z2
B

+ (Z2
A/4)

Z2
B

)

i.e.
I1

I2
= 1 + 1

2

(
ZA

ZB

)
+

[
ZA

ZB
+ 1

4

(
ZA

ZB

)2
]1/2

(44.9)

From Section 44.4, I1/I2 = eγ , where γ is the propagation
coefficient. Also, from the binomial theorem:

(a + b)n = an + nan−1b + n(n − 1)

2! an−2b2 + · · ·
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Thus

[
ZA

ZB
+ 1

4

(
ZA

ZB

)2
]1/2

=
(

ZA

ZB

)1/2

+ 1

2

(
ZA

ZB

)−1/2 1

4

(
ZA

ZB

)2

+ · · ·

Hence, from equation (44.9),

I1

I2
= eγ = 1 + 1

2

(
ZA

ZB

)
+

[(
ZA

ZB

)1/2

+ 1

8

(
ZA

ZB

)3/2

+ · · ·

Rearranging gives: eγ = 1 +
(

ZA

ZB

)1/2

+ 1

2

(
ZA

ZB

)

+ 1

8

(
ZA

ZB

)3/2

+ · · ·

Let length XY in Figure 44.5 be a very short length of line
δl and let impedance ZA = Zδl, where Z = R + jωL and
ZB = 1/(Yδl), where Y = G + jωC

Then

eγδl = 1 +
(

Zδl

1/Yδl

)1/2

+ 1

2

(
Zδl

1/Yδl

)

+ 1

8

(
Zδl

1/Yδl

)3/2

+ · · ·

= 1 + (ZYδl2)1/2 + 1

2
(ZYδl2) + 1

8
(ZYδl2)3/2 + · · ·

= 1 + (ZY )1/2δl + 1

2
(ZY )(δl)2 + 1

8
(ZY )3/2(δl)3 + · · ·

= 1 + (ZY )1/2δl

if (δl)2, (δl)3 and higher powers are considered as
negligible.

ex may be expressed as a series:

ex = 1 + x + x2

2! + x3

3! + · · ·

Comparison with eγδl = 1 + (ZY )1/2δl shows that

γδl = (ZY )1/2δl i.e. γ = √
(ZY ). Thus

propagation coefficient,

γ = √
[(R + jωL)(G + jωC)] (44.10)

The unit of γ is
√

(
)(S), i.e.
√

[(
)(1/
)] thus γ is
dimensionless, as expected, since I1/I2 =eγ , from which

γ = ln(I1/I2), i.e. a ratio of two currents. For a lossless
line, R = G = 0 and

γ = √
( jωL)( jωC) = jω

√
(LC) (44.11)

Equations (44.7) and (44.10) are used to determine the
characteristic impedance Z0 and propagation coefficient
γ of a transmission line in terms of the primary constants
R, L, G and C. When R = G = 0, i.e. losses are neglected,
equations (44.8) and (44.11) are used to determine Z0
and γ .

Problem 8. A transmission line having negligible
losses has primary line constants of inductance
L=0.5 mH/loop km and capacitance C=0.12 µF/km.
Determine, at an operating frequency of 400 kHz,
(a) the characteristic impedance, (b) the propagation
coefficient, (c) the wavelength on the line, and (d) the
velocity of propagation, in metres per second, of a
signal.

(a) Since the line is lossfree, from equation (44.8), the
characteristic impedance Z0 is given by

Z0 =
√

L

C
=

√
0.5 × 10−3

0.12 × 10−6 = 64.55 �

(b) From equation (44.11), for a lossfree line, the propa-
gation coefficient γ is given by

γ = jω
√

(LC)

= j(2π400 × 103)
√

[(0.5 × 10−3)(0.12 × 10−6)]

= j19.47 or 0 + j19.47

Since γ = α +jβ, the attenuation coefficient, α = 0
and the phase-shift coefficient, β = 19.47 rad/km.

(c) From equation (44.2), wavelength

λ =2π

β
= 2π

19.47
= 0.323 km or 323 m

(d) From equation (44.3), velocity of propagation

u = f λ = (400 × 103)(323) = 129 × 106 m/s.

Problem 9. At a frequency of 1 kHz the primary
constants of a transmission line are resistance
R = 25 
/loop km, inductance L = 5 mH/loop km,
capacitance C = 0.04 µF/km and conductance
G = 80 µS/km. Determine for the line (a) the char-
acteristic impedance, (b) the propagation coefficient,
(c) the attenuation coefficient and (d) the phase-shift
coefficient.
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(a) From equation (44.7),

characteristic impedance Z0 =
√

R + jωL

G + jωC
ohms

R + jωL = 25 + j(2π1000)(5 × 10−3)

= (25 + j31.42)

= 40.15∠51.49◦ 


G + jωC = 80 × 10−6 + j(2π1000)(0.04 × 10−6)

= (80 + j251.33)10−6

= 263.76 × 10−6∠72.34◦ S

Thus characteristic impedance

Z0 =
√

40.15∠51.49◦
263.76 × 10−6∠72.34◦ = 390.2∠−10.43◦ �

(b) From equation (44.10), propagation coefficient

γ = √
[(R + jωL)(G + jωC)]

=
√

[(40.15∠51.49◦)(263.76 × 10−6∠72.34◦)]

= √
(0.01059∠123.83◦) = 0.1029∠61.92◦

(c) γ = α + jβ = 0.1029(cos 61.92◦ + j sin 61.92◦)

i.e. γ = 0.0484 + j0.0908

Thus the attenuation coefficient,

α = 0.0484 nepers/km

(d) The phase shift coefficient, β = 0.0908 rad/km

Problem 10. An open wire line is 300 km long
and is terminated in its characteristic impedance.
At the sending end is a generator having an open-
circuit e.m.f. of 10.0V, an internal impedance of
(400 + j0) 
 and a frequency of 1 kHz. If the line pri-
mary constants are R = 8 
/loop km, L = 3 mH/loop
km, C = 7500 pF/km and G = 0.25 µS/km, determine
(a) the characteristic impedance, (b) the propagation
coefficient, (c) the attenuation and phase-shift coeffi-
cients, (d) the sending-end current, (e) the receiving-
end current, (f) the wavelength on the line, and (g) the
speed of transmission of signal.

(a) From equation (44.7),

characteristic impedance, Z0 =
√

R + jωL

G + jωC
ohms

R + jωL = 8 + j(2π1000)(3 × 10−3)

= 8 + j6π = 20.48∠67.0◦ 


G + jωC

= 0.25 × 10−6 + j(2π1000)(7500 × 10−12)

= (0.25 + j47.12)10−6

= 47.12 × 10−6∠89.70◦ S

Hence characteristic impedance

Z0 =
√

20.48∠67.0◦
47.12 × 10−6∠89.70◦ = 659.3∠−11.35◦ �

(b) From equation (44.10), propagation coefficient

γ = √
[(R + jωL)(G + jωC)]

=
√

[(20.48∠67.0◦)(47.12 × 10−6∠89.70◦)]

= 0.03106∠78.35◦

(c) γ = α + jβ = 0.03106(cos 78.35◦ + j sin 78.35◦)

= 0.00627 + j0.03042

Hence the attenuation coefficient, α=0.00627 Np/km

and the phase shift coefficient, β = 0.03042 rad/km

(d) With reference to Figure 44.6, since the line
is matched, i.e. terminated in its characteristic
impedance, VS/IS = Z0. Also

VS = VG − ISZG = 10.0 − IS(400 + j0)

Thus IS = VS

Z0
= 10.0 − 400IS

Z0

Figure 44.6

Rearranging gives: ISZ0 = 10.0 − 400 IS , from which,

IS(Z0 + 400) = 10.0

Thus the sending-end current,

IS = 10.0

Z0 + 400
= 10.0

659.3∠−11.35◦ + 400

= 10.0

646.41 − j129.75 + 400
= 10.0

1054.4∠−7.07◦

= 9.484∠7.07◦ mA
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(e) From equation (44.4), the receiving-end current,

IR = ISe−nγ = ISe−nα∠−nβ

= (9.484∠7.07◦)e−(300)(0.00627)∠−(300)(0.03042)

= 9.484∠7.07◦e−1.881∠−9.13 rad

= 1.446∠−516◦ mA = 1.446∠−156◦ mA

(f) From equation (44.2),

wavelength, λ = 2π

β
= 2π

0.03042
= 206.5 km

(g) From equation (44.3),

speed of transmission, u = f λ = (1000)(206.5)

= 206.5 × 103 km/s
= 206.5 × 106 m/s

Now try the following exercise.

Exercise 164 Further problems on characteristic
impedance and propagation coefficient in terms of
the primary constants

1. At a frequency of 800 Hz, the open-circuit
impedance of a length of transmission line is
measured as 500∠−35◦ 
 and the short-circuit
impedance as 300∠−15◦
. Determine the charac-
teristic impedance of the line at this frequency.

[387.3∠−25◦
]

2. A transmission line has the following primary con-
stants per loop kilometre run: R = 12 
, L = 3 mH,
G = 4 µS and C = 0.02 µF. Determine the charac-
teristic impedance of the line when the frequency
is 750 Hz. [443.4∠−18.95◦
]

3. A transmission line having negligible losses has
primary constants: inductance L = 1.0 mH/loop km
and capacitance C = 0.20 µF/km. Determine, at an
operating frequency of 50 kHz, (a) the character-
istic impedance, (b) the propagation coefficient,
(c) the attenuation and phase-shift coefficients,
(d) the wavelength on the line, and (e) the velocity
of propagation of signal in metres per second.

[(a) 70.71 
 (b) j4.443 (c) 0; 4.443 rad/km
(d) 1.414 km (e) 70.70 × 106 m/s]

4. At a frequency of 5 kHz the primary constants of a
transmission line are: resistance R = 12 
/loop km,
inductance L = 0.50 mH/loop km, capacitance
C = 0.01 µF/km and G = 60 µS/km. Determine
for the line (a) the characteristic impedance, (b)
the propagation coefficient, (c) the attenuation
coefficient, and (d) the phase-shift coefficient.

[(a) 248.6∠−13.29◦ 
 (b) 0.0795∠65.91◦
(c) 0.0324 Np/km (d) 0.0726 rad/km]

5. A transmission line is 50 km in length and is ter-
minated in its characteristic impedance. At the
sending end a signal emanates from a gener-
ator which has an open-circuit e.m.f. of 20.0V,
an internal impedance of (250 + j0) 
 at a fre-
quency of 1592 Hz. If the line primary con-
stants are R = 30 
/loop km, L = 4.0 mH/loop km,
G = 5.0 µS/km, and C = 0.01 µF/km, determine
(a) the value of the characteristic impedance, (b) the
propagation coefficient, (c) the attenuation and
phase-shift coefficients, (d) the sending-end cur-
rent, (e) the receiving-end current, (f) the wave-
length on the line, and (g) the speed of transmission
of a signal, in metres per second.

[(a) 706.6∠−17◦ 
 (b) 0.0708∠70.14◦
(c) 0.024 Np/km; 0.067 rad/km

(d) 21.1∠12.58◦ mA (e) 6.35∠−178.21◦ mA
(f) 94.34 km (g) 150.2 × 106 m/s]

44.6 Distortion on transmission lines

If the waveform at the receiving end of a transmission line
is not the same shape as the waveform at the sending end,
distortion is said to have occurred. The three main causes
of distortion on transmission lines are as follows.

(i) The characteristic impedance Z0 of a line varies with
the operating frequency, i.e. from equation (44.7),

Z0 =
√

R + jωL

G + jωC
ohms

The terminating impedance of the line may not vary
with frequency in the same manner.
In the above equation for Z0, if the frequency is very
low, ω is low and Z0 ≈ √

(R/G). If the frequency is
very high, then ωL � R, ωC � G and Z0 ≈ √

(L/C).
A graph showing the variation of Z0with frequency f
is shown in Figure 44.7.

Figure 44.7

If the characteristic impedance is to be constant
throughout the entire operating frequency range then
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the following condition is required:
√

(L/C) = √
(R/G), i.e L/C = R/G, from which

LG = CR (44.12)

Thus, in a transmission line, if LG = CR it is possible
to provide a termination equal to the characteristic
impedance Z0 at all frequencies.

(ii) The attenuation of a line varies with the operating
frequency (since γ = √

[(R + jωL)(G + jωC)], from
equation (44.10)), thus waves of differing frequen-
cies and component frequencies of complex waves
are attenuated by different amounts.

From the above equation for the propagation
coefficient:

γ2 = (R + jωL)(G + jωC)

= RG + jω(LG + CR) − ω2LC

If LG = CR = x, then LG + CR = 2x and LG + CR
may be written as 2

√
x2, i.e. LG + CR may be written

as 2
√

[(LG)(CR)]

Thus γ2 = RG + jω(2
√

[(LG)(CR)]) − ω2LC

= [
√

(RG) + jω
√

(LC)]2

and γ = √
(RG) + jω

√
(LC)

Since γ = α + jβ,

attenuation coefficient, α = √
(RG) (44.13)

and phase shift coefficient, β = ω
√

(LC) (44.14)

Thus, in a transmission line, if LG = CR, α = √
(RG),

i.e. the attenuation coefficient is independent of
frequency and all frequencies are equally attenuated.

(iii) The delay time, or the time of propagation, and thus
the velocity of propagation, varies with frequency
and therefore waves of different frequencies arrive
at the termination with differing delays. From equa-
tion (44.14), the phase-shift coefficient, β = ω

√
(LC)

when LG = CR.

Velocity of propagation, u = ω

β
= ω

ω
√

(LC)

i.e. u = 1√
(LC)

(44.15)

Thus, in a transmission line, if LG = CR, the vel-
ocity of propagation, and hence the time delay, is
independent of frequency.

From the above it appears that the condition LG = CR is
appropriate for the design of a transmission line, since
under this condition no distortion is introduced. This
means that the signal at the receiving end is the same as the
sending-end signal except that it is reduced in amplitude
and delayed by a fixed time. Also, with no distortion, the
attenuation on the line is a minimum. In practice, how-
ever, R/L � G/C. The inductance is usually low and the
capacitance is large and not easily reduced. Thus if the
condition LG = CR is to be achieved in practice, either L
or G must be increased since neither CN or R can really
be altered. It is undesirable to increase G since the attenu-
ation and power losses increase. Thus the inductance L is
the quantity that needs to be increased and such an artifi-
cial increase in the line inductance is called loading. This
is achieved either by inserting inductance coils at intervals
along the transmission line — this being called ‘lumped
loading’ — or by wrapping the conductors with a high-
permeability metal tape — this being called ‘continuous
loading’.

Problem 11. An underground cable has the follow-
ing primary constants: resistance R = 10 
/loop km,
inductance L = 1.5 mH/loop km, conductance G =
1.2 µS/km and capacitance C = 0.06 µF/km. Deter-
mine by how much the inductance should be increased
to satisfy the condition for minimum distortion.

From equation (44.12), the condition for minimum distor-
tion is given by LG = CR, from which,

inductance L = CR

G
= (0.06 × 10−6)(10)

1.2 × 10−6

= 0.5 H or 500 mH.

Thus the inductance should be increased by
(500 − 1.5) mH, i.e. 498.5 mH per loop km, for minimum
distortion.

Problem 12. A cable has the following primary con-
stants: resistance R = 80 
/loop km, conductance,
G = 2 µS/km, and capacitance C = 5 nF/km. Deter-
mine, for minimum distortion at a frequency of 1.5 kHz
(a) the value of inductance per loop kilometre required,
(b) the propagation coefficient, (c) the velocity of
propagation of signal, and (d) the wavelength on
the line.

(a) From equation (44.12), for minimum distortion,
LG = CR, from which, inductance per loop kilometre,

L = CR

G
= (5 × 10−9)(80)

(2 × 10−6)
= 0.20 H or 200 mH
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(b) From equation (44.13), attenuation coefficient,

α = √
(RG) =

√
[(80)(2 × 10−6)] = 0.0126 Np/km

and from equation (44.14), phase shift coefficient,

β = ω
√

(LC) = (2π1500)
√

[(0.20)(5 × 10−9)]

= 0.2980 rad/km

Hence the propagation coefficient,

γ = α + jβ = (0.0126 + j0.2980) or 0.2983∠87.58◦

(c) From equation (44.15), velocity of propagation,

u = 1√
(LC)

= 1√
[(0.2)(5 × 10−9)]

= 31 620 km/s or 31.62 × 106 m/s

(d) Wavelength, λ = u

f
= 31.62 × 106

1500
m = 21.08 km

Now try the following exercise.

Exercise 165 Further problems on distortion on
transmission lines

1. A cable has the following primary constants: resist-
ance R = 90 
/loop km, inductance L = 2.0 mH/
loop km, capacitance C = 0.05 µF/km and conduc-
tance G = 3.0 µS/km. Determine the value to which
the inductance should be increased to satisfy the
condition for minimum distortion. [1.5 H]

2. A condition of minimum distortion is required for
a cable. Its primary constants are: R = 40 
/loop
km, L = 2.0 mH/loop km, G = 2.0 µS/km and
C = 0.08 µF/km. At a frequency of 100 Hz deter-
mine (a) the increase in inductance required, (b) the
propagation coefficient, (c) the speed of signal
transmission and (d) the wavelength on the line.

[(a) l.598 H (b) (8.944 + j225)10−3

(c) 2.795 × 106 m/s (d) 27.93 km]

44.7 Wave reflection and the reflection coefficient

In earlier sections of this chapter it was assumed that the
transmission line had been properly terminated in its char-
acteristic impedance or regarded as an infinite line. In
practice, of course, all lines have a definite length and
often the terminating impedance does not have the same

value as the characteristic impedance of the line. When
this is the case, the transmission line is said to have a
‘mismatched load’.

The forward-travelling wave moving from the source
to the load is called the incident wave or the sending-
end wave. With a mismatched load the termination will
absorb only a part of the energy of the incident wave,
the remainder being forced to return back along the line
toward the source. This latter wave is called the reflected
wave.

Electrical energy is transmitted by a transmission line;
when such energy arrives at a termination that has a value
different from the characteristic impedance, it experiences
a sudden change in the impedance of the medium. When
this occurs, some reflection of incident energy occurs
and the reflected energy is lost to the receiving load.
(Reflections commonly occur in nature when a change of
transmission medium occurs; for example, sound waves
are reflected at a wall, which can produce echoes, and
light rays are reflected by mirrors.)

If a transmission line is terminated in its characteristic
impedance, no reflection occurs; if terminated in an open
circuit or a short circuit, total reflection occurs, i.e. the
whole of the incident wave reflects along the line. Between
these extreme possibilities, all degrees of reflection are
possible.

Open-circuited termination

If a length of transmission line is open-circuited at the
termination, no current can flow in it and thus no power can
be absorbed by the termination. This condition is achieved
if a current is imagined to be reflected from the termin-
ation, the reflected current having the same magnitude
as the incident wave but with a phase difference of 180◦.
Also, since no power is absorbed at the termination (it is all
returned back along the line), the reflected voltage wave at
the termination must be equal to the incident wave. Thus
the voltage at the termination must be doubled by the open
circuit. The resultant current (and voltage) at any point on
the transmission line and at any instant of time is given by
the sum of the currents (and voltages) due to the incident
and reflected waves (see Section 44.8).

Short-circuit termination

If the termination of a transmission line is short-circuited,
the impedance is zero, and hence the voltage developed
across it must be zero. As with the open-circuit condi-
tion, no power is absorbed by the termination. To obtain
zero voltage at the termination, the reflected voltage wave
must be equal in amplitude but opposite in phase (i.e. 180◦
phase difference) to the incident wave. Since no power
is absorbed, the reflected current wave at the termin-
ation must be equal to the incident current wave and
thus the current at the end of the line must be doubled
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at the short circuit. As with the open-circuited case, the
resultant voltage (and current) at any point on the line
and at any instant of time is given by the sum of the
voltages (and currents) due to the incident and reflected
waves.

Energy associated with a travelling wave

A travelling wave on a transmission line may be thought
of as being made up of electric and magnetic components.
Energy is stored in the magnetic field due to the current
(energy = 1

2 LI2 — see page 525) and energy is stored in
the electric field due to the voltage (energy = 1

2 CV2—
see page 517). It is the continual interchange of energy
between the magnetic and electric fields, and vice versa,
that causes the transmission of the total electromagnetic
energy along the transmission line.

When a wave reaches an open-circuited termination
the magnetic field collapses since the current I is zero.
Energy cannot be lost, but it can change form. In this
case it is converted into electrical energy, adding to that
already caused by the existing electric field. The voltage at
the termination consequently doubles and this increased
voltage starts the movement of a reflected wave back
along the line. A magnetic field will be set up by this
movement and the total energy of the reflected wave will
again be shared between the magnetic and electric field
components.

When a wave meets a short-circuited termination, the
electric field collapses and its energy changes form to the
magnetic energy. This results in a doubling of the current.

Reflection coefficient

Let a generator having impedance Z0 (this being equal to
the characteristic impedance of the line) be connected to
the input terminals of a transmission line which is termin-
ated in an impedance ZR, where Z0 �= ZR, as shown in
Figure 44.8. The sending-end or incident current Ii flow-
ing from the source generator flows along the line and,
until it arrives at the termination ZR behaves as though
the line were infinitely long or properly terminated in its
characteristic impedance, Z0.

Figure 44.8

The incident voltage Vi shown in Figure 44.8 is given by:

Vi = IiZ0 (44.12)

from which, Ii = Vi

Z0
(44.13)

At the termination, the conditions must be such that:

ZR = total voltage

total current

Since ZR �= Z0, part of the incident wave will be reflected
back along the line from the load to the source. Let the
reflected voltage be Vr and the reflected current be Ir . Then

Vr = −IrZ0 (44.14)

from which, Ir = −Vr

Z0
(44.15)

(Note the minus sign, since the reflected voltage and cur-
rent waveforms travel in the opposite direction to the
incident waveforms.)

Thus, at the termination,

ZR = total voltage

total current
= Vi + Vr

Ii + Ir

= IiZ0 − IrZ0

Ii + Ir
from equations (44.12)

and (44.14)

i.e. ZR = Z0(Ii − Ir)

(Ii + Ir)

Hence ZR(Ii + Ir) = Z0(Ii − Ir)

ZRIi + ZRIr = Z0Ii − Z0Ir

Z0Ir + ZRIr = Z0Ii − ZRIi

Ir(Z0 + ZR) = Ii(Z0 − ZR)

from which
Ir

Ii
= Z0 − ZR

Z0 + ZR

The ratio of the reflected current to the incident current
is called the reflection coefficient and is often given the
symbol ρ, i.e.

Ir

Ii
= ρ = Z0 − ZR

Z0 + ZR
(44.16)

By similar reasoning to above an expression for the ratio
of the reflected to the incident voltage may be obtained.
From above,

ZR = Vi + Vr

Ii + Ir
= Vi + Vr

(Vi/Z0) − (Vr/Z0)

from equations (44.13) and (44.15),



Ch44-H8139.tex 30/3/2007 18: 10 page 616

616 Electrical Circuit Theory and Technology

i.e. ZR = Vi + Vr

(Vi − Vr)/Z0

Hence
ZR

Z0
(Vi − Vr) = Vi + Vr

from which,
ZR

Z0
Vi − ZR

Z0
Vr = Vi + Vr

Then
ZR

Z0
Vi − Vi = Vr + ZR

Z0
Vr

and Vi

(
ZR

Z0
− 1

)
= Vr

(
1 + ZR

Z0

)

Hence Vi

(
ZR − Z0

Z0

)
= Vr

(
Z0 + ZR

Z0

)

from which
Vr

Vi
= ZR − Z0

Z0 + ZR
= −

(
Z0 − ZR

Z0 + ZR

)
(44.17)

Hence
Vr

Vi
= − Ir

Ii
= −ρ (44.18)

Thus the ratio of the reflected to the incident voltage has
the same magnitude as the ratio of reflected to incident
current, but is of opposite sign. From equations (44.16)
and (44.17) it is seen that when ZR = Z0, ρ = 0 and there
is no reflection.

Problem 13. A cable which has a characteristic
impedance of 75 
 is terminated in a 250 
 resistive
load. Assuming that the cable has negligible losses
and the voltage measured across the terminating load
is 10V, calculate the value of (a) the reflection coef-
ficient for the line, (b) the incident current, (c) the
incident voltage, (d) the reflected current, and (e) the
reflected voltage.

(a) From equation (44.16),

reflection coefficient, ρ = Z0 − ZR

Z0 + ZR
= 75 − 250

75 + 250

= −175

325
= −0.538

(b) The circuit diagram is shown in Figure 44.9. Current
flowing in the terminating load,

IR = VR

ZR
= 10

250
= 0.04 A

Figure 44.9

However, current IR = Ii + Ir . From equation (44.16),
Ir = ρIi

Thus IR = Ii + ρIi = Ii(1 + ρ)

from which incident current, Ii = IR

(1 + ρ)

= 0.04

1 + (−0.538)

= 0.0866A

or 86.6 mA

(c) From equation (44.12),

incident voltage, Vi = IiZ0 = (0.0866)(75) = 6.50V

(d) Since IR = Ii + Ir

reflected current, Ir = IR − Ii = 0.04 − 0.0866

= −0.0466A or − 46.6 mA

(e) From equation (44.14),

reflected voltage, Vr = −IrZ0 = −(−0.0466)(75)

= 3.50 V

Problem 14. A long transmission line has a char-
acteristic impedance of (500 − j40) 
 and is termin-
ated in an impedance of (a) (500 + j40) 
 and
(b) (600 + j20) 
. Determine the magnitude of the
reflection coefficient in each case.

(a) From equation (44.16), reflection coefficient,

ρ = Z0 − ZR

Z0 + ZR

When Z0 =(500 − j40) 
 and ZR = (500 + j40) 


ρ = (500 − j40) − (500 + j40)

(500 − j40) + (500 + j40)
= −j80

1000
= −j0.08

Hence the magnitude of the reflection coefficient,
|ρ| = 0.08
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(b) When Z0 = (500 − j40) 
 and ZR = (600 + j20) 


ρ = (500 − j40) − (600 + j20)

(500 − j40) + (600 + j20)
= −100 − j60

1100 − j20

= 116.62∠−149.04◦

1100.18∠−1.04◦
= 0.106∠−148◦

Hence the magnitude of the reflection coefficient,
|ρ| = 0.106

Problem 15. A loss-free transmission line has a char-
acteristic impedance of 500∠0◦ 
 and is connected
to an aerial of impedance (320 + j240)
. Determine
(a) the magnitude of the ratio of the reflected to the
incident voltage wave, and (b) the incident voltage if
the reflected voltage is 20∠35◦ V

(a) From equation (44.17), the ratio of the reflected to the
incident voltage is given by:

Vr

Vi
= ZR − Z0

ZR + Z0

where Z0 is the characteristic impedance 500∠0◦ 

and ZR is the terminating impedance (320 + j240) 
.

Thus
Vr

Vi
= (320 + j240) − 500∠0◦

500∠0◦ + (320 + j240)

= −180 + j240

820 + j240
= 300∠126.87◦

854.4∠16.31◦

= 0.351∠110.56◦

Hence the magnitude of the ratio Vr :Vi is 0.351

(b) Since Vr/Vi = 0.351∠110.56◦,

incident voltage, Vi = Vr

0.351∠110.56◦

Thus, when Vr = 20∠35◦ V,

Vi = 20∠35◦

0.351∠110.56◦ = 57.0∠−75.56◦ V

Now try the following exercise.

Exercise 166 Further problems on wave reflection
and the reflection coefficient

1. A coaxial line has a characteristic impedance of
100 
 and is terminated in a 400 
 resistive load.
The voltage measured across the termination is
15V. The cable is assumed to have negligible

losses. Calculate for the line the values of (a) the
reflection coefficient, (b) the incident current,
(c) the incident voltage, (d) the reflected current,
and (e) the reflected voltage.

[(a) −0.60 (b) 93.75 mA (c) 9.375V
(d) −56.25 mA (e) 5.625V]

2. A long transmission line has a characteristic
impedance of (400 − j50) 
 and is terminated in an
impedance of (i) 400 + j50) 
, (ii) (500 + j60) 

and (iii) 400∠0◦ 
. Determine the magnitude of
the reflection coefficient in each case.

[(i) 0.125 (ii) 0.165 (iii) 0.062]

3. A transmission line which is loss-free has a char-
acteristic impedance of 600∠0◦ 
 and is connected
to a load of impedance (400 + j300) 
. Determine
(a) the magnitude of the reflection coefficient and
(b) the magnitude of the sending-end voltage if the
reflected voltage is 14.60V

[(a) 0.345 (b) 42.32V]

44.8 Standing waves and the standing wave
ratio

Consider a lossfree transmission line open-circuited at its
termination. An incident current waveform is completely
reflected at the termination, and, as stated in Section 44.7,
the reflected current is of the same magnitude as the inci-
dent current but is 180◦ out of phase. Figure 44.10(a)
shows the incident and reflected current waveforms drawn
separately (shown as Ii moving to the right and Ir moving
to the left respectively) at a time t = 0, with Ii = 0 and
decreasing at the termination.

The resultant of the two waves is obtained by adding
them at intervals. In this case the resultant is seen to
be zero. Figures 44.10(b) and (c) show the incident and
reflected waves drawn separately as times t = T/8 seconds
and t = T/4, where T is the periodic time of the signal.
Again, the resultant is obtained by adding the incident and
reflected waveforms at intervals. Figures 44.10(d) to (h)
show the incident and reflected current waveforms plotted
on the same axis, together with their resultant waveform,
at times t = 3T/8 to t = 7T/8 at intervals of T/8.

If the resultant waveforms shown in Figures 44.10(a)
to (g) are superimposed one upon the other, Figure 44.11
results. (Note that the scale has been increased for clarity.)
The waveforms show clearly that waveform (a) moves to
(b) after T/8, then to (c) after a further period of T/8, then
to (d), (e), (f), (g) and (h) at intervals of T/8. It is noted
that at any particular point the current varies sinusoidally
with time, but the amplitude of oscillation is different at
different points on the line.
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Figure 44.10 Current waveforms on an open-circuited
transmission line

Whenever two waves of the same frequency and ampli-
tude travelling in opposite directions are superimposed
on each other as above, interference takes place between
the two waves and a standing or stationary wave is pro-
duced. The points at which the current is always zero are
called nodes (labelled N in Figure 44.11). The standing
wave does not progress to the left or right and the nodes
do not oscillate. Those points on the wave that undergo
maximum disturbance are called antinodes (labelled A

Figure 44.11

in Figure 44.11). The distance between adjacent nodes or
adjacent antinodes is λ/2, where λ is the wavelength. A
standing wave is therefore seen to be a periodic variation
in the vertical plane taking place on the transmission line
without travel in either direction.

The resultant of the incident and reflected voltage for
the open-circuit termination may be deduced in a similar
manner to that for current. However, as stated in Sec-
tion 44.7, when the incident voltage wave reaches the
termination it is reflected without phase change. Fig-
ure 44.12 shows the resultant waveforms of incident and
reflected voltages at intervals of t = T/8. Figure 44.13
shows all the resultant waveforms of Figure 44.12(a) to
(h) superimposed; again, standing waves are seen to result.
Nodes (labelled N) and antinodes (labelled A) are shown
in Figure 44.13 and, in comparison with the current waves,
are seen to occur 90◦ out of phase.

If the transmission line is short-circuited at the termin-
ation, it is the incident current that is reflected without
phase change and the incident voltage that is reflected
with a phase change of 180◦. Thus the diagrams shown
in Figures 44.10 and 44.11 representing current at an
open-circuited termination may be used to represent volt-
age conditions at a short-circuited termination and the
diagrams shown in Figures 44.12 and 44.13 represent-
ing voltage at an open-circuited termination may be
used to represent current conditions at a short-circuited
termination.

Figure 44.14 shows the rms current and voltage wave-
forms plotted on the same axis against distance for the
case of total reflection, deduced from Figures 44.11 and
44.13. The rms values are equal to the amplitudes of the
waveforms shown in Figures 44.11 and 44.13, except that
they are each divided by

√
2 (since, for a sine wave, rms

value = (1/
√

2) × maximum value). With total reflection,
the standing-wave patterns of rms voltage and current
consist of a succession of positive sine waves with the
voltage node located at the current antinode and the cur-
rent node located at the voltage antinode. The termination
is a current nodal point. The rms values of current and
voltage may be recorded on a suitable rms instrument
moving along the line. Such measurements of the max-
imum and minimum voltage and current can provide a



Ch44-H8139.tex 30/3/2007 18: 10 page 619

Transmission lines 619

PART

3

Figure 44.12 Voltage waveforms on an open-circuited
transmission line

Figure 44.13

Figure 44.14

reasonably accurate indication of the wavelength, and
also provide information regarding the amount of reflected
energy relative to the incident energy that is absorbed at
the termination, as shown below.

Standing-wave ratio

Let the incident current flowing from the source of a mis-
matched low-loss transmission line be Ii and the current
reflected at the termination be Ir . If IMAX is the sum of
the incident and reflected current, and IMIN is their differ-
ence, then the standing-wave ratio (symbol s) on the line
is defined as:

s = IMAX

IMIN
= Ii + Ir

Ii − Ir
(44.19)

Hence s(Ii − Ir) = Ii + Ir

sIi − sIr = Ii + Ir

sIi − Ii = sIr + Ir

Ii(s − 1) = Ir(s + 1)

i.e.
Ir

Ii
=

(
s − 1
s + 1

)
(44.20)

The power absorbed in the termination Pt = I2
i Z0 and the

reflected power, Pr = I2
r Z0. Thus

Pr

Pt
= I2

r Z0

I2
i Z0

=
(

Ir

Ii

)2

Hence, from equation (44.20),

Pr

Pt
=

(
s − 1
s + 1

)2

(44.21)

Thus the ratio of the reflected to the transmitted power may
be calculated directly from the standing-wave ratio, which
may be calculated from measurements of IMAX and IMIN.
When a transmission line is properly terminated there is
no reflection, i.e. Ir = 0, and from equation (44.19) the
standing-wave ratio is 1. From equation (44.21), when
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s = 1, Pr = 0, i.e. there is no reflected power. In practice,
the standing-wave ratio is kept as close to unity as possible.
From equation (44.16), the reflection coefficient, ρ = Ir/Ii

Thus, from equation (44.20), |ρ| = s − 1

s + 1

Rearranging gives: |ρ|(s + 1) = (s − 1)

|ρ|s + |ρ| = s − 1

1 + |ρ| = s(1 − |ρ|)

from which s = 1 + |ρ|
1 − |ρ| (44.22)

Equation (44.22) gives an expression for the standing-
wave ratio in terms of the magnitude of the reflection
coefficient.

Problem 16. A transmission line has a characteris-
tic impedance of 600∠0◦
 and negligible loss. If the
terminating impedance of the line is (400 + j250)
,
determine (a) the reflection coefficient and (b) the
standing-wave ratio.

(a) From equation (44.16),

reflection coefficient, ρ = Z0 − ZR

Z0 + ZR

= 600∠0◦ − (400 + j250)

600∠0◦ + (400 + j250)

= 200 − j250

1000 + j250

= 320.16∠−51.34◦

1030.78∠14.04◦

Hence ρ = 0.3106∠−65.38◦

(b) From above, |ρ| = 0.3106. Thus from equation
(44.22),

standing-wave ratio, s = 1 + |ρ|
1 − |ρ| = 1 + 0.3106

1 − 0.3106

= 1.901

Problem 17. A low-loss transmission line has a
mismatched load such that the reflection coefficient
at the termination is 0.2∠−120◦. The characteris-
tic impedance of the line is 80 
. Calculate (a) the
standing-wave ratio, (b) the load impedance, and
(c) the incident current flowing if the reflected current
is 10 mA.

(a) From equation (44.22),

standing-wave ratio, s = 1 + |ρ|
1 − |ρ| = 1 + 0.2

1 − 0.2

= 1.2

0.8
= 1.5

(b) From equation (44.16) reflection coefficient,

ρ = Z0 − ZR

Z0 + ZR

Rearranging gives: ρ(Z0 + ZR) = Z0 − ZR

from which ZR(ρ + 1) = Z0(1 − ρ)

and
ZR

Z0
= 1 − ρ

1 + ρ
= 1 − 0.2∠−120◦

1 + 0.2∠−120◦

= 1 − (−0.10 − j0.173)

1 + (−0.10 − j0.173)

= 1.10 + j0.173

0.90 − j0.173

= 1.1135∠8.94◦

0.9165∠−10.88◦
= 1.215∠19.82◦

Hence load impedance ZR = Z0(1.215∠19.82◦)

= (80)(1.215∠19.82◦)

= 97.2∠19.82◦�
or (91.4 + j33.0)�

(c) From equation (44.20),

Ir

Ii
= s − 1

s + 1

Hence
10

Ii
= 1.5 − 1

1.5 + 1
= 0.5

2.5
= 0.2

Thus the incident current, Ii = 10/0.2 = 50 mA

Problem 18. The standing-wave ratio on a mis-
matched line is calculated as 1.60. If the incident power
arriving at the termination is 200 mW, determine the
value of the reflected power.

From equation (44.21),

Pr

Pt
=

(
s − 1

s + 1

)2

=
(

1.60 − 1

1.60 + 1

)2

=
(

0.60

2.60

)2

= 0.0533

Hence the reflected power, Pr = 0.0533Pt

= (0.0533)(200)

= 10.66 mW
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Now try the following exercise.

Exercise 167 Further problems on standing waves
and the standing wave ratio

1. A transmission line has a characteristic impedance
of 500∠0◦ 
 and negligible loss. If the terminating
impedance of the line is (320 + j200) 
 determine
(a) the reflection coefficient and (b) the standing-
wave ratio. [(a) 0.319∠−61.72◦ (b) 1.937]

2. A low-loss transmission line has a mismatched load
such that the reflection coefficient at the termination
is 0.5∠−135◦. The characteristic impedance of the
line is 60 
. Calculate (a) the standing-wave ratio,
(b) the load impedance, and (c) the incident current
flowing if the reflected current is 25 mA.

[(a) 3 (b) 113.93∠43.32◦ 
 (c) 50 mA]

3. The standing-wave ratio on a mismatched line is
calculated as 2.20. If the incident power arriving at
the termination is 100 mW, determine the value of
the reflected power. [14.06 mW]

4. The termination of a coaxial cable may be
represented as a 150 
 resistance in series with a
0.20 µH inductance. If the characteristic impedance
of the line is 100∠0◦ 
 and the operating frequency
is 80 MHz, determine (a) the reflection coefficient
and (b) the standing-wave ratio.

[(a) 0.417∠−138.35◦ (b) 2.43]

5. A cable has a characteristic impedance of 70∠0◦ 
.
The cable is terminated by an impedance of
60∠30◦ 
. Determine the ratio of the maximum
to minimum current along the line. [1.77]
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45 Transients and Laplace transforms

At the end of this chapter you should be able to:
• determine the transient response of currents and volt-

ages in R–L, R–C and L–R–C series circuits using
differential equations

• define the Laplace transform of a function
• use a table of Laplace transforms of functions com-

monly met in electrical engineering for transient
analysis of simple networks

• use partial fractions to deduce inverse Laplace
transforms

• deduce expressions for component and circuit
impedances in the s-plane given initial conditions

• use Laplace transform analysis directly from circuit
diagrams in the s-plane

• deduce Kirchhoff’s law equations in the s-plane
for determining the response of R–L, R–C and
L–R–C networks, given initial conditions

• explain the conditions for which an L–R–C circuit
response is over, critical, under or zero-damped and
calculate circuit responses

• predict the circuit response of an L–R–C network,
given non-zero initial conditions

45.1 Introduction

A transient state will exist in a circuit containing one or
more energy storage elements (i.e. capacitors and induct-
ors) whenever the energy conditions in the circuit change,
until the new steady state condition is reached. Tran-
sients are caused by changing the applied voltage or
current, or by changing any of the circuit elements; such
changes occur due to opening and closing switches. Tran-
sients were introduced in Chapter 17 where growth and
decay curves were constructed and their equations stated
for step inputs only. In this chapter, such equations are
developed analytically by using both differential equa-
tions and Laplace transforms for different waveform
supply voltages.

45.2 Response of R–C series circuit to a
step input

Charging a capacitor

A series R–C circuit is shown in Figure 45.1(a).
A step voltage of magnitude V is shown in Figure

45.1(b). The capacitor in Figure 45.1(a) is assumed to
be initially uncharged.

From Kirchhoff’s voltage law, supply voltage,

V = vC + vR (45.1)

VoltagevR = iR and current i = C
dvc

dt
, hencevR = CR

dvC

dt

Switch 0 t

(b)(a)

C R

VC VR i

V

V

Figure 45.1

Therefore, from equation (45.1)

V = vC + CR
dvC

dt
(45.2)

This is a linear, constant coefficient, first order differen-
tial equation. Such a differential equation may be solved,
i.e. find an expression for voltage vC , by separating the
variables. (See Higher Engineering Mathematics)
Rearranging equation (45.2) gives:

V − vC = CR
dvC

dt

and
dvC

dt
= V − vC

CR

from which,
dvC

V − vc
= dt

CR
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and integrating both sides gives:
∫

dvC

V − vC
=
∫

dt

CR

Hence − ln(V − vC) = t

CR
+ k (45.3)

where k is the arbitrary constant of integration

(To integrate
∫

dvC

V − vC
make an algebraic substitution,

u = V − vC — see Engineering Mathematics or Higher
Engineering Mathematics, J.O. Bird, 2004, 4th edition,
Elsevier.)

When time t = 0, vC = 0, hence −ln V = k

Thus, from equation (45.3), −ln(V − vC) = t

CR
− ln V

Rearranging gives:

ln V − ln(V − vC) = t

CR

ln
V

V − vC
= t

CR
by the laws of logarithms

i.e.
V

V − vC
= et/CR

and
V − vC

V
= 1

et/CR
= e−t/CR

V − vC = Ve−t/CR

V − Ve−t/CR = vC

i.e. capacitor p.d., vc = V(1 − e−t/CR) (45.4)

This is an exponential growth curve, as shown in Fig-
ure 45.2.

vC

V

t0

vC = V  −e–t/CR1( (

Figure 45.2

From equation (45.1),

vR = V − vC

= V − [V (1 − e−t/CR)] from equation (45.4)

= V − V + Ve−t/CR

i.e. resistor p.d., vR = Ve−t/CR (45.5)

This is an exponential decay curve, as shown in Fig-
ure 45.3.

0 t

V
vR

vR=Ve−t/CR

Figure 45.3

In the circuit of Figure 45.1(a), current i = C
dvC

dt

Hence i = C
d

dt
[V (1 − e−t/CR)] from equation (45.4)

i.e. i = C
d

dt
[V − Ve−t/CR]

= C

[
0 − (V )

(−1

CR

)
e−t/CR

]

= C

[
V

CR
e−t/CR

]

i.e. current, i = V
R

e−t/CR (45.6)

where
V

R
is the steady state current, I .

This is an exponential decay curve as shown in Fig-
ure 45.4.

t

V 
R

i

0

i = e−t/CR
R
V

Figure 45.4

After a period of time it can be determined from equations
(45.4) to (45.6) that the voltage across the capacitor, vC ,
attains the value V , the supply voltage, whilst the resistor
voltage, vR, and current i both decay to zero.

Problem 1. A 500 nF capacitor is connected in series
with a 100 k� resistor and the circuit is connected to
a 50V, d.c. supply. Calculate (a) the initial value of
current flowing, (b) the value of current 150 ms after
connection, (c) the value of capacitor voltage 80 ms
after connection, and (d) the time after connection
when the resistor voltage is 35V.
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(a) From equation (45.6), current, i = V

R
e−t/CR

Initial current, i.e. when t = 0,

i0 = V

R
e0 = V

R
= 50

100 × 103 = 0.5 mA

(b) Current, i = V

R
e−t/CR hence, when time t = 150 ms or

0.15 s,

i = 50

100 × 103 e−0.5/(500×10−9)(100×103)

= (0.5 × 10−3)e−3 = (0.5 × 10−3)(0.049787)

= 0.0249 mA or 24.9 µA

(c) From equation (45.4), capacitor voltage,
vC = V (1 − e−t/CR)

When time t = 80 ms,

vC = 50(1 − e−80×10−3/(500×10−3×100×103))

= 50(1 − e−1.6) = 50(0.7981)

= 39.91V

(d) From equation (45.5), resistor voltage, vR = Ve−t/CR

When vR = 35V,

then 35 = 50e−t/(500×10−9×100×103)

i.e.
35

50
= e−t/0.05

and ln
35

50
= −t

0.05

from which, time, t = −0.05 ln 0.7

= 0.0178 s or 17.8 ms

Discharging a capacitor

If after a period of time the step input voltage V applied to
the circuit of Figure 45.1 is suddenly removed, by opening
the switch, then

from equation (45.1), vR + vC = 0

or, from equation (45.2), CR
dvC

dt
+ vC = 0

Rearranging gives:
dvC

dt
= −1

CR
vC

and separating the variables gives:
dvC

vC
= − dt

CR

and integrating both sides gives:
∫

dvC

vC
=
∫

− dt

CR

from which, ln vC = − t

CR
+ k (45.7)

where k is a constant.

At time t = 0 (i.e. at the instant of opening the switch),
vC = V

Substituting t = 0 and vC = V in equation (45.7) gives:

ln V = 0 + k

Substituting k = ln V into equation (45.7) gives:

ln vC = − t

CR
+ ln V

and ln vC − ln V = − t

CR

ln
vC

V
= − t

CR

and
vC

V
= e−t/CR

from which, vC =Ve−t/CR (45.8)

i.e. the capacitor voltage, vC , decays to zero after a period
of time, the rate of decay depending on CR, which is the
time constant, τ (see Section 17.3, page 200). Since
vR + vC = 0 then the magnitude of the resistor voltage,
vR, is given by:

vR =Ve−t/CR (45.9)

and since i = C
dvC

dt
= C

d

dt
(Ve−t/CR)

= (CV )

(
− 1

CR

)
e−t/CR

i.e. the magnitude of the current,

i = V
R

e−t/CR (45.10)

Problem 2. A d.c. voltage supply of 200V is con-
nected across a 5 µF capacitor as shown in Figure 45.5.
When the supply is suddenly cut by opening switch S,
the capacitor is left isolated except for a parallel



Ch45-H8139.tex 29/3/2007 19: 58 page 625

Transients and Laplace transforms 625

PART

3

resistor of 2 M�. Calculate the p.d. across the capaci-
tor after 20 s.

S

200 V
2 MΩ

+

−

5 µF 

Figure 45.5

From equation (45.8), vC = Ve−t/CR

After 20 s, vC = 200e−20/(5×10−6×2×106) = 200 e−2

= 200(0.13534)

= 27.07V

45.3 Response of R–L series circuit to a
step input

Current growth

A series R–L circuit is shown in Figure 45.6. When the
switch is closed and a step voltage V is applied, it is
assumed that L carries no current.

V

Switch

L R

vL vR

i

Figure 45.6

From Kirchhoff’s voltage law, V = vL + vR

Voltage vL = L
di

dt
and voltage vR = iR

Hence V = L
di

dt
+ iR (45.11)

This is a linear, constant coefficient, first order differential
equation.

Again, such a differential equation may be solved by
separating the variables.

Rearranging equation (45.11) gives:
di

dt
= V − iR

L

from which,
di

V − iR
= dt

L

and
∫

di

V − iR
=
∫

dt

L

Hence − 1

R
ln(V − iR) = t

L
+ k (45.12)

where k is a constant

(Use the algebraic substitution u = V − iR to integrate∫
di

V − iR
)

At time t = 0, i = 0, thus − 1

R
ln V = 0 + k

Substituting k = − 1

R
ln V in equation (45.12) gives:

− 1

R
ln(V − iR) = t

L
− 1

R
ln V

Rearranging gives:
1

R
[ln V − ln(V − iR)] = t

L

and ln

(
V

V − iR

)
= Rt

L

Hence
V

V − iR
= eRt/L

and
V − iR

V
= 1

eRt/L
= e−Rt/L

V − iR = Ve−Rt/L

V − Ve−Rt/L = iR

and current, i = V
R

(1 − e−Rt/L) (45.13)

This is an exponential growth curve as shown in Fig-
ure 45.7.

i =  V
R

1− e−Rt/L

V
R

i  

0 t

Figure 45.7

The p.d. across the resistor in Figure 45.6, vR = iR
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Hence vR = R

[
V

R
(1 − e−Rt/L)

]
from equation (45.13)

i.e. VR =V(1 − e−Rt/L) (45.14)

which again represents an exponential growth curve.

The voltage across the inductor in Figure 45.6, vL = L
di

dt

i.e. vL = L
d

dt

[
V

R
(1 − e−Rt/L)

]
= LV

R

d

dt
[1 − e−Rt/L]

= LV

R

[
0 −

(
−R

L

)
e−Rt/L

]
= LV

R

(
R

L
e−Rt/L

)

i.e. vL =Ve−Rt/L (45.15)

Problem 3. A coil of inductance 50 mH and resist-
ance 5 � is connected to a 110V, d.c. supply. Deter-
mine (a) the final value of current, (b) the value of
current after 4 ms, (c) the value of the voltage across the
resistor after 6 ms, (d) the value of the voltage across
the inductance after 6 ms, and (e) the time when the
current reaches 15A.

(a) From equation (45.13), when t is large, the final, or
steady state current i is given by:

i = V

R
= 110

5
= 22 A

(b) From equation (45.13), current, i = V

R
(1 − e−Rt/L)

When t = 4 ms, i = 110

5
(1 − e(−(5)(4×10−3)/50×10−3))

= 22(1 − e−0.40) = 22(0.32968)

= 7.25V

(c) From equation (45.14), the voltage across the resistor,

vR = V (1 − e−Rt/L)

When t = 6 ms,vR = 110(1 − e(−(5)(6×10−3)/50×10−3))

= 110(1 − e−0.60) = 110(0.45119)

= 49.63V

(d) From equation (45.15), the voltage across the induct-
ance,

vL = Ve−Rt/L

When t = 6 ms,

vL = 110e(−(5)(6×10−3)/50×10−3) = 110e−0.60

= 60.37V

(Note that at t = 6 ms,

vL + vR = 60.37 + 49.63 = 110V = supply p.d., V)

(e) When current i reaches 15A,

15 = V

R
(1 − e−Rt/L) from equation (45.13)

i.e. 15 = 110

5
(1 − e−5t/(50×10−3))

15

(
5

110

)
= 1 − e−100t

and e−100t = 1 − 75

110

Hence −100t = ln

(
1 − 75

110

)

and time, t = 1

−100
ln

(
1 − 75

100

)

= 0.01145 s or 11.45 ms

Current decay

If after a period of time the step voltage V applied to the
circuit of Figure 45.6 is suddenly removed by opening the
switch, then from equation (45.11),

0 = L
di

dt
+ iR

Rearranging gives: L
di

dt
= −iR or

di

dt
= − iR

L

Separating the variables gives:
di

i
= −R

L
dt

and integrating both sides gives:

∫
di

i
= ∫ −R

L
dt

ln i = −R

L
t + k (45.16)

At t = 0 (i.e. when the switch is opened),

i = I

(
= V

R
, the steady state current

)

then ln I = 0 + k
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Substituting k = ln I into equation (45.16) gives:

ln i = −R

L
t + ln I

Rearranging gives: ln i − ln I = −R

L
t

ln
i

I
= −R

L
t

i

I
= e−Rt/L

and current, i = Ie−Rt/L or
V
R

e−Rt/L (45.17)

i.e. the current i decays exponentially to zero.

From Figure 45.6, vR = iR = R

(
V

R
e−Rt/L

)
from equation

(45.17)

i.e. vR =Ve−Rt/L (45.18)

The voltage across the coil, vL = L
di

dt
= L

d

dt

(
V

R
e−Rt/L

)

from equation (45.17)

= L

(
V

R

)(
−R

L

)
e−Rt/L

Hence the magnitude of vL is given by:

vL =Ve−Rt/L (45.19)

Hence both vR and vL decay exponentially to zero.

Problem 4. In the circuit shown in Figure 45.8, a
current of 5A flows from the supply source. Switch S
is then opened. Determine (a) the time for the current in
the 2 H inductor to fall to 200 mA and (b) the maximum
voltage appearing across the resistor.

2 H

S5 A

V 
10 Ω

Figure 45.8

(a) When the supply is cut off, the circuit consists of just
the 10 � resistor and the 2 H coil in parallel. This is
effectively the same circuit as Figure 45.6 with the
supply voltage zero.

From equation (45.17), current i = V

R
e−Rt/L

In this case
V

R
= 5 A, the initial value of current.

When i = 200 mA or 0.2A,

0.2 = 5e−10t/2

i.e.
0.2

5
= e−5t

thus ln
0.2

5
= −5t

and time, t = −1

5
ln

0.2

5
= 0.644 s or 644 ms

(b) Since the current through the coil can only return
through the 10 � resistance, the voltage across the
resistor is a maximum at the moment of disconnec-
tion, i.e.

vRm = IR = (5)(10) = 50 V

Now try the following exercise.

Exercise 168 Further problems on R–C and
R–L series circuits

1. A 5 µF capacitor is connected in series with a 20 k�
resistor and the circuit is connected to a 10V d.c.
supply. Determine (a) the initial value of current
flowing, (b) the value of the current 0.4 s after con-
nection, (c) the value of the capacitor voltage 30 ms
after connection, and (d) the time after connection
when the resistor voltage is 4V.

[(a) 0.5 mA (b) 9.16 µA (c) 2.59V
(d) 91.63 ms]

2. A 100V d.c. supply is connected across a 400 nF
capacitor as shown in Figure 45.9. When the switch
S is opened the capacitor is left isolated except for a
parallel resistor of 5 M�. Determine the p.d. across
the capacitor 5 s after opening the switch.

[8.21V]

100 V

S

5 MΩ

400 nF

Figure 45.9
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3. A 40V d.c. supply is connected across a coil of
inductance 25 mH and resistance 5 �. Calculate
(a) the final value of current, (b) the value of cur-
rent after 10 ms, (c) the p.d. across the resistor after
5 ms, (d) the value of the voltage across the induc-
tance after 2 ms, and (e) the time when the current
reaches 3A.

[(a) 8A (b) 6.92A (c) 25.28V (d) 26.81V
(e) 2.35 ms]

4. In the circuit shown in Figure 45.10 a current of 2A
flows from the source. If the switch S is suddenly
opened, calculate (a) the time for the current in the
0.5 H inductor to fall to 0.8A, and (b) the maximum
voltage across the resistor.

[(a) 114.5 ms (b) 8 V]

2 AS

4 Ω

0.5 HE

Figure 45.10

45.4 L–R–C series circuit response

L–R–C circuits are widely used in a variety of appli-
cations, such as in filters in communication systems,
ignition systems in automobiles, and defibrillator circuits
in biomedical applications (where an electric shock is used
to stop the heart, in the hope that the heart will restart with
rhythmic contractions).
For the circuit shown in Figure 45.11, from Kirchhoff’s
voltage law,

V = vL + vR + vC (45.20)

vL = L
di

dt
and i = C

dvC

dt
, hence

vL = L
d

dt

(
C

dvC

dt

)
= LC

d2vC

dt2

vR = iR =
(

C
dvC

dt

)
R = RC

dvC

dt

R

V

L

vL vR 

vC C

i

Figure 45.11

Hence from equation (45.20):

V = LC
d2vC

dt2 + RC
dvC

dt
+ vC (45.21)

This is a linear, constant coefficient, second order differen-
tial equation. (For the solution of second order differential
equations, see Higher Engineering Mathematics).

To determine the transient response, the supply p.d., V , is
made equal to zero,

i.e. LC
d2vC

dt2 + RC
dvC

dt
+ vC = 0 (45.22)

A solution can be found by letting vC = Aemt , from which,

dvC

dt
= Amemt and

dvC

dt2 = Am2emt

Substituting these expressions into equation (45.22) gives:

LC(Am2emt) + RC(Amemt) + Aemt = 0

i.e. Aemt(m2LC + mRC + 1) = 0

Thus vC = Aemt is a solution of the given equation
provided that

m2LC + mRC + 1 = 0 (45.23)

This is called the auxiliary equation.

Using the quadratic formula on equation (45.23) gives:

m = −RC ± √
[(RC)2 − 4(LC)(1)]

2LC

= −RC ± √
(R2C2 − 4LC)

2LC

i.e. m = −RC

2LC
±
√

R2C2 − 4LC

(2LC)2

= − R

2L
±
√(

R2C2

4L2C2 − 4LC

4L2C2

)

= − R

2L
±
√[(

R

2L

)2

− 1

LC

]
(45.24)

This equation may have either:

(i) two different real roots, when (R/2L)2 > (1/LC),
when the circuit is said to be overdamped since the
transient voltage decays very slowly with time, or

(ii) two real equal roots, when (R/2L)2 = (1/LC), when
the circuit is said to be critically damped since the
transient voltage decays in the minimum amount of
time without oscillations occurring, or
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(iii) two complex roots, when (R/2L)2 < (1/LC),
when the circuit is said to be underdamped since
the transient voltage oscillates about the final steady
state value, the oscillations eventually dying away to
give the steady state value, or

(iv) if R = 0 in equation (45.24), the oscillations would
continue indefinitely without any reduction in ampli-
tude — this is the undamped condition.

Damping is discussed again in Section 45.8 with typical
current responses sketched in Figure 45.30 on page 651.

Problem 5. A series L–R–C circuit has induct-
ance, L = 2 mH, resistance, R = 1 k� and capacitance,
C = 5 µF. (a) Determine whether the circuit is over,
critical or underdamped. (b) If C = 5 nF, determine the
state of damping.

(a)

(
R

2L

)2

=
[

103

2(2 × 10−3)

]2

= 1012

16
= 6.25 × 1010

1

LC
= 1

(2 × 10−3)(5 × 106)
= 109

10
= 108

Since

(
R

2L

)2

>
1

LC
the circuit is overdamped.

(b) When C = 5 nF,
1

LC
= 1

(2 × 10−3)(5 × 10−9)
= 1011

Since

(
R

2L

)2

<
1

LC
the circuit is underdamped.

Problem 6. In the circuit of problem 5, what value of
capacitance will give critical damping?

For critical damping:

(
R

2L

)2

= 1

LC

from which, capacitance,

C = 1

L
(

R
2L

)2 = 1

L
R2

4L2

= 4L2

LR2 = 4L

R2

= 4(2×10−3)

(103)2 = 8×10−9 F or 8 nF

Roots of the auxiliary equation

With reference to equation (45.24):

(i) when the roots are real and different, say m = α and
m = β, the general solution is

vC =Aeαt + Beβt (45.25)

where α = − R

2L
+
√[(

R

2L

)2

− 1

LC

]
and

β = − R

2L
−
√[(

R

2L

)2

− 1

LC

]

(ii) when the roots are real and equal, say m = α twice,
the general solution is

vC = (At + B)eαt (45.26)

where α = − R

2L
(iii) when the roots are complex, say m = α ± jβ, the

general solution is

vC = eαt{Acos βt + B sin βt} (45.27)

where α = − R

2L
and β =

√[
1

LC
−
(

R

2L

)2
]

(45.28)

To determine the actual expression for the voltage under
any given initial condition, it is necessary to evaluate
constants A and B in terms of vC and current i. The
procedure is the same for each of the above three cases.
Assuming in, say, case (iii) that at time t = 0, vC = v0 and
i(= C(dvC/dt)) = i0 then substituting in equation (45.27):

v0 = e0{A cos 0 + B sin 0}
i.e. v0 = A (45.29)

Also, from equation (45.27),

dvC

dt
= eαt[−Aβ sin βt + Bβ cos βt]

+ [A cos βt + B sin βt](αeαt) (45.30)

by the product rule of differentiation

When t = 0,
dvC

dt
= e0[0 + Bβ] + [A](αe0) = Bβ + αA

Hence at t = 0, i0 = C
dvC

dt
= C(Bβ + αA)

From equation (45.29), A = v0 hence i0 = C(Bβ + αv0)
= CBβ + Cαv0

from which, B = i0 − Cαv0

Cβ
(45.31)

Problem 7. A coil has an equivalent circuit of induc-
tance 1.5 H in series with resistance 90 �. It is con-
nected across a charged 5 µF capacitor at the moment
when the capacitor voltage is 10V. Determine the
nature of the response and obtain an expression for
the current in the coil.
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(
R

2L

)2

=
[

90

2(1.5)

]2

= 900 and
1

LC
= 1

(1.5)(5×10−6)

= 1.333×105

Since

(
R

2L

)2

<
1

LC
the circuit is underdamped.

From equation (45.28),

α = − R

2L
= − 90

2(1.5)
= −30

and β =
√[

1

LC
−
(

R

2L

)2
]

= √
[1.333×105 − 900] = 363.9

With v0 = 10V and i0 = 0, from equation (45.29),
v0 = A = 10

and from equation (45.31),

B = i0 − Cαv0

Cβ
= 0 − (5 × 10−6)(−30)(10)

(5 × 10−6)(363.9)

= 300

363.9
= 0.8244

Current, i = C
dvC

dt
, and from equation (45.30),

i = C{e−30t[−10(363.9) sin βt

+ (0.8244)(363.9) cos βt]

+ (10 cos βt + 0.8244 sin βt)(−30e−30t)}
= C{e−30t[−3639 sin βt + 300 cos βt

− 300 cos βt − 24.732 sin βt]}
= Ce−30t[−3663.732 sin βt]

= −(5 × 10−6)(3663.732)e−30t sin βt

i.e. current, i = −0.0183e−30tsin 363.9t amperes

Now try the following exercise.

Exercise 169 Further problems on L – R – C series
circuit response

1. In a series L – R – C circuit the inductance,
L = 5 mH and the resistance R = 5 k�. Determine
whether the circuit is over, critical or under damped

when (a) capacitance C = 500 pF, and (b)
C = 10 µF. [(a) underdamped (b) overdamped]

2. For the circuit in Problem 7 calculate the value of
capacitance C for critical damping. [800 pF]

3. A coil having an equivalent circuit of inductance 1 H
in series with resistance 50 � is connected across a
fully charged 0.4 µF capacitor at the instant when
the capacitor voltage is 20V. Determine the nature
of the response and obtain an expression for the
current in the coil.

[underdamped;
i = −0.0127e−25t sin 1580.9 t A]

4. If the coil in Problem 7 had a resistance of 500 �
and the capacitance was 16 µF, determine the nature
of the response and obtain an expression for the
current flowing.

[critically damped; i = −20te−250t A]

45.5 Introduction to Laplace transforms

The solution of most electrical problems can be reduced
ultimately to the solution of differential equations and
the use of Laplace transforms provides an alterna-
tive method to those used previously. Laplace trans-
forms provide a convenient method for the calculation
of the complete response of a circuit. In this section
and in Section 45.6 the technique of Laplace trans-
forms is developed and then used to solve differen-
tial equations. In Section 45.7 Laplace transforms are
used to analyse transient responses directly from circuit
diagrams.

Definition of a Laplace transform

The Laplace transform of the function of time f (t) is
defined by the integral

∫ ∞

0
e−st f (t) dt where s is a parameter

There are various commonly used notations for the
Laplace transform of f (t) and these include L {f (t)} or
L{f (t)} or L (f ) or Lf or f (s).

Also the letter p is sometimes used instead of s as
the parameter. The notation used in this chapter will be
f (t) for the original function and L { f (t)} for its Laplace
transform,

i.e. L { f (t)} =
∫ ∞

0
e−st f (t) dt (45.32)
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Laplace transforms of elementary functions

Using equation (45.32):

(i) when f (t) = 1, L {1} = ∫∞
0 e−st(1) dt =

[
e−st

−s

]∞

0

= −1

s
[e−s(∞) − e0]

= −1

s
[0 − 1]

= 1
s

(provided s > 0)

(ii) when f (t) = k, L {k} = kL {1} = k

(
1

s

)
= k

s
from

(i) above

(iii) when f (t) = eat , L {eat} = ∫∞
0 e−st(eat) dt

= ∫
e−(s−a)t dt

from the laws of indices

=
[

e−(s−a)t

−(s − a)

]∞

0

= 1

−(s − a)
(0 − 1)

= 1
s − a

(provided s > a)

(iv) when f (t) = t, L {t} = ∫∞
0 e−st t dt

=
[

te−st

−s
−
∫

e−st

−s
dt

]∞

0

=
[

te−st

−s
− e−st

s2

]∞

0

by integration by parts

=
[∞e−s(∞)

−s
− e−s(∞)

s2

]

−
[

0 − e0

s2

]

= (0 − 0) −
(

0 − 1

s2

)

since (∞ × 0) = 0

= 1
s2 (provided s > 0)

(v) when f (t) = cos ωt,

L {cos ωt} =
∫ ∞

0
e−st cos ωt dt

=
[

e−st

s2 + ω2 (ω sin ωt − s cos ωt)

]∞

0

by integration by parts twice

= s
s2 + ω2 (provided s > 0)

A list of standard Laplace transforms is summarized in
Table 45.1 below. It will not usually be necessary to derive
the transforms as above — but merely to use them.

Table 45.1 Standard Laplace Transforms

Time function f(t) Laplace transform
L {f (t)} =∫∞

0 e−st f (t) dt

1. δ (unit impulse) 1

2. 1 (unit step function)
1

s

3. eat (exponential function)
1

s − a

4. unit step delayed by T
e−sT

s

5. sin ωt (sine wave)
ω

s2 + ω2

6. cos ωt (cosine wave)
s

s2 + ω2

7. t (unit ramp function)
1

s2

8. t2 2!
s3

9. tn (n = 1, 2, 3...)
n!

sn+1

10. cosh ωt
s

s2 − ω2

11. sinh ωt
ω

s2 − ω2

12. eat tn n!
(s − a)n+1

13. e−at sin ωt (damped sine wave)
ω

(s + a)2 + ω2

14. e−at cos ωt (damped cosine wave)
s + a

(s + a)2 + ω2

15. e−at sinh ωt
ω

(s + a)2 − ω2

16. e−at cosh ωt
s + a

(s + a)2 − ω2

The following worked problems only require using the
standard list of Table 45.1.

Problem 8. Find the Laplace transforms of

(a) 1 + 2t − 1
3 t4 (b) 5e2t − 3e−t
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(a) L

{
1 + 2t − 1

3
t4
}

= L {1} + 2L {t} − 1

3
L {t4}

= 1

s
+ 2

(
1

s2

)
− 1

3

(
4!

s4+1

)

from 2, 7 and 9 of Table 45.1

= 1

s
+ 2

s2 − 1

3

(
4 × 3 × 2 × 1

s5

)

= 1
s

+ 2
s2 − 8

s5

(b) L {5e2t − 3e−t} = 5L {e2t} − 3L {e−t}
= 5

(
1

s − 2

)
− 3

(
1

s − −1

)

from 3 of Table 45.1

= 5

s − 2
− 3

s + 1

= 5(s + 1) − 3(s − 2)

(s − 2)(s + 1)

= 2s + 11
s2 − s − 2

Problem 9. Find the Laplace transform of
6 sin 3t − 4 cos 5t.

L {6 sin 3t − 4 cos 5t} = 6L {sin 3t} − 4L {cos 5t}

= 6

(
3

s2 + 32

)
− 4

(
s

s2 + 52

)

from 5 and 6 of Table 45.1

= 18
s2 + 9

− 4s
s2 + 25

Problem 10. Use Table 45.1 to determine the Laplace
transforms of the following waveforms:

(a) a step voltage of 10 V which starts at time t = 0
(b) a step voltage of 10 V which starts at time t = 5 s
(c) a ramp voltage which starts at zero and increases

at 4V/s
(d) a ramp voltage which starts at time t = 1 s and

increases at 4V/s

(a) From 2 of Table 45.1,

L {10} = 10L {1} = 10

(
1

s

)
= 10

s

The waveform is shown in Figure 45.12(a).

0

10

V

t

(a)

0

V

(c) 

4

1 t

0

10

V

(b)

5 t

0

V

(d) 

4

1 t2

Figure 45.12

(b) From 4 of Table 45.1, a step function of 10V which is
delayed by t = 5 s is given by:

10

(
e−sT

s

)
= 10

(
e−5s

s

)
= 10

s
e−5s

This is, in fact, the function starting at t = 0 given in
part (a), i.e. (10/s) multiplied by e−sT , where T is the
delay in seconds.

The waveform is shown in Figure 45.12(b).

(c) From 7 of Table 45.1, the Laplace transform of the
unit ramp, L {t} = (1/s2)

Hence the Laplace transform of a ramp voltage
increasing at 4V/s is given by:

4L {t} = 4
s2

The waveform is shown in Figure 45.12(c).
(d) As with part (b), for a delayed function, the Laplace

transform is the undelayed function, in this case (4/s2)
from part (c), multiplied by e−sT where T in this
case is 1 s. Hence the Laplace transform is given by:(

4
s2

)
e−s

The waveform is shown in Figure 45.12(d).

Problem 11. Determine the Laplace transforms of
the following waveforms:

(a) an impulse voltage of 8V which starts at time t = 0
(b) an impulse voltage of 8V which starts at time

t = 2 s
(c) a sinusoidal current of 4A and angular frequency

5 rad/s which starts at time t = 0

(a) An impulse is an intense signal of very short duration.
This function is often known as the Dirac function.
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i

Figure 45.13

From 1 of Table 45.1, the Laplace transform of an
impulse starting at time t = 0 is given by L {δ} = 1,
hence an impulse of 8V is given by: 8L {δ} = 8

This is shown in Figure 45.13(a).
(b) From part (a) the Laplace transform of an impulse

of 8V is 8. Delaying the impulse by 2 s involves
multiplying the undelayed function by e−sT where
T = 2 s.

Hence the Laplace transform of the function is given
by: 8 e−2s

This is shown in Figure 45.13(b).

(c) From 5 of Table 45.1, L {sin ωt} = ω

s2 + ω2

When the amplitude is 4A and ω = 5, then

L {4 sin ωt} = 4

(
5

s2 + 52

)
= 20

s2 + 25

The waveform is shown in Figure 45.13(c).

Problem 12. Find the Laplace transforms of

(a) 2t4e3t (b) 4e3t cos 5t.

(a) From 12 of Table 45.1,

L {2t4e3t} = 2L {t4e3t}
= 2

[
4!

(s − 3)4+1

]

= 2(4 × 3 × 2 × 1)

(s − 3)5
= 48

(s − 3)5

(b) From 14 of Table 45.1,

L {4e3t cos 5t} = 4L {e3t cos 5t}
= 4

[
s − 3

(s − 3)2 + 52

]

= 4(s − 3)

s2 − 6s + 9 + 25
= 4(s − 3)

s2 − 6s + 34

Problem 13. Determine the Laplace transforms of

(a) 2 cosh 3t (b) e−2t sin 3t.

(a) From 10 of Table 45.1,

L {2 cosh 3t} = 2L cosh 3t = 2

[
s

s2 − 32

]
= 2s

s2 − 9

(b) From 13 of Table 45.1,

L {e−2t sin 3t} = 3

(s + 2)2 + 32 = 3

s2 + 4s + 4 + 9

= 3
s2 + 4s + 13

Laplace transforms of derivatives

Using integration by parts, it may be shown that:

(a) for the first derivative:

L { f ′(t)} = sL { f (t)} − f (0)

or L

{
dy
dx

}
= sL { y} − y(0) (45.33)

where y(0) is the value of y at x = 0
(b) for the second derivative:

L { f ′′(t)} = s2L { f (t)} − sf (0) − f ′(0)

or L

{
d2y
dx2

}
= s2L {y} − sy(0) − y ′(0) (45.34)

where y′(0) is the value of (dy/dx) at x = 0

Equations (45.33) and (45.34) are used in the solution of
differential equations in Section 45.6.

The initial and final value theorems

The initial and final value theorems can often considerably
reduce the work of solving electrical circuits.

(a) The initial value theorem states:

limit
t→0

[f (t)] = limit
s→∞ [sL {f (t)}]
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Thus, for example, if f (t) = v = Ve−t/CRand if, say,

V = 10 and CR = 0.5, then

f (t) = v = 10e−2t

L { f (t)} = 10

[
1

s + 2

]

from 3 of Table 45.1

sL { f (t)} = 10

[
s

s + 2

]

From the initial value theorem, the initial value of f (t)
is given by:

10

[ ∞
∞ + 2

]
= 10(1) = 10

(b) The final value theorem states:

limit
t→∞ [ f (t)] = limit

s→0
[sL{ f (t)}]

In the above example of f (t) = 10e−2t the final value
is given by:

10

[
0

0 + 2

]
= 0

The initial and final value theorems are used in pulse cir-
cuit applications where the response of the circuit for small
periods of time, or the behaviour immediately the switch
is closed, are of interest. The final value theorem is partic-
ularly useful in investigating the stability of systems (such
as in automatic aircraft-landing systems) and is concerned
with the steady state response for large values of time t,
i.e. after all transient effects have died away.

Now try the following exercise.

Exercise 170 Further problems on Laplace
transforms

1. Determine the Laplace transforms in Problems 1
to 7

(a) 2t − 3 (b) 5t2 + 4t − 3[
(a)

2

s2 − 3

s
(b)

10

s3 + 4

s2 − 3

s

]

2. (a)
t3

24
− 3t + 2 (b)

t5

15
− 2t4 + t2

2[
(a)

1

4s4 − 3

s2 + 2

s
(b)

8

s6 − 48

s5
+ 1

s3

]

3. (a) 5e3t (b) e−2t
[

(a)
5

s − 3
(b)

2

s + 2

]

4. (a) 4 sin 3t (b) 3 cos 2t[
(a)

12

s2 + 9
(b)

3s

s2 + 4

]

5. (a) 2te2t (b) t2et [
(a)

2

(s − 2)2 (b)
2

(s − 1)3

]

6. (a) 4t3e−2t (b)
1

2
t4e−3t

[
(a)

24

(s + 2)4 (b)
12

(s + 3)5

]

7. (a) 5e−2t cos 3t (b) 4e−5t sin t[
(a)

5(s + 2)

s2 + 4s + 13
(b)

4

s2 + 10s + 26

]

8. Determine the Laplace transforms of the following
waveforms:

(a) a step voltage of 4V which starts at time t = 0
(b) a step voltage of 5V which starts at time t = 2 s
(c) a ramp voltage which starts at zero and

increases at 7V/s
(d) a ramp voltage which starts at time t = 2 s and

increases at 3V/s.[
(a)

4

s
(b)

5

s
e−2s (c)

7

s2 (d)
3

s2 e−2s
]

9. Determine the Laplace transforms of the following
waveforms:

(a) an impulse voltage of 15V which starts at time
t = 0

(b) an impulse voltage of 6V which starts at time
t = 5

(c) a sinusoidal current of 10A and angular fre-
quency 8 rad/s.[

(a) 15 (b) 6e−5s (c)
80

s2 + 64

]

10. State the initial value theorem. Verify the theorem
for the functions:

(a) 3 − 4 sin t
(b) (t − 4)2 and state their initial values.

[(a) 3 (b) 16]

11. State the final value theorem and state a prac-
tical application where it is of use. Verify the
theorem for the function 4 + e−2t(sin t + cos t)
representing a displacement and state it’s final
value. [4]
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45.6 Inverse Laplace transforms and the
solution of differential equations

Since from 2 of Table 45.1, L{1} = 1

s
then

L −1 =
{

1
s

}
= 1

where L −1 means the inverse Laplace transform.

Similarly, since from 5 of Table 45.1,

L{sin ωt} = ω

s2 + ω2 then L −1
{

ω

s2 + ω2

}
= sin ωt

Thus finding an inverse transform involves locating
the Laplace transform from the right-hand column of
Table 45.1 and then reading the function from the left-hand
column. The following worked problems demonstrate the
method.

Problem 14. Find the following inverse Laplace
transforms:

(a) L −1
{

1

s2 + 9

}
(b) L −1

{
5

3s − 1

}

(a) L −1
{

1

s2 + 9

}
= L −1

{
1

s2 + 32

}

= 1

3
L −1

{
3

s2 + 32

}

and from 5 of Table 45.1,

1

3
L −1

{
3

s2 + 32

}
= 1

3
sin 3t

(b) L −1
{

5

3s − 1

}
= L −1

⎧⎪⎪⎨
⎪⎪⎩

5

3

(
s − 1

3

)
⎫⎪⎪⎬
⎪⎪⎭

= 5

3
L −1

⎧⎪⎨
⎪⎩

1

s − 1

3

⎫⎪⎬
⎪⎭ = 5

3
e

1
3 t

from 3 of Table 45.1

Problem 15. Determine the following inverse
Laplace transforms:

(a) L −1
{

6

s3

}
(b) L −1

{
3

s4

}

(a) From 8 of Table 45.1, L −1
{

2

s3

}
= t2

Hence L −1
{

6

s3

}
= 3L −1

{
2

s3

}
= 3t2

(b) From 9 of Table 45.1, if s is to have a power of 4 then
n = 3.

Thus L −1
{

3!
s4

}
= t3, i.e. L −1

{
6

s4

}
= t3

Hence L −1
{

3

s4

}
= 1

2
L −1

{
6

s4

}
= 1

2
t3

Problem 16. Determine

(a) L −1
{

7s

s2 + 4

}
(b) L −1

{
4s

s2 − 16

}

(a) L −1
{

7s

s2 + 4

}
= 7L −1

{
s

s2 + 22

}

= 7 cos 2t from 6 of Table 45.1

(b) L −1
{

4s

s2 − 16

}
= 4L −1

{
s

s2 − 42

}

= 4 cosh 4t from 10 of Table 45.1

Problem 17. Find L −1
{

2

(s − 3)5

}

From 12 of Table 45.1, L −1
{

n!
(s − a)n+1

}
= eat tn

Thus L −1
{

1

(s − a)n+1

}
= 1

n!eat tn

and comparing with L −1
{

2

(s − 3)5

}
shows that n = 4

and a = 3.

Hence L −1
{

2

(s − 3)5

}
= 2L −1

{
1

(s − 3)5

}

= 2

[
1

4!e3t t4
]

= 1
12

e3t t4

Problem 18. Determine

(a) L −1
{

3

s2 − 4s + 13

}
(b) L −1

{
2(s + 1)

s2 + 2s + 10

}
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(a) L −1
{

3

s2 − 4s + 13

}
= L −1

{
3

(s − 2)2 + 32

}

= e2t sin 3t

from 13 of Table 45.1

(b) L −1
{

2(s + 1)

s2 + 2s + 10

}
= L −1

{
2(s + 1)

(s + 1)2 + 32

}

= 2e−t cos 3t

from 14 of Table 45.1

Note that in solving these examples the denominator in
each case has been made into a perfect square.

Now try the following exercise.

Exercise 171 Further problems on inverse
Laplace transforms

Determine the inverse Laplace transforms in Problems
1 to 8

1. (a)
7

s
(b)

2

s − 5
[(a) 7 (b) 2e5t]

2. (a)
3

2s + 1
(b)

2s

s2 + 4
[

(a)
3

2
e(−1/2)t (b) 2 cos 2t

]

3. (a)
1

s2 + 25
(b)

4

s2 + 9
[

(a)
1

5
sin 5t (b)

4

3
sin 3t

]

4. (a)
5s

2s2 + 18
(b)

6

s2

[
(a)

5

2
cos 3t (b) 6t

]

5. (a)
5

s3 (b)
8

s4

[
(a)

5

2
t2 (b)

4

3
t3
]

6. (a)
15

3s2 − 27
(b)

4

(s − 1)3

[
(a)

5

3
sinh 3t (b) 2ett2

]

7. (a)
3

s2 − 4s + 13
(b)

4

2s2 − 8s + 10

[(a) e2t sin 3t (b) 2e2t sin t]

8. (a)
s + 1

s2 + 2s + 10
(b)

3

s2 + 6s + 13[
(a) e−t cos 3t (b)

3

2
e−3t sin 2t

]

Use of partial fractions for inverse Laplace
transforms

Sometimes the function whose inverse is required is not
recognizable as a standard type, such as those listed in
Table 45.1. In such cases it may be possible, by using
partial fractions, to resolve the function into simpler
fractions which may be inverted on sight.

For example, the function F(s) = 2s − 3

s(s − 3)
cannot be

inverted on sight from Table 45.1. However, using partial
fractions:

2s − 3

s(s − 3)
≡ A

s
+ B

s − 3
= A(s − 3) + Bs

s(s − 3)

from which, 2s − 3 = A(s − 3) + Bs

Letting s = 0 gives: −3 = −3A from which A = 1

Letting s = 3 gives: 3 = 3B from which B = 1

Hence
2s − 3

s(s − 3)
≡ 1

s
+ 1

s − 3

Thus L −1
{

2s − 3

s(s − 3)

}
= L −1

{
1

s
+ 1

(s − 3)

}

= 1 + e3t from 2 and 3 ofTable 45.1

Partial fractions are explained in Engineering Mathemat-
ics and Higher Engineering Mathematics. The following
worked problems demonstrate the method.

Problem 19. Determine L −1
{

4s − 5

s2 − s − 2

}

4s − 5

s2 − s − 2
≡ 4s − 5

(s − 2)(s + 1)
≡ A

(s − 2)
+ B

(s + 1)

= A(s + 1) + B(s − 2)

(s − 2)(s + 1)

Hence 4s − 5 = A(s + 1) + B(s − 2)

When s = 2, 3 = 3A from which, A = 1

When s = −1, −9 = −3B from which, B = 3
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HenceL −1
{

4s − 5

s2 − s − 2

}
≡ L −1

{
1

s − 2
+ 3

s + 1

}

= L −1
{

1

s − 2

}

+L −1
{

3

s + 1

}

= e2t + 3e−tfrom 3 of Table 45.1

Problem 20. Find L −1
{

3s3 + s2 + 12s + 2

(s − 3)(s + 1)3

}

3s3 + s2 + 12s + 12

(s − 3)(s + 1)3

≡ A

s − 3
+ B

s + 1
+ C

(s + 1)2 + D

(s + 1)3

=
A(s + 1)3 + B(s − 3)(s + 1)2

+ C(s − 3)(s + 1) + D(s − 3)

(s − 3)(s + 1)3

Hence 3s3 + s2 + 12s + 2 = A(s + 1)3 + B(s − 3)(s + 1)2

+ C(s − 3)(s + 1) + D(s − 3)

When s = 3, 128 = 64A from which, A = 2

When s = −1, −12 = −4D from which, D = 3

Equating s3 terms gives: 3 = A + B from which, B = 1

Equating s2 terms gives: 1 = 3A − B + C from which,
C = −4

Hence L −1
{

3s3 + s2 + 12s + 2

(s − 3)(s + 1)3

}

≡ L −1
{

2

s − 3
+ 1

s + 1
− 4

(s + 1)2 + 3

(s + 1)3

}

= 2e3t + e−t − 4e−t t + 3
2

e−t t2

from 3 and 12 of Table 45.1

Problem 21. Determine L −1
{

5s2 + 8s − 1

(s + 3)(s2 + 1)

}

5s2 + 8s − 1

(s + 3)(s2 + 1)
≡ A

s + 3
+ Bs + C

s2 + 1

= A(s2 + 1) + (Bs + C)(s + 3)

(s + 3)(s2 + 1)

Hence 5s2 + 8s − 1 = A(s2 + 1) + (Bs + C)(s + 3)

When s = −3 20 = 10A from which, A = 2

Equating s2 terms gives: 5 = A + B from which, B = 3

Equating s terms gives: 8 = 3B + C from which, C = −1

Hence

L −1
{

5s2 + 8s − 1

(s + 3)(s2 + 1)

}
≡ L −1

{
2

s + 3
+ 3s − 1

s2 + 1

}

= L −1
{

2

s + 3

}

+ L −1
{

3s

s2 + 1

}

− L −1
{

1

s2 + 1

}

= 2e−3t + 3 cos t − sin t

from 3, 6 and 5 of Table 45.1

Now try the following exercise.

Exercise 172 Further problems on inverse
Laplace transforms using partial fractions

Use partial fractions to find the inverse Laplace trans-
forms of the functions in Problems 1 to 6.

1.
11 − 3s

s2 + 2s − 3
[2et − 5e−3t]

2.
2s2 − 9s − 35

(s + 1)(s − 2)(s + 3)
[4e−t − 3e2t + e−3t]

3.
2s + 3

(s − 2)2 [2e2t + 7te2t]

4.
5s2 − 2s − 19

(s + 3)(s − 1)2 [2e−3t + 3et − 4tet]

5.
3s2 + 16s + 15

(s + 3)3 [e−3t(3 − 2t − 3t2)]

6.
26 − s2

s(s2 + 4s + 13) [
2 − 3e−2t cos 3t − 2

3
e−2t sin 3t

]

Procedure to solve differential equations by using
Laplace transforms

(i) Take the Laplace transform of both sides of the
differential equation by applying the formulae for
the Laplace transforms of derivatives (i.e. equa-
tions (45.33) and (45.34) on page 633) and, where



Ch45-H8139.tex 29/3/2007 19: 58 page 638

638 Electrical Circuit Theory and Technology

necessary, using a list of standard Laplace trans-
forms, such as Table 45.1 on page 631.

(ii) Put in the given initial conditions, i.e. y(0) and y′(0)
(iii) Rearrange the equation to make L {y} the subject
(iv) Determine y by using, where necessary, partial frac-

tions, and taking the inverse of each term by using
Table 45.1.

This procedure is demonstrated in the following problems.

Problem 22. Use Laplace transforms to solve the
differential equation

2
d2y

dx2 + 5
dy

dx
− 3y = 0

given that when x = 0, y = 4 and
dy

dx
= 9

(i) 2L

{
d2y

dx2

}
+ 5L

{
dy

dx

}
− 3L {y} =L {0}

2[s2L {y} − sy(0) − y′(0)] + 5[sL {y} − y(0)]

−3L {y} = 0

from equations (45.33) and (45.34)

(ii) y(0) = 4 and y′(0) = 9

Thus

2[s2L {y} − 4s − 9] + 5[sL {y} − 4] − 3L {y} = 0

i.e.

2s2L {y} − 8s − 18 + 5sL {y} − 20 − 3L {y} = 0

(iii) Rearranging gives: (2s2 + 5s − 3)L {y} = 8s + 38

i.e. L {y} = 8s + 38

2s2 + 5s − 3

(iv) y =L −1
{

8s + 38

2s2 + 5s − 3

}

Let
8s + 38

2s2 + 5s − 3
= 8s + 38

(2s − 1)(s + 3)

= A

2s − 1
+ B

s + 3

= A(s + 3) + B(2s − 1)

(2s − 1)(s + 3)

Hence 8s + 38 = A(s + 3) + B(2s − 1)

When s = 1
2 , 42 = 3 1

2 A from which, A = 12

When s = −3, 14 = −7B from which, B = −2

Hence y =L −1
{

8s + 38

2s2 + 5s − 3

}

≡ L −1
{

12

2s − 1
− 2

s + 3

}

=L −1

{
12

2(s − 1
2 )

}
− L −1

{
2

s + 3

}

Hence y = 6e(1/2)x − 2e−3x from 3 of Table 45.1.

Problem 23. Use Laplace transforms to solve the
differential equation:

d2y

dx2 + 6
dy

dx
+ 13y = 0

given that when x = 0, y = 3 and
dy

dx
= 7

Using the above procedure:

(i) L

{
d2y

dx2

}
+ 6L

{
dy

dx

}
+ 13L {y} =L {0}

Hence [s2L {y} − sy(0) − y′(0)] + 6[sL {y} − y(0)]

+ 13L {y} = 0

from equations (45.33) and (45.34)

(ii) y(0) = 3 and y′(0) = 7

Thus s2L {y}−3s−7+6sL {y}−18+13L {y} = 0

(iii) Rearranging gives: (s2 + 6s + 13)L {y} = 3s + 25

i.e. L {y} = 3s + 25

s2 + 6s + 13

(iv) y =L −1
{

3s + 25

s2 + 6s + 13

}

=L −1
{

3s + 25

(s + 3)2 + 22

}
=L −1

{
3(s + 3) + 16

(s + 3)2 + 22

}

=L −1
{

3(s + 3)

(s + 3)2 + 22

}
+L −1

{
8(2)

(s + 3)2 + 22

}

= 3e−3t cos 2t + 8e−3t sin 2t

from 14 and 13 of Table 45.1, page 631.

Hence y = e−3t(3 cos 2t + 8 sin 2t)

Problem 24. A step voltage is applied to a series C−R
circuit. When the capacitor is fully charged the circuit
is suddenly broken. Deduce, using Laplace transforms,
an expression for the capacitor voltage during the tran-
sient period if the voltage when the supply is cut is
V volts.

From Figure 45.1, page 622, vR +vC = 0 when the supply
is cut

i.e. iR + vc = 0
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i.e.

(
C

dvc

dt

)
R + vc = 0

i.e. CR
dvc

dt
+ vc = 0

Using the procedure:

(i) L

{
CR

dvc

dt

}
+ L {vc} =L {0}

i.e. CR[sL {vc} − v0] + L {vc} = 0

(ii) v0 = V , hence CR[sL {vc} − V ] + L {vc} = 0

(iii) Rearranging gives: CRsL {vc} − CRV + L {vc} = 0

i.e. (CRs + 1)L {vc} = CRV

hence L {vc} = CRV

(CRs + 1)

(iv) Capacitor voltage, vc =L −1
{

CRV

CRs + 1

}

= CRVL −1

⎧⎪⎪⎨
⎪⎪⎩

1

CR

(
s + 1

CR

)
⎫⎪⎪⎬
⎪⎪⎭

= CRV

CR
L −1

⎧⎪⎨
⎪⎩

1

s + 1

CR

⎫⎪⎬
⎪⎭

i.e. vc =Ve(−t/CR) as previously obtained in equation

(45.8) on page 624.

Problem 25. A series R−L circuit has a step input V
applied to it. Use Laplace transforms to determine an
expression for the current i flowing in the circuit given
that when time t = 0, i = 0.

From Figure 45.6 and equation (45.11) on page 625,

vR + vL = V becomes iR + L
di

dt
= V

Using the procedure:

(i) L {iR} +L

{
L

di

dt

}
=L {V}

i.e. RL {i} + L[sL {i} − i(0)] = V

s

(ii) i(0) = 0, hence RL {i} + LsL {i} = V

s

(iii) Rearranging gives: (R + Ls)L {i} = V

s

i.e. L {i} = V

s(R + Ls)

(iv) i =L −1
{

V

s(R + Ls)

}

Let
V

s(R + Ls)
≡ A

s
+ B

R + Ls
= A(R + Ls) + Bs

s(R + Ls)

Hence V = A(R + Ls) + Bs

When s = 0, V = AR from which, A = V

R

When s = −R

L
, V = B

(
−R

L

)
from which,

B = −VL

R

Hence L −1
{

V

s(R + Ls)

}

=L −1
{

V/R

s
+ −VL/R

R + Ls

}

=L −1
{

V

Rs
− VL

R(R + Ls)

}

=L −1

⎧⎪⎨
⎪⎩

V

R

(
1

s

)
− V

R

⎛
⎜⎝ 1

R

L
+ s

⎞
⎟⎠
⎫⎪⎬
⎪⎭

= V

R
L −1

⎧⎪⎪⎨
⎪⎪⎩

1

s
− 1(

s + R

L

)
⎫⎪⎪⎬
⎪⎪⎭

Hence current, i = V
R

(1 − e−Rt/L) as previously obtained

in equation (45.13), page 625.

Problem 26. If after a period of time, the switch in
the R–L circuit of Problem 25 is opened, use Laplace
transforms to determine an expression to represent the
current transient response. Assume that at the instant
of opening the switch, the steady-state current flowing
is I .

From Figure 45.6, page 625, vL +vR = 0 when the switch
is opened,

i.e. L
di

dt
+ iR = 0
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Using the procedure:

(i) L

{
L

di

dt

}
+ L {iR} =L {0}

i.e. L[sL {i} − i0] + RL {i} = 0

(ii) i0 = I , hence L[sL {i} − I] + RL {i} = 0

(iii) Rearranging gives: LsL {i} − LI + RL {i} = 0

i.e. (R + Ls)L {i} = LI

and L {i} = LI

R + Ls

(iv) Current, i =L −1
{

LI

R + Ls

}

= LIL −1

⎧⎪⎪⎨
⎪⎪⎩

1

L

(
R

L
+ s

)
⎫⎪⎪⎬
⎪⎪⎭

= LI

L
L −1

⎧⎪⎨
⎪⎩

1

s + R

L

⎫⎪⎬
⎪⎭

i.e. i = Ie(−Rt/L) from 3 of Table 45.1

Since I = V

R
then i = V

R
e−Rt/L as previously derived in

equation (45.17), page 627.

Now try the following exercise.

Exercise 173 Further problems on solving differ-
ential equations using Laplace transforms

In Problems 1 to 5, use Laplace transforms to solve the
given differential equations.

1. 9
d2y

dt2 −24
dy

dt
+16y = 0, given y(0) = 3 and y′(0) = 3

[y = (3 − t)e(4/3)t]

2.
d2x

dt2 + 100x = 0, given x(0) = 2 and x′(0) = 0

[x = 2 cos 10t]

3.
d2i

dt2 + 1000
di

dt
+ 250 000i = 0, given i(0) = 0 and

i′(0) = 100 [i = 100te−500t]

4.
d2x

dt2 + 6
dx

dt
+ 8x = 0, given x(0) = 4 and x′(0) = 8

[x = 4(3e−2t − 2e−4t]

5.
d2y

dt2 − 2
dy

dt
+ y = 3e4t , given y(0) = −2

3
and

y′(0) = 4
1

3
[y = (4t − 1)et + 1

3 e4t]

6. Use Laplace transforms to solve the differential

equation:
d2y

dt2 + dy

dt
−2y = 3 cos 3t−11 sin 3t given

y(0) = 0 and y′(0) = 6 [y = et − e−2t + sin 3t]

45.7 Laplace transform analysis directly from
the circuit diagram

Resistor

At any instant in time v = Ri

Since v and i are both functions of time, a more correct
equation would be v(t) =Ri(t)

However, this is normally assumed. The Laplace
transform of this equation is:

V (s) = RI(s)

Hence, in the s-domain R(s) = V (s)

I(s)
= R

(Note that V (s) merely means that it is the Laplace trans-
form of v and I(s) is the Laplace transform of i. Whenever
the Laplace transform of functions is taken it is referred
to as the ‘s-domain’ — as opposed to the ‘time domain’).
The resistor is shown in Figure 45.14 in both the time
domain and the s-domain.

R

v

iTime
domain

+ −

R

V(s)

I(s)

+ −
s-domain

Figure 45.14

Inductor

If an inductor has no initial current, i.e. i = 0 at time
t = 0, the normal equation is v = L(di/dt) where L is the
inductance.
The Laplace transform of the equation is:

V (s) = L[sI(s) − i(0)] from equation 45.33

and as i(0) = 0 then V (s) = sLI(s)

Thus the impedance of the inductor in the s-domain is
given by:

Z(s) = V (s)

I(s)
= sL

The inductor is shown in Figure 45.15 in both the time
domain and the s-domain.
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+ −

+ −

i L

v

Time
domain

I(s) sL

V(s)

s-domain

Figure 45.15

Capacitor

If a capacitor has no initial voltage, i.e. v = 0 at time t = 0,
the normal equation is i = C(dv/dt)
The Laplace transform of the equation is:

I(s) = C[sV (s) − v(0)]

= sC V (s) since v(0) = 0

Thus the impedance of the capacitor in the s-domain is
given by:

Z(s) = V (s)

I(s)
= V (s)

sCV (s)
= 1

sC

The capacitor is shown in Figure 45.16 in both the time
domain and the s-domain.

i C

v

Time
domain

I(s) sC

V(s)

s-domain

1

+ −

+ −  

Figure 45.16

Summarizing, in the time domain, the circuit ele-
ments are R, L and C and in the s-domain, the circuit
elements are R, sL and (1/sC).
Note that the impedance of L is XL = jωL and the
impedance of C is Xc = (−j/ωC) = (1/jωC).
Thus, just replacing jω with s gives the s-domain expres-
sions for L and C. (Because of this apparent association
with j, s is sometimes called the complex frequency and
the s-domain called the complex frequency domain).

Problem 27. Determine the impedance of a 5 µF
capacitor in the s-domain.

In the s-domain the impedance of a capacitor is
1

sC
hence

Z(s) = 1
s(5 × 10−6)

Ω or
1

5 × 10−6s
Ω or

2 × 105

s
Ω

Problem 28. Determine the impedance of a 200 �
resistor in series with an 8 mH inductor in the
s-domain.

The impedance of the resistor in the s-domain is 200 �

The impedance of the inductor in the s-domain is

sL = 8 × 10−3 s

Since the components are in series,

Z(s) = (200 + 8 × 10−3s) Ω

Problem 29.A circuit comprises a 50 � resistor, a 5 mH
inductor and a 0.04 µF capacitor. Determine, in the
s-domain (a) the impedance when the components are
connected in series, and (b) the admittance when the
components are connected in parallel.

(a) R, L and C connected in series in the s-domain give
an impedance,

Z(s) = R + sL + 1

sC

=
(

50 + 5 × 10−3s + 1
0.04 × 10−6s

)
Ω

(b) R, L and C connected in parallel gives:

admittance Y = Y1 + Y2 + Y3 = 1

Z1
+ 1

Z2
+ 1

Z3

In the s-domain, admittance,

Y (s) = 1

R
+ 1

sL
+ 1

1

sC

= 1

R
+ 1

sL
+ sC

i.e. Y(s) =
(

1
50

+ 1
5 × 10−3s

+ 0.04 × 10−6s
)

S

or Y (s) = 1

s

(
s

50
+ 1

5 × 103 + 0.04 × 10−6s2
)

S

= 0.04 × 10−6

s

(
s

50(0.04 × 10−6)

+ 1

(5 × 10−3)(0.04 × 10−6)
+ s2

)
S

i.e. Y(s) = 4 × 10−8

s
(s2 + 5 × 105s + 5 × 109)S

Kirchhoff’s laws in the s-domain

Kirchhoff’s current and voltage laws may be applied
to currents and voltages in the s-domain just as they
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can with normal time domain currents and voltages. To
solve circuits in the s-domain using Kirchhoff’s laws the
procedure is:

(i) change the time domain circuit to an s-domain
circuit,

(ii) apply Kirchhoff’s laws in terms of s,
(iii) solve the equation to obtain the Laplace transform of

the unknown quantity, and
(iv) determine the inverse Laplace transform after rear-

ranging into a form that can be recognised in a table
of standard transforms.

This procedure is demonstrated in the following problems.

Problem 30. Determine an expression for (a) the
current i through, and (b) the voltage vc across the
capacitor for the circuit shown in Figure 45.17, after
the switch is closed with a supply step voltage of V
volts. Assume that the capacitor is initially uncharged.

R i

vCC
V

Figure 45.17

(a) Using the above procedure:

(i) In the s-domain the circuit impedance,
Z(s) = R +(1/sC) and the step input voltage is
(V/s) and the circuit is as shown in Figure 45.18.

R

vC (s)V

I(s)

sC
1s

Figure 45.18

(ii) Applying Kirchhoff’s voltage law:

V

s
= RI(s) + vc(s) (45.35)

= RI(s) +
(

1

sC

)
I(s)

i.e.
V

s
= I(s)

(
R + 1

sC

)

(iii) Rearranging gives:

I(s) = V/s(
R + 1

sC

) = V/s

R

(
1 + 1

RsC

)

= V

sR

(
1 + 1

RsC

)

i.e. I(s) = V

R

(
s + 1

RC

) (45.36)

(iv) Hence current, i =L −1{I(s)}

=L −1

⎧⎪⎪⎨
⎪⎪⎩

V

R

(
s + 1

RC

)
⎫⎪⎪⎬
⎪⎪⎭

= V

R
L −1

⎧⎪⎨
⎪⎩

1

s + 1

RC

⎫⎪⎬
⎪⎭

since L −1
{

1

s − a

}
= eat

then L −1
{

1

s + a

}
= e−at from 3 of Table 45.1.

Hence

current, i = V
R

e−(1/RC)t = V
R

e−t/RC

as previously obtained in equation (45.6), page
623.

(b) From equation (45.35), vc(s) = V

s
− RI(s) and from

equation (45.36),

vc(s) = V

s
− R

⎛
⎜⎜⎝ V

R

(
s + 1

RC

)
⎞
⎟⎟⎠

= V

s
− V(

s + 1

RC

) = V

⎛
⎜⎝1

s
− 1

s + 1

RC

⎞
⎟⎠

Hencevc =L −1{vc(s)} =L −1

⎧⎪⎨
⎪⎩V

⎛
⎜⎝1

s
− 1

s + 1

RC

⎞
⎟⎠
⎫⎪⎬
⎪⎭

i.e. vc =V(1 − e−t/RC) from 2 and 3 of Table 45.1,

as previously obtained in equation (45.4), page 623.
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Alternatively, current, i = C
dvc

dt
, hence

vc =
∫ t

0

i

C
dt =

∫ t

0

V

R
e−t/RC

C
dt = V

RC

⎡
⎢⎣e−t/RC

−1

RC

⎤
⎥⎦

t

0

= −V [e−t/RC]t
0 = −V [e−t/RC − e0]

= −V [e−t/RC − 1]

i.e. Vc = V(1 − e−t/RC)

Problem 31. In the R–C series circuit shown in Fig-
ure 45.19, a ramp voltage V is applied to the input.
Determine expressions for (a) current, i, and (b)
capacitor voltage, vc

i R

V

V

C t C

vC

1

Figure 45.19

(a) Using the procedure:

(i) The time domain circuit of Figure 45.19 is
changed to the s-domain as shown in Figure
45.20, where the ramp function is (V/s2) from
7 of Table 45.1.

I(s) R

V
S 2 1

SC

vc(s)

Figure 45.20

(ii) Applying Kirchhoff’s voltage law gives:

V

s2 = RI(s) +
(

1

sC

)
I(s) = I(s)

(
R + 1

sC

)

(iii) Hence

I(s) = V

s2

(
R + 1

sC

) = V

s2

sC
(RsC + 1)

= VC

s(1 + sRC)

Using partial fractions:

VC

s(1 + sRC)
= A

s
+ B

(1 + sRC)

= A(1 + sRC) + Bs

s(1 + sRC)

Thus VC = A(1 + sRC) + Bs

When s = 0 VC = A + 0 i.e. A =VC

When s = −1

RC
VC = 0 + B

(−1

RC

)

i.e. B = − VC2R

Hence

I(s) = VC

s(1 + sRC)
= A

s
+ B

(1 + sRC)

= VC

s
+ −VC2R

(1 + sRC)

= VC

s
− VC2R

RC

(
1

RC
+ s

)

= VC

s
− VC(

s + 1

RC

) (45.37)

(iv) Current,

i = L −1

⎧⎪⎪⎨
⎪⎪⎩

VC

s
− VC(

s + 1

RC

)
⎫⎪⎪⎬
⎪⎪⎭

= VCL −1
{

1

s

}
− VCL −1

⎧⎪⎨
⎪⎩

1

s + 1

RC

⎫⎪⎬
⎪⎭

= VC − VCe−t/RC from 2 and 3 of Table 45.1

i.e. current, i = VC(1 − e−t/RC)
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(b) Capacitor voltage, vc(s) = I(s)

(
1

sC

)

=

VC

s
− VC

s + 1

RC
sC

from equation (45.37)

= V

s2 − V

s

(
s + 1

RC

)

Using partial fractions:

V

s

(
s + 1

RC

) = A

s
+ B

s + 1

RC

=
A

(
s + 1

RC

)
+ Bs

s

(
s + 1

RC

)

hence V = A

(
s + 1

RC

)
+ Bs

When s = 0

V = A

(
1

RC

)
+ 0 from which, A = VCR

When s = − 1

RC

V = 0 + B

(
− 1

RC

)
from which, B = −VCR

Thus

vc(s) = V

s2 − V

s

(
s + 1

RC

)

= V

s2 −

⎡
⎢⎢⎣VCR

s
− VCR(

s + 1

RC

)
⎤
⎥⎥⎦

= V

s2 − VCR

s
+ VCR(

s + 1

RC

)

Thus, capacitor voltage,

vc = L −1

⎧⎪⎪⎨
⎪⎪⎩

V

s2 − VCR

s
+ VCR(

s + 1

RC

)
⎫⎪⎪⎬
⎪⎪⎭

= Vt − VCR + VCR e−t/RC

from 7, 2 and 3 of Table 45.1

i.e. vc = Vt −VCR(1 − e−t/RC)

Problem 32. Determine for the R – L series circuit
shown in Figure 45.21 expressions for current i, induc-
tor voltage vL and resistor voltage vR when a step
voltage V is applied to the input terminals.

R vR

L

vL

i

V

0 t

Figure 45.21

Using the procedure:

(i) The s-domain circuit is shown in Figure 45.22.

V R

vL(s)

SL 

s

I (s)

vR(s)

Figure 45.22

(ii) Using Kirchhoff’s voltage law:
V

s
= I(s)(sL) + I(s)R

(iii) Current I(s) = V/s

R + sL
= V

s(R + sL)

= V

sL

(
s + R

L

) = V/L

s

(
s + R

L

)

Using partial fractions:

V/L

s

(
s + R

L

) = A

s
+ B(

s + R

L

) =
A

(
s + R

L

)
+ Bs

s

(
s + R

L

)

Hence
V

L
= A

(
s + R

L

)
+ Bs

When s = 0:
V

L
= A

(
R

L

)
+ 0 from which, A = V

R

When s = −R

L
:

V

L
= 0 + B

(
−R

L

)
from which,

B = −V

R

Hence I(s) = V/L

s

(
s + R

L

) = V/R

s
− V/R(

s + R

L

)

(45.38)
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(iv) Current i =L −1

⎧⎪⎪⎨
⎪⎪⎩

V/R

s
− V/R(

s + R

L

)
⎫⎪⎪⎬
⎪⎪⎭

= V

R
− V

R
e− Rt

L

from 2 and 3 of Table 45.1

i.e. i = V
R

(1 − e(−Rt/L))

as previously obtained in equation (45.13), page 625,
and in Problem 25, page 639.

In the s-domain, inductor voltage

vL(s) = I(s)(sL)

= (sL)

⎡
⎢⎢⎣V/R

s
− V/R(

s + R

L

)
⎤
⎥⎥⎦

from equation (45.38)

= VL

R
− VL

R

⎛
⎜⎜⎝ s(

s + R

L

)
⎞
⎟⎟⎠

s(
s + R

L

) needs to be divided out:

1_______(
s + R

L

))
s

s + R

L_____

−R

L

Thus
s(

s + R

L

) ≡ 1 − R/L(
s + R

L

)

Hence vL(s) = VL

R
− VL

R

⎡
⎢⎢⎣1 − R/L(

s + R

L

)
⎤
⎥⎥⎦

= VL

R
− VL

R
+ VL

R

⎡
⎢⎢⎣ R/L(

s + R

L

)
⎤
⎥⎥⎦

= VL

R

R

L

⎡
⎢⎢⎣ 1(

s + R

L

)
⎤
⎥⎥⎦ = V

⎡
⎢⎢⎣ 1(

s + R

L

)
⎤
⎥⎥⎦

Thus inductor voltage vL = L −1

⎧⎪⎨
⎪⎩V

⎡
⎢⎣ 1

s + R

L

⎤
⎥⎦
⎫⎪⎬
⎪⎭

= VL −1

⎧⎪⎨
⎪⎩

1

s + R

L

⎫⎪⎬
⎪⎭

i.e. vL =Ve−Rt/L

from 3 of Table 45.1, as previously obtained in equa-
tion (45.15), page 626.

Since V = vL + vR in Figure 45.21,

resistor voltage, vR = V − vL = V − Ve−Rt/L

=V(1 − e−Rt/L)
as previously obtained in equation (45.14), page 626.

Problem 33. For the circuit of Figure 45.21 of Prob-
lem 32, a ramp of V volts/s is applied to the input termi-
nals, instead of a step voltage. Determine expressions
for current i, inductor vL and resistor voltage vR

(i) The circuit for the s-domain is shown in Figure 45.23.

SL

vL(s)

R vR(s)V
s2

Figure 45.23

(ii) From Kirchhoff’s voltage law:
V

s2 = I(s)(R + sL)

(iii) Current I(s) = V

s2(R + sL)
= V

s2L

(
s + R

L

)

= V/L

s2

(
s + R

L

)

Using partial fractions:

V/L

s2

(
s + R

L

) = A

s
+ B

s2 + C

s + R

L

=
As

(
s + R

L

)
+ B

(
s + R

L

)
+ Cs2

s2

(
s + R

L

)
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from which,

V

L
= As

(
s + R

L

)
+ B

(
s + R

L

)
+ Cs2

when s = 0,

V

L
= 0 + B

(
R

L

)
+ 0 from which, B = V

R

when s = −R

L
,

V

L
= 0 + 0 + C

(
−R

L

)2

from which,

C = V

L

(
L2

R2

)
= VL

R2

Equating s2 coefficients: 0 = A + C from which,

A = −C = −VL

R2

Thus I(s) = V/L

s2

(
s + R

L

)

= A

s
+ B

s2 + C

s + R

L

= −VL/R2

s
+ V/R

s2 + VL/R2(
s + R

L

) (45.39)

(iv) Current,

i = L −1{I(s)}

= −VL

R2 L −1
{

1

s

}
+ V

R
L −1

{
1

s2

}

+ VL

R2 L −1

⎧⎪⎨
⎪⎩

1

s + R

L

⎫⎪⎬
⎪⎭

= −VL

R2 (1) + V

R
(t) + VL

R2 (e(−Rt/L))

from 2, 7 and 3 of Table 45.1

i.e. i = V
R

t − VL

R2 (1 − e(−Rt/L))

Inductor voltage,

vL(s) = I(s)(sL) = sL

⎡
⎢⎣−VL/R2

s
+ V/R

s2 + VL/R2

s + R

L

⎤
⎥⎦

from equation (45.39) above

= −VL2

R2 + VL/R

s
+ (VL2/R2)s

s + R

L

= −VL2

R2 + VL

sR
+ −VL2

R2

⎛
⎜⎝ s

s + R

L

⎞
⎟⎠

The division
s

s + R

L

was shown on page 645,

and is equivalent to 1 − R/L

s + R

L

Hence vL(s) = −VL2

R2 + VL

sR
+ VL2

R2

⎡
⎢⎣1 − R/L

s + R

L

⎤
⎥⎦

= VL

sR
− VL2

R2

R

L

⎛
⎜⎝ 1

s + R

L

⎞
⎟⎠

= VL

sR
− VL

R

⎛
⎜⎝ 1

s + R

L

⎞
⎟⎠

Thus vL = L −1{vL(s)}

= VL

R
L −1

{
1

s

}
− VL

R
L −1

⎧⎪⎨
⎪⎩

1

s + R

L

⎫⎪⎬
⎪⎭

i.e. inductor voltage, vL = VL

R
− VL

R
e−(Rt/L)

= VL
R

(1 − e(−Rt/L))

Resistor voltage,

vR(s) = I(s)R = R

⎡
⎢⎢⎣−VL/R2

s
+ V/R

s2 + VL/R2(
s + R

L

)
⎤
⎥⎥⎦

from equation (45.39)

= −VL

sR
+ V

s2 + VL

R

(
s + R

L

)
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hence vR = L −1

⎧⎪⎪⎨
⎪⎪⎩

−VL

sR
+ V

s2 + VL

R

(
s + R

L

)
⎫⎪⎪⎬
⎪⎪⎭

= −VL

R
+ Vt + VL

R
e(−Rt/L)

from 2, 7 and 3 Table 45.1

i.e. vR = Vt − VL
R

(1 − e(−Rt/L))

Problem 34. At time t = 0, a sinusoidal voltage
10 sin ωt is applied to an L−R series circuit. Determine
an expression for the current flowing.

(i) The circuit is shown in Figure 45.24 and the s-domain
circuit is shown in Figure 45.25, the 10 sin ωt input

voltage becoming 10

(
ω

s2 + ω2

)
in the s-domain

from 5 of Table 45.1

0
 10

10
V

t 

Li

R

Figure 45.24

10  
s2 +

ω
 ω 2

sLI(s)

R

Figure 45.25

(ii) From Kirchhoff’s voltage law:

10ω

s2 + ω2 = I(s)(sL) + I(s)R

(iii) Hence current, I(s) = 10ω

(s2 + ω2)(R + sL)

= 10ω

(s2 + ω2)L

(
s + R

L

)

= 10ω/L

(s2 +ω2)

(
s + R

L

)

Using partial fractions:

10ω/L

(s2 + ω2)

(
s + R

L

)

= As + B

(s2 + ω2)
+ C(

s + R

L

)

=
(As + B)

(
s + R

L

)
+ C(s2 + ω2)

(s2 + ω2)

(
s + R

L

)

hence
10ω

L
= (As + B)

(
s + R

L

)
+ C(s2 + ω2)

When s = −R

L
:

10ω

L
= 0 + C

[(
−R

L

)2

+ ω2

]

from which, C = 10ω

L

(
R2

L2 + ω2

) = 10ω

L

L2 (R2 + L2ω)

= 10ωL

(R2 + ω2L2)

Equating s2 coefficients,

0 = A + C, from which, A = −C = − 10ωL

(R2 + ω2L2)

Equating constant terms,
10ω

L
= B

(
R

L

)
+ Cω2

10ω

L
− Cω2 = B

(
R

L

)

from which, B = L

R

(
10ω

L
− Cω2

)

= 10ω

R
− Lω2

R

(
10ωL

(R2 + ω2L2)

)

= 10ω(R2 + ω2L2) − Lω2(10ωL)

R(R2 + ω2L2)

= 10ωR2 + 10ω3L2 − 10ω3L2

R(R2 + ω2L2)

= 10ωR

(R2 + ω2L2)
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Hence

I(s) = 10ω/L

(s2 + ω2)

(
s + R

L

) = As + B

(s2 + ω2)
+ C(

s + R

L

)

=

( −10ωL

R2 + ω2L2

)
s +

(
10ωR

R2 + ω2L2

)

(s2 + ω2)

+

(
10ωL

R2 + ω2L2

)
(

s + R

L

)

= 10ω

R2 + ω2L2

⎡
⎢⎢⎣ L(

s + R

L

) − sL

(s2 + ω2)
+ R

(s2 + ω2)

⎤
⎥⎥⎦

(iv) Current, i =L −1{I(s)}

= 10ω

R2 + ω2L2

{
Le(−Rt/L) − L cos ωt

+ R
ω

sin ωt
}

from 3, 6 and 5 of Table 45.1

Problem 35. In the series-parallel network shown
in Figure 45.26, a 5V step voltage is applied at the
input terminals. Determine an expression to show how
current i varies with time.

i

5 V step

100 mH4 Ω

10 Ω

15 Ω

Figure 45.26

In the s-domain, Z(s) = 15 + 10(4 + 0.1s)

10 + 4 + 0.1s

= 15 + 40 + s

14 + 0.1s

= 15(14 + 0.1s) + (40 + s)

14 + 0.1s

= 210 + 1.5s + 40 + s

14 + 0.1s

= 250 + 2.5s

14 + 0.1s

Since in the s-domain the input voltage is (V/s) then

I(s) = V (s)

Z(s)
= 5/s(

250 + 2.5s

14 + 0.1s

) = 5(14 + 0.1s)

s(250 + 2.5s)

= 70 + 0.5s

s(250 + 2.5s)

= 70

s(250 + 2.5s)
+ 0.5s

s(250 + 2.5s)

= 70

2.5s(s + 100)
+ 0.5

2.5(s + 100)

i.e. I(s) = 28

s(s + 100)
+ 0.2

(s + 100)

Using partial fractions:
28

s(s + 100)
= A

s
+ B

(s + 100)

= A(s + 100) + Bs

s(s + 100)

from which, 28 = A(s + 100) + Bs

When s = 0 28 = 100 A and A = 0.28

When s = −100 28 = 0 − 100 B and B = −0.28

Hence I(s) = 0.28

s
− 0.28

(s + 100)
+ 0.2

(s + 100)

= 0.28

s
− 0.08

(s + 100)

and current, i =L −1{I(s)} = 0.28 − 0.08e−100t

from 2 and 3 of Table 45.1

Now try the following exercise.

Exercise 174 Further problems on circuit analysis
using Laplace transforms

1. Determine the impedance of a 2000 pF capacitor

in the s-domain.

[
1

2 × 10−9 s
� or

5 × 108

s
�

]

2. Determine the impedance of a 0.4 H inductor in
series with a 50 � resistor in the s-domain.

[(50 + 0.4s) �]
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3. Determine the circuit impedance in the s-domain
for the following:

(a) a resistor of 100 � in series with a 1 µF
capacitor

(b) an inductance of 10 mH, a resistance of 500 �
and a capacitance of 400 nF in series

(c) a 10 � resistance in parallel with a 10 mH
inductor

(d) a 10 mH inductor in parallel with a 1 µF
capacitor

[
(a)

(
100 + 106

s

)
�

(b)

(
500 + 0.01s + 107

4s

)
�

(c)
0.1s

10 + 0.01s
� or

10s

s + 1000
�

(d)
104s

0.01s2 + 106 � or
106s

s2 + 108 �

]

4. An L–R–C network comprises a 20 � resistor,
a 20 mH inductor and a 20 µF capacitor. Deter-
mine in the s-domain (a) the impedance when the
components are connected in series, and (b) the
admittance when the components are connected in
parallel. [

(a)

(
20 + 0.02s + 1

2 × 10−5s

)
�

(b)

(
0.05 + 50

s
+ 2 × 10−5s

)
S

]

5. A circuit consists of a 0.5 M� resistor in series
with a 0.5 µF capacitor. Determine how the voltage
across the capacitor varies with time when there
is a step voltage input of 5V. Assume the initial
conditions are zero.

[vC = 5(1 − e−4t) volts]

6. An exponential voltage, V = 20e−50t volts is
applied to a series R–L circuit, where R = 10 � and
L = 0.1 H. If the initial conditions are zero, find the
resulting current.

[i = 4e−50t − 4e−100t A]

7. If in Problem 6 a supply of 20.2 sin(10t + φ) volts
is applied to the circuit find the resulting current.
Assume the circuit is switched on when φ = 0.

[i = 2 sin 10t − 0.2 cos 10t + 0.2e−100tA]

8. An R–C series network has (a) a step input voltage
E volts, and (b) a ramp voltage E volts/s, applied
to the input. Use Laplace transforms to determine
expressions for the current flowing in each case.
Assume the capacitor is initially uncharged.[

(a)
E

R
e−t/CR (b) EC(1 − e−t/CR)

]

9. An R–L series network has (a) a step input of E
volts, (b) a ramp input of 1V/s, applied across it.
Use Laplace transforms to develop expressions for
the voltage across the inductance L in each case.
Assume that at time t = 0, current i = 0.[

(a) Ee−Rt/L (b)
L

R
(1 − e−Rt/L)

]

10. A sinusoidal voltage 5 sin t volts is applied to a
series R–L circuit. Assuming that at time t = 0,
current i = 0 derive an expression for the current
flowing.[

i = 5

R2 + L2 {Le(−Rt/L) − L cos t + R sin t}
]

11. Derive an expression for the growth of current
through an inductive coil of resistance 20 � and
inductance 2 H using Laplace transforms when a
d.c. voltage of 30V is suddenly applied to the coil.

[i = 1.5 − 1.5e−10tA]

45.8 L–R–C series circuit using Laplace
transforms

An L–R–C series circuit is shown in Figure 45.27 with a
step input voltage V. In the s-domain, the circuit compo-
nents are as shown in Figure 45.28 and if the step is applied
at time t = 0, the s-domain supply voltage is (V/s).

Hence
V

s
= I(s)

(
R + sL + 1

sC

)

i

L R C

V

Figure 45.27
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sL R

V
s

I(s) 1
sC

Figure 45.28

from which, current,

I(s) = V/s

R + sL + (1/sC)
= V/s

(1/s)(sR + s2L + (1/C))

= V

sR + s2L + (1/C)
= V

L(s2 + s(R/L) + (1/LC))

= V/L

(s2 + (R/L)s + (1/LC))

The denominator is made into a perfect square (as in
Problem 18):

Hence I(s) = V/L{
s2 + R

L
s +

(
R

2L

)2
}

+
{

1

LC
−
(

R

2L

)2
}

= V/L(
s + R

2L

)2

+
√(

1

LC
−
(

R

2L

)2
)2

(45.40)

or I(s)

= V/L√(
1

LC
−
(

R

2L

)2
)

√(
1

LC
−
(

R

2L

)2
)

(
s + R

2L

)2

+
√(

1

LC
−
(

R

2L

)2
)2

and current, i =L −1{I(s)}
From 13 of Table 45.1,

L −1
{

ω

(s + a)2 + ω2

}
= e−at sin ωt, hence

current,

i= V/L√(
1

LC
−
(

R
2L

)2
)e(−R/2L)t sin

√(
1

LC
−
(

R
2L

)2
)

t

(45.41)

Problem 36. For the circuit shown in Figure 45.29
produce an equation which shows how the current
varies with time. Assume zero initial conditions when
the switch is closed.

5 Ω 0.1 H 20  µ    F

i

2 V

Figure 45.29

In the s-domain, applying Kirchhoff’s voltage law gives:

2

s
= I(s)

[
5 + 0.1s + 1

20 × 10−6s

]

and current I(s) = 2

s

(
5 + 0.1s + 5 × 104

s

)

= 2

5s + 0.1s2 + 5 × 104

= 2

0.1

(
s2 + 5

0.1
s + 5 × 104

0.1

)

= 20

(s2 + 50s + 5 × 105)

= 20

{s2 + 50s + (25)2} + {5 × 105 − (25)2}

= 20

(s + 25)2 + √
(499 375)2

= 20√
(499 375)

√
(499 375)

(s + 25)2 + √
(499 375)2

= 20

706.7

706.7

(s + 25)2 + (706.7)2

Hence current, i = L −1{I(s)} = 0.0283e−25t sin 706.7t,

from 13 of Table 45.1,

i.e. i = 28.3e−25t sin 706.7t mA
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i

+

0

−

A
B

C

D

t

Figure 45.30

Damping

The expression for current I(s) in equation (45.40) has
four possible solutions, each dependant on the values of
R, L and C.

Solution 1. When R = 0, the circuit is undamped and,
from equation (45.40),

I(s) = V/L(
s2 + 1

LC

)

From Chapter 28, at resonance, ωr = 1

LC
hence

I(s) = V/L

(s2 + ω2
r )

= V

ωrL

ωr

(s2 + ω2
r )

Hence current, i =L −1{I(s)} = V
ωrL

sin ωrt from 5 of

Table 45.1

which is a sine wave of amplitude
V

ωrL
and angular

velocity ωr rad/s.

This is shown by curve A in Figure 45.30.

Solution 2. When

(
R

2L

)2

<
1

LC
, the circuit is under-

damped and the current i is as in equation (45.41). The
current is oscillatory which is decaying exponentially.
This is shown by curve B in Figure 45.30.

Solution 3. When

(
R

2L

)2

= 1

LC
, the circuit is criti-

cally damped and from equation (45.40),

I(s) = V/L(
s + R

2L

)2

and current, i = L −1

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

V/L(
s + R

2L

)2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

= V
L

te−(Rt/2L) (45.42)

from 12 of Table 45.1

The current is non-oscillatory and is as shown in curve C
in Figure 45.30.

Solution 4. When

(
R

2L

)2

>
1

LC
, the circuit is over-

damped and from equation (45.40),

I(s) = V/L(
s + R

2L

)2

−
√[(

R

2L

)2

− 1

LC

]2

= V/L√[(
R

2L

)2

− 1

LC

]

√[(
R

2L

)2

− 1

LC

]

(
s + R

2L

)2

−
√[(

R

2L

)2

− 1

LC

]2
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and current i=L −1{I(s)}

= V

L

√[(
R
2L

)2

− 1
LC

] e−(Rt/2L) sinh

√[(
R
2L

)2

− 1
LC

]
t

from 15 of Table 45.1
This curve is shown as curve D in Figure 45.30.

Problem 37. An L–R–C series circuit contains a coil
of inductance 1 H and resistance 8 � and a capacitor
of capacitance 50 µF. Assuming current i = 0 at time
t = 0, determine (a) the state of damping in the cir-
cuit, and (b) an expression for the current when a step
voltage of 10V is applied to the circuit.

(a)

(
R

2L

)2

=
(

8

2(1)

)2

= 16 and

1

LC
= 1

(1)(50 × 10−6)
= 20 000

Since

(
R

2L

)2

<
1

LC
the circuit is underdamped

(b) When

(
R

2L

)2

<
1

LC
, equation (45.41) applies,

i.e. i = V/L√
1

LC
−
(

R

2L

)2 e−(Rt/2L) sin

√[
1

LC
−
(

R

2L

)2
]

t

= 10/1√
(20 000 − 16)

e−4t sin
√

(20 000 − 16)t

i.e. i = 0.0707e−4 t sin 141.4t A

Problem 38. Values of R, L and C in a series R–L–C
circuit are R = 100 �, L = 423 mH and C = 169.2 µF.
A step voltage of 2V is applied to the circuit. Assuming
current i = 0 at the instant of applying the step, deter-
mine (a) the state of damping, and (b) an expression
for current i.

(a)

(
R

2L

)2

=
[

100

2(0.423)

]2

= 13 972

and
1

LC
= 1

(0.423)(169.2 × 10−6)
= 13 972

Since

(
R

2L

)2

= 1

LC
the circuit is critically damped.

(b) From equation (45.42), current

i = V

L
te−(Rt/2L) = 2

0.423
te(−100/2(0.423))t

i.e. i = 4.73 t e−118.2t A

45.9 Initial conditions

In an L–R–C circuit it is possible, at time t = 0, for an
inductor to carry a current or a capacitor to possess a
charge.

(a) For an inductor: vL = L
di

dt

The Laplace transform of this equation is:

vL(s) = L[sI(s) − i(0)]

If, say, i(0) = I0 then vL(s) = sLI(s) − LI0 (45.43)

The p.d. across the inductor in the s-domain is given by:
(sL)I(s)
Equation (45.43) would appear to comprise two series
elements, i.e.

vL(s) = (p.d. across L) + (voltage generator of − LI0)
An inductor can thus be considered as an impedance sL

in series with an independent voltage source of −LI0 as
shown in Figure 45.31.

I(s) sL

LI0

+ −

Series equivalent circuit for
an inductor in the s-domain

Figure 45.31

Transposing equation (45.43) for I(s) gives:

I(s) − vL(s) + LI0

sL
= vL(s)

sL
+ I0

s

Thus, alternatively, an inductor can be considered to be
an impedance sL in parallel with an independent current
source (I0/s)

i.e. I(s) = (current through L) +
(

current source
I0

s

)

as shown in Figure 45.32.
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+ −

sL

I(s)

I0
s

Parallel equivalent circuit for
an inductor in the s-domain

Figure 45.32

Problem 39. An L–R series circuit has a step voltage
V applied to its input terminals. If after a period of
time the step voltage is removed and replaced by a
short-circuit, determine the expression for the current
transient.

The L − R circuit with a step voltage applied to the input
is shown in Figure 45.33.

A
L

V

B

R

i

Figure 45.33

Using Kirchhoff’s voltage law:

V = iR + L
di

dt
(45.44)

If the step voltage is removed the circuit of Figure 45.34
results.

A
L

B

R

Figure 45.34

The s-domain circuit is shown in Figure 45.35 where
the inductor is considered as an impedance sL in series
with a voltage source LI0 with it’s direction as shown.

If V = 0 in equation (45.44) then 0 = iR + L
di

dt

i.e. 0 = I(s)R + L[sI(s) − I0]

= I(s)R + sLI(s) − LI0 which verifies Figure 45.35

sL

R

I(s)

LI0

Figure 45.35

In this case I0 = (V/R), the steady state current before the
step voltage was removed.

Hence 0 = I(s)R + sLI(s) − L
V

R

i.e.
LV

R
= I(s)(R + sL)

and I(s) = VL/R

R + sL

= VL/R

L(s + (R/L))
= V/R

(s + (R/L))

Hence current i =L −1
{

V/R

s + (R/L)

}
= V

R
e(−Rt/L)

(b) For a capacitor: i = C
dv

dt
The Laplace transform of this equation is:

I(s) = C[sV (s) − v(0)]

If, say, v(0) = V0 then I(s) = CsV (s) − CV0
(45.45)

Rearranging gives: CsV (s) = I(s) + CV0

from which, V (s) = I(s)

Cs
+ CV0

Cs

=
(

1

sC

)
I(s) + V0

s

i.e. V (s) = (p.d. across capacitor)

+
(

voltage source
V0

s

)
(45.46)

as shown in Figure 45.36.
Thus the equivalent circuit in the s-domain for a

capacitor with an initial voltage V0 is a capacitor with
impedance (1/sC) in series with an impedance source
(V0/s). Alternatively, from equation (45.45),

I(s) = sCV (s) − CV0

= (current through C) + (a current source of − CV0)

as shown in Figure 45.37.
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I(s)

+ −1
SC V0

s

Series equivalent circuit for
a capacitor in the s-domain

Figure 45.36

+ −

CV0

1
sC

Parallel equivalent circuit for
a capacitor in the s-domain

I(s)

Figure 45.37

Problem 40. A C–R series circuit is shown in Figure
45.38. The capacitor C is charged to a p.d. of V0 when it
is suddenly discharged through the resistor R. Deduce
how the current i and the voltage v vary with time.

C

i

R v

Figure 45.38

The s-domain equivalent circuit, from equation (45.46),
is shown in Figure 45.39.

1
sC

V0
s

R V(s)

I(s)

Figure 45.39

Applying Kirchhoff’s voltage law:

V0

s
= I(s)

(
1

sC

)
+ RI(s)

= I(s)

(
R + 1

sC

)

from which,

I(s) = V0/s(
R + 1

sC

) = V0

s

(
R + 1

sC

) = V0

sR + 1

C

= V0

R

(
s + 1

RC

)

and current i =L −1{I(s)} = V0

R
L −1

⎧⎪⎨
⎪⎩

1

s + 1

RC

⎫⎪⎬
⎪⎭

= V0

R
e(−t/CR)

i.e. i = V0

R
e(−t/CR)

Since v = iR, then v =
(

V0

R
e(−t/CR)

)
R

i.e. v = V0e(−t/CR)

Problem 41. Derive an equation for current i flowing
through the 1 k� resistor in Figure 45.40 when the
switch is moved from x to y. Assume that the switch
has been in position x for some time.

50 V

x y

i

1 kΩ

2 µF

Figure 45.40

The 2 µF capacitor will have become fully charged to 50V
after a period of time. When the switch is changed from
x to y the charged capacitor can be considered to be a
voltage generator of voltage (50/s).The s-domain circuit
is shown in Figure 45.41.

50
s

1
2 × 10−6 s

I(s)

1 kΩ

Figure 45.41
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Applying Kirchhoff’s voltage law in the s-domain gives:

50

s
= I(s)

(
103 + 1

2 × 10−6s

)

from which, I(s) = 50/s(
103 + 5 × 105

s

)

= 50

(103s + 5 × 105)

= 50/103(
103s

103 + 5 × 105

103

) = 0.05

(s + 500)

= 0.05

(
1

s + 500

)

Hence current, i = 0.05e−500t A

Now try the following exercise.

Exercise 175 Further problems on circuit analysis
using Laplace transforms

1. For the circuit shown in Figure 45.42, derive an
equation to represent the current i flowing. Assume
zero conditions when the switch is closed. Is the
circuit over, critical or under damped?

[i = 4.47e−10t sin 447t mA; underdamped]

10 Ω 0.5 H 10 µF

i

1 V

Figure 45.42

2. If for the circuit of Problem 1, R = 100 �, L = 0.5 H
and C = 200 µF, derive an equation to represent
current. [i = 2te−100tA]

3. If for the circuit of Problem 1, R = 1 k�, L = 0.5 H
and C = 200 µF derive an equation to represent
current. [2.01e−1000t sinh 995t mA]

4. In a C–R series circuit the 5 µF capacitor is charged
to a p.d. of 100V. It is then suddenly discharged
through a 1 k� resistor. Determine, after 10 ms
(a) the value of the current, and (b) the voltage
across the resistor. [(a) 13.53 mA (b) 13.53 V]

5. In the circuit shown in Figure 45.43 the switch has
been connected to point a for some time. It is then
suddenly switched to point b. Derive an expression
for current i flowing through the 20 � resistor.

[i = 5e−106t A]

100 V

a b

50 nF

20 Ω

Figure 45.43
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Revision test 14

This revision test covers the material contained in
chapters 42 to 45.

The marks for each question are shown in brackets at
the end of each question.

1. A filter section is to have a characteristic impedance
at zero frequency of 720 � and a cut-off frequency of
2 MHz. To meet these requirements, design (a) a low-
pass T section filter, and (b) a low-pass π section filter.

(8)

2. A filter is required to pass all frequencies above 50 kHz
and to have a nominal impedance of 620 �. Design
(a) a high-pass T section filter, and (b) a high-pass π
section filter to meet these requirements. (8)

3. Design (a) a suitable ‘m-derived’ T section, and (b) a
suitable ‘m-derived’ π section having a cut-off fre-
quency of 50 kHz, a nominal impedance of 600 � and
a frequency of infinite attenuation 30 kHz. (14)

4. Two coils, A and B, are magnetically coupled; coil A
has 400 turns and a self inductance of 20 mH and coil
B has 250 turns and a self inductance of 50 mH. When
a current of 10 A is reversed in coil A, the change
of flux in coil B is 2 mWb. Determine (a) the mutual
inductance between the coils, and (b) the coefficient
of coupling. (4)

5. Two mutually coupled coils P and Q are connected in
series to a 200V d.c. supply. Coil P has an inductance
of 0.8 H and resistance 2 �; coil Q has an inductance
of 1.2 H and a resistance of 5 �. Determine the mutual
inductance between the coils if, at a certain instant
after the circuit is connected, the current is 5A and
increasing at a rate of 7.5A/s. (5)

6. For the coupled circuit shown in Figure RT14.1,
calculate the values of currents IP and IS . (9)

Figure RT14.1

7. A 4 km transmission line has a characteristic
impedance of 600∠−30◦ �. At a particular fre-
quency, the attenuation coefficient of the line
is 0.4 Np/km and the phase-shift coefficient is
0.20 rad/km. Calculate (a) the magnitude and phase
of the voltage at the receiving end if the sending end
voltage is 5.0∠0◦ V, and (b) the magnitude and phase
of the receiving end current. (5)

8. The primary constants of a transmission line at a
frequency of 5 kHz are: resistance, R = 20 �/loop
km, inductance, L = 3 mH/loop km, capacitance,
C = 50 nF/km, and conductance, G = 0.4 mS/km.
Determine for the line (a) the characteristic
impedance, (b) the propagation coefficient, (c) the
attenuation coefficient, (d) the phase-shift coeffi-
cient, (e) the wavelength on the line, and (f) the speed
of transmission of signal. (13)

9. A loss-free transmission line has a characteristic
impedance of 600∠0◦ � and is connected to an aerial
of impedance (250 + j200) �. Determine (a) the
magnitude of the ratio of the reflected to the inci-
dent voltage wave, and (b) the incident voltage if the
reflected voltage is 10∠60◦ V . (5)

10. A low loss transmission line has a mismatched load
such that the reflection coefficient at the termination
is 0.5∠−150◦. The characteristic impedance of the
line is 200 �. Determine (a) the standing wave ratio,
(b) the load impedance, and (c) the incident current
flowing if the reflected current is 15 mA. (11)

11. Determine, in the s-domain, the impedance of
(a) an inductance of 1 mH, a resistance of 100 �
and a capacitance of 2 µF connected in series, and
(b) a 50 � resistance in parallel with an inductance
of 5 mH. (6)

12. A sinusoidal voltage 9 sin 2t volts is applied to a series
R–L circuit. Assuming that at time t = 0, current
i = 0 and that resistance, R = 6 � and inductance,
L = 1.5 H, determine using Laplace transforms an
expression for the current flowing in the circuit.

(12)
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Main formulae for part 3 advanced circuit
theory and technology

Complex numbers

z = a + jb = r(cos θ + j sin θ) = r∠θ,

where j2 = −1 Modulus, r = |z| =√
(a2 + b2)

Argument, θ = arg z = tan−1 b

a
Addition: (a + jb) + (c + jb) = (a + c) + j(b + d)

Subtraction: (a + jb) − (c + jd) = (a − c) + j(b − d)

Complex equations: If a + jb = c + jd, then a = c and
b = d

If z1 = r1∠θ1 and z2 = r2∠θ2 then

Multiplication: z1z2 = r1r2∠(θ1 + θ2)

and Division:
z1

z2
= r1

r2
∠(θ1 − θ2)

De Moivre’s theorem:

[r∠θ]n = rn∠nθ = rn( cos nθ + j sin nθ)

General

Z = V

I
= R + j(XL − XC) = |Z|∠φ

where |Z| =√
[R2 + (XL − XC)2] andφ = tan−1 XL − XC

R

XL = 2πfL XC = 1

2πfC
Y = I

V
= 1

Z
= G + jB

Series: ZT = Z1 + Z2 + Z3 · · ·
Parallel:

1

ZT
= 1

Z1
+ 1

Z2
+ 1

Z3
+ · · ·

P = VI cos φ or P = I2
RR S = VI Q = VI sin φ

Power factor = cos φ = R

Z
If V = a + jb and I = c + jd then P = ac + bd

Q = bc − ad S = VI∗ = P + jQ

R–L–C series circuit

fr = 1

2π
√

(LC)
Q = ωrL

R
= 1

ωrCR
= 1

R

√
L

C

= VL

V
= VC

V
= fr

f2 − f1
fr = √

(f1 f2)

LR–C network

fr = 1

2π

√(
1

LC
− R2

L2

)
RD = L

CR
Q = IC

Ir
= ωrL

R

LR–CR network

fr = 1

2π
√

(LC)

√(
R2

L − L/C

R2
C − L/C

)

Determinants∣∣∣∣a b
c d

∣∣∣∣ = ad − bc

∣∣∣∣∣
a b c
d e f
g h j

∣∣∣∣∣ = a

∣∣∣∣e f
h j

∣∣∣∣ − b

∣∣∣∣d f
g j

∣∣∣∣ + c

∣∣∣∣d e
g h

∣∣∣∣

Delta-star

Z1 = ZAZB

ZA + ZB + ZC
etc

Star-delta

ZA = Z1Z2 + Z2Z3 + Z3Z1

Z2
etc

Impedance matching

|z| =
(

N1

N2

)2

|ZL|

Complex waveforms

I =
√(

I2
0 + I2

1m + I2
2m + · · ·
2

)

iAV = 1

π

∫ π

0
id(ωt) form factor = r.m.s

mean

P = V0I0 + V1I1 cos φ1 + V2I2 cos φ2 + · · · or P = I2R

power factor = P

VI

Harmonic resonance: nωL = 1

nωC
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Fourier series

If f (x) is a periodic function of period 2π then its Fourier
series is given by:

f (x) = a0 +
∞∑

n=1

(an cos nx + bn sin nx)

where, for the range −π to +π:

a0 = 1

2π

∫ π

−π

f (x) dx

an = 1

π

∫ π

−π

f (x) cos nx dx (n = 1, 2, 3, . . .)

bn = 1

π

∫ π

−π

f (x) sin nx dx (n = 1, 2, 3, . . .)

If f (x) is a periodic function of period L then its Fourier
series is given by:

f (x) = a0+
∞∑

n=1

{
an cos

(
2πnx

L

)
+ bn sin

(
2πnx

L

)}

where for the range −L

2
to +L

2
:

a0 = 1

L

∫ L/2

−L/2
f (x) dx

an = 2

L

∫ L/2

−L/2
f (x) cos

(
2πnx

L

)
dx (n = 1, 2, 3, . . .)

bn = 2

L

∫ L/2

−L/2
f (x) sin

(
2πnx

L

)
dx (n = 1, 2, 3, . . .)

Harmonic analysis

a0 ≈ 1

p

p∑
k=1

yk an ≈ 2

p

p∑
k=1

yk cos nxk

bn ≈ 2

p

p∑
k=1

yk sin nxk

Hysteresis and Eddy current

Hysteresis loss/cycle = Aαβ J/m3

or hysteresis loss = khvf (Bm)n W

Eddy current loss/cycle = ke(Bm)2f 2t3 W

Dielectric loss

Series representation: tan δ = RSωCS = 1/Q

Parallel representation: tan δ = 1

RpωCp

Loss angle δ = (90◦ − φ)
Power factor = cos φ ≈ tan δ

Dielectric power loss = V2ωC tan δ

Field theory

Coaxial cable: C = 2πε0εr

ln
b

a

F/m E = V

r ln
b

a

V/m

L = µ0µr

2π

(
1

4
+ ln

b

a

)
H/m

Twin line: C = πε0εr

ln
D

a

F/m

L = µ0µr

π

(
1

4
+ ln

D

a

)
H/m

Energy stored: in a capacitor, W = 1
2 CV2 J;

in an inductor W = 1
2 LI2 J

in electric field per unit volume,

ωf = 1
2 DE = 1

2ε0εrE2 = D2

2ε0εr
J/m3

in a non-magnetic medium,

ωf = 1
2 BH = 1

2µ0H2 = B2

2µ0
J/m3

Attenuators
Logarithmic ratios:

in decibels = 10 lg
P2

P1
= 20 lg

V2

V1
= 20 lg

I2

I1

in nepers = 1
2 ln

P2

P1
= ln

V2

V1
= ln

I2

I1

Symmetrical T -attenuator:

R0 = √
(R2

1 + 2R1R2) = √
(ROCRSC)

R1 = R0

(
N − 1

N + 1

)
R2 = R0

(
2N

N2 − 1

)

Symmetrical π-attenuator:

R0 =
√(

R1R2
2

R1 + 2R2

)
= √

(ROCRSC)

R1 = R0

(
N2 − 1

2N

)
R2 = R0

(
N + 1

N − 1

)

L-section attenuator: R1 = √
[ROA(ROA − ROB)]

R2 =
√(

ROAR2
OB

ROA − ROB

)
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ABCD parameters

Network ABCD transmission matrix

Series impedance

I1

V1 V2

I2

Z
(

1 Z
0 1

)

Shunt admittance

I1

V2V1

I2

Y
(

1 0
Y 1

)

L-network

I1

V2V1 

I2

Z

Y
(

(1 + YZ) Z
Y 1

)

T-network

I1 I2

V1 V2

Z1 Z2

Y

(
(1 + YZ1) (Z1 + Z2 + YZ1Z2)

Y (1 + YZ2)

)

π-network

I1 I2

V1 V2
Y1

Z

Y2

(
(1 + Y2Z) Z

(Y1 + Y2 + Y1Y2Z) (1 + Y1Z)

)
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ABCD parameters (Continued)

Network ABCD transmission matrix

Pure mutual inductance

I1 I2

V1 V2

M

⎛
⎝ 0 jωM

1

jωM
0

⎞
⎠

Symmetrical lattice

I1 I2

V1 V2

Z1

Z1

Z2 Z2

⎛
⎜⎜⎜⎝

(
Z1 + Z2

Z2 − Z1

) (
2Z1Z2

Z2 − Z1

)

(
2

Z2 − Z1

) (
Z1 + Z2

Z2 − Z1

)

⎞
⎟⎟⎟⎠

Characteristic impedance, Z0 =
√

B
C

Filter networks

Low-pass T or π: fC = 1

π
√

(LC)
R0 =

√
L

C

C = 1

πR0fC
L = R0

πfC

Z0T = R0

√[
1 −

(
ω

ωC

)2
]

Z0π = R0√[
1 −

(
ω

ωC

)2
]

High-pass T or π: fC = 1

4π
√

(LC)
R0 =

√
L

C

C = 1

4πR0fC
L = R0

4πfC

Z0T = R0

√[
1 −

(ωC

ω

)2
]

Z0π = R0√[
1 −

(ωC

ω

)2
]

Low and high-pass:

Z0T Z0π = Z1Z2 = R2
0

I1

I2
= I2

I3
= I3

I4
= eγ = eα+jβ = eα∠β

Phase angle β = ω
√

(LC)

time delay = √
(LC)

m-derived filter sections:

Low-pass m =
√[

1 −
(

fC
f∞

)2
]

High-pass m =
√[

1 −
(

f∞
fC

)2
]

Magnetically coupled circuits

E2 = −M
dI1

dt
= ± jωMI1

M = N2
dφ2

dI1
= N1

dφ1

dI2
= k

√
(L1L2) = LA − LB

4



M-FORM-III-H8139.tex 29/3/2007 19: 23 page 661

Main formulae for part 3 advanced circuit theory and technology 661

PART

3

Transmission lines

Phase delay β = ω
√

(LC) wavelength λ = 2π

β

velocity of propagation u = f λ = ω

β

IR = ISe−nγ = ISe−nα∠−nβ

VR = VSe−nγ = VSe−nα∠−nβ

Z0 = √
(ZOCZSC) =

√
R + jωL

G + jωC

γ = √
[(R + jωL)(G + jωC)]

Reflection coefficient, ρ = Ir

Ii
= ZO − ZR

ZO + ZR
= −Vr

Vi

Standing-wave ratio, s = Imax

Imin
= Ii + Ir

Ii − Ir
= 1 + |ρ|

1 − |ρ|
Pr

Pt
=

(
s − 1

s + 1

)2

Transients

C−R circuit τ = CR

Charging: vC = V (1 − e−(t/CR)) vr = Ve−(t/CR)

i = Ie−(t/CR)

Discharging: vc = vR =Ve−(t/CR) i = Ie−(t/CR)

L−R circuit τ = L

R
Current growth: vL =Ve−(Rt/L)

vR = V (1 − e−(Rt/L))

i = I(1 − e−(Rt/L))

Current decay: vL = vR =Ve−(Rt/L) i = Ie−(Rt/L)
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Standard electrical quantities — their
symbols and units

QUANTITY QUANTITY UNIT UNIT
SYMBOL SYMBOL

Admittance Y siemen S
Angular frequency ω radians per second rad/s
Area A square metres m2

Attenuation coefficient (or constant) α neper Np
Capacitance C farad F
Charge Q coulomb C
Charge density σ coulomb per square metre C/m2

Conductance G siemen S
Current I ampere A
Current density J ampere per square metre A/m2

Efficiency η per-unit or per cent p.u. or %
Electric field strength E volt per metre V/m
Electric flux � coulomb C
Electric flux density D coulomb per square metre C/m2

Electromotive force E volt V
Energy W joule J
Field strength, electric E volt per metre V/m
Field strength, magnetic H ampere per metre A/m
Flux, electric � coulomb C
Flux, magnetic � weber Wb
Flux density, electric D coulomb per square metre C/m2

Flux density, magnetic B tesla T
Force F newton N
Frequency f hertz Hz
Frequency, angular ω radians per second rad/s
Frequency, rotational n revolutions per second rev/s
Impedance Z ohm �

Inductance, self L henry H
Inductance, mutual M henry H
length l metre m
Loss angle δ radian or degrees rad or ◦
Magnetic field strength H ampere per metre A/m
Magnetic flux � weber Wb
Magnetic flux density B tesla T
Magnetic flux linkage � weber Wb
Magnetising force H ampere per metre A/m
Magnetomotive force Fm ampere A
Mutual inductance M henry H
Number of phases m – –
Number of pole-pairs p – –
Number of turns (of a winding) N – –
Period, Periodic time T second s
Permeability, absolute µ henry per metre H/m
Permeability of free space µ0 henry per metre H/m

(Continued)
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QUANTITY QUANTITY UNIT UNIT
SYMBOL SYMBOL

Permeability, relative µr – –
Permeance 	 weber per ampere or per henry Wb/A or /H
Permittivity, absolute ε farad per metre F/m
Permittivity of free space ε0 farad per metre F/m
Permittivity, relative εr – –
Phase-change coefficient β radian rad
Potential, Potential difference V volt V
Power, active P watt W
Power, apparent S volt ampere VA
Power, reactive Q volt ampere reactive var
Propagation coefficient (or constant) γ – –
Quality factor, magnification Q – –
Quantity of electricity Q coulomb C
Reactance X ohm �

Reflection coefficient ρ – –
Relative permeability µr – –
Relative permittivity εr – –
Reluctance S or Rm ampere per weber or per henry A/Wb or /H
Resistance R ohm �

Resistance, temperature coefficient of α per degree Celsius or per kelvin /◦C or /K
Resistivity ρ ohm metre �m
Slip s per unit or per cent p.u. or %
Standing wave ratio s – –
Susceptance B siemen S
Temperature coefficient of resistance α per degree Celsius or per kelvin /◦C or /K
Temperature, thermodynamic T kelvin K
Time t second s
Torque T newton metre Nm
Velocity v metre per second m/s
Velocity, angular ω radian per second rad/s
Volume V cubic metres m3

Wavelength λ metre m

(Note that m/s may also be written as ms−1, C/m2 as Cm−2, /K as K−1, and so on.)
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Greek alphabet

LETTER UPPER CASE LOWER CASE

Alpha A α

Beta B β

Gamma � γ

Delta � δ

Epsilon E ε

Zeta Z ζ

Eta H η

Theta 
 θ

Iota I ι

Kappa K κ

Lambda � λ

Mu M µ

LETTER UPPER CASE LOWER CASE

Nu N ν

Xi � ξ

Omicron O o
Pi � π

Rho P ρ

Sigma � σ

Tau T τ

Upsilon ϒ υ

Phi � φ

Chi X χ

Psi � ψ

Omega  ω
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Common prefixes

PREFIX NAME MEANING:
multiply by

E exa 1018

P peta 1015

T tera 1012

G giga 109

M mega 106

k kilo 103

h hecto 102

da deca 101

PREFIX NAME MEANING:
multiply by

d deci 10−1

c centi 10−2

m milli 10−3

µ micro 10−6

n nano 10−9

p pico 10−12

f femto 10−15

a atto 10−18
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4

Resistor colour coding and ohmic values

Colour code for fixed resistors

COLOUR SIGNIFICANT MULTIPLIER TOLERANCE
FIGURES

Silver – 10−2 ±10%
Gold – 10−1 ±5%
Black 0 1 –
Brown 1 10 ±1%
Red 2 102 ±2%
Orange 3 103 –
Yellow 4 104 –
Green 5 105 ±0.5%
Blue 6 106 ±0.25%
Violet 7 107 ±0.1%
Grey 8 108 –
White 9 109 –
None – – ±20%

Thus, for a four-band fixed resistor (i.e. resistance values
with two significant figures):

yellow-violet-orange-red indicates 47 k� with a tolerance
of ±2%

orange-orange-silver-brown indicates 0.33 � with a toler-
ance of ±1%

and brown-black-brown indicates 100 � with a tolerance
of ±20%

(Note that the first band is the one nearest the end of the
resistor).

For a five-band fixed resistor (i.e. resistance values with
three significant figures):

red-yellow-white-orange-brown indicates 249 k� with a
tolerance of ±1%

(Note that the fifth band is 1.5 to 2 times wider than the
other bands).

Letter and digit code for resistors

RESISTANCE VALUE MARKED AS

0.47 � R47
1 � 1R0
4.7 � 4R7
47 � 47R
100 � 100R
1 k� 1K0
10 k� 10K
10 M� 10M

Tolerance is indicated as follows:

F = ±1%, G = ±2%, J = ±5%, K = ±10% and

M = ±20%

Thus, for example, R33M = 0.33 � ± 20%
4R7K = 4.7 � ± 10%
390RJ = 390 � ± 5%
6K8F = 6.8 k� ± 1%
68KK = 68 k� ± 10%

4M7M = 4.7 M� ± 20%
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ABCD networks in cascade, 548
for networks, 550
parameters, 546

Absolute permeability, 54, 486
permittivity, 42

Absolute voltage, 36
A.c. bridges, 99, 340

generator, 155, 476
values, 157

Acceptor circuit, 178
Active power, 182, 329, 336, 465
Admittance, 316
Alkaline cell, 20
Alternating current, 155

waveforms, 156
Alternative energy sources, 26
Ammeter, 8, 82
Ampere, 3, 5
Amplifier gain, 215, 216
Amplitude, 88, 157, 301
Analogue instrument, 80

to-digital conversion, 89, 222
Anderson bridge, 428
Anode, 21, 108
Antinode, 618
Apparent power, 182, 329, 330, 331
Argand diagram, 297
Argument, 301
Armature, 258

reaction, 259
Asymmetrical π-section, 527, 539

T-section, 527, 539
Atom, 7, 487
Attenuation, 88, 527, 530

bands, 558
coefficient, 574, 613
constant, 607

Attenuators, 527
asymmetrical π, 527, 539
asymmetrical T, 527, 539
cascade, 544
L-section, 542
symmetrical π, 527, 528, 532
symmetrical T, 527, 528, 531

Attraction type of m.i. instrument, 81
Auto transformers, 251

Auxiliary equation, 628, 629
Avalanche effect, 107

breakdown, 110
Average value, 157
Avometer, 8, 84

Back e.m.f., 266
Band-pass filter, 572, 559

stop filter, 559
Bandwidth, 180, 181, 213, 356
Barrier potential, 105
Base, 112
Batteries, 20, 22

disposal of, 26
Bell, electric, 13, 64
B-H curves, 54, 55
Bipolar junction transistor, 113, 115, 117,

120
Breakdown voltage, 107
Bridge, a.c., 99, 340

rectifier, 109, 166
Brush contact loss, 264
Brushes, 258
Buffer amplifier, 217

Calibration accuracy, 100
Camera flash, 206
Candela, 3
Capacitance, 39, 40, 305, 316

between concentric cylinders, 510
of isolated twin line, 514, 605

Capacitive reactance, 169, 306
Capacitors, 39, 41

discharging, 51, 204
in parallel 45
in series 45
parallel plate 43, 500
practical types 49, 502

Car ignition, 13
Cartesian complex numbers, 297, 298
Cathode, 22, 108
Cell, 21, 25

capacity, 26
Ceramic capacitor, 50
Characteristic impedance, 528, 555

of filters, 560
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Characteristic impedance (Continued)
of transmission line, 608
in terms of ABCD parameters, 555

Characteristics, d.c. generator, 261, 262,
263

d.c. machines, 259
d.c. motor, 268, 270, 271
transistor, 117

Charge, 3, 8, 41
density, 42

Charged particles, 20
Charging of cell, 22, 25

capacitor, 199, 622
Chemical effect of electric current, 13, 20
Choke, 76
Circuit magnification factor, 352
Class A amplifier, 125
Closed-loop gain, 215
Coaxial cable, 510
Coefficient of coupling, 597
Coercive force, 60, 488
Cofactor, 373
Coils in series, cumulatively coupled, 589

differentially coupled, 590
Collector, 113
Combination of waveforms, 163
Commercial bridge, 100
Common-mode rejection ratio, 213
Commutation, 258
Commutator, 257, 258
Complex conjugate, 298

equations, 300
Complex frequency, 641
Complex numbers, 297

applications to parallel networks, 316, 319
330

applications to series circuits, 305
Cartesian form, 297
De Moivres theorem, 303
determination of power, 327, 330
equations, 300
operations involving, 298
polar form, 301

Complex wave, 95, 444
form factor, 463
general equation, 444
harmonics in single-phase circuits, 467
mean value, 463
power associated with, 465
resonance due to harmonics, 474
r.m.s. value, 462
sources of harmonics, 476
waveform considerations, 483

Composite filters, 584

Compound winding, 258
wound generator, 263
motor, 271

Concentric cable, 510
field plotting, 512

Conductance, 5, 316, 605
Conduction in semiconductor materials, 104
Conductor, 8, 11, 102
Constant-current source, 146
Constant-k high-pass filter, 571

low-pass filter, 565
Contact potential, 104, 105
Continuity tester, 84
Continuous function, 453
Continuous loading, 613
Cooker, 13
Copper loss, 246, 264
Core loss, 264

component, 240
Corrosion, 22
Coulomb, 3, 8
Coulomb’s law, 40
Coupled circuits, 592

dot rule, 598
Coupling coefficient, 588
Covalent bonds, 104
Critically damped circuit, 628, 651, 652
Cumulative compound motor, 271
Curie temperature, 488
Current, 3, 5, 7

division, 33, 320
magnification, 193, 364
main effects of, 13
transformer, 254

Current gain in transistors, 119
Curvilinear squares, 506, 507
Cut-off frequency, 558, 563, 568
Cycle, 156

Damping, 69, 651
device, 80

D.c. circuit theory, 133, 140
generators, 260
machine construction, 258
machine losses, 264
machines, 257
motors, 68, 265
motor starter, 273
potentiometer, 99
transients, 199

Decibel, 96, 529
meter, 97

Delta connection, 225, 228, 235, 423
star transformation, 423
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De Moivre’s theorem, 303
Depletion layer, 104, 105
De Sauty bridge, 100, 343
Design impedance, 564
Detector types, a.c. bridges, 341
Determinants, 372, 657
Deviation from resonant frequency, 360
Diamagnetism, 487
Dielectric, 41, 42, 500

hysteresis, 502
liquid, 502
loss, 500, 502
strength, 48, 501
stress, 511

Differential amplifier, 218, 220
compound motor, 271
voltage amplifier, 212

Differential equation solution, 635, 637
Differentiator circuit, 211
Diffusion, 105
Digital multimeter, 85
Digital oscilloscopes, 89
Digital to analogue conversion, 221
Digital voltmeter, 84
Dimensions of most economical cable, 511
Diode characteristics, 109
Dirac function, 632
Discharging of capacitors, 51, 204, 624

cells, 22, 25
Disposal of batteries, 26
Dissipation factor, 503
Distortion on transmission line, 612
Diverter, 275
Domains, 488
Doping, 104
Dot rule for coupled circuits, 598
Double beam oscilloscope, 89

cage induction motor, 290
Dust core, 244, 497
Dynamic current gain, 120, 127

resistance, 192, 363

Earth, 36
Eddy current loss, 247, 491
Effective value, 157
Efficiency of d.c. generator, 265

d.c. motor, 271
induction motor, 284
transformer, 246

Electrical energy, 5, 12
power, 5, 11
symbols, 7, 665
measuring instruments and

measurements, 8, 80

Electric bell, 13, 64
cell, 21
field strength, 40, 500
fire, 13
flux density, 42, 500
potential, 5

Electrochemical series, 21
Electrodes, 21
Electrolysis, 20
Electrolyte, 21, 25
Electrolytic capacitors, 50
Electromagnetic induction, 70

laws of, 71
Electromagnetic wave, 604
Electromagnetism, 62
Electromagnets, 64
Electron, 7, 20, 102
Electronic instruments, 84
Electroplating, 13, 21
Electrostatic field, 39
E.m.f., 5, 22

equation of transformer, 241
in armature winding, 259

Emitter, 113
Energy, 4, 5

associated with travelling wave, 615
electrical, 5, 12
stored in capacitor, 48
electric field, 517, 526
electromagnetic field, 524
magnetic field of inductor, 76, 525

Equipotential lines, 506
Errors, measurement, 100
Exponential growth and decay curves, 200
Even function, 457, 483

Farad, 40
Faraday’s laws of electromagnetic induction, 71
Ferrites, 244, 493, 497
Ferromagnetic-cored coils, 477

materials, 56, 487
Field effect transistor, 121

amplifiers, 124
characteristics, 121

Field plotting, 506, 512
theory, 506

Filter networks, 558
band-pass, 559
band-stop, 559
composite, 584
high-pass, 559, 562, 568
low-pass, 558, 561, 562
‘m derived’, 579
time delay, 573
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Final value theorem, 633, 634
Fleming’s left-hand rule, 66

right-hand rule, 71
Fluke, 8, 85
Flux density, 53, 486

linkage, 519
magnetic, 53, 486

Force, 4
on a charge, 69

current-carrying conductor, 65
Forced magnetization, 478

resonant frequency, 365
Form factor, 157, 463
Formulae, 130, 292, 657
Forward bias, 105, 106

characteristics, 106, 107
Forward transconductance, 122, 123
Fourier coefficients, 453, 480
Fourier cosine series, 458
Fourier series, 453

for periodic functions, 453, 454
for non-periodic functions, 459
over any range, 457

Fourier sine series, 459
Free magnetization, 478
Frequency, 88, 156, 178

resonant, 192
Friction and windage losses, 264
Fuel cell, 26
Full wave rectification, 109, 166
Fundamental, 95, 444, 453
Furnace, 13
Fuse, 13

Galvanometer, 98
Gas insulation, 502
Generator, 13, 71

a.c., 155, 476
efficiency of, 265

Geothermal energy, 26
Germanium, 105
Gravitational force, 4
Greek alphabet, 667
Grip rule, 63

Half-power points, 181, 357
wave rectification, 166
wave rectifier, 109, 450

Harmonic analysis, 95, 446, 480
numerical method, 480
resonance, 474
synthesis, 446

Harmonics, 95, 444
in single phase circuits, 467
sources of, 476

Hay bridge, 100, 342
Heating effect of electric current, 13
Heaviside bridge, 100
Henry, 74, 519
Hertz, 156, 279
High-pass filter, 559, 562, 568

ladder, 562
‘m derived’, 582

Hole, 103, 104
Hydroelectricity, 26
Hydrogen cell, 26
Hysteresis, 60, 488, 489

loop, 60, 488, 489
loss, 60, 246, 489

Image impedance, 539
Imaginary numbers, 297
Impedance, 170, 173, 307

matching, 440
triangle, 170, 173

Impulse, 632
Impurity, 103
Incident wave, 614
Induced e.m.f., 71, 519, 250
Inductance, 74, 519, 604, 640

mutual, 74, 78
of a coil, 76
of a concentric cylinder, 519, 520
of an isolated twin line, 522, 604

Induction motor, three-phase, 277
construction, 280
copper loss, 283
double cage, 290
impedance and current, 283
losses and efficiency, 284
principle of operation, 280
production of rotating magnetic field, 277
rotor e.m.f. and frequency, 282
starting, 288
torque equation, 285

speed characteristic, 287
uses, 290

Inductive circuit, switching, 211
reactance, 168, 305

Inductors, 75
Initial conditions, 652

value theorem, 633
Initial slope and three-point method, 200
Input bias current, 213

impedance, 215, 217
offset current, 213

voltage, 213
Insertion loss, 536
Instantaneous values, 157
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Instrument ‘loading’ effect, 85
Insulated gate field effect transistor (IGFET), 121
Insulation resistance tester, 84
Insulator, 8, 11, 102
Integrator circuit, 211
Internal resistance of a cell, 22
Interpoles, 258
Inverse Laplace transform, 635
Inverting op amp, 214
Ion, 7, 20
Iron, 13
Iron loss, 246, 264
Isolating transformer, 253
Iterative impedance, 528, 539

Joule, 4, 12, 48, 76, 489
Junction gate field effect transistor (JFET), 121

Kelvin, 3
Kettle, 13
Kilo, 3, 9
Kilowatt-hour, 6, 12
Kirchhoff’s laws, 133, 372

in the s-domain, 641
network analysis, 374

Ladder network, 561
Lag, angle of, 161
Lamps in series and parallel, 38
Lap winding, 258, 259
Laplace transforms, 622, 630

by partial fractions, 636
capacitor, 641
definition of, 630
elementary functions, 631
inductor, 640
initial

conditions, 652
value theorem, 633

inverse, 635
L–R–C circuit, 649
of derivatives, 633
resistor, 640
to solve differential equations, 637

Laws of electromagnetic induction, 71
L–C parallel network, 187
Lead, angle of, 160
Lead-acid cell, 25
Leakage currents, 502
Lechlanché cell, 24
Lenz’s law, 71
Level-compounded machine, 264
Lifting magnet, 13, 64
Light emitting diodes, 109, 111

Linear device, 9
scale, 81

Liquid dielectrics, 502
Lithium-ion battery, 20
Loading effect, 85, 613
Load line, 125
Local action, 21
Logarithmic ratios, 96, 529
Long-shunt compound motor, 263, 271
Loop currents, 381

inductance, 523
Loss angle, 344, 502
Losses in d.c. machines, 264

induction motor, 277
Loudspeaker, 65
Low-pass filter, 558, 561

ladder, 561
‘m derived’, 580

LR–C parallel network, 189, 363
resonance, 363

LR–CR parallel network resonance, 363
L–R–C circuit using Laplace transforms, 652
L–R–C series circuit, 174, 628, 649
L-section attenuator, 542
Luminous intensity, 3
Lumped loading, 613

Magnetically coupled circuits, 587
Magnetic effect of electric current, 13

field, 52, 486
strength, 54, 486
due to electric current, 62

flux, 53, 486
density, 53, 486

force, 52
moment, 487
properties of materials, 487
screens, 56
space constant, 54, 486

Magnetising component, 240
force, 54, 665

Magnetization curves, 54, 486
Magnetomotive force, 54, 486
Magnification factor, 352
Majority carriers, 104, 105
Manganese battery, 20
Matched network, 531, 537
Matching transformer, 440, 623
Maximum power transfer theorems, d.c., 152

a.c., 435
Maximum repetitive reverse voltage, 109
Maximum value, 157
Maxwell bridge, 100, 341
Maxwell–Wien bridge, 343
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Maxwell’s theorem, 381
Mean value, 157

of complex wave, 463
Measurement errors, 100

of power in three phase systems, 231
‘m derived’ filter, 579
Mega, 3, 9
Megger, 84
Mercury cell, 24
Mesh-connection, 225, 228, 235, 423

current analysis, 381
Mica capacitor, 49
Micro, 3, 9
Microelectronic systems, 479
Milli, 3, 9
Minor, 373
Minority carriers, 105, 106
Mismatched load, 614
Modulus, 301
Mole, 3
Moores circle technique, 507
Motor, 13, 257, 265

compound, 271
cooling, 276
d.c., principle of operation, 68
speed control, 274
starter, 273

Moving coil instrument, principle of, 68, 81, 82
rectifier instrument, 81, 82

Moving iron instrument, 81, 82
Multimeter, 8, 84
Multiples, 3, 9
Multiplier, 82, 83
Mutual inductance, 74, 78, 587

Nano, 3
Natural frequency, 365
Negative feedback, 213
Nepers, 529
Network analysis, 372
Neutral point, 226
Neutron, 7
Newton, 4
Nickel cadmium cells, 25
Nickel–iron alloys, 497
Nickel metal cells, 25
Nodal analysis, 385
Node, 385, 618
Nominal impedance, 563, 569
Non-linear device, 9

scale, 81
Nonpermanent magnetic materials, 496
Norton and Thévenin equivalent networks, 149, 417
Norton’s theorem, 146, 410

n–p–n transistor, 114
n–type material, 103
Nucleus, 7
Null method of measurement, 98

Odd functions, 457, 458, 483
Ohm, 5, 8
Ohmic values, 669
Ohmmeter, 8, 84
Ohm’s law, 9
Operating point, 126, 127
Operational amplifiers, 212

integrator, 219
inverting amplifier, 214
non-inverting amplifier, 216
parameters, 213
summing amplifier, 217, 221
transfer characteristics, 213
voltage comparator, 218, 222
voltage follower, 217

Oscilloscope, analogue, 8, 87
digital, 87, 89

Overdamped circuit, 628, 651
Over-compounded machine, 264
Owen bridge, 100, 343

Paper capacitor, 50
Parallel networks, 31, 316, 319, 362

plate capacitor, 43, 500
resonance, 191, 362

Paramagnetism, 487
Partial fractions, 636
Passbands, 558
Peak factor, 157

Peak-to-peak value, 157
value, 88, 157

Peak inverse voltage, 109
Pentavalent impurity, 104
Period, 156, 444
Periodic function, 444, 453

time, 88, 156, 241
Permanent magnet, 52

magnetic materials, 497
Permeability, absolute, 54, 486

of free space, 54, 486
relative, 54, 486

Permeance, 487
Permittivity, absolute, 42

of free space, 42, 666
relative, 42, 500

Phase delay, 605, 606
shift coefficient, 574, 607, 613

Phasor, 160
Photovoltaic cells, 26



Index-H8139.tex 29/3/2007 20: 20 page 677

Index 677

Pico, 3
π-attenuator, 531, 532

connection, 527
Plastic capacitors, 50
p–n junction, 104
p–n–p transistor, 114
Polar form of complex number, 301
Polarization, 21, 500
Poles, 258
Potential difference, 5, 8

divider, 29
gradient, 40

Potentiometer, 29, 99
Power, 4, 11

associated with complex waves, 465
factor, 182, 195, 329, 330, 465, 503

improvement, 195, 334
gain, 127
in a.c. circuits, 181, 327
in three phase systems, 230
loss, 503
triangle, 182, 329

Prefixes, 668
Primary cell, 20, 24

constants, 604
Principal node, 385
Product-arm bridge, 341
Propagation coefficient, 573, 609

constant, 574, 607
Protons, 7, 102
Prototype filter, 567, 571
p-type material, 104

Q-factor, 179, 193, 351, 362
in parallel, 364
in series, 355

Quantity of electric charge, 3, 8
Quiescent point, 126, 127

Rating of a machine, 330
transformer, 238

Ratio-arm bridge, 341
R–C parallel network 186

series circuit 173, 307, 622
Reactive power, 182, 329, 330, 336
Real number, 299, 415
Reciprocity theorem, 548, 549
Rectangular complex number, 297
Rectification, 109, 166
Rectifier, 81, 109, 476
Rectifier diodes, 108, 109
Reference level, 96
Reflected impedance, 594

wave, 614

Reflection coefficient, 615
Regulation of a transformer, 246
Rejector circuit, 192
Relative permeability, 54, 487

permittivity, 42, 500
Relative voltage, 36
Relay, 13, 64
Reluctance, 56, 487
Remanence, 60, 488, 490
Renewable energy sources, 26
Repulsion type of m.i. instrument, 81
Residual flux density, 60
Resistance, 5, 8, 15, 249

internal, 22
matching, 249
variation, 15

Resistivity, 15
Resistor colour coding, 669
Resonance, applications of, 192
Resonance, by tuning capacitors, 596

due to harmonics, 474
parallel, 181, 192, 362
series, 175, 178, 349

Reverse bias, 105, 106
characteristics, 109, 110

R–L–C circuit using Laplace transforms, 649
R–L–C series circuit, 174, 308, 364, 365, 628
R–L parallel network, 185

series circuit, 170, 625
R.m.s. value, 89, 157

complex wave, 462
Roots of auxiliary equation, 629
Rotation of loop in magnetic field, 73

s-domain, 641
Kirchhoff’s laws, 133

Saturation flux density, 60, 488, 496
Schering bridge, 100, 344, 346, 348
Schottky diodes, 112
Screw rule, 63
Secondary cell, 20, 24, 27

line constants, 607
Selective resonance, 474
Selectivity, 180, 181, 358
Self-excited generator, 260
Self inductance, 587
Semiconductor diodes, 102, 108
Semiconductor materials, 102, 103
Semiconductors, 102, 103
Separately-excited generator, 260, 261
Separation of hysteresis and eddy current

losses, 494
Series circuit, 28

a.c., 168, 305
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Series magnetic circuit, 57
resonance, 175, 178, 349
winding, 258
wound motor, 268, 270, 275
generator, 260

Shells, 7, 103
Short-shunt compound motor, 271
Shunt, 82

field regulator, 274
winding, 258
wound generator, 262

motor, 268, 274
Siemens, 5, 316
Silicon, 103
Silicon controlled rectifiers, 111
Silicon-iron alloys, 496
Silver oxide battery, 20
Simple cell, 21
Simultaneous equations using determinants,

372
Single-phase parallel a.c. network, 185

series a.c. circuit, 168
supply, 225

Sine wave, 156
general equation, 160

S.I. units, 3
Skin effect, 519
Slew rate, 214
Slip, 281
Solar energy, 26
Soldering iron, 13
Solenoid, 64
Spectrum analysis, 94
Speed control of d.c. motors, 274
Squirrel-cage rotor, 280, 288
Standing wave, 617

ratio, 619
Star connection, 225, 226, 230, 235, 423

delta transformation, 431
Star point, 226
Stator, 258
Steady state, 199, 201
Steinmetz index, 490
Step input, L–R–C circuit, 649

R–C circuit, 622
R–L circuit, 625

Stopbands, 558
Streamline, 506
Sub-multiples, 9
Summing amplifier, 217, 221

point, 218
Superposition theorem, 137, 391
Susceptance, 316
Switched-mode power supplies, 112

Symmetrical π-attenuator, 532, 534
T-attenuator, 527, 528, 531, 658

Symmetrical lattice 553, 660
Synchronous speed, 279, 281

Tangent method, 200
T-attenuator, 531, 658

connection, 527
Telephone receiver, 64, 65
Temperature coefficient of resistance, 17
Tesla, 53, 486
Thermal effects of dielectrics, 502
Thermodynamic temperature, 3, 666
Thévenin’s theorem, 142, 400, 575
Thévinin and Norton equivalent networks, 149, 417
Three-phase induction motors, 277

construction, 280
copper loss, 283
double cage, 290
impedance and current, 283
losses and efficiency, 284
principle of operation, 280
production of rotating magnetic field, 277
rotor e.m.f. and frequency, 282
starting, 288
torque equation, 285

speed characteristics, 287
uses, 290

Three-phase systems, 225
advantages of, 236
power, 230

Three-phase transformers, 253
Thyristor, 111, 479
Tidal power, 26
Time constant, C–R circuit, 200

L–R circuit, 207
Time delay, 576
Titanium oxide capacitor, 50
Torque of a d.c. machine, 266
Torque-speed characteristic, of induction motor,

287
Transfer characteristics, 213
Transformation ratio, 238
Transformer, 13, 237, 440

a.f., 244
auto, 251
cooling, 244
construction, 244
current, 254
e.m.f. equation, 241
equivalent circuit, 244
isolating, 253
losses and efficiency, 246
maximum efficiency, 248
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no-load phasor diagram, 239
on-load phasor diagram, 242
power, 244
principle of operation, 237
regulation, 246
r.f., 244
three-phase, 253
voltage, 255
windings, 244

Transient curves, C–R, 200, 201
L–R, 206, 207

Transients, 199, 622
Transistor, 113, 477

action, 114, 115
amplifier, 124
characteristics, 117
connections, 114
maximum ratings, 120
symbols, 114

Transistor classification, 113
operating configurations, 116
parameters, 118

Transit time, 577
Transmission lines, 604

current and voltage relationships, 607
distortion, 612
primary constants, 604
secondary constants, 607
standing waves, 617
wave reflection, 614

Transmission matrix, 547
parameters, 547

Trapezoidal rule, 480
Travelling wave, 604
Trivalent impurity, 104
True power, 182, 329
Two port networks, 527

in cascade, 544
Types of capacitor, 49

UK supply voltage, 226
Under compounded machine, 264
Underdamped circuit, 629, 651
Unit of electricity, 12
Units, 3, 6

S.I., 3

Universal bridge, 100
instrument, 84

Vacuum, 42
Valence shell, 103
Valves, 477
Varactor diodes, 109, 111
Variable air capacitor, 49
Velocity of propagation, 605, 606, 613
Virtual digital storage oscilloscope, 92
Virtual test and measuring instruments, 91
Volt, 5, 8
Voltage, 7, 8

comparator, 218, 222
follower op amp, 217
gain, 127
magnification at resonance, 179, 353
relative, 36
transformer, 255
triangle, 170, 173

Voltage regulator, 110
Voltmeter, 8, 84

Water heater, 13
Watt, 4, 11
Wattmeter, 85
Waveform analyser, 446

considerations, 483
harmonics 95, 446

Waveforms, 156
combination of, 163

Wavelength, 606
Wave reflection, 614

winding, 258, 259
Weber, 53, 486
Weight, 4
Wheatstone bridge, 98, 130
Wien bridge, 100, 345, 346
Wind power, 26
Work, 4
Wound rotor, 280, 288

Yoke, 258

Zener diode, 110
effect, 107
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