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‘Let there be light’, and there was light
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Preface

This book has been written bearing in mind not only my own students but also electrical
engineering students in general, including European students now facing the challenges of
the Bologna Reform.

The primary goal of this textbook, Electromagnetic Foundations of Electrical Engineering,
is to provide undergraduate students taking courses in electrical engineering with a
scientifically founded and unified basis of fundamental knowledge on electromagnetic field
phenomena, which will enable them to grasp advanced topics and specialized applications
that will be dealt with later in their courses, or that they will come across in their professional
lives as engineers.

Several distinguishing features make this new textbook unique in its area. It is primarily a
balanced foundations book with a broad scope. The emphasis is on basic principles, concepts
and governing laws that can be used precisely by electrical engineering students pursuing
studies in areas as diverse as power and energy systems, telecommunications, electronic
circuits, control systems, bioengineering, etc. In order to reach and serve as large a readership
as possible, bias towards specific areas has been deliberately avoided. Electrical engineering
professionals (practitioners) with a need for a refresher course in electromagnetic foundations
will also find the book a valuable asset.

A project-solving oriented posture is adopted to capture more easily the reader’s interest.
However, it is not my intention to provide ready-made recipes or rote procedures for students;
my approach emphasizes problem solving as a thought process based on concepts and on
concept linking. Right at the beginning of the book, a project portfolio is proposed and
offered to students in order to capture their attention and trigger their curiosity (project
solutions will be available separately). These projects tie together a diversity of knowledge
components whose roots lie in different chapters in the text; this salient feature, it is hoped,
will help readers understand the big picture, avoiding segmented perspectives. The key idea
is to enable students’ knowledge integration skills so that, after completing the book, they
can solve the various problems and questions included in the proposed project portfolio.
When they do, both the students and the book will have accomplished their goals.

In addition, in all chapters, several fully worked-out application examples are presented
to illustrate the theory and concepts that have just been introduced and developed. End-
of-chapter homework problems, intended to help guide students in their learning process,
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are also included; these problems are of practical interest and focus on engineering
applications.

The material covered in the book is assumed to be taught in the fourth or fifth semester
of the first cycle of studies leading to a Master’s degree. Its content, its smooth build-up, as
well as its presentation and style, make it suitable for adoption in any top-tier university in
the world.

The topics addressed in the textbook are confined to the teaching/learning cycle of a single
semester, before which students are supposed to have already acquired the necessary basic
skills in and knowledge of both mathematics and physics. Therefore, given the allotted time
limitations, a very judicious choice of not only the subject matter, but also its methodological
presentation, becomes an imperative and difficult task. In addition to these time limitations
(typical lecture times do not globally exceed 40 hours per semester), another challenge
faced by this book concerns the average preparation background of students. Although the
panorama may change from country to country, my own teaching experience indicates that
a great deal of caution may be needed. Taking it for granted that students have already
mastered key concepts in electromagnetism can be the first step to failure. Even worse, I have
seen in many cases that students have been exposed to some misleading ideas, meaning
that additional efforts aimed at deconstructing some preconceived or pre-acquired concepts
cannot be avoided for the sake of a sound lifelong preparation.

The book is organized into four parts containing several chapters. The starting point is
Maxwell’s equations. From them, the fundamental laws and principles governing static and
time-varying electric and magnetic fields are derived. Results are subsequently particularized
for slow time-varying electromagnetic field problems (steady-state sinusoidal circuit analysis
and transient phenomena) and for rapid time-varying electromagnetic field problems (elec-
tromagnetic waves and transmission-line theory).

The presentation of the book’s subject matter starts with very simple phenomena and
proceeds, chapter by chapter, to consider progressively difficult topics. Although the material
is arranged in traditional chapter form, a unique approach with this book is that its topics
are not tightly compartmentalized. Matter belonging to advanced chapters is frequently
built upon preceding topics, taking advantage of existing similarities among the governing
equations and making use of contact points that may exist among different concepts. This
approach not only contributes to a unified vision of the book’s content, but also allows
students to correlate apparently distinct topics, enabling them to develop a correct frame of
thought where knowledge integration is a prominent objective.

Students using this book are expected to attain a level of competence that will
enable them easily to follow up advanced classes taught subsequently in their courses,
namely electromagnetic waves, radiation, antennas, microwaves, optics, instrumentation
and measurement, electromagnetic compatibility, electrical machines, power systems
analysis, etc.

The subjects dealt with throughout the book obey the school of thought traditional to
top-tier universities: rigorous concepts, solid ideas, clear introduction of approximations, use
of deductive methodology and rejection of ready-made recipes. This approach is seasoned
with a friendly presentation of all topics aimed at drawing the students’ attention to the
central issues under discussion. In addition, special emphasis is placed on the examination
and criticism of a few aspects where wrongly preconceived ideas are suspected to exist.

Formal demonstrations of certain results and theorems are absolutely necessary; however,
in some instances they will be avoided or alleviated whenever possible. In fact, some results
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will be derived by simply invoking duality principles or by making use of existing analogies
with previously treated subjects; this methodology not only saves time, but also contributes
yet again to the global goal of knowledge integration.

The organization and style of this book reflect my experience as a faculty member of the
Instituto Superior Técnico (IST)1 – the School of Engineering of the Technical University
of Lisbon.

1 The IST is a European higher education establishment belonging to the CLUSTER (Consortium Linking
Universities of Science and Technology for Education and Research) network, which includes Universitat Politècnica
de Catalunya – Barcelona, Technische Universität Darmstadt, Eindhoven University of Technology, Institut National
Polytechnique de Grenoble, Universität Karlsruhe (TH), École Polytechnique Fédérale de Lausanne, Imperial
College London, Université Catholique de Louvain, Kungl Tekniska Högskolan (KTH) – Stockholm, Politecnico
di Torino, and TKK Teknillinen Korkeakoulo (formerly Helsinki University of Technology), as well as Ecole
Polytechnique Montreal (Canada), Georgia Tech (USA), Tomsk Polytechnic University (Russia) and Tsingua
University Beijing (China).





For Electrical
Engineers/Practitioners

As mentioned above, the main target of this book is the university population (students and
faculty staff) concerned with electrical engineering studies. However, it is widely recognized
today that any practitioner must keep up to date with new developments in their area
of expertise. This means lifelong learning. Despite a university education, the skills and
knowledge acquired there by practitioners may be insufficient for a professional career
spanning several decades. What is more, corporate policies regarding employment quite
often impose very rapid and dramatic changes on the tasks assigned to employees, who in
many cases have to retrain for a new line of work.

Electrical engineering technology is evolving at a very rapid pace in almost all of its
branches and, therefore, it is virtually impossible for anyone to be able to stay on top of all
of its novel developments (which, they too, will soon become obsolete). The only thing that
really remains stable and imperishable is the foundations of electrical engineering. These
foundations can provide practitioners with a refreshing of the key concepts and theories
underlying their professional activities, or even open doors to a new start in a different area.

Such readers will find in the book not only the necessary electromagnetic basics, but
also a vast collection of useful illustrative application examples and problems that will help
them solidify their knowledge. A key feature of this book, which I believe can attract their
attention and interest, is a project portfolio that precedes the presentation of the theory. It
includes a series of elaborated projects (focusing on engineering problems) that tie together
the multiple topics dealt with throughout the book. If, after reading the project portfolio,
practitioners feel unsure about how to solve the proposed projects, then they will have a
strong additional reason to acquire this book.





For Students

The material presented in the book is built on a substrate of knowledge already provided by
the basic sciences of mathematics and physics. Students are supposed to be acquainted with
certain topics, such as linear algebra, differential equations, integral calculus, vector analysis
and complex functions. If students still have difficulties with these topics, they may have to
recap them in order to refresh their skills.

This book is not a treatise on electricity and magnetism – its scope is far less ambitious. Its
content can be delivered in a single-semester course, and is aimed to provide a scientifically
founded and unified basis of fundamental knowledge on electromagnetic field phenomena
that will help students follow up more advanced subjects covered in their courses. Topics
are introduced in a systematic and friendly manner, proceeding from the simpler to more
difficult ones, using a slow build-up process. In addition, a series of application examples
and homework problems have been prepared to help students through the learning process.
The fact that the book is partitioned into chapters does not imply that some of them can
be skipped. Because the subject matter is deeply interrelated, students must try to adhere
to the normal chapter sequence, otherwise they may be wasting their time or fail to get an
integrated comprehensive view of the electromagnetic phenomena.

At the beginning of the book there is a project portfolio which includes examples of
problems that students may encounter during their life in electrical engineering. These
projects were conceived so as to merge a variety of knowledge components from different
chapters in the text. Students may start by skimming through the proposed project themes
just to get an idea of what the book is about and, also, to realize what will have to be learned.
Once students have finished reading the book they should return to the project portfolio
and try to solve the proposed projects. If they succeed, it will mean that their goals have
been accomplished, and they should be confident about their newly acquired skills. Project
solving is a well-proven methodology in any learning process. But students should be aware
that they themselves, not the instructor, are supposed to do that job. Let us use an analogy
to remind students that no one can learn to ride a bicycle by seeing others do it – practice
is required to develop the skill.

A final word: do not believe people who say that learning is fun. Learning involves
a lot of hard work and persistent effort, especially when the subjects being studied are
of an abstract kind. Do not be worried when difficulties arise, do not give up, recap and
recap again until the source of difficulty is clearly identified, and then debate the issue
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with fellow students or ask the instructor for assistance. Further, I will gladly help
(brandao.faria@ieee.org). Fun comes only at the end of the process, after many hours of
struggle. The moment when students realize they have been empowered with valuable new
knowledge and become intellectually richer, then, and only then, will they really experience
the feeling of fun.



For Instructors

The failure or success of delivering a university course (any course) relies mainly on the
pedagogical skills and scientific preparation of the instructor in charge. A good book can
help a lot, but, just by itself, it is not a guarantee of success.

The present book on the electromagnetic foundations of electrical engineering has been
conceived in order to assure that its subject matter is presented in a coherent and logical
arrangement. In addition, application problems and final work projects have been prepared
to guide the students through the learning process.

The content of this textbook has been tested and subjected to proof for many years
with thousands of students. I bear witness not only that lectures have been well received
and enjoyed by those students, but also that their final exam success rate has been high
(around 80 %).

From my own experience three recommendations stand out. When teaching a given subject,
the scientific preparation level of the instructor must be several notches above the one that
would strictly be required for lectures, otherwise instructors may find it difficult to answer
unexpected questions raised by more advanced students. A second aspect has to do with the
utilization of audiovisual aids: they should be used very sparingly and prudently, otherwise
students may become ‘disconnected’. Finally, as far as project solving is concerned, students
should be provided with orientation guidelines and have their mistakes corrected, not have
problems solved for them, otherwise they will hardly be able to assess their own skills
correctly.
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Project Portfolio

This project portfolio – placed here at the beginning of the book – is a teaser aimed at
triggering your curiosity about the subjects to be developed throughout the book.

The portfolio is intended to be a key tool for assessing the skills and knowledge that
you should acquire after completing the reading, understanding and comprehending of the
contents of this book.

The portfolio includes a series of 20 final-year projects which tie together and interlink
the many subjects that you are going to learn and hear about during this semester. While
some projects are more focused on a specific theme, others (most of them) encompass and
mix several topics from several chapters. The main objective is to provide you with an
integrated global view of the many aspects dealt with in the book, aiming to empower you
with a sound and lasting grasp of the electromagnetic foundations of electrical engineering.

It is absolutely amazing how a set of only four equations – Maxwell’s equations – can
be so fruitful as far as their range of applications is concerned. In fact, the same basic
tool will allow you to analyze a huge variety of electromagnetic phenomena and electrical
engineering devices and systems.

In this portfolio you will be faced with real-life engineering subjects such as rotating
induction machines, sound columns, microwave power splitters, and much more.

A list of the proposed projects follows. Their sequence is purely alphabetical in order to
avoid any unsubstantiated clues not only on the importance of the proposed themes, but also
about their intrinsic difficulties.

Project 1 Analysis of a power delivery system
Project 2 Cylindrical type transmission lines
Project 3 DC transducer
Project 4 Determination of the conductivity of a circular conducting disk
Project 5 Directional coupler analysis
Project 6 Ill-defined grounding problems
Project 7 Induction machine analysis
Project 8 Line-matching technique using an exponential transmission-line

section

Electromagnetic Foundations of Electrical Engineering J. A. Brandão Faria
© 2008 John Wiley & Sons, Ltd
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Project 9 Linear variable differential transformer
Project 10 Magnetic actuator and sensor device
Project 11 Overhead-line protection by ground wires
Project 12 Power line carrier communication
Project 13 Pseudo-balanced three-phase lines
Project 14 Screened high-voltage three-phase installation
Project 15 Shielded three-phase cable analysis
Project 16 Three-route microwave splitter
Project 17 Transmission-line system with balun transformer for even- to

odd-mode conversion
Project 18 Transmission-line system with transformer-stage matching
Project 19 Two-way loudspeaker analysis
Project 20 Variable reluctance transformer

We hope you find this set of projects challenging and interesting. Enjoy solving them.
You may be wondering about the projects’ solutions. They have been prepared and are

available. Our advice is that you should work out the solutions by yourself and only as
last resource read the answers that have been prepared. Solutions are provided separately at
www.wiley.com/go/faria_electromagnetic.



Project P1
Analysis of a Power Delivery
System

The high-voltage power delivery system in Figure P1.1 includes a 50 Hz generator, a single-
phase transmission line and three industrial consumers.

Figure P1.1 Power delivery system comprising a voltage generator, a transmission line and three
industrial consumers

The transmission line, represented by its simplified low-frequency equivalent model, is
characterized by the following parameters:

length: 200 km; per-unit-length resistance: 0�2 �/km; per-unit-length reactance: 1�0 �/km

Electromagnetic Foundations of Electrical Engineering J. A. Brandão Faria
© 2008 John Wiley & Sons, Ltd
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Part I Steady-State AC Analysis

The voltage at the far end of the transmission line is given by u�t�= √
2 Urms cos��t�, where

Urms = 110 kV.
Information on the instantaneous powers p1�t�� p2�t� and p3�t� is available (see Figure P1.2)

where

�p1�max = 27�207 MW� �p2�max = 12�114 MW� �p3�max = 8�076 MW

�p1�min = −5�323 MW� �p2�min = −11�955 MW� �p3�min = −7�970 MW

Figure P1.2 Graphical plot of the instantaneous power against time, pk�t�, for k = 1� 2� 3

1. For each power plot pk�t� determine the corresponding time interval 	Tk.
2. With the help of the complex Poynting theorem determine the parameters Rk and Lk that

characterize each industrial consumer.
3. Obtain the complex amplitudes of uG� i1� i2� i3 and i.
4. Determine the line power losses.
5. Determine the line voltage drop (as a percentage) defined as

	U�%� = �UG�rms − �U�rms
�UG�rms

×100%

Part II AC Analysis with Power Factor Compensation

In order to minimize the magnitude of the transmission-line current a capacitor of capacitance
C is placed at the far end terminals of the line (Figure P1.3).

Figure P1.3 A capacitor is placed at the far end of the line for power factor compensation purposes
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1. Determine C, and obtain the complex amplitudes of the capacitor current, new line current
and new generator voltage.

2. Recompute the line power losses and the line voltage drop, showing that they have
decreased appreciably.

3. Consider that the generator voltage is the one that has been determined in 1. Next, assume
that consumers 1 and 3 have been disconnected. Determine the overvoltage across the
terminals of consumer 2.

Part III Transient Analysis

Take the generator voltage as

uG�t� = √
2 �UG�rms cos��t+
/2�� with �UG�rms = 140 kV

Consider that the compensation capacitor is absent.
Consumer 1 is permanently out of operation.
Consumers 2 and 3 are initially disconnected (switches S2 and S3 are open – Figure P1.4).

Figure P1.4 Switches S2 and S3 are closed at t = 0 and t = t0, respectively, giving rise to transient
phenomena

1. Consider that consumer 2 is connected to the power line at t = 0. Determine the transient
regime of i2�t�.

2. Assume that sufficient time has elapsed until i2�t� can be described by its steady-state
regime. Consider that switch S3 is closed, at t = t0, when i2 goes through its maximum
value. Determine the subsequent transient regimes that describe i2�t� and i3�t�.

3. For the above situation, comment on the possible event of occurring overcurrents and
circuit-breaker activation.





Project P2
Cylindrical Type Transmission
Lines

The electrostatic field produced by a symmetrical pair of linear filaments of charge is
characterized, in the transverse plane xy, by a family of equipotential lines described by a
set of non-coaxial circumferences, and by a family of E-field lines described by a set of
circumference arcs starting and ending on the positively and negatively charged filaments
(which are positioned at x = ±a). The two families of curves are mutually orthogonal. See
Figure P2.1.

At a generic point P in space the potential function V and the electric field vector E are
given by

V = q

2
�
ln
r2

r1

� E = q

2
�

(�e1

r1

− �e2

r2

)

where q is the per-unit-length charge density of the positively charged filament, r1 is the
distance between the positive charge and P, r2 is the distance between the negative charge
and P, and �e1 and �e2 are radial unit vectors directed to P with origin at the positive and
negative charges, respectively. The linear homogeneous dielectric medium is characterized
by its permittivity � and permeability �.

This basic arrangement of equipotential lines and E-field lines can be extremely useful
for analyzing a variety of conductor configurations, provided that the conductor surfaces are
chosen so as to coincide with existing equipotential surfaces.

Electromagnetic Foundations of Electrical Engineering J. A. Brandão Faria
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Figure P2.1 Transverse plane view of the electric field lines and equipotential surfaces produced by
two parallel symmetrical filaments of charge ±q positioned at x = ±a

Part I Electrostatic Analysis

1. Consider, as shown in Figure P2.2, that two symmetrical equipotentials are materialized;
that is, replaced by conducting surfaces. The configuration obtained describes a
symmetrical two-conductor line made of two cylindrical conductors of radius R whose
axes are a distance d12 apart.

(a) Given R and d12 determine the x coordinates of the conductor axes, as well as the
adequate positions for the location of the fictitious filaments of charge, x = ±a.

(b) Determine the per-unit-length capacitance C of the symmetrical line configuration.
(c) Determine the per-unit-length external inductance L of the line configuration.

2. Consider, as shown in Figure P2.3, that the left half-plane x≤ 0 is filled with a conductor,
and that one of the equipotential lines on the right half-plane x > 0 is replaced by a
cylindrical conductor. The configuration obtained describes a conductor parallel to ground
(monopolar line). The radius of the cylindrical conductor is R, and the distance between
the conductor axis and the ground is h.

(a) Given R and h determine the adequate positions for the location of the fictitious
filaments of charge, x = ±a.

(b) Determine the per-unit-length capacitance C of the monopolar line configuration.
(c) Determine the per-unit-length external inductance L of the line configuration.
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Figure P2.2 Transverse plane view of the electric field lines and equipotential surfaces produced
by a symmetrical two-conductor transmission line. The cylindrical conductors, of radius R, have their
axes separated by a distance d12

3. Consider, as shown in Figure P2.4, that two asymmetrical equipotentials are replaced by
conducting surfaces. The configuration obtained describes an asymmetrical two-conductor
line made of two cylindrical conductors of radius R1 and R2 whose axes are a distance
d12 apart.

(a) Given R1� R2 and d12, determine the x coordinates of the conductor axes, as well as
the adequate positions for the location of the fictitious filaments of charge, x = ±a.

(b) Determine the per-unit-length capacitance C of the asymmetrical line configuration.
(c) Determine the per-unit-length external inductance L of the line configuration.
(d) Check that the results obtained here are coherent with those obtained in 1 when

R1 = R2.

4. Consider, as shown in Figure P2.5, that two equipotentials, belonging to the right half-
plane, are replaced by conducting surfaces. The configuration obtained describes an
asymmetrical cable with inner radius R1 and outer radius R2. The axes of the two
conductors are a distance h apart.
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Figure P2.3 Transverse plane view of the electric field lines and equipotential surfaces produced
by a cylindrical conductor parallel to a conducting plane. The cylindrical conductor of radius R is a
distance h away from the conducting plane

(a) Given R1� R2 and h, determine the x coordinates of the conductor axes, as well
as the adequate positions for the location of the fictitious filaments of charge,
x = ±a.

(b) Determine the per-unit-length capacitance C of the asymmetrical cable configuration.
(c) Determine the per-unit-length external inductance L of the cable configuration.
(d) Check that the results obtained here are coherent with those regarding the (concentric)

coaxial cable when h = 0.

Part II Transmission-Line Analysis

Assume that all of the transmission-line configurations analyzed in Part I are subjected to a
harmonic steady-state regime whose frequency is such that each line is a quarter-wavelength
long, l= 
/4. Assume the lines are lossless, the dielectric medium (air) being characterized
by � = �0 and � = �0.

All the lines are terminated on a non-matched resistor load RL = 300 �. Line mismatching
is characterized by a load reflection factor � = 0�5.
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Figure P2.4 Transverse plane view of the electric field lines and equipotential surfaces produced
by an asymmetrical two-conductor transmission line. The cylindrical conductors, of radius R1 and R2,
have their axis separated by a distance d12

Figure P2.5 Transverse plane view of the electric field lines and equipotential surfaces produced by
an asymmetrical cable. The internal and external cylindrical cable conductors, of radius R1 and R2,
have their axis separated of a distance h
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The following parameters are known:

Line 1 (symmetrical two-conductor line): R = 2 mm.
Line 2 (monopolar line): R = 2 mm.
Line 3 (asymmetrical two-conductor line): R1 = 2 mm� R2 = 5 mm.
Line 4 (asymmetrical cable): R1 = 2 mm� R2 = 12 mm.

1. Compute the characteristic wave resistance Rw, and the per-unit-length C and L
parameters, common to all the transmission lines.

2. For each transmission line configuration:

(a) Evaluate the unknown geometrical parameters, a� d12 and h.
(b) Evaluate the generator rms voltage �UG�rms and the active power P delivered to the

load, considering that the maximum E-field intensity in the air is allowed to reach a
threshold of 20 kV/cm (preventing breakdown phenomena in the air from occurring).

3. Given the radii R1 and R2 of an asymmetrical cable, together with a specific goal for Rw,
can you take for granted that the cable could be designed?

4. Assume that the four line sections are chain connected. Determine the transfer matrix of
the chain. Does the result depend on the sequence order of the line sections? Can you
permute them?

5. Consider the above chain connection, with the last line section terminated on RL.

(a) Taking into account the constraint for the maximum E-field intensity referred to in
2(b), find the generator rms voltage �UG�rms.

(b) Find the active power P delivered to the load.
(c) Find the maximum E-field intensities occurring in each of the line sections.



Project P3
DC Transducer

In this project you will learn how to measure a direct current using saturated transformers.
Figure P3.1 shows the schematic arrangement of a DC transducer, which includes

two identical nonlinear supermalloy toroidal transformers, with square cross-section
S = R2 = 1 cm2.

Figure P3.1 Schematic arrangement of a DC transducer made of two nonlinear toroidal cores. The
detection voltage u�t� provides information on the current I0 being measured

I0 is the direct current to be measured, i1�t� is an enforced 1 kHz sinusoidal current. The
voltage u�t� at the terminals of the detection winding with 2N2 turns is monitored, and from
it a measure of the unknown direct current is obtained.

Figure P3.2 shows a cross-sectional view of toroidal transformer 1 being utilized, whose
size and dimensions are shown. The primary winding with a single layer of N1 turns is

Electromagnetic Foundations of Electrical Engineering J. A. Brandão Faria
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Figure P3.2 Cross sectional view of toroidal core 1

wound directly over the transformer core. The secondary winding with a single layer of N2

turns is wound around and over the primary winding with an insulation layer left between
them. Both windings have a per-unit-length resistance rpul = 0�1 �/m at 1 kHz.

Neglect dispersion field phenomena associated with the primary winding.
The nonlinear magnetic characteristic B�H� of the supermalloy core can be approximated,

for small magnetic field intensities (H < Hlim, with Hlim = 7 A/m�, by the following
expression: B=�H−�H3, where �= 0�25 H/m and � = 1�6×10−3 Hm/A2. The saturation
magnetic induction field is BS = 0�6 T.

Part I Characterization of Transformer 1 (Linear Behavior)

Consider that transformer 1 is working in the linear zone of its magnetic characteristic (for
B≤ BS). Assume that the dispersion field phenomena associated with the secondary winding
are such that the magnetic coupling factor between the primary and secondary windings is
k = 0�98.

1. Take i2 = 0.

(a) Determine the inductance of the primary winding L11 knowing that the primary
impedance is Z1 ≈ j500 �.

(b) Determine N1. Find the primary resistance r1 and check that it is negligibly small
compared to Z1.

(c) Determine the minimum amplitude I = �i1�min of the primary current that leads the
core to its saturation point BS = 0�6 T.

2. The number of turns of the secondary winding is N2 = 10. Determine the inductances LM

and L22. Find the resistance of the secondary winding r2.
3. Consider that the primary current is given by i1�t� = 2I cos ��t�. If the secondary is

open �i2 = 0� the core will be saturated. However, if the secondary winding is loaded
with a resistor RL the secondary current will provoke a demagnetization effect whose
importance increases with decreasing values of RL. Determine the maximum value of RL

that prevents the core from going into saturation.
4. Show that the equivalent circuit in Figure P3.3 appropriately simulates the transformer

behavior in the linear zone, when the above value for RL is considered.
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Figure P3.3 Transformer 1 equivalent circuit (for linear operation). The respective parameters are:
r� = 68�0 m�� r� = 161�8 m�� l0 = 79�58 mH� l� = 3�28 mH� R′

L = 299�4 �

Part II Transducer Analysis

Consider the configuration shown in Figure P3.1 above, where I0 is the direct current to be
measured. The secondary winding is open �i2 = 0�. The excitation current i1�t� is given by
i1�t�= I1 cos ��t�, with I1 = 2I , therefore assuring that both transformer cores are saturated.

1. Find the magnetic fluxes �1�t� and �2�t�.
2. Determine the minimum and maximum direct current intensity I0 that still allows for the

utilization of the approximated expression B = �H −�H3. Discuss the influence of the
polarity of the direct current.

3. Determine the instantaneous voltage u�t� at the terminals of the detection winding. Show
that it is a 2 kHz sinusoidal voltage whose magnitude is proportional to I0.

4. Determine the sensitivity of the current transducer S = Urms/I0.
5. Knowing that Urms = 586 mV, find I0.





Project P4
Determination of the Conductivity
of a Circular Conducting Disk

The non-destructive evaluation of the conductivity of materials is an important electrical
engineering problem. The technique used to perform such an evaluation is greatly dependent
on the geometric shape of the conducting material sample under test. Consider the case of
a circular disk of conductivity � , thickness h and radius r, where four very thin parallel
cylindrical electrodes of radius r0 and height h are bonded onto the disk periphery. The
external medium conductivity is �ex = 0. The set of four electrodes is symmetrically arranged
so that the angle between consecutive electrodes is 
/2.

The current injected into the disk is I .
The voltage between the active electrodes �a� and �a′� in Figure P4.1 is U , whereas the

voltage between the passive electrodes �p� and �p′� is U0.

Figure P4.1 Conductivity measurement of a circular disk. (a) Front view of the disk. (b) Top view
of the disk and instrumentation apparatus

Electromagnetic Foundations of Electrical Engineering J. A. Brandão Faria
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The main goal of this project is to devise a way do determine the disk conductivity � by
measuring I and U0. The suggested theoretical tool to be utilized is the analogy between
electrostatic field equations and stationary current field equations.

Part I Electrostatic Analysis

1. Consider the electrode set immersed in a homogeneous dielectric medium with
permittivity �. Assume that the enforced potential at the active electrodes is
Va = −Va′ = U/2. Find the electrode charge Q as well as the potential at �p� and �p′�.

2. Consider that the homogeneous dielectric medium is partitioned into two areas of different
permittivity. The interior of the circle of radius r is characterized by �in while the region
outside is characterized by �ex. Keep assuming that the enforced potential at the active
electrodes is Va = −Va′ = U/2. Find the new electrode charge Q̂ as well as the potential
at �p� and �p′�. Particularize the results for the case �in � �ex.

Part II Stationary Current Analysis

1. Making use of the existing analogy between electrostatic field equations and stationary
current field equations, determine the relationship between I and U0 (Figure P4.1).

2. Application example. Data: h=2 mm� r=30 mm� r0 =0�5 mm� I =1 A� U0 =1103�V.

(a) Find � and identify the material of the disk.
(b) Determine the resistance R measured between active electrodes.
(c) Find the voltage between the active electrodes U .
(d) Evaluate the power corresponding to the energy dissipated in the disk by the Joule

effect.



Project P5
Directional Coupler Analysis

With this project you will learn about a device – the so-called directional coupler – whose
main function is to measure the rms voltage of both the incident and reflected waves
propagating along a given transmission-line structure. In addition, this measurement device
also allows for the determination not only of the standing wave ratio, but also of the active
power delivered to the load (an antenna usually).

Consider the steady-state sinusoidal regime of an aerial two-conductor symmetrical line,
of length l= 200 m, which connects a 2 kW medium-wave broadcasting station �f = 1 MHz�
to an antenna whose input impedance is RA = 125 �. The conductors of the transmission
line structure are a distance d = 20 cm apart and their radius is r = 1�5 mm. Assume that
line losses are negligibly small.

The voltage at the antenna terminals is given by uA�t� = √
2 �UA�rms cos��t�.

Part I Transmission-Line Analysis

1. Determine the per-unit-length parameters L and C of the two-conductor line.
2. Determine the characteristic wave resistance Rw of the line. Determine the wavelength 


and the phase constant � for the specified working frequency.
3. Determine the load reflection coefficient � and the corresponding standing wave

ratio SWR.
4. Compute the complex amplitudes and rms values of the incident and reflected voltage

waves. Determine the complex amplitudes of the line voltage and line current at both
ends of the line. Find the evolution of the rms values of the line voltage and line current
Urms� Irms, along the line length; specify the maximum and minimum values of those
quantities as well as the places where they occur.

Electromagnetic Foundations of Electrical Engineering J. A. Brandão Faria
© 2008 John Wiley & Sons, Ltd



20 Project Portfolio

Part II Directional Coupler Design and Analysis

Figure P5.1 shows the internal constitution of the directional coupler, which includes a
voltage arm and a current arm.

Figure P5.1 Directional coupler connected to a two-conductor transmission line

The voltage arm contains two series-connected capacitors, one a lumped capacitor of
capacitance C0, the other a small coaxial cable section whose internal conductor is the line
conductor itself of radius r, and whose external conductor is a cylindrical sheet of length h
and radius rC; the dielectric medium is the air. The capacitance of the small coaxial cable
configuration is denoted by CC .

The current arm is made of a ferrite transformer whose primary circuit is the line conductor
itself, and the secondary circuit is an n-turns winding. The secondary winding is loaded by
two series-connected resistors, each one with a resistance equal to the characteristic wave
resistance Rw of the two-conductor transmission line. For simplification purposes assume
that the ferrite transformer is an ideal transformer.

The information conveyed by the pair of voltages us and ud marked in Figure P5.1
is later processed (by software or hardware) in order to provide the user with all the
relevant data concerning the transmission-line functioning, namely the active power, the
standing wave ratio and the rms values of the incident and reflected voltage waves.
The block diagram depicted in Figure P5.2 shows the algorithm used to produce the
above data.

1. Determine the voltage ratio Tu = uC/u. Determine the current ratio Ti = i2/i.
2. Make those ratios coincide, Tu = Ti = −A/2.

(a) Determine the relationship between the pair u and i and the pair us and ud.
(b) By using the transmission-line equations, relate uinc with us, and relate urefl with ud.
(c) Show that the functional diagram in Figure P5.2 actually meets the goals for which

the device was conceived.
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Figure P5.2 Block diagram showing the algorithm used to retrieve information about
�Ui�rms� �Ur�rms, SWR and P, from the input quantities �Us�rms and �Ud�rms. The block INV is an
inverter

3. The measuring device should not significantly perturb the normal functioning of the
transmission-line system under test. For that reason the impedance of the capacitive
divider in the voltage arm should be as large as possible. On the contrary, the transformer
input impedance in the current arm should be as small as possible. Use the following
criteria:

Zcapacitive divider ≥ 100Rw� Ztransformer ≤ Rw

100

(a) Determine the number of turns n of the secondary winding.
(b) Determine A� C0 and CC .
(c) Determine the radius rC of the outer conductor of the coaxial cable section.

4. Consider the internal constitution of the directional coupler shown in Figure P5.1.

(a) Determine the complex amplitudes of uC� i2� uR and � when:

�a1� the directional coupler is placed at the emitter site;
�a2� the directional coupler is placed at the antenna site.

(b) For both cases determine the readings �Us�rms and �Ud�rms.
(c) Do those readings depend on the place where the directional coupler is installed?





Project P6
Ill-Defined Grounding Problems

The analysis of grounding effects on the performance of transmission systems poses no
difficulties as far as low-frequency regimes are concerned. Nonetheless, communication
technology trends point towards the use of higher and higher frequencies, where quasi-static
approaches fail to provide a credible basis for the analysis of ground connections. In this
project you will be alerted to ill-defined grounding problems and learn how to deal with
them correctly.

Consider the structure sketched in Figure P6.1 which shows a 50� matched RG-58U
coaxial cable of length l= 207 mm. The non-magnetic dielectric medium filling the cable is
characterized by a relative permittivity �r = 2�1. The radius of the external conductor of the
cable is r2 = 1�48 mm. Both the high-frequency generator and the cable external conductor
are grounded.

Neglect system losses.

Figure P6.1 A matched coaxial cable with the outer conductor grounded

Part I Cable Analysis

1. Determine the phase velocity vC of the waves that propagate inside the cable. Determine
the inductance L and the capacitance C per unit length of the cable.

2. Determine the radius r1 of the inner conductor of the cable.
3. What is the relationship between the complex amplitudes of the load and generator

voltages? (Note: Think twice!)
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Part II Grounding Analysis in the Frequency Domain

The structure sketched in Figure P6.1 does not provide you with critical information about
the point where the cable is grounded. What is more, it does not tell you where the ground
plane is located. You must realize that the problem you are trying to solve is, at this stage,
an ill-defined one.

Consider now the detailed situation presented in Figure P6.2, where the cable’s grounding
point is identified (distance d from the generator), and where the cable distance to the ground
is specified, h = 9 mm.

Figure P6.2 Grounded coaxial cable. (a) Cross-section. (b) Longitudinal view explicitly showing
where grounding takes place

1. Show that the physical structure in Figure P6.2 can be described by the equivalent scheme
depicted in Figure P6.3, which includes the series connection of two different transmission
lines: one is the cable itself, and the other is an aerial line (TL) constituted by the cable
external conductor and the ground plane.

Figure P6.3 Equivalent transmission-line structure corresponding to the cable configuration shown
in Figure P6.2

2. Concerning the short-circuited aerial line TL, of length d, obtain:

(a) The numerical values of the phase velocity v0 and characteristic wave resistance Rw0
.

(b) The expression of the input impedance Zin as a function of d and h.

3. Determine the transfer function T��� = UL/UG and plot it graphically for the cases
d = l/2 and d = l.

4. Check that, for certain frequencies, the load voltage turns out to be zero; compute them
for the cases d = l/2 and d = l.

5. Check that, for certain frequencies only, you really do have UL = UG e−j�l/vC (your most
probable answer to I.3). Compute those frequencies for the cases d = l/2 and d = l.



Project P7
Induction Machine Analysis

Figure P7.1 shows an induction machine made of two cylindrical iron parts, the rotor and
stator, separated by a small air gap of thickness �, and mean radius R0.

Neglect the magnetic reluctances of the iron parts.
The axial length of the machine is l.

Figure P7.1 Cross-sectional view of the induction machine showing two windings, one on the rotor
and the other on the stator. The magnetic axes of both windings make an angle � between them. Note
that � 	 R0
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Along the periphery surface of the rotor, a winding with 2NR turns exists. Likewise,
a winding of 2NS turns exists along the stator internal periphery. Each of the windings covers
an angular sector of size 2�. The rotor winding makes an angle � with the machine vertical
axis � = 0.

Note that the winding turns are placed inside longitudinal slots carved along the iron parts
(not shown in the figure).

For illustrative purposes a family of H-field lines inside the structure, originated by the
stator currents, is shown in Figure P7.2. It should be noted that the magnetic field in the air
gap is a radial field, H = H����er .

Figure P7.2 In the air gap, the magnetic field H produced by the stator currents is radial

Data: NS = 60� NR = 20� � = 2 mm� R0 = 5 cm.

Part I Magnetic Field Analysis

The rotor is blocked at the position � = �. Consider that currents iR = IR and iS = IS
respectively flow in the rotor and stator windings.

1. Determine the angular distribution of the stator’s magnetic induction field BS ��� in the air
gap. Write the result in the form of a Fourier series expansion. Determine the appropriate
coverage angle � so that BS ��� can be approximated by a sinusoidal distribution (neglect
terms equal to or higher than fifth order).

2. Considering the same coverage angle for the rotor winding, determine the angular
distribution of the rotor’s magnetic induction field BR ���.

3. Obtain an expression for the total field in the air gap B ��� = BR �IR�+BS �IS�, as a
function of the peripheral angle �.

4. Determine the magnetic energy stored in the machine, and from it find the rotor and
stator self inductances LR�LS , as well as the mutual inductance LRS ���.
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5. Determine the axial length l of the machine so that LS = 90 mH.
6. Obtain numerically LR and �LRS�max.
7. Determine the torque exerted on the rotor part as a function of the windings’ currents,

and as a function of the � angle.

Part II Single-Phase Sinusoidal Generator

Figure P7.3 is a schematic symbolic representation of the actual structure depicted in
Figure P7.1, where the stator winding can be connected to a resistive load RL = 58�77 �
(depending on the switch status). Assume that the internal resistance of the stator winding
is negligibly small compared to RL.

iS

mS

RL
uS

mR

IR

S

β

Figure P7.3 Symbolic representation of the machine structure depicted in Figure P7.1. The stator
winding can be connected to an external load

Consider that the electric current in the rotor winding is a direct current IR, and that the
rotor rotates with an angular velocity � = 2
f with f = 60 Hz �� = �t+�0�.

1. Consider that the stator winding is left open, iS = 0 (switch S open).

(a) Determine the voltage at the stator winding terminals, uS�t�. Show that it is a 60 Hz
sinusoidal voltage.

(b) Determine the rotor current IR such that �US�rms = 110 V.
(c) Determine the rotating magnetic induction field in the air gap BR ��� t�.

2. Take the current IR determined above, but now consider that the switch S is closed. For
simplification purposes assume that �0 = 
/2.

(a) Determine the complex amplitude of the stator current iS as well as the complex
amplitude of the new stator voltage uS .

(b) Determine the active power at the load terminals.
(c) Determine the time-averaged external torque T that should be exerted on the rotor to

keep it turning at a speed of 60 rotations per second.
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(d) Determine the external power necessary for that purpose, and check that it corresponds
to the power delivery to the load.

(e) Determine the magnetic induction field in the air gap produced by the stator current
BS ��� t�.

Part III Three-Phase Sinusoidal Generator

Consider Figure P7.4 where not one, but three identical windings have been placed around
the stator periphery. The three windings make angles of 2
/3 to each other. The rotor
characteristics are the same as before.

Figure P7.4 Induction machine with three stator windings whose magnetic axes are sequentially
shifted by 2
/3. (a) Cross-sectional view. (b) Symbolic representation
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1. Assuming that all of the stator windings are left open, iS1
= iS2

= iS3
= 0, determine the

voltages at the terminals of the three stator windings, uS1
� uS2

and uS3
.

2. Consider that the stator windings are connected to a balanced three-phase load, the stator
currents being given by iSk�t�= IS cos ��t−�k�, where �k = 2
 �k−1� /3. Determine the
resulting magnetic induction field in the air gap produced by all of the stator currents
BS ��� t�.





Project P8
Line-Matching Technique using an
Exponential Transmission-Line
Section

Exponential line sections are non-uniform lines whose transverse profile gradually changes
with the longitudinal coordinate and whose main purpose is to provide load-matching
conditions.

In this project you will analyze and design a matching section made of an exponential line.

Part I Electric Field Analysis

1. Consider two thin parallel cylindrical conductors of radius r0 = 1�5 mm, whose axes are a
distance 2d apart. The dielectric medium is the air. When a voltage U is applied between
the conductors they become electrically charged with symmetrical per-unit-length charges
±q (Figure P8.1).

Figure P8.1 Cross-sectional view of a two-wire transmission line

(a) Find the per-unit-length capacitance of the two-conductor line configuration,
C = q/U . Obtain an expression for the electric field intensity ES observed at the
conductors surface as a function of U .
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(b) Define the minimum distance between conductors, 2d, such that ES does not
exceed three-quarters of the dielectric strength of air �Ed = 20 kV/cm� when
U = U3/4 = 10 kV is applied.

(c) Taking into account the above values for d and U , determine C and q numerically.

2. As shown in Figure P8.2, take into consideration the fact that a ground plane is located
a distance h beneath the two-conductor system analyzed in 1.

Figure P8.2 Cross-sectional view of a two-wire transmission line above ground

(a) Using the superposition principle and the method of images determine analytically
the matrix of potential coefficients per unit length, which describes the capacitive
coupling among system conductors

[
U1

U2

]
=
[
S11 S12

S21 S22

][
q1

q2

]

(b) Assume that q1 = −q2 = q′ and U1 = −U2 = U/2.

�b1� Obtain the capacitance C ′ =q′/U and show that it always exceeds the
capacitance C of the isolated system in Figure P8.1.

�b2� The higher the distance h, the closer to an ‘isolated system’ the configuration
in Figure P8.2 will resemble. Find h so that C and C ′ differ by only 1%.

�b3� Using the above value for h, compute the capacitance matrix �C� of the
multiconductor system.

Part II Uniform Transmission-Line System

Assume that the two-conductor system is sufficiently far away from the ground plane
(‘isolated system’). Take the geometrical configuration analyzed in Part I, where conductors
are assumed lossless.

The two-conductor system defines a uniform transmission line of length l = 18�75 m
whose aim is to connect a generator (emitter station) to a load (antenna). To simplify things,
assume that the input impedance of the antenna is real, R0 = 500 �. See Figure P8.3.

Figure P8.3 Uniform two-wire transmission line of length l, terminated by a resistive load R0
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1. Compute the following line parameters: propagation velocity v, time delay � = l/v,
per-unit-length inductance L and characteristic wave resistance Rw.

2. Time-domain analysis. The generator voltage uG�t� is a single rectangular pulse, starting
at t = 0, with duration equal to �, with 100 V magnitude.

(a) Line voltages uG�t�� um�t� and u0�t� are monitored with the help of three oscillo-
scopes positioned at y= l� y= l/2 and y= 0. Plot graphically the monitored voltages.

(b) Is there any relationship between the voltages analyzed above? Which?

3. Frequency-domain analysis. Consider now that uG�t� = UG cos��t�, where UG = U3/4,
and f = 20 MHz (HF band).

(a) Find the wavelength, the load reflection coefficient and the standing wave ratio.
(b) Compute the complex amplitudes of the line voltages and currents at both ends of

the line. Obtain the active power delivered to the load.
(c) Analyze the voltage and current standing wave patterns, identifying their maxima and

minima.
(d) Check that dielectric breakdown phenomena will occur. To avoid them you would

need to reduce the generator voltage. How much would you need to reduce UG?

Part III Exponential Line (Frequency-Domain Analysis)

A possible solution to circumvent the dielectric breakdown problem, without changing the
generator voltage, consists of inserting a line-matching section just before the load, as
depicted in Figure P8.4.

Figure P8.4 Uniform two-wire transmission line, cascaded with an exponential line of length s
terminated by a resistive load R0

The matching section, of length s, is made of the same two conductors that are employed
in the previous uniform line (radius r0), but the lateral distance between conductors varies
continuously with y. For the case of the exponential line, the variation d�y� is such that both
the per-unit-length inductance and capacitance vary exponentially with y, that is

L�y� = L0e
−2�y� C�y� = C0e

+2�y� for s ≥ y ≥ 0

where L0� C0 and � are parameters to be designed so as to meet the following conditions:
√
L0/C0 = R0� L�s� = L� C�s� = C

where parameters L and C concern the uniform line section already analyzed in Part II.
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1. Find the wave solution of the propagation equations for an exponential line. That is,
determine U�y� and I�y�, such that the following governing equations are obeyed:

d

dy
U�y� = j�L�y� I�y��

d

dy
I�y� = j�C�y� U�y�� for s ≥ y ≥ 0

Show that the wave solution includes two exponential complex functions of the type
exp ��−�± j��y�, where � = √

�2LC−�2.
2. Show that the length s can be designed so as to obtain U�s�/I�s� = Rw, thus assuring

that the first line section (uniform line) is operating in a matched regime.
3. Compute the smaller value for s that meets the requirement in 2. Compute the � and �

parameters. Determine the lateral distance between conductors near to the load terminals.
4. Take into account the design parameters of the exponential line, and consider the generator

voltage originally given in II.3.

(a) Evaluate the complex amplitudes of the line voltages and line currents at y = l� y = s
and y = 0. Find the active power delivered to the load.

(b) Draw a sketch of the new standing wave patterns.
(c) Taking into account the variation law for d�y�, draw a graphical representation of the

conductors’ electric field intensity ES as a function of the y coordinate. Check if the
dielectric breakdown problem has been satisfactorily solved.



Project P9
Linear Variable Differential
Transformer

In this project you will analyze a linear variable differential transformer (LVDT) from the
viewpoint of its application as a position and velocity detector.

The magnetic circuit of the LVDT is shown in Figure P9.1. The magnetic circuit, containing
three air gaps, is made of iron, and operates in its linear zone (saturation absent). Neglect
the magnetic reluctances of the iron parts except the one concerning the central core. The
latter, with a square cross-section S1, is characterized by its length h1 and permeability �1.
Neglect dispersion phenomena.

Figure P9.1 Linear variable differential transformer’s magnetic circuit. The armature on the top can
move along x
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The armature part, on the top, is allowed to move along the x-axis.
The transformer includes two windings: the primary or excitation winding with n1 turns,

and the secondary or detection winding with n2 turns equally split into two symmetrical
halves. The detection winding is left open �i2 = 0�.

Data: e1 = 0�5 mm� S1 = 1 cm2� S = 0�5 cm2� d = 0�5 mm� h1 = 3 cm� l1 = 1�8 cm�
�1 = 300�0� n

′
2 = n′′

2 = n2/2 = 200.

Part I Centered Armature at Rest �d′ = d′′ = d�

Assume that the core’s magnetic induction field is B1 = 100 mT when the excitation current
is set at i1 = I1 = 0�1 A.

1. Find the intensity of the B and H fields at the air gaps and at the core. Determine the
number of turns n1 of the primary winding.

2. Determine the induction coefficients �L11�0 � �LM�0 and �L22�0.
3. The excitation winding of length l1 is made of copper wire ��Cu = 5�65 × 107 S/m� of

section Sw = 0�05 mm2. Assume that the area filling factor is � = 80%. Evaluate the
winding thickness a1, as well as the winding internal resistance r1.

Part II Off-Centered Armature �d′ = d+x� d′′ = d−x�

Keep assuming that i2 = 0 and i1 = I1 = 0�1 A. Analyze how the magnetic fluxes �′ and �′′

depend on x for small shifts around the central position of the armature. Utilize a Taylor
series expansion for the results:

�′�x� = �′
0 +a′x+b′x2 + c′x3 +· · ·

�′′�x� = �′′
0 +a′′x+b′′x2 + c′′x3 +· · ·

1. Determine the expansion coefficients, up to third order, in terms of the system’s given
parameters.

2. Obtain an expression for the flux linked with the detection winding, �2�x�. Estimate the
maximum value of x/d so that the deviation of �2�x� from linearity does not exceed 10%.

3. Determine LM�x� in the form LM�x� = �LM�0 +kMx.
4. Obtain an expression for the flux linked with the excitation winding, �1�x�. Estimate

the maximum value of x/d so that the deviation of �1�x� from �1�0� does not exceed
10%. Determine L11.

Part III Position Sensing

The current in the excitation winding is a 50 Hz harmonic current, i1�t� = I1 cos ��t�, with
I1 = 0�1 A.

1. For a small shift in the armature position (allowing you to neglect terms higher than first
order in �′ and �′′), find the excitation and detection voltages, u1�t� and u2�x� t�.

2. Evaluate the amplitudes of u2 and u1 for the case x/d = ±0�2.
3. Find the LVDT sensitivity, Sx = �U2/�x, expressed in V/mm.
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Part IV Velocity Sensing

A direct current, I1 = 0�1 A, flows in the excitation winding. The moving armature
vibrates along the x-axis according to x�t� = Xmax cos��t�, with � = 2
f� f = 50 Hz and
Xmax = 0�1 mm.

1. Again neglecting terms higher than first order in �′�x� and �′′�x�, find the voltage at the
detection winding terminals.

2. Determine the LVDT velocity sensitivity Sv = �U2�max / �Xmaxf�.

Part V Primary Winding Protection and Transient Analysis

With the goal of protecting the primary winding against switching operations, a capacitor of
capacitance C was inserted at the primary winding terminals (see Figure P9.1).

1. Consider the LVDT operating as a position sensor (Part III). Determine C so that the
magnitude of the generator’s current iG is minimal. Obtain the complex amplitudes of
u1� i1� iC and iG. Illustrate the results using a phasor diagram.

2. The generator is switched off when i1�t� = I1. Determine the transient evolution of i1�t�
and u1�t�. Show that a damped periodic regime will occur. Characterize the transient
regime through its damping factor and angular frequency.





Project P10
Magnetic Actuator and Sensor
Device

In this project you will analyze a magnetic circuit which can be used both as an actuator
and as a position sensor.

Consider the magnetic circuit depicted in Figure P10.1, which is made of iron parts of
negligible magnetic reluctance. The circuit includes two equal air gaps of small thickness �.
Inductor 1, with internal resistance r1, is made of two symmetrical halves, each with N1

turns. Inductor 2, with N2 turns and negligible resistance, can move up and down in the air
gap region, 0 < x < a; its mean position is given by xav = (

xN2
+x1

)
/2 and its axial length

is l = xN2
−x1, where x1 and xN2

respectively denote the x coordinates of the first and last
winding turns.

Data: a = 3 cm� b = 1 cm� � = 2 mm� l = 1 cm� r1 = 20 �� N2 = 100� N1 = 600.

Figure P10.1 Magnetic circuit of the magnetic actuator and sensor device. The coil with N2 turns
can move freely along the x-axis. (a) Vertical cross-section. (b) Detail of the center piece where the
coil with N2 turns is wound around
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Part I Magnetic Circuit Analysis

1. Take i2 = 0 and i1 = I1.

(a) Determine the magnetic field intensity H�x� in the air gap region, from x= 0 to x= a.
(b) For x in the range �0� a�, find the magnetic flux ��x� passing through the iron core

where inductor 2 is wound around.
(c) Obtain �a� �b and �c.
(d) Find the linkage fluxes �1 and �2 and obtain the analytical expressions for the

induction coefficients L11 and LM .

2. Take i1 = 0 and i2 = I2. Answer the same questions as in 1, obtaining L22.
3. Using the information N2 = 100� N1 = 600:

(a) Compute L11.
(b) Compute the extreme values of L22 and LM for the allowed position of inductor 2,

whose range is l/2 < xav < a− l/2.

Part II Actuator Analysis

Assume now that electric currents i1 and i2 are made to flow in both inductors.
Determine, as a function of i1 and i2, the global magnetic force exerted on inductor 2

which can drive it into movement along x. Show that the magnetic force is independent of
the particular position of the actuated inductor.

Part III Magnetic Induction Phenomena

Assume that inductor 2 is stopped from moving, blocked at the rest position xav = 1 cm.

1. Determine the numerical values of L22 and LM .
2. Assume that i2 = 0 and that i1�t� has the ramp shape given in Figure P10.2(a).

(a) Determine the time evolution of both voltages u1�t� and u2�t�.
(b) Determine the driving force exerted on inductor 2.

3. Assume that inductor 2 is short-circuited �u2 = 0�, and that u1�t� has the shape of a
positive pulse, as shown in Figure P10.2(b).

(a) Determine the time evolution of both currents i1�t� and i2�t�.
(b) Determine the driving force exerted on inductor 2. Obtain its value for t = t0.

Figure P10.2 (a) Current i1 against time (ramp shape). (b) Voltage u1 against time (rectangular pulse)
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Part IV AC Analysis

Consider the two inductor system as an ordinary transformer. Assume as above that inductor
2 is short-circuited and blocked at its rest position xav = 1 cm.

The sinusoidal voltage of the generator that drives inductor 1 (primary winding) is given by

u1�t� = √
2 �U1�rms cos��t�

where �U1�rms = 30 V� � = 2
f� f = 50 Hz.

1. Determine the complex amplitudes of the primary and secondary currents.
2. Find the active and reactive powers at the terminals of inductor 1.
3. In order to minimize the generator’s driving current a capacitor of capacitance C is placed

in parallel with the primary winding. Determine C and IG.
4. Determine the time-averaged value of the magnetic force Fav exerted on inductor 2.

Part V Sensor Analysis

The sensing winding (inductor 1) is left open, i1 = 0, while inductor 2 is subjected to a
vibration movement described by xav�t� = x0 +X2 cos��t�. A direct current i2 = I is made
to flow in inductor 2.

1. Show that the voltage in the sensing winding u1�t� is sinusoidal with the same frequency
of vibration movement. Show that its amplitude is proportional to X2 but it is independent
of x0. Show that u1�t� and the sinusoidal component of xav�t� are in phase quadrature.

2. Consider that I = 100 mA� X2 = 5 mm and � = 10 krad/s. Find the amplitude U1 of the
sensing voltage u1�t�, and determine the sensitivity �U1/�X2.





Project P11
Overhead-Line Protection by
Ground Wires

In this project you will understand the reason why overhead power lines contain not only
phase conductors but also one or two additional wires, bonded to ground, for line protection.

Part I Flat Three-Phase Line Analysis

Figure P11.1 shows a cross-sectional view of a flat three-phase line configuration made of
three cylindrical conductors of radii r = 2 cm at equal height above the soil h = 15 m; the
horizontal distance between conductors is d = 5 m. The line length is l = 1 km.

Figure P11.1 Cross-sectional view of a flat three-phase overhead line
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1. Making use of the method of images, determine the potential coefficients matrix of the
line �S�, and by inversion find the corresponding capacitance coefficients matrix �C�.

2. Consider that in the space occupied by the conductor system a vertical external electric
field Eext exists that is caused by the presence of a strong positively charged cloud
positioned above the line conductors. For simplification purposes assume that such a field
is approximately uniform in the analysis region; take its intensity as Eext = 250 V/cm.

Assume that the line is inactive, with U1 =U2 =U3 = 0. Determine the electric charges
Q1� Q2 and Q3 on the phase conductors.

Note that, by using the superposition principle, the voltage Uk can be obtained by
summing two contributions: a contribution �Uk�cloud with zero charge on the conductors,
and a contribution �Uk�Q caused by conductor charges but taking Eext = 0.

3. Estimate the maximum value of the electric field occurring at the surface of the line
phase conductors. Comment on possible problems related to air breakdown phenomena.

Part II Ground Wire Analysis

Figure P11.2 is identical to Figure P11.1 except for the inclusion of a fourth conductor (the
ground wire) placed above the central phase conductor, at a height h4 = 19 m above the soil.
The radius of the cylindrical ground wire is r4 = 1 cm. The ground wire is bonded to the
soil, that is U4 = 0.

Figure P11.2 Cross-sectional view of a flat three-phase overhead line, including a protection ground
wire (conductor 4)

1. For the new configuration determine the new 4 × 4 potential coefficients matrix of the
line �S�′, as well as the corresponding capacitance coefficients matrix �C�′.

2. Compute the conductor charges Q1� Q2� Q3 and Q4 considering the same conditions
referred to in I.2.

3. Repeat the breakdown phenomena analysis as in I.3.
4. Find the percentage reduction � of the electric field intensity on the phase conductors

due to the protecting screening action of the ground wire:

�k =
∣∣∣∣
�Ek�without ground wire − �Ek�with ground wire

�Ek�without ground wire

∣∣∣∣×100%� for k = 1�2�3�
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Part III AC Analysis

Assume that the three-phase line plus ground wire configuration (charged cloud absent) is
driven by a 50 Hz three-phase balanced generator (neutral grounded) – see Figure P11.3:

u1�t� = √
2 Urms cos��t+2
/3�

u2�t� = √
2 Urms cos��t�

u3�t� = √
2 Urms cos��t−2
/3�

The rms value of the phase-to-phase voltage is U	 = 120 kV. The line is left open at its
far end.

Figure P11.3 Schematic longitudinal view of the overhead line, driven by a three-phase generator,
with the neutral grounded

1. Obtain the complex amplitudes of the line voltages u1� u2� u3� line charges q1� q2� q3� q4,
and line currents i1� i2� i3. In addition determine the complex amplitude of the neutral
current iN , breaking it down into its components i4 and ig.

2. Find the time-averaged electric energy stored along the line length. Check the result by
using the complex Poynting theorem.

3. Find the place where, and the time instant when, the electric field intensity is at its
maximum value. Determine Emax.





Project P12
Power Line Carrier
Communication

In addition to the principal objective of delivering energy, most power line structures are also
being used as communication channels, transmitting high-frequency signals for delivering
voice and various data services.

In this project we propose that you analyze not only the electromagnetic field of a three-
phase line and its 50 Hz steady-state regime, but also the high-frequency regime concerning
the issue of signal carrier communications.

As shown in Figure P12.1, the line is made of three parallel cylindrical conductors, all of
the same radius r0 = 2�5 mm. The configuration is rotationally symmetric; conductor axes are
identified by their �xk� yk� coordinates, with k = 1� 2� 3. The distance between conductors
is d = 5 cm. The surrounding medium is the air �� = �0� � = �0�.

Figure P12.1 Cross-sectional view of a symmetrical three-wire line made of cylindrical conductors
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Part I Electric Field Analysis

1. Take conductor 3 as the reference conductor, that is V3 = V0 = 0� q3 = q0 = −�q1 +q2�,
where q1� q2 and q3, denote the per-unit-length conductor charges.

(a) Assume the system charges are q1 
= 0 and q2 = 0. Determine analytically the
expressions for the potential functions V1 and V2 on the conductors 1 and 2.

(b) Repeat the procedure for the case q2 
= 0 and q1 = 0.
(c) Find the per-unit-length matrix of potential coefficients �S�.

2. Determine numerically the per-unit-length capacitance matrix �C� as well as the
corresponding equivalent scheme of partial capacitances.

3. Consider that the line is driven in odd-mode operation, that is q1 = −q2 = q�
V1 = −V2 = U/2, where U is the voltage applied between conductors 1 and 2.

(a) Find the odd-mode equivalent capacitance C = q/U .
(b) Find the maximum applied voltage Umax in order to prevent air breakdown phenomena

from occurring (take Ed = 25 kV/cm).

Part II Magnetic Field Analysis

Currents i1� i2 and i3 flow across line conductors. Keep considering odd-mode operation,
that is i1 = −i2 = I� i3 = 0 (see Figure P12.2).

Figure P12.2 Cross-sectional view of the symmetrical three-wire line showing conductor currents.
The unit-length rectangle, whose smaller side is the segment P1P2, is utilized in the evaluation of the
flux linkage

1. Determine analytically the magnetic field H�y�, external to the conductors, for points
belonging to the plane x = x1 = x2.

2. Determine the per-unit-length magnetic flux � linked with the circuit constituted by
conductors 1 and 2, using a rectangular surface whose lateral size corresponds to the
segment connecting P1 to P2.

3. Using the above result obtain analytically and numerically the self-inductance relative to
the conductor pair 1 and 2, L = �/I .

4. Check the existing relationship between L and C (I.3(a)).
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Part III Harmonic Steady-State Analysis

Figure P12.3 shows the connection between a generator and a load, using the three-conductor
set previously analyzed in Parts I and II.

The longitudinal length of the distribution line is l = 175 m.

Figure P12.3 Three-wire line, of length l, linking a generator to a load

At the sending end, z= 0, the system is driven by a generator set (Figure P12.4(a)) whose
time-varying voltages are given by

ua�t� = u′
a�t�+

1
2
u′′�t�� ub�t� = u′

b�t�−
1
2
u′′�t�� uc�t� = u′

c�t�

Voltages u′ define a balanced three-phase system of frequency f = 50 Hz and U ′
rms = 230 V:

u′
a�t�= √

2 U ′
rms cos��t�� u′

b�t�= √
2 U ′

rms cos��t−2
/3�� u′
c�t�= √

2 U ′
rms cos��t−4
/3�

Voltage u′′ between conductors 1 and 2 (odd-mode excitation) is a high-frequency sinusoidal
carrier, f0 = 1�5 MHz, used for communication purposes:

u′′�t� = √
2 U ′′

rms cos��0t�

where U ′′
rms = 5 V.

Figure P12.4 (a) Generator voltages. (b) Load arrangement, where F denotes a filtering block
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At the receiving end, z = l, three delta-connected loads exist (Figure P12.4b), where
R	 = 50 � and L	 = 91�9 mH.

The block F is a filter device which should be designed so as to behave as an open circuit
at 50 Hz and as a short circuit at 1.5 MHz. The resistor R (in Figure P12.4(b)) is to be
interpreted as the receiving equipment for the high-frequency signal carrier.

Consider the simplifying approach that the distribution line is lossless.
By invoking the superposition principle, the 50 Hz regime and the 1.5 MHz regime will

be analyzed separately.

1. Determine analytically the admittance of the filtering block shown in Figure P12.5.
2. Choosing C1 = 10�F, find L1 and L2 so as to achieve the project’s goals.

Figure P12.5 Composition of the filtering block

Part III.1 The 1.5 MHz Regime

Take u′
a = u′

b = u′
c = 0 and u′′ 
= 0.

1. Show that the analysis of the problem can be conducted using the transmission-line
structure in Figure P12.6. To that end, clarify the meaning of both uG and ZL.

Figure P12.6 Equivalent two-wire line for odd-mode operation

2. Using the per-unit-length odd-mode parameters C and L obtained in Parts I and II,
evaluate the characteristic wave resistance of the line Rw, the propagation velocity v, as
well as the wavelength 
 associated with f0.

3. Take R = Rw (receiving equipment turned on).

(a) Determine ZL� � and the SWR. Show that, in practical terms, the line is a
matched one.
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(b) Determine the complex amplitudes of the voltages and currents at the sending and
receiving ends of the line.

(c) Evaluate the high-frequency active power guided by the line.

4. Take R = � (receiving equipment turned off).

(a) Determine ZL� � and the SWR. Show that, in practical terms, the line is left open.
(b) Determine the complex amplitudes of the voltages and currents at the sending and

receiving ends of the line.
(c) Analyze the standing wave pattern and identify the extremal points of the rms voltage

and current along the line.

Part III.2 The 50 Hz Regime

Take u′ 
= 0 and u′′ = 0.

1. Justify why you do not need now to resort to wave theory formalisms.
2. Obtain the voltage and current complex amplitudes of the delta-connected loads

(Figure P12.4(b)).
3. Obtain the complex amplitudes of the line currents i1� i2 and i3 (Figure P12.3).
4. Evaluate the instantaneous power delivered to the load.





Project P13
Pseudo-Balanced Three-Phase
Lines

In this project you will come to see that an overhead unbalanced three-phase transmission
line may behave as a balanced system provided that the geometry of the line is properly
designed. In addition you will also examine the main propagation features of the ground
mode at high frequencies, where skin-effect phenomena are taken into account.

Part I Capacitance and Inductance Matrices

Consider a three-conductor overhead line above ground characterized by a per-unit-length
capacitance matrix

�C� =
⎡
⎣
C11 C12 C13

C12 C22 C23

C13 C23 C33

⎤
⎦

1. Find the relationship between the capacitance coefficients in such a way that, in spite
of the naturally unbalanced character of the structure, the system behaves as a balanced
one; that is, the following conditions are simultaneously ensured:

Condition 1: If U1 = U2 = U3 then Q1 = Q2 = Q3.
Condition 2: If U1 = −U3 and U2 = 0 then Q1 = −Q3 and Q2 = 0.
Condition 3: If U1 = U3 = −U2/2 then Q1 = Q3 = −Q2/2.

2. Show that condition 3 is a direct consequence of conditions 1 and 2.
3. From the preceding results determine the array type composition for the capacitance

coefficients matrix �C� and for the potential coefficients matrix �S�.
4. Comment on the type of geometry that the line must necessarily obey. Determine the

particularities of the partial capacitances among the system conductors.
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5. Figure P13.1 shows a cross-sectional view of a three-phase line configuration with
h1 = 25 m and d = 6 m, made of thin cylindrical conductors of radii r1 = r2 = r3 = 1 cm.
Determine the height h2 of conductor 2 so that the line behaves as a balanced line,
according to the conditions defined in 1.

6. Obtain the numerical values for the entries of the per-unit-length potential coefficients
matrix �S�, capacitance coefficients matrix �C� and external inductance coefficients matrix
�Le�. Obtain the partial capacitances of the structure.

Figure P13.1 Cross-sectional view of a three-conductor overhead line above a ground plane

Part II Lossless Line Analysis

The transmission line previously designed is now employed for communication purposes
using a 1 MHz carrier. The line is excited by a ground mode, with u1 = u2 = u3 = u, and
i1 = i2 = i3 = i/3. Consider the line connections shown in Figure P13.2, where
uG = UG cos�t, with UG = 10 V and RG = 75 �. The line length is l = 530 m.

Figure P13.2 Schematic longitudinal view of the pseudo-balanced three-conductor line for ground-
mode operation

1. The relationship between the phasors U�z� and I�z� is described by the usual equations

dU

dz
= −j�LI and

dI

dz
= −j�CU
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Making use of the �Le� and �C� matrices established in I.6, determine the ground-mode
equivalent p. u. length parameters L and C. Obtain the mode propagation velocity v as
well as its corresponding characteristic wave resistance Rw.

2. Assume that the line is matched, ZL = Rw. Obtain the complex amplitudes of the electric
and magnetic field vectors E�z� x� and H�z� x� at the ground surface y = 0.

3. Obtain the voltage and current standing wave patterns for the case of the line being open
at its far end, ZL = �.

4. Find ZL such that iG = 0. For that situation determine the load reflection coefficient �
and the standing wave ratio.

Part III Lossy Line Analysis

Keep considering the line configuration in Figure P13.2. Assume that the overhead
conductors are characterized by permeability �0 and conductivity �c = 5�7 × 107 S/m, and
that the soil is characterized by permeability �0 and conductivity �s = 0�2 S/m. For the
given operating frequency, assume that the skin effect is strong.

1. Find an analytical expression for the correction ZC to the longitudinal impedance of the
line associated to the perturbation caused by the skin effect in the overhead conductors.

2. Assume that the distribution of ground currents and the distribution of the magnetic field
at the soil surface are very similar to those observed in the lossless line case. However,
for an imperfect soil, the ground currents give rise to a longitudinal E field which is
responsible for ground losses. Consider the following simplifying assumptions as far as
the fields inside the ground are concerned:

�/�z 	 �/�y� �/�x 	 �/�y� E = −E �ez� H = −H �ex and H�y=0� = H
lossless case

�y=0�

(a) Using the phasor-domain Maxwell equations establish a pair of differential equations
governing the electromagnetic field penetration in the ground. Find the complex
amplitude of the longitudinal electric field and particularize it for the ground surface,
y = 0.

(b) Determine the complex power P corresponding to the flux of the complex Poynting
vector across the ground surface, per unit axial length.

(c) Determine the correction ZS = P/�I�2
rms to the longitudinal impedance of the line

associated to the perturbation caused by the skin effect in the soil.
(d) Obtain, numerically, the values for the perturbations ZC and ZS . Subsequently,

compute the per-unit-length longitudinal impedance of the line, Z = j�Le +ZC +ZS .
(e) Obtain the wave parameters that characterize the behavior of the lossy line, that is the

propagation constant, the attenuation constant, the phase constant, the phase velocity
and the characteristic wave impedance.

3. The line is left open at its far end. Compute the complex amplitudes of the line voltages
and line currents at both line ends.





Project P14
Screened High-Voltage
Three-Phase Installation

A high-voltage three-phase line feeds a symmetrical load made of three star-connected RL
circuits, whose assembly is screened from external perturbations by means of a metallic
enclosure. As shown in Figure P14.1, the wall of the screen has three circular holes open
where the feeding line conductors go through. The set of triangle-connected capacitors C	

is used for power factor compensation purposes.
Figure P14.2(a) shows the detailed constitution of the magnetic circuit pertaining to each

of the RL loads. The magnetic circuit includes an air gap of thickness � = 5 mm and
cross-section S0 = 250 cm2. The shaded iron parts of length h and section SFe are described
by the nonlinear magnetic characteristic outlined in Figure P14.2(b). For simplification

. . . 
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. . . 

. . . 

1
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i3

u1 u2 u3

iC

u12

i12i31

CΔ

CΔ

CΔ
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R R R

L L L

iL

uR

uL

Figure P14.1 A high-voltage three-phase line crosses a screening wall to feed a balanced star-
connected RL load. The purpose of the capacitors is to ensure power factor compensation
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purposes the remaining iron parts of the magnetic circuit are assumed to have negligibly
small reluctances.

Figure P14.2 (a) Magnetic circuit corresponding to the RL load. (b) Nonlinear magnetic characteristic
B�H� of the shaded parts of the magnetic circuit

The goals of this project are:

• To properly solve the problem of the screen crossing by the high-voltage feeding
conductors.

• To properly design the magnetic circuit in order to avoid saturation effects.
• To properly design the compensation capacitors.

Data: The 50 Hz three-phase voltages are given by uk�t�= U cos ��t−2
�k−1�/3�, for
k = 1� 2� 3, and U = 100 kV.

The insulation material used for wall-crossing purposes is characterized by � = 3�0 and
by a dielectric strength of Ed = 21 MV/m.

The wall thickness is l4 = 20 cm.
The high-voltage feeding conductors radii are r0 = 15 mm.

Part I Wall-Crossing Design (Feed-Through Capacitor)

Let r0 and r4 be the feeding conductor radius and the hole in the wall radius respectively.
The simplest solution to pass the conductor through the hole without causing dielectric
breakdown is to use a very large hole. To avoid this brute force solution we can employ
the configuration depicted in Figure P14.3, where the insulation medium is subdivided into
several regions by employing a set of cylindrical coaxial metallic sheets (three in our case).

The cylindrical metallic sheets of radii r1� r2 and r3 are equally spaced; their axial lengths
(to be designed) are l1� l2 and l3, respectively.

1. Neglecting fringing field effects, determine an analytical expression for the voltage
between consecutive metallic sheets, when uk = �uk�max = U .

2. Determine the maximum electric field intensity Emax in each dielectric region. Establish
the condition for the invariance of Emax.
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3. By enforcing Emax = 1
3 Ed, determine:

(a) The radius r4 of the hole in the wall.
(b) The radii and lengths of the three cylindrical coaxial metallic sheets.

4. Obtain numerical values for the partial capacitances between the consecutive metallic
sheets. Find the overall capacitance C ′ between each high-voltage conductor and the wall.

5. Obtain the voltages between consecutive metallic sheets.
6. Obtain the electric charge in the external surfaces of the metallic sheets.
7. Plot the radial evolution of the electric field intensity and potential function, E�r� and

V�r�, for r0 < r < r4, when uk = U .

Figure P14.3 The wall crossing by the feeding conductor is accomplished by employing a set of
cylindrical coaxial metallic sheets filled with an insulation medium with permittivity � = 3�0. The
wall thickness is l4 = 20 cm

Part II Inductor Design

Assume that the amplitude of the inductive voltage uL in the inductor with N turns is 95 %
of the overall applied voltage u1. Consider that the magnetic induction field in the air gap is
to reach a maximum value B0 = 1�5 T.

Neglect dispersion phenomena.

1. Obtain the complex amplitudes of uR� uL and u1. Draw the corresponding phasor diagram.
2. Determine �max. Determine the maximum value of the magnetic flux linked with the

winding with N turns. Compute N .
3. Knowing that N ′ = N/2, determine the complex amplitude U

′
.

4. Assuming that Joule losses in the inductor are PJ = 60 kW, determine the resistance R
and the inductance L of the inductor’s winding. Obtain iL�t�.

5. Find the minimal cross-sectional area SFe of the shaded iron parts so as to prevent
saturation from occurring. Determine h as well (see Figure P14.2).

Part III Power Factor Compensation

In order to minimize the magnitude of the feeding currents i1� i2 and i3, a set of
triangle-connected capacitors of capacitance C	 is placed in parallel with the RL circuits
(Figure P14.1).
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1. Determine the complex power P in play in the RL circuits. Check that

� (P )= 3×PJ = 180 kW�

Check that 
 (P ) = 3 × 2��Wm�av. Evaluate the time-averaged magnetic energy stored
in each inductor, �Wm�av.

2. Obtain the complex amplitude of the phase-to-phase voltage u12�t�. Noting that power
factor compensation corresponds to a resonance situation, determine C	 based on energy
balance considerations.

3. Determine the complex amplitudes of i12� i31� iC and i1.
4. Check the importance of the currents (displacement currents) in the concentric capacitor

bushings analyzed in I (wall crossing).



Project P15
Shielded Three-Phase Cable
Analysis

Figure P15.1 shows a cross-sectional view of a symmetrical three-phase cable, made of
three equally distant cylindrical conductors, of radius r0 = 2�5 mm, enclosed by a cylindrical
conducting shield. The cable insulation medium is characterized by a relative permittivity
�r = 2�25 and dielectric strength Ed = 30 MV/m. The cable section is 1 km long, and its
partial capacitances are known, Ĉ10 = 23 nF and Ĉ12 = 3 nF.

Figure P15.1 Cross-sectional view of a shielded symmetrical three-phase cable

Part I Electrostatic Field Analysis

1. Obtain the capacitance coefficients matrix �C� of the cable.
2. Assume that initially all the conductors are discharged. Afterwards, a constant voltage

U1 = 10 kV is applied between conductor 1 and the shield.

(a) Determine all the voltages and charges in the conductor system.
(b) Estimate the maximum intensity of the electric field inside the cable.
(c) What would be the threshold voltage U1 leading to dielectric breakdown?
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3. Next, the voltage generator is removed, and after that the three internal conductors are
connected together. Recompute all the system voltages and charges, and estimate the new
maximum intensity of the electric field inside the cable.

Part II Experimental Determination of Cable Capacitances

The capacitances of the cable were determined experimentally by resorting to resonance tests
using a variable frequency sinusoidal voltage generator. Figure P15.2 shows, as an example,
the circuit arrangement for the determination of Ĉ10. The inductor placed in parallel with
the generator is characterized by its resistance r = 300 � and inductance L = 100 mH.

Cable

iC

iL

i

uG

l

r
L

ω

Figure P15.2 Resonant circuit used for the determination of cable capacitances

1. Obtain analytically the input admittance Y at the generator terminals, and determine the
resonance condition of the circuit.

2. Let the generator frequency be adjusted to resonance f = f0; denote by R0 the resonance-
equivalent resistance at the generator terminals.

(a) Show that

Ĉ10 = L

3rR0

and f0 =
√
r �R0 − r�

2
L
�

(b) Compute R0 and f0 for the present case where Ĉ10 = 23 nF.
(c) Determine the wavelength 
 associated to f0 and check if cable analysis can be

conducted using standard circuit approaches.

3. Consider uG�t� = √
2 �UG�rms cos��0t�, with �UG�rms = 10 V and �0 = 2
f0. Find the

complex amplitudes of the circuit currents, i� iL and iC .

Part III Transmission-Line Analysis

Consider the situation examined in II (cable left open at its far end, z = l). Making use of
transmission-line theory, for the limit case of short-length lossless lines, obtain the evolution
of conductor voltages �u1� u2� u3� and conductor currents �i1� i2� i3� inside the cable, along
its longitudinal coordinate.
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Part IV Three-Phase System Steady-State Analysis

Figure P15.3 shows a symmetrical three-phase network where the cable under analysis
is connected in parallel to a set of three identical resistors characterized by R = 50 k�.
The cable is left open at is far end. The load neutral conductor is bonded to the cable
shield.

The system is driven by a 50 Hz three-phase generator whose voltages are given by:

uk�t� = √
2 Urms cos ��t−2
�k−1�/3� � for k = 1�2�3�

The rms value of the phase-to-phase voltage is known: U	 = 380 V.

Figure P15.3 Symmetrical three-phase network where the cable under analysis is connected in
parallel to a set of three resistors

1. Write the complex amplitudes of the phase-to-neutral voltages U 1�U 2�U 3. Making use
of the capacitance matrix �C� obtained in I, determine the complex amplitudes of the
cable electric charges Q1�Q2�Q3 and cable currents I10� I20� I30.

2. Determine the neutral current IN .
3. Verify that Qk/Uk = C = constant; find C. Note that the preceding result allows you to

replace the network in Figure P15.3 by the equivalent network in Figure P15.4.

Figure P15.4 Equivalent circuit for the configuration shown in Figure P15.3

4. Determine the complex amplitudes of the resistor currents iRk
, as well as the generator

currents iSk .
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5. Determine the active and reactive powers in play at the three-phase generator terminals.
Check the results obtained by utilizing the complex Poynting theorem.

Part V Transient Analysis

Assume that the steady-state regime analyzed in Part IV is established for a long time. At
t = t0, when u1 goes through zero, from negative to positive values, the three-phase switch
S is opened.

1. Obtain the differential equations governing the cable discharge process.
2. Define the relevant initial conditions of the problem.
3. Determine the time evolution of the cable conductor voltages, for t > t0.
4. Check the consistency of your results by doing an energy balance (compute the initial

electric energy stored inside the cable, and compute the total Joule losses in the resistors).
5. Repeat the problem for the case when the neutral conductor is absent.



Project P16
Three-Route Microwave Splitter

Figure P16.1 shows a top view of a microwave three-route splitter which consists of a circular
ring metallization of mean radius r = 10�61 mm, to which four microstrips are connected.
The ring and the strips are on a dielectric substrate placed over a conducting ground plane.
Figure P16.2 shows one cross-sectional view of the structure.

Figure P16.1 Three-route microwave splitter consisting of a circular ring, four microstrip ports,
three resistor loads and a voltage generator
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Figure P16.2 Cross-section showing upper strip, substrate and ground plane metallization

In order to neglect bending effects, the ring width is assumed to be much smaller than the
ring radius.

The sinusoidal voltage generator connected to the input port 0 provides an active power
P0 which is split by the output ports 1, 2 and 3, which feed three identical loads (symbolized
by three identical resistors whose resistance is R = 75 �).

The goal of this project is to analyze the resonating properties of the ring itself, and, in
addition, to properly define the necessary properties of the connecting microstrips, so that
the output powers P1� P2 and P3 are all equal, for a specified working frequency f0 = 3 GHz.

The whole transmission system is assumed to be lossless.

Part I Transmission-Line Ring Analysis

Consider the situation where the ring microstrip connections are still absent (Figure P16.3).

Figure P16.3 Circular ring driven by a voltage generator, with microstrip ports absent

Consider the steady-state harmonic regime corresponding to a sinusoidal voltage signal
applied directly to port 0: u0�t� = √

2 �U0�rms cos��t�.

1. Taking into account the boundary conditions U�=0 = U�=2
 = U 0, determine analytically
the complex amplitudes of the line voltage and line current as a function of the peripheral
angle � along the ring.

2. Particularize the preceding results for � = 0 (port 0) and � = 
. Determine the complex
amplitude of the current provided by port 0, i0.

3. Determine the input admittance of the ring at port 0, Y 0 = I0/U 0, as a function of r/
.
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4. In order to determine the wave parameters of the ring line, the operating frequency
was swept from 0 to 4 GHz, the input admittance being measured. A first zero was
obtained at f0 = 3 GHz (resonance frequency), and at 4 GHz the admittance reading was
Y 0 = j34�64 mS. Determine the phase velocity v and the characteristic wave resistance Rw.

5. Consider f = f0. Take �U0�rms = 5 V. Evaluate U��� and I��� for � = 
/2� 
 and 3
/2;
that is, at the points where ports 1, 2 and 3 will be connected.

Part II Quarter-Wave Transformer Analysis

Quarter-wave transmission lines have the special property of exhibiting real input impedance
when the line is terminated by a purely resistive load (the time-averaged electric and magnetic
energies inside the quarter-wave line perfectly compensate each other).

1. Find the relationship between the input and output voltages and currents in a quarter-
wave line.

2. For a load impedance ZL = RL, determine the line input impedance.

Part III Loaded Ring Line

Assume that three identical resistors R are directly connected at ports 1, 2 and 3 – see
Figure P16.4. The excitation voltage at port 0 is u0�t�= √

2 �U0�rms cos��0t�, with f0 = 3 GHz.
Note that the configuration in Figure P16.4 is equivalent to the one shown in Figure P16.5,

where the line is segmented into four identical sections, with characteristic wave resistance
Rw, of length equal to 
0/4.

Figure P16.4 Circular ring driven by a voltage generator, with three resistors directly connected to
the output ports
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Figure P16.5 Transmission-line structure equivalent to the ring configuration in Figure P16.4

1. Determine analytically the complex amplitudes of the voltages u1� u2 and u3 at the output
ports.

2. Determine analytically the active powers delivered to port 1, 2 and 3.
3. Take �U0�rms = 5 V, and assume that R= 75 �. Find numerical answers to the questions

posed in 1 and 2. Check that the power delivered to the three ports is not equally split
among them.

4. Determine the necessary condition to achieve equal power splitting and, for that situation,
determine the input impedance at port 0.

Part IV Global Analysis

At last consider the original drawing in Figure P16.1, where the 75 � resistor loads, and the
generator, are connected to the ring line by means of four microstrips, all of them a quarter-
wavelength long. The widths of the microstrips are designed so that their characteristic
resistances Rw1

� Rw2
and Rw3

meet the requirement of equal power splitting analyzed in
III. The characteristic resistance Rw0

of the strip at port 0 is defined so that such a port is
perfectly matched.

The generator voltage is given by uG�t� = √
2 5 cos��0t� V, with f0 = 3 GHz.

1. Determine Rw1
� Rw2

� Rw3
and Rw0

. Are the microstrips’ metallization widths of the ports
smaller or larger than the ring line metallization width?

2. The four circular segments of the ring line are 
0/4 long. The four microstrips at the four
ports are also a quarter-wavelength long. Does this mean that the physical lengths of the
microstrip lines are the same?

3. Compute the complex amplitudes of the ring-to-ground voltages u0� u1� u2� u3, as well
as the load voltages u′

1� u
′
2� u

′
3.

4. Compute the active power delivered to each load, as well as the active power at the
generator terminals.



Project P17
Transmission-Line System with
Balun Transformer for Even- to
Odd-Mode Conversion

In this project a transmission-line system consisting of two sections of two-conductor lines
above ground, linked by a balun transformer, is analyzed – see Figure P17.1. The first line
section of length lE uses even-mode operation whereas the second line section of length lO
uses odd-mode operation. The aerial cylindrical conductors, of radius r0, are a distance 2d
apart and are placed at height h above the ground (with r0 	 d�h).

Data: r0 = 5 mm� d = 40 cm� h = 4 m.

Figure P17.1 Perspective view of the global transmission-line system, with balun transformer, for
even- to odd-mode conversion

Part I Electrostatic Field Analysis

1. Even-mode analysis. Consider the cross-sectional view shown in Figure P17.2(a) where
q denotes the per-unit-length line charge q = Q/l.

(a) Find the scalar potential function V at a point P�d� y�.
(b) Find the voltage U between the points a and b.
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(c) Determine the per-unit-length even-mode capacitance of the line, CE = q/U .
(d) Take U = 1 kV. Evaluate the electric charge q and the electric energy We stored per

unit length of the line.

Figure P17.2 Cross-sectional view of the two parts of the transmission-line system. (a) Transmission
line of length lE , supporting even-mode propagation. (b) Transmission line of length lO, supporting
odd-mode propagation

2. Odd-mode analysis. Consider the cross-sectional view shown in Figure P17.2(b) where
q denotes the per-unit-length conductor charge q = Q/l.

(a) Find the scalar potential function V at a point P�x� h�.
(b) Find the voltage U between the points a and b.
(c) Determine the per-unit-length odd-mode capacitance of the line, CO = q/U .
(d) Take U = 1 kV. Evaluate the electric charge q and the electric energy We stored per

unit length of the line.

3. The relationship between line voltages and line charges can be represented by an
equivalent scheme of partial capacitances – see Figure P17.3. Using the results in 1 and 2,
find the values of C10� C20 and C12.

Figure P17.3 Scheme of partial capacitances

Part II Balun Transformer

Figure P17.4 depicts the detailed constitution of the balun transformer’s magnetic circuit
used to link the two line sections. The two high-permeability ferrite magnetic cores are
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identical. Neglect dispersion phenomena. Consider a time-harmonic regime characterized by
f = 1 MHz.

Figure P17.4 Balun transformer

1. To start with, assume that the balun transformer is an ideal transformer.

(a) By application of Faraday’s induction law and Ampère’s law, find the relationship
between U 1 and U 2, as well as between I1 and I2.

(b) Determine the turns ratio N1/N2 such that Z1 = �Z2, with � = 0�477 56, where
Z1 = U 1/I1 and Z2 = U 2/I2.

2. Now consider the actual transformer imperfections: r1 
= 0� r2 
= 0 and �Rm�core 
= 0.
Assume that r1/r2 = N1/N2, with N1/N2 defined in 1(b).

(a) Establish the relationship between the transformer inductances, L11� L22 and LM .
(b) With the secondary winding open �i2 = 0�, at f = 1 MHz, the transformer input

impedance was measured, Z1 = R1 + jX1, with R1 = 10 �� X1 = 2 k�. Evaluate the
transformer characteristic parameters, r1� r2� L11� L22 and LM .

(c) Draw the ‘T’-shaped equivalent circuit of the balun transformer.

Part III Transmission-Line System

Take the transmission system shown in Figure P17.1. The working frequency, f = 1 MHz,
is such that lO = 2lE = 
/4 (where 
 denotes the wavelength).

Assume that both line sections are lossless.
The generator voltage is given by u0�t� = √

2 �U0�rms cos��t�, with �U0�rms = 100 V.

1. For the line section that supports even-mode propagation, determine the corresponding
phase velocity vE , the per-unit-length inductance LE , the characteristic wave resistance
RwE

, as well as its physical length lE .
2. For the line section that supports odd-mode propagation, determine the corresponding

phase velocity vO, the per-unit-length inductance LO, the characteristic wave resistance
RwO

, as well as its physical length lO.
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3. The second line section of length lO is terminated on a matched load, ZL = RwO
.

(a) Take the ideal model for the balun transformer analyzed in II.1. Show that by using
the chosen value for the parameter eta, � = 0�477 56, the first line section of length
lE also behaves as a matched line.

(b) Take the more realistic model for the balun transformer analyzed in II.2. Determine
the transformer’s impedance Z1. For the first line section of length lE , evaluate the
load reflection coefficient � , as well as the associated standing wave ratio. Obtain
the complex amplitudes of all the voltages and currents marked in Figure P17.1.

4. Make use again of the ideal model for the balun transformer, but now consider that the
second line section of length lO is left open at the load terminals �iL = 0�.

(a) Recompute the complex amplitudes of all the voltages and currents marked in
Figure P17.1.

(b) Draw the standing wave patterns for the rms voltage and current along the transmission
system.



Project P18
Transmission-Line System with
Transformer-Stage Matching

In this project a transmission-line system which includes a transformer stage for matching
purposes is analyzed and designed. Figure P18.1 shows the overall transmission system
consisting of a high-frequency generator, an aerial two-conductor symmetrical line, a
transformer and a load. The generator is described by an ideal voltage source uG and by
its internal resistance RG. The two-conductor symmetrical line, of length l, is made of two
cylindrical conductors of diameter �, whose axes are separated by d.

Figure P18.1 Transmission-line system with transformer-stage matching

The transformer stage, with n1 turns in the primary winding and n2 turns in the secondary
winding, is loaded with a resistor Ra and a capacitor Ca.

Part I Transformer-Stage Analysis

1. In order to determine the characteristic features of the transformer stage, two experiments
have been conducted. Firstly, with the secondary winding open, a sinusoidal voltage was
applied to the primary winding. Conditions were reversed in the second experiment; with
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the primary winding open, a sinusoidal voltage was applied to the secondary winding.
Figure P18.2 shows oscilloscope readings concerning one half-period of the monitored
voltages and currents.

Write the phasor equations corresponding to both experiments and based on them
determine the windings’ resistances r1 and r2, as well as the self- and mutual inductances
L11� L22 and LM . Evaluate the magnetic coupling factor k between transformer windings.

Obtain the voltage u1�t� corresponding to the second experiment.

Figure P18.2 Oscilloscope readings concerning transformer measurements. Horizontal time scale:
1 div�= 50 ns. Vertical scale for voltages: 1 div�= 25 V. Vertical scale for currents (first experiment):
1 div� = 216�5 mA. Vertical scale for currents (second experiment): 1 div�=125�0 mA

2. Draw an equivalent circuit for the actual transformer containing an ideal transformer with
a turns ratio of 1:1.

3. Let �= 2
f be the operating angular frequency. Analyze the input impedance Z1 of the
loaded transformer,

(a) Show that r1 < ��Z1� < r1 + ��LM�
2

r2

(b) Show that resonance conditions, Z1 = �{Z1

}
, can only be met for f > r2/�
k

2L22�.
(c) Particularize the results in (a) and (b) for the case f = 10 MHz.

4. The design goal is to obtain Z1 = R1 = 600 �. Determine analytically the appropriate
load parameters Ra and Ca, as a function of �, which allow the specified goal to be
achieved.

5. Consider that the transmission system is operating at 10 MHz, with a required voltage in
the secondary winding given by u2 = √

2 �U2�rms cos��t�, where �U2�rms = 1 kV.

(a) Compute the values of Ra and Ca.
(b) Making use of the equivalent circuit obtained in 2, evaluate the complex amplitudes

of the voltages and currents concerning both transformer windings.
Verify that U 1/I1 = R1 = 600 �.

(c) Compute the active and reactive powers at the primary winding terminals. Check the
result by using the complex Poynting theorem.
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Part II Transmission-Line Analysis

Consider the working conditions established in I.5. The (lossless) transmission line is matched
when the switches S1 and S2 are closed.

1. Find the phase velocity v and the characteristic wave resistance Rw of the line. In addition,
determine the per-unit-length inductance and capacitance of the line. Determine the ratio
of the geometrical parameters d and �. Obtain the physical length of the line knowing
that it corresponds to one-third of the operating wavelength.

2. Determine the necessary value of the generator’s internal resistance RG such that, in any
circumstance, the incident wave voltage at the generator terminals is always half of uG.

3. Compute the complex amplitude of uG such that the design goal:
u2 = √

2 �U2�rms cos��t�� �U2�rms = 1 kV, is achieved.
Obtain the complex amplitudes of u0�t� and i0�t�.

4. Consider the voltage uG obtained in 3. Analyze the following two cases:

case I: switch S1 open;
case II: switch S1 closed, switch S2 open.

(a) For both cases find the load reflection coefficient and the standing wave ratio.
(b) For both cases obtain the rms values of the line voltage and line current at both ends

of the line. Determine the maximum and minimum rms values of the line voltage and
line current.

(c) Which case is the worst scenario as far as dielectric breakdown phenomenon is
concerned? Assuming that d = 10 cm, find the maximum intensity of the electric
field. At which particular point of the line is the maximum E field observed?

(d) For case I, determine the per-unit-length time-averaged force actuating on the line
conductors. What would that force be if the line were matched?





Project P19
Two-Way Loudspeaker Analysis

Figure P19.1 represents a simplified version of an electric circuit with discriminating
properties as far as audio frequencies are concerned (20 Hz to 20 kHz).

Audio amplifier

Sound Column

uA u

i

iH

iL

C

uC uHF

L

uL uLF

H

L

RA

Figure P19.1 A two-way loudspeaker sound column driven by an audio amplifier

The final stage of an audio amplifier is connected to a sound column provided with
two loudspeakers, a driver for lows and a tweeter for highs. The output impedance of the
amplifier is RA = 5 �.

The conversion from electric power to acoustic power in both loudspeakers is simulated
through an equivalent resistance R (Figure P19.2). Assume that the driver and the tweeter
have been properly designed so as to have the same equivalent resistance R, whose value
remains approximately constant over the whole audio-frequency range.
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Figure P19.2 A simplified model of the loudspeaker using an equivalent resistance

Part I Steady-State Analysis

1. Write the time-domain and phasor-domain equations governing the circuit.
2. Determine the input impedance Z at the amplifier terminals as a function of the design

parameters, R, L and C.
3. Determine analytically the appropriate parameters R, L and C, so that the following

specifications are fulfilled:

• equal amounts of power are delivered to both loudspeakers at a given specified
frequency fx (the so-called crossover frequency);

• the input impedance of the sound column is real, Z=Z, and independent of frequency;
• the impedance Z is chosen so as to maximize the amplifier output power.

4. Evaluate numerically R, L, C and Z for the following crossover frequencies: 1 kHz, 2 kHz
and 3 kHz.

5. Choose the crossover frequency as fx = 1 kHz. Consider that the output voltage of the
amplifier is given by u�t� = √

2 Urms cos ��t�, with Urms = 10 V. Analyze the system
response for two different audio frequencies fL = fx/3 (low frequency) and fH = 3fx
(high frequency).

(a) Obtain the complex amplitudes of the sinusoidal voltages and currents marked in
Figure P19.1.

(b) Evaluate the active and reactive powers at the amplifier output, and at the input
terminals of both the H- and L-blocks. Check the results using the complex Poynting
theorem.

Part II Transfer Functions

Consider the design parameters obtained for the case fx = 1 kHz.

1. Determine the transfer functions

TH�f� = UHF

U
� TL�f� = ULF

U

2. Represent graphically the magnitude characteristics
∣∣TH

∣∣= TH and
∣∣TL

∣∣= TL against
frequency in the range 20 Hz to 20 kHz (use a logarithmic scale on the frequency axis).

3. Elaborate your conclusion concerning the behavior of the H- and L-blocks.
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Part III Transient Regime Analysis

Assume that the amplifier is switched on at t = 0. The internal voltage of the amplifier is
described by

{
uA�t� = 0 for t < 0

uA�t� = UA cos ��t� for t > 0

where UA = √
2 20 V� � = 2
f� f = 3 kHz.

1. Determine the transient response regarding i�t�� uHF �t� and uLF �t�, for t > 0.
2. Discuss the possibility of choosing a particular time instant t0 such that the steady-state

regime of the loudspeaker voltages establishes itself immediately (free regime absent).





Project P20
Variable Reluctance Transformer

In this project we ask you to analyze the functioning of a two-window transformer which
includes a variable air gap in the central leg.

Consider the transformer depicted in Figure P20.1, whose primary and secondary windings
have the same number of turns, N1 = N2 = N = 500. The magnetic reluctance of the shaded
iron parts is negligibly small. The vertical legs, of length l = 15 cm, section S = 5 cm2, are
characterized by a relative permeability �r = 200. A small air gap of thickness � is included
in the central leg.

Figure P20.1 Magnetic circuit of the variable reluctance transformer. The magnetic reluctance of
the shaded parts is assumed to be negligibly small

Part I Magnetic Circuit Analysis

1. Deduce analytical expressions for the induction coefficients L11� L22 and LM . Compute
their values for � = �0 = 2 mm.

2. Determine the magnetic coupling factor k between the inductors, as a function of �. Write
L11� L22 and LM in terms of k.
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3. Assume that the windings are connected in series, i1 = i2 = I = 1 A. Determine the
H- and B-field intensities in both transformer legs, as well in the air gap. Interpret the
results.

Part II Equivalent Circuit

The transformer analysis can be conducted by making use of an equivalent ‘T’ circuit chain
connected to an ideal transformer whose transformation ratio  ! 1 is arbitrary.

1. Define the allowed range for the variation of  .
2. Choosing the upper limit for  , determine the components of the equivalent circuit shown

in Figure P20.2.

Figure P20.2 The transformer’s equivalent circuit

Part III AC Analysis

Consider the circuit connections shown in Figure P20.3. The circuit is driven by a 500 Hz
sinusoidal voltage generator whose voltage is given by uG�t�= √

2 �UG�rms cos��0t�, where
�UG�rms = 20 V.

Figure P20.3 The network under analysis includes a generator, a capacitor, the transformer and its
resistive load

The design goals for R and C are, on the one hand, to maximize the load active power
and, on the other hand, to minimize the generator current amplitude.

1. Redraw Figure P20.3 employing the equivalent circuit analyzed previously.
2. Plot in the complex plane the locus described by the tip of phasor I1 when R varies from

0 to �.
3. Determine R and C as a function of the magnetic coupling factor between inductors.
4. Determine the input impedance measured at the generator terminals.
5. Determine the complex amplitudes of all the voltages and currents marked in Figure P20.3

and in Figure P20.2.
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6. Apply the complex Poynting theorem in order to check the above results.
7. Recompute the design parameters R and C, for the cases � = �0/2 = 1 mm and

� = 2�0 = 4 mm.

Part IV Frequency-Domain Analysis

Take the R and C parameters obtained for the case � = �0. Let the working frequency vary
continuously.

1. Show that the voltage transfer function T�f� = �U2�rms/�U1�rms can be written as

T�f� = k√
1+ �f/f0�

2

where k is the magnetic coupling factor between inductors.
2. So far, the inductor’s resistances have been neglected. Now take r1 = r2 = 10 �.

Determine the new transfer function T�f� and plot it against the frequency. Identify
graphically the cutoff frequencies for which T = Tmax/

√
2.

Part V Transient Regime

The steady-state harmonic regime �f = f0� analyzed in III is the end result of a transient
regime started at a given instant. Keep assuming that inductor resistances are approximately
zero.

1. Consider that the switch-on instant is t= 0. Determine the transient regime for the primary
and secondary currents.

2. What would happen if a different switch-on instant were chosen?





Part I
A Brief Overview





Introduction

Ever since Maxwell wrote his Treatise on Electricity and Magnetism the subject area
of electromagnetism has been evolving at a strong pace. Despite its age, this area of
knowledge is both alive and active: not only have its applications exploded in interest, but
also new powerful computational methods have been developed for electric and magnetic
field evaluation, and, what is more, its theoretical tools have also evolved.

As far as the theoretical aspects are concerned, modern trends point towards the substitution
of traditional vector analysis by new, powerful and concise mathematical tools based on
geometric algebra formulations1 (exterior calculus, graded algebra of multivectors, graded
algebra of differential forms, etc.). The most salient feature of these new modern tools is
that, in addition to an elegant and concise view of electromagnetic phenomena, they provide
a perfect match between the laws of electromagnetism and Einstein’s theory of relativity.

Geometric algebra formulations of electromagnetism are adequate for advanced courses in
the second and third cycle of studies of the Bologna framework. However, for the first cycle
of studies, the most familiar vector calculus (Appendix A) formulation is recommended:

Maxwell′s equations

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

curl E = −�B
�t

div B = 0

curl H = J + �D
�t

div D = �

(I.1)

The electromagnetic field equations in (I.1) will be utilized throughout this book for the
macroscopic description of a variety of electromagnetic phenomena which concern current
electrical engineering problems.

The equation set in (I.1) is an axiomatic one; it cannot be mathematically deduced from
any source. In fact, Maxwell’s equations are a result of experimental research accumulated
until the end of the nineteenth century.

1 In terms of geometric algebra, all the properties of the electromagnetic field can be condensed into a single
equation: �F = J .
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What is truly astonishing is that not a single flaw has been detected in these equations
since then. On top of that, Maxwell’s equations have passed Einstein’s relativity challenge
intact and unscathed. Indeed, if you consider two distinct reference frames (x, y, z, t) and
�x′� y′� z′� t′� where the second is moving with a relative speed v, the new equations for the
second referential read

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

curl′ E′ = −�B′

�t′
div′ B′ = 0

curl′ H′ = J′ + �D′

�t′
div′ D′ = �′

(I.2)

showing that the electromagnetic field’s governing laws conserved its original shape, despite
the change of referential. Note that the primed and unprimed quantities in (I.1) and (I.2) are
related through the Lorentz transformation (Appendix B).

Quantum theory, another modern physics development, is mainly devoted to the analysis
of microscopic phenomena; nonetheless, Maxwell’s equations are not divorced from it.
The wave–matter duality principle still allows a link to be established between the two
formalisms.

As we will see later (in Part IV), the amount of energy carried by a sinusoidal
electromagnetic wave of frequency f , crossing a surface S, during one oscillation period
T = 1/f , is given by

WT =
T∫

0

⎛
⎝
∫

S

�E×H� ·n dS

⎞
⎠dt (I.3)

where n is the unit normal to S directed along the wave propagation direction.
From a quantum theory viewpoint, such energy is evaluated as

WT = Nphf (I.4)

where h is the universal Plank constant, and Np is the number of photons crossing S during
one time period T .

By equating (I.3) and (I.4) you will find the link between the macroscopic field and
quantum views:

Np = 1
hf

T∫

0

⎛
⎝
∫

S

�E×H� ·n dS

⎞
⎠dt

These remarks are intended to show you that, almost 150 years from their establishment,
Maxwell’s equations are still current, and do not conflict with modern physics developments.



1
Basic Field Vectors

1.1 The Electric and Magnetic Field Vectors

A set of four vectors is needed to describe electromagnetic field phenomena. These are:

the electric field vector, E (units: V/m, volt per meter)
the magnetic induction vector, B (units: T, tesla)
the electric displacement vector, D (units: C/m2, coulomb per square meter)
the magnetic field vector, H (units: A/m, ampere per meter)

Among these, the first two have special physical significance, since they can be determined
experimentally and measured.

If you place a static charged particle Q > 0 in a region where E is to be determined, you
will see that a force Fe is exerted on the charge (Figure 1.1(a)) from which E is obtained:

E = 1
Q

Fe (1.1)

Figure 1.1 Actuating forces on a charged particle. (a) Electric force. (b) Magnetic force

Now consider that the same charged particle is moving with a prescribed velocity v in a
region where B exists. You will notice that the trajectory of the moving particle may start
changing due to the presence of a new force, Fm = Q�v × B�. If you choose the velocity
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vector v perpendicular to B (Figure 1.1(b)) you will obtain the intensity of the magnetic
induction vector

B = 1
�Q

Fm (1.2)

If a moving charged particle is submitted to an electromagnetic field, the two forces will
add and you get the so-called Laplace–Lorentz force

F = Q�E+v ×B� (1.3)

The fundamental vector pair (E, B) constitutes the electromagnetic field. Its intrinsic
properties are defined by the following equations:

curl E = −�B
�t

(1.4a)

div B = 0 (1.4b)

These equations have two very simple implications: the field lines of vector B are closed;
and, moreover, if B happens to be a time-varying field then it will give rise to the presence
of an electric field E (induction phenomena).

Electromagnetic fields cannot be created from a void. Their existence requires the presence
of sources, namely charges, either at rest or moving in space. Charges at rest are usually
characterized by their volume density (a scalar field); when they move, that is when currents
are present, they are characterized by a current density (a vector field):

charge density, � (units: C/m3, coulomb per cubic meter)
current density vector, J (units: A/m2, ampere per square meter)

The connection between sources and fields is established using the two remaining Maxwell’s
equations:

curl H = J + �D
�t

(1.5a)

div D = � (1.5b)

Note that earlier theories of electromagnetism did not include the term �D/�t on the right-
hand side of (1.5a); its inclusion due to Maxwell was revealed to be absolutely crucial. This
is why the equations of electromagnetism are now termed Maxwell’s equations.

1.2 Constitutive Relations

At this point you may feel that something is missing. On the one hand, we have a relationship
between field sources ��� J� and the auxiliary fields (D, H) and, on the other hand, we have
a relationship that dictates the properties of the electromagnetic field (E, B). The missing
link is the one that relates the pair (D, H) to the pair (E, B) – see Figure 1.2.

The connections between (D, H) and (E, B) do not belong to the set of Maxwell’s
equations. They have to do with the interaction of the electromagnetic field with the material
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Field
Sources

ρ
J

Auxiliary
Field Vectors

D
H

Material
Media

Constitutive
Relations 

Electromagnetic
Field

E
B

(1.4)
(1.5)

Figure 1.2 Connection among field sources, electromagnetic field vectors and material media
properties

media where fields are impressed. Depending on the material medium, analysis of the
field–matter interaction can be extremely complicated, requiring, for its understanding,
contributions from atomic physics and quantum mechanics. Hopefully, you will learn about
this subject in another discipline of your course.

Here, since we are going to deal with rather simple material media with linear isotropic
characteristics, a pragmatic heuristic approach of the media macroscopic properties will be
adopted. Except for a very few cases, these properties will be described by the following
constitutive relations:

D = �E� B = 	H (1.6)

where � and 	 denote, respectively, the permittivity and the permeability of the medium.
Values for these parameters can be found in tabular form in many books devoted to the
study of the electromagnetic properties of materials. In particular, for a vacuum, we have
the following fundamental constants:

� = �0 ≈ 1
36


×10−9 F/m (units: farad per meter)

	 = 	0 = 4
 ×10−7 H/m (units: henry per meter)

from which you can see that

1√
	0�0

= c = 3×108 m/s

where c denotes the speed of light in a vacuum.
Note that the actual value for the speed of light is 2�997 925 � � � ×108 m/s, thus the correct

value for �0 is 8�854188 � � � ×10−12 F/m (but this is a seldom required fine detail).

1.3 Units and Notation

As you may have noticed in the preceding section, fields and a few other quantities have
already been assigned units.

Throughout this book the rationalized International System of Units (SI) is adhered to.
Table 1.1 contains a list of the main quantities that appear in this book, as well as their
corresponding SI units.

As far as the computation of electromagnetic quantities is concerned, students are reminded
that numerical results are incomplete until their units are made explicit.
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Table 1.1 Quantities and units

Quantity Quantity symbol Unit designation Unit symbol

Angular frequency 
 radian per second rad/s
Capacitance C farad F
Charge density � coulomb per cubic meter C/m3

Conductance G siemens S
Conductivity � siemens per meter S/m
Current density J ampere per square meter A/m2

Current intensity i, I ampere A
Electric charge q, Q coulomb C
Electric displacement D coulomb per square meter C/m2

Electric field E volt per meter V/m
Electric polarization P coulomb per square meter C/m2

Electric potential V volt V
Energy W joule J
Force F newton N
Frequency f hertz Hz
Inductance L henry H
Length l meter m
Magnetic induction B tesla T
Magnetic field H ampere per meter A/m
Magnetic flux �� � weber Wb
Magnetic voltage Um ampere A
Magnetization M ampere per meter A/m
Permeability 	 henry per meter H/m
Permittivity � farad per meter F/m
Potential vector A weber per meter Wb/m
Power p, P watt W
Poynting’s vector S watt per square meter W/m2

Reluctance Rm henry−1 H−1

Resistance R ohm �
Time t second s
Velocity v meter per second m/s
Voltage u, U volt V

Regarding the writing of variables and quantities we use the following notation. Scalar
quantities are in italics. Vectors are boldface. Time-invariant quantities are capitalized.
Matrix quantities are identified with square brackets. Complex quantities are identified with
overbars.

1.4 Fundamental Concepts of Voltage and Current Intensity

In this book the electromagnetic radiation aspects are only touched upon very superficially
(Chapter 8); consequently, most of the phenomena we are going to analyze do not need,
for their description, more then the key concepts of voltage and current intensity. These
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two quantities, with which you are certainly familiar, can be measured with the help of
voltmeters and ammeters and can be visualized using oscilloscopes.

The concepts of voltage and current intensity, which are based on vector field integration,
apply and are valid for any type of regime, either stationary or time varying.

Figure 1.3 Basic definitions of electric voltage (a) and current intensity (b)

As shown in Figure 1.3(a), voltage u between two points a and b is a scalar quantity
defined as the line integral of the electric field vector E between those points:

Voltage � u =
∫

−→
ab

E ·ds (1.7)

where vector ds is an infinitesimal element of the path length between a and b.
The reference arrow shown in Figure 1.3(a), usually associated with the definition of u,

does not mean that voltage is a vector quantity. The arrow is simply a reminder of the
direction of the path length used in the line integral (1.7). Positive voltages signify that the
field lines of E are predominantly oriented according to the

−→
ab path.

A key aspect to be kept in mind is that the evaluation of voltages may depend, or not, on
the integration path specification.

As shown in Figure 1.3(b), the current intensity i flowing in a conductor is a scalar
quantity defined as a surface integral corresponding to the flux of the current density vector
J across a conductor section S:

Current intensity � i =
∫

S

J ·n dS (1.8)

where dS is an infinitesimal element of area belonging to the section S, and n is a unit
normal chosen arbitrarily.

The reference arrow shown in Figure 1.3(b), usually associated with the definition of i,
does not mean that the current intensity is a vector quantity. The arrow is simply a reminder
of the direction of the unit normal n used in the surface integral (1.8). Positive current
intensities signify that field lines of J are predominantly oriented according to n.

Again, a key aspect to be kept in mind is that the evaluation of current intensities may
depend, or not, on the specification of the conductor section S.
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Introduction

Devoted to stationary fields, the second part of this book covers a wide but specific range
of electromagnetic phenomena where all scalar quantities and vector fields are independent
of time. Accordingly, from Maxwell’s equations in (I.1), by making �/�t = 0, we obtain

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

curl E = 0

div B = 0

curl H = J
div D = �

(PII.1)

This set of equations leads to a particularly simple analysis because electric phenomena and
magnetic phenomena are decoupled and therefore can be treated independently.

Part II includes three separate chapters. Chapter 2 is concerned with static electric field
phenomena. Currents are absent, J = 0, and electric charges are static in space. Hence, key
equations for electrostatics are

{
curl E = 0

div D = �
(PII.2)

Chapter 3 is concerned with the intrinsic properties of stationary electric currents. From
(PII.1), bearing in mind that div curl ≡ 0, we have

{
curl E = 0

div J = 0
(PII.3)

Chapter 4 is concerned with magnetic fields produced by stationary currents. Therefore,
from (PII.1), key equations to be examined are

{
curl H = J
div B = 0

(PII.4)
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2
Electrostatics

2.1 Fundamental Equations

Electrostatic problems are a subclass of stationary field phenomena where electric charges
are static in space. This situation ordinarily occurs when conducting bodies in a system are
separated by an insulating dielectric medium which prevents the flow of currents.

The fundamental laws governing electrostatic problems are those in (PII.2) together with
a constitutive relation concerning the insulating medium behavior. That is,

{
curl E = 0

div D = �
(2.1)

and

D = �E (2.2)

where � is the permittivity of the medium (units: F/m, farad per meter).

2.2 Gradient Electric Field, Electric Potential, Voltage,
Kirchhoff’s Voltage Law

The physical property curl E = 0 combined with the mathematical identity that the curl of
the gradient of a scalar function is always zero, curl grad ≡ 0, leads us to the conclusion
that E is a gradient electric field:

E = Eg = −grad V (2.3)

where V is the so-called electric potential, scalar potential or, simply, potential.
V is a function of the point in space where its evaluation takes place. A collection of points

in space where V assumes a constant value defines an equipotential surface. According to
the properties of the gradient operator, one immediately concludes, from (2.3), that the field
lines of Eg are always perpendicular to equipotential surfaces.
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The minus sign in (2.3) is not a mandatory physical requirement of curl E = 0 (one could
equally have chosen a plus sign without affecting the coherence of the analysis). The choice
of the minus sign is purely conventional and, according to it, the field lines of E must point
in the direction of decreasing potential (in analogy with the Earth’s gravitational field) – see
Figure 2.1.

Figure 2.1 Equipotential surfaces and electric field vector

In addition, if in (2.3) we substitute V ′ = V+ constant for V , we obtain E = −grad V ′,
therefore showing that the same electric field E can be described by different potential
functions V and V ′ differing by an arbitrary constant. The fact that the potential function is
not univocally defined leads to the conclusion that such a function is not deeply significant
from a physical viewpoint. As a corollary, you can now see that no special meaning should
be assigned to the condition V = 0.

In order to gain further insight into the properties of the gradient electric field, let us
obtain the integral version of curl E = 0. For this purpose we need to utilize Stokes’ theorem
from vector analysis (a very useful theorem that allows you to transform surface integrals
into simpler line integrals):

∫

Ss

curl E ·nS dS =
∫

�

S

E ·ds (2.4)

where s is a simply closed oriented path, vector ds is an infinitesimal element of the path, Ss

is an open surface having the path s as its bounding edge, dS is a differential area belonging
to Ss, and nS is the Stokes unit normal (the direction of the unit normal is related to the path
orientation according to the right-hand screw rule) – see Figure 2.2.

Figure 2.2 Geometrical elements involved in the application of Stokes’ theorem
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Since curl E = 0, we obtain, from (2.4),

∫

�

S

E ·ds = 0 (2.5)

Therefore, we see that in the framework of stationary regimes, the line integral of the electric
field vector along any chosen closed path is always equal to zero or, in other words, such a
field is a conservative one. An immediate consequence of (2.5) is that the field lines of E
are necessarily open curves (they must start and end at different points in space). You can
see that this is true by considering the following rationale: if you chose in (2.5) a closed
integration path s coincident with a hypothetically closed field line of E, you would get
�E ·ds� > 0 at each and every point of the path, thus implying a positive line integral – an
impossible result according to (2.5).

The right-hand side of (2.4) is traditionally known by the name of electromotive force
(emf), but that is a misnomer since its units are volt, rather than newton.

At this point let us go back to the definition of voltage between two points a and b, as
established in (1.7):

U =
∫

−→
ab

E ·ds (2.6)

Does the evaluation of U depend on the specific path going from a to b?
The answer is no, for stationary regimes.
Consider two different paths s1 and s2, connecting a to b (see Figure 2.3). Let U1 and

U2 denote the voltages determined along those two paths. Now, examine the application of
(2.5) to a closed path âba containing s1 and s2:

0 =
∫

�

S

E ·ds =
∫

−→
ab

(path s1)

E ·ds+
∫

−→
ba

(path s2)

E ·ds =
∫

−→
ab

(path s1)

E ·ds−
∫

−→
ab

(path s2)

E ·ds = +U1 −U2

from which you can clearly see that U1 = U2.

Figure 2.3 For stationary regimes, voltages do not depend on the electric field integration path,
U1 = U2 = Va −Vb
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A different approach to reach this same conclusion consists of substituting –grad V for E
into (2.6). Then we obtain

U =
∫

−→
ab

E ·ds = −
∫

−→
ab

grad V ·ds = −
∫

−→
ab

�V

�x
dx+ �V

�y
dy + �V

�z
dz = −

Vb∫

Va

dV = Va −Vb (2.7)

showing that, for the evaluation of the voltage U between a and b, you need to know the
values of the potential function V only at those two points.

Equations (2.5) and (2.6) lead immediately to another important useful result – Kirchhoff’s
voltage law (KVL).

By applying (2.5) to the closed path âbca depicted in Figure 2.4 we get

Figure 2.4 Closed circulation path used for the application of KVL

0 =
∫

�

S

E ·ds =
∫

−→
ab

E ·ds+
∫

−→
bc

E ·ds+
∫

−→ca

E ·ds = U1 +U2 +U3

or, more generally,

∑
k

Uk = 0 (2.8)

You should notice, however, that KVL is not, strictly speaking, a general ‘law’. Indeed, the
result in (2.8) is only valid for stationary phenomena, �/�t = 0. For time-varying regimes
(where curl E �= 0) things are a little more complicated – see Chapter 5.

2.3 Electric Charge, Electric Displacement Vector

We saw earlier that electric field lines cannot be closed; they must start and end at different
points in space. Now, we are going to see that field lines start and end at points where
positive and negative charges exist, respectively.

Let us find out the integral version corresponding to the local equation div D = �.



Electrostatics 103

For this purpose we need to utilize the Gauss theorem from vector analysis (a very useful
theorem that allows you to transform volume integrals into simpler surface integrals):

∫

V

div D dV =
∫

SV

D ·no dS (2.9)

SV

V

no

dS

Figure 2.5 Geometrical elements involved in the application of the Gauss theorem

where SV is a closed surface bounding a region of volume V , dV is a differential volume
belonging to V , dS is a differential area belonging to SV , and no is the outward unit normal –
see Figure 2.5. Substituting � for div D in (2.9) we get

∫

SV

D ·no dS =
∫

V

�dV = QV (2.10)

revealing that the outward flux of the displacement vector across a closed surface is equal
to the total electric charge QV enclosed by such a surface.

If QV > 0 then the field lines of D must point outward; conversely, if QV < 0 then the
field lines of D must point inward.

2.4 Dielectric Media, Permittivity, Polarization, Dielectric Strength

In empty space (vacuum) D and E are related through

D = �0 E (2.11)

An insulating material medium (dielectric) is made of electrically neutral atoms immersed
in a vacuum. When an E field is applied to a dielectric material the cloud of electrons of
each atom is displaced from its original position; each atom becomes an elementary electric
dipole with its positive and negative centers of charge apart; this phenomenon is called
polarization. The stronger the E-field intensity the stronger the polarization effect.

The vacuum contribution for D is the same as in (2.11); however, an additional contribution
P must be added due to the polarization effect

D = �0 E+P�E� (2.12)
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In (2.12), P is the so-called electric polarization vector, a vector that measures the electric
dipole moment per unit volume. For isotropic media P and E are parallel vectors. For linear
media P and E are proportional:

P = �0�e E (2.13)

where �e is a dimensionless positive constant called the electric susceptibility. Substituting
(2.13) into (2.12) we obtain

D = �0�1+�e�E = �0�rE = � E (2.14)

The permittivity � of the insulating media is obtained from �0 upon multiplication by the
relative permittivity �r . Typical values of �r concerning a few insulating materials are shown
in Table 2.1.

Table 2.1 Permittivity and dielectric strength

Material �r Ed (kV/cm)

Air 1.0 20–30
Bakelite 4.8 250
Glass 6–10 300
Mica 5.5 2000
Mineral oils 2 150
Paper 3.0 150
Polystyrene 2.6 200
Rubber 2.5–3.0 210

The equation div D = � together with the result in (2.14) can now be used to determine the
divergence of the electric field vector E. For the general case of inhomogeneous dielectrics,
where � = �(x, y, z), we have div��E� = grad � ·E+� div E = �, from which we find

div E = �−grad � ·E
�

(2.15)

In the case of homogeneous dielectric media (an assumption we will consider most
frequently), the above result simplifies to

div E = �/� (2.16)

The linear behavior of the dielectric medium described by (2.13) and (2.14) does not hold
when the medium is subjected to very intense E fields; furthermore, if a certain threshold is
exceeded, ionization processes will develop and arc discharges (sparking) occur.

The maximum allowed electric field intensity that an insulation material can endure before
breakdown takes place is called the dielectric strength, Ed. Typical values of Ed are shown
in Table 2.1.
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2.5 Conductors in Electrostatic Equilibrium

Contrary to insulating materials, conductors are characterized at the microscopic level by
possessing charged particles (electrons) that are free to move under the influence of an
electric field. Conductors are said to be in electrostatic equilibrium when all movements of
charge have stopped.

In order to ensure that charges do not move, the E field inside a conductor must necessarily
be zero and, therefore, because E = −grad V , the whole conductor must be an equipotential
body and its surface an equipotential surface, V = constant.

Since inside the conductor E = 0, you can see from (2.16) that the volume charge density
must also vanish, � = 0; accordingly, we conclude that in electrostatic regimes, a charged
conductor has all its electric charge residing on its boundary surface – see Figure 2.6.

Figure 2.6 In electrostatic equilibrium, charges are distributed on the conductor’s surface with a
density w

In a system consisting of several conductors immersed in a dielectric medium, the
surface charge distribution over a given conductor is such that, together with all the charge
distributions of the remaining conductors, it ensures E = 0 inside each and every conductor.

The total charge Q on a conductor is obtained by integrating its surface charge density w
(C/m2) over its boundary surface SV ,

Q =
∫

SV

w dS

If the surface charge density at a given point on the conductor’s surface is known then
you can easily evaluate how intense the electric field is in the vicinity of that point (on
the dielectric side). This information can be very useful for predicting whether dielectric
breakdown is prone to occur.

However, note that, because the conductor’s surface is an equipotential, the field lines of
E are perpendicular to the conductor’s surface (the field is entirely specified by its normal
component), E = En.

In order to evaluate E, consider a small cylinder, perpendicular to the conductor’s surface,
with the bottom half inside the conductor and the upper half in the dielectric medium. The
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height of the cylinder is infinitesimal; the area �S of the bottom and top ends of the cylinder
is also infinitesimal – see Figure 2.7.

Figure 2.7 Application of the Gauss theorem to the determination of the normal component of the
electric field vector in a conductor

The total charge enclosed by the cylinder is just but the charge on the conductor’s surface
occupying the small circular area �S, that is QV = w �S. On the other hand, the outward
flux of the displacement vector across the cylinder boundary surface is zero everywhere
except at its top end, where it amounts to �E �S. Hence, by making use of the result in
(2.10) we find

E = w

�
(2.17)

So, if you allow the surface charge density w at a given point of a conductor to exceed
the critical limit �Ed (with Ed denoting the dielectric strength) then you must be aware that
the dielectric medium runs the risk of breakdown. Ordinarily, this risk is greatly enhanced
when needle-shaped conductors are utilized since the charge density tends to increase near
the conductors’ tips (recall the shape of lightning rods).

At this stage you may be wondering if breakdown phenomena might eventually occur
at dielectric zones other than the interfaces with conductors. Well, generally speaking the
answer is yes; for instance, remember the case of atmospheric discharges (lightning).

However, under certain circumstances, you may rest assured that the electric field intensity
will reach its maximum value nowhere else other than at the surface of a conductor. This is
true whenever the dielectric medium is homogeneous and charge free, where, from (2.15),
div E = 0.

To prove our point, let us start by evaluating the Laplacian of the potential function V :

lap V = �2V

�x2
+ �2V

�y2
+ �2V

�z2
= div grad V = −div E = 0 (2.18)

Next, from vector analysis, we determine the Laplacian of the squared field intensity E2:

lap�E2� = div grad�E ·E� = div grad�grad V ·grad V� = 2 div�

0︷ ︸︸ ︷
lap V grad V� = 0

Thus we see that lap V = lap E2 = 0. The important physical interpretation for this conclusion
is that neither V nor E can have maxima or minima inside their space domains – only at
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their boundaries! (Remember that the necessary condition for an �3 function to have an
extremal point is that its second derivatives with respect to x, y and z must all have the same
algebraic sign – which is in clear contradiction with lap = 0.)

2.6 Application Example (Filament of Charge)

The solution of many electrostatic problems where cylindrical conductors are involved is
ordinarily based on the analysis of a much simpler problem consisting of a single rectilinear
filament of charge of indefinite length. Let us therefore consider a filament of charge,
characterized by a per-unit-length charge density q (C/m), immersed in a homogeneous
dielectric medium with permittivity �.

Questions

Q1 Determine the electric field vector E and the potential function V at a generic point P
at a distance r from the filament.

Q2 Find the voltage U12 between any two points P1�r	
1	 z1� and P2�r	
2	 z2� at a common
distance from the charge filament.

Solutions

Q1 The geometry of the configuration under analysis indicates that a cylindrical reference
frame (r, 
, z) should be used. The problem geometry together with the need for E to be
perpendicular to the charge distribution leads us immediately to the conclusion that E is
a purely radial vector, E = E�er . Moreover, by noting that the problem is insensitive to
translation operations along z or rotation operations along 
, we can conclude that both
E and V can only depend on the radial coordinate. In short, E = E�r��er and V = V�r�.

Now, for the determination of E we employ the results in (2.10) and (2.14):

�
∫

SV

E ·no dS = QV

At this point you must decide which closed surface SV should be used to facilitate the
surface integration above, where E is a radial vector.

As shown in Figure 2.8, the easiest choice consists of a cylindrical surface of radius r
and length l coaxial with the charge filament.

l+
+

+
+

+

no

no no
E

r

dS

Figure 2.8 Application of the Gauss theorem to the determination of the radial electric field produced
by a charge filament
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At the cylinder ends the outward normal no is perpendicular to E, and therefore at
both ends E ·no = 0. On the other hand, along the cylinder’s lateral surface no is parallel
to the electric field vector, no = �er , and consequently E ·no = E.

Noting further that dS = l r d
 and that the total charge inside the cylinder is QV = ql,
we obtain

�
∫

SV

E ·no dS = QV → 0+0+�rl

2�∫

0

E d
 = ql

Recalling that E does not depend on 
, we finally get

E =
( q

2��r

)
︸ ︷︷ ︸

E

�er (2.19)

As to the evaluation of the potential function V , from (2.3), E = −grad V , we obtain in
cylindrical coordinates

E �er = −
(

�V

�r
�er + 1

r

/
�V

�

�e
 +

/
�V

�

�ez

)

The above result confirms the conclusion we reached before based on geometry
arguments – that is, V depends only on the radial coordinate. Hence,

E = −dV

dr
→

∫
dV = −

∫
Edr

Substituting q/�2��r� for E we find

V =
(

q

2��
ln

1
r

)
+V0

where V0 is an arbitrary constant. If you decide to set V = 0 at an arbitrary point in
space r = r0, the above result can be rewritten as

V = q

2��
ln

r0

r
(2.20)

Q2 By noting that points P1 and P2 belong to the same equipotential cylindrical surface, we
must have U12 = 0, irrespective of the particular coordinates z1, z2, 
1 and 
2.

2.7 Capacitor, Capacitance, Electric Energy

A capacitor is a device consisting of two conductors (called electrodes) separated by an
insulating medium. This definition rules out the existence of any other nearby conducting
body that may perturb the capacitor’s electric field distribution. The analysis of conductor
systems involving more than two conductors will be addressed in Section 2.9.

The capacitor electrodes A and B are initially uncharged, but as soon as a voltage
U = VA −VB is applied between them, using a generator (Figure 2.9), a redistribution of
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Figure 2.9 Charge and voltage in a capacitor with electrodes A and B

charges takes place, both conductors acquiring symmetrical charges, QA = −QB = Q. Note
that the algebraic sign of the capacitor charge Q is the same as the one for the applied
voltage U .

Assuming that the capacitor’s dielectric material displays a linear behavior, D = �E, then
Q will be proportional to U : the higher the applied voltage, the higher the capacitor charge.
The proportionality constant relating Q to U , which is positive and only depends on the
capacitor’s geometry and on the permittivity of the dielectric, is called capacitance C (units:
F, farad):

C = Q

U
=

∫
SA

D ·nA dS

∫
−→
AB

E ·ds
(2.21)

Hence you can see that the linear relationship Q = CU between integral quantities is just
a consequence of the linear relationship D = �E between local fields. You should also
realize that if � is not defined (nonlinear dielectrics) then the concept of capacitance will be
inapplicable.

Since the dielectric material is a perfect insulator (zero conductivity, � = 0), if you
disconnect and remove the voltage generator in Figure 2.9, the electric field distribution in
the space surrounding the two electrodes of the capacitor will remain unchanged, the same
thing happening to both Q and U . (Note: In reality, because perfect insulators do not exist,
Q and U will tend very slowly to zero as time passes; the analysis of this phenomenon will
be tackled in Section 6.5.)

After removing the generator, if you decide to connect a light bulb between the capacitor
electrodes you will see that the bulb flashes. Where did the released energy come from?

During the charging process of the capacitor, the generator redistributes charges within the
system by transporting free electrons from electrode A to electrode B (or, which is formally
the same, by moving positive charges from electrode B to electrode A) until electrostatic
equilibrium is reached.

The charging process requires the generator to expend a certain amount of energy. Part
of it is associated with irreversible dissipation losses (Joule effect) arising from transient
currents flowing through the connecting wires. Another part has to do with the fact that the
transport of positive elements of charge dq from B to A is opposed by the electric field force
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Fe = dqE directed from electrode A to electrode B. In order to counteract this opposing
force, the generator has to produce additional work.

The differential amount of work produced by the generator to drive dq from B to A is
given by

dWG =
∫

−→
BA

−Fe ·ds = dq
∫

−→
AB

E ·ds = udq (2.22)

Summing all dWG contributions starting from the initial uncharged state (q = 0, u = 0) up to
the final state of equilibrium (q = Q, u = U ) gives the electric energy stored in the capacitor:

We =

final
state∫

initial
state

udq (2.23)

This result for We is graphically interpreted in Figure 2.10, for linear and nonlinear dielectric
media.

Figure 2.10 Graphical interpretation of the electric energy stored in a two-conductor system, for
linear and nonlinear dielectric media

For the ordinary case of linear dielectric media, by using q = Cu in (2.23), we find

We = C

U∫

0

udu = 1
2

CU 2 = 1
2

Q2

C
= 1

2
QU (2.24)

The work of the generator evaluated according to (2.23) or (2.24) remains stored in the
capacitor in the form of electric energy, which remains available for subsequent use, even
after the generator is disconnected.

When you plug in an external dissipative load (a flashbulb, for example) to the capacitor
terminals, the capacitor discharges. Electrons move from electrode B to electrode A, and, as
the energy is transferred to the external load, the energy stored in the capacitor decreases to
zero.
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But where was the electric energy of the capacitor stored?
In order to answer this question let us consider the simple example of a parallel-plate

capacitor (Figure 2.11), a device made of two metallic plates of area S separated by an
insulator of very small thickness 
 (so that fringing field effects at the corners can be ignored).

Figure 2.11 Parallel-plate capacitor of small thickness 
 (uniform fields)

Inside the device, the electric field lines are straight lines perpendicular to the metallic
plates and the field intensity is uniform throughout the dielectric region. Therefore the
capacitor voltage and charge can be easily correlated with E and D:

U =
∫

−→
AB

E ·ds =
∫

−→
AB

E ds = E
∫

−→
AB

ds = E
 (2.25a)

Q =
∫

SV

D ·nA dS =
∫

S

D dS = D
∫

S

dS = DS (2.25b)

From (2.24) and (2.25) we obtain the electric energy stored:

We = 1
2

QU =
(

ED

2

)
S


We note now that S
 represents the volume Vd of the dielectric medium sandwiched between
the plates, and consequently the quantity in parentheses must represent a volume energy
density (units: J/m3),

ŵe = 1
2

ED = 1
2

�E2 = 1
2

E ·D (2.26)

So we see that for the parallel-plate capacitor case we can write We = ŵe Vd. Generalization
of the preceding result for other capacitor structures with non-uniform field distributions is
simply

We =
∫

Vd

ŵe dV (2.27)

The result in (2.27) clearly suggests that the electric energy is stored in the electric field itself,
at each and every point of the dielectric region, with a density given by (2.26). Analogous
to Figure 2.10, you will find in Figure 2.12 a graphical interpretation for the computation of
ŵe for linear and nonlinear media.
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Figure 2.12 Graphical interpretation of the electric energy density stored in the electric field, for
linear and nonlinear dielectric media

2.8 Application Example (Two-Wire Transmission Line)

The two-wire line is a ubiquitous conductor arrangement that you may find in most
transmission systems, for power delivery, wave guiding and signal communication.

Figure 2.13 represents a cross-sectional view of a two-wire transmission line of length l,
made of two parallel identical cylindrical conductors of radius r, whose axes are a distance
2d apart. The wires are immersed in air. When a voltage U is applied between the line
conductors, these acquire symmetrical electric charges ±Q. Choose V = 0 at x = y = 0.

Figure 2.13 Cross-sectional view of a symmetrical two-wire transmission line

Questions

Q1 Due to conductor proximity effects, the charges are not uniformly distributed over the
conductors’ surfaces and, for that reason, the computation of the electric field and
potential in the space surrounding the transmission line cannot be done by replacing the
actual charge distributions with fictitious filaments of charge located at the conductor
axes. Depending on how close the conductors are, you will need to locate the fictitious
filaments of charge somewhere nearer the periphery of the conductors.

Taking into account that field lines of E are circumferential arcs starting and ending
at the fictitious filaments of charge, and recalling that field lines are perpendicular to
the surfaces of conductors, find with the help of Figure 2.14(a) the correct position for
the location of the fictitious filaments of charge.

Q2 Using the superposition principle (that is, adding the contributions of the positive
and negative charge filaments), determine the electric field vector E and the potential
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function V at the generic point P outside the conductors, as shown in Figure 2.14(b).
Evaluate the absolute value of the electric field intensity at P.

Q3 The cross-section of the cylindrical equipotential surface containing a generic point P
is defined by a circumference of radius � with center at y = 0, x = xC . Find � and xC

as a function of V .

Q4 Using the preceding results, determine the two-wire line capacitance C = Q/U .

Q5 With the help of Figure 2.14(c), determine the surface charge density w over the
positively charged conductor as a function of its peripheral angle �.

Q6 Obtain an expression for the electric field maximum intensity Emax. Where does it
occur?

Q7 Consider the frequently used thin-wire approximation, r/d � 1. Find approximate results
for the line capacitance Capprox and for the maximum electric field intensity �Emax�approx.
Discuss the errors incurred by using such an approximation.

Q8 Numerical example. Take d = 2r = 2 mm, l = 50 m. Assuming that the two-wire
line is allowed to operate at 20 % below dielectric breakdown, find numerical values
for the line capacitance, allowed line charge and voltage, and electric energy stored.
Find the ratio � of the charge density values evaluated at two opposite points, � = 0
and � = �, on the conductors’ surface.

Solutions

Q1 By analyzing the right-angled triangle in Figure 2.14(a) with sides a, d and r, you can
easily find the radius a of the circumferential arc centered at the origin, intersecting
the conductors at right angles, and crossing the x axis at the points where the fictitious
charge filaments are to be positioned, x = ±a, with

a = �d2 − r2�1/2 (2.28)

Q2 Making use of the results (2.19) and (2.20) previously obtained in Application
Example 2.6, by adding the contributions from the positively and negatively charged
filaments with charge density q = Q/l you can readily find

E = E�+� +E�−� = Q

2��0l

(�e1

r1

− �e2

r2

)
(2.29)

V = V �+� +V �−� = Q

2��0l
ln

r2

r1

(2.30)

where �e1 and �e2 are unit vectors along the radial directions r1 and r2, with origin,
respectively, at the positive and negative filaments of charge – see Figure 2.14(b).

The absolute value of E at P can be evaluated from

E = √
E ·E = Q

2��0lr1r2

√
�r2�e1 − r1�e2� · �r2�e1 − r1�e2�

where �r2�e1 − r1�e2� · �r2�e1 − r1�e2� = r2
1 + r2

2 −2r1r2 �e1 · �e2.
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Figure 2.14 (a) Geometrical construction for finding the location of the fictitious charge filaments
that replace the actual conductor charges. (b) The electric field at P is the vector sum of two
radial electric fields originating from two charged filaments positioned at x = ±a. (c) Geometrical
construction for the determination of the surface charge density at P

Noting further, from Figure 2.14(b), that �e1 · �e2 = cos �, and using the law of cosines
from trigonometry, you can get

�r2�e1 − r1�e2� · �r2�e1 − r1�e2� = r2
1 + r2

2 −2r1r2 cos � = �2a�2

which yields the useful result

E = Q

��0l
× a

r1r2

(2.31)

Q3 Let V be the potential of the equipotential surface containing the point P(x, y). According
to (2.30), all the points belonging to that same surface are such that the ratio r2/r1

remains constant:

r2

r1

= kV = exp
(

2��0l

Q
V

)
(2.32)
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Next, from Figure 2.14(b), r2 and r1 are expressed in terms of the x and y coordinates
of P:

r2
1 = �a−x�2 +y2� r2

2 = �a+x�2 +y2

Hence, the condition for equipotentiality takes the form

�a+x�2 +y2 = k2
V �a−x�2 +k2

V y2�

Rearranging terms you find

(
x−a

k2
V +1

k2
V −1

)2

+ �y −0�2 =
(

a
2kV

k2
V −1

)2

This is the well-known equation of a circumference in the xy transverse plane, with
center at x = xC and y = 0, and radius �, with

xC = a
k2

V +1

k2
V −1

� � = a
2kV∣∣k2
V −1

∣∣ (2.33)

where, as seen before, in (2.32), kV depends on V , through

kV = exp
(

2��0l

Q
V

)

The expressions obtained for xC and � are not independent; you can easily check that

a = �x2
C −�2�1/2

and

� =
{

kV �xC −a� for kV > 1	 xC > 0

kV �a−xC� for kV < 1	 xC < 0

The first relationship above being particularized to the conductors’ surfaces
(equipotential surfaces) gives a = �d2 − r2�1/2, which confirms the result obtained in
(2.28).

Q4 From (2.32) you can see that the vertical plane of symmetry x = 0, where r2 = r1,
is characterized by V = 0. The half-space x > 0 is filled with positive equipotentials
(kV > 1), whereas the half-space x < 0 is filled with symmetrical (negative)
equipotentials (kV < 1).
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Consequently, if U is the voltage between the conductors then the positively charged
conductor, of radius r with center at x = d, will be characterized by a potential
V = U/2.

Then you have

kV=U/2 = k = exp
(

��0l

Q
U

)
(2.34)

On the other hand, by making xC = d and � = r in (2.33) you find d/r = �k2 +1�/�2k�
which allows you to determine k:

k = d

r
+

√(
d

r

)2

−1 (2.35)

Finally, from (2.34) and (2.35), you can evaluate the capacitance of the two-wire line
configuration

C = Q

U
= ��0l

ln

⎛
⎝d

r
+

√(
d

r

)2

−1

⎞
⎠

(2.36)

Q5 According to (2.17), the surface charge density over a conductor immersed in a medium
of permittivity �0 is given by w = �0E. On the other hand, we saw in (2.31) that the
electric field intensity at a generic point P in space is given by

E = Q

��0l
× a

r1r2

Examining the representation in Figure 2.14(c), and using the trigonometric law of
cosines to express r1 and r2 as functions of �, you find

r2
1 = r2 + �d−a�2 −2r�d−a� cos �� r2

2 = r2 + �d+a�2 −2r�d+a� cos �

Taking into account that a2 = d2 − r2, evaluation of the r2
1 r2

2 product yields

�r1r2�
2 = 4r2d2 +4r4 cos2 � −8r3d cos � = �2r�d− r cos ���2

from which we obtain the electric field intensity normal to the conductor surface

E = Q

2�r�0l
× a

d− r cos �
(2.37)

which allows us to determine the surface charge distribution as a function of �

w��� = Q

2�rl
× a

d− r cos �
(2.38)

Note: You can verify that this result is correct by checking that integration of w��� over
the whole conductor surface SC gives the total charge Q:

∫

SC

w���dS = Q

where dS = lr d�, with � running from 0 to 2�.
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Q6 Taking into account the result in (2.37), you can obtain, for � = 0,

Emax = Q

2��0lr

a

d− r
= Q

2��0lr

√
d+ r

d− r
(2.39)

Q7 Considering d 	 r, the following approximations apply:

Capprox = ��0l

ln �2d/r�
(2.40)

�Emax�approx = Q

2��0lr
� (2.41)

The errors incurred by using the above results are analyzed in Table 2.2.

Table 2.2 Errors as a function of r/d

r

d

Capprox −C

C
%

�Emax�approx −Emax

Emax
%

0.10 −0�08 −09�55
0.20 −0�44 −18�35
0.30 −1�22 −26�62
0.40 −2�65 −34�53
0.50 −5�00 −42�26

As far as the computation of the two-wire line capacitance is concerned, the
approximation works very well even when the wires are not very thin (the error is about
5 % for d/r = 2). However, the same is not true for the computation of Emax (the error
already exceeds 40 % for d/r = 2).

Q8 From (2.36), you obtain C = 1�055 nF.
By making Emax = 0�8Ed = 2�4 MV/m, you can obtain from (2.39):

Q = 2��0lrEmax

√
d− r

d+ r
= 3�85 �C

From U = Q/C, you obtain U = 3�65 kV.
From We = QU/2, you obtain We = 7�02 mJ.
From (2.38), you can obtain

w�0�

w���
= � = d+ r

d− r
= 3

2.9 Multiple Conductor Systems

The analysis of electric coupling phenomena among conductors is of utmost importance in
a variety of electrical engineering problems where multiple conductor systems are in play,
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such as overhead power lines, communication lines and cables, printed circuit boards and
integrated circuits for electronic applications, and so on.

The electrostatic analysis of multiple conductor systems cannot be carried out using the
trivial concept of capacitance introduced in Section 2.7 (a concept which is only defined for
two-conductor linear systems); what is more, if you let yourself be guided by the familiar
capacitor equation Q = CU , you will certainly make mistakes.

To give you an example of what we are talking about, consider the four-conductor system
depicted in Figure 2.15.

Figure 2.15 Example of a four-conductor system

All the conductors are initially uncharged. Then, with the help of a generator, a positive
voltage U1 is applied between conductors 1 and 0 (ground); further, let conductor 3 be
grounded (U3 = 0).

For this situation, because Q2 remains zero, you would probably guess that U2 = 0;
likewise, because U3 is zero, you would probably guess that Q3 = 0.

Well, both guesses are wrong!
As you will see in the upcoming analysis, voltages and charges are going to show up

where you would probably least expect them.
In fact, field lines of E are present between conductors 1 and 0, between 1 and 2, between

1 and 3, between 2 and 0, and also between 2 and 3. The existing electric coupling among
conductors makes U2 > 0 and Q3 < 0.

Let us next approach this subject in a systematic way.

2.9.1 Capacitance Matrix

Consider a set of several uncharged conductors immersed in an insulating dielectric medium.
Let the total number of conductors be n+1, and let them be numbered from 0 to n. Assume
that the dielectric material exhibits a linear behavior, D = �E.

Next, assume that a set of voltage generators is connected among the conductors giving rise
to a redistribution of charges within the system. In electrostatic equilibrium each conductor
becomes characterized by a certain charge Qk and by a certain potential Vk, with k running
from 0 to n. Since the total amount of charge of the system must remain invariant (null),
we can always write

Q0 = −
n∑

k=1

Qk (2.42)

On the other hand, because the potential function is not uniquely defined, we may arbitrarily
set V0 = 0; in other words, we are selecting conductor 0 as the reference conductor of the
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system. (Note: You can arbitrarily choose the zeroth conductor.) Although the number of
conductors is n+1, we can see that the problem we are dealing with is of order n.

The kth conductor voltage is defined as the voltage between conductor k and the reference
conductor (0), that is Uk = Vk −V0 = Vk.

Due to the existing electric coupling among conductors, the kth conductor charge Qk

depends not only on Uk but also on the remaining voltages. Since a linear behavior has been
assumed for the system, any conductor charge can be written as a linear combination of all
conductor voltages

Qk = Ck1U1 +· · ·+CkkUk +· · ·+CknUn (2.43)

for k = 1 to n. The coefficients Ckj are called the capacitance coefficients (units: F). The
above result can be put in compact matrix form as

⎡
⎢⎢⎢⎢⎢⎢⎣

Q1
���

Qk

���
Qn

⎤
⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
�Q�

=

⎡
⎢⎢⎢⎢⎢⎢⎣

C11 · · · C1k · · · C1n

���
���

���
Ck1 · · · Ckk · · · Ckn

���
���

���
Cn1 · · · Cnk · · · Cnn

⎤
⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
�C�

⎡
⎢⎢⎢⎢⎢⎢⎣

U1
���

Uk

���
Un

⎤
⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
�U�

(2.44)

The square n×n real matrix [C] is called the capacitance matrix.
The entries of [C] can be determined using various methods. They can be found

experimentally by measuring system charges and voltages, they can be found numerically
using dedicated computer programs, and in some cases, when very simple geometries are
considered, they can also be determined analytically.

Whatever the method, the results you will obtain should be checked against a few general
properties that [C] must necessarily obey.

In order to illustrate these general properties of [C], let us consider a system of four
conductors (that is, n = 3) where one of them completely screens another – see Figure 2.16.

Let U1 > 0 and U2 = U3 = 0 (Figure 2.16(a)). For this situation, the electric field coupling
among conductors gives rise to a set of conductor charges such that Q1 > 0, Q2 < 0,
Q3 = 0, Q0 < 0. Then, from

Q1 = C11U1� Q2 = C21U1� Q3 = C31U1� Q0 = −�Q1 +Q2 +Q3� = −�C11 +C21 +C31�U1

we see that

C11 > 0� C21 < 0� C31 = 0�
n∑

k=1

Ck1 > 0 (2.45a)

Next, let U2 > 0 and U1 = U3 = 0 (Figure 2.16(b)). The conductor charges are such that
Q1 < 0, Q2 > 0, Q3 < 0, Q0 < 0. Then, from

Q1 = C12U2� Q2 = C22U2� Q3 = C32U2� Q0 = −�Q1 +Q2 +Q3� = −�C12 +C22 +C32�U2
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Figure 2.16 Charge distributions in a four-conductor system where conductor 3 is enclosed by
conductor 2. (a) U1 > 0, U2 = U3 = 0. (b) U2 > 0, U1 = U3 = 0. (c) U3 > 0, U1 = U2 = 0

we see that

C22 > 0� C12 < 0�C32 < 0�
n∑

k=1

Ck2 > 0 (2.45b)

Finally, let U3 > 0 and U1 = U2 = 0 (Figure 2.16(c)). The conductor charges are such that
Q1 = 0, Q2 < 0, Q3 > 0, Q0 = 0. Then, from

Q1 = C13U3� Q2 = C23U3� Q3 = C33U3� Q0 = −�Q1 +Q2 +Q3� = −�C13 +C23 +C33�U3

we see that

C33 > 0� C13 = 0� C23 < 0�
n∑

k=1

Ck3 = 0 (2.45c)
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From (2.45) the following general properties result:

Ckk > 0� Ckj ≤ 0�
n∑

k=1

Ckj ≥ 0 (2.46)

You can see from (2.46) that only the diagonal entries of matrix [C] are positive, all the
remaining entries being zero or negative. Nonetheless, when you sum up all the entries of
any chosen column of [C] you cannot obtain a negative number; in other words, matrix [C]
is a diagonally dominant matrix.

A few more properties of [C] can be derived based on energy considerations.
As in Section 2.7, the electric energy stored in the dielectric media surrounding the system

conductors can be evaluated taking into account the amount of work produced by the voltage
generators in order to have the conductors of the system charged to their final state of
equilibrium

We = Q1U1

2
+· · ·+ QkUk

2
+· · ·+ QnUn

2
=

n∑
k=1

QkUk

2
(2.47)

This result can be put in the matrix form

2We = [
Q1 · · · Qk · · · Qn

]

⎡
⎢⎢⎢⎢⎢⎢⎣

U1
���

Uk

���
Un

⎤
⎥⎥⎥⎥⎥⎥⎦

= �Q�T �U�

where superscript T stands for transposition.
Using �Q� = �C� �U� from (2.44), we find

We = 1
2

�U�T �C�T �U� (2.48)

Noting further that We is an ordinary scalar (1×1 matrix), We = W T
e , we may write

We = 1
2

�U�T �C� �U� (2.49)

showing that, except for a factor 1/2, the stored electric energy is expressed by a quadratic
form of matrix [C].

Regardless of the polarity of the generators (that is, whether the voltages are positive
or negative), the process of charging the system necessarily requires that the global work
produced by the generators is positive, We > 0. Then, from (2.49), we can conclude that [C]
is a positive definite matrix and, consequently, its principal minors must all be positive.

For example, for n = 3,

C11 > 0� C11C22 −C12C21 > 0� det�C� > 0

Moreover, since det �C� �= 0, one can always ensure that the inverse of [C] exists; hence

�Q� = �C� �U� → �U� = �S� �Q� 	 with �S� = �C�−1 (2.50)

where [S] is the so-called matrix of potential coefficients.
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The quadratic form of (2.49) allows you to determine We as a function of conductor
voltages; alternatively, if you prefer, you can also determine We via a quadratic form
involving conductor charges, in which case the matrix of potential coefficients [S] should
be used:

We = 1
2

�Q�T �S� �Q�

At last, we prove the important property that [C] is a symmetric matrix.
The physical fact that the work produced by the generators, to bring the system from its

initial uncharged state to its final charged state, does not depend on the order in which the
generators are turned on is equivalent to saying that We is a state function (that is, a function
whose value is entirely specified by the system voltages at its final state of equilibrium).

The generalization of (2.22) for a multiple conductor system is

dWe =
n∑

k=1

uk dqk =
n∑

k=1

Ak duk

where

Ak = u1C1k +· · ·+uiCik +· · ·+unCnk

Since the electric energy We is a state function, dWe must be an exact differential. From a
mathematical point of view this requires the following condition to be fulfilled:

�Ak

�ui

= �Ai

�uk

from which we get

Cik = Cki ⇔ �C� = �C�T (2.51)

showing that the capacitance matrix is symmetric.
At this point you may be tempted to think that the preceding conclusion could have been

reached before by simply comparing (2.48) and (2.49), which yields

�U�T
(
�C�− �C�T

)
︸ ︷︷ ︸

���

�U� = 0

but you would be wrong. Indeed, for the above quadratic form to be zero you do not really
need to have [�] = 0; it suffices that [�] is a skew-symmetric matrix, that is �ik = −�ki.

2.9.2 Partial Capacitances Scheme

The utilization of the [C] matrix to describe the electric coupling phenomena among n+1
conductors is not the only approach available.

An alternative method – the so-called partial capacitance scheme – consists of modeling the
electric interactions among conductors through a network of n�n+1�/2 fictitious capacitors.
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Physically speaking, each capacitor connecting any two conductors is intended somehow
to represent the electric field lines existing between those conductors. The electric energy
stored in the multiple conductor system is the sum of the electric energies pertaining to the
capacitors of the scheme.

To provide you with an example we can immediately sketch (see Figure 2.17) the
partial capacitance scheme corresponding to the conductor configuration previously shown
in Figure 2.15.

Figure 2.17 Scheme of partial capacitances corresponding to the configuration in Figure 2.15

Note that, to distinguish the capacitance matrix coefficients from the partial capacitances,
a ‘hat’ sign (circumflex) is used in the latter.

In order to establish a relationship between the capacitance matrix formalism in
Section 2.9.1 and the proposed partial capacitance scheme, let us obtain expressions for the
conductor charges Qk�k = 1	 2	 3�. By analyzing the scheme in Figure 2.17 we find

Q1 = Ĉ10U1 + Ĉ12�U1 −U2�+ Ĉ13�U1 −U3�

Q2 = Ĉ20U2 + Ĉ12�U2 −U1�+ Ĉ23�U2 −U3�

Q3 = Ĉ30U3 + Ĉ13�U3 −U1�+ Ĉ23�U3 −U2�

Rearranging terms we get

Q1 = �Ĉ10 + Ĉ12 + Ĉ13�U1 − Ĉ12U2 − Ĉ13U3

Q2 = −Ĉ12U1 + �Ĉ20 + Ĉ12 + Ĉ23�U2 − Ĉ23U3

Q3 = −Ĉ13U1 − Ĉ23U2 + �Ĉ30 + Ĉ13 + Ĉ23�U3

(2.52)

Comparing the preceding results to the ones obtained from the [C] matrix formalism,

Q1 = C11U1 +C12U2 +C13U3

Q2 = C21U1 +C22U2 +C23U3

Q3 = C31U1 +C32U2 +C33U3

and bearing in mind that [C] is a symmetrical matrix, we finally reach the general conclusion
that ⎧

⎨
⎩

Ĉk0 = n∑
j=1

Ckj

Ĉkj = −Ckj �j �= 0�
(2.53)
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In short, the partial capacitance between conductor k and the reference conductor 0 is
obtained by adding the entries of the kth line in matrix [C]; the partial capacitance between
conductors k and j is symmetrical to the corresponding entry in matrix [C].

We would like to make a recommendation. Although the partial capacitance scheme may
seem more appealing from a physical point of view, the fact is that, for multiple conductor
systems with a large number of conductors, the [C] matrix formalism is simpler to use and
much more effective as far as calculations are concerned.

2.10 Application Example (Electric Coupling in Printed Circuit
Boards)

A cross-sectional view of a printed circuit board (PCB) consisting of two conducting lands on
the surface of a dielectric board above a reference ground plane is shown in Figure 2.18. The
three-conductor system is characterized by a partial capacitance scheme whose capacitances
have been experimentally determined.

Figure 2.18 Printed circuit board with two lands over a substrate on a ground plane. (a) Cross-
sectional view. (b) Partial capacitance scheme

Questions

Q1 Determine the capacitance matrix [C] of the multiple conductor system.

Q2 Consider that land 1 is active, with U1 = 10 V, and that land 2 is idle (Q2 = 0). Find
the resulting values for charge Q1 and voltage U2.

Q3 Next, consider that the voltage generator enforcing U1 has been disconnected and,
afterwards, land 2 has been short-circuited to ground. Determine the resulting charges
Q1 and Q2 and voltages U1 and U2.

Q4 Compute the electric energy stored for the situations addressed in questions Q2 and Q3.
How do you justify the fact that �We��3� <�We��2�?

Solutions

Q1 From (2.53) you have

C12 = C21 = −Ĉ12 = −2 nF�C11 = Ĉ10 −C12 = 8 nF�C22 = Ĉ20 −C21 = 5 nF
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Hence

�C� =
[

8 −2
−2 5

]
nF

Q2 By making U1 = 10 V in
{

Q1 = C11U1 +C12U2

0 = C21U1 +C22U2

you find Q1 = 72 nC and U2 = 4 V.

Q3 Charge Q1 remains trapped and unchanged, Q1 = 72 nC.
Land 2 is short-circuited, U2 = 0 V.
By making Q1 = 72 nC in

{
Q1 = C11U1

Q2 = C21U1

you find Q2 = −18 nC and U1 = 9 V.

Q4 Here

�We��2� = �Q1U1 +Q2U2� /2 = 360 nJ� �We��3� = �Q1U1 +Q2U2� /2 = 324 nJ

Land 2, which was initially discharged, acquired a negative charge of −18 nC after its
connection to the ground. During the transient regime, free electrons have flowed from
ground to land 2 through the connecting conductor; the corresponding transient electric
current gave rise to Joule losses totaling 36 nJ.

2.11 Electric Forces and Torques

With the recent development of microelectromechanical systems (MEMS) technology, such
as micromachined capacitive actuators, increased attention is being currently paid to the
evaluation of electric forces and electric torques exerted on charged conductor devices.

Electric forces Fe can be evaluated by resorting to two different approaches.
The first is based on the well-known basic result for the local force

Fe = qE (2.54)

which was referred to in Chapter 1. The problem with this method is that, for its application,
it requires a detailed knowledge of the distribution of charges on the conductors – a requisite
that, except for very simple problems, can hardly be met.

In the second approach, the resultant force exerted on a given conductor is evaluated
globally, based on electric energy considerations.

To exemplify the latter very powerful approach let us consider the two-conductor system
(capacitor) shown in Figure 2.19 where electrode (0) is fixed and electrode (1) undergoes a
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Figure 2.19 Electric forces on a charged conductor part of a two-conductor system (capacitor)

virtual displacement ds = dx �ex +dy �ey associated with the global force Fe = fx �ex + fy �ey

exerted on it. To put the problem in a more general perspective we will allow the insulating
dielectric medium to be nonlinear.

The generator connected to the capacitor electrodes is responsible not only for the electric
energy stored in the capacitor, but also for the mechanical work associated with the actuating
force. In differential terms the system energy balance is thus described by

dWG = dWe +dWmec (2.55)

On the one hand, according to (2.22), the generator’s work is given by dWG = udq. On the
other hand, the mechanical energy is given by dWmec = Fe ·ds = fxdx+fydy.

Therefore you can see that

dWe = udq −fxdx−fydy (2.56)

As illustrated in Figure 2.20, the electric energy of the capacitor depends on the respective
charge q and also on the configuration variables x and y

We = We�q	x	 y� (2.57)

By differentiating (2.57) we find

dWe =
(

�We

�q

)

x	y

dq +
(

�We

�x

)

q	y

dx+
(

�We

�y

)

q	x

dy (2.58)

Comparing (2.56) and (2.58) yields

fx = −
(

�We

�x

)

q	y

� fy = −
(

�We

�y

)

q	x

(2.59)

or, more generally,

Fe = −grad We
q invariant
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Figure 2.20 Electric energy stored in a capacitor, under constant charge conditions, upon a virtual
displacement of one of the electrodes. (a) Displacement along x, keeping y constant. (b) Displacement
along y, keeping x constant

Note that the evaluation of the partial derivatives in (2.59) is executed assuming that q

is held fixed despite the movement. With constant charge, dq = 0, the amount of energy
delivered by the generator dWG = udq is zero, meaning that mechanical work results from
a decrease of the electric energy stored.

Hence, you can see from Figure 2.20(a) and Figure 2.20(b) that, if the electric energy stored
is decremented (�We < 0), either x or y is decremented (�x < 0 or �y < 0). Consequently,
from (2.59) you will obtain fx < 0 and fy < 0, which shows, unsurprisingly, that Fe is an
attractive force – the capacitor electrodes are attracted to each other.

To clarify things a little, we present an application example.
Let us turn our attention to the very familiar case of the parallel-plate capacitor

(Figure 2.11) we analyzed earlier.
The insulating material is air, which is a linear medium (D = �0E, Q = CU ). Assume that

the separation x between plates is small (by neglecting fringing field effects, both D and E
can be considered uniform fields). For this problem, we have U = Ex and Q = DS, where
S is the area of each plate where forces are exerted (Figure 2.21).

The attractive force, perpendicular to the plates, is determined from

fx = −
(

�We

�x

)

Q

(2.60)
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Figure 2.21 Attractive electric force in a parallel plate capacitor (fx < 0)

The electric energy We can be expressed either in terms of the capacitor capacitance C,
(2.24), or in terms of the electric energy density ŵe residing in the insulator, (2.27):

We = Q2

2C
= ŵeV

where V is the volume of the dielectric material (V = Sx) sandwiched between the plates.
Using the capacitance formulation we find

fx = − �

�x

(
1

C�x�

Q2

2

)

Q

= −Q2

2
d

dx

(
1

C�x�

)

but

1
C�x�

= U

Q
= Ex

�0ES
= x

�0S

hence, we have the result

fx = − Q2

2�0S
(2.61a)

Further, noting that Q = CU , we have

fx = −�0S

2x2
U 2 (2.61b)

The force is attractive (minus sign). It does not depend on the polarity of the generator
(if you reverse the generator terminals the force does not become repulsive!): the smaller
the separation between the plates, the stronger the attractive force between them. Another
conclusion you should note is that the force acts so as to diminish the plates’ separation; put
another way, the force acts so as to increase the capacitor capacitance.

Finally, let us explore the formulation based on the electric energy density:

fx = − �

�x
�ŵe

V︷︸︸︷
Sx �Q = −ŵeS
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This result immediately shows that the pressure P (units: N/m2) exerted on the plates’
surface by the attractive force is numerically equal to the electric energy density stored near
the plates

P = 
fx

S

= ŵe (2.62)

From an engineering point of view, it is very important to acquire an estimate of the
maximum pressures achievable by electric forces. Assuming the dielectric medium is air,
� = �0, and taking into account that breakdown electric fields are around 30 kV/cm, we find
from (2.62)

P = ŵe = �0E
2/2 ≈ 40 N/m2 (2.63)

In absolute terms, this is not very much (≈ 0�4 gf/cm2) indeed, but for MEMS applications
it is more than sufficient.

So far we have paid attention to linear displacements originating from electric forces.
However, problems exist when charged conductors are subjected to rotational movements
originating from torques of electrical origin.

The type of formulation for these new problems follows the same rationale we used before.
The only other thing required is a change of notation, justified by the fact that for rotational
movements the differential mechanical work is expressed as dWmec = T� d�, where � is the
angle of rotation and T� the associated torque (units: Nm).

Therefore, generalizing the results in (2.59),

T� = −
(

�We

��

)

q

(2.64)

2.12 Proposed Homework Problems

Problem 2.12.1

The parallel-plate capacitor in Figure 2.22 includes two dielectric layers characterized by
�1 = 4�0 and �2 = 6�0. Capacitor size is defined by a = 1 cm and 
 = 0�5 mm. A positive
voltage U is applied between the plates.

Figure 2.22 Parallel-plate capacitor filled with an inhomogeneous dielectric medium
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Q1 Assuming that the resulting capacitor charge is Q = 127�3 nC, determine the field
intensities D1, E1, D2 and E2 inside each dielectric layer. Next, find the value of the
voltage U between the plates, and determine the capacitance C of the capacitor. Evaluate
the electric energy stored in the capacitor We and specify its distribution among the
dielectric layers.

Q2 Assume that the insulating layers are characterized by the following values
of dielectric strength: Ed1 = 200 kV/cm and Ed2 = 100 kV/cm. Determine the
maximum voltage Umax that the capacitor can withstand before dielectric breakdown
occurs.

Answers

Q1 D1 = D2 = 424�33 � C/m2; E1 = 120 kV/cm; E2 = 80 kV/cm; U = 10 kV;
C = 12�73 pF; We = 636�5 �J; We1 = 381�9 �J; We2 = 254�6 �J.

Q2 Umax = 12�5 kV.

Problem 2.12.2

Consider an infinitesimal point charge dQ immersed in a homogeneous dielectric medium
of permittivity �.

Q1 Determine the infinitesimal electric field vector dE at a distance r ′ from the
charge.

Q2 Assume that a rectilinear filament of charge oriented along z is made up from an infinite
collection of infinitesimal point charges dQ = qdz, extending from z = −� to z = +�.
Consider a point P at a distance r from the filament of charge – see Figure 2.23.
Determine the infinitesimal contribution dEP to the electric field at P originating from
two symmetrically positioned point charges.

dQ = ρdz ρdz = dQ 

d EP

z z

r
r ′ r ′

P

θ

Figure 2.23 Electric field produced by two symmetrically positioned point charges dQ
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Q3 Finally, by summing the contributions from all the charge pairs, show that the total
electric field vector at a generic point P a distance r from the charged filament is given
by the result obtained in (2.19).

Answers

Q1 dE = dE�er ′ , where

dE = dQ

4���r ′�2

Q2

dEP = dE
2r√

r2 + z2
�er

Q3

E =
z=�∫

z=0

dEP =
( q

2��r

)
�er

Problem 2.12.3

The structure in Figure 2.24 represents a coaxial cable of length l = 900 m. The cable
consists of two conductors: an external cylindrical shield of inner radius r2 = 13�59 mm, and
an internal cylindrical conductor whose radius r1 is unknown. The characteristic parameters
of the dielectric medium are � = 2�0 and Ed = 200 kV/cm. The cable has a charge Q as a
result of the application of a voltage U between cable conductors. Assume that the cable
shield is at zero potential.

Figure 2.24 Coaxial cable

Q1 By using the results in Application Example 2.6, determine E(r) and V�r�.

Q2 Determine the cable capacitance C.
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Q3 Obtain an expression for Emax as a function of both U and r2/r1. Determine the optimal
value for r1 such that the function Emax�r2/r1� goes through its minimum.

Q4 Assuming that r1 has been optimized, and assuming that the cable is allowed to operate
at 20 % below dielectric breakdown, find numerical values for the cable capacitance,
cable allowed voltage, cable charge, as well as for the electric energy stored along the
whole cable.

Q5 Consider the cable voltage determined above. Show that if the cable had not been
properly designed, choosing for example r1 = 2 mm or r1 = 9 mm, then dielectric
breakdown would have certainly taken place.

Answers

Q1

E =

⎧
⎪⎪⎨
⎪⎪⎩

0	 for r < r1

Q

2��lr
�er	 for r1 < r < r2

0	 for r > r2

V =

⎧
⎪⎪⎨
⎪⎪⎩

U	 for r < r1

Q

2��l
ln

r2

r
	 for r1 < r < r2

0	 for r > r2

Q2

C = 2��l

ln�r2/r1�

Q3

Emax = E�r=r1� = U

r2

k

ln k
	 with k = r2

r1

�r1�optimal = r2

e
= 5 mm

Q4 C = 2��l = 100 nF; U = r1 ×0�8Ed = 80 kV; Q = 8 mC; We = 320 J.

Q5 r1 = 2 mm → Emax = 208�8 kV/m > Ed; r1 = 9 mm → Emax = 215�7 kV/m > Ed.

Problem 2.12.4

Figure 2.25 depicts a single-phase overhead line of length l, where a cylindrical conductor
of radius r runs parallel to the ground conductor at height d. Consider the typical situation
r � d.

A voltage U is applied between the conductors giving rise to an electric field distribution
in the air around the conductors. Electric fields from transmission lines may affect the
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Figure 2.25 Cylindrical conductor above ground. (a) Cross-sectional view. (b) Longitudinal view

operation of electronic appliances and, furthermore, may affect human health. For this
reason, limitations have been internationally adopted concerning the exposure to E fields
(Emax = 5 kV/m).

Q1 Find the line capacitance C.

Q2 Determine the charge density distribution on the ground surface, w�y�.

Q3 Determine the electric field along the x axis.

Q4 Take r = 1 cm, d = 10 m, l = 1 km. Find the maximum voltage U at which the line can
be operated such that E = 1

4 Emax at a point 1.8 m above ground (head height).

(Note: The analysis of this problem can be conducted by employing the results already
derived in Application Example 2.6. Explain why.)

Answers

Q1

C = 2× ��0l

ln

⎛
⎝d

r
+

√(
d

r

)2

−1

⎞
⎠

≈ 2��0l

ln
(

2d

r

)

Q2

w�y� = −CU

�l
× d

y2 +d2

Q3

E = E�x��ex	 E�x� = CU

��0l
× d

x2 −d2
	 x ∈ �0	d− r�∪ �d+ r	��

Q4

C = 8�04 nF� U = 41�8 kV
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Problem 2.12.5

Figure 2.26 represents the cross-section of a three-conductor system comprising a
communications coaxial cable of length l running parallel to a conducting wall (reference
conductor). Consider the following data: l = 10 m, d = 1 cm, r2 = 5 mm, r1 = 1 mm, � = 2�0.

Figure 2.26 Coaxial cable parallel to a conducting ground plane

Q1 Determine the partial capacitance scheme of the conductor system.

Q2 Find the corresponding capacitance matrix [C].

Answers

Q1

Ĉ10 = 0� Ĉ20 = 2��0l

ln

⎛
⎝ d

r2

+
√(

d

r2

)2

−1

⎞
⎠

= 0�422 nF� Ĉ12 = 2��l

ln
(

r2

r1

) = 0�690 nF

Q2

�C� =
[

0�690 −0�690
−0�690 1�112

]
nF

Problem 2.12.6

Figure 2.27 shows a cross-sectional view of a typical low-voltage single-phase cable
configuration consisting of three identical conductors: phase conductor (1), neutral
conductor (2) and ground conductor (0).

The cable configuration exhibits three-fold symmetry. The equivalent phase–neutral
capacitance has been measured, Ceq = 150 nF.
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Q1 Determine the partial capacitance scheme of the cable as well as the corresponding
capacitance matrix [C].

Q2 Keeping the ground conductor in its idle state (Q0 = 0), a voltage U = 200 V has been
applied between the phase and neutral conductors. Evaluate cable charges Q1 and Q2,
and cable voltages U1 and U2.

Q3 Repeat the preceding calculations assuming that the neutral conductor is grounded
(U2 = 0).

Figure 2.27 Cross-sectional view of an indoor low-voltage single-phase cable, including phase,
neutral and ground conductors

Answers

Q1

Ĉ10 = Ĉ20 = Ĉ12 = 2
3

Ceq = 100 nF� �C� =
[

200 −100
−100 200

]
nF

Q2

Q1 = −Q2 = 30 �C�U1 = −U2 = 100 V�

Q3

U1 = 200 V�U2 = 0�Q1 = 40 �C�Q2 = −20 �C�Q0 = −20 �C�

Problem 2.12.7

Figure 2.28(a) shows a cross-sectional view of a three-phase overhead line with three
identical conductors, of radius r = 2 cm, parallel to the ground (reference conductor). The
line, of length l = 10 km, exhibits a vertical plane of symmetry.

The capacitance matrix describing the structure is

�C� =
⎡
⎣

100 −x −5
−x 80 −x
−5 −x 100

⎤
⎦nF
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Figure 2.28 Three-phase overhead line configuration. (a) Cross-section. (b) Excitation status

Q1 Based on the general properties of [C], determine the maximum allowed value for the
unknown coefficient x.

Q2 In order to determine x the following experiment was conducted (Figure 2.28(b)):
keeping both conductors 2 and 3 isolated (Q2 = Q3 = 0), a voltage U1 = 3�8 kV was
applied between conductor 1 and the ground. The resulting voltage U3 was measured,
U3 = 400 V.

Find x. Determine U2 and Q1. Estimate the electric field intensity occurring at the
surface of the energized conductor, E1.

Answers

Q1 x < 40.

Q2 x = 20; U2 = 1050 V; Q1 = 357 �C; E1 ≈ 32 kV/m.

Problem 2.12.8

In Section 2.11 we analyzed the attractive electric force actuating on the plates of a
parallel-plate capacitor (see Figure 2.21). Resorting to energy balance considerations, we
reached the conclusion that the intensity of the attractive force was given by f = Q2/�2�0S�.
However, if you try to evaluate f by using the basic local force definition f = QE you will
be either disappointed or puzzled.

In fact, from E = D/�0 = Q/��0S� you will get f = Q2/��0S�, which differs from the
correct result by a factor of 2.

The reason for this contradiction lies in the fact that, from a microscopic point of view,
the conductor/dielectric interface is not actually an abrupt perfect plane. The so-called
surface charge does not really reside at the conductor’s surface; it is a volumetric charge
� extending a little into the interior of the conductor (a few atomic layers) but vanishing
very rapidly. A similar thing happens with the electric field. At the conductor surface you
have E0 = Q/��0S�, yet as you progress to the interior of the conductor, the field intensity
decays continuously; it does not drop to zero abruptly.
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Let x′ be the direction perpendicular to the positively charged capacitor plate oriented
towards the inside of the conductor (Figure 2.21). Assume a typical decay law for ��x′�
given by

��x′� = �0 e−kx′

where k denotes the rate of decay – an arbitrary parameter that you can choose as large as
you wish.

Q1 Obtain �0.
(Hint:

∫
Vplate

��x′�dV = Q� dV = Sdx′.)

Q2 By using the equation div E = ��x′�/�0, where E = −E�ex′ , determine E�x′�.

Q3 Evaluate the global electric force f exerted on the charged plate.
(Hint: f = ∫

Vplate
dfe; dfe = dqE; dq = �dV .)

Q4 Find the plate attractive pressure P for a capacitor 0.5 mm thick submitted to a 10 V
voltage.

Answers

Q1 �0 = kQ/S.

Q2 E�x′� = E0 e−kx′
.

Q3 f = Q2/�2�0S�.

Q4 P = 1�77 N/cm2.

Problem 2.12.9

Consider an aerial two-wire transmission line of indefinite length, whose cylindrical
conductors are separated by a distance x = 1 cm. The radius of both conductors (thin
conductors) is r = 1 mm. The applied voltage between the wires is U = 200 V.

Q1 Write the equation for the per-unit-length line capacitance C as a function of x. Compute
its value according to the problem data.

Q2 Determine the intensity of the per-unit-length attractive force f exerted on both line
conductors.
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Answers

Q1

C�x� = ��0

ln�x/r�
= 12 pF/m

Q2

f = �CU�2

2
× d

dx

(
1

C�x�

)
= �CU�2

2��0x
= 10�5 �N/m



3
Stationary Currents

3.1 Fundamental Equations

The topic of stationary currents (also called direct currents) belongs within the subclass
of stationary field phenomena. The properties of time-invariant electric currents, associated
with free charges moving along closed conductor circuits, are analyzed in this chapter.

The fundamental laws governing stationary current problems are those in (PII.3) together
with a constitutive relation concerning conductor media behavior. That is,

{
curl E = 0

div J = 0
(3.1)

and

J = �E (3.2)

where � denotes conductor conductivity (units: S/m, siemens per meter).
The equation curl E = 0 has been fully examined in Chapter 2. The properties of the

electric field vector E we studied in electrostatics are exactly the same that you need to keep
in mind throughout this new chapter.

However, here – contrary to electrostatics – because currents are allowed to exist �J �= 0�,
the electric field vector inside conductors is not zero, E = J/� , and, consequently, conductors
can no longer be considered equipotential bodies. Only in the limit case of perfect conductors
�� → �� can you use the approximation E = 0 and V = constant.

3.2 Conductivity, Current Density, Electric Circuits

As far as conduction properties are concerned, material media can be coarsely split into
two major categories, insulators and conductors. While insulators, like glass, mica, rubber,
etc., are characterized by extremely low conductivity values in the range 10−8 to 10−17 S/m,
conductors, like silver, copper, aluminum, etc., have extremely high conductivity values in
the range 106 to 107 S/m. Typical conductivities (at 20 �C) for some common conductors

Electromagnetic Foundations of Electrical Engineering J. A. Brandão Faria
© 2008 John Wiley & Sons, Ltd
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Table 3.1 Conductor conductivities

Conductor Conductivity (S/m) at 20 �C

Aluminum 3�5×107

Constantan 2×106

Copper 5�6×107

Gold 4�1×107

Graphite 105

Iron 106

Manganin 2�3×106

Silver 6�1×107

Tin 9×106

Water (sea water) 5.6
Water (tap water) 0.01–0.1

are listed in Table 3.1. Note that the conductivity is a temperature-dependent parameter;
conductivities decrease with increasing temperature in the case of metallic conductors.

Free charges inside a conducting medium can move under the influence of impressed
electric fields. In the case of good conductors (metals), free charges are electrons and their
movement occurs in the direction opposite to E; however, from a formal point of view, you
can imagine that an equivalent flow of positive charges occurs parallel to E (Figure 3.1).

Figure 3.1 Current flow inside a conductor driven by an electric field

Electric currents are free charges in movement. Hence, in order to provide a physical
interpretation for the current density vector J, we can write

J = �f v (3.3)

where �f �C/m3� represents the positive free charge per unit volume and v denotes the
average value of the charge velocity parallel to the impressed E field.

For not very intense fields (linear media) the velocity v, resulting from random collision
processes inside the medium atomic lattice, is proportional to E

v = mE (3.4)

where m is the so-called charge mobility. (Note: The electron mobility, for good conductors,
can typically be found in the range 10−2 to 10−3 m2 V−1 s−1.)

Finally, from (3.2)–(3.4), we obtain J = �E = �f mE, from which you can see that
� = �f m.
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At this stage it is worth making an important remark. You have certainly heard before
that electrical signals propagate at a velocity close to the speed of light �3×108 m/s�. Well,
this is true. But do not confuse matters: such a velocity has absolutely nothing to do with
the velocity that electrons move along conductors!

Considering E-field values that may typically occur inside good conductors �≈100 V/m�,
you can check from (3.4) that the velocity of the electrons is merely about 1 m/s.

Let us now return to (3.1) and focus our attention on the equation div J = 0.
Again using the Gauss theorem – see (2.9) from Chapter 2 – we obtain

∫

SV

J ·no dS = 0 (3.5)

This means that, in the framework of stationary regimes ��/�t = 0�, the flux of J across a
closed surface bounding a given volume is always zero or, in other words, the number of
J-field lines entering a given volume is equal to those leaving it (Figure 3.2).

Figure 3.2 The flux of J across a closed surface is zero for time-invariant regimes

An obvious consequence of this result is that the field lines of J cannot end or start
anywhere. In general, any field vector whose divergence is zero must have its field lines
closed.

An electric circuit is made of simple or multiple conductor connections forming closed
loops so as to ensure that J-field lines are closed, otherwise one would end up with J = 0
as in electrostatics.

The simplest electric circuit that can be imagined consists of a conductor loop immersed
in a dielectric insulating medium. The conductor loop forms a closed tube where free
charges can circulate. In most applications, given the huge discrepancy between conductor
and insulator conductivities, leakage currents escaping the conductor loop (the circuit) can
be considered absolutely negligible.

Although electric circuits are practically perfect tubes for J-field lines, you must be aware
that the same is not true for the electric field E. In fact, E exists not only inside the circuit
conductors but outside of them as well.

At the conductor/insulator interface (conductor side) you have a purely tangential
component for the electric field, Econd = Et = J/� .
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At the conductor/insulator interface (insulator side), although J = 0, you will not get E = 0.
The electric field vector on the insulator side can be obtained by adding two orthogonal
components

Einsul = En +Et

According to (2.17), the magnitude of the normal component, which is usually the dominant
term, depends on the local surface charge density, En = w/�.

As for the tangential component, it is a simple matter to show (using curl E = 0) that it
coincides with the one observed inside the conductor.

To prove the continuity of the tangential component of the electric field vector across
the conductor/insulator interface, consider the illustration in Figure 3.3 where a closed
rectangular infinitesimal path s is depicted.

Figure 3.3 The conductor’s imperfection �� �= �� gives rise to a tangential component of the electric
field vector which is continuous at the conductor/insulation interface

Then from
∫

�

S

E ·ds = 0 =
∫

−→
ab

Einsul ·ds+
∫

−→
cd

Econd ·ds = �Et −Econd�dl

we conclude that Et = Econd = J/� .

3.3 Current Intensity, Kirchhoff’s Current Law

The notion of current intensity has already been introduced in Chapter 1.
Current intensity in a conductor, I , is just a simple measure of the flux of J-field

lines through a conductor cross-section S in a prespecified reference direction n (recall
Figure 1.3(b))

I =
∫

S

J ·n dS (3.6)

Not surprisingly, for stationary regimes ��/�t = 0�, the current intensity through a conductor
immersed in an insulating medium does not depend on the particular cross-section being
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Slateral

IA

IB

SA

SB

Jno

no

no

nA nB = no

Figure 3.4 Application of the Gauss theorem to show that the current intensity along a conductor
remains unchanged, IA = IB, for time-invariant regimes

considered. Take the conductor volume bounded by SA	 SB and Slateral shown in Figure 3.4,
and make use of the result in (3.5).

Then, taking into account that the external medium is an insulator �� ≈ 0�, you get

0 =
∫

SV

J ·no dS =
∫

SA

J ·no dS +
∫

SB

J ·no dS +
0︷ ︸︸ ︷∫

Slateral

J ·no dS

= −
∫

SA

J ·nA dS +
∫

SB

J ·n
B

dS = −IA + IB = 0

Hence, you can see that IA across SA and IB across SB are identical, and for that reason you
can drop the unnecessary subscript labels A and B,

IA = IB = I

By the same token, Kirchhoff’s current law (KCL) can be obtained. Consider a closed
surface SV which is intersected by several current-carrying conductors – see Figure 3.5.

Figure 3.5 Kirchhoff’s current law,
∑

Ik = 0

Then, from (3.5), you get

0 =
∫

SV

J ·no dS =
∫

S1

J ·no dS +
∫

S2

J ·no dS +
∫

S3

J ·no dS +
∫

S4

J ·no dS = I1 + I2 + I3 + I4
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or, more generally,

∑
k

Ik = 0 (3.7)

As in Chapter 1, you should notice that KCL is not, strictly speaking, a general ‘law’.
Indeed, the result in (3.7) is only valid for stationary phenomena, �/�t = 0. For time-varying
regimes (where div J �= 0) things are a little more complicated – see Chapter 6.

3.4 Resistor, Conductance, Resistance, Ohm’s Law

To put it simply, a resistor is nothing but a piece of conducting material with two accessible
terminals. When a voltage U is applied between the resistor terminals a current of intensity
I will flow along the device – see Figure 3.6.

Figure 3.6 Voltage and current in a resistor

If the conducting material behaves as a linear medium, or, put another way, if J = �E,
then I and U will be proportional:

I = GU (3.8)

The proportionality constant G is called conductance (units: S, siemens). This parameter
depends not only on the geometrical configuration of the resistor, but also on the conductivity
of the material of which the resistor is made. However, you can see from

G = I

U
=
∫
S

J︷︸︸︷
�E ·n dS

∫
−→
ab

E ·ds
(3.9)

that G does not depend on the intensity of the electric field in the device.
In many instances, it is often preferred to utilize the inverse of G to describe the resistor’s

characteristics. The inverse of G is called resistance, R = 1/G (units: 
, ohm). By employing
R, (3.8) translates into

U = RI (3.10)

which you will certainly recognize as a statement of the familiar Ohm’s law.
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Figure 3.7 The linear relationship I�U� is just a consequence of the linear relationship J�E�

At this point two interesting remarks are in order.
The linear relationship between I and U , (3.8), is just a consequence of the assumed linear

relationship between J and E, (3.2) – see Figure 3.7.
Also, if you compare the definition of conductance in (3.9) to the one for the capacitance

given in (2.21) you will see the striking analogy between them. This analogy provides you
with a very effective means to easily compute C from G, or G from C, whenever you have
a capacitor and a resistor with the same geometrical features.

As a simple example, consider a parallel-plate geometrical configuration (Figure 3.8),
where in one case the medium sandwiched between the plates is an insulator with permittivity
� (capacitor) and in the other case the medium is a conductor with conductivity � (resistor).

Figure 3.8 Utilization of a parallel-plate structure for showing the analogy between electrostatics
and stationary current problems. (a) Capacitor. (b) Resistor

As for the capacitance of the capacitor (see Chapter 2), you get

C = Q

U
= DS

E�
= �S

�
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Likewise, for the conductance of the resistor, you get

G = I

U
= JS

E�
= �S

�

It then becomes obvious that

G = �

�
C (3.11)

3.5 Application Example (The Potentiometer)

Potentiometers are variable resistors that you may find in a large variety of electrical and
electronic appliances. These devices are used principally as gain or volume controls, voltage
dividers and current controls. Figure 3.9(a) shows the geometrical configuration of a common
type of potentiometer and Figure 3.9(b) shows its corresponding equivalent electric circuit.

Figure 3.9 Potentiometer. (a) Geometrical configuration. (b) Equivalent circuit representation

The resistor, which includes a sliding contact (terminal C), is made of a thin layer of
conducting material of conductivity � with the shape of a circular crown of width w = r2 −r1

and thickness t (perpendicular to the drawing plane).
A voltage U is applied between the metallic terminals A and B.
Data: r2 = 9 mm	 r1 = 6 mm	 t = 100 �m	 � = 103 S/m.

Questions

Q1 Obtain the equation for the radial dependence of the current density J. Using the latter
find an expression for the current intensity I .

Q2 Deduce an expression for the resistor resistance R and compute its numerical value.

Q3 Evaluate the voltage UCB as a function of both 
 and U .

Q4 Show that if the width of the circular crown is small, then the device resistance can
be approximately evaluated through R = l/��S�, where l is the average length of the
resistor and S denotes its cross sectional area. Taking into account the problem data,
estimate the relative error incurred by using such an approximation.
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Solutions

Q1 The electric field lines inside the resistor are circumferential arcs parallel to the circular
crown walls. For geometrical reasons the intensity of E remains constant along each
field line; however, when you jump from field line to field line (that is, when you change
r) the field intensity must vary; it is weaker at the outer wall �r = r2� but stronger at
the inner wall �r = r1�. Hence you can write

For r1 ≤ r ≤ r2 � E = E�r��e�

Integration of E along a circumferential arc starting at A and ending at B (infinitesimal
path length ds = r d� �e�) yields the applied voltage U between the potentiometer
terminals

U =
∫

−→
AB

E ·ds =
�= 3

2 �∫

�=0

E�r�r d� = 3�r

2
E�r� → E�r� = 2U

3�r
(3.12)

From (3.12) you can find the current density field,

J = �E = J�r� = 2�U

3�r
�e�

The current intensity I is obtained by evaluating the flux of J through the rectangular
cross-section S of the resistor

I =
∫

S

J ·n dS	 where n = �e� and dS = t dr

This gives

I = U
2t�

3�

r2∫

r1

dr

r
= U

(
2t�

3�
ln

r2

r1

)

Q2 The total resistance of the potentiometer is obtained from the above result through

R = U

I
= 3�

2t� ln�r2/r1�
(3.13)

Numerically, we obtain R = 116�2 
.

Q3 The UCB voltage is determined as in (3.12) by substituting C for A,

UCB =
∫

−→
CB

E ·ds =
�= 3

2 �∫

�=


E�r�r d� =
(

3�

2
−


)
2U

3�
= U

(
1− 


3�/2

)
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Q4 Define the average length of the resistor as l = rav3�/2, where rav is the average radius
of the potentiometer, rav = �r2 + r1�/2.
Take r2 = rav�1+�� and r1 = rav�1−��. By using (3.13) you find

R = 3�

2t� ln
(

1+�

1−�

)

Taking into account that, for small �,

ln
(

1+�

1−�

)
≈ 2� = r2 − r1

rav

you can obtain the approximation

Rapprox = rav3�/2
� �t�r2 − r1��

= l

�S

thus Rapprox = 117�8 
, giving an excess error of 1.4 %.

3.6 Application Example (The Wheatstone Bridge)

The Wheatstone bridge is a very simple circuit network which finds application in
instrumentation and measurement. The circuit, represented in Figure 3.10 permits the
experimental determination of an unknown resistance R based on previous knowledge of
R1	 R2 and R3 (one of them being a variable resistor).

Figure 3.10 The Wheatstone bridge

Assume that R3 has been adjusted so as to ensure that the ammeter placed between a and
b measures zero current – a balanced bridge (IA = 0 and Uab = 0).

Questions

Q1 By using KVL and KCL, write the equations governing the circuit.

Q2 Determine the relationship among R	R1	R2 and R3 when the bridge is balanced.
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Solutions

Q1 RIR +Uab −R1I1 = 0� R3I3 +Uab −R2I2 = 0.
IA + I2 − IR = 0� I3 − IA − I1 = 0.

Q2 By making Uab = 0 and IA = 0, you find

R = R1R2

R3

3.7 Joule Losses, Generator Applied Field

You should know that resistors get hot when submitted to currents. We have already
mentioned that this effect – the Joule effect – is associated with electron random collisions
inside the atomic lattice of the resistor medium. The energy dissipated by this process may
vary from point to point inside the resistor. We will now see that dissipation is proportional
to E2, meaning that hot spots in a resistor are regions where E has attained increased values.

Consider, as shown in Figure 3.11, that an infinitesimal volume dV of the conductor
contains an infinitesimal amount of free charge dq = �f dV .

Figure 3.11 Vectors involved in the analysis of Joule losses in a resistor

Under the influence of the impressed E field, the free charge dq drifts with a velocity v
driven by an elemental electric force dFe = dqE.

The activity of the latter force produces an elemental power dp which is dissipated in dV

dp = v ·dFe = �f v ·E dV = p̂J dV

Taking into account that J = �f v from (3.3), integration of the above result over the resistor’s
whole volume V yields the total power losses (Joule losses), that is

PJ =
∫

V

p̂J dV� p̂J = J ·E = �E2 (3.14)

The local power losses density p̂J �W/m3� is thus shown to increase with E2.
The preceding formulation for the power losses in a conductor not only permits the

evaluation of the total losses in a resistor, but, further, has the additional advantage of
allowing for a detailed perception of what is happening locally inside the resistor; for
instance, where the hot spots are localized.
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Sometimes this detailed knowledge is unimportant. Quite often you may only want to
evaluate the resistor’s total losses based on its voltage and current.

For illustrative purposes, let us revisit the resistor geometry previously shown in
Figure 3.8(b). By making J = I/S and E = U/�, we obtain from (3.14)

PJ =
∫

V

UI

S�
dV =UI

S�

S�︷ ︸︸ ︷∫

V

dV = UI = GU 2 = RI2 (3.15)

Not surprisingly, we found PJ = RI2, a result that you are certainly familiar with.
Let us pause for a moment to consider an apparently puzzling and paradoxical question.

From the key equations (3.1), you have learnt that, on the one hand, the field lines of E
are open �curl E = 0� and, on the other hand, the field lines of J are closed �div J = 0�; in
addition, from J = �E, you can see that field lines of E and J should run parallel.

But how can all this happen? What is missing?
Clearly there is more to stationary currents than could be accounted for by (3.1) and (3.2).
In the framework of stationary phenomena, where do you think the energy necessary

for driving the free charges in motion comes from? Where does the heat transferred to the
conductor lattice by electron collision processes (Joule losses) come from?

The answer, as you might have already guessed, is: from generators (batteries, photovoltaic
cells, electromechanical devices, and so on).

Therefore, the simplest electric circuit that can be imagined must include a generator and
an external conductor, forming a closed loop for the circulation of currents – see Figure 3.12.

Figure 3.12 A trivial electric circuit made of a generator and an external conductor loop. While the
J-field lines are closed, the E-field lines are open

As shown in Figure 3.12, the relationship between J and E inside the generator cannot be
the same as in (3.2); there, instead, you have to employ

J = �G�E+Ea� (3.16)
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where �G denotes the conductivity of the internal medium of the generator, and Ea, the so-
called applied electric field, represents from a macroscopic point of view the per-unit-charge
internal force responsible for maintaining the separation of the electric charges residing at
the positive and negative generator terminals (that would otherwise collapse together).

From (3.16) and Figure 3.12 you can easily observe that, when the generator is
disconnected �J = 0�, the opposite fields E and Ea have the same magnitude; however, when
the external conductor is connected you will get 	E	 < 	Ea	.

3.8 Generator Electromotive Force, Power Balance

The actual electric circuit in Figure 3.12, containing a generator and an external load (a
resistor), is symbolically represented in Figure 3.13.

Figure 3.13 Symbolic description of the circuit depicted in Figure 3.12. (a) With the switch open
the generator voltage is given by its electromotive force. (b) With the switch closed the generator
voltage is smaller than its electromotive force

When the load is disconnected �J = 0� a voltage U0 appears between the positive and
negative terminals of the generator

U0 =
∫

−→+−

E ·ds

According to (3.16), when J = 0	 E = −Ea inside the generator. Therefore, the above result
can be rewritten as

U0 =
∫

−→+−

E ·ds =
∫

−→−+
generator

Ea ·ds (3.17)

An intrinsic characteristic of the generator, since it only depends on the internal applied field
Ea, voltage U0 is commonly known by the name of electromotive force (emf).

When the external resistor R is connected across the generator terminals its voltage U
decreases compared to U0.
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In order to determine the resulting voltage U let us evaluate the line integral of �E+Ea�
along the closed path s inside the circuit (Figure 3.13(b)). The line integration is performed
by using two alternative processes:

∫
�

S

�E+Ea� ·ds =
∫

�

S

E ·ds+
∫

�

S

Ea ·ds = 0+
∫

−→−+
generator

Ea ·ds = U0

and ∫

�

S

�E+Ea� ·ds =
∫

−→−+
generator

�E+Ea� ·ds+
∫

−→+−
resistor

�E+Ea� ·ds

=
∫

−→−+
generator

1
�G

J ·ds+
∫

−→+−
resistor

E ·ds = rGI +U

from which we conclude U0 = rGI +U or, which is the same,

U = U0 − rGI (3.18)

The term rGI represents the internal voltage drop of the generator, where rG is its internal
resistance (both are zero when ideal generators are considered, that is when �G → �).

The relationship U�I� in (3.18) describes the generator’s behavior in terms of its intrinsic
parameters U0 and rG. In the diagram shown in Figure 3.14 this relationship is represented
by the straight line with negative slope.

Figure 3.14 Diagram for power balance analysis. The straight line with negative slope describes the
generator’s features. The straight line with positive slope characterizes the external resistor. Q is the
operating point

On the other hand, the resistor characteristic is described by Ohm’s law (3.10), U = RI ,
which in Figure 3.14 is represented by the straight line with positive slope.
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The intersection of the two lines permits the identification of the circuit’s operating point
(point Q), from where U and I can simultaneously be obtained.

At last we turn our attention to power balance analysis. From U0 = rGI +U we readily get

U0I = rGI2 +UI

The left-hand side of this equation represents the total power produced by the generator’s
applied field PG = U0I . On the right-hand side, the first term represents dissipation losses
internal to the generator, PrG = rGI2, whereas the second term represents the available power
delivered to the load P = UI; hence

PG = PrG +P (3.19)

This power balance equation can be graphically interpreted by using Figure 3.14. While the
area of the upper rectangle (with sides I and rGI) corresponds to PrG, the area of the lower
rectangle (with sides I and U ) corresponds to P. Summing the two areas, we obtain PG

(a rectangle whose sides are I and U0) as in (3.19).

3.9 Proposed Homework Problems

Problem 3.9.1

In order to monitor and control the unavoidable stress phenomena occurring in some
mechanical structures, they are usually provided with embedded resistor-type strain gauges.
The simplest scheme used to detect resistance changes due to gauge deformation (tension or
compression) utilizes the Wheatstone bridge already analyzed in Application Example 3.6.
Assume, as shown in Figure 3.15, that the bridge is initially balanced (fixed resistors R1	R2

and R3 are equal to R). Next, allow the embedded strain gauge resistor on the bridge’s upper
left arm to be subjected to a small variation �R on its resistance, ��R 
 R�.

Figure 3.15 Application of the Wheatstone bridge for the detection of strain gauge deformations

Q1 Write the KVL equations governing the circuit.

Q2 Find the relationship between the monitored voltage �U and �R.
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Answers

Q1 I1 = U

2R
� I2 = U

2R+�R
� �U = R�I1 − I2�

Q2 �U ≈ �R
U

4R

Problem 3.9.2

For security reasons many types of electrical equipment ought to have a connection to ground.
Ground electrodes are buried in the soil to provide a means for the flow of undesirable
currents. Take the situation depicted in Figure 3.16 where a ground electrode of hemispherical
shape is considered. Assume the metallic electrode is a perfect conductor. Choose for the
potential V��� = 0. Consider the following data: I = 100 A	 a = 10 cm	 r1 = 1 m	 r2 = 2 m	
�soil = 3�18×10−2 S/m.

Figure 3.16 Hemispherical ground electrode

Q1 Obtain the equation for the radial dependence of the current density field J and potential
function V inside the soil.

Q2 Compute the electrode potential VE . Determine the boundary of the region around the
electrode outside of which V becomes smaller than VE/10.

Q3 Compute the electrode resistance

RE = VE −V���

I

Q4 Evaluate the step voltage U12.

Q5 Find the power P corresponding to the energy dissipated in the soil.
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Answers

Q1 J�r� = I

2�r2
�er� V�r� = I

2�r�soil

�for r ≥ a�

Q2 VE = 5 kV� V ≤ VE/10 for r ≥ 1 m.

Q3 RE = 50 
.

Q4 U12 = 250 V.

Q5 P = 500 kW.

Problem 3.9.3

Consider a two-wire transmission line like the one we dealt with in Chapter 2 (Application
Example 2.8), where two identical cylindrical conductors, of length l = 50 m, radius
r = 1 mm, run parallel separated by 4 mm. Assume that the surrounding dielectric medium is
a perfect insulator. Line conductors, made of copper, have a conductivity � = 5�6×107 S/m.
The line is excited at the sending end by a voltage generator characterized by an electromotive
force U0 = 50 V and internal resistance rG = 1 
. At the receiving end a resistor load
RL = 50 
 is placed (Figure 3.17).

Figure 3.17 A DC link employing a lossy two-conductor line

Q1 In electrostatics we showed that proximity effects would give rise to non-uniform charge
distributions over the conductor surfaces. Show, however, that as far as stationary
currents are concerned, J-field lines are uniformly distributed inside the line conductors.
(Note: Only for hight-frequency regimes the distribution of currents in the conductor
cross-section becomes non-uniform due to skin effect phenomena – see Chapter 8.)

Q2 Evaluate the resistance Rcond of each line conductor.

Q3 Evaluate I	 UG and UR.

Q4 Determine the generator internal power losses PrG, as well as the transmission power
losses Ptrans. Compare the power produced by the generator applied field PG to the power
delivered to the load P.
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Answers

Q1 Consider two neighboring parallel field lines J1 and J2 inside the cylindrical conductor.
By applying the property

∫

�

S

E ·ds = 1
�

∫

�

S

J ·ds = 0

you get J1 = J2.

Q2

Rcond = l

��r2
= 284�2 m


Q3 I = U0/�rG +2Rcond +RL� = 969�6 mA� UG = 49�03 V� UR = 48�48 V.

Q4 PrG = 0�94 W� Ptrans = 0�53 W� PG = U0I = 48�48 W� P = 47�01 W = 97%PG.

Problem 3.9.4

Consider a coaxial cable which is terminated at its receiving end �y = 0� by a resistor load
RL = 1 k
 whose power consumption is kept at PL = 250 W. The cable’s longitudinal view
and respective cross-section are shown in Figure 3.18. The length of the cable is l = 10 km,
and the remaining geometrical parameters are r1 = 1 mm	 r2 = 5 mm	 r3 = 5�1 mm.

The conductivity of the cable’s internal and external conductors is �cond = 31�67×106 S/m.
The dielectric medium is an imperfect insulator with conductivity �insul = 5�123×10−9 S/m.

Figure 3.18 A DC link employing a lossy coaxial cable. (a) General view. (b) Cable cross-section

Q1 Determine the per-unit-length longitudinal cable resistance R (including the internal and
external conductors).

Q2 Determine the per-unit-length transverse conductance G of the dielectric medium.

Q3 Consider the approximation that cable conductors are perfect (that is, cable voltage U
is constant along the longitudinal coordinate y).
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Determine the generator voltage UG at the cable sending end �y = l�.
Determine the evolution of the cable current intensity along y	 I�y�, a consequence of

the leakage currents crossing the imperfect dielectric.
(Hint: From div J = 0, find dI/dy).

Obtain IG and determine the power dissipation in the insulating medium Pinsul.

Q4 Consider the approximation in which the dielectric medium is a perfect insulator (that
is, cable current I is constant along the longitudinal coordinate y).

Determine the generator current IG at the cable sending end �y = l�.
Determine the evolution of the cable voltage along y	 U�y�, a consequence of the

voltage drop along the cable’s imperfect conductors.
(Hint: From curl E = 0, find dU/dy).

Obtain UG and determine the power dissipation in the cable conductors Pcond.

Answers

Q1

R = 1
��cond

(
1

r2
1

+ 1

r2
3 − r2

2

)
= 20�0 m
/m

Q2

G = 2��insul

ln�r2/r1�
= 20�0 nS/m

Q3

UG = U = UL =√
PLRL = 500 V

d

dy
I�y� = GU → I�y� = IL +GUy� IL = UL/RL = 500 mA

IG = IL +GUl = 600 mA

Pinsul = PG −PL = 300−250 = 50 W

Q4

IG = I = IL =√
PL/RL = 500 mA

d

dy
U�y� = RI → U�y� = UL +RIy� UL = RLIL = 500 V

UG = UL +RIl = 600 V

Pcond = PG −PL = 300−250 = 50 W



158 Electromagnetic Foundations of Electrical Engineering

Problem 3.9.5

Consider again the problem discussed in Problem 3.9.4. The approaches referred to in Q3

and Q4 are approximations because conductor voltage drops and dielectric leakage currents
influence each other; in fact, here, we are dealing with a distributed coupled-phenomena
problem. (Note: Distributed coupled phenomena will come to your attention in Part IV where
the topic of electromagnetic wave propagation will be handled.)

Q1 Determine the coupled differential equations describing the evolution of U�y� and I�y�.

Q2 Solve the equations.

Q3 Make use of the boundary conditions at the receiving end of the cable to obtain the
unknown integration constants.

Q4 Obtain UG and IG at the generator terminals.

Q5 Determine the total power losses and show how they break into conductor and insulator
losses.

Answers

Q1

⎧
⎪⎪⎨
⎪⎪⎩

d

dy
I�y� = GU�y�

d

dy
U�y� = RI�y�

→ d2

dy2

{
I�y�
U�y�

}
−RG

{
I�y�
U�y�

}
= 0

Q2 ⎧
⎨
⎩

U�y� = U1 e+y/D +U2 e−y/D

I�y� = 1
R0

(
U1 e+y/D −U2 e−y/D

)

where D is the attenuation distance D = 1/
√

RG = 50 km and R0 is the characteristic
resistance R0 = √

R/G = 1 k
.

Q3 Boundary conditions:

{
U�y=0� = UL = 500 V

I�y=0� = IL = 500 mA
→ U1 = UL = 500 V� U2 = 0

Q4

UG = UL e+l/D = 610�7 V� IG = UL

R0

e+l/D = 610�7 mA
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Q5 Plosses = PG −PL = 373−250 = 123 W.

Pcond =
y=l∫

y=0

R I2�y� dy = 61�5 W� Pinsul =
y=l∫

y=0

GU 2�y� dy = 61�5 W

Problem 3.9.6

In electrostatics, the experimental determination of the partial capacitances among the
conductors of a multiconductor system can be a very delicate subject. However, for
homogeneous systems, an experimental procedure using stationary currents can be used
indirectly to determine those capacitances. The electrolytic tank technique explores the
existing analogy between capacitances and conductances as suggested by (3.11).

Consider a three-dimensional arrangement consisting of three metallic conductors in air
��0� as depicted in Figure 3.19(a). Next, assume that the same set of conductors is immersed
into a tank filled with an electrolytic liquid of conductivity � (Figure 3.19(b)).The walls of
the tank are made of an insulating material, and the size of the tank is very large compared
to the overall conductor system dimensions.

Figure 3.19 A multiconductor system with three metallic bodies. (a) Immersed in air, �0. (b) Placed
inside a tank filled with an electrolytic liquid of conductivity �

From the point of view of stationary currents, the structure in Figure 3.19(b) can be replaced
by the equivalent circuit in Figure 3.20, where Ĝ12	 Ĝ10 and Ĝ20 represent the partial
conductances of the system corresponding to the flow of currents through the electrolytic
medium.

The following two experiments were conducted:

• Voltages U1 = 10 V and U2 = 0 were applied between accessible terminals. Ammeters
used for current measurement gave the following readings: I1 = 0�6 A and I2 = −0�2 A.

• Voltages U2 = 10 V and U1 = 0 were applied between accessible terminals. Ammeters used
for current measurement produced the following readings: I1 = −0�2 A and I2 = 0�5 A.



160 Electromagnetic Foundations of Electrical Engineering

1

0

2

I1

U2

U1

I2
G10

G20

G12

Figure 3.20 Equivalent electric circuit made of partial conductances representing the arrangement
depicted in Figure 3.19(b)

Q1 Why must the size of the electrolytic tank be much larger than the conductor system
dimensions?

Q2 Write the equations governing the equivalent circuit in Figure 3.20.

Q3 Determine the system partial conductances Ĝ12	 Ĝ10 and Ĝ20.

Q4 Knowing that the conductivity of the electrolyte is � = 17�68 mS/m, find the partial
capacitances and the capacitance matrix �C� that characterize the multiconductor
electrostatic configuration in Figure 3.19(a).

Answers

Q1 The configuration in Figure 3.19(a) is an unbounded system, so should be the one in
Figure 3.19(b). This can be achieved (approximately) by placing the tank walls far away
from the system conductors.

Q2 I1 = Ĝ12�U1 −U2�+ Ĝ10U1� I2 = Ĝ12�U2 −U1�+ Ĝ20U2.

Q3 First experiment:

Ĝ12 = − I2

U1

= 20 mS� Ĝ10 = I1 + I2

U1

= 40 mS

Second experiment:

Ĝ12 = − I1

U2

= 20 mS� Ĝ20 = I1 + I2

U2

= 30 mS

Q4 From

Ĉjk = �0

�
Ĝjk	 with

�0

�
= 0�5 ns

we find Ĉ12 = 10 pF	 Ĉ10 = 20 pF and Ĉ20 = 15 pF.
From (2.53) we get the capacitance matrix

�C� =
[

30 −10
−10 25

]
pF



4
Magnetic Field of Stationary
Currents

4.1 Fundamental Equations

The intrinsic properties of stationary currents were the object of analysis in the preceding
chapter. Now you are going to learn about the magnetic fields originated by such currents.

The fundamental laws governing magnetic field stationary problems are those in (PII. 4)
together with a constitutive relation concerning the magnetic behavior of material media.
That is,

{
curl H = J
div B = 0

(4.1)

and

B = �H (4.2)

where � is the permeability of the medium (units: H/m, henry per meter).

4.2 Ampère’s Law, Magnetomotive Force, Magnetic Voltage

From curl H = J in (4.1), you can see that magnetic fields H can be produced by electric
currents.

Let us concentrate on the integral version of the curl equation. For that purpose we need
to make use of the Stokes theorem – as we did in Chapter 2, (2.4):

∫

Ss

curl H ·nS dS =
∫

�

S

H ·ds

where s is a simply closed oriented path, Ss is an open surface having the path s as
its bounding edge, and nS is the Stokes unit normal (the direction of the unit normal is

Electromagnetic Foundations of Electrical Engineering J. A. Brandão Faria
© 2008 John Wiley & Sons, Ltd
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related to the path orientation according to the right-hand screw rule). Since curl H = J we
obtain

∫

�

S

H ·ds =
∫

Ss

J ·nS dS (4.3)

This very important result, illustrated in Figure 4.1, is Ampère’s law. The cyclic integral on
the left-hand side of (4.3) is the so-called magnetomotive force (mmf). Note that, like the
electromotive force in Chapter 3, this traditional designation is also a misnomer, for mmf is
obviously not a force – its units are ampere.

The right-hand side of (4.3) represents the flux of J across Ss; put another way, it is the
current intensity I through Ss.

Figure 4.1 Geometrical elements involved in the application of Ampère’s law

To help you understand the usefulness of Ampère’s law, consider the simple application
example depicted in Figure 4.2, where a rectilinear cylindrical conductor carries an electric
current of intensity I .

Figure 4.2 Application of Ampère’s law to the evaluation of the magnetic field H�r� �e� encircling
a current-carrying cylindrical conductor

Taking into account the particular geometry of the problem (note that the configuration
is rotation invariant), it can be ensured that the magnetic field lines around the conductor
are coaxial circumferences H = H�e�, and, in addition, the intensity of H remains constant
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along each field line. Therefore, using (4.3), and choosing a closed path s coincident with
the generic field line H of radius r, you have on the one hand

∫

�

S

H ·ds=
∫

�

S

H ds = H
∫

�

S

ds = H ×2�r

and on the other hand
∫

Ss

J ·nS dS = 0+
∫

Scond

J ·n dS = I

In conclusion, outside the conductor, r > R, the magnetic field is evaluated as

H�r� = I

2�r
(4.4)

However, in other applications where H does not remain constant along the closed integration
path s, you will eventually need to break s into a convenient number of segments, for
example

∫

�

S

H ·ds =
∫

−→
ab

H ·ds+
∫

−→
bc

H ·ds+
∫

−→ca

H ·ds (4.5a)

∫

�

S

H ·ds = Umab
+Umbc

+Umca
(4.5b)

The terms on the right-hand side of (4.5) have the common designation of magnetic voltage
Um (units: A, ampere), a concept which is introduced in analogy with the familiar concept
of electric voltage, U , in (2.6):

Magnetic voltage � Umab
=

∫

−→
ab

H ·ds ↔ Electric voltage � Uab =
∫

−→
ab

E ·ds (4.6)

It is worth pausing for a moment to ponder the extent of this analogy.
To start with, you may recall that, so far, the electric field E is a gradient field (curl E = 0),

and as we have already seen in (2.7), the electric voltage between two points is independent
of the integration path connecting them.

However, things can be rather different as far as the magnetic field is concerned.
In fact, H is not a gradient field (curl H �= 0) and, because of that, the evaluation of the

magnetic voltage between two points depends explicitly on the integration path. You can
surely get different results for Um depending on the chosen paths. To see that this is true,
consider the situation in Figure 4.3 where currents are present.

If you apply Ampère’s law to the closed path s, which you can break into âb plus b̂a,
you will get

∫

�

S

H ·ds =
∫

−→
ab
�1�

H ·ds+
∫

−→
ba
�2�

H ·ds =

Um1︷ ︸︸ ︷∫

−→
ab
�1�

H ·ds−

Um2︷ ︸︸ ︷∫

−→
ab
�2�

H ·ds =
IS︷ ︸︸ ︷∫

Ss

J ·nS dS
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Figure 4.3 Magnetic voltages are not uniquely defined. Um1
and Um2

will coincide if and only if
J = 0

from which you can conclude Um1
−Um2

= IS , clearly showing that the magnetic voltages
between the same pair of points are not the same, Um1

�= Um2
. If and only if currents are

absent, IS = 0, will you get the same result for both magnetic voltages.
You also learnt in Chapters 2 and 3 that the electric voltages along a closed loop sum to

zero (KVL), but make no mistake: KVL does not apply to magnetic voltages; the sum of
magnetic voltages along a closed path is, in general, not zero.

4.3 Magnetic Induction Field, Magnetic Induction Flux

We saw in Chapter 3 that the current density vector J obeys the equation div J = 0, which
allowed the derivation of a set of important properties.

From (4.1), you can see that the magnetic induction field B also obeys div B = 0, and
consequently, by analogy, B and J must share the same properties. That is, B-field lines must
be closed, and their flux across a closed surface bounding a given volume must be zero,

∫

SV

B ·no dS = 0 (4.7)

However, there is a subtle difference we would like to emphasize. While J-field properties
are particular to stationary regimes (if �/�t �= 0 then div J �= 0), B-field properties are
absolutely general, and are valid for either stationary or time-varying regimes. In fact,
div B = 0 contains no approximations whatsoever.

By following the analogy trend, the same way the current intensity I was introduced in
(3.6), here we define the magnetic flux � across an open surface S (units: Wb, weber)

Current intensity: I =
∫

S

J ·n dS ↔ Magnetic flux: � =
∫

S

B ·n dS (4.8)

Although the magnetic flux � is a scalar quantity, a reference arrow is usually associated
with it; such an arrow is just a reminder for the arbitrary unit normal n in (4.8) – see
Figure 4.4.

At this point, and in connection with the equivalence in (4.8), an important remark is in
order. While currents are physically associated with free electric charges in motion, (3.3),
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Figure 4.4 Definition of the magnetic flux �

magnetic fluxes cannot be interpreted in identical terms. The reason is very simple: magnetic
charges do not exist in nature!

In Section 4.2, we drew your attention to the fact that KVL is of no use in the analysis of
magnetic field problems. However, an analogous law to KCL can be utilized here. In reality,
from (4.7), you can immediately recognize that the sum of outward-going magnetic fluxes
across a closed surface must yield zero as a result (see the example in Figure 4.5)

0 =
∫

SV

B ·no dS =
∫

S1

B ·n1 dS +
∫

S2

B ·n2 dS +
∫

S3

B ·n3 dS = �1 +�2 +�3

Or, in general,

∑
k

�k = 0 (4.9)

Figure 4.5 The magnetic fluxes sum to zero,
∑

�k = 0, as a consequence of div B = 0

4.4 Application Example (Power Line Magnetic Fields)

Magnetic field effects produced by overhead power lines on human health are currently a
matter of serious public concern. Within the European Union, as far as power–frequency
magnetic induction fields are concerned, a safety limit has been set at 100 	T.
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Figure 4.6 shows a cross-sectional view of a flat three-phase overhead line, made of
cylindrical conductors, running parallel to a poorly conducting soil.

Figure 4.6 Cross-sectional view of a three-phase overhead line used for exemplifying the
computation of the magnetic induction field intensity surrounding the structure

Assume that all the line conductors carry the same current I . Assume also that the currents
flowing deep in the soil make a negligible contribution to the evaluation of the B field in air.

Data: h = 12 m, d = 7 m.

Questions

Q1 Determine the Bx and By components of the magnetic induction field at a generic point
P in air with coordinates xP and yP.

Q1 Consider a person 1.8 m tall walking perpendicularly to the line, moving along the x
axis. Determine analytically the intensity of the magnetic induction field B�x� in the
region about head height (yH = 1
8 m).

Q1 Find an expression for Bmax and determine the permissible line current intensity I such
that the 100 	T safety limit is not exceeded.

Solutions

Q1 Let xk and yk (k = 1, 2, 3) be the coordinates of the overhead line conductors, and let
xP and yP be the coordinates of the observation point P.

The distance between conductor k and point P can be written as

rkP = √
�xk −xP�2 + �yk −yP�2

According to the result in (4.4), the magnetic field at P produced by the current I in the
kth conductor is

Hk = I

2�rkP

�e�k

On the other hand, the azimuthal unit vector �e�k
can be broken down into its �ex and �ey

components as

�e�k
= yk −yP

rkP

�ex + xP −xk

rkP

�ey
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Summing the contributions from the three conductors, and noting that B = �0H, you
obtain

B = �0I

2�

3∑
k=1

yk −yP

r2
kP︸ ︷︷ ︸

Bx

�ex + �0I

2�

3∑
k=1

xP −xk

r2
kP︸ ︷︷ ︸

By

�ey

Q2

B�x� =
√

B2
x +B2

y = �0I

2�

√√√√
(

3∑
k=1

h−yH

r2
kP�x�

)2

+
(

3∑
k=1

x−xk

r2
kP�x�

)2

where r2
kP�x� = �xk −x�2 + �h−yH�2, with x3 = −x1 = d and x2 = 0.

B�x� is an even function of x with a maximum occurring at x = 0 (see sketch in
Figure 4.7)

x (m) +20 +10 0 −10 −20

0.6

0.7

0.8

0.9

1.0

B/Bmax

Figure 4.7 Graphical plot of the normalized magnetic induction field intensity sensed by a person
moving along x. Bmax should not exceed 100 	T

Q3 At x = 0 and y = yH we find B = Bmax�ex where

Bmax = �0I

2�
×
(

1
�h−yH�

+ 2�h−yH�

�h−yH�2 +d2

)

︸ ︷︷ ︸
K

where, taking into account the problem data, K = 0
231 34 m−1.
Putting Bmax = 100 	T, the permissible current can be evaluated as

I = 2�Bmax

�0K
= 2
16 kA
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4.5 Magnetic Materials, Ferromagnetic Media, Saturation
and Hysteresis

In empty space (vacuum), B and H are related through

B = �0 H (4.10)

In a material medium such a relationship must be modified in order to take into account
electronic orbital perturbations as well as electron spin motions in the atomic structure of
the medium. From a formal point of view, in a way similar to (2.12), we can write

B = �0 �H +M �H�� (4.11)

where M is the so-called magnetization vector, or magnetic dipole moment per unit volume.
For linear media M and H are proportional to each other:

M = �m H (4.12)

where the dimensionless constant �m is the magnetic susceptibility of the medium.
By combining (4.11) and (4.12) we obtain

B = �0�1+�m� H = �0�r H = � H (4.13)

where �r is the relative permeability of the medium.
For the vast majority of materials you will find �r ≈ 1 and, because of that, they are

commonly classified as non-magnetic materials.
However, there is a special group of materials – with important applications in electrical

engineering – where things are rather different.
Ferromagnetic media such as cobalt, nickel and iron, as well as several alloys whose

composition includes them (ferroxcube, permalloy, mumetal, alnico, etc.), can have very
large relative permeabilities, typically in the range 102 to 105.

Unfortunately, these materials display a nonlinear behavior. In Figure 4.8(a) we present
a sketch of a typical first magnetization curve B�H� showing that for weak intensities
(linear zone) B and H are proportional, B = �H , but as the H field keeps increasing,
the corresponding B field grows at a slower pace (saturation zone), tending to a limiting
saturation value BS.

Note that the above description of the first magnetization curve is not strictly accurate for
two reasons. Firstly, for weak fields the linear zone is not exactly linear as d2B/dH2 �= 0.
Secondly, for very intense fields, the curve B�H� tends to a straight line with positive slope
�0; however, in most graphical representations this straight line appears as a quasi-horizontal
line.

But there is more to ferromagnetic media than the saturation feature.
If, after reaching saturation, you try to demagnetize the material by progressively

decreasing the H field to zero, you will see that the operating point does not descend to the
origin – see Figure 4.8(b); when H = 0 you will get a positive remanence induction B = BR.

In order to make B = 0 you will need to magnetize the material in the reverse direction
with a coercive field H = −HC – see Figure 4.8(b).
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Figure 4.8 Saturation and hysteresis in ferromagnetic materials. (a) The ascending first magnetization
curve includes a linear zone and a saturation zone. (b) The descending demagnetization curve does
not coincide with the magnetization curve

If you let the magnetization–demagnetization process repeat itself slowly and alternately,
swinging from positive saturation to negative saturation, you will obtain a closed curve in
the BH plane, the so-called hysteresis loop – Figure 4.9(a).

Depending on the type of material being utilized, the hysteresis loop can be very thin
or very fat. In the first case we say we are dealing with a soft magnetic material, in the
second case with a hard magnetic material (Figure 4.9(b)). While soft magnetic materials
are usually employed in electric machines and transformers, hard magnetic materials find
their main application in permanent magnets and in magnetic recording.

Figure 4.9 Hysteresis loop B against H . (a) Typical shape of a hysteresis loop, where HC and
BR respectively denote the coercive field and the remanence induction. (b) Soft magnetic materials
exhibit a thin hysteresis loop and, conversely, hard magnetic materials exhibit a very thick hysteresis
loop

4.6 Magnetic Circuits

The electric circuits introduced in Section 3.2 were conceptually defined as perfect tubes for
the circulation of J-field closed lines.

By analogy, magnetic circuits (ordinarily made of ferromagnetic media) are defined as
tubes for the circulation of B-field closed lines.
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There is, however, a distinctive point that we must address at once. In electric circuits the
conductivity of the current-carrying conductors and the conductivity of the external medium
(insulation) are related by a factor typically in excess of 1016.

In the case of linear magnetic circuits, the permeability of the ferromagnetic media rarely
exceeds the one for the external medium by a factor of 105. This circumstance reveals that
magnetic circuits are not perfect tubes for the circulation of B-field lines which, to some
extent, can escape from the main circuit – a phenomenon called dispersion (Figure 4.10).

Figure 4.10 Dispersion of magnetic field lines

A frequently used approximation, the neglecting of dispersion phenomena, prevents you
from obtaining very accurate results; however, on the other hand, it not only facilitates your
task, but also provides you with good result estimates, which, often, are sufficient from an
engineering standpoint. Moreover, those estimates can help you exert some type of control
over the numerical results produced by dedicated software packages available for magnetic
circuit analysis.

4.7 Application Example (Three-Legged Transformer)

To illustrate the application of the magnetic-field laws to the analysis of magnetic circuits,
consider the example depicted in Figure 4.11 – a three-legged transformer with two horizontal
yokes. For the purposes of generalization, we assume that the assembly may contain three
thin protective pads made of a non-magnetic material, which are inserted between the
transformer legs and the upper yoke. Also for the sake of generality, we will assume that
the transformer legs are not identical.

The magnetic circuit is driven by currents Ia and Ib which flow in two separate coils with
Na and Nb turns respectively.

Simplifying assumptions:

• The yokes are made of exceptionally good magnetic material (�Y → �).
• Dispersion is neglected.
• Fields B and H are uniform inside each of the small protective pads.
• Fields B and H are uniform inside each of the transformer legs.
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Yoke
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kth pad detail

Yoke

δ

Figure 4.11 Geometry of a three-legged transformer

Assume that geometrical data of the configuration are known, and that the magnetic
characteristics Bk�Hk� are also known for legs 1, 2 and 3.

Establish a complete set of equations allowing for the determination of B1, B2, B3, BP1,
BP2, BP3 and H1, H2, H3, HP1, HP2, HP3 as a function of the driving currents.

Solution

From div B = 0 or, which is the same, from
∫

SV
B ·nodS = 0 we immediately obtain

�1 = B1S1 = BP1S1 → B1 = BP1 (4.14a)

�2 = B2S2 = BP2S2 → B2 = BP2 (4.14b)

�3 = B3S3 = BP3S3 → B3 = BP3 (4.14c)

�1 +�2 +�3 = 0 → B1S1 +B2S2 +B3S3 = 0 (4.14d)

Next, we apply Ampère’s law (4.3) to the rectangular closed path sa drawn clockwise inside
and along the transformer legs and yokes of the circuit’s left window. For that purpose, the
integration path needs to be broken down into several segments, each one corresponding to
a different part of the circuit (see details in Figure 4.12).

Ia Ib

Na

P1

Nb

na nb

P2 P3
Ssa(1) (2) (3)

b

c

f

a

e

d

sa sb

Figure 4.12 Application of Ampère’s law to the closed circulation path sa
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Then we find
∫

�

Sa

H ·ds =
∫

−→
ab

H1 ·ds+
∫

−→
bc

HP1 ·ds+
∫

−→
cd

HY ·ds+
∫

−→
de

HP2 ·ds+
∫

−→
ef

H2 ·ds+
∫

−→
fa

HY ·ds

This identity can now be greatly simplified by taking into account the fact that fields are
assumed to be uniform in each circuit part, and noting also that HY = BY/�Y = 0. Hence,
the result for the left-hand side of Ampère’s law is

∫
�

Sa

H ·ds = H1h+HP1�−HP2�−H2h (4.15)

As for the right-hand side of Ampère’s law, taking into account the orientation of the Stokes
unit normal na, we find

∫

Ssa

J ·na dS = Ia + Ia +· · ·+ Ia + Ia︸ ︷︷ ︸
Na times

= +NaIa (4.16)

By equating (4.15) and (4.16) we get

H1h+HP1�−HP2�−H2h = NaIa (4.17)

Next, we need to apply Ampère’s law again to a new closed path sb (clockwise oriented)
corresponding to the circulation along the transformer’s right window. Following exactly
the same steps as above we obtain

H2h+HP2�−HP3�−H3h = −NbIb (4.18)

You should note that NbIb has a minus sign. This happens because the reference direction
of current Ib through Ssb

is antiparallel to the Stokes unit normal nb.
Counting the equations contained in (4.14), (4.17) and (4.18), we reach a total of six.

Since the number of unknown fields is 12, you can see that we still lack six more equations.
At this point you may be tempted to reapply Ampère’s law to the closed circulation path
including the yokes and legs 1 and 3 of the transformer. Do not do that! The equation you
would obtain would not be independent of (4.17) and (4.18). In fact, the six equations that
are missing must come from the material constitutive relations.

As for the transformer legs, we use

B1 = B1�H1�
 B2 = B2�H2�
 B3 = B3�H3� (4.19)

And for the non-magnetic pads, we use

BP1 = �0HP1
 BP2 = �0HP2
 BP3 = �0HP3 (4.20)

From a physical point of view, the problem is completely posed and solved; the only thing
that remains to be done lies on the mathematical side, that is the evaluation of a numerical
solution of a complete set of equations. The only troubling aspect that you might face is
related to the nonlinear relationships in (4.19), which may require nonlinear equation solver
software.
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4.8 Magnetic Reluctance

The foregoing application example can be simplified enormously if nonlinear phenomena
are ruled out. In fact, if the transformer legs are assumed to be operating in their linear zones
then, instead of (4.19), you may write

B1 = �1H1
 B2 = �2H2
 B3 = �3H3 (4.21)

For the particular case of linear media, the analysis of the magnetic circuit in Figure 4.11
collapses into a much simpler problem – a problem that, as we will show, can be dealt with
using only three basic equations.

We will turn to these in a moment, but first we must make a slight detour to introduce
the new concept of magnetic reluctance Rm (units: H−1), something which is analogous to
the resistance in Ohm’s law for electric circuits:

U = RI ↔ Um = Rm� (4.22)

As shown in Figure 4.13, consider a kth component part of a linear magnetic circuit where
a magnetic flux �k flows. Due to linearity, the magnetic voltage Umk

between the ends a
and b of the component ought to be proportional to �k; the proportionality constant is the
magnetic reluctance of the component part under analysis:

Rmk
= Umk

�k

=

∫
−→
ab

Hk ·ds

∫
Sk

Bk ·n dS
(4.23)

Figure 4.13 Magnetic reluctance of a section of a linear magnetic circuit

If, in addition, the magnetic circuit part is homogeneous, with uniform fields inside, then,
from (4.23), we will obtain the approximation

Rmk
= Hklk

BkSk

= lk

�kSk

(4.24)

where lk is the length of the magnetic circuit part, Sk its cross-sectional area and �k its
magnetic permeability.

The analysis of linear magnetic circuits can be made simple by selecting the magnetic
fluxes � as their primary unknowns. After that, the evaluation of the B and H field intensities
follows immediately.
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Let us rework (4.17) and (4.18). From (4.17) and (4.22), we have

�H1h︸︷︷︸
Um1

+HP1�︸︷︷︸
UmP1

�− �H2h︸︷︷︸
Um2

+HP2�︸︷︷︸
UmP2

� = NaIa → �Rm1
+RmP1

��1 − �Rm2
+RmP2

��2 = NaIa

From (4.18) and (4.22), we have

�H2h︸︷︷︸
Um2

+HP2�︸︷︷︸
UmP2

�− �H3h︸︷︷︸
Um3

+HP3�︸︷︷︸
UmP3

� = −NbIb → �Rm2
+RmP2

��2 − �Rm3
+RmP3

��3 = −NbIb

The above equations, together with (4.14d), yield finally
⎧
⎪⎨
⎪⎩

�Rm1
+RmP1

��1 − �Rm2
+RmP2

��2 = NaIa

�Rm2
+RmP2

��2 − �Rm3
+RmP3

��3 = −NbIb

�1 +�2 +�3 = 0

(4.25)

where the several intervening magnetic reluctances can be evaluated using (4.24).
The solution of the three-equation set in (4.25) is absolutely trivial, and, from there, by

using (4.14), the magnetic induction field intensities can be readily obtained:

B1 = BP1 = �1

S1


 B2 = BP2 = �2

S2


 B3 = BP3 = �3

S3

(4.26)

The last step, namely the evaluation of the magnetic field intensities along the circuit parts,
is now rather obvious. From (4.20) and (4.21), we obtain

H1 = B1

�1


 H2 = B2

�2


 H3 = B3

�3


 HP1 = B1

�0


 HP2 = B2

�0


 HP3 = B3

�0

(4.27)

4.9 Inductor, Inductance, Magnetic Flux Linkage, Magnetic Energy

In its simplest form an inductor is a closed conductor, typically with the shape of a single
loop or multiple loops (a coil), that is used to create magnetic fields when submitted to
currents.

A characteristic parameter of inductors is the inductance L (units: H, henry).
To introduce this new concept, consider the trivial case of a single-conductor loop in air –

see Figure 4.14. As soon as a current I is made to flow in the conductor loop (using a
generator), a magnetic induction field B with closed lines embracing the conductor will be
produced.

Let us define a closed integration path s coinciding with the conductor loop and oriented
according to the reference direction assigned to I . Further, let Ss be an open surface having
the path s as its bounding edge. The unit normal nS to Ss is defined according to the path
orientation using Stokes’ rule.

When B is integrated across Ss we obtain a quantity called the magnetic flux linkage �:

� =
∫

Ss

B ·nS dS (4.28)
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Figure 4.14 Magnetic flux linked with a current-carrying conductor loop

For the case of linear media, the intensity of B is proportional to I and, therefore, from
(4.28), the same will happen with �:

� = LI (4.29)

The positive proportionality constant between � and I is the so-called inductance L. This
important parameter depends only on the permeability of the material media and on the
geometry of the inductor. For nonlinear media the inductance concept is useless, since �
and I are no longer proportional to each other.

We should emphasize that the magnetic flux linkage does not depend on the particular
shape of the surface Ss through which the B-field is integrated, (4.28). The flux � is linked
with the circulation path s and depends solely on it. In fact, as a natural consequence of
div B = 0, when we consider two distinct open surfaces Ss of different shape but bounded
by the same path s, the fluxes through the two surfaces will be exactly equal (Figure 4.15).

Figure 4.15 The magnetic flux linkage � in (a) and (b) is the same. The particular shape of the open
surfaces bounded by the path s is irrelevant for the evaluation of �

At this point it is important to draw your attention to the existing analogy between the
capacitance of a capacitor (Chapter 2) and the inductance of an inductor – see Figure 4.16.

D = � E → Q = CU ⇔ B = �H → � = LI

A rather common way to achieve large inductance values consists of utilizing coils of
many turns wound around a closed magnetic core of high permeability, as in Figure 4.17.
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Figure 4.16 Analogy between the definitions of C and L

I

s
SnS

I

N

N

Rm

(a) 

(b) 

φ

μ >> μ 0

s

Scoil

nS

φ φ φ φ φ

Figure 4.17 (a) A coil of N turns wound around a closed magnetic core of high permeability. (b)
Zooming in to the coil region

On the one hand, neglecting dispersion phenomena, we find for the flux linkage

�s =
∫

S��

B ·nS dS +
∫

S
coil

B ·nS dS = 0+ ��+�+· · ·+�+��︸ ︷︷ ︸
N times

= N� (4.30)

where Scoil is a helical-type surface bounded by the coil contour, which is intersected N
times by the magnetic induction flux �, and S�� is a rectangular planar surface across which
the flux is zero (dispersion neglected). On the other hand, from magnetic circuit analysis
(using Ampère’s law) we have

Rm � = NI (4.31)
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where the core magnetic reluctance Rm decreases with increasing core permeability. Hence,
from (4.30) and (4.31), we get the usual approximation

L = �s

I
= N 2

Rm

(4.32)

When the current of an inductor is increased from zero to its final state, the inductor core
becomes magnetized; that is, the magnetic induction field B in the inductor core grows in
intensity until its stationary final state is reached (the same thing happens to the flux �s).

The magnetization process requires the generator, responsible for driving the inductor
current, to expend a certain amount of energy. Part of it is associated with irreversible Joule
losses in the inductor resistance. Another part, of a completely different nature, has to do
with the fact that the progressive increase of B, just by itself, demands additional work from
the generator; this work is not lost, but remains available in the form of magnetic energy Wm,
stored in the inductor core, and can be retrieved later during the demagnetization process.

If you have an inquisitive mind (and we hope you do), you may now be wondering about
the reason why a continuous increase of B does indeed require additional work from the
generator. To answer this question we cannot avoid a small leap ahead to a topic that actually
belongs to Chapter 5, where the time dynamics of B fields is analyzed.

From Maxwell’s equations in (I.1) we known that

curl E = −�B
�t

This shows that electric fields can be originated by time-varying B fields. This new
type of electric field (so-called electric induction field E = Ei) has its field lines closed,
embracing B(t).

As shown in Figure 4.18(a), during the magnetization process, that is when dB/dt is
positive, the electric induction field Ei opposes the circulation of currents in the conductor
loop (inductor) and, therefore, the generator is forced to provide additional work to sustain
the current flow. Conversely (Figure 4.18(b)), during the demagnetization process, when
dB/dt is negative, the electric induction field Ei favors the circulation of currents in the
inductor and, as a result, the generator recovers energy.

Figure 4.18 Magnetization and demagnetization. (a) During magnetization the electric induction
field Ei opposes the current flow. (a) During demagnetization the electric induction field Ei favors the
current flow
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If hysteresis phenomena are absent (as we will assume in the analysis that follows next)
then the recovered energy during the demagnetization process will be the same that was
spent during magnetization.

The magnetic energy stored in the magnetic field of an inductor, Wm, is evaluated in
perfect analogy with the process we used earlier, in Section 2.7, to obtain the electric energy
stored in the electric field of a capacitor, We:

We =

final
state∫

initial
state

u dq ⇔ Wm =

final
state∫

initial
state

i d� (4.33)

This result for Wm is graphically interpreted in Figure 4.19, for linear and nonlinear magnetic
media.

Figure 4.19 Graphical interpretation of the magnetic energy stored in an inductor, for linear and
nonlinear magnetic media

For the simplest case of linear magnetic media, by using � = Li in (4.33), we find

Wm = L

I∫

0

i di = 1
2

LI2 = 1
2

�2

L
= 1

2
�I (4.34)

The magnetic energy stored in the inductor core can be determined by volume integration:

Wm =
∫

Vcore

ŵmdV (4.35)

where ŵm represents the volumetric magnetic energy density (units: J/m3).
Analogous to Figure 4.19, you will find in Figure 4.20 a graphical interpretation of the

computation of ŵm for linear and nonlinear media.
For linear media, the magnetic energy density (the area of the shaded triangle in

Figure 4.20) is

ŵm = 1
2

BH = 1
2

B2

�
= 1

2
B ·H (4.36)
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Figure 4.20 Graphical interpretation of the magnetic energy density stored in the magnetic field, for
linear and nonlinear magnetic media

4.10 Application Example (Coaxial Cable)

Figure 4.21 shows a cross-sectional view of a coaxial cable of indefinite length l, with
transversal dimensions r1, r2 and r3. The insulation medium and the cable conductors are
characterized by � = �0. The cable current is I .

Figure 4.21 Cross-sectional view of a coaxial cable. Conductor currents give rise to a magnetic field
H = H�r��e� whose field lines are concentric circumferences

Questions

Q1 By application of Ampère’s law determine the magnetic field intensity H�r� for
0 < r < �.

Q2 Determine the flux � linked with the cable.

Q3 Based on the above result determine the per-unit-length external inductance of the cable.

Q4 By volume integration, find the per-unit-length magnetic energy stored in the
insulation medium (r1 < r < r2) and, based on that, confirm the result obtained in
question Q3.
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Q5 Numerical application. Take I = 100 mA. Consider r1 = 1 mm, r2 = 5 mm, r3 = 5
1 mm.

Compute H�r1� and H�r2�.
Compute the per-unit-length flux linkage.
Compute the per-unit-length magnetic energy stored between cable conductors.
Compute the per-unit-length external inductance of the cable.

Solutions

Q1 Due to the cable geometry, the field lines of H are closed circumferences coaxial with
the cable’s longitudinal axis, and the intensity of H remains invariant along any given
field line, H = H�r��e�. For the determination of H we utilize Ampère’s law, employing
integration paths s that exactly match the circumferential field lines, so that

H ·ds = H ds = H r d�

For 0 < r < r1:
∫

�

S

H ·ds

︸ ︷︷ ︸
2�rH

=
∫

Ss

J ·nS dS

︸ ︷︷ ︸
J1��r2�

Since, in the inner conductor of the cable, J1 = I/��r2
1 �, we get

H�r� = I

2�r
×
(

r

r1

)2

For r1 < r < r2:

∫

�

S

H ·ds

︸ ︷︷ ︸
2�rH

=
∫

Ss

J ·nS dS

︸ ︷︷ ︸
+I

→ H�r� = I

2�r

For r2 < r < r3:
∫

�

S

H ·ds

︸ ︷︷ ︸
2�rH

=
∫

Ss

J ·nS dS

︸ ︷︷ ︸
I − J2��r2 − r2

2 �

Since, in the outer conductor of the cable,

J2 = I

��r2
3 − r2

2 �

we get

H�r� = I

2�r
× r2

3 − r2

r2
3 − r2

2
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For r > r3:

∫

�

S

H ·ds

︸ ︷︷ ︸
2�rH

=
∫

Ss

J ·nS dS

︸ ︷︷ ︸
+I − I

→ H = 0

Summarizing,

H = H�r� �e�


⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

H�r� = I

2�r
×
(

r

r1

)2


 for 0 < r < r1

H�r� = I

2�r

 for r1 < r < r2

H�r� = I

2�r
× r2

3 − r2

r2
3 − r2

2


 for r2 < r < r3

H�r� = 0
 for r3 < r

(4.37)

Q2 The flux linked with the cable is obtained by integrating the B-field lines external to
the conductors crossing a rectangular surface of length l that belongs to a radial plane
between r1 and r2. The rectangular path s is oriented according to the reference direction
assigned to I – see Figure 4.22:

� =
∫

Ss

B · nS dS =
∫

Ss

B dS =
r2∫

r1

�0H�r� ldr = I
�0l

2�
ln

r2

r1

Figure 4.22 Integration surface being used for the evaluation of the cable’s external inductance

Q3 The per-unit-length external inductance L of the cable is obtained from

L = �/I

l
= �0

2�
ln

r2

r1

(4.38)
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Q4 For a cable section of length l, the magnetic energy stored in the space between cable
conductors is

Wm =
∫

V

�0H
2

2
dV = �0

2

r2∫

r1

H2 2�lr dr︸ ︷︷ ︸
dV

= I2 �0l

4�
ln

r2

r1

Putting l = 1 m, and using (4.34), the per-unit-length cable inductance is obtained from
the magnetic energy stored as

L = 2Wm

I2
= �0

2�
ln

r2

r1

Q5 H�r1� = 15
9 A/m; H�r2� = 3
2 A/m;
� = 32
2 nWb/m; Wm = 1
6 nJ/m; L = 321
9 nH/m.

4.11 Hysteresis Losses

In Section 4.5, when magnetic media were discussed, we referred to the hysteresis loop as a
special feature of ferromagnetic materials. Consider again the graphical representation of the
hysteresis loop in Figure 4.9(a), but now utilizing the variables � and i – see Figure 4.23.

Figure 4.23 Hysteresis loop � against i. The shaded area represents the energy lost during one
complete period

As in (4.33), during the magnetization process corresponding to moving the operation
point from (a) to (b), the work of the generator is determined by the area between the curve
âb and the � axis:

Wab =
�b∫

�a

i d� > 0

This quantity is positive (i > 0
d� > 0) and therefore represents energy being delivered to
the inductor core.
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During the demagnetization process corresponding to moving the operation point from
(b) to (c), the work of the generator is determined by the area between the curve b̂c and the
� axis:

Wbc =
�c∫

�b

i d� < 0

This quantity is negative (i > 0
d� < 0) and represents energy being delivered back to the
generator.

During the magnetization process corresponding to moving the operation point from (c)
to (d), the work of the generator is determined by the area between the curve ĉd and the �
axis:

Wcd =
�d∫

�c

i d� > 0

This quantity is positive (i < 0
d� < 0), is equal to Wab and again represents energy being
delivered to the inductor core.

Finally, closing the hysteresis loop, during the demagnetization process corresponding to
moving the operation point from (d) to (a), the work of the generator is determined by the
area between the curve b̂a and the � axis:

Wda =
�a∫

�d

i d� < 0

This quantity is negative (i < 0
d� > 0), is equal to Wbc and again represents energy being
delivered back to the generator.

The energy spent during the magnetization intervals (Wab + Wcd) exceeds the energy
recovered during the demagnetization ones (Wbc + Wda). The missing energy per cycle
(hysteresis losses) is thus given by the internal area of the hysteresis loop – see again
Figure 4.23:

WH =
∫

� i d� (4.39)

The lost energy is irreversibly transformed into heat in the inductor core.
We will see in Chapter 5 that inductor core heating can result from another physical

mechanism (eddy currents).

4.12 Multiple Circuit Systems

The analysis of magnetic coupling phenomena is of crucial importance in a variety of
electrical engineering problems where multiple circuit systems are in play, such as printed
circuit boards, power lines, transformers, multiple inductor circuits, etc. To give you a couple
of simple examples, consider the illustrations in Figure 4.24, which describe a two-conductor
transmission line above a conducting plane, and a two-coil system.
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Figure 4.24 Magnetically coupled circuits. (a) Two-conductor transmission line above ground. (b)
Two single-turn coil system

Assuming a linear behavior for the systems (neglecting saturation and hysteresis), the
magnetic fluxes linked with the circuits 1 and 2 can be expressed as linear combinations of
their own currents:

�1 =
∫

Ss1

B�I1� I2� · nS1
dS = L11I1 +L12I2

�2 =
∫

Ss2

B�I1� I2� · nS2
dS = L21I1 +L22I2

(4.40)

The magnetic coupling between circuits is described by the mutual inductances L12 and L21.
In the general case of n-coupled circuits and, in analogy with the electrostatic matrix

formulation presented in (2.44), we can write
⎡
⎢⎢⎢⎢⎢⎢⎣

�1





�k





�n

⎤
⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸[
�

]

=

⎡
⎢⎢⎢⎢⎢⎢⎣

L11 · · · L1k · · · L1n














Lk1 · · · Lkk · · · Lkn














Ln1 · · · Lnk · · · Lnn

⎤
⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
�L�

⎡
⎢⎢⎢⎢⎢⎢⎣

I1




Ik





In

⎤
⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
�I�

(4.41)

The square n×n real matrix [L] is called the inductance matrix. The entries of [L] can be
determined using various methods. They can be found experimentally by measuring fluxes
and currents, they can be found numerically using dedicated computer programs and in some
cases, when very simple geometries are considered, they can also be determined analytically.

Whatever the method, the results you will obtain should be checked against a few general
properties that matrix [L] must necessarily obey. These properties are almost the same as
those that were reported earlier for the capacitance matrix [C] of multiple conductor systems
(Chapter 2), namely:

[L] is a symmetric matrix;
[L] is a positive definite matrix.

In addition, if the contour paths sk used for the definition of the linkage fluxes �k are oriented
according to the reference directions of the Ik currents (Figure 4.24) then the Lkk entries
(self-inductances) will all be positive.
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However, the mutual inductances Lij = Lji can have positive or negative algebraic signs,
depending on the arbitrarily chosen reference directions for the Ii and Ij currents; in the
first case we say we have concordant coupling, whereas in the second case the coupling is
discordant.

A positive dimensionless parameter usually introduced to characterize the extent of the
magnetic coupling between the ith and jth circuits is the so-called magnetic coupling factor
kij . It is defined as the ratio of the absolute value of the circuits’ mutual inductance and the
geometric mean value of the circuits’ self-inductances

kij =
∣∣Lij

∣∣
√

LiiLjj


 0 < kij < 1 (4.42)

If, on the one hand, the two circuits are non-interacting (Lij = 0) then you will have kij = 0.
On the other hand, if all the magnetic field lines produced by current Ii pass across the
integration surface where �j is evaluated (or vice versa), then the magnetic coupling is said
to be perfect and you will have kij = 1.

Do you have any questions? Can you see the reason why the magnetic coupling factor
cannot exceed 1?

It is just a consequence of the fact that [L] is a positive definite matrix. In fact, such a
property requires that the reduced determinant

∣∣∣∣
Lii Lij

Lji Ljj

∣∣∣∣

must be positive.
Then, taking into account that Lij = Lji, you can obtain LiiLjj −L2

ij > 0, from which you
conclude

L2
ij

LiiLjj

= k2
ij < 1 → kij < 1

The limiting case kij = 1 is a mathematical abstraction which usually goes hand in hand
with the ordinary approximation of neglecting dispersion phenomena.

In order to illustrate the procedure used for determining the [L] matrix, consider the
important example of a single-core transformer with two windings – see Figure 4.25.

Figure 4.25 Single-core transformer with two windings
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Neglecting dispersion, the magnetic flux � circulating in the core is obtained with the
help of Ampère’s law

Rm� = N1I1 +N2I2 (4.43)

where Rm is the core magnetic reluctance, which depends only on the core magnetic
permeability and on the core geometry.

The magnetic fluxes linked with both transformer windings are (neglecting dispersion)

�1 =
∫

Ss1

B · nS1
dS = �+�+ · · · +�+�︸ ︷︷ ︸

N1 times

= N1 � (4.44a)

�2 =
∫

Ss2

B · nS2
dS = �+�+· · ·+�+�︸ ︷︷ ︸

N2 times

= N2 � (4.44b)

From (4.44) and (4.43), you can obtain
⎧
⎪⎪⎨
⎪⎪⎩

�1 = N 2
1

Rm

I1 + N1N2

Rm

I2

�2 = N1N2

Rm

I1 + N 2
2

Rm

I2

(4.45)

By comparing (4.45) to (4.40), you finally find

L11 = N 2
1

Rm


 L22 = N 2
2

Rm


 L12 = L21 = LM = N1N2

Rm

(4.46)

Three remarks are in order:

1. In this case you have k = 1 for the magnetic coupling factor; this should be no surprise
since dispersion was neglected.

2. A positive value resulted for the mutual inductance in this analysis. However, had you
decided to change the reference direction of I1 or I2 (but not both simultaneously) then
LM would turn out to be negative.

3. The results in (4.46) pertain to the particular configuration shown in Figure 4.25; do not
make the mistake of using them as a general recipe for analyzing magnetic circuits with
other configuration types.

To end this section we must address the important issue of the magnetic energy stored in a
multiconductor linear system.

You saw in Section 4.6 that the magnetic energy of a single circuit could be evaluated
through

Wm = �I

2
When multiple, n-coupled, circuits are present, in analogy with the electrostatic situation
(2.47), you can write

Wm = �1I1

2
+· · ·+ �kIk

2
+· · ·+ �nIn

2
=

n∑
k=1

�kIk

2
(4.47)
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Put in matrix form

Wm = 1
2

[
�1 · · · �k · · · �n

]

⎡
⎢⎢⎢⎢⎢⎢⎣

I1




Ik





In

⎤
⎥⎥⎥⎥⎥⎥⎦

= 1
2

���T �I�

Using ��� = �L� �I� from (4.41), and noting that matrix [L] is symmetric, you find

Wm = 1
2

�I�T �L� �I� (4.48)

You should bear in mind that the above result is analogous to

We = 1
2

�U�T �C� �U�

in (2.49).
For a system of two-coupled circuits like those shown in Figure 4.24 and Figure 4.25,

from (4.48), you find Wm given by the following quadratic form:

Wm = 1
2

(
L11I

2
1 +2LMI1I2 +L22I

2
2

)
(4.49)

4.13 Magnetic Forces and Torques

Magnetic forces and torques can be evaluated using exactly the same type of formulation
elaborated in Section 2.11 for the computation of electric forces and torques (Chapter 2).

Here, you just need to change some of the nomenclature. By using the analogies in
Table 4.1, you can immediately write, without further discussion,

Table 4.1 Electric and magnetic forces and torques

Electric Magnetic

Fe = −grad We	Q Fm = −grad Wm	�
T� = −

(
�We

��

)

Q

T� = −
(

�Wm

��

)

�

Magnetic force:

⎧
⎪⎨
⎪⎩

Fm = fx �ex +fy �ey +fz �ez = − grad Wm	�
fx = −

(
�Wm

�x

)

�


 fy = −
(

�Wm

�y

)

�


 fz = −
(

�Wm

�z

)

�

(4.50)

Magnetic pressure: P = ŵm (4.51)

Magnetic torque: T� = −
(

�Wm

��

)

�

(4.52)
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We saw in (2.63) that the maximum pressure achievable by electric forces could be estimated
to around 40 N/m2. However, magnetic forces are much more powerful. Considering the
case of a magnetic induction field in an air gap with a typical value of B = 1 T, you will
find from (4.51)

P = ŵm = B2

2�0

≈ 400 kN/m2

which is a four-fold more intense pressure than the one found in the electric case.

4.14 Application Example (U-Shaped Electromagnet)

Consider the U-shaped electromagnet shown in Figure 4.26. The ferromagnetic yoke and
bar are separated by two small-size air gaps of length x. The magnetic circuit is driven by
a current I flowing in a coil with N turns.

Questions

Q1 Determine analytically the magnetic force fx exerted on the bar.

Q2 Particularize the result for the case of a linear system (ignoring saturation).

I

S S

B0B0

Yoke

Bar

0

x

F =  fxex
r

N

Figure 4.26 U-shaped electromagnet.

Solutions

Q1 From (4.50) we have

fx = −
(

�Wm

�x

)

�

(4.53)

Since the computation of the force is made under the assumption that the magnetic flux
linked with the coil is invariant with x, the magnetic induction field itself will also be
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invariant with x. Noting, in addition, that the volume of the ferromagnetic circuit parts
is constant, we can write for the global magnetic energy

Wm�x� = Wmyoke
+Wmbar

+Wmair
�x�

Then, from (4.53), we find

fx = −
(

�Wmair

�x

)

�

= − d

dx

⎛
⎜⎜⎜⎝2× B2

0

2�0

× Sx︸︷︷︸
air gap
volume

⎞
⎟⎟⎟⎠ = − S

�0

B2
0 (4.54)

The magnitude of the air gap field B0 is evaluated using Ampère’s law (Section 4.2).
The minus sign in fx reveals that the force is attractive no matter if B0 is positive or
negative. The above result is valid even if the ferromagnetic circuit parts are operating
in the saturation zone.

Q2 If, however, we are sure that the ferromagnetic parts have their operation points in the
linear zone then an alternative option for the calculation of fx can be presented.

From (4.32), the inductance L of the coil depends on x through

L�x� = N 2

Rmyoke
+Rmbar

+ 2x

�0S

(4.55)

From (4.34) the magnetic energy stored in the system can be determined from L by
using Wm = �2/�2L�, and, consequently, from (4.53) and (4.55), we get

fx = −
(

�Wm

�x

)

�

= 1
2

(
�

L

)2
dL

dx
= − �NI�2

�0S

(
Rmyoke

+Rmbar
+ 2x

�0S

)−2

Therefore we see that the attractive force actuates so as to increase the coil inductance
L. The force is independent of the algebraic sign of the driving current. The smaller the
air gap, the stronger the force. The force is maximum when the yoke and the bar are in
contact (x = 0)

�fx�max = − 1
�0S

(
NI

Rmyoke
+Rmbar

)2

(4.56)

4.15 Proposed Homework Problems

Problem 4.15.1

Consider again the coaxial cable examined in Section 4.10 (Figure 4.21), where the per-unit-
length external inductance of the cable was determined. In that problem we also evaluated
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the H-field intensity inside both the inner conductor and the shield. In addition to the
predominant magnetic energy stored in the space between cable conductors (r1 < r < r2), two
other contributions should be accounted for: one inside the inner conductor and one inside the
shield. These two terms allow for the definition of corresponding cable internal inductances.

Q1 By volume integration, find the per-unit-length magnetic energy stored inside the inner
conductor (0 < r < r1) and, based on that result, show that the inner conductor’s
contribution to the per-unit-length internal inductance of the cable, Linner, is given by

Linner = �0

8�

Q2 By volume integration, find the per-unit-length magnetic energy stored inside the cable
shield (r2 < r < r3) and, based on that result, compute the shield contribution to the
per-unit-length internal inductance of the cable, Lshield. Check that, for the usual case of
thin shields (r3 − r2 
 r2), the following approximation is valid:

Lshield = �0

6�

(
r3

r2

−1
)

Q3 Evaluate numerically Linner and Lshield. Compare to L (external).

Answers

Q1

Wminner
=

∫

V

�0H
2

2
dV = �0

2

r1∫

0

H22�r dr = I2 �0

16�

 Linner = 2Wminner

I2
= �0

8�

Q2

Lshield = 2Wmshield

I2
= �0

r3∫

r2

(
H

I

)2

2�r dr = �0

2�

1

�r2
3 − r2

2 �2

(
r4

3 ln
r3

r2

+ r4
3 − r4

2

4
− r2

3 �r2
3 − r2

2 �

)

When r3 − r2 
 r2, the following approximation results:

Lshield = �0

6�

(
r3

r2

−1
)

Q3 Linner = 50 nH/m �16 %L�; Lshield = 1
3 nH/m�0
4 %L�.

Problem 4.15.2

Figure 4.27 represents an aerial two-wire transmission line of indefinite length l, whose
cylindrical conductors of radius r have their axes separated by a distance 2d. A current I
flows in both conductors.
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Figure 4.27 Two-wire transmission line. The flux linkage across the shaded rectangle is proportional
to the line current, � = LI .

Q1 By summing the contributions due to both conductors, find the H-field distribution
outside the conductors, H�x�, in the horizontal plane y = 0.

Q2 Determine the flux � linked with the two-wire line.
(Hint: Integrate B across a rectangular surface of length l lying on the horizontal plane –
see Figure 4.27.)

Q3 Based on the above result obtain the per-unit-length external inductance of the two-wire
line.

Q4 Numerical application. Take I = 100 mA. Consider r = 1 mm, d = 5 mm.
Compute the H-field intensity at x = 0 and x = ±�d− r�.
Compute the per-unit-length flux linkage.
Compute the per-unit-length external inductance of the line.
Compute the per-unit-length magnetic energy stored outside the line conductors.

Answers

Q1

H = H�x��ey
 H�x� = I

2�

(
1

d−x
+ 1

d+x

)

Q2

� =
∫

Ss

B · nS dS =
∫

Ss

B dS =
d−r∫

r−d

�0H�x� ldx = 2�0l

d−r∫

0

H�x�dx = I

(
�0l

�
ln

2d− r

r

)

Q3

L = �/I

l
= �0

�
ln

2d− r

r

This result can be further simplified if the thin-wire approximation (r 
 d) is employed,
that is,

L = �0

�
ln

2d

r
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Q4

H�0� = I

�d
= 6
4 A/m
 Hx=±�d−r� = H�0�× d2

r�2d− r�
= 17
7 A/m

� = 87
9 nWb/m
 L = 878
9 nH/m
 Wm = 4
4 nJ/m

Problem 4.15.3

Consider a system of two cylindrical thin wires of length l and radii r, separated by a
distance 2d, running at height h above a perfectly conducting ground plane (conductor 0) –
see Figure 4.28. The material media above the conducting plane have non-magnetic
characteristics (� = �0). I1 and I2 are the currents in wires 1 and 2.

Data: r = 1 mm, d = 1 cm, h = 1 cm.

Figure 4.28 Two-wire transmission line above a perfectly conducting ground

Q1 Take I1 �= 0 and I2 = 0. Determine the x component of H at points belonging to the
vertical planes x = ±d (for y > 0).

Q2 Find the fluxes �1 and �2 linked with the two circuits (circuits 1/0 and 2/0).

Q3 Determine the per-unit-length inductance matrix [L] of the system.

Q4 Find the magnetic coupling factor k between the circuits 1/0 and 2/0.

Q5 Consider the so-called differential-mode or odd-mode operation, where I1 = −I2 = I .
Find the flux � linked with the circuit composed by the wires 1 and 2 and determine the

corresponding per-unit-length inductance Lodd. Confirm the inductance result based on
magnetic energy considerations. Discuss the proximity effect arising from the presence
of the ground conductor.

(Hint: The analysis of this problem can be conducted using an equivalent four-
conductor system, since the ground current magnetic effects can be accounted for by
considering image currents of intensity −I1 and −I2, located at (−d, −h) and (d, −h)
respectively.)
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Answers

Q1 At x = −d:

Hx�y� = I1

2�

(
1

h−y
+ 1

h+y

)
= H1

At x = +d:

Hx�y� = I1

2�

(
h−y

4d2 + �h−y�2
+ h+y

4d2 + �h+y�2

)
= H2

Q2

�1�I1� =
∫

Ss1

�0H · �exdS = �0l

h−r∫

0

H1 dy = I1

(
�0l

2�
ln

2h

r

)

�2�I1� =
∫

Ss2

�0H · �exdS = �0l

h−r∫

0

H2 dy = I1

(
�0l

2�
ln
√

�h/d�2 +1
)

Note that the above results are valid provided that r 
 d and r 
 h (thin-wire
approximation).

Q3

L11 = 1
l

�1

I1

∣∣∣∣
I2=0

= �0

2�
ln

2h

r
= 599
1 nH/m

L12 = L21 = LM = 1
l

�2

I1

∣∣∣∣
I2=0

= �0

2�
ln
√

�h/d�2 +1 = 69
3 nH/m

L22 = L11 (due to the geometrical symmetry of the configuration).

�L� =
[

599
1 69
3
69
3 599
1

]
nH/m

Q4 k = 0
12.

Q5 � = �1�I1� I2�−�2�I1� I2� = 2�L11 −LM�I� with I1 = −I2 = I and L11 = L22.

� = I

(
�0l

�
ln

2h

r
√

�h/d�2 +1

)

Lodd = 1
l

�

I
= �0

�
ln

(
2d

r
× 1√

1+ �d/h�2

)
= 1
06 	H/m

Wm = 1
2

L11I
2
1 +LMI1I2 + 1

2
L22I

2
2 = 1

2
�2�L11 −LM��︸ ︷︷ ︸

Lodd

I2
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Lodd = �0

�
ln

(
2d

r
× 1√

1+ �d/h�2

)
= L	h=� − �0

2�
ln
(
1+ �d/h�2

)
︸ ︷︷ ︸

�Lproximity effect

For h → �,

Lodd = L	h=� = �0

�
ln

2d

r
= 1
20 	H/m

(see Problem 4.15.2)

�Lproximity effect = 0
14 	H/m

As you bring the two-wire circuit closer to the ground plane the equivalent self-
inductance of the circuit (Lodd) progressively diminishes.

Problem 4.15.4

Consider the conductor system analyzed in Problem 4.15.3, and focus your attention on the
evaluation of magnetic forces. Assume that I1 = −I2 = I = 1 A.

Q1 Determine the horizontal component of the per-unit-length force exerted on each wire.

Q2 Determine the vertical component of the per-unit-length force exerted on each wire.

Q3 Determine the ratio of the above force components.

Answers

Q1 Let conductor 2 remain at a fixed position, define x = 2d as the horizontal separation
between conductors 1 and 2, and allow conductor 1 to undergo a virtual displacement
dx. Then

fx =−
(

�Wm

�x

)

�

=− �

�x

(
1
2

�2

Lodd

)
=+1

2
�2

L2
odd

�Lodd

�x
= I2

2
�

�x

[
�0

�
ln

x

r
− �0

2�
ln
(

1+ x2

4h2

)]

fx = I2 �0

4�d
× 1

1+�d/h�2
=5 	N/m

The horizontal force is repulsive and actuates so as to increase the self inductance Lodd

of the circuit made by wires 1 and 2.

Q2 Define y = 2h as the vertical separation between the wires and their corresponding
images below the ground plane, and allow both wires to undergo a virtual displacement
dy. Then

fy =−
(

�Wm

�y

)

�

=− �

�y

(
1
2

�2

Lodd

)
=+1

2
�2

L2
odd

�Lodd

�y
= I2

2
�

�y

[
�0

�
ln

2d

r
− �0

2�
ln
(

1+ 4d2

y2

)]

fy = I2 �0

4�h
× 1

1+�h/d�2
=5 	N/m
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The vertical force is repulsive and also actuates so as to increase the self-inductance
Lodd of the circuit made by wires 1 and 2.

Q3 In the general case you have

fx

fy

=
(

h

d

)3

In this problem, where h = d, you get fx = fy. Note that the wires and their images
define a perfect square in a cross-sectional view, and, therefore, the equality fx = fy is
just a consequence of the system symmetry.

Problem 4.15.5

Consider a toroidal magnetic circuit with a square cross-section. The inner and outer radius of
the toroid are r1 = 1 cm and r2 = r1 +a = 2 cm (see Figure 4.29). The magnetic circuit is made
of a linear homogeneous medium with relative permeability �r = 1000. The magnetization
current is I .

Figure 4.29 Toroidal magnetic circuit excited by a magnetization current I

Q1 Determine analytically the magnetic reluctance Rm of the toroid.
(Hint: Take into account that, inside the toroid, H- and B-field lines are circumferences;
the intensity of both fields decreases with increasing r.)

Q2 Compute Rm numerically.

Q3 Obtain an approximate result for the magnetic reluctance using Rm = l/��S� – see
(4.24) – where l is the toroid’s perimeter mean value. Compare with the exact result.

Answers

Q1 From Ampère’s law:

2�r ×H�r� = NI → H�r� = NI

2�r

 B�r� = �0�r

I

2�r
for r1 < r < r2
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The magnetic voltage measured along the toroid, that is along a circular field line of
H, is

Um =
∫

�

S

H ·ds = NI

The magnetic flux through the toroid’s cross-section S is

� =
∫

S

B ·n dS =
r2∫

r1

B�r�adr = NI
�0�ra

2�
ln

r2

r1

Hence,

Rm = Um

�
= 2�

�0�ra ln�r2/r1�

Q2 Rm = 721
35 kH−1.

Q3

Rm ≈ 2��r2 + r1�/2
�0�ra

2
= 750 kH−1

(excess error of 4%).

Problem 4.15.6

Consider a magnetic circuit made of two identical toroidal cores whose magnetic reluctance
was determined in the preceding problem. As shown in Figure 4.30, three coils with N1, N2

and N3 turns are wound around the cores.
Data: N1 = 100, N2 = 50, N3 = 50.

Q1 Determine the magnetic fluxes in the cores �1 and �2 as a function of I1, I2 and I3.

Q2 Determine the fluxes linked with the coils �1, �2 and �3.

Q3 Based on the above results, find the inductance matrix of the system [L].

Q4 Assume I1 = 1 A. Determine I2 and I3 such that �1 = 0
1 mWb and �2 = 0.
Compute �1, �2 and �3, and then obtain the magnetic energy stored, specifying its

distribution in space.

Answers

Q1 ⎧
⎪⎨
⎪⎩

Rm�1 = N1

2
I1 +N2I2

Rm�2 = N3I3 − N1

2
I1
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Figure 4.30 Magnetic circuit with two identical toroidal cores driven by a set of three currents, I1,
I2 and I3

Q2

�1 = N1

2
��1 −�2� =

(
N 2

1

2Rm

)

︸ ︷︷ ︸
L11

I1 +
(

N1N2

2Rm

)

︸ ︷︷ ︸
L12

I2 +
(

−N1N3

2Rm

)

︸ ︷︷ ︸
L13

I3

�2 = N2�1 =
(

N1N2

2Rm

)

︸ ︷︷ ︸
L21

I1 +
(

N 2
2

Rm

)

︸ ︷︷ ︸
L22

I2 and �3 = N3�2 =
(

−N1N3

2Rm

)

︸ ︷︷ ︸
L31

I1 +
(

N 2
3

Rm

)

︸ ︷︷ ︸
L33

I3

Q3

L11 = 2L12 = −2L13 = 2L22 = 2L33
 �L� =
⎡
⎣

6
93 3
46 −3
46
3
46 3
46 0

−3
46 0 3
46

⎤
⎦ mH

Q4

I2 = Rm�1 −N1I1/2
N2

= 0
443 A
 I3 = N1I1

2N3

= 1 A

�2 = 0 →
{

�1 = N1

2
�1 = �2 = N2�1 = 5 mWb

�3 = 0

Wm =
3∑

k=1

�kIk

2
= 3
61 mJ

All the energy is stored in core 1, since in core 2 the fields B and H are zero:

Wm =
∫

Vcore 1

BH

2
dV = 1

2
Rm �2

1 = 3
61 mJ
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Problem 4.15.7

The two magnetically coupled coils in Figure 4.31 are characterized by known values of
their self-inductances L11 and L22. The magnetic coupling factor k is unknown.

Figure 4.31 Two magnetically coupled coils. (a) Concordant coupling (LM > 0). (b) Discordant
coupling (LM < 0)

Q1 Assume that the coils are connected in series as shown in Figure 4.31(a). Determine the
equivalent inductance of the association La.

Q2 Assume that the coils are connected in series as shown in Figure 4.31(b). Determine the
equivalent inductance of the association Lb.

Q3 Show that the coupling factor can be computed as

k = La −Lb

4
√

L11L22

Answers

Q1 For the case of concordant coupling (LM > 0):

La = �1 +�2

I
= �L11 +	LM 	� I + �L22 +	LM 	� I

I
= L11 +L22 +2 	LM 	

Q2 For the case of discordant coupling (LM < 0):

Lb = �1 +�2

I
= �L11 −	LM 	� I + �L22 −	LM 	� I

I
= L11 +L22 −2 	LM 	

Q3 La −Lb = 4 	LM 	 = 4k
√

L11L22.
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Problem 4.15.8

Consider the magnetic circuit represented in Figure 4.32, where, for simplification purposes,
the iron parts are assumed to have zero magnetic reluctance (�Fe → �). The two air gaps
have thickness � = 1 mm. A current I flows in a coil with 1500 turns; this coil is constituted
by three series-connected windings as shown in the figure.

Data: S3 = 3
183 cm2; S1 = S2 = S3/2; N1 = N2 = N3 = N = 500; I = 1 A. Neglect dispersion
phenomena.

Figure 4.32 Magnetic circuit with a coil made of three series-connected windings

Q1 Find the magnetic reluctance Rm of each air gap.

Q2 Obtain the magnetic fluxes �1, �2 and �3.

Q3 Determine the intensities of the B and H fields in the air gaps and also in the iron part
corresponding to the winding with N3 turns. Obtain the magnetic energy stored in the
circuit.

Q4 Determine the flux � linked to the coil with 1500 turns and find its inductance L.

Q5 Confirm the above result based on energy considerations.

Answers

Q1

Rm1
= Rm2

= Rm = �

�0S
= 5×106 H−1 �S = S1 = S2�

Q2 ⎧
⎨
⎩

Rm�1 −Rm�2 = N1I +N2I
Rm�2 = N3I −N2I
�3 −�2 −�1 = 0

→
{

�1 = �3 = 0
2 mWb
�2 = 0

Q3 Air gap 1:
{

B1 = �1/S1 = 1
257 T
H1 = B1/�0 = 106 A/m
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Air gap 2:
{

B2 = �2/S2 = 0
H2 = B2/�0 = 0

Iron (part 3):
{

B3 = �3/S3 = 0
628 T
H3 = B3/�Fe = 0

Fields B and H are not simultaneously zero only at air gap 1; all the magnetic energy
is concentrated there,

Wm = B1H1

2
× �S1��︸ ︷︷ ︸

V1

= 100 mJ

Q4 � = �1 +�2 +�3 = �N1�1�+ �−N2�2�+ �N3�3� = 200 mWb; L = �/I = 200 mH.

Q5

Wm = 1
2

LI2 → L = 2Wm

I2
= 200 mH

Problem 4.15.9

A cylindrical solenoid driven by a current I contains in its interior a ferromagnetic cylinder
core that can run along the solenoid x axis – see the longitudinal cross-section depicted in
Figure 4.33.

Figure 4.33 Longitudinal cross-section of a cylindrical solenoid, containing a ferromagnetic core
(shaded part) that can freely move along the x axis

Q1 The solenoid’s inductance as a function of the position of the ferromagnetic core can
be approximated by L�x� ≈ L0 −�x2, for small values of x. Is � positive or negative?
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Q2 Determine the magnetic force Fx exerted on the core. Check that it is positive for x < 0
but negative for x > 0.

Q3 Taking into account that the mass of the core is M , determine the mechanical equation
that governs the movement of the core along x (neglect friction phenomena). What type
of movement will you get? What would it happen if a small friction factor were present?

Answers

Q1 � > 0.

Q2

Fx = −
(

�Wm

�x

)

�

= 1
2

I2 dL

dx
= −�I2x

Note that the force acts so as to bring the core to its central position inside the solenoid,
irrespective of the algebraic sign of I .

Q3

M
d2x

dt2
+�I2x = 0

The solution to the above equation is an oscillatory movement described by

x�t� = X cos��t +��

where the oscillation’s angular frequency � is controlled by the solenoid current I ,
� = I

√
�/M . The particular values of X and � depend on the particular initial conditions

of the problem (initial position and initial velocity of the core).
If friction is present you will get a damped oscillation which ultimately brings the

core to rest at its central position x = 0.

Problem 4.15.10

The results in (4.50)–(4.52) allow the magnetic forces and torques to be obtained from the
negative derivative of the magnetic energy at constant flux.

Q1 How would you compute F and T under constant current conditions?

Q2 Particularize the result for linear systems.

Answers

Q1

dWG = i d�� dWmec = fxdx


dWG = dWm +dWmec → dWm = i d� −fx dx
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As shown in Figure 4.34, the areas above and below the curve ��i� are not identical;
while the first represents the magnetic energy Wm, the second defines the so-called
magnetic co-energy W ′

m = i� −Wm.

Figure 4.34 Magnetic energy and magnetic co-energy of a nonlinear system

Differentiating W ′
m we find

dW ′
m = i d� +� di−dWm = � di+fx dx (4.57a)

Let W ′
m be a function of the independent variables i and x, W ′

m�i� x�; therefore

dW ′
m =

(
�W ′

m

�i

)

x

di+
(

�W ′
m

�x

)

i

dx (4.57b)

By comparing the results in (4.57) we get

fx = +
(

�W ′
m

�x

)

i

(4.58)

Torque evaluation follows the same rationale:

T� = +
(

�W ′
m

��

)

i

Q2 For linear systems, where W ′
m = Wm, we naturally obtain

fx = +
(

�Wm

�x

)

i

and T� = +
(

�Wm

��

)

i



Part III
Slow Time-Varying
Fields





Introduction

For time-varying electromagnetic phenomena the time variable t is ubiquitous, hence you
need to consider the original Maxwell’s equations exactly as they are:

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

curl E = −�B
�t

div B = 0

curl H = J + �D
�t

div D = �

(PIII.1)

Does this mean that the subjects treated in Part II have the recycle bin as their destiny?
Well, it depends on how fast or slow the fields vary with time.

It makes sense that for slow time-varying fields – the so-called quasi-stationary regime –
most of the results obtained in Part II should hold true and provide very good approximations.
The strategy ordinarily used to deal with quasi-stationary regimes consists of treating the
capacitive effects associated with �D/�t (electric induction phenomena) separately from the
inductive effects associated with �B/�t (magnetic induction phenomena).

Before we can continue, a crucial question needs to be clarified. What is a slow time-
varying regime? How do you draw the line between slow and fast fields?

Although we are going to prove this in Part IV, you probably have already heard that
electromagnetic waves propagate in free space with a velocity c = 3 × 108 m/s. In the
particular case of space–time sinusoidal waves, the time periodicity and the space periodicity
are characterized, respectively, by the period T and the wavelength �, these two parameters
being correlated through � = cT .

Consider a sinusoidal voltage generator connected to a load through a pair of perfectly
conducting wires of length l. Let uG and iG be the generator voltage and current; likewise let
uL and iL be the load voltage and current. Voltages uG and uL share the same shape and the
same period T , but, in general, they do not coincide with each other, uG�t� �= uL�t�, because,
in fact, the electromagnetic wave originating at the generator site takes some time to reach
the distant load; the corresponding time delay (or propagation time) is given by � = l/c.

The same argument applies equally to the generator and load currents, that is iG�t� �= iL�t�.

Electromagnetic Foundations of Electrical Engineering J. A. Brandão Faria
© 2008 John Wiley & Sons, Ltd
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You can say that the regime is a quasi-stationary regime whenever the delay time is
negligibly small compared to T , in which case you can employ the very good approximations
uG = uL and iG = iL. Note, in addition, that the inequality � � T can be rewritten as

�l/c�︸︷︷︸
�

� ��/c�︸ ︷︷ ︸
T

→ l � � (PIII.2)

In short, quasi-stationary regimes are those for which the length of the structure under
analysis is much shorter than the lowest wavelength characterizing the field dynamics. If the
opposite happens then you will be dealing with a rapid time-varying phenomenon. This is
how you draw a line between the problems we are going to analyze in Part III and Part IV.

Part III is subdivided into three chapters. Chapter 5 is concerned with magnetic induction
phenomena where electric fields E are produced by B fields originated by time-varying
conduction currents J(t). In Chapter 5 we assume that the magnitude of �D/�t is small
compared to the magnitude of J (neglecting of capacitive effects). Hence, the key equations
for Chapter 5 are

⎧
⎪⎨
⎪⎩

curl E = −�B
�t

div B = 0
curl H ≈ J

(PIII.3)

Chapter 6 is concerned with electric induction phenomena, where magnetic fields H
are produced by E fields originated by time-varying charge distributions ��t�. Magnetic
induction phenomena from Chapter 5 are assumed to be negligibly small. Key equations for
Chapter 6 are

⎧
⎪⎨
⎪⎩

curl H = J + �D
�t

div D = �
curl E ≈ 0

(PIII.4)

Chapter 7 deals, to a great extent, with electrical engineering applications of the theoretical
results presented in Chapters 5 and 6. There we will address the steady-state harmonic
regime and the transient regime for circuit analysis using the standard lumped parameters
approach, which applies to slow time-varying phenomena.

A final word is in order concerning the notation employed in the analysis of time-varying
phenomena: While in Part II upper-case italic symbols have been used to denote stationary
quantities, from now on we will utilize lower-case italic symbols for time-varying quantities.



5
Magnetic Induction Phenomena

5.1 Fundamental Equations

The fundamental laws governing magnetic induction problems are those in (PIII.3)
⎧
⎪⎪⎨
⎪⎪⎩

curl E = −�B
�t

div B = 0

curl H ≈ J

(5.1)

together with the constitutive relations concerning B(H) and J(E).
In order to spur on your interest in this new topic, we will point out just two very

simple situations that cannot be justified in the framework of stationary fields, and that
require the above equations for their correct interpretation. Here, you will find cases where
closed circuits, containing no generators whatsoever, can have currents flowing in them.
Conversely, you also will find cases where open circuits can display voltages across their
terminals despite the absence of generators.

5.2 Gradient and Induction Electric Fields, Potential Vector

As you know, for purely stationary phenomena, the electric field vector is a gradient field
originated by electric charges. From Part II, we found E = Eg, with

curl Eg = 0 → Eg = −grad V

div Eg = �/�
(5.2)

For time-varying phenomena we necessarily have E �= Eg. Yet, it may be useful to consider
the electric field vector to be broken down into two different contributions, the first of
which is the gradient electric field, and the second is a new contribution, termed the electric
induction field Ei:

E = Eg +Ei (5.3)

Electromagnetic Foundations of Electrical Engineering J. A. Brandão Faria
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The properties of Ei can be obtained simply by substituting (5.3) into Maxwell’s equations
for homogeneous media:

curl E = curl Eg + curl Ei = −�B/�t

div E = div Eg +div Ei = �/�

By taking (5.2) into account we obtain for the electric induction field
{

curl Ei = −�B/�t

div Ei = 0
(5.4)

from which we can see that the field lines of Ei are closed, embracing field lines of time-
varying B – see Figure 5.1. If B happens to be a stationary field then Ei no longer exists.

Figure 5.1 Time-varying B fields give rise to electric induction Ei fields

At this point, we recommend that you look again at div B = 0. From vector calculus we
know that div curl ≡ 0, and therefore we are allowed to define B as the curl of an auxiliary
vector function A (with the same degree of arbitrariness mentioned earlier when the potential
function V was introduced in Chapter 2):

B = curl A (5.5)

Function A, just introduced, is known by the name of potential vector (units: Wb/m, weber
per meter). Substituting (5.5) into (5.4), you readily get Ei = −�A/�t. This allows you to
express the electric field vector as the sum of two contributions where both the old scalar
potential and the new potential vector appear:

E = −
(

grad V + �A
�t

)
(5.6)

5.3 Revisiting the Voltage Concept

The aspect we are now going to address is new and critical, because it goes against your
intuition. So, please pay attention. If you have two ideal voltmeters V1 and V2 connected
between the same pair of terminals a and b – see Figure 5.2 – and if you are asked about
the relationship between their readings, what will your answer be?
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Figure 5.2 For time-varying regimes, u1�t� �= u2�t� �= �Va −Vb�

Most of you will say that the readings are the same. But that may be well wrong!
Let us go back to the original definition of voltage in (1.7) and replace E with its new

definition in (5.6):

u =
∫

−→
ab

E ·ds = −
∫

−→
ab

grad V ·ds− d

dt

∫

−→
ab

A ·ds = �Va −Vb�− d

dt

∫

−→
ab

A ·ds (5.7)

Since A is not a conservative field �curl A �= 0�, the evaluation of

∫

−→
ab

A ·ds

depends, in general, on the particular path going from a to b. This shows not only that
voltage and potential difference are quite different things, u �= Va − Vb, but also that the
evaluation of u requires a clear specification of the integration path between the two points
a and b. Then, from (5.7), considering the voltages in Figure 5.2, we have

u1 = �Va −Vb�− d

dt

∫

−−−→
�ab�s1

A ·ds� u2 = �Va −Vb�+ d

dt

∫

−−−→
�ba�s2

A ·ds

By subtracting the preceding results we obtain the difference of the two voltmeters’
readings:

u1 −u2 = − d

dt

⎛
⎜⎜⎝
∫

−−−→
�ab�s1

A ·ds+
∫

−−−→
�ba�s2

A ·ds

⎞
⎟⎟⎠= − d

dt

∫

�

S

A ·ds (5.8)

where s, the reunion of the subpaths s1 and s2, is a closed clockwise-oriented path.
If A is null �B = 0� or time invariant then we will get u1 = u2.
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5.4 Induction Law

The cornerstone of magnetic induction phenomena, which allows us to evaluate voltages
arising from time-varying B-fields, is the Maxwell–Faraday induction law.

From curl E = −�B/�t, using the already familiar Stokes theorem, we get

∫
�

S

E ·ds = − d

dt

∫

ss

B ·nS dS or
∫

�

S

E ·ds = −d�S

dt
(5.9)

where, as defined in (4.28), �S is the magnetic flux linked with the circulation path s. In
(5.9), the unit vector nS normal to Ss is oriented according to the Stokes rule (right-hand
screw rule).

The induction law in (5.9) simply states that the electromotive force induced along a
closed path is equal to the negative derivative of the magnetic flux linked with that path.

The question posed in Figure 5.2, concerning the voltmeters’ readings, can be reanswered
(avoiding the use of the potential vector A) by making use of the induction law:

u1 −u2 = − d

dt

∫

Ss

B ·nS dS = −d�S

dt

As long as the open surface Ss having the path s as its bounding edge is traversed by a
time-varying magnetic field, voltages u1 and u2 will be different.

5.5 Application Example (Magnetic Noise Effects)

Figure 5.3 shows an indoor electrical socket where a two-wire line is plugged in; the line is
left open �i = 0� at the opposite end.

x

y

zl

a0

b0

a

b

s

wu0 Ss

nS

u

SO
C

K
E

T

Figure 5.3 The relationship between voltages u0 and u depends on the magnetic noise interference
produced by externally produced B fields in the region under analysis

Assume that the two-wire line is longitudinally stretched so as to define a rectangular
path of length l and width w, lying in the zx plane. Assume also that the socket voltage
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is u0�t� = U0 cos�	0t� and consider electronic equipment placed somewhere in the
neighborhood that gives rise, in the region of the line, to a uniform magnetic field noise
described by B�t� = BM cos�	Bt�.

Questions

Q1 Determine u�t� assuming that B = B�t��ex.

Q2 Determine u�t� assuming that B = B�t��ey.

Q3 Describe a simple solution to mitigate the magnetic noise effects.

Solutions

Q1 By applying the induction law to the closed path
−−−−−→
aa0b0ba we find, noting that B⊥nS,

∫

�

S

E ·ds

︸ ︷︷ ︸
u0−u

= − d

dt

∫

Ss

B · �eydS

︸ ︷︷ ︸
0

from which we obtain u�t� = u0�t� = U0 cos�	0t�.

Q2 By applying the induction law to the closed path
−−−−−→
aa0b0ba we find, noting that B � nS,

∫

�

S

E ·ds

︸ ︷︷ ︸
u0−u

= − d

dt

∫

Ss

B · �eydS

︸ ︷︷ ︸
Bwl

from which we obtain u�t� = U0 cos�	0t�−wl	BBM sin�	Bt�.

Q3 If the two-wire line is twisted at regular intervals the Stokes normal nS concomitantly
switches from +�ey to −�ey. If an odd number of twists are used then we will find u ≈ u0

provided that the perturbing magnetic field remains uniform in the region of the line.

5.6 Voltages and Currents in Magnetically Multicoupled Systems

We have already introduced in Section 4.12 the problem of magnetically coupled linear
circuits, where self- and mutual inductances were defined. Here we elaborate on that problem
considering time-varying currents.

In Figure 5.4 we show a ferromagnetic core provided with two coils. One is connected
to a generator and the other is left open. Coil 1, with N1 turns, has an internal resistance
R1; likewise coil 2, with N2 turns, has an internal resistance R2. Magnetic coupling between
the coils is ensured through the magnetic field lines in the core that simultaneously embrace
both coils. Current i1�t� flowing in coil 1 is given in the form of a triangular impulse
(Figure 5.5(a)) of peak amplitude IM .

To simplify matters let us assume that dispersion phenomena are negligible; that is, the
magnetic flux in the core 
�t� is the same at every cross-section.
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Figure 5.4 Circulation paths s1 and s2 used for the application of the induction law in order to
evaluate the voltages u1 and u2 at the terminals of two magnetically coupled coils

Figure 5.5 (a) Generator current (triangular pulse). (b) Stylized nonlinear magnetic characteristic

�i1� of the ferromagnetic core

Irrespective of the linear or nonlinear character of the core, the determination of 
 as a
function of i1 is done by application of Ampère’s law examined in Chapter 4.

Let us consider that the magnetic characteristic 
 = 
�i1� is nonlinear, as stylized in
Figure 5.5(b). The knee point �IS� 
S� defines an abrupt transition between the linear zone
and the saturation zone.

In order to determine the generator voltage u1 we apply the induction law to the closed
circulation path s1, passing inside the coil conducting turns and through the generator. The
path is oriented according to the prescribed reference direction of i1.

For the sake of clarity, let us determine separately the left- and right-hand sides of the
induction law,

∫

�

S1

E ·ds =
∫

âb

coil

1
�1

J1 ·ds+
∫

b̂a

�G�

E ·ds = +R1i1 −u1 (5.10a)

− d

dt

∫

Ss1

B ·nS1
dS = − d

dt
�1 = −N1

d


dt
(5.10b)

Equating the results in (5.10), we find

u1�t� = R1i1�t�+N1

d
�t�

dt
(5.11)



Magnetic Induction Phenomena 213

Now, let us turn our attention to coil 2 which, remember, carries no current. Nevertheless,
as you will see, a voltage u2 is going to appear across its terminals!

To determine voltage u2 at the open terminals of coil 2 we reapply the induction law
to the closed circulation path s2, passing inside the coil conducting turns and through the
air. The path is oriented according to the prescribed reference direction of i2. Following the
same procedure as before, we find

∫
�

S2

E ·ds =
∫

ĉd

coil

1
�2

J2 ·ds+
∫

d̂c

air

E ·ds = 0+u2 (5.12a)

− d

dt

∫

Ss2

B ·nS2
dS = − d

dt
�2 = −N2

d


dt
(5.12b)

Note that, in (5.12a), the integration ĉd along the coil’s conductor gives zero because we
have assumed i2 = 0, otherwise we would obtain R2i2.

Equating the results in (5.12), we find

u2�t� = −N2

d
�t�

dt
(5.13)

from which you can see that, although coil 2 carries no current, a voltage will appear at its
terminals, as a result of induction phenomena.

Next, we analyze the results in (5.11) and (5.13), presenting some pertinent graphics and
interpreting from a physical point of view the reason why u2 exists (despite i2 = 0).

To start with, consider the simple case where the core behaves linearly (that is, i1�t� ≤ IS).
Take for instance IM = IS . Combining the information conveyed in Figure 5.5, you will
obtain for 
�t� a triangular function, with peak value 
S , similar to the one describing i1�t�.

The derivative d
/dt appearing in (5.11) and (5.13) is evaluated as

d


dt
=
{

+2
S/T� for 0 < t < T/2

−2
S/T� for T/2 < t < T

The evolution of u1�t� is obtained by summing the resistive voltage component
uR�t� = R1i1�t� with the inductive voltage component uL�t� = N1 d
/dt. The graphical
construction leading to u1�t� is illustrated in Figure 5.6.

Things are a bit simpler for u2�t� since the resistive component is absent – see Figure 5.7.
Let us now interpret the results obtained for u2�t�. For this purpose it is helpful to visualize

a cross-section of the core leg where coil 2 is wound around (Figure 5.8).
In the time interval 0 to T/2 the field B�t� = 
�t�/S is time increasing. The associated

field lines of the electric induction field Ei are circumferences oriented anticlockwise; this
field actuates on the free charged particles of coil 2 �Fe = qEi� giving rise to a distribution
of positive charges at terminal c and negative charges at terminal d. A gradient electric field
Eg oriented from c to d appears and a negative pulse voltage is revealed in u2�t�.

A similar rationale applies to the time interval from T/2 to T during which the field
B�t� is time decreasing. The associated field lines of the electric induction field Ei are
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Figure 5.6 Graphical representation of the generator voltage against time, u1�t�, showing its
decomposition into resistive and inductive components uR and uL, respectively

Figure 5.7 Graphical representation of coil 2 voltage against time, u2�t�

circumferences oriented clockwise; this field actuates on the free charged particles of coil
2 giving rise to a distribution of positive charges at terminal d and negative charges at
terminal c. A gradient electric field Eg oriented from d to c appears and a positive pulse
voltage is revealed in u2�t�.
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Figure 5.8 Interpretation of the positive and negative pulses appearing in u2�t�. (a) Time-increasing
B originates an induction electric field Ei that drives the positive charges to terminal c and negative
charges to terminal d. (b) Time-decreasing B reverses the orientation of the induction electric field Ei;
positive charges are driven to terminal d and negative charges to terminal c

Let us now complicate things a little, allowing the ferromagnetic core to saturate due to
imposed higher current intensity.

Make IM = 2IS . Combining the information conveyed in Figure 5.5, we obtain for 
�t� a
trapezoidal function as shown in Figure 5.9.

Figure 5.9 Trapezoidal function 
�t� originated by an intense triangular current pulse i1�t� that
brings the core into saturation

The derivative d
/dt shown in (5.11) and (5.13) is evaluated as

d


dt
=

⎧
⎪⎨
⎪⎩

+4
S/T� for 0 < t < T/4

0� for T/4 < t < 3T/4

−4
S/T� for 3T/4 < t < T

We strongly recommend that you try to redraw new graphs for

ut�t� = R1i1�t�+N1

d
�t�

dt
and u2�t� = −N2

d
�t�

dt

Omitting any details, we present the final results in Figure 5.10. Note that in the time interval
from T/4 to 3T/4 the B field remains constant with time, induction phenomena are absent,
and therefore you get u2 = 0.



216 Electromagnetic Foundations of Electrical Engineering

Figure 5.10 Voltage plots against time for the case of a saturated core. (a) Generator voltage
(compare Figure 5.6). (b) Voltage of coil 2 (compare Figure 5.7)

The first part of the problem we have just finished solving (linear case) could have been
handled more easily if the inductance coefficients characterizing the two-coupled coils were
known beforehand. In fact, by using the results of Chapter 4, we could have put

�1 = L11i1 +LMi2 and �2 = LMi1 +L22i2

Substituting �1 and �2 above into (5.10b) and (5.12b), and making i2 = 0, we would obtain,
as an alternative, the following results:

u1 = R1i1 +L11

di1

dt
and u2 = −LM

di1

dt
(5.14)

Note, however, that you cannot use this alternative when dealing with nonlinear problems
(where the concept of inductance does not apply).
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In the more general case of a system of N -coupled coils, characterized by their internal
resistances Rk (with k = 1 to N ) and inductance matrix 
L�, (4.41), the application of the
induction law to every coil (using circulation paths coinciding with the reference directions
of coil currents) permits coil voltages to be compactly determined from coil currents by
making use of the following matrix equation:


u�t�� = 
R�
i�t��+ 
L�
d

dt

i�t�� (5.15)

where the resistance matrix 
R� is diagonal, the column matrix 
i�t�� gathers the coil currents,
and the column matrix 
u�t�� gathers the coil voltages.

A word of caution: depending on how you choose the arbitrary reference directions for
the coil voltages, u1� � � � � uk� � � � � uN , both positive and negative algebraic signs need to
be included in the elements of the column matrix 
u�t�� in (5.15). If all coil voltages uk are
marked so as to oppose the orientation of the circulation paths sk then only positive algebraic
signs will appear.

5.7 Application Example (Magnetic Coupling in Printed Circuit
Boards)

A printed circuit board consisting of three conducting lands on the surface of a dielectric
board above a reference conducting ground plane is shown in Figure 5.11. To simplify
things, let’s assume that all conductor resistances are negligibly small.

Figure 5.11 Printed circuit board (PCB) with three lands and a ground plane. (a) Cross-sectional
view. (b) Enforced boundary conditions at the near and far ends of the PCB lands
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All lands are short-circuited to ground at the far end. As for the near end, the situation is
described as follows: land 1 is driven by a voltage u1, land 2 is left open �i2 = 0� and land 3
is short-circuited to ground �u3 = 0�. The conductor system is characterized by a symmetric
inductance matrix


L� =
⎡
⎣

L11 L12 L13

L21 L22 L23

L31 L32 L33

⎤
⎦

Voltage u1 is a low-frequency sinusoidal function, u1�t� = U1 cos�	t�.

Questions

Q1 By application of the induction law obtain the governing equations of the system.

Q2 Determine i1�t�� i3�t� and u2�t�.

Solutions

Q1 Taking into account that i2 = 0, from (5.15), we write

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

u1 = L11

di1

dt
+L13

di3

dt

u2 = L21

di1

dt
+L23

di3

dt

0 = L31

di1

dt
+L33

di3

dt

Q2 From the third equation we get

i3 = −L31

L33

i1

Substituting this information into the first equation we find

u1 =
(

L11 − L2
13

L33

)

︸ ︷︷ ︸
L1

di1

dt
→ i1�t� = 1

L1

∫
u1�t�dt = U1

	L1

cos�	t −�/2�

Using the already established relationship between i3 and i1 we find

i3�t� = L31U1

	L33L1

cos�	t +�/2�

From the second equation in Q1 we obtain

u2�t� = U1

(
L21

L1

− L23L31

L1L33

)
cos�	t�
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5.8 Eddy Currents

We have already mentioned in Section 4.11 that ferromagnetic cores, subjected to periodic
magnetization–demagnetization processes, dissipate energy because of hysteresis phenomena.
There is another physical mechanism that can also cause additional core losses (heating).

You may still remember that in the preceding section (Figure 5.8) voltage u2 was created by
the action of an electric induction field Ei with closed field lines embracing lines of B�t�. Such
a field Ei exists not only outside the core, but also in its interior. Since ferromagnetic materials
are also conductors (conductivity �Fe) this implies necessarily that electric currents with density
Ji = �FeEi are allowed to circulate in planes transversal to B, that is in the core cross-sections
(see Figure 5.12). These currents are called eddy currents, or Foucault currents.

B(t)

B(t)

Ji

Ji = σFe 
Ei

Part of a
ferromagnetic core

Figure 5.12 Eddy currents in conducting ferromagnetic materials originated by time-varying B fields

From (3.14) in Chapter 3, the power losses (Joule effect) associated with these currents
are evaluated through

PFoucault =
∫

Core

p̂J dV� p̂J = Ji ·Ei = �FeE
2
i ∝

(
dB

dt

)2

(5.16)

This shows that Foucault losses depend on the squared intensity of the electric induction
field, which, in turn, depends on the time derivative of B�t�. In conclusion, the faster the
variation of B, the more important the losses.

Another problem created by eddy currents is their own magnetic field which can
significantly perturb the original field existing in the ferromagnetic core.

There are two known techniques that can be employed to mitigate eddy current effects.
One consists of using laminated cores where each ferromagnetic sheet is electrically insulated
from the others using a non-conducting varnish. This technique is relatively effective for
time-varying B fields up to 20 kHz. For higher frequencies, ferrites should rather be used.
Ferrites are electrically non-conductive ceramic compound materials consisting of a mix of
iron, zinc and manganese oxides.
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5.9 Generalization of the Induction Law to Moving Circuit Systems

This important topic deals with induction phenomena not originated by time-varying B
fields, but by circuits (subjected to stationary B fields) whose geometrical configuration is
time dependent.

Even if the velocity of the moving circuits is much smaller than the speed of light, for a
rigorous and sound interpretation of the problem a contribution from the theory of relativity
would be required. The introductory nature of this textbook prevents us from following such
an approach here.

In any case, imagine the following Gedanken (thought) experiment. In a certain region of
space an electromagnetic field exists. An observer O′ at rest characterizes the electromagnetic
field in the region by a pair of vectors E′ and B′. O′ also observes that a particle with electric
charge Q moves across the region with velocity v, its trajectory changing according to the
exerted Lorentz force F = QE′ +Qv ×B′. A second observer O seated on the particle looks
at the region where the particle travels and characterizes the same electromagnetic field by
a different pair of vectors E and B. Since the charged particle is at rest �v = 0� with respect
to O, this observer interprets its trajectory change as the result of a purely electric force
F = QE.

In order to make both observations agree we have to conclude that

E = E′ +v ×B′︸ ︷︷ ︸
Ev

(5.17)

where Ev is the so-called dynamic electric field.
Although we are not going to prove it, B could be obtained as B = B′ − v × E′/c2.

Therefore, for typical applications �� � c�� B = B′.
The induction law, for bodies at rest subjected to time-varying magnetic fields, has been

formulated in (5.9) as
∫

�

S

�Eg +Ei� ·ds = − d

dt

∫

Ss

B�t� ·nS dS

For moving bodies subjected to stationary magnetic fields, the above equation should be
modified to

∫

�

S�t�

�Eg +Ev� ·ds = − d

dt

∫

Ss�t�

B ·nS�t� dS (5.18)

where the circulation path moves with the moving parts of the circuit, s = s�t�.
In the most general case of moving bodies subjected to time-varying magnetic fields, the

generalization of the Maxwell–Faraday induction law takes the form
∫

�

S�t�

�Eg +Ei +Ev�︸ ︷︷ ︸
E

·ds = − d

dt

∫

Ss�t�

B�t� ·nS�t� dS

︸ ︷︷ ︸
�s�t�

(5.19)

where, it should be stressed, the E field on the left-hand side refers to the electric field as
observed in the moving reference frame.
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5.10 Application Example (Electromechanical Energy Conversion)

We now present an example that illustrates the principle of conversion of mechanical energy
into electric energy and the conversion of electric energy into mechanical energy.

Take the situation depicted in Figure 5.13 where a moving bar, of mass M and internal
resistance R, slides (frictionless) with velocity v = v�t��ex over two conducting rails.
Perpendicular to the plane defined by the two rails, a uniform time-invariant B field is
enforced. Neglect the internal resistances of the rails as well as the magnetic field produced
by the circulating current.

x

a
a′

b
b′

Fmag

Fmag

FM

v
BB

nS

u

Ss

s(t)

s(t)

l

(rail)

(rail)

bar

i

Load 

(a)

(b)

a

b

v
BB

u l

bar 

i

Generator
nS

Ss

Figure 5.13 Illustration of the principles of electromechanical energy conversion using, as an
example, a bar–rail system. (a) An external mechanical force FM drives the bar into movement giving
rise to an induced emf, electric energy being delivered to the load. (b) An electric power supply
(generator) produces a current flow that in conjunction with the B field originates a magnetic force
Fmag, the latter driving the bar into movement (production of mechanical kinetic energy)

Questions

Q1 In Figure 5.13(a) a passive electric load is connected between terminals a and b where
a voltage u appears as a consequence of induction phenomena. The bar is driven by an
externally applied mechanical force FM which causes the bar to move with velocity v.
Determine the voltage u and establish the energy balance equation of the system.

Q2 Now consider the reverse problem in Figure 5.13(b), where an electric generator provides
a voltage u between terminals a and b. The bar is free from any mechanical external
force; however, due to the interaction between the B field and the current i in the bar, the
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latter undergoes the action of a magnetic force Fmag which drives the bar into movement
with velocity v. Determine the voltage u and establish the energy balance equation of
the system.

Solutions

Q1 In addition to the external mechanical force FM the bar is also actuated by an opposite
magnetic force Fmag originating from the interaction of the B field with the current i
flowing in the bar.

Let us first apply the induction law to the closed path s�t� passing by the load, rails
and moving bar. The path s is oriented according to the reference direction assigned
to i:

∫
�

S�t�

E ·ds = u+Ri (5.20a)

− d

dt

∫

ss�t�

B ·nS dS = +B
d

dt
Ss�t� = B

d

dt
�lx� = Bl

dx

dt
= Bl� (5.20b)

Equating the results in (5.20) we obtain

u = Bl� −Ri (5.21)

The equation describing the movement of the bar along x is

FM +Fmag = M
dv
dt

(5.22)

Taking into account that the magnetic force (Lorentz force) exerted along the length of
the bar is

Fmag =
∫

−−→
b′a′

i ds×B = −ilB�ex

we can write from (5.22)

FM = M
dv
dt

+ iBl�ex

The mechanical power PM = FM ·v associated with the external driving force FM is next
determined as

PM = Mv · dv
dt

+ iBl� = d

dt

(
1
2

M�2

)
+ i�u+Ri� = d

dt

(
1
2

M�2

)
+ui+Ri2 (5.23)

The term M�2/2 is the kinetic energy of the bar WK, the term ui is the electric power
available to the load PL, and Ri2 is the power losses (Joule effect) in the bar PJ. Thus,
we conclude for the power balance

PM = dWK/dt +PL +PJ
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Integration over time gives WM = WK +WL +WJ.
This result illustrates the conversion of external mechanical energy into electric

energy.

Q2 Reapplying the induction law to path s�t� oriented according to the reference direction
assigned to i, we obtain (see Figure 5.13(b))

∫

�

S�t�

E ·ds = −u+Ri (5.24a)

− d

dt

∫

Ss�t�

B ·nS dS = −B
d

dt
Ss�t� = −Bl� (5.24b)

Equating the results in (5.24) we obtain u = Bl� +Ri.
The equation describing the movement of the bar along x is

Fmag = M
dv
dt

or iBl�ex = M
dv
dt

The inner product with v on both sides of the above equation yields

iBl� = d

dt

(
1
2

M�2

)
or i�u−Ri� = d

dt

(
1
2

M�2

)

Rearranging terms

ui = d

dt

(
1
2

M�2

)
+Ri2 or PG = dWK/dt +PJ

where PG is the electric power delivered by the generator.
Integrating over time we get the energy balance, WG = WK +WJ.
This result illustrates the conversion of electric energy into mechanical kinetic energy.

5.11 DC Voltage Generation

This section deals only with the functioning principle of the simplest DC generator.
Consider, as shown in Figure 5.14, a rotating disk (Faraday’s disk) of radius R

illuminated perpendicularly by a uniform time-invariant B field. Brush-type conducting
contacts are established with the disk shaft and with the disk periphery, allowing a voltage
U to be collected at the accessible open terminals a and b. The angular velocity of the
rotating disk is 	.

Consider the application of the induction law to the closed path s (accompanying the disk
movement). Since currents are absent we find

∫

�

S

E ·ds =
∫

−−→
ab

air

E ·ds = U (5.25a)
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Figure 5.14 Illustration of DC voltage generation principles using, as an example, Faraday’s rotating
disk. Voltage U is proportional to both B and 	

As for the right-hand side of the induction law equation, concerning the time derivative of
the linkage flux, you may evaluate it as

−d�s�t�

dt
= − d

dt

⎛
⎝
∫

S��

B ·nS dS +
∫

�S�t�

B ·nS dS

⎞
⎠ (5.25b)

Noting that the flux across the rectangular surface S�� is null and time invariant, the first
contribution on the right-hand side of (5.25b) is zero. As for the second contribution,
noting that B ↑↓ nS and that the area �S�t� steadily increases with time, �S�t� = 1

2 R2	t,
we get

�s�t� = −B�S = − 1
2 BR2	t and −d�s/dt = 1

2 BR2	

Finally, equating the results from (5.25), we obtain a DC voltage given by

U = BR2	

2
(5.26)

Taking into account that 	 = 2�Nrps (where Nrps is the number of rotations per second),
and that the magnetic flux through the whole disk is 
 = B�R2, the result in (5.26) can be
rewritten in the more insightful form U = Nrps
.

5.12 AC Voltage Generation

Similar to the above, this section deals only with the functioning principle of the simplest
AC generator.

Consider, as shown in Figure 5.15, a rectangular single-turn coil of area A rotating with
angular velocity 	 around its own axis in a region where a uniform time-invariant B field
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ω

α

Figure 5.15 Illustration of AC voltage generation principles using, as an example, a rotating
rectangular coil immersed in a uniform B field. (a) Perspective view and circulation path for the
application of the induction law. (b) Side view, showing that the angle between B and the Stokes
normal changes with time

exists perpendicular to the axis of rotation. A voltage u�t� is collected at the coil’s accessible
terminals a and b which are left open.

Consider the application of the induction law to the closed path s�t� (accompanying the
coil rotation). Since currents are absent we find

∫

�

S

E ·ds =
∫

−−→
ba

air

E ·ds = −u (5.27a)

As for the right-hand side of the induction law equation, concerning the time derivative of
the linkage flux, we may evaluate it as

−d�s

dt
= − d

dt

∫

A

B ·nS�t� dS

Noting that the angle � between B and nS changes with time, � = �/2 − ��t�, where
��t� = 	t +�0 (with arbitrary �0), we have

B ·nS�t� = B cos � = B sin�	t +�0�

and therefore

−d�s

dt
= − d

dt

∫

A

B ·nS�t�dS = −AB	 cos�	t +�0� (5.27b)

Equating the results from (5.27), we obtain an AC voltage given by u�t� = AB	 cos�	t+�0�.
If the coil contains N turns tightly packed, the above result is modified to

u�t� = UM cos�	t +�0�� with UM = AB	N (5.28)
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5.13 Proposed Homework Problems

Problem 5.13.1

An overhead line conductor at height hL above ground carries a sinusoidal current
iL�t� = I sin�	t�. As shown in Figure 5.16, a fence of length l is situated just beneath the
line and parallel to it. The fence has two horizontal supporting conducting wires, one at the
soil level and the other at height hF . Both wires are connected at one end of the fence by a
conducting post, whereas at the opposite end a wooden post is used.

Figure 5.16 Induced voltage in a wire fence placed near to an overhead line

Assume that the return current in the poorly conducting soil contributes negligibly to the
evaluation of the B field in air.

Data: I = 5 kA� 	 = 2�f� f = 50 Hz� hL = 12 m� hF = 3 m� l = 200 m.

Q1 From Chapter 4, determine the B field originated by the overhead line conductor in the
fence region �x = 0�.

Q2 Determine the fence voltage uF �t� between the two supporting wires at the end where
the wooden post has been placed.

Answers

Q1

B�y� t� = �0

iL�t�

2��hL −y�
�ex� for 0 < y < hF

Q2 Application of the induction law to the closed path s along the fence wires and wooden
post gives

∫

�

S

E ·ds

︸ ︷︷ ︸
−uF

= −d�F

dt
� with �F =

∫

Ss

B ·nS dS =
y=hF∫

y=0

B�y� t� l dy
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�F �t� =
(

�0l

2�
ln

hL

hL −hF

)

︸ ︷︷ ︸
LM

iL�t�� LM = 11�5 �H

uF �t� = LM

diL�t�

dt
= LMI	︸ ︷︷ ︸

U

cos�	t�� U = 18�1 V

Problem 5.13.2

A coil with N1 turns and a conducting ring are placed in a transformer core – see Figure 5.17.
The coil, with resistance R1, is driven by a voltage generator. The ring can be left open
or short-circuited depending on the switch position. The transformer core has a uniform
cross-section S. The self-inductance of the coil is L11. Neglect dispersion phenomena and
the resistance of the ring.

Data: N1 = 10� R1 = 10 �� S = 1 cm2� L11 = 10 mH.

Figure 5.17 A transformer core with a coil of N1 turns and one ring. (a) General view. (b) Generator
current

Q1 Using your knowledge from Chapter 4, determine the self-inductance of the ring L22 as
well as the mutual inductance LM .

Q2 With the switch open �i2 = 0� the generator current i1�t� is described by an asymmetrical
triangular pulse of duration T = 3 ms and peak value I = 0�1 A.

Using the induction law, determine the voltages u1�t� and u2�t�.
Using your knowledge from Chapter 4, determine the time evolution of B�t� in the

core.

Q3 Now consider that the switch is closed �u2 = 0� and that the generator voltage u1 is the
same as you determined in Q2.

Evaluate i1�t� and i2�t�.
Determine the magnetic induction field in the transformer core. Comment on the

result.
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Answers

Q1

L11 = N 2
1

Rm

→ Rm = 104 H−1� L22 = N 2
2

Rm

= 0�1 mH� LM = N1N2

Rm

= 1�0 mH

Q2

u1 = R1i1 +L11

di1

dt
� u2 = −LM

di1

dt

(see the illustrative plots in Figure 5.18)

�1 =
{

L11i1

N1
 = N1BS
→ B�t� = L11

N1S
i1�t�

B�t� is a triangular pulse as i1�t�, with peak value of 1 T.

Q3

u2 = 0 = −d�2

dt
→ �2�t� = 0 → B�t� = 0 → �1�t� = 0

u1 = R1i1 + d�1

dt
= R1i1 → i1�t� = u1�t�

R1

u1 (V) u2 (mV)

t (ms)

1.5

0.5

–1.0
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1

(a) 
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0
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3
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3

Figure 5.18 Voltage plots against time when the switch is open. (a) Coil voltage. (b) Ring voltage

Current i1�t� has the shape of the voltage u1�t� established in Figure 5.18 apart from a
scale factor determined by the value of R1.

Since the magnetic flux in the core is zero, then, from Ampère’s law (Chapter 4),
you will have Rm
 = 0 = N1i1 +N2i2 (with N2 = 1), and, consequently,

i2�t� = −N1i1�t� = −N1

u1�t�

R1

Current i2�t� has the shape of i1�t�, but with opposite sign, and scaled by a factor of
ten �N1 = 10�.
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When the switch is closed, the new current i2 creates its own magnetic field which
opposes the original one existing in the core (this is known in the literature as Lenz’s
‘law’). In our case, because the ring is a perfect conductor, the ring’s magnetic field
has exactly the same magnitude as the one previously existing in the core due to the
excitation coil. Therefore, their sum is zero for the resultant field, B1 +B2 = 0.

Firstly, and most important to note, the idea that current i2�t� always reacts against
the induction action of i1�t� – something equivalent to the action/reaction principle you
have heard about in physics – is a false concept.

The reaction of i2�t� is critically dependent on the type of load connected to the
second coil (ring). If, for instance, a capacitor is connected to the terminals of the
second coil it may well happen that the total B field in the core may actually increase
as compared to B1 (we will come back to this topic in Section 7.3.2).

Secondly, the problem treated here exemplifies a technological application of induction
phenomena, namely induction heating. You saw that the current in the ring is N1 times
bigger than the one in the excitation coil. In reality, the ring has an internal resistance
and because of that, energy dissipation due to the Joule effect will take place there:

WJ =
T∫

0

Rring i2
2�t� dt

Depending on the system’s design parameters, the structure in Figure 5.17 may be
engineered so as to ensure that the heat generated in the metallic ring melts it down.

Problem 5.13.3

A ferromagnetic core (see Figure 5.19) is excited by a sinusoidal current flowing in an
inductor (not shown) which gives rise to a magnetic flux 
�t� = 
M sin�	t� circulating in
the core. As shown in the figure, a single-turn coil is wound around the core. The coil is
left open �i = 0�, but due to induction phenomena a voltage u�t� appears across its terminals
a and b. In order to visualize the coil voltage, two oscilloscopes O1 and O2 are connected
between a and b.

Figure 5.19 The single-turn coil voltage u�t� is read differently by the oscilloscopes O1 and O2,
both connected between a and b
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Q1 Determine u�t�.

Q2 Determine the voltages u′�t� and u′′�t� retrieved by both oscilloscopes.

Q3 Repeat the problem for the case of a two-turn coil.

Q4 Generalize the above result for an N -turn coil.

Answers

Q1

u�t� = d


dt
= U cos�	t�� with U = 	
M

Q2

u′�t� = u�t�� u′′�t� = 0

Q3

u′�t� = u�t� = 2
d


dt
= 2U cos�	t�� u′′�t� = d


dt
= U cos�	t�

Q4

u′�t� = u�t� = N
d


dt
= NU cos�	t�� u′′�t� = �N −1�

d


dt
= �N −1� U cos�	t�

Only for N � 1 will you have similar oscilloscope readings, u′ ≈ u′′.

Problem 5.13.4

Two inductors are connected in series as shown in Figure 5.20. Inductors are characterized
by internal resistances R1 and R2 and self-inductances L11 and L22. The magnetic coupling
factor between the inductors is k = 0�75.

Figure 5.20 Two series-connected magnetically coupled inductors

The current common to both inductors is i�t� = I cos�	t�.
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Q1 Determine the mutual inductance LM between the inductors.

Q2 Write an analytical expression for the applied voltage u�t� between terminals a and b.

Q3 Considering that R1 = 60 �� R2 = 140 �� L11 = 0�1 H� L22 = 0�4 H� I = 0�25 A� and
	 = 1 krad/s, determine u�t� numerically.

Answers

Q1 LM = −150 mH

Q2

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

∫

�

S

E ·ds = −u+R1i+R2i

−d�S

dt
= − d

dt
��1 +�2� = − d

dt
��L11 +LM�i+ �LM +L22�i�

u = Ri+L
di

dt
� where R = R1 +R2 and L = L11 +L22 +2LM

u�t� = RI cos�	t�−	LI sin�	t�

Q3 R = 200 �� L = 200 mH� 	L = 200 �:

u�t� = 50 cos�	t�−50 sin�	t� V

u�t� = 50
√

2 cos�	t +�/4� V

Problem 5.13.5

Consider the three-legged transformer shown in Figure 5.21, where the three vertical legs
share the same geometrical and magnetic properties. For simplification purposes assume that
the reluctances of the upper and lower yokes are negligibly small. The inductor placed on the
left leg, with N1 turns and self-inductance L11, is driven by a sinusoidal voltage generator.
The inductor placed on the right leg, with N2 turns, is left open. Around the central leg a
perfectly conducting ring can be switched from open state to short-circuit state depending
on the switch position.

Assume that the internal resistance of inductor 1 is negligible, and that dispersion
phenomena are absent.

Data: L11 = 1 H� u1�t� = U1 cos�	t + �/2�� U1 = 325 V� 	 = 100� rad/s� N1 = 100�
N2 = 400.
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i1

u1 N2N1 u2S

φ1 φ2φR

Rm ≈ 0

Rm ≈ 0

Figure 5.21 A three-legged magnetic circuit containing a ring in the center leg which can be switched
on or off

Q1 Find the magnetic flux 
1�t� in the transformer’s left leg.

Q2 Consider that the ring is in the open state. Determine 
2�t� and u2�t�.

Q3 Consider that the ring is in the short-circuit state. Determine 
2�t� and u2�t�.

Answers

Q1

u1�t� = N1

d
1�t�

dt
→ 
1�t� = 1

N1

∫
u1�t� dt = �1 cos�	t�� �1 = U1

	N1

= 10�35 mWb

Q2 
1 = 
R +
2� 
R = 
2 (due to symmetry reasons); 
2 = 
1/2.

u2�t� = N2

d
2�t�

dt
= N2

2
d
1�t�

dt
= N2

2N1

u1�t� = U2 cos�	t +�/2�� with U2 = 650 V

Q3 Because the ring is short-circuited, 
R = 0 → 
2 = 
1:

u2�t� = N2

d
2�t�

dt
= N2

d
1�t�

dt
= N2

N1

u1�t� = U2 cos�	t +�/2�� with U2 = 1�3 kV

Problem 5.13.6

Consider the situation analyzed in Section 5.12 (AC voltage generation) but where, instead
of a single rotating rectangular coil, you have three rotating rectangular coils making angles
of 2�/3 to each other – see Figure 5.22 (three-phase AC generator).

Q1 Write the equations for the voltages u1�t�� u2�t� and u3�t� at the coil terminals.

Q2 Determine u1�t�+u2�t�+u3�t�.
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Figure 5.22 Operating principle of a three-phase AC generator. Three identical coils synchronously
rotate in the space between the north and south poles of a magnet

Answers

Q1

u1�t� = UM cos�	t +�0�� with UM = AB	N

u2�t� = UM cos�	t +�0 −2�/3�

u3�t� = UM cos�	t +�0 −4�/3�

Q2

u1�t�+u2�t�+u3�t� = 0

Problem 5.13.7

Figure 5.23 illustrates the functioning principle of the moving-coil microphone. The coil is
attached to a diaphragm (not shown) on which sound waves impinge. When the diaphragm
vibrates, the coil is set in motion. The coil moves in a region where a radial stationary
magnetic field, produced by a magnet, exists. The terminals of the coil are left open �i = 0�.
Due to magnetic induction, a voltage signal at the moving-coil terminals appears.

To simplify matters, assume that the coil is a single-turn coil and that the magnetic
induction field in the (very small) air gap between the north and south poles of the magnet
is approximately uniform, B = 0�5 T.

Also assume that the coil movement is described by x�t� = l/2+X sin�	t�, with X < l/2.

Q1 Find the magnetic flux 
�x� across the single-turn coil positioned at x.

Q2 By applying the generalized induction law, determine the voltage u�t� between the
terminals a and b of the moving coil.

Q3 Consider that the coil contains N turns tightly packed.
Take N = 5� X = 10 �m� R = 5 mm� 	 = 2�f and f = 3 kHz.
Determine u�t� numerically.
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Figure 5.23 Moving-coil microphone. (a) Front view. (b) Transverse cross-section

Answers

Q1 From div B = 0, and noting that the radial B field in the air gap is redirected and
transformed into an x-oriented field along the south pole piece, you find 
�x� = 2�RBx.

Q2

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

∫

�

S�t�

E ·ds = −u

− d

dt

∫
Ss�t�

B ·nS dS = −d


dt
= −d


dx

dx

dt
= −2�RB v = −2�RBX	 cos�	t�

where � = dx/dt is the coil’s instantaneous velocity along x,

u�t� = 2�RBX	 cos�	t�

Q3

u�t� = U cos�	t�� with U = �2��2RNBXf = 14�8 mV

Problem 5.13.8

Figure 5.23 illustrating the functioning principle of the moving-coil microphone can also be
used to explain the functioning principle of the loudspeaker.

Assume that a sinusoidal current i�t� = I cos�	t� is made to flow in the coil, with
I = 100 mA.
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Q1 Determine the magnetic Lorentz force F = F�ex that puts the loudspeaker membrane into
motion (producing sound waves).

Q2 Evaluate the force numerically, considering the data specified in Problem 5.13.7.

Answers

Q1

F =
∫

�

S

i ds×B = i

2�N∫

0

(−R d� �e�

)× (−B �er

)= 2�NBRI cos�	t�︸ ︷︷ ︸
F�t�

�ex

Q2

F�t� = Fmax cos�	t�� Fmax = 2�NBRI = 7�85 mN





6
Electric Induction Phenomena

6.1 Fundamental Equations

The fundamental laws governing electric induction problems are those in (PIII.4)

⎧
⎪⎨
⎪⎩

curl H = J + �D
�t

div D = �
curl E ≈ 0

(6.1)

together with the constitutive relations concerning D(E) and J(E).
While in Chapter 5 we were concerned with E fields originated by time-varying B fields,

now we focus on the reverse situation, that is B fields originated by time-varying E fields.

6.2 Displacement Current, Generalized Ampère’s Law

The reason why Maxwell’s equations bear his name is essentially due to his speculative
theoretical consideration that the equation curl H = J (based on Ampère’s previous
discoveries) was an incomplete statement.

Magnetic induction phenomena (which had been known since Faraday’s experiments)
should have, expectedly, a natural dual counterpart consisting of electric induction
phenomena. To accommodate this expectation Maxwell added to the conduction current
density J a new contribution, the so-called displacement current density �D/�t. With the
introduction of this new term into the electromagnetic equations, the latter acquired a type
of symmetry that was clearly missing. Since time-varying magnetic fields can give rise to
electric fields, time-varying electric fields will likewise give rise to magnetic fields.

The speculative introduction by Maxwell of the displacement current density came to
have far-reaching consequences. If the term �D/�t did not really exist, our world would
not be like it is. It would be dark with no light at all; TV, mobile phones and the Internet
would be meaningless words. (We will return to this topic in Part IV when dealing with
electromagnetic waves.) The experimental proof that the displacement current was not simply

Electromagnetic Foundations of Electrical Engineering J. A. Brandão Faria
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an interesting speculation but real came only 35 years after Maxwell conceived it. The
experimental work that revealed the existence of �D/�t was conducted by Hertz in 1889.

The equation

curl H = J + �D
�t

(6.2)

shows that a magnetic field can be produced indistinctly by both current densities J and
�D/�t – see Figure 6.1.

J

H

D(t)
increasing

H

(a) (b)

D(t)
decreasing

H

Figure 6.1 Magnetic fields can be originated either by conduction currents (a), or by displacement
currents (b)

For purely stationary fields (Chapter 4), the integration of curl H = J led in (4.3) to
Ampère’s law:

∫

�

S

H ·ds =
∫

Ss

J ·nS dS

For time-varying fields the above result can be generalized by writing

∫

�

S

H ·ds =
∫

Ss

(
J + �D

�t

)
·nS dS (6.3)

where the geometric entities s, Ss and nS should now be rather familiar to you (so often have
we made use of the Stokes theorem).

6.3 Charge Continuity Equation

Let us apply the divergence operator to (6.2). Taking into account that div curl ≡ 0, and that
div D = �, you can easily get

0 = div
(

J + �D
�t

)
→ div J + �

�t
div D → div J = −��

�t
(6.4)

The result in (6.4) – the so-called charge continuity equation – shows that J lines being
closed is not an intrinsic property of conduction currents (div J �= 0�. Conduction currents
can actually be interrupted as far as they can be continued through displacement currents.
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Figure 6.2 Time-varying conduction currents in the conductors are interrupted at the capacitor where
they continue in the form of displacement currents

This idea is illustrated in Figure 6.2 where a closed circuit consisting of a generator, a pair
of wires and a capacitor is shown.

Now, let us proceed to the volume integration of (6.4) considering the volume V encircling
the upper plate of the capacitor in Figure 6.2:

∫

V

div
(

J + �D
�t

)
dV = 0 →

∫

V

div J dV = − d

dt

∫

V

� dV (6.5a)

Making use of the Gauss theorem we get

∫

SV

J ·no dS = − d

dt

∫

V

� dV

︸ ︷︷ ︸
q�t�

(6.5b)

where q�t� is the electric charge accumulated on the conductor inside volume V .
According to the reference direction assigned to the conduction current i�t�, we finally get

i�t� = dq�t�

dt
(6.6)

Making use of the capacitance concept, q = Cu, we can rewrite (6.6) as

i�t� = C
du�t�

dt
(6.7)

A word of caution is necessary here. If, for some reason, one of the reference directions for
i�t� or u�t�, shown in Figure 6.2, happens to be reversed, then a minus sign will need to be
incorporated into (6.7). This is usually forgotten and may be the source of several mistakes.

A second word of caution: you have probably heard that capacitors can be used to block
direct currents, or, in other words, that stationary currents are not allowed to flow in a circuit
where a capacitor is included. Well, this is only half true!
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If a continuously rising voltage is applied to a capacitor u�t� = kt, with k a constant,
then from (6.7) you will get i�t� = I = Ck = constant. Therefore you can see that while
the capacitor voltage is allowed to increase steadily, you will get a direct current in the
circuit. The problem is that, in reality, u�t� cannot increase indefinitely (especially because
of breakdown phenomena).

6.4 Revisiting the Current Intensity Concept

Contrary to what happened with stationary fields, we now have div J �= 0.
This new circumstance does affect the concept of current intensity in a conductor as

originally introduced in Chapter 3. To illustrate the problem, consider Figure 6.3, where
one conductor runs parallel to a conducting ground. The surrounding medium is a perfect
insulator. A time-varying voltage is applied between the conductors.

Figure 6.3 For time-varying regimes, the current intensity in a conductor varies along the length of
the conductor, i1�t� �= i2�t�. For evaluating i�t�, a clear specification of the conductor’s cross-section
being considered is required

If you apply (6.5) to the closed surface SV intersecting the conductor at S1 and S2, you get

⎧
⎪⎨
⎪⎩

∫
SV

J·no dS = ∫
S2

J2 ·n2 dS− ∫
S1

J1 ·n1dS = i2�t�− i1�t�

− ∫
SV

�D
�t

·no dS =− dq�t�

dt

By equating the equations above you will see that i1�t� �= i2�t�, that is

i1�t�− i2�t� = dq�t�/dt (6.8)

where q�t� is the conductor’s time-varying charge in the region between S1 and S2.
The difference between the current intensities in the same conductor, but measured at two

distinct cross-sections, is justified by the flow of displacement current between the conductor
and the ground.



Electric Induction Phenomena 241

As the magnitude and time rate of the applied voltage increase, the term dq/dt
increases, and as a result the discrepancy between i1 and i2 becomes more and more
important.

Hence, you can see that for an unambiguous definition of the current intensity i�t� in a
conductor, you ought to specify clearly the particular cross-section S where its evaluation
takes place. For slow time-varying phenomena this requirement is ordinarily dropped, since
dq/dt ≈ 0.

6.5 Application Example (Capacitor Self-Discharge)

A parallel-plate capacitor of area S and thickness � is connected to a DC generator with
voltage U0. The capacitor’s dielectric medium is characterized by its permittivity � and
conductivity � . At t = 0 the capacitor is disconnected from the generator and from there on
the capacitor starts its self-discharge process.

Assume that the electric field inside the dielectric medium is uniform (small �).

Questions

Q1 Find the initial value of the electric field intensity E0.

Q2 Find the evolution of E�t� for t > 0.

Q3 Determine the conduction current density and the displacement current density inside
the capacitor for t > 0.

Q4 Find the magnetic field inside the discharging capacitor.

Solutions

Q1 For the case of uniform fields we have U0 = E0 � → E0 = U0/�.

Q2 Consider the application of (6.5b) to the closed surface SV containing the upper plate of
the capacitor (Figure 6.4).

U0

i = 0

t = 0

Jin E

no

SV

S

+q

−q

(σ, ε) x

δ

Figure 6.4 Application of the charge continuity equation to the analysis of the capacitor self-
discharge process. Note that the insulation medium that fills the capacitor is imperfect (� �= 0)
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For t > 0 the external conduction current density Jex is zero; however, inside the
imperfect dielectric medium an internal conduction current density Jin exists,

Jin�t� = �E�t� = �E�t��ex

then we have
∫

SV

Jin·no dS

︸ ︷︷ ︸
�SE�t�

= − d

dt
q�t�

For the case of uniform fields, the electric charge q�t� is the product of the surface
charge density w�t� and the plate area q = wS. But, from Chapter 2, w = �E. Therefore
we find, for the electric field inside the capacitor,

�E�t�+�
dE�t�

dt
= 0

This is a homogeneous first-order linear equation with constant coefficients whose
solution is a decaying exponential function

E�t� = E0 exp
(
−�

�
t
)

(6.9)

The constant 	 = �/� is usually termed the relaxation time. Depending on the dielectric
medium, this relaxation time can go from seconds to hours.

Q3 Internal conduction current density:

Jin = �E0 exp
(
−�

�
t
)

�ex

Displacement current density:

dD
dt

= �
dE

dt
�ex = −�E0 exp

(
−�

�
t
)

�ex

Q4 As for the total current density inside the dielectric medium, we find

Jin + �D
�t

= 0

and, consequently, from (6.2), no net magnetic field is originated, H = 0.

6.6 Voltages and Currents in Electrically Multicoupled Systems

Consider a set of N +1 wires immersed in a perfectly insulating dielectric medium, one of
them being taken as the reference conductor (0) – see cross-sectional view in Figure 6.5.
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Figure 6.5 In a multi-wire system, the voltages of all the conductors contribute to the current
intensity in any given conductor of the system, ik =∑

Ckj duj/dt

If time-varying voltages are applied between conductors, conduction currents will flow
along them, and displacement currents will flow across the dielectric medium.

Denoting the conductor charges by q1�t�
 � � � 
 qk�t�
 � � � 
 qN �t�, we have from (6.6)

ik�t� = dqk�t�

dt
(6.10a)

Since charges and voltages, in multiconductor systems, are related by capacitance coeffi-
cients –recall (2.43) and (2.44) from Chapter 2 – then we can rewrite (6.10a) as

ik�t� = Ck1

du1�t�

dt
+· · ·+Ckk

duk�t�

dt
+· · ·+CkN

duN �t�

dt
(6.10b)

In compact matrix format we get

�i�t�
 = �C

d

dt
�u�t�
 (6.11)

where the column matrix [i�t�] gathers the conduction currents flowing along the wires, and
the column matrix [u�t�] gathers the wire voltages. The square symmetric matrix [C] is the
capacitance matrix whose properties were discussed in Chapter 2.

If the dielectric is not a perfectly insulating medium, leakage conduction currents will
also flow in the dielectric. In that case we must substitute (6.12) for (6.11):

�i�t�
 = �G
 �u�t�
+ �C

d

dt
�u�t�
 (6.12)

where the first term on the right-hand side of (6.12) accounts for the perturbation due to
leakage currents. The square symmetric matrix [G] is the system conductance matrix.

If the dielectric medium is homogeneous, characterized by parameters � and � , the
relationship between [G] and [C] is trivial:

�G
 = �

�
�C
 (6.13)

See (3.11) in Chapter 3 and Problem 3.9.6.
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6.7 Proposed Homework Problems

Problem 6.7.1

A generator voltage u�t� is applied to two series-connected capacitors whose capacitances
are C1 and C2 – see Figure 6.6. The capacitors are initially discharged. The generator voltage
has the shape of a trapezoidal pulse.

Assume the ordinary approximations valid for slow time-varying regimes.
Data: C1 = 4 �F, C2 = 6 �F, T = 1 ms, U = 15 V.

Figure 6.6 Two series-connected capacitors (a) subjected to a trapezoidal pulse voltage (b)

Q1 Write the governing equations of the system.

Q2 Determine i�t�.

Q3 Determine u1�t� and u2�t�.

Answers

Q1 i = dq1/dt = C1du1/dt; i = dq2/dt = C2du2/dt; u = u1 +u2

i

C1

+ i

C2

= d

dt
�u1 +u2�︸ ︷︷ ︸

u

→ i�t� =
(

C1C2

C1 +C2

)

︸ ︷︷ ︸
C

du�t�

dt

{
C1u1 = C2u2

u1 +u2 = u
→

⎧
⎪⎪⎨
⎪⎪⎩

u1 = C

C1

u

u2 = C

C2

u

Q2

i�t� =
⎧
⎨
⎩

+CU/T = 36 mA
 for 0 < t < T
0
 for T < t < 2T
−CU/T = −36 mA
 for 2T < t < 3T
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Note that in the interval from T to 2T the electric field remains time invariant and
electric induction phenomena do not occur (H = 0).

Q3

{
u1�t� = 0�6×u�t�
u2�t� = 0�4×u�t�

Problem 6.7.2

A sinusoidal voltage u�t� is applied to two parallel-connected capacitors whose capacitances
are C1 and C2 – see Figure 6.7. The capacitors are initially discharged.

Figure 6.7 Two parallel-connected capacitors subjected to a sinusoidal voltage

The current intensity i1 is known and is given by i1�t� = I1 cos��t�.
Assume the ordinary approximations valid for slow time-varying regimes.
Data: C1 = 4 �F, C2 = 6 �F, I1 = 40 mA, � = 1 krad/s.

Q1 Write the governing equations of the system.

Q2 Determine u�t�.

Q3 Determine i2�t� and i�t�.

Answers

Q1 u�t� = 1
C1

∫
i1�t�dt� i2�t� = C2

du�t�

dt
� i�t� = i1�t�+ i2�t�

Q2 u�t� = U sin��t�
 with U = I1/��C1� = 10 V.

Q3 i2�t� = I2 cos��t�
 with I2 = �C2U = 60 mA.

i�t� = I cos��t�
 with I = I1 + I2 = 100 mA�
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Problem 6.7.3

A printed circuit board consisting of three conducting lands on the surface of a dielectric
board above a reference conducting ground plane is shown in Figure 6.8.

Figure 6.8 Front view of a printed circuit board with three lands on a dielectric over a ground plane

All lands are left open at the far end of the board. As for the near end, the situation is
described as follows: land 1 is driven by a voltage u1, land 2 is left open (i2 = 0) and land 3
is short-circuited to ground (u3 = 0). The conductor system is characterized by a symmetric
capacitance matrix

�C
 =
⎡
⎣

C11 C12 C13

C21 C22 C23

C31 C32 C33

⎤
⎦

The generator voltage is a sinusoidal function, u1�t� = U1 sin(�t).

Q1 Obtain the governing equations of the system.

Q2 Determine u2�t�. Determine i1�t� and i3�t�.

Answers

Q1 From (6.11), with u3 = 0, we get

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

i1 = C11

du1

dt
+C12

du2

dt

0 = C21

du1

dt
+C22

du2

dt

i3 = C31

du1

dt
+C32

du2

dt

Q2

u2�t� = −C21

C22

u1�t�
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i1�t� =
(

C11 − C2
12

C22

)
du1�t�

dt
= �U1

(
C11 − C2

12

C22

)
cos��t�

i3�t� =
(

C31 − C32C21

C22

)
du1�t�

dt
= �U1

(
C31 − C32C21

C22

)
cos��t�

Problem 6.7.4

A section of a three-phase symmetrical shielded cable is described by its capacitance matrix

�C
 =
⎡
⎣

Cs −Cm −Cm

−Cm Cs −Cm

−Cm −Cm Cs

⎤
⎦

As shown in Figure 6.9, the internal cable conductors are all short-circuited. The cable is
left open at its far end. At the near end, a ramp-type voltage is applied between the reunion
point of the conductors and the shield conductor.

Figure 6.9 Shielded three-phase cable. (a) System connections. (b) Generator voltage

Data: Cs = 50 nF, Cm = 20 nF, U = 5 kV, T = 1 ms.

Q1 Write the equations governing the system.

Q2 Determine the generator current i�t�, showing that it has the shape of a positive pulse.

Q3 Evaluate the energy expended by the generator to charge the cable. Compare it to the
final electric energy stored in the cable.
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Answers

Q1 From (6.11) with u1 = u2 = u3 = u�t� you find

i1�t� = i2�t� = i3�t� = �Cs −2Cm�
du�t�

dt

i�t� = i1�t�+ i2�t�+ i3�t� = 3�Cs −2Cm�︸ ︷︷ ︸
C

du�t�

dt

where C is the equivalent capacitance observed at the generator terminals.

Q2 Since C = 30 nF and du/dt = 5 MV/s, you find
{

i�t� = I = 0�15 A
 for 0 < t < T
i�t� = 0
 for t > T

Q3

WG =
t=�∫

t=0

ui dt =
t=T∫

t=0

ui dt = UIT

2
= 375 mJ� We = 1

2
CU 2 = 375 mJ for t > T



7
Lumped Parameters Circuit
Analysis

7.1 Introduction

This chapter is probably the easiest one for you. Vector calculus, differential operators, the
Stokes and Gauss theorems, all of which have been harsh tools in previous chapters, will
be almost absent here. Nonetheless, new, but softer, difficulties may now arise with the
handling of complex algebra (see Appendix C).

In this new chapter we will make extensive use of the results derived in Chapters 5
and 6 concerning slow time-varying field phenomena (quasi-stationary regimes), which is
the standard framework for circuit analysis. Magnetic induction phenomena and electric
induction phenomena are considered separately; while the former are taken into account when
lumped inductors are analyzed, the latter are taken into account when lumped capacitors are
analyzed. In the case of lumped resistors, neither induction phenomena are considered.

Again, bear in mind that this lumped parameters approach is only valid when the length of
the circuit structure under analysis is much shorter than the lowest wavelength characterizing
the time evolution of the field.

To make things clearer, consider the typical RLC series circuit in Figure 7.1.

Figure 7.1 RLC series circuit

Electromagnetic Foundations of Electrical Engineering J. A. Brandão Faria
© 2008 John Wiley & Sons, Ltd
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Assuming that the term �B/�t created by the time-varying currents in the connecting wires
is negligibly small, the application of the induction law gives

∫
�

S

E ·ds = −
∫

ss

�B
�t

·ns dS ≈ 0 → u�t� = uR�t�+uL�t�+uC�t� (7.1)

Assuming that the displacement currents �D/�t created by the time-varying voltages between
the connecting wires is negligibly small, application of the generalized Ampère’s law gives

∫

SV

J · no dS = −
∫

SV

�D
�t

· no dS ≈ 0 → i�t� = iR�t� = iL�t� = iC�t� (7.2)

Assuming that both terms �B/�t and �D/�t are negligible for the resistor analysis, we have
from Ohm’s law (Chapter 3)

uR�t� = R iR�t� (7.3)

Neglecting �D/�t, but taking into account the important magnetic induction phenomena in
the inductor, we have, from the induction law (Chapter 5),

uL = L
diL�t�

dt
(7.4)

Finally, neglecting �B/�t, but taking into account the important electric induction phenomena
in the capacitor, we have, from the generalized Ampère’s law (Chapter 6),

iC = C
duC�t�

dt
→ uC�t� = 1

C

∫
iC�t� dt (7.5)

By using the results from (7.1) to (7.5), valid for quasi-stationary regimes, we find the
time-domain equation that governs the lumped parameters circuit in Figure 7.1:

u�t� = Ri�t�+L
di�t�

dt
+ 1

C

∫
i�t� dt (7.6)

7.2 Steady-State Harmonic Regimes

In this section we particularize circuit analysis for the special case of steady-state harmonic
regimes, where fields, voltages, magnetic fluxes, electric charges and current intensities are
described by time-varying sinusoidal functions. Moreover, it is assumed that the generator
driving the circuit under analysis was turned on a long time ago (transient phenomena
discarded).

In order to ensure that all the quantities referred to above have a sinusoidal description,
an additional condition ought to be fulfilled: all the lumped components of the circuit must
exhibit linear behavior. Note for instance that if you apply a sinusoidal voltage to a diode
(nonlinear component) its current will be non-sinusoidal.

Before we proceed to the analysis of harmonic regimes a necessary comment is in order
to justify the need for this type of analysis. Why are sinusoidal functions so important?

First of all, the transmission and distribution of electric power is made using AC
(Alternating Current) – that is, using sinusoidal currents. In residential applications, the
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accessible voltage at the sockets that you use every day at home to plug in your appliances
is a sinusoidal voltage (its frequency can be 50 Hz or 60 Hz depending on the country you
live in).

At this stage you may be wondering about communication signals. They are certainly not
sinusoidal functions!

Well, you are right. But you are missing the point.
Any regular well-behaved time-varying signal s�t� can be expanded into a discrete or

continuous sum of sinusoids of different frequencies, which constitute the so-called signal
spectrum as follows:

Periodic signals of period T � s�t� = sav +
�∑

k=1

Sk cos��kt −�k�� with �k = 2	k/T

Non-periodic signals � s�t� =
�∫

0

S��� cos ��t −�����d�

(See the results on Fourier series and transforms, in Appendix D.)
So, what you have to do is to analyze the time response of the circuit to each and every

sinusoidal component of the signal spectrum and, at the end, superpose the results obtained.
We emphasize again that this procedure with sinusoidal functions is only valid for linear
circuits!

7.2.1 Characterization of Sinusoidal Quantities

In this subsection we introduce the standard terminology used to deal with sinusoidal
functions.

Let u1�t� be a sinusoidal voltage given by

u1�t� = U1 cos ��t +
1�︸ ︷︷ ︸
�

1
�t�

(7.7)

where U1 denotes the maximum value of the voltage or amplitude, �1�t� denotes the time-
varying phase, 
1 denotes the initial phase (for t = 0) and � denotes the angular frequency
� = 2	f , where f is the frequency in hertz.

If �1�t� is plotted against time you will obtain a tilted straight line (Figure 7.2). Since the
cosine function repeats itself upon an angle shift of 2	, you can see that the sinusoidal time
period is such that T = 2	/� = 1/f .

If two sinusoidal functions of the same frequency are compared, u1�t� given above and
u2�t� given by

u2�t� = U2 cos ��t +
2�︸ ︷︷ ︸
�

2
�t�

we will say that they are out of phase, because � = �1�t�−�2�t� = 
1 −
2 �= 0.
Note that, in the specification of phase shifts, the interval −	 < � < +	 is commonly used.
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Figure 7.2 Phase against time; 
1 denotes the initial phase and � denotes the angular frequency

Let us analyze a few particular cases:

• If � = 0 the sinusoidal functions are said to be in phase.
• If � > 0 we say that u1 leads u2; on the contrary, if � < 0 we say that u1 lags u2.
• If � = ±	 the sinusoidal functions are said to be in phase opposition, which is equivalent

to a T/2 time shift.
• If � = ±	/2 the sinusoidal functions are said to be in phase quadrature, which is equivalent

to a T/4 time shift.

Figure 7.3 illustrates the above particular cases for you.
The specification of the average value of sinusoidal functions is absolutely useless. In

fact, from (7.7) you can immediately recognize that any sinusoidal function has zero as its
average value. A really important piece of information related to the amplitude of a sinusoidal
function is its root-mean-square (rms) value. In general, for a time-periodic function u�t�,
its rms value is defined as

Urms =√
�u2�t��av (7.8)

The importance of this concept is linked to the evaluation of the average value of time-
varying energetic quantities, like power and energy, as illustrated in the following cases.

Joule power losses in a resistor:

pJ�t� = Ri2�t� → PJ = �pJ �t��av = R
(
i2�t�

)
av

= RI2
rms (7.9a)

Magnetic energy in an inductor:

Wm�t� = 1
2 Li2�t� → �Wm�av = 1

2 L
(
i2�t�

)
av

= 1
2 LI2

rms (7.9b)

Electric energy in a capacitor:

We�t� = 1
2 Cu2�t� → �We�av = 1

2 C
(
u2�t�

)
av

= 1
2 CU 2

rms (7.9c)

In the particular situation of sinusoidal quantities, where
(
cos2���t��

)
av

= 1/2, the result in
(7.8) simplifies to

Urms =√
�u2�t��av = U/

√
2 (7.10)

where U is the maximum value of u�t�.
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Figure 7.3 (a) Voltages u1 and u2 are in phase. (b) Voltages u1 and u2 are in phase opposition.
(c) Voltages u1 and u2 are in phase quadrature with u1 leading u2. (d) Voltages u1 and u2 are in phase
quadrature with u1 lagging u2
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7.2.2 Complex Amplitudes or Phasors

Time-varying sinusoidal quantities of a given frequency can be represented by complex
constants conveying information not only on the amplitude, but also on the initial phase of
the sinusoid. These complex constants are termed complex amplitudes or phasors.

Consider, for instance, the voltage u1�t� in (7.7),

u1�t� = U1 cos ��t +
1�︸ ︷︷ ︸
�

1
�t�

By using the Euler identity

ej�1�t� = cos ��1�t��+ j sin ��1�t�� → � (ej�1�t�
)= cos ��1�t��

we immediately recognize that u1�t� can be rewritten in the form

u1�t� = ��
(
U1e

j
1
)
ej�t� = ��U 1 ej�t� (7.11)

The time-invariant quantity U 1 = U1e
j
1 is the complex amplitude of the sinusoidal

voltage u1�t�.
The simplicity of the preceding formulation should certainly not pose any doubt. However,

some of you may be thinking what the purpose of this is. What is the usefulness of substituting
complex amplitudes by the time functions they represent?

This a simple question, with a simple answer. First of all, you should note that, by this
means, we are using a time-invariant quantity to represent a time-varying function. Secondly,
as will show next, operations (like sum, differentiation and integration) involving sinusoidal
functions can be much more easily performed in the complex domain than in the time domain.

Consider the following example.
You want to determine the sum, u3 = u1 +u2, of two sinusoidal voltages with the same

frequency, u1�t� = U1 cos��t+
1� and u2�t� = U2 cos��t+
2�. You can do that by resorting
to standard trigonometry but you will waste a lot a time. One thing that you should know
is that the sum of two sinusoids of the same frequency will yield a resultant sinusoid with
the same frequency – that is, you are expecting a result in the form u3�t� = U3 cos��t+
3�.
So, let us then use the phasor technique to find U3 and 
3:

U3 cos��t +
3� = U1 cos��t +
1�+U2 cos��t +
2�

� (U 3 ej�t
)= � (U 1 ej�t

)+� (U 2 ej�t
)= � ( (U 1 +U 2

)
ej�t
)

From the above result you immediately obtain U 3 = U3 ej
3 = U 1 + U 2 (see Figure 7.4).
Now that’s simple, isn’t it?

Consider another example.
Let q�t� be a given sinusoidal function, q�t� = Q cos��t +
q�. We wish to determine its

time derivative, i�t� = dq/dt = I cos��t +
i�. Let us then use the phasor technique to find
I and 
i:

i�t� = � ( I ej�t
)= d

dt
q�t� = d

dt
� (Q ej�t

)= � ((j�Q
)

ej�t
)

from which you can see that I = j�Q or, equivalently, I ej
i = �Q ej�
q+	/2�.
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Figure 7.4 Illustration of the sum operation involving complex amplitudes

Results for time integration can be obtained from the above:

q�t� =
∫

i�t� dt → Q = 1
j�

I

Table 7.1 summarizes the principal conclusions concerning the equivalence between time-
domain operations and their corresponding phasor-domain operations.

Table 7.1 Time- and phasor-domain operations

Time domain Phasor domain

u3�t� = u1�t�+u2�t� U 3 = U 1 +U 2

i�t� = d

dt
q�t� I = j�Q

q�t� = ∫
i�t� dt Q = 1

j�
I

7.2.3 Application Example (RLC Circuit)

Consider the time-domain equations for the RLC circuit obtained in (7.1)–(7.6). Assume that
all voltages and currents are sinusoidal functions of angular frequency �.

Questions

Q1 Obtain the phasor-domain equations for this circuit (Figure 7.1).

Q2 Comment on the phase relationships between voltages and currents at the resistor,
inductor and capacitor terminals.

Q3 Draw an illustrative phasor diagram showing the phasor’s positions in the complex
plane. Consider the following data: i�t� = I cos ��t� � I = 1 A� � = 1 krad/s.

Take R = 100 �� L = 0
2 H� C = 0
1 �F.

Q4 Several voltmeters are connected to the circuit as shown in Figure 7.5; voltmeter readings
are rms values. Determine the readings of V1� V2� V3� V4 and V5. Comment on the
results.

Q5 Write the expression for u�t� and plot it against time.
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Figure 7.5 RLC series circuit provided with a set of voltmeters for measuring voltage rms values

Solutions

Q1

u�t� = uR�t�+uL�t�+uC�t� → U = UR +UL +UC (7.12)

i�t� = iR�t� = iL�t� = iC�t� → I = IR = IL = IC

uR�t� = R iR�t� → UR = R IR (7.13)

uL = L
diL�t�

dt
→ UL = j�L IL (7.14)

uC�t� = 1
C

∫
iC�t� dt → UC = 1

j�C
IC (7.15)

u�t� = Ri�t�+L
di�t�

dt
+ 1

C

∫
i�t� dt → U =

(
R+ j�L+ 1

j�C

)
I (7.16)

Q2 From (7.13) you can see that, in the complex plane, the phasors UR and IR are parallel
vectors. This means that uR�t� and iR�t� are in phase.

From (7.14) you can see that the phasors UL and IL are orthogonal vectors. This
means that uL�t� and iL�t� are in phase quadrature, with uL leading iL.

From (7.15) you can see that the phasors UC and IC are again orthogonal. This means
that uC�t� and iC�t� are in phase quadrature, with uC lagging iC .

Q3 I = 1 A� UR = 100 V� UL = 200 ej	/2 V� UC = 100 e−j	/2 V� U = √
2 100 ej	/4 V.

See the corresponding phasor diagram in Figure 7.6.
You may be commenting to yourself that the phasor diagram is not correct, because

the size of the phasor I appears to be bigger than the size of the voltage phasors. Well,
you are wrong!

In the same way that you cannot compare kg to km/s, you cannot compare ampere
with volt. In no case at all can you establish inequality relations between quantities of
different nature. This means that, in order to draw the phasor diagram in Figure 7.6,
different scales have to be adopted, one for currents and another for voltages!
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Figure 7.6 Illustrative phasor diagram for the RLC series circuit

Q4

V1 ≡ ∣∣U ∣∣/√2 = 100
0 V

V2 ≡ ∣∣UR

∣∣/√2 = 70
7 V� V3 ≡ ∣∣UL

∣∣/√2 = 141
4 V� V4 ≡ ∣∣UC

∣∣/√2 = 70
7 V

V5 ≡ ∣∣UL +UL

∣∣/√2 = 70
7 V

It should be emphatically noted that V1 �= V2 +V3 +V4!
Although the sum of the voltage phasors concerning the R� L and C circuit components
is equal to the generator voltage phasor, see (7.12), the same is not true for the sum of
the corresponding amplitudes or for the sum of the corresponding rms values, that is

U = UR +UL +UC� but

{
U �= UR +UL +UC

Urms �= URrms
+ULrms

+UCrms

Summing vectors is not the same thing as summing scalars. Take care with this issue
because it is a source of frequent mistakes.

Q5 u�t� = � (U ej�t
)= � (�U ej	/4� ej�t

)= U cos��t +	/4�.
u�t� = √

2 100 cos��t +	/4� V. See Figure 7.7.
A word of caution: you might be tempted to write u�t� as u�t� = U cos��t + 45	�,

but don’t do it! That too is a common mistake. The problem is that the units for �t are
radians, and as you should know, radians and degrees cannot be mixed.

7.2.4 Instantaneous Power, Active Power, Power Balance Equation

As shown in Figure 7.8, a sinusoidal voltage u�t� = U cos��t +
u� is applied across the
terminals of a given linear passive circuit, that is a circuit containing resistors, inductors,
capacitors, but no energy sources. Since the circuit behaves linearly, the generator current
is also sinusoidal, i�t� = I cos��t +
i�.

The instantaneous power delivered by the generator, p�t� = u�t�i�t�, can be evaluated as

p�t� = u�t�i�t� = UI cos��t +
u� cos��t +
i�
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Figure 7.7 Graphical plot of generator voltage against time

Figure 7.8 In a linear passive circuit, if u�t� is sinusoidal then i�t� will also be sinusoidal

From trigonometry we find

p�t� = UI

2
cos�
u −
i�+ UI

2
cos�2�t +
u +
i� (7.17a)

As an alternative, using the rms definition in (7.10), we can write

p�t� = UrmsIrms cos �
u −
i�︸ ︷︷ ︸
�

+UrmsIrms cos�2�t +
u +
i� (7.17b)

where � = 
u −
i denotes the phase shift between the sinusoidal voltage and current.
A typical plot of the instantaneous power p�t� is depicted in Figure 7.9.
From (7.17) and from Figure 7.9 we observe that the instantaneous power is not a

sinusoidal function of time. Further, we see that p�t� contains a time-invariant term plus a
sinusoidal function of angular frequency 2�. The constant term, representing the averaged
power over time, is the so-called active power (units: W, watt)

Active power � P = �p�t��av = UrmsIrms cos � (7.18)

From Figure 7.9 you can also see that when u and i are out of phase �� �= 0� the
power delivered by the generator is negative during certain time intervals. The physical
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Figure 7.9 Typical plot of the instantaneous power against time. The time average of the
instantaneous power, denoted by P, is the so-called active power. The angle � indicates the difference
between the phases of the voltage and current

interpretation for p < 0 is rather simple: during those intervals, inductors and/or capacitors
discharge their stored energy towards the generator, thus reversing the normal flow of energy.

Moreover, if the circuit contains no resistors at all, the time intervals during which p < 0
will have the same duration as the time intervals during which p > 0. In this case u and i
are in phase quadrature, � = ±	/2, and the active power is zero.

The preceding remarks, together with the result in (7.18), allows you to reach an important
conclusion concerning the phase shift � between u�t� and i�t�. Since the average power
delivered to a passive circuit cannot be negative, you must always have cos � ≥ 0. This is
tantamount to saying that, for passive circuits, you can only find values for � in the range
−	/2 ≤ � ≤ 	/2.

Next we introduce, in an intuitive way, the power balance equation in the time domain.
Using the energy conservation principle we write

W�t� = WJ�t�+Wm�t�+We�t� (7.19)

where W� WJ� Wm and We respectively represent the energy brought into by the generator,
the energy dissipated by the Joule effect in resistors, the magnetic energy stored in inductors,
and the electric energy stored in capacitors. Taking the time derivative of (7.19), we obtain
the corresponding powers

p�t� = pJ�t�+pm�t�+pe�t� ↔ p�t� = pJ�t�+ d

dt
�Wm�t�+We�t�� (7.20)

This last result is called the Poynting theorem. A rigorous proof of this theorem, based
directly on Maxwell’s equations, will be given later in Chapter 8.

The Poynting theorem can be immediately used to show that, for time-harmonic regimes,
the active power is to be physically identified with Joule losses averaged over time. In fact,
from (7.20), you can obtain �p�t��av = �pJ �t��av + �pm�t��av + �pe�t��av. Since the powers
pm�t� and pe�t� associated to inductors and capacitors are purely sinusoidal functions, their
average values are zero (do not forget that voltages and currents across inductors and
capacitors are in phase quadrature), hence

P = �pJ �t��av = PJ (7.21)



260 Electromagnetic Foundations of Electrical Engineering

7.2.5 Complex Power, Complex Poynting Theorem

In the framework of time-harmonic regimes, we introduced in Section 7.2.2 the phasor
representation of sinusoidal voltages and sinusoidal currents. Can we do the same with the
instantaneous power p�t�? The answer is no! Writing p�t� = � (P ej�t

)
would be complete

nonsense.
Phasors are only defined for sinusoidally varying quantities and, as you can see in

Figure 7.9, the instantaneous power p�t� is not in general a sinusoid. However, at this stage,
it is customary to introduce a helpful auxiliary entity, the so-called complex power, whose
definition is

P = U I
∗

2
= P + jPQ = PS ej� (7.22a)

which (we emphasize) it is not a phasor. In (7.22a), the asterisk on I denotes complex
conjugation.

One of the main advantages of introducing this new entity is that the evaluation of its real
part directly yields the active power, P = � (P). Another advantage is that the angle of P
provides information on the existing phase shift between u and i:

<� P = � = 
u −
i


To see that this is true let us substitute the expressions for U and I into (7.22a):

P =
(√

2Urmse
j
u

)(√
2Irmse

−j
i

)

2
= UrmsIrms ej�
u−
i� = PS ej� (7.22b)

P = UrmsIrms cos �︸ ︷︷ ︸
P

+j UrmsIrms sin �︸ ︷︷ ︸
PQ

(7.22c)

By doing this, two new auxiliary quantities show up, the apparent power and the reactive
power:

Apparent power � PS = �P� = UrmsIrms �units: VA, volt ampere�

Reactive power � PQ = � (P )= PS sin � �units: VAr, volt ampere reactive� (7.23)

Several physical interpretations for the apparent power can be given. From (7.17b) you will
see that PS represents the amplitude of the sinusoidal term of frequency 2� belonging to
p�t�. In addition, PS represents the averaged power over time for circuits that behave as pure
resistors �� = 0�.

The relationship among the diverse powers P� P� PS and PQ is illustrated through the
triangle representation shown in Figure 7.10.

The best way to learn about the physical significance of the reactive power PQ is through
the complex Poynting theorem. This theorem is an absolutely general theorem that can be
deduced directly from Maxwell’s equations for time-harmonic regimes. Here, we will skip
a general demonstration of the theorem, and limit ourselves to arriving to it with the help of
a particular example.
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Im 
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0

PQ
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P = PS

ϕ

Figure 7.10 Triangle representation of powers

Take the phasor equation governing the RLC circuit obtained in (7.16):

U =
(

R+ j�L− j
1

�C

)
I

Let us multiply both sides of the above equation by I
∗
/2. This yields on the left-hand side

the complex power P introduced in (7.22). On the other hand, we have

I I
∗

2
= I2

rms = (
i2�t�

)
av

(7.24)

Therefore we find

P = R I2
rms + j�LI2

rms − j
1

�C
I2
rms (7.25)

Further, from (7.15), at the capacitor terminals we have Irms = �CUCrms
.

By taking this into account, the third term on the right hand side of (7.25) can be rewritten
as I2

rms/��C� = �CU 2
Crms

. Hence, we get

P = RI2
rms + j2�

(
1
2 LI2

rms − 1
2 CU 2

C rms

)

The term RI2
rms = (R i2�t�

)
av

= PJ is interpreted as the time-averaged power losses due to
the Joule effect in the resistor.

The term 1
2 LI2

rms = 1
2 L
(
i2�t�

)
av

= �Wm�av is interpreted as the time-averaged magnetic
energy stored in the inductor.

Likewise, the term 1
2 CU 2

Crms
= 1

2 C
(
u2

C�t�
)

av
= �We�av is interpreted as the time-averaged

electric energy stored in the capacitor.
Finally we obtain

P = PJ + j2���Wm�av − �We�av� (7.26)

The general result shown in (7.26) is the complex Poynting theorem, which is of key
importance in many electrical engineering applications, including rapid time-varying field
phenomena.

Since the complex power, on the left-hand side of (7.26), is given by

P = U I
∗

2
= P + jPQ
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we see that the active power P can be interpreted as the time-averaged power losses at the
resistors �P = PJ ≥ 0�. This conclusion is not new, and confirms the analysis result in (7.21).

Also – and this is new – the reactive power, PQ, can now be interpreted as a measure
of the balance between the time-averaged magnetic and electric energies stored in inductors
and capacitors. If magnetic energy predominates, you will have PQ > 0; otherwise, if electric
energy predominates, you will have PQ < 0.

If, at a given frequency, the generator voltage and current are in phase, � = 0, the reactive
power is null, PQ = 0, and consequently, the time-averaged values of the magnetic and
electric energies stored must necessarily compensate each other, �Wm�av = �We�av.

At this point a few remarks are in order:

• The complex Poynting theorem in (7.26) is not to be confused with the former Poynting
theorem in (7.20). These theorems are independent of each other.

• The result in (7.26) cannot be deduced from (7.20).
• The Poynting theorem applies to any kind of time regime, harmonic or non-harmonic.
• The complex Poynting theorem applies only to harmonic regimes.

7.2.6 Impedance and Admittance Operators

The concept of impedance is very simple, but very important and useful. Look again at
Figure 7.8 where a linear passive circuit is driven by a generator whose sinusoidal voltage
and current are given by u�t� = U cos��t +
u� and i�t� = I cos��t +
i�. The phase shift
between u and i is � = 
u −
i.

The impedance of the circuit Z (units: �, ohm) is the complex operator that transforms
the complex amplitude of i�t� into the complex amplitude of u�t�

U = Z I

In other words,

Z = Z ej� = U

I
= U ej
u

I ej
i
→ Z = � Z � = U

I
= Urms

Irms

� <� Z = � = 
u −
i (7.27)

The following are important notes that you should never forget:

• The impedance operator is only defined in the context of time-harmonic regimes.
• The impedance is an operator acting over complex amplitudes; it does not operate on

time-varying quantities. Writing u�t� = Z i�t� is complete nonsense!
• The impedance operator cannot be defined for nonlinear circuits.
• For linear passive circuits the impedance angle � is limited to the range −	/2 to 	/2.
• In general, the impedance operator is frequency dependent, Z = Z���.

For exemplification purposes consider the RLC circuit in Figure 7.1 and recall the phasor-
domain equation in (7.16):

U =
(

R+ j�L+ 1
j�C

)
I



Lumped Parameters Circuit Analysis 263

The term in parentheses is the impedance operator for the RLC circuit

Z = R+ j

(
�L− 1

�C

)
=
√

R2 +
(

�L− 1
�C

)2

exp
[
j arctan

(
�L

R
− 1

�RC

)]

Z��� =
√

R2 +
(

�L− 1
�C

)2

���� = arctan
(

�L

R
− 1

�RC

)
(7.28)

The admittance operator Y (units: S, siemens), which can also be useful, is the inverse of
the impedance operator

Y = Z
−1 = I

U
(7.29)

In general, both Z and Y can be broken down into their constituent real and imaginary parts,
that is Z = R+ jX and Y = G+ jS.

R, G, X and S are usually named resistance, conductance, reactance and susceptance,
respectively. For passive circuits, where the impedance angle � is limited to the range −	/2
to 	/2, you must always find R ≥ 0 and G ≥ 0, whereas both X and S can be positive,
negative or zero.

7.2.7 Resonance

For time-harmonic regimes, a circuit including resistors, inductors and capacitors is said
to be a resonant circuit when its impedance (or admittance) is purely real. Whenever this
situation occurs, the magnitude of the driving voltage or current is at a stationary point, at
a maximum or at a minimum.

Despite the presence of inductors and capacitors, the generator feeding the circuit interprets
the latter as a pure resistor; the phase shift between the voltage and current at the generator
terminals is zero, � = 0.

Resonance conditions are critically dependent on the working frequency.
Just to give you a simple example, if the impedance angle of the RLC circuit in (7.28)

is analyzed, and � = 0 is enforced, you will at once conclude that the resonance condition
for such a particular circuit is �L = 1/��C�, which implies that

∣∣Z∣∣ = Zmin = R and∣∣I∣∣= ∣∣I∣∣
max

= U/R. In addition, you may note that the capacitor and inductor voltages of
the RLC resonant circuit are in phase opposition but have identical amplitudes: UL = −UC .
This common amplitude, depending on the circuit parameters, may become much higher
than the resistor voltage amplitude; their ratio Q is ordinarily termed the quality factor of
the circuit at resonance

Q = UL

UR

= UC

UR

= �resL

R
= 1

�resCR
=

√
L/C

R

The fact that resonant circuits behave as pure resistors, � = 0, signifies that the inductor and
capacitor effects must cancel each other in some way. According to the complex Poynting



264 Electromagnetic Foundations of Electrical Engineering

theorem in (7.26), the reactive power is zero, and the time-averaged values of the magnetic
and electric energies stored compensate for each other, �Wm�av = �We�av.

The concept of quality factor for an RLC resonant circuit was introduced above as a means
to quantify circuit overvoltages. However, a more general definition of the quality factor,
which applies to any resonant circuit, is usually given in the form

Q = �res

�Wm�av + �We�av

�pJ �av

= �res

�Wem�av

�pJ �av

where Wem denotes the total electromagnetic energy stored.

7.2.8 Application Example (RL � C Circuit)

The RL series circuit with a capacitor C in parallel finds applications in several areas. It is
used in power systems to illustrate the so-called power factor compensation problem; in signal
processing it is used as an example of a band reject filter; in instrumentation and measurement
it also permits the illustration of the basic functioning principle of a spectrum analyzer.

Here we focus attention on the power factor compensation problem. Later, in Section 7.5,
we will deal with the other applications.

Consider the circuit representation in Figure 7.11 where the RL branch simulates an
electrical installation. The generator voltage is given by u�t� = U cos��t�, with � = 2	f�
and f = 50 Hz. The capacitor of capacitance C can be switched on or off.

Data: U = √
2 230 V� R = 5 �� L = 59
4 mH.

Figure 7.11 Power factor compensation problem (RL series circuit with a parallel-connected
capacitor)

Questions

Q1 Consider that the capacitor is switched off.

Write the time-domain and phasor-domain equations of the circuit.
Determine i�t�� uR�t� and uL�t�. Determine the active and reactive powers.

Q2 Consider that the capacitor is switched on.

Write the time-domain and phasor-domain equations of the circuit.
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Write an expression for the admittance operator Y = I/U and, from it, determine C

such that resonance takes place.
Determine uR�t�� uL�t�� iL�t�� iC�t� and i�t�. Draw the corresponding phasor diagram.
Three ammeters A1� A2 and A3 are placed in the generator, capacitor and installation

branches. What are their rms readings?
Determine the active and reactive powers. Confirm the results obtained by application

of the complex Poynting theorem.

Solutions

Q1

i = iL → I = IL

u = uR +uL → U = UR +UL

uR = RiL → UR = RIL

uL = L
diL
dt

→ UL = j�LIL

u = RiL +L
diL
dt

→ U = �R+ j�L� IL

Now, evaluate the impedance ZRL of the electrical installation:

ZRL = R+ j�L = ZRL ej� = 5
0+ j18
7 = 19
32 ej75o

�

The current in the installation provided by the generator is found next:

I = IL = U

ZRL

= √
2 11
9 e−j75o

A → i�t� = √
2 11
9 cos��t −5	/12� A

The voltages across R and L are

UR = √
2 59
5 e−j75o

V → uR�t� = √
2 59
5 cos��t −5	/12� V

UL = √
2 222
1 ej15o

V → uL�t� = √
2 222
1 cos��t +	/12� V

Taking into account that the phase shift � between u and i is 75	, the active power is
evaluated as

P = UrmsIrms︸ ︷︷ ︸
PS

cos � = 230×11
9×0
259 = 0
71 kW

(Note: the power ratio P/PS = cos � is called the ‘power factor’.)
The reactive power is PQ = UrmsIrms sin � = 230×11
9×0
966 = 2
65 kVAr.
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Q2 Now the capacitor C is switched on and, therefore, i �= iL.
All the time-domain and phasor-domain equations obtained in Q1 remain valid here,

with the exception of the first one, i = iL → I = IL, which clearly does not apply and
must be replaced by

i = iL + iC → I = IL + IC and iC = C
du

dt
→ IC = j�CU

At this stage you must realize that the functioning of the RL branch is not minimally
affected by the presence of the parallel-connected capacitor. The latter will simply affect
the current that the generator must provide.

Because I = IL + IC you are probably guessing that the generator current is going to
increase compared to the situation analyzed in Q1. Well, your intuition is failing you!
To your surprise the current is indeed going to decrease (that is exactly the goal of
inserting the capacitor in this circuit� � � ). The point is – we repeat – summing vectors
and summing scalars are different things.

Let us evaluate the admittance of the global circuit:

Y = I

U
= IC + IL

U
= j�C + 1

R+ j�L

= j�C + 1
R+ j�L

× R− j�L

R− j�L
= R

Z2
RL

+ j�

(
C − L

Z2
RL

)

where Z2
RL = R2 + ��L�2.

Resonance occurs when the angle of Y goes through zero or, which is the same, when
the imaginary part of the admittance is zero, � (Y ) = 0. Consequently, the resonance
condition for this circuit is

C = L

Z2
RL

= L

R2 + ��L�2
(7.30)

Numerically, you obtain C = 159
1 �F.
With this value for the capacitance you find IC = j�CU = √

2 11
5 ej90	
A, from

which you get iC�t� = √
2 11
5 cos��t +	/2� A.

The quantities uR�t�� uL�t� and iL�t�, remain unchanged.
Finally – and this is the most important point – the new current in the generator is

I = IC + IL = Y U = RU

Z2
RL

= √
2 3
08 A → i�t� = √

2 3
08 cos��t� A

which is almost four times smaller in magnitude than the one calculated in Q1 when the
capacitor was disconnected.

Figure 7.12 shows the phasor diagram for this problem, illustrating the existing
relations among the voltages and currents in the resonant circuit.

The ammeters A1� A2 and A3, placed in the generator, capacitor and installation
branches, read 3.08 A, 11.5 A and 11.9 A respectively.

Evaluation of the complex power P = U I
∗
/2 = P + jPQ gives P = 0
71 kW and

PQ = 0.
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Figure 7.12 Illustrative phasor diagram for the RL�C circuit. When C is chosen appropriately
(perfect power factor compensation), not only are the generator voltage and current in phase, but also
the current magnitude is minimal

The active power P remains invariant because the Joule losses in the RL branch remain
the same, PJ = RI2

Lrms
= 0
71 kW.

The reactive power dropped to zero because the power factor has been compensated
�� = 0 → cos � = 1� sin � = 0�. In other words, the time-averaged electric energy in
the capacitor is equal to the time-averaged magnetic energy in the inductor:

�Wm�av = 1
2 LI2

L rms
= 4
2 J� �We�av = 1

2 CU 2
rms = 4
2 J

7.3 Transformer Analysis

So far we have been dealing with circuit examples where magnetic coupling is absent. Now
it is time to turn our attention to transformer circuits where magnetic coupling is a key issue.
Due to space limitations, here we will only examine two-winding transformers with a linear
core, such as the one shown in Figure 7.13 (remember that linearity is a prerequisite for the
usage of inductance coefficients).

Figure 7.13 Single-core transformer representation, showing the convention for reference signs of
the voltages and currents in the primary and secondary windings
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Two windings are present: the primary winding is the one connected to the generator;
the secondary winding is the one connected to the load (the latter is assumed to be a
linear passive device). The transformer windings, with N1 and N2 turns, are characterized
respectively by their internal resistances r1 and r2.

Before we proceed to the analysis of the transformer equations, a point worth emphasizing
is that the writing of the equations is critically dependent on the arbitrary conventional
reference directions assigned to the currents and voltages in play. Here, we adhere to the
following convention. Primary and secondary currents are oriented so as to create concordant
magnetic fields in the core �LM > 0�. Primary and secondary voltages are oriented so as to
produce positive power flows from the generator to the transformer and from the transformer
to the load.

Time-domain equations for the transformer circuit are obtained using the induction law
from Chapter 5. Using a circulation path s1 oriented along i1, going through the primary
winding conductor and closing at the generator terminals, we obtain

∫

�

S1

E ·ds1

︸ ︷︷ ︸
r1i1−u1

= −d�1

dt
→ u1�t� = r1 i1�t�+ d�1�t�

dt
(7.31)

where the primary linkage flux depends on both currents �1 = �1�i1� i2�.
Using a circulation path s2 oriented along i2, going through the secondary winding

conductor and closing at the load terminals, we obtain

∫

�

S1

E ·ds2

︸ ︷︷ ︸
r2i2+u2

= −d�2

dt
→ −u2�t� = r2 i2�t�+ d�2�t�

dt
(7.32)

where the secondary linkage flux depends on both currents �2 = �2�i1� i2�.
The load equation, which at this stage cannot be written explicitly (because the load has

not yet been specified), can be put in the form

u2 = u2�i2� (7.33)

For time-harmonic regimes, the above time-domain equations transform to the phasor
domain as

U 1 = r1I1 + j��1� −U 2 = r2I2 + j��2� U 2 = Z2I2 (7.34)

where Z2 is the impedance operator characterizing the load placed at secondary winding
terminals.

Assuming, as before, that the transformer core displays a linear behavior, then the magnetic
linkage fluxes can be written as linear combinations of the currents in play (Chapter 4):

{
�1�t� = L11i1�t�+LMi2�t�

�2�t� = LMi1�t�+L22i2�t�
→
{

�1 = L11I1 +LMI2

�2 = LMI1 +L22I2

(7.35)
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By substituting (7.35) into (7.34) we get the phasor-domain equations governing the
transformer:

U 1 = �r1 + j�L11�I1 + j�LMI2 (7.36a)

−U 2 = �r2 + j�L22�I2 + j�LMI1 (7.36b)

U 2 = Z2I2 (7.36c)

Note that, according to the conventions adopted, all the inductance coefficients L11� L22 and
LM are positive quantities.

7.3.1 The Ideal Transformer

The ideal transformer does not exist. It is a fictitious device whose properties listed below
cannot be fulfilled in nature. Nonetheless, some practical engineers may make use of it as a
zeroth-order model to get coarse estimations of the transformer behavior.

The properties of a single-core ideal transformer are:

• Primary and secondary windings are made of perfect conductors with � → �.
• The transformer core is made of a perfect magnetic material with � → �.

The first simplifying condition implies r1 = r2 = 0. The second simplifying condition ensures
that the core is a perfect tube for the flux of B lines, that is dispersion is absent,

�1 = N1�� �2 = N2�

and magnetic coupling is perfect �k = 1�. Moreover, since � → �, the magnetic field H in
the transformer core is zero, H = B/� = 0.

By using the above properties in (7.31) and (7.32) we obtain
{

u1 = N1 d�/dt

−u2 = N2 d�/dt
→ u1�t�

u2�t�
= −N1

N2

(7.37)

On the other hand, the application of Ampère’s law to a closed circulation path inside the
transformer core (Chapter 4) yields

0 =
∫

�

S

H︸︷︷︸
0

·ds =
∫

Ss

J ·ns dS = N1 i1 +N2 i2 → i1�t�

i2�t�
= −N2

N1

(7.38)

In short, apart from a minus sign, the ratio of the transformer voltages is equal to the
corresponding winding turns ratio, whereas the ratio of the transformer currents is the reverse
of the winding turns ratio.

The time-domain equations in (7.37) and (7.38) have a corresponding phasor-domain
counterpart that reads as

U 1

U 2

= −N1

N2

�
I1

I2

= −N2

N1

(7.39)
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By using (7.39) you can readily conclude that the input impedance Z1 of the ideal transformer
(measured at the primary winding terminals) is equal to the load impedance Z2 multiplied
by the factor �N1/N2�

2:

Z1 = U 1

I1

=
(

N1

N2

)2
U 2

I2

=
(

N1

N2

)2

Z2 (7.40)

7.3.2 Transformer Impedance, Pseudo Lenz’s Law

The zeroth-order result in (7.40) is not a very reliable one as far as actual transformers are
concerned, since their properties hardly match those of ideal transformers. Therefore, we
need to find Z1 based on (7.36).

To start with, we determine the relationship between I2 and I1. Eliminating U 2 using
(7.36b) and (7.36c) yields

I2 = − j�LM

r2 + j�L22 +Z2

I1 (7.41)

Substituting (7.41) into (7.36a) you get

Z1 = �r1 + j�L11�+
(

��LM�2

r2 + j�L22 +Z2

)
(7.42)

The first term on the right-hand side of this equation is to be interpreted as the primary
winding self-impedance, that is the one that is observed when the secondary winding is left
open �I2 = 0� Z2 → ��. The second term on the right-hand side, resulting from magnetic
coupling, is to be interpreted as the influence of the secondary winding (load included) on
the input impedance of the transformer.

It is appropriate at this stage to go back to the pseudo Lenz’s law to which we referred
earlier in Problem 5.13.2.

From (7.42) you can see that when the transformer load is disconnected, the inductance
observed at the generator terminals coincides with L11 = �1/��� (Z1

)
Z2=�.

According to common sense (based on Lenz’s law), when the load is plugged in,
the transformer core is expected to demagnetize (due to the alleged counteraction of the
secondary current) and, consequently, the equivalent inductance L′

11 = �1/��� (Z1

)
Z2 �=�

measured at the generator terminals is expected to be smaller than L11 itself.
We are going to show that this is not always true.
Let us write the load impedance as Z2 = R2 + jX2, where X2 < 0 for capacitive loads.

From (7.42) we have

Z1 = �r1 + j�L11�+
(

��LM�2

�r2 +R2�+ j��L22 +X2�

)

After simple algebraic manipulation we get

Z1 = �r1 + j�L11�+
(

��LM�2

�r2 +R2�
2 + ��L22 +X2�

2

)

︸ ︷︷ ︸
K ≥ 0

× ��r2 +R2�− j��L22 +X2��
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Then we conclude that � (Z1

) = r1 +K�r2 +R2� ≥ r1; that is, the effect of the secondary
winding is always to increase the equivalent input resistance of the transformer.

As for the equivalent input inductance of the transformer, we find

L′
11 = 1

�
��Z1� = L11 −K

(
L22 + X2

�

)
(7.43)

If the transformer load Z2 includes a capacitor with reactance X2 = −1/��C2�, such that
C2 < 1/��2L22�, then the term K�L22 +X2/�� in (7.43) becomes negative, and consequently,
we see that the equivalent inductance at the primary terminals increases in magnitude,
L′

11 > L11, which is in clear contradiction with the ordinary postulate of Lenz’s law.

7.3.3 Equivalent Circuits

Some computer programs devoted to circuit analysis do not handle easily problems where
magnetic coupling among inductors is present, as in the case of real transformers. Fortunately,
you can circumvent such a problem by making use of equivalent circuits where magnetic
coupling issues are absent.

This subsection addresses the topic of transformer equivalent circuits.
Consider the ‘T’ circuit shown in Figure 7.14, consisting of three unknown uncoupled

impedances, Z
� Z� and Z0, which is cascaded with an ideal transformer characterized by
a transformation ratio � = n1/n2.

Figure 7.14 Equivalent circuit representation of the transformer

An important note to bear in mind is that the turns ratio n1/n2 of the ideal transformer
is an arbitrary parameter of your choice that does not have to coincide with the turns ratio
N1/N2 of the real transformer that you want to simulate.

Taking into account the results in Section 7.3.1 concerning the ideal transformer, you
have here

U
′
2 = −� U 2 and I

′
2 = − 1

�
I2 (7.44)

The phasor-domain equations for the ‘T’ circuit are

U 1 = Z
I1 +Z0�I1 − I
′
2�

U
′
2 = Z0�I1 − I

′
2�−Z�I

′
2
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By substituting (7.44) into the above results, and rearranging terms, you get

U 1 = �Z
 +Z0�I1 + Z0

�
I2 (7.45a)

−U 2 = Z� +Z0

�2
I2 + Z0

�
I1 (7.45b)

Next, all you have to do is to establish a term-by-term comparison between the preceding
circuit equations and those describing the real transformer in (7.36a) and (7.36b). Then you
will find

Z0 = j��LM︸︷︷︸
l0

� Z
 = r1 + j��L11 −�LM�︸ ︷︷ ︸
l1

� Z� = �2r2 + j��2 �L22 −LM/��︸ ︷︷ ︸
l2

(7.46)

The element described by Z0 is a pure inductor whose inductance is l0 = �LM . The element
described by Z
 is the series connection of a resistor and an inductor, whose resistance and
inductance are, respectively, r1 and l1. Similarly, the element described by Z� is the series
connection of a resistor and an inductor, whose resistance and inductance are, respectively,
r� = �2r2 and l� = �2l2. These results are summarized in Figure 7.15.

Figure 7.15 Detailed representation of the transformer equivalent circuit

At this point a few remarks are in order.

• Although the transformer’s equivalent scheme in Figure 7.15 has been deduced using
phasor-domain equations, it is also valid for time-domain analysis, provided that � is
chosen to be real. This is so because its internal components are described by frequency-
independent parameters under the assumption of slow time-varying phenomena.

• Given the fact that � is an arbitrary parameter, you really do not have one equivalent
circuit, but an infinite number of equivalent circuits at your choice. If, for instance, you
make � = L11/LM then the impedance Z
 will turn into a pure resistor Z
 = r1; likewise,
if you decide to make � = LM/L22 then the impedance Z� will turn into a pure resistor
Z� = �2r2.

• The real transformer in Figure 7.13 and the circuit in Figure 7.15 are formally equivalent
from the viewpoint of their accessible voltages �u1� u2� and currents �i1� i2�. However,
from an internal perspective there is no sort of correspondence between the real transformer
and the equivalent circuit – it suffices to say that the internal circuit components are quite
arbitrary since they depend on your own particular choice of �.
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Suppose now that your goal is to materialize an equivalent circuit so that you can run some
laboratory tests on it as a way of predicting the primary and secondary voltages and currents
of the real transformer. This presents you with the problem of the physical realizability
of the circuit; in other words, you are going to need to buy the actual components of
the circuit (resistors with positive resistances, inductors with positive inductances). This
objective naturally puts some constraints on your choices regarding �, namely:

l0 > 0 → � ∈ �� � > 0
{

l1 = L11 −�LM ≥ 0

l2 = L22 −LM/� ≥ 0
→ LM

L22

≤ � ≤ L11

LM

(7.47)

As a parenthetical remark, you should note that the interval defined for � is a closed interval.
In fact, the condition defined in (7.47) is compatible with the inequality L2

M ≤ L11L22, which
is always true and is nothing more than a restatement that the magnetic coupling factor
between any two inductors cannot exceed unity (4.42).

If you have an inquisitive mind, you must now have an additional question drumming in
your head. Where are you going to buy the ideal transformer in Figure 7.15?

Nowhere is the answer. But we may add that you do not need to. In fact, all you have
to do is to replace the ideal transformer and its load by the corresponding input impedance
measured at the terminals where u′

2 and i′2 are defined, that is, from (7.40)

Z
′
2 = �2Z2 (7.48)

Finally you get the physically realizable circuit shown in Figure 7.16(a).

Figure 7.16 Transformer equivalent circuit with the ideal transformer removed. (a) The influence
of the load impedance is taken into account through Z

′
2 = �2Z2. (b) Simplification arising from the

choice � = 1.
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Of course you can now argue that you have lost direct access to the secondary winding
quantities u2 and i2. You are right. But the thing is that this detail is unimportant, because
from (7.44) you can always retrieve such information from u′

2 and i′2:

u2 = −u′
2/�� i2 = −� i′2

However, if your transformer happens to be such that L11 ≥ LM and L22 ≥ LM , then, according
to (7.47), you will be allowed to choose � = 1, a choice that gives you direct access to the
secondary winding quantities themselves (Figure 7.16(b)).

7.3.4 Application Example (Capacitively Loaded Transformer)

Consider a given transformer whose winding resistances are negligibly small �r1 = r2 = 0�.
In order to evaluate the transformer induction coefficients, two laboratory experiments were
conducted – see Figure 7.17.

Figure 7.17 Experimental determination of the transformer inductances. (a) Secondary open.
(b) Secondary short-circuited

Firstly, with the transformer left open �i2 = 0�, rms values for i1� u1 and u2 were measured.
The results obtained are, respectively, A1 ≡ 1 A� V1 ≡ 157
1 V and V2 ≡ 62
8 V. Secondly,
with the transformer short-circuited �u2 = 0�, rms values for i1 and i2 were measured. The
results obtained are, respectively, A1 ≡ 1 A and A2 ≡ 1
6 A.

At normal functioning the transformer’s secondary winding is loaded with a capacitor of
capacitance C2 = 63
66 �F. The voltage across the load is given by u2�t� = 200 cos��t� V.

Assume f = 50 Hz in all your calculations.

Questions

Q1 Find the inductance coefficients L11� LM and L22 of the transformer windings.

Q2 Draw an equivalent circuit for the transformer using the choice � = 2 (check if this
choice is a permissible one from the viewpoint of the physical realizability of the
circuit).

Q3 Determine the phasor-domain voltages and currents of the secondary and primary
windings of the transformer (employ the equivalent circuit).
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Q4 Determine the input impedance of the loaded transformer and compare the equivalent
self-inductance at the primary terminals to the measured one when the transformer was
left open �i2 = 0�.

Solutions

Q1 When the transformer is left open you obtain, from (7.36), U 1 = j�L11I1� and
U 2 = −j�LMI1. Therefore you find:

L11 = U1rms

�I1rms

= 0
5 H and LM = U2rms

�I1rms

= 0
2 H

When the transformer is short-circuited �Z2 = 0� you obtain, from (7.41),

I2 = −LM

L22

I1

Therefore you find L22 = LM I1rms
/I2rms

= 0
125 H.

Q2

LM

L22

≤ � ≤ L11

LM

→ 1
6 ≤ � ≤ 2
5

So you see that � = 2 is a permissible choice.
Parameter evaluation, from (7.46):

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

l
 = l1 = L11 −�LM = 0
1 H

l� = �2l2 = �2 �L22 −LM/�� = 0
1 H

l0 = �LM = 0
4 H

As for the input impedance of the ideal transformer, you have

Z
′
2 = 1

j�C ′
2

= �2 1
j�C2

→ C ′
2 = C2

�2
= 15
92 �F

Figure 7.18 shows the particular equivalent circuit for this application example.

i2′

u2′

0.1 H 0.1 H

0.4 H 15.92 μF

uα
i0

i1

u1 u0

Figure 7.18 One possible equivalent circuit for the transformer examined in Section 7.3.4
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Q3

U 2 = 200 V → U
′
2 = −�U 2 = 400 ej	 V

I2 = j�C2U 2 = 4 ej	/2 A → I
′
2 = −I2/� = 2 e−j	/2 A

U 0 = j�l�I
′
2 +U

′
2 = 337
2 ej	 V

I0 = U 0

j�l0

= 2
68 ej	/2 A

I1 = I0 + I
′
2 = 0
68 ej	/2 A

U
 = j�l
I1 = 21
4 ej	 V

U 1 = U
 +U 0 = 358
6 ej	 V

You may note that the primary and secondary currents are in phase, which means that
they do give rise to concordant magnetizing effects.

Q4 Z1 = U 1/I1 = j�L′
11 = j527
4 � → L′

11 = 1
68 H (remember that L11 = 0
5 H).
When the transformer is capacitively loaded, the generator at the primary winding

observes an increased inductance (contrary to expectations based on Lenz’s law.)

7.4 Transient Regimes

Sections 7.2 and 7.3 have been dedicated to steady-state harmonic regimes. Now, the time
has come to shift our attention to the analysis of transient phenomena, that is the phenomena
subsequent to switching operations which, as time elapses, should tend to stabilize in a
steady-state solution.

7.4.1 Free-Regime and Steady-State Solutions

As depicted in Figure 7.19, a generator is switched on, at t = 0, in a linear passive circuit
containing a number of resistors, inductors and capacitors.

Figure 7.19 A voltage generator switched on to a linear passive circuit
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By application of the time-domain fundamental laws governing both magnetic and electric
induction phenomena, you will obtain a description of the generator current i�t� in the typical
form of a linear differential equation with constant coefficients of order n:

For t > 0 � an

dni

dtn
+· · ·+ak

dki

dtk
+· · ·+a1

di

dt
+a0i = f �u�t�� (7.49)

where the ak coefficients (with k = 0 to n) are real, and the function f�u� on the right-
hand side of the equation depends on the generator voltage. The order n of the equation –
depending on the complexity of the circuit – has an upper limit determined by the total
number of inductors and capacitors pertaining to the circuit.

The solution to (7.49) is obtained by breaking it down into two sub-solutions, the steady-
state solution iS�t� and the free-regime solution iF �t�.

The steady-state solution is a particular solution of the complete equation in (7.49). The
steady-state solution is the one which the current i�t� converges to as time goes on

lim
t→� i�t� → iS�t�

For example, when the driving voltage u�t� is time harmonic, the solution for iS�t� is also
time harmonic, and you can determine it by using the phasor-domain technique developed
in Sections 7.2 and 7.3.

The free-regime solution is the general solution of the homogeneous equation
corresponding to the one in (7.49); that is, when you make f�u� = 0,

an

dni

dtn
+· · ·+ak

dki

dtk
+· · ·+a1

di

dt
+a0i = 0 (7.50)

The free-regime solution derives its name from the fact that the solution of (7.50) is free
from the influence of the generator.

Since the generator’s influence has been removed, the solution of (7.50) must tend to zero
as time elapses:

lim
t→� iF �t� → 0

Equations of the type shown in (7.50) are known to have solutions in the form of linear
combinations of exponential time-decaying functions. As a matter of fact, if in (7.50)
you substitute Iest for i�t� you will get an algebraic polynomial equation (the so-called
characteristic equation)

ans
n +· · ·+aks

k +· · ·+a1s = 0 (7.51)

whose roots s1� � � � � sk� � � � � sn will enable you to write the free-regime solution as a sum of
n independent exponentials (we are assuming that multiple roots are absent)

iF �t� =
n∑

k=1

Ike
skt (7.52)

The roots of the characteristic equation, s1� � � � � sk� � � � � sn, can be real or complex but, in
either case, their real parts cannot be positive, otherwise the amplitude of the free-regime
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solution will increase with time, which is a physically impossible situation with generators
removed.

As a parenthetical note, and for completion purposes, it should be added that in some
(rare) circumstances multiple roots can occur in (7.51). When that is the case, the solution
for iF �t� is more complicated. For instance, if a root sk with multiplicity m �m ≤ n� is found
to exist then its contribution to (7.52) will take the form

(
Ik�1 + Ik�2t +· · ·+ Ik�mtm−1

)
eskt (7.53)

7.4.2 Initial Conditions

In (7.52) a total of n unknown amplitudes Ik need to be determined. For that purpose you
have to take into account a set of n initial conditions that should be enforced on the so-called
state variables of the problem.

Independently of the switching operations (closing or opening) that take place in a given
circuit, certain quantities (state variables) can never change suddenly, namely capacitor
voltages uC and inductor currents iL.

Time discontinuities in uC�t� would mean that the electric energy stored in the capacitor
would change instantaneously; likewise, time discontinuities in iL�t� would mean that the
magnetic energy stored in the inductor would change instantaneously. These energy jumps
would require infinite amounts of power at those components

pC = d

dt
We�t� → �� pL = d

dt
Wm�t� → �

but since this is a physical impossibility, you cannot avoid the obvious conclusion that uC

and iL ought to remain unchanged immediately before and after the switching operation at
t = 0,

uC�0+� = uC�0−�� iL�0+� = iL�0−� (7.54)

The consideration of n initial conditions, as in (7.54), allows you finally to solve the original
problem stated in (7.49).

7.4.3 Analysis of the Capacitor Charging Process

In order to illustrate the above theoretical considerations, we are now going to examine the
very simple transient phenomena resulting from the switching on of a DC generator in an RC
circuit as described in Figure 7.20, where the capacitor is initially discharged, uC�0−� = 0.

For t > 0, application of the induction law to the clockwise-oriented closed path s yields

∫

�

S

E ·ds = −d�Ss

dt
→ −U +Ri�t�+uC�t� ≈ 0 (7.55)

where the time derivative of the linkage magnetic flux across Ss has been neglected.
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Figure 7.20 A DC voltage generator switched on in an RC series circuit. Ordinarily, the magnetic
flux linkage across the shaded surface Ss is negligibly small

Since the state variable of the circuit under analysis is the capacitor voltage, we should
use (6.7) to replace i�t� by its expression in terms of uC�t�, that is i = C duC/dt. On doing
this we find a first-order differential equation in the variable uC�t�

RC
duC�t�

dt
+uC�t� = U (7.56)

A particular solution of the preceding equation is uC�t� = U , where U is a constant (the DC
voltage of the generator). Therefore, the steady-state solution for the problem is

�uC�S = U (7.57)

The free-regime solution �uC�F is obtained upon examination of the homogeneous equation

RC
duC�t�

dt
+uC�t� = 0

Since the corresponding characteristic equation is RCs +1 = 0, with a root

s = −1
�

= − 1
RC

(7.58)

where � = RC is the so-called time constant of the circuit, we find that the free-regime
solution takes the form of a time-decaying exponential function

�uC�t��F = U ′ est = U ′ e−t/� (7.59)

By summing the steady-state solution in (7.57) with the free-regime solution in (7.59) we get

uC�t� = U +U ′ e−t/�

The unknown U ′ is determined by enforcing the initial condition uC�0+� = uC�0−� = 0, that
is 0 = U +U ′ e0, from which U ′ = −U is obtained. Hence

For t > 0 � uC�t� = U�1− e−t/�� (7.60)

If you wish to know the transient current in the circuit you merely have to find the time
derivative of the above result,

i�t� = C
duC

dt
= CU

(
e−t/�

�

)
= U

R
e−t/� (7.61)
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Figure 7.21 Transient response of the RC series circuit. The characteristic duration of transient
phenomena is determined by the time constant � = RC. (a) Plot of the capacitor voltage against time.
(b) Plot of the generator current against time

Graphical plots illustrating the results in (7.60) and (7.61) are shown in Figure 7.21.
An interesting point connected with the preceding results is the energy balance. As you

already know, the final energy stored in the capacitor is We = 1
2 CU 2. Let us now evaluate

the energy W expended by the generator as well as the energy WJ dissipated in the resistor
during the charging process:

W =
�∫

0

p�t�dt = U

�∫

0

i�t�dt = CU 2� WJ = R

�∫

0

i2�t�dt = 1
2 CU 2 (7.62)

The amazing conclusion is that, irrespective of the resistance value, the DC generator always
has to expend an amount of energy that is twice the value of the final energy stored in the
capacitor, meaning that the yield factor of the charging process is exactly 50 %.

Suppose now that the resistor is removed from the circuit. You face a paradox, don’t you?
Where has the missing energy gone?

Some people will answer that it has been radiated away. But if you insist and ask for the
calculation of the radiated power, you will most probably have no reply.

Well, things are simpler than they look, at first glance.
Observe again the results depicted in Figure 7.21. As you make R go to zero, the derivative

di/dt increases greatly, the same thing happening to the derivative d�Ss
/dt. The real problem

with the limit case R = 0 is that (7.56), the equation that we have used to model the problem,
is no longer valid. You have to go back to (7.55) and drop the approximation d�Ss

/dt ≈ 0.
Although the inductance L of the closed loop describing the circuit is only small, L must

be taken into account when i�t� undergoes rapid changes. In conclusion, for the analysis of
the capacitor charging process, with R = 0, the governing equation to be employed is

∫

�

S

E ·ds = −d�Ss

dt
→ −U +uC�t� = −L

di�t�

dt
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or, which is the same (using i = C duC/dt),

LC
d2uC�t�

dt2
+uC�t� = U (7.63)

As before, the steady-state solution is given by (7.57), �uC�S = U . The crucial difference
resides with the free-regime solution, whose characteristic equation now reads LCs2 +1 = 0,
and whose two roots are purely imaginary numbers

s1�2 = ±j�0� with �0 = 1/
√

LC (7.64)

Consequently, the free-regime solution is now described by

�uC�t��F = U1e
j�0t +U2e

−j�0t (7.65)

At this stage you should note that the left-hand side of (7.65) is a real-valued function, and,
of course, the same thing should happen to the right-hand side of (7.65). For this to be
possible the unknown constants U1 and U2 must be complex conjugates of each other

U1 = U 0 = U0e
j�� U2 = U

∗
0 = U0e

−j�

Substituting the preceding results into (7.65) we obtain

�uC�t��F = U0

(
ej��0t+�� + e−j��0t+��

)= 2U0 cos��0t +��

Finally, the transient solution for uC , that is the sum of the steady-state and free-regime
solutions, is written as

uC�t� = U +2U0 cos��0t +�� (7.66)

The corresponding current i = C duC/dt is evaluated as

i�t� = −2CU0�0 sin ��0t +�� (7.67)

The constants U0 and � are to be determined using two initial conditions. One has already
been stated above, uC�0� = 0. The second, new, one is i�0� = 0, because the current in a
loop containing an inductance L cannot have time discontinuities.

The latter condition, together with (7.67), leads to � = 0. The first initial condition,
combined with (7.66), leads to U0 = −U/2.

In conclusion, in the limit case R = 0, the capacitor charging process turns out to be
an undamped periodic oscillation, whose periodicity is critically dependent on the self-
inductance of the loop described by the circuit; the capacitor voltage and current being
given by

uC�t� = U �1− cos��0t�� � i�t� = CU�0 sin ��0t� (7.68)

See the corresponding graphical plots in Figure 7.22.
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Figure 7.22 Transient response of the RC series circuit, with R = 0, but taking into account the
small inductance L of the circuit’s closed loop. The oscillation characterizing the transient phenomena
is determined by the angular frequency �0 = 1/

√
LC. (a) Capacitor voltage. (b) Generator current

At any given instant t′ the energy W brought into play by the generator is the sum of the
magnetic energy stored in the magnetic field of the loop plus the electric energy stored in
the capacitor:

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

W�t′� =
t′∫

0

p�t�dt = CU 2 �1− cos��0t
′��

Wm�t′� = CU 2

2
sin2��0t

′�

We�t
′� = CU 2

2
�1− cos��0t

′��2

→ W�t′� = Wm�t′�+We�t
′�

where, from (7.64), �0 = 1/
√

LC.

7.4.4 Connecting an Inductive Load to an AC Generator

Next, let us examine the transient regime occurring when an AC generator is switched in
an RL circuit – see Figure 7.23. As you will see, studying this case brings out novel aspects
that we have not yet treated, providing you with further insights into transient phenomena.

As you should know already, application of the induction law to the circuit in Figure 7.23
yields the following governing equation:

For t > 0 � L
di�t�

dt
+Ri�t� = u�t�� with u�t� = U cos��t +
u� (7.69)
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Figure 7.23 Connecting an RL series circuit to an AC generator

The steady-state solution is determined by resorting to the phasor-domain technique described
earlier in Section 7.2. The impedance of the circuit is

Z = R+ j�L = Z ej�� Z =√
R2 + ��L�2� � = arctan��L/R�

The phasor associated with the sinusoidal current is obtained from

I = U

Z
= I ej
i →

{
I = U/Z


i = 
u −�
(7.70)

From (7.70), the steady-state solution for the circuit current is written in the time domain as

�i�t��S = I cos��t +
i� (7.71)

The analysis of the free-regime starts with the homogeneous equation associated with (7.69)

L
di�t�

dt
+Ri�t� = 0

The corresponding characteristic equation is Ls +R = 0, and its negative root is

s = −1
�

= −R

L
(7.72)

where the time constant of the circuit is � = L/R. The free-regime solution is a time-decaying
exponential function

�i�t��F = I ′ est = I ′ e−t/� (7.73)

The transient current is obtained by summing the sub-solutions in (7.71) and (7.73):

For t > 0 � i�t� = I cos��t +
i�+ I ′ e−t/� (7.74)

The unknown amplitude I ′ of the free-regime solution is found by consideration of the initial
condition pertaining to this problem, which is i�0+� = i�0−� = 0. Consequently, from (7.74),
we have: 0 = I cos�
i�+ I ′. Hence

I ′ = −I cos�
i� = −I cos�
u −�� (7.75)

Combining (7.74) and (7.75), we get the final solution:

For t > 0 � i�t� = I
[
cos��t +
i�− cos�
i� e−t/�

]
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Noting, from (7.75), that the initial amplitude I ′ of the free-regime depends on the initial
phase 
u of the generator voltage, several interesting points arise and deserve to be
pointed out.

If 
u = � ± 	/2 then the free regime will be absent. You switch on the circuit and a
purely sinusoidal current establishes itself immediately, i�t� = I cos��t±	/2�. Clearly, this
is the most desirable situation.

On the contrary, if 
u = � or 
u = � + 	 then the free regime will have a maximum
initial amplitude. For 
u = � you get

i�t� = I
(
cos��t�− e−t/�

)
(7.76a)

For 
u = �+	 you get

i�t� = I
(
e−t/� − cos��t�

)
(7.76b)

The cases described by (7.76) are the least desirable situations, because after the closing
of the switch, the circuit current displays a distorted asymmetrical shape. Furthermore, if
the time constant � happens to be much longer than the sinusoid period T , then several
repetitive overcurrent peaks will occur for quite a long time. To better understand what we
are talking about, look for example at (7.76b) and assume that the exponential decay is
extremely slow – that is, consider the approximation exp�−t/�� ≈ 1. At instants of time such
that t = tm = mT/2, with m an odd number, you will get i�tm� ≈ 2I , which signifies that the
transient current may reach an intensity that is twice the predicted one for the steady-state
regime (this can not only blow protective fuses, but even endanger the equipment itself).

7.4.5 Disconnecting an Inductive Load

Have you ever tried to unplug a running inductive appliance (like a washing machine or
an electric fan) from its wall socket? What did you notice? Most probably you saw an arc
discharge (sparks) occurring. Do you know why that happened? If not, you will learn about
it now.

Take the same circuit we analyzed earlier (see Figure 7.23), and consider that enough time
has elapsed after the switching-on operation, so that the final steady state has been reached

i�t� = �i�t��S = I cos��t +
i� (7.77)

At t = t0 you decide to open the switch, disconnecting the load. If you are very lucky, that is
if by chance �t0 +
i = ±	/2, then you will be interrupting a null current, i�t+

0 � = i�t−
0 � = 0.

The initial condition for inductor currents is not violated and nothing unusual happens.
However, most likely the opening of the switch will occur when i�t−

0 � �= 0. In this case,
although the switch is open, the circuit current refuses to go to zero immediately (inductor
currents can never have time discontinuities).

By analyzing the circuit in Figure 7.24, you find for the voltage uS�t� at the switch
terminals

For t > t0 � uS = u−Ri−L
di

dt
(7.78)
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iRS

uS

Lu

(t = t0)

Figure 7.24 Disconnecting an inductive load

Subsequent to the switching operation, and since you are trying to interrupt i�t�
abruptly, the derivative di/dt increases dramatically. This has several consequences related
to overvoltage problems. The first is that the inductor itself can be damaged (the winding
insulation may fail). Secondly, a sudden overvoltage appears in uS leading to a very intense
electric field E�t� between the switch contacts, which in turn gives rise to breakdown
phenomena in the air, originating an arc discharge channel through which conduction currents
are allowed to flow until i�t� reaches zero and the phenomenon ceases naturally.

A technical solution to avoid arc discharges consists of inserting the switch inside a vacuum
enclosure (by definition a vacuum cannot be ionized, and therefore dielectric breakdown
cannot occur). The question, for the most curious among you, is how does the electric current
manage to flow in a vacuum?

Do you have any idea? Maybe you can find the answer in Chapter 6� � �
If it helps, you may imagine that a small capacitance exists between the terminals of

the open switch. In fact, the current flow is ensured in the form of a displacement current,
�0 �E/�t, across the open switch.

We have learnt that inductor currents cannot be interrupted without harmful consequences.
Having said that, let us analyze a simple protection scheme that can be used to prevent the
problems mentioned above.

As shown in Figure 7.25, a protective resistor R0 is placed in parallel with the RL circuit.
When the switch is open, the current i�t� suffers no interruption, since it can still flow in
the closed loop formed by R0� R and L.

Figure 7.25 Disconnecting an inductive load protected by a parallel-connected resistor R0

The governing equations of the new circuit for t > t0 are

L
di�t�

dt
+ �R+R0� i�t� = 0 (7.79)

uS�t� = u�t�+R0i�t� (7.80)
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Since (7.79) is itself a homogeneous differential equation, the steady-state solution for i�t�
is zero. In other words, the transient regime is completely described by the free-regime
solution, that is

For t > t0 � i�t� = I0 e−�t−t0�/�0� with �0 = L/�R+R0� (7.81)

The unknown constant I0 is determined from (7.81) and (7.77), by enforcing the initial
condition at t = t0 � I0 = i�t+

0 � = i�t−
0 � = I cos��t0 +
i�. Finally we find

i�t� = I cos��t0 +
i� e−�t−t0�/�0

uS�t� = U cos��t +
u�+R0I cos��t0 +
i� e−�t−t0�/�0 (7.82)

As t → �, the load current goes exponentially to zero, whereas the switch voltage tends to
follow the generator’s sinusoidal voltage.

If the protective resistor R0 in Figure 7.25 is removed, R0 → �, you will see from (7.82)
that uS increases to infinity, leading to breakdown phenomena at the switch terminals, as we
discussed at the beginning of this subsection.

7.4.6 Application Example (Switching Off a Transformer Protected
by a Capacitor)

A transformer, characterized by its intrinsic parameters r1� r2� L11� L22 and LM , has its
secondary winding open �i2 = 0�. A protective capacitor of capacitance C is connected in
parallel with the primary winding – see Figure 7.26.

Figure 7.26 Switching off a transformer protected by a parallel-connected capacitor

The generator’s applied voltage is uG�t� = UG cos��Gt +	/2�.
Data: r1 = r2 = 10 �� L11 = L22 = 17
32 mH� LM = 10 mH� C = 46
41 �F� UG = 10 V,

�G = 1 krad/s.

Questions

Q1 Assume that the switch S is closed for a long time. Determine the phasors associated
with the voltages and currents marked in Figure 7.26.

Q2 Analyze the transient regime resulting from opening the switch at t = 0; in particular,
determine the time evolution of i1�t�� u1�t� and u2�t�.
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Solutions

Q1 UG = U 1 = 10 ej90	
V.

I1 = U 1

r1 + j�GL11

= 500 ej30	
mA� IC = −j�GCU 1 = 464
1 mA�

IG = I1 − IC = 252 ej97	
mA� U 2 = −j�GLMI1 = 5 e−j60	

V.

Q2 By opening the switch you make iG = 0.
Because of the initial conditions that we will need to employ later, it is recommended

that you first find the initial values of the state variables of the problem, that is the
voltage u1 across the capacitor and the current i1 in the primary winding:

u1�0� = U10 = � (U 1

)= 0� i1�0� = I10 = � ( I1

)= 500 cos�30o� = 433 mA (7.83)

The capacitor current iC (which is not a state variable) coincides with i1, for t > 0.
By application of the induction law to the primary winding you find

u1�t� = r1i1�t�+L11

di1�t�

dt
(7.84)

Further, for t > 0, at the capacitor terminals you have

i1�t� = −C
du1�t�

dt
(7.85)

By combining the two preceding equations you immediately obtain a second-order
homogeneous differential equation in the state variable u1�t�:

d2

dt2
u1�t�+ r1

L11

d

dt
u1�t�+ 1

L11C
u1�t� = 0

This result can be rewritten in the canonical form

d2

dt2
u1�t�+2�

d

dt
u1�t�+�2

0u1�t� = 0 (7.86)

where

� = r1

2L11

� �0 = 1√
L11C

(7.87)

The constant � is called the damping factor (units: Np/s), and �0 is called the undamped
angular frequency (units: rad/s). The reason for this terminology will become clear
very soon.

The characteristic equation corresponding to (7.86), as well as its roots s1 and s2, is

s2 +2�s +�2
0 = 0� with roots � s1�2 = −�±

√
�2 −�2

0 (7.88)
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Three distinct situations can now happen:

1. Two negative real roots are found when � > �0. The solution, which is said to be
overdamped, takes the form: u1�t� = U ′ e−t/�1 + U ′′ e−t/�2 , where �1 = −1/s1 and
�2 = −1/s2.

2. One double real root is found when � = �0. The solution, which is said to be
critically damped, takes the form u1�t� = �U ′ + tU ′′� e−�t.

3. Two complex conjugate roots are found when � < �0. The solution, which is said
to be underdamped, takes the oscillatory form

u1�t� = U e−�t cos��t +�� (7.89)

In our problem we have, from (7.87), � = 288
7 Np/s and �0 = 1115
4 rad/s. Two
complex conjugate characteristic roots with negative real part are encountered:

s = −�+ j� = �0 ej� and s∗ = −�− j� = �0 e−j�

where � =√�2
0 −�2, the so-called damped angular frequency, is � = 1077
4 rad/s and

� = 105	 = 7	/12.
The transient regime for u1�t�, which is a purely free regime, can then be written as

u1�t� = U ′ est + U ′′ es∗t, where U ′ and U ′′ must necessarily be complex conjugate
numbers (otherwise u1�t� would not be a real-valued function).

By making U ′ = �U ′′�∗ = 1
2 U , with U = Uej�, we obtain

u1�t� =
(

U

2
est

)
+
(

U

2
est

)∗
= � (U est

)

Substituting �−�+ j�� for s, and substituting Uej� for U , we find

� (U est
)= U e−�t cos��t +��

which confirms the expression in (7.89). In conclusion, we can write the transient
oscillatory solution for u1�t� as

u1�t� =
{

� (U est
)

U e−�t cos��t +��
(7.90)

The result on the top, with complex quantities, is more compact and more useful for
calculations (since the variable t appears a single time). The result on the bottom,
involving real functions, is, however, more appealing from a physical point of view, as
it permits a straightforward interpretation of the phenomenon – an oscillation of angular
frequency � whose amplitude decreases with time according to the damping factor �.

Going back to the problem under analysis, the initial condition u1�0� = 0 applied to
(7.90) leads to � = 	/2. For the determination of the unknown U we have to resort
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to the second initial condition in (7.83), i1�0� = I10 = 433 mA, which leads us to an
examination of i1�t� in (7.85):

i1�t� = −C
du1�t�

dt
= −C �

(
d

dt
Uej	/2est

)
= −CU � �jsest� (7.91a)

Taking into account that s = −�+ j� = �0 ej�, we may rewrite (7.91a) as

i1�t� = �0CU � (e−�t ej��t+�−	/2�
)= �0CU e−�t cos��t +�−	/2� (7.91b)

For t = 0, we get

I10 = −CU � �js� = �0CU sin �

from which the constant U is evaluated,

U =
√

L11

C

I10

sin �
= 8
66 V

The voltage across the secondary winding is finally obtained from u2 = −LM di1/dt.
By using (7.91a) we obtain, for t > 0,

u2�t� = LMCU �
(

js
d

dt
est

)
= LMCU � (js2est

)= �2
0LMCU � (e−�tej��t+2�+	/2�

)

u2�t� = LM

L11

U e−�t cos
(
�t +2�+ 	

2

)

Let us summarize the results obtained for the transient regime subsequent to the opening
of the switch:

For t > 0 �

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

u1�t� = U1 e−�t cos��t +	/2�� with U1 = 8
66 V

i1�t� = I1 e−�t cos��t +	/12�� with I1 = 448
3 mA

u2�t� = U2 e−�t cos��t −	/3�� with U2 = 5
00 V

where � = 288
7 Np/s and � = 1077
4 rad/s.
The nature of the oscillatory regime is explained by the flowing back and forth of the

energy between the capacitor and the transformer. At t = 0 the system’s energy resides
entirely in the transformer core (magnetic energy). After a few instants have elapsed, at
�t = 5	/12, the energy stored in the transformer vanishes; most of the initial energy
is now found to be stored in the capacitor (electric energy). During the transfer process
some energy is transformed into heat due to Joule losses in the resistor (damping).
The interchange of energy between the two reactive components of the circuit repeats
itself periodically, lasting until no more electromagnetic energy exists. This idea is
schematically represented in Figure 7.27.

A final remark: although the voltage u2 at the transformer’s secondary winding is not
a state variable, you can check that u2�0+� = u2�0−� = 2
5 V. Can you figure out why
this must indeed happen in our circuit (Figure 7.26)?

(Hint: Analyze the continuity of the function di1/dt.)
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Figure 7.27 The oscillatory nature of the transient regime can be interpreted as the result of the
periodic interchange of electromagnetic energy between the transformer and the capacitor, the resistor
being responsible for the damping effect (Joule losses)

7.5 Proposed Homework Problems

Problem 7.5.1

Figure 7.28(a) shows the basic idea of a radio receiver tuning circuit, which essentially
consists of two coupled inductors and a variable capacitor. The primary inductor current
ia�t� is fed from a receiving antenna. The mutual inductance between inductors is LM . The
secondary inductor is characterized by its self-inductance L and by its internal resistance R.

Figure 7.28 Radio receiver tuning circuit. (a) Schematic diagram. (b) Equivalent RLC series circuit,
where the applied voltage is given by u�t� = −LM dia/dt

The antenna current includes contributions from distinct broadcasting stations, ia =∑k ik,
but we are interested in tuning only to the station operating at f1 = 1 MHz (medium-frequency
band). The 1 MHz component of ia�t� is given by i1�t� = I1 cos��1t�, with I1 = 2
25 �A.

Assume that the amplification block is ideal �Zamp → ��.

Data: LM = 40 �H� L = 84
4 �H� R = 10 �.
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Q1 Show that the RLC circuit in Figure 7.28(b) is equivalent to the tuning circuit in
Figure 7.28(a). In particular, determine the equivalent generator voltage u�t�.

Q2 For f = f1, determine the tuning capacitance of the circuit which maximizes the
amplitude of the voltage uC .

Q3 For f = f1, determine the resonance capacitance of the circuit which maximizes the
amplitude of the current i.

Q4 Show that the situations in Q2 and Q3 converge to each other when R � �L.

Q5 For the situation in Q3, considering ia�t� = i1�t� = I1 cos��1t�, determine the phasors,
U� I and UC .

Answers

Q1

u�t� = −LM

dia�t�

dt

Q2

Ctuning = L

R2 + ��1L�2
= 300
01 pF

Q3

Cres = 1

�2
1L

= 300
12 pF

Q4

Cres = lim
R→0

Ctuning

Q5

U = 0
566 e−j	/2 mV� I = 56
6 e−j	/2 �A� UC = 30 ej	 mV


Problem 7.5.2

As shown in Figure 7.29, an L � C circuit is inserted between an AC voltage generator and
a resistive load R. Data: L = 10 mH� C = 100 pF.

Q1 Determine analytically the transfer function T��� = U 2/U 1.

Q2 Find the frequency f0 for which i = 0, and therefore T��� = 0.
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Figure 7.29 Notch filter made of an L�C circuit

Q3 Draw a sketch of T���, for � ∈ �0���, showing that the circuit under analysis behaves
as a notch filter (a notch filter passes all frequencies except those in a stopband centered
at �0).

Answers

Q1

T��� = 1

1+ j
�L/R

1−�2LC

Q2

�0 = 1/
√

LC = 1 Mrad/s� f0 = �0/�2	� = 159
15 kHz
 (7.92)

Q3

T�0� = T��� = 1� T��0� = 0
 See sketch in Figure 7.30. (7.93)

Figure 7.30 Magnitude plot of the filter transfer function, showing the center frequency �0 = 1/
√

LC

Problem 7.5.3

Consider the circuit shown in Figure 7.31, which illustrates the basic principle of a spectrum
analyzer. The input voltage signal is defined as
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u�t� =
5∑

k=1

uk�t� =
5∑

k=1

Uk cos�k�t +
k�

where � = 10 krad/s.

Figure 7.31 Basic principle of a spectrum analyzer

Q1 Taking into account the results from Problem 7.5.2, show that the voltage components
u1� u2� u3� u4 and u5 appear separately across each L � C block, provided that each
block respectively resonates at �1 = �� �2 = 2�� �3 = 3�� �4 = 4� and �5 = 5�.

Q2 Assuming that the uncoupled inductors are equal, with L = 10 mH, determine the
required values for C1� C2� C3� C4 and C5.

Answers

Q1 By using the superposition principle (valid for linear circuits) each frequency component
can be analyzed separately. For �k the resonant L � Ck block behaves as an open circuit
�i = 0�, but the other blocks, having a finite impedance, will show zero voltage across
them. Consequently, the voltage across the resonant L � Ck block is uk��k�.

Q2 Ck = 1/��2
kL�� C1 = 1000 nF� C2 = 250 nF� C3 = 111
1 nF� C4 = 62
5 nF� C5 = 40 nF.

Problem 7.5.4

Consider the circuit depicted in Figure 7.32, where the ideal ammeters AR� AC� AL and A0

read rms values. The applied voltage is u�t� = √
2 Urms cos��t�.

Data: Urms = 5 V� � = 10 krad/s� R = 50 � and L = 5 mH.

Q1 Write the time-domain and phasor-domain equations that govern the steady-state
harmonic regime of the circuit.

Q2 Determine the capacitor’s capacitance C = Cres that brings the circuit to a resonant
situation.
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Figure 7.32 An RLC parallel circuit with ideal ammeters placed for measuring rms current intensities

Q3 Assume C = Cres.

Determine numerically the phasor representation of u� iR� iC� iL and i.
Indicate the readings of all the ammeters included in the circuit.
Determine the active and reactive powers at the generator terminals. Check the results
using the complex Poynting theorem.

Answers

Q1 iR = u/R → IR = U/R� iC = C du/dt → IC = j�CU� u = L diL/dt → IL = U/�j�L�.

i = iR + iC + iL → I = IR + IC + IL = U

(
1
R

+ j�C + 1
j�L

)

Q2 C = Cres = 2 �F.

Q3 U = √
2 5 V� IR = √

2 0
1 A� IL = √
2 0
1 e−j	/2 A� IC = √

2 0
1 e+j	/2 A� I = √
2 0
1 A

AR = AC = AL = 100 mA� A0 ≡ 0 (note that iC�t�+ iL�t� = 0).

P = 5 W� PQ = 0� PJ = RI2
Rrms

= 5 W� �Wm�av = �We�av = 25 �J.

Problem 7.5.5

A residential four-wire installation is fed by a three-phase voltage generator (see Problem
5.13.6). As shown in Figure 7.33, both the generator and the load are star connected. The
generator phase-to-neutral voltages are defined as uk�t� = √

2 Urms cos��t − 
k�, where
Urms = 230 V, and 
k = �k−1�2	/3, for k = 1, 2, 3. The frequency is f = 50 Hz.

Q1 Determine the phase-to-phase generator voltages.

Q2 Assume an unbalanced load whose impedances are Z1 = 20 �� Z2 = 30 ej	/3 � and
Z3 = 40 ej	/6 �. Determine the phasors characterizing the installation currents, including
the neutral, that is I1� I2� I3 and IN .
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Figure 7.33 Four-wire, three-phase installation. The generator and the unbalanced load are star
connected

Q3 Keep considering the unbalanced load described in Q2 but suppose that, by accident,
the neutral wire is interrupted, IN = 0. Find the new voltages U

′
1� U

′
2 and U

′
3 applied to

the load impedances. Show that the load voltage u′
2 exceeds its nominal value (230 V)

by about 30 %.

Q4 Assume that the protective circuit breaker associated with load Z2 opens, a situation
that from the generator’s point of view is equivalent to making Z2 = �. Recompute the
new voltage phasors U

′
1� U

′
2 and U

′
3. Check that a subsequent new overvoltage appears

across Z3.

Answers

Q1 U 12 = U 1 −U 2 = √
2
(√

3 230
)

ej	/6 V → u12�t� = √
2 398
4 cos��t +	/6� V.

U 23 = U 2 −U 3 = √
2
(√

3 230
)

e−j	/2 V → u23�t� = √
2 398
4 cos��t −	/2� V.

U 31 = U 3 −U 1 = √
2
(√

3 230
)

ej5	/6 V → u31�t� = √
2 398
4 cos��t +5	/6� V.

Q2 With the neutral wire present we have U
′
1 = U 1� U

′
2 = U 2� U

′
3 = U 3.

Ik = U
′
k

Zk

=
⎧
⎨
⎩

I1 = √
2 11
50 A

I2 = √
2 7
67 ej180o

A �

I3 = √
2 5
75 ej90o

A
IN = I1 + I2 + I3 = √

2 6
91 ej56
3o

A

Q3

⎡
⎣

Z1 −Z2 0
0 Z2 −Z3

1 1 1

⎤
⎦
⎡
⎣

I1

I2

I3

⎤
⎦=

⎡
⎣

U 12

U 23

0

⎤
⎦→

⎡
⎣

I1

I2

I3

⎤
⎦=

⎡
⎣

Z1 −Z2 0
0 Z2 −Z3

1 1 1

⎤
⎦

−1⎡
⎣

U 12

U 23

0

⎤
⎦
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U
′
1 = Z1I1 = √

2 230
3 e−j17
7o

V� U
′
2 = Z2I2 = √

2 297
1 e−j115
0o

V�

U
′
3 = Z3I3 = √

2 180
1 ej134
2o

V

Q4

U
′
1 = √

2 136
9 e−j50
1	
V� U

′
2 = √

2 398
4 e−j130
2	
V� U

′
3 = √

2 273
9 ej159
9	
V


Problem 7.5.6

A three-phase generator feeds a perfectly balanced load Z1 = Z2 = Z3 = Z = Z ej�. The
load is star connected – see Figure 7.34(a).

Figure 7.34 (a) Four-wire, three-phase installation with a star-connected balanced load (the neutral
current is zero). (b) Equivalence between a star-connected balanced load and a delta-connected balanced
load, Z� = 3Z
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Q1 Check that the neutral wire is not needed, by showing that IN = 0.

Q2 Show that the instantaneous three-phase power p�t� = p1�t� + p2�t� + p3�t� is time
invariant.

Q3 The star load connection can be replaced by an equivalent delta connection as
shown in Figure 7.34(b). Show that the relationship between Z� and Z is given by
Z� = 3Z.

Answers

Q1

IN = U 1 +U 2 +U 3

Z
= 0

Q2

p�t� =
3∑

k=1

uk�t�ik�t� = 2
U 2

rms

Z

3∑
k=1

cos��t −
k� cos��t −
k −��

p�t� = U 2
rms

Z

⎛
⎜⎜⎜⎝

3∑
k=1

cos �+
3∑

k=1

cos�2�t −2
k −��

︸ ︷︷ ︸
0

⎞
⎟⎟⎟⎠= 3

U 2
rms

Z
cos �

Q3 At node 1′:
⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Star connection � I1 = U 1

Z

Delta connection � I1 = U 12 −U 31

Z�

→ Z� = Z × U 12 −U 31

U 1

= 3Z

At the remaining nodes the same result is obtained, Z� = 3Z.

Problem 7.5.7

The transformer shown in Figure 7.35 is subjected to a steady-state harmonic regime with
f = 50 Hz.

In order to determine its constitutive parameters two experiments were conducted. Firstly,
in Figure 7.36(a), the secondary winding was left open �i2 = 0�. Secondly, in Figure 7.36(b),
the primary and secondary windings were connected in series �i1 = i2�.
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Figure 7.35 Two-windings transformer

Figure 7.36 Two experiments for the characterization of the transformer parameters. (a) Secondary
open. (b) Primary and secondary windings connected in series

In both experiments, rms readings of the generator voltage, generator current and secondary
voltage were recorded; the generator active power P was also measured in both situations:

first experiment: Urms = 230 V� Irms = 6
976 A� U2rms = 109
6 V� P = 486
7 W;

second experiment: Urms = 230 V� Irms = 2
838 A� P = 161
1 W.

Q1 Write the phasor-domain equations concerning the first experiment. Determine the
parameters r1� L11 and LM .

Q2 Write the phasor-domain equations concerning the second experiment. Determine the
parameters r2 and L22.

Q3 For the second experiment, obtain U2rms
.

Answers

Q1 U = U 1� I = I1� I2 = 0 → U = �r1 + j�L11�I� −U 2 = j�LMI .

P = r1I
2
rms → r1 = P

I2
rms

= 10 ��
Urms

Irms

=
√

r2
1 + ��L11�

2 → L11 = 100 mH

U2rms
= �LMIrms → LM = U2rms

/��Irms� = 50 mH
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Q2 U = U 1 −U 2� I = I1 = I2 → U = ��r1 + r2�+ j��L11 +2LM +L22�� I .

P = �r1 + r2�I
2
rms → r2 = P

I2
rms

− r1 = 10 �

Urms

Irms

=√
�r1 + r2�

2 +�2�L11 +2LM +L22�
2 → L22 = 50 mH

Q3 −U 2 = �r2 + j�L22�I + j�LMI → U2rms
= �r2 + j��LM +L22�� Irms = 93
6 V.

Problem 7.5.8

The transformer shown in Figure 7.37(a) is driven by a 50 Hz voltage u1. The load connected
to the secondary winding is a capacitor of capacitance C2 = 55
36 �F, across which a voltage
u2, given by u2�t� = √

2 115 cos��t� V, is found to exist.
Figure 7.37(b) shows an equivalent circuit of the real transformer, where the following

parameters are defined R = 5 �� L = 732 mH and C ′
2 = 13
84 �F.

Figure 7.37 A capacitively loaded transformer. (a) Schematic diagram. (b) Equivalent circuit

Q1 Obtain the value of the turns ratio � of the ideal transformer associated with the
equivalent circuit. Next, determine the constitutive parameters of the real transformer,
r1� r2� L11� LM and L22.

Q2 Determine the primary and secondary voltages and currents in the phasor domain. In
addition, determine the auxiliary quantities U

′
2 and I

′
2.

Q3 Compute the active and reactive powers brought into play by the generator. Verify the
results obtained using the complex Poynting theorem.

Answers

Q1 C2/C ′
2 = �2 → � = 2.

r1 = 5 �� r2 = 0� L11 = 732 mH� LM = 366 mH� L22 = 183 mH


Q2 U 2 = √
2 115 V� U

′
2 = √

2 230 ej	 V� I2 = √
2 2 ej	/2 A� I

′
2 = √

2 e−j	/2 A.

I1 = 0� U 1 = √
2 230 ej	 V
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Q3 P = PQ = 0.

P = PJ = 0� PQ = 2���Wm�av − �We�av�� �Wm�av = �We�av = 366 mJ


Problem 7.5.9

The circuit in Figure 7.38 refers to the transient phenomena of discharging a capacitor over
an RL circuit. The switch S is closed at t = 0 when u�0� = U0 = 86
6 V.

Data: R = 10 �� L = 1 mH� C = 10 �F.

Figure 7.38 A charged capacitor is discharged over an RL circuit

Q1 Determine the differential equation that governs u�t� for t > 0.

Q2 Making use of the initial conditions pertaining to this problem, find u�0+� and
(

du

dt

)

t=0+

Q3 Show that the transient regime solution for u�t� is a damped periodic oscillation, that is
u�t� = Ue−�t cos��t +��. Obtain �� �� � and U .

Answers

Q1

d2u

dt2
+2�

du

dt
+�2

0u = 0� � = R

2L
� �0 = 1√

LC

Q2

u�0+� = U0 = 86
6 V� i�0−� = i�0+� = 0 →
(

du

dt

)

t=0+
= 0

Q3 � = 5000 Np/s� �0 = 10 krad/s. � < �0 → damped periodic oscillation.
� = 8
66 krad/s� � = −	/6� U = 100 V
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Problem 7.5.10

Consider the circuit represented in Figure 7.39, whose parameters R� L and C are known.
The DC generator voltage is UG = 12 V. The circuit, which is operating for a long time, is
interrupted at t = 0.

Data: R = 120 �� L = 1 H� C = 10 nF.

Figure 7.39 The opening of the switch S gives rise to a high-voltage harmonic regime

Q1 Determine the differential equation that governs u�t� for t > 0.

Q2 Making use of the initial conditions pertaining to this problem, find u�0+� and
(

du

dt

)

t=0+

Q3 Show that the transient regime solution for u�t� is a purely periodic oscillation, that is
u�t� = U cos��0t +��. Obtain �0� � and U .

Q4 Check the result obtained for U using energy balance considerations.

Answers

Q1

d2u

dt2
+ 1

LC
u = 0� �� = 0�

Q2

u�0+� = u�0−� = 0� iC�0+� = iL�0+� = iL�0−� = 0
1A →
(

du

dt

)

t=0+
= −107 V/s

Q3

u�t� = U cos��0t +��� �0 = 1/
√

LC = 10 krad/s� � = 	/2� U = 1 kV
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Q4

�We�max = 1
2 CU 2 = �Wm�max = 5 mJ → U =

√
2 �Wm�max

C
= 1 kV

Problem 7.5.11

Take the transformer in Figure 7.40(a) whose constitutive parameters are known:

r1 = r2 = 25 �� L11 = L22 = 300 mH and LM = 50 mH

Now consider the transformer connections shown in Figure 7.40(b), where U = 100 V and
C = 50 �F. The capacitor is initially discharged. The switch S closes at t = 0.

Figure 7.40 (a) Transformer characterized by r1� r2� L11� L22 and LM . (b) Switching on a DC
voltage generator over a circuit containing a capacitor and a transformer whose windings are connected
in series

Q1 Bearing in mind the time-domain equations of the transformer, and taking into account
that i1 = −i2 = i, determine the differential equation that governs i�t� for t > 0.

Q2 Define the initial conditions of the problem.

Q3 Show that the transient regime solution for i�t� is a damped periodic oscillation, that is
i�t� = I e−�t cos��t −��. Obtain �� �� � and I .

Answers

Q1

U = Ri+L
di

dt
+ 1

C

∫
idt → L

d2i

dt2
+R

di

dt
+ i

C
= 0

where R = r1 + r2 = 50 � and L = L11 +L22 −2LM = 0
5 H.
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Q2

i�0� = 0� uC�0� = 0 →
(

di

dt

)

t=0+
= U

L
= 200 A/s

Q3

� = R

2L
= 50 Np/s� �0 = 1√

LC
= 200 rad/s

� < �0 → damped periodic oscillation.
� = 193
7 rad/s� � = 	/2� I = 1
033 A.





Part IV
Rapid
Time-Varying Fields





Introduction

For rapid time-varying electromagnetic phenomena you need to consider the original
Maxwell’s equations exactly as they are:

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

curl E = −�B
�t

div B = 0

curl H = J + �D
�t

div D = �

(PIV.1)

The strategy used in Part III to deal with slow time-varying fields, consisting of treating
separately the capacitive effects associated with �D/�t from the inductive effects associated
with �B/�t, no longer applies, in general.

Because of the interdependence of the electric and magnetic fields, they, together, should
be considered as a single coherent entity – the electromagnetic field.

As already referred to in the introductory section of Part III, rapid time-varying field
phenomena are those for which the length of the structures under analysis is comparable or
larger than the lowest wavelength characterizing the electromagnetic field dynamics.

Part IV is subdivided into two chapters.
Chapter 8 is fundamentally concerned with electromagnetic waves, energy flow, field

polarization, and skin effect phenomena. Chapter 9 is entirely devoted to transmission-line
guided-wave analysis in both the time and frequency domain.

Electromagnetic Foundations of Electrical Engineering J. A. Brandão Faria
© 2008 John Wiley & Sons, Ltd





8
Electromagnetic Field Phenomena

8.1 Electromagnetic Waves

You most certainly have heard about waves in previous physics courses. The simplest
example you may be acquainted with is the vibrating string. Assume you have a long
stretched string aligned with the x axis. If you grab the free end of the string and shake it
up down, you will notice that the initial movement you transferred to the string ��0� t� will
travel at constant speed v down the string, but conserving its shape – see Figure 8.1.

Figure 8.1 Propagation along a vibrating string

The mathematical equation describing the propagation of the oscillation (wave) along x
is the well-known one-dimensional wave equation

�2��x� t�

�x2
= 1

v2

�2��x� t�

�t2

For a three-dimensional problem, where � = ��x� y� z� t�, the above result transforms into

�2�

�x2
+ �2�

�y2
+ �2�

�z2︸ ︷︷ ︸
lap �

= 1
v2

�2�

�t2
(8.1)

which is the scalar three-dimensional (3D) wave equation.

Electromagnetic Foundations of Electrical Engineering J. A. Brandão Faria
© 2008 John Wiley & Sons, Ltd
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After this brief introduction, let us return to Maxwell’s equations in (PIV.1).
In free space �� = �0� � = �0� where currents and charges are absent �J = 0� 	 = 0�

Maxwell’s equations assume the simplified version

curl E = −�B
�t

(8.2)

curl B = �0�0

�E
�t

(8.3)

div B = 0 (8.4)

div E = 0 (8.5)

By applying the curl operator on the left to (8.2), and taking into account the result in (8.3),
we get

curl curl E = − �

�t
curl B = −�0�0

�2E
�t2

From vector calculus we know that curl curl ≡ grad div − lap, but since div E = 0, we find

lap E = �0�0

�2E
�t2

Likewise, had we applied the curl operator to (8.3), and taken (8.2) into account, we would get

lap B = �0�0

�2B
�t2

In short, in free space, the electromagnetic field (E, B) satisfies the equation

lap
{

E
B

}
= 1

v2

�2

�t2

{
E
B

}
� v = 1√

�0�0

(8.6)

Comparing this result to (8.1), you can readily see that (8.6) is nothing but the 3D wave
equation of the electromagnetic field. In other words, we came to the conclusion that
Maxwell’s equations are compatible with wave solutions whose velocity in free space is
equal to the speed of light in a vacuum, v = 3 × 108 m/s. This fact ultimately pointed out
that light itself is nothing but electromagnetic radiation; the science of optics is not an
independent area of knowledge, but rather the contrary – it belongs with electromagnetism.

The first experimental proof that electromagnetic waves are real dates back to 1889
(Hertz). A remark is in order here: if the displacement current density introduced by Maxwell
did not exist, (8.6) would not hold – electromagnetic waves would not exist.

For homogeneous media with � �= �0, � �= �0, the wave velocity in (8.6) is v = 1/
√

��.
Before finishing this section it may help you to have a pictorial representation of the

wave phenomena. From (8.2) you can see that a time-varying B field may give rise to a
time-varying E field; likewise, from (8.3), you can also see that a time-varying E field may
give rise to a time-varying B field. The consequence of this is that the electromagnetic field
is a self-sustainable entity

· · · → B�t� → E�t� → B�t� → E�t� → B�t� → E�t� → ·· ·
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Once it has been started at a certain region in space (for example, at an antenna) it will
propagate and spread through space indefinitely and for ever, the wave process progressing
at a constant speed. The sketch in Figure 8.2 gives you a glimpse of the ideas we have been
talking about.

B B B

E E E

v

. . . 

B B

E E E

. . . 

v

Figure 8.2 A pictorial sketch of the self-sustainable electromagnetic field radiated by an antenna,
and propagating through space with velocity v = 1/

√
�0�0

8.2 Poynting Theorem, Poynting Vector, Power Flow

Based on intuitive energy balance considerations, the Poynting theorem has already been
introduced in the framework of quasi-stationary regimes (Chapter 7). Here, we are going to
show you a proof of such a theorem based directly on Maxwell’s equations. In addition, a
new interpretation for the concept of instantaneous power p�t� is provided.

Take curl H = J + �D/�t and multiply (inner product) both sides of the equation by E.
Then you get

E · curl H = E ·J +E · �D
�t

= E ·J + �

�t

(
E ·D

2

)
(8.7a)

From (2.26) in Chapter 2, you will recognize that �E ·D�/2 represents the per-unit-volume
electric energy stored in the electric field, ŵe. Also, from (3.14) in Chapter 3, you will
recognize that �E ·J� represents the per-unit-volume power losses associated with the Joule
effect, p̂J . Hence, we can rewrite (8.7a) as

E · curl H = p̂J + � ŵe

�t
(8.7b)

Similarly, take curl E = −�B/�t and multiply (inner product) both sides of the equation by
H. Then you get

H · curl E = −H · �B
�t

= − �

�t

(
H ·B

2

)
(8.8a)

From (4.36) in Chapter 4, you will recognize that �H ·B�/2 represents the per-unit-volume
magnetic energy stored in the magnetic field, ŵm. Hence, we can rewrite (8.8a) as

H · curl E = −� ŵm

�t
(8.8b)
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By subtracting the equations in (8.7b) and (8.8b), we obtain

E · curl H −H · curl E = p̂J + � ŵm

�t
+ � ŵe

�t
(8.9)

But, from vector calculus we have E · curl H −H · curl E = −div�E×H�. The vector entity

S = E×H (8.10)

named the Poynting vector (units: W/m2, watt per square meter), is to be physically
interpreted as the per-unit-area power flow carried by the electromagnetic field.

Therefore, the Poynting theorem, in local form, can be established as

−div S = p̂J + � ŵm

�t
+ � ŵe

�t
(8.11)

If this result is integrated over a volume V , bounded by a closed surface SV , we obtain,
using the already familiar Gauss theorem,

∫

SV

S ·ni dS

︸ ︷︷ ︸
p�t�

= pJ�t�+ d

dt
�Wm�t�+We�t�� (8.12)

where ni is the inward unit normal to SV .
Let us emphasize the following aspects:

• The result in (8.12) is a restatement of the result in (7.20).
• The result in (8.12) is not valid when hysteresis phenomena are present.
• The instantaneous power p�t� in play in a given volume of space is to be interpreted as

the inward flux of the Poynting vector across the volume border.
• The Poynting vector is the carrier of electromagnetic energy; it is ultimately responsible

for the flow of power in any electromagnetic system.
• Electromagnetic energy is not carried by wires. Wires are simply used to guide

electromagnetic waves, but (apart from wire losses) the energy flow is essentially external
to the wires.

• At any chosen point of an electromagnetic wave, the power flow density is totally
determined, in both in magnitude and direction, by S – see Figure 8.3.

Figure 8.3 Wavefront. The Poynting vector S = E × H determines the flow of electromagnetic
energy



Electromagnetic Field Phenomena 313

Well before the introduction of the Poynting theorem we utilized the instantaneous power
definition p = ui. Now, we know that such a definition is not general; it pertains to slow time-
varying field phenomena. Here, we are going to show that for stationary and quasi-stationary
phenomena we have

∫

SV

S ·ni dS = p�t� = ui (8.13)

For that purpose, consider the general situation depicted in Figure 8.4(a) where a generator is
connected to a load using a pair of wires. Define SV as the global surface enclosing the load,
and define ST as the transversal plane surface intersecting the two wires (which are assumed
to be perfect conductors). On the transverse plane, the field lines of E are circumferential
arcs starting and ending at the wires, and the lines of H are non-coaxial circumferences
around the wires – see Figure 8.4(b). The two families of curves intersect perpendicularly,
originating Poynting vectors oriented along z, S = E×H = S �ez.

For stationary or quasi-stationary regimes, at any point belonging to SV , we have
E = −grad V and curl H = J.

Hence, the Poynting vector is given by S = E×H = −grad V ×H.
Taking into account the vector identity

curl �VH� = V curl H +grad V ×H

we get S = V J − curl�VH�. The inward flux of S across SV gives the instantaneous power
that flows from the generator to the load

p =
∫

SV

S ·ni dS =
∫

SV

V J ·ni dS +
∫

SV

curl �VH�︸ ︷︷ ︸
K

·no dS

where no is the outward unit normal.
The last term on the right is zero. In fact, from the Gauss theorem, we have

∫

SV

curl K ·no dS =
∫

V

div curl K dV = 0

since the operator div curl ≡ 0. Therefore, we have

p =
∫

SV

V J ·ni dS (8.14)

The flux of VJ across SV in (8.14) is zero everywhere except at the regions S1 and S2 where
the current-carrying wires intersect the transverse plane. Hence, we finally find

p =
∫

SV

V J ·ni dS =
∫

ST

V J ·ni dS = V1

∫

S1

J ·ni dS

︸ ︷︷ ︸
+i

+V2

∫

S2

J ·ni dS

︸ ︷︷ ︸
−i

= �V1 −V2�︸ ︷︷ ︸
u

i = ui
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H

H
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H
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z
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Figure 8.4 (a) The instantaneous power transmitted to the load p = ui can be interpreted as the
Poynting vector flow across the transverse plane ST . (b) Electromagnetic field lines in the transverse
plane

Note that, for low- or high-frequency regimes, in a transmission system made of two parallel
perfect conductors, both electric and magnetic field lines belong to transverse planes. On
these planes, because B⊥nS and D⊥nS, you have

∫

�

S

E ·ds = −
∫

Ss

�B
�t

·nS dS = 0 → curl E = 0 → E = −grad V
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∫

�

S

H ·ds =
∫

SS

(
J + �D

�t

)
·nS dS =

∫

SS

J ·nS dS → curl H = J

That is, you encounter the same conditions we talked about when stationary regimes were
dealt with, and, consequently, you can still use

p =
∫

ST

S ·n dS = ui

where ST is the transverse plane surface where u and i are defined.

8.3 Time-Harmonic Fields, Field Polarization, RMS Field Values

In Chapter 7 we defined complex amplitudes (phasors) of sinusoidal time-varying scalar
quantities. Now we do the same with vector fields. To start with, let us consider the simplest
case of a unidirectional electric field vector, for example E�x� y� z� t� = Ex cos�
t +�x� �ex,
where Ex = Ex�x� y� z� and �x = �x�x� y� z�. At a given point P in space, such a field is said
to be linearly polarized along x because the tip of vector E defines a straight line aligned
with the x axis. The above field can be written in complex form as

E�x� y� z� t� = � (E�x� y� z� ej
t
)
� with E = Ex ej�x �ex (8.15)

where E is the time-independent phasor associated with the harmonic field E�x� y� x� t�.
Let us complicate matters a little by assuming that E has two components of the same

frequency:

E�x� y� z� t� = Ex cos�
t +�x� �ex +Ey cos�
t +�y� �ey (8.16a)

At a given point P in space, if �x �= �y the tip of vector E will move with time and describe
an ellipse in the xy plane. In this case the field is said to be elliptically polarized.

In the particular case Ex = Ey and �x − �y = ±�/2, the ellipse degenerates into a
circumference and the field is said to be circularly polarized.

The complex representation of E(x, y, z, t) in (8.16a) is given by

E�x� y� z� t� = � (E�x� y� z� ej
t
)
� with E = Ex ej�x �ex +Ey ej�y �ey (8.16b)

where, again, E denotes the complex amplitude (phasor) of the harmonic field E�x� y� z� t�.
How do you generalize the foregoing results when the harmonic field E is described by

three components with �x �= �y �= �z?

E�x� y� z� t� = Ex cos�
t +�x� �ex +Ey cos�
t +�y� �ey +Ez cos�
t +�z� �ez (8.17a)

How does the tip of vector E move in space, at a given point P, as time elapses?
Most likely, your intuition will tell you that the tip of E will describe a 3D ellipsoid.
Well, that is not true. Intuition has misled you!
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To help you find the correct answer let us rewrite (8.17a) using the phasor-domain
representation

E�x� y� z� t� = � (E�x� y� z� ej
t
)
� with E = Ex ej�x︸ ︷︷ ︸

Ex

�ex +Ey ej�y

︸ ︷︷ ︸
Ey

�ey +Ez ej�z

︸ ︷︷ ︸
Ez

�ez

Breaking down E into its real and imaginary parts we obtain

E =
( ∑

k=x�y�z

Ek cos �k �ek

)
+ j

( ∑
k=x�y�z

Ek sin �k �ek

)
= E1 �e1 + jE2 �e2

where the field magnitudes E1 and E2 are time independent.
From E = � (E ej
t

)
we find

E = E1 cos�
t� �e1 −E2 sin�
t� �e2 (8.17b)

Again, as shown in Figure 8.5, we find an elliptically polarized field in the plane defined
by the unit vectors �e1 and �e2 (which, in general, are not mutually orthogonal).

Figure 8.5 The elliptically polarized electric field vector can be constructed from two linearly
polarized fields directed along �e1 and �e2

To conclude this section we must address the important topic of the evaluation of rms
values for time-harmonic vector fields.

For sinusoidal time-varying scalar quantities we showed, in Chapter 7, that

Urms =√
�u2�t��av = U U

∗

2
(8.18)

yielding Urms = U/
√

2.
For vector fields, we have a definition similar to the one given in (8.18), that is

Erms =√
�E2�t��av =√

�E�t� ·E�t��av =
√

E2
x +E2

y +E2
z

2
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In addition, noting that

E2
x +E2

y +E2
z = ExE

∗
x +EyE

∗
y +EzE

∗
z = E ·E

∗

we can also write, using complex amplitudes,

Erms =
√

E ·E
∗

2
(8.19)

A mistake that you should avoid is to write Erms = Emax/
√

2. For time-harmonic vector
fields, the rms value is not obtained from the maximum value Emax by dividing it by

√
2 (as

happens with scalar quantities) – that is only true for the especial case of linearly polarized
fields.

Remember, for example, that in the case of circular polarization, the field intensity remains
constant with time and, consequently, you get Erms = Emax.

In short, depending on the field’s polarization state, you can have Emax/
√

2 ≤ Erms ≤ Emax.

8.4 Phasor-Domain Maxwell’s Equations, Material Media
Constitutive Relations

The correspondence between operative rules in the time domain and in the phasor domain
summarized in Table 7.1 also applies to sinusoidal (
) time-varying vector fields. Therefore,
as far as Maxwell’s equations are concerned, we can write

Time domain Phasor domain

curl E = −�B
�t

↔ curl E = −j
B (8.20)

curl H = J + �D
�t

↔ curl H = J + j
D (8.21)

div B = 0 ↔ div B = 0 (8.22)

div D = 	 ↔ div D = 	 (8.23)

In addition, the material media constitutive relations, analyzed in Chapters 2, 3 and 4,
translate in the phasor domain as

D = � E ↔ D = � E (8.24)

J = 
 E ↔ J = 
 E (8.25)

B = � H ↔ B = � H (8.26)

Rigorously speaking, the time-domain equations in (8.24) and (8.26) are valid for stationary
and quasi-stationary regimes. The corresponding phasor-domain equations on the right can
be further generalized for rapid time-varying fields, considering the possibility that losses
may eventually be present in the linear medium (note that linearity is a prerequisite).
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In order to take into account dielectric polarization losses, you can introduce a complex
permittivity, � = �′ − j�′′. Likewise, magnetic losses can be accounted for by making use of
a complex permeability, � = �′ − j�′′. Hence, (8.24) and (8.26) can be generalized through

D = � E and B = � H (8.27)

The time-domain interpretation of the equations in (8.27) is that, for sinusoidal regimes, the
existence of material losses makes D lag E, and B lag H. The parametric curves D = D�E�
and B = B�H� are ellipses where the operating point moves counterclockwise as time goes
on – see Figure 8.6. The areas circumscribed by the ellipses denote the energy loss per
period, per unit volume of the material.

Figure 8.6 For sinusoidal regimes the parametric curves D�E� and B�H� change from straight lines
to ellipses, when dielectric and magnetic losses are present, respectively

8.5 Application Example (Uniform Plane Waves)

A uniform plane wave is one where fields E and H belong to planes perpendicular to
the propagation direction, the fields in those planes being invariant from point to point.
A monochromatic wave is one where fields are sinusoidal with time with a given frequency 
.

Uniform plane waves are a physical abstraction, but their analysis is very important
because any type of wave can be synthesized via a summation of uniform plane waves
(Fourier space transforms).

Consider the propagation of a wave produced by a light source. Assume that such a wave
can be approximately described by a uniform monochromatic plane wave, propagating along
the positive z axis in free space, where the electric field is given by

E�z� t� = E0 cos�
t −��z�� �ex

where E0 = 20 V/m, 
 = 2�f , f = 474 THz.

Questions

Q1 Write the complex amplitude corresponding to E(z, t).

Q2 Write the phasor-domain equation corresponding to the wave equation in (8.6), and
determine the function ��z�. Assume ��0� = 0.

Q3 Determine the operating wavelength � of the light source.
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Q4 Find the complex amplitude, as well as the time-domain representation, of the magnetic
field H.

Q5 Determine the Poynting vector and evaluate its time-averaged value.

Solutions

Q1 E = E�z� �ex� where E�z� = E0 e−j��z�.

Q2

�2E
�z2

− 1
v2

�2E
�t2

= 0 → d2E�z�

dz2
+
(


v

)2
E�z� = 0

where the wave velocity is v = c = 1/
√

�0�0 = 3×108 m/s.
Noting that

d2E�z�

dz2
= −E0 e−j��z�

[(
d�

dz

)2

+ j
d2�

dz2

]

we obtain

(
d�

dz

)2

+ j
d2�

dz2
=
(


v

)2 + j0 →

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

d2�

dz2
= 0

(
d�

dz

)2

=
(


v

)2

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭

→ ��z� = ±�z

where � , the so-called phase constant, is given by

� = 


v
(8.28)

The plus or minus sign in ��z� = ±�z means that two solutions are available. The plus
sign, which we will adopt here, corresponds to a wave propagating along the positive
z axis (check the answer to question Q5 showing that such an option indeed leads to
an energy flow along the positive z axis). The choice ��z� = −�z would describe a
propagating wave along the negative z axis.

Q3 Taking into account the result ��z� = �z, the expression for the electric field wave is

E�z� t� = E0 cos�
t −�z� �ex

If at a given moment t = t0 you take a snapshot of the electric field wave, you will
find that E(z, t0) is periodic along z. The space period, or wavelength �, is such that
�� = 2�. Hence you have

� = 2�

�
= 2�v



= v

f
(8.29)

Numerically you find � = 0�633 �m (red light).
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Q4 From
⎧
⎪⎨
⎪⎩

curl E = −j
�0H

curl E = dE�z�

dz
�ey

we see that H is oriented along the y axis, H = H�z� �ey,

H�z� = j


�0

dE�z�

dz
= E�z�

Rw

where Rw, the so-called characteristic wave resistance of free space, is

Rw = 
�0

�
=
√

�0

�0

= 120� = 377 � (8.30)

H�z� t� = � (H ej
t
)= H0 cos�
t −�z� �ey, with H0 = E0/Rw = 53 mA/m.

Q5 S = E×H = S �ez.

S�z� t� = E2
0

Rw

cos2�
t −�z�� �S�av = E2
0

2Rw

= 530 mW/m2

8.6 Complex Poynting Vector

The complex Poynting theorem, valid for time-harmonic regimes, has already been dealt
with in (7.26) in Chapter 7,

P = PJ + j2
��Wm�av − �We�av� (8.31)

where the complex power P is obtained as P = U I
∗
/2 for quasi-stationary regimes.

As mentioned earlier, the validity of the complex Poynting theorem is not limited to
quasi-stationary regimes. It also holds in the analysis of rapid time-varying fields.

In fact, the theorem can be logically deduced from the phasor-domain Maxwell’s equations
in (8.20) to (8.23), following a procedure very similar to the one that led us to the Poynting
theorem in Section 8.2. There is no point in again repeating the derivation steps. However,
a salient aspect that must be emphasized is the general interpretation that should be given
to the complex power P.

When deducing the complex Poynting theorem from the phasor-domain Maxwell’s
equations, the complex power appears as

P =
∫

SV

(
E×H

∗

2

)
·ni dS (8.32)

where SV is a closed surface bounding a volume V where electromagnetic phenomena occur
(energy dissipation, electric energy storage, magnetic energy storage). The complex vector
under the integration symbol is the complex Poynting vector S (units: W/m2)

S = E×H
∗

2
(8.33)
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Figure 8.7 The inward flux of the complex Poynting vector across a closed surface containing a
linear device allows for the evaluation of the device’s impedance

The inward flux of S across a closed surface containing a linear device permits the evaluation
of its impedance (Figure 8.7),

P =
∫

SV

(
E×H

∗

2

)
·ni dS = Z I2

rms → Z = P

I2
rms

(8.34)

In Part III we showed that the instantaneous power p�t� and the complex power P were
related through �p�t��av = � (P ). Likewise, for the Poynting vector we also have

�S�t��av = �
(

S
)

Electromagnetic power losses are included in (8.31) in the form of conductor losses associated
with the Joule effect PJ

PJ =
∫

V


E2
rms dV

However, the complex Poynting theorem can be easily extended to account for two additional
frequency-dependent loss mechanisms that may be present, namely the dielectric polarization
losses and the magnetization losses. For linear media, where the constitutive relations (8.27)
apply, you have

PPolarization =
∫

V


�′′E2
rms dV

PMagnetization =
∫

V


�′′H2
rms dV

Consequently the most general form for the complex Poynting theorem will read as

P = (
PJoule +PPolarization +PMagnetization

)
︸ ︷︷ ︸

Ploss

+j2
��Wm�av − �We�av�
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8.7 Application Example (Skin Effect)

Consider a cylindrical conductor of radius r0 and indefinite length l. In Chapter 3 dedicated to
stationary currents we concluded, as a result of curl E = 0, that the J-field lines had constant
intensity at any point inside the current-carrying conductor, that is J = I/��r2

0 �, where
I denotes the current intensity. The per-unit-length DC resistance of the conductor was
then evaluated as RDC = 1/�
�r2

0 �, where 
 is the conductivity. For the case of rapid
time-varying currents, the current density is no longer uniformly distributed inside the
conductor – most of it tends to flow near to the conductor’s surface, the so-called skin-effect
phenomenon.

Consider a time-varying sinusoidal current i�t� = I cos�
t+�i�, and assume, as shown in
Figure 8.8, that conduction currents are longitudinally oriented. According to the geometry
of the problem, a particular field solution to Maxwell’s equations must be invariant under
rotation operations around z and translation operations along z; in other words, all vector
fields are independent of � and z. All vector fields will, however, depend on the radial
coordinate. In particular, we will have J = J�r� �ez for the current density.

Take the permittivity and permeability of the conductor as �0 and �0, respectively.

Figure 8.8 Skin-effect phenomena in a cylindrical conductor of radius r0. (a) Conductor transverse
cross-section showing the internal magnetic field H��r�. (b) Conductor longitudinal cross-section
showing the internal longitudinal electric field Ez�r�

Questions

Q1 Show that the displacement current density inside the conductor is negligibly small for
the case of good conductors.

Q2 By using a cylindrical coordinate reference frame, write the phasor-domain Maxwell’s
curl equations for the problem.

Q3 Obtain a solution for H and E.

Q4 Determine the solution for J and particularize it for very-low frequencies.

Q5 Find the complex Poynting vector S�r0� at any point belonging to the conductor surface.

Q6 Determine the per-unit-length frequency-dependent impedance Z�
� of the conductor.

Q7 Particularize the results concerning Z�
� for low- and high-frequency regimes.
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Solutions

Q1 Conduction current density: J = 
 E. Displacement current density: j
D = j
�0E. Their
absolute ratio is

� =
∣∣∣∣
j
D


E

∣∣∣∣=

�0




 1

For ordinary good conductors (where 
 ≈ 107 S/m) the ratio � approaches unity for
frequencies above 1017 Hz (X-ray band). This means that for typical applications up to
the gigahertz range, the displacement current can be neglected inside good conductors.

Q2

curl E = curl
(
Ez�r� �ez

)= −j
�0H → d

dr

(
Ez�r�

) �e� = j
�0H

From this, you can see that the magnetic field is purely azimuthal, H = H��r� �e�, its
field lines being coaxial circumferences.

curl H = curl
(
H��r� �e�

)= 
E → 1
r

d
(
rH��r�

)

dr
�ez = 
Ez�r� �ez

To abbreviate the notation let us put E = Ez�r� and H = H��r�.
In conclusion, the governing equations for the problem are

dE

dr
= j
�0H (8.35)

dH

dr
+ H

r
= 
E (8.36)

Q3 Take the derivative of (8.36) with respect to r:

d2H

dr2
+ 1

r

dH

dr
− H

r2
= 


dE

dr

Making use of (8.35), you find

d2H

dr2
+ 1

r

dH

dr
+
(

p2 − 1
r

)
H = 0� with p =√−j
�0
 = 1− j

�
(8.37)

where � is the so-called penetration depth

� =
√

2

�0


(8.38)

The differential equation in (8.37) is a particular case of the more general Bessel equation1

d2H

dr2
+ 1

r

dH

dr
+
(

p2 − n2

r2

)
H = 0� with n ≥ 0

1 For details on Bessel functions refer to G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge
University Press, 1995.
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whose solution is of the type H = H1 Jn�pr� + H2 Yn�pr�, and where Jn is the Bessel
function of the first kind of order n, and Yn is the Neumann function of order n. H1 and
H2 are constants to be determined using the boundary conditions of the problem.

Since in our case we have n = 1, we write for the magnetic field solution

H�r� = H1 J1�pr�+H2 Y1�pr� (8.39)

Application of Ampère’s law to our problem yields the following boundary conditions:

H�r0� = I

2�r0

and H�0� = 0 (8.40)

Taking into account that J1�0� = 0, and that Y1�0� → �, we readily conclude from (8.39)
and (8.40) that

H2 = 0 and H1 = I

2�r0J1�pr0�

Substituting the above results into (8.39), we finally obtain the magnetic field inside the
conductor

H�r� = I

2�r0

J1�pr�

J1�pr0�
� for 0 ≤ r ≤ r0 (8.41)

As for the electric field, we have from (8.35), E�r� = j
�0

∫
H�r�dr , and noting that∫

J1���d� = −J0���, we obtain

E�r� = p I

2�
r0

J0�pr�

J1�pr0�
� for 0 ≤ r ≤ r0 (8.42)

Q4 From J = 
E we obtain for the current density

J�r� = p I

2�r0

J0�pr�

J1�pr0�
� for 0 ≤ r ≤ r0 (8.43)

For the case of very low frequencies, that is �pr� 
 1, or, put another way, when the
conductor radius is much smaller than the penetration depth (8.38), r0 
 �, we may
substitute the Bessel functions J0 and J1 in (8.43) by their Taylor expansions, retaining
only the leading terms, J0�pr� � 1 and J1�pr0� � pr0/2, and yielding

J � I

�r2
0

= I

S
(8.44)

This result is no surprise. It shows that for very low frequencies the current density is
uniformly distributed over the conductor cross-section S.

Q5 Particularizing (8.41) and (8.42) for r = r0, recalling that I I
∗ = 2I2

rms, and noting that
�ez ×�e� = −�er , we obtain for the complex Poynting vector

S�r0� = E�r0�×H
∗
�r0�

2
= −S�r0��er� where S�r0� = pI2

rms


�2�r0�
2

J0�pr0�

J1�pr0�
(8.45)
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Q6 Now we compute the complex power corresponding to the inward flux of S�r0� across
the conductor’s cylindrical surface of radius r0 and unit length

P =
∫

SV

S�r0� · �−�er�dS = 2�r0 S�r0� =
(

p

2�r0


J0�pr0�

J1�pr0�

)
I2
rms (8.46)

According to (8.34), the term in the large parentheses is to be interpreted as the per-unit-
length impedance of the conductor, hence

Z�
� = R�
�+ jX�
� = p

2�r0


J0�pr0�

J1�pr0�
= RDCpr0

J0�pr0�

2J1�pr0�
(8.47)

where RDC = 1/�
�r2
0 � is the per-unit-length DC resistance of the conductor (
 = 0).

Q7 Here we analyze the limit cases of the low- and high-frequency regimes.
For low frequencies, �pr0� 
 1, r0 
 �, we may substitute the Bessel functions J0 and

J1 in (8.47) by their Taylor expansions, retaining only the first two terms

J0�pr0� � 1−
(

pr0

2

)2

� J1�pr0� � pr0

2

[
1−2

(
pr0

4

)2
]

On doing this, and recalling that p2 = −j
�0
 , we find

Z�
� = RDC + j
RDC

�0
r2
0

8
= RDC + j


( �0

8�

)
︸ ︷︷ ︸
Linner

(8.48)

While the real part of the impedance coincides with the RDC contribution, the imaginary
part, which is associated with the magnetic energy stored inside the conductor itself, is
characterized by a per-unit-length internal inductance Linner = �0/�8��. This result is not
new – go to Chapter 4 and check Problem 4.15.1.

For high-frequencies, �pr0� � 1, � 
 r0, we may substitute the Bessel functions J0

and J1 in (8.47) for their asymptotic behavior,

lim
pr0→�

J0�pr0�

J1�pr0�
= j

from which we get

Z�
� = j
p

2�r0

= R� + jR�� with R��
� = 1

�2�r0��

∝ √


 (8.49a)

where use was made of

p = 1− j

�
� with � =

√
2


�0
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For high-frequency regimes the real and imaginary parts of the impedance tend to be
equal and to increase proportionally to the square root of the frequency. For the physical
interpretation of the per-unit-length resistance R� introduced in (8.49a), you can think of
the conductor current as being concentrated near to the conductor’s peripheral surface and
flowing across a thin circular crown of thickness equal to the penetration depth �. From this
point of view, the conductor’s effective area utilized by the current is S� = 2�r0�.

The result in (8.49a) can be rewritten in order to reveal the high-frequency conductor’s
internal inductance

Z�
� = R� + j
Linner� with Linner�
� = 1
2�r0

√
�0

2


∝ 1√



(8.49b)

As the frequency increases, the magnetic field is expelled from inside the conductor,
becoming confined to a peripheral layer whose thickness gradually decreases. In the limiting
case 
 → �, the magnetic energy stored in the conductor goes to zero and, consequently,
Linner → 0.

The general result in (8.47) is illustrated in Figure 8.9, where a graph of the typical
evolution of the conductor’s impedance against the frequency is shown.

Figure 8.9 Graph of the conductor’s internal resistance and reactance against frequency

8.8 Proposed Homework Problems

Problem 8.8.1

Consider a coaxial cable characterized by inner and outer radii r1 and r2. Assume that the
cable conductors and the insulation medium are perfect. Denote by u�t� and i�t� the cable
voltage and current at a given cross-section, z = constant.

Q1 Write the equations for the electric and magnetic fields inside the cable, r1 ≤ r ≤ r2.

Q2 Determine the Poynting vector S.

Q3 Determine the power p transmitted by the cable.
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Answers

Q1

E�t� = u�t�

r ln�r2/r1�
�er� H�t� = i�t�

2�r
�e�

Q2

S = E×H = ui

2�r2 ln�r2/r1�
�ez

Q3

p =
∫

Sz

S · �ez dS = ui

2� ln�r2/r1�

r2∫

r1

1
r2

2�r dr = ui

Problem 8.8.2

A uniform monochromatic plane wave propagating along the positive z axis is characterized,
in free space, by the following electric field:

E�z� t� = E0 cos�
t −�z� �ex +E0 cos�
t −�z−�/2� �ey

Q1 Write E�z� and determine H�z� and H�z� t�.

Q2 Classify both fields as to their type of polarization and determine the corresponding rms
values.

Q3 Determine the complex Poynting vector.

Q4 Assuming E0 = 5 V/m, find the time-averaged value of S.

Answers

Q1 E�z� = E0 e−j�z �ex +E0 e−j��z+�/2� �ey.

H�z� = j


�0

curl E�z� = H0 e−j��z−�/2� �ex +H0 e−j�z �ey

where

H0 = E0

Rw

and Rw = 
�0

�
=
√

�0

�0

H�z� t� = � (H�z� ej
t
)= H0 cos�
t −�z+�/2� �ex +H0 cos�
t −�z� �ey�
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Q2 Both E and H are circularly polarized fields. The tip of both vectors rotates in the xy
plane with angular velocity 
, E and H remaining orthogonal to each other.

Erms = E0� Hrms = H0�

Q3

S = E×H
∗

2
= E0H0 �ez

Q4

�S�av = �
(

S
)

= E0H0 �ez�E0H0 = 66�3 mW/m2�

Problem 8.8.3

An electric Hertz dipole of length l = 50 m oriented along the z axis is excited by a sinusoidal
current i�t� = I cos 
t, with I = 100 A and frequency f = 60 kHz (LF band/radio beacon
applications). In a spherical coordinate system �r� ����, the radiated electromagnetic field
in free space (�0, �0) far away from the antenna is given by

E = Er�r� �� t� �er +E��r� �� t� �e�� H = H��r� �� t� �e�

where

Er = IRwl

2�r2
cos � cos�
t −�r�� E� = IRwl

2�r
sin � cos�
t −�r +�/2�� H� = E�

Rw

where Rw = √
�0/�0, � = 


√
�0�0 = 
/c = 2�/�, with � = c/f = 5 km denoting the

wavelength.

Q1 What is the type of polarization of the radiated fields?

Q2 Show that there is no radiation along the dipole axis, � = 0.

Q3 Determine the complex amplitudes of E and H in the dipole equatorial plane (� = �/2),
at a distance r = 100 km. Obtain the corresponding complex Poynting vector.

Q4 Evaluate the time-averaged power P radiated by the antenna.

Q5 Determine the dipole radiation resistance defined as RR = P/I2
rms.

Answers

Q1 The electric field is elliptically polarized in meridian planes, that is planes defined by
�er and �e�. The magnetic field is linearly polarized along �e�.

Q2 For � = 0 you have E� = H� = 0. Since H = 0, the Poynting vector is also zero, S = 0,
which implies the absence of radiated power along z, that is along the antenna axis.
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Q3 For � = �/2:
⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

E� = IRwl

2�r
cos�
t −�r +�/2�

Er = 0

H� = Il

2�r
cos�
t −�r +�/2�

E = j
IRwl

2�r
e−j�r �e� = 1�885 ej�/2 �e� mV/m

H = j
Il

2�r
e−j�r �e� = 5 ej�/2 �e� �A/m

Noting that �e� ×�e� = �er , you find

S = E×H
∗

2
= 4�71 �er nW/m2

Q4 The complex amplitudes of E and H, which depend on r and �, are

E�r� �� = IRw l

2�r2
cos � e−j�r �er + j

IRwl

2�r
sin � e−j�r �e�� H�r� �� = j

Il

2�r
sin � e−j�r �e�

The corresponding complex Poynting vector has two components, one directed along
�e� and the other along �er . The component S� not only is of little importance for r � �,
but, above all, does not contribute to the radiation of energy. The radial component Sr

is given by

Sr = Rw

8

(
Il

�r
sin �

)2

The power radiated outward by the antenna is obtained by integrating S across a
spherical surface SV of radius r � �, centered at the antenna feeding point:

P = P =
∫

SV

S · �er dS =
∫

SV

Sr dS

where dS = r2 sin � d� d�, with � ∈ �0� �� and � ∈ �0� 2��. Therefore we have

P = Rw

8

(
Il

�

)2 2�∫

0

d�

�∫

0

sin3 � d� = Rw

�

3

(
Il

�

)2

= 395 W

Q5

RR = Rw

2�

3

(
l

�

)2

= 80�2

(
l

�

)2

� = 79 m�
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Problem 8.8.4

As far as quasi-stationary regimes are concerned, a capacitor is a circuit component whose
characteristic parameter is its capacitance. For high-frequency regimes, things are much
more complicated. At certain frequencies a capacitor may behave as an inductor!

Consider a parallel-plate capacitor consisting of two circular metallic electrodes of radius
r0 separated by a perfect insulating dielectric medium of very small thickness h – see
Figure 8.10. The capacitor current is a time-varying sinusoidal current i�t� = I cos�
t+�i�.

Figure 8.10 A parallel-plate disk-capacitor structure. For high-frequency regimes the device may
exhibit an inductor-like behavior

Given the small thickness of the insulation medium, assume that all fields are independent
of z. Assume, further, that the electric field E between the capacitor plates is vertically
oriented along z. According to the geometry of the problem, a particular field solution to
Maxwell’s equations must be invariant under rotation operations around the z axis.

Take the permittivity and permeability of the insulation medium as � and �0 respectively.

Questions

Q1 By using a cylindrical coordinate reference frame, write the phasor-domain Maxwell’s
equations for the problem and obtain a solution for H and E.

Q2 Find the complex Poynting vector S at any point belonging to the boundary cylindrical
surface of radius r = r0.

Q3 Evaluate the complex power P corresponding to the inward flux of S across the boundary
cylindrical surface of radius r0 and height h.

Q4 Determine the frequency-dependent impedance Z�
� of the capacitor and discuss the
resonance conditions of the device. Particularize Z�
� for very low- and very high-
frequency regimes.

Q5 Take � = 4�0 and r0 = 15�92 mm. Find the first five resonance frequencies of the device.

(Hint: Follow the same line of thought employed in Application Example 8.7, substituting
��E/�t for 
E.)
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Answers

Q1

E = E�r� �ez� H = H�r� �e��

dE

dr
= j
�0H

dH

dr
+ H

r
= j
�E

d2E

dr2
+ 1

r

dE

dr
+ (
√

�0�
)

︸ ︷︷ ︸
�

2
E = 0

E�r� = E1 J0��r�+E2 Y0��r�� where

⎧
⎪⎨
⎪⎩

E1 = �I

j
�2�r0J1��r0�
E2 = 0

E�r� = −j
I

2�r0

√
�0

�

J0��r�

J1��r0�

H�r� = 1
j
�0

dE�r�

dr
= I

2�r0

J1��r�

J1��r0�

Q2

S�r0� = E�r0�×H
∗
�r0�

2
= −S�r0��er� where S�r0� = I2

rms

j�2�r0�
2

√
�0

�

J0��r0�

J1��r0�

Q3

P =
∫

SV

S�r0� · �−�er�dS = 2�r0hS�r0� =
(

h

j2�r0

√
�0

�

J0��r0�

J1��r0�

)
I2
rms

Q4 According to (8.34), the term above, in the large parentheses, is to be interpreted as
the impedance of the capacitor, which can be rewritten as

Z�
� = jX�
� = 1
j
C0

�r0

J0��r0�

2J1��r0�
(8.51)

where C0 is the electrostatic capacitance, C0 = (
��r2

0

)
/h, and � depends on the

frequency, � = 

√

�0�.
From (8.51) you can see that the capacitor reactance X(
) changes sign whenever

the Bessel functions J0 and J1 go through zero. The first zeros of J0 occur for
�r0 ≈ 2�405� 5�520� 8�654� � � � . The first zeros of J1 occur for �r0 ≈ 0, 3.832, 7.016,
10.174, � � � .

In the range 0 < �r0 < 2�405 the parallel-plate device behaves as a capacitor, X�
� < 0.
For �r0 = 2�405 it behaves as a short circuit (resonance). In the range 2�405 < �r0 < 3�832



332 Electromagnetic Foundations of Electrical Engineering

the device behaves as an inductor, X�
� > 0. For �r0 = 3�832 it behaves as an open
circuit (resonance). In the range 3�832 < �r0 < 5�520 the device again behaves as a
capacitor, X�
� < 0. And so on.

This alternate behavior between capacitive and inductive character corresponds,
respectively, to the dominance of electric energy or the dominance of magnetic energy
stored in the insulation medium. (Note: Magnetic energy storage in the dielectric is
associated with the magnetic field produced by displacement currents.)

Resonance situations occur for frequencies such that (Wm�av = �We�av.
The general result in (8.51) is illustrated in Figure 8.11, where a graph of the typical
evolution of the capacitor reactance is plotted against �r0.

Figure 8.11 Graph of the reactance X of the disk capacitor against �r0, where � = 

√

�0�

For very low-frequency regimes, �r0 → 0, you have

�r0

J0��r0�

2J1��r0�
→ 1

hence

Z�
� ≈ 1
j
C0

For very high-frequency regimes, �r0 � 1, you must consider the asymptotic behavior
of the Bessel functions, that is

J0��r0�

J1��r0�
→ 1

tan��r0 −�/4�
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hence

Z�
� ≈ 1
j
C0

�r0/2
tan��r0 −�/4�

Q5 f1 = 4�81 GHz; f2 = 7�66 GHz; f3 = 11�04 GHz: f4 = 14�03 GHz: f5 = 17�31 GHz.

Problem 8.8.5

Consider a copper wire (� = �0, 
 = 5�7×107 S/m) of radius r0 = 1 mm and length l = 1 m.
The wire carries a time-varying current given by i�t� = I0 + I1 cos �
1t�, with 
1 = 2�f1,
f1 = 1 MHz.

Q1 Making use of skin-effect results (see Application Example 8.7) determine the wire’s
resistance and inductance parameters for the DC component and for the AC component.

Q2 Using the superposition principle, determine the longitudinal voltage drop u�t� along
the wire length.

Q3 Show that u�t� and i�t� cannot, in any way, be related by an equation of the usual type
u = Ri+Ldi/dt.

Answers

Q1 From (8.48) you have


 = 0

⎧
⎪⎨
⎪⎩

R0 = l


�r2
0

= 5�6 m�

L0 = �0l

8�
= 50 nH

For the AC component, the skin-effect penetration depth, (8.38), is

� =
√

2

�0


= 67 �m

Since � 
 r0, you can use the high-frequency results established in (8.49):


 = 
1

⎧
⎪⎨
⎪⎩

R1 = l


2�r0�
= R0

r0

2�
= 41�7 m�

L1 = R1


1

= 6�64 nH

Q2 For the DC component: u0 = R0I0.

For the AC component: U 1 = √
2R1I1 ej�/4 → u1�t� = √

2R1I1 cos �
1t +�/4�.
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Hence

u�t� = R0I0 +√
2R1I1 cos �
1t +�/4� (8.52)

Q3 Using i�t� = I0 + I1 cos �
1t� in an equation like u = Ri+Ldi/dt would yield

u�t� = RI0 +RI1 cos�
1t�−
1LI1 sin�
1t�

or, which is the same,

u�t� = RI0 +√R2 + �
1L�2 I1 cos
(


1t + arctan

1L

R

)
(8.53)

In order to ensure that (8.53) would coincide with the correct result in (8.52), it would
be required that R = R0 = R1 = 
1L, which is an impossible condition!

This clearly shows that, when analyzing skin-effect phenomena in the time domain,
utilization of equations of the type u = Ri+Ldi/dt is, in general, a mistake.



9
Transmission-Line Analysis

9.1 Introduction

Transmission-line analysis is an important topic in many electrical engineering areas that
range from power line systems to telecommunications, including computer networks.

The simplest examples of a transmission line are the two-wire line and the coaxial cable.
In both cases we are dealing with a system made of two conductors separated by a dielectric
medium where waves propagate from one end to the other guided by the geometrical
configuration of the line conductors.

Since typical transmission-line systems have longitudinal dimensions of the order of the
working wavelength � (or above), the standard approximations of quasi-stationary regimes
no longer apply – lumped-parameters circuit approaches simply cannot be used. Some
examples follow:

• Transmission power lines: length 1000 km; frequency 60 Hz; wavelength 5000 km.
• Telephone lines: length 100 km; frequency 3 kHz; wavelength 100 km.
• Transmitter–antenna line links: length 100 m; frequency 10 MHz; wavelength 30 m.
• Computer boards: length 20 cm; frequency 1 GHz; wavelength 30 cm.

Nonetheless, we will assume in our analysis that the transversal system dimensions are
negligibly small compared to �, that is transversal wave phenomena are absent.

Besides the simple cases of the two-wire line and the coaxial cable, transmission-line
analysis is also of crucial importance in the study of multiconductor transmission-line
structures; however, such a topic will only be tackled superficially due to the introductory
nature of this textbook. Likewise, the topic of non-uniform lines – those where the transverse
profile of the line changes along the line length – will only be briefly referred to.

Before we get into the mathematical details of the equations that govern transmission-line
phenomena, let us introduce the subject from a qualitative point of view.

Consider a transmission line of length l connecting a generator to a load (Figure 9.1),
where, for simplification purposes, the line conductors are assumed to be perfect conductors.

Electromagnetic Foundations of Electrical Engineering J. A. Brandão Faria
© 2008 John Wiley & Sons, Ltd
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Figure 9.1 (a) Generator and load voltages are not the same, due to magnetic field distributed effects
along the line. (b) Generator and load currents are not the same, due to electric field distributed
effects along the line

You may recall that in the introductory matter to Part III we emphasized that the equalities
uG�t�= uL�t� and iG�t�= iL�t� would not be valid for rapid time-varying field phenomena.
Let us see why this happens.

As shown in Figure 9.1(a), conductor currents give rise to a distributed time-varying
magnetic field along the line. By application of the induction law (Chapter 5) you find

−uG�t�+uL�t�= − d

dt
�l�t�= −

∫

Ss

�B
�t

·nS dS (9.1)

where �l�t� denotes the flux linked with the rectangular path of longitudinal length l.
Therefore you can see that the presence of distributed inductive effects is ultimately
responsible for the inequality uG�t� �= uL�t�.

Also, as shown in Figure 9.1(b), conductor voltages give rise to a distributed time-varying
electric field along the line (displacement currents between conductors). By application of
the charge continuity equation in integral form (Chapter 6) you find

−iG�t�+ iL�t�= − d

dt
ql�t�= −

∫

SV

�D
�t

·no dS (9.2)

where ql�t� denotes the total electric charge distributed along the top conductor of length
l. Therefore you can see that the presence of distributed capacitive effects is ultimately
responsible for the inequality iG�t� �= iL�t�.

For slow time-varying regimes, where both the inductive and capacitive distributed effects
are negligibly small, we have uG�t�= uL�t� and iG�t�= iL�t�. For rapid time-varying regimes,
the voltages and currents at the generator and load terminals do not coincide; nevertheless,
a simple identity between their time integrals still exists.

Assume that the driving voltage is a natural time-limited function; that is, assume the line
is inactive for t = ±�. Try a time integration of (9.1) and (9.2) from t = −� to t = �.

When you do that, you will find, from (9.1),

−
�∫

−�
uG�t� dt+

�∫

−�
uL�t� dt = �l�−��︸ ︷︷ ︸

0

−�l���︸ ︷︷ ︸
0
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Hence,

�∫

−�
uG�t� dt =

�∫

−�
uL�t� dt (9.3)

Likewise, from (9.2),

−
�∫

−�
iG�t� dt+

�∫

−�
iL�t� dt = ql�−��︸ ︷︷ ︸

0

−ql���︸ ︷︷ ︸
0

Hence,

�∫

−�
iG�t� dt =

�∫

−�
iL�t� dt (9.4)

The conclusions in (9.3) and (9.4) are not just theoretical curiosities; they can be very helpful
for checking how correct your results are when solving a given problem, whether you do it
by hand or employ dedicated software tools.

The fact that voltages and currents at the accessible ends of the line are different,
uG�t� �= uL�t�, iG�t� �= iL�t�, is a clear indication that line voltages and line currents
will undergo a continuous evolution along the line’s longitudinal coordinate, u = u�z� t�,
i= i�z� t�. In the next section we will obtain the laws that govern such an evolution.

9.2 Time-Domain Transmission-Line Equations for Lossless Lines

Consider a two-conductor line immersed in a non-magnetic linear homogeneous dielectric
medium, whose conductors run parallel to the longitudinal z axis.

If you assume that the current-carrying conductors are perfect, the electric field component
Ez will be absent. This means that outside the conductors, the field lines of E and H exist
in planes transversal to the z axis; in this case we say that we are dealing with transverse
electromagnetic waves (TEM),

E = Ex�z� t��ex+Ey�z� t��ey� H =Hx�z� t��ex+Hy�z� t��ey
In these circumstances we can unambiguously define line voltages and line currents as

u�z� t�=
∫

−→
ba

E�z� t� ·ds

i�z� t�=
∫

S1

J1�z� t� · �ez dS =
∫

S2

J2�z� t� · �−�ez� dS =
∫

�

S

H�z� t� ·ds

where, as shown in Figure 9.2, the arbitrary open path
−→
ba, the arbitrary closed path s and

the conductor cross-sections S1 and S2 all belong to the same transversal plane z= constant.
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Figure 9.2 Line voltages and line currents are unambiguously defined in the transverse plane of the
transmission line. E-field integration along an arbitrary open path from b to a yields the same result
for the voltage u. Similarly, H-field integration along an arbitrary closed path encircling the upper
conductor yields the same result for the current i

However, as you move from a z plane to another z plane both u and i will change. Our
next goal is to determine the equations that govern those changes.

Consider the application of the induction law to a very small line section of length �z→ 0
(Figure 9.3).

Figure 9.3 Application of the induction law to a very small line section of length �z→ 0

The rectangular circulation path s = −−−→
abcda includes four contributions: one on the plane

z, another on the plane z+�z and two others along the conductors’ surfaces (where Ez = 0).
The magnetic flux ��z linked to the circulation path originated by the line currents can be
evaluated by taking into account the per-unit-length external inductance Le of the line

⎧
⎪⎪⎨
⎪⎪⎩

∫

�

S

E ·ds = ∫
−→
ab

E ·ds+ ∫
−→
bc

E ·ds+ ∫
−→
cd

E ·ds+ ∫
−→
da

E ·ds = −u�z� t�+0+u�z+�z� t�+0

− d

dt

∫
Ss

B ·nS dS = − d

dt
��z = −Le�z

�

�t
i�z� t�

Equating the results above, dividing by �z and taking the limit as �z→ 0 we obtain

lim
�z→0

u�z+�z� t�−u�z� t�
�z

= �

�z
u�z� t�= −Le

�

�t
i�z� t�
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Next, consider the application of the integral form of the charge continuity equation to a
very small line section of length �z→ 0; conductor 1 is enclosed by the integration surface
SV (Figure 9.4).

Figure 9.4 Application of the integral form of the charge continuity equation to a very small line
section of length �z→ 0

The current intensities through SV are −i�z� t� and i�z+�z� t�, on the left and right
cross-sections, respectively. The electric charge q�z inside SV (originating the electric
field between line conductors) can be evaluated by taking into account the per-unit-length
capacitance C of the line

⎧
⎪⎨
⎪⎩

∫
SV

J ·no dS = ∫
Sz

J · �−�ez� dS+ ∫
Sz+�z

J · �ez dS = −i�z� t�+ i�z+�z� t�
− ∫
V

	dV = −q�z= −C�z u�z� t�

Equating the results above, dividing by �z and taking the limit as �z→ 0 we obtain

lim
�z→0

i�z+�z� t�− i�z� t�
�z

= �

�z
i�z� t�= −C �

�t
u�z� t�

Summarizing, the time-domain transmission-line equations for lossless lines are

�

�z
u�z� t�= −Le

�

�t
i�z� t� (9.5)

�

�z
i�z� t�= −C �

�t
u�z� t� (9.6)

The line voltage rate of change in space is proportional to the line current rate of change
in time; the link between those two rates is established via the per-unit-length inductance
of the line. The line current rate of change in space is proportional to the line voltage rate
of change in time; the link between those two rates is established via the per-unit-length
capacitance of the line.
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9.2.1 Wave Parameters, Propagation Velocity, Characteristic Wave
Resistance

If you take the z derivative of (9.5) and then use (9.6) or, the other way around, if you take the
z derivative of (9.6) and then use (9.5), you will obtain the already familiar one-dimensional
wave equation, which applies indistinctly to line voltages and line currents

�2

�z2

{
u�z� t�
i�z� t�

}
−LeC

�2

�t2

{
u�z� t�
i�z� t�

}
= 0 (9.7)

where the product LeC is the inverse of the squared wave propagation velocity, that is

v2 = 1
LeC

(9.8)

from which two solutions can be found, v = ±1/
√
LeC. While one solution describes a

propagating wave along the positive z direction (the so-called incident wave), the other
solution describes a propagating wave along the negative z direction (the so-called reflected
wave). This means that, in general, the line voltage and line current solutions are a
superposition of two counter-propagating waves, with velocity v = 1/

√
LeC, which we can

write in the form

u�z� t�= ui�z−vt�+ur�z+vt� (9.9a)

i�z� t�= ii�z−vt�+ ir�z+vt�= ui�z−vt�
�Rw�i

+ ur�z+vt�
�Rw�r

(9.9b)

where subscripts i and r are remainders for the incident and reflected wave solutions,
respectively.

From (9.7), you can see that voltage and current waves are similar except for a scale
factor with the physical dimensions of a resistance. For the incident wave, the scaling factor
�Rw�i = ui/ii is the so-called characteristic resistance of the incident wave. The same thing
applies, identically, to the reflected wave, with �Rw�r = ur/ir .

Let us now determine the characteristic resistances concerning both waves.
By making 
 = z−vt, � = z+vt, and taking into account that

�u

�z
= ��ui+ur�

�z
=

u′
i︷ ︸︸ ︷(

dui
d


)
�


�z
+

u′
r︷ ︸︸ ︷(

dur
d�

)
��

�z
= u′

i+u′
r

�i

�t
= ��ii+ ir�

�t
= dii
d


�


�t
+ dir
d�

��

�z
= u′

i

�Rw�i
�−v�+ u′

r

�Rw�r
�v�

substituting (9.9) into (9.5) we find

u′
i+u′

r = Lev

�Rw�i
u′
i+

−Lev
�Rw�r

u′
r

from which you see that the characteristic wave resistances are

�Rw�i = − �Rw�r = Rw = Lev= 1
Cv

=
√
Le
C

(9.10)
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In the same way that two counter-propagating waves have reciprocal velocities �±v�, the
same thing happens with their characteristic resistances �±Rw�.

According to this conclusion, we rewrite the transmission-line wave equation solutions in
the final form

u�z� t�= ui�z−vt�+ur�z+vt� (9.11a)

i�z� t�= ii�z−vt�+ ir�z+vt�= ui�z−vt�
Rw

+ ur�z+vt�
−Rw

(9.11b)

In Chapter 8 we saw that the velocity of electromagnetic waves in a lossless homogeneous
medium was determined solely by the intrinsic properties of the medium, that is by the
parameters � and 
. For non-magnetic media we have found

v= 1√
�


= 1√
�0
0
r

= c√

r

(9.12)

We can check that this result still applies to waves guided by lossless homogeneous
transmission lines. In fact, if you make use of the per-unit-length capacitance and inductance
parameters established in Chapters 2 and 4, concerning the coaxial cable and the two-thin-
wire line configuration, you will obtain v as given in (9.12) – see Table 9.1.

Table 9.1 Transmission-line parameters

Coaxial cable Two-thin-wire line

Per-unit-length capacitance C (F/m)
2�


ln�r2/r1�

�


ln�2d/r�

Per-unit-length inductance Le (H/m)
�0

2�
ln�r2/r1�

�0

�
ln�2d/r�

Propagation velocity v = 1√
LeC

(m/s)
1√
�0


1√
�0


Characteristic resistance Rw =
√
Le
C
���

√
�0




ln�r2/r1�

2�

√
�0




ln�2d/r�
�

However, the transmission-line characteristic wave resistance Rw is not to be confused
with the free-space characteristic resistance we spoke about in Chapter 8; while the latter is
a relationship between electric and magnetic field intensities, the former relates the voltage
and the current of a given wave. Transmission-line characteristic wave resistances depend
not only on the dielectric medium properties, but also on the transverse profile of the line
itself – see Table 9.1.

When reading Table 9.1, you should bear in mind that, for the coaxial cable configuration,
r1 and r2 denote the radius of the inner conductor and the inner radius of the outer conductor,
respectively. For the two-thin-wire line, r denotes the radius of both conductors, and 2d
denotes the axial separation between them.
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9.2.2 Pulse Propagation, Pulse Reflection

Consider a transmission line of length l, and assume that at the input end of the line
(z = 0) a triangular pulse voltage of short duration �T is provided by an ideal generator
(Figure 9.5(a)).

Figure 9.5 (a) Generator voltage shape. (a) Load voltage shape for the particular case of a matched
line; the delay time � is defined as � = l/v

The time delay between the emission of the pulse and its arrival at the load terminal is
� = l/v (with �T< �). If you take a photo of the line voltage and line current along the line
length at an instant t < � you will only observe the propagating incident wave (Figure 9.6).

Figure 9.6 Snapshot, at instant t (t < �), of the line voltage and line current (incident wave) observed
along z

A parenthetical remark: at this point some of you may be thinking that there is a mistake
in the line drawing shown in Figure 9.6, for the shape of the triangular voltage pulse is the
reverse of the triangular pulse shape in Figure 9.5(a). Well, you are thinking wrong; there
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is no mistake in Figure 9.6. The thing is that Figure 9.5(a) and Figure 9.6 are different
representations of the pulse; while the first is a representation in time, the second is a
representation in space. From Figure 9.5(a) you can see that the wavefront (t= 0) starts with
zero voltage and only later in time (t = �T ) is the peak value U reached; as a consequence,
when the wave travels in space, the pulse tail is the peak value.

As the incident wave reaches z= l part of its energy is absorbed by the load and another
part is reflected back towards the generator (reflected wave).

You may be wondering whether the reflection process can be prevented in some way.
The answer is yes. If the load is properly chosen it can happen that the incident pulse is
totally absorbed by the load; in such a case we say that the line is perfectly matched. In this
case the voltage at the load terminals is simply a delayed image of the generator voltage
(Figure 9.5(b)).

Let us see how you should choose the load RL in order to get a matched line.
If you enforce the goal condition ur = 0 in (9.11), and particularize the result to z = l,

you will find

u�l� t�= ui�l−vt�� i�l� t�= ui�l−vt�
Rw

Noting that RL = u�l� t�/i�l� t�, you readily conclude

Matched line � RL = Rw (9.13)

Whenever a lossless line is terminated by a resistor whose resistance is equal to the
characteristic resistance of the line, reflected waves will be absent. This result provides you
with a physical interpretation for the concept of characteristic wave resistance.

Take for instance a 50� coaxial cable. Such a specification has nothing to do with the
resistance of the cable conductors; the 50� information concerns the cable’s characteristic
resistance, and tells you that if you want to avoid reflected waves inside the cable then you
must terminate it with a 50� resistor.

Next, let us examine the reflection processes that take place in a transmission line when
the line is a mismatched one. For exemplification purposes, we keep considering that at
z= 0 the voltage pulse is the one shown in Figure 9.5(a), but now we assume that the load
terminals are left open, that is i�l� t�= 0.

As before in Figure 9.6, if you take a photo of the line voltage and line current along the
line length at an instant t < � you will observe only the propagating incident wave.

Since the load is an open circuit, it cannot absorb energy and a reflected wave is produced
such that, at z= l,

i= 0 = ii+ ir → ir = −ii and ur = −Rwir = +Rwii = ui (9.14)

Now, if you take a photo of the line voltage and line current along the line length at an
instant � < t < 2� you will observe only the propagating reflected wave where the current
pulse has changed its polarity – see Figure 9.7.

When the wave reaches the generator terminal, the generator voltage is zero (remember
that the pulse duration �T is smaller than �); put another way, the incoming wave sees a
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Figure 9.7 Snapshot, at instant t (� < t < 2�), of the line voltage and line current (reflected wave)
observed along z

short circuit at z= 0. A new reflection phenomenon takes place and a new incident wave is
originated, such that

u= 0 = ui+ur → ui = −ur and ii = ui/Rw (9.15)

Again, if you take a photo of the line voltage and line current along the line length at an
instant 2� < t < 3� you will observe only the propagating incident wave, where the voltage
pulse has changed its polarity – see Figure 9.8.

Figure 9.8 Snapshot, at instant t (2� < t < 3�), of the line voltage and line current (incident wave)
observed along z
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Since the line is lossless and its terminals do not include any dissipative components,
reflection phenomena at both ends will occur in succession, and indefinitely.

Before ending this section, an important remark is in order. You have seen in the preceding
analysis that current pulse waves travel along the line at a velocity v = 1/

√
�0
, which

typically is of the order of 108 m/s. Does this mean that the conductors’ free electrons are
moving at that same speed?

Absolutely not! Electron speeds inside good conductors are of the order of 1 m/s
(Chapter 3). So, where is the catch?

Have you ever witnessed the so-called Mexican wave that fans usually perform in football
stadiums? They get up and sit down sector after sector in a synchronized way producing
a revolving wave around the stadium. Football fans are not running at the wave velocity,
indeed they barely move. Well, the same thing happens with the conductor charges. They
barely move. When the guided electromagnetic wave travels along the line, the free charges
are pulled from their rest position to the conductor surface. After the wave has passed, the
free charges return to their rest position.

9.3 Application Example (Parallel-Plate Transmission Line)

Consider a transmission line consisting of two parallel-plate perfect conductors of length l
and width w. The space between the plates is filled with a non-magnetic dielectric material
of very small thickness � and permittivity 
= 
r
0.

As shown in Figure 9.9, the line is fed at z= 0 by a voltage source described by its internal
resistance RG plus an ideal generator. The latter produces a single rectangular voltage pulse
of amplitude U and duration �T . At the opposite end, z = l, the line is terminated by a
resistor RL.

Data: l= 20 cm, w = 25�13 mm, �= 1 mm, 
r = 2�25, U = 4 V, �T = 1 ns, RL = 30�.

Figure 9.9 Parallel-plate transmission line driven by a pulse generator. (a) Perspective view of the
transmission line. (b) Generator voltage plotted against time

Questions

Q1 Determine the propagation velocity of the TEM waves inside the dielectric medium, v.

Q2 Determine the per-unit-length capacitance and inductance of the line, C and Le.

Q3 Determine the characteristic wave resistance of the line, Rw.
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Q4 Assume that RG = Rw.
Obtain the time shape of the voltages u0�t� and uL�t�.
Check that

�∫

−�
u0�t� dt =

�∫

−�
uL�t� dt

Evaluate the energy brought into play by the generator as well as the total energy
dissipated in the system.

Q5 Repeat the calculations in Q4, but considering that RG = 0.

Solutions

Q1 v = 1/
√
�0
= c/

√

r = 2×108 m/s.

Q2 The electrostatic capacitance of the configuration of length l is Cl = 
wl/�. The per-
unit-length capacitance of the line is C = Cl/l= 
w/�= 500 pF/m.

v2 = 1
LeC

→ Le = 1
v2C

= �0�

w
= 50 nH/m

Q3

Rw =
√
Le
C

=
√
�0



× �

w
= 10�

Q4 We start by noting that the time delay coincides with the pulse duration

� = l

v
= 1ns = �T

When the process begins, only the incident wave is present, u= ui, i= ii = ui/Rw.
At z= 0 we have

u0 = uG−RGi0 or ui = uG−RG
ui
Rw

Since RG = Rw, we find u0 = ui = uG/2 = 2 V and i0 = ii = uG/�2Rw�= 200 mA.
At t = �, when the incident wave reaches the load, reflection occurs. The reflected

wave is determined using the boundary condition at z= l, that is

uL = ui+ur� iL = ui−ur
Rw

� uL = RLiL (9.16)

from which we find

ur = �ui =
(
RL−Rw
RL+Rw

)

︸ ︷︷ ︸
�

ui� � = 0�5 (9.17)
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where the dimensionless factor � is the so-called load reflection coefficient. The reflected
wave voltage is a positive pulse with half the magnitude of the incident one, ur = 1 V.
The reflected wave current is a negative pulse, ir = −ur/Rw = −100 mA.

From (9.16) and (9.17), we obtain the load voltage,

uL = �1+� � ui = �1+� �uG
2

= 3 V

The reflected wave travels along the line towards the generator (� < t < 2�) and when it
gets there it finds a matched load and the process ceases (note that the generator voltage
is zero for t > �). The voltage at z = 0 is simply determined by the arriving wave ur ,
that is u0 = 1 V, the corresponding current is i0 = −100 mA.

Figure 9.10 summarizes the preceding results, showing the time shape of both u0�t�
and uL�t�:

Figure 9.10 Voltages observed at the input and output ends of the line when RG = Rw. (a) Input
voltage u0�t�. (b) Output voltage uL�t�

�∫

−�
u0�t� dt =

�∫

0

u0�t� dt+
3�∫

2�

u0�t� dt = 3 nWb�

�∫

−�
uL�t� dt =

2�∫

�

uL�t� dt = 3 nWb

WRG
=

�∫

−�
RGi

2
0 dt =

�∫

0

RGi
2
0 dt+

3�∫

2�

RGi
2
0 dt = 0�5 nJ

WRL
=

�∫

−�

u2
L

RL
dt =

2�∫

�

u2
L

RL
dt = 0�3 nJ

WG =
�∫

−�
uGi0 dt =

�∫

0

uGi0 dt = 0�8 nJ

Note that WG =WRG
+WRL

.

Q5 With RG = 0 we have u0�t�= uG�t�.
The initially launched incident wave is ui = uG = U = 4 V, ii = ui/Rw = 400 mA.
When the incident wave reaches the load at t = �, reflection occurs dictated by the

same equations as in (9.16) and (9.17), from which we obtain ur = �ui = �U = 2 V and
uL = �1+� �U = 6 V.
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The reflected wave travels along the line towards the generator (� < t < 2�) and when
it gets there it finds a short-circuit condition, u= 0, hence

u= 0 = ui+ur → ui = −ur
A new reflection occurs, and a new incident voltage wave consisting of a negative pulse
is produced, ui = −ur = −�U = −2 V.

For t = 3�, the negative pulse arrives at the load, where it is reflected back. The new
reflected voltage wave is obtained from (9.17), ur = �ui = −�2U = −1 V. The load
voltage is determined from uL = �1+� �ui = −�1+� ��U = −3 V.

The reflected wave travels along the line towards the generator (3� < t < 4�) and
when it gets there it again finds a short-circuit condition; consequently, a new incident
wave is produced such that ui = −ur = �2U = 1 V.

This wave reaches the load at t = 5�, and produces a new reflection, the load voltage
being given by uL = �1+� �ui = �1+� ��2U = 1�5 V.

The process of successive reflections at both ends of the line lasts indefinitely with
uL tending to zero as time passes.

For clarity, we summarize next the results obtained for the load voltage:

For � < t < 2�: uL = �1+� �U = 6 V.
For 3� < t < 4�: uL = −��1+� �U = −3 V.
For 5� < t < 6�: uL = �2�1+� �U = 1�5 V.

In general: For �2n−1�� < t < 2n�: uL = �−� �n−1�1+��U , with n≥ 1.

Figure 9.11 shows the time shape of both u0�t� and uL�t�:

Figure 9.11 Voltages observed at the input and output ends of the line when RG = 0. (a) Input
voltage u0�t�. (b) Output voltage uL�t�
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�∫

−�
u0�t� dt =

�∫

0

U dt = U� = 4 nWb

�∫

−�
uL�t� dt =

�∑
n=1

2n�∫

�2n−1��

uL dt = �1+� �U�×
�∑
n=1

�−� �n−1

Taking into account that the geometric series
∑�

n=1 �−� �n−1 converges to 1/�1+� �, we
conclude that

∫ �
−� uL�t�dt = U�, as expected:

WG =
�∫

−�
uGi0 dt =

�∫

0

uGi0 dt =
U 2

Rw
� = 1�6 nJ

WRL
=

�∫

−�

u2
L

RL
dt = 1

RL

�∑
n=1

2n�∫

�2n−1��

u2
L dt =

�1+� �2U 2

RL
�×

�∑
n=1

�2�n−1�

Taking into account that the geometric series
∑�

n=1 �
2�n−1� converges to 1/�1−�2�, and

noting, from (9.17), that

RL = Rw
1+�
1−�

we conclude

WRL
= �1+� �2U 2

�1−�2�RL
� = U 2

Rw
� =WG

9.4 Frequency-Domain Transmission-Line Equations for Lossy Lines

Actual transmission-line structures are made of imperfect conductors and imperfect dielectric
media, which are a cause of undesirable losses. Regrettably, the perturbations introduced
by loss mechanisms cannot be easily taken into account directly in the time-domain
transmission-line equations. To help you understand the difficulty, it may suffice to recall
what you learnt in Section 8.7 and Problem 8.8.5 about the skin-effect phenomenon in
imperfect conductors. In Section 8.7 we established, in the frequency domain, an equation for
the per-unit-length impedance of a circular cylindrical conductor, Z���= R���+ j�Li���.
Nonetheless, in Problem 8.8.5, we showed that such an equation does not translate into
the time domain as u = Ri+Li di/dt (that would only be possible if R and Li were
frequency-independent parameters, which, clearly, is not the case).

Therefore, our approach to the analysis of lossy lines is conducted entirely in the frequency
domain, where line voltages and line currents are sinusoidal functions described by the
corresponding phasors U�z� and I�z�, that is

u�z� t�= 	 (
U�z� ej�t

)
� i�z� t�= 	 (

I�z� ej�t
)

A word of advice: since the assumption of perfect conductors has been dropped, a longitudinal
component for the electric field does now exist. The electromagnetic field structure is no
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longer of the TEM type, and some ambiguity arises in the definition of line voltages.
However, for good conductors, the longitudinal component of the E field is, in general, much
smaller than the transverse component. This allows us to keep using the same formalism we
established for lossless lines. But, in any case, you must realize that this approach is in fact
an approximation (quasi-TEM approach).

9.4.1 Per-Unit-Length Longitudinal Impedance, Per-Unit-Length
Transverse Admittance

Let us return to the (lossless) transmission-line equation in (9.5), which was obtained
considering the application of the induction law: �u/�z = −Le�i/�t. The corresponding
frequency-domain equation is

d

dz
U�z�= −j�LeI�z� (9.18)

In order to take into account the skin-effect phenomena in the two imperfect conductors of
the line, two additional contributions should be added to the right-hand side of this equation.
Those contributions are associated with the longitudinal voltage drops along line conductors
1 and 2,

∫

−→
bc

E ·ds and
∫

−→
da

E ·ds

which were null in the case of perfect conductors (see again Figure 9.3).
Therefore, if we add the per-unit-length conductor impedances Z1���=R1���+j�L1���

and Z2���= R2���+ j�L2��� as perturbations to the main term j�Le in (9.18), we obtain
the generalized equation

d

dz
U�z�= −��R1���+R2����︸ ︷︷ ︸

R

+j��L1���+L2���+Le�︸ ︷︷ ︸
L

�I�z� (9.19)

This result can be written compactly if we introduce, as is usual, the so-called longitudinal
impedance per unit length of the line Zl (units: �/m)

Zl = R���+ j�L���= Zl e
j��/2−�Z� (9.20)

where �Z is the longitudinal loss angle.
Now, let us return to the (lossless) transmission-line equation in (9.6), which was

obtained considering the application of the charge continuity equation: �i/�z = −C�u/�t.
The corresponding frequency-domain equation is

d

dz
I�z�= −j�C U�z� (9.21)

Dielectric losses can occur because of two distinct mechanisms: one is the presence of
transverse conduction currents across the imperfect insulation medium (�dielectric �= 0), the
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other is the periodic polarization of the dielectric material – a phenomenon that can be
accounted for by replacing the permittivity 
 by a complex permittivity 
= 
′���− j
′′���;
see Section 8.4.

The first contribution can be included in the right-hand side of (9.21) by adding a
perturbation termG�U . The second contribution can be incorporated into (9.21) by replacing
C by a complex per-unit-length capacitance C = C ′ − jC ′′, where, typically, C ′′ 
 C ′ and
C ′ � C. On doing this we obtain the generalized equation

d

dz
I�z�= −��G� +�C ′′��︸ ︷︷ ︸

G

+j�C�U�z� (9.22)

This result can be written compactly if we introduce, as is usual, the so-called transverse
admittance per unit length of the line Y t (units: S/m)

Y t =G���+ j�C = Yt e
j��/2−�Y � (9.23)

where �Y is the transversal loss angle.
In short, the frequency-domain transmission-line equations for the steady-state harmonic

analysis of lossy lines read as

d

dz
U�z�= −Zl���I�z� (9.24)

d

dz
I�z�= −Y t���U�z� (9.25)

9.4.2 Propagation Constant, Phase Velocity, Characteristic Wave
Impedance

Let us seek the solutions to the pair of equations in (9.24) and (9.25).
Taking the z derivative of (9.24) and substituting −Y t���U�z� for dI/dz yields

d2U�z�

dz2
−ZlY tU�z�= 0 (9.26)

This is a homogeneous linear differential equation with constant coefficients of order 2.
Note that we have already dealt with equations of this type in the analysis of transient

regimes (Chapter 7); the only difference is that, now, the equation is on z (not on t�. Since
this a familiar subject we can skip some details, and at once write

Characteristic equation � s2 −ZlY t = 0

Characteristic roots � s1�2 = ±�� � =
√
ZlY t (9.27)

Line voltage solution � U�z�= Uie
−�z +Ure

+�z (9.28)

In (9.27) the complex constant � is designated a propagation constant

����=
√
ZlY t =

√
ZlYt e

j��−�Z−�Y �/2 = �+ j� (9.29)
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Since both the loss angles �Z and �Y are confined to the range [0, �/2], the propagation
constant must necessarily belong to the first quadrant of the complex plane and, consequently,
� and � are positive numbers; � is the so-called attenuation constant (units: Np/m), and �
is the so-called phase constant (units: rad/m).

As shown in (9.28), the voltage solution is made up of two contributions, the first
associated to the incident wave and the second to the reflected wave. The constants Ui and
Ur are to be determined upon imposition of the pertinent boundary conditions at the ends
of the line.

The solution for the line current I�z� is determined from (9.24),

I�z�= − 1

Zl

dU�z�

dz
yielding

Line current solution: I�z�= Uie
−�z−Ure

+�z

Zw
(9.30)

where Zw is the characteristic wave impedance of the line (units: �) – a concept that, in the
frequency domain, can be viewed as the generalization of the characteristic wave resistance
introduced in Section 9.2.1 for lossless line analysis,

Zw���=
√
Zl

Y t
= Zw e

j�w � Zw =
√
Zl
Yt
� �w = �Y −�Z

2
(9.31)

Since both the loss angles �Z and �Y are confined to the range [0, �/2], the characteristic
wave impedance must belong to the first or eighth octant of the complex plane, that is
�w ∈ �−�/4��/4� and 	 (

Zw
)
> 0.

As in our prior discussion on lossless lines, here too we can state that in order to avoid
the presence of the reflected wave, Ur = 0 (matched line case), all you have to do is to
terminate the line by a load impedance equal to the characteristic wave impedance, ZL =Zw.
Nevertheless, you should bear in mind that Zw is, now, a frequency-dependent parameter
and, therefore, if the working frequency changes you will most likely fail with perfect
matching (unless you properly readjust the load impedance value).

To better grasp the significance of the wave parameters � and Zw introduced in this
section, we are going to obtain space–time descriptions of u�z� t� and i�z� t�. To simplify
matters we assume that the working frequency and the line termination are such that the line
is perfectly matched, that is

U�z�= Ui e
−��+j��z� with Ui = U ej u

I�z�= Ui e
−��+j��z

Zw e
j�w

Taking into account that u�z� t�= 	 (
U�z� ej�t

)
and i�z� t�= 	 (

I�z� ej�t
)
, we get

u�z� t�= U e−�z cos��t−�z+ u� (9.32a)

i�z� t�= I e−�z cos��t−�z+ i� (9.32b)

where I = U/Zw and  i =  u−�w.
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Since the preceding expressions are very similar, let us pay attention to only one of them,
for example the line voltage u�z� t�.

The phase under the cosine function depends on z and t,  �z� t�=�t−�z+ u. At which
speed v should you run along the line in order to always observe the same phase value?

By making z= z0 +vt you find the condition

�t−�vt−�z0 + u = time-invariant constant

from which you readily get

v= �

�
(9.33)

The velocity defined in (9.33) is the so-called phase velocity. It coincides with the propagation
velocity defined in (9.8) and (9.12) in the case of lossless lines.

Next, consider that, at a given instant t0, you take a photo of the voltage distribution
along the line. You will observe an oscillating function on z with decaying amplitude – see
Figure 9.12.

Figure 9.12 Snapshot, taken at t = t0, of the line voltage distribution along the axial coordinate z,
for the case of a lossy line submitted to a sinusoidal steady-state regime

The rate of decay is determined by the attenuation constant �. On the other hand, the
periodicity of the oscillating function is determined by the phase constant �. In fact, the
space period � (wavelength) is such that the product �� must equal 2�, that is

�= 2�
�

= 2�v
�

= v

f

which, manifestly, is no surprise.
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To end this section, imagine that you place an oscilloscope at z= z0 to observe the time
evolution of u�z0� t�. The image you will obtain on the screen is shown in Figure 9.13; it is
a pure sinusoidal function with a time period T = �/�2��= 1/f , which displays no decay
at all. Pay attention to the fact that, according to (9.32), the attenuation constant affects
the function evolution on z, but not on t. However, if you place another oscilloscope at
z1 > z0 you will observe another sinusoidal time function with smaller magnitude (see again
Figure 9.13).

Figure 9.13 Oscilloscope readings of the time evolution of the line voltage at two different places
z= z0 and z= z1 = z0 +�z

9.4.3 Transfer Matrix, Non-Uniform Line Analysis

In many applications a detailed knowledge of the voltage and current distributions along
the line is of little concern. Quite often the line is simply treated as a black box, a two-port
network, where only the voltages and currents at the accessible ends really matter – see
Figure 9.14.

Figure 9.14 A two-port, black box representation of a transmission line of length l

Consider a transmission-line section of length l where U 0 and I0 are the input quantities,
and Ul and Il are the output quantities. Our next goal is to establish a matrix relationship
among those quantities, that is
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[
U 0

I0

]
= �T �

[
Ul

Il

]
(9.34)

where [T ] is the transfer matrix (also termed the chain matrix).
Making use of (9.28) and (9.30) we get

z= l �

{
Ul = Uie

−�l+Ure
+�l

ZwIl = Uie
−�l−Ure

+�l →
{
Ui = 1

2 �U l+ZwI�e+�l

U r = 1
2 �U l+ZwI�e−�l

z= 0:

⎧
⎨
⎩
U 0 = Ui+Ur = cosh��l�U l+ sinh��l�ZwIl

ZwI0 = Ui−Ur = sinh��l�U l+ cosh��l�ZwIl

from which the transfer matrix is determined

�T �=
[

cosh��l� sinh��l�Zw
Z

−1
w sinh��l� cosh��l�

]
(9.35)

The transfer matrix is a precious tool for handling non-uniform line analysis. Imagine that
you have a transmission-line structure whose transverse profile changes along z (see the
example in Figure 9.15). You may, conceptually, break down the structure into a chain of N
small line sections, of appropriate lengths, so that each and every section can be considered
a uniform line.

Figure 9.15 Segmentation technique ordinarily used for the analysis of non-uniform lines

Once you have evaluated the transfer matrices �T1� � ! ! ! � �Tk� � ! ! ! � �TN � pertaining to
the individual line sections, you can finally determine the global transfer matrix [T ] of the
non-uniform structure through

[
U 0

I0

]
= �T1� �T2� �T3� ! ! ! �TN �︸ ︷︷ ︸

�T �

[
Ul

Il

]

The accuracy of this method obviously depends on the number of line sections you have
utilized. The thinner the segmentation, the better the results.
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9.5 Frequency-Domain Transmission-Line Equations for Lossless
Lines

In a lossy line, the attenuation and phase constants increase with the frequency, but while
�∝ √

f , we have �∝ f . This means that the loss angles

�Z +�Y = 2 arctan��/��

ordinarily tend to zero as the frequency increases. Therefore, for very high-frequency regimes,
it makes sense to consider the approximations Zl → j�Le and Y t → j�C, which in turn
imply

����=
√
ZlY t = j�

√
LeC = 0+ j�

Zw =
√
Zl

Y t
=

√
Le
C

= Rw + j0

This means that we are back again to the framework of lossless-line analysis. Consequently,
the transmission-line solutions established in (9.28) and (9.30) greatly simplify:

U�z�= Uie
−j�z+Ure

+j�z (9.36a)

I�z�= Uie
−j�z−Ure

+j�z

Rw
(9.36b)

where Ui and Ur denote, respectively, the complex amplitudes of the incident and reflected
voltage waves at the line sending end, z= 0.

9.5.1 Terminated Line, Load Reflection Coefficient, Line Input
Impedance

Consider a transmission line of length l driven by a sinusoidal voltage generator at one end
and terminated at the opposite end by a passive load impedance ZL.

For the analysis of terminated lines it is frequent, and convenient, to introduce a
longitudinal y axis with origin at the load, antiparallel to z – see Figure 9.16.

Figure 9.16 Terminated transmission line showing the longitudinal y axis starting at the load
terminals
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Taking into account the change of variable, y = l− z, the solution in (9.36) reads as

U�y�= U
′
i e

+j�y +U ′
r e

−j�y (9.37a)

I�y�= U
′
i e

+j�y −U ′
r e

−j�y

Rw
(9.37b)

where U
′
i = Ui e

−j�l and U
′
r = Ur e

+j�l respectively denote the incident wave voltage and
reflected wave voltage phasors, measured at the load terminals. A complex dimensionless
number, the load reflection coefficient � , is defined as the ratio of those wave phasors, that is

� = U
′
r

U
′
i

(9.38)

Taking into account the definition of � , we can rewrite (9.37) as

U�y�= U
′
i e

+j�y × �
VU︷ ︸︸ ︷

1+� e−j2�y� (9.39a)

I�y�= U
′
i e

+j�y

Rw
× �1−� e−j2�y︸ ︷︷ ︸

V I

� (9.39b)

On the right-hand side of (9.39) the leading factor is to be interpreted as the incident wave
contribution; the factors on the right, VU and V I , are complex vectors where the influence
of the terminating load is included via � . Those two auxiliary vectors are such that

�VU�V I = � U� I = "�y��
VU +V I

2
= 1 (9.40)

If the equations in (9.39) are particularized to the load terminals, y = 0, we get

UL = U
′
i�1+��� IL = U

′
i

Rw
�1−��

Dividing the two equations above, we find

ZL = Rw
1+�
1−� (9.41)

Solving (9.41) for � , we obtain

� = � ej� = ZL−Rw
ZL+Rw

(9.42)

For passive loads (consisting of R, L, C arrangements), where 	 (
ZL

) ≥ 0, we have � ≤ 1
and 0 ≤ � ≤ 2�. The physical reason behind the fact that � cannot exceed unity is that the
energy reflected by the load cannot exceed the energy carried by the incident wave.
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Total reflection (� = 1) can only occur in the case of non-dissipative loads, that is

Short circuit � ZL = 0 → � = 1 ej�

Open circuit � ZL = � → � = 1

Reactive load � ZL = jXL → � = 1 ej��−2 arctan�XL/Rw��

Total absorption (� = 0) happens when the line is perfectly matched, ZL = Rw.
The line input impedance Zin, defined as the ratio U/I at y= l, depends on the frequency,

on the line length and on the line load. If the equations in (9.39) are particularized to the
input end, we get

Uin = U
′
ie
j�l�1+� e−j2�l� and Iin =

[
U

′
i e

j�l�1−� e−j2�l�
]
/Rw

Hence

Zin = Uin

Iin
= Rw

1+� e−j2�l

1−� e−j2�l (9.43)

9.5.2 Matched Line, Open Line, Short-Circuited Line

We now particularize the results from Section 9.5.1 to three particularly important cases.

9.5.2.1 Matched Line (ZL = Rw� � = 0)

In the frequency domain:
{
U�y�= U

′
ie
j�y

I�y�= U
′
ie
j�y/Rw

(9.44)

where U
′
i = U ′ ej ′

u .
The input impedance is

Zin = Uy=l
Iy=l

= Rw

In the time domain:
⎧
⎨
⎩
u�y� t�= U ′ cos��t+�y+ ′

u�

i�y� t�= U ′

Rw
cos��t+�y+ ′

u�
(9.45)

In a matched line, the input impedance Zin is equal to the characteristic wave resistance;
it depends neither on the frequency nor on the line length. Since the reflected wave is
absent, the propagation phenomena along the line are entirely described by the incident wave
component. In this case we say we are dealing with a purely traveling wave. If you take two
photos of u�y�, at t = t1 and t = t2 > t1, you will observe two sinusoidal functions of the
same magnitude but shifted by a distance �y = v�t2 − t1� – see Figure 9.17.
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Figure 9.17 Snapshots, taken at t= t1 and t= t2 > t1, of the line voltage distribution along the axial
coordinate y, for the case of a matched lossless line (traveling wave). �y = v�t2 − t1�

9.5.2.2 Open Line (ZL = �� � = 1)

In the frequency domain:
⎧
⎪⎨
⎪⎩
U�y�= U

′
i

(
e+j�y + e−j�y)

I�y�= U
′
i

Rw

(
e+j�y − e−j�y) (9.46a)

or, which is the same thing,
⎧
⎪⎨
⎪⎩
U�y�= 2U

′
i cos ��y�

I�y�= 2jU
′
i

Rw
sin ��y�

(9.46b)

where U
′
i = U ′ ej ′

u .
The input impedance is

Zin = Uy=l
Iy=l

= −jRw
tan ��l�

(9.47)

In the time domain: ⎧
⎨
⎩
u�y� t�= 2U ′ cos��t+ ′

u� cos ��y�

i�y� t�= 2
U ′

Rw
cos��t+ ′

u+�/2� sin ��y�
(9.48)

In an open-line situation the input impedance is purely reactive, its sign depending on the
value of the product �l = 2�l/�. For instance, if l = �/4 you will find �l = �/2 and the
input impedance is zero; the generator at the sending end of an open line faces a short-
circuit situation at its own terminals! On the contrary, if l= �/2 the generator will face an
open-circuit situation. See Figure 9.18.

For those of you who are studying transmission lines for the first time, the preceding
results must be shocking and unexpected. However, you must realize that transmission-line
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Figure 9.18 Lossless transmission line terminated by an open circuit. (a) The input impedance is
zero when l= �/4. (b) The input impedance is infinite when l= �/2

behavior is completely inexplicable if you insist on using the ordinary tools and concepts
from circuit analysis (which pertain to slow time-varying field phenomena, and are not valid
here).

As you can see from (9.46a), the line voltage and line current solutions are the result of
two counter-propagating waves, both of the same magnitude. These two waves interact with
each other giving rise to constructive or destructive interference at certain critical points
along the y axis. If you compare the time-domain solutions in (9.48) and (9.45) you will see
that in the latter the space and time variables are linearly combined under the cosine function
(which is typical of traveling waves); however, in (9.48) the space and time variables appear
separated under different trigonometric functions. When two counter-propagating traveling
waves of the same magnitude add together they give rise to a purely stationary wave, that
is a wave that pulses but does not move. In fact, if you take a series of photos of i�y� at
different time instants you will observe the result shown in Figure 9.19.

Figure 9.19 Successive snapshots, taken at different time instants, of the line current distribution
along the axial coordinate y, for the case of an open lossless line (stationary wave)

In addition you may note, from (9.48), that at certain instants of time the line current is
zero everywhere along the line length, the same thing happening to the line voltage, but at
other instants:

⎧
⎨
⎩
i�y� t�= 0� for �t = �k−1�

�

2
− ′

u

u�y� t�= 0� for �t = k
�

2
− ′

u

with k an odd integer.
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9.5.2.3 Short-Circuited Line (ZL = 0� � = −1)

This case can be considered the dual of the preceding situation, where the roles of u and i
are interchanged.

In the frequency domain:
⎧
⎪⎨
⎪⎩
U�y�= U

′
i

(
e+j�y − e−j�y)

I�y�= U
′
i

Rw

(
e+j�y + e−j�y) (9.49a)

or, which is the same thing,
⎧
⎪⎨
⎪⎩
U�z�= 2jU

′
i sin ��y�

I�y�= 2U
′
i

Rw
cos ��y�

(9.49b)

where U
′
i = U ′ ej ′

u .
The input impedance is

Zin = Uy=l
Iy=l

= jRw tan ��l� (9.50)

In the time domain:
⎧
⎨
⎩
u�y� t�= 2U ′ cos��t+ ′

u+�/2� sin ��y�

i�y� t�= 2
U ′

Rw
cos��t+ ′

u� cos ��y�
(9.51)

In a short-circuited line the input impedance is purely reactive, its sign depending on the
value of the product �l = 2�l/�. For instance, if l = �/4 you will find �l = �/2 and the
input impedance goes to �; the generator at the sending end of a short-circuited line faces
an open-circuit situation at its own terminals! On the contrary, if l= �/2 the generator will
face a short-circuit situation. See Figure 9.20.

Figure 9.20 Lossless transmission line terminated by a short circuit. (a) The input impedance is
infinite when l= �/4. (b) The input impedance is zero when l= �/2

Again, as in the case of an open line, here too the line voltage and line current are
described by purely stationary waves. Apart from a vertical scale factor, the graph for i�y�
in Figure 9.19 could be used here to reproduce the evolution u�y� at several instants of time.
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9.5.3 Standing Wave Pattern, Standing Wave Ratio, Active Power

In the case of a matched line, if you record the rms values of the line voltage and line
current distributions along the length of the line you will obtain constant readings. In fact,
from (9.44), you have

⎧
⎪⎪⎨
⎪⎪⎩

Urms�y�=
∣∣U�y�∣∣√

2
= Ui√

2
= �Ui�rms = constant

Irms�y�=
∣∣I�y�∣∣√

2
= �Ui�rms

Rw
= constant

However, when the line is mismatched, the superposition of the incident and reflected waves
gives rise to more or less pronounced fluctuations in both Urms�y� and Irms�y�. The larger
the magnitude of the reflection coefficient � , the more important the fluctuation. In fact, the
complex vectors VU and V I introduced in (9.39), which vary with y, have their minimum
and maximum magnitudes given by 1 − � and 1 + � , the overall fluctuation being 2� . In
addition, note that when �VU � is at a maximum, �V I � is at a minimum, and vice versa – see
Figure 9.21.

Figure 9.21 Complex plane vector diagram used for analyzing the evolution of VU and V I as one
moves away from the load terminals (increasing y)

The evolution of Urms�y� and Irms�y� can be retrieved from the geometrical vector diagram
in Figure 9.21 where, as you move away from the load towards the generator terminals, the
tips of VU�y� and V I�y� move clockwise, synchronously, along a circumference of radius � .

An analytical alternative for obtaining the evolution of Urms�y� and Irms�y� is also available.
Go back to the general equations in (9.39), take their absolute value and divide by

√
2. This

enables you to write Urms and Irms as follows:

Urms�y�= �Ui�rms
∣∣1+� ej��−2�y�

∣∣ = �Ui�rms
√

1+�2 +2� cos�2�y−�� (9.52a)

Irms�y�= �Ui�rms
Rw

∣∣1−� ej��−2�y�
∣∣ = �Ui�rms

Rw

√
1+�2 −2� cos�2�y−�� (9.52b)

where � = �� .
Typical standing wave patterns representative of Urms�y� and Irms�y� are depicted in

Figure 9.22.
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Figure 9.22 Standing wave patterns representative of Urms�y� and Irms�y�

The main features of the standing wave patterns are summarized next:

• The patterns are periodic, with period �/2.
• Consecutive maxima and minima are separated by a distance equal to �/4.
• A point of maximum voltage is a point of minimum current, and vice versa.
• Voltage maxima and minima are given by

�Urms�max = �Ui�rms × �1+��� �Urms�min = �Ui�rms × �1−� � (9.53)

• Current maxima and minima are given by

�Irms�max = �Ui�rms
Rw

× �1+� �� �Irms�min = �Ui�rms
Rw

× �1−� � (9.54)

• The abscissas yk where the line voltage is at a maximum are given by

yk = �

2�
+k�

2
�with k= 0�1�2� ! ! ! (9.55)

• From (9.53) and (9.54) you have

�Urms�max

�Irms�max

= �Urms�min

�Irms�min

= Rw (9.56)

• The voltage and current standing wave patterns are essentially identical. They just differ
in two details: a translation of �/4 in the horizontal axis, and a scale factor of Rw in the
vertical axis.



364 Electromagnetic Foundations of Electrical Engineering

In order to quantify the magnitude of the fluctuations observed in the standing wave patterns,
one usually defines the so-called standing wave ratio, SWR, a dimensionless parameter that
can vary from 1 to �:

SWR = �Urms�max

�Urms�min

= �Irms�max

�Irms�min

= 1+�
1−� (9.57)

For matched loads, where � = 0, you have an SWR of 1 (fluctuations do not exist). For
loads where total reflection occurs, � = 1, you have an SWR of � (fluctuations are as large
as possible, and �Urms�min = �Irms�min = 0�.

Note especially that, in (9.57), the absolute value of � is used, not the complex � itself.
The active power delivered by a lossless line is constant along y because, by definition,

loss mechanisms along the line are absent. You may remember that the active power was
defined in Chapter 7 through P = �p�t��av = UrmsIrms cos". However, in a mismatched line,
the quantities Urms, Irms and " – all of them – vary with y. So, the obvious question is how
can you evaluate P in as simple a manner as possible?

The key for this question can be found in (9.40).
Whenever VU�y� and V I�y� happen to be parallel vectors you have " = 0. But, from

Figure 9.21, you will see that such a situation corresponds exactly to extremal points in the
standing wave patterns. Therefore, the answer you are looking for is

P = �Urms�max �Irms�min = �Urms�min �Irms�max = �1−�2�
�Ui�

2
rms

Rw

9.5.4 The Low-Frequency Limit Case, Short Lines

The transmission-line results developed in the foregoing sections should agree with the
familiar results from circuit analysis when low frequencies are considered. To confirm that
this statement is true, let us examine two illustrative situations.

For an open-line situation (ZL = �) we saw in (9.47) that the input impedance observed
at the generator terminals was given by Zin = −jRw/ tan ��l�. For low-frequency regimes we
have �l
 1, and consequently tan��l�� �l. Therefore, taking into account the definitions
of Rw and �, we find

Zin = −jRw
tan ��l�

� −jRw
�l

= −j
√
Le/C

�
√
LeCl

= 1
j��Cl�

from which you can see that the input impedance of an insulated two-conductor system of
length l immersed in a dielectric medium is nothing but the impedance of a capacitor whose
capacitance is Cl, as expected from a circuit theory approach.

Likewise, for a short-circuited line (ZL = 0) we saw in (9.50) that the input impedance
observed at the generator terminals was given by Zin = jRw tan ��l�. For low-frequency
regimes we have �l
 1, and tan��l�� �l. Therefore, taking into account the definitions of
Rw and �, we find

Zin = jRw tan ��l�� jRw �l= j

√
Le
C
�
√
LeCl= j��Lel�
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from which you can see that the input impedance of a two-conductor system of length l
short-circuited at one end is nothing but the impedance of a rectangular single-loop inductor
whose inductance is Lel, as expected from a circuit theory approach.

9.6 Application Example (Line-Matching Techniques)

The problem of mismatched loads can be handled by using several techniques. Here we
address two commonly used solutions, the quarter-wave transformer and the single matching
stub.

Consider an aerial lossless transmission line characterized by Rw = 150 �. The line,
of length l = 3 m, is terminated by a resistive load RL = 50�. The line is driven by
an ideal generator whose voltage is uG�t� = √

2 �UG�rms cos��t�, where �UG�rms = 200 V,
f = 100 MHz.

Questions

Q1 Determine the following parameters: v, �, � and SWR. Determine the complex amplitude
U

′
i of the incident wave voltage at the load terminals. Obtain the load voltage UL. Draw

the standing wave pattern of the rms voltage along the line. Find the active power
delivered to the load.

Q2 Consider that the aerial line of length l is made of two distinct sections (Figure 9.23),
the first of length l− d with Rw = 150�, and the second of length d = �/4 with
characteristic resistance Rw0

(this second section is called a quarter-wave transformer).

Figure 9.23 Line-matching technique using a quarter-wave line transformer

The purpose of the quarter-wave transformer is to ensure that at the transverse plane
y = d the line impedance is equal to Rw, therefore ensuring that the first line section is
perfectly matched.

Regarding the second line section, determine d, Rw0
, �0 and SWR0. Obtain Ud and

UL. Draw the standing wave pattern of the rms voltage along the line. Find the active
power delivered to the load.

Q3 As shown in Figure 9.24, the aerial line of length l includes a stub positioned at y = d.
The stub consists of a short-circuited line section of adjustable length h (with the
same characteristics of the original line). Parameters d and h are the unknowns of the
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problem. The minimal distance d is chosen so that the line admittance to the right of
y = d is of the type Y y=d+ = R−1

w + jS. The minimal distance h is chosen so that the
input admittance of the auxiliary stub is Y st = −jS. The parallel association of these
two admittances results in an equivalent impedance Zy=d = � Y y=d+ + Y st�−1 equal to
Rw, thus ensuring that the line section fed by the generator is perfectly matched.

Determine d, S and h. Obtain Ud and UL. Draw the standing wave pattern of the
rms voltage along the line. Find the active power delivered to the load.

Figure 9.24 Line-matching technique using a parallel-connected stub

Solutions

Q1 v = 1/
√
�0
0 = 3×108 m/s; �= v/f = 3 m;

� = RL−Rw
RL+Rw

= 0�5 ej�� SWR = 1+�
1−� = 3

From UG = U
′
ie
j�l�1+�e−j2�l�, noting that �l= 2�, we get

U
′
i =

UG

1+� = √
2 400 V

From UL = U
′
i�1+��, we get UL = UG (note that the line is one wavelength long).

From �Urms�max = �U ′
i �rms �1+� �, we get �Urms�max = 600 V.

From �Urms�min = �U ′
i �rms �1−� �, we get �Urms�min = 200 V.

From P = �1−�2� �U ′
i �

2
rms /Rw, we get P = 800 W.

See the sketch of the voltage standing wave pattern in Figure 9.25(a).

Q2 d = �/4 = 75 cm. Taking into account that for a quarter-wave line �d = �/2, we can
write, from (9.39),

Ud = jU
′
i�1−�0� and Id = jU

′
i�1+�0�/Rw0

Dividing both equations and enforcing Ud/Id = Rw, we obtain

Rw = Rw0

1−�0

1+�0
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Making use of

�0 = RL−Rw0

RL+Rw0

we finally conclude

Rw = Rw0

Rw0

RL
→ Rw0

= √
RLRw = 86�6 �

from which we evaluate

�0 = 0�268 ej� and SWR0 = 1+�0

1−�0

= 1�73

Since the first line section is matched, the voltage Ud is equal to UG apart from a phase
delay ��l−d�= 3�/2, that is

Ud = √
2 200 e−j3�/2 = j

√
2 200 V�

Knowledge of Ud permits the determination of

U
′
i =

Ud

j�1−�0�
= √

2 157�73 V

which finally allows for the evaluation of the load voltage,

UL = U
′
i�1+�0�= √

2 115�47 V�

You may note that

�Ud�rms
�UL�rms

= SWR0

The active power can be determined via

P = �UG�
2
rms

Rw
or P = �UL�

2
rms

RL

yielding P = 266�7 W.
See the sketch of the voltage standing wave pattern in Figure 9.25(b).

Q3 The input admittance of the end section of length d is obtained from (9.43) as

Y y=d+ = R−1
w

1−� e−j2�d

1+� e−j2�d

Taking into account, from Q1, that � = −0�5, we can write

R−1
w + jS = Y y=d+ = R−1

w

2+ e−jx

2− e−jx � where x = 2�d = 4�d
�
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After some algebraic manipulation we find

1+ jSRw = 3− j4 sin x
5−4 cosx

→

⎧
⎪⎪⎨
⎪⎪⎩

1 = 3
5−4 cosx

SRw = −4 sin x
5−4 cosx

→
{
x = �/3

SRw = −1�155

In conclusion, d = �/12 = 25 cm and S = −7�7 mS.
The input admittance of the stub is determined from (9.50),

Y st = −jS = −j
Rw tan ��h�

from which we get tan��h� = �SRw�
−1 = −0�866, yielding h = 116 cm (in your

calculations do not forget that the angle �h is expressed in radians, not degrees!).
Since the first line section is matched, the voltage Ud is equal to UG apart from a

phase delay ��l−d�= 11�/6, that is Ud = √
2 200 e+j�/6 V.

For the end line section to the right of the stub insertion we utilize

U�y�= U
′
ie

+j�y (1+�e−j2�y)

Figure 9.25 Standing wave voltage patterns. (a) Without the use of mitigation matching techniques.
(b) Using a quarter-wave line transformer. (c) Using a parallel-connected stub
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with the boundary condition Uy=d = √
2 200 e+j�/6 V, from which we find

U
′
i =

√
2 200 ej�/6

ej�/6 �1−0�5 e−j�/3�
= √

2 230�95 e−j�/6 V

Finally, at the load terminals, we obtain UL = U
′
i

(
1+�) = √

2 115�47 e−j�/6 V.
The active power can be determined via

P = �UG�
2
rms

Rw
or P = �UL�

2
rms

RL

yielding P = 266�7 W.
See the sketch of the voltage standing wave pattern in Figure 9.25(c).

9.7 Multiconductor Transmission Lines

In the foregoing sections we paid attention to the analysis of two-conductor transmission
lines; however, many transmission-line structures include more than just two conductors. As
a subject of the utmost interest to electrical engineers, multiconductor transmission lines can
be found almost everywhere, with applications in overhead power lines, railway systems,
printed circuit boards, flatpack or ribbon cables for electronic systems interconnection, as
well as several microwave structures, to name just a few.

In this section we address the topic of multiconductor transmission lines (MTLs) at an
introductory level.

Consider a uniform transmission-line system made of N + 1 conductors parallel to the
longitudinal z axis, where conductor (0) is taken as the reference conductor – see Figure 9.26.

Figure 9.26 Multiconductor transmission-line structure with N +1 coupled conductors

For N > 1, the generalization of the frequency-domain two-conductor line equations in
(9.24) and (9.25) take the matrix form

d

dz

[
U�z�

] = − [
Zl

] [
I�z�

]
�

d

dz

[
I�z�

] = − [
Y t

] [
U�z�

]
(9.58)



370 Electromagnetic Foundations of Electrical Engineering

where
[
U�z�

]
and

[
I�z�

]
are complex column vectors, of size N , gathering the complex

amplitudes of the line voltages and line currents

[
U�z�

] =

⎡
⎢⎢⎢⎣

U 1�z�

U 2�z�
���

UN �z�

⎤
⎥⎥⎥⎦ �

[
I�z�

] =

⎡
⎢⎢⎢⎣

I1�z�

I2�z�
���

IN �z�

⎤
⎥⎥⎥⎦

and
[
Zl

]
and

[
Y t

]
respectively denote the longitudinal impedance and transverse admittance

matrices per unit length of the line.
The coupled differential equations in (9.58) can be decoupled by introducing an appropriate

change of variables

[
U

] = �T �
[
Um

]
�

[
I
] = �W�

[
Im

]
(9.59)

where
[
Um

]
and

[
Im

]
are arrays for the so-called modal voltages and modal currents,

respectively. Substituting (9.59) into (9.58), we find

d

dz

[
Um�z�

] = − (
�T �−1 [Zl

]
�W�

)
︸ ︷︷ ︸

�Zm�

[
Im�z�

]
(9.60a)

d

dz

[
Im�z�

] = − (
�W�−1 [Y t

]
�T �

)
︸ ︷︷ ︸

�Ym�

[
Um�z�

]
(9.60b)

where
[
Zm

]
and

[
Ym

]
are the per-unit-length longitudinal impedance and transverse

admittance matrices in modal coordinates, respectively.
In order to ensure that the equations in (9.60) define a decoupled set, both

[
Zm

]
and

[
Ym

]
must be diagonal matrices, that is

d

dz

⎡
⎢⎢⎢⎢⎢⎢⎣

U 1m
���

Ukm
���

UNm

⎤
⎥⎥⎥⎥⎥⎥⎦

= −

⎡
⎢⎢⎢⎢⎢⎢⎣

Z1m
� � �

Zkm
� � �

ZNm

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

I1m
���

Ikm
���

INm

⎤
⎥⎥⎥⎥⎥⎥⎦

(9.61a)

d

dz

⎡
⎢⎢⎢⎢⎢⎢⎣

I1m
���

Ikm
���

INm

⎤
⎥⎥⎥⎥⎥⎥⎦

= −

⎡
⎢⎢⎢⎢⎢⎢⎣

Y 1m
� � �

Y km
� � �

Y Nm

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

U 1m
���

Ukm
���

UNm

⎤
⎥⎥⎥⎥⎥⎥⎦

(9.61b)
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or, which is the same,

For k= 1 to N �

⎧
⎪⎨
⎪⎩

d

dz
Ukm

= −Zkm Ikm
d

dz
Ikm = −Y km Ukm

(9.61c)

The equations in (9.61c) are the familiar two-conductor transmission-line equations, whose
solution we have already established in (9.28) and (9.30)

Ukm
�z�= (

Ui

)
k
e−�kz+ (

Ur

)
k
e+�kz� Ikm�z�=

(
Ui

)
k
e−�kz− (

Ur

)
k
e+�kz

Zwk

where �k =
√
ZkmY km and Zwk =

√
Zkm/Y km respectively denote the propagation constant,

and the characteristic wave impedance for the kth mode.
Once the modal voltages and currents

[
Um

]
and

[
Im

]
have been found, we reuse (9.59)

to determine the natural voltages and currents in the multiconductor line.
So far, the procedure described above is straightforward. However, we still have to deal

with the problem of the determination of the transformation matrices [T ] and [W ] – a major
point in this formalism.

Taking into account the definition of the diagonal matrices
[
Zm

]
and

[
Ym

]
in (9.60), and

bearing in mind that diagonal matrices always commute, we find

[
Zm

] [
Ym

] = [
�2] = � T �−1 [Zl Y t

]
�T � (9.62a)

[
Ym

] [
Zm

] = [
�2] = �W�−1 [Y tZl

]
�W� (9.62b)

where
[
�2] is a diagonal matrix that gathers the squared propagation constants of the N

independent propagation modes.
From (9.62a) you can see that the transformation matrix [T ] is determined by solving an

eigenvalue/eigenvector problem concerning the
[
Zl Y t

]
matrix product; that is,

[
Zl Y t

]
�T �= �T �

[
�2] or

([
Zl Y t

]−�2
k �1�

)
�tk�= 0 (9.63)

where �tk�, the column k of [T ], represents the kth eigenvector of
[
Zl Y t

]
associated to the

eigenvalue �2
k. Matrix [1] is the identity matrix.

The numerical task involved in solving (9.63) is a heavy one, particularly if N is large.
Fortunately, standard software packages exist for finding the eigenvalues and eigenvectors
of general complex matrices. Note that the procedure in (9.63) allows you not only you to
find [T ] but also to obtain the modal propagation constants.

For the determination of the transformation matrix [W ] we may adopt diverse strategies.
For example, we may start by arbitrarily defining

[
Zm

]
as a non-singular diagonal
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matrix. Then we determine
[
Ym

]
by using

[
Ym

] = [
Zm

]−1 [
�2]. Finally, from (9.60), we

obtain, indifferently,

�W�=
⎧
⎨
⎩

[
Zl

]−1
�T �

[
Zm

]
[
Y t

]
�T �

[
Ym

]−1
(9.64)

Alternatively, let us take the transpose of the matrix equation in (9.62b):

[
Zm

] [
Ym

] = [
�2] = �W�T

[
ZlY t

]
�W�−1T (9.65)

where account is taken of the symmetry of
[
Zl

]
and

[
Y t

]
. The comparison between (9.65)

and (9.62a) indicates one possible choice:

�W�T = �T �−1 (9.66)

Final remarks are as follows:

• For lossy lines, extraordinary cases exist where the problem posed in (9.63) of
transforming

[
Zl Y t

]
into diagonal form cannot be solved at all. However, for typical

MTL configurations, those abnormal situations are extremely rare.
• The solution of (9.63) does not uniquely define [T ]. If you find one solution for [T ] and

multiply it on the right by an arbitrary non-singular diagonal matrix, the resulting new
matrix will also be a solution of (9.63).

• The degrees of freedom contained in the construction of [T ] and [W ] imply some sort of
arbitrariness in the definition of

[
Zm

]
,
[
Ym

]
and

[
Zwm

]
; this remark should put you on

your guard as far as the physical significance of those matrices is concerned.
• For lossy lines, the transformation [T ] is in general a complex frequency-dependent matrix.
• For lossless lines, where

[
Zl

] = j� �L� and
[
Y t

] = j� �C�, a real frequency-independent
transformation matrix [T ] can always be found.

• For lossless homogeneous lines, where the dielectric medium around the conductors is
characterized by 
 and �, the eigenvalues of the product matrix

[
Zl Y t

]
are all equal, that

is �k = j�
√
�
, for k= 1 to N .

9.8 Application Example (Even and Odd Modes)

Consider a lossless inhomogeneous MTL structure consisting of two identical dielectric-
coated cylindrical conductors in close contact seated on a reference conducting plane. The
structure is operating at �= 1 Grad/s. The ratio of the radii r/r0 is 0.8. The insulation coating
material is characterized by 
 = 4
0, � = �0. As shown in Figure 9.27, the system under
analysis displays a vertical plane of symmetry; the corresponding per-unit-length capacitance
and inductance matrices have been evaluated as

�C�=
[

225�62 −69�80
−69�80 225�62

]
pF/m� �L�=

[
126�51 35�26
35�26 126�51

]
nH/m
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Figure 9.27 Cross-sectional view of an MTL structure consisting of two identical dielectric-coated
cylindrical conductors in close contact seated on a reference ground plane

Questions

Q1 Determine the matrix products �ZlY t� and � Y tZl�.

Q2 Determine the eigenvectors (transformation matrices) and eigenvalues of both matrices.
Evaluate the phase velocities of the two propagation modes.

Q3 Determine the modal matrices
[
Zm

]
and

[
Ym

]
, and then evaluate the characteristic

wave impedances of the two propagation modes.

Q4 Assume that the receiving end of the structure is terminated in a matched load. Determine
the solution for the complex amplitudes of the line voltages and currents along the
line.

Q5 Determine the characteristic impedance matrix describing the matched load.

Solutions

Q1

�ZlY t�= � Y tZl�= �j��2 �L� �C�= �j��2 �C� �L�=
[−26�08 0�875

0�875 −26�08

]
m−2

Q2

�T �= �W�= 1√
2

[
1 1
1 −1

]

The eigenvector

�t1�= �w1�=
1√
2

[
1
1

]

defines the excitation of mode 1, the so-called even mode (or common mode), where
U 1 = U 2 and I1 = I2.
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The eigenvector

�t2�= �w2�=
1√
2

[
1

−1

]

defines the excitation of mode 2, the so-called odd mode (or differential mode), where
U 1 = −U 2 and I1 = −I2.

Regarding the eigenvalues, we find

[
�2] =

[−25�21 0
0 −26�96

]
m−2

From �k = j�k we obtain �1 = 5�021 rad/m and �2 = 5�192 rad/m.
From �k = �/vk we obtain v1 = 1�992×108 m/s and v2 = 1�926×108 m/s.

Note that the normalization factor 1/
√

2 which appears in both [T ] and [W ] is
arbitrary; it has been chosen with the single purpose of getting unit norm eigenvectors.

Q3

[
Zm

] = j� �T�−1 �L� �W�=
[

161�8 0
0 91�25

]
�/m

[
Ym

] = j� �W�−1 �C� �T�=
[

155�8 0
0 295�4

]
mS/m

From Zwk =
√
Zkm/Y km we obtain Zw1

= Rw1
= 32�22� and Zw2

= Rw2
= 17�58�.

Q4 Voltage solution:

[
U

] = �T �

[(
Ui

)
1
e−j�1z

(
Ui

)
2
e−j�2z

]
→

⎧
⎨
⎩
U 1�z�= 1√

2

((
Ui

)
1
e−j�1z+ (

Ui

)
2
e−j�2z

)

U 2�z�= 1√
2

((
Ui

)
1
e−j�1z− (

Ui

)
2
e−j�2z

)

Current solution:

[
I
] = �W�

⎡
⎢⎢⎢⎣

(
Ui

)
1

Rw1

e−j�1z

(
Ui

)
2

Rw2

e−j�2z

⎤
⎥⎥⎥⎦ →

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

I1�z�= 1√
2

((
Ui

)
1

Rw1

e−j�1z+
(
Ui

)
2

Rw2

e−j�2z

)

I2�z�= 1√
2

((
Ui

)
1

Rw1

e−j�1z−
(
Ui

)
2

Rw2

e−j�2z

)

Q5 When a transmission-line structure is terminated in a matched load (as we have assumed
in Q4�, the relationship between

[
U�z�

]
and

[
I�z�

]
is independent of z. Therefore, we

can use the results derived in Q4, particularized to z= 0, to get
⎧
⎨
⎩

√
2 U 1�0�= (

Ui

)
1
+ (

Ui

)
2√

2 U 2�0�= (
Ui

)
1
− (

Ui

)
2

and

⎧
⎨
⎩

√
2 I1�0�= (

Ui

)
1
/Rw1

+ (
Ui

)
2
/Rw2√

2 I2�0�= (
Ui

)
1
/Rw1

− (
Ui

)
2
/Rw2
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Eliminating
(
Ui

)
1

and
(
Ui

)
2
, we find

[
U 1

U 2

]
= [

Zw
][I1

I2

]

where

[
Zw

] = 1
2

[
�Rw1

+Rw2
� �Rw1

−Rw2
�

�Rw1
−Rw2

� �Rw1
+Rw2

�

]
=

[
24�90 7�32
7�32 24�90

]
�

You can check that this impedance matrix corresponds to the line termination shown in
Figure 9.28.

Figure 9.28 Matched termination for the MTL structure depicted in Figure 9.27

9.9 Proposed Homework Problems

Problem 9.9.1

Consider a lossless transmission line, 300 m long, characterized by v = 3 × 108 m/s and
Rw = 60�. As shown in Figure 9.29, the line is excited at z= 0 by a step voltage U0 = 120 V.
A resistor R terminates the line at z= l.

Figure 9.29 A step voltage is applied to the input end of a transmission line loaded by a resistor
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Q1 Determine the per-unit-length L and C parameters of the line. Determine the time delay
� between the two ends of the line.

Q2 Assuming that R= 0, find the evolution of iL�t�.

Q3 Assuming that R= �, find the evolution of uL�t�.

Q4 Assuming that R= 20�, find the evolution of uL�t�.

Answers

Q1

L= Rw
v

= 200�0 nH/m� C = 1
vRw

= 55�55 pF/m� � = l/v= 1#s

Q2

iL�t�=

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 � for 0< t < �
4 A � for � < t < 3�
8 A � for 3� < t < 5�
���

���
2k A � for �k−1�� < t < �k+1��

(with k an even number). See Figure 9.30(a).

Q3

uL�t�=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 � for 0< t < �
240 V � for � < t < 3�

0 � for 3� < t < 5�
240 V � for 5� < t < 7�

0 � for 7� < t < 9�
���

���

See Figure 9.30(b).

Q4

uL�t�=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 � for 0< t < �
60 V � for � < t < 3�
90 V � for 3� < t < 5�
105 V � for 5� < t < 7�
���

���
120 V t = �

See Figure 9.30(c).
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Figure 9.30 Load analysis. (a) Plot of the load current against time for the case R = 0. (b) Plot of
the load voltage against time for the case R = �. (b) Plot of the load voltage against time for the
case R= 20�

Problem 9.9.2

Consider a coaxial cable of length l = 1 m, whose per-unit-length parameters are known,
Le = 0�25#H/m and C = 100 pF/m. The operating frequency is f = 100 MHz. The
dielectric medium is assumed to be lossless, but the line conductors not. Assume that
the perturbation arising from skin effect phenomena on the line conductors is such that
the corresponding per-unit-length impedance correction is Z1 +Z2 = Zcond = 10 ej40�

�/m.
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Q1 Determine the per-unit-length longitudinal impedance and transverse admittance of the
line, Zl and Y t.

Q2 Determine the phase velocity v and the attenuation constant �.

Q3 Determine the load impedance ZL necessary for perfect matching. For this case determine
the relationship between the active powers at the generator and load terminals; that is,
find $= PL/PG.

Answers

Q1 Zl = j�Le+Zcond = 163�6 ej87�32�
�/m; Y t = j�C = j62�83 mS/m.

Q2 � = �+ j�=
√
ZlY t = 3�206 ej88�66� = 0�075+ j3�205 m−1.

�= 75 mNp/m� v= �/�= 1�96×108 m/s�
Q3

ZL = Zw = Zw e
j�w =

√
Zl

Y t
= 51�03 e−j1�34� = 51− j1�2�

⎧
⎪⎨
⎪⎩

U�z�= UG e
−��+j��z

I�z�= UG

Zw e
j�w
e−��+j��z → P�z�= Urms�z� Irms�z� cos ��w�= �UG�

2
rms

Zw
cos ���� e

−2�z

$= PL
PG

= Pz=l
Pz=0

= e−2�l = 0�86

Problem 9.9.3

A transfer matrix representation of a two-conductor lossy line of length l was obtained in
(9.35) in Section 9.4.3:

[
U 0

I0

]
=

[
cosh��l� sinh��l� Zw

Z
−1
w sinh��l� cosh��l�

]

︸ ︷︷ ︸
�T �

[
Ul

Il

]

Consider the equivalent ‘T’ circuit shown in Figure 9.31, whose component blocks are two
identical impedances Zx and one admittance Y x.

Q1 Determine the transfer matrix of the equivalent circuit.

Q2 By comparing the result obtained above with the transfer matrix of the line section,
determine both Zx and Y x.

Q3 Assume that the transmission line is operated at a low-frequency regime; that is, assume
that l 
 �. Find the corresponding approximations for Zx and Y x, and redraw the
equivalent circuit.
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Figure 9.31 An equivalent model, with the shape of a ‘T’ circuit, aimed at representing a lossy line
section of length l

Answers

Q1

�T �=
[

1+ZxY x Zx�2+ZxY x�
Y x 1+ZxY x

]

Q2

Y x = Z
−1
w sinh��l�� Zx = Zw tanh

�l

2

Q3 For ��l� 
 1 we have

sinh��l�� �l=
√
ZlY t l and tanh

�l

2
� �l

2
=

√
ZlY t

l

2

Y x = Z
−1
w sinh��l��

√
Y t

Zl
×

√
ZlY t l= Y tl=Gl+ j��Cl�

Zx = Zw tanh
�l

2
�

√
Zl

Y t
×

√
ZlY t

l

2
= Zll

2
= Rl

2
+ j�

(
Ll

2

)

The corresponding simplified equivalent circuit is shown in Figure 9.32.

Figure 9.32 Identification of the constituent components of the ‘T’ circuit in Figure 9.31, for the
special case of low-frequency regimes
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Problem 9.9.4

A power distribution line of length l= 100 km is fed by an AC generator whose voltage is
given by uG�t�= √

2 �UG�rms cos�t, where �UG�rms = 20 kV, and f = 50 Hz.
The per-unit-length parameters of the line are known: R = 0�15�/km, L = 2 mH/km,

G= 0, C = 6 nF/km.

Q1 Determine the propagation constant � and the wavelength �. Check that l
 �.

Q2 Taking into account the results obtained in Problem 9.9.3, show that
∣∣∣Y−1

x

∣∣∣ � ∣∣Zx
∣∣.

Q3 Assume that the receiving end of the line is short-circuited. Determine IG.

Q4 Assume that the receiving end is left open. Determine IG.

Answers

Q1 � = �+ j�= √
�R+ j�L��j�C�= �0�129+ j1�096�×10−6 m−1.

�= 2�/�= 5733 km � l�

Q2 Y
−1
x = −j5�3 k�; Zx = 7�5+ j31�4 = 32�3 ej76�57o

�.

∣∣∣Y−1
x

∣∣∣ � ∣∣Zx
∣∣ �

Q3 By making use of the equivalent ‘T’ circuit in Figure 9.32 you get

IG ≈ UG

2Zx
= UG

�R+ j�L� l = √
2 310 e−j76�57o

A

Q4 By making use of the equivalent ‘T’ circuit in Figure 9.32 you get

IG ≈ Y xUG = j�ClUG = √
2 3�77 ej90o

A

Problem 9.9.5

Consider a homogeneous lossless line, 50 cm long, whose dielectric medium is characterized
by � = �0 and 
 = 2�25
0. An ideal generator is positioned at y = l, the corresponding
voltage being given by uG�t�=

√
2 �UG�rms cos�t, where �UG�rms = 60 V, and f = 0�1 GHz.

The characteristic wave resistance of the line is Rw = 60�. As shown in Figure 9.33, the
line is terminated by a load impedance ZL.
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Figure 9.33 A homogeneous uniform lossless line terminated by a load impedance ZL

Q1 Determine the propagation velocity v as well as the associated wavelength �. Evaluate
the per-unit-length L and C parameters.

Q2 The load reflection coefficient is � = −1/3. Determine the load impedance.

Q3 Find the complex amplitude of the incident wave voltage at the load terminals, and
determine the representative phasors for the voltage and current at y = 0 and y = l.

Q4 Draw the standing wave patterns of Urms�y� and Irms�y� and, based on them, find SWR
and the active power P transmitted along the line.

Q5 Assume that the dielectric permittivity quadruples its original value. How would the
parameters L, C, Rw, v and � change? How would the new standing wave patterns look?
Does the active power change?

Answers

Q1 v = 1/
√
�0
= 2×108 m/s; �= v/f = 2 m (note that l= �/4).

L= Rw
v

= 300 nH/m� C = 1
vRw

= 83�33 pF/m

Q2

ZL = Rw
1+�
1−� = RL = 30�

Q3

⎧
⎪⎨
⎪⎩
UG = U

′
i e
j�l�1+� e−j2�l�

IG = U
′
i

Rw
ej�l�1−� e−j2�l�

where � = −1
3
� �l= 2�l

�
= �

2
� UG = √

2 60 V

U
′
i = −j 3

4UG = −j√2 45 V� IG = √
2 0�5 A�

⎧
⎪⎨
⎪⎩
UL = U

′
i �1+��= −j√2 30 V

IL = U
′
i

Rw
�1−��= −j√2 1 A
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Q4 The standing wave patterns are depicted in Figure 9.34.

Figure 9.34 Voltage and current standing wave patterns (note that l= �/4)

The SWR is 2; P = �UG�rms �IG�rms = �UL�rms �IL�rms = 30 W.

Q5 L remains unaltered. C quadruples.
Rw, v and � reduce to half of their original values (note that the new Rw = 30�=RL).

Now the line is perfectly matched. The new standing wave patterns are horizontal lines,
Urms�y�= 60 V and Irms�y�= 2 A.

The active power quadruples, P = 120 W.

Problem 9.9.6

Consider a lossless transmission line of length l subjected to a time-harmonic regime. The
line is left open at both ends. The generator that drives the line is positioned at an arbitrary
location y = yG – see Figure 9.35.

Figure 9.35 A two-conductor transmission line, left open at both ends, is excited by an ideal voltage
generator placed at y = yG
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Q1 Determine the complex amplitude of the generator current IG as a function of its position.

Q2 Consider the particular situation where the line length is an integer multiple of one
half-wavelength, l= n�/2. Find IG.

Answers

Q1 Input admittance to the right of the generator:

(
Y in

)
R

= j
tan��yG�
Rw

Input admittance to the left of the generator:

(
Y in

)
L

= j
tan ���l−yG��

Rw

IG = UG

( (
Y in

)
R
+ (

Y in
)
L

) = jUG

Rw
�tan��yG�+ tan���l−yG���

Q2 From trigonometry: tan��y�+ tan���l−y��= tan��l�× �1− tan��y�× tan���l−y���.
Therefore

IG = jUG

Rw
tan��l�× �1− tan��yG�× tan���l−yG���

For l= n�/2 you have �l= n�, tan��l�= 0, IG = 0.

Problem 9.9.7

Consider a non-uniform transmission-line structure consisting of a chain connection of two
uniform lossless coaxial cable sections, as shown in Figure 9.36. The first cable section, of
length l1 = 10 m, is characterized by Rw1

= 75� and v1 = 2 × 108 m/s. The second cable
section, of length l2 = 7�5 m, is characterized by Rw2

= 50� and v2 = 1 × 108 m/s. The
working frequency is f = 10 MHz. The load is an antenna that radiates 400 W and whose
input impedance is RL = 100�.

Figure 9.36 An antenna fed by the chain connection of two distinct coaxial cables
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Q1 Determine the transfer matrices describing both cable sections.

Q2 Determine the transfer matrix of the global non-uniform transmission-line structure.

Q3 Assuming that UL = UL e
j0, determine UG and IG.

Answers

Q1 �1 = v1/f = 20 m; �1 = 2�/�1 = �/10 rad/m; �1l1 = �.
�2 = v2/f = 10 m; �2 = 2�/�2 = �/5 rad/m; �2l2 = 3�/2.

�T1�=
[

cos��1l1� jRw1
sin��1l1�

jR−1
w1

sin��1l1� cos��1l1�

]
=

[
−1 0

0 −1

]

�T2�=
[

cos��2l2� jRw2
sin��2l2�

jR−1
w2

sin��2l2� cos��2l2�

]
=

[
0 −j50 �

−j0�02 S 0

]

Q2

�T �= �T1� �T2�=
[

0 j50�
j0�02 S 0

]

Q3 UL = √
2 200 V� IL = √

2 2 A�

[
UG

IG

]
= �T �

[
UL

IL

]
= j

√
2
[

100 V
4 A

]

Problem 9.9.8

Consider the connections shown in Figure 9.37, where a 100 MHz voltage generator
simultaneously drives two lossless coaxial cables of length l = 75 cm. The cables are
geometrically identical, but they differ in their dielectric media properties, 
1 = 4
0

and 
2 = 9
0, �1 = �2 = �0. The generator voltage is uG�t� = √
2 �UG�rms cos��t�, with

�UG�rms = 48 V.

Q1 For each cable, determine the propagation velocities v1 and v2 as well as the
corresponding values of the wavelength �1 and �2.

Q2 The per-unit-length inductance common to both cables is L = 400 nH/m. Find the
per-unit-length capacitances C1 and C2 of the cables, as well as the corresponding
characteristic wave resistances Rw1

and Rw2
.

Q3 Cable 1 is matched to its load. Cable 2 is short-circuited at y = 0. Determine R.
Determine the load reflection coefficients �1 and �2 for both cables.
Find the complex amplitudes of all of the voltages and currents marked in Figure 9.37.
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Figure 9.37 A voltage generator drives two lossless coaxial cables of length l. While one of the
cables is matched, the other is short-circuited

Answers

Q1 vk = c/
√

r → v1 = 1�5×108 m/s� v2 = 1�0×108 m/s�

�1 = 1�5 m��2 = 1�0 m�

Q2

Ck = 1
vkL

→ C1 = 111 pF/m� C2 = 250 pF/m�

Rwk =
√
L

Ck
→ Rw1

= 60�� Rw2
= 40�

Q3 R= Rw1
= 60�� �1 = 0� �2 = −1�

UG = √
2 48 ej0 V� UR = √

2 48 ej� V� I1 = √
2 0�8 ej0 A� IR = √

2 0�8 ej� A�
I2 = 0� Icc = √

2 1�2 ej�/2 A�

Problem 9.9.9

Consider an aerial (�= �0, 
= 
0) lossless transmission line, of length l= 1 m, subjected
to a time-harmonic regime. The generator voltage is uG�t� = √

2 �UG�rms cos��t�, with
�UG�rms = 100 V. The resistors included in the load circuit are characterized by R = 1 k�.
As shown in Figure 9.38, two standing wave patterns were recorded, one with the switch S
open, the other with the switch closed.

Q1 Why can you say that the line is matched when S is closed? Determine Rw and v.

Q2 Consider the situation with S open. By analyzing the standing wave pattern, determine
the wavelength �, the operating frequency f and the phase constant �. Evaluate � and
SWR, and obtain �Urms�min.
Find the complex amplitudes UG� IG�UL and IL.
Determine the standing wave pattern concerning the evolution of Irms�y�.
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Figure 9.38 A transmission line is terminated by a load configuration that depends on the status of
the switch. The corresponding voltage standing wave patterns are shown for S closed and open

Answers

Q1 With S closed (RL = R/2 = 500�) the line is matched because Urms�y�= constant.
Rw = RL = 500�� v= 1/

√
�0
0 = 3×108 m/s�

Q2 From �/4 = l/2, you get �= 2 m. f = v/�= 150 MHz. �= 2�/�= � rad/m.

� = � = R−Rw
R+Rw

= 1
3
� SWR = 1+�

1−� = 2� �Urms�min = �Urms�max

SWR
= 50 V

UG = √
2 100 V� UL = −√

2 100 V� IG = √
2 100 mA� IL = −√

2 100 mA.

The standing wave pattern concerning the evolution of Irms�y� is characterized by
two minima �Irms�min = 100 mA at the line ends, y = 0 and y = l, and by a maximum
�Irms�max = 200 mA occurring at y = l/2.



Appendix A
Formulas from Vector Analysis

A ·B = B ·A

A×B = −B×A

�A×B� ·C = A · �B×C�

A× �B×C� = �A ·C� B− �A ·B� C

d

d�
�A ·B� = A · dB

d�
+ dA

d�
·B

d

d�
�A×B� = A× dB

d�
+ dA

d�
×B

Differential Operators

curl grad V = 0

div curl A = 0

lap V = div grad V

lap A = �lap Ax� �ex + (lap Ay

) �ey + �lap Az� �ez

curl �curl A� = grad div A− lap A

div �VA� = V div A+grad V ·A

curl �VA� = V rot A+grad V ×A

div �A×B� = �curl A� ·B−A · �curl B�
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Rectangular coordinates (x, y, z):

grad V = �V

�x
�ex + �V

�y
�ey + �V

�z
�ez

lap V = �2V

�x2
+ �2V

�y2
+ �2V

�z2

div A = �Ax

�x
+ �Ay

�y
+ �Az

�z

curl A =
(

�Az

�y
− �Ay

�z

)
�ex +

(
�Ax

�z
− �Az

�x

)
�ey +

(
�Ay

�x
− �Ax

�y

)
�ez

Cylindrical coordinates (r, �, z):

grad V = �V

�r
�er + 1

r

�V

��
�e� + �V

�z
�ez

lap V = 1
r

�

�r

(
r
�V

�r

)
+ 1

r2

�2V

��2
+ �2V

�z2

div A = 1
r

(
��rAr�

�r
+ �A�

��
+ r

�Az

�z

)

curl A =
(

1
r

�Az

��
− �A�

�z

)
�er +

(
�Ar

�z
− �Az

�r

)
�e� + 1

r

(
��rA��

�r
− �Ar

��

)
�ez

Spherical coordinates (r, �, �):

grad V = �V

�r
�er + 1

r

�V

��
�e� + 1

r sin �

�V

��
�e�

lap V = 1
r2

�

�r

(
r2 �V

�r

)
+ 1

r2 sin �

�

��

(
sin �

�V

��

)
+ 1

�r sin ��2

�2V

��2

div A = 1
r2

��r2Ar�

�r
+ 1

r sin �

(
��A� sin ��

��
+ �A�

��

)

curl A = 1
r sin �

(
��A� sin ��

��
− �A�

��

)
�er + 1

r

(
1

sin �

�Ar

��
− ��rA��

�r

)
�e�

+1
r

(
��rA��

�r
− �Ar

��

)
�e�

Curl Theorem (Stokes Theorem) Divergence Theorem (Gauss Theorem)

∫

Ss

curl A ·nS dS =
∫

�

S

A ·ds
∫

V

div A dV =
∫

SV

A ·no dS
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Lorentz Transformation

Movement along the z axis:

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x = x′

y = y′

z = 1
�

�z′ + vt′�

t = 1
�

(
t′ + vz′

c2

)

� =
√

1−
(v

c

)2

c = 1√
	0
0
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Appendix C
Elements of Complex Algebra

z̄ = a+ jb = z ej� =
√

a2 +b2 ej arctan�b/a�

z̄1 + z̄2 = �a1 +a2�+ j�b1 +b2�

z̄1z̄2 = z1z2 ej��1+�2�

z̄∗ = �a− jb� = z e−j�

z̄z̄∗ = z2

1
z̄

= e−j�

z√
z̄ = ±√

z ej��/2�

z̄n = zn ejn�

cos � = e+j� + e−j�

2

sin � = e+j� − e−j�

2j

cos�j�� = cosh �

sin�j�� = j sinh �
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Appendix D
Elements of Fourier Analysis

Periodic signals of period T :

s�t� = sav +
�∑

k=1

Sk cos��kt −�k�� �k = 2
k/T

sav = 1
T

T∫

0

s�t� dt� Sk =
√

A2
k +B2

k� �k = arctan �Bk/Ak�

Ak = 2
T

T∫

0

s�t� cos��kt� dt� Bk = 2
T

T∫

0

s�t� sin��kt� dt

Non-periodic signals:

s�t� =
�∫

0

S��� cos ��t −�����d�

S��� =√
A2���+B2���� ���� = arctan �B���/A����

A��� = 1



�∫

−�
s�t� cos��t� dt� B��� = 1




�∫

−�
s�t� sin��t� dt
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Index

Active power 257–60, 265, 362, 364
AC voltage generation 27, 224, 225, 232
Admittance operator 262, 263, 265
Ampère’s law 161–3, 171, 172, 176, 180, 195, 228,

237, 238, 269, 324
Angular frequency 201, 251, 255, 258, 282, 287, 288
Apparent power 260
Attenuation constant 352–4, 378

Balun transformer 69–71

Capacitance 108, 109, 128, 131, 145, 159, 175,
239, 330

Capacitance matrix 118, 119, 122, 123, 134, 135,
160, 184, 243, 246

Capacitor 58, 108, 128, 129, 175, 239, 240, 241,
244, 245, 263, 278, 286

Capacitor charging process 278–82
Capacitor self-discharge 241
Chain matrix 355

see also Transfer matrix
Characteristic wave impedance 351, 352, 371, 373
Characteristic wave resistance 320, 340, 341, 343,

345, 352, 358
Charge continuity equation 238, 241, 336, 339
Complex amplitude 254, 315, 317, 318, 328, 356

see also Phasor
Complex power 260, 261, 320, 321, 325
Complex Poynting theorem 260–2, 320, 321
Complex Poynting vector 320–2, 324, 327–9
Conductance 144–6, 156, 159, 263
Conductance matrix 243
Conductivity 17, 18, 139, 140, 144, 159
Conductor 105, 139, 140, 149, 150, 155
Current density 90, 139–41, 146, 154, 164, 237,

322–4

Current intensity 92, 93, 142, 147, 162, 164,
240, 243

Current transducer 13–15

DC voltage generation 223–4
Dielectric media 103, 104, 112, 321, 349
Dielectric polarization 103, 104, 318, 321, 351
Dielectric strength 58, 61, 103, 104, 106
Directional coupler 19–21
Displacement current density 237–42, 285, 310,

322, 332
Distributed parameters 158, 336
Dynamic electric field 220

Eddy currents 183, 219
Electric charge 89, 97, 99, 102, 103, 239
Electric charge density 90, 105, 133, 142, 242
Electric circuit 139, 141, 148, 150, 169–70
Electric displacement vector 89, 102, 103
Electric energy 108, 110, 121, 128, 178, 247, 252,

259, 261, 289
Electric energy density 111, 112, 128, 129, 311
Electric field vector 89, 101, 104, 106, 130, 139,

142, 207, 208, 316
Electric force 89, 125–8, 136, 137, 149, 187
Electric induction phenomena 205, 206, 237, 249
Electric susceptibility 104
Electric torque 125, 129, 187
Electrolytic tank 159
Electromagnet 188
Electromagnetic field 87, 220, 307, 309–14, 328,

349
Electromagnetic wave 205, 307, 309–12
Electromechanical energy conversion 221–3
Electromotive force 101, 151, 210
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Electrostatic field
of coaxial cable 131, 132
of filament of charge 107, 108, 130
of two-conductor transmission line 8–10, 112–17

Even mode 69, 70, 372–4
Exponential line 31, 33–4

Ferromagnetic media 168–9, 182, 219
Field polarization 315–17
Free regime 276–8, 283, 284, 288
Frequency 251, 252, 254, 322

Generator 149–51, 155
applied field 149, 151
electromotive force 151, 155

Gradient electric field 99, 100, 163, 207, 213
Ground electrode 154
Grounding 23, 24, 43, 44, 154

Hertz dipole 328
Hysteresis losses 182–3

Ideal transformer 269
Impedance operator 262, 263, 268, 321
Inductance 174, 175, 181, 184, 198, 216, 267, 269,

280
matrix 184, 185, 187, 192, 196, 217

Induction
electric field 177, 207, 208, 213
heating 229
law 210–13, 217, 220, 222–4, 268, 278, 336, 338
machine 25–9

Inductor 174, 177, 178, 229–31
Instantaneous power 257–9, 313, 314

Joule effect 149, 219, 222, 229, 259
Joule losses 149, 150, 252, 261, 289, 290

density 149, 311

Kirchhoff’s current law 142, 143, 148, 165
Kirchhoff’s voltage law 99, 102, 148, 164

Laplace–Lorentz force 90, 220, 235
Lenz’s law 229, 270, 271, 276
Line input impedance 356, 358–61
Line-matching techniques 31, 33, 73, 365–8
Load reflection coefficient 347, 356, 357
Loss angle 350–2
Loudspeaker 77–9, 234
Lumped parameters 206, 249, 250, 335

Magnetic circuit 169, 170, 173, 195, 197, 199, 232
Magnetic co-energy 202
Magnetic coupling factor 185, 192, 198, 269, 273

Magnetic energy 174, 177, 178, 182, 186, 192, 252,
259, 261, 289

density 178, 179, 311, 312
Magnetic field

of coaxial cable 179–82
of two-wire transmission line 190–1
vector 89, 161, 162, 166, 238, 242, 269

Magnetic flux linkage 174–6, 184, 191, 268, 279,
336, 338

Magnetic force 40, 89, 187–8, 194, 201, 221
Magnetic hysteresis 168, 169, 182
Magnetic induction

flux 164, 165, 176, 196, 199, 224
phenomena 205, 206, 207, 210, 233, 237, 249
vector 89, 164, 165, 227

Magnetic materials 168–9
Magnetic reluctance 173, 174, 177, 186, 195, 199
Magnetic saturation 13, 168, 169, 212, 215
Magnetic susceptibility 168
Magnetic torque 27, 187, 201, 202
Magnetic voltage 161, 163, 164
Magnetomotive force 161–2
Matched line 342, 343, 352, 358, 362, 364, 375
Material media constitutive relations 90, 91, 99,

104, 140, 161, 168, 172, 207, 237, 317–8
Maxwell’s equations 87, 90, 97, 177, 205, 208, 307,

310, 317, 322
Maxwell’s equations (phasor domain) 317, 318,

320, 322, 330
Microphone 233–4
Microwave splitter 65–8
Mismatched line 343, 362, 364, 365
Moving circuit systems 27, 37, 38, 41, 220, 221,

224, 225, 234
Multiconductor transmission lines 335, 369–72
Multiple circuit systems 183, 184, 186, 211, 217
Multiple conductor systems 117–18, 123,124,

134–6, 159, 184, 242–3

Nonlinearity 14, 58, 104, 109, 110, 112, 126, 168,
172, 175, 178, 202, 212, 216

Non-uniform transmission lines 31, 335, 354, 355,
383

Odd mode 48, 50, 69, 70, 192, 372, 374
Ohm’s law 144, 152, 173, 250
Overdamped transients 288

Partial capacitance 122, 123, 159
Permeability 91, 161, 168, 173, 318
Permittivity 91, 99, 103, 109, 318, 372
Per-unit-length

capacitance 137, 339, 341, 345, 372
conductance 156, 351
inductance 179, 190–2, 338, 339, 341, 345
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longitudinal impedance 350, 370, 378
resistance 156, 340
transverse admittance 350, 351, 370, 378

Phase 251–3, 258, 259, 353
Phase constant 319, 352, 353
Phase velocity 351, 353, 373
Phasor 254, 255, 257, 260, 269, 277, 315–17, 349

see also Complex amplitude
Potential coefficients matrix 121, 122
Potential vector 207, 208, 210
Potentiometer 146–8
Power factor 265, 267
Power factor compensation 4, 57, 264, 267
Power flow 259, 268, 311, 312
Power line carrier communication 47, 49, 54
Power line magnetic field 48, 165–7
Poynting theorem 259, 262, 311–13
Poynting vector 311, 312, 313, 314, 319, 321, 326,

328
Propagation constant 351, 352, 371, 380
Propagation mode 371, 373
Propagation velocity 340, 341, 345
Pulse propagation 342
Pulse reflection 342

Quality factor 263–4
Quarter wave transformer 67, 365, 382
Quasi-stationary regime 205, 206, 249, 311, 313,

330, 335

Reactance 263
Reactive power 260, 262, 264, 265
Resistance 144, 146, 147, 152, 154, 173,

217, 263
Resistor 144, 145, 149, 150, 250, 343
Resonance 62, 74, 263, 266, 291, 293, 330, 332
Root-mean-square field value 315–17
Root-mean-square value 252, 317

Scalar potential 99, 106, 107, 154, 208
Sinusoidal quantities 251–2

Skin effect 53, 55, 307, 322–6, 333, 334, 349, 350,
377

Standing wave pattern 362–4, 365, 368, 382, 385,
386

Standing wave ratio 362, 364
Stationary waves 360, 361
Steady-state harmonic regime 206, 250, 276
Stub matching 365, 366, 368
Susceptance 263

Theory of relativity 87, 220
Three-phase systems 43, 47, 57, 61, 232–3, 294–7
Three-phase voltage generation 28, 232–3
Time-harmonic fields 315–17
Toroidal magnetic core 13, 195, 197
Transfer matrix 354, 355, 378, 384

see also Chain matrix
Transformer 35, 73, 81, 169, 170, 227, 267, 268,

269, 274, 286
Transformer equivalent circuit 271–4, 299
Transformer impedance 270–71
Transient regimes 79, 83, 206, 276, 282, 286,

300
Transmission-line equations in the frequency domain

349, 351, 356
Transmission-line equations in the time domain 337,

339, 349
Transmission lines 7, 31, 66, 69, 307, 335, 337, 341,

345, 364, 369
Traveling waves 358–60
Tuning circuit 290–91

Underdamped transients 288, 300, 301
Uniform plane wave 318, 327
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Wave equation 309, 310, 318, 340
Wavelength 205, 249, 307, 318, 319, 353
Wheatstone bridge 148, 153
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