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Preface

Electrical engineering plays an important role in modernizing human life and
encompasses wide areas such as: generation, transmission, and distribution of elec-
trical power, digital systems, satellite communications, signal processing, robotics,
mechatronics, computer, control, artificial intelligence, and networks.

A 4 year electrical and electronic engineering curriculum normally contains two
modules of electromagnetic field theories during the first 2 years. However, some
curricula do not have enough slots to accommodate the two modules. This book,
Electromagnetic Field Theories, is designed for electrical and electronic engineer-
ing undergraduate students to provide fundamental knowledge of electromagnetic
fields and waves in a structured manner. A comprehensive fundamental knowledge
of electric and magnetic fields is required to understand the working principles of
generators, motors, and transformers. This knowledge is also necessary to analyze
transmission lines, substations, insulator flashover mechanism, transient phenomena,
etc.

This book is written in a simple way so that the students will find it easy to under-
stand the electromagnetic field theory and its application in electrical engineering.
Several worked out examples are included to enhance the understanding of electro-
magnetic field theories. Each chapter also includes several practice problems with
answers given at the end of the book, which would facilitate students’understanding.

The basic parameters in electromagnetic fields are discussed in Chap. 1, while
vector calculus and orthogonal coordinate systems are explained in Chap. 2. In
Chap. 3, the basics of electrostatics, Coulomb’s law, electric field intensity, Gauss’
law, Ohm’s law, and energy have been discussed. Poisson’s and Laplace’s equations,
uniqueness theorem, and their analysis on geometric shapes have been introduced
in Chap. 4. The current and its density, resistance, capacitance, continuity equation,
etc., have been discussed in Chap. 5. Chapter 6 explains Lorentz’s force, magnetic
flux density, Biot–Savart law, Ampere’s circuital law, vector magnetic potential, air
gap, and series and parallel magnetic circuit. Faraday’s law, conduction current,
displacement current, Maxwell’s equation, and basics of transformer, have been
discussed in Chap. 7. Chapter 8 deals with transmission line equations, velocity
of wave propagation, wavelengths, lossless propagation, distortionless transmission
line, power, and Smith chart. Plane waves and its analysis are included in Chap. 9,
and basics of antenna have been discussed in Chap. 10.
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Features

Several textbooks on electromagnetic theories already exist in the market. However,
the book on Electromagnetic Field Theories for Engineering is written for electrical
and electronic engineering students with the following key features.

• Easy and logical presentation of each article
• Interpretation of each theory with proper mathematical expressions
• Emphasis on engineering mathematics to understand electromagnetic field

theories
• Detailed description of fundamental laws of electromagnetic field theories
• Step-by-step problem solving procedures
• Inclusion of solved examples and practice problems
• Large number of exercise problems at the end of each chapter
• Inclusion of answers to practice and exercise problems

Aids for Instructors

The solution manual will be provided to instructors who will adopt this as a textbook,
and they may obtain the solution manual by directly contacting the publishers.
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Chapter 1
Basics of Electromagnetics

1.1 Introduction

The word electromagnetic field is the combination of electric and magnetic fields.
An electromagnetic field is sometimes known as EM field, and it is generated when
charged particles are at rest or in motion. There are two types of charges in elementary
physics, namely the positive charge and the negative charge. An electric field depends
mainly on these charges. The rate of change of charge generates current, which
produces a magnetic field. A field is a special distribution of a parameter, which may
or may not be a function of time. Time varying electric and magnetic fields are joined
together to form an EM field. The time-dependent EM field produces a wave that
radiates from the source.

The arcs or sparks are produced when the surface potential gradient (electric
field) of a conductor exceeds the dielectric strength of the surrounding air. These
arcs transmit energy to a certain distance. This kind of phenomena leads scientists or
engineers to work on communication systems. Principles of EM fields are applied in
designing microwaves, antennae, electric machines, communication systems, and
bioelectromagnetic and remote sensing systems. Some tools are required to study
EM fields. These include imagination, vector algebra, coordinate systems and
transformation. In this chapter, different parameters of EM fields will be discussed.

1.2 Field Parameters and SI Units

Electric charges and currents produce electric and magnetic fields. It is very impor-
tant to define all the field parameters and their standard units to get fundamental
knowledge of electromagnetism. The notation and units of EM field parameters
are mentioned in Table 1.1. The charge density is defined as the fixed amount of
charge per unit volume. The charge density is categorized as volume, surface and
line charge densities. For surface, the charge �q is identified by an element whose
area is �s. Similarly, for line, the charge �q is identified by an element whose length
is �l. The volume, surface and line charge densities can be expressed as

Md. A. Salam, Electromagnetic Field Theories for Engineering, 1
DOI 10.1007/978-981-4585-66-8_1, © Springer Science+Business Media Singapore 2014
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Table 1.1 Symbols and units
of field parameters

Name of field parameter Notation/Symbol Unit

Electric field intensity E V/m
Electric flux density or

electric displacement
D C/m

Magnetic field intensity H A/m
Magnetic flux density B Wb/m2 or

Tesla
Charge density ρ C/m3

Current density J A/m2

ρv = lim
�v→0

�q

�v
(C/m3) (1.1)

ρs = lim
�s→0

�q

�s
(C/m2) (1.2)

ρl = lim
�l→0

�q

�l
(C/m) (1.3)

The time rate of change of charge is known as current. The current is symbolised by
I and its unit of measure is C/s or A.

In electromagnetic modelling, four fundamental units are required. These are
length, mass, time and current. The SI (International System of Units) unit is often
known as MKSA system, which is derived from the four basic units as mentioned in
Table 1.2.

1.2.1 Electric Flux Density and Field Intensity

There is a direct relationship between the electric flux density and the electric field
intensity. The relationship between the electric flux density and the electric field
intensity is represented as

D = εE, (1.4)

where ε is the proportionality constant and it is known as permittivity of the medium.
The permittivity of any medium is defined as

ε = ε0εr, (1.5)

where
ε0 is the permittivity of the free space and its value is 8.854 × 10−12 F/m and
εr is the relative permittivity of the medium.
Substituting Eq. (1.5) into Eq. (1.4) yields

D = ε0εrE. (1.6)
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Table 1.2 Symbols and units
of basic parameters

Name of basic parameter Notation/Symbol Unit

Length L m
Mass M kg
Time T s
Current I A

From Eq. (1.6), it is observed that either electric field or electric flux density can be
determined if the other related parameters are known.

Example 1.1 The electric field intensity of a porcelain insulator is found to be 200
V/m. Determine the value of the electric flux density. Consider that the relative
permittivity of the porcelain insulator is 5.7.

Solution The relative permittivity of the porcelain insulator is given as
εr = 5.7 and
ε0 = 8.854 × 10−12F/m.

The value of the electric flux density is
D = ε0εrE = 8.854 × 10−12 × 5.7 × 200 = 1.009 × 10−8C/m

Practice problem 1.1 The electric flux density of a glass insulator is found to
be 1.05 × 10−7 C/m. Calculate the electric field intensity if εr = 8 for the glass
insulator.

1.2.2 Magnetic Flux Density and Field Intensity

After a series of experiments, it is found that there is a direct relationship between
the magnetic flux density and the magnetic field intensity. The relationship between
the magnetic flux density and magnetic field intensity is

B = μH , (1.7)

where μ is the proportionality constant and it is known as permeability. The
permeability of any medium can be expressed as

μ = μ0μr, (1.8)

where
μ0 is the permeability of the free space and its value is 4π × 107 H/m and
μr is the relative permeability of medium.
Substituting Eq. (1.8) into Eq. (1.7) yields

B = μ0μrH. (1.9)

Example 1.2 The magnetic field intensity of a cobalt material is found to be 300
A/m. Determine the value of the magnetic flux density if μr = 600 for a cobalt
material.
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Solution For a cobalt material, the relative permeability is given as
μr = 600
μ0 = 4π × 10−7H/m
The value of the magnetic flux density can be determined as
B = μ0μrH = 4π × 10−7 × 600 × 300 = 2.26 × 10−3Wb/m2

Practice problem 1.2 The magnetic flux density of a pure iron material is found
to be 0.25 Wb/m2. Determine the magnetic field intensity if μr = 4000 for an iron
material.

1.2.3 Current Density

According to Ohm’s law, the current density of a material is directly related to the
electric field intensity. The current density is symbolised by the letter J and its unit
is A/m2. This relation can be expressed as

J = σE, (1.10)

where
σ is the conductivity of material in S/m and
J is the current density in A/m2.
The detailed analysis of current density has been discussed in Chap. 5.

Example 1.3 The electric field intensity of a copper wire is found to be 0.15 V/m.
Determine the value of the current density if σ = 5 × 107S/mfor a copper wire.

Solution The value of the current can be determined as, J = σE = 5×107×0.15 =
7.5 × 106A/m2

Practice problem 1.3 An aluminium wire carries a current density of 1.5 × 106

A/m2. Calculate the electric field intensity if the conductivity of the aluminium is
found to be 3.54 × 107 S/m.

1.3 Exercise Problems

1.1 The electric flux density of a porcelain insulator is found to be 1.12 × 10−8 C/m.
Determine the value of the electric field intensity. The relative permittivity of
the porcelain insulator is 5.7.

1.2 The electric flux density of a glass plate is found to be 1.05 × 10−8 C/m. Cal-
culate the relative permittivity of the plate if the electric field intensity is 148.24
V/m.

1.3 The electric field intensity of a copper wire is found to be 31.43 V/m. Determine
the value of the current density if σ = 5 × 107S/m for copper wire.

1.4 An aluminium wire carries a current density of 3.4 × 105 A/m2. Calculate the
electric field intensity if the conductivity of aluminium is 3.54 × 107 S/m .
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Chapter 2
Vector Analysis and Coordinate Systems

2.1 Introduction

Vector analysis is a mathematical tool that is used in expressing and simplifying the
related laws and theorems of electric and magnetic fields. The electric and magnetic
fields are vector quantities. The characteristics of these fields are analysed by a set
of laws known as Maxwell’s equations. The basic knowledge of vectors is important
to formulate Maxwell’s equations and to apply in the practical field. Vector addition,
subtraction, multiplication and division will be discussed in this chapter. In addition,
the three most orthogonal coordinate systems, namely Cartesian, cylindrical and
spherical will also be discussed to deeply understand electromagnetic fields and
waves.

2.2 Vectors and Scalars

Knowledge of vectors and scalars is important when analysing electromagnetic fields.
A vector is a quantity that has both magnitude and direction. Vectors are represented
by boldface roman-type symbols (A). An arrow on the top of the letter often repre-
sents vector (

−→
A ). The magnitude of the vector is represented by |A| or simply A.

Displacement, velocity, force and acceleration are examples of vectors. Different
vectors with directions are shown in Fig. 2.1.

A vector field is a function that specifies a vector quantity everywhere in a region.
Examples are gravitational force on a body in space and the displacement of a plane
in space. A scalar is a quantity with magnitude but no direction. Length, mass, time,
temperature and any real number are examples of scalar quantities. A scalar field
is a function that specifies a scalar quantity everywhere in a region. Examples are
temperature distribution and electric potential in a room.

Md. A. Salam, Electromagnetic Field Theories for Engineering, 7
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Fig. 2.1 Vectors with
directions

A A A

B
-B

B

Fig. 2.2 Vectors with
directions

F
Fy

Fx

� x

y

2.3 Vector Components

A vector can be resolved into two components, namely the horizontal component
and the vertical component. The addition of these two components is equal to the
original vector. In Fig. 2.2, a vector F is working at an angle of θ with the x-axis.
The x-axis component of this vector is

Fx = F cos θ. (2.1)

The y-axis component is

Fy = F sin θ. (2.2)

Vectors F1 and F2 are working at angles of θ1 and θ2 with the x-axis, respectively,
which are shown in Fig. 2.3. Here, the x-axis and y-axis components are

Fx1 = F1 cos θ1 (2.3)

Fx2 = F2 cos θ2 (2.4)

Fy1 = F1 sin θ1 (2.5)

Fy2 = F2 sin θ2 (2.6)

The sum of the horizontal components is

Fx = Fx1 + Fx2. (2.7)

Substituting Eqs. (2.3) and (2.4) into Eq. (2.7) yields

Fx = F1 cos θ1 + F2 cos θ2. (2.8)
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Fig. 2.3 Two vectors with
directions

Fy1

x

y

Fy2

F2

F1

Fx1

�1

�2

Fx2

The sum of the vertical components is

Fy = Fy1 + Fy2. (2.9)

Substituting Eqs. (2.5) and (2.6) into Eq. (2.9) yields

Fy = F1 sin θ1 + F2 sin θ2. (2.10)

Finally, the resultant vector can be determined as

Fr =
√

Fx
2 + Fy

2. (2.11)

2.4 Unit Vectors

A unit vector is a vector whose magnitude is 1. Unit vectors in three directions are
ax , ay and az as shown in Fig. 2.4.

The magnitudes of three unit vectors are

ax = (1,0, 0), (2.12)

ay = (0,1, 0) and (2.13)

az = (0,0, 1). (2.14)

A general representation of a vector A is shown in Fig. 2.5. The unit vector aA is
working in the same direction as the vector A. The unit vector can be expressed as

aA = A
|A| = 1, (2.15)



10 2 Vector Analysis and Coordinate Systems

Fig. 2.4 Three unit vectors

x

y

az

z

ax

ay

Fig. 2.5 Unit vector
representation

A

aA

where
|A| is the magnitude of the vector A.

2.5 Vector Addition

Consider that the vector A has three components Ax , Ay and Az in the x, y and z
directions, respectively. According to Fig. 2.6, the vectors Axax , Ayay and Azaz are
the components of the vector A in the x, y and z directions, respectively. The resultant
of these vectors is

A = Axax + Ayay + Azaz. (2.16)

Similarly, vectors B and C can be expressed as

B = Bxax + Byay + Bzaz and (2.17)

C = Cxax + Cyay + Czaz. (2.18)
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Fig. 2.6 Three component
vectors

x

y
Azaz

z

A

Axax
Ayay

The magnitude of the vector A can be written as

A = |A| =
√

Ax
2 + Ay

2 + Az
2. (2.19)

The unit vector in the direction of the vector A is

aA = A
|A| = Axax + Ayay + Azaz√

Ax
2 + Ay

2 + Az
2

. (2.20)

Vector addition can be obtained by parallelogram and nose-to-tail or head-to-tail
rules. Two vectors A and B started from the same point as shown in Fig. 2.7. The
resultant vector can be calculated as

Ra = A + B = B + A. (2.21)

Substituting Eqs. (2.16) and (2.17) into Eq. (2.21) yields

Ra = (Ax + Bx)ax + (Ay + By)ay + (Az + Bz)az. (2.22)

2.6 Vector Subtraction

Vector subtraction is defined as the special addition of two vectors. Consider two
vectors B and C for vector subtraction as shown in Fig. 2.8. The vector subtraction
can be represented as

Rs = B − C = B + (−C), (2.23)
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Ra
B

B
B

A
A

ARa

Ra

Fig. 2.7 Parallelogram and head-to-tail rules

Fig. 2.8 Parallelogram and
head-to-tail rules

Rs

C

B

-C
-C

B

Rs

where
−C is the negative vector of C.

Substituting Eqs. (2.17) and (2.18) into Eq. (2.23) provides

Rs = (Bxax + Byay + Bzaz) + (−Cxax − Cyay − Czaz), (2.24)

Rs = (Bx − Cx)ax + (By − Cy)ay + (Bz − Cz)az. (2.25)

Example 2.1 Three vectors are given by A = 4ax − 3ay + az, B = 2ax − 5ay − 4az

and C = −ax +3ay +6az, respectively. Determine the magnitude of (1) Ra = A+B
and (2) Rs = B − C.

Solution

1. The magnitude of Ra can be determined as

Ra = 4ax − 3ay + az + 2ax − 5ay − 4az = 6ax − 8ay − 3az,

|Ra| =
√

62 + (−8)2 + (−3)2 = 10.44.

2. The magnitude of Rs can be calculated as

Rs = 2ax − 5ay − 4az + ax − 3ay − 6az = 3ax − 8ay − 10az,

|Rs | =
√

32 + (−8)2 + (−10)2 = 13.15.

Example 2.2 A unit vector is parallel to the resultant (addition) vector of A = 2ax +
3ay + 6az and B = 5ax − ay − 2az. Determine the unit vector.



2.8 Dot Product of Two Vectors 13

Solution The resultant vector can be determined as

Ra = A + B = 7ax + 2ay + 4az.

The unit vector can be calculated as

au = Ra

|Ra| = 7ax + 2ay + 4az√
72 + 22 + 42

= 0.84ax + 0.24ay + 0.48az.

Practice Problem 2.1 Three vectors are given by A = 2ax + 5ay − 3az, B = 3ax −
4ay − 2az and C = ax − 2ay + az, respectively. Determine the magnitude of (1)
Ra = A + B and (2) Rs = B − C.

Practice Problem 2.2 Calculate the unit vector which is parallel to the resultant
(subtraction) vector of A = 3ax − 2ay + 3az and B = 2ax + 5ay + az.

2.7 Vectors Multiplication and Division

Multiplication of a vector A by a positive scalar parameter k can be expressed as

Rm = kA. (2.26)

Substituting Eq. (2.16) into Eq. (2.26) yields

Rm = k(Axax + Ayay + Azaz) (2.27)

Rm = kAxax + kAyay + kAzaz. (2.28)

Division of a vector B by another positive scalar parameter n can be expressed as

Rd = B
n

. (2.29)

Substituting Eq. (2.17) into Eq. (2.29) provides

Rd = 1

n
(Bxax + Byay + Bzaz) (2.30)

Rd = Bx

n
ax + By

n
ay + Bz

n
az. (2.31)

2.8 Dot Product of Two Vectors

The dot product of two vectors A and B is represented as

Rdot = A • B. (2.32)
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Fig. 2.9 Projections of (a)
vectors B on A (b) A on B

B cos�

B

A cos�

a b

B

A A� �

The dot product of two vectors A and B is equal to the product of the magnitudes
and the cosine of the angle between them. It can be expressed as

A • B = AB cos θ. (2.33)

In Fig. 2.9, the vector A is working in the x-axis and the vector B is working at an
angle θ with the vector A. The projection of the vector B on the vector A is B cos θ

as shown in Fig. 2.9a. Equation (2.32) can be modified as

A • B = A(B cos θ ) = AB cos θ. (2.34)

The projection of vector A on vector B is A cos θ as shown in Fig. 2.9b. Equation
(2.32) again can be modified to

A • B = (A cos θ )B = AB cos θ. (2.35)

The angle between two vectors can be determined with

cos θ = A • B
AB

. (2.36)

The dot products of unit vectors are

ax•ax = 1.1 cos 0◦ = 1, (2.37)

ax•ay = 1.1 cos 90◦ = 0, (2.38)

ay•az = 1.1 cos 90◦ = 0, (2.39)

az•ax = 1.1 cos 90◦ = 0, (2.40)

ay•ay = 1.1 cos 0◦ = 1 (2.41)

az•az = 1.1 cos 0◦ = 1. (2.42)

Substituting Eqs. (2.16) and (2.17) into Eq. (2.32) yields

A • B = (Axax + Ayay + Azaz)•(Bxax + Byay + Bzaz), (2.43)
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A • B = AxBxax•ax + AyBxay•ax + AzBxaz•ax + AxByax•ay

+ AyByay•ay + AzByaz•ay + AxBzax • az (2.44)

+ AyBzay•az + AzBzaz•az.

Equation (2.44) can be modified by considering unit vector properties as

A • B = AxBx + AyBy + AzBz. (2.45)

The dot product of two same vectors is

A • A = (Axax + Ayay + Azaz)•(Axax + Ayay + Azaz). (2.46)

Equation (2.46) can be modified by applying properties of unit vectors to

A2 = Ax
2 + Ay

2 + Az
2. (2.47)

Example 2.3 Two vectors are given by A = 3ax+2ay−4az and B = 3ax−4ay−5az,
respectively. Determine the dot product of two vectors.

Solution The dot product can be determined as

A • B = (3ax + 2ay − 4az)•(3ax − 4ay − 5az),

A • B = (3)(3) + (2)(−4) + (−4)(−5) = 9 − 8 + 20 = 21.

Practice Problem 2.3 Determine the angle between the two vectors A = 4ax +
ay − 3az and B = 2ax + 4ay − 3az.

2.9 Cross Product of Two Vectors

The cross product is the second kind of vector multiplication. The cross product of
two vectors A and B is represented as

Rcross = A × B. (2.48)

The magnitude of A × B is defined as the product of the magnitude of A and B and
the sine of the smaller angle (θ ) between them. The direction of the vector A × B is
perpendicular to both A and B as shown in Fig. 2.10. Let aN be the unit vector in the
direction of A × B; then, the expression of A × B is

A × B = AB sin θaN. (2.49)

In Fig. 2.10a and b, it is seen that the direction of A × B is not the same as the
direction of B × A. The direction is 180◦ out of phase with each other; however, the
magnitude is the same. It can be expressed as

(A × B) = −(B × A). (2.50)
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Fig. 2.10 Vectors cross
product (a) anticlockwise
direction (b) clockwise
direction

0

B

θ
aN

A×B

θ

aN

0

a b

B

A

A

A×B

The properties of unit vectors for the cross product can be expressed as

ax × ay = az, (2.51)

ay × az = ax , (2.52)

az × ax = ay (2.53)

ax × ax = ay × ay = az × az = 1.1 sin 0◦ = 0. (2.54)

The properties of unit vectors can be determined from the cyclic permutation as
shown in Fig. 2.11.

Multiplying Eqs. (2.16) and (2.17) provides

A × B = (Axax + Ayay + Azaz) × (Bxax + Byay + Bzaz), (2.55)

A × B = AxBx(ax × ax) + AyBx(ay × ax) + AzBx(az × ax)

+ AxBy(ax × ay) + AyBy(ay × ay) + AzBy(az × ay) (2.56)

+ AxBz(ax × az) + AyBz(ay × az) + AzBz(az × az),

A × B = AyBx(−az) + AzBx(ay) + AxBy(az) + AzBy(−ax)

+ AxBz(−ay) + AyBz(ax), (2.57)

A × B = (AyBz − AzBy)ax + (AzBx − AxBz)ay + (AxBy − AyBx)az. (2.58)

Equation (2.58) can be written in the determinant form as

A × B =
∣∣∣∣∣∣
ax ay az

Ax Ay Az

Bx By Bz

∣∣∣∣∣∣
. (2.59)



2.9 Cross Product of Two Vectors 17

ax

ayaz

azay

ax

−ax

ayaz

−az−ay

ax

Fig. 2.11 Cyclic permutation for unit vectors

Consider three vectors A, B and C to analyse vector triple product. The vector triple
product is defined as A × (B × C). The triple product of vectors A × (B × C) is not
equal to (A × B) × C. The cross product does not have the associative property but
it does have the distributive property. Therefore, this expression can be written as

A × (B + C) = A × B + A × C. (2.60)

The vector triple product can be expressed as the difference of two vectors using the
back-cab rule and it can be written as

(A × B) × C = B(A • C) − C(A • B). (2.61)

According to Eq. (2.59), the cross product of the vectors B and C is

B × C =
∣∣∣∣∣∣
ax ay az

Bx By Bz

Cx Cy Cz

∣∣∣∣∣∣
. (2.62)

The dot product of two vectors A and B × C can be expressed as

A • B × C = (Axax + Byay + Azaz) •
∣∣∣∣∣∣
ax ay az

Bx By Bz

Cx Cy Cz

∣∣∣∣∣∣
. (2.63)

Finally, Eq. (2.63) can be expressed as

A • B × C =
∣∣∣∣∣∣
Ax Ay Az

Bx By Bz

Cx Cy Cz

∣∣∣∣∣∣
. (2.64)

Example 2.4 Two vectors are given by A = 4ax −3ay −az and B = 3ax +2ay −4az,
respectively. Determine (1) A × B and (2) |A × B| .
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Solution

1. The cross product can be determined as

A × B =
∣∣∣∣∣∣
ax ay az

4 −3 −1
3 2 −4

∣∣∣∣∣∣
= (12 + 2)ax − (−16 + 3)ay + (8 + 9)az,

A × B = 14ax + 13ay + 17az.

2. The magnitude of the cross product can be determined as

|A × B| =
√

142 + 132 + 172 = 25.57.

Example 2.5 Three vectors are given by A = 2ax + 3ay − 4az, B = ax + 3ay − 5az

and C = 3ax + 4ay − 6az, respectively. Determine the vector A • B × C.

Solution (1) The cross product can be determined as

A • B × C =
∣∣∣∣∣∣
2 3 −5
1 3 −5
3 4 −6

∣∣∣∣∣∣
= 2(−18 + 20) − 3(−6 + 15) − 5(4 − 9) = 2.

Practice Problem 2.4 Determine the magnitude of the cross product of two vectors
A = 2ax + 3ay − 4az and B = ax + 2ay + 3az.

Practice Problem 2.5 Three vectors are given by A = ax + 2ay + 3az, B = 2ax −
3ay + 4az and C = ax + 2ay − 7az. Determine the vector A • B × C.

2.10 Orthogonal Coordinate Systems

Orthogonal coordinate systems are very important to determine the electric field at a
certain point in space. An orthogonal system is one in which coordinates are mutually
perpendicular. Coordinate systems are normally applied to identify the specific point
and its source. Many orthogonal coordinate systems are available, but the three most
common and useful coordinate systems will be discussed here. These are mentioned
as follows:

• Cartesian or rectangular coordinates
• Cylindrical coordinates
• Spherical coordinates

2.10.1 Cartesian Coordinate System

The rectangular or Cartesian coordinate system is the most common and simple one.
Three mutually perpendicular coordinate axes are used to determine the location of
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Fig. 2.12 Point in space

x

y

dz

dxdy

z

• P

a point in space as shown in Fig. 2.12. Normally, two axes are used to determine the
coordinate plane. From Fig. 2.12, the following points can be written:

dx represents the x-distance from the yz-plane,
dy represents the y-distance from the xz-plane and
dz represents the z-distance from the yx-plane.

Two more vectors are discussed here to understand the coordinate systems. These
are position and distance vectors. The position vector is defined as the direct distance
between the origin and a coordinate point in space. A distance vector is defined as
the direct distance between two coordinate points in space. The vector r is working
from the origin to the point P (x1, y1, z1) as shown in Fig. 2.13. Then, the position
vector can be written as

OP = x1ax + y1ay + z1az. (2.65)

The magnitude of the position vector is

|OP| =
√

x1
2 + y1

2 + z1
2. (2.66)

The vector A in Cartesian coordinates can be expressed as

A = Axax + Ayay + Azaz = (Ax , Ay , Az). (2.67)

The dot product and cross product of two vectors are already mentioned in Eqs.
(2.45) and (2.58), respectively. Again, consider that two position vectors r1 and r2

are working from the origin to the points P1(x1, y1, z1) and P2(x2, y2, z2), respectively,
as shown in Fig. 2.14. These two position vectors can be expressed as

r1 = x1ax + y1ay + z1az and (2.68)

r2 = x2ax + y2ay + z2az. (2.69)
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Fig. 2.13 Vector in space
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Fig. 2.14 Two position
vectors

x

y

r1

z
•

az
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P1 (x1, y1, z1)
P2 (x2, y2, z2)

r2

R12

The resultant vector can be determined as

R12 + r1 = r2, (2.70)

R12 = r2 − r1. (2.71)

Substituting Eqs. (2.68) and (2.69) into Eq. (2.71) yields

R12 = (x2 − x1)ax + (y2 − y1)ay + (z2 − z1)az. (2.72)

A small rectangular box is placed in the x, y and z directions as shown in Fig. 2.15.
The differential surface areas of the three sides of a smaller rectangular box are

dsx = dydz, (2.73)
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Fig. 2.15 A small rectangular
box
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Fig. 2.16 Differential length
within a path
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P1(x, y, z)

P2(dx, dy, dz)

dsy = dzdx and (2.74)

dsz = dydx. (2.75)

The differential volume enclosed by the small rectangular box is

dv = dxdydz. (2.76)

Two points P1(x, y, z) and P2(dx, dy, dz) are considered within a path as shown in
Fig. 2.16. The differential length of a path is considered as dl.

The vector for differential length is

dl = axdx + aydy + azdz. (2.77)

From Eq. (2.77), the length of the vector can be determined as

dl =
√

dx2 + dy2 + dz2. (2.78)
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Fig. 2.17 Two points in a
space
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Example 2.6 Two vectors are moving from the origin to the points P1(2,3, 5) and
P2(1,2, 3) as shown in Fig. 2.17. Write down three vectors r1, r2 and R12 in Cartesian
coordinates and determine the distance between the two points.

Solution Three vectors in Cartesian coordinates can be written as

r1 = 2ax + 3ay + 5az,

r2 = ax + 2ay + 3az,

R12 = (1 − 2)ax + (2 − 3)ay + (3 − 5)az,

R12 = −ax − ay − 2az.

The distance between two points can be determined as

R12 =
√

12 + 12 + 22 = √
6.

Practice Problem 2.6 Two vectors are moving from the origin to the points
P1(4,2, 6) and P2(2,5, 3) as shown in Fig. 2.18. Write down the vector R12 in Cartesian
coordinates and determine its distance.

2.10.2 Circular Cylindrical Coordinate System

The circular cylindrical coordinate system is normally known as the cylindrical co-
ordinate system. The cylindrical coordinate usually refers to the three-dimensional
polar coordinate in analytical geometry. This coordinate is represented by (ρ, φ, z).
The ρ coordinate represents the radius of the cylinder, φ represents the magnitude
of the circumference of the specific point on the surface of the cylinder and z rep-
resents the coordinate as represented by rectangular coordinate system. Consider a
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Fig. 2.18 Points P1 and P2
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Fig. 2.19 Cylindrical
coordinate with unit vectors
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point M(ρ, φ, z) on the cylindrical system as shown in Fig. 2.19. The vector A can
be written in terms of its components as

A = Aρaρ + Aφaφ + Azaz ≡ (Aρ , Aφ , Az). (2.79)

The ranges of the coordinates are

0 < ρ < ∞, 0 < φ < 2π , −∞ < z < ∞. (2.80)

The magnitude of the cylindrical vector is

|A| =
√

Aρ
2 + Aφ

2 + Az
2. (2.81)
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Fig. 2.20 Relation between
unit vectors
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In this coordinate system, the properties of unit vectors are

aρ•aρ = aφ•aφ = az•az = 1, (2.82)

aρ•aφ = aφ•az = az•aρ = 0, (2.83)

aρ × aφ = az, (2.84)

aφ × az = aρ (2.85)

az × aρ = aφ. (2.86)

Any vector in Cartesian coordinates can be transformed into the cylindrical coor-
dinates and vice versa. Consider Fig. 2.20 to accomplish the conversion between
cylindrical and Cartesian coordinates. Replace the x-axis in a position, so that the
angle between the x-axis and y-axis is 90◦. From Fig. 2.20, the following relations
can be written as

aρ•ax = cos φ, (2.87)

aρ•ay = cos (90◦ − φ) = sin φ, (2.88)

aφsy = cos φ, (2.89)

aφ•ax = cos (90◦ + φ) = − sin φ. (2.90)

From Fig. 2.21, the relations from cylindrical to Cartesian coordinates can be written
as

x = ρ cos φ, (2.91)

y = ρsinφ (2.92)

z = z. (2.93)
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Fig. 2.21 Relation between
cylindrical and Cartesian
coordinates
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From Eqs. (2.91) and (2.92), the relations from Cartesian to cylindrical coordinates
can be written as

ρ =
√

x2 + y2, (2.94)

φ = tan−1 y

x
(2.95)

z = z. (2.96)

The dot products of unit vectors in Cartesian and cylindrical coordinate systems can
be determined as

aρ aφ az

ax• cos φ − sin φ 0
ay• sin φ cos φ 0
az• 0 0 1

. (2.97)

From Eq. (2.97), the conversion of unit vectors from cylindrical to Cartesian
coordinate systems is

ax = cos φaρ − sin φaφ , (2.98)

ay = sin φaρ + cos φaφ (2.99)

az = az. (2.100)

Similarly, the conversion of unit vectors from Cartesian to cylindrical coordinate
systems is

aρ = cos φax + sin φay , (2.101)
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aφ = − sin φax + cos φay (2.102)

az = az. (2.103)

A vector in cylindrical coordinates can be transformed into a Cartesian coordinates
as

Ax = A • ax = Aρaρ • ax + Aφaφ • ax + Azaz • ax , (2.104)

Ay = A • ay = Aρaρ • ay + Aφaφ • ay + Azaz • ay (2.105)

Az = A • az = Aρaρ • az + Aφaφ • az + Azaz • az. (2.106)

Applying Eq. (2.97) to Eqs. (2.104)–(2.106) provides

Ax = Aρ cos φ − Aφ sin φ, (2.107)

Ay = Aρ sin φ + Aφ cos φ (2.108)

Az = Az. (2.109)

Equations (2.107)–(2.109) can be represented in the matrix form as
⎡
⎣

Ax

Ay

Az

⎤
⎦ =

⎡
⎣

cos φ − sin φ 0
sin φ cos φ 0

0 0 1

⎤
⎦
⎡
⎣

Aρ

Aφ

Az

⎤
⎦. (2.110)

Similarly, a vector in Cartesian coordinates can be transformed into cylindrical
coordinates as

Aρ = A • aρ = Axax • aρ + Ayay • aρ + Azaz • aρ , (2.111)

Aφ = A • aφ = Axax • aφ + Ayay • aφ + Azaz • aφ (2.112)

Az = A • az = Axax • az + Ayay • az + Azaz • az. (2.113)

Again, applying Eq. (2.97) to Eqs. (2.111)–(2.113) provides

Aρ = Ax cos φ + Ay sin φ, (2.114)

Aφ = −Ax sin φ + Ay cos φ (2.115)

Az = Az. (2.116)

Equations (2.114)–(2.116) can be represented in the matrix form as
⎡
⎣

Aρ

Aφ

Az

⎤
⎦ =

⎡
⎣

cos φ sin φ 0
− sin φ cos φ 0

0 0 1

⎤
⎦
⎡
⎣

Ax

Ay

Az

⎤
⎦. (2.117)
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Fig. 2.22 (a) Cylindrical coordinates with differential element (b) differential element (c) face in
aρ (d) face in aφ (e) face in az

Consider Fig. 2.22 to derive the expressions of differential length, normal surface
and volume.

From Fig. 2.22a–e, the differential length, normal surface and volume can be
written as

dl = dρaρ + ρdφaφ + dzaz, (2.118)

dsρ = ρdφdz, (2.119)

dS = ρdφdzaρ , (2.120)

dsφ = dρdz, (2.121)

dS = dρdφaφ , (2.122)

dsz = ρdρdφ, (2.123)

dS = ρdρdφaz (2.124)

dv = ρdρdφdz. (2.125)

Example 2.7 A vector in Cartesian coordinates is given by A = xax + yay + zaz.

Transform this vector into cylindrical coordinates.

Solution The components of cylindrical coordinates can be determined as follows

Aρ = A • aρ = xax • aρ + yay • aρ + zaz • aρ = x cos φ + y sin φ,

Aρ = ρ cos φ cos φ + ρ sin φ sin φ = ρ,
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Aφ = A • aφ = xax • aφ + yay • aφ + zaz • aφ = −x sin φ + y cos φ,

Aφ = −ρ cos φ sin φ + ρ sin φ cos φ = 0,

Az = A • az = xax • az + xay • az + zaz • az = z.

A new vector in cylindrical coordinates is

A = ρaρ + zaz.

Example 2.8 A point in cylindrical coordinates is given as P (ρ = 2.4, φ = 130◦,
z = 2). Convert this point into Cartesian coordinates.

Solution The point in Cartesian coordinates can be determined as

x = ρ cos φ = 2.2 cos 130◦ = −1.414,

y = ρ sin φ = 2.2 sin 130◦ = 1.685

z = 2.

The final point is

P (x = −1.414, y = 1.685, z = 2).

Practice Problem 2.7 A vector in Cartesian coordinates is given by A = 2xax −
3yay + zaz. Transform this vector into cylindrical coordinates.

Practice Problem 2.8 A point in Cartesian coordinates is given as Q(x = 1.24,
y = 2.31, z = 2.4). Convert this point into cylindrical coordinates.

2.10.3 Spherical Coordinate System

The point in spherical coordinates is defined as M(r , θ , φ). A radial line with the
length of r is drawn at an angle θ with the z-axis and the unit vectors of this system
are ar , aθ and aφ as shown in Fig. 2.23a. Here, ar is parallel to the radial line and the
unit vector aφ is tangent to the sphere, and it increases in the direction of increasing
φ. The unit vector aθ is basically a tangent to the sphere, which is not shown in
Fig. 2.23, and it increases in the direction of increasing θ . The vector A in terms of
spherical components can be written as

A = Arar + Aθaθ + Aφaφ ≡ (Ar , Aθ , Aφ). (2.126)

The ranges of the coordinates are

0 < r < ∞, 0 < θ < π , 0 < φ < 2π. (2.127)

The magnitude of the vector can be written as

|A| =
√

Ar
2 + Aθ

2 + Aφ
2. (2.128)
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Fig. 2.23 (a) Spherical
coordinates with unit vectors
(b) only unit vectors
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In this coordinate system, the properties of unit vectors are

ar • ar = aθ • aθ = aφ • aφ = 1, (2.129)

ar • aθ = aθ • aφ = aφ • ar = 0, (2.130)

ar × aθ = aφ , (2.131)

aθ × aφ = ar (2.132)

aφ × ar = aθ . (2.133)

From Fig. 2.24, the following expressions can be written

ρ = r sin θ , (2.134)

x = ρ cos φ, (2.135)

y = ρ sin φ (2.136)

z = r cos θ. (2.137)

Substituting Eq. (2.134) into Eqs. (2.135) and (2.136) yields

x = r sin θ cos φ (2.138)

y = r sin θ sin φ. (2.139)

Again, consider Fig. 2.24 to derive the relationship between the Cartesian and the
spherical coordinates.
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Fig. 2.24 Relation between
the Cartesian and spherical
coordinates
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From Eqs. (2.137) to (2.139), the following relations can be written

r =
√

x2 + y2 + z2, (2.140)

θ = cos−1

(
z√

x2 + y2 + z2

)
(2.141)

φ = tan−1
(y

x

)
. (2.142)

The unit vectors of spherical coordinates are functions of their positions. Consider the
position vector in Cartesian coordinates. Then the relationship between unit vectors
of spherical and Cartesian coordinates can be derived as

ar = r
r

= xax + yay + zaz

r
= x

r
ax + y

r
ay + z

r
az. (2.143)

From Fig. 2.23b, the cross product of two vectors is

az × ar = aφ sin θ , (2.144)

aφ = az × ar

sin θ
(2.145)

aθ = aφ × ar . (2.146)

Substituting Eqs. (2.137)–(2.139) into Eq. (2.143) provides

ar = sin θ cos φax + sin θ sin φay + cos θaz. (2.147)

Substituting Eq. (2.147) into Eq. (2.145) yields

aφ = az × ( sin θ cos φax + sin θ sin φay + cos θaz)

sin θ
, (2.148)
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aφ = cos φ(az × ax) + sin φ(az × ay), (2.149)

aφ = − sin φax + cos φay. (2.150)

Substituting Eqs. (2.147) and (2.150) into Eq. (2.146) yields

aθ = (− sin φax + cos φay) × ( sin θ cos φax + sin θ sin φay + cos θaz), (2.151)

aθ = − sin θsin2φ(ax × ay) − cos θ sin φ(ax × az)

+ sin θcos2φ(ay × ax) + cos θ cos φ(ay × az). (2.152)

Applying the cross product rules to Eq. (2.152) provides

aθ = − sin θsin2φaz − cos θ sin φ(−ay)

+ sin θcos2φ(−az) + cos θ cos φ(ax), (2.153)

aθ = cos θ cos φax + cos θ sin φay − sin θaz. (2.154)

Alternative approach: The position vector in Cartesian coordinates is

r = xax + yay + zaz. (2.155)

Substituting Eqs. (2.137)–(2.139) into Eq. (2.155) yields

r = r sin θ cos φax + r sin θ sin φay + r cos θaz. (2.156)

Differentiating Eq. (2.156) with respect to the r , θ and φ yields

∂r
∂r

= sin θ cos φax + sin θ sin φay + cos θaz, (2.157)

∣∣∣∣
∂r
∂r

∣∣∣∣ =
√

sin2θcos2φ + sin2θsin2φ + cos2θ = 1, (2.158)

∂r
∂θ

= r cos θ cos φax + r cos θ sin φay − r sin θaz, (2.159)

∣∣∣∣
∂r
∂θ

∣∣∣∣ = r

√
cos2θcos2φ + cos2θsin2φ + sin2θ = r , (2.160)

∂r
∂φ

= −r sin θ sin φax + r sin θ cos φay , (2.161)

∣∣∣∣
∂r
∂φ

∣∣∣∣ = r

√
sin2θsin2φ + sin2θcos2φ = r sin θ. (2.162)
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Table 2.1 Dot product of unit
vectors of Cartesian and
spherical coordinate systems

ar aθ aφ

ax• sin θ cos φ cos θ cos φ − sin φ

ay• sin θ sin φ cos θ sin φ cos φ

az• cos θ − sin θ 0

The unit vector ar is defined as

ar =
∂r
∂r∣∣∣∣
∂r
∂r

∣∣∣∣
. (2.163)

Substituting Eqs. (2.157) and (2.158) into Eq. (2.163) yields

ar = sin θ cos φax + sin θ sin φay + cos θaz (2.164)

The unit vector aθ is defined as

aθ =
∂r
∂θ∣∣∣∣
∂r
∂θ

∣∣∣∣
. (2.165)

Substituting Eqs. (2.159) and (2.160) into Eq. (2.165) yields

aθ = cos θ cos φax + cos θ sin φay − sin θaz. (2.166)

The unit vector aφ is defined as

aφ =
∂r
∂φ∣∣∣∣
∂r
∂φ

∣∣∣∣
. (2.167)

Substituting Eqs. (2.161) and (2.162) into Eq. (2.167) yields

aφ = − sin φax + cos φay. (2.168)

From Eqs. (2.164), (2.166) and (2.168), the dot product of unit vectors between
Cartesian and spherical coordinate systems can be written as shown in Table 2.1.

A vector in spherical coordinates can be transformed into Cartesian coordinates
as

Ax = A • ax = Arar • ax + Aφaφ • ax + Aφaφ • ax , (2.169)

Ay = A • ay = Arar • ay + Aθaθ • ay + Aφaφ • ay (2.170)

Az = A • az = Arar • az + Aθaθ • az + Aφaφ • az. (2.171)
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Applying the dot product rules of Eqs. (2.169)–(2.171) provides

Ax = Ar sin θ cos φ + Aθ cos θ cos φ − Aφ sin φ, (2.172)

Ay = Ar sin θ sin φ + Aθ cos θ sin φ + Aφ cos φ (2.173)

Az = Ar cos θ − Aθ sin θ. (2.174)

Equations (2.172)–(2.174) can be represented in the matrix form as
⎡
⎣

Ax

Ay

Az

⎤
⎦ =

⎡
⎣

sin θ cos φ cos θ cos φ − sin φ

sin θ sin φ cos θ sin φ cos φ

cos θ − sin θ 0

⎤
⎦
⎡
⎣

Ar

Aθ

Aφ

⎤
⎦. (2.175)

Similarly, a vector in Cartesian coordinates can be transformed into spherical
coordinates as

Ar = A • ar = Axax • ar + Ayay • ar + Azaz • ar , (2.176)

Aθ = A • aθ = Axax • aθ + Ayay • aθ + Azaz • aθ (2.177)

Aφ = A • aφ = Axax • aφ + Ayay • aφ + Azaz • aφ. (2.178)

Applying the dot product rules of Eqs. (2.176)–(2.178) provides

Ar = Ax sin θ cos φ + Ay sin θ sin φ + Az cos θ , (2.179)

Aθ = Ax cos θ cos φ + Ay cos θ sin φ − Az sin θ (2.180)

Aφ = −Ar sin φ + Aθ cos φ. (2.181)

Equations (2.179)–(2.181) can be represented in the matrix form as
⎡
⎣

Ar

Aθ

Aφ

⎤
⎦ =

⎡
⎣

sin θ cos φ sin θ sin φ cos θ

cos θ cos φ cos θ sin φ − sin θ

− sin φ cos φ 0

⎤
⎦
⎡
⎣

Ax

Ay

Az

⎤
⎦. (2.182)

Consider Fig. 2.25 to derive the expressions of differential length, area and volume.
The expression of differential length is

dl = drar + rdθaθ + r sin θdφaφ. (2.183)

From Fig. 2.25a–d, the expressions of differential area and volume can be written as

dsr = (rdθ )(r sin θdφ) = r2 sin θdθdφ, (2.184)

dS = r2 sin θdθdφar , (2.185)

dsθ = (dr)(r sin θdφ) = r sin θdrdφ, (2.186)
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Fig. 2.25 (a) Spherical coordinates with differential elements (b) face in ar (d) face in aθ (e) face
in aφ

dS = r sin θdrdφaθ , (2.187)

dsφ = (dr)(rdθ ) = rdrdθ , (2.188)

dS = rdrdθaφ , (2.189)

dv = (dr)(r sin θdφ)(rdθ ) = r2 sin θdrdθdφ. (2.190)

Example 2.9 A vector in Cartesian coordinates is given by A = 2x
y

ax. Transform
this vector into spherical coordinates.

Solution The components of cylindrical coordinates can be determined as follows:

Ar = A • ar = 2x

y
ax • ar = 2x

y
sin θ cos φ

= 2r sin θ cos φ

r sin θ sin φ
sin θ cos φ = 2 cot φ sin θ cos φ,

Aθ = A • aθ = 2x

y
ax • aθ = 2x

y
cos θ cos φ

= 2r sin θ cos φ

r sin θ sin φ
cos θ cos φ = 2 cot φ cos θ cos φ,

Aφ = A • aφ = 2x

y
ax • aφ = 2x

y
(− sin φ) = 2r sin θ cos φ

r sin θ sin φ
(− sin φ) = −2 cos φ.
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A new vector in spherical coordinates is

A = 2 cot φ sin θ cos φar + 2 cot φ cos θ cos φaθ − 2 cos φaφ.

Example 2.10 A point in Cartesian coordinates is given by P (1, 3, 2). Convert this
point into spherical coordinates.

Solution The components of spherical coordinates can be determined as

r =
√

x2 + y2 + z2 =
√

12 + 32 + 22 = 3.74,

θ = cos−1

(
z√

x2 + y2 + z2

)
= cos−1

(
2√
14

)
= 57.69◦ and

φ = tan−1
(y

x

)
= tan−1

(
3

1

)
= 71.57◦.

Practice Problem 2.9 A vector in Cartesian coordinates is given by A = xax.

Transform this vector into spherical coordinates.

Practice Problem 2.10 A point in spherical coordinates is given as Q(r = 4, θ =
130◦, φ = 300◦). Convert this point into Cartesian and cylindrical coordinates.

2.11 Potential Gradient and Gradient of a Scalar Field

The potential difference is defined as the work done in moving a unit charge from
one point to another point in an electric field. In general, it can be written as

V = −
∫ f inal

initial

E.dL. (2.191)

For a short element of length (�L), the incremental potential is �V , but the electric
field is constant. Then, Eq. (2.191) can be modified as

�V = −E.�L. (2.192)

The total differential of potential in terms of partial differentiation with a function
of x, y and z can be written as

dV = ∂V

∂x
dx + ∂V

∂y
dy + ∂V

∂z
dz. (2.193)

Differentiating the Eq. (2.192) yields

dV = −E.dL. (2.194)
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Expressing the electric field in Cartesian coordinates and substituting Eq. (2.77) into
Eq. (2.194) provides

dV = −(Exax + Eyay + Ezaz).(dxax + dyay + dzaz), (2.195)

dV = −(Exdx + Eydy + Ezdz). (2.196)

From Eqs. (2.193) and (2.196), following equations can be written

Ex = −∂V

∂x
, (2.197)

Ey = −∂V

∂y
(2.198)

Ez = −∂V

∂z
. (2.199)

The gradient of a scalar field is a vector field whose magnitude depends on the max-
imum magnitude of the directional derivative and direction depends on the direction
of the directional derivative. The gradient is represented by the symbol ∇ (del). This
vector operator del is represented as

∇ = ∂

∂x
ax + ∂

∂y
ay + ∂

∂z
az. (2.200)

The gradient in Cartesian, cylindrical and spherical coordinates can be written as

∇V = ∂V

∂x
ax + ∂V

∂y
ay + ∂V

∂z
az, (2.201)

∇V = ∂V

∂ρ
aρ + 1

ρ

∂V

∂φ
aφ + ∂V

∂z
az, (2.202)

∇V = ∂V

∂r
ar + 1

r

∂V

∂θ
aθ + 1

r sin θ

∂V

∂φ
aφ. (2.203)

Using the total differential of Eqs. (2.91) and (2.92) to derive Eq. (2.202) as

dx = cos φdρ − ρ sin φdφ (2.204)

dy = sin φdρ + ρ cos φdφ. (2.205)

Substituting Eqs. (2.204) and (2.205) into Eq. (2.193) yields

dV = ∂V

∂x
[ cos φdρ − ρ sin φdφ] + ∂V

∂y
[ sin φdρ + ρ cos φdφ] + ∂V

∂z
dz,

(2.206)

dV =
[

cos φ
∂V

∂x
+ sin φ

∂V

∂y

]
dρ +

[
−ρ sin φ

∂V

∂x
+ ρ cos φ

∂V

∂y

]
dφ + ∂V

∂z
dz,

(2.207)
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dV = ∂V

∂ρ
dρ + ∂V

∂φ
dφ + ∂V

∂z
dz, (2.208)

where

∂V

∂ρ
= cos φ

∂V

∂x
+ sin φ

∂V

∂y
(2.209)

∂V

∂φ
= −ρ sin φ

∂V

∂x
+ ρ cos φ

∂V

∂y
. (2.210)

Applying the rules (2.219) × cos φ − (2.220) × sin φ

ρ
provides

∂V

∂x
= cos φ

∂V

∂ρ
− sin φ

ρ

∂V

∂φ
. (2.211)

Applying the rules (2.219) × sin φ + (2.220) × cos φ

ρ
provides

∂V

∂y
= sin φ

∂V

∂ρ
+ cos φ

ρ

∂V

∂φ
. (2.212)

Substituting Eqs. (2.98), (2.99), (2.211) and (2.212) into Eq. (2.201) yields

∇V =
[

cos φ
∂V

∂ρ
− sin φ

ρ

∂V

∂φ

]
[ cos φaρ − sin φaφ] +

[
sin φ

∂V

∂ρ
+ cos φ

ρ

∂V

∂φ

]
[ sin φaρ + cos φaφ] + ∂V

∂z
az. (2.213)

Equation (2.213) can be simplified as

∇V = cos2φ
∂V

∂ρ
aρ − sin φ cos φ

ρ

∂V

∂φ
aφ − sin φ cos φ

∂V

∂ρ
aφ + sin2φ

ρ

∂V

∂φ
aφ

+ sin2φ
∂V

∂ρ
aρ + sin φ cos φ

ρ

∂V

∂φ
aρ + sin φ cos φ

∂V

∂ρ
aφ + cos2φ

ρ

∂V

∂φ
aφ ,

(2.214)

∇V = (sin2φ + cos2φ)
∂V

∂ρ
aρ + (sin2φ + cos2φ)

ρ

∂V

∂φ
aφ + ∂V

∂z
az, (2.215)

∇V = ∂V

∂ρ
aρ + 1

ρ

∂V

∂φ
aφ + ∂V

∂z
az.

Example 2.11 A scalar electric potential is given as V = x2y2 + z2. Determine the
gradient of the scalar potential.



38 2 Vector Analysis and Coordinate Systems

Solution The gradient of scalar potential can be determined as

∇V = ∂

∂x
(x2y2 + z2)ax + ∂

∂y
(x2y2 + z2)ay + ∂

∂z
(x2y2 + z2)az,

∇V = 2xy2ax + 2x2yay + 2zaz.

Example 2.12 A scalar electric potential and a point are given as V = 3x3y + 7z
and P (1, 3, 2), respectively. Find the (1) ∇V and (2) value of ∇V.

Solution (1) The gradient of potential is

∇V = ∂V

∂x
ax + ∂V

∂y
ay + ∂V

∂z
az,

∇V = 9x2yax + 3x3ay + 7az.

(2) The value of the gradient of potential at point P (1, 3, 2) is

∇V = 27ax + 3ay + 7az.

Example 2.13 Scalar electric potentials are given by V (ρ, φ, z) = ρ cos φ + 2z and
V (r , θ , φ) = r2 + 2θ + sin φ.

Determine the gradient of the potential at the points P (ρ = 1, φ = 140◦, z = 3)
and Q(r = 1.4, θ = 80◦, φ = 130◦), respectively.

Solution The gradient of potential in cylindrical coordinates is

∇V = ∂V

∂ρ
aρ + 1

ρ

∂V

∂φ
aφ + ∂V

∂z
az,

∇V = cos φaρ − sin φaφ + 2az.

The electric field at point P (ρ = 1, φ = 140◦, z = 3) is

∇V = 0.77aρ + 0.64aφ − 2az.

The gradient of electric potential in spherical coordinates is

∇V = ∂V

∂r
ar + 1

r

∂V

∂θ
aθ + 1

r sin θ

∂V

∂φ
aφ ,

∇V = 2rar + 2

r
aθ + 1

r sin θ
cos φaφ.

The value of the gradient at point Q(r = 1.4, θ = 80◦, φ = 130◦) is

∇V = 2.8ar + 1.43aθ − 0.47aφ = 3.76.

Practice Problem 2.11 A scalar electric potential is given by V = yx2 + 2y2z.
Determine the gradient of scalar potential.
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a
Source

∇.D > 0 ∇.D < 0 ∇.D = 0

P• •

b
Sink

•P P

c

neither sink
nor source

Fig. 2.26 Directions of flux lines. a Source. b Sink. c Neither sink nor source

Practice Problem 2.12 The expression of a scalar electric potential is given by
V = x2 − 5yz. Find the gradient of scalar potential at the point P (−1.2, 2, 2.8).

Practice Problem 2.13 A scalar electric potential is given by V (ρ, φ, z) =
z cos φ + 2ρ. Determine the gradient of scalar potential at point P (ρ = 1.2, φ =
130◦, z = −2).

2.12 Divergence of a Vector Field

The divergence of a vector Ao is abbreviated as div A or ∇.A. The divergence of
a vector field is the outward flux per unit volume as the volume shrinks to zero.
Mathematically, it can be expressed as

divA = ∇.A = lim
�v→0

∮
s

A.dS

�V
. (2.216)

Figure 2.26 shows the direction of the flux lines. At source, the flux lines are coming
out from the point P , which in turn increases volume. In this case, the divergence
of a vector field is positive. At sink, the volume shrinks to zero as the flux lines
come towards the point P. Therefore, the divergence of a vector field is negative. A
differential volume element in the three directions is shown in Fig. 2.27. Consider
the field component Ax is normal to the side ABCD. The net flux leaving through
this side at x = 0 is

A.dS = −Ax�y�z. (2.217)
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Fig. 2.27 Differential volume
with field components
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H
Ay +
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The field component Ax + ∂Ax

∂x
�x is normal to the face FGHE and the net flux

leaving through this side at �x = 0 is

A.dS =
(

Ax + ∂Ax

∂x
�x

)
�y�z. (2.218)

The net flux leaving in the x-direction is

(A.dS)x = −Ax�y�z +
(

Ax + ∂Ax

∂x
�x

)
�y�z, (2.219)

(A.dS)x = ∂Ax

∂x
�x�y�z. (2.220)

The field component Ay is normal to the side ADEF. The net flux leaving through
this side at y = 0 is

A.dS = −Ay�x�z. (2.221)

The field component Ay + ∂Ay

∂y
�y is normal to the face BCGH and the net flux

leaving through this side at �y = 0 is

A.dS =
(

Ay + ∂Ay

∂y
�y

)
�x�z. (2.222)

The net flux leaving in the y-direction is

(A.dS)y = −Ay�x�z +
(

Ay + ∂Ay

∂y
�y

)
�x�z, (2.223)
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(A.dS)y = ∂Ay

∂y
�x�y�z. (2.224)

The field component Az is normal to the side ABGF. The net flux leaving through
this side at z = 0 is

A.dS = −Az�x�y. (2.225)

The field component Az+ ∂Az
∂z �z is normal to the face ABGF and the net flux leaving

through this side at �z = 0 is

A.dS =
(

Az + ∂Az

∂z
�z

)
�x�y. (2.226)

The net flux leaving in the z-direction is

(A.dS)z = −Az�x�y +
(

Az + ∂Az

∂z
�z

)
�x�y, (2.227)

(A.dS)z = ∂Az

∂z
�x�y�z. (2.228)

Substituting Eqs. (2.220), (2.224) and (2.228) into Eq. (2.216) yields

divA = ∇.A = lim
�x�y�z→0

(
∂Ax

∂x
+ ∂Ay

∂y
+ ∂Az

∂z

)
�x�y�z

�x�y�z
, (2.229)

divA = ∇.A = ∂Ax

∂x
+ ∂Ay

∂y
+ ∂Az

∂z
. (2.230)

To derive the divergence of a vector in cylindrical coordinates, Eqs. (2.211) and
(2.212) can be written as

∂

∂x
= cos φ

∂

∂ρ
− sin φ

ρ

∂

∂φ
(2.231)

∂

∂y
= sin φ

∂

∂ρ
+ cos φ

ρ

∂

∂φ
. (2.232)

Substituting Eqs. (2.231), (2.232), (2.121) and (2.122) into Eq. (2.230) yields

∇.A =
(

cos φ
∂

∂ρ
− sin φ

ρ

∂

∂φ

)
(Aρ cos φ − Aφ sin φ)

+
(

sin φ
∂

∂ρ
+ cos φ

ρ

∂

∂φ

)
(Aρ sin φ + Aφ cos φ) + ∂Az

∂z
, (2.233)

∇.A = cos2φ
∂Aρ

∂ρ
− sin φ cos φ

ρ

∂Aρ

∂φ
− cos φ sin φ

∂Aφ

∂ρ
+ sin2φ

ρ

∂Aφ

∂φ
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+ sin2φ
∂Aρ

∂ρ
+ sin φ cos φ

ρ

∂Aρ

∂φ
+ cos φ sin φ

∂Aφ

∂ρ
+ cos2φ

ρ

∂Aφ

∂φ
+ ∂Az

∂z
,

(2.234)

∇.A = ∂Aρ

∂ρ
+ 1

ρ

∂Aφ

∂φ
+ ∂Az

∂z
, (2.235)

∇.A = 1

ρ

∂(ρAρ)

∂ρ
+ 1

ρ

∂Aφ

∂φ
+ ∂Az

∂z
. (2.236)

For spherical coordinates, it can be written as

∇.A = 1

r2

∂(r2Ar )

∂r
+ 1

r sin θ

∂( sin θAθ )

∂θ
+ 1

r sin θ

∂Aφ

∂φ
. (2.237)

The divergence theorem states that the integral of a divergence of any vector field
over a volume is equal to the integral of that vector field over a closed surface.
Mathematically, it can be written as

∫

V

(∇.A)dV =
∮

S

A.dS. (2.238)

Here, the volume is bounded by the closed surface. In the case of special geome-
try, volume integrals are easier to evaluate than surface integrals. In this case, the
divergence theorem is used.

Example 2.14 A vector in Cartesian coordinates is given by A = 2yxax−y2ay+zaz.

Determine the div A.

Solution The divergence of the vector A can be determined as

∇.A = ∂Ax

∂x
+ ∂Ay

∂y
+ ∂Az

∂z
= 2y − 2y + 1 = 1.

Example 2.15 A vector in cylindrical coordinates is given by A = ρz cos φaρ +
ρ2z sin φaφ + 2ρzsin2φaz.

Determine div A at the point P (ρ = 1, φ = 120◦, z = 2).

Solution The divergence of the vector A can be determined as

∇.A = 1

ρ

∂(ρAρ)

∂ρ
+ 1

ρ

∂Aφ

∂φ
+ ∂Az

∂z
,

∇.A = 1

ρ

∂(ρ2z cos φ)

∂ρ
+ 1

ρ

∂(ρ2z sin φ)

∂φ
+ ∂(2ρzsin2φ)

∂z
,

∇.A = z cos φ

ρ
2ρ − 1

ρ
ρ2z cos φ + 2ρsin2φ,

∇.A = 2z cos φ − ρz cos φ + 2ρsin2φ,

∇.A = 4 cos 120◦ − 2 cos 120◦ + 2sin2120◦ = 0.5.
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Practice Problem 2.14 The expression of a vector in Cartesian coordinates is given
by A = 2y2xax − zy2ay + 2zaz. Determine div A at the point P (1, −2, 3).

Practice Problem 2.15 Vectors in the cylindrical and the spherical coordinates are
given by A = 3ρz2 cos φaρ+2ρz sin φaφ−z sin 2φaz and B = sin θbr+2r cos θbθ −
sin 2φbφ , respectively. Determine the div A and B at the points P (ρ = 1, φ =
125◦, z = 1.2) and Q(r = 0.5, θ = 45◦, φ = 70◦), respectively.

2.13 Curl of a Vector Field

The curl (rotation) of a vector A is abbreviated as curl A or ∇×A. The net circulation
( C) of a vector field A around the closed contour is defined as the line integral of A.
This can be expressed as

C =
∮

c

A.dl. (2.239)

The curl of a vector field is equal to the maximum circulation of a vector field per
unit area as the area tends to zero. Mathematically, it can be expressed as

∇ × A =
(

lim
�s→0

∮
L

A.dl

�S

)

max

an, (2.240)

where

an is the unit vector normal to �S.

Consider Fig. 2.28a to find the expression of the curl of A in the x − y plane. The
sides of ABCD are AB = CD = �x and BC = AD = �y. The line integral
around the complete path ABCD is

∫

ABCD

A.dl = Ax�x +
(

Ay + ∂Ay

∂x
�x

)
�y −

(
Ax + ∂Ax

∂y
�y

)
�x − Ay�y,

(2.241)

∫

ABCD

A.dl =
(

∂Ay

∂x
− ∂Ax

∂y

)
�x�y. (2.242)

Substituting Eq. (2.242) and �S = �x�y into Eq. (2.240) and the z-component of
the curl of A results in

(� × A)z =
(

∂Ay

∂x
− ∂Ax

∂y

)
(2.243)

Again, consider Fig. 2.28b and c to derive the expressions of the curl of A in the
y − z and z − x planes, respectively.
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A(x, y)

y

x
a

D

Ax

Ay

M(y, z)

z

y

P

Ay

Az

b

Q(z, x)
z

x

R(z + Δz, x)

S(z + Δz, x + Δx)
T

Az

Ax +
∂Ax Δz
∂z

Az +
∂Az Δx
∂x

Ax

c

O

B(x + Δx, y)

C(x + Δx, y + Δy)

Ay +
∂Ay Δx
∂x

Ax +
∂Ax Δy
∂y

N(y + Δy, z)

Az +
∂Az Δy
∂y

Ay +
∂Ay Δz
∂z

Fig. 2.28 (a) Path ABCD (b) Path MNOP (c) Path QRST

The line integral around the complete path MNOP is
∫

MNOP

A.dl = Ay�y +
(

Az + ∂Az

∂y
�y

)
�z −

(
Ay + ∂Ay

∂z
�z

)
�y − Az�z,

(2.244)

∫

MNOP

A.dl =
(

∂Az

∂y
− ∂Ay

∂z

)
�y�z. (2.245)

Substituting Eq. (2.245) and �S = �y�z into Eq. (2.240) and the x-component of
the curl A results in

(� × A)x =
(

∂Az

∂y
− ∂Ay

∂z

)
. (2.246)

The line integral around the complete path QRST is
∫

QRST

A.dl = Az�z +
(

Ax + ∂Ax

∂z
�z

)
�x −

(
Az + ∂Az

∂x
�x

)
�z − Ax�x,

(2.247)

∫

QRST

A.dl =
(

∂Ax

∂z
− ∂Az

∂x

)
�x�z. (2.248)
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Substituting Eq. (2.248) and �S = �x�z into Eq. (2.240) and the y-component of
the curl A creates

(� × A)y =
(

∂Ax

∂z
− ∂Az

∂x

)
. (2.249)

The curl of A in three dimensions can be written as

∇ × A = (∇ × A)xax + (∇ × A)yay + (∇ × A)zaz. (2.250)

Substituting Eqs. (2.243), (2.246) and (2.249) into Eq. (2.250) yields

∇ × A =
(

∂Az

∂y
− ∂Ay

∂z

)
ax +

(
∂Ax

∂z
− ∂Az

∂x

)
ay +

(
∂Ay

∂x
− ∂Ax

∂y

)
az. (2.251)

In the matrix form, Eq. (2.251) can be written as

∇ × A =

∣∣∣∣∣∣∣∣

ax ay az
∂

∂x

∂

∂y

∂

∂z
Ax Ay Az

∣∣∣∣∣∣∣∣
. (2.252)

The curl of A in cylindrical and spherical coordinate systems can be written as

∇ × A = 1

ρ

∣∣∣∣∣∣∣∣

aρ ρaφ az
∂

∂ρ

∂

∂φ

∂

∂z
Aρ ρAφ Az

∣∣∣∣∣∣∣∣
, (2.253)

∇ × A = 1

r2 sin θ

∣∣∣∣∣∣∣∣

ar raθ r sin θaφ

∂

∂r

∂

∂θ

∂

∂φ
Ar rAθ r sin θAφ

∣∣∣∣∣∣∣∣
. (2.254)

The Stokes’ theorem states that the surface integral of the curl of a vector field over
an open surface is equal to the line integral of the vector along the closed contour
bounding the surface. A surface with a closed boundary is shown in Fig. 2.29.

Mathematically, the Stokes’ theorem can be written as
∫

S

(∇ × A).ds =
∮

l

A.dl. (2.255)

Example 2.16 A vector in Cartesian coordinates is given by A = 2y2zax +3xz2ay +
x2y2az. Determine the curl of A at the point P (x = 1, y = 1.5, z = −2).

Solution The x component of the vector A and its partial differentiation with respect
to y and z are

Ax = 2y2z,

∂Ax

∂y
= 4yz,

∂Ax

∂z
= 2y2.
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Fig. 2.29 Surface with a
closed boundary

Boundary curve C

Surface S

dl

ds

L

The y component of the vector A and its partial differentiation with respect to x and
z are

Ay = 3xz2,

∂Ay

∂x
= 3z2,

∂Ay

∂z
= 6xz.

The z component of the vector A and its partial differentiation with respect to x and
y are

Az = x2y2,

∂Az

∂x
= 2xy2,

∂Az

∂y
= 2x2y.

∇ × A =
(

∂Az

∂y
− ∂Ay

∂z

)
ax +

(
∂Ax

∂z
− ∂Az

∂x

)
ay +

(
∂Ay

∂x
− ∂Ax

∂y

)
az,

∇ × A = (2x2y − 6xz)ax + (2y2 − 2xy2)ay + (3z2 − 4yz)az.

The curl of A at the point P (x = 1, y = 1.5, z = −2) is

∇ × A = 15ax + 0ay + 24az.

Practice Problem 2.16 The expression of a vector in Cartesian coordinates is given
by A = 2yzax − xz3ay + 3x3yaz. Determine the curl of A at the point P (x =
0.8, y = 1.05, z = −2.2).

2.14 Two Important Vector Identities

The two vector identities are very important for studying electromagnetism, espe-
cially when it deals with potential functions. The first vector identity states that the
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curl of the gradient of any scalar field is identically zero. Mathematically, it can be
written as

∇ × (∇V ) ≡ 0. (2.256)

Equation (2.256) can be verified by considering Cartesian coordinates as

∇ × (∇V ) =
(

∂

∂x
ax + ∂

∂y
ay + ∂

∂z
az

)
×
(

∂V

∂x
ax + ∂V

∂y
ay + ∂V

∂z
az

)
, (2.257)

∇ × (∇V ) =

∣∣∣∣∣∣∣∣∣

ax ay az
∂

∂x

∂

∂y

∂

∂z
∂V

∂x

∂V

∂y

∂V

∂z

∣∣∣∣∣∣∣∣∣
, (2.258)

∇ × (∇V ) =
(

∂2V

∂y∂z
− ∂2V

∂y∂z

)
ax +

(
∂2V

∂x∂z
− ∂2V

∂x∂z

)
ay

+
(

∂2V

∂x∂y
− ∂2V

∂x∂y

)
az = 0. (2.259)

The second important vector identity states that the divergence of the curl of a vector
field is identically zero. Mathematically, it can be expressed as

∇.(∇ × V) ≡ 0. (2.260)

Again consider Cartesian coordinates to verify Eq. (2.260). Considering the left-hand
side of Eq. (2.260) provides

∇.(∇ × V) = ∇.

∣∣∣∣∣∣∣∣

ax ay az
∂

∂x

∂

∂y

∂

∂z
Vx Vy Vz

∣∣∣∣∣∣∣∣
, (2.261)

∇.(∇ × V) = ∇.

[(
∂Vz

∂y
− ∂Vy

∂z

)
ax +

(
∂Vz

∂x
− ∂Vx

∂z

)
ay +

(
∂Vy

∂x
− ∂Vx

∂y

)
az

]
,

(2.262)

∇.(∇ × V) = ∂

∂x

(
∂Vz

∂y
− ∂Vy

∂z

)
+ ∂

∂y

(
∂Vz

∂x
− ∂Vx

∂z

)
+ ∂

∂z

(
∂Vy

∂x
− ∂Vx

∂y

)
,

(2.263)

∇.(∇ × V) = ∂2Vz

∂x∂y
− ∂2Vy

∂x∂z
+ ∂2Vz

∂y∂x
− ∂2Vx

∂y∂z
+ ∂2Vy

∂z∂x
− ∂2Vx

∂z∂y
= 0. (2.264)
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2.15 Exercise Problems

2.1 Three vectors are given by A = 3ax − 5ay + 5az, B = 2ax − 3ay + 4az and
C = 2ax−ay+3az, respectively. Determine the magnitude of (1) Ra = A+2B
and (2) Rs = 3B − C.

2.2 Calculate the unit vector which is parallel to the resultant (addition) of vectors
A = ax + 3ay + 2az and B = ax + 2ay − 3az.

2.3 Three vectors are given by A = ax − 2ay + 3az, B = 2ax − 4ay + 3az and
C = ax − 3ay + 2az, respectively. Determine the magnitude of (1) Ra =
3A + 2B + C and (2) Rs = 3B − C − 2A.

2.4 Two vectors are given by A = ax − 3ay + 2az and B = 2ax − 3ay + 4az,
respectively. Determine the dot product of two vectors.

2.5 Two vectors are given by A = 4ax + 2ay + 3az and B = ax − 4ay − 2az,
respectively. Determine the angle between them.

2.6 Determine the projection of vector A = 4ax − 2ay − 3az on the vector
B = ax − 4ay − 2az.

2.7 The expressions of two vectors are given by A = pax − 5ay − 2az and
B = 2ax + 4ay − 2az. Determine the value of p if the two vectors are in
perpendicular directions.

2.8 Three vectors are given by the expressions A = 3ax + 2ay − 3az, B =
ax + 2ay − 4az and C = 3ax + 2ay − 5az. Determine the vectors B × C and
A • B × C.

2.9 Three vectors are given by the expressions A = ax + 3ay + 2az, B = 2ax +
3ay + 5az and C = 3ax − 2ay + 3az. Calculate the vector (A + B) × (B − C).

2.10 Two vectors are given by the expressions A = 2ax − 3ay + 2az and B =
pax + qay + 2az. Determine the value of p and q if two vectors are parallel.

2.11 Two vectors are moving from the origin to the points P1(2,4, 7) and P2(1,2, 3)
as shown in Fig. 2.30. Write down the vector R12 in Cartesian coordinates
and determine its distance.

2.12 Three points are given by A(2, 3, 4), B(−2, −1, 2) and C(1, 3, 5). Determine
the (1) RAB , (2) RBCand (3) rC.

2.13 The expression of a vector field is given by A = xyax + (x2 + yz)ay −
(y2 + 2z)az. Determine the (1) vector A at point P (1, 2, 3), (2) unit vector A
at point Q(−1, 2, 5)and (3) unit vector directed from point P (1, 2, 3) to point
Q(−1, 2, 5).

2.14 Two points in cylindrical coordinates are given by P (ρ = 1, φ = 65◦, z =
2) and Q(ρ = 1.4, φ = 35◦, z = 2.4). Determine the RPQ in cylindrical
coordinates and its unit vector.

2.15 Two vectors are given in cylindrical coordinates by A = 2aρ − 3aφ + az and
B = aρ + 2aφ − 3az. Determine the dot product and cross product of the two
vectors, respectively.

2.16 A vector is given by A = x
y

ay. Convert this vector into cylindrical coordinates.
2.17 A vector is given by A = xz

y
ax + y

x
ay. Convert this vector into cylindrical

coordinates.
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Fig. 2.30 Points in a space

x

y

z

O

P1 (2, 4, 7)

P2 (1, 2, 3)
r1

r2

R12

2.18 A point in Cartesian coordinates is Q(x = 2, y = 2.5, z = 1.2). Convert this
point into cylindrical coordinates.

2.19 A vector in Cartesian coordinates is given by A = 2
y

ay. Transform this vector
into spherical coordinates.

2.20 A point in spherical coordinates is P (r = 2, θ = 120◦, φ = 230◦). Convert
this point into Cartesian and cylindrical coordinates.

2.21 A scalar electric potential is given by V = xy + 2z2. Find the electric field E
and its direction at point P (−2, −3, 1).

2.22 The expression of a scalar electric potential is given by V (ρ, φ, z) = z2 cos φ−
ρ2. Determine the electric field E and its direction at point P (ρ = 1, φ =
120◦, z = −1).

2.23 A vector in the Cartesian coordinates is given by A = yxax − 2zyay + z2az.

Determine the div A.
2.24 The expression of a vector in cylindrical coordinates is given by A = ρzaρ −

cos φzaφ + 2ρzaz. Find the div A.
2.25 A vector in spherical coordinates is given by A = rar + sin φr2aθ + sin φaφ.

Calculate the div A.
2.26 The expression of a vector in Cartesian coordinates is given as A = yxax −

zyay + 2zaz. Determine div A at point P (−1, −1,2).
2.27 A vector in cylindrical coordinates is given by A = ρaρ + sin φaφ + zaz.

Calculate div A at point P (1, 85◦, 2).
2.28 The expression of a vector in Cartesian coordinates is given by A = y3z2ax −

(x + z2)ay + 3(x2 − y)az. Determine the curl of A at point P (x = 1, y =
1, z = 1).
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Chapter 3
Electrostatic Field

3.1 Introduction

In Chap. 1, the basic definition of electromagnetic field parameters and their units
were discussed. In Chap. 2, the fundamentals of vector algebra and orthogonal coor-
dinate systems were discussed in detail. In a static electric field, the electric charges
are always at rest and the electric field does not change with time, i.e., its mag-
nitude is constant. The electric field due to time-invariant charges at rest is called
the static electric field or the electrostatic field. Fundamental knowledge is required
to design X-ray machines, lightning protection equipment, and other electrostatic
devices. There are many applications of electrostatic fields. These applications are
oscilloscopes, electrocardiograms (ECG), ink-jet printers, peripheral computer de-
vices, paint spraying, electrochemical machinery, etc. To understand the basic of
electrostatics, Coulomb’s law, electric field intensity, Gauss’ law, Ohm’s law and
energy, etc. will all be discussed in this chapter.

3.2 Coulomb’s Law

The fundamentals of electrostatics are the outcome of an experiment that created
Coulomb’s law. In 1785, a French Army Engineers colonel performed a series of
experiments to determine the force exerted between two small charge objects. Ac-
cording to his name, it is known as Coulomb’s law. This law states that two small
charges that exert a force on each other are directly proportional to the product of the
magnitudes of the charges and inversely proportional to the square of the separation
distance. This separation distance is large compared to the size of the charge bodies.
Two point charges Q1 and Q2 with their separation distance is shown in Fig. 3.1.
The electric force, F12 on a point charges Q2 due to Q1.

Mathematically, Coulomb’s law can be written as

F12 = k
Q1Q2

R12
2 a12, (3.1)

Md. A. Salam, Electromagnetic Field Theories for Engineering, 51
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Fig. 3.1 Two point charges
with separation distance F12

aR12

Q1

Q2

R12

Fig. 3.2 Two point charges
with separation distance F12

a12
Q1

Q2

R12

Originr1

r2

F21

where

Q1, Q2 are the positive or negative charges in Coulomb (C),
R12 is the separation distance in meters,
k = 1

4πε0
is the proportionality constant.

Like charges repel and unlike charges attract each other. Let the charges Q1 and Q2

be located from the origin as distances indicated by the vectors r1 and r2, respectively,
as shown in Fig. 3.2.

The electric force, F21 on a point charge Q1 due to Q2 can be written as

F21 = k
Q1Q2

R21
2 a21. (3.2)

The following vectors can be written as

R12 = r2 − r1 (3.3)

R21 = r1 − r2. (3.4)

The expressions of unit vectors can be written as

a12 = R12

|R12| = r2 − r1

R12
(3.5)
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Fig. 3.3 The n-number
charges with separation
distance

Q
1Q

2Q

3Q

nQ

1F
2F

3F
Fn

1r 2r
3r

rn

r

Origin

a21 = R21

|R21| = r1 − r2

R21
. (3.6)

Equations (3.1) and (3.2) can be modified by substituting Eqs. (3.5) and (3.6) as

F12 = −F21 = 1

4πε0
Q1Q2

(r2 − r1)

|r2 − r1|3
. (3.7)

Figure 3.3 shows n number of charges located at n number of vectors. The super-
position of the forces on the charge Q due to different point charges can be written
as

F = F1 + F2 + F3 + − − − − +FN. (3.8)

According to Eq. (3.7), Eq. (3.8) can be modified as

F =QQ1

4πε0

(r − r1)

|r − r1|3
+QQ2

4πε0

(r − r2)

|r − r2|3
+ QQ3

4πε0

(r − r3)

|r − r3|3
(3.9)

+ − − − + QQn

4πε0

(r − rn)

|r − rn|3
.

In general, Eq. (3.9) can be expressed as

F = Q

4πε0

N∑
k=1

Qk(r − rk)

|r − rk|3
. (3.10)

Example 3.1 Point charges of 4 × 10−5C and 6 × 10−6C are located at points
M(1, 3, 4) and N (4, 0, 3), respectively, in free space. Determine the electric force
exerted on the second charge due to the first charge.
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Solution The following vector can be written as

R12 = (4 − 1)ax + (0 − 3)ay + (3 − 4)az

R12 = 3ax − 3ay − az

|R12| = R12 =
√

32 + ( − 3)2 + 1 = 4.36

The force can be determined as

F12 = 1

4πε0

Q1Q2

R12
2 a12 = 4 × 10−5 × 6 × 10−6

4π × 8.854 × 10−12 × 19

3ax − 3ay − az

4.36

F12 = 0.078ax − 0.078ay − 0.026azN.

Practice Problem 3.1 Point charges of 6 × 10−6C and 9 × 10−6C are located at
points M(1, 2, 3) and N (2, 4, 6),respectively, in free space. Determine the (a) R12,
(b) R12, (c) a12, and (d) force exerted on the first charge due to the second charge.

3.3 Electric Field Intensity

The electric force exerted on each other of the point charges has been discussed in the
previous section. There is existence of an electric field in the vicinity of those point
charges. Consider a test charge, Qt , is moving towards the charge Q1. According to
Coulomb’s law, the force exerted on the test charge is

Ft = Q1Qt

4πε0R1t
2 a1t . (3.11)

Equation (3.11) can be modified as

Ft

Qt

= Q1

4πε0R1t
2 a1t . (3.12)

Equation (3.12) represents the expression of electric field intensity. In general, the
electric field intensity is defined as the force per unit charge when a small stationary
test charge is placed in this region. The unit of electric field intensity is V/m or N/C.
Mathematically, electric field intensity can be expressed as

E = lim
Qt→0

Ft

Qt

. (3.13)

In general, electric field intensity can be expressed as

E = Ft

Qt

. (3.14)



3.3 Electric Field Intensity 55

Substituting Eq. (3.12) into Eq. (3.14) yields the general equation by omitting the
unnecessary subscripts,

E = Q

4πε0R2
aR. (3.15)

Electric field intensity due to point charges, Q1 at r1 and Q2 at r2 can be written as

E = Q1

4πε0|r − r1|2
a1 + Q2

4πε0|r − r2|2
a2. (3.16)

Electric field intensity due to n point charges is

E =
N∑

k=1

Qk

4πε0|r − rk|2
ak. (3.17)

If the point charge is placed at the center of the spherical coordinates, then the electric
field intensity becomes

E = Q

4πε0r2
ar . (3.18)

In scalar, Eq. (3.18) can be expressed as

E = Q

4πε0r2
. (3.19)

In general, Eq. (3.14) can be written as

F = QE. (3.20)

Example 3.2 A point charge of 4×10−10C is located at point M(1, 2, 3). Determine
the electric field intensity at point N (2, 0, 1) in free space. All dimensions are in
meters.

Solution The position vector from origin to the field point N (2, 0, 1) is

r = (2 − 0)ax + (0 − 0)ay + (1 − 0)az = 2ax + az.

The position vector from origin to point charge M(1, 2, 3) is

r1 = (1 − 0)ax + (2 − 0)ay + (3 − 0)az = ax + 2ay + 3az

r − r1 = ax − 2ay − 2az

|r − r1| = √
12 + 22 + 22=3

The electric field intensity at the point is

E = Q1(r − r1)

4πε0|r − r1|3
= 4 × 10−10(ax − 2ay − 2az)

4π × 8.854 × 10−12 × 27

E = 0.133ax − 0.266ay − 0.266azV/m
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Fig. 3.4 Point charge with
closed surface
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Practice Problem 3.2 A point charge of −5×10−9C is located at point M(1, 0, 2).
Determine the electric field intensity at point N (2, 1, 3) in free space. All dimensions
are in meters.

3.4 Gauss’ Law

Gauss’ law is one of the fundamental laws of electromagnetic engineering. Johann
Karl Friedrich Gauss (1777–1855), a great German mathematician, generalized Fara-
day’s experiment and created the statement, “Total electric flux passing any closed
surface is equal to the total charge enclosed by that surface, divided by ε0.” Let us
consider a point charge Q in free space is enclosed by the surface as shown in Fig. 3.4.
The total flux is E through an arbitrary positioned surface element of area dS, whose
surface area vector is dS. The elementary flux can be written as

dψE = E.dS. (3.21)

The area vector can be written as

dS = dSan, (3.22)

where an is the unit vector normal to the surface. According to the rules of dot
product, Eq. (3.21) can be expressed as

dψE = EdS cos θ. (3.23)

Substituting Eq. (3.19) into Eq. (3.23) yields

dψE = Q

4πε0r2
dS cos θ = Q

4πε0

dS cos θ

r2
. (3.24)

By definition, the element of solid angle is

d� = dS cos θ

r2
. (3.25)
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Substituting Eq. (3.25) into Eq. (3.24) provides

dψE = Q

4πε0
d�. (3.26)

Integrating Eq. (3.26) over the surface yields
∮

S

dψE =
∮

S

E.dS = Q

4πε0

∮

S

d�. (3.27)

Over the surface, the value of the solid angle will be the total surface area of a unit
sphere, namely

d� = 4π (1)2 = 4π. (3.28)

Substituting Eq. (3.28) into Eq. (3.27) yields

ψE =
∮

S

E.dS = Q

4πε0
× 4π (3.29)

∮

S

ε0E.dS = Q (3.30)

∮

S

E.dS = Q

ε0
. (3.31)

From Eq. (3.31), Gauss’ law states that the total outward flux of the electric field over
any closed surface in free space is equal to the total charge enclosed by that surface
divided by ε0.

But the electric flux density is defined as

D = ε0E. (3.32)

Substituting Eq. (3.32) into Eq. (3.30) provides
∮

S

D.dS = Q. (3.33)

The surface element vector always involves the differentials of two coordinates, such
as dxdy, ρdφ dρ, and r2 sin θdθdφ, and the integral will be a double integral. For
N point charges, Eq. (3.32) can be written as

∮

S

E1.dS +
∮

S

E2.dS + ...... +
∮

S

EN.dS = Q1

ε0
+ Q2

ε0
+ ... + QN

ε0
. (3.34)

For several point charges, the charge enclosed is

Q =
N∑

i=1

Qi. (3.35)
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For a line charge, the expression is

Q =
∫

ρLdL. (3.36)

For a surface charge, the expression is

Q =
∫

S

ρSdS. (3.37)

For a volume charge, the expression is

Q =
∫

vol
ρvdv. (3.38)

Gauss’ law in terms of charge distribution may be written by substituting Eq. (3.38)
into Eq. (3.33) as

∮

S

D.dS =
∫

vol
ρvdv. (3.39)

Applying the divergence theorem to Gauss’law, the following equation can be written
as

∮

S

D.dS =
∫

vol
(∇.D)dv. (3.40)

From Eqs. (3.39) and (3.40), the following relation can be derived:

ρv = ∇.D. (3.41)

Equation (3.41) is known as the first Maxwell’s equation and point form of Gauss’
law. Equations (3.40) and (3.41) are known as integral and differential forms of
Gauss’ law. Equation (3.41) can be modified for free space as

∇.E = ρ

ε0
. (3.42)

Example 3.3 The electric flux density is defined as D = x2ax + 2yay + 3z2az.

Determine the
∮
S

D.dS, where S is the surface of a rectangular box, and the limits
are x = 0, x = 1, y = 0, y = 2, z = 0, z = 3.
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Solution The following integration can be determined as:
∮

S

D.dS =
∫

vol

∇.Ddv

=
∫

vol

(
∂

∂x
ax + ∂

∂y
ay + ∂

∂z
az

)
.
(
x2ax + 2yay + 3z2az

)
dv

=
∫

vol

(2x + 2 + 6z)dxdydz

=
∫∫

dxdy

∫ 3

0
(2x + 2 + 6z)dz

=
∫∫

dxdy
[
2xz + 2z + 3z2

]3

0

=
∫

dx

∫ 2

0
(6x + 33)dy

=
∫

dx [6xy + 33y]3
0

=
∫ 1

0
(12x + 66)dx

= [
6x2 + 66x

]1

0 = 72.

Example 3.4 Use Gauss’ theorem to determine
∮
S

D.dS, where the electric flux
density is D = x2ax + 2y2ay + zaz and the surface is surrounded by the region of
x2 + y2 = 9, z = 0 and z = 2.

Solution The following integration can be determined as
∮

S

D.dS =
∫

vol

∇.Ddv

=
∫

vol

(
∂

∂x
ax + ∂

∂y
ay + ∂

∂z
az

)
.
(
x2ax + 2y2ay + zaz

)
dv

=
∫ ∫ ∫

(2x + 4y + z)dxdydz

=
∫∫

dxdy

∫ 2

0
(2x + 4y + z)dz

=
∫∫

dxdy

[
2xz + 4yz + 1

2
z2

]2

0

=
∫ ∫

(4x + 8y + 2)dxdy.
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Let x = r cos θ , y = r sin θ , and dS = dxdy = rdθdr. Then the above integration
becomes

= 4
∫ 2π

0
dθ

∫ 3

0
(r cos θ + 2r sin θ + 1

2
)rdr

= 4
∫ 2π

0

[
r3 cos θ

3
+ 2r3 sin θ

3
+ r2

2

]3

0

dθ

= 4
∫ 2π

0

(
9 cos θ + 18 sin θ + 9

2

)
dθ

= 36[sin θ ]2π
0 − 72[cos θ ]2π

0 + 18[θ ]2π
o = 36π.

Practice Problem 3.3 The electric flux density is defined as D = x3ax +xy2ay +
yz2az. Determine the

∮
S

D.dS, where S is the surface bounded by the region of limits,
which are x = 0, x = 2, y = 0, y = 1, z = 0, z = 3.

Practice Problem 3.4 Use Gauss’ theorem to determine
∮
S

D.dS, where the elec-
tric flux density is D = x2ax −y2ay −zaz and the surface is surrounded by the region
of x2 + y2 = 4, z = 0 and z = 1.

3.5 Electric Field of Continuous Charge Distribution

The electric field intensity due to a continuous distribution of charge can be obtained
by integrating a single element of charge. From Eq. (3.17), the general expression
of electric field can be written as

E = Q

4πε0R2
ar . (3.43)

Consider a point charge that is located on the line, surface, and volume. For a
differential length, surface, and volume, the differential charges are

dQ = ρldl (3.44)

dQ = ρsds (3.45)

dQ = ρvdv. (3.46)

In differential form, Eq. (3.43) can be written as

dE = dQ

4πε0R2
ar . (3.47)

Substituting Eq. (3.44) into Eq. (3.47) yields

dE = ρldl

4πε0R2
ar . (3.48)
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Fig. 3.5 Straight line with a
uniform charge distribution
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Integrating Eq. (3.48) yields

E =
∫

dE =
∫

l

ρldl

4πε0

ar

R2
. (3.49)

Since ar = R
R

, Eq. (3.49) becomes

E = 1

4πε0

∫

l

ρl

R
R3

dl. (3.50)

If the charge is distributed over the surface and volume, the expressions for electric
field are

E = 1

4πε0

∫

s

ρs

R
R3

ds (3.51)

E = 1

4πε0

∫

v
ρv

R
R3

dv. (3.52)

Example 3.5 The total charge of Q is distributed uniformly over a straight line of
length of l. Determine the expression for the electric field.

Solution The charge is located at a distance d from the center of the line as shown
in Fig. 3.5. Here, the angles are θ1 < 0 and θ2 > 0. Consider a differential length dl

of the straight line. From Fig. 3.5, the following expressions can be written as:

R2 = z2 + d2 (3.53)

dl = dz (3.54)
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ar = cos θax − sin θaz (3.55)

tan θ = z

d
(3.56)

z = d tan θ (3.57)

cos θ = d

R
. (3.58)

Differentiating Eq. (3.57) with respect to θ provides

dz = dsec2θdθ (3.59)

dz = d

cos2θ
dθ. (3.60)

Substituting Eq. (3.58) into Eq. (3.60) yields

dz = d

d2

R2

dθ (3.61)

dz = R2

d
dθ (3.62)

dz

R2
= 1

d
dθ. (3.63)

Substituting Eqs. (3.55) and (3.63) into Eq. (3.48) and then integrating provides

E =
∫

dE = ρl

4πε0d

∫ θ2

θ1

(cos θax − sin θaz)dθ (3.64)

E = ρl

4πε0d
[sin θ2 − sin θ1]ax + ρl

4πε0d
[cos θ2 − cos θ1]az. (3.65)

If the straight line is extended from negative infinity to positive infinity, the angles
will be θ1 → −π

2 and θ2 → π
2 , respectively, and ax = ar . Equation (3.65) can be

modified as

E = ρl

4πε0d
(1 + 1)ar (3.66)

E = ρl

2πε0d
ar . (3.67)

The electric flux density can be written as

D = ρl

2πd
ar . (3.68)
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Fig. 3.6 Charge of an infinite
sheet
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Practice Problem 3.5 An infinitely long straight line charge distributed uniformly
along the z-axis contains air, the density of which is ρ. Determine the electric field
intensity.

3.6 Electric Field Due to an Infinite Sheet Charge

Consider an infinite sheet of charge, which is placed in the yz plane and it is in
symmetry on the respective axis (Fig. 3.6). The sheet has a uniform charge density
of ρsC/m2. The sheet is divided into a differential width strip, dy1. Then the charge
per unit length is

ρL = ρsdy1. (3.69)

The distance between the point P and the sheet charge is

R =
√

x2 + y1
2. (3.70)

The field components due to y and z axes are cancelled out and only the field
component due to x-axis is present. In this case, the unit vector is

ar = cos θax. (3.71)

Substituting Eqs. (3.69) and (3.71) into Eq. (3.67) provides

dEx = ρsdy1

2πεR
cos θ. (3.72)

From OPMtriangle, the following equation can be written as

cos θ = x

R
= x√

x2 + y1
2
. (3.73)
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Substituting Eqs. (3.70) and (3.73) into Eq. (3.72) yields

dEx = ρsxdy1

2πε(x2 + y1
2)

. (3.74)

Integrating Eq. (3.74) from −∞ to ∞ gives

Ex = ρs

2πε

∫ ∞

−∞
xdy1

(x2 + y1
2)

(3.75)

Ex = ρs

2πε

[
tan−1 y1

x

]∞

−∞
(3.76)

Ex = ρs

2πε

[
tan−1 ∞

x
− tan−1 −∞

x

]
(3.77)

Ex = ρs

2πε

(π

2
+ π

2

)
= ρs

2ε
. (3.78)

If point P is chosen on the negative side of the x-axis, then the electric field is

Ex = −ρs

2ε
. (3.79)

In general, the expression of the electric field along with the unit vector is

E = ρs

2ε
aN. (3.80)

3.7 Electric Potential

Electric potential is defined as the work done by moving a point charge from one
point to another point in an electric field. Suppose a force F is acting to move a point
charge Q in the electric field. The expression for a force due to a point charge Q in
the electric field is

F = QE. (3.81)

The work done for an elementary vector distance, dl is

dW = F.dl = Fdl cos θ. (3.82)

Consider a point charge moves from point b to point a as shown in Fig. 3.7. In this
case, point b is the initial point and point a is the final point. Then, the total work
done can be determined as
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Fig. 3.7 Point charge
movement through a small
distance
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W =
∫

dW =
∫ a

b

F.dl. (3.83)

Substituting Eq. (3.81) into Eq. (3.83) yields

W =
∫ a

b

−QE.dl. (3.84)

Here, the negative sign indicates that the work is done by an external force. The
potential difference between points a and b is defined as the work done per unit
charge and it may be expressed as

Vab = W

Q
. (3.85)

Equation (3.85) can be written as

W = QVab. (3.86)

Substitute Eq. (3.86) into Eq. (3.84) provides

Vab = Va − Vb = −
∫ a

b

E.dl. (3.87)

From Eq. (3.87), the following points can be summarized as:

• Vab < 0 means loss in potential energy and work done by an electric field, E.
• Vab > 0 means gain in potential energy and work done by an external force.
• Vab is path independent.
• Vab is measured in J/C or volts (V).
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The differential length in terms of Cartesian, cylindrical, and spherical coordinates
can be expressed as

dl = dxax + dyay + dzaz (3.88)

dl = dρaρ + ρdφaφ + dzaz (3.89)

dl = drar + rdθaθ + r sin θdφaφ. (3.90)

Suppose a charge is moving from point b (ρb, φb, zb) to point a (ρa , φa , za) along the
direction of ρ. Then, the work done can be determined by substituting Eqs. (3.67)
and (3.89) into Eq. (3.84) as

W =
∫ a

b

−Q
ρL

2πε0ρ
aρ.(dρaρ + ρdφaφ + dzaz). (3.91)

W =
∫ a

b

−Q
ρL

2πε0ρ
aρ.dρaρ =

∫ a

b

−Q
ρL

2πε0ρ
dρ (3.92)

W = Q
ρL

2πε0
ln

b

a
. (3.93)

The potential difference can be determined by substituting Eq. (3.93) into Eq. (3.85)
as

Vab = ρL

2πε0
ln

b

a
. (3.94)

Again, consider a charge that moves from point b (rb, θb, φb) to point a (ra , θa , φa)
along the direction of r. Then the work done can be determined by substituting Eqs.
(3.18) and (3.90) into Eq. (3.84) as

W =
∫ ra

rb

− Q

4πε0r2
ar .(drar + rdθaθ + r sin θdφaφ) (3.95)

W =
∫ ra

rb

− Q

4πε0r2
ar .rdrar =

∫ ra

rb

− Q

4πε0r2
dr (3.96)

W = Q

4πε0

(
1

ra

− 1

rb

)
. (3.97)

The potential difference can be determined by substituting Eq. (3.97) into Eq. (3.85)
as

Vab = Q

4πε0

(
1

ra

− 1

rb

)
(3.98)

Vab = Q

4πε0ra

− Q

4πε0rb

= Va − Vb (3.99)
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Fig. 3.8 Closed path with
electric field
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where Va and Vb are the potentials at point a and b, respectively. Equation (3.99)
might be used for the analysis of the capacitor.

According to Eq. (3.99), the following equation can be written as

Vab = −(Vb − Va) = −Vba (3.100)

Vab + Vba = 0. (3.101)

From Eqs. (3.87) and (3.101), the following equation can be written as:

Vab + Vba =
∮

E .dl =0 (3.102)

∮

L

E .dl = 0. (3.103)

Equation (3.103) states that the line integral of electric field around a closed path
as shown in Fig. 3.8 is equal to zero. This condition is known as irrotational or
conservative field.

Applying Stock’s theorem to Eq. (3.103) provides
∮

L

E .dl =
∫

S

(∇ × E).dS = 0 (3.104)

∇ × E = 0. (3.105)

Example 3.6 A nonuniform electric field is given by E = xax + yay + 2zaz V/m.
A charge of 3C is transferred from point A(1, 2, 3) to point B(2, 4, 5) along the
differential length of the line. Consider the differential length in Cartesian coordinates
and determine the work done.

Solution The following dot product can be determined as

E.dl = (xax + yay + 2zaz).(dxax + dyay + dzaz)

E.dl = xdx + ydy + 2zdz.
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The work done can be determined as

W = −3
∫ 2

1
xdx − 3

∫ 4

2
ydy − 6

∫ 5

3
zdz

W = −3

2
(4 − 1) − 3

2
(16 − 4) − 6(25 − 9) = −118.5J.

Example 3.7 A nonuniform electric field is given by E = yax +xay +2yazV/m. A
charge of 2C is transferred from point A(1, 0, 3) to point B(2, 1, 3) along the straight
line from point A to point B. Calculate the work done.

Solution The following dot product can be determined as

E.dl = (yax + xay + 2yaz).(dxax + dyay + dzaz)

E.dl = ydx + xdy + 2ydz.

The equation of the lines can be determined as

x − 2

2 − 1
= y − 1

1

x = y + 1

z − 3

3 − 3
= y − 1

1

z = 3.

The work done can be determined as

W = −2
∫ 2

1
ydx − 2

∫ 1

0
xdy − 4

∫ 3

3
ydz

W = −2
∫ 2

1
(x − 1)dx − 2

∫ 1

0
(y + 1)dy

W = −(4 − 1) + 2(2 − 1) − (1) − 2(1) = −4J.

Practice Problem 3.6 A charge of 4C is transferred from point A(1, 0, 0) to point
B(2, 1, 2) through an electric field whose expression is given by E = 2yax +xayV/m.
The charge is transferred along the path y = 2x − 1 and z = 2. Determine the work
done.
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Fig. 3.9 Electric field with a
specific point
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Practice Problem 3.7 A charge of 2C is transferred from point A(1, 0, 1) to point
B(0.8, 1, 1.5) through an electric field whose expression is given by E = 3yaxV/m.
The charge is transferred along the path whose equations are y = x − 2 and z = 1.

Determine the work done.

3.8 Derivation of Electric Field

The electric field can be expressed in terms of scalar potential, i.e., E = −∇V. The
electric field is working at point O as shown in Fig. 3.9. Consider a pointP (dx, dy, dz)
at an infinitesimal distance dl. The work is required to move a unit charge from point
O to point P. In this case, the expression of voltage is

V = −
∫

E.dl (3.106)

dV = −E.dl. (3.107)

According to the vector dot product rules, Eq. (3.107) can be modified as

dV = −Edl cos α. (3.108)

From Fig. 3.9, the expression dl can be written as

dl = dx ax + dy ay + dzaz. (3.109)

The electric field in Cartesian coordinates

E = Exax + Eyay + Ezaz. (3.110)
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Substituting Eqs. (3.109) and (3.110) into Eq. (3.107) yields

dV = −(Exax + Eyay + Ezaz).(dxax + dyay + dzaz) (3.111)

dV = −(Exdx + Eydy + Ezdz). (3.112)

Using differential calculus to express total differentiation of voltage into partial
differentiation as

dV = ∂V

∂x
dx + ∂V

∂y
dy + ∂V

∂z
dz. (3.113)

The gradient of potential in Cartesian coordinates can be written as

∇V = ∂V

∂x
ax + ∂V

∂y
ay + ∂V

∂z
az. (3.114)

Then the following relation can be written as

∇V.dl =
(

∂V

∂x
ax + ∂V

∂y
ay + ∂V

∂z
az

)
.(dx ax + dy ay + dzaz) (3.115)

∇V.dl = ∂V

∂x
dx + ∂V

∂y
dy + ∂V

∂z
dz. (3.116)

Substituting Eq. (3.113) into Eq. (3.116) yields

∇V.dl = dV . (3.117)

Substituting Eq. (3.117) into Eq. (3.107) yields

∇V.dl = −E.dl (3.118)

(E + ∇V ).dl = 0. (3.119)

The length dl cannot be zero, and then the following equation is:

(E + ∇V ) = 0 (3.120)

E = −∇V. (3.121)

Equation (3.121) states that electric field intensity is the negative of the gradient of
potential.

If α = 0◦, then the derivative of potential difference is

E = −dV

dl
. (3.122)

If α = 180◦, then the derivative of potential difference is

dV

dl

∣∣∣∣
max

= E. (3.123)
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The gradients of potentials in cylindrical and spherical coordinates are

∇V = ∂V

∂ρ
aρ + 1

ρ

∂V

∂φ
aφ + ∂V

∂z
az (3.124)

∇V = ∂V

∂r
ar + 1

r

∂V

∂θ
aθ + 1

r sin θ

∂V

∂φ
aφ. (3.125)

Example 3.8 A potential in Cartesian coordinates is given as V = xy2+3z2 and
the point is P (1, −2,3). Determine the (a) numerical value of the voltage, (b) electric
field, (c) direction of electric field, and (d) volume charge density.

Solution

a. The numerical value of the voltage is

VP = 1( − 2)2+3(3)2 = 31V.

b. The electric field intensity can be determined as

E = −
(

∂(xy2 + 3z2)

∂x
ax + ∂(xy2 + 3z2)

∂y
ay + ∂(xy2 + 3z2)

∂z
az

)

E = −y2ax − 2xyay − 6zaz

EP = −( − 2)2ax − 2(1)( − 2)ay − 6(3)az

EP = −4ax + 4ay − 18azV/m.

c. The direction of electric field can be determined as

aP = −4ax + 4ay − 18az√
( − 4)2 + 42 + ( − 18)2

aP = −0.21ax + 0.21ay − 0.95az.

d. The volume charge density can be determined as

D = ε0E = −8.854y2ax − 17.71xyay − 53.12zazpC/m3

ρv = ∇.D =
(

∂

∂x
ax + ∂

∂y
ay + ∂

∂z
az

)
.( − 8.854y2ax − 17.71xyay − 53.12zaz)

ρv = ∇.D = −8.854
∂

∂x
(y2) − 17.71x

∂

∂y
(y) − 53.12

∂

∂z
(z)

ρv = −17.71x − 53.12pC/m3.

At point P (1, −2,3), the numerical value of the volume charge density is

ρv = −17.71 − 53.12 = −70.83pC/m3.
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Practice Problem 3.8 A potential in cylindrical coordinates is given as V =
15ρz2 sin φ and the point is P (ρ = 2m, φ = 60◦, z = 1m). Calculate the (a) numer-
ical value of the voltage, (b) electric field, (c) electric flux density, and (d) volume
charge density.

3.9 Line Integral of Irrotational Field

The expression of the electric field in terms of grad of voltage is considered to
calculate the line integral of irrotational field. This equation is

E = −∇V. (3.126)

The line integral of irrotational field can be derived by integrating Eq. (3.126) as
∫ a

b

E.dl =
∫ a

b

−∇V.dl. (3.127)

Substituting Eqs. (3.88) and (3.122) into Eq. (3.127) provides
∫ a

b

E.dl =
∫ a

b

−
(

∂V

∂x
ax + ∂V

∂y
ay + ∂V

∂z
az

)
.(dxax + dyay + dzaz) (3.128)

∫ a

b

E.dl = −
∫ a

b

(
∂V

∂x
dx + ∂V

∂y
dy + ∂V

∂z
dz

)
. (3.129)

In partial differentiation, the following relation can be written as

dV = ∂V

∂x
dx + ∂V

∂y
dy + ∂V

∂z
dz. (3.130)

Substituting Eq. (3.130) into Eq. (3.129) yields
∫ a

b

E.dl = −
∫ a

b

dV = V (b) − V (a). (3.131)

From Eq. (3.131), it is seen that the irrotational field equals the difference between
voltages at the points of the path and not dependent on the path from a and b.

3.10 Potential Due to a Point Charge

The electric scalar potential needs to be determined due to a point charge in free
space. The point charge is placed at the origin as shown in Fig. 3.10. The electric
potential of a point at a distance r from the point charge at the infinite distance can
be determined as
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Fig. 3.10 Charge at origin
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V = −
∫ r

∞
E.dl. (3.132)

Substituting Eqs. (3.18) and (3.90) into Eq. (3.132) yields

V = −
∫ r

∞
Q

4πε0r2
ar .drar (3.133)

V = − Q

4πε0

∫ r

∞
1

r2
dr (3.134)

V = Q

4πε0

[
1

r

]r

∞
(3.135)

V = Q

4πε0r
. (3.136)

The charge Q is placed at a distance r′ from the origin as shown in Fig. 3.11. Then
the expression of voltage can be written as

V = Q

4πε0 |r − r′| (3.137)

The potential due to n number of point charges can be expressed as

V = Q1

4πε0 |r − r1| + Q2

4πε0 |r − r2| + − − − + Qn

4πε0 |r − rn| . (3.138)

V = 1

4πε0

n∑
k=1

Qk

|r − rk| . (3.139)
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Based on Eq. (3.139), the potential due to line, surface, and volume charges can be
expressed as

V (r) = 1

4πε0

∫

L

ρL(r ′)
|r − r′|dl′ (3.140)

V (r) = 1

4πε0

∫

S

ρS(r ′)
|r − r′|dS ′ (3.141)

V (r) = 1

4πε0

∫

v

ρv(r ′)
|r − r′|dv′. (3.142)

Example 3.9 Determine the potential at point (1,2, 3) when two point charges 2μC
and 3μC are located at points (0.5,1, 2) and ( − 1.2,1.5, −2), respectively. Consider
zero potential at infinity.

Solution The following distances can be determined as

|r − r1| = |(1,2, 3) − (0.5,1, 2)| = |(0.5,1, 1)| =
√

9

4
= 1.5

|r − r2| = |(1,2, 3) − ( − 1.2,1.5, −2)| = |(2.2,0.5,5)| = √
30.09 = 5.49.

The potential at point (1,2, 3) is determined as

V (r) = Q1

4πε0 |r − r1| + Q2

4πε0 |r − r2|

V (1,2, 3) = 10−6

4π × 8.854 × 10−12

(
2

1.5
+ 3

5.49

)
= 16.89kV.

Practice Problem 3.9 Three point charges −1.5μC,32μC, and 4.5μC are located
at points (1.2, −1.5,2), ( − 1.4, −1.5,2.5), and ( − 1.6, −2.5, −2.8), respectively.
Determine the potential at point (2,2.5,5) by considering zero potential at infinity.

3.11 Electric Dipole

An electric dipole is often known as a dipole. Basically, a dipole is two equal and
opposite point charges separated by a small distance compared to a specific point
where the electric potential will be calculated. The point P is located at distances r1

and r2 from the positive and negative charges, respectively, as shown in Fig. 3.12.
The potential at point P due to the dipole is

V = Q

4πε0r1
− Q

4πε0r2
(3.143)
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Fig. 3.12 Equal and opposite
point charge
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V = Q

4πε0

r2 − r1

r2r1
. (3.144)

If r >> d , then the following approximation can be written as

r2 − r1 = d cos θ (3.145)

r2r1 = r2. (3.146)

Substituting Eqs. (3.145) and (3.146) into Eq. (3.144) yields

V = Q

4πε0

d cos θ

r2
(3.147)

The dipole moment is defined as

P = Qd. (3.148)

In vector form, the dipole moment is

P = Qd. (3.149)

The unit of dipole moment is C m. Substituting Eq. (3.148) into Eq. (3.147) provides

V = P cos θ

4πε0r2
. (3.150)

Since d cos θ = d.ar , and using Eq. (3.149), Eq. (3.147) can be modified as

V = P.ar

4πε0r2
. (3.151)
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In spherical coordinates, the expression of electric field without φ component can
be written as

E = −∇V = −
(

∂V

∂r
ar + 1

r

∂V

∂θ
aθ

)
. (3.152)

Substituting Eq. (3.150) into Eq. (3.152) provides

E = 2P cos θ

4πε0r3
ar + P sin θ

4πε0r3
aθ . (3.153)

E= P

4πε0r3
(2 cos θar + sin θaθ ) (3.154)

From Eq. (3.151), the generalized expression of potential can be written as

V = P
4πε0

1

|r − r′|2
r − r′

|r − r′| , (3.155)

where r′ indicates the center of the dipole.

Example 3.10 A moment of an electric field is located in free space whose ex-
pression is given as P = 2ax + 1.5ay + 3aznCm. Determine the voltage at the point
M(2,1, 5).

Solution The unit vector can be determined as

ar = 2ax + 1ay + 5az√
22 + 12 + 52

= 2ax + 1ay + 5az√
30

The voltage can be determined as

V = P.ar

4πε0r2
= (2ax + 1.5ay + 3az).(2ax + ay + 5az)

4π × 8.854 × 10−12 × 30 × √
30

× 10−9

V = (4 + 1.5 + 15)

4π × 8.854 × 10−12 × 30 × √
30

× 10−9 = 1.21V.

Example 3.11 A dipole moment P = 3ax−2.5ay+5aznCm is located at the origin
in free space. Determine the voltage at the point M(ρ = 1.5, φ = 125◦, z = 0.6).

Solution The Cartesian components can be determined as

x = ρ cos φ = 1.5 cos 125◦ = −0.86

y = ρ sin φ = 1.5 sin 125◦ = 1.228

z = 0.6
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ar = −0.86ax + 1.228ay + 3.6az√
0.862 + 1.2282 + 3.62

= −0.866ax + 1.228ay + 3.6az√
15.21

.

The voltage can be determined as

V = P.ar

4πε0r2
= (3ax − 2.5ay + 5az).( − 0.866ax + 1.228ay + 3.6az)

4π × 8.854 × 10−12 × 15.21 × √
15.21

× 10−9

V = ( − 2.58 − 3.07 + 18)

4π × 8.854 × 10−12 × 15.21 × √
15.21

× 10−9 = 1.87V.

Practice Problem 3.10 An electric dipole moment is located in free space whose
expression is given as P = 2ax − 3ay + 4aznCm. Determine the voltage at point
M(2.5,3.8,1.5).

Practice Problem 3.11 A dipole moment P = 6.5aznCm is located at the origin in
free space. Determine the voltage and electric field at point M(r = 2, θ = 30◦, φ =
0◦).

3.12 Materials for Static Electric Field

According to electrical property, materials are classified into three categories, namely
conductor, semiconductor, and insulator. A conductor has enough charge conduction
property in the presence of free electrons. The electrons of an insulator atom are
attached strongly with the outer orbits. These electrons cannot be detached from
the orbits with the application of external electric fields. The electrical properties
of semiconductors fall in between conductors and insulators ( 10−3S/mto 1S/m). A
constitutive parameter is used to characterize the macroscopic electrical property of a
material. This constitutive parameter is known as conductivity and it is represented by
σ. The unit of conductivity is S/m. The reciprocal of conductivity is called resistivity
and is generally represented by ρ. When there is no charge inside the conductor,
then ρ = 0. As a result, the value of the electric field is zero. An interface between a
conductor and free space is shown in Fig. 3.13. The sides ad and bc are parallel to
the interface. Let, ad = bc = �l and ab = cd = �h = 0. Apply Stokes’ theorem
and the following equation can be written as

∮

c

E.dl = 0. (3.156)

∮

abcd

E.dl = Et�l = 0 (3.157)

Et = 0. (3.158)
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Fig. 3.13 Conductor and free
space with an interface
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From Eq. (3.158), it is concluded that the tangential component of an electric field
along the conductor surface is zero.

Consider the rectangular box in such a way that the top part is in the free space
and the bottom part is in the conductor region whereby E = 0. Apply Gauss’ law to
this box and the equation is

∮

s

E.dS = En�s = ρs�s

ε0
. (3.159)

En = ρs

ε0
. (3.160)

3.13 Dielectric Polarization

Dielectric materials are polarized when an electric field is applied to them. As a
result, electric flux density becomes greater than under the free space condition. In
this condition, the divergence postulates can be modified as

∇.E = 1

ε0
(ρv + ρpv), (3.161)

where

ρv is the volume charge density of free charge,
ρpv is the polarization volume charge density.

The polarization is defined as the dipole moment per unit volume and its unit is
C/m2. Mathematically, it can be expressed as

P = lim
�v→0

N∑
k=1

Qkdk

�v
. (3.162)

Consider a cubic dielectric material as shown in Fig. 3.14. Apply an electric field
to an incremental surface �s, which in turn produces a dipole moment, P = Qd in



3.13 Dielectric Polarization 79

E

Dielectric
material

+

d

cos
2
d θ

SΔ

θ
+ +

+

− −
−

cos
2
d θ

SΔ

+

−

Fig. 3.14 Cubic dielectric material with field

each molecule. This dipole moment makes an angle θ with the �s. For n molecules,
the net total charge which crosses the upward direction is

�Qb = nQd cos θ�S. (3.163)

Equation (3.163) can be written in vector form as

�Qb = nQd.�S. (3.164)

In differential form, Eq. (3.164) can be written as

dQb = nQd.dS. (3.165)

Now substituting the expression of dipole moment into Eq. (3.165) provides

dQb = P.dS. (3.166)

The net charge within the closed surface is obtained by integrating Eq. (3.166) as

Qb = −
∮

s

P.dS. (3.167)

Here, the negative sign indicates the outward direction of the bound charge. The total
charge within the closed surface consists of the bound charge and the free charge.
Then, this expression can be expressed as

QT = Qb + Q. (3.168)

According to Gauss’ law, the expression of total charge in terms of electric field can
be expressed as

QT =
∮

s

ε0E.dS. (3.169)
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Substituting Eqs. (3.167) and (3.169) into Eq. (3.168) yields
∮

s

ε0E.dS = −
∮

s

P.dS + Q (3.170)

Q =
∮

s

(ε0E + P).dS (3.171)

Q =
∮

s

D.dS, (3.172)

where the expression of the term D in more general form is

D = ε0E + P. (3.173)

According to the differential form of Gauss’ law, the following equation can be
written as:

ρpv = −∇.P. (3.174)

Substituting Eq. (3.174) into Eq. (3.161) provides

∇.E = 1

ε0
(ρv − ∇.P) (3.175)

ρv = ∇.(ε0E + P) = ∇.D, (3.176)

where the expression of electric flux density is

D = ε0E + P.

From Eq. (3.173), it is seen that the electric flux density is equal to the sum of the
dipole moment and electric field intensity.

3.14 Dielectric Material Characteristics

The relationship between the electric field ( E) and the dipole moment or polarization
vector ( P) is used to represent polarization properties of dielectric materials. In
certain materials, the directions of the electric field ( E) and dipole moment ( P) are
not the same. In isotropic and linear materials, the polarization is directly proportional
to the electric field and the proportionality constant does not depend on the field. The
following relation can be written as:

P = χeε0E, (3.177)

where
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χe (chi) is the electric susceptibility of the material.

Substituting Eq. (3.177) into Eq. (3.173) provides

D = ε0E + χeε0E (3.178)

D = ε0(1 + χe)E (3.179)

D = ε0εrE = εE. (3.180)

In Cartesian coordinates, Eq. (3.180) can be written as

Dx = εxxEx + εxyEy + εxzEz (3.181)

Dy = εyxEx + εyyEy + εyzEz (3.182)

Dz = εzxEx + εzyEy + εzzEz, (3.183)

where, the relative permittivity can be defined as

εr = 1 + χe. (3.184)

In matrix ( 3 × 3) form, Eqs. (3.181)–(3.183) can be expressed as

⎡
⎢⎢⎣

Dx

Dy

Dz

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

εxx εxy εxz

εyx εyy εyz

εzx εzy εzz

⎤
⎥⎥⎦

⎡
⎢⎢⎣

Ex

Ey

Ez

⎤
⎥⎥⎦. (3.185)

Electrons of the molecules will come out completely, if a strong electric field is
applied to it. As a result, electrons will accelerate and collide with molecular lattice
structure, which causes permanent damage to the material. This avalanche effect is
observed at the material surface. In this condition, the material will become conduct-
ing and a large current will flow. This phenomenon is known as dielectric breakdown.
The maximum electric field at which the dielectric material can withstand without
breakdown is known as dielectric strength of the material. The dielectric constant
and dielectric strength of some materials are given in Table 3.1.

3.15 Dielectric Boundary Conditions

Consider two rules for determining the boundary conditions for electrostatic fields.
These are the total net work done along a closed path in a static field, E is zero, i.e., E
is a conservative (irrotational) field and net electric flux leaving from a closed surface
equals the total charge enclosed by that surface. Consider two dielectric regions as
shown in Fig. 3.15 to find out the tangential and normal boundary conditions. Here,
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Table 3.1 Dielectric constant
and strength Material Dielectric

constant
Dielectric strength
(MV/m)

1 Glass 4–10 30
2 Mineral oil 2.3 15
3 Rubber 2.3–4 25
4 Paper 2–4 15
5 Polycarbonate 2.3 70
6 Air 1 3
7 Aluminum 8.8 12
8 Sea water 80 80
9 Porcelain 5–6.5 11
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Fig. 3.15 Two regions with boundary

bc = ad = �h = 0; therefore, the contribution of these paths on line integral of
electric field is zero. The line integral of other paths is

∮

abcd

E.dl = E1.(�l) + E1.( − �l) = 0 (3.186)

E1t�l − E2t�l = 0 (3.187)

E1t = E2t . (3.188)

Equation (3.188) indicates that the tangential components are the same or Et is
continuous across the boundary. Consider the relationship D = εE, and Eq. (3.188)
can be modified as

D1t

ε1
= D2t

ε2
. (3.189)

To find the normal boundary condition, applying Gauss’ law to a small cylinder
provides

∮

s

D.ds = Qen
∼= D1n�S − D2n�S = ρs�S (3.190)

D1n − D2n = ρs (3.191)
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Fig. 3.16 Two perfect
dielectric with refraction of
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ε1E1n − ε2E2n = ρs. (3.192)

In the absence of charge, ρs = 0, Eqs. (3.191) and (3.192) can be modified as

D1n = D2n (3.193)

E1n

ε2
= E2n

ε1
. (3.194)

From Eq. (3.183), it is concluded that the normal components of D for two regions
are same or Dn is continuous across the boundary free of charge.

3.16 Refraction of Electric Field at Dielectric Boundary

Consider two perfect dielectric regions as shown in Fig. 3.16 to find the law of
refraction of the electric field lines at the dielectric-dielectric boundary. Let E1 make
an angle α1 with the normal component E1n. Let E2 make an angle α2 with the
normal component E2n. From Fig. 3.16, the following equations can be written as:

tan α1 = E1t

E1n

(3.195)

tan α2 = E2t

E2n

. (3.196)

Dividing Eq. (3.195) by Eq. (3.196) provides

tan α1

tan α2
= E1t

E2t

× E2n

E1n

. (3.197)

Substituting Eqs. (3.188) and (3.191) into Eq. (3.197) yields

tan α1

tan α2
= ε1E1n

ε2
× 1

E1n

(3.198)

tan α1

tan α2
= ε1

ε2
. (3.199)
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Equation (3.199) is known as law of refraction of the electric field at a free of charge
boundary.

Again, from Fig. 3.16, the following equations can be written as

E1t = E1 sin α1 (3.200)

E2t = E2 sin α2 (3.201)

E1n = E1 cos α1 (3.202)

E2n = E2 cos α2. (3.203)

Substituting Eqs. (3.200) and (3.201) into Eq. (3.188) provides

E1 sin α1 = E2 sin α2 (3.204)

Substituting Eqs. (3.202) and (3.203) into Eq. (3.194) provides

E1 cos α1

ε2
= E2 cos α2

ε1
. (3.205)

The magnitude of E2 can be determined as

E2 =
√

E2t
2 + E2n

2. (3.206)

Substituting Eqs. (3.201) and (3.203) into Eq. (3.206) provides

E2 =
√

(E2 sin α2)2 + (E2 cos α2)2. (3.207)

Substituting Eqs. (3.203) and (3.205) into Eq. (3.207) yields

E2 =
√

(E1 sin α1)2 +
(

ε1E1 cos α1

ε2

)2

(3.208)

E2 = E1

√
sin2α1 +

(
ε1

ε2

)2

cos2α1. (3.209)

Example 3.12 The parameters of the first and second regions are z > 0, εr1 = 2,
and z < 0, εr2 = 4, respectively. The electric field for the first region is E1 =
3ax + 5ay + 2azkV/m. Determine the (a) tangential electric field, E2t , (b) normal
electric field, E2n, and (c) angles of E1and E2with an interface.
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Fig. 3.17 Two regions meet
on the plane
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Solution Figure 3.17 is considered to solve this problem.

a. The normal component of the first region is

E1n = E1.az

E1n = (3ax + 5ay + 2az).az = 2

E1n = 2az.

The tangential component of the first region can be determined by

E1t = E1 − E1n = 3ax + 5ay + 2az − 2az = 3ax + 5ay.

The tangential component of the second region is

E2t = E1t = 3ax + 5ay.

b. For free of charge, the following equation can be written as:

D2n = D1n

εr2E2n = εr1E1n

E2n = εr1

εr2
E1n = 2

4
(2az) = az.

c. The following angles can be determined as:

tan θ1 = E1t

E1n

=
√

32 + 52

2

θ1 = 71.07◦
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Fig. 3.18 Point charges
moving towards fixed points
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tan θ2 = E2t
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32 + 52

1

θ2 = 80.27◦.

The angle of E1 with an interface is

α1 = 90◦ − θ1 = 90◦ − 71.07◦ = 18.93◦.

The angle of E2 with an interface is

α2 = 90◦ − θ2 = 90◦ − 80.27◦ = 9.73◦.

Practice Problem 3.12 The parameters of the first and second regions are z >

0, εr1 = 3, and z < 0, εr2 = 7, respectively. The electric field for the first region
is E1 = 5ax − 8ay − 3azkV/m. Determine the (a) tangential electric field, E2t , (b)
normal electric field, E2n, (c) E2, and (d) angles of E1and E2with an interface.

3.17 Electrostatic Energy

Consider three points P1, P2, and P3 in a charge-free space as shown in Fig. 3.18. The
point charges Q1, Q2, and Q3 are brought from infinity to those points, respectively.
Net work done in positioning charges Q1, Q2, and Q3 at the points P1, P2, and P3

starting with Q1 is

WE = W1 + W2 + W3. (3.210)

No work is done in bringing point charge Q1 from infinity to point P1. Then Eq.
(3.210) can be modified as

WE = 0 + W2 + W3 (3.211)
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WE = 0 + Q2V21 + Q3(V31 + V32), (3.212)

where

V21 is the potential at point P2 due to Q1,
V31 is the potential at point P3 due to Q1,
V32 is the potential at point P3 due to Q2.

Again, placing the point charges in the reverse order, the expression of net work done
is

WE = W3 + W2 + W1 (3.213)

WE = 0 + W2 + W1 (3.214)

WE = 0 + Q2V23 + Q1(V12 + V13), (3.215)

where

V23 is the potential at point P2 due to Q3,
V13 is the potential at point P1 due to Q3,
V12 is the potential at point P1 due to Q2.

Adding Eqs. (3.212) and (3.215) yields

2WE = Q1(V12 + V13) + Q2(V21 + V23) + Q3(V31 + V32) (3.216)

2WE = Q1V1 + Q2V2 + Q3V3 (3.217)

2WE = Q1V1 + Q2V2 + Q3V3 (3.218)

WE = 1

2
(Q1V1 + Q2V2 + Q3V3). (3.219)

In general, the work done can be expressed as

WE = 1

2

N∑
k=1

QkVk. (3.220)

For line, surface, and volume charges, the following equations can be written as

WE = 1

2

∫

L

ρLV dl. (3.221)

WE = 1

2

∫

S

ρSV dS (3.222)

WE = 1

2

∫

v
ρvV dv. (3.223)
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Substituting ρv = ∇.D into Eq. (3.222) yields

WE = 1

2

∫

v
(∇.D)V dv. (3.224)

The following vector identity can be written as

∇.V D = D.∇V + (∇.D)V (3.225)

(∇.D)V = ∇.V D − D.∇V. (3.226)

Substituting Eq. (3.226) into Eq. (3.224) yields

WE = 1

2

∫

v
(∇.V D − D.∇V )dv. (3.227)

Applying divergence theorem to the first term of Eq. (3.227) provides

WE = 1

2

∮

S

∇Dds − 1

2

∫

v
D.(∇V )dv. (3.228)

For closed surfaces, the surface integral is zero. Then, Eq. (3.228) can be modified
as

WE = −1

2

∫

v
D.(∇V )dv. (3.229)

Substituting the expression E = −∇V into Eq. (3.229) yields

WE = 1

2

∫

v
D.Edv (3.230)

WE = 1

2

∫

v
ε0E

2dv. (3.231)

From Eq. (3.231), the electrostatic energy density can be written as

wE = dWE

dv
= 1

2
ε0E

2 J/m3. (3.232)

3.18 Exercise Problems

3.1 Point charges of 3×10−5C and 4.5×10−5C are located at points M(1, −2, 3)
and N (2, 3, 5), respectively, in free space. Determine the electric force exerted
on the second charge due to first charge.

3.2 Point charges of 3.5 × 10−4C and −6.4 × 10−5C are located at points
M(1, −2, 3.5), and N (1.5, 3, 5), respectively, in free space. Determine the
(a) R12, (b) R12, (c) a12, and (d) force exerted on the first charge due to the
second charge.
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3.3 A point charge of 4 × 10−10C is located at point M(1, 2, 3). Determine the
electric field intensity at point N (2.5, 3.2, 5.4) in free space. All dimensions
are in meters.

3.4 A point charge of 8.5 × 10−8C is located at point M(2, 4, 6). Determine the
electric field intensity at point N (4, −3, 7) in free space. All dimensions are
in meters.

3.5 The electric flux density is defined as D = 2xax + 3yay − 5zaz. Determine
the

∮
S

D.dS, where S is the surface of a rectangular box and the limits are
x = 0, x = 2, y = 0, y = 1, z = 0, z = 4.

3.6 Use Gauss’ theorem to determine
∮
S

D.dS, where the electric flux density is
D = 2x2ax − 4y2ay + 3zaz and the surface is surrounded by the region of
x2 + y2 = 4, z = 0 and z = 1.

3.7 The electric flux density is defined as D = 3x2ax + 2xyay + yzaz. Determine
the

∮
S

D.dS, where S is the surface bounded by the region of limits x =
0, x = 1, y = 0, y = 2, z = 0, z = 3.

3.8 Use Gauss’ theorem to determine
∮
S

D.dS, where the electric flux density is
D = 3x2ax − 5y2ay − z2az and the surface is surrounded by the region of
x2 + y2 = 16, z = 0, and z = 2.

3.9 A electric field is given by E = 2yax + xay + yazV/m. A charge of 4C
is transferred from point A(1, 2, 3) to point B(2, 3, 1) along the differential
length of the line. Consider the differential length in Cartesian coordinates
and determine the work done.

3.10 The expression of a nonuniform electric field is given as E = 3xax + 2yay −
zazV/m.A charge of 5C is transferred from point A(1, 2, 4) to point B(2, 4, 6)
along the straight line from point A to point B. Calculate the work done.

3.11 A charge of 2C is transferred from point A(1, 2, 3) to point B(2, 3, 5) through
an electric field whose expression is given by E = 2yaxV/m. The charge is
transferred along the path y = x + 1 and z = 2y − 1. Determine the work
done.

3.12 A charge of 6C is transferred from point A(1, 3, 2) to point B(4, 2, 5) through
an electric field whose expression is given by E = 5yax + xazV/m. The
charge is transferred along the path whose Eqs. are y = 2x +5 and x = z−1.

Determine the work done.
3.13 A potential in Cartesian coordinates is given as V = 2xy3 −3z and the point is

P (3,2, 1). Determine the (a) numerical value of the voltage, (b) electric field,
(c) direction of the electric field, and (d) volume charge density.

3.14 A potential in cylindrical coordinates is given as V = 2ρ sin φ + z2 and the
point is P (ρ = 1m, φ = 50◦, z = 2m). Calculate the (a) numerical value of
the voltage, (b) electric field, (c) electric flux density, and (d) volume charge
density.

3.15 A potential in spherical coordinates is given as V = 5r2 sin θ + cos φ and the
point is P (r = 2m, θ = 60◦, φ = 150◦). Determine the (a) numerical value of
the voltage, (b) electric field, (c) electric flux density, and (d) volume charge
density.
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3.16 Calculate the potential at point (1,3, 2) when two points charges 2.5μC and
3.5μC are located at points (0.5,2, 1) and (−1, −1.5,2), respectively. Consider
zero potential at infinity.

3.17 Three points charges −2.5μC,4μC, and 6.5μC are located at points
(2.2, −2.5,1), ( − 3.4, −2.5,1.5),and ( − 2.6, −3.5, −4.8), respectively. De-
termine the potential at point (3,4.5,6) by considering zero potential at
infinity.

3.18 A moment of an electric field is located in free space whose expression is
given as P = 5ax +4ay −2aznCm. Determine the voltage at point M(3,2, 4).

3.19 A dipole moment P = −5ax + 3ay + 7aznCm is located at the origin in free
space. Determine the voltage at point M(ρ = 2, φ = 140◦, z = 1).

3.20 A dipole moment P = 2ay + 3aznCm is located at the origin in free space.
Determine the voltage and electric field at point M(r = 3, θ = 40◦, φ =
120◦).

3.21 The parameters of the first and second regions are z > 0, εr1 = 2.5, and
z < 0, εr2 = 4.5, respectively. The electric field for the first region is E1 =
2ax + 3ay + azkV/m. Determine the (a) tangential electric field, E2t , (b)
normal electric field, E2n, and (c) angles of E1 and E2with an interface.

3.22 The parameters of the first and second regions are z > 0, εr1 = 5, and z <

0, εr2 = 7, respectively. The electric field for the first region is E1 = 3ax +
5ay − 2azkV/m. Determine the (a) tangential electric field, E2t , (b) normal
electric field, E2n, (c) E2, and (d) angles of E1and E2with an interface.
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Chapter 4
Poisson’s and Laplace’s Equations

4.1 Introduction

In the previous few chapters, the electric field has been determined using either
Gauss’ law or Coulomb’s law. In initial condition, charge distribution or electrostatic
potential should be known to apply those laws. There are many practical problems
where the charge distribution is not known for every place. There is some complex
geometry in high voltage engineering equipment, namely insulators, bushing, surge
arrestors, etc. In that case, it is difficult to use Gauss’ law to find their electrostatic
potential and electric field intensity distributions. The method of images can be used
if the conducting bodies have a boundary with simple geometry. Therefore, some dif-
ferential equations need to be solved to find the voltage and field distribution around
the conductor and air interface of the simple and complex geometry of the electri-
cal engineering equipment. In this chapter, Poisson’s equation, Laplace’s equation,
uniqueness theorem, and the solution of Laplace’s equation will be discussed.

4.2 Derivation of Poisson’s and Laplace’s Equations

The relationship between the electric field and electrostatic potential is required to
derive Poisson’s equation. This equation is

E = −∇V. (4.1)

Taking the divergence of both sides of Eq. (4.1) yields

∇ · E = −∇ · ∇V. (4.2)

Substituting the expression of E = D
ε

into Eq. (4.2) provides

∇ · D
ε

= −∇ · ∇V , (4.3)

1

ε
∇ · D = −∇ · ∇V. (4.4)
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Substituting the differential form of Gauss’ law, ρv = ∇ · D into Eq. (4.4) provides

∇ · ∇V = −ρv

ε
. (4.5)

According to the rules of vector dot product, the operator ∇ · ∇can be written as

∇ · ∇ =
(

∂

∂x
ax + ∂

∂y
ay + ∂

∂z
az

)
·
(

∂

∂x
ax + ∂

∂y
ay + ∂

∂z
az

)
, (4.6)

∇ · ∇ = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
= ∇2. (4.7)

Substituting Eq. (4.7) into Eq. (4.5) yields

∇2V = −ρv

ε
. (4.8)

Equation (4.8) is known as Poisson’s equation. If the region contains no free charge,
i.e. ρv = 0, then Eq. (4.8) can be modified as

∇2V = 0. (4.9)

Equation (4.9) is known as Laplace’s equation. The Laplace’s equation in Cartesian,
cylindrical, and spherical coordinates can be expressed as

∇2V = ∂2V

∂x2
+ ∂2V

∂y2
+ ∂2V

∂z2
= 0, (4.10)

∇2V = 1

ρ

∂

∂ρ

(
ρ

∂V

∂ρ

)
+ 1

ρ2

∂2V

∂φ2
+ ∂2V

∂z2
= 0, (4.11)

∇2V = 1

r2

∂

∂r

(
r2 ∂V

∂r

)
+ 1

r2 sin θ

∂

∂θ

(
sin θ

∂V

∂θ

)
+ 1

r2sin2θ

∂2V

∂φ2
= 0. (4.12)

Equations (4.10), (4.11), and (4.12) are normally used to a specific configuration for
valid boundary conditions.

Example 4.1 The electric potential in Cartesian coordinates is given by V (x, y, z) =
2x2y + 3z2. Determine the (a) numerical value of the voltage at point P (1,3, 2), (b)
the electric field, and (c) verify the Laplace’s equation.

Solution (a) The numerical value of the potential can be determined as

V (x, y, z) = 2(1)23 + 3(2)2 = 18V.

(b) The expression of the electric field can be determined as

E = −
(

∂V

∂x
ax + ∂V

∂y
ay + ∂V

∂z
az

)
,
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∂V

∂x
= ∂(2x2y + 3z2)

∂x
= 4xy,

∂V

∂y
= ∂(2x2y + 3z2)

∂y
= 2x2,

∂V

∂z
= ∂(2x2y + 3z2)

∂z
= 6z,

E = − (
4xyax + 2x2ay + 6zaz

)
V/m

The electric field at point P (1,3, 2) is

E = −(12ax + 2ay + 12az)V/m.

(c) The derivatives of the respective products are

∂V

∂x
= ∂

∂x
(2x2y + 3z2) = 4xy,

∂2V

∂x2
= ∂

∂x
(4xy) = 4y,

∂V

∂y
= ∂

∂y
(2x2y + 3z2) = 2x2,

∂2V

∂y2
= ∂

∂y
(2x2) = 0,

∂V

∂z
= ∂

∂z
(2x2y + 3z2) = 6z,

∂2V

∂z2
= ∂

∂z
(6z) = 6,

∇2V = ∂2V

∂x2
+ ∂2V

∂y2
+ ∂2V

∂z2
= 4y + 6 = 4 × 3 + 6 = 18.

Thus, it does not satisfy Laplace’s equation.

Practice problem 4.1 The expression of electric potential in cylindrical coordinates
is given as V (ρ, φ, z) = 3ρ2z sin φ. Determine the (a) numerical value of the voltage
at point P (ρ = 1, φ = 30◦, z = 3), (b) the electric field at point P (ρ = 1, φ =
30◦, z = 3), and (c) verify the Laplace’s equation.
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4.3 Uniqueness Theorem

Each electrostatic object has its own boundary and this boundary is known as bound-
ary potential. The solution of a quadratic equation must be unique if it satisfies
its related boundary conditions. Therefore, any solution of Laplace’s equation that
satisfies the boundary conditions is known as the uniqueness theorem.

Consider a finite volume v is bounded by the closed surface s. To prove the
uniqueness theorem, we assume that there are two solutions of Laplace’s equation.
These solutions are

∇2V1 = 0, (4.13)

∇2V2 = 0. (4.14)

Subtracting Eq. (4.14) from Eq. (4.13) provides

∇2(V1 − V2) = 0. (4.15)

The potential at the boundary of the surface must be identical and it can be expressed
as

V |b = V1|b = V2|b. (4.16)

The following vector identity is used to verify the uniqueness theorem:

f · A = f (∇ · A) + A · (∇f ). (4.17)

In this case, consider f is a scalar function and A is a vector function. Then, the
following functions can be defined as:

f = V1 − V2, (4.18)

A = ∇(V1 − V2). (4.19)

Substituting Eqs. (4.21) and (4.22) into Eq. (4.20) yields

(V1 − V2) · ∇(V1 − V2) = (V1 − V2)[∇ · ∇(V1 − V2)] + ∇(V1 − V2) · ∇(V1 − V2),
(4.20)

(V1 − V2) · ∇(V1 − V2) = (V1 − V2)[∇2(V1 − V2)] + [∇(V1 − V2)]2. (4.21)

Integrating Eq. (4.21) over the volume v yields
∫

v
(V1 − V2) · ∇(V1 − V2)dv =

∫

v
(V1 − V2)[∇2(V1 − V2)]dv +

∫

v
[∇(V1 − V2)]2dv.

(4.22)
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Applying the divergence theorem to replace the volume integral in the left side of
the Eq. (4.22) provides

∫

v
(V1 − V2) · ∇(V1 − V2)dv =

∮

s

[(V1 − V2)]b[∇(V1 − V2)]b · dS. (4.23)

Substituting Eq. (4.23) into Eq. (4.22) yields
∮

s

[(V1 − V2)]b[∇(V1 − V2)]b · dS =
∫

v
(V1 − V2)[∇2(V1 − V2)]dv

+
∫

v
[∇(V1 − V2)]2dv. (4.24)

By hypothesis, the first and second integrals of Eq. (4.24) are equal to zero, and Eq.
(4.24) can be modified as

∫

v
[∇(V1 − V2)]2dv = 0, (4.25)

∇(V1 − V2) = 0. (4.26)

If the gradient of V1 − V2 is zero everywhere in the closed surface, then V1 − V2

does not change with any coordinates. Then, Eq. (4.26) can be represented as the
following equation:

V1 − V2 = constant. (4.27)

The constant of Eq. (4.27) can be determined by considering a specific point on the
boundary of the object. If the constant is zero at the specific point, then Eq. (4.27)
becomes

V1 = V2. (4.28)

Equation (4.32) normally provides two identical solutions. The uniqueness theorem
can also be applied to the Poisson’s equation as

∇2V1 = −ρv

ε
, (4.29)

∇2V2 = −ρv

ε
. (4.30)

Subtracting Eq. (4.34) from Eq. (4.33) yields

∇2(V1 − V1) = −ρv

ε
+ ρv

ε
= 0. (4.31)

The solution of Eq. (4.35) can be obtained by considering proper boundary
conditions.
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4.4 Solutions of Laplace’s Equation

Direct integration and differentiation methods are used to solve Laplace’s equation.
The solutions of Laplace’s equation for one dimension, two dimensions, and three
dimensions are discussed below in detail.

4.4.1 One-Dimension Solution

In one-dimension solution, let us consider the potential V varies only in x-direction.
Then, the Laplace’s equation can be written as

∂2V

∂x2
= 0. (4.32)

The partial derivative of Eq. (4.32) can be represented by an ordinary differential
equation and it can be expressed as

d2V

dx2
= 0. (4.33)

Integrating Eq. (4.33) provides

dV

dx
= C. (4.34)

Again, integrating Eq. (4.34) yields
∫

dV = C

∫
dx, (4.35)

V = Cx + D. (4.36)

Equation (4.36) is the solution of Laplace’s equation in the x-direction, and C and D
are the integrating constants and these can be determined by the appropriate boundary
conditions.

Consider the potential V in cylindrical coordinates varies only in the ρ-direction.
Then, the Laplace’s equation can be written as

1

ρ

∂

∂ρ

(
ρ

∂V

∂ρ

)
= 0. (4.37)

The partial derivative of Eq. (4.37) can be represented by an ordinary differential
equation and it can be expressed as

1

ρ

d

dρ

(
ρ

dV

dρ

)
= 0, (4.38)
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d

dρ

(
ρ

dV

dρ

)
= 0. (4.39)

Integrating Eq. (4.39) yields

ρ
dV

dρ
= A. (4.40)

dV = A
dρ

ρ
. (4.41)

Integrating Eq. (4.41) provides

V = A ln ρ + B. (4.42)

Equation (4.42) is the solution of Laplace’s equation in the ρ-direction.
Consider that the potentialV in spherical coordinates varies only in the r-direction.

Then, the Laplace’s equation can be written as

∂

∂r

(
r2 ∂V

∂r

)
= 0. (4.43)

The partial derivative of Eq. (4.43) can be represented by an ordinary differential
equation and it can be expressed as

d

dr

(
r2 dV

dr

)
= 0. (4.44)

Integrating Eq. (4.44) yields

r2 dV

dr
= k1, (4.45)

dV = k1r
−2dr. (4.46)

Again integrating Eq. (4.46) yields

V = k2 − k1
1

r
. (4.47)

Equation (4.47) is the solution of Laplace’s equation in the r-direction.

4.4.2 Two-Dimension Solution

In two-dimension solution, let us consider the potential V varies only in the x and y
directions. Then, the Laplace’s equation in rectangular form can be written as

∂2V

∂x2
+ ∂2V

∂y2
= 0. (4.48)
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The partial derivative of Eq. (4.48) can be represented by an ordinary differential
equation and it can be expressed as

d2V

dx2
+ d2V

dy2
= 0. (4.49)

Consider the general solution of Eq. (4.49) is

V (x, y) = X(x)Y (y). (4.50)

Substituting Eq. (4.50) into Eq. (4.49) yields

Y
d2X

dx2
+ X

d2Y

dy2
= 0. (4.51)

Dividing Eq. (4.51) by XY yields

1

X

d2X

dx2
+ 1

Y

d2Y

dy2
= 0. (4.52)

It is seen that the first part of Eq. (4.52) is a function of x and equal to a constant.
Similarly, the second part is a function of y and equal to a constant. The following
equations can be written as:

1

X

d2X

dx2
= A1

2, (4.53)

1

Y

d2Y

dy2
= B1

2. (4.54)

Equation (4.52) is then modified to

A1
2 + B1

2 = 0, (4.55)

A1
2 = −B1

2. (4.56)

Equation (4.53) can be rearranged as

d2X

dx2
− XA1

2 = 0. (4.57)

Considering d
dx

= D, then Eq. (4.57) can be modified to

D2 − A1
2 = 0, (4.58)

D = ±A1, (4.59)

DX = ±A1X, (4.60)
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dX

dx
= A1X, (4.61)

dX

X
= A1dx. (4.62)

Integrating Eq. (4.61) yields

ln X = A1x + k, (4.63)

X = ekeA1x = k3e
A1x , (4.64)

where k3 = ek.

Similarly, the other solution is

X = k4e
−A1x. (4.65)

In general, the solution is

X(x) = k3e
A1x + k4e

−A1x. (4.66)

Since cosh A1x = eA1x+e−A1x

2 and sinh A1x = eA1x−e−A1x

2 , the following equations
can be written as:

eA1x = cosh A1x + sinh A1x, (4.67)

e−A1x = cosh A1x − sinh A1x. (4.68)

The solution of Eq. (4.57) is

X(x) = k1 cosh A1x + k2 sinh A1x, (4.69)

where k1 = k3 + k4 and k2 = k3 − k4.
Equation (4.54) can be rearranged as

d2Y

dy2
= B1

2Y. (4.70)

Substituting Eq. (4.56) into Eq. (4.70) yields

d2Y

dy2
= −A1

2Y , (4.71)

D2 = −A1
2, (4.72)

D = ±jA1. (4.73)

Therefore, the solution of Eq. (4.71) is

Y (y) = c3e
jA1y + c4e

−jA1y. (4.74)
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Fig. 4.1 A rectangular
conducting object

x

V = 0

b

Gap

0V = V

a

y

V = 0

V = 0
Gap

Since cos A1y = ejA1y+e−jA1y

2 and sin A1y = ejA1y−e−jA1y

j2 , the following equations
can be written as:

ejA1y = cos A1y + j sin A1y, (4.75)

e−jA1y = cos A1y − j sin A1y. (4.76)

Equation (4.74) can be modified as

Y (y) = k5 cos A1y + k6 sin A1y, (4.77)

where k5 = c3 + c4band k6 = c3 − jc4.
The two-dimension solution is

V (x, y) = (k1 cosh A1x + k2 sinh A1x)(k5 cos A1y + k6 sin A1y). (4.78)

Consider Fig. 4.1 to determine the constants k1, k2, k5, and k6. The boundary
conditions of Fig. 4.1 are

V = 0 at x = 0,

V = V0 at x = a,

V = 0 at y = 0,

V = 0 at y = b.

Applying the third boundary condition ( V = 0 at y = 0) to Eq. (4.78) provides

0 = (k1 cosh A1x + k2 sinh A1x)(k5 + 0), (4.79)

k5 = 0. (4.80)

Substituting Eq. (4.80) into Eq. (4.78) yields

V (x, y) = (k1 cosh A1x + k2 sinh A1x)(k6 sin A1y). (4.81)
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Applying the fourth boundary condition ( V = 0 at y = 0) to Eq. (4.78) provides

0 = sin A1b, (4.82)

sin mπ = sin A1b, (4.83)

where m = 0,1, 2...

A1 = mπ

b
. (4.84)

Substituting Eq. (4.84) into Eq. (4.81) yields

V (x, y) =
(
k1 cosh

mπ

b
x + k2 sinh

mπ

b
x
) (

k6 sin
mπ

b
y
)
. (4.85)

Applying the first boundary condition ( V = 0 at x = 0) to Eq. (4.85) provides

0 = (k1 + 0)
(
k6 sin

mπ

b
y
)

, (4.86)

k1 = 0. (4.87)

Substituting Eq. (4.87) into Eq. (4.85) yields

V (x, y) = k2k6 sinh
(mπ

b
x
)

sin
(mπ

b
y
)

, (4.88)

V (x, y) = k sinh
(mπ

b
x
)

sin
(mπ

b
y
)

, (4.89)

where k = k2k6

Again, applying the boundary condition V = V0 at x = a into Eq. (4.89) provides

V (a, y) = V0 = k sinh
(mπ

b
a
)

sin
(mπ

b
y
)
. (4.90)

For an infinite series, Eq. (4.89) can be written as

V (x, y) =
∞∑

m=1

k sinh
(mπ

b
x
)

sin
(mπ

b
y
)

, (4.91)

V0 =
∞∑

m=1

k sinh
(mπ

b
a
)

sin
(mπ

b
y
)
. (4.92)

Multiplying both sides by sin
(

nπy

b

)
of Eq. (4.92) and integrating over 0 < y < b

yields

∫ b

0
V0 sin

(nπ

b
y
)

dy =
∞∑

m=1

k sinh
(mπ

b
a
) ∫ b

0
sin

(mπ

b
y
)

sin
(nπ

b
y
)

dy.

(4.93)
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The orthogonal product rule is

∫ b

0
sin (my) sin (ny) dy =

∣∣∣∣∣∣

0 m 
= n

1

2
m = n

.

Applying the rules of Eq. (4.4.2) into Eq. (4.93) yields

∫ b

0
V0 sin

(mπ

b
y
)

dy =
∞∑

m=1

k sinh
(mπ

b
a
) ∫ b

0
sin2

(mπ

b
y
)

dy, (4.94)

∫ b

0
V0 sin

(mπ

b
y
)

dy = k sinh
(mπ

b
a
) 1

2

∫ b

0

(
1 − cos

mπ

b
y
)

dy, (4.95)

−V0
b

mπ

[
cos

(mπ

b
y
)]b

0
= k

b

2
sinh

(mπ

b
a
)

, (4.96)

k sinh
(mπ

b
a
)

= 2V0

mπ
[1 − cos mπ ], (4.97)

k sinh
(mπ

b
a
)

=
∣∣∣∣∣∣

4V0

mπ
m = 1,3, 5...

0 m = 2,4, 6...

, (4.98)

k = 4V0

mπ sinh
(

mπ
b

a
) for m = odd, (4.99)

k = 0 for m = even. (4.100)

Substituting Eq. (4.99) into Eq. (4.91) gives the complete solution as

V (x, y) = 4V0

π

∞∑
m=1,3,5...

sinh
(

mπ
b

x
)

sin
(

mπ
b

y
)

m sinh
(

mπ
b

a
) . (4.101)

Example 4.2 The boundary conditions of region 1 and region 2 are defined as y = 0,
V = 0 and y = l, V = V0, respectively. Use Laplace’s equation to determine the
expression of voltage.

Solution For region 1, the Laplace’s equation is

∂2V1

∂y2
= 0.

The solution is

V1 = Ay + B.

If y = 0, V = 0, then B = 0.
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For region 2, the Laplace’s equation is

∂2V2

∂y2
= 0.

The solution is

V2 = Ay + B.

If y = l, V = V0, then A = V0
l
.

Let V1 = V2 = V , then the expression of voltage is

V = V0y

l
.

Example 4.3 Determine the potential of a rectangular trough of infinite length.
Considering a = b = 1m, V0 = 100V, x = a

2 and y = b
2 . Also, find the electric

field intensity.

Solution The voltage can be determined as,

V

(
a

2
,
b

2

)
= 400

π

[
sinh

(
π
2

)
sin

(
π
2

)

sinh (π )
+ sinh

(
3π
2

)
sin

(
3π
2

)

3 sinh (3π)
+ sinh

(
5π
2

)
sin

(
5π
2

)

5 sinh (5π)

]

V

(
a

2
,
b

2

)
= 400

π
[0.1992 − 0.00299 + 0.0000776] = 25V.

The electric field intensity can be determined as

E = −∇V = −∂V

∂x
ax − ∂V

∂y
ay ,

E = −400

b

[{
cosh

(
mπ
b

x
)

sin
(

mπ
b

y
)

sinh
(

mπ
b

a
) ax

}
+
{

sinh
(

mπ
b

x
)

cos
(

mπ
b

y
)

sinh
(

mπ
b

a
) ay

}]
,

E = −400

b

[
(0.217 − 0.0089 + 0.00038)ax + 0ay

]
,

E = −83.39axV/m.

Practice problem 4.2 The potential is a function of φ in cylindrical coordinates of
the radial planes. The boundary conditions of these planes are V = 0 at φ = 0 and
V = V0 at φ = γ . Determine the potential and electric field intensity.

Practice problem 4.3 Find the potential of a rectangular trough of infinite length.
Consider that a = 2b = 4m, V0 = 100V, x = a, and y = b

2 .
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4.5 Solution of Laplace’s Equation in Cylindrical Coordinates

In cylindrical coordinates, Laplace’s equation for electrostatic potential, V , is given
as

∇2V = 1

ρ

∂

∂ρ

(
ρ

∂V

∂ρ

)
+ 1

ρ2

∂2V

∂φ2
+ ∂2V

∂z2
= 0. (4.102)

The general solution of Eq. (4.102) is

V (ρ, φ, z) = R(ρ)Φ(φ)Z(z). (4.103)

Substituting Eq. (4.103) into Eq. (4.102) yields

ΦZ
1

ρ

d

dρ

(
ρ

dR

dρ

)
+ RZ

1

ρ2

d2Φ

dφ2
+ RΦ

d2Z

dz2
= 0. (4.104)

Dividing Eq. (4.102) by the term RΦZprovides

1

Rρ

d

dρ

(
ρ

dR

dρ

)
+ 1

Φρ2

d2Φ

dφ2
+ 1

Z

d2Z

dz2
= 0, (4.105)

1

Rρ

d

dρ

(
ρ

dR

dρ

)
+ 1

Φρ2

d2Φ

dφ2
= − 1

Z

d2Z

dz2
. (4.106)

The right-side term of Eq. (4.106) is only a function of z and then it can be defined
as

− 1

Z

d2Z

dz2
= −k2, (4.107)

d2Z

dz2
+ zk2 = 0. (4.108)

The solution of Eq. (4.108) is

Z(z) = Aekz + Be−kz, (4.109)

Z(z) = Az cosh (kz) + Bz sinh (kz). (4.110)

Substituting Eq. (4.107) into Eq. (4.106) provides

1

Rρ

d

dρ

(
ρ

dR

dρ

)
+ 1

Φρ2

d2Φ

dφ2
= −k2, (4.111)

ρ

R

d

dρ

(
ρ

dR

dρ

)
+ ρ2k2 = − 1

Φ

d2Φ

dφ2
. (4.112)
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Again the right side of Eq. (4.112) is a function φ and it is represented by m2. Then,
the following equation can be written as:

− 1

Φ

d2Φ

dφ2
= m2, (4.113)

d2Φ

dφ2
+ Φm2 = 0. (4.114)

The solution of Eq. (4.114) is

Φ(φ) = Aejmφ + Be−jmφ , (4.115)

Φ(φ) = Aφ cos (mφ) + Bφ sin (mφ). (4.116)

Equation (4.112) can be modified as

ρ

R

d

dρ

(
ρ

dR

dρ

)
+ ρ2k2 − m2 = 0, (4.117)

ρ
d

dρ

(
ρ

dR

dρ

)
+ (ρ2k2 − m2)R = 0, (4.118)

ρ2 d2R

dρ2
+ ρ

dR

dρ
+ (ρ2k2 − m2)R = 0, (4.119)

d2R

dρ2
+ 1

ρ

dR

dρ
+
(

k2 − m2

ρ2

)
R = 0. (4.120)

The solution of Eq. (4.120) is

R = B1Jn(mρ) + B2Nn(mρ), (4.121)

where,
Jn(mρ) is the Bessel function of the first kind of order n with argument mρ and
Nn(mρ) is the Bessel function of the second kind of order n with argument mρ.

4.6 Solutions of Poisson’s Equation

In Cartesian coordinates, consider that Poisson’s equation varies in the x-direction
only. Then for one dimension, Poisson’s equation reduces as

d2V

dx2
= −ρ

ε
. (4.122)

Integrating Eq. (4.122) yields

dV

dx
= −ρ

ε
x + A. (4.123)
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Again integrating Eq. (4.124) yields

V = − ρ

2ε
x2 + Ax + B. (4.124)

Consider the boundary conditions V = V1 at x = x1 and V = V2 at x = x2. Then
integrating constants can be determined as

V1 = − ρ

2ε
x1

2 + Ax1 + B, (4.125)

V2 = − ρ

2ε
x2

2 + Ax2 + B. (4.126)

Subtracting Eq. (4.126) from Eq. (4.125) yields

V1 − V2 = ρ

2ε
x2

2 − ρ

2ε
x1

2 + A(x1 − x2), (4.127)

A(x1 − x2) = (V1 − V2) + ρ

2ε
(x1 + x2)(x1 − x2), (4.128)

A = V1 − V2

x1 − x2
+ ρ

2ε
(x1 + x2). (4.129)

Substituting Eq. (4.129) into Eq. (4.125) yields

V1 = − ρ

2ε
x1

2 +
[
V1 − V2

x1 − x2
+ ρ

2ε
(x1 + x2)

]
x1 + B, (4.130)

B = V1 − V1 − V2

x1 − x2
x1 − ρ

2ε
x1

2 + ρ

2ε
x1

2 − ρ

2ε
x1x2, (4.131)

B = V2x1 − V1x2

x1 − x2
− ρ

2ε
x1x2. (4.132)

Substituting Eqs. (4.129) and (4.132) into Eq. (4.124) yields

V = − ρ

2ε
x2 +

[
V1 − V2

x1 − x2
+ ρ

2ε
(x1 + x2)

]
x + V2x1 − V1x2

x1 − x2
− ρ

2ε
x1x2. (4.133)

4.7 Numerical Solution of Laplace’s Equation

There are few numerical methods that are normally used to find electric potential and
field distribution of a specific object in the area of electrical engineering. These are the
finite difference method (FDM), the finite element method (FEM), and the boundary
element method. The available commercial software in this area is developed based
on Laplace’s and Poisson’s equations. In the FDM, the selected object is divided
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Fig. 4.2 A square mesh
object
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into forward and backward directions with an equal length. For example, a two-
dimensional square mesh object is shown in Fig. 4.2. Consider that the length of
each side is h and potentials of the points 0, 1, 2, 3, and 4 are V0, V1, V2, V3, and V4,
respectively. In this case, the voltage does not vary in the z-direction. Therefore, the
Laplace’s equation in two dimensions is

∂2V

∂x2
+ ∂2V

∂y2
= 0. (4.134)

For the x-axis, the voltage derivative in the forward direction is

∂V

∂x

∣∣∣∣
a

= V1 − V0

h
. (4.135)

In the backward direction, the voltage derivative is

∂V

∂x

∣∣∣∣
c

= V0 − V3

h
. (4.136)

According to the rules of derivative calculus, the following equation is:

∂2V

∂x2

∣∣∣∣
0

=
∂V
∂x

∣∣
a
− ∂V

∂x

∣∣
c

h
. (4.137)

Substituting Eqs. (4.135) and (4.136) into Eq. (4.137) yields

∂2V

∂x2

∣∣∣∣
0

= V1 − V0 − V0 + V3

h2
. (4.138)

For the y-axis, the voltage derivative in the forward direction is

∂V

∂y

∣∣∣∣
d

= V4 − V0

h
. (4.139)

The voltage derivative in the backward direction is

∂V

∂y

∣∣∣∣
b

= V0 − V2

h
. (4.140)
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Again applying the rules of derivative calculus, the following equation is yielded:

∂2V

∂y2

∣∣∣∣
0

=
∂V
∂y

∣∣∣
d

− ∂V
∂y

∣∣∣
b

h
. (4.141)

Substituting Eqs. (4.139) and (4.140) into Eq. (4.141) yields

∂2V

∂y2

∣∣∣∣
0

= V4 − V0 − V0 + V2

h2
. (4.142)

Substituting Eqs. (4.138) and (4.142) into Eq. (4.134) yields

V1 − V0 − V0 + V3

h2
+ V4 − V0 − V0 + V2

h2
= 0, (4.143)

4V0 = V1 + V2 + V3 + V4, (4.144)

V0 = V1 + V2 + V3 + V4

4
. (4.145)

The value of the potential V0 can be found if the potentials at the corners of the mesh
are known.

The FEM is another numerical technique to solve two-dimensional Laplace’s
equations. In 1943, the FEM was first developed by R. Courant to obtain the approx-
imate solution of a complex object. Initially, this technique was applied in mechanical
and civil engineering to study respective parameters. Later on, the FEM started being
used in electrical engineering to find the flux, potential, and electric field distributions
around and inside an object. The selected object is discretized either by triangular or
rectangular elements. According to P. P. Silvester and R. L. Ferrari, the approximate
solution of potential for the whole region is

V (x, y) =
N∑

e=1

Ve(x, y), (4.146)

where e represents the number of the element and N is the total number of triangular
elements. The polynomial approximation for Ve within a single element is

Ve(x, y) = a + bx + cy. (4.147)

The electric field within the element is

Ee = −∇Ve. (4.148)

Substituting Eq. (4.147) into Eq. (4.148) yields

Ee = −(bax + cay). (4.149)
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Fig. 4.3 A triangular element
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The potentials Ve1, Ve2, and Ve3 at nodes 1, 2, and 3 of the triangular element as
shown in Fig. 4.3 is

Ve1 = a + bx1 + cy1, (4.150)

Ve2 = a + bx2 + cy2, (4.151)

Ve3 = a + bx3 + cy3. (4.152)

Equations (4.150–4.152) can be arranged in the matrix format as
⎡
⎣

Ve1

Ve2

Ve3

⎤
⎦ =

⎡
⎣

1 x1 y1

1 x2 y2

1 x3 y3

⎤
⎦
⎡
⎣

a

b

c

⎤
⎦. (4.153)

The coefficients a, b, and c can be determined from Eq. (4.153) as

⎡
⎣

a

b

c

⎤
⎦ =

⎡
⎣

1 x1 y1

1 x2 y2

1 x3 y3

⎤
⎦

−1 ⎡
⎣

Ve1

Ve2

Ve3

⎤
⎦, (4.154)

⎡
⎣

a

b

c

⎤
⎦ = 1

2A

⎡
⎣

x2y3 − x3y2 x3y1 − x1y3 x1y2 − x2y1

y2 − y3 y3 − y1 y1 − y2

x3 − x2 x1 − x3 x2 − x1

⎤
⎦
⎡
⎣

Ve1

Ve2

Ve3

⎤
⎦, (4.155)

where, A is the area of the element and it can be written as

A = 1

2

⎡
⎣

1 x1 y1

1 x2 y2

1 x3 y3

⎤
⎦. (4.156)

Substituting Eq. (4.155) into Eq. (4.147) yields

Ve(x, y) = [
1 x y

] 1

2A

⎡
⎣

x2y3 − x3y2 x3y1 − x1y3 x1y2 − x2y1

y2 − y3 y3 − y1 y1 − y2

x3 − x2 x1 − x3 x2 − x1

⎤
⎦
⎡
⎣

Ve1

Ve2

Ve3

⎤
⎦,

(4.157)
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Ve(x, y) =
⎡
⎣

α1

α2

α3

⎤
⎦
⎡
⎣

Ve1

Ve2

Ve3

⎤
⎦, (4.158)

Ve(x, y) =
3∑

i=1

αi(x, y)Vei. (4.159)

Here α1, α2, and α3 are the shape functions of the element and their expressions from
the Eq. (4.157) can be written as

α1 = 1

2A

[
(x2y3 − x3y2) + (y2 − y3)x + (x3 − x2)y

]
, (4.160)

α2 = 1

2A

[
(x3y1 − x1y3) + (y3 − y1)x + (x1 − x3)y

]
, (4.161)

α3 = 1

2A

[
(x1y2 − x2y1) + (y1 − y2)x + (x2 − x1)y

]
. (4.162)

The energy per unit length of the single element is

We = 1

2

∫

s

ε |E|
2

dS. (4.163)

Substituting E = −∇Ve into Eq. (4.163) yields

We = 1

2

∫

s

ε |∇Ve|
2

dS. (4.164)

Equation (4.159) can be modified as

∇Ve =
3∑

i=1

Vei∇αi. (4.165)

Substituting Eq. (4.165) into Eq. (4.164) provides

We = 1

2

3∑
i=1

3∑
j=1

εVeiVej

[∫

s

∇αi.∇αjdS

]
, (4.166)

We = 1

2

3∑
i=1

3∑
j=1

εVeiVejCij , (4.167)

where the expression of the following equation is:

Cij =
∫

s

∇αi.∇αjdS. (4.168)
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Equation (4.167) can be written in the matrix format as

We = 1

2
ε[Ve]T [C][Ve], (4.169)

where the element coefficient matrix and potentials are

[C] =
⎡
⎣

C11 C12 C13

C21 C22 C23

C31 C32 C33

⎤
⎦, (4.170)

[Ve] =
⎡
⎣

Ve1

Ve2

Ve3

⎤
⎦. (4.171)

The total energy for whole elements can be determined as

W =
N∑

e=1

We = 1

2
ε[V ]T [C][V ]. (4.172)

The Laplace’s equation is satisfied when the total energy in the region is a minimum.
It can be expressed as

∂W

∂Vk

= 0 k = 1, 2, 3...n. (4.173)

For free and prescribed potentials, Eq. (4.172) can be written as

W = 1

2
ε
[
Vf Vp

] [Cff Cfp

Cpf Cpp

] [
Vf

Vp

]
. (4.174)

Applying Eq. (4.173) to Eq. (4.174), i.e. differentiating with respect to Vf yields

Cff Vf + CfpVp = 0, (4.175)

[Cff ][Vf ] = −[Cfp][Vp], (4.176)

[A][V ] = [B], (4.177)

where the following equations are:

[A] = [Cff ], (4.178)

[V ] = [Vf ]. (4.179)

Equation (4.177) can be rearranged as

[V ] = [A]−1[B]. (4.180)
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Fig. 4.4 Axi-symmetric
line-post insulator

Therefore, the potential can be determined from Eq. (4.180) if other parameters are
known.

There are few commercial softwares about FEM. Electromagnetic engineering
software SLIM is one of them. ALSTOM Engineering Research Center (ERC) has
developed a commercial standard finite element analysis software package, SLIM
3.6.2, which can solve a wide range of electromagnetic field problems over a spectrum
of frequencies from DC to GHz of any complex geometry by considering bound-
ary conditions and material properties. SLIM is a professionally integrated software
which provides facilities for the generation of finite element mesh, solution of elec-
tric, magnetic, and thermal fields and the post processing of results of the geometry.
In this software, FEA is used and the whole domain of interest is divided into smaller
triangular elements. Therefore, it is important to know the changes in the field dis-
tribution around an outdoor insulator caused by surface pollution of different nature
and severity. Here, the electric fields and voltage distributions of line-post insulator
have been studied using the electromagnetic engineering software, SLIM 3.6.2. The
geometry of the line-post insulator is shown in Fig. 4.4 where the dimension of the
insulator is in millimetre (mm).

The following are taken into consideration during simulation:

• Porcelain is used as the material of the insulator.
• The insulator is surrounded by air.
• High voltage is applied at the top and zero voltage is applied at the bottom of the

insulator.
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Voltage profile with full pollution by coastal dust
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Fig. 4.5 Voltage distribution of a line-post insulator

• The applied voltage is sinusoidal with 50 Hz.
• The insulator is considered as axi-symmetric with two dielectrics.

Due to the geometric symmetry, the simulation works have finished using the two-
dimensional Laplace’s equation. The geometry of the insulator is drawn by the
AutoCAD software and saved as dxf format. Then this geometry is imported to the
SLIM 3.6.2 software platform for two-dimensional calculation. Initially, the upper
part of the insulator geometry is defined by high voltage and the lower part is defined
by zero voltage. The insulator is also surrounded by air. The insulator including air
is discretized with approximately 14,902 triangular elements and 7,681 nodes. The
input data are the permittivity of the porcelain, permittivity of the pollution mate-
rial, and the boundary conditions. The permittivity of the seawater is considered
80, whereas the permittivity of the coastal dust is considered 10. The electrostatic
analysis is performed for 26.94 kV (Max.) per phase. In the post-processing module,
the path is defined from top to bottom of the insulator, i.e. between the air–porcelain
interfaces. The voltages along the creepage distance are calculated under clean, full
pollution with seawater, and coastal dust conditions. The voltage distributions under
those conditions are plotted versus creepage distance which is shown in Fig. 4.5.
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Resultant electric field with full pollution by coastal dust
Resultant electric field with full pollution by sea water
Resultant electric field wop
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Fig. 4.6 Resultant electric field along shed–air interface of a line-post insulator

From Fig. 4.5, it is observed that the voltage distribution in some areas of the
insulator with seawater is higher than the voltage distribution under clean and even
coastal dust conditions. These areas can be categorized as the upper surface to the
rim of the insulator shed.

The highest pollution is normally accumulated in this area of the insulator. In
the practical field, less pollution is normally accumulated in the lower areas of the
shed which does not get washed by normal rain, and slowly it forms into a thick
non-uniform pollution layer. The non-uniform pollution layer increases the surface
roughness, which in turn increases wetness. This thick pollution wetness layer pro-
vides a more conductive path with the help of a mist or a light rain. In this region, the
voltage profile without pollution is higher than the voltage profile with full pollution
by seawater and coastal dusts. The resultant, normal, and tangential electric fields
are calculated along shed–air interface of the insulator as shown in Figs. 4.6–4.8,
respectively. From Figs. 4.6 to 4.8, it is observed that the normal electric field is
dominating the resultant electric field.

From Fig. 4.6, it can also be seen that the resultant electric field distribution
due to seawater is higher than the clean and coastal dust pollution from the upper
surface to the rim of the insulator. The resultant electric field distributions due to
pollution by seawater and coastal dust are capacitive to resistive. However, under
wet conditions, especially when the insulator is polluted, the field distribution may
worsen and surface discharges may be possible. The field distribution due to clean
condition is fully resistive throughout the surface.
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Fig. 4.7 Normal electric field along shed–air interface of a line-post insulator
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Fig. 4.8 Tangential electric field shed–air interface of line-post insulator

4.8 Exercise Problems

4.1 The expression of electric potential in Cartesian coordinates is V (x, y, z) =
x2y − z2 + 8. Determine the (a) numerical value of the voltage at point
P (1, −1,2), (b) the electric field, and (c) verify the Laplace’s equation.

4.2 The electric potential in Cartesian coordinates is given by V (x, y, z) = ex −
e−y + z2. Determine the (a) numerical value of the voltage at point P (1,1, −2),
(b) the electric field atpoint P (1,1, −2), and (c) verify the Laplace’s equation.
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4.3 The expression of electric potential in cylindrical coordinates is given as
V (ρ, φ, z) = ρ2z cos φ. Determine the (a) numerical value of the voltage at
point P (ρ = −1, φ = 45◦, z = 5), (b) electric field at point P (ρ = −1, φ =
45◦, z = 5), and (c) verify the Laplace’s equation.

4.4 The electric potential in spherical coordinates is given by V (r , θ , φ) =
5r2 sin θ cos φ. Determine the (a) numerical value of the voltage at point
P (r = 1, θ = 40◦, φ = 120◦), (b) the electric field at point P (r = 1, θ =
40◦, φ = 120◦), and (c) verify the Laplace’s equation.

4.5 In Cartesian coordinates, the volume charge density is ρv = −1.6 ×
10−11ε0x C/m3in the free space. Consider V = 0 at x = 0 and V = 4Vat
x = 2m. Determine the electric potential and field at x = 5m.

4.6 The charge density in cylindrical coordinates is ρv = 25
ρ

pC/m3. Consider
V = 0 at ρ = 2mand V = 120Vat ρ = 5m. Calculate the electric potential
and field at ρ = 6m.

4.7 The concentric spherical shells with radii of r = 1m and r = 2mcontain the
potentials of V = 0 and V = 80V, respectively. Find the potential and electric
field.

4.8 Determine the potential of a rectangular trough of infinite length. Consider
a = b = 1m, V0 = 50V, x = 3a

2 , and y = b
2 .

Bibliography

1. Cheng DK. Fundamentals of engineering electromagnetics. 1st ed. Upper Saddle River: Prentice-
Hall Inc.; 1993.

2. Silvester PP. Ferrari RL.Finite elements for electrical engineers. 3rd ed. UK: Cambridge
University Press; 1996.

3. Paul CR, Nasar SA. Introduction to electromagnetic fields. 1st ed. USA: McGraw-Hill Inc.;
1982.



Chapter 5
Electric Currents

5.1 Introduction

Electric current mainly depends on the movement of charge. Different types of
currents are considered in electromagnetic field engineering. These are conduction
currents, convection currents, electrolytic currents, displacement currents, etc. Con-
duction current is generated in the conductor by the motion of electric charges. The
actual migration of the positive and the negative ions generates electrolytic current.
The motion of electric charges in a vacuum or fluids generates the convection cur-
rent. In this chapter, current, current density, resistance, capacitance, the continuity
equation, etc. will be discussed.

5.2 Current and Current Density

The existence of current and current density is very important to identify the behavior
of the electric field in the conductor. Current is defined as the flow of free electrons
through a conductor. In an alternative way, the rate of change of charge through a
given area is known as current. Current is symbolized by the letter I and its unit is
ampere (A). Mathematically, the expression of current is,

I = dQ

dt
. (5.1)

The general definition of current density is the current per unit area. The current
density is symbolized by the letter J and its unit is ampere per square meter (A/m2).
Consider an incremental current �I that is crossing an incremental surface �S. This
incremental current is normal to the incremental surface as shown in Fig. 5.1.

The expression of the normal current density can be written as

Jn = �I

�S
, (5.2)

�I = Jn�S. (5.3)

Md. A. Salam, Electromagnetic Field Theories for Engineering, 117
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Fig. 5.1 Incremental current
crossing an incremental
surface
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Fig. 5.2 Charge with an
incremental distance
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In vector format, Eq. (5.3) can be written as

�I = J.�S. (5.4)

The total current I flowing through the surface S can be obtained by integrating Eq.
(5.4) as

I =
∮

S

J.dS. (5.5)

Again, consider that an incremental charge �Q is moved to the �x distance from
the yz plane as shown in Fig. 5.2.

The expression of the incremental charge can be written as

�Q = ρv�v = ρv�S�x. (5.6)

The expression of the incremental current can be written as

�I = �Q

�t
. (5.7)

Substituting Eq. (5.6) into Eq. (5.7) yields

�I = ρv�S�x

�t
, (5.8)

�I = ρv�Svx , (5.9)

where νx represents the x component of the velocity.
From Eq. (5.9), the current density in the x-direction is

Jx = �I

�S
= ρvvx. (5.10)
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In general, the current density in vector format is

J = ρvv (5.11)

From Eq. (5.11), it is seen that the convection current density is equal to the product
of volume charge density and velocity.

Example 5.1 The current density in cylindrical coordinates is given as J = 5ρzaρ +
2z cos φaφ A/m2. Determine (a) the current density at point (ρ = 2, φ = 35◦, z =
0.8) and (b) the total current flowing through the cylindrical surface ρ = 2, 0 <

φ < 2π , 0.8 < z < 3.5.

Solution

(a) The value of the current density at point (ρ = 2, φ = 35◦, z = 0.8) is

J = 5 × 2 × 0.8aρ + 2 × 2 cos 45◦aφ ,

J = 8aρ + 2.83aφ A/m2.

(b) The differential surface for the cylindrical coordinates is

dS =ρdφdzaρ

dρdzaφ

ρdρdφaz.

The total current can be determined as

I =
∫ 2π

0

∫ 3.5

0.8
(5ρzaρ + 2z cos φaφ).ρdφdzaρ ,

I = 5ρ2
∫ 2π

0
dφ

∫ 3.5

0.8
zdz,

I = 5ρ2

2
(3.52 − 0.82)

∫ 2π

0
dφ,

I = 5 × 22

2
(3.52 − 0.82) × 2π = 729.48A.

Example 5.2 The current density in spherical coordinates is given as J =
3
r

cos
(

φ

3

)
ar + 2r cos θaθ A/m2. Determine (a) the current density at point (r = 2,

θ = 25◦, φ = 134◦) and (b) the total current flowing through the spherical surface
0 < θ < π

2 , 0 < φ < 2π.

Solution

(a) The value of the current density at point (r = 2, θ = 25◦, φ = 134◦) is

J = 3

2
cos

134◦

3
ar + 2 × 2 cos 25◦aθ ,

J = 1.07ar + 3.63aθ A/m2.
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(b) The differential surface for the spherical coordinates is

dS =r2 sin θdθdφar

r sin θdrdφaθ

rdrdθaφ.

The total current can be determined as

I =
∫ 2π

φ=0

∫ π
2

θ=0

(
3

r
cos

φ

3
ar + 2r cos θaθ

)
.r2 sin θdθdφar ,

I =
∫ 2π

φ=0

∫ π
2

θ=0
3r cos

(
φ

3

)
sin θdθdφ,

I = −3 × 2
(

cos
π

2
− 1

) ∫ 2π

φ=0
cos

(
φ

3

)
dφ,

I = −3 × 3 × 2
(

cos
π

2
− 1

)(
sin

2π

3
− 0

)
= 15.59A.

Practice problem 5.1 The current density is given by J = zaρ + 2ρ sin φaφ A/m2.
Calculate the (a) current density at point (ρ = 1, φ = 55◦, z = 2) and (b) the total
current flowing through the cylindrical surface ρ = 1, 0 < φ < 2π , 2 < z < 4.

Practice problem 5.2 The expression of current density in spherical coordinates is
given by J = 3 cos

(
φ

3

)
ar + 2r cos θaθ A/m2. Find the (a) current density at point

(r = 1, θ = 40◦, φ = 125◦) and (b) the total current flowing through the cylindrical
surface 0 < θ < π

2 , 0 < φ < 2π.

5.3 Conductivity and Resistance

The current density is directly related to the density (ρν) of conduction electrons and
the drift velocity (vd ). This relationship can be expressed as

J = ρvvd . (5.12)

The drift velocity is linearly proportional to the electric field vector and it can be
expressed as

vd = −μeE (5.13)

where μe the mobility of electrons is in the given material and its unit is (m2/Vs).
The current density in terms of concentration of the charge carriers (Nν)and the

drift velocity is

J = Nv(−e)vd . (5.14)
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Fig. 5.3 Homogenous
material with a fixed
cross-section
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Substituting Eq. (5.13) into Eq. (5.14) yields

J = Nv(−e)(−μeE) = NveμeE, (5.15)

J = σE (5.16)

where σ is the proportionality constant and it is represented as

σ = Nveμe. (5.17)

This proportionality constant is a macroscopic parameter of the medium which is
known as conductivity. The conductivity represents the ability of a material to conduct
the current. The unit of conductivity is S/m. The reciprocal of the conductivity is
known as resistivity and it is symbolized by ρ. The unit of the resistivity is � − m.

Consider a homogeneous material of length l and a uniform cross-sectional area
S as shown in Fig. 5.3. In this case, both the current density and electric field are in
the direction of the current flow. From Eq. (5.5), the expression of the total current
can be derived as

I = JS, (5.18)

J = I

S
. (5.19)

The total voltage between two ends of the conduction material can be determined as

V =
∮

l

E.dl, (5.20)

V = El, (5.21)

E = V

l
. (5.22)

Substituting Eqs. (5.19) and (5.22) into the scalar format of Eq. (5.16) provides

I

S
= σ

V

l
, (5.23)

l

σS
= V

I
, (5.24)
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R = l

σS
. (5.25)

From Eq. (5.25), it is concluded that the resistance is directly proportional to the
length and inversely proportional to the conductivity and the area.

Example 5.3 The radius of a 1.5 km-long wire is 2 mm. Find the dc resistance if the
wire is made of copper and the conductivity of copper wire is σ = 5.8 × 107 S/m.

Solution The value of the area is

S = πr2 = π (2 × 10−3)
2 = 1.26 × 10−5 m2.

The value of the resistance can be calculated as

R = l

σS
= 1.5 × 1000

5.8 × 107 × 1.26 × 10−5 = 2.05 �.

Practice problem 5.3 The radius of a 2.5 km-long aluminum wire is 1.5 mm.
Determine the dc resistance if the conductivity of the aluminum wire is σ =
3.54 × 107 S/m.

5.4 Power and Joule’s Law

The work is done when a charge moves within the conductor. Consider a charge
Q moves at a velocity u by an electric field E to a distance �l. In this case, the
expression of the work done is

�W = QE.u. (5.26)

The power is defined as the rate of receiving or delivering energy or force times
velocity and it can be expressed as

P = lim
�t→0

�W

�t
. (5.27)

Substituting Eq. (5.26) into Eq. (5.27) yields

P = QE.u. (5.28)

But, the total charge is represented as

Q =
∮

v
ρvdv. (5.29)

Substituting Eq. (5.29) into Eq. (5.28), then the total power delivered to all charge
carriers in a volume dν is

P =
∮

v
ρvdvE.u, (5.30)
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P =
∮

v
E.ρvudv. (5.31)

Substituting Eq. (5.12) into Eq. (5.31) provides

P =
∮

v
E.Jdv. (5.32)

Equation (5.32) is known as Joule’s law. For a constant cross-section conductor, the
expression of the volume is

dv = dSdl. (5.33)

Substituting Eq. (5.33) into Eq. (5.32) yields

P =
∫

l

E.dl
∫

s

J.dS. (5.34)

Substituting the expressions of the voltage
(
V = ∫

l
E.dl

)
and the current(

I = ∫
s

J.dS
)

into Eq. (5.34) yields

P = V I = I 2R. (5.35)

Power density is defined as the total power per volume and it can be expressed as

wp = dP

dv
. (5.36)

From Eqs. (5.32, 5.36), and (5.16) the expression of power density can be written as

wp = E.J = σ |E|2. (5.37)

From Eq. (5.37), it is shown that the power density is equal to the product of the
conductivity and square of the magnitude of the electric field.

5.5 Continuity Equation

Consider a closed surface as shown in Fig. 5.4, where a wire carries a current Iin in
the surface and the current Iout goes out from the surface. From the basic definition,
the expression of current that enter to the closed surface is

Iin = dQ

dt
. (5.38)

The expression of current leaving from the closed surface is

Iout = −Iin = −dQ

dt
. (5.39)
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Fig. 5.4 Closed surface with
currents
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The total outward current through the closed surface is

Iout =
∮

S

J.dS. (5.40)

Substituting Eq. (5.39) into Eq. (5.40) yields
∮

S

J.dS = −dQ

dt
. (5.41)

Substituting Eq. (5.29) into Eq. (5.41) yields
∮

S

J.dS = −d

dt

∫

v
ρdv. (5.42)

Applying divergence theorem to change the surface integral into a volume integral
provides

∮

S

J.dS =
∫

v
(∇.J)dv (5.43)

Substituting Eq. (5.43) into Eq. (5.42) yields
∫

v
(∇.J)dv = −d

dt

∫

v
ρdv. (5.44)

For incremental volume, Eq. (5.44) is modified as

(∇.J)�v = −dρ

dt
�v, (5.45)

∇.J = −dρ

dt
. (5.46)

Equation (5.46) is known as a continuity of the current equation or simply continuity
equation. For a steady current, the charge density is constant and Eq. (5.46) can be
modified as

∇.J = 0. (5.47)

From Eq. (5.47), it is concluded that the total charge leaving the volume is equal to
the total charge entering it.
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Substituting Eq. (5.16) into Eq. (5.46) yields

∇.σE = −dρ

dt
. (5.48)

Substituting the differential form of Gauss’ law (∇.D = ρ) into Eq. (5.48) provides

σρ

ε
= −dρ

dt
, (5.49)

dρ

dt
+ σρ

ε
= 0. (5.50)

The general solution of Eq. (5.50) is

ρ = ke−( σ
ε )t . (5.51)

Substituting the initial condition (at t = 0, ρ = ρ0) to Eq. (5.51) yields

ρ0 = k. (5.52)

Again, substituting Eq. (5.51) into Eq. (5.51) and the final solution can be written as

ρ = ρ0e
−( σ

ε )t (5.53)

where ρ0 is the initial charge density at t = 0. Equation (5.53) shows that there is a
decay of charge density at each point with a time constant of Tr = ε

σ
. This time

constant is known as relaxation time. The relaxation time constant is defined as the
time required for decaying ρ to 1

e
= 36.78% of its initial value.

Example 5.4 The initial volume charge density and the time constant of a system
are found to be 150 C/m3 and Tr = 0.2s respectively. Determine the value of the
volume charge density at t = 0.1s.

Solution The value of the volume charge density can be determined as

ρ = ρ0e
− t

Tr = 150e− 0.1
0.2 = 90.98 C/m3.

Practice problem 5.4 The initial and final volume charge densities are found to be
120 C/m3 and 100 C/m3, respectively. Calculate the time constant if t = 0.2 s.

5.6 Current Density Boundary Conditions

The current density vector changes both in magnitude and direction, when the current
enters from one region to another region as shown in Fig. 5.5. According to the
electric field and electric flux density, some boundary conditions can be derived for
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Fig. 5.5 Refraction of steady
current lines at two
conductors interface
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the current density. From Eq. (5.46), the normal components of current vector can
be written as

an.J1 − an.J2 = −dρ

dt
. (5.54)

For dc (steady) current dρ

dt
= 0, then Eq. (5.54) becomes

an.J1 − an.J2 = 0, (5.55)

J1n = J2n. (5.56)

The differential form of the generalized Gauss’ law is

ρ = ∇.D, (5.57)

ρ = ∇.εE. (5.58)

Substituting Eq. (5.16) into Eq. (5.58) provides

ρ = ∇.
ε

σ
J. (5.59)

The following rules from the vector identity can be written as:

∇.(xA) = A.∇x + x∇.A. (5.60)

According to Eq. (5.60), Eq. (5.59) can be expanded as

ρ = J.∇ ε

σ
+ ε

σ
∇.J. (5.61)

Substituting Eq. (5.47) into (5.61) provides

ρ = J.∇ ε

σ
. (5.62)

From Eq. (5.62), the surface charge density in between mediums 1 and 2 can be
written as

ρs = an.D1 − an.D2 = ε1

σ1
an.J1 − ε2

σ2
an.J2, (5.63)
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ρs =
(

ε1

σ1
− ε2

σ2

)
Jn. (5.64)

The curl of the electric field is

∇ × E = 0. (5.65)

Substituting Eq. (5.16) into Eq. (5.65) yields

∇ × J
σ

= 0. (5.66)

For the two mediums, Eq. (5.66) can be written as

J1t

σ1
− J2t

σ2
= 0, (5.67)

J1t

J2t

= σ1

σ2
. (5.68)

From Eq. (5.68), it is concluded that the ratio of tangential components of the current
density at the interface of two conductors is equal to the ratio of their conductivities.

From Fig. 5.5, the following equations can be written as:

cos α1 = J1n

J1
, (5.69)

cos α2 = J2n

J2
, (5.70)

sin α1 = J1t

J1
, (5.71)

sin α2 = J2t

J2
. (5.72)

Substituting Eqs. (5.69) and (5.70) into Eq. (5.56) yields

J1 cos α1 = J2 cos α2. (5.73)

Substituting Eqs. (5.71) and (5.72) into Eq. (5.68) provides

J1 sin α1

J2 sin α2
= σ1

σ2
, (5.74)

σ2J1 sin α1 = σ1J2 sin α2. (5.75)

Dividing Eq. (5.75) by Eq. (5.73) yields

σ2 tan α1 = σ1 tan α2, (5.76)
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tan α1

tan α2
= σ1

σ2
. (5.77)

The magnitude of current density at the second conductor is

J2 =
√

J2t
2 + J2n

2. (5.78)

Substituting Eqs. (5.71) and (5.72) into Eq. (5.78) yields

J2 =
√

(J2 sin α2)2 + (J2 cos α2)2. (5.79)

Substituting Eqs. (5.73) and (5.75) into Eq. (5.79) provides

J2 =
√(

σ2

σ1
J1 sin α1

)2

+ (J1 cos α1)2, (5.80)

J2 = J1

√(
σ2

σ1
sin α1

)2

+ ( cos α1)2. (5.81)

In the presence of the steady current, the tangential electric fields are continuous
across the boundary, in between two lossy dielectrics. In this case, it can be written
as

E1t = E2t . (5.82)

Equation (5.56) can be re-arranged as

σ1E1n = σ2E2n, (5.83)

E1n = σ2

σ1
E2n. (5.84)

The surface charge density across two mediums is

ρs = D1n − D2n = ε1E1n − ε2E2n. (5.85)

A surface charge density exists at the interface if the term
(

ε1
σ1

− ε2
σ2

)
of Eq. (5.64) is

equal to zero. Then this relation can be expressed as

ε1

σ1
− ε2

σ2
= 0, (5.86)

σ2

σ1
= ε2

ε1
. (5.87)

Substituting Eq. (5.87) into Eq. (5.84) yields

E1n = ε2

ε1
E2n. (5.88)
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Fig. 5.6 Parallel plates
capacitor
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Substituting Eq. (5.88) into Eq. (5.85) yields

ρs =
(

ε1
σ2

σ1
− ε2

)
E2n =

(
ε1 − σ1

σ2
ε2

)
E1n. (5.89)

If the medium 2 is holding more conductor than the medium 1, then σ2 > σ1. So, in
this case σ1

σ2
= 0. Therefore, Eq. (5.89) becomes

ρs = ε1E1n = D1n. (5.90)

From Eq. (5.90), it is observed that the normal electric flux density of the medium 1
is equal to the surface charge density.

5.7 Capacitance

A capacitor is formed when two conducting plates are placed very close to each other.
It is represented by the letter C and its unit is Farad (F). The ability of a capacitor to
store charge on its plates is known as capacitance. Two perfectly conducting plates
are connected in parallel as shown in Fig. 5.6. A voltage source is connected in
between the plates, making the upper plate higher in potential than the lower plate.
As a result, an electric field is set up in the downward direction and the charge is
transferred between the plates which establish positive and negative charges on the
upper and lower plates, respectively. A capacitor has a capacitance, even when no
voltage is applied to it or when it is free of charges of the conductor.

Experimentally, it is found that the capacitor is directly proportional to the electric
potential across it. Mathematically, it can be expressed as

Q ∞ V , (5.91)

Q = CV , (5.92)

C = Q

V
(5.93)
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Fig. 5.7 Parallel plates
capacitor with a separation
distance +Q+ + + +

− − − − −Q
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where

C is the capacitance in F,
Q is the charge in C,
V is the voltage across the capacitor in V.

5.8 Parallel Plate Capacitor

Consider a parallel plate capacitor as shown in Fig. 5.7. The separation distance
between the plates is d and the area of each plate is S. The space in between the
plates is filled by a dielectric whose permittivity is ε. The positive and negative
charges are placed on the upper and lower plates, respectively. The expression of
surface charge density can be written as

ρs = Q

S
. (5.94)

According to Eq. (5.85), when D2 = 0, the following equation can be written as:

E = −ρs

ε
ay. (5.95)

The expression of the voltage can be determined as

V = −
∫ d

0
E.dl. (5.96)

Substituting Eq. (5.95) and the expression of differential length in Cartesian
coordinates into Eq. (5.96) provides

V = −
∫ d

0

(
−ρs

ε
ay

)
.(dyay), (5.97)

V =
∫ d

0

ρs

ε
dy, (5.98)

V = ρs

ε
d. (5.99)
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Substituting Eq. (5.94) into Eq. (5.99) yields

V = Q

Sε
d. (5.100)

From Eqs. (5.93) and (5.100), the final expression for the two parallel plate capacitors
can be derived as

C = Q
Q

Aε
d

, (5.101)

C = εA

d
. (5.102)

Again, consider a total charge of Q is transferred from the positive to the negative
plates. Then the potential difference between the plates can be written as

V = dW

dq
. (5.103)

Substituting Eq. (5.93) into Eq. (5.103) yields

q

C
= dW

dq
, (5.104)

dW = q

C
dq. (5.105)

Integrating Eq. (5.105) from 0 to Q yields

W =
∫ Q

0

q

C
dq = 1

2

Q2

C
. (5.106)

Again, substituting Eq. (5.93) into Eq. (5.106) yields

W = Q2

2C
= CV 2

2
= QV

2
. (5.107)

The electric field in between the plates is uniform, so the potential is

V = Ed. (5.108)

Substituting Eqs. (5.102) and (5.108) into Eq. (5.107) yields

W = εA

d

E2d2

2
, (5.109)

W = εE2Ad

2
. (5.110)

In Eq. (5.109), the product Ad is the volume of the field in between the plates. Then,
the energy density or energy per unit volume w is

w = 1

2
εE2. (5.111)

From Eq. (5.111), it is seen that the energy density is equal to the half of the
permittivity and square of the electric field.
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Example 5.5 The dielectric thickness between the plates of a capacitor is 4 mm and
its relative permittivity is 5. The area of the plate is 25 m2. The electric field strength
of dielectric medium is 300 V/mm Determine the (a) capacitance and (b) the total
charge on each plate.

Solution

(a) The value of the capacitance is

C = ε0εrS

d
= 8.854 × 10−12 × 5 × 25

4 × 10−3 = 276.69 × 10−9F,

C = 0.276 μF.

(b) The voltage across the plates is

V = E × d = 300 × 4 = 1200V.

The value of the charge is

Q = CV = 0.664 × 10−6 × 800 = 531.2 μC.

Practice problem 5.5 The parallel plates of a capacitor are separated by a 3 mm
solid dielectric medium and the area of the plate is 3 m2. The relative permittivity of
the dielectric is 5. The dielectric medium has an electric field strength of 360 V/mm.
Calculate the (a) capacitance and (b) the total charge on each plate.

5.9 Determination of Resistance

The concept and definition of resistance for a uniform cross-section has already been
discussed in Sect. 5.3. For a nonuniform cross-section, the resistance of the conductor
can be obtained from the following equation:

R = V

I
= − ∫

L
E.dl∮

S
J.dS

= − ∫
L

E.dl∮
S
σE.dS

. (5.112)

In terms of electric field, the expression of the capacitance from Eq. (5.93) can be
expressed as

C = Q

V
=

∮
S

D.dS

− ∫
L

E.dl
, (5.113)

C =
∮
S
εE.dS

− ∫
L

E.dl
. (5.114)

Multiplying Eqs. (5.112) and (5.114) yields

RC = − ∫
L

E.dl∮
S
σE.dS

×
∮
S
εE.dS

− ∫
L

E.dl
, (5.115)
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Fig. 5.8 Schematic of coaxial
cable
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RC = ε

σ
. (5.116)

Equation (5.116) exists if the medium is homogeneous. The resistance can be de-
termined directly from Eq. (5.116) if the capacitance between two conductors is
known.

5.10 Coaxial Capacitor

Consider a coaxial cable with a length of l as shown in Fig. 5.8. The inner and outer
radii of the cable are a and b. The respective charges are +Q and −Q. The space
between the conductors is filled with a homogeneous dielectric whose permittivity
is ε. Then the total charge can be determined as

Q =
∫

D.dS, (5.117)

Q = ε

∫
E.dS. (5.118)

The electric field intensity is normal to the cylindrical Gaussian surface and it can
be represented as

E = Eρaρ. (5.119)

The term
∫

dS is the surface area of the Gaussian surface and it can be represented
as

∫
dS = 2πρl. (5.120)

Here, l is the arbitrary length of the cylinder. Substituting Eqs. (5.119) and (5.120)
into Eq. (5.118) yields

Q = εEρ2πρl, (5.121)

Eρ = Q

2επρl
. (5.122)
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Again, substituting Eq. (5.122) into Eq. (5.119) yields

E = Q

2επρl
aρ. (5.123)

The voltage difference between the two conductors can be determined as

V = −
∫ a

b

E.dl. (5.124)

Substituting Eq. (5.123) and differential length in cylindrical coordinates into Eq.
(5.124) yields

V = −
∫ a

b

Q

2επρl
aρ.(dρaρ), (5.125)

V = − Q

2επl
[ ln ρ]ab. (5.126)

V = − Q

2επl
ln

a

b
, (5.127)

V = Q

2επl
ln

b

a
. (5.128)

Substituting Eq. (5.128) into Eq. (5.93) yields

C = 2επl

ln b
a

. (5.129)

Equation (5.129) represents the expression of capacitance for coaxial cable.

5.11 Spherical Capacitor

Consider two spheres whose radii are a and b. The radius a is greater than the
radius b. The inner and outer spheres contain the +Q and −Q charges, respectively.
Apply Gauss’ law to an arbitrary Gaussian spherical surface whose radius is r and
a < r < b. Then the total charge can be determined as

Q = ε

∫
E.dS. (5.130)

The electric field intensity is normal to the spherical Gaussian surface and it can be
represented as

E = Erar . (5.131)
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The term
∫

dS is the surface area of the Gaussian surface and it can be represented
as

∫
dS = 4πr2. (5.132)

Substituting Eqs. (5.131) and (5.132) into Eq. (5.130) yields

Q = εEr4πr2, (5.133)

Er = Q

4επr2
. (5.134)

Again, substituting Eq. (5.134) into Eq. (5.131) yields

E = Q

4επr2
ar . (5.135)

Substituting Eq. (5.135) and differential length in cylindrical coordinates into Eq.
(5.124) yields

V = −
∫ a

b

Q

4επr2
ar .(drar ), (5.136)

V = − Q

2επl
[ ln ρ]ab , (5.137)

V = − Q

2επl
ln

a

b
, (5.138)

V = Q

2επl
ln

b

a
. (5.139)

Substituting Eq. (5.128) into Eq. (5.93) yields

C = 2επl

ln b
a

. (5.140)

Equation (5.140) represents the expression of capacitance for two spheres.

Example 5.6 The inner and outer radii of a 2 km cable are 3 mm and 5 mm,
respectively. Determine the value of the capacitance.

Solution The value of the capacitance can be determined as

C = 2πεl

ln b
a

= 2π × 8.854 × 10−12 × 2 × 103

ln 5
3

= 0.218 μF.

Practice problem 5.6 The outer radius of a 5 km cable is 5 mm. Calculate the value
of the inner radius of the cable if the value of the capacitance is 0.3 μF.
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Fig. 5.9 Schematic of spheres
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5.12 Parallel Plate Capacitor with Two Dielectric Slabs

Consider conductors a and b are separated by two dielectric slabs as shown in
Fig. 5.10. The lengths of the dielectric slabs are l1 and l2, respectively. The electric
fields for two dielectric slabs in the z-direction can be written as

E1 = −ρs

ε1
az, (5.141)

E2 = −ρs

ε2
az. (5.142)

The voltage difference between two conductors can be determined as

V = −
∫

E.dl = −
[∫ l1

0
E1.dl +

∫ l1+l1

l1

E2.dl
]
. (5.143)

Substituting Eqs. (5.141, 5.142) and the differential length in z-component into Eq.
(5.143) yields

V =
∫ l1

0

ρs

ε1
az.dzaz +

∫ l1+l1

l1

ρs

ε2
az.dzaz. (5.144)

V =
∫ l1

0

ρs

ε1
dz +

∫ l1+l1

l1

ρs

ε2
dz, (5.145)

V = ρs

ε1
l1 + ρs

ε2
(l1 + l2 − l1), (5.146)
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V = ρs

ε1
l1 + ρs

ε2
l2. (5.147)

Substituting Eq. (5.147) into Eq. (5.93) yields

C = ρsS

ρs

[
l1
ε1

+ l2
ε2

] , (5.148)

C = 1
l1

ε1S
+ l2

ε2S

, (5.149)

C = 1
l1

ε1S
+ l2

ε2S

, (5.150)

C = 1
1

ε1S

l1

+ 1
ε2S

l2

. (5.151)

According to the expression of capacitance, the terms ε1S
l1

and ε2S
l2

can be defined
as the capacitance of the lower and upper dielectric slabs. Then, Eq. (5.151) can be
modified as

C = 1
1
C1

+ 1
C2

, (5.152)

C = C1C2

C1 + C2
. (5.153)

Equation (5.153) represents the equivalent capacitance when two capacitors are in
the series. The expression of capacitance for the two capacitors in parallel is

C = C1 + C2. (5.154)

The derivation of Eq. (5.154) can be found in any circuit analysis book.

Example 5.7 The length of the first and the second dielectric slabs are 3 mm and
5 mm, respectively. The permittivity of the dielectric slabs are ε1 = 2 and ε2 = 4.
A voltage of 100 V is applied across the parallel plates and the area of the plate is
0.56 × 10−6 m2 Determine the (a) value of the capacitance, (b) Q, (c) D, (d) E1, E2,
and (e) V1, V2.

Solution

(a) The value of the capacitance can be determined as

C = S
l1
ε1

+ l2
ε2

= 8.854 × 10−12 × 0.56 × 10−6

0.003
2 + 0.005

4

= 1803 × 10−18F.

(b) The value of the charge is

Q = CV = 0.0018 × 100 = 0.18 pC.
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(c) The value of the electric flux density can be determined as

D = Q

S
= 0.18 × 10−12

0.56 × 10−6 = 0.321 × 10−6 C/m2.

(d) The value of the electric field intensities are

E1 = D

ε1
= 0.321 × 10−6

2 × 8.854 × 10−12 = 18127.4V/m,

E2 = D

ε2
= 0.321 × 10−6

4 × 8.854 × 10−12 = 9063.7V/m.

(e) The value of the voltages can be determined as

V1 = E1l1 = 18127.4 × 003 = 54.38V,

V2 = E2l2 = 9063.7 × 0.005 = 45.32V.

Practice problem 5.7 The length of two dielectric slabs are l1 = 2 mm and l2 =
3.5 mm. The permittivity of the dielectric slabs are ε1 = 3 and ε2 = 5. The 80 Vsource
is connected across the parallel plates and the area of the plate is 0.026 × 10−7 m2.
Calculate the (a) value of the capacitance (b) Q, (c) D, (d) E1, E2, and (e) V1, V2.

5.13 Exercise Problems

5.1 The current density in Cartesian coordinates is given as J = 3yz2ax + 5xyaz

A/m2. Determine the (a) current density at point (x = 1, y = 1.5, z = 2) and
(b) the total current flowing through the Cartesian surface 0 < x < 2, 1 <

y < 3.
5.2 The expression of the current density in Cartesian coordinates is given as

J = 2x2yzax + 5zay + 3yaz A/m2. Calculate the (a) current density at point
(x = 1, y = 2, z = 2) and (b) the total current flowing through the Cartesian
surface x = 3, 1 < y < 3, 2 < z < 5.

5.3 In cylindrical coordinates, the current density is given as J = ρ2zaρ −
2z sin φaφ A/m2. Determine the (a) current density at point (ρ = 1, φ =
45◦, z = 1.5) and (b) the total current flowing through the cylindrical surface
ρ = 2, 0 < φ < 2π , 1.5 < z < 4.

5.4 The current density in spherical coordinates is given by J = −3 cos
(

φ

4

)
ar +

4
r

sin θaθ A/m2. Find the (a) current density at point (r = 1, θ = 30◦, φ =
125◦) and (b) the total current flowing through the spherical surface 0 < θ <

40◦, 0 < φ < 2π .
5.5 The radius of a 4.5 km-long wire is 3 mm. Calculate the dc resistance if the

wire is made of copper. Consider that the conductivity of the copper wire is
σ = 5.8 × 107 S/m.
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5.6 The radius of a 8.5 km-long aluminum wire is 2 mm. Determine the dc
resistance if the conductivity of the aluminum wire is σ = 3.54 × 107 S/m.

5.7 The initial volume charge density and the time constant of a system are found
to be 100 C/m3 and Tr = 0.11s, respectively. Find the value of the volume
charge density at t = 0.15s.

5.8 The initial and final volume charge densities are found to be 90 C/m3 and
65 C/m3, respectively. Determine the time constant if t = 0.11s.

5.9 The dielectric thickness between the plates of a capacitor is 5 mm and its
relative permittivity is 8. The electric field strength of dielectric medium is
5 V/mm and the area of the plate is 15 m2. Calculate the (a) capacitance and
(b) the total charge on each plate.

5.10 The inner and outer radii of a 3.5 km cable are 1.5 and 4.5 mm, respectively.
Determine the value of the capacitance.

5.11 The inner radius of a 2.5 km cable is 2.5 mm. Calculate the value of the outer
radius of the cable if the value of the capacitance is 1.15 μF.

5.12 The lengths of the two dielectric slabs are 2.5 mm and 6.5 mm. The permittivity
of the dielectric slabs are ε1 = 3 and ε2 = 6. The 100 V is connected across
the parallel plates and the area of the plate is 0.0124 × 10−6 m2. Determine
the (a) value of the capacitance (b) Q, (c) D, (d) E1, E2, and (e) V1, V2.
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Chapter 6
Static Magnetic Field

6.1 Introduction

Magnetic fields are very important in the field of electrical engineering. Magnetic
fields basically originate from currents and exert forces on currents, whereas electric
fields originate from charges and exert forces on charges. There are many applications
of magnetic fields. These applications include motors, transformers, microphones,
telephone bell ringers, memory stores, magnetic contactors, magnetically levitated
(Maglev) high speed vehicles, etc. An electric field in a medium exists due to the
presence of a static charge. For a linear and isotropic medium, the relationship
between electric field and electric flux density is D = εE, where ε is the permittivity.
A magnetic field exists due to a charge moving at a constant velocity. For new
installations of transmission lines, electric and magnetic fields need to be measured
by the relevant equipment and the latest commercial software. The electric field is
defined as the force per unit charge, and the electric force due to a test charge, q,
placed in an electric field is

Fe = qE. (6.1)

The magnetic force due to a test charge, q, placed in a magnetic field is

Fm = qv × B. (6.2)

The total force due to electric and magnetic forces is

F = Fe + Fm. (6.3)

Substituting Eqs. (6.1) and (6.2) into Eq. (6.3) provides

F = qE + qv × B, (6.4)

F = q(E + v × B). (6.5)

Equation (6.5) is known as the Lorentz’s force equation, and it is the first postulate
of the magnetic field. The Lorentz force is the force acting on a charge, q, moving
with a velocity, v, in the presence of electric and magnetic fields. In this chapter,
Lorentz’s force, magnetic flux density, Biot–Savart’s law, Ampere’s circuital law,
vector magnetic potential, etc. will be discussed.

Md. A. Salam, Electromagnetic Field Theories for Engineering, 141
DOI 10.1007/978-981-4585-66-8_6, © Springer Science+Business Media Singapore 2014
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Fig. 6.1 Magnetic field due
to a current

I
αdl

• M
R

6.2 Magnetic Flux Density

The magnetic flux density is related to the magnetic field intensity in the free space.
This relation can be expressed as

B = μ0H, (6.6)

where
B is the magnetic flux density in Wb/m2(T),
H is the magnetic field intensity in (A/m) and
μ0 = 4π × 10−7 is the permeability in free space in H/m.

The magnetic flux is defined as the amount of magnetic flux lines passing through a
surface (area), S, near the magnet. Alternatively, it can be defined as the component
of the magnetic field perpendicular to an area multiplied by the side of that area. It
is represented by the symbol φ(ψm) and its unit is Wb. Consider Fig. 6.1, where the
magnetic fields or flux lines are perpendicular to the area. The magnetic flux density
is defined as the flux per unit area and it can be expressed as

B = ψm

A
, (6.7)

ψm = BA. (6.8)

If B is not uniform over the specific area, then Eq. (6.8) can be modified as

ψm =
∮

s

BA cos θdS. (6.9)

In dot product, Eq. (6.9) can be written as,

ψm =
∮

s

B.dS. (6.10)

In a magnet, the North and South poles are attached to each other. Therefore, there
is no source where the magnetic flux lines starts or finish. Over a closed surface, Eq.
(6.10) can be modified as

∮

s

B.dS = 0. (6.11)
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Applying divergence theorem to Eq. (6.11) yields
∮

v
∇.Bdv =

∮

s

B.dS = 0. (6.12)

In general, the following equation can be written as

∇.B = 0. (6.13)

Equation (6.13) is the fourth Maxwell’s equation for the static field. The curl of the
magnetic flux density can be written as

∇ × B = μ0J. (6.14)

Integrating both sides of Eq. (6.14) for an open surface and applying Stokes theorem
provides

∫

s

(∇ × B).dS = μ0

∫

s

J.dS, (6.15)

∮

c

B.dl =μ0Ien, (6.16)

where
c is the contour surrounding the surface S and
Ien is the total current in the closed surface.

6.3 Biot–Savart’s Law

Two French scientists, Jean Baptiste Biot and Felix Savart, worked together to
develop the relationship between magnetic fields and currents. According to their
names, this law is known as the Biot–Savart law. The differential magnetic field at
any point is proportional to the product of the current, differential length and the sine
of the angle between the element and the line joining to that point. It is inversely
proportional to the square of the distance between the element and the point. Let us
consider a current that is flowing through a differential length as shown in Fig. 6.1.
According to the statement, the following relations can be written as:

dH∞I , (6.17)

dH∞dl, (6.18)

dH∞ sin α, (6.19)

dH∞ 1

R2
. (6.20)
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Combining Eqs. from (6.17) to (6.20) yields

dH∞ Idl sin α

R2
, (6.21)

dH = k
Idl sin α

R2
. (6.22)

In SI units, the value of the proportionality constant is

k = 1

4π
. (6.23)

Substituting Eq. (6.23) into Eq. (6.22) yields

dH = Idl sin α

4πR2
. (6.24)

According to Eq. (6.24), the differential magnetic flux density can be written as

dB = μ
Idl sin α

4πR2
. (6.25)

The total magnetic flux density at the point M is

B = μI

4π

∫
sin α

R2
dl. (6.26)

According to the rules of cross product, Eq. (6.24) can be expressed as

dH = Idl × ar

4πR2
, (6.27)

where
B is the magnetic flux density in T,
H is the magnetic field intensity in A/m,
μ is the permeability of the medium in H/m,
I is the current in the conductor in A,
R is the distance from element to point M in m,
α is the angle measured in the clockwise direction
R = |R| ,
ar = R

|R| .
Equations from (6.24) to (6.27) are the statements of the Biot–Savart law.

6.4 Magnetic Field of a Long Straight Conductor

A long straight conductor is shown in Fig. 6.2. The magnetic field will be calculated
at point P for the semi-infinite and the infinite length of the conductor. The vector
can be written as

R = ρaρ + zaz. (6.28)
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P

x

ρ

R

z

2α

1α

α

Idz

y

z

•

Fig. 6.2 A long straight conductor

The magnitude of the vector is

|R| =
√

ρ2 + z2. (6.29)

From Fig. 6.2, the following equation can be written as

tan α = ρ

z
, (6.30)

z = ρ cot α, (6.31)

dz = −ρ cos ec2αdα. (6.32)

The differential length in the z-direction is

dl = dzaz. (6.33)

Then Eq. (6.27) can be modified as

dH = Idzaz × (ρaρ + zaz)

4π (ρ2 + z2)
3
2

, (6.34)

dH = Iρdz

4π (ρ2 + z2)
3
2

aφ , (6.35)
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H =
∫

Irdz

4π (ρ2 + z2)
3
2

aφ. (6.36)

The previous equation can be written as:

(ρ2 + z2)
3
2 = (ρ2 + ρ2cot2α)

3
2 = ρ3 cos ec3α. (6.37)

Substituting Eqs. (6.32) and (6.37) into Eq. (6.36) yields

H = I

4π

∫ α2

α1

ρ(−ρ cos ec2α)dα

ρ3 cos ec3α
aφ , (6.38)

H = −I

4πρ
aφ

∫ α2

α1

sin αdα, (6.39)

H = −I

4πρ
aφ[− cos α]α2

α1
= I

4πρ
aφ(cos α2 − cos α1). (6.40)

For the semi-infinite length of the conductor, the following conditions are considered:

α1 = 90◦ and α2 = 0. (6.41)

Substituting Eq. (6.41) into Eq. (6.40) yields

H = I

4πρ
aφ. (6.42)

For the infinite length of the conductor, the following conditions are considered:

α1 = 180◦ and α2 = 0. (6.43)

Substituting Eq. (6.43) into Eq. (6.40) yields

H = I

4πρ
aφ(1 + 1), (6.44)

H = I

2πρ
aφ. (6.45)

From Eq. (6.45), it is concluded that the magnetic field intensity is directly related
to the current and inversely related to ρ.

Alternative method: An infinite conductor carries a current, I , as shown in Fig. 6.3.
Here, P is the point at a distance, r , from the conductor where the magnetic flux
density is to be calculated. The dl is the differential length of the conductor and α

is the angle between the conductor and the line, R. From Fig. 6.3, the following
equations can be written as:

sin α = r

R
, (6.46)
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Fig. 6.3 Infinite straight
conductor

Pr

R

dαα

dl

•

α

I

sin α

r
= 1

R
, (6.47)

dl sin α = Rdα. (6.48)

Substituting Eqs. (6.48) and (6.47) into Eq. (6.24) yields

B = μI

4πr

∫
sin αdα. (6.49)

The integration limits are set from α = 0 to α = π to calculate the magnetic flux
density over the whole length of the conductor. Then Eq. (6.49) becomes

B = μI

4πr

∫ π

0
sin αdα, (6.50)

B = μI

4πr
[− cos α]π0 = − μI

4πr
(cos π − 1), (6.51)

B = μI

2πr
. (6.52)

From Eq. (6.52), it is observed that the magnetic flux density is directly proportional
to the current and inversely proportional to the radial distance.
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6.5 Ampere’s Circuital Law

In electrostatic field, Gauss’s law has been used to simplify the symmetrical charge
distribution cases. A special theory is required to simplify the symmetrical current
distribution cases in the magnetostatic field. This theory is known as Ampere’s cir-
cuital law. This law states that the line integral of the static magnetic field intensity
around a closed path is equal to the total current enclosed by that path. Integrating
Eq. (6.52) for a differential length of dl yields

∮
B.dl = μI

2πr

∮
dl. (6.53)

Substituting the circumferential length
∮

dl = 2πr into Eq. (6.53) yields
∮

B.dl = μI

2πr
2πr , (6.54)

∮
B.dl = μI. (6.55)

Again, substituting B = μH into Eq. (6.55) provides
∮

μH.dl = μI , (6.56)

∮
H.dl = I. (6.57)

For a closed loop, introducing the suffix l and Eq. (6.57) becomes
∮

l

H.dl = I. (6.58)

Applying Stokes theorem to the left hand side of Eq. (6.58) provides
∫

s

(∇ × H).ds =
∮

l

H.dl, (6.59)

∫

s

J.ds =
∮

l

H.dl, (6.60)

where the expression of the current density is

J = ∇ × H. (6.61)

Equation (6.61) is known as the third Maxwell’s equation. It is also known as the
differential or point form of Ampere’s law.

Substituting Eq. (6.60) into Eq. (6.57) yields

I =
∫

s

J.ds =
∮

l

H.dl. (6.62)
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Fig. 6.4 Long straight
conductor with Amperian
path
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Equation (6.62) is known as the generalized integral form of Ampere’s law. The
magnetic field intensity is either tangential ( H.dl = Htdl) or normal ( H.dl =
Hndl = 0) at each point of the closed path. The total magnetic field intensity is the
sum of the tangential and normal components and it can be written as

H = Ht + Hn. (6.63)

6.6 Ampere’s Circuital Law in a Long Straight Conductor

A very long straight conductor carries a current of I as shown in Fig. 6.4. The
point P is at a distance ρ from the conductor and the magnetic field intensity will
be determined at this point. The path that is passing through point P is known as
Amperian path. The following relations can be written as:

H = Hφaφ. (6.64)

dl = dρaρ∣ ∣ ∣ + ρdφaφ + dzaz∣ ∣ ∣ . (6.65)

Substituting Eqs. (6.64) and (6.65) into Eq. (6.62) yields

I =
∫ 2π

φ=0
Hφaφ.ρdφaφ , (6.66)

I = ρHφ

∫ 2π

φ=0
dφ = ρHφ2π , (6.67)
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Fig. 6.5 Conductor in
horizontal position
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Fig. 6.6 Conductor with unit
vectors
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Hφ = I

2πρ
. (6.68)

Substituting Eq. (6.68) into Eq. (6.64) yields

H = I

2πρ
aφ. (6.69)

Equation (6.69) is the same as Eq. (6.45) for an infinite length of the conductor.
The unit vector aφ can be determined by the following equation:

aφ = al × aρ , (6.70)

where
al is the unit vector in the direction of the line current and
aρ is the unit vector in the direction of the perpendicular line, that is, from the

line current to the point where magnetic field is to be determined.

Example 6.1 A conductor is laid out horizontally carrying a current of 5 A as shown
in Fig. 6.5. Determine the magnetic field intensity at point (0, 0, 3).

Solution From Fig. 6.6, the following angles can be determined as

α1 = 90◦, cos α1 = 0, cos α2 = 2
/√

13 .
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Fig. 6.7 Conductor in
vertical position

(0,0,5)

z

x

8A
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The magnetic field intensity can be determined as

H = I

4πρ
(cos α2 − cos α1)aφ ,

H = 5

4π × 3
× 2√

13
aφ.

From Fig. 6.6, the following relations can be written as

aρ = az,
al = ax.

Then, the following unit vector can be determined as

aφ = ax × az = −ay.

Finally, the value of the magnetic field is

H = − 5

4π × 3
× 2√

13
ay = 73.56 mA/m.

Practice Problem 6.1 A conductor is laid out in the z-axis carrying a current of 8
A as shown in Fig. 6.7. Determine the magnetic field intensity at point (0, 2, 0).

6.7 Infinite Sheet of Current

An infinite sheet of current is shown in Fig. 6.8. The current in the sheet is flowing
in the positive y-direction and it is located in the z = 0 plane. Consider that the sheet
has a uniform surface current density and it can be written as

K = Kyay. (6.71)

Applying Ampere’s law to the closed a − b − c − d path will be given as
∮

H.dl = I = Kym. (6.72)
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Fig. 6.8 An infinite sheet
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The magnetic field intensity of the infinite sheet for different conditions of z can be
written as

H = H0ax for z > 0 (6.73)

H = −H0ax for z < 0 (6.74)

Again, applying the Ampere’s law in the closed path provides
∮

H.dl =
[∫ b

a

+
∫ c

b

+
∫ d

c

+
∫ a

d

]
H.dl, (6.75)

∮
H.dl = 0(−n) + (−H0)(−m) + 0(a) + (H0)(m) = 2H0m. (6.76)

Substituting Eq. (6.76) into Eq. (6.72) yields

Kym = 2H0m, (6.77)

H0 = 1

2
Ky. (6.78)

Substituting Eq. (6.78) into Eqs. (6.73) and (6.74) yields

H = 1

2
Kyax for z > 0, (6.79)

H = −1

2
Kyax for z < 0. (6.80)

In general, the relationship between the magnetic field intensity and infinity sheet
current density is

H = 1

2
K × an, (6.81)

where an is the unity vector which is normal to the sheet.
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Fig. 6.9 An infinite sheet
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Example 6.2 The current densities of the planes z = 0 and z = 3 are given as
K = −5ax A/m and K = 5ax A/m, respectively. Determine the magnetic field at
point (1, 2, 1).

Solution The parallel infinite current sheets are shown in Fig. 6.9. The planes follow
the condition 0 < z = 1 < 3. The magnetic field intensity of the following angles
can be determined as

H0 = 1

2
K × an = 1

2
(−5ax) × az = 2.5ay.

The planes are within the condition z = 3 > 1 > 0. The magnetic field intensity of
the following angles can be determined as

H3 = 1

2
K × an = 1

2
(5ax) × (−az) = 2.5ay.

Total magnetic field intensity is

H = H0 + H3 = 5ay A/m.

Practice Problem 6.2 The current densities of the planes z = 0 and z = 5 are given
as K = −20ax A/m and K = 20ax A/m, respectively. Determine the magnetic field
at point (1, 2, 4).

6.8 Curl of a Magnetic Field

A closed small rectangle whose incremental lengths �z and �y are shown in
Fig. 6.10. The line integral of H around the path 1 − 2 − 3 − 4 is equal to four
times of H.�l on each side of the rectangle. For side 1 − 2, the following relation is:

(H.�l)1−2 = (Hy)1−2�y. (6.82)
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Fig. 6.10 A small rectangle
with current densities
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The magnetic field intensity for side 1–2 is

(Hy)1−2 = Hy. (6.83)

Substituting Eq. (6.83) into Eq. (6.82) yields

(H.�l)1−2 = Hy�y. (6.84)

For side 2 − 3, the following equation can be written as

(H.�l)2−3 = (Hz)2−3(�z). (6.85)

The magnetic field intensity for side 2 – 3 is

(Hz)2−3 = Hz + ∂Hz

∂y
�y. (6.86)

Substituting Eq. (6.86) into Eq. (6.85) yields

(H.�l)2−3 = Hz�z + ∂Hz

∂y
�z�y. (6.87)

For side 3 − 4, the relation is

(H.�l)3−4 = (Hy)4−3(−�y). (6.88)

The magnetic field intensity for side 4 – 3 is

(Hy)4−3 = Hy + ∂Hy

∂z
�z. (6.89)

Substituting Eq. (6.89) into Eq. (6.88) provides

(H.�l)3−4 = −Hy�y − ∂Hz

∂z
�y�z. (6.90)

For side 4 − 1, the following relation is:

(H.�l)4−1 = (Hz)1−4(−�z). (6.91)
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The magnetic field intensity for side 1 – 4 is

(Hz)1−4 = Hz. (6.92)

Substituting Eq. (6.92) into Eq. (6.91) provides

(H.�l)4−1 = −Hz�z. (6.93)

Adding Eqs. (6.84), (6.87), (6.90) and (6.93) yields
∮

l(x)
H.dl = Hy�y + Hz�z + ∂Hz

∂y
�y�z − Hy�y − ∂Hy

∂z
�y�z − Hz�z,

(6.94)

∮

l(x)
H.dl =

(
∂Hz

∂y
− ∂Hy

∂z

)
�y�z. (6.95)

Dividing Eq. (6.95) by �y�z provides
∮

l(x) H.dl

�y�z
=
(

∂Hz

∂y
− ∂Hy

∂z

)
= I

�y�z
, (6.96)

lim
�y�z→0

∮
l(x) H.dl

�y�z
=
(

∂Hz

∂y
− ∂Hy

∂z

)
= lim

�y�z→0

(
I

�y�z

)
, (6.97)

∂Hz

∂y
− ∂Hy

∂z
= Jx. (6.98)

Similarly, the components of the current density in the y and z directions are

∂Hx

∂z
− ∂Hz

∂x
= lim

�z�x→0

∮
l(y) H.dl

�z�x
= Jy , (6.99)

∂Hy

∂x
− ∂Hx

∂y
= lim

�x�y→0

∮
l(z) H.dl

�x�y
= Jz. (6.100)

From Eqs. (6.98), (6.99) and (6.100), the rectangular form of the curl can be written
as

∇ × H =
(

∂Hz

∂y
− ∂Hy

∂z

)
ax +

(
∂Hx

∂z
− ∂Hz

∂x

)
ay +

(
∂Hy

∂x
− ∂Hx

∂y

)
az = J.

(6.101)

In determinant format, Eq. (6.101) can be written as

∇ × H =

∣∣∣∣∣∣∣∣∣

ax ay az

∂

∂x

∂

∂y

∂

∂z
Hx Hy Hz

∣∣∣∣∣∣∣∣∣
. (6.102)
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From Eq. (6.101), the point form of Ampere’s circuital law can be written as

J = ∇ × H. (6.103)

Equation (6.103) is the second of Maxwell’s four equations.
The curl expansions for the cylindrical coordinate is

∇ × H = 1

ρ

∣∣∣∣∣∣∣∣∣

aρ ρaφ az

∂

∂ρ

∂

∂φ

∂

∂z
Hρ ρHφ Hz

∣∣∣∣∣∣∣∣∣
, (6.104)

∇ × H =
(

1

ρ

∂Hz

∂φ
− ∂Hφ

∂z

)
aρ +

(
∂Hρ

∂z
− ∂Hz

∂ρ

)
aφ + 1

ρ

(
∂(ρHφ)

∂ρ
− ∂Hρ

∂φ

)
az.

(6.105)

The curl expansions for the spherical coordinates can be written as

∇ × H = 1

r2 sin θ

∣∣∣∣∣∣∣∣∣

ar raθ r sin θaφ

∂

∂r

∂

∂θ

∂

∂φ

Hr rHθ r sin θHφ

∣∣∣∣∣∣∣∣∣
, (6.106)

∇ × H = 1

r sin θ

[
∂

∂θ

(
Hφ sin θ

)− ∂Hθ

∂φ

]
ar + 1

r

[
1

sin θ

∂Hr

∂φ
− ∂(rHφ)

∂r

]

aθ + 1

r

[
∂(rHθ )

∂r
− ∂Hr

∂θ

]
aφ. (6.107)

Example 6.3 The magnetic field intensity in Cartesian coordinates is given as H =
x2y2z2ax + xyzay − 2x3y3zaz A/m. Determine the value of the current density at
point P (1,1, 1).

Solution The following components can be written as:

Hx = x2y2z2,

∂Hx

∂y
= 2yz2x2,

∂Hx

∂z
= 2zy2x2,

Hy = xyz,

∂Hy

∂x
= yz,

∂Hy

∂z
= xy,
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Hz = −2x3y3z,

∂Hz

∂x
= −6x2y3z,

∂Hz

∂y
= −6x3y2z.

The current density can be determined as

∇ × H =
(

∂Hz

∂y
− ∂Hy

∂z

)
ax +

(
∂Hx

∂z
− ∂Hz

∂x

)
ay +

(
∂Hy

∂x
− ∂Hx

∂y

)
az = J,

J = (−6x3y2z − xy)ax + (2x2y2z + 6x2y3z)ay + (yz − 2yz2x2)az.

At point P (1,1, 1), the value of the current density is

J = −7ax + 8ay − az A/m2.

Example 6.4 The magnetic field intensity in the cylindrical coordinates is given by

H = 1

ρ
sin (0.3φ)aρ + sin zaφ + cos φaz A/m. Determine the value of the current

density at point P (1.2, 80◦, 0.3).

Solution The following components can be written as:

∂Hz

∂φ
= − sin φ,

∂Hz

∂ρ
= 0,

∂Hφ

∂z
= cos z,

∂(ρHφ)

∂ρ
= ∂

∂ρ
(ρ sin z) = sin z,

∂Hρ

∂z
= 0,

∂Hρ

∂φ
= 0.3

ρ
cos 0.3φ.

The curl of the magnetic field is

∇ × H =
(

− 1

ρ
sin φ − cos z

)
aρ + (0 − 0) aφ + 1

ρ

(
sin z − 0.3

1.2
cos 0.3φ

)
az.

The value of the current density at point P (1.2, 80◦, 0.3) is

J =
(

− 1

1.2
sin 80◦ − cos 0.3

)
aρ + 1

1.2

(
sin 0.3 − 0.3

1.2
cos 24◦

)
az,
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J = (−0.8206 − 0.9553) aρ + 1

1.2
(0.2955 − 0.2283) az,

J = −1.78aρ + 0.056az A/m2.

Example 6.5 The magnetic field intensity in the spherical coordinates is given by
H = r sin φar + sin φaθ + 2raφ A/m. Determine the value of the current density at
point P (2, 40◦, 60◦).

Solution The following components can be written as

∂

∂θ
( sin θHφ) = ∂

∂θ
(2r sin θ ) = 2r cos θ ,

∂

∂r
(rHφ) = ∂

∂r
(r2r) = 4r ,

∂Hθ

∂φ
= ∂

∂φ
( cos φ) = − sin φ,

∂

∂r
(rHθ ) = ∂

∂r
(r cos φ) = cos φ,

∂Hr

∂φ
= ∂

∂φ
(r sin φ) = r cos φ,

∂Hr

∂θ
= ∂

∂θ
(r sin φ) = 0,

∇ × H = 1

r sin θ

[
∂

∂θ
(Hφ sin θ ) − ∂Hθ

∂φ

]
ar + 1

r

[
1

sin θ

∂Hr

∂φ
− ∂(rHφ)

∂r

]
aθ

+ 1

r

[
∂

∂r
(rHθ ) − ∂Hr

∂θ

]
aφ ,

J = 1

r sin θ
[2r cos θ + sin φ]ar + 1

r

[
1

sin θ
r cos φ − 4r

]
aθ

+ 1

r
[cos φ − 0]aφ.

At point P (2, 40◦, 60◦), the value of the current density is

J = 1

2 sin 40◦ [2r cos 40◦ + sin 60◦]ar

+ 1

2

[
1

sin 40◦ 2 cos 60◦ − 4 × 2

]
aθ + 1

2
[cos 60◦ − 0]aφ ,

J = 3.057ar − 3.22aθ + 0.25aφ A/m2.

Practice Problem 6.3 The magnetic field intensity in the Cartesian coordinates is
given by H = yzax + (z2 + x2)ay + 5x2yaz A/m. Determine the value of the current
density at point P (1,1, 1).
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Practice Problem 6.4 The expression of the magnetic field intensity in the cylin-
drical coordinates is given by H = z cos (0.2φ)aρ + sin (0.1z)aφ + ρ sin φaz A/m.
Calculate the value of the current density at point P (1.5, 35◦, 2.3).

Practice Problem 6.5 The magnetic field intensity in the spherical coordinates is
given by H = r cos φar + sin φaθ + r2aφ A/m. Calculate the value of the current
density at point P (1, 60◦, 90◦).

6.9 Scalar and Vector Magnetic Potential

In an electrostatic field, an electric field is normally determined by taking the gradient
of the voltage. This relation is given by E = −∇V. The magnetic field intensity
is defined as the negative gradient of magnetomotive force or the scalar magnetic
potential, i.e. H = −∇Vm It has been seen that the divergence of the curl of any
vector field is identically zero, i.e.

∇.∇ × A = 0, (6.108)

where A is the magnetic vector potential and its SI unit is Wb/m or Tm.
Equating Eqs. (6.13) and (6.108) yields

∇.B = ∇.∇ × A, (6.109)

B = ∇ × A. (6.110)

Substituting Eq. (6.110) into Eq. (6.14) yields

∇ × ∇ × A = μ0J. (6.111)

The following vector identity can be written as:

∇ × (∇ × A) = ∇(∇.A) − ∇2A, (6.112)

∇2A = ∇(∇.A) − ∇ × (∇ × A). (6.113)

Substituting Eq. (6.111) into Eq. (6.113) provides

∇2A = ∇(∇.A) − μ0J. (6.114)

According to Eq. (6.13), the following relation can be written as

∇.A = 0. (6.115)

Substituting Eq. (6.115) into Eq. (6.114) yields

∇2A = −μ0J (6.116)
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Equation (6.116) is known as Poisson’s equation for the vector magnetic potential
and the current density. In Cartesian coordinates, the three scalar equations can be
written as

∇2Ax = −μ0Jx , (6.117)

∇2Ay = −μ0Jy , (6.118)

∇2Az = −μ0Jz. (6.119)

Mathematically, Eqs. (6.117)–(6.119) are also the same as the Poisson’s equation.
In free space, the Poisson’s equation is

∇2V = − ρ

ε0
. (6.120)

The particular solution for V of Eq. (6.120) is

V = 1

4πε0

∫

v′

ρ

R
dv′. (6.121)

According to Eq. (6.121), the solutions for the components of A are,

Ax = 1

4π

∫

v′

μ0Jx

R
dv′, (6.122)

Ay = 1

4π

∫

v′

μ0Jy

R
dv′, (6.123)

Az = 1

4π

∫

v′

μ0Jz

R
dv′. (6.124)

Combining Eqs. (6.122)–(6.124) yields

A = μ0

4π

∫

v′

J
R

dv′. (6.125)

Example 6.6 The magnetic vector potential in a given region is A = e−mx sin αy az

Wb/m. Determine the magnetic flux density.

Solution The previous equations from the magnetic vector potential can be written
as:

Ax = 0, Ay = 0, Az = e−mx sin αy,
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The curl of a magnetic vector potential is

∇ × A =

∣∣∣∣∣∣∣∣∣

ax ay az

∂

∂x

∂

∂y

∂

∂z
Ax Ay Az

∣∣∣∣∣∣∣∣∣
,

B =
(

∂Az

∂y
− ∂Ay

∂z

)
ax −

(
∂Az

∂x
− ∂Ax

∂z

)
ay +

(
∂Az

∂y
− ∂Ay

∂z

)
az,

B = ∂Az

∂y
ax − ∂Az

∂x
ay ,

B = ∂

∂y
(e−mx sin αy)ax − ∂

∂x
(e−mx sin αy)ay ,

B = αe−mx cos αyax + me−mx sin αyax Wb/m2.

Practice Problem 6.6 The magnetic vector potential for a specific region is given
by A = zxax + yzay Wb/m. Calculate the magnetic flux density.

6.10 Magnetization

In the electric field, the polarizations of materials have already been discussed to
understand electric dipole moment. The magnetization is also very important to
understand magnetic dipole moment. The magnetization of a magnetic field is defined
as the magnetic dipole moment per unit volume. It is represented by the letter M and
its unit is A/m. The magnetic dipole moment with a small volume �v is shown in
Fig. 6.11. Let us consider N atoms within a small volume �v The magnetic dipole
moment for the kth atom is

M = lim
�v→0

N∑
k=1

mk

�v
. (6.126)

The magnetization or magnetic dipole moment is normally produced by the bond
current. This bond current is generated along the surface of the magnetized material
due to inner small current loops. According to the point form of Ampere’s law, the
following equation can be written as:

∇ × M = Jb. (6.127)

In this case, the total current density is the combination of bond current and free
current densities. Therefore, the total current density can be written as

J = Jb + Jf . (6.128)
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Fig. 6.11 An overhead view
of magnetized material with
small current loops

B

Δv

But it has already been studied that the current density is equal to the curl of magnetic
field intensity and it can be written as

J = ∇ × H. (6.129)

Substituting the expression H = B
μ0

and Eq. (6.129) into Eq. (6.128) yields

∇ × B
μ0

= Jb + Jf . (6.130)

Again, substituting Eq. (6.127) into Eq. (6.130) provides

∇ × B
μ0

= ∇ × M + Jf , (6.131)

∇ ×
(

B
μ0

− M
)

= Jf . (6.132)

Comparing Eqs. (6.129) and (6.132) yields

B
μ0

− M = H, (6.133)

B = μ0(M + H). (6.134)

But the magnetization is directly proportional to the magnetic field intensity for a
linear magnetic material. In this case, it can be written as

M = χmH. (6.135)

where χm is the magnetic susceptibility.
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Substituting Eq. (6.135) into Eq. (6.134) yields

B = μ0(1 + χm)H. (6.136)

Again, the general expression of magnetic flux density is

B = μ0μrH. (6.137)

Comparing Eqs. (6.136) and (6.137), the following expression can be written as

μr = 1 + χm. (6.138)

In general, the expression of relative permeability is

μr = 1 + χm = μ

μ0
, (6.139)

where μ = μ0μr is the absolute permeability and is measured in H/m.
Based on the susceptibility, magnetic materials are classified as diamagnetic,

paramagnetic and ferromagnetic. These are discussed below:

Diamagnetic Materials Materials that have a very small negative susceptibility
(χm ≤ 0) and μr ≤ 1 are known as diamagnetic materials. Copper, gold, diamond,
silicon, bismuth and silver are examples of diamagnetic materials. These materials
are weakly affected by a magnetic field and hold linear properties. In the absence of
an external magnetic field, these materials do not retain magnetic fields.

Paramagnetic Materials Materials that have a very small positive susceptibility
(χm > 0) and μr ≥ 0 are known as paramagnetic materials. Potassium, oxygen and
yttrium oxide are examples of paramagnetic materials. These materials are slightly
attracted by the magnetic field and do not retain this property after removing the
external field.

Ferromagnetic Materials Materials that have a very large positive susceptibility
(χm 
 0) and μr 
 1are known as ferromagnetic materials. Nickel oxide (NiO),
ferrous sulfide (FeS), cobalt chloride (CoCl2) are examples of ferromagnetic materi-
als. These materials are strongly magnetized by an external magnetic field and retain
this property when the external field is removed. These materials are nonlinear.

Example 6.7 The magnetic flux density of a ferrite material is found to be 0.08 T.
Determine the (a) susceptibility, (b) magnetic field intensity and (c) magnetization.
Consider that the material operates in linear mode and μr = 40.

Solution (a) The value of the susceptibility is

χm = μr − 1 = 40 − 1 = 39.

(b) The value of the magnetic field intensity is

H = B
μ0μr

= 0.08

4π × 10−7 × 40
= 1591.55 A/m.
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a

ΔhH1t

Δw

H1

H2 b

cd

H2t

Medium 1

Medium 2

1μ
2μ

B1n

B2n

⊗

n

n

Fig. 6.12 A small box with two media

(c) The magnetization can be determined as

B = μ0(H + M),

M = B
μ0

− H = 0.08

4π × 10−7 − 1591.55 = 62070.43 A/m.

Practice Problem 6.7 The permeability and the magnetic field intensity of a mag-
netic material are given as 1.8 × 10−6 H/m and 125 A/m. Determine the value of the
magnetization.

6.11 Magnetic Field Boundary Conditions

Figure 6.12 represents a small box of length �w and height �h. This box is separated
by an imaginary line. This type of boundary of two media is used to derive the relations
between normal and tangential components of the magnetic flux density. Consider
that B1n is the outward normal component of B from the medium 1 and that B2n is
the inward normal component of B to the medium 2. According to Gauss’s law, the
total magnetic flux over a closed surface equals zero. Then applying Gauss’s law to
the box as shown in Fig. 6.12, the following relation can be written as:

∮

abcd

B. dS = 0, (6.140)

Bn1(�w) + Bn2(−�w) = 0, (6.141)

Bn1 − Bn2 = 0, (6.142)

Bn1 = Bn2. (6.143)
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From Eq. (6.143), it is concluded that the normal component of the magnetic flux
density is continuous across the boundary between two media.

For the linear medium, the following relations for two media can be written as:

B1 = μ1H1, (6.144)

B2 = μ2H2. (6.145)

Substituting Eqs. (6.144) and (6.145) into Eq. (6.143) yields

μ1Hn1 = μ2Hn2, (6.146)

Hn1 = μ2

μ1
Hn2. (6.147)

From Eq. (6.147), it is concluded that the normal component of H is discontinuous

by the ratio
μ2

μ1
.

Again, consider that H1t and H2t are the tangential components of H for medium
1 and medium 2, respectively. Applying Ampere’s circuital law (

∮
H .dl = I ) to the

closed surface yields

H1t�w − H2t�w = I , (6.148)

H1t − H2t = I

�w
= K , (6.149)

where K is the linear current density at the boundary. In terms of magnetic flux
density, Eq. (6.149) can be modified as

B1t

μ1
− B2t

μ2
= K. (6.150)

If there is no current density at the boundary, then Eqs. (6.149) and (6.150) can be
modified as

H1t = H2t , (6.151)

B1t = μ1

μ2
B2t . (6.152)

From Eq. (6.151), it is concluded that the tangential components of H are continuous
across the boundary without a current density. The tangential components of B are

discontinuous at the boundary by the ratio
μ1

μ2
as shown in Eq. (6.152).
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Fig. 6.13 A schematic for two media

6.12 Magnetic Field of Two Media

Consider μ1 and μ2 are the permeability for medium 1 and medium 2. Again
consider that the magnetic field intensity of the medium 1, H1 and the medium 2,
H2 makes an angle, respectively, of α1 and α2 with the normal as shown in Fig. 6.13.
For medium 1, the following equations can be written as:

cos (90◦ − α1) = H1t

H1
, (6.153)

H1t = H1 sin α1, (6.154)

sin (90◦ − α1) = H1n

H1
, (6.155)

H1n = H1 cos α1. (6.156)

Similarly, for medium 2, the following equations can be written as:

sin α2 = H2t

H2
, (6.157)

H2t = H2 sin α2, (6.158)

cos α2 = H2n

H2
, (6.159)

H2n = H2 cos α2. (6.160)

Substituting Eqs. (6.154) and (6.158) into Eq. (6.151) yields

H1 sin α1 = H2 sin α2. (6.161)
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Again, substituting Eqs. (6.156) and (6.160) into Eq. (6.146) provides

μ1H1 cos α1 = μ2H2 cos α2. (6.162)

Dividing Eq. (6.161) by Eq. (6.162) yields

tan α1

μ1
= tan α2

μ2
, (6.163)

α2 = tan−1

(
tan α1

μ2

μ1

)
. (6.164)

Equation (6.164) represents the refraction property of the magnetic field. The
magnitude of the magnetic field intensity in medium 2 can be determined as

H2 =
√

H2t
2 + H2n

2. (6.165)

Substituting Eqs. (6.158) and (6.160) into Eq. (6.165) provides

H2 =
√

(H2 cos α2)2 + (H2 sin α2)2. (6.166)

Again, substituting Eqs. (6.161) and (6.162) into Eq. (6.166) yields

H2 =
√

(H1 sin α1)2 +
(

μ1

μ2
H1 cos α1

)2

, (6.167)

H2 = H1

√
sin2α1

(
μ1

μ2
cos α1

)2

. (6.168)

6.13 Magnetic Circuit

The circuit followed by the magnetic flux is known as magnetic circuit, and the
circuit followed by the electric current is known as the electric circuit. The electric
and magnetic potentials between any two given points can be written as

Veab =
∫ b

a

E .dL, (6.169)

Vmab =
∫ b

a

H.dL. (6.170)

The expressions for the current and the magnetic flux can be written as

I =
∮

S

J.dS, (6.171)
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Fig. 6.14 Magnetic circuit
with two materials φ

N

I l2

l1

l2

l1

φ =
∮

S

B.dS. (6.172)

The resistance with length l and a cross-sectional area of A is given as

R = l

σA
. (6.173)

The reluctance of a magnetic circuit can be written as

� = l

μA
, (6.174)

where σ and μ are the conductivity and permeability of the material. The resistance
and reluctance can also be defined in an alternative way as

R = V

I
(6.175)

� = �
φ

. (6.176)

6.14 Series Magnetic Circuit

The same magnetic flux flows within a different materials series magnetic circuit.
Figure 6.14 shows a series magnetic circuit with two different materials, whose mean
length are l1 and l2, respectively. The respective cross-sectional areas are A1 and A2.

The absolute permeability of the two materials are μ1 and μ2, respectively. The left
side of the core is wound by N turns and it carries a current of I ampere. The
equivalent circuit of the series magnetic circuit is shown in Fig. 6.15.

Applying the magnetic potential drop around the circuit yields

NI = H1l1 + H2l2. (6.177)
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Fig. 6.15 Equivalent series
magnetic circuit

ℜm1

ℜm2
ℑ= NI

φ

Substituting B = μH in Eq. (6.177) provides

NI = B1

μ1
l1 + B2

μ2
l2. (6.178)

Rearranging Eq. (6.178) in the following way:

NI = B1A1
l1

μ1A1
+ B2A2

l2

μ2A2
. (6.179)

and substituting the expressions of the reluctance, � = l

μA
and the flux φ = B1A1 =

B2A2 in Eq. (6.179) yields

� = φ�m1 + φ�m2 = φ(�m1 + �m2), (6.180)

� = φ�m, (6.181)

where the expression of the total reluctance is

�m = (�m1 + �m2). (6.182)

Example 6.8 A series magnetic circuit with the required dimensions is shown
in Fig. 6.16. Determine the flux, flux density and field intensity if the relative
permeability of a magnetic material is 850.

Solution The value of magnetomotive force is

� = NI = 300 × 0.3 = 90 At.

The value of the mean length of the path is

lc = (0.20 − 0.02)4 = 0.72 m.

The value of the cross-sectional area is

A = 0.02 × 0.02 = 0.0004 m2.
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Fig. 6.16 Series magnetic
circuit with a coil

I - 0.3A

N = 300

0.20 m

0.20 m

0.02 m

φ

The value of the reluctance is

�m = lc

μ0μrA
= 0.72

4π × 10−7 × 850 × 0.0004
= 1.69 × 106 At/Wb.

The value of the flux is

φ = �
�m

= 90

1.69 × 106 = 53.25 × 10−6 Wb.

The value of the magnetic flux density is

B = φ

A
= 53.25 × 10−6

0.0004
= 0.0025 Wb/m2.

The value of the magnetic field intensity is

H = B

μ0μr

= 0.0025

4π × 10−7 × 850
= 2936.21 A/m.

Practice Problem 6.8 The length, width and height of a magnetic circuit as shown
in Fig. 6.16 are changed to 0.3 m, 0.015 m and 0.3 m, respectively. The relative per-
meability of a magnetic material is 900. Find the flux and the magnetic field intensity.

6.15 Parallel Magnetic Circuit

The circuit is said to be a parallel magnetic circuit when the main flux is divided into
two or more branches in the magnetic core. Figure 6.17 shows a parallel magnetic
circuit, where the magnetomotive force is connected to the left limb of the circuit. This
magnetomotive force generates the flux, φ, and this flux is divided into φ1 and φ2,
respectively, to the middle and right limbs whose lengths are l1 and l2.

Consider H , H1 and H2 are the magnetic field intensity of the left, middle and
right limbs of the parallel magnetic, respectively. The equivalent circuit of a parallel
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Fig. 6.17 Parallel magnetic
circuit

l1 l2
lN

I

H1 H2
2φ1φ

φ

Fig. 6.18 Equivalent parallel
magnetic circuit

2φ1φ

φ

ℜm

ℜm1 ℜm2

ℑ = NI

magnetic circuit is shown in Fig. 6.18, and the magnetic potential drop around the
equivalent circuit is

� − Hl = H1l1 = H2l2. (6.183)

The expression of the total flux in this circuit is

φ = φ1 + φ2. (6.184)

From the basic definition of reluctance, the following relation can be written as

Hl = φ�m. (6.185)

Using Eqs. (6.183) and (6.185) yields

� − �mφ = �m1φ1 = �m2φ2. (6.186)

Equation (6.186) can be modified as

� = �mφ + �m1φ1 = �mφ + �m2φ2. (6.187)

The total reluctance of �m1 and �m2 is

�mt = �m1�m2

�m1 + �m2
. (6.188)

Equation (6.188) is similar to the parallel electric circuit.
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N

I
φ

1φ

20 cm 20 cm

10 cm 4 Wb

Fig. 6.19 Parallel magnetic circuit

Example 6.9 A parallel magnetic circuit is shown in Fig. 6.19 and its cross-sectional
area is 9 m2. The 400 turns is wound on the left limb and the flux in the right limb
is found to be 4 Wb. Assume the relative permeability is 500 and calculate the value
of the current.

Solution The magnetic potential drop in both the middle and the right limb will be
the same. This relation is

φ1�m1 = φ2�m2,

φ1
l1

μA
= φ2

l2

μA
,

φ1
10

μA
= 4

20

μA
,

φ1 = 8 Wb

The value of the total flux is

φ = 8 + 4 = 12 Wb.

The flux density in the left limb is

B1 = φ

A
= 12

9
= 1.33 Wb/m2.

The magnetic field intensity is

H1 = B1

μ0μr

= 1.33

4π × 10−7 × 500
= 1591.55 A/m.

The magnetomotive force in this case is

�1 = H1l = 1591.55 × 0.20 = 318.31 At.



6.16 Magnetic Circuit with Air Gap 173

The magnetic flux density in the right limb is

B2 = φ2

A
= 4

9
= 0.44 Wb/m2.

The magnetic field intensity is

H2 = B2

μ0μr

= 0.44

4π × 10−7 × 500
= 700.28 A/m.

The magnetomotive force in this case is

�2 = H2l = 700.28 × 0.20 = 140.06 At.

The value of the total magnetomotive force is

�t = NI = 1591.55 + 140.06 = 1731.61 At.

The value of the current is

I = 1731.61

400
= 4.33 A.

Practice Problem 6.9 Figure 6.19 shows a parallel magnetic circuit and its cross-
sectional area is 20 m2. The right limb having the flux 6 Wb and the left limb is
wound with N number of turns. Calculate the value of N if 20 A current flows in the
coil and the relative permeability is 700.

6.16 Magnetic Circuit with Air Gap

An air gap is defined as the gap between two parts of a magnetic material. The air gap
is normally filled by a nonmagnetic material. In the case of a three-phase induction
motor, the rotor moves freely within a given small air gap. The flux crosses directly
from one bar to the other at the middle of an air gap, whereas it bends outward and
reduces the magnetic flux density at the edges of the air gap as shown in Fig. 6.20.
This phenomenon is known as fringing. Figure 6.21 shows a magnetic circuit with
a small air gap. Consider the mean length, permeability and cross-sectional area of
the core are lc, μ and Ac, respectively. The above parameters for the air gap are
represented, respectively, by lag , μ0 and Aag.

The core and the air gap are connected in series in a composite circuit. As a
result, the same flux will flow through this circuit and the equivalent circuit can be
considered as a series magnetic circuit, which is shown in Fig. 6.22. The magnetic
flux density for the core can be written as

Bc = φ

Ac

. (6.189)



174 6 Static Magnetic Field

Fig. 6.20 Two magnetic bars
with an air gap lg

fringing

Ag

Fig. 6.21 Magnetic circuit
with an air gap

I

N

lag

lc

φ

Fig. 6.22 Equivalent circuit

ℜag

ℜc

ℑ = NI

φ

The magnetic flux density for the air gap is

Bag = φ

Aag

. (6.190)

The total magnetomotive force is

�t = �c + �ag = Hclc + Haglag. (6.191)

Substituting the expression of H = B

μ
into Eq. (6.191) provides

�t = Bc

μ
lc + Bag

μ0
lag. (6.192)
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Rearranging Eq. (6.192) yields

�t = φ

μAc

lc + φ

μ0Aag

lag , (6.193)

�t = φ

(
lc

μAc

+ lag

μ0Aag

)
, (6.194)

�t = φ(�c + �ag), (6.195)

�t = φ�t , (6.196)

where the total reluctance, reluctance for the core and the air gap are

�t = �c + �ag , (6.197)

�c = lc

μAc

. (6.198)

�ag = lag

μ0Aag

. (6.199)

The reluctance of the core will be very small if the permeability of the core is infinity.
As a result, it can be neglected for the analysis and the total magnetomotive will then
be expressed as

�t = φ �ag. (6.200)

Example 6.10 The mean length and cross-sectional area of an iron ring are 35 cm
and 15 cm2 respectively. There is an air gap in the iron ring whose length is 0.5 mm.
The ring is wound by 250 turns and carries a current of 2 A which produces a flux
of 0.5 mWb. Find the reluctance and the relative permeability of the iron ring.

Solution The value of the magnetic flux density is

B = φ

A
= 0.5 × 10−3

15 × 10−4 = 0.33 Wb/m2.

The value of the total magnetomotive force is

� = 250 × 2 = 500 At.

The value of the magnetizing force is

H = B

μ0
= 0.33

4π × 10−7 = 262.61 × 103 A/m.

The value of the magnetomotive force is

�ag = Hl = 262.61 × 103 × 0.5 × 10−3 = 131.31 At.
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Fig. 6.23 Magnetic circuit
with an air gap

N = 400

I

4 cm

4 cm

0.05 cm

8 cm

The magnetomotive force for the iron ring is,

�i = � − �ag = 500 − 131.31 = 368.69 At.

The value of the magnetic field intensity for the iron part is

Hi = �i

l
= 368.69

0.35
= 1053.40 A/m.

The value of the relative permeability of the iron is

μr = B

μ0Hi

= 0.33

4π × 10−7 × 1053.40
= 249.29.

Example 6.11 Figure 6.23 shows a magnetic circuit with an air gap, and the
cross-sectional area of the core is 2 cm2. The core is made of iron whose relative per-
meability is 4,000. If the total flux of the circuit is 0.5 mWb, find the current in the coil.

Solution For an air gap:

�mg = l

μA
= 0.0005

4π × 10−7 × 2 × 10−4 = 1.98 × 106 At/Wb

For the iron part: the mean length is

l = 4[8 − 4 − 4 + (2 + 2)] − 0.05 = 15.95 cm,

μ = μ0μr = 4π × 10−7 × 4000 = 0.0050.

The reluctance of the iron is

�mi = l

μA
= 0.16

0.0050 × 2 × 10−4 = 1.6 × 105 At/Wb.

The value of the total reluctance is

�mt = �mg + �mi = 2.15 × 106 At/Wb.
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Fig. 6.24 Magnetic circuit
with an air gap and a coil

N = 1400

I

3 cm

3 cm

1 cm

14 cm

Fig. 6.25 Magnetic circuit
with a small air gap

I

N = 1500

lag = 2 mm

lc

φ

4 cm

15 cm

The value of the current can be determined as

φ = �
�mt

,

0.5 × 10−3 = 400 × I

2.15 × 106 ,

I = 2.69A.

Practice Problem 6.10 Figure 6.24 shows a magnetic circuit with an air gap and a
coil wound by 1,400 turns. The cross-sectional area of the core is 4 cm2. The core
is made of iron and the relative permeability of the core is 4,000. Consider the total
flux of the circuit is 1.5 Wb. Find the current in the coil.

Practice Problem 6.11 A magnetic circuit with an air gap is shown in Fig. 6.25.
The cross-sectional area of the core is 3 cm2 and it is wound by 1,500 turns. The
core is made of iron and the relative permeability of the core is 4,000. Calculate the
current in the coil if the total flux of the circuit is 4.5 mWb.
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Fig. 6.26 Schematic of
hysteresis curve
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6.17 Hysteresis Curve

The relationship between the magnetic flux density (B) and magnetic field intensity
(H ) is known as hysteresis curve. The hysteresis phenomena occur in magnetic
and ferromagnetic materials, in which a lag occurs between the application and the
removal of the field. The hysteresis curve is obtained by plotting the magnetic flux
density in the abscissa or x-axis and the magnetic field intensity in the ordinate, or
y-axis. To explain the hysteresis curve, consider the following equation:

H = NI

l
. (6.201)

If the current in the coil is zero, then the value of H = 0 and the curve will start
from the zero point of the axes. If we increase the value of the current from zero to
some value, then the value of H will increase as shown in Fig. 6.26. If the magnetic
field intensity H is increased until saturation due to the increasing current, then the
curve will reach up to the maximum value of the material. After that if the magnetic
field intensity increases, the value of the magnetic flux density will not increase,
meaning that the material has reached the saturation region. Now, if the magnetic
field intensity is slowly decreased to some value, the magnetic flux density also
decreases. This decreasing value is higher than the previous one and the curve will
move through another path. If the magnetic field intensity is reduced to zero, then
it is seen that the magnetic core sustains some flux density (OC). This remaining
flux density is known as the retentivity of the material. Again, if the magnetic field
intensity increases in the reverse direction, then the magnetic flux density will vanish
at point D. This value (OD) of the magnetic field is required to demagnetize the
material. This amount of magnetic field intensity is known as coercive force. If the
core magnetizes in the same direction, the magnetic flux density will be developed
in the opposite direction and it will increase slowly with increasing the value of
magnetic field intensity.
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Fig. 6.27 Inductor symbols air core iron core

Fig. 6.28 A simple magnetic
circuit

I

N

φl A

The value of the magnetic flux density will decrease if the value of the magnetic
field intensity is reduced. The complete hysteresis curve will be obtained if this
process is continued. The hysteresis curve normally varies in shape from one material
to another material.

6.18 Inductance and Mutual Inductance

The property of a coil that opposes any change of current flowing through the coil
is known as inductance. A current will flow in a coil when it is connected across the
source. The flux will be associated due to this current. Therefore, the inductance is
defined as the flux linkage per unit current. Mathematically, it can be expressed as

L = ψ

i
. (6.202)

The SI unit of inductance is Henry (H) and the symbol of inductors is shown in
Fig. 6.27. Figure 6.28 shows a magnetic circuit, which contains N number of turns.
The length and cross-sectional area of the core are l and A, respectively.

The current i in the core creates the flux φ and Eq. (6.202) can be modified as

L = Nφ

i
. (6.203)

According to the Faraday’s laws of electromagnetic induction, the voltage induced
across the coil can be written as

e = dψ

dt
(6.204)
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Substituting Eq. (6.202) into Eq. (6.204) yields

e = d(Li)

dt
= L

di

dt
. (6.205)

Again, substituting ψ = Nφ into Eq. (6.204) provides

e = d(Nφ)

dt
= N

dφ

dt
. (6.206)

Rearranging Eq. (6.206) yields

e = N
dφ

di

di

dt
. (6.207)

Comparing Eqs. (6.205) and (6.207) provides

e = L
di

dt
, (6.208)

where the expression of inductance is

L = N
dφ

di
. (6.209)

According to definition, the expression of flux is

φ = �
� . (6.210)

Substituting the expressions of magnetomotive force and reluctance into Eq. (6.210)
yields

φ = Ni
l

μA

= NμAi

l
. (6.211)

Differentiating Eq. (6.211) with respect to i provides

dφ

di
= NμA

l
. (6.212)

Substituting Eq. (6.212) into Eq. (6.209) yields

L = N2μA

l
= N2

� . (6.213)

The magnetic energy stored in an inductor is derived as

Wm = 1

2
LI 2. (6.214)
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Fig. 6.29 Mutual fluxes of a
magnetic circuit
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From energy point of view, the expression of inductance from Eq. (6.214) can be
written as

L = 2Wm

I 2
. (6.215)

Again, consider that the magnetic circuit contains two coils, which are closed to each
other. The self-inductances of the coils can be represented as L11(L1) and L22(L2),
respectively. The mutual flux φ12 is the flux passing to the first circuit due to the
current I2 in the second circuit. Similarly, the mutual flux φ21 is the flux passing to
the second circuit due to the current I1 in the first circuit. The self and mutual fluxes
are shown in Fig. 6.29.

The magnetic flux density B1 is created due to the current I1 in the first circuit,
whose area is S1.

Some portion of the flux due to B1 will link to the second circuit whose area is
bounded by S2 and the expression of the mutual flux is

φ12 =
∮

S2

B1.dS2. (6.216)

The magnetic flux density B2 is created due to the current I2 in the second circuit,
whose area is S2. Some portion of the flux due to B2 will link to the second circuit
whose area is bounded by S1 and the expression of the mutual flux is

φ21 =
∮

S1

B2.dS1 (6.217)

The mutual flux φ12 is directly proportional to the current I1 and it can be expressed
as

φ12∞I1, (6.218)

φ12 = L12I1, (6.219)
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Fig. 6.30 Conductor is in
horizontal position

x

3A

y

3

where L12 is the proportionality constant and it is known as mutual inductance. In
general, the mutual inductance is represented by M. If the secondary circuit contains
N2 number of turns, then the mutual inductance between the first and secondary
circuits is

M12 = N2φ12

I1
. (6.220)

Substituting Eq. (6.216) into Eq. (6.220) yields

M12 = N2

I1

∮

S2

B1.dS2. (6.221)

Similarly

M21 = N1

I2

∮

S1

B2.dS1. (6.222)

Example 6.12 An air-core coil having a length of 15 cm and a cross-sectional area
is 3 cm2. Determine the inductance of the coil if the coil is wound by 75 turns.

Solution The value of the inductance can be calculated as,

L = N2μA

l
= 752 × 1 × 4π × 10−7 × 3 × 10−4

0.15
= 14.14μH

Practice Problem 6.12 A circular air core having the length of 240 mm and the
diameter of 4 mm. If the core is wound by 130 turns, then determine the inductance
of the core.

6.19 Exercise Problems

6.1 A conductor is laid out horizontally carrying a current of 3 A as shown in
Fig. 6.30. Determine the magnetic field intensity at point (0, 0, 4).

6.2 A conductor is laid in the z-axis carrying a current of 4A as shown in Fig. 6.31.
Determine the magnetic field intensity at point (0, 2, 0).
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Fig. 6.31 Conductor is in
vertical position

x

y

z

(0,0,6)

4A

6.3 The expression of the magnetic field intensity in Cartesian coordinates is
given by H = xy3z2ax + x2yzay − 2x2y3z2az A/m. Determine the value of
the current density at point P (2, −1, −3).

6.4 The expression of the magnetic field intensity in Cartesian coordinates is given
by H = y2zax +3(z2 +x2)ay +2xyaz A/m. Calculate the value of the current
density at point P (−1,2, 1).

6.5 The expression of the magnetic field intensity in cylindrical coordinates is

given by H = 1

ρ2
sin (0.2φ)aρ + ρ cos zaφ + sin φaz A/m. Determine the

value of the current density at point P (1, 130◦, 0.5).
6.6 The expression of the magnetic field intensity in cylindrical coordinates is

given by H = z2 cos (0.4φ)aρ + 1

ρ
sin (0.1z)aφ + ρ sin φaz A/m. Calculate

the value of the current density at point P (1, 30◦, 1.2).
6.7 The expression of the magnetic field intensity in spherical coordinates is given

by H = r2ar + sin θaθ + 2
r

sin φaφ A/m. Determine the value of the current
density at point P (1.5, 70◦, 100◦).

6.8 The magnetic vector potential in a given region is A = e−px cos qy az Wb/m.
Determine the magnetic flux density.

6.9 The magnetic vector potential for a specific region is given by A = 3z2xax −
4y2zay Wb/m. Calculate the magnetic flux density.

6.10 The magnetic flux density of a ferrite material is found to be 0.04 T. Deter-
mine the (1) susceptibility, (2) magnetic field intensity and (3) magnetization.
Consider the material operates in linear mode and μr = 35.

6.11 The permeability and the magnetic field intensity of a magnetic material
are given by 1.3 × 10−6 H/m and 195 At/m. Determine the value of the
magnetization.

6.12 Calculate the flux, flux density and field intensity of the series magnetic circuit
shown in Fig. 6.32. The length, width and height are 0.2 m 0.03 m and 0.2 m
respectively and the relative permeability of the magnetic material is 548.

6.13 Fig. 6.33 shows a parallel magnetic circuit whose cross-sectional area is 6 m2.
The turns wound on the left limb are 200, and the flux in the right limb is 4
Wb. Assume the relative permeability is 350 and calculate the value of the
current.

6.14 Determine the total reluctance of the magnetic circuit with an air gap as shown
in Fig. 6.34. The cross-sectional area of the core is 3 cm2 and it is wound by
300 turns. The core is made of iron and the relative permeability of the core is
3,000. If the total flux of the circuit is 0.05 mWb then determine the current
in the coil.
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φ

N = 250

I = 0.6A

0.03 m
0.2 m

0.2 m

Fig. 6.32 Series magnetic circuit

N

I
φ

1φ

12 cm 12 cm

8 cm 4 Wb

Fig. 6.33 Parallel magnetic circuit

Fig. 6.34 Magnetic circuit
with an air gap

I

N = 300

3 cm

1 cm

3 cm

10 cm

6.15 The length of an air-core coil is 35 cm and its cross-sectional area is 6 cm2.
The coil is wound by 125 turns. Calculate the inductance of the coil.



Bibliography 185

Bibliography

1. Sadiku MNO. Elements of electromagnetics. 5th edn. New York: Oxford University Press;
2010.

2. Notaros BM. Electromagnetics. Upper Saddle River: Pearson Education; 2011.
3. Kraus JD. Electromagnetics. 3rd edn. Singapore: McGraw-Hill International; 1984.
4. Salam MA. Fundamental of electrical machines. 2nd edn. Oxford: Alpha Science; 2012.



Chapter 7
Time-Varying Fields

7.1 Introduction

The static electric and magnetic fields have already been discussed in previous
chapters. These static fields are not dependent on each other. However, the time-
varying electric and magnetic fields are dependent on each other. In other words, a
time-varying electric field is produced by a time-varying magnetic field and a time-
varying magnetic field is produced by a time-varying electric field. The first concept
was experimentally introduced by Michael Faraday and the second was theoreti-
cally introduced by James Clerk Maxwell. In this chapter, Faraday’s law, conduction
current, displacement current, motional voltage, Maxwell’s equation, transform-
ers, time-varying potentials, field of series circuits and time-harmonic fields will be
discussed.

7.2 Faraday’s Law

In 1820, Oersted introduced that a steady electric current produces a magnetic field. In
1831, Michael Faraday in London and Joseph Henry in NewYork jointly discovered
that a time-varying magnetic field can produce electric current. An electromotive
force (emf) is induced either by a conductor moving in a magnetic field or by changing
the magnetic field. Then, the Faraday’s law can be written as

emf = −dφ

dt
. (7.1)

If the conductor has N -turn, then Eq. (7.1) can be modified as

emf = −N
dφ

dt
. (7.2)

The electromotive force in any closed path can be written as

emf =
∮

c

E.dl. (7.3)

Md. A. Salam, Electromagnetic Field Theories for Engineering, 187
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The magnetic flux can be expressed as

φ =
∫

S

B.dS. (7.4)

Combining Eqs. (7.1), (7.3) and (7.4) yields

emf =
∮

c

E.dl = − d

dt

∫

S

B.dS. (7.5)

For a stationary circuit or path, the differentiation of (7.5) is

emf =
∮

c

E.dl = −
∫

S

∂B
∂t

.dS. (7.6)

Applying Stokes theorem to the closed line integral of Eq. (7.6) yields
∫

S

(∇ × E).dS = −
∫

S

∂B
∂t

.dS, (7.7)

(∇ × E).dS = ∂B
∂t

.dS, (7.8)

∇ × E = −∂B
∂t

. (7.9)

Equation (7.9) represents the point form or differential form of Maxwell’s equation.
From Eq. (7.9), it can be stated that the curl of the electric field is equal to the negative
rate of change of magnetic field. If the magnetic field does not change with time,
then Eqs. (7.6) and (7.9) can be reduced as

∮

c

E.dl = 0, (7.10)

∇ × E = 0. (7.11)

From Eqs. (7.10) and (7.11), it is concluded that the line integration and curl of
electric fields are equal to zero.

7.3 Motional Voltage

A straight conductor carries a current, I, which creates the magnetic field B. A charge
of proton or electron is placed in a magnetic field and moves at a velocity v as shown
in Fig. 7.1. The Lorentz force can be written as

Fm = q(v × B), (7.12)
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Fig. 7.1 Straight conductor
with a charge of proton or
electron

B
F

•

I

q v

Fm

q
= v × B. (7.13)

The motional voltage Em is defined as

Em = Fm

q
= v × B. (7.14)

The induced emf is

emf =
∮

Em.dl. (7.15)

Substituting Eq. (7.14) into Eq. (7.15) yields

emf =
∮

(v × B).dl. (7.16)

In a straight conductor, the wires, v and B are mutually perpendicular. Then, Eq.
(7.16) can be modified as

emf = El = Blv. (7.17)

From Eq. (7.17), it is seen that the emf is directly proportional to the magnetic flux
density, length and velocity of the conductor.

Example 7.1 A conducting bar slides over two conducting rails as shown in Fig. 7.2.
The bar moves from its initial position to a specific position at a distance of 5 cm.
The vertical distance between two conducting rails is 3 cm. Consider the magnetic
field B = 0.6 cos 1000tazmW/m2. Determine the induced voltage.

Solution The rate of change of magnetic flux density is

∂B
∂t

= ∂

∂t
(0.6 cos 1000t)az = 600 sin 1000taz.
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Fig. 7.2 Magnetic bar with
rails y

x

0
5cm

⊗ v
⊗

⊗
⊗

⊗
⊗

⊗

⊗

⊗

⊗

The value of the induced voltage is

Vind = −
∫

s

∂B
∂t

.dS =
∫ 0.05

y=0

∫ 0.03

x=0
600 sin 1000taz.dxdyaz,

Vind = 600(0.05)(0.03) sin 1000t = 0.9 sin 1000t V.

Practice Problem 7.1 A 10 cm conducting bar slides over two conducting rails at
velocity v = 10aym/s and the magnetic field is B = 2azWb/m2. Determine the
induced voltage in the bar.

7.4 Maxwell’s Equations

There are four equations normally known as Maxwell’s equations. The integral and
differential forms of Maxwell’s equations are mentioned below:

∮

c

H.dl =
∫

s

J.dS, ∇ × H = J, (7.18)

∮

s

D.S =
∫

v
ρdv, ρ = ∇.D, (7.19)

∮

s

B.dS = 0, ∇.B = 0, (7.20)

∮

c

E.dl = −
∫

s

∂B
∂t

.dS, ∇ × E = −∂B
∂t

. (7.21)

7.5 Conduction and Displacement Currents

A voltage source is connected in the circuit as shown in Fig. 7.3, where a resistor is
in parallel with a capacitor. The current will flow in the resistor and capacitor. The
current in the resistor is different than the current in the capacitor. The current in the
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Fig. 7.3 Parallel circuit with
source
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Id

R
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CV

resistor is continuous with respect to time and it is known as conduction current. The
expressions for the conduction current and current density are

Ic = V

R
, (7.22)

Jc = Ic

A
. (7.23)

Substituting the expression of R = ρl

A
= l

σA
and Eq. (7.22) into Eq. (7.23) yields

Jc = V σA

lA
= σE, (7.24)

where A is the area of the capacitor plates, σ is the conductivity and E is the electric
field.

The current will flow through the capacitor when the voltage across it changes.
Therefore, the current in the capacitor is discontinuous and it is known as
displacement current. The expression of displacement current is

Id = dq

dt
= C

dV

dt
. (7.25)

Substituting the expressions of C = εA
d

and V = Ed into Eq. (7.25) yields

Id = εA

d

d(Ed)

dt
, (7.26)

Id = εA

d
d

d(E)

dt
, (7.27)

Id

A
= d(εE)

dt
, (7.28)

Jd = dD
dt

, (7.29)
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where Jd is the conduction current density.
Total current density is

J = Jc + Jd . (7.30)

The concept of displacement current is introduced by James Clerk Maxwell. The
conduction current is absent in the empty space and the displacement current is
responsible for the magnetic field.

Example 7.2 The voltage source of V = 20 sin 314t V is applied across the parallel
plates of a capacitor. The area of the plates and separation distance between the plates
are 6 cm2 and 2 mm, respectively. Determine the displacement current and density
if ε = 3ε0.

Solution The value of the displacement current is

Id = C
dV

dt
= εA

d

dV

dt
= 3 × 8.854 × 10−12 × 6 × 10−4

0.002
× 20 × 314 cos 314t ,

Id = 5 × 10−8 cos 314t A.

The value of the current density is

Jd = Id

A
= 5 × 10−8 cos 314t

6 × 10−6 = 8.33 × 10−3 cos 314t A/m2.

Practice Problem 7.2 The voltage source of V = 300 sin 104t V is connected
across the parallel plates of a capacitor. The area of the plates and separation distance
between the plates are 2 cm2 and 3 mm, respectively. Determine the displacement
current density if ε = 1.5ε0.

7.6 Maxwell’s Equation from Ampere’s Law

The statement of Ampere’s law is that the line integral of a magnetic field around a
closed path is equal to the current enclosed by that path. Mathematically, this law is

∮

l

H.dl = I . (7.31)

The expression of a current through any surface is

I =
∫

s

J.dS. (7.32)

Substituting Eq. (7.32) into Eq. (7.31) provides
∮

l

H.dl =
∫

s

J.dS. (7.33)
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Substituting Eq. (7.30) into Eq. (7.33) yields
∮

l

H.dl =
∫

s

(Jc + Jd ).dS. (7.34)

Again, substituting Eqs. (7.24) and (7.29) into Eq. (7.34) provides

∮

l

H.dl =
∫

s

(
σE + ∂D

∂t

)
.dS. (7.35)

Applying Stokes theorem to the left hand side of Eq. (7.35) gives

∫

s

(∇×H).dS =
∫

s

(
σE + ∂D

∂t

)
.dS, (7.36)

∫

s

(∇×H).dS =
∫

s

σE.dS +
∫

s

∂D
∂t

.dS, (7.37)

(∇ × H).dS = Jc.dS + ∂D
∂t

.dS, (7.38)

∇ × H = J + ∂D
∂t

, (7.39)

where J = Jc. Equation (7.39) is the differential form of Maxwell’s equation. If the
electric field varies sinusoidally with time (i.e. E = E0 sin ωt), then the conduction
and displacement current densities are

J = σE = σE0 sin ωt , (7.40)

Jd = ε
∂E
∂t

= εωE0 cos ωt. (7.41)

The ratio of the magnitude of conduction to displacement current density is

|J|
|Jd | = σ

ωε
. (7.42)

At ωt = 0◦, the conduction current density is zero, whereas the displacement current
density is maximum. At ωt = 90◦, the conduction current density is maximum,
whereas the displacement current density is zero.

Example 7.3 The expression for magnetic field intensity is given as H =
5 cos (106t − αx)az A/m. Use Maxwell’s equation to determine expressions for B,
D, E. Consider the permittivity ε = 1.5 × 10−6 F/m.
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Solution The components of magnetic field intensity are

Hx = Hy = 0,

Hz = 5 cos (106t − αx).

The curl of the magnetic field is

∇ × H =

∣∣∣∣∣∣∣∣∣

ax ay az

∂

∂x

∂

∂y

∂

∂z
Hx Hy Hz

∣∣∣∣∣∣∣∣∣
,

∇ × H =
(

∂Hz

∂y
− ∂Hy

∂z

)
az −

(
∂Hz

∂x
− ∂Hx

∂z

)
ay +

(
∂Hy

∂x
− ∂Hx

∂y

)
az,

∇ × H = −∂Hz

∂x
ay ,

∇ × H = −∂(5 cos (106t − αx))

∂x
ay = 5α sin (106t − αx)ay = −∂D

∂t
,

D =
∫

5α sin (106t − αx)aydt = 5α

106 cos (106t − αx)ay C/m2.

The electric field intensity can be determined as

E = D
ε

= 5α

106 × 1.5 × 10−6 cos (106t − αx)ay = 3.33 cos (106t − αx)ay V/m.

The components of the electric field are

Ex = Ez = 0,

Ey = 3.33 cos (106t − αx).

The curl of the electric field is

∇ × E =

∣∣∣∣∣∣∣∣∣

ax ay az

∂

∂x

∂

∂y

∂

∂z
Ex Ey Ez

∣∣∣∣∣∣∣∣∣
,

∇ × E =
(

∂Ez

∂y
− ∂Ey

∂z

)
az −

(
∂Ez

∂x
− ∂Ex

∂z

)
ay +

(
∂Ey

∂x
− ∂Ex

∂y

)
az,

∇ × E = ∂Ey

∂x
az,

∇ × E = −∂(3.33α cos (106t − αx))

∂x
ay = 3.33α2 sin (106t − αx)az = −∂B

∂t
,

B = −
∫

3.33α2 sin (106t − αx)azdt = 3.33α2

106 cos (106t − αx)az Wb/m2.
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Practice Problem 7.3 The expression for magnetic field intensity is given as H =
2 sin (1012t − αx)ay A/m. Use Maxwell’s equation to determine expressions for B,
D, E. Consider the permittivity ε = 1.5 × 10−6 F/m.

7.7 Transformer

The transformer is used to transfer voltage from one circuit to another circuit without
change of frequency. The current, voltage and the number of turns in the primary
and secondary circuits are I1,V1,N1 and I2,V2,N2, respectively. The primary circuit
of the transformer is connected to an alternating source and the secondary is an open
circuit. The current flows in the primary circuit, which will create the flux. The flux
moves from the primary circuit to the secondary circuit, known as mutual flux and
the expression of this flux is

φm = �1

� . (7.43)

Substituting the expressions of magnetomotive force ( �1 = N1I1) and reluctance
( � = l

μA
) to Eq. (7.43) yields

φm = N1I1
l

μA

= N1I1

l
μA, (7.44)

where
A is the cross-sectional area of the core,
l is the mean length of the core and
� is the total reluctance.
The voltage in the secondary winding is

V2 = N2
dφm

dt
. (7.45)

Substituting Eq. (7.44) into Eq. (7.45) yields

V2 = μAN1N2

l

dI1

dt
, (7.46)

V2 = M
dI1

dt
, (7.47)

where the value of the mutual inductance is

M = μAN1N2

l
. (7.48)

Consider that the expression of complex current is

I1 = Imejωt . (7.49)
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The rate of change of the current is

dI1

dt
= ωImejωt . (7.50)

The magnitude of the rate of change of the current is
∣∣∣∣
dI1

dt

∣∣∣∣ = ω |I1| . (7.51)

Substituting Eq. (7.51) into Eq. (7.47) yields

V2 = MωI1. (7.52)

The primary current is solely responsible to generate the mutual flux, φm. If the
winding resistance is neglected, then the flux links to the primary and secondary
windings. Under this condition, the induced voltages in the primary and secondary
windings are

V1 = ωN1φm, (7.53)

V2 = ωN2φm, (7.54)

where V1 and V2 are the maximum value of the voltages in the primary and secondary
windings, respectively.

In general, the root mean square (rms) value of the voltage is

Vrms = Vm√
2

= 2πf Nφm√
2

. (7.55)

Dividing Eq. (7.53) by Eq. (7.54) provides

V1

V2
= N1

N2
. (7.56)

The ratio of either the primary to the secondary voltages or turns is known as turns
ratio. Under no-load condition, the magnetomotive forces in both the windings are
same. In this case, the expression can be written as

�1 = �2, (7.57)

N1I1 = N2I2, (7.58)

N1

N2
= I2

I1
. (7.59)

The turns ratio is represented by a, then Eqs. (7.56) and (7.59) can be expressed as

a = V1

V2
= N1

N2
= I2

I1
. (7.60)
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Example 7.4 A transformer having a uniform cross section of 6 cm2 is connected to
the 220 V, 50 Hz source. Determine the induced voltage in the secondary coil which
contains 120 turns and if the magnetic flux density is 0.5 T.

Solution The value of the magnetic flux is

φm = BA = 0.5 × 6 × 10−4 = 3 × 10−4 Wb.

The induced voltage in the secondary coil is

V2 = ωN2φm = 2π × 50 × 120 × 3 × 10−4 = 11.31 V.

Practice Problem 7.4 A transformer having a uniform cross section of 4 cm2 is
connected to the 120 V, 50 Hz source. Determine the secondary turns and if the
magnetic flux density is 0.9 T and the induce voltage is 30 V.

7.8 Time-Varying Potentials

The time-varying potential is usually known as retarded potential. This potential
is used to determine electromagnetic field radiation near high voltage transmission
lines and substation. For static electromagnetic fields, the scalar electric field and the
vector magnetic potential are expressed as

V =
∫

v

ρvdv

4πεR
, (7.61)

A =
∫

v

μJdv

4πR
. (7.62)

The magnetic flux density can be expressed as the curl of a vector potential. This can
be expressed as

B = ∇ × A. (7.63)

The curl of an electric field is not zero. Therefore, the relation E = −∇V is not
adequate to determine time-varying fields. An additional parameter is required to
derive time-varying fields. The electric field with an additional parameter is

E = −∇V + G. (7.64)

Taking the curl of the Eq. (7.64) yields

∇ × E = −∇ × (∇V ) + ∇ × G, (7.65)

∇ × E = 0 + ∇ × G. (7.66)
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According to Maxwell’s equation, Eq. (7.66) can be expressed as

∇ × E = ∇ × G = −∂B
∂t

. (7.67)

Substituting Eq. (7.63) into Eq. (7.67) yields

∇ × G = −∂(∇ × A)

∂t
, (7.68)

∇ × G = −∇ × ∂A
∂t

, (7.69)

G = −∂A
∂t

. (7.70)

Substituting Eq. (7.70) into Eq. (7.64) provides

E = −∇V − ∂A
∂t

. (7.71)

The Maxwell’s equation (7.39) can be modified as

∇ × B
μ

= J + ε
∂E
∂t

. (7.72)

Substituting Eqs. (7.63) and (7.71) into Eq. (7.72) yields

∇ × 1

μ
(∇ × A) = J + ε

∂

∂t

[
−∇V − ∂A

∂t

]
, (7.73)

∇ × (∇ × A) = Jμ + με
∂

∂t

[
−∇V − ∂A

∂t

]
. (7.74)

Applying vector rules to the left-hand side of Eq. (7.74) provides

∇(∇.A) − ∇2A = Jμ − με∇ ∂V

∂t
− με

∂2A
∂t2

. (7.75)

From Eq. (7.75), the following identity can be written as

∇.A = −με
∂V

∂t
, (7.76)

∇2A = −Jμ + με
∂2A
∂t2

. (7.77)

The Maxwell’s equation (7.19) can be modified as

∇.εE = ρv. (7.78)
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Fig. 7.4 RLC series circuit

V

R L

C

Substituting Eq. (7.71) into Eq. (7.78) yields

∇.

(
−∇V − ∂A

∂t

)
= ρv

ε
, (7.79)

∇2V + ∂

∂t
(∇.A) = −ρv

ε
. (7.80)

Substituting Eq. (7.76) into Eq. (7.80) yields

∇2V + ∂

∂t

(
−με

∂V

∂t

)
= −ρv

ε
, (7.81)

∇2V − με
∂2V

∂t2
= −ρv

ε
, (7.82)

∇2V = −ρv

ε
+ με

∂2V

∂t2
. (7.83)

Equations (7.80) and (7.83) are related to the wave equations which will be analysed
further in Chap. 9.

7.9 Field of a Series Circuit

Figure 7.4 shows an RLC series circuit with a voltage source. Based on the circuit
theory, the Kirchhoff’s voltage law (KVL) equation of the circuit is

V = RI + L
dI

dt
+ 1

C

∫
Idt. (7.84)

The resistive drop can be expressed as

RI = l

σA
I. (7.85)
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Substituting the expression of current density ( J = I
A

) into Eq. (7.85) provides

RI = J

σ
l. (7.86)

In terms of closed-loop integration, Eq. (7.86) can be expressed as

RI =
∮

J
σ

.dl. (7.87)

The inductive drop can be expressed as

L
dI

dt
= d(LI )

dt
= dφ

dt
. (7.88)

Substituting the expression of flux or flux linkage (φ = ∫
s

B.dS) into Eq. (7.88)
provides

L
dI

dt
= d

dt

∫

s

B.dS. (7.89)

Substituting Eq. (7.63) into Eq. (7.89) yields

L
dI

dt
= d

dt

∫

s

(∇ × A).dS. (7.90)

Applying Stokes theorem to Eq. (7.90) provides

L
dI

dt
= d

dt

∮
A.dl, (7.91)

L
dI

dt
=
∮

∂A
∂t

.dl. (7.92)

The expression of current is

I = dQ

dt
, (7.93)

dQ = Idt , (7.94)

Q =
∫

Idt. (7.95)

The capacitive drop can be expressed as

1

C

∫
Idt = Q

C
. (7.96)

Substituting the expression of capacitance into Eq. (7.96) yields

1

C

∫
Idt = Q

εA
d

= Qd

εA
. (7.97)
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Again, substituting the electric flux density ( D = Q

A
) into Eq. (7.97) provides

1

C

∫
Idt = Q

εA
d

= Dd

ε
, (7.98)

1

C

∫
Idt = Ed. (7.99)

Substituting the expression of E = −∇V into Eq. (7.99) yields

1

C

∫
Idt = −∇V d, (7.100)

1

C

∫
Idt = −

∮
∇V.dl. (7.101)

Substituting Eqs. (7.87), (7.92) and (7.101) into Eq. (7.84) provides the final
expression of the field of a series

∮
E.dl =

∮
J
σ

.dl +
∮

∂A
∂t

.dl −
∮

∇V.dl. (7.102)

7.10 Time-Harmonic Fields

The basic concept of phasors has already been discussed in the electrical AC circuit
course. This concept is needed to be reviewed here before applying it in electromag-
netic fields. The phasor is a complex term having both magnitude and phase angle.
It is often known as a vector due to its magnitude and phase angle. Any phasor, m,
in rectangular and polar forms can be represented as

m = a + jb = n|θ , (7.103)

where
n = √

a2 + b2 is the magnitude,
θ = tan−1

(
b
a

)
is the phase angle.

The phasor in exponential and sinusoidal forms can be represented as

m = nejθ = n( cos θ + j sin θ ). (7.104)

Again, consider any two phasors to discuss phasor addition, subtraction, multiplica-
tion, division, power and conjugate. These phasors are

m1 = a1 + jb1 = n1|θ1, (7.105)

m2 = a2 + jb2 = n2|θ2. (7.106)
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The phasor addition and subtraction are

m1 + m2 = (a1 + a2) + j (b1 + b2), (7.107)

m1 − m2 = (a1 − a2) + j (b1 − b2). (7.108)

The phasor multiplication and division are

m1m2 = n1|θ1 × n2|θ2 = n1n2|θ1 + θ2, (7.109)

m1

m2
= n1

n2

|θ1

|θ2
= n1

n2
|θ1 − θ2. (7.110)

The power of any phasor is

mp = (n|θ)p = np|pθ. (7.111)

The conjugate of any phasor is

m∗ = (n|θ)∗ = n|−θ. (7.112)

A time-harmonic field is defined as any field whose time variation is sinusoidal.
Consider the angle θ in terms of time element for a detailed analysis. The expression
of the angle is

θ = ωt + φ. (7.113)

The following analysis can be carried out using circuit theory as

neiθ = nj (ωt+φ) = n cos (ωt + φ) + jn sin (ωt + φ). (7.114)

The real and imaginary parts of Eq. (7.114) are n cos (ωt + φ) and n sin (ωt + φ),
respectively. Consider the phasor form of the instantaneous current I(t) is Is and the
expression of this current is

Is = I0e
jφ. (7.115)

Again, consider the instantaneous value of the current is

I (t) = I0 cos (ωt + φ) = Re[I0e
j (ωt+φ)] = Re[Ise

jωt ]. (7.116)

Instantaneous and phasor forms of field vectors are defined as

E(x, y, z, t) = Es(x, y, z)ejωt , (7.117)

D(x, y, z, t) = Ds(x, y, z)ejωt , (7.118)

H(x, y, z, t) = Hs(x, y, z)ejωt , (7.119)
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B(x, y, z, t) = Bs(x, y, z)ejωt . (7.120)

Based on Eq. (7.116), Eq. (7.117) can be written as

E(x, y, z, t) = Re[Es(x, y, z)ejωt ]. (7.121)

Taking partial derivative of Eq. (7.121) yields

∂E(x, y, z, t)

∂t
= Re[jωEs(x, y, z)ejω] = jωE(x, y, z, t). (7.122)

Equation (7.122) can also be expressed as

∂E(x, y, z, t)

∂t
= Re[ωEs(x, y, z)ej π

2 ejω]. (7.123)

Then integrating Eq. (7.121) provides
∫

E(x, y, z, t)∂t =
∫

Re[Es(x, y, z)ejωt ]∂t , (7.124)

∫
E(x, y, z, t)∂t = Re

[
1

jω
Es(x, y, z)ejωt

]
= E(x, y, z, t)

jω
. (7.125)

Equation (7.125) can also be expressed as
∫

E(x, y, z, t)∂t = Re

[
1

ω
Es(x, y, z)e−j π

2 ejωt

]
. (7.126)

From Eqs. (7.122) and (7.125), it is concluded that the time derivatives are multiplied
by jω and the integration is divided by jω.

Maxwell’s equations in time-harmonic form are
∮

E.dl = −jω

∫
B.dS, (7.127)

∮
H.dl =

∫
J.dS + jω

∫
D.dS, (7.128)

∮
B.dS = 0, (7.129)

∮
D.dS =

∫
ρvdV . (7.130)

In point form, Maxwell’s equations are

∇ × E = −jωB, (7.131)

∇ × H = J + jωD, (7.132)

∇.B = 0, (7.133)



204 7 Time-Varying Fields

∇.D = ρv. (7.134)

Equation (7.132) can be expanded as

∇ × H = σE + jωεE, (7.135)

∇ × H = (σ + jωε)E. (7.136)

Consider the complex permittivity εc is

jωεc = σ + jωε, (7.137)

εc = ε + σ

jω
= ε − j

σ

ω
. (7.138)

From Eq. (7.138), it is seen that complex permittivity is related to the permittivity
of the media and imaginary ratio of the conductivity and angular frequency.

Example 7.5 A time-harmonic field and a phasor is given by M = 2 cos (109t +
5x + 45◦) and Ns = 5jay + 8e

jπx
3 az. Determine the phasor form of M and the

instantaneous form of Ns .

Solution The phasor form of M can be determined as

M = Re[2ej (109t+5x+45◦)],

M = Re[2ej (109t)ej (5x+45◦)],

M = Re[2ejωt ej (5x+45◦)],

where ω = 109 and the final expression is

M = Re[Mse
jωt ],

where

Ms = 2ej (5x+45◦).

The instantaneous form of Ns can be determined as

Ns = 5jay + 8e
jπx

3 az = 5e
jπ
2 ay + 8e

jπx
3 az,

N = Re[Nse
jωt ],

N = Re[(5e
jπ
2 ay + 8e

jπx
3 az)e

jωt ],

N = Re[5ej( π
2 +ωt)ay + 8ej( πx

3 +ωt)az],

N = 5 cos
(π

2
+ ωt

)
ay + 8 cos

(πx

3
+ ωt

)
az,

N = −5 sin ωtay + 8 cos
(πx

3
+ ωt

)
az.
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Practice Problem 7.5 A time-harmonic field and a phasor is given by Q =
12 cos (107t − 3x − 65◦) and Rs = 9e

jx
2 jax + 12e

−jπx
5 ay. Calculate the phasor

form of Q and the instantaneous form of Rs .

Example 7.6 The electric and magnetic fields in a free space are given by E =
5 cos (ωt + 3y)ax V/m and H = 5

η
cos (ωt + 3y)az A/m. Determine ω and η using

Maxwell’s equation.

Solution Faraday’s law for electric and magnetic fields is

∇ × E = −∂B
∂t

= −μ0
∂H
∂t

.

The curl of the electric field is

∇ × E =

∣∣∣∣∣∣∣∣∣

ax ay az

∂

∂x

∂

∂y

∂

∂z
Ex 0 0

∣∣∣∣∣∣∣∣∣
= (0)ax −

(
0 − ∂Ex

∂z

)
ay +

(
−∂Ex

∂z

)
az,

∇ × E = −∂Ex

∂z
az = − ∂

∂z
[5 cos (ωt + 3y)]az = 15 sin (ωt + 3y)az.

The time differentiation of the magnetic field is

μ0
∂H
∂t

= −μ05ω

η
sin (ωt + 3y)az.

Then, the following relation can be written as:

15 = 5μ0ω

η
,

ω = 3η

μ0
.

The curl of the magnetic field is

∇ × H =

∣∣∣∣∣∣∣∣∣

ax ay az

∂

∂x

∂

∂y

∂

∂z
0 0 Hx

∣∣∣∣∣∣∣∣∣
= ∂Hz

∂y
ax − ∂Hz

∂x
ay ,

∇ × H = −∂Hz

∂y
ax = − ∂

∂y

[
5

η
cos (ωt + 3y)

]
ax = −15

η
sin (ωt + 3y)ax.

The time differentiation of the electric field is

ε0
∂E
∂t

= −μ05ω sin (ωt + 3y)ax.
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Then, the following relation can be written as

15

η
= 5ε0ω,

15

η
= 5ε0

3η

μ0
,

η =
√

μ0

ε0
= �.

Practice Problem 7.6 In a dielectric medium (ε = 6ε0, μ = 1.5μ0), the electric
and magnetic fields are given by E = 15 cos (ωt−0.8z)ax V/m and H = 15

η
cos (ωt−

0.8z)ay A/m. Calculate ω and η using Maxwell’s equation.

7.11 Exercise Problems

7.1 Figure 7.5 shows a conducting bar which slides over two conducting rails.
The bar moves from its initial position to a specific position at a distance of
8 cm. The vertical distance between two conducting rails is 4 cm. Consider
the magnetic field is B = 1.6 sin 1000taz mW/m2. Determine the induced
voltage.

7.2 A square conductor has a cross-sectional area of 0.9 m2 which rotates at 120
rad/s in a magnetic field. Determine the maximum induced voltage if the
conductor has 25 turns and the value of the magnetic field is 0.09 T.

7.3 A circular conductor loop having a radius of 0.4 m2, lies in the y-plane of
the magnetic field. Determine the induced voltage of the conductor if the
magnetic field is −100 sin 314tay Wb/m2.

7.4 Figure 7.6 shows a conducting bar moving over conducting rails. The uniform
magnetic field of 0.5 T is directed to the paper. Determine the speed of the
conducting bar which generates a current of 0.4 A in the 5 � resistor.

7.5 An oil tanker, a long vehicle travels at a speed of 100 km/h in the 401 series
highway of Canada. The earth’s magnetic field is found to be 0.05 T and the
length of the oil tanker is 2 m. The angle between the magnetic field and the
normal to the oil tanker is measured to be 45◦. Determine the induced voltage.

7.6 The separation distance and area of the plates are 3 mm and 4 cm2, respec-
tively. The voltage source of V = 5 sin 314t V is applied across the parallel
plates of a capacitor. Determine the displacement current and density if
ε = 1.5ε0.

7.7 A sample of seawater is characterized by the properties μ = μ0, ε = 80ε0

and 25 S/m. Calculate the conduction and displacement current densities if
E = 5 cos 314t mV/m.

7.8 The expression for magnetic field intensity is given by H = 25 cos (108t −
βx)az A/m. Use Maxwell’s equation to determine expressions for B, D and
E. Consider the permittivity ε = 3 × 10−6 F/m.
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Fig. 7.5 Conductor bar with
slides
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7.9 A transformer having a uniform cross section of 4 cm2 is connected to a 110
V, 60 Hz source. Determine the induced voltage in the secondary coil which
contains 300 turns and if the magnetic flux density is 0.04 T.

7.10 A cross-sectional area of a 240 V, 50 Hz transformer is 9 cm2. Calculate the
secondary turns if the magnetic flux density is 0.9 T and the induced voltage
is 60 V.

7.11 A phasor is given by As = 15jax + 4e−j35◦
ay. Determine the instantaneous

value of the phasor As .
7.12 A time-harmonic field is given by E = 5 sin (ωt + 4x + 10◦)ax + cos (ωt −

4x − 15◦)ay. Determine its phasor form.
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Chapter 8
Transmission Lines

8.1 Introduction

The transmission line consists of two or more parallel wires, which is used to trans-
mit electrical energy from the generating station to the distribution system with a
low frequency. Coaxial cables, parallel-wire transmission lines, and microstrip lines
are used for power transmission. Using high insulation cable reduces electromag-
netic interference during power transmission. The parallel-wire transmission line is
used for overhead transmission and distribution networks, but the electromagnetic
interference increases in this case. The microstrip line is used in the printed cir-
cuit board. The transmission line is also used in communication systems with high
frequency and is also interconnected between neighboring networks to transfer elec-
trical power under normal and emergency conditions. There are four parameters,
namely, resistance, inductance, capacitance, and conductance in the transmission
line. In the transmission line, the resistance is given as ohm per meter (�/m) or ohm
per mile (�/mi), inductance is given as henrys per meter (H/m) or henrys per mile
(H/mi), capacitance is in farad per meter (F/m), and conductance is in siemens per
meter (S/m). The existence of these line parameters are found when the electric and
magnetic fields are around the conductor. The transmission line conductors operate
in transverse electromagnetic (TEM) mode, which means neither component of E
nor H is in the direction of transmission. In this chapter, transmission line equa-
tion, velocity of wave propagation, wavelength, lossless propagation, distortionless
transmission line, power, Smith chart, etc. is discussed.

8.2 Transmission Line Equation

Go and return conductors are required to transfer voltage from the sending end ter-
minal to the receiving end terminal. In this case, detailed analysis of the transmission
line is required.

The parallel wire and the differential sections of a transmission line are shown in
Fig. 8.1. The parallel wire is divided into different sections, each of length �z. The

Md. A. Salam, Electromagnetic Field Theories for Engineering, 209
DOI 10.1007/978-981-4585-66-8_8, © Springer Science+Business Media Singapore 2014
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Fig. 8.1 Parallel wire and
differential lengths

Δz Δz Δz Δz

per unit equivalent circuit of a transmission line is shown in Fig. 8.2. The transmission
line is represented by the resistance and inductance, and forms a capacitance along
with the return conductor. The current, voltage, and short length of transmission line
are shown in Fig. 8.2. In addition, a conductance is considered in parallel with the
capacitor to derive the transmission line equation.

Applying Kirchhoff’s voltage law (KVL) to the circuit in Fig. 8.2 provides the
equation

−V (z, t) + RI (z, t)�z + L�z
∂I (z, t)

∂t
+ V (z + �z, t) = 0, (8.1)

V (z + �z, t) − V (z, t) = −
[
RI (z, t) + L

∂I (z, t)

∂t

]
�z, (8.2)

V (z + �z, t) − V (z, t)

�z
= −

[
RI (z, t) + L

∂I (z, t)

∂t

]
. (8.3)

The differential length �z is very small compared with the actual length. Then setting
�z → 0 into Eq. (8.3) provides

lim
�z→0

V (z + �z, t) − V (z, t)

�z
= −

[
RI (z, t) + L

∂I (z, t)

∂t

]
, (8.4)

∂V (z, t)

∂z
= −

[
RI (z, t) + L

∂I (z, t)

∂t

]
. (8.5)

Again, applying Kirchhoff’s current law (KCL) to the circuit in Fig. 8.2 provides

I (z, t) = Ig + Ic + I (z + �z, t), (8.6)

I (z + �z, t) − I (z, t) = −
[
G�zV (z + �z, t) + C�z

∂V (z + �z, t)

∂t

]
, (8.7)

I (z + �z, t) − I (z, t)

�z
= −

[
GV (z + �z, t) + C

∂V (z + �z, t)

∂t

]
. (8.8)



8.2 Transmission Line Equation 211

RΔz

V(z, t)

+

−

V(z + Δz, t)

+

−

LΔz

GΔz CΔz

I(z, t) I(z + Δz, t)

z z + Δz

Ig Ic

Fig. 8.2 Equivalent circuit of a transmission line with differential length

Again, setting �z → 0 into Eq. (8.8) provides

lim
�z→0

I (z + �z, t) − I (z, t)

�z
= − lim

�z→0

[
GV (z + �z, t) + C

∂V (z + �z, t)

∂t

]
,

(8.9)

∂I (z, t)

∂z
= −

[
GV (z, t) + C

∂V (z, t)

∂t

]
. (8.10)

Differentiating Eq. (8.5) with respect to z and Eq. (8.10) with respect to t yields

∂2V (z, t)

∂z2
= −

[
R

∂I (z, t)

∂z
+ L

∂2I (z, t)

∂z∂t

]
, (8.11)

∂2I (z, t)

∂z∂t
= −

[
G

∂V (z, t)

∂t
+ C

∂2V (z, t)

∂t2

]
. (8.12)

Substituting Eq. (8.12) into Eq. (8.11) provides

∂2V (z, t)

∂z2
= −

[
R

∂I (z, t)

∂z
− LG

∂V (z, t)

∂t
− LC

∂2V (z, t)

∂t2

]
. (8.13)

Again, substituting Eq. (8.10) into Eq. (8.13) yields

∂2V

∂z2
= RGV + (RC + LG)

∂V

∂t
+ LC

∂2V

∂t2
. (8.14)

Differentiating Eq. (8.10) with respect to z and Eq. (8.5) with respect to t yields

∂2I

∂z2
= −

[
G

∂V

∂z
+ C

∂2V

∂t∂z

]
, (8.15)
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∂2V

∂t∂z
= −

[
R

∂I

∂t
+ L

∂2I

∂t2

]
. (8.16)

Substituting Eqs. (8.5) and (8.16) into Eq. (8.15) provides

∂2I

∂z2
= −

[
G

(
−RI − L

∂I

∂t

)
− C

(
R

∂I

∂t
+ L

∂2I

∂t2

)]
, (8.17)

∂2I

∂z2
= RGI + (LG + RC)

∂I

∂t
+ LC

∂2I

∂t2
. (8.18)

Equations (8.14) and (8.18) are the general wave equations for the transmission lines.
These wave equations are normally used for energy propagation in free space or in
dielectrics.

8.3 Phasor Form Solution of Transmission Line Equation

The transmission line is connected to a source, whose voltage and current waveforms
as a function of z and t can be written as

Vs(z, t) = Vs(z) cos ωt = Re[Vs(z)ejωt ], (8.19)

Is(z, t) = Is(z) cos ωt = Re[Is(z)ejωt ]. (8.20)

Substituting Eq. (8.20) into Eq. (8.5) provides

dVs

dz
= −Is(R + jωL). (8.21)

Again, substituting Eq. (8.19) into Eq. (8.10) yields

dIs

dz
= −Vs(G + jωC). (8.22)

Taking differentiation of Eq. (8.21) with respect to z yields

d2Vs

dz2
= −(R + jωL)

dIs

dz
. (8.23)

Substituting Eq. (8.22) into Eq. (8.23) provides

d2Vs

dz2
= (R + jωL)(G + jωC)Vs , (8.24)

d2Vs

dz2
= γ 2Vs. (8.25)
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V0
+e− j zγ

Vg

I0
+e− j zγ

V0
−e j zγ

I0
−e j zγ

Zg

ZL

Fig. 8.3 Incident and reflected waves

Differentiating Eq. (8.22) with respect to z provides

d2Is

dz2
= −(G + jωC)

dVs

dz
. (8.26)

Substituting Eq. (8.21) into Eq. (8.26) yields

d2Is

dz2
= (G + jωC)(R + jωL)Is , (8.27)

d2Is

dz2
− γ 2Is = 0, (8.28)

where the propagation constant of the line is defined as

γ = α + jβ = √
ZY = √

(R + jωL)(G + jωC), (8.29)

where

α is the attenuation constant in neper per meter (Np/m), (1Np/m=8.68 db/m),
β is the phase constant in radians per meter,
Z is the series impedance in ohm per meter, and
Y is the net shunt admittance in siemens per meter.

The general solutions of Eqs. (8.25) and (8.28) are

Vs(z) = V0
+e−γ z + V0

−eγ z, (8.30)

Is(z) = I0
+e−γ z + I0

−eγ z, (8.31)

where V0
+, I0

+ and V0
−, I0

− are the amplitudes of the waveform in the positive and
negative z directions, respectively. The terms V0

+e−γ z, I0
+e−γ z represent incident

waves and V0
−eγ z, I0

−eγ z represent reflected waves as shown in Fig. 8.3. A standing
wave generates in the transmission line when the incident and the reflected waves
propagate in opposite directions.
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Substituting Eq. (8.30) into Eq. (8.19) provides the instantaneous expression for
the voltage

Vs(z, t) = Re[(V0
+e−γ z + V0

−eγ z)ejωt ], (8.32)

Vs(z, t) = V0
+e−αz Re[ej (ωt−βz)] + V0

−eαzRe[ej (ωt+βz)], (8.33)

Vs(z, t) = V0
+e−αz cos (ωt − βz) + V0

−eαz cos (ωt + βz). (8.34)

To examine the instantaneous value of the voltage, the following relation can be
written as

ωt − βz = 2kπ , (8.35)

z = ω

β
t − 2kπ

β
. (8.36)

Differentiating Eq. (8.36) with respect to t provides

dz

dt
= ω

β
. (8.37)

The velocity of the propagation in the z-direction can be written as

v = ω

β
. (8.38)

For a lossless transmission line, i.e., R = G = 0 and α = 0, Eq. (8.29) can be
modified as

jβ = √
(0 + jωL)(0 + jωC), (8.39)

β = ω
√

LC. (8.40)

Substituting Eq. (8.40) into Eq. (8.38) yields

v = ω

ω
√

LC
, (8.41)

v = 1√
LC

. (8.42)

The wavelength of the wave which results in a phase shift of 2π can be written as

βλ = 2π , (8.43)

λ = 2π

β
. (8.44)

From Eq. (8.44), it is seen that the wavelength is inversely proportional to the phase
constant.
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8.4 Lossless Propagation

Power utility companies normally want to transfer power to their customer without
a loss. To accomplish this task, the value of the resistance and conductance are
considered to be zero for transmission lines. Substituting R = G = 0 into Eqs.
(8.14) and (8.18) yields

∂2V

∂z2
= LC

∂2V

∂t2
, (8.45)

∂2I

∂z2
= LC

∂2I

∂t2
. (8.46)

Equations (8.45) and (8.46) are the wave equations and the solutions are

V (z, t) = V1(t − √
LCz) + V2(t + √

LCz), (8.47)

I (z, t) = I1(t − √
LCz) + I2(t + √

LCz). (8.48)

Differentiating Eq. (8.47) with respect to z provides

∂V

∂z
= −√

LCV1
′
(t − √

LCz) + √
LCV2

′
(t + √

LCz). (8.49)

For a lossless line, Eq. (8.5) can be modified as

∂V

∂z
= −L

∂I

∂t
. (8.50)

Substituting Eq. (8.49) into Eq. (8.50) yields

∂I

∂z
=

√
LC

L
V ′

1

(
t − √

LCz
)

−
√

LC

L
V ′

2

(
t + √

LCz
)

, (8.51)

∂I

∂z
= 1√

L
C

[
V ′

1

(
t − √

LCz
)

− V ′
2

(
t + √

LCz
)]

. (8.52)

Integrating Eq. (8.52) with respect to t yields

I = 1√
L
C

[
V1(t − √

LCz) − V2(t + √
LCz)

]
, (8.53)

I = 1

Z0

[
V1(t − √

LCz) − V2(t + √
LCz)

]
. (8.54)

The expression of characteristic impedance or resistance is

Z0 = R0 =
√

L

C
. (8.55)
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The characteristic impedance can be derived in an alternative way as

Z0 =
√

Z

Y
=
√

R + jωL

G + jωC
. (8.56)

Setting R = G = 0 into Eq. (8.56) provides

Z0 =
√

L

C
.

The load voltage and current in terms of the incident and the reflected voltages can
be expressed by setting z = 0 in Eqs. (8.30) and (8.31) as

VL = V0
+ + V0

−, (8.57)

IL = I0
+ + I0

−. (8.58)

According to Ohms law, the incident and the reflected currents can be written as

I0
+ = V0

+

R0
, (8.59)

I0
− = −V0

−

R0
. (8.60)

The load resistance can be expressed as

RL = VL

IL

. (8.61)

Substituting Eqs. (8.57) and (8.58) into Eq. (8.61) provides

RL = V0
+ + V0

−

I0
+ + I0

− . (8.62)

Substituting Eqs. (8.59) and (8.60) into Eq. (8.62) yields

RL = V0
+ + V0

−
1

R0
(V0

+ − V0
−)

, (8.63)

RL = 1 + V0
−

V0
+

1
R0

(
1 − V0

−
V0

+
) . (8.64)

The voltage reflection coefficient ρ is defined as the ratio of the reflected voltage to
the incident voltage; it can be expressed as

ρ = V0
−

V0
+ . (8.65)
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Substituting Eq. (8.65) into Eq. (8.64) provides

RL = R0(1 + ρ)

(1 − ρ)
. (8.66)

From Eq. (8.66), solving ρ yields

ρ = RL − R0

RL + R0
. (8.67)

From Eq. (8.67), it is seen that the voltage reflection coefficient is the ratio of (RL −
R0) to (RL + R0).

Example 8.1 The inductance and the capacitance of a lossless transmission line
are 0.7μH/m and 302pF/m, respectively. The source frequency is 1,000Hz and the
voltage across the 40� load is 120V. Determine (1) the velocity of the wave, (2)
characteristic resistance, (3) voltage reflection coefficient, (4) wavelength, (5) phase
constant, and (6) incident and reflected voltages.

Solution

1. The velocity of the wave is

v = 1√
LC

= 1√
0.7 × 10−6 × 302 × 10−12

= 68.78 × 106m.

2. The characteristic resistance is

R0 =
√

L

C
=
√

0.7 × 10−6

302 × 10−12 = 48.14�.

3. The value of the voltage reflection coefficient is

ρ = RL − R0

RL + R0
= 40 − 48.14

40 + 48.14
= −0.09.

4. The value of the wavelength is

λ = v

f
= 68.78 × 106

1000
= 68,780m.

5. The value of the phase constant is

β = 2π

λ
= 2π

68.78
= 0.091rad/m.

6. The expression of source voltage is

VL = 120 sin 6283t ,
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VL = V0
+
(

1 + V0
−

V0
+

)
,

120 = V0
+(1 − 0.09),

∣∣V0
+∣∣ = 120

1 − 0.09
= 131.87V,

V0
+ = 131.87 sin 6283tV,

∣∣V0
−∣∣ = 131.87 × 0.09 = 11.87V,

V0
− = −11.87 sin 6283tV.

Practice problem 8.1 The inductance and the capacitance of a lossless transmis-
sion line are 0.97mH/km and 0.012μF/km, respectively. The source frequency is
1,000Hz and the voltage across the 278� load is 220V. Calculate (1) the veloc-
ity of the wave, (2) characteristic resistance, (3) voltage reflection coefficient, (4)
wavelength, (5) phase constant, and (6) incident voltage.

8.5 Low-Loss Transmission Line

The low loss of the transmission line occurs at a higher frequency. In this condition,
the relations are defined as ωL ≥ R and ωC ≥ G. The expression of the propagation
constant can be modified as

γ = α + jβ =
√

LC(jω)2

(
1 + R

jωL

)(
1 + G

jωC

)
, (8.68)

γ = α + jβ = jω
√

LC

(
1 + R

jωL

) 1
2
(

1 + G

jωC

) 1
2

. (8.69)

Expanding Eq. (8.69) and neglecting the higher terms provides

α + jβ = jω
√

LC

(
1 + R

j2ωL

)(
1 + G

j2ωC

)
, (8.70)

α + jβ = jω
√

LC

[
1 + 1

j2ω

(
R

L
+ G

C

)
− RG

4ω2LC

]
, (8.71)

α + jβ = jω
√

LC

[
1 + 1

j2ω

(
R

L
+ G

C

)]
, (8.72)

α + jβ = jω
√

LC +
√

LC

2

(
R

L
+ G

C

)
. (8.73)
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Now, equating the real and imaginary components of Eq. (8.73) yields

α =
√

LC

2

(
R

L
+ G

C

)
, (8.74)

α = 1

2

(
R

√
C

L
+ G

√
L

C

)
, (8.75)

β = ω
√

LC. (8.76)

For low loss (higher frequency), the attenuation and phase constants can be derived
in an alternative way. The possible steps are as follows

γ = α + jβ = √
(R + jωL)(G + jωC), (8.77)

α + jβ =
√

RG + jωLG + jωRC + (jω)2LC, (8.78)

α + jβ = jω
√

LC

√
1 + RG

(jω)2LC
+ jω

LG

(jω)2LC
+ jωRC

(jω)2LC
, (8.79)

α + jβ = jω
√

LC

√
1 − RG

ω2LC
+ LG

jωLC
+ RC

jωLC
. (8.80)

If RG ≤ ω2LC, then Eq. (8.80) can be modified as

α + jβ = jω
√

LC

(
1 + LG

jωLC
+ RC

jωLC

) 1
2

. (8.81)

Expanding Eq. (8.81) in binomial form and neglecting the higher terms provides

α + jβ = jω
√

LC

[
1 + 1

2jω

(
LG

LC
+ RC

LC

)]
, (8.82)

α + jβ = 1

2

√
LC

(
LG

LC
+ RC

LC

)
+ jω

√
LC. (8.83)

Equating the real and imaginary parts of Eq. (8.83) yields

α = 1

2

√
LC

(
R

L
+ G

C

)
, (8.84)

α = 1

2

(
R

√
C

L
+ G

√
L

C

)
,

β = ω
√

LC.

From Eq. (8.76), it is concluded that the phase constant is directly proportional to
the angular frequency and square root of the product of inductance and capacitance.
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Example 8.2 The inductance and the capacitance of a low-loss transmission line
are 10mH/m and 56μF/m, respectively. The source frequency is 1,000Hz, while
the resistance and the conductance are 40�/m and 20S/m, respectively. Determine
(1) the attenuation constant and (2) phase constant.

Solution

I. The value of the attenuation constant can be determined as

α = 1

2

(
R

√
C

L
+ G

√
L

C

)
= 1

2

⎛
⎝40

√
56 × 10−6

10 × 10−3 + 20

√
10 × 10−3

56 × 10−6

⎞
⎠

= 135.13db/m.

II. The value of the phase constant is

β = ω
√

LC = 2π × 1000
√

10 × 56 × 10−9 = 4.7rad/m.

Practice problem 8.2 The attenuation and the phase constants of a low-loss
transmission line are 140db/m and 5rad/m, respectively. The source frequency
is 1,000Hz, while the resistance and the conductance are 30�/m and 12S/m,
respectively. Determine the value of the inductance and the capacitance.

8.6 Distortionless Line

In distortionless transmission line, the attenuation constant is not frequency depen-
dent and the phase constant is directly proportional to the frequency. In this case, the
general expression of the characteristic impedance can be rewritten as

Z0 =
√

R + jωL

G + jωC
=

√√√√√
L
(

1 − jR

ωL

)

C
(

1 − jG

ωC

) . (8.85)

For low frequency line, the conditions are R
ωL

≥ 1 and G
ωC

≥ 1. Substituting these
conditions into Eq. (8.85) yields

Z0 =

√√√√√
L
(
− jR

ωL

)

C
(
− jG

ωC

) , (8.86)

Z0 =
√

R

G
. (8.87)

Comparing Eqs. (8.55) and (8.87) provides
√

L

C
=
√

R

G
, (8.88)
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L

C
= R

G
. (8.89)

Equation (8.89) is known as Heaviside’s equation. Equation (8.78) can be modified
as

α + jβ =
√

RG

(
1 + jωL

R
+ jωC

G
+ (jω)2LC

RG

)
, (8.90)

α + jβ = √
RG

√
1 + jω

(
L

R
+ C

G

)
− ω2LC

RG
. (8.91)

For higher loss (low frequency), RG ≥ ω2LC, Eq. (8.91) can be modified as

α + jβ = √
RG

[
1 + jω

(
L

R
+ C

G

)] 1
2

. (8.92)

Expanding Eq. (8.92) in binomial format and neglecting higher terms yields

α + jβ = √
RG

[
1 + jω

2

(
L

R
+ C

G

)]
, (8.93)

α + jβ = √
RG + jω

2

(
L

√
G

R
+ C

√
R

G

)
. (8.94)

Separating the real and the imaginary parts of Eq. (8.94) yields

α = √
RG, (8.95)

β = ω

2

(
L

√
G

R
+ C

√
R

G

)
. (8.96)

Substituting Eq. (8.89) into Eq. (8.96) provides

β = ω

2

(
L

√
C

L
+ C

√
L

C

)
, (8.97)

β = ω

2
(
√

LC + √
LC), (8.98)

β = ω
√

LC. (8.99)

The expressions of attenuation and phase constants for low-loss and distortionless
transmission lines are the same. From Eqs. (8.95) and (8.99), it is concluded that the
attenuation constant is not frequency dependent and the phase constant is dependent
on the frequency.
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Example 8.3 The characteristic impedance and the phase constant of a line are 60�

and 5rad/m at 120 MHz, respectively. Determine per meter (1) capacitance and (2)
inductance.

Solution

1. The characteristic resistance is

Z0 =
√

L

C
. (8.100)

Dividing Eq. (8.99) (8.100) provides

β

Z0
= ω

√
LC√
L
C

, (8.101)

β

Z0
= ωC, (8.102)

C = β

ωZ0
= 5

2π × 120 × 106 × 60
= 0.11 nF/m.

2. The value of the inductance can be determined as

L = Z0
2C = 602 × 0.11 × 10−9 = 0.396 μH/m.

Example 8.4 The inductance and the capacitance of a higher-loss transmission line
are 24mH/m and 45μF/m, respectively. The source frequency is 1,000Hz, while
the resistance and the conductance are 45�/m and 25S/m, respectively. Determine
(1) the attenuation constant and (2) phase constant.

Solution

1. The value of the attenuation constant is

α = √
RG = √

45 × 25 = 33.54 db/m.

2. The value of the phase constant is

β = ω

2

(
L

√
G

R
+ C

√
R

G

)
= 2π × 1000

2

(
24 × 10−3

√
25

45
+ 45 × 10−6

√
45

25

)

= 56.39rad/m.

Practice problem 8.3 The characteristic impedance, attenuation constant, and
phase constant of a transmission line are 85�, α = 0.07Np/m, and β = 2.2rad/m,
respectively. Considering the operating frequency is 800 MHz, determine per meter
(1) resistance, (2) inductance, and (3) capacitance.
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Practice problem 8.4 A high-loss transmission line contains the inductance and the
capacitance. The values of these parameters are 14mH/m and 55μF/m, respectively.
The source frequency is 1,000Hz, while the resistance and the conductance are
65�/m and 35S/m, respectively. Determine (1) the attenuation constant and (2)
phase constant.

8.7 Determination of Attenuation Constant

The propagation constant is normally related to the attenuation and the phase con-
stants. The attenuation constant is the real part of the propagation constant of a
travelling wave. Mathematically, it can be expressed as

α = Re(γ ). (8.103)

Substituting Eq. (8.77) into Eq. (8.103) yields

α = Re[
√

(R + jωL)(G + jωC)]. (8.104)

If the waves travel in the z−direction, then the reflected waves must be cancelled.
Therefore, the terms containing eγ z for an infinite line must be cancelled. Then
the expressions of the voltage and the current in the z−direction by omitting the
superscript are

V (z) = V0e
−γ z = V0e

−(α+jβ)z, (8.105)

I (z) = I0e
−γ z = V0

Z0
e−(α+jβ)z. (8.106)

From Eq. (8.106), the conjugate of the current can be expressed as

I ∗(z) = V0

Z0
e−(α−jβ)z. (8.107)

The average power propagated along the line in the z−direction is

P (z) = 1

2
Re[V (z)I ∗(z)]. (8.108)

Substituting Eqs. (8.105) and (8.107) into Eq. (8.108) yields

P (z) = 1

2
Re

[
V0e

−(α+jβ)z.
V0

Z0
e−(α−jβ)z

]
, (8.109)

P (z) = 1

2

V0
2

Z0
e−2αz. (8.110)
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The rate of decrease of average power in the z−direction is equal to the power loss
per unit length and can be written as

−∂P (z)

∂z
= PL(z). (8.111)

Differentiating Eq. (8.110) with respect to z yields

∂P (z)

∂z
= −2α

(
1

2

V0
2

z0
e−2αz

)
. (8.112)

Substituting Eq. (8.110) into Eq. (8.112) yields

∂P (z)

∂z
= −2αP (z). (8.113)

Again, substituting Eq. (8.111) into Eq. (8.113) yields

PL(z) = 2αP (z), (8.114)

α = PL(z)

2P (z)
. (8.115)

From Eq. (8.115), it is seen that the attenuation constant is equal to half of the ratio
of the power loss per unit length to the average propagated power in the z−direction.

Example 8.5 The power loss per unit length and the attenuation constant of a line
are found to be 40 W/m and α = 0.2 db/m, respectively. Determine the average
power propagated along the line in the z–direction.

Solution The value of the average power propagated along the line can be
determined as

α = PL(z)

2P (z)
,

P (z) = PL(z)

2α
= 40

2 × 0.2
= 100W.

Practice problem 8.5 The per unit power loss and the average power propagated
along the line are 50 W/m and 120 W, respectively. Calculate the attenuation constant
of a line.

8.8 A Finite Transmission Line

A finite transmission line of length, l, propagation constant, γ , and characteristic
impedance, Z0, is connected to a load, ZL, as shown in Fig. 8.4. The general voltage
and current wave Eqs. (8.30) and (8.31), respectively, are used here to analyze the
finite transmission line as
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Z0

V0

+

−

Vg

z

z = 0 z = l

ZL VL

+

−

l − z

Zin

I0

IL

Fig. 8.4 Finite transmission line with load

Fig. 8.5 Equivalent circuit Z0

Vg
V0

+

−

I0

Zin

Vs(z) = V0
+e−γ z + V0

−eγ z, (8.116)

Is(z) = V0
+

Z0
e−γ z − V0

−

Z0
eγ z. (8.117)

The input voltage, V0, and the current, I0, can be determined from Fig. 8.5 as

V0 = Vg

Zg + Zin

Zin, (8.118)

I0 = Vg

Zg + Zin

. (8.119)

At the beginning of the transmission line, i.e., z = 0, the following conditions are
written as

Vs = V0, (8.120)
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Is = I0. (8.121)

Substituting Eqs. (8.120) and (8.121) into Eqs. (8.116) and (8.117) yields

V0 = V0
+ + V0

−, (8.122)

Z0I0 = V0
+ − V0

−. (8.123)

From Eqs. (8.122) and (8.123), the expressions for the incident and the reflected
voltages can be derived as

V0
+ = 1

2
(V0 + I0Z0), (8.124)

V0
− = 1

2
(V0 − I0Z0). (8.125)

At the end of the transmission line, i.e., z = l, the following conditions are written
as

Vs = VL, (8.126)

Is = IL. (8.127)

Substituting Eqs. (8.126) and (8.127) into Eqs. (8.116) and (8.117) yields

VL = V0
+e−γ l + V0

−eγ l , (8.128)

Z0IL = V0
+e−γ l − V0

−eγ l. (8.129)

Again, from Eqs. (8.128) and (8.129), the expressions of the incident and the reflected
voltages can be derived as

V0
+ = 1

2
(VL + ILZ0)eγ l , (8.130)

V0
− = 1

2
(VL − ILZ0)e−γ l . (8.131)

The following trigonometric formulae are used to finalize the expression

cosh γ l = 1

2
(eγ l + e−γ l), (8.132)

sinh γ l = 1

2
(eγ l − e−γ l), (8.133)

tanh γ l = eγ l − e−γ l

eγ l + e−γ l
. (8.134)
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Adding Eqs. (8.130) and (8.131) yields

V0
+ + V0

− = VL

eγ l + e−γ l

2
+ ILZ0

eγ l − e−γ l

2
. (8.135)

Substituting Eqs. (8.132) and (8.133) into Eq. (8.135) yields

V0
+ + V0

− = VL cosh γ l + ILZ0 sinh γ l. (8.136)

Subtracting Eq. (8.131) from Eq. (8.130) yields

V0
+ − V0

− = VL

eγ l − e−γ l

2
+ ILZ0

eγ l + e−γ l

2
. (8.137)

Substituting Eqs. (8.132) and (8.133) into Eq. (8.137) yields

V0
+ − V0

− = VL sinh γ l + ILZ0 cosh γ l. (8.138)

The input impedance at any point of the line is

Zin = Vs(z)

Is(z)
. (8.139)

The input impedance at z = 0 is

Zin = Vs(z = 0)

Is(z = 0)
= Z0

V0
+ + V0

−

V0
+ − V0

− . (8.140)

Substituting Eqs. (8.136) and (8.138) into Eq. (8.140) yields

Zin = Z0
VL cosh γ l + ILZ0 sinh γ l

VL sinh γ l + ILZ0 cosh γ l
, (8.141)

Zin = Z0

IL cosh γ l
(

VL

IL
+ Z0

sinh γ l

cosh γ l

)

IL cosh γ l
(

VL

IL

sinh γ l

cosh γ l
+ Z0

) . (8.142)

At the end of the transmission line, the load impedance is expressed as

ZL = VL

IL

. (8.143)

Substituting Eq. (8.143) into Eq. (8.142) yields

Zin = Z0
ZL + Z0 tanh γ l

Z0 + ZL tanh γ l
. (8.144)

Equation (8.144) represents the general expression for the input impedance at a
distance l from the load.
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Again, the voltage reflection coefficient at the load is defined as the ratio of
reflected wave to the incident wave and it is represented by ρ. Mathematically, the
reflection coefficient can be written as

ρ = V0
−eγ l

V0
+e−γ l

. (8.145)

Substituting Eqs. (8.130) and (8.131) into Eq. (8.145) yields

ρ =
1
2 (VL − ILZ0)e−γ leγ l

1
2 (VL + ILZ0)eγ le−γ l

, (8.146)

ρ =
VL

IL
− Z0

VL

IL
+ Z0

. (8.147)

Substituting Eq. (8.143) into Eq. (8.147) yields

ρ = ZL − Z0

ZL + Z0
. (8.148)

From Eq. (8.148), it is seen that the reflection coefficient is a dimensionless parameter
and it is also dependent on the value of the load and characteristic impedances.

Example 8.6 The parameters of a parallel wire telephone line are given as R = 3
�/km, G = 0.21μS/km, L = 0.004 H/km, and C = 0.006 μF/km. The load
of ZL = 30 + j30 � is connected at the end of a 35 km transmission line and the
operating frequency is 1,000 Hz. Determine (1) the characteristic impedance, Z0,
(2) propagation constant, γ , and (3) input impedance, Zin.

Solution

1. The value of the characteristic impedance is

Z0 =
√

(R + jωL

(G + jωC)
=
√

3 + j2π (1000)(0.004)

0.21 + j2π (1000)(0.006)
× 1000,

Z0 =
√

0.67
∣∣−6.49◦ × 1000 = 818.54

∣∣−3.25◦ �.

2. The value of the propagation constant is

γ = √
(R + jωL)(G + jωC)

= √
(3 + j2π (1000)(0.004))(0.21 + j2π (1000)(0.006)) × 10−3,

γ = √
(3 + j25.13)(0.21 + j37.7) × 10−3

=
√

954.14
∣∣172.87◦ × 10−3 = 30.89

∣∣86.44◦ × 10−3,

γ = α + jβ = (1.92 + j30.83) × 10−3 = 0.00192 + j0.0308.
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3. The values of the hyperbolic functions are

cosh γ l = cosh [35(0.00192 + j0.0308)] = cosh (0.0672 + j1.078),

cosh γ l = cosh (0.0672) cos (1.078) + j sinh (0.0672) sin (1.078),

cosh γ l = 0.474 + j0.0592 = 0.477
∣∣7.12◦ ,

sinh γ l = sinh [35(0.00192 + j0.0308)] = sinh (0.0672 + j1.078),

sinh γ l = sinh (0.0672) cos (1.078) + j cosh (0.0672) sin (1.078),

sinh γ l = 0.0318 + j0.883 = 0.883
∣∣87.94◦ ,

tanh γ l = sinh γ l

cosh γ l
= 0.883

∣∣87.94◦

0.447
∣∣7.12◦ = 1.98

∣∣80.82◦ .

The value of the input impedance can be determined as

Zin = Z0
ZL + Z0 tanh γ l

Z0 + ZL tanh γ l

= 818.54
∣∣−3.25◦ 30 + j30 + 818.54

∣∣−3.25◦ × 1.98
∣∣80.82◦

818.54
∣∣−3.25◦ + (30 + j30) × 1.98

∣∣80.82◦ ,

Zin = 1764.79
∣∣71.93◦ �.

Practice problem 8.6 The parameters of a parallel wire telephone line are given as
R = 5�/km, G = 0.26μS/km, L = 0.0032H/km, and C = 0.0065μF/km. The
load impedance ZL = 40+j40� is connected at the end of a 25 km transmission line
and the operating frequency is 1,000 Hz. Determine (1) the characteristic impedance,
Z0, (2) propagation constant, γ , and (3) input impedance, Zin.

8.9 Input Impedance for Lossless Transmission Line

For a lossless transmission line, the attenuation constant α is zero. Then the
propagation constant can be modified as

γ = α + jβ = jβ. (8.149)

The following trigonometry formula can be written as

tanh γ l = tanh (jβ)l = j tan βl. (8.150)

From Eq. (8.144), the expression of the input impedance can be modified as

Zin = Z0
ZL + jZ0 tan βl

Z0 + jZL tan βl
. (8.151)
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From Eq. (8.151), it is concluded that the input impedance will be different for
different values of β, Z0, and l. The following conditions are considered to analyze
the input impedance:

For a short circuit termination, ZL = 0 and Zin = Zsc. Equation (8.151) can be
modified as

Zsc = Z0
0 + jZ0 tan βl

Z0 + 0
= jZ0 tan βl. (8.152)

For an open circuit termination, ZL = ∞ and Zin = Zoc. Again, Eq. (8.151) can be
modified as

Zoc = Z0
∞ + jZ0 tan βl

Z0 + j∞ tan βl
, (8.153)

Zoc = Z0

∞
(

1 + jZ0 tan βl

∞
)

∞ (
Z0
∞ + j tan βl

) , (8.154)

Zoc = Z0
1

j tan βl
. (8.155)

Multiplying Eqs. (8.152) and (8.155) yields

Z0
2 = ZscZoc, (8.156)

Z0 = √
ZscZoc. (8.157)

Dividing Eq. (8.152) by Eq. (8.155) provides

Zsc

Zoc

= jZ0 tan (βl)
1

jZ0 tan (βl)

, (8.158)

Zsc

Zoc

= −tan2(βl). (8.159)

From Eqs. (8.157) and (8.159), it is concluded that the characteristic impedance Z0

and the phase constant β for a given length can be determined if the short circuit and
open circuit impedances are given.

For a lossless finite transmission line, consider z = −l, α = 0, γ = jβ =
jω

√
LC. Then Eqs. (8.116) and (8.117) become

Vs(z = −l) = V0
+ejω

√
LCl + V0

−e−jω
√

LCl , (8.160)

Is(z = −l) = 1

Z0
[V0

+ejω
√

LCl − V0
−e−jω

√
LCl]. (8.161)

From Eq. (8.65), substituting the expression V0
− = V0

+ρ into Eqs. (8.160) and
(8.161) yields

Vs = V0
+(ejω

√
LCl + ρe−jω

√
LCl), (8.162)
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Is = V0
+

Z0
[ejω

√
LCl − ρe−jω

√
LCl]. (8.163)

The maximum and the minimum input impedances can be obtained by the following
relations

(Zin)max = Vmax

Imin
, (8.164)

(Zin)min = Vmin

Imax
. (8.165)

The maximum value of the voltage and the minimum value of the current happen
when ejβl = e−jβl = 1. Then Eqs. (8.162) and (8.163) can be modified as

Vmax = ∣∣V0
+∣∣ (1 + |ρ| ), (8.166)

Imin =
∣∣V0

+∣∣
Z0

(1 − |ρ| ). (8.167)

Substituting Eqs. (8.166) and (8.167) into Eq. (8.164) yields

Zmax = Z0(1 + |ρ| )

(1 − |ρ| )
. (8.168)

For the minimum voltage and the maximum current setting ejβl = 1 and e−jβl = −1,
Eqs. (8.162) and (8.163) provide

Vmin = ∣∣V0
+∣∣ (1 − |ρ| ), (8.169)

Imax =
∣∣V0

+∣∣
Z0

(1 + |ρ| ). (8.170)

The standing wave ratio is defined as the ratio of the magnitudes of the maximum
voltage to the minimum voltage and it is represented as

s = Vmax

Vmin
. (8.171)

Substituting Eqs. (8.166) and (8.169) into Eq. (8.171) yields

s = 1 + |ρ|
1 − |ρ| . (8.172)

Equation (8.172) can be modified as

|ρ| = s − 1

s + 1
. (8.173)
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If the transmission line is terminated by a load having a length of l = λ
4 , then the

value of the phase constant is

β = 2π

λ
= 2π

4l
, (8.174)

βl = 2π

4l
l = π

2
. (8.175)

The expression of the input impedance can be modified as

Zin = Z0
ZL cos

(
π
2

)+ jZ0 sin
(

π
2

)

Z0 cos
(

π
2

)+ jZL sin
(

π
2

) , (8.176)

Zin = Z0
jZ0

jZL

, (8.177)

Zin = Z0
2

ZL

. (8.178)

From Eq. (8.178), it is concluded that the input impedance is directly proportional
to the square of the characteristic impedance and inversely proportional to the load
impedance if the transmission line is terminated by a one-quarter long wave length.

Again, consider the transmission line is terminated exactly by one-half of the
wave length, i.e., l = λ

2 . Again, the value of the phase constant is

β = 2π

λ
= 2π

2l
, (8.179)

βl = 2π

2l
l = π. (8.180)

The expression of the input impedance can be modified as

Zin = Z0
ZL cos π + jZ0 sin π

Z0 cos π + jZL sin π
, (8.181)

Zin = Z0
ZL( − 1)

Z0( − 1)
, (8.182)

Zin = ZL. (8.183)

From Eq. (8.183), it is seen that the input impedance is equal to the load impedance,
regardless of the characteristic impedance or phase constant.

If the load impedance is equal to the characteristic impedance, i.e., ZL = Z0,
then the expression of the input impedance can be modified as

Zin = Z0
Z0 cos π + jZ0 sin π

Z0 cos π + jZ0 sin π
, (8.184)



8.9 Input Impedance for Lossless Transmission Line 233

Zin = Z0. (8.185)

From Eq. (8.185), it is concluded that the input impedance is equal to the
characteristic impedance regardless of the length of the line.

Example 8.7 The open circuit and the short circuit impedances of a 2 m length
lossless transmission lines are −j35� and j80�, respectively. Determine (1) the
characteristic impedance, Z0, (2) phase constant, β, and (3) short circuit impedance
if the length is double of the given length considering the same operating frequency.

Solution

I. The value of the characteristic impedance is determined as

Z0 = √
ZscZoc = √

( − j35)(j80) = 52.92�.

II. The value of the phase constant can be determined as

tan βl =
√

−Zsc

Zoc

,

β = 1

l
tan−1

(√
−Zsc

Zoc

)
= 1

2
tan−1

(√
j80

j35

)
= 0.493rad/m.

III. The value of the short circuit impedance is determined as

βl = 0.493(2 × 2) = 1.972 rad,

Zsc = jZ0 tan βl = j52.92 tan (1.972) = j52.92( − 2.36) = −j124.88�.

Practice problem 8.7 A lossless transmission line is 3 m long. The open circuit
and the short circuit impedances of this line are −j55� and j110�, respectively.
Calculate (1) the characteristic impedance, Z0, (2) phase constant, β, and (3) short
circuit impedance if the length is double of the given length considering the same
operating frequency.

Example 8.8 A 10 m length lossless transmission line having characteristic
impedance of Z0 = 30� operates at 3 MHz. A load impedance of ZL = 40 + j50�

is used to terminate the transmission line. Assume that the velocity of the light in the
vacuum is v = 1.5 × 108 m/s. Determine the reflection coefficient, standing wave
ratio, and input impedance.

Solution The value of the reflection coefficient can be determined as

ρ = ZL − Z0

ZL + Z0
= 40 + j50 − 30

40 + j50 + 30
= 0.59

∣∣43.15◦ .

The value of the standing wave ratio is

s = 1 + |ρ|
1 − |ρ| = 1 + 0.59

1 − 0.59
= 3.88.
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The following parameter can be determined as

βl = ωl

v
= 2π × 3 × 106 × 10

1.5 × 108 = 0.4π = 72◦.

The value of the input impedance can be determined as

Zin = Z0
ZL + jZ0 tan βl

Z0 + jZL tan βl
= 30

(40 + j50) + j30 tan 72◦

30 + j (40 + j50) tan 72◦ = 20.43
∣∣29.16◦ �.

Practice problem 8.8 The characteristic impedance of a 5 m length lossless trans-
mission line is 20� which operates at 2 MHz. A load impedance of ZL = 35+j45�

is used to terminate the transmission line and the velocity of the light in the vacuum
is assumed to be v = 1.2 × 108 m/s. Determine the reflection coefficient, standing
wave ratio, and input impedance.

8.10 Power of Lossless Transmission Line

The power in a transmission line is the combination of the incident power and the
reflected power. Some portions of the power are absorbed by the load and the rest
of the power is returned back to the source. At a distance l, from Eqs. (8.116) and
(8.17), the expressions for voltage and current can be expressed as

Vs(l) = V0
+(ejβl + ρe−jβl), (8.186)

Is(l) = V0
+

Z0
(ejβl − ρe−jβl). (8.187)

The conjugate of the current is

Is
∗(l) = V0

+

Z0
(e−jβl − ρejβl). (8.188)

The average power at the input terminals of the transmission line is

Pav = 1

2
Re[Vs(l)Is

∗(l)]. (8.189)

Substituting Eqs. (8.186) and (8.188) into Eq. (8.189) yields

Pav = 1

2
Re[V0

+(ejβl + ρe−jβl)
V0

+

Z0
(e−jβl − ρejβl)], (8.190)

Pav =
∣∣V0

+∣∣2
2Z0

[1 − |ρ|2]

+
∣∣V0

+∣∣2
2Z0

Re[ρ cos 2βl − jρ sin 2βl − ρ cos 2βl − jρ sin 2βl], (8.191)
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Pav =
∣∣V0

+∣∣2
2Z0

[1 − |ρ|2], (8.192)

Pav =
∣∣V0

+∣∣2
2Z0

−
∣∣V0

+∣∣2
2Z0

|ρ|2, (8.193)

Pav = Pav
i − Pav

r , (8.194)

where the expression of the incident power is

Pav
i =

∣∣V0
+∣∣2

2Z0
. (8.195)

And the expression of the reflected power is

Pav
r = |ρ|2Pav

i . (8.196)

From Eq. (8.196), it is concluded that the average reflected power is equal to |ρ|2
times the average incident power.

Example 8.9 The load of ZL = 80+j40� is connected to a 50� transmission line.
If V0

+ = 30V, determine (1) the reflection coefficient, ρ, (2) standing wave ratio, s,
(3) incident power, (4) reflected power, and (5) net power.

Solution

I. The value of the reflection coefficient is calculated as

ρ = ZL − Z0

ZL + Z0
= 80 + j40 − 50

80 + j40 + 50
= 0.37

∣∣36.03 .

II. The value of the standing wave ratio can be determined as

s = 1 + |ρ|
1 − |ρ| = 1 + 0.37

1 − 0.37
= 2.17.

III. The value of the incident power can be calculated as

Pav
i =

∣∣V0
+∣∣2

2Z0
= 402

2 × 50
= 16W.

IV. The value of the reflected power is determined as

Pav
r = |ρ|2Pav

i = (0.37)2 × 16 = 2.19W.

V. The value of the net power is calculated as

Pnet = Pav
i − Pav

r = 16 − 2.19 = 13.81W.
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Practice problem 8.9 The load of ZL = 100 + j60� is connected to a 55� trans-
mission line. If V0

+ = 40V, determine (1) the reflection coefficient, ρ, (2) standing
wave ratio, s, (3) incident power, (4) reflected power, and (5) net power.

8.11 Basics of Smith Chart

The cumbersome manipulation of complex phasor algebra is usually required to
determine the impedance, current, voltage, and power of the transmission line. The
input impedance of a transmission line depends on three parameters, namely, load
impedance, characteristic impedance, and the observation point. The Smith chart
is a graphical method that can determine transmission line parameters easily. The
Smith chart is a set of coordinates of normalized impedances or admittances within a
unit circle whose radius is ρ = 1. The reflection coefficient and standing wave ratio
do not change in the Smith chart. The normalized impedance or admittance can be
obtained by dividing Z0 or Y0 of the respective line parameters, e.g., ZL or YL. After
normalized, the properties of the parameters remain unchanged. The normalized
impedance is

zl = ZL

Z0
= RL

Z0
+ j

XL

Z0
= r + jx. (8.197)

The reflection coefficient is modified as

ρ = ZL − Z0

ZL + Z0
=

ZL

Z0
− 1

ZL

Z0
+ 1

. (8.198)

Substituting Eq. (8.197) into Eq. (8.198) yields

ρ = zl − 1

zl + 1
, (8.199)

ρ = r + jx − 1

r + jx + 1
. (8.200)

Equation (8.199) can be modified as

ρzl + ρ = zl − 1, (8.201)

(1 − ρ)zl = 1 + ρ, (8.202)

zl = 1 + ρ

1 − ρ
. (8.203)

The rectangular and polar forms of the reflection coefficient are

ρ = a + jb = Rejθ , (8.204)
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Fig. 8.6 Normalized
impedance

r

jx

Im

Re

Fig. 8.7 Complex reflection
plane with unit circle

ρ = 1
θ

ρ = Re jθ

Im

Re

R

where R is the magnitude of the reflection coefficient. The normalized load
impedance and the complex reflection coefficient are shown in Figs. 8.6 and 8.7,
respectively. Substituting Eqs. (8.197) and (8.204) into Eq. (8.203) yields

r + jx = 1 + a + jb

1 − (a + jb)
, (8.205)

r + jx = (1 + a + jb)(1 − a + jb))

(1 − a)2 + b2
, (8.206)

r[(1 − a)2 + b2] + jx[(1 − a)2 + b2] = 1 − a + jb + a − a2

+ jab + jb − jab − b2, (8.207)

r[(1 − a)2 + b2] + jx[(1 − a)2 + b2] = 1 − a2 − b2 + j2b. (8.208)

Separating the real and the imaginary parts of Eq. (8.208) yields

r(1 − 2a + a2 + b2) = 1 − a2 − b2, (8.209)

a2(r + 1) + b2(r + 1) − 2ar + r − 1 = 0, (8.210)
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Fig. 8.8 Constant resistance circles with different radius

a2 + b2 − 2
r

(r + 1)
a + r − 1

(r + 1)
= 0, (8.211)

(
a − r

r + 1

)2

+ (b − 0)2 = r2

(r + 1)2 − r − 1

r + 1
, (8.212)

(
a − r

r + 1

)2

+ (b − 0)2 =
(

1

r + 1

)2

. (8.213)

Equation (8.213) is known as constant resistance circle, whose center is at
(

r
r+1 , 0

)
and the radius is

(
1

r+1

)
. For different values of r, many circles can be drawn in the

constant resistance circle. At r = 0, the center and the radius of the circle are found
to be (0,0) and 1, respectively. This circle is drawn at the real and imaginary plane
as shown in Fig. 8.8. At r = ∞, the center of the circle is at (1,0) and the radius is
zero as shown in Fig. 8.8. It is found that the constant resistance circle lies on the
real line. The constant resistance circles can be drawn by the following conditions:

I. At r = 1, center = (0.5,0), radius = 0.5.
II. At r = 3, center = (0.25,0), radius = 0.25.
III. At r = 4, center = (0.2,0), radius = 0.2.

The imaginary part of Eq. (8.208) is

x[(1 − a)2 + b2] = 2b, (8.214)

(1 − a)2 + b2 − 2

x
b = 0. (8.215)
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Fig. 8.9 Constant reactance circles with different radius
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Fig. 8.10 Constant resistance and constant reactance circles

(a − 1)2 +
(

b − 1

x

)2

=
(

1

x

)2

. (8.216)

Equation (8.216) is known as constant reactance circle. The center and the radius
of this circuit are

(
1, 1

x

)
and 1

x
, respectively. At x = 0, the center and radius of the
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constant reactance circle are (1, ∞) and ∞, respectively. In this case, the circle lies on
the real line. At x = ∞, the center is at (1,0) and the radius is 1. Families of constant
reactance circles are drawn by the conditions; at x = 0.5, center = (1, 2), radius
= 2, at x = 1, center = (1, 1), radius = 1, at x = 2, center = (1, 0.5), radius = 0.5.
The quarter parts of the constant reactance circle lies above the real axis and negative
parts below the real axis within the unity circle as shown in Fig. 8.9. Again, the
constant resistance and the constant reactance circles are drawn together as shown
in Fig. 8.10. From Fig. 8.10, it is seen that the constant resistance and the constant
reactance circles are orthogonal to each other. The reflection coefficient and other
related transmission line parameters can be determined by the point of intersection
between the two circles.

8.12 Exercise Problems

8.1 A lossless transmission line has an inductance of 0.4μH/m and capacitance of
250pF/m. The voltage across the 30� load is 100V and the source frequency is
1,000Hz. Determine (1) the velocity of the wave, (2) characteristic resistance,
(3) reflection coefficient, (4) wavelength, (5) phase constant, and (6) incident
and reflected voltages.

8.2 The inductance and the capacitance of a lossless transmission line are
0.35mH/km and 0.025μF/km, respectively. The source frequency is 1,000Hz
and the voltage across the 128� load is 210V. Find (1) the velocity of the
wave, (2) characteristic resistance, (3) reflection coefficient, (4) wavelength,
(5) phase constant, and (6) incident voltage.

8.3 A low-loss transmission line has an inductance of 15mH/m and capacitance
of 46μF/m. The source frequency is 1,000Hz and the resistance and the
conductance are 30�/m and 10S/m, respectively. Find (1) the attenuation
constant and (2) phase constant.

8.4 The characteristic impedance, attenuation constant, and phase constant of a
transmission line are 75�, α = 0.75 db/m, and β = 1.2 rad/m, respec-
tively. Assume the operating frequency is 1,000 MHz. Determine per meter
(1) resistance, (2) inductance, and (3) capacitance.

8.5 A lossy transmission line operates at 120 MHz and the related parameters are
found to be Z0 = 40�, α = 0.05 db/m, and β = 0.6π rad/m. Determine the
resistance, inductance, capacitance, and conductance of the line.

8.6 A high-loss transmission line has an inductance of 20mH/m and capacitance
of 65μF/m. The source frequency is 900Hz and the resistance and the con-
ductance are 45�/m and 45S/m, respectively. Calculate (1) the attenuation
constant and (2) phase constant.

8.7 A line has a power loss of 50 W per meter and the attenuation constant of
α = 0.5 db/m. Calculate the average power propagated along the line in the
z−direction.
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8.8 The power loss and the average power propagated along the line are 60 W/m
and 150 W, respectively. Determine the attenuation constant of the line.

8.9 A parallel wire telephone line has the parameters R = 2�/km, G =
0.35μS/km, L = 0.009H/km, and C = 0.003μF/km. The 35 km trans-
mission line is terminated by the load of ZL = 20 + j35� and the
operating frequency is assumed to be 1,000 Hz. Calculate (1) the charac-
teristic impedance, Z0, (2) propagation constant, γ , and (3) input impedance,
Zin.

8.10 The required parameters of a parallel wire telephone line are given by R =
6�/km, G = 0.16μS/km, L = 0.0045H/km, and C = 0.0035μF/km.
A load impedance of ZL = 35 + j45� is connected at the end of a 55 km
transmission line and the operating frequency is considered as 1,000 Hz. Find
(1) the characteristic impedance, Z0, (2) propagation constant, γ , and (3)
input impedance, Zin.

8.11 Lossless transmission lines of 4 m length have the open circuit and the short
circuit impedances of −j40� and j95�, respectively. Calculate (1) the
characteristic impedance, Z0, (2) phase constant, β, and (3) short circuit
impedance if the length is half of the given length considering the same
operating frequency.

8.12 A lossless transmission line is 5 m long and its open circuit and short circuit
impedances are measured as −j50� and j100�, respectively. Find (1) the
characteristic impedance, Z0, (2) phase constant, β, and (3) short circuit
impedance if the length is three times of the given length considering the
same operating frequency.

8.13 The open circuit and short circuit impedances of a 5-m-long transmission line
are found to be 200

∣∣−40◦ � and 300
∣∣30◦ �, respectively. Find (1) Z0, α, β

and (2) R, L, C, G.
8.14 A 15 m length lossless transmission line has a characteristic impedance of

Z0 = 45�, and it operates at 5 MHz. A load impedance of ZL = 60 + j55�

is used to terminate the transmission line. Assume the velocity of the light in
the vacuum to be v = 2.5 × 108 m/s. Find the reflection coefficient, standing
wave ratio, and input impedance.

8.15 A 55� transmission line is terminated by the load of ZL = 65 + j45�. If
V0

+ = 45V, calculate (1) the reflection coefficient, ρ, (2) standing wave ratio,
s, (3) incident power, (4) reflected power, and (5) net power.
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Chapter 9
Uniform Plane Waves

9.1 Introduction

The uniform plane wave is defined as the magnitude of the electric and magnetic
fields. They are the same at all points in the direction of propagation. The electric
and magnetic fields are orthogonal to the direction of propagation. In terms of energy,
the wave phenomenon is defined as the exchange of two different forms of energy. It
is meant that the time rate of change of one form triggers the other to a spatial change.
Waves do not have mass but contain energy, momentum, and velocity. Examples of
waves are the voltage and current waves on the transmission line, seismic waves,
sound waves, and water waves. In this chapter, time-domain Maxwell’s equation,
the solution of Maxwell’s equation, different parameters of electromagnetic wave
propagation in different media, incident wave, reflected wave, transmitted wave, and
wave polarization will be discussed.

9.2 Time-Domain Maxwell’s Equations

Consider a homogeneous, linear, and isotropic unbound medium to express time-
domain Maxwell’s equation. The net free charge in this region is considered to be zero
( ρ = 0) and the current density is J = σE. In the lossless region, the conductivity
is zero ( σ = 0). The four differential forms of Maxwell’s equations are

∇ × E = −∂B
∂t

, (9.1)

∇ × H = ∂D
∂t

, (9.2)

∇ · B = 0, (9.3)

∇ · D = 0. (9.4)

Md. A. Salam, Electromagnetic Field Theories for Engineering, 243
DOI 10.1007/978-981-4585-66-8_9, © Springer Science+Business Media Singapore 2014



244 9 Uniform Plane Waves

The following general relations are

B = μH, (9.5)

D = εE. (9.6)

Substituting Eq. (9.5) into Eq. (9.3) yields

∇ · μH = 0, (9.7)

∇ · H = 0. (9.8)

Equation (9.4) can be modified by substituting Eq. (9.6) as

∇ · εE = 0, (9.9)

∇ · E = 0. (9.10)

Substituting Eq. (9.5) into Eq. (9.1) provides

∇ × E = −∂(μH)

∂t
, (9.11)

∇ × E = −μ
∂H
∂t

. (9.12)

Again, substituting Eq. (9.6) into Eq. (9.2) yields

∇ × H = ∂(εE)

∂t
, (9.13)

∇ × H = ε
∂E
∂t

. (9.14)

From Eq. (9.12) and (9.14), it is concluded that time-varying electric and magnetic
fields have coexistence.

Taking the curl of Eq. (9.12) yields

∇ × ∇ × E = −μ
∂(∇ × H)

∂t
. (9.15)

Substituting Eq. (9.14) into Eq. (9.15) provides

∇ × ∇ × E = −μ
∂

∂t

(
ε∂E
∂t

)
, (9.16)

∇ × ∇ × E = −με
∂2E
∂t2

. (9.17)

For any vector A, the following vector identity can be written as

∇ × ∇ × A = ∇(∇ · A) − ∇2A. (9.18)
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Based on Eq. (9.18), Eq. (9.17) can be expressed as

(∇ · E) − ∇2E = −με
∂2E
∂t2

. (9.19)

Substituting Eq. (9.10) into Eq. (9.19) yields

−∇2E = −με
∂2E
∂t2

, (9.20)

∇2E = με
∂2E
∂t2

. (9.21)

Again taking the curl of Eq. (9.14) provides

∇ × ∇ × H = ε
∂(∇ × E)

∂t
. (9.22)

Substituting Eq. (9.12) into Eq. (9.22) provides

∇ × ∇ × H = ε
∂

∂t

(
−μ

∂H
∂t

)
, (9.23)

∇ × ∇ × H = −με
∂2H
∂t2

. (9.24)

Based on Eq. (9.18), Eq. (9.24) can be expressed as

(∇ · H) − ∇2H = −με
∂2H
∂t2

. (9.25)

Substituting Eq. (9.8) into Eq. (9.25) yields

−∇2H = −με
∂2H
∂t2

, (9.26)

∇2H = με
∂2H
∂t2

. (9.27)

Equations (9.21) and (9.27) are the wave equations in three-dimensional spaces.

9.3 Wave Equation in Time-Harmonic Fields

Consider a field in space coordinates and time function to derive the wave equation
in time-harmonic fields. This field can be written as

E(x, y, z, t) = E(x, y, z)ejωt , (9.28)
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Fig. 9.1 Schematic of
uniform plane waves
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propagation
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where the vector E is a function of space coordinates (x, y, z).
Taking derivatives of Eq. (9.28) provides

∂E(x, y, z, t)

∂t
= jωE(x, y, z)ejωt . (9.29)

Again taking derivatives of Eq. (9.29) yields

∂2E(x, y, z, t)

∂t2
= j 2ω2E(x, y, z)ejωt , (9.30)

∂2E(x, y, z, t)

∂t2
= j 2ω2E(x, y, z, t). (9.31)

Omitting the term E(x, y, z, t) from both sides of Eq. (9.31) yields

∂2

∂t2
= −ω2. (9.32)

Substituting Eq. (9.32) into Eqs. (9.21) and (9.27) provides

∇2E = −ω2μεE, (9.33)

∇2H = −ω2μεH. (9.34)

9.4 Solution of a Wave Equation in the Frequency Domain

Consider if the x-component of the electric field does not vary in the xy plane, i.e.,
constant and perpendicular to the direction of propagation as shown in Fig. 9.1.
Assuming the solution of the uniform plane wave is

E(x, y, z, t) = Ex(z)ax. (9.35)
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The Ex is constant in the x and y coordinates, the following condition can be written as

∂Ex

∂x
= ∂Ex

∂y
= 0. (9.36)

Based on Eq. (9.33), the following equation with full derivatives can be written as

d2Ex(z)

dz2
= −ω2μεEx(z). (9.37)

Consider the following relation

γ 2 = −ω2εμ. (9.38)

The complex propagation constant is

γ =
√

−ω2εμ, (9.39)

γ =
√

j 2ω2εμ, (9.40)

γ = α + jβ = jω
√

εμ, (9.41)

α = 0, (9.42)

β = ω
√

εμ = ω

v
, (9.43)

where the expression of the propagation velocity of the wave is

v = 1√
εμ

. (9.44)

Substituting Eq. (9.38) into Eq. (9.37) provides

d2Ex(z)

dz2
− γ 2Ex(z) = 0. (9.45)

The general solution of Eq. (9.45) is

Ex(z) = C1e
−γ z + C2e

γ z. (9.46)

Equation (9.46) with attenuation and phase constants can be modified as

Ex(z) = C1e
−αze−jβz + C2e

αzejβz, (9.47)

Ex(z) = Ex
+e−jβz + Ex

−ejβz, (9.48)

where
Ex

+ = C1 is the wave travelling in the positive z-direction,
Ex

− = C2 is the wave travelling in the negative z-direction.
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Equation (9.12) can be expressed as
∣∣∣∣∣∣∣∣∣

ax ay az

∂

∂x

∂

∂y

∂

∂z
Ex Ey Ez

∣∣∣∣∣∣∣∣∣
= −jωμH. (9.49)

Substituting Eq. (9.35) into Eq. (9.49) yields
∣∣∣∣∣∣∣∣∣

ax ay az

0 0
∂

∂z
Ex 0 0

∣∣∣∣∣∣∣∣∣
= −jωμH, (9.50)

∂Ex

∂z
ay = −jωμH. (9.51)

Substituting H in Cartesian coordinates in Eq. (9.51) provides

∂Ex

∂z
ay = −jωμ(Hxax + Hyay + Hzaz). (9.52)

Equating the coefficient of ay in Eq. (9.52) yields

∂Ex

∂z
= −jωμHy. (9.53)

Substituting Eq. (9.48) into Eq. (9.53) yields

∂

∂z
(Ex

+e−jβz + Ex
−ejβz) = −jωμHy , (9.54)

−jβEx
+e−jβz + jβEx

−ejβz = −jωμHy , (9.55)

Hy = β

ωμ
Ex

+e−jβz − β

ωμ
Ex

−ejβz. (9.56)

The ratio of the electric and the magnetic fields for a wave travelling in the positive
z-direction, and the negative z-direction, can be determined as

Ex

Hy

= Ex
+e−jβz

β

ωμ
Ex

+e−jβz
= ωμ

β
= η, (9.57)

Ex

Hy

= Ex
−ejβz

− β

ωμ
Ex

−ejβz
= −ωμ

β
= −η. (9.58)

In general, the electric and the magnetic fields can be related as

H = 1

η
n × E and E = ηH × n (9.59)
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where n is the unit vector which represents the direction of wave propagation.
The unit of the electric field is V/m and the magnetic field is A/m. Therefore, the

unit of the parameter η is V/A or �. This parameter is called the intrinsic impedance
of the medium and it is denoted by the symbol η (eta). Mathematically, it can be
expressed as

η = ωμ

β
. (9.60)

Substituting Eq. (9.43) into Eq. (9.60) yields

η = ωμ

ω
√

εμ
, (9.61)

η =
√

μ

ε
. (9.62)

For a free space, Eq. (9.62) can be written as

η0 =
√

μ0

ε0
. (9.63)

Substituting μ0 = 4π ×10−7 H/m and ε0 = 1
36π

×10−9 F/m into Eq. (9.63) provides
the value of intrinsic impedance as

η0 =
√

4π × 10−7

1
36π

× 10−9 ≈ 120π = 377 �. (9.64)

Substituting Eq. (9.63) into Eq. (9.62) yields

η = η0

√
μr

εr

. (9.65)

The expression of phase constant for a free space is

β0 = ω
√

ε0μ0. (9.66)

Substituting Eq. (9.44) into Eq. (9.66) yields

β0 = 2πf

v0
, (9.67)

β0 = 2π

λ0
, (9.68)

λ0 = 2π

β0
, (9.69)



250 9 Uniform Plane Waves

where the expression of wavelength for a free space is

λ0 = v0

f
. (9.70)

Substituting Eq. (9.66) into Eq. (9.43) yields

β = β0
√

εrμr . (9.71)

The expression of wavelength in any medium is

λ = 2π

β
. (9.72)

Substituting Eq. (9.43) into Eq. (9.72) yields

λ = 2π

2πf
√

μ0μrε0εr

. (9.73)

Substituting Eq. (9.44) for a free space into Eq. (9.73) yields

λ = v0

f
√

μrεr

. (9.74)

Again, substituting Eq. (9.70) into Eq. (9.74) yields

λ = λ0√
μrεr

. (9.75)

Example 9.1 In free space, the electric field of a uniform plane wave is given by
E = 300 cos (108t − β0x)az V/m. Determine (a) the phase constant, (b) wavelength,
and (c) magnetic field at the point ( 0.2,1.3,0.4) m and t = 5 ns.

Solution

(a) The value of the phase constant is determined as,

β0 = ω
√

μ0ε0 = 108
√

1
36π

× 10−9 × 4π × 10−7 = 0.33 rad/m.

(b) The value of the wavelength is
λ0 = 2π

β0
= 2π

0.33 = 19.04 m.

(c) Here, the wave is propagated in the x-direction and the electric field is directed in
the z-direction. Hence, the magnetic field is directed in the y-direction (Fig. 9.2).

The magnetic field can be determined as

H = E
η0

= 300

377
e−jβ0xay = 0.8e−jβ0xayA/m.

The instantaneous magnetic field is

H(x, y, z, t) = 0.8 cos (108t − β0x)ayA/m.

The magnetic field at the point (0.2,1.3,0.4) m is

H(0.2,1.3,0.4,5) = 0.8 cos (108 × 5 × 10−9 − 0.33 × 0.2)ay = 0.8ayA/m.
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Fig. 9.2 Direction of
electromagnetic fields

Direction of 
propagation

E

H

x

y

z

Practice Problem 9.1 In a isotropic, lossless, and uniform dielectric medium, the
electric and the magnetic fields are given by E = 600 cos (108t − βy)axV/m and
H = 2.5 cos (108t − βy)az A/m. Determine (a) the intrinsic impedance, (b) relative
permeability μr and relative permittivity εr , (c) phase constant, and (d) wavelength.
Assume v = 0.6v0 m/s.

Example 9.2 In a lossless, isotropic, and uniform dielectric medium, the electric
field of a uniform plane wave is given by E = (2ax + j5ay)ej3z V/m. Determine (a)
the phase constant, (b) angular frequency, (c) velocity, and (d) intrinsic impedance.
The frequency of the uniform plane wave is 40 MHz.

Solution

(a) The value of the phase constant is
β = 3 rad/m, propagation direction is −az.

(b) The value of the angular frequency is
ω = 2πf = 2π × 40 × 106 = 25.13 × 107 rad/s.

(c) The velocity of the wave is
v = ω

β
= 25.13×107

3 = 8.38 × 107 m/s.

(d) The value of the permittivity is determined as

v = v0√
μrεr

, μrεr = ( v0
v

)2
, μrεr =

(
3×108

8.37×107

)2
, εr = 12.82.

The value of the intrinsic impedance can be determined as

η = η0

√
μr

εr
= 377

√
1

12.82 = 105.29 �.

Practice Problem 9.2 The electric field of a uniform plane wave in a lossless,
isotropic, and uniform dielectric medium is given by E = (4ax + j9ay)e−j2z V/m.
Calculate (a) the phase constant, (b) angular frequency, (c) velocity, and (d) intrinsic
impedance. Consider that the frequency of the uniform plane wave is 30 MHz.

9.5 Solution of a Wave Equation in the Time Domain

Consider that the x-component of the electric field is a function of z and t. The
time-domain solution of the wave equation is

E(z, t) = Ex(z, t) = Re[Ex(z)ejωt ], (9.76)
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where Ex(z) is a phasor form. The wave equation (9.21) can be expressed as

d2Ex(z, t)

dz2
− με

∂Ex(z, t)

∂t2
= 0. (9.77)

Substituting Eq. (9.76) into Eq. (9.77) yields
[
d2Ex(z)

dz2
− (jω)2μεEx(z)

]
ejωt = 0, (9.78)

d2Ex(z)

dz2
+
(ω

v

)2
Ex(z) = 0, (9.79)

where the wave number of the wave is defined as

k = β = ω

v
. (9.80)

Substituting Eq. (9.80) into Eq. (9.79) yields

(D2 + k2)Ex(z) = 0, (9.81)

where d2

dz2 = D2.

Equation (9.81) can be written as

D2 + k2 = 0, (9.82)

D2 = −k2 = j 2k2, (9.83)

D = ±jk. (9.84)

The solution is

Ex(z) = Ae−jkz + Bejkz. (9.85)

Substituting Eq. (9.85) into Eq. (9.76) yields

Ex(z, t) = Re[(Ae−jkz + Bejkz)ejωt ], (9.86)

Ex(z, t) = Re[Aej (ωt−kz) + Bej (ωt+kz)]. (9.87)

The real and imaginary parts of Eq. (9.87) are

Ex(z, t) = A cos (ωt − kz) + B cos (ωt + kz). (9.88)

The instantaneous phase of the wave is

φ = ωt − kz = ωt − βz, (9.89)

z = ω

β
t − φ

β
. (9.90)
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Differentiating Eq. (9.90) with respect to t yields

dz

dt
= ω

β
, (9.91)

v = ω

β
. (9.92)

The frequency-domain solution of the wave equation in a time-domain form can be
written as

Ex(z, t) = Re(Ex(z)ejωt ). (9.93)

Substituting Eq. (9.46) into Eq. (9.93) yields

Ex(z, t) = Re[C1e
−αzej (ωt−βz)] + Re[C2e

αzej (ωt+βz)], (9.94)

Ex(z, t) = Ex
+e−αz cos (ωt − βz) + Ex

−eαz cos (ωt + βz). (9.95)

Example 9.3 An electric field of a uniform plane is given by E = 150axV/m. This
wave propagates in the z-direction to a medium whose properties are σ = 0, μr = 1,
and εr = 6. Assume that the frequency of the wave is 10 MHz. Determine the
instantaneous electric and magnetic fields.

Solution The electric field is

E(z) = 150e−jβzax.

The instantaneous expression of electric field is

E(z, t) = Re[150e−jβzejωt ]ax ,

E(z, t) = Re[150ej (ωt−βz)]ax ,

E(z, t) = 150 cos (ωt − βz)ax.

The value of the phase constant is

β = ω

v0
= 2π × 10 × 106

3 × 108 = 0.21rad/m,

E(z, t) = 150 cos (ωt − 0.21z)axV/m.

The intrinsic impedance can be determined as

η = η0

√
μr

εr

= 377

√
1

6
= 153.91�.

The instantaneous value of the magnetic field can be calculated as

H(z, t) = n × E(z, t)

η
,

H(z, t) = 150 cos (ωt − 0.21z)

153.91
az × ax = 0.97150 cos (ωt − 0.21z)ayA/m.
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Practice Problem 9.3 A uniform plane wave having an electric field E = 200ayV/m
propagates in the z-direction to a medium whose properties are σ = 0, μr = 1,
and εr = 9. Assume that the frequency of the wave is 30 MHz. Determine the
instantaneous electric and magnetic fields.

9.6 Wave Propagation in Lossy Medium

In a lossy medium, the conductivity is not zero, i.e., σ 
= 0 and the conductivity is
zero (σ = 0) in a lossless medium. The conduction current in a lossy medium is

Jc = σE. (9.96)

The displacement current density is

Jd = ∂D
∂t

= ε
∂E
∂t

. (9.97)

The expression of the total current density is

J = Jc + Jd . (9.98)

Substituting Eqs. (9.96) and (9.97) into Eq. (9.98) yields

J = σE + ε
∂E
∂t

= σE + jεωE. (9.99)

The Ampere’s law is

∇ × H = J. (9.100)

Substituting Eq. (9.99) into Eq. (9.100) yields

∇ × H = σE + jεωE, (9.101)

∇ × H = jω

(
ε + σ

jω

)
E, (9.102)

∇ × H = jω
(
ε − j

σ

ω

)
E, (9.103)

∇ × H = jωεcpE, (9.104)

where the expression of the complex permittivity of this medium is

εcp = ε − j
σ

ω
. (9.105)

In a lossy medium, the ratio of the conduction current density to the displacement
current density is known as loss tangent. The loss tangent is the tangent of the phase
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Fig. 9.3 Representation of
conduction and displacement
current densities

Jd

Jc

δ

of the complex dielectric constant of the medium. Mathematically, the loss tangent
can be expressed as

tan δ = |Jc|
|Jd | . (9.106)

Substituting Eqs. (9.96) and (9.97) into Eq. (9.106) yields

tan δ = |σE|
|jωεE| , (9.107)

tan δ = σ

ωε
. (9.108)

The representation of the conduction current and the displacement current densities
is shown in Fig. 9.3. For a good conductor, the value of tan δ is very large, i.e.,
σ 
 ωε or σ

ωε

 1. In case of a good dielectric, the value of tan δ is very small, i.e.,

σ � ωε or σ
ωε

� 1. The value of the loss tangent is zero for a lossless dielectric and
for a good dielectric it is in the range 10−4 − 10−3.

Wave equations for a lossy medium
(

σ
ωε

� 1
)

can be derived as

∇ × H = σE + ε
∂E
∂t

. (9.109)

Taking the curl of Eq. (9.109) yields

∇ × ∇ × H = σ (∇ × E) + ε
∂(∇ × E)

∂t
, (9.110)

∇(∇ · H) − ∇2H = σ (∇ × E) + ε
∂(∇ × E)

∂t
. (9.111)

Substituting Eqs. (9.8) and (9.12) into Eq. (9.111) yields

0 − ∇2H = −σμ
∂H
∂t

− εμ
∂2H
∂t2

, (9.112)

∇2H = σμ
∂H
∂t

+ εμ
∂2H
∂t2

. (9.113)
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In phasor form, Eq. (9.113) can be modified as

∇2H = σμ(jωH) + εμ(jω)2H, (9.114)

∇2H = jωμ(σ + jωε)H. (9.115)

Similarly, for electric fields, Eq. (9.115) can be written as

∇2E = jωμ(σ + jωε)E. (9.116)

Then the square of the propagation constant can be written as

γ 2 = jωμ(σ + jωε), (9.117)

γ =
√

jωμ × jωε

(
σ

jωε
+ 1

)
, (9.118)

γ = jω
√

με

(
σ

jωε
+ 1

) 1
2

, (9.119)

γ = jω
√

με

[
1 +

1
2

1!
(

α

jωε

)
+

1
2

(
1
2 − 1

)

2!
(

α

jωε

)2

+ . . .

]
, (9.120)

γ = jω
√

με

[
1 + 1

2

(
α

jωε

)
+ 1

8

α2

ω2ε2
+ . . .

]
. (9.121)

The expression of the attenuation constant can be determined as

α = Re(γ ) = 1

2

σ

ε

√
με = 1

2
σ

√
μ

ε
. (9.122)

The expression of the phase constant is

β = Im(γ ) = ω
√

με

[
1 + σ 2

8ω2ε2

]
, (9.123)

β = ω
√

με

[
1 + 1

8

( σ

ωε

)2
]
. (9.124)

Substituting Eq. (9.124) into Eq. (9.43) yields the expression of velocity,

β = ω

ω
√

με
[
1 + 1

8

(
σ
ωε

)2
] = 1

√
με

[
1 + 1

8

(
σ
ωε

)2
] . (9.125)

Considering the condition σ
ωε

� 1 for good dielectrics (lossless), Eq. (9.124) can be
modified as

β = ω
√

με. (9.126)
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Equations (9.124) and (9.126) are slightly different, but in both cases, the phase
constant is directly proportional to the angular frequency.

For good dielectrics, Eq. (9.122) can be modified again as

α = 1

2

σ

ωε
ω

√
με. (9.127)

Substituting Eqs. (9.108) and (9.126) into Eq. (9.127) yields

α = 1

2
β tan δ. (9.128)

From Eq. (9.128), it is concluded that the attenuation constant is equal to half of the
product of phase constant and loss tangent.

Example 9.4 A uniform plane wave having a frequency of 4 GHz travels through
a good dielectric medium whose relative permittivity and loss tangent are 6 and
4×10−5, respectively. Determine (a) the phase constant and (b) attenuation constant.

Solution

(a) The value of the phase constant is
β = ω

√
με = 2πf

√
μ0εrε0 = 2πf

√
εr

v0
= 2π×4×109

√
6

3×108 = 205.21 rad/m.
(b) The value of the attenuation constant can be determined as

tan δ = 4 × 10−5,
α = 1

2β tan δ = 205.21×4×10−4

2 = 0.041 Np/m.

Practice Problem 9.4 A 6-MHz uniform plane wave travels through a good dielec-
tric medium whose relative permittivity and attenuation constant are 5 and 0.032
Np/m, respectively. Determine (a) the phase constant and (b) loss tangent.

9.7 Wave Propagation in Good Conductors

The medium or material is said to be a good conductor if it satisfies the condition
σ >> ωε or σ

ωε
>> 1. The expression of the propagation constant can be written as

γ = √
jωμ(σ + jωε), (9.129)

γ =
√

jωμ × jωε

(
1 + σ

jωε

)
. (9.130)

Applying the condition of a good conductor to Eq. (9.130) yields

γ =
√

jωμ × jωε

(
σ

jωε

)
, (9.131)

γ = √
jωμσ . (9.132)
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But the following relations can be written as:

j = ej π
2 = cos

π

2
+ j sin

π

2
, (9.133)

√
j =

√
ej π

2 = ej π
4 = cos

π

4
+ j sin

π

4
= 1 + j√

2
. (9.134)

Substituting Eq. (9.134) into Eq. (9.132) yields

γ = 1 + j√
2

√
ωμσ. (9.135)

The expressions of attenuation and phase constants are

α = Re(γ ) =
√

ωμσ

2
= √

πf μσ , (9.136)

β = Im(γ ) =
√

ωμσ

2
= √

πf μσ . (9.137)

From Eqs. (9.135) and (9.136), it is concluded that the attenuation and phase constants
are the same in a good conductor.

The expression of the velocity of propagation can be obtained by substituting Eq.
(9.137) into Eq. (9.43) as

v = ω√
ωμσ

2

, (9.138)

v =
√

2ω

μσ
. (9.139)

The intrinsic impedance can be derived as

η =
√

μ

εcp

. (9.140)

Substituting Eq. (9.105) into Eq. (9.140) yields

η =
√

μ

ε − j σ
ω

. (9.141)

Applying the condition σ
ωε


 1 or σ
ω


 ε into Eq. (9.141) yields

η =
√

μ

−j σ
ω

, (9.142)

η =
√

j
ωμ

σ
. (9.143)
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Substituting Eq. (9.134) into Eq. (9.142) yields

η =
√

ωμ

2σ
(1 + j ), (9.144)

η =
√

ωμ

σ

∣∣45◦ . (9.145)

From Eq. (9.95), consider the positive direction of the travelling wave for a lossy
material. This equation is

Ex(z, t) = Ex
+e−αz cos (ωt − βz)ax. (9.146)

From Eq. (9.146), it is concluded that the amplitude of the wave will be decreased
by the factor e−αz over a distance of 1

α
. This distance is known as skin depth of the

material and it is represented by the Greek letter δ. The skin depth is the depth of
the material by which the uniform plane wave can penetrate the material before it is
decreased by the factor 1

e
or 37 %. Mathematically, the expression of skin depth is

δ = 1

α
. (9.147)

Substituting Eq. (9.136) into Eq. (9.147) yields the expression of skin depth as

δ = 1√
πf μσ

. (9.148)

From Eq. (9.148), it is concluded that the skin depth increases as both the frequency
and conductivity decrease.

Example 9.5 A 4-GHz uniform plane wave travels through a large copper conductor.
Consider σ = 5.8 × 107 S/m, εr = μr = 1 for a copper conductor. Calculate (a)
the attenuation constant, (b) phase constant, (c) intrinsic impedance, (d) wavelength,
and (e) velocity of propagation.

Solution

(a) The value of the attenuation constant is
α = √

f πμσ =
√

4 × 109 × π × 4π × 10−7 × 5.8 × 107 = 9.57×105 Np/m.
(b) The value of the phase constant is

β = √
f πμσ =

√
4 × 109 × π × 4π × 10−7 × 5.8 × 107 = 9.57×105 rad/m.

(c) The value of the intrinsic impedance can be determined as

η =
√

ωμ

σ

∣∣45◦ =
√

2π×4×109×4π×10−7

5.8×107

∣∣45◦ = 0.023
∣∣45◦ �.

(d) The value of the wavelength is determined as
λ = 2π

β
= 2π

9.57×105 = 0.66 × 10−5 m.
(e) The velocity of propagation can be determined as

v =
√

2ω
μσ

=
√

2×2×π×4×109

4π×10−7×5.8×107 = 26261.29 m/s.
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Example 9.6 A uniform plane wave of E = 150 cos (108t)ax is travelling through
seawater in the positive z-direction at z = 0. Consider σ = 4 S/m, εr = 72 and
μr = 1 for seawater. Calculate (a) the attenuation constant, (b) phase constant, (c)
intrinsic impedance, (d) wavelength, (e) velocity of propagation, and (f) skin depth.

Solution

(a) The value of the attenuation constant is

α =
√

ωμσ

2 =
√

108×4π×10−7×4
2 = 15.85 Np/m.

(b) The value of the phase constant is

β =
√

ωμσ

2 =
√

108×4π×10−7×4
2 = 15.85 rad/m.

(c) The value of the intrinsic impedance can be determined as

η =
√

ωμ

σ

∣∣45◦ =
√

108×4π×10−7

4

∣∣45◦ = 5.6
∣∣45◦ �.

(d) The value of the wavelength is determined as
λ = 2π

β
= 2π

15.85 = 0.40 m.
(e) The velocity of propagation can be determined as

v =
√

2ω
μσ

=
√

2×108

4π×10−7×4
= 0.20 × 108 m/s.

(f) The value of the skin depth is calculated as
δ = 1√

πf μσ
=

√
2√

ωμσ
=

√
2√

108×4π×10−7×4
= 0.06 m.

Practice problem 9.5 A uniform plane wave having the frequency of 6 GHz travels
through a large aluminum conductor. Consider σ = 3.54 × 107 S/m, εr = μr = 1
for a copper conductor. Calculate (a) the attenuation constant, (b) phase constant, (c)
intrinsic impedance, (d) wavelength, and (e) velocity of propagation.

Practice problem 9.6 A uniform plane wave of E = 100 cos (108t)ax is travelling
through air in the positive z-direction at z = 0. Consider σ = 3 × 10−6 S/m, εr = 1
and μr = 1 for air. Find (a) the attenuation constant, (b) phase constant, (c) intrinsic
impedance, (d) wavelength, (e) velocity of propagation, and (f) skin depth.

9.8 Power Flow and Poynting Vector

It is important to know how much power flows in the direction of a uniform plane
wave. In this case, it is necessary to develop a theorem to calculate the power of a
uniform plane wave. This theorem is known as Poynting theorem. In 1884, English
physicist John H. Poynting developed this theory. Consider the following Maxwell’s
equation to derive the Poynting theorem:

∇ × H = J + ∂D
∂t

. (9.149)

Taking E dot of Eq. (9.149) yields

E.(∇ × H) = E.J + E.
∂D
∂t

. (9.150)
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Again taking H dot of Eq. (9.1) yields

H.(∇ × E) = −H.
∂B
∂t

. (9.151)

Subtracting Eq. (9.150) from Eq. (9.151) and using the vector identity yields

H.(∇ × E) − E.(∇ × H) = ∇.(E × H). (9.152)

Substituting Eqs. (9.151) and (9.149) into Eq. (9.152) yields

H.

(
−∂B

∂t

)
− E.J − E.

∂D
∂t

= ∇.(E × H), (9.153)

−μH.
∂H
∂t

− E.J − εE.
∂E
∂t

= ∇.(E × H). (9.154)

The following differential equations can be written as:

μH.
∂H
∂t

= μ
∂(H.H)

∂t
= μ

∂H 2

∂t
= 1

2

∂

∂t
(μH 2) = ∂

∂t

(
μH 2

2

)
, (9.155)

E.J = σE.E = σE2, (9.156)

εE.
∂E
∂t

= ∂

∂t

(
εE2

2

)
. (9.157)

Substituting Eqs. (9.155), (9.156), and (9.157) into Eq. (9.154) yields

∇ · (E × H) = −σE2 − ∂

∂t

(
εE2

2
+ μH 2

2

)
. (9.158)

Taking volume integral of Eq. (9.158) yields
∫

v
∇ · (E × H)dv = −

∫

v
σE2dv −

∫

v

∂

∂t

(
εE2

2
+ μH 2

2

)
dv. (9.159)

Applying the divergence theorem to the left-hand side of Eq. (9.159) yields
∮

s

(E × H).dS = −
∫

v
σE2dv −

∫

v

∂

∂t

(
εE2

2
+ μH 2

2

)
dv. (9.160)

The left side of Eq. (9.160) represents the total power flowing out of the volume. In
the right side of Eq. (9.160), the first and second terms represent ohmic losses and
the time rate of stored energy within the volume. The Poynting theorem states that
the power flowing out of a given volume is equal to the rate of decreased energy
minus the ohmic losses. The quantity E × H is known as Poynting vector P

P = E × H W/m2. (9.161)
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The time-average Poynting vector over one cycle is

Pav = 1

T

∫ T

0
P (z, t)dt. (9.162)

In general, the average Poynting vector is

Pav = 1

2
Re(E × H∗). (9.163)

The time-average power crossing any surface is given as

Ps =
∫

s

P.dS. (9.164)

Consider a uniform plane wave travels in the z-direction. The electric field is di-
rected in the x-direction and the magnetic field is directed in the y-direction. These
electromagnetic fields are

E = E0e
jωtax. (9.165)

Using Eq. (9.59), the expression of magnetic field is

H = n × E
η

= E0

η
ejωtaz × ax = E0

η
ejωtay. (9.166)

Substituting Eqs. (9.165) and (9.166) into Eq. (9.163) yields

Pav = 1

2
Re

[
E0e

jωt

(
E0

η
ejωt

)∗]
(ax × ay), (9.167)

Pav = 1

2
Re

[ |E0|2
η∗

]
az, (9.168)

Pav = |E0|2
2

Re

[
1

η∗

]
az = |H0|2

2
Re[η]az. (9.169)

Substituting Eq. (9.144) into Eq. (9.169) yields

Pav = |H0|2
2

Re

[√
ωμ

2σ
(1 + j )

]
, (9.170)

Pav = |H0|2
2

√
ωμ

2σ
= |H0|2

2

√
πf μ

σ
, (9.171)

Pav = |H0|2
2

√
πf σμ

σ 2
, (9.172)

Pav = |H0|2
2

1

σ

√
πf σμ

1
, (9.173)
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Pav = |H0|2
2

1

σ

1
1√

πf σμ

. (9.174)

Substituting Eq. (9.148) into Eq. (9.172) yields

Pav = |H0|2
2

1

σδ
. (9.175)

Substituting η =
√

μ

ε
into Eq. (9.169) provides the expression of average power

density as

Pav = |H0|2
2

√
μ

ε
. (9.176)

Example 9.7 The electric field directed in the nonmagnetic medium in the z- direc-
tion is given by E = 5 cos (108t−0.5x)az V/m. Determine (a) the relative permittivity,
(b) intrinsic impedance, and (c) time-average power.

Solution

(a) The value of the phase constant is
β = 0.5 rad/m.
The relative permittivity can be determined as
β = ω

√
εμ,√

εr = β

ω
√

ε0μ0
= 0.5

108
√

4π×10−7× 1
36π

×10−9
= 1.5,

εr = 2.25.

(b) The value of the intrinsic impedance can be determined as

η =
√

μ

ε
=
√

μ0
ε0εr

=
√

4π×10−7

1
36π

×10−9 × 1
1.5 = 120π × 1

1.5 = 251.33�.

(c) The value of the time-average power is
Pav = E0

2

2η
ax = 25

2×251.33 ax = 0.05 W/m2.

Practice problem 9.7 An electric field directed in the lossless dielectric in the
positive z-direction is given by E = 150 sin (ωt − 0.4z)ax V/m and the time-average
power is found to be 140 W/m2. Find (a) the relative permittivity, (b) frequency, and
(c) equation of the magnetic field.

9.9 Incident and Reflected Waves

Consider a region which consists of two media and these two media are separated by
a boundary as shown in Fig. 9.4. Two media have material properties ε1, μ1, η1 for
medium 1 and ε2, μ2, η2 for medium 2. The term reflection occurs when a uniform
plane wave is incident onto the boundary of two media. The wave from medium
1 incident wave ( E1

+, H1
+) onto the boundary which creates the reflection wave

( E1
−, H1

−). Expressions of electric and magnetic fields are

E1(z) = (E1
+e−γ1z + E1

−eγ1z)ax , (9.177)
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Fig. 9.4 Two media with
incident, reflected, and
transmitted waves

E1 
+

z = 0

z

H1
+

H2

E2

E1
−

H1
−

Incident 

Reflected

Transmitted

Medium 2

Medium 1
ε 1,μ 1η1,

ε 2,μ 2η2,

x

y

H1(z) = (H1
+e−γ1z + H1

−eγ1z)ay , (9.178)

H1(z) = E1
+

η1
e−γ1zay − E1

−

η1
eγ1zay , (9.179)

where the propagation constant and intrinsic impedance are

γ1 = α1 + jβ1 = √
jωμ1(σ1 + jωε1), (9.180)

η1 = η1

∣∣∣θη1 =
√

jωμ1

σ1 + jωε1
. (9.181)

At the boundary, set z = 0 to Eqs. (9.177) and (9.179) and omitting the unit vector
yields

E1 = E1
+ + E1

−, (9.182)

H1 = E1
+

η1
− E1

−

η1
. (9.183)

Some portions of the incident will be transmitted to medium 2. The electric and
magnetic fields of this medium are

E2(z) = E2
+e−γ2zax , (9.184)

H2(z) = H2
+e−γ2zay = E2

+

η2
e−γ2zay , (9.185)
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where the propagation constant and intrinsic impedance are

γ2 = α2 + jβ2 = √
jωμ2(σ2 + jωε2), (9.186)

η2 = η2

∣∣∣θη2 =
√

jωμ2

σ2 + jωε2
. (9.187)

At the boundary, z = 0, then Eqs. (9.184) and (9.185) and omitting the unit vector
becomes

E2 = E2
+, (9.188)

H2 = H2
+ = E2

+

η2
. (9.189)

Total electric and magnetic fields are the same at the boundary, and then the following
equations can be written as

E1 = E2, (9.190)

H1 = H2. (9.191)

Substituting Eqs. (9.182) and (9.188) into Eq. (9.190) yields

E2
+ = E1

+ + E1
−. (9.192)

Again, substituting Eqs. (9.183) and (9.189) into Eq. (9.191) yields

E2
+

η2
= E1

+

η1
− E1

−

η1
, (9.193)

E2
+

η2
= E1

+ − E1
−

η1
, (9.194)

E2
+

E1
+ − E1

− = η2

η1
. (9.195)

Substituting Eq. (9.192) into Eq. (9.195) yields

E1
+ + E1

−

E1
+ − E1

− = η2

η1
. (9.196)

Applying addition–subtraction rules in Eq. (9.196) yields

E1
+ + E1

− − (E1
+ − E1

−)

(E1
+ + E1

−) + (E1
+ − E1

−)
= η2 − η1

η2 + η1
, (9.197)

2E1
−

2E1
+ = η2 − η1

η2 + η1
, (9.198)
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E1
−

E1
+ = η2 − η1

η2 + η1
. (9.199)

The ratio of the reflected wave’s electric field to the incident wave’s electric field at
the boundary is known as reflection coefficient ρ and its expression is given as

ρ = E1
−

E1
+ = η2 − η1

η2 + η1
. (9.200)

Equation (9.192) is modified as

E2
+ = E1

+
(

1 + E1
−

E1
+

)
. (9.201)

Substituting Eq. (9.200) into Eq. (9.201) yields

E2
+

E1
+ = 1 + η2 − η1

η2 + η1
, (9.202)

E2
+

E1
+ = 2η2

η2 + η1
. (9.203)

The ratio of the transmitted wave’s electric field to the incident wave’s electric field
is known as the transmission coefficient. This coefficient is represented by τ and its
expression becomes

τ = E2
+

E1
+ = 2η2

η2 + η1
. (9.204)

If medium 1 and medium 2 are perfect dielectrics, i.e., lossless dielectric, then η1

and η2 are real numbers and μ1 = μ2 = μ0. The expression of reflection coefficient
is modified as

ρ =
√

μ0
ε2

−
√

μ0
ε1√

μ0
ε2

+
√

μ0
ε1

, (9.205)

ρ =
√

μ0
ε2

(
1 −

√
μ0
ε1

×
√

ε2
μ0

)
√

μ0
ε2

(
1 +

√
μ0
ε1

×
√

ε2
μ0

) , (9.206)

ρ =
1 −

√
ε2
ε1

1 +
√

ε2
ε1

. (9.207)

The expression of the transmission coefficient can be modified as

τ =
2
√

μ0
ε2√

μ0
ε2

+
√

μ0
ε1

, (9.208)
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τ =
2
√

μ0
ε2√

μ0
ε2

(
1 +

√
μ0
ε1

×
√

ε2
μ0

) , (9.209)

τ = 2

1 +
√

ε2
ε1

. (9.210)

From Eqs. (9.202) and (9.204), the following relation can be written as

τ = 1 + ρ. (9.211)

Substituting Eq. (9.200) into Eq. (9.177) yields

E1(z) = (E1
+e−γ1z + ρE1

+eγ1z)ax. (9.212)

The incident wave of the electric field is

Ei = E1
+e−γ1zax. (9.213)

The incident wave of the magnetic field is

Hi = E1
+

η1
e−γ1zay. (9.214)

The reflected wave of the electric field is

Er = ρE1
+eγ1zax. (9.215)

The reflected wave of the magnetic field is

Hr = −ρE1
+

η1
eγ1zay. (9.216)

Substituting Eq. (9.204) into Eq. (9.184) yields the transmitted wave electric field

E2 = τE1
+e−γ2zax. (9.217)

The transmitted wave magnetic field is

H2 = τE1
+

η2
e−γ2zay. (9.218)

Time-domain forms of the field vectors can be written as

Ei = E1
+e−α1zRe[ej (ωt−β1z)]ax , (9.219)

Hi = E1
+

η1
e−α1zRe[ej (ωt−β1z)]ay , (9.220)
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Er = ρE1
+eα1z Re[ej (ωt+β1z)]ax , (9.221)

Hr = −ρE1
+

η1
eα1z Re[ej (ωt+β1z)]ay , (9.222)

E2 = τE1
+e−α2z Re[ej (ωt−β2z)]ax , (9.223)

H2 = τE1
+

η2
e−α2z Re[ej (ωt−β2z)]ay. (9.224)

For lossless media ( σ1 = σ2 = 0, α1 = α2 = 0), in sinusoidal forms, Eqs.
(9.219)–(9.224) can be written as

Ei = E1
+ cos (ωt − β1z)ax , (9.225)

Hi = E1
+

η1
cos (ωt − β1z)ay , (9.226)

Er = ρE1
+ cos (ωt + β1z)ax , (9.227)

Hr = −ρE1
+

η1
cos (ωt + β1z)ay , (9.228)

E2 = τE1
+ cos (ωt − β2z)ax , (9.229)

H2 = τE1
+

η2
cos (ωt − β2z)ay. (9.230)

Like the transmission line, the input impedance for a uniform plane wave can be
derived as

ηin = E1

H1
. (9.231)

Substituting Eqs. (9.182) and (9.183) into Eq. (9.231) yields

ηin = E1
+ + E1

−
E1

+
η1

− E1
−

η1

. (9.232)

For lossless medium, modify Eqs. (9.212), (9.214), and (9.216) by putting α1 =
α2 = 0 and substituting in Eq. (9.232) as

ηin = E1
+(e−jβ1z + ρejβ1z)

E1
+

η1
(e−jβ1z − ρejβ1z)

, (9.233)

ηin = η1
(e−jβ1z + ρejβ1z)

(e−jβ1z − ρejβ1z)
. (9.234)
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Substituting Eq. (9.200) into Eq. (9.234) yields

ηin = η1

e−jβ1z + η2−η1
η2+η1

ejβ1z

e−jβ1z − η2−η1
η2+η1

ejβ1z
, (9.235)

ηin = η1

[
η2(e−jβ1z + ejβ1z) + η1(e−jβ1z − ejβ1z)

η1(e−jβ1z + ejβ1z) + η2(e−jβ1z − ejβ1z)

]
. (9.236)

Dividing numerator and denominator of Eq. (9.236) by (e−jβ1z + ejβ1z) yields

ηin = η1

⎡
⎣η2 + η1

(e−jβ1z−ejβ1z)
(e−jβ1z+ejβ1z)

η1 + η2
(e−jβ1z−ejβ1z)
(e−jβ1z+ejβ1z)

⎤
⎦, (9.237)

ηin = η1

⎡
⎣η2 − η1

(ejβ1z−e−jβ1z)
(e−jβ1z+ejβ1z)

η1 − η2
(ejβ1z−e−jβ1z)
(e−jβ1z+ejβ1z)

⎤
⎦. (9.238)

The following trigonometry formulae can be written as

tanh (jβ1z) = ejβ1z − e−jβ1z

e−jβ1z + ejβ1z
, (9.239)

tanh (jβ1z) = j tan β1z. (9.240)

Substituting Eq. (9.240) into Eq. (9.239) yields

j tan β1z = ejβ1z − e−jβ1z

e−jβ1z + ejβ1z
. (9.241)

Substituting Eq. (9.241) into Eq. (9.238) yields

ηin = η1

[
η2 − jη1 tan β1z

η1 − jη2 tan β1z

]
. (9.242)

The expression of average power density for the incident wave can be derived as

Pi = 1

2
Re[Ei × Hi

∗]. (9.243)

Substituting Eqs. (9.212) and (9.213) into Eq. (9.243) yields

Pi = 1

2
Re[E1

+e−γ1z × E1
+eγ1z

η1
](ax × ay), (9.244)

Pi = 1

2

(E1
+)2

η1
az. (9.245)
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The expression of average power density for the reflected wave can be derived as

Pr = 1

2
Re[Er × Hr

∗]. (9.246)

Substituting Eqs. (9.214) and (9.215) into Eq. (9.246) yields

Pr = 1

2
Re[ρE1

+eγ1z × −ρE1
+e−γ1z

η1
](ax × ay), (9.247)

Pr = −1

2

(ρE1
+)2

η1
az. (9.248)

The expression of average power density for the transmitted wave can be derived as

P2 = 1

2
Re[E2 × H2

∗]. (9.249)

Substituting Eqs. (9.216) and (9.217) into Eq. (9.249) yields

P2 = 1

2
Re[τE1

+e−γ1z × τE1
+eγ1z

η2
](ax × ay), (9.250)

P2 = 1

2

(τE1
+)2

η2
az. (9.251)

Example 9.8 The magnitude and the frequency of a uniform plane wave are 150V/m
and 100 MHz, respectively. The wave propagates in free space and is incident onto
the boundary of two media. The material of medium 2 is characterized by μr = 1
and εr = 8. Calculate the (a) β1, (b) β2, (c) η1, (d) η2, (e) time-domain incident,
reflected and transmitted fields.

Solution

(a) The value of the phase constant for medium 1 is

β1 = ω
√

μ0ε0 = 2π × 108
√

4π × 10−7 × 1
36π

× 10−9 = 2.09 rad/m.
(b) The value of the phase constant for medium 1 is

β2 = ω
√

μ0ε0μr2εr2 = 2π × 108
√

4π × 10−7 × 1
36π

× 8 × 10−9 = 5.92
rad/m.

(c) The value of the intrinsic impedance for medium 1 is

η1 =
√

μ0
ε0

=
√

4π×10−7

1
36π

×10−9 = 377�.

(d) The value of the intrinsic impedance for medium 2 is

η2 =
√

μ0μr2
ε0εr2

=
√

4π×10−7

1
36π

×10−9×8
= 133.29�.

(e) The value of the reflection coefficient is
ρ = η2−η1

η2+η1
= 133.29−377

133.29+377 = −0.48.

The value of the transmission coefficient



9.10 Uniform Wave Polarization 271

Fig. 9.5 Elliptical
polarization of fields

E2

x

y

E1

Ex

Ey
E

τ = 2η2
η2+η1

= 2×133.29
133.29+377 = 0.52.

Time-domain fields are
Ei = 150 cos (2π × 108t − 2.09z)ax V/m,
Hi = Ei

η1 = 0.4 cos (2π × 108t − 2.09z)ay A/m,

Er = ρE1
+ cos (ωt + β1z)ax = −72 cos (2π × 108t + 2.09z)ax V/m,

Hr = − ρE1
+

η1
cos (ωt + β1z)ay = 0.19 cos (2π × 108t + 2.09z)ay A/m,

E2 = τE1
+ cos (ωt − β2z)ax = 37.44 cos (2π × 108t − 5.92z)ax V/m,

H2 = τE1
+

η2
cos (ωt − β2z)ay = 0.28 cos (2π × 108t − 5.92z)ay A/m.

Practice Problem 9.8 A uniform plane wave travels through air and is incident onto
the boundary of two media. The expression of the incident wave is Ei = 50e−jβ1z

V/m. The material of medium 2 is characterized by μr = 1, εr = 4.5. Calculate (a)
η1, (b) η2, (c) Pi , (d) Pr , and (e) P2.

9.10 Uniform Wave Polarization

Polarization is normally used to describe the fundamental characteristic of a wave.
The polarization of a uniform plane wave is defined as the behavior of an electric
field in time at a given point in space. The general elliptical polarization is shown
in Fig. 9.5. Two electric fields Ex and Ey are directed in the x− and y− directions,
respectively. In addition, Ey leads Ex by a time-phase angle φ. Then, equations of
electric fields in the time domain are

Ex = Re[E1e
j (ωt−βz)] = E1 cos (ωt − βz), (9.252)

Ey = Re[E2e
j (ωt+φ−βz)] = E2 cos (ωt − βz + φ). (9.253)
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Consider z = 0 without losing the fundamental property of a wave. Then Eqs. (9.252)
and (9.253) can be modified as

Ex = E1 cos ωt , (9.254)

cos ωt = Ex

E1
, (9.255)

sin ωt =
√

1 − cos2ωt =
√

1 −
(

Ex

E1

)2

, (9.256)

Ey = E2 cos (ωt + φ) = E2( cos ωt cos φ − sin ωt sin φ). (9.257)

Substituting Eqs. (9.255) and (9.256) into Eq. (9.257) yields

Ey

E2
= Ex

E1
cos φ −

√
1 − Ex

2

E1
2 sin φ, (9.258)

Ey

E2
− Ex

E1
cos φ = −

√
1 − Ex

2

E1
2 sin φ. (9.259)

Squaring both sides of Eq. (9.259) yields

Ey
2

E2
2 − 2ExEy

E1E2
cos φ + Ex

2

E1
2 cos2φ = sin2φ − Ex

2

E1
2 sin2φ, (9.260)

Ey
2

E2
2 − 2ExEy

E1E2
cos φ + Ex

2

E1
2 = sin2φ. (9.261)

Equation (9.261) is known as the equation of an ellipse. Therefore, the wave is
elliptically polarized.

9.11 Exercise Problems

9.1 The electric field of a uniform plane wave in free space is given by E =
150 cos (2π108t − β0x)az V/m. Determine (a) the phase constant, (b) wave-
length, and (c) magnetic field at the point (0.1,1.03,0.2) m and t = 2
ns.

9.2 The electric field of a lossless, isotropic, and uniform dielectric medium is
given by E = (3ax + j8ay)e−j1.5z V/m. Calculate (a) the phase constant, (b)
angular frequency, (c) velocity, and (d) intrinsic impedance. Consider that the
frequency of the uniform plane wave is 40 MHz.
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9.3 Convert the expression 3 cos ωt +4 sin ωt into the format A cos (ωt −θ ). Find
the values of A and θ .

9.4 In free space, the magnetic field is given by H(z, t) = 250 cos (108t − βz)ay

A/m. Determine (a) the phase constant, (b) wavelength, and (c) E(z, t).
9.5 A uniform plane wave travels through a good dielectric medium with a fre-

quency of 8 GHz. The relative permittivity and loss tangent of this medium
are 9 and 5 × 10−6, respectively. Determine (a) the phase constant and (b)
attenuation constant.

9.6 The permittivity and attenuation constant of a good dielectric are 6 and
0.045 Np/m, respectively. The frequency of a uniform plane wave is 8 MHz.
Calculate (a) the phase constant and (b) loss tangent.

9.7 The electric field of a uniform plane wave is given by E =
25e−0.08y cos (108t − 2.5y)az V/m. Determine (a) the propagation constant,
(b) phase constant, (c) wavelength, (d) speed, and (e) skin depth.

9.8 The electric and magnetic fields in a isotropic, lossless, and uniform di-
electric medium are given by E = 750 cos (2π108t − βz)ax V/m and
H = 5 cos (108t − βz)ayA/m. Determine (a) the intrinsic impedance, (b)
relative permeability μr and relative permittivity εr , (c) phase constant, and
(d) wavelength. Assume the propagating velocity of a uniform plane wave is
1.5 × 108 m/s.

9.9 The electric field of a uniform plane wave in a lossless, isotropic, and uniform
dielectric medium is given by E = (2ax + j5ay)e−j3z V/m. Calculate (a) the
phase constant, (b) angular frequency, (c) velocity, (d) intrinsic impedance,
and (e) H. Consider that the frequency of the uniform plane wave is 40 MHz.

9.10 The electric field of a uniform plane wave directed in the nonmagnetic medium
in the z-direction is given by E = 25 cos (108t − 0.8x)az V/m. Find (a) the
relative permittivity, (b) intrinsic impedance, and (c) time-average power.

9.11 The magnitude and the frequency of a uniform plane wave are 200 V/m and
5 GHz, respectively. The wave propagates in free space and is incident onto
the boundary of two media. The material of medium 2 is characterized by
μr = 1 and εr = 6. Determine the (a) β1, (b) β2, (c) η1, (d) η2, (e) time
domain incident, reflected and transmitted fields.

9.12 A uniform plane wave travels through air and is incident onto the boundary of
two media. The expression of the incident wave is Ei = 30e−jβ1z V/m. The
material of medium 2 is characterized by μr = 1, εr = 3. Calculate (a) η1,
(b) η2, (c) Pi , (d) Pr , and (e) P2.
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Chapter 10
Basics of Antennas

10.1 Introduction

Electromagnetic fields are generated from charge. These time-varying electromag-
netic fields propagate in different directions of free space and radiate energy. This
radiation of energy into free space is accomplished efficiently with the help of a
special electromagnetic device. This electromagnetic device is known as antenna.
An antenna is an electromagnetic device that can transmit and receive radio waves
efficiently. The antenna provides a transition between a guided electromagnetic wave
and free space. The German physicist Heinrich Rudolf Hertz (1857–1894) first in-
troduced the existence of electromagnetic waves, radiation of electromagnetic waves
and antenna. Practical applications are ship navigation, aircrafts, air traffic control,
satellites, radio and TV broadcasting.

In this chapter, principles of antennas, potential functions for antennas, Hertzian
dipole, Faraday’s law, conduction current, displacement current, motional voltage,
Maxwell’s equation, transformers, time-varying potentials, fields of a series circuit,
and time-harmonic fields will be discussed.

10.2 Working Principles of Antennas

A radio frequency signal is generated in the transmitter. Then this signal, in the form
of electromagnetic waves, is radiated into free space at the speed of light through
a device known as the transmitting antenna. These electromagnetic waves arrive at
the receiving antenna and are captured by its surrounding space. Then voltage is
induced in the receiving antenna and passed to the receiver. This voltage is then
converted back to its original radio frequency signal. Antennas are classified into
different ways. The frequency band of operation and physical structure are two of
them. Different types of antennas include wire, yagi, loop, vertical, folded dipole
and horn.

Md. A. Salam, Electromagnetic Field Theories for Engineering, 275
DOI 10.1007/978-981-4585-66-8_10, © Springer Science+Business Media Singapore 2014
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10.3 Potential Functions for Antennas

Four Maxwell’s equations with sources are considered for deriving electromagnetic
fields. These four equations, which have already been discussed in some previous
chapters, are

∇.E = ρ

ε
, (10.1)

∇.B = 0, (10.2)

∇ × E = −∂B
∂t

= −μ
∂H
∂t

, (10.3)

∇ × H = J + ∂D
∂t

= J + ε
∂E
∂t

. (10.4)

The following vector identity can be written as

∇ · ∇ × A = 0. (10.5)

From Eqs. (10.2) and (10.5), the following equations can be written as

B = ∇ × A (10.6)

and

H = 1

μ
∇ × A. (10.7)

Substituting Eq. (10.7) into Eq. (10.3) yields

∇ × E = −μ
∂

∂t

(
1

μ
∇ × A

)
, (10.8)

∇ ×
(

E + ∂A
∂t

)
= 0. (10.9)

Again consider the following vector identity:

∇ × ∇V = 0. (10.10)

From Eqs. (10.9) and (10.10), the following equation can be written as

E + ∂A
∂t

= −∇V , (10.11)

where A is the vector magnetic potential and V is the scalar potential. The negative
sign of Eq. (10.11) is considered for suitable mathematical manipulation. Equation
(10.11) can be written as

E = −∇V − ∂A
∂t

. (10.12)
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Substituting Eqs. (10.7) and (10.12) into Eq. (10.4) yields

1

μ
∇ × ∇ × A = J + ε

∂

∂t

(
−∇V − ∂A

∂t

)
. (10.13)

The following vector identity can be written as

∇ × ∇ × A = ∇(∇.A) − ∇2A. (10.14)

Substituting Eq. (10.14) into Eq. (10.13) yields

∇(∇.A) − ∇2A = μJ + εμ
∂

∂t

(
−∇V − ∂A

∂t

)
. (10.15)

Applying Lorentz gauge condition yields

∇.A = −εμ
∂V

∂t
, (10.16)

−∇2A = μJ − εμ
∂2A
∂t2

(10.17)

∇2A − εμ
∂2A
∂t2

= −μJ. (10.18)

In case of sinusoidal, Eq. (10.18) can be written as

∇2A + εμω2A = −μJ. (10.19)

The source point with vector magnetic potential, electric and magnetic fields is shown
in Fig. 10.1. The general solution of Eq. (10.19) is

A = μ

4π

∫

v

Je−jβr

r
dv. (10.20)

10.4 Hertzian Dipole

The Hertzian dipole is a simple form of a radiating antenna that can be used to
calculate all fields. It consists of two equal and opposite charges. These charges are
separated by an infinitesimal distance dl as shown in Fig. 10.2. From Fig. 10.2, the
following equations can be written as

Ar = Az cos θ , (10.21)

Aθ = −Az sin θ (10.22)
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Fig. 10.1 Source with electric and magnetic fields
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Fig. 10.2 Current through an infinitesimal length of wire

and

Aφ = 0. (10.23)

The vector magnetic potential in the z-direction is

Az = μI(z)

4πr
e−jβrdz. (10.24)
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Substituting Eq. (10.24) into Eqs. (10.21) and (10.22) yields

Ar = μI(z)

4πr
e−jβr cos θdz (10.25)

and

Aθ = −μI(z)

4πr
e−jβr sin θdz. (10.26)

From the spherical coordinate system, the curl of vector magnetic potential is

∇ × A = 1

r2 sin θ

∣∣∣∣∣∣∣∣

ar raθ r sin θaφ

∂

∂r

∂

∂θ

∂

∂φ
Ar rAθ r sin θAφ

∣∣∣∣∣∣∣∣
, (10.27)

∇ × A = 1

r sin θ

[
∂(Aφ sin θ )

∂θ
− ∂Aθ )

∂φ

]
ar + 1

r

[
∂Ar

∂φ
− ∂(rAφ)

∂r

]
aθ (10.28)

+1

r

[
∂(rAθ )

∂r
− ∂Ar

∂θ

]
aφ ,

H = 1

μ
∇ × A. (10.29)

Since Aφ = 0 and ∂
/
∂φ = 0, the expression of magnetic field from Eqs. (10.28)

and (10.29) in aφ direction is

Hφ = 1

μr

[
∂(rAθ )

∂r
− ∂Ar

∂θ

]
. (10.30)

Substituting Eqs. (10.25) and (10.26) into Eq. (10.30) yields

Hφ = I(z)dz

4πr

[
∂

∂r

(−e−jβr sin θ
)− ∂

∂θ

(
e−jβr

r
cos θ

)]
, (10.31)

Hφ = I(z)dz

4πr

[
− sin θe−jβr (−jβ) + e−jβr

r
sin θ

]
, (10.32)

Hφ = sin θI(z)dz

4π

[
jβ

r
+ 1

r2

]
e−jβr , (10.33)

Hr = 0 (10.34)

and

Hθ = 0. (10.35)
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Substituting Ar = Hr = 0 and Aθ = Hθ = 0 into Eq. (10.28) yields

∇ × H = 1

r sin θ

∂(Hφ sin θ )

∂θ
ar − 1

r

∂(rAφ)

∂r
aθ . (10.36)

Consider the following Maxwell’s equation to find the electric field:

∇ × H = jωεE. (10.37)

Substituting Eq. (10.36) into Eq. (10.37) yields

E = 1

jωε

[
1

r sin θ

∂(Hφ sin θ )

∂θ
ar − 1

r

∂(rAφ)

∂r
aθ

]
. (10.38)

The r-component of the electric field is

Er = 1

jωε

1

r sin θ

∂(Hφ sin θ )

∂θ
. (10.39)

Substituting Eq. (10.33) into Eq. (10.39) yields

Er = 1

jωε

1

r sin θ

∂(sin2θ )

∂θ

I(z)dz

4π

[
jβ

r
+ 1

r2

]
e−jβr , (10.40)

Er = 1

jωε

2 sin θ cos θ

r sin θ

I(z)dz

4π

[
jβ

r
+ 1

r2

]
e−jβr . (10.41)

The expression of the phase constant is

β = ω
√

με, (10.42)

β

ω
= √

με. (10.43)

The expression of the intrinsic impedance is

η =
√

μ

ε
=
√

εμ

ε2
=

√
με

ε
, (10.44)

ηε = √
με. (10.45)

Substituting Eq. (10.43) into Eq. (10.45) yields

β

ω
= εη, (10.46)

ωε = β

η
. (10.47)

Substituting Eq. (10.47) into Eq. (10.41) yields

Er = cos θ

j
β

η

I(z)dz

2π

[
jβ

r2
+ 1

r3

]
e−jβr , (10.48)
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Er = η cos θ
I(z)dz

2π

[
1

r2
+ 1

jβr3

]
e−jβr . (10.49)

The θ -component of the electric field is

Eθ = −1

r

1

jωε

∂(rHφ)

∂r
. (10.50)

Substituting Eq. (10.33) into Eq. (10.50) yields

Eθ = −1

r

1

jωε

sin θI(z)dz

4π

∂

∂r

[
r

(
jβ

r
+ 1

r2

)
e−jβr

]
, (10.51)

Eθ = −1

r

1

jωε

sin θI(z)dz

4π

∂

∂r

[(
jβ + 1

r

)
e−jβr

]
, (10.52)

Eθ = −1

r

1

jωε

sin θI(z)dz

4π

[
− 1

r2
e−jβr + ( − jβ)

(
jβ + 1

r

)
e−jβr

]
, (10.53)

Eθ = 1

jωε

sin θI(z)dz

4π

[
1

r3
− β2

r
+ j

β

r2

]
e−jβr . (10.54)

Substituting Eq. (10.47) into Eq. (10.54) yields

Eθ = 1

j
β

η

sin θI(z)dz

4π

[
1

r3
− β2

r
+ j

β

r2

]
e−jβr , (10.55)

Eθ = sin θI(z)dz

4π
η

[
1

jβr3
− β

jr
+ 1

r2

]
e−jβr , (10.56)

Eθ = sin θI(z)dz

4π
η

[
1

jβr3
+ jβ

r
+ 1

r2

]
e−jβr . (10.57)

For zero frequency, β = 0 and Eq. (10.33) can be modified as

Hφ = sin θI(z)dz

4π

[
0

r
+ 1

r2

]
e0, (10.58)

Hφ = sin θI(z)dz

4πr2
. (10.59)

Equation (10.59) represents the expression of the Biot–Savart law for an infinitesimal
current element.

On the basis of the variation of distance, the fields can be divided into three
categories. These are (1) electrostatic fields or near fields, which vary as 1

/
r3; (2)

induction fields, which vary as 1
/
r2 and (3) radiation fields or far fields, which vary

as 1
/
r . The components of near fields are

Er

(
1

r3

)
= η cos θ

I(z)dz

jβr32π
e−jβr = −j2η cos θ

I(z)dz

4πβr3
e−jβr (10.60)
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and

Eθ

(
1

r3

)
= −j sin θI(z)dz

4πβr3
ηe−jβr . (10.61)

The resultant near field can be determined as

∣∣Enf

∣∣ =
√∣∣∣∣Er

(
1

r3

)∣∣∣∣
2

+
∣∣∣∣Eθ

(
1

r3

)∣∣∣∣
2

. (10.62)

Substituting Eqs. (10.60) and (10.61) into Eq. (10.62) yields

∣∣Enf

∣∣ = I(z)dz

4πβr3
η
√

4cos2θ + sin2θ , (10.63)

Enf = I(z)dz

4πβr3
η
√

1 + 3cos2θ , (10.64)

Enf = I(z)dz

4πβr3
η

√
1 + 3

2
(1 + cos 2θ ). (10.65)

At θ = π
/

2, the near field is minimum and its value is

(Enf )min = I(z)dz

4πβr3
η. (10.66)

At θ = 0◦, π , the near fields are maximum and the values are

(Enf )max = 1.59
I(z)dz

4πβr3
η, (10.67)

(Enf )max = 2
I(z)dz

4πβr3
η. (10.68)

The far-field components of the electric and the magnetic fields are

Eθ

(
1

r

)
= jβ

sin θI(z)dz

4πr
ηe−jβr (10.69)

and

Hφ

(
1

r

)
= jβ sin θI(z)dz

4πr
e−jβr . (10.70)

The ratio of far electric and magnetic fields is

Eθ

(
1
r

)

Hθ

(
1
r

) = jβ sin θI(z)dz
4πr

ηe−jβr

jβ sin θI(z)dz
4πr

e−jβr
= η. (10.71)
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The magnitudes of the far-field components (radiated fields) are

|Erad | =
∣∣∣∣Eθ

(
1

r

)∣∣∣∣ = β
sin θI(z)dz

4πr
η (10.72)

and

|Hrad | =
∣∣∣∣Hφ

(
1

r

)∣∣∣∣ = β sin θI(z)dz

4πr
. (10.73)

The average radiated power density can be determined as

Pav = 1

2
|Erad | |Hrad | . (10.74)

Substituting Eqs. (10.72) and (10.73) into Eq. (10.74) yields

Pav = 1

2

ηβ2I2(z)(dz)2

(4πr)2 sin2θ. (10.75)

The total power radiated by the antenna can be determined by integrating the average
power density over a sphere of any radius as

Prad =
∮

s

Pav.dS. (10.76)

Substituting Eq. (10.75) into Eq. (10.76) yields

Prad = 1

2

∫ π

θ=0

∫ 2π

φ=0

ηβ2I2(z)(dz)2

(4πr)2 sin2θ (r2 sin θ dθdφ). (10.77)

Prad = I2(z)(dz)2β2η

32π2

∫ π

θ=0

∫ 2π

φ=0
sin3θdθdφ, (10.78)

Prad = I2(z)(dz)2β2η

32π2
(2π )

∫ π

θ=0

(
4

3
sin θ − 1

4
sin 3θ

)
dθ , (10.79)

Prad = I2(z)(dz)2β2η

32π2
(2π )

[
3

4
(− cos θ)π0 + 1

12
(cos 3θ)π0

]
, (10.80)

Prad = I2(z)(dz)2β2η

32π2
(2π )

[
−3

4
(−1 − 1) + 1

12
( − 1 − 1)

]
, (10.81)

Prad = I2(z)(dz)2β2η

32π2
(2π )

4

3
. (10.82)

Substituting η = 120π and β = 2π/λ into Eq. (10.82) yields

Prad = I2(z)(dz)2(120π )

32π2
(2π )

4

3

(
2π

λ

)2

, (10.83)
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Prad = 40π2I2(z)

(
dz

λ

)2

. (10.84)

The rms value of the current is

Irms = I(z)√
2

. (10.85)

Substituting Eq. (10.85) into Eq. (10.85) yields

Prad = 80π2Irms
2

(
dz

λ

)2

, (10.86)

Prad

Irms
2 = 80π2

(
dz

λ

)2

, (10.87)

Rrad = 80π2

(
dz

λ

)2

. (10.88)

The radiation resistance represents hypothetical resistance that will absorb the same
amount of power as radiated by the Hertzian dipole when both carry the same current.

Example 10.1 The ratio of an infinitesimal distance to the wavelength of the
Hertzian dipole is found to be 0.12. Determine the radiation resistance.

Solution The value of the radiation resistance can be determined as

Rrad = 80π2

(
dz

λ

)2

= 80π2(0.12)2 = 11.37 �.

Example 10.2 A 0.5 m infinitesimal dipole radiates at the frequency of 20 MHz.
Determine the radiation resistance.

Solution The value of the wavelength is calculated as

Rrad = 80π2

(
dz

λ

)2

= 80π2(0.12)2 = 11.37 �.

The value of the radiation resistance can be determined as

Rrad = 80π2

(
dz

λ

)2

= 80π2

(
0.5

15

)2

= 0.88 �.

Practice Problem 10.1 The radiation resistance of the Hertzian dipole is found to
be 5 �. Calculate the ratio of an infinitesimal distance to the wavelength.

Practice Problem 10.2 An infinitesimal dipole radiates at the frequency of 10 MHz.
Determine the elemental length of the dipole if the radiation resistance is found to
be 0.65 �.
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Fig. 10.3 Representation of a
solid angle r

dΩ
dS = r2 dΩ

Ω

10.5 Antenna Gain and Directivity

The term gain is used to determine the performance of any device. In antennas, the
gain is defined as the amount of power density radiated in all directions. The radiation
intensity of an antenna in the direction of (θ , φ) is equal to square of the radius time
average power and it can be expressed as

U (θ , φ) = r2Pav. (10.89)

From Eq. (10.76), the total power radiated by the antenna is

Prad =
∫ π

θ=0

∫ 2π

φ=0
Pavr

2 sin θdθdφ. (10.90)

Substituting Eq. (10.89) into Eq. (10.90) yields

Prad =
∫ π

θ=0

∫ 2π

φ=0
U (θ , φ) sin θdθdφ. (10.91)

The solid angle and the differential solid angle are shown in Fig. 10.3.
The expression of the differential solid angle is

d� = sin θdθdφ. (10.92)

The unit of the differential solid angle is steradian (sr). For U (θ , φ) = 1, the value
of the radiation power from Eq. (10.91) can be determined as

Prad = 2π [− cos θ ]π0 = 4π. (10.93)

Substituting Eq. (10.92) into Eq. (10.91) yields

Prad =
∫ π

θ=0

∫ 2π

φ=0
U (θ , φ)d�. (10.94)

The unit of U (θ , φ) is watts per steradian (W/sr). The average radiation intensity
is defined as the total radiated power divided by 4π sr. Mathematically, it can be
expressed as

Uav = Prad

4π
. (10.95)



286 10 Basics of Antennas

The ratio of the radiation intensity to the average radiation intensity in the (θ , φ)
direction is known as the directive gain of an antenna. Mathematically, it can be
written as

GD(θ , φ) = U (θ , φ)

Uav
. (10.96)

Substituting Eq. (10.95) into Eq. (10.96) yields

GD(θ , φ) = 4πU (θ , φ)

Prad

, (10.97)

U (θ , φ) = GD(θ , φ)Prad

4π
. (10.98)

Substituting Eq. (10.98) into Eq. (10.89) yields

GD(θ , φ)Prad

4π
= r2Pav, (10.99)

Pav = GD(θ , φ)Prad

4πr2
. (10.100)

The ratio of maximum radiation intensity to the average radiation intensity is known
as the directivity of the antenna. It is represented by the letter D and it can be expressed
as

D = Umax

Uav
. (10.101)

Substituting Eq. (10.95) into Eq. (10.101) yields

D = 4πUmax

Prad

. (10.102)

Substituting Eq. (10.94) into Eq. (10.102) yields

D = 4πUmax∫ π

θ=0

∫ 2π

φ=0 U (θ , φ)d�
, (10.103)

D = 4π∫ π

θ=0

∫ 2π

φ=0
U (θ ,φ)
Umax

d�
, (10.104)

D = 4π∫ π

θ=0

∫ 2π

φ=0 Un(θ , φ)d�
, (10.105)

where normalized radiation intensity is

Un(θ , φ) = U (θ , φ)

Umax

= sin2θ. (10.106)
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Substituting Eqs. (10.92) and (10.106) into Eq. (10.105) yields

D = 4π∫ π

θ=0

∫ 2π

φ=0 sin3θdθd�
= 4π

2π × 4
3

= 3

2
. (10.107)

The directive gain is basically equal to antenna efficiency time directivity and it is
related as

GD(θ , φ) = ηD. (10.108)

For η = 1, the directive gain and directivity of an antenna are the same. Practically,
it is not possible due to different losses. Considering Ae is the effective area of a
receiving antenna, then the expression of power received by the antenna is

PR = AePav. (10.109)

The electric field for a differential length dz is

Erms = Vrms

dz
. (10.110)

According to the circuit theory, the maximum power transfer to the receiving antenna
is

PR = Vrms
2

4Rrad

. (10.111)

Substituting Eqs. (10.88) and (10.110) into Eq. (10.111) yields

PR = Erms
2(dz)2

4 × 80π2
(

dz
λ

)2 , (10.112)

PR = Erms
2λ2

8 × 40π2
, (10.113)

PR = 3λ2

8π

Erms
2

120π
, (10.114)

PR = 3λ2

8π

Erms
2

√
μ

ε

. (10.115)

Substituting Eq. (10.109) into Eq. (10.115) yields

AePav = 3λ2

8π

Erms
2

√
μ

ε

, (10.116)

Ae

Pav

Erms
2 = 3λ2

8π

1√
μ

ε

, (10.117)
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Ae

1

Z
= 3λ2

8π

1√
μ

ε

, (10.118)

Ae

1√
μ

ε

= 3λ2

8π

1√
μ

ε

, (10.119)

Ae = 3λ2

8π
. (10.120)

From Eq. (10.75), the expression of the maximum value of the average power can
be determined as

(Pav)max = 1

2

ηβ2I2(z)(dz)2

(4πr)2 . (10.121)

For maximum directive gain of the antenna, Eq. (10.100) can be rearranged as

GD(θ , φ) = (Pav)max

4πr2Prad

. (10.122)

The directive gain of an antenna can be obtained by substituting Eqs. (10.82) and
(10.121) into Eq. (10.122) as

GD(θ , φ) =
1
2

ηβ2I2(z)(dz)2

(4πr)2

4πr2 × I2(z)(dz)2β2η

32π2 (2π ) 4
3

, (10.123)

GD(θ , φ) = 4πr2 × ηβ2I2(z)(dz)2

2(4πr)2 × (32π2)

I2(z)(dz)2β2η
× 3

4(2π )
, (10.124)

GD(θ , φ) = 3

2
. (10.125)

From Eqs. (10.120) and (10.125), the ratio of the directive gain to the aperture area
of the antenna can be determined as

GD(θ , φ)

Ae

=
3
2

3λ2

8π

, (10.126)

GD(θ , φ) = 4πAe

λ2
. (10.127)

The gain and directivity in decibels (db) can be expressed as

GD(db) = 10 log GD, (10.128)

D(db) = 10 log D. (10.129)

From Eq. (10.127), the value of the directive gain can be determined if other relative
parameters are given.
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Example 10.3 A 1.5 m diameter parabolic reflector antenna is used in the receiving
side of a house. Determine the directive gain at 4 GHz, if the effective aperture is
60 % of the physical aperture area.

Solution The value of the effective aperture is

Ae = 0.60 × π
1.52

4
= 1.06 m.

The value of the wavelength can be determined as

λf = v,

λ = v

f
= 3 × 108

4 × 109 = 0.075 m.

The directive gain or gain can be determined as

GD(θ , φ) = 4π × 1.06

0.0752 = 2368.06.

The value of the gain in decibel (db) is

Gdb = 10 log GD = 10 log 2368.06 = 33.74.

Practice Problem 10.3 The directive gain of an antenna is found to be 20 db.
Calculate the aperture area of the antenna if the wavelength is 0.85 m.

10.6 Long Dipole Antennas

It is seen that the Hertzian dipole or a short dipole antenna has small radiation
resistance and low radiation efficiency. Therefore, there is a need to have a high
radiation efficiency antenna to overcome those drawbacks. In this case, a long dipole
antenna is an alternative option to transmit or radiate signal efficiently. The current
distribution in the linear dipole antenna is sinusoidal. The current in the antenna is
equal in magnitude but flows in opposite direction. Consider a centre-fed long dipole
antenna whose length (2h) is comparable to the wavelength as shown in Fig. 10.4.
The current distribution in the z-direction is given as

I (z) = Im sin β(h − z), z > 0 (10.130)

I (z) = Im sin β(h + z), z < 0. (10.131)
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Fig. 10.4 Representation of a
linear dipole antenna Far away point
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Consider the long dipole antenna has only a far electric field which varies only θ

in the r−direction. For differential current element I (z)dz, the differential electric
field, dEθ from Eq. (10.57) is given as

dEθ = j
βη sin θI (z)dz

4πr1
e−jβr1 . (10.132)

From Fig. 10.4, the following equations can be written as

r − r1 = z cos θ , (10.133)

r1 = r − z cos θ. (10.134)

Physically and practically, the parameters r and r1 are the same. For mathematical
simplification, consider r = r1 in the denominator of Eq. (10.132) and the equation
becomes

dEθ = j
βη sin θI (z)dz

4πr
e−jβr1 . (10.135)

Substituting Eq. (10.134) into Eq. (10.135) yields

dEθ = j
βη sin θI (z)dz

4πr
e−jβ(r−z cos θ ). (10.136)

The total far electric field is obtained by using superposition as

Eθ =
∫ h

−h

dEθ . (10.137)

Substituting Eq. (10.136) into Eq. (10.137) yields

Eθ = j
βη sin θ

4πr
e−jβr

∫ h

−h

I (z)ejβz cos θdz, (10.138)
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Eθ = g(θ )
∫ h

−h

I (z)ejβz cos θdz, (10.139)

g(θ ) = j
βη sin θ

4πr
e−jβr , (10.140)

where g(θ ) is the element factor. This element factor is produced by the differential
current element. The second factor, f (θ ) is defined as

f (θ ) =
∫ h

−h

I (z)ejβz cos θdz. (10.141)

The second factor is known as space or pattern or array factor. This factor is dependent
on the amplitude and the phase angle of the current at the antenna. Substituting Eqs.
(10.130) and (10.131) into Eq. (10.141) yields

f (θ ) = Im

∫ 0

−h

sin β(h + z)ejβz cos θdz + Im

∫ h

0
sin β(h − z)ejβz cos θdz. (10.142)

Consider the following integral formulae to evaluate Eq. (10.142):
∫

sin (a + bx)ecxdx = ecx

b2 + c2
[c sin (a + bx) − b cos (a + bx)], (10.143)

∫
sin (a − bx)ecxdx = ecx

b2 + c2
[c sin (a − bx) + b cos (a − bx)], (10.144)

f1(θ ) = 1

β2 + (jβ cos θ )2 [ejβz cos θ {jβ cos θsin(βh + βz) − βcos(βh + βz)}]0
−h,

(10.145)

f1(θ ) = 1

β2sin2θ
[jβ cos θsin(βh) − βcos(βh) + βe−jβh cos θ ], (10.146)

f2(θ ) = 1

β2 + (jβ cos θ )2 [ejβz cos θ {jβ cos θsin(βh − βz) + βcos(βh − βz)}]h0,

(10.147)

f2(θ ) = 1

β2sin2θ
[−jβ cos θsin(βh) + βejβh cos θ − βcos(βh)]. (10.148)

Equation (10.138) can be modified as

Eθ = j
βη sin θ

4πr
e−jβr Im

β2sin2θ
[β(ejβh cos θ + e−jβh cos θ ) − 2βcos(βh)], (10.149)

Eθ = j
βη sin θ

4πr
e−jβr Im

β2sin2θ
[2β cos (βh cos θ ) − 2βcos(βh)], (10.150)
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Eθ = j
η

2πr
e−jβrIm

[
cos (βh cos θ ) − cos(βh)

sin θ

]
, (10.151)

Eθ = j
η

2πr
e−jβrImF (θ ), (10.152)

F (θ ) =
[

cos (βh cos θ ) − cos(βh)

sin θ

]
. (10.153)

The far-field magnetic field is

Hφ = Eθ

η
. (10.154)

Substituting Eq. (10.152) into Eq. (10.154) yields

Hφ = j
1

2πr
e−jβrImF (θ ). (10.155)

The time-average complex Poynting vector is

S = 1

2
E × H∗ = 1

2
Eθaθ × Hφ

∗aφ. (10.156)

Substituting Eqs. (10.152) and (10.155) into Eq. (10.156) yields

S = η

8π2r2
Im

2F 2(θ )ar . (10.157)

The total power radiated by the centre-fed antenna can be determined as

Prad =
∫ π

θ=0

∫ 2π

φ=0
S.ar r

2 sin θdθdφ. (10.158)

Substituting Eq. (10.157) into Eq. (10.158) and integrate yields

Prad = ηIm
2

4π

∫ π

θ=0
F 2(θ ) sin θdθ. (10.159)

For a half-wave dipole, the value of the integration
∫ π

θ=0 F 2(θ ) sin θdθ = 1.218.
Equation (10.159) can be modified as

Prad = 120πIm
2

4π
× 1.218 = 36.5Im

2. (10.160)

In terms of rms current, the radiation power can be expressed as

Prad = 36.5(
√

2Irms)
2 = 73Irms

2. (10.161)
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Fig. 10.5 Two coupled antennas

10.7 Friis Transmission Equation

It is difficult to calculate the gain when two antennas are coupled with each other.
In 1946, H. T. Friis proposed an equation, which is capable to calculate the gain of
couple antennas. Consider two antennas A and B are placed in the far-field region
as shown in Fig. 10.5. Again, consider Gt is the gain of antenna A in the direction
of antenna B. In this case, the average power density at the receiving terminals of
antenna B is

Sav = Pt

4πr2
Gt. (10.162)

The power received by antenna B is

Pr = SavAer . (10.163)

According to Eq. (10.127), the following expressions can be written as

Aer = λ2

4π
Gr , (10.164)

Aet = λ2

4π
Gt . (10.165)

Substituting Eqs. (10.162) and (10.164) into Eq. (10.163) yields

Pr = Pt

4πr2
Gt

λ2

4π
Gr , (10.166)

Pr

Pt

= GtGr

(
λ

4πr

)2

. (10.167)

Equation (10.165) is known as Friis transmission equation.
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Equations (10.164) and (10.165) can be combined as

AerAet = λ2

4π
Gr

λ2

4π
Gt , (10.168)

AerAet

GrGtλ2
=
(

λ

4π

)2

. (10.169)

Substituting Eq. (10.169) into Eq. (10.167) yields

Pr

Pt

= AetAer

r2λ2
. (10.170)

From Eq. (10.170), it is concluded that the given transmitted power, the received
power, is directly proportional to the product of the effective areas of two antennas
and inversely proportional to the square of the product of the wavelength and the
separation distance.

The electric field intensity in the vicinity of antenna B can be determined as

Sav = 1

2

E2

η
. (10.171)

Substituting Eq. (10.162) into Eq. (10.171) yields

Pt

4πr2
Gt = 1

2

E2

120π
, (10.172)

E =
√

60PtGt

r
. (10.173)

Example 10.4 Two antennas are separated by a distance of 1200 m and each antenna
has a directive gain of 20 db. A microwave link is established between the antennas
at 300 MHz and a transmitted power of 600 W. Determine the received power and
the electric field.

Solution The value of the directive gain can be determined as

10log10(GD) = 20,

GD = 102 = 100.

The separation distance is

r = 1200 m.

The value of the wavelength is

λ = 3 × 108

300 × 106 = 1 m.
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From Eq. (10.166), the value of the received power can be determined as

Pr

Pt

= GD
2

(
λ

4πr

)2

,

where GD = GrGt ,

Pr = 600

(
100 × 1

4π × 1200

)2

= 0.026 W

The electric field can be determined as

E =
√

60PtGt

r
=

√
60 × 600 × 100

1200
= 1.58 V/m.

Practice Problem 10.4 The separation distance between two identical antennas is
800 m. A microwave link is established between the antennas at 300 MHz and a
transmitted power of 400 W. Determine the directive gain if the power received is
100 W.

10.8 Exercise Problems

10.1 The ratio of an infinitesimal distance to the wavelength of a Hertzian dipole
is 0.22. Calculate the radiation resistance.

10.2 The radiation resistance and the wavelength of a Hertzian dipole antenna are
found to be 10� and 0.12 m, respectively. Determine the differential length.

10.3 The infinitesimal distance and the radiation distance of a Hertzian dipole
antenna are 0.02 m and 18�, respectively. Find the wavelength.

10.4 The effective aperture area is 70 % of the physical aperture area of a 1.2 m
diameter parabolic reflector antenna. Calculate the directive gain at 6 GHz.

10.5 The directive gain and an effective aperture area of an antenna are found to
be 2,500 and 1.12 m2, respectively. Determine the frequency.

10.6 The separation distance between two antennas is 1,000 m and the directive
gain of each antenna is 15 db. The power of 500 W is transmitted when a
microwave link is established between the two antennas at 300 MHz. Calculate
the received power and the electric field.
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Appendix A: Mathematical Formulae

A.1 Introduction

Mathematical formulae are very important to do in detail analysis of electromag-
netic fields and waves. These formulae are mainly trigonometry, differentiation and
integration. In this section, basic trigonometric formulae, derivatives and integration
have been discussed.

A.2 Basic Trigonometric Formulae

The six basic trigonometric functions of an acute angle θ in a right angle triangle
are defined as ratios between pairs of sides of the triangle. This acute angle θ is
mentioned in Fig. A.1.

In Fig. A.1, the terms ‘adj’, ‘opp’, and ‘hyp’, stand for adjacent, opposite and
hypotenuse respectively. The following basic trigonometric functions can be written
as:

sin θ = opp

hyp
cos θ = adj

hyp
tan θ = opp

adj

cosec θ = hyp

opp
sec θ = hyp

adj
cot θ = adj

opp

In addition, the following relations may be written as:

cos (−θ ) = cos θ sin (−θ ) = − sin θ

sin2θ + cos2θ = 1 sec2θ = 1 + tan2θ cosec2θ = 1 + cot2θ

tan θ = sin θ

cos θ
cot θ = cos θ

sin θ
sin θ = 1

cosec θ

cos θ = 1

sec θ
tan θ = 1

cot θ
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Fig. A.1 Triangle with acute
angle

90�θ

hyp opp

adj

Fig. A.2 Basic trigonometric
functions

allsin
cosine

tan
cot

cos
sec

Fig. A.3 Rotations of the
angles

all
sin

cosine

tan
cot

cos
sec

Y -axis

X -axis

A.3 Trigonometric Formulae

Four quadrants with basic trigonometric functions are shown in Fig. A.2. Figure A.2
has been drawn based on the sentence in quotes, ‘all students take calculus’, before
entering in any engineering branch. Here, all represents all, the first letter of students
represents sin, the first letter of take represents tan and the first letter of calculus
represents cos. The basic trigonometric functions mentioned in each quadrant are
considered positive.

The sign of the trigonometric functions can be determined by considering Fig.A.3.
For positive Î¸, the starting point would be from the Y-axis and will rotate in the
clockwise direction. Whereas, for negative Î¸, the starting point would be from the
X-axis and will rotate in the anti-clockwise direction. From Fig. A.3, the following
formulae can be determined as:

sin
(
900 ± θ

) = cos θ cos
(
900 ± θ

) = ∓ sin θ tan
(
900 ± θ

) = − cot θ

sin
(
1800 ± θ

) = ∓ sin θ cos
(
1800 ± θ

) = − cos θ tan
(
1800 ± θ

) = tan θ
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sin (α ± β) = sin α cos β ± cos α sin β

cos (α ± β) = cos α cos β ∓ sin α sin β

sin α cos β = 1

2
[sin (α − β) + sin (α + β)]

sin α sin β = 1

2
[cos (α − β) − cos (α + β)]

cos α cos β = 1

2
[cos (α − β) + cos (α + β)]

sin 2α = 2 sin α cos α

cos2α = 1

2
[1 + cos 2α]

sin2α = 1

2
[1 − cos 2α]

tan (α ± β) = tan α ± tan β

1 ∓ tan α tan β
sin α = ejα − e−jα

2j
cos α = ejα + e−jα

2

ejα = cos α + j sin α sinh α = eα − e−α

2
cosh α = eα + e−α

2

sinh jθ = j sin θ cosh jθ = cos θ

sinh (α ± β) = sinh α cosh β ± cosh α sinh β

cosh (α ± β) = cosh α cosh β ± sinh α sinh β

sinh (α ± jβ) = sinh α cos β ± j cosh α sin β

cosh (α ± jβ) = cosh α cos β ± j sinh α sin β

cosh2θ − sinh2θ = 1

sech2θ + tanh2θ = 1

A.4 Derivative and Integral Formulae

d

dx
xn = nxn−1 d

dx
xxt = text

d

dx
cos ωx = −ω sin ωx

d

dx
sin ωx = ω cos ωx

d

dx

(u

v

)
= v du

dx
− u dv

dx

v2

d

dx
uv = u

dv

dx
+ v

du

dx
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d

dx
(1) = 0

d

dx
Inx = 1

x

d

dx
tan x = sec2x

d

dx
sinh x = cosh x

d

dx
cosh x = sinh x

d

dx
ex = ex

A.5 Exponential and Logarithmic Formulae

eα.eβ = e(α+β) e0 = 1

eα

eβ
= e(α−β) (eα)

β = eαβ

loge(xy) = logex + logey loge

(
x

y

)
= logex − logey

loge(xn) = nlogex loge(1) = 0

A.6 Integral Formulae

∫
dx

x
= ln x + C

∫
exdx = ex + C

∫
axdx = ax

Ina
+ C

∫
sin xdx = − cos x + C

∫
cos xdx = sin x + C

∫
sec2xdx = tan x + C

∫
ln xdx =x ln x − x + C

∫
sin axdx = −cos ax

a
+ C

∫
cos axdx = sin ax

a
+ C

∫
tan axdx = 1

a
ln sec ax + C

∫
eax sin bxdx = eax

a2 + b2
(a sin bx − b cos bx) + C

∫
eax cos bxdx = eax

a2 + b2
(a cos bx + b sin bx) + C

∫
sinh axdx = 1

a
cosh ax + C

∫
cosh axdx = 1

a
sinh ax + C



Appendix B: Answers to Practice
and Exercise Problems

Chapter 1

Practice Problems

1.1 E = 1482.38 V/m

1.2 H = 49.74 A/m

1.3 E = 0.043 V/m

Exercise Problems

1.1 E = 221.92 V/m

1.2 εr = 8

1.3 J = 1.57 × 109 A/m2

1.4 E = 9.60 × 10−3 V/m

Chapter 2

Practice Problems

2.1 (i) |Ra| = 7.14, (ii) |Rs | = 4.12

2.2 aRs = 0.14ax − 0.95ay + 0.27az

2.3 θ = 40.19◦

2.4 |A × B| = 19.75

2.5 A · B × C = 70

2.6 |R12| = 4.69

2.7 A = (2ρcos2φ − 3ρsin2φ)aρ − 5ρ cos φ sin φaφ + zaz

2.8 ρ = 2.62, φ = 61.77◦, z = 2.4

2.9 A = rsin2θcos2φar + r sin θ cos θcos2φaθ − r sin θ cos φ sin φaφ
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2.10 Q(x = 1.53, y = −2.65, z = −2.57), Q(ρ = 3.06, φ = 600, z = −2.65)

2.11 ∇V = 2yxax + (x2 + 4yz)ay + 2y2az

2.12 (i) E = 2.4ax + 14ay + 10azV/m, (ii) aE = 1.4ax + 0.81ay + 0.58az

2.13 E = −2aρ + 1.28aφ + 0.64azV/m, aE = −0.81aρ + 0.52aφ + 0.26az

2.14 divA = 22

2.15 ∇ · A = −5.39, ∇ · B = 7.16

2.16 ∇ × A = 13.15ax − 3.95ay + 15.05az

Exercise Problems

2.1 (i) |Ra| = 18.41, (ii) |Rs | = 12.69

2.2 aRa
= 0.36ax + 0.91ay − 0.18az

2.3 (i) |Ra| = 25.34, (ii) |Rs | = 5.92

2.4 A · B = 19

2.5 θ = 113.90◦

2.6 Vp = 3.94

2.7 p = 8

2.8 B × C = −2ax − 7ay − 4az, A · B × C = −8

2.9 (A + B) × (B − C) = −23ax − 13ay + 21az

2.10 q = −3, p = 2

2.11 |R12| = 4.58

2.12 (i) RAB = −4ax − 4ay − 2az, (ii) RBC = 3ax + 4ay + 3az,
(iii) rC = 0.17ax + 0.51ay + 0.84az

2.13 (i) A = 2ax + 7ay − 10az, (ii) aA = −0.11ax + 0.61ay − 0.78az,
(iii) aPQ = −0.71ax + 0.71az

2.14 aPQ = 0.87ax − 0.13ay + 0.48az

2.15 A × B = 7aρ + 7aφ + 7az

2.16 A = cos φaρ + cot φ cos φaφ

2.17 A = (z cot φ cos φ + tan φ sin φ)aρ + (−z cos φ + sin φ)aφ

2.18 ρ = 3.2, φ = 51.35◦, z = 1.2

2.19 A = 2
r
ar + 2

r
cot θaθ + 2

r
cot φ cos ec θaφ

2.20 P (x = −1.11, y = −1.33, z = −1), P (ρ = 1.73, φ = 50.150, z = −1)

2.21 E = 3ax + 2ay − 4az, aE = 0.56ax + 0.37ay − 0.74az

2.22 E = 2aρ + 0.87aφ − 2az, aE = 0.68aρ + 0.29aφ − 0.68az

2.23 divA = y

2.24 ∇ · A = 6z2 cos φ + 2z cos φ − sin 2φ

2.25 ∇ · A = 3 + r sin φ cot θ + cos φ

r sin θ
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2.26 ∇ · A = −1

2.27 ∇ · A = 3.09

2.28 ∇ × A = 13.15ax − 3.95ay + 15.05az

Chapter 3

Practice Problems

3.1 (i) R12 = ax + 2ay + 3az, (ii) |R12| = 3.74, (iii) a12 = 0.27ax + 0.53ay +
0.81az, (iv) F12 = −(9.37ax + 18.02ay + 27.54az) × 10−3N

3.2 E = −8.65ax − 8.65ay − 8.65az V/m

3.3
∮
S

D ·∂s = 39

3.4
∮
S

D ·∂s = −12.6

3.5 Eρ = Q

2πρε0

3.6 W = −19 J

3.7 W = −1.32 J

3.8 (i) V = 25.98 V, (ii) E = −12.99aρ − 7.5aφ − 51.96az V/m,
(iii) D = −132.81z2 sin φaρ − 132.81z2 cos φaφ − 265.62ρz sin φaz pC/m3,
(iv) ρv = −402.56 pC/m3

3.9 V = 4.05 kV

3.10 V = 0.0324 V

3.11 V = 12.65 V

3.12 (i) E2t = E1t = 5ax −8ay , (ii) E2n = −1.29az, (iii) E2 = 5ax −8ay −1.29az,
(iv) α1 = 17.64◦, α2 = 7.79◦

Exercise Problems

3.1 F12 = 0.074ax + 0.37ay + 0.14azN

3.2 (i) R12 = 0.5ax + 5ay + 1.5az, (ii) |R12| = 5.24, (iii) a12 = 0.095ax +
0.95ay + 0.29az, (iv) F12 = 0.7ax + 6.96ay + 2.13azN

3.3 E = 0.19ax + 0.15ay + 0.30az V/m

3.4 E = 3.86ax − 13.51ay + 1.93az V/m

3.5
∮
S

D ·∂s = c(c = 8k)

3.6
∮
S

D ·∂s = 37.70

3.7
∮
S

D ·∂s = 30

3.8
∮
S

D ·∂s = −201.06
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3.9 W = 6 J

3.10 W = 32.5 J

3.11 W = −5 J

3.12 W = −945 J

3.13 (i) V = 45 V, (ii) E = −16aρ − 72aφ + 3az V/m,
(iii) aE = −0.22ax − 0.98ay + 0.038az,
(iv) D = −17.71y3aρ − 53.12xy2aφ + 26.56az pC/m3,
(v) ρv = −637.44 pC/m3

3.14 (i) V = 5.53 V, (ii) E = −1.53aρ − 1.29aφ − 4az V/m,
(iii) D = −17.17 sin φaρ − 17.17 cos φaφ − 17.17zaz pC/m3,
(iv) ρv = −4.14 pC/m3

3.15 (i) V = 16.45 V, (ii) E = −17.32aρ − 5aφ + 0.29azV/m,
(iii) D = −88.54r sin θar − 44.27r cos θaθ + 8.85 sin φ

sin θ
aφpC/m3,

(iv) ρv = −40.9 pC/m3

3.16 V (r) = 421.37 kV

3.17 V (r) = 4.84 kV

3.18 V (r) = 0.86 V

3.19 V (r) = 14.89 V

3.20 V (r) = 3.41 V

3.21 (i) E2t = E1t = 2ax + 3ay , (ii) E2n = 0.56az, (iii) E2 = 2ax + 3ay +
0.56azk V/m, (iv) α1 = 15.5◦, α2 = 8.83◦

3.22 (i) E2t = E1t = 3ax + 5ay , (ii) E2n = −1.43az, (iii) E2 = 3ax + 5ay −
1.43azk V/m, (iv) α1 = 18.93◦, α2 = 13.78◦

Chapter 4

Practice Problems

4.1 (i) V = 4.5 V, (ii) E = −9aρ − 7.79aφ − 15az V/m, (iii) ∇2V 
= 0

4.2 E = −V0
ρr

aφ

4.3 V
(
a, b

2

) = 110.77 V

Exercise Problems

4.1 (i) V = 3 V, (ii) E = − (
2xyax + x2ay − 2zaz

)
V/m, (iii) ∇2V 
= 0

4.2 (i) V = 6.35 V, (ii) E = −2.72ax − 0.37ay − 4az V/m, (iii) ∇2V 
= 0

4.3 (i) V = 3.54 V, (ii) E = 7.07aρ − 3.54aφ − 0.71az V/m, (iii) ∇2V 
= 0

4.4 (i) V = −1.61 V, (ii) E = 3.21ar + 1.92aθ + 4.33aφ V/m, (iii) ∇2V 
= 0

4.5 E = −23.3ax V/m
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4.6 E = −16.84aρ V/m

4.7 E = − 160
r2 ar V/m

4.8 V
(
a, b

2

) = 30.74 kV

Chapter 5

Practice Problems

5.1 (i) J = 2aρ + 1.64aφ A/m2, (ii) I = 37.7 A

5.2 (i) J = 1.49ar + 1.53aθ A/m2, (ii) I = 7.79 A

5.3 10 �

5.4 Tr = 1.11 s

5.5 C = 0.044 μF, Q = 34.32 μC

5.6 a = 1.98 mm

5.7 (i) C = 16.84 × 10−18 F, (ii) Q = 0.0013 pC, (iii) D = 0.05 × 10−5 C/m2,
(iv) E1 = 18823.88 V/m E2 = 11294.33 V/m,
(v) V1 = 37.65 V, V2 = 39.53 V

Exercise Problems

5.1 (i) J = 18ax + 7.5az A/m2, (ii) 40 A

5.2 (i) J = 8ax + 10ay + 6az A/m2, (ii) 756 A

5.3 (i) J = 1.5aρ − 2.12aφ A/m2, (ii) I = 345.58 A

5.4 (i) J = −2.56ar + 2aθ A/m2, (ii) I = 2.81 A

5.5 R = 2.74�

5.6 R = 19.06�

5.7 ρ = 25.57 C/m3

5.8 Tr = 0.34 s

5.9 (i) C = 0.212μF, (ii) Q = 424 μC

5.10 C = 0.18 μF

5.11 b = 6.32 mm

5.12 (i) C = 5.73 × 10−17 F, (ii) Q = 5.73 × 10−15 C,
(iv) E1 = 17396.91 V/m, E2 = 8698.46 V/m,
(v) V1 = 43.49 V, V2 = 56.54 V
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Chapter 6

Practice Problems

6.1 H = −0.12ax A/m

6.2 H = H0 + H5 = 20ay A/m

6.3 J = −3ax − 9ay + az A/m2

6.4 J = 0.722aρ + 0.419aφ + 0.167az A/m2

6.5 J = 0.58ar − 4.15aθ + aφ A/m2

6.6 B = −yax + xay − yaz Wb/m2

6.7 M = 54.05 A/m

6.8 H = 78.95 A/m

6.9 N = 14 turns

6.10 I = 86.2 A

6.11 I = 16.8 A

6.12 L = 1.11 μH

Exercise Problems

6.1 H = −0.036az A/m

6.2 H = 0.05ax A/m

6.3 J = −213ax − 60ay − 42az A/m2

6.4 J = −17ax − 7az A/m2

6.5 J = −0.739ar − 0.18az A/m2

6.6 J = −0.767aρ + 1.85aφ − 0.12az A/m2

6.7 J = 0.32ar + 0.63aφ A/m2

6.8 B = qe−px sin qyaz Wb/m2

6.9 B = 4y2ax + 6xzay Wb/m2

6.10 (i) χ = 34, (ii) H = 1591.55 A/m, (iii) M = 30239.44 A/m

6.11 M = 6.73 A/m

6.12 φ = 1.37 × 10−4 Wb, B = 0.15 Wb/m2, H = 220.59 A/m

6.13 I = 2.55 A

6.14 �t = 26.74 × 106 At/Wb, I = 4.46 A

6.15 L = 33.66 μH
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Chapter 7

Practice Problems

7.1 Vind = −2 V

7.2 Id = 2.66 × 10−6 cos 104t A, Jd = 1.33 × 10−3 cos 104t A/m

7.3 D = −2
1012 α sin

(
1012t − αx

)
az C/m2, Ez = −1.33 × 10−6α sin

(
1012t − αx

)

7.4 φm = 0.9 × 10−4 wb, N2 = 265 turns

7.5 Q = Re
[
Qse

j(−3x−65◦)] , Rs = −9 sin
(
ωt + x

2

)
ax + 12 cos

(
ωt − πx

5

)
ay

7.6 ω = 12η

μo5 , η = 218 �

Exercise Problems

7.1 Vind = 5.12 cos 1000t V

7.2 φm = 0.081 wb , Vind = 243 V

7.3 Vind = 6.4 V

7.5 Vind = 1.96 V

7.6 Id = 2.78 × 10−9 cos 314t A, Jd = 6.95 × 10−6 cos 314t A/m2

7.7 JC = 125 cos 314t mA/m2 Jd = −1.11 × 10−6 sin 314t mA/m2

7.8 D = 2.5 × 10−7β cos
(
108t − βx

)
ayC/m2,

E = 0.083β cos
(
108t − βx

)
V/m,

B = 8.3 × 10−10β2 cos
(
108t − βx

)
az Wb/m2

7.9 φm = 16 × 10−6 wb, V2 = 1.51 V

7.10 φm = 8.1 × 10−6 wb, N2 = 236

7.11 R = −15 sin ωt ax + 4 cos (ωt + j35◦) ay

7.12 Es = 5ej(4x−80) ax + 12e−j(4x+15) ay

Chapter 8

Practice Problems

8.1 (i) v = 293.11 × 106 m/s, (ii) RO = 284.31 �, (iii) ρ = −0.128,
(iv) λ = 293.11 × 103 m, (v) β = 21.44 × 10−6 rad/m,
(vi) V +

o = 252.29 sin 6283t V −
o = −32.29 sin 6283t

8.2 C = 34.27 μF/m, L = 18.47 × 10−3 H/m

8.3 C = 5.15 pF/m, L = 37.20 nH/m, R = 5.95 �/m

8.4 (i) α = 47.70 Np/m, (ii) β = 32.51 rad/m

8.5 α = 0.21 Np/m

8.6 (i) ZO = 712.32
∣∣−6.8 �, (ii) γ = 0.00363 + j0.0287,

(iii) Zin = 701.33
∣∣67.40◦
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8.7 (i) Zo = 77.78 �, (ii) βl = 1.91 rad, (iii) Zsc = −j22.44 �

8.8 ρ = 0.67
∣∣32.27◦ S = 5.06 βl = 30◦ Zin = 27.05

∣∣11.15◦

8.9 (i) ρ = 0.45
∣∣31.97◦ , (ii) S = 2.64, (iii) Pav(incident) = 14.55 W,

(iv) Pav(ref lected) = 2.95 W, (v) Pnet = 11.61 W

Exercise Problems

8.1 (i) v = 10 × 106 m/s, (ii) RO = 40 �, (iii) ρ = −0.14,
(iv) λ = 10 × 103 m, (v) β = 628.3 × 10−6 rad/m,
(vi) V +

o = 116.3 sin 6283 t V −
o = 16.3 sin 6283 t

8.2 (i) v = 338 × 103 m/s, (ii) RO = 118.3 �, (iii) ρ = 0.039, (iv) λ = 338 m,
(v) β = 0.019 rad/m, (vi) V +

o = 116.3 sin 6283 t

8.3 (i) α = 91.12 dB/m, (ii) β = 5.23 rad/m

8.4 C = 2.55 pF/m, L = 14.32 × 10−9 H/m

8.5 (i) C = 62.5 pF/m, (ii) L = 100 nH/m

8.6 (i) α = 45 dB/m, (ii) β = 56.73 rad/m

8.7 P (z) = 50 W/m

8.8 α = 0.2 Np/m

8.9 (i) ZO = 1734.94
∣∣−2.0 �, (ii) γ = 0.00088 + j0.03265,

(iii) Zin = 4007
∣∣81.47◦

8.10 (i) ZO = 1146
∣∣−5.78 �, (ii) γ = 0.00272 + j0.02506,

(iii) Zin = 4964
∣∣33.72◦

8.11 (i) Zo = 61.64 �, (ii) β = 0.249 rad/m,
(iii) βl = 1.990 rad, Zsc = −j138.2 �

8.12 (i) Zo = 70.71 �, (ii) β = 0.191 rad/m,
(iii) βl = 2.866 rad, Zsc = −j19.99 �

8.13 (i) Zo = 244.95
∣∣−5◦ , (ii) β = 7.850 rad/m

8.14 ρ = 0.48
∣∣47.10◦ , S = 2.85, Zin = 19.65

∣∣−85.49◦ �

8.15 (i) ρ = 0.36
∣∣56.92◦ , (ii) S = 2.13, (iii) Pav(incident) = 18.41 W,

(iv) Pav(ref lected) = 2.39 W, (v) Pnet = 16.02 W

Chapter 9

Practice Problems

9.1 (i) η = 240 �, (ii) εr = 2.6 μr = 1.07, (iii) β = 0.56 rad/m, (iv) λ = 11.22 m

9.2 (i) β = 2 rad/m, propagation in the azdirection, (ii) ω = 188.5 × 106 rad/s,
(iii) v = 94.25 × 106 m/s, (iv) εr = 10.13 η = 118.45 �

9.3 β = 0.63 rad/m, E(z,t) = 200 cos (ωt − 0.63z) ay V/m,η = 125.67 �,
H(z,t) = 1.59 cos (ωt − 0.63z) ax A/m
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9.4 (i) β = 0.28 rad/m, (ii) tan δ = 0.228

9.5 (i) α = 9.16 × 105 Np/m, (ii) β = 9.16 × 105 rad/m, (iii) η = 0.036
∣∣45

◦
�

(iv) λ = 0.96 × 10−5 m, (v) v = 41169.35 m/s

9.6 (i) α = 0.14 Np/m, (ii) β = 0.14 rad/m, (iii) η = 647.21
∣∣45

◦
�,

(iv) λ = 44.88 m, (v) v = 2.28 × 109 m/s, (vi) δ = 7.28 m

9.7 (i) η = 80.36 � εr = 22, (ii) ω = 0.255 × 108 f = 4.07 MHz,
(iii) H = 1.87 sin (ωt − 0.43) ax A/m

9.8 (i) η1 = 377 �, (ii) η2 = 177.72 �, (iii) Pi = 3.32 az W/m2,
(iv) P = − 0.36 Pr = − 0. 406 az W/m2, (v) P2 = 2.91 az W/m2

Exercise Problems

9.1 (i) βo = 2.09 rad/m, (ii) λo = 3 m, (iii) H (x, y, z, t) = 0.4 ay A/m

9.2 (i) β = 1.5 Rad/m, (ii) ω = 25.13 × 107 rad/s, (iii) v = 16.76 × 107 m/s,
(iv) μrεr = 3.2

9.3 θ = 53.13◦

9.4 (i) β = 0.33 rad/m, (ii) λ = 19.04 m,
(iii) E(z, t) = 0.66 cos

(
108t − 0.33z

)
ax V/m

9.5 (i) β = 502.65 rad/m, (ii) tan δ = 0.22

9.6 (i) β = 0.41 rad/m, (ii) α = 0.0012 Np/m

9.7 (i) γ = α + jβ = 0.08 + j2.5 m−1, (ii) β = 2.5 rad/m, (iii) λ = 2.51 m,
(iv) v = 0.4 × 108 m/s, (v) δ = 12.5 m

9.8 (i) η = 150 �, (ii) μr = 2.53, (iii), β = 4.19 rad/m, (iv) λ = 1.5 m

9.9 (i) β = 3 rad/m, (ii) ω = 25.13 × 106 rad/s, (iii) v = 8.38 × 107 m/s,
(iv) εr = 12.85 η = 105.31 �, (v) H = 0.019 e−j3z ay −j0.047 e−j3z ax A/m

9.10 (i) β = 0.8 rad/m,
√

εr = 5.76, (ii) η = 157.08 �, (iii) Pav = 2 ax W/m2

9.11 (i) β1 = 0.21, (ii) β2 = 0.51, (iii) η1 = 377 �, (iv) η2 = 153.91 �,
(v) ρ = − 0.42 T = 0.58

9.12 (i) η1 = 377 �, (ii) η2 = 217.66 �, (iii) Pi = 1.19 az W/m2,
(iv) ρ = − 0.27 Pr = − 0.09 az W/m2, (v) P2 = 1.1 W/m2

Chapter 10

Practice Problems

10.1 dz
λ

= 0.08

10.2 dz = 0.61 m

10.3 Ae = 5.75 m

10.4 GD = 5026.55
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Exercise Problems

10.1 Rrad = 38.22 �

10.2 dz = 0.013 m

10.3 λ = 0.13 m

10.4 Gdb = 37.95

10.5 f = 4 GHz

10.6 Pr = 0.16 W, E = 2.6 V/m



Index

A
Air gap

magnetic bars with, 174
magnetic circuit with, 173–178, 184

Ampere’s circuital law, 141, 148, 149
in long straight conductor, 149–151

Ampere’s law, 151, 152, 254
generalized integral form of, 149
Maxwell’s equation from, 192, 193
point form, 148, 156, 161

Amperian path, 149, 149
Antenna efficiency, 287
Array factor, 291
Attenuation constant, 213, 220–223, 229, 257,

259, 260
determination of, 223, 224, 256

AutoCAD, 113
Average power density, 263, 269, 270, 283, 293
Average radiation intensity, 285, 286

B
Biot-Savart law, 143, 144, 281
Bond current, 161
Boundary conditions, 92–96, 100–103, 106,

112
current density, 125–129
density, 113
dielectric, 81–83
magnetic field, 164, 165

C
Capacitance, 117, 129–138, 200, 209, 210,

217–223
Capacitors, 67, 129, 132, 190–192, 210

coaxial, 133, 134
parallel plate, 129–132

with two electric slabs, 136–138

spherical, 134–136
Cartesian coordinate system, 18–22, 25
Charge density, 2, 63, 124, 125

definition, 1
surface, 126, 128–130
volume, 71, 72, 78, 119, 125

Coaxial capacitor, 133, 134
Coercive force, 178
Complex propagation constant, 247
Conduction current, 117, 187, 191, 255, 275

density, 192, 193, 254
Conductivity, 4, 77, 120–123, 138, 168, 191,

204, 243, 254, 259
Conductors, 1, 77, 78, 91, 117, 122, 133, 136

bar, 207
current density of, 127, 128
current lines at, 126
go and return, 209
in horizontal position, 150, 182
infinite straight, 147
line, 209
long straight, 145

Ampere’s circuital law in, 149–151
with Amperian path, 149
magnetic field of, 144–147

resistance of, 132
straight, 188, 189
with unit vectors, 150
in vertical position, 151, 183
voltage difference between, 134
wave propagation in, 257–259

Conjugate, 201
of any current, 223, 234
of any phasor, 202

Conservative field, 67, 82. See also Irrotational
field

Constant reactance circles, 239
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Constant resistance circles, 238, 238
Continuity equation, 117, 123–125
Convection current, 117, 119
Coulomb’s law, 51–54, 91
Creepage distance, 113–115
Cross product, 15

determination, 18
properties of, 16
rules, 31, 144
of two vectors, 15–17, 48

Curl, 45–47
of electric field, 127, 188, 194
of magnetic field, 153, 154, 162, 194, 205
of magnetic flux density, 143
magnetic vector potential, 161
of vector field, 43–47
of vector potential, 197

Current, 1–3, 117–121, 141, 148, 179, 216
closed surface with, 124
conduction current, 190–192, 275
displacement current, 190–192, 275
electric circuit, 167
equation, 124
infinite sheet of, 151–153
infinitesimal length of wire, 278
magnetic field due to, 142
magnetized material with, 162
refraction of, 126
rms value of, 284, 292

Current density, 2, 4, 117–120, 126, 128, 148,
155, 161, 162, 165, 254

boundary conditions, 125–129
in Cartesian coordinates, 138
determination, 157

Cylindrical coordinate system, 22–28

D
Decibel, 288, 289
Del, 36
Diamagnetic materials, 163
Dielectric breakdown, 81
Dielectric polarization, 78–80
Dielectric strength, 1, 81, 82
Differential form of Maxwell’s equation, 188,

190, 193, 243
Dipole, 74, 76

electric, see Electric dipole
long dipole antennas, 289–293
moment, 75, 78–80, 90

electric, 161
magnetic, 161

Directive gain, 287–289, 294
of antenna, 286, 288, 289

Directivity, 285–289
Displacement current, 117, 187, 190–192, 275
Distance vector, 19
Distortionless line, 220–223
Divergence, 78, 91

of curl of vector field, 47, 159
of vector field, 39–43

Divergence theorem, 42, 58, 88, 95, 124, 143,
261

Dot product, 19, 142
determination, 15, 67 68
rules of, 33, 56, 69, 92
of two vectors, 13–15, 17, 48
of unit vectors, 25, 32

Drift velocity, 120

E
Electric circuit, 167, 171
Electric dipole, 74–77, 161
Electric field, 1, 3, 72, 92, 108, 114, 125, 141,

187, 271
closed path with, 67
of continuous charge distribution, 60–63
curl of, 127
derivation of, 69–72
incident wave of, 267
due to infinite sheet charge, 63, 64
Maxwell’s equation for, 280
nonuniform, 67, 68
reflected wave of, 267
refraction of, 83–86
at specific point, 69
static, 77, 78
transmitted wave, 267

Electric field intensity, 2–3, 51, 54–56, 103,
133, 134, 138, 194, 294

Electric flux density, 2–4, 57–60, 62, 72, 78,
80, 125, 129, 138, 141, 201

Electric potential, 7, 64–69, 72, 74
in Cartesian coordinates, 92, 115
in cylindrical coordinates, 93
scalar, 37–39

Electrolytic current, 117
Electrostatic energy, 86–88
Energy density, 88, 131

F
Faraday’s laws, 179, 187, 188, 205, 275
Ferromagnetic materials, 163, 178
Finite difference method (FDM), 106
Field distribution, 91, 106, 108, 112, 114
Finite element method (FEM), 106, 108, 112
Finite transmission line, 224–230

with load, 225
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Free current density, 161
Fringing, 173, 174

G
Gain

antenna gain, 285–289
coupled antennas, 293
directive gain, 294

Gauss’ law, 51, 56–60, 78–82, 91, 92, 125,
126, 134

Gaussian surface, 133–135
General wave equations, 211, 212
Good conductors, 255

wave propagation in, 257–260
Gradient, 36, 159

in coordinates, 36, 38
of potential, 1, 35–39, 70, 71
of scalar field, 35–39, 47

H
Heaviside’s equation, 221
Henry (H), 179, 209
Henry, Joseph, 187
Hertzian dipole, 275, 277–285
Hysteresis curve, 178, 179

I
Imaginary part, 202, 219, 221, 237, 238, 252
Incident power, 234–236
Incident voltage, 216, 218
Incident waves, 213, 228, 243, 263, 266, 267,

269, 271, 273
Induced emf, 189
Inductance, 179–182
Infinite conductor, 146
Infinite sheet charge, 63, 64
Input impedance, 227, 228, 236, 268

for lossless transmission line, 229–234
Insulator, 3, 4, 77, 91

axi-symmetric line-post, 112, 112
line-post, 113
shed–air interface of, 114, 115

Integral form of Maxwell’s equation, 190
Intrinsic impedance, 249, 251, 253, 258–260,

263–265, 270
Irrotational field, 67, 82

line integral of, 72

J
Joule’s law, 122, 123

L
Laplace’s equation, 91, 92

derivation of, 91–93

in Cartesian coordinates, 92
cylindrical coordinates, 92
spherical coordinates, 92

in two dimensions, 107, 113
Laplace’s equation solution, 96

in cylindrical coordinates, 104, 105
numerical solution, 106–115

for two-dimensional equations, 108
one-dimension solution, 96, 97
two-dimension solution, 97, 103

Law of refraction, 83, 84
Like charges, 52
Line-post insulator, 112

axi-symmetric, 112
electric field along shed–air interface of,

114, 115
voltage distribution of, 113

Load resistance, 216
Loss tangent, 254, 255, 257, 273
Lossless transmission line, 214, 217, 218

input impedance for, 229–234
power of, 234–236

Lossy dielectrics, 128
Lossy medium, 254

wave equations for, 255
wave propagation in, 254–257

Lorentz’s force, 141, 188
Lorentz’s force equation, 141
Lorentz’s gauge condition, 277
Low loss high frequency, 219
Low-loss transmission line, 218–221

M
Magnetic circuit, 167, 168, 179

with air gap, 173–178, 184
mutual fluxes of, 181
parallel, 170–173, 184
series, 168–170, 184

Magnetic dipole moment, 161
Magnetic field, 1, 7, 141, 150, 187, 250, 262,

267
boundary conditions, 164–166
curl of, 153–159, 194, 205
due to current, 142
and electric fields, 248
Faraday’s law for, 205
far-field, 282, 292
in free space, 205
intensity, see Magnetic field intensity
of long straight conductor, 144–147
source, 278
time-varying, 187, 244
of two media, 166–168
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Magnetic field intensity, 2–4, 149, 151, 152,
159, 172, 173, 176–179

Magnetic flux density, 2–4, 142, 143, 147, 163,
173, 178, 197

Maxwell’s equations, 7, 58, 143, 148, 187, 188,
190, 198, 260, 276, 280

from Ampere’s law, 192–195
in point form, 203
time domain, 243–245
in time-harmonic form, 203

Magnetization, 161–164
Magnetostatic field, 148
Magnetic susceptibility, 162
Microstrip line, 209
Motional voltage, 188–190
Mutual flux, 181, 195, 196

of magnetic circuit, 181
Mutual inductance, 179–182, 195

N
Neper, 213
Normal electric flux density, 129
Normal magnetic field, 149, 164, 165, 166
Normalized admittances, 236
Normalized impedances, 236, 237

O
Ohmic losses, 261
Open circuit, 195, 230, 233

P
Parallel magnetic circuit, 170–173, 184
Parallel plate capacitor, 129–132, 192

with dielectric slabs, 136–138
Paramagnetic materials, 163
Pattern factor, 291
Permeability, 3, 4, 163, 166, 168–173, 175,

177, 251
in free space, 142

Permittivity, 2–4, 81, 113, 130–133, 137, 138,
141, 193, 195, 204, 251, 254, 257,
263, 273

Phase constant, 213, 214, 217–223, 230–233,
247, 249–253, 257–260, 263, 270,
280

Phasors, 201
Point charge

with closed surface, 56
electric field intensity due to, 55
movement, 65

towards fixed points, 86
potential due to, 72–74
with separation distance, 52

Point form of Maxwell’s equation, 188, 203

Poisson’s equation, 95, 160
derivation of, 91–93

Poisson’s equation solution, 105, 106
Polarization, 78, 161

dielectric, see Dielectric polarization
elliptical, 271
uniform wave, 271, 272

Pollution
full pollution

electric field with, 114
normal electric field with, 115
tangential electric field with, 115
voltage profile with, 113

non-uniform pollution layer, 114
surface pollution, 112

Position vector, 19, 20, 55
in Cartesian coordinates, 30, 31

Potential difference, 35, 65, 66, 70, 131
Potential energy, 65
Power density, 123, 263, 269, 270, 283, 285,

293
Poynting theorem, 260, 261
Propagation velocity, 247

R
Radiated power density, 283
Radiation resistance, 284, 289
Rate decrease of average power, 224
Real part, 223
Reflected power, 234–236
Reflected voltage, 216, 217, 226
Reflected waves, 213, 223
Reflection coefficient, 228, 233–237, 266, 270
Refraction

of electric field at dielectric boundary,
83–86

of magnetic field, 167
of steady current lines, 126

Relative permeability, 3, 4, 163, 169–173,
175–177, 251, 273

Relative permittivity, 2, 3, 4, 81, 132, 251, 257,
263, 273

Relaxation time, 125
Reluctance, 168–171, 175, 176, 180, 195
Resistance, 117, 120–122, 168, 196, 209, 210,

215, 217, 218, 220, 222, 233
constant resistance circles, 238, 239
determination of, 132, 133
load resistance, 216

Resistivity, 77, 121
Retarded potential, 197
Retentivity, 178
RLC series circuit, 199
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S
Scalar field, 35–39
Scalar magnetic potential, 159–161, 276
Scalars, 7
Semiconductor, 77
Series magnetic circuit, 168–170, 173, 184
Shape functions, 110
Short circuit

impedances, 233
termination, 230

Short dipole antenna, 289
Skin depth, 259, 260, 273
SLIM (software), 112, 113
Smith chart, 209, 236–240
Solid angle, 56, 57, 285, 285
Spherical capacitor, 134–136
Spherical coordinate system, 28–35, 279

unit vector of, 32
Square mesh object, 107
Standing wave ratio, 231, 233–236
Stokes’ theorem, 45, 77, 143, 148, 188, 193,

200
Superposition, 53, 290
Surface charge density, 126, 128–130
Susceptibility, 163

electric, 81
magnetic, 162

T
Tangential magnetic field, 149, 164, 165
Time-varying electric field, 187, 244
Time-varying magnetic field, 187, 244
Transformers, 141, 187, 195–197, 275
Transmission coefficient, 266, 270
Transverse electromagnetic (TEM) mode, 209
Triangular element, 108, 109, 112, 113
Turns ratio, 196

U
Uniform plane wave, 243, 246, 250, 251, 257,

259, 260, 262, 263, 268, 271, 272
polarization of, 271
schematic of, 246

Uniqueness theorem, 91, 94, 95
Unit vectors, 9, 10, 15, 52

conductor with, 150
cyclic permutation for, 17
cylindrical coordinate with, 23
dot products of, 14, 25, 32
properties of, 16, 24
relation between, 24
spherical coordinates, 30
three unit vectors, 10

Unlike charge, 52

V
Vector addition, 10, 11
Vector field, 7, 36

curl of, 43–47
divergence of, 39–43

Vector identities, 46, 47, 88, 94, 126, 159, 244,
261, 276, 277

Vector magnetic potential, 159–161, 276
Vector multiplication and division, 13
Vector subtraction, 11–13
Vectors, 7–8, 32

in Cartesian coordinates, 22, 24, 26, 27
cross product of, 15–16
in space, 20
triple product, 17

Voltage difference, 134, 136
Voltage reflection coefficient, 216–218, 228

W
Wave equations, 199, 212, 215, 245, 255
Wavelengths, 209, 214, 217, 218, 250, 251,

259, 260, 284, 289, 294
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