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Preface

Thermofluids, while a relatively modern term, is applied to the well-established 
field of thermal sciences, which is comprised of various intertwined disciplines.  
Thus mass, momentum, and heat transfer constitute the fundamentals of ther-
mofluids.  This book discusses thermofluids in the context of thermodynamics, 
single- and two-phase flow, as well as heat transfer associated with single- and 
two-phase flows.  Traditionally, the field of thermal sciences is taught in universi-
ties by requiring students to study engineering thermodynamics, fluid mechanics, 
and heat transfer, in that order.  In graduate school, these topics are discussed at 
more advanced levels.  In recent years, however, there have been attempts to inte-
grate these topics through a unified approach.  This approach makes sense as 
thermal design of widely varied systems ranging from hair dryers to semiconduc-
tor chips to jet engines to nuclear power plants is based on the conservation equa-
tions of mass, momentum, angular momentum, energy, and the second law of 
thermodynamics.  While integrating these topics has recently gained popularity, it 
is hardly a new approach.  For example, Bird, Stewart, and Lightfoot in Transport 
Phenomena, Rohsenow and Choi in Heat, Mass, and Momentum Transfer, El-
Wakil, in Nuclear Heat Transport, and Todreas and Kazimi in Nuclear Systems
have pursued a similar approach.  These books, however, have been designed for 
advanced graduate level courses.  More recently, undergraduate books using an in-
tegral approach are appearing.

In this book, a wide range of thermal science topics has been brought under one 
umbrella.  This book is intended for graduate students in the fields of Chemical, 
Industrial, Mechanical, and Nuclear Engineering.  However, the topics are dis-
cussed in reasonable detail, so that, with omission of certain subjects, it can also 
be used as a text for undergraduate students.  The emphasis on the application as-
pects of thermofluids, supported with many practical examples, makes this book a 
useful reference for practicing engineers in the above fields.  No course prerequi-
sites, except basic engineering and math, are required; the text does not assume 
any degree of familiarity with various topics, as all derivations are obtained from 
basic engineering principles.  The text provides examples in the design and opera-
tion of thermal systems and power production, applying various thermofluid dis-
ciplines.  The goal is to give equal attention to a discussion of all power produc-
tion sources.  However, as George Orwell would have put it, power production 
from nuclear systems has been treated in this book “more equally”! 

As important as the understanding of a physical phenomenon is for engineers, 
equally important is the formulation and solution to the mathematical model rep-
resenting each phenomenon.  Therefore, rather than providing the traditional 
mathematical tidbits, a chapter is dedicated to the fundamentals of engineering 
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mathematics.  This allows each chapter to address the subject topic exclusively, 
preventing the need for mathematical proofs in the midst of the discussion of the 
engineering subject. 

Topics are prepared in seven major chapters; Introduction, Thermodynamics, 
Single-Phase Flow, Single-Phase Heat Transfer, Two-Phase Flow and Heat Trans-
fer, Applications of Thermofluids in Engineering, and the supplemental chapter on 
Engineering Mathematics.  These chapters are further broken down into several 
subchapters.  For example, Chapter II for Thermodynamics consists of Chapter IIa 
for Fundamentals of Thermodynamics, Chapter IIb for Power Cycles, and Chap-
ter IIc for Mixtures of Non-Reactive Gases. 

Each chapter opens by briefly describing the covered topic and defining the 
pertinent terminology.  This approach will familiarize the reader with the impor-
tant concepts and facilitate comprehension of topics discussed in the chapter.  To 
aid the understanding of more subtle topics, walkthrough examples are provided, 
in both British and SI units.  Questions at the end of each chapter remind the 
reader of the key concepts discussed in the chapter.  Homework problems, with 
answers to some of the problems, are provided to assist comprehension of the re-
lated topic.  Throughout this book, priority is given to obtaining analytical solu-
tions in closed form.  Numerical solutions and empirical correlations are presented 
as alternatives to the analytical solution, or when an analytical solution cannot be 
found due to the complexities involved.  

Multi-authored references are cited only by the name of the first author.  When 
an author is cited twice in the same chapter, the date of the publication follows the 
author’s name. 

A CD-ROM containing menu-driven engineering software (ToolKit) is pro-
vided for performing laborious tasks.  In addition to ToolKit, the CD-ROM con-
tains folders named after the associated chapters. These folders contain the listings 
of computer programs, sample input, and sample output files for various applica-
tions. The items that are included in the software are identified in the text. 

The data required in various chapters are tabulated in Chapter VIII, Appendi-
ces. To distinguish the appendix tables from the tables used in various chapters, 
the table numbers in the appendices are preceded by the letter A. 
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Nomenclature 

In this book, for the sake of brevity and consistency, as few symbols as possible 
are used.  Thus, to minimize the number of symbols, yet clearly distinguish vari-
ous parameters, lower case and italic fonts have been used whenever a symbol 
represents two or more parameters.  For example, while V represents volume, v is 

used for specific volume, V for velocity, v for kinematic viscosity, and V  for 
volumetric flow rate.  To avoid confusion when solving problems by hand, the 
reader may use  for volume.  

Special attention must be paid whenever h representing specific enthalpy and h,
standing for heat transfer coefficient, appear in the same equation.  This occurs in 
chapters IVe and IVf, dealing with boiling and condensation.  Also note that h and 
H stand for height.  Similarly, In Chapter Va, s represents an element of length as 
well as entropy while S stands for slip ratio, respectively.   

The units provided below in front of each symbol, are just examples of com-
monly used units.  They do not preclude the representation of the same symbol 
with different sets of units.  The details of the SI units are discussed in Appendix I. 

English 
symbols  Definition    SI Unit            British Unit
a Acceleration         m/s2   ft/s2

a Radius     m   in
A Helmholtz function    J   Btu 
A  Area     m2   ft2

b  Width     m   ft 
B  Bulk modulus     Pa   psi 
B  Buckling     cm–2   in–2

c  Speed of sound    m/s   ft/s 
cp  Specific heat at constant pressure W/kg C       Btu/lbm·F 
cv  Specific heat at constant volume W/kg C       Btu/lbm·F 
Cd  Discharge Coefficient  –   – 
CD  Drag coefficient        –   – 
d, D  Diameter     m (cm)  ft (in) 
e  Specific energy   W/kg   Btu/lbm 
e  Uncertainty       –   – 
E  Modulus of Elasticity  Pa   psi 
E  Total energy    J   Btu 
E Total emissive power  W   Bu/s 
English 
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symbols  Definition    SI Unit            British Unit
F Force      N   lbf 
F  View factor     -   - 
F  Peaking factor   -   - 
g Gibbs function    J   Btu
g Gravitational acceleration  m/s2   ft/s2

gc  Conversion constant   kg m/N s2            slug·ft/lbf·s2

G  Mass flux    kg/s m2  lbm/s·ft2

G  Irradiation    W/m2        Btu/s·ft2

h  Head     m   ft 
  Plank’s constant   J·s   Btu·s 

h  Heat transfer coefficient  W/m2 C       Btu/h·ft2·F
h  Specific enthalpy   kJ/kg   Btu/lbm 
H  Height     m   ft 
H  Enthalpy    J   Btu 
I  Geometric inertia   m-1   ft-1

I Irreversibility    J   Btu 
I Spectral intensity   W/m2· m·sr            Btu/s·ft2· m sr 
j  Conversion factor    J/J   ft·lbf/Btu 
J  Radiosity    W/m2· m  - 
J  Superficial velocity    m/s   ft/s 
J  Neutron current density  s–1cm–2  s–1·ft–2

J  Bessel function of first kind  –   – 
ks  Spring constant   –   – 
k  Boltzmann constant   J/K   Btu/R 
k Thermal conductivity  W/m K  Btu/h·ft·F 
k   Infinite medium multiplication factor     –   – 
keff  Finite medium multiplication factor        –   – 
K  Frictional loss coefficient          –   – 
l Mean free path    cm   in 
L Diffusion length    cm   in 
m  Mass      kgm   lbm 
m   Mass flow rate    kg/s   lbm/s 
M Molecular weight    kg/kmol  lb/lbmol 
NA Avogadro number    –   – 
P Pressure     Pa   psi 
P  Perimeter     m   ft 
q  Heat transfer per unit mass   J/kg   Btu/lbm 

'q Linear heat generation rate   W/m   kW/ft 
q Heat flux     W/m2   Btu/h·ft2

q Volumetric heat generation rate   W/m3   Btu/h·ft3

Q  Heat transfer      J   Btu 
Q   Rate of heat transfer     W   Btu/s 
R  Gas constant      kPa·m3/kg·K            ft·lbf/lbm·R 
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English 
symbols  Definition    SI Unit        British Unit
r, R  Radius     m (cm)        ft (in) 
R  Thermal resistance   C/W         h·F/Btu 
Ru  Universal gas constant  kJ/kmol·K        ft·lbf/lbmol·R 
s  Element of length   m         ft 
s Tube or rod pitch   cm         in 
s Specific entropy    J/kg·K         Btu/lbm·R 
s  Volumetric neutron source  

strength         cm–3·s–1        in–3·s–1

S  Entropy     J/K         Btu/R 
S  Slip ratio    –         – 
S Surface area    m2         ft2

Sg Specific gravity   –         – 
t Time     s         s 
T Temperature    C (K)         F (R) 
T  Torque     m·N         ft·lbf
u Specific internal energy  J/kg         Btu/lbm 
u
 

  Unit vector         –         – 
U Internal energy   J         Btu 
U  Overall heat transfer coefficient W/m2·K        Btu/h·ft2·F
v  Kinematics viscosity   m2/s         ft2/h 
v  secific volume    m3/kgm        ft3/lbm
V  Vlocity    m/s         ft/s 
V  Volume    m3         ft3

V  Voltage    V         V 
V   Volumetric flow rate   m3/s         ft3/s
W  Weight     kg         lbf 
w  Work per unit mass  

of working fluid         J/kg         Btu/lbm 
W Work     J         Btu 

W   Power     W         Btu/s 
x  Thermodynamic quality  –         – 
X  Flow quality    –         – 
y  mole fraction    –         – 
Y  Gas expansion factor   –         – 
Z Elevation    m         ft 

Greek
symbols  Definition    SI Unit       British Unit

  Void fraction, Absorptivity   –         – 
  Volumetric thermal  

expansion coeff.         K–1         R–1

  Volumetric flow ratio   –         – 
  Ratio of cp/cv    –         – 
  Shearing strain    –         – 
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Greek
symbols  Definition    SI Unit            British Unit
  Boundary layer thickness  mm         in 

Difference in values   –   –
  Emissivity    –   – 
  Strain     –   – 
  Macroscopic cross section  cm–1   – 

Effectiveness    –   –
  Efficiency    –   – 

Eta factor    –   – 
Azimuthal angle   –   – 

  Boltzmann constant    J/K   Btu/R 
  Isothermal compressibility   Pa–1   psi–1

  Thermal conductivity (tensor) W/m· C  Btu/h·ft·F 
  System thermal length  m   ft 
  Mean free path   cm   in

Wavelength    m   –
  Absorption coefficient  cm2        – 
  Dynamic viscosity   N·s/m2        bm/h·ft 

Number of fast neutrons  
per fission     –   – 

  Density    kg/m3        lbm/ft3

Reflectivity    –   – 
  Surface tension   N/m   lbf/ft 
  Tensile stress    Pa   psi 
  Stefan-Boltzmann constant  W/m2·K4  Btu/ft2·h·R4

Microscopic cross section  cm–2   – 
  Measure of entropy production J/K   Btu/R
  Shear stress    Pa   psi 

  Transmissivity   –   – 
  Relative humidity   –   – 

  Flux     s–1·cm–2  s–1·ft–2

  Specific availability  
(closed system)        kJ/kg        Btu/lbm 
Availability (closed system)  kJ   Btu 
Viscous Dissipation function W   Btu/s 
Fission spectrum of an isotope MeV–1        Btu–1

Zenith angel    –   –
Stream function   –   –
Specific availability  
(control volume)   kJ/kg        Btu/lbm 

  Availability (control volume) kJ   Btu 
  Humidity ratio   –   – 
  Impeller Speed of a turbomachine  rad/s   rad/s 

  Solid angle     sr   – 
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Subscripts 

B   body, buoyancy 
CL   Centerline 
C.V.   control volume
e   equivalent or hydraulic diameter
f   saturated liquid 
f   friction 
f   free stream, bulk 
g   saturated steam 
h   equivalent or hydraulic diameter 
l   local 
r   reduced 
max   maximum 
min   minimum  
s   surface, shaft 
sat   saturation 
v   vapor 

Abbreviations 

#    numbers of 
1-D    one dimensional 
Av    Avogadro number 
b    Barns 
C    Celsius 
cm    centimeter 
eV    electron volt 
E    exponent (Example: 1  103 = 1E3) 
ft    foot, feet 
F    Fahrenheit 
g    gram 
GPM    gallon per minute 
h    hour 
hp    horsepower 
in    inch 
J    Joules 
k    Kilo 
K    Kelvin 
ln    natural logarithm, logarithm to the base e = 2.7182818 
log    logarithm to the base 10 
m    meter 
min    minute 
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mm    millimeter 
MBtu    million Btu 
MeV    Million electron volt 
MWe    Mega Watt electric 
MWt    Mega Watt thermal 
R    Rankine 
s    second 
S-S    steady state 
W    Watt 



I..  Introduction 

1.  Definition of Thermofluids 

The study of thermofluids integrates various disciplines of the field of thermal sci-
ences.  This field consists of such topics as thermodynamics, fluid mechanics, and 
heat transfer, all of which are discussed in various chapters of this book.  The fas-
cinating concept of energy is the common denominator in all these topics.  Al-
though we are intuitively familiar with energy through our various experiences it 
is, nonetheless, difficult to formulate an exact definition.  One might say energy is 
the ability to do work, but then we must first define work.  According to Huang we 
may hypothesize that “energy is something that all matter has.”  We leave the 
definitions and discussion of energy, heat, work, and power to the chapter on 
thermodynamics.  In this chapter we introduce thermofluids and discuss the engi-
neering applications of thermofluids in the design and operation of thermal sys-
tems, such as those used in power production. 

Thermal systems deal with the storage, conversion, and transportation of energy 
in its many forms.  These may include a jet engine that converts fuel energy to me-
chanical energy, an electric heater that converts electrical energy to heat energy, or 
even a shotgun, which converts chemical energy to kinetic energy.  Having defined 
thermal systems, we now define fluids. In general, any substance that is not a solid 
can be considered as a fluid.  In this book the only fluids, we consider in the design 
and operation of thermal systems are liquids and gases especially water and air, as 
they are by far the most abundant fluids on earth.  Liquids and gases in thermal sys-
tems are referred to as working fluids. As discussed in the chapter on fluid mechan-
ics, there are also other types of fluids such as blood, glue, lava, slurry, tar, and 
toothpaste, which are analyzed differently than liquids and gases. 

From this brief introduction, we conclude that: thermofluids is a subject that 
analyzes systems and processes involved in energy, various forms of energy, and 
transfer of energy in fluids.  Since fluids generally come in contact with solids, in 
this book we will include the study of energy transfer in both fluids and solids. 

This book is prepared in seven chapters.  In the present chapter, we discuss the 
three sources of energy for power production and describe various power produc-
ing systems. This provides sufficient background to start Chapter II and learn 
about thermodynamics and its associated laws governing the processes involved in 
thermal systems. This is followed by Chapter III on fluid mechanics and its related 
topics on the application of the working fluids in thermal systems.  Chapter III 
deals exclusively with the flow of single-phase fluids.  The topic of heat transfer 
in both solids and single-phase fluids is discussed in Chapter IV.  Chapter V then 



2      I.  Introduction 

discusses the mechanisms associated with two-phase flow.  Chapter V also dis-
cusses heat transfer when a fluid changes phase such as the boiling of water and 
condensation of steam.  The knowledge gained in the first five chapters is then 
used in Chapter VI to discuss the applications of thermofluids in the design and 
operation of such thermal systems as heat exchangers (steam generators, feedwa-
ter heaters, and condensers), turbines, and pumps.  Engineering mathematics cov-
ering a wide range of topics in advanced calculus is compiled in Chapter VII.  
This allows us in each chapter to focus exclusively on the topic at hand and pre-
vents us from any need to discuss mathematics in these chapters. 

2.  Energy Source and Conversion 

Energy is essential for most advances in society and the continuous improvement 
of the quality of life.  We use a variety of means to convert energy for industrial, 
transportation, residential, and commercial applications. 

From time to time, the world has experienced energy crises, defined as the 
shortage of supply of energy or the environmental consequences associated with 
the use of a source of energy.  Such crises prove to be important reminders of how 
vital energy is for transportation, commerce, industry, and residential use.  These 
crises also serve as the motivation to improve and broaden the application of en-
ergy sources and for the quests to find new sources of energy. 

Figure I.2.1 shows the interaction between various forms of energy and the re-
spective means of energy conversion. Let’s examine this figure by first consider-
ing for instance, pumping water to a reservoir. The mechanical energy of the 
pump is used to lift water, hence increasing water’s potential energy, and to fill the 
reservoir. The reservoir then returns the stored energy in water in the form of ki-
netic energy when we open the faucet in our homes. The pump itself must be 
powered by a prime mover such as an electric motor or an internal combustion en-
gine, indicating conversion of electrical or chemical energies to mechanical en-
ergy.
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Figure I.2.1.  Means of energy conversion (Marquand)
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If water instead of flowing in the faucet is used to power a hydraulic turbine, 
the water kinetic energy would be converted back to mechanical energy.  The me-
chanical energy in a generator is converted to electrical energy.  The electrical en-
ergy may then be used to charge batteries, which then become the reservoir for 
stored energy.  In this energy conversion process, one form of stored energy is 
converted to a new form of stored energy. 

The converse is also possible when we use a battery to produce electrical en-
ergy, which can then be used in an electric motor to be converted to mechanical 
energy.  The motor, in turn would serve as the prime mover of a hydraulic pump 
to fill a reservoir thus, converting the mechanical energy into stored energy.

Figure I.2.2 is a more comprehensive diagram of energy conversion including 
various types of energy and the conversion pathways between various types.  For 
example, radiant, chemical, electrical, mechanical, and nuclear energies can be 
converted to thermal energy while thermal energy can be converted to mechanical 
and electrical energies. 
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Figure I.2.2.  Important forms of energy and the pathway for conversion (Marion) 

The conversion of one type of energy to another takes place in what is known 
as a process.  Many of such processes including the direction of a process and 
such concepts as efficiency are discussed in Chapter II.  In the remainder of this 
chapter, we discuss various sources of energy and briefly describe various types of 
energy conversion system for power production. 
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3.  Energy in Perspective 

The world’s energy resources must fulfill the needs of an increasing world popula-
tion.  The world energy resources are generally divided into three categories, fossil 
fuels, nuclear fuels, and green, renewable or alternative resources.  Historically, 
wood was the primary source of energy before the industrial revolution.  The first 
oil producing well was operational in 1859, which was followed by the introduc-
tion of the internal combustion engine (1876), the first steam-generated electric 
plant (Edison, New York city 1882), the steam turbine (1884), and the Diesel En-
gine (1892).  We now discuss two important types of fuels; fossil and nuclear. 

3.1.  Fossil Fuels 

This category consists of coal, oil, and natural gas.  Today, over 80% of the 
world’s energy supply is from fossil fuels, of which 60% is from oil and gas and 
the remaining 40% is from coal.  Coal is pure carbon and natural gas is primarily 
methane hence, both of these fuels can be used without substantial processing.  
Petroleum, on the other hand, is found in the form of crude oil and must be refined 
for various applications.  In the United States, coal is primarily used for power 
production and in industrial applications, while natural gas is used for industrial 
and residential applications as well as in power production.  Petroleum in the 
United States is primarily used for transportation (54%) followed by industrial, 
residential, and power generation. 

3.2.  Nuclear Fuels 

According to Einstein’s equation E = mc2, the energy obtained from 1 kg of ura-
nium is equivalent to the burning of 3.4 thousand tons of coal1.  Similarly from the 
conversion of mass to energy, we find that the energy equivalent of mass in a bar-
rel of oil is over 2 billion times more than the energy obtained by its combustion.  
The share of power production from nuclear energy has increased since 1950.  
Nuclear energy is used primarily for power production, although nuclear reactors 
are also used to power naval surface ships and submarines.  Battery powered sub-
marines must surface periodically to recharge their batteries using diesel engines, 
which require an intake of oxygen to support combustion.  Since no combustion 
occurs in a nuclear reactor to require oxygen, nuclear powered submarines can 
remain submerged indefinitely.  The world’s first nuclear-powered submarine was 
commissioned in 1954 and the first commercial nuclear power plant (90 MWe) 
became operational in Shippingport, Pennsylvania in 1957.  The physical proc-
esses occurring in nuclear reactors can be classified as either fission or fusion.

1  The energy equivalent of 1 gram of mass is E = (1/1,000) kg × (300,000,000)2 m2/s = 9E13 J = 
8.53E10 Btu. 
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Fission-Based Reactors 

These reactors use heavy elements like uranium and plutonium as fuel.  The atoms 
in these elements have a high possibility of splitting (fission) when exposed to 
neutrons.  The energy obtained from such reactions is primarily due to the kinetic 
energy of the fission fragments.  Fission reactors may be subdivided based on en-
ergy of the neutron used for fission.  Reactors using low-energy neutrons and ura-
nium are known as thermal reactors and reactors using high-energy neutrons and 
plutonium are referred to as fast reactors.  Most of the world’s nuclear reactors are 
thermal.  As discussed in Chapter IVe, high-energy neutrons emerge subsequent to 
the fission of heavy elements.  Striking the atoms of a moderator slows down or 
thermalizes fast neutrons. 

Thermal reactors in the United States use water both as coolant and as modera-
tor thus are referred to as Light Water Reactors (LWRs)2.  Light water reactors can 
be divided into two major categories; Pressurized Water Reactors (PWRs) and 
Boiling Water Reactors (BWRs).  Reactors that use gases like helium as coolant 
are known as Gas Cooled Reactors (GCR).  Some fast reactors use a liquid metal, 
such as sodium, as coolant.  These are referred to as Liquid Metal Fast Breeder 
Reactors, (LMFBR). The breeder reactors convert such fertile isotopes as 238U and 
232Th to such fissionable isotopes as 239Pu and 233U, respectively.  Thus, in such re-
actors, more fissionable nuclei are produced by conversion than are consumed by 
fission. 

Fusion-Based Reactors 

In a fusion process, two light nuclei such as deuterium and lithium fuse together in 
an intensely ionized electrically neutral gas known as plasma.  The energy ob-
tained in this reaction is in the form of the kinetic energy of the emergent nuclei.  
To compare the immense energy obtained from fusion in comparison with fission, 
we note that the energy produced by 1 kg of light nuclei in fusion is equivalent to 
the fission energy of about 256 kg of uranium.  However, obtaining a sustained fu-
sion reaction requires further research and development and has so far, remained 
elusive.  To date, all fusion-based reactors are only experimental facilities. 

4.  Power Producing Systems 

The power producing systems, used for transportation or for industrial and resi-
dential electric power consumption, can be divided into two categories.  The first 
category includes most devices that directly convert other forms of energy into 
electricity, known as direct energy conversion.  Such systems as photoelectric 
cells and thermoelectric generators produce electric power on smaller scale.  The 
second category includes systems that their end result is turning the shaft of an 

2  As discussed in Chapter VIe, thermal reactors may also use heavy water (deuterium in-
stead of hydrogen) both as coolant and as moderator.  These types of reactors are known 
as HPWR or CANDU (Canadian Deuterium Uranium). 
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electric generator to produce electricity based on Faraday’s law of induction.  
Faraday’s law is the basic principle for current central power stations generating 
electricity on a large scale. 

Systems in the second category can be further divided based on whether a ther-
modynamic cycle is used for their operation.  A thermodynamic cycle, as shown in 
Figure I.4.1 and discussed in Chapter II, consists of a heat source, a heat sink, an 
engine, and the working fluid.  In a thermodynamic cycle, the working fluid is en-
ergized in the heat source and then directed to the engine to produce power.  The 
working fluid is then passed through the heat sink and pumped back to the heat 
source to continue the cycle.  Systems using a thermodynamic cycle may use coal, 
oil, gas, or nuclear heat in the heat source.  A heat sink may consist of a radiator, a 
condenser, or a cooling tower. Power production from renewable resources such 
as solar energy and geothermal plants are also included in this group. Power 
producing systems that do not use a thermodynamic cycle include systems using 
such renewable energy resources as turbomachines (hydroelectric plants and wind 
turbines) and tidal power as discussed in Section 7.  Fundamentals of turbo-
machines are discussed in Chapter VIc.
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Figure I.4.1.  A simplified diagram of a thermodynamic cycle for power production 

5.  Power Producing Systems, Fossil Power Plants 

Power plants producing electricity on a large scale of hundreds to thousands of 
MWe, are concentrated in central power stations.  Since power is extracted from 
the fossil fuels by combustion, systems using fossil fuels for power production are 
referred to as combustion engines.  If such systems use coal or oil as fuel, they are 
known as external combustion engines in which there is no mixing of fuel with the 
working fluid.  For example, in a coal power plant the energy obtained from the 
burning of coal is transferred to water flowing in the tubes through the tube wall.  
On the other hand, the internal combustion engines use refined oil, such as gaso-
line as well as natural gas.  Thus, the working fluid in the internal combustion en-
gines participates in the combustion process.   

Internal combustion engines are used for power production in central power 
stations and in the automotive industry for transportation.  Such engines can be di-
vided into several categories; reciprocating piston-cylinder engines, rotary en-
gines, and gas turbine engines as discussed next. 
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Reciprocating engines.  The reciprocating piston-cylinder engine is a century 
old design that has stood the test of time and is used in an overwhelming majority 
of the world’s automotives.  As discussed in Chapter IIb, such engines generally 
use the Otto and the Diesel cycles.  One cycle of a four-stroke cylinder-engine 
consists of six phases: intake, compression, combustion, expansion, rejection, and 
exhaust.

Figure I.5.1.  Cutaway of an in-line six cylinder diesel engine (Courtesy Deutz AG) 

The reciprocating motion of the engine piston, as transferred by the connecting 
rod to the crankshaft, causes the crankshaft to rotate.  The crankshaft rotational 
motion is delivered to a gearbox to obtain the desired speed.  The interface be-
tween the engine’s flywheel and the gear box is provided by either a clutch or by a 
torque converter.  These devices allow complete separation of engine and the 
gearbox and also provide synchronization at the time of engaging the engine with 
the gearbox.  The output from the gearbox may be used in many ways, such as: an 
electric generator, a pump, the differential of a land vehicle for surface movement, 
the propeller of a cylinder-engine powered airplane, or the propeller of a ship for 
propulsion. 

Reciprocating engines are equipped with camshafts to operate the intake and 
the exhaust valves. While the transfer of the crankshaft motion to the gearbox is 
through a clutch or a torque converter, the transfer of crankshaft motion to the 
camshaft to operate the engine’s intake and exhaust valves is by gear, chain, or a 
belt called a timing belt.  Opening of the intake and the exhaust valves is tied to 
the rotational motion of the crank through a rocker-arm mechanism.  If the cam-
shaft is placed below the top of the valves, the rocker-arm is operated by a push 
rod.  If the camshaft is placed in the cylinder head then no push rod is required as 
the camshaft operates directly on the rocker arm.  The intake and exhaust valves 
close by spring action. 

Figure I.5.1 shows cutaways of a six-cylinder in-line diesel engine, which uses 
an injector and high compression ratio to reach the ignition temperature of the fuel 
mixture.  In contrast, gasoline engines, whether using a carburetor, or a fuel injec-
tion system, use spark plugs to cause ignition for combustion.  The piston is at-
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tached to the connecting rod and is equipped with piston rings, which are essential 
components to ensure leak-tight compression.  Some of the energy produced by 
the engine is used in an electric generator (dynamo) to charge the battery, circulate 
coolant around the engine jacket, or in some accessories such as car air-condition-
ing, and in operating the cylinder intake and exhaust valves through the camshaft. 

Rotary engine.  Unlike the cylinder-engine design in which pistons move in a 
reciprocal motion, another type of internal combustion engine uses a compartment 
and a rotor.  The rotary combustion engine, or the Wankel engine after Felix 
Heinrich Wankel (1902–1988), was patented in 1936.  However, problems associ-
ated with the seals at the rotor tips have prevented this type of engine from being 
used in a wider range of applications. 

Various phases of a rotary engine cycle are shown in Figure I.5.2.  As shown in 
Figure I.5.2-1, the rotor, rotating counterclockwise has blocked both inlet and ex-
haust ports, with the mixture being compressed while the combustion products are 
expanding.  In Figure I.5.2-2, the fully expanded combustion products enter the 
exhaust pipe while fresh mixture enters the engine at the intake port.  In Fig-
ure I.5.2-3, the fresh mixture enters the compartment, the fully compressed mix-
ture is being ignited by the spark plug, and the combustion products leave the en-
gine.  In Figure I.5.2-4, the combustion has taken place and the mixture expands to 
deliver work to the rotor while the fresh mixture has filled the compartment and 
the inlet port is about to be blocked.  The actual engine blocks of a rotary engine 
are shown is Figure I.5.3. 

 Intake, Compression, and Combustion

 Combustion, Expansion, and Exhaust

Figure I.5.2.  Six phases of intake, compression, combustion, expansion, rejection, and ex-
haust in a rotary engine 
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Figure I.5.3.  Rotors, shaft, compartment, and the engine block of a rotary engine 

Reciprocating and rotary engines are generally water-cooled.  However, some 
automotive engines and the pre-jet airplanes were air-cooled to reduce weight.  
Cylinders in the air-cooled engines of airplanes were oriented radially in a plane 
perpendicular to the air flow path to facilitate the flow of air through the engine.  
In the air-cooled engines, the rate of heat loss is enhanced by attachment of fins to 
the cylinder.  Fins and fin efficiency are discussed in Chapter IVa.

Gas turbines are machines that convert the energy content of the working fluid 
to mechanical energy.  Central power plants using gas turbines generally provide 
power at peak demand as compared with steam turbines that provide the base de-
mand.  Aviation gas turbines are referred to as jet engines.  The advent of the jet en-
gine was a turning point in aviation history as jet engines have much higher specific 
power, defined as power produced per engine weight, than reciprocal engines.  The 
thrust produced by a jet engine follows Newton’s third law: for every action there is 
an equal reaction in the opposite direction. 

The principle of gas turbine operation, as discussed in Chapter IIb, is quite sim-
ple.  Air entering the compressor is pressurized, to as much as 500 psia (3.4 MPa) 
and 1100 F (593 C) and is delivered to the combustion chamber where the mixture 
of air and fuel is ignited and reaches elevated temperatures (up to 3000 F, 1650 C).  
The energetic mixture then enters the turbine, transferring energy to the turbine rotor 
and leaving as exhaust gas.  A portion of the turbine power is used to turn the com-
pressor and to pump fresh air into the combustion chamber to continue the thermo-
dynamic cycle.  Figure I.5.4(a) shows the compressor and Figure I.5.4(b), a turbine 
rotor of a gas turbine power plant.  Note that the compressor consists of combined 
axial (blades) and radial (disk) flow types mounted on the same shaft. 

A jet engine consisting of compressor, combustion chamber, and turbine is 
known as a turbojet. Turbojets are well suited for crafts flying at high speeds and 
high altitudes.  Other types of jet engines include turbofan, turboprop, and tur-
boshaft.  To increase the engine thrust, turbojets are equipped with a large fan, pow-
ered by the same turbine that powers the compressor and is referred to as a turbofan, 
as shown in Figure I.5.5.  Turboprops on the other hand are turbojets that use a pro-
peller instead of a fan.  In turbofans and turboprops, about 85% of the compressed 
air bypasses the turbine to produce thrust, as discussed in Chapter VIc.
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(a)                                                                (b) 

Figure I.5.4.  (a) A combined axial-radial flow compressor (b) a gas turbine rotor (Cour-
tesy Siemens AG) 

In turboshaft, the turbine power is delivered to a gearbox to drive a propeller or 
a helicopter rotor.  This arrangement allows the rotor speed to be controlled inde-
pendently of the turbine.  In general, however, gas turbines used in a jet engine are 
well suited for relatively constant loads compared with the reciprocal engines that 
are well suited for load varying conditions.  Engine endurance generally increases 
if operated under a constant load. 

A cutaway of a turboshaft engine is shown in Figure I.5.6.  In this engine, air is 
compressed by two radial compressors, which are driven by an axial turbine.  In 
general however, jet engine compressors are primarily of axial type.  Axial and 
radial designs of turbomachines are discussed in Chapter VIc. 

Compressor

Combustion Chamber

Turbine
Nozzle

Fan

Figure I.5.5.  Cutaway of a turbofan jet engine (Courtesy Pratt & Whitney) 

To increase thrust, a second combustion chamber may be placed between the 
turbine and the nozzle.  This chamber called the afterburner, increases the tem-
perature of the gas before entering the nozzle hence, increasing thrust.  As dis-
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cussed in Chapter IIb, due to the high temperatures produced in the combustion 
chamber, gas turbines operate at higher thermal efficiency, defined as the ratio of 
power produced to the rate of energy consumed, compared with the efficiency of 
reciprocal engines or steam power plants. 

Radial
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Axial
Turbine

Intake

Drive Shaft

Figure I.5.6.  A turboshaft engine using radial compressors and axial turbine 

6.  Power Producing Systems, Nuclear Power Plants 

Nuclear power supplies about 17% of world’s electricity.  In France, about 80% of 
electricity is supplied by nuclear energy.  In the United States, nuclear energy is 
the second largest source of electricity, providing power for 65 million homes.  
Unlike fossil fuels, nuclear energy does not produce any emissions to contribute to 
the greenhouse effect and global warming.  Indeed if nuclear plants were to be re-
placed by fossil plants, the CO2 emission worldwide would increase by 21% 
(Mayo).  Schematics of two types of classic U.S. designed light water reactors are 
shown in Figure I.6.1. 

Traditionally, nuclear reactors are classified based on neutron energy and the 
type of coolant/moderator.  As mentioned in Section 3 and discussed in Chap-
ter VIe, high-energy neutrons are referred to as fast and low energy neutrons are 
referred to as thermal neutrons.  Reactors using high-energy neutrons for fission 
are referred to as fast reactors.  Most commercial reactors are of the thermal type.  
Thermal reactors in addition to the coolant, as working fluid, also require modera-
tor to thermalize neutrons.  In most cases however, the coolant also plays the role 
of the moderator.  There are generally three types of coolants used worldwide in 
power producing nuclear reactors: water, liquid metal, and gases such as helium.  
Water-cooled reactors are subdivided into light water (H2O) and heavy water 
(D2O) reactors, which use deuterium, an isotope of hydrogen. 
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All U.S. nuclear plants for power production are of the light water type being 
either a PWR or a BWR.  In BWRs water boils inside the reactor vessel at a pres-
sure of about 1050 psia (7.2 MPa), while in PWRs pressure is raised to about 2250 
psia (15.5 MPa) to prevent water from boiling in the reactor.  In PWRs, boiling 
takes place in the secondary side of the steam generator. 
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Figure I.6.1.  Schematics of a BWR (above) and a PWR (below) plant 

Gas cooled reactors (GCR) and advanced gas cooled reactors (AGR) use he-
lium as the working fluid to reach high temperatures.  GCRs are mostly used in 
England.  For these types of reactors large compressors are required to circulate 
the coolant.  Finally, a liquid metal fast breeder reactor (LMFBR) uses sodium as 
coolant. 
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6.1.  Boiling Water Reactor 

Since water boils in the core of a BWR, these types of reactors are known as di-
rect-cycle power plants.  The mixture of water and steam leaves the reactor core 
and enters the separator-dryer assembly to separate moisture from steam.  As dis-
cussed in Chapter IIb, it is essential to deliver dry steam to the turbine.  While dry 
steam enters the steam line and flows towards the turbine, the separated water at a 
temperature of about 550 F (288 C) flows downward towards the downcomer re-
gion of the reactor pressure vessel (RPV).  The downcomer is an annulus between 
the RPV wall and the core barrel.  The feedwater flow, delivered to the RPV by 
the main feedwater pumps also enters the downcomer but at about 375 F (190 C).  
These streams must mix well prior to entering the core.  This task in the traditional 
BWR (designed by General Electric) is accomplished by two recirculation loops, 
each consisting of a recirculation pump, piping, and valves as shown in Fig-
ure I.6.2.  The recirculation pumps withdraw water from the lower portion of the 
downcomer region and deliver to the inlet of up to 20 jet pumps.  Jet pumps are 
made of stainless steel and consist of a suction inlet, throat (mixing section), and a 
diffuser.  For plants operating at 1000 psia (7.2 MPa), the recirculation flow at a 
temperature of 545 F (285 C) then enters the lower plenum region of the RPV. 
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Figure I.6.2.  A BWR reactor vessel 

In the advanced BWR plants (ABWR, designed by Toshiba), the recirculation 
loops are eliminated.  The recirculation in these plants takes place inside the RPV.  
Thus, the recirculation pumps and the jet pumps are combined and replaced by up 
to 10 internal pumps equipped with a motor (placed outside the RPV) and an im-
peller for forced mixing (placed in the downcomer).  The recirculation pumps in 
BWRs and the reactor internal pumps in ABWRs play an important role in con-
trolling the reactor power. 
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The well-mixed coolant entering the lower plenum flows upward into the core 
to remove heat from nuclear fission taking place in the fuel rods.  The fuel rods 
are placed in square arrays of 8 × 8, 9 × 9, or 10 × 10 in a rectangular parallelepi-
ped metal container referred to as fuel assembly or fuel bundle.  The number of 
fuel bundles depends on the reactor power and may range from about 550 (for 
800 MWe plants) to 870 (for 1350 MWe plants).  Coolant, which at the core exit 
is a mixture of steam and water, leaves the fuel bundles and enters the upper ple-
num.  From the upper plenum, coolant enters standpipes and is directed into the 
steam separator and steam dryer, as discussed earlier.  The steam line leading to 
the turbine is equipped with safety and relief valves (SRV) as well as a main 
steam isolation valve (MSIV). 

6.2.  Pressurized Water Reactor 

Unlike BWRs, no bulk boiling occurs in the core of a PWR; rather, boiling takes 
place in the secondary side of the steam generator (SG).  Due to the presence of 
steam generators, PWRs are not direct-cycle power plants as they consist of a pri-
mary side and a secondary side.  There is no mixing between the fluids flowing in 
each side, heat is transferred through the steam generator tube wall from the pri-
mary- to the secondary side.  To prevent coolant from boiling in the primary side, 
pressure in a PWR vessel is more than twice that of a BWR (about 2250 psia, 15.5 
MPa).  Also, unlike BWRs, PWRs have an open core where flow can also move 
laterally between the fuel assemblies.  There are generally over 200 fuel assem-
blies in the core of a PWR, each consisting of a square array of 15 × 15 fuel rods.  
The operating PWRs in the U.S. are of three designs: W (Westinghouse), CE 
(Combustion Engineering), and B&W (Babcock & Wilcox)3.  The major differ-
ences are in the number and the type of the steam generators, as shown in Fig-
ure I.6.3. 

The piping connecting the reactor vessel to the steam generator is referred to as 
legs.  Pipes carrying water from the SG to the reactor vessel and from the reactor 
vessel to the SG are known as Cold Leg and Hot Leg, respectively.  A pressure 
and inventory control tank, known as the Pressurizer, is connected to the hot leg 
through a surge line.  The reactor coolant pumps (RCP) in the primary side of a 
PWR plant are located on the cold leg. 

Shown in Figure I.6.4 is a two-loop PWR power plant.  As seen in this figure, 
the outlet plenum of the steam generators is located on the suction of the reactor 
coolant pumps, delivering water through the cold leg to the downcomer region of 
the reactor vessel.  Water then enters the lower plenum and flows to the core.  De-
tails of the reactor vessel are shown in Figure I.6.5(a).  A small fraction of the 
coolant bypasses the core to cool the control rods.  Water entering the core is at a 
temperature of about 550 F (288 C) and water leaving the core is about 600 F 
(316 C).  The region on top of the core is referred to as the core outlet plenum.
Water entering the outlet plenum from the core then flows towards the upper in-

3  CE is now owned by BNFL (Westinghouse) and B&W by Framatome ANP. 
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ternals of the upper guide structure (UGS) and leaves the vessel through the hot 
leg to the inlet plenum of the steam generator.  In the steam generator primary 
side, water from the inlet plenum moves upward toward the tubesheet and into the 
U-tubes.  Hot water exchanges heat with the colder water in the secondary side, 
through the steam generator tube wall, and enters the outlet plenum of the steam 
generator to be pumped back to the reactor vessel. 

Details of the secondary side of a U-tube steam generator are shown in Fig-
ure I.6.5(b).  In the secondary side, the main feedwater pump delivers water to the 
downcomer at a relatively cold temperature of about 430 F (221 C).  The colder 
feedwater is then mixed with the warmer water, which is at a temperature on the 
order of 530 F (277 C) and flowing downward from the separator-dryer assembly 
of the steam generator.  The mixed stream flows downward toward the tubesheet 
and then upward when entering the tube bundle.  The heat of the  water transferred 
through the tube causes this mixed stream to boil.  The two-phase mixture eventu-
ally leaves the top of the U-tubes and wet steam enters the separator assembly.  
Swirling vanes are installed in these assemblies to separate the entrained water 
droplets by centrifugal force.  Steam then enters the dryer assembly to further re-
duce the moisture content.  The dry steam then leaves the dryer assembly and en-
ters the steam line to flow to the high-pressure stage of a steam turbine. 

Similar to the BWR plants, the main steam lines in the PWR plants, connecting 
the steam generator to the turbine, are equipped with a series of valves including 
SRV, a steam dump valve, and a MSIV. 

Plan of a 4-Loop Reactor
 with  U-tube SG (W)

A: Reactor Vessel
B: Steam Generator (SG)
C: Primary Coolant Pump
D: Pressurizer

Plan & Elevation of a 2-Loop
Reactor with U-tube SG (CE)

Plan & Elevation of a 2-Loop Reactor
with Once-Through SG (B&W)

Figure I.6.3.  Various classic U.S. designs of the operating PWRs (Todreas) 
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Fuel rods are thin hollow cylinders that are filled with uranium dioxide (UO2)
pellets.  The hollow cylinder is referred to as cladding.  The cladding material de-
pends on the type of the nuclear reactor.  In a LMFBR, the cladding is made of 
stainless steel while in LWRs, the cladding is generally made of an alloy of zirco-
nium, known as zircaloy.  The small gap between the fuel pellets and the inside of 
the cladding is filled with helium.  During operation the fission gases that are re-
leased from the pellet also enter the gap region. 

Steam turbines are the power producing machines of systems using a thermo-
dynamic cycle.  The shaft of a steam turbine turns the rotor of the electric genera-
tor.  Steam turbines are also used as prime movers to power pumps.  The station-
ary blades in the casing of steam turbine act as diffuser in directing the incoming 
steam to the blades of the rotor.  As hot, energetic steam transfers its energy to the 
rotor, the diameter of the rotor increases to maintain the rate of momentum trans-
fer.  Figure I.6.6 shows the combined medium and low-pressure rotor and the dou-
ble-flow low pressure rotor of a steam turbine 

             

Figure I.6.6.  Steam turbine rotor (courtesy Siemens AG) 

7.  Power Producing Systems, Greenpower Plants 

The so-called greenpower or renewable energy sources consist of a wide range of 
sources including hydro, solar, geothermal, wind, and tidal.  These sources of en-
ergy are briefly discussed next. 

7.1.  Hydropower Plants 

After wood, falling water is the oldest source of energy.  Romans used water 
wheels, to harness power.  The first U.S. hydropower plant, built on the Fox River 
near Appleton, Wisconsin, generated electricity in 1882. 

Figure I.7.1 shows the schematic of a hydropower plant including the turbine 
generator.  The lake water, referred to as the head water, flows through a conduit 
known as the penstock towards the turbine.  After turning the turbine runner, wa-
ter flows in the draft tube to become the tail water to flow in the river, downstream 
of the turbine.  As described in Chapter VIc, the turbine runner may be of Kaplan,
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Francis, or Pelton type, which then turns the shaft of the electric generator.  
Shown in Table I.7.1 are the top 16 hydroelectric plants with respect to power 
production.  By the late 20th century, hydroelectric produced about 25% of the 
global electricity and 5% of the total world energy, about 2,044 billion kilowatt-
hours.  The disadvantage of hydropower plants includes a large initial investment 
and a need for large bodies of water, with adverse effect on the river’s ecological 
system and susceptibility to unfavorable weather conditions such as drought.  Hy-
dropower plants can be classified in terms of water flow rate and the difference 
between the elevations of water surface and the turbine.  As discussed in Chap-
ter III, this height is referred to as Head.

Generator

Penstock

Draft Tube

(Tail Water)

Dam

H

Lake
(Head Water)

Turbine

Figure I.7.1. Schematic of a hydropower plant to convert potential energy to electric power 

Table I.7.1.  Power output (MWe) of the world’s largest hydropower plants 

Name of Dam Location Present  Ultimate  Year operational 
Itaipu Brazil/Paraguay 12,600 14,000 1983 
Guri Venezuela 10,000 10,000 1941 
Grand Coulee U.S.A. 6,494 6,494 1967 
Sayano-Shushensk Russia 6,400 6,400 1989 
Krasnoyarsk Russia 6,000 6,096 1968 
Churchill Falls Canada 5,428 5,428 1971 
La Grande 2 Canada 5,328 5,328 1979 
Bratsk  Russia 4,500 4,600 1961 
Moxoto Brazil 4,328 4,328 1974 
Ust-Ilim Russia 4,320 4,320 1977 
Volga  Russia 2,543 2,560 1958 
Niagara U.S.A. 2,190 2,400 1961 
Volga Russia 2,100 2,300 1955 
Aswan Egypt 1,750 2,100 1967 
Chief Joseph  U.S.A. 1,024 1,950 1961 
St. Lawrence  Canada – U.S.A. 1,880 1,880 1958 

The Three Gorges Dam in China, 60 stories high and 2.3 kilometer long, will be the world 
largest dam.  Upon completion in 2009, its 26 turbines will generate 18,200 MW electricity.
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Low head and high flow rate are characteristics of rivers.  For such condition, 
water is directed towards the turbine rotors known as the axial-flow turbines or 
Kaplan rotor.  In this type, water flows between the vanes of the propeller and 
imparts its momentum to the rotor, which in turn is connected to the electric gen-
erator shaft.  Figure I.7.2 shows an axial flow rotor. 

Figure I.7.2.  Rotors of axial flow, Kaplan turbine (courtesy Toshiba Corporation) 

High head and low flow are characteristics of water reservoirs on a mountain-
top.  The turbine used to harness the water power in such cases is generally of the 
impulse type using the Pelton wheel named after Lester Allen Pelton, who pat-
ented his wheel in 1889.  As shown in Figure I.7.3, the Pelton wheel consists of 
buckets attached to the perimeter of a rotating wheel.  Depending on the site, the 
wheel may be attached to a horizontal shaft or may be rotating horizontally con-
nected to a vertical shaft.  In this type of turbine, water is directed into injectors so 
that a jet of water strikes the bucket at high speed to turn the wheel.  There may be 
one or as many as six injectors directing water towards the buckets of the wheel.  
The speed of the jet of water may reach values as high as 560 ft/s (171 m/s).  A 
needle valve throttles the flow in the injectors.  The wheel is placed in a casing for 
safety and to prevent water splashing.  The principles of impulse turbines using 
the Pelton wheel are discussed in Chapter VIc.

Figure I.7.3.  Pelton wheels of impulse turbines 
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Medium head, turbines are also of reaction type.  Such turbines use the Francis 
runner, as shown in Figure I.7.4.  Water enters from the side, flows between the 
vanes of the runner, and exits through the center. 

Figure I.7.4.  Runners of radial flow turbines, Francis turbine (courtesy Toshiba Corpora-
tion.) 

7.2.  Solar Power Plants 

Solar energy, in the form of electromagnetic radiation that reaches the earth, by far 
surpasses all other sources of energy in magnitude.  However, large scale power 
production by direct conversion of solar radiation to electricity by photovoltaic is 
still in the research and development stage.  Solar collectors are now used as a 
residential heat source and for commercial applications such as space heating, and 
to a lesser extent for the generation of electricity.  Large-scale power production 
by the use of solar collectors presently requires acres of land covered by special 
reflectors to divert the sun’s ray to a central receiver, acting as a heat source. 

Shown in Figure I.7.5 is the schematic of a thermal system for space heating 
using solar energy.  Water is circulated in a closed flow loop.  The heat source for 
this loop is the solar collector, heating water through the tube wall, which carries 
the circulating water.  The heat sink is a water storage tank, which is also heated 
by an auxiliary heat source in cloudy weather and at night.  The heat sink for the 
solar loop acts as a heat source for the space being heated, as the tank water is cir-
culated in a heating coil over which the colder air flows. 
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Figure I.7.5.  Schematic of space heating by solar energy 

7.3.  Wind Turbines 

Wind turbines convert wind kinetic energy into electricity.  The principle of wind 
turbines is further discussed in Chapter VIc.  Among the various types of wind 
turbines, the most popular is the 3-blade horizontal shaft turbine installed on a 
tower.  The power produced by such turbines is in the range of 0.5 to 1.5 MW.  
Due to the low density of air, wind turbines must sweep a wide area to produce 
sufficient torque.  One of North America’s largest wind turbines produces 1.8 MW 
of electricity at 29 rpm.  This turbine uses 39 m (128 ft) long blades  installed on a 
78 m (256 ft) high tower.  Examples of three-blade horizontal-shaft wind turbines 
are shown in Figure I.7.6.  Other types of such turbines include the vertical axis 
wind turbine.  This machine resembles a giant eggbeater and was patented by 
George Darrieus in 1931.  The advantage of the Darrieus turbine is that there is no 
need for a yaw mechanism to direct the blades towards the wind and the gearbox 
is closer to the ground hence, providing easier accessibility. 

Figure I.7.6.  Horizontal shaft wind turbine 
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7.4.  Tidal Power 

Power plants for harnessing tidal power are similar to hydroelectric plants, but are 
in the sea instead of in a river beds.  The motive power comes from the fact that 
the moon’s gravitational effect results in daily high and low tides.  The daily surge 
of water passes through hydroturbines.  The first tidal power plant, generating 
over 300 MWe, was built on the Rance River in France to harness the tidal power 
of the English channel (Marion).  From low to high tide, water rises as much as 44 
ft (13.4 m).  The plant operates by opening the gates as tide rises to let the channel 
water enter the Rance River Dam.  The gates are then closed at high tide.  The 
trapped water is allowed to flow back to the English Channel at low tide through 
as many as 24 hydroelectric turbines each producing about 13 MWe.  The total 
energy from tidal power worldwide is estimated at about 2 GWe 

7.5.  Geothermal Power 

The earth’s core, due to the formation of the solar system some 4.5 billion years 
ago, is extremely hot.  Indeed at a depth of 40 km, temperature reaches as high as 
1000 C.  Earth’s cross section is shown in Figure I.7.7(a).  It is estimated that 
7E11 m3 of superheated water (as defined in Chapter IIa) at 200 C exists beneath 
the earth’s surface (Marion). 

Geothermal energy relies on this heat source for power production.  In the early 
part of the 20th century, the potential of geothermal energy for power was recog-
nized.  Larderello, the first geothermal power plant was developed in Italy’s Tus-
cany in 1904.  The Larderello plant now produces about 400 MWe.  Several other 
countries such as Bolivia, Iceland, Japan, New Zealand, and the U.S. use geother-
mal energy for power production.  In Reykjavik, Iceland, most houses are heated 
with pipes carrying hot volcanic water.  In the United States, potential sites for 
geothermal energy are found mostly in the Western states such as California, Ne-
vada, and Oregon.  Figure I.7.7(b) shows that in 3 decades, power production from 
geothermal energy in the U.S. has increased by a factor of about 30.  It is esti-
mated that by 2010, power production from geothermal sources in the U.S. will 
reach 5–10 GWe.  Unlike solar and wind, geothermal energy has a very high de-
gree of availability hence; it is used as base load for power production.  Indeed, 
the average availability for such plants exceeds 95% compared with about 70% for 
coal and 90% for nuclear plants.  The negative aspects include a) unlike solar and 
wind, geothermal energy is not a 100% renewable source, as long-term use of 
such sites would result in steam production at lower pressures or eventual deple-
tion of the source, b) production of such gases as hydrogen sulfide (H2S), carbon 
dioxide (CO2), and nitrogen oxide (NOx), albeit these byproduct gases are pro-
duced in a much smaller scale compared to coal power plants, and c) the removal 
of underground steam and water can potentially cause the surface to subside.  De-
spite these shortcomings, geothermal energy is indeed a very useful and clean 
source of energy, and with improving economical aspects it is expected to meet an 
increasing share of the world’s energy needs. 
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Figure I.7.7.  Depiction of: (a) Earth’s cross-section; (b) growth of geothermal power in the 
U.S. 

8.  Comparison of Various Energy Sources 

In Table I.8.1, we have divided the various sources of energy into three major 
categories as follows. 

Carbon-based fuels.  While this type of fuel has been the major source of en-
ergy for the past two centuries, it is coming under increasing scrutiny.  This is be-
cause byproducts of carbon-based fuels include CO2 as well as other gases, re-
ferred to as the greenhouse gases.  Greenhouse gases in the upper atmosphere trap 
the sun’s radiation and increase the retention of thermal energy, which otherwise 
would have been reflected back into space.  Hence, these gases result in an in-
crease in the earth’s temperature.  This phenomenon, known as the greenhouse ef-
fect is thought to be responsible for global warming.

Nuclear fuels. Nuclear-based energy is combustion free and there are therefore 
no emissions.  However the operational safety and the safe disposal of nuclear 
waste remain a matter of public concern. The nuclear industry has made substan-
tial improvement in operational safety. The new generation of reactors is designed 
to maximize safety and reliability by enhancing the passive safety features and re-
ducing reliance on pumps, valves, and emergency diesel generators. Regarding 
nuclear waste disposal, nuclear plants store the spent fuel assemblies on-site in 
spent fuel pools, which in many plants have reached their maximum capacity.  
Nuclear plants in the U.S. have then started to store the oldest spent fuel assem-
blies in dry storage canisters, which are then housed on-site for passive cooling for 
eventual transfer to the federal repository at Yucca Mountain, Nevada. 

Greenpower.  The major problem associated with the renewable resources is 
low power density, defined as power produced per site area (MW/m2).
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Table I.8.1.  Comparison of various sources of energy 

*   Not shown in this table is the biomass energy source.  Biomass includes the organic ma-
terial, which convert the sunlight energy into chemical energy, which is then converted 
to heat when burned.  Biomass fuels include such materials as wood, straw, ethanol, 
manure, sugar cane, and other byproducts from a variety of agricultural processes. 
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As Table I.8.1 shows, much research and development are needed to find an 
optimum solution to the issue of energy production.  This is because on the one 
hand with an increasing world population and with energy being a major contribu-
tor in the advancement of society, one can expect that energy consumption would 
have only an upward trend.  On the other hand, the environmental impacts associ-
ated with various sources of energy are testing the tolerance level of our planet.  
Regarding the greenhouse effect, while, the impact of CO2 production on the 
global atmosphere is still a topic of debate and investigation, it is reasonable to 
conclude that the production of such gases should be limited.  This would in turn 
limit the use of carbon-based fuels.  We then face the problem of finding a suitable 
substitution to make up for the partial loss of power production from carbon-based 
energy sources.  Our choice for this purpose is indeed limited, given the associated 
disadvantages of other sources of energy.  Since fusion technology is seemingly 
remote, the two long term alternatives at the present time seem to be the fission 
reactors with enhanced safety features and geothermal power. 

8.1.  Saving Energy by Enhancing Efficiencies 

An important factor in meeting the energy demand is the application of technology 
in increasing efficiency at the three stages of production, transmission, and con-
sumption.  The electricity produced in most central power plants using steam tur-
bines, is about 1/3 of the total energy consumed.  The remaining 2/3 is wasted as 
rejected heat to the environment.  The central stations using gas turbines may have 
efficiencies in excess of 45% mostly due to operation at higher gas temperatures 
compared with steam temperature.  Voltage drop in transmission lines has been a 
topic of investigation to find materials, which pose less resistance to the flow of 
electricity.  Superconducting materials have such ability but they must presently 
operate at very low temperatures.  Finally, improvement of efficiency in such 
home appliances as refrigerators, hot water heaters, heat pumps, washers and dry-
ers would help reduce demand for power. 

9.  Thermofluid Analysis of Systems 

Design and operation of any power producing system must satisfy the imposed 
constraints such as cost, safety, performance, size, and environmental impact.  
Here we focus only on the thermofluid aspects.  In Section 4 we introduced such 
systems as pump, turbine, reactor vessel, steam generator, condenser, internal 
combustion engine, nuclear power plant, wind turbine, etc.  There are five funda-
mental equations for the analysis of all such systems.  These five fundamental 
equations in thermofluid analysis are: 

• conservation equation of mass, 
• conservation equation of energy, 
• conservation equation of momentum (also known as linear momentum), 
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• conservation equation of angular momentum, 
• the second law of thermodynamic

These equations are shown in the hub of Figure I.9.1.  However, before these equa-
tions are applied, we first need to determine what we mean by thermofluid analysis 
of a system.  This in turn requires us to identify the variables that we call design pa-
rameters of a system.   

We can divide the design parameters into several categories.  For example, one 
category includes the system dimensions such as diameter, height, flow area, and 
volume.  Another category deals with the thermodynamic aspects such as pressure, 
temperature, and density.  A third category might include parameters related to hy-
drodynamics such as power, momentum, torque, force, acceleration, and velocity. 

In any system analysis, some of the design parameters are given and we need to 
find some other parameters of interest.  This is what we refer to as thermofluid 
analysis of a system. 

To perform thermofluid analysis of a system, we must first determine the extent 
of the system.  This is accomplished by using techniques known as control volume
and control mass as described in Chapter IIa.  Once the extent of the system is de-
fined, we consider the process applied to the system to identify the appropriate set of 
equations to use. 

Having determined the systen, the involved process, and the specified set of input 
data, we must then ensure that the number of applicable fundamental equations is 
sufficient to uniquely determine the number of the design parameters, which are un-
known.  Also not all the five fundamental equations listed above are applicable to 
the analysis of a system.  For example, if there is no rotational motion involved in 
the analysis, the conservation equation of angular momentum is not applicable.  
Even when all the five fundamental equations are applicable, still we may run into 
the problem of having more unknowns than equations.  This problem is remedied 
(i.e., the number of equations are increased to become equal to the number of un-
knowns) by introducing additional equations known as the constitutive equations,
shown as spokes in Figure I.9.1.  This figure is one way to visualize the interrelation 
between the fundamental and the constitutive equations. 

Application of the constitutive equations depends on the type of analysis.  If the 
analysis involves heat transfer, temperature and the rate of heat transfer are related 
by a constitutive equation.  This constitutive equation, as discussed in Chapter IV, 
depends on the mode of heat transfer involved in the process.  For example, in con-
duction heat transfer, the related constitutive equation is known as Fourier’s law of 
conduction.  Similarly, in convection heat transfer, the related constitutive equation 
is known as Newton’s law of cooling while, in radiation heat transfer, the related 
constitutive equation is known as the Stefan-Boltzmann law. 

The constitutive equations in fluid mechanics, as discussed in Chapter III, are 
primarily the Newton’s law of viscosity and the Stokes hypothesis.  The constitutive 
equation in mass transfer is the Fick’s law of diffusion.  The set of constitutive equa-
tions that is most often used is the equation of state relating the thermodynamic 
variables of a system.  These thermodynamic variables are known as properties, as 
discussed in Chapter IIa.
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Figure I.9.1.  Possible classification of the fundamental (Hub) and the constitutive (Spoke)
equations in thermofluid analysis of systems 

QUESTIONS

− What types of energy conversion take place in shoveling snow, rowing a canoe, 
and riding the elevator? 

− What is the role of a transformer in the transmission of electricity through the 
power lines? 

− How do you classify condensers, automotive radiators, and cooling towers? 
− Is it true to say that the energy associated with fission is primarily due to the re-

leased radiation?  
− What is the difference between fission and fusion? 
− Are fossil power plants using coal for fuel, considered external or internal com-

bustion machines? 
− Why does the diameter of a steam turbine rotor increase as steam pressure de-

creases? 
− Why is a nuclear reactor especially well suited for submarines? 
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− How does a gas turbine operate? 
− What are the differences between turbofan, turboprop, and turboshaft?   
− What is the key factor in favor of jet engines over internal combustion engines 

for aviation application? 
− Name a disadvantage associated with hydropower plants? 
− What are the disadvantages associated with wind power? 
− What are the conservation equations?  What do they conserve?  Is the equation 

formulating the second law of thermodynamic a conservation equation? 
− What is a constitutive equation?  Why do we often need to use a constitutive 

equation? 

PROBLEMS

1. Match the upper case with the lower case letters that best describe the conver-
sion of energy: 
A. chemical – electrical, B. solar – electrical, C. electrical – thermal, D. nuclear – 
thermal, E. electrical – mechanical, F. chemical – mechanical, G. kinetic – ther-
mal, H. potential – kinetic. 
a. free fall, b. battery, c. plane crash, d. motor, e. solar calculator, f. heater, g. nu-
clear power plant, h. body muscles. 

2. Use your knowledge of power production, power consumption, and energy con-
version to find the names of the systems shown as a and b in the left hand and c
and d in the right hand schematics.  [Ans.:  a is a hydraulic turbine].

Head
Water

Tail
Water

a

Electric Power

b

Electric Power

Tail
 Water

Head Water

c

d

3. Explain the role of energy in water desalination and draw a diagram to represent 
the operation of such plant.  First consider the goal and then try to find the means 
to accomplish your goal. 

4. A simplified diagram of the three major energy sources and examples of each 
source of energy are shown below.  Provide additional examples for sources of en-
ergy known as renewable sources or greenpower,  and provide a brief description 
for each of the examples.
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Sources of Energy

Fossil Nuclear Greenpower

Coal Oil Gas Hydro Wind SolarFission Fusion

5. Principles of electrical energy production are shown in the simplified diagram.  
Provide a brief summary for each box comprising the thermodynamic cycle. 

Electric Power
Production

Thermodynamic
Cycle

No Thermodynamic
Cycle

Internal
Combustion Machines

External Combustion
Machines

Hydropower Wind & Tidal

 Direct Energy
Conversion*

Faraday's Law
of Induction

* Some direct energy conversion systems such as magnetohydrodynamics use the Faraday law of induction

6.  A simplified diagram for nuclear power is shown below.  Provide a brief de-
scription for each box comprising the light water reactor type. 

Nuclear Power

FissionFusion

Thermal Reactor Fast Reactor

Heavey Water
(CANDU) Light Water Gas Coolded Liquid Metal

Pressurized Water Boiling Water

Gas Coolded

7. A gas-cooled reactor uses a compressor to circulate helium as the working fluid, 
through the core of the reactor.  The heated gas then enters a gas turbine to pro-
duce power.  Helium is then cooled in the condenser and pumped back to the reac-
tor.  Another gas cooled plant uses a similar cycle but hot gases instead of entering 
a gas turbine enter a steam generator to boil water in the secondary side.  The 
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cooler gas enters the compressor to be pumped back into the reactor and steam in 
the secondary side of the steam generator enters a steam turbine.  Draw the flow 
path of the working fluid in each reactor type and describe the advantages and dis-
advantages of each design. 

8. Use schematic diagrams to draw the flow path of both a BWR and a PWR.  Ex-
plain the flow path in the reactor core for both types of reactors and the flow path 
in the steam generator of the PWR. 

9. During normal operation of a PWR, feedwater enters the secondary side of the 
steam generator.  After being heated by the hotter primary side water, feedwater 
boils in the tube bundle and dry steam leaves the steam generator and flows to-
wards the turbine through the main steam line.  In this condition, water level in the 
steam generator remains at a fixed level.  Is it fair to say that the flow rate of steam 
out of the steam generator exactly matches the flow rate of the feedwater into the 
steam generator?

10. Describe the operation of a thermodynamic cycle.  List and discuss the role of 
the various components of a thermodynamic cycle.  Describe the operation of a 
Wankel engine in the framework of a thermodynamic cycle.  In this regard, iden-
tify the heat source, the heat sink, and the working fluid in an internal combustion 
engine such as a Wankel rotary engine. 



II.  Thermodynamics 

Thermodynamics, as the most fundamental subject in the field of thermal sciences, 
is simply defined as “the science that deals with matter, energy, and the laws gov-
erning their interactions*”.  Thermodynamics plays a vital role in the design and 
operation of power plants (fossil, nuclear, and solar), direct energy conversion 
(thermoelectric, thermionic, magnetohydrodynamic, and photovoltaic), heating 
and cooling systems (boilers, fan coolers, heat pumps, refrigerators, radiators, 
steam generators, and other heat exchangers), chemical plants (petrochemical re-
fineries, water desalination, air separation, paper production, and pharmaceutical 
plants), bioengineering systems (lasers, life support systems, artificial heart, CAT 
scans), and various types of engines (automotive engines, ships, aviation gas tur-
bines, and spacecrafts) among others.  Such societal problems as energy shortages, 
air pollution, and waste management are better understood and remedied through 
the application of the laws of thermodynamics. 

Historically, the development of classical thermodynamics began in late 18th

century.  In 1760 Joseph Black introduced the concepts of latent heat of fusion and 
evaporation.  He also founded the caloric theory.  In 1765 James Watt improved 
his steam engine through the use of an external condenser.  However, it was not 
until the 19th century that the science of thermodynamics flourished.  Below we 
summarize the important milestones in the development of this science in the past 
200 years.  The new terms and concepts mentioned in this summary are discussed 
later in this chapter. 
− 1816, Robert Stirling patented the first engine using air as the working fluid. 
− 1824, Carnot published his work on thermodynamic cycles and the second law 

of thermodynamics. 
− Early 1840s, Julius Robert Mayer and James Prescott Joule introduced theories 

of the equivalency of heat and mechanical work. 
− 1847, Helmholtz formulated the principle of conservation of energy and Emile 

Clapeyron expanded Carnot’s work 
− 1848, William Thomson (Lord Kelvin) defined the absolute temperature scale 

based on the Carnot cycle.
− 1850, Rudolph Clausius introduced the concept of internal energy, distin-

guished the specific heat at  constant volume from the specific heat at constant 
pressure, and clarified the distinction between the first and the second laws of 
thermodynamics. 

*  Huang 
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− 1859, William Rankine who had been working towards the improvement of 
practical steam cycles, defined the thermodynamic efficiency of a heat engine, 
introduced the pressure-specific volume diagram, and published the first ther-
modynamics textbook. 

− 1862, Nikolaus Otto introduced the Otto cycle for reciprocating internal com-
bustion engines. 

− 1865, Clausius defined the first law of thermodynamics as “the energy of the 
universe is constant” and the  second law of thermodynamics, “the entropy of 
the universe tends toward a maximum”. 

− 1875, Josiah Willard Gibbs developed the temperature-entropy diagram 
− 1878, Gibbs published his work on thermodynamic equilibrium.  Gibbs estab-

lished the field of physical chemistry on the basis of thermodynamics and con-
tributed much towards the establishment of the field of statistical thermodynam-
ics1.

− 1879, Gottlieb Daimler obtained a patent for a multi-cylinder engine operating 
on a common crankshaft. 

− 1893, Rudolph Diesel introduced the diesel cycle working on the principle of 
compression stroke to obtain high temperatures for combustion. 

− 1897, Max Planck stated the second law of thermodynamics. 
− 1899, Karl Benz improved Daimler’s engine by introducing the controlled-

timing electric ignition  system.

1  J. Willard Gibbs is also the founder of Vector Analysis (see Chapter VIIc). 

In this book, the topic of thermodynamics is divided into three chapters.  This 
chapter deals with the fundamentals of thermodynamics, the second chapter (IIb) 
discusses thermodynamic cycles for power production, and in the third chapter 
(IIc) the application of mixtures of non-reacting ideal gases is discussed. 

IIa.  Fundamentals

In the present chapter dealing with the fundamentals of thermodynamics, we in-
troduce such basic concepts as a system and its surroundings, system properties, 
system processes, and possible direction of a process.  We also explore the effect 
of the flow of mass and energy (in the form of heat and work) on a system.  How-
ever, we first need to present the definition of these and other important terminol-
ogies as related to a thermodynamic substance and its related state.  Subsequent to 
the definition of terms, we introduce the equations of state for two widely used 
working fluids: air and water.  We then proceed with the definition of the three 
laws of thermodynamics.  Examples are provided for both steady state and tran-
sient conditions using the conservation equations of mass and energy.  Since these 
equations are dealt with in Chapter III, we use them in this chapter without further 
derivation.   
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1.  Definition of Terms 

1.1.  Definitions Pertinent to Dimensions and Units 

Dimensions are names applied to such physical quantities as length (L), mass 
(m), time (t), and temperature (T).  These dimensions are known as the primary 
dimensions*.  We may also include the electric current (q) and the luminous inten-
sity (I) as primary dimensions.  All other physical quantities can be expressed in 
terms of these primary or fundamental dimensions.  For example, velocity V = x/t,
can be expressed as [V] = Lt-1, density ρ = m/V as [ρ] = mL-3, force F = ma as [F]
= mLt–2, pressure P = F/A as [P] = mL-1t-2, etc.  Symbols are placed inside brackets 
to signify the dimension of a physical quantity.  It is of prime importance to ensure 
the dimensional validity of engineering formulae derived from the first principles.  
Hence, the dimensions of both sides of an equation must match.  This is known as 
the principle of dimensional homogeneity.

Units are measures of a dimension and depend on the standard used for the unit 
system.  There are two unit systems in use, the SI (short for its French expression, 
Le Systeme Internationale d’Unites) system of units and the English engineering 
system of units, referred to in this book as British Units, or BU for short.  In the 
table below, units of the primary dimensions are expressed in both SI and BU.  
Other units can be derived from the basic units for such physical quantities as 
force, pressure, energy, power, etc.  Force, for example has a derived unit that, ac-
cording to Newton’s second law of motion, is related to mass and acceleration so 
that F ∝ ma.  The derived unit for force in the SI system of units is kg·m/s2.  In 
this system, force is expressed in Newton (N).  Hence, one Newton, is the amount 
of force that would accelerate a mass of 1 kg at a rate of 1 m/s2.  If we now intro-
duce a proportionality factor shown by gc, then Newton’s second law can be writ-
ten as: 

F = ma/gc

Physical Quantity Basic SI Unit SI Symbol Basic BU BU Symbol 
Length Meter m Foot ft 
Mass Kilogram kg Pound lbm 
Time Second s Second s 
Temperature Degree Kelvin K Degree Rankine R 

It is clear that gc has a value of unity and units of [gc] = kg·m/(N·s2).  Force may 
also be expressed in terms of kilogram force, (kgf) which is the amount of force 
that would accelerate a mass of 1 kg at a rate of 9.8 m/s2.  To prevent confusion, 
the symbol for mass is also shown as kgm, which stands for Kilogram mass.

In British Units, the symbol of force is pound force (lbf), accelerating a mass of 
1 slug at a rate of 1 ft/s2.  The most frequently used unit for mass is pound mass 

*  Also see Appendix I where physical quantities are expressed in both mass, length, and 
time (MLT) and force, length, and time (FLT) systems. 
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(lbm), which is accelerated at a rate of 32.1740 ft/s2 by a force having the magni-
tude of one pound force.  In British Units, gc has a value of 32.174 (usually used 
as 32.2) and units of [gc] = lbm·ft/lbf·s2.

gc = 1 kg·m/N·s2 gc = 32.2 lbm·ft/lbf·s2 gc = 1 slug·ft/lbf·s2

Derived units of some physical quantities are shown below. 

Physical Quantity Basic SI Unit SI Symbol Basic BU BU Symbol 
Force Newton N Pound Force lbf 
Pressure Pascal (N/m2) Pa Pressure (lbf/in2) psi 
Energy Joule (N·m) J Btu* Btu 
Power Watt (J/s) W Btu/h Btu/h 

* Btu stands for British thermal unit 

Example IIa.1.1. A substance has a mass equal to 2 lbm.  Find the weight of this 
substance on the earth’s surface and on a planet having gPlanet = ½ gEarth.

Solution:  By definition, if a substance having mass m is exposed to the gravita-
tional acceleration g, the resulting force is the weight of the mass given by  
W = mg/gc.  On earth, gEarth = 32.2 ft/s2 hence, WEarth = 2 × (32.2/32.2) = 2 lbf.  On 
a planet with gPlanet = 32.2/2 = 16.1 ft/s2, the weight of the substance is: WPlanet = 2 
× (16.1/32.2] = 1 lbf.

In British units, work is the result of force (lbf), multiplied by distance (ft), to 
obtain units of ft · lbf.  Heat, on the other hand, is generally expressed in terms of 
Btu.  The conversion factor from ft · lbf to Btu is given as 1 Btu = 778.16 ft · lbf 
(usually used as 778). 

1.2.  Definitions Pertinent to a Substance 

Pure substance is a homogeneous substance with the same chemical composi-
tion in various phases, as defined below.  Water, for example, is a pure substance 
as it has the same chemical composition whether in the form of steam, ice, or liq-
uid water.  Air, on the other hand, being a mixture of various gases, is not a pure 
substance, as in very low temperatures various components would condense at dif-
ferent temperatures resulting in a different chemical composition in the liquid 
phase. 

Phase is a quantity of a pure substance that is homogeneous throughout the 
substance and is in the form of solid, liquid, or vapor. 

Fluid is a term applied to either the liquid or the vapor phase of a pure sub-
stance.  The working fluid is any fluid for which we are studying the thermody-
namic behavior during a transformation. 

System in a thermodynamic sense, refers to an entity being studied.  This entity 
may be a pure substance such as a lump of matter, a small cylinder containing a 
mixture of gases, a large pipeline, or an entire power plant.  The entity does not 
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necessarily require possessing any matter.  Thus, vacuum may also constitute a 
thermodynamic system.  The role of a system in thermodynamics is similar to the 
role of a free body diagram in solid mechanics, which is used to study the forces 
acting on a body.  More specific definition for a system is given in Section 4 of 
this chapter. 

Surroundings is anything external to a thermodynamic system.  For example, 
if a system consists of a gas contained in a container, the rest of the universe is 
considered the surroundings for this system. 

Boundary separates a system from its surroundings.  The boundary is also 
known as the control surface.

Property such as color, pressure, temperature, density, energy, etc. is an ob-
servable characteristic of a system.  As is discussed in Section 4, heat and work
are not properties of a system. 

Equilibrium is an important concept in thermodynamics.  Systems in equilib-
rium do not experience any change with time.  There are several types of equilib-
rium including thermal, mechanical, chemical, internal, and external.  By thermal 
equilibrium we mean the temperature is the same throughout the system and is 
equal to the temperature of the surroundings, (which is everything external to the 
system).  By mechanical equilibrium we mean that a system has no unbalanced 
force within it and the force it exerts on its boundary is balanced by an external 
force.  By chemical equilibrium we mean that the chemical composition of a sys-
tem remains unchanged.  Internal equilibrium occurs in isolated systems and ex-
ternal equilibrium applies to systems that are in an internal equilibrium state and 
are also in equilibrium with their surroundings.  A system is in equilibrium if pres-
sure, temperature, and density are uniform throughout the system and do not 
change with time.   

State.  Properties of a system define the state of a system when the system is at 
equilibrium.  For example, if certain amount of a gas at equilibrium is kept in a 
cylinder equipped with a piston, at pressure P1 and temperature T1 we refer to this 
condition as state 1.  If, for whatever reason, the pressure and temperature of the 
gas are changed to P2 and T2, then the state of the system is changed to state 2.  
Thus the state of a system changes when properties of a system change.  Any 
change in the state is a deviation from equilibrium. 

Gas, vapor, and steam.  Gas is a state of matter having low density, low vis-
cosity, high expansion, and compression ability in response to relatively small 
changes in pressure and temperature.  Gases diffuse readily and have the ability to 
distribute uniformly throughout a system.  Vapor is the gaseous state existing be-
low the critical temperature (as defined in Section 1.5) of a substance that is liquid 
or solid in normal conditions.  Steam is a special term applied only to the vapor 
phase of water. 
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1.3.  Definitions Pertinent to Thermodynamic Processes 

Process is applied to any transformation of a system between two equilibrium 
states; for the cylinder containing gas at state 1 (P1, T1, and volume V1), compres-
sion of this gas by a piston to bring the gas to pressure P2, temperature T2, and vol-
ume V2 is referred to as a process.  A process is also known as a Path.

Isobaric is a process that takes place at constant pressure, such as boiling water 
in an open container. 

Isothermal is a process that takes place at constant temperature.  For example, 
steam condensation on the cold walls of a sauna. 

Isochoric (also known as isometric) is a process that takes place at constant 
volume, such as heating a gas in a sealed rigid vessel.  Other processes, such as 
adiabatic, isentropic, and polytropic, are defined in Section 4. 

1.4.  Definitions Pertinent to Properties of a Substance 

We assume that fluid properties vary continuously (see definition of continuum in 
Chapter IIIa). 

Pressure is the normal component of force per unit area exerted by a system on 
its boundary.  The most often used pressure is referred to as absolute pressure.  
Zero pressure and atmospheric pressure (also known as Barometric pressure) are 
used as reference for absolute pressure (psia in BU).  If absolute pressure is meas-
ured with respect to the atmospheric pressure, it is referred to as gage pressure 
(psig in BU).  These are clarified in Figure IIa.1.1(a). 

Reference for Absolute Pressure
0.00

Patm

Positive gage
Pressure

Negative gage
Pressure

Pabs
Gas at

Pressure
P > Patm

 Patm

H ρ

P - Patm = ρ gH/gc

ρFluid

ρManometer

Η

Patm

Datum

(a)                                             (b)                                             (c) 

Figure IIa.1.1.  (a) Absolute versus gage pressure; (b) manometer; (c) manometer with 
comparable densities 

Manometric pressure is the pressure measured by a manometer, as shown in 
Figure IIa.1.1(b).  In this figure ρ is the density of the manometer liquid, g in the 
gravitational acceleration, H is the difference in the liquid levels, and gc is a con-
version factor as described in Section 1.1.  In Figure IIa.1.1(b), the density of the 
gas is considered negligible compared with the density of the manometer liquid.   
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Example IIa.1.2.  Find the pressure, in N/m2 (Pa) and in psia, at the depth of 50 m 
below the surface of a lake.  Note that 1 atm = 10.4 m-H2O (ρWater = 1000 kg/m3) = 
14.7 psi = 33.92 ft-H2O = 101.3 kPa. 

Solution:  At the depth of 50 m, the absolute pressure is 10.4 + 50 = 60.4 m H2O.
This is equivalent to: P = ρ (g/gc)h = 1000(9.8/1) x 60.4 = 0.595E6 N/m2 ≅ 0.595 
MPa = 0.5965E6/6,895 ≅ 86 psia. 

If the density of the fluid is comparable with the density of the manometer liq-
uid, as shown in Figure IIa.1.1(c) then the fluid density needs to be accounted for.  
To find the fluid pressure, we perform a force balance with respect to the datum.  
Since surface areas are equal, they cancel out.  The force on the left leg of the ma-
nometer is represented by PFluid + ρFluidgH.  This force is balanced by the force ex-
erted in the right leg of the manometer represented as Patm + ρManometer gH.  In equi-
librium, these forces must be equal, hence: 

H)( gPP FluidManometeratmFluid ρρ −+=

Shown in Figure IIa.1.2 are various units for atmospheric pressure. 

Fehler! Keine gültige Verknüpfung.

Standard Temperature & Pressure (STP)

System Temperature Pressure
SI                      273.15 K        101.325 kPa

Scientific          0.0 C               760 mm Hg

Natural gas       60  F               14.7 psia

Engineering      32  F               14.696 psia

(a) (b)

Figure IIa.1.2.  (a) Various units for atmospheric pressure; (b) commonly used values for 
standard P & T

Vapor pressure.  For a given temperature, every liquid has a vapor pressure at 
which liquid begins to boil and is at equilibrium with its own vapor.  If the liquid 
is at a pressure greater than its own vapor pressure then there is only evaporation 
at the interface between the liquid and its vapor.  If the liquid pressure drops be-
low its vapor pressure, bubbles form in the liquid.  Water at 102 F (39 C) has a 
vapor pressure of 1 psia (~ 7 kPa).  Similarly, water at 212 F (100 C) has a vapor 
pressure of 14.696 psia (101.3 kPa).  Values of the standard atmospheric pressure 
in various units are shown in Figure IIa.1.2(a). 

Temperature is a measure of coldness or hotness of a body and is expressed in 
either Fahrenheit (F) or Celsius (C).  Both of these temperature scales are based on 
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the freezing (0 C and 32 F) and boiling points of water (100 C and 212 F at at-
mospheric pressure).  In the Celsius scale, the range between the freezing and the 
melting point of water is divided into 100 units.  The Fahrenheit and the Celsius 
scales are related as  

F 32 C

180 100

−
=

Since both of these temperature scales allow for negative temperatures, an abso-
lute temperature that has only positive values is defined.  Kelvin (K) and Rankine 
(R) are the absolute scales for the Celsius and the Fahrenheit temperature scales, 
respectively.  The relations are: 

K = C + 273.15 (Generally, 273 is used in practice)  
R = F + 459.67 (Generally, 460 is used in practice) 

Standard condition refers to a temperature of 0 C (273 K) and atmospheric 
pressure (760 mm of mercury, Hg).  Since volume and density of gases are sensi-
tive to relatively small changes in temperature and pressure, it is customary to re-
duce all gas volumes to standard conditions for purpose of comparison.  Values for 
standard atmosphere pressure and temperature (STP) are shown in Table IIa.1.2(b). 

Specific volume of a substance is the inverse of the density of that substance.  
Hence, specific volume (v = V/m) is the volume per unit mass of a substance and 
is expressed in units of ft3/lbm or m3/kg.  Pressure (P), temperature (T), and spe-
cific volume (v) are properties of a substance.  As discussed in Section 2, the 
property surface of a substance is constructed based on P-T-v.

Specific gravity (Sg) of a liquid is the ratio of the density of the liquid to the 
density of water (62.4 lbm/ft3 or 1000 kg/m3).  Specific gravity of a gas is the ratio 
of the molecular weight of a gas to the molecular weight of air (28.97). 

Specific heat is the amount of heat required to raise the temperature of a unit 
mass of a homogenous phase of a substance by one degree.  If the process takes 
place with either volume or pressure kept constant, the term is respectively re-
ferred to as constant-volume (cv) or constant-pressure (cp) specific heat, as defined 
later in this section.  Specific heat has units of kJ/kg·K or Btu/lbm·F. 

Energy is the ability to lift a weight to a higher elevation.  The term, energy, is 
in fact a combination of two Greek words meaning capacity and work.  Energy is 
a system quantity that describes the thermodynamic state of the system.  Energy 
may be transferred to or from the system.  Energy is generally expressed in such 
units as Joule (J), kilojoules (kJ), British thermal unit (Btu), or the less frequently 
used foot-pound force (ft·lbf). 

Kinetic energy (KE) of a system is the energy associated with the motion of a 
system relative to a frame of reference, which is usually the earth’s surface2.  Con-

2 The relation beween kinetic energy and temperature of subatomic particles is discussed in 
Chapter VIe 
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sider a body of mass m initially at rest.  If an applied force F acts to accelerate 
mass m, then according to Newton’s second law F = ma where a is the resulting 
acceleration and gc is implicitly accounted for.  If the applied force causes the 
body to move by dx in the direction of the applied force, then Fdx = madx.  Substi-
tuting for both distance and acceleration in terms of velocity, dx = Vdt and a = 
dV/dt then Fdx = mVdV where V is an average velocity.  Integrating the resulting 
equation we find3:

KE = =
VL
VdVmFdx

00
= mV2/2 

Potential energy (PE) of a system is the energy associated with the position or 
configuration of the system in a potential field such as a gravitational or electro-
magnetic field.  Consider mass m located at height Z with respect to a reference in 
a gravitational field having a gravitational acceleration g.  Mass m then possesses 
a potential energy given as PE = mgZ.  Units for potential and kinetic energies are 
the same as the units for energy. 

Total energy of a system (E) is the summation of all the energies possessed by 
the system including potential, kinetic, and internal energies. 

Internal energy (U) of a system is the total energy of the system minus the po-
tential and the kinetic energies, U = E – (KE + PE).  The internal energy repre-
sents the energy on the microscopic level.  As described by Reynolds, it consists 
of such energies as nuclear and molecular binding energies, molecular rotation, 
translation, and vibration, intermolecular weak and strong energies, mass equiva-
lent energy, and such other microscopic energies associated with the nuclear and 
electron spin. 

Enthalpy (H) of a system is defined as the summation of the internal energy 
(U) and pressure work (PV), as in H = U + PV.  Enthalpy and internal energy 
have units of J or Btu.  To avoid errors associated with unit conversion, we may 
write H = U + cPV where c = 1 for H and U expressed in J, P in Pa, and V in m3.
The value of c in British Units is c = 144/778 = 0.185 for U and H expressed in 
Btu, P in psia, and V in ft3.

Entropy (S) is a measure of the disorder of a system.  The change in the en-
tropy of a system is always greater, or at least equal, to the heat transfer to or from 
the system divided by the temperature of the system. Entropy has the units of J/K 
or Btu/R.  Specific entropy (s = S/m) has units of kJ/kg·K or Btu/lbm·R = 4.1868 
kJ/kg·K. 

Specific heat (cv).  The specific heat of a substance at constant specific volume 
is defined as v)/( Tucv ∂∂= , where u, the specific internal energy, is given as u = 

U/m.

3 The rotational kinetic energy is K.E. = Iω2/2 where I is the moment of inertia and ω is the 
angular velocity given as ω = 2πN with N representing revolution per second. 
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Specific heat (cp).  The specific heat of a substance at constant pressure is de-
fined as Pp Thc )/( ∂∂= , where h, the specific enthalpy, is given as h = H/m.

1.5.  Definitions Pertinent to Types of Properties 

Thermodynamic properties are such quantities as pressure (P), density ( ρ ),

temperature (T), enthalpy (H), entropy (S), specific heat (cp and cv), coefficient of 
thermal expansion ( β ), and bulk modulus (B).

Transport properties refer to such quantities as viscosity ( µ ) and turbulent 
diffusivity ( ε ) as discussed in Chapter IIIa, and thermal conductivity (k) as dis-
cussed in Chapter IVa. 

Extensive and intensive properties are defined to distinguish properties that 
depend on the size of the system (extensive) from those that do not depend on the 
size of the system (intensive).  Such system properties as volume (V), mass (m),
momentum (mV), enthalpy (H), and entropy (S) are examples of extensive proper-
ties.  Examples of intensive properties include temperature (T), pressure (P), den-
sity ( ρ  = m/V), specific volume (v= V/m), specific enthalpy (h = H/m) and spe-
cific entropy (s = S/m).  These are summarized in Table IIa.1.1.  The state of a 
substance is determined by two intensive properties.  These could be pressure and 
temperature, pressure and specific internal energy, temperature and specific en-
thalpy, etc. 

Table IIa.1.1.  Examples of extensive and intensive properties 

Property Extensive (Y) Intensive (y)
Mass m ρ
Volume V v 
Momentum mV V 
Kinetic energy ½ mV2 ½ V2

Potential energy mgZ gZ
Internal energy U u 
Total energy E e 
Enthalpy H h 
Entropy S s 

Critical state of a substance is a state beyond which a liquid-vapor transforma-
tion is not possible.  For water, the critical pressure is Pc = 22 MPa (3203.6 psia), 
and critical temperature is Tc = 374.15 C (705.47 F). 

Critical properties.  Pressure, temperature, and specific volume (Pc, Tc, vc) of 
the critical state are referred to as critical properties.  Using Pc and Tc for water, 
the critical volume for water is given as vc = 0.0505 ft3/lbm. 
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Reduced properties refers to the ratios of pressure and temperature normalized 
to corresponding critical pressure and temperature, respectively (PR = P/Pc and TR

= T/Tc).

2.  Equation of State for Ideal Gases 

The state of a substance is a function of two independent intensive properties.  
Mathematically, a function of two variables represents a surface in rectangular co-
ordinates.  The functional relationship between various properties of a substance 
in terms of the two independent intensive properties is referred to as the equation 
of state.  For example, if we choose the two independent intensive properties as 
pressure (P) and temperature (T) a relation that expresses specific volume in terms 
of these properties, such as v = f(P, T), is an equation of state with P and T being 
the independent variables.  In this section, the equation of state for ideal gases is 
discussed following the definition of some pertinent terms. 

2.1.  Definition of Terms 

Atomic mass of elements is measured with respect to the mass of Carbon 12.  
We define an atomic mass unit as 1/12th of the mass of the atom of 12

6C .  This 
minute amount of mass is equal to 1.660438 E-27 kg.  Hence, the atomic mass of 
an element is the mass of an atom on a scale that assigns C12 a mass of exactly 12.   

Molecular weight of a compound is the sum of the atomic weights of the at-
oms that constitute a molecule of the compound. 

Gram-mole. A gram-mole (mol in the SI system) of a substance is the amount 
of that species whose mass in gram is numerically equal to its molecular weight.  
For example, carbon monoxide (CO) has a molecular weight of 12 (for Carbon) + 
16 (for Oxygen) = 28.  In general, if the molecular weight of a substance is M,
then there are M kg/kmol or M lbm/lb-mol of this substance. 

 Example IIa.2.1.  Find the number of moles in 80 kg of CO2.

Solutio:  Since 
2COM  = 12 + 2 ×  16 = 44, then the number of CO2 moles  

 are 80/44 = 1.82 kmol CO2.

2.2.  Equation of State 

All gases at sufficiently low pressures and high temperatures (hence, at low den-
sity) obey three rules: Boyle’s, Charles’, and Gay-Lussac’s rules.  These are called 
the perfect gas rules and such gases are known as perfect or ideal gases.  While 
the perfect gas and ideal gas are used interchangeably, an ideal gas is a perfect gas 
with an additional feature of having constant specific heat.  Boyle’s rule specifies 
that in isothermal processes, PV = constant.  Charles’ rule specifies that in an iso-
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baric process, V/T = constant.  Finally, Gay-Lussac’s rule specifies that in con-
stant volume processes, P/T = constant. 

From any two of the above rules we conclude that for a given mass of an ideal 
gas, PV/T = constant.  In order to determine the constant, we take advantage of the 
Avogadro’s hypothesis, which states that, at the same pressure and temperature, 
equal volumes of gases contain the same number of molecules.  In other words, 
22.4 liters of any gas at STP, contains 1 mole or 6.023 ×  1023 molecules of that 
gas.  This is known as the molar volume.  From the Avogadro’s hypothesis we 
may conclude that the constant, shown by Ru, is given as Ru = P v /T = (1 atm ×
22.4 liter)/(1 mole ×  273 K) = 0.0821 atm⋅liter⋅K-1⋅mole-1.  In this relation, T is 
the absolute temperature, v  is specific volume on a molar basis, and Ru is known 
as the universal gas constant and its value can also be found in such units as: 

Ru = 8.314  kJ·kmol-1·K-1 Ru = 0.08314  bar⋅m3·kmol-1·K-1

Ru = 1545 ft·lbf·R-1·lbmol-1 Ru = 0.73 atm·ft3 ⋅lbmol-1·R-1

The equation of state for an ideal gas, TRP u=v  can be written as Pv = RT
where v = M/v  and R = Ru/M.  Alternatively, we can write: 

PV = nRuT = m(Ru/M)T = mRT                                        IIa.2.1 

where m is mass (kgm or lbm), M is molecular weight (kg/kgmol or lb/lbmol), n is 
the number of moles, and R is given as R = Ru/M (kPa·m3/K·kg or ft·lbf/R·lbm).  
Note that unlike Ru, which is a universal constant, the value of R depends on a 
specific ideal gas.  Also note that in Equation IIa.2.1, we made the following sub-
stitution: 

n = m/M

That is to say that one mole (mol) of any substance has a mass equal to its mo-
lecular weight. 

Example IIa.2.2.  A 10 ft3 (0.283 m3) tank contains compressed air at a pressure 
of 350 psia (2.41 MPa) and temperature of 80 F (27 C). We want to determine the 
mass of air and moles of air in this tank.  Mair = 28.97. 

Solution:  From the equation of state for ideal gases using the air molecular 
weight of 28.97 lb/lbmole:
                                                   BU 
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10144350
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                                                 SI
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( ) ( )2732797.28/314.8
283.03E41.2

+×
×

= 7.92 kg 

The number of moles is found from n = 17.5/28.97 = 0.6 lbmol or alternatively,  
n = 7.92/28.97 = 0.27 kmol.  
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The advantage of the equation of state for an ideal gas is its simplicity.  Al-
though in texts on thermodynamics the Boyle, Charles, and Gay-Lussac rules are 
generally referred to as “laws”, they were introduced here as “rules” because their 
application is limited only to gases that can be approximated as ideal gas.  We can 
approximate the behavior of real gases with that of an ideal gas only if the com-
pressibility of the gas is near unity.  The compressibility of a gas is defined as Z = 
Pv/RT.  When 1≈Z , the gas density is low enough to allow the treatment of the 
gas as an ideal gas. There have been several attempts to develop an equation of 
state for non-ideal or real gases ( 1≠Z ).  For example, Van der Waals in the 19th

century proposed the following equation of state: 

RTc
c

P =−+ )v)(
v

( 22
1              IIa.2.2 

where, c1 and c2 are functions of Pc and Tc,.  Note the Van der Waals equation re-
duces to the ideal gas equation for large values of specific volume (occurring at 
low pressures or high temperatures). 
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Figure IIa.2.1.  Behavior of (a) an ideal gas and (b) a Van der Waals gas 

To find the values of c1 and c2 in Equation IIa.2.2, we note that the isotherm 
passes through a point of inflection at the critical state hence, the first and the sec-
ond derivatives of pressure with respect to specific volume at constant temperature 
are zero.  These in addition to Equation IIa.2.2, provide three equations from 

which we can find cccc PRTcPTRc /125.0,/42.0 2
22

1 ==  and vc = 0.375RTc/Pc.

Having vc, we can find Z from Z = Pcvc/(RTc) = 0.375. 
The functional relationship between P, T, and v for the ideal gas and the Van 

der Waals gas are shown in Figure IIa.2.1.  The Van der Waals equation, while an 
improvement over the ideal gas model, has limited applications.  To correlate 
pressure, specific volume, and temperature, there have been many other equations 
of states since the introduction of the Van der Waals equation.  Among these are 
Berthelot, Dieterici, and Redlich-Kwong (RK) equations.  The Redlich-Kwong 
equation for example is an empirical correlation and is given as: 
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where v  = Mv has units of ft3/lbmol or m3/kgmol.  Constants c1, and c2 in Equa-
tion IIa.2.3 are functions of the critical pressure and temperature and are given as 

2 2.5
1 0.4275 /u c cc R T P=  and 

2 0.0867 /u c cc R T P= .

Example IIa.2.3.   Use the Redlich-Kwong equation and find the pressure of su-
perheated vapor given a specific volume of 2.7247 ft3/lbm (0.17 m3/kg) at 500 F 
(260 C). 

Solution:  For water we have Pc = 3203.6 psia and Tc = 705 F.  Therefore, 
c1 = 0.4275 [1545/(144 ×  14.7)]2 (705 + 460)2.5/(3203.6/14.7) = 48,422 atm 
(ft3/lbmol)2 R0.5

c2 = 0.0867 [1545/(144 ×  14.7)] (705 + 460)/(3203.6/14.7) = 0.338 ft3/lbmol.   
T = 500 + 460 = 960 R, 7247.218v ×= = 49.0446 ft3/lbmol.  Substituting in 
Equation IIa.2.3, we get:

=
+

−
−
×=

960)338.00446.49(0446.49

422,48
)338.00446.49(
960)]1447.14/(1545[

RKP

13.74 atm = 201.9 psia (1.39 MPa) 

From the ideal gas model, we find PIG = [(1545/18) ×  960]/2.7247 = 30242 lbf/ft2

= 210 psia (1.44 MPa). The real answer is 200 psia.  In this example, we do not 
expect to get good results from the ideal gas model, as pressure is not low enough 
and temperature is not high enough (try P = 1 psia and T = 750 F). 

It is seen from the above example that while the Redlich-Kwong model does a 
better job in predicting pressure, it still has an error of about 1%.  To get even 
closer answers, more complex equations should be used.  These include the 
Beattie-Bridgeman and the Benedict-Webb-Rubin equations. 

2.3.  Specific Heat of Ideal Gases

Joule showed that for ideal gases, the internal energy is only a function of tem-
perature, u = u(T).  As such, for an ideal gas the partial derivative becomes a total 
derivative hence, we can write du = cv dT.  Similarly, for infinitesimal changes in 
enthalpy dh = cp dT.  By definition, enthalpy is related to internal energy as dh = 
du + Pdv.  This relation can be applied to an ideal gas by substituting for the last 
term in the right-hand side from the equation of state, to get dh = du + RdT.  Sub-
stituting for du and dh in terms of specific heats for an ideal gas yields: 

cp – cv = R
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Since R is constant and for an ideal gas cv is only a function of temperature, cp

also becomes only a function of temperature.  The specific heat ratio is defined as 
γ = cp/cv.  Combining these two equations, we can solve for cv and cp in terms of R
and γ:

1
,

1 −
=

−
=

γ
γ

γ
R

c
R

c pv

Note that cv and cp have the same units as R.  These are kJ/kg·K, in SI or 
Btu/lbm·R, in British units. 

Example IIa.2.4.  Calculate cv and γ  of an ideal gas which has a molar mass of 16 
and a cp = 2 kJ/kg·K.   

Solution:  We first calculate R from R = Ru/M.  Hence, R = 8.314/16 = 
0.519 kJ/(kg·K).  Having R and cp, we can find cv = cp – R.  Substituting, cv = 2 – 
0.519 = 1.48 kJ/kg·K.  Having cp and cv, we find γ = 2/1.48 = 1.35. 

Specific heat of ideal gases at constant pressure may be expressed in the form 
of a quadratic polynomial.  For all practical purposes however, an average cp and 
cv may be used for most gases over the temperature range of interest. 

Example IIa.2.5.  We made a fit to data for cp of air in the range of 360 R–2880 R 
and obtained:  

312286 1020247.41013043.21020064.6238534.0)( TTTc airp
−−− ×−×+×−=

where temperature is in R and (cp)air is in Btu/lbm·R.  Find (cp)air at T = 80 F ac-
cording to the above fit.

Solution:  At 80 F (540 R), specific heat of air at constant pressure according to 
the above equation becomes (cp)air = 0.2421 Btu/lbm·R.  Compared with data in 
Table A.II.5(BU), the error is less than 1%. 

Having cv and cp, we can calculate u and h by integrating du = cvdT and dh = 
cpdT, respectively: 
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To simplify analysis, we may use an average value for cv and cp in the tempera-
ture range of interest: 
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where the arithmetic average applies to temperature ranges within which specific 
heat varies slightly.  Having an average value for the specific heat we can calcu-
late enthalpy, for example from: 

h(T) – h(Tref.) = cp(T – Tref.)

Using Tref = 0 R (–460 F) and assuming h(Tref) = 0, then h(T) can be written as  
h(T) = cpT where T is the absolute temperature in degrees Rankine.   

3.  Equation of State for Water 

In this section, the equation of state for water is discussed following the definition 
of some pertinent terms. 

3.1.  Definition of Terms

Saturation temperature is the temperature at which boiling takes place at a 
given pressure. 

Saturated liquid or vapor is a state of a substance at which change in phase 
takes place while the substance temperature remains constant.  At saturation, the 
substance pressure is referred to as the vapor pressure.  The vapor pressure is a 
function of temperature hence it remains constant during the phase change. 

Subcooled or compressed liquid is a liquid phase of a substance, which exists 
at a temperature less than the saturation temperature corresponding to the sub-
stance pressure. 

Superheated vapor is the vapor phase of a substance that exists at a tempera-
ture greater than the saturation temperature corresponding to the substance pres-
sure. 

Helmholtz function (a) is another thermodynamic property of a substance and 
is defined as a = u – Ts.  The Helmholtz function has units of energy. 

Gibbs function (g) is also a thermodynamic property of a substance and is de-
fined as g = h – Ts.  The Gibbs function has units of energy. 

Maxwell relations are four well known thermodynamic equations written in 
terms of intensive properties.  The Maxwell relations correlate temperature and 
entropy to other thermodynamic properties as follows: 

Tds = du + Pdv               IIa.3.1
Tds = dh – vdP                IIa.3.2
sdT = – da – Pdv               IIa.3.3
sdT = – dg + vdP                            IIa.3.4 

where in these relations, a is the Helmholtz function (after Herman Ludwig von 
Helmholtz, 1821–1894) and g is the Gibbs function (after Josiah Willard Gibbs, 
1839–1903).  An example for the use of Maxwell’s relations includes the calcula-
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tion of entropy change of a system in terms of other thermodynamic properties.  If 
we write Equation IIa.31 for an ideal gas as Tds = cvdT + RdT and then integrate it, 
we obtain the change in entropy for an ideal gas as: 

+=−
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T

dT
cRss v               IIa.3.5 

The specific heat of some gases, frequently used in common practice, are given in 
Table A.II.5.  If the specific heat is taken as constant, the integral in Equa-
tion IIa.3.1 can be carried out to obtain: 
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We may apply Equation IIa.3.5 to an ideal gas and obtain a similar relation but in 
terms of pressure ratio. 

Coefficient of volume expansivity ( β ) or thermal expansion coefficient is a 
measure of the change in specific volume with respect to temperature with pres-
sure held constant.  This coefficient is given as, v/])/v[( PT∂∂=β  = 

ρρ /])/[( PT∂∂− . The coefficient of volume expansivity has the units of K-1 or R-1.

Isothermal compressibility (κ ) is a measure of change in specific volume 
with respect to pressure at constant temperature, v/])/v[( TP∂∂−=κ .  It has the 
units of bar-1 or psi-1.  The minus sign is intended to maintain a positive value for 
κ  regardless of the phase or the substance. 

Isentropic compressibility (α) is a measure of change in specific volume with 
respect to pressure at constant entropy, v/])/v[( SP∂∂−=α .  It has the units of 
bar-1 or psi-1.  The minus sign is intended to maintain a positive value for κ  re-
gardless of the phase or the substance.  Entropy is defined in Section 1.4. 

3.2.  Equation of State 

Due to its availability and reasonably good physical properties, water is exten-
sively used as a working fluid in practice.  As such, water properties have been 
carefully measured, formulated, and tabulated.  The tabulation of the thermody-
namic properties of water is known as the steam tables, as presented in Ta-
bles A.II.1(SI) through A.II.4(SI) and A.II.1(BU) through A.II.4(BU) for SI and 
British units, respectively.  Traditionally, thermodynamic properties in the steam 
tables are arranged with pressure and temperature as independent variables.  These 
tables could have been arranged using any other two intensive properties such as 
specific volume and specific internal energy, as independent variables.   

The functional relationship for water between P, T, and v is shown in Fig-
ure IIa.3.1(a).  The single-phase states such as solid, liquid, and steam are identi-
fied in this figure. Also shown are two-phase regions such as liquid-vapor and 
solid-vapor.  The projections of various regions of Figure IIa.4.1(a) on the P-T and 
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on the T-v surfaces are shown in Figures IIa.3.1(b) and IIIa.3.1(c), respectively.  
We examine these figures in more detail.  Figure IIa.3.1(b) shows three distinct 
lines: the sublimation line, the fusion line, and the vaporization line.  Pure sub-
stances at equilibrium generally exist either as solid, liquid, or gas.  However, de-
pending on the pressure and temperature two or even all of these three phases may 
coexist.  For example, water at 32 F and 4.58 mm Hg (0.006 atm) may exists as 
ice, water, or steam or any combination of these phases at equilibrium.  This spe-
cific point is known as the triple point.  To further elaborate on the vaporization 
line, we consider a cylinder fitted with a piston.  Initially, the cylinder contains 
superheated steam.  As an example, steam can be at an absolute pressure of 18 
psia and temperature of 250 F, as shown in Figure IIa.3.2 as State A.   

Fehler! Keine gültige Verknüpfung. Fehler! Keine gültige Verknüpfung.
(a)                  (b) 

Fehler! Keine gültige Verknüpfung.
(c)

Figure IIa.3.1.  Pressure-temperature-volume plots for water (not to scale) 
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Figure IIa3.2.  Steam condensation in an isothermal process 
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We now apply force on the piston, which increases steam pressure and tem-
perature.  To maintain temperature, the applying force on the piston must take 
place in an isothermal process.  This is possible by allowing heat transfer from the 
cylinder to the surroundings, causing steam condensation.  Upon condensation of 
all the steam in the cylinder, the pressure and temperature of state B reach 29.825 
psia and 250 F, respectively.  We may continue applying pressure on the piston 
and allowing heat transfer from the cylinder until state C is reached.  For the nu-
merical example, state C reflects a compressed or subcooled liquid at 250 F and a 
pressure greater than 29.825, say 34 psia.  

Let’s now examine an isobaric process with water in the cylinder being at 
state C at which P = 34 psia and T = 250 F (Figure IIa.3.3).  We maintain the ap-
plied force on the piston but add heat to the water in the cylinder until water be-
gins to boil.  To maintain pressure, we let the piston move upward to accommo-
date the evaporation process and the expanding volume.  We continue heating 
water until the last drop of water evaporates.  This is state D where for our exam-
ple, pressure is 34 psia and steam temperature has reached 257.58 F.  Upon further 
heating with volume expansion, we reach state E at which steam is superheated.  
For the numerical example, state E is at 34 psia and a temperature higher than 
257.58 F, say 265 F.   
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Figure IIa3.3.  Water evaporation in an isobaric process 
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Returning to Figure IIa.3.1, let us now examine Figure IIa.3.1(c).  As shown in 
T-V diagram of Figure IIa.3.1(c), water goes through three major phases at a given 
pressure and rising temperature.  On the left of the saturated-liquid line, water is 
subcooled otherwise known as compressed liquid.  On the right of the saturation-
vapor line, water is in the form of superheated vapor.  A two-phase mixture exists 
between the two saturation lines with the mass of steam increasing from left to 
right.  This is better determined by defining a steam static quality for a two-phase 
mixture: 

liquidofmasssteamofmass

steamofmass

mixtureofmass

steamofmass
x

+
==

When we refer to quality we generally mean static quality as defined above.  
Other definitions for quality are discussed in Chapter Va.  Quality is zero on the 
saturation-liquid line and is unity on the saturation-vapor line.  At any given point 
where A has a given steam quality of x, various thermodynamic properties are ob-
tained as follows.  We first read various saturated-liquid and saturated-vapor prop-
erties from the steam tables: 

P1 → vf vfg vg      uf      ufg      ug     hf      hfg     hg     sf      sfg     sg

where properties of saturated liquid and saturated vapor are shown with subscripts 
f and g, respectively.  Any property with subscript fg refers to the difference in val-
ues from saturated liquid to saturated vapor (i.e., πfg = πg – πf  where π = v, u, h, s,
etc.).  In particular, hfg represents the latent heat of vaporization.  The latent heat 
by definition, is the energy stored in (or released from) a substance during a phase 
change, which occurs at constant pressure and temperature.  For example, hfg is 
that amount of heat required to vaporize saturated water to become saturated 
steam.  Similarly, hfg is that amount of heat, which is released by saturated steam 
to condense to saturated water.  Having the saturated liquid and saturated vapor 
properties, we can calculate properties of a mixture of water and steam for given 
steam quality x as follows: 

v = vf + x(vg – vf) = vf + xvfg

u = uf + x(ug – uf) = uf + xufg

h = hf + x(hg – hf) = hf + xhfg

s = sf  + x(sg – sf) = sf + xsfg

Example IIa.3.1.  Find properties of state A in Figure IIa.3.1(c) using P1 = 800 
psia (5.5 MPa) and xA = 0.7. 

Solution:  From the steam tables A.II.1(BU) we find:
vf  vfg uf ufg   
(ft3/lbm)        (ft3/lbm)    (Btu/lbm)    (Btu/lbm)   
0.02087     0.54809       506.70         608.50           

hf hfg sf   sfg
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(Btu/lbm)   (Btu/lbm)     (Btu/lbm·R)       (Btu/lbm·R)
509.80            689.60           0.7111              0.7051 

vA = 0.02087 + 0.7 × 0.54809 = 0.4045 ft3/lbm 
uA = 506.7 + 0.7 × 608.5 = 932.65 Btu/lbm 
hA = 509.8 + 0.7 × 689.6 = 992.52 Btu/lbm 
sA = 0.7111 + 0.7 × 0.7051 = 1.20 Btu/lbm·R

Example IIa.3.2.  Temperature and quality of a saturated mixture are given as 230 
C and 85%, respectively.  Find the thermodynamic properties for this mixture. 

Solution:  From the steam tables A.II.2(SI) at Tsat = 230 C we find: 
vf  vg uf ug   
(m3/kg)        (m3/kg)           (kJ/kg)           (kJ/kg)           
1.2088E-3       0.07158           986.74          2603.90         

hf hg sf sg

(kJ/kg)             (kJ/kg)          (kJ/kg·K)          (kJ/kg·K)
990.12            2804.00        2.6099              6.2146 
v = vf + x(vg –  vf) = 1.2088E-3 + 0.85 × (0.07158 – 1.2088E–3) = 0.061 m3/kg 
u = uf + x(ug – uf) = 986.74 + 0.85 × (2603.90 – 986.74) = 2,361.33 kJ/kg 
h = hf + x(hg – hf) = 990.12 + 0.85 × (2804.00 – 990.12) = 2,531.92 kJ/kg 
s = sf + x(sg – sf) = 2.6099 + 0.85 × (6.2146 – 2.6099) = 5.6739 kJ/kg·K

Note that for the subcooled and superheated regions, any two intensive proper-
ties are sufficient to clearly define the state of water.  These can be pressure and 
temperature, pressure and specific enthalpy, etc.  While the same is true for the 
saturation region (i.e. the state of water is determined by having two independent 
properties), we cannot determine the state of water by having only pressure and 
temperature because, in the saturation region, these are functionally related and 
hence are not independent variables.  In the saturation region, we are generally 
given pressure and quality, temperature and quality, pressure and enthalpy, etc. 

Example IIa.3.3.  State A in the left figure is subcooled water at P = 300 psia and 
T = 100 F.  Find the new pressure if the process is isothermal with final state being 
saturated water (A’).  Also find the new pressure in a constant volume process 
with the final state being saturated water (A”).  Repeat similar problem this time 
for state B in the figure on the right.  State B is superheated steam at P = 2 MPa 
and T= 277 C with states B’ and B” being saturated steam. 



52     IIa.  Thermodynamics: Fundamentals

V

T PA

PA’

PA”A
A’

A”
V

T PB

PB’

PB”

BB’

B”

Solution:  Pressure at state A’, is Psat(100 F).  From the steam tables this is given 
as 0.94924 psia.  Pressure at state A” is given as Psat(vf).  Having vf(A”) = vA = 
v(300 psia, 100 F) = 0.01612 ft3/lbm, from the steam tables we find Psat(0.01612
ft3/lbm) = 0.86679 psia.  Similarly, pressure for state B’ is Psat(550 K) = 6.1 MPa.  
Pressure at state B” is found from the steam tables for Psat(vg).  We find vg(B”)
from vg(B”) = v(B) = vB(2 MPa, 277 C) = 0.199 m3/kg, from the steam tables we 
find Psat(0.199 m3/kg) = 1.68 MPa. 

Shown in Figure IIa.3.4 are the trends of saturated water and saturated steam 
enthalpies (hf and hg), water latent heat of vaporization (hfg), and saturation tem-
perature (Tsat) all as functions of pressure. Obtaining an equation for these or other 
saturation properties is much simpler than in the subcooled and superheated re-
gions.  This is due to the fact that in the saturated region we need to fit the curve to 
a function of a single variable as opposed to other regions which requires a curve 
fitting to functions of two variables.  Even for the single variable function of the 
saturated region, a property often needs to be represented by more than one func-
tion in a piecewise fit to enhance the accuracy of the curve fit to data.  Examples 
of curves fit to data are shown in Table A.II.6 of Appendix II.  This appendix in-
cludes polynomial functions to represent P, vf, vfg, uf, and ufg in terms of tempera-
ture and are obtained by fitting curves to the steam tables data. 

hg

hf

hfg

h

P P

vg
Tsat

P

Figure IIa.3.4.  Water enthalpy, steam specific volume, and saturation temperature versus 
pressure 

Example IIa.3.4.  Consider a process where heat, mass, and work are exchanged 
with the surroundings.  In the final state, u and v are known.  Determine pressure 
and temperature of the final state. 

Solution: The conservation equations of mass and energy are discussed later in 
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this chapter.  For now, our purpose of presenting this example is to indicate that in 
thermalhydraulic computer codes, mass (m) is obtained from the conservation 
equation of mass, total internal energy (U) from the conservation equation of en-
ergy, and volume (V) from the volume constraint.  Specific internal energy (u) and 
specific volume (v) are obtained from u = U/m and v = V/m, respectively.  While 
the steam tables are traditionally arranged in terms of pressure (P) and temperature 
(T), it is generally the u and v that are calculated in the analysis.  We should then 
find P and T from u and v by iteration with the steam tables.  This is called the 
pressure search method.  An example of such iteration is given by Program A.II.1 
on the accompanying CD-ROM. 

Below, we introduce the degree of subcooling, which is an indication of how 
far a system is from boiling.  The degree of subcooling is an important parameter 
in pressurized subcooled systems, such as the primary side of a PWR, which must 
remain subcooled during normal operation.   

Example IIa.3.5.  Find the pressure required to maintain 50 C subcooling in a 
tank containing water at 200 C and 2 MPa. 

v

T

A

PA
PA'

v

T

A

PA

∆Tsub

∆Tsub

A'

Solution:  The degree of subcooling is the difference between the saturation tem-
perature and the actual temperature of a compressed liquid.  At PA = 2 MPa and 
200 C, water is subcooled but the degree of subcooling is about 212 – 200 = 12 C.  
To have a degree of subcooling increased to 50 C, we should find Psat correspond-
ing to T = 200 + 50 = 250 C which is about PA’ = 3.97 MPa. 

Clapeyron equation is applicable to a phase change, which occurs at constant 
temperature and pressure.  The latter is true since saturation pressure is a function 
of temperature.  The Clapeyron equation (after Emil Clapeyron, 1799 - 1864) for a 
liquid-vapor phase change is: 

fg

fg
sat T

h

dT

dP

v
)( =              IIa.3.7 

From the Clapeyron equation, we can determine the latent heat of vaporization 
(hfg), which cannot be directly measured from the PvT data.  Note that T in Equa-
tion IIa.3.7 is the absolute temperature. 

Clausius-Clapeyron equation is obtained by introducing simplifying approx-
imations into the Clapeyron equation.  The introduction of such approximations 
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limits the application of the Clapeyron equation to relatively low pressures where 
vf is negligible as compared to vg, which in turn can be approximated as vg = RT/P,
as explained in Section 2.2.  Substituting into Equation IIa.3.7, we get:   

T

dT

R

h

P

dP fg
sat =)(              IIa.3.8 

Upon integration, we find vapor pressure as a function of temperature: 
cTPhP satfgsat +−= )/1)(/(ln .

Example IIa.3.6.  Calculate the latent heat of vaporization for water at T = 212 F. 

Fehler! Keine gültige Verknüpfung.

Solution:  To find hfg, we need to determine the slope at T = 212 F.  From the 
steam tables we find the following data: 

T   P  vfg

(F)  (psia)  (ft3/lbm)
211  14.407    – 
212  14.696  26.782 
213  14.990    –
The slope becomes (14.99 – 14.407)/(213 – 211) = 0.2915 psi/F.  Substituting in 
Equation IIa.3.7, we find:
hfg = (dP/dT)Tvfg = [0.2915 lbf/(in2 ·F)] × (144 ft2/in2) × (212 +460) R × 26.782 
ft3/lbm = 755,471 ft· lbf/lbm 
Alternatively, hfg = (755,471 ft·lbf/lbm)/(778.17 ft· lbf/Btu) = 970.8 Btu/lbm.

3.3.  Determination of State 

In this section, we noted that to determine the state of a substance we must have 
two independent intensive thermodynamic properties.  In this regard, there are 
generally two cases that we have to deal with. 

Case 1, P or T specified.  In this case, either P or T and one more property (v, 
u, h, or s) are given.  We find the state from the steam tables since one of the two 
known properties is either P or T.  Having the saturation properties corresponding 
to the given P or T, we then make an assessment to see if the state is subcooled, 
saturated, or superheated.  For example, if P & u are given to find the state, we 
first find uf(P) and ug(P) from the property tables.  We then make the following 
comparison to find the thermodynamic state: 

Subcooled liquid  Saturated mixture Superheated vapor
u < uf(P) uf(P) < u < ug(P) u > ug
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If both P and T are given and T ≠ Tsat(P) or alternatively P ≠ Psat(T) then the 
state is either subcooled or superheated.  This discussion is summarized in Ta-
ble IIa.3.1. 

Table IIa.3.1.  Type of properties given for case 1 

Subcooled, Saturated, Superheated Saturated Subcooled Superheated 
T & v       or         P & v 
T & u       or P & u

T & x

T & h       or P & h
T & s        or P & s

P & x

T & P
T < Tsat(P)

T & P
T > Tsat(P)

Case 2, P & T not specified.  If the two specified properties are not P and T,
the state can not be readily determined from the steam tables.  This is what was re-
ferred to in Example IIa.3.4 as the pressure search.  Often in analysis we solve for 
u & v or h & v and would then have to find P & T.  In this case, we generally have 
to resort to iteration, an example of which is shown on the accompanying CD-
ROM, Program A.II.1. 

3.4.  Specific Heat of Water

In many engineering applications, we may approximate values for thermodynamic 
properties such as v, u, and h for subcooled liquids using saturated liquid data at a 
specified temperature.  This implies that such values are primarily a function of 
temperature and vary slightly with pressure at fixed temperature.  We may extend 
this approximation to specific heat.  Also note that using du = cvdT, we may ex-
press the specific internal energy of water in terms of specific heat at constant vol-
ume as )()( .Ref.Ref TTcuTuu v −=−=∆ .  Choosing the reference temperature 

for water as TRef. = 32 F at which uRef. = 0, we find u(T) ≈ cv (T – 32).  If we use an 
average value of cv = 1 Btu/lbm·F in the range of 32 F to 450 F, the internal en-
ergy of water in Btu/lbm becomes u(T) ≈  (T – 32) where T is in Fahrenheit.  The 
largest error of less than 2.5% for the above temperature range occurs at 450 F. 

4.  Heat, Work, and Thermodynamic Processes 

The laws of thermodynamics are known as the zeroth law, the first law, and the 
second law.  The zeroth law is the basis for temperature measurement.  This law 
states that if two systems are at the same temperature as a third system, the two 
systems would then have equal temperatures*.  The first law deals with conserva-
tion of energy in a process.  The second law governs the direction of the thermo-
dynamic processes.  The laws of thermodynamics are statements of fact and have 
no proof.

* The alternative expression for the zeroth law (also referred to as the third law of thermodynamics) is 
that at absolute zero, all perfect crystals have zero entropy. 
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4.1.  Definition of Terms

System, surrounding, and boundary are essential thermodynamics concepts, 
which allow us to study a substance, a region, or a process by considering it as a 
system and setting it apart from everything else known as the surroundings.  Any 
interaction between the system and the surroundings takes place through the sys-
tem boundary or the control surface.  The boundary may be real or imaginary. 

Isolated system is a system that does not have any interaction with its sur-
roundings; hence neither mass nor energy can cross the boundaries of an isolated 
system. 

No mass, heat, or work crosses
the boundary of the system

Isolated System

System boundary

Closed system, control mass allows transfer of energy but not mass through its 
boundary.  Hence, the mass of a closed system is always constant. 

No mass crosses the
boundary of the system

Closed System
Q

W

System boundary

Open system, control volume allows for transfer of mass and energy through 
the boundary.  This is the most widely used means of analyzing thermodynamic 
processes.  An open system may also be treated as a closed system by letting the 
system boundary change with the moving flow, and hence to encompass the same 
amount of mass at all times.  Changes in the energy content of a closed system 
may also be due to such processes as thermal conduction, radiation, mechanical 
compression or expansion, and such fields as gravitational or electromagnetic. 

 mass, heat, and work may cross
 the boundary of the system

Open System
Q

W
Ein

Eout

System boundary

mout

.

min

.



4.  Heat, Work, and Thermodynamic Processes      57 

Lumped parameter volume is a term applied to a system to emphasize the 
fact that there is only one temperature and pressure describing the entire system. 

Distributed parameter volume, also known as subdivided volume, implies 
that a system is subdivided into several lumped volumes to increase the amount of 
detail we seek about the system while undergoing a process.  

Adiabatic process refers to a thermodynamic process where there is no heat 
transfer to or from the system. 

Reversible is an ideal process which, at the conclusion of the process, can be 
reversed to bring the system and its surroundings to the same exact condition as it 
was prior to the original process.  Reversible processes are further discussed in 
Section 9 of this chapter. 

Work, W is a form of energy transfer between a system and its surroundings if 
its net effect results in lifting a weight in a gravitational field.  Various types of 
work are described in Section 4.3.  The relation between heat (defined later in this 
section), work, and total energy is described in Section 6.  This relation is gener-
ally referred to as the energy equation or energy balance.  We assign a plus sign to 
the term representing work in the energy equation if work is delivered from the 
system to its surroundings.  Otherwise we assign a minus sign.  Work is not prop-
erty of a system and must cross the boundary of the system.  Work is expressed in 
J, kJ, or m·kgf in the SI system.  In British units, work is given in Btu or less fre-
quently used units of ft·lbf.

Power, W  is defined as the rate of energy transfer by work, W  = dW/dt.
Since W = F × L where F is force and L is distance, then W  = F × V = (∆P × A) × 
V = ∆P × V  = (∆P/ρ) × m .  As described in Section 5,  V  and m  are the volu-
metric flow rate and the mass flow rate, respectively. 

Power is expressed in units of J/s, Watt (W, being the same as J/s), kilowatt 
(kW), megawatt (MW), gigawatt (GW), Btu/s, Btu/h, or horsepower (hp). 

Heat, Q as a form of energy in transition is transferred due to a temperature 
gradient between two systems or a system and its surroundings, in the direction of 
decreasing temperature.  The fact that heat flows solely due to temperature differ-
ence resembles the flow of water from a reservoir due to elevation difference or 
the flow of electricity from a capacitor (or from a battery) in an electric circuit due 
to potential difference.  As shown in the left figure, when the valve is opened, wa-
ter flows.  The middle figure also shows that when the switch is turned on, electric 
current would be established in the circuit.  Similarly, if we drop a hot block of  
copper into a bucket of colder water, heat flows from the copper to the water.  By 
convention, if heat is delivered to a system we assign a plus sign to the term repre-
senting it in the energy equation.  Conversely, if heat is transferred from the sys-
tem to its surroundings, the sign is negative.  Like work, heat is not a property of a 
system and it must cross the boundary of the system.  Heat is expressed in J, kJ, or 
m·kgf in the SI system.  In British units, heat is given in Btu or less frequently 
used units of ft·lbf. 
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Q
Q

Q

4.2.  Ideal Gas Processes

Processes involving ideal gases are referred to as polytropic when the following 
relation applies: 

Pvn = c                IIa.4.1 

where c is a constant and n is the slope of the path plotted on the P-v coordinates, 
as shown in Figure IIa.4.1.   

Pvn = c
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2
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n = 0:  Isobaric process
n = 1:  Isothermal process
n = γ:  Isentropic process
n =   :  Isochoric process∞

Figure IIa.4.1.  Examples of Polytropic processes of an ideal gas 

Special cases of the polytropic process include isobaric (constant pressure proc-
ess), isochoric (constant volume process), isothermal (constant temperature proc-
ess), and isentropic.  Shown in Figure IIa.4.1 are also exponents of specific vol-
ume for special cases of isobaric, isochoric, isothermal, and isentropic processes.  
These exponents are derived by combining the equation of state (Pv = RT) and the 
polytropic process (Pvn = c).  To demonstrate, we take the derivative of the equa-
tion for the polytropic process and divide it by the equation for the polytropic 
process to obtain: 

v

v

d

dP

P
n −=               IIa.4.2 
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we now combine this equation with the equation of state for a specific case as 
demonstrated next.   

Isothermal process.  If we differentiate Pv = RT, we find vdP + Pdv = 0 or 
dv/dP = –v/P.  Substituting into Equation IIa.4.2, we find nisotherm = 1. 

Isobaric process.  In this process, P = c and dP = 0 hence, nisobaric = 0.

Isochoric process is a constant volume process.  For given mass, v = c and dv
= 0 hence, nisochor = ∞

Isentropic process.  An isentropic process is an adiabatic and reversible proc-
ess hence constant entropy, (dS)isentropic = 0.  In an isentropic process for an ideal 
gas we have n = γ where γ is given by γ = cp/cv.  Hence, for an isentropic process 
we have PVγ = constant.  Combining with the equation of state, we find: 

γ)
V

V
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P

P
               IIa.4.3 
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              IIa.4.5 

4.3.  Types of Work

The simplest type of work is the shaft-work needed to lift a weight in a gravita-
tional field.  Examples for various types of work are as follows:  compression work
delivered to a system consisting of a piston and a gas filled cylinder, expansion 
work delivered by a system consisted of a piston and a gas filled cylinder (Figure 
IIa.4.2), electric work, representing the movement of electric charge in a field of 
electric potential, magnetic work, representing the alignment of ions with the mag-
netic axes, tension work as in a stretched wire, surface film work against surface 
tension of a liquid, rotating shaft work such as that delivered by a turbine, and 
shear work, due to the existence of shear forces such as that required to pull a 
spoon out of a jar of honey.  The relation for compression or expansion work in 
terms of pressure and volume can be obtained from the definition of work, which 
is the applied force times the displacement.  For both cases of compression and 
expansion we have: 

V)())(()( PddlAPdlAPdlFW =×=×==δ

Total work is obtained from: = 2
112 VPdW .  If P1 = P2 = P then W12 = P(V2 – V1).



60     IIa.  Thermodynamics: Fundamentals
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Figure IIa.4.2.  Expansion work delivered by a system with moving boundary 

Example IIa.4.1.  The movement of the piston in the cylinder of Figure IIa.4.3 is 
frictionless.  The spring is linear (displacement is proportional to the applied 
force) and is at its normal length when the piston is at the bottom of the cylinder in 
Figure IIa.4.3(a).  We now introduce 5 kg of a mixture of water and steam to the 
cylinder.  This causes cylinder pressure to reach 0.4 MPa at a quality of 0.2 in 
Figure IIa.4.3(b).  At this stage, we add heat to the mixture.  This causes expan-
sion of the mixture and movement of the piston until it eventually reaches the 
stops in Figure IIa.4.3(c).  Volume of the cylinder at this stage is Vc = 1.0 m3.  We 
continue heating up the mixture until all water vaporizes and the mixture becomes 
saturated steam. 
I)   Show this process on a PV-diagram  
II)  Find pressure in stage c2 where steam becomes saturated 
III) Find pressure and steam quality at stage c1 where piston just reaches the stops, 

Q

(a) (b)

(c1) (c2)

Q

P

V

b

c1

c2

Figure IIa.4.3.  Heat addition to a cylinder containing water mixture 

Solution:  I) This process is shown in the PV-diagram of Figure IIa.4.3.  Initially, 
mixture has a quality of xb = 0.2 at a pressure of 0.4 MPa (point b).  Heat is then 
added to the mixture until at c1 the piston reaches the stops.  We continue heating 
the mixture until all water vaporizes and steam becomes saturated at c2.  The proc-
ess from state b to state c is a straight line because the spring is linear.  The proc-
ess from c1 to c2 is a vertical line, since pressure increases at a constant volume. 
II) To find the pressure in state c2, we need to have two independent properties.  
We note that, in this state, steam is saturated, hence, quality is 100%.  To find an-
other independent property, we use the fact that we are dealing with a closed sys-
tem hence, mass remains constant throughout states b and c.  Having mass of m = 
5 kg, volume of Vc = 1.0 m3, and quality of 

2cx  = 1, we find specific volume as vc

= vg = 1.0/5 = 0.2 m3/kg.  By interpolation in the steam tables, we find the corre-
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sponding pressure of about 
2cP  = 1.00 MPa. 

III) To find pressure at state c1, we use the relation between displacement in the 
spring and the applied forces.  This can be obtained from a free body diagram for 
the piston. 

Spring force, ksx

Atmospheric pressure, Patm
Steam pressure, Psteam

Pi
st

on

If we assume the spring constant is ks and the cylinder cross sectional area is A,
then from a force balance: 

)/V(kk)( AxAPP ssatmsteam ==−

We are not given the spring constant ks and the piston area A.  We eliminate ks and 
A by applying the above equation to both states b and c1 and divide the results to 
obtain: 

)V/V)(( bcbc 11 atmatm PPPP −=−
Having Pb, to find pressure at state c1, we need to first calculate volume at state b,
which is obtained by multiplying the specific volume by the mixture mass.  At Pb

= 0.4 MPa, we find vb = 0.001084 + 0.2 (0.4625 - 0.001084) = 0.103 m3/kg.  
Therefore, Vb = mvb = 5 × 0.103 = 0.5156 m3.  Pressure at state c1 is then found as 

682.0)5156.0/1)(1.04.0(1.0
1

=−+=cP  MPa.  Note that we assumed Patm = 100 

kPa. 
To find quality at c1, we use the fact that 2.0vv

21 cc ==  m3/kg.  Therefore, steam 

quality at c1 becomes: fgfx v/)vv(
11 cc −= .  Using specific volumes at 

682.0
1c =P  MPa, vf = 0.001106 m3/kg and vfg = 0.28 m3/kg, we find 

28.0/)00106.02.0(
1

−=cx  = 0.71.  Expectedly, the addition of heat has increased 

quality from 0.2 to 0.71.  Further heat addition at constant volume increases qual-
ity to 100%. 

Example IIa.4.2.  A cylinder has a volume of 50 ft3.  Half of the cylinder is filled 
with air and half with water and steam.  The motion of the piston dividing the two 
chambers is frictionless while providing a perfect seal between the two chambers.  
The piston is a good heat conductor.  Initially, the water volume is 5% of the total 
volume of the right chamber.  We now add heat to both chambers until all of the 
water evaporates.  Find the final pressure.  Treat air as an ideal gas. 
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Steam (s)

Water (w)

Air (a)

P = 100 psia

Air Steam

Frictionless Piston

P

v

Water & Steam

1

2

P

v

Air

1

2

Solution:  To find the final pressure we first need to determine all masses in the 
system.  Since the motion of the piston is frictionless, both chambers are at the 
same pressure of 100 Psia.  Since heat transfers from one chamber to the other 
through the piston, both chambers are also at the same temperature, T = Tsat(P).
We use subscripts a, s, and w for air, steam, and water, respectively.  Subscript 1 
is used for the initial equilibrium state (before heat is added to the system) and 
subscript 2 for final equilibrium state (after heat is added to the system).  
Throughout the entire process we can write the following five equations: 

Pa = Ps = P, Ta = Ts = Tsat(P), and Va + (Vs + Vw) = 50 

P1   T1  vf1  vg1

(psia)       (F)  (ft3/lbm)    (ft3/lbm)
100  327.82  0.01774      4.4310  

The initial water mass is:  mw1 = Vw1/vf1 = (25× 0.05)/0.01774 = 70.462 lbm. 
The initial steam mass is:  ms1 = Vs1/vg1 = (25×0.95)/4.4310 = 5.36 lbm.   

The initial air mass is:   
ma1 = PVa1/RaT1 = ma1 = (100 × 144) × 25/[(1525/28.97) ×  (327.82 + 460)] = 8.68 
lbm. 

The final masses of water, steam, and air are mw2 = 0 lbm, ms2 = mw1 + ms1 = 
70.462 + 5.36 = 75.822 lbm, and  ma2 = ma1 = 8.68 lbm, respectively.   
We find T2 and P2 by iteration:  
We guess P2 and find T2 = Tsat(P2).  Having P2 and T2, we find [vs2(T2)]Table.  We 
also calculate vs2 from: vs2(T2) = (50 – Va2)/ms2.  Since Va2 = (ma2RaT2)/P2, there-
fore [vs2(T2)]Calculated = [50 – (ma2RaT2)/P2]/ms2.
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The iteration is converged if 2 2 2 2[v ( )] [v ( )]s Table s CalculatedT T ε− ≤  where ε  is 

the convergence criterion.  Following this procedure, we find P2 = 755 psia and T2

= 511.6 F. 

4.4.  Work Involving an Ideal Gas

Using special processes for an ideal gas, we can find analytical expressions for 
work involving moving boundaries.  If the process from the initial state (1) to the 
final state (2) as shown in in Figure IIa.4.2 is such that the volume remains the 
same (isochoric), then dV = 0 and we find: 

0V
2

1
21 ==− PdW

If the process in Figure IIa.4.2 is isobaric, then P1 = P2 and the work done from 
state 1 to state 2 is: 

)VV(V 121
2

1
21 −==− PPdW

If the process in Figure IIa.4.2 is isothermal, then from PV = mRT, we find P1V1

= P2V2 = PV = constant.  Substituting in the integral for P = P1V1/V, we get: 
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In general, for a polytropic process from 1 to 2 in Figure IIa.4.2, we have 

P1V
n
1 =P2V

n
2  = PVn.  Substituting 

n

PP

-n
P

d
PPdW

n

n −
−

====
−

− 1

VV

1

V
V

V

V
VV 1122

2

1

1
n

11

2

1

n
11

2

1
21          IIa.4.4

Example IIa.4.3.  The cylinder in Figure IIa.4.2 is filled with air and initially is at 
P1 = 10 kPa and V1 = 0.1 m3.  At the conclusion of a process the final air volume 
is V2 = 0.3 m3.  Find the work done by the piston if 
a) the process is isobaric, b) the process is isothermal, c) the process is isentropic 
(γair = 1.4), and d) the process is polytropic with n = 2. 

Solution:
a)  In an isobaric process, W1-2 = )VV( 121 −P  = 10(0.3 - 0.1) = 2 kJ. 

b) For the isothermal process, W1-2 = P1V1ln(V2/V1) = 10 × 0.1 × ln(0.3/0.1) = 
    1.01 kJ. 
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c)  For the isentropic process, P2 = P1(V1/V2)
1.4 = 10(0.1/0.3)1.4 = 2.148 kPa. 

W1-2 = (P2V2 – P1V1)/(1 – n) = [2.148 × 0.3 - 10 × 0.1]/(1 – 1.4) = 0.89 kJ. 
d)  For the polytropic process, P2 = P1(V1/V2)

2 = 10(0.1/0.3)2 = 1.111 kPa 
W1-2 = (P2V2 – P1V1)/(1 – n) = [1.111 × 0.3 – 10 × 0.1]/(1 – 2) = 0.667 kJ.

5.  Conservation Equation of Mass for a Control Volume 

The conservation equation of mass, referred to as the continuity equation, is dis-
cussed in this section.  Derivation of this equation is left to Chapter IIIa.  The most 
intuitive way of comprehending this equation is to consider the liquid level in the 
tank of Figure IIa.5.1.  Liquid may be added to the tank from various inlet ports 
and may be withdrawn from the tank through various outlet or exit ports.  The liq-
uid in this tank represents a control volume for mass or energy (note changes with 
time).  To accumulate mass in the tank, the flow rate into the tank must exceed the 
flow rate out of the tank.  Conversely, to deplete the tank, the flow rate out of the 
tank must exceed the flow rate into the tank.  This intuitive statement about the 
rate of accumulation or depletion is also applicable to the conservation of energy, 
momentum, and angular momentum although its application to the conservation of 
mass and energy is easier to envision*.  The mathematical representation of the 
above statement for conservation of mass is: 

Control Volume m = f(t)

im im =ρiViAi

em =ρeVeAe

Figure IIa.5.1.  Depiction of the rate equation 

dt

dm
mm VC

exit
e

inlet
i

..+=               IIa.5.1

The subscript C.V. stands for control volume.  The mass flow rate is related to the 
flow density, flow area, and flow velocity normal to the area as: 

VAAVm ρρ =⋅=                IIa.5.2

It is customary to call V  = VA volumetric flow rate and G = ρV mass flux.  Thus, 
Equation IIa.5.2 can be expressed as: 

* In Chapter VIe, we apply the same principle to derive the neutron transport equation. 
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GAVAm === Vρρ                IIa.5.3 

The volumetric flow rate ( V ) in SI units may be expressed as m3/s, liter/s, etc.  In 
British units, V  is usually given in terms of gallons per minute (gpm or GPM).  
Since 1 ft3 = 7.481 gallons, 1 ft3/s = 448.86 gpm. 

Example IIa.5.1.  Water at a rate of 54 GPM flows in a 3 inch-diameter pipe at 
100 psia and 150 F.  Find a) the volumetric flow rate, b) mass flow rate, c) mass 
flux, and d) flow velocity 

Solution:  At P = 100 psia and T = 150 F: v = 0.01634 ft3/lbm, ρ = 1/v = 
1/0.01634 = 61.2 lbm/ft3.
a) Volumetric flow rate of V  = 54 GPM is equivalent to V  = 54/(7.481 ×  60) = 
0.12 ft3/s.
b) Mass flow rate becomes: Vρ=m  = 61.2 ×  0.12 = 7.36 lbm/s. 
c) To find mass flux, we calculate the pipe flow area as A = πd2/4 = 3.14 ×
(3/12)2/4 = 0.049 ft2.  Having mass flow rate and flow area, mass flux becomes 

AmG /= = 7.36/0.049 = 150 lbm/ft2·s. 
d) Finally, velocity is found from: == ρ/GV 150/61.2 = 2.45 ft/s.  We could 
also find V from V = V /A.

Example IIa.5.2.  Water enters a mixing vessel from two inlet ports and leaves 
through one outlet port.  Find the amount of water accumulated in the vessel in 1 
minute. 

Control
Volume

m = 1 lbm/s (0.453 kg/s)

A = 0.03 ft2

V = 1.00 ft/s
P = 15.0 psia
T = 150.00 F

A = 0.04 ft2

V = 0.65 ft/s
P = 15.0 psia
T = 200.00 F .

( 37.16 cm2)
( 0.198 m/s)
( 103.4 kPa)
( 93.3 C )

(27.87 cm2)
(0.3 m/s)
(103.4 kPa)
(65.5 C)

Solution:  We find the accumulated water by combining Equation IIa.5.1 with 
Equation IIa.5.2 and integrating: 

tmAVAVmm e ∆−+=− ])[( 22211112 ρρ

From the steam tables v1(15 psia & 200 F)= 0.01664 ft3/lbm and v2(15 psia & 150 
F) = 0.01634 ft3/lbm.   
ρ1 = 1/v1 = 1/0.01664 = 60.1 lbm/ft3 (963 kg/m3), ρ2 = 1/v2 = 1/0.1634 = 61.2 
lbm/ft3 (980 kg/m3)

lbm92.14360]1)03.012.61()04.065.01.60[( =×−××+××=∆m  (65.2 kg/s) 

Steady flow steady state process:  In the analysis of thermofluid systems, we 
often use the steady flow steady state process.  Let’s examine this process by con-
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sidering the flow of gas through a gas turbine, representing our control volume.  
The steady flow condition requires that the mass flow rate of the gas entering the 
gas turbine to be equal to the mass flow rate of gas leaving the gas turbine.  This 
also satisfies the steady state process during which dmC.V./dt = 0.  However, as we 
will see in the next section, in a steady state process the rate of change of the en-
ergy of the control volume must also be zero, dEC.V./dt = 0.

Returning to the gas turbine example, it is true that the gas properties are 
changing as the gas flows through the blades of the turbine.  That is to say the 
properties change spatially and there is indeed a profile for pressure, temperature, 
velocity, specific internal energy, and density from the entrance to the exit of the 
turbine.  However, in the steady state condition, the spatial distribution of each 
property remains independent of time.  On the other hand, in the unsteady state or 
transient situation, gas properties in the control volume not only have spatial 
variations but also vary with time.  Hence in transient analysis, we must consider 
mass and energy accumulation or depletion in a control volume. 

Let’s now consider a case where in Figure IIa.5.1, the rate of either accumula-
tion or depletion of mass is zero.  For the conservation of mass, Equation IIa.5.1 
predicts that: 

=
exit

e
inlet

i mm                IIa.5.4 

Equation IIa.5.4, also referred to as mass balance, is an intuitive implication of the 
steady flow condition.   

6.  The First Law of Thermodynamics 

The first law of thermodynamics is a relation between heat, work, and the total en-
ergy of a closed system.  The first law of thermodynamics, also known as the con-
servation equation of energy or simply the energy equation has the simplest 
mathematical form, if written for a closed system.  We can intuitively obtain this 
equation by using logical deduction (i.e. we expect the total energy of an isolated 
system to remain constant).  Total energy of a system, in general, is the summa-
tion of its internal, kinetic, and potential energies (E = U + KE + PE).  Thus, for 
an isolated system, dE = 01.  If the system is not isolated and heat and work are al-
lowed to cross the moving boundary of the system (Figure IIa.4.2), we expect that 
addition of heat (Q) to this system and the production of some work (W) will re-
sult in a net change in the system total energy: 

1 The assertion that energy can neither be created nor destroyed is a fundamental law in 
classical mechanics.  As discussed in Chapter VIe, on a sub-atomic basis, mass is a form 
of energy appearing in a nucleus as the binding energy.  The binding energy, in turn, is 
manifested as the short term nuclear force.  Thus, a more general statement is to say that 
mass-energy can neither be created nor destroyed.   
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dEWQ += δδ                IIa.6.1 

In Equation IIa.6.1, heat is delivered from the surroundings to the system hence, a 
plus sign is used for the Qδ  term.  In return, the system has delivered positive 
work. Equation IIa.6.1 is the mathematical expression of the first law of thermo-
dynamics.  It is important to remember that the sign convention described here ap-
plies only if the energy equation is written in the form of Equation IIa.6.1.  In this 
equation, the term representing heat is in the left side and the terms representing 
work and the total energy are in the right side of the energy equation.  Also note 
the distinction made in Equation IIa.6.1, between exact differential (shown by d)
and non-exact differential terms (shown by δ ).  An exact differential, such as to-
tal energy, is independent of the process or path between the initial and the final 
equilibrium states.  Rather, it depends only on the initial and the final state (also 
known as the end states) properties: 

12
2

1
EEdE −=

On the other hand, heat and work in general cannot be integrated unless the proc-
ess is known2.  For example, suppose we add heat to the control system in Fig-
ure IIa.4.2.  By manipulating the movement of the piston, we can accomplish the 
path between two equilibrium states in various ways including an isobaric, an iso-
thermal, or an isochoric process.  Integrating Equation IIa.6.1, we obtain: 

)( 12
2

1
2

1 EEWQ −+= δδ

After integration, this equation is generally shown as: 

Q12 = W12 + (E2 – E1)

where subscript 12 for Q and W emphasizes the change in the value of Q or W
along the path from state 1 to state 2 while subscript 1 or 2 signifies condition at 
state 1 or at state 2.  Note from this result that if system goes through a thermody-
namic cycle, then E2 = E1 so that ∆Q = ∆W.

Example IIa.6.1.  Find the following values for Example IIa.4.2: total heat  deliv-
ered to the system, the compression work performed by the piston on the air, and 
the heat transfer to the air during the process. 

2  The only exception is when work is a result of the action of a conservative force such as 
the force applied by a linear spring.  Mathematically, such forces are gradients of a scalar, 
hence: 

12
2

1
2

1
2

112 ffdfdrfdrFW −==⋅∇=⋅=
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Solution:  To find total heat transfer, we apply the first law to the whole cylinder: 

Q12 = W12 + U2 – U1

where U1 = U1a + U1mix and U2 = U2a + Usteam.
The initial mixture internal energy is:  U1mix = mf1uf1 + mg1ug1 = 70.462(298.2) + 
5.36(1105.2) = 26935.6 Btu.   
The final mixture internal energy is: u2 = ug(P2) = ug(755 psia) = 1116 Btu/lbm.   
U2mix = (70.462 + 5.36)(1116) = 84617 Btu.  Since for the whole cylinder W12 = 0: 
Q12 = (Usteam – U1mix) + (U2a – U1a) = (84617 – 26935.6) + 8.68× 0.171(511.6 – 
327.82) = 57954 Btu. 

To find the amount of work done by the piston we need to have the type of proc-
ess.  This is because work is a path-dependent function.  However, the type of the 
process in which heat addition takes place is not specified.  We, therefore, use an 
approximation as follows: 

==
2

1

14

1
12 VV iia PPdW

where we have divided the interval of 755 – 100 = 655 psia to 13 equal intervals 
of 50 psi and one interval of 5 psi.  We then use pressures of 750 psia, 700 psia, 
650 psia, etc. and find corresponding volumes from the equation of state for air.  
Finding the area under the PV curve by numerical summation yields:
W12a = –966 Btu.  Applying the first law to the air compartment only we find: 

Q12a = W12a + (U2a – U1a) = –966 + 8.68× 0.171(511.6 – 327.82) = –693 Btu. 

Returning to the first law of thermodynamics, if we apply Equation IIa.6.1 to a 
process which brings a system from its initial equilibrium state 1 to another equi-
librium state 2, substitute for the total energy term, and integrate we obtain: 

)(2/)()( 12
2

1
2

2121212 ZZmgVVmUUWQ −+−+−+=          IIa.6.2 

As discussed earlier, enthalpy is another extensive property of a system.  If we 
substitute for compression work in terms of PV in Equation IIa.6.2, we see that 
the internal energy, U and PV appear together.  If we represent this summation by 
H = U + PV, the working fluid enthalpy, we simplify thermodynamic computa-
tions involving the energy equation.  Since enthalpy is an extensive property, the 
specific enthalpy, h, as an intensive property is obtained from h = H/m = u + Pv.  As 
pointed out earlier, care must be exercised in calculating enthalpy from this relation 
using British units.  For this reason, we may write h = u + cPv where in British units 
c = 144/778 = 0.185 Btu/psia·ft

3 for P in psia, v in ft3/lbm, and u and h in Btu/lbm, 
respectively.   
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6.1.  Conservation Equation of Energy for a Control Volume

Turning now to the conservation equation of energy for a control volume, the most 
frequently used form is Equation IIIa.3.12 derived in Chapter IIIa and repeated be-
low: 

( )2 / 2 V Vi i i i S
i

m h V gZ Q q W P′′′+ + + + = +

( ) ( )2 2/ 2 / 2e e e e
e

d
m h V gZ m u V gZ

dt
+ + + + +                        IIa.6.3 

where we have considered only two work terms; the shaft work and the work as-
sociated with the change in the boundary of the control volume.  Also, the rate of 
internal heat generation is explicitly accounted for.  Equation IIa.6.3 as written for 
a control volume is equivalent to Equation IIa.6.1, written for a control mass.   

Equation IIa.6.3 expresses the fact that the rate of change of total energy of a 
control volume depends on the rate of net energy entering and leaving the control 
volume as well as the rate of heat and work exchanged with the surroundings.  The 
last term in the right side is the rate of change of total energy of the control vol-
ume, dEC.V/dt.

Equation IIa.6.3 in terms of the control volume enthalpy is obtained by substi-
tuting for u = h – Pv to get: 

( )2
1 / 2 Vi i i

i

m h V gZ Q q+ + + + =′′′

( ) ( )2 2V / 2 / 2s e e e e
e

d
W P m h V gZ m h V gZ

dt
+ + + + + + +       IIa.6.3-1 

We simplify Equation IIa.6.3 or IIa.6.3-1 for cases where changes in K.E. and P.E.
energies are negligible:  

dt

mud
hmPWQhm

e
ee
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sii
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V +++=+            IIa.6.4 
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e
ee
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sii
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V +++=+                      IIa.6.4-1 

where in these equations, Q  now includes three major terms; the rate of heat 
addition to the control volume from all external sources, the rate of internal heat 
generation in the control volume from all internal sources, and the rate of heat re-
moval from the control volume: 

−+=
volumecontrolthefrom

removalheatofRate

GenerationHeat

InternalofRate

sourcesexternalallfrom

additionheatofRate
Q

Steady state analysis:  We now consider a case where in Figure IIa.5.1, the 
rates of either accumulation or depletion of mass and energy are zero.  If there is 
no accumulation or depletion of mass and energy and the boundary is fixed or the 
pressure work is negligible, Equation IIa.6.3 predicts that: 
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( ) ( )+++=+++
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If the K.E. and P.E. of the entering and exiting streams are negligible, Equa-
tion IIa.6.5 simplifies to: 

+=+
e

ee
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sii hmWQhm             IIa.6.6

where Equation IIa.6.6 is the steady state form of Equation IIa.6.4 with no pressure 
work. Equation IIa.6.6 can be further simplified if there is no heat or work transfer 
involved in a process. This is demonstrated in the next section by applying the con-
servation equations of mass and energy to several important thermofluid systems. 

7.  Applications of the First Law, Steady State 

We now proceed to examine the application of the conservation equation of en-
ergy in various thermofluid systems such as nozzles, diffusers, turbines, compres-
sors, pumps, heat exchangers, and valves.  It must be emphasized that the applica-
tion of the conservation equation of energy is generally associated with the use of 
the conservation equation of mass and the equation of state.  We begin by intro-
ducing various terms. 

7.1.  Definition of Terms

Nozzles are flow paths with decreasing flow area, hence, increasing velocity in 
the flow direction (Equation IIa.5.2 for equal densities yields V2 = V1A1/A2) as 
shown in the left side of Figure IIa.7.1.  

Diffusers are reverse nozzles, as shown in the right-hand side of Figure IIa.7.1.  
A diffuser is then a flow path with increasing flow area in the flow direction.  
Among various applications for nozzles and diffusers is flow measurement as with 
a flow orifice, a nozzle plate or by using the combined nozzle-diffuser in venturi 
meters. 

Nozzle Diffuser

Control Volume Control Volume

Figure IIa.7.1.  Schematics of nozzle and diffuser 

Turbines are mechanical devices that convert the energy of the working fluid 
to shaft work.  Electric power is produced when the shaft work is delivered to the 
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rotor of a generator in a magnetic field.  Turbines, if used in jet engines, deliver 
the shaft work to the compressor.  The compressed air is then energized in the 
combustion chamber.  A small percentage of the gas energy is used in the turbine 
to produce shaft work for the compressor.  The rest leaves the jet engine in the 
form of rapid gas discharge to produce propulsion for the aircraft.  A schematic of 
a turbine is shown in the left side of Figure IIa.7.2. 

Compressors use shaft work to pressurize gases.  Like turbines, the change in 
the potential energy from the inlet to the outlet of compressors is negligible.  This 
is in comparison with the compression work delivered to the system.  For well-
insulated compressors, the rate of heat loss is also negligible.  Schematic of a com-
pressor is shown in the right side of Figure IIa.7.2. 

Turbine Compressor

Control Volume Control Volume

Figure IIa.7.2.  Schematics of Turbine and Compressor 

Pumps, like compressors, use shaft work to pressurize the working fluid, which 
is in the liquid phase.  While the pumps and compressors perform identical func-
tions, the difference between the density of gases and liquids results in drastic de-
sign differences for the device. 

Heat exchangers are devices to transfer heat from a warmer to a colder fluid.  
Generally, in heat exchangers, the two streams of fluids do not mix; rather heat is 
transferred indirectly through tube walls or plates separating the streams.  A heat 
exchanger in which the streams are mixed is called an open feedwater heater.  Heat 
exchanger is a generic term which covers such diverse classes of devices as steam 
generators, condensers, radiators, boilers, intercoolers, and feedwater heaters. 

Valves consist of a wide variety of devices to isolate or regulate flow or to con-
trol pressure.  Gate valves isolate the flow, globe, ball, and butterfly valve regulate 
the flow, check valves prevent reverse flow, and safety and relief valves control 
pressure. 

7.2.  Conservation of Mass & Energy; Nozzles 

The flow parameters that are most affected by passing through nozzles and diffus-
ers are flow velocity and pressure.  We, therefore, would have to consider change 
in kinetic energy.  There is no work transfer and, if nozzles and diffusers are well 
insulated, there is also no heat transfer. 



72     IIa.  Thermodynamics: Fundamentals

Example IIa.7.1.  Steam enters a nozzle at 60 bar and 350 C and leaves through 
the diffuser at 25 bar at steady state condition.  Use the data given below to find 
the outlet flow area, A2.  The device is insulated. 

Control Surface
P1 = 60 bar

T1 = 350 C

V1 = 10 m/s

A1 = 0.01 m2

P2 = 25 bar

V2 = 500 m/s

Control Volume

P1

P2

T

v

Solution:  We have 3 equations and 3 unknowns. The unknowns are mass flow 
rate, outlet temperature, and outlet flow area.  The equations are the conservation 
equations of mass and energy as well as the equation of state.  In the absence of 
heat and work, and in steady state steady flow conditions, Equation IIa.6.5 simpli-
fies to: 

2/2/ 2
22

2
11 VhVh +=+

At 60 bar and 350 C for superheated steam we find v1 = 0.0423 m3/kg and h1 = 
3043.67 kJ/kg.  Substituting in the energy equation, we find, h2 = 3043.67 +(102 – 
5002)/2000 = 2918.7 kJ/kg.  Having P2 and h2, from the steam tables we obtain v2

= 0.0907 m3/kg and T2 = 264.5 C.  From mass balance between inlet and outlet of 
the control volume we obtain: 

222111 AVAVm ρρ ==

Substituting, 0907.0/)500(0423.0/)01.010( 2A×=× , we find A2 = 4.3 cm2.

7.3. Conservation of Mass & Energy; Turbines 

In turbines the potential and kinetic energy changes are generally negligible.  
Since turbines are insulated, the rate of heat transfer from turbines to the surround-
ings is also negligible compared to other terms in the energy equation. 

Example IIa.7.2.  Superheated steam enters a turbine at 7 MPa, 350 C, and a mass 
flow rate of 5000 kg/h.  Steam leaves the turbine at 7 bar and a quality of 88%.  
The heat loss from the turbine is 13 kW.  Calculate the rate of shaft work devel-
oped by the turbine. 
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kg/h5000=m

kW13=Q

sW

1

2

P1 = 7 MPa
T1 = 350  C

P2 = 0.7 bar
x2 = 0.88

v

T

Solution:  To find the power output, we use Equation IIa.6.6: 

2211 hmWQhm s +=−

We need to find the inlet and exit enthalpies.  At state 1, for superheated steam we 
find h1 = 3016.6 kJ/kg and at state 2, for a saturated mixture we find hf2 = 376.47 
kJ/kg and hfg2 = 2283.23 kJ/kg.  Having steam quality of x2 = 0.88, h2 = 376.47 + 
0.88 ×  2283.23 = 2359.31 kJ/kg.  From the conservation of mass we have 

21 mm = .  The rate of shaft work can then be calculated from Equation IIa.6.6 as: 

3.2359)3600/5000(136.3016)3600/5000( ×+=−× sW

or 900≈W  kW.  Note that the rate of heat loss to the surroundings is assigned a 
minus sign.

Ignoring heat loss, it is seen that the power produced by a turbine 
)( eis hhmW −=  depends on the mass flow rate and the change in enthalpy.  To 

increase power for a fixed mass flow rate, we need to increase hi and to lower he.
Raising pressure, raising temperature, or raising both pressure and temperature can 
increase inlet enthalpy, hi.  The effects of raising Pi and Ti are discussed in Chapter 
IIb.  The outlet enthalpy can also be reduced by lowering pressure at the outlet.  
This is the key feature in the design of condensers.  Also note that in the design of 
steam turbines, it is important to ensure that dry steam flows in various stages of 
the turbine as moisture associated with the low-quality steam causes corrosion 
damage to turbine blades. 

7.4.  Conservation of Mass & Energy; Compressors 

There are varieties of compressors to pressurize gases, including axial flow, recip-
rocating, rotary blower, sliding-vane, and screw-type rotary compressors. 

Example IIa.7.3 . Find the mass flow rate delivered by a 300 kW air compressor 
with a compression ratio of 6.  The maximum rate of heat loss from the compres-
sor is estimated as 10 kW.  Treat air as an ideal gas. 
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Ws = 300 kW
.

Q = 10 kW
.

P1 = 1 bar
T1 = 20.0 C
A1 = 0.2 m2

P2 = 6 bar
T2 = 200 C
A2 = 0.1 m2

Control Volume

Control Surface

P

v

1

2

Ws
.

Solution:  To find the mass flow rate, we consider a steady state condition and 
treat air as an ideal gas.  Not having the velocities, we first assume that the change 
in kinetic energy is negligible. Equation IIa.6.6 simplifies to: 

2211 hmWQhm s +−=−

From mass balance, we find that 21 mm = = m .  We also note that both Q  and 

W  terms have minus signs as heat is lost to the surroundings and work is deliv-
ered to the system.  We then solve for mass flow rate:
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Now we can back calculate velocities.  For this, we need to find specific volumes:
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We find velocities from AmV /v= .  At the inlet, 72.62.0/84.06.11 =×=V

m/s.  At the outlet V2 = 3.62 m/s.   
The change in kinetic energy is |(3.62)2 – (6.72)2|/2 = 16 kW/kg.  This is about 9% 
of the change in enthalpy.  We should then correct the mass flow rate in Equa-
tion IIa.6.6 by including the inlet and exit kinetic energies:
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Solving for the mass flow rate:
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Substituting, we find the updated mass flow rate as 76.1=m  kg/s.  We then up-
date the change in kinetic energy and continue the iteration until we find the final 
mass flow rate as 1.81 kg/s.
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7.5.  Conservation of Mass & Energy; Pumps 

The same fundamentals applied to compressors are applicable to pumps.  How-
ever, pumps pressurize liquids with much higher density than gases.  Therefore, 
the change in the potential energy of the liquid is substantial and must be consid-
ered in the energy equation. 

Example IIa.7.4.  Find the pumping power for steady flow of 360 gpm water in 
the pipeline below.  Ignore frictional losses. 

Control
Surface

P1 = 15 psia
PumpT1 = 70 F

D1 = 3 in

P2 = 25 psia
T2 = 70 F
D2 = 2 in

Control
Volume

1

2

v

P

H = 100 ft

Solution:  We should use Equation IIa.6.5:

)2/()2/( 22
eeesiii gZVhmWQgZVhm +++−=−++

For subcooled water, density and specific volume are practically functions of tem-
perature.  Hence, from the steam tables, v1 = v2 = 0.01605 ft3/lbm.  Also, h1 = 
38.09 Btu/lbm and h2 = 38.12 Btu/lbm.  Note that;

2 1 2 1 2 1[ v ( )] [ v ( )] v ( )( )f f sat f f sat fh h h P P h P P T P P− ≈ + − − + − = −

We can verify this by substituting h2 – h1 = 38.12 – 38.09 = 0.03 Btu/lbm. 

Also vf(P2 – P1) = 0.01605(25 – 15) × (144/778) = 0.0297 Btu/lbm.  Hence, for 
pumps: 

pumpfpump PTh ∆≅∆ )(v                          IIa.6.7 

Let’s now calculate the change in kinetic energy.  For this, we need the inlet and 
outlet velocities.  These can be found from 222111 AVAVm ρρ == .  The volumet-

ric flow rate is 360/(60 × 7.481) = 0.8 ft3/s.  Inlet flow area is A1 = π 4/2
1D  = 

0.049 ft2.  Therefore, the inlet velocity becomes V1 = 0.8/0.049 = 16.3 ft/s.  The 

outlet flow area is A2 = π 4/2
2D  = 0.0218 ft2 and V2 = 36.67 ft/s.  The change in 

kinetic energy is:
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02.0)7782.322/(]3.1667.36[2/)( 222
1

2
2 =××−=−VV Btu/lbm 

We now find the change in potential energy;

zg∆ = 32.2 × 100/32.2 = 100 ft⋅lbf = 100/778 = 0.128 Btu/lbm

Substituting into Equation IIa.6.5 and setting the rate of heat loss equal to zero, 
yields:

9.8]128.002.003.0)[01605.0/8.0( =++=sW Btu/s 

A power of 8.9 Btu/s = 32036 Btu/h = 9.4 kW = 12.6 hp should be delivered to the 
pump.  Actual power needed by the pump is more than 12.6 hp due to the me-
chanical and hydraulic losses in the pump, as discussed in Chapter VIc.

7.6.  Conservation of Mass & Energy; Heat Exchangers 

To demonstrate the conservation of mass and energy equations for heat exchang-
ers, two examples are presented here.  The first example deals with an open feed-
water heater (also referred to as deairator), in which the incoming streams mix. 

Example IIa.7.5.  Steam at quality x enters an open feedwater heater and after 
mixing with subcooled water, leaves as saturated water.  Find the steam quality at 
the inlet port of the feedwater heater. 

.P1 = 60 psia
m1 = 200 lbm/s

(414 kPa)
(90.7 kg/s)

P2 = 60 psia
h2 = 70 Btu/lbm

(414 kPa)
(163 kJ/kg)

m2 = 800 lbm/s. (362.8 kg/s)

1

2

3

Open
 Feedwater

 Heater

Control
 Volume

Control
 Surface

12

3

P

v

Solution:  For steady state operation, we use Equation IIa.5.4 for mass balance: 

321 mmm =+

Also from Equation IIa.6.6 for energy balance, with the rate of shaft work, the rate 
of heat loss, and the rate of change in the kinetic and potential energies set to zero 
we find:

332211 hmhmhm =+

From the steam tables, h3 = hf(60 psia) = 262.2 Btu/lbm and hfg(60 psia) = 915.4 
Btu/lbm.  Hence:

200 (262.2 + 915.4 x1) + 800 × 70 = (200 + 800) × 262.2
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Solving for the steam quality, we find x1 = 0.84.

In the next example, we consider a steam generator of a PWR and will apply 
the conservation equations of mass and energy in conjunction with the equation of 
state to solve for the unknown parameters. 

Example IIa.7.6.  Subcooled water flows in the tubes of a steam generator in 
steady state condition.  It leaves tubes with an enthalpy drop of 66.5 Btu/lbm.  
Find the rate of steam production and the rate of heat transfer from tubes for the 
given data. 

Tube
Region

Tube
Bundle
Region

Tube
Bundle
Region

Tube
Region Control

Surface

Q

m1 = 40,000 lbm/s
.

Insulation

T2 = 550 F
       (288 C)

P1 = 2250 psia
       (15.5 MPa)

P4 = 900 psia (6.2 MPa)

m2

.

m4

m3

.

.
.

1
2

3 4

T

v

Solution: We use Equation IIa.5.4 for mass balance and Equation IIa.6.6 for en-
ergy balance.  There is no shaft work and the rate of change in the kinetic and po-
tential energies is negligible.  For the tube region: 

2211 hmQhm =−

For the tube bundle region:

4433 hmQhm =+

Adding these equations and substituting from steady state continuity equation 
( 21 mm =  and 43 mm = ), we obtain: 

)()( 343211 hhmhhm −=−

Since h1 – h2 = 66.5 Btu/lbm and h4 – h3 = hfg(900 psia) = 669.7 Btu/lbm. 
Therefore, the rate of steam production is: 

39727.669/5.66000,403 =×=m  lbm/s, ≈ 14.3 × 106 lbm/h (1800 kg/s). 

7.7.  Conservation of Mass & Energy; Valves 

Valves that are used to control or throttle the flow rate accomplish this by intro-
ducing pressure drop to the flow.  To analyze the effect of a valve on the flow, we 
may apply the first law of thermodynamics to a control volume taken around the 
valve.  For this control volume, the change in potential energy is negligible.  There 
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is also no work transfer and the rate of heat transfer is negligible, too.  Combining 
the steady state mass and energy balance equations (Equation IIa.6.6), we obtain: 

2/2/ 22
eeii VhVh +=+

In general, the kinetic energy terms are small compared with the enthalpies.  
Therefore, the process of flow going through valves and orifices can be considered 
isoenthalpic ei hh =

Example IIa.7.7.  Steam at 900 kPa, 350 C, and a rate of 500 kg/s flows through a 
bypass pipe having a diameter of 1 m.  The pipe is equipped with a partially open 
valve through which steam flows in a steady state condition.  If the valve causes a 
650 kPa pressure drop, find the steam temperature at the valve outlet. 

Solution: First, we find h1 (0.9 MPa & 350 C) = 3158 kJ/kg and ρ1 = 1/0.314 = 
3.185 kg/m3.  We calculate velocities to show kinetic energies are small as com-

pared with the fluid enthalpy.  A1 = 785.04/12 =π  m2 so that V1 = 500 / (0.785 ×
3.185) = 200 m/s.  This amounts to K.E. = V2/2 = 2002/2 = 20 kJ/kg.  Thus; h2 ≈
3094 kJ/kg.  Having P2 = 900 – 650 = 250 kPa and h2 = 3094 kJ/kg by iteration 
with the steam tables we find a steam temperature of about T2 ≈  308.5 C.

In the above example, we dealt with superheated steam entering and leaving the 
valve.  If instead of steam, a liquid was flowing in the pipe and through the valve, 
we should use extra caution to ensure that the induced pressure drop to the flow 
would not result in flashing of the liquid.  The flashing mechanism or partial va-
porization of liquid would change the flow characteristics and may result in cavi-
tation, as described in Chapter VIc. 

7.8.  Conservation of Mass & Energy;  
Heating Rigid Vessels of Constant Mass 

Consider a rigid vessel containing a two-phase mixture.  We want to study the 
heating of the mixture in this rigid vessel with no mass entering or leaving the sys-
tem.  As shown in Figure IIa.7.3, the vessel is initially at pressure P1.  The control 
volume in this case can be viewed as a control mass.  Since water and steam coex-
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ist in the vessel at equilibrium, both water and steam are saturated at system pres-
sure.  Heat is now added until the vessel contains only saturated steam at pressure 
P2.  The goal is to find the amount of heat added to the vessel. 

The mixture mass and volume have remained the same throughout the heat up 
process.  Therefore, v1 = v2 = V/m.  This isochoric process is shown in the Pv dia-
gram of Figure IIa.7.3. 

1

2

P

v

Saturated
steam

Two-phase
mixtureQ

Control
volume

Control
volume

 P2

P1

State 1 State 2

Figure IIa.7.3.  Heating up a vessel containing saturated mixture 

Before we embark on the solution, we must emphasize an important aspect of 
dealing with such problems.  In Figure IIa.7.3, we have used one control volume 
to represent the entire mixture in the vessel.  Stating that heat is transferred to the 
vessel implies that the separated regions of water and steam have no explicit 
meaning when represented with one control volume.  Such lumped treatment of 
the problem does not allow specification of whether heat is added to the water or 
to the steam region.  To obtain more details, we should at least assign one control 
volume to the water region and one to the steam region.  To obtain even more in-
formation such as the temperature distribution in the water region, we must break 
down the water region into many more control volumes and apply the mass and 
energy equations to each control volume. Thus the allocation of only one control 
volume to the entire vessel implies that water and steam are homogeneously 
mixed at a given steam quality. This topic is discussed in more details in Section 5 
of Chapter VId.  

Returning to the heat up of the mixture in a rigid vessel, in order to find the 
amount of heat transfer to the vessel (Q), we must find at least two properties at 
state 2 in Figure IIa.7.3.  In the case of Figure IIa.7.3 where only heat is added to 
the system, the vessel can be treated as a closed system.  Thus, from the continuity 
equation we find that m2 = m1 = m.  The first state property is v2 since we know V 
and m hence, v2 = V/m.  The second property is obtained from the fact that fluid is 
saturated steam at P2 (i.e., the steam quality at state 2 is x2 =100%).  If we have a 
function for v2 = f(P2), we can solve for P2.  Otherwise, we use the steam tables 
for P2 = Pg(vg = v2).

Having thermodynamic properties of both states 1 and 2, we can find heat 
transfer from the conservation equation of energy.  The energy equation IIa.6.2 
can be simplified for the following reasons.  First, the work term drops as the 
closed system also has rigid boundary.  Second, the kinetic energy terms drop as 
the system is at rest.  Finally, the change in the potential energy (due to the change 
in mixture density) is negligible compared with the change in the internal energy.  
Therefore, Equation IIa.6.2 becomes: 
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Q12 = U2 – U1

It must be emphasized that, in practice, tanks must be equipped with pressure-
relief valves as heating up an isolated tank would eventually lead to catastrophic 
failure of the tank.  Rapid pressurization occurs if tanks are filled with liquids due 
to the lack of compressibility of the so-called “water-solid” systems. 

Example IIa.7.8.  A tank of 1500 ft3 (42.5 m3) contains steam at P1 = 1000 psia (7 
MPa) and x1 = 0.25.  Heat is added to the tank until steam quality becomes x2 = 
100%.  Find the heat transfer to the tank. 

Solution:  This is a closed system for which mass remains constant during the heat 
up process.  Also the tank is rigid so volume remains constant.  Hence, v1 = v2.  To 
find mass and initial internal energy, we obtain:

P  vf  vfg uf ufg

(psia)              (ft3/lbm)           (ft3/lbm)            (Btu/lbm)            (Btu/lbm)
1000  0.02159   0.42436      538.6          110.4

Hence, v1 = 0.02159 + 0.25(0.42436) = 0.12768 ft3/lbm.  This gives m = V/v1 = 
1500/0.12768 = 11748 lbm.  Also u1 = 538.6 + 0.25(1110.4) = 816.2 Btu/lbm.  
Since v2 = v1 = 0.12768 and the final state is saturated steam; P2 = Pg(v2) = Pg(v = 
0.12768 ft3/lbm)
A search in the steam tables for vg = v = 0.12768 ft3/lbm gives P2 = 2530 psia.  At 
this pressure, u2 = ug(P = 2530 psia) = 1030 Btu/lbm.  Hence, Q = m(u2 – u1) = 
11748(1030 - 816.2) = 2.5E6 Btu (2.64E6 kJ).

Could have we solved this problem if we were only told that state 2 was super-
heated steam at P = 1000 psia?

7.9.  Conservation of Mass & Energy;  
Heating Rigid Vessels at Constant Pressure 

Let’s now consider boiling water in a rigid vessel as shown in Figure IIa.7.4.  The 
vessel is equipped with a control valve to discharge steam and maintain pressure 
at a desired value.  To determine the steaming rate, we allocate two control vol-
umes to the water and the steam regions.  The makeup water, also known as feed-
water is added to the vessel to maintain water level at a desired value.  If there was 
no make up water to replenish the loss of inventory, the vessel would dry out.  
Heating up water in a vessel without providing any makeup water constitutes a 
transient problem.  To have a heat addition process at steady flow and steady state 
condition, makeup water is added so that the mass flow rate of steam becomes ex-
actly equal to the mass flow rate of the makeup water.  This is shown in Fig-
ure IIa.7.4(a).  The make up water may be subcooled as shown in Figure IIa.7.4(b) 
or saturated as shown in Figure IIa.7.4(c).  If the makeup water is subcooled some 
of the heat is used to bring the subcooled water to saturation.   
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Figure IIa.7.4.  Adding heat to a vessel at constant pressure 

From the conservation equation of mass for steady flow and steady state condi-
tions, mmm ei == .  Also from the conservation equation of energy, 

eeiii hmQhm =+ .  Therefore, the steaming rate is found as: 

ig hPh
Q

m
−

=
)(

               IIa.7.1 

As shown in Figure IIa.7.2-c, if the feedwater is saturated at pressure P (hi = hf),
Equation IIa.7.1 reduces to: 

)(Ph

Q
m

fg
=                 IIa.7.2 

Note that, for a given rate of heat transfer, the steaming rate at a higher pressure is 
higher than the steaming rate at a lower pressure.  This is due to the decrease in 
the latent heat of vaporization of water as pressure increases (Figure IIa.3.4). 

8.  Applications of the First Law, Transient 

In practice, prior to establishment of steady state conditions, unsteady state or 
transient operation prevails.  Transient operation can also be imposed on a system 
operating at a steady state condition.  Consider for example, the steady flow of 
steam in a pipe when a fully open valve is throttled to a new partially open posi-
tion.  The flow of steam goes through a transient to reach a new steady state con-
dition corresponding to the new position of the valve.  We solve transient prob-
lems similar to problems for steady state condition by using the conservation 
equations of mass and energy as well as the equation of state.  For a process that 
brings the control volume from state 1 at time t1 to state 2 at time t2, we find the 
mass at state 2 by integrating Equation IIa.5.1: 
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Example IIa.8.1.  Water is flowing in a 6 cm inside diameter pipe at a velocity of 
0.75 m/s.  The pipe discharges into an initially empty tank having a volume of 0.3 
m3.  How long will it take to fill the tank? 

Solution:  We first find the mass flow rate of water at atmospheric condition (v = 
0.001 m3/kg) as: 

=inm VA/v = 0.75 × [π(0.06)2/4]/0.001 = 2.12 kg/s. 

From Equation IIa.5.3 we have; dm/dt = outin mm −  = 2.12 – 0 = 2.12 kg/s.   

Hence, dm = 2.12dt.  Integrating: m2 – m1 = 2.12t.  Since m1 = 0, and m2 = Vtank/v = 
0.3/0.001 = 300 kg, we find t = 300/2.12 = 141 s.

Similarly, we find the internal energy of the control volume at state 2 by inte-
grating Equation IIa.6.4: 
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               IIa.8.2. 

ignoring changes in the K.E. and P.E.  In the following examples, simple transient 
cases involving filling and draining containers are discussed.  These include both 
cases of liquid and gas.   

8.1.  Dynamics of Mixing Tanks 

Shown in Figure IIa.8.1 is a simple case of simultaneous filling and draining a 
heated mixing tank at atmospheric pressure.  The tank is fed through several inlet 
ports.  The shaft work is performed by the mixer and a heater may add heat to the 
water in the tank.  Using the conservation equations of mass and energy, we can 
obtain two parameters in terms of other known data.  For example, if the inlet 
mass flow rates, inlet enthalpies, mixer power, and the heater power are specified, 
we can solve for the mass and temperature of the tank water versus time.  To per-
form this analysis, we make several assumptions: a) negligible K.E. and P.E.
changes, b) perfect and instantaneous mixing, c) subcooled water in the tank 
throughout the process, d) no chemical reactions, e) no heat loss from the tank, 
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and f) constant tank pressure throughout the process.  Applying these assumptions, 
Equation IIa.6.4-1 becomes:

dt

mhd
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Figure IIa.8.1.  Schematic of a simple mixing tank 

We now take the derivative of the last term in the right side and substitute from 
Equation IIa.5.1 to find 
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where we used the perfect mixing assumption, which implies that he = hC.V..  The 
mass of water in the tank is a function of time.  For example for constant mass 
flow rates into and out of the tank, Equation IIa.5.1 predicts that the tank water 
mass varies linearly with time: 

( ) ( ) tmmmm e
i

iVCVC −+= ..o..

whre (mo)C.V. is the initial mass of water in the tank.  Upon substitution of (m)C.V.

into Equation IIa.8.3, we obtain a linear first-order differential equation for he.  A 
general solution to such differential equations is given by Equation VIIb.2.4.  De-
pending on the complexity of the functions representing the heater power, the 
shaft work, the inlet and exit mass flow rates, we may have to resort to numerical 
solutions, from which we obtain: 
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Implicit:
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where n is a time step index.  In the above solution, a semi-implicit scheme is used 
(see Chapter VIIe and Problem 101). 

Recall that for subcooled water dh ≅  cpdT.  Assuming constant specific heat 
and substituting in the explicit scheme, for example, we find the water temperature 
at every time stop as: 
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Example IIa.8.2.  Flow enters a fully insulated tank from two inlet ports and 
leaves through one outlet port.  Find water level in 30 minutes.  Assume instanta-
neous and perfect mixing.  Tank volume is 100 ft3, cross sectional area is 10 ft2,
initial water volume is 5 ft3, and initial water temperature in the tank is Ttank = 
100 F. 

Control Volume

me = 1 lbm/s

A = 0.03 ft2

V = 1.00 ft/s
P = 15.0 psia
T = 150.00 F

A = 0.04 ft2

V = 0.65 ft/s
P = 15.0 psia
T = 200.00 F

.

Vwater = 5.0 ft3

Twater = 100 F

(h = 168.09 Btu/lbm)

Atank = 10.0 ft2

Vtank = 100 ft3

(h = 117.98 Btu/lbm)

Solution:  To find water level as a function of time, we first need to find water 
volume by dividing the mass of water by the density of water in the tank.  Water 
level is then obtained by dividing water volume by the tank cross sectional area.  
Since there is no heat or work transfer to or from the control volume, temperature 
of water at each time step is found from the simplified form of Equation IIa.8.4: 

( )
1 1 1 1 1 2 2 2 2( ) ( )

/

n n
n n e e

e e n
p

V A T T V A T T
T T

m t c
ρ ρ+ − + −= +

∆

where we assumed constant specific heat.  Initially (i.e., at time zero n = 0), the 

temperature, mass, and level of the tank water are 0=n
eT  = 100 F, mn= 0 = 5 ft3 × 

62 lbm/ft3 = 310.56 lbm, and Ln = 0 = 0.5 ft, respectively.  We now choose a time 

step size of ∆t = 0.1 s, for example, and find 1=n
eT  at t = 0 + 0.1 = 0.1 s.  Having 

found 1=n
eT , we proceed to find 2=n

eT  for time t = 0.2 s.  We continue this process 

until t = 1800 s.  The FORTRAN program representing the numerical solution is 
included on the accompanying CD-ROM.  From the program we find that in 30 
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minutes, water temperature reaches to about 171.4 F at a level of 7.5 ft from the 
bottom of the tank, as plotted in the figure. 
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8.2.  Charging Rigid Vessels (Fixed C.V.) with Gas 

Shown in Figure IIa.8.2(a) is a tank connected to a charging line carrying pressur-
ized gas at a known temperature.  Initially, the intake valve is closed and the tank 
containing the same gas is at pressure P1 and temperature T1.  Figure IIa.8.2(b) 
shows the condition in the tank after the intake valve is opened.  Figure IIa.8.2(c) 
shows the final state when the intake valve is closed.  For a given initial condition 
of the vessel and the inlet enthalpy of the filling gas, we identify two cases to 
solve.  In case A, having final pressure in the tank, we want to find the final gas 
temperature and the average gas mass flow rate entering the tank.  In case B, for a 
given average mass flow rate of the filling gas, we want to find final pressure and 
temperature of the gas in the tank.   

P1 & T1

mi
&
 hi

P(t) & T (t) P2 & T2

(a)                                                     (b)                                                  (c) 

Figure IIa.8.2.  Charging rigid vessels with gas and the associated control volume 

Case A.  For Given P2, Find T2 and im :

As shown in Figure IIa.8.2, the control volume representing the rigid tank contains 
air and is initially at pressure P1 and temperature T1.  The intake valve is opened to 
allow the flow of air into the tank from a high-pressure source.  The valve is 
closed when the pressure in the tank reaches the specified value of P2.  The goal is 
to find the average mass flow rate of air entering the tank during the charging 
process.   

In this case, there is no heat transfer, no shaft work, and no mass leaving the 
control volume.  Therefore, Equation IIa.6.6 simplifies to: 
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ii
VC hm
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From the conservation equation of mass (Equation IIa.5.1) we have 

iVC mdtdm =/.. .  Substituting, we get: 

dt

dm
h
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VC ....)(
=

Treating air as an ideal gas (du = cvdT), hi as a constant, and integrating from the 
initial state (P1 and T1) to the final state where P2 is specified yields: 

)( 12
2
1 ..1122 mmhdmhTcmTcm iVCivv −==−

So far, we have one equation and two unknowns, m2 and T2.  We increase the 
number of equations by using the equation of state for state 2: 

P2V = m2RuT2 /Mair

where V2 = V1 = V.  Substituting for m2T2 from the equation of state in the energy 
equation we find m2:
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Total mass entering the tank is therefore mi = m2 – m1 and the average mass flow 
rate is found from  

τ/ii mm =

where τ is the time it took to bring the tank pressure from P1 to P2.  By eliminating 
m2 between the energy equation and the equation of state, we can also obtain an 
expression for T2 as: 
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where we have substituted for hi = cpTi and then γ = cp/cv.
Example II.8.3.  A well-insulated tank contains air at 110 kPa and 40 C with the 
isolation valve closed.  We now open the valve and let pressurized air enter the 
tank.  We close the valve in 6 seconds when pressure in the tank reaches 130 kPa.  
Find the amount of air that has entered the tank.  Mair = 28.97 kg/kmol. 
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P = f1 (t)
T = f 2(t)

Pi = 140 kPa, Ti = 200 C

P1= 110 kPa
T1 = 40 C

   V = 1 m3

P2 = 130 kPa
T2 = ?

Pi = 140 kPa, Ti = 200 CPi = 140 kPa, Ti = 200 C

   V = 1 m3    V = 1 m3

timetime

Solution: P1 = 110 kPa, T1 = 40 C (313 K), V = 1 m3.  Initial mass of air in the 
tank is: 
m1 = P1V/RT1 = 110 × 1/[(8.314/28.97) × 313] = 1.22 kg 
We find hi, assuming constant cp:
hi – href = cp(Ti – Tref) = 1.0(200 + 273 – 0) = 473 kJ/kg (note href = 0 at Tref = 0 K).

To find m2, we may use Equation IIa.8.4 (or find T2 from Equation IIa.8.5 then m2

from m2 = P2V/RT2):

33.1
473

)]27340(72.0473[22.1)]314.8/97.28(72.01130[
2 =+×−+×××=m kg

The mass of air entering the tank is therefore 1.33 – 1.22 = 0.11 kg.  To find the 
average flow rate, we divided m2 – m1 by the charging duration: 0.11/6 ≅  0.02 
kg/s.  To find T2, we use the equation of state: 

T2 = P2V/m2R = 340 K = 67.6 C. 

In Example IIa.8.3, we were able to find an analytical solution in a closed form 
because the working fluid could be treated as an ideal gas, allowing the use of a 
simple equation of state.  The reader may try the above example with steam being 
the working fluid.  In the first try, assume that the container is initially evacuated.  
In the second try, assume that the container has steam at atmospheric pressure and 
121 C (250 F). 

Case B. For Given im , Find P2 and T2:

Given the initial conditions, our goal is to find the final pressure and temperature 
of a rigid vessel versus time while the vessel is being charged with an ideal gas at 
a specified mass flow rate and enthalpy.  We follow the same procedure as in Case 
A and this time solve the equation for T2:

T2 = (m1u1 + mihi)/(m1 + mi)cv

Having T2, and m2, we can find P2.

Example IIa.8.4.  A pressure vessel has a volume of 100 ft3 (2.83 m3).  It contains 
air at 1000 psia (~7 MPa) and 150 F (65.5 C).  A valve is now opened and highly 
pressurized air at a rate of 1 lbm/s (0.453 kg/s) and a temperature of 292 F (144.4 
C) enters the vessel.  Determine the gas pressure and temperature in the vessel af-
ter 1 minute of charging.  Rair = Ru/Mair = 1545/28.97 = 53.33 ft⋅lbf/lbm·R. 
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Solution: m1 = P1V/RairT = (1000× 144)× 100/(53.33× 610) = 442.9 lbm (200 
kg)
T2 = [442.9 ×  0.171× 610 + (1 ×  60) ×  0.24 ×  752]/[(442.9 + 1 ×  60)× 0.171]
= 663 R = 203 F (95 C).

m2 = m1 + =∆tm  442.9 + 1 60×  = 502.9 lbm (228 kg)
P2 = m2RairT/V = 502.9 × 53.33 × 663/100 = 1235 psia (8.5 MPa).

8.3.  Charging Vessels with Gas (Expanding C.V.) 

A cylinder equipped with a frictionless piston contains air at pressure P1 and tem-
perature of T1.  Our goal is to find the mass of the air entering the cylinder when 
the air temperature at the final state reaches T2.  As shown in Figure IIa.8.3(a), at 
the intitial state (P1, T1) the intake valve is closed.  In Figure IIa.8.3(b), the intake 
valve has opened, allowing air to enter the control volume.  Figure IIa.8.3(c) 
shows the final state where the intake valve is again closed and the air temperature 
has reached T2.  Since the piston is allowed to move, the pressure of the air in the 
cylinder remains at P1 throughout the filling process.  The moving boundary also 
requires accounting for the work performed by the piston moving against the at-
mospheric pressure.   

P1
T2

mi
&
 hi

P1
T(t)

.
P1
T1

  (a)                                   (b)                                   (c) 

Figure IIa.8.3.  Charging expanding control volumes: (a) initial state, (b) filling process, 
and (c) final state 

We now integrate the conservation equations for mass and energy from state 1 
to state 2.  From the continuity equation, the mass of gas at the final stage is given 
as:

m2 = m1 + mi

and from the conservation equation of energy we conclude that: 

m1u1 + mihi + Q = P(V2 – V1) +m2u2

We have two equations and three unknowns, mi, m2, and u2 for specified m1, u1, hi, Q,
P, V1, and V2.  Treating air as an ideal gas, the equation of state becomes PV2 = 
m2RT2, which also satisfies the volume constraint (v2 = V2/m2).  We now solve for mi:

mi = [cvPV2/R – m1u1 – Q +P(V2 – V1)]/hi            IIa.8.6 
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Example IIa.8.5.  A cylinder has an initial volume of 1.0 ft3 and contains air at 15 
psia (0.1 MPa) and 120 F (49 C).  Air at 150 psia (1 MPa) and 250 F (121 C) is in-
jected into the cylinder, pushing the piston to a new position where V2 = 3V1.  In 
the process, 0.2 Btu (211 J) heat is transferred from the cylinder to the surround-
ings.  Find the mass of air entering the cylinder and the final air temperature in the 
cylinder. Rair = Ru/M = 1545/28.97 = 53.33 ft⋅lbf/lbm·R and cv = 0.171 Btu/lbm·R. 

Solution: m1 = PV1/RT1 = (15× 144) ×  1/[53.33(460 + 120)] = 0.07 lbm 
mi = [0.171× (15 ×  144)× 3/53.33 – 0.07× 0.171× 580 – (–0.2) + 15× 144
(3 – 1)/778]/(0.24× 710)

mi = 0.115 lbm (0.05 kg) 
T2 = 15 ×  144 ×  3/[(0.07 + 0.115) ×  53.33 = 657 R = 197 F (92 C).

8.4.  Discharging Gas-Filled Rigid Vessels (Fixed C.V.) 

Determination of the rate of depressurization of vessels filled with fluids under 
pressure poses a challenging task, especially when the vessel is filled with liquid.  
Depending on fluid pressure and the rate of discharge, the liquid may change 
phase and flash to vapor.  Vessel depressurization and flow of two-phase mixture 
through pipes are discussed in Chapter Va.  Here we deal with an easier task of 
analyzing the depressurization of rigid vessels filled with an ideal gas in an isen-
tropic process.  For non-isentropic processes, see the accompanying CD-ROM. 

The vessel is the control volume. In this ideal process there is no heat transfer 
and we assume that the depressurization process is reversible.  Therefore, from 
Equation IIa.4.4 we have Tvγ-1 = constant.  Also the volume constraint requires 
that V = mv = constant.  Taking the derivative of the isentropic relation, we find: 

v

v
)1(

d

T

dT γ−=               IIa.8.7 

Similarly, the derivative of the volume constraint yields: 

v

vd

m

dm −=                IIa.8.8 

Solving these equations simultaneously, we find that at any point in time we have: 
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Substituting from Equation IIa.4.5 into Equation IIa.8.9 yields: 
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We may also integrate Equation IIa.8.8 to obtain a relationship between mass and 
specific volume or between mass and density. 

Example IIa.8.6.  A tank is filled with air.  A valve is opened to vent the tank.  If 
pressure drops to 1/3 of its initial value find a) the mass of the gas left in the tank 
and b) final air temperature.  The process is isentropic.  Data: V = 2 m3, P1 = 6 
bar, T1 = 230 C.  Equilibrium within the tank during the process. 

Solution:  Treating air as an ideal gas, the initial mass of air is found as:

kg313.8
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Rapid discharge of pressurized vessels induces thermal stresses in the vessel wall 

8.5.  Dynamics of Gas Filled Vessels 

Earlier we derived the mass and enthalpy of mixing tanks containg a liquid at con-
stant pressure.  We want to extend the derivation to vessels containing a gas.  We 
consider a general case of simultaneous charging of the vessel with the same gas 
at several inlet ports and discharging the vessel while heat and shaft work are 
added to the vessel as shown in Figure IIa.8.4.  The derivation in this case is 
mathematically more involved since the gas pressure in the tank changes with 
time.  Like before, the simplyfing assumptions include a) negligible changes in the 
K.E. and P.E., b) instantaneous and perfect mixing of the incoming streams with 
the gas in the tank, c) no chemical reaction takes place in the tank throughout the 
process, and d) no heat loss from the tank to the surroundings.  Expanding the 
time derivative term in Equation IIa.6.4-1, using the pefect mixing assumption (he

= hC.V.) and substituting from Equation IIa.5.1, we obtain: 

( )
dt

dP
WQhhm

dt

dh
m sii V+Σ−Σ+−Σ=             IIa.8.11

Since we already used the continuity and the energy equations and have more un-
knows than equations, we now take advantage of the volume constraint; VC.V. = 
(mv)C.V. = constant or alternatively dVC.V./dt = 0: 
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Figure IIa.8.4.  A mixing tank containing an ideal gas 
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We now drop the subscript C.V., substitute for dm/dt from Equation IIa.5.1, and 
ponder what to do with the dv/dt term.  Since P and h are the state variables, we 
expand dv/dt in terms of P and h, using the chain rule for composit functions: 

t
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Pdt
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             IIa.8.13 

Having all the ingredients, we proceed to substitute for dv/dt from Equa-
tion IIa.8.13 and for dh/dt from Equation IIa.8.11 into Equation IIa.8.12.  We then 
rearrange the resulting equation and solve for dP/dt:

( ) ( )[ ]( )
( ) ( )PPm

hWQhhmmm

dt
dP siiei

∂∂+∂∂
∂∂Σ+Σ+−Σ+Σ−Σ

−=
/vV/v

/vv
         IIa.8.14 

At the first glance, Equation IIa.8.14 appears intimidating especially since we have 
introduced such unfamiliar terms as ∂v/∂h and ∂v/∂P.  However, this equation can 
be easily solved by finite difference, for example.  As for the partial derivative 
terms, the equation of state comes to our rescue.  If we are dealing with ideal gases 
Pv = RT and therefore, v = RT/P.  We also have dh = cpdT so that; 
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            IIa.8.15 

We can now find dh/dt by substituting for dP/dt from Equation IIa.8.14 into Equa-
tion IIa.8.11.  Pressure and enthalpy of the gas in the rigid vessel can then be cal-
culated by subsequent integration.   
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In this derivation, we considered only rigid vessels thus, a control volume with 
fixed boundary.  Control volumes with moving boundaries are analyzed in Chap-
ter VId. 

Example IIa.8.7.  Solve Example IIa.8.4 using Equations IIa.8.11 and II.8.14. 

Solution:  Equations IIa.8.11 and IIa.8.14 are non-linear differential equations, 
which we solve by the finite difference method.  The solution by FORTRAN is 
included on the accompanying CD-ROM.  The results are shown in the plots of P
and T versus time.  Pressure and temperature in 1 minute reach 1235 psia (8.5 
MPa) and 203 F (95 C), respectively. 
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Special Case; Isothermal Process 

Consider the rigid tank of Figure IIa.8.5.  The tank is initially at T1 and P1 > Patm.
We open a small valve and vent the tank while simultaneously adding heat to the 
tank to maintain the air temperature in the tank at its initial value.  We want to de-
termine the amount of heat added to the tank when the pressure drops to P2.

Ideal Gas

P1, T1, V

iQ

em
Control
Volume Control

Surface

Figure IIa.8.5.  Discharging gas-filled rigid vessels 

While we can solve this problem by using Equations IIa.8.11 and II.8.14, we 
instead choose the direct solution by using Equations IIa.5.1 and IIa.6.4 in addi-
tion to the equation of state.  Since there is no inlet stream, no shaft work, and 
only one exit port, Equation IIa.6.3 is simplified to:   

Qhm
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..
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The logic for setting the term involving du/dt equal to zero is as follows: du/dt = 
d(cvT)/dt.  If we assume cv remains constant then du/dt = cv(dT/dt).  Since the proc-
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process takes place at constant temperature then dT/dt = 0 thus, du/dt = 0.  We now 
substitute from the continuity equation, dm/dt = em− , to obtain: 

Qdtdmhdtdmu VCVCVC += )/()/( ......

where due to the perfect mixing assumption, we also substituted for he ≡ h.  Rear-
ranging this equation yields: 

)/()/)(v()/)](v([)/)(( dtdmRTdtdmPdtdmPuudtdmhuQ ==+−=−=

where subscript C.V. is dropped.  The amount of heat added to the tank is found 
by integrating this equation: 

)(V)( 1212
2
121 PPmmRTdmRTQ −=−==−

Example IIa.8.8.  A 0.5 m3 rigid tank is filled with air at 38 bar and 65 C.  A 
valve is opened to slowly vent the tank.  Find the amount of heat addition to the 
tank so that temperature remains at 65 C while pressure drops to 1 bar. 

Solution:  Treating air as an ideal gas, we find  

Q1-2 = 0.5 × (1 – 38) × 1E5 = –1850 kJ.   

As an exercise, solve this problem by using Equations IIa.8.11 and II.8.14.

Calculation of P and h from Equation IIa.8.11 and II.8.14 requires specification 
of such input data as heater power, shaft work, inlet enthalpy and the mass flow 
rates at inlet and exit ports.  Regarding mass flow rate at the exit port, if the con-
trol volume mass at state 2 (i.e., m2) is specified then em  can be found from Equa-
tion IIa.8.1.  Otherwise, em  is a function of tank pressure and temperature, em = f
[P(t), T(t)] and we must calculate the mass flow rate at the exit port from an addi-
tional equation.  This additional equation is the momentum equation written be-
tween the valve inlet and outlet ports.  We leave further discussion of this topic to 
Chapter IIIc.   

8.6.  Discharging Rigid Vessels (Fixed C.V.)  
Filled with Two-Phase Mixture  

In Section IIa.7.8, we examined cases where heat was added to the two-phase mix-
ture in a control volume but no mass was allowed to enter or leave the control vol-
ume.  Here we study the case of letting mass leave the control volume.  Initially, 
the vessel contains a saturated mixture of water and steam at equilibrium (state 1 
in Figure IIa.8.6).  Adding heat to a rigid vessel in an isobaric process requires 
mass to be withdrawn.  In this special case, we remove only saturated steam 
through a vent valve at the top of the vessel.  We stop adding heat to the vessel 
and removing steam from the vessel when the last drop of water becomes satu-
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Figure IIa.8.6.  Discharging steam and adding heat to a vessel at constant pressure 

rated steam (state 2 in Figure IIa.8.6).  We want to find the amount of heat needed 
for this process.   

The solution to this problem is obtained from Equation IIa.8.11.  However, for 
this isobaric process we can find an analytical solution in closed form.  In this 
process, a carefully controlled heat addition and steam removal maintains the ves-
sel pressure at its initial state throughout the isobaric vaporization process.   

Since steam leaves the vessel at constant pressure, ge mm =  and he = hg.  The  
conservation equation for energy then becomes: 

. .( ) /g g C VQ m h d mu dt= +

Multiplying both sides by dt and integrating gives;

( )112
2

1
2

1 umumdtmhdtQ ggg −+= .

We now substitute from the continuity equation to obtain: 

( ) ( )12 1 2 2 1 1g gQ m m h m u m u= − + −

We calculate m1 and m2 from the equation of state and the volume constraint, m1 = 
V/v1 and m2 = V/vg.

Example IIa.8.9.  A tank having a volume of 40 m3 contains a mixture of water 
and steam at 7 MPa and a steam quality of 0.65.  Steam is withdrawn from the top 
of the tank while heat is added in an isobaric process until the steam quality be-
comes 100%.  Find the amount of heat  added to the tank and the mass withdrawn. 

Solution: 

P                vf            vg    uf             ug          hg

(MPa)            m3/kg)             (m3/kg)          (m3/kg)            (kJ/kg)            (kJ/kg)
   7                  1.108E-3            0.2729           696.44            2572.5            2763.5 

v1 = 1.108E-3 + 0.65 × 0.2718 = 0.178 m3/kg 
m1 = 40/0.178 = 225 kg 
m2 = 40/0.2729 = 146.6 kg 
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me = 225 – 146.6 = 78 kg
u1 = 696.44 + 0.65 × (2572.5 – 696.44) = 1915.88 kJ/kg 

( ) ( )1122112 umumhmmQ gg −+−=  = 78 × 2763.5 + (146.6 × 2572.5 – 225 ×
1915.88) = 162.7 MJ

8.7.  Pressure Search for a Control Volume 

As was discussed in Example IIa.3.4, often we calculate v and u for a control vol-
ume from which we need to find the control volume pressure and temperature.  
This requires a solution based on iteration with the steam tables.  Let’s consider a 
case where the final state is a saturated mixture.  In this case, we may substitute 
for quality from v = vf + x vfg into u = uf + x ufg and obtain the following relation: 

(u - uf)vfg + (v – vf)ufg = 0 

If vf, vfg, uf, and ufg are now expressed as functions of either pressure or tempera-
ture, we can solve for pressure (or temperature) using the Newton-Raphson 
method, as discussed in Chapter VIIe. Having found pressure (or temperature), the 
corresponding saturation temperature (or pressure) can then be found.  Shown in 
Table A.II.3 are examples of curves fits to data for vf, vfg, uf, and ufg in terms of T.

Example IIa.8.10.  A tank having a volume of 500 ft3 contains a homogenous 
mixture of water and steam at 400 F.  The initial steam quality is 15%.  We now 
add 200 lbm of water at 450 psia and 350 F to the tank.  Find pressure and tem-
perature, assuming perfect mixing of water with the mixture in the vessel. 

Solution:  We follow the steps outlined below:

T (F) P (psia)       vf (ft
3/lbm)       vg (ft

3/lbm)   uf (Btu/lbm) ug (Btu/lbm)
_______________________________________________________________________________________________

400      247.26           0.01864                1.8630               372.45      1115.74 

v1 = 0.01864 + 0.15 × (1.8630 – 0.01864) = 0.2953 ft3/lbm 
m1 = 500/0.2953 = 1693.23 lbm 
u1 = 372.45 + 0.15 × 743.29 = 483.94 Btu/lbm 
m2 = m1 + madd = 1893.23 lbm.  

The enthalpy of the added water: hadd(450 psia & 350 F) = 322.24 Btu/lbm.   

Applying Equation IIa.6.4 to the control volume representing the tank gives: 
dtmudhm ii /)(= .  Integrating and solving for u2, we obtain:

add
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We also have v2 = V/(m1 + madd).  The numerical values for u2 and v2 are calcu-
lated as:  
u2 = [1693.23 × 483.94 + 200 × 322.24]/1893.23 = 466.86 Btu/lbm.   
v2 = 500/1893.23 = 0.264 ft3/lbm 

Having u2 and v2, we find P2 and T2 by iteration with the steam tables for saturated 
mixture as P2 = 239.95 psia, T2 = 297.4 F, and x2 = 0.128.  Expectedly, adding 
colder water reduces the mixture enthalpy.

9.  The Second Law of Thermodynamics 

In the previous sections dealing with the first law of thermodynamics, we stated 
that both heat and work are forms of energy.  We also showed the relationship be-
tween heat and work.  There were several observations that were missing in those 
discussions.  For example, we have noted from experience that work can be read-
ily transformed to heat whereas the reverse is not readily possible.  Furthermore, 
while 100% of work can be transformed to heat, conversion of heat to work is al-
ways less efficient.  Another important fact is the effect of temperature on storage 
of thermal energy (i.e., the higher the temperature of the stored thermal energy, 
the higher the ability to be converted into work).  Perhaps the most interesting ob-
servation regarding energy conversion is bringing a hot block of steel in contact 
with a colder block of steel.  Intuitively, we know the heat flows from the warmer 
to the colder block.  However, there is no provision in the first law to prohibit the 
flow of heat from the colder to the warmer block.  The first law is concerned only 
with the conservation of energy in a process and not with the direction of the 
process.  It is the second law that establishes the possible direction of a process.  
Another example includes the daily dumping of vast amounts of energy to the sur-
roundings at power plants where work is produced in the form of electricity.  Pro-
duction of work equal to the same amount of energy delivered to the heat source is 
not prohibited by the first law.  However, the loss of energy to the surroundings 
(i.e., the requirement for a heat sink) can be explained only if put in the framework 
of the second law of thermodynamics.  As was stated in Chapter I, unlike the first 
law, the second law is a not a conservation law. 

9.1.  Definition of Terms 

Work and heat reservoirs are two thermodynamic concepts.  A work reser-
voir is a system for which every unit of energy crossing its boundary is in the form 
of work.  Examples of a work reservoir include a perfectly insulated turbine and a 
perfectly elastic compressed spring.  The heat reservoir is a constant temperature 
body as heat is transferred into or out of the body.  A large lake acting as a heat 
sink for a power plant may be considered as a heat reservoir.  Comparing two heat 
reservoirs at two different temperatures, the heat reservoir at the higher tempera-
ture is referred to as the heat source and the heat reservoir at the lower tempera-
ture, the heat sink. 
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Heat source is referred to any hot heat reservoir.  In a gasoline engine, the heat 
source is the combustion chamber at the moment that the compressed gases are 
ignited and burn due to the action of a spark plug.  In a jet engine or gas turbine 
power plant, the heat source is the combustion chamber where compressed air en-
ters to mix with the injected fuel for combustion.  In a fossil plant, the heat source 
is the boiler.  In a BWR, the heat source is the reactor vessel and in a PWR, the 
heat source is the secondary side of the steam generator. 

Heat Sink refers to any cold heat reservoir.  In a gasoline engine, the heat sink 
is the radiator.  In a power plant located next to a large body of water, the heat 
sink is the condenser.  Power plants not having access to large bodies of water use 
cooling towers as heat sinks.  In a heated room with no windows, the heat sink 
consists of the ceiling, the floor, and the walls.  If an air conditioning unit is now 
installed to cool this room and we assume the walls quickly reach thermal equilib-
rium with the room, the primary heat sink for the room is the air conditioning unit.  
This is however, an intermediate heat sink as eventually heat is transferred to the 
surroundings.  As a result, the environment is the ultimate heat sink.

Cycle is a process that, after completion, brings the system to its original state.  
As a result, the net change in any property of the system is zero.  As an example, 
consider the motion of piston in cylinder of Figure IIa.9.1.  We may start from a 
point where the piston is fully inserted and gas is at the highest pressure.  The first 
process or path includes the expansion of the gas, which forces the piston to the 
bottom of the cylinder.  This also turns the flywheel.  The second process is when 
the stored energy in the flywheel pushes the piston back to its original position 
completing one cycle. 

Clausius statement of the second law deals with the transfer of energy from a 
heat sink to a heat source.  Simply stated, the Clausius statement specifies that “it 
is impossible for any device to operate in a cycle and produce no effect other than 
the transfer of energy by heat from the heat sink to the heat source.”  In other 
words, the Clausius statement clarifies that the operation of heat pumps and re-
frigerators is possible only if work is provided to the device (compressor) to ac-
complish the task of removing heat from a heat sink and transferring it to the heat 
source. 

Kelvin-Planck statement of the second law deals with the transfer of energy 
from a heat source to a heat sink.  This statement specifies that “it is impossible 
for any device to operate in a cycle and produce work with only a heat source.”  In 
other words, the Kelvin-Planck statement clarifies that no power plant can operate 
with a boiler, an engine, or a combustion chamber but without a radiator, a cooling 
tower, or a condenser. 

Reversible process as defined earlier refers to a process that, if applied to a 
system, can be reversed exactly to the initial state with no change in the system or 
its surroundings.  A reversible process is hard to achieve and can only be ap-
proached in a carefully planned and executed process.  Examples of processes that 
can approach a reversible process include a smooth converging-diverging nozzle.  
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Among mechanical systems that are equipped with a flywheel and have the potential 
of approaching a reversible process we may consider the periodic motion of a pen-
dulum in a vacuum container with negligible friction at the base.  Similarly, as 
shown in Figure IIa.9.1, the operation of a frictionless well-insulated piston in the 
well-insulated cylinder while attached to a flywheel approaches a reversible process. 

Gas

Frictionless
Piston

Frictionless Joints

FlywheelInsulation

Figure IIa.9.1.  A frictionless, well insulated system approaching reversible process 

To illustrate how a process can be made reversible, consider the frictionless pis-
ton in Figure IIa.9.2 fixed in place by a pin.  Pressure inside the cylinder is P1.
We now release the pin and the piston reaches the stops at pressure P2.  This proc-
ess is not reversible, because during the expansion, the piston pushes against at-
mospheric pressure.  The force needed to push the piston back to its original place 
is larger as the piston has to push against P2 > Patm.  This results in work to be de-
livered to the piston.  To approach a reversible process, consider the same piston 
but now it is attached to a linear spring with kspring = P1A/L.

It is important to remember that there are no dissipative effects upon the con-
clusion of a reversible process. 

(a) (b)

AL
P1

P2

(c) (d)

P2
P1

Figure IIa.9.2.  Transformation of a system to approach reversible process 

Irreversible process refers to any process, which is not reversible.  In pratice, 
all engineering processes are irreversible.  Friction in the form of heat loss to the 
surroundings is one of the main reasons for this irreversibility.  For example, as 
discussed in Chapter IIIb, the flow of fluids in pipelines and in the bends of con-
duits is always associated with unrecoverable pressure loss.  This is due to the 
fluid shear stresses and roughness of the pipe wall.  There are, of course, other 
types of irreversible processes such as shock waves resulting in sonic booms and 
any hysteresis effect.  Inelastic deformation where a solid does not return to its 
original dimensions following removal of the applied force is an irreversible proc-
ess.  Flow of electric current through an electric resistance produces heat, causing 
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the process to be irreversible.  Spontaneous mixing of substances of different 
compositions, and all actual heat transfer mechanisms are also examples of irre-
versible processes.  The latter is an irreversible process as to reverse the process, a 
refrigeration cycle is needed to transfer heat from the heat sink to the heat source.  
This requires transfer of work from the surroundings.  In practice, we can reduce 
certain irreversibilities by taking such actions as using smooth piping for internal 
flow, contoured or streamlined surfaces for external flow, and lubrication for solid 
to solid contact.  There are always dissipative effects upon the conclusion of the 
irreversible process.  Hence, in the design and operation of systems we must focus 
on reducing the irreversibilities associated with a system to minimize their dissipa-
tive effects and maximize efficiency. 

Internal and external irreversibilities are two categories of irreversible proc-
esses with respect to the system boundary.  Internal irreversibilities occur inside 
the boundary of a system and are associated with friction due to fluid shear 
stresses and such other processes as fluid expansion as well as fluid mixing.  Ex-
ternal irreversibilities occur across the system boundary and are associated with 
heat transfer to or from the system, friction due to the mechanical motion such as 
shaft rotation in bearing, and windage losses in electric generators.   

Reversible work, Wrev is the work done by or on a system when it undergoes a 
reversible process. 

Irreversible work, Wirr is the work done by or on a system when undergoes an 
irreversible process.  In a work producing system undergoing different paths, all 
beginning and ending in an identical change of state, the reversible work produced 
by the reversible path is the maximum work that can be obtained.  Similarly, for a 
work absorbing system undergoing different paths, all beginning and ending with 
an identical change of state, the reversible work absorbed in the reversible path is 
the minimum work that can be absorbed. 

Irreversibility, I = Wrev - Wirr is the difference between the reversible and the 
irreversible work for a system when it undergoes reversible and irreversible cycles 
beginning and ending in an identical change of state.  Since the reversible work is 
always larger than the irreversible work for work producing systems, and always 
smaller then the irreversible work for work absorbing systems, the irreversibility I
is always a positive quantity.  The irreversibility, also referred to as the lost work,
is discussed further in the next section. 

Heat engine is a work reservoir that goes through a cycle to produce work 
while heat is being transferred to and from the system across its boundary.  As 
shown in Figure IIa.9.3, heat is transferred to the heat engine from the heat source 
and is transferred from the engine to the heat sink.  Work is produced in this proc-
ess. 
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Figure IIa.9.3.  Schematic of a heat engine in steady state operation 

Thermal efficiency for a heat engine is defined as the net energy output in 
steady state operation from the engine in the form of work divided by the energy 
input to the heat engine from the heat source.  Perhaps the most intuitive definition 
of efficiency is the ratio of energy obtained to energy spent.  Using our sign con-
vention (i.e., plus sign for heat transferred to the system and work delivered by the 
system and minus sign for heat transferred from the system and work transferred 
to the system) the first law for steady state operation becomes: 
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Equation IIa.9.1, despite its simplicity, conveys important information.  For ex-
ample, according to the second law, LQ  is always greater than zero.  As such, 
thermal efficiency of a heat engine can never be 100%.  In the remainder of this 
chapter, we will see that thermal efficiency of a heat engine is indeed much 
smaller than unity.  Equation IIa.9.1 also shows that to increase thermal efficiency 
for a given rate of heat transfer from the heat source, we must reduce the rate of 
heat transfer to the heat sink.   

Carnot principle states that a reversible heat engine always has a higher ther-
mal efficiency than an irreversible heat engine.  The Carnot principle (Nicolas 
Leonard Sadi Carnot, 1796 - 1832) also states that two reversible heat engines op-
erating between identical heat sources and heat sinks have identical thermal effi-
ciencies.

Kelvin temperature scale provides a simple relation between the ratio of heat 
transfers to the heat sink and the heat source versus the temperature of these reser-
voirs.  Referring to Figure IIa.9.3, in general the ratio of the rate of heat transfers 
can be expressed by several functions.  Kelvin (William Thomson later became 
Lord Kelvin, 1824 - 1907) suggested: 
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Carnot efficiency is derived from the Carnot principle, correlating thermal ef-
ficiency of reversible heat engines solely to the heat source and the heat sink tem-
peratures.  According to Kelvin’s suggestion for a temperature scale, Equa-
tion IIa.8.3 becomes (see derivation in Chapter IIb): 
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−= 1,η                IIa.9.2

where TL and TH are absolute temperatures.  Equation IIa.9.2 is the Carnot thermal 
efficiency for heat engines.  This simple, yet very important equation expresses 
that no heat engine can have a thermal efficiency higher than that predicted by 
Equation IIa.9.2.  Also note that the higher the temperature of the heat source, the 
higher the thermal efficiency.  However, achievement of high temperatures in 
practice is limited to the metallurgical characteristics of the materials constituting 
the heat engine. 

Example IIa.9.1. Steam pressure in the secondary side of a PWR steam generator 
is 900 psia (6.2 MPa).  The condenser uses bay water, the lowest temperature of 
which is 40 F (4.4 C).  Determine the maximum thermal efficiency this plant could 
achieve.

Solution:  From Equation IIa.9.2  
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Due to irreversibilities, power plants using a steam cycle have thermal efficiency 
of about 30%. 

Thermal pollution refers to the adverse environmental impact that power 
plants could have on the surroundings as the ultimate heat sink.  The warm water 
at the exit of a once-through condenser has a temperature ranging from 12 to 25 F 
above the temperature of the water at the inlet.  The effect of this temperature rise 
on the ecosystem depends on the size of the body of water ranging from a river or 
a lake to an estuary or an ocean.   

Example IIa.9.2.  An electric utility plans to operate a 1200 MWe power plant 
next to a lake.  Agencies for protection of the environment have limited the rise in 
the lake water temperature to no more than 13 F (7 C).  Determine the required 
flow of water to the condenser. Propose an alternative solution if this criterion 
cannot be met. 
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Solution:  The percentage of a power plant’s thermal efficiency ranges from high 

20s to low 40s.  Higher values of LQ  is associated with lower thermal efficiency.  

Using a thermal efficient of 30% we find: 

thnetH WQ η/=  = 1200/0.3 = 4000 MW  

netHL WQQ −=  = 4000 - 1200 = 2800 MW 

This amount of energy is lost in the condenser to the environment.  To find the re-
quired flow rate of cooling water to the condenser, we use an energy balance writ-

ten between the inlet and outlet of the condenser, TcmQL ∆=  where c is the spe-

cific heat of water.  Its value between 20 C and 99.6 C is relatively constant at 
cwater = 4.18 kJ/kg⋅C.  Using ∆T = 13 F/1.8 = 7.2 C, the flow rate needed is there-
fore obtained from:

2.8E6 /[4.18 7.2]m = × = 93,000 kg/s = 737E6 lbm/h = 1.5E6 GPM = 93 m3/s

This is a massive amount of water, which must be circulated through the con-
denser.  If this flow rate cannot be sustained, the outlet temperature would exceed 
the limit.  Cooling towers would assist in the task of removing heat as discussed in 
Chapter IIc.

In the above example, if we had used a thermal efficiency of 40%, which is an 
improvement of about 33%, the required flow rate would have dropped to 59,625 
kg/s (59 m3/s).  This is a reduction of about 36%, indicating that the reduction in 
the rate of heat loss to the surroundings, due to the increase in thermal efficiency, 
is greater than the increase in thermal efficiency itself.  The effect of thη  on LQ
and netL WQ /  for a =netW 1000 MW plant is shown in Figure IIa.9.4. 
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Figure IIa.9.4.  Effect of Thermal efficiency on the rate of heat transfer to heat sink 

Heat pump is a work reservoir that goes through a cycle and consumes work 
while heat is being transferred to and from the system across its boundary.  As 
shown in Figure IIa.9.5, work is delivered to the heat pump to transfer heat from 
the heat sink to the heat source.   
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Figure IIa.9.5.  Schematic of a heat pump in steady state operation 

We have used the term “heat pump” as the reverse of a “heat engine”.  These 
are both generic terms.  While heat engine applies to such systems as an automo-
bile engine, a steam turbine, and a jet engine, the heat pump applies to such sys-
tems as a refrigerator as well as a building heater/cooler.  A refrigerator removes 
heat from the heat sink while a heat pump delivers heat to the heat source. 

Coefficient of performance is a term defined for the refrigeration and heat 
pump cycles.  In both cases, the coefficient of performance (COP) is defined simi-
lar to thermal efficiency for heat engines; 
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We now consider a reversible heat pump cycle.  Such a cycle, according to the 
Carnot principle, consumes the least energy compared to an irreversible heat pump 
cycle.  Using Lord Kelvin’s temperature scale for reversible cycles: 
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The thermal efficiency and the COP for refrigerator and heat pump can be ex-
pressed as: 
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Example IIa.9.3.  A heat pump is used for summer cooling and winter heating of 
a house.  The heat pump COP is 5 and the rate of heat transfer to maintain the in-
door temperature at 24 C when the outside temperature is 4 C is 5 kW.  Find the 
power to operate the heat pump. 

Solution:  The power to operate the heat pump is obtained from COP = 5/ netW .
Therefore, netW  = 5/5 = 1 kW.  We may also find the maximum COP.  If the heat 
pump was operating in a reversible cycle, the COP would have been (COP)max = 
1/(1 - r) where r = TL/TH = (4 + 273)/(24 + 273) = 0.93 and COP = 14.3, indicating 
that the heat pump design could improved substantially to reduce the irreversibili-
ties.

Carnot cycle for a heat engine results in the highest thermal efficiency of all 
power cycles.  A cycle can be shown on pressure-volume (Pv) or temperature-
entropy (Ts) coordinates.  Consider the Carnot cycle, shown in the Ts diagram of 
Figure IIa.9.6.  The first Ts diagram shows the Carnot cycle as an isentropic-
isothermal cycle.  Starting from Point 1, the working fluid is compressed isen-
tropically to Point 2, which is at the temperature of the heat source.  Heat is then 
transferred to the working fluid isothermally to Point 3 where the working fluid 
expands isentropically to produce work.  Heat at Point 4 is then transferred iso-
thermally until the cycle is completed at point 1.  The cycle then would repeat.  In 
the second Ts diagram, the area under the heat addition curve is shown to be equal 
to QH.  In the third Ts diagram, the area under the heat rejection curve is shown to 
be QL.  The net area is Wnet.  Hence: 

Wnet = QH – QL.
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Figure IIa.9.6.  Demonstration of a heat engine and Ts diagrams for the Carnot cycle 

The Clausius inequality is expressed as: 
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where the integral is taken over the control surface and the entire cycle.  In this re-
lation, σ is a measure of entropy production due to the existing irreversibilities in 
the system going through a cycle hence, σ is always positive for practical proc-
esses and can never be negative.  The minimum value of σ is zero, occurring for 
only reversible processes.  Later in this section we will show that σ is related to ir-
reversibility (I) as σ = I/T.

Entropy, as a property of a system is the change in value of δQ/T in a reversi-
ble process.  We can then write: 

rev
T

Q
SS =−

2

1
12

δ
             IIa.9.3 

Equation IIa.9.3 can also be written in differential form as QTdS δ= .  If we now 
substitute for the right-hand side from Equation IIa.5.1, we get TdS = δW + dE.
This can be simplified to: 

TdS = dU + PdV               IIa.9.4 

where only compression work in a reversible process is considered and the kinetic 
and potential energies are negligible.  Entropy of a system may decrease, remain 
the same, or increase, depending on the process applied to the system. However, 
the net entropy of the system and its surroundings increases unless the process is 
reversible. 

Exergy or availability determines the potential of a system to produce work.  
Any system can be at various levels of its availability.  While availability is re-
lated to energy, unlike energy, availability is not conserved. 

Power system refers to a heat engine that goes through a thermodynamic cycle 
to produce net work. 

10.  Entropy and the Second Law of Thermodynamics 

Earlier we discussed the fact that energy is conserved and cannot be created or de-
stroyed.  We also learned about the first law of thermodynamics, which expresses 
the conservation of energy in various processes and noted that the first law does 
not provide any guideline for the direction of a process.  It is the second law that 
clarifies the direction of a process.  We also compared reversible with irreversible 
processes and noted that there are always dissipative effects associated with the ir-
reversible processes.  Such dissipative effects are evaluated in the context of 
availability versus unavailability.  These terms are applied to the energy of a sys-
tem.  As such, the available energy is that amount of the energy of the system that 
can perform work.  That portion of the energy of the system that cannot perform 
work is referred to as the unavailable energy.  We can then write: 

ESystem = EAvailable + EUnavailable             IIa.10.1 
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Unlike energy, availability is not conserved.  To elaborate consider an isolated 
system that includs fuel and air.  Availability of this system prior to the combus-
tion of the fuel is at its maximum as the fuel can be used to produce work.  After 
combustion, the mixture of slightly warmer air and the combustion products has 
much less potential to perform work.  Among various definitions for the entropy 
and the second law, entropy of a closed system can be defined as a property that is 
proportional to the unavailability of the system: 

dS = C[dEUnavailable]            IIa.10.2 

where C in Equation IIa.10.2 is a proportionality constant.  We can use Equa-
tion IIa.10.2 to readily show that the entropy change of a work reservoir is zero 
since, in a work reservoir, the unavailable energy is zero: 

dSWork reservoir = 0 

In general however we can say that the unavailable energy is always positive or at 
least is equal to zero.  Hence, we can write the second law for an isolated system 
as: 

dSIsolated system ≥ 0              IIa.10.3 

Equation IIa.10.3 is the mathematical expression of the second law of thermody-
namics for an isolated system and it describes the fact that the entropy of an iso-
lated system can never decrease.  Since we can consider any system and its sur-
roundings as an isolated system, we can therefore write: 

dSSystem + dSSurroundings ≥ 0            IIa.10.4 

That is to say: 

For reversible processes:  dSSystem + dSSurroundings = 0      IIa.10.4-1 
For irreversible processes:    dSSystem + dSSurroundings > 0      IIa.10.4-2 

Equation IIa.10.2 can also be used to determine the change in entropy for a heat 
reservoir.  For this purpose, we first use the first law as given by Equation IIa.6.1 
but expanded as: 

eUnavailablAvailable dEdEWQ ++= δδ            IIa.10.5 

Since for a heat reservoir, dEAvailable is only a fraction of δQ, Equation IIa.10.5 for 
a heat reservoir becomes: 

dSCQ 1=δ
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Rearranging in terms of dS, for a heat reservoir we obtain, dS = δQ/C1.  As shown 
by Hatsopoulos C1, the proportionality constant becomes C1 = 1/T.  Hence, for a 
heat reservoir: 

T

Q
dS reservoirHeat

δ=

Since temperature of a heat reservoir remains constant, we can readily integrate 
the differential change in entropy to find that for a heat reservoir; 

T

Q
SS reservoirHeat

12
12 )( =−           IIa.10.6 

Using the sign convention, if the heat reservoir has gone through a process in 
which heat has been added to the reservoir, then Q12 > 0 and S2 - S1 > 0.  On the 
other hand, if heat has been transferred from the reservoir S2 – S1 < 0. 

10.1.  Change in Entropy for Cycles 

Shown in Figure IIa.10.1, are three cycles.  Figure IIa.10.1(a) shows a cycle in 
which heat is transferred from a heat reservoir at high temperature to another heat 
reservoir at lower temperature.  Figure IIa.10.1(b) shows the cycle for a heat en-
gine.  Finally, Figure IIa.10.1(c) shows a cycle for a heat pump.  The goal is to 
find the change in entropy for each cycle.  Starting with Figure IIa.10.1(a), we first 
note that in steady state operation, QH = QL = Q.  The device can simply be a con-
ducting metal, which transfers heat from the heat source to the heat sink.  To find 
the change of entropy for this cycle, we use Equation IIa.10.4:

∆SSystem + ∆SSurroundings = ∆SSystem + ∆SHeat source + ∆SHeat sink ≥ 0 

noting that the device operates in a cycle, hence, (∆S)System = 0.  Therefore, the 
change in entropy becomes: 

 

  ∆SHeat source + ∆SHeat sink = 
LH T

Q

T

Q +− ≥ 0          IIa.10.7 
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Figure IIa.10.1.  Two reservoirs for (a) heat transfer, (b) heat engine, (c) heat pump 
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For the heat transfer to take place, the above relation must be satisfied.  Since 
the absolute value of Q is greater than zero, it requires that 1/TH + 1/TL ≥ 0 or TH ≥
TL.  This conclusion satisfies our intuition based on experimental observations that 
heat flow from the hot to the cold system and if temperatures are the same then 
there is no heat transfer.  This also supports the Clausius statement of the second 
law.

Example IIa.10.1.  Consider two heat reservoirs, one at 550 C and another at 20 
C.  These reservoirs are connected by a device, resulting in a rate of heat transfer 
between the two reservoirs equal to 2700 MW.  Find the rate of increase in the en-
tropy of the universe as a result of this process. 

Solution:  To find the rate of entropy increase, we use Equation IIa.10.7: 
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Let’s now examine the entropy change for the heat engine.  We know that for a 
heat engine,  

QH – QL = W

Substituting for the entropy change of the heat source and heat sink and noting 
that for a work reservoir ∆SWork reservoir = 0, we obtain: 

  ∆SHeat source + ∆SHeat sink = 
L

L

H

H

T

Q

T

Q
+−  + 0 ≥ 0         IIa.10.8 

If the heat engine operates in a reversible process, then we can write: 
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From the above relation we conclude that QL/QH = TL/TH.  If this conclusion is 
substituted in Equation IIa.9.1, it results in the Carnot efficiency as given by Equa-
tion IIa.9.2.  It is evident that a 100% efficiency is obtained if TL = 0 K.  In prac-
tice TL is about 288 K (15 C, 60 F).  Therefore, it is important to increase TH,
which has its own limitations as discussed in Section 9.  The conclusion that re-
sulted in obtaining Equation IIa.9.2 also supports the Kelvin-Planck statement of 
the second law of thermodynamics. 

The reader may try the same method used for Figures IIa.10.1(a) and 
IIa.10.1(b) to obtain the change of entropy for the heat pump of Figure IIa.10.1(c). 
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10.2.  Change in Entropy for Closed Systems 

We defined the closed system as a system with constant mass.  Hence, in all ther-
modynamic processes only heat and work can cross the boundary of the system.  
To find the change in entropy of a closed system, we use the following inequality: 

 ∆SSystem + ∆SSurroundings = ∆SSystem + ∆SHeat reservoir + ∆SWork reservoir ≥ 0       IIa.10.9 

The change in the entropy of the work reservoir is zero.  The change in the en-
tropy of the heat reservoir (HR) is given in Equation IIa.10.6 as ∆SHR = QHR/THR.
Therefore, for a closed system, ∆SSystem + QHR/THR ≥ 0.  Whether heat is transferred 
from the heat reservoir to the system or from the system to the heat reservoir, we 
always have QSystem = –QHR, substituting we find ∆SSystem – QSystem/THR ≥ 0.  To 
find the differential change in entropy for a differential change in state, we replace 
∆S by dS, QSystem by δQSystem, and THR by T + dT of the system.  If we ignore dSdT,
then Equation IIa.10.9 simplifies to: 

T

Q
dS

δ≥

It is apparent that the entropy increase is larger than the δQ/T due to irreversibil-
ity.  Should we add the lost work to the left-hand side, the inequality can be re-
placed by the equal sign.  To do so, we consider two processes for the system, 
namely, a reversible and an irreversible process.  To be able to apply the first law 
of thermodynamics to both processes and have the same change in the total energy 
of the system, we must require an identical change in the state for both processes.  
We start with the first law for the reversible process; 

δQrev = dE + δWrev

Similarly, we write the first law for the irreversible process: 

δQirr = dE + δWirr

Canceling dE between the two equations, we obtain: 

δQrev = δQirr + δWrev  – δWirr.= δQirr + δI

where the incremental irreversibility δI is given by δI = δWrev  – δWirr.  For the re-
versible path we can write dS = δQrev/T.  If we then substitute for δQrev = TdS, di-
vide by T, and rearrange we obtain: 

T

I

T

Q
dS irr δδ

+=           IIa.10.10 

Equation IIa.10.10 shows that the change in entropy for a closed system is solely 
due to the heat transfer and the irreversibility.  To minimize the change in entropy, 
both terms should be minimized.  
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Figure IIa.10.2.  Entropy transfer and production for a closed system  

We are now set to examine the relation between irreversibility (I) and the 
measure of entropy production (σ).  For this purpose, we consider the closed sys-
tem of Figure IIa.10.2 in which its contents, either gas or liquid, is stirred by the 
action of the paddle wheel.  The entropy production due to system irreversibility, 
such as friction, is equal to σ.  Heat is introduced to the system from the hot reser-
voir at T1 (transferring entropy into the system equal to Q1/T1) and is rejected to 
the cold reservoir at T2 (transferring entropy out of the system equal to Q2/T2).
The change in entropy can be written as: 

σ+=−
j j

j

T

Q
SS 12          IIa.10.11 

where j is an index to include all boundaries participating in heat transfer into or 
out of the system, including j = o, to the surroundings.  In Figure IIa.10.2, j = 2.  
The right side of Equation IIa.10.11 consists of two terms.  The first term accounts 
for the entropy transfer into or out of the system due to exchanges with the heat 
reservoirs and the second term accounts for entropy production.  Differentiating 
Equation IIa.10.11 and comparing with Equation IIa.10.10, we conclude that σ = 
I/T.  This conclusion confirms our expectation that neither σ nor I is a property of 
the system as the value of both quantities depends on the type of process the sys-
tem would go through. 

Example IIa.10.2.  A cylinder contains saturated water.  The piston is frictionless 
and free to move.  We heat the water by a mixer adiabatically to produce saturated 
vapor.  Find the entropy produced in this process. 
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Solution:  Boiling takes place in a closed system in a process, which is isobaric 
and adiabatic.  Find pressure Pwater = Patm + (Mg/A) = 14.7 + (43.2/144) = 15 psia.   

Find water mass as m = ρV = 59.8 lbm (27.1 kg).
Since Q = 0, then Equation IIa.10.11 simply becomes ∆S = σ.  Hence, σ = m (s2 – 
s1).  Substituting, we find:  

σ = m(sg – sf) = 59.8 × (1.7551 – 0.3137) = 86.19 Btu (91 kJ).

10.3.  Useful Work, Optimum Useful Work, and Irreversibility  
(Closed Systems) 

If the total work obtained from a closed system is W, we define the useful work as 
the portion of the total work that excludes the expansion or contraction work in-
volved with the surroundings, being at pressure Po.  In differential form, we have 
δWuse = δW – PodV.  We can derive a relation for δWuse using the first and the 
second law.  The first law δQ = dE + δW as given by Equation IIa.6.1 can be writ-
ten as: 

 δQo + ΣjδQj = dE + δWuse + PodV

where the heat transfer term is expanded to include heat transfer to or from the 
surroundings and heat transfer to or from a heat source or heat sink reservoirs.  
Also the work transfer term is expanded to include the useful work and the expan-
sion or contraction work with the surroundings.  Writing Equation IIa.10.11 in dif-
ferential form and expanding, we find: 
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where term ΣjQj/Tj is expanded to account for the surroundings separately hence, 
in the above equation j ≠ o.  We now find δQo from the second law equation (i.e., 
δQo = TodS – ΣjQj/Tj –δσ) and substitute it into the first law equation to obtain 
TodS – ΣjQj/Tj –δσ  + ΣjδQj = dE + δWuse + PodV.  Solving for δWuse, we find: 

δWuse = –dE – PodV + TodS + ΣjδQj(1 – To/Tj) – Toδσ 

Useful work is optimum in the absence of any irreversibility.  Thus, the optimum 
useful work is given as: 

δWuse, opt = –dE – PodV + TodS + ΣjδQj(1 – To/Tj)

We now integrate this equation between states 1 and 2, divide by total mass, and 
ignore K.E. and P.E. to get: 

 wuse, opt = –(u2 – u1) – Po(v2 – v1) + To(s2 – s1) + Σjqj(1 – To/Tj)       IIa.10.12 

where q = Q/m.  Recall that the difference between Wuse and Wuse, opt lies in the ir-
reversibility of the process.  Therefore, the irreversibility per unit mass basis be-
comes: 

wuse, opt – wuse = I/m = Toσ/m          IIa.10.13 
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Example IIa.10.3.  A rigid tank of 2 m3 contains air at 0.4 MPa and 310 K.  We 
now heat up the tank from a heat source at 800 K until the air temperature in the 
tank reaches 620 K.  The surrounding atmosphere is at 1 bar and 288 K.  Find a) 
useful work, b) optimum useful work, and c) the irreversibility of the process. 

Solution:  a) Since V = constant and no shaft crosses the boundary, wuse, = 0.  Find 
m and P2 for part b: 
The process is isochoric; P2 = P1T2/T1 = 0.8 MPa.  Also m = PV/RT = 0.4E3 ×
2/(0.287 × 310) = 9 kg 

b) To find wuse, opt we need, (u1, u2), (v1, v2), and (s1, s2).  We find these properties 
in the following steps: 

v2 = v1 = V/m = RT/P = (8.314/28.97) × 310/0.4E3 = 0.22 m3/kg. 
s2 – s1 = cpln(T2/T1) – Rln(P2/P1) = 1 × ln(620/310) – 0.287 × ln(0.8/0.4) =
0.494 kJ/kg·K 
u2 – u1 = cp(T2 – T1) = 0.72(620 – 310) = 223 kJ/kg.  We find Q from the first law: 
Q/m – wuse = 223 kJ/kg. 
wuse, opt = –(223) + 288 × 0.494 – 0.1(0) + 223(1 – 288/800) = 62 kJ/kg.   
Thus Wuse, opt = 62 × 9 = 558 kJ 

c) I = Wuse, opt – Wuse = 558 – 0 = 558 kJ.  This may be viewed as the work that 
could not be used.

Example IIa.10.4.  Saturated steam condenses to saturated water in a cylinder fit-
ted with a frictionless piston.  Find a) work, b) useful work, c) optimum useful 
work, and d) irreversibility associated with this process. 
Data: V1 = 2 ft3 (0.057 m3), P1 = 100 psia (0.69 MPa), Po = 14.7 psia (1 bar), To = 
525 R (291 K). 

Solution: We find T1 = 327.82 F, vg = 4.431 ft3/lbm, and vf = 0.0177 ft3/lbm.  
Thus, m = 2/4.431 = 0.45 lbm 

a) The process is isobaric; 2
1 PdVW = W = Pm(v2 – v1) = 100 × 144 × 0.45(.0177 

– 4.431)/778 = –36.7 Btu 
b) Wuse = W – Pom(vfg) = –36.7 – 14.7 × 144 × 0.45(–4.4133)/778 = –31.3 Btu 
c) wuse, opt = –(u2 – u1) – Po(v2 – v1) + To(s2 – s1) + Σjqj(1 – To/Tj).

In this problem, j = o.  Substituting, we get: 
wuse, opt = 807 + (14.7 × 144 × 4.4133/778) + 525(–1.1284) = 807 + 12 – 592.4 = 
226.6 Btu/lbm. 
d) I = mwuse, opt – Wuse = 0.45 × (226.6) – (–31.3) = 133.3 Btu (140.6 kJ).  This is 
the loss of work production. 
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10.4.  Change in Entropy for Control Volumes 

Change in the entropy of open systems can be readily obtained from Equation 
IIa.10.10 noting that in open systems, entropy may be brought into the system by 
crossing the boundary of the system through the inlet ports.  Similarly, entropy 
may leave the system through the outlet ports, hence, for open systems: 
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where we have generalized the equation for the change of entropy by considering 
all δQ/T terms in the control volume to account for variation of temperature within 
the control volume.  Similarly, we considered all the lost work due to the internal 
irreversibility in the control volume.  Equation IIa.10.14 can be readily modified 
for unsteady state conditions: 
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It is evident from Equation IIa.10.15 that, for irreversible processes in a control 
volume, we would have: 
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For steady flow ( i em m= ) and steady state (dSC.V./dt = 0) processes we can write: 
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where the equals sign applies to reversible processes.  For isentropic processes, 

Qδ  = 0 hence, si = se.

Similar to the closed system, where we made a parallel between Equa-
tions IIa.10.10 and IIa.10.11, we are now set to find the parallel with Equation 
IIa.10.15 for open systems or control volumes. We do this in conjunction with 
Figure IIa.10.3, showing the transfer of entropy into and out of the control volume 
by both heat and mass transfer.  We can intuitively derive the rate of change of en-
tropy of a control volume.  This is equal to the summation of the total rate of en-
tropy transferred into the system (by heat and mass transfer), plus the rate of en-
tropy production in the system, minus the summation of the total rate of entropy 
transferred out of the system.  The mathematical expression of the entropy rate 
balance for the control volume is:  
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Figure IIa.10.3.  Entropy transfer and production for an open system  

Comparing Equation IIa.10.18 with Equation IIa.10.15 indicates that . .C Vσ =

. . /C VI T .  At steady state, dSC.V./dt = 0, hence, Equation IIa.10.18 becomes: 

( ) 0/ .. =++− VCj jj
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10.5.  Useful Work, Optimum Useful Work, and Irreversibility  
(Control Volumes) 

Recall that for the closed systems, we combined the first and second law, Equa-
tions IIa.6.1 and Equation IIa.10.11 to obtain Equation IIa.10.12.  Similarly, we 
may combine Equation IIa.6.3 and Equation IIa.10.18 to obtain the equation for 
useful work for a control volume.  In specific, for flow entering and leaving a rigid 
control volume under steady state conditions (i.e. Equations IIa.6.5 and IIa.10.19) 
we find that the optimum useful shaft work at steady state (ss) operation is given 
by (see Problem 117): 
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                   IIa.10.20

If flow through the control volume at steady state condition is also steady flow, 
then the irreversibility per unit mass flow rate is given by Equation IIa.10.16 and 
Equation IIa.10.20 becomes: 
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Example IIa.10.5.  A globe valve is used to throttle steam in a steady state process 
from 10 MPa and 360 C to 4 MPa.  The valve is fully insulated.  Find the rate of 
entropy production in this process. 

Solution:  The throttling process in the valve is iso-enthalpic, he = hi.
At Pi = 10 MPa and Ti = 360 C, si = 6.006 kJ/kg·K and hi = 2962.1 kJ/kg. 
At Pe = 4 MPa and he = 2962.1 kJ/kg, se = 6.362 kJ/kg·K.   

From Equation IIa.10.16 with Q = 0 and ei mm = :

=m/σ 6.362 – 6.006 = 0.356 kJ/kg·K

Example IIa.10.6.  Superheated steam enters a turbine at P1 = 1000 psia, T1 = 
560 F, and V1 = 160 ft/s.  Steam expands isentropically to a pressure of 2.5 psia 
and leaves the turbine at 100 ft/s.  The inlet flow area of the turbine is Ai = 22 ft2.
Find a) work delivered by the turbine, b) entropy produced in this expansion proc-
ess, c) the optimum useful work, and d) irreversibility.  For the surroundings use 
Po = 14.7 psia and To = 70 F. 
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T i
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Ti = 560 F
Pi = 1000 psia

Vi = 160 ft/s

Pe= 2.5 psia

Ve = 100 ft/s

Ws

.

Solution:  a) We first find superheated properties at 1000 psia and 560 F from the 
steam tables: 

Pi   Ti  vi hi si

(psia)       (F)       (ft3/lbm)          (Btu/lbm)          (Btu/lbm·R)
1000        560          0.4668                 1210.4               1.4082 

We then find the exit conditions at 2.5 psia from the steam tables as follows: 

Pe   hf,e hge            sf,e      sg,e

(psia)                (Btu/lbm)           (Btu/lbm)       (Btu/lbm·R)   (Btu/lbm·R)
2.5                     101.71                 1119.4             0.188            1.9029 

To find the work performed by the turbine we use the first law, Equation IIa.6.5.  
Since there is no heat loss from the turbine, the change in elevation is negligible 
and the work is delivered under steady flow, steady state condition, this equation 
simplifies to: 
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To find the rate of work delivered, we need to find he and m .  The exit enthalpy is 
given by he = hf,e + xehfg,e.  Having hf,e and hfg,e, we must find xe. This is obtained 
from the isentropic expansion of steam in the turbine: 

si = se = sf,e + xesfg,e
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he = hf ,e+ xe(hg,e - hf,e) = 101.71 + 0.712(1119.4 - 101.71) = 826.3 Btu/lbm.  We 
find the mass flow rate from iii AVm ρ=  = (1/0.4668) × 160 × 22 = 7540.7 lbm/s.  

Thus, the power produced by the turbine is obtained as: 
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= 2.898E6 Btu/s 

b) In an isentropic process, no entropy is produced.  This is confirmed by Equation 
IIa.10.16, since s1 = s2 and Q = 0, therefore, σC.V. = 0.
c) and d)  In this problem,  wuse = wuse, opt and I = 0.

11.  Exergy or Availability 

Our goal is to determine the maximum work that can be obtained in a work-
producing process from a given system.  Such system may contain various forms 
of energy including kinetic, potential, chemical, electrical, and nuclear.  The nec-
essary and sufficient conditions for obtaining the maximum work from a system 
are satisfied in a reversible process that brings the system to the dead state.  The 
dead state for pressure (P) and temperature (T) of the system is when P and T
reach Po and To of the surroundings, respectively.  When this occurs, the system is 
in chemical, mechanical, and thermal equilibrium with the surroundings.  Such 
equilibrium with the surroundings is required if work can be extracted by any 
means.  For example, if system contains kinetic energy then its velocity should be 
brought to zero.  Similar argument applies to potential energy, etc.  Next we inves-
tigate the availability (exergy) of closed systems and of control volumes focusing 
on the systems that contain only mechanical and thermal energies. 

11.1  Availability (Exergy), Closed Systems 

Shown in Figure IIa.11.1 is a closed system containing a hot gas with the fric-
tionless piston held in place by a stop.  We now remove the stop and let the gas 
expand.  The work delivered by the piston in an infinitesimal move is δWuse = δW
– PodV.  To bring temperature down to that of the surrounding (To), δQ heat must 
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be rejected to the surrounding.  If used in a reversible machine, this amount of 
heat can produce work given by: 

δWequivalent = –δQ(1 – To/T)

where T is the system temperature during the process, ranging from T1 ≤ T ≤ To.
Therefore the net work in this expansion process is found by deducting the work 
corresponding to the heat rejection from the useful work (i.e. δWnet = δWuse – 
dWequivalent).  Substituting, we obtain δWnet = δW – PodV – δQ(1 – To/T).  Since we 
assumed a reversible expansion due to the frictionless piston, this is the maximum 
work that can be obtained in this process.  For closed systems, we consider the
system internal energy, substitute for δW from the first law (δW = δQ – dU), and 
for δQ from the second law (δQ = TdS) to find the relation for the infinitesimal 
work as δWuse,opt = –dU – PodV + TodS.  Integrating, the net work in this process is 
found as:  

Wuse,opt = (U – Uo) + Po(V – Vo) – To(S – So)          IIa.11.1 
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Figure IIa.11.1.  A process for bringing a closed system from state 1 to the dead state 

where the opt in the subscript is added to emphasize the reversible process.  The 
work obtained in Equation IIa.11.1 is the closed system availability (Φ).  Written 
on a specific basis, the specific availability becomes: 

     φ = (u + Pov – Tos) – (uo + Povo – Toso)           IIa.11.2 
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Equation IIa.11.2 can alternatively be written as: 

φ = (u – uo)+ Po(v – vo) – To(s – so)           IIa.11.3 

so that Φ = mφ.  Assuming the surroundings condition is at atmospheric pressure 
(14.7 psia = 101 kPa) and room temperature (77 F = 25 C), then the specific ex-
ergy, φ can be considered as yet another property. 

Example IIa.11.1.  A cylinder contains 5 kg of air (treated as an ideal gas) at 1 
MPa and 350 C.  The piston is held in place by a stop pin.  Find the maximum 
useful work when the frictionless piston is set free to move. 

Solution:  Find v = RT/P = (8.314/28.97) × (350 + 273)/1E3 = 0.179 m3/kg and vo

= 0.847 m3/kg 
Po(v – vo) = 101 × (0.179 – 0.847) = –67.468 kJ/kg 
u – uo = cv(T – To) = 0.7165 × (350 – 25) = 232.86 kJ/kg 
s – so = cvln(T1/To) + Rln(v1/vo) = 0.7165 × ln(623/298) + (8.314/28.97) ×
ln(0.179/0.847) = 0.0823 kJ/kg 
φ = (u – uo) + Po(v – vo) – To(s – so) = 232.86 – 67.468 – 298 × 0.0823 = 140.86 kJ/kg 
Φ = 5 × 140.86 = 704.33 kJ. Wuse,opt = 704.33 kJ.

Change in Availability 

We can readily derive the change in availability for closed systems by combining 
the first and the second law of thermodynamics, Equations IIa.6.1 and IIa.10.11, 

respectively.  The first law, −=− 2
112 WQEE δ added to the second law, while 
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Equation IIa.11.4 demonstrates that the change in availability is due to the avail-
ability transfer (the first three terms in the right side) and the availability destruc-
tion (the fourth term in the right-hand side).  The terms representing availability 
transfer itself consists of availability transfer associated with heat (the first term in 
the right side) and the availability transfer associated with work (the second and 
third term in the right side).   

Example IIa.11.2.  A piston-cylinder assembly contains m lbm of saturated water 
at 212 F.  We now add heat to the cylinder from a reservoir at temperature T, in a 
reversible process (the frictionless piston is free to move) until all water becomes 
saturated steam.  Verify Equation IIa.10.18 for this process. 

Solution:  On the one hand, change in specific availability is given by:  
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∆φ = (ug – uf)+ Po(vg – vf) – To(sg – sf).
On the other hand, ∆Φ from Equation IIa.11.4 for σ = 0 is: 
∆Φ = (1 – To/T)Q – [W – Po(V2 –V1)].
The availability transfer due to work is: 
W – Po(V2 – V1).
Since expansion work is given by W = P∆V, if we substitute for W, we find: 
P∆V – Po(∆V) = 0.
Therefore, ∆Φ = (1 – To/T)Q.  Heat transfer is given by Q/m = hfg.  Thus, ∆Φ = (1 
– To/T)mhfg.  This can be written as  
∆Φ/m =∆φ = hfg – To(hfg/T) = (ufg+ Povfg) – Tosfg.

Since availability can be viewed as a property of the system, which by defini-
tion, is independent of the path and depends only on the end states, we can find the 
change in system availability when the system goes from state 1 to state 2 as φ2 – 
φ1 = (u2 – u1) + Po(v2 – v1) – To(s2 – s1).  Upon comparing with Equation IIa.10.12, 
we find the change in availability given as: 

+=−+
j optusej WTTq 2,o1 )/1( φφ

this equation can also be written as: 

wuse, opt = –(φ2 – φ1) + Σjqj(1 – To/Tj)           IIa.11.5 

If the change in availability has been solely due to work transfer, Equation IIa.11.5 
for adiabatic processes simplifies to wuse, opt = –(φ2 – φ1).

Example IIa.11.3.  A tank of 2 ft3 contains two-phase mixture of water and steam 
at 200 psia with x = 10%.  We want to increase the mixture temperature to 456.3 F 
by one of the following two processes.  Find the irreversibility if a) heating the 
tank from a reservoir at 600 F and b) insulating the tank and using a paddle wheel.  
The surrounding pressure and temperature are 15 psia and 59 F. 
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Solution:  We first find the mixture properties at the initial and the final states: 

P T  vf  vg

(psia)  (F)  (ft3/lbm)  ft3/lbm)
200  381.8  0.01839  2.2873 
450  456.3  0.01954  1.0318 
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uf ug sf sg

(Btu/lbm) Btu/lbm) (Btu/lbm·R) (Btu/lbm·R)
354.8           1113.7           0.5438             1.5454 
435.7           1118.9            0.636               1.4738 

v2 = v1 = 0.01839 + 0.1(2.2689) = 0.245 ft3/lbm.  Thus x2 = (0.245 – 
0.0195)/1.01224 = 22.3%. 
m = V/v = 2/0.245 = 8.154 lbm.  We now find change in availability for a closed 
system: 
φ2 – φ1 = (u2 – u1) + Po(v2 – v1) – To(s2 – s1) = (157.37) + 0 – 519 × 0.1789) =
64.52 Btu/lbm or ∆Φ = 526 Btu

a)  Since W = 0, we find Q from the first law, Q = ∆u = 8.154(157.37) =
1283.2 Btu.  Next we find Wuse, opt:
(Wuse,opt)a = –∆Φ  + Q(1 – To/T) = –526 + 1283.2(1 – 519/1060) = 129 Btu.   

b)  Since Q = 0, we find W from the first law, W = –∆u = 8.154(157.37) =
–1283.2 Btu.  We find Wuse, opt:
(Wuse,opt)a = –∆Φ  = –526 Btu.   

In both process, I = Wuse,opt – W.  Thus Ia = 129 – 0 = 129 Btu and Ib = –526 –
(–1283.2) = 757.2 Btu 
Since Ib >> Ia, from a thermodynamic view point, heat transfer is preferred than 
using work to produce heat.

We may also use Equation IIa.10.19 to define a second law effectiveness ( ) for 
a work producing process: 
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Example IIa.11.4.  A cylinder contains steam at 3 MPa and 320 C.  The fric-
tionless piston is set free to move.  After expansion, steam pressure and tempera-
ture drop to 0.7 MPa and 180 C.  The work resulting from this expansion is 185 
kJ/kg and the sink reservoir to exchange heat is at 100 C.  Find the effectiveness. 

Solution:  We set up the following table for the data
P (MPa)  T (C)         v (m3/kg)          u (kJ/kg)          s (kJ/kg·K)
3.00          350             0.0850                2788.4                  6.6245 
0.75            180              0.2847                  2599.8                   6.7880 
Use the first law to find q1-2 gives:   
q1-2 = w1-2 + (u2 – u1) = 185 + (2599.8 – 2788.4) = –3.6 kJ/kg 
w1-2 = φ1 − φ2 + q1-2(1 – To/Ts) = (u1 – u2) + Po(v1 – v2) – To(s1 – s2) + q1-2(1 – 
To/Ts)
w1-2 = (2788.4 – 2599.8) + 101(0.085 – 0.2847) – 298(6.788 – 6.6245) –3.6(1 – 
298/373) = 256.77 kJ/kg 
ζ = 185/256.77 = 72%.
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11.2.  Availability (Exergy), Control Volumes  

We define the flow exergy for open systems in a manner similar to that of the 
closed systems except for the fact that the specific flow exergy must account for 
the potential and kinetic energies of the fluid, knowing that at the dead state the 
system should reach the velocity of the surroundings (zero) and the same elevation 
as the surroundings.  As a result, the exergy for a control volume per unit mass ba-
sis is defined as: 

( ) ( ) ( ) ( )oooo ZZgVssThh −++−−−= 2/2ψ           IIa.11.7

where Zo is the elevation at the dead state.  Therefore, the change in the inlet and 
exit availabilities becomes: 

( ) ( ) ( ) ( )ieieieoie ZZgVVssThh −+−+−−−=∆ 2/22ψ                       IIa.11.8 

In most practical applications, the kinetic and potential energies are neglected 
compared to the fluid enthalpy.  Using Equation IIa.11.8, the optimum useful 
work at steady state for a control volume can be obtained if we stipulate multiple 
input and exit ports and an exchange of heat and work with the surroundings and 
heat reservoirs. This work is the difference between the availabilities of the inlet 
and exit streams plus the work associated with the exchange of heat with heat 
reservoirs: 

−+−=
e j j

o
jeei iissopt T

T
QmmW 1, ψψ         IIa.11.9 

It then follows that the irreversibility associated with the steady flow of fluids 
through a control volume with multiple ports, while exchanging heat and work 
with the surroundings and heat reservoirs, is given as: 
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Example IIa.11.5.  Steam enters a fully insulated turbine at 800 psia and 550 F.  
Steam leaves the turbine at 10 psia with xe = 80%.  Find the following items: a) 
work delivered by the turbine, b) the maximum useful work, c) the availability of 
the exit stream, d) the effectiveness, and e) the irreversibility.  Use To = 530 R. 

Solution:  a) From the first law with q = 0, we find w = hi – he = 1230.1 – 964.94 
= 283.2 Btu/lbm. 
b) wopt,ss = ψi – ψe = (hi – he) – To(si – se).  Thus wopt,ss = 283.2 – 530(1.447 – 
1.487) = 304.42 Btu/lbm 
c) ψe = (he – ho) – To(se – so).  For ho and so of the dead state we use saturated 
properties for a subcooled liquid corresponding to To:
ψ = (964.94 – 38.05) – 530(1.487 – 0.0745) = 178.3 Btu/lbm. 
d)  = w/wopt,ss = 283.2/304.42 = 93% and finally  
e) Ic.v. = wopt,ss – w = 304.42 – 283.2 = 21.22 Btu/lbm
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In the thermal design of turbines it is important to minimize the availability of 
the exit stream to increase the effectiveness.  In the above example, the irreversi-
bility associated with the adiabatic expansion of steam is due to the increase in en-
tropy during the expansion of the steam in various stages of the turbine. 

Example IIa.11.6.  Water is heated by a stream of hot air in a heat exchanger as 
shown.  Use the data as given in the figure to find the system irreversibility.  Ig-
nore pressure drop in both streams.  Use To = 295 K. 

Water (W)

Air (A)

1 2

1 2

Wm 60 kg/s=

Am ? kg/s=

PW = 2.5 MPa TW1 = 100 C

TA1 = 350 C

TW2= 140 C

TA2 = 130 CPA = 0.4 MPa ,

, ,

,

Solution:  We ignore the K.E. and P.E of both streams and treat air as an ideal 
gas.  Stream availabilities are: 
∆ψW = (hW2 – hW1) – To(sW2 – sW1) = (590.52 – 420.85) – 295(1.7369 – 1.3050) = 
42.26 kJ/kg 
∆ψA = (hA2 – hA1) – To(sA2 – sA1) = (130 – 350) – 295(–0.3365) = –120.73 kJ/kg 

WWW m ψ∆=∆  = 60 × 42.26 = 2535.6 kJ.  We find Am  from an energy bal-

ance for the heat exchanger: 
)()( 21,12 AAApAWWW TTcmhhm −=− .  Thus =Am 60(590.52 – 420.85)/(350 – 

130) = 46.27 kg/s 

AAA m ψ∆=∆  = 46.27 × (–120.73) = –5586.6 Kj 

.... vco ooi iivc WmmI −−= ψψ  = AAWW mm ψψ +  = 2535.6 – 5586.6 =       

–3051 kJ

Example IIa.11.7.  Cooling water at a rate of 170,000 lbm/s enters the condenser 
of an electric utility from a lake at 60 F and leaves at 75 F.  The plant also pro-
duces exhaust gases at a rate of 450 lbm/s and 455 F.  Find the more wasteful 
stream leaving this electric plant.  Use To = (60 + 460) = 520 R. 

Solution:  We ignore the K.E. and P.E. and take the exhaust gases to be air, be-
having as an ideal gas.  Thus, for both water as compressed liquid and air as ideal 
gas, ∆h ≈ cp∆T.  We need to compare ψW with ψA.

Since the process for both streams is isobaric, s – so = cpln(T/To).
ψW = Wm [cpW(TW – To) – cpWToln(TW/To)] = 1.7E5[1.0(75 – 60) – 1.0 ×
520ln(535/520)] = 36,086 Btu 
ψA = Am [cpA(TA – To) – cpAToln(TA/To)] = 450[0.24(455 – 60) – 0.24 ×
520ln(915/520)] = 10,924 Btu 
The cooling water carries more untapped energy than the stack gases by a factor 
of 3.
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QUESTIONS 

Section 1 
− What are the primary dimensions? 
− Mention three derived units. 
− What is barometric pressure?  What is the absolute pressure of total vacuum? 
− Pressure of a gas container is 2 psig.  What is the absolute pressure of the gas 

container? 
− What is a pure substance?  Is water a pure substance? 
− What is the difference between a system and its surrounding?  

Section 2 
− Explain the difference between ideal, perfect, and real gases. 
− Comparing the Van der Walls equation with the ideal gas law, can we conclude 

that the former accounts for the existence of gas molecule, hence, reduces the 
available volume in a gas container (v – c2)?

− Comparing the Van der Waals equation with the ideal gas law, which equation 
of state accounts for the intermolecular attractive force (P + c1/v

2)?
− By accounting for the net attraction of the molecules within a gas on an indi-

vidual molecule, does the Van der Waals equation account for the reduction in 
the impulse the molecule would have otherwise exerted on the wall of a gas 
container? 

Section 3 
− What is degree of subcooling? 
− Consider the saturation temperature of water, Tsat = f(P).  Does Tsat increase, 

remain the same, or decrease  with increasing pressure? 
− What is the difference between a polytropic and an isentropic process? 
− A system has pressure P1 at one instant and pressure P2 at another instant.  Is 

the change in pressure an exact differential? 
− Is it fair to say that any change in the properties of a system in any process is 

always an exact differential? 

Section 4 
− Give an example for the “insulated system” 
− What is the difference between control mass and control volume? 
− Define control surface 
− Since no mass crosses the boundaries of a closed system, how can its energy 

content change? 
− Which of heat, work, and total energy of a system is an exact differential? 
− Is there any work associated with the rotation of a shaft in a well lubricated 

journal bearing?

Section 5
− What is the difference between steady flow and steady state? 
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− Consider heating up a steel rod.  Is this a steady state process?  Give an exam-
ple for a steady state process. 

− Consider a compressor as a control volume.  The air density changes as air 
flows through the inlet towards the outlet.  If dmC.V./dt = 0 and dEC.V./dt = 0, is 
this process a steady state process? 

Section 6 
− What is the difference between a nozzle and a diffuser? 
− What is the difference between a turbine and a compressor? 
− What is the difference between a compressor and a pump? 

Section 7 
− Is it a good idea to insulate compressors and turbines? 
− Is it fair to say that water density remains constant from the suction to the dis-

charge of a pump? 
− Does one control volume allow determination of the temperature distribution 

inside the control volume? 

Section 8 
− What is the key assumption in the dynamic analysis of mixing tanks? 
− How do we find the mass flow rate through a control valve while discharging 

gas filled rigid vessels? 
− How can we add heat to a rigid vessel in an isobaric process? 

Section 9 
− Can any process that does not violate the first law of thermodynamics be re-

versed? 
− Which process takes place more readily, conversion of work to heat or conver-

sion of heat to work? 
− What is the Kelvin-Planck statement on the transfer of energy from a heat 

source to a heat sink? 
− What is the difference between internal and external irreversibility? 
− We bring a hot block of metal in contact with a cold block of metal.  Is the heat 

transfer between these two blocks of metal reversible? 
− Is any reversible process necessarily an adiabatic process?   
− What is the difference between a reversible and an isentropic process? 
− Is it possible to transfer heat from a heat sink to a heat source?  Doesn’t this 

violate the second law? 
− A heat engine is operating between TH and TC.  Which temperature do you 

change to increase efficiency? 
− What is the function of a heat pump?  How do you define the coefficient of per-

formance for a heat pump? 

Section 10 
− Is entropy, like energy, conserved in any process? 
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− Describe unavailability in the context of dissipative effects of an irreversible 
process. 

− What is the change in entropy of a work reservoir (dSWork reservoir = ?) 
− What is the proportionality constant for the change of entropy of a heat reser-

voir (dSHeat reservoir = ?) 
− Support the Clausius statement of the second law using entropy change for a 

device that works in a cycle and transfers heat from the heat source to the heat 
sink. 

− Does entropy change in an isolated system? 
− In what ways does entropy change for a closed system?  Answer the same ques-

tion for an open system. 
− How do you define useful work, the optimum useful work, and irreversibility?

PROBLEMS

Sections IIa.1 and IIa.2 
1. A system is left alone for a long time.  During this time, no mass, no heat, and 
no work have crossed its boundary.  Is this system at equilbirum? 

2.  A system is left alone for a long time.  During this time no mass, no heat, and 
no work have crossed its boundary.  Are properties of this system (i.e., such mac-
roscopically measurable quantities as pressure, volume, and temperature) inde-
pendent of time? 

3.  Find the weight in lbf of a substance having a mass equal to 4536 g.  [Ans.:  
10 lbf]. 

4.  a) At certain flow conditions, the maximum mass flow rate of an ideal gas 

through a cross section, known as the critical flow, is given by TbPm /= .  Find 
units of b if units of m , P and T are lbm/s, psia, and degree Rankine, respectively.  
b) The critical flow of saturated steam per unit area may be estimated from a rela-
tion known as Rateau correlation: G = P[16.367 – 0.96log10P]/1000.  In this corre-
lation, units of P and G are psia and lbm/s·in2, respectively.  Convert this relation 
so that for P in MPa, we obtain G in kg/s·cm2.

5.  Partial vacuum is often measured in torr where 1 torr is 133.322 Pa or 1.316E-3 
atm.  A vacuum pump is used to bring pressure in a tank down to 2.8 torr.  Find 
the tank pressure in cm Hg and cm H20.

6.  Find the K.E. of a substance having a mass of 2 kg and moving at a velocity of 
5 m/s.  [Ans.  50 J]. 

7.  Find the K.E. of a substance having a mass of 2 lbm and moving at a velocity 
of 5 ft/s.  [Ans.:  1.55 ft⋅lbf = 2E-3 Btu]. 
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8.  Find the kinetic and potential energies of a ball having a mass of 2 lbm and 
travelling at 5 ft/s at an elevation of 10 ft above the ground.  [Ans.:  0.776 ft⋅lbf 
and 20 ft⋅lbm]. 

9.  Find the K.E. of a 5000 lbm car traveling at 55 miles per hour.  [Ans.:  0.5E6 
ft⋅lbf] 

10.  A 100 lb rock is lifted to a height of 100 ft.  Find the change in the potential 
energy of the rock in Btu. 

11.  Find the atmospheric pressure in feet of water and cm of mercury.  The spe-
cific weight of mercury is 13.6.  [Ans.:  33.92 ft and 76 cm-Hg]. 

12.  Water at atmospheric pressure in a standpipe is supplied to a hydrant.  Water 
pressure at the hydrant must be 65 psig.  Find the height of the standpipe with re-
spect to the hydrant to meet this requirement.  Use ρwater = 62.4 lbm/ft3.  [Ans.:  
150 ft] 

13. A U-tube containing mercury is used as a manometer.  This manometer is now 
connected to a container containing gas at 0.404 atm. Find the difference in the 
mercury height in the U-tube after being connected to the container. [Ans.:  1 ft]. 

14.  A gas is drawn in a pipe by a vacuum pump.  The manometer reads –3 in Hg.  
Find the gas gage pressure in inches of mercury and the absolute pressure in psia. 

15.  A mercury manometer reads a pressure of 5 in Hg.  We now want to substi-
tute a manometer filled with oil having a density of 45 lbm/ft3.  Find the reading 
on the oil-filled manometer.  [Ans.:  94.3 in Oil]. 

16.  A liquid of unknown density is used in a manometer.  When Patm = 14.7 psia, 
we read H1 = 6.72 m.  Find the liquid density in lbm/ft3.  [Ans.:  96 lbm/ft3].

ρ

Η1

Patm Vaccum

H2

Water

a b

H1

ρ1

ρ2

ρ3H2

P1 P2

  Figure for Problem 16                       Figure for Problem 17          Figure for Problem 18 

17.  The liquid in Problem 16 is now used in measuring the pressure drop of water 
flowing through a thin plate orifice.  For H2 = 60 cm, find pressure drop over the 
orifice.  [Ans.:  0.46 psi]. 

18.  For the heights and densities in the U-tube, find P1 – P2 in terms of H1, H2, ρ1,
ρ2, and ρ3.

19.  A tank contains a pool of water (density ρw) and a mixture of water vapor and 
water droplets (density ρvd). Pressure at height c (center of the tank) is given.  Find 



Questions and Problems      127 

pressure at height z of each tank in terms of Pc and given heights and densities.  
[Ans.:  a)  Pz = Pc + (c – z) ρvdg].

z z
z

cc cc
s

s s

s

z

g
ρvd

ρw ρw ρwρw

ρvd
ρvdρvd

           (a)                                     (b)                                     (c)                               (d)

20.  Find the Kmols of ammonia (NH3) that is equivalent to 34 kg of NH3.  [Ans.:  
2 kmol] 

21.  Find the lb-moles of CO2 contained in 120 g of CO2.  [Ans.:  6.02E-3 lb-
mole]. 

22.  Find the mass of air in a 1 m3 tank.  Pressure in the tank is 1 MPa and air tem-
perature in the tank is 40 C.  [Ans.  11.11 kg]. 

23.  A pressure vessel having a volume of 171 ft3 contains 1.523 lbmoles of he-
lium at a pressure of 7 atm.  Find the temperature of helium in this tank.  [Ans.:  
620 F]. 

24.  In this problem we want to compare the prediction of three equation of states 
for gases.  These are the ideal gas, Pv = RT, the Van Der Waals (P + c1/v2)(v – c2)
= RT, and the Beattie-Bridgeman equation: 

232 v
)v(

v
1

v

A
B

T

cRT
P −+−=

For this comparison, use CO2 at T = 300 K and v = 0.0040 m3/kg.  Compare the 
results with the value of 6.6 MPa obtained experimentally.  Note that in the 
Beattie-Bridgeman equation v is in m3/kmol, T is in K, and P is in kPa.  Also A = 
Ao( 1 – a/v) and B = Bo(1 – b/v).  For CO2, Ao = 507.2836, a = 0.07132, Bo = 
0.10476, b = 0.07235, and c = 660,000.  [Ans.  PIG = 14.17 MPa, PVDW = 6.95 
MPa, and PBB = 6.741 MPa]. 

25.  Use a Maxwell relation and show that the change in entropy of an ideal gas is 
given as: 

1

2

1

2
12 lnln

P

P
R

T

T
css p −=−

Section IIa.3 
26.  Plot water density as a function of temperature in the range of 32 F to 100 F.  
Find the peak water density. 

27.  Find the enthalpy of a water mixture at 2000 psia and a quality of 50%.  
[Ans.:  905 Btu/lbm]. 
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28.  Use the steam tables and find the specific volume of water at a) P = 550 psia 
and T = 580 F, b) P = 600 psia and T = 180 F, c) P = 500 psia and u = 800 
Btu/lbm, d) P = 500 psia and h = 1000 Btu/lbm. 

29.  Use the steam tables and find steam quality for a) T = 120 C and v = 0.6 
m3/kg, b) P = 2250 psia, h = 1000 Btu/lbm, and c) P = 10 MPa, v = 0.015 m3/kg. 

30.  Use the steam tables and find the specific entropy of water at a) P = 10 MPa 
and T = 180 C, b) P = 2 MPa and T = 370 C, c) P = 5 MPa and u = 1200 kJ/kg, d) 
P = 5 psia and h = 1200 F. 

31.  Use the steam tables and find the temperature and the thermodynamic state of 
water at P = 7.5 MPa and h = 1200 kJ/kg.  

32.  For water, we are given P = 350 psia and T = 134.604 F.  Can we find other 
thermodynamic properties such as v, u, h, and s?  Explain your answer. 

Sections IIa.4 through IIa.8 
33.  Heat is added to a cylinder as shown in the figure.  Find the type of process in 
both cases. 

Q Q

34.  Write the conservation of mass and the first law of thermodynamic for a 
closed system undergoing a cycle. 

35.  Determine if any work is associated with the following actions and the type of 
the work if applicable: 
a) inflating a balloon, b) filling a tank from the bottom, c) depressing the free end 
of a cantilever and d) twisting a free end of a cantilever. 

36.  Select the sign of the heat and work terms in the equation for the first law of 
thermodynamics written for a closed system (i.e., E1 + Q = W + E2) given the fol-
lowing cases: 

Q QQQ

C.V. 1 C.V. 2 C.V. 3 C.V. 4
WWWW

37.  Select the sign of the heat and work terms in the equation for the first law of 
thermodynamics written for a control volume given the following cases: 
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38.  Specify the type of work in the following examples, a) crushing an empty 
soda can, b) pulling a spoon out of a honey jar, c) cranking an engine, d) pumping 
water, e) turning a shaft inside a lubricated bearing. 

39.  The solar collector shown in Figure I.7.5 is used to provide domestic hot wa-
ter.  Assuming a person needs about 20 gallon/day (76 liter) of hot water at 140 F 
(60 C), find the collector surface area to meet this demand.  Use a tap water tem-
perature of 60 F (15.5 C).  For solar radiation, use a heat flux (radiant energy di-
vided by the collector surface area) of 236 W/m2.  Due to the collector thermal 
properties, only 80% of the sun’s energy is available to warm the flowing water in 
the solar collector.  [Ans.:  1.57 m2].

40.  We want to evaluate the operation of the relief valve in the radiator cap of a 
car on a hot summer day while the car is driven up a hill.  Before the engine is 
started, water is at atmospheric pressure and room temperature (P1 and T1, respec-
tively).  At this condition, the volume of water in the engine block, radiator, water 
pump, and the connecting hoses is V1.  The volume between the water surface and 
the top of the radiator is ∆V.  We now start the engine and begin driving the car on 
the long road leading to the hill.  The relief valve opens when the pressure reaches 
PH.  1) Plot the expansion and the pressurization processes on the T-v diagram of 
Figure IIa.3.1(c) and 2) Explain how you find the amount of heat transferred to the 
water when pressure reaches PH.  For this evaluation you may assume: a) water is 
incompressible (i.e., changes in water density are negligible), and b) air is re-
moved so that water expansion is an isobaric process. 

41.  A tank contains air treated as an ideal gas initially at 100 psia and 200 F.  We 
now heat up this tank until its pressure reaches 110 psia.  Find the air temperature 
at this pressure. 

42.  A cylinder equipped with a piston contains saturated steam at 2 MPa.  We 
now compress the steam in an isentropic process until its volume becomes equal 
to 2/3 of its original volume.  Find the steam pressure, temperature, and its ther-
modynamic state. 

43.  A cylinder contains air at 150 psia and 250 F.  The air is kept in the cylinder 
with a tightly fit piston.  At this state, the cylinder volume is 5 ft3.  We now com-
press the air, treated as an ideal gas, while heat is removed so that compression 
takes place in constant pressure until the air volume becomes 2 ft3.  Find the 
amount of heat removed from the cylinder. 

44.  In this problem we want to find the work associated with the compression of 
an ideal gas.  A cylinder-piston assembly contains 2 kg of air, treated as an ideal 
gas.  The air in the cylinder is initially at 10 bar pressure and 25 C.  We now push 
the piston and compress the air but keep the pressure at 10 bar by letting heat 
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transfer out of the cylinder.  Find the work delivered to the system when volume 
reaches 1/3 of the initial volume.   

45.  In this problem we want to find the work associated with the torsion of a solid 

bar.  If τ is the applied torsion resulting in an elemental twist of θd , the work de-

livered to the bar is θτδ dW = .  Consider the shaft of an electric motor receiving a 
torque equal to 35 N m at a constant angular velocity of 1200 rpm.  Find the rate 

of work delivered by the electric motor to the shaft.  [Ans.:  4.4≅W  kW]. 

46.  In this problem we want to find electric work.  A current of I amp at a voltage 
of V volt, is associated with a power of VI.  Find the work associated with charg-
ing a battery for 5 hours at a voltage of 12 V and a current of 2.5 A.  [Ans.:  
540 kJ]. 

47.  In this problem, we want to find the work associated with a change in the sur-
face area of fluids.  As described in Chapter III, surface tension as force per unit 
length, is a liquid property tending to maintain liquid surface.  The work associ-
ated with a differential change in the liquid surface area is found as δW = 2σdA,
where σ is surface tension.  Find the work required to blow a bubble 5 cm in di-
ameter from soapy water.  At 25 C temperature, soapy water has a surface tension 
of about σ = 0.073 N/m.  [Ans.:  1.15E-3 J]. 

48.  In this problem, we want to find the heat produced in a gearbox.  The work 
brought into the system at steady state condition by the high-speed drive shaft is 1 
MW.  The work carried away on the low-speed shaft is 0.95 MW.  Find the 
amount of heat produced.  [Ans.  50 kW]. 

49.  To compress air in a cylinder, 1000 Btu of energy is required.  This compres-
sion process results in the internal energy of the air to increase by 100 Btu.  Find 
the amount of heat transfer involved in the process.  Is this amount of heat trans-
ferred to the cylinder or transferred from the cylinder?  [Ans.:  –900]. 

50.  The steam in a cylinder undergoes a process in which 1000 kJ of heat is trans-
ferred to a cylinder.  The addition of heat to the cylinder results in the internal en-
ergy of the steam to be increased to 800 kJ.  Find the amount of work delivered to 
the piston.  [Ans.:  200 kJ]. 

51.  Find the thermal power of the PWR of the nuclear ship Savannah.  The reac-
tor operated at 1,750 psia.  The coolant entered the reactor vessel at rate of 9.4E6 
lbm/h and a temperature of 497 F and exited at 519 F.  [Ans.  71.33 MWth]. 

52.  Pressurized air at a rate of 4.5 kg/s flows in a rectangular duct.  The air pres-
sure and temperature at a point in the duct is measured as 33 C and 250 kPa.  The 
duct cross section is a rectangle of 50 cm by 20 cm.  Find a) the volumetric flow 
rate, b) the mass flux, c) the average velocity at this location.  [Ans.: c) 15.8 m/s]. 

53.  Liquid sodium enters the core of a liquid metal fast breeder reactor (LMFBR) 
at 400 C and leaves at 560 C.  The reactor operates at 750 MW.  Find the sodium 
flow rate.  cp = 0.3 Btu/lbm·F. [Ans.:  12,471 lbm/s]. 
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54.  Use the Maxwell relations to show that, for an isentropic process of an ideal 
gas, Pvγ = constant where γ is given as γ = cp/cv.  [Hint:  Use ds = (cvdT/T) + R
(dv/v) = 0 and ds = (cpdT/T) - R (dP/P) = 0.  Cancel dT/T and integrate.] 

55.  Use the equation of state for ideal gases in conjunction with the Maxwell rela-
tions to derive an alternative equation to Equation IIa.3.6 (calculation of the 
change in the entropy of a system in a reversible process.  [Ans.: 

( ) ( )2

1
2 1 2 1/ ln /

T

pT
s s c dT T R P P− = − ].

56.  A tank at atmospheric pressure contains two inlets and one outlet port.  The 
first inlet port has a flow area of 0.05 ft2 and the flow area of the second inlet port 
is 0.025 ft2.  Water enters the first inlet port at 5 ft/s and 100 F.  Water enters the 
second inlet port at 8 ft/s and 175 F.  Water leaves the tank at a rate of 2 lbm/s.  
Find the rate of change of the tank water level.  

57.  We compress air at 1 MPa and 150 C to a pressure of 5 MPa in an isentropic 
process.  Treat air as an ideal gas and find its temperature at this pressure.  [Ans.:  
T2 ≅ 240 C]. 

58.  A mixture of water and steam is contained in a cylinder equipped with a well-
fitted leak-tight piston of cross sectional area A.  At state 1, the mixture is at pres-
sure P1 having a steam quality of x1 and a volume of V1.  Heat is added to the cyl-
inder until the piston just touches the spring.  At this stage, the volume of the cyl-
inder content is V2 = V1 + ∆V.  We keep adding heat to the cylinder.  The piston 
would travel further to the right and start compressing the spring.  We terminate 
the heating process when the pressure of the cylinder content reaches P3.  Write a 
procedure from which P2, T2, and T3 can be determined.  Assume a linear spring 
(F = ksx) with known ks.
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59.  Show that for steady-flow, steady state isentropic process of an ideal gas the 
work from going from state 1 to state 2 is found from: 
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60.  Flow enters a heat exchanger at a rate of 25E6 lbm/h and a density of 1.5 
slugs/ft3.  There are 9000 tubes in this heat exchanger.  If flow is distributed 
evenly among the tubes, find the flow velocity in each tube.  Use a diameter of 
0.63 in for all the tubes.  [Ans.:  7.38 ft/s]. 

61.  Water at 20 C enters the pipe of Figure (a) at a velocity of 2.5 m/s.  The pipe 
has an inside diameter of 5 cm.  Find the mass flow rate, mass flux, and volumet-
ric flow rate.  [Ans.  4.9 kg/s, 2497.5 kg/m2⋅s, 4.9E-3 m3/s]. 
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62.  Show that for the pipe of Figure (b) flow velocity at the exit is given by V2 = 
V1 (D2/D1)

2.

63.  For the pipe in Figure (c), find mass flow rate ( 4m ) and velocity 4( )V at the 
exit of the pipe. 

64.  The mass flow rate through the core of a 2 × 4 PWR (i.e., 2 hot legs and four 
cold legs) is 62.82E6 kg/h.  The inside dimeter (I.D.) of the hot leg is 1 m.  Esti-
mate the I.D. of the cold leg.  Data:  THL = 320 C, TCL = 288 C, and P = 15.5 MPa.  
[Hint: VHL = VCL].

65.  The core of a nuclear reactor produces 2772 MWth at 2155 psia.  The volu-
metric flow rate through the core is given as 122.71E6 GPM.  The core outlet 
temperature is 604 F.  Find the core inlet temperature.  [Hint.  Guess Tin, find Tavg,
find ρavg(P, Tavg), find m , update Tavg and continue iteration].  [Ans.:  549 F]. 

66.  Consider the pressurizer of a PWR, having an internal volume of 1500 ft3.
The pressurizer contains 750 ft3 of water and steam at 2000 psia at equilibrium.  
Due to a turbine trip, an in-surge of 100 GPM and 600 F enters the pressurizer for 
5 minutes.  Find the temperature of the water region after termination of the in-
surge.  Assume perfect mixing between the in-surge and water in the water region.  
Ignore work due to boundary change and heat transfer with the steam region.  
[Ans.  T2 = 662.5 F]. 

67.  The pressurizer of a PWR is at 2250 psia.  Water through the letdown line 
leaves the pressurizer at a rate of 44 GPM and enters the volume control tank 
(VCT) for 30 minutes.  If no other process has taken place in either tank, use the 
data below and find the change in water level in the two tanks.  Assume instanta-
neous and perfect mixing in VCT.  Data:  VPressurizer = 1500 ft3, (Vwater)Pressurizer = 
750 ft3, APressurizer = 50 ft2, VVCT = 1000 ft3, (Vwater)VCT = 385 ft3, AVCT = 44.3 ft2,
TVCT = 150 F.   

68.  A rigid vessel is filled with saturated water and steam.  In the left figure, wa-
ter and steam constitute two separate regions while in the right figure the water 
and steam make a homogenous mixture.  Under what condition can the right fig-
ure represent the left figure? 
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69.  We plan to design a 1 MWth solar power station, as shown in the figure.  So-
lar radiation heats up the circulating water in the solar collectors, which is then 
transferred to a heat reservoir to produce steam.  The reservoir is maintained at 1 
MPa.  Dry, saturated steam, after expansion in the turbine, is cooled down in the 
condenser and is pumped back to the reservoir.  Find the steady state mass flow 
rate of feedwater and of steam.  The steam enthalpy at the exit of the turbine is 
2300 kJ/kg.  List the advantages and drawbacks of this design.  Changes in the ki-
netic and potential energies are negligible.  [Ans.:  2 kg/s]. 
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70.  Total heat in the primary side of a PWR, as shown in the figure, is 2700 
MWth.  This amount of heat consists of the fission heat produced in the core and 
the reactor coolant pump (RCP) heat.  The steam generator is maintained at a pres-
sure of 900 psia.  The enthalpy of feedwater entering the steam generator is 430 
Btu/lbm.  Find the steady state mass flow of the dry saturated steam leaving the 
steam generator towards the turbine.  [Ans.:  11.7E6 lbm/s]. 
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71.  Shown in Figure (a) is the flow path of a BWR vessel.  Find the steam mass 
flow rate ( gm ) in terms of total reactor core power ( Q ), feedwater enthalpy (hd),
and thermodynamic properties at vessel pressure.  
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                  (a)                                     (a and b)                                     (b) 
   Figure for Problem 71                                                         Figure for Problem 73

[Ans:  )/( dgg hhQm −= ].

72.  In Problem 71, defining the recirculation flow rate as gf mmr /= , show that 
r = (1 – xe)/xe where xe is the steam quality at the core exit. 

73.  Shown in Figure (b), is the flow path in the secondary side of a PWR steam 
generator.  For the steady state operation, find the steam mass flow rate in terms of 
the following parameters: 
hin: water enthalpy at the inlet to the tube bundle region 
hf: saturated water enthalpy at the steam generator pressure 
hfg: latent heat of vaporization at the steam generator pressure  

CoreQ : total rate of heat transfer in the core, 

im : mass flow rate in the tube bundle region, 

SGN : number of steam generators ( SGN )

[Ans.:  { } fginfiSGCores hhhmNQm /)()/( −−= ].

74.  A PWR steam generator at steady state operation produces dry, saturated 
steam.  Pressure in the tube bundle region is 6 MPa (875 psia).  The PWR power 
plant is equipped with two steam generators and is producing a total electric 
power of 810 MWe at a thermal efficiency of 30%.  Use a feedwater enthalpy of 
1007 kJ/kg (433 Btu/lbm), a recirculation ratio of 3.3 to find: 
a) the feedwater flow rate entering the steam generator downcomer, b) the steam 
flow rate c) the flow rate entering the tube bundle region, d) the recirculation flow 
rate entering the downcomer region, e) water enthalpy entering the tube bundle 
region, f) mixture enthalpy at the exit of the tube bundle region, g) the degree of 
subcooling at the inlet to the tube bundle region.   

75.  Start with Equation IIa.6.3 and show that, for rigid control volumes with no 
internal heat generation, the first law for control volumes simplifies to: 
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76.  Saturated steam enters a turbine at 7 MPa and a rate of 6E3 kg/h.  Steam 
leaves turbine at 7 bar and xe = 85%.  There is a total of 20 kW heat loss from the 
turbine.  Find the power developed by this turbine.  [Ans.:  0.93 MW]. 

77.  Hot water enters the steam generator tubes of a PWR at a rate of 138.5E6 
lbm/h, pressure of 2250 psia and temperature of 600 F.  Water leaves the tubes at 
550 F.  Steam is produced in the secondary side at 1000 psia.  Find the steam mass 
flow rate.  [Ans.:  7E6 lbm/h]. 

78.  Find the rate of steam produced in a BWR operating at 1,600 MWth.  Water 
enters the core from the lower plenum at a rate of 50E6 lbm/h and a temperature 
of 526 F.  Reactor pressure is 1050 psia.  [Ans.:  6E6 lb/h]. 

79.  A high temperature gas-cooled reactor (HTGR) is designed to operate at 330 
MWe with a ηth = 39.23%.  Helium enters the reactor at a pressure of 710 psia and 
temperature 760 F and leaves at 1,430 F.  Find the He flow rate through the core.  
cp = 1.24 Btu/lbm·F.  [Ans.:  3.455E6 lbm/h] 

80. For a PWR steam generator, we define the recirculation ratio as R = sr mm / ,

where sm  is the steam mass flow rate and rm is the recirculation mass flow rate. Ex-

press R is terms of core exit average quality (Xe = mms / ). [Ans.: R = Xe/(1 – Xe)].

81.  Obtain an analytical solution in closed form for the set of mass and energy 
equations in Example IIa.8.2.  [Hint, since the inlet mass flow rates and enthalpies 
as well as the outlet mass flow rate are all uniform with time, the rate of change of 
mass in the tank is constant, hence, water level is a linear function of time]. 
[Ans.:  Mass of water in the tank as a function of time is found from 
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found from the initial condition for water temperature.] 

82.  Find an analytical solution for Example IIa.8.2 if heat is also added to the tank 

at a constant rate of Q  Btu/s.  [Ans.:  The only modification is in q(t) which be-

comes )(/)(
2

1

tmhmQtq
i

ii+=
=

.]

83.  If in Example IIa.8.2 heat is added to the water at a rate of 2000 Btu/s, find 
the time it takes for water to reach saturation at atmospheric pressure. 
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84.  A tank contains 5 ft3 of water at 100 F and 1 atm.  Heat, at a constant rate of 
1,000 Btu/s, is added to the tank in an isobaric parocess.  Find the time it takes for 
the last drop of water to evaporate.  Properties of subcooled water at 1 atm and 
100 F are v = 0.01613 ft3/lbm and h = 68.04 Btu/lbm.  [Ans.:  4.6 min.] 

85.  A tank contains 5 ft3 of water at 100 F.  Heat, at a constant rate of 1,000 Btu/s 
is added to the tank in an isobaric process.  Find the time it takes for the last drop 
of water to evaporate.  Solve this problem for three cases.  In case 1, the tank pres-
sure is 300 psia.  In case 2, the tank pressure is 1200 psia.  In case 3, the tank pres-
sure is 2500 psia.  a) What conclusion do you reach from this study?  b) Assume a 
tank cross sectional area of 1 ft2 and plot water level as a function of time for all 
three cases.  [Ans.:  a) As shown in Figures IIa.3.1(c) and IIa.3.4, latent heat of 
vaporization decreases as pressure increases.  Hence, the tank loses water faster at 
higher pressures.  b) the plot should have the trend shown below: 

100

80

60

40

20

0
0

N
or

m
al

iz
ed

 W
at

er
 L

ev
el

Time

2500 psia

1200 psia

300 psia

].

86.  A tank of 8000 ft3 (225 m3) contains a two-phase mixture of water and steam 
at Pi = 1000 psia (7 MPa) and xi = 28.233%.  Heat is now added to the tank, 
treated as a single control volume at a rate of: 

t
oeQtQ α=)(

where oQ  = 34.4 MW and α = 18 h–1.  Find the time it takes for pressure to reach 

3000 psia (21 MPa).  [Hint:  At state 2, we have P2 and v2 = v1].  [Ans.:  5 min]. 

87.  A cylindrical tank has a base diameter of D = 3 ft and a height of H = 7 ft.  
The tank contains air at 100 psia and 100 F.  The intake valve is now opened to al-
low 100 F water at a constant rate of 10 lbm/s to enter the tank.  Assume that no 
air is dissolved in the water and no heat transfer takes place at the air - water and 
air - wall interfaces.  Find air pressure in the tank 62 seconds after the intake valve 
is opened.  Treat air as an ideal gas and the compression of air as an isentropic 
process.  The vent valve remains closed.  [Ans.:  137.2 psia]. 
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88.  A rigid vessel having a volume of V contains air, initially at a pressure of P1

and a temperature of T1.  An intake valve is now opened to allow pressurized air at 
a temperature of Ti to enter the vessel.  The intake valve is closed when pressure in 
the vessel reaches P2.  Use the conservation equations of mass and energy as well 
as the equation of state to derive a relation for the final temperature.  Consider the 
process adiabatic and neglect any storage of heat in the tank wall.  [Ans.:  

)}/()(/{ 111222 TTcPPPcTcPT ipvip +−= ].

89.  A rigid tank has a volume of V = 1.0 ft3 and contains air at P1 = 14.7 psia and 
T1 = 70 F.  An admission valve is now opened to allow pressurized air at Pi = 100 
psia and Ti = 70 F enter the tank.  The valve is closed when P2 = 30 psia.  Find T2.
[Ans.:  T2 = 161 F]. 

90.  The volume of the water in the secondary side of a PWR steam generator is 
130 m3.  The power deposited to the water ten minutes after the reactor is shut-
down is 58 MW.  If there is no feedwater delivered to the steam generator, find the 
time to boil the steam generator dry.  The secondary side pressure is 9 MPa. 

91.  A tank with a volume of V = 2 m3 contains air at 3 MPa and 200 C.  The vent 
valve is now opened.  Find the tank pressure and temperature when 1/3 of the air 
escapes through the vent valve.  The intake valve remains closed. 

92.  A tank with a volume of 10 m3 contains air at 0.1 MPa and 15 C.  The intake 
valve is opened to allow pressurized air enter the tank at an average mass flow rate 
of 0.5 kg/s and temperature of 100 C.  If the tank is fully insulated, find the tank 
pressure after 60 seconds.  The vent valve remains closed.  [Ans.:  P = 0.55 MPa, 
T = 182 C]. 

93.  A tank with a volume of V = 10 m3 contains air at 0.1 MPa and 15 C.  The in-
take valve is opened to allow pressurized air enter the tank at an average mass 
flow rate of 0.5 kg/s and temperature of 100 C.  During the charging process, heat 
is transferred to the atmosphere at a rate of 0.01(T - Ts) Btu/s where T is the air 
temperature in the tank and Ts = 10 C is temperature of the surroundings.  Find the 
tank pressure after 60 seconds.  The vent valve remains closed.  [Ans.:  P = 0.53 
MPa, T = 168 C]. 

94.  A pressurized rigid vessel having a volume of 10 ft3 is filled with air to 600 
psia and 185 F.  We want to vent this tank so that the final pressure drops to at-
mospheric pressure (14.7 psia).  However, we would like to maintain the air tem-
perature in the tank at 185 F throughout the venting process.  Find the amount of 
heat necessary to accomplish this task.  Treat air as an ideal gas with constant spe-
cific heat and ignore changes in the air kinetic and potential energies compared to 
its internal energy.  [Ans.:  898 Btu]. 

95.  A rigid vessel is depressurized from 3 MPa to 101 kPa through a small vent.  
Heat is added in this process to maintain temperature at its initial value.  The tank 
has a volume of 5 m3 and its inventory is an ideal gas.  Find the amount of heat re-
quired for accomplishing this task.  [Ans.:  14,495 kJ]. 
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96.  A cylindrical pressurized vessel is filled with air to 500 psia at an initial tem-
perature of 250 F.  The vessel has a diameter of D = 4 ft and total volume of V = 
200 ft3.  A small, 1 inch vent valve is now opened.  Find pressure (P) and tempera-
ture (T) of the gas in the vessel 20 seconds into the venting event.  Treat air as an 
ideal gas.  The tank is fully insulated.  The valve discharge coefficient is 0.65.  
The intake valve remains closed [Hint: Flow rate through the value should be mul-
tiplied by the specified discharge coefficient].  [Ans.:  P = 133 psia, T = 10 F]. 

97.  A cylindrical pressurized vessel is filled with air to 500 psia at an initial tem-
perature of 250 F.  The vessel has a diameter of D = 4 ft and total volume of V = 
200 ft3.  A small, 1 inch vent valve is now opened.  Find pressure (P) and tempera-
ture (T) of the gas in the vessel 20 seconds into the venting event.  Treat air as an 
ideal gas.  The rate of heat transfer from the tank to the surroundings is estimated 
at 0.008(T - Ts) Btu/s where the surrounding is at a temperature of Ts = 35 F.  The 
valve discharge coefficient is 0.65.  The intake valve remains closed.  [Ans.:  P = 
132 psia, T = 6 F]. 

98.  The pressurizer of a PWR is a cylindrical tank having a volume of 1500 ft3.
Initially, the tank is full of a mixture of water and steam.  Consider this saturated 
mixture to be distributed uniformly in the tank at P1 = 2250 psia.  The initial steam 
quality is 70%. We now start heating the tank but would like to keep pressure at 
its initial value of 2250 psia. To achieve this goal, we must simultaneously remove 
mass from this tank. If only steam is removed by a valve at the top of the tank and 
the kinetic and potential energies are negligible, find the amount of the mass re-
moved and heat added when the last drop of water boils and becomes steam. 

99.  A small amount of leakeage exists in the steam generator of a PWR operating 
at the rated power of 100W .  A noble gas escapes the primary side and enters the 
secondary side at a fixed rate of im .  Find the density of the gas in the secondary 
side of the steam generator versus time.  The volume of the secondary side is V. 
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[Hint:  Since the leak is small, we treat gas as a component.  Find ρ100(t), density 

of the gas at 100% power from V(dρ100/dt) = im  – ρ100 SteamV  where SteamV  is 

the steam volumetric flow rate at 100% with ρ100(0) = 0].

[Ans.:  ( )αρ βtet −−= 1)(100  where a = im / SteamV  and β = SteamV /V]. 

100.  A small amount of leak exists in the steam generator of a PWR operating at 

the rated power of 100W .  A noble gas escapes the primary side and enters the sec-
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secondary side at a fixed rate of im .  At θ  seconds into the operation at nominal 

power, we reduce power to 20% of nominal.  a) If the primary side and the secon-
dary side pressure remain about the same value as at nominal power, find the 

steam flow rate ( 20m ) in terms of 100W , 20W , and steam mass flow rate at full 

power ( 100m ).  b) Find the partial density of the noble gas in the secondary side 

(ρ20), at the reduced power of 20%, versus time.   

[Ans.: ( )' '
20 100( ') ( ) 'tt t e βρ α ρ θ α−= + = −′  where t’ = t – θ, α ′  = im / SteamV′ ,

and β ′  = SteamV′ /V]. 

[Note, the above answers assume that the noble gas is stable.  If radioactive gases 
such as Xe-135 are involved, the Xe buildup in the primary side and decay in the 
secondary side must be factored in.] 

101.  Consider a mixing tank that contains mo kg of water intitially at To C.  This 
tank is fed by N feed lines carrying water at various temperatures.  The mass flow 
rate and enthalpy of water in the feed lines are known functions of time.  There are 
NM mixers and NQ heaters.  The tank is poorly insualted.  The rate of heat loss is 
given as β(TC.V. – Tf) where β has units of W/C and Tf is temperature of the sur-
roundings.  Both β and Tf are known functions of time.  There are N inlet ports and 
M outlet ports.  Assume instantaneous and perfect mixing so that water in the tank 
can be represented by one control volume. 
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a) Use other simplifying assumptions, as used in Section 8, and obtain the govern-
ing differential equations for the control volume mass and enthalpy.  b) Assume a 
constant specific heat and obtain an analytical solution for the water temperature 
leaving the tank in terms of the specified forcing functions.  c) Use the definitions 
in Chapter VIIe and obtain the solution in explicit, semi-implicit, and fully-
implicit numerical schemes. 

Section IIa.9 through IIa.11 
102.  Is the motion of the sphere a reversible process in the absence of any air re-
sistance and friction? 
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103.  A smooth pipe equipped with an isolation valve connects two tanks contain-
ing air.  When the valve is closed PA > PB.  We now open the valve until both 
tanks reach equilibrium.  Is this a reversible process? 

PA PB
PC PC

104.  A pendulum, placed in an enclosure, is operating in a vacuum.  The connect-
ing rod is attached to a frictionless joint.  Is the motion of this pendulum a reversi-
ble process? 

105.  An adiabatic and reversible process is an isentropic process.  Can an irre-
versible process in which heat is allowed to transfer have no change in entropy?  
Clarify your answer.  [Ans.: Yes]. 

106.  Consider two heat engines operating between the same heat source and heat 
sink in the Carnot cycle.  One heat engine uses gas and the other uses water as 
working fluid.  Which heat engine would have higher thermal efficiency? 

107.  We want to heat up the contents of a closed system.  We may use a paddle 
wheel or a heat reservoir. Thermodynamically, which method is preferred?

108.  A cylinder, fitted with a frictionless piston, contains saturated steam at a 
specified pressure.  We now let heat transfer take place from the cylinder to the 
surroundings until saturated steam becomes saturated water.  Does this constitute a 
reversible process?  Does this constitute an isentropic process? 

109.  Heat is added to a cylinder containing air.  The cylinder has a volume of 0.12 
m3 and initially is at P1 = 1 MPa and T1 = 50 C.  Find a) the air pressure when the 
air temperature reaches 150 C, b) the amount of heat added to the cylinder, and c) 
the change in the air entropy.  [Ans.:  1.31 MPa, 94 kJ, 0.252 kJ/C]. 

110.  A cylinder contains 3 kg of air at P1 = 1 bar and T1 = 27 C.  In a polytropic 
compression, the pressure and temperature of the air are raised to P2 = 15 bar and 
T2 = 227 C.  Find the polytropic exponent, the final volume, the amount of com-
pression work delivered to the system, and the amount of heat rejected to the sur-
roundings.  [Ans.:  1.23, 0.287 m3, –763 kJ, and –316 kJ]. 

111.  Thermal efficiency of a power plant is calculated as 30%.  The electrical out-
put of the plant is 1000 MWe.  How much heat is transferred in the heat source to 
the working fluid (i.e., MWth)? 

112.  In a 1000 MW power plant, steam at 1000 F enters the turbine.  Pressure in 
the primary side of the condenser is 4 psia.  Find the least possible amount of heat 
rejected to the surroundings. 

113.  A power plant operates at a thermal efficiency of 32%.  The rate of heat 
transfer in the heat source is 2700 MW.  Find the power produced by the turbine. 
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114.  A refrigerator operates at 1 kW power to maintain the temperature of the 
freezer compartment at -7 C while the room temperature is 25 C.  The power 
transferred to the room from the refrigerator is 4 kW.  Find the COP ( orRefrigeratη )
and compare it with the maximum COP ( Carnotor,Refrigeratη ).

115.  We want to verify the validity of the data reported for the following power 
plant.  Water leaving the condenser is saturated at P1 = 1 psia.  Water entering the 
boiler is subcooled at P2 = 1000 psia and T2 = 79.26 F (h2 = 50 Btu/lbm).  Steam 
leaving the boiler and entering the turbine is saturated at P3 = 1000 psia.  Finally, 
the mixture leaving the turbine and entering the condenser is at P4 = 1 psia and 
x4 = 0.85.  [Hint:  You must verify the Clausius inequality noting that heat is 
added in the boiler and rejected at the condenser]. 

4

P3 = 1000 psia

2 1

3

x3 = 1

P4 = 1 psia
x4 = 0.85

P1 = 1 psia
x1 = 0.0P2 = 1000 psia

W

Qe

Qi

< 0
T

Qδ

116.  Heat is added from the bottom to an otherwise well-insulated cylinder until 
all the initially saturated water becomes saturated steam then the heat addition is 
terminated and the bottom is rapidly insulated.  Use the data shown in the figure to 
find a) the amount of work produced, b) the entropy transfer to the cylinder, and c) 
the entropy produced in the cylinder. 
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117.  Derive Equation IIa.10.20 by expanding the rate of heat transfer term in 
Equation IIa.10.19 as: 

( ) ( )+=
j k kkjj TQTQTQ /// oo

where j is the summation over all thermal boundaries except for o (i.e., k ≠ o).  

Substitute this relation into Equation IIa.10.19, solve for oQ  and substitute into 

Equation IIa.6.5, where in Equation IIa.6.5 you should also make a similar expan-

sion for the heat transfer term, +=
j k koj QQQ .  Equation IIa.10.20 gives 
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the optimum useful work.  Find the equation from which the useful work wuse can 
be calculated. 

118.  Superheated steam is throttled at steady state conditions from 10 MPa and 
480 C to 6 MPa.  Find the entropy production in this process.   
[Ans.:  0.158 kJ/kg·K]. 

119.  Saturated steam enters a condenser at 1 psia and saturated water leaves the 
condenser.  The cooling water enters the condenser tubes at 65 F and leaves at 
77 F.  Ignore the changes in the kinetic and potential energies and find the steady 
state entropy production for this fully insulated condenser.   

120.  A steam turbine operates at a steady state condition with superheated steam 
entering the turbine at 3 MPa and 450 C.  Steam velocity at the inlet is 150 m/s 
and the inlet steam pipe has a diameter of 0.75 m.  After expansion in the turbine, 
saturated steam leaves the turbine at 100 C and 90 m/s.  The power produced by 
this turbine is 0.32 MW.  The turbine is not insulated and heat transfer takes place 
at an average temperature at the turbine control surface of 225 C.  Ignore changes 
in the potential energy of the steam and find the entropy production rate in the tur-

bine.  [Ans.:  m  = 613.6 kg/s, =Q  –0.0118 MW, and ≅σ  1.91 MW/K]. 

121.  A cylinder contains 10 kg of air (treated as an ideal gas) at 2 MPa and 365 C.  
The frictionless piston is held in place by a stop pin.  The pin is now removed and 
the piston is set free to move.  Find the special optimum useful work this process.  
For the surroundings use Po = 101 kPa and 25 C.  [Ans.:  3476.2 kJ]. 

122.  A cylinder contains 16 lbm of air at 220 psia.  We wish the optimum useful 
work corresponding with the expansion of a frictionless piston to be 1000 Btu.  
Find the volume of the tank and air initial temperature to satisfy this requirement.  
Treat air as an ideal gas and use Po = 15 psia and To = 77 F. 

123.  A cylinder contains steam at 460 psia and 600 F.  The frictionless piston is 
held in place by a stop pin.  The pin is now removed and the piston is set free to 
move.  After expansion, steam pressure and temperature drop to 100 psia and 360 
F while producing 74 Btu/lbm of work and exchanging heat with a sink reservoir 
at 305 F.  Determine the effectiveness of the steam expansion.  Use Po = 15 psia 
and To = 77 F.  [Ans.:  78%]. 

124.  The stored energy of a system containing compressed air can be used in 
various work processes.  Consider a tank containing 5 kg of compressed air at 1.5 
MPa and 350 C.  Find the maximum useful work.  Treat air as an ideal gas and use 
Po = 0.101 MPa and To = 298 K.  [Ans.:  1635 kJ]. 

125.  We want to compare two methods of heating the same tank.  For this pur-
pose, consider increasing the quality of a two-phase mixture in a rigid tank.  The 
tank has a volume of 1 m3.  Initially the mixture pressure is 2 MPa and the mixture 
quality is 8%.  The tank temperature is raised to 300 C.  The pressure and 
temperature of the surroundings are 0.101 MPa and 25 C, respectively.  In the first 
method, we fully insulate the tank and use a paddle wheel.  In the second method, 
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we remove the insulation and add heat from a reservoir at 450 C.  Find the irre-
versibility of each method and comment on the result.  [Ans.:  Ia = 120,000 kJ & 
Ib = 12,355 kJ]. 

126.  To maximize the productivity of an electric power plant, we need to deter-
mine wasteful processes.  Two obvious candidates are the heat carry out of the 
plant in the heat sink and in the exhaust of stack gases.  Use the data and find 
which stream is more wasteful.  The power plant produces 12,000 MWe having an 
overall efficiency of 31%.  The power plant exhausts the stack gases at a rate of 
500 lbm/s and a temperature of 445 F.  The condenser uses 190,000 lbm/s of cool-
ing water, which enters condenser at 65 F.  Treat the stack gases as air and air as 
an ideal gas.  [Ans.:  TW2 = 78 F, ψW = 45,285 Btu, ψA = 11,294 Btu]. 

127.  In a heavy duty truck, the circulating water to cool the 600 hp engine enters 
radiator at 0.2 MPa, 98 C and 3.6 kg/s.  Air flows over the radiator tubes at a rate 
of 8 kg/s.  Find the irreversibility of the radiator.  Use To = 25 C and ignore pres-
sure drop in both streams.  [Ans.:  TW2 = 71.4 C, TA2 = 78 C]. 

128.  Find the steady flow special availability of a geothermal energy source.  Wa-
ter from this source is at 0.6 MPa and 152 C. 

129.  When the combustion products in a diesel engine ignite, temperature reaches 
4850 F and 1950 psia.  If the combustion products are treated as air, find the asso-
ciated special availability of the products. 
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IIb..  Power Cycles

Power cycles are an important application of the thermodynamic principles.  In 
this chapter we discuss power cycles that use a heat source to develop a net power 
output.  The heat source may be the energy from fossil fuel, nuclear fuel, solar 
heating, or geothermal energy. 

1.  Gas Power Systems 

Power production systems using gases as the working fluid have a wide range of 
applications in automotive, aircraft, and large-scale land-based power plants.  The 
working fluid in such systems always remains in the gas phase throughout a cycle.   

1.1.  Definition of Terms 

Internal combustion engines are power systems in which the working fluid 
changes composition.  Such systems generally use air in addition to the fuel (re-
sulting in combustion products).  Examples of such systems include gasoline en-
gines using a spark-ignition system, diesel engines, and gas turbines. 

External combustion engines are power systems in which the working fluid 
does not change composition; rather heat is transferred to the working fluid from 
the combustion products.  An example includes a fossil power plant where heat is 
transferred to steam, which is the working fluid in a boiler.  In nuclear power 
plants no combustion takes place.  Rather, heat is produced by fission and trans-
ferred to the coolant.  Hence, a nuclear power plant can be simply considered as 
an external engine or machine.  Although external engines generally use steam as 
working fluid, gas cooled reactors, by definition, are external machines that use a 
gaseous working fluid to produce work in conjunction with a gas turbine. 

Open cycle is a term applied to internal combustion engines because the work-
ing fluid changes from cycle to cycle.  This occurs, for example, in the intake 
process of a spark-ignition engine where, air is admitted and mixed with the com-
bustible products.  The mixture is then ignited, expanded, and at the end of the cy-
cle the combustion products leave the engine in the exhaust process.  The cycle is 
then repeated. 

Reciprocating engines are of the cylinder-piston type.  In contrast, a Wankel 
engine is equipped with a rotor.  As discussed in Chapter I, the piston slides inside 
the cylinder by the connector rod, which is attached to the crankshaft.   In a recip-
rocating engine, depending on the manner the air-fuel mixture enters, the exhaust 
leaves the cylinder (chamber), and the power stroke per revolution of the crank-
shaft, the engine may be of a two- or a four-stroke type.
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Figure IIb.1.1.  Intake and exhaust in a reciprocal open cycle four-stroke internal combus-
tion engine 

Shown in Figure IIb.1.1 is a four-stroke open cycle internal combustion engine.  
The head-end dead center and crank-end dead center are the positions at which 
the volume of the combustion chamber is a minimum or a maximum, respectively.  
At the head-end dead center for example, the piston is fully inserted into the cyl-
inder.  In the intake process, the intake valve opens to deliver air from the engine 
manifold (not shown in Figure IIb.1.1) while the exhaust valve is closed.  This 
condition is reversed when the piston pushes the exhaust gases out of the cylinder. 

Figure IIb.1.2 shows the start and the end states of all the processes that consti-
tute one cycle of the operation of an open cycle internal combustion engine.  The 
cycle begins at the intake stage when the piston is at the head-end dead center and 
just begins to move downward to admit the mixture of air and fuel in to the cylin-
der by suction.  At this stage, the exhaust valve is fully closed and the intake valve 
is fully open.  When the piston reaches the crank-end dead center, the intake valve 
closes.  The compression process starts at the conclusion of the intake process 
when the piston begins to move toward the head-end dead center.  At the end of 
the compression process, ignition takes place resulting in the combustion of the 
mixture*. This pushes the piston towards the crank-end dead center.  Work is de-
livered in this expansion process.  Finally, the cycle is completed when the piston 
moves towards the head-end dead center to discharge the combustion products.  In 
this stage, known as the exhaust process, the exhaust valve opens while the intake 
valve is fully closed.  A cylinder-piston engine and the corresponding P-v diagram 
are shown in Figure IIb.1.3. 

*  While four-stroke engines have ignition in every other revolution of the crankshaft, two-
stroke engines have ignition in every revolution.  In two-stroke engines, the lubrication 
system is eliminated as oil is directly added to the fuel.  Thus a two-stroke engine has a 
higher specific power than a similar four-stroke engine and is used in such appliances as 
chain saw and leaf blower and in small airplanes.  Having ignition per every revolution 
requires simultaneous compression of the air-fuel-oil mixture while the combustion prod-
ucts are expanding.  Similarly, by combining the intake and exhaust processes, the incom-
ing compressed mixture expels the combustion products through the exhaust port.  In this 
process some of the fresh mixture may also escape through the exhaust.   
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Figure IIb.1.2.  Start and end states of processes in an open-cycle internal combustion en-
gine. (Numbers refer to the air standard cycle) 
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Figure IIb.1.3.  A piston-cylinder engine and corresponding pressure-displacement plot 

Gas turbine is an internal combustion engine where shaft work is produced by 
a rotor rather than the moving boundary of a deformable control volume.  Air en-
ters at the suction end of a compressor that is driven by the turbine shaft (Fig-
ure IIb.1.4).  Compressed air leaves the compressor and enters the combustion 
chamber.  This leads to high-energy gases entering the gas turbine.  Inside the tur-
bine, the gas flows between the static blades, which act as a diffuser by directing 
the flow of gas over the rotating blades.  The rotating blades are attached to the ro-
tor to transfer momentum and energy.  A portion of the work produced by the 
high-energy gas is delivered to the compressor.  The gas finally leaves the turbine 
by transferring the remaining of energy to the heat sink. 
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Figure IIb.1.4.  Schematics of an open and a closed cycle gas turbine 

Closed cycle, also referred to as air standard cycle, is a theoretical cycle re-
sembling an actual open cycle for analysis purposes.  In an air standard cycle, we 
make several simplifying assumptions.  First, we assume that the working fluid - 
air - is behaving as an ideal gas.  This assumption allows us to use the equation of 
state for ideal gases and to describe internal energy in terms of the product of tem-
perature and specific heat.  Next we assume that the mass of air used as working 
fluid is fixed in the entire cycle.  Hence, there is no intake and no exhaust proc-
esses.  Heat of ignition is transferred to this fixed mass of air  at the heat source 
and is rejected to the heat sink.  Hence, the same mass of air is analyzed through-
out a cycle and the composition of air remains intact.  We also assume all proc-
esses are internally reversible and the effects of kinetic and potential energies are 
assumed to be negligible. 

Compression ratio (rV) for a process is defined as the ratio of the gas volume 
before compression to the gas volume after compression, rV = V1/V2.  Therefore, 
the compression ratio is always greater than one. 

Pressure ratio (rP)for a process is defined as the ratio of gas pressure after 
compression to gas pressure before compression, rP = P2/P1.  Therefore, the pres-
sure ratio is always greater than one.  This term is also referred to as the compres-

sor pressure ratio.  For an isentropic compression, γ
VrrP = .

Temperature ratio (rT) is defined as the ratio of the maximum to the minimum 
temperature in a cycle, rT = T3/T1.

1.2.  Air Standard Carnot Cycle 

The air standard Carnot cycle (Figure IIb.1.5) is a theoretical cycle in which heat 
transfer to air at the heat source and heat rejection at the heat sink take place as 
isothermal processes while the compression and expansion processes are isen-
tropic.  Thus, in the Carnot cycle s1 = s4, s2 = s3, T1 = T2 = TL, and T3 = T4 = TH.

The efficiency for the Carnot cycle is obtained by using Equation IIa.9.1 and 
substituting for QL and QH from the T-s diagram of Figure IIb.1.5: 
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For the isentropic process of gas compression we define the compression ratio, rV

as: 
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Using the relation between pressure and volume for an isentropic process, PVγ = 
constant where γ = cp/cv and the equation of state for an ideal gas, PV = mRT, we 
can relate rV to temperature ratio as follows: 
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Since heat transfer to air at the heat source takes place in an isothermal process, 
we calculate heat from the definition of entropy: 

)( 343
4
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We now use Equation IIa.3.6 with the last term set to zero: 
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Therefore, the amount of heat transferred at the heat source is given as: 
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The amount of heat transferred to the heat sink can be found from similar proce-
dure.

Example IIb.1.1.  Find the thermal efficiency of a Carnot cycle for TL = 25 C and 
TH1 = 250 C, TH2 = 500 C, and TH3 = 750 C. 

Solution:  From Equation IIb.1.1 ηth1 = 
25 273

1 1 1 0.57 43%
250 273

L

H

T

T

+
− = − = − =

+
.

Similarly, for TH2, and TH3 we find ηth1= 1 – (298/773) = 61% and ηth3 = 1 – 
(298/1023) = 70%.  Thus, for fixed TL, ηth increases with TH.

In the next problem, we find the important cycle parameters such as pressure, 
temperature, and the rate of heat transfer. 

Example IIb.1.2.  An air standard Carnot cycle operates at an efficiency of 75%.  
The amount of heat transferred to air at the heat source is 50 Btu/lbm.  The highest 
and the lowest cycle pressures are 2710 psia and 14.7 psia, respectively.  Find cy-
cle pressures and temperatures.  ( air =1.4). 

Solution:  We have to find 2 temperatures (T1 = T2 and T3 = T4) and 2 Pressures 

(P2 and P4) given Q3-4, thη , P1, and P3.  To find these unknowns, we use Equa-

tions IIb.8.1, IIb.8.2, IIb.8.3, and the isentropic relation.  From Equation IIb.8.1, 
we have: 

γ
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We find P4 from here, substitute it into Equation IIb.8.3, and solve the result for T3

to get:
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Having T3, we also have T4 = T3 = 2000 R.  We can use Equation IIb.8.1 again to 
find other temperatures:

75.01
3
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thη

Hence, T2 = T1 = 500 R.  Having found all temperatures, we can obtain the two
remaining pressures.  For this purpose we apply the isentropic relation between 
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states 4 and 1: 

P4/P1 = (T4/T1)
γ/(γ – 1)  = (2000/500)3.5 = 128 

Substituting, we find P4 = 14.7 (128) = 1882 psia.  Finally, P2 is obtained from an 
isentropic relation between states 2 and 3:  P2 = (T2/T3)

γ/(γ – 1) P3 = 21.2 psia.

The Carnot cycle is not practical.  This is due to the fact that isentropic proc-
esses cannot be achieved in practice.  Furthermore, heat addition and rejection 
take place at isothermal processes, which are also difficult to obtain in practice.  In 
theoretical form, the Carnot cycle still serves to predict the maximum efficiency 
for cycles operating between the same reservoir temperatures.  Means of ap-
proaching the performance of the Carnot cycle are discussed later in this chapter. 

1.3.  Air Standard Cycles for Reciprocating Engines 

The air standard Otto cycle is the theoretical version of the actual Otto cycle 
(after Nikolaus August Otto, 1832 – 1891) in spark-ignition reciprocating engines, 
used extensively in the automotive industry.  As shown in Figure IIb.1.6 (a), the 
air standard Otto cycle is an isentropic-isochoric cycle where heat addition and re-
jection take place at constant volume, and compression and expansion processes 
are at constant entropy.   
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Figure IIb.1.6.  The air standard Pv and Ts diagrams for (a)-  Otto and (b)-  Diesel Cycles 

The efficiency of the Otto cycle is obtained from: 
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We can manipulate Equation IIb.1.4 to obtain thermal efficiency only as a func-
tion of the pressure ratio.  To do this, we take advantage of the isentropic process 
relating temperature ratio to volume ratio, T2/T1 = (V1/V2)

γ-1.  Finally, we note that 
the cylinder volume for compression is the same as the volume for expansion 
(V1 = V4 and V2 = V3), hence, T2/T1 = (V1/V2)

γ–1 = (V4/V3)
 γ–1 = T3/T4.  Therefore,

T4/T1 = T3/T2:
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This relation shows that theoretically, the larger the compression ratio, the higher 
the thermal efficiency of the Otto cycle.  In practice, however, the larger the com-
pression ratio, the more likely the occurrence of engine knock due to the phenom-
ena known as detonation.  Combustion is associated with a flame front where 
burning proceeds in combustible gases.  Detonation on the other hand is when 
combustible gases explode rather than burn.  The resulting shock waves damage 
the cylinder, piston, and other engine components.  Fuel chemical composition af-
fects the occurrence of detonation in engines with higher compression ratios.  For 
example, leaded fuels reduce the likelihood of detonation hence, allow higher 
compression ratio.  However, the environmental concern regarding lead has re-
sulted in most spark-ignition engines operating at a compression ratio generally in 
the range of 8 to 9. 

Example IIb.1.3.  An air standard Otto cycle operates at an efficiency of 55%.  
The amount of heat transferred to air at the heat source is 1700 kJ/kg.  The lowest 
cycle pressure and temperature are 0.1 MPa and 20 C, respectively.  Find cycle 
pressures and temperatures at the end of each process. 

Solution:  We first find the compression ratio from thermal efficiency, Equa-
tion IIb.1.5:
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The compression process from 1 to 2 is isentropic for which from Equation IIa.4.4 
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Solving for T2 we find T2 = 2.22 T1 = 2.22(20 + 273) = 651 K.  We can also find 
P2 from:
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Resulting in P2 = 1.636 MPa.  We find T3 from the following heat balance at the 
heat source:
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Hence, we find T3 = 3024 K.  Since the process from state 2 to state 3 is isochoric, 
we find P3 from
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The expansion process from 3 to 4 is isentropic, hence: 
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In the above example, we calculated a gas temperature as high as 3024 K.  This 
is the temperature of the bulk of the gas.  The cylinder wall has a temperature 
much lower than the gas maximum temperature due to the film thermal resistance 
adjacent to the wall, as discussed in Chapter IVa. 

The air standard Diesel cycle is the theoretical version of the actual diesel cy-
cle in reciprocating engines, used extensively in trucking, heavy industry, and irri-
gation.  The diesel cycle (after Dr. Rudolph Christian Karl Diesel, 1858 – 1913) 
does not have a spark ignition rather it is a compression-ignition cycle.  Air is 
compressed to the ignition temperature of the fuel.  As such, diesel engines have a 
high compression ratio since only air is being compressed.  As shown in Fig-
ure IIb.1.6, the air standard diesel cycle is an isentropic-isobaric-isochoric cycle 
where heat is added in an isobaric process and is rejected in an isocharic process.  
To find thermal efficiency in an air standard diesel cycle, we write: 
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To simplify Equation IIb.1.6, similar to Equation IIb.1.5, we introduce a new vari-
able called cutoff ratio (also referred to as the degree of isobaric expansion), rc = 
V3/V2.  We now try to find temperature ratios in terms of rV and rc.  Using the is-
entropic relations between states 1 and 2, we find  

γ
V12 rPP =

Using the ideal gas relation between states 2 and 3, noting that P2 = P3, and taking 
advantage of the cutoff ratio, we find: 
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From the ideal gas relation between states 4 and 1 we find T4 = (P4/P1)T1.  To can-
cel P4, we use: 
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From the isochoric process between states 1 and 4 we find T4/T1 = P4/P1.  Substi-
tuting for P4 in terms of P3 from the above relation, we obtain: 
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We need to find similar relations for the remaining temperature ratio.  Using the 
ideal gas relation, we find: 
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Substituting in Equation IIb.1.6, we obtain ηth for the diesel cycle: 
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where β is only a function of rc.

Example IIb.1.4.  An air standard Diesel cycle operates at an efficiency of 65% 
and a compression ratio of 20.  The lowest cycle pressure and temperature are 14.5 
psia and 70 F, respectively.  Find pressures and temperatures of the cycle at the 
conclusion of each process. 

Solution:  We first find pressure and temperature of state 2 from state 1 by using 
the isentropic relations, Equation IIa.4.1: 
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Having P1, P2, P3, T1, and T2, we need to find P4, T3, and T4.  These can be found 
from these 3 equations:
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To solve this set, we first eliminate P4, by substituting it from the first to the sec-
ond equation.  We would then have two equations and two unknowns, T3 and T4.
From the first equation we find, P4 = (P1/T1)T4.  Substituting into the second equa-
tion, we get: 
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We now substitute T3 into the third equation for thermal efficiency and solve for 
T4:
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This is a nonlinear algebraic equation for the unknown T4.  Substituting for T1 = 
530 R, T2 = 1756.6 R, P1 = 14.5 psia, P2 = 961.2 psia, γ = 1.4, and thη = 0.65, we 

get: 

073.330749.9 /1
44 =+− γTT

The answer can be found by iteration as T4 = 1329.5 R.  Back substitution results 
in P4 = (14.5/530)T4 = 36.4 psia.  Finally, we find T3 = (961.2 ×  530/14.5)2/7

1329.51/1.4 = 3388.4 R.  We can find the amount of heat added to the cycle as:

qH = cp(T3 – T2) = 0.24(3388.4 – 1756.6) = 391.6 Btu/lbm 

Similarly, 
qL = cv(T4 – T1) = 0.171(1329.5 – 530) = 136.7 Btu/lbm 

wnet = 392.6 – 136.7 = 254.88 Btu/lbm 

We may check on thermal efficiency as 

thη  = 254.88/391.6 = 0.65 

Note, ( thη )Carnot = 1 – (530/3388.4) = 0.84 

1.4.  Air Standard Cycle for Gas Turbines

The air standard Brayton cycle* (after George Bailey Brayton, 1830–1892) is 
an ideal cycle for gas turbine plants as shown in Figure IIb.1.7.  Gas compression 
and expansion takes place in isentropic processes and heat addition and rejection 
in isobaric processes.  By increasing the pressure ratio, the efficiency of the Bray-
ton cycle can be increased.  To demonstrate, let’s increase the pressure ratio from 
P2/P1 to P2’/P1.  This cycle is associated with higher heat addition at the heat 
source but the same heat transfer to the heat sink as the original cycle hence, 
higher thermal efficiency.  To derive thermal efficiency in terms of the pressure 
ratio, we start with the definition of thermal efficiency:  

* Also known as the Joule cycle. 



1.2.  Air Standard Carnot Cycle     155 

2

1

23

14

23

14

)1/(

)1/(
1

)(

)(
11

T

T

TT

TT

TTcm

TTcm

Q

Q

p

p

H

L
th −

−
−=

−
−

−=−=η

For the isentropic process 3-4 we can write P4/P3 = (V3/V4)
k.  Since P1 = P4 and 

P2 = P3, then V1/V2 = V3/V4.  From the ideal gas equation of state we have T4/T1 = 
V4/V1 and T3/T2 = V3/V2.  Therefore, T4/T1 = T3/T2.  Upon substitution and the 
application of Equation IIa.4.5, thermal efficiency simplifies to: 
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where in Equation IIb.1.8, we also made use of the definition of rP, the pressure ra-
tio.
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Figure IIb.1.7.  The air standard P-v and T-s diagrams for Brayton cycle 

Maximum work in the air standard Brayton cycle is a function of the pres-
sure and temperature ratio.  To derive this function we start with the following re-
lations for a Brayton cycle as obtained from Equation IIa.4.5: 
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where in these relations α = (γ – 1)/γ.  The net work per unit mass of the Brayton 
cycle is found as: 
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Where wt and wc are work per unit mass delivered by the turbine and work per unit 
mass delivered to the compressor, respectively.  We also substituted for the tem-
perature ratios in terms of rP.
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For a given temperature ratio, we optimize the net work by taking its derivative 
with respect to rP and setting the result equal to zero: 
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After simplification, we find; 

1)2()( −= γ
γ

TP rr              IIb.1.9 

where in Equation IIb.1.9, rT = T3/T1.  The maximum net work occurs when rP is 
given by Equation IIb.1.9 since the second derivative of wnet is positive. 

Example IIb.1.5.  Air enters the compressor of an air standard Brayton cycle at 15 
C and 0.1 MPa.  The cycle pressure and temperature ratios are given as rP = 11 and 
rT = 5, respectively.  Find: 
a) pressure and temperature at the end of each process, 
b) thermal efficiency, 
c) work per unit mass, 
d) cycle pressure ratio for optimum work, 
e) the required mass flow rate to produce 10 MW power. 

Solution:  a) The inlet temperature to the compressor is T1 = 15 + 273 = 288 K.  
Air pressure at the exit of the compressor is P2 = 0.1rP = 0.1 ×  11 =1.1 MPa.  
Hence, T2 = T1(rP)(γ – 1)/ γ = (15 + 273)(11)(1.4 – 1)/1.4 = 571 K.  Air pressure at the 
inlet to the turbine is P3 = P2 = 1.1 MPa and T3 = T1(rT) = 288×5 = 1440 K.  Fi-
nally, MPa1.014 == PP  and ( 1) / 1.4 1/1.4

4 3 (1/ ) 1440 /(11) 726 KPT T r γ γ− −= = = .

b) Thermal efficiency is: 

%6.49)11/(11
1

1 4.1/4.0
1)/(

=−=−=
− γγη

P
th

r

c) Work per unit mass is found from: 

kJ/kg5.432)2885717261449(0035.1)()( 1243 =+−−=−−−= TTcTTcw ppnet

d) The optimum rP is found from Equation IIb.8.9 as rP = (5)1.4/[2(1.4 – 1)] = 16.72.  
This is a high compression ratio due to a high temperature ratio.  For a temperature 
ratio of 4, the pressure ratio is found to be 11.3.  Therefore, in the above example 
with pressure ratio of 11, if the temperature ratio is maintained at 4, the cycle 
would produce near maximum work.  This is important for transportation applica-
tions of the gas turbine to maximize net work per unit mass of the working fluid.  
This, in turn, is related to specific power (power produced by the engine divided 
by the weight of the engine). 
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e) The relationship between power and net work per unit mass is: 

netnet wmW =

where m  is the mass flow rate of the working fluid in the cycle.  For the air stan-
dard cycle, the mass flow rate of air needed to produce 10 MW of power is found 
as m = 10,000 kW/432.5 kJ/kg = 23 kg/s.

Gas turbine with regenerator is designed to recover some energy from the 
hot exhaust gases.  A counter flow heat exchanger (regenerator), uses the turbine 
exhaust gases to heat up the compressed gases before they enter the turbine.  Heat-
ing the gas from state 2 to state “a” before entering the combustor saves fuel. 

According to the second law of thermodynamics, 4TTa ≤  (Figure IIb.1.8).  

This is expressed in terms of the regenerator efficiency: 

24

2

TT

TTa
reg −

−
=η

Generally, regenerator efficiency ranges from 60 to 80%.  While addition of the 
regenerator helps to save fuel, it also introduces an additional initial investment. 

Figure IIb.1.8.  A Regenerative modified Brayton Cycle 

Example IIb.1.6.  Consider the addition of a regenerative heat exchanger with an 
efficiency of 75% to the cycle of Example IIb.1.5.  Find the improvement in ther-
mal efficiency. 

Solution:  The same wnet = 432.5 kJ/kg as in Example IIb.1.5 also applies here.  
However, the amount of heat addition at the heat source is reduced due to the ad-
dition of the regenerator.  To calculate the amount of heat addition, we first find Ta

from: 

K687)571726(75.0571)( 242 =−+=−+= rega TTTT η
Total heat addition is: 

kJ/kg755)6871440(0035.1)( 3 =−=−= apH TTcQ
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Thermal efficiency becomes: 

%57
755

5.432 ===
H

net
th Q

wη

The improvement in thermal efficiency is in excess of 15%, justifying the addition 
of the regenerator.

Air standard Stirling and Ericsson cycles are examples of how to approach 
the Carnot efficiency in common practice.  One impractical aspect of the Carnot 
cycle is the fact that the heat addition and rejection are isothermal processes.  The 
Stirling cycle (after Rev. Robert Stirling, 1790–1878) and Ericsson cycle (after 
Captain John Ericsson, 1803–1889) can be approximated if the heat addition and 
rejection processes take place in multiple stages.  Heating and cooling of gas in 
the Stirling cycle take place in isochoric processes and in the Ericsson cycle in 
isobaric processes.  As shown in Figure IIb.1.9, these cycles can achieve the ther-
mal efficiency of the Carnot cycle operating within the same TH and TL tempera-
ture limits.   
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Figure IIb.1.9.  The air standard Pv and Ts diagrams for (a) Stirling and (b) Ericsson cycles 

Approaching Ericsson and Stirling cycles is possible by devising systems for 
heating and cooling in multiple stages so that the average temperature at each 
process represent the intended temperature of the theoretical Stirling and Ericsson 
cycles (Figure IIb.1.10).  Systems allowing multiple stage heat addition and heat 
rejection are called reheat and intercooler, respectively.
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Figure IIb.1.10.  Ericsson and the approximate Ericsson cycle 
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Gas turbine with intercooler is shown in Figure IIb.1.11.  Addition of the 
intercooler increases the net work of the gas turbine cycle.  A cycle equipped with 
an intercooler compresses the working fluid at two stages.  The compressed gas at 
the exit of the first stage is cooled in a heat exchanger and compressed to the in-
tended pressure in the second stage.  The use of an intercooler increases net work 
hence, the cycle thermal efficiency, but there is a limit to the number of stages that 
can be added to the cycle due the associated cost and diminishing gain. 
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Figure IIb.1.11.  Gas turbine equipped with intercooler 

Gas turbine with reheat allows for gas expansion in multiple stages.  Hot 
gases enter the first stage of the turbine and are heated up to the same temperature 
before entering the second stage of the turbine (Figure IIb.1.12).  The reheat in-
creases net work of the cycle, hence, the cycle efficiency. 
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Figure IIb.1.12.  The reheat modified Brayton Cycle 

1.5.  Air Standard Cycle for Reaction Engines

Reaction engines are gas turbines where the bulk of the work developed by the 
turbine is converted into the kinetic energy and used as thrust for propulsion.  To-
wards the end of World War II, aircraft equipped with reciprocating engines could 
reach a maximum speed of up to 500 miles/hour.  The advent of aircraft with reac-
tion engines increased the maximum speed to over 1000 miles/hour.  This was 
possible because reaction engines have a much higher specific power compared 
with reciprocating engines. 
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Gas turbine for jet propulsion1  is shown in Figure IIb.1.13.  Air pressure is 
increased in a diffuser before entering the compressor.  The work produced by the 
turbine is primarily delivered to the compressor and the remaining power is used 
as auxiliary power for lighting, air conditioning, and other electrical needs of the 
aircraft.  The exhaust gases from the turbine are expanded to the atmospheric pres-
sure in a nozzle.  The change in the momentum due to this expansion produces the 
force required to thrust the aircraft. 
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Figure IIb.1.13.  Schematic of a gas turbine for jet propulsion2

Example IIb.1.7.  Air enters a jet engine diffuser at 650 miles/h (1046 km/h), 5 F 
(-15 C)and 12 psia (83 kPa).  The compression ratio of the compressor is 10.  The 
gas temperature at the exit of the combustor is 1700 F (927 C).  If all processes are 
ideal and turbine work is delivered entirely to the compressor, find the velocity of 
gases at the nozzle exit.  The diffuser inlet diameter is 6 ft (1.83 m). 

Solution:  We first determine properties at the end of various processes.  For this, 
we ignore all potential and kinetic energies except for the nozzle.  Having Pa = 12 
psia, Ta = 5 + 460 = 465 R (258 K), and Va = 650 miles/hr = 953.3 ft/s (290.5 m/s) 
we find properties at state 1 from the first law of thermodynamics: 

Btu/lbm7.129
7782.322

3.953
46524.0

2

22

1 =
××

+×=+= a
a

V
hh  (301.7 kJ/kg)

Therefore T1 = h1/cp = 540.5 R.  To find P1, we use the isentropic process for the 
diffuser: 

psia5.12)465/5.540(12)( 4.1/4.0)1/(1
1 === −γγ

a
a T

T
PP (86.2 kPa) 

1  This topic is discussed in more details in Chapter VIc. 
2  Sir Frank Whittle (1907–1996) and Hans J. P. von Ohain independently developed jet air-

plane engine.  Whittle obtained his jet-propulsion patent in 1930.  The first British ex-
perimental jet flew in 1941. 
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Having P1, we find P2 from the compression ratio; P2 = 10 ×  12.5 = 125 psia.  To 
find T2, we use the isentropic relation for the compression process; 

R5.1043)10(5.540 4.1/4.01/
12 === − γγrTT  (579.4 K)

Since process 2 –3 is an isobaric process, P3 = P2 = 125 psia and T3 is given as T3

= 1700 + 460 = 2160 R.  To find the state of air at the turbine exit, we note that wT

= wC.  If written in terms of enthalpies we find: 

4312 hhhh −=−

Treating air as an ideal gas, which allows us to use a constant specific heat, we 
find that: 

T4 = T3 + T1 – T2 = 2160 + 540.5 – 1043.5 = 1657 R (920.2 K) 

Air pressure at state 4 can be found from the isentropic relation written for the ex-
pansion process in turbine: 

psia9.115)2160/1657(125)( 4.1/4.01)/(

3

4
34 === −γγ

T

T
PP  (0.8 MPa) 

We can also find temperature at state 5 from the isentropic expansion in the nozzle 
where air reaches the atmospheric pressure, Pb = Pa:

R8.866)9.115/12(1657)( 4.1/4.01)/(

4
4 === − γγ

P

P
TT b

b  (499 K)

We can find velocity at the nozzle exit by writing the energy equation for a control 
volume encompassing the nozzle: 

ft/s5.3082)8.8661657(7782.3224.02)(2 4 =−×××=−= bpb TTcV (939.65 m/s)

The thrust developed by various types of gas turbines for aircraft propulsion is 
discussed in Chapter VIc. 

2.  Vapor Power Systems 

Unlike the gas power systems in which the working fluid is constantly changing, 
the vapor power cycles use a closed system in which the working fluid remains the 
same but its phase changes during a cycle.  The vapor power systems are primarily 
based on the Rankine cycle.  To improve thermal efficiency, the Rankine cycle is 
modified with reheat and regenerative cycles.  In the calculations, we use the first 
and the second law of thermodynamics in conjunction with the steam tables ther-
modynamics properties. 
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2.1.  Definition of Terms

Rankine and modified Rankine cycle are extensively used in electric power 
plants using steam as working fluid. 

Balance of plant is a term generally applied to include all the components in a 
power plant except the heat source.  This includes turbine, condenser, pump, fe-
edwater heater, and the associated piping. 

Feedwater is the water flowing from the condenser to the heat source. 

Extraction steam is a term applied to that portion of steam that bypasses the 
turbine to heat up feedwater. 

Feedwater heater is a heat exchanger used to heat up feedwater from the ex-
traction steam to increase ηth.

High-, intermediate-, and low-pressure turbines are stages of a steam turbine 
that admit steam at progressively decreasing pressures.  

Reheater is a heat exchanger to heat up the steam exiting the high-pressure 
turbine prior to entering the intermediate-pressure turbine.  The warmer stream is 
extraction steam from the heat source that bypasses the high-pressure turbine. 

Moisture separator transfers the condensate of the reheater to a tank to be 
pumped to the feedwater line.  The tank is known as the drain tank and the pump 
as the drain pump. 

Trap is a valve that reduces steam pressure by introducing a large, non-
recoverable pressure drop to the flow and allows the condensate to pass to a lower 
pressure region.  Pressure drop is discussed in Chapter IIIb. 

2.2.  The Rankine Cycle 

A schematic of a Rankine cycle (after William John Maquorn Rankine, 1820 – 
1872) used for a steam power plant is shown in Figure IIb.2.1.  Water is pumped 
isentropically into the heat source at state 1.  The heat source can be a boiler, the 
vessel of a BWR, the steam generator of a PWR, etc.  Water is boiled at constant 
pressure and the saturated or superheated steam enters the high-pressure stage of 
the steam turbine.  The stationary blades direct high-energy steam toward the ro-
tating blades on the turbine shaft, which then turns the rotor of the electric genera-
tor.  In the Rankine cycle, the steam expansion process in the turbine is isentropic 
(s3 = s4).  The low-energy steam leaves the turbine at stage 4 and enters the con-
denser.  After rejecting heat in the heat sink at constant pressure, it is again 
pumped into the heat source for the next cycle. 

Thermal efficiency of a Rankine cycle is calculated from: 
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Figure IIb.2.1.  Rankine cycle for a steam power plant 

where subscripts p and t stand for pump and turbine, respectively.  Recall that, per 
Equation IIa.6.7, the enthalpy rise through the pump is found as 

pumpfpump PTh ∆≅∆ )(v .  Substituting into Equation IIb.2.1, thermal efficiency 

becomes: 

pumpf
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Example IIb.2.1.  Saturated steam in a Rankine cycle enters a turbine at 5.86 MPa 
(850 psia) and leaves the condenser at 6.895 kPa (1 psia).  Find the cycle thermal 
efficiency.

Solution:  We first find the relevant thermodynamic properties at the heat sink 
and heat source pressures:

P       vf      hf   hg         sf      sg

(MPa)      (m3/kg)    (kJ/kg)  kJ/kg)         kJ/kg·K)     (kJ/kg·K)
0.00689       0.10074E-2       162.178             2571.07        0.5552              8.2791 
5.86                  –                   1205.44             2785.44        3.0125             5.8998 

The energy used in pumping the condensate is found from: 

89.5)3E00689.03E86.5(2-E10074.0)(v =−×=∆= pumpfp PTw kJ/kg 

Therefore, h2 = h1 + wp = 162.178 + 5.89 = 168 kJ/kg.  To find ηth, we need h1

through h4 (Equation IIb.2.2).

We have h1 = 162.178 kJ/kg, h2 = 168 kJ/kg, and h3 = 2785.44 kJ/kg.  To find h4,
we first find x4 from the second law of thermodynamics.  Process 3-4 is isentropic   
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From Equation IIa.10.14 we conclude that, s3 = s4:

692.0
5552.02791.8
5552.08998.5
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=
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ss

ss
x

We can now find h4 = 162.178 + 0.692 (2571.07 – 162.178) = 1829.13 kJ/kg.  
Thus thermal efficiency is: 

%3.36
37.2617

42.950

89.5)178.16244.2785(

89.5)13.182944.2785( ==
−−
−−==

q

wnet
thη

As discussed in Example IIb.1.5, the total power produced by a power plant is 
the product of flow rate and the net work per unit mass of the working fluid.   

Example IIb.2.2.  In Example IIb.2.1, find the steam mass flow rate for a 1000 
MW power plant. 

Solution: The net power per unit mass flow rate is found from 
.)( 43 pptnet whhwww −−=−=   Substituting, the net work becomes wnet = 

950.42 kJ/kg.  Hence, the required steam mass flow rate to produce 1000 MW 

power is === 42.950/6E1/ nets wWm 1052 kg/s ( lbm/h1035.8 6× ).

Effects of pressure and temperature on cycle performance.  We now inves-
tigate the effects of lowering heat sink pressure, superheating steam, and increas-
ing steam pressure on the cycle thermal efficiency.  Given heat source pressure 
and temperature, lowering heat sink pressure increases cycle efficiency.  To ver-
ify, we use the Rankine cycle in Figure IIb.2.2.  Lowering heat sink pressure for 
the same amount of heat addition, causes the amount of heat rejection to be re-
duced by area 1-4-4’-1’-2’-2-1 in Figure IIb.2.2(a).  On the other hand, lowering 
the heat sink pressure results in x4’ < x4.  This decrease in steam quality is disad-
vantageous for the turbine blades as excessive moisture would lead to pitting and 
erosion.  For a given heat sink pressure, cycle efficiency increases by superheating 
steam.  This is shown in Figure IIb.2.2(b) where work is increased by the enclosed 
area in 3-3’-4’-4-3.  This amount of extra work is obtained at the expense of more 
heat input in the heat source shown by the enclosed area in 3-3’-a’-a.  Further ad-
vantage of superheating steam is the increase in steam quality leaving the last 
stage of the turbine.  Finally, given heat sink pressure and steam temperature, in-
creasing heat source pressure increases cycle efficiency but reduces steam quality 
leaving the last stage of the turbine, Figure IIb.2.2(c).  To remedy this problem, 
we use a modified Rankine cycle by reheating steam, as discussed later in this 
chapter.  In the following example we investigate the effect of steam superheat on 
cycle efficiency. 



2.  Vapor Power Systems     165 

1
2

3

4

T

s 1

2

3

4

T

s1

2

3

4

T

s
4'1'

2'

3'

4'

3'

4'

2'

a a'

(a)                                         (b)                                                (c) 

Figure IIb.2.2.  Pressure and temperature effects on Rankine cycle 

Example IIb.2.3.  In Example IIb.2.1, instead of saturated steam, suppose we use 
superheated steam at a temperature of 650 F (616 K).  The rest of the cycle re-
mains unchanged.  Find the effect on cycle efficiency. 

Solution:  We find the relevant thermodynamic properties at the given heat source 
pressure and temperature as well as the given heat sink pressure.  Saturation prop-
erties at the heat sink pressure remain the same: 

P         vf                hf         hg sf                sg

(psia)        (ft3/lbm)        (Btu/lbm)      (Btu/lbm)       (Btu/lbm·F)       (Btu/lbm·F)
1.000            0.016136       69.730          1105.8              0.1326              1.9781 

Superheated properties at heat source pressure and temperature are: 

P T  v  h s
(psia)  (F)         (ft3/lbm)          (Btu/lbm)       (Btu/lbm·F) 
850.0         680        0.71250               1323               1.5283 

We note that the pump work remains unchanged.  Thermal efficiency is found 
from Equation IIb.2.2.  We have h1 = 69.73, h2 = 72.27, and h3 = 1198 Btu/lbm.  
To find h4, we first find x4:

76.0
1326.09781.1
1326.05283.13

4 =
−
−=

−
−

=
fg

f

ss

ss
x

Therefore, h4 = 69.73 + 0.76 (1105.8 – 69.73) = 857 Btu/lbm.  Thus, thermal effi-
ciency becomes: 
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In the above example, we were only interested in finding the improvement in 
the thermal efficiency.  For the sake of completion, it is important to also calculate 
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such key design parameters as turbine work, the energy deposited in the heat 
source, and the energy rejected to the environment in the heat sink. 

Example IIb.2.4.  In Example IIb.2.3, find the heat added in the heat source and 
rejected in the heat sink. 

Solution:  To find the heat added to the working fluid, we write an energy balance 
for the heat source:  

qH = h3 – h2 = 1323 – 72.27 = 1250.73 Btu/lbm (2909 kJ/kg) 

The amount of energy rejected to the surroundings is also found from an energy 
balance written for the heat sink:

qL = h4 – h1 = 857 – 69.73 = 787.27 Btu/lbm (1831 kJ/kg) 

The net work is wnet = qH – qL = 1250.73 – 787.27 = 463.5 Btu/lbm.  Thermal effi-
ciency can be found from %3773.1250/5.463/ === Hnetth qwη . Turbine work 

is wt = h3 – h4 = 1323 – 857 = 466 Btu/lbm (1804 kJ/kg).  Finally, wnet = wt – wp = 
466 – 2.54 = 461.75 Btu/lbm (1074 kJ/kg).

To numerically verify the effect of the heat source and heat sink pressures on 
thermal efficiency, we may perform a parametric study the results of which are 
shown in Figure IIb.2.3. 
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Figure IIb.2.3.  Effect of pressure on thermal efficiency of an ideal Rankine cycle 

Figure IIb.2.3 indicates that, for a given heat sink pressure, thermal efficiency 
increases with increasing heat source pressure.  Conversely, for a given heat 
source pressure, thermal efficiency decreases substantially with increasing heat 
sink pressure. 

2.3.  Reheat-Modified Rankine Cycle

As discussed above, increasing heat source pressure or decreasing heat sink pres-
sure increases thermal efficiency.  However, such changes in pressure also in-
crease the moisture content in the last stage of the turbine, Figures IIb.2.2(a) 
and IIb.2.2(c).  The reheat cycle helps alleviate the high moisture content, as 
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shown in Figure IIb.2.4.  After expansion to some intermediate pressure, steam is 
heated up in an isobaric process before entering the next stage of the turbine.  By 
doing so, we increase steam quality from x6’ to x6.

To accomplish the same goal and also increase thermal efficiency, we could 
have increased the degree of superheat to state 3’ (Figure IIb.2.4). 
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Figure IIb.2.4.  The reheat-modified Rankine cycle 

2.4.  Regenerative-Modified Rankine Cycle  

In this modification, feedwater is heated by steam extraction from the turbine prior 
to entering the heat source.  This increases the average temperature in the heat 
source, thereby increasing thermal efficiency. Heating up of water takes place in a 
heat exchanger referred to as the feedwater heater (FWH).  In such systems, steam 
condenses on the tubes carrying the feedwater.  Hence, the two streams do not mix 
and are generally at different pressures.  Since the two streams do not mix, these are 
known as closed feedwater heaters.  Occasionally, streams may be allowed to mix, 
which takes place when the two streams are at the same pressure.  This is referred to 
as open feedwater heaters, as shown in Figure IIb.2.6(a) and discussed in Example 
IIa.7.5.  In closed feedwater heaters, the condensate is either pumped to a higher-
pressure FWH, Figure IIb.2.6(b), or allowed to flow to a lower pressure region, such 
as either a FWH or the condenser, Figure IIb.2.6(c).  In the latter case, the conden-
sate is passed through a special valve referred to as steam trap.  Ideally, the mixture 
pressure in the steam trap drops in an isentropic process to the pressure of the up-
stream system.  Such a system is either a low pressure FWH or the condenser. 

To determine the fraction of steam extraction from the turbine to be used in an 
open feedwater heater so that state 3 is saturated liquid, we use an energy balance 
written for the feedwater heater.  From Figure IIb.2.5, for perfect mixing, we have: 

326 )( hmhmmhm sesses =−+

where sm  and esm  are mass flow rates of steam and the extraction steam, respec-
tively.  Dividing terms by the steam mass flow rate and showing the fraction of 
steam used as extraction steam by y, we get: 

326 )1( hhyyh =−+
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Figure IIb.2.5.  Regenerative-modified Rankine cycle.  Open feedwater heater. 

(a)                                                     (b)                                                    (c) 

Figure IIb.2.6.  Schematics of open and closed feedwater heaters 

Example IIb.2.5.  In Example IIb.2.1, we now introduce an open feedwater heater 
with steam extraction to heat up the feedwater.  For the FWH operating at 100 psia 
(0.7 MPa), find the revised thermal efficiency. 

Solution:  We first find the relevant thermodynamic properties at the given pres-
sures.

P                 vf hf hg sf sg

(psia)     (ft3/lbm)       (Btu/lbm)        (Btu/lbm)        (Btu/lbm·F)        (Btu/lbm·F)
1.000         0.016136      69.730            1105.8             0.1326                1.9781 
100.0         0.017740      298.50            1187.2             0.4743                1.6027 
850.0        0.021500       518.40            1198.0                  –                    1.4096

To find steam quality at state 6, we use s6 = s5 (unlike Figure IIb.2.5, here state 5 
is saturated), hence: 
1.4096 = 0.4743 + x6 (1.6027 – 0.4743) 

From here, x6 = 0.83 and h6 = 298.5 + 0.83(1187.2 – 298.5) = 1036.1 Btu/lbm 
(2410 kJ/kg).  The energy used in the condensate pump, which delivers the con-
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densate to the FWH is found from: 

Btu/lbm31.0)778/144()1100(016695.0)(v =×−×=∆= pumpfcp PTw (0.72 kJ/kg)

where subscript cp stands for condensate pump.  Therefore, h2 = h1 + 0.31 = 70 
Btu/lbm (163 kJ/kg).  We can find y, the fraction of steam used as steam extrac-
tion, from an energy balance for the FWH: 

326 )1( hhyyh =−+
5.298)1(701.1036 =−+ yy

Therefore, y = 0.236.  Having the fraction of steam used for steam extraction, we 
can calculate wt and wp.  To do this, we first find the enthalpy of state 4.  The en-
ergy used in the feedwater pump is found from:

Btu/lbm46.2)778/144()100850(01774.0)(v =×−×=∆= pumpffwp PTw

(5.72 kJ/kg)

where subscript fwp stands for feedwater pump.  Therefore, h4 = h3 + wp.  Finding 
h4 = 298.50 + 2.46 = 301 Btu/lbm.  Total pumping power is: 

Btu/lbm69.246.231.0)236.01()1( =+×−=+−= fwpcpp wwyw (6.26 kJ/kg) 

Total power produced by the turbine is: 

Btu/lbm4.352]7.786)236.01(1.1036236.0[1198])1([ 765 =×−+×−=−+−= hyyhhwt

(819.7 kJ/kg)

Total energy input is: 
Btu/lbm897301119845 =−=−= hhqH (2086 kJ/kg)

The cycle thermal efficiency is, therefore, 

389.0897/)69.24.352(/)( =−=−= Hptth qwwη .

This is an improvement of over 6%.  To maximize thermal efficiency, we can find 
an optimum pressure for the FWH by trial as discussed later in this chapter.  There 
is an initial investment for the reheat and regenerative modifications that will be 
recovered due to higher efficiency.  Also note that wn has dropped 14% from 
408.7 to 349.7 Btu/lbm. 

Regenerative Cycle with Closed Feedwater Heater 

In general, steam power plants use closed feedwater heaters, as shown in Fig-
ure II.2.7.  To determine the fraction of steam extraction from turbine to be used in 
the feedwater heater, we use an energy balance written for the feedwater heater to 
obtain: 
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Figure IIb.2.7.  Regenerative-modified Rankine cycle.  Closed feedwater heater 

The calculation procedure is similar to that of the open feedwater heater as 
shown in the next example. 

Example IIb.2.6.  In Example IIb.2.5, we use a closed feedwater heater and steam 
extraction to heat up the feedwater.  The extraction steam enters the FWH at 80 
psia (0.55 MPa), find thermal efficiency. 

Solution:  We first find the relevant thermodynamics properties at the given pres-
sures.

P T              vf hf hg sf sg

(psia)     (F)          (ft3/lbm)       (Btu/lbm)      (Btu/lbm)       (Btu/lbm·F)       (Btu/lbm·F)
1.000     101.74     0.016136      69.730          1105.8          0.1326                1.9781 
80.0       312.04     0.017573      282.10          1183.0          0.4534                1.6208 
850.0     525.24     0.021500      518.40          1198.0             –                       1.4096 

To find steam quality at state 5, we use s5 = s4 (unlike Figure II.9.7, here steam en-
tering the turbine is saturated), hence: 

1.4096 = 0.4534 + x5 (1.6208 – 0.4534) 

From here, x5 = 0.82 and h5 = 282.1 + 0.82(1183.0 – 282.1) = 1020 Btu/lbm.  The 
energy used in the condensate pump, which delivers the condensate to the FWH is 
wp = 2.54 Btu/lbm.  Hence, h2 = 72.27 Btu/lbm.  To find the fraction of steam used 
as steam extraction we ignore the temperature difference and assume that T3 ≈ T5

= 312.04 F.  Having P = 850 psia and T = 312.04, h3 ≈  283.5 Btu/lbm.  Hence 

y = (283.5 – 72.27)/(1020 – 282.1) = 0.286 

Turbine work is found from wt = (h4 – h5) + (1 – y)(h5 – h6) = (1198 – 1020) + 
0.714(1020 – 786.7) = 344.5 Btu/lbm.  Also qH = h4 – h3 = 1198 – 283.5 = 914.5 
Btu/lbm.  Hence, 374.05.914/)54.24.344( =−=thη
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Regenerative Cycle with Moisture Separation 

Steam cycles generally employ a moisture separator for steam extraction from the 
high-pressure turbine, as shown in Figure IIb.2.8.  This would introduce dry, satu-
rated steam to the next stage of the turbine.  This also reduces the moisture content 
of steam at the last stage of the low-pressure turbine.  For given PH, PM, PL, and 
h5, we can design the cycle if either state 3 is specified or y is given.  Note that h6

is obtained from the isentropic expansion in the high pressure turbine (s6 = s5) and 
the first law of thermodynamics written for the moisture separator.  Next, we find 
h3 or y from an energy balance written for the open feedwater heater:   

327 )1( hmhmyhmyhm sggAf =−++                                    IIb.2.3 

where we assumed perfect mixing in the open feedwater heater.  Subscripts f and g
stand for saturated water and steam flowing out of the moisture separator, respec-
tively.  Subscript s stands for the total steam flowing out of the heat source so that 

sgf mmm =+ , sf mxm )1( 6−=  and sg mxm 6= .
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We find h3 from Equation IIb.2.3 for given y or solve for y if state 3 is speci-
fied.  If y is given, h3 is found from Equation IIb.2.3 as h3 = x6hA + x6yh7 + x6(1 – 
y)h2.  If h3 is given, for example, state 3 is saturated water at pressure PM (i.e., h3 =
hA on Figure IIb.2.8) then y is found from Equation IIb.2.3 as:  

)/()( 2723 hhhhy −−=             IIb.2.4 
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Example IIb.2.7.  Saturated steam enters a turbine at 1125 psia (7.75 MPa).  Heat 
is rejected in the condenser at 1 psia (6.895 kPa).  Find ηth for a regenerative cycle 
using a moisture separator and an open feedwater heater at 50 psia (0.34 MPa).  In 
this case, water leaving the feedwater heater is saturated (h3 = hA).

Solution:  We first find the relevant thermodynamic properties at the given pres-
sures. 

P               vf hf hg sf sg

(psia)       (ft3/lbm)          (Btu/lbm)        (Btu/lbm)        (Btu/lbm·F)       (Btu/lbm·F)
1.000        0.016136        69.730            1105.8             0.1326               1.9781 
50.00        0.017274        250.20            1174.1             0.4112               1.6586 
1125.               –                  –                 1188.0                   –                  1.37655

We now find the unknown enthalpies in successive steps as follows: 

1=v ( ) 0.016136 (50 1) (144/778) 0.146 Btu/lbmpumpp fw T P∆ = × − × =  (0.34 kJ/k) 

Btu/lbm88.69146.073.692 =+=h  (162.5 kJ/kg) 

Btu/lbm44.3)778/144()501125(017274.0)(v2 =×−×=∆= pumpfp PTw

(8 kJ/kg) 
Btu/lbm64.253437.32.2504 =+=h (590 kJ/kg) 

774.0)4112.6586.1/()4112.037655.1(6 =−−=x

Btu/lbm2.965)2.2501.1174(774.02.2506 =−+=h  (2245 kJ/kg) 

827.0)1326.9781.1/()1326.06586.1(8 =−−=x

Btu/lbm43.926)73.698.1105(827.073.698 =−+=h (2155 kJ/kg) 

Having h3, we now find the fraction of the total steam used as extraction steam 
from Equation IIb.2.4:  y = (250.2 – 69.88)/(1174.1 – 69.88) = 0.163 
Having all enthalpies and the steam extraction fraction, we can calculate the pump 
work, the turbine work, the net work, the heat addition, and thermal efficiency in 
successive steps as follows:

wp = spp mWW /)( 21 +  = x6(1 – y)wp1 + wp2 = 0.774 ×  (1 – 0.163) ×  0.146 + 3.44 

= 3.53 Btu/lbm (8.2 kJ/kg) 
wt = (h5 – h6) + x(1 – y)(h7 – h8) = (1188 – 965.2) + 0.774(1 – 0.163)(1174.1 – 
926.43) = 383.25 (891 kJ/kg) 
wn = wt – wp = 383.25 – 3.53 = 379.72 Btu/lbm (883 kJ/kg) 
qH = h5 – h4 = 1188 – 253.64 = 934.36 Btu/lbm (2173 kJ/kg) 

thη  = 379.72/934.36 = 0.406

Selection of pressure at which a feedwater heater is operating is not arbitrary.  
As shown in Figure IIb.2.10, a regenerative-modified Rankine cycle using an open 
FWH and a moisture separator while operating between PH = 1000 psia, and PL = 
1 psia, has a maximum thermal efficiency at a FWH pressure of about 100 psia. 
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Figure IIb.2.9.  Effect of the FWH pressure (PM) on thermal efficiency 

Figure IIb.2.10.  A steam power plant utilizing multiple feedwater heaters 

In steam power plants, several stages of feedwater heaters operating at various 
pressures (Figure IIb.2.10) are used.  This requires at least four sets of pumps in-
cluding the condensate pump, the condensate booster pump, the heater drain 
pump, and the feedwater pump.  The condensate pump takes suction from the 
condenser and delivers water to the first stage of the low pressure FWHs via an 
external drain cooler.  The cooler has two functions.  First, it subcools the FWH 
drain water to prevent flashing in the drain line.  Second, it preheats the incoming 
condensate water before being exposed to the higher energy extraction steam.  The 
feedwater enters the first set of the low-pressure feedwater heaters (LP-FWH) af-
ter flowing through the drain cooler.  The condensate booster pump takes suction 
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from the LP-FWH to discharge the feedwater to the intermediate-pressure feedwa-
ter heaters.  Finally, the feedwater pump delivers water through the high-pressure 
feedwater heater (HP-FWH) to the heat source. The condensed steam in the sec-
ondary side of the IP-FHW and HP-FWH is collected in the heater drain tank to 
be pumped into the feedwater line by the heater drain pump also known as the 
drip pump.

In steam power plants, thermal hydraulic loads are generally divided between 
sets of pumps, coolers, and feedwater heaters to facilitate maintenance and in-
crease system reliability.  As shown in Figure IIb.2.11, three condensate pumps, 
three feedwater booster pumps, and two feedwater pumps are used to deliver wa-
ter through 3 coolers and 14 feedwater heaters. 

Figure IIb.2.11.  Schematics of a typical steam plant feedwater  

3.  Actual Versus Ideal Cycles 

In the discussion about the vapor and the gas power cycles, we assumed ideal 
conditions for the involved processes.  For example, in the steam power cycles we 
used the same pressure and temperature for the steam entering the turbine as that 
leaving the heat source.  In reality however, there are pipelines carrying steam 
from the heat source to the turbine.  This is associated with some heat loss even 
though the pipe is well insulated.  Additionally, the flow of steam in the pipe 
causes a frictional pressure drop.  Such non-isentropic effects would adversely af-
fect thermal efficiency. 

3.1.  Losses in Mechanical Components

In the discussion below, we consider non-isentropic conditions, which result in 
losses in pipes, turbines, pumps/compressors, and nozzles.  In this discussion we 
consider a steam power plant that utilizes the Rankine cycle as shown in Fig-
ure IIb.3.1.  We first consider the pump and turbine losses, then losses in the pip-
ing and the condenser. 
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Figure IIb.3.1.  Losses associated with pump and turbine 

Pump losses are primarily associated with the irreversibilities due to friction 
between the flow of water and the interior pump surfaces.  As shown in Figure 
IIb.3.1, if the compression process was isentropic, the state at the pump exit would 
have been 2s.  However, irreversibilities cause entropy to increase and the actual 
state is 2.  To facilitate analysis, we calculate work delivered to the pump by mul-
tiplying the isentropic work by the pump efficiency, a value smaller than unity: 

psppsp hhhhww ηη )( 1212 −=−==

Turbine losses are similar to the pump losses and are primarily associated with 
irreversibilities due to the friction between the flow of steam and the interior tur-
bine surfaces such as the stationary and moving turbine blades.  Since there are 
some heat losses to the environment, the expansion process is non-adiabatic.  As 
shown in Figure IIb.3.1, if the expansion process was isentropic, the state at the 
turbine exit would have been 4s.  However, irreversibilities cause entropy to in-
crease and the actual state is 4.  Interestingly, this decreases the moisture content, 
which is the only helpful aspect of turbine irreversibilities.  To facilitate analysis, 
we then calculate work obtained from the turbine by multiplying the isentropic 
work by turbine efficiency, being a value smaller than unity: 

tsttst hhhhww ηη )( 4343 −=−==

Losses in pipes include the losses due to friction as well the heat transfer to the 
surroundings.  These losses are further discussed in Chapter IIIb where they are 
divided into two categories of major and form losses.  The major loss (skin 
frcition) accounts for friction between the working fluid and the pipe wall.  Form 
loss accounts for the existence of such pipe fitting as elbows, tees, reducers, and 
valves. 

Effects of pipe, pump, and turbine losses on the ideal Rankine cycle are shown 
in Figure IIb.3.2.  Water is first pumped from the condenser to the heat source.  If 
the compression process was isentropic, the state of fluid at the entrance to the 
heat source would have been at 2s.  However, due to pump irreversibilities, the 
state of water at the pump discharge is 2.  From point 2 to point 3, which is the 
heat source inlet, pressure and temperature drop due to losses in the pipe (P3 < P2).
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Then water is boiled and superheated steam leaves the heat source at P4 = P3.  Due 
to pipe losses, superheated steam enters the turbine at T5 < T4 and P5 < P4.  In this 
discussion, we ignored losses in the heat source and the heat sink. 
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Figure IIb.3.2.  Effect of pipe, pump, and turbine losses on the ideal Rankine cycle 

Example IIb.3.1.  The top figure shows the schematics of the primary side of a 
PWR and the Rankine cycle of the secondary side.  The bottom figure shows the 
associated T-s diagram for both primary and secondary sides.  Find a) thermal ef-
ficiency, and b) the power produced by the plant.  Additional data: mass flow rate 
in vessel: 60E6 kg/h, ηt = 0.90, and ηp = 0.85. 
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Solution:  The ideal cycle is solved in Example IIb.2.1 and the following enthal-
pies are obtained:

h1 = 162.178 kJ/kg, h2s = 168 kJ/kg, h3 = 2785.44 kJ/kg, and h4s = 1829.13 kJ/kg.

Due to irreversibilities, the pumping power is increased and turbine work is de-
creased.  To find the revised wp and wt, we use the specified isentropic efficien-
cies:
wp = (h2s – h1)/ηp = (168 – 162.178)/0.85 = 6.85 kJ/kg.   

We also find h2 = 162.178 + 6.85 = 169.03 kJ/kg 
wt = (h3 – h4s)ηt = (2785.44 – 1829.13) × 0.90 = 860.68 kJ/kg 
qH = h3 – h2 = 2785.44 – 169.03 = 2616.4 kJ/kg 

a) We find ηth = (wt – wp)/qH = (860.68 – 6.85)/2616.4 = 32.6% (versus 36.3 in 
Example IIb.2.1) 

b) To find the power produced, we use an energy balance in the steam generator: 

)()( 2365 hhmhhm sp −=− .

We need h5 and h6.  These are found as h5(15.5 MPa & 315 C) = 1421.94 kJ/kg 
and h6(15.2 MPa & 288 C) = 1273.24 kJ/kg.  Therefore,  

sm  = 60E6 × (1421.94 – 1273.24)/2616.4 = 3.41E6 kg/h.

W  = 3.41E6 × (860.68 – 6.85) = 808.7 MW 

QUESTIONS

− Would a machine gun be considered an internal combustion or an external 
combustion engine? 

− In an automotive engine, what are the BDC and TDC? 
− Is the Wankel engine a reciprocating engine? 
− In an internal combustion engine, where is the position of the piston during the 

rejection process? 
− What is the key advantage of a gas turbine over traditional piston-cylinder en-

gine for aviation? 
− What is compression ratio? 
− During which process in an Otto cycle does heat rejection take place? 
− During which process in a Diesel cycle does heat addition take process? 
− What is the ultimate heat sink for an automotive engine? 
− Why does an increase in heat source pressure of an ideal Rankine cycle increase 

the cycle thermal efficiency?  Assume heat sink pressure and steam temperature 
are held constant. 

− What is the major difference between the Ericsson and the Stirling cycles? 
− What is the advantage of an intercooler in a gas turbine? 
− By the use of what processes can we approach the Stirling and Ericsson cycles? 
− During which process does heat addition take place in a Rankine cycle? 
− Why should dry steam enter a turbine? 
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− What is a reheat-modified Rankine cycle? 
− What is a regenerative-modified Rankine cycle? 
− What is a moisture separator? 
− Explain the effect of feedwater heater pressure on cycle thermal efficiency in a 

regenerative modified ideal Rankine engine which also uses a moisture separa-
tor. 

PROBLEMS

1.  Consider two cycles.  One cycle for a gas turbine and the other cycle for a va-
por power plant.  Assume that the two cycles have the same power output from the 
turbine per unit mass flow rate ( )/ mWt .  Compare the compression work per unit 
mass flow rate of the gas turbine cycle ( )/ mWc with that of the vapor power cycle 
( )/ mWp .  What conclusion do you reach?  Explain the result. 

2.  An air standard Otto cycle operates at a compression ratio of 4 and a pressure 
ratio (P3/P2) of 4.  Find the cycle thermal efficiency for P1 = 1 bar and T1 = 320 K. 

3.  The compression and the pressure ratios of an Otto cycle are both equal to 4.  
Air enters the engine at 1 bar and 320 K.  Find all pressures and temperatures of 
this cycle. [Ans.:  P2 = 7.4 bar, P3 = 29.6 bar, P4 = 4,2 bar, T2 = 592 K, 
T3  = 368 K, T4 = 1340 K]. 

4.  An air standard diesel cycle has an efficiency of 0.58 and a compression ratio 
of 17.  Determine pressures and temperatures of the cycle at the conclusion of 
each process.  Pressure and temperature at the start of the compression process are 
0.1 MPa and 16 C, respectively.  [Ans.: P2 = 765.6 Psia, P4 = 67.23 psia, 
T2 = 1615 R, T3 = 4830 F, T4 = 2411 R.] 

5.  An air standard Diesel cycle operates at a compression ratio of 20 and a cutoff 
ratio of 2.  Find the cycle thermal efficiency for P1 = 1 bar and T1 = 320 K. 

6.  An air standard diesel cycle has a compression ratio of 20 and an isobaric ex-
pansion ratio (V3/V2) of 2.  Pressure and temperature at the start of the compres-
sion process are P1 = 1 bar and T1 = 350 K.  Find the cycle thermal efficiency.  
Compare the result with the Carnot efficiency.  [Ans.:  η = 64.8%] 

7.  Given the same compression ratio for both air standard Otto and air standard 
Diesel cycle, which cycle has higher thermal efficiency?  Answer the same ques-
tion this time for the Otto cycle versus the Brayton cycle. 

8.  In this problem we are asked to perform a parametric study for thermal effi-
ciency of an air standard Diesel cycle as a function of the cutoff ratio, rc, and the 
compression ratio, r.  Use Equation IIb.1.7 and plot thermal efficiency for rc = 0.5, 
1, 2, 4, 6, and 8 while the compression ratio is held constant at r = 10.  Repeat this 
for r = 12, 15, 17, and 20.  What conclusion can be reached from this plot?  [Ans.:  
Thermal efficiency increases as r increases and decreases as rc increases.] 
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9.  Consider the dual cycle shown in the figure.  Find thermal efficiency in terms 
of γ, r, rP, and rc.  Where γ = cp/cv, rV = V1/V2, rP = P3/P2, and rc = V4/V3.
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10.  Use the following information for a dual cycle internal combustion engine and 
find a) the state parameters (P & T) at stages 1 through 5 shown in the Problem 9 
figure, b) the expansion work, c) the compression work, d) the net cycle work, and 
the cycle efficiency.  Data: P1 = 1 bar, T1 = 300 K, rV = 12.7, rP = P3/P2= 1.4, and 
rc = 1.6, the working fluid is air (cv = 0.72 kJ/kg·C, cp = 1.01 kJ/kg C, R = 287 
J/kg·C, γ = 1.4).  [Ans.: P2 = 35 bar, P3 = 49 bar, P4 = 49 bar, P5 = 2.7 bar, T2 = 
555 C, T3 = 887 C, T4 = 1585 C, T5 = 535 C)}. 

11.  Find thermal efficiency of an air standard Brayton cycle with the ratio T4/T3 = 
0.45.  [Ans.:  55%] 

12.  Air enters an ideal gas turbine cycle at 1 bar and 27 C.  The maximum tem-
perature in the cycle is 727 C.  Find the cycle efficiency for a compression ratio 
of 10.  [Ans.:  0.482]. 

13.  Air enters the compressor of an air standard Brayton cycle at 27 C and 0.1 
MPa.  The cycle pressure and temperature ratios are given as rP = 11 and rT = 4, 
respectively.  Find a) pressure and temperature at the end of each process, b) 
thermal efficiency, c) work per unit mass, d) cycle pressure ratio for optimum 
work, and e) the required mass flow rate to produce 1 MW power. 

14.  Air enters the compressor of an air standard Brayton cycle at 70 F and 14.7 
psia.  The cycle pressure ratio is rP = 11 and the temperature ratio is such that the 
net work produced by the cycle corresponds to the maximum net work.  Find 
a) pressure and temperature at the end of each process, b) thermal efficiency, and 
c) the required mass flow rate to produce 300 horsepower. 

15.  To improve thermal efficiency, a gas turbine uses a two-stage compression 
and one intercooler.  Assume ideal processes and isentropic compression to show 
that the compressor work is at a minimum when the two compressors have identi-
cal compression ratios.  Gas enters both compressors at the same temperature. 
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16.  In a steam power plant, saturated steam at a pressure of 400 psia enters the 
turbine.  The condenser pressure is atmospheric.  Find the ideal Rankine cycle and 
the maximum thermal efficiency.  [Ans.:  23% and 26%]. 
17.  Derive a relation for the optimum rP of a gas turbine operating on a Brayton 
cycle having the turbine and the compressor efficiencies of ηt and ηc, respectively.  

[Ans.:  βηη )( TtcP rr =  where β = γ /2(γ – 1)]. 

18.  A gas turbine power plant consisting of high pressure (HP) and low pressure 
(LP) compressors and turbines is shown in the figure.  The HP and LP turbines 
drive the HP and LP compressors, respectively.  a) Place letters “a” through “j” on 
the accompanying T-s diagram and b) use the given data to find the net work and 
the cycle thermal efficiency.  Data: Ta = 20 C, Tf = 850 C, (rP)C1 = (rP)C2 = 4, ηc = 
80%, ηt = 85%, and the heat exchanger effectiveness is 75%. 
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19.  In the Brayton cycle shown in the figure, pressure drop at the heat sink is neg-
ligible hence, rC ≠ rT.  a) Draw the T-s diagram and explicitly show the differences 
between the pressure levels of states 1 and 3.  b) Use the given data to find rC and 
rT, assuming the working fluid is an ideal gas. 
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20.  Air enters the compressor of a helicopter engine.  The pressurized air is then 
delivered to the combustion chamber (CC).  High energy mixtures then enter the 
first turbine, referred to as the gas generator and then the second turbine, referred 
to as the power turbine.  Use the data given and find the power produced by the 
system in the following two cases: a) assume all the processes are ideal and b) as-
sume the compressor and the turbine efficiencies are 90% and 85%, respectively. 
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Compressor Turbine Turbine
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21.  Two ideal Brayton cycles are shown in the Figure.  The working fluid is 
cooled in Heat Exchanger A prior to entering the heat sink (Heat Exchanger B).  
Heat Exchanger A is the heat source for a simple Brayton cycle.  a) Draw the T-s
diagram for this combined cycle, b) find the pressure ratio of turbine B, which 
maximizes the cycle thermal efficiency, and c) find the cycle thermal efficiency.

Data: T1 = T9 = 5 C, T3 = 700 C, T4 – T7 = 15 C, P2 = 4P1, cp = 5.23 kJ/kg, γ = 
1.658. 62 2mm = .  The working fluid in both cycles is the same.  
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22.  In a steam power plant, saturated steam at a pressure of 400 psia enters the 
turbine.  The condenser pressure is 1 psia.  Find the ideal Rankine cycle and the 
maximum thermal efficiency.  [Ans:  33% and 38%] 

23.  Saturated steam in a Rankine cycle enters the turbine at 850 psia and leaves 
the condenser at 3.5 inches of Mercury (in Hg).  Find: a) thermal efficiency of the 
cycle, b) power obtained from the turbine for steam mass flow rate of 11E6 
lbm/hr.  [Ans.:  a) 34.8%,  b)  1246 MW] 

24.  Superheated steam at a pressure of 4 MPa and a temperature of 350 C leaves 
the heat source and enters the turbine.  The heat sink is at a pressure of 10 kPa.  
Calculate net work produced by the cycle and the cycle efficiency. 

25.  In Example IIb.2.1, we use an open FWH in conjunction with some extraction 
steam to heat up the feedwater.  For the FWH operating at 250 psia, find the re-
vised thermal efficiency and compare your calculated value with the results ob-
tained in Example IIb.2.5.  [Ans.:  0.385] 
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26.  Saturated steam enters a turbine at 1000 psia.  Heat is rejected in the con-
denser at 1 psia.  Find thermal efficiency for a regenerative cycle, using a moisture 
separator and an open feedwater heater at 200 psia.  Also find the steam extraction 
fraction, total pump work, and total turbine work.  [Ans.:  η = 0.399, y = 0.2528, 
wp = –3.098 Btu/lbm, wt = 336.39 Btu/lbm,] 

27.  In a Rankine cycle, dry saturated steam (x = 100%), enters the turbine at 8 
MPa and saturated liquid (x = 0%) leaves the condenser at 0.008 MPa.  Net power 
produced by this cycle is 100 MW.  Find the turbine work, the cycle mass flow 
rate, the rate of heat transfer to the cycle, the rate of heat removal from the cycle, 
and thermal efficiency.  [Ans.:  ηth = 37.1% and mass flow rate = 3.77E5 kg/h]. 

28.  Perform a parametric study for a steam power plant operating between pres-
sures of 7 MPa and 7 kPa on an ideal Rankine cycle.  Use feedwater heater pres-
sure as the variable.  Produce plots similar to Figure IIb.2.3 for such parameters as 
fraction of the steam extraction, pump work, and turbine work. 

29.  Consider the secondary side of a simplified PWR plant consisting only of the 
steam generator, turbine, condenser, and the feedwater pump.  This plant is operat-
ing in an ideal Rankine cycle and producing dry saturated steam at a rate of 
5.674E6 kg/h and at a pressure of 7 MPa.  A two-phase mixture leaves turbine and 
enters the condenser at 0.0075 MPa.  The feedwater pump demands 9.4 kJ/kg at 
steady state to pump water from the condenser to the steam generator.  A river 
flowing adjacent to the plant provides the cooling water to the condenser.  Accord-
ing to regulations, the rise in the temperature of the river water exiting the plant 
must not exceed 8 C.  Find a) plant thermal efficiency, b) maximum efficiency, 
and c) the flow rate of the circulating water through the condenser tubes.  [Ans.:  
36.7%, 43.9%, and 9.3E8 kg/h]. 

30.  Superheated steam leaves the boiler of an ideal regenerative cycle at 600 psia 
and 800 F.  Pressure in the feedwater heater and in the condenser is 60 psia ad 1 
psia, respectively.  Find ηth.  [Ans.: 39.1%]. 
31.  Consider an air standard Otto cycle.  The compression ratio is 8.  At the be-
ginning of the compression stroke, pressure is at 14.7 psia and 60 F.  The heat 
transfer to the air per cycle is 800 Btu/lbm.  Find the cycle thermal efficiency.  
[Ans.:  ηth = 56%]. 

32.  In a hypothetical 350 MWe nuclear power plant, cold water enters the reactor, 
steam leaves the reactor to enter the turbine, and the hot water from the turbine is 
returned to a nearby lake.  Use the given data to find a) the temperature of the wa-
ter at the inlet and outlet of the core, b) the maximum available work, c) the gov-
erning equation for the lake water temperature while ignoring any heat transfer by 
evaporation, and d) the plant lifetime based on the lake water temperature not ex-
ceeding 60 F. 
Data:  reactor power = 350 MWe, thermal efficiency = 0.333, temperature of wa-
ter leaving the plant = 150 F, water mass flow rate = 1E4 lbm/s, lake water vol-
ume = 1E12 ft3, lowest water temperature = 50 F. 
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33.  For the ideal Rankine cycles shown in the figure, find the minimum number 
of properties that we need to know in order to solve for the rest of unknowns such 
as pressures, temperatures, net work, and thermal efficiency. [Ans.:  For cycle A 
we need, PH and PL.  For Cycle D, we need PH, PL, T3, ηturbine, and ηpump].
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34.  Four designs for a steam power plant are shown in the figure.  a) Find the heat 
supplied, the heat rejected, the net work, and the cycle thermodynamic efficiency 
for each design.  b) Compare the results and comment on the advantage of each 
design. 
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35.  Find the efficiency of an ideal Rankine cycle using a steam temperature of 
500 C and a condenser pressure of 0.1 bar.  Try three steam pressures of 20 bar, 50 
bar, and 100 bar.  [Ans.: 34%, 38%, and 40%]. 

36.  Find the efficiency of an ideal Rankine cycle in which superheated steam en-
ters the turbine at 773 K and 40 bar.  Try three condenser pressures of 2 bar, 0.5 
bar, and 0.05 bar.  [Ans.:  0.25, 0.31, and 0.38]. 

37.  In a Rankine cycle, steam enters the turbine at 160 bar and 823 K.  Pressure in 
the condenser is 0.05 bar.  Find the cycle efficiency for the following isentropic 
efficiencies; ηturbine = 0.88, ηpump = 0.9. 

38.  In a regenerative modified Rankine cycle (Figure IIb.2.5), steam leaves the 
boiler and enters the turbine at 8 MPa and 753 K.  Pressure in the open feedwater 
heater and the condenser are 0.7 MPa and 0.008 MPa, respectively.  Water enter-
ing the feedwater pump is saturated.  Each turbine has an isentropic efficiency of 
0.85.  a) Find the plant thermal efficiency, b) given a steam mass flow rate of 1E5 
kg/h, find the net power.  
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39.  A regenerative-modified Rankine cycle with moisture separator is shown in 
the figure.  Use the given data in the figure to find the net cycle efficiency.  Ignore 
the pump work. 
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40.  Saturated steam at 1000 psia enters the high pressure turbine of an ideal re-
generative Rankine cycle.  The cycle is equipped with a moisture separator, deliv-
ering saturated water to an open feedwater heater at 100 psia.  Saturated steam 
from the feedwater heater enters the low pressure turbine.  Pressure in the con-
denser is 1 psia.  The condensate leaving the open feedwater heater is saturated 
water.  Draw the cycle schematic and the corresponding T-s diagram.  Find a) the 
cycle thermal efficiency, b) the work per unit mass flow rate of water consumed 
by the condensate pump, c) the work per unit mass flow rate of water consumed 
by the feedwater pump, d) the work per unit mass flow rate of water produced by 
the high pressure turbine, e) the work per unit mass flow rate of water produced by 
the low pressure turbine, f) the heat per unit mass flow rate of water delivered to 
the heat source, and g) the fraction of steam used as the extracted steam in the 
open feedwater heater.  [Ans.:  40.2%, 0.2 Btu/lbm, 3 Btu/lbm, 172.6 Btu/lbm, 
188.6 Btu/lbm, 891.4 Btu/lbm, 20.5%]. 

41.  Superheated steam at 7.585 MPa (1100 psia) and 616.3 K (650 F) enters the 
high pressure turbine of an ideal regenerative Rankine cycle.  The cycle is 
equipped with a moisture separator, delivering saturated water to an open feedwa-
ter heater at 0.689 MPa (100 psia).  Saturated steam from the feedwater heater en-
ters the low pressure turbine.  Pressure in the condenser is 7 kPa (1 psia).  The 
condensate leaving the open feedwater heater is saturated water.  Find a) the cycle 
thermal efficiency, b) the work per unit mass flow rate of water consumed by the 
condensate pump, c) the work per unit mass flow rate of water consumed by the 
feedwater pump, d) the work per unit mass flow rate of water produced by the 
high pressure turbine, e) the work per unit mass flow rate of water produced by the 
low pressure turbine, f) the heat per unit mass flow rate of water delivered to the 
heat source, and g) the fraction of steam used as the extracted steam in the open 
feedwater heater.  [Ans.:  41.1%, 0.465 kJ/kg, 7 kJ/kg, 469 kJ/kg, 474.7 kJ/kg, 
2278.7 kJ/kg, 20.5%]. 

42.  Saturated steam at 7.585 MPa (1100 psia) and 616.3 K (650 F) enters the high 
pressure turbine of an ideal regenerative Rankine cycle.  The cycle is equipped 
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with a moisture separator, delivering saturated water to an open feedwater heater 
at 0.689 MPa (100 psia).  Only 18% of the steam leaving the moisture separator is 
used in an open feedwater heater.  Pressure in the condenser is 7 kPa (1 psia).  
Find a) the cycle thermal efficiency, b) the work per unit mass flow rate of water 
consumed by the condensate pump, c) the work per unit mass flow rate of water 
consumed by the feedwater pump, d) the work per unit mass flow rate of water 
produced by the high pressure turbine, e) the work per unit mass flow rate of water 
produced by the low pressure turbine, f) the heat per unit mass flow rate of water 
delivered to the heat source, and g) the enthalpy of water leaving the open feedwa-
ter heater.  [Ans.:  39.3%, 0.465 kJ/kg, 62.8 kJ/kg, 469 kJ/kg, 489.4 kJ/kg, 2278.7 
kJ/kg, 638.2 kJ/kg]. 

43.  Solve problem 41 assuming an isentropic efficiency of 85% for each pump 
and 90% for each turbine.  [Ans.:  35%, 0.697 kJ/kg, 63.96 kJ/kg, 422.15 kJ/kg, 
440.3 kJ/kg, 2277.52 kJ/kg, 640.8 kJ/kg]. 

44.  The schematic diagrams of two suggested designs for a boiling water reactor 
are shown in the figures.  One uses a direct cycle and the other a dual cycle.  The 
outlet conditions for both designs are the same.  In both designs, steam leaves the 
steam separator assembly with a quality of 95% to enter the high pressure turbine 
(HPT) while the saturated liquid with 95 weight percent being recirculated to the 
reactor.  The vapor is expanded successively in the HPT, the intermediate pressure 
turbine (IPT), and the low pressure turbine (LPT) before entering the condenser 
being at a 64 mm-Hg.  Moisture separators between the HPT and IPT and between 
the IPT and LPT reduce the steam moisture to 1%; the separated liquid is used to 
heat the feedwater in an open feedwater heater.  The heated condensate and the re-
circulated water from the steam separator are pumped through the reactor.  As-
sume 100% efficiency in all pumps, and neglect pressure losses in the moisture 
separators.  Take all turbine efficiencies as 75%. 
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In the dual cycle design, an additional steam generator is used.  The 6.6 MPa 
saturated liquid from the steam separator produces saturated steam at 3.4 MPa in 
the secondary steam generator, its enthalpy being reduced to 1163 kJ/kg.  The 3.4 
MPa steam is introduced to the HPT at the appropriate stage with perfect mixing.  
Sketch the T-s diagram for the direct and dual cycles. 
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45.  A combined Brayton – Rankine cycle is shown in the figure.  Calculate a) all 
the flow rates shown in the diagram, b) all terms that are required to find the cycle 
thermal efficiency.  Note the relative temperature relations; T6 = To + 5.3 F, T4 = 
Td + 20 F. 
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IIc.  Mixtures

Thermodynamic systems often include more than one component.  For example, 
the combustion of fossil fuels results in a mixture product of several gases.  Also 
the analyses of a PWR pressurizer and nuclear plant containment require consid-
eration of such non-condensable gases as air in contact with water vapor.  In this 
chapter we first study the fundamental relations related to mixtures and then apply 
these relations to the analysis of such interesting topics as conditioning a mixture 
of moist air, response of pressure suppression systems to pressurization, and the 
operation of cooling towers.  We also study the pressure and temperature of a 
PWR containment following such events as the rupture of pipes carrying high en-
ergy fluids inside the containment. 

 Gas mixtures can be divided into two major categories: non-reactive and reac-
tive gases.  Moist air on a humid day is an example of non-reactive gases and a 
combustible mixture in the cylinder of an internal combustion engine is an exam-
ple of the reactive gases.  The non-reactive gases can be further divided into two 
categories: mixture of real gases and mixture of ideal gases.  Air, for example, 
may be considered as a mixture of ideal gases.  In this chapter we deal only with 
the mixture of non-reactive ideal gases. 

1.  Mixture of Non-reactive Ideal Gases 

Dry air is a good example of a mixture of non-reactive ideal gases.  The mole frac-
tion of each component of dry air is shown in Table IIc.1.1. 

Table IIc.1.1.  Composition of dry air 

Component Mole Fraction (%) 
Nitrogen 78.08 
Oxygen 20.95 
Argon 0.93 
Carbon Dioxide 0.03 
Neon, Helium, Methane, etc. 0.01 

Due to the importance of air in industrial applications, air properties are identi-
fied and tabulated at various pressures and temperatures.  However, in general, 
where various gases at various mole fractions may mix, we must find an easier 
way to represent the property of the mixture of gases.  That is to say that we must 
use the properties of the pure substances that constitute the mixture and find 
equivalent properties as if the mixture itself is a pure substance.  For example, 
consider a system containing N non-reactive ideal gases.  There are two models to 
find the representative properties for this system: the Dalton and the Amagat mod-
els.  Regardless of the model we use, the total number of moles in the system n is 
given as  
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where ni is the number of moles of component i and N is the number of compo-
nents comprising the mixture.   

(a)                                                                      (b) 

Figure IIc.1.1.  (a) Amagat and (b) Dalton  models for non-reactive mixture of ideal gases 

Amagat Model, Equal Pressure and Temperature 

Consider the system of gases shown in Figure IIc.1.1(a).  In the Amagat model, all 
the non-reactive ideal gases are at the same pressure and temperature but at differ-
ent volume so that the summation of all the volumes becomes equal to the volume 
of the system.  This can be verified by applying the ideal gas law to each volume 
of gas: 
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See Problem 3 at the end of this section for the applicability of the Amagat model 
to non-ideal gases. 

Dalton Model, Equal Volume and Temperature 

Consider the system of gases shown in Figure IIc.1.1(b).  In the Dalton model, all 
non-reactive ideal gases have the same volume and temperature but are at different 
pressure so that the summation of all pressures becomes equal to the pressure of 
the system.  This can be verified by applying the ideal gas law to each gas: 
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where Vi in Equations IIc.1.2, and Pi in Equation IIc.1.3 are referred to as partial 
volume and partial pressure, respectively.  Similarly, V in Equations IIc.1.2, and P
in Equation IIc.1.3 are referred to as total volume and total pressure, respectively.  
The Dalton model is more commonly applied to the mixture of ideal gases than 
the Amagat model.  It is important to note that for both Amagat and Dalton mod-
els 

Ni TTTTT ====== 21 .

Example IIc.1.1.  A tank having a volume of 10 m3 is filled with nitrogen and 5 
kg of carbon dioxide at a pressure and temperature of 140 kPa and 70 C, respec-
tively.  Find the partial volumes according to the Amagat model and the partial 
pressures according to the Dalton model. 

Solution:  Total volume and pressure are given.  In both models, gases are at 
thermal equilibrium at 70 C.
a) Amagat Model:  To find the partial volumes, we apply the ideal gas law to car-
bon dioxide: 
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b) Dalton Model:  We can use similar procedure to find the partial pressures from 
the Dalton model by applying the ideal gas law to carbon dioxide: 
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Application of Dalton Model to Moist Air 

The term moist air refers to a mixture of dry air, treated as a pure substance, and 
water vapor.  Consider a volume containing moist air with na moles of dry air and 
nv moles of water vapor at pressure P and temperature T.  The total number of 
moles in this volume is found as 

n = na + nv
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The mole fraction of air is given as: 

ya = na/n

and the mole fraction of water vapor as: 

yv = nv/n

where subscripts a and v stand for air and water vapor, respectively.  Total pres-
sure of the moist air, partial pressure of the dry air, and partial pressure of water 
vapor are found as: 
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respectively.  From these relations we conclude that Pv = yvP and Pa = yaP.

Example IIc.1.2.  A tank of volume 10 m3 contains a mixture of air and super-
heated steam at a total pressure of 355 kPa and temperature of 100 C.  The tank 
contains 0.05 lbmole of steam and 0.8 lbmole of air.  Find the air and steam partial 
pressures. 

Solution:  Total number of moles of the mixture is n = nv + na = 0.05 + 0.8 = 0.85.
Therefore, the mole fractions of vapor and air are yv = 0.05/0.85 = 0.059 and ya = 
0.8/0.85 = 0.94, respectively.  This results in the vapor and air partial pressures of 
Pv = yvP = 21 kPa and Pa = yaP = 334 kPa, respectively.

In the next example, we calculate the component masses of a mixture from par-
tial pressures. 

Example IIc.1.3.  A large dry containment of a PWR has a volume of 2E6 ft3.  At 
normal operation, the mixture of air and superheated steam is at a total pressure of 
14.7 psia and temperature of 120 F.  If the partial pressure of superheated steam is 
0.2 psia, find the masses of air and steam in the containment. 

Solution:  To find the masses, let’s assume that both steam and air can be treated 
as ideal gases.  Hence, for steam:
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Since steam partial pressure is given, it implies that the calculation should be 
based on the Dalton model.  Hence, Pa = P – Pv = 14.7 – 0.2 = 14.5 psia.  There-
fore, for air: 
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Calculation of Mixture Properties 

To simplify dealing with mixtures, we calculate average mixture properties from 
the properties of the components comprising the mixture.  The component proper-
ties are either based on mole fraction or mass fraction: 

====
i

iivi
i

viivivv PTcxmmcPTcyncnC ),(),( ,,          IIc.1.5 

====
i

iipi
i

piipipp PTcxmmcPTcyncnC ),(),( ,,          IIc.1.6 

====
i

iii
i

iii PTuxmmuPTuynunU ),(),(          IIc.1.7 

====
i

iii
i

iii PThxmmhPThynhnH ),(),(          IIc.1.8

Here, the mass fraction of each component is defined as the ratio of the mass of 
that component to the total mass of the mixture.  We examine the application of 
these relations in the following example. 

Example IIc.1.4.  Assuming air consists of only N2, O2, and Argon, find u, h, and 
cp of air at 1 atm and T = 80 F (540 R) for the percentage specified below: 

Component    Molecular weight   Volume fraction   Mole fraction   Mass fraction 
i         M             Vi /V            yi              xi

N2        28.013         0.7803  0.7803             0.7546 
O2        31.999  0.2099  0.2099             0.2319 
A        39.946  0.0098  0.0098             0.0135

Solution:  We first calculate the mixture molecular weight: 
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iiMyM 967.28)948.39(0098.0)999.31(2099.0)013.28(7803.0 lb/lbmole

Using M, we calculate xi according to:

xi = yiMi/M

The results are listed in the above table.  Obtaining cv and cp from Table A.II.5 
(BU), for the mixture specific internal energy, we find:

=×+×+×==
i

iiuxu )0746.0540(0135.0)157.0540(2319.0)1774.0540(7546.0

92.5 Btu/lbm 
for specific enthalpy we find: 

=×+×+×==
i

ii hxh )1244.0540(0135.0)2191.0540(2319.0)2483.0540(7546.0

129.5 Btu/lbm 
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and for specific heat we find: 
=++==

i
piip cxc )RBtu/(lbm24.0)1244.0(0135.0)2191.0(2319.0)2483.0(7546.0

Example IIc.1.5.  A cylinder contains 1 lbm of CO2 and 2 lbm of N2 at 20 psia 
and 100 F.  In a polytropic process (npoly = 1.3), the content is compressed to 60 
psia.  Find the value of work and heat transfer. 

Solution.  The work done on the system can be found from Equation IIa.4.4; 
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Where m and M are the mixture mass and molecular weight.  We need to find m,
M, and T2.  The mixture mass is found from: 

lbm321
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To find the molecular weight, we must first find total number of molecules: 
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Therefore, N = 0.023 + 0.071 = 0.094 lbmol and M = m/N = 3/0.094 = 31.91.  
Mixture temperature following compression is found from:

R722)3(560)( 3.1/)13.1(/)1(

1

2
12 === −− polypoly nn

P

P
TT

Substituting, we find the amount of work delivered to the system as: 
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where the minus sign confirms that work is delivered to the system.  The heat 
transfer is found from the first law of thermodynamics: 

UWQ ∆+=
We calculate U∆  from: 
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Therefore, the amount of heat transferred to the surroundings is found as: 
Q = –100.8 + 31.74 = –69 Btu.
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Example IIc.1.6.  A gas tank contains a mixture of 1.35 kmol CO2 and 4.8 kmol 
of air at 1.2 bar and 37 C.  Assuming air by volume consists of 21% O2 and 79% 
N2, find: 
a) the masses of N2, O2, and CO2 as well as the total mass 
b) the percentage of carbon in the mixture by mass  
c) the molecular weight of the mixture 
d) specific volume of the mixture

Solution.  a)  We first find the number of moles:   
For 

2COn  = 1.35 kmol, 
2On  = 4.8 × 0.21 = 0.97 kmol, and 

2Nn  = 4.8 × 0.79 = 

3.79 kmol.  Having number of moles, we then find the masses from m = nM. 
Hence, for nitrogen

2Nm  = 3.79 × 28 = 106.2 kg, for oxygen

Mass of mixture:  m = 
2Nm  + 

2Om  + 
2COm  = 106.2 + 31 + 59.4 = 196.6 kg. 

b) mC = [(12/44) × 59.4]/196.6 = 8%

c) To find M, we need to find total number of moles and the mole fraction of each 
component.
n = 

2COn  + 
2On  + 

2COn  = 3.97 + 0.97 + 1.35 = 6.29 kmol 

2Ny  = 3.97/6.29 = 0.63

2Oy  = 0.97/6.29 = 0.16 

2COy  = 1.35/6.29 = 0.21 

M = 0.63(28) + 0.16(32) + 0.21(44) = 34.82 kg/kmol 

d) v = RT/P = (Ru/M)T/P = (8314.5/34.82) × (273 + 37)/(1.2 × 105) =
0.62 m3/kg.

2.  Gases in Contact with Ice, Water, and Steam 

Moist air is one of the most important mixtures for industrial applications.  Let’s 
consider a general case of a system consisting of non-condensable gases in contact 
with ice, water, and water vapor, as shown in Figure IIc.2.1.  The system therefore 
consists of three regions.  The water region is generally referred to as the pool.
The gas region consists of gases, vapor, and water droplets.  Gases may include 
any combination of air and such other gases as carbon monoxide, ammonia, etha-
nol, etc.  Depending on the process, which such system may undergo, various 
phases in this system would interact.  For example, the superheated steam may 
condense on the droplets and droplets may vaporize in contact with hot gases.  
Also water may evaporate at the interface, steam would condense on the ice sur-
face, and ice would melt in contact with warmer water and gases.  Having defined 
this general case, in the following sections, we deal with specific cases of a mix-
ture of air and water vapor as well as the mixture of moist air being in contact with 
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a pool of water.  Therefore, we exclude the presence of the ice region.  Addition-
ally, if there is a pool region, we assume no gas is dissolved in the pool. 

Drop
Ice

Pool

Water

Other Gases

Air

Steam

Figure IIc.2.1.  Generalization of a thermodynamic system containing water and gas 

Relative Humidity, a Measure of Moisture Content 

Let’s limit the discussion to the control volume representing the gas region of Fig-
ure IIc.2.1.  We further limit the discussion to a case when the gas region consists 
only of a mixture of air and water vapor.  This moist air mixture has na moles of 
dry air and nv moles of water vapor at pressure P and temperature T.

Moist Air

Water vapor Air

P = Pa + Pvn = na + nv

Let’s now bring the water vapor to saturation while maintaining the temperature 
and total pressure of the mixture at the above values.  For the mixture of moist air, 
the relative humidity is defined as: 
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y
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where the saturation state is shown by subscript g and the mole fraction of satu-
rated steam in the mixture by yg = ng/n.  Since Pv = yvP and Pg = ygP, relative hu-
midity can be written as: 
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v=φ              IIc.2.1 

Equation IIc.2.1 is shown in Figure IIc.2.2(a).  In Figure IIc.2.2(b), a relative hu-
midity of unity is obtained by adding steam and replacing some air to maintain the 
same total pressure as in Figure IIc.2.2(a). 
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          (a)                                              (b) 

Figure IIc.2.2.  (a) State of vapor in moist air and in (b) saturated mixture 

Example IIc.2.1.  A large dry containment of a PWR has a volume of 2E6 ft3.  At 
normal operation, the mixture of air and superheated steam is at a total pressure of 
14.7 psia, temperature of 120 F, and relative humidity of 65%.  Find the masses of 
air and steam in the containment. 

Solution:  To find the masses of air and steam, we need the partial pressure of 
each component.  To find the partial pressure of steam, we use the relative humid-
ity. gv PP φ= .  From the steam tables we find: 

Pg (120 F) = 1.6927 psia.  Therefore, Pv = 0.65 (1.6927) = 1.1 psia and Pa = 14.7 – 
1.1 = 13.6 psia.  Finally: 
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Humidity Ratio or Specific Humidity 

Another means of measuring the moisture content in moist air is calculating the 
humidity ratio, defined as the mass of the water vapor to the mass of dry air: 
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Example IIc.2.2.  Find the relative humidity for a sample of moist air at 14.7 psia 
and 80 F if the humidity ratio is 0.02.   

Solution:  From humidity ratio, we find )]/622.0(1/[ ω+= PPv .  Substituting for 

total pressure and for the humidity ratio, Pv = 14.7/(1+0.622/0.02) = 14.7/32.1 = 
0.458 psia.  Also Pg(80 F) = 0.507 psia.  Therefore, φ  = 0.458/0.507 = 90%.
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3.  Processes Involving Moist Air 

In this section we discuss isochoric, isobaric, and adiabatic processes involving 
moist air.  We start with the isobaric process.  Cooling down of moist air in many 
air-conditioning systems can be considered cooldown at constant pressure.  The 
following example deals with calculating the rate of condensate produced in such 
systems. 

Mixture Cooldown at Constant Pressure, Dew Point Temperature 

To describe the dew point temperature, we consider unsaturated moist air at tem-
perature T1.  Steam in this mixture is superheated at state 1 (partial pressure P1 and 
temperature T1 in Figure IIc.3.1).  Hence, the relative humidity is less than unity.  
State 2 shows saturated steam corresponding to temperature T1.  If the moist air 
was at state 2, the mixture would have been saturated.  The dew point of the mix-
ture at state 1 is the temperature to which the mixture should be cooled down at 
constant pressure to become saturated.  As shown in Figure IIc.3.1, temperature T3

is the dew point temperature for the mixture at state 1, T3 = Tg(P1).  If any of the 
steam condenses, then saturated water appears at state 4.  Further cooldown of the 
mixture occurs on the saturation line (State 5).  Such cooldown results in lower 
steam partial pressure (Pg5) due to the appearance of condensate dropping out of 
the mixture (State 6). 
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Pg2 p1
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1

3

T1

T3

s

T
Pg2 P1

12T1
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T
Pg2 P1
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56

4

Pg5

T1

T3

T5

Figure IIc.3.1.  Cooldown of unsaturated mixture to saturation 

Example IIc.3.1.  A large dry containment of a PWR has a free volume of 57000 
m3.  Following an event, the moist air in this containment reaches 1.5 atm, 130 C, 
and a relative humidity of 15%.  Find the dew point temperature corresponding to 
this state. 

Solution:  To find the dew point temperature, we need to find the saturation tem-
perature corresponding to the mixture partial pressure of steam (i.e., TDew Point = 
Tg(Pv)).  To find Pv, we find Pg(Tv) = Pg(130 C) = 2.701 bar.  So that: 
Pv = 0.15(2.701) = 0.4 bar.  The corresponding saturation temperature is:  
Tg(0.4 bar) = 75.8 C.
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Example IIc.3.2.  A 2-lbm sample of moist air is initially (state 1) at P1 = 14.7 
psia, T1 = 90 F, and φ1 = 65%.  This mixture is cooled at constant pressure to T2 = 
45 F (state 2).  Find a) the humidity ratio at state 1, b) the dew point temperature at 
states 1 and 2, c) the amount of condensate at state 2. 

Solution: a) To find the initial humidity ratio we need to have Pv.  This is found 
from the initial relative humidity.  We first find Pg(90 F) = 0.698 psia.  Hence, Pv

= 0.65(0.698) = 0.4537 psia, and ω1  =  0.622 × 0.4537 / (14.7 – 0.4537) = 0.02. 

PP
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T1 = 90 F
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m = 2 lbm
P2 = 14.7
T2 = 45 F
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T1

TD

T2

1

Condensate Vapor

b)  The dew point temperature corresponding to state 1 is TD1 = Tg(Pv1) ≈  76 F 
and for state 2 is 45 F. 
c)  The mixture becomes saturated at TD1 = 76 F.  Further decrease in temperature 
results in steam condensation.  At state 2, Pv = P2 =Pg(T2) = Pg(45 F) = 0.14744 
psia.  Since total pressure is kept constant, 

0063.0)14744.07.14/(14744.0622.02 =−×=ω  hence, mv2 = 0.0063ma.  We 

must find  ma.  On one hand  
ma + mv1 = 2 lbm 

On the other hand mv1/ma = 0.02.  Solving this set we find, ma = 1.9608 lbm and 
mv1 = 0.0392 lbm.  Therefore, mv2 = 0.0063 ×  1.9608 = 0.01235 lbm.  Hence, the 
mass of steam condensed in this process is: 
mc = mv1 – mv2 = 0.0392 – 0.1235 = 0.02685 lbm.

Example IIc.3.3.  Moist air at 1 atm, 20 C, and a relative humidity of 70% enters 
a cooling duct at a rate of 1.3 m3/s.  Temperature of the saturated mixture at the 
exit of the cooling coil is 5 C.  Assuming negligible pressure drop, find the mass 
flow rate of the condensate produced in the cooling duct. 

Solution:  The condensate mass flow rate is calculated as 21 vvC mmm −= .  To 

find the vapor mass flow rates, we need to calculate the air mass flow rate and 
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then use Equation IIc.2.2.  To calculate the air mass flow rate, we need air pres-
sure,  

Pa1 = P – Pv1 = P – 1φ Pg(T1) = 1.01325 – 0.7(0.02339) = 0.997 bar.

Hence, air mass flow rate is obtained from:
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To find the humidity ratios, we find vapor partial pressures at the inlet and outlet.  
At the inlet:   
Pv1 = 0.7(.02339) = 0.0164 bar
and at the outlet the mixture is saturated  
Pv2 = 1.0(0.00872) = 0.00872 bar. 
Therefore, 01.0)0164.001325.1/()0164.0(622.01 =−=ω

005399.0)0087.001325.1/()0087.0(622.02 =−=ω
Thus )( 2121 ωω −=−= avvC mmmm  substituting for am , the mass flow rate of 

condensate is found as: 
kg/h.25.5kg/s00785.0)0087.001.0(54.1)( 21 ==−=−= ωωaC mm

Mixture Cooldown at Constant Volume 

We often encounter mixture cooldown at isochoric instead of isobaric process.  
This occurs when a non-deformable (rigid) volume contains a fixed amount of a 
mixture (state 1 on Figure IIc.3.2) and the volume is then subjected to cooldown.  
In this case, the temperature at which condensate appears (state 2 on Fig-
ure IIc.3.2) differs from the dew point temperature (State D on Figure IIc.3.2).  To 
find the temperature corresponding to state 2, we note that at the moment that va-
por becomes saturated at constant volume we have vg2 = vv1.  We wrote this rela-
tion based on the fact that both volume and all masses remain constant throughout 
the cooldown process.  Since we know P1 and T1 we can find vv1.  Then from the 
steam tables, we can find the temperature corresponding to the saturated steam 
specific volume vg2.

Heat
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T1
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Figure IIc.3.2.  Cooldown of moist air at constant volume 
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Example IIc.3.4.  Moist air is contained in a volume of 56,000 m3 at 2 bar, 110 C, 
and a relative humidity of 40%.  This mixture is now cooled to 30 C.  Find a) the 
dew point temperature, b) temperature at which vapor begins to condense, c) the 
amount of water condensed, and d) final pressure.  States are shown in the figure. 
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Solution: a) We find the dew point temperature from TD = Tg(Pv1).  To find Pv1, we 
use the relative humidity.  P1’ = Pg(T1) = Pg(110 C) = 0.14327 MPa = 1.4327 bar.  

Hence, Pv1 = 0.40(1.4327) = 0.573 bar.  We find TD = Tsat(Pv1 = 0.573 bar) = 
84.38 C.  Also note that Pa1 = 2 – 0.573 = 1.427 bar. 
b) Since the cooldown is at constant volume, we know that the condensate first ap-
pears at T2 because on the constant volume line, the pressure corresponding to TD

is smaller than the saturation pressure corresponding to the dew point temperature
(i.e., PD’ < PD = Pg(TD)).  Hence, vapor is superheated at TD’ = TD and PD’.  Tem-
perature at which vapor begins to condense is found from vg2 = v1, where v1 is 
given by P1v1 = (Ru/M1)T1.  Subsequently, we find v1 = (0.08314/18) (110 + 273)/ 
0.573 = 3.8 m3/kg.  This corresponds to a saturation pressure of T2 = 82.2 C, which 
is 2 C less than the dew point temperature.
c) To find the mass of the condensate, we again use the fact that cooldown is at a 
constant volume: v3 = v2 = v1.  From the steam tables, we find vf(30 C) = 0.001004 
m3/kg and vg(30 C) = 32.89 m3/kg.  Steam quality at point 3 is found as x3 = (v – 
vf)/vfg = (3.8 – 0.001004)/(32.89 – 0.001004)  
d) The moist air volume at state 3 is V3 = 56,000 - 1702(0.001004) =55998.3 m3.
Pfinal = P3 + Pa3.  Where Pa3 = ma(Ru/Ma)T3/V3.  However, the dry air mass is found 
from ma = Pa1V1/(Ru/Ma)T1 = (2 – 0.573)(56,000) / (0.08314/28.97)(30 + 273) = 
91898.4 kg.  Therefore, Pa3 = 91898.4 (0.08314/28.97)(30 + 273)/55998.3 = 1.427 
bar.  Hence, Pfinal = 1.427 + Pg(30 C) = 1.427 + 0.0425 = 1.47 bar.

Humidification 

In the analysis of moist air in closed systems undergoing constant pressure or con-
stant volume processes we were able to determine conditions of the final state of the 
mixture from the equation of state.  To find more information about the process, for 
example the amount of heat transfer in a constant volume process we would have to 
use the conservation equation of energy in addition to the equation of state.  In gen-
eral, we need to use the conservation equation of mass, conservation equation of en-
ergy, and the equation of state as applied to a control volume to study the thermal-
hydraulic characteristics of air conditioning systems.  The applicable equations for 
conservation of mass and energy are IIa.5.1 and IIa.6.5, respectively.  For example, 
let’s analyze heating and humidification of moist air as shown in Figure IIc.3.3.   
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Figure IIc.3.3.  Control volume for conditioning a mixture of moist air 

Considering steady state operation, the conservation equation of mass for dry air 
becomes: 

aaa mmm == 21                IIc.3.1 

and for water: 

21 vwv mmm =+                IIc.3.2 

We apply the conservation equation of energy at steady state to the mixture to ob-
tain: 

)()( 22221111 vvaaCVwwvvaa hmhmQhmhmhm +=+++            IIc.3.3 

where we assumed no net work and ignored the kinetic and potential energies.  To 
simplify, we substitute for the vapor mass flow rate from v am mω=  to obtain 

aw mm )( 12 ωω −= .  Substituting in Equation IIc.3.3, we get: 

wvvpaaCV hhhTTcmQ )()()(/ 12112212 ωωωω −−−+−=           IIc.3.4 

Example IIc.3.5.  Moist air enters a heated duct at 15 psia, 50 F, 60% relative 
humidity and a volumetric flow rate of 5000 CFM.  Water is sprayed into the 
moist air stream at a temperature of 80 F and a flow rate of 0.3 GPM.  Assuming 
negligible pressure drop in the short duct, find the relative humidity at the outlet of 
the duct and the rate of heat transfer for steady state operation at T2 = 70 F. 

Solution:  First, we find air density at the inlet to calculate the air mass flow rate, 

111 )//( TMRP aua =ρ  = 15(144) / [(1545/28.97)(50 + 460)] = 0.08 lbm/ft3.

Hence, =am 0.08(5000)/60 = 6.62 lbm/s.  We now calculate the inlet humidity 



3.  Processes Involving Moist Air             201

ratio Pv1 = 0.6Pg(50 F) = 0.6(0.178) = 0.11 psia so that: 
0045.0)11.015/()11.0(622.01 =−=ω .

Mass flow rate of the injected water is; 

lbm/s042.0)]481.760/(3.0[2.62Vw =×== wwm ρ  (0.02 kg/s) 

where the water density at 80 F is 62.2 lbm/ft3 and 7.481 is the conversion factor 
for ft3 to gallon.  We find the humidity ratio at the outlet from:

=+= )/(12 aw mmωω 0.0045 + (0.042/6.62) = 0. 

and Pg(70 F) = 0.363 psia (2.5 kPa) so that: 

2φ  = 0.26/0.363 = 70%. 

Other parameters needed for Equation IIc.3.4 are water and vapor enthalpies.  
These can be found from the Steam Tables as hw = 48 Btu/lbm, hv1 = (P = 0.11, T
= 50) = 1085 Btu/lbm, and hv2 = (0.11, 70) = 1092 Btu/lbm (2540 kJ/kg).  Substi-
tuting in Equation IIc.3.4, we get:

]48)0045.001.0()10850045.0109201.0()5070(24.0[62.6 −−×−×+−=CVQ  =
70 Btu/s (74 kW)

The Adiabatic Saturation Process 

Another example of gases in contact with phases of water is the adiabatic satura-
tion process.  As shown in Figure IIc.3.4, moist air with an unknown relative hu-
midity is passed over a pool of water contained in a well insulated duct.  The mix-
ture pressure and temperature at the inlet are specified.  If the entering air is not 
saturated, some of the water in the pool would evaporate and enter into the mixture 
stream.  For sufficiently long duct, the mixture at the outlet would be saturated.  
Temperature of the mixture at the outlet is less than the inlet temperature (T2 < T1)
due to the fact that some energy of the mixture is used to evaporate water in the 
pool.  This temperature is referred to as the adiabatic saturation temperature since 
the saturation of the mixture occurred without any need for heat transfer from the 
surroundings.  Saturated make up water is added to the pool to maintain the proc-
ess at steady state condition. 
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Figure IIc.3.4.  Steady flow of moist air over a pool of water to produce saturated mixture 
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Measurement of Relative Humidity 

We can use the above adiabatic saturation process to determine the unknown hu-
midity ratio as well as the relative humidity.  If the pressure drop in the duct is 
negligible, we can apply the same procedure that led to the derivation of Equation 
IIc.3.4 except for the heat transfer term which should be dropped: 

0)()()( 12112212 =−−−+− wvvpa hhhTTc ωωωω

We solve this equation for the unknown humidity ratio to obtain: 

)(

)()(

1

2212
1

fv

fvpa

hh

hhTTc

−
−+−

=
ω

ω               IIc.3.5

Where 2ω  is given by Equation IIc.2.2.  Note that hv2 = hg(T2).  Having 1ω , we 

can find the unknown relative humidity from: 

)()622.0( vg TP

P

ω
ωφ

+
=              IIc.3.6

Wet- and Dry-Bulb Temperatures 

We measure the dry-bulb temperature of a mixture by a thermometer.  To measure 
the wet-bulb temperature, we cover the bulb of the thermometer by a wet wick.  
We can then measure the wet-bulb temperature by either drawing the flow of the 
mixture over the wet bulb by a fan or moving the thermometer in the mixture.  If 
the mixture is not saturated, some heat transfer takes place, transferring energy 
from the mixture to the wick for liquid evaporation.  This results in the tempera-
ture shown by the thermometer to be lower than the dry-bulb temperature.  We 
can then measure the humidity ratio by using Equations IIc.3.5, from which we 
can find the relative humidity. 

Example IIc.3.6.  Temperature of a room is measured as 72 F.  The wet-bulb tem-
perature is measured as 65 F.  Find the relative humidity. 

Solution:  We can find the relative humidity from Equation IIc.1.20.  This, in turn, 
requires the humidity ratio, which we can find from Equation IIc.1.19.  Note that 
there is no make-up water hence Equation IIc.3.5 becomes

)(/)]()([ 1122121 ThThTTc vgpa ωω +−=

To find 2ω , we use Equation IIc.2.2: )/(622.0 222 vv PPP −=ω  where P = 14.7 

psia and Pv2 = Pg(T2).  For T2 = 65F, Pg(65) = 0.30545 psia.  Therefore,  =2ω
0.622 (0.30545)/(14.77 – 0.30545) = 0.0132.  Then 1ω = [0.24 (65 – 72) + 0.0132 

(1089.9)]/1093 = 0.0116 .  Using in Equation IIc.3.6, we get: 
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38844.0

7.14
)0116.0622.0(

0116.0
)()622.0( 11

1
1 =

+
=

+
=

vg TP

P

ω
ωφ

Note that we assumed hv1 ≅ hg(T1) to avoid iteration. 

4.  Charging and Discharging Rigid Volumes 

This is a more general case of the topic discussed in Section 8 of Chapter IIa.  The 
rigid container (i.e. constant volume process) initially contains moist air at speci-
fied pressure, temperature, and relative humidity.  Fluid at a specified rate is now 
injected into the container.  The intention is to find the equilibrium pressure and 
temperature.  Similarly, we can consider a case where a valve is opened to allow a 
specified amount of the mixture to leave the container.  Such a process, where the 
final equilibrium-state is not known, frequently occurs in common practice.  De-
termination of the final equilibrium-state generally requires iteration with the 
steam tables.  A special case is shown in Example IIc.4.2 where a mixture of water 
and steam enters a control volume and final pressure is sought. 

Rigid Volumes Initially at Non-equilibrium Condition 

First we consider a simple case where moist air is in contact with water.  Note that 
both air and water are at the same temperature.  Figure IIc.4.1(a) shows a system 
containing moist air with relative humidity less than 1.  In such a system, water 
evaporates until the mixture of air and water vapor becomes saturated in steam 
and the system reaches equilibrium, Figure IIc.4.1(b).  In such an equilibrium 
condition, all components are again at the same temperature albeit T2 < T1.  In the 
thermodynamic analysis of such systems, we may assume that no gas is dissolved 
in water. 

Evaporation

Gas region

Pool region
(Control   Volume)

(Control  Volume)

Water

 Air + Vapor

1<φ
P1
T1

P1
T1 Water

 Air + Vapor

1=φ

P2 > P1
T2 < T1

P2
T2

P2
T2

Time

(a)                                                                                          (b) 

Figure IIc.4.1.  (a)  Water evaporation to reach and (b)  Equilibrium state 

Example IIc.4.1.  The system in Figure IIc.4.1(a) has two distinct regions, the 
pool and the gas region.  Subcooled water in the pool region is initially at pressure 
P1 and temperature T1 where T1 < Tg1(P1).  The mixture in the gas region is initially 
at total pressure P1, temperature T1, and relative humidity 11 <φ .  A thermally 

conducting plate separates these two regions.  At time zero, the plate is removed 
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and the regions begin to exchange mass and energy.  Assuming no heat transfer 
between the system and the surroundings, discuss the response of the system to the 
removal of the plate, Figure IIc.4.1(b). 

Solution:  What drives this transient is the gas region not being saturated.  The 
transient begins at time zero, when the plate is removed and the regions are al-
lowed to exchange mass and energy.  To bring the gas region to saturation, water 
vaporizes, carrying saturated water enthalpy, hg(P) into the gas region. This in-
creases pressure and temperature.  Since, the energy for vaporization is provided 
by the pool water, this also causes water temperature and water level to drop.  Wa-
ter in the pool is subcooled at total pressure and will remain subcooled throughout 
the transient due to increasing pressure.  However, at equilibrium water and steam 
reach saturation at the steam partial pressure.  Vapor temperature would eventually 
stop rising as relative humidity approaches unity.  With the gas region saturated, 
the warmer mixture exchanges heat with the colder water.  Hence, the mixture 
temperature reverses direction and merges with the pool water temperature until it 
eventually reaches equilibrium.  This discussion is depicted in the plots of pressure 
and temperatures for a system having a volume of 100 ft3 and being at initial con-
ditions of P = 20 psia, T = 200 F, and 10φ = %.  The initial water volume fraction 
(water volume divided by total volume) in this example is 3%.
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Filling Rigid Volumes, Equilibrium Saturation Condition 

In this case, we analyze a control volume initially at equilibrium state with speci-
fied initial pressure, temperature, relative humidity, and water volume fraction.  
Such a control volume may represent the suppression pool of a BWR, or the 
quench tank of a PWR.  The role of such systems is to condense the injected mix-
ture of water and steam.  Although the injection, condensation, and subsequent 
pressurization of the control volume constitute a transient process, we only con-
sider the initial and the final equilibrium states.  The goal is to find the final pres-
sure given the total mass and enthalpy of the injected mixture of water and steam 
(Figure IIc.4.2).  Since the moist air is initially saturated and a saturated mixture is 
also injected into the control volume, then the moist air remains saturated through-
out the event and the water in the pool also remains saturated at the steam partial 
pressure.  To find the final pressure, we use the conservation equations of mass, 
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Figure IIc.4.2.  A control volume representing a steam suppression system 

energy, the equation of state, and the volume constraint.  Mass balance for water 
and steam gives: 

(mf1 + mg1) + mi = mf2 + mg2

For energy balance, we use Equation IIa.8.2 as applied to the control volume, as-
suming a constant hi:

(mf1uf1 + mg1ug1) + (maua1) + mihi = (mf2uf2 + mg2ug2) + (maua2)

Finally, the volume constraint gives: 

mf2vf2 + mg2vg2 = V 

There are four unknowns: T2, v2 (u2), mf2, and mg2.  There are also four equations, 
three of which are listed above and the fourth is the equation of state.  We begin 
solving the above set by eliminating mg2 from mass and volume constraint to find 
mf2 = [(mf1 + mg1 + mi)vg2 – V] / vfg2.  Hence,

     mg2 = [V – (mf1 + mg1 + mi)vf2] / vfg2.

Substituting into the energy equation, we get: 

C1[(vg2 / vfg2)uf2 – (vf2 / vfg2)ug2] + V(ufg2 / vfg2) + C2(T2 – T1) = C3           IIc.4.1 

where C1, C2, and C3 are constants given as C1 = mf1 + mg1 + mi, C2 = macva, and C3

= (mf1uf1 + mg1ug1) + mihi, respectively.  We may substitute for vf2 = vf(T2), vg = 
vg(T2), and other thermodynamic properties in Equation IIc.4.1.  This would result 
in a non-linear algebraic equation, that is only a function of T2 and can be solved 
by the Newton-Raphson method.  Alternatively, we may assume a value for T2 and 
iterate with the steam tables. 

Example IIc.4.2.  The quench tank of a PWR, as shown in the figure, has a vol-
ume of 217 ft3 (6 m3).  Initial pressure, temperature, relative humidity, and water 
volume fraction (f1) are specified in the figure.  During an event, a total of 536 lbm 
(243 kg) of steam at an average enthalpy of 1133 Btu/lbm (2635.3 kJ/kg) enters 
the pool.  The rupture disk will fail at a pressure of 145 psia (≈ 1 MPa).  Find 
whether the disk remains intact or if it fails.
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Rupture DiskSteam-Water Mixture
From Pressurizer
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f
1
 = 0.622 Control

volume

Solution:  We first find the initial masses and internal energies as follows: 

mf1 = f1V/vf1 = 0.622(217/0.01620) = 8331.3 lbm (3779 kg) 

Since Pv1 = 1φ Pg(T1) = 1.6927 psia hence, Pa1 = P1 – Pv1 = 17.70 – 1.6927 = 16 

psia.  We can now find the mass of air in the tank from: 

ma = PaVa/(Ru/Ma)T1 = (16 ×  144) ×  82 / [(1545/28.97) ×  (460 + 120) = 6.11 
lbm (2.77 kg) 

To find the mass of vapor we may either use mv1 = Va/vg1 = 82 / 203.26 = 0.403 
lbm or use the definition of the humidity ratio mv1 = 1ω ma with 1ω  = 0.622 Pv1/(P

– Pv1) = 0.622 ×  1.6927 / (17.7 – 1.6927) = 0.0657 to get mv1 = 1ω ma = 0.0657 ×
6.11 = 0.402 lbm.  Finally, uf1 = 87.97 Btu/lbm and ug1 = 1113.6 Btu/lbm.  Thus 
C1 = 8331.3 + 0.403 + 536 = 8868 lbm (4022.5 kg) 
C2 = 6.11(0.171) = 1.045 Btu/F (1.984 J/C) 
C3 = (8331.3 ×  87.97 + 0.403 ×  1113.6 + 536 ×  1133 = 1.341E6 Btu  
(1414.8 MJ)
Upon substitution into Equation IIc.4.1, we get:

{8868[(vg2/vfg2)uf2 – (vf2/vfg2)ug2]+217(ufg2/vfg2)+1.045(T2 – 120)}–{1.3406E6} = 0

To solve this equation iteratively with steam tables, we guess a T2, say T2 = 250 F.  
From the steam tables, we find vf2 = 0.01787 ft3/lbm, vg2 = 3.7875 ft3/lbm, vfg2 = 
3.7697 ft3/lbm, uf2 = 311.3 Btu/lbm, and ug2 = 1190.1 Btu/lbm 
The answer converges to T2 = 182.5 F after 6 trials as shown below. 

T2       vf2             vfg2              vg2 uf2 ufg2 ug2             Residue 
(F)     (ft3/lbm)    (ft3/lbm)    (ft3/lbm)    (Btu/lbm)    (Btu/lbm)    (Btu/lbm)    –
340    0.01787    3.76970     3.78750    311.3           878.8          1190.1        112 
250    0.01701   13.8020  13.8190     218.7           868.7           1087.4        67.6 
200    0.01664   33.6220      33.639     168.1           905.5           1073.4        11.3 
160    0.01639   77.2700      77.290     127.8           934.2   1062.1      –22.5 
182    0.01652   48.1720   48.189     149.8           918.5   1068.3      –1.13 

The moist air volume becomes

Va2 = 217 – (135 + 536 ×  0.01652) = 73.15 ft3 (2.07 m3)

At T2 = 182.5 F, tank pressure is P2 = Pg2(T2) + Pa2(T2) = 7.94 + [6.11 (1454/28.97) 
(182.5 + 460) / 73.15 ]= 7.94 + 11.57 = 19.5 psia (0.134 MPa). 
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This pressure is too low to cause the failure of the rupture disk.  However, we as-
sumed that all the steam is condensed in the pool.  Pressure rises substantially even 
if a small fraction of steam is not condensed and escapes to the moist region above 
the pool.  This is shown in Example IIc.4.3.

Filling Rigid Volumes, Equilibrium Saturation Condition, Alternate Solution 

To avoid iteration, we may choose an approximate solution for problems similar 
to Example IIc.4.2.  In this method, we ignore the presence of air (and other non-
condensable gases) in the vapor region.  This is a valid assumption only if a small 
amount of air exists in the volume.  We then use a “lumped parameter” approach 
in which the mixture of the pool water and the moist air is assumed to be mixed 
homogeneously.  We also assume that the incoming mixture of water and steam 
mixes instantaneously and perfectly with the content of the control volume.  The 
mass balance for water gives: 

m1 + mi = m2

The volume constraint gives: 

vf2 + x2vfg2 = V/m2

and the energy equation for the mixture becomes: 

m2(uf2 + x2ufg2) = (m1u1 + mihi)

Substituting for m2 from the mass balance and eliminating x2 between the energy 
equation and the volume constraint, we find an equation equivalent to Equa-
tion IIc.4.1: 

uf2 + (V/m2 – vf2)ufg2/vfg2 = (m1u1 + mihi)/(m1 + mi)                                     IIc.4.2 

Solving Equation IIIc.4.2 for Psat(T2), we then find P2 = Psat(T2) + mairRT/V.

Filling Rigid Volumes, Equilibrium Superheated Condition 

In the previous section we considered control volumes in which water vapor re-
mains saturated throughout the charging process.  We now consider cases in 
which water vapor is superheated steam at the final state.  The solution procedure 
is similar to the derivation for the saturation condition however, unlike the satura-
tion condition in this case, pressure is not a function of temperature and has to be 
calculated separately.  An example for such cases includes a main steam line break 
inside the containment building of a PWR and subsequent pressurization of the 
containment.  From the volume constraint we have: 

v2 = V/(m1 + mi) = A1               IIc.4.3 

The energy balance for the control volume, assuming no heat transfer to or from 
the control volume, yields: 
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(m1 + mi) u2 + macva(T2 – T1) = m1u1 + mihi

This equation may be written as: 

u2 + A2(T2 – T1) = A3              IIc.4.4 

where A2 = macva/(m1 + mi) and A3 = (m1u1 + mihi)/(m1 + mi).  Equations IIc.4.3, 
IIc.4.4, and the equation of state provide three equations for three unknowns P2,
T2, and vv2 (uv2).  Since iteration on both P2 and T2 is very laborious, we treat the 
vapor as an ideal gas and find the vapor pressure from Pv2 = mv2RvT2/V.  In this ap-
proach, we have implicitly accounted for and hence, superseded the volume con-
straint for vapor.  Having Pv2 and T2, we read u2 from the steam tables and com-
pare it with u2 calculated from Equation IIc.4.4.  We continue this iterative process 
until the convergence criterion is met.  We then find the final pressure from: 

VV
222

2
TRmTRm

P vaa +=               IIc.4.5 

Example IIc.4.3.  An initially drained quench tank contains moist air at 120 F 
(48.9 C) at a relative humidity of 50%.  A total of 54 lbm (24.5 kg) of steam at an 
average enthalpy of 1133 Btu/lb (2635.27 kJ/kg) enters the tank.  Find the tank fi-
nal temperature and pressure.  Tank has a volume of 217 ft3 (≈ 6 m3).

Solution: In this case, moist air occupies the entire volume of the tank. Initial 
mass of vapor in the tank is found from Pv = 0.5(1.6927) = 0.85 psia. Therefore, v1

= (0.85 & 120) = 405.5 ft3/lbm and m1 = 217/405.5 = 0.535 lbm.  Thus, m2 = 0.535 
+ 54 = 54.535 lbm.  Again, from the steam tables, u1 = 1049.14 Btu/lbm and: 

A3 = (0.535 ×  1049.14+ 54 ×  1133)/54.535 = 1132.17 Btu (1194.5 kJ/kg) 
To find air mass, we calculate Pa1 = P1 – Pv1 = 17.70 – 0.85 = 16.85 psia.  There-
fore, the mass of air in the tank is: 
ma=PaVa/(Ru/Ma)T1=(16.85 × 144) ×  217/[(1545/28.97) × (460+120)=17lbm(7.71kg).
Hence, A2 = 17(0.171)/m2 = 0.053 and Equation IIc.4.4 becomes u2 + 0.053(T2 – 
120) = 1132.17. 
We start the iteration process by guessing T2 = 400 F.   
Pv2 = 54.535(1545/18.)(460 + 400)/217 = 128.83 psia giving u2 = 1132.33 Btu/lbm. 
From Equation IIc.4.4 for u2 + 0.053(T2 – 120) = 1132.17 we find u2 = 1132.17 – 
0.053(400 – 120) = 1117.24 Btu/lbm.  The trials are tabulated as follows: 

T2 Pv2  (u2)Table  (u2)Energy Eq.

(F)  (psia)  (Btu/lbm) (Btu/lbm)
400  128.8  1132.3  1117.24 
350  121.3  1111.1  1119.98 
355  122.1  1113.3  1119.97 
370  124.3  1119.7  1118.92 
368  124.0  1118.9  1119.02 

Having the final equilibrium temperature at about T2 = 368.5 F, final pressure be-
comes P2 = 124 + [17 ×  (1545/28.97) ×  (460 + 368.5) / (217 ×  144)] = 124 + 24 
= 148 psia (1.02 MPa).  This indicates that the quench tank rupture disk of Exam-
ple IIc.4.3 fails during this event. 
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Thermal Design of Cooling Towers 

Cooling towers are ultimate heat sinks. They are used in power production and 
other applications such as production of chilled water. Cooling towers are used 
when naturally occurring heat sinks such as lakes and other large bodies of water 
are not available or are available but the flow of water is not sufficient to comply 
with regulations for prevention of thermal pollution. Cooling towers for power pro-
duction are either of induced draft or of natural draft type. Cooling towers may also 
be of wet or of dry type. In the dry cooling tower, atmospheric air passes through 
tubes carrying turbine exhaust. Hence, in dry cooling towers, the only means of 
transferring heat to the atmospheric air is through sensible heat.  In the wet cooling 
towers as shown in Figure IIc.4.3, the circulating water cooling the turbine exhaust 
is sprayed inside the tower and is cooled by both sensible and latent heat removal 
due to the counter current flow of atmospheric air drawn into the cooling tower. 
The packing facilitates contact between the warmer sprayed water and the colder 
atmospheric air hence, increasing the rate of heat transfer.  It also causes breakup of 
water droplets to enhance evaporation. The energy for evaporation is supplied by 
the warmer, sprayed water at 1. As a result, water exiting at 2 is cooler than the wa-
ter sprayed at 1. The evaporation also causes the moist air exiting the tower at 4 to 
be near or at saturation. The makeup water that flows into the tower at 5 is meant to 
compensate for the loss of water through evaporation. 

Figure IIc.4.3.  A wet, induced-draft cooling tower 

Conservation Equations for Wet Cooling Towers 

Let’s consider the control volume representing the ideal wet cooling tower.  The 
streams entering the control volume include atmospheric air, warm circulating wa-
ter, and makeup water.  The streams leaving the control volume include the nearly 
saturated moist air and colder water.  Thermal analysis of the cooling tower is 
based on two conservation equations of mass, one for air and one for water, and 
one energy equation for the mixture of air and water.  For steady state operation, 
mass balance for air gives: 
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aaa mmm == 43

Mass balance for water gives: 

42531 ww mmmmm +=++

Since 21 mm = , then: 

453 ww mmm =+

We now solve for the mass flow rate of the make up water in terms of the differen-
tial rate of moisture content at the outlet and inlet to the control volume: 

aww mmmm )( 34345 ωω −=−=              IIc.4.6 

The energy balance gives: 

)()( 444225533311 TcmhmhmhmTcmhmhm paawwpaaww ++=+++      IIc.4.7 

We may now approximate the enthalpies of the moisture content of the incoming 
and exiting streams of moist air as saturated enthalpies at the specified tempera-
tures.  After simplifications, substitutions, and rearrangement of Equation IIc.4.7, 
we find the required mass flow rate of air as: 
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         IIc.4.8 

Having the mass flow rate of air from Equation IIc.4.8, we can choose the fan for 
induced-draft tower or size the tower for natural-draft cooling towers.  The mass 
flow rate of makeup water is also found (Equation IIc.4.6) based on the mass flow 
rate of air. 

Example IIc.4.4.  The condenser of a power plant is cooled by a circulating water 
flow rate of 100×106 lbm/h.  The circulating water enters the cooling tower at 110 
F and leaves the tower for the condenser at 95 F.  Atmospheric air enters the tower 
at 75 F and 35% relative humidity.  Moist air leaves the tower at 90 F and 95% 
relative humidity.  The make up water enters the tower at 70 F.  Find the mass 
flow rate of air and the make up water. 

Solution:  We first find the pertinent thermodynamic properties: 

T P hf   hg

(F)  (psia)         (Btu/lbm)  (Btu/lbm)
70  -  38.05   1092.1 
75  0.43  43.05   1094.3 
90  0.69  58.02   1100.8 
95  -  63.01   1102.9 
110  -  77.98   1109.3 
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Having vapor pressure and relative humidity, we can find the humidity ratios.  For 
air entering the tower Pv3 = 0.35(0.43) = 0.15 psia.  For air leaving the tower, Pv5 = 
0.95(0.69) = 0.65 psia.  Therefore, 

3ω  = 0.622(0.15)/(14.7 – 0.15) = 0.00641.  Similarly,  

4ω  = 0.622(0.65)/(14.7 – 0.65) = 0.0287.   

Substituting in Equation IIc.4.8, we get: 

1E8(77.98 63.01)
57E6 lbm/hr

(0.0287 1100.8 0.0064 1094.3) (0.0287 0.0064)38 0.171(90 75)am
−

= ≈
× − × − − + −

Substituting in Equation IIc.4.6, we find 

5 (0.0287 0.0064)57E6 1.3E6 lbm/hr.m = − ≈

Thermal Design of Containment 

The containment building is the last barrier against release of radioactive materials 
to the environment in the case of a hypothetical accident.  There are several types 
of containments, the design of which depends on the type of the nuclear reactor 
and the architect engineer.  For example, to deal with thermalhydraulic loads, 
BWR containments are equipped with a suppression pool while some types of 
PWR containment utilize large blocks of ice.  Figure IIc.4.4 shows the schematic 
of a PWR large, dry containment.  With respect to thermalhydraulic loads, PWR 
containments should withstand the consequences of two types of postulated acci-
dents; a loss of coolant accident (LOCA) and a main steam line break (MSLB).  A 
LOCA refers to a primary side pipe break of the hot or the cold leg, such as a dou-
ble-ended guillotine break at location a-a in Figure IIc.4.4, for example.  A MSLB 
refers to rupture of the main steam line inside the containment such as a double-
ended guillotine break at break location b-b.  The LOCA and MSLB are referred to 
as design basis accidents. 

The PWR containment analysis for both LOCA and MSLB requires two key 
inputs, mass flow rate and enthalpy of the fluid flowing through the break into the 
containment.  We analyze containment in both the design phase and during opera-
tion.  In the design phase, our intention is to find the free volume, that can ac-
commodate the mass and energy transfer so that the peak pressure and temperature 
are kept below the specified design limits.  During operation, containment analysis 
is required subsequent to any modification that may impact the containment re-
sponse to above postulated accidents.  During plant operation, we therefore seek 
containment peak pressure and temperature for given free volume. 

A containment building, or simply containment, is generally equipped with ac-
tive safety systems such as spray and air coolers to provide a heat sink in the case 
of an accident.  The containment structure and internals also absorb a substantial 
amount of energy during an accident, thus they are referred to as passive heat 
sinks.  In the case of the containment structure, some heat is also transferred to the 
surroundings through the primer, paint, steel liner plate, and the one meter thick 
concrete wall.  The heat source for the containment depends on the postulated ac-
cident and the reactor type.  For a LOCA, the heat source includes the latent heat 
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of the primary-system inventory, the sensible heat stored in the reactor system 
metals, and the decay heat of the fission fragments.  For a MSLB in a PWR, the 
heat source includes the latent heat of water inventory of the secondary side, the 
sensible heat from the stored energy in the steam generator metals, and the heat 
transfer from the primary side through the tubes.  Additionally, some exothermic 
chemical reactions, such as zirconium reacting with water at high temperatures, 
add to the containment thermal load.  Handling the hydrogen produced in such 
chemical reactions is another constraint for the design of the containment.  This 
discussion is summarized in Table IIc.4.1. 

Below we perform a containment response analysis for both LOCA and MSLB 
to find peak pressure and temperature for a PWR large dry containment.  Similar 
analysis exists for a BWR containment. 

Table IIc.4.1.  Factors affecting PWR containment response to accidents 

Event Heat Source Heat Sink Source of Emergency Cooling 

LOCA Decay heat* 
Coolant internal energy 
Metal Stored energy 
Reactor pump heat 
Exothermic reactions 

Containment spray 
Containment air coolers
Passive heat sinks 

High-pressure safety injection 
Low pressure safety injection 
Safety water tanks 

MSLB Latent heat of coolant 
Stored energy 
Exothermic reactions 

Containment spray 
Containment air coolers
Passive heat sinks 

Auxiliary feedwater 

*   See description in Chapter VIe. 

Case A: Containment Response Analysis to LOCA in PWRs 

In this case, we seek peak pressure for given containment volume.  To obtain pres-
sure and temperature versus time, we need to have the mass flow rate and enthalpy 
of the flow at the break as a function of time.  We leave this rigorous treatment of 
containment analysis to Chapter VId.  For now, we include the primary side of the 
reactor in the containment control volume (Figure IIc.4.5).  For this control vol-
ume, there is no flow entering or exiting and no shaft or expansion work.  We then 
find containment peak pressure by integrating the simplified form of Equa-
tion IIa.8.1 from the initial to the final state.  The initial state refers to the primary 
system being intact.  The final state refers to a condition at which the primary side 
has discharged most of its inventory to the containment and has reached thermal 
equilibrium with the containment. 

In the analysis that follows, mv1 is the initial mass of water vapor in the con-
tainment atmosphere, mw1 is the initial mass of water in the primary-system.  Simi-
larly, Vv1 is the free volume of the containment (according to the Dalton’s model, 
Vv1 = Va) and Vw1 is the volume of the primary-system.  Finally, mw2 is the total 
mass of water and steam in Vv1 + Vw1.  Similar subscripts are used for the internal 
energy terms. 
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Figure IIc.4.4.  Schematic of a PWR Large Dry Containment 

P2
T2

P(t)
T (t)

mv(t)

ma
Primary-

Side
Secondary-

Side

mw2

ma

P1
T1 mw1

ma

mv1 time time

Figure IIc.4.5.  Depiction of a LOCA in a PWR containment 

From Equation IIa.8.1 for water and steam we find: 

211 wwv mmm =+                             IIc.4.9 

From Equation IIa.8.2 for air, water, and steam we find (see Table IIc.4.1 for 
sources and sinks of energy): 
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1 1 1 1 1

2 2 2

a a v v w w Decay Metal Pump Spray Cooler Structure

a a w w

m u m u m u Q Q Q Q Q Q

m u m u

+ + + + + − − −

= +

To maximize the energy transfer to the containment atmosphere, we drop all en-
ergy removal terms due to the action of spray and air cooler, as well as the heat ab-
sorption in the containment structure: 

22211111 wwaaPumpMetalDecaywwvvaa umumQQQumumum +=+++++

                                                                                                                   IIc.4.10

We have three unknowns, mw2, uw2, and T2.  To complete the set, we use the vol-
ume constraint: 

vw2 = (Vw1 + Vv1)/mw2             IIc.4.11 

Since the mass transfer in a LOCA from the primary side to the containment is 
primarily in the form of a two-phase mixture, we expect that the containment at-
mosphere becomes saturated in steam, yielding 12 =φ .  To solve the above set of 
three equations, we substitute for mw2 from the continuity equation into the energy 
equation and the volume constraint.  We then assume a steam quality x2, and iter-
ate on T2 between the two equations and the steam tables. 

Example IIc.4.5.  The primary side of a PWR has a volume of 11,000 ft3 (311.5 
m3).  The reactor is operating at an average pressure of 2200 psia (15 MPa) and 
average temperature of 575 F (302 C).  Containment initial conditions are given as 
16.5 psia (114 kPa), 125 F (52 C), and 20% relative humidity.  Containment vol-
ume is 2E6 ft3 (56,636 m3).  Find final equilibrium pressure following a LOCA. 

Solution:  For containment, we first find the initial steam partial pressure: 

psia388.09424.12.0)125(1 =×== gv PP φ  (2.67 kPa) 

We now find initial masses and energies for which we first find the thermody-
namic properties as follows:

P  T Pg(T) v  u 
(psia)  (F)  (psia)  (ft3/lbm)  (Btu/lbm)
0.388  125  1.9424  898  1052.4 
2250  575  –  0.0221  569.84 

mv1 = Vv1/v1 = 2,000,000/898 = 2227 lbm.  The air mass is found from ma = 
Pa1Va/(RaT1).  Since air pressure is Pa1 = P1 – Pv1 = 16.5 – 0.388 = 16.11 psia:

lbm150015
)125460)(97.28/1545(

)102()14411.16(V 6

1

11 =
+

×××==
TR

P
m

a

aa
a (68,047 kg) 
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We now find the mass of water in the primary system as mw1 = Vw1/vw1 = 
11,000/0.0221 = 497737 lbm.  Hence,  
mw2 = mv1 + mw1 = 2227 + 497737 = 499,964 lbm. 

From Equation IIc.4.11 we find v2 = (2,000,00 + 11,000)/499,964 = 4 ft3/lbm.  
Having v2, we guess a value for T2 and read vf2 and vg2 from the steam tables to 
find x2 as x2 = (v2 – vf)/vfg.

vaa

wwwwvv

cm

umumum
TT 221111

12
)( −+

+=

where we have only considered the coolant internal energy (see the comment be-
low).  We summarize the data we have found so far:

ma      mv1         mw1 uv1          uw1           mw2         vw2

lbm      lbm         lbm Btu/lbm          Btu/lbm lbm         ft3/lbm
150015      2227        497737 1052.4         569.84         499,964         4

mv1uv1 + mw1uw1 = 2227(1052.4) + 497737(569.84) = 2.859E8 Btu (3E8 kJ) 

We begin the iteration process by assuming a value for T2 and find an updated 
value for T2 as follows: 

T2 vf vfg                   uf ufg               x2 uw2 T2

(F)          (ft3/lbm)      (ft3/lbm)       (Btu/lbm)       (Btu/lbm)      (–)          (Btu/lbm)     (F)
268.10     0.0172       10.3941        236.90            854.62          0.383       564.4          270

Since ε = (270 – 268.10)/268.10 = 0.7%, we use 270 F as a reasonably accurate fi-
nal temperature.  Having final equilibrium temperature, we find: 
Pw2 = Pg(268.1 F) = 40.73 psia (281 kPa) 
Pa2 = maRaT2/(Vw1 + Vv1) = 150015×53.33(268.1 + 460)/2,011,000 =  
8.68 psia (59.8 kPa)

Therefore, final equilibrium pressure is P2 = Pw2 + Pa2 = 40.73 + 8.68 = 
49.4 psia (341 kPa). 

Comment:  In this solution, we only accounted for the internal energy of the pri-
mary side coolant and did not consider the heat addition from all other sources.  If 
the pumps are tripped, their contribution to the energy equation is eliminated.  
However, inclusion of the decay heat and the sensible heat of the reactor structure 
and its internals (metal stored energy) requires detailed knowledge of the system.  
If we assume that the contribution from the decay heat and stored energy in the 
above example is QTotal = 25E6 Btu, we may follow the same steps outlined above 
to find T2 = 276 F and P2 = 64.7 psia.  The method of obtaining the pressure and 
temperature trends for containment response is discussed in Chapter VId. 

Case B: Containment Response Analysis to MSLB in PWRs 

In this case, we also seek the final equilibrium pressure for given containment 
volume, where the initial state refers to the steam generator being intact.  The final 
state refers to thermal equilibrium between the broken steam generator and the 
containment.  The control volume we choose consists of the containment and the 
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broken steam generator (Figure IIc.4.6).  As explained in Case A, the selection of 
such a control volume eliminates the need for having the break mass flow rate and 
enthalpy versus time.  On the other hand, such treatment precludes us from pre-
dicting the trend of the containment pressure and temperature during the event.  
The same sets of equations we developed for LOCA are also applicable here.  
However, in a MSLB, mass transfer from the broken steam generator to the con-
tainment is primarily in the form of dry steam.  Therefore, we expect that the con-
tainment atmosphere becomes superheated in steam, yielding 12 <φ .
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time time

Figure IIc.4.6.  Depiction of a MSLB in a PWR containment  

In this case, like Case A, we use the Dalton law of partial pressures for volume 
constraint.  However, we calculate the partial pressure of the superheated steam 
from the ideal gas law, per Equation IIc.4.5.  This is a reasonable approximation in 
the range of interest for pressure and temperature:

P2 = maRaT2/(Vv1 + Vw1) + mv2RvT2/(Vv1 + Vw1)          IIc.4.12 

Example IIc.4.6.  The secondary side of a PWR steam generator has a volume of 
227 m3 of which 75 m3 is water.  Steam generator pressure is 6.21 MPa.  Initial 
containment pressure, temperature, and relative humidity are 0.101 MPa, 50 C, 
and 50%, respectively.  Containment volume is 56,636 m3.  Find the final equilib-
rium pressure and temperature following a MSLB.  The amount of heat transferred 
from the primary side to the secondary side is 897.6E8 J. 

Solution:  The initial vapor mass in the containment is found from

1 (50 C) 0.5 0.0123 0.00615 MPav gP Pφ= = × =

We can find vapor mass from either the steam tables or the ideal gas law.  From 
the steam tables
v(0.00615 & 50 C) = 24.7 m3/kg.

Hence, the vapor mass is found as: 

mv1 = 56,636/24.7 = 2293 kg

From the ideal gas law, mv1 = 6150×56,636/[(8314/18)× (273 + 50)] = 2335 kg.  
The error in the calculation of vapor mass by using the ideal gas law is less than 
2%.  Similarly, for air mass

ma = (101000 – 6150)×56,636/[(8314/28.97)× (273 + 50)] = 58,000 kg 
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The initial mass of water and steam in the secondary side of the steam generator 
can be calculated from the specific volumes, found from the steam tables.  For wa-
ter, mf1 = 75/0.0013 = 57,692 kg.  For steam, mg1 = (227 – 75)/1.69 = 4,841 kg.  
Therefore, mw1 = 4841 + 57,692 = 62533 kg.  We also find x1 = msteam/mwater = 
4841/62533 = 0.077.  Therefore,  
uw1 = 1216.75 + 0.077 ×  1370.79 = 1322.86 kJ/kg.   
To summarize;

ma       mv1   mw1          uv1      uw1 mv2

(kg)       (kg)  (kg)          (kJ/kg)     (kJ/kg)           (kg) 
58,000       2293  62,533          2441.36          1323         64,826

We now guess T2, and find Pv2, from Equation IIc.4.12.  Assuming T2 = 210 C we 
find Pv2:

2vP =  [67826 ×  462 ×  483/56863] = 0.254 MPa

We use the calculated Pv2 and the assumed T2 to find uv2 from the steam tables as 
uw2 = 2,667 kJ/kg.  Having the final internal energies, the final temperature can be 
found from Equation IIc.4.10: 

vaa

wwwwvv

cm

umQumum
TT

22SecondaryPrimary1111
12

)( −++
+= −

Substituting values for masses, internal energies, and heat transfer between pri-
mary and the secondary:

2

(2293 2441.36 62,533 1323 0.898E8) 64,826 2.667
50 176 C

58000 0.713
T

× + × + − ×
= + =

×
We continue the iteration until the convergence criterion is met. The final answer 
is T2 = 200 C and P2=0.393 MPa.

Comment:  This is a useful method to find the final state inside the containment 
following a MSLB (or a LOCA).  In practice, the conservation equations of mass 
and energy are integrated over a small time step to obtain u and v.  The corre-
sponding P and T are found in a pressure search process.  This process is repeated 
until the end of the specified duration is reached.

QUESTIONS 

− What is the difference between the Dalton and the Amagat model? 
− Apply the Amagat model to Example IIc.1.2.  What conclusion do you reach?   
− In a containment of a nuclear plant, the relative humidity is measured as 35% 

and in the containment of another plant, it is measured as 70%.  If both con-
tainments are at the same temperature and total pressure, which containment 
has higher steam pressure?  If both containments have also equal volumes, 
which containment has higher air mass? 

− Consider an unsaturated moist air at total pressure P, temperature T, and rela-
tive humidity φ.  What is the significance of Pg(T) and of Tg(Pv)?
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− Is the dew point temperature reached in an isochoric or an isobaric process? 
− Describe the humidification process.   
− Consider a fully insulated system consisting of two regions. The first region 

contains water at P1 and T1.  This region is separated from the second region by 
a thermally conducting membrane.  The second region contains moist air also at 
P1 and T1 with φ = φ1 < 1. The membrane is now removed and φ2 = 1. Is P2 > 
P1?

− Why is there a need for makeup water in the operation of cooling towers? 
− Consider the large dry containment of a PWR.  There are many internals in the 

containment such as pedestals, pipe supports, polar crane, stairways, etc.  The 
obvious disadvantage of the containment internals is to reduce the free volume 
of the containment.  From a thermodynamic point of view, what is the advan-
tage of having the internals in the containment during a design basis accident? 

− With respect to containment response, what are the two major differences be-
tween a LOCA and a MSLB?

PROBLEMS

1. A tank, having a volume of 5 m3, is filled with N2 and 2 kg of CO2 at a pressure 
and temperature of 150 kPa and 50 C, respectively.  Find the partial volumes ac-
cording to the Amagat and the partial pressures according to the Dalton model. 

2. A rigid tank contains 1 kg of nitrogen at 38 C and 2 MPa.  We now add oxygen 
to the tank in an isothermal process until the pressure in the tank reaches 2.76 MPa.  
Find the mass of oxygen that entered the tank in this process.  [Ans.:  0.35 kg].

3. Consider a room having a volume of 75 m3 maintained at P = 1 atm, T = 25 F 
and φ = 70%.  a) Use the Dalton model to find the partial pressures of air and wa-
ter vapor.  b) Use the Amagat model to find the partial volumes of air and water 
vapor.  What conclusion do you reach about the applicability of the Amagat model 
to water vapor?  [Hint:  In case b, find the state of the water vapor from the steam 
tables by having its pressure and temperature]. 

4. A large dry containment of a PWR has a volume of 2E6 ft3.  At normal opera-
tion, the mixture of air and superheated steam is at a total pressure of 1.8 psig 
(16.5 psia) and temperature of 125 F.  The relative humidity in the containment is 
measured as 30%.  Find the masses of air and steam in the containment. 
5. A cylinder contains 0.8 lbm of CO2 and 0.5 lbm of N2 at 18 psia and 80 F.  In a 
polytropic process (n = 1.25), the content is compressed to 65 psia.  Find final 
temperature, the work, the heat transfer, and the change in the mixture entropy. 

6. Consider two well insulated-tanks as shown in the figure.  The tanks contain 
carbon dioxide and nitrogen at the given pressures and temperatures.  The ther-
mally non-conductive diaphragm is now removed.  Find the final temperature and 
pressure of the mixture at equilibrium. 
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CO2
m = 1 kg
P = 3 atm
T = 338 K

N2
m = 0.5 kg
P = 2 atm
T = 282 K

Diaphragm Insulation

[Hint:  Since the tanks are well insulated, there is no heat transfer with the sur-
roundings.  Since the boundaries are fixed, there is no work.  Hence, from the first 
law, U2 = U1].

7. Two steady flow streams of gases at different pressure and temperature are 
merged into one stream in a adiabatic process.  Use the given data to find the tem-
perature of the merged streams.  Data:  One stream consists of 2.3 kg of nitrogen at 
103.5 kPa and 150 C.  The other stream consists of 1 kg of CO2 at 138 kPa and 38 
C.  [Ans.:  120 C].

8. A cylinder contains gases with the following volumetric analysis: 13% CO2,
12% O2, and 75% N2.  Find cp, cv, and R for this mixture of gases.  Specific heat at 
constant pressure of CO2, O2, and N2 are given as 1.271 kJ/kg K, 1.11 kJ/kg K, and 
1.196 kJ/kg K, respectively. 

9. Find the dew point temperature for an unsaturated moist air at P = 15 psia, T = 
120 F, and %30=φ .  [Ans:  TDew Point = Tg(Pv) ≈ 80 F]. 

10. Find an expression for relative humidity in terms of ω.
[Ans: φ = (ω/0.622){Pa/Pg(Tv)} or alternatively φ = {ω/(0.622 + ω)}{P/Pg(Tv)}].

11. Find the mass fraction of water vapor in moist air at 30 psia, 200 F, and 65%. 

12. Consider 5-lbm sample of moist air initially at 20 psia, 150 F, and 50% relative 
humidity.  This mixture is cooled at constant pressure to 70 F.  Find a) the humid-
ity ratio at state 1, b) the dew point temperature at states 1 and 2, and c) the 
amount of condensate at state 2. 

13. A rigid tank contains 0.5 kg of moist air at 1.034 MPa, 160 C, and φ = 100%.  
We now cool the tank until its temperature drops to 82 C.  Find a) the amount of 
heat removed and b) the amount of condensate produced in this process.  [Ans.:  -
914 kJ and 0.4 kg]. 

14. Moist air at 15 psia, 90 F, and a relative humidity of 60% enters a cooling duct 
at a rate of 1200 ft3/m.  Temperature of the saturated mixture at the exit of the 
cooling coil is 65 F.  Assuming negligible pressure drop, find the mass flow rate of 
the condensate produced in the cooling duct.
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15. Determine the amount of condensate, the final pressure, and heat transfer in the 
cooldown process of a sample of moist air.  The process takes place in a rigid con-
tainer having a volume of 35 m3.  Moist air is initially at 1.5 bar, 120 C, and 10%.  
The final temperature is 22 C.  [Ans.:  3.15 kg]. 

16. Consider constant-volume cooldown of a mixture of water vapor and nitrogen 
in a 17.66 ft3 container.  The mixture is originally at 122 F, 290 psia, and 40% 
relative humidity.  The mixture is cooled to 50 F.  Find the heat transfer in this 
process.  [ =CVQ –321 Btu] 

17. Find the relative humidity in a room at a temperature of 20 C.  The wet bulb 
temperature is 15.5 C. 
[Ans.:  63%]. 

18. In Example IIc.4.2, we assumed that all of the incoming steam is condensed in 
the quench tank.  Find the final pressure assuming that 5% of the steam escapes 
from the pool region to the vapor region. 

19. A power plant uses a cooling tower as the heat sink.  The net power produced 
by the plant is 270 MWe.  The plant thermal efficiency is 35%.  Use these and 
other pertinent data given below to find a) the mass flow rate of air and b) the mass 
flow rate of make up water.   
circulating water:  inlet temperature Twi = 104 F (40 C) and exit temperature Twe = 
86 F (30 C) 
air:  inlet temperature Tai = 77 F (25 C), relative humidity φι = 35%, air exit tem-
perature Tae = 95 F (35 C) and relative humidity φe = 90% 
make-up water:  inlet temperature Tmw = 68 F (20 C). 
[Ans.:  for air: 57.83E6 lbm/h, for makeup water: 1.366E6 lbm/h].

20. A BWR containment design is suggested as shown in the Figure.  The reactor 
is isolated within a drywell compartment.  A rupture disk caps the end of a duct 
leading into a vapor suppression pool of water.  The pool is inside a secondary 
compartment.  The rupture disk fails at a differential pressure of 60 psi (0.414 
MPa).  Now consider the case of a main steam line break.  Use the following data 
to find the time that the rupture disk fails. 
Drywell:  initial temperature Ti = 100 F (38 C), initial pressure Pi = 14.7 psia 
(0.1013 MPa), initial relative humidity φi = 0%, and free volume Vdrywell = 5E5 ft3

(14.16E3 m3).
Secondary-containment:  initial pressure = 14.7 psia (0.1013 MPa), and free vol-
ume = 5E6 ft3 (14.16E4 m3)
Suppression pool:  water volume = 2.3E5 ft3 (6.5E3 m3) and initial temperature = 
100 F (38 C). 
Steam blowdown:  steam mass flow rate from the steam line to the drywell m  = 
500 lbm/s (227 kg/s) for the duration of t < 360 s and m  = 500e–t/θ lbm/s (227e–t/θ

kg/s ) for t ≥ 360 s and θ = 100 s.  In order to avoid the necessity of an iterative so-
lution, use the following simplifying assumpions:  
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a) the atmosphere components are uniformely mixed and in thermodynamic equi-
librium,  
b) air can be treated as an ideal gas,  
c) no heat loss from the reactor to the drywell atmosphere, 
d) no steam condensation on the drywell walls,  
e) blowdown takes place at a constant reactor pressure of 500 psia (3.45 MPa) for 
the duration of interest 
f) no heat loss from drywell through the walls  
g) steam may be treated as an ideal gas so that uSteam = ug + cv,Steam(T – Tsat) and 
hSteam = hg + cp,Steam(T – Tsat), where ug = 1098 Btu/lbm (2554 kJ/kg), hg = 1180 
Btu/lbm (2744 kJ/kg), and Tsat = 776 R (431 K). 
[Ans.:  t = 89 s, P2 = 70 psia, T2 = 475 F (246 C), φ2 = 12%, ma = 35,439 lbm 
(16,286 kg)].
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     Figure for Problem 20                                                  Figure for Problem 21 

21. A large containment is filled with steam, air, and nitrogen.  The containment also has a 
pool of water, which is sprayed in the containment atmosphere.  Heat is added to the con-
tainment at a specified rate.  Use the given data to find a) the initial containment pressure 
and b) the time it takes for the containment pressure to reach the pressure limit of 145 psia 
(1 MPa).
Total mass of water (water in the pool and steam) mw = 3.42E6 lbm (1.55E6 kg) 
Water-steam quality x = 0.03 
Air mass ma = 0.132E6 lbm (6E4 kg) 
Nitrogen mass mn = 2200 lbm (998 kg) 
Containment initial temperature Ti = 688 R (109 C) 
Initial relative humidity φi = 100% 

Rate of heat addition to containment atmosphere Q  = 1.02E8 Btu/h (30 MW) 

[Ans.:  7.66 h]. 



III..  Fluid Mechanics 

Topics in single-phase flow range from such simple phenomena as the flow of wa-
ter in a pipe to such exotic phenomena as supersonic flow and shock waves.  The 
study of fluid mechanics is based on thermodynamic principles and Newton’s*

second law of motion.  Fluid mechanics is the basis for such diverse fields as 
acoustics, aerodynamics, biofluids, combustion, fire protection, magnetohydro-
dynamics, meteorology, and oceanography. Since the field of fluid mechanics is 
vast, it is traditionally divided into several categories to facilitate the study of its 
related topics.  Here we briefly discuss the various categories involved in the study 
of fluid mechanics.  The unfamiliar terms used in this discussion are defined and 
dealt with as we pace through the chapter. 

One way to categorize the field of fluid mechanics is to consider the number of 
phases involved in the flow.  Single-phase flow considers only the flow of one 
fluid such as water, air, steam, etc.  On the other hand if water and steam for ex-
ample coexist in the flow, we then need to use the two-phase flow principles to 
study such a condition.  Single-phase flow is discussed in Chapter IIIa through IIIc 
and two-phase flow in Chapter Va. 

Another way to categorize the study of fluid mechanics is to consider whether 
the flow of fluid is confined to a conduit or whether the fluid is flowing over an 
object placed in the flow field.  If the flow is confined to a conduit we are dealing 
with internal flow.  In such cases, we may be interested in determining the pump-
ing power required to establish certain flow rate.  If the conduit is a piping net-
work, flow distribution in the network is of interest.  On the other hand, if fluid 
flows over an object, the condition is known as external flow such as the flow of 
air over an airplane or the motion of a boat in water.  External flow covers such 
topics as lift and drag as well as flow of fluids in open channels.  Chapter III is 
mostly concerned with the internal flow of fluids.  Some aspects of external flow 
are discussed in Chapter IV. 

Further categorization may be based on such physical properties of the fluid as 
density and viscosity.  As discussed later in this chapter with regard to density, 
fluid may be considered incompressible like flow of liquids in a pipe or a fluid 
may be compressible like flow of a gas in compressor.  With regard to viscosity, 
we consider two cases of real and ideal fluids also referred to as viscous and invis-
cid, respectively.  Viscous effects are associated with friction.  The advantages in-
herent in the ideal flow assumption enable us to obtain analytical solutions in 
closed form to describe the flow behavior in certain conditions.  Unlike ideal flu-

*  Sir Issac Newton (1643–1727) also contributed to calculus, optics, astronomy, fluid me-
chanics, and heat transfer 
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ids, which are incompressible and inviscid, dealing with real fluids involves pipe 
roughness and such topics as unrecoverable frictional pressure drop.  Chapter III 
deals primarily with the flow of real fluids.   

All of the above categories may be analyzed under steady state or transient 
conditions.  At steady state, there is no change in flow properties such as pressure, 
velocity, and density with time.  Transient analysis on the other hand is required 
when there is a change in flow conditions.  Examples of flow transients include 
throttling a valve on a pipe carrying flow, turning off a running pump, or draining 
a vessel.  Chapter IIIb deals with both steady state and transient analysis of vis-
cous incompressible internal flows. 

There are still other categorizations such as hydrostatics versus hydrodynamics
and the type of flow regime, (i.e. laminar versus turbulent).  In this book, fluid 
mechanics is divided into four chapters.  In Chapter IIIa, we first discuss the fun-
damentals that are applicable throughout fluid mechanics.  This includes deriva-
tion of the conservation equations for single-phase flow.  The conservation equa-
tions for linear momentum and energy are used in conjunction with multiple 
simplifying assumptions to derive the Bernoulli equation.  This is followed by the 
discussion on the concept of “head loss”.  Chapter IIIb deals with incompressible 
viscous flow through pipes, fittings, and in piping networks.  Chapter IIIb is then 
concluded with the study of unsteady flow of incompressible fluids.  This includes 
the discussion of such topics as tracking liquid level in surge tanks, time to drain 
vessels, time to fill drained pipelines, and learning the fundamentals of such fast 
transients as “waterhammer”.  Flow of compressible viscous fluids including criti-
cal flow through pipe breaks is discussed in Chapter IIIc and the fundamentals of 
two-phase flow in Chapter Va. 

IIIaa..  Single-Phase Flow Fundamentals 

1.  Definition of Fluid Mechanics Terms 

Stress is the result of applied force per unit area.  The applied force acting on a 
surface consists of two components one normal to the surface and the other paral-
lel or tangent to the surface.  The component normal to the surface if divided by 
the surface area is referred to as normal stress (σ).  A shear stress (τ) is developed 
due to the action of the tangential component on a surface. 

Fluid is a substance that, under an applied shear stress deforms continuously.  
A deformation always exists regardless of how small the applied stress might be.  
There is no shear stress only when fluid is at rest.  Depending on the magnitude of 
the acting shear force, solids would initially deform.  However, unlike fluids, such 
deformation is not continuous.  Any substance that is not fluid may be considered 
solid.  Fluids we are familiar with include liquids and gases.  There are a few sub-
stances, such as toothpaste categorized as fluid even though they are neither a 
fluid nor a solid.  These are known as Bingham Plastic.



1.  Definition of Fluid Mechanics Terms      225 

Continuum hypothesis is the fundamental principle in thermofluids.  In most 
cases, it is impractical to study fluid behavior on a molecular basis.  Therefore, we 
use a macroscopic approach, defining a differential volume to represent a point in 
the fluid.  By using the average values for each point, fluid properties then vary 
continuously throughout the fluid.  Thus by ignoring the behavior of individual 
molecules of the fluid and assuming that the fluid consists of continuous matter*,
we can define unique values for the flow variables; P, T, V, τ, ρ, etc.  For example,
we define density at a point for fluid as a continuum according to:

)V/(lim 'VV δδρ δδ m→=              IIIa.1.1 

where 'Vδ  is a differential volume yet contains sufficient number of molecules to 
make statistical averages meaningful.  For all liquids and for gases at atmospheric 
pressure, the limiting volume is about 10–9 mm3.  Having defined flow field vari-
ables at a point, we use partial derivatives to determine the change in such vari-
ables between two points separated by elements of length.  For example, if pres-
sure at point x, y, z is P, pressure at a point located dx, dy, and dz apart is P + dP
where dP = (∂P/∂x)dx + (∂P/∂y)dy + (∂P/∂z)dz.

Field refers to the flow variables (or parameters), such as pressure, velocity, 
temperature, or density, as a function of position in a given region, which may 
also be a function of time. For density for example, this is shown as 

),,,( zyxtρρ = .

Coordinate systems are used to represent the properties of a flow field in space 
at any point in time.  A fluid element in the flow field is determined by its position 
vector.  The position vector in Cartesian coordinates for example is expressed as 

krjrirr zyx ++=  where i , j , and k  are the unit vectors.  Similarly, the ve-
locity vector in Cartesian coordinates is comprised of three components; Vx, Vy,
and Vz.  In the literature, these are often represented with u, v, and w.  The compo-
nents of flow velocity in cylindrical and spherical coordinates are represented by 
Vr, Vθ, Vz and Vr, Vθ, Vϕ, respectively.
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Figure IIIa.1.1.  Position vector, velocity vector, and a differential volume in Cartesian co-
ordinates 

* A statistical approach is used for special cases to which the continuum assumption does 
not apply.  An example of such cases includes the passage of a rocket through the outer 
layer of the atmosphere. 
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Body and surface forces are encountered in fluid statics and fluid dynamics.  
Body forces consist of all forces that are developed in the fluid without physical 
contact.  Body forces are distributed over the volume of the fluid.  Electromag-
netic and gravitational forces are examples of body forces arising in a fluid.  Sur-
face forces such as shear and normal stresses on the other hand act on the bounda-
ries of a fluid through direct contact.  A body force therefore is proportional to the 
volume or mass, whereas surface forces, such as pressure and shear stress, are 
proportional to the area.   An element of a fluid in the Cartesian coordinate system 
consists of six boundaries.  Each boundary experiences two shear stresses tangent 
to the boundary and a normal stress perpendicular to the boundary.  These are 
shown with two-letter subscript.  The first index in the subscript refers to the axis 
to which the boundary is perpendicular and the second index in the subscript re-
fers to the axis to which the stress component is in parallel.  Hence, yzτ  refers to 
the shear stress in the boundary the plane of which is perpendicular to the y-axis 
and the direction of the stress, which is parallel to the z-axis.  The nine component 
stress tensor, also referred to as the stress matrix, is also shown in Figure IIIa.1.2.
Note, that σx = – P + τxx, σy = – P + τyy, and σz = – P + τzz where σ implies normal 
to the plane of its associated index. 
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Figure IIIa.1.2.  Normal and shear stress components of an elemental control volume  

Fluid kinematics and fluid dynamics both describe a flow field.  The motion 
of a fluid in a flow field is the basis of fluid kinematics.  The effects of forces on 
fluid motion are studied in fluid dynamics. 

Kinematic properties refer to such quantities as linear velocity, angular veloc-
ity, vorticity, strain rate, and acceleration.  Note that these are properties of the 
flow field rather than the fluid.  Thermodynamics and transport properties as well 
as extensive and intensive properties were discussed in Chapter II. 

Shearing strain is described below by comparing the response of a piece of 
solid to an applied shearing force with the response of a liquid to the same applied 
force.  Shown in the left side of Figure IIIa.1.3 is a solid such as steel, firmly at-
tached to two plates.  The lower plate is fixed while the upper plate is allowed to 
move.  If we now apply force F to the upper plate, in the case of steel we cause 
point B to move a small distance to point B’.  The application of force F also 
causes shear stresses to be created at the interface between the steel and the upper 
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plate to resist the applied force.  The free-body diagram of the moving plate shows 
(the center figure) that at equilibrium, F = τA.  The angle δα is referred to as the 
shearing strain (γ = lim( α/ t) as t approaches zero).  If we now apply the same 
force to the plate in the right side of the Figure IIIa.1.3, it moves continuously. 

In solids, the shear stress (τ) is related to the shearing strain, τ = f (γ).  For vis-
cous fluids, δα is a function of time as the upper plate is moving continuously due 
to the applied force.  In fluids, we therefore relate the shear stress to the rate of 
change of the shearing strain ( γ ) also known as shear rate, )(γτ f= .  From the 
linear velocity profile we can easily show that the rate of strain is equal to the 
slope of velocity γ  = dVx/dy.
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Figure IIIa.1.3.  Shear stress as a function of velocity gradient 

On the other hand, we also know that the rate of shearing strain is proportional 
to the shear stress ( γτ ∝ ), which in turn is proportional to the applied force F,
(τA = F).  Thus γ  increases as τ increases.  Therefore, the shear stress is propor-
tional to the slope of the velocity profile dydVx /∝τ .  For this relation to be 
equal, we need a proportionality factor as discussed next. 

Dynamic viscosity is the proportionality factor for shear stress and the velocity 
profile.  The dynamic viscosity, also referred to as molecular viscosity or simply 
viscosity, is the most important property of a fluid.  It is a measure of the response 
of a fluid to an applied shear force.  Mathematically we can write: 

dydVT x)(µτ =              IIIa.1.2 

where µ  is viscosity and Vx is the component of velocity along the x-axis.  In this 
case, shear stress acts on a plane normal to the y-axis.  This mathematical relation 
is a statement of Newton’s law of viscosity, showing that the velocity gradient is 
the driving force for momentum transfer.  Viscosity, similar to density, is a func-
tion of temperature.  Change of viscosity versus temperature depends on the type 
of fluid.  For gases, viscosity increases with temperature.  For liquids, viscosity 
decreases as temperature increases.   

Units of viscosity can be obtained from the definition of viscosity.  Using shear 
stress as force per area and velocity gradient as the inverse of time, units of viscos-
ity can be found as FT/L2.  In British units, viscosity is expressed as lbf⋅s/ft2.
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However, in most cases, viscosity is multiplied by gc to obtain units of lbm/ft·s.  In 
SI units, viscosity is generally given in centi-poise where 1 poise = 1 g/s·cm or in 
units of Pa·s.  Note: 1 centi-poise = 2.419 lbm/ft·hr.   

Kinematic viscosity is defined as the ratio of dynamic viscosity to density, 
ρµν /= .  Kinematic viscosity has units of ft2/h or m2/s.  Note: in SI units, 1 Sto-

ke = 1 cm2/s.  Hence, 1 ft2/s = 92,903 cs (centistokes). 

Viscous and inviscid fluids are identified in the context of friction.  A viscous 
fluid causes friction when it flows.  If the friction is negligible, then the fluid is in-
viscid and the flow is considered to be ideal. 

Ideal gas versus ideal fluid.  To avoid any confusion, recall that we used the 
term “ideal gas” in Chapter IIa for any gas that conforms to the ideal gas rules.  In 
this chapter, we use the “ideal fluid” term for any fluid which is incompressible 
and inviscid.  Therefore while ideal gases at certain conditions may also behave as 
an ideal fluid, ideal gases are generally not ideal fluids.  Conversely, many liquids 
under certain conditions may behave as an ideal fluid but they are clearly not ideal 
gases. 

Newtonian fluid is a type of fluid where the rate of deformation due to the act 
of a shear stress is linearly proportional to the magnitude of the acting shear stress.  
Therefore, all fluids that obey the above relation for shear stress are Newtonian 
fluids.  For example, water, benzene, alcohol and air are Newtonian fluids.  
Strictly speaking, for a fluid to be Newtonian, four criteria should be met.  These 
criteria are discussed following the definition of the non-Newtonian fluids. 

Non-Newtonian fluid is a fluid that does not conform to Newton’s law of vis-
cosity, in that viscosity for these fluids is a function of shear rate, τyx = 
µ( γ )dVx/dy.  Non-Newtonian fluids include pseudo plastic, Bingham plastic, and 
Dilatants.  Pseudo plastic materials include polymer solutions, most slurries, mud, 
and motor oil.  Bingham plastic may indeed be considered Newtonian as they tol-
erate shear stress until the magnitude of the shear stress is equal to the yield stress 
of the fluid.  Then the fluid flows.  Examples of Bingham plastic include tooth-
paste, jellies, some slurries, bread dough, blood, and mayonnaise.  Dilatant fluids 
are rare.  The viscosity of such fluids increases with the increasing rate of defor-
mation.  The suspensions of starch and sand serve as an example of dilatant fluids, 
also referred to as shear thickening fluids.  Finally, some non-Newtonian fluids 
demonstrate a transient period before reaching the intended velocity.  These are 
known as viscoelastic materials, such as molten low-density polyethylene.  Vis-
coelastics return only partially to their original configuration after being subjected 
to shear stress. 
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Figure IIIa.1.4.  Shear stress versus the deformation rate for Newtonian and non-New-
tonian fluids

Newtonian fluid criteria.  Newtonian fluids meet four criteria.  a)  As dis-
cussed earlier, the stress is linearly dependent on the velocity gradient.  b)  
Stresses due to an applied force are symmetric.  Before discussing the other crite-
ria let’s elaborate.  We derived a relation between flow velocity in the x-direction 
and the shear stress in a plane normal to the y-axis and parallel to the x-axis.  The 
first criterion requires that τyx = µdVx/dy = τxy.  We also note that if the fluid flows 
in the direction of the y-axis, we can similarly write τxy = µdVy/dx = τyx.  In gen-
eral, a fluid can flow in any arbitrary direction in the xy-plane.  Hence, in general 
we should write: 

τxy = τyx = )( dxdVdydV yx +µ

We can also write similar relations for flow in the xz- and yz- planes.  In tensor no-
tation; 

( )ijjijiij dxdVdxdV // +== µττ            IIIa.1.3 

c) Shear stress is related to the instantaneous value of the derivative of velocity.  
This criterion rules out the effect of some non-Newtonian fluids such as viscoelas-
tic materials.  d) For stationary fluids stress is isotropic.  This is to exclude such 
other non-Newtonian fluids as Bingham plastic.  Figure IIIa.1.4 shows the behav-
ior of shear stress for various materials. 

No-slip condition for Newtonian and non-Newtonian viscous fluids is an im-
portant concept in that a fluid does not have any motion relative to the solid 
boundary in contact with the fluid.  Hence if the solid boundary is at rest, fluid ve-
locity is zero.  Likewise, if the solid boundary is a plate in motion, the fluid parti-
cle at the surface also moves at the same speed as the plate.  Thus, as a boundary 
condition (Vfluid)surface = Vsurface.

Surface tension is a liquid property.  There are inter-molecular forces in the in-
terior of a liquid, which result in no net force applied to a molecule as the mole-
cules are equally attracted to each other.  However, for the molecules on the liquid 
surface, while the inter-molecular forces act towards the interior of the liquid, 
there are no forces to counter act.  Hence, there is a net unbalanced cohesive force 
towards the interior of the liquid.  Considering a semi-hemispheric drop of a liquid 
of radius R, we can represent the net unbalanced force as ∆P acting on the cross 
sectional area, πR2.  Where ∆P = Pinterior – Pexterior.  This force gives rise to surface 
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tension (σ) acting on the perimeter, 2πR.  Thus, the surface tension becomes σ = 
∆P(πR2)/2πR = ∆PR/2. 

Bulk modulus is an indication of the fluid compressibility (i.e., density varia-
tion within a flow) and is defined as Ev = dP/(dρ/ρ).  High values of bulk modulus 
indicate the fluid is nearly incompressible.  Liquids have generally high bulk 
modulus hence, liquids, for most practical purposes, can be considered incom-
pressible.  Per above definition, the bulk modulus has the same dimensions as 
pressure.  In British Units it can generally be written as psi and in SI units as Pa. 

Speed of sound is a measure of propagation of disturbances in a fluid.  The 
speed of sound is related to the fluid properties in which the disturbance is propa-
gating.  This relationship is expressed as ρddPc /= .  It can be shown that for 
ideal gases undergoing an isentropic process, the speed of sound is given as 
c RTγ=  where T is the absolute temperature of the fluid and γ = cp/cv.  The 
ratio of the speed of an object to the speed of sound in the same medium as that of 
the object is called the Mach number (Ma).  If Ma is less than, equal, or greater 
than 1.0, the object is moving at a subsonic, sonic, or supersonic speed, 
respectively. 

Streamlines are useful in relating the fluid flow velocity components to the ge-
ometry of the flow field.  A streamline is defined as the line drawn tangent to the 
velocity vector at each point in a flow field.  By definition, there is no flow across 
a streamline. 

Steady and unsteady flows depend on the frame of reference.  In the Eulerian 
approach, as described in Section 2, if flow at every point in the fluid is independ-
ent of time, then the flow is steady, otherwise it is unsteady (Figure IIIa.1.5). 

Laminar and turbulent flows are applicable only to viscous fluid flow and are 
identified based on the streamlines.  The laminar or purely viscous flow moves 
along laminas or layers.  In laminar flow, there is no microscopic mixing of adja-
cent fluid layers.  Turbulent flow has velocity components with random turbulent 
fluctuations superimposed on their mean values.  The Reynolds number, after Os-
borne Reynolds (1842-1912), is a dimensionless variable whose value determines 
whether flow is laminar or turbulent.  The Reynolds number is defined as Re = 
ρV∆/µ where in this relation ∆ is an element of length.  For flow over a flat plate 
for example, ∆ = L and for flow inside pipes, ∆ = D where D is the pipe diameter.  
For external flow over flat plates, flow remains laminar as long as Re < 5E5 and 
for internal flow inside conduits flow remains laminar as long as Re ≤ 2000. 

Turbulent flow viscosity is of two types; molecular, µ as defined earlier, and 
eddy as defined in Chapter IIIb.  The molecular viscosity of Newtonian fluids is 
independent of location, boundaries, and the flow regime (i.e., laminar or turbu-
lent).  The eddy viscosity on the other hand depends on all of these factors. 
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Figure IIIa.1.5.  Variation of axial velocity with time for laminar and turbulent flows

Compressibility and incompressibility are flow properties in addition to be-
ing fluid properties and are based on the variation in fluid density.  In an incom-
pressible flow, the variation of density within the flow field is negligible.  Gener-
ally, liquids may be considered incompressible, whereby density is a function of 
temperature and a weak function of pressure (hence, according to Equation IIa.6.7, 
∆h ≈ v∆P).  For water, the bulk modulus is about 3E5 psi (2 GPa) and as predicted 
by dP = Ev dρ/ρ, it requires very high change in pressure to obtain a slight change 
in density.  Therefore, in most cases flow of water may be considered incom-
pressible.  However, there are special cases (such as waterhammer, discussed in 
Chapter IIIc) that the compressibility of the liquid must be accounted for and the 
flow must be analyzed as compressible.

Compressibility in gases is more subtle.  While gases are easily compressed 
(such as gas pressurization in compressors), in many applications gases may be 
treated as incompressible flow.  Generally speaking, the compressibility effects for 
gases may be neglected as long as the flow velocity remains below 30% of the 
sonic velocity in the fluid.  If a fluid is compressible, an abrupt change in pressure 
is not felt instantaneously throughout the flow field.  In contrast, for incompressi-
ble fluids, such pressure disturbances are propagated at very high sonic wave ve-
locity. 

Boundary layer is a thin layer of fluid, developed whenever a flowing viscous 
fluid comes in contact with a solid.  Velocity within this layer drops from the bulk 
fluid velocity, (Vx)f to zero at the surface of the solid. Laminar and turbulent 
boundary layers are compared in Figure IIIa.1.6.  This figure also shows the com-
parison between the flow over a flat plate and inside a pipe.  In both cases, flow 
velocity at the surface of the solid is zero and at the edge of the boundary reaches 
practically the velocity of the bulk stream.  Hence, inside the boundary layer, vis-
cous effects are present as the shear stress retards the flow.  In the free stream, the 
viscous flow behaves as if it is inviscid.  In the case of the flow inside a pipe, the 
region from the entrance to the pipe where the boundary layer is developing is 
known as the entrance length or entrance region.  Subsequently, the boundary 
layer is established where flow is fully developed and a unique velocity profile ex-
ists.  For flow over flat plates, transition from laminar to turbulent flow most 
likely occurs at Re ≅ 5E5.  For flow inside tubes, transition begins at Re = 2000 
and flow becomes fully turbulent at Re ≥ 4000. 
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Figure IIIa.1.6.  Comparison of boundary layers over a flat plate and in a pipe 

Thickness of the boundary layer over a flat plate is a function of the distance 
from the leading edge and the Reynolds number.  For example, for flow of air 
over a flat plate at 2 m/s and 27 C, the boundary layer thickness at 0.5 m from the 
leading edge is about 1 cm or 0.4 in. 

Flow dimensions refer to the number of velocity components in a given coor-
dinate system.  Fluid flow, in general, is three-dimensional such as the plume from 
a cooling tower.  However, in some applications, flow may be considered two or 
even one-dimensional, which greatly simplifies analysis.  An example for the one-
dimensional flow includes the fully developed region of viscous flows in a pipe as 
shown in Figure IIIa.1.7(a).  Figure IIIa.1.7(b) shows the two-dimensional flow of 
a viscous fluid in a nozzle (variable flow area).  Another example for a two-
dimensional flow includes the developing flow of viscous flows in the entrance 
region of a pipe. 
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Figure IIIa.1.7.  Examples of (a) one-dimensional and (b) two-dimensional flow 

External and internal flows refer to conditions where a solid boundary is im-
mersed in the flow or contains the flow, respectively.  Analysis of external flow is 
essential for such engineering applications as tube banks, airfoils, ship hull, or 
blunt bodies.  Lift and drag are phenomena pertinent to external flow.  Analysis of 
internal flow is essential for such engineering applications as flow of fluids in 
pipelines, pumps, turbines, and compressors. 
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Figure IIIa.1.8.  External flow over cylinder (a) ideal flow and (b) real flow 

Shown in Figure IIIa.1.8 is a cylinder exposed first to an ideal flow and then to 
a real flow.  In either case, the flow far from the body can be considered ideal, 
even in the case of the real flow.  This is because far away from the cylinder, fric-
tion in the real flow is negligible especially for low velocity flow.  As the flow ap-
proaches the cylinder (in the case of an ideal flow) the streamlines are squeezed to 
accommodate the cylinder and there is no friction.  In the case of real flow, the 
boundary layer is developed in which flow velocity at the wall is zero.  The veloc-
ity profile inside the boundary layer depends on the flow Reynolds number (i.e., 
laminar or turbulent).  For ideal flow, the streamlines recover downstream of the 
cylinder to produce a symmetric pattern.  Hence, pressures upstream and down-
stream of the cylinder are equal (i.e. there is no drag acting on the cylinder).  This 
did not conform to the results obtained in experiments.  Therefore, in the early 
days of fluid dynamics, this phenomenon was known as the d’Alembert’s Para-
dox.  With the introduction of the boundary layer by Prandtl in 1904, the existence 
of drag in real fluids was confirmed and the paradox resolved.  Division of the 
flow by Prandtl into two regions of free stream with negligible friction and bound-
ary layer where frictional effects are important is one of the most important con-
tributions to the field of fluid mechanics.  

Boundary layer separation.  In real fluids, as flow passes the cylinder, there is 
a region in which a fluid particle moving in the boundary layer lacks sufficient ki-
netic energy to convert to enthalpy.  The particle cannot then move into the 
higher-pressure region and the external pressure causes the particle to move in the 
opposite direction of the velocity profile.  When this happens, separation of the 
boundary layer ensues.  A vortex created as the result of this reverse flow is even-
tually detached from the surface to drift downstream of the cylinder to produce a 
turbulent wake behind the cylinder.  This leads to the appearance of a wake behind 
the cylinder.  The subsequent pressure drop gives rise to a drag acting on the cyl-
inder.  To reduce drag, the object must be streamlined.  That is to say that if the 
cylinder is replaced with an airfoil, the gradual tapering of the trailing edge pre-
vents separation of the boundary layer to a large extent, which then substantially 
reduces drag. 

2.  Fluid Kinematics 

Earlier we defined the continuum hypothesis, allowing us to treat a fluid as a con-
tinuous matter and using such terms as fluid element and fluid particle.  We shall 
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use this hypothesis to derive the conservation equations of mass, momentum, and 
energy.  However, before we embark on the derivation, we need to define the 
frame of reference.  In fluid mechanics, there are two frameworks.  A flow field 
can either be described based on the motion of a specific fluid element or the mo-
tion of the fluid through a specific region in space.  These frameworks are referred 
to as Lagrangian and Eulerian descriptions, respectively.  In the Lagrangian ap-
proach, the trajectory of an individual particle is followed.  In the Eulerian ap-
proach, the flow at every fixed point as a function of time is described.  These 
frameworks are further described in the context of acceleration for a fluid element. 

2.1.  Fluid Acceleration 

Prior to studying the dynamics of the fluid flow, we begin by deriving the accel-
eration of a fluid element in a flow field.  Other aspects of fluid kinematics, such 
as fluid rotation, are discussed later in this chapter.  The velocity of an infinitesi-
mal fluid element in the Cartesian coordinate system based on the Eulerian 
descrption is expressed as: 

kttztytxVjttztytxVittztytxVtrV zyx ]),(),(),([]),(),(),([]),(),(),([),( ++=         

      IIIa.2.1 

In Equation IIIa.2.1 kji and,, are the unit vectors of Cartesian coordinates.  Also 
x, y, z, and t are four variables representing space and time.  Finally, Vx, Vy, and 
Vz are the components of the velocity vector in the x, y, and z directions, respec-
tively.  In Figure IIIa.2.1, vector ),( trV  represents the velocity of a fluid element 
at location r  at time t, while vector ),( dttrdrV ++  represents the velocity of the 
same fluid element, which has moved in time dt by rd .  According to the La-
grangian approach, the acceleration of the fluid element is given by dtVda /= .
Using the chain rule for differentiation (Chapter VIIa): 
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Fluid element
at time t

The same fluid element
but at t + dt and r + dr

V(r, t)

y

x

z V(r, t) dV
V(r + dr, t + dt)

V(r + dr, t + dt)

Figure IIIa.2.1.  Velocity of a fluid element in Cartesian coordinates

By substituting for xVdtdx =/ , yVdtdy =/ , and zVdtdz =/ , Equation IIIa.2.2 
can be rearranged to obtain: 



2.  Fluid Kinematics      235 

∂
∂+

∂
∂+

∂
∂+

∂
∂==

z

V
V

y

V
V

x

V
V

t

V

dt

Vd
a zyx           IIIa.2.3 

Equation IIIa.2.3 is a vector equation. Therefore, it has three components for 

kajaiaa zyx ++= .  Also the term in the first parenthesis represents the local 

acceleration, due to the change of flow velocity with time.  This is because the lo-
cal derivative (∂/∂t), is the rate of change of a fluid flow property as seen by an 
observer at a fixed position in space.  Term d/dt is the total derivative. 

Terms in the second parenthesis represent the convective acceleration due to 
the change of flow velocity in space*.  The above relation can be simplified by no-
ticing that the last three terms in the second parenthesis are dot products of the ve-
locity vector and the gradient operator (see Chapter VIIc for the definition of the 
gradient operator in the three coordinate systems).  Thus, in Cartesian coordinates 
we write: 

( ) VV
tDt

VD
a ∇⋅+

∂
∂==              IIIa.2.4 

Note the change of notation in the left side of Equation IIIa.2.4 from d/dt to D/Dt,
which is referred to as the substantial derivative (since one moves with the sub-
stance).  Thus the substantial derivative (D/Dt) refers to the time rate of change of 
a fluid flow property as viewed by an observer at the origin of the coordinate sys-
tem, which is moving at the flow velocity V .  Also note that in the right-hand side 
of Equation IIIa.2.4 the derivative terms are placed in a bracket. This allows us to 
express the substantial derivative as a mathematical operator: 

( )∇⋅+
∂
∂= V
tDt

D

Calling the substantial derivative an operator implies that it can operate on all the 
flow field properties such as pressure, temperature, velocity, density, etc.  This is 
described later in this section. 

Example IIIa.2.1.  Find the acceleration of a fluid particle in the Cartesian coor-
dinate system.

Solution:  We substitute Equation IIIa.2.1 into Equation IIIa.2.3 and evaluate each 
term as follows:  

yx z
VV VV

i j k
t t t t

∂∂ ∂∂
= + +

∂ ∂ ∂ ∂

* If the observer’s reference is accelerating then the acceleration of a particle with respect to a fixed 
reference is given in Chapter VIb by Equation VIb.3.9. 
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Summing up terms, fluid acceleration in the Cartesian coordinates may be written 
as:
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Example IIIa.2.2. Find the acceleration of a fluid particle at x = 1 cm, y = 2 cm, 
and z = –1 cm at t = 3 s in a flow field with Eulerian velocity in the Cartesian co-

ordinates given as kztjyixtV )1( −+−= cm/s.

Solution:  We first note that Vx = xt, Vy = –y, Vz = (1 – t)z.  We then carry out de-
rivatives as follows: 

For Vx: ∂Vx/∂t = x, ∂Vx/∂x = t, ∂Vx/∂y = 0, and ∂Vx/∂z = 0. 
For Vy: ∂Vy/∂t = 0, ∂Vy/∂x = 0, ∂Vy/∂y = -1, and ∂Vy/∂z = 0 
For Vz: ∂Vz/∂t = -z, ∂Vz/∂x = 0, ∂Vz/∂y = 0, and ∂Vz/∂z = (1 – t)

Substituting into Equation IIIa.2.3-1, we obtain: ktztjyitxa )2()1( 2 −+++=
cm/s2.  For the specified point at the specified time, the acceleration becomes: 

kjia 3210 −+=  with 2222 cm/s63.10)3(210 =−++=a .

Example IIIa.2.3.  The flow velocity in a flow field is given as Vx(x) = V0[1 – 
(2x/3L)].  Find the flow acceleration of a point located at x = 0.75 m.  Use L = 1 m 
and V0 = 3 m/s. 

Solution:  This is a one-dimensional, steady flow hence the local acceleration is 
zero.  We can find the convective acceleration from  

ax = Vx(dVx/dx) = V0[1 – (2x/3L)][–2V0/3L] = –2 2
0V [1 – (2x/3L)]/3L

For the specified location, we find ax = –3 m/s2.  The minus sign indicates that 
flow decelerates. 
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We now further elaborate on the two types of accelerations defined earlier.  
Let’s generalize the discussion by using a flow property c, being a function of 
both space and time ),( trfc =  where c may represent P, T, V, ρ, etc.  Equa-
tion IIIa.2.4 for the flow property c is then written as: 

( )cV
t

c

Dt

Dc ∇⋅+
∂
∂=                           IIIa.2.5

If the property c of the flow field is being observed from a fixed point with respect 
to the flow field, we show the time rate of change of property c by the partial de-
rivative tc ∂∂ , which we referred to as the local acceleration when c = V.  An ex-
ample for the case where c represents velocity, c = V includes acceleration of 
stagnant water in a constant diameter pipe when a pump is turned on.  Similarly, 
an example for the case that c represents temperature, c = T is when we place a 
container of cold water in a warm room.   

Regarding the convective acceleration, an example for c = V is when fluid 
steadily flows through a converging or diverging channel as shown in Fig-
ures IIIa.2.2(a) and IIIa.2.2(b), respectively.  From the point of view of a station-
ary observer, for this steady state fluid flow, velocity at any point along the chan-
nel is independent of time.  Hence, according to the Eulerian approach we have 

0=∂∂ tV .  However, from the point of view of an observer moving with the 
flow, velocity at any point along the channel is changing with time because the 
flow area is changing.  If the observer moves at the same velocity as the flow ve-
locity, according to the Lagrangian approach, DV/Dt is not zero*.  Using the sub-
stantial derivative, Equation IIIa.2.5 for this case predicts that ( )VVDtDV ∇⋅= .
As a result, in Equation IIIa.2.5, the left side describes the rate of change of flow 
property in the Lagrangian and the right hand sides describe the rate of change of 
flow property c in the Eulerian framework.   

x x

L
             (a)                                                         (b) 

Figure IIIa.2.2.  1-D velocity vectors in a steady ideal flow field.  a) decelerating flow and 
b) accelerating flow

So far we discussed the case that the observer is either fixed or moves in the 
flow with the same velocity as the flow velocity.  But what if the observer is mov-
ing in the flow field at a velocity oV , which is different than the flow velocity 

* Try an example in which c = ρ.  For solution, search for “acceleration pressure drop” in 
Chapters IIIb and Va. 
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( VVo ≠ )?  In this case, we use the same chain rule as given by Equation IIIa.2.2 
but the derivatives of the location become the components of the observer velocity 
vector:
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where we used d/dt in the left side to distinguish this case from the case that the 
observer is moving at the flow velocity.  This derivative is referred to as the total 
time derivative.  Similar to the substantial derivative, we can write the right side in 
a more familiar manner: 

( ) cV
tdt

dc
o ∇⋅+

∂
∂=               IIIa.2.6 

   

By canceling the partial derivative tc ∂∂  between Equations IIIa.2.5 and IIIa.2.6, 
we find the relation between the total and the substantial derivatives as: 

( ) cVV
dt

dc

Dt

Dc
o ∇⋅−+=              IIIa.2.7 

The substantial derivative is equal to the total derivative when the observer veloc-
ity is equal to the flow velocity. 

The Lagrangian approach is well suited for solid mechanics where the focus is 
on the motion of individual particles.  The continuum hypothesis also makes the 
Lagrangian approach useful for the derivation of the conservation equation in fluid 
mechanics.  For example, the conservation equation of mass, using the Lagrangian 
framework simply becomes m = constant (Dm/Dt = 0).  Similarly, the momentum 
equation for fluids as given by Newton’s second law of motion has its simplest 

form when written in the Lagrangian framework; F  = D(mV )/Dt.  Finally, the 
simplest form of the conservation equation of energy is the one written for a 
closed system, using the Lagrangian description, as given by Equation IIa.6.1.  As 
described in the next section, we can either use the Lagrangian approach to derive 
the set of conservation equations and then substitute from the Eulerian equivalent 
(Equation IIIa.2.5) or directly derive the Eulerian formulation by observing flow 
entering and leaving a stationary control volume (the Lagrangian free-body dia-
gram).

Example IIIa.2.4.  Find the framework that, from the fluid mechanics point of 
view, best describes the following situations: a) a lion chasing a deer in a herd, 
b) a traffic engineer surveying the traffic pattern at an intersection, c) a bird carry-
ing a tag to study the migration pattern of a flock of birds, d) a cameraman filming 
a school of fish entering and leaving a coral reef, and e) a chemist sampling river 
water for pollution. 

Solution:  The answers are a) Lagrangian, b) Eulerian, c) Lagrangian, d) Eulerian, 
and e) Eulerian. 
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Next, we solve an example for convective acceleration in a fluid flowing at 
steady state condition. 

Example IIIa.2.5.  Consider the conduit shown in Figure IIIa.2.2(b).  The conduit 
has a width of 1 ft (3.28 m).  The flow area at x = 0 is 2.5 ft2 (0.23 m2) and at x = L
= 6 ft (1.83 m) is 1 ft2 (0.1 m2).  Fluid flows steadily at a volumetric flow rate of 

V  = 12 ft3/s (0.34 m3/s).  Find the acceleration of a point located at x = 3 ft. 

Solution:  To find acceleration, we first need to find velocity.  Since we are given 

the volumetric flow rate, we find velocity from Vx = V /A(x).  The flow area be-
tween x = 0 and x = L is a function of x and can be found as A = A1 + (A2 – A1)x/L.

Substituting values, we find A = 2.5 – 1.5x/L.  Hence, V(x) = V /A = 12/(2.5 – 
1.5x/L).  For the one-dimensional flow, Vy = Vz = 0 and acceleration from Equa-
tion IIIa.2.2 is found as: 

∂
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Since fluid flows steadily 0/ =∂∂ tVx .  We find dVx/dx = (18/L)/(2.5 – 1.5x/L)2.

Therefore,
ax = [12/(2.5 – 1.5x/L)](18/L)/(2.5 – 1.5x/L) = (18/L)/(2.5 – 1.5x/L)3 = (216/6)/(2.5 
– 1.5/2)3 = 6.72 ft/s2.

In the next example, we find the total acceleration due to the presence of local 
and convective accelerations. 

Example IIIa.2.6.  Find the acceleration in Example IIIa.2.5 if the flow is increas-
ing at a rate of 2.5 ft3/s2.

Solution:  The convective acceleration remains the same.  The local acceleration 

must now be calculated from ∂Vx/∂t.  We found Vx = V /A(x). Thus, ∂Vx/∂t = 

∂[ V /A(x)]/∂t = 2.5/A(x).  At x = 3, ∂Vx/∂t = 2.5/1.75 = 1.43 ft/s2.  Total accelera-
tion is then found as ax = 1.43 + 6.72 = 8.15 ft/s2.

3. Conservation Equations 

Information about a flow field can be obtained from the solution to the conserva-
tion equations, which can be derived either in an integral form for a finite control 
volume or in differential form for an infinitesimal control volume.  The latter ap-
proach is necessary if the goal is to obtain detailed information in the flow field 
such as determination of pressure, temperature, or velocity distributions.  Addi-
tionally, there is dimensional analysis.  Therefore, we may say that in general, 
there are three types of analyses for solving the single-phase fluid flow problems 
namely, differential, integral, and dimensional.  Each type of analysis has its own 
benefits and drawbacks.  For example, in the differential analysis, the three con-
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servation equations of mass, momentum, and energy are applied to an infinitesi-
mal element of the flow field.  These three differential equations are then inte-
grated over the specific region of interest with specified boundary conditions pe-
culiar to that region.  The integrated equations in conjunction with the thermo-
dynamic equation of state provide sufficient number of equations to find such key 
flow parameters as pressure, temperature, velocity, and density.  The advantage of 
the differential analysis is the detailed information it provides about the region be-
ing analyzed.  This includes distribution of pressure and velocity in the flow field.  
The disadvantage of this method is the intensive computational efforts required for 
solving the problem.  This is due to the fact that, except in special cases, analytical 
solutions in closed form cannot be obtained hence, seeking numerical solutions is 
inevitable.  Depending on the extent of details desired, such numerical solutions, 
even with today’s computational abilities, remain labor intensive and are used 
only if no other method provides the required information. 

In integral analysis, a control volume of finite size is assigned to the region of 
interest and the three conservation equations are applied.  These equations already 
include the boundary conditions.  The advantage of this method is the ease in set-
ting up and solving the integral equations.  The obvious disadvantage is the loss of 
details within the control volume.  However, depending on the case being ana-
lyzed, the analyst may not require such details, average values representing the re-
gion may be quite sufficient. 

Finally, in dimensional analysis we try to find relevant dimensionless parame-
ters without knowing the related differential equations.  In this chapter we discuss 
only the integral and the differential analyses. 

3.1.  Integral Analysis of Conservation Equations 

This method is applied to control volumes with finite size.  We take advantage of 
the Lagrangian approach to set up the conservation equations and by using the 
Eulerian approach, we then convert these equations to suit fluid flow applications.  
Since the Lagrangian approach is applied to a closed system (an entity having a 
constant mass), the Reynolds transport theorem is used to relate the rate of change 
of properties of the system to that of a control volume.  As was discussed in Chap-
ter IIa, if Y represents an extensive property of a system, then y represents the in-
tensive property so that y = dY/dm.  According to the Reynolds transport theo-
rem*, we can write: 

( ) ⋅+
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t
Y

dt

d ρρ           IIIa.3.1 

where dV is the differential volume and dS is the differential surface area encom-
passing the control volume.  As was discussed in Section 2, the left side in Equa-

* This theorem is derived in Chapter VIIc from the general transport theorem and the Leib-
nitz rule for the differentiation of integrals.  See Equation VIIc.1.31 for the Reynolds 
transport theorem as applied to a fixed control volume.  
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tion IIIa.3.1 represents the Lagrangian definition and the right side represents the 
Eulerian equivalent.  We use Equation IIIa.3.1 to derive the integral form of the 
conservation equations of mass, momentum, and energy as discussed next. 

Conservation Equation of Mass, Integral Approach 

In the case of conservation equation of mass, Y = m and y = dY/dm = 1.  These can 
be substituted in Equation IIIa.3.1 noting that the left side becomes zero, as the 
system mass is constant: 

0)( =Systemm
Dt

D

Therefore, Equation IIIa.3.1 simplifies to: 
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t
ρρ             IIIa.3.2

Equation IIIa.3.2 is the Eulerian description of the conservation equation of mass.  
It expresses the fact that the rate of change of mass in a control volume is due to 
the algebraic summation of mass flow rates entering and leaving the control vol-
ume.  For steady state and incompressible flow, Equation IIIa.3.2 becomes: 

0)()()(.. =−=−=⋅
PortsInlet PortsInlet

in
PortsExit

ein
PortsExit

eSC mmVAVASdV ρρρ

                                                                                                                         IIIa.3.3

Note that for incompressible fluids at constant temperature, density remains the 
same in the flow field hence, it cancels out in the above equation. 

Conservation Equation of Momentum, Integral Approach 

In the case of conservation equation of momentum, Y = mV and y = V.  These can 
be substituted in Equation IIIa.3.1 to obtain: 
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D ρρ           IIIa.3.4 

The left-hand side is the Lagrangian description of momentum of the system.  Ac-
cording to Newton’s second law, the system momentum is related to the algebraic 
summation of all forces acting on the system: 

( ) +== ForceSurfaceForceBodySystem FFFVm
Dt

D
      IIIa.3.5 

The conservation equation for momentum can then be written as: 
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IIIa.3.6

where in Equation IIIa.3.6, the first term in the right side is the rate of change of 
momentum within the control volume and the second term is the net momentum 
flux through the control volume.  Equation IIIa.3.6 is a vector equation having 
components in three dimensions.  Application of the one-dimensional momentum 
equation is explored in various Chapters of this book. 

Example IIIa.3.1.  Write the integral momentum equation for a one-dimensional 
(1-D) flow. 

x
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s + ds

ds

s

g

D

Solution:  We use the control volume in the figure (dV = Ads) and follow Equa-
tion IIIa.3.6.  The first term in the right side of this equation is the rate of change 
of momentum in the control volume which becomes (d m /dt)ds.  The second term 

in the right side is the momentum flux  [( 2m /ρA)s+ds –  ( 2m /ρA)s].  The body 
force is the fluid weight and the surface forces are the friction force (FF) and the 
pressure force. 

−−−= + Fdsss dFgAdsPPAdF βρ sin)()(  
 

where β  is measured from the horizontal plane. Substituting: 
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We rearrange this equation by dividing both sides by Ads and letting ds approach 
zero:
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where the differential friction force is now written in terms of the friction pressure 
drop.
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Conservation Equation of Energy, Integral Approach 

In the case of conservation equation of energy, Y = E and y = dE/dm = e where E
and e are total and specific energy of the system, respectively.  Substituting these 
in Equation IIIa.3.1 yields: 
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The left side in the above equation is the Lagrangian expression of the rate of 
change of total system energy.  This according to the first law of thermodynamics 
is related to the rate of work and heat transfer to or from the system as follows: 
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Substituting yields: 
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As was discussed in Chapter II, The rate of work transfer to or from the control 
volume may consist of several types including the shaft work, the pressure work, 
the viscous work (due to the surface shear stresses), and work due to electric and 
magnetic fields, etc.  Therefore, the rate of work transfer becomes: 

( ) +++−+= MagneticElectricSCSCs WWSdSdVPWW .... .. τ       IIIa.3.10 

We may partition the pressure work by taking the surface integral on all the ports 
(both inlet and exit) and the remaining of the control surface: 

. . . ., . ., . .,( . ) ( . ) ( . ) ( . ) VC S C S ports C S remaining C S portsP V dS P V dS P V dS P V dS P= + = +

By partitioning the integral, we explicitly consider the work due to changes in the 
boundary of a deformable control volume.  If the control surface is not deform-
able, then the last term on the right side is zero.  As for the viscous work, except in 
the case of very slow or so called creep flow, where viscosity effects are domi-
nant, the rate of work transfer due to viscous forces is negligible compared to the 
shaft work.  Substituting for the total rate of work transfer in the integral energy 
equation and using the constituents of the total specific energy (i.e., specific inter-
nal u, kinetic ρV2/2, and potential ρgZ energies): 

gZVue ρρ ++= 2/2

the first law of thermodynamics can be written as: 
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In Equation IIIa.3.11, we have considered only shaft work and pressure work due 
to changes in the control surface.  Also note that the triple integral over the control 
volume represents total energy of the C.V.:
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V

uE ρ

Using the definition of enthalpy (h = u + Pv), Equation IIIa.3.11 can be written in 
terms of flow enthalpy entering and leaving the control volume: 
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      IIIa.3.12 

where in Equation IIIa.3.12, q ′′′  is the volumetric heat generation rate (kJ/m3 or 
Btu/ft3, for example) in the control volume due to such effects as electric resis-
tance, exothermic chemical reactions, nuclear heat generation, etc.  The volumet-
ric heat generation rate from nuclear reactions is discussed in Chapter VIe.   

It is important to recall our sign convention as discussed in Chapter II, for Q
and ,W  the rate of heat transfer and power, respectively.  The rate of heat transfer 
has a plus sign if heat is added to the system and has a minus sign if heat is re-
moved from the system.  Power, has a plus sign if work is performed by the sys-
tem and has a minus sign if work is delivered to the system.  Therefore, power de-
livered by a turbine is positive and power delivered to a pump or a compressor is 
negative.  Similarly, the heat transfer delivered to a boiler or to the core of a nu-
clear reactor is positive and the heat loss from a pump or a turbine is negative. 

Equation IIIa.3.12 represents the integral form of the energy equation for a de-
formable control volume.  For steady state processes and control volumes with 
fixed boundaries and no internal heat generation, Equation IIIa.3.12 simplifies to: 
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For steady state and steady flow processes Equation IIIa.3.12-1 is further simpli-
fied to: 
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where q and ws are heat and shaft work transfer per unit mass of the working 
fluid, respectively.  Although the equations for conservation of momentum and 
conservation of energy are independent, as is shown later in this section, under 
certain circumstance they would lead to a similar conclusion.  The case in point is 
the well-known Bernoulli equation. 
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3.2.  Differential Analysis of Conservation Equations 

There are generally three methods to derive the conservation equations in their dif-
ferential forms.  In the first method, the differential forms for the conservation 
equations are derived from the integral form by using the vector calculus, specifi-
cally the Gauss divergence theorem (Chapter VIIc).  In the second method, the in-
tegral approach is applied to a control volume and the differential formulation is 
derived by taking the limit as the volume becomes infinitesimal.  In the third 
method, the conservation equations are directly derived for an infinitesimal con-
trol volume using the Eulerian approach. 

Conservation Equation of Mass, Differential Analysis 

To derive the differential form of the continuity equation, we consider flow of 
fluid through an elemental control volume, dxdydz, as shown in Figure IIIa.3.1.
For simplicity, we have only shown flow though the yz-plane in the x-direction.  
The rate of mass entering the control volume at x = 0 is (ρVx)dA = (ρVx)(dydz).
Similarly, we can find the mass flow rate entering the control volume through the 
xy- and xz-planes.  Since mass is a scalar quantity, we can add all these mass flow 
rates to find the total rate of mass entering the control volume from all directions 
as: 

 (ρVx)dydz + (ρVy)dxdz + (ρVz)dxdy

We now find the mass flow rate leaving the control volume in the x-direction 
through the yz-plane located at x = dx.  This is found from the Taylor expansion of 
the function (ρVx)dydz, by using only the first two terms.  This amounts to [ρVx + 
∂(ρVx)/∂x](dydz).  Similarly, we find the mass flow rate into the control volume in 
the y- and z-directions.  Hence, total mass of fluid flowing out of the control vol-
ume becomes: 
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Figure IIIa.3.1.  Flow of fluid through an elemental control volume in Cartesian coordi-
nates 
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The rate of change of mass of the control volume is due to the difference in the in-
coming and outgoing flows: 
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This equation simplifies to: 
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The general form of the continuity equation that is independent of any coordinate 
system can be written as: 
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V
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ρρ
           IIIa.3.13 

where in Equation IIIa.3.13, density is a function of space and time 
),,,( tzyxf=ρ .  Equation IIIa.3.13 is valid for any flow field condition whether 

it is steady or unsteady, viscous or frictionless, compressible or incompressible.  
However, this equation is not valid when there is any source or sink singularities 
in the control volume such as occurrence of condensation or boiling.  Also, nu-
clear reactions in which conversion of mass and energy may exist are excluded. 

Under a steady state condition, the second term is identically zero as, despite 
the possible existence of a spatial distribution for density, such a distribution 
would not change with time.  The continuity equation is in its simplest form if a 
fluid is incompressible, since density at constant temperature in an incompressible 
flow field is constant.  Gases can be treated as incompressible fluid as long as the 
gas velocity remains less than about 30% of the speed of sound in the gas (≈ 300 
ft/s or 91.5 m/s).  Next we solve several examples using various forms of the con-
tinuity equation. 

Example IIIa.3.2.  Use Equation IIIa.3.13 and derive the continuity equation in 
terms of the substantial derivative of density. 

Solution:  We first carryout the differentiation in Equation IIIa.3.13: 
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We now collect the first term and the terms in the second parenthesis and use 
Equation IIIa.2.2: 

0=⋅∇+ V
Dt

D ρρ
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Example IIIa.3.3. Write the continuity equation in Cartesian coordinates for a) 
steady flow and b) incompressible flow. 

Solution:  a) For steady flow, we use Equation IIIa.3.13 and drop the first term.  
We also note that for steady flow ),,( zyxf=ρ :
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b) For incompressible flow =ρ  constant (i.e., ∂ρ/∂t = 0).  Hence, Equation 

IIIa.3.13 becomes 0=⋅∇ Vρ or alternatively 0=⋅∇=⋅∇ VV ρρ .  That is to say 
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V zyx .  In two dimensions, we have:
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Example IIIa.3.4.  Consider a planar flow with the component of velocity along 
the x-axis given as Vx = xy and the component of velocity along the y-axis given 
as Vy = –2y.  Do these components represent an incompressible flow?

Solution:  To have a planar incompressible flow, we must be able to show that 
∂Vx/∂x + ∂Vy/∂y = 0 is met.  Taking the derivative and substituting, we get y – 2 ≠
0 which does not satisfy the continuity equation.  Therefore, the above compo-
nents do not represent an incompressible flow.  The reader may verify that the fol-
lowing components do represent an incompressible flow; Vx = 2xy and Vy = –y2.

Example IIIa.3.5.  Does vector kbxzayzjayzibzaxyt )()( 2 ++−+=υ  represent 

the velocity vector of an incompressible flow field? 

Solution:  For incompressible flow, we must have ∂υx/∂x + ∂υy/∂y + ∂υz/∂z = 0.  
Finding components: 
∂υx/∂x = ayt, ∂υy/∂y = –az2, and ∂υz/∂z = ay + bx.  The summation is not zero thus 
υ is not a velocity vector in an incompressible flow. 

Example IIIa.3.6.  Consider a planar incompressible flow with the component of 
velocity along the x-axis given as Vx = c1x

2y +c2x.  Find Vy.

Solution: Since for a two-dimensional flow, the continuity equation simplifies to 
0// =∂∂+∂∂ yVxV yx .  Having Vx, we find dVx/dx = 2c1xy + c2.  Hence, 

)2(/),( 21 cxycyyxVy +−=∂∂ .  Integrating, Vy = – (c1xy + c2)y + c3, where c3 is 
the constant of integration and is found from the boundary condition. 
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Example IIIa.3.7.  Start with integral analysis and obtain the differential equation 
of the conservation of mass for the control volume of Example IIIa.3.1 for β = 0. 

Solution:  For a horizontal control volume, we replace s with x.  According to 
Equation IIIa.3.2, the rate of change of mass in the control volume is equal to the 
mass flux through the control volume, hence 
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This equation simplifies to ( ) 0//)( =∂∂+∂∂ xVt ρρ .  Carrying out the differentia-

tion and rearranging 
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Conservation Equation of Momentum, Differential Analysis 

Shown in Figure IIIa.3.2 is an elemental control volume of a fluid being traced in 
a flow field.  The applied forces on this control volume, due to the acting stresses, 
consist of body and surface forces: 

+= ForceSurfaceForceBody FdFdFd )()(

The body forces include weight and forces induced by an electromagnetic field, 
for example: 

+= BgFd ForceBody ρ)(

The surface forces are due to pressure and shear stresses.  To find the expression 
for these forces, let’s look only at the surface forces in the x-direction: 
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Figure IIIa.3.2.  Components of normal and shear stresses in the x-direction for an infini-
tesimal fluid element 

The net surface force in the x-direction due to the normal and tangential (shear) 
stresses becomes: 
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Similarly, the body forces with components in the x-direction become: 

dxdydzBgdF xxxB )(, += ρ
We can write similar expressions for differential force components in the y- and z-
directions as act on the differential element dxdydz.  According to Newton’s sec-
ond law of motion, the applied forces result in the fluid particle acceleration.  
Thus, in this Lagrangian approach we can then write: 
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Substituting for dm = ρdxdydz, where ρ is expressed in kg/m3 in SI units or 
slug/ft3 in BU, yields: 
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These are the three components of the momentum equation (known as the Cauchy 
momentum equation), written in terms of normal and shear stresses.  These equa-
tions are applicable to both Newtonian and non-Newtonian fluids as long as the 
continuum hypothesis is satisfied.  It is the substitution for the normal and shear 
stresses that makes the equations peculiar to either Newtonian or non-Newtonian 
fluids. 

Momentum Equation for Newtonian Fluids (The Navier-Stokes Equations) 

In Section 1 we discussed that one of the criteria for a Newtonian fluid is to be 
able to relate the shear stress to velocity in the form of: 
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According to the Stokes hypothesis, we can show (Aris, Daily, and Schlichting) 
that for Newtonian fluids: 
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Substituting the above expressions, for stress in terms of velocity, in the momen-
tum equation we obtain: 
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These equations can be generalized in the vector form of: 
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Substitution of forces in Equation IIIa.3.14 yields the momentum equation in the 
Cartesian coordinates: 
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This equation allows for variation of fluid viscosity as a function of position.  In 
many applications viscosity is independent of location.  In this case, Equa-
tion IIIa.3.15 simplifies to: 
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where the left side of Equation IIIa.3.16 is expanded according to Equa-
tion IIIa.2.3.  The assumption of constant viscosity (i.e., independent of spatial po-
sition) allowed us to take the viscosity term outside the differentiation.  This sim-
plified set of vector equations (IIIa.3.16) is known as the Navier-Stokes 
equations as Louis Marie Henri Navier (1785 – 1836) first derived these equa-
tions for incompressible fluids in 1822.  George Gabriel Stokes (1819–1903) gen-
eralized the derivation in 1845+.

Definition of terms in the Navier-Stokes equations is as follows. 

( )tV ∂∂ / :  local acceleration 

( )VV ∇⋅   convective acceleration 

gρ :   gravity force 

B :   remaining body force (electrical force in a magnetic field) 

P∇ :   pressure force 

( ) VV 2

3
∇+⋅∇∇ µµ

: viscous shear forces 

To this date no analytical solution in closed form exists for the Navier-Stokes 
equation.  We therefore investigate special cases by neglecting certain terms in 
these equations as the flow condition permits.   

The Navier-Stokes equations in the cylindrical and spherical coordinate sys-
tems are given in Tables A.III.4 and A.III.5, respectively. 

Steady flow: In steady flow, local acceleration from the Eulerian point of view 

is zero ( 0/ =∂∂ tV ).  Hence, the Navier-Stokes equation: 

( ) VVPBgVV
t

2

3
∇+⋅∇∇+∇−+=∇⋅+

∂
∂ µµρρ

for steady flow simplifies to: 

( ) ( ) 2
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µρ ρ µ⋅∇ = + − ∇ + ∇ ∇⋅ + ∇

Incompressible flow: Variation in fluid density in incompressible flow is neg-
ligible.  Hence, as shown in Example IIIa.3.2, 0=⋅∇ V  so that the Navier - 
Stokes equation: 
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for incompressible flow simplifies to: 

+ According to Eckert, “these equations were first derived by N. Navier and S. P. Poisson 
from a consideration of intermolecular forces and by B. de Saint Venant and Stokes based 
on the assumption that the normal and shear stresses in a fluid are proportional to the de-
formation velocities.” 
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A one-dimensional form of the incompressible flow may be written as: 
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where the fourth term on the right side of Equation IIIa.3.17 is written as a viscous 
force in Equation IIIa.3.18.  Velocity and viscous force terms always have differ-
ent signs.  Determination of the viscous force is discussed in Section 4.  

Ideal Flow (Euler Equation): For inviscid (frictionless, µ = 0), incompressi-
ble, and constant property flow, in the absence of body forces other than gravity, 
the Navier-Stokes equation 
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simplifies to: 
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This is the Euler equation.  As discussed in Section 1, although all fluids possess vis-
cosity, some fluids behave as if they are inviscid.  Hence, the Euler equation has 
practical applications.  Indeed, for high Reynolds numbers, the viscous effects for 
most fluids are confined to a thin layer near the solid surface (i.e., the boundary 
layer). 

Very slow flow: in very slow or creeping flows, the Reynolds number is small, 
indicating that the inertia effects can be neglected as the viscosity effects become 
dominant.  Hence, the convective acceleration term can be dropped.  The Navier-
Stokes equation: 
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for very slow flow, in the absence of other body forces simplifies to: 

VP
t

V 2∇+∇−=
∂
∂ µρ          IIIa.3.20 

Static fluid: in a static fluid, velocity is zero.  Hence, the Navier-Stokes equa-
tion: 
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for static fluid, in the absence of other body forces except for gravity simplifies to 
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0=∇− Pgρ                                       IIIa.3.21 

Integrating, the component in the z-direction can be written in the familiar form of:

ZgP ∆=∆ ρ             IIIa.3.22 

Next, we solve several problems regarding the application of the momentum equa-
tion. 

Example IIIa.3.8.  Write the momentum equation for an ideal flow in Cartesian 
coordinates. 

Solution:  The momentum equation for an ideal fluid is the Euler’s equation as 
given by Equation IIIa.3.19 in the general form.  To obtain the components in Car-
tesian coordinates, we develop each term separately: 
–  Local acceleration:
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–  Convective acceleration: 
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–  Gravity force: 
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–  Pressure force: 
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Therefore, the momentum equation for ideal flow in the Cartesian coordinate sys-
tem becomes: 
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Example IIIa.3.9.  Find the governing equation for steady state incompressible 
flow over a flat plate.

Solution:  Starting with Equation IIIa.3.16, the first term in the left side and the 
fourth term in the right side are canceled due to the steady and incompressible 
fluid assumptions, respectively.  If all body forces are also negligible then: 

( ) 2V V P Vρ µ⋅∇ = −∇ + ∇

If fluid flows in the x-direction over the surface then the x-component of the mo-
mentum equation is:
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In the boundary layer over the plate, variation in Vx in the x-direction is much less 
than variation in Vx in the y-direction and the first term in the parenthesis can be 
neglected:
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                 IIIa.3.20-1

Example IIIa.3.10.  Find the two-dimensional Euler’s equation along a streamline 
(sn coordinate). 

R
α

α

n
s

g

Pdsdx

ds

dn

y

z [ ]dsdxdnnPP )/( ∂∂+

Pdndx

[ ]dndxdssPP )/( ∂∂+

Solution:  The Euler’s equation along the streamlines can be derived directly by 
applying Newton’s second law of motion to a differential control volume (dsdndx)
along the streamlines.  For an ideal flow, only pressure and gravity forces need to 
be considered.  Along the streamline, the net pressure force becomes 

dndxdssP ])/[( ∂∂− .

The component of the gravity force along the streamline becomes: 
 –ρgcos(α) = –ρg ∂ z/ ∂ s.
The summation of forces must be equal to mass times acceleration:

sadsdndxdsdndxszgdndxdssP )()/(])/[( ρρ =∂∂−∂∂−
Canceling out dsdndx from both sides of the equation and substituting for the ac-
celeration in terms of the total derivatives yields:



3. Conservation Equations      255 

0
1 =

∂
∂+

∂
∂+

∂
∂+

∂
∂

s

z
g

s

P

s

V
V

t

V

ρ

A similar procedure yields Euler’s equation in the direction of the n-axis. 

Example IIIa.3.11.  Find the one-dimensional momentum equation for the flow of 
a viscous fluid. 

Solution:  We consider the differential control volume where all dimensions are 
lumped except for the dimension along the s-axis.  In applying Equation IIIa.3.14 
to this control volume, we note the pressure force, gravitational force, friction 
force, and another body or surface force (dFd) other than friction and weight.  Fi-
nally;

)()(cos
s

V
V

t

V

ds

dF

ds

dF
g

s

P df

∂
∂+

∂
∂=+−+

∂
∂ ρθρ

where Ff and Fd are expressed as force per unit area. 

ds

dA

P

V

dFf
dFd

P+(dP/ds)ds

θ

ρg(dAds)

Applicability of the Navier-Stokes Equations 

These equations are applicable only to Newtonian fluids in laminar flow having 
constant viscosity, (i.e., independent of spatial position).  Adjustments must be 
made to apply these equations to turbulent flow.  It is interesting to note that the 
non-linearity of these second order partial differential equations is not due to vis-
cous effects of the fluid, rather it is due to the inertial effects manifested in the 
convective acceleration term. Except for the very slow flow, we were not able to 
eliminate the source of non-linearity, even for the special flow cases discussed 
above.

Conservation Equation of Energy, Differential Analysis 

Compared with the momentum equation, derivation of the energy equation is sim-
pler since energy, like mass, is a scalar quantity.  Hence, we find the rates of en-
ergy into and out of an elemental control volume from the three directions of x, y,
and z and simply add them up.  Since similar processes exist in these three direc-
tions, we consider only the processes in the x-direction and apply the results to the 
y- and z- directions.  The rate of change of total energy of the elemental control 
volume is due to the net exchange of energy into and out of the control volume.  
This Eulerian approach for the energy equation is described next. 
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The flow of energy into and out of the control volume can be divided into two 
groups.  The first group includes the rate of energy exchange due to convection, 
conduction, radiation, and internal heat generation.  Convection is associated with 
the flow of fluid carrying internal, kinetic, and potential energies, ei = u + K.E. + 
P.E.  Since the potential energy is very small, we only consider the internal and 
the kinetic energies.  To simplify the notations, we use the stagnation specific en-
ergy, defined as1 uo = u + K.E.  Total energy brought into the control volume from 
face dydz is (ρVxu

o) dydz.  Total energy leaving the control volume, is found by 
Taylor expansion, using only the first two terms; (ρVxu

o) dydz + [∂(ρVxu
o)/ 

∂x]dxdydz .  Hence, the net exchange of energy due to convection is found as –
[∂(ρVxu

o)/∂x]dxdydz.  Similarly, for the y- and z-directions, we find the net energy 
exchange as –[∂(ρVyu

o)/∂y]dxdydz and –[∂(ρVzu
o)/∂z]dxdydz, respectively.   
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The internal heat generation is ( dxdydzq ′′′ ), where q ′′′  is the volumetric heat gen-

eration rate.  This term accounts for electric heating or fission heat generation in a 
nuclear reaction.  Conduction heat transfer needs to be expressed in terms of tem-
perature.  As discussed in Chapter IVa, Fourier’s law relating heat flux to 
temperature gradient (–k∂T/∂x) provides such a relation, where k is thermal 
conductivity.  Hence, the net exchange due to conduction heat transfer in the x-
direction is [∂(k∂T/∂x)/∂x]dxdydz.  Considering the y- and z-directions, the net 
energy exchange due to conduction becomes: 
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For now, we represent the radiation heat transfer simply by rq ′′ .  In Chapter IVd 
we shall see that the Stefan-Boltzmann law relates rq ′′  to temperature.  The net ex-
change due to radiation is, therefore, (∂ rq ′′ /∂x) + (∂ rq ′′ /∂y) + (∂ rq ′′ /∂z) per unit 
volume.  This can be expressed as rq ′′⋅∇  per unit volume. 

The second group of energy for the control volume includes the rate of work.  
This in turn consists of three types of work.  First, shaft work, which is clearly 
zero for this elemental control volume.  Second, work performed by the surface 
forces.  Third the work performed by the body forces.  Work performed by the 
surface forces consists of work performed by the normal and shear stresses.  Since 
work is defined as force multiplied by distance and the rate of work is defined as 
force times velocity, work performed by the surface forces is non-zero only for the 
velocity components, which are in the same direction as the surface force.  For ex-
ample, as shown in Figure IIIa.3.3, the rate of work at x =0 due to normal stress in 
the x-direction is given by –(σxdydz)Vx and the rate of work due to shear stresses 

1 The stagnation state is attained when a flowing fluid is brought to rest in an isentropic 
process.  Thus, ho = h + V2/2.
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in the x-direction is given by –(τxydxdy)Vy and by –(τxzdxdz)Vx (see also Fig-
ure IIIa.3.2).  Hence, the total rate of work in the x-direction at x = 0 is found as: 
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Figure IIIa.3.3.  Influx and efflux of energy in the x-direction for an elemental control vol-
ume 

The rate of work at x = dx is given by (σxdydz)Vx + ∂[(σxdydz)Vx/∂x]dxdydz for 
the normal stress and by (τxydydz)Vy + [∂(τxydydz)Vy/∂x]dxdydz and (τxzdydz)Vz + 
[∂(τxzdydz)Vz/∂x] dxdydz, for the shear stress.  Hence, the net rate of work ex-
change in the x-direction is: 
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Thus the net rate of work exchange from all directions is found as: 
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where , referred to as viscous dissipation function, now stands for  
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where the right-hand side term is the short hand representation of using tensor 
notations for τ.
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Example IIIa.3.12.  Express the viscous dissipation function only in terms of ve-
locity components.

Solution:  We can elegantly accomplish this task only for laminar flow.  To do 
this, we expand the terms comprising the net rate of work exchange and then sub-
stitute for the shear and normal stresses from the Newtonian fluid criteria and the 
Stokes hypothesis, respectively.  Expanding the net rate of work exchange:
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We now substitute for the normal and shear stresses in terms of velocity from the 
constitutive relations:
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The first term represents the rate at which fluid is being compressed and the re-
maining terms comprise the viscous-dissipation function.  The viscous-dissipation 
function in Cartesian coordinates becomes:

∂
∂+

∂
∂

+
∂

∂
+

∂
∂+

∂
∂

+
∂

∂
+

∂
∂+

∂
∂

+
∂

∂
=Φ

222222

2
x

V

z

V

z

V

y

V

y

V

x

V

z

V

y

V

x

V zxyzxyzyx µµ

By using an order-of-magnitude analysis  may be approximated as  
 = µ( Vx/ y)2.

Finally, the rate of work performed by body forces is simply found as BV ⋅ .
The summation of all these rates of exchanges must be equal to the rate of change 
of total energy of the elemental control volume (i.e., ∂(ρuo)dxdydz/∂t).  Before we 
write the final energy equation, we use the continuity equation as given by Equa-
tion IIIa.3.13, to simplify the rate of change of the control volume total energy, 
∂(ρuo)/∂t and the net energy exchange due to convection, as follows: 
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  IIIa.3.23 
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Definition of terms from the left side is as follows: 

t

uo

∂
∂ )(ρ  : local rate of change of the stagnation energy of the infinitesimal  

control volume 
ouV ∇⋅ρ  : rate of change in stagnation energy due to convection 

)( Tk∇⋅∇  : net rate of heat transfer due to conduction 
"
rq⋅∇  : net rate of heat transfer due to radiation 

q ′′′  :  rate of volumetric heat generation (electrical, chemical, or 

  nuclear reactions) 
)( VP ⋅∇  : rate of work performed by pressure forces 

Φ  : rate of work performed by viscous forces  
(viscous-dissipation function) 

BV ⋅  : rate of work performed by body forces, such as weight 

The first and the second terms on the left side of Equation IIIa.3.23 are the Eule-
rian representation of the Lagrangian term for the net rate of change of the stagna-
tion energy.  Next, we discuss the simplification of the energy equation for special 
cases. 

Inviscid fluid: For frictionless fluid flow, the rate of work performed by vis-
cous forces is zero.  Hence,  
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Incompressible flow: For an incompressible flow, the rate of work performed 
by pressure forces becomes zero.  Hence; 
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Ideal flow: For incompressible and inviscid flow, the energy equation further 
simplifies to: 
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where in this equation the rate of work performed by body forces is also dropped 
as compared with more dominant terms.  If the net rate of heat transfer due to 
thermal radiation can be ignored (as discussed in Chapter IVd, thermal radiation 
becomes noticeable at elevated temperatures), we obtain 
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Solid materials:  Further simplification can be made in the energy equation if 
applied to solids, in which case, the net rate of heat transfer due to convection 
does not exist: 

qTk
t

u ′′′+∇⋅∇=
∂

∂
)(

)(ρ          IIIa.3.24 

Equation IIIa.3.24 is the basis of the conduction heat transfer, which is discussed 
in Chapter IVa. 

Example IIIa.3.13.  Find the governing equation for steady state incompressible 
flow over a flat plate.

Solution:  Starting with Equation IIIa.3.23, the first term in the left-hand side and 
the fourth term in the right-hand side are canceled due to the steady and incom-
pressible fluid assumptions, respectively.  The equation then reduces to: 

BVqqTkuV r
o ⋅+Φ+′′′+′′⋅∇−∇⋅∇=∇⋅ )(ρ

If the effect of all body forces is also negligible, there is no internal heat genera-
tion, and we ignore contribution by thermal radiation then we get:

Φ+∇⋅∇=∇⋅ )( TkuVρ

Substituting for u in terms of temperature, developing terms, substituting for vis-
cous-dissipation function, and considering only two-dimensional flow, the equa-
tion becomes:
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In the boundary layer, variation in Vx in the x-direction is much less than variation 
in Vx in the y-direction and the first term in the second parenthesis can be ne-
glected.  Also neglecting ∂Vy/∂y and temperature variations in the x-direction, the 
above equation simplifies to:
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Ignoring viscous dissipation, the above equation further simplifies to:
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Note the striking resemblance between Equations IIIa.3.20-1 (in the absence of the 
pressure gradient term) and IIIa.3.23-1.

As we shall see in Chapter IIIb, the viscous dissipation function results in a 
pressure drop, which is traditionally expressed as head loss.  Due to analytical 
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complexities associated with flow fluctuations, pressure drop in turbulent flow due 
to viscous effects are generally obtained in experiments. 

3.3.  Derivation of the Bernoulli Equation 

The Bernoulli equation is a simplified form of the one-dimensional momentum 
equation.  The goal here is to show that under certain circumstance, the Bernoulli 
equation can also be derived from the conservation equation of energy.  The Ber-
noulli equation written as: 

constant
2

2
=++ gZ

V
P ρρ

states that the total mechanical energy of an incompressible, inviscid flow along a 
streamline always remains a constant as shown in Figure IIIa.3.4(a).  This is dis-
cussed in more detail in the next two sections. 

Derivation of Bernoulli Equation from Energy Equation 

Although the Bernoulli equation and the equation for conservation of energy are, 
in general, independent equations, the purpose here is to show that in certain cir-
cumstances, the Bernoulli equation can be derived from the equation for conserva-
tion of energy.  These include the assumptions of steady flow, no heat, and no 
work transfer.  To demonstrate, consider Equation IIIa.3.11 for steady and uni-
form flow at the inlet and outlet ports of a fixed control volume: 
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      IIIa.3.25 

where in Equation IIIa.3.25 we have retained the work done by the viscous forces.  
Dividing Equation IIIa.3.25 by mass flow rate, and integrating the specific internal 
energy, yields: 
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This equation can be slightly rearranged to get: 
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     IIIa.3.27 

Let’s now evaluate the left side term.  This term consists of shaft work, viscous 
work, heat transfer, and dissipation.  In the absence of any of these effects, Equa-
tion IIIa.3.27 becomes the Bernoulli equation provided that the flow is incom-
pressible.  Therefore, we were able to derive the Bernoulli equation from the con-
servation equation for energy for an incompressible flow and for the condition that 
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the terms in the brackets sum up to zero.  Since in the next section we will also de-
rive the Bernoulli equation from the conservation equation for momentum, we 
leave the discussion about the Bernoulli equation to the next section and here we 
only concern ourselves with the terms in the bracket: 

[ ])( quuww ievs −−++

In order for this bracket to sum up to zero, we should have no viscous work, no 
shaft work and show that 0)( =−− quu ie .  Let’s see under what circumstance 
this parenthesis becomes zero.  Obviously one case is when ie uu = and q = 0 
(i.e., for adiabatic flow).  Another case is when quu ie =− .  The latter condition 
indicates that even if heat transfer is involved for the flow going from point i to 
point e, as long as the heat transfer is equal to the increase in the flow specific in-
ternal energy, still the terms in the parenthesis sum up to zero.  This condition ex-
its for inviscid and incompressible flow. 

If the term 0)( ≠−− quu ie  we cannot then use the Bernoulli equation.  To 
take into account the effects of the parenthesis when not summing up to zero, we 
retain this term in Equation IIIa.3.27.  However, for simplicity, we represent the 
unrecoverable energy loss as fie gquu h)( =−− .  Term hf is referred to as the un-
recoverable head loss.  Substituting this definition, Equation IIIa.3.27 becomes: 
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where in Equation IIIa.3.28, we ignored the shear work in comparison with the 
shaft work and we wrote the shaft work as head.  Carrying out the integral, Equa-
tion IIIa.3.28 is further simplified to: 
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Or alternatively,  
For Steady Incompressible Flow:
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For incompressible flow, density can be treated as a constant (ρe = ρi) and Equa-
tion IIIa.3.29 becomes: 
For Steady Incompressible Flow:
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Equation IIIa.3.30 is the basis for the field of hydraulics.  In this equation, each 
term has the dimension of length and all terms are written in terms of head.  Rear-
ranging Equation IIIa.3.30, we find 
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In Equation IIIa.3.31, the first term in the left side is the pressure head, the second 
term is the velocity head, and the third term is the elevation head.  In the right 
side, the first term is the shaft head (pump head with –hp or turbine head with +ht)
and the second term is the head loss.  The velocity head is a recoverable head 
whereas the head loss, as the name implies, is unrecoverable.  If the fluid is fric-
tionless, then hf = 0.  These terms, especially the head loss for internal flow, are 
discussed in detail in Chapter IIIb.   

It is important to emphasize that in this derivation we have been consistent with 
the sign convention we defined in Chapter IIa (see Problem 60).  Hence +hs should 
be chosen if the control volume to which Equation IIIa.3.31 is applied includes a 
turbine.  Similarly, –hp should be chosen if the control volume to which Equa-
tion IIIa.3.31 is applied includes a pump or compressor.  Regarding hf, it always 
represents a negative value since friction produces heat, which is transferred to the 
surroundings.  Hence, +hf should always be used in Equation IIIa.3.30 or IIIa.3.31.  
Equation IIIa.3.31 may also be written as: 
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Means of calculating hf are discussed in Chapter IIIb.  If friction is negligible and 
there is no shaft work, Equation IIIa.3.31 simplifies to: 
Steady ideal Flow, and no Work:
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This is the famous Bernoulli equation, first introduced in Bernoulli’s Hydrody-
namics, published in 1738.  The Bernoulli equation is also applicable to a com-
pressible fluid as long as flow velocity remains about 30% of the speed of sound 
in the fluid.  Cautions on the use of this equation are discussed later in this section.  
Equation IIIa.3.33 shows that the summation of pressure work, kinetic energy, and 
potential energy for steady ideal flow with no shaft work remains a constant along 
the streamlines.   

Terms in Equation IIIa.3.31 are divided by g to obtain head and the equation is 
then applied to a flow path as graphically shown in Figure IIIa.3.4(a).  Note that 
the energy grade line (EGL) represents the summation of all the terms and the hy-
draulic grade line (HGL) represents the summation of pressure and elevation 
terms. We assume that the flow path and the bends in Figure IIIa.3.4(a) are 
smooth and frictionless. 
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Example IIIa.3.14.  Flow of water enters the conduit shown in Figure IIIa.3.4(b) 
at a rate of 10 ft3/s (283 lit/s).  For the given data, find the pressure head at point 2.  
Assume frictionless flow path.  Data:  D1 = 1 ft (0.3 m), D2 = 2 ft (0.6 m), Z1 = 10 
ft (3 m), Z2 = 20 ft (6 m)and (Pressure head)1 = 25 ft (7.6 m).

Solution:  We first find water velocity at points 1 and 2 using V = V /A =

4 V /πd2.  Hence, V1 = 4 × 10/π × 12 = 12.73 ft/s (3.88 m/s) and V2 = 4 × 10/π × 22

= 3.18 ft/s (0.97 m/s).  Equation IIIa.3.33 in terms of head is:

2

2
22

1

2
11

22
Z

g

V

g

P
Z

g

V

g

P ++=++
ρρ

Substituting values, we find,  
25 + (12.73)2/(2 × 32.2) + 10 = (P2/ρg) + (3.18)2/(2 × 32.2) + 20.
Thus, (P2/ρg) = 17.36 ft (5.3 m). 
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Figure IIIa.3.4. (a) An arbitrary flow path representing HGL. (b) Figure for Exam-
ple IIIa.3.14

Having derived the Bernoulli equation from the energy equation with the im-
posed restrictions, we set out to derive the Bernoulli equation from the momentum 
equation.  However, we first need to learn about the fluid rotation. 

Fluid Rotation 

Earlier, as part of fluid kinematics we studied the acceleration of a fluid element in 
a flow field.  Another aspect of fluid motion is fluid deformation, consisting of 
linear and angular deformations (see Figure IIIa.3.5).  In linear deformation, the 
fluid particle moves about without any distortion.  In contrast, there is a change in 
the orientation of the fluid element when undergoing an angular deformation.  
Fluid rotation is, therefore, a linear deformation.  It can be shown (see Prob-
lem 55) that the angular velocity in fluid rotation is given as: 
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Translation Rotation Linear deformation Angular deformation

x

y
dβ

dα ly

lx

o a

b

Figure IIIa.3.5.  Types of fluid motion (Fox) 

( ) 2/V×∇=ω

For definition of curl and positive sign of the product of two vectors see Chap-
ter VIIc.  Another related variable is defined as Vorticity, being twice the rotation 

vector (i.e. V×∇== ωζ 2 ).

Example IIIa.3.15. Find the vorticity of a fluid particle at x = 1 cm, y = 2 cm, 

and z = –1 cm in a flow field given as kzjyzyixyV 22 5.0)(2 ++−= cm/s. 

Solution:  Using the definition of the curl operator from Chapter VIIc, we find 

kxiy 2−=ζ  s–1.  At the specified point, the velocity and the vorticity vector are; 

kjiV 5.024 +−= cm/s and ki 22 −=ζ  s–1, respectively. 

Derivation of Bernoulli Equation from Differential Momentum Equation 

The Bernoulli equation can be derived from the Euler form of the Navier-Stokes 
equations.  Recall that the Euler equation is for an inviscid, incompressible, and 
constant property fluid with gravity as the only body force:

1V
V V g P

t ρ
∂ + ⋅∇ = − ∇
∂

Also recall that the convective acceleration term is the source of non-linearity in 
the conservation equation of momentum.  To be able to deal with this troublesome 
term, we notice that it can be substituted from the following vectorial identity: 

( ) ( ) ( )VVVVVV ×∇×−⋅∇=∇⋅
2

1

to get: 

( ) ( )1 1

2

V
V V V V g P

t ρ
∂ + ∇ ⋅ − × ∇ × = − ∇
∂
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Figure IIIa.3.6.  One-dimensional flow of fluid in an arbitrary conduit

The third term represents the cross product of the velocity vector and the vorticity 
vector, which is now the only troublesome term.  This term can be eliminated for 
two conditions.  The first condition is when we are dealing with irrotational flow.  
Because for irrotational flow vorticity is zero hence, 0=×∇ V .  With the third 
term eliminated, the above equation can be integrated between point i and point e.
The second condition is when point i and point e are located on a streamline.  In 
this case, the third term in integration goes to zero.  To demonstrate, we multiply 
both sides of the equation by an element of length, rd , which lies on the stream-
line.  It can be easily shown that the non-linear term is eliminated, as 

( )[ ] 0=⋅×∇× rdVV , and the rest of the equation after integration becomes: 

0
2

2
=+++⋅

∂
∂

e

i

e

i

dP
gdz

dV
ds

t

V

ρ
         IIIa.3.34 

where points i and e are located on a streamline.  Equation IIIa.3.34 is the time 
dependent form of the Bernoulli equation.  For steady and incompressible flow, 
this equation reduces to the Bernoulli equation (Equation IIIa.3.33).

Derivation of Bernoulli Equation from the Integral Momentum Equation 

We begin by analyzing the one-dimensional steady flow of a fluid in an arbitrary 
conduit as shown in Figure IIIa.3.6.  The steady state continuity equation results in 
d(ρVA) = 0 hence, m = ρVA = constant.  The steady state momentum balance re-
lates the body (weight of the fluid) and surface forces (pressure and viscous 
forces) to the momentum flux: 

0)/)((sin)()/( =+++ dsdsdVVAgAdsdsDAdsdsdP hw ρθρπτ

Dividing through by Ads, we obtain: 

gdZDdsVdVdP hw ρτρ ++=− )/(4                        IIIa.3.35 

We may now integrate this equation between points 1 and 2 along the length of 
the channel.  There are several problems that we must resolve to be able to per-
form the integration.  The first problem is flow velocity, which may not be uni-
form at a given location along the conduit.  To resolve this problem, we consider 
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the case of highly turbulent flow so that velocity is approximately uniform over 
the flow cross section.  The second problem is the fact that the flow cross section 
may vary along the conduit.  To be able to integrate, let’s only consider the case of 
fluid flow in a conduit with a uniform cross section, such as a circular pipe or 
tube.  The third problem to resolve is the fact that, for compressible fluids, density 
changes from point 1 to point 2 along the length of the conduit.  This change in 
density may be as a result of heating or cooling the flow.  To deal with this prob-
lem, we use densities at point 1 (ρ1) and at point 2 (ρ2) to obtain an average den-
sity ρ .  Since the average specific volume is given as v  = v1 + v2, we substitute 

for v = 1/ρ to obtain the average density as: 

21

111

ρρρ
+=

With these modifications in mind, we now integrate Equation IIIa.3.35 to obtain: 

( )122

2

12
21

11
ZZgP

A

m
PP fric −+∆+−=− ρ

ρρ
     IIIa.3.36 

where the first term in the right side of Equation IIIa.3.36 was obtained by the fol-
lowing substitution: 

2

2

21

2

1

2

1
2

2 111

A

m
d

A

m
VdV −==

ρρρ
ρ

For incompressible flow, ρ1 ≅ ρ2 ≅ ρ  hence, the first term in the right side of 
Equation IIIa.3.36 is practically zero.  The second term in the right side of Equa-
tion IIIa.3.36, is the frictional pressure drop, which is discussed in Chapter IIIb.  
Application of Equation IIIa.3.36 is discussed in Chapter IIIb (Example IIIb.4.7).  
For inviscid flow (∆Pfric = 0), Equation IIIa.3.36 reduces to Equation IIIa.3.33, the 
Bernoulli equation. 

Derivation of the Bernoulli Equation from Euler’s Equation for Streamlines 

In Example IIIa.3.10, we derived the Euler’s equation in streamline coordinates 
(sn) as: 

0
1 =

∂
∂+

∂
∂+

∂
∂+

∂
∂

s
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V
V

t

V

ρ
         IIIa.3.37 

To integrate this equation along the streamlines between points 1 and 2, we multi-
ply the above equation by ds and integrate:  

=+++
∂
∂

2

1

0
1

gdzdPVdVds
t

V

ρ
        IIIa.3.38 
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or alternatively; 

0)()(
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ZZgPP
VV

ds
t

V

ρ
                  IIIa.3.39 

Equation IIIa.3.39 for steady flow reduces to Equation IIIa.3.33 (i.e., the Bernoulli 
equation). 

One-Dimensional Momentum Equation for Viscous Flow 

If we are dealing with viscous flow, the applicable equation should account for 
frictional losses.  Hence, we can use the modified form of Equation IIIa.3.37 writ-
ten as 

0hh
1

2

1

2

1
=+++++

∂
∂

sf gdgdgdZdPVdVds
t

V

ρ
      IIIa.3.40 

Integrating; 

( ) 0hh
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2

2

1
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1

2
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∂
∂

sf ggZZgdP
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ds
t
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ρ
    IIIa.3.41 

If the flow is incompressible, then Equation IIIa.3.41 can be integrated to obtain: 

0hh)()(
1

2 1212

2
1

2
2

2

1
=++−+−+−+

∂
∂

sf ggZZgPP
VV

ds
t

V

ρ
     IIIa.3.42 

The integral term can be written as: 

( ) ==
∂
∂ 2

1

2

1

/
ds

dt

Amd
ds

t

V ρ
dt

mdI

A

ds

dt

md

ρρ
=

2

1

Substituting for the integral term and dividing through by g, Equation IIIa.3.42 
becomes: 

0hh)()(
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2
2 =++−+−+−+ sfZZPP
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VV
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md
I

g ρρ
    IIIa.3.43 

where I = Σ(L/A) is called the geometrical inertia.  Note that Equation IIIa.3.43 is 
written in terms of heads; 

(I/ρg)d m /dt:  Inertia head 
( 2

1
2

2 VV − )/(2g): Velocity head 
(P2 − P1)/(ρg):  Static pressure head
(Z2 − Z1):  Elevation head 
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hf:   Friction head 
hs:   Shaft head 

For steady incompressible flow with hs = hf = 0, Equation IIIa.3.43 reduces to the 
Bernoulli equation.  If we multiply the terms of Equation IIIa.3.43 by ρg, each 
term can be expressed as a differential pressure term: 

∆PInertia + ∆Pvel-acc + ∆Pstatic + ∆Pgravity + ∆Pfriction + ∆Pshaft = 0       IIIa.3.44 

If the shaft work is due only to the pump in the flow path, Equation IIIa.3.44 can 
be written as 

∆Ppump – (∆PInertia + ∆Pvel-acc + ∆Pstatic + ∆Pgravity + ∆Pfriction) = 0        IIIa.3.45 

or alternatively as 

)()( fricacclgravstatpump PPPPP
dt

md

A

L ∆+∆+∆+∆−∆=        IIIa.3.45 

Note that the differential pressure shown by ∆P is generally defined as ∆P = P2 – 
P1.  In the case of the differential pressure due to friction, ∆P is always a negative 
number.  To avoid the use of a minus sign, we define ∆Pfriction as ∆Pfriction = P1 – P2

throughout this book. 

Applicability of the Bernoulli Equation 

The Bernoulli equation is the most widely known equation in the field of hydrau-
lics due to its simplicity, which came at a high price including the following re-
strictions: 
− flow must be at steady state conditions 
− there should not be any shaft work, viscous work, or any other work 
− flow must be inviscid, incompressible, with uniform properties 
− flow must be either irrotational or the end points i and e must lie on a stream-

line. 

These are stringent conditions to meet.  The lack of frictional effects implies 
that the Bernoulli equation cannot be applied where flow encounters obstacles that 
cause unrecoverable pressure loss to the flow.  The no shaft work requirement pre-
cludes using the Bernoulli equation across a pump, compressor, or a turbine, for 
example.  The uniform properties requirement precludes applying the Bernoulli 
equation to situations where density at the exit is substantially different than 
density at the inlet.  Hence, the Bernoulli equation cannot be applied across a cool-
ing or heating coil over which a gas is flowing.   

These restrictions require careful assessment of a problem before a solution 
based on the Bernoulli equation is embarked upon.  For example, a hydraulic jump
(Figure IIIa.3.7) is an irreversible process (associated with head loss) which oc-
curs at certain conditions for a liquid flowing at high speed in a wide, horizontal 
open channel.  While it is tempting to apply the Bernoulli equation at end points 
before and after the jump, the associated irreversibility and the fact that we cannot 
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Figure IIIa.3.7.  Hydraulic jump in a rectangular channel 

trace a streamline between the end points, precludes doing so.  Regarding the in-
compressibility requirement of the flow, we can apply the Bernoulli equation to a 
compressible flow as long as flow velocity remains about 30% of the speed of 
sound in the fluid.   

Next, we shall solve several examples to which the Bernoulli equation can be 
applied.  It is important to note that for cases that the Bernoulli equation does not 
apply, we should use the applicable momentum equation such as Equa-
tion IIIa.3.31 or Equation IIIa.3.43.   

Example IIIa.3.16.  Water flows through a small opening located at depth h in a 
large reservoir.  Find water velocity. 

h

1

2

Solution:  Applying the Bernoulli equation between points 1 and 2, noting equal 
pressures (P1 = P2), and the fact that V1 ≈  0 compared with V2, we can solve for 
V2 to obtain:

h22 gV =                                                                                       IIIa.3.46 

The mass flow rate is, therefore, found as 22VAm ρ= .  In Chapter IIIb we shall 

see that flow rate is reduced due to a discharge coefficient.  The actual mass flow 

rate is then h22 gACm dρ= .

Example IIIa.3.17.  A horizontal and frictionless flow path connects two reser-
voirs.  The cross sectional area of reservoir 1 is much larger than that of the flow 
path. If pressure is maintained in both reservoirs, find the mass flux in the flow 
path.

P1 P2

A

ρ
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Solution: Applying the Bernoulli equation between points 1 and 2, we obtain: 

2

2
2

21
V

PP
ρ

+=

Solving for V2, we find, ( ) ρ/2 212 PPV −= .  Multiplying both sides by density, 

yields:

( )212 2 PPVG −== ρρ                                   IIIa.3.47 

Example IIIa.3.18.  The device shown in the figure is known as a venturi.  In this 
specific venturi, the differential pressure between locations 1 and 2 is 5 psi and the 
diameter ratio is D2/D1 = 0.35.  If D2 = 8 inches, find the air flow rate through the 
frictionless venturi.

21

Solution:  Applying the Bernoulli equation between points 1 and 2, noting equal 
elevations (Z1 = Z2), and solving for V2, we get: 

]
)(2

[ 212
1

2
2 ρ

PP
VV

−
=−

To get rid of velocity at point 1, we use the continuity equation; V1A1 = V2A2 so 
that V1 = V2 A2/A1.  If we now substitute for V1 in terms of V2 and use A2/A1 = 
(D2/D1)

2 = β 2  we obtain:

)1(

)(2
4
212

2
βρ −

−= PP
V

Substituting for =V V2A2, we find volumetric flow rate in terms of pressure drop, 
throat flow area and β:

)1(

)(2
V

4
21

2
βρ −

−= PP
A                        IIIa.3.48 

To calculate the volumetric flow rate from Equation IIIa.3.48, we have A2 = 
3.14(8/12)2/4 = 0.349 ft2.  Using density of air at standard condition, we find:

/minft2900
)35.01(076.0

)1445(2
349.0V 3

4
≈

−
×=

In this problem we demonstrated the usefulness of the Bernoulli equation in de-
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termining the flow rate of fluids.  However, we assumed ideal conditions such as 
frictionless venturi as well as steady, inviscid, and incompressible fluid flow.  To 
account for non-ideal conditions, the above flow rate is reduced by a discharge co-
efficient as discussed in Section IIIb.4.2.

Example IIIa.3.19.   For the venturi shown in the figure, derive a relation for flow 
velocity, V1 in terms of h,  = D1/D2, and * = m/ f where m is the density of the 
manometer liquid. 

21

ρmρf hh'

A B

D1 D2

Solution:  Applying Equation IIIa.3.33 between points 1 and 2, noting equal ele-
vations (Z1 = Z2) gives 

( ) ( )2/2/ 2
22

2
11 VPVP ff ρρ +=+

From Equation IIa.5.3, velocity V2 can be expressed in terms of V1 as V2 = V1

(D1/D2)
4.  Substituting, we get: 

( ) ( )4 2
1 1 2/ 2 1f g V P Pρ β − = −

We now express P1 and P2 in terms of h.  To do this, we know that PA = PB.  But 
PA = P1 + ρfh’g and PB = P2 + ρf(h’ – h)g + ρmhg.  Therefore, P1 – P2 = gh(ρm – ρf).
Substituting, we obtain: 

( )
1

1*h2
41

−
−=

β
ρg

V IIIa.3.49

Example IIIa.3.20. A large pressurized tank filled with air discharges into the 
atmosphere.  The flow path is a short and frictionless smooth pipe connected to a 
discharge nozzle.  Find a) the flow rate of air and b) pressure in the pipe for the 
given data.  Ignore all frictional losses, including head losses at the entrance to the 
pipe, at the bend, and at the nozzle. 

3
PTank (kPa):   110.0
DPipe (m):  0.040
d

Nozzle
 (m):  0.015

Air

2

1

Tatm (C):     20

Patm (kPa): 101
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Solution:  a) To find the flow of air we need to find 33V AV= where point 3 is 

taken at the nozzle exit.   Having A3 = πd2/4 = 3.14(0.015)2/4 = 1.77E-4 m2, we 
find V3 by using the Bernoulli equation between points 1 and 3: 

3

2
3

31

2
1

1 22
gZ

V
PgZ

V
P ρρρρ ++=++

We note that P3 = Patm, Z1 ≈ Z3, and V1 ≈ 0.  We ignored the elevation head here 
primarily because the working fluid (air) has low density.  We assume that air ve-
locity at point 1 is negligible because the tank is large.  Hence;

31

2
3

2
PP

V
−=

ρ

We now need air density, 3.1)]27320(9.286/[3E110/ 11 =+== RTPρ kg/m3.

Substituting;

1183.1/)000,101000,110(2/)(2 313 =−=−= ρPPV  m/s 

Therefore, 33V AV= =118×1.77E-4 = 0.021 m3/s.  We now should calculate the 

speed of sound in air to ensure that V3 < 0.3c.  Assuming air is an ideal gas:

1.4 286.9 (20 273) 1085 m/sc RTγ= = × × + =

Therefore application of the Bernoulli equation is valid here.   
b)  To find pressure in the pipe, we write the Bernoulli equation between points 1 
and 2: 

2

2
2

12
V

PP
ρ

−=

But we do not have V2.  We can calculate it from the continuity equation:

22V AV= = 33 AV

Since A2 = 3.14(0.04)2/4 = 1.257E-3 m2 therefore, V2 = 0.021/1.257E-3 = 16.7 
m/s.  So that P2 = 110,000 – [1.3× (16.7)2/2] = 109.82 kPa.

Example IIIa.3.21.  Find the maximum power developed by the turbine.  Data:  
H1 = 37 m, H4 = 2. m, D2 = 56 cm, D4 = 35 cm, V4 = 8.5 m/s, P4 = 200 kPa, Patm

≅  100 kPa, ρ = 1000 kg/m3.

H1

D2

D4

1

2

3

4
H4

Turbine

V4
P4

Lake

hs
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Solution:  Since the Bernoulli equation does not apply here, we  use  Equation 
IIIa.3.31.  The maximum power is obtained when we ignore all frictional losses.  
Equation IIIa.3.31 is applied between locations 1 and 4 noticing that V1  0 and 
there is a turbine on the path:

)
2

(hh)
2

( 4

2
4

4s1

2
1

1 gZ
V

PgggZ
V

P f ρρρρρρ +++=−++

where we ignored velocity at point 1.  Solving for hs, we find the head developed 
by the turbine as:

=−−+−=
2

)()(h
2

4
4141s

V
PPZZgg

ρρρ 1000 × 9.81(37 – 2) – (200 – 100) × 

1000 – 
2

5.81000 2×

shgρ  = 343.35E3 – 100E3 – 36.125E3 = 207.23 kPa 

The volumetric flow rate is [ ] 82.05.84/)100/35(V 2 ≅×== πVA  m3/s.  Turbine 

power is then found as:
3

S( h )V 207.23 kPa 0.82 m /s 170W gρ= = × ≅  kW ≅ 228 hp 

QUESTIONS

− What is continuum and why do we use such a concept in thermodynamics and 
fluid mechanics? 

− Is pressure a body force or a surface force? 
− What is the difference between fluid static, fluid kinematics, and fluid dynam-

ics?
− Consider an ideal gas going through an isentropic process.  Does the speed of 

sound in this gas increase as the gas temperature increases? 
− Is blood a Newtonian fluid? 
− Why does the rate of shearing strain in viscous fluids increase with the increase 

in shear stress? 
− For what type of fluid is a yield stress defined? 
− What approach best describes watching a school of fish while paddling in a ca-

noe?
− Is Equation IIIa.3.14 the Eulerian or the Lagrangian description of the conserva-

tion of momentum? 
− What is the significance of the Reynolds number? 
− What is the d’Alembert’s paradox? 
− What is the contribution of Prandtl to the field of fluid mechanics? 
− Is flow external or internal in a wind tunnel where objects of study are placed in 

a controlled flow of air? 
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− What is an unrecoverable pressure drop?  Is there also a recoverable pressure 
drop?

− The Navier-Stokes equations are highly non-linear partial differential equations.  
Can we get rid of the  non-linear terms if we use an inviscid fluid? 

− What is mechanical energy? Is it correct to say that there is no conversion of 
mechanical energy to internal energy for the incompressible inviscid flow? 

− What is vorticity and for what condition is the vorticity of a fluid flow zero? 

PROBLEMS 

Section 1 
1.  A fluid element in a flow field at time t is identified with the three components 
of its location vectorgiven as: rx = 1 cm, ry = -4 cm, and rz = 2 cm.  Find a) the 
magnitude and b) sketch the direction this fluid element is heading.  [Ans.:  a) 4.58 
cm].

2.  Use Table A.IV.4(SI) to find the dynamic viscosity of air at the temperatures of 
100, 300, 400, 600, 800, and 1000 K.  Air is the atmospheric pressure.  Plot the 
viscosities versus temperature and describe the trend. 

3.  Use Table A.IV.5(SI) to find the dynamic and kinematic viscosities of satuaretd 
water at 300, 400, 500, and 600 K.  Plot the viscosities versus time and describe 
the trend.  Compare the results for water with the results for air in Problem 2 and 
explain the difference.

4. The velocity vectors of three flow fileds are given as 1 (1 )V axi bx t j tk= + + + ,

2 (1 )V axyi bx t j= + + , and ktbzyiaxyV )1(3 +−=  where coefficients a and b have 

constant values.  Is it correct to say that flow field 1 is one-, flow filed 2 is two-, and 
flow filed 3 is three-dimensional? Are these flow fields steady or unsteady? 

5.  Two large flat plates are sparated by a narrow gap filled with water.  The lowr 
plate is stationary and the top plate moves at velocity Vf.  The velocity profile in 
water is linear iyVV f )h/(=  where y is the vertical distance.  Find the shear 
stress at the wall.  TWater = 20 C, h = 5 mm, and Vf = 0.5 cm/s. 

6.  Water is flowing between two stationary parallel plates.  For laminar flow, the 
velicty is a parabolic function of the vertical distance y as shown in the figure.  
Find a) the force applied on the lower plate and b) the average flow velocity in the 
fully developed region of the flow field.  Data:  Vmax = 0.1 m/s, h = 0.8 cm, plate 
length is 1 m and the plate width is 10 cm.

y
2

max h

2
1−= y

V

Vh x
Vmax
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7.  The velocity profile for the laminar flow of water in a pipe is Vx(r) = (Vx)max[1 – 
(r/R)2].  Find velovity at r = R/8, r = R/4, and r = R/2.  [Ans.:  Vx(r = R/8) = 
0.015625(Vx)max].

Vx(r)r

x

Fully DevelopedEntrance Length

R
(Vx)f dA

a

Vf

x

y

Problems 7 and 8                                                               Problems 9 and 22 

8.  In the above problem find the average flow velocity and the volumetric flow 
rate if the maximum velocity at the pipe centerline is 2 m/s and pipe diameter is 8 
cm.  [Ans.:  Vav = (Vx)max/2 = 1 m/s, 5E-3 m3/s]. 

9.  The components of the velocity vector for the flow of an ideal fluid over a 
circular cylinder are: 
Vr = Vf(1 – a2/r2)cosθ  and Vθ = –Vf(1 + a2/r2)sinθ  where a and Vf are the radius of 
the cylinder and the velocity of the approaching flow, respectively.  Find a) the 
magnitude of velocity at θ = π/4 for fluid particles at r1 = 1.1a, r2 = 1.2a, r3 = 1.3a
and b) the maximum velocity and its location.  [Ans.:  V2 = 1.22Vf].

10.  Fluid is flowing between two large plates.  Flow enters the gap between the 
two plates at x = 0 and leaves the gap at x = L, where L = 5 m.  The two paltes are 
not parallel so that the flow area at x = 0 is twice the flow area at x = L.  The flow 
enters the gap at x = 0 at a veloxity of V1 = 1 m/s.  Find a) the flow velocity at x = 
L and b) the velocity vector. 

11.  In Cartesian coordinates, the Eulerian description of an unsteady, two-

dimensional velocity field is given as jeietyxV ytxt +=),,( .  Find the velocity of 

a particle located at x = 2 and y = 3 at time t = 1. 

12.  In the polar coordinate system, as defined in Chapter VIIc, r and θ are related 
to x and y as r2 = x2 + y2 and tanθ = y/x.  a) Use the chain rule for differentiation to 
show that

θ
θθ

∂
∂+

∂
∂=

∂
∂

rrx

sin
cos  and 

θ
θθ

∂
∂+

∂
∂=

∂
∂

rry

cos
sin

b) Take the derivative of f(r,θ) = rsin(2θ) in the Cartesian coordinate system. 

13.  Use the chain rule for taking the derivative of composite functions and find 
dG/ds where G = F[fi(s), s].  Next, find the acceleration of a fluid particle for a 
case in which G = V, s = t, and f1(s) = x(t), f2(s) = y(t), and f3(s) = z(t).  [Ans.: 
dG/ds = Σi(∂G/∂fi)dfi/ds + ∂G/∂s].

Sections 2 
14.  Find the fluid acceleration if the veoclity profile is given as a) iyVV f )h/(=
and b) iytVV f )h/(= .
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15.  The three components of a velocity vector of a fluid particle in the Cartesian 
coordinate system are Vx = x2yt2, Vy = –xy2(1 + t)t, and Vz = 2xyt.  Find the 
acceleration of a fluid particle located at x = y = z =1 at t = 1s. 

16.  Consider a high-rise building.  Balloons are being released steadily from each 
floor of the building such that the balloon population at any elevation z is given by 
N = No[1 + (z/H)] where No is the number of balloons released at the ground and H 
is the elevation of the last floor.  Find the observed rate of change of the balloon 
population as seen by a) an observer on the first floor looking up and b) an ob-
server traveling upward in a hot-air balloon at velocity Vo.
[Ans.:  0 and VoNo(2z/H2)].

17.  Specify the framework that best describes the following situations; a) a 
helicopter pilot following a Police chase, b) a hunter targeting a bird in a flock of 
birds, c) a lion chasing a wilderbeast in a herd, d) a geologist watching lava 
flowing from a volcano, e) studying blood flow in the arteries by using suitable 
dyes.

18.  Air flows in a duct with a rectngular flow area.  At the enterance, the rectangle 
is 1 m by 0.5 m and at the exit, the recangle is 1.5 m by 0.8 m.  The duct is 10 m 
long and the volumetric flow rate of air in the duct is 1 m3/s.  Find the acceleration 
of air halfway through the duct.  Is flow accelerating or decelerating?  [Ans.:  
0.114 m/s2].

x

y

x2 = Lx1 = 0

x

y

V

x1 = 0 x2 = L

V

   Problem 18                                  Problem 19 

19.  The velocity vector for a one-dimensional, steady, incompressible flow in the 
channel shown below is given as iLxVV )]/(1[1 += .  Find a)  the x-component of 

the acceleration vector and b)  the position vector of a fluid particle located at x = 0 

and time t =0.  [Ans.: a) ax = LVLx /)/1( 2
1+  and b) )1( /1 −= LtVeLx ].

20.  A velocity vector is given as jytxixytV 22−= .  Find a) the local 

acceleration vector.  b) the convective acceleration vector.  [Ans. for part a:  

jytxixyalocal
22−= ].

21.  A position vector is given as kRjRiRR zyx ++=  where Rx = 0.334xy2t3 + 

1.5zt2, Ry = 0.5xyt2 – x2t, and Rz = –(0.334y2zt3 – 0.25z2t2.  Find the velocity and the 
acceleration vectors.  Calculate the acceleration of a point located at x = 1 m, y = –

1 m, and z = 1 m at time t = 2 s.  [Ans.:  kjia 5.47 −−=  and 38.8=a  m/s].
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22.  Use the components of steay flow velocity around a cylinder as given in 
Problem 9 and find the acceleration of a fluid element located at r = 2a and θ = 
π/2.  [Ans.:  -(Vf)

2/(4a)].

Section 3 (Continuity Equation) 
23.  Do the following vectors represent the velocity vector of an incompressible 
flow? 

kytxtzjxyztixyztV )(5.0)()( 222
1 −+−=  and 

kytxtzjxyztixyztV )(5.0)()( 222
2 −+−=

24.  In a two-dimensional incompressible flow, the component Vx of the velocity 
vector is given as Vx = –x2y.  Find Vy.  [Ans.:  Vy = xy2 + C].

25.  In a three dimensional incompressible flow, Vx and Vy are given as Vx = 3x2 + 
xy2, Vy = xzy.  Find Vz.  [Ans.:  Vz = –(6x + y2)z – 0.5xz2].

26.  Two components of a two-dimensional flow in polar coordinates are given as 
Vr = Vocosθ [1 – (a/r)2] and Vθ = –Vosinθ [1 + (a/r)2].  Is this a steady incom-
pressible flow? 

27.  The velocity vector in a flow field is represented by ϕθ uuuV r 432 ++=
where ϕθ uuur and,,  are the unit vectors of the spherical coordinate system.  
Does this represent an incompressible flow field?

28.  The velocity vector of a steady, two-dimensional, incompressible flow in polar 
corrdinates is shown as θθ iViVV rr += . If the r-component is given as Vr = 

(θ/2πr) + Vocosθ, find the θ-component.  [Ans.:  Vosinθ].

29.  Density of a two-dimensional steady compressible flow field in the Cartesian 
coordinate system is given as ρ = xy.  If the component Vx of the velocity vector is 
Vx = x2y2, find the differential equation from which Vy can be determined.  [Ans.:  
dVy/dy +Vy/y +3xy2 = 0]. 

30.  A velocity vector is given as kytxtzjxyztixyztV )(5.0)()( 222 −+−= .  Find 

the vector representing the applied differential force on a unit mass of the fluid 
(i.e., dmFd / ).

[Hint, )///()/(/ zVVyVVxVVtVdmFd zyx ∂∂+∂∂+∂∂+∂∂= ].

31.  Show that the velocity of an incompressible flow has zero divergence. 

32.  Velocity profile for turbulent flow in smooth circular pipes may be 
empirically expressed as V(r) = Vmax(1 – η)m.  The value of the exponent m
depends on the flow condition and varies from 1/6 to 1/10, with 1/7 being used for 
wide ranges of turbulent flow.  Find the ratio of the average to the maximum 
velosity in the flow field )(/ max mfVV = .  [Ans.:  )2)(1/[(2/ max ++= mmVV ].
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33.  Derive the relation between ρ, V, and A for one-dimensional flow under steady 
state condition. 

[Ans.: 0=++
A

dA

V

dVd

ρ
ρ

].

34.  Use the Gauss divergence theorem to obtain Equation IIIa.3.13 from IIIa.3.2.

35.  Two infinitesimal elements of the same fluid in the Cartesian coordinates 
taken in a flow field are shown in the figure.  One is used as a control volume 
through which fluid flows to derive the conservation equation of mass.  The other 
is used as a differential fluid element in a free body diagram to relate the net ap-
plied forces to the acceleration of the fluid element.  Specify which of these deri-
vations uses the Eulerian and which uses the Lagrangian approach.  b) Specify the 
conservation equation of mass in the Lagrangian approach. 

∆y

∆z

∆x

∆y

∆z

∆x

C.V. for
conservation of

mass

C.V. for
conservation of

Momentum

36.  The general form of the continuity equation that is independent of the coordi-
nate system and applies to steady or unsteady, compressible or incompressible, 
viscous or inviscid flow is given by Equation IIIa.3.13.  Which term of this equa-
tion represents the mass flux?  Show the units of the mass flux term.  Apply this 
equation to a compressor, which is steadily delivering compressed air to a reser-
voir.   

37.  Apply Equation IIIa.3.13 to a flow field identified with the velocity vector 

given as iaxV =  and density of ρ = b + ce–sxcosωt where coefficients a, b, c, and 
s are constants. 

38.  Equation IIIa.3.13 for steady flow simplifies to 0=⋅∇ Vρ .  What other con-

dition should exist to be able to further simplify this equation and obtain 

0=⋅∇ V ?

39.  Regarding the differential formulation of the continuity equation, match num-
bers with letters: 

1: ( ) 0=⋅∇+
∂
∂

V
t

ρρ
, 2: ( ) 0=⋅∇ V , 3: ( ) 0=⋅∇+ V

Dt

D ρρ
, 4: ( ) 0=⋅∇ Vρ

a: Lagrangian form, b: Steady flow, Eulerian form, c: Incompressible flow, d: Eul-
erian form 

40.  Water flows steadily in a pipe of inside diameter D.  Flow area at exit, S is at 
an inclined angle α with the horizontal plane.  Find α in terms of the pipe diameter 
and exit flow area.  [Ans: α = cos–1(πD2/4S)].
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41.  Find water flow rate at steady state condition in the above pipe for V = 3 m/s, 
S = 100 cm2, and α = 30o.

x
n

α
S

DV V D

           Problems 40,  41, and 42                                                   Problem 43

42.  Water is flowing steadily in a 4 in diameter pipe at a velocity of 5 ft/s.  Flow 
area at the exit (surface S) is at an inclination angle of 30 degrees with the horizon-
tal plane.  a) Find the velocity vector as well as the vector representing surface S.
b)  Use the two vectors you obtained in part a to find the volumetric flow rate as: 

S SVdsV ⋅=⋅=V

43.  Water at 7 ft/s and 65 F flows in a 10 in schedule 40 pipe (inside diameter 
from Table A.III.1(SI) is 254.5 mm or 10.02 in from Table A.III.1(BU)).  The pipe 
now bursts with an effective rupture area of twice the flow area of the pipe (ARupture

= πD2/2).  Find the mass flow rate of water through the ruptured area.  Assume 
that the flow velocity remains at 7 ft/s after the pipe ruptures.  [Ans.:  239 lbm/s]. 

44.  Consider a cylinder, equipped with a piston.  The cylinder contains a gas, hav-
ing a density of 20 kg/m3 when the piston is Lo = 20 cm from the closed end of the 
cylinder.  We now pull the piston away from the closed end at a velocity of Vpiston

= 15 m/s.  Find the gas density at t = 0.5 s after the piston is pulled.  Assume that 
Vgas = Vpiston(x/L).  Note that at time zero, L = Lo.  [Ans.:  14.5 kg/m3].

Section 3 (Momentum Equation) 
45.  For the flow of fluids, Newton’s second law of motion can be expressed as: 

+
∂∂
∂∂
∂∂

=

z

y

x

zzyzx

yzyyx

xzxyx

z

y

x

g

g

g

z

y

x

V

V

V

Dt

D ρ
σττ
τστ
ττσ

ρ
/

/

/

a) Is this equation applicable to non-Newtonian fluids?
b) Draw the free body diagram and show all the forces applied on the infinitesimal 
fluid element.
c) By taking moments about axes passing through the center of the infinitesimal 
element, show that the shear stresses become τxy = τyx, τyz =τzy, and τxz = τzx (this is 
an implication of the Stokes hypothesis).   
d) The constitutive equations for the normal stresses are σx = –P + τxx, σy = –P + 

yyτ , σz = –P + zzτ  where 

VxVxxx ⋅∇+∂∂= λµτ )/(2 , VyVyyy ⋅∇+∂∂= λµτ )/(2 ,

and VzVzzz ⋅∇+∂∂= λµτ )/(2  where λ = –2µ/3.  Use the Stokes hypothesis to 

show that:
P = –(σx + σy + σz)/3 
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Thus, pressure at a point in a fluid is a compressive stress, having an absolute 
value equal to the average value of the three normal stresses applied at that point. 

46.  Consider the case of an ideal fluid flow in the conduit of Problem 19.  Find 
pressure at the exit of the conduit in terms of the flow density and velocities at the 

inlet and the outlet.  [Ans.: )( 2
1

2
212 xx VVPP −−= ].

47.  Show that the Navier-Stokes equations for a three dimensional, incompressi-
ble, and Newtonian fluid are:

∂
∂

+
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∂
+
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∂

+
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2
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2
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48.  Two components of a two-dimensional flow are given as Vx = x2 – y2 and Vy = 
–2xy.  Use the result of Problem 47 to find the condition for this velocity vector to 
be the solution to the Navier-Stokes equations.

49.  The velocity components of a two dimensional steady ideal fluid flow (fric-
tionless and incompressible) are given as Vx = axy and Vy = –by2 where coefficients 
a and b are constants.  Find the pressure gradient in terms of a, b, x, and y.  Find 
the value of the pressure gradient for a = b = 1 at point x = y = 1. 

50.  Assuming air behaves as an ideal gas use the equation of state and Equation 
IIIa.3.22 to find the air pressure in the upper atmosphere as a function of elevation.  
Use the result to find air pressure at an elevation of 1 km (3280.8 ft) from the sea 
level.  In a winter night temperature at this elevation is measured as –16 C.  [Ans.:  

)/( TRMzg
s

uePP −= , 88.7 kPa]. 

Section 3 (Energy Equation)
51.  Solve Example IIIa.3.13 by direct derivation.  For this purpose, consider the 
elemental control volume inside the boundary layer as shown in the figure.  Write 
a steady state energy balance for this control volume by considering the net con-
vection in the flow direction, net conduction perpendicular to the flow direction, 
and viscous work. 

dx
dy

x

y
Vf Convection

Conduction Viscous work
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52.  Express the first law as is given by Equation IIIa.3.12 in terms of the enthalpy 
of the control volume.   

53.  Use Equation IIIa.3.23 to derive the rate of change of entropy for a Newtonian 
fluid as: 

TT

Tk

dt

ds Φ+∇=
2

ρ

54.  Use the velocity profile of Problem 6 for laminar flow between two parallel 
plates to find the temperature distribution in the flow in terms of Ts, the plates 
temperature.

Section 3 (Fluid Rotation) 
55.  Derive the relation for angular velocity in terms of the velocity components 
for fluid rotation in a two-dimensional flow field.  [Hint:  Use the schematic for ro-
tation in Figure IIIa.3.5 and find the angular velocity for line oa as ωoa = dα/dt.
Substitute for dα = dly/dx and for dly from dly = (∂Vy/∂x)dxdt.  Do the same for line 
ob to find ωob.  The z-component of rotation vector is the average of ωoa and ωob.
Do the same for x- and y- components]. 

56.  Show that the convective acceleration for an irrotational flow is given by 
( ) 2/VV ⋅∇ .  [Hint:  Expand the realtion for convective accelaration ( )VVax ∇⋅=

and set the curl of the velocity vector equal to zero]. 

57.  Use the definition of vorticity (ζ ) to find the value of ( ) rdV ⋅×ζ  where V is 

the velocity vector and dr is an element of length of a stramline.  [Ans.: 0]. 

58.  The two components of the velocity vector are given as Vx = –ay/(x2 + y2)1/2

and Vy = ax/(x2 + y2)1/2 where a is a constant in cm/s.  Find the vorticity of a fluid 
element located at x = y = 1 cm.  [Ans.:  1.41a k ].

59.  An area closed by the contour C in a flow field is shown in the figure.  
Circulation is defined as the summation of the tangential velocity componnet 
around the contour C:

.C V dlΓ =  = A Ad⋅ω

V

dlω

ζ

y

x

Area A

Contour C

a) Find the units of circulation Γ and b) show that AdV ⋅×∇=Γ .
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Section 3 (Bernoulli Equation) 
60.  Flow is pumped from point A to point B in a steady state steady flow process.  
Start with Equation IIIa.3.12 and obtain the governing equation as given in Equa-
tion IIIa.3.31.  [Hint:  Equation IIIa.3.12 for steady state steady flow with one inlet 
port and one outlet port becomes;

+++=+++ e
e

esi
i

i gZ
V

hwqgZ
V

h
22

22
          1 

Substituting for h = u + Pv, noting that ui = ue, and rearranging we obtain: 

pfei
ei

ei ZZ
VV

g
PP

g
hh)()

22
(

1
)(

1 22
−=−−+−+−

ρ
      2 

where q in Equation 1 is the heat produced by frictional losses and delivered from 
the control volume to the surroundings.  Also ws in Equation 1 is the shaft work 
delivered to the control volume as pump head hence, carrying a minus sign in 
Equation 2]. 

61.  An inviscid fluid flows steadily at low speed in a horizontal and well-insulated 
pipe.   
a)  Consider locations a and b along the length of the pipe and chose the correct 
answers for velocity (V), pressure (P), and temperature (T):

L

V

Pa Pb

ba

Vb < Va, Vb = Va,   Vb > Va

Pb < Pa, Pb = Pa,   Pb > Pa

Tb < Ta, Tb = Ta,   Tb > Ta

b)  Answer the same questions but for the pipe oriented so that Zb > Za.
c)  Answer the same questions but for the pipe oriented so that Zb < Za.

62.  A large reservoir is connceted to a frictionless flow path, having a small flow 
area, as shown in the figure.

A

B
C

hA

hC

A

B

C

K.E. P.E. K.E + P.E.

Specify the kinetic energy, potential energy, and total energy for points A, B, and 
C located on the flow path. 
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63.  Water is flowing out of a small hole located at a depth of h below the free 
surface of a large reservior.  Find the equation of the stream leaving the hole in the 
coordinate shown in the figure.  [Ans.:  y = x2/4h].

h

x

y

64.  Four cases are shown in the figure: water flowing through a smooth siphon, 
water flowing through a pump, water flowing through an angle valve, and air flow-
ing through an operating turbo jet.  Identify the case to which the Bernoulli equa-
tion is applicable between locations 1 and 2. 

1

2

2

1
1

2

1 2C T

CC

CC

C:  Compressor
CC: Combustion Chamber
T:  Turbine

For cases that the Bernoulli equation is not applicable, specify the alternative equa-
tion that should be used. 

65.  A turbine (see the figure of Example IIIa.3.21) is located at an elevation H1

from the surface of a lake with the discharge pipe located at an elevation H2 from 
the turbine centerline.  Find flow velocity, V4 in terms of H1, H2, P1, P4, hs, and ρ
where subscript 4 refers to the discharge piping. 

[Ans.:  ( ) ( ) ( )4 1 4 1 42 / h sV P P g Z Zρ ρ= − + − − .

66.  A turbine is operating at 150 ft below the surface of a lake.  Flow rate of water 
through the turbine is 100 ft3/s.  The discharge pipe is located 10 ft above the 
turbine.  In the discharge pipe, where velocity is 25 ft/s, pressure is measured as 12 
psig.  Find the maximum power developed by this turbine.  [Ans.:  1164 hp]. 

67.  A turbine is located 100 m below the surface of a lake.  The discharge pipe 
has an elevation of 5 m from the turbine centerline.  The head developed by the 
turbine is 81.5 m.  Pressure at the discharge pipe is 15 psig.  Find flow velocity 
and the power developed by the turbine.  Ignore frictional losses and use Di = 4 m.
[Ans.:  V4 = 7.62 m/s, 76.5 MW]. 

68.  Water at a rate of 1 m3/s enters a small hydraulic turbine from the horizontal 
supply line, having a diameter of 50 cm.  The pressure at the inlet (stage 1 in the 
figure) is 200 kPa.  Pressure in the turbine discharge conduit (the draft tube) at 
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location 2, which is 2 m below the turbine centerline, is measured as 55 kPa.  Find 
the shaft head and the horsepower developed by this turbine.  Use D2 = 65 cm. 

1

2

h

Hydraulic
Turbine

Draft Tube

Tail Water

69.  Consider the hydraulic jump as shown in Figure IIIa.3.7.  Use the continuity 
and the momentum equations to derive a relation for z2 in terms of V1 and z1.
[Hint:  Cancel V2 between the two equations, then cancel out (z1 – z2) to obtain 

0121
2
2 =−+ azzzz ].  [Ans.: ;)2/()2/( 1

2
112 azzzz ++−= where gVa 2/2

1= ].

70.  A siphon (an inverted U-tube) is used to steadily withdraw water from a large 
reservoir.  The top of the siphon is 1.5 m higher than the surface of the water in 
the reservoir and the discharge side of the siphon is 8 m below the water surface.  
Ignore all frictional losses in the siphon.  Find a) the mass flow rate of water dis-
charged to the atmosphere and b) the pressure at the top of the siphon.  Water is at 
T = 27 C and 1 atm.  The diameter of the siphon tube is 5 cm.  [Ans.:  a) 24.6 kg/s 
and b) 7.86 kPa]. 

71.  In Problem 70, find the hight of the top of the siphon at which pressure 
reaches the vapor pressure of the water in the reservoir and the flow becomes dis-
rupted. 

72.  A pipe is connected vertically to the discharge side of a pump.  The top of the 
pipe is a short horizontal segment connected to a nozzle.  The vertical length of 
the pipe (i.e., from the pump discharge to the horizontal segment) is 12 ft long and 
the pipe diameter is 4 in.  The nozzle discharges water to the atmosphere at a ve-
locity of 65 ft/s.  Ignore all frictional losses and find the required pressure at the 
pump discharge. 
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IIIbb..  Incompressible Viscous Flow 

In the previous chapter, we used Newton’s second law of motion to obtain both 
the integral and differential forms of the momentum equation.  In this chapter, we 
focus on the one-dimensional internal incompressible viscous flow.  We use New-
ton’s second law to find the frictional losses associated with the flow of fluids in 
pipes, fittings, and valves in steady state conditions.  We then conclude this chap-
ter with the study of unsteady state incompressible fluid flow. 

1.  Steady Incompressible Viscous Flow 

Incompressible inviscid flow is a special case for which even analytical solutions 
in closed form can be obtained if the flow is also irrotational (known as potential 
flow).  For incompressible viscous fluids, the task of analyzing the flow is still 
well developed provided the flow remains laminar.  If the flow is turbulent, the 
traditional techniques need to be enhanced by experimental data.  Hence, due to 
the complexity of turbulent flow, the existing theories are semi-empirical.  As 
shown in Figure IIIa.1.5, turbulent flow is subject to large lateral fluctuations.  
The term turbulent stands for the chaotic nature of the fluid motion, which in-
volves lateral mixing superimposed on the motion of the main stream.  The cross-
wise mixing causes additional shear stresses and friction, which results in addi-
tional energy loss for turbulent flow compared with laminar flow.  The momentum 
transfer by crosswise mixing is shown in Figure IIIb.1.1.   

Vx

x

y

a

b

Figure IIIb.1.1.  Momentum transfer in turbulent flow 

Two particles of fluid having masses ma and mb are exchanged due to the turbu-
lent fluctuations in a flow.  In this process, due to the continuity equation, no net 
mass is exchanged but the momentum transfer is equal to )]()([ aVbVm xx −  where 
m = ma = mb and xV  represents the average velocity.  Next, we investigate the 
modification of the conservation equations to account for such momentum transfer 
due to the turbulent fluctuations. 



1.  Steady Incompressible Viscous Flow      287 

Modification of Conservation Equations to Accommodate Turbulent Flow 

Viscous Newtonian fluids follow Newton’s law of viscosity for laminar flow.  In 
turbulent flow as explained above, the shear stress is enhanced due to the exis-
tence of the local momentum transfer between the layers of the fluid.  The best de-
scription for turbulent phenomena is offered by Hines, “turbulence may be defined 
as an irregular condition of flow in which various quantities show a random 
variation with time and space, so that statistically distinct average values can be 
discerned.”

The Navier-Stokes equations are valid for laminar flow.  The difficulty in ap-
plying these equations to turbulent flow lies in the fact that the variables in these 
equations refer to the instantaneous values at the point under consideration.  Rey-
nolds modified the Navier-Stokes equations so that the variables would be time 
averaged.  Additional terms were introduced to account for fluctuations in flow.  
Scores of experiments have shown that turbulent fluctuations are randomly dis-
tributed.  Hence, the frequency spectrum of the fluctuations shows continuous 
variations with no peak, as discrete peaks imply periodicity. Mathematically, this 
means that the time average of the fluctuating velocity is zero.   

0
1

0
' =θ

θ
dtVx

To modify the conservation equations, each laminar term in the equation is re-
placed by the turbulent equivalent such as '

xxx VVV += , '
yyy VVV += ,

'
zzz VVV += , 'PPP += , etc.  These are then integrated over the domain of in-

terest (θ ) noting that for Vx, for example: 

xxxx VdtVVdtV =+=
θθ

θθ 0

'

0
)(

11

This is known as the Reynolds rule of averages.  To apply this to the conservation 
equation for mass, we note that the equation for steady incompressible flow is 
given as:  
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Substituting terms and integrating yields: 
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θ
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∂ ∂ ∂ ∂ ∂ ∂

Therefore, the conservation equation of mass is directly applicable to both laminar 
and turbulent flows.  Let’s try the same procedure for the conservation equation of 
momentum (Equation IIIa.3.17): 

VgP
dt

Vd 2∇++∇−= µρρ
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We may use the component of this equation along the x-axis.  After substitution 
and integration:  
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Note that now some unfamiliar terms, such as ''
xxVVρ , appear.  We could not get 

rid of them the same way we got rid of the fluctuations by time averaging.  These 
terms are referred to as turbulent, eddy, or Reynolds shear stress even though they 
are not shear stress.  Rather, they appear as a result of fluid inertia manifested as 
convective acceleration.  These terms are called shear stress because they appear 
next to the laminar shear stress term.  As a result, shear stress in general is given 
as: 

TurbulentLaminar
'' ττρµτ +=−

∂
∂

= yx
x VV

x

V

A similar procedure can be applied to the two other components of the momentum 
equation.   

Let’s now consider a boundary layer developed when a fluid flows over a flat 
plate.  As shown in Figure IIIb.1.2, near the free stream, shear stress is all due to 
turbulent shear.  This contribution diminishes rapidly as we approach the wall, 
dominated by viscous shear.  Turbulent shear for incompressible fluid is a two-
dimensional tensor.  The structure of this tensor in the Cartesian coordinate system 
is given as: 
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Figure IIIb.1.2.  Profiles of shear stress and velocity in boundary layer 



2.  Steady Internal Incompressible Viscous Flow      289 

Reynolds shear can be expressed in terms of velocity gradient, similar to the New-
ton law of viscosity.  Boussinesq made this analogy by introducing the concept of 
eddy viscosity to obtain: 

dy

Vd
VV x

yx ε−=''

where ε is known as eddy diffusivity for momentum.  The quantity ρε is usually 
interpreted as an eddy viscosity analogous to µ, the molecular viscosity, but 
whereas the µ is a fluid property, ρε is a parameter of fluid motion.  We study the 
shear stresses in internal flow in the next section. 

2.  Steady Internal Incompressible Viscous Flow 

The topic of internal flow covers the vast field of fluid flow in pipelines, fittings, 
valves, pumps, and turbines.   

Velocity Distribution 

In Section 1 we noted that unlike laminar flow, in turbulent flow no simple rela-
tion exists between the shear stress and the mean velocity field.  Hence, there is no 
fundamental theory to determine the velocity distribution on a purely theoretical 
basis.  As a result, semi-empirical relations are used to determine the velocity field 
in turbulent flow.  In this section, both laminar and turbulent flows inside pipes are 
studied and relevant correlations are presented. 

Shown in Figure IIIb.2.1 are the boundary layers for flow inside a pipe.  For the 
fully developed flow, flow can either be laminar or turbulent. 

Parabolic
velocity
profile

Vmax

V

τ

τw

τw Laminar flow

Turbulent flow
Vmax

V

τ

τw

τw

Figure IIIb.2.1. Shear stress and laminar and turbulent boundary layers in pipes 

Our goal is to derive the profile for shear stress as well as the velocity profile 
for both laminar and turbulent flow regimes.  In these derivations, we will see that 
the shear stress has a linear profile regardless of the flow regime.  We will also see 
that the laminar flow has a parabolic velocity profile where the maximum velocity 
is much larger than the average velocity.  In turbulent flow, the velocity profile is 
much flatter than the laminar velocity profile.  Thus, the maximum velocity is just 
slightly larger than the average velocity.  In the fully developed region, Vr = 0 and 
so is ∂Vx/∂x = 0.  In both flow regimes, the average velocity is obtained from: 
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Figure IIIb.2.2.  Control volume for shear stress profile in laminar and turbulent flow in 
pipes 
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In this chapter, we use the average flow velocity at each cross section. 

Example IIIb.2.1. The velocity distribution at the exit of a pipe is given.  Find 
the uniform inlet velocity in terms of the maximum velocity. 
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Solution:  To find the uniform inlet velocity, we make use of the definition of av-
erage flow velocity: 
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Shear Stress Distribution in Incompressible Viscous Flow in Pipes 

Before deriving the shear stress profile, it is interesting to note that for an ideal 
flow, pressure changes between two points if there is a change in flow area or ele-
vation.  For viscous fluids, due to the existence of shear stresses, pressure changes 
even though there is no change in flow area or elevation.  To derive the shear 
stress profile for steady incompressible viscous flow in pipes, a force balance for a 
control volume as shown in Figure IIIb.2.2 is used.  For fluid flowing in the x-
direction, pressure acting at the left area of the control volume is balanced by the 
pressure acting on the right surface area and by the shear stress acting on the sur-
face area of the control volume.  Note that we have used the first two terms of the 
Taylor expansion for pressure.  From a steady state force balance, we then find 
that:

0222 =−+− rxrdxrdx
dx

dP
PrP τπππ
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which then simplifies to: 

x

Pr
rx ∂

∂−=
2

τ

The maximum shear stress occurs at the surface or wall of the pipe (r = R).
Therefore, at the wall of the pipe: 

x

PR
w ∂

∂−=
2

τ

We could obtain the same result by using the conservation equation for momen-
tum directly, as described in the next section. 

Fully Developed Laminar Flow Inside Pipes 

Once past the entrance region, the steady flow of an incompressible viscous flow 
inside pipes would become fully developed.  If the flow is laminar, the velocity 
profile can be derived analytically by using the conservation equations of momen-
tum in a cylindrical coordinate system.  As fluid flows along the x-axis, by using 
symmetry, we note that velocity at any cross section changes only in the r-
direction (i.e., Vx = Vx(r)).  Note that the same conclusion can be reached by using 
the conservation equation of mass.  The conservation equation of momentum in a 
cylindrical coordinate system in the direction of flow (x-axis) gives: 

( ) 0
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∂ τρ r
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V
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where the only body force is gravity, which for horizontal flow has no component 
in the x-direction.  If flow is not horizontal, the term representing gravity should 
be considered in the above equation.  Integrating this equation, with boundary 
condition of 0=τ  at r = 0, yields the same results obtained in the previous sec-
tion for shear stress.  To derive the velocity profile, the Newton law of viscosity 
can be substituted in the profile for shear stress: 
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This equation can now be integrated with the boundary condition of Vx = 0 at 
r = R.  Radially, r and y are in opposite direction.  Thus, for the purpose of inte-
gration, we make a change of variable from dy to –dr to obtain: 

−
∂
∂−=

22
1

4
)(

R

r

x

PR
rVx µ

            IIIb.2.1 

indicating that velocity in laminar flow is a parabolic function in the r-direction.  
This is known as Hagen-Poiseuille flow.  The maximum velocity occurs at r = 0.  
Hence, maximum velocity for laminar flow inside a pipe is given as: 
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Therefore, the velocity profile in terms of maximum velocity at any axial location 
can be written as: 
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The volumetric flow rate can be obtained by using its definition: 
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where the differential pressure ∆P over length L due to friction is defined as ∆P = 
P1 – P2.

Wall Shear Stress In Terms of Average Velocity 

To obtain a relationship between shear stress at the wall and flow average veloc-
ity, we first note that: 
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∂−===
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All we need to do is to relate the pressure gradient to the average flow velocity.  
This can be accomplished by using the results obtained in Example IIIb.2.1 by 
substitituting for c1 from Equation IIIb.2.1 to obtain: 
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Later in various chapters, the average flow velocity is also shown by V.  Solving 
for pressure gradient, we find: 
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To write P/ x in terms of K.E., we divide and multiply by 2/V :
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The first bracket can be written as (64/Re) and shown as f = 64/Re, where f is 
known as friction factor or the Darcy-Weisbach resistance coefficient.  We discuss 
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the friction factor in more details later in this chapter.  Substituting the result ob-
tained for ∂P/∂x in the relation for τw, the wall shear becomes: 
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Fully Developed Turbulent Flow Inside Pipes 

Similar to the laminar flow, once past the entrance region, the steady turbulent 
viscous flow inside pipes becomes fully developed.  In most engineering applica-
tions, flow is generally turbulent and the profile for shear stress distribution re-
mains the same as derived in the previous section.  However, unlike laminar flow, 
we can not use the Newton law of viscosity to derive the velocity distribution from 
shear stress.  

As discussed in Section 1, in turbulent flow, shear stress is enhanced by addi-
tion of the Reynolds shear stress to the Newton law of viscosity: 

''
yx

x VV
dy

Vd
−=ν

ρ
τ

where y is the distance from the pipe wall.  To determine a velocity profile for tur-
bulent flow, we would have to use the experimental data obtained for a smooth 
pipe, as shown in Figure IIIb.2.3. 

To simplify the task of model making using the experimental data, Hinze iden-
tifies two major regions in the velocity profile.  The first region is located close to 
the wall.  In this region, viscous forces are dominant and the flow is laminar.  This 
region is referred to as the viscous wall layer or viscous sub-layer.  The second re-
gion includes the bulk of the flow and is referred to as the turbulent core.  In this 
region, turbulent shear is dominant.  The overlap or the buffer layer is located be-
tween the above regions.  In the buffer layer both turbulent shear and viscous 
shear exist.  Prandtl, von Karman, and Millikan used the experimental data to for-
mulate the velocity profile in the viscous sub-layer, the turbulent core, and the 
buffer layer, respectively.  These profiles are expressed in terms of dimensionless 
velocity versus dimensionless distance from the wall.  To obtain non-dimensional 

values, a factor called the friction velocity, *
xV , is used:  

ρτ wxV =*

Note that *
xV  is not actually a flow velocity, rather it is a term that has dimensions 

of length per unit time.  Defining */ xxx VVV =+  and ν/*
xyVy =+  where 

ρµν /=  is the kinematic viscosity, we get a plot of +
xV  versus y+ as shown in 

the semi-log scale of Figure IIIb.2.3.  The velocity profiles that best fit data for 
each region are given as: 
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Figure IIIb.2.3.  Universal turbulent velocity distribution 
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While these profiles are representative of flow inside pipes they have two disad-
vantages for practical applications.  First, a three-region model would need to be 
used to represent the flow.  Second, there is a discontinuity between the formula 
for one region and the formula for another region.  This results in a system of 
equations with discontinuities in the derivatives.  Therefore, it is preferable to find 
a single velocity profile that reasonably describes turbulent flow in pipes.  Pai rec-
ommended a profile in the form of a power series: 
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for both laminar and turbulent flows.  Brodkey extended this solution to non-
Newtonian fluids.  An even simpler profile originally suggested by Nikuradze for 
the turbulent core region is: 
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where R is pipe radius.  Hinze showed that the exponent n is a function of the Rey-
nolds number, ranging from 6 to 10.  In most applications, a value of 7 is used for 
the exponent n.  Hence, the profile for fully developed turbulent flow is referred to 
as a one-seventh power profile.  Although the one-seventh power profile is very 
easy to use, it has its own drawbacks.  For example, a simple profile is not appli-
cable close to the wall nor does it give zero slope at the pipe centerline.   

Now that velocity profiles of laminar and turbulent flows were discussed, we 
return to Equation IIIb.2.3 to derive a very important relation in fluid mechanics 
applications namely, the calculation of pressure drop in pipes for the flow of vis-
cous fluids. 

3.  Pressure Drop in Steady Internal Incompressible Viscous Flow 

Here we are primarily concerned with one-dimensional flow.  As discussed in 
Section IIIa.3.3, the unrecoverable pressure drop is intrinsically associated with 
the flow of viscous fluids.  For comparison, recall from the Bernoulli equation that 
any change in pressure in the flow of an ideal fluid occurs only due to a change in 
flow area or elevation.  This is referred to as recoverable pressure drop.  Con-
versely, the flow of viscous fluids is associated with pressure drop even if both the 
flow area and the flow path elevation remain the same.  This is referred to as unre-
coverable pressure drop.  Therefore, the goal here is to calculate the unrecoverable 
pressure drop for both fully developed laminar and turbulent flows in pipes.  Ex-
pectedly, we should be able to derive an analytic relation for pressure drop in 
laminar flow whereas the turbulent flow pressure drop would have to be obtained 
from experimental data.  

Pressure drop is either due to the surface condition of the conduit wall carrying 
the fluid or due to the presence of fittings and valves.  We begin with the study of 
pressure drop in straight pipes. 

Pressure Drop in Fully Developed Laminar Flow 

Pressure drop in steady, incompressible, fully developed laminar flow inside pipes 
was obtained from the solution to the conservation equation for momentum in 
Section 1.  The pertinent relation to this discussion is Equation IIIb.2.3, which 
may be rearranged to obtain a relation for pressure drop: 
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which states that pressure drop in a pipe depends on three factors, type of fluid 
(appears as viscosity), pipe dimensions (appears as the ratio of pipe length over 
pipe diameter), and average flow velocity.  As discussed in Chapter IIIa, to com-
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ply with tradition in hydraulics, the pressure drop may be expressed in terms of 
height of fluid or head.  This loss in fluid head between two points is due to fluid 
viscosity.  Hence, the pressure drop associated with friction head, hf, is given as: 

fgPP h21 ρ=−              IIIb.3.1 

Substituting for pressure drop, the frictional head loss becomes: 
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where two times the average flow velocity is multiplied in both numerator and de-
nominator.  The terms are then grouped in separate ratios.  There are two advan-
tages for the multiplication by twice the average flow velocity.  First, if density is 
positioned in the denominator of dynamic viscosity, this ratio constitutes the di-
mensionless Reynolds number, accounting for the inertial to viscous effects.  The 
second advantage is that the square of velocity divided by 2 provides the specific 
kinetic energy associated with the flow of fluid.  The net results can be summa-
rized as: 
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This relation applies to laminar flow i.e. as long as the Reynolds number stays be-
low 2200.  Recall that the ratio of (64/Re) is referred to as the friction factor (i.e. 
fLaminar = 64/Re) and the Reynolds number is the ratio of inertial to viscous forces: 

A

D

D

m

A

DmVD

νπµµµ
ρ V4

Re ====            IIIb.3.3 

Pressure Drop in Fully Developed Turbulent Flow 

An analogy with laminar flow head loss can be used to derive a formula for turbu-
lent flow to get: 
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Expectedly, the friction factor in turbulent flow depends not only on fluid viscos-
ity but also on the pipe wall roughness.  Colebrook used the experimental data ob-
tained by Prandtl’s student Nikuradze to develop a correlation for friction factor as 
an implicit function of pipe roughness and Reynolds number.  Subsequently, 
Moody plotted the correlation in a semi-log chart, which has become the well-
known Moody diagram, as shown in Figure IIIb.3.1 (Moody 44).  The Colebrook 
correlation is given as: 
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In this correlation, D is the pipe inside diameter and ε is the roughness of the pipe 
wall.  Typical values for pipe roughness for some commercial pipes are shown in 
Table IIIb.3.1.  Equation IIIb.3.5 is implicit in f.  Hence, it requires iteration to 
solve for the friction factor.  An example for such iteration is provided in Chapter 
VII.  Haaland suggested an explicit formulation for friction factor as a function of 
pipe roughness and Reynolds number: 
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       IIIb.3.5-1 

As shown in Table IIIb.3.1, the pipe roughness (ε ) is on the order of 0.00085 ft 
for cast iron pipes, 0.0005 ft for galvanized iron, and 0.00015 ft for commercial 
steel.  Churchill suggests the following explicit formula: 
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The friction factor calculated from Churchill’s formula is within 1% of that calcu-
lated from the Colebrook correlation and at the same time prevents iteration.  
Moody has recommended a similar friction factor: 
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Table IIIb.3.1.  Typical values of average roughness of commercial pipes 

Material ε   (ft) ε   (mm) C   Hazen-Williams n   Manning 
Asbestos cement 
Asphalt cast iron 
Cast iron 
Commercial steel 
Concrete 
Copper tube 
Drawn tubing 
Galvanized iron 
Glass
PVC, plastic 
Riveted steel 
Welded Steel 
Wood stave 
Wrought iron 

        –
0.0004
0.00085
0.00015
0.001 – 0.01 
smooth 
0.000005
0.0005
smooth 
smooth 
0.003 – 0.3 
0.00015
0.0006 – 0.003
0.00015

     –
0.120
0.260
0.046
0.3 – 3.0 
smooth 
0.0015
0.15
smooth 
smooth 
0.9 – 9.0 
0.046
0.18 – 0.9 
0.046

       140 
         –
        130 
         –
    120 – 140 
        150 
         –
         – 
        150 
        150 
        110 
        120 
         –
         120 

        0.011 
        0.013
        0.013 
          –
  0.011 – 0.014 
         0.010 
           –
          0.016 
          0.010 
          0.009 
 0.013 – 0.017 
          0.012 
           –
          0.012 
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In most engineering applications, especially in nuclear engineering, smooth pipes 
are used.  McAdams recommends the following friction factor for fully developed 
turbulent flow in smooth pipes: 

2.02.0McAdams
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µρ DV
f ==            IIIb.3.6 

For fully rough (wholly turbulent flow) and high Reynolds number, the frictional 
effects are produced by roughness alone without the viscous action.  For this re-
gion, Vennard derives the friction factor as: 

[ ] 2
10Vennard )/(log214.1 −+= εDf

Having f, we can find pressure drop.  To do this we note that the Reynolds number 
is dimensionless, density in British Units is in lbm/ft3, velocity in ft/hr, diameter in 
ft, and dynamic viscosity in lbm/ft·hr.  Having the head loss associated with inter-
nal flow of fluids, pressure drop can be readily found by back substitution of 
Equations IIIb.3.4 into Equation IIIb.3.1.  Therefore, pressure drop corresponding 
to the frictional head loss for a viscous fluid flowing between two points can be 
calculated as: 
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To have pressure drop in British units expressed as lbf/ft2, the pipe length and di-
ameter should be in ft, density in slug/ft3, and velocity in ft/s.  Equation IIIb.3.7 is 
known as the Darcy formula.  This equation is used in pipe sizing, in a pump se-
lection analysis, and other engineering applications.  It must be emphasized that 
Equation IIIb.3.7 should be used to calculate pressure drop due to flow friction be-
tween two points located on a straight piece of pipe.  Should there be an exception 
to this limitation, additional pressure drops may need to be considered, as dis-
cussed later in this chapter. 

Example IIIb.3.1.  Fluid flows into a 3 in pipe with Re = 200,000.  Compare the 
friction factor if the pipe is smooth with the friction factor if the pipe is made of 
cast iron. 

Solution:  First, for the smooth pipe, we can get reasonably accurate values by us-
ing correlation IIIb.3.7: 

f = 0.184Re-0.2 = 0.184(200,000)-0.2 = 0.016 

For the cast iron pipe, we get a reasonably accurate value from the Churchill cor-
relation without any need for iteration: 

29.0 )]Re/74.57.3/[ln(

325.1

+
=

D
f

ε
= 028.0

]}000,200/74.5)12/37.3/(00085.0{ln[

325.1
29.0

≈
+×

The corresponding pressure drop for the cast iron pipe is almost twice that of the 
smooth pipe.
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Example IIIb.3.2.  A pipeline, made of commercial steel, carries oil at a rate of 
0.5 m3/s.  The pipe length and diameter are 1 km and 300 mm, respectively.  Find 
pressure drop in this pipeline.  Oil properties: ρ oil= 850 kg/m3 and voil = 1.5E–5 
m2/s.

Solution:  We use the Churchill correlation to find f to be used in Equa-
tion IIIb.3.7.  This in turn requires us to calculate the Reynolds number: 

Re = VD/v = VDA/(vA) = V D/vA

Pipe flow area is A = πD2/4 = 3.14(300/1000)2/4 = 0.0707 m2

Hence, Re = 0.5(300/1000)/(1.5E-5 ×  0.0707) = 141,443 

29.0 )]Re/74.57.3/[ln(

325.1

+
=

D
f

ε
= 0177.0

]}444,141/74.5)3007.3/(046.0{ln[

325.1
29.0

≈
+×

MPa25.1
)0707.0(8502

)5.0850(
)

3.0
1000

0177.0(
2

)(
2

2

2

2
=

××
×==∆

A

m

D

L
fP

ρ

Example IIIb.3.3.  The riser of a containment spray system carries water at a rate 
of 1250 GPM (78.86 lit/s) to the spray header located 190 ft from the pump center 
line.  The riser is an 8 in (20 cm) smooth pipe.  Find the pump pressure rise to off-
set the pressure drop in the riser due to friction and elevation.  Water is at 60 F. 

Solution:  We find the pressure drop due to friction and elevation by following the 
steps outlined below:

D = 8/12 = 0.667 ft (20.32 cm)
A = π (0.667)2/4 = 0.349 ft2 (0.0324 m2)

V = 1250 (60/7.481) = 10,025 ft3/h = 2.785 ft3/s (78.86 lit/s) 
µ(60 F) = 2.76 lbm/ft·h, ρ(60 F) = 62.35 lbm/ft3, v(60F) = 0.0443 ft2/h (1.143E-6 
m2/s)

Re = V D/vA = [10,025 ×  0.667] / [0.0443 ×  0.349] = 432,608 
f = 0.184/Re0.2 = 0.0137 

hf = f(L/D)( 2V /2gA2) = 0.0137(190/0.667) × (2.8752/2×32.2×0.3492) = 4 ft 

Equation IIIa.3.31 is applicable: 
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We simplify this equation for the following reasons.  First, the kinetic energy 
terms cancel out since Vi = Ve.  Next, we note that there is no pump between point 
i and e hence, hs = 0.  This is because the control volume includes the pipe run 
from the discharge of the pump to the spray header.  Also noting that Ze – Zi = H, 
thus:
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gPP fei )hH( +=− ρ
Substituting 

Pi – Pe = 62.35(190 + 4) 32.2/32.2 = 84 psi (0.58 MPa) 
In this problem, we did not consider frictional losses due to valves and fittings.  
These are included in the so-called minor losses, which are discussed later in this 
chapter.

Other Pipe Friction Models 

The Darcy formula, also known as Darcy-Weisbach, is the most widely used 
model for the calculation of pipe friction.  An empirical equation known as Hazen-
Williams is often used in the calculation of frictional losses in piping networks for 
water.  Another empirical equation, known as Manning is an adaptation of open-
channel equation applied to the flow of water in rough pipes.  The Darcy-
Weisbach formula is given in Equation IIIb.3.7.  The Hazen-Williams formula is 
given as: 

54.0
63.0 h

55.0=
L

CDV
f

            IIIb.3.8 

and the Manning formula as: 

2/1
3/2 h1

59.0=
Ln

DV
f

            IIIb.3.9 

where constants C and n are given in Table IIIb.3.1.  Note that in the Hazen-
Williams and Manning formulae D is in ft and V in ft/s.  Vennard shows that both 
the Hazen-Williams and Manning models can be cast into the Darcy formula if f is 
expressed as )Re/(1090 15.085.1Cf WH =−  and as 3/12 /185 DnfM = , respec-
tively.  The advantage of the Hazen-Williams and Manning formulae is that to 
find the pipe diameter for a given head loss, no iteration is needed.  This is dem-
onstrated in the following example.

Example IIIb.3.4.  Two water reservoirs are located 5 miles apart and have an hf

= 250 ft.  Find the pipe diameter to carry a steady flow of 25 ft3/s.  The pipe is 
welded steel. 

Solution:  We first use the Hazen-Williams formula.  From Table IIIb.3.1, C = 
120 hence, 

[25 / (πD2/4)] = 0.55 × 120 D0.63 [250/(5 × 5280)]0.54

Solving for D, we find, DH-W = 1.973 ft or 23.7 inches.  We next use the Manning 
formula: 
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[25 / (πD2/4)] = 0.59 D2/3 (250/5 × 5280)0.5/0.012 

Solving for D, we find DM = 2 ft or 24 inches.  The reader should now try the 
Darcy-Weisbach formula.

Finding the pipe diameter, D, from the Darcy equation requires iteration as we 
should solve Equations IIIb.3.4 and IIIb.3.5 simultaneously.  Another way to 
avoid iteration is to use the Swamee and Jain’s correlation: 

04.02.5
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75.42
25.1

h
V

h
V

66.0 +=
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g

L
D νε        IIIb.3.10 

where ε is in ft, V  is in ft3/s, L is in ft, g = 32.2 ft/s2, hf in ft, ν in ft2/s, and D is 
in ft.  Note that Equation IIIb.3.10 is applicable for 10– 6 ≤ ε ≤  0.02 and 3 × 103

≤  Re ≤  3 ×  106.

Example IIIb.3.5.  Solve Example IIIb.3.4 using the Swamee and Jain’s correla-
tion.  Use water at T = 65 F. 

Solution:  From Table IIIb.3.1 we find ε = 0.00015 ft.  Also for water, v = 0.041 
ft2/hr = 1.13E-5 ft2/s.  We now substitute in Equation IIIb.3.10: 

2
1.25 4.75 9.4 5.2 0.0426,399.7(25) 26,399.7

0.66[0.00015 ( ) 1.13E 5 (25) ( ) ] 1.854 ft
32.2 250 32.2 250

D = + − × =
× ×

= 22.3 in 

Pressure Drop Associated with Fittings and Valves 

Earlier we studied pressure drop in straight pipes due to the viscosity of the fluid 
and the surface condition of the pipe wall.  This is known as skin friction.  We 
now consider other conditions that also result in pressure drop by disturbing the 
flow such as twist, turn, or partial obstruction of the flow.  These may result in 
flow separation and consequently irreversible energy loss to the fluid flow.  Simi-
lar to the Darcy pressure drop, this also results in unrecoverable pressure drop.   

Losses due to twist, turn, and flow obstruction are generally due to the presence 
of valves and fittings such as reducers, enlargers, bends, T for flow division, and 
invasive flowmeters.  The losses due to the fittings and valves are referred to as 
the minor losses.  The term minor should not be taken literally as depending on the 
flow condition the pressure drop due to the presence of pipe fittings, flowmeters, 
and valve may by far surpass the pressure drop caused by the skin friction.   

Using an electrical engineering analogy, fluid flow is similar to electric current, 
pressure loss is equivalent to voltage difference and disturbance to the flow is 
equivalent to electrical resistance.  The term “hydraulic resistance” for such dis-
turbances to the flow is therefore well suited.  To be consistent with Darcy pres-
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sure drop (Equation IIIb.3.7), ∆P due to fittings and valves is also expressed in 
terms of specific kinetic energy: 
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where K is referred to as loss coefficient.  Since combined molecular and turbulent 
viscosity is the mechanism that converts mechanical work into heat, it is difficult 
to find analytical solutions to the hydraulic resistance-induced pressure drops.  For 
this reason, each specific hydraulic resistance must be evaluated separately.  Ex-
perimental data are obtained for various hydraulic resistance configurations.  
These data are generally correlated in terms of dimensionless numbers to account 
for the type of fluid (density and viscosity), flow properties (flow velocity), and 
the hydraulic resistance geometry (diameter, thickness, etc.)  These correlations 
can be found in such handbooks as Idelchik, Lyons, and Crane. 

D

Vena
Contracta

Kc = 0.5[1 - (d/D)2]

V d
V

d

dmin

Ke = [1 - (d/D)2]2

Figure IIIb.3.2.  Loss coefficient associated with sudden change in flow area 

As shown in Figure IIIb.3.2, a sudden expansion occurs in a flow when a pipe 
is connected to a larger diameter pipe without gradual increase in diameter.  This 
results in flow separation downstream of the connection edge.  In this case, the 
loss coefficient is derived as (Example IIIb.3.6): 

22 ])/(1[K Dde −=

This figure also shows a sudden contraction at a junction between two pipe sizes.  
In a sudden contraction, flow separation in the downstream pipe causes the main 
stream to contract through a minimum diameter, referred to as vena contracta.
The loss coefficient for sudden contraction is: 

])/(1[5.0K 2Ddc −=

For both cases of sudden expansion and contraction, the corresponding head loss 

is found in terms of the velocity in the smaller pipe (i.e., gVd 2/Kh 2= ).
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Example IIIb.3.6.  Derive the loss coefficient for a sudden expansion. 

Solution:  To find K for a sudden expansion, we write the steady-state form of the 
momentum equation.  To do this, we consider a control volume the extent of 
which is from cross section 1 to cross section 2.  The surface forces acting on this 
control volume are pressure and shear forces.  Hence, we can write: 

A1

1 j

F1

Fj
Ft

A2

2

F2

)()( 2
11

2
221221 VAVAVVmFFFF jt −=−=+−− ρ

where F1 = P1A1, F2 = P2A2, Fj is a force due to the interaction between the fluid 
and the channel wall at the expansion plane j, acting on area A2 – A1 and Ft is the 
shear force.  To reduce the number of unknowns, let’s assume that the friction 
force in the short distance between planes 1 and 2 is negligible (i.e., Ft  0).  
Hence, the momentum equation simplifies to:

)()( 2
11

2
22122211 VAVAAAPAPAP j −=−+− ρ

Still, we have more unknowns than equations.  To get rid of Pj, we note that pres-
sure at 1 is practically the same as pressure at cross section j due to the short dis-
tance between cross sections 1 and j, the constant flow area, and the zero shear 
force assumption.  Substituting for Pj = P1 we get: 

)()( 2
11

2
22212 VAVAPPA −=− ρ

Relating velocities by the continuity equation, V2 = V1 A1/A2 and substituting, we 
get:
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We also note that Equation IIIa.3.30 gives the relation between P1 – P2 and head 
loss with Z1 = Z2 and hs = 0: 

fgVVPP h2/)( 2
1

2
221 ρρ +−=−       (2) 

We substitute for P1 – P2 from Equations (2) into Equation (1) and solve for hf:

( ) ( )[ ]( )gVAAAAf 2///21h 2
1

2
2121 +−=     (3) 

By comparing with gVf 2/Kh 2
1=  we find K ≡ (1 – A1/A2)

2.  Equation (3) is 

known as the Borda-Carnot equation.
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In a sudden contraction, if the upstream diameter approaches infinity, the loss 
coefficient is associated with “pipe entrance”.  As shown in Figure IIIb.3.3, the 
smoother the entrance to a pipe, the lower the loss coefficient.  For example, in the 
reentrant type, the pipe penetrates the flow field, causing perturbation of stream-
lines, some flow separation, and large head loss. 

R = 0.2 d

 d

Reentrant
K = 0.78

Sharp - Edged
K =  0.5

Slightly Rounded
K =  0.25

Well Rounded
K = 0.05

Figure IIIb.3.3.  Loss coefficient associated with various pipe entrances 

Table IIIb.3.2 (Crane) gives the friction factor for clean commercial steel pipe 
for fully turbulent flow in terms of nominal pipe size.  To find loss coefficient in 
various valves and fittings (Table IIIb.3.3), we can either calculate the friction fac-
tor or use approximate value from Table IIIb.3.2 based on the pipe diameter.   

Table IIIb.3.2.  Turbulent flow friction factor for clean commercial steel pipe 

Nominal Size (inch) 1/2” 3/4” 1” 1 ¼” 1 ½” 2” 2 ½” , 3” 
Nominal Size (mm) 15 20 25 32 40 50 65 - 80 

f 0.027 0.025 0.023 0.022 0.021 0.019 0.018 

Nominal Size (inch) 4” 5” 6” 8” - 10” 12” - 16” 18” - 24” 
Nominal Size (mm) 100 125 150 200 - 250 300 - 400 450 - 600 

f 0.017 0.016 0.015 0.014 0.013 0.012 

The loss coefficient (K) for a variety of valves and fittings is presented in Ta-
ble IIIb.3.3.  In this table, the loss coefficient is given in terms of an equivalent 
length, K = fLe/D.  Dependence of K on D, for flow through valves and fittings, is 
similar to the dependence of f on D, for flow in straight pipes.  Hence, the Le/D
term tends towards a constant value for various pipe sizes of a given type of fit-
ting.  For example, consider flow through a fully opened gate valve installed on a 
2 inch diameter pipe (K = 8 from Table IIIb.3.3).  The Le associated with this 
valve is found from Le/D = K/f = 8/0.019 = 421.  Thus Le = 421D = 70 ft where f is 
estimated from Table IIIb.3.2 as f = 0.019. 

Pipe and tube data are provided in Tables A.III.1 through A.III.3.  In summary, 
total pressure drop is the summation of that given by Equations IIIb.3.7 and 
IIIb.3.11: 
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Equation IIIb.3.12 can alternatively be written as: 
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The frictional losses in fittings and valves are often referred to as form losses.
Note that we may write Equation IIIb.3.13 as: 

K
2 P

Am
∆= ρ

           IIIb.3.14 

where K = fL/D + ΣKi where index i refers to various fittings and valves on the 
piping system.  As discussed in Chapter IIIc, Equation IIIb.3.14 may also be ap-
plied to compressible flow with some modifications. 

Application and Various Types of Valves 

Schematics of various control and check valves are shown in Figure IIIb.3.4.  De-
sign details of a chemical, food processing, or power plant including the inter-
relationship of various systems and components are generally documented in so 
called Piping & Instrumentation Diagrams (P&IDs).  To simplify drafting and the 
application of the P&IDs, symbols representing various components are devised.  
For example, Figure IIIb.3.5 shows symbols used to represent various types of 
valves.  We can divide valves into two categories, flow control valves and pres-
sure control valves.  We first discuss flow control valves. 

Gate Valve Butterfly Valve Globe Valve

Ball Valve Swing Check Valve Push Check Valve

Figure IIIb.3.4.  Schematics of various valves 
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A gate valve is generally used to  isolate components.  As such, a gate valve is 
either fully open or fully closed.  On the other hand, to throttle the flow, globe 
valves are utilized.  Expectedly, globe valves are associated with much higher-
pressure drop for the flow than open gate vales.  Other flow control valves include 
butterfly valves, ball valves, and needle valves.  Directional valves include various 
types of check valves.  For example, in a tilting disc and a swing check valve, the 
disc is readily lifted in the flow direction due to the flow momentum acting on the 
disc.  However, if flow reverses, the pressure exerted on the disc would keep the 
valve tightly shut. 

Safety valves (SVs), to control pressure, are generally spring loaded.  If the 
pressure exceeds the high-pressure set point, the valve will lift and is then reset 
when pressure drops below the low-pressure set point.  Pilot Operated Relief 
Valves (PORVs) can be manually or remotely operated (lifted) to relieve pressure.  
PORVs operate on a minimum and maximum pressure differential.  In remotely 
operated valves, the action of obstructing or allowing the flow of fluids can be ac-
complished by a driver to change the position of the gate, disc, plunger, etc.  
Valves equipped with such drivers are generally known as motor operated valves
(MOVs).  Depending on the type and size of a valve, the driver is an electric mo-
tor, an air operated (pneumatic) system, or electromagnetic (solenoids).  For ex-
ample, PORVs are generally solenoid valves. 

Table IIIb.3.3.  Loss coefficient (K) in Le/D for valves and fittings  

Category Item Loss Coefficient (K/f)
Elbow 90 Threaded 30  
 45 Threaded  16  
 90 Welded 14  
 45 Welded 10  
Tee Line Flow 20 
 Branch Flow 60 
Valve Gate (fully open) 8  
 Gate (75% open) 35  
 Gate (50% open) 160 
 Gate (25% open) 900 
 Swing check (fully open) 50  
 Lift check (fully open) 600  
 Globe (fully open) 340  
 Angle (fully open) 150  
 Ball (fully open) 3  
 Butterfly (fully open) 50  

Valve flow rate is also defined in terms of the flow coefficient Cv (also known 
as valve sizing coefficient) being the ratio of the theoretical and the actual flow 
rates.  In applications however, Cv for the flow of incompressible fluid is defined 
as the flow rate of water in GPM at 60 F and at a pressure drop of 1 psi across a 
valve (Crane).  The metric equivalent of flow coefficient is flow factor Kv, defined 
as the flow rate of water in m3/h at 20 C, which results in a pressure drop of 1 bar. 
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Having the Cv of a valve, flow rate through the valve at temperatures other than 
60 F (or liquid other than water) and pressure drops other than 1 psi may be cal-
cualted from: 

gv SPC /V ∆=            IIIb.3.15 

where Sg is the liquid specific gravity, ∆P is in psi, and the volumetric flow rate is 
in GPM. 

Example IIIb.3.7.  A valve with a flow coefficient of 1000 results in a pressure 
drop of 2 psi (13.8 kPa) across the valve for water flowing at 110 F (43 C).  Find 
the corresponding flow rate. 

Solution:  At 15 psia, we find ρ(60 F) = 62.4 lbm/ft3 and ρ(110 F) = 61.88 

lbm/ft3.  The flow rate is found from Equation IIIb.3.15 as V  = 1000 ×
[2/(61.88/62.4)]1/2 = 1420 GPM (89.6 lit/s). 

The valve loss, or resistance coefficient, can be expressed as a function of the 
valve Cv and the pipe inside diameter by substituting for the definition of Cv into 

Equation IIIb.3.11, which results in 24 /891K vCd=  where pipe inside diameter d

is in inches.  We may also find Cv for a given K and d from Cv = 29.84d2/K0.5.

Example IIIb.3.8.  A valve of Cv = 500 is installed on a 5-inch pipe.  Find the 
valve loss coefficient.   

Solution:  The corresponding loss coefficient for this valve is found as 

23.2500/)5(891/891K 2424 === vCd

Example IIIb.3.9.  Find the pressure drop over a half-open gate valve located on 
a horizontal 6-inch pipe carrying SAE 10W oil at 92 F and 1000 GPM.  (ε = 0.025 
in, ν = 0.00018 ft2/s, and Sg = 0.88). 

Solution:  In the absence of a pump and for steady flow in a horizontal pipe, 
Equation IIIa.3.31 simplifies to Equation IIIb.3.12.  For a half-open gate valve, K 
= 160f.  We find f from: 

[ ] [ ] 029.0)025.0/6log(214.1)/(log214.1 22
10 =+=+= −−εDf

Therefore, K = 0.029 × 160 = 4.64.  Flow area is:  A = π(6/12)2/4 = 0.196 ft2

Flow rate is: V  = 1000/(60 × 7.481) = 2.228 ft3/s.  Flow density is: ρ = 62.4 ×
0.88 = 54.9 lbm/ft3
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Pressure drop becomes ∆P = 4.64× 54.9 (2.228)2/[2 × 32.2 × 0.1962] = 511 lbf/ft2

= 3.5 psi.   

Checking on Re to ensure flow is turbulent; Re = [2.228 × (6/12)]/[0.00018 ×
0.196) = 3.2E4 > 4000 

Note that from Figure IIIb.3.1, for ε/D = 0.004 and Re = 3.2E4, we find f  0.03. 

Diaphragm valve

Needle valve

Plug valve

Angle valve

Open Gate valve

Closed Gate valve

Open Globe valve

Closed Globe valve

Check valve

RV

Safety/Relief valve

Control valve

M

Motor Operrated valve

Closed Ball valve

Open Ball valve

Closed Butterfly valve

Open Butterfly valve

Figure IIIb.3.5.  Symbols for various valves 

Hydraulic diameter (Dh) is defined for channels having a flow area, different 
than pipes and tubes.  Since flow area and perimeter for a circle are given as Aflow

= πD2/4 and P = πD, respectively we conclude that Aflow = PD/4.  We use the same 
concept of dividing four times flow area by the wetted perimeter for other conduits 
to obtain an equivalent diameter Dh = 4 Aflow/Pwetted.

Example IIIb.3.10.  Consider an annular conduit between two concentric cylin-
ders of diameters D1 and D2.  Find an equivalent diameter for this conduit. 

D1

D2

Solution:  As shown in the figure, the flow area and the wetted perimeter are 
found as: 
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Example IIIb.3.11.  In a BWR, fuel rods are arranged in a square array within a 
fuel assembly.  Find the hydraulic diameter for an interior, side, and corner sub-
channel as shown in the figure. 

3 2

1

D

s

Solid
boundary

Interior subchannel

1: Interior subchannel

3: Corner subchannel
2: Side subchannel

Solution:  With respect to the interior subchannel, we note that the control surface 
is bounded by the surface of the four surrounding fuel rods and the gap between 
the rods.  The wetted perimeter consists only of the solid surfaces (i.e., the four 
quadrants of the four surrounding rods, as the gap is only an imaginary boundary).  
These are summarized in the table where D is the fuel rod outside diameter and s
is the rod pitch. 

No.    Type   Perimeter Flow Area     Hydraulic diameter
1        Interior   πD s2 – πD2/4     4[s2 – πD2/4]/ πD
2        Side   (πD/2) + s [s2 – πD2/4]/2     2[s2 – πD2/4]/ [(πD/2) + s]
3        Corner   (πD/4) + s [s2 – πD2/4]/4      [s2 – πD2/4]/ [(πD/4) + s]

where we have assumed the rod to wall distance to be half of the rod to rod pitch. 

4.  Steady Incompressible Viscous Flow in Piping Systems 

In this section we study the internal flow of incompressible viscous fluids in pipe-
lines under steady-state conditions.  We first begin with the flow analysis in a sin-
gle-path system, the most familiar example of which is pumping liquids from a 
suction reservoir to a discharge reservoir, as shown in Figure IIIb.4.1.  Gas and oil 
pipelines are examples of single-path systems. The flow path may consist of any 
number of valves, fittings, and instruments such as pressure gages, flowmeters, 
temperature probes, etc. 
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PA A
ZA

PB

ZB

B

Suction Head

PA and PB are maintained
 throughout the pumping process

ZB

PA A
ZA

PB B

Suction Lift

PA and PB are maintained
 throughout the pumping process

Figure IIIb.4.1.  Pumping liquid in a single path system 

To analyze such systems, we may apply Equation IIIb.3.31 between points A and 
B, located on the liquid surface of the suction and discharge reservoirs, respec-
tively.  Alternatively, we may use Equation IIIa.3.44 in steady-state resulting in: 

accvelfricgravstatpump PPPPP −∆+∆+∆+∆=∆           IIIb.4.1 

The definition of various differential pressure terms in Equation IIIb.4.1 is as fol-
lows: 
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Writing the momentum equation in terms of differential pressures makes compre-
hension of the momentum equation intuitively simple.  The left side of Equa-
tion IIIb.4.1 represents pressure increase in the flow while moving from pump 
suction to pump discharge due to momentum transfer from the pump impeller to 
the flow.  In steady-state operation, this increase in pressure must overcome fric-
tional losses and provide for pumping the liquid to a higher elevation.  The first 
term on the right side, ∆Pstat = PB – PA, is the difference in static pressure of point 
A and point B.  If pressure at the suction reservoir is higher than pressure in the 
discharge reservoir, this term would assist the pump head and if there is no pump, 
this term would provide the driving force.   

The second term in the right side is pressure difference due to gravity (∆Pgrav).
A significant portion of ∆Ppump is used to lift liquid from point A and deliver it to 
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point B.  This is calculated based on the elevation of the liquid level in each reser-
voir (measured from the same datum).  If the suction reservoir has a higher eleva-
tion than the pump centerline, this term assists the pump head.  If there is no pump 
and there is no difference in the static pressures between point A and point B, then 
there would be a reverse flow if point B is at a higher elevation than point A.  Oth-
erwise this term would provide the driving force.  The third term in the right side 
is the friction pressure drop (∆Pfric) which always impedes the flow.   

Finally, the fourth term in the right side is the differential pressure term due to a 
change in flow velocity.  This is either due to change in the flow area (∆Pvel) or in 
the fluid density (∆Pacc).  If there is a sudden change in flow area, the associated 
frictional loss is accounted for by ∆Pfric.  Hence, ∆Pvel accounts only for the recov-
erable pressure difference.  In this case, as shown in Figure IIIb.4.2, the fluid den-
sities at locations 1 and 2, i.e. before and after the area change, are practically 
equal.  On the other hand, the flow velocity may change from location 1 to loca-
tion 2 even if the flow area remains the same.  This occurs when the fluid flow is 
heated up or cooled down.  In the case of heat addition, ρ2 < ρ1 and flow is accel-
erated.  If the flow is cooled down, ρ2 > ρ1 and flow is decelerated.  In either case, 
the related pressure differential term is referred to as the acceleration pressure dif-
ference.  In this chapter, we assume that flow remains single-phase whether heated 
up or cooled down.  In Chapter Va, we discuss the acceleration pressure difference 
for two-phase flow. 

1 2

V

1 2

V

21 ρρ ≅21 AA ≠21 ρρ ≅21 AA ≠

21

Q
.

V

21 AA = 21 ρρ ≠

Figure IIIb.4.2. ∆Pvel due to sudden area change and ∆Pacc due to density change 

4.1.  Types of Problems for Flow in Single-Path Systems 

For the single-path system of Figure IIIb.4.1, we can consider a total of 10 vari-
ables: pipe length (L), pipe diameter (D), pipe relative roughness (e = ε/D), suc-
tion reservoir pressure (P1), discharge reservoir pressure (P2), suction reservoir 
elevation (Z1), discharge reservoir elevation (Z2), flow temperature (T, to find µ
and ρ), flow rate ( m  = Vρ ), and pump head (hs) or alternatively pump pressure 
rise (∆Ppump).  Let’s consider a case where 5 of these variables such as L, e, Z1, Z2,
and T are given.  In this case, we can calculate any of the 5 remaining variables if 
the other four are also given.  This discussion is summarized in Table IIIb.4.1 
where 5 arbitrarily selected parameters of L, ε, Z1, Z2, and T are assumed to be 
known.  Then four types of problems are identified. 
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Table IIIb.4.1.  Matrix of parameters for given L, ε, Z1, Z2, and T

Type Known Find 
I P1, P2, D, m ∆Ppump

II P1, P2, D, ∆Ppump m
III P1, P2, m , ∆Ppump D

IV D, m , ∆Ppump
P1 (or P2)

The following four examples are solved for each of the above four types. 

Type I.  For Given Data Find Pump Head 

Problems in which flow rate and diameter are specified have a straightforward so-
lution as shown below. 

Example IIIb.4.1.  The following data are given for Figure IIIb.4.1.  Find pump 
head.
Data: L = 1000 ft (304.8 m), smooth pipe, Z1 = 5 ft (1.5 m), Z2 = 100 ft (30.5 m), 
water at T = 60 F (15.5 F), P1 = 15 psia (103.4 kPa), P2 = 30 psia (206.8 kPa), 

D = 4” (10.16 cm), V  = 200 GPM (12.6 lit/s).

Solution:  To find the pump head, we need to find the various pressure differential 
terms of Equation IIIb.4.1: 

D = 4/12 = 0.334 ft 
A = πD2/4 = π(0.334)2/4 = 0.087 ft2 (8.08E-3 m2)
At T = 60 F, ρ = 62.4 lbm/ft3 (998 kgm3), µ = 2.71 lbm/ft·h, and v = ρµ /  = 

0.044 ft2/h (1.135E-6 m2/s) 

V  = 200 GPM/7.481 = 26.73 ft3/min = 0.445 ft3/s (12.6 lit/s).  Assuming turbu-
lent flow and using Equation IIIb.3.3, we find: 

Re = V D/vA = 1603.8(0.334)/[0.044(0.087)] = 139,940 
f = 0.184/Re0.2 = 0.184/(139940)0.2 = 0.017

We now calculate the pressure drop terms: 

∆Pgrav = 62.4 (32.2/32.2) (100 – 5) = 5928 lbf/ft2 = 41.2 psi (284 kPa) 
∆Pstat = 30 – 15 = 15 psia (103.4 kPa) 

To calculate ∆pfric, we need to find K: 

K = Ksharp-edged + 4K90 + 2Kgate + Kcheck + Kglobe + Kexpansion

K = 0.5 + 4(14f) + 2(8f) + 50f + 340f + 1 = 8.5 

∆Pfric = 
( ) =

×××
×+×

2

2

087.04.622.322

445.04.62
5.8

334.0
1000

017.0 10.5 psi (72.4kPa) 
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Therefore, ∆Ppump = 41.2 + 15 + 10.5 = 66.7 psi = 154 ft (47 m) of water.  We may 
also find the pumping power from the pump head: 

W  = V ∆P = 0.445 × (66.7×144) = 15.4E6 ft·lbf/h = 5.8 kW = 7.8 hp 

Assuming a pump efficiency of 70%, the required pumping power is 11 hp. 

Type II.  For Given Data Find Flow Rate 

These types of problems generally require iteration.  However, this can be avoided 
by using a friction factor from Table IIIb.3.2 for a clean commercial steel pipe. 

Example IIIb.4.2.  The following data are given for Figure IIIb.4.1.  Find the 
flow rate of water from tank A to tank B.  Data: L = 150 m, smooth pipe, Z1 = −3 
m, Z2 = 15 m, water at T = 15 C, P1 = 103 kPa, P2 = 117 kPa, D = 6 cm, pump 
head = 37 m, total loss coefficient = 8.5. 

Solution:  To find the pump flow rate, we find the various pressure differential 
terms: 
D = 6/100 = 0.06 m 
A = π(0.06)2/4 = 2.83E−3 m2

At T = 15 C, ρ = 1000 kg/m3, µ = 0.114E–2 N·s/m2, v = µ/ ρ = 0.114E–5 m2/s

∆Ppump = ρghpump = 1000 × 9.81 × 37 = 363 kPa  

Unlike case A, we do not have the flow rate to calculate the Reynolds number and 
hence f.  However, to avoid iteration, we may use Table IIIb.3.2 to find f = 0.018.  
Next, we calculate all the pressure drop terms: 

∆Pgrav = ρg(∆Z) = 1000 × 9.81[15 – (–3)] = 176.6 kPa  
∆Pstat = 117 – 103 = 14 kPa 

∆Pfric = (fL/D)ρ 2V /2A2 = [(0.018×150/0.06) + 8.5]×1000× V 2/[2× (2.83E–3)2] = 

(3.34E6) V 2 kPa 

According to Equation IIIb.4.1:  

363 = 176.6 + 14 + (3.34E6) V 2

Solving for the volumetric flow rate we find V  = 7.2E–3 m3/s = 7.2 lit/s (114 
GPM).
Comment:  Using the calculated rate, we find Re = 133,904 and the friction factor 
from Equation IIIb.3.6 as f = 0.0174, which is in good agreement (within 5%) with 
the value we used from Table IIIb.3.2. 

Example IIIb.4.3. Find water flow rate at an average temperature of 60 F(15.5 C) 
in the shell-side of the heat exchanger.  Use tube length L = 20 ft (6 m), shell in-
side diameter  D = 2 ft (0.6 m) ,  tube outside  diameter d = 1 in (2.54 cm), number 
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of tubes Ntube = 150, ∆P = 10 psi (69 kPa), and total loss coefficient K = 20.   

A

A

Tube Sheet

Shell-side

Tube-side

L

d D

VP

. VP

.

V
.

V
.

AA View

Solution:  We first find the physical properties at the average temperature:   
At T = 60 F, ρ = 62.4 lbm/ft3 (998 kg/m3), µ = 2.71 lbm/ft·h (  1089E–6 N·s/m2)
Since we want the flow rate in the shell-side, we must calculate the hydraulic di-
ameter;

Af = π(D2 – Nd2)/4 = π(22 - 150×0.08332)/4 = 2.32 ft2 (0.216 m2)
Pw = π(D + Nd) = π(2 + 150×0.0833) = 45.553 ft (13.88 m) 
Dh = 4Af/Pw = 0.204 ft = 2.448 in = 0.204 ft (6.2 cm) 

We now calculate the pressure differential terms: 
 

∆Ppump = ∆Pgrav = 0 
∆Pstat = P2 – P1 = –10 psi (69 kPa) 

∆Pfric = [(fL/D) + K] 2Vρ /(2 2
fA ) = L’ 2Vρ /(2 2

fA )

where L’ = L + Le = L + (Dh × ΣK)/f = 20 + [(0.204 × 20)/f ] 

Substituting in Equation IIIb.4.1, we get ∆Pstat = P2 – P1 = –
2

2

2

'

fA

m

D

L
f

ρ
The solution to this equation depends on the roughness of the surfaces, which in 
turn determines the degree of complexity.  If the surface is sufficiently rough for 
which an ε can be defined, then the above equation should be solved by iteration 
with either the Moody chart (Figure IIIb.3.1) or the Colebrook correlation (Equa-
tion IIIb.3.5).  Here, we solve the above equation for smooth surface and leave the 
solution for a case where for example e  = 0.006 to the reader. 

Solution 1:  We assume that f is a function of Dh, from Table IIIb.3.2, f = 0.018 

Le = KD/f = 20 × 0.204/0.018 = 227 ft.  Hence, L’ = L + Le = 247 ft (72.3 m) 

The mass flow rate is found from Equation IIIb.3.14: 

247018.0
)14410(204.02.324.622

32.2
2

×
×××××=

′
∆

=
Lf

PDg
Am stathcρ

 = 1197 lbm/s 

(543 kg/s) 
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Solution 2:  If we treat friction factor as f = f(Dh, Re) then to solve for flow rate, 
we should write the friction factor as f = 0.184/Re0.2 for smooth pipes.  Since Re = 

ADm h µ/  then 2.02.0)/(184.0 −= mDAf hµ .  We should substitute f into Equa-

tion IIIb.3.12.  Note that we cannot use Equation IIIb.3.13 because we cannot find 
Le from the given total K.  Upon substitution into Equation IIIb.3.12 and rear-
rangement, we obtain: 

0.2
2 1.8

2 1.8

K 0.184
0

2 2 stat
f h f

m m P
A D A

µ
ρ ρ

+ − ∆ =            IIIb.4.2 

Substituting numerical values into Equation IIIb.4.2 we find: 

0)14410(
3235.2204.02.324.622

)360071.2(184.0

3235.22.324.622

20 8.1
8.1

2.0
2

2
=×−

××××
××+

×××
mm

This equation simplifies to 06E562.1335.0 8.12 =−+ mm .  We find by iteration 

=m  1200 lbm/s (544 kg/s).  This is equivalent to V  = 8,646 GPM (545 lit/s).  
Thus the Reynolds number is found as Re = 140193 and f = 0.0172.  This shows 
that solution 1 provided a reasonably accurate answer while being simpler to carry 
out. 

Comment:  As discussed in Chapter VIa, heat exchangers use baffle plates to hold 
tubes in place and prevent flow-induced vibration.  An exact value for K is peculiar 
to the specific design of a given heat exchanger.  It is shown in Chapter VIa, that 
design of a heat exchanger is a compromise between both thermal and hydraulic 
aspects in addition to other design parameters such as cost, size, material, structure, 
and performance.  In this problem we dealt with a few parameters such as L, ε, ∆P,

D, d, N, K, and V .  The reader may perform a parametric study to see the effect of 
each parameter on pressure drop or the flow rate. 

Type III.  For Given Data Find Pipe Diameter 

In problems where the pipe diameter is an unknown, we resort to iteration as 
shown in the next example. 

Example IIIb.4.4.  The following data are given for Figure IIIb.4.1.  Find the pipe 
diameter.
Data: L = 100 m, Z1 = 0 m, Z2 = 25 m, water at T = 16 C, P1 = 105 kPa, P2 = 

140 kPa, V  = 0.01 m3/s, pump head, hp = 85 m.  The pipe is smooth and K = 8.5. 

Solution:  To find the pump flow rate, we calculate the ∆P terms for Equa-
tion IIIb.4.1: 
At T = 16 C, ρ = 1000 kgm/m3, µ = 0.111E-2 N·s/m2, v = µ/ ρ = 0.111E-5 m2/s

Since we do not have the pipe diameter, we cannot calculate the Re number and 
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hence f (or find f) in Table IIIb.3.2.  Thus, f remains an unknown, being a function 
of pipe diameter, D.
To find D, we proceed as follows:  
 

∆Ppump = 1000×9.81×85 = 833.85 kPa 
∆Pgrav = 1000×9.81×25 = 245.3 kPa 
∆Pstat = 140 – 105 = 35 kPa 

∆Pfric = [(fL/D) + K] 2m /[2ρ(πD2/4)2] = ∆Ppump – (∆Pgrav + ∆Pstat) = c1

Assuming flow is turbulent, solution to this equation depends on the correlation 
we use for f.  Let’s use the simple explicit relation given by Equation IIIb.3.6 for 

smooth pipes, f = 0.184/Re0.2.  Substituting for Re = VD/v = V D/vA = 4 V /πvD, f

= [0.184(πv/4 V )0.2]D0.2.  The above equation then simplifies to: 

0K8.0
3

4
2 =−− −DcDc

where )V8/()( 2
1

2
2 ρπ cc = , Lvc 2.0

3 )V4/(184.0 π= , and c1 = ∆Ppump – (∆Pgrav + 

∆Pstat)
Substituting numerical values, we get: 

c1 = 833.85 – (245.3 + 35) = 553.55 kPa. 
c2 = (3.14)2×553.55/(8×1000×0.012) = 6829.15 
c3 = 0.184[3.14×0.111E-5/(4×0.01)]0.2×100 = 2.837 

Therefore, we should solve (6829.15×1000)D4 – 2.837D-0.8 – 8.5 = 0.  By itera-
tion we find D ≈  4.92 cm. 

Type IV.  For Given Data Find Reservoir Pressure 

Solution to these types of problems is straightforward and does not require any it-
eration, as shown next. 

Example IIIb.4.5.  The steady flow rate of water in the coil from tank A to tank B 
is given as 200 GPM (12.6 lit/s).  Find the pressure in tank A.  The pressure in 
tank B is 250 psia (1.72 MPa) and water temperature is T = 100 F (37.8 C). 

Solution:  To find the pressure in tank A, we use Equation IIIb.4.1 between points 
A and B located on the water surface of tanks A and B, respectively.   
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PA

PB

40 ft

10 ft

5 ft
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0 

ft

60 ft

15 ft

90o Threaded

Inside Diameter: 3.55 in

Smooth Pipe

At T = 100 F, ρ = 62 lbm/ft3 (993 kg/m3), µ = 1.647 lbm/ft⋅h hence, v = 0.0266 
ft2/h (6.86E–7 m2/s). 

L = 7 × 100 + 6 × 5 + 40 + 60 = 830 ft (253 m) 
D = 3.55/12 = 0.296 ft (0.09 m) 
A = πD2/4 = π(0.296)2/4 =  0.0687 ft2 (6.38E–3 m2)

Re = 
( ) 3

2 2

200 60 / 7.481 ft / h 0.296 ftV

0.0266 ft /h 0.0687 ft

D

vA

× ×
=

×
 = 260,000 

f = 0.184/Re0.2 = 0.184/12.656 = 0.0152 

The total loss coefficient is found as: 

K = Kenterance + KCheck Valve + 14K90 elbow + 2Ktee + KGlobe Valve + KGate Valve + Kexit

K = 0.5 + (50 + 14×30 + 2×20 + 340 + 8) f + 1 ≅  15 

We now calculate the differential pressure terms including ∆Pfric:
 

∆Pstat = 250 – PA 
∆Pgrav = 62× (100 + 15 – 10) = 6510 lbf/ft2 = 45.2 psi (311.6 kPa) 

∆Pfric = 
2

2
K

2

L m
f

D Aρ
+  = 

( ) 2

2

62 200 / 7.481 60830
0.0152 15

0.296 2 32.2 62 0.0687

× ×
+

× × ×
 =

2333 lbf/ft2 = 16.2 psi  

Substituting into Equation IIIb.4.1 and noting that ∆Ppump = ∆Pvel-acc = 0: 

(250 – PA) + 45.2 + 16.2 = 0 

Solving for PA, we find: PA = 311 psia (2.14 MPa). 

The above example provided a situation where the piping does not conform to 
Figure IIIb.4.1 yet has a similar solution.  The driving force in the above example 
was the difference in the static pressures between the supply and the receiving res-
ervoirs.  An example in which the driving force is the gravity head follows. 
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Example IIIb.4.6.  A reservoir for water distribution is connected to a 10-cm 
pipe.  Water surface in the reservoir is 100 m above the pipe.  The pipe delivers 
water to a point 300 m away from the reservoir.  Find the maximum flow rate. 

100 m

A

B

10 cm

300 m

Solution:  The maximum flow rate occurs when water level is at its highest eleva-
tion and the gate and the globe valves are fully open.  We now calculate the pres-
sure terms one by one: 

A = πD2/4 = 3.140×0.12/4 = 7.85E-3 m2

ABstat PPP −=∆  = Patm - Patm = 0 

( )ABgrav ZZgP −=∆ ρ  = 999×9.81(0.0 – 100) = –980,000 Pa 

ρ2
]

11
[

2

22
m

AA
P

AB
vel −=∆  =

99923E85.7
1 22

×−
m

 = 8.12 2m  Pa 

fL/D = 0.017× (100 + 300)/0.1 = 68 (f from Table IIIb.3.2) 
K = Kc + K90 + Kgate + Kglobe + Ke = 0.5 + (14 + 8 + 340) ×0.017 + 1 = 7.65 

2

2

2
)K(

A

m

D

L
fPfric

ρ
+=∆  = (68 + 7.65)

2

2

)3E85.7(9992 −××
m

 = 614.5 2m  Pa 

Substituting into Equation IIIb.4.1 and noting that ∆Ppump = 0: 

–980,000 + (8.12 + 614.5) 2m  = 0 
2m =1574 (kg/s)2.  Thus, =m  39.7 kg/s and V  40 lit/s. 

In the above example, we avoided iteration by using f from Table IIIb.3.2.  The 
next example deals with the acceleration pressure drop. 

Example IIIb.4.7.  Air, at a rate of 12000 lbm/h enters the inlet plenum of a shell-
and tube heat exchanger at14.7 psia and 200 F.  Air is heated to 800 F upon leav-
ing the heated section and entering the outlet plenum.  Find P1 – P4.  Data: Ntube = 
50, tube inside diameter (I.D.) = 1 in, tube length, L = 12 ft.  Also D1 = D4 = 1 ft. 

1 2 3 4

Inlet
Plenum

Outlet
Plenum

Tubes

Heated Section
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Solution:  We note that P1 – P4 = (P1 – P2) + (P2 – P3) + (P3 – P4).
We also note that ∆Ppump = ∆Pgrav = 0.

A1 = A4 = π(1)2/4 = 0.785 ft2, and A2 = A3 = 50[π(1/12)2/4] = 0.273 ft2

Kc = 0.5(1 – A2/A1) = 0.5 × (1 – 0.273/0.785) = 0.33 
Ke = (1 – A3/A4)

2 = (1 – 0.273/0.785)2 = 0.43 
T  = (200 + 800)/2 = 500 F, µair = 0.068 lbm/h·ft 
ρ2 = (14.7 × 144)/[(1545/28.97) × (200 + 460)] = 0.06 lbm/ft3

ρ3 = (14.7 × 144)/[(1545/28.97) × (800 + 460)] = 0.03 lbm/ft3

V1 = 
11A

m

ρ
 = 

785.006.0

3600/12000

×
 = 70.7 ft/s, V2 = 203.5 ft/s, V3 = 407, V4 = 142 ft/s 

∆P12 = ∆Pvel + ∆Pfric = 2/)( 2
1

2
22 VV −ρ  + 2

22
2 2/K Amc ρ

∆Pvel = 2/)( 2
1

2
22 VV −ρ  = 0.06 × (203.52 – 70.72)/(2 × 32.2) = 34 lbf/ft2 = 0.24 psi 

∆Pfric = 
2
22

2

2
K

A

m
c

ρ
 = 0.33 ×

2

2

273.02.3206.02

)3600/12000(

×××
 = 12.7 lbf/ft2 = 0.09 psi  

∆P12 = 0.24 + 0.09 = 0.33 psi (2.3 kPa) 

For ∆P23, Re = 
2A

Dm

µ
 = 

273.0068.0

)12/1(12000

×
×

 = 53870 

f = 0.184/Re0.2 = 0.184/(53820)0.2 = 0.02 

∆Pfric = 
2
2

2

2 A

m

D

L
f

ρ
 = 

2

2

273.0045.02.322

)3600/12000(
)12/1(

12
02.0

×××
××  = 1 psi  

Due to the considerable density change from 2 to 3, we calculate ∆Pacc:

∆Pacc = 
2
2

2

23

11

A

m−
ρρ

 = 
2

2

273.02.32

)3600/12000(
06.0
1

03.0
1

×
−  = 0.53 psi  

∆P23 = ∆Pfric + ∆Pacc = 1 + 0.53 = 1.53 psi = (10.5 kPa) 

∆P34 = ∆Pvel + ∆Pfric = 2/)( 2
3

2
43 VV −ρ  + 2

33
2 2/K Amc ρ

∆Pvel = 2/)( 2
3

2
4 VV −ρ  = 0.03 × (1422 – 4072)/(2 × 32.2) = –67.7 lbf/ft2 = –0.47 

psi  

∆Pfric = 
2
33

2

2
K

A

m
e

ρ
 = 

2

2

273.02.3203.02

)3600/12000(
43.0

×××
×  = 33.2 lbf/ft2 = 0.23 psi  

∆P34 = –0.47 + 0.23 = –0.24 psi 
P1 – P4 = ∆P12 + ∆P23 + ∆P34 = 0.33 + 1.53 – 0.24 = 1.62 psi (11 kPa). 

Problems involving flow in single-path systems can be easily solved by using the 
software on the accompanying CD-ROM.
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4.2.  Application of Bernoulli Equation in Flow Measurement 

Flowmeters are discussed in Chapter VIb.  Our purpose here is to demonstrate one 
of the practical applications of the Bernoulli equation.  In Example IIIa.3.18, we 
showed that a reduction in flow area results in the conversion of some pressure 
head to velocity head.  By measuring the induced pressure difference we then cal-
culated the volumetric flow rate (Equation IIIa.3.48).  Depending on the manner in 
which the reduction in flow area is introduced, the device is called either venturi,
nozzle, or thin-plate orifice.  The schematic of these devices is shown in Fig-
ure IIIb.4.3.  As seen in this figure, the smoothest reduction in flow area, hence the 
least unrecoverable pressure drop takes place in a venturi.  This is in contrast to a 
thin plate orifice, with the most abrupt change in flow area, introducing the largest 
pressure drop.  By comparison, the flow nozzle causes a medium pressure drop.  
Since these devices are based on the Bernoulli equation and used invasively to 
measure the flow rate, we refer to them as the Bernoulli-obstruction meters.

θ < 15ο

Throat tap

dtD1

Flow

Cone angle

D1
Flow

dt
D1

Flow
dt

45o - 60o

0.05D

Venturi       Nozzle           Thin Plate Orifice 

Figure IIIb.4.3.  Standard shapes of various Bernoulli meters 

Returning to Example IIIa.3.18, we concluded that for a frictionless venturi and 
an ideal fluid, flow rate can be measured from the recoverable pressure drop.  In 
common practice however, we deal with real fluids.  Hence, we must account for 
the non-recoverable pressure drop due to the frictional losses.  This is generally 
accounted for by multiplication of the flow rate by a parameter known as the dis-
charge coefficient, Cd < 1.  Therefore, in common practice, the volumetric flow 
rate through such devices is calculated from a relation similar to Equa-
tion IIIa.3.48 but with some modifications as follows: 

2/1
21

2
4

)(2

1
V

−

−
=

ρβ

PP
A

Cd            IIIb.4.3 

where β  is the ratio of the diameter of the reduced area (throat) to the pipe di-

ameter (β = d2/D) and A2 is the flow area at the throat as shown in Figure IIIb.4.4.  
For venturi meters, depending on the Reynolds number, Cd is in the range of 0.8 ≤
Cd < 1.0 and for orifice meters in the range of 0.6 ≤ Cd < 0.95.  Note that in the 
case of the thin-plate orifice, the flow area is further reduced due to the formation  
of vena  contracta  (also  see  Figure IIIb.3.2  for  sudden  contraction).   
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.
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(a)                                                                                    (b) 

Figure IIIb.4.4.  (a) A venturi equipped with a manometer and (b) an orifice meter 

The multiplier in Equation IIIb.4.3 is referred to as the Velocity of Approach Fac-

tor given as 41/1 β− .  To simplify, we may represent 41/ βα −= dC  to get: 

( )212 2V PPAm −== ρα                           IIIb.4.4 

where α is known as the flow coefficient.  The discharge coefficient (Cd) corrects 
the theoretical equation for the influence of several parameters including velocity 
profile, the energy loss between taps, type of meter, and pressure tap locations.  In 
general, the discharge coefficient is the product of two coefficients, the velocity
coefficient (CV) and the coefficient of contraction (Cc).  The latter accounts for 
losses in the device and the former accounts for the flow area reduction due to the 
vena contracta, therefore, CV = V actual/ V theoretical.

The velocity coefficient, Cv, must be determined experimentally, as there is no 
theoretical means of calculating it.  The coefficient of contraction is obtained from 
the ratio of the flow area at the vena contracta to the flow area at the throat; Cc = 
Avena/At.  Finally, we find the discharge coefficient from Cd = CvCc.  Note that 
Equation IIIb.4.4 is applicable only if changes in the fluid density are negligible.  
The applicable equation for cases where the change in density is noticeable is dis-
cussed in Chapter IIIc. 

Determination of the Discharge Coefficient 

The Cd for Bernoulli-type devices are obtained as curve fits to data by ISO and 
recommended by ASME, as follows: 

Thin Plate Orifice 

75.05.23
24

4

1
81.2 Re71.910337.0

1

09.0
184.00312.05959.0 −+−

−
+−+= Dd FFC ββ

β
βββ

In this correlation, F1 and F2 depend on the location of the pressure taps.  For the 
upstream tap located at a distance equal to the pipe diameter (D) from the inlet 
face and the downstream tap located at a distance of (D/2), these factors are 
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0.4333 and 0.47, respectively.  This is referred to as D: D/2 tap.  For the corner 
taps where the meter plate meets the pipe wall, F1 = F2 = 0, hence Cd becomes: 

75.05.281.2 Re71.91184.00312.05959.0 −+−+= DdC βββ          IIIb.4.5 

Long Radius Nozzle 

−=
D

dC
Re

10
00653.09965.0

6
            IIIb.4.6 

Venturi Nozzle 

5.4196.09858.0 β−=dC             IIIb.4.7 

The above discharge coefficients for orifice (D: D/2 tap), nozzle and venturi are 
plotted in Figure IIIb.4.5.

0.59

0.60

0.63

0.64

104 105 106

ReD

Cd

107

0.65

0.61

0.62

β = 0.8

0.7

0.6

0.5

0.4

0.3

0.2

Orifice

0.93

0.94

0.95

0.96

0.97

0.98

1.00

0.99

104 105 106 107 108

(Re)dt

Cd

Nozzle

0.92

0.94

0.96

0.98

0.3 0.4 0.5 0.6 0.7
β

Cd

0.8

Venturi

Figure IIIb.4.5.  Discharge coefficient for Bernoulli obstruction meters (ISO-ASME) 

4.3.  Unrecoverable Head Loss for Bernoulli Obstruction Meters 

Let’s consider three pressure taps for the venturi and the orifice meter, as shown in 
Figures IIIb.4.4, and IIIb.4.6(a).  The first tap is located at least one pipe diameter 
upstream of the meter, the second tap located at the throat of the meter and the 
third tap located downstream where the flow is fully recovered.   

Pressure at these locations may be shown as P1, Pt (or P2) and P3, respectively.  
Total pressure drop for the meter is given by the differential pressure term P1 – Pt.
A portion of the total pressure drop is recoverable when flow reaches location 3 
where, for incompressible fluid flow velocity, V3 becomes equal to V1.  The re-
maining portion of the total pressure drop is the unrecoverable pressure drop given 
by P1 – P3.  The ratio of the unrecoverable head loss and the total pressure differ-
ential, for the square edged orifice, flow nozzle, and venturi with 15-degree cone 
angle, is given in Figure IIIb.4.6(b).  
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Figure IIIb.4.6. (a) Schematic of pressure taps for a thin plate orifice and (b) Pressure loss 
rate (Miller) 

The unrecoverable head loss may also be found from the loss coefficient and 
the flow velocity.  The loss coefficient for the three Bernoulli obstruction meters is 
shown in Figure IIIb.4.7.  Expectedly, the flow meter that causes less disturbance 
to the flow is associated with smaller loss coefficient.  As such, a venturi with a 
cone angle of 7 degrees results in the lowest and a thin-plate orifice results in the 
highest loss coefficient. 

Having the pipe and the throat diameters, we find β and then K for a specific 
meter from Figure IIIb.4.7.  The unrecoverable head loss is then calculated from K 
and the throat velocity gVtf 2/Kh 2= .

The head obtained from this equation using the loss coefficient from Fig-
ure IIIb.4.7 must agree with the head loss obtained from Figure IIIb.4.6(b). 
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Figure IIIb.4.7.  Frictional loss coefficient for Bernoulli obstruction meters (Bean) 
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4.4.  Types of Problems for Bernoulli Obstruction Meters 

Similar to the single-path piping systems, the type of problems for Bernoulli me-
ters can be divided into three groups as shown in Table IIIb.4.2.  For a given pipe 
diameter (D) and fluid (ρ), there are 3 parameters in Equation IIIb.4.3.  Since we 
have only one equation, we can solve for only one unknown.  Hence, the other two 
parameters must be given.  For types I and III, the unknown must be determined 
by iteration.  The examples that follow examine all of the types listed in Ta-
ble IIIb.4.2.  As we shall see in Chapter IIIc, when Equation IIIb.4.34 is applied to 
compressible fluids, an additional parameter (Y) will have to be dealt with. 

Table IIIb.4.2.  Matrix of parameters for Bernoulli-obstruction meters 

Type Known Find 
I V , β ∆P

II β, ∆P V
III V ,∆P β

Type I. Find Pressure Drop, Given Throat Diameter and Flow Rate 

Type I problems are generally used in the design process.  For example, to size the 
pump in a flow loop to provide for the induced pressure drop due to the installa-
tion of the Bernoulli obstruction meter.  Problems of this type are straightforward 
as no iteration is necessary.  This is because, Cd can be easily calculated since the 
flow rate (hence, the Re number) and β are known.  Having Cd, we find ∆P from 
Equation IIIb.4.4. 

Example IIIb.4.8.  A long radius nozzle is used to measure the flow rate of water 
in a pipeline.  The pipe inside diameter is 10 in (25.4 cm) and the nozzle throat di-
ameter is 2.5 in (6.35 cm).  The nominal volumetric flow rate measured by this 
meter is 500 GPM (31.54 lit/s).  Find the recoverable and unrecoverable pressure 
drops.  Water flows at 100 F (38 C). 

Solution:  To find P over the nozzle we use Equations IIIb.4.4 and IIIb.4.7: 
At 100 F: ρ = 62 lbm/ft3 (993 kg/m3) and v = 7.39E–6 ft2/s (6.86E-7 m2/s) 

V  = 500 GPM = (500/7.481)/60 = 1.11 ft3/s (31.54 lit/s) 
D = 10/12 = 0.833 ft, dt = 2.5/12 = 0.208 ft, and β = 2.5/10 = 0.25 

A1 = π(0.833)2/4 = 0.545 ft2, hence, V1 = V /A1 = 1.11/0.545 = 2.04 ft/s 

At = π(0.208)2/4 = 0.034 ft2, hence, Vt = V /At = 1.11/0.034 = 32.65 ft/s 
ReD = V1D/v = 2.04 × 0.833/7.39E-6 = 230,000 
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Finding Cd from Figure IIIb.4.4 or Equation IIIb.4.6 as: 

−=
D

dC
Re

10
00653.09965.0

6

 = −
000,230

10
00653.09965.0

6

 = 0.97 

41 β
α

−
= dC

=
425.01

97.0

−
 = 0.972 

Since ρα /2V PAt ∆= , solving for ∆P:

∆P = 
22

2

2

V

tAα
ρ

 = =
×××

×
22

2

034.0972.02.322

11.162
1086 lbf/ft2 = 7.54 psi 

For β = 0.25 from Figure IIIb.4.7 for a nozzle we find K = hm/[ 2
tV /2g] ≅  0.8 

2.322

65.32
8.0

2
Kh

22

×
×==

g

Vt
m  = 13.24 ft 

This amounts to a pressure drop of: 

∆Pm = ρghm = 62 × 32.2 × 13.24/32.2 = 821 lbf/ft2 = 5.7 psi 

Thus, of 7.54 psi total pressure drop, 5.7 psi is unrecoverable and 1.84 psi is re-
coverable. 

Type II. Find Flow Rate, Given Throat Diameter and Pressure Drop 

Type II problems are generally used for analysis of already designed and installed 
flowmeters.  Problems of this type are rather straightforward.  Iteration is gener-
ally necessary (except for the venturi nozzle) to find Cd.  Then flow rate is ob-
tained from Equation IIIb.4.4. 

Example IIIb.4.9.  A venturi is used to measure the flow of oil.  Use the follow-
ing data to find the oil flow rate.  D = 55 cm, H = 75 cm, h = 175 cm, dt = 22 cm.
Specific gravity (SG) of oil is c1 = 0.8 and of the manometer liquid is c2 = 1.3. 
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Throat

h

Diffuser

d2

D

H

SG= c1

SG= c2
δ

Solution:  Writing the Bernoulli equation between the venturi inlet and venturi 
throat, we get: 

2
2

221
2

11 2/2/ gZVPgZVP ρρρρ ++=++

Expressing velocities in terms of volumetric flow rate and rearranging terms, we 
get: 

)(V]/1/1[2/)( 21
22

2
2
121 ZZgAAPP −+−+− ρρ

Writing in terms of β = dt/D and solving for V  yields: 

)]1(/[]H[2V 4βρρ −−∆= gPAt

Finally factoring in the discharge coefficient Cd and substitutig in terms of the 
flow coefficient yields: 

ρρα /]H[2V gPAt −∆=

We find ∆P by writing the Bernoulli equation between the two ends of the ma-
nometer to get: 

P1 + ρgδ = Pt + ρg(H + δ – h) + ρmgh

where ρ and ρm are densities of fluids in the venturi and the manometer, respec-
tively.  Solving for ∆P, we get: 

∆P = g[ρ(H – h) + ρmh]

Substituting numerical values, we find  
∆P = 9.81[(0.8×999)(0.75 – 1.75) + (1.3×999)(1.75)] = 14.455 kPa 

Since β= 0.22/0.55 = 0.4, Cd = 0.9858 – 0.196(0.4)4.5 = 0.983.  We also find 

=−= 44.01/983.0α 0.996

At = π(0.22)2/4 = 0.038 m2,

V  = 0.996× 0.038 )8.0999/(]75.0)8.0999(14455[2 ×××− ] = 0.223 m3/s
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Type III. Find Throat Diameter, Given Flow Rate and Pressure Drop 

Type III problems are used in the design process to calculate the throat diameter 
for the intended flow rate and pressure drop.  Problems of this type are generally 
solved by iteration. 

Example IIIb.4.10.  We need to simulate a pressure drop of 5.0 psi caused by a 
pump with a seized rotor in a test section.  To induce this pressure drop to the 
flow, we use a thin-plate orifice with corner taps.  The test section is a 6 inch pipe 
with water flowing at 352 GPM and 60 F.  Find the throat diameter of the orifice. 

Solution:  To find the throat diameter, we should first find Cd(β) from 

ρβ /2]1/[V 4 PCA dt ∆−=  and set it equal to Cd from the ISO curve fit for 

thin-plate orifice.  Since both of these equations are highly non- linear functions of 
β, we have to resort to iteration.   

D = 6/12 = 0.5 ft hence, A1 = 3.14(0.5)2/4 = 0.196 ft2.  Since V  = 352/(7.481×60)
= 0.784 ft3/s, therefore V1 = 0.784/0.196 = 4 ft/s and ReD = V1D/v = 4×0.5/1.23E-
5 = 0.163E6.  Final results of the iteration are: 

β = d2/D1 (-):                0.485  Throat diameter (in): 2.913 
Throat velocity (ft/s):        16.96  Reynolds number (-): 0.16E6 
Discharge Coefficient (-): 0.602  Loss coefficient (-): 1.910 
Head loss (ft):  8.536  Pressure loss (psi): 3.696 
Velocity of  
approach factor (-): 1.029  Flow coefficient (-): 0.620 
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Having solved the problem, we now want to find how the throat diameter changes 
with flow or with pressure drop.  Intuitively, we know that for given D1 and ∆P,
the larger the flow rate, the larger the throat diameter.  This is because pressure 
drop increases with flow velocity.  That lessens demand on the thin-plate orifice 
for pressure drop.  Conversely, for given flow velocity and pipe inside diameter, 
the higher the pressure drop (∆P), the smaller the throat diameter.  These are 
shown in the above plots. 

Problems involving flow in single-path systems and the Bernoulli obstruction 
meters can be easily solved by using the software on the accompanying CD-ROM. 

4.4.  Flow in Compound Conduits 

In common practice, pipes of different lengths and diameters are connected via re-
ducers and enlargers.  This constitutes a serial-path system as shown in Fig-
ure IIIb.4.8(a).  For example, the riser of a containment spray system consists of a 
serial flow path.  On the other hand, pipes may be connected at both ends to a 
common plena, or header, such that flow entering the inlet plena is divided be-
tween the pipes.  This constitutes a system with parallel flow paths.  There are two 
types of parallel flow path systems.  In the first type, flow is mixed only at the 
inlet and exit plena, as shown in Figure IIIb.4.8(b).  We refer to this type as closed 
parallel flow path.  This is the type that we study in this chapter.  In the second 
type, flow is also intermixing between various flow paths.  For example, the fuel 
assemblies of a BWR core constitute a closed parallel path system where flow is 
mixed in the lower plenum prior to entering the core and in the upper plenum after 
leaving the core.  On the other hand, the core of a PWR consists of many open 
parallel flow paths where flows are mixed due to the existing cross flow between 
the subchannels, having lateral communication.   

We now compare the hydraulic characteristics of the serial and closed parallel 
path systems with respect to flow rate and pressure drop.  For simplicity, we refer 
to the closed parallel flow path as parallel flow path. 
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Figure IIIb.4.8.  Flow paths connected in series and in parallel and their equivalent flow 
path  

Comparison of Serial-Path Systems with Parallel-Path Systems 

For the steady flow of incompressible viscous fluids, we first consider pipes con-
nected in series as shown in Figure IIIb.4.8(a).  Pipes in series have generally dif-
ferent length, diameter, and loss coefficient.  Therefore, while flow rate is the 
same for all the pipe segments, pressure drops are generally different: 

Pipes in Series 

321321321 VVV PPPPPPP ∆+∆+∆=∆∆≠∆≠∆==

Similarly, as shown in the right side of Figure IIIb.4.8(b), parallel pipes may also 
have different diameter, length, and loss coefficient.  In this case however; 

Pipes in Parallel 

321321321 VVVVVVV PPP ∆=∆=∆++=≠≠

Example IIIb.4.11.  A pump delivers water at a steady rate of V  m3/s to a branch 

containing two parallel lines.   Find flow rate in branch 1 in terms of V and the 
known diameters, lengths, flow areas, and loss coefficients. 

Branch 2

Branch 1V
.

V1

.
V2

.

Solution:  We use ∆P1 = ∆P2 and then substitute from the continuity equation to 
obtain: 
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If we represent ( )[ ] 2/K/ ADfL +  = R then the above equation reduces to: 
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From this equation we find branch 1 flow rate as: 
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( ) ( )212121 /V/V RRRRR −±−=

The plus sign is chosen if R1>R2.  Otherwise, we choose the minus sign. 

System Curve for Serial-Path Systems 

We consider a serial-path system, consisting of pipes of various lengths (L), di-
ameters (D), and loss coefficients (K).  This piping system has, in general, an ele-
vation change (Ze – Zi).  Equation IIIa.3.31 for this system can be written as: 

( )
gADA

L
fZZ

g

PP
ie

ei
System 2

VK
H

2

22
++−=

−
=

ρ

where due to the lack of any pump in the system, hs is dropped and hf is replaced 
by Equation IIIb.3.12.  Depending on the flow regime, Hsystem is either a linear 
function of velocity or a parabolic function.  If flow is laminar then f = 64/Re = 

64µA/ρ V D.  Substituting, for the friction factor, we find: 

VH 21 ccSystem +=          IIIb.4.8-1 

where c1 = Ze – Zi and c2 = Σ64µL’/(2gρDA).  For turbulent flow in smooth pipes, 
if we use an approximate value for the friction factor as given in Table IIIb.3.2, we 
find 

2
31 VH ccSystem +=          IIIb.4.8-2 

where c3 = ΣfL’/(2gDA2). The plot of Hsystem versus V  is known as the system 
curve.
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In the analysis we often choose to simplify a piping network by substituting one 
pipe to represent a series of pipes connected together.  Thus, it is important to de-
termine the characteristics of the equivalent pipe. 

Equivalent Pipe for Serial-Path and Parallel-Path Systems 

To simplify the thermal-hydraulic analysis of a multi piping system connected in 
series or in parallel, having different L, Dh, ε and K, we substitute such a system 
with an equivalent flow path (E).  This substitution should be performed such that 
the equivalent flow path retains the characteristics of the original system.  Hence 
the conservation equations of mass, momentum, and energy as well as the volume 
constraint for the original system must also satisfy the equivalent flow path.  The 
volume constraint can be expressed in terms of equal transit time.  As for the con-
servation equation of momentum, Equation IIIa.3.42 yields: 

0)(hh)(
1V1

1212 =−+−+−+ ZZPP
gdt

d

A

L

g pfρ
                IIIa.3.42 

We now apply the concept of equivalent flow path first to the serial and then to the 
parallel systems. 

Flow Paths Connected in Series 

The continuity equation requires that NiE VVVV 1 ===≡ .  The energy 

equation requires thermal properties to remain the same.  The volume constraint 
requires that τE = Στi where τ is the liquid transit time.  Substituting for τ yields, 

NNiiEE V/VV/VV/VV/V 11 ++≡ , which simplifies to: 

== iiiE ALVV             IIIb.4.9 

Applying Equation IIIa.3.42, the momentum equation to each pipe segment in 
Figure IIIb.4.5(a), we obtain: 
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                      IIIb.4.10 
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g ρ

adding up terms, we get: 
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We now apply Equation IIIa.3.42, the momentum equation to the equivalent flow 
path: 
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To have similar dynamic response, similar terms must be equal.  Hence, ∆ZE ≡
ZN+1 – Z1, = ipEp ,, hh and
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Additionally, = fifE hh , hence: 
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where in Equation IIIb.4.14, K* = fL/D + K.  So far we have three equations; 
Equations IIIb.4.9, IIIb.4.13, and IIIb.4.14.  To find the five unknowns, VE, AE, LE,
DE, and KE we need two more equations.  The fourth equation is obtained from VE

= LEAE, as noted in Equation IIIb.4.9 and the fifth equation from the definition of 
the hydraulic diameter: 

wetted

Flow
h S
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D

V
4

P
4

wetted
==           IIIb.4.15 

Requiring equal wetted surfaces (Swetted) between the equivalent and the serial flow 
paths and using Equations IIIb.4.9 and IIIb.4.14, we obtain the hydraulic diameter 
of the equivalent pipe as: 

,
,( / )

i i
h E

i i h i

L A
D

L A D
=

Σ
Σ           IIIb.4.16 

We now use the remaining three equations to find AE, LE, and KE.  If we substitute 

for AE in Equation IIIb.4.13 from AE = VE/L, to find ( )= iiEE ALL /V/2  and 

then substitute for VE from Equation IIIb.4.9, we obtain: 
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having VE and LE, we can also express the flow area of the equivalent flow path, 
AE as: 
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Finally, we find KE from Equation IIIb.4.14 as: 
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The results are summarized in Table IIIb.4.3. 

Flow Paths Connected in Parallel 

The volume constraint requires Equation IIIb.4.9 to be applicable here as well.  
The momentum equation for each pipe segment in Figure III.8.1(b), is given by 
the sets of Equation IIIb.4.10. 
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and for the equivalent flow path: 
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Pump terms are not shown as they develop equal heads.  Since pressure terms are 
equal, it requires that  
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This results in finding each flow rate in terms of the equivalent pipe flow rate as: 
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We now use, the mass balance requirement that: 

NE dddd VVVV 21 ++=           IIIb.4.23 

Substituting for each flow rate in terms of the equivalent pipe flow rate from 
Equation IIIb.4.22 in Equation IIIb.4.23, we obtain: 

( )= iiEE LALA //           IIIb.4.24 

Canceling AE between VE = LEAE and Equation IIIb.4.24, we find an expression 
for LE in terms of Ai and Li:
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Back substitution gives AE:

( ) ( )[ ] 5.0/= iiiiE LAALA           IIIb.4.26 

To find the equivalent loss coefficient, from equal pressure drop requirement we 
get: 
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We find each flow rate in terms of the flow rate in the equivalent path and substi-
tute it in the mass balance: 

NE VVVV 21 +++=           IIIb.4.28 

we find: 

( ) ( ) EENNEEEEE AAAA V)/(K/KV)/(K/KV
2/1**

1
2/1*

1
* ++≡

where K* = K + (fL/D).  Solving for KE, we get: 

( )EEEiiEE DLfAA /K//K
2

* −=

Finally, the hydraulic diameter for the equivalent pipe is obtained from Equa-
tion IIIb.4.16.  The results are summarized in Table IIIb.4.3. 
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Table IIIb.4.3.  Equivalent pipe characteristics 

Example IIIb.4.12.  Find the characteristics of an equivalent pipe to represent a 
piping system connected in series.  Individual pipe length, diameter, and loss coef-
ficients are given below.  A flow rate of 100 GPM enters the piping system.  Use 
ρ = 62.4 lbm/ft3 and µ = 0.7E-3 lbm/ft⋅s.  Pipe is smooth commercial steel. 

Pipe No. L (ft) D (in)                K (-)
1  100.00  3.50         5.00   
2  180.00  3.00         4.00   
3  50.00  2.50         6.00  
4  90.00  2.00         1.00 

Solution:  We use Table IIIb.4.3 for pipes connected in series.  Results are sum-
marized below: 

Pipe L D A V K V  Re f ∆P
No. (ft) (in)  (ft2) (ft/s) (-) GPM × 10–6 (-)         (psi)
1 100 3.5 0.067 3.32 5.00 100 0.087 0.0189   0.86 
2 180 3.0 0.049 4.55 4.00 100 0.101 0.0184   2.39 
3 50 2.5 0.034 6.55 6.00 100 0.121 0.0177   2.95 
4 90 2.0 0.022 10.1 1.0 100 0.152 0.0169   7.12 

Equivalent: 
                454.26 2.78 0.042 5.30 35.65  100 0.109 0.0181   13.3 

Example IIIb.4.13.  Find the characteristics of an equivalent pipe to represent a 
piping system connected in parallel.  Individual pipe length, diameter, and loss co-
efficients are given below.  A flow rate of 19 lit/s enters the piping system.  Use ρ
= 998 kg/m3 and µ = 1.1E-6 N·s/m2.  Pipe is smooth commercial steel. 

Pipe No.  L (m)   D (cm)  K (-)
1  30.48  8.89  5.00   
2  54.86  7.62  4.00   
3  15.24  6.35  6.00  
4  27.43  5.08  1.00 
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Figure IIIb.5.1.  (a) A piping network and (b) Example of a flow path details    

Solution:  We use Table IIIb.4.3 for pipes connected in parallel.  Results are 
summarized below: 

Pipe L D A   V    K   V  Re f ∆P
No. (m) (cm) (m2)   (m/s)    (-)   lit/s × 10–6 (-)        (kPa)
1 30.48 8.89 6.207E-3   1.25 5.00 7.735 0.260 0.018    8.7 
2 54.86 7.62 4.560E-3   1.00 4.00 4.613 0.303 0.018    8.7 
3 15.24 6.35 3.167E-3  1.28 6.00 4.059 0.364 0.019    8.7 
4 27.43 5.08 2.027E-3  1.22 1.00 2.516 0.455 0.019     8.7 

Equivalent: 
   30.91 14.96 0.0175 1.08 11.5 18.92 0.292 0.016      8.7

5.  Steady Incompressible Viscous Flow Distribution 
in Piping Networks 

In most engineering applications, fluid flows in multi-paths piping.  Examples in-
clude water and gas distribution in municipalities, a nuclear plant emergency core 
cooling system (ECCS), division of a PWR hot leg flow to steam generator tubes, 
division of a BWR core flow rate between fuel bundles, and variety of piping sys-
tems in the balance of plant.  In Section 4.4 we considered special cases of serial 
and parallel piping systems.  In this section, we consider more general case of pip-
ing networks, which may consists of a combination of serial and parallel piping 
configurations.   

Figure IIIb.5.1(a) shows an example of a piping network consisted of loops and 
nodes (X1 through X15).  A node is any point in the system at which either three or 
more flows meet or network geometric dimensions change.  A branch, link, or 
flow path is referred to the conduits connecting two nodes.  In general, a flow path 
may also include pump, valves and fittings, as shown in Figure IIIb.5.1(b).  Flow 
paths that do not have circular flow area are modeled with the use of a hydraulic 
diameter.  Flow between various paths in a piping network is divided based on the 
path resistance i.e. the least resistance path carries the most flow rate and vice 
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versa.  A node may be connected to a boundary.  There are two types of bounda-
ries namely, pressure boundary and flow boundary.  Mathematically, these serve 
as boundary conditions for the related differential equations.  Flow boundaries are 
of two types.  A source-flow boundary, which supplies fluid to the network, and a 
sink-flow boundary to which the nodal fluid flows.  The sink fluid boundary is 
also referred to as an output. 

The goal is to find the steady-state nodal pressures and inter-nodal flow rates.  
The boundary condition, generally include the output flow rates and either input 
flow rate to or nodal pressure at the inlet of the network.  In this example there are 
15 unknown nodal pressures and 22 unknown branch flow rates.  We have also 15 
continuity equations and 22 inter-nodal momentum equations.  There are 8 flow 
boundary conditions (at nodes 1, 4, 9, 10, 11, 14, and 15).  Of these, the flow to 
node 1 is the supply flow and the rest are output flows. 

To solve piping network problems, we seek simultaneous solution to a set of 
continuity and momentum equations.  The continuity equation is written for each 
node and the momentum equation for each branch.  Therefore, we obtain a set of 
coupled non-linear differential equations, which are solved iteratively.  In this 
chapter we discuss three methods.  The first two methods, known as Hardy Cross 
and Carnahan method, are applicable to steady incompressible flow.  The third 
method, developed by Nahavandi, applies to both steady-state and transient in-
compressible flow.  We discuss the first two methods here and leave the discus-
sion about the Nahavandi method to the transient flow analysis discussion in Sec-
tion 6. 

The Hardy Cross Method 

This method applies only to incompressible fluids, flowing under steady state and 
isothermal conditions.  In this method, the algebraic summation of all flow rates 
associated with a node is set equal to zero.  This results in as many equations as 
the number of nodes.  The reason for setting the summation of all flow rates asso-
ciated with a node equal to zero is that at steady-state, the conservation equation 
for mass written for each node resembles the Kirchhoff’s law as applied to electric 
circuits.  According to the Kirchhoff’s law, the algebraic summation of nodal elec-
tric currents (flow rates) must be equal to zero: 
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where N is the number of branches stemming from a node, j is an index represent-
ing a branch to node i.  In Figure IIIb.5.1, for example, N is equal to 15.   

To find the flow distribution in the piping networks by the Hardy Cross 
method, an initial best estimate is used to allocate flow rates to each loop compris-
ing the piping network.  We then set the algebraic summation of the flow rates in 
each loop equal to zero.  Then a correction to the flow rate in each loop is applied 
to bring the net flow rate into closer balance.  Consider the piping network of Fig-
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ure IIIb.5.1.  Suppose the initial guess in a branch is 0V .  The correction to this 
initial guess is V∆  such that the correct flow rate is now: 

VVV 0 ∆+=               IIIb.5.2 

We use the estimated flow rate of each loop in the momentum equation for that 
loop.  We know that in a closed loop, we can write: 

( ) 0=∆
jj P              IIIb.5.3 

Using Equation IIIb.3.6 for turbulent flow in a smooth pipe, pressure drop be-

comes a function of 8.1V .  In general, pressure drop can be expressed as 

VnP c∆ =  where n is some power depending on friction factor relation and c is 
the proportionality constant as given in Equation IIIb.3.7.  For example, if we treat 

f as a constant then n = 2 and c = (fL/D)ρ/(2A2).  Substituting for V  from Equa-
tion IIIb.5.2 and expanding terms according to the Taylor series, we obtain: 

( ) ( )+∆+=∆+==∆ − VVVVVV 1
000
nnnn ncccP          IIIb.5.4 

If V∆  is small compared with 0V , we may ignore higher order terms not shown 
in the right side of Equation IIIb.5.4 and apply this equation to a chosen loop in 
the piping network, Equation IIIb.5.3, to get: 
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where first, V∆  is taken outside the summation since it is the same for the entire 
loop and second, an absolute value sign is used to account for the flow direction.  
We may choose an arbitrary direction for the flow but once chosen, use it consis-
tently.  For example, we may choose all the clockwise flows as positive and all 
counterclockwise flows as negative.  From Equation IIIb.5.5 we find: 

−=∆ −

−

1

0

1

00

V

VV
V

n

n

cn

c
             IIIb.5.6 

The solution procedure is as follows.  We first use best engineering judgment to 
allocate initial flow distribution to each loop.  Next, we choose the flow directions 
in each branch so that Equation IIIb.5.1 is satisfied at each node.  We then assign 
positive value to each branch flow rate in a loop that flows counterclockwise, for 
example.  Finally, we find the numerator and the denominator of Equation IIIb.5.6 
to calculate the correction factor.  Subsequently, we update flow rates using the 
correction factor to calculate a new correction factor.  We continue this process 
until the calculated correction factor becomes exceedingly small. 
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Example IIIb.5.1.  Find flow distribution in the left side network, for n = 2.  Units 
of the c factors are such that the flow rates are in GPM (for example, for pipe with 

c =2, 15V 2 ==c  GPM, etc.). 
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Solution:  We assume the clockwise direction as positive and use an initial guess 
for the flow in each loop to be corrected in the following steps.  We first correct 
the assumed flow distribution in the lower loop: 

1
c  6 10     12 

0V   35 –30      70 

1
00 VV

−n
c  7350 –9000     58800      Summation:  57150 

1
0V

−n
cn  420 600     1680       Summation: 2700   −=∆ 1V 21.17

Updated 0V  13.83 –51.17     48.83 

We now update the upper loop as follows: 

c  2 4       6 

0V   15 –35        –13.83 

1
00 VV

−n
c  450 –4900       –1147.6   Summation:  –5597.6 

1
0V

−n
cn  60 280       165.96      Summation:     =∆ 2V 11.06

Updated 0V  26.06 –23.94        –2.77 

--------------------------------------------

In the second trial, we revise values in the lower loop, using the updated flow rate 
for the common flow path: 
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2
c             6               10       12 

0V             2.77         –51.17        48.83 
1

00 VV
−n

c      46.04       –26183.69       28612.43 Summation:  2474.77

1

0V
−n

cn         33.24         1023.4      1171.92    Summation: 2228.56    −=∆ 1V 1.11

Updated 0V     1.66           –52.28    47.72 

We now revise values in the upper loop flows, using the updated flow rate for the 
common flow path: 

c           2  4     6 

0V            26.06 –23.94      –1.66 

1
00 VV

−n
c      1358.25 –2292.49   –16.53    Summation:    –950.77 

1
0V

−n
cn        104.24 191.52      19.92     Summation: 315.68     =∆ 2V 3.01

Updated 0V    29.07 –20.93     1.353 

--------------------------------------------

We follow the same procedure in the third trial: 

3
c           6          10              12 

0V           –1.353     –52.28        47.72 

1
00 VV

−n
c    –10.98      –27,332      27,326        Summation: –16.6 

1
0V

−n
cn        16.23       1045.6        1145.28     Summation: 2228.56   −=∆ 1V 0.007

Updated 0V      –1.345    –52.27        47.727 

Revising the upper loop flows, using the updated flow rate for the common flow 
path, in the third trial: 

c            2             4  6 

0V            29.07      –20.93 1.345 

1

00 VV
−n

c    1690.13    –1752.26 10.85     Summation:  –51.27 

1

0V
−n

cn       116.28  167.44  –33.24     Summation: 250.48       

=∆ 2V 0.168
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Final results are shown in the right side figure.  Although, we could have made 
better initial guesses such as (c = 6, 5), (c = 10, 60), (c = 12, 40), (c = 2, 15), and 
(c = 4, 35), the number of trials would still be 3. 

Example IIIb.5.2.  Find flow distribution in the left side network for the given 
data.  Use n = 2. 

A
B
C D

1

2
3

4

5

1 lit/s 1 lit/s
I II

1 m3 1 lit/s
++

0.448 lit/s

0.552 lit/s 0.613 lit/s

0.387 lit/s0.061 lit/s

Pipe L (m)     D (m)        A (m2) f                c  (from Equation  IIIb.3.7) 
1              507.6        0.55          0.237         0.012         10 
2              143.7        0.40          0.126         0.013         15 
3              47.9          0.40          0.126         0.013         5 
4              628           0.50          0.196         0.012         20 
5              114           0.30          0.071         0.013         50 

Solution:  We assume the clockwise direction as positive for each loop and use an 
initial guess for the flow in each loop to be corrected in the following steps.  Using 
the procedure of Example IIIb.5.1, we obtain: 

Trial 1V 2V     3V       4V            5V ∆1 ∆2

0        –0.60 0.40 –0.100      –0.500          0.500        0.0    0.0 
1        –0.55 0.45   0.565      –0.60556      0.3934      0.05             0.10656 
2        –0.5511 0.4488   0.06113     –0.6123        0.3877      –0.00114    –0.00571 
3        –0.5513 0.44873    0.06101     –0.61228      0.38772    –0.00013    –0.00001 
4        –0.55127     0.44873    0.06101     –0.61228      0.38772    0.00000       0.00000

The results are shown in the right side figure. 

The Carnahan Method 

In this method, we express flow rates in terms of pressure difference between the 
adjacent nodes.  The summation of all the flow rates at each node, according to 
Equation IIIb.5.1 must be zero.  Hence, we obtain as many equations as the num-
ber of nodes.  To elaborate, let’s consider two adjacent nodes, i and j, the momen-
tum equation for the flow path connecting these nodes is given by Equa-
tion IIIb.4.1: 
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where we assumed that there is no pump in flow path ij.  Treating friction factor as 
a constant and considering the special case of flow distribution in the horizontal 
plane, this equation becomes: 

ijji
jiij

cPP
PPm

−
−= 1

)(             IIIb.5.7 

where in Equation IIIb.5.7, )2/()K/( 2ADfLc ijij ρ+= .  Per Carnahan, the 

advantage of factoring out the nodal pressure difference in Equation IIIb.5.7 is that 
the square root would always have a real value.  Additionally, if pressure of node i
is higher than that of node j, then flow would leave node i with a plus sign.  Oth-
erwise, flow would enter node i, with a minus sign as it should.  Similar equations 
can be written for other flow paths connected to j.  The summation of all the flow 
rates for node j must be equal to zero: 
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Where n represents total number of flow paths connected to node j.  Similar equa-
tions can be written for the rest of the nodes, resulting in a set of non-linear alge-
braic equations.  Such set can be solved by the Newton-Raphson iteration method 
as discussed in Chapter VII or by the successive-substitution method.  In the latter 
method, Pj is calculated from: 
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Similar relations can be obtained for all other nodes.  An initial guess is made for 
all the nodes.  These initial guesses are then used in the right side of the above 
equations to update the guesses.  The process continues until the difference in suc-
cessive guesses becomes exceedingly small.  The process is converged when the 
absolute value of the pressure difference divided by the updated pressure becomes 
smaller than a specified convergence criterion.  Having calculated nodal pressures, 
inter-nodal flow rates can then be determined.  Care must be exercised when flow 
encounters valves and fittings that induce large pressure drops.  In such cases, the 
local pressure may drop below the vapor pressure corresponding to the liquid tem-
perature, which may lead to cavitation as discussed in Chapter VI. 

6.  Unsteady Internal Incompressible Flow 

In this section we analyze the unsteady, internal, one-dimensional flow of a single-
phase incompressible fluid in single-path systems and flow distribution in multi-
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path systems.  Transient or unsteady fluid flow is due to the departure from steady 
state and stagnation conditions.  Changing the flow area, such as throttling of a 
regulating valve or the speed of an operating pump would induce flow transients.  
Other examples of flow transients include pipe ruptures, loss of power to pumps, 
and actuation of safety and relief valves.  Flow transients can be divided into two 
categories.  The first category includes slow transients also referred to as rigid 
column theory.  In these types of transients, the assumption is that the entire body 
of fluid moves as a rigid body.  Also the liquid is assumed to be incompressible 
and the conduit carrying the liquid fully rigid.  Hence, any disturbance in the me-
dium is propagated instantly throughout the system.   

The second category includes fast transients when there is a rapid change in 
flow velocity or fluid density.  Analysis of fast transients is more complicated than 
the analysis of slow transients.  This is because the compressibility of the fluid and 
the elasticity of the conduit containing the fluid must be accounted for.  Although 
in many applications liquids may be treated as incompressible, in reality even liq-
uids possess some degree of compressibility.  Mathematically, problems involving 
slow transients can be solved with ordinary differential equations while the analy-
sis of fast transients includes solution to partial differential equations as pressure, 

),( trP and velocity, ),( trV  are in general functions of both space and time.  This 
type of transient is known as waterhammer or elastic analysis.

In discussing slow transients, we study such topics as transients in flow loops, 
time to fill drained pipelines, and time to empty vessels. We start with simpler ex-
amples of unsteady flow involving the application of the momentum equation.  
We then analyze waterhammer in the fast transient category.  Employing Equation 
IIIa.3.38, we study two types of slow transients.  The first type includes problems 
for which we may ignore the viscous effects of the incompressible fluid.  The sec-
ond type includes the unsteady flow of incompressible viscous flow.  We start 
with the unsteady flow of incompressible inviscid fluids. 

6.1.  Unsteady Flow of Internal Incompressible Inviscid Flow 

We apply Equation IIIa.3.39 for incompressible inviscid flow along the stream-
lines to a few examples, assuming the working fluid can be treated as an ideal 
fluid. 

Time To Reach Steady-State Flow Rate  

Consider a large reservoir discharging water through a small hole, as shown in 
Figure IIIb.6.1(a).  In this case, the first term of Equation IIIa.3.39 is negligible 
hence we may use the Bernoulli equation at steady-state condition between 
points 1 and 2. Noticing that in a large reservoir, water velocity is zero everywhere 
except at the hole, we get (See Example IIIa.3.16) 

ostate-steady2 h2)( gV =

Therefore the mass flow rate is calculated as: 
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)4/(h2 2
o-statesteady dgm πρ=

We now consider another case where the same tank is connected to a pipe of 
length L and the same diameter d as shown in Figure IIIb.6.1(b).  Initially, a fast 
acting gate valve with zero resistance is fully closed.  At time zero the valve is 
fully opened.  We want to find the time it takes for the water velocity to reach 
from zero to its steady-state value.  
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Figure IIIb.6.1.  Flow of liquid from a large reservoir with fixed height 

Since P1 = P2 and V1 = 0, Equation IIIa.3.39 for this case is simplified to: 
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To integrate the first term along the streamline from point 1 to 2, we note that: 
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Substituting we obtain, 

0h
2 o
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22 =−+ g

V

dt

dV
L             IIIb.6.1 

Although this is a non-linear differential equation, we can find an analytical solu-
tion by the method of separation of variables, which results in 

)2/(2/ 2
22 VghdVLdt −= .  We now integrate this equation between time t = 0 

when velocity is V2 = 0 to an arbitrary time t to find V2(t):   
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resulting in: 
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)2/tanh(/ oo2 LtVVV =             IIIb.6.2 

where oo h2gV = .  Time for velocity to reach its steady-state value is found 

from 1)2/tanh( o =LtV .

Example IIIb.6.1.  The initially closed valve in Figure IIIb.6.1(b) suddenly opens.  
Find the time it takes for the velocity to reach 50% of its steady-state value.  Data: 
L = 6 m, ho = 3 m, d = 15 cm. 

Solution:  We find t from 5.0)2/h2tanh( o =Lgt .  The argument becomes 

ttLgt 64.0)12/381.92()2/h2( o =××= .  Hence, for tanh(0.64t) = 0.5 by it-

eration we find t ≅  0.87 s. 

Static Head as a Function of Time 

Liquid is flowing through a small hole in the bottom of a reservoir having a di-

ameter of D, as shown in Figure IIIb.6.1(a).  In obtaining oh2gV = , we consid-

ered the reservoir to be large enough so that the available head for flow through 
the pipe remains constant.  However, if the available head is decreasing as more 
flow leaves the tank, then the variation of h = f(t) should be considered.  To see 
how h is changing versus time, we write the continuity equation for the tank; 
d/dt(mtank) = – om .  Substituting yields: 

)(h2)(h 2 tgaaVt
dt

d
A −=−=

where d is the diameter of the pipe.  From this relation we obtain, 

0h)(2
h 2/12 =+

D

d
g

dt

d
            IIIb.6.3 

This is a non-linear differential equation that can be solved by separation of vari-
ables to obtain: 

tAagt o )]/(2/[h)(h −=

In the case of the reservoir connected to a pipe with static head decreasing as a 
function of time, we must solve Equations IIIb.6.1 and IIIb.6.3 simultaneously, as 
discussed in Section IIIb.6.2. 

Flow Oscillation in a U-Tube 

Another example of unsteady flow is the oscillation of inviscid liquid in a U-tube.  
At time zero, we push point 1 causing point 2 to reach the height H (Fig-
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Figure IIIb.6.2.  Flow oscillation of an inviscid fluid in a U-tube 

ure IIIb.6.2).  We then let go so that the oscillation can begin.  Since streamlines 
are well defined in this problem and fluid is inviscid, we can apply Equa-
tion IIIa.3.38: 

0)()(
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2 1212
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1

2
2

2

1
=−+−+−+

∂
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ZZgPP
VV

ds
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ρ

where Z1 and Z2 are measured from an arbitrary datum.  Since during the oscilla-
tion P1 = P2 and V1 = V2, Equation IIIa.3.39 reduces to: 

0)( 12 =−+ ZZg
dt

dV
L

where in this equation, L is the length of the liquid column.  Substituting for V = 
dz/dt, we get: 

0
2

2

2
=+ z

L

g

dt

zd

where z is measured from the line connecting points 1 and 2 at time zero.  The so-
lution to this second order, linear differential equation is given as: 

tLgctLgcz )/2(sin)/2(cos 21 += .  Using initial conditions, at t = 0, dz/dt = 

0 gives c2 = 0.  Also at t = 0, z = H hence, c1 = H.  Therefore, the liquid level at 
any given time can be found from: 

tLgz )/2(cosH=
Velocity of the column of liquid versus time can be obtained by differentiating 

with respect to t, V = dz/dt so that; tLgLgV )/2(sin)/2(H= .  This deriva-

tion shows that for inviscid liquids, the column has a simple harmonic motion with 

a period of T = 2π )2/( gL .
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Figure IIIb.6.3.  Draining of a fully insulated tank in a quasi-steady process 

Draining Tanks in a Quasi-steady Process 

This is a useful method for cases in which the fluid acceleration in Equa-
tion IIIa.3.39 is so small, in comparison with the other terms, that we can ap-
proximately ignore the time derivative term.  Hence, the process is referred to as 
quasi-steady.  To elaborate let’s try the tank in Figure IIIb.6.1(a), which is now 
shown in Figure IIIb.6.3.  In this tank, water is covered by a blanket of pressurized 
air, initially at Pi having a volume of Vi.  The tank cross sectional area is At and 
the initial water level from the drain centerline is hi.  In Figure IIIb.6.3, H is the 
fixed elevation of the tank from the drain centerline.  The drain flow area is Ae << 
At.  At time zero, we remove the plug and let water drain from the tank.  Since the 
ratio of Ae/At is very small, we ignore the initial acceleration and assume that the 
tank is being drained in a quasi-steady manner.  The quasi-steady assumption also 
lets us assume reversible expansion of the air region.  We may treat the gas expan-
sion as an isentropic process if the tank is fully insulated.  This is to prevent any 
heat transfer to the expanding air from the surroundings. 

In Figure IIIb.6.3, we have identified two control volumes, one for the expand-
ing air region and another for the shrinking water region.  We apply Equa-
tion IIIa.3.33, the Bernoulli equation to the water region: 

e
eatmt gZ

VP
gZ

VP ++=++
22

22

ρρ

where VtAt = Veae, Vt = –dh/dt, and Z – Ze = h(t) and .  For the gas region, we use 
Equation IIa.4.3: 

iV H h

V H h
i

i

P

P

γ γ−= =
−

We substitute for Vt, Vo, and P in terms of the known values of H, hi, At, a and the 
only unknown, dh/dt in the Bernoulli equation to obtain: 
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( )
2

iH hh 2 h / 1
H h

i atm tP P Ad g
dt a

γ

ρ ρ
−= − − + −−

To plot h = f(t), we should solve the above first order non-linear differential equa-
tion numerically. 

Example IIIb.6.2.  Find the time to drain the water tank of Example IIIa.3.16.  
Data:  hi = 10 ft, a/At = 0.01.

Solution:  We note that Voa = VtAt = –Atdh/dt.  Substituting into Vo = (2gh)1/2, we 
find: 

1/ 2

h
2

h t

d a
g dt

A
= −

Although a non-linear, differential equation, due to its simplicity we can find the 
following analytical solution: 

2

1
h h 2

2i

t

a
g t

A
= −

Substituting, we find time for h = 0 as  

7901.0/2.32/102)//(/h20h =×=== ti Aagt  s. 

6.2.  Unsteady Flow of Internal Incompressible Viscous Flow 

In Section 6.1 we ignored the viscous effect of the flow.  In this section we solve 
the same transient problems while accounting for the viscosity of the fluid.  

Flow Oscillation in a U-Tube 

Previously, we considered flow oscillations in U-tubes for inviscid fluids.  We 
now consider a U-tube containing a viscous fluid, initially at rest.  The column of 
viscous fluid is set in motion by imposition of a pressure difference P1 – P2.  The 
exact solution of viscous flow oscillations in U-tubes is described by Bird.  Here 
we find an approximate solution by considering an average flow velocity at each 
cross section and a friction factor corresponding to the laminar flow.  We start 
with Equation IIIa.3.42 noting that there is no shaft head.  Using the continuity 
equation (V1 = V2), hf = f(L/D)(V2/2g), and f = 64/Re, we find: 

0
8

)(
1

2
212 =+−++ V

R

L
PPgz

dt

dV
L

ρ
µ

ρ
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Substituting for V = dz/dt:

0)(
128

1222

2
=−+++ PP

L
z

L

g

dt

dz

Rdt

zd

ρρ
µ

subject to two initial conditions, at t = 0, z = 0 and V = dz/dt = 0.  To solve the 
above second order non-homogenous differential equation, we substitute for 2z = 
s – (P2 – P1)/ρg to get: 
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2
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(
22

2
=++ s

L

g

dt

ds

Rdt

sd

ρ
µ

Expectedly, this is the general form of the second order differencial equation de-
scribing the oscillation of a damped system such as a linear spring-dash pot sys-
tem or an electrical circuit consisting of resistance, capacitance, and inductance 
(RLC circuit).  The solution to this homogenous equation can be found by substi-
tuting s = eλt.

Time To Reach Steady-State Flow Rate  

Consider the pipe connected to the reservoir of Figure IIIb.6.1(b).  The valve is 
suddenly opened.  We want to find the time it takes for water to reach its steady 
state or nominal value for flow rate, considering the friction in the pipe that results 
in a head loss.  Here, point 1 is taken at the pipe entrance.  Hence, V1 = V2 and Z1

= Z2 so Equation IIIb.3.42 simplifies to: 

0h)(
1

12
2

1
=+−+ fgPPds

dt

dV

ρ

Since P2 = Patm and P1 = ρgho + Patm, the governing equation simplifies to: 

g

V

d

L
f

dt

dV

g

L

2
h

2

o −=

Since friction factor is a function of velocity, which in turn is changing with time, 
the above first order non-linear differential equation does not in general have an 
analytical solution.  However, if we treat the friction factor as a constant equal to 
its steady-state value, throughout the transient, we find that: 

−
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VV

VV
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LV
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o

o

o

o ln
h2

             IIIb.6.4 

where Vo is the flow velocity at steady-state condition.  Note that velocity ap-
proaches the steady-state value, asymptotically.  If we assume that the steady-state 
flow rate is reached when V = 0.99 Vo then we find the approximate time as t = 
2.65LVo/gho.
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Example IIIb.6.3.  The initially closed valve in Figure IIIb.6.1 suddenly opens.  
Find the time it takes for the velocity to reach 99% of its final value.  Data: L = 
3660 m, ho = 24.5 m, d = 63.5 cm, f = 0.02.

Solution:  Time is given by t99 = 2.65LVo/gho.  But we must first find the steady-
state velocity from: 

ho = f(L/d) 2
oV /2g.  Substituting data;  

Vo = {[24.5 × 2 × 9.81]/[0.02 × 3660/0.635]}0.5 = 2 m/s. 

Hence, t99 = 2.65 × 3660 × 2/(9.81 × 24.5) ≅  81 s.

Example IIIb.6.4. Compare time to reach steady-state flow rate for the two cases 
of inviscid and viscous flow.  Data: L = 100 ft, ho = 20 ft, d = 6 in, f = 0.02. 

Solution:  First we consider the case of inviscid flow.  Equation IIIb.6.2 gives ve-
locity as a function of time 

Since Vo = (2 × 32.2 × 20)0.5 = 35.9 ft/s, the velocity ratio becomes: 

(V/Vo)inviscid = tanh(35.9t/200) = tanh(0.18t) 

For the case of viscous flow, Equation IIIb.6.4 gives velocity as a function of time.  
Rearranging this equation, we obtain V/Vo = (et/λ – 1)/(et/λ + 1) where λ = LVo/2gho

Vo = [2g ho d/(fL)]1/2 = {20 × 2 × 32.2]/[0.02 × 100/(6/12)}0.5 = 18 ft/s 
λ = 100 × 18/(2 × 32.2 × 20) = 1.4 s 

Hence, the velocity ratio is found as: 

(V/Vo)viscous = (et/1.4– 1)/(et/1.4 + 1) 

Velocities versus time are plotted in the figure. 
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As shown in the figure, it takes a longer time for the inviscid flow to establish (i.e., 
flow velocity reaching the steady state value). 
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Flow Between Reservoirs in a Quasi-steady Process (Gravity Fill) 

In this problem we are interested in finding the time it takes for the height between 
two large water reservoirs to drop to a specified value.  The reservoirs are con-
nected by a pipe, which also includes valves and fittings (Figure IIIb.6.4).  Ini-
tially, both valves are closed and the height difference in water levels is h1.  At 
time zero, both valves are fully opened.  We use continuity and momentum equa-
tions.  If s and s’ show change in water level at time t, then sA1 = s’A2.  At time t,
we also have h(t) = h1 – (s + s’), thus dh = –(1 + A1/A2)ds.  From a mass balance: 
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1 1
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h h
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Figure IIIb.6.4.  Unsteady flow of viscous fluid between reservoirs 

Having found velocity in terms of h, we use the momentum equation to find 
another relation for V and h.  This is given by Equation IIIa.3.41 (with hs = 0): 
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substituting for Z2 – Z1 = –h(t), for hf = (fL/d + K)V2/2g, and for V in terms of h, 
we find  

( )
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1 2

4( / K) h
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d g A Aπ
+= −

+

Integrating this relation between time zero (h = h1) to any time at which h = h2, we 
find that the time t is given by: 
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+

           IIIb.6.5 
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Time to Fill Drained Pipelines 

The time it takes to fill a drained pipeline is of special interest in many engineer-
ing applications.  Examples include buildings spray system for fire protection or a 
nuclear reactor containment building spray train for protection against excessive 
pressurization in the case of a high-energy line break.  Let’s consider a simple 
case of filling a straight vertical pipe of diameter d and flow area a with water as 
shown in Figure IIIb.6.5.  Initially, water height in the reservoir is h0 and at an ele-
vation Z1 = ZT + h0, with respect to the pump centerline.  Also the control valve is 
closed, the pump is circulating water, and the discharge pipe is full of water up to 
the control valve elevation, ZV.  At time zero, the bypass line is shut and the con-
trol valve starts to open.  It takes θ0 seconds for the control valve to reach the full 
open position.  The control valve loss coefficient KV versus area is known.  We 
want to find the time it takes to fill the drained piping downstream of the control 
valve. 

P1

Control Valve

Pump

Datum Plane

h0

ZT

Z2

ZV

2

1

y

P1

K=f(t)
Control Valve

Pump

Datum Plane
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ZV

2

A

h

1

a

a = π d2/4

Bypass Line

Figure IIIb.6.5.  Filling of a partially drained pipeline 

The bypass line is considered in this problem to avoid dealing with pump start 
up and the associated inertia, as discussed in Chapter VIc.  To find the fill up time, 
we note that at time t, water has reached point A at an elevation ZA.  We write the 
momentum equation between points 1 and A.  Equation IIIa.3.45 for water: 

Wfricvelgravstatpump
WV PPPPP

dt

md

a

L
)()

h
( ∆+∆+∆+∆−∆=

+
        IIIb.6.6 

where LV is the length of the suction and discharge piping up to the control valve.  
We also have: 

∆Pstat = PA – P1

∆Pgrav = ρWg(h + ZV – Z1) = ρWg(h + ZV – ZT – y)

∆Pvel = [1 – (a/A1)
2] 2

Wm /(2ρWa2)
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∆Pfric = [f(LV + h)/d + ΣK(t)] 2
Wm /(2ρaira

2)

32
2

1 cmcmcPpump ++=∆

where we have expressed pressure increase over the pump in terms of mass flow 
rate, with coefficients c1, c2, and c3 are constants to match pump data.  For the 
sake of generality, we also apply Equation IIIa.3.45 to the air region: 
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        IIIb.6.7 

Assuming Ma number remains below 0.3, we may ignore the compressibility ef-
fect of air hence, Wair mm =

∆Pstat = P2 – PA

∆Pgrav = ρairg(Z2 – ZV – h)
∆Pvel = 0.0 

∆Pfric = [f(Z2 – ZV – h)/d + ΣKair]
2
Wm /(2ρaira

2)

If we substitute for the pressure differential terms and add up the two momentum 
equations, we get: 
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               IIIb.6.8 

where L and ΣK are the total length and total loss coefficient of the suction and 
discharge pipe, respectively.  The loss coefficient is a given function of time since 
the control valve is not a quick open valve.  Also note that we dropped the sub-
script for the mass flow rate.  The governing equation is a non-linear differential 
equation.  Since h and y appear in this equation, we must relate these to the mass 
flow rate. Using the continuity equation will accomplish this.  On the one hand we 
know A1(ho – y) = ah.  On the other hand 

–A1dy/dt = Wm ρ/              IIIb.6.9 

Eliminating h in Equation IIIb.6.8, we obtain two simultaneous differential equa-
tions for y and m .  The initial conditions are y(t = 0) = ho and omtm == )0(
where om  is the mass flow rate in the bypass loop prior to opening the control 
valve.  Since this set of equations must be solved numerically, P1 and P2 can be 
specified as known functions of time.  Indeed, in the case of a PWR or BWR con-
tainment during an accident, P2 is a rapidly changing parameter.  As discussed in 
Chapter IIIc.2, we must also make sure that the flow of air out of the pipe remains 
subsonic.  Equation IIIb.6.8 can be simplified by ignoring the less significant terms. 
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Time to Drain Vessels in Quasi-steady Process 

An example of unsteady incompressible flow is given here in the context of time it 
takes to fill or drain vessels with liquid.  The time dependent flow rate is obtained 
from the solution to the conservation of mass and momentum equations.  Fig-
ure IIIb.6.6 shows vessels, having a flow cross sectional area as a function of 
height.  In special cases such as a right circular cylinder, the flow area is a con-
stant, as was studied in Section 6.1.  A general solution can be sought for simulta-
neous filling and draining.  But we assume that liquid is drained only by gravity.  
The rate of change of liquid mass in an elemental control volume is: 

[ ]
om

dt

yyAd

dt

dm −== )(ρ

where in the above equation, the vessel cross sectional area is assumed to be a 
function of elevation.  Time to empty a vessel can then be calculated if the func-
tion for A = f(y) is specified.  If the cross sectional area is constant, A = Av, the 
time to empty the tank from a height of y1 to a height of y2 can be readily found as: 
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V −=θ           IIIb.6.10 

where a and Cd are the drain flow area and discharge coefficient (generally be-
tween 0.65 and 1.0), respectively.  Next we analyze a more comprehensive case of 
a spherical reservoir. 

x
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h(t)RR
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Figure IIIb.6.6.  Draining of an arbitrary and a spherical vessel containing incompressible 
fluid 

Time to Drain Spherical Reservoirs in Quasi-steady Process 

To determine the time to empty a spherical reservoir with gravity draining, as 
shown in Figure IIIb.6.7, we again use the continuity and the momentum equa-
tions, noting that the gravity head acts against the velocity head and the friction.  
In this case however, the flow cross section in the tank also varies with elevation, 
and thus with time.  Ignoring initial liquid acceleration, noticing that P1 = P2 and 
V1 = 0, Equation IIIa.3.42 



356      IIIb.  Fluid Mechanics:  Incompressible Viscous Flow 

h(t)

HT
d

β R

A
1

2a

Rβ

Rsinβ

Rcosβ

R

h(t) = R + Rcosβ
A(t) = π (Rsinβ )2

h

0 < β < π

Figure IIIb.6.7.  Spherical water reservoir connected to the discharge piping 
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simplifies to: 

HT + h = KV2/2g           IIIb.6.11 

where K = fL/d + ΣKi and we dropped the subscript of the velocity term.  We ob-
tain the second relation between V(t) and h(t) from the continuity equation, as flow 
rate in the pipe is due to the rate of drop in water level in the reservoir, thus –
Adh/dt = VaCd where the exit flow area is aCd.  Eliminating V between the mass 
and the momentum equations yields: 

hH

h
K
2

+
−=

T
d

d
Adt

g
aC

We should now solve the above differential equation, for which we make a change 
of variable from h to β.  While the range of h is 0 ≤  h ≤  2R, the range of β is 0 
≤ β ≤ π.  Using the new variable, we find water level as a function of time from: 
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We may switch to yet another variable, ζ = cosβ and dζ  = –sinβdβ, with –1 ≤ ζ
≤  1.  The resulting integral can be carried out twice by the method of separation 
of variables.  The result, expressed again in terms of β is 
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Developing the left side integral by using three times, the method of integration by 
part, yields: 
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where )1(H ζ++= RB T .  Moody has evaluated various containers for gravity 

draining.  These include spherical and conical vessels as well as vertical and hori-
zontal cylinders. 

Time Dependent Water Level In Surge Tanks 

In hydroelectric power plants, a tunnel delivers water from the reservoir via the 
penstock to the turbine.  As shown in Figure IIIb.6.8, the control valve aborts the 
flow of water to protect the turbine in a sudden loss of electric load.  As is dis-
cussed in the next section, sudden acceleration or deceleration of fluid flow results 
in the imposition of hydraulic forces, which may damage piping.  A surge tank lo-
cated upstream of the control valve prevents such damage by diverting the flow 
and damping oscillations.  The surge tank also provides water in the case of a sud-
den load increase.  The goal is to determine the surge tank water level as a func-
tion of time.  The maximum water level occurs in the case of a loss of load fol-
lowed by sudden closure of the control valve.  Water initially flows in the tunnel 
at a speed of Vo.  Diameters of the tunnel and the surge tank are d and D, respec-
tively.  The tunnel length from the dam inlet to the surge tank is L.  At steady-state 
operation, water in the surge tank is below the water level in the reservoir due to 
the frictional head loss, HL = ZA - ZB where elevations ZA and ZB are measured 
from an arbitrary datum. 
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Figure IIIb.6.8.  Surge tank to regulate the operation of a hydraulic turbine 
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Upon a sudden closure of the control valve, water rushes into the surge tank.  
This problem is similar to flow between reservoirs.  However, we cannot use the 
“quasi-steady” assumption.  To determine the surge tank water level as a function 
of time, we again use the conservation equations of mass and momentum. From 
the conservation equation of mass for the surge tank we conclude:  

VaA
dt

dy ρρ =            IIIb.6.13 

where V is flow velocity after the control valve is shut and y is measured from the 
water surface in the reservoir.  We now apply the one-dimensional momentum 
equation, IIIa.3.44 between points 1 and 2.  Since flow velocities inside the two 
reservoirs are very small, we ignore both velocity heads and frictional losses in the 
reservoirs.  Integrating between points 1 and 2 along the streamlines, we get: 
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where K = fL/d + ΣKi, V is flow velocity in the penstock, and L is the friction 
length in the penstock.  Note that the slope of the penstock does not appear in the 
final equation.  Hence, this analysis is applicable to any inclination including a 
horizontal tunnel.  We can now summarize Equations IIIb.6.13 and IIIb.6.14 as: 
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Coefficients c1, c2, and c3 in these coupled first order and non-linear differential 
equations are given as c1 = d2/D2, c2 = –(fL/D + ΣK)/(2L), and c3 = –g/L.  The 
boundary condition for the first differential equations is that at time zero, y = –HL

and for the second equation that at time zero, V = Vo.  One way to solve this set is 
to take derivative of the first equation.  Then substituting for dV/dt and for V from 
the second and the first equation, respectively to obtain: 
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Where a = –c2/c1 and b = –c1c3.  This is a second-order non-linear differential 
equation, which could be solved numerically.  It is interesting to explore the re-
sponse of the system in the absence of friction for which we can find an analytical 
solution in closed form.  In the absence of friction, the governing equation is: 

0
2

2
=+ by

dt

yd
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Figure IIIb.6.9.  Dynamic response of a tank to influx and efflux of an incompressible
fluid

Since b is positive, the solution to this second order linear homogenous differen-
tial equation is given as: 

tbCtbCty cossin)( 21 +=

Coefficients C1 and C2 can be found from two boundary conditions.  First, at t = 0,
y = 0.  Recall that earlier we said that at t = 0, y = –HL.  However, we are not con-
sidering friction in this case, and hence, the surge tank water level is about the 
same as the reservoir.  For the second condition, we note that the flow rate going 
to turbine at time zero would enter the surge tank right after the closure of the 
valve at the same velocity.  Hence, at t = 0, dy/dt = Vo.  Using the first boundary 
condition, C2 = 0.  Using the second boundary condition, we can find C1 which 
upon substitution, we get: 

t
L

g

D

d
V

g

L

d

D
y )sin(0=

Expectedly, the oscillation of the water level in the surge tank is sinusoidal with 
no damping effect due to lack of friction.  The amplitude of the oscillation is given 
by dVgLD /)/( 0=λ  with a period of dLgDT /)/2( π= .  There are various 
designs for the surge tank.  Examples include an orifice tank, a differential tank, 
and a closed tank.  In an orifice tank the inlet is equipped with an orifice to en-
hance friction.  In a differential tank, the overflow is contained in a secondary tank 
encompassing the primary surge tank.  In a closed tank, the damping effect is pro-
vided by the work required to compress the air trapped on top of the tank water 
inventory.  Chaudhry, Parmakian, and Streeter discuss design and operation of 
surge tanks. 

Liquid Level Fluctuation in Open Tanks 

We now consider a case similar to the surge tank.  Water enters an open tank at a 

constant rate of iV  and leaves through a long pipe (Figure IIIb.6.9).  Unlike the 

surge tank problem, in this problem we let pressure downstream of the tank 
change in a prescribed manner.  The goal is to determine the response of the tank 
water level to such pressure changes.  For this purpose, we again combine the con-
servation equations of mass and momentum.  We write the continuity equation for 
the control volume representing the tank: 
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Adh/dt = iV  – oV

where A is the tank flow area and oV  is the rate of flow leaving the tank.  We now 

write the momentum equation for the long pipe extending between points B and C
as given by Equation IIIb.3.7: 

( )22
o 2/V)/( adfLPP CB ρ=−

At this point, all we need to do is to substitute for PB and PC in terms of h and 
combine the continuity and the momentum equations.  To find an analytical solu-
tion we consider the case of laminar flow in the pipe.  For this case, f = 64µ/(ρVd).
For PB, we write PB = Patm + ρgh, where we ignored the velocity heads.  Similarly, 
for PC, we write PC = Patm + ρghC.  Substituting, we obtain: 

21h
h

cc
dt

d =+                                       IIIb.6.15 

where c1 = 1/(BA), c2 = ( iV +hC/B)/A, and B = 128vL/(πgd4).  Vennard considers 
three cases of linear, step, and sinusoidal fluctuations for hC.  The solution to 
Equation IIIb.6.15 is given by Equation VIIb.2.4.  For example, for a step increase 
in the downstream pressure, we find: 

h = Ce–t/BA + B iV +hC           IIIb.6.16 

where C is the constant of integration to be found from the initial condition.  That 
is to say, at steady state, hC = hCo and h = ho.  We can find the relation between hCo

and ho by setting dh/dt = 0 in Equation IIIb.6.15: 

ho = B iV  + hCo                                     IIIb.6.17 

After a step increase from hC = hCo to say hC = hC1, Equation IIIb.6.16 gives the re-
sponse in water level as: 

h = Ce–t/BA + B iV +hC1

Since at t = 0, h = ho, therefore ho = C + B iV +hC1.  Substituting from IIIb.6.17, C

is found as C = hCo – hC1 and Equation IIIb.6.16 becomes: 

h = (hCo – hC1)e
–t/BA + B iV +hC

This equation gives the tank water level as a function of time.  The new steady 
state value for water level, h1, is found by letting t approach ∞.  Thus h1 = 

B iV +hC1 and water level can be expressed as: 

h = (hCo – hC1)e
–t/BA + h1          IIIb.6.18 
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Finally, by substituting the derivative of h from Equation IIIb.6.18 into the tank 
mass balance we find: 

AtCC
i e B/1o

o B

hh
VV −−

+=

Example IIIb.6.5.  Oil (v = 1E–4 m2/s), enters an open tank at a steady rate of 1.2 
m3/min and leaves through a 30 m long pipe.  The tank has a constant cross sec-
tional area of 2.5 m2 and the pipe has an inside diameter of 12 cm.  At steady state 
conditions, the exit pressure is 1.65 m of oil.  While the inlet flow remains con-
stant, we increase the exit pressure instantaneously to 2.2 m of oil.  Find the effect 
on oil level and exit flow rate. 

Solution:  We first check the Reynolds number to ensure Equations IIIb.6.15 
through IIIb.6.18 are applicable: 

Re = d iV /(vA) = (0.12 × 1.2/60)/(1E–4 × π 0.122/4) = 2122 

Flow is laminar, thus: 

B = 128vL/(πgd4) = 128 × 1E–4 × 1 × 30/(π × 9.81 × 0.124) = 60 s/m2

A = π 0.122/4 = 0.0113 m2

ho = B iV  + hCo = 60 × (1.2/60) + 1.65 = 2.85 m 

h1 = ho + (hC1 – hCo) = 2.85 + (2.2 – 1.65) = 3.4 m 
h(t) = (hCo – hC1)e

–t/BA + h1 = (1.65 – 2.2)e–t/(60 × 0.0113) + 3.4 = –0.55e–t/0.678 + 3.4 

B/)hh(VV B/
1oo

At
CCi e−−+=  = 1.2 + (1.65 – 2.2)e-t/0.678 = 1.2 – 0.55 e-t/0.678

m3/s

tt t

hC h Vo

.

hCo

hC1

ho

h1 Vi

.

Pressure Fluctuation in Gas Tanks 

We now consider the situation where the pressure at the exit of a gas filled tank is 
changed.  Our goal is to find the tank pressure response to the change in the down-
stream pressure.  Figure IIIb.6.10(a) shows the gas tank of volume V.  Under 
steady state conditions, the tank pressure is Po, temperature T, and pressure at 
point C is PCo.  Flow rate into and out of the tank is im . We now increase pressure 
at point C to PC1.  To see the effect on the tank pressure, we again use the mass 
and momentum equations.  From the mass balance; 

][
V

)
V
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dT
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P

dt
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RTRT
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dt
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dt

dm
mm ei +===−         IIIb.6.19 
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where in Equation IIIb.6.19, the temperature derivative is set equal to zero since 
the process is assumed to be isothermal.  This is a reasonable assumption if the 
tank is not insulated.  Equation IIIb.3.7 for momentum balance becomes P – PC = 

(fL/d) 2
em /(2ρA2).  Since we have assumed that tank pressure is uniform at all 

times, PB = P.  Furthermore, for this slow gas flow rate we ignored compressibility 
effects.  Substituting for em  from the momentum balance into Equation IIIb.6.19, 

we obtain: 

iC m
RT

PP
RT

dt

dP −−+
V

/)(
V

β          IIIb.6.20 

where β = (fL/d)/(2ρA2) and f is treated as a consant.  Equation IIIb.6.20 is a non-
linear first order differential equation, predicting the tank pressure as a function of 
time, for a specified forcing function for PC(t).  We can find analytical solution in 
closed form for special cases of laminar flow in the pipe or for charging vessels 
with no gas withdrawal.  For the latter case (i.e. em  = 0, as shown in Fig-
ure IIIb.6.10(b)) the momentum equation for the pipe becomes PB – PC = 2

imβ .  If 
we again assume that pressure is uniform in the tank at all times, then PC = P.
Substituting in Equation IIIb.6.19 yields: 

( ) β/
V

PP
RT

dt

dP
B −=

an analytical solution exits for charging vessels if the line pressure, PB is kept con-
stant: 

2

V2
−−−= t

RT
PPPP oBB β

         IIIb.6.21 

The mass flow rate into the tank that results in a tank pressure of P(t) is found 
from Equation IIIb.6.19 as: 
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(a)                                                                                 (b) 

Figure IIIb.6.10.  Pressure of a gas tank to downstream pressure change 
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=           IIIb.6.22 

The study of the level response in an open tank holding liquid or the pressure re-
sponse of a tank containing gas to changes in upstream or downstream pressure 
showed an interesting phenomenon.  It indicated that we may maintain the liquid 
level or the gas pressure at specified values by manipulating the upstream or 
downstream pressures.  Design of the devices which manipulate the upstream and 
downstream pressure to maintain level or pressure at specified values are gener-
ally discussed in books on feedback control systems.  

Example IIIb.6.6.  A tank having a volume of 50 m3 contains air at 600 kPa.  We 
intend to charge this tank through a feed line having a diameter of 6 cm and a 
length of 35 m.  Pressurized air at 1200 kPa and 20 C enters the feed line.  Find 
the time it takes for the tank pressure to reach 1200 kPa. 

Solution:  We find time for P(t) = PB from Equation IIIb.6.21: 

( )βV2/RT

PP
t oB −

=

PB = 1200 kPa, Po = 600 kPa, R = 8314/28.97 = 287 m N/kg K, V = 50 m3, T = 
273 + 20 = 293 K, 

ρ = P /(RT) = 900/(0.287 × 293) = 10.7 kg/m3

β = (fL/d)/(2ρA2) = 0.012 × 35/[2 × 0.06 × 10.7 × (π × 0.062/4)2] = 0.41E5 (m kg)–

1

Substituting, we find: 

t = 1000)6001200( ×− /[287 × 293/(2 × 50 × 5E41.0 )] = 186.5 s. 

Vent Clearing, Liquid Expulsion 

Our goal is to determine the time for liquid expulsion from a submerged pipe, 
which is also referred to as vent clearing.  As shown in Figure IIIb.6.11(a), a pipe 
of constant cross sectional area A, is submerged in a liquid pool while connected 
to a reservoir of pressurized gas or vapor, having pressure Pg.  As an example, this 
situation may represent the discharge of steam into the subcooled water of a BWR 
suppression pool.  Our control volume extends from point 1 to point 2.  As before, 
we use the same conservation equations for mass and momentum to determine the 
time for liquid expulsion from the pipe.  The implicit assumption in this derivation 
is that the propagation time (tp = L/c where c is the speed of sound) is much 
shorter than the expulsion time.  We apply Equation IIIa.3.44 to the control vol-
ume, with terms expanded below: 



364      IIIb.  Fluid Mechanics:  Incompressible Viscous Flow 

∆Pinertia = ρ(H – s)dV/dt
∆Ppump = 0 
∆Pstat = P2 – P1

∆Pvel = 0
∆Pgrav = ρg(Z2 – Z1)
∆Pfric = f[(Η − s)/d]ρV2/2 
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  (a)                                                                                         (b) 

Figure IIIb.6.11.  Expulsion of liquid from a submerged pipe 

Since the gas density is generally negligible, P1 = Pg.  Also, from a simple force 
balance we find that: 

P2 = Pf + ρgH

We also note that Z2 – Z1 = (s – H).  The conservation equation of mass takes the 
form of V = ds/dt.  If we substitute for P1, P2, Z2 – Z1, and V in Equation IIIa.3.44, 
we obtain: 
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ρ
        IIIb.6.23 

where in Equation IIIb.6.23, Pf is the free stream pressure.  For the initial condi-
tion, we assume s is known.  For example, if the pipe is full of water up to height 
H then s(t = 0) = 0.  Also at time zero, liquid is at rest hence, ds(t = 0)/dy = 0.  The 
solution to Equation IIIb.6.23 depends on the manner in which Pg is increased to 
expel liquid.  Moody obtained solution for the cases of step increase (Pg = Po) as 
well as a ramp increase (Pg = Pf + Ct, where C is a positive constant).  The solu-
tion for the step increase in pressure is given as: 
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          IIIb.6.24 

where ξ = ρ/)( fo PP −  and the error function, erf(x), is defined in Chap-

ter VIIb.3.  Values of erf(x) are given in Figure IVa.9.3.  Equation IIIb.6.24 is 
plotted with the solid line in Figure IIIb.6.11(b).  The time to expel all the liquid 
from the pipe is found by letting s approach H: 

θ = 1.253H/ξ            IIIb.6.25 

The dotted line in Figure IIIb.6.11(b) is for a case where the step increase in pres-
sure is just enough to push the liquid to the exit of the pipe.  The step increase in 
this case is for Pg to be increased to P’ = Pf + ρgH.

An interesting observation is that for cases where Pg > P’, velocity increases 
rapidly as s approaches H.  Indeed Equation IIIb.6.24 shows that the denominator 
becomes zero.  This is expected, as the mass of liquid approaches zero.  In reality, 
the mass expelled from the pipe would accelerate the surrounding liquid, which 
was not considered in the above analysis.  Thus, real velocity remains at a finite 
value.   

Dynamics of Gas Bubbles 

Analysis of rising bubbles in liquids is an involved task and the phenomenon is 
still a topic of investigation.  The reason is due to the associated complexities such 
as; bubble shape, friction force (referred to as drag), geometry of the liquid con-
tainer (bubble rise in an infinite liquid versus in a bank of tubes), liquid motion 
(stagnant versus flowing liquid), type of process (adiabatic versus thermal), and 
gas diffusion into liquid. 

Gas bubbles are introduced into a liquid whereas vapor bubbles are primarily 
induced into the liquid such as in boiling.  Here we discuss only gas bubbles.  
Steam bubbles are discussed in Chapter Vb.   

h
Hd

y

di

FD

FB

FW

Figure IIIb.6.12.  Gas bubble rising in a pool of liquid 
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Let’s consider a simple case of a single non-condensable spherical* gas bubble 
in infinite stagnant water.  Our goal is to find the bubble velocity and diameter as 
a function of time while the bubble is rising to the liquid surface.  To obtain an 
analytical solution in closed form, we make several simplifying assumptions, 
which limit the results to cases for which the assumptions are valid.  Suppose a 
small nitrogen bubble (3 mm ≤ di ≤ 9 mm) is just released in a pool of water at 
elevation H below the water surface.  Due to buoyancy, the bubble rises to the sur-
face while friction in the form of the drag force resists the bubble motion.  The net 
force acting on the bubble results in the acceleration of the bubble according to 
Newton’s second law.  If the bubble trajectory does not significantly deviate from 
the vertical, then the bubble acceleration is along the y-axis: 

FB – FW + FD = mbay           IIIb.6.26 

where subscripts B, W, D, and b stand for buoyancy, weight, drag, and bubble, re-
spectively.  We now assume that after the initial acceleration period, the bubble 
reaches a terminal velocity at which point ay = 0.  All then we need to do is to ex-
press FB, FW, and FD in terms of the system parameters.  The bubble weight is 
found from FW = ρbVg where V is the bubble volume.  The buoyancy force arises 
as a result of the displaced water by the presence of the bubble.  Therefore, FB = 
ρwVg where subscript w stands for water.  The drag force is due to frictional pres-
sure drop; FD = (∆P)Ab where Ab in this relation is the projected area of the spheri-
cal bubble, Ab = πd2/4 where d is the bubble diameter.  Pressure drop, due to drag 
on the bubble, is similar to Equation IIIb.3.11.  Therefore, the drag force on the 
bubble, FD becomes: 

( )4/
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V

CPAF w
DbD πρ

=∆=          IIIb.6.27 

where in Equation IIIb.6.27, CD is the drag coefficient.  Solution of Equa-
tion IIIb.6.26 depends on the expression used for the drag coefficient, which in 
turn depends on a variety of factors such as bubble velocity and liquid properties 
(viscosity, density, and liquid surface tension).  For laminar flow, CD = 16/Re 
where Re = ρwVd/µw.  Substituting CD into Equation IIIb.6.27, we find FD = 
2πµVd.  Stokes derived the drag force for very low Re numbers with negligible 
inertial forces as FD = 3πµVd (Fox).  Substituting the Stokes drag force in Equa-
tion IIIb.6.26, noting that ρb << ρw, and substituting the results in Equa-
tion IIIb.6.26 (with ay = 0), we find ρwVg = 3πµVd.  Solving for the terminal ve-
locity, we get: 

µ
ρ

18

2gd
V w=              IIIb.6.28 

As the bubble rises, pressure keeps dropping thus d changes with time and so does 
the bubble velocity.  To express d as a function of time, we use the equation of 

* An aspect ratio is defined for elliposoidal bubbles, given as the ratio of the bubble minor 
over its major axis.  For spherical bubbles the aspect ratio is unity. 
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state for the isothermal bubble.  At any depth along the buble flow path; PV = PiVi

where i refers to the bubble initially released at depth H.  Substituting for V = 
πd3/6 and for P =Patm + ρwgh in the equation of state, the bubble diameter is found 
as:

i
watm

i d
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d

3/1
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=

ρ
          IIIb.6.29 

where di is the initial bubble diameter at depth H.  Substituting Equation IIIb.6.29 
into Equation IIIb.6.28, we find the bubble velocity as a function of time.  How-
ever, these are implicit relations in time as h = f(t), is yet to be determined.  To 
find h, we use the fact that dh/dt = V with the initial condition of h(t = 0) = H.  
Substituting from Equations IIIb.6.28 and IIIb.6.29 and integrating, we find h as a 
function of time given by: 
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        IIIb.6.30 

where P =Patm + ρwgH.  We then find V = f(t) and d = f(t) by back substitution of 
Equation IIIb.6.30 into Equations IIIb.6.29 and the result in III.6.28, respectively. 

Flow Distribution in Piping Networks, the Nahavandi Method 

Two methods for determination of flow distribution in piping networks were dis-
cussed in Section 3.  Here, we discuss the Nahavandi method, which is based on 
solving the transient form of the conservation equations of mass and momentum.  
To determine flow under steady-state condition, a null transient is analyzed.  The 
null transient, also known as dynamic relaxation, finds solutions for time depend-
ent problems without any imposed forcing function in the boundary conditions.  In 
this method, the same concept of node and inter-nodal flow path, branch, or link, 
as discussed in Section 3 applies.  The continuity equation is applied to each node 
and the momentum equation to each flow path.  However, no mass storage at a 
node or in a flow path is allowed.  This assumption, while greatly simplifying the 
analysis, introduce only slight inaccuracy if applied to incompressible flow.  Addi-
tionally, the liquid must remain single-phase as no heat transfer is considered in 
the network.  Since the method is applicable only to slow transients, the wave 
propagation effect, as discussed in Section 7 is also neglected.  The Nahavandi 
method is well suited for computer programming since the formulation is based on 
matrix algebra. 

The Continuity Equation:  To write the continuity equation in matrix form, 
we first define a connection matrix [C] with elements being either +1, –1, or 0.  
This matrix is obtained from the fact that pressure drop between two nodes is re-
lated to the nodal pressures as:  

{∆Pstat} = –[C] {P}           IIIb.6.31 
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where the number of rows of matrix [C] is equal to the number of branches and 
the number of columns in matrix A is equal to the number of nodes of the piping 
network.  In Equation IIIb.6.31, a matrix is represented by [ ] and an array by { }.  
Matrix algebra is discussed in Chapter VIId. 

Example IIIb.6.7.  Find the connection matrix for the piping network shown in 
the figure. 

1

3

2

5

41

5

4

32Supply

Output

1m

5Xm

1Xm

7

6

Solution:  There are 5 nodes and 7 flow paths.  To distinguish the number repre-
senting a node from the number representing a flow path, the latter is placed inside 
a circle next to the related flow path.  The flow to node 1 is from a source for 
which the source pressure is given.  The output flow rate to a sink is from node 5.  
Subscript X indicates that the flow is an external flow (i.e., enters or leaves the pip-
ing network).  The supply pressure and the external flow are given and we must 
find the unknown inter-nodal flow rates.  Recall that according to our sign conven-
tion, any flow leaving a node would be assigned a plus and any flow entering a 
node would be assigned a minus sign.  Pressure drop is related to nodal pressure 
through ∆P = PB – PA:

∆P1 = ∆P1 –  2 = –(P1 – P2)
∆P2 = ∆P1 –  3 = – (P1 – P3)
∆P3 = ∆P2 –  3 = – (P2 – P3)
∆P4 = ∆P2 –  4 = – (P2 – P4)
∆P5 = ∆P2 –  5 = – (P2 – P5)
∆P6 = ∆P3 –  5 = – (P3 – P5)
∆P7 = ∆P4 –  5 = – (P4 – P5)

Hence, Equation IIIb.6.31 becomes: 
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The connection matrix is thus a 7 × 5 matrix with elements of only –1, 1, and 0 
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Having determined the connection matrix [C], the continuity equation for the 
piping network becomes: 

[ ] { } { } { }0=+ X
T mmC            IIIb.6.32 

Example IIIb.6.8.  For the piping network of Example IIIb.6.7, verify the 
Kirchhoff’s law for nodes 2 and 5. 

Solution:  To verify Equation IIIb.6.32, we need to find the transpose of matrix C
and multiply it by the mass flow rates while considering the output flows: 
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From this matrix equation, we get confirmation that for node 2, for example: 

05431 =+++− mmmm

Similarly for node 5 we have: 

05765 =+−+−− Xmmmm

A piping network having N nodes and M flow paths has a total of M + N un-
knowns.  These are N nodal pressures and M flow rates.  There are N continuity 
equations given by Equation IIIb.6.32 and M momentum equations written for the 
M flow paths as discussed next. 

The Momentum Equation:  We may use Equation IIIa.3.44 for each flow 
path: 

)()( fricacclgravstatpump PPPPP
dt

md

A

L ∆+∆+∆+∆−∆=

Approximating the time dependent term by finite difference and multiplying both 
sides by A/L we obtain: 

=
∆
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mm nn 1

{ }]( fricgravvelstatpump PPPPP ∆+∆+∆+∆−∆ IIIb.6.33

where various pressure terms in Equation IIIb.6.33 are defined in Equa-
tion IIIb.4.1.  Note that in Equation IIIb.6.33, the mass flow rates with superscript 
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n+1 are the unknown mass flow rates to be calculateded at time n + 1 having mass 
flow rates at time n.  Mass flow rates at time zero are obtained from our initial 
guesses based on engineering judgment.  These estimated flow rates must satisfy 
the Kirchhof’s law at each node.  We now rearrange Equation IIIb.6.33 for the un-
known mass flow rates: 

{ } { } ( ){ }fricgravstatpump
nn PPBPPBmm ∆+∆−∆−∆+=+ )(1       IIIb.6.34 

where in Equation IIIb.6.34, {B} = {Ai∆t/Li} with A representing the flow area and 
L the flow length. 

Matrix Solution:  To find nodal pressures, we substitute for {∆Pstat} from 
Equation IIIb.6.31 into Equation IIIb.6.34 and then substitute the resulting equa-
tion into Equation IIIb.6.32 to obtain: 

[ ] { } [ ] [ ][ ]{ } [ ] ( ){ } { } { }0=+∆+∆−∆++ Xfricgravpump
TTnT mPPBPBCPCBCmC

             IIIb.6.35 

We can now solve Equation IIIb.6.35 for the unknown nodal pressures.  The solu-
tion is as follows: 

{ } [ ] [ ] ( ){ } [ ] { }X
n

fricgravpump
T mEmPPBPBCEP 11 −− −−∆+∆−∆=       IIIb.6.36 

where in Equation IIIb.6.36, [E] = [C]T[B][C] is a square matrix and [B] a diagonal 
matrix with diagonal elements of [Bi] = {Ai∆t/Li}.  Having found nodal pressures, 
we can find inter-nodal flow rates from Equation IIIb.6.34. 

Example IIIb.6.9.  Determine matrix [E] for the network shown in the figure. 

1 2 3Supply
Output

1
2

3

4

Solution:  Using the supply pressure as the reference pressure, we find ∆P1 = – (0 
– P1).  Thus we find: 

−
−
−

−

−=

∆
∆
∆
∆

3

2

1

4

3

2

1

110

011

011

001

P

P

P

P

P

P

P
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Using the connection matrix, the continuity equation becomes: 
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−
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−
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0
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The momentum equation becomes: 
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The [E] matrix is obtained from: 

[ ] ( )

−
−
−

−

−
−−

−
∆=

110

011

011

001

/000

0/00

00/0

000/

1000

1110

0111

44
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11
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tgE

Thus the elements of the [E] matrix are: 

[ ] ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )−

−++−−
−−++

∆=

4444

444433223322

3322332211

//0

//////

0/////

LALA

LALALALALALA

LALALALALA

tgE

We can then find the nodal pressures by inverting matrix [E], substituting the re-
sults into Equation IIIb.6.36, and performing the matrix operations.

7.  Fundamentals of Waterhammer Transients 

Analysis of waterhammer or rapid flow transients, where acoustic waves travel 
through the flow path, is much more involved than the rigid column theory.  In 
this section we just introduce the concept of waterhammer analysis for liquids 
only and discuss some preliminary derivations of governing equations.  For more 
information on this topic, the interested reader may review works of Parmakian, 
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Watters, and Wiley & Streeter.  An added complication in waterhammer analysis, 
in addition to the effects of fluid compressibility, is the fact that the elasticity of 
the conduit containing the fluid must also be taken into account.  For this reason, 
waterhammer analysis is also called elastic analysis.   

To introduce the concept of rapid transient analysis, let’s consider a simple case 
of steady fluid flow in a frictionless horizontal pipe at a speed of V1, as shown in 
Figure IIIb.7.1(a).  Since the pipe is frictionless, pressure head at point B, where a 
control valve is located, is the same as that of point A hence, the hydraulic grade 
line (HGL) is horizontal.  Our goal is to find the pressure head caused by throttling 
of the valve.  In Figure IIIb.7.1(b), the valve is instantaneously throttled so that 
flow velocity has dropped to V2 < V1.  The reduction in flow velocity, according to 
the Bernoulli equation is associated with an increase in pressure head just up-
stream of the valve.  The increased pressure head is now a driving force, which 
causes the disturbance to travel upstream of the valve at the acoustic velocity in 
the medium, c.  The increased pressure head (∆H) also affects the liquid via com-
pression and the pipe wall via expansion.   

HGL

V1 V1

H

A B

HGL

V1 V2

∆H
-c

H

CV

L = (c - V1)∆t

V1 V2

(ρV1A)V1
(ρV2A)V2

ρgHA ρg(H+∆H)A

CV

(a)                                      (b)                                    (c) 

Figure IIIb.7.1.  Flow from a reservoir through a frictionless pipe. 

We now write the momentum equation for a control volume through which the 
disturbance would pass as shown in Figure IIIb.7.1(c).  The summation of all the 
forces is equal to the rate of change of momentum in the control volume, plus the 
net momentum flux per Equation IIIa.3.6.  Net force is found as: 

–ρgHA – ρg(H + ∆H)A = –ρgA∆H

Note that we ignored the slight increase in the pipe flow area due to expansion.  

Net momentum flux is obtained as [ AVAV 2
1

2
2 ρρ − ].  Throttling of the valve has 

resulted in a ∆V reduction in the flow velocity therefore, ∆V = V1 – V2.  Substitut-
ing for V2 and ignoring ∆V2, momentum flux reduces to: 

AVAV 2
1

2
2[ ρρ − ]  = AVAVV 2

1
2

1 )([ ρρ −∆− ] ≅ –(2ρAV1∆V1)

Finally, we find the rate of change of momentum as follows.  We note that flow is 
moving at a velocity of V1 towards the right and the disturbance is moving at the 
speed of sound in the liquid towards the left.  Hence, at the time increment ∆t, the 
control volume has a length of (c – V1)∆t and a mass of ρ(c – V1)∆tA.  In the inter-
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val ∆t, velocity has changed from V1 to V2.  Hence, the rate of change of momen-
tum is given by [ρg(c – V1)∆tA][(V2 – V1)/∆t].  The momentum equation for the 
control volume becomes: 

–ρgA∆H = [ρg(c – V1)∆tA](–∆V/∆t) –(2ρAV1∆V1)

This simplifies to: 

    ∆H = c∆V(1 + V1/c)/g           IIIb.7.1 

We can further simplify this relation by comparing typical flow velocities with the 
speed of sound in various mediums as shown in Table IIIb.7.1.  Hence, ignoring 
V1/c as compared with unity, we find ∆H ≅ c∆V/g.

Example IIIb.7.1.  Flow velocity of a liquid, for which c = 4900 ft/s, is reduced 
from 2 ft/s to 1 ft/s.  Find the resulting head rise. 

Solution:  From Equation IIIb.7.1, since V << c, we find ∆H = 4900 × (2 – 1)/32.2 
= 152 ft.  This is a substantial rise in head for such a small change in flow rate in-
dicating that waterhammer subjects piping to a large magnitude force with poten-
tial of damaging the piping system.  If the liquid is water, then ∆P ≅ 66 psi.

The magnitude of waterhammer forces depends on the elasticity of the piping 
material and liquid compressibility.  The more rigid the piping material, the higher 
the magnitude of the waterhammer force.  As for liquid compressibility, the lower 
the compressibility, the higher the waterhammer force.  Equation IIIb.7.1 can be 
extended to multiple incremental changes of velocity.  In particular, 

H ≅ Σc∆V/g              IIIb.7.2 

Here we ignored pipe friction as well as any reflecting wave traveling towards the 
regulating valve.  In a more rigorous analysis, we shall consider both pipe friction 
and forward and reflecting waves due to pressure wave propagation.  However, we 
first discuss effects of various parameters on the wave speed. 

7.1.  Factors Affecting The Speed of Acoustic Waves 

Speed of sound in several mediums is shown in Table IIIb.7.1.  In liquid flow in-
side pipes, the wave speed depends not only on the elasticity of the piping material 
but also on such parameters as diameter and thickness of the pipe as well as den-
sity and bulk modulus of the liquid.  To mathematically demonstrate the depend-
ency of the sound wave on these parameters we consider flow of a liquid in the 
pipe of Figure IIIb.7.1 with valve instantly shut.  In this case, V2 = 0 and ∆V = V1.
Instant closure of the valve results in development of a pressure head, which com-
presses the liquid and causes the pipe to expand both axially and in the radial di-
rection.  However, axial direction is generally much smaller as compared with ra-
dial expansion of the pipe.  Expansion of the pipe combined with compression of 
the liquid result in a certain amount of the liquid mass from the reservoir entering 
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Table IIIb.7.1.  Speed of sound in various mediums 

the pipe.  This amount of mass can be found from the following mass balance.  If 
L is the length of the pipe, it takes t = L/c seconds for the pressure wave to reach 
the reservoir after the instant closure of the valve.  During this time, a total of 
(ρV1A)L/c mass of liquid has entered the pipe.  The mass of liquid entering the 
pipe due to pipe expansion is ρL∆A and the mass entering due to liquid compres-
sion is LA∆ρ.  Therefore, 

(ρV1A) L/c = ρL∆A + LA∆ρ 

This equation simplifies to V1/c = ∆A/A + ∆ρ/ρ.  Noting that V1 = ∆V, we substi-
tute for ∆V from Equation IIIb.7.1 for V1 << c and solve for c2 to obtain: 

c2 = g∆H/[∆A/A + ∆ρ/ρ]            IIIb.7.3 

To relate the wave speed to the liquid and the pipe wall properties, we first replace 
∆H = ∆P/ρ(g/gc) and take advantage of the definition of liquid bulk modulus, as 
defined in Chapter IIIa, Ev = ∆P/(∆ρ/ρ).  Equation IIIb.7.3 becomes: 

c2 = (Ev/ρ)/[1 + Ev∆A/A∆P]            IIIb.7.4 

Now, we canrelate ∆P and ∆A/A to pipe properties.  To do this, we consider the 
free body diagram of the pipe as shown in Figure IIIb.7.2 and perform a simple 
force balance. 

∆F

∆F

∆P
L

Dδ

σ

Figure IIIb.7.2.  The free body diagram of a pipe carrying fluid 
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The incremental internal pressure in the pipe is balanced by the circumferential 
tensile force per unit length; 2∆FL = ∆P(LD).  Since the incremental tensile force 
in turn is balanced by the tensile stress ∆F L= σ(Lδ), then we can relate stress to 
incremental pressure 2σδ = ∆PD or σ = ∆PD/ 2δ.  Having related ∆P to pipe 
stress, we seek to relate ∆A to pipe strain.  We then would relate strain to stress 
through E, the modulus of elasticity as ε = σ/E.  The incremental increase in flow 
area is given by ∆A = π D (∆D/2).  But by definition, ε = ∆D/D.  Hence, ∆A = π
D2 ε/2.  We now substitute for ε in terms of σ and for σ in terms of ∆P to get; 
∆A/A = ∆PD/Eδ.  Substituting in Equation IIIb.7.4, we obtain: 

[ ] ( )[ ] 2/1
vv 1/)/)(/(1/)/( PipeLiquid CCDEEEc +=+= δρ          IIIb.7.5 

where we have called gcEv/ρ = CLiquid and (Ev/E)(D/δ) = CPipe.  Elasticity of some 
piping materials is given in Table IIIb.7.2. 

Table IIIb.7.2.  Elasticity for some piping materials 

Example IIIb.7.2.  Water at 60 F is flowing in a 22-inch Schedule 60 steel pipe.  
Find the wave speed for the system.  ρwater = 62.37 lbm/ft3, (Ev)water = 3.11 × 105

psi and Esteel = 30 × 106 psi. 

Solution:  For 22-inch Schedule 60 pipe, D = 20.25 in and δ = 0.875 in.  From 
Equation IIIb.7.5 we have: 

ft/s4318
)875.0/25.20)(7E3/5E11.3(1

37.62/)5E11.3144(2.32 =
+

××=c

If the pipe was fully rigid (i.e., ∞→E ), then the wave speed would have been 
found from: 

ρ/vEc = ft/s480837.62/5E11.31442.32 =××=

Speed of sound in water from Table IIIb.7.1 is 4890 ft/s. 

To determine the effect of wall thickness, we may perform similar analysis as 
in Example IIIb.7.1 with wall thickness as a variable.  The results of such analysis 
for two types of piping materials are shown in Table IIIb.7.3.   
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Table IIIb.7.3.  Wave speed in piping systems 

Having the wave speed enables us to compare the head rise subsequent to sud-
den closure of a valve in various piping systems.  In the example below, we com-
pare the head rise in two piping systems. 

Example IIIb.7.3.  Water flows at 80 F in a 20-inch Schedule 40 pipe.  Find the 
head rise due to instantaneous closure of a valve (a) for steel pipe and (b) for a 
PVC pipe having the same dimensions as the steel pipe.  ρwater = 62.22 lbm/ft3,
(Ev)water = 3.22E5 psi.  Water flow rate is 5198 GPM. 

Solution: For a 20 in (51 cm) nominal pipe size Schedule 40, D = 18.812 in (48 
cm), δ = 0.594 in (1.5 cm), Esteel = 30E6 psi (206.85 GPa) and EPVC = 4E5 psi 
(2.758 GPa).  For the steel pipe, we calculate: 

(CPipe)Steel = (Ev/E)(D/δ) = 1 + (3.22/300)(18.812/0.594) = 0.34 

and for the PVC pipe, we have: 

(CPipe)PVC = (Ev/E)(D/δ) = 1 + (3.22/4)(18.812/0.594) = 25.49 

For both cases: 

CLiquid = Ev/ρ = 32.2 × (144 × 3.22E5/62.22) = 24E6 

The wave speed for the steel pipe is found as: 

( )[ ] 2/11/ PipeLiquid CCc +=  = [24E6/(1 + 0.34)]0.5 = 4232 ft/s (1290 m/s) 

and for the PVC pipe as: 

( )[ ] 2/11/ PipeLiquid CCc +=  = [24E6/(1 + 25.49)]0.5 = 970 ft/s (296 m/s) 

Water velocity is found as: 
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V = PipeA/V  =[5198/(60 × 7.481)]/[π(18.812/12)2/4] = 6 ft/s (1.83 m/s) 

Hence, the head rise from Equation IIIb.7.1 for V << c, i.e., ∆H ≅ c∆V/g for flow 
in the steel pipe is:  

∆H ≅ c∆V/g = 4232 × 6/32.2 = 788.6 ft (240.3 m) 

In the case of the PVC pipe we find the head rise as: 

∆H ≅ c∆V/g = 970 × 6/32.2 = 180 ft (55 m) 

So far we noticed how analysis of a fast transient differs from the rigid column 
theory.  We performed some hand calculations to determine the head rise follow-
ing instantaneous closure of a valve.  We were also able to express the speed by 
which disturbances in a fluid are propagated in terms of the factors affecting it.  
Next, we perform a more rigorous analysis to obtain the conservation equations in 
the form of partial differential equations.  To be able to solve the set of governing 
equations, we use the method of characteristics.  This method allows us to solve 
the converted equations by finite difference. 

7.2.  Analysis of Fast Transients in Piping Systems 

Our goal is to analyze the response of a piping system containing the flow of a 
fluid to a fast transient.  For this purpose, we consider the internal, one-dimension-
al flow of a fluid in a pipe.  The free body diagram of an element of this piping 
system is shown in Figure IIIb.7.3. In general, the pipe may have an angle θ with 
the horizontal plane.  Initially, fluid is flowing steadily in the pipe.  At time zero, a 
valve is instantly closed causing in pressure waves to propagate at the speed of 
sound in the system.  As a result of the perturbation, the fluid is compressed and 
the pipe expands.  We now set up the conservation equations of mass and momen-
tum for the elemental control volume assuming that the elongation in the axial di-
rection is negligible compared with the elongation in the radial direction. 

∆FWeight = ∆Mg

θ
V

D

∆x

∆FWall = πτ∆xD

P(x)A

P(x+∆x)A

CV

Figure IIIb.7.3.  Free-body diagram of an elemental control volume 

Continuity Equation is derived in Example IIIa.3.7 as (1/A)dA/dt + (1/ρ)dρ/dt
+ (dV/dx) = 0.  We may now substitute for: 
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dA/A = dPD/Eδ = ρgdHD/Eδ

that was derived earlier to couple the continuity equation with the pipe structural 
properties.  Similarly, dρ/ρ can be replaced by taking advantage of the definition 
of the liquid bulk modulus: 

dρ/ρ = dP/Ev = ρgdH/Ev

Substituting and rearranging we obtain the relation between the velocity and the 
head rise: 

0
),(),( 2

=
∂

∂+
x

txV

g

c

dt

txdH
             IIIb.7.6 

where we have also substituted from Equation IIIb.7.5.  This is a partial differen-
tial equation in two unknowns.  We need one more equation to be able to solve the 
set, which is obtained as follows. 

Momentum Equation for a one-dimensional flow is derived as (see Exam-
ple IIIa.3.10) 

0sin =++
∂
∂+

∂
∂+

∂
∂ θρτπρ gD

x

P

x

V
V

t

V
          IIIb.7.7 

We may now substitute for pressure, friction, and gravity terms as follows.  For 
the friction term, we substitute for wall shear stress from Equation IIIb.2.5 or al-
ternatively from the Darcy equation as given by Equation IIIb.3.7 so that: 

π Dτ = π D
24

VVf ρ
 = 

2

VV

D

A
f

ρ

where A is the flow area.  For the gravity force term we notice that sin θ = ∂z/∂x
(see Figure IIIb.7.3).  Finally, we replace the pressure term with the piezometric 
head so that: 

x

)H(

∂
−∂=

∂
∂ z

g
x

P ρ

where H = P/ρ(g/gc) + z.  Substituting in Equation IIIb.7.7 we obtain; 

0
2

H =
∂
∂++

∂
∂−

∂
∂+

∂
∂+

∂
∂

x

z
g

D

VV
f

x

z

x
g

x

V
V

t

V ρ
ρ

ρρ

Note that by replacing the pressure term with piezometric head, the resulting equa-
tion applies only to liquids.  Dividing through by ρ and canceling the dz/dx terms, 
the momentum equation reduces to 



7.  Fundamentals of Waterhammer Transients      379 

0
2

H =+
∂
∂+

∂
∂+

∂
∂

D

VV
f

x
g

x

V
V

t

V
           IIIb.7.8 

Now that we have derived the governing equations, we embark on finding mathe-
matical means of solving Equation IIIb.7.6 and IIIb.7.8. 

Solving the Governing Equations.  The reason problems involving fast tran-
sients are more complicated, is the fact that we have to solve a set of coupled, non-
linear, partial differential equations, 

0
),(HH 2

=
∂

∂+
∂
∂+

∂
∂

x

txV

g
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x
V

t
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t

V

where the first term of Equation IIIb.7.6 is now expanded.  To be able to tackle 
this set of equations, we first try to eliminate as many nonlinear terms as possible.  
Such elimination undoubtedly leads to the introduction of some uncertainties in 
the results.  However, if the eliminated terms are negligible as compared with 
other terms, then the degree of uncertainty will be much less.  As was discussed in 
Section IIIa.3.2, the non-linearity is due to the convective acceleration term.  For-
tunately, V∆H/∆x in the continuity equation and V∆V/∆x in the momentum equa-
tion are small terms compared with the other terms.  That is, the temporal changes 
in velocity and the head rise (∆V/∆t and ∆H/∆t) are much longer than the spatial 
changes.  Also note that such terms as ∆H/∆x and ∆V/∆x are multiplied by large 
values such as g and c2/g, respectively.  Dropping the less significant terms, the set 
simplifies to: 

0
H 2

=
∂
∂+

∂
∂

x

V

g

c

t
             IIIb.7.9 

0
2

H =+
∂
∂+

∂
∂

D

VV
f

x
g

t

V
          IIIb.7.10 

Despite the above simplification, no general solution to this set of equations exists.  
An interesting way to make this set more amenable to a solution is the method of 
characteristics, which converts the set of coupled non-linear partial differential 
equation into a set of coupled ordinary differential equations.  As demonstrated by 
Equation IIIa.2.2, total derivative of velocity for example, in one dimension is 
found as: 

t

x

x

V

t

V

dt

dV

∂
∂

∂
∂+

∂
∂=            IIIb.7.11 

We then note that for V, the space derivative exits in Equation IIIb.7.9 and the 
time derivative exists in Equation IIIb.7.10.  For H, the time derivative exists in 
Equation IIIb.7.9 and the space derivative exists in Equation IIIb.7.10.  It then ap-
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pears that if these equations are added together, the resulting equation will contain 
all the terms that we need for setting up the total derivatives.  However, we add 
these by multiplying the first equation by an unknown factor λ and then add it to 
the second equation: 

0
2

HH2
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∂+
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∂+

∂
∂+

∂
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D

VV
f

x
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V
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λλ

        IIIb.7.12 

By comparing Equation IIIb.7.12 with Equation IIIb.7.11, we note that if dx/dt = 
λc2/g, then the first bracket, for velocity, would have the form of the total deriva-
tive.  Similarly, for the second bracket, we need to have dx/dt = g/λ.  We then con-
clude that λc2/g = g/λ.  From here, we find λ = ± g/c.  We also find that dx/dt = 
±c.  Hence, the governing equations known as the compatibility equations be-
come:

(C–) 0
2

H =+−
D

VV
f

dt

d

c

g

dt

dV
  For c

dt

dx −=                 IIIb.7.14 

(C+):  0
2

H =++
D

VV
f

dt

d

c

g

dt

dV
  For c

dt

dx +=                 IIIb.7.13 

Let’s consider the case of the reservoir and the instant closure of a valve, as shown 
in Figure IIIb.7.4.  We first divide the pipe length into N equally spaced segments 
∆x = L/N.  In this case N = 4 hence, there are five nodes.  Initially liquid is steadily 
flowing in the pipe.  At time t the valve is instantly closed.  Closure of the valve 
results in the appearance of a pressure wave, having a magnitude of ∆H ≅ c∆V/g,
as predicted by Equation IIIb.7.1 for V1 << c, traveling upstream.  Our goal is to 
find V and H for all the nodes along the pipe.  The time it takes the disturbance to 
reach node 4 is given by ∆t = ∆x/c.  The information about velocity and head at 
node 4 is related to dx/dt = –c hence, it is predicted by the C– equation.  The C+

equation transmits information in the +c direction.  We therefore can find H4 and 
V4 from similar information at nodes 3 and 5, which are known at time t.

∆Η

1 2 3 4 5

Η1

C-C+

t

t+∆t

x

t

3 5

4

Known: V3, H3,V5, and H5
Unknow: V4, H4

C-C+

2∆t

t

3 5

∆t

x = L∆x

P4

0

i i+1i-1 N

P1

P2

P3

 (a)                                      (b)                                                (c) 

Figure IIIb.7.4.  Graphical representation of C- and C+ solutions for an instant valve clo-
sur 
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Period of Pressure Pulse.  Let’s now find the time it takes for the wave to 
travel back and forth from the valve to the tank and returning to the valve.  Con-
sider the tank of Figure IIIb.7.5.  Water is steadily flowing from the tank in the 
pipe.  We then suddenly close the valve and examine the system response to the 
valve closure.  To simplify the discussion, we make the following three assump-
tions: 
− the connecting pipe is frictionless.  This assumption eliminates the considera-

tion of damping. 
− water level in the tank is constant (pressure head is ho from the pipe centerline) 

prior to the closure of the valve.  This assumption implies steady flow of water 
in the pipe. 

− the magnitude of the negative pressure pulse is such that the absolute pressure 
remains higher than water vapor pressure.  This assumption eliminates the con-
sideration of liquid flashing to vapor. 

As shown in Figure IIIb.7.5, the period for the pressure pulse to complete a cycle, 
in a frictionless pipe of length L, is 4L/c.

ho L

x

Vo

Vo

ho

head

x

A-  The valve is fully open.  Water is flow-
ing under steady state condition in the fric-
tionless pipe, having a pressure head of h0
and velocity of Vo = (2gho)

1/2.

Vo

head
c

ho

∆h=cVo/g

V = 0
x

t = 0

B-  At time zero, due to sudden valve clo-
sure,  the head rises to cVo/g and the dis-
turbance travels back towards the tank, 
while water is still flowing in the pipe to-
wards the valve.

Vo

head
c

ho

V = 0
x

C-  As the wave front progresses towards the 
tank, more fluid becomes stagnant and more 
velocity head changes to pressure head.

head

V = 0
x

t = L/c

D-  At time L/c, pressure wave finally 
reaches the tank and flow in the entire pipe 
becomes stagnant.
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head

V = 0

c

V0

-ho

x

E-  Since pressure in the pipe is now larger 
than the tank pressure, flow starts to enter 
the tank and the pressure wave reverses 
course.

head

V = 0

c
V0

-ho

x

F-  As the pressure wave travels towards 
the valve, more stagnant water begins to 
flow to the tank.

head

V0

-ho

x

t = 2L/c

G-  At time 2L/c, pressure wave reaches the 
closed valve and begins to reverse course 
while water in the entire pipe is flowing to 
the tank.

head

V0

c
-ho

x
V = 0

H-  At the valve, head rises to –cVo/g and  
the disturbance travels towards the tank.

head

V0

c

V = 0
x

I-  With water still flowing in the pipe to-
wards the valve, more water becomes stag-
nant in the pipe

head

V = 0
x

t = 3L/c

J-  At time 3L/c, the wave front reaches 
the tank and  water in the entire pipe be-
comes stagnant.

head

V0

c

V = 0ho
x

K-  With the tank water being again at 
higher pressure head than water in the pipe, 
water flows towards the valve and so does 
the pressure wave

head

V0

c

V = 0ho
x

L-  The closer the pressure wave gets to 
the valve, the less stagnant water there is 
next to the valve.

head

V0ho
x

t = 4L/c

M-  Finally, at time 4L/c, water in the entire 
pipe reaches the closed valve and the con-
figuration is identical with case A.

Figure IIIb.7.5.  Head versus pipe length for flow in a frictionless pipe with sudden valve 
closure 



Questions and Problems  383 

QUESTIONS

− Does a boundary layer develop for the flow of inviscid fluids? 
− Are the Navier-Stokes equations directly applicable to turbulent flow?  What is 

an eddy? 
− What is the molecular viscosity? 
− What are the two types of stresses in the boundary layer over a flat plate? 
− Is it fair to say that the shear stress profile in pipe flow remains linear regardless 

of the flow regime? 
− What is the Hagen-Poiseuille flow? 
− For the flow of a viscous fluids in a pipe, specify the location of the viscous 

sub-layer. 
− What is the friction velocity?  Does it exist in an ideal flow? 
− What is the Darcy formula? Define the difference between Darcy-Weisbach and 

Hazen-Williams formulae. 
− What is a valve flow coefficient?   
− What is vena contracta?  Define the discharge coefficient. 
− What is the difference between a globe and a gate valve?  For what applications 

is each valve used? 
− Specify the difference between waterhammer, rigid column, and quasi-steady 

problems. 
− What is an elastic analysis? 
− Instant throttling of a valve disturbs the steady flow of a liquid in a pipe.  At 

what velocity does this disturbance propagate upstream?
− What factors affect the speed that a disturbance would propagate in a pipe flow? 
− Consider the flow of water in two identical piping systems except for one pipe 

being copper and the other plastic.  In which system is the head rise higher fol-
lowing an instantaneous closure of a valve? 

PROBLEMS

Sections 1 and 2 
1.  a) A viscous fluid at a specified flow rate enters a pipe of diameter d.  The Rey-
nolds number indicates that the flow is laminar.  The same fluid at the same mass 
flow rate enters another pipe of diameter d/2 and flow becomes turbulent.  What 
flow property is the reason for the change in the Reynolds number? 
b)  Water at room temperature enters a pipe having I.D. = 4 in at a rate of 30 
lbm/s.  Determine the flow regime (i.e., whether the flow is laminar or turbulent).   

2.  The x-component of a flow velocity is given as V(x, y, z, t).  Use the definition 

of the time-averaged mean velocity xV  = ( ) θθ /0 tdVx  to show that the time-

averaged fluctutating velocity ( xV ′ ) in the time domain of interest (θ ) is zero.   
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3.  Find the minimum diameter of a smooth tube to ensure the flow of water at an 
average velocity of 100 cm/s remains turbulent.  Use vwater = 1E-6 m2/s.  [Ans.:  4 
mm].

4.  Show that the Re number for the flow of fluids in pipes and tubes (A = πD2/4) 
is given as Re = 4 m /(πµD).  Find the maximum tube diameter to ensure the flow 
of water at a rate of 100 kg/h remains turbulent.  Use µwater = 1E-3 N·s/m2.  [Ans.:  
8.8 mm]. 

5.  Air at 1 atm and 20 C flows through a smooth pipe.  The centerline velocity 
and the pipe diameter are 6 m/s and 15 cm, respectively.  Find a) the wall shear 
stress and b) the average velocity in the pipe.   

6.  Air flows over a sphere at 77 C.  The diameter of the sphere is 10 cm.  Find the 
air velocity that results in the Reynolds number to reach the transition from the 
laminar to turbulent flow if such transition takes place at a Reynolds number of 
about 250,000.  [Ans.:  52.3 m/s]. 

Section 3 

7.  Water flows steadily in a horizontal and well-insulated pipe.  Consider loca-
tions a and b along the length of the pipe and chose the correct answers for veloc-
ity (V), pressure (P), and temperature (T): 

L

V

Pa Pb

ba

Vb < Va, Vb = Va, Vb > Va, Pb < Pa, Pb = Pa, Pb > Pa, Tb < Ta, Tb = Ta, Tb > Ta

8.  Plot and compare the friction factors obtained from the Colebrook, Haaland, 
Churchill, and McAdams correlations (Equations IIIb.3.5, IIIb,3.5-1, IIIb.3.5-2, 
and IIIb.3.6) as a function of Reynolds number for a smooth pipe.   

9.  Compare the frictional pressure drop, due to skin friction, of air and water for a 
smooth circular pipe of inside diameter D and length L.  For this comparison, 
consider the mass flow rate of air to be equal to the mass flow rate of water.  
[Ans.:  Using the McAdams’ correlation for f we find, ∆Pa/∆Pw = (ρw/ρa)

1.2].

10.  A large water tank is connected to a small nozzle located 5 ft below the water 
surface in the tank (Figure a).  The nozzle diameter at the exit is 1 in.  Find the 
flow rate through the nozzle.  We now attach a diffuser to the nozzle (Figure b).  
Will the flow rate a) increass, b) remain the same, or c) decrease? 
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(a) (b)

h h

11.  An incompressible fluid flows steadily in a pipe of diameter d.  This pipe is 
connected to a pipe of larger diameter D by a sudden expansion.  Use the 
continuity and the momentum equations to derive a relation for the sudden 
expansion loss coefficient, Ke in terms of the dimensionless diameter β = d/D.

12.  A pump, having a pump head of hpump delivers a liquid at a volumetric flow 

rate of V .  Show that the power consumed by the pump is ( )VgW ρ=  where ρ is 

the liquid density.  Find the pump head of a 10 hp pump, delivering water at a rate 
of 400 GPM.  [Ans.   100 ft]. 

13.  Find the water flow rate at an average temperature of 15 C in the shell-side of 
a heat exchanger.  Use L = 7.62 m, shell inside diameter D = 0.914 m, tube outside 
diameter d = 3.81 cm, number of tubes Ntube = 200, ∆P = 110.32 kPa, and total 
loss coefficient K = 35.  [Ans.:  0.492 m3/min]. 

14.  Consider the flow of water at 70 F and a rate of 2.5 GPM in a wrought iron 
pipe of ¾ in diameter pipe (I.D. = 0.824 in.)  There are two 90-degree medium 
sweep elbows, a swing check valve, and a fully open angle valve.  Find the pres-
sure drop over 100 ft of this piping system.  [Ans.:  0.83 psi]. 

15.  A pump operating at 660 hp delivers water, from a large pressurized supply 
tank to a large pressurized reservoir, at a rate of 150 ft3/s.  Total length of the suc-
tion and the discharge piping is 1000 ft. Pressures in the supply and the reservoir 
tanks are 30 psig and 15 psig, respectively.  These pressures are maintained 
throughout the pumping process.  Water level heights with respect to the pump 
centerline are 15 ft and 50 ft, respectively.  Find the pipe diameter.  Ignore varia-
tions in water level in both tanks. [Ans.:  Di ≈ 3.5 ft]. 

Pump

H2

H1

Water

Water

1

2

Check
 Valve

Gate
Valve

Suction
piping

Discharge
piping

Air

Air
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16.  Consider the pumping system of Problem 15 but with both reservoirs at at-
mospheric pressure.  Total length of the suction and the discharge piping, from the 
supply to the discharge reservoir is L, having an inside diameter of D.  Our goal is 
to deliver the same flow rate to the same elevation but without using a pump.  
Find the elevation of the bottom of the supply reservoir to provide sufficient grav-
ity head for this purpose.  [Ans.:  H = c1/c2 where c1 = (fL/D + ΣK)( 2V /2gA2) and 
c2 = 1 – (f 2V /2gDA2)].

17.  In problem 16 we investigated the effect of gravity head to provide the desired 
flow rate without using a pump.  In this problem we want to investigate the effect 
of static pressure to provide the same flow rate without using a pump.  For this 
purpose, we maintain the same configuration of the piping system of Problem 15.  
However, we maintain the discharge reservoir at atmospheric pressure.  Find the 
required pressure in the supply reservoir to deliver the desired flow rate.  [Ans.  P1

– Patm = (fL/D + ΣK)( 2V /2gA2)].

18.  A pump delivers water to a differential elevation of HB – HA = 40 ft.  Diame-
ter of the suction and discharge piping is 5 in and total length of the piping is 450 
ft.  Pressure in the supply tank is 10 psig and in the receiving reservoir 5 psig.  
Find the water flow rate.  The head developed by the pump is 65 ft and ΣK = 5.  
[Ans.:  630 GPM]. 

19.  A piping system is to be designed to deliver 0.5 m3/s water from a lake to a 
reservoir located at an elevation of 78 m from the pump centerline.  The reservoir 
is at atmospheric pressure.  The pump centerline is 1 m above the surface of the 
lake.  The total pipe run from the lake to the reservior is 420 m.  Both intake and 
discharge pipings should have the same nominal pipe size of 12 in schedule 40.  
The list of the fittings and valves of the piping system includes one globe valve, 
two gate valves, two swing check valves, twelve elbows (90o), and two standard 
Ts.  Find the required pump head and pumping power.  Assume a pump efficiency 
of 70%.  [Ans.:   1.2 MW]. 

20.  Find the pressure drop between locations a and b for flow in a pipe using the 
following data: 

Working fluid:  Water 
Pipe:    Stainless steel, Schedule No. 120 
Nominal pipe size (cm): 10 
Flow rate (m3/min):  2.271 
Temperature (C):  38 
Length (m):    45.72 

Solve for the following 3 cases:  a) Za = Zb =33.5 m, b) Za = Zb + 15 m, and c) Za

= Zb + 46 m. 

21.  Find the head loss over 15 ft of 1 in pipe carrying oil (S.G. = 0.86 and µ = 3 
lbm/ft⋅h) at 0.5 GPM.  Is the flow laminar or turbulent?  [Ans.:  hl = 1.74 ft]. 
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22.  Head loss in 1000 ft of a 12 in cast-iron pipe, for water at 60 F, is 15 ft.  Find 
the flow rate, ε/D = 85E-4.  [Ans.:  V = 7.4 ft/s and volumetric flow rate = 5.8 
ft3/s]. 

23.  Find the water flow rate at 15 C in a welded steel pipe of diameter 250 mm.  
Head loss is 5m/500m. 

24.  Find the hydraulic diameter for the conduits shown in Figures (a), (b), (c) and 
(d).  For Figure (d), the rod pitch (the distance between the centerline of the 
neighboring rods) is 2 inch and the sides of the square do not constitute solid 
boundaries. 

Flow

area

a

b

Flow
area

ba

b
a c

Flow
area

     (a)                        (b)                                  (c)                          (d) 

Section 4 
25.  Find pressure drop for the sudden contraction and sudden expansion as shown 
in the figure, d2 = d3 = 1 in and D1 = D4 = 5 in.  a) Find pressure drop for the flow 
of water at 65 F, 14.7 psia and a rate of 5000 lbm/h.  b) Find pressure drop for air 
at the same conditions as water. 

1 2 43

26.  In this problem our goal is to compare pressure drop for the flow of an in-
compressible fluid in a straight pipe to the pressure drop of a compressible fluid in 
the same pipe and under the same conditions.  For the incompressible case, con-
sider the flow of water at a rate of 5000 lbm/s in the pipe.  Then compare the re-
sults with the flow of air.  The pipe is smooth and has a diameter of 1 in and 
length of 20 ft.  For both cases, fluid enters the pipe at 14.7 psia and 100 F and 
leaves the pipe at the same temperature. 

27.  Water enters a heated pipe at a rate of 5000 lbm/s, pressure of 14.7 psia and 
temperature of 100 F.  The pipe is smooth and has a diameter and length of 1 in 
and 20 ft, respectively.  Water temperature at the exit of the pipe is 200 F.  Find 
the total pressure drop from A to B.

A B A B

VV

Figure for Problems 27, 28, 29, and 50 
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28.  Water enters a pipe at a rate of 5000 lbm/s, pressure of 14.7 psia and tempera-
ture of 200 F.  The pipe is smooth and has diameter and length of 1 in and 20 ft, 
respectively.  A cold fluid flows over the pipe so that water temperature at exit is 
100 F.  Find total pressure drop from A to B.

29.  Air enters a heated pipe at a rate of 2265 kg/s, pressure of 1 atm and tempera-
ture of 38 C.  The pipe is smooth and has a diameter and length of 2.54 cm and 6 
m, respectively.  Air temperature at the exit of the pipe is 371 C.  Find the total 
pressure drop from A to B.

30.  Air enters a pipe at a rate of 5000 lbm/s, pressure of 14.7 psia and temperature 
of 700 F.  The pipe is smooth and has a diameter and length of 1 in and 20 ft, re-
spectively.  A cold fluid flows over the pipe so that air temperature at the exit is 
100 F.  Find the total pressure drop from A to B.

31.  Water at 60 F flows is a tube with d = 1/2 in and L = 5 ft.  Find the friction 
pressure drop associated with the flow of water in the tube if water flows at a 
velocity of a) 0.5 ft/s and b) 5 ft/s. 

32.  Water at 100 F is pumped at a rate of 125 gpm to a reservoir 50 ft higher.  The 
pipe length is 200 ft and the pipe inside diameter, I.D. = 2.067 in.  The fittings 
include 3 standard 90-degree elbows, two 45-degree elbows, and an open gate 
valve.  Pump efficiency is 70%.  Find pump horsepower for a) ε = 0 ft, b) ε = 
0.0008 ft. 

33.  A shell-and-tube heat exchanger has 40 tubes of I.D. = 1 in and L = 10 ft.  Hot 
stream enters the shell side and air at 14.7 psia and 200 F at a rate of 1000 lbm/h 
enters the tubes.  Find the total tube-side pressure drop.  The diameter of both inlet 
and outlet plena is 0.75 ft.  [Ans.:  2 lbf/ft2].

34.  Fully developed air flows inside the ¼ in tubes of an air-cooled heat exchang-
er at a rate of 1.5 lbm/h.  The conditions at the inlet of the tube are atmospheric 
pressure and 60 F.  After being heated in the 2 ft long tube, air leaves at 780 F.  
Find the pressure drop in the heat exchanger. 

35.  Oil flows in a pipe at a rate of 4000 GPM.  The head loss over a length of 
10,000 ft of the pipe having a surface roughness of 0.0018 in, is 75 ft.  Find the 
pipe diameter.  Assume oil ν = 0.36 ft2/h.  [Ans.  16.85 in]. 

36.  The number of tubes of a shell and tube heat exchanger N is given but we do 
not know the tube diameter, d.  To determine the tube diameter, a pump is used to 
circulate flow inside the tubes.  The flow rate and the pressure drop are then care-
fully measured.  Use the specified data and find the tube inside diameter. 

Data: N = 40, Ltube = 3 m, ∆P = 34.5 kPa, V  = 31.55 lit/s, T = 20 C.   
[Ans.:   1.6 cm]. 
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Water entering shell (tube bundle)

Water entering
tubes

Water exiting shell (tube bundle)
Water exiting

tubes

37.  Use the definition of the flow coefficient Cv and substitute the appropriate 
equivalent units in the Darcy equation to show that the valve resistance or loss co-

efficient in terms of Cv is given as K = 891d4/ 2
vC  where the pipe diameter, d is in 

inches. 

38.  Find a) the loss coefficient of a valve installed on a 8 in schedule 40 steel pipe 
and b) the equivalent pipe length .  The flow is fully turbulent and the valve has a 
discharge coefficient of 2000.  [Ans.: 0.9 and 43 ft]. 

39.  Find K, Cv, and Le for a 3 in Schedule 40 fully open lift check valve.  [Ans.:  
Le = 153 ft]. 

40.  An incompressible viscous fluid flows in a pipe of length L1 and flow area A1,
which is connected to a pipe of flow area A2 and length L2 as shown in the figure.  
Write the momentum equation for both sections of the pipe and add them together 
to obtain an equation for the combined piping system.  Find the key assumption 
that you have to make to obtain the results listed in Table IIIb.4.3-1.  [Ans.: Pj-1 = 
Pj+1 where Pj-1 and Pj+1 are pressures right before and right after the sudden 
enlargement, respectively]. 

L1 L2

A1

P1

A2

P2
Pj+1

Pj-1 20 cm

50 cm

40 cm

25 m

10 m 40 m

50 cm

                     Problem 40                                            Problem 41 

41.  Air flows at 60 C in a duct as shown in the figure at a rate of 100 m3/min.  
The duct divides into two branches, A and B, having lengths of 15 m and 40 m, 
respectively.  The depth of the duct remains constant at 50 cm.  Branch A has a 
width of 40 cm and branch B has a constant width of 20 cm.  The discharge of 
both branches is into the same outlet.  The 90 elbows are well rounded with each 
having a loss coefficient of 0.25.  For the smooth surface of the ducts use a friction 
factor of 0.022 and find flow of air in each branch. 

42.  In a conceptual nuclear reactor design, we want to divide the core into two 
zones.  Zone one contains N1 bundles surrounded by zone two with N2 bundles.  
The design criteria requires the total power generated in zone one to be equal to 
the total power produced in zone two.  Additionally, the temperature rise in zone 



390      IIIb.  Fluid Mechanics:  Incompressible Viscous Flow 

one must also be equal to the temperature rise in zone two.  To meet these design 
criteria, it is necessary to reduce the flow rate in zone two by adding orifice blocks 
to the inlet of the fuel bundles located in zone two.  Each orifice block has five 
orifices.  Use the given data to find the diameter of the orifcing (D).  Assume 
smooth surfaces and negligible pressure losses in all parts of the fuel assemblies 
other than the fuel bundle and the orifice block.  Data:  ∆PCore = 0.745 MPa, 

Corem  = 17.5E6 kg/h, N1 = 65, N2 = 85, L = 4 m, δ = 40 cm, ρwater = 800 kg/m3,
µwater = 2E-4 N·s/m2, Kc = 0.5, Ke = 1.0, and all five channels in the orifice block 
have equal diameters.  [Ans.:  2 cm]. 

δ

Fuel rod

Fuel
bundle

(zone 1)

Fuel
bundle

(zone 2)

aa

Section a-a

D

L
L

43.  A thin-plate orifice is used to measure water flow rate.  The water temperature 
is 27 C and a mass flow rate of 50 lit/s is measured by the orifice.  The pipe di-
ameter is 26 cm and the orifice diameter is 7 cm.  Find the non-rcoverable pres-
sure drop.  [Ans.:  21 m, Cd = 0.6, K = 2.5]. 

44.  We want to measure the flow rate of water at 20 C by a thin plate orifice.  The 
pipe diameter carrying the water is 20 cm and the thin-plate orifice dimater is 5 
cm.  A pressure drop of 70 kPa is measured between the taps.  Find the flow rate 
and the throat velocity.  [Ans.:  23 lit/s, 11.6 m/s]. 

45.  Obtaining the characteristics of an equivalent pipe (LE, AE, VE, DE, and KE) to 
represent a compound piping (i.e. pipes connected in series or in parallel) depends 
on the imposed constraint.  In this problem, you are asked to develop a table simi-
lar to Table IIIb.4.3.
a)  First, for several pipes connected in series, find the characteristics of an equiva-
lent pipe using the following constraints LE = ΣLi, (∆Pskin)E = (Σ∆Pskin)i, and  
(∆Pfittings-valves)E = (Σ∆Pfitting-valves)i.
b)  Next, consider several pipes connected in parallel.  Find the characteristics of 
an equivalent pipe using the following constraints AE = ΣAi,  (∆Pskin)E = (∆Pskin)i,
and (∆Pfittings-valves)E = (Σ∆Pfitting-valves)i.

[Ans.:  
                         Pipes in series                               Pipes in parallel 
V: =

i
iE VV =

i
iE VV

L: =
i

iE LL =
i

ii
i

iiE LmLmL /

Aflow:                     VE/LE =
i

iAA
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I: EEE ALI = =
i

ii
i

iiE LmLmI /

K: ( )=
i

iiEE AA 22 /KK ( ) 2
2 /K

−

=
i

iiEE KAA

46.  For part b of Problem 35, find the flow rate in a parallel flow branch.  Assume 
all branches consist of smooth pips and use the friction factor as given by Equa-
tion IIIb.3.6. 

[Ans. V])()[()()(V

1

8.1/118.1/8.4

1

8.1/118.1/8.4

1

−

=
N i

i

i

i
i L

L

D

D

L

L

D

D
].

47.  Water enters a system of parallel piping at a rate of 500 GPM.  The pipes 
length and inside diameter are L1 = 10 ft, D1 = 2.5 in, L2 = 20 ft, D2 = 3.0 in, L3 = 5 
ft, D3 = 2 in, and L4 = 25 ft, D4 = 3.5 in.  All pipes are smooth and loss coefficients 
are negligible.  Find the diameter of the equivalent pipe.  [Ans.: 6.06 in]. 

48.  The riser of a spray system consists of 3 pipe segments connected in series.  
The data for these three pipes are shown below.  If we want to represent this sys-
tem with only one pipe, what diameter should we choose?  The flow rate, density, 
and viscosity are 1250 GPM, 62.4 lbm/ft3, and 0.7E–3, respectively. 

Pipe  L D    K  
No.  (ft)  (in)    (-)  
1  110.00  8.00  15.0   
2  120.00  7.50  1.50   
3  100.00  7.00  3.00  

[Ans.: 

Flow In Serial Pipes 

Pipe  
No. 

L
(ft)

D
(in) 

A
(ft2)

V
(ft/s)

K
(-)

V
GPM

Re
× 1E–6

f
(-)

∆P
(psi) 

1 110 8.00 0.349 7.98 15.0 1250 0.474 0.01348 7.38 
2 120 7.50 0.307 9.07 1.50 1250 0.506 0.01331 2.25 
3 100 7.00 0.267 10.43 3.00 1250 0.542 0.01312 3.84 

Data For The Equivalent Pipe Representing The Compound Piping System 

L (ft)       D (in) A (ft2) V (ft/s)      K(-)      V  (GPM) I (ft�-1)          ∆P(psi) 

331.87     7.34        0.307      9.07         17.08     1250.00          1080.4          13.50]. 

49.  Water flows at a rate of 200 GPM into a piping system connected in series.  
Length, diameter, and loss coefficient of each pipe are given below.  For ρ = 62.4 
lbm/ft3 and µ = 0.7E–3 lbm ft/s find total pressure drop and the diameter of an 
equivalent pipe representing this system. 
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Pipe  L D    K  
No.  (ft)  (in)    (-)  
1  100.00  5.00  50.00   
2  80.00  4.50  45.00   
3  70.00  4.00  65.00  
4  120.00  3.50  55.00  
5  90.00  3.00  15.00  

[Ans.: 
Flow In Serial Pipes 

Pipe  
No. 

L
   (ft) 

D
  (in) 

A
  (ft2)

V
 (ft/s) 

K
   (-) 

V
 GPM 

  Re  
× 1E–6

f
   (-) 

∆P
 (psi) 

1 100 5.00 0.136 3.27 50.00 200 0.121 0.01770 3.90
2 80 4.50 0.110 4.05 45.00 200 0.135 0.01733 5.33
3 70 4.00 0.087 5.12 65.00 200 0.152 0.01693 12.03
4 120 3.50 0.067 6.65 55.00 200 0.173 0.01648 18.49
5 90 3.00 0.049 9.09 15.00 200 0.202 0.01598 11.51

Data For The Equivalent Pipe Representing The Compound Piping System 

L (ft)         D (in)       A (ft2)      V (ft/s)      K(-)       V  (GPM)     I (ft�-1)
 ∆P(psi) 

491.48      3.06         0.083        5.37         233.02     200.00         5159.06       51.3]. 

50.  Water flows at a rate of 5000 GPM into a piping system connected in parallel.  
Length, diameter, and loss coefficient of each branch are given below.  For ρ = 
62.4 lbm/ft3 and v = 9.305E-6 ft2/s find total pressure drop and the length and di-
ameter of an equivalent pipe representing this system. 

Pipe      L     D     K  
No.    (ft)    (in)     (-)  
1  1000.0  10.00  150.00   
2  1500.0  11.00  100.00   
3  500.00  8.00  10.00  
4  2000.0  9.00  50.00  
5  900.00  7.00  5.00  

[Ans.: 

Flow In Parallel Pipes 
Pipe  
No. 

L
   (ft) 

D
  (in) 

A
  (ft2)

V
 (ft/s)

    K 
   (-) 

V
 GPM 

  Re  
× 1E–6

f
   (-) 

∆P
 (psi) 

1 1000 10.00 0.545 5.20 150.00 1272.69 0.47 0.01353 3.39 
2 1500 11.00 0.660 4.61 100.00 1365.92 0.45 0.01359 3.39 
3 500 8.00 0.349 7.04 10.00 1102.76 0.50 0.01331 3.39 
4 2000 9.50 0.442 3.51 50.00 696.99 0.28 0.01494 3.39 
5 900 7.00 0.267 4.68 5.00 561.64 0.29 0.01484 3.39 
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Date of the Equivalent Pipe Representing the Compound Piping System 

L (ft) D (in) A (ft2) V (ft/s)       K(-) V  (GPM)        I (ft�-1)  ∆P(psi) 
1154.48      10.51        2.263         4.922         31.56         5000                510.05      3.39]. 

Section 5 

51.  Find flow distribution in each network by the Hardy Cross method.  Assume n
= 2.  Try the same cases for n = 1.8. 

c 
=

 8

c = 5

c 
= 

15

c =10

c =
1

10
0

1585

0

c 
= 

4

c = 3

c 
=

 2

c =1

c =
5

10
0

1030

60

c = 5

25
0

15
050

50

c 
=

 3

c = 15

c 
=

 7

c =
10

[Ans.: 

42.170

3.326

53.907

11
.7

37

46
.0

93

10
0

1585

0

5.052

11.174

53.774

1.
17

4

46
.2

26

10
0

1030

60

87.249

25
0

15
050

50

16
9.

15
0

80.350
62

.7
51

32.041

].

52.  Find the absolute value of the flow rate and the direction of the flow in 
branches BC and FG. 

A

B

C

D

1

2

3

4

5

1.5 m3

I II

H

G

F 9

10

8

6

7

IVIII

E

Pipe         1           2          3          4          5          6          7          8          9           10 
L (m)       585       253.8   223.2   9.77     18.1     1269    565.3   201.3   19.6     6.8 
D (m)      0.65      0.55     0.45     0.35     0.30      0.55     0.50    0.40     0.35      0.30 

[Ans.:  0.0 and 0.007 m3/s from G to F]. 

53.  Write a computer program based on the Hardy Cross method for determina-
tion of flow distribution in piping networks.  First, start with simple cases and use 
the methods outlined in Chapter IIIb.5 before extending to more general cases. 
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Section 6 

54.  Derive the time to drain the tank of Example IIIb.6.2 from the observation 

that t = Vt/VoAo.  [Hint:  Use an average value for Vo = 2/h2 ig  and the fact that 

Vt = hiAt].

55.  An emergency water tank is pressurized with nitrogen to 1.0 MPa.  The tank 
has a diameter of 2 m.  Height of water in the tank is 15 m.  The tank is located 
above a reactor and is connected to the reactor by a pipe having a diameter of 0.2 
m.  At time zero the reactor pressure drops to 0.2 MPa.  Find the maximum flow 
rate delivered by the tank to the reactor.  Treat water as an ideal fluid (incom-
pressible and inviscid).  [Ans.:  1367 kg/s]. 

56.  A pump is operating in recirculation mode.  At time zero, we close the bypass 
valve and simultaneously open the isolation valve to fill the initially drained sup-
ply line.  Use the data to find the time it takes to fill the supply line.  Data: 
V 200pump = GPM, LSupply Line = 1200 ft, DSupply Line = 3 in.  [Ans.:  ~ 132 s]. 

Isolation
Valve

Bypass
Valve

Isolation
Valve

Bypass
Valve

57.  A water tank, in the shape of a right circular cylinder, has an inside diameter 
D.  The tank, being open to the atmosphere is initially filled with water up to a 
height of ho, measured from the drain centerline.  The drain has an inside diameter 
d and a discharge coefficient of Cd.  We now open the drain to drain the tank by 
gravity.  Show that the time to drain the tank is obtained from t = 

2h /[ ( / ) / 2]o dC d D g .

58.  A water tank is at atmospheric pressure.  Initially, the tank water level is at 20 
ft from the drain centerline.  We now open the drain and assume there are no fric-
tional losses.  If Ae/At = 0.015, find the time to drain the tank. 

59.  Consider two rectangular tanks having constant flow areas of A1 and A2.  The 
tanks are connected at the bottom by a frictionless pipe of diameter d.  The first 
tank is filled with water up to an elevation h0 from the connecting pipe.  We now 
open the isolation valve.  a)  Show that the time for levels to equalize is given by: 

ho

A1
A2

d, a

d

o

CAAga

AA

)(2

h2

21

21

+
=θ
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b)  Find the time in second if ho = 3 m, d = 5 cm, A1 = 3 m2, A2 = 2 m2, and Cd = 
0.61.  [Ans.  7 m, 21 s]. 

60.  The initially closed valve in Figure IIIb.6.1(b) suddenly opens.  Find the time 
it takes velocity to reach 99% of its steady-state value.  Assume that fluid is invis-
cid and L = 30 ft, ho = 7 ft, D = 1 in.  [Ans.:  7.5 s]. 

61.  The initially closed valve in Figure IIIb.6.1(b) suddenly opens.  Find the flow 
velocity 5 seconds after the valve is opened.  Data:  L = 1000 ft, ho = 50 ft, Vo = 10 
ft/s.  [Ans.:  λ = 3.1 s. and V = 6.7 ft/s]. 

62.  A tank in the shape of a right circular cylinder (Figure IIIb.6.3.) contains wa-
ter and is pressurized to 50 psia.  Water level from the drain centerline is 15 ft.  
The tank height is 20 ft, tank diameter is 10 ft and the drain diameter is 1 in.  Find 
the time to completely drain the tank.  The water tank is fully insulated.  Do you 
expect some water flashing to steam when level becomes near zero?  What hap-
pens if we use an exceedingly small hole for the drain?  [Ans.: 200 min] 

63.  A capillary tube viscometer, as shown in the figure, is a reservoir containing 
oil, connected to a capillary tube (d on the order of 1 mm).  Find the time to drain 
oil from the reservoir.    

d

D H

L

Oil
reservoir

Capillary
tube

2

1

z

[Ans.: +=
Ld

D

gd

L H
1ln)(

32 2
2ρ

µθ ].

64.  Oil (v = 1E–4 m2/s), enters an open tank at a steady rate of 2 m3/min and 
leaves through a 25 m long pipe.  The Tank has a constant cross sectional area of 3 
m2 and the pipe has an inside diameter of 15 cm.  At steady state conditions, the 
exit pressure is 2 m of oil.  While the inlet flow remains constant, we increase the 
exit pressure instantaneously to 3 m of oil.  Find the effect on oil level and exit 
flow rate. 

65.  Oil (v = 1E–4 m2/s), enters an open tank at a steady rate of 2 m3/min and 
leaves through a 25 m long pipe.  The Tank has a constant cross sectional area of 3 
m2 and the pipe has an inside diameter of 15 cm.  At steady state conditions, the 
exit pressure is 2 m of oil.  While the inlet flow remains constant, we increase the 
exit pressure linearly to 4 m of oil in 5 minutes.  Find the tank oil level at 5 min-
utes, i.e., when hCo = 4 meters. 

66.  A gas tank of volume V contains pressurized gas at pressure Po and tempera-
ture T.  Flow rate of gas into and out of the tank under steady-state conditions is 

im .  Pressure at point C, Figure IIIb.6.10(a), jumps to: PC1 = PCo + ∆P.  Find the 
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tank pressure versus time.  Tank is not insulated hence process is isothermal.  As-
sume laminar flow in the discharge pipe.   

[Ans.:  )()()( 1
)/KV/(

1 CCoo
RTt

CCo PPPePPtP −−+−= − ].

67.  A tank having a volume of 30 m3 contains air at 400 kPa.  We intend to 
charge this tank through a feed line having a diameter of 4 cm and a length of 30 
m.  Pressurized air at 900 kPa and 15 C enters the feed line.  Find the time it takes 
for the tank pressure to reach 900 kPa. 

68.  A tank having a volume of 40 m3 contains air at 500 kPa.  We intend to 
charge this tank through a feed line having a diameter of 4 cm and a length of 30 
m.  Pressurized air at 900 kPa and 15 C enters the feed line.  Find the tank pres-
sure after 2 minutes.  Plot the tank pressure and the inlet mass flow rate versus 
time. 

69.  Consider two identical pipes.  One pipe is to be filled with water by suddenly 
raising the liquid pressure upstream of the pipe to Po.  The other pipe is already 
filled with water.  We would like to expel the water from the pipe by suddenly in-
creasing the upstream pressure of the gas to Po.  Find the time to fill and to drain 
each pipe and compare the results.  The atmospheric pressure for both cases is 
shown by Pf.  Pipe area is A.

xx

L L

x

Pf

Control Volume

Po Po

[Hint:  For the filling the pipe example, write the momentum equation for the 
control volume shown in the figure as ΣF = d(mV)/dt + ∆(momentum flux).  Since 
no mass is leaving, momentum flux at the exit is zero and momentum flux at the 
inlet is the flow rate into the control volume.  The momentum equation then be-
comes: 

(Po – Pf)A – Ffriction = d(mV/dt) + (0 – im V)

Relate im  to m from the continuity equation and substitute for m from ρAx and 

for V from V = dx/dt].

70.  Shown in the figure is a normally closed control valve known as the contain-
ment spray isolation valve, being generally a motor operated globe valve.  In case 
of a hypothetical accident that leads to containment pressurization, a spray signal 
is sent to turn on the pump and open the control valve.  The piping upstream of the 
spray valve is filled with water whereas the piping downstream of the control 
valve is drained.  When the signal is sent to activate the spray system, the control 
valve begins to open, water starts to flow in the empty piping until it eventually 
reaches the spray header located at an elevation of about 200 ft.  Water is then 
sprayed into the containment atmosphere at a desired droplet diameter by 100 
spray nozzles attached to the header ring.  You are to determine the time it takes to 
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fill the pipeline and to calculate the flow rate out of the nozzles once the header is 
filled. 

[Hint:  This can be calculated by dividing the volume of the drained pipe by the 
volumetric flow rate.  Since, flow rate is changing with time this should be done in 
a discretized manner.  To simplify the analysis, you may assume that the pump is 
operating at rated conditions and flow is bypassed to the reservoir.  Then a signal 
is sent to the control valve to open.  This signal simultaneously closes the bypass 
valve.  The first plot shows the system curve when the control valve is opening 
and the second plot shows the system curve when the control valve is fully 
opened].

h=f4(t)

y=f1(t)

P2=f5(t)

P1

KV=f3(t)

m=f2(t)

1:  Water surface in reservoir
X:  Water level at time t
2:  Containment atmosphere

Drained Pipline to
be Filled With Water

Control Valve

Spray Header

Spray Nozzle

Containment

Bypass Valve

Spray Pump

X

System
Curves

.

Pump
Curve

Z = f(t)

 Q

H

 Q

H

.

Z = f(t)

71.  A spherical bubble of nitrogen, having an initial diameter of 5 mm is released 
at a depth of 10 m in a pool of water.  Assume the bubble instantly reaches its 
terminal velocity.  Find the time it takes for the bubble to reach the water surface.  
Plot d, V, and h as a function of time and comment on the validity of the results. 

72.  A pipe equipped with a nozzle is used to deliver water to the wheel of a hy-
draulic turbine.  The pipe has a diameter of 35 cm and a length of 1 km.  The noz-
zle has a diameter of 10 cm and provides a velocity head of 35 m when turbine 
operates at steady state condition.  Now, consider a case where the fully closed 
turbine stop valve is suddenly opened.  Find the time it takes the wheel of the tur-
bine to reach 97% of its full speed. 
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Section 7 

73.  A large tank is connected to a pipe of diameter D and length L.  Water is 
flowing steadily in the pipe, which is discharged to the atmosphere.  A blanket of 
gas is used to maintain pressure in the tank at P1 = P0.  At time zero, we increase 
the gas pressure so that P1(t) = f(t).  Use the assumptions consistent with the rigid 
column theory and find the governing differential equation for the flow rate in the 
pipe.  Plot flow rate versus time for the following data.  By adding water, the tank 
water level is constantly maintained at H.  Data:  P0 = 20 psia, H = 10 ft, L = 1 ft, 
D = 1 in, f(t) = (2P0/5)t + P0 for t ≤ 5 s and f(t) = 3P0 for t > 5 s.  Assume smooth 
pipe. 

L

P1

H

D

74.  Water flows at 60 F in a 12-inch Schedule 40 pipe (D = 11.938 in. and δ = 
0.406 in.).  Find the head rise due to the instantaneous closure of a valve a) for 
steel pipe and b) for a PVC pipe having the same dimensions as the steel pipe.  

ρwater = 62.37 lbm/ft3, (Ev)water = 3.11E5 psi.  V  = 2442 GPM. 

75.  Consider flow of water in a frictionless pipe at 7 ft/s.  An isolation valve is in-
stantaneously closed.  Find the resulting pressure head just upstream of the valve.  
[Ans.:  4890 × 7/32.2 = 1,063 ft] 

76.  Water at 60 F is flowing in an 18-inch Schedule 80 steel pipe.  Find the wave 
speed for the system. ρwater = 62.37 lbm/ft3, (Ev)water = 3.11 × 105 psi. 
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IIIcc..  Compressible Flow 

1.  Steady Internal Compressible Viscous Flow 

In compressible fluids, changes in the fluid density due to the variation in pressure 
and temperature may become significant and the treatment of the flow discussed 
in the previous sections should be applied here with added vigilance.  Due to the 
complexity of the subject, flow of compressible fluids is generally divided into 
three categories.  These include, flow of gas, flow of two-phase mixture (such as 
steam and water), and two-phase flow mixed with non-condensable gases.  The 
flow path may include a pipe, a Bernoulli obstruction meter (nozzle, thin-plate ori-
fice, and venturi), valves, fittings, and pipe breaks.  Compressible fluids may en-
counter a phenomenon known as choked or critical flow.  This phenomenon im-
poses an added constraint on the internal flow of compressible fluids and must be 
considered in all of the above categories.  Failure to do so results in gross errors in 
the related analysis. 

In this section, we study only the flow of gases in pipes, Bernoulli obstruction 
meters, and pipe breaks.  In all these cases, the compressible fluid is considered to 
behave as an ideal gas undergoing such processes as isothermal, adiabatic, or isen-
tropic.  In general, flow of gases in pipelines is associated with heat transfer and 
friction.  We therefore begin the analysis of steady, one-dimensional, internal flow 
of compressible fluids in a variable area conduit with friction and heat transfer.  
We then reduce the general formula to obtain the formulation for some specific 
processes such as isothermal and adiabatic. 

1.1.  Compressible Viscous Flow in Conduits 

To derive the general formula for one-dimensional flow of ideal gases with fric-
tion and heat transfer, we consider the one-dimensional flow of a compressible 
fluid in the variable area conduit of Figure IIIc.1.1.  At any location x from the en-
trance to the conduit, the flow field is defined by four parameters P(x), T(x), V(x),
and ρ(x).  To determine these parameters, we use continuity, energy, and momen-
tum equations as well as the equation of state written for differential control vol-
ume A(x)dx.  Using the mass, momentum, and energy at steady state conditions 
entering the control volume at x, we find the mass, momentum and energy at x
+dx by Taylor’s series expansion.  The continuity equation becomes d(ρVA) = 0.  
The energy equation for steady state, no shaft work, negligible changes in poten-
tial energy, and no internal heat generation becomes:

dq = cpdT + VdV              IIIc.1.1 

where the first term on the right side represents the change in enthalpy from x to 
x + dx.  The net momentum flux at steady state is equal to the summation of forces 
acting on the control volume: 

VdVDdxdP w ρτ =−− )/(4                        IIIc.1.2
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dx

τw

τw

P P + dP
V

dx

Figure IIIc.1.1.  Flow of ideal gas in a variable area conduit with heat transfer and friction 

To simplify the momentum equation, we define: 

dF = (4/ρ)(dx/D)τw             IIIc.1.3 

where dF is the frictional head loss per unit mass. Substituting for τw from Equa-
tion IIIc.1.3 into Equation IIIc.1.2, we obtain; 

– dP – ρdF = ρVdV              IIIc.1.4 

The last equation to use is the equation of state for an ideal gas: 

d(P/RρT) = 0              IIIc.1.5

The formulation of the problem ends here.  To find the four parameters P, T, V
and ρ, we solve these four equations simultaneously.  First, we carry out the dif-
ferentials in the continuity equation and in the equation of state.  We then divide 
the result by the argument.  For example, for the continuity equation we have: 

0)( =++= dAVAdVVAdVAd ρρρρ            IIIc.1.6 

Dividing by ρVA, we obtain: 

0=++
A

dA

V

dVd

ρ
ρ

             IIIc.1.7 

Similarly, differentiating the equation of state and dividing through by P = RρT
yields: 

0=++−
T

dTd

P

dP

ρ
ρ

             IIIc.1.8 

For the energy equation, we divide Equation IIIc.1.1 by cpT:

2 ( 1)

p

dq dT V dV

c T T V RT

γ
γ

−= +             IIIc.1.9 

and for the momentum equation, we divide Equation IIIc.1.4 by P:
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V

dV

RT

V

P

dF

P

dP

γ
γρ 2

=−−           IIIc.1.10 

Note that in the energy and momentum equations we also made use of cp = γR/
(γ−1) where γ = cp/cv.  We now manipulate the definition of the Mach number Ma
= V/c by substituting for the speed of sound in the medium c2 = γRT to obtain Ma2

= V2/(γRT).  Taking the derivative and dividing by the argument yields: 

T

dT

V

dV

T

dT

V

dV

TV

TdTVTdVd −=−=−= 2

/

)/(

Ma

Ma
2

2

2

222

2

2
       IIIc.1.11 

which simplifies to: 

)
Ma

Ma
(

2
1

2

2

T

dTd

V

dV +=

Substituting for dV/V in the energy and momentum equations, we obtain a system 
of four algebraic equations for four unknowns dP, dT, dV, and dρ.  Solving by the 
method of elimination and substitution, yields: 

2 2 2

2 2 2

Ma Ma ( 1)Ma 1

1 Ma 1 Ma 1 Map

dP dq dA dF

P c T A RT

γ γ γ− − += + −
− − −                     IIIc.1.12 

2 2 2

2 2 2

1 Ma ( -1)Ma ( 1)Ma

1 Ma 1 Ma 1 Map

dT dq dA dF

T c T A RT

γ γ γ− −= + −
− − −                      IIIc.1.13 

2 2 2

1 1 1

1 Ma 1 M 1 Map

dV dq dA dF

V c T a A RT
= + +

− − −                     IIIc.1.14 

2

2 2 2

1 Ma 1

1 Ma 1 Ma 1 Map

d dq dA dF

c T A RT

ρ
ρ

= + −
− − −                     IIIc.1.15 

where in these equations, q, A, and F are known functions.  Upon the integration 
of Equations IIIc.1.12 through IIIc.1.15, we find pressure P, temperature T, veloc-
ity V, and fluid density ρ, respectively.  Next, we derive analytical solutions for 
the three important processes: isothermal, adiabatic, and isentropic. 

1.2.  Isothermal Process For Compressible Flow 

To analyze the flow of compressible fluids in an isothermal process, we may use 
the general formula obtained above and apply the isotherm constraint or derive the 
formulation directly.  Both methods are described here.   
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A.  Pressure Drop for Flow of Compressible Fluids in Pipelines,  
Reduction from General Formula 

Consider the flow of an ideal gas in a pipe with diameter D.  If flow properties are 
known at the inlet (i), we want to find flow properties at the outlet (e) for Ti = Te.
We try this method only for pressure.  Here, dA = 0 (pipe with constant flow area) 
and dT = 0 (isothermal process).  Equation IIIc.1.12 reduces to: 

−
+−−

−
−=

RT

dF

Tc

dq

P

dP

p
2

2

2

2

Ma1

1Ma)1(

Ma1

Ma γγ

and Equation IIIc.1.13 yields: 

0
Ma1

Ma)1(

Ma1

Ma1
2

2

2

2

=
−
−−

−
−

RT

dF

Tc

dq

p

γγ

We find (dq/cpT) from the second equation and substitute in the first.  After sim-
plification we find: 

−
=

RT

dF

P

dP

1Ma

1
2γ

If we substitute for Ma2 = V2/γ RT, for dF = (4/ρ)(dx/D)τw, and for τw = 
(f/4)(ρV2/2), we get 

1

2
1

2

−

−=
V

P

D

Pf

dx

dP

ρ
          IIIc.1.16 

Equation IIIc.1.16 can be integrated to obtain ∆P.  We will further study Equation 
IIIc.1.16 in Section 2. 

B.  Pressure Drop for Flow of Compressible Fluids in Pipelines,  
Direct Derivation 

Here we derive the equation for pressure drop between two points i and e directly 
from the conservation equations.  These points are located at a distance L from 
each other on a horizontal pipe having diameter D.  For this section of pipe, as-
suming steady flow, Equation IIIa.3.28 simplifies to: 

0h
1 =++ fd

g
VdVdP

g ρ

where dhs is also dropped since there is no shaft work between the points.  Substi-
tuting for the frictional head loss from Equation IIIb.3.4 for a differential length dx
given as: 
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g
V

D
dx

fd f 2
h

2
=

we obtain: 

0
2

2
=++ V

D
dx

fVdV
dP
ρ

          IIIc.1.17 

To be able to differentiate Equation IIIc.1.17, we eliminate both density and ve-
locity.  To accomplish this, we first divide through by V2, knowing that V ≠  0: 

0
22

=++
D

dx
f

V

dV

V

dP

ρ
          IIIc.1.18 

To eliminate ρ and V, we need two additional equations.  First we use the continu-
ity equation.  The density and velocity at any point along the flow path can be re-
lated to the given density and velocity at the production source for steady flow: 

GAmAVVA ii === ρρ

The second equation is the ideal gas equation of state, RTP =ρ/  from which, 
PRT //1 =ρ .  The first term in Equation IIIc.1.18 can be manipulated, noting 

that for Ti = T we have Pi/ρi  = P/ρ, to get: 

iiii

i

iiii

i

ii VP

P

VP

dPRT

VVP

dPRT

VV

dP

V

dP
)()

1
)((

1
2

===
ρ
ρ

ρρ

Similarly, we manipulate the second term of Equation IIIc.1.18, using V = G/ρ = 
GRT/P, to get: 

P
dP

P

GRTdP
GRT

P
dV

V
−=−= ))(()

1
(

2

Equation IIIc.1.18 then simplifies to: 

0
2)( 2

=++−
D

dx
f

VP

PdP
RT

P
dP

ii
i

This equation can now be integrated for flow from one point to another: 

2
0

( ) 2

e e

e

i

i i

P x
Pi
P

P xi i

dP RT dx
PdP f

P PV D
− + + =

where xi and xe are points where pressure is Pi and Pe, respectively and xe – xi = L.
Integrating yields: 
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01ln
2

2

2

=+−−−
D

L
f

P

P

V

RT

P

P

i

e

ii

e          IIIc.1.19 

where the subscript for temperature is dropped, as Te = Ti.  Equation IIIc.1.19 may 
alternatively be written as: 

( ) 0ln 211 =−−− ccc ξξ           IIIc.1.19 

where the dummy variable ξ and coefficients c1and c2 are given as:  

ξ = (Pe/Pi)
2

2
1 / iVRTc =

c2 = fL/D

In this integration, we assumed the friction factor remains constant between the 
two points.  This is a valid assumption as the friction factor for smooth pipes is a 
function of the Reynolds number (Equation IIIb.3.3), which is in turn a function of 
viscosity (Re = ρVD/µ).  For ideal gases, viscosity is only a function of tempera-
ture, which was assumed to remain constant (isothermal flow).   

Equation IIIc.1.19 is a non-linear algebraic equation, which should be solved 
by iteration.  As the first guess, we may ignore ln , compared with the absolute 
value of the other two terms, and find  from: 

2
22

Ma11 i
i

i

e

D

L
f

RT

V

D

L
f

P

P γξ −=−==         IIIc.1.20 

Example IIIc.1.1.  Air flows isothermally in a smooth, 1 ft (0.3 m) diameter, 1500 
ft (457 m) long horizontal pipe at a rate of 7500 CFM (212.4 m3/min).  Air enters 
the pipe at 600 psia (4.1 MPa) and 300 F (149 C).  Find the pressure drop in the 
pipe. 

Solution:  At given Pi and Ti, air viscosity is vi = 1.27E-5 ft2/ s.  We now perform 
the following steps: 

22 ft785.04/14.34/14.3 === DA  (0.073 m2)

ft/s15.159)60785.0/(7500/V1 =×== AV  (48.5 m/s) 

Re / 159.15 1/1.27E 5 1.25E7;i i iV D v= = × − =

007.0)6E88.5/(184.0Re/184.0 2.02.0 === iif .  Since fi = fe, we drop the subscript. 

53.51)2.32/15.159/()460300)(97.28/1545(/ 22
1 =+== iVRTc ,

5.101/1500007.0/2 =×== DfLc .  Therefore, Equation IIIc.1.19 becomes: 

51.53  – ln( ) – 41.03 = 0 
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By iteration, we find; ξ  0.792.  Thus, (Pe/Pi) = (0.792)1/2 = 0.8899 
Pe = 0.8899 × (600) = 534 psia and pressure drop is ∆P = Pi – Pe = 600 – 534 = 66 
psi (0.455 MPa) 
If estimated from Equation IIIc.1.20,  is found as: 
 = 1 – [0.007 × (1500/1.0) × (159.152/32.2)]/[(1545/28.97) × (300 + 460)] = 

0.796.

Caveat:  Pressure drop associated with the isothermal flow of compressible 
viscous fluids results in a decrease in the fluid density, which in turn results in an 
increase in the flow velocity to preserve the specified steady state mass flow rate.  
Equation IIIc.1.19 is valid only if flow remains subsonic.  As is discussed in Sec-
tion 2, flow becomes sonic when dP/dL .  We then take the derivative of 
Equation IIIc.1.19: 

( )( ) ( )iiei

e

PPPVRT

Df

dL

dP

/2//2

/
22 −

=          IIIc.1.21 

Setting the denominator of Equation IIIc.1.21 equal to zero, we find the condition 
for sonic velocity as: 

RT

V

P

P i

i

e
22

==ξ            IIIc.1.22 

Alternatively, we may express Equation IIIc.1.22 in terms of the Ma number by 
noting that: 
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        IIIc.1.23 

where we also took advantage of c2 = γRT and Ma = V/c.  Substituting for the 
pressure ratio in terms of the Mach number ratio in Equation IIIc.1.22, we find the 
limiting Mach number: 

γ/1Ma* =             IIIc.1.24 

Thus Equation IIIc.1.19 is valid as long as the Ma number at the pipe exit remains 
less than (1/γ)1/2.

Equation IIIc.1.19 may also be expressed in terms of the Ma number by using 
the relation between the pressure ratio and the Mach number ratio, as given by 
Equation IIIc.1.23:  

−+=
D

L
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e

i
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e

i
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2
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Ma

Ma
lnMa1

Ma

Ma γ         IIIc.1.25 
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Example IIIc.1.2.  Methane enters a pipeline at a rate of 50 kg/s.  The pipe is 
1200 m long, having an inside diameter of 0.5 m.  Find the pipe length over which 
Equation IIIc.1.19 is applicable.   
Data: Pi = 0.5 MPa, Ti = 27 C, f = 0.015, MCH4 = 16, and γCH4 = 1.3. 

Solution:  We first calculate the Mach number at the pipe inlet: 
A = π D2/4 = π(0.5)2/4 = 0.196 m2

ρi = Pi/RT = 500/[(8.314/16) × (27 + 273)] = 3.207 kg/m3

Vi = )/( Am i ×ρ  = 50/[3.207 × 0.196] ≈ 79.55 m/s 

=+××== )27327()16/8314(3.1RTc γ  450 m/s 

Mai = 79.55/450 = 0.177 

The limiting Mach number is then found as Ma* = (1/1.3)0.5 = 0.877.  Thus, ξ = 
(Mai/Ma*)2 = 0.078 
From Equation IIIc.1.25 we find: 

−−=
2Ma

1
ln

if

D
L

γ
ξξ  = =

×
−−

2177.03.1

1078.0
)078.0ln(

015.0
5.1

 2008 m 

Example IIIc.1.3.  Express the relation for pressure drop for incompressible flow 
in terms of the Ma number. 

Solution:  We substitute for ρ = P/(RT) and V2 = c2Ma2 = (γRT)Ma2 in Equa-
tion IIIb.3.7, Pi – Pe = (fL/D)ρV2/2: 

2Ma
2

1 γ
D

L
f

P

P

i

e −=            IIIc.1.26 

2Ma
2

γ
D

L
fP =∆

1.3.  Adiabatic Process for Compressible Fluids 

Consider the same condition as discussed before.  However, this time Te ≠ Ti but 
the pipe is insulated so that dq = 0.  Note that if there is also not any friction, the 
problem can be easily solved using isentropic relations.  However, we are consid-
ering adiabatic flow of gases with friction.  To derive the formulation, we note that 
for adiabatic (dq = 0) and constant area channel (dA = 0), Equations IIIc.1.13 and 
IIIc.1.14 reduce to: 

−
−−=

RT

dF

T

dT
2

2

Ma1

Ma)1(γ
          IIIc.1.27 
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−
=

RT

dF

V

dV
2Ma1

1
           IIIc.1.28 

Dividing Equation IIIc.1.27 by Equation IIIc.1.28 and substituting from Equa-
tion IIIc.1.28 yields: 

−−=
V

dV

T

dT 2Ma)1(γ  = 
−
−−=−−

RT

dF

V

dV
2

2
2

Ma1

Ma)1(
Ma)1(

γγ       IIIc.1.29 

Next, we substitute for dT/T from Equation IIIc.1.29 and for dV/V from Equa-
tion IIIc.1.28 into Equation IIIc.1.11.  To deal with the dF/RT term, we find dF
from Equation IIIc.1.3 and V2 from the definition of the Ma number dF/RT = 
f(dx/2D)V2/RT = f(dx/2D)Ma2γRT/RT = f(dx/2D)Ma2γ  to obtain: 
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Ma γγ
         IIIc.1.30 

To make interesting conclusions from Equation IIIc.1.30, we also simplify 
Equation IIIc.1.12 and like before substitute for dF = (4/ρ)(dx/D)τw, τw = 
(f/4)(ρV2/2), and ρ = P/RT to obtain: 

2
1

Ma1

Ma)1(1 2

2

2 V

D
f

dx

dP ργ
−

−+−=          IIIc.1.31 

Subsonic flow, Ma < 1 (dMa > 0).  The pressure drop resulted from subsonic 
flow of compressible viscous fluids in constant area conduits results in an increase 
in the flow temperature, which combined with decrease in pressure (dP/dx < 0) 
causes density to decrease (ρ = P/RT) and velocity (V = m /ρA) and Ma number to 
increase.  Thus, friction causes the subsonic flow to accelerate. 

Supersonic flow, Ma > 1 (dMa < 0).  The supersonic flow of compressible 
viscous fluids in constant area conduits results in a decrease in Ma number and ve-
locity, requiring flow density and consequently pressure (dP/dx > 0) to increase.  
Thus, supersonic flow decelerates due to friction.  We further deal with this topic 
in Section 2.  But for now, let’s integrate Equation IIIc.1.30 from the pipe entrance 
to the pipe exit: 
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     IIIc.1.32 

where in Equation IIIc.1.32, we have used an average value for the friction factor 
and specified Mae = 1.  This results in the maximum pipe length beyond which 
flow becomes sonic and supersonic.  Since a supersonic flow decelerates, the tran-
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sition to subsonic is followed by a shock wave.  The phenomenon is similar to a 
hydraulic jump for the flow of incompressible fluids in open channels where a fast 
and shallow flow becomes a slow and deep flow.  As a result, Equation IIIc.1.32 
gives the maximum pipe length for a continuous flow. 

Example IIIc.1.4.  Find the Lmax/D versus Ma2 for air.  Use an average friction 
factor of 0.02. 

Solution:  We use Equation IIIc.1.32, which for air (γ = 1.4) becomes:  
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The plot shows that as Ma2 approaches , Lmax /D asymptotically approaches 
about 40. 
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1.4.  Isentropic Process of Compressible Fluids 

Under the isentropic process, we discuss two topics.  First, we discuss the calcula-
tion of pumping power in compressors.  Second, we consider compressible flow 
through Bernoulli obstruction meters.  The latter topic is especially important in 
the measurement of compressible flow. 

A.  Calculation of Compressor Pumping Power 

Pumping compressible fluids is an example of noticeable change in fluid density 
during a process.  Let’s consider a pipeline in which an ideal gas enters at pres-
sure P1 (Figure IIIc.1.2).  Due to the frictional losses, pressure drops downstream 
to P2.  Our goal is to find the pumping power required for increasing the pressure 
of a compressible fluid from pressure P2 to pressure P3.  In a special case, P3 = P1.
For the compressor as the control volume, we use Equation IIIa.3.28 while ignor-
ing frictional pressure drop and the change in elevation from the inlet to the outlet 
of the compressor: 

0h
1 =++ sd

g

VdVdP

g ρ
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P3

P1 P2

hs

Compressor

Figure IIIc.1.2.  Isentropic compression of an ideal gas 

Using subscript 2 for the inlet to the compressor and subscript 3 at the exit of the 
compressor, the rate of work delivered to the compressor shaft, in terms of shaft 
head is found by integrating the above equation: 
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If heat transfer in the compressor is neglected, the compression process between 
points 2 and 3 becomes adiabatic.  Since we also assumed no frictional losses in 
the compressor, we can write: 

γγ ρρ
PP

=
2
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Therefore, γρρ /1
22 )/)(/1(/1 PP=  and upon substitution, the second term on the 

right side of Equation IIIc.1.33 becomes: 
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The first term in the right side of Equation IIIc.1.33 can also be rearranged to ob-
tain: 
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Note that conditions at point 3 must be identical to conditions at point 1.  Substi-
tuting for the first and the second terms in the right side of Equation IIIc.1.33, the 
required shaft head is calculated as: 
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where the compression ratio r = P3/P2.  Finally, the pumping power is determined 
from: 

ss gmW h=             IIIc.1.35 

where m  is the mass flow rate of the compressible fluid through the compressor. 

Example IIIc.1.5.  Transferring natural gas by pipelines from the production 
source to a distant destination is accomplished by providing multiple pumping sta-
tions connected in series and located at equal distances along the path between the 
production source and the receiving reservoir, as shown in Figure IIIc.1.3. 

Figure IIIc.1.3.  Cross-country pipeline for delivery of natural gas 

In each pumping station, gas is compressed and pressurized to compensate for the 
frictional losses in the pipeline until the next pumping station.  The pressurization 
and the cooling of inter-coolers bring pressure and temperature to the values 
where gas first enters the pipeline from the production source. 
a) Find the pressure drop in the pipeline between the successive pumping stations 
and b) find the pumping power for each pumping station for given pipe diameter, 
flow rate ( m ), pressure (P1), and temperature (T1) at the production source.   
Data:  Natural gas is compressed to P1 = 120 psia (0.827 MPa), then cooled to the 
ambient temperature of T1 =80 F (26.67 C), as shown in Figure IIIc.1.4.  Gas then 
enters the pipeline at a velocity of 45 ft/s (13.72 m/s).  The pipe has an inside di-
ameter of 2.25 ft (68.6 cm).  The pumping stations are located every 15 miles 
(24.14 km).  Natural gas (considered as methane) molecular weight is 16, its ki-
nematic viscosity at 80 F (26.67 C) is about 2.62E-5 ft2/s (2.434E-6 m2/s), and γ = 
cp/cv = 1.3.

Figure IIIc.1.4.  Pumping stations for pressure recovery 
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Solution:  a) We assume ideal gas behavior for natural gas, uniform properties at 
each cross section, and negligible changes in elevation.  We find frictional pres-
sure drop at 15 mile intervals from Equation IIIc.1.19,  assuming isothermal flow 
in the pipe: 

Re = VD/v = 45 × 2.25/2.62E-5 = 3.864E6.  Hence, f = 0.184/Re0.2 = 0.00886 (for 
smooth pipe) 

c1 = RT1/
2

1V  = (1545/16) × (460 + 80)/(45 × 45/32.2) = 829.15 

c2 = fL/D = 0.00886 × (15 × 5280)/2.25 = 311.87 
829.15  – ln  – 517.28 = 0 
By iteration (or simply ignoring ln ξ )  we find ξ ≈ 0.6233.  Hence, P2/P1 = ξ1/2 = 
(0.6233)1/2 = 0.7895.  Therefore, P2 = 0.7895(120) = 94.74 psia and ∆P = 120 – 
94.74 = 25.26 psi (0.174 MPa). 
b) The pumping power is needed to compensate for the unrecoverable pressure 
loss over the 15 miles of piping between successive pumping stations. Pumping 
power is given be Equation IIIc.1.34 and IIIc.1.35: 
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where
A = πD2/4 = 3.14× (2.25)2/4 = 3.976 ft2 (0.369) 
R = Ru/M = 1545/16 = 96.56 ft·lbf/lbmole·R (0.519 kJ/kmol·K) 
ρ1 = P1/RT1 = 144×120/[96.56(460 + 80) = 0.331 lbm/ft3 (5.3 kg/m3)

== AVm 11ρ 0.331×45×3.976 = 59.22 lbm/s (26.86 kg/s) 

r = P3/P2 = P1/P2 = 120/94.74 = 1.267 
2

2 0.3/1.345 1.3
59.22[ (1 1.267 ) 96.56(460 80)(1.267 1)]

2 32.2 0.3
W = − − + + − =

×
–7.5E5 ft·lbf/s (–1 MW) 

B.  Flow Rate Measurement of Compressible Fluids 

In measuring flow rate of compressible fluids with Bernoulli obstruction meters, 
we must take into account the compressibility effect, due to the noticeable change 
in the density of the compressible fluid through such devices.  The pressure drop 
associated with the flow of compressible fluids, especially through a thin-plate ori-
fice, causes the flow to expand adiabatically and density to decrease downstream 
of the throat.  Our goal is to find an expression similar to Equation IIIb.4.4, that 
was derived for the mass flow rate of incompressible fluids.  Recall that in the 
derivation of Equation IIIb.4.4, which was based on Equation IIIa.3.33, we used 
the Bernoulli equation.  Here, however, due to the change in the fluid density, we 
cannot use the Bernoulli equation.  We then start with the energy equation.  To 
begin the derivation, consider flow through the venturi of Figure IIIb.4.3 where 
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the extent of the control volume is from inlet (1) through the throat (2).  We make 
the following simplifying assumptions: the fluid behaves as an ideal gas, the flow 
velocity is less than the speed of sound in the fluid, and the process is steady as 
well as isentropic.  The energy equation between stages 1 and 2,  2

1 1 / 2h V+ =
2

2 2 / 2h V+ , can be written as: 
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where we substituted for velocities from the continuity equation, 
1 1 1m V Aρ= =

2 2 2V Aρ .  Also substituting for temperature in terms of pressure from the isentropic 
relation IIa.4.3 (i.e., 1 2/ρ ρ = (P1/P2)

1/γ), for cp from cp = Rγ/(γ –1), and for density 
from /P RTρ =  and after some algebraic manipulation, we find: 
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where A2 is the flow area at the throat, 12 / DD=β , and 12 / PPr = .  Using the 

same argument as in Section IIIb.4.2 for incompressible flow measurement by 
Bernoulli obstruction meters, the above relation becomes: 
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Comparing Equation IIIc.1.36 with relation IIIb.4.4, we seek a means to express 
the flow rate of both compressible and incompressible fluids with an identical re-
lation.  To do so, we define a factor Y (referred to as the adiabatic expansion fac-
tor or net expansion factor): 

flowibleincompressanofrateflowmass

flowlecompressibaofrateflowmass=Y

Substituting for the numerator from Equation IIIc.1.36 and for the denominator 
from Equation IIIb.4.4 yields: 

PYAm ∆= 12 2ρα            IIIc.1.37 

where A2 is the venturi throat diameter, 41/ βα −= dC , 12 / DD=β , ∆P = P1

– P2, and Y is given as: 
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                     IIIc.1.38 
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Knowing the type of gas (γ) and the inlet pressure and temperature, we know the 
gas density (ρ).  If we also know the throat pressure (P2 and alternatively r = 
P2/P1) and the venturi size (β), we can calculate Y from Equation IIIc.1.38 and 
then find mass flow rate from Equation IIIc.1.37.  Since the calculation of Y is la-
borious, values of Y have been provided in tables and figures for various gases (γ)
and venturi sizes β.  The expansion coefficient as calculated above applies to noz-
zles and venturies.  ASME has provided the following correlation for a thin-plate 
orifice: 

]/)1)[(35.041.0(1 4 γβ rYOrifice −+−=                       IIIc.1.39 

Values for the adiabatic expansion factor as given by Equations IIIc.1.38 and 
IIIc.1.39 are plotted in Figure IIIc.1.5.  Note that the differential pressure taps are 
located one-pipe diameter upstream and a half-pipe diameter downstream of the 
inlet face of the nozzle and the orifice plate (D:D/2). 

Example IIIc.1.6.  A venturi meter is used to measure the flow of carbon dioxide.  
The inlet and the throat diameters are 5 (12.7 cm) and 2 (5.08 cm) inches, respec-
tively.  Inlet pressure and temperature are 150 psia (1.034 MPa) and 200 F 
(93.33 C).  Pressure at the throat of the venturi is 145 psia (1 MPa).  Carbon diox-
ide kinematic viscosity is 1.32E-5 ft2/s (1.23E-6 m2/s) and for carbon dioxide, 
γ = 1.3.  Find the mass flow rate. 

Solution:  To use Equation IIIc.1.37, we need to find A, ρ, r, and Y:
2

2 2 / 4A Dπ= = π(2/12)2/4 = 0.0218 ft2 (2 cm2)

932.0)]200460()44/1545/[(144150/ 111 =+××== RTPρ  lbm/ft3 (14.93 kg/m3)

Having γ = 1.3, β = 2/5 = 0.4 and r = P2/P1 = 145/150 = 0.967, we find Y:
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−=VenturiY

The discharge coefficient is found from Equation IIIb.4.7 as: 

4.50.9858 0.196dC β= −  = 0.983 

The flow coefficient becomes 4/ 1dCα β= −  = 0.983/(1 – 0.44)0.5 = 0.995.  Fi-

nally, mass flow rate from Equation IIIc.1.37 is found as: 

419.4)1445(932.02.3220218.098.0995.02 12 =××××××=∆= PYAm ρα  lbm/s 

(2 kg/s) 
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Figure IIIc.1.5.  Values of the net expansion factor Y for Bernoulli obstruction meters 

2.  The Phenomenon of Choked or Critical Flow 

In the flow of fluids, any downstream perturbation travels upstream at the speed of 
sound in that fluid.  We now consider two tanks connected by a pipe as shown in 
Figure IIIc.2.1.  The tanks are filled with a compressible fluid and are initially at 
the same thermodynamic condition.  Hence, there is no flow of fluid from the left 
tank to the right tank and vice versa.  If we maintain pressure in the left tank and 
begin to reduce pressure in the right tank, a flow rate will be established.  The 
more we reduce pressure in the right tank the higher the rate of flow will be be-
tween the two tanks.  As was discussed in Section IIIb.7, this is due to the fact that 
reduction in the downstream pressure, being a disturbance, is carried upstream 
faster than the flow velocity.  Once this reduction in pressure is “felt” upstream, 
the rate of flow increases. 

Po Pb

L

D

Figure IIIc.2.1.  Tanks filled with compressible fluid and connected by a pipe. 

There is of course a limit to the increase in the flow rate.  This limit is reached 
when the flow velocity itself reaches the speed of sound.  In this case, the speed of 
the disturbance to travel upstream is the same as the flow velocity.  Hence, the 
perturbation cannot be “communicated” upstream.  As a result, the flow rate re-
mains the same regardless of further reduction in the downstream pressure.  Flow 
rate under such circumstance is choked.  The choked or critical flow rate is, there-
fore, only a function of the upstream pressure in the flow field.  For ideal gases, 
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we can derive an analytical relation for the choked flow rate.  For non-ideal fluids, 
we have to resort to hybrid solutions, being a blend of theory and experimental 
data in the form of a correlation.  In this chapter, we are concerned only with the 
choked flow of single-phase compressible fluids such as ideal gases, saturated, 
and superheated steam.  Choked flow for two-phase (water and steam) conditions 
is discussed in Chapter Va.   

Assuming the process is isothermal, we examine Equation IIIc.1.16.  As shown 
in Figure IIIc.2.2(a), the ratio of P/ρV2 determines the slope, dP/dx. For P/ρV2 > 1, 
the slope is negative.  This is the region on the curve between points A and B.  For 
P/ρV2 < 1, the slope is positive.  This is the region between points B and C.  For 
P/ρV2 = 1, which occurs at point B, the tangent to the curve is vertical.  The condi-
tion corresponding to point B is called the critical condition and the pressure at 
point B, the critical pressure.  Let’s now examine Equation IIIc.1.19.  Figure 
IIIc.2.1(b) shows the plot of Pb/Po versus fL/D for various Mach numbers.  The 
straight line represents the incompressible flow behavior from Equation IIIc.1.20.   
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Figure IIIc.2.2. (a) and (b) Depiction of Equation IIIc.1.16 and (c) Equation IIIc.1.19 

Note in Figure IIIc.2.2(b) similar to Figure IIIc.2.2(a), as flow velocity ap-
proaches the speed of sound in the fluid, the denominator approaches zero.  At 
sonic velocity, the tangent to the curve becomes vertical.  Finally, in examining 
Equation IIIc.1.19, we obtain a parabolic plot of mass flow rate versus r = Pb/Po as 
shown in Figure IIIc-2-2(c).  At r = 1 (Pb = Po) there is no flow.  As P2 is lowered, 
flow rate increases.  As discussed above, there is a critical pressure (shown by *

eP
and the corresponding ratio by r*) beyond which the flow becomes independent of 
the downstream pressure.  Equation IIIc.1.31 shows that the mass flow rate peaks 
when the downstream pressure causes flow to become sonic.  El-Wakil has sum-
marized the above discussion in the plots of Figure IIIc.2.3.  As shown in this Fig-
ure IIIc.2.3, when the source pressure is equal to the downstream, back, or the re-
ceiving tank pressure, there is no flow and velocity is zero (line number 0).  Line 
numbers 1 and 2 show subsonic flow, which increases with further reduction in 
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back pressure.  Line 3 shows the back pressure at which flow has become sonic.  
Lines 4 and 5 show that further reduction in back pressure beyond that of line 3 
does not result in further flow increase. 
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Figure IIIc.2.3.  Pressure and Flow Velocity of Compressible Fluids (El-Wakil) 

Example IIIc.2.1.  Show that for an isentropic condition the critical flow of a 
compressible fluid in a horizontal constant area pipe is identical to the mass flow 
rate at sonic speed. 

Solution:  For choked flow 0/ =dPmd .  We find from the continuity equation 
under steady state condition: 

0
)( =+==

dP

dV
A

dP

d
VA

dP

VAd

dP

md ρρρ

from which we find dP/dV = (–ρ/V)dP/dρ.  From Equation IIIc.1.4 for frictionless 
flow: 

0
22

=++
D

dx
f

V

dV

V

dP

ρ

from which we find dP/dV = –ρV.  Therefore, (–ρ/V)dP/dρ = –ρV.  Since G = ρV,
then: 

( )2222 c
d

dP
G

s

ρ
ρ

ρ ==

where we substituted for the speed of sound as given by sddPc )/( ρ= .  Note 

that subscript s, for entropy, is added to emphasize that the process is adiabatic 
and frictionless (isentropic). 

2.1.  Calculation of Choked Flow for Ideal Gases 

We can readily derive the flow rate of ideal gases under choked condition from the 
energy equation written between the flow upstream and the receiving tank down-
stream as: 
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ho = hb + 2
bV /2             IIIc.2.1 

where the stagnation enthalpy (i.e., the enthalpy plus the associated kinetic en-
ergy) is used for the upstream flow.  Substituting for enthalpies, we find: 

2
bV  = 2cpTb(To/Tb – 1)             IIIc.2.2 

Relating velocity to Mach number via Ma2 = V2/c2 and substituting for c2 = γRT,
we obtain: 

)1/(
1

2)1/)](1/([2)1/(2)1/(2
Ma 2 −

−
=

−−
=

−
=

−
= bo

bobop

b

bop TT
R

TTR

R

TTc

RT

TTTc

γγ
γγ

γγ

so that 

2Ma1/ ζ+=bo TT              IIIc.2.3 

where ζ  = (γ – 1)/2.  Using the isentropic relations given by Equations IIa.4.4 

and IIa.4.5, we further find that: 

( ) )1/(2Ma1/
−

+=
γγ

ζbo PP             IIIc.2.4 

( ) )1/(12Ma1/
−

+=
γ

ζρρ bo             IIIc.2.5 

It is important to note that when flow is choked, Ma = 1, hence 

T*/To =               IIIc.2.6 
ρ*/ρo =  1/(γ – 1)             IIIc.2.7 
P*/Po =   γ/(γ – 1)             IIIc.2.8 

where  = 2/(γ + 1) and * represents properties at the choked condition.  From the 
last relation we can identify two cases.  First, back pressure less than critical pres-
sure, Pb > P* and second, back pressure greater than critical pressure, Pb < P*.
These cases are discussed next. 

Case A.  Pb > P*

We can find mass flux from Equation IIIc.2.2 by substituting from Tb/To = 
(Pb/Po)

(γ – 1)/γ and ρb = Pb/RTb = (Po/RTo)(Pb/Po)
1/γ to obtain: 

−
−

==
+ γγγ

γ
γ

/)1(/2

1

2
/

o

b

o

b

o
o P

P

P

P

RT
PAmG          IIIc.2.9 

Case B.  Pb ≤ P*

We can find mass flux from VAmG ρ== /  with V and ρ substituted from Equa-

tions IIIc.2.2, IIIc.2.6, and IIIc.2.7, respectively to obtain:   
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o

o

T

P

R
AmG −

+

== 1

1

/ γ
γ

λγ
          IIIc.2.10 

Expectedly, when flow is choked, Pb does not appear in the equation for mass 
flux. 

Example IIIc.2.2.  A tank contains air at stagnation properties of 100 psia (0.69 
MPa) and 75 F (23.89 C).  A 1 inch (2.54 cm) diameter vent valve is opened.  Find 
a) air flow rate if Pb = 60 psia (0.36 MPa) and b) air flow rate if Pb = 14.7 psia 
(1 atm). 

Solution:  For Air, γ = cp/cv = 0.24/0.17 = 1.4 hence  = 2/(1 + 1.4) = 0.8334.  
Also R = Ru/Mair = 1545/28.97 = 53.33 ft lbf/lbm R (0.287 kJ/kmol·K), To = 75 + 
460 = 535 R (297 K), and A = 5.454E-3 ft2 (5.07E-4 m2).  We first find P*,  the 
pressure at which flow is choked.  This is found from Equation IIIc.2.8 as:   

P* = Poλγ/(γ – 1) = 100(0.8334)1.4/0.4 = 52.83 psia (0.36 MPa) 

a)  Since Pb > P*, we use Equation IIIc.2.9: 

( )
2.320

535

144100
)

100

65
()

100

65
(

4.0

4.1

33.53

2.322 4.1/4.24.1/2 =×−××=G lbm/s·ft2

(1612.2 kg/s·m2)

Therefore, lbm/s745.13E454.52.320 =−×=m (0.79 kg/s) 

b)  We can find the choked flow rate from either Equation IIIc.2.9: 

( )
24.331

535

144100
)

100

83.52
()

100

83.52
(

4.0

4.1

33.53

2.322 4.1/4.24.1/2 =×−××=G  lbm/s·ft2

(1617.24 kg/s·m2)

or from Equation IIIc.2.10: 

( )
24.331

535

144100
)8334.0(

33.53

2.324.1 4./4.2 =××=G lbm/s·ft2 (1617.24 kg/s·m2)

The choked mass flow rate is lbm/s81.13E454.524.331 =−×=m  (0.821 kg/s). 

     To expedite arithmetic, we may calculate the constants in Equation IIIc.2.10 
for a specified ideal gas.  If for example air is the working fluid, then the choked 
mass flux of air in British Units becomes: 

ooBU TPG /63.76=         IIIc.2.11-1 



2.  The Phenomenon of Choked or Critical Flow 419

where Po is the source pressure in psia, To is the source temperature in degree 
Rankine, and G is mass flux in lbm/s·ft2.  Similarly, for Po in kPa and To in degree 
Kelvin, mass flux of air in kg/s·m2 is given by: 

ooSI TPG /42.40=         IIIc.2.11-2 

Example IIIc.2.3.  Air in an isentropic process and at a rate of 5 kg/s is expanded 
through the throat to an exit Mach number of 2.  The air pressure and temperature 
at the inlet are Po = 350 kPa and To = 250 C (523 K).  Find a) the throat area, b) 
the air pressure and temperature at the exit, c) exit velocity and exit area. 

Solution:  For Air, γ = cp/cv = 0.24/0.17 = 1.4, ζ  = (γ – 1)/2 = 0.2, and  = 2/(1 + 

γ) = 2/(1 + 1.4) = 0.8334.   

a) Since Vexit > 1 then Vthroat = 1:

oo TPG /42.40=  = 40.42 × 350/(523)0.5 = 618.6 kg/s·m2

GmAthroat /=  = 5/618.6 = 8.08E-3 m.  Therefore,  

Dthroat = (4A/π)0.5 = (4 × 8.08E-3/π)0.5 = 10 cm 

b) We use Equations IIIc.2.3 and IIIc.2.4: 

Texit = To/[1 + ζ Ma2] = 523/[1 + 0.2 × 22] = 290.5 K 

Pexit = Po/[1 + ζ Ma2]γ/(γ – 1) = 350/[1 + 0.2 × 22]3.5 = 44.73 kPa 

c) Vexit = cMa and c = RTγ  = [1.4 × (8,314/28.97) × 290.5]0.5 = 339.58 m/s  

To find Aexit, we find ρexit having Pexit and Texit:

ρexit = Pexit/(RTexit) = 44.73/[(8.314/28.97) × 290.5] = 0.536 kg/m3

Aexit = Vm ρ/( ) = 0.0274 m2.

Therefore, Dthroat = (4A/π)0.5 = (4 × 0.0274/π)0.5 = 18.7 cm 

2.2.  Steady Flow of Ideal Gases Through Pipe Breaks 

The rate of discharging compressible fluids to the atmosphere depends generally 
on the source and the sink pressures as well as the flow path length and diameter.  
As shown in Figure IIIc.2.4, the flow path may be equipped with fittings and 
valves and hence, the frictional losses due to skin friction and form losses in 
valves and fittings must be accounted for in the analysis.  As a result, the flow 
may be either subsonic or choked.   

It is therefore important to determine the flow condition prior to the calculation 
of the flow rate, as discussed next. 
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P1

Isolation
Valve
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Valve

P2

Figure IIIc.2.4.  Discharging compressible fluids to the atmosphere through valves and fit-
tings 

A.  Steady Flow of Ideal Gases Through Pipe Breaks, Subsonic Flow 

To obtain the mass flow rate, we use Equation IIIb.3.14 as was derived for incom-
pressible fluids.  To account for the changes in density due to the associated pres-
sure drop through the flow path, we find fluid density at the source pressure and 
temperature (ρ1) while introducing Y, the adiabatic expansion factor.  Addition-
ally, as was discussed in the derivation of Equations IIIb.4.4 and IIIc.1.37, to ac-
count for the deviation from ideal conditions, we apply α, the flow coefficient.  
Therefore, mass flow for compressible fluids (Equation IIIb.3.14) becomes: 

K

)(
2 211 PP

YAm
−

=
ρ

          IIIc.2.12 

where iDfL += K/K .  Equation IIIc.2.12 applies if flow remains subsonic.  
The Y factor is given in Figure IIIc.2.5 for gases with γ = 1.3 and γ = 1.4.  Flow 
remains subsonic as long as we can find K from the plots of Figure IIIc.2.5.  An 
application of Equation IIIc.2.12 is discussed in the following example. 

Example IIIc.2.4.  Pressure in a large tank containing air is maintained at 50 psia 
(0.34 MPa) and 120 F (49 C) while air is discharged to the atmosphere through a 1 
in (2.54 cm) clean commercial steel pipe.  The 50 ft (164 m) long pipe includes 
four 90-degree elbows and a fully open globe valve.  Find a) If flow is choked and 
b) the mass flow rate of air. 

1-inch Clean Commercial steel pipe

P = 50 psia
T = 120 F

Air

Solution:  a) To see if flow is chocked, we need K and ∆P/P1:

K = [L/D + KEntrnace + 4 × K90-Elbow + KGlobe-Valve + KExit]f
We find f = 0.023 from Table IIIb.3.2 and loss coefficients from Table IIIb.3.3: 
K = [(50×12/1) + 0.5 + 4×30 + 340 + 1] × 0.023 = 24.4 
∆P/P1 = (50 – 14.7)/50 = 0.706 

To find Y, we use Figure IIIc.2.5 to get; Y = 0.77 
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Since we found Y from the figure, flow is not choked. 
b) To find the mass flow rate from Equation IIIc.2.12, we need A and ρ:
A = π D2/4 = π (1/12)2/4 = 0.00545 ft2 (5.063E-4 m2)
ρ1 = P1/RT1 = 50 × 144/[(1545/28.97) × (460 + 120)] = 0.233 lbm/ft3

23.0]4.24/)1447.1414450(233.02.322[00545.077.0 5.0 =×−×××××=m  lbm/s. 

B.  Steady Flow of Ideal Gases Through Pipe Breaks, Choked Flow 

The minimum value of Y corresponding to the maximum value of ∆P/P1 is circled 
on each plot in Figure IIIc.2.5 and tabulated next to the figure for a specified loss 
coefficient K.  If for a given gas (γ), given loss coefficient (K), and given ∆P/P1,
we cannot find the corresponding Y factor from Figure IIIc.2.5, we should then use 
the associated table next to these plots, as specified in CRANE.  This would imply 
that the flow is choked.  In this case, the choked flow rate is found from: 

K
2 max1 P

YAm
∆

=
ρ

           IIIc.2.13 

where ∆Pmax must be obtained from the tables associated with Figure IIIc.2.5. 

Example IIIc.2.5.  Use the same data as in Example IIIc.2.3 but for a tank pres-
sure of 450 psia (3.1 MPa).  Find a) if flow is choked and b) the maximum mass 
flow rate of air. 

Solution:  a) Having K, to see if flow is chocked we need ∆P/P1:

∆P/P1 = (450 – 14.7)/450 = 0.967 

We cannot find Y from Figure IIIc.2.4.  Thus, Y must be found from the related ta-
ble adjacent to Figure IIIc.2.4.  Using K = 24.5, we find Y = 0.71 by interpolation. 
This implies that flow is choked.  From the same table, maximum ∆P/P1 by inter-
polation is found as 0.8487. 

∆P = 0.8487 × 450 = 381.9 psia (2.633 MPa) 

b) Having A, to find the mass flow rate from Equation IIIc.2.13, we need ρ:
ρ1 = P1/RT1 = 450 × 144/[(1545/28.97) × (460 + 120)] = 2.1 lbm/ft3 (33.64 kg/m3)

m = 1.2]4.24/)]1449.381()1.22.32[(200545.071.0 =××××  lbm/s. 

Standard Condition:  Due to the change of density in compressible fluids, 
flow rate is either expressed as mass per unit time or the volumetric flow rate per 
hour at standard condition (PS = 14.7 psi and TS = 60 F = 520 R).  To express flow 
rate in terms of standard condition, since the mass flow rates must remain the 
same, we write 
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S
S ρ

ρ
VV =

where subscript S stands for standard condition.  Substituting from Equa-
tion IIIc.2.13, we obtain: 
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               IIIc.2.14 

where ρ1 is substituted from the ideal gas law.  We may further express Equation 
IIIc.2.14 in terms of Sg, the gas specific gravity defined as: 

R

R

M

M
S air

air
g ==

Equation IIIc.12.14 therefore becomes: 

K
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T
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g

air

S

S
S

∆=           IIIc.2.15 

Example IIIc.2.6.  A tank contains carbon dioxide at 113 F (45 C) and 145.1 psia 
(1 MPa).  The tank is equipped with a 15.28 ft (4.66 m) long, 0.5 in schedule 40 
pipe (I.D. = 0.622 in = 15.8 mm).  Find the flow rate in standard cubic feet per 
minute corresponding to the specified pressure and temperature.  (

2COγ  = 1.28 
and

2COM  = 44). 

Solution:  We first find the flow rate at the given conditions: 

A = π D2/4 = π (0.622/12)2/4 = 2.11E-3 ft2 (1.96E-4 m2)
ρ1 = P1/RT1 = 145.1 × 144/[(1545/44) × (460 + 113)] = 1 lbm/ft3 (16.6 kg/m3)
f = 0.027 (Table IIIb.3.2).   
Finding the loss coefficients from Table IIIb.3.3: 
K = [L/D + KEntrance + KExit]f = [(15.28 × 12/0.622) + 0.5 + 1] × 0.027 = 8 
∆P/P1 = (145.1 – 14.7)/145.1 = 0.9. 
From the table adjacent to Figure IIIc.2.5 for air, the maximum ∆P corresponding 
to K = 8 is 0.75.  Since the calculated ∆P/P1 = 0.9 > 0.75, the flow is choked.  We 
find the net expansions coefficient corresponding to K = 8 as Y = 0.698 and ∆Pmax

= 0.762 × 145.1 = 145.86 psi 
The volumetric flow rate is found from Equation IIIc.2.15 given Sg = 44/28.97 = 
1.52

SV  = 
8

75.0

97.28/44

97.28/1545

)460113(

1441.145
2.322

1447.14

520
3E11.2698.0 ××

+
××

×
×−×

= 0.032 ft3/s
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To expedite arithmetic, we may calculate the constants in Equation IIIc.2.10.  
Substituting for A = πd2/4, Rair, TS, and PS, Equation IIIc.2.15 in British Units sim-
plifies to: 

( )
K

4.678V
1

12 P

ST

P
Yd

g
BUS

∆=

where d is in inch, P1 and ∆P in psi, T in degree Rankine, and the volumetric flow 
rate is in ft3/min. 
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Figure IIIc.2.5.  Adiabatic expansion factor for flow of ideal gases for γ = 1.3 and 1.4 (Crane) 
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2.3.  Critical Flow Correlations for Steam 

We conclude the single-phase choked flow analysis with presentation of the criti-
cal flow correlations for steam.  In this regard, we consider two cases of saturated 
and superheated steam.  

A.  Critical Flow Correlation for Superheated Steam 

If steam is superheated, the critical flow can be reasonably found from Equa-
tion IIIc.2.10 so that mass flux is calculated as: 

oodBU TPCG /35.59=        IIIc.2.16-1 

oodSI TPCG /31.31=        IIIc.2.16-2 

where Po is in psia (kPa) and To is in degree Rankine (Kelvin) for G to be in 
lbm/s·ft2 (kg/s·m2).

However a more accurate relation is: 

),v(
25.45

hP

P
CG dBU =           IIIc.2.17 

where P is in psia, specific volume (v) is in ft3/lbm, and mass flux (G) is in 
lbm/s·ft2.

B.  Critical Flow Correlations for Saturated Steam 

There are several empirical correlations for critical flow of saturated steam.  A 
correlation that results in reasonable agreement with models such as Moody and 
isoenthalpic (as discussed in Chapter Va for two-phase critical flow) is Critco (Na-
havandi 62): 

( )
185)(

734.13
−

=
Ph

P
G

g
BUCritco        IIIc.2.18-1 

( )
28.430)(

726.325
−

=
Ph

P
G

g
SICritco        IIIc.2.18-2 

where P is in psia (MPa), hg in Btu/lbm (kJ/kg), and G in lbm/s·in2 (kg/s·cm2).
Other critical flow correlations for steam include the Napier correlation 
(Moody 75):  

( )
70

P
G

BUNapier =         IIIc.2.19-1 

( )
7

P
G

SINapier =         IIIc.2.19-2 
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the Grashof correlation (Baumeister): 

( ) 97.00165.0 PG
BUGrashof =        IIIc.2.20-1 

( ) 97.00149.0 PG
SIGrashof =        IIIc.2.20-2 

and the Rateau correlation (Baumeister): 

( ) [ ] 1000/log96.0367.16 10 PPG BURateau −=      IIIc.2.21-1 

( ) [ ] 100/log96.0292.14 10 PPG SIRateau −=      IIIc.2.21-2 

In Equations IIIc.2.19 through IIIc.2.21, P is in psia (MPa) and G is in lbm/s·in2

(kg/s·cm2).  As a rough estimate, the critical flow of saturated steam can be 
guessed from Napier’s correlation as G ≈ 2P where P is in psia and G is in 
lbm/s·ft2.  Thompson compared the results from Napier’s correlation with data and 
observed that the Napier’s correlation overpredicts data between pressures from 
100 to 1500 psia and underpredicts data for pressures greater than 1500 psia.  
Hence, a pressure correction factor is used for this correlation for the source pres-
sure in the range of 1500 < P < 3200 psia as follows: 

10612292.0

10001906.0

−
−=

P

P
CNapier           IIIc.2.22 

where P is in psia.  The ASME Boiler and Pressure Vessel Code uses the Napier’s 
correlation with the above correction factor.  The choked flow rate is then calcu-
lated from: 

( )70/9.0max PACCm cNapierd=          IIIc.2.23 

where mass flow rate is in lbm/s, Ac is the choking area in square inch, P is in psia, 
and Cd is the discharge coefficient. 

Example IIIc.2.7.  Saturated steam at 1000 psia (6.89476 MPa) is discharged to 
the atmosphere through a 1/8 in (3.175 mm) diameter valve.  Find mass flow rate 
of steam.  

Solution:  Since flow of steam discharged from 1000 psia to 14.7 psia is choked, 
we may use Critco or other correlations IIIc.2.19 through IIIc.2.21.  For Critco, h
= hg = 1192.9 Btu/lbm (2774.5 kJ/kg): 

GCritco = 13.734×1000/(1192.9 –185) = 13.63 lbm/s·in2 (0.958 kg/s·cm2)
GNapier = 1000/70 = 14.28 lbm/s·in2 (1 kg/s·cm2)
GGrashof = 0.0165(1000)0.97 = 13.41 lbm/s·in2 (0.943 kg/s·cm2)
GRateau = [16.267 – 0.92(2.158 + log101000)] = 13.48 lbm/s·in2 (0.948 kg/s·cm2)
Grough estimate = 2 × 1000 = 2000 lbm/s·ft2 = 13.88 lbm/s·in2 (0.976 kg/s·cm2)

Note that Napier’s correlation has predicted the largest choked flow rate. 
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Example IIIc.2.8.  A pressure vessel is filled with air.  A small valve is opened to 
vent the vessel.  Find the vessel pressure after 15 s.  The mass flow rate through 

the valve is given as TbPme /= .  In BU; em  in lbm/s, P in psia, and T in R, 

the value of b is given as b = 0.5148 lbm·ft2·R1/2/(s·lbf).  Other data are as follows; 
P1 = 1000 psia, T1 = 150 F, V = 100 ft3, dValve = 1 inch, AValve = 5.454 × 10-3 ft2,
(Cd)Valve = 0.65. 

Solution:  We must solve the conservation equations for mass and energy as well 
as the volume constraint simultaneously.   The involved equations constitute a set 
of first-order non-linear differential equations, thus we use a finite difference ap-
proach.  The FORTRAN program used to solve this problem is included on the 
accompanying CD-ROM and is the same that was used to solve Example IIa.8.7.  
The results for pressure and mass flow rate are plotted versus time.   
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From the pressure plot versus time, we find P(t = 15 s) = 400 psia.  Discharging 
pressurized vessels results in a rapid drop of the gas temperature.  Thus, pressure 
vessels undergoing rapid discharge should be designed to withstand high thermal 
stresses.  Also, note that in this problem we ignored any heat transfer to or from 
the tank structure.  If the tank is poorly insulated, the rate of heat transfer should 
be included in the formulation. 

QUESTIONS

− How does pressure drop calculation of compressible fluids differ from incom-
pressible fluids? 

− What manipulation do you use to express Equation IIIb.3.7 in terms of the Ma 
number?

− Why is it a reasonable assumption for friction factor to remain constant in the 
isothermal flow in pipes? 

− Is Equation IIIc.1.19 applicable to the flow of compressible fluids in any pipe 
length? 

− Why does the subsonic flow accelerate? 
− Is it correct to say that in supersonic flow, pressure actually increases in the 

flow direction? 
− Why is a maximum pipe length calculated for the flow of compressible fluids in 

pipes? 
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− Why do we have to define the adiabatic expansion factor for the flow of com-
pressible fluids? 

− What is the value of the adiabatic expansion factor for incompressible fluids? 
− What is the value of Y for CO2 flowing through an orifice with Dthroat = Dpipe/2? 
− What is the critical or choked flow? 
− When does flow become choked? 
− Is choked flow associated only with the flow of the compressible fluids? 
− What is the critical pressure?  What happens when the back pressure is less 

than, equal to or greater than the critical pressure? 
− What is the critical pressure of air at a stagnation pressure of 2 MPa? 
− Why is flow choked if we cannot find Y from the plots of Figure IIIc.2.5? 

PROBLEMS

1.  Consider the flow of a compressible fluid in a conduit under steady state and iso-
thermal conditions.  The flow density changes from point a to point b that is located 
downstream of point a.  Compare the flow Reynolds number at these points and 
specify whether Rea > Reb, Rea = Reb, or Rea < Reb.

2.  Air at pressure P1, temperature T1, and mass flow rate of m  enters a compressor.  
Air pressure rise over the compressor is ∆P1.  Water at the same conditions enters a 
pump and its pressure is raised by the same amount.  Compare the required pumping 
powers for air, aW and for water, wW .
[Hint.  ρ/V mPPW ∆=∆= ].

3.  Use Equation IIIc.1.14 to show that: 
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Use this result and substitute for dF/RT term to directly derive Equation IIIc.1.30 for 
the adiabatic flow of compressible fluids in constant flow area channels. 

4.  Methane at a rate of 1 kg/s is flowing inside a pipeline.  The pipe inside diameter 
is 1 m.  Find the Ma number at a location where pressure and temperature are meas-
ured as 1 MPa and 27 C, respectively.  MCH4 = 16.043, γCH4 = 1.304.  [Ans.:  0.44]. 

5.  Carbon dioxide is flowing in a conduit at 50 psia, 100 F, and a velocity of 50 ft/s.  
Find the flow Ma number at this location.  MCO2 = 44.01, γCO2 = 1.28.  [Ans.: 0.056]. 

6.  Air enters a duct at 700 kPa and Ma = 0.05.  The duct has a wetted perimeter of 1 
m and a flow area of 0.1 m2.  Find the air pressure at a length of 150 m from the pipe 
entrance.  The air temperature remains constant in the pipe. 

7.  Air flows in a pipeline at a rate of 25 kg/s.  The pipe is 1000 m long and has an 
inside diameter of 0.35 m.  Assuming isothermal process, find the pipe length over 
which the flow remains subsonic.  Data: Pi = 0.5 MPa, Ti = 27 C, f = 0.015. 
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8.  Compressed air in a facility.  For this purpose, a compressor delivers 1 lbm/s of 
air in a 2 in schedule 40 pipe at 50 psia and 80 F.  Assuming the flow is isothermal, 
find the length of the pipe at the end of which flow becomes sonic. 

9.  Natural gas is flowing in a pipeline of 2.5 m diameter at a rate of 100 kg/s.  The 
pipeline is well insulated.  The gas at the exit of the pumping station’s compressor 
has a pressure of 700 kPa and a temperature of 40 C.  Find the maximum pipe length 
for continuous flow. 

10.  Air enters a pipe at a Mach number of 0.1.  The pipe is 1000 m long, having an 
inside diameter of 0.25 m.  The flow is isothermal and the friction factor remains 
constant over the entire length of the pipe at 0.013.  Find the Mach number at the 
exit of the pipe. 

11.  Natural gas, compressed to P1 = 100 psia then cooled to T1 = 70 F, flows in a 
cross-country pipeline at a velocity of 40 ft/s.  The pipe is smooth and has an inside 
diameter of 2 ft.  To maintain pressure, pumping stations are established every 10 
miles along the route.  In each pumping station, natural gas is compressed to its 
original pressure and cooled to its original temperature.  Find the pressure drop be-
tween each pumping station and the required pumping power.  Assume natural gas 
as pure methane with k = 1.3, molecular weight of 16 and kinematic viscosity of 
2.61E-5 ft2/s.   
[Ans.:  Re = 0.31E7, f = 0.00928, P2 = 87.29, c2 = 264, ∆P = 12.71 psi,  

m = 35.36 lbm/s, Ma  = 0.03, and W  = 454 hp]. 

12.  Show that in an isentropic process involving flow in a horizontal flow path, vdP
+ VdV = 0. 

13.  Show that ( )scritical ddPG v/−= .

14.  A tank contains air at stagnation properties of 200 kPa and 30 C.  A vent of 3 
cm diameter is opened.  a) Find air flow rate if Pb = 150 kPa and b) if Pb = 101.35 
kPa.  [Ans.: For Cd = 1, a) 0.29 and b) 0.33 kg/s]. 

15.  Air in an isentropic process and at a rate of 6 kg/s is expanded through the throat 
to an exit Mach number of 3.  The air pressure and temperature at the inlet of are Po

= 300 kPa and To = 300 C, respectively.  Find a) the throat area, b) the air pressure 
and temperature at the exit, c) exit velocity and area. 

16.  Air in an isentropic process and at Po = 250 kPa and To = 600 K is expanded 
through the throat to an exit Mach number of 2.5.  The throat diameter is 11 cm.  
Find a) the mass flow rate of air, b) the air pressure and temperature at the exit, c) 
exit velocity and area. 

17.  A fully inflated tire has a volume of 15 ft3.  The pressure and temperature of the 
air in the tire are 65 psia and 75 F, respectively.  At this condition, the air intake 
needle is depressed for 3 s and then released.  Treating air as an ideal gas and assum-
ing small changes in the tire temperature and volume, Find the amount of air that left 
the tire.  Assume a discharge coefficient of 0.61 and a flow area of 0.01 in2.



Questions and Problems 429

18.  Air flows steadily from a high pressure container (A) to a low pressure con-
tainer (B) through an ideal convergent-divergent nozzle.  Find the flow area at the 
throat and at the exit of the nozzle.  Data:  mass flow rate: 2 kg, air pressure in con-
tainer A: 700 kPa, inlet temperature: 116 C, air pressure in container B: 70 kPa. 

19.  A tank contains carbon dioxide maintained at 50 C and 0.5 MPa.  The tank is 
equipped with a 4.5 m long pipe.  The pipe has in inside diameter of 1 cm.  Find the 
flow rate in standard cubic feet per minute corresponding to the specified pressure 
and temperature.  (

2COγ  = 1.28 and 
2COM  = 44). 

20.  In a repair shop compressed air is used to operate pneumatic tools.  The total 
length of the airline including all the loss coefficients in terms of equivalent length is 
about 152.5 m (500 ft).  The airline consists of smooth pipe of I.D. = 1.27 cm.  Air is 
compressed to 0.345 MPa (50 psia) and then cooled to 24 C (75 F) when entering 
the line at a velocity of 2.4 m/s (8 ft/s).  Find pressure when air is used to operate the 
pneumatic tool. 

To Pneumatic tool
Air

intake
Compressor

21.  In a repair shop compressed air is used to operate pneumatic tools.  The total 
length of the airline including all the loss coefficients in terms of equivalent air is 
about 500 ft.  The airline consists of smooth pipe of I.D. = 0.5 inch.  The com-
pressed air is cooled to 75 F when entering the line.  A pneumatic tool requires 35 
psia of compressed air to operate.  To what pressure should the air be pressurized by 
a compressor to provide the desired pressure for the tool?  What power is required to 
obtain such pressure if the compression process can be assumed isentropic?  Air ve-
locity at the inlet is 10 ft/s. 

22.  A fully inflated tire has a volume of 15 ft3.  The pressure and temperature of the 
air in the tire are 65 psia and 75 F, respectively.  At this condition, the air intake 
needle is depressed for 5 seconds.  Treating air as an ideal gas and assuming small 
changes in the tire temperature and volume, plot the mass flow rate of air versus 
time.  Assume a discharge coefficient of 0.61 and a flow area of 0.01 in2.

23.  Find the value of the adiabatic expansion factor, Y for CO2 flowing through an 
orifice with β = 0.5 and r = P2/P1 = 0.85.  [Ans.:  0.95] 

24.  A PWR plant is equipped with atmospheric dump valves (ADV) and turbine 
bypass valves (TBV).  The role of an ADV, installed on the steam line, is to dump 
steam to the atmosphere in case of a plant trip, while the role of the TBV is to diert 
steam to the condenser in the case of a turbine trip.  The specification sheet as pro-
vided by the manufacturer specifies flow rates of 292,500 lbm/h and 1,173,000 
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lbm/h at the saturation temperature of 556 F for the ADV and the TBV, respectively.  
Assuming a Cd of 0.61 for both valves find the ADV and the TBV effective flow ar-
eas.  [Ans.:  8.87 in2 and 35.58 in2].

25.  Air flows through a nozzle with differential pressure taps located at D: D/2 up-
stream and downstream, respectively.  For this nozzle, Dthroat = 0.75Dpipe.  What is 
the value of Y if r = 0.85? 

26.  A tank containing air is pressurized to 1.7 MPa and 30 C.  A valve is now 
opened to discharge air to the atmosphere through a flow area of 6.45 cm2.  Find the 
maximum flow rate.  [Ans.:  372 kg/s]. 

27.  Compare Critco, Napier, Grashof, and Rateau critical flow correlations for the 
range of 50 – 2500 psia. 

28.  The steam generator of a PWR is operating at 6.55 MPa (950 psia).  Due to a 
sudden plant trip, the atmospheric dump valve opens (ADV) to discharge steam.  
Find the steam flow rate through the ADV.  The valve flow area is 40.88 cm2 (0.044 
ft2).  The valve discharge coefficient is 0.61. 

29.  A pressure vessel is filled with pressurized saturated steam.  A small valve is 
opened to vent the vessel.  Find the vessel pressure after 30 s.  Data:  P1 = 1000 psia, 
V = 100 ft3, DValve = 1 inch, (Cd)Valve = 0.65. 

30.  A pipe carrying a high pressure air rupturs inside a compartment.  The com-
partment has a vent to discharge air to the atmosphere.  Assuming steady state con-
dition, derive an algorithm for the calculation of peak pressure in the compartment. 

CompartmentHigh Energy Line Break

Vent

[Hint:  Assuming an isothermal process, the compartment pressure keeps rising as 
long as the flow rate from the broken pipe exceeds the flow through the vent.  The 
compartment pressure peaks when these flow rates become equal.  Apply a dis-
charge coefficient to Equation IIIc.2.9 and set the result equal to Equation IIIc.2.10].   

31.  A high energy pipe, carrying nitrogen ruptures inside a compartment.  Use the 
given data to find the peak pressure reached in the compartment following the event.  
Treat nitrogen as air.  Data:  Nitrogen pressure is 1600 psia (11 MPa), room and ni-
trogen are at the same initial temperature of 75 F (24 C), diameter of the pipe is 10 
in (25.4 cm) and the vent flow area of the compartment is 120 ft2 (11 m2).



IV.  Heat Transfer 

The processes that a given control volume may go through were discussed in 
chapters on thermodynamics and fluid flow.  We showed that to find the condi-
tions at the end of a process, given specified conditions at the beginning of the 
process, we should use the conservation equations of mass, momentum, and en-
ergy in conjunction with the equation of state.  In most cases, the rate of heat 
transfer to or from a control volume is not known, thus it must be determined from 
a constitutive relation.  The topic of heat transfer helps us identify the applicable 
mode of heat transfer and provides us with the constitutive relation, which corre-
lates temperature to the rate of heat transfer. 

There are three modes of heat transfer; conduction, convection, and radiation.  
Conduction is more pronounced in solids and stems from molecular diffusion due 
to an existing temperature gradient.  The radiation mechanism is less understood.  
In certain conditions, radiation can be explained according to wave mechanics and 
in other situations according to quantum mechanics.  Radiation heat transfer ap-
plies to solids, liquids, and gases.  On the other hand, convection is solely due to 
the bulk motion of a fluid, transferring heat in the process.  As such, convection 
heat transfer is pertinent only to fluids.  Convection heat transfer is the dominant 
mode not only in single-phase but also in two-phase flow such as heat transfer as-
sociated with phase change in boiling and condensation.  As discussed in Chap-
ter I, the constitutive relation in heat conduction, heat convection, and thermal 
radiation is known as Fourier’s law, Newton’s law of cooling, and the Stefan-
Blotzmann law, respectively. 

IVa.  Conduction 

The goal of studying conduction heat transfer is to determine the temperature dis-
tribution within a substance and the rate of heat transfer to or from the substance.  
The entire topic of conduction heat transfer is based on the energy equation as de-
rived in Chapter III.  Fortunately, in conduction heat transfer, the energy equation 
can be significantly simplified due to the absence of such terms as the rate of work 
performed by pressure forces and the rate of work performed by viscous forces.  
In most cases, change in stagnation energy due to convection is also absent.  As 
shown later in this chapter, the elimination of these terms allows the use of ana-
lytical solutions in closed form for certain classes of problems. 

In this chapter, following the introduction of pertinent terms, we first derive the 
heat conduction equation in its general form.  We then discuss the concept of 
lumped parameter versus one-, two-, or three-dimensional analysis.  The primary 
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goal is to find analytical solutions to both steady state and transient heat conduc-
tion problems.  In this regard, we start with one-dimensional geometry in the Car-
tesian, cylindrical, and spherical coordinate systems.  We consider such cases as 
heat conduction with internal heat generation, which may in turn be a function of 
space (i.e., location) or temperature.  We then consider transient response of multi-
dimensional objects to heat conduction.  This is followed by the introduction of 
numerical methods. 

1.  Definition of Heat Conduction Terms 

Homogenous versus heterogeneous:  In conduction heat transfer*, a substance 
is considered homogenous if its thermal conductivity, as defined later in this section, 
does not vary from point to point within the substance.  Otherwise, the substance is 
heterogeneous.  Water and iron, are examples of homogenous substances and such 
porous materials as wood and cork are examples of heterogeneous material.

Isotropic versus anisotropic:  A substance is considered isotropic with respect 
to heat conduction when its thermal conductivity is the same in all directions.  
Otherwise, the substance is anisotropic.  Water and iron are examples of isotropic 
and wood and asbestos are examples of anisotropic materials.  In this chapter we 
deal only with homogenous and isotropic materials. 

Volumetric heat generation rate ( V/Qq =′′′ ) is the rate of energy produced 
in the unit volume of the substance by chemical, electrical, or nuclear reactions.  
In British units, this term can be expressed as Btu/hr-ft3 and in SI units it is gener-
ally expresses as W/m3.  Nuclear reactions are discussed in Chapter V. 

Heat flux ( AQq /=′′ ) is the rate of heat transfer per unit area.  In British units, 
it is generally expressed as Btu/hr-ft2 and in SI units as W/m2.

Linear heat generation rate ( LQq /=′ ) is the rate of heat transfer per unit 
length.  In British units, it can be expressed as Btu/ft and in SI units as W/m.  In 
nuclear engineering, this term is often expressed in the hybrid unit of kW/ft. 

Transport by diffusion is the mechanism responsible for thermal conduction.  
For example, in gases at atmospheric pressure and temperature, a molecule travels 
a short distance before colliding with another molecule.  This collision results in 
the transfer of energy in the gas in a tortuous path.  The mean free path of a mole-
cule (l) is much smaller than the characteristic length of the system (L).

Fourier’s law of heat conduction, published in Theorie Analytique de la 
Chaleur by Baron Jean Baptist Joseph Fourier (1768–1830) in 1822, provides the 
most essential relation between the rate of heat transfer and the temperature gradi-
ent in heat conduction.  In a substance, heat flows from a higher to a lower tem-

* Although conductive and convective heat transfer are more proper, we retain the more tra-
ditional coduction and convection heat transfer.
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perature region.  The higher the temperature difference ( T∆  = T2–T1) between 
these regions (i.e. the temperature gradient) the higher the rate of heat transfer.  
The rate of heat transfer is also proportional to the area normal to the direction of 
heat (A), but the rate of heat transfer decreases as the distance between the two re-
gion (∆x) increases.  We then conclude that: 

Q ∝ xTA ∆∆ /             IVa.1.1 

Equation IVa.1.1, in which l << L, is Fourier’s law for homogenous isotropic con-
tinua.  

Thermal conductivity as a transport property of a substance, is the proportion-
ality factor between the rate of heat flux and the temperature gradient with respect 
to distance; 
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Since the temperature gradient is negative, the minus sign is inserted to get posi-
tive value for the rate of heat transfer in the direction of decreasing temperature.  
Fourier’s law for heterogeneous isotropic continua can be generalized by using the 
gradient operator: 

Tkq ∇−=′′               IVa.1.3 

which is applicable in all three coordinate systems.  In Cartesian coordinates, 
Equation IVa.1.3 becomes: 
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Thermal conductivity for some materials, such as wood for example, is direction-
ally dependent and must be treated as a tensor.  The vectorial form of Fourier’s 
law for heterogeneous anisotropic continua is: 

Tq ∇⋅=′′ κ

whereκ  is thermal conductivity tensor.  This equation in Cartesian coordinate is 
written as: 
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Thermal conductivity in British units is expressed as Btu/h·ft·F and in SI units as 
W/m·C. The value of k for a continuum depends on several factors including 
thermodynamic state (phase, pressure, and temperature) as well as chemical com-
position and structure.  Values for some materials are shown in Figure IVa.1.1 and 
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in Appendix Tables A.IV.1 through A.IV.6.  In metals where properties are pri-
marily a function of temperature, thermal conductivity can be correlated to tem-
perature as: 

[ ])(1 000 TTkk −+= β              IVa.1.4 

where k0 is thermal conductivity at a given reference temperature T0.

0 200 400 600 800
0.0

Temperature (F)

k
(B

tu
/h

 f
t F

)

100

200

Copper

Aluminum

Carbon Steel

18-8 Stainless Steel

METAL

0 100 200 300 400 500
0.0

Temperature (F)

k
(B

tu
/h

 f
t F

)

0.1

0.2

0.3

0.4
Saturated Water

Glycerin

Benzene
Light Oil

Freon 12

LIQUID

0 200 400 600 800 1000
0.0

Temperature (F)

k
(B

tu
/h

 f
t F

)

0.2

0.1

Hydrogen

Helium

Oxygen
Air

Carbon Dioxide

GAS

Figure IVa.1.1.  Thermal conductivity of some metals, liquids, and gases*

Due to its dependence on space and temperature, thermal conductivity can 
complicate heat conduction analysis.  Fortunately, in most cases thermal conduc-
tivity over the temperature range of interest can be treated as a constant, which 
greatly simplifies analysis.  Even in cases, such as calculation of heat transfer in 
nuclear fuels, where thermal conductivity may not be treated as a constant, an av-
erage value for k may be determined over the temperature range of interest as: 
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Using a constant value, a linear function, or an average value over the temperature 
range of interest for k are all simplifying techniques in seeking analytical solutions 
for heat conduction problems.  In numerical solutions, there is no such limitation 
for the specification of thermal conductivity. 

Thermal capacitance, a thermodynamic property of a substance is defined as 
the product of density and specific heat (ρc).  Thermal capacitance is an indication 
of energy storage of a substance.  As shown in Equation IVa.1.1, in conduction 
heat transfer, density and specific heat always appear as an entity and only in tran-

* Thermal conductivity of gases shown in this figure is for the viscous state.  At the molecu-
lar state where gas pressure becomes exceedingly small (partial vacuum), k also becomes a 
function of pressure.  Roth gives the threshold pressure for the molecular state as P = 
[C1L(1 + C2T)] where L is the mean free path and constants C1 and C2 for air are 118.76 
m/N and 0.00885 K–1, respectively.  In this relation, P is in bar and T in degrees Kelvin. 
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sient conduction.  Thermal capacitance has units of Btu/ft3·F in British units and 
J/m3·C in SI units.   

Thermal diffusivity is defined as the ratio of thermal conductivity to thermal 
capacitance α = k/ρc.  Although, this property is obtained by dividing a transport 
property by a thermodynamic property, thermal diffusivity itself is the key trans-
port property for transient conduction.  A small value for α  indicates that the 
substance has a higher potential to store energy than to transfer energy.  A large 
value for α  indicates that the substance is more effective in transferring than in 
storing energy.  In British units, thermal diffusivity is expressed as ft2/s and in SI 
units as m2/s.

Convection heat transfer ( cq ′′ ), is a mechanism by which heat is transferred 
due to the bulk motion of a fluid.  Of specific interest is the heat transfer between 
a fluid in motion at one temperature and a solid at a different temperature.  If the 
fluid bulk motion is solely due to the existing temperature gradient between the 
fluid and the solid, the convection is known as natural or free convection as op-
posed to forced convection.  Mixed convection is a mode of heat transfer in which 
the rate of heat transfer from free convection is comparable to that of forced con-
vection.  Convection heat transfer is discussed in Chapter IVb. 

Heat transfer coefficient.  Similar to conduction, the rate of heat flux in con-
vection heat transfer is proportional to the temperature gradient, Tq ∆∝′′ .  The 
proportionality constant is known as the heat transfer coefficient, Tqh ∆′′= / .  In 
British units, h is expressed as Btu/h·ft2·F and in SI units as W/m2·K.  The rela-
tionship expressed as Thq ∆=′′  is known as Newton’s law of cooling.  Orders of 
magnitude of h for various heat transfer regimes are shown in Table IVa.1.1. 

Table IVa.1.1.  Approximate range of convection heat transfer coefficient 

Regime h (Btu/ft2·h·F) h (W/m2·K) 
Free convection (air):    1 – 5       5 – 25  
Free convection (Water)  10 – 250     50 – 1200 
Forced convection (air):    5 – 50     25 – 250 
Forced convection (water)  10 – 5000      50 – 20,000 
Condensation of steam on walls 500 – 5,000 2,000 – 20,000 
Condensation of steam on pipes 500 – 10,000 2,000 – 50,000 
Pool boiling of water 500 – 10,000 2,000 – 50,000 
Flow boiling of water 500 – 20,000 2,000 – 100,000 

Thermal resistance, (Rth) depends on thermal conductivity of a substance, 
however, it is not a property of the substance, as its value depends on the geome-
try in a specific problem.  According to Fourier’s law, )/( xTkAQ ∆∆= .  Using an 
electrical engineering analogy, the temperature gradient resembles applied voltage 
and the rate of heat transfer resembles electric current.  Thus, Rth = ∆x/(kA) can be 
viewed as thermal resistance.  Obviously, substances with higher thermal conduc-
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tivity and larger surface area pose smaller resistance to the flow of heat.  Con-
versely, the larger the distance between two regions of higher and lower tempera-
tures, the lower the rate of heat transfer.  Thermal resistance in convection heat 
transfer can also be obtained as Rth = 1/(hA) where h is the heat transfer coeffi-
cient.

Contact resistance occurs in thermal conduction between two attached solids.  
In such cases, there is always a gap between the two solids due to surface rough-
ness.  The only exception is when surfaces in contact are mirror finished.  In most 
applications, the gap between the two surfaces of solids in contact is filled with 
stagnant air, which is a poor conductor of heat.  As a result, there is a thermal re-
sistance in addition to the heat conduction resistance for surfaces in contact.  Ex-
pectedly, the contact resistance depends on both the pressure applied to the com-
posite solids and the fluid filling the gap. As a rough estimate, the contact 
resistance may be taken into account by increasing the thickness of the solid with 
lower thermal conductivity by about 0.2 in (5 mm). 

Radiation heat transfer ( rq ′′ ) refers to the exchange of thermal radiation be-
tween surfaces.  Thermal radiation is the energy emitted due to the internal energy 
of the surface, manifested as temperature.  Unlike the conduction and convection 
modes, radiation does not require a medium as the emitted energy is transported 
by photons capable of traveling through perfect vacuum.  The mean free path in 
radiation heat transfer is very long compared with the diffusion mechanism since 
photons travel in straight lines without colliding.  The Stefan-Boltzmann law gives 
the maximum rate of heat transfer radiated from a surface as 4Tqr σ=′′  where T
is the absolute temperature of the surface and the Stefan-Boltzmann constant is 
given as σ = 0.1714E-8 Btu/h·ft2·R4 = 5.67E-8 W/m2·K4.  A surface exhibiting the 
maximum rate of heat transfer is known as a black body.  Real surfaces are those 
that emit less energy by a factor of ε, known as emissivity.  The net radiation heat 
flux between two surfaces, located in a radiationally non-participating medium, is 
found from 4 4

1 2( ).rq T Tεσ= −′′   In this equation, ε is the surface emissivity and 
T2 is the temperature of surface 2, which encompasses surface 1.  It is shown in 
Chapter IVd that the net heat flux should be reduced by a view factor if only some 
of the radiation leaving surface 1 reaches surface 2.  While radiation heat transfer 
is always present, at low temperatures it may become insignificant when com-
pared with the rate of heat transfer by forced convection mechanism.  An example 
of neutron and gamma radiations, which must be treated differently than thermal 
radiation, is given in Section 5.5 of this chapter.  

Steady state (S-S) conduction refers to a condition where temperature distribu-
tion in a substance does not change with time.  As such, any heat added to the sub-
stance or internally produced in the substance is transferred away from the sub-
stance.  Selection of insulation to minimize heat loss from a piping system 
carrying superheated steam is based on a steady state analysis.  Similarly, design 
of fins or extended surfaces to maximize the rate of heat dissipation from elec-
tronic devices or air-cooled engines involves steady state application of the con-
duction heat transfer.  Steady state operation of a nuclear core implies that the rate 
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of heat production by fission in the fuel rods is exactly equal to the rate of heat 
removal by the coolant.  Mathematically speaking, the solution to steady state 
problems is obtained if the algebraic summation of all energy addition, generation, 
and removal from a control volume is set equal to zero.  This reflects the fact that 
while temperature changes from point to point inside the object, the distribution of 
temperature remains the same and is independent of time. 

Unsteady, time-dependent, or transient conduction heat transfer deals with the 
temperature response of an object to changes in the rate of internal heat generation 
(if any) or changes in the boundary conditions.  Problems dealing with cooling 
down or heating up of a substance are transient in nature.  Mathematically speak-
ing, changes in the rate of internal heat generation (if any) or changes in the 
boundary conditions are forcing functions for temperature distribution. 

Heat transfer area.  Distinction must be made between the surface and the 
cross sectional areas.  For the solid cylinder shown in Figure IVa.1.2, area at x = 0
is 2

orA π=  = πD2/4 while area at y = ro is S = πDL.

S

A

x
ro

L

y

A: Cross sectional area

S: Surface area
D

Figure IVa.1.2.  Identification of cross sectional area and surface area 

Fourier number (Fo = 2/ xtα ) is a dimensionless number pertinent to tran-
sient analysis in conduction.   

2.  The Heat Conduction Equation 

We may directly derive the heat conduction equation by using the differential 
analysis for heat diffusion in an infinitesimal control volume.  The analysis is per-
formed in the Cartesian coordinate system as shown in Figure IVa.2.1.  The deri-
vation is based on the first law of thermodynamic We simplify Equation IIa.6.3 by 
noting that for the infinitesimal control volume === 0Wmm ei  so that: 

+=+
energyinternalof

changeofRate

radiation&conduction

byremovalheatofRate

generationheat

internalofRate

radiation&conduction

byaddition heatofRate  

 

The total rate of energy entering the C.V. from all sides by conduction is: 
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Figure IVa.2.1.  Diffusion of heat in an elemental control volume in Cartesian coordinates 

dxdydzqqq zyx )( """ ++

The total rate of energy leaving the C.V. from all sides by conduction is: 

dydzdxxqqdydzdxxqqdydzdxxqq xxxxxx ])/([])/([])/([ """""" ∂∂++∂∂++∂∂+

If there is any internal heat generation (due to nuclear reaction, electrical resis-
tance, or exothermic chemical reaction, for example), then the total rate of energy 
produced in the C.V. is: 

dxdydzq ′′′

Using our sign conventions of Chapters II and III, we find the rate of change of to-
tal energy of the C.V. as: 

tuqzqyqxq zyx ∂∂=′′′+∂∂+∂∂+∂∂ /)()]/()/(/[ """ ρ

Taking advantage of Fourier’s law, the result in the absence of noticeable thermal 
radiation can be cast in the general form of: 

[ ]
t

trT
TrcTrtrqtrTTrk

∂
∂=′′′+∇⋅∇ ),(

),(),(),(),(),( ρ         IVa.2.1 

The definition of each term in Equation IVa.2.1 is as follows: 

[ ]),(),( trTTrk ∇⋅∇ :   rate of heat transfer by conduction mechanism 

),( trq ′′′ :    rate of internal heat generation per unit volume 

t

trT
TrcTr

∂
∂ ),(

),(),(ρ :   rate of change of internal energy of the control volume 

It is emphasized in Equation IVa.2.1 that in general the material thermal properties 
are functions of space and temperature.  This is especially true for thermal conduc-
tivity as discussed earlier.  In special cases where thermal properties can be con-
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sidered constant over the temperature range of interest, the above equation can be 
simplified to obtain the general heat conduction equation:

t

T

k

q
T

∂
∂=

′′′
+∇

α
12             IVa.2.2 

In the absence of any internal heat generation, the equation takes the form of the 
Fourier equation: 

t

T
T

∂
∂=∇

α
12             IVa.2.3 

In steady state with internal heat generation, the equation becomes the Poisson
equation: 

02 =
′′′

+∇
k

q
T                IVa.2.4 

In one-dimension, Equation IVa.2.4 in the Cartesian coordinate simplifies to: 

0
2

2
=

′′′
+

k

q

dx

Td
           IVa.2.4-1 

If the internal heat generation is not uniform, rather is a linear function of 
temperature, the Poisson equation becomes the Helmholtz equation: 

022 =+∇ TCT              IVa.2.5 

where C is a constant.  The Laplacian term ( 2∇ ) can be expanded depending on 
the application of the Poisson equation in the Cartesian, cylindrical, or spherical 
coordinate systems.  Under steady state conditions and with 0=′′′q , the Poisson 

equation reduces to: 

02 =∇ T             IVa.2.6 

And in the one-dimensional Cartesian coordinate, Equation IVa.2.6 can be simply 
written as d2T/dx2 = 0.  The following example deals with conduction equation in 
the cylindrical coordinates. 

Example IVa.2.1.  Write the general heat conduction equation in the cylindrical 
coordinate system.  (k = constant) 

Solution:  Substituting for the Laplacian operator from Equation VIIc.1.10, we 
find; 

2 2

2 2 2

1 1 1
( )

T T T q T
r

r r r k tr z αθ
′′′∂ ∂ ∂ ∂ ∂

+ + + =
∂ ∂ ∂∂ ∂

           IVa.2.7 
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For long cylinders having symmetry in the θ-direction, temperature becomes only 
a function of r.  Hence, Equation IVa.2.7 reduces to the one-dimensional heat 
conduction equation in polar coordinate: 

1 1
( )

T q T
r

r r r k tα
′′′∂ ∂ ∂

+ =
∂ ∂ ∂

                                       IVa.2.8 

Example IVa.2.2.  Write the general heat conduction equation in the spherical 
coordinate system.  (k = constant) 

Solution:  Substituting for the Laplacian operator from Equation VIIc.1.11, we 
find; 
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        IVa.2.9 

For symmetrical conditions along θ and φ, temperature becomes only a function of 
distance r.  Hence, Equation IVa.2.9 reduces to one-dimensional heat conduction 
in the spherical coordinate system: 
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          IVa.2.10 

2.1.  Initial and Boundary Conditions 

Once the differential equation for heat conduction is obtained, we need to have the 
boundary and the initial conditions to obtain the solution for a specific problem.  

Boundary conditions (BC) are required whether we seek analytical or numeri-
cal solutions to steady state or transient problems.  As Equation IVa.2.1 shows, the 
heat conduction equation is a second order differential equation in space and a 
first order differential equation in time.  Hence, it requires two boundary condi-
tions and one initial condition.  Basically, there are four types of boundary condi-
tions* that may be prescribed; temperature at the boundary, constant heat flux, 
thermal radiation, and a convection boundary.  An insulated boundary is a special 
case of the constant heat flux boundary condition where 0=′′q .  Let’s now dis-

cuss each of these four types. 

Temperature BC:  The prescribed surface temperature is referred to as the 
Dirichlet boundary condition.  If the specified boundary temperature is Ts, then 
T( r )b = Ts where subscribe b stands for boundary.  The specified temperature at 
the boundary may not necessarily be a constant.  Rather the prescribed tempera-
ture in general may vary as a function of time. 

* Other more complicated boundary conditions include such cases as phase change and 
thermal resistance. 
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Heat flux BC is also known as the Neumann boundary condition.  The pre-
scribed heat flux may be into or away from the boundary.  We assign a positive 
sign to the heat flux if it is towards the boundary and a negative sign if it leaves 
the boundary.  Hence, for a heat flux BC we write 0=′′±′′± bn qq , where nq ′′  is the 
heat transfer by conduction in the solid at the boundary and bq ′′  is the prescribed 
heat flux at the boundary.  Alternatively, we can write [ ] 0)/( =′′±∂∂−± bb qnTk ,
where n is the direction normal to the boundary.  Note that if the heat flux at the 
boundary is prescribed as zero ( 0=′′bq ), it is implies that the boundary is insu-
lated.  A zero heat flux is also an indication of temperature symmetry in a sub-
stance. 

nbq ′′
nq ′′

0=′′−′′ bn qq

n

bq ′′
nq ′′

0=′′+′′− bn qq

Radiation BC may be due to thermal radiation of the solid at the boundary or a 
prescribed radiation heat flux at the boundary.  The effect of incoming thermal ra-
diation is to raise the boundary temperature.  This is different than a bombardment 
of solids with high-energy radiation, such as gamma heating, which results in in-
ternal heat generation in the solid, as discussed in Section 5.5.   

Convection BC:  Specification of a heat transfer coefficient at the boundary 
implies the exchange of heat by the conduction and convection mechanisms so 
that ±[–k(∂T/∂n)b] ± h(Tb – Tf) = 0 where Tf is the fluid temperature at the bound-
ary.  A convection boundary condition is usually shown by h, Tf.  Figure IVa.2.2
shows three examples for convection boundary conditions.  

n

)( fbc TThq −=′′

nq ′′

0=′′−′′ cn qq

n"
nq

"
rq

"
rq

"
cq

crn qqq ′′−′′+′′

n

0=′′+′′+′′− crn qqq

rq ′′
rq ′′

cq ′′
nq ′′

 (a)                                                (b)                                             (c) 

Figure IVa.2.2.  Examples of convection and radiation boundary conditions 

In case (a), heat brought to the boundary by conduction is carried away from 
the boundary by convection.  In case (b), heat brought to the boundary by conduc-
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tion and heat added to the boundary by radiation are carried away from the bound-
ary by convection.  In case (c), heat brought to the boundary by convection and 
heat added to the boundary by radiation are carried away from the boundary by 
conduction.  For case (b), for example, an energy balance gives: 

0)()/( =−−′′+∂∂− fbrb TThqnTk

As seen from this example, Kirchhoff’s law also applies for steady state condi-
tions, similar to the flow of electricity or flow of fluids in piping networks.   

It is important to take advantage of any existing symmetrical condition for the 
temperature profile.  This generally happens for substances having familiar ge-
ometry such as plate, parallelepiped, cylinder, or sphere as shown in Fig-
ure IVa.2.3.  For uniform internal heat generation and external heat removal, we 
note that in the case of a plate, dT/dx = 0 at x = 0 and in the case of a cylinder and 
sphere, dT/dr = 0 at r = 0.  This also implies that for a plate, for example, the mid-
plane is at an adiabatic condition. 

r

T

Cylinder

x

T

Plate

r

T

Sphere

0=′′q0=′′q 0=′′q

Figure IVa.2.3.  Symmetrical temperature profiles in plates, cylinders, and spheres 

Conduction BC is applied between two bodies.  Equal temperature and equal 
heat flux apply at the point of contact so that for bodies A and B in perfect contact, 
TA = TB and –kAdTA/dn = –kBdTB/dn.

Initial condition (IC) is required to find a solution for problems involving tran-
sient conduction because to find temperature at other points in time, temperature 
distribution in the substance must be known at time zero.  If the time zero distribu-
tion is given as )(o rT , the solution must satisfy o( , 0) ( )T r t T r= = .

2.2.  Determination of Heat Conduction in Various Dimensions 

While heat conduction in solids is generally three dimensional, we often encounter 
cases in practice that conduction may be considered predominantly two or even 
one dimensional.  The dimensionless number most helpful in this regard is the 
Biot number. 
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Biot number (Bi = Rcond/Rconv = hLc/k), after J. B. Biot, is the ratio of two ther-
mal resistances.  Considering a solid with a convection boundary condition at its 
surface, the numerator is thermal resistance to conduction within the solid and the 
denominator is thermal resistance to convection across the fluid boundary layer.  
Also h, k, and Lc are heat transfer coefficient, thermal conductivity of a solid, and 
a characteristic length, respectively. 

Lumped formulation of heat conduction is often used in evaluating the tem-
perature response of objects to changes in the environmental temperature.  This is 
the simplest type of analysis, providing useful information.  On the other hand, 
since the entire object is represented by only one temperature, no knowledge about 
temperature distribution in the object can be obtained.  Conditions for the applica-
bility of the lumped-thermal capacity formulation are discussed in Section 3. 

One-dimensional (1-D) heat conduction generally provides sufficient infor-
mation about temperature distribution, and is the most commonly used technique 
in engineering applications.  Due to the symmetry and large dimensions in two of 
the three directions in most cases, application of a 1-D analysis not only is a sim-
plifying but also a reasonable assumption.  Examples of such cases are shown in 
Figure IVa.2.4.  A plate also referred to as a slab, is a solid, which is limited only 
in the x-direction.  A long, slender cylinder is another example for which a 1-D 
conduction for obtaining temperature distribution is a reasonable assumption.  In 
these solids, it is reasonable to assume that T = f(x) and T = f(r), respectively.   

2L

x

y
z

xr

Figure IVa.2.4.  Solids suitable for 1D heat conduction, a plate (slab) and a long slender 
rod 

Regarding the latter example, let’s consider the thin, solid cylinder of Fig-
ure IVa.2.5(a).  If heat in this long solid cylinder is being generated uniformly 
while exposed to a convection boundary, the diffusion of heat is in the radial di-
rection and for a given r, temperature is the same at any axial location (any x).
Now let’s assume that the solid cylinder is of finite length and rather than heat is 
being generated in the cylinder, it is added at one end as shown in Fig-
ure IVa.2.5(b).  If this thin cylinder is fully insulated, the heat diffusion is basi-
cally in the axial direction.  In this cylinder, for a given x, temperature is practi-
cally the same across any cross section.   
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Figure IVa.2.5.  One-dimensional heat conduction; (a) T = f(r) and (b) T = f(x)

Example IVa.2.3. Find the rate of heat transfer if the cylinder in Figure IVa.2.5(b) 
is a stainless steel rod.   
k = 15 W/m·K (8.7 Btu/h·ft·F), L = 1 m (3.3 ft), Th = 200 C (392 F), Tc = 100 C 
(212 F), A = 5 cm2 (0.8 in2).

Solution:
                                          SI                                                         BU 

=−−×=∆=
1

100200
)4E5(15

L

T
kAQ 0.75 W = =−×

3.3
212392

)144/8.0(7.8 2.6 Btu/h 

Two- and three-dimensional heat conduction must be used when an object 
cannot be accurately analyzed with the one-dimensional heat conduction method.  
For example, temperature distribution in a short, fat cylinder and in a parallelepi-
ped, as shown in Figure IVa.2.6 requires a two- and a three-dimensional analysis, 
respectively.  In these solids, temperature distribution is given as T = f(x, r) and 
T = f(x, y, z), respectively.  In multi-dimensional problems, it is essential to choose 
a coordinate system that best fits the object geometry. 

x

r

x
y

z

Figure IVa.2.6.  Solids requiring multi-dimensional heat conduction, a short cylinder and a 
parallelepiped 

3.  Analytical Solution of Heat Conduction Equation 

Due to the importance of analytical solutions, this topic is discussed first, followed 
by the discussion of numerical solutions.  One of the important aspects of seeking 
analytical solutions is the fact that it enhances our intuition about the nature of the 
problem.  The understanding of how to formulate a problem, what to expect, and 
how to interpret the results becomes an asset when using numerical methods for 
problems that are not amenable to analytical solutions.  The term analytical solu-
tion refers to a solution found by mathematical modeling of the problem, which 
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provides an exact answer.  Despite our preference to seek analytical solutions in 
closed form, and the availability of many mathematical techniques for solving 
problems in conduction heat transfer, analytical solutions are not always possible.  
This is due to the involved complexities such as multi-dimensional conduction in 
complex geometries with temperature dependent properties.  In such cases, nu-
merical methods are employed.  The disadvantage of numerical methods is that 
every problem has to be modeled and solved separately.  Analytical solutions not 
only provide exact answers in most cases, but may also provide applicable solu-
tions to groups of similar problems.  Another advantage of analytical solutions is 
in verifying the correctness and accuracy of numerical solutions of problems for 
which analytical solutions can be found. 

Even if analytical solutions exist, for the sake of simplicity, there are occasions 
where we settle for solutions with some degree of approximation.  For example, 
we can find an infinite series solution for temperature distribution as a function of 
time in a slab.  If Fo > 0.2, we can show that the transient temperature distribution 
in the slab can be approximated by only the first term of the infinite series.  

In the foregoing discussions, both steady state and transient problems are dis-
cussed.  This allows us to learn about the inherent differences.  We begin the dis-
cussion with the lumped formulations and proceed to one, two, and three-
dimensional problems in various coordinates. 

4.  Lumped-Thermal Capacity Method for Transient Heat Conduction 

The lumped-thermal capacity method is a convenient means of solving transient 
conduction problems.  The term lumped implies that temperature distribution in 
the object is not a concern since the entire object is represented by only one tem-
perature.  This method of analysis is useful when we need to estimate the tempera-
ture response of an object suddenly exposed to a different temperature.  By tem-
perature response, we mean the change in temperature of the object as a function 
of time.  To derive the relation for temperature versus time, consider the object 
shown in Figure IVa.4.1.  This object is initially at a temperature of Ti when is 
suddenly exposed to a temperature of Tf.  In this derivation, we make two impor-
tant assumptions: a) the medium temperature Tf remains constant and is not af-
fected by the energy transfer with the object and b) heat transfer between the ob-
ject and the medium is due only to heat convection from the object to the medium.  
To find the governing equation, we may derive the equation directly from the con-
servation equation for energy, using the control volume as shown in Fig-
ure IVa.4.1.  If the body is hotter than the environment (Ti > Tf), then the rate of 
internal energy depletion of the object is due to the heat loss to the environment.   
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ρ, c, A,V

Ti T

tTi

TfTi

Tf

Ti Tf
> Ti Tf

<

Figure IVa.4.1.  Sudden exposure of an object to a  lower or higher temperature medium  
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Using Equation IIa.6.4 where =′′′=== 0qWhmhm eeii  and 

−= cQQ we obtain: 

dt

Tcd
Qc

)V(ρ=−

where ,, cρ V, and T are density, specific heat, volume and temperature of the ob-
ject, respectively.  If we substitute for the convection heat transfer, 

)( fc TThAQ −= , we obtain: 

[ ])(
V

1
fTThA

cdt

dT −−=
ρ

            IVa.4.1 

where h and A are the heat transfer coefficient at the boundary and the heat trans-
fer area of the object, respectively.  To find the solution to this first order linear 
differential equation, we may introduce a change in function as fTT −=θ .  Since 
Tf remains constant dT/dt = d(T – Tf)/dt = dθ/dt.  Substituting for T in terms of θ in 
Equation IVa.4.1 and integrating yield: 

=
−=

t

t
dt

c

hAd
0

)
V

(
0 ρθ

θθ

θ

where θ0 is obtained by applying the initial condition T(t = 0) = T0.  Thus, θ0 = T0

– Tf is a known value.  We find the object temperature as a function of time by 
carrying out the integral and substituting for θ and θ0 in terms of T , T0, and Tf:

τ/
0 )()( t

ff eTTTtT −−+=             IVa.4.2 

where the constant in this solution represents: 

hA

cVρτ =               IVa.4.3 

Note that τ , known as the time constant of the object, depends on both properties 
of the object (density, specific heat, and geometry) and heat transfer coefficient at 
the boundary.  The time constant indicates how quickly an object responds to a 
change in temperature.  The numerator has units of energy per temperature and 
1/hA represents thermal resistance.  We can also derive a similar equation when 
the object is colder than the surroundings (Ti < Tf), as shown in last graph of Fig-
ure IVa.4.1.  Whether the object is colder or warmer than the surroundings to 
which it is suddenly exposed, the object temperature reaches the temperature of 
the surroundings asymptotically. 
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The absolute value of the exponent in Equation IVa.4.2 increases with time re-
sulting in the exponential term to diminish and temperature of the object to even-
tually reach Tf.  The major assumption that allowed us to use this simple transient 
analysis is the uniform temperature distribution within the object.  This in turn im-
plies that the Biot number is much smaller than unity (i.e., the resistance to con-
duction is much smaller than the resistance to convection).  Generally, for the 
lumped capacitance analysis to be valid, we should have Bi = h(V/A)/k < 0.1.
The characteristic length appearing in the numerator of the Biot number for a slab 
is half of the slab thickness, for a long cylinder is half its radius, and for a sphere 
is one third of its radius. 

Shown in Figure IVa.4.2 are three geometrically identical slabs (k1 >> k2 >> k3)
initially at temperature Ti and suddenly exposed to a convection boundary condi-
tion of h and Tf.  Temperature gradients for these slabs are presented as functions 
of both space and time.  In the first slab, thermal conductivity is so high that tem-
perature anywhere within the slab can reasonably be considered the same.  In the 
second slab, thermal conductivity is smaller by a factor of 10.  We see that tem-
perature varies noticeably within the slab.  In the third slab, thermal conductivity 
is smaller by a factor of 100.  In this case, temperature varies markedly within the 
slab.  

Tf
Tf

L

h h

Ti Ti

k2-L

Tf

h

Bi >> 1

k3

Tf

h

Bi << 1

k1

~~Bi 1

Figure IVa.4.2.  Comparison of temperature profile in slabs with different Biot numbers 

To determine the temperature response of objects with large Biot numbers, we 
need to use the conduction equation in one or more dimension as discussed later in 
this chapter. 

Example IVa.4.1.  A piece of copper wire is initially at 150 C when suddenly 
immersed in an environment at 38 C.  Find the wire temperature after 1 minute, a) 
if the environment is water and b) if the environment is air.  Assume highly pol-
ished copper (ε = 0.02) so that heat transfer is primarily due to convection. 
Data:  For copper at 150 C; k = 374 W/m·K, c = 381 J/kg·K, and ρ = 8938 kg/m3.
Wire diameter is 1 mm, and the heat transfer coefficient for water and air is h = 50 
W/m2·K and h = 5 W/m2·K, respectively. 

Solution:  We first calculate the Biot number: 
Bi = h(V/A)/k = h[(πd2L/4)/(πdL)]/k = hd/4k = 50 × (1/1000)/(4 × 374) = 3.3E-5 
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Since Bi << 1 we can use the lumped capacitance method.  For immersion in wa-
ter: 

)V/(hAcw ρτ =  = 8938 × 381 × (πd2/4)L/[50 × (πd)L] = 17 s.   

T = 38 + 112 × exp(–1 × 60/17) = 41 C 

For exposure to air: 
τα = τw(hw/ha) = 170 s and T = 38 + 112 × exp(–60/170) = 117 C. 

5.  Analytical Solution of 1-D S-S Heat Conduction Equation, Slab 

Our goal in this section is to solve the conduction equation in one-dimension (1-
D) in Cartesian coordinates under steady state (S-S) condition with and without in-
ternal heat generation.  In the subsequent sections, we solve 1-D, S-S problems in 
cylindrical and spherical coordinates.  We then extend the solution method to 
multi-dimensional transient problems.   

By 1-D we mean that the geometry of the object and the specified boundary 
conditions are such that the rate of heat transfer is predominantly one-dimensional 
and is negligible in the other two dimensions.  

5.1.  1-D S-S Heat Conduction in Slabs ( 0=′′′q )

The goal is to find the steady state ( 0/ =∂∂ tT ) temperature distribution in a slab 
with constant thermal conductivity ( 0/ =∂∂ Tk ) and with no internal heat genera-
tion ( 0=′′′q ).  Recall that we defined a slab as a plate with a finite dimension 
along the x-axis and infinite dimensions along the y- and z-axis.  Applying the 
Cartesian coordinate system to the slab and for the one-dimensional heat transfer, 
the Laplacian simplifies to: 

2

2
2 )(

dx

Td

dx

dT

dx

d
T ==∇            IVa.5.1 

Substituting in Equation IVa.2.4 and simplifying terms that drop due to steady 
state and no internal heat generation, we get d2T/dx2 = 0.  The solution to this 
problem is readily found to be T = c1x + c2 where coefficient c1 and c2 can be 
found by applying the boundary conditions.  If surface temperatures are specified 
(Figure IVa.5.2(a)), the equation for temperature distribution inside the slab is de-
termined as:   

)(
2

1

2
)( 2121 ssss TT

L

x
TTT ++−−=            IVa.5.2 

In this case, we can find the rate of heat transfer from the slab as ( / )q kA T x= ∆ ∆

1 2( ) / 2s skA T T L= − .
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Figure IVa.5.2. (a) Slab with specified surface temperature and (b) Slab with a specified 
convection BC 

For the case that convection heat transfer is specified at the boundaries, Fig-
ure IVa.2.1(b), determination of the constants is more involved.  At x = –L, con-
vection heat enters the node while conduction heat leaves the node, hence a heat 
balance at the left boundary according to our sign convention, yields: 

0)( =
∂
∂−−−

−=
−

Lx
Laa x

T
kTTh

At the right boundary, heat by conduction enters the node while heat by convec-
tion leaves the node: 

0)( =−−
∂
∂−

=
bLb

Lx
TTh

x

T
k

Substituting for temperature and its derivative, constants c1 and c2 are determined 
as c1 = –hahb(Ta – Tb)/c3 and c2 = Ta – [hb(k + Lha)(Ta – Tb)/c3] where c3 = ha(k + 
Lhb) + hb(k + Lha).  Regardless of the type of the boundary condition, the tempera-
ture profile in a one-dimensional slab with constant k at steady state and no inter-
nal heat generation is always a straight line.  The rate of heat transfer for Fig-
ure IVa.5.2(b) where a convection boundary is specified is still given by 

)/()( 21 xTTkAQ ss ∆−=  where, in this case Lx 2=∆ .

Example IVa.5.1.  Heat loss through an insulation (k = 0.05 W/m·C) is 125 W/m2.
The temperature gradient across the insulation is 100 C.  Find the thickness of the 
insulation. 

Solution:  From Fourier’s law of conduction we have:  

xTTkAQ ss ∆−== /)(125/ 21 .  Substituting for k and ∆T, the thickness is found 

from 125 = 0.05 × 100/∆x.  Therefore, ∆x = 0.04 m = 4 cm. 

In the next example, we examine temperature distribution in a plate, given the 
plate surface temperatures. 
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Example IVa.5.2.  Surface temperature at the mid-plane of a carbon steel plate (k
= 30 Btu/h·ft·F) is maintained at 250 F.  The plate thickness is 1 in and surface 
heat flux is 3250 Btu/h·ft2.  Find the temperature of each face of this plate. 

Solution:  The temperature profile is linear, T = c1x + c2.  If the plate thickness is 
2L and x is on the left surface, at x = L, T = Tmp and at x = 0, 

0)/( 0 =+′′ =xdxdTkq .  Solving for c1 and c2 to get ))(/( xLkqTT mp −′′+= ,

where mp stands for mid-plane.  We then find T1(x = 0) )/( kLqTmp ′′+=  and 

T2(x = 2L) )/( kLqTmp ′′−= .

An alternative solution is to use T1 + T2 = 2Tmp and xTkq ∆∆=′′ / , where x∆  = 

2L.  Substituting values, we find T1 + T2 = 500 and T1 – T2 = 3250 × (1/12)/30.  
Solving this set, we obtain T1 = 254.5 F and T2 = 245.5 F. 

Thermal conduction in slabs subject to the convection boundary condition is 
solved in the next example. 

Example IVa.5.3.  A 1 in thick plate (k = 30 Btu/h·ft·F) separates two rooms.  The 
ambient temperature and associated heat transfer coefficient in one room are 150 F 
and 25 Btu/h·ft2·F, respectively.  The other room is at 50 F with a heat transfer co-
efficient of 15 Btu/h·ft·F.  Find surface temperatures of the plate, temperature at 
the mid-plane, and heat flux through the plate between the rooms. 

Solution:  Temperature distribution in the plate is given as T = c1x + c2

)()(3 abba LhkhLhkhc +++=  = 25(30 + 15 × 0.5/12) + 15(30 + 25 × 0.5/12) = 

1231.25

31 /)( cTThhc baba −−=  = –25 × 15(150 – 50)/1231.25 = –30.46 F/ft 

[ ]32 /))(( cTTLhkhTc baaba −+−=  = 150 – [15(30 + 25 × 0.5/12)(150 – 

50)/1231.25] = 112.18 F 
T = –30.46x + 112.18 

Having the temperature profile, we find the surface temperatures; at x = –0.5/12 = 
–0.042 ft, T–L = 113.45 F and at x = 0.5/12 = 0.042 ft T+L = 110.91 F.  At the mid-
plane Tx = 0 = 112.18 F. 
Heat flux is found from xTkq ∆∆=′′ /  where, T1 – T2 = 2.54 F, thus  

=′′q  30 × 2.54/(1/12) = 914.4 Btu/h·ft2.

The rate of heat transfer for Figure IVa.5.2(b) where the convection boundary 
condition is specified can be found from an electrical engineering analogy 

−
=

R

TT
Q ba              IVa.5.3 
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where

++= bslaba RRRR

In this relation, the thermal resistance of the slab is Rslab = ∆x/kA.  For the convec-
tion boundary, thermal resistances for the left and the right boundaries are Ra = 
1/haA and Rb = 1/hbA, respectively.  Substituting, we can find the rate of heat 
transfer as: 

AhkA

x

Ah

TT
Q

ba

ba
11 +∆+

−
=             IVa.5.4 

The concept of thermal resistance becomes even more helpful in problems involv-
ing a multi-layer wall.  

For example, consider a composite wall in series (Figure IVa.5.3).  In general, 
layers may consist of stacked conductors, as shown in Figure IVa.5.4.  In such 
cases, we should use parallel thermal resistance as the flow of heat is divided be-
tween the stacks so that the stack with least thermal resistance conducts more heat. 
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Figure IVa.5.3.  Composite wall, all layers arranged in series 
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Figure IVa.5.4.  A composite wall, which consists of stacked conductors arranged in series 
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Example IVa.5.4.  The wall of a containment building consists of 6 mm steel 
liner and 50 cm concrete.  The steel liner facing the interior is coated with 2 mm 
of primer and 3 mm of paint.  The outside of the concrete is coated with 3 mm 
paint.  Find the heat loss through the wall, treated as a slab.  Ignore contact resis-
tance.
Data: Ta = 127 C, Tb = 27 C, kconcrete = 3.5 W/m·C, ksteel = 60 W/m·C, kpaint = 0.5 
W/m·C, kprimer = 1.7 W/m·C, ha = 120 W/m2·C, and hb = 25 W/m2·C. 

Solution:  We first calculate thermal resistances per unit surface area (1 m2) of the 
wall from inside to outside: 

Ra = 1/(haA) = 1/(120 × 1) = 8.3E-3 C/W 
Rpaint = ∆xpaint/(kpaintA) = 3E-3/(0.5 × 1) = 6E-3 C/W 
Rprimer = ∆xprimer/(kprimerA) = 2E-3/(1.7 × 1) = 1.2E-3 C/W 
Rsteel = ∆xSteel/(ksteelA) = 6E-3/(60 × 1) = 1E-4 C/W 
Rconcrete = ∆xConcrete/(kConcreteA) = 0.50/(3.5 × 1) = 0.14 C/W, 
Rpaint = ∆xpaint/(kpaintA) = 3E-3/(0.5 × 1) = 6E-3 C/W 
Rb = 1/(hbA) = 1/(25 × 1) = 0.04 C/W 

Thus, ΣR = 8.3E-3 + 6E-3 + 1.2E-3 + 1E-4 + 0.14 + 6E-3 + 0.04 = 0.2016 C/W 
Therefore, we find (127 27) / 0.2016 496q = − =′′  W/m2.  The rate of heat loss 

without any paint and primer increases by 7%. 

5.2.  1-D S-S Heat Conduction in Slabs ( 0≠′′′q )

A slab with internal heat generation is shown in Figure IVa.5.5.  The goal is to 
find the steady state ( 0/ =∂∂ tT ) temperature distribution in the slab, assuming 
constant thermal conductivity ( 0/ =∂∂ Tk ).  Equation IVa.2.4 simplifies to: 

0
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q

x

xT
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            IVa.5.5 

For a uniform volumetric heat generation rate, Equation IVa.5.5 can be integrated to obtain: 

2L

x

h , Tfh , Tf

T(x)

q'''.

Figure IVa.5.5.  Slab with internal heat generation 
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)( cxcx
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xT ++

′′′
−=             IVa.5.6 

where constants c1 and c2 can be determined from a set of boundary conditions.  
Since a convection boundary condition of h, Tf is specified for both sides of the 
slab, we can find the constants by taking advantage of the fact that the center plane 
is adiabatic due to symmetry –kdT/dx(0) = 0: 

( ) 02
2 0

1 =+
′′′

−−
=x

cx
k

q
k

resulting c1 = 0.  This also implies that the center plane has the maximum tempera-
ture.  We now use the second boundary condition, which specifies that the heat 
transfer by conduction at x = L is removed by convection: 

0)( =−−− =
=

fLx
Lx

TTh
dx

dT
k

Substituting for T(L), from Equation IVa.5.6, we find coefficient c2 as  

fTkLqhLqc +′′′+′′′= )2/()/( 2
2 .  Thus, the profile is: 
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)( 22            IVa.5.7 

Having the temperature profile for the slab with internal heat generation, we can 
find temperature of the center plane (i.e., at x = 0): 

)/2/()0( 2
max hLkLqTTxT f +′′′+===

If we substitute for Tf in Equation IVa.5.7 we find the temperature profile in terms 
of Tmax:

2
max 2

)( x
k

q
TxT

′′′
−=              IVa.5.8 

The surface temperature can be found by setting x = L:

2
max 2

)( L
k

q
TLT

′′′
−=              IVa.5.9 

The rate of heat transfer from each surface is equal to the rate of volumetric heat 
generation rate in half of the slab volume (i.e., qQ ′′′= × AL) where A is the heat 
transfer area of the slab.  If we substitute for q ′′′  from the Equation IVa.5.9 we get 

)/(2 LTkQ ∆= .  This is twice the rate of heat transfer from an identical slab but 
with no internal heat generation. 
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5.3.  1-D S-S Heat Conduction in Composite Slabs ( 0≠′′′q )

If the slab with internal heat generation is made of fissile materials (referred to as 
fuel), sheath or cladding is used to contain the by-products of nuclear fission.  
Suppose the thickness of the slab representing the fuel material is 2L and the 
thickness of slab representing each cladding is δ.  The goal is to find the steady 
state (∂T/∂t = 0) temperature distribution in the slab assuming constant thermal 
conductivity (∂k/∂T = 0) for both fuel and cladding but with internal heat genera-
tion ( 0≠′′′q ) produced uniformly only in the inner slab (fuel) as shown in Fig-

ure IVa.5.6.   
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h, Tf

=
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2L δδ
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h, Tf
h, Tf

Cladding

q ′′′

Figure IVa.5.6.  Slab with internal heat generation and cladding  

This is a two-region problem.  For a specified convection boundary condition, 
we can determine the temperature profile and the rate of heat transfer by solving 
the heat conduction equation in the fuel region (shown by subscript F) and in the 
clad region (shown by subscript C).  Due to symmetry, we only consider half of 
the composite slab.  For the fuel region Equation IVa.5.6 is applicable: 

21
2

2
)( cxcx

k

q
xT

F
F ++

′′′
−= , Lx ≤≤0

For the clad region, where δ+≤≤ LxL  with δ being the clad thickness, Equa-
tion IVa.5.1 is applicable so that d2TC/dx2 = 0 resulting in 43 )()( cLxcxTC +−=
where we assumed that no heat is generated in the cladding.  Since there are four 
unknowns (c1, c2, c3, and c4) we need four boundary conditions.  One boundary 
condition takes advantage of symmetry and sets heat transfer at the adiabatic yz-
plane to zero.  The second boundary condition takes into account heat transfer by 
convection at x = L + d.  The third and the fourth boundary conditions deal with 
equal temperature and equal heat flux at the boundary between the two regions of 
fuel and cladding, assuming no contact resistance. 

From the first boundary condition we find that c1 = 0. Using the second 
boundary condition we write: 
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From the third boundary condition (i.e., equal temperatures at the common sur-
face) we get: 
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Finally from the fourth boundary condition (i.e., equal heat flux at the common 
surface) we obtain: 
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Solving for c1 through c4, the temperature profile for the fuel region, in dimen-
sionless terms, becomes: 
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and for the cladding region: 
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Note that we neglected contact resistance and assumed that thermal conductivity 
of the fuel region is independent of temperature.  For nuclear fuels, such as ura-
nium, these are not accurate assumptions.   

5.4.  1-D S-S Heat Conduction in Slabs ( )(Tfq =′′′ )

So far we dealt with a uniform internal heat generation rate that remained constant 
regardless of the fuel temperature.  However, due to a phenomenon known as the 
Doppler effect, as fuel temperature increases, there is a mechanism known as the 
negative reactivity coefficient, which tends to reduce the rate of fission and 
thereby the rate of heat generation.  A simple way to account for the dependency 
of the internal heat generation rate on temperature is to assume a linear function so 
that Tccq 21 +=′′′  where c1 and c2 are known constants.  By substituting this rela-

tion in Equation IVa.2.4, we obtain the Poisson equation: 

0212 =++∇
Fk

Tcc
T            IVa.5.10 

We can transform Equation IVa.5.10 to a Helmholtz equation by introducing a 
linear transformation as: 
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)/( 21 ccTT +=′            IVa.5.11

Upon substitution of Equation IVa.5.11 in Equation IVa.5.10, we get: 

0'' 22 =+∇ T
k

c
T

F
           IVa.5.12 

For the slab in Figure IVa.5.5, the equation becomes d2T’/dx2 + B2T ’ = 0 where B2

= c2/kF.  This is a second order linear differential equation.  Since B2 is positive, 
the answer is a trigonometric function (Chapter VIIa): 

)cos()sin()(' 21 BxABxAxT +=

where coefficients A1 and A2 can be found from specified boundary conditions.  
For example, for the conditions of Figure IVa.5.5, A1 must be zero due to symme-
try hence, T’(x) = A2 cos(Bx).  Finding A2 from the convection boundary, the tem-
perature profile for a slab fuel with a temperature-dependent heat generation rate 
becomes: 

)cos(
)sin()cos(
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BLBkBLh
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F

f
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=

Example IVa.5.5.  Find temperature at x = L/2 for a plate-type fuel.
Data: c1= –0.01 kW/m3, c2 = 125 kW/m3·C, kF = 2 W/m·C, Tf = 288 C,  
h = 8 kW/m2·C, 2L = 0.6 cm. 

Solution:  Using the data, we first find the argument BL:
B = (c2/kF)1/2 = (125/2)1/2 = 7.9 m-1.  Thus BL = 7.9 × 0.003 = 0.237 

)(' xT  = )9.7cos(296)9.7cos(
)237.0sin(002.09.7)237.0cos(8

2888
xx =

×−
×

T’L/2 ≅ 296cos(0.237)  294 C.  We find TL/2 = T’L/2 – (c1/c2)  294 C. 

5.5.  Bombardment of Slabs with Energetic Radiation ( )(xfq =′′′ )

We now discuss an interesting conduction problem where the volumetric heat 
generation rate is a function of location.  This occurs when materials are exposed 
to high-energy radiation.  Consider exposure of a cold iron plate to solar radiation.  
Temperature penetration in the plate is a function of the radiation intensity at the 
plate surface exposed to radiation.  Mathematically, this affects the solution via 
boundary condition at the exposed surface.  By contrast, if the same plate is ex-
posed to neutron or gamma radiation, the energetic beam penetrates deep into the 
plate, interacting with the iron atoms, and depositing energy in each interaction. 
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Figure IVa.5.7.  Bombardment of a slab by high-energy radiation 

The interaction of the high-energy radiation with the atoms of the medium at-
tenuates the radiation intensity.  Since the rate of interaction at any location in the 
medium is directly proportional to the number of particles in that location, it can 
be easily shown that the rate of interaction decreases exponentially.  To demon-
strate, let’s say that φ represents the number of particles of the high energy radia-
tion that have penetrated the medium to depth x per unit time and per unit surface 
area of the medium.  We call this quantity, flux.  If the particles are photons, φ
represents the flux of gamma radiation and if the particles are neutrons, φ is neu-
tron flux.  We now consider the elemental control volume located at x and ex-
tended to dx.  Particles that enter this control volume interact with the atoms of the 
material comprising the control volume.  Since in each interaction a particle is re-
moved, the number of particles leaving this control volume (at x + dx) has de-
creased by φlost.  A particle balance yields φx = φx+dx + φlost.  To find the rate of par-
ticles which have had interaction (i.e., dropped out φlost) we introduce the 
absorption coefficient, µ.  This coefficient represents the likelihood that a particle 
would have an interaction with an atom of the medium per unit distance of travel 
in the medium.  Hence, in traveling dx, there is a chance equal to φ(µdx) that a 
particle would have an interaction in the medium.  Substituting for φlost = φ(µdx)
and for φx+dx ≅ φx + (dφx/dx)dx in the particle balance, we find: 

φx = [φx + (dφx/dx)dx] + φx(µdx)          IVa.5.13 

Equation IVa.5.13 simplifies to dφ/dx = –µφ.  Upon integration from x = 0 where 
particle flux is φo to any x, the radiation flux in the medium is obtained as: 

φ(x) = φoe
–µx            IVa.5.14 

The absorption coefficient (µ) introduced above is the probability of interaction 
per unit distance of travel.  This is usually expressed in cm–1.  Values of µ for vari-
ous shielding materials are given in Table A.V.1(SI)*.

* The type of interaction of the incident radiation with the atoms of the medium depends on 
the nature and the energy of the incident radiation as well as the material of the medium.  
If the radiation consists of neutrons, then the type of interaction may be absorption or scat-
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If ∆E is the energy transferred to the atoms of the medium in each collision, 
then the rate of energy transfer is given as I = φ∆E where I has the units of energy 
per unit time and unit surface area.  Hence, the amount of heat generated in the 
medium per unit volume is Iq µ=′′′ , having the units of energy per unit time and 

unit volume.  Substituting for I in terms of flux from Equation IVa.5.14, for 
gamma bombardment we obtain: 

xeqxq µ−′′′=′′′ 0)(            IVa.5.15 

The governing equation for heat conduction can either be derived from an energy 
balance using the control volume of Figure IVa.5.7 or obtained from the simpli-
fied form of Equation IVa.2.4: 
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Equation IVa.5.16 has an analytical solution.  Integrating this equation twice, 
yields: 
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          IVa.5.17 

where constants c1 and c2 in Equation IVa.5.17 are found from a specified set of 
boundary conditions.  We shall consider two types of boundary conditions; speci-
fied surface temperature and specified heat convection. 

Case 1. Specified Surface Temperature:  If the surface temperatures are specified 
at T(x = 0) = T0 and T(x = L) = TL as boundary conditions, we can then find the so-
lution as: 
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Since the slab temperature is maintained at both sides, there is a maximum tem-
perature within the slab obtained by setting the derivative of temperature in Equa-
tion IVa.5.18 equal to zero dT(x)/dx = 0: 
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We then find the maximum temperature by substituting xmax from Equa-
tion IVa.5.19 into Equation IVa.5.18.  Since the flux decreases exponentially, 
about 90% of the total energy is usually absorbed in the 15% of the thickness of 

tering.  In this case, the probability is shown as Σ and is known as the macroscopic cross 
section.  If the gamma rays are striking the surface of the medium, the type of interaction 
may be pair production, Compton scattering, or photo electric.  For more information see 
El-Wakil and Lamarsh. 
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the medium, which is closer to the radiation source.  Especially for thick mediums, 
term e–µL becomes exceedingly small and can be ignored. 

Case 2. Specified Convection BC.  In problems involving radiation heating, the 
medium is generally cooled from both sides by convection heat transfer.  At x = 0, 
the convection boundary condition h1, Tf1 and at x = L, the convection boundary 
condition h2, Tf2 is specified.  In this case, coefficients c1 and c2 are found from: 

At x = 0, 0)()/( 11 =−−−− fTThdxkdT

At x = L, 0)(/ 22 =−−− fTThdxkdT

Solving for c1 and c2, while ignoring e–µL, we find the temperature profile in the 
medium as: 
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Similar to Case 1, the location of the maximum temperature is found from: 
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It is important to note that in both Cases 1 and 2, the total heat removed from the 
medium being bombarded with radiation must exactly match the heat generated in 
the medium by radiation (what if the heat removed is less than the heat gener-
ated?).  Mathematically, the following balance at steady state operation must exist: 

dxqTThTTh L
0 02211 )()( ′′′=−+−

Example IVa.5.6.  In nuclear plants, the spent fuel assemblies are placed in a 
spent fuel pool (SFP) filled with borated water.  The pool wall consists of a steel 
liner attached to thick concrete.  It is important to maintain the humidity content of 
the concrete.  Thus, we want to determine the maximum temperature in the con-
crete due to the pool wall being irradiated by gamma rays emitted from the spent 
fuel rods.  In the solution we must account for heat generation in both steel and 
concrete.  Use the given data and the following subscripts;  a: air, c: concrete, s:
steel liner, w: water.  Ignore contact resistance. 
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Spent Fuel Pool

Steel Liner
Concrete

Ta
ha

Tw
hw

Air
Water

Lδ

xs
xc

Tw (F):
Ta (F):
hw (Btu/h ft2 F):
ha (Btu/h ft2 F):
ks (Btu/h ft F):
kc (Btu/h ft  F):

130
100
50
1

sq ′′′ (Btu/h ft3 F):

cq )( 0′′′  (Btu/h ft3 F):

10
0.8
1500
400

δ (in):
L (ft):
µ

c
 (ft-1): 5

5
0.5

µ
s
 (ft-1): 14

Solution:  Since the steel liner is thin, a constant sq ′′′  is specified.  Steel tempera-

ture is given by: 

21
2)2/( cxcxkqT sssss ++′′′−=  and concrete temperature by  

432
0 cxce
k

q
T c

x

cc
c

c ++
′′′

−= −µ

µ
.  There are four unknown coefficients c1, c2, c3,

and c4 and four boundary conditions at xs = 0, at xs = δ, and at xc = L:

At xs = 0, we have: –[–ksdTs/dxs] – hw(Ts – Tw) = 0 
At xs = δ, we have: Ts = Tc

At xs = δ, we have: –[–kcdTc/dxc] – [–ksdTs/dxs} = 0 
At xc = L, we have: [–kcdTc/dxc] – ha(Tc – Ta) = 0 

Representing )2/( ss kq ′′′=α  and )/( 2
,0 ccc kq µβ ′′′= , the four equations are found 

as: 

ksc1 + hwc2 = hwTw

–αδ 2 + c1δ + c2 = – β + c4 
kc(c3 + µβ) + ks(–2αδ + c1) = 0 
(kc + Lha)c3 + hac4 = haTa

we find c1, c2, c3, and c4 from: 

−
−=

+

−

aa

cs

ww

aac

cs

ws

Th

kk

Th

c

c

c

c

hLhk

kk

hk

µβαδ
βαδδ

2
00

00

101

00
2

4

3

2

1

For the given set of data, we find c1 = –5.74, c2 = 126, c3 = –7.96, and c4 = 146.  
Hence, Ts and Tc become: 

12674.533.83 2 +−−= sss xxT  and 14696.720 5 +−−= −
c

x
c xeT c , respectively.  

The maximum temperature of Tc = 140 F occurs in the concrete at xc = 6 in. 
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6.  Analytical Solution of 1-D S-S Heat Conduction Equation, Cylinder 

Determination of the heat transfer rate and temperature distribution in cylinders is 
essential in many practical applications.  This includes heat transfer from hollow 
cylinders such as pipes and tubes as well as heat transfer from solid cylinders such 
as nuclear fuel rods.  In the discussion that follows, we have divided the topic of 
heat transfer in cylinders into two sections based on whether internal heat genera-
tion exists in the cylinder or not.  Each section is further divided into two subsec-
tions based on whether the cylinder is solid or hollow.  The major distinction is the 
type of boundary conditions applied to each case.  

6.1.  1-D S-S Heat Conduction in Hollow Cylinders ( 0=′′′q )

Shown in Figure IVa.6.1 is a pipe with inside radius of r1 and an outside radius of 
r2, carrying a fluid at the bulk temperature of Tfa.  The pipe is exposed to the con-
vection boundary of Tfb and hb.  If temperatures of both inside and outside fluids 
remain constant along the length of the pipe, the heat diffusion will be in the radial 
direction.  While similar solution applies whether Tfa > Tfb or Tfa < Tfb, in the deri-
vation below we have assumed Tfa > Tfb.

Tfb

r1 r2

T2T1Tfa

Tfb ,  hb

Tfa ,  ha

Rb
RsRaq q

L

Tfb ,  hb

Tfa ,  ha

Figure IVa.6.1.  Hollow cylinder without internal heat generation 

Our goal is to determine the steady state ( 0/ =∂∂ tT ) temperature distribution 
in this hollow cylinder, assuming constant thermal conductivity ( 0/ =∂∂ Tk ) and 
no internal heat generation ( 0=′′′q ).  Since the thermal conductivity remains con-

stant, the applicable equation in this case is Equation IVa.2.7.  Since we are only 
concerned with heat diffusion in the r-direction, we use the Laplacian in polar co-
ordinates as given by Equation IVa.2.8.  For steady state, the Poisson equation re-
duces to: 

0)(
12 ==∇

dr

dT
r

dr

d

r
T             IVa.6.1 

Integrating this equation, we find dT/dr = c1/r.  Hence, temperature in the cylinder, 
as a function of radius, is given as 21 ln)( crcrT += .  We find coefficient c1 and 

c2 from the boundary conditions for three cases. 
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Case 1. Temperature Boundary Condition.  In this case, the inside and outside 
temperatures are specified (i.e., T(r1) = T1 and T(r2) = T2).  Substituting these in 
the cylinder temperature profile yields: 

c1lnr1 + c2 = T1

c1lnr2 + c2 = T2

We find c1 and c2 from this set of equations.  By back substitution in the tempera-
ture profile, we get: 

)/ln(
)/ln(

)( 1
12

21
1 rr

rr

TT
TrT

−
−=

To find the rate of heat transfer, we use Fourier’s law for a region of the wall be-
tween r and r + dr:

dr

dT
rLk

dr

dT
kAQ )2( π−=−=

While temperature is a function of radius, the rate of heat transfer at steady state 
remains constant at any radius.  Hence, we rearrange Fourier’s law, and integrate 
from inside r = r1 to outside r = r2:

−=
2

1

2

1 2

r

r

T
T r
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kL

Q
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π

Carrying out the integration, we find: 
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)/ln( 12

21 −
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Using the electrical resistance analogy, we find that for cylinders, the thermal re-
sistance is given as: 

Rs = 
kL

rr
Rcylinder π2

)/ln( 12=             IVa.6.3 

Case 2. Convection Boundary Condition.  Having derived the rate of heat transfer 
between two radial locations in the cylinder and the corresponding thermal resis-
tance, we now consider the case where convection boundary conditions are speci-
fied for the inside and outside of the cylinder.  To find the equation for tempera-
ture profile in the cylinder, we first find coefficients c1 and c2 by using the 
convection boundary condition inside the cylinder: 

0]
)(

[)]([ 1
1 =

∂
=∂

−−=−
r

rrT
krrTTh faa
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Substituting for temperature profile and its derivative we obtain; 
0/)]ln([ 11211 =++− rkccrcTh faa .  Similarly, from the convection boundary 

condition outside the cylinder we find that: 

( )
( )[ ] 0

2

2 =−−
∂

∂
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=
fbrrb

rr
TrTh

r

rT
k

Substituting for temperature profile and its derivative, we obtain: 

kc1/r2 + hb[(c1lnr2 + c2) – Tfb] = 0 

Solving these two equations for c1 and c2 and substituting, we find the tempera-
ture profile in the cylinder as: 
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The inside surface temperature is: 
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Similarly, the outside surface temperature of the cylinder can be found as: 
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We can find the rate of heat transfer from an electrical analogy: 
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Summing up, the intermediate temperatures cancel out.  We then rearrange terms 

to find Q  as: 
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Case 3.  Steady State Heat Loss from Insulated Cylinders: This is similar to 
Case 2.  Insulation of piping systems is necessary in power production for exam-
ple, to reduce the rate of heat loss from the hotter fluid and in cryogenics to reduce 
the rate of heat transfer to the fluid.  To accomplish this, as shown in Fig-
ure IVa.6.2, pipes are encapsulated in layers of insulation made of materials with 
low thermal conductivity.  To determine the rate of heat transfer, we extend the 
method of Case 2 by writing the boundary temperatures in terms of total rate of 
heat transfer and the related thermal resistance and add them up to obtain:  
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r1 r2 rn

T2
T1Tfa Tn

Tfb ,  hb

RbRn
R1Ra

k2

k1

Q
.

kn

Tfa ,  ha

. . . .
Q
.

Tfb ,  hb

Tfa ,  ha

Figure IVa.6.2.  Reduction of heat loss through pipe wall with multiple layers of insulation 

Example IVa.6.1.  A layer of paint and 3 layers of insulators cover a pipe carry-
ing steam.  Find the rate of heat loss to ambient. 

No. Region  di (in)  do (in)  k (Btu/ft·h·F)
1 Pipe  24.0  28.0  10.0 
2 Paint  28.0  28.05  0.50 
3 Insulator  28.05  40.0  0.03 
4 Insulator  40.0  50.0  0.02 
5 Insulator  50.0  55.0  0.01 

Other data are specified as:  Tf,a = 650 F, ha = 500 Btu/ft2·h·F, hb = 5 Btu/ft2·h·F,
Tf,b = 75 F, and L = 400 ft. 

Solution:  Thermal resistances from inside to outside are as follows: 

Pipe bulk to wall: Rf,a = 1./(πdiL)ha = 1./[π × (24/12) × 400 × 500] = 7.95E-7 h·F/Btu 
Region 1:  Rpipe = ln(r1/ri)/(2πkpipeL) = ln(28/24)/[2 × π × 10 × 400] = 6.13E-6 h·F/Btu 
Region 2:  Rpaint = ln(r2/r1)/(2πkpaintL) = ln(28.05/28)/[2 × π × 0.5 × 400] = 1.42E-6 h·F/Btu 
Region 3:  R1 = ln(r3/r2)/(2πkins. aL) = ln(40/28.05)/[ 2 × π × 0.03 × 400] = 4.71E-3 h·F/Btu 
Region 4:  R2 = ln(r4/r3)/(2πkins. bL) = ln(50/40)/[ 2 × π × 0.02 × 400] = 4.44E-3 h·F/Btu 
Region 5:    R3 = ln(r5/r4)/(2πkins. cL) = ln(55/50)/[ 2 × π × 0.01 × 400] = 3.79E-3 h·F/Btu 
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Loss to ambient:   Rf,b = 1./(πd5L)hb = 1./[π × (55/12) × 400 × 5] = 3.47E-5 h·F/Btu 

ΣR = 7.95E-7 + 6.13E-6 + 1.42E-6 + 4.71E-3 + 4.44E-3 + 3.79E-3 + 3.47E-5 = 
0.013 h·F/Btu 

The thermal resistance is practically due to the three layers of insulation.   

lossQ  = (Tf,a – Tf,b)/ΣR = (650 – 75)/0.013 = 44,288 Btu/hr = 13 kW. 

Note that if there was no insulation,  

lossQ  = (650 – 75)/(7.95E-7 + 6.13E-6 + 3.47E-5) = 4 MW! 

Let’s now consider the rate of heat transfer in a concentric or simple shell & 
tube heat exchanger as shown in Figure IVa.6.3.   

δ = ro - ri
hi , Ti

ho , To

δ = ro - ri

Shell-side

Tube-side

Figure IVa.6.3.  Schematics of a concentric or simple shell & tube heat exchange 

Applying the thermal resistance concept to this heat exchanger results in: 

TUAQ ∆=              IVa.6.7 

where
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In Equation IVa.6.8, U is called the “overall heat transfer coefficient.”  The value 
of U is based on the area it is associated with so that 

)2()2( LrULrUUA ooii ππ ==

where Ui and Uo are referred to as the overall heat transfer coefficients based on 
the inside and outside tube diameter, respectively.  Hence, Uo becomes: 

[ ] 1−++= osio RRRU          IVa.6.8-1 

where Ri = (1/hi)(do/di), Rs = ln(do/di)/[do/(2ks)], and Ro = 1/ho where ks is thermal 
conductivity of the tube metal.  Substituting we find; 
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The overall heat transfer coefficient is an essential factor in the design and opera-
tion of heat exchangers. 

6.2.  1-D S-S Heat Conduction in Solid Cylinders ( 0≠′′′q )

Solution for steady state temperature distribution in the axial direction in solid cyl-
inders without internal heat generation is given by Equation IVa.5.2.  This equa-
tion is applicable to an axially-insulated solid cylinder of length 2L where heat is 
added to one end and removed from the other end.  The solution to steady state 
heat conduction in the radial direction for solid cylinders without internal heat 
generation is trivial as the solid cylinder has to be at uniform and constant tem-
perature at any cross section.  Considering cylinders with internal heat generation, 
our goal is to find the steady state temperature profile for two cases of solid and 
hollow cylinders.  For the case of solid cylinders we analyze fuel rods in nuclear 
reactors.  For hollow cylinders, we find temperature distribution in an annular fuel 
rod where coolant flows both inside and outside of the rod.  The governing equa-
tion for both cases is Equation IVa.2.10 with ∂T/∂ t = 0. 

For solid cylinders with internal heat generation we study temperature distribu-
tion in a nuclear fuel pellet.  For light water reactors, such pellets are made of ura-
nium dioxide (UO2).  A nuclear fuel rod (see Chapter I) consists of stacks of such 
pellets contained within cladding.  Nuclear heat is produced when fuel rods in the 
core are exposed to neutron flux.  In the discussion below, we analyze two cases.  
In Case 1 we consider a bare fuel rod to determine thermal resistance of a pellet.  
In Case 2 we analyze a fuel rod with cladding. 

Case 1. Nuclear Fuel Pellet.  Typical fuel pellet for PWRs is a right circular 
cylinder with both diameter and height being about 1 cm.  The active length of a 
fuel rod is about 3.6 m or 144 in so that a fuel rod has as over 300 fuel pellets.  To 
derive the thermal resistance of a fuel rod, let’s assume that a bare rod is placed in 
the core.  To find thermal resistance, we find the temperature gradient of the fuel 
(i.e., TF1 – TF2):  

0)(
1 =′′′+ q
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dT
rk
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d

r
F

F              IVa.6.9 

Fuel

TF1

TF2rF

q'''
.

Figure IVa.6.4.  A solid cylinder with internal volumetric heat generation 
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Thermal conductivity of UO2 is temperature dependent however, replacing it with 
an average value allows us to integrate Equation IVa.6.9: 
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−= rdr
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rd

F

F )(

This results in: 
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Upon further integration we obtain: 
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Coefficients c1 and c2 are found from boundary conditions.  Coefficient c1 must be 
zero for two reasons.  First, at r = 0, temperature must be finite.  Second, due to 
symmetry, temperature is a maximum at the centerline.  Coefficient c2 is found 
from temperature TF(r = 0) = TF1, resulting in a temperature profile of: 

2
1 4

)( r
k

q
TrT

F
FF

′′′
−=

Temperature gradient across the bare fuel rod is obtained by finding temperature 
at r = rF:
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Relating q ′′′  to the rate of heat transfer according to QqLrF =′′′)( 2π  and substitut-

ing in Equation IVa.6.11 yields: 
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Where, in Equation IVa.6.12, A = πrFL is the surface area.  Thermal resistance of a 
pellet is found as: 
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Note that by substituting for the volumetric heat generation rate in Equa-
tion IVa.6.11, we find: 
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Equation IVa.6.14 is now in terms of the linear heat generation rate and shows that 
temperature difference across the fuel is only a function of q′  (the linear heat gen-
eration rate) and is independent of fuel diameter.  The linear heat generation rate is 
a key factor in the design and operation of nuclear plants. 

Case 2. Nuclear Fuel Rod.  A fuel rod of a light water reactor consists of a hol-
low cylinder made of Zircaloy, filled with UO2 pellets.  The cylinder is about 12 ft 
long (Figure IVa.6.4).  The space between the fuel and the clad is referred to as 
gap, being originally filled with helium and pressurized to several hundred psi.  
Fission gases released during the nuclear reaction also diffuse into the gap region 
further pressurizing the rod.  

Coolant Fuel

Clad Gap

Fuel

Clad

Gap

TF1

TF2 TC1
TC2

Tf ,  hf
rC2

rF
rC1

Tf ,  hf

Q
.

Q
.

TF1 TF2 TC1 TC2 Tf

RF RG RC Rf

δG
δC

Figure IVa.6.5.  Temperature profile in a cylindrical fuel rod 

Our goal is to find the rate of steady state heat transfer.  Due to symmetry, we 
consider temperature distribution only in one half of the fuel rod.  At steady state 
operation, the rate of heat transfer is the same in all the fuel rod regions, the fuel 
pellet region, the gap region, and the cladding region.  We use subscript F for fuel, 
C for cladding, G for Gap, and f for the coolant.  To find the rate of heat transfer in 
each region, we use Fourier’s law but rearrange the equation in terms of tempera-
ture difference.  Starting from the fuel centerline and moving toward the coolant, 
the rate of heat transfer in each region of fuel, gap, cladding and coolant becomes: 

Temperature gradient in fuel:  
F

FF Lk

Q
TT
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Temperature gradient in gap:  
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Temperature gradient in clad:  [ ])/ln(/2 12
21

CCC
CC rrLk

Q
TT

π
=−

Temperature gradient in coolant: 
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Q
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2
2 2π
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Summing up these relations, the intermediate temperatures cancel out and after re-
arrangement we get: 
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where in Equation IVa.6.15, RF is given by Equation IVa.6.13 and rG and hG are 
effective gap radius and heat transfer coefficient, respectively.  

Example IVa.6.2.  Find the centerline temperature of an average fuel rod in a 
PWR core. 

Parameter       Value      Parameter                       Value
Core power (MW):        2700      Clad inside diameter (in):     0.388 
Number of fuel rods:       38,000      Gap thickness (in):         0.0075 
Fuel rod length (ft):       12.2       Water temperature (F):         575 
Clad outside diameter (in):      0.44             hf (Btu/ft2·h·F):         6000 
kF & kC (Btu/ft·h·F):       1 & 3      hG (Btu/ft2·h·F):         1000 

Solution:  We find dC2 = 0.44 in, dC1 = 0.388 in and dF2 = dC1 – 2δGap = 0.194 – 2 
× 0.0075 = 0.373 in 
We now find the individual thermal resistances in Equation IVa.6.15: 
RF = 1/(4πLkF) = 1/(4 × π × 12.2 × 1) = 6.53E-3 h·F/Btu 
RG = 1/(2πrF1LhG) = 1/[(0.373/12) × π × 12.2 × 1000] = 8.39E-4 h·F/Btu 
RC = ln(rC2/rC1)/(2πLkC) = ln(0.44/0.388)/[2 × π × 12.2 × 3]= 5.47E-4 h·F/Btu 
Rf = 1/(2πrC2Lhf) = 1/[(0.44/12) × π × 12.2 × 6000] = 1.18E-4 h·F/Btu 

ΣR = 6.53E-3 + 8.53E-4 + 5.56E-4 + 6.03E-5 = 8E-3 h·F/Btu 

The fuel centerline temperature is found from: 

Q  = (TF1 – Tf)/ΣR

where total core power is: Q  = (2700 × 1000 × 3412)/38000 = 0.2424E6 Btu/h 

0.2424E6 = (TF1 – 575)/8E-3.  Solving for TF1, we find TF1 = 2514 F 

6.3.  1-D S-S Heat Conduction in Hollow Cylinders ( 0≠′′′q )

An annular nuclear fuel pellet is a good example for a hollow cylinder with inter-
nal heat generation.  In this section, we analyze three cases of such fuel pellets. 

Case 1. Two-Stream Coolant.  Shown in Figure IVa.6.6 is the conceptual de-
sign of an annular fuel rod.  Fluid flows both around the fuel (similar to a solid 
fuel rod) and through the central channel for further cooling.  Our goal is to deter-
mine the temperature distribution in the fuel pellet.  We use Equation IVa.6.10 
while assuming an average thermal conductivity for the fuel.  To find the coeffi-
cients c1 and c2, we must use either of the following boundary conditions: 

Surface Temperatures Specified.  For specified fuel surface temperatures at ri

and ro (i.e., TFi and TFo) we find the coefficients and upon substitution in Equa-
tion IVa.6.10, temperature profile in the bare annular fuel becomes: 
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Figure IVa.6.6.  A conceptual annular fuel rod with neither inner nor outer cladding 
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Convection Boundary Specified.  For specified convection boundary, tempera-
ture distribution in the fuel is: 
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Case 2. One-Stream Coolant.  In this case, the annular fuel pellets are encased 
inside the clad and the fuel rod is cooled only by coolant flowing around the clad.  
To calculate the annular fuel thermal resistance, we consider the case of power 
production in a bare annular fuel rod.  The answer to this case is also given by 
Equation IVa.6.10.  To find coefficients c1 and c2 we use the following boundary 
conditions.  At r = rF1, there is no heat flux, hence 0/)( 1 =drrdT FF  and at r = rF1,
we have T(r) = TF1.  Using these boundary conditions, temperature distribution in 
the fuel becomes: 
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We can now calculate temperature gradient across the fuel pellet by taking r = rF2

to obtain: 
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where 21 / FF rr=ζ .  The volumetric heat generation rate is related to the rate of 

heat transfer from a bare annular fuel as: 
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Substituting for the volumetric heat generation rate in terms of the rate of heat 
transfer and rearranging: 
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∆=          IVa.6.17 

Thus, thermal resistance of an annular fuel cooled only from outside is therefore 
given by:

( )FLkR π
ζ
ζζ

4/
1

ln
1

2

22

−
−=          IVa.6.18 

If we compare Equation IVa.6.18 with Equation IVa.6.14 derived for a solid fuel, 
we conclude that for the same thermal conductivity and linear heat generation rate, 
the annular fuel operates at a lower temperature gradient.  Similarly, for the same 
temperature gradient and thermal conductivity, the annular fuel can be operated at 
higher linear heat generation rate: 

'

'

SolidFuel

lAnnularFue

q

q
R =  = 
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22

1

)ln1(1

ζ
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−
+−

Case 3. Annular Fuel Rod consists of annular fuel pellets inside a clad as 
shown in Figure IVa.6.7.  The rate of heat transfer is obtained from Equa-
tion IVa.6.15 but with RF given by Equation IVa.6.18. 

Fuel

Clad

Gap

TF1

TF2 TC1

TC2

Tf ,  hf
rC2

rF2
rC1

δC
δG

TF1 TF2 TC1 TC2 Tf

RF RG RC Rf Q
.

Tf ,  hf

rF1

Q
.

Figure IVa.6.7.  Annular fuel rod with cladding 
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The next example deals with temperature distribution in an annular fuel rod 
with two-stream coolant and inner as well as outer cladding.  In this example, we 
have assumed no contact resistance hence, no gap exists between the fuel and both 
inner and outer cladding. 

Example IVa.6.3.  Find the maximum temperature and its location in a two-
stream annular fuel rod with inner and outer cladding.  Data:  Ti = 325 C, To = 300 
C, hi = 6000 W/m2·C, ho = 4500 W/m2·C, kF = 3.5 W/m·C, kC = 11 W/m C, q′  = 

10 kW/ft, d1 = 0.6 cm, d2 = 0.8 cm, d3 = 1.4 cm, and d4 = 1.6 cm. 

Clad
Fuel

Coolant

Ti T1 T2 T3T4 To

d1

d2

d3

d4
r

Ti ToT4T3T2T1

Solution:  This is a one-dimensional, steady state problem with heat generation in 
a two-stream annular fuel rod, having constant thermal conductivity and negligible 
contact resistance.  Solution for temperature distribution in the inner cladding (i.e., 
for the region between r1 to r2) is found from Equation IVa.6.10: 

21 ln crcTC +=     21 rrr ≤≤

Similarly, Equation IVa.6.10 is the solution to temperature distribution in the fuel 
region: 

43
2 )ln()4/( crcrkqT FF ++′′′−= 32 rrr ≤≤

Finally, temperature distribution in the outer clad region (i.e., for the region be-
tween r3 and r4) is given by: 

65 ln crcTC +=    43 rrr ≤≤

There are 6 coefficients, which can be found from the following 6 boundary con-
ditions: 

Location Boundary Condition Location          Boundary Condition
r = r1 kCdTC/dr = hi(TC – Ti) r = r3            TF = TC

r = r2 TC = TF   r = r3            –kFdTF/dr = –kCdTC/dr
r = r2 –kCdTC/dr = –kFdTF/dr r = r4            –kCdTC/dr = ho(TC – 
To)

Upon substitution we find; 
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Since r1 = 0.3 cm, r2 = 0.4 cm, r3 = 0.7 cm, r4 = 0.8 cm, and qqrr ′=′′′− )( 2
2

2
3π

then  

( ) 8E165.3
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q  W/m3 = 

316.5 MW/m3

Substituting numerical values, the above matrix equation becomes: 
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Thus, c1 = 213.84, c2 = 1697.94, c3 = 1395.44, c4 = 8443.67, c5 = –255.46, and c6

= –855.37 
Location of the maximum temperature is found from: 

r(Tmax) = qkc F ′′′/2 3

and the maximum temperature itself is obtained from: 

Tmax = –22.6r2 + c3ln[r(Tmax)] + c4

Substituting values, we find r(Tmax) = 0.556 cm and Tmax = 1894.6 C. 

6.4.  1-D S-S Heat Conduction in Solid Cylinders ( )(Tfq =′′′ )

If we can express Tccq 21 +=′′′  then Equation IVa.2.8 for steady state conditions 

can be written as: 

0'
'1' 2

2

2
=++ TB

dr

dT

rdr

Td
          IVa.6.19 
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Where B2 = c2/kf.  Equation IVa.6.19 is a Bessel differential equation having the 
solution of: 

)()()(' 0201 BrYABrJArT +=

Where J0 and Y0 are zero order Bessel functions of first and second kind, respec-
tively.  From symmetry we conclude that A2 = 0 as Y0 approaches infinity and r
approaches zero.  A1 can be found from the boundary condition at the surface.  
Bessel functions are discussed in Section 3 of Chapter VIIb. 

7.  Analytical Solution of 1-D S-S Heat Conduction Equation, Sphere 

We seek temperature distribution only in the radial direction due to the symmetry 
in the φ and θ directions.  If such symmetry does not exit, we must find a multi-
dimensional solution. 

We consider several cases for steady state heat transfer in a sphere.  These in-
clude temperature profile in hollow spheres with no heat generation, heat loss 
from insulated spheres, and temperature profile in solid and hollow spheres with-
out and with volumetric heat generation. 

7.1.  1-D S-S Heat Conduction in Hollow Spheres ( 0=′′′q )

A spherical container holds a liquid at constant temperature (Figure IVa.7.1).  We 
assume that the liquid is warmer than ambient and the heat loss is steadily sup-
plemented by an electric heater, heating the liquid.  

Tfb, hb

Tfa, ha

Tf2

r1 r2

T2T1Tf1

Tf2 ,  h2

Tf1 ,  h1

R3
R2R1

Q Q

Q

Figure IVa.7.1.  Heat conduction in a hollow sphere 

The resistances represent the internal convection, conduction through the 
sphere wall, and the external convection, respectively.  To obtain thermal resis-
tance of the sphere wall, we note that the same amount of heat passes through all 
the wall layers.  Since the surface area of a layer at radius r is 4πr2:

drdTrkdrkAdTQ /)4(/ 2π−=−=
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We may now rearrange this equation to obtain: 

dT = Q dr/(4πkr2)

Integrating between T(r = r1) = T1 and T(r = r2) = T2 results in: 

∆T = Q (1/r1 – 1/r2)/4πk = q R

where the sphere thermal resistance is given as RSphere = (1/r1 – 1/r2)/4πk.

Steady State Heat Loss from Insulated Spheres 

We may extend the above result to find thermal resistance of a spherical wall and 
layers of insulation.  These thermal resistances are summarized in Figure IVa.7.2. 
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Figure IVa.7.2.  Electric resistance analogy for heat conduction in spheres with multiple 
layers of insulation 

Example IVa.7.1.  Liquid at 180 C is stored in a steel spherical container, which 
is covered with three layers of insulation.  Find the rate of heat loss.  Data:  r1 = 5 
m, r2 = 5.1 m, r3 = 5.3 m, r4 = 5.4 m, r5 = 5.6 m, ha = 500 W/m2·C, hb = 
100 W/m2·C, Tfb = 35 C, kCarbon Steel = 55 W/m·C, k1 = 0.05 W/m·C, k2 = 0.03 
W/m·C, k3 = 0.08 W/m·C. 

Solution:  We find thermal resistances as follows: 

Inside sphere: Ra = 1/[(π 2
1r )ha] = 1/[(π × 52) × 500] = 2.55E-5 C/W 

 
 

ΣRn = 5.67E-6 + 0.118 + 9.27E-3 + 6.58E-3 = 0.134 C/W 



476      IVa.  Heat Transfer:  Conduction  

Outside sphere: Rb = 1/[(π 2
5r )hb] = 1/[(π × 5.62) × 100) = 1E-4 C/W 

ΣR = 2.55E-5 + 0.134 + 1E-4 ≅  0.134 C/W 

Rate of heat transfer: Q = (Tfa – Tfb)/ΣR = (180 – 35)/0.134 = 1.08 kW. 

To find the temperature distribution in the wall of a bare hollow sphere without 
internal heat generation, we use Equation IVa.2.10 and retain only the first term in 
the left side of the equation: 

0
1 2
2

=
dr

dT
r

dr

d

r

When integrated we get r2dT/dr = c1 or alternatively, dT/dr = c1/r
2.  Integration of 

this equation gives: 

T = –c1/r + c2r              IVa.7.1 

Coefficients c1 and c2 are found from a specified set of boundary condition.  For a 
convection boundary of Tfa and ha for the inside (r = ra) and Tfb and hb for the out-
side (r = rb) of the sphere we write: 

( )[ ]
a

a
rr

rrfaa dr

dT
kTTh

=
= −=−  and ( )[ ]fbrrb

rr
TTh

dr

dT
k

b

b

−=− =
=

where we assumed that Tfa > Tfb.  Upon substitution of Equation IVa.7.1 in the 
above boundary conditions, coefficients c1 and c2 are calculated and temperature 
profile in the sphere wall is obtained. 

7.2.  1-D S-S Heat Conduction in Solid Spheres ( 0≠′′′q )

An example of one-dimensional heat conduction in spheres with internal heat gen-
eration is the fuel balls in a gas cooled nuclear reactor.  Fission heat is generated 
inside the fuel ball and removed at the surface by the coolant.  Temperature distri-
bution in spherical fuels is the solution to Equation IVa.2.10 at steady state; 

0)(
1 2
2

=
′′′

+
∂
∂

∂
∂

k

q

r

T
r

rr

This equation can be easily integrated to obtain T = –( q ′′′ /6k)r2 + c1/r + c2 and, 
recognizing that at r = 0 temperature is finite, c1 = 0.  We obtain c2 from an appro-
priate boundary condition. 

Example IVa.7.2.  Temperature at the center of a spherical fuel element is 2000 
C.  Find the surface temperature.  Data:  d = 1 cm, kF = 3.5 W/m2·C, and q ′′′  = 630 

MW/m3.
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Solution:  At r = 0 m, T = 2000 C hence, c2 = 2000 C.  The profile becomes: 

T = –( q ′′′ /6k)r2 + 2000 

We now find temperature at r = 0.5/100 m, T = –[630E6/(6 × 3.5) × (5E-3)2 + 
2000 = 1250 C. 

7.3.  1-D S-S Heat Conduction in Spheres ( 0≠′′′q )

For spherical fuel pellets where Tccq 21 +=′′′ , the Helmholtz equation becomes: 
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'2' 2
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=++ TB

dr

dT
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Td
            IVa.7.2 

where B2 = c2/kf.  The solution to this linear second-order differential equation 
is:

Br

Br
A

Br

Br
AT

)sin()cos(
' 21 +=

where coefficients A1 and A2 can be found from the boundary conditions.  From 
symmetry we conclude that A2 = 0.  Having A2, we can find A1 from the boundary 
conditions specified at the surface. 

8.  Analytical Solution of Heat Conduction Equation, 
Extended Surfaces 

In Section IVa.3 we studied surfaces covered with multiple layers of insulation 
used to reduce the rate of heat transfer.  In this section, we will study means of en-
hancing the rate of heat transfer, which is accomplished by the use of extended 
heat transfer surfaces or fins.  There is a variety of designs for fins that can be 
categorized in three classes: longitudinal, circular, and spine.  Each class has its 
own variety of designs depending on the fin profile.  Figure IVa.8.1 shows four 
profiles of longitudinal fins. 

Figure IVa.8.1.  Longitudinal fins of rectangular, triangular, trapezoidal, and parabolic pro-
files 
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The purpose of fin thermal analysis is to determine temperature gradient in the 
fin and the rate of heat transfer from the fin.  We begin with the analysis of a lon-
gitudinal fin with variable area as shown in Figure IVa.8.2.  In the derivation that 
follows, we assume that the fin is made of homogeneous material with constant 
thermal conductivity.  We will also assume that the conduction-convection ar-
rangement guarantees a low Biot number so that heat transfer can be treated pri-
marily as one-dimensional.  Additionally, the heat transfer coefficient and tem-
perature of the convection boundary are assumed constant.  

8.1.  1-D S-S Heat Conduction in Fins ( 0=′′′q )

To be able to analyze fins using the one-dimensional heat conduction equation, we 
assume that both sides of the fin (parallel to the xy-plane) are insulated, or L >> l.
Since the direction of heat transfer is perpendicular to the shaded and the cross-
hatched areas and these areas change as a function of x, we need to write the con-
servation equation of energy for the elemental control volume shown in the right 
side of Figure IVa.8.2.  At steady state, the rate of energy leaving the top area by 
convection, the front area by conduction, and the bottom area by convection is 
equal to the rate of energy entering from the rear (shaded) area by conduction: 

)()( f
x

xx TThdSdx
dx

Qd
QQ −++=

2δ

L

dx

h , Tf

x
y

l

y=f(x)

h(Ldx)(T -  Tf)

h(Ldx)(T -  Tf)

Qx

.

Qx +(dQx / dx)dx
. .

Figure IVa.8.2.  Longitudinal fin with variable cross-sectional area 

Two observations must be made at this point.  First, we represented the whole 
control volume by only one temperature.  Second, the surface area for convection 
heat transfer of the control volume (dA) is equal to the perimeter times the width 
of the control volume (i.e., dS = 2(L + y)dx = Pdx where P = 2(L + y) is the con-
trol volume perimeter).  We now introduce an approximation by ignoring y com-
pared with L.  The control volume perimeter is, therefore, approximated as 

L2P ≅ .  In other words, we have ignored heat transfer from the sides of the fin to 
be consistent with 1-D assumption.  After substitution and simplification we find: 

0)(P =−+ f
x TTh

dx

Qd
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We may now substitute for the rate of heat transfer from Fourier’s law: 

0)(P])([ =−+− fTTh
dx

dT
xkA

dx

d

Carrying out the derivative term and representing θ=− fTT , where dT/dx  = 

dθ /dx, we obtain: 
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                       IVa.8.1 

Temperature profile in the fin is the solution to Equation IVa.8.1.  To find the rate 
of heat transfer from the fin, we use Fourier’s law and calculate the temperature 
derivative at the base.  That is to say that the total rate of heat transfer from the fin 
to the convection boundary must be supplied from the base.  Finding an analytical 
solution for this differential equation depends on the degree of complexity of the 
function y = f(x) of Figure IVa.8.2, the fin heat transfer area profile.  Solution for a 
linear profile is discussed next. 

Case 1. Longitudinal Fins with Triangular Profile.  Shown in Figure IVa.8.3 is a 
fin with triangular profile.  For this linear profile, y is expressed in terms of x as y
= (b/l)x.  The area for heat diffusion at x becomes A = (bL/l)x, and term Ph = 
L(h1+h2).  Note that x is measured from the tip of the fin.  Upon substitution, the 
differential equation for temperature distribution in the fin becomes:
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=−+ θθθ

m
dx

d

dx

d
x             IVa.8.2 

Where m2 = (h1+h2)L/bk.  Equation IVa.8.2 is a Bessel differential equation hav-
ing a solution of: 
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Figure IVa.8.3.  Steady state temperature distribution in longitudinal fins with triangular 
profile 
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Where I0 and K0 are order-zero modified Bessel functions of the first and sec-
ond kind, respectively.  To find coefficients c1 and c2, we use two boundary condi-
tions.  The first boundary condition deals with temperature at x = 0 which must be 
finite.  However, as Figure VIIb.3.1 shows, K0 approaches infinity as x approaches 
zero.  Since temperature is finite, this implies that c2 must be set equal to zero c2 =
0.  The second boundary condition is at x = l (i.e. T(l) = Tb where subscript b
stands for base).  Since fTT −=θ , then fTT −= 00θ .  Substituting, we find 

)2(/ 2/1
001 mlIc θ= .  Temperature profile in the fin then becomes: 
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−

The rate of heat transfer from the entire fin is equal to the rate of heat diffusion at 

the base given by dxdTkAQ bfin /−= .  Upon substitution, we obtain: 
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Case 2: Annular Fins with Rectangular Profile.  Annular fins, as shown in 
Figure IVa.8.4, are another example of fins with a variable heat conduction area.  
We may derive the governing equation similar to Case 1 or use the result obtained 
for Case 1 in Equation IVa.8.1.  The reader may perform the derivation by taking 
advantage of the energy balance in the elemental control volume of Figure IVa.8.4 
and note that the rate of thermal energy steadily provided by the base, at radius rb

and temperature of Tb, is dissipated by convection to the environment by the fin.  
To use Equation IVa.8.1, the perimeter is found as P = 2(2πr) and the heat con-
duction area as A(r) =(2πr)(2δ).  Thus the governing equation becomes: 

0
1 2

2

2
=−+ θθθ

m
dr

d

rdr

d
            IVa.8.3 

where δkhm /2 = .  Equation IVa.8.3 is a Bessel differential equation with the 
following solution: 

)()()( 0201 mrKcmrIcTrT f +=−
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Figure IVa.8.4.  Schematic of an annular fin with rectangular profile 

To find the coefficients we use the boundary conditions at the base and at the 
tip of the fin.  Temperature of the base, Tb is generally specified so that T(rb) = Tb.
For the second boundary condition, we should use the convection boundary condi-
tion at r = rt over the surface area of S = 2πrt(2δ).  However, a mathematically 
simpler means to accomplish this is to have an insulated boundary at the tip and 
add the surface area to the top and the bottom of the fin.  This is acceptable if the 
heat transfer coefficient for the vertical surface is the same as for the horizontal 
surfaces.  By adding the vertical surface area to the horizontal area, the new fin di-
ameter becomes rt + δ and the second boundary condition at r’ = rt + δ can be 
written as dT/dr = 0.

rb

rt + δ

r 2δ

h ,  Tf

 Tb

dT(rt + δ)

dr
= 0

r' =

Figure IVa.8.5.  Annular fin with insulated tip 

We use these boundary conditions to find coefficients c1 and c2.  Upon substitu-
tion, the temperature profile in the fin is found as : 
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          IVa.8.4 

where I and K are the modified Bessel functions of the first and second kind.  
Some Bessel functions for 0 < x < 4 are given in Table VIIb.3.1.  The rate of heat 
transfer can then be calculated from: 
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Example IVa.8.1.  Find temperature in an annular fin at r = 6 in.  Data: k = 10 
Btu/h·ft·F, Tb = 400 F, Tf = 65 F, h = 50 Btu/h·ft2·F, rb = 5 in, rt = 9 in and δ = 0.25 
in.  Also find the total rate of heat transfer. 

Solution:  We use Equations IVa.8.4 to find T and Equation IVa.8.5 to find the 
rate of heat transfer.  We  first find m = [50/(10 × 0.25/12)]0.5 = 15.5 ft-1 and then 
r’ = rt + δ = 9 + 0.25 = 9.25 in so that mr’ = 11.95 and mrb = 6.46.  We find the 
following Bessel functions: 

Argument    Io     I1     Ko   K1

mrb = 6.46 0.254  –0.165  0.758E-3     0.814E-3 
mr = 7.75 0.225                         –               0.192E-3                          –
mr’ = 11.95     –  0.226        –      0.241E-5 

T = 
3E758.0226.05E241.0254.0

225.05E241.03E192.0225.0
)65400(65

−×+−×
×−+−×−+  = 150.6 F 

Similarly, for total rate of heat transfer we have: 

Q  = 
3E758.0226.05E241.0254.0
5E241.0165.03E814.0226.0

)/4)(65400(12/25.01050)12/5(
−×+−×
−×−−×−×× π  = 

612.5 Btu/h 

Without the fin, Q  = 2πrb × 2δ (Tb – Tf ) = 2π(5/12)(2 × 0.25/12)(400 – 65) = 

36.54 Btu/h. 

Case 3: Fins with Constant Heat Diffusion Area.  Examples of such fins in-
clude longitudinal fins of rectangular profile and cylindrical spines as shown in 
Figure IVa.8.6.  Since the conduction area is constant alongside the fin, the second 
term in Equation IVa.8.1 is zero and this equation simplifies to: 
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In the case of a fin with a rectangular profile, the perimeter is P = 2(b + 2δ) and 
the heat diffusion area is A = 2bδ.  In the case of cylindrical spines P = 2πδ and 
heat diffusion area is A = πδ2.  Therefore, m2 for the fin with rectangular profile is 
given as: 
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Figure IVa.8.6.  Longitudinal fin of rectangular profile and cylindrical spine 

and for cylindrical spines as 
k

h
m

δ
22

cylinder = . Hence, the governing equation for 

such fins becomes: 
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                 IVa.8.6 

The general solution for Equation IVa.8.6 is given in Chapter VIIb as 
mxmx ecec 21 += −θ .  Coefficients c1 and c2 can be found from the boundary con-

ditions at the base, x = 0 and at the tip, x = L.  At the base, the temperature must 
be equal to the specified base temperature of T = Tb.  At the tip, three types of 
boundary conditions can be specified as follows. 

BC, Type 1:  the tip of the fin is insulated, hence –k dT(L)/dx = 0.
BC, Type 2:  fin is so long that heat transfer through convection has caused tip 

temperature to reach Tf.
BC, Type 3:  the tip of the fin is also losing heat to the environment by convec-

tion, -kdT(L)/dx – hA(T-Tf) = 0.

The solution for types 1 and 2 is left to the reader.  As was discussed in Case 2, we 
can reduce type 3 to type 1.  However, this case is much simpler than the annular 
fin and we can treat it with a convection boundary at the tip.  The solution for tem-
perature distribution in the fin for type 3 boundary condition is: 
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Having the temperature profile, we can find total rate of the fin heat loss from 

0)/( =−= xdxdTkQ :
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8.2.  1-D S-S Heat Conduction in Fins ( 0≠′′′q )

If nuclear fuel rods are equipped with fins, an internal heat generation can take 
place in the fin due to the bombardment by γ  radiation as discussed in Sec-
tion IVa.5.5.  Assuming such internal heat generation is uniform, Equation IVa.8.1 
should then include an additional term to have: 
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Therefore, the general solution we obtained for various fin profiles is also applica-
ble to the case that such fins have internal heat generation.  However, the specific 
solution must also be found due to the addition of the constant term in the right 
side of Equation IVa.8.9 as explained next.   

Case 1.  Annular fin with internal heat generation.  The governing equation is: 

k

q
m
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rdr
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−=−+ θθθ 2

2
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          IVa.8.10

and the solution is given by El-Wakil is: 
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where I and K are the modified Bessel functions of the first and second kind.  The 
rate of heat transfer from the fin from the base material is found from: 
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where Rg in these equations is a dimensionless number known as the generation 
ratio and is given by: 
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Case 2:  Fins with Constant Heat Diffusion Area and Internal Heat Generation.  
Here, the governing equation simplifies to: 
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To find the solution, we use the insulated tip boundary condition by extending the 
length in Figure IVa.8.6 by δ+= LL' , resulting in: 
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The rate of heat transfer dissipated from the fin (from the base material) obtained 

by using Fourier’s law Q  = – kAdT/dx.  Taking the derivative of temperature pro-

file and substituting, we find: 

'tanh)()1( mLTTmkARQ fbg −−=                       IVa.8.15 

where δbA =rrectangula  and πδ2=cylinderA .  If there is no internal heat genera-

tion, Rg = 0. 
The analytical solution to the two-dimensional heat conduction equation at 

steady state condition is discussed in Section IVa.9.2.  It is demonstrated that a 
product solution in the form of T(x, y) = X(x)Y(y) can be found for the Laplace 
equation ∂2T/∂x2 + ∂2T/∂y2 = 0. 

9.  Analytical Solution of Transient Heat Conduction  

We can find analytical solutions to transient heat conduction for two types of one-
dimensional problems.  The first type includes the so-called semi-infinite solids.  
The second type includes solids having familiar geometries such as slab, cylinder, 
and sphere.  Both types of problems are discussed in this section.  

9.1.  1-D Transient Heat Conduction, Semi-infinite Solid 

An interesting application of one-dimensional transient heat conduction is in find-
ing the response of semi-infinite objects to sudden imposition of various boundary 
conditions at the surface.  Although the semi-infinite solid is a mathematical con-
cept, it can be used in many practical applications.  Considering buried pipelines 
carrying water for example, we are interested in knowing the penetration depth of 
sudden freeze on the ground.  This would determine how deep a water main 
should be buried for protection from freeze rupture.  The ground can then be 
treated as a semi-infinite solid.  The reason we are able to find an analytical solu-
tion is that we treat ground, where the pipe is buried, to be infinite in the y and z
directions ( ∞<<−∞ y  and ∞<<−∞ z ) and semi-infinite only in the x-direction 
( ∞<≤ x0 ) as shown in Figure IVa.9.1.  The semi-infinite model implies that 
temperature deep inside the solid remains unaffected by the changes in tempera-
ture at the surface.  This is used as a boundary condition. The governing equation 
for a semi-infinite solid is the 1-D form of Equation IVa.2.3 in the x-direction: 
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Figure IVa.9.1.  Imposition of various boundary conditions at the surface of a semi-infinite 
solid

The solution requires two boundary conditions and one initial condition.  The 
initial condition is the uniform temperature of the solid before the imposition of 
any instantaneous change at its surface, T(x,0) = Ti.  One boundary condition deals 
with the heat transfer mechanism at the surface and the other deals with the fact 
that, far away from the surface, the temperature remains at its initial value, 

iTtT =∞ ),( . The heat transfer mechanism at the surface is either in the form of 
imposition of an instantaneous temperature, or instantaneous exposure to either a 
heat flux or a convection boundary.  We will use these three types of boundary 
conditions in three Cases A, B, and C as discussed below.  For now, we try to find 
a solution to the 1-D form of Equation IVa.2.3.  Among the several methods to 
solve this equation, one deals with the integral technique where a profile for tem-
perature distribution is assumed.  The coefficients are then found by setting the to-
tal rate of heat transfer equal to the rate of heat transfer at the surface.  Another 
method is to use the Laplace transform.  The approach discussed here uses the 
transformation of variables method. 

Our goal is to find a single variable such as s = f(x, t) so that we can express 
temperature only in terms of s rather than both x and t.  We choose the function 
f(x, t) as s = x/g(t).  At x = 0 and any t, variable s also becomes zero and at t = 0 
and any x, variable s also becomes infinity.  The latter constraint would represent 
the entire solid and will be used as an initial condition.  Therefore, the goal is now 
to find the unknown function g(t).  Keeping this goal in mind, we will try to ex-
press temperature in Equation IVa.2.3 in terms of s.  To do this, we need to find 
out the partial derivative of temperature with respect to x and t.  The first deriva-
tive is found as: 
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Having defined the left side of Equation IVa.2.3 in terms of g(t), we now seek to 
express the temperature derivative with respect to time (i.e., the right side of Equa-
tion IVa.2.3) in terms of the temperature derivative with respect to s:
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We can now substitute Equations IVa.9.1 and Equation IVa.9.2 into Equation 
IVa.2.3 to obtain: 
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Our goal of finding g(t) to express temperature in terms of s = x/g(t), is now re-
duced to finding g(t) so that the bracket in Equation IVa.9.3 becomes equal to 
unity; 

1
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2 =
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tdg
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α

This is a first order linear differential equation from which, g(t) can be found as 

ttg α2)( = .  Having found g(t) and consequently the variable s as txs α2/= ,

we now return to Equation IVa.9.3 to find a solution for the second-order linear 
differential equation: 

s
dsdT
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This equation can be integrated to obtain: 

1
2 ln)/ln( csdsdT +−=             IVa.9.4 

where c1 is the constant of integration and is conveniently chosen as a logarithmic 
term.  Equation IVa.9.4 can be written as: 

dT/ds = c1exp(-s2)             IVa.9.5 

which, upon integration, gives temperature distribution in the semi-infinite solid.  
To find the constants of integration, we need to use the boundary and initial condi-
tions.  There are generally three types of boundary conditions specified at the sur-
face.  These are discussed below as Cases 1, 2, and 3.  

Case 1. Imposition of an instantaneous temperature at the surface. In this 
case, we investigate the response of a semi-infinite solid to a sudden change of 
temperature at its surface.  To determine temperature, we integrate Equa-
tion IVa.9.5 from zero to any s:
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where T(s = 0) = T(0, t) = TS where TS is  the temperature of the semi-infinite 
solid at its surface.  To find constant c1, we use the initial condition at t = 0 and 
any x.  This implies that as ∞→s , T(s) = Ti.  Therefore; 
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as is shown in Section 3 of Chapter VIIb, 2/
0

2

π=
∞ − dse s .  By substituting 

into Equation IVa.9.6, we conclude that π/)]0([21 TTc i −= .  Thus, the tem-

perature distribution in the semi-infinite body becomes: 
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Therefore, we successfully managed to find the temperature distribution in a semi-
infinite solid subject to an instantaneous change of temperature from Ti to TS at its 
surface.  The following integral is known as the Gaussian error function and is 
plotted in Figure IVa.9.3. 

Error function: −s s dse
0

22

π
           IVa.9.8 

The penetration of the surface disturbance at any distance x from the surface at 
any time t is given by: 
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To find the heat flux at the surface, we use Leibnitz’s rule (Equation VIIc.1.26) to 
carryout differentiation of an integral.  Note that in this case, the first and the last 
terms in the right side of Equation VIIc.1.26 are zero.  Hence, the surface heat flux 
is found as: 
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Example IVa.9.1.  The surface temperature of a large aluminum slab is suddenly 
raised and maintained at 135 C.  The slab is originally at a uniform temperature of 
30 C.  Find the temperature at a depth of 20 cm and the surface heat flux 10 min 
after the event.  Aluminum properties: k = 204 W/m·C and α = 8.42E-5 m2/s.
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Solution:  We first find the argument (arg) then the related function as follows: 

arg = x/2(αt)0.5 = 0.2/2(8.42E-5 × 600)0.5 = 0.44 and the corresponding value is 
erf(0.44) = 0.466 

T = Ts + (Ti – Ts)erf(0.44) = 135 + (30 – 135) × 0.466 = 86 C 

( ) tTTkq iS πα/−=′′  = 204(135 – 30)/(π × 8.42E-5 × 600)1/2 = 53.77 kW 

Case 2. Imposition of an instantaneous heat flux at the surface.  At any time, 
the temperature of any point within a semi-infinite solid, the surface of which is 
exposed to an instantaneous and uniform heat flux, is obtained from: 
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where the complementary error function is defined as erfc(x) = 1 – erf(x).

Case 3.  Imposition of an instantaneous convection at the surface.  In this case, 
the transient is a result of exposing the surface of a semi-infinite solid to convec-
tion heat transfer.  The objective is to determine the penetration of convection 
temperature into the solid at a given time.  The solution to this problem is 
given as: 

S(x, t) = +×+−=
−
−

k

th

t

x
erfc

k

th

k

hx

t

x
erf

TT

TT

fi

f α
α

α
α 2

exp
2 2

2
      IVa.9.12 

Example IVa.9.2.  The surface of a large steel slab is suddenly cooled with flow-
ing air.  Find temperature at a depth of 15 in, 1 hour after exposure to the cold air 
at the surface.  Steel properties: k = 25 Btu/ft·h·F and α = 1.3E-4 ft2/s.  Air flows 
at Tf = 65 F and h = 10 Btu/ft·h·F.  Initial steel temperature is 850 F. 

Solution:  We first find the arguments then the values of the corresponding error 
functions: 

arg1 = x/2(αt)0.5 = (15/12)/2(1.3E-4 × 3600)0.5 = 0.914,
erf(arg1) = 0.804 

arg2 = hx/k + h2αt/k2 = 10 × (15/12)/25 + 100 × 1.3E-4 × 3600/625 = 0.575, 
exp(arg2) = 1.78 

arg3 = arg1 + h(at)0.5/k = 0.914 + 10 × (1.3E-4 × 3600)0.5/25 = 1.187,  
erfc(arg3) = 0.093 

S(x, t) = =
−

−
65850

65T
[0.804 – 1.78 × 0.093] = 0.6385 

Therefore, temperature at x = 15 in is found as: 
T – Tf = (Ti – Tf) × S(x,t).  Substituting, T = 65 + (850 – 65) × 0.6385= 566 F. 
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Now that we have dealt with three types of boundary conditions for a semi-
infinite solid, we will discuss two interesting aspects.  First, we consider two semi-
infinite solids brought in contact.  Second, we analyze the response of a semi-
infinite solid to a harmonically oscillating temperature boundary condition. 

9.2.  Semi-infinite Bodies in Contact 

Experience shows that we can sense the relative temperature of various objects in 
a room by touching.  While counterintuitive, we can explain this phenomena by 
treating our hand and the object we touch as semi-infinite solids in contact.  Each 
semi-infinite solid is originally at uniform temperature, for example Ti,1 and Ti,2,
respectively.  When these solids are brought in perfect contact (Figure IVa.9.2), 
the interface must satisfy two boundary conditions for each solid.  First, both sol-
ids must have the same temperature at the interface.  Second, the heat flux leaving 
the warmer solid must be equal to the heat flux entering the colder solid.  The as-
sumption of perfect contact allows us to use a zero thermal resistance at the inter-
face.

T2(x, t)Interface

T2, i

T1(x, t)

T1, i

k1, α 1

k2, α 2

T2(x, t)Interface

T2, i

T1(x, t)

T1, i k, α

k, α

TInterface = [T1(x, t) + T2(x, t)]/2

 (a)                                                                        (b) 

Figure IVa.9.2.  Semi-infinite solids in perfect contact (a) (ρck)1 ≠ (ρck)2 and (b) (ρk)1 = 
(ρck)2

Applying Equation IVa.9.10 and solving for the interface temperature, T1, s = T2, 

s = Ts, we find: 
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+

+
=        IVa.9.13 

Equation IVa.9.13 indicates that the surface temperature approaches the tempera-
ture of solid, which has higher ρck.  If both solids are made of the same material, 
then the interface temperature is Ts = [T1, i + T2, i]/2.  This case is shown in Fig-
ure IVa.9.2(b). 



9.  Analytical Solution of Transient Heat Conduction      491 

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Error Function

Complementary Error Function

Fu
nc

tio
n

s

s erf erfc
0 0 1

0.05 0.05637 0.94363
0.1 0.11246 0.88754
0.15 0.168 0.832
0.2 0.2227 0.7773
0.25 0.27633 0.72367
0.3 0.32863 0.67137
0.35 0.37938 0.62062
0.4 0.42839 0.57161
0.5 0.5205 0.4795
0.6 0.60385 0.39615
0.7 0.6778 0.3222
0.8 0.7421 0.2579
0.9 0.79691 0.20309
1 0.8427 0.1573

1.1 0.8802 0.1198
1.2 0.91031 0.08969
1.3 0.93401 0.06599
1.4 0.95228 0.04772
1.5 0.9661 0.0339
1.6 0.97635 0.02365
1.7 0.98379 0.01621
1.8 0.98909 0.01091
1.9 0.99279 0.00721
2 0.99532 0.00468

Figure IVa.9.3.  Gaussian error function and complementary error function 

Example IVa.9.3.  Two blocks, treated as semi-infinite solids, are brought into 
perfect contact.  The blocks are made of aluminum (α = 9.7E-5 m2/s) and are ini-
tially at 0 C and 150 C.  Find temperature at a depth of 11 cm in each block 2 min-
utes into the perfect contact. 

Solution:  Since both blocks are made of the same material (kA = kB), the slopes of 
the temperature profile are the same in the two blocks.  Hence, Ts = (0 + 150)/2 = 
75 C. 

arg = x/2(αt)0.5 = 0.11/[2(9.7E-5 × 2 × 60)0.5] = 0.5, erf(arg1) = 0.52 

S1(x, t) = =
−
−

750

751T
 0.52 and S2(x, t) = =

−
−

75150

752T
 0.52 

We find T1 = 36 C and T2 = 114 C. 
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9.3.  Semi-infinite Bodies and Harmonically Oscillating Temperature 
at the Boundary 

An example of rapidly oscillating temperature is exposure of the cylinder wall of 
an internal combustion engine to the combustible gas and the combustion prod-
ucts.  Another example, but for low frequency oscillation, includes exposure of the 
earth’s surface to the seasonal changes in the weather temperature.  Let’s treat 
earth as a semi-infinite solid and examine the latter case in more detail.  Note that 
for oscillating temperature at the boundary, we do not need an initial condition, as 
the temperature penetration is also oscillatory, satisfying the steady state solution.  
Equation IVa.2.3 still applies, however, we introduce dimensionless ratios to sim-
plify the equation.  For a sinusoidal oscillation, we show the average surface tem-
perature with T , the amplitude of the oscillation with ∆T, and the angular fre-
quency with ω.  The three dimensionless ratios are for temperature, time, and 
location: 

αωζωθ 2//and,, xt
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TT ==Ω
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We first find T in terms of θ as θTTT ∆+= .  We then carry out the derivatives 

for Equation IVa.2.3 using the chain rule for differentiation to obtain ∂T/∂x=
(dT/dζ)(dζ/dx) and ∂T/∂t= (∂θ/∂Ω)(dΩ/dt) resulting in: 
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Substituting in Equation IVa.2.3, the governing equation for harmonically oscillat-
ing boundary temperature becomes: 
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subject to tωθζ cos0 ==  and =>0ζθ  finite.  As derived by Carslaw and de-
scribed by Lienhard, we try a solution in the form of )cos( ζθ ζ −Ω= −e , result-
ing in the following answer: 
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TT x
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Example IVa.9.4.  How deep should we dig the ground in high summer to find 
the coldest part of the earth? αEarth = 0.139E-6 m2/s.

Solution:  The coldest part is due to the temperature penetration during the pre-
ceding winter.  In this case, the angular frequency is ω = 2π rad/year.  To find the 

location of Tmin, we try a solution in the following form: )cos( ζθ ζ −Ω= −e  = 
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ζζ cos−e .  Initially, Ω = ωt = 0.  To find ζ, we take the derivative of θ and set it 

equal to zero: 

( )[ ] 0sincos =+−= ζζζθ
e

dt

d

This results in ζtan  = –1, corresponding to ζ = 3π/4, 7π/4, 11π/4, etc.  For the 

first answer, we find:  4/3)2/( παω =x .  Substituting for ω = 2πN = 2 × π/(365 

× 24 × 3600) = 0.199E-6 s, we find  
x = (3π/4)/[0.199E-6/(2 × 0.139E-6)]1/2 = 2.783 m. 

9.4.  1-D Transient Heat Conduction, Plate, Cylinder, and Sphere 

Our goal here is to find analytical solutions to one-dimensional transient heat con-
duction in an infinite plate, infinite cylinder, and sphere.  In all three cases, the ob-
ject is initially at the uniform temperature of Ti and suddenly exposed to a convec-
tion boundary specified as Tf and h.  Similar to the steady state solution for a 
rectangular plate, the technique of separation of variables can be used to find ana-
lytical solutions in series form for such objects.  Heisler has shown that the center 
temperature (To) in these objects is obtained within 1% approximation by using 
only the first term of the series solution: 
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where coefficients CB and AB are only functions of the Biot number, Bi = hs/k and 
are given in Table IVa.9.1.  In Equation IVa.9.13, s = L for a slab, and s = R for a 
thin solid cylinder and solid sphere.  Equation IVa.9.13 applies only if the Fourier 
number Fo = α t/s2 > 0.2.

2R

r
r

x

h , Tf h , Tf

T(x, t = 0) = Ti
T(r, t = 0) = Ti

2R2L

Figure IVa.9.3.  Plate (slab), infinite cylinder and sphere 

Next, we examine plates, cylinders, and spheres.  The approach is to first find 
the center temperature of the object from Equation IVa.9.13 in conjunction with 
Table IVa.1.9.  Then use the center temperature to find the off center tempera-
tures. 
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Case 1.  Temperature Distribution in a Thin Plate. Having the center-plane 
temperature from Equation IVa.9.13, temperature of any other point is found 
from: 

P(x, t) = ( )LxAAC
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and the total heat transfer from: 
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where Qo = mc(Ti – Tf) where AB and CB are obtained from Table IVa.9.1. 

Case 2.  Temperature Distribution in an Infinite Solid Thin Cylinder.  In the 
case of a cylinder with diameter of 2R (s = R), having the centerline temperature 
as a function of time, temperature of any point within the infinite cylinder can be 
obtained from: 
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and the total heat transfer from: 
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0
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where AB and CB are obtained from Table IVa.9.1. 

Case 3.  Temperature Distribution in a Sphere.  In a solid sphere of diameter 
2R (s = R), temperature at any point is obtained from the center temperature as: 

( )RrA
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R
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trK B

Bfi

f
/sin),( =

−
−

=

and total heat transfer by: 

3
0

cossin
),(31
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A
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trK

Q

Q −
−=

where AB and CB are obtained from Table IVa.9.1.  Note that the arguments of the 
trigonometric functions are in radians.  Methods of the analysis of transient heat 
conduction in plates, cylinders and spheres are shown in the following examples. 
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Example IVa.9.5.  A brick wall, 30 cm thick and 80 C is suddenly exposed to an 
environment of 10 C and 120 W/m2 C.  Find temperature at 5 cm from the center 
plane 10 h after exposure.   
Brick properties; k = 0.69 W/m·C, c = 840 kJ/kg·C, and ρ = 1602 kg/m3 (α = 
5.127E–7 m2/s). 

Solution:  We first find the Biot and the Fourier numbers: 

Bi = hs/k = 120 × (0.30/2)/0.69 = 26 and Fo = 5.127E–4 × 36000/(0.15)2 = 0.82 

From Table IVa.9.1 we find AB = 1.5106 and CB = 1.2709.  From Equation 
IVa.9.14: 

P(x, t) = CBexp(– 2
BA Fo)cos(ABx/L) = [1.2709exp(–1.51062 × 0.82)]cos(1.5106 ×

5/15)= 0.171 

T = Tf + (Ti – Tf) × P(x, t) = 10 + (80 – 10) × 0.171 = 22 C. 

In the next example, we examine transient analysis in infinite solid cylinders. 

Example IVa.9.6.  A long steel cylinder with a diameter of 8 cm and an initial 
temperature of 250 C is suddenly exposed to a convection boundary of 25 C and 
500 W/m2·C.  Find the temperature at r = 0 cm and  at r = 2 cm at 2 minutes after 
the exposure. (k = 35 W/m·C, ρ = 7800 kg/m3, and c = 0.48 kJ/kg·C). 

Solution:  We need the Biot and the Fourier numbers: 

Bi = hR/k = 500 × (4/100)/35 = 0.571 and α = k/ρc = 35/(7800 × 480) = 9.35E-6 m/s2

Fo = 9.35E-6 × 120/0.042 = 0.7 
To find the centerline temperature from Equation IVa.9.13, we find coefficients AB

and CB from Table IVa.9.1 as AB = 0.996 and CB = 1.1286.  Hence, 

Co(r, t) = CBexp( Fo2
BA− ) = 1.1286exp(–0.9962 × 0.7) = 0.563 

Therefore, the center temperature is: 

To = Tf + (Ti – Tf)Co(r, t) = 25 + 0.563(250 – 25) = 152 C 

From Equation IVa.9.16 we find: 

C(r, t) = ( )RrAJtrC Bo /),( 0  = 0.563 × Jo(0.996 × 2/4) = 0.528 

Therefore, temperature at r = 2 is found as: 

T(r = 2) = Tf + (Ti – Tf)C(r, t) = 25 + (250 – 25)× 0.528 = 143.9 C 

Total heat transfer per meter of this cylinder in this period is q′ = 2135 kJ/m.  

The next example deals with transient heat conduction in spheres. 
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Example IVa.9.7.  A sphere with D = 12 cm and Ti = 300 C is suddenly exposed 
to a convection boundary of 25 C and 100 W/m2·C.  Find temperature at a radius 
of r = 0 and r = 2 cm, 85 s after the exposure.  

(k = 52 W/m·C, ρ = 7270 kg/m3, c = 420 J/kg·K). 

Solution:  We find α as: α = 52/(7270 × 420) = 1.7E-5 m2/s.
For Bi = 100 × 0.06/52 = 0.115, from Table IVa.9.1 we also find AB = 0.576 and 
CB = 1.034 

arg = Fo2
BA− = 22 / stABα−  = –(0.576)2(1.7E-5)(85)/(0.06)2 = –0.133 

To = Tf + (Ti – Tf)exp(arg) = 25 + 1.034(300 – 25)exp(–0.133) = 273.97 C 

T(r = 2) = Tf + (To – Tf)(R/ABr)sin(ABr/R) = 25 + (273.97 – 25)(6/2 × 0.576)sin(2 ×
0.576/6) 
T(r = 2) = 25 + (273.97 – 25)(5.208)sin(0.192) = 272.4 C 

Is the lumped capacitance method appropriate here?  Find the sphere temperature 
by using Equation IVa.4.2 (note, Bi << 1). 

9.5.  Multi-dimensional Transient Heat Conduction 

Analytical solution to the steady state heat conduction in a rectangular plate and to 
the transient heat conduction in infinite plates, infinite cylinders, and spheres is 
obtained by the method of the separation of variables.  In this method, temperature 
distribution is in the form of the product of various functions.  An example of such 
analytical solution is discussed in Chapter VIIb where temperature distribution is 
sought in a rectangular plate subject to one non-homogenous and three homoge-
nous boundary conditions.  Equation VIIb.2.27 gives the series solution obtained 
for this case. 

2Ly

2Lz

2Lx

Infinite
Plate

Rectangular
Parallelpiped

Infinite
Cylinder

Infinite
Plate

2R

2L

x

r

Finite
Cylinder

Figure IVa.9.4.  Obtaining multidimensional objects from one-dimensional solids 

Similar approach can be used to find transient temperature distribution in other 
objects if they can be reduced to such basic configurations for which analytical so-
lutions already exist.  For example, we can use two infinite plates to construct an 
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infinite parallelepiped.  To find temperature distribution in an infinite parallelepi-
ped, we can then multiply the solutions of the two infinite plates.  Similarly, we 
can obtain a finite cylinder from the intersection of an infinite cylinder and an in-
finite plate.  Temperature distribution in the finite cylinder is the product of the so-
lutions of the infinite plate and the infinite cylinder.  These are shown in Fig-
ure IVa.9.4 and Table IVa.9.2. 

Table IVa.9.1.  Heisler coefficients for center temperature  

Thin Plate Infinite Cylinder Sphere Biot 
Number AB CB AB CB AB CB

0.01 0.0998 1.0017 0.1412 1.0025 0.1730 1.0030 

0.02 0.1410 1.0033 0.1995 1.005 0.2445 1.0060 

0.04 0.1987 1.0066 0.2814 1.0099 0.3450 1.0120 

0.06 0.2425 1.0098 0.3438 1.0148 0.4217 1.0179 

0.08 0.2791 1.0130 0.3960 1.0197 0.4860 1.0239 

0.1 0.3111 1.0161 0.4417 1.0246 0.5423 1.0298 

0.2 0.4328 1.0311 0.6170 1.0483 0.7593 1.0592 

0.3 0.5218 1.0451 0.7465 1.0712 0.9208 1.0880 

0.4 0.5932 1.058 0.8516 1.0931 1.0528 1.1164 

0.5 0.6533 1.0701 0.9408 1.1143 1.1656 1.1441 

0.6 0.7051 1.0814 1.0185 1.1345 1.2644 1.1713 

0.7 0.7506 1.0919 1.0873 1.1539 1.3525 1.1978 

0.8 0.7910 1.1016 1.1490 1.1724 1.4320 1.2236 

0.9 0.8274 1.1107 1.2048 1.1902 1.5044 1.2488 

1 0.8603 1.1191 1.2558 1.2071 1.5708 1.2732 

2 1.0769 1.1785 1.5995 1.3384 2.0288 1.4793 

3 1.1925 1.2102 1.7887 1.4191 2.2889 1.6227 

4 1.2646 1.2287 1.9081 1.4698 2.4556 1.7202 

5 1.3138 1.2403 1.9898 1.5029 2.5704 1.787 

6 1.3496 1.2479 2.0490 1.5253 2.6537 1.8338 

7 1.3766 1.2532 2.0937 1.5411 2.7165 1.8674 

8 1.3978 1.257 2.1286 1.5526 2.7654 1.8920 

9 1.4149 1.2598 2.1566 1.5611 2.8044 1.9106 

10 1.4289 1.262 2.1795 1.5677 2.8363 1.9249 

20 1.4961 1.2699 2.2881 1.5919 2.9857 1.9781 

30 1.5202 1.2717 2.3261 1.5973 3.0372 1.9898 

40 1.5325 1.2723 2.3455 1.5993 3.0632 1.9942 

50 1.5400 1.2727 2.3572 1.6002 3.0788 1.9962 

100 1.5552 1.2731 2.3809 1.6015 3.1102 1.9990 
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Table IVa.9.2.  Solution for multidimensional solids 

Solid Geometry Semi-
infinite  
Solid

Infinite Plate Infinite 
Cylinder 

Semi-infinite Plate S(x, t) P(x, t) – 
Infinite Rectangular Bar - P1(x, t) × P2(x, t) –
Semi-infinite Rectangular Bar S(x, t) P1(x, t) × P2(x, t) –
Rectangular Parallelepiped - P1(x, t) × P2(x, t) × P3(x, t) –
Semi-infinite Cylinder S(x, t) C(r, t)
Short Cylinder - P(x, t) C(r, t)

Example IVa.9.8.  A stainless steel cylinder with a diameter of 2 in, length of 3 
in, and initial temperature of 650 F is suddenly exposed to a convection boundary 
of 65 F and 50 Btu/ft2·h·F.  Find the temperature at a radius of r = 0.5 in and 
height of 1 in from the mid-plane, 2 minutes after the exposure.  

Solution:  From Table IVa.9.2, we note that temperature distribution in a short 
cylinder is given by:  T(r, x, t) = P(x, t)C(r, t).  We then find Bi number for the 
plate and for the cylinder: 

Bi             Fo            AB CB P(x, t) C(r, t)
Plate         0.716        0.323       0.757     1.093       0.796          – 
Cylinder   0.478        0.724       0.921       1.110        –     0.569 

Hence, for the short cylinder: 

Θ(r, t) = [T(r, t) – Tf]/[Ti – Tf] = P(x, t) × C(r, t) = 0.796 × 0.569 = 0.453 

T(r, t) = 65 + (650 –65) × 0.453 = 330 F.  Also, Q = 340.22 × (3/12) = 85 Btu. 

Example IVa.9.9.  An aluminum cylinder is exposed to a convection boundary.  
Find temperature at the specified location and time. 
Data: k = 124 Btu/ft·h·F, c = 0.2 Btu/lbm·F, ρ = 170 lbm/ft3, Ti = 400 F, Tf = 50 F, 
h = 100 Btu/ft2·h·F,  2R = 2 in, 2L = 5 in, r = 0.5 in, x = 1.5 in, t = 30 s. 

Solution:  Bi(plate) = hL/k = 100(5/12)/124 = 0.168 and Bi(cylinder) = hR/k = 
100(1/12)/124 = 0.067.  We then use Table IVa.5.1 and Equations IVa.5.14 and 
IVa.5.16. 

        Bi              Fo             AB  CB P(x, t) C(r, t)
Plate             0.168         0.700        0.394         1.026         0.903              – 
Cylinder       0.067         4.376        0.363         1.017              –            0.567 

Hence, for the short cylinder: 

Θ(r, t) = [T(r, t) – Tf]/[Ti – Tf] = P(x, t) × C(r, t) = 0.903 × 0.567 = 0.512 
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T(r, t) = 50 + (400 – 50) × 0.512 = 229 F. 
Problems involving temperature distribution in solids can be easily solved by 

using the software on the accompanying CD-ROM. 

10.  Numerical Solution of Heat Conduction Equation 

As much as we try to find analytical solutions for engineering problems, there are 
many cases for which analytical solutions cannot be found.  In heat conduction, 
this occurs when we are dealing with complex geometries, when properties are 
strongly dependent on temperature, when internal heat generation rate is a func-
tion of space and time, when boundary conditions are non-linear, or in some cases 
due to all these factors combined.  Therefore, it becomes indispensable to resort to 
modeling the problem numerically and solving the set of equations by computer.  
Since numerical techniques are described in Chapter VIIe, we only apply the re-
sults in this chapter.  In the following example, a plate with a specified internal 
heat generation and unit depth is subjected to three types of boundary conditions, 
temperature, convection, and insulated boundaries. 

Example IVa.10.1.  Use the information given in the figure to find temperature 
distribution in the plate. 
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Solution:  Nodes 1, 2, 4, 5, 9, 10, 11, and 12 are interior nodes to which Equa-
tion VIIe.3.5 applies.  Nodes 3, 7, and 13 are plane surface nodes subject to 
convection boundary.  Nodes 6 and 8 are corner nodes.  Nodes 14 through 17 are 
plane surface nodes subject to insulated boundary condition.  Node 18 is on an in-
sulated boundary and also faces a convection boundary.  For internal nodes we 
have: 

Node 1:  T2 + T4 – 4T1 + 20 = – 300 
Node 2:  T1 + T3 + T5 – 4T2 + 20 = – 100 
Node 4:  T1 + T5 + T9 – 4T4 +20 = – 200
Node 5:  T2 + T4 + T6 + T10 – 4T5 + 20 = 0 
Node 9:  T4 + T10 + T14 – 4T9 + 20 = – 200
Node 10: T5 + T9 + T11 + T15 – 4T10 + 20 = 0 
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Node 11: T6 + T10 + T12 + T16 – 4T11 + 20 =0 
Node 12: T7 + T11 + T13 + T17 – 4T12 + 20 = 0 
For plane surface nodes with convection boundary we have different heat transfer 
coefficient for vertical and for horizontal planes.  For nodes on a vertical plane, 
the Biot number is Bi / 1h x k= ∆ =  whereas for nodes on a horizontal plane the 
Biot number is Bi = 75.0/ =∆ kxh :

Node 3:  2T2 + T6 +100 – 2 (2 + 1) T3 + 20 = – 100 
Node 7:  T6 + T8 + 2T12 – 2(2 + 0.75) T7 + 20 = – 1.5Tf

Node 13: 2T12 + T8 + T18 – 2(2 + 1) T13 + 20= –100

For the internal corner node subject to convection boundaries we have: 

Node 6:  2(T5 + T11) + (T3 + T7) – (6 + 1.75) T6 + 30 = – 1.75Tf

For the corner node subject to convection boundaries we have: 

Node 8:  (T7 + T13) – (2 + 1.75) T8 + 10 = – 1.75 Tf

For plane surface nodes subject to the insulated boundary we have: 

Node 14: 200 + T15 + 2T9 – 4T14 + 20 = 0 
Node 15: T14 + T16 + 2T10 – 4T15 + 20 = 0 
Node 16: T15 + T17 + 2T11 – 4T16 + 20 = 0 
Node 17: T16 + T18 + 2T12 – 4T17 + 20 = 0 

Finally, for the corner node subject to insulation and convection boundaries we 
have: 

Node 18: (T13 + T17) – (2 + 1) T18 + 10 = – Tf
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The results are shown in the figure. 
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In this example, we assumed a uniform heat generation rate.  However, if the 
rate of heat generation is a function of location, we could easily account for spatial 
dependence of the internal heat generation.  To obtain more accurate values for 
temperatures, we should use smaller mesh sizes.  The above example dealt with 
rectangular coordinates.  We can use the same procedure and solve problems in 
orthogonal but not rectangular, such as cylindrical and spherical coordinates. 

QUESTIONS

− Are homogeneous substances are necessarily isotropic? 
− Does conduction heat transfer apply only to solids? 
− Does convection heat transfer apply only to fluids? 
− What is the difference between heat flux and the linear heat generation rate? 
− Consider a solid sphere of diameter D in which heat is produced in the center of 

the sphere and is steadily removed at the surface.  Is heat flux at r = D/6 equal 
to the heat flux at r = D/3? 

− Consider a solid sphere of diameter D in which heat is produced in the center of 
the sphere and is steadily removed at the surface.  Is the rate of heat transfer at r
= D/6 equal to the rate of heat transfer at r = D/3? 

− What is the difference between a gas thermal conductivity at the viscous state 
versus the molecular state? 

− Regarding thermal conduction, what type of a substance is wood? 
− What is the thermal capacitance of silver at 300 F? 
− Define thermal diffusivity.  Consider solids A and B being at the same tempera-

ture.  However, solid A hasa higher thermal diffusivity than solid B.  Which is 
more effective in transferring than in storing energy? 

− Is aluminum more effective in storing energy than zinc at the same tempera-
ture?

− Define thermal resistance.  One side of a plate is warmer than the other side.  Is 
thermal resistance in this plate inversely related to the thickness of the plate?   

− What is radiation heating?  If a plate is bombarded by γ-radiation why is there a 
maximum temperature in the plate?  How do you find the location and the mag-
nitude of the maximum temperature? 
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− How do you define the heat transfer coefficient?  What is the range of h in free 
convection for gases? 

− A thin disk is being welded at a point located at r and θ with 0 < r < D/2 and 0 
< θ < 2π and D is the disk radius.  Is temperature distribution in this disk 1-D?  
What coordinate system do you use to find temperature distribution in the disk? 

− What is the difference between heat transfer coefficient and the overall heat 
transfer coefficient? 

− Temperature difference across a fuel pellet, operating at q′ = 10 kW/ft is 700 F.  

Maintaining the same q′ , what is the change in temperature gradient across the 

pellet if the pellet diameter was 10% smaller? 
− What is the advantage of an annular fuel as compared with a solid fuel pellet? 
− A cylinder has Fo = 0.05.  Is the Heisler solution applicable to this cylinder? 
− What is the advantage of analytical solution compared with numerical solutions 

or experimental correlations? 

PROBLEMS 

Sections 1 and 2 

1.  Find an average thermal conductivity for copper in the temperature range of 
200 F to 600 F. 

2.  Two plates are placed in a container.  The gap between the plates is 0.01 
inches.  A vacuum pump is used to remove air from the container.  However, a 
small amount of air has remained in the container so that air pressure is measured 
as 0.1 mbar.  Can the air thermal conductivity be obtained from Figure IVa.1.1? 

3.  Thermal conductivity of a substance is measured as oo /TTkk = .  Find an 

average value for thermal conductivity in the temperature range of T1 and T2.

[Ans.  )/())(2/( 12
2/3

1
2/3

2
2/1

oo TTTTTkk −−= ].

4.  Heat is being generated in a fuel element at a volumetric heat generation rate of 
q ′′′  = 1300 kW/m3.  The fuel element is a rectangular parallelepiped of thickness 2 
cm with a height of 2 m and width of 1 m.  The fuel thermal conductivity is k = 
3.5 W/m·C.  Find the rate of heat transfer from the fuel element at steady state 
condition.  [Ans.: 52 kW]. 

5.  Heat at a rate of 5 kW is being uniformly produced in a solid cylinder.  The 
cylinder has a diameter and a length of 2 cm and 4 m, respectively.  Find a) the 
volumetric and the linear heat generation rates for this cylinder and b) heat flux at 
r = D/2.  [Ans.:  q′  = 0.25 kW/m, q ′′  = 19.9 kW/m2, and q ′′′  = 3979 kW/m3].

6.  Consider a solid spherical fuel in which heat at a rate of 1 kW is uniformly 
produced in the solid sphere and is removed steadily at the surface.  The sphere 
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has a radius of 1 cm.  Find the volumetric and the linear heat generation rates for 
this sphere.   

7.  Derive Equation IVa.2.1 from the general form of the conservation equation for 
energy as given by Equation IIIa.3.23. 

8.  A large block of concrete with a thickness of 50 cm is exposed to thermal ra-
diation resulting in the surface temperature to be maintained at 100 C.  If the op-
posing surface is kept at 50 C, find a) the rate of heat transfer at steady state condi-
tion per unit surface area and b) temperature at a distance 30 cm from the hot 
surface.  Assume the concrete thermal conductivity remains constant throughout 
the block at 1.4 W/m·K.  [Ans.:  a) 140 W/m2 and b) 70 C]. 

9.  A large sheet of steel is exposed to a temperature of 250 C.  The sheet has a 
thickness of 5 cm and looses heat to an area maintained at 85 C.  Find the rate of 
heat transfer at steady state condition.  The heat transfer coefficients from the hot 
side to the sheet is 45 W/m·K and from the sheet to the room is 8 W/m·K. 

10.  A garment is rated at 150 F for ironing.  An iron is set at 200 W.  Is this set-
ting appropriate?  Assume heat flows primarily from the surface for ironing, hav-
ing an area of Airon = 0.4 ft2.  Other data include h = 10 Btu/ft2·h·F and Tambient = 70 
F.  [Ans.:  Tiron = 240 F]. 

11.  As shown in the figure, two plates made of the same material and having con-
stant k are exposed on one side to hot water at Tw and hw and on the other to cold 
air at Ta and ha.  Using the direction of the x-axis as shown, write the boundary 
condition at a) x = 0 and b) x = L for each case. 
[Ans.  a- at x = 0, B.C.: hw(Tw – T1,0) –[–kdT1/dx]0 = 0 and [kdT2/dx]0 – ha(T2,0 – 
Ta)].
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Ta
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Tw
hw

x

1 2

      Figure for Problem 11                                                           Figure for Problem 20 

Section 4 
12.  A piece of copper wire is initially at 150 C.  We now expose this wire to air at 
38 C.  Find a) the rate of heat transfer at the moment of exposure and b) compare 
this rate of heat transfer to the rate of heat transfer from thermal radiation at the 
moment of exposure.   

Data:  For copper at 150 C; k = 374 W/m·K, c = 381 J/kg·K, ρ = 8938 kg/m3, ε
= 0.8.  The heat transfer coefficient is h = 5 W/m2·K.  [Ans.:  Initial heat loss is 
64% due to radiation and 36% due to convection]. 
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13.  A small copper ball is placed in a room to cool down.  Assuming the room 
temperature and the heat transfer coefficient remain constant throughout the tran-
sient, find the time at which the sphere temperature reaches half of its initial value.  
Data: d = 1 cm, Ti = 200 C, Tf = 27 C, h = 8 W/m2·C.  [Ans.: 10 min]. 

14.  An fuel ball, originally at 100 F is suddenly exposed to a convection bound-
ary.  Find the time it takes the fuel to reach 99% of the free stream temperature.  
Data: d = 1 in, Tf = 550 F, h = 180 Btu/h·ft2·F.  Fuel density = 750 lbm/ft3 and fuel 
specific heat = 0.05 Btu/lbm·F. 

15.  Consider a fuel pellet of volume V, surface area A, density ρ, and specific 
heat c.  The pellet is initially at temperature Ti.  At time zero, heat is produced in 
the pellet at a constant rate of Q .  At the same time, the pellet is exposed to the 
surroundings being at the constant free stream temperature of Tf.  The heat transfer 
coefficient between the pellet and the free stream is h.  Assuming a lumped heat 
capacity method applies a) set up the governing differential equation, b) show that 
the pellet temperature versus time (t) is given as: 

( ) τ
ρ

τ
ρ

τ
VV

)( /

c

Q
e

c

Q
TTTtT t

fif ++−+= −

where τ = ρcV/hA and c) find the pellet equilibrium temperature (i.e., when t >> 
τ).  [Hint:  Use Equation IIa.6.4 to obtain the governing differential equation.  
Then use Equation VIIb.2.5 to solve the equation]. 

16.  Use the result of the above problem to plot temperature versus time for a cy-
lindrical pellet subject to the simultaneous internal heat generation and exposure 
to a convection boundary at time zero.  Data:  d = 1.00 cm, h = 1.00 cm, ρ = 10.4 

g/cm3, c = 0.35 kJ/kg·K, Ti = Tf = 65 C, h = 1200 W/m2·C, Q  = 0.05 kW.  Use t1 = 

0.001 s, t2 = 0.7 s, t3 = 1 s, t4 = 3 s, t5 = 6 s, t6 = 9 s, t7 = 20 s, t8 = 30 s, t9 = 50 s, 
and t10 = 100 s. 

Section 5 
17.  Shown in the figure is a storage facility built in the shape of a parallelepiped.  
Details of the walls and the roof are also shown.  The thickness of the paint, is 
5 mm.  The thickness of the sheet rock, insulation, and brick is 4 cm, 15 cm, and 5 
cm, respectively.  Estimate the heat loss in a Winter day where Tf = 0 C and the in-
door temperature is maintained at 25 C.  Use hi = 4 W/m K and ho = 10 W/m K. 

Paint

50 m

40 m

10 m

Sheet rock

Insulation

Brick

Metal

Fiberglass
Insulation

Figure for Problem 17                                                Figure for Problem 18 
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18.  Consider the fiberglass insulation in a kitchen oven, which is sandwiched be-
tween two sheets of metal.  The maximum temperature on the inside surface of the 
oven may reach 260 C.  Find the minimum thickness of the fiberglass insulation to 
ensure that the temperature on the outside surface of the oven does not exceed 
40 C.  The kitchen temperature varies between 18 C to 37 C.  The heat transfer 
coefficient between the oven surface and the kitchen is 15 W/m2·K.  The thermal 
conductivity of fiberglass is kfiberglass = 0.04 W/m·K. 

19.  Compare the heat losses from a single-pane with a double-pane window.  In a 
cold Winter day, the room temperature is maintained at 23 C while the outside 
temperature is –10 C.  The glass thickness is 5 mm and the 2 cm gap in the dou-
ble-pane window is filled with stagnant air.  The inside and outside heat transfer 
coefficients are 5 W/m2·K and 20 W/m2·K, respectively.  Use kglass = 1.4 W/m·K 
and kair = 0.025 W/m·K. 

20.  The two plates of Problem 11 made of the same material and having constant 
k are exposed on one side to hot water at Tw and hw and on the other to cold air at 
Ta and ha.  Find a) the equation for temperature profile in these plates and b) tem-
peratures at x = 0 and at x = L if hw = ha = h.
[Ans.:  a) 211 )( cxcxT +=  where, c1 = hw(Ta – Tw)/c3 and c2 – Ta = – hw(haL + 

k)(Ta – Tw)/(hac3) where c3 = (k + hwL + hwk/ha)].

21.  The 1 ft thick walls of a building are made of concrete (k = 2 Btu/h·ft·F).  The 
outside temperature and heat transfer coefficient are 50 F and 2 Btu/h·ft2·F, re-
spectively.  Find the rate of heat transfer through 1000 ft2 of the wall if the inside 
temperature and heat transfer coefficient are 120 F and 1 Btu/h·ft2 F, respectively.  
Both the inside and the outside of the wall are coated with 20 mils of paint (k = 0.1 
Btu/h·ft·F) where 1 mil = 1E-3 in.  Compare the results with a bare wall. 

22.  Shown in the figure is a thermocouple well to measure the temperature of a 
high pressure fluid flowing at a distance δ1 from the wall.  The piping and the 
thermocouple well are made of steal.  Use the given data to estimate the error in 
the thermocouple measurement of the fluid temperature.

Tf

Tw

a
b

δ1Tw

Tc

c
d

δ2

Tc

Data: Tf = 120 F (49 C), Tw = 60 F (15.5 C), kf = 0.1 Btu/h·ft·F (0.173 W/m·C), 
kw = 10 Btu/h·ft·F (17.2 W/m·C), h = 20 Btu/h·ft2·F (113.6 W/m2·C), a = 0.625 in 
(1.587 cm) b = 0.5 in (1.27 cm), c = 0.25 in (0.635 cm), d = 0.125 in (0.3175 cm), 
δ1 = 0.5 in (1.27 cm), δ2 = 2 in (5.08 cm).  Ignore thermal radiation. 
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23.  Surface temperature of a bare slab fuel (2L = 2 cm, k = 3.5 W/m C) is 300 C.  
The volumetric heat generation rate in the slab is q ′′′  = 1300 kW/m3.  Find the 

temperature of points located on a vertical plane 0.5 cm from the center plane.  
[Ans.:  314 C]. 

24.  Fuel slabs are used in an experimental reactor.  Find the maximum fuel tem-
perature for the following data Tf = 1090 F, L = 0.25 in, δ = 0.025 in, kF = 1 
Btu/ft·h·F, kC = 3 Btu/ft·h·F, h = 350 Btu/ft2·h·F, and q ′′′  = 1.0E7 Btu/ft3·h.  [Ans.:  

4000 F]. 

25.  Surface temperatures of a plate are maintained at T0(x = 0) and TL(x = L).
Thermal conductivity of the plate in the temperature range of interest remains con-
stant.  Find temperature distribution in the plate for a constant volumetric heat 

generation rate.  [Ans.: ξξξ )()1)(2/()( 0
2

0 TTkLqTxT L −+−′′′=−  where ξ = 

x/L].

26.  Surface temperatures of a plate are maintained at T0(x = 0) and TL(x = L).
Thermal conductivity of the plate in the temperature range of interest remains con-
stant.  Find a) the maximum temperature in the plate and b) the location of the 
maximum temperature for a constant volumetric heat generation rate.  

[Ans.: )2/)(1( Lx λ+=  where )2//()( 2
0 kLqTTL ′′′−=λ ].

27.  Derive Equation IVa.5.16 directly from an energy balance using the elemental 
control volume of Figure IVa.5.7. 

28.  Gamma radiation is bombarding an iron plate as shown in the Figure.  Tem-
peratures of the surface at x = 0 and at x = 15 cm are maintained at 371 C and 260 
C, respectively.  Find the maximum temperature and its location in the plate.  Also 
find temperature at 1 cm from the side facing the irradiation and the rate of heat 
removal from the side not being irradiated.  k = 48.5 kW/m·K, µ = 24.6 m–1.
[Ans.:  Tmax = 594 C, xmax = 4.8 cm]. 

15 cm= 19,600 kW/m3
0q ′′′

x

T (x = 0) = 371 C T (x = 15 cm) = 260 C

29.  Gamma radiation is bombarding an iron plate as shown in the figure.  A con-
vection boundary condition of Tf = 150 C and h = 200 W/m·K removes heat from 
the plate.  Find the maximum temperature and its location in the plate.  Also find 
temperature at 1 cm from the side facing irradiation and the rate of heat removal 
from the side not being irradiated.  k = 48.5 kW/m K, µ = 24.6 m–1.
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15 cm= 19,600 kW/m3
0q ′′′

x

Tf  = 150 C
h = 200 W/m K

Tf  = 150 C
h = 200 W/m K

30.  Regarding the radiation heating of a spent fuel pool wall, we want to deter-
mine the maximum temperature in the concrete.  In the solution, you must account 
for heat generation in both steel and concrete.  The rate of heat generation in these 
mediums follows an exponential profile, xeqxq µ−′′′=′′′ 0)( .  Find the maximum 
temperatures and their locations in both steel liner and concrete.  Subscripts a, c, s,
and w are used for air, concrete, steel liner, and water, respectively. 

Spent Fuel Pool

Steel Liner
Concrete

Ta
ha

Tw
hw

Air
Water

Lδ

xs
xc

Tw (F):
Ta (F):
hw (Btu/h ft2 F):
ha (Btu/h ft2 F):
ks (Btu/h ft F):
kc (Btu/h ft  F):

130
100
50
1

sq ′′′ (Btu/h ft3 F):

cq )( 0′′′  (Btu/h ft3 F):

10
0.8
1500
400

δ (in):
L (ft):
µ

c
 (ft-1): 5

5
0.5

µ
s
 (ft-1): 14

Section 6 
31.  A dry shielded canister (DSC) is a hermetically sealed circular cylinder, con-
taining spent nuclear fuel assemblies for long time storage.  Consider a design in 
which the DSC is filled with helium and placed horizontally for passive cooling in 
the ambient.

Fuel
Assembly

Dry Shielded
Canister

L

Tf
 ho

Do
Di

If there are 26 fuel assemblies in a DSC and each fuel assembly produces a de-
sign decay power of 0.5 kW, estimate the amount of helium mass the DSC should 
be filled with so that at the thermodynamic equilibrium, the helium pressure does 
not exceed 5 psig.  Assume Tf = 105 F, Do = 68 in, Di = 65 in, L = 10 ft, ho = 10 
Btu/h·ft2·F.  The DSC shell is made of stainless steel.  The end plates have the 
same thickness as the shell and are made of the same material.  An internal heat 
transfer coefficient of hi = 20 Btu/h·ft2·F is found to represent the combined ther-
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mal radiation, heat conduction, and heat convection inside the canister.  Ignore 
thermal radiation from the canister to the ambient. 

32.  A bare fuel rod has a diameter of 0.373 in and length of 12 ft.  The volumetric 
heat generation rate for this rod is =′′′q  10,000 kW/ft3.  The heat produced by the 
rod is removed by water used as the coolant, at 2250 psia and 575 F.  Find the heat 
transfer coefficient between the bare fuel rod and the coolant.  The fuel rod sur-
face temperature is 675 F.  [Ans.:  h = 2651 Btu/h·ft2·F].

33.  Working fluid at 35 F flows in a 2 in pipe.  Ambient temperature is 125 F.  
The pipe is covered with 2 layers of insulation each having a thickness of 5 in with 
k1 = 0.015 Btu/ft·h·F and k2 = 0.04 Btu/ft·h·F.  The pipe is 0.2 in think with k = 8 
Btu/ft h F.  Find the rate of heat transfer to the working fluid in 100 ft of pipe.  As-
sume ha = 200 Btu/ft2·h·F and hb = 15 Btu/ft2·h·F.  [Ans.:  UA = 5 Btu/h·F and Q =
454.5 Btu/h]. 

34.  A steam pipe, made of copper, has an inside diameter of 5 cm and an outside 
diameter of 6.2 cm.  To reduce thermal loss to the surroundings, the pipe is insu-
lated with 2.55 cm thick fiberglass.  An aluminum foil of thickness of 0.2 mm 
covers the insulation.  Find the rate of heat loss from the pipe using the following 
data:  hi = 142 W/m K, Ti = 150 C, ho = 68 W/m K, To = 27 C, Lpipe = 98.5 m.  
[Ans.:  0.43 kW]. 

35.  Superheated steam flows in an insulated pipe.  Find the rate of heat loss for 
the following data. 

Region   di (cm) do (cm)  k (W/m·K) 
Pipe   89.0     92.0         50. 
Paint   92.0     92.2         3.0 
Insulator 1  92.2     100.0         0.2 
Insulator 2  100     120.0         0.1 

Additional data: Ta = 350 C, ha = 1000 W/m2·K, hb = 20 W/m2·K, Tb = 20 C, L

= 100 m.  [Ans.:  UA = 271.3 W/C and Q  = 0.3 MW]. 

36.  Find the surface temperature, surface heat flux, and linear heat generation rate 
of an electric resistor.  The resistor is in the form of a solid cylinder of diameter 
0.2 in and k = 50 Btu/h·ft·F.  Heat is produced uniformly in the cylinder so that 

=′′′q 5E7 Btu/h·ft3.  Assume the center temperature is maintained at 300 F.  [Ans.:  
282.6 F, =′′q  2.08 Btu/h·ft2, and =′q  3.2 kW/ft]. 

37.  A long and slender shaft of diameter 2R and length L1 + L2 is insulated over 
length L1 and produces heat only in this section while over length L2, it is exposed 
to a convection boundary (h, Tf).  Write the governing differential equations and 
the associated boundary conditions from which temperatures in sections L1 and L2

can be obtained.  Both ends may be treated as adiabatic surfaces. 
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2R
L1 L2

q ′′′
x

h, Tf

38.  An electric resistor, R = 0.1 in, is steadily generating heat at a rate of q ′′′  = 

5E7 Btu/h·ft3.  The centerline temperature is maintained at 300 F, find surface 
temperature, surface heat flux, and q′ . k = 50 Btu/ft·h·F.  [Ans.:  Ts = 282.6 F, 

q ′′ = 2.1E5 Btu/h·ft2, and q′  = 3.2 kW/ft]. 

39.  A fuel rod of a PWR consists of about 320 solid fuel pellets inside a zircaloy 
cladding.  Use the specified data to plot the distribution of temperature in the fuel 
rod.  The temperature distribution should include the fuel region, the gap region, 
the cladding region, and end at the bulk coolant for two cases of low and high lin-
ear heat generation rates.  Data:  DFuel = 0.96 cm, DInside Clad = 0.985 cm, DOutside Clad

= 1.12 cm, kFuel = 1.73 W/m C, kClad = 5.2 W/m·C, TWater = 300 C, Lowq′  = 5 kW/ft 

(164 W/cm), and Highq′  = 15 kW/ft (492 W/cm).  The heat transfer coefficient 

from the fuel rod to bulk coolant is 34 kW/m2·C.  The heat transfer coefficient in 
the gap region is 5.7 kW/m2·C for the low and is 11.4 kW/m2·C for the high linear 
heat generation rate. 

40.  Use the following data to plot the temperature distribution in a cylindrical fuel 
rod for a) a linear heat generation rate of 5 kW/ft and b) a linear heat generation 
rate of 15 kW/ft.  Data:  Fuel diameter = 0.377 in, Clad inside diameter = 0.388 in, 
Clad outside diameter = 0.44 in, fuel thermal conductivity = 1 Btu/h·ft·F, cladding 
thermal conductivity = 13 Btu/h·ft·F, gap heat transfer coefficient = 1000 
Btu/h·ft2·F.  Heat transfer coefficient to coolant is 6000 Btu/h·ft2·F and coolant 
temperature is 575 F.  The fuel has a central hole but no coolant flows in the cen-
tral hole.  The hole has a diameter of 0.04 in. 

41.  Find the maximum temperature and its location in a two-stream annular fuel 
rod with inner and outer cladding.  Ti = 350 C, To = 340 C, hi = 10,000 W/m2 C, ho

= 8,000 W/m2·C, kF = 3.5 W/m·C, kC = 11 W/m·C, q′  = 9 kW/ft, d1 = 5 mm, d2 = 
9 mm, d3 = 17 mm, d4 = 21 mm. 
[Ans.: c1 = 141, c2 = 1250, c3 = 965, c4 = 5970, c5 = –282, c6 = –908, rmax = 6.11 
mm, Tmax = 568.6 C]. 

42.  A fuel rod is producing heat at a rate of 8 kW/ft.  The rod has a central hole.  
Helium flows over the rod as well as inside the central hole.  Find the maximum 
temperature and its location for this fuel rod.   

Fuel geometry data:  diameter of the central hole: 0.25 in, thickness of the inner 
clad: 1/8 in, outside diameter of fuel: 1 in, thickness of outer clad: 1/8 in.  Thermal 
conductivity data:  clad: 30 Btu/h·ft·F, fuel: 1 Btu/h·ft·F.  Temperature and heat 
transfer coefficient data: bulk fluid temperature in the central hole: 595 F, heat trans-
fer coefficient in the central hole: 3000 Btu/h·ft2·F, bulk fluid temperature outside 
the fuel rod: 590 F, heat transfer coefficient outside fuel rod: 2500 Btu/h·ft2·F.
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43.  A two-stream annular fuel rod includes inner and outer cladding.  Use the fol-
lowing data and determine equation for temperature as a function of radius for the 
inner clad, fuel, and the outer clad regions.  Also find the maximum temperature 
and its location.   

Data: R1 = 0.25 in, R2 = 0.27 in, R3 = 0.55 in, R4 = 0.58 in, q′  = 11 kW/ft, kF = 

3.5 W/m·C, kC = 11 W/m·C, Ti = 350 C, To = 300 C, hi = 6,000 W/m2·C, ho = 4500 
W/m2·C. 

[Ans.:  r(Tmax)= 0.39 in, Tmax = 546 C, Tci = 182lnr + 1330, TF = –5.543E6r2

+1090lnr + 6120, Tco = –332lnr –1040 where r is in meter and T in degrees Centi-
grade].

44.  Plot the steady state temperature distribution for the fuel rod of Problem 43. 
[Ans.:  The key temperatures are Tfi = 350 C, T(R1) = 409 C, T(R2) = 423 C, Tmax = 
546 C, T(R3) = 0.378 C, T(R4) = 360 C, Tfo = 300 C.  Find the temperature of sev-
eral other points, especially in the fuel region]. 

45.  Two rigid circular cylinders, in perfect contact are pressed together by the ac-
tion of force F.  Initially, the cylinders are in thermal equilibrium with the ambient 
at temperature Tf.  At time zero cylinders begin to rotate at nominal speeds of ω1

and ω2 as shown in the figure.  The bottom cylinder rotates clockwise and the up-
per cylinder rotates counterclockwise.  The coefficient of dry friction between the 
cylinders is µ.  The heat resulting from the friction of the rotating cylinders, raises 
their temperature.  Heat transfer coefficient for the upper cylinder surface area is 
hs1 and for the horizontal area is ha1.  Similarly, heat transfer coefficient for the 
bottom cylinder surface area is hs2 and for the horizontal area is ha2.  Use these 
data and those given in the figure to a) write the differential equations from which 
temperature distribution in each cylinder can be obtained and b) identify the initial 
and the boundary conditions. 

H1

H2

R

ω2

ω1

F

[Hint:  Temperatures are obtained from Equation IVa.2.7 with ∂T/∂θ = 0 due to 
symmetry in the θ direction.  There are 2 initial and 8 boundary conditions]. 

46.  Find the governing differential equation for temperature distribution in 
spheres with symmetry in θ and φ directions.   
[Ans.  1/r2 d/dr(r2dT/dr) + q ′′′ /k = 0]. 

Section 7 
47.  Derive the temperature profile in a thick-wall sphere for a temperature bound-
ary condition (i.e., T(r1) = T1 and T(r2) = T2).  {Ans.:  T(r) =  [(A/r) – B]/C where 
A = (r1r2T1 – r1r2T2), B = r1T1 – r2T2, and C = r2 – r1}.
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48.  Derive a temperature profile in a thick-wall sphere for a convection boundary, 
h1[Tf1 – T(r1)] = –kdT(r1)/dr and h2[T(r2) – Tf1] = –kdT(r2)/dr.  {Ans.:  T = Tf1 – 

[(Tf1 – Tf2)/B][A – 1/r] where A = 1/r1 + k/h1
2

1r  and B = C + D where C = 1/r1 – 

1/r2 and D = k/h1
2

1r  + k/h2
2

1r

49.  To find the thermal conductivity of a substance, two hemispheres of this sub-
stance are made to form a sphere.  A heat source is placed in the center of this 
sphere.  Assuming perfect contact of the two halves and isotropic heating of the 
inner surface, use the given data to find thermal conductivity.  [Ans.:  2 W/m·K]. 

r1

r2

r
dr

T1

T2

R1 =

R2 =

T1 =

T2 =

10 cm

15 cm

340 C

300 C

Q = 300 W

50.  A thick-wall spherical container is filled with a hot liquid.  A pump circulates 
the liquid to maintain the bulk temperature at 150 C.  Ignore temperature gradient 
in the liquid.  Find temperature in the middle of the wall and the energy required 
to keep liquid temperature at 150 F for an hour.  Di = 3 m, δwall = 20 cm, k = 20
W/m·C, Tfi = 150 C, Tfo = 25 C, hi = 500 W/m2·C, and ho = 10 W/m2·C. 

51.  A spherical fuel element has a center temperature of 3600 F.  The fuel ele-
ment is covered by two layers of coating.  The fuel ball is cooled by helium.  Find 
the rate of heat transfer.  Data:  rfuel = 0.5 in, r1 = 0.7 in, r2 = 0.9 in.  kfuel = 2 
Btu/ft·h·F, kcoating = 7 Btu/ft·h·F, Tf = 700 F and h = 5000 Btu/ft·h·F.  [Ans.:  4100 
Btu/h]. 

52.  Derive the temperature profile in a hollow and bare spherical fuel ball.  [Ans.:  

T = –( q ′′′ /6kF)r2 – c1/r + c2 where c1 = q ′′′ 3
1r /3kF and c2 = Tf + c1[α – (βkF/h)]

where α = 1/r2 + 2
2r /2 3

1r  and β = r2/
3

1r  + 1/ 2
2r ]

Section 8 
53.  A stainless steel spoon is used to stir hot tea maintained at 49 C.  The spoon 
can be approximated as a rectangular parallelepiped having a length of 15 cm, a 
width of 6 mm and a thickness of 2 mm.  The exposed length of the spoon to the 
ambient at 18 C is 5 cm.  Find a) the rate of heat loss from the spoon assuming an 
average heat transfer coefficient of 6 W/m2·K with the ambient and b) fin effi-
ciency.  [Ans.:   0.1 W, 25%]. 

54.  As shown in the figure, to dissipate heat from an electrical appliance, thin 
plates of metal with a thermal conductivity of 10 Btu/h·ft·F are used.  Find the 
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number of the plates to dissipate 10.55 W at steady state operation.  Data:  Tbase = 
85 F, Tf = 65 F, h = 1 Btu/h·ft2·F, L = 10 in, b = 1 in, δ = 0.03 in.  [Ans.:  15]. 

55.  A longitudinal fin of triangular profile is made of aluminum.  The base tem-
perature is 350 C.  The top and the bottom of the fin are exposed to a convection 
boundary given as Tf = 30 C and h = 50 W/m2·K.  Find a) the fin temperature at x = 
l/2 and b) the heat removed by the fin.  Additional data:  b = 1 cm and l = 1.5 cm. 

56.  An annular fin is used to cool an internal combustion engine.  Find a) the total 
rate of heat transfer from the fin b) fin temperature at r = rt/2, c) fin effectiveness, 
defined as the rate of heat loss from the fin to the rate of heat loss without the fin, 
and d) fin efficiency, defined as the rate of heat loss from the fin to the rate of heat 
loss from the fin if the entire fin were at the base temperature.  The fin is made of 
commercial bronze.  Data:  rt = 20 cm, rb = 10 cm, fin thickness = 5 mm, base 
temperature = 250 C, Tf = 15A C, and h = 100 W/m·K.   
[Ans.:  T(15 cm) =  a) 136 C,  b) 611 W,  c) about 8.3, and  d) about 52%]. 

57.  A longitudinal fin of rectangular profile is used to enhance heat removal from 
a wall maintained at 450 F.  The fin is made of carbon steel.  The fin is exposed to 
a convection boundary.  Find a) temperatures at the tip of the fin and b) the rate of 
heat loss from the fin, c) fin effectiveness, defined as the rate of heat loss from the 
fin to the rate of heat loss without the fin, and d) fin efficiency, defined as the rate 
of heat loss from the fin to the rate of heat loss from the fin if the entire fin were at 
the base temperature.  Fin length = 1 in, fin thickness = 1/8 in, fin width = 6 in, 
Tf = 72 F, h = 5 Btu/h·ft2·F.  [Ans.: b) 159 Btu/h]. 

58.  We plan to design an engine with an outside diameter of 10 cm and height of 
12 cm.  The outside surface is at 200 C.  Several means of cooling the engine are 
to be evaluated including the use of cylindrical spines.  The spines to be evaluated 
have a diameter of 1 in and a length of 3 cm.  Find a) the amount of heat removed 
by a total of 240 equally spaced spines and b) find the fin efficiency.  Assume the 
surface temperature is uniform over the entire surface of the engine.  Data:  k = 50 
W/m·K, Tb = 200 C, Tf = 12 C, and h = 13 W/m2·K.  [Ans.:  a) 0.6 kW]. 

59.  A pressure vessel containing a mixture of water and steam is shown in the 
figure.  The flange attached to the vessel head is secured tightly to the lower 
flange attached to the rest of the vessel by 24 bolts.  If  the base temperature in the 
bolt at the connection to the upper nut is 350 F, find the amount of heat lost by the 
last 3 in of the stainless steel bolts.  Use Tf = 70 F, hf = 1 Btu/h·ft2·F, and kBolt = 10 
Btu/h·ft·F.  [Ans.  0.125 kW]. 

L

b

δ

1"

3"

10"

D = 1 m

DFin = 1.2 m

Figure for Problem 54              Figure for Problem 59                     Figure for Problem 60 
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60.  A pipe carrying superheated steam is equipped with an expansion joint to pre-
vent structural damage in the case of temperature driven transients.  The expan-
sion joints are thin stainless steel plates welded at the tip to other plates and at the 
base to the steel pipe.  Find the amount of heat loss to the surroundings in the case 
where the plates are not insulated.  There are 3 sets of expansion joints as shown 
in the figure.  In the pipe, steam is flowing at 150 C while the surrounding is at 
20 C.  Additional data: ha = 250 W/m·K, hb = 15 W/m·K. 

61.  Due to the manufacturing preferences, only three types of fins are to be con-
sidered for the cooling of an air-cooled internal combustion engine..  These are 
annular fins with rectangular profile, straight fins of uniform cross section, and pin 
fins (cylindrical spines).  The cylinder height is 20 cm and has a base diameter 
(2r1) of 8 cm.  All fins have insulated tips.  The cylinder base temperature is 200 
C, the cooling air temperature is 30 C, and the heat transfer coefficient is esti-
mated at about 50 W/m2·K.  Fins are spaced equally and uniformly.  Subscripts A,
S, and P are used to represent annular fin, straight fin, and pin fin, respectively.  
Use the following data to find: a) the rate of heat removal from each type of fin 
and b) temperature at the tip (r = r2) of each fin. 

δΑ

L

r2

r1

L

r1

δS

r2

L

r2

r1

δP

Data: L = 20 cm, r1 = 4 cm, r2 = 9.55 cm, δA = 8 mm, δS = 3 mm, dP = 2 cm, 
NA = 4, NS = 6, NP = 36. 

62.  Two cylindrical aluminum spines, having equal length and equal outside di-
ameter are attached to a hot wall.  One of the spines is made of a solid rod and the 
other is a pipe.  Compare the rate of heat loss from these otherwise identical fins.  
The outside diameter is 5 cm and the pipe inside diameter is 4 cm.  The wall is at 
300 C and the ambient temperature and heat transfer coefficient are 35 C and 
15 W/m2·K, respectively.  Assume the same heat transfer coefficient for the inside 
of the pipe. 

Section 9 
63.  Consider two blocks of nickel, treated as semi-infinite solids.  Initially, one 
block is at 0 C and the other at 100 C.  We now bring these blocks in contact.  Ig-
nore the contact thermal resistance and find the temperature of a point located 
5 cm from the common boundary in either block, 5 minutes after the contact.  Use 
αNickel = 2.3E-5 m2/s.  [Ans.:  34 C and 66 C]. 
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64.  Consider two blocks treated as semi-infinite solids.  One block is made of 
copper and the other of stainless steel.  Initially, the block made of copper is at 0 C 
and the block made of stainless steel at 100 C.  We now bring these blocks in con-
tact.  Ignore the contact thermal resistance and find the temperature of a point lo-
cated 5 cm from the common boundary in either block, 5 minutes after the contact. 

65.  A PWR pressurizer is at 2200 psia.  A sudden outsurge results in all the water 
leaving the pressurizer.  Find the temperature at a depth of 1 in, 10 minutes into 
the event.  Steel properties; k = 25 Btu/ft·h·F and α = 1.3E-4 ft2/s. h = 75 
Btu/ft·h·F.  Initial water volume 850 ft3.  Pressurizer volume 1700 ft3.  [Hint:  Ti = 

Tsat(2200 psia) = 649.5 F and Tf = Tsat(P2) where P2 = P1
k)/VV( 21 ].  (Ans. P2 = 

875 psia, Tf = 528.6 F, arg1 = 0.15, arg2 = 0.952, arg3 = 0.988, and T = 545 F) 

66.  A long steel rod is suddenly exposed to a convection boundary.  Find the tem-
perature at r = 0.35 in after a duration of 75 s .  Data:  rod diameter = 2 in, k = 20 
Btu/ft·h·F, c = 0.1 Btu/lbm·F, ρ = 488 lbm/ft3, Ti = 550 F, Tf = 75 F, h = 
100 Btu/ft2·h·F.  [Ans.:  To = 282 F, T(r = 0.35 in) = 277 F, Q = 305 Btu/ft]. 

67.  A long slender steel bar initially at 400 C is exposed to a convection boundary 
of Tf = 35 C and h = 375 W/m2·C.  The bar diameter is 5 cm.  Find the temperature 
at r = 0.75 cm after 85 seconds of exposure.   
[Ans.:  To = 241.5 C, Tr = 239 C]. 

68.  Aluminum balls are heated up to 580 K and then exposed to air at 283 K to 
cool down with an average heat transfer coefficient of 25 W/m2·K.  The balls are 3 
cm in diameter.  Find the temperature at r = 0.5 cm after 75 seconds of exposure.  
Is the lumped capacitance an acceptable solution here?  [Ans.:  329 K]. 

69.  A sphere made of fire-clay brick is heated to 500 C and cooled in ambient air 
at Tf = 35 C and h = 250 W/m·C.  The sphere has a diameter of 10 cm.  Find the 
temperature at a radius of 2.5 cm after 30 minutes.  Data:  k = 1 W/m·C, c = 
1 kJ/kg, ρ = 2000 kg/m3.  [Ans.: K(r, t) = 0.663. T = 343 C]. 

70.  A short stainless steel cylinder (D = 8 cm and 2L = 6 cm) is initially at 327 C.  
Find the temperature at a location identified as r = D/2 and x = 0 after being sud-
denly exposed for 3 minutes to air at Tf = 27 C and a heat transfer coefficient of 
h = 500 W/m·C. [Ans.:  P(x, t) = 0.635 and C(r, t) = 0.337. T = 91 C]. 

71.  A long stainless steel rod (ρ = 7900 kg/m3, c = 0.526 kJ/kg·K, and k = 17.4 
W/m·K) having a diameter of 5 cm, is initially at 200 C when its surface is ex-
posed to an ambient at 300 K with a heat transfer coefficient of 600 W/m2·K.  Af-
ter 2 min exposure, find: a) the centerline temperature and b) the temperature at a 
distance of 1 cm from the rod centerline. c) Find the temperature of 10 equally-
spaced points inside the rod after 2 min of exposure and plot the results. d) Track 
the centerline temperature every 5 seconds and plot the results for the 2 minutes of 
exposure.  [Ans.:  a) 93 C and b) 90 C]. 
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72.  A solid rectangular parallelepiped is made of aluminum and is initially at 
20 C.   The base is a 2 cm by 3 cm rectangle and the height of the parallelepiped is 
5 cm.  The parallelepiped is now dropped into hot oil at 150 C.  Find: a) the tem-
perature of point P and b) the temperature of the center of the parallelepiped after 
2 min of exposure to hot oil.  Point P is located 1 cm above the center plane and 
1 cm from each side.   

73.  A short cylinder having an initial temperature of 40 C is suddenly exposed to 
a convection boundary of 300 W/m2·K.  Use the data given below to find the tem-
peratures of points A, B, C, and D.  Data:  k = 26 W/m·K, cp = 0.349 kJ/kg·K, ρ = 
8,666 lbm/m3.  [Ans.:  TA = 176 C, TB = 184 C, TC = 186.5 C, TD = 180 C]. 

A BB

CC D
h Tf

6 cm

16 cm

Section 10 
74.  A cylindrical spine is used is shown in the figure.  a) Use the given data to 
find the temperature distribution in the solid rod.  The tip of the fin loses heat by 
convection.  b)  Find the temperature of a node by numerical methods as described 
in Section 3 of Chapter VII.  First divide the fin into 5 equally spaced nodes.  Re-
peat the solution for the number of nodes increased to 10 and finally to 20.  
c) Compare the results obtained in part b with the analytical solution of part a.  
Data: L = 20 cm, D = 2 cm, k = 50 W/m·C, TB = 250 C, Tf = 35 C, h = 10 W/m2·C. 

75.  Two surfaces of a long L-shape object are maintained at temperatures Ts1

(along the x-axis) and Ts2 (along the y-axis) as shown in the figure.  All other sur-
faces are exposed to a convection boundary (Tf and h).  Use the method described 
in Section 3 of Chapter VII to find temperatures at location 1, 5, and 7.  Data:  a = 
2 cm, Ts1 = 50 C, Ts2 = 100 C, Tf = 15 C, h = 10 W/m2·C. 

76.  All surfaces of an infinitely long heating element, having a cross section in 
the shape of a cross, are maintained at 300 C.  Due to symmetry, only a quarter of 
the cross section is shown in the figure.  Heat is uniformly produced in the ele-
ment at a rate of 100 kW/m3.  Find the temperature distribution in the element at 
the locations shown in the figure.  The element thermal conductivity is 35 W/m·K.  
All surfaces are exposed to a convection boundary condition of Tf = 40 C and h = 
1200 W/m2·C. 



516      IVa.  Heat Transfer:  Conduction  

k

D

q"C

.

TB

Tf

L

∆x

x

1

2

3

4

65 7

a

a

6 cm

1 cm
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77.  The surfaces of a long solid square bar are maintained at the temperatures 
shown in the figure.  The solid thermal conductivity is 25 W/m·C.  Find the tem-
peratures of the nodes shown in the figure. 

Ts = 200 C

1 cm

1 cm

Ts = 20 C

Ts = 20 C Ts = 20 C

Ts = 200 C

1 cm

1 cm

Ts = 20 C Ts = 20 C

Insulated Boundary

        Figure for Problem 77                                          Figure for Problem 78          

78.  One side of the bar of Problem 76 is now insulated.  Find the temperature dis-
tribution in the bar. 

79.  Use the given data to find the temperature distribution in the plate with one 
side insulated, three sides are isothermal and the indentation is exposed to a con-
vection boundary. 

80.  A plate-type fuel element, having a thermal conductivity of 2 W/m·K, pro-
duces heat.  The heat source is uniformly distributed, having a source strength of 
2.4E8 W/m3.  One side of the fuel is insulated (due to symmetry), one side is 
maintained at 200 F, and remaining sides are exposed a convection boundary of 
300 C and 34 kW/m2·K.  Find the two-dimensional temperature distribution in the 
fuel at steady state condition.   
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        Figure for Problem 79                                      Figure for Problem 80 

81.  Shown in the figures are the elevation and the plan views of two pipes carry-
ing hot air.  The air flow rate is 200 kg/s in each of the two 12 inch, schedule 40 
steel pipes.  The pipes are connected to each other by 2 steel support plates.  The 
plates have a thickness of 2 cm and are placed 50 cm apart from each other.  The 
distance between the pipes is 55 cm.  Find a) temperature at x = 0 for steady state 
operation in the bottom plate and b) find the temperature of the top plate at the 
same location.  Data:  Assume a constant heat transfer coefficient of 2500 W/m2·K
inside the pipe.  The air pressure and bulk temperature at the entrance to the pipe 
(where the bottom plate is located) are 3 MPa and 300 C, respectively.  The ambi-
ent temperature is 37 C and the heat transfer coefficient with the ambient is 
12 W/m2·K.  Assume that the pipes are smooth. 

L

x

H

x
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IVb.  Forced Convection 

In Chapter IVa we often used the convection boundary condition to determine 
temperature distribution in such cases as fuel rods, fins, and multi-dimensional 
solids.  However in all such cases, the heat transfer coefficient, h was specified.  
Our primarily goal in this chapter is to find the heat transfer coefficient for a given 
set of conditions.  As we shall see, the magnitude of the heat transfer coefficient 
depends on such factors as the type of fluid, the flow velocity, and the type of ap-
plication.  The type of fluid in turn defines such fluid properties as viscosity, den-
sity, thermal conductivity, and specific heat.  Flow velocity is a key parameter, 
which is used in conjunction with temperature to determine the flow regime, being 
laminar or turbulent.  Finally, the type of application determines whether flow is 
external such as flow over flat plates, cylinders, and spheres or internal such as 
flow inside conduits.  The immediate application of the heat transfer coefficient is 
in finding the temperature distribution and the rate of heat transfer to or from a 
substance.  In this chapter we exclusively deal with forced convection heat trans-
fer.  The characteristic of this heat transfer mode is the fact that the flow of fluid is 
due to the operation of a pump, a compressor, or the rapid movement of an object 
in the flow filed. 

1.  Definition of Forced Convection Terms 

Newton’s law of cooling is the result of applying the Isaac Newton’s sugges-
tion in 1701 that if a body is placed in a medium at a lower temperature, then the 
rate of change of temperature of the body is proportional to Tbody – Tf where Tf in 
this relation is the temperature of the colder medium.  Since the rate of change of 
temperature of the body is also proportional to the rate of heat transfer from the 
body, we may then conclude: 

)( fbody TThq −=′′

where h, the proportionality factor is known as heat transfer coefficient.  To be 
consistent, we replace Tbody with Ts where subscript s represents a surface such as a 
flat plat or the wall of a conduit. 

Thermal boundary layer over a flat plate develops whenever there is a tem-
perature difference between a surface and the fluid flowing over the surface.  The 
hydrodynamic boundary layer and the associated velocity profile for flow of a vis-
cous fluid over a flat plate are shown in the left side of Figure IVb.1.1.  Develop-
ment of a similar boundary layer, for a case where the flat plate is hotter than the 
fluid, is shown in the right side of Figure IVb.1.1.  The viscous forces are domi-
nant in the hydrodynamic boundary layer resulting in a velocity profile as shown 
in the figure.  Similarly, a temperature gradient exists in the thermal boundary 
layer.  At the edge of the boundary, both velocity and temperature inside the 
boundary layer reach 99% of the free stream velocity (Vf) and temperature (Tf), re-
spectively.  Also at the edge of the boundary layer where y = δ, we find that 
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Figure IVb.1.1.  Hydrodynamic and thermal boundary layers for flow over a heated flat 
plate  

∂Vx(δ)/∂y = 0.  The amount of heat transferred from the flat plate to the boundary 
layer at any given x is obtained from the local heat flux by applying Fourier’s law 
to the flowing fluid; 

dy

dT
kq fs

)0(−=′′

Also from Newton’s law of cooling, we have sq ′′  = h(Ts – Tf).  Hence, the heat 

transfer coefficient h is found by setting the left sides of these two equations equal 
to each other: 

fs

f

TT

yTk
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Since temperatures are changing with x, then h = f(x).  An average value for h is 
found from: 

L

L

dx

dxxh
h

0

0 )(
=               IVb.1.2 

Leading edge of a plate is defined as the location on the plate where x = 0. 

Trailing edge of a plate is defines as the location on the plate where x = L with 
L being the plate length. 

Bulk temperature or the mixing cup temperature for a fluid flowing in a con-
duit is given as: 
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=            IVb.1.3 

where A is the flow area.  If the conduit is a circular cylinder, then the bulk tem-
perature becomes; 
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Equation IVb.1.4 indicates that the bulk fluid temperature, being averaged at a 
given cross section, varies from cross-section to cross-section along the axis of the 
conduit.  The inlet temperature of fluid, refers to the bulk fluid temperature enter-
ing a conduit. 

Film temperature is an arithmetic average between fluid bulk temperature (Tf)
and the surface temperature (Ts) (i.e., 2/)( sfFilm TTT += ).

Prandtl number, after Ludwig Prandtl (1875–1953), is a measure of diffusion 
of momentum, as compared to the diffusion of heat in a fluid.  The momentum 
diffusion appears as kinematic viscosity and diffusion of heat as thermal diffusiv-
ity.  Hence, Pr = v/α = (µ/ρ)/(k/ρcp) = µcp/k.  Since the diffusion of momentum 
and heat are also associated with the thickness of the boundary layer, the Prandtl 
number is then a parameter which relates δ, the thickness of the hydrodynamic 
boundary layer to δ’, the thickness of the thermal boundary layer.  See Table A.I.6 
for the list and the significance of various dimensionless numbers. 

The range of Pr number for some fluids is shown in Table VIb.1.1.  For water 
temperature in the range of 330 F (165 C) ≤ T ≤ 430 F (221 C), the Prandtl num-
ber for water is about unity, PrWater(T)  1.

Table IVb.1.1.  Range of Pr number for various fluids 

Fluid Liquid 
 metals 

Gases Water Light Organic 
Liquids 

Oils Glycerin 

Range of 
Pr

0.003–0.05 0.7–1 1–13 5–50  50–10000 2E3–
8.5E3

The Pr number for various fluids is given in the tables of Appendix IV. 

Nusselt number, after Ernest Kraft Wilhelm Nusselt (1882-1957), is a measure 
of the temperature gradient at the surface.  Dividing heat flux due to convection by 
the heat flux due to conduction, both expressed at the surface, we find: 

( )
( ) ( ) k

xh

xTk

Th

dxkdT

Th

q

q

Conductions

Convections ∆=
∆∆

∆≈
−

∆=
′′
′′

=
//

Nu

This dimensionless ratio shows that for a flat plate, Nu number is a function of the 
distance from the leading edge, Nu = f(x).  Additionally, at any given x, tempera-
ture ranges from Ts to Tf.  Hence at any x, thermal properties may be evaluated at 
the film temperature. 

Stanton number is the division of the Nu number by the product of the Re and 
the Pr numbers.  Therefore, St = Nu/(RePr).  Substituting for Nu, Re, and Pr num-
bers in terms of the fluid and the flow properties, we find the Stanton number 
given as St = h/(ρVcp).

Eckert number after E. R. G. Eckert, is the ratio of the temperature rise due to 
energy conversion to the overall temperature gradient.  The Eckert number is then 

given by Ec = TcV pf ∆/2 .
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Reynolds-Colburn analogy is a convenient means of allowing the measure-
ment of heat transfer coefficient from the frictional drag on a flat plate in an adia-
batic process.  By using the Reynolds-Colburn analogy, it can be shown that the 
friction factor is given as f = 2StPr2/3.

2.  Analytical Solution 

To find the heat transfer coefficient in forced convection analytically, we have to 
limit our analysis to the simplest cases of laminar flow over a flat plate or in con-
duits.  Even these seemingly simple cases require the introduction of several sim-
plifying assumptions to enable us to reach a solution.  Before embarking on such 
analysis, it should be added that the application of such simple cases in practice is 
rather limited.  However, the advantage of such analytical solutions is that they al-
low us to seek solutions having the same functional relationship for more compli-
cated cases such as those involved in turbulent flow.  That is to say that the func-
tional relationship assists us in finding experimentally-based empirical correlation 
for cases, which are not amenable to analytical solution. 

2.1.  External Laminar Flow  

Consider the steady laminar flow of an incompressible viscous fluid over a flat 
surface (Re < 5E5).  If fluid temperature differs from that of the plate then both 
hydrodynamic and thermal boundary layers would develop over the plate.  Let us 
further assume that the plate is isothermal, such fluid properties as k, µ, and cp are 
independent of temperature, and conduction heat transfer in the fluid in the x-
direction is negligible. 

Determination of Velocity and Temperature Profiles for Laminar Flow 
over Flat Plate 

The governing equation for the hydrodynamic boundary layer is Equa-
tion IIIa.3.20-1, repeated below: 
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If the pressure is also constant throughout the flow, then in the above equation 
∂P/∂x = 0.  For the temperature boundary layer, the governing equation is Equa-
tion IIIa.3.23-1, also repeated below: 
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Example IVb.2.1. Derive Equation IIIa.3.23-1 directly from an energy balance 
written for a control volume. 

Solution: The derivation is similar to heat conduction in a solid.  However, while 
solid is stationary, we know that there is fluid motion inside the boundary layer.  
Hence, our derivation must take this into account.  We begin by considering flow 
into and out of an elemental control volume taken inside the boundary layer, as 
shown in the figure.  An energy balance for the elemental control volume takes the 
form of: 

q'''
.

Heat & Fluid
Flow Field

V

S

Net Flux of Energy
By Conduction

Net Flux of Energy
By Convection

Rate of Energy
Production

Rate of Change of
Internal Energy

+

=

We integrate the energy balance over the entire heat and fluid flow fields to ob-
tain: 
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We can convert the surface integrals to volume integrals by using Gauss’s theo-
rem, Equation VIIc.1.25: 
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where we have assumed incompressible flow for which, dh = cpdT.  For constant 
k, we obtain: 
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For incompressible flow, the second term in the parentheses is zero (see Exam-
ple IIIa.3.3). Dividing by k and introducing thermal diffusivity ( pck ρα /= ), the  

above equation reduces to: 

2 1 T
T q V T
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∂

                                                           IIIa.3.23-2 

Equation IIIa.3.23-2 reduces to Equation IVa.2.2 for stagnant fluid.  Using the 
substantial derivative D/DT, Equation IIIa.3.23-2 may also be written as: 

2 1 DT
T q

Dtα
′′′∇ + =          IIIa.3.23-3 
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Equations IIIa.3.20-1 and IIIa.3.23-1 are second-order, coupled partial differen-
tial equations.  Finding an analytical solution by integration is not an easy task.  
However, in this case we know how the profiles of both variables look like.  
Therefore, we try to solve these equations by guessing the functional relationship 
for Vx = f1(y) and T = f2(y).  Since for each equation we have four boundary condi-
tions, two at the surface and two at the edge of boundary layer, we use a third or-
der polynomials.  Thus, we express velocity as a function of y as: 

3
4

2
321 ycycyccVx +++=

All we have to do now is to find the four unknown coefficients, c1 through c4, so 
that the above polynomial fits both Equation IIIa.3.20-1 and the specified sets of 
boundary conditions.  The sets of boundary conditions are:  

at y = 0: Vx = 0 and ∂2Vx/∂y2 = 0 
at y = δ: Vx = Vf and ∂Vx/∂y = 0 

Using conditions at y = 0, we find c1 = c3 = 0.  We now use conditions at y = δ to 
find c2 and c4.  From y = δ, Vx = Vf, we find c2δ + c4δ3 = Vf.  From y = δ, ∂Vx/∂y = 
0, we find c2 + 3c4δ2 = 0.  Solving this set, we find c2 and c4 in terms of δ, Vx, and 
Vf as c2 = 3Vf/2δ and c4 = –Vx/2δ3.  Therefore, the velocity profile becomes: 
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Due to the similarity of the governing Equations IIIa.3.20-1 and IIIa.3.23-1, we 
expect that temperature can be described by a similar function: 
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Although we were able to find an analytical solution for these profiles, we are far 
from declaring victory.  This is because in Equation IVb.2.1, Vx is expressed in 
terms of the unknown δ, yet to be determined.  We did expect this additional twist, 
as we used our engineering intuition and picked a profile.  We then found the co-
efficients of the function representing the profile from the boundary conditions.  
But we still have no guarantee that the chosen profile would satisfy the governing 
equation itself.  The thickness of the boundary layer, δ, is indeed the final re-
quirement to ensure the chosen profile does satisfy the governing equation.  We 
should then embark on finding δ.  Similar to the profile for Vx, we first guess a 
profile for δ and then try to find the related coefficient.  However, the solution for 
δ is not as straightforward as the solution we managed to find for the velocity pro-
file. 
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Determination of the Hydrodynamic Boundary Layer Thickness  
for Laminar Flow over Flat Plate 

To find the thickness of the hydrodynamic boundary layer, δ, we first note that δ
is only a function of x.  To find this function, we resort to the conservation equa-
tion of mass, Equation IIIa.3.13-1: 
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this equation can be approximated as Vf/x + Vy/δ = 0.  Therefore Vy is proportional 
to Vy ∝ Vf δ/x.  We now apply the same approximation to the governing momen-
tum equation, Equation IIIa.3.20-1 while substituting for Vy.  This results in: 
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from which δ is found to have a functional relationship as fVvx /∝ .

Having obtained the shape of the function for δ, we substitute it into Equa-
tion IIa.3.20-1, being a partial differential equation.  Fortunately, we can convert 
this equation to an ordinary differential equation by noticing that both Vx and Vy

can be expressed in terms of a stream function ψ.   That is to say that if Vx = ∂ψ/∂y
and Vy = –∂ψ/∂x then the continuity equation (Equation IIIa.3.13-1) is automati-
cally satisfied.  To find the stream function, we integrate either of these relations 
while noting from Equation IVb.2.1 that Vx/Vf = f(β) where β = y/δ.  Hence 
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Thus F(β) = ψ(x, y)/(vxVf)
1/2.  Having ψ and F(β), we find Vx and Vy:

Vx = ∂ψ/∂y = (dF/dβ)Vf/2 

Vy = –∂ψ/∂x = [βF’(β) – F(β)](vVf/x)1/2/2 

Having Vx and Vy, we can find other derivatives and substitute the results in Equa-
tion IIIa.3.20-1 to obtain:  
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This equation is subject to three boundary conditions, two of which deal with y = 0 
(i.e., Vx(x, 0) = Vy(x, 0) = 0).  This is equivalent with F(β = 0) = dF(β = 0)/dβ = 0.  
The third boundary condition is at y = ∞, i.e., Vx(x, ∞) = Vf.  This is equivalent 
with dF(∞)/dβ = 1.

Blasius recommended the above method for solving Equation IVb.2.3.  A strict 
analytical solution has not been found for Equation IVb.2.3.  Schlichting found a 
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Figure IVb.2.1.  Hydrodynamic and thermal boundary layers for flow over a flat plate
heated at x = xo

solution by series expansion and Howarth solved the equation numerically.  The 
numerical results are tabulated for F(β) as a function of β, which indicate that Vx = 

0.99Vf if β = 5 .  Recall that β = y/δ = y/ fVvx / .  Hence at y = δ, β = 5.  Rear-

ranging, we find δ as: 
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Example IVb.2.2. Water flows over a flat plat at a speed of 4 m/min and a tem-
perature of 50 C.  The length of the plate is 25 cm.  Find the thickness of the 
boundary layer at the trailing edge. 

Solution: We first find water kinematic viscosity at T = 50 C to be v = 0.554E-6 
m2/s.  We now find ReL:

ReL = Vf /vL = (4/60)/(0.554E-6 × 0.25) = 481,348 

This indicates that flow at the trailing edge is laminar: 

== 1/2
L Re/5 LL  5 × 0.25/(481,348)0.5 = 1.8 mm 

Determination of the Thermal Boundary Layer Thickness for Laminar Flow 
over Flat Plate 

Now that we found a relation for the thickness of the hydrodynamic boundary 
layer in terms of the Reynolds number, we set out to find a relation for the thick-
ness of the thermal boundary layer.  As we shall see in the next section, the rela-
tion for the thickness of the thermal boundary layer will be especially useful in the 
calculation of the heat transfer coefficient for laminar flow over a flat plate.  To 
derive a relation for δ’, we consider flow over a heated flat plate as shown in Fig-
ure IVb.2.1.  This figure shows a case where heating of the plate starts at x = xo,
Figure IVb.2.1(a).  For the derivation of a relation for δ’, we may either reduce the 
set of conservation equations of Chapter IIIa, for the control volume shown in 
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Figure IVb.2.1(c) or directly derive the conservation equations for this control 
volume.  Choosing the direct derivation by an integral approach*, we consider the 
mass, momentum, and energy of the fluid entering and leaving this differential 
control volume.  These transfer processes enter from the vertical side located at x
and from the horizontal side (A-A) located in the free stream.  Mass, momentum 
and energy then leave the control volume through the vertical side located at x + 
dx.  These processes are summarized in Table IVb.2.1. 

Table IVb.2.1.  The transfer processes for the elemental control volume of Figure IVb.2.1 

We first deal with the momentum equation for which at steady state, the resultant 
of all forces is equal to the net momentum flux (i.e., the net momentum entering 
minus the net momentum leaving the control volume, Equation IIIa.3.6).  As 
shown in Figure IVb.2.1(b), the forces applied on the control volume are the shear 
at the solid surface and the pressure forces.  The shear force at the free stream 
(side A-A) is zero, thus: 

=−− H
dx

dP
sτ ( )dxdyV

dx

d
x

H
0

2ρ  – ( ) ( )dxdyV
dx

d
V xfx

H
0 ρ         IVb.2.5 

We may simplify Equation IVb.2.5 by considering a case of constant pressure, 
dP/dx = 0.  The right side of Equation IVb.2.5 can also be simplified (see Prob-
lem 11) to obtain: 

( )[ ]
y

yV
dyVVV

dx

d x
sxxfx ∂

=∂
==−

)0(
)(H

0 µτρ           IVb.2.6 

If we substitute the velocity profile of Equation IVb.2.1 into Equation IVb.2.6 and 
integrate, we conclude: 

( ) fxV

v

dx

d

13
140=              IVb.2.7 

Equation IVb.2.7 can be integrated to obtain an approximate value for δ.  This 
value differs by only 7.2% as compared with the exact value given by Equa-
tion IVb.2.4. 

* This method is originally developed by T. von Karman. 
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We now consider the energy equation for the differential control volume of 
Figure IVb.2.1(c).  The steady state form of Equation IIIa.3.9 relates the net en-
ergy addition to the control volume (by convection, conduction, and internal heat 
generation as well as the viscous work) to net energy removal from the control 
volume.  Noting that the net viscous work is µ(∂Vx/∂y)2dxdy (Example IIIa.3.12) 
and considering only heat convection into and out of the control volume and heat 
transfer from the solid surface, we find: 

( )[ ]
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2
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0         IVb.2.8 

Note that in the derivation of Equation IVb.2.8, we made several assumptions in-
cluding steady state flow, fluid with constant properties, and the free stream with 
constant velocity and temperature.  

The rate of heat transfer from the surface, the right side of Equation Vb.2.8, can 
be determined by substituting for the profiles of velocity and temperature from 
Equations IVb.2.1 and IVb.2.2.  However, the viscous dissipation term introduces 
non-linearity, which precludes the development of an exact solution in closed 
form.  Fortunately, the net viscous work in laminar flow is generally negligible 
compared with the rate of heat transfer by the convection or the conduction 
mechanism.  The viscous work becomes significant for high kinetic energy flows 
or very viscous fluids.   

Ignoring the net viscous work term, Equation IVb.2.8 simplifies to (see Prob-
lem 12): 

( ) αζζζ 102 322 =+
dx

d

dx

d
V fx

where  = δ’/δ.  Introducing Equation IVb.2.7 and rearranging, we find the follow-
ing differential equation: 

0
14

13

3

4 =−+
vdx

d
x

αξξ

where  =  3.  The boundary conditions for this differential equation is  = 0 (since 
δ’ = 0) at x = xo.  Thus 

3/14/3
3/1 1Pr

026.1
1

'
−== −

x

xoζ                         IVb.2.9 

If the plate is heated at the leading edge then 1 / 3'/ ( Pr /1.026)ζ −= = .
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Determination of Heat Transfer Coefficient for Laminar Flow 
over Flat Plate 

Since h is defined as heat flux at the surface divided by ∆T, Equation IVb.1.1 
gives: 

fs

s

TT

yTk
h

−
∂∂−= )/(

We now need to find (∂T/∂y)s, which is obtained from Equation IVb.2.2.  Substi-
tuting, we find: 

)Pr026.1(
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where we substituted for the thermal boundary layer thickness, δ’ in terms of the 
hydrodynamic boundary layer thickness, δ.  We can further simplify this equation 
by substituting for δ from Equation IVb.2.4: 

1 / 3 1/ 2 1/ 3 1/ 2 1/ 3( / ) 3 3
(1.026 Pr ) Re (1.026 Pr ) 0.3 Re (Pr )

2 2 5
s

s f

k T y k k k
h

T T x x

− ∂ ∂
= = = =

−

Using the definition of the Nusselt number, Nu = hx/k, we find; 

3/12/1
x PrRe3.0Nu x=    0.6 < Pr < 50       IVb.2.10 

Equation IVb.2.10 was derived analytically for the range of Pr number shown 
above.  However, we would have to resort to empirical correlations to be able to 
include all fluids ranging from liquid metal (Pr in the order of 0.01) to motor oil 
(Pr in the order of 50,000).  One such correlation is that suggested by Churchill 
and Ozoe: 

3/12/1 PrReNu xx C=   RexPr > 100        IVb.2.11 

In Equation IVb.2.11, C is used to represent [ ] 4/13/2Pr)/(1/ baC +=  where coef-

ficients a and b for constant temperature are given as 0.3387 and 0.0468 and for 
constant heat flux as 0.4637 and 0.0207.  Thus, the Churchill and Ozoe correlation 
for constant temperature is: 

3/12/1
4/13/2

PrRe

Pr

0468.0
1

3387.0
Nu xx

+

=  (Ts = constant )   IVb.2.11-1 

and for constant heat flux is: 
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3/12/1
4/13/2

PrRe

Pr

0207.0
1

4637.0
Nu xx

+

=  ( constant=′′sq )   IVb.2.11-2 

The fluid properties in these correlations are developed at the film temperature. 
Equations IVb.2.10 and IVb.2.11 demonstrate the dependency of the Nu num-

ber on Re and Pr numbers for laminar flow over a flat plate.  These equations also 
show that we should expect similar functional relationship for the Nu number even 
if flow is not laminar.  Thus for all practical purposes, we should expect: 

32 PrReNu 1
ccc=           IVb.2.11 

where constants c1, c2, and c3 depend on a specific case.  Such functional relation-
ship between Nu, Re, and Pr numbers is indeed confirmed in many experiments 
for forced convection heat transfer as discussed later in this chapter. 

Determination of Average Heat Transfer Coefficient for Laminar Flow  
over Flat Plate 

To find the average heat transfer coefficient for laminar flow over a flat plate, we 
note that in Equations IVb.2.11, the Nu number is a function of Re1/2.  We may 
then express the Nusselt number as Nu = C1Re1/2 where C1 represents all other 
terms.  Substituting for Re = Vfx/v and for Nu = hx/k, we may write the heat trans-
fer coefficient as: 

hx = (k/x)C1(Vfx/v)1/2 = B1x
–1/2          IVb.2.12 

where B1 = C1k(Vf /v)1/2.  If we now substitute for hx from Equation IVb.2.12 into 
Equation IVb.1.2 and integrate over the entire length of the flat plate, we find the 
average heat transfer coefficient as: 

L
L

LL
x hLBLLBLdxxBdxdxhh 0

2/1
1

2/1
1

2/1
100 22/2// ===== −−

Substituting for the heat transfer coefficient from h =Nu(k/x), we find 

LNu2Nu = .

Example IVb.2.3. Water at high pressure and temperature flows over a heated 
plat at 0.25 m/s.  Temperature of water is 250 C and the plate temperature is main-
tained at 260 C.  The length of the heated plate is 5 cm. Find the average heat flux 
over the plate. 

Solution:  We find water properties at the film temperature Tfilm = (250 + 260)/2 = 
255 C 
At Tfilm = 255 C, v = 0.132E-6 m2/s, k = 0.6106 W/m·K, and Pr = 0.8458 
ReL = VL/v = 0.25 × 0.05/0.132E-6 = 94,697.  Flow is laminar so we use Equa-
tion IVb.2.11-1: 
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C = 0.3387/[1 + (0.0468/0.8458)0.666]0.25 = 0.327 
NuL = 0.312(94,697)0.5(0.8458)0.333 = 95.28 

hL = NuLk/L = 95.28 × 0.6106/0.05 = 1163.6 W/m2·K

h  = 2hL = 2 × 1163.6 = 2327 W/m2·K

=′′q  2327(260 – 250) = 23.27 kW/m2.

We now solve a similar example but for the flow of air over a heated flat plate.  
In this example, we also find the thickness of the hydrodynamic boundary layer as 
well as the thermal boundary layer. 

Example IVb.2.4. A heated plate has a length of 0.5 m and width of 0.65 m.  The 
plate temperature is held constant at 119 C.  Air at 15 m/s and 35 C flows over the 
plate.  Find a) the average heat transfer coefficient over the plate, b) total heat 
transferred from the plate to the colder air and c) δ, and δ’ at the trailing edge. 

Solution:  We find air properties at the film temperature  
Tfilm = (35 + 115)/2 = 77 C 
At Tfilm = 75 C, v = 2.06E-5 m2/s, k = 0.0297 W/m·K, and Pr = 0.706 
ReL = VL/v = 15 × 0.5/2.06E-5 = 364,077.   
Flow is laminar so we use Equation IVb.2.11-1: 

C = 0.3387/[1 + (0.0468/0.8458)0.666]0.25 = 0.327 
NuL = 0.327(364,077)0.5(0.8458)0.333 = 186 

a) hL = NuLk/L = 186 × 0.0297/0.5 = 11.08 W/m2·K

h  = 2hL = 2 × 11.08 = 22.16 W/m2·K

b) =Q  22.16(0.5 × 0.65)(119 – 35) = 0.605 kW 

c) 14.4077,364/5.05Re/5 5.01/2
LL =×=×= L  mm 

)Pr026.1/(' 3/1=  = 4.14/(1.026 × 0.7060.3333) = 4.53 mm. 

So far we mostly dealt with the isothermal flow of fluids in the laminar flow 
regime over a flat plate.  For constant heat flux boundary condition see Problems 
28 and 29.  Next, we examine the internal laminar flow of fluids. 

2.2.  Internal Laminar Flow of Viscous Fluids

Velocity profile for fully developed, laminar flow in a pipe is a parabolic function 
given by Equation IVb.2.1.  Temperature profile for the same conditions can be 
obtained from the two-dimensional steady state form of the conservation equation 
of energy in the cylindrical coordinate system.  Equation IIIa.3.23 assuming 
steady state, no radiation heat transfer, no internal heat generation, no body force, 
no viscous dissipation, and incompressible flow can be written as: 
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)( TkuV o ∇⋅∇=∇⋅ρ

Expanding this equation in two-dimensional cylindrical coordinates, while assum-
ing constant thermal conductivity, yields: 
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where xu  and ru  are the unit vectors.  Since xu  is perpendicular to the conduit 

flow area and hence to ru , we find that 0=⋅=⋅ rxxr uuuu .  If we also assume 

that the fluid properties are weak functions of temperature, Equation IVb.2.13 re-
duces to: 

∂
∂

∂
∂=

∂
∂+

∂
∂

r

T
r

rrx

T
V

r

T
V xr

11

α
         IVb.2.14 

Equation IVb.2.14 is the same as Equation IIIa.3.23-1 but written in polar coordi-
nates.  In Equation IVb.2.14 we have used the constant heat flux assumption, 

0/ =′′ dxqd s .  This implies that the last term in the right side of Equation IVb.2.13 

is equal to zero (i.e., ∂(∂T/∂x)/∂x = 0).  Since in the fully developed region, Vr = 0 
(and so is ∂Vx/∂x = 0), Equation IVb.2.14 further simplifies to: 
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To solve Equation IVb.2.15, we substitute the velocity profile for Vx from Equa-
tion IVb.2.1 to obtain: 
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where R is the pipe radius.  This equation can be easily integrated to find: 
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and the temperature distribution is finally obtained by another integration so that; 
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The constants of integration c1 and c2 can be found from the following boundary 
conditions.  At r = 0, due to symmetry, ∂T/∂r = 0.  This results in c1 = 0.  If tem-
perature at r = 0 is known (i.e., TCL = T(r = 0)), then c2 = TCL.  Substituting for c1

and c2, temperature profile in the flow is found as: 
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        IVb.2.16 

Given the fluid velocity and temperature at the pipe centerline, we can find fluid 
temperature at any cross section for a given axial and radial location by using 
Equation IVb.2.16.  For example, the wall temperature Ts at any axial location is 
obtained by setting r = R to find: 
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However, the most important application of Equation IVb.2.16 is in finding the 
fluid bulk temperature.  This is obtained by substituting for temperature profile in 
Equation IVb.1.4 and carrying out the integrals to find: 
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         IVb.2.17 

We now find heat transfer coefficient from the fact that: 

Rryfs rTkyTkTThq == ∂∂=∂∂−=−=′′ )/()/()( 0

The derivative of temperature in the radial direction is found as (∂T/∂r)r = R = 
[(Vx)maxR/4α]∂T/∂x then 
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     IVb.2.18 

From h = 48k/11D we find Nu = hD/k = 48/11.  Thus, for laminar flow inside 
pipes Nu = constant.   

The topic of internal flow of fluids in heated conduits is discussed in more de-
tails in Section 2 of Chapters VIa and VIe.  Figure IVb.2.2 shows the temperature 
profiles for two interesting cases of constant heat flux specified at the channel wall 
(Figure IVb.2.2(a)) and an isothermal channel wall (Figure IVb.2.2(b)). 
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Figure IVb.2.2.  Axial temperature profiles (a) constant wall heat flux and (b) constant wall 
temperature 

Example IVb.2.5.  Consider the fully developed flow of an incompressible vis-
cous flow at velocity V  in a heated pipe of diameter D and length L.  Heat flux of 

sq ′′  = f(x) is applied to the channel wall.  Derive the axial temperature distribution 

in terms of sq ′′ , V , D, L, and ρ.

x0 L

)()( xfxqs =′′

dx

DV

Control Volume

Solution:  We write the mass and energy balance for the shaded control volume at 
steady state condition: 

[ ] [ ]DdxxqdhDV s ππρ )()4/( 2 ′′=

Since flow is subcooled, dh = cpdT.  Substituting and integrating from x = 0 to any 
x yields: 

x
sff dxxqVDTxT 0 )()/4()0()( ′′+= ρ

where Tf(x) is the fluid bulk temperature.  If the function representing the wall heat 
flux is specified, we can find Tf(x).  For a special case of constant wall heat flux, 

sq ′′  = constant = q ′′ , we find: 
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)/4()0()( VxqDTxT ff ρ′′+=           IVb.2.19 

Equation IVb.2.19 (Figure IVb.2.2(a)) is applicable to any flow regime whether 
laminar or turbulent as long as flow remains subcooled so that Tf(x = L) < 
Tsat(Psystem).  In Equation IVb.2.19, for x = L, we have Tf = Tf(L) confirming that 
the results are consistent with an overall energy balance over the tube length: 

)( 0== −= xLxp TTcmQ            IVb.2.20 

3.  Empirical Relations 

In Section 2 we were able to find analytical solutions only for such limited cases 
as forced convection heat transfer for flow over flat plate and inside conduits.  In 
these cases, we considered steady and laminar flow.  Additionally, we used such 
simplifying assumptions as incompressible laminar flow, thermal properties inde-
pendent of temperature, no internal heat generation, and negligible heat transfer 
from thermal radiation.  Still we had to resort to empirical correlations to increase 
the range of applicability of Nu number. 

In common practice an ideal situation to satisfy all the required conditions gen-
erally does not exist.  While in many cases a steady incompressible flow can be 
assumed with approximately constant thermal properties in a specified range of 
temperature, flow cannot be guaranteed to remain laminar.  Indeed, except in 
some special cases, flow is generally turbulent.  Fortunately, in the majority of 
cases the Nusselt number for forced convection heat transfer in turbulent flow has 
the same functional relationship with the Pr and the Re numbers as shown in 
Equation IVb.2.11.  Thus, all we need to do is to find constants c1, c2, and c3.
These are generally found in experiments, hence the relations are known as em-
pirical correlations.  To demonstrate the relation between theory and experiment, 
let’s rearrange Equation IVb.2.11 and take the logarithm of each side of the rear-
ranged formula: 

( ) ReloglogPr/Nulog 21
3 ccc +=

This equation shows that the logarithm of ( 2PrNu/ c ) is a linear function of the 
logarithm of the Reynolds number.  This functional relation is verified by variety 
of tests using different fluids and pipe diameters. 

3.1.  External Turbulent Flow over Flat Plates

Assuming a turbulent velocity profile Vx/(Vx)f = (y/δ)1/7, substituting in Equation 
IVb.2.5 and integrating, we find the boundary layer thickness for turbulent flow 
over a flat plate, heated at the leading edge as: 

5/1
Turbulent Re/37.0 xx=   5E5 < Rex < 1E7          IVb.3.1 
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Comparing the thickness of turbulent versus laminar boundary layer, given by 

Equation IVb.2.4, we find that δTurbulent = 0.074δLaminar
3.0Re x .  Since Rex > 5E5, 

then δTurbulent is at least 4 times thicker than δLaminar.  Since turbulence is associated 
with the eddy diffusivity, being random fluctuations as opposed to the molecular 
diffusion in the laminar flow, the fluid Pr number does not influence the boundary 
layer thickness in turbulent flow.  This implies that in turbulent flow, δ = δ’.  The 
local Nu number is given by: 

3/15/4 PrRe0296.0Nu xx =                   0.6 < Pr < 60         IVb.3.2 

and the average Nu number by (Whitaker): 

4/143.05/4 )/(Pr)9200(Re036.0Nu sfL µµ−=           IVb.3.3 

where properties are found at Tf except for µs, which is found at Ts.  This correla-
tion is valid for 2E5 < ReL < 5.5E6, 0.7 < Pr < 380, and 0.26 < µf/µs < 3.5. 

3.2.  External Flow over Conduits

We already analyzed external flow over flat plates.  There are two more cases to 
be considered in external turbulent flow.  These are flow over single cylinders and 
spheres as well as flow over a cluster of cylinders and spheres.  For example, flow 
across tube banks is of much interest in heat exchanger technology. 

Cross Flow over Cylinders 

This includes flow over cylinders with circular or non-circular cross section.  
When a fluid flows over curved surfaces, depending on the Reynolds number of 
the flow, the boundary layer may become separated from the surface.  This phe-
nomenon is too complicated to have analytical solutions.  Ironically, the boundary 
layer separation occurs mostly at very low to moderate Reynolds numbers (10 – 
1000).  When Re becomes greater than 3E5, the boundary layer separation is de-
layed.  Therefore, for flow over curved surfaces, even for laminar flow we have to 
resort to empirical correlations such as that recommended by Whitaker: 

( ) ( ) 25.05/23/22/1 /PrRe06.0Re4.0Nu sf µµ+=           IVb.3.4 

Equation IVb.3.4 is valid for 40 < Re < 1E5, 0.65 < Pr < 300, and 0.25 <µf/µs < 
5.2.  All properties are found at the free stream temperature except for the µs,
which is developed at the surface temperature. 

Example IVb.3.1.  The surface of a cylinder (D = 10 cm and L = 20 cm) is main-
tained at 127 C.  The cylinder is exposed to the cross flow of air.  The air velocity, 
temperature, and pressure are 40 m/s, 27 C, and 1 atm, respectively.  Assuming a 
very low surface emissivity, find the rate of heat transfer by convection. 
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Solution:  We find air properties at Tf = 300 K: v = 15.89E-6 kg/m3, µf = 18.46E-6 
N·s/m2, µs = 2.3E-6 N·s/m2, Pr = 0.707, and k = 0.0263 W/m·C. 
We now find the Reynolds number: 

Re = VD/v= 40 × 0.1/15.89E-6 = 251,730 
Nu = [0.4 × (251,730)1/2 + 0.06 × (251,730)2/3] × (5.83)2/5 × (18.46E-6/2.3E-6)0.25

 1500 
h = Nu(k/D) = 1500 × (0.0263/0.1) = 394 W/m2·C. 

Q  = h(πDL)(Ts – Tf) = 394 × (π × 0.1 × 0.2) × (127 – 27)  2.5 kW. 

For non-circular cylinders, we use Table IVb.3.1 as recommended by Jakob.  
All properties are found at the film temperature  

Table IVb.3.1. Coefficients c1 and c2 for non-circular cylinders 3/1
1 PrReNu 2cc=

Vf
(a)

VfVfVf
(b) (c) (d)D D D D

c1            0.102                         0.246                          0.153                        0.160 
c2            0.675                         0.588                          0.638                        0.638 

The range for Re number in Table IVb.3.1 is 5E3 < Re < 1E5 except for case 
(d) which the range is 5E3 < Re < 1.95E4. 

Flow over Spheres 

The Nusselt number over a sphere having diameter D can be found from 
Whitaker’s correlation: 

( ) ( ) 4/15/23/22/1 /PrRe06.0Re4.02Nu sf µµ++=          IVb.3.5 

applicable for 3.5 < Re < 8E4 and 0.7 < Pr < 380.  The Reynolds number is devel-
oped based on D.  All properties are found at the free stream temperature except 
for µs, which is found at Ts.

Cross Flow over Bank of Tubes 

Shown in Figure IVb.3.1 is cross flow over a tube bank arranged in either in-line 
or staggered configuration.   
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Figure IVb.3.1.  Cross Flow over tube banks arranged in in-line and staggered configura-
tions 

Note that in both configurations the velocity vector of the fluid flowing over the 
tubes is perpendicular to the velocity vector of the fluid flowing inside the tubes.  
Our goal is to obtain the heat transfer coefficient for the fluid which is flowing 
over the tubes.  For the fluid flowing inside the tubes, the heat transfer coefficient 
is discussed in Sections 2.2 and 3.3 for laminar and for turbulent flows, respec-
tively.  Tubes are spaced by longitudinal pitch (SL) and transverse pitch (ST).  Lat-
eral pitch SD is pertinent to the staggered arrangement.  Maximum flow velocity 
occurs in the gap between the adjacent rods having a height of ST − D.  Form a 
mass balance we find Vmax = VfST/(ST − D).  The average Nu number is recom-
mended by Zhukauskas as: 

25.036.0
max1 )Pr(Pr/PrReNu 2

s
cc=           IVb.3.6 

where c1 and c2 are given in Table IVb.3.2.  This correlation is valid for 0.7 < Pr < 
500, 1000 < Remax < 2E6, and tubes bundles with 20 or more rows of tubes.  If the 
number of rows is less than 20, then a correction factor must be used.  To apply 
the correction factor, the Nusselt number is calculated for a tube bundle with 20 
rows of tubes.  Then the correction factor C is obtained from Table IVb.3.3 so that  

Nu<20 = CNu20

All fluid properties in Equation IVb.3.6 are found at the arithmetic mean of the 
fluid inlet and outlet temperatures except for Prs, which is found at the surface 
temperature Ts.

Table IVb.3.2.  Coefficients in Equation IVb.3.6 

Geometry         Remax           c1           c2

   10 – 100        0.80         0.40 
   100 – 1E3 (Treat as a single cylinder) 
   1E3 – 2E5       0.27         0.63 

In-line 

> 2E5       0.21         0.84 
   10 – 100        0.90         0.40 
   100 – 1E3  (Treat as a single cylinder) 
   1E3 – 2E5i 0.35(ST/SL)0.2         0.60 
   1E3 – 2E5j       0.40         0.60 

Staggered

> 2E5       0.02         0.84 
i  For ST/SL< 2 
j For ST/SL > 2 
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Table IVb.3.3.  Correction factor C for bundles with less than 20 tubes 

3.3.  Internal Turbulent Flow

A frequently used correlation in internal turbulent flow for single-phase heat trans-
fer is the Dittus-Boelter correlation, originally developed in the 1930s for automo-
tive engineering: 

n
DD PrRe023.0Nu 8.0=             IVb.3.4 

where n = 0.4 if Ts > Tf and 0.3 if Ts < Tf.  Therefore; 

3.08.0 PrRe023.0Nu DD =    (Fluid is cooled)     IVb.3.4-1 
4.08.0 PrRe023.0Nu DD =     (Fluid is heated)     IVb.3.4-2 

The range of applicability includes 0.7 < Pr < 160, ReD > 10,000, and L/D > 10.  
Seider-Tate later modified this correlation for cases with large differences between 
the surface and the fluid bulk temperature by accounting for fluid viscosity evalu-
ated at the bulk (µf) and at the surface temperature (µs): 

14.03.08.0 )/(PrRe027.0Nu sfDD µµ=           IVb.3.5 

All properties in Equations IVb.3.4 and IVb.3.5 should be found at the fluid bulk 
temperature except for µs.

Example IVb.3.2.  Water at a rate of 4 kg/s enters a heated pipe at 10 C and 
leaves at 30 C.  The pipe has a diameter of 5 cm and its wall is maintained at 95 C.  
Find the required pipe length. 

Tf 1 Tf 2Ts

L
m, cp

.
Tf Ts

Solution:  To find L, we use Equation IVb.2.20 in conjunction with Newton’s law 
of cooling: 

( ) ( )fsffp TThATTcm −=− 12

where Tf1 and Tf2 are the water bulk temperature at the inlet and at the exit of the 
pipe.  The bulk average temperature is shown by fT :

fT  = (Tf1 + Tf2)/2 = (10 + 30)/2 = 20 C.  To find A, having m , Ts, Tf1, Tf2, and fT

we need to find h:
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At 20 C, ρ = 998.37 kg/m3, cp = 4.18 kJ/kg⋅C, µf = 0.001 N·s/m2, k = 0.6 W/m·C, 
and Pr = 6.9 

Re = 
A

DmVD

µµ
ρ =  = 859,101

)4/05.0(001.0

05.04
2

=
××

×
π

Nu = 0.023Re0.8Pr0.4 = 0.023 × 101,8590.8 × 6.90.4 = 505.4 (580 if Equation IVb.3.5 
is used) 

h = Nu × k/D = 505.4 × 0.6/0.05 = 6065 W/m2·C   

A = ( ) ( )fsffp TThTTcm −− /12

Substituting values: 

A = πDL = π × 0.05 × L = 4 × 4180 × (30 – 10)/[6065 × (95 – 20)] 

Solving for the pipe length, we find L = 4.68 m. 

Equations IVb.3.4 is applicable to fluids flowing inside conduits.  However, the 
heat transfer coefficient of water flowing in rod or tube bundles parallel to the axis 
of the rods or tubes should be calculated from: 

n
DD C PrReNu 8.0=              IVb.3.6 

where coefficient C is found from: 

024.0042.0 −=
D

s
C   Square array (1.1 ≤ s/D ≤ 1.3)  IVb.3.7(a) 

024.0026.0 −=
D

s
C   Triangular array (1.1 ≤ s/D ≤ 1.5)  IVb.3.7(b) 

as recommended by Weisman.  In these relations s and D are the pitch and the di-
ameter of a tube or a rod, respectively. 

Example IVb.3.3.  Consider the fully developed flow of water in a rod bundle at a 
rate of 2845 lbm/h.  System pressure is 1020 psia and water bulk temperature is 
525 F.  Find the heat transfer coefficient.  Use rod pitch = 0.738 in and rod diame-
ter = 0.563 in. 

Control

Volume s

d
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Solution:  We first find the channel flow area and the equivalent diameter: 

AFlow = s2 – 4(πd2/16) = 0.738 × 0.738 – π(0.563)2/4= 0.2956 in2= 2E-3 ft2.

PWetted = 4(πd/4) = πd = 1.768 in 

/2956.0[4=eD 1.768] = 0.668 in 

Water properties at P = 1020 psia and T = 525 F are v = 0.02166 ft3/lbm or ρ = 
46.17 lbm/ft3

V = m /(ρA) = (2845/3600)/(47.62 × 2E-3) = 8.08 ft/s 

Re = ρVDe/µ = [47.62 × 8.08 × (0.668/12)]/(0.23766/3600) = 323,568 

Since water is heated up, we use: 

4.08.0 PrReNu C
k

hD

Water

channel ==

At T = 525 F, we also find Pr = 0.8726 and k = 0.3377 Btu/h·ft·F.  Since s/D  1.3, 
C is calculated as: 

C = 0.042 × (0.738/0.563) – 0.024 = 0.031055 

759)8726.0(568,323031055.0PrReNu 3/18.0048.0 =×=== C
k

hD

Water

channel

h = Nu × kWater/De = 759 × 0.3377/(0.668/12) = 4606 Btu/h·ft2·F

3.4.  Internal Flow of Liquid Metals

An interesting feature of liquid metals, such as bismuth, mercury, and sodium, is 
that due to their high thermal conductivity, heat transfer by conduction plays a 
much more important role than in ordinary liquids and gases.  For liquid metal 
properties see Table A.IV.6(SI).  Thus, the Nu number for liquid metals includes a 
constant, to account for heat transfer by conduction superimposed on the term ac-
counting for flow velocity and hence heat transfer by convection.   

For flow in circular tubes, Lyon-Martinelli correlation is recommended for iso-
thermal wall: 

Nu = 5.0 + 0.025Pe0.8             IVb.3.8 

where Pe is the Peclet number given by Pe = Re Pr.  For uniform wall heat flux, 
The Seban-Shimazaki correlation, valid only for s/D > 1.35 is used: 

Nu = 7.0 + 0.025Pe0.8             IVb.3.9 

For flow of liquid metals parallel to heated rods, arranged in a hexagonal array, 
Dwyer recommends: 

Nu = 6.66 + 3.126(s/D) + 1.184(s/D)2 + 0.0155(ψPe)0.86
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where s/D is the ratio of the pitch to diameter for the array and ψ is given by (La-
marsh and Baratta): 

281.1

1.4

)1000Pr(Re/

)/0.942(
1

Ds−=

QUESTIONS 

− What does k in Biot number and in Nusselt number stand for?  State the inter-
pretation of each number. 

− What is the difference between Vx and (Vx)f?.  Similarly, identify the difference 
between T and Tf.

− Which scientist first identified the boundary layer?  What is the significance of 
the Prandtl number? 

− In the analytical derivation of external and internal temperature profiles, we as-
sumed thermal properties to be independent of temperature.  Is it then correct to 
say that in such circumstance the temperature and the velocity fields are inde-
pendent? 

− What is the von Karman method for the development of the energy equation in 
the boundary layer? 

− How accurate is the thickness of boundary layer obtained from a force balance 
in the boundary layer? 

− What are the key assumptions, which were made to obtain an analytical solu-
tion for the thickness of the thermal boundary layer? 

− Consider heat convection for laminar flow of water in a pipe.  What is the ef-
fect of doubling the flow rate on the Nusselt number?  What is the effect of us-
ing motor oil instead of water on h?

− What is the difference between the Dittus-Boelter and the Seider-Tate correla-
tions?  What is the range of applicability for the Pr number?  Are these correla-
tions applicable to liquid metals?

PROBLEMS 

1.  Start with Equation IVb.2.7 and obtain an approximate relation for the thick-
ness of the hydrodynamic boundary layer.  Compare your result with the exact so-
lution. 

2.  Start with Equation IVb.2.6 and derive a relation for the thickness of the hy-
drodynamic boundary layer by assuming a linear relation for velocity versus dis-
tance, i.e., Vx/(Vx)f = y/δ.

3.  Assume a two-dimensional flow over a flat plate.  Use the result of Problem 1 
for the thickness of the boundary layer and the velocity profile for Vx, as given by 
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Equation IVb.2.1 and obtain a relation for Vy.  [Hint:  Use the equation for conti-
nuity given by Equation IIIa.3.13-1]. 

4.  Find the Pr number of a fluid having v = 0.001 ft2/s, k = 0.08 Btu/ft h F, cp = 
0.45 Btu/lbm⋅F, and ρ = 58 lbm/ft3.  [Ans.:  1175]. 

5.  Consider a flat plate 15.3 cm long.  Find the free stream velocity, Vf so that the 
flow regime remains laminar for such fluids as water, air, and helium at 1 atm and 
20 C.  [Ans.:  3.3, 51, and 387 m/s]. 

6.  Air at atmospheric pressure and room temperature (27 C) flows over a flat plate 
at a speed of 2 m/s.  The length of the plate is 0.5 m.  Find the thickness of the 
boundary layer at the middle of the plate (x = 25 cm) and at the trailing edge (x = 
L).  [Ans.  7 mm and 1 cm]. 

7.  A flat plate has a length of 40 cm and width of 1 m.  Air, at pressure of 2 atm, 
temperature of 57 C, and velocity of 3 m/s flows over the plate.  Find the thickness 
of the boundary layer at x = L.

8.  Use the result of Problem 3 and find the y-component of velocity over the plate 
of Problem 6 at the outer edge of the boundary layer for two locations; a) the mid-
dle of the plate and b) the trailing edge of the plate. 

9.  Solve Problem 3 using the velocity profile of Problem 2.  Use the result and 
find the y-component of velocity over the plate of Problem 6.  Calculate numerical 
values for Vy at the outer edge of the boundary layer for two locations; a) the mid-
dle of the plate and b) the trailing edge of the plate. 

10.  Plot the thickness of the boundary condition as a function of the length of a 
flat plate (δ = C x0.5), starting from the leading and ending at the trailing edge.  For 
this purpose consider the flow of air at a pressure of 2 atm and temperature of 27 
C over the flat plate.  Find δ at x = 0.45 m. 

11.  Start with Equation IVb.2.5 and obtain Equation IVb.2.6.  [Hint:  By assum-
ing constant pressure throughout the flow, the left hand side is simplified as dP/dx
= 0.  To simplify the right hand side, first substitute for the last term from the inte-
gration-by-part technique.  Now write the Bernoulli equation and conclude that 
d(Vx)/dx is also zero.] 

12.  Start with Equation IVb.2.8 and obtain Equation IVb.2.9.  For this purpose, 
first ignore the non-linear term compared with the two dominant terms.  Then sub-
stitute for the velocity and temperature profiles.  To develop the integral, consider 
a case where the hydrodynamic boundary layer is thicker than the thermal bound-
ary layer (thus the integral is zero for y > δ’).  Arrange the result in terms of  =  
δ’/δ and ignore 4.

13.  Air at a pressure of 1 atm and temperature of 30 C flows over a flat plate.  The 
plate has a length of 120 cm, a width of 200 cm and a temperature of 10 C.   
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14.  To derive an analytical solution for the thickness of the thermal boundary 
layer, Equation IVb.2.9, it was qualitatively argued that the net viscous work term 
is generally negligible compared with the more dominant terms.  The goal of this 
problem is to quantify the above argument for fluids having low, medium, and 
high Prandtl numbers.  Assume constant fluid properties and equal hydrodynamic 
and thermal boundary layer thicknesses to determine cases that the above ap-
proximation is valid.  [Hint:  Define a figure of merit being the ratio of the viscous 
dissipation to the surface conduction.  Use an order of magnitude analysis to relate 
this ratio to the Prandtl number multiplied by the Eckert number]. 

15.  Equation IVb.2.9 was derived by using the cubic-parabola profiles for veloc-
ity and temperature as given in Equations IVb.2.1 and IVb.2.2.  Use the same cu-
bic-parabola profile for temperature but a linear velocity profile, as for Problem 2, 
and obtain the Nu number in terms of he Re and Pr numbers. 

16.  Consider the flow of a fluid between two large parallel flat plates located at a 
distance of 2∆ apart.

2∆ 2∆x
y

b

Find the governing momentum equation for the flow between the plates for the 
condition that the velocity profile is fully developed.  [Hint:  In this case, the net 
momentum flux is zero]. 

17.  Use the momentum equation of Problem 16 and obtain the velocity profile in 
terms of y, ∆, and the maximum velocity at y = 0.  [Ans.:  Vx = (1 – y2/∆2)/(Vx)0].

18.  Find ξ = δ’/δ for the fluids of Table IVb.1.1 at P = 1 at and T = 20 C..  [Ans.:  
ξWater = 0.5]. 

19.  Consider a heat exchanger made of sheets of parallel flat plates.  Water at 25 
C, 1 atm, and 4 m/s flows over a plate.  Find the water flow rate in the boundary 
layer of one plate at 10 cm from the leading edge. 

20.  Air is flowing at 1atm, 130 C, and 20 m/s over a flat plate.  Find the thickness 
of the boundary layer at 5 cm from the leading edge and the air flow rate in the 
boundary layer at this location. 

21.  A heated flat plate is exposed to the colder air flowing over the plate at a ve-
locity of 35 ft/s.  The plate is at a temperature of 200 F while air is at atmospheric 
pressure and 70 F.  Find the rate of heat transfer if the plate is a) heated at the 
leading edge and b) at a distance of 3 in from the leading edge. 
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22.  Two parallel flat plates are placed 2 cm apart.  Water, at 20 C, flows between 
these plates at a velocity of 1.6 m/s.  Find: a) if the flow becomes fully developed 
and b) the distance from the leading edge if it does. 

23.  A flat plate having a length of 75 cm and width of 50 cm is maintained at 
85 C.  Cold air at 10 kPa and 30 C flows over the plate at 10 m/s.  Find the total 
rate of heat loss from the plate. 

24.  Water at 80 F is flowing over a flat plate with a velocity of 8 ft/s.  The plate is 
5 ft long.  Find and plot the heat transfer coefficient as a function of the plate 
length. 

25.  Air at a temperature of 95 F and a velocity of 20 ft/s flows over a hot flat 
plate, maintained at 482 F.  Find the rate of heat transfer form this 1ft by 1 ft 
square plate.  [Ans.  ~ 423 Btu/hr]. 

26.  In Problem 25, find the distance from the surface of the plate where flow ve-
locity becomes 75% of the free stream velocity at x = L/2.

27.  A plate is heated over its entire length and maintained at 140 F.  Air at atmos-
pheric pressure and 80 F is flowing over the plate at velocity of 6.6 ft/s.  Find the 
heat transfer coefficient and the rate of heat transfer from at a distance of 1.6 ft 
from the leading edge.  The depth of plate is 1 ft.  [Ans.  ~392 Btu/hr]. 

28.  For flow over a flat plate, the average temperature difference (i.e., fs TT − )

when the plate temperature is kept constant is readily calculated.  This is not the 
case if a constant heat flux to or from the surface is imposed.  Use the averaging 
scheme over the plate length as given by:  

( )
L

L
fs

fs
dx

dxTT
TT

0

0 −
=−

to find the average temperature difference.  [Hint:  Substitute for ∆T in the nu-
merator from the Nu number and for Nu number from Equation IVb.2.11 and in-
tegrate].

29.  Obtain the average temperature difference for the laminar flow of fluids over 
a heated plate (L × b), for constant heat flux boundary condition, in terms of the 
Re and the Pr numbers.  For this purpose, use the result of Problem 28 and the lo-
cal Nux number for constant heat flux boundary condition given as: 

3/12/1 PrRe453.0Nu xx = ( constant=′′sq )

where in this relation properties are developed at the film temperature.   

[Ans.:  )/(PrRe47.1 3/12/1 kLqTT sLfs ′′=− −− ].



Questions and Problems      545 

30.  A heated flat plate is exposed to the flow of cold air.  Find hx at x = L/2 and 
the total rate of heat transfer for two types of boundary conditions: a) isothermal 
plate and b) constant heat flux.  Data:  plate dimensions are 50 cm × 50 cm, Tair = 
10 C, Pair = 0.5 atm, Vair = 4 m/s, plateT  = 100 C.  [Ans.:  157 W, 70 W]. 

31.  A uniformly heated square plate of 2 ft × 2 ft is exposed to cold air at 80 F.  
The heater output remains at a constant value of 1 kW.  Air, at atmospheric pres-
sure, flows over the plate at a velocity of 16.5 ft/s.  Find the average temperature 
of this plate.  [Ans.:  ~ 513 F]. 

32.  A flat square plate is uniformly heated over its entire surface.  One side of the 
plate is insulated and the other is exposed to cold air flowing over the plate.  Find 
the plate average temperature.  Data: L = 35 cm, Tair = 20 C, Vair = 5 m/s, Pair = 1 
atm, q ′′  = 900 W/m2.  [Ans.:  80 F]. 

33.  Water at 25 C flows in a smooth tube, having a diameter of 5 cm, at a rate of 1 
kg/s.  The tube in unheated and the temperature difference between the tube wall 
and the water is negligible.  Determine the flow regime.   

34.  Show that the mass flow rate of water in a pipe or tube of diameter D is given 
by m  = πDµRe/4. 

35.  Water enters a heated tube of 2 mm diameter at 30 C and leaves the tube at 
60 C.  Find the water mass flow  for the average Reynolds number of 1000.  [Ans.: 
0.00564 kg/s]. 

36.  Air at 10 atm and 77 C flows in a duct of rectangular cross section, 20 cm by 
10 cm, at a rate of 0.001 kg/s.  Find a) the flow regime and b) the heat transfer co-
efficient.  The duct is also at 77 C. 

37.  We want to establish fully turbulent flow in a smooth circular tube carrying 
water at a velocity of 5.75 ft/s.  Find the maximum tube diameter that still ensures 
the flow is fully turbulent.  What size tube should be used if air instead of water is 
flowing in the tube?  Both fluids are at 1 atm and 68 F.  What conclusion you 
draw from your solution? 

38.  Water is flowing at a rate of m  in a smooth pipe of diameter D.  A section of 
this pipe having a length of L is heated.  Water at the inlet to the heated section 
has a temperature of Tf1.  Water temperature at the exit of the heated section is Tf2.
The heated section of the pipe wall is maintained at Ts.  Show that for turbulent 
flow in the pipe and a specified pipe diameter, the required heated length is given 
by: 

( )
∆
∆

=
s

f

T

T
mDL 2.08.0

2.0

6.0Pr
407.11

µ
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where ∆Tf = Tf2 – Tf1, ∆Ts = Ts – fT , and fT  = (Tf1 + Tf2)/2.  [Hint:  Use Newton’s 

law of cooling in conjunction with Equations IVb.2.20 and IVb.3.4]. 

39.  Water at a rate of 5 kg/s is flowing inside a heated tube.  The tube has a di-
ameter of 6 cm and its wall is maintained at 85 C.  Find the required tube length so 
that the water can be heated from 10 to 20 C. 

40.  Water is flowing at a rate of m  in a smooth pipe of diameter D.  A section of 
this pipe having a length of L is heated.  Water at the inlet to the heated section 
has a temperature of Tf1.  Water temperature at the exit of the the heated section is 
Tf2.  The heated section of the pipe wall is maintained at Ts.  Show that for turbu-
lent flow in the pipe and a specified heated length, the pipe diameter is given by: 

25.14.0

6.02.0
0477.0

∆
∆

=
f

s

p T

Tk

cm

L
D

µ

41.  Water flows in a heated round tube at a rate of 3 kg/s.  The heated section of 
the tube is 4 m long.  The tube wall is maintained at 90 C.  Water enters the tube at 
35 C and leaves the heated section at 45 C.  Find the tube diameter.  [Ans.:  10.3 
cm].

42.  Water is flowing in a smooth pipe of diameter D.  A section of this pipe hav-
ing a length of L is heated.  Water at the inlet to the heated section has a tempera-
ture of Tf1.  Water temperature at the exit of the heated section is Tf2.  The heated 
section of the pipe wall is maintained at Ts.  Show that for turbulent flow in the 
pipe and a specified heated length and pipe diameter, pressure drop in the heated 
section is given by: 

9.054.038.0

52.5

9.1 Pr
0159.0

∆
∆

=∆
f

s

T

T

D

L
P

ρ
µ

[Hint:  Use Newton’s law of cooling in conjunction with Equations IIIb.3.6, 
IIIb.3.7, and IVb.2.20]. 

43.  As described in Chapter VIb, one way to measure the mass flow rate is to use 
a heated duct.  Consider the flow of air in a duct.  To measure the air flow rate, we 
first raise the temperature of a segment of this duct and maintain the wall tempera-
ture at a desired value.  We then measure the air pressure and temperature at the 
inlet and exit of the heated segment.  Use this technique and the given data to find 
the air flow rate in the duct.  Data:  Air pressure: 17 psia, air temperature at the 
inlet: 65 F, air temperature at the exit: 125 F, duct wall temperature 230 F, duct 
cross section is 1.5 ft by 1 ft, and the length of the heated segment is: 8 ft. 

44.  Consider a small double pipe heat exchanger.  Hot air flows in the inner and 
cold water in the outer pipe.  The heat exchanger is well insulated.  The inner pipe 
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is thin and made of copper tubing.  Use the given data to find the required heat ex-
changer length.  Data:  Inner pipe diameter: 3 cm, wall thickness: 2 mm, outer 
pipe diameter: 6 cm, Pair = 1 atm, airm  = 1 kg/s, waterm  = 2 kg/s, total rate of 

heat transfer: 20 kW, average air temperature: Tair = 450 C, average water tem-
perature: Twater = 160 C, water pressure 5 atm. 

45.  Water flows in a heated tube.  The constant heat flux of 2 MW/m2 is applied 
to the tube wall.  Water enters the tube at a rate of 1 kg/s and an inlet temperature 
of 35 C.  Find the water exit temperature.  The tube inside diameter is 2 cm and 
the tube length is 1 m.  [Ans.: 65 C]. 

46.  Consider the flow of water in a heat flux controlled channel.  The channel 
length and diameter are D and L, respectively.  The heat flux at the wall varies 
linearly along the channel.  Show that the water temperature at the exit of the 
channel is given by: 

( )
2
L

qq
cm

D
TT exitinlet

p
inletexit ′′+′′+= π

47.  Consider the flow of water in a heat flux controlled channel.  The wall heat 
flux varies linearly.  Find the water temperature at the exit of the channel.  Data:  
D = 3 cm, L = 1.5 m, waterm  = 1 kg/s, inletq ′′  = 1 MW/m2, outletq ′′  = 2 MW/m2, Tin

= 30 C.  [Ans.: 81 C]. 

48.  Water is flowing in a smooth pipe of diameter D.  A section of this pipe hav-
ing a length of L is heated.  Water at the inlet to the heated section has a tempera-
ture of Tf1.  Water temperature at the exit of the heated section is Tf2.  The heated 
section of the pipe wall is maintained at a constant heat flux so that a constant 
temperature difference of ∆Ts = Ts – fT  exists between the wall and the bulk wa-
ter temperature.  Show that for turbulent flow in the pipe and a specified heated 
length and pipe diameter, water temperature at the exit of the heated section is 
given by: 

∆
+=
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49.  Water flows in a heated tube at a velocity of 2 m/s.  The tube length and di-
ameter are 20 cm and 6 mm, respectively.  A constant heat flux is imposed on the 
tube wall to maintain a constant temperature difference of 8 C between the tube 
wall temperature and the bulk water temperature.  For a water temperature of 40 C 
at the inlet, find the water temperature at the outlet of the tube.  [Ans.:  44 C]. 

50.  The surface of a cylinder, having a diameter of 25 cm, is maintained at 140 C.  
Air flows over the cylinder at a steady state velocity of 50 m/s, a temperature of 
35 C, and a pressure of 1 atm.  Assuming the surface emissivity is very low, find 
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the rate of heat transfer to the cylinder to make up the loss by convection to the 
cross flow of air and maintain its temperature at the specified value. 

51.  The surface of a cylinder, having a diameter of 6 in and a length of 2 ft, is 
maintained at 300 F.  The cylinder is exposed to the cross flow of carbon dioxide 
flowing at a steady state velocity of 150 ft/s, a temperature of 70 F, and a pressure 
of 1 atm.  Assuming the surface emissivity is very low, find the rate of heat trans-
fer to the cylinder to make up the heat loss by convection to the cross flow of air 
and to maintain its temperature at the specified value. 

52.  A sphere made of copper, having a diameter of 2 cm, is heated to 50 C.  We 
now place this sphere in air flowing over the sphere at a velocity of 15 m/s, a tem-
perature of 17 C, and a pressure of 1 atm.  Find the time the sphere temperature 
drops to 25 C. 

53.  A steel pellet is heated up to 400 F and placed in air, flowing at a velocity of 
155 ft/s over the pellet.  The palette has a diameter of 0.5 in.  We want to estimate 
the cooldown rate of the pellet by using a lumped capacitance method.  Plot the 
pellet temperature versus time for 30 minutes.  Data: ε = 0.8, Tair = 100 F and Pair

= 1 atm, ρ = 488 lbm/ft3, c = 0.1 Btu/lbm·F. 

54.  A cross flow heat exchanger consists of a cluster of 25 tubes, arranged in a 
staggered square array.  Thus, there are 5 rows, each consists of 5 tubes.  The tube 
diameter, the longitudinal pitch, and the transverse pitch are 15 mm, 35 mm, and 
32 mm, respectively.  Air flows over the tube bank at a velocity of 8 m/s and an 
inlet temperature of 27 C.  The tube surface temperature is maintained at 77 C.  
Find the rate of heat transfer and the air exit temperature. 
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IVc..  Free Convection 

Free or natural convection is that mode of heat transfer where fluid flows only due 
to the presence of buoyancy forces.  This in turn is the result of the action of body 
forces, most notably gravity, in the presence of density gradient, generally due to a 
temperature gradient.  Although the rate of heat transfer by free convection is gen-
erally smaller than that of forced convection, the most notable advantage associ-
ated with free convection is in its passive nature, which in turn increases system 
reliability.  Since the lower rate of heat transfer results in higher thermal resis-
tance, making the application of this mode of heat transfer essential in enhancing 
insulation.  Free convection in flow loops results in the circulation of the working 
fluid, referred to as natural circulation, which plays a major role in nuclear plants 
during shutdown.  Free convection does not always lead to natural circulation as 
the latter requires the heat source to be located at a lower elevation than the heat 
sink.  Even in such case, the buoyancy force must be sufficient to overcome the 
friction force caused by the fluid shear stresses.  As shown in Section 2 of this 
chapter, the interesting feature of free convection heat transfer is the fact that the 
thermal and the hydrodynamic aspects are intertwined. 

1.  Definition of Free Convection Terms  

Volumetric expansion coefficient (β) for a fluid, as defined in Chapter II, is 
the change of fluid volume with temperature at constant pressure.  The volumetric 
expansion coefficient is given by β = (∂V/∂T)P/V and has units of inverse tem-
perature.  We may approximately express the volumetric expansion coefficient as: 
β ≅ [(V1 − V2)/(T1 − T2)]/V1 = [(ρ1 − ρ2)/(T1 − T2)]/ρ1.  For ideal gases, β = 1/T
where T is the gas absolute temperature in degrees K or R. 

Characteristic length is the length over which free convection is established.  
For vertical flat plates and cylinders, this is the height of the plate.  For horizontal 
cylinders and sphere, this is the diameter.  Finally, for horizontal plates, L = As/P
where As and P are the plate surface area and perimeter, respectively. 

Grashof number, after Franz Grashof, is a measure of buoyancy as compared 
with the viscous forces in the hydrodynamic boundary layer.  Due to the appear-
ance of the buoyancy forces, the Grashof number plays an important role in heat 
transfer by free convection.  For flow of fluid over a plate, the Grashof number is: 

Gr = gβ(Ts – Tf)x
3/v2

The Gr number is used to determine relative importance of the modes of heat 
transfer by convection.  If Gr << Re2, then the forced convection mode is domi-
nant.  For Gr >> Re2, the free convection mode is dominant. 

Mixed Convection is that mode of convection heat transfer for which Gr ≈ Re2.
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Modified Grashof Number (Gr*) is the product of Gr and Nu numbers, Gr* = 

GrNu = )/( 24 kvxQg sβ

Rayleigh number (Ra) is the product of the Grashof and the Prandtl numbers, 
Ra = GrPr. 

2.  Analytical Solution 

Figure IVc.1 shows the free convection boundary layers for a hot vertical plate, a 
hot horizontal wire and a cold vertical plate.  Note that outside the boundary layer, 
fluid is quiescent and Vf = 0 since fluid away from the surface is stagnant.  To 
show the significance of the Grashof number, we obtain the kinetic energy of the 
fluid in the boundary layer from an energy balance.  Ignoring the frictional losses 
on the wall we find that: 

(ρf − ρs) gx/2 = ρf V2/2 

where we have approximated the average density difference in the boundary layer 
as (ρf − ρs)/2.  For the flow in the boundary layer, we can find Re2 = (Vx/v)2.  Sub-
stituting for V2 from the energy balance, we find Re2 = [(ρf − ρs)gx/ρf](x/v)2, which 
is an alternative way to represent the Gr number.  If we substitute from the defini-
tion of the volumetric expansion coefficient, we find Gr = gβ(Τs − Τf)x

3/v2.

x

y

Quiescent Fluid

L
am

in
ar

T
ur

bu
le

nt

g

Tf , ρf

Ts

Ts >Tf

x

y

Quiescent Fluid

L
am

in
ar

T
ur

bu
le

nt

g

Tf , ρf Ts
Ts >Tf

y

Quiescent Fluid

L
am

in
ar

T
ur

bu
le

nt

g

Tf , ρf
x

Ts

Ts  < Tf

Figure IVc.1.1.  Free convection boundary layers 

2.1.  External Laminar Flow  

Consider the steady laminar flow of an incompressible fluid over a vertical flat 
plate.  Similar assumptions used in the forced convection analysis are applicable 
here.
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Determination of Velocity and Temperature Profiles 

The governing equation for the hydrodynamic boundary layer is Equa-
tion III.3.20-1 repeated here as: 
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where body force is now accounted for.  Since ∂P/∂x = −ρfg and X = −ρg, the 
momentum equation becomes: 
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The temperature boundary layer is given by Equation III.3.23-1.  Similar to the 
forced convection case, we may find the velocity and the temperature profile in 
the boundary layer from the boundary conditions: 

Profile   y = 0  δ δ  
Temperature   T = Ts T = Tf ∂T/∂y =0  
Velocity   Vx = 0  Vx = 0  ∂Vx/∂y =0 

For temperature profile we then find: 
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For the velocity profile at y = 0 from Equation IVc.2.1 we find an additional con-
dition: 
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Hence, the velocity profile becomes: 
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where Vxo is an assumed velocity since in free convection, Vf = 0.  Note that the 
velocity profile also satisfies the continuity Equation IIIa.3.13-1 as it should.  To 
be able to solve the governing equations analytically, similar to forced convection, 
we seek to convert the partial differential equations to ordinary differential equa-
tions.  Ostrach used a change of variables from x and y to ξ so that ξ= (Grx/4)1/4y/x
and a stream function ψ given by ψ(x, y) = 4v(x/y)ξf(ξ) = 4v(Grx/4)1/4f(ξ) where 
f(ξ) is a function to be determined.  Having the stream function, Vx and Vy are 
found in terms of ξ.  For Vx, we take the derivative of ψ with respect to y:
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To obtain Vy, we may either use Vy = –∂ψ/∂x or use the continuity Equa-
tion IIIa.3.13-1 to find Vy in terms of ξ and f(ξ) as Vy = vc1x

–1/4[ξf’(ξ) – 3f(ξ)].
Having found Vx and Vy in terms of ξ and f(ξ), Ostrach introduced a dimensionless 
temperature θ = (T − Tf)/(Ts − Tf).  Substituting for Vx, Vy, Ts, and their related de-
rivatives in terms of ξ f(ξ), and θ, the set of partial differential equations given by 
Equations IIIa.3.13-1, IIIa.3.20-1, and IVc.2.1 are reduced to the following set of 
two ordinary differential equations: 
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This set is subject to the following boundary condition.  For ξ= 0, f = df/dξ = 0 
and θ = 1.  The other boundary condition is for ξ→ ∞, df/dξ = 0 and θ = 0.  We do 
no expect to find an analytical solution to the above set of coupled non-linear sec-
ond and third order differential equations.  But we know that θ ’(0) = −f(Pr) is a 
part of the solution since it is the dimensionless temperature gradient at the wall.  
We now tie this condition to the heat transfer coefficient through the heat transfer 
gradient at the wall: 
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The above relation can be written in terms of Nu = f(GrPr) = f(Ra).  Seemingly, 
we obtained an analytical solution for this problem.  However, f(Pr) is yet to be 
determined.  One way to find this function is to solve the above set of differential 
equations numerically, plot θ = f(ξ) and find the slope of the curves in such plots.  
Ostrach obtained numerical solutions for f(ξ) and θ in terms of Pr number.  An 
empirical fit to the results of Ostrach solution is f(Pr) = 0.676Pr1/2(0.861 + Pr)−1/4.

Hence, Nu and Nu  becomes: 

[ ] 4/14/1 Pr)/861.0(1Ra478.0Nu −+= xx            IVc.2.2 

[ ] 4/14/1 Pr)/861.0(1Ra637.0Nu −+= LL            IVc.2.3 

All properties are evaluated at the film temperature except for β which for gases is 
found at Tf.
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Example IVc.2.1. A vertical plate is maintained at 40 C.  This plate is placed in a 
quiescent hot air at 114 C, find the rate of heat transfer to the plate.  Use Lplate = 
0.3 m, bplate = 0.42 m, δ = 1 mm, and Pair = 1 bar. 

L

b

δ

Solution:  We first find the air properties from Table A.IV.4 at Tav = (40 + 114)/2 
= 350 K:  

v = 20.92E-6 m2/s, k = 0.03 W/m·C, Pr = 0.7, β = 1/Tf = 1/(114 + 273) = 1/387 = 
2.584E-3 K-1.

RaL = GrLPr = [gβ(Ts – Tf)L
3/v2]Pr  

= [9.81 × (2.584E-3) × (114 – 40) ×  0.33/(20.92E-6)2] × 0.7 = 1.157E8 

[ ] 4/14/1 Pr)/861.0(1Ra637.0Nu −+= LL

= 0.637 × (1.157E8)0.25 × [1 + (0.861/0.7)]–0.25 = 54

h = NuL × k/L = 54 × 0.03/0.3 = 5.4 W/m2·C (≈1 Btu/h·ft2·F)

Q  = hA(Tf – Tplate) = 5.4 × (0.3 × 0.42) × (114 – 40) = 50 W.   

Heat transfer to both sides is 2 × 50 = 100 W. 

3.  Empirical Relations 

While the foregoing derivation was for a simple case of laminar flow over flat 
plate, we expect the same functional relationship Nu = f(Ra) for more complicated 
cases involving turbulent flow over inclined flat plates, cylinders, and spheres.  In 
free convection, the transition between laminar to turbulent flow takes place at a 
critical Ra = 1E9 for vertical plates.  Due to the inherent complexities of turbulent 
flow coupled with the fact that the surface may be oriented at angles or being 
curved, the only solution we find is in the form of empirical correlations.  Such 
correlations are generally devised for the entire range of the Ra number. 

3.1.  Flow over Vertical Plates and Cylinders 

Isothermal vertical plate:  For flow over an isothermal vertical plate, Chur-
chill and Chu recommend: 
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( )[ ] 2
6/10.296-5625.0 RaPr/492.01387.0825.0Nu ++= LL 1.0E-1 < Ra < 1.0E12

               IVc.3.1 

Isothermal vertical cylinders: Equation IVc.3.1 is also applicable to isother-

mal vertical cylinders provided that (D/L)Cylinder ≥ 35/ 4/1GrL .  Fluid properties 

should be evaluated at TFIlm = (Ts + Tf)/2 but β is found at Tf.

Example IVc.3.1.  A radiator consists of 36 vertical plates, each maintained by an 
electrical element at a temperature of 62 C, to heat a room at 12 C.  The plates 
have a height of 45 cm, a width of 10 cm, and a thickness of 10 mm.  Find the rate 
of heat transfer from this radiator.  Pressure in the room is atmospheric. 

Solution:  We first find the air properties from Table A.IV.4 at Tav = (12 + 62)/2 = 
37 C = 310 K:  

v = 16.89E-6 m2/s, k = 0.0274 W/m·C, Pr = 0.706, β = 1/Tf = 1/(12 + 273) = 
3.508E-3 K-1.

GrL = gβ(Ts – Tf)L
3/v2 = 9.81 × (3.508E-3) × (62 – 12) × 0.453/(16.89E-6)2 = 

5.484E8
RaL = GrLPr = 5.484E8 × 0.706 = 3.87E8 
For isothermal vertical plates, we use Equation IVc.3.1: 
NuL = {0.825 + 0.387[1 + (0.492/0.706)0.5625]–0.296(3.87E8)0.16667}2 = 91.78 

h = Nu × k/L = 91.78 × 0.0274/0.45 = 5.59 W/m·C (≈ 1 Btu/h·ft2·F)

Q  = Nplates × hA(Tplate – Tf)

Aplate = 2(L × b + b × δ + L × δ)
Aplate = 2(0.45 × 0.10 + 0.45 × 0.01 + 0.1 × 0.01) = 0.101 m2

Q  = 36 × 5.59 × 0.101 × (62 – 12) = 1 kW. 

Vertical plates and cylinders with constant heat flux:  For flow over vertical 
plates and cylinders in constant heat flux, Churchill & Chu correlation is: 

[ ] 0)Gr(PrPr)/492.0(167.0Nu68.0Nu 25.0*25.0445.05625.025.025.1
=+−−

−
LLL

1.0E-1 < Ra < 1.0E12                          IVc.3.2 

where in Equation IVc.3.2, )/(Nu TkLQsL ∆=  with T∆  calculated from 

])2/([ fs TLTT −=∆ .  Fluid properties should be evaluated at TFilm = (Ts + Tf)/2 

but β is found at Tf.
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3.2.  Flow over Horizontal Plates and Cylinders 

Heat transfer coefficient in free convection over horizontal plates strongly depends 
on the orientation of the plate with respect to temperature as the flow pattern de-
pends on the side of plate under consideration (Figure IVc.3.1).  

Ts < Tf

Ts < Tf

Ts > Tf

Ts > Tf

(a)                                      (b)                                  (c)                                 (d) 

Figure IVc.3.1.  Horizontal plates in free convection  

Consider for example a cold horizontal flat plate in a hotter fluid (a).  Fluid on 
the top would move over the plate, get cooler, and would flow downward from the 
side of the plate.  On the other hand, in case (b), fluid moves underneath the plate, 
gets cooler and freely rushes downward leading to a more effective heat transfer in 
case (b) than in case (a).  A similar situation exits for cases of (c) and (d) where 
cooler fluid moves over the plate, gets warmer and freely moves upward where in 
case (d), fluid moves underneath the plate, gets warmer, and can move upward 
only when it reaches the edges of the plate.   

Isothermal horizontal plates:  For the more effective cases of (b) and (c), the 
average Nu number originally suggested by McAdams, for the indicated ranges of 
the Rayleigh numbers, should be calculated from: 

0.25Nu 0.54RaL L=   1.0E4 ≤ RaL ≤ 1.0E7         IVc.3.3 
0.33Nu 0.15RaL L=   1.0E7 ≤ RaL ≤ 1.0E11         IVc.3.4 

For the less effective cases of (a) and (d), the average Nu number may be calcu-
lated from 

0.25Nu 0.27RaL L=   1.0E5 ≤ RaL ≤ 1.0E10         IVc.3.5 

In these correlations, the characteristic length L used in the calculation of the 
Grashof number is found from L = A/P where A is the surface area and P the pe-
rimeter.  Fluid properties in Equations IVc.3.3 through IVc.3.5 should be evalu-
ated at the TFilm = (Ts + Tf)/2. 

Example IVc.3.2.   An air-cooled compressor uses 15 thin, annular fins.  When 
the engine is operating at steady state, each fin is at an average temperature of 200 
F.  The ambient is at 1 atm and 60 F.  The inside and the outside diameters are 6 in 
and 1.6 ft, respectively.  Find the steady state rate of heat transfer. 
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Solution:  We first find the air properties from Table A.IV.4 at Tav = (200 + 60)/2 
= 130 F = 590 R:  

v = 1.72E-4 ft2/s, k = 0.016 Btu/h·ft2·F, Pr = 0.705, β = 1/Tf = 1/590 = 0.00169 R-1.

Aplate = π(D2 – d2)/4 = π[1.62 – (6/12)2]/4 = 1.81 ft2

Pplate = πD = π × 1.6 = 5 ft 
Lcharacteristic = A/P = 1.81/5. = 0.362 ft 

GrL = gβ(Ts – Tf)L
3/v2 = 32.2 × 0.00169 × (200 – 60) × 0.3623/(1.72E-4)2 = 

12.22E6
RaL = GrLPr = 12.22E8 × 0.705 = 8.61E6 

For isothermal horizontal plates with RaL = 8.61E6, we use Equation IVc.3.3: 

NuL = 0.54 × (8.61E6)0.25 = 29.25 
h = Nu × k/L = 29.25 × 0.016/0.362 = 0.77 Btu/h·ft2·F

Q  = Nplates × hA(Tplate – Tf) = 15 × 0.77 × 1.81 × (200 – 60) = 2927 Btu/h  

= 0.86 kW.  Total rate of heat transfer is 1.56 kW. 

Isothermal horizontal cylinders:  For horizontal cylinders, Churchill and Chu 
recommend the following correlation: 

( )[ ] 2296.05625.01667.0 Pr/559.01Ra387.06.0Nu ++=
−

DD

1.0E-5 < Ra < 1.0E12             IVc.3.6 

The characteristic length for the calculation of the Grashof number is the cylinder 
diameter.  Fluid properties should be evaluated at Tav = (Ts + Tf)/2 but β is found 
at Tf.

Example IVc.3.3.   Cold water is flowing in a thin-wall tube, maintaining the tube 
wall temperature at 14 C.  The ambient air is at 40 C.  Find the rate of heat transfer 
to the tube wall.  Dtube = 6 cm, Ltube = 4 m. 

Solution:  Finding the air properties from Table A.IV.4 at Tav = (14 + 40)/2 = 27 
C = 300 K:  

v = 15.89E-6 m2/s, k = 0.0263 W/m·C, Pr = 0.707, β = 1/Tf = 1/(40 + 273) = 
3.195E-3 K-1.

GrL = gβ(Ts – Tf)L
3/v2 = 9.81 × (3.1955E-3) × (40 – 14) × 0.063/(15.89E-6)2 = 

0.697E6
RaL = GrLPr = 0.697E6 × 0.707 = 493,000 

For isothermal horizontal cylinders, we use Equation IVc.3.6: 

NuL = {0.6 + 0.387 × 493,0000.1667[1 + (0.559/0.707)0.5625]–0.296}2 = 11.94 
h = Nu × k/L = 11.94 × 0.0263/0.06 = 5.23 W/m·C 

Q  = hA(Tplate – Tf) = 5.23 × (π × 0.06 × 4) × (40 – 14) = 102.6 W. 
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Spheres:  For spheres immersed in fluids, having Pr ≥ 0.7, Churchill (1983) 
recommends the following correlation: 

( )[ ] 4445.05625.025.0 Pr/469.01Ra589.02Nu
−

++= DD  RaL ≤ 1.0E11              IVc.3.7 

The characteristic length for the calculation of the Grashof number is the cylinder 
diameter.  Fluid properties should be evaluated at TFilm = (Ts + Tf)/2 but β is found 
at Tf.

Example IVc.3.4.   Compare the heating of a spherical metal, 6 cm in diameter, in 
water and in air.  Water is saturated at 100 C.  Air is also at 100 C and 1 atm.  The 
metal is at 20 C.   

Solution:  The rate of heat transfer in the two mediums is proportional to: 
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The average temperature is both medium is TFilm = (20 + 100)/2 = 60 C.  The air 
and water properties are:  

Medium  v (m/s2)  Pr  k (W/m·C)     β (1/K)
Air           18.900E-6 0.708   0.0285         0.003003 
Water     0.4748E-6  3  0.6507       0.000529 

RaAir = [gβ(Ts – Tf)L
3/v2]Pr = [9.81 × 0.003003 × (100 – 20) × 0.063/(18.90E-6)2]

× 0.708 = 1.00E6 

RaWater = [gβ(Ts – Tf)L
3/v2]Pr = [9.81 × 0.005290 × (100 – 20) × 0.063/(0.4748E-

6)2] × 3 = 1.197E10 
NuAir = 2 + 0.589 × (1E6)0.25 × [1 + (0.469/0.708)0.5625]–0.4445 = 35.4 
Nuwater = 2 + 0.589 × (1.197E10)0.25 × [1 + (0.469/3)0.5625]–0.4445 = 311.8 

The rate of heat transfer in water is (311.8/35.4) × (0.6507/0.0285) = 201 times 
faster. 

QUESTIONS 

− What mode of heat transfer governs the oceanic and the atmospheric motions? 
− The heating system of a tall building consists only of a boiler, located in the 

basement, the radiators (located on each floor), and the pipe runs.  What mode 
of heat transfer is used in this design? 

− What is the difference between Nu and Nu , between Gr and Gr*, and between 
Re and Ra? 

− What is the value of the Ra number for the transition for the free convection 
boundary layer from laminar to turbulent? 

− What is the characteristic length?  How is it calculated in a horizontal cylinder? 
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− Consider free convection over a horizontal plate with Ts > Tf.  Compare the heat 
transfer from the top of the plate with that from the bottom of the plate.  Which 
heat transfer is more efficient? 

PROBLEMS 

1.  A flat plate, maintained at 250 C is placed vertically in air at a pressure of 1 bar 
and temperature of 20 C.  The plate height and width are 20 cm and 10 cm.  Find 
the rate of heat transfer to this plate.  [Ans.:  64 W]. 

2.  Consider two identical flat plates both maintained at 400 K.  These plates are 
placed vertically into tow large containers.  One plate is placed in a container full 
of air at 300 K and 1 atm and the other plate in a container full of carbon dioxide 
at 300 K and 1 atm.  Find the ratio of the Grashof numbers Grair/GrCO2.

3.  Consider two identical flat plates both maintained at 400 K.  These plates are 
placed vertically into tow large containers.  One plate is placed in a container full 
of air at 300 K and 1 atm and the other plate in a container full of carbon dioxide 
at 300 K and 1 atm.  Find the ratio of the heat transfer coefficients hair/hCO2 and the 

rate of heat transfer 2COair / QQ .

4.  For a flat plate, the transition from the free convection boundary layer to the 
free convection turbulent boundary layer takes place at a Rayleigh number of 
about Ra = 1E9.  A flat plate at 70 C is placed in a colder medium at 27 C.  Find 
the location on the plate where this transition takes if the plate is placed in: 
a) air, b) Ammonia, c) water.  All fluids are at 1 atm. 

5.  A flat plate of glass, having a height of 1 ft is heated to 200 F in an annealing 
furnace.  The plate is then removed and placed vertically in a room at 60 F and 
14.7 psia to be air cooled.  Find the initial rate of heat transfer from the glass plate. 

6.  A radiator consists of 15 vertical plates, each maintained by an electrical ele-
ment at a temperature of 65 C. to heat a room at 15 C.  The plates have a height of 
50 cm, a width of 12 cm, and a thickness of 16 mm.  Find the rate of heat transfer 
from this radiator.  Pressure in the room is atmospheric. 

7.  Two identical plates (A and B), heated to 40 C, are placed in quiescent air at 
15 C and 1 atm to be air-cooled.  Plate A is hanged vertically and the plate B is 
placed horizontally.  Both plates are cooled from both sides.  Assuming no ther-
mal radiation and only free convection heat transfer, which plate cools faster? 

8.  An air-cooled engine uses 20 thin, horizontal fins.  When the engine is operat-
ing at steady state, each fin is at an average temperature of 240 F.  The ambient is 
at 1 atm and 60 F.  The inside and the outside diameters of each annular fin are 8 
in and 2 ft, respectively.  Find the steady state rate of heat transfer. 

9.  A small transformer is placed in a metal box.  The box has a height of 10 cm, 
depth of 0.75 m, and width of 1 m.  There is no heat transfer from the bottom of 
the box and from the four insulated sides, as heat is dissipated only from the top of 
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the box.  The ambient air is at 20 C at 1 atm.  The rate of heat transfer to be dissi-
pated is 0.4 kW.  Find the temperature of the top of the metal box. 

10.  The air conditioning duct in a house is 60 m long.  The duct cross section is a 
rectangle with a height of 35 cm and width of 75 cm.  The duct is bare and ex-
posed to air at 18 C.  Find the total rate of heat loss if the average surface tempera-
ture of the duct metal is 35 C. 

11.  A block of steel is uniformly heated from inside to maintain its temperature at 
100 C.  The block is a rectangular parallelepiped.  The base of the block is a 3 cm 
by 3 cm square and the height of the block is 6 cm.  We place this block in air at 
25 C.  Find the rate of heat loss from this block by natural convection. 

12.  A horizontal steam line carries saturated steam at a rate of 6.0E6 lbm/h.  The 
steam line has a diameter of 2.67 ft, a wall thickness of 2 in, and a length of 150 ft.  
Accounting for the steam pressure drop in the pipe, steam may be considered satu-
rated at an average pressure of 800 psia.  The pipe is insulated with a thickness of 
7 inches.  Find the rate of heat loss to the ambient at 23 C.  The emissivity of the 
insulation is 0.7.  Other data include Pambient = 1 atm, ks = 10 Btu/h·ft·F, ki = 0.7 
Btu/h·ft·F.  The ambient air is quiescent. 

13.  Slurry at a rate of 110 lbm/h and 110 F is pumped through 2 in inside diame-
ter pipe.  After traveling in a unheated length of the pipe, the slurry enters a 3 ft 
long heated section where the wall of the pipe is maintained at 190 F.  Find the 
average temperature of the slurry leaving the heated section.  Thermal properties 
of slurry are as follows ρ = 70 lbm/ft3, µ = 150 lbm/h·ft, c = 0.4 Btu/lbm·F, and k
= 0.5 Btu/h·ft·F. 

14.  A large tank of diameter D contains water to height L, as shown in the figure.  
The tank is insulated with a layer of insulation, having a thickness of δi.  The tank 
wall thickness is δs.  The water bulk temperature is maintained at Tfi while the am-
bient temperature is Tfo.  Use the given data to find the rate of heat that is trans-
ferred to water at steady state conditions. 

Data: D = 8.04 ft (2.45 m), L = 32.8 ft (10 m), δs = 4 in, (10.16 cm), δi = 5 in 
(12.7 cm), Pfi = 2250 psia (15.51 MPa), Tfi = 500 F (260 C), Pfo = 1 atm, Tfo = 85 F 
(29.5 C), ks = 10 Btu/h·ft·F, ki = 0.8 Btu/h·ft·F. 

δ

L

D

Fuel rod

Canister

           Problem 14                                                      Problem 15 
15.  A spent fuel rod is placed in a canister.  A vacuum pump is used to remove all 
air and establish vacuum in the canister.  The surface temperature of the rod must 
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not exceed 392 F (200 C) while the temperature of the canister wall must remain 
at 151 F (66 C).  For a heat transfer coefficient of 2 Btu/h·ft2·F (11.4 W/m2·C) find 
the ambient temperature.  Ignore conduction heat transfer between the rod and the 
canister.  εcanister = 0.6. 

16.  A solid sphere made of polished copper has a diameter of 2 cm and is at 100 
C.  We now expose the solid sphere to are at 50 C and 1 atm.  Use the lumped ca-
pacitance method to plot the temperature of the solid sphere versus time after five 
minutes of exposure.  The air is quiescent.  

17.  A spent fuel rod is placed in a canister.  A vacuum pump is used to remove all 
air and establish vacuum in the canister.  The surface temperature of the rod must 
not exceed 392 F (200 C) when the temperature of the ambient is at 40 C (104 F).  
For a heat transfer coefficient of 1.5 Btu/h·ft2·F (8.5 W/m2·C) find the canister 
wall temperature.  Ignore conduction heat transfer between the rod and the canis-
ter. ε = 0.6. 

18.  A spent fuel rod is placed in a canister.  A vacuum pump is used to remove all 
air and establish vacuum in the canister.  The surface temperature of the rod must 
not exceed 302 F (150 C) when the temperature of the ambient is at 40 C (104 F).  
Find the canister wall temperature.  Ignore conduction heat transfer between the 
rod and the canister.  ε = 0.6. 

19.  A longitudinal fin of rectangular profile (Figure IVa.8.6) made of aluminum is 
used to dissipate heat from a hot surface.  Find the rate of heat transfer from this 
fin.  Data:  Tb = 125 C, Tf = 27 C, L = 20 cm, b = 14 cm, δ = 1 cm.  [Hint: Assume 
a reasonable value for h to find T(x = L/2) from Equation IVa.8.7 and iterate until 
the convergence criterion is met]. 

20.  A well insulated water tank contains 100 lit of water at 27 C.  We want to heat 
the water to 90 C.  For this purpose we place a coil made of copper with an out-
side diameter of 1.2 cm in the water.  The coil carries steam at 115 kPa.  Ignore 
the thermal resistance of the condensing steam.  Find a) the required heating time 
and b) the amount of steam condensed in the coil.

21.  A horizontal pipe delivers steam at 1 MPa and a rate of 100 kg/s to a steam 
turbine.  The pipe (O.D. = 11.5 cm and I.D. = 96.5 cm) is made of carbon steel.  
You may assume that the air and the walls of the turbine building are both at 20 C.  
Use an emissivity of 0.81 for the pipe surface to estimate the rate of heat loss, per 
unit length of the pipe, due to the free convection and thermal radiation mecha-
nisms. 
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IVd..  Thermal Radiation 

Thermal radiation is perhaps the most interesting mode of heat transfer, as it does 
not require a material medium.  The recognition of this interesting feature, which 
today is commonplace, has a long history.  In Chapter VII, we have discussed sci-
entists’ efforts to unify physical concepts.  Up to about 100 years ago, these efforts 
had been focused on explaining every phenomenon in terms of two independent 
branches of science.  First, classical mechanics for explaining the behavior of par-
ticles based on the Newton laws and electromagnetism for explaining the behavior 
of waves based on Maxwell’s equations.  The most challenging task was explain-
ing the nature of light, which was thought to behave only as a wave.  However, if 
light behaved only as an electromagnetic wave, how could then it travel through 
empty space?  While filling the vacuum with fictitious ether provided a temporary 
solution, it was the development of modern physics, based on quantum mechanics, 
which allowed description of particles and waves as two distinct modes of behav-
ior.  In quantum mechanics, a wavelength is defined for particles.  Max Planck in-
geniously expressed energy of particle-like electromagnetic radiation in terms of 
wave frequency.  Since wavelength is related to the speed of the particle through 
frequency, we conclude that the shorter the wavelength, the more energetic the 
particle.  The term radiation encompasses a wide range of wavelengths in the elec-
tromagnetic spectrum.  In this chapter we limit our discussion to thermal radiation, 
which covers only radiation emitted as a result of the temperature of a substance.  
We consider surfaces emitting or receiving radiant energy.  We will see that radia-
tion heat transfer is treated differently because the radiant energy is both direc-
tional and wavelength dependent. 

1.  Definition of Thermal Radiation Terms 

1.1.  Definitions Pertinent to Wavelength 

Electromagnetic spectrum refers to such energetic radiation as cosmic rays on 
the one-side and such low energy radiation as radio waves and TV signals, on the 
other.  Some types of radiation can be seen, such as light, some can be felt, such as 
heat, and some can only be detected by sensitive instruments.   
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Figure IVd.1.1.  Depiction of the electromagnetic spectrum on a log scale
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Shown in Figure IVd.1.1 is the electromagnetic wave spectrum in terms of 
wavelength (µm = 1E-6 m) ranging from about 1E-10 µm for high energy cosmic 
rays to 1E9 µm for low energy electric power.  On this spectrum, γ rays follow the 
cosmic rays.  The γ rays are emitted directly from the atomic nucleus and their en-
ergy is measured in MeV.  For example bombardment of oxygen, O16 with neu-
trons results in the appearance of unstable nitrogen N16, which then decays by 
emitting energetic γ-rays on the order of 6.13 MeV and 7.12 MeVs.  X-rays are 
generally less energetic than γ-rays and are emitted by atoms while in the excited 
state.  This is subsequent to an electron dropping to a lower orbit.  The ultraviolet 
light is much less energetic than X-rays and is harmful only to sensitive tissue.  
Generally γ-rays, X-rays, and ultraviolet light are of interest to nuclear physicists 
and engineers.  The visible light covers the small region between 0.4 to 0.7 µm.
The monochromatic distribution of visible light is highlighted in figure IVd.1.1.  
The region pertinent to heat transfer falls in the 0.1 to 100 µm range.  This region 
includes the low energy portion of ultraviolet, visible light, and entire infrared 
spectrum.  Microwaves consist of such waves as radar, television, and radio.  
Generally, low frequency waves outside the band of thermal radiation are catego-
rized as Hertzian waves and are of interest to electrical engineers. 

Wavelength, λ in terms of the wave frequency is given as λ = c/f where c is the 
speed of light and f is the wave frequency.  In vacuum the speed of light is c =
2.998E8 m/s.  Wavelength is usually expressed in µm.

Planck’s constant,  is the proportionality factor to express wave energy in 
terms of the wave frequency.  The plank constant is given as  = 6.6256E-34 J·s.  
Hence, the wave energy is E =  f, where E is in joules.  For example, to find the 
radiation energy having a frequency of 0.01 µm, we first calculate the wave fre-
quency f = c/λ = (2.998E8 m/s)/(0.01E-6 m) = 2.998E16·s-1.  We then find energy 
as E = 6.6256E-34 × 2.998E16 = 1.986E-17 J. 

1.2.  Definitions Pertinent to Directions and Coordinates 

Thermal radiation variables refer to the dependency of the emitted radiation 
on the wavelength (referred to as the spectral distribution) and on the direction (di-
rectional distribution). 

Spectral distribution refers to the fact that the magnitude of radiation is a 
function of wavelength.  This is shown in Figure IVd.1.2(a). 

Monochromatic radiation emission refers to a radiation at a specific wave-
length. 

Directional distribution expresses the fact that surfaces may emit radiation in 
preferred directions as shown in Figure IVd.1.2(b).  Figure IVd.1.2(c) shows an 
isotropic distribution of radiation. 
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Figure IVd.1.2.  Emission of radiation from surfaces (Incropera) 

Radiation intensity is an energy density radiated from (emissive) or incident 
upon a surface.  As we will see in this section, the radiation intensity in general 
depends on the wavelength and direction.  Therefore, the radiation intensity is ex-
pressed in units of energy per unit time, unit area, unit wavelength, and unit angu-
lar direction. 

Zenith and azimuthal angles in conjunction with the position vector specify 
the location of a point in the spherical coordinate system, Figure IVd.1.3(a).  The 
zenith angle, measured from the x-axis, is shown by θ and is used in polar coordi-
nates.  The zenith angle ranges from 0 to 2π.  The azimuthal angle, measured from 
the z-axis is shown by ϕ.  The azimuthal angle ranges from 0 to π/2 for the top 
hemisphere (+z).  The solid angle, as defined next, ranges from 0 to 2π for the top 
hemisphere. 

Solid angle being a three dimensional angle is defined similar to a two dimen-
sional or a plane angle*.  To define these angles we consider the spherical coordi-
nate system of Figure IVd.1.3(a).  Angles θ and ϕ are the azimuthal and the zenith 
angles (also shown in Figure IVd.1.4).  The differential plane angle, such as dϕ in 
Figure IVd.1.3(b) or IVd.1.3(c) is defined by the region between two rays of a cir-
cle and is measured as the ratio of the arc between the two rays (dl) divided by the 
radius of the circle (r) hence, dϕ = dl/r.  We define a differential solid angle in the 
same manner.  Consider the elemental surface dA1 as shown in Figure IVd.1.3(b).  
Surface dA1 is defined in spherical coordinates by the azimuthal and the zenith an-
gles θ and ϕ.  The differential surface dAn in space subtends a differential solid 
angle dΩ when viewed from a point on the differential surface dA1.  Thus, the 
solid angle dΩ is defined by a region between two rays of a sphere and is meas-
ured as the ratio of the differential surface area dAn between the two rays divided 
by the square of the sphere radius dΩ = dAn/r

2.

* Solid angle is defined as “the angle formed by the vortex of a cone or subtended at the 
point of intersection by three or more planes.”  In other words, a solid angle is the angle 
intercepted by a cone on a surface of a unit sphere.  The unit sphere has a solid angle of 4π
steradian (sr). 



564      IVd.  Heat Transfer:  Thermal Radiation 

x

y

z
r

ϕ

θ

(r, θ, ϕ)

dA1

dAnϕ

dθ

dϕ

θ

r

dΩ

dl

dϕ = dl/r

ϕ

dθ

dϕ

θ
rsinϕ dθ

rdϕ

dΩ

(a)                                     (b)                                                (c) 

Figure IVd.1.3. (a) Spherical coordinates, (b) and (c) Elemental surface dAn subtends 
solid angle dω

To eliminate the appearance of the arbitrarily taken differential space surface 
dAn, we may substitute for dAn in terms of the spherical coordinate system vari-
ables r, θ, and ϕ to obtain dAn = (rsinϕdθ)(rdϕ).  Thus, substituting in dΩ = dAn/r

2

we find dΩ = sinϕdθdϕ.  Plane angles have the unit of radians (rad) and solid an-
gles are expressed in units of steradian (sr).  Note that 0 ≤ Ω ≤ 4π.
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Figure IVd.1.4.  Surface dAn subtends solid angle dΩ at center of a hemisphere around dA1

Projected area of surface dA1 in the direction of n for example is dA1cosϕ,
where ϕ is the zenith angle (Figure IVd.1.4). 

1.3.  Definitions Pertinent to Radiation Interaction with a Surface 

Emission Ie, refers to the radiant energy emitted by a surface and is identified 
here by subscript e, as shown in Figures IVd.1.5(a) and IVd.1.5(c). 
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Irradiation Ii, is the radiant energy incident on a surface and is identified here 
by subscript i, as shown in Figure IVd.1.5(b) and IVd.1.5(c). 

Radiosity Jr, refers to all of the radiant energy leaving a surface (including the 
radiation reflected by the surface) and is identified here by subscript r, as shown in 
Figure IVd.1.5(c). 
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Figure IVd.1.5.  Depiction of emission, irradiation, and radiosity  

1.4.  Definitions Pertinent to Emission 

Emission spectral intensity, Iλ,ε(λ, θ, ϕ) is the rate of emitted radiant energy at 
the following characteristics: 
− it has wavelength λ, per unit wavelength interval dλ about λ 
− it travels in the direction of θ and ϕ  and per unit solid angle about this direction. 
− it travels per unit area of the emitting surface normal to the direction θ and ϕ 

Based on the above definition, if Qd  is the total rate of energy emitted by the 
elemental surface dA1, the fraction in the (θ , ϕ) direction would be Qd /dA1cosϕ.
Of this energy, the portion that is emitted in the interval dλ about wavelength λ is 

Qd /dA1cosφdλ.  Finally, the portion of this energy passing per unit time in the 
solid angle dΩ is Qd /dA1cosϕdλdΩ.  The spectral intensity has the units of 
W/m2·µm·sr and is given by  

Ω
=

dddA

Qd
I e λϕ

φθλλ cos
),,(

1
,             IVd.1.1 

Substituting for dΩ = sinϕdθdϕ we find: 

λϕθϕϕ
φθλλ ddddA

Qd
I e sincos

),,(
1

, =          IVd.1.1 

Spectral hemispheric emissive power, Eλ is defined as the rate of emission of 
radiation from a surface per unit surface area, at wavelength λ per unit wavelength 
dλ about λ, in all directions.  Eλ has units of W/m2·µm.  By defining the spectral 
hemispheric emissive power, we eliminated the directional dependency: 

         
IVd.1.2
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Total emissive power, E is the rate of radiation emitted per unit surface area in 
all directions at all wavelengths.  By this definition, we also eliminated the wave-
length dependence: 

= ∞
0 )( λλλ dEE              IVd.1.3 

Diffuse emitter refers to surfaces that emit radiation isotropically (i.e., inde-
pendent of direction as shown in Figure IVd.1.2(c)).  Therefore, in the case of an 
isotropic emitter, Iλ,e(λ, θ, ϕ) becomes only Iλ,,e , which can be removed from the 
inside of the integral of Equation IVd.1.2: 
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Total emissive power for a diffuse emitter is calculated from Equation IVd.1.3: 
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where Ie is known as the total intensity, having units of W/m2·sr and π is in sr. 

Example IVd.1.1.  Surface A1 is a diffuse emitter with an emission intensity of 
8,000 W/m2·sr in the normal direction.  Find the intensity of radiation received by 
surface A2 for the data given below. 

A1

A2

ϕ
r

A1= 0.002 m2

r = 0.8 m

A2= 0.001 m2

ϕ = 75ο

A1cosϕϕ
r

A2sinϕ

dΩ

Solution:  Since surface A1 is a diffuse emitter, the intensity of emission is the 
same in all directions including the direction where A2 is located.  Since the given 
surfaces are small, we use them as elemental surfaces.  To find the solid angle 
subtended by A2, we use the definition dΩ = dAn/r

2 where dAn = 
dA2sinϕ.  Substituting, we get dΩ = 0.001 × sin(75o)/0.82 = 0.0015 sr.  The inten-
sity of radiation received by A2 is given by: 

Ω=Ω=
∞

ddAIdddAIQd ee ϕλϕϕθλλ cos)cos)(,,( 1
0

1,

Qd  = 8000 × [0.0002 × cos(75)] × 0.0015 = 6.2E−4 W. 
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1.5.  Definitions Pertinent to Incident Radiant Energy on a Surface 

Incident spectral intensity, Iλ,i(λ, θ, ϕ) is the rate of incident radiant energy at 
the following characteristics: 
−  it has wavelength λ, per unit wavelength interval dλ about λ 
−  it travels in the direction of θ and ϕ and per unit solid angle about this direction. 
−  it is incident on a surface per unit area of the intercepting surface normal to the 
direction θ and ϕ. 

Spectral irradiation Gλ, is the rate at which radiant energy of wavelength λ is 
incident on the unit area of a surface per unit wavelength interval dλ about λ.
Spectral irradiation is then related to the spectral intensity: 
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Since the incident spectral intensity has units of W/m2·µm·sr, the spectral irradia-
tion has units of W/m2·µm.

Total irradiation is that amount of radiant energy incident on the unit area of a 
surface in all directions and all wavelengths: 

∞
=

0
)( λλλ dGG              IVd.1.6 

If the incident radiation is diffuse, then the integral of IVd.1.5 can be carried out to 
obtain Gλ(λ) = πIλ,i(λ).

Example IVd.1.1.  Find total irradiation and total intensity for the given spectral 
irradiation distribution. 
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Solution:  We find G from Equation IVd.1.6 by dividing the integral into several 
intervals: 

∞
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∞

5.22
0 λd ’

G = 400 × 5 + 600 × 5 + 1200 × 5 + 500 × 2.5 = 12,250 W/m2.
Finally, we find total irradiation intensity from Ii = 12,250/π = 3,899 W/m2.
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1.6.  Definitions Pertinent to Surface Radiosity 

Spectral radiosity, Jλ(λ) is the rate at which radiant energy of wavelength λ
per unit wavelength interval dλ about λ leaves the unit area of a surface.  Since 
spectral radiosity is the summation of the surface emission and reflection (r) of an 
incident radiation and appears in all directions, it has units of W/m2·µm: 

+=
π π

λλ θϕϕϕϕθλλ
2

0

2/

0
, ]sincos),,([)( ddIJ re           IVd.1.7 

Total radiosity, J is defined similar to the definition of total emissive power 
and total irradiation.  Thus, total radiosity is the total rate of radiant energy leaving 
the unit area of a surface: 

= ∞
0 )( λλλ dJJ              IVd.1.8 

If the surface is a diffuse emitter, then the integral can be carried out to obtain 
Jλ(λ) = πIλ,e+r(λ).  Similarly, we find total radiosity given as J = πIe+r.

2.  Ideal Surfaces 

In Section 1, we introduced such basic concepts for a surface as emissivity, irra-
diation, and radiosity.  In this section, we further explore these concepts by first 
treating surfaces as ideal and then as real surfaces.   

2.1.  Blackbody Radiation 

A blackbody is an ideal surface, which satisfies three conditions.  First, it is a per-
fect emitter.  Thus, for a specified temperature and wavelength, a blackbody emits 
more radiant energy than any other surface at the same temperature.  Second, a 
blackbody is the best absorber of energy.  Therefore, it absorbs all energies inci-
dent on it from all directions and at all wavelengths.  Third, a blackbody is a dif-
fuse emitter.  In other words, the radiant energy emitted from a blackbody is only 
a function of temperature and wavelength but is independent of direction.  Fig-
ure IVd.2.1(a) shows an isothermal cavity that approaches the definition of a 
blackbody.   

Historically, Joseph Stefan in 1879 suggested that the total emissive power of a 
blackbody is proportional to the fourth power of the absolute temperature.  It was 
Ludwig Boltzmann who in 1884 applied the principle of classical thermodynamics 
to analytically derive the same result.  Hence, according to Stefan-Boltzmann: 

Eb = σT4              IVd.2.1 

where σ is the Stefan-Boltzmann constant, σ = 5.67E−8 W/m2·K4 = 0.1714E−8
Btu/ft2·h·R4.  Note in Equation IVd.2.1, T is the absolute temperature and Eb is the 
total emissive power.  To obtain the equation for spectral emissive power in terms 



2.  Ideal Surfaces      569

of temperature we turn to Max Planck, who in 1901 by treating radiation as “pho-
ton gas”, was able to express Iλ,b in terms of wave length and temperature: 
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In Equation IVd.2.2,  is the Plank’s constant, c is the speed of light in vacuum 
and k is the Boltzmann’s constant, k = 1.3805E-23 J/K.  Since a blackbody is a 
diffuse surface, from Equation IVd.1.4 we find that: 
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where in Equation IVd.2.3, C1 = 2π c2 = 3.742E8 W·µm4/m2 and C2 = c/k = 
1.439E4 µm·K.  If we integrate Equation IVd.2.3 over all wavelengths we should 
obtain Equation IVd.2.1.  This is easily verified: 
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where the Stefan-Boltzmann constant σ = f(C1, C2).  Similarly, from Equa-
tion IVd.1.4 we conclude Ib = Eb/π.  We may plot the Planck’s distribution (Equa-
tion IVd.2.3) by choosing a temperature and finding Eλ,b for various values of λ.
This is shown in Figure IVd.2.1(b).  An interesting feature of these plots is that for 
a fixed temperature, the emitted radiation is a continuous function of wavelength.  
The magnitude of the spectral emissive power of a blackbody increases with the 
increasing wavelength until reaching a peak value after which, the magnitude de-
creases with increasing wavelength.  Another interesting feature is the fact that as 
the surface temperature increases, the peak spectral emissive power shifts towards 
shorter wavelengths. 

T

λ

E λ,
 b

               (a)                                                        (b) 

Figure IVd.2.1. (a) An isothermal blackbody cavity as an ideal absorber.  (b) Planck’s dis-
tribution
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The shaded area in Figure IVd.2.1(b) is the visible spectral region.  To find the 
equation representing the locus of the peak emissive power, we should differenti-
ate Equation IV.2.3 with respect to λ and set the result equal to zero.  By doing so 
we find  

λmaxT = 2897.6 µm·K

This is known as the Wien’s displacement law who derived this equation in 1894. 

Example IVd.2.1.  The emissive power of a blackbody, at 1 µm wavelength is 
measured as 1000 W/m2·µm.  Find the blackbody temperature. 

Solution:  We solve Equation IVd.2.3 for temperature to obtain  
T = 5

2 1 ,/ ln[1 / ]bC C Eλλ λ−+ .  Substituting, we find  

T = 1.439E4 µm·K/{1 µm× ln[1 + 3.742E8 W/m2·µm4× (1 µm)-5/1000 W/m2·µm]}
= 1040 K 

Example IVd.2.2.  The temperature of a blackbody surface is maintained at 3000 
K.  Find the wavelength associated with the emissive power. 

Solution:  We use the Wien’s displacement law; λmax = 2897.6/T = 2897.6/3000 = 
0.966 µm.

Example IVd.2.3.  A metal rod having a length of 1 m and a diameter of 2 cm is 
maintained at 150 C (423 K).  Fluid flows around the rod at an average tempera-
ture and heat transfer coefficient of 50 C (323 K) and 100 W/m2·K.  If the rod sur-
face can be approximated as a blackbody, find the percentage of heat transfer by 
radiation. 

Solution:  The amount of heat transfer by forced convection is calculated as: 

CQ = (πLd)h(Ts – Tf) = (π × 0.02 × 1) × 100 × (423 – 323) =  628 W 

The net rate of heat transfer by radiation from a blackbody is given by:  

)( 44
fsR TTAQ −= σ  = (π × 0.02 × 1) × (5.67E-8) × (4234 – 3234) = 75 W.   

The contribution of radiation heat transfer to total rate of heat transfer is about 
75/(75 + 628) = 10%. 

Contribution of thermal radiation becomes more noticeable as the surface tem-
perature rises. 
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Band emission.  If we want to know the emissive power in a specific range of 
wavelength, say between λ1 to λ2, we simply integrate the Planck distribution in 
this range: 
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Often, we are interested in the fraction of the emissive power.  For example, if 
we want to find the fraction of emission in the range of λ1 to λ2, as shown in Fig-
ure IVd.2.2, we integrate Equation IVd.2.3 in this range and divide over the entire 
emission, i.e. from zero to infinity.  
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Figure IVd.2.2.  Depiction of band emission calculation 

If we show the fraction of emission between λ1 to λ2 with F( )21 λλ → , then 
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The integrals of Equation IVd.2.4 are developed between zero to various wave-
lengths and summarized in Table IVd.2.1.  The integral representing F( )0 λ→ ,
does not have an analytical solution in closed form.  However, it may be evaluated 
by the following series (Dunkle) in which ζ = C2/λT:

]6)(6)(3)[()/15()0(
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−− ζζζπλ ζ iiieiF
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Additional blackbody radiation functions are also summarized in Table IVd.2.1. 

Example IVd.2.4.  A blackbody is at 5489 C.  Find a) the percentage of energy 
emitted in the shorter than visible range, b) the percentage of energy emitted in the 
longer than the visible range, c) the percentage of energy emitted in the visible 
range, and d) the rate of energy emitted in the visible range. 

Solution:  To find the fractions, we need the arguments, λ1T and λ2T.  These are 
calculated as: 
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λ1T = 0.4 × (5489 + 273) = 2304.8 µm·K, from the table we find the fraction for 
F( )0 1λ→  = 0.12057 

λ2T = 0.7 × (5489 + 273) = 4033.4 µm·K from the table we find the fraction for 
F( )0 2λ→  = 0.48675 

a)  Percentage of energy emitted in the shorter than the visible range is about 12% 
b)  Percentage of energy emitted in the longer than the visible range is about (1 – 
0.48675) ≅ 51% 
c)  Percentage of energy emitted in the visible range = 0.48675 – 0.12057 ≅ 37% 
d)  The rate of energy is: 

21
)( λλ →∆ bE = (0.48675 – 0.12057) × [5.67E-8 × (5489 + 

273)4] = 22.88 MW/m2

The blackbody represents our sun, which emits energy in the infrared, visible and 
ultraviolet as shown above. 

Table IVd.2.1.  Balckbody radiation functions (Incropera) 
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Example IVd.2.5.  A blackbody is at 2000 K.  Find the rate of radiant energy 
emission in the cone shown in the figure for ϕ = 45o (ϕ = π/4 radian) at wave-
length 1 to 5 µm.

ϕ

Solution:  The rate of radiant energy emission is given by Equation IVd.1.2.  If in-
tegrated in the limits given: 
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To find the fractions, we need the arguments λ1T and λ2T.  These arguments are 
calculated as: 

λ1T = 1 × 2000 = 2000 µm·K, from Table IVd.2.1 we find the fraction as 
F( )0 1λ→  = 0.0667 

λ2T = 5 × 2000 = 10000 µm·K from Table IVd.2.1 we find the fraction as 
F( )0 2λ→  = 0.9142.  The fraction is 0.9142 – 0.0667 = 0.8475 

E = 0.25 × 5.67E-8 × 2000 = 0.227E6 W/m2.

3.  Real Surfaces 

Although the introduction of blackbody greatly simplified analysis, blackbody re-
mains a mere concept.  Real surfaces must be treated differently.  For example, 
real surfaces in general are not diffuse emitters and their spectral emission does 
not fully conform to the Planck distribution.  In this section, we discuss the emis-
sion of radiant energy from real surfaces in the context of a new surface property 
known as emissivity.  We also discuss real surface response to irradiation.  The ir-
radiation will be discussed in the context of three additional surface properties 
known as reflectivity, absorptivity, and transmissivity.  
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3.1.  Characteristics of Real Surfaces, Emissivity 

For real surfaces we then define spectral directional emissivity, which implies that 
the emissivity from a real surface depends both on direction and on the wave-
length.  The spectral directional emissivity, ελ,φ(λ, θ, φ, T) is defined as the ratio of 
the radiation intensity emitted from a real surface having temperature T, at wave-
length λ in the direction θ and ϕ, to the radiation intensity of a blackbody at tem-
perature T and wavelength λ:
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Expectedly, for real surfaces emissivity is always less than unity. Since a black-
body is a diffuse emitter, no directional dependency appears in the denominator of 
Equation IVd.3.1.  To facilitate analysis, we eliminate directional dependence 
from the numerator by finding an average value for ελ,φ over all directions: 
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where we replaced the intensity, ),,,(, TI e ϕθλλ  in the numerator from Equa-
tion IVd.3.1 by substituting for ),(),,,(),,,( ,,, TITTI be λϕθλεϕθλ λφλλ =  and by 
canceling Iλ,b(λ, T) from both numerator and denominator.  For most surfaces, 

),,,(, Tϕθλε ϕλ  is not a strong function of θ .  Hence, we can reasonably assume 
that ),,,(, Tϕθλε ϕλ ≅ ),,(, Tϕλε ϕλ .  Making this assumption and carrying out 
the integral we get: 

=
2/

0
, cossin),,(2),(

π
λλ ϕϕϕϕλελε dTT e           IVd.3.2 

We may also define a spectral hemispheric emission as: 
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using this definition, we may find the total hemispherical emissive power, ε(T) by 
using Equations IVd.1.3 : 
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Emissivity in general varies not only with temperature but also with such surface 
conditions as roughness, texture, color, degree of oxidation, and any coating.  The 
above successive definitions allowed us to express emissivity only in terms of 
temperature.  Emissivity for various materials and surface coatings are obtained 
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experimentally as shown in Tables A.IV.8 and A.IV.9 for metallic and nonmetal-
lic surface, respectively. 

Example IVd.3.1.  The spectral emissivity of a substance is given as 0.1 for 0 ≤ λ
≤ 3 µm and 0.9 for λ ≥ 3 µm.  Find the total hemispherical emissivity at 2000 K. 

Solution:  Substituting numerical values for wavelengths and the corresponding 
emissivities, in Equation IVd.3.4, we find: 
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By separating terms, we obtain the band emission: 
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For λT = 3 × 2000 = 6000 gives F(0 → 3) = 0.7378 

Therefore, ε = 0.9 – 0.8 ×0.7378 = 0.31 

3.2.  Characteristics of Real Surfaces, Absorptivity, Reflectivity, 
Transmissivity 

Earlier, we defined emissivity with respect to radiant energy emitted by a surface.  
Let’s now consider radiant energy being intercepted by a surface.  Such surface 
may constitute a medium.  Semitransparent medium is a generic term for sub-
stances such as water and glass.  In general, some of the incident radiation may be 
reflected (shown with subscript r), some may be absorbed (shown with subscript 
a) in the medium, and some transmitted (shown with subscript t) away from the 
medium.  If the substance is opaque, then the incident energy is either reflected or 
absorbed (Figure IVd.3.1).  The absorbed portion increases the internal energy of 
the medium.  The reflected energy in the visible spectrum would constitute the 
color of a substance.  The absorption and reflection of radiant energy occur in a 
very thin layer of the surface.  From a radiation balance we find: 

Gλ,r + Gλ,a + Gλ,t = Gλ

Dividing through by Gλ, we find: 

ρ + α + τ = 1              IVd.3.6 

where ρ, α, and τ are the reflectivity, absorptivity, and transmissivity.  In Equa-
tion IVd.3.6, average values are used for these parameters.  In general however, ρ,
α, and τ are functions of wavelength and direction. 
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Figure IVd.3.1.  Comparison of semitransparent and opaque surfaces 

Absorptivity, αλ, φ(λ, θ, φ) determines the fraction of the incident energy ab-
sorbed by the surface:   
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To find the average surface absorptivity we substitute from Equation IVd.1.5 and 
integrate Equation IVd.3.7: 
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where α in Equation IVd.3.8 is known as the total hemispherical absorptivity.

Reflectivity, ρλ, φ(λ, θ, φ) determines the fraction of the incident energy re-
flected by the surface:   
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To find the average surface reflectivity we substitute from Equation IVd.1.5 and 
integrate Equation IVd.3.9: 
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where ρ in Equation IVd.3.10 is known as the total hemispherical reflectivity.
Shown in Figure IVd.3.2. are two types of surface reflection.  While polished sur-
faces are specular, most surfaces are diffuse reflectors. 
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Figure IVd.3.2.  Incident radiation on rough and polished surfaces

Transmissivity, τλ, ϕ(λ, θ, ϕ) is the fraction of the incident energy transmitted.  
If averaged, τ = Gλ,t/G.

Example IVd.3.2.  An opaque surface is exposed to radiation.  Use the spectral 
hemispherical absorptivity and irradiation profiles given below to find α.
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Solution:  To find total absorptivity, we carryout the integrals in Equation 
IVd.3.8.  The numerator becomes: 
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Using the definition of absorptivity, Equation IVd.3.8: 
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To carryout the numerator and denominator integrals we need to express α and G
as functions of λ:
For 0 µm < λ < 2 µm:  α = 0.2  Gλ = 0 kW/m2·µm
For 2 µm < λ < 4 µm:  α = 0.4  Gλ = 0 kW/m2·µm



578      IVd.  Heat Transfer:  Thermal Radiation 

For 4 µm < λ < 12 µm:  α = 0.9  Gλ = (λ – 4)/10 kW/m2·µm
For 12 µm < λ:   α = 0.9  Gλ = 0.8 kW/m2·µm
We now substitute for Gλ to be able to integrate  

Example IVd.3.3.  The surface temperature and total hemispherical emissivity in 
Example IVd.3.2 are 327 C and 0.85, respectively.  Find the surface temperature 
after exposure. 
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Solution:  We find the surface temperature from an energy balance for the control 
volume shown in the figure.  In steady state, the net energy gain (loss) from the 
surface is equal to the rate of energy received by the surface from irradiation (G)
minus the rate of energy removed from the surface by reflection, surface emission, 
heat convection, and heat condition in the surface.  If the back surface is insulated 
and the whole surface can be assumed to have one temperature then there is no 
conduction heat transfer: 

)( Cr qEGGq ′′++−=′′

If we ignore the heat loss due to convection and substitute for Gr = ρG = (1 – α)G
and for E = εEb we get the net heat gain (loss) as =′′q αG – εEb.

Substituting for G, calculated in Example IVd.3.2 as 
∞

=
0

)( λλλ dGG = 7800 

W/m2, we find: 

=′′q αG – ε(σT4) = 0.728 × 7800 – 0.85 × [5.67E-8 × (327 + 273)4] = –568 

W/m2.

4.  Gray Surfaces 

So far we defined four surface properties: emissivity, absorptivity, reflectivity, and 
transmissivity.  If we obtain one more relation, we can then find any two proper-
ties if the other two properties are given.  The additional relation is between emis-
sivity and reflectivity.  Kirchhoff in 1860 demonstrated that if a surface is encom-
passed by a blackbody at temperature Ts, Figure IVd.4.1(a), at thermal equilibrium 
(steady state), the energy received by the surface (GA1α1 where α1 is the surface 
absorptivity and A1 is the surface area) must be equal to the energy emitted by the 
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Figure IVd.4.1.  (a) Emission, (b) total directional emissivity of ideal, gray, and real sur-
faces, and (c) emissivity for various surfaces 

surface (E1A1), GA1α1 = E1A1.  Resulting in E1/α1 = G.  If we now replace surface 
1 with surface 2 and let the steady state condition to prevail, we again can write 
GA2α2 = E2A2 or E2/α2 = G.  We may repeat this experiment for many surfaces.  If 
we finally place a blackbody in the enclosure and let it also comes to thermal equi-
librium with the enclosure, we may write Eb/1 = G.  As a result: 

E1/α1 = E2/α2 = ···· = Eb

Using Equation IVd.3.3, we conclude that ελ,φ(Ts) = αλ,φ(Ts).  In general, we want 
to know the circumstance under which we can have ελ = αλ.  It turns out that such 
condition exists if either surface or irradiation is diffuse.  Condition ε = α exists, if 
the irradiation corresponds to emission from a blackbody or if the surface is gray.  
That is to say that a gray surface is an idealized material, having constant emissiv-
ity independent of wavelength.  A diffuse gray surface is a surface that has emis-
sivity, ελ,φ and absorptivity αλ,φ independent of direction (due to diffuse assump-
tion) and wavelength (due to the gray surface assumption).  A comparison is made 
between a blackbody, a gray surface and a real surface in Figure IVd.4.1(b).  Fig-
ure IVd.4.1(c) shows the emissivity for the these surfaces. 

5.  Radiation Exchange Between Surfaces 

So far we dealt with single surfaces emitting radiation and being irradiated.  We 
also considered surfaces being contained in an enclosure.  In general however, sur-
faces exchange radiation with other surfaces with arbitrary geometry and orienta-
tion.  This complicates the calculation of the total heat transfer, as we should con-
sider the surface geometry and orientation.  To properly account for the amount of 
energy exchanged between surfaces, we introduce a parameter known as shape or 
view factor, F < 1.  In this section we discuss means of calculating the view factor.  
We also introduce the concept of radiation exchange between surfaces by a net-
work, which is series – parallel arrangement of the involved surfaces. 
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5.1.  The View Factor 

Consider two differential surfaces Ai and Aj oriented arbitrarily and exchanging 
radiation, as shown in Figure IVd.5.1.  The view factor Fij is defined as the ratio of 
the radiant energy leaving surface dAi and reaching surface dAj to the total radiant 
energy leaving surface dAi.  If the distance between these elemental surfaces is R
and the angle between R and jn  is ϕj, then the projected area of dAi, normal to R
is dAicosϕi.

ni

nj

Aj , Tj

Ai , Ti

ϕj
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dAj

dAi

ϕi ni

dAi

dΩj-i

dAj cosϕj

Figure IVd.5.1.  Exchange of radiation for derivation of the view factor 

The amount of radiant energy leaving differential area dAi per unit time and 
unit area is the intensity of radiation, Ii of surface dAi.  Hence, the total radiant en-
ergy leaving the elemental area dAi per unit time is Ii dAi.  The fraction of this en-
ergy radiated in the direction of dAj is given by (Ii dAi)cosϕi.  The amount of en-
ergy leaving dAi in the direction of dAj and received by dAj is given by (Ii

dAi)cosφi dΩj-i where dΩj-i is the solid angle subtended by dAj when viewed from 
dAi.  Since dΩj-i = (dAjcosϕj)/R

2 then the fraction of energy leaving dAi and reach-
ing dAj per unit time is obtained from (Ii dAi)cosϕi(dAjcosϕj)/R

2.  This argument is 
summarized as follows: 

Rate of energy leaving dAi per s, per cm2, and per sr: Ii

Rate of energy leaving the elemental area dAi per s and per sr: Ii dAi.
Rate of energy radiated in the direction of dAj per s and per sr: (Ii dAi)cosφi

Rate of energy leaving dAi and received by dAj per s: (Ii dAi)cosφi dΩj-i

Rate of energy leaving dAi and received by dAj per s: (Ii dAi)cosφi(dAjcosφj)/R
2

Rate of energy leaving dAi and received by dAj per s: (Ji dAi)cosφi(dAjcosφj)/πR2

where in the last expression we have assumed that the surface emits and reflects 
diffusely and substituted for Ie+r = J/π, from the definition of total radiosity.  This 
now represents hemispheric emission.  Hence, the total rate of radiant energy leav-
ing surface i and intercepted by surface j is: 

2[cos cos / ]i j i jij i Ai Aj
Q J R dAdAϕ ϕ π=         IVd.5.1 

Expressing ijQ  = FijAiJi, by comparing to Equation IVd.5.1, we conclude that: 
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2[cos cos / ]ij i i j i jAi Aj
F A R dAdAϕ ϕ π=           IVd.5.2 

Similar arguments can be made for the radiant energy emitted from surface Aj and 
intercepted by surface Ai.  Since the net energy exchange between these surfaces is 
the same we conclude that FijAi = FjiAj.  This is known as the reciprocity relation.
Note that in this derivation we assumed that the surrounding is not participating in 
the radiation exchange.  Having the view factors, the net rate of heat transfer by 
radiation is: 
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−
=               IVd.5.3 

where Equation IVd.5.3 is written similar to Equation IV3.6 for the reasons dis-
cussed in Section 5.4. 

Example IVd.5.1.  A differential area dA1 is located parallel to and on the center-
line of a finite disk of diameter D (radius of c = D/2).  Find the view factor for this 
arrangement. 
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ϕ

ϕ

D rdA2
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H

Solution:  Since surface dA1 is a differential surface, we choose the shaded area at 
an arbitrary 0 < r < c as the elemental area of surface A2.  Clearly, if dA2 = 2πrdr is 
integrated in the above range, we would obtain A2 = πD2/4.  In this problem, cosϕ1

= cosϕ2 = r/R = H/(r2 + H2)1/2.  Substituting values in Equation IVd.5.2: 
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Hence, F12 = c2/(H2 + c2).

Hamilton and Howell carried out the double integral of Equation IVd.5.2 for 
variety of surface orientations as shown in Figures IV5.5.2(a) through (d).  In 
Equation IVd.5.2, Fij is known as the shape, configuration, or view factor.  Ta-
ble IVd.5.1 includes the equations from which the above plots are obtained.  These 
are also available on the accompanying CD-ROM.  The user specifies dimensions 
and the program finds the F factor. 
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Figure IVd.5.2.  Radiation view factor between (a) perpendicular rectangles with a com-
mon edge, (b) parallel rectangles, (c) parallel concentric disks, and (d) coaxial cylinders 

Example IVd.5.2.  Find the view factor for two parallel rectangles with X = 20 ft, 
Y = 40.0 ft, and L = 10 ft. 

Solution:  Since Y/L = 4 and X/L = 2 from Figure IVd.5.2(a) we find Fij ≈ 0.52. 
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Table IVd.5.1.  View factor for flat plates (Rohsenow 73)       

5.2.  View Factor Relations 

Earlier we demonstrated that FijAi = FjiAj.  The reciprocity relation is useful in ob-
taining one view factor from the other known view factor.  There are other useful 
relations for the view factor.  For example if we use a well insulated cube as an 
enclosure, the view factor for a given side of this cube adds up to unity.  This is 
because each side of the cube has only five other sides of the cube for the ex-
change of radiant energy.  Hence, the summation of all the fractions of the radiant 
energy left the side of the cube adds up to unity.  In general, for any enclosure we 
can write ΣjFij = 1.  We can also obtain view factor for non-standard orientations 
from view factor for standard geometry and orientations. 

Example IVd.5.3. Find F13 and F31 for the arrangement below.  All dimensions are 
known. 

1

2
3
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Solution:  We reduce the view factor relations to obtain the intended view factor 
from standard orientations: 

A1F1,23 = A1(F12 + F13).  Hence, F13 = F1,23 – F12.  To find F31 we use the reciproc-
ity relation A1F13 = A3F31.

F31 = A1F13/A3 = A1(F1,23 – F12)/A3.

Example IVd.5.4.  Find F14 for the arrangement below.  All dimensions are 
known. 

1

2
3

4

Solution:  We reduce the view factor relations to obtain the intended view factor 
from standard orientations: A12F12,34 = A1F1,34 + A2F2,34.  This can be further ex-
panded to: 
A12F12,34 = A1F1,34 + A2F2,34 = A1(F13 + F14) + A2F2,34.
We still need to find F13.  From the reciprocity relation we know that  
A1F13 = A3(F3,21 – F32).  Substituting, we get  
F14 = (A12F12,34 +A3F32 – A2F2,34 – A3F3.21)/A1.

Example IVd.5.5.  For the perpendicular rectangles in Figure (a), find F14.

1

4

2

3

1

4

2

3

                    (a)                                                 (b) 

Solution:  In can be shown that for the more general case of Figure (b): 
A1F14 = A4F41 = A2F23 = A3F32

Returning to Figure (a), we note that: 
A12F12,34 = A1F13 + A1F14 + A2F23 + A2F24

Substituting from the above rule (i.e., A1F14 = A2F23), we find: 
F14 = (A12F12,34 – A1F13 – A2F24)/2A1
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Example IVd.5.6.  Find F12 and F21 for a right circular cylinder of diameter D and 
height H.

A2
A3

A1

Solution:  Using the summation rule for an enclosure, F11 + F12 + F13 = 1.
Since F11 = 0 and F13 is known, we find F12 = 1 – F13.
Finally, from the reciprocity relation, F21 = A1F12/A2 = A1(1 – F13)/A3

5.3.  Radiation Exchange Between Black Surfaces 

Exchange of radiation between blackbodies is straightforward since a blackbody is 
a perfect emitter and absorber.  Consider for example black surface i exchanging 
radiation with black surface j.  The total rate of energy from surface i intercepted 
by surface j is AiFijJi.  Similarly, the total rate of energy from surface j intercepted 
by surface i is AjFjiJj.  Since for black surfaces J ≡ Eb, the net rate of radiant en-
ergy between blackbodies i and j is given by: 

4 4( )ij i ij i jQ A F T Tσ= −                           IVd.5.4 

Example IVd.5.7.  The cylinder in Example IVd.5.6 represents a furnace.  Sur-
face A1 is open to surroundings at 30 C while A2 and A3 are maintained at 500 C 
and 700 C, respectively.  Find the power required to maintain furnace at these 
temperatures.  There is no other heat loss from the furnace.  D = 2 m, h = 1 m. 

Solution:  We treat surfaces A2 and A3 as black surfaces and find heat loss due to 
radiation by assuming A1 is a fictitious surface.  Hence, A2 and A3 loose heat to A1,
which in turn looses heat to surroundings.  Total heat loss is  

=+= 3121 QQQ )()( 4
1

4
3313

4
1

4
2212 TTFATTFA −+− σσ

A1 = A3 = πD2/4 = π.  We also find A2 = πDh = 2π
From Figure IVd.5.2(c) or Table IVd.5.1: F13 = F31 = 0.382 

From Example IVd.5.6:  F12 = 1 – F13 = 0.618.  Also F21 = A1F12/A2 = 0.309 

=Q (5.67E-8) × [2π × 0.309 × (7734 – 3034) + π × 0.383 × (9734 – 3034) = 99 kW 
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5.4.  Radiation Exchange Between Gray Surfaces 

In the previous section, we noticed that the only complication in the analysis of 
radiation exchange between black surfaces is the determination of the view factor.  
Since other surfaces are not perfect emitters and also reflect a fraction of the inci-
dent energy, the analysis of radiation exchange becomes more complicated.  To 
simplify the analysis we make the following assumptions: 

− all surfaces constitute an enclosure of nonparticipating medium 
− all surfaces are diffuse, gray, and opaque
− temperature is uniform over the entire surface (i.e., isothermal)
− reflective and emissive properties are constant over the entire surface 
− radiosity and irradiation are uniform over the entire surface 
− heat conduction and heat convection mechanisms are absent 

Consider the enclosure shown in the left side of Figure IVd.5.3.  Details of surface 
i of this enclosure are shown in the right side of Figure IVd.5.3.  The unit area of 
this surface receives irradiation G and emits radiosity J so that the net rate of en-
ergy loss from this surface is found as: 

Q = A(J – G)              IVd.5.5 

J G

T, A, ε
Q
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Control Volume Adiabatic Boundary

Irradiation

G Gr =ρ G
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Figure IVd.5.3.  Radiation emission in an enclosure  

We may eliminate G by using the definition of radiosity, being the summation of 
emission and reflection: 

J = εEb + ρG              IVd.5.6

To eliminate ρ, we use the assumption that the surfaces are opaque; ρ = 1 – α.
This can be further simplified by noting that for gray surfaces, α = ε.  Substituting 
in Equation IVd.5.6., we get  J = εEb + (1 − ε)G.  We now solve this for G = (J – 
εEb)/(1 – ε) and substitute for G in Equation IVd.5.5 and rearrange to get: 

)/()1( A

JE
Q b

εε−
−

=              IVd.5.7 
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The advantage of arranging the result in the form of Equation IVd.5.7 is that it 
lends itself to an electrical engineering analogy, the electric potential represented 

by Eb – J drives current Q  through the resistance (1 – ε)/(εA).  This is a very use-

ful approach, first suggested by Oppenheim, which allows problems involving 
complex radiation exchange to be solved by network representation.  Note that 
Equation IVd.5.7 deals only with one surface.  The rate of radiation exchange be-
tween two surfaces is given by Equation IVd.5.3.  We can then summarize the 
thermal resistance for radiation heat transfer as the surface and the space resis-
tances given as: 

Surface resistance due to surface conditions:  Rs = (1 – ε)/(εA)
Space resistance due to geometry and orientation:  Rg = 1/(AiFij)

Example IVd.5.8.  Two gray plates at T1 and T2 exchange radiation in a nonpar-

ticipating medium.  Find Q .

Solution:  Here we deal with three radiation resistances namely, the surface resis-
tance of plate 1, the space resistance between plates 1 and 2, and the surface resis-
tance of plate 2, as shown in the figure: 

J 1 J 2 E b 2
E b 1

(1 - ε 1 ) /ε 1 A 1
(1 - ε 2 ) /ε 2 A 21 /A 1 F 1 2

1 2S p a c e
R e s is ta n c e

S u r fa c e R e s is ta n c e S u rfa c e R e s is ta n c e

Hence, ΣR = Rs1 + Rg + Rs2 = [(1 – ε1)/(ε1A1) + 1/(A1F12) + (1 – ε2)/(ε2A2)] and Q

= (Eb1 – Eb2)/ΣR.
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We now apply Equation IVd.5.8 to four special cases including radiation ex-
change between parallel plates, long concentric cylinders, concentric spheres, and 
a small surface encompassed by a large volume. 

Example IVd.5.9.  Find the net rate of heat transfer for two infinite parallel plates. 

A1, T1, ε1

A2, T2, ε2
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Solution:  For these plates, A1 = A2 = A and F12 = 1.  Therefore, from Equation 
IVd.5.8, we find: 

1/1/1
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Example IVd.5.10.  Find the net rate of heat transfer for two infinite concentric 
cylinders at radii r1 and r2.

r1

r2

Solution:  We use Figure IVd.5.2(d) for view factor between two concentric short 
cylinders.  When cylinders are long, F12 = 1.0.  Also substituting for A1 = 2πr1L
and for A2 = 2πr2L into Equation IVd.5.8, we find: 
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Example IVd.5.11.  Find the net rate of heat transfer for two concentric spheres. 

r1

r2

Solution:  For these surfaces, A1/A2 = (r1/r2)
2 and F12 = 1 (note that F22 ≠ 0).  Sub-

stituting these into Equation IVd.5.8, we obtain: 

])/(/)/(/1/[)( 2
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Example IVd.5.12.  Find the net rate of heat transfer for a small convex surface 
encompassed by a large cavity.

T1, A1, ε1

T2, A2, ε2
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Solution:  For these surfaces, A1/A2 = 0 and F12 = 1.  Substituting these into Equa-
tion IVd.5.8, we obtain:

4 4
12 1 1 1 2( )Q A T Tσε= −

The method shown in Example IVd.5.7 can be extended to three surfaces ex-
changing radiation, as shown in Figure IVd.5.4.  However, as the number of par-
ticipating surfaces increases, so is the number of equations.  Since equations for 
unknown radiosities are linear, an easy way to handle such cases is to set up a ma-
trix equation.  Let’s consider surfaces 1 and 2 in an enclosure whose walls are rep-
resented by surface 3.  At steady state conditions, the rate of heat transferred into 
node J1 is equal to the rate of heat transfer out of node J1 (i.e., the net must be 
zero):
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Figure IVd.5.4.  Radiation exchange between three surfaces and the related radiation net-
work 

We can write similar equations for nodes 2 and 3.  If we generalize and con-
sider N gray and diffuse plates exchanging radiation, there will be N sets of linear 
algebraic equations for N unknown radiosities.  Thus, for N surfaces, the set of 
equations may be arranged in a matrix equation of the form AX = B with the coef-
ficient matrix, the vector of unknowns and the vector of constants having the fol-
lowing elements: 
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                                        IVd.5.9 

where index i in Equation IVd.5.9 ranges from 1 to N.  Upon obtaining J1 through 
JN from Equation IVd.5.9, we then find the corresponding rates of heat transfer for 
each surface from Equation IVd.5.7.  Since the surfaces do not “see” themselves 
(i.e., Fii = 0) then the diagonal terms become unity. 

Example IVd.5.13.  The gray and diffuse surfaces of a rectangular parallelepiped 
are exchanging radiation with each other and nothing else.  Use the following data 
to find the related radiosities and the rate of heat transfer to or from each surface.   

1 m

0.5 m

0.25 m

A1

A5

A6
A2

A4

A3

Surface No.   T (K)     ε A (m2) F:        1           2            3           4           5           6
1      500     0.3 0.500      F1j      0.000    0.509     0.167    0.167    0.079   0.079 
2      600     0.4 0.500      F2j      0.509    0.000     0.167    0.167    0.079   0.079 
3      550     0.8 0.250      F3j      0.334    0.334     0.000    0.165    0.084   0.084 
4      700     0.8 0.250      F4j      0.334    0.334     0.165    0.000    0.084   0.084 
5      650     0.6 0.125      F5j      0.315    0.315     0.167    0.167    0.000   0.036 
6      750     0.7 0.125      F6j      0.315    0.315     0.167    0.167    0.036   0.000 

Solution:  The top and bottom surfaces are A1 and A2, the left and right sides are 
A3 and A4, and the back and front surfaces are A5 and A6.  The above view factors 
are found from Figures IVd.5.2(a) and IVd.5.2(b): 
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Parallel surfaces:
For A1 – A2, X = 0.50, Y = 1.00, L = 0.25, and F12 = F21 = 0.509 
For A3 – A4, X = 0.25, Y = 1.00, L = 0.50, and F34 = F43 = 0.165 
For A5 – A6, X = 0.50, Y = 0.25, L = 1.00, and F56 = F65 = 0.036 
Perpendicular surfaces:
For surfaces A1 – A3, A1 – A4, A2 – A3, and A2 – A4:
X = 1.00, Y = 0.50, Z = 0.25 resulting in: 
F13 = F23 = F14 = F24 = 0.167 and F31 = F32 = F41 = F42 = (0.5/0.25) × 0.167 = 
0.334

For surfaces A1 – A5, A1 – A6, A2 – A5, and A2 – A6:
X = 0.50, Y = 1.00, Z = 0.25 resulting in: 
F15 = F16 = F25 = F26  0.079 and F51 =F61 = F52 = F62 = (1.0/0.25) × 0.079 = 0.315 

For surface A3 – A5, A3 – A6, A4 – A5, and A4 – A6:
X = 0.25, Y = 1.00, Z = 0.50 resulting in: 
F35 = F36 = F45 = F46 = 0.084 and F53 = F63 = F54 = F64 = (1.0/0.50) × 0.084 = 
0.167

The emissive powers are found from Equation IVd.2.1.  For example, Eb1 = 
5.67E–8 × 5004 W/m2.  If we now substitute values in Equation IVd.5.9, we find: 

−−−−−
−−−−−
−−−−−
−−−−−
−−−−−
−−−−−

00.101.005.005.009.009.0

01.000.107.007.013.013.0

02.002.000.103.007.007.0

02.002.003.000.107.007.0

05.005.010.010.000.131.0

06.006.012.012.036.00.1 1

2

3

4

5

6

J

J

J

J

J

J

 = 

16.12558

78.6072

94.10890

72.4150

33.2939

12.1063

Upon solving this set, we find; J1 = 7536.7 W/m2, J2 = 8265.2 W/m2, J3 = 6032.9 
W/m2, J4 = 12,556.5 W/m2, J5 = 9522.8 W/m2, and J6 = 15,085.6 W/m2.  The cor-
responding rates of heat transfer for the surfaces are: 

1Q  = 
( )

( ) ( )
4(5.67E 8) 500 7536.3

1 0.3 / 0.3 0.5

− × −
= −

− ×
855.6 W.  Similarly, we find 2Q  = –305.6 

W, 3Q  = –844.5 W, 4Q  = –1057.2 W, 5Q  = 112.2 W, and 6Q  = 832.6 W.   

Such problems involving radiation exchanges between isothermal surfaces can be 
easily solved with the software included on the accompanying CD-ROM.   

We use a similar method to solve problems in which instead of surface tem-
peratures, the surface heat flux is specified.  An adiabatic surface is a special case 
of the heat flux boundary conditions in which the heat flux is zero.  Thus, if sur-
face i is adiabatic, then Ebi ≡ Ji, which is equivalent with εi ≈  0.
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QUESTIONS 

–  What was the role of ether in classical mechanics and electromagnetism? 
–  Who described the energy of particle-like waves? 
–  Does light travel as a wave or as a particle? 
–  Which broadcast wave is more energetic?  AM or SW? 
–  If a radio station broadcasts on 100 m wavelength, what is the corresponding 

frequency?
–  What is the difference between a plane angle and a solid angle? 
–  What is the value of a solid angle for a hemisphere? What is its value for a 

sphere? 
–  What is the difference between radiation intensity and radiosity? 
–  What are diffuse emitter and diffuse incident radiation? 
–  What are the Wien’s distribution and Kirchhoff’s radiation laws? 
–  What are the important features of the Planck distribution? 
–  What is meant by band emission?  Calculate the band emission for λT = 3000 

µm·K and compare your result with the corresponding value given in the table 
of Section 2.1. 

–  Is it fair to say that a red rose absorbs all other colors but reflects the color red? 
–  For most engineering applications, are surfaces specular reflectors or diffuse re-

flectors? 
–  What is the unit of spectral irradiation? 
–  What are the advantages of a diffuse gray surface? 
–  What is the role of the view factor in thermal radiation? 
–  What is the reciprocity relation? 
–  What are the key assumptions in analyzing radiation exchanges in enclosures? 
–  What is the Oppenheim approach in solving problems involving radiation ex-

change?
–  What is the physical interpretation of surface resistance?  What other resistance 

to radiation heat transfer do you know? 

PROBLEMS

1.  Shown in the left side figure, is the differential solid angle dΩ subtended by the 
differential area dA when viewed from point P.  We define the solid angle at point 
P as the projection of the surface on a sphere of unit radius surrounding the point.  
Thus, the differential solid angle dΩ subtended by surface dA in the left side fig-

ure below is given by ( ) 2/ rAddd Ω⋅=Ω=Ω .  a) Use this definition to compute 

the solid angle Ω subtended by a circular disk of radius a at a point P that is lo-
cated a distance R from the disk, where P lies on the normal n passing through the 
center of the disk, as shown in the right figure.  b) Find Ω as a → ∞.  [Ans.:  b) 
Hemisphere]. 
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2.  The surface of a sphere of radius R emits So photons isotropically towards the 
center of the sphere.  Find total number of photons received at the center of the 
sphere per second and per unit area.  [Ans.  So].

3.  Surface A1 is a diffuse emitter with an emission intensity of 10,000 W/m2·sr in 
the normal direction.  The orientation of surfaces A2 and A3 is such that ϕ1 = 60o

and ϕ2 = 30o.  a) find the solid angles subtended by surfaces A2 and A3, b) compare 
the intensity of the radiation emitted by surface A1 in the direction of surface A2

with the intensity of the radiation emitted by surface A1 in the direction of surface 
A2.  c) find the rate of energy received by surfaces A2 and A3 due to the radiation 
emission from surface A1.

Data: A1 = 0.0020, A2 = 0.0015, A3 = 0.0010 m2, r1 = 35 cm, r2 = 65 cm. 

A1

A2

ϕ1r1
ϕ2

A3

r2

4.  Find the energy associated with a radiation having a wavelength of 1E-3 µm.
(Ans.: 1.98E-16 J) 

5.  The spectral distribution of the radiation emitted by a diffuse surface is ap-
proximated in the figure. Find the total emissive power and the total intensity. 
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         Problem 5                                                   Problem 6 

6.  A spectral distribution for a surface irradiation is approximated as shown in the 
figure.  Find the total irradiation. 

7.  The emissive power of a blackbody, at 0.8 µm wavelength is measured as 1E5 
W/m2·µm.  Find the blackbody temperature.  [Ans.  1739 K] 
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8.  Solve Example IVd.2.3 for a forced convection heat transfer coefficient of 
7,500 W/m2·K.  Solve the same example but for the surface temperature of 250 C. 

9.  A blackbody is at a temperature of 2000 K.  Find a) the percentage of energy 
emitted in the shorter than visible range, b) the percentage of energy emitted in the 
longer than the visible range, c) the percentage of energy emitted in the visible 
range, and d) the rate of energy emitted in the visible range 

10.  A blackbody is radiating at a constant temperature of 2500 K.  Find a) the 
emissive power of radiation from this blackbody, b) the wavelength below which 
15% of he radiation of the blackbody is concentrated, c) the wavelength above 
which 10% of the emission is concentrated, d) the maximum spectral emissive 
power, e) the wavelength associated with the maximum spectral emissive power. 

11.  The blackbody in Problem 10 is a large isothermal enclosure.  A small object 
is now placed inside this enclosure.  Find the irradiation incident on this object. 

12.  The large isothermal enclosure of Problem 10 is a sphere, having a diameter 
of 10 m.  The interior surface is smooth and completely covered with carbon.  
There is a small hole, 1 cm in diameter, on the surface of the sphere.  The rate of 
radiant energy emitted through the small hole is 100 W.  Find the temperature of 
the sphere. 

10.  A blackbody is at a temperature of 1500 K.  Find the rate of radiant energy 
emission in the cone shown in the figure of Example IVd.2.5 for φ = 60o at wave-
length 2 to 4 µm.  [Ans.  0.1 MW/m2].

11.  Use the spectral hemispheric absorptivity of Example IVd.3.1 and find the 
surface spectral hemispherical reflectivity.  [Hint:  Recall that for an opaque sur-
face α + ρ = 1]. 

12.  The spectral hemispherical absorptivity and irradiation profiles for an opaque 
surface are shown in the figure.  Find the total hemispherical absorptivity. 
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13.  The surface in Problem 12 has an absorptivity of 0.90 and is at a temperature 
of 550 K.  Find the surface temperature after exposure to irradiation. 

14.  A large isothermal enclosure containing two small surfaces (surface A and 
surface B) is shown in the figure.  The two surfaces are then irradiated by the en-
closure at an equal rate of 10,000 W/m2.  Due to the differences in thermal proper-
ties of the surfaces, surface A absorbs the incident radiation at a rate of 8800 W/m2

while surface B absorbs the incident radiation at a rate of  irradiation at a rate of 
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1000 W/m2.  Find the answer to the following questions under thermodynamic 
equilibrium condition a) the temperature of each surface, b) the absorptivity of 
each surface, and c) the emissivity of each surface 

G G

TA TB

15.  Radiant energy at a rate of 15.000 W/m2 is received by a gray and diffuse sur-
face.  The surface is opaque and has an absorptivity of 0.65.  Assume negligible 
heat transfer due to convection.  The surface temperature is 400 C with a surface 
area of 1 m2.  Find a) the rate of energy absorbed by the surface, b) the rate of en-
ergy emitted by the surface, c) the total energy loss from the surface.  

15.  A flat metal plate (ε = 0.66, and α = 0.35) is exposed to solar radiation, at an 
irradiation rate of 1000 W/m2.  Find the plate temperature after a long time expo-
sure (i.e., steady state condition).  The convection heat transfer coefficient is esti-
mated at about 20 W/m2·K.

16.  For the purpose of calculating the view factor for radiation heat transfer, sur-
faces may be divided into three categories of convex, flat (plane), or concave.  As 
shown in the figure, surfaces a, b, c, and d are examples of convex, and surfaces f, 
g, h, and i are examples of concave surface.  If a surface can view itself then F11 > 
0 otherwise, F11 = 0.  Consider surfaces a through i, and specify the surfaces that 
have non-zero view factor. 

A1 A
1

A1 A1

A1
A

1
A

1
A

1
A1

a b c d e

f g h i

17.  A disk, having a diameter of 1 m, is parallel to and on the centerline of an-
other disk, having a diameter of 1.2 m.  The two disks are 1 m apart.  Find F12 and 
F21.  [Ans.: 0.232, 0.161]. 

18.  Find F12 and F21 for the following objects.  a) Figure a shows a sphere placed 
inside a cube.  The side of the cube is the same as the diameter of the sphere.  b) 
Figure b shows a diagonally partitioned long square duct.  c) Figure c shows a 
pyramid with equal sides.  d) Figure d shows quarter of a cylinder exchanging ra-
diation with the base surface of a half cylinder.  [Ans.: a) F12 = 1, F21 = π/6, b) F12

= 0.5, F21 = 0.71]. 
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A1

A3

A2

A2

A1

A1

A4

A3

A2

A1
A2

R

a                                          b                           c                             d 

19.  A right circular cylinder has a height of 1 m and diameter of 75 cm.  Find the 
view factor for the cylindrical to the base. 

20.  An oven, as shown in the left figure, is in the shape of a cube of side l.  The 
surface of the base is A1 = 0.1 m2.  All other surfaces have a combined surface 
area of A2 = 0.5 m2.  Find the view factor F21 and F22.

A1
A1 A3

ll

Problem 20                                        Problem 21 

21.  A circular disk of surface area A3 = 0.02 m2 is placed on the base surface of 
the oven of Problem 20, as shown in the right figure.  All other surfaces have a 
combined surface area of A2 = 0.5 m2.  Find F12, F32, and F23.

22.  Two perpendicular rectangles are shown in the figure.  Find F12 for both left 
and right figures.  In the left figures, a = b = 1 m, and c = d = 0.5 m.  In the right 
figure, a = 1 m, b = c = 0.5 m, d = e = f = 0.3 m. 

c

f
e

d
1 2

1

2

3

d

a

b

a

bc

23.  Find F12 for the two parallel plates shown in the figure, where 1 and 2 repre-
sent the shaded surfaces.  The surfaces are a = 1 m by c = 0.5 m and are b = 2 m 
apart.  For figure b use d = 0.2 m and e = 0.3 m and for figure c, use f = 0.3 m.  
For Figure d, use r1 = 10 m, r2 = 5 m, and the vertical distance between surfaces 
A1 and A2 is 10 m.  For figure d also find F31 and F33.

a

b

c

1

2

d

e

1

2

A1

A2

A3

f

1

2

            a                                          b                                c                                  d 
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24.  Find F12 for the cone shown in the figure.  Use R = 0.5 m and L1 = 1.5 m.  
Surface A2 has the same diameter as the base of the cone and is located 0.5 m 
apart.

A1

A2

R

L1 L2

A1 A3

L1 L2

R

A2

L

r
2

A1

A2

r
1

                    Problem 24                                      Problem 25                         Problem 26 

25.  A right circular cylinder with 2R = 0.5 and L1 = 1.5 m, is open from the right 
end.  Surface A2 and A3 have the same diameter as surface A1 and is located L2 = 
0.5 m from the open end.  Find a) F23 and b) F15 where surface 5 is the imaginary 
surface of a cylinder between the open end and surface A3.

26.  Find F21 for the two concentric cylinders given r1 = 35 cm, r2 = 70 cm, and L
= 0.7 m. 

27.  The cross section of an enclosure is an isosceles triangle.  The equal sides are 
1 m in length and are at 600 C and 400 C.  The base is adiabatic.  a) Find the tem-
perature of the base.  b) Find the rate of heat transfer received by the side with 
temperature of 400 C. 

28.  Radiation is taking place between two parallel plates and nothing else. Each 
plates have a surface area of 1.5 m2 with emissivities of 0.4 and 0.7.  Fine the rate 
of heat transfer for temperatures of 150 C and 250 C.  [Ans.: 1243 W]. 

29.  Shown is the figure is the theoretical configuration of the fuel pellet and clad-
ding of a fuel rod.  Assuming there is no contact between the pellet and the clad-
ding, a gap region exists between the two materials.  Find the rate of heat transfer 
from the fuel surface to the inside of the cladding by radiation.

Data: TF2 = 400 C, TC1 = 350 C, rF2 = 4.8 mm, rC1 = 4.9 mm, L = 3.66 m.  In 
the temperature range of interest, use the following emissivities: for fuel εUO2 ≈ 0.8 
and for cladding εZircaloy ≈ 0.26. 

Pellet
Gap
Clad

rF2
rC1

30.  A filament, 1 cm in diameter is held in the center of a spherical bulb.  The 
filament is at 250 C and the bulb, having a diameter of 5 cm, is at 80 C.  Assuming 
radiation takes place only between the bulb and the filament, fid the rate of heat 
transfer by radiation.  ε1 = ε2 = 0.75. 

31.  Two small rectangular flat plates, 5 ft by 10 ft are located 5 ft apart.  These 
plates are located in a large room.  The walls of the room are maintained at 65 F.  
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The plates exchange radiation with each other and with the room.  However, con-
sider only the plate surfaces facing each other.  The temperature and diffusivity of 
the plates are T1 = 500 F, T2 = 900 F, ε1 = 0.7, and ε2 = 0.9, respectively.  Find the 
rate of heat transfer from the plates to the room.  [Ans.:  J1 = 4240 W/m2, J2 = 

16760 W/m2, 1Q  = -0.161E4 W, =2Q  0.7026E5 W]. 

32.  Two small rectangular flat plates, 0.5 m by 1 m are located 0.5 m apart.  
These plates are located in a large room.  The walls of the room are maintained at 
35 C.  The plates exchange radiation with each other and with the room.  How-
ever, consider only the plate surfaces facing each other.  The temperature and dif-
fusivity of the plates are T1 = 900 C, T2 = 1200 C, ε1 = 0.8, and ε2 = 0.6, respec-
tively.  Find the rate of heat transfer from the plates to the room.  [Ans.:  J1 = 

95710 W/m2, J2 = 1.712E5 W/m2, 1Q  = 23270 W, =2Q  71790 W]. 

33.  The cross section of a duct is a right triangle as shown in the figure.  The sides 
of this duct are isothermal and are exchanging radiation.  Assuming a non-
participating medium between the gray surfaces, find the rates of heat transfer.  
Data: T1 = 500 K, T2 = 600 K, T3 = 800 K, ε1 = 0.625, ε2 = 0.4, and ε3 = 0.8.  
[Ans.:  -28150 W/m, -17070 W/m, 45200 W/m]. 

34.  A duct, consisted of four rectangular flat plates, are radiating with each other 
and nothing else.  Use the given data to find the radiosity and the rate of heat 
transfer for each surface.  Data:  Length = 1 m, depth, 2 m, height 0.5 m, T1 = 100 
C, T2 = 200 C, T3 = 300 C, T4 = 400 C, ε1 = 0.5, ε2 = 0.65, ε3 = 0.75, ε4 = 0.8.  The 
joins are well insulated so that there is no heat transfer between the plates by 
thermal conduction. 

A1

A2
A3

3 m

4 m

5 m
A1

A2

A4

A3 A1

A5

A6
A2

A4

A3

Problem 33                           Problem 34                                Problem 35 

35.  A rectangular parallelepiped consists of gray, diffuse, and flat surfaces, radiat-
ing with each other and nothing else.  The surface temperatures are maintained at 
the specified values.  There is a vacuum in the enclosure and thus, no other heat 
transfer mechanism except radiation exists.  Use the given data to find the radios-
ity and the rate of heat transfer for each surface.  Data:  Length = 2 m, depth, 3 m, 
height 1 m, T1 = 100 C, T2 = 200 C, T3 = 250 C, T4 = 400 C, T5 = 500 C, T6 = 550 
C, ε1 = 0.5, ε2 = 0.65, ε3 = 0.75, ε4 = 0.8, ε5 = 0.55, ε2 = 0.65, ε3 = 0.85.

36.  A triangular duct is shown in the figure.  The base of the duct (surface 1) is 
maintained at a temperature of 600 K.  The left panel (surface 2) is insulated and 
the right panel (surface 3) is heated and maintained at 1300 K.  Find a) the radiosi-
ties of all surfaces, b) the required rate of heat transfer to surface 3 to maintain the 
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steady state temperatures as specified, and c) the temperature of the insulated sur-
face.  Data: L = 1 m, W = 2 m, ε1 = 0.7, ε2 = 0.8, and ε3 = 0.4.
[Ans.:  a) J1 = 129000 W/m2, J2 = 26,558 W/m2, J3 = 77,784 W/m2, b) 76.84 kW, 
and c) 1082 K]. 

L

A2 A3

Insulated
Surface

A1

W

Heated
Surface

A1

A5

A6
A2

A4

A3 W

L

H

        Problem 36                                                         Problem 37 

37.  Consider the rectangular parallelepiped of Problem 34 with the back panel 
(surface A3) is now insulated.  All other surface temperatures remain unchanged.  
Find the rate of heat transfer to surface A6 to maintain the temperatures at their 
specified values.  Data:  T1 = 500 K, T2 = 600 K, T3 = 550 K, T4 = 650 K, T5 = 700 
K, T6 = 1750 K, ε1 = 0.3, ε2 = 0.4, ε3 = 0.4, ε4 = 0.18, ε5 = 0.26, ε6 = 0.25, L = 1 m, 
W = 0.5 m, H = 0.25 m.  [Ans.:  15.568 kW]. 

38.  A cylindrical spine used as a fin to enhance the rate of heat transfer from a 
surface.  Our goal is to find the one-dimensional temperature distribution in the 
spine.  Write the conservation equation of energy for the control volume shown in 
the figure.  Show that temperature at every location on this fin and at every time is 
found from the solution to: 

( ) 0),(
),(1),( 22

2

2
=+−

∂
∂=

∂
∂

txmm
x

tx

t

tx
rc θθ

α
θ

where θ = T(x, t) – Tf, a = ρc/k, mc = (Phc/ρAc)0.5, and mr = (Phr/ρAc)0.5.  In these 
relations, hc is the heat transfer coefficient for heat transfer by convection, and hr

is the heat transfer coefficient for heat transfer by radiation.  Note that hr is de-
fined as: 

( )( )22
ffr TTTTh ++= εσ

k,ε

D

q"r q"C

..

TB

Tf

L

dx

x

Specify the required initial and boundary conditions. 

39.  Show that the steady state temperature distribution in a cylindrical spine is the 
solution to: 
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( ) 0)(
)( 22

2

2
=+− xmm

dx

xd
rc θθ

where mc = (Phc/kA)0.5, and mr = (Phr/kA)0.5.  Use the given data to find the tem-
perature distribution at steady state in the above fin.  Data:  L = 15 cm, D = 1 cm, 
TB = 350 C, Tf = 27 C, k = 50 W/m·C, hc = 15 W/m2·C, ε = 0.75.  The tip of the fin 
is losing energy by both radiation and convection.   

[Hint:  You may solve this problem analytically or numerically.  The analytical 
solution follows the method described in Section 8 of Chapter IVa.  Since we have 
linearized the differential equation by choosing the heat transfer coefficient, as 
shown in Problem 38, an iterative solution is required regardless of the solution 
method we choose (hr, therefore, mr are unknowns).  The initial guess to estimate 
hr for thermal radiation is obtained by ignoring thermal radiation (i.e., by setting 
mr = 0).  Upon obtaining the initial guess for temperature, we then include thermal 
radiation but evaluate hr at the temperature calculated in the previous iteration.  At 
the end of each trial, we find: 

k

kk

T

TT 1−−=ε

where k is the iteration index.  The iteration is terminated when ε ≤ εs where εs is 
the specified convergence criterion]. 



V.  Two-Phase Flow and Heat Transfer

Va.  Two-Phase Flow Fundamentals 

At the first glance, two-phase or, in general, multi-phase flow seems an exotic 
topic used only in scientific experiments.  In reality however, we may encounter 
two-phase flow in everyday activities.  Flow of carbonated water pouring out of a 
bottle, ocean waves carrying oxygen, or even the action of the windshield wiper to 
remove rain involves two-phase flow.  These are examples of isothermal flow.  Of 
special interest is the flow of water and steam in heated channels such as in a 
BWR core or the tube-bundle of a PWR steam generator.  Although continuous ef-
forts are being made to formulate two-phase flow aspects by analytical means, 
most two-phase flow formulations are based on experimental data and hence are in 
the form of correlations.  In this chapter, following the definition of pertinent 
terms, we discuss such important topics as calculation of two-phase flow pressure 
drop and critical flow.  

1.  Definition of Two-Phase Flow Terms

Two-phase flow generally refers to the flow of a liquid and a gas or vapor such 
as the flow of water and steam, water and air, etc. 

Two-phase mixture refers to the mathematical analysis of two-phase flow 
where the two-phase mixture is treated as a pseudo single-phase. 

Two-fluid model refers to the mathematical analysis of two-phase flow where 
phases are treated separately.  Such treatment requires consideration of mass, 
momentum, and energy transfer between the phases.  This model provides more 
information but also requires more experimentally based constitutive equations 
than a two-phase mixture model. 

Multifluid flow refers to such cases as the flow of water droplets in bulk steam, 
surrounded by a film of flowing water. 

Multi-phase flow refers to the flow of several phases such as steam, ice, and 
water.
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Multicomponent flow refers to the flow of several phases having different 
chemical composition such as the flow of water, steam and air. 

Thermodynamic equilibrium exists between phases when the liquid (l) and 
vapor (v) phases are at equal temperature, Tl = Tv.

Homogeneous is applied to two phases that flow at the same speed in the same 
direction. 

Homogenous Equilibrium Model (HEM) is a means of mathematically de-

scribing two-phase flow, where lV = vV  (same flow direction at the same veloc-

ity) and also Tl = Tv (thermodynamic equilibrium).  If phase velocities are not 

equal ( vl VV ≠ ) but temperature of the phases are, then the mathematical model 

for analysis of the two-phase flow is referred to as the Separated Homogeneous 
Model or SEM. 

Quality is defined in various ways depending on the type of application.  For 
example, considering steam and water, in Chapter II, we defined quality as x = 
mg/m, referred to as the static quality, and may also be written as xs.  The thermo-
dynamic quality is defined as x = (h – hf)/hfg, also written as xe for equilibrium 
quality.  The flow quality for a mixture of water and steam is defined as the ratio 
of mass flow rate of steam to mass flow rate of the mixture: 

X = 
m

mg

The flow quality, X, and thermodynamic quality, x, become equal only when 
thermal equilibrium conditions exist.  Thus, X = x only if Tf = Tg.

Void fraction in a control volume made up of liquid and gas mixture is the vol-
ume fraction of the gas phase.  Hence, void fraction (αg or simply α) is given by α
= Vg/V.  Similarly, 1 – α = Vf/V.  Note that void fraction is a space and time aver-
aged quantity.  The static quality, as defined above, can be expressed in terms of 
void fraction by noting that x = mg/(mf + mg) = ρgVg/(ρfVf + ρgVg) = ρgαV/[ρf(1 – 
α) + ρgα]V.  Hence,

( ) αραρ
αρ

gf

gx
+−

=
1

Mixture density is given by ρ = (mf + mg)/V.  Substituting for mf = ρfVf and mg

= ρgVg, we find ρ = ρfVf/V + ρgVg/V.  Since Vf/V = 1 – α and Vg/V = α, the mix-
ture density in terms of void fraction becomes: 

ρ = (1 – α)ρf + αρg

Phasic mass flux, is the mass flow of a given phase per mixture area.  Thus, for 
a mixture of water and steam for example, Gg = gm /A.  Using the definition of 
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flow quality, Gg = X m /A = XG.  Similarly, for water we have Gf = fm /A.

Substituting, Gf = (1 – X) m /A = (1 – X)G where G is the mixture mass flux. 

Mixing cup density is similar to the mixture density but is averaged with re-

spect to the phasic mass flux; v’ = 222 /])1([/1 GVV ggff αραρρ +−=′ .  Simi-

lar to the mixing cup density, a mixing cup enthalpy is defined as; 
GhVhVh gggfff /])1([' αραρ +−=

Phasic volumetric flow rate is defined similar to the single-phase flow hence, 

for the gas component of a mixture, ggg m ρ/V =  = XGA/ρg and for the liquid 

component fff m ρ/V =  = (1 – X)GA/ρf.

Superficial velocity is the velocity a phase would have if it were flowing alone 
in a channel.  As such, the superficial velocity is obtained by dividing the related 
volumetric flow rate by the mixture area.  For example, for the flow of water and 

steam in a channel, while water velocity is given by Vf = fV /Af, where Af is the 

water flow area, the superficial velocity for water is defined as Jf = fV /A where A

is total flow area of the channel.  Similarly, the superficial velocity of steam is 

found as ggJ V= /A.  To relate the superficial velocities to flow quality, we 

write: 

Jg = gV /A = )/( Am gg ρ  = Gg/ρg = XG/ρg

Similarly, for Jf we find 

Jf = (1 – X)G/ρf

We now define J = Jf + Jg.  Substituting for Jf and Jg, we find J to be given by J = 

[(1 – X)/ρf + X/ρg]G.  We also note that Jg = gV /A = VgAg/A = aVg.  Similarly, for 

the liquid phase we have Jf = (1 – a)Vf.

Slip ratio is defined as the ratio of the gas velocity to liquid velocity, S = Vg/Vf.
Substituting, we find; 

S = 
f

g

V

V
 = ( )α

α
−1/

/

f

g

J

J
=

−
−=

−
−

g

f

f

g

X

X

GX

XG

ρ
ρ

α
α

ρ
ρ

α
α

1

1

/)1(

/1

                                                                                                             Va.1.1 

Thus, the slip ratio relates X and α.  If for simplicity, we represent the quality and 
the density ratios with y:
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f

g

X

X
y

ρ
ρ−= 1

Equation Va.1.1 simplifies to: 

α
α

y
S

)1( −=                                            Va.1.2 

from which we can find void fraction as:                                         

( ) 11 −+= ySα                            Va.1.3 

Volumetric flow ratio as defined for the gas phase is given as β = gV / V  = 

Jg/J, which may be written as: 

J

J

J

JJ

J

J ffg −=
−

== 1β

Substituting for the superficial velocities in terms of flow quality X and mass flux 
G, we find: 

( ) 11 −+= yβ                                          Va.1.4 

Alternatively, by substituting for y from its definition above, we find: 

fgf

g

X

X

vv

v

+
=β                            Va.1.5 

Wallis number is the ratio of inertial force to hydrostatic force on a bubble or 
drop of diameter D.  Hence, the Wallis number (Wa) can be defined for both gas 
and liquid.  For example, 

     Wag = [ρg/gD(ρf – ρg)]
0.5Jg.

Kutateladze number is defined similarly to the Wa number except for the 
length scale D, which is replaced by the Laplace constant [σ/g(ρf – ρg)]

0.5.  Hence 
for a gas the Ku number becomes; 

Kug = ( )[ ] ggfg Jg 5.0)(/ ρρσρ −

Flooding refers to the condition in which the upward flow of a gas stalls the 
downward flow of a liquid.  This is accomplished through the momentum transfer 
at the liquid-gas interface.  According to Wallis for flooding in vertical tubes, 
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CJJ fg =+ 5.05.0  where for round tubes C = 0.9 and for sharp-edged tubes 

C = 0.75. 

Flow reversal refers to condition in which the upward flow of two phases is in-
terrupted by a reduction in gas velocity.  The lack of sufficient momentum transfer 
at the interface results in the gravity and frictional forces eventually stopping and 
finally reversing the flow of liquid.  For flow reversal, Kug = 3.2. 

Flow patterns of gas-liquid flow in an unheated pipe depend on such factors as 
pipe orientation, diameter, mass flux, flow quality, and phasic densities.  Patterns 
of gas-liquid flow in a horizontal unheated tube and in upflow of a vertical un-
heated tube are shown in Figure Va.1.1. 

bubble flow        plug flow       stratified flow     wavy flow         slug flow        annular flow 

liquid flow    bubbly flow  slug flow    churn flow    wispy-annular   annular flow   gas flow 

Figure Va.1.1.  Flow patterns in horizontal and vertical tubes 

Flow pattern map reduces various flow regimes to identifiable patterns.  Such 
maps associate the key flow parameters to a specific pattern.  For a given set of 
such parameters, the flow pattern map determines the corresponding flow regime.  
Conversely, by knowing the flow regime, we can find a specific range for the key 
parameters.  An example of such maps is shown in Figure Va.1.2. Hewitt has sug-
gested the left side map for upflow and the right side map is used in the RELAP-5 
thermalhydraulic computer code. 



606      Va.  Two-Phase Flow and Heat Transfer:  Two-Phase Flow Fundamentals  

Annular Wispy-annular

Bubbly
Churn

Slugs

Bubbles
slugs

1E0 1E1 1E2 1E3 1E4 1E5 1E6
1E-1

1E1

1E2

1E3

1E4

1E5

1E0

Ψx

Ψy

A
nn

ul
ar

M
is

t

B
ub

bl
y

M
is

t

Slug

B
ub

bl
y

0.0 0.2 0.4 0.6 0.8 1.0
0

2E2

3E2

T
ra

ns
iti

on

T
ra

ns
iti

on

T
ra

ns
iti

on

Transition

T
ra

ns
iti

on

α
G

(k
g/

s 
m

2 )
Figure Va.1.2.  Flow pattern maps for vertical flow (low pressure air-water and high pres-
sure steam-water) 

The coordinates of the Hewitt map (left figure) are 2
ffx Jρ=  (kg/s2·m) and 

2
ggy Jρ=  (kg/s2·m).

Example Va.1.1.  Water and steam flow at 1000 psia (~7 MPa) and 2 lbm/s 
(~1 kg/s) in a 1 in (2.54 cm) diameter tube.  Find the flow regime at a location 
where X = 0.2. 

Solution:  At 1000 psia, ρf = 46.32 lbm/ft3 and ρg = 2.24 lbm/ft3.  Since A = 3.14 ×
(1/12)2/4 = 5.45E-3 ft2, then G = 2/5.45E-3 = 366.7 lbm/ft2 s (1790 kg/s m2).  Us-
ing Hewitt’s map, we find: 

fff XGJ ρρ /)1( 222 −=  = 366.72(1 – 0.2)2/46.32 = 1858 lbm/s2 ft  

     (2765 kg/s2·m)

ggg XGJ ρρ /222 =  = 366.72(0.2)2/2.24 = 2400 lbm/s2 ft (3589 kg/s2 m) 

Thus, the flow regime is Wispy – annular. 

2.  Two-Phase Flow Relation

For two-phase flow in a conduit, there are two methods for solving for such state 
parameters as pressure, temperature, and velocity.  In the first method, we assign a 
control volume to each phase.  We then write the three conservation equations of 
mass, momentum, and energy for each control volume and solve them simultane-
ously.  These control volumes exchange mass, momentum, and energy with each 
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other and exchange momentum and energy with the surface of the conduit.  This is 
called the two-fluid model.  In the second method, being basically a pseudo sin-
gle-phase flow model, we use such parameters as void fraction, slip ratio, and two-
phase friction multiplier to solve for only the three conservation equations written 
for the mixture.  In this section, we discuss the two-phase flow parameters used in 
the pseudo single-phase analysis such as void fraction, flow quality, and slip ratio 
as well as pressure differential terms for two-phase flow. 

2.1.  One Dimensional Relation for Void Fraction 

Determination of void fraction is essential in several aspects of two-phase flow 
analysis such as calculation of pressure difference terms.  Equation Va.1.3 shows 
that void fraction varies inversely with the slip ratio.  Hence, for given P and X, as 
S increases, the void fraction decreases.  For example, for the flow of water and 
steam at P = 1000 psia and X = 12%, α drops from 75% to 40% when S increases 
from 1 to 4.  

Example Va.2.1.  Express the slip ratio only in terms of α and β.

Solution:  We use the definition of β given by β = {1 + [(1 – X)/X] (ρg/ρf)}
–1 to 

find 1 – β.  We then divide these to get (1 – β)/β = [(1 – X)/X] (ρf/ρg).  Substituting 
in Equation Va.1.1, we obtain: 

β
β

α
α

−
−=

1

1
S

The slip ratio in general is a function of pressure (P), quality (X), and mass 
flux (G).

Example Va.2.2.  Compare X for the flow of water and steam at 1000 psia for α = 
50% and S = 1, 2, and 3. 

Solution:  We solve Equation Va.1.1 for X to get: 

( ) S

S
X

gf

g

αρρα
αρ

+−
=

1

At 1000 psia, ρf = 46.32 lbm/ft3 and ρg = 2.24 lbm/ft3.  Substituting values, we 
find: 

X = 4.6%, 9%, 12.5% for S = 1, 2, and 3, respectively.  
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Example Va.2.3.  For the flow of steam - water, find α, β, ρ, and x.  Use Tsat = 
270 C, X = 0.15, and S = 3. 

Solution: At 270 C, ρf = 767.9 kg/m3 and ρg = 28.06 kg/m3.  Substitute values in 
y:

f

g

X

X
y

ρ
ρ−= 1

 = 
9.767

06.28

15.0

15.01 −
 = 0.207 

Next, we find α, β, the mixture density, and quality: 

α = 1/(1 + yS) = 1/(1 + 0.207 × 3) = 0.62 
β = 1/(1 + y) = 0.83 
ρ = (1 – α)ρf + αρg = (1 – 0.62) × 767.9 + 0.62 × 28.06 = 309.2 kg/m3

x = ρgα/[ρf(1 – α) + ρgα] = 28.06 × 0.62/[767.9(1 – 0.62) + 0.62 × 28.06] = 0.056. 

As specified in Example Va.2.1, slip ratio itself is a function of pressure, mass 
flux, density, and void fraction distribution at a given cross section.  There are 
several correlations for the calculation of slip ratio.  An analytical method is of-
fered by Zivi.  In this method, the flow kinetic energy is set to a minimum (i.e., 

K.E. = ( )iiiV V2ρ  = 0 where subscript i refers to liquid and vapor).  If we sub-

stitute for fV  and gV  from the definition of the phasic volumetric flow rate, we 

find: 

2)1(

)1(
..

3

22

3

22

3 AGXX
EK

fg −
−+=

ραρα

Taking the derivative with respect to α and setting it equal to zero, we obtain 
α/(1 – α) = [X/(1 – X)](ρf/ρg)

2/3.  By comparing this result with Equation Va.1.1, 
we find that S = (ρf/ρg)

1/3.  Since Zivi’s method expresses the slip ratio only in 
terms of densities, Zivi’s model does not compare well with experimental data.  In 
Example Va.2.2, according to Zivi’s method, S is always S = (46.32/2.24)1/3 = 
2.75 for any mass flux.  By definition, the homogenous model gives S = 1.  Thom, 
recognizing the dependency of S on X, developed a relation for S based on best fit 
to data for various system pressures.  Winterton collected these data in a single 
equation in terms of the saturated specific volumes: 

S = 0.93(vg/vf)
0.11 + 0.07(vg/vf)

0.561                            Va.2.1 

This correlation fits Thom’s data well within 1% and can be used for pressures 
ranging from atmospheric up to the critical point.  To estimate S from Equa-
tion Va.2.1, a thermal equilibrium condition must exist. 
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Example Va.2.4.  Water enters a heated channel at rate of 20 kg/s with a degree 
of subcooling of 15 C.  Use Equation Va.2.1 and a reference pressure of 7 MPa to 
find the rate of heat transfer to this channel to ensure the exit void fraction equals 
75%.  

Solution:  To ensure the void fraction at the exit of the heated channel remains at 
the specified limit, we need to fix the value of the exit quality from Equation 
Va.1.1, with S given by Equation Va.2.1. 

Next, having quality at the exit of the channel, we can find the flow enthalpy at the 
exit.  The rate of heat transfer is subsequently found from a steady-state energy 
balance. 

At 7 MPa, vf = 0.001351 m3/kg, vg = 0.02737 m3/kg, and vg/vf = 20.26 

Substituting in Equation Va.2.1: 

S = 0.93(20.26)0.11 + 0.07(20.26)0.561 = 1.67 

Having S and αe, we find y  0.2 from Equation Va.1.2. 
Having y, ρf, and ρg, we find xe from y = [(1 – xe)/xe](ρg/ρf)
(1 – xe)/xe = y(vg/vf) = 0.2 × 20.26 = 4 resulting in xe = 0.198 

We now find the inlet and exit enthalpies.  At 7 MPa, Tsat = 285.88 C.  To find hi,
we need to find the enthalpy of subcooled liquid at P = 7 MPa and T = 285.88 – 
15 = 273.85 C resulting in hi  1204 kJ/kg 

The exit enthalpy is: he = hf  + xe hfg = 1266.97 + 0.198 × 1505.1 = 1565 kJ/kg 

Therefore, )( ie hhmQ −=  = 20(1565 – 1204) = 7.22 MW. 

2.2.  Drift Flux Model for Void Fraction 

This method, introduced by Zuber-Findlay, and also described by Wallis, is based 
on the relative motion of the phases and accounts for the void fraction dependency 
on mass flux and void distribution at a given cross section in the flow.  The nota-
ble approach in this method is the introduction of a relative motion.  In general, 
the liquid and gas in a mixture travel at different velocities for which we define 
the relative velocity between the phases as: 

Vgf = Vg – Vf

Expressing the phasic velocities in terms of their corresponding superficial veloci-
ties, we find: 

Vgf = Jg/α – Jf/(1 – α)

Multiplying both sides of this relation by α(1 – α) we obtain; 

α(1 – α)Vgf = (1 – α)Jg – αJf.
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 The left side term has units of velocity known as the drift velocity or drift flux,
Jgf.  The right side term can be rearranged to get Jg – α(Jf + Jg) = Jg – αJ.  Thus; Jgf

= Jg – αJ.
 To get a physical interpretation of drift flux, we may say that drift flux is the 

gas volumetric rate passing through a unit area of a plane, normal to the channel 
axis and traveling at velocity αj.

 While the above relation was derived for one-dimensional flow, the usefulness 
of the drift flux model is in the fact that it accounts for the void fraction distribu-
tion at a cross section.  We now find the average value of variables over a flow 
cross section.  For example: 

=
A A

dAαα                                 Va.2.2 

By so doing, the drift flux can be written as JJJ ggf α−= .  Dividing this rela-

tion by α  and noting that JJ αα ≠ , we obtain: 

α
α

α
J

V
J

g
gf −=

We simplify this relation by defining gJV  such that =gfJ α gJV  and a parame-

ter Co such that: 

J

J
Co α

α=

Substituting, we find gJ g oV V C J= − .  Dividing both sides of this relation by J

and replacing αβ // =JVg  we obtain: 

( / )o gJC V J

βα =
+                            Va.2.3 

Equation Va.2.3 is the Zuber-Findlay drift flux model for the calculation of void 
fraction.  This equation is important for the fact that it also accounts for mass flux, 
G.  The parameter Co, as introduced by Zuber-Findlay, is the key in this model.  
This parameter helps to distinguish between the concentration profile at a cross 
section from the velocity profile.  For example, for one-dimensional homogenous 

flow, we know that α = β.  From Equation Va.2.3, this is possible when gJV  = 0 

and Co = 1.
To write an alternative expression for Equation Va.2.3 we first substitute for 

jg = β j in Equation Va.2.3 to get )/( gJog VJCJ +=α .  We then substitute for 
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gg XGJ ρ/=  and J  = [(1 – X)/ρf + X/ρg]G.  Dividing both numerator and de-

nominator by XG/ρg and using y = (1 – X)ρg/Xρf, as defined earlier, the drift flux 
model for void fraction becomes: 

XG

V
yC ggJ ρα

++
=

)1(

1

0

                          Va.2.3 

where for simplicity, the volume-averaged symbol is now dropped.  Substituting 
for void fraction from Equations Va.2.3 to Equation Va.1.3 and solving for the 
slip ratio, we find: 

+
−

+=
yXG

V

y

C
CS gJgo

o

ρ1
          Va.2.4 

Equation Va.2.4 consists of two terms: 

term 1: Co + [(Co – 1)/y].
This term pertains to nonuniform void distribution in a given flow cross 
section 

term 2: VgJρg/(yXG).
This term pertains to velocity differential between the liquid and the gas 
phase. 

If there is no void, then Co = 0.  Depending on the void fraction distribution, Co

ranges from 1.0 to 1.3.  If the ratio of void fraction at the tube surface to the void 
fraction at the tube center is unity, then Co is a minimum.  The value of Co in-
creases to a maximum as the above ratio decreases to zero. 

The Zuber-Findlay model for void fraction (Equation Va.2.3) is applicable for 
vertical upflow.  If the flow regime is bubbly flow, Zuber and Findlay suggest Co

= 1.13 and Vgj is found from: 

( ) 4/1

2
41.1

−
=

f

gf
gJ

g
V

ρ
σρρ

≅

4/1

41.1
f

g

ρ
σ

           Va.2.5 

These values correlate well to round tube data. 

Example Va.2.5.  A mixture of water and steam flows up a 20 mm diameter tube 
at a rate of 4000 kg/m2⋅s and temperature of 290 C.  At a location where X = 30% 
find: a) void fraction, b) the mixture mixing cup density, c) mixture density using 
the HEM, d) mixture thermodynamic density. 

Solution:  For saturated mixture at T = 290 C, ρf = 732 kg/m3, ρg = 39 kg/m3, σ = 
0.0166 N/m.   
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a)  We find the parameter y from:  
y = [(1 – X)/X](ρg/ρf) = (0.7/0.3)(39/732) = 0.124 
β = 1/(1 + y) = 1/(1 + 0.124) = 0.89 

Next, we calculate Vgj From Equation Va.2.5 and then find J, α, and S:

VgJ = 1.41[g(ρf – ρg)σ/ 2
fρ ]0.25 = 1.41[9.81 × (732 – 39) × 0.0166/7322]0.25 = 0.17 

m/s 
J = (1 + y)XG/ρg = (1 + 0.124) × 0.3 × 4000/39 = 34.58 m/s 
α = β/[Co + VgJ/J] = 0.89/[1.13 + 0.17/34.58] = 0.78  
(Compare with αΗΕΜ = β = 0.89) 

S = 
××

×+−+
40003.0124.0

17.039

124.0

113.1
13.1  = 2.2 

b)  For the mixing cup density we need phasic velocities.  We find Vg and Vf from 
Jg and Jf:
Vg = Jg/α = Gg/αρg = XG/αρg = 0.3 × 4000/(0.78 × 39) = 39 m/s 
Vf = (1 – X)G/(1 – α)ρf = (1 – 0.3) × 4000/[(1 – 0.78) × 732] = 17.4 m/s   
(Note; S = Vg/Vf = 2.2) 

1/ρ’ = [39 × 0.78 × 39.252 + 732 × (1 – 0.78) × 17.382]/40002 = 5.97E-3 m3/kg 
Thus, ρ’ = 167.5 kg/m3.  Find mixture density from: 
ρ = (1 – α)ρf + αρg = (1 – 0.78) × 732 + 0.78 × 39 = 191.46 kg/m3

c)  The HEM density is obtained by substituting related values for specific vol-
umes; 
v = (1 – X)vf + Xvg.  Thus, ρHEM = (1 – X)/ρf + X/ρg = (1 – 0.3)/732 + 0.3/39 =  
115.6 kg/m3.

d)  Since we have used saturation properties, we have implicitly assumed thermal 
equilibrium exists between the phases hence, x = X = 0.3. 

Whalley uses the definition of slip velocity to express drift flux in terms of void 
fraction as: 

Jgf = Vbα(1 – α)2                    Va.2.6 

where Vb is the rising velocity of a single bubble as a function of pressure (Ta-
ble Va.2.1). 
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Table Va.2.1.  Values of Vb for water-steam flow (Whalley) 

P (bar)        Vb (m/s)        P (psia)        Vb (ft/s) 
            1          0.22           14.5          0.722 
            3          0.21           43.5          0.689 
           10          0.20           145          0.656 
           30          0.19           435          0.623 
         100          0.16           1450          0.525 
         221.2*          0.0           3207.4*          0.00 

*:  At critical pressure ρg ρf, σ  0, and Vb  0 

Example Va.2.6.  A mixture of water and steam flows up a 10 mm diameter tube 
at a rate of 4000 kg/s⋅m2 and 2 kg/s⋅m2, respectively.  Assume an adiabatic condi-
tion.  Find void fraction in the tube.   
Data: P = 1 atm, ρf = 1000 kg/m3, ρg = 0.598 kg/m3.

Solution:  One way to find α is to set Equation Va.2.5 equal to the definition of Jgf

= (1 – α)Jg – αJf:

Vbα(1 – α)2 = Jgf = (1 – α)Jg – αJf

We now need Jf and Jg, which are calculated as: 
Jf = Gf/ρf = 4000/1000 = 4 m/s 
Jg = Gg/ρg = 2/0.598 = 3.34 m/s 

Finding Vb from Table Va.2.1 as 0.22 m/s, one obtains the following non-linear 
equation for α:

(Jf + Jg)α + Vbα(1 – α)2 – Jg = 0 

By iteration, we find α  0.455. 

2.3.  Conservation Equations 

Derivation of conservation equations for multi-phase and multi-dimensional flow 
in a control volume with a deformable boundary is beyond the scope of this book.  
Here, we consider a one-dimensional two-phase flow in a fixed boundary control 
volume with constant flow area, as shown in Figure Va.2.1 (Myer).  To write the 

∆s

A

A

V

V

∆V

Figure Va.2.1.  One-dimensional control volume for conservation equations  
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conservation equation for the mixture, we use volume-averaged quantities similar 
to Equation Va.2.2, defined for void fraction.  Since the flow area is assumed to be 
constant, the area averaged value for any quantity such as ψ is simplified to 

>=< AdA /)( ψψ .

Beginning with the conservation equation of mass, we apply Equation IIIa.3.2 
to the two-phase flow in the elemental control volume of Figure Va.2.1.  We then 
divide each term by A∆z and let ∆z approach zero:

0)1()1( >=+−<
∂
∂+>−+<

∂
∂ αραραραρ ggfffg VV

st
         Va.2.7 

If we now substitute for the mixture density, ρ = (1 – α)ρf + αρg and the mixture 
mass flux, defined as; G = < ρf(1 – α)Vf + ρga>, the one-dimensional continuity 
equation for the flow of a two-phase mixture becomes: 

0=
∂
∂+

∂
∂

s

G

t

ρ
                     Va.2.8 

If Equation Va.2.8 is integrated over a macroscopic control volume V = sA, we 
obtain Equation IIa.5.1. 

Regarding the one-dimensional conservation equation of momentum for two-
phase flow in a constant area channel, we use Equation IIIa.3.6.  Assuming gravity 
to be the only body force and substituting for the shear stresses, such as surface 
force, we find the momentum equation for uniform flow at a cross section z:

γρτ
sin

P
v 2 g

As

P
G

st

G sw −−
∂
∂−>=′<

∂
∂+

∂
∂

           Va.2.9 

where τs is the shear stress at the wall of the channel, Pw is the channel wetted pe-
rimeter, and ρ’ = 1/v’ is the mixing cup density.  Also note that γ is the angle be-
tween the flow velocity vector and the horizontal plane (see Figure Va.2.2) and 
ranges from –π/2 ≤ γ ≤ π/2. For horizontal channels γ = 0.  For vertical channels, if 
flow is upward,  γ = π/2 and if flow is downward,  γ = –π/2. 

The term representing shear stresses in Equation Va.2.9 can be substituted from 
Equation IIIb.2.5 for single-phase flow so that Pwτs /A = fv|G|G/2Dh where f is the 
friction factor and using the absolute value of G ensures opposing force in the case 
of flow reversal in the channel.  To obtain the momentum equation for a macro-
scopic control volume, we integrate Equation Va.2.9 over a finite length s:

γρ sinV
2

vv
22

2

g
D

s

A

mmf
P

A

m

dt

md

A
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h

−−∆−=
′

∆+        Va.2.10 

The two-phase flow momentum equation is discussed in more detail in Sec-
tion 2.4. 
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The conservation equation of energy for two-phase flow in a constant area 
channel can be derived from Equation IIIa.3.9 with work terms substituted from 
Equation IIIa.3.10.  Ignoring the contribution by kinetic and potential energies and 
considering only pressure work, the energy equation simplifies to: 

q
A

q

s

P
Gh

s
h

t
h ′′′+

′′
+

∂
∂=

∂
∂+

∂
∂ P

)'()(ρ           Va.2.11 

where the mixture density h represents h = <ρfhf(1 – α) + ρghgα>/ρ and h’ is the 
mixing cup enthalpy.  To obtain the energy equation for a macroscopic control 
volume, we integrate Equation Va.2.11 over control volume V = sA:

VPV)()V( qsq
s

P
hmh

t h ′′′+′′+
∂
∂=′∆+

∂
∂ ρ         Va.2.12 

2.4.  Pressure Differential Terms  

Equation Va.2.10 includes five pressure differential terms for two-phase flow 
which are similar to the pressure differential terms for single-phase flow defined 
in Equation IIIa.3.43 (with ∆Pshaft = 0).  At steady state, ∆PInertia = 0 and Equa-
tion IIIa.3.43 simplifies to: 

0)()()()( =+++ gravfricaccstat ds

dP

ds

dP

ds

dP

ds

dP
        Va.2.13 

where the terms are differentiated with respect to s, the element of length as 
shown in Figure Va.2.2, not to be confused with the slip ratio, S.  Let’s now evalu-
ate each term in Equation Va.2.13. 

x

y

Flo
w

γ
V

s + ds

ds

s

g

D

Figure Va.2.2.  Steady-state flow of a two-phase mixture in a pipe 

Static pressure gradient, (dP/ds)stat if integrated over a finite length in the 
flow path gives the total pressure drop from inlet (point i) to exit (point e): 
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Pressure gradient due to acceleration is given by: 
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The derivative can be carried out based on the simplification made for the mixing 
cup density.  For example, if velocities of both phases are uniform across the 
channel, we may substitute for Vg and Vf from Vg = Gg/αρg = XG/αρg and Vf = (1 –
X)G/(1 – α)ρf in the relation for mixing cup density to get; 

gf

XX

αρραρ
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                        Va.2.16 

Substituting for ρ’ from Equation Va.2.16 into Va.2.15 and carrying out the de-
rivative, we find: 

2 2 2
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  Va.2.17 

This derivation applies to separated flow.  For HEM, the mixing cup density is 
calculated from 1/ρ’ = v = (1 – X)vf + Xvg.  Substituting this relation in Equa-
tion Va.2.15 and using the equal phase velocity assumption, we get: 
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Neglecting the compressibility of liquid (i.e., setting ∂vf/∂P = 0), we find 
(dP/ds)acc for HEM as: 

]v
v

[)( 2

ds

dX

ds

dP

P
XG

ds

dP
fg

g
acc +

∂
∂

=          Va.2.19 

Pressure gradient due to friction for two-phase flow is similar to friction 
pressure drop for single-phase flow.  For example, suppose a mixture of water and 
steam is flowing in a heated pipe of diameter D and length L at the mass flow rate 
of m .  The friction pressure drop for the two-phase mixture is obtained from: 

2

2

2 A

m

D

L
fP

tp
tptp ρ

=∆                     Va.2.20(a) 
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where subscript tp stands for two-phase.  To find ftp, we now assume a case that 
only water is flowing in the same pipe at the same mass flow rate as the mixture of 
water and steam: 

2

2

2 A

m

D

L
fP

sp
spsp ρ

=∆                     Va.2.20(b) 

where sp stands for single-phase, hence, ρsp = ρf.  Dividing Equation Va.2.20(a) 
by Va.2.20(b) we get: 
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                                      Va.2.21 

This ratio is referred to as the two-phase friction multiplier.  Substituting for ftp/ρtp

= φ(fsp/ρsp) from Equation Va.2.21 in Equation Va.2.20(a), we find the two-phase 
friction pressure drop as: 
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L
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φ=∆            Va.2.22 

For homogeneous equilibrium conditions assuming ftp = fsp, the two-phase friction 
multiplier becomes: 
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This derivation was for a heated pipe.  If the mixture is flowing in a pipe that is 
being cooled resulting in steam condensation, the comparison is made with only 
steam flowing in the pipe (i.e., ρsp = ρg).

Example Va.2.7.  Derive alternative relations for the two-phase friction multi-
plier. 

Solution:  Rather than assuming equal single-phase and two-phase friction fac-
tors, let’s substitute for friction factors in turbulent flow from Equation IIIb.3.6.  
In this case, Equation Va.2.23 becomes: 
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The two-phase to single-phase viscosity ratio may be evaluated based on correla-
tions by McAdams, Cichitti, or Duckler: 
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Reddy has recommended a relation similar to Equation Va.2.23: 

CX ffg )v/v(1 +=φ            Va.2.24 

where C = C’X–0.175G–0.45.  If P > 600 psia then C’ = 1.02 otherwise, C’ = 0.357[1 
+ (P/Pcritical)].  In this relation, mass flux G, is in Mlbm/ft2·h.  This correlation is 
valid for vertical upflow in tubes of 0.2 to 0.6 inches in diameter and 5 to 100 
inches in length.  The range for mass flux is 0.35 to 3.3 Mlbm/ft2·h.  The advan-
tage of Reddy’s correlation is that it also accounts for the effect of mass flux. 

A more recent correlation based on a vast bank of data is suggested by Friedel: 

035.0045.0
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where Fr and We are the Froude and Weber numbers.  The Froude number, the ra-
tio of inertial to gravity force (Table A.I.6) is given as: 
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and the Weber number, the ratio of inertial to surface tension force, is given as: 
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where ρ = 1/v = vf + Xvfg.  Constants C1, C2, and C3 are related to steam quality 
and two-phase properties: 
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Calculating the two-phase friction multiplier from any of the above relations, the 
frictional pressure gradient, (dP/ds)fric, from Equation Va.2.22 can therefore be 
expressed as: 
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Pressure gradient due to gravity is given by: 
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2.5.  Static Pressure Gradient, HEM 

We now can find (dP/ds)stat,HEM if we substitute for various pressure gradient terms 
into Equation Va.2.13.  The result depends on whether we use Equation Va.2.17 
or Va.2.19 to represent (dP/ds)acc.  If we use Equation Va.2.19, which is applica-
ble to HEM, we find: 
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where φ for HEM is given by Equation Va.2.23.  We also used Dh so that Equation 
Va.2.15 is applicable to channels other than pipes and tubes.  We may now inte-
grate Equation Va.2.27 for the special case of a uniformly heated channel of 
length L and hydraulic diameter Dh.  At the channel inlet (i) we have si = 0 and at 
the channel exit (e) we have se = L.  In this integration, we assume saturated sin-
gle-phase liquid enters the channel (i.e., Xi = 0).  Since the channel is heated uni-
formly, we can make a change of variable from s to X according to: 

L

XX

ds

dX ie −
=

so that ds = (L/Xe)dX.  Note that the gas compressibility is generally very small, 
| vg/ P| << 1, which greatly simplifies the integration of Equation Va.2.27.  Re-
placing ρ with ρ = [vf + Xvfg]

 –1 and assuming that fsp and vfg/vf remain constant, 
we integrate Equation Va.2.15 from the inlet to any point along the channel:  

2
2

v v vcos
( ) [1 ( ) ] v ln[1 ( )]

2 v 2 v v
f fg fg

i sp fg
e f fg f

GL X gL
P P f G X X

D X

γ− = + + + +

                                                                                                          Va.2.28 

where the quality and thermodynamic properties are evaluated at system pressure 
and De = Dh is the equivalent hydraulic diameter. 

Example Va.2.8.  Water at 70 bar, 210 C, and a mass flow rate of 0.1 kg/s enters a 
uniformly heated vertical tube of diameter 2 cm and length 4 m.  The applied heat 
flux is 600 kW/m2.  Find a) length of the tube over which water remains sub-
cooled, b) pressure drop for the subcooled section, and c) total pressure drop. 

Solution:  At P = 70 bar; Tsat = 285.9 C, hf = 1267 kJ/kg, hfg = 1505 kJ/kg.  hi(70
bar & 210 C) ≅ 900 kJ/kg. 

a)  Since Ti < Tsat, subcooled water enters the heated channel.  The length of the 
single-phase or pre-heating section is found from a heat balance: 

)()( iff hhmdLq −=′′ π
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Substituting values: 600[π × (2/100) × Lf)] = 0.1[1267 – 900]
Solving for Lf, we find: Lf ≅ 1 m.

Water then boils over the remaining 3 m of the tube.  To find the exit quality we 
write the energy balance over the boiling length: 

600[π × (2/100) × (L – Lf)] = 0.1[he – 1267] 

Substituting values we find: he = 2398 kJ/kg  

Xe = (he – hf)/hfg = (2398 – 1267)/1505 = 0.75 

b)  Over the single-phase section, we find pressure drop due to friction, accelera-
tion, and gravity: 
At Tsat = 285.9 C; vf = 0.00135 m3/kg, vfg = 0.026 m3/kg, µf = 0.943E-4 N·s/m2

Tube flow area is: Af = π × 0.022/4 = 3.14E-4 m2

Thus, the mass flux is: G = 0.1/3.14E-4 = 318.3 kg/m2·s 

(Pi – Pe)fric = )2/(v)/( 22
ffefsp AmDLf

To find fsp, we must calculate the Reynolds number: 
Resp = ADm e µ/  = 0.1 × 0.02/[0.943E-4 × 3.14E-4 = 67,510 (Flow is turbulent) 

fsp = 0.184/Re0.2 ≅ 0.0199 

The friction pressure drop over the single-phase section is found as: 

(∆P)fric,sp = 
2

2

2
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f

f

e

f
sp
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L
f  = 

8E87.92

1.000135.0

02.0

1
0199.0

2

−×
×

 = 0.068 kPa 

(∆P)acc,sp = G2(vf – vi) = (318.3)2 × (0.00135 – 0.00117) = 0.018 kPa 
(∆P)grav,sp = gLfcosβ/[(vi + vf)/2] = 9.81 × 1/[(0.00117 + 0.00135)/2] = 7.8 kPa. 

c)  We now find pressure drop due to friction, acceleration, and gravity over the 
two-phase section using the homogenous model: 
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,

v
( ) cos ln[1 ( )] /(v )
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0.026
9.81 3 ln[1 0.75( )] /(0.026 0.75) 4.1 kPa

0.00135

fg
grav tp b fg

f

P gL X Xγ∆ = + =

× × + × =

∆Ptotal = (0.068 + 1.68) + (0.018 + 1.97) + (7.8 + 4.1) = 15.6 kPa 

Comment:  Calculation of the properties at the inlet pressure is a reasonable as-
sumption in this problem since the pressure drop is a small percentage of the inlet 
pressure (≈ 0.2%).  In general, an iterative solution may be required to find 
properties at an average pressure. 

2.6.  Static Pressure Gradient, Separated Flow Model (SFM) 

To obtain (dP/ds)stat for the separated flow model, we substitute for various pres-
sure gradient terms into Equation Va.2.13.  For (dP/ds)acc, we substitute from 
Equation Va.2.17.  If we integrate the resulting equation between the channel inlet 
at si = 0 and any location along the channel, we find the gradient for static pressure 
as: 
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                                  Va.2.29 

The acceleration pressure drop, being a perfect differential, depends only on the 
end points and is independent of the flow path.  Expressing mixture property 
variations as a function of s, we can integrate the first and the third terms of Equa-
tion Va.2.29.  Similar to the case of HEM, for a special case of uniformly heated 
channel, a change of variable can be introduced by replacing the differential 
length, ds, with dX, the differential quality.   Substituting the change of variable 
into Equation Va.2.29, for the special case of uniformly heated channels with Xi = 
αi = 0, we find: 

This equation can alternatively be written as: 

2 2

1 2 3

1
( ) ( ) ( ) sin ( )

2i e sp f
h sp f

G L G
P P f C C gL C

D
ρ β

ρ ρ
− = + +                            Va.2.30 
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Constants C1, C2, and C3 may be obtained from the Martinelli-Nelson or the Thom 
correlation.  Figure Va.2.3 gives the values of constants C1, C2, and C3 according 
to Thom’s correlation. 

Example Va.2.9.  Solve Example Va.2.8 based on the Separated Flow Model. 

Solution:  The same total pressure drop is applicable in the preheating section for 
both HEM and SFM. For the boiling section, we use Figure Va.2.3 for (∆P)fric,
(∆P)acc and (∆P)grav respectively.  These result in: C1 ≈ 8.5, C2 ≈ 14, and C3 ≈ 0.24. 

Substituting the constants in Equation Va.2.30, we find: 
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sptpfric ρ
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1.74 kPa 

)](/[)( 2
2

, CGP ftpacc ρ=∆  = (318.3)2 × 0.00135 × 7.8 = 1.90 kPa 

)(cos)( 3, CgLP fbtpgrav βρ=∆  = 9.81 × (3/0.00135) × 0.24 = 5.2 kPa 

Therefore, total pressure drop over the tube is found as: 
∆Ptotal = (0.068 + 1.74) + (0.018 + 1.90) + (7.8 + 5.2) = 16.7 kPa 

This result is in reasonable agreement with the result obtained from the homoge-
nous model in Example Va.2.8. 

3.  Two Phase Critical Flow

Similar to the critical flow of compressible, single-phase fluid, as discussed in 
Chapter IIIc, flow of a two-phase mixture in a channel may also become critical.  
For cases where saturated water is contained under pressure, opening of a valve or 
sudden burst of a connecting pipe results in expulsion of the tank inventory.  In 
such a case, the saturated water may partially flash to steam as it approaches the 
break area, which is at much lower pressure.  We will seek an analytical solution 
for the two-phase critical flow of water and steam under the following conditions; 
flow is homogeneous (Vf = Vg), thermodynamic equilibrium exists between the 
phases (Tf = Tg), and the process is isentropic.  These assumptions lead to the de-
termination of critical flow for HEM.  Maintaining the assumption of an isentropic 
process, analytical solutions are also extended to two equilibrium non-homo-
genous cases.  The first case uses a slip ratio calculated from either the Moody or 
the Fauske model.  The second case uses models from Burnell and Henry-Fauske.  
These cases are summarized in Table Va.3.1 and then discussed in detail next.
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Figure Va.2.3.  Coefficients for frictional, acceleration, and gravitational pressure drop 
(Thom 1964) 
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Table Va.3.1.  Various critical flow models 

3.1.  Two-Phase Critical Flow (Homogeneous Equilibrium Flow) 

This model is based on solving the conservation equations of mass and energy, in 
conjunction with the equations of state, under steady-state condition.  The conser-
vation equation of mass becomes: 

VAm ρ=  = constant                                        IIa.5.2 

where ρ is the mixture density.  Note that no distinction is made between Vf and 
Vg.  The energy equation for the mixture, using the upstream stagnation condition 
(shown with subscript o), becomes: 

ho = h + V2/2                                        IIIc.2.1 

We may substitute for velocity from Equation IIIc.2.1 into IIa.5.2 and write the re-
sult in terms of mass flux: 
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where we also made use of the equation of state for h = (1 – x)hf + xhg.  If we sub-
stitute for quality calculated from the mixture entropy 
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ss

ss
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−
−

= o

into Equation Va.3.1, we obtain a relation that is solely a function of pressure.  By 
iteration with the steam tables, we can then find a pressure that maximizes mass 
flux.  Alternatively, we may express all thermodynamic properties and their de-
rivatives as functions of pressure (examples of such functions are given in Appen-
dix II, Table A.II.3).  To find the pressure that maximizes mass flux, we then sub-
stitute these functions into Equation Va.3.1, take the derivative of G and set it 
equal to zero. 

3.2.  Two-Phase Critical Flow (Equilibrium Non-homogeneous Flow) 

This is similar to the homogenous flow, but we must account for Vf ≠ Vg.  The 
mass balance becomes: 
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The energy equation can be partitioned to account for the contribution of each 
phase as follows: 
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To find G, we first substitute for void fraction from Equation Va.1.3.  We then 
find Vf and Vg in terms of G from Equation Va.3.1, substitute them into Equation 
Va.3.2, and solve for G to obtain: 
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where in Equation Va.3.4, ρ* is given by: 
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Note that in Equation Va.3.5 the slip ratio S as given by Equation Va.1.1 should 
not be confused with s, the specific entropy.  We now need to determine the slip 
ratio such that the mass flux is maximized.  There are two models for this, as dis-
cussed next. 

The Moody Model.  In this model, the mass flux given by Equation Va.3.4 is 
maximized by setting the derivative of the kinetic energy with respect to slip ratio 
equal to zero, ∂K.E./∂S = 0: 

( )
0

22

1 22
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−

∂
∂ gf xVVx

S

Taking the derivative and setting it equal to zero, we obtain: 

SMoody = (vg/vf)
1/3

The Moody model compares well with data in the range of 14.7 – 400 psia. 

The Fauske Model.  In this model, the mass flux given by Equation Va.3.4 is 
maximized by setting the derivative of the flow momentum, with respect to slip 
ratio, equal to zero: 
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( )[ ] 01 =+−
∂
∂

gf xVVx
S

This maximizes the axial pressure gradient for a given flow rate and steam quality.  
Substituting from Equation Va.3.1 for Vf and Vg, introducing Equation Va.1.3 for 
void fraction, and applying the chain rule for differentiation results in: 

SFauske = (vg/vf)
1/2

Example Va.3.1.  Derive the critical condition for annular flow using the conser-
vation equation for mass and momentum. 

Solution:  We use the thermodynamic equilibrium and non-homogenous assump-
tion, Vf ≠ Vg.  The combined continuity and momentum equations result in. 

0)( =++ AdPVmVmd ggff

Substituting from Equation V.3.2 for Vf and Vg in terms of G, we find: 

( )
0vv

1

1 2
2

2
2

=+
−
−+ G

x
G

x
ddP gf αα

Solving for G, we obtain: 

( )sddPG v/−=                             Va.3.6 

where specific volume in Equation Va.3.6 is given by: 
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Having found the slip ratio by the Moody or the Fauske method, we express the 
thermodynamic properties and their derivatives in terms of pressure and substitute 
into Equation IIIa.3.6-2.  For example, for the Fauske model, we use Equa-

tions IIIa.3.6-2, Va.1.3 (with fgS v/v= ), and Va.3.6 to obtain (Nahavandi): 
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Nahavandi then plotted Equation Va.3.8 for mass flux as a function of the stagna-
tion enthalpy and pressure, as shown in Figure Va.3.1. 
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Figure Va.3.1.  Critical mass flux versus stagnation enthalpy and pressure (Fauske) 

Two observations can be made from Figure Va.3.1.  First, the higher the source 
stagnation pressure, the higher the mass flux at the same steam quality.  Second, 
for a given pressure, the critical mass flux increases with decreasing quality.  
Hence, as expected, the higher the liquid content, the higher the critical mass flux.  
For example, a stagnation pressure of 200 psia and x = 75% corresponds to the 
same mass flux of 1000 lbm/s⋅ft2 as a stagnation pressure of only 50 psia but 
steam quality of x = 11%. 

Example Va.3.2.  Calculate the maximum mass flux for the flow of saturated wa-
ter and steam at 2000 psia and enthalpy of 800 Btu/lbm, according to the Fauske 
model.  

Solution:  From Figure Va.3.1 for Po = 2000 psia and ho = 800 Btu/lbm, we find 
Gmax ≈ 11,000 lbm/s⋅ft2.

Example Va.3.3.  A discharge line is connected to a pressurized tank, which con-
tains saturated water at 1000 psia.  The discharge line is equipped with a safety 
valve, having a flow area of 1.4 in2.  We now open the valve.  Find the maximum 
flow rate that leaves the tank.  Assume Cd = 1. 

Solution:  Since the discharge valve opens to atmosphere, the flow is definitely 
choked.  The maximum flow rate occurs at the moment that pressure is still at 
1000 psia and just begins to drop.  Thus from Figure Va.3.1 we find the mass flux 
as Gcr = 10,100 lbm/s⋅ft2 and the mass flow rate as: 

=m  0.8(1.4/144) × 10,100 = 78.5 lbm/s 
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As for the Moody model, if we substitute S = (vg/vf)
1/3 into Equation Va.3.5 and 

then use the result in Equation Va.3.4, we find the following relation for the criti-
cal mass flux: 
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Similar to the Fauske mode, mass flux from the Moody model is maximized and 
plotted for various values of the source stagnation pressure and enthalpy, as shown 
in Figure Va.3.2. 
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Figure Va.3.2.  Critical mass flux versus stagnation enthalpy and pressure (Moody) 

3.3.  Two-Phase Critical Flow (Homogeneous Non-equilibrium Flow) 

Earlier we showed that the existence of analytical solutions was primarily due to 
the isentropic process assumption.  This assumption implies that the length and di-
ameter of the flow path should be such that the frictional effects are minimized.  
Thermodynamic equilibrium in turn requires a reasonably long flow path to allow 
the phases to reach equilibrium.  As such, the shorter the flow path, the higher the 
flow rate since less liquid would flash to steam.  Fauske has identified three ranges 
for the L/D; 0–3, 3–12, and 12–40 (Figure Va.3.3).  For 0 < L/D < 3, the flow path 
is too short for the phases to reach equilibrium while for 12 < L/D < 40, the flow 
path allows the phases to reach equilibrium.  Therefore, for the L/D range of 0 – 3, 
the critical flow can be estimated from such equations as IIIa.3.46, IIIb.3.14, 
IIIb.4.3, and IIIb.4.4: 

( )crof PPG −= ρ261.0                        Va.3.10 
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Figure Va.3.3.  Critical pressure ratio versus flow path length over diameter (Fauske) 

where in Equation Va.3.10, a discharge coefficient of 0.61 is accounted for.  In 
this equation, Pcr stands for the critical pressure.  According to Fauske, the value 
of Pcr depends on the value of the L/D ratio as shown in Figure Va.3.2.  Note that, 
for an orifice, (L/D = 0), Pcr is the actual back pressure.   

In conclusion, Region I in Figure Va.3.3 is applicable to non-equilibrium flow 
regimes and Region III of this figure is well suited for the HEM, since the suffi-
cient flow path length allows the phases to reach thermal equilibrium.  Note that 
Figure Va.3.1 would under-predict flow in Regions I and II of Figure Va.3.3. 

Example Va.3.4.  A pressurized tank containing saturated liquid at 2000 psia is 
connected to atmosphere by a 0.5 in diameter pipe.  A frictionless valve on the 
pipe is suddenly opened.  Find the maximum mass flux for three different pipe 
lengths of L1 = 0.1 ft, L2 = 0.25 ft, and L3 = 1 ft at this pressure. 

P1

L

D

Solution:

Find ( ) ( )crcr PPPPG −=−×××= oo 78.36614498.382.32261.0
Next, we need to find Po – Pcr, having L/D.  Since D = 0.5/12 = 0.042 ft 
L1/D = 0.1/0.042 = 2.4, L2/D = 6, and L3/D = 24. 

We now use Figure Va.3.3: 
For L1/D = 2.4, we find Pcr/Po = 0.30.  Thus, 

( ) 720,13600200078.366 =−=G  lbm/s·ft2.

This is in good agreement with G from Figure Va.3.1 at
Po = 600 psia and ho = hf(2000) = 672 Btu/lbm. 
For L2/D = 6.0, we find Pcr/Po = 0.48.  Thus,  
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( ) 830,11960200078.366 =−=G  lbm/s·ft2

For L3/D = 24, we find Pcr/Po = 0.55.

Thus, ( ) 000,111100200078.366 =−=G  lbm/s·ft2

As expected, Gcr is over-predicted compared to Gcr ≈ 8500 lbm/s·ft2 read from 
Figure Va.3.1 at Po = 1100 psia and ho = hf(2000 psia) = 672 Btu/lbm. 

Henry (1970) and later Henry-Fauske (1971) analytically derived the relation 
for two-phase critical mass flux for homogenous non-equilibrium flow, based on 
the isentropic assumption.  This is a reasonable assumption for short flow paths 
for which the frictional pressure drop due to the wall shear forces is negligible 
compared to the momentum and pressure gradient terms.  The RELAP4 (Moore) 
and GOTHIC (George) computer codes have tabulated the Henry correlation for 
various stagnation pressure and enthalpy.  These are plotted in Figure Va.3.4. 
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Figure Va.3.4.  Critical mass flux versus stagnation enthalpy and pressure (Henry non-
equilibrium model) 

Example Va.3.5.  In Example Va.3.5, find the maximum mass flux for L1 = 0.1 ft. 

Solution:  From Figure Va.3.4 for Po = 2000 psia and saturated water, we find 
Gmax ≈ 10,500 lbm/s ft2.
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3.4.  Two-Phase Critical Flow  
(Homogeneous Non-equilibrium, Subcooled Fluid) 

So far we dealt with saturated water and two-phase mixture.  If the pressurized 
water is subcooled, then the percentage of flashing decreases, resulting in higher 
mass flow rate.  Indeed test data indicates that the higher the degree of subcooling, 
the higher the critical mass flow rate.  The Henry-Fauske correlation is extended 
to cover subcooled liquid.  The extended Henry-Fauske correlation for maximum 
mass flux is plotted as a function of stagnation enthalpy and pressure in Fig-
ure Va.3.5. 
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Figure Va.3.5.  Critical mass flux versus stagnation enthalpy and pressure (Henry-Fauske 
model) 

Example Va.3.6.  A pressurized tank containing subcooled liquid at 2000 psia is 
connected to atmosphere by a frictionless valve.  Find the maximum mass flux for 
two cases of h1 = 400 Btu/lbm and h2 = 600 Btu/lbm. 

Solution:  We expect to obtain higher mass flux at lower upstream enthalpy.  Ac-
cording to Figure Va.3.5, at a upstream pressure of 2000 psia and enthalpy of 400, 
the critical mass flux is about 12,000 lbm/s.  At the same pressure but enthalpy of 
600 Btu/lbm, the critical mass flux is about 10,800 lbm/s. 



632      Va.  Two-Phase Flow and Heat Transfer:  Two-Phase Flow Fundamentals  

QUESTIONS

– When does flow quality become equal to the thermodynamic quality? 
– What is the slip ratio? 
– What is superficial velocity? 
– What does the slip ratio signify?  What is its value for homogenous flow? 
– Does the Zivi model predict data well? Why or why not? 
– What is the physical significance of the drift flux model? 
– Comparing drift flux and the relative velocity between phases, which one is al-

ways larger than the other? 
– What is the advantage of the drift flux model compared to other void fraction 

models? 
– Is the drift flux model suited for the annular flow regime? 
– What is the purpose of defining a two-phase friction multiplier? 
– What is the advantage of Reddy’s two-phase friction multiplier? 
– Regarding friction pressure drop, what is the distinction between two-phase 

flow in a heated pipe and in a pipe being cooled down? 
– The acceleration pressure gradient, per Equation Va.2.5, is a perfect differen-

tial.  Hence, it depends only on the end points.  Why, then, do we carry out the 
derivative per Equations Va.2.5 and Va.2.6? 

– Why does the critical mass flow rate increase with decreasing steam quality? 
– For the exact same conditions, which model predicts higher mass flow rate, the 

Moody or the Fauske model? 
– What is the major difference between the HEM, the Moody model, and the 

Fasuke model? 
– Are water and steam more likely to reach equilibrium in a shorter flow path or a 

longer flow path? 
– How do we know if a two-phase flow is choked in a given flow path? 

PROBLEMS

1.  Consider the annular flow regime in a tube.  If the thickness of the liquid film 
on the tube wall is much smaller than the tube diameter (δ << D), show that the 
void fraction is given by α = 1 – (4d/D).

2.  In this problem you are asked to investigate the effect of system pressure and 
steam quality on void fraction.  For this purpose, use Equation Va.1.1, where S = 
1, and produce a graph of α = f(x).  You need to first choose a pressure and plot 
void fraction as a function of quality, ranging from 0% to 20%.  Repeat this for 
another value for pressure.  Choose P = 14.7 psia, 500 psia, 1000 psia, 2000 psia, 
and 3,206 psia. 
Outline your observations. 

3.  In this problem you are asked to investigate the effect of slip ratio and steam 
quality on void fraction.  For this purpose, use Equation Va.1.1 where P = 1000 
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psia, and produce a graph of α = f(x).  You need to first choose a value for void 
fraction.  Try S = 1, 2, 3, and 4.  Outline your observations. 

4.  Plot the density ratio ρf /ρg for the two-phase flow of water - air and water - 
steam versus pressure, ranging from 1 psia to 3200 psia.  For water - air flow, use 
a temperature of 80 F (27 C).  Outline your observation. 

5.  A tank is filled with a homogenous mixture of water and steam at thermal equi-
librium.  The tank pressure is 6.89 MPa.  The liquid volume fraction in the tank is 
40%.  Find the mixture density and static quality.  [Ans.:  318 kg/m3 and 0.07]. 

6.  Use the definition of the mixture density and show that for homogenous flow 
(S = 1), v = (1 – x)vf + xvg.

7.  Liquid enters a heated tube at velocity Vf.  Derive a relation for the superficial 
velocity in terms of Vf, X, vf, and vg.  [Hint:  Use j = [(1 – X)/ρf + X/ρg]G and sub-
stitute for ρf, ρg, and G].  [Ans.:  j = {1 + (vg/vf –1)X}Vf].

8.  A BWR plant is operating at steady state, producing 1260 kg/s (1E7 lbm/h) 
dry, saturated steam for the turbine.  Pressure in the vessel is 7 MPa (1000 psia).  
Feedwater enters the vessel at 150 C (~ 300 F).  The average void fraction at the 
exit of the core is 40%.  Assuming a uniform slip ratio of 2 throughout the core, 
find the recirculation ratio and total rate of heat transfer in the core.  [Ans.:  
15.476, 2703 MWth]. 

9.  Two-phase mixture flows at a rate of 750 kg/m2 s in a vertical tube of diameter 
3 cm at 70 bar.  Find the flow pattern at a cross section where X = 10%. 

10.  Use Figure Va.1.1 and find the most likely flow pattern for the following six 
cases: 

Case        G (kg/s m2) P (bar)       x            Case             G (kg/s m2) P (bar)          x
1                600                      35         0.01          4                    2600                   35           0.01
2                600                      75         0.10          5                    2600                   75           0.10
3                600                     180        0.50          6                    2600                  180          0.50 

11.  Estimate the slip ratio for a two-phase mixture flowing in a channel.  The 
channel pressure is maintained at 1200 psia and at thermal equilibrium.   
[Ans.:  1.6]. 

12.  A heated channel is operating at 7.5 MPa.  Water enters the channel at a rate 
of 17 kg/s and an inlet subcooling of 18 C.  Find the maximum rate of heat trans-
fer that can be transferred to this channel while the void fraction at the channel 
exit is maintained at 0.8.  Ignore pressure drop in the channel. 

13.  A mixture of water and steam is flowing up a 25 mm diameter channel at a 
rate of 4500 kg/s m2 and temperature of 295 C.  Assume thermal equilibrium and 
find the following items at an elevation where x = 25%: a) void fraction, b) the 
mixture mixing cup density, c) mixture density using the HEM, d) mixture ther-
modynamic density.   
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14. Steam and water flow in a 25 mm tube at 300 C, 3500 kg/m2 s, and X = 0.4.  
Use the drift flux model and find α and S.  [Ans.  0.68 and 4.7] 

15.  An element of volume for the separated up-flow of water and steam in a 
channel is shown in the figure.  Use the conservation equation of momentum at 
steady-state and directly derive Equation Va.2.4. 
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16.  Use (dP/ds)acc according to the HEM and derive ∆Pacc for two-phase flow in a 
uniformly heated channel of length L.  [Ans.:  (gLcos)ln(1 + Xvfg/vf)/(Xvfg)].

17.  Derive ∆Pacc by applying the momentum equation between inlet and outlet.  
[Hint:  F = ∆(momentum flux).  Use F = A∆P and substitute for momentum out = 

fm Vf + ggVm  and for momentum in = im Vi.  Then replace each velocity by 

mass flow rate divided by ρA and introduce α and x to replace area and mass ra-
tios].  

18.  In order to integrate the differential pressure drop, we ignored the compressi-
bility of the gaseous phase, ( vg/ P).  Show the reasonableness of this assumption.  
Find the magnitude of this term at an operating pressure of 1000 psia (82.75 bar).  
[Ans.:  –7.57E–8 ft4⋅s2/lbm2].

19.  Consider two-phase flow in a tube of diameter 0.5 in and length 3 ft.  For P = 
1000 psia, m = 0.35 lbm/s and X = 50% compare φHEM with φReddy.  [Ans.: φHEM = 
10.83. φReddy = 12.73]. 

20.  Consider flow of water in two identical pipes of De = 5 cm and L = 3 m.  One 
pipe is insulated while the other is heated so that Xo = 0.2.  In both pipes, P = 100 
bar and G = 0.3 kg/s.  Compare (∆P1)fric with (∆P2)fric.
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21.  Use the data of the above problem and compare (∆P1)grav with (∆P2)grav if β1 = 
0 and β2 = 30o.

22.  For the flow of water and steam in a vertical insulated channel, calculate total 
pressure drop in the channel. 
Data:  channel diameter: 1 cm, channel length: 3 m, mass flow rate:  0.3 kg/s, 
pressure: 7.4 MPa, steam quality at inlet: 0.025.  [Ans.: 77.7 kPa]. 

23.  Find the total pressure drop for flow of water in a heated vertical tube.  The 
diameter and the length of the tube are 12.7 mm and 1.55 m, respectively.  The 
tube is heated uniformly at a rate of 39 kW.  Water enters the tube at a rate of 
0.0882 kg/s, temperature of 277 C and pressure of 70 bar.  [Ans.:  10.6 kPa]. 

24.  Water enters a uniformly heated vertical tube of diameter 2.5 cm and length 
4.5 m.  Total heat applied to the tube is 650 kW.  Inlet pressure, temperature, and 
mass flow rate of water are given as 100 bar, 285 C, and 1.5 kg/s, respectively.  
Find the pre-heating length, exit quality, and various pressure differentials terms.  
[Ans.:  Lf = 1.52 m, Xo = 0.22, (∆P)fric,sp = 5 kPa, (∆P)fric,tp = 21.73 kPa, (∆P)acc,sp = 
1.05 kPa, (∆P)acc,tp = 34.17 kPa, (∆P)grav,sp = 10.7 kPa, (∆P)grav,tp = 10.05 kPa, 
(∆P)total = 82.7 kPa.  All based on HEM] 

25.  Water enters a uniformly heated vertical tube of diameter 3 cm and length 5 
m.  Total heat applied to the tube is 1250 kW.  Inlet pressure, temperature, and 
mass flow rate of water are given as 100 bar, 300 C, and 3 kg/s, respectively.  Find 
the pre-heating length, exit quality, and various pressure differential terms.  [Ans.:  
Lf = 0.72 m, Xo = 0.29, (∆P)fric,sp = 3.38 kPa, (∆P)fric,tp = 54.61 kPa, (∆P)acc,sp = 
0.905 kPa, (∆P)acc,tp = 89. 72 kPa, (∆P)grav,sp = 4.93 kPa, (∆P)grav,tp = 12.57 kPa, 
(∆P)total = 166.12 kPa.  All based on HEM] 

26.  In a certain adiabatic air – water flow experiment, it is desired to create the 
same pressure gradient in two vertical channels having hydraulic diameters D1 and 
D2, respectively.  Given the conditions for channel 1 (i.e. the total mass flow rate 

1m  and steam quality x1), determine the corresponding values in channel 2 so that 

a) the two channels have almost the same void fraction, α1 = α2

b) the two channels have also the same liquid mass flow rate, 1m  = 2m  (in this 

case α1 ≠ α2)
c) same as b but for horizontal channels.   

Pressure, temperature, and surface roughness are the same for the both chan-
nels.  Assume single-phase friction factor is only a function of the Reynolds num-
ber, fsp = f(Re). 

27.  Water enters a uniformly heated vertical tube of diameter 2 in and length 15 
ft.  Total heat applied to the tube is 100 kW.  Inlet pressure, temperature, and mass 
flow rate of water are given as 1000 psia, 500 F, and 0.5 lbm/s, respectively.  Find 
the pre-heating length, exit quality, and various pressure differential terms.   
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[Ans.:  Lf = 4.32 ft, Xo = 0.21, (∆P)fric,sp = 0.001 psia, (∆P)fric,tp = 0.005 psia, 
(∆P)acc,sp ≈ 0 psia, (∆P)acc,tp = 0.01 psia, (∆P)grav,sp = 1.43 psia, (∆P)grav,tp = 1.36 
psia, (∆P)total = 2.81 psia.  All based on HEM] 

28.  A mixture of water and steam flowing out of a vent at 2000 psia and 798 
Btu/lbm.  Find quality and the void fraction at critical flow condition according to 
Moody and Fauske models.  [Ans.  x = 0.27, αMoody = 0.42, and αFauske = 0.50]. 

29.  A mixture of water and steam flowing out of a vent at 200 psia and quality of 
0.27.  Find the void fraction at critical flow condition according to Moody and 
Fauske models.  [Ans.  αMoody = 0.65 and αFauske = 0.81]. 

30.  In Example Va.3.1, show that mass flux can be expressed as: 
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31.  Water flows in a vertical channel.  Use the given data to find the frictional 
pressure drop from the inlet to the exit of the channel.  Compare the calculated 
values for ∆Pfriction by using the homogenous, the Reddy, the Friedel, and the 
Thom model.  Data:  H = 6 ft, Dh = 0.145 ft, P = 1000 psia, Xe = 8%, Vi = 3 ft/s, 
and Ti = 522 F.   

32.  Find the maximum flow rate for a mixture of water and steam flowing at 500 
psia and x = 50%.  What is the stagnation enthalpy for this mixture? 

33.  Derive an exact formulation for dPacc for homogeneous, one-dimensional, 
steady, two-phase flow in a constant area channel assuming thermodynamic equi-
librium.  [Hint:  Start with Equation Va.2.5 but written as dPacc = G2dv, substitute 
for v = vf + x vfg, for x from h = hf + xhfg, and for h from the energy equation: 

)2/()( 2dVdhmDdsq +=′′ π

[Ans.:  (dP/ds)acc = 4 )/v()/( fgfg hqDG ′′ ].

34.  A pressurized tank contains saturated water.  A frictionless valve on the pipe 
is now opened to discharge the tank inventory to the atmosphere.  Find if at the 
given pressure the flow rate is choked. 
Data: P1 = 200 psia, L = 4 ft, D = 2 in. 

P1

L

D
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Vb..  Boiling 

Bubbles may be induced in a liquid in two ways.  First, by sudden depressuri-
zation of the liquid referred to as flashing.  For example, bubbles appear in a pres-
surized water tank if the sudden opening of a pressure relief valve results in the 
tank pressure dropping below the liquid saturation pressure.  Similarly, if the flow 
of a liquid is accelerated or the flow encounters valve or fittings, vapor bubbles 
may appear as the result of the associated pressure drop.  The second way is by 
addition of heat to a liquid at constant pressure.  Boiling generally refers to the 
evaporation from the interface between a liquid and a heated surface.  In boiling, 
liquid temperature remains practically constant and slightly higher than the satura-
tion temperature at system pressure. 

Knowledge about boiling heat transfer is essential in cases where we need a 
liquid to boil to enhance the rate of heat transfer and in such other cases in which 
preventing boiling is required by design.  Boiling is the fundamental mode of heat 
transfer in the steam generator of a PWR, in the core of a BWR, and in the boiler 
of a fossil power plant.  On the other hand PWRs must be operated to prevent 
boiling in the core.  Boiling is also important to the cooling of rocket combustion 
chamber and electronic cooling.  An interesting aspect of boiling heat transfer is 
the method that heat from a heated surface is transferred to the liquid (i.e., whether 
by carefully controlling the heated surface temperature or by controlling heat 
flux).  The latter could be associated with a phenomenon referred to as boiling cri-
ses or critical heat flux.  Boiling is the most desirable mode of heat transfer when 
a very high heat transfer coefficient (on the order of 1 MBtu/ft2⋅h⋅F or higher) is 
required.  Boiling heat transfer consists of various modes as are discussed in this 
chapter.

1.  Definition of Boiling Heat Transfer Terms 

Nucleation refers to the inception of the embryonic bubble.   

Homogeneous nucleation (also known as spontaneous vaporization) refers to 
the appearance of bubbles in the bulk of a liquid without any need for a heated 
surface.  Such nucleation occurs only if the liquid is contained in a mirror-finished 
container and very high degree of superheat is provided.  That is to say, the liquid 
temperature should be increased by hundreds of degrees beyond the saturation 
temperature for homogeneous boiling to take place.  Sufficiently superheated liq-
uids in containers with very smooth surfaces would vigorously produce bubbles if 
nucleation sites (rough surfaces) are introduced into the liquid.

Heterogeneous nucleation refers to the appearance of boiling bubbles, as a re-
sult of liquid vaporization at the interface with a heated surface.  This is the most 
common form of boiling.  In Section 2, we demonstrate that boiling in a super-
heated liquid subject to the introduction of a rough surface is distinctly different 
than boiling in a liquid with a heated rough surface. 
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Local or subcooled boiling refers to heterogeneous nucleation occurring at a 
specific region in a liquid with the bulk liquid being subcooled.  In local boiling, if 
bubbles grow and detach from the surface, they would soon collapse upon reach-
ing the colder liquid.  The energy contained in the collapsed bubble is transferred 
to the liquid, raising the liquid average temperature. 

Bulk or saturation boiling starts following subcooled boiling after a sufficient 
number of bubbles have burst in the liquid, transferring their energy to and raising 
the subcooled liquid temperature to saturation. 

Nucleate boiling refers to a specific boiling mode where bubbles appear as a 
result of the nucleation process on the heated surface.  Initiation of nucleate boil-
ing strongly depends on surface roughness. 

Film boiling refers to vaporization of liquid while the heated surface is covered 
by a film of vapor.  Film boiling takes place at elevated surface temperatures.  The 
heat for liquid vaporization is transferred to the liquid by conduction through the 
film of vapor.  Hence, surface roughness has no effect on film boiling. 

Pool boiling refers to boiling in a quiescent liquid.  The only liquid flow in 
pool boiling is due to free convection and mixing as a result of bubble departure 
from the heated surface. 

Flow boiling, as is the case in the core of BWRs and PWR steam generators 
takes place with bulk liquid in motion.  Liquid flow is due to external forces as 
well as free convection and bubble-induced mixing. 

Bubble equilibrium is a result of three types of equilibrium.  Consider an iso-
lated bubble in the bulk of a liquid, Figure Vb.1.1(a).  For this bubble to remain 
intact (i.e., neither grow nor collapse) three conditions must be met.  These are 
mechanical equilibrium, thermal equilibrium, and equal chemical potentials.  

Mechanical equilibrium requires the algebraic summation of all the forces ap-
plied to the bubble to be zero, as shown in Figures Vb.1.1(a). 

ΣF = internal pressure force + external pressure force + surface tension force = 0 

Substituting for the three forces, we find: 

( v
2 Preπ ) + ( le Pr 2π ) + ( σπ er2 ) = 0 

where re is the radius of the bubble at equilibrium.  This equation simplifies to Pv

– Pl = 2σ/re.  Since Pv > Pl  but Tv = Tl, as shown in Figure Vb.1.1(b), liquid sur-
rounding the bubble must be superheated.  If there are gases dissolved in the liq-
uid, then re is given by re = 2σ/[(Pv + Pa) – Pl] where Pa is the gas pressure. 

Thermal equilibrium requires the temperature of the vapor and liquid to be 
equal, Tv = Tl, Figure Vb.1.1(b).  Otherwise, a combination of heat and mass trans-
fer processes would occur to establish thermal equilibrium at a larger bubble size 
or cause the bubble to collapse, depending on the magnitude of Tv and Tl.
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Figure Vb.1.1.  Applied forces on a vapor bubble in equilibrium 

Equal chemical potential (gv = gl) is the third condition for the bubble to be in 
equilibrium.  Substituting for the Gibbs function we get (h – Ts)v = (h – Ts)l.  For 
discussion on equal chemical potential see Section 2.2. 

Surface roughness has a profound effect on nucleate boiling initiation.  Unless 
a surface is mirror finished, surfaces consist of tiny pits and scratches also referred 
to as cavities.  Most cavities on metal surfaces may be considered conical as 
shown in Figure Vb.1.2.  Bubble nucleation generally begins at the cavities, re-
ferred to as the nucleation sites. When a wall is first wetted, nuclei of size 2.5–
7.5 µm are generally present.   

Liquid 2rc

Figure Vb.1.2.  Surface roughness acting as cavities or nucleation sites for bubble nuclea-
tion

Contact angle is a measure of the wet-ability of a liquid.  Wetting itself is de-
fined as the ability of liquids to form a boundary surface with solids.  Fig-
ure Vb.1.3 shows a liquid in a capillary tube and in a surface cavity.  Due to the 
action of surface tension, a wetting liquid in a capillary tube has a surface with a 
contact angle of φ < 90o where φ is measured in the liquid.  Non-wetting liquids 
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Figure Vb.1.3.  Contact angle for liquid on horizontal surfaces, in capillary tubes, and in
cavities 

have convex surfaces and an angle of contact φ > 90o.  Surface treatment affects 
liquid wet-ability.  Wetting liquids fill surface cavities, preventing nucleation. 

Bubble growth is the appearance and growth of a vapor bubble from cavities 
in a surface.  Figure Vb.1.4(a) shows a surface cavity or nucleation site.  Fig-
ure Vb.1.4(b) shows the inverse of the bubble radius (1/rb) versus the bubble vol-
ume (Vb).  The energy transferred from the heated surface to the trapped gas or 
vapor in this cavity (stage A) causes it to grow.  As vapor volume increases, its ra-
dius (rb) decreases.  Stage B shows the moment that the bubble has reached at the 
mouth of the cavity.  At this point, the bubble volume keeps increasing while the 
radius keeps decreasing.  The minimum radius is reached when the bubble radius 
becomes equal to the radius of the cavity rb = rc (stage C).  Growth of the bubble 
beyond this point depends on the degree of superheat of the liquid.  If sufficient 
superheat exists, bubbles eventually leave the nucleation sites towards the bulk.  
These stages are known as waiting period, growth period, agitation or displace-
ment of liquid in the thermal sub-layer period, and departure (or collapse) period, 
as shown in Figure Vb.1.4(c) through Vb.1.4(f).  As shown in Section 2, 1/rb is 
proportional to the liquid superheat, Tl – Tsat.

Returning to Figure Vb.1.4(a), this discussion shows that the radius of the 
mouth of the cavity (rc) determines the amount of superheat required for the vapor 
bubble to nucleate at that site (see Section 2.2). 
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Figure Vb.1.4.  Appearance and growth of a vapor bubble on a rough surface from conical 
cavities 

Departure diameter, refers to the diameter of a bubble at the moment the bub-
ble leaves the heated surface.  We may estimate the bubble departure diameter 
from a force balance between buoyancy and surface tension: 

g
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Solving for the bubble departure diameter, we find: 
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2.  Convective Boiling, Analytical Solutions

Certain aspects of boiling heat transfer are amenable to analytical solutions.  
However, due to the inherent complications associated with the boiling mecha-
nisms, there is no general analytical solution for derivation of such an important 
parameter as the heat transfer coefficient, for example.  Here we discuss few as-
pects of the boiling mechanism. 
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2.1.  Dimensionless Groups

Practical aspects of boiling heat transfer are based on experimental data.  To corre-
late such data we need to find the dominant factors in heat transfer associated with 
phase change.  Such factors include the involved forces, key fluid properties, and 
the operational conditions.  Viscous and buoyancy forces play a major role in heat 
transfer with phase change.  Pertinent fluid properties include latent and specific 
heat (hfg, cp), density and thermal conductivity (ρ, k), and viscosity and surface 
tension (µ, σ).  Finally, operational conditions include pressure, fluid and surface 
temperature, and the surface geometry (L).  Since the effect of pressure appears in 
fluid properties, we can reduce the number of variables to 10.  These are ρl, ρv, hfg,
cp, k, µ, σ, ∆T, L and h.  Incropera finds five dimensionless groups for these pa-
rameters; Nu = hL/k = f[ρg(ρl – ρv)L

3/µ2, Ja, Pr, Bo] where the Bond number (Bo) 
is similar to the Gr number (Table A.I.6). 

2.2.  Determination of Degree of Superheat  
for Equilibrium Bubble 

Homogeneous nucleation:  Earlier we noticed that for a bubble to be in equi-
librium in the bulk of a liquid, three conditions must be met. To maintain equilib-
rium, we can use these conditions to find the minimum degree of superheat for a 
liquid; i.e. Tl – Tsat.  From the requirement for equal chemical potential, we obtain 
the Clausius-Clapeyron equation dP/dT = hfg/(Tsatvfg).  We integrate this equation 
assuming Tsatvfg/hfg remains constant.  We then substitute for Pv – Pl = 2σ/re from 
the second requirement to find: 
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where re is the radius of the equilibrium bubble.  Equation Vb.2.1 shows that the 
degree of superheat is inversely proportional to the bubble radius.  Thus, the 
smaller the bubble, the higher the required degree of superheat.  That is why the 
homogenous nucleation requires very high degrees of superheat.   

Heterogeneous nucleation:  Regarding nucleation from a heated surface, we 
noticed that the minimum radius of a growing bubble is when rb = rc, where rc is 
the radius of the cavity.  Substituting into Equation Vb.2.1, we conclude that bub-
bles that have made it to the mouth of the cavity will grow if the degree of super-
heat in the liquid is at least equal to ∆T as given by Equation Vb.2.1.  This is in-
deed the case if the bulk liquid is superheated.  Superheating is achieved by 
heating the liquid in a pressurized vessel until liquid becomes saturated.  When the 
heating process is terminated and the vessel is perfectly insulated, we reduce the 
liquid pressure.  As the pressure drops, bubbles begin to form on the surface of the 
vessel when the liquid superheat becomes at least equal to that given by Equa-
tion Vb.2.1.
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Figure Vb.2.1.  Heterogeneous boiling and temperature gradient in liquid 

It is fascinating to note that if boiling is induced solely by continuing to heat the 
vessel, the degree of superheat required for boiling is much higher than that pre-
dicted by Equation Vb.2.1.  Indeed, some data have shown that the required de-
gree of superheat for bubble growth is three times as much as that predicted by 
Equation Vb.2.1 (Hsu).  The reason turns out to be the existence of a region (Fig-
ure Vb.2.1) referred to as the thermal sub-layer.  Liquid temperature increases 
markedly in this region from Tsat to Ts, Figure Vb.2.1(b).  It is in this thermal sub-
layer near the heated surface that liquid becomes superheated to provide sufficient 
heat for the bubble to grow and depart.   

We may estimate the thickness of the thermal sub-layer by using the definition 
of heat transfer coefficient (h).  Thus, the thickness of the thermal sub-layer is re-
lated to the liquid thermal conductivity as δ = kf/h where h can be estimated from 
a correlation such as that of Fishenden for turbulent natural convection from a 
horizontal flat surface: 

( ) 3/1PrGr14.0Nu =

where the Gr and Pr numbers are calculated for the liquid phase.  Next, we focus 
on the heat transfer mechanism taking place in the thermal sub-layer.   

Let’s investigate the relation between the bubble equilibrium temperature 
(Equation Vb.2.1) and water temperature in the thermal sub-layer.  Shown in Fig-
ure Vb.2.2 is a cavity of radius rc on the heated surface. 

Originally, both liquid and surface have the same temperature as the bulk liquid 
Tf (line ZO).  We add heat to the surface and bring its temperature to TA.  The tem-
perature in the thermal sub-layer is shown by line ZA where we have assumed a 
linear temperature profile in the thermal sub-layer.  Since we do not observe any 
bubble in the liquid we increase the surface temperature to TB with the liquid tem-
perature shown by line ZB.  As we heat up the surface, the bubble in the cavity 
begins to grow.  We keep increasing the surface temperature until eventually the 
line representing temperature in the thermal sub-layer (line ZC) becomes tangen-
tial to the curve representing Equation Vb.2.1 for an equilibrium bubble.  At this 
point, the bubble in the cavity has reached the mouth of the cavity and has the 
smallest radius of curvature.  Hsu’s condition for the bubble to grow is that the 
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Figure Vb.2.2.  Depiction of the onset of nucleate boiling (Hsu) 

liquid temperature at y = rc must be at least equal to the bubble interior tempera-
ture for the bubble to grow.  Thus, when the line for liquid temperature is tangent 
to the curve representing the equilibrium bubble (Equation Vb.2.1), cavities of ra-
dius rc are active sites for nucleation.  The corresponding temperature, is known as 
onset of nucleate boiling temperature (TONB).

If the surface temperature is further increased (say to TD corresponding to line 
ZD for the thermal sub-layer), then at lower superheats the larger radii cavities and 
at higher superheats smaller radii cavities become active.  But if a cavity of size rc

does not exist on the surface, the increasing surface temperature results in higher 
degrees of liquid superheat.  This will continue until the temperature profile in liq-
uid becomes tangent to the vapor temperature calculated from Equation Vb.2.1 for 
the cavity size that is present in the surface.  When various cavity sizes exist and 
the bulk liquid is at saturation, we may approximate rc as rc = δ/2.  Using similar 
triangles, we find that (δ – rc)/rc = ∆Tsat/∆TONB resulting in ∆TONB = 2∆Tsat.

Example Vb.2.1.  Find the degree of superheat (Ts – Tsat) for a horizontal flat 
plate in water at atmospheric pressure necessary to cause nucleation at all active 
sites.  Data:  At 1 atm, ρ = 958 kg/m3, ρg = 0.593 kg/m3, hfg = 2.257E3 kJ/kg, kf = 
0.68 W/m·C, σ = 0.059 N/m, β = 0.75E-3 C-1, v = 0.292E-6 m2/s, Pr = 1.73.   

Solution: We first find the thickness of the thermal sub-layer in terms of ∆Ts, the 
surface temperature minus the saturation temperature: 

Gr = βg∆TsD
3/v2 = [0.75E-3 × 9.81 ∆Ts D

3/(0.292E-6)2] = 8.63E10 ∆Ts D
3

hD/kf = 0.14Gr1/3Pr1/3 = 0.14 [8.63E10 ∆Ts D
3]1/3(1.73)1/3 = 743 (∆Ts)

1/3 D

Since δ = kf/h, we find: 
1/δ = 743 (∆Ts)

1/3.  Therefore, δ = 1.35E-3(∆Ts)
–1/3 m.   (1) 
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Next, we find the required surface superheat, ∆Ts = Ts – Tsat from Equation Vb.2.1: 
 

∆Ts = 2σTsat/(hfgρgre) = 2 × 0.059 × (100 + 273)/(2.257E6 × 0.593 × rb) = 3.3E-5/rb

   (2) 

Substituting for rb = rc = δ/2 into (2) yields: ∆Ts = 6.6E-5/δ.  Substituting ∆Ts into 
(1) to find δ as: 

δ = 1.35E-3[6.6E-5/δ)-1/3.  We, therefore, find δ = 6 mm.  Thus, ∆Ts = 0.019 C. 

Comment:  It is seen when cavities of all sizes are present, the required degree of 
superheat is very small. 
Let’s assume only cavities of 8 µm exist.  In this case, rc = 8E-6 m and (∆Ts)required

= 3.3E-3/8E-6 = 4 C. 

Heterogeneous nucleation formulation:  We now want to quantify our quali-
tative argument regarding the vapor temperature and the thermal sub-layer tem-
perature.  For this purpose we find the equation for liquid temperature in the ther-
mal sub-layer and set it equal to the vapor temperature in the bubble as given by 
Equation Vb.2.1.  This method was originally suggested in 1962 by Hsu.  Since 
the thermal sub-layer is thin, we use a linear temperature profile in this region 
which must satisfy the following boundary conditions: 

At y = 0, T(y = 0) = Ts and at y = δ, T(y = δ) = Tf

where Ts and Tf are the surface and the free stream temperatures of the bulk liquid, 
respectively.  The profile is obtained as: 

δ
δ y

TT

TT

fs

fl −=
−
−

                              Vb.2.2 

We make a change of variable from y with rc (See Figure Vb.2.3) to obtain: 

y = c1rc = (1 + cosφ)rb                                        Vb.2.3 

We now set Equation Vb.2.1 equal to Equation Vb.2.2, while substituting for y
from Equation Vb.2.3.

y
φ

Tf

rb rc

Figure Vb.2.3.  Depiction of bubble height, radius, and cavity radius 
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Depending on the boiling condition, the curves representing the two temperature 
profiles may a) not meet, b) be tangent to each other, or c) intersect at two loca-
tions.  These conditions are obtained from the solution to the following equation: 

δ
δ

ρ
σ c

fsf
cgfg

sat
sat

rc
TTT

rch

T
T 1

2

)(
2 −

−+=+

This results in a second order algebraic equation for rc.  The solution is found as: 

−

−
−±

−
−

=
fggsats

satfs

fs

sats
c

hTT

TTT

c

c

TTc

TT
r

δρ
σδ

2
2

1

1 )(

)(8
11

)(2

)(
       Vb.2.4 

The results are plotted in Figure Vb.2.4. 
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Figure Vb.2.4.  Comparison of the vapor bubble and liquid temperature profiles 

These concepts are further developed in Chapter VIe. 
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2.3.  Prediction of Bubble Growth 

We can predict the growth rate of a vapor bubble rather accurately by treating the 
surrounding superheated liquid as a semi-infinite body.  In this case, the specified 
boundary condition is heat flux at the interface between the liquid and the vapor 
bubble, as shown in Figure Vb.2.5.  Since liquid is being cooled at the interface 
we can write the following energy balance: 

Rate of increase in bubble internal energy = Rate of liquid cooldown at the inter-
face

( )qR
dt

d
h fgg ′′= 24

V πρ      

Liquid

T = Tsat

R x

T
Tsup

Tsat

PBubble

PLiquid
Tsat Tsup

T

s

TBubble
TLiquid=

PBubble> PLiquid

Figure Vb.2.5.  Growth of a vapor bubble in the pool of superheated liquid 

Substituting for heat flux at the interface from Equation IVa.9.10 and for volume 
in terms of radius yields: 

( )
t

TTk
RR

dt

d
h iS

fgg πα
ππρ )(

4
3

4 23 −
=

Note in this case, the semi-infinite body is initially at Ti = Tsup when the interface 
is suddenly cooled to Ts = Tsat.  Subscripts sup and sat stand for superheated and 
saturated, respectively.  Carrying out the derivative, canceling similar terms 
(4πR2) from both sides of the equation, and rearranging, we obtain: 

t

dtTTk
dRh iS

fgg πα
ρ )( −

=

Using the initial condition of R = 0 at t = 0, we find: 

( )
2/1sup2

)( t
h

TTk
tR

fgg

sat

αρπ

−
=                             Vb.2.5 
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As Lienhard describes, Jakob initially suggested the method that led to the deriva-
tion of Equation Vb.2.5.  As shown in Figure Vb.2.4, this equation under-predicts 
the data obtained by Dergarabedian.  Hence, Scriven used a more rigorous method 

and found that Rbubble = 3 RJakob, which closely matches the data. 
Figure Vb.2.6 shows that the trend predicted by Jakob is as expected but the 

absolute value under-predicts the data.  The reason is that the bubble growth in-
creases the temperature gradient, which has been treated as constant in Jakob’s 
model.  Scriven accounts for this and practically matches the data. 
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Figure Vb.2.6.  Comparison of RJakob and RScriven with data 

Example Vb.2.2.  Find the bubble diameter 0.01 s into the bubble growth for wa-
ter boiling at 1 atm and ∆T = 3 C.  Data:  kf = 0.68 W/m·K, ρg = 0.593 kg/m3, αf = 
1.68E-7 m2/s, and hfg = 2.257E6 J/kg. 

Solution:  From Equation Vb.2.5, we find R(0.01 s) as: 

( )
2/1sup2

)( t
h

TTk
tR

fgg

sat

αρπ

−
=  =

4336.03E101.0
7E68.16E257.2593.0

1.368.02 =×
−×

×
π

 mm 

3.  Convective, Boiling, Experimental Observation 

Before discussing the two distinct modes of pool and flow boiling, we consider the 
landmark experiment performed by Nukiyama in 1934, which led to the estab-
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lishment of the boiling curve.  The importance of this curve is in its clear depiction 
of various modes of heat transfer and demonstration of the effect of the method of 
heat addition to the liquid.  This was the first experiment for the measurement of 
surface heat flux versus surface superheat (∆Tsl = Ts – Tsat).  As shown in Fig-
ure Vb.3.1(a) the experiment consists of an electrically heated wire in a water con-
tainer at atmospheric pressure.  Nukiyama used a nichrome wire connected to an 
electric voltage.  Data were obtained by varying the electric power measuring wire 
temperature after steady-state is achieved.  This is referred to as power-controlled 
or heat flux controlled heating where sq ′′  is the independent variable and surface 

temperature (hence ∆Tsl = Ts – Tsat) is the dependent variable.  As power increased, 
there was a sudden jump in the wire temperature and eventual burnout.  The heat 
up path is shown in Figure b with the arrows.  The cool down path was obtained 
by reducing electric power to the wire as shown in Figure c by the arrows.  As 
these figures indicate, on both heat up and cooldown paths, there is a jump from 
one side of the curve to the other.  This is typical of power-controlled heat up and 
cooldown.  Figure d shows how the entire boiling curve can be constructed if the 
process is temperature-controlled.  In this case, there is a specific heat flux for a 
specific wall temperature.  In practice, most processes such as production of heat 
in the core of nuclear reactors are power-controlled.  As a results, in such applica-
tions, care must be exercised no to exceed the maximum heat flux as damage to 
the surface would follow. 

I
Water

Vapor
Wire

∆Tsl

sq ′′

              (a)                                                        (b)                          

∆Tsl

sq ′′

∆T sl

sq ′′

(b) (d) 

Figure Vb.3.1.  Nukiyama experiment for developing the boiling curve 
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4.  Pool Boiling Modes 

The boiling curve for pool boiling heat transfer at atmospheric condition is shown 
in Figure Vb.4.1.  Temperature is in degrees centigrade.  Since the bulk liquid is 
quiescent, there is no heat flux when ∆Tsl = 0.  With an increasing degree of su-
perheat, the surface heat flux increases solely due to free convection.  At about 
∆Tsl = 5 C, the bubbles begin to grow and some may depart the surface.  The 
buoyancy driven bubble causes agitation in the liquid.  This mixing of liquid en-
hances heat flux.  With increasing ∆Tsl, more bubbles are formed and the rate of 
carrying energy from the surface to the bulk liquid increases.  Eventually, the rate 
of bubble production becomes so great that at ∆Tsl about 30 C, heat flux reaches 
its peak value.  Beyond this point, the bubble population is so dense that it pre-
vents liquid from reaching the surface.  When this happens, heat transfer takes 
place only by conduction through the layer of vapor, which has blanketed the sur-
face.  With the surface being deprived of an efficient means of heat transfer by 
boiling bubbles, surface temperature jumps to elevated values.  With heat flux 
maintained at its peak value, the jump in the surface temperature compensates for 
the sudden drop in the heat transfer coefficient.  The heat transfer regime with va-
por blanketing the surface is referred to as film boiling.  The peak heat flux is re-
ferred to as the critical heat flux (CHF).  A modest increase in heat flux beyond 
the CHF is due to both conduction through the vapor film and radiation due to the 
surface elevated temperature.  On the cool down path, the reverse process occurs.  
When ∆Tsl reaches around 100 C, the vapor production is not vigorous enough to 
keep liquid away from the surface.  With liquid in contact with the surface, the ef-
ficient heat transfer resumes.  The point at which liquid contacts the surface again 
is known as the minimum stable film boiling (MSFB) or the Leidenfrost point.  In 
1756 Leidenfrost observed droplet boil off on hot surfaces.  For surface tempera-
ture-controlled processes, the path between CHF and MSFB can be constructed.  
In this path, liquid and surface contact intermittently.  This mode is known as 
transition boiling.

∆Tsl (C)
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CHF

ONB
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sq ′′ Post-CHFPre-CHF

Forced
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Nucleate
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Figure Vb.4.1.  The boiling curve for water at 1 atm and various heat transfer regimes 
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4.1.  Nucleate Pool Boiling 

Rohsenow, in 1952, obtained the nucleate pool boiling correlation in the form of 
Ja = f(Re, Pr).  The Reynolds number was defined for the bubbles as Re = GbDb/µb

where Gb is bubble mass flux, Db is bubble diameter, and µb is liquid viscosity.  
Therefore, cp,f∆T/hfg = Cs,f(GbDb/µb)

rPrn.  Rohsenow introduced Cs-,f, r, and n so 
that nucleation on a variety of heated surfaces and liquids can be represented by 
the same relation.  Expressing the bubble diameter in terms of contact angle, sur-
face tension, and fluid density as Db = 1.48φ[2gcσ/(g∆ρ)]0.5 and the bubble mass 
flux in terms of Gb = q ′′ /hfg, we find: 

0.33

, ( ) /
( )Pr

s satp f c
s fn

gf fg ffg f

c T T gQ A
C

h gh
σ

µ ρ ρ−

−
=

−
      Vb.4.1a 

Solving for heat flux: 

3

,
5.0

Pr

)()( −−
=′′

n
ffgsf

satsfpgf
fgf

hC

TTcg
hq

σ
ρρ

µ        Vb.4.1b 

The values for coefficient Csf and n for various surfaces and liquids are given in 
Table Vb.4.1.

Table Vb.4.1.  Values for coefficients Csf and n for various liquid and surfaces 

Fluid Surface Csf n
Benzene Chromium    0.1010  1.7 
Carbon tetrachloride Copper, polished    0.0070   1.7 
Ethyl alcohol Chromium    0.0027   1.7 
Isopropyl alcohol Copper    0.0025   1.7 
n-Butyl alcohol Copper    0.0030   1.7 
n-Pentane Copper, polished    0.0154   1.7 

Nickel, polished    0.0127   1.7 
Copper, emery-robbed     0.0074   1.7 
Chromium    0.0150   1.7 

Water Brass    0.0060   1.0 
Copper, polished    0.0128   1.0 

         lapped    0.0147   1.0 
         scored    0.0068   1.0 

Nickel    0.0060   1.0 
Stainless steel, ground & polished    0.0080   1.0 

                  , Teflon pitted    0.0058   1.0 
                  , chemically etched    0.0133   1.0 
                  , mechanically polished    0.0132   1.0 

Platinum    0.0130   1.0 
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Example Vb.4.1.  Water is boiling in a container at atmospheric pressure.  The 
heated surface area is 0.1 m2 and is made of mechanically polished stainless steel.  
An electric heater is used to carefully maintain the heated surface superheat at 17 
C.  Find a) the required power, b) the heat transfer coefficient, and c) the rate of 
evaporation from the heated surface. 

Solution:  From Table AIV5(SI) for saturated water and steam at Tsat = 100 C, we 
find ρf = 958 kg/m3, ρg = 0.595 kg/m3, hfg = 2257 kJ/kg, cp,f = 4.217 kJ/kg·K, µf = 
0.279E-3 N·s/m2, Prf = 1.76, σ = 0.0589 N/m 

a)  Since the surface superheat, Ts – Tsat = 17 C, thus Ts = 100 + 17 = 117 C.  From 
Table Vb.4.1 for mechanically polished stainless steel and water, we find Csf = 
0.0132 and n = 1.  Equation Vb.4.1b yields: 

35.0

76.122570132.0

17217.4

0589.0

)595.0958(8.9
3E22573E279.0

××
×−×

××−=′′q

 = 642 kW/m2

The required power for boiling at the specified condition is AqQ ×′′=  = 642 × 

0.1 = 64.2 kW. 

b)  Having the surface superheat and heat flux, the related heat transfer coefficient 
is found as: 

8.37
17

000,642 ==
−

′′
=

sats TT

q
h  kW/m2·C 

c)  At steady state, the power delivered to saturated water is converted to the latent 
heat of vaporization, Equation IIa.7.2: 

0284.0
2257

2.64 ===
fgh

Q
m kg/s = 102.4 kg/h 

Comment:  By using the software included on the accompanying CD-ROM, it can 
be easily verified that for a specified surface and surface superheat, the heat flux 
increases with increasing system pressure. 

4.2.  Critical Heat Flux in Pool Boiling 

Kutateladze and later Zuber devised the following CHF correlation, which is only 
a function of pressure: 

25.0
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149.0
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hq

ρ
ρρσ

ρ            Vb.4.2 
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To avoid damage to heated surfaces, a safety factor is applied in the design of the 
heating elements to maintain heat flux well below the value predicted by Equa-
tion Vb.4.2. 

Example Vb.4.2.  A PWR rod is operating at a linear heat generation rate of 7 
kW/ft.  Find the safety factor according to the pool boiling CHF. 

Solution:  We first find the maximum heat flux from Equation Vb.4.2. 

Using properties at P = 2250 psia we find: 

=′′CHFq 0.149(416.4 × 6.4)[0.000335 × 32.22 (37.1 – 6.4)/6.42] = 283.6 Btu/ft2·s 

A typical PWR rod diameter is about 0.44 inch, thus: 

Dqq π/'=′′ = 7/(3.14 × 0.44/12) = 60.8 Btu/ft2·s 

The safety factor is 283.6/60.8 = 4.70. 

4.3.  Transition Pool Boiling 

Transition boiling refers to the region between TCHF and TMSFB.  This region is ex-
perienced in a temperature-controlled boiling process.  In this region, both nucle-
ate and film boiling mechanisms coexist as the surface temperature is not high 
enough for film boiling to dominate.  Due to the complicated nature of the transi-
tion boiling mechanism, there is no correlation that can reliably predict the wall 
heat flux.  Most correlations use a weighted average value between the heat flux 
corresponding to maximum heat flux ( CHFq ′′ ) and the heat flux corresponding to 

the minimum stable film boiling ( MSFBq ′′ ).

4.4.  Minimum Stable Film Boiling 

In temperature-controlled boiling, sufficiently high wall temperature in the transi-
tion boiling mode precludes nucleate boiling and covers the surface with a film of 
vapor.  The temperature at which nucleation is completely ceased is the minimum 
stable film boiling (MSFB) temperature.  To determine the heat flux at the point of 
minimum stable film boiling, we may use the definition of the Stanton number 
given as: 

TVc

q

TcVA
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Q
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∆

=
∆

=
ρρ ))((

St

when applied to conditions where a change of phase is involved, St becomes: 
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where Vmin in the denominator is given by: 
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where Lc is a characteristic length given by Equation Vb.1.1.  For large horizontal 
surfaces, Berenson suggested St = 0.09.  Using Berenson’s value and substituting 
for the characteristic length, the minimum heat flux is found as: 
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Example Vb.4.3.  Find the heat flux at the Leidenfrost point.  Use P = 1 atm. 

Solution:  Using the saturated water properties at 100 C, Equation Vb.4.3 gives 

( ) ( )
( )

=
+

−×××=′′
4

1

259.0958

59.095881.9059.0
3E225759.009.0MSFBq  19 kW/m2

4.5.  Film Pool Boiling 

The resemblance of the vapor film in the film boiling heat transfer to the conden-
sate film in the laminar film condensation heat transfer prompted Bromely to sug-
gest a correlation similar to Equation Va.2.6 for boiling on cylinders and spheres: 
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           Vb.4.4 

In Equation Vb.4.4, C = 0.62 for horizontal cylinders and 0.67 for spheres.  Also 
=′fgh hfg + 0.4cp,v(Ts – Tsat).  Vapor properties are evaluated at Tfilm = (Ts + Tsat)/2.  

Since the contribution of radiation heat transfer becomes noticeable as the surface 
temperature approaches and exceeds 300 C, Bromley recommends the follow-
ing h:

radiationconvection hhh 75.0+=              Vb.4.5 

where in Equation Vb.4.5, the heat transfer coefficient due to radiation is given as: 
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radiationh  = )/()( 44
satssats TTTT −−εσ

In this relation ε and σ are surface emissivity and the Stefan-Boltzmann constant, 
respectively.   

Example Vb.4.4.  A horizontal cylinder, having a surface temperature of 300 C is 
submerged in saturated water at 100 C.  Estimate the surface heat flux.  Cylinder 
diameter is 4 cm and ε = 0.85. 

Solution:  Using saturation properties at 100 C we find ρf = 958 kg/m3, and hfg = 
2257 kJ/kg.  For superheated properties at 1 atm and a film temperature of 200 C: 
ρv = 0.46 kg/cm3, cp,v = 1.98 kJ/kg·K, µv = 0.16E-4 Pa·s, and kv = 0.033 W/m·K. 

=′fgh hfg + 0.4cp,v∆T

 = 2257 + 0.4 × 1.98 × 200 = 2415 kJ/kg.   
Using Equation Vb.4.4: 

convectionh  = 

4/13

)100300(033.0)4E16.0(

04.03E241546.0)46.0958(81.9

04.0

033.0
62.0

−××−
×××−×

= 144 W/m2·K

radiationh  = 0.85 × 5.67E-8 (5734 – 3734)/(573 – 373) = 21 W/m2·K

h = convectionh  + 0.75 radiationh  = 144 + 0.75 × 21 = 160 W/m2·K

32200160 =×=∆=′′ Thq  kW/m2.

For film boiling on horizontal plates, Berenson’s correlation is given as: 

425.0/Nu == vv khδ                Vb.4.6 

where δv, an average vapor film thickness, used in the Nu number is given by: 
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In Equation Vb.4.7, Lc is the characteristic length as given in Equation Vb.1.1 and 
vapor properties are evaluated at Tfilm.
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Example Vb.4.5.  Find the convection heat flux for film boiling of water at 1 at-
mosphere on top of a horizontal plate with Ts = 900 K.   

Solution:  Film temperature is Tfilm = 0.5(373 + 900) = 636.5 K.  At atmospheric 
conditions, ρf = 958 kg/m3, hfg = 2.257E6 J/kg and σ = 0.06 N/m. 

For superheated steam at 636.5 K: 
cpv = 2048 J/kg·K, vv = 66.4E-6 m2/s, ρv = 0.345 kg/m3, and kv = 0.05 W/m·K 

( ) 6E257.2/3739002048/Ja
,

−×=∆= fgvpv hTc  = 0.48 

( ) 2/1/ ρσ ∆= gLc  = [0.06/(9.81 × 958)]0.5 = 2.53E-3 m 

=
×+−

−×−= 25.0
2

]
48.04.01

48.0

93.0

1

349.0958

0.345

9.81

3E53.2)6E4.66(
[gδ 0.115 mm 

hconvection = (kv/δv)Nu = (0.05/0.115E-3) × 0.425 = 185 W/m2·K

Convectionq ′′  = hconvection∆T = 185 × (900 – 373) = 98 kW/m2.

4.6.  Minimum Stable Film Boiling Temperature 

Temperature at the MSFB point may be found by using Newton’s law of cooling 
and substituting for heat flux from Equation Vb.4.3 and for heat transfer coeffi-
cient from Equation Vb.4.4, for horizontal cylinders and spheres, or from Equa-
tion Vb.4.5 for horizontal plates.  For horizontal cylinders and sphere we find: 
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      Vb.4.8 

where the vapor physical properties are developed at the film temperature. 

Example Vb.4.6.  For heat treatment, a long steel cylindrical rod is immersed 
horizontally in a pool of water at atmospheric pressure.  The rod diameter is 4 cm.  
Find TMSFB and the heat flux when surface is at 400 C.  Use ε  = 0.66. 

Solution:  For sufficiently hot surface, the entire boiling curve is traversed when 
the rod is immersed.  If the initial heat transfer regime is film boiling, surface 
temperature begins to drop by both convection and radiation mechanisms until the 
MSFB point is reached.  When Trod drops below TMSFB, partial nucleation takes 
place in the transition boiling region, increasing heat flux.  This trend continues 
until the maximum heat flux is reached, further cooling the rod.  As the rod gets 
colder, the required superheat for nucleation diminishes and heat begins to transfer 
by single-phase natural convection.  We then start by calculating TMSFB:

To find TMSFB, we need Tfilm.  We assume Ts = 200 C and use Equation Vb.4.8: 
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We find TMSFB = 170 C.  Next, we assume Ts = 180 C and find TMSFB = 173 C.  We 
continue iteration until the answer converges to TMSFB ≈  185 C.  Thus initially 
heat transfer regime is film boiling.  We find the initial heat flux from Equa-
tion Vb.4.4: 
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−+∆=′′ fs TTThq εσ

4.7.  Factors Affecting Pool Boiling 

The pool boiling mode is influenced by several factors including gravity, pressure, 
surface roughness, aging, and the presence of noncondensable gases. 

Effect of gravity.  Among all the boiling modes, gravity primarily affects 
nucleation.  In zero gravity, there is no nucleation as a large bubble would sur-
round the heated surface.  As gravity increases, heat transfer becomes more ef-
ficient due to enhanced free convection. If boiling is used as a cooling mechanism 
in the rotating machinery and in space vehicles, changes in gravity become a 
design consideration. 

Effect of pressure.  The rate of heat transfer in nucleate boiling is increased 
with pressure.  This is apparent from the Clausius-Clapeyron equation.  By treat-
ing vapor as an ideal gas, it can be shown that the degree of superheat is inversely 
proportional to pressure.  Hence, at high pressures less ∆Tsl is needed for the same 
number of nucleation sites to become active.  For example, if ∆Tsl = 12 F, when 
pressure is increased by about 6.5 times (from 383 psia to 2465 psia) heat flux in-
creases by 12.5 times (from 8E4 Btu/ft2·h to 1E6 Btu/ft2·h).

Effect of surface roughness was extensively studied by Berenson who demon-
strated that the effect of surface roughness on heat transfer depends on the boiling 
mode.  Berenson showed that pre-CHF is affected strongly, transition boiling 
moderately, and film boiling is not affected by surface conditions. 

Effect of aging. Aging adversely affects boiling heat transfer due to surface 
oxidation.  The layer of oxide increases thermal resistance, but it also increases the 
population of cavities. 

Effect of noncondensable gases on boiling is to enhance surface heat flux.  
The dissolved gases in the liquid are released near the heated surface, agitating the 
liquid and increasing mixing. 
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5.  Flow Boiling Modes 

Flow boiling is associated with the flow of liquids into a heated conduit.  As 
shown in Figure Vb.5.1, flow at the entrance of the conduit is single-phase liquid 
and heat transfer from the heated wall is found from forced convection correlation 
(A).  As the liquid travels in the conduit, the layer adjacent to the heated surface 
enters the surface cavities.  If sufficient superheat is available, the site becomes 
active.  Bubbles generated in such sites would migrate toward the bulk liquid, 
which is still subcooled (B).  This constitutes the subcooled flow boiling regime.  
Expectedly, heat transfer in this regime is due to both subcooled boiling as dis-
cussed in Section 4 for subcooled pool boiling and forced convection for single-
phase liquid.  Collapse of a bubble increases liquid energy, more bubbles are pro-
duced, resulting in the related flow regime being referred to as bubbly flow (C).  
Wall temperature remains constant the moment subcooled boiling is initiated.  On 
the other hand, liquid temperature keeps increasing until the bulk liquid eventually 
reaches saturation.  Hence, the related heat transfer regime is called saturated nu-
cleate boiling (D).

As flow travels further in the conduit, the nucleation process becomes so effec-
tive that bubble population grows to a point that bubbles eventually begin to coa-
lesce to form a slug.  The related flow regime is known as slug flow (D).  When 
slugs coalesce, a central vapor core is formed.  The flow pattern where the vapor 
core is surrounded by a film of liquid is known as annular flow (E).  The related 
heat transfer regime remains saturated nucleate boiling.  However, the process of 
nucleation is soon replaced by evaporation (E and F).  In this regime, surface heat 
is transferred to the liquid film by forced convection, which is then transferred to 
the liquid-vapor interface where evaporation takes place.  The corresponding heat 
transfer regime is often called forced convection vaporization.  With continuous 
evaporation, the liquid film eventually dries out.  Following dryout, surface tem-
perature jumps to elevated values due to the lack of effective liquid cooling.  
There is a slight drop in the surface temperature due to the lingering droplets, 
which would randomly touch the surface (G).  These drops soon vaporize, result-
ing in a continuous rise in surface temperature due to heat transfer to single-phase 
vapor.

5.1.  Subcooled Flow Boiling 

There are several correrlations for the calculation of the heat transfer coefficient in 
subcooled flow boiling (Delhaye, Ginoux, and Problem 9).  However, the most 
widely used correlation, which is applied to both subcooled and saturation regions, 
is the Chen correlation as discussed next. 

5.2.  Saturated Flow Boiling 

The Chen correlation accounts for both macro-convection due to flow and micro-
convection due to boiling. As such, the Chen correlation is applicable over the en-



5.  Flow Boiling Modes      659 

Single-
Phase
Liquid

Bubbly
FLow

Slug
Flow

Drop
Flow

Single-
Phase
Vapor

Convective Heat
Transfer To Liquid

Forced
Convection

Heat
Transfer
Through

Liquid Film

Liquid
Deficient
Region

Saturated
Nucleate
Boiling

Subcooled
Boiling

Convective
Heat Transfer
To Vapor

Heat Transfer
Regimes

Annular
Flow

Annular
Flow
with

Entrainment

Flow
Patterns

Fluid And Surface
Temperatures

Fluid
Temperature

Surface
Temperature

Liquid Bulk
Temperature

Saturation
Temperature

Vapor Bulk
Temperature

x = 0

x = 1

A

B

C

D

E

F

G

H

Incipient Boiling

Figure Vb.5.1.  Flow and heat transfer regimes in a sufficiently long heated conduit (Col-
lier)

tire range of subcooled boiling, saturation boiling, and forced convection vapori-
zation regions.  The Chen correlation in SI units is given as: 
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0.79 0.45 0.49

0.8 ,0.4 0.24 0.75
0.29 0.5 0.24 0.24

0.023
Re Pr 0.00122f f p f f

SI f f sat
h f fg g

k k c
h F T P S

D h

ρ
µ σ ρ

= + ∆ ∆       Vb.5.1a 

substituting for ∆P from the Clapeyron equation, the Chen correlation in British 
units becomes: 
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Vb.5.1b

where Ref = G(1 – x)Dh/µf and the conversion factor gc is defined in Chapter IIa.  
The first term in Equation Vb.5.1 applies to subcooled boiling and follows the Dit-
tus–Boelter correlation with a modification factor F, which accounts for the en-
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hanced flow and turbulence due to the presence of vapor.  The second term in 
Equation Vb.5.1 applies to nucleation and follows the Forster-Zuber analysis, 
modified with the suppression factor S.  The modification factors F is given in 
terms of XM:

1.05.09.0

1 −
=

f

g

g

f
M x

x
X

µ
µ

ρ
ρ

so that for the F factor, [ ] 736.0213.035.2 MXF += , which applies if XM > 0.1.  

Otherwise, F = 1.  Also, the S factor is given as 117.1 ]Re)653.2(1[ −−+= ES

where 25.1ReRe Ff=  = [G(1 – x)Dh/µf]F
1.25.

Example Vb.5.1.  Water flows in a vertical 1 in heated tube at a rate of 0.5 lbm/s.  
System pressure is 1000 psia.  Find heat flux at a point where steam quality is 
25% and surface superheat is ∆Tsat = Ts – Tsat = 8 F. 

Solution:  First, we find properties at 1000 psia: 
ρf = 46.33 lbm/ft3, µf = 0.229 lbm/ft·h, cp,f = 1.286 Btu/lbm, hfg = 650.5 Btu/lbm,  
σ = 0.0012 lbf/ft  
ρg = 2.23 lbm/ft3, µg = 0.046 lbm/ft·h, kf = 0.33 Btu/ft·h·F, vfg = 0.43 ft3/lbm,  
Prf = 0.899, Tsat = 544.33 F 
ρf = 46.33 lbm/ft3, ρg = 2.23 lbm/ft3, hfg = 650.5 Btu/lbm, cp,f = 1.286 Btu/lbm,  
µf = 0.229 lbm/ft·h, µg = 0.046 lbm/ft·h, kf = 0.33 Btu/ft·h·F, Prf = 0.899,
σ = 0.0012 lbf/ft, vfg = 0.43 ft3/lbm and Tsat = 544.33 F.   

We now find XM, F, S, and finally h.  First XM is found from: 
1.05.09.0

23.0

046.0

23.2

33.46

75.0

25.0=MX  = 1.44 

The F factor becomes 

[ ] 736.0213.035.2 MXF +=  = 2.35(0.213 + 1.44)0.736 = 3.41 

Diameter and flow area are: d = 1/12 = 0.0833 ft and A = πd2/4 = 3.14 × 0.08332/4 
= 5.45E-3 ft2

G = Am /  = 0.5/5.45E-3 = 92 lbm/ft2·s 

To find S, we need to find:
Ref = (0.5 × 3600)(1 – 0.25) × 0.0833/(0.229 × 5.45E-3) = 90,072 
Re = Ref × F1.25 = 90,072 × 3.411.25 = 417,381 

S = (1 + 2.53E-6 × 417,3811.17)–1 = 0.095 
The convection heat transfer coefficient (hc) from Equation Vb.5.1b is: 
hc = 0.023(0.33/0.0833)(90,072)0.8 × 0.8990.4× 3.55 = 2737 Btu/ft2·h·F.

The nucleation heat transfer coefficient (hb) from Equation Vb.5.1b is: 



5.  Flow Boiling Modes      661 

Numerator:  0.00122 × 0.33.79 × 1.286.45 × 46.33.49 × (32.2 × 36002).25 = 0.533 
Denominator:  0.229.29 × 0.0012.5 × 650.5.24× 2.23.24 = 0.13 
Bracket:  [778 × 650.5/(0.43 × 1004.33)].75 = 200.3 

hn = (0.533/0.13) × 200.3 × 8.99 × 0.095 = 611 Btu/ft2·h·F

h = hc + hn = 2737 + 611 = 3348 Btu/ft2·h·F

786,2683348 =×=∆=′′ Thq  Btu/ft2·h = 84 kW/m2.

Example Vb.5.2.  Water at a rate of 1200 kg/h flows in a tube having an inside 
diameter of 30 mm.  Pressure is 10 MPa.  Find the heat transfer coefficient and the 
surface heat flux at a location where surface superheat is 10 C and quality is 15%. 

Solution:  First, we find properties at 10 MPa: 
ρf = 688.7 kg/m3, µf = 0.86E-4 N·s/m2, hfg = 1320 kJ/kg, cp,f = 6.159 kJ/kg·K,  
σ = 0.012 N/m,  
ρg = 55.14 kg/m3, µg = 0.21E-4 N·s/m2, vfg = 0.016 m3/kg, kf = 0.522 W/m·K,  
Prf = 1.02, Tsat = 310.88 C.   

Similar to Example Vb.5.1, we find XM, F and S factors, and hc and hn:

Find XM from: XM = (0.15/0.85)0.9(688.7/55.14)0.5(0.21E-4/0.86E-4)0.1 = 0.644 

The F factor becomes: 

[ ] 736.0213.035.2 MXF +=  = 2.35(0.213 + 0.644)0.736 = 2.1 

d = 0.03 m, A = πd2/4 = 3.14 × 0.032/4 = 7.068E-4 m2, and G = 1200/7.068E-4 = 
471.6 kg/m2·s 

To find S, Ref  = G(1 – x)Dh/µf = 471.6 × (1 – 0.15) × 0.03/ 0.86E-4= 139,835 

Re = Ref × F1.25 = 139,835 × 2.11.25 = 353,500 and
S = (1 + 2.53E-6 × 353,5001.17)–1 = 0.11 

The convection heat transfer coefficient (hc) from Equation Vb.5.1a is: 

hc = 0.023(0.522/0.03)(139,835)0.8 × 1.020.4× 2.1 = 11,077 W/m2·K

The nucleation heat transfer coefficient (hn) from Equation Vb.5.1a is: 

Numerator:  0.00122 × 0.522.79 × (6.159E3).45 × 688.7.49 = 0.91 
Denominator:  (0.86E-4).29 × 0.012.5 × (1320E3).24× 55.14.24 = 0.559 

∆Tsat = 10 C, Tsurface = Tsat + 10 = 320.88 C 
∆P = Psat(320.88) – Psat(310.88) = 11.42 – 10 = 1.42E6 Pa 
hn = (0.91/0.559) × (1.42E6)0.75(10)0.24 × 0.11 = 12800 W/m·K 
h = hc + hn = 11,077 + 12,800 = 23,878 W/m·K 

7.23810878,23 =×=∆=′′ Thq  kW/m2.
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Figure Vb.5.2.  Depiction of (a) DNB, (b) Dryout, and (c) Dependency of CHF on Mass
Flux (Todreas)

In the above examples, surface temperature was specified.  Otherwise, we 
should solve the problem by iteration.  In an iterative solution, we assume a value 
for the surface temperature to find ∆Tsat and subsequently calculate hChen from the 
Chen correlation, Equation Vb.5.1b.  Having h, we then recalculate ∆Tsat from a 
heat balance between the surface and the fluid; satThq ∆=′′ .  We continue this 

until we reach the intended convergence criterion, for example ε ≤ 1%.  Kandlikar 
has introduced a more recent correlation, which, according to Lienhard, leads to 
mean deviations of 16% for water and 19% for refrigerants. 

5.3.  Critical Heat Flux in Flow Boiling 

Due to the importance of flow boiling especially in the operation of nuclear reac-
tors, extensive research has been performed in flow boiling CHF.  The CHF 
mechanism in flow boiling is a function of the flow regime and is either in the 
form of departure from nucleate boiling, DNB, or dryout.  DNB is the mechanism 
of concern in the design and operation of PWRs.  A PWR core contains pressur-
ized subcooled water.  In a high power channel, the rate of vaporization at the sur-
face may become so vigorous that it may prevent liquid from reaching the surface, 
Figure Vb.5.2(a).  Depriving the surface of liquid for nucleation results in elevated 
surface temperature, which may lead to fuel failure.  On the other hand, the dryout 
mechanism is of concern in the design and operation of BWRs.  This is because, 
in high power channels, the flow regime may become annular.  With further in-
crease in power, the liquid film may simply dryout as shown in Figure Vb.5.2(b).  
For this reason, the operational heat flux is maintained well below the CHF, 
through the application of a variety of safety factors.  As shown in Fig-
ure Vb.5.2(c), the magnitude of CHF is either a direct or an inverse function of the 
mass flux, depending on quality.  In the DNB region (low x), CHF is a direct func-
tion of mass flux whereas in the dryout region (high x) CHF depends inversely on 
mass flux.   

There are many CHF correlations for water in the literature, including Bab-
cock & Wilcox, Combustion Engineering, EPRI, General Electric, Westinghouse, 
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Barnett, Biasi, Bernath, Bowring, Gaspari (CISE-4), and Katto.  Next we discuss 
several of these correlations. 

Barnett correlation.  The critical heat flux in this correlation is expressed in 
terms of channel geometry (hydraulic diameter, heated diameter and heated 
length) as well as coolant mass flux and specific enthalpies.  The Barnett correla-
tion covers a narrow range for pressure (i.e., 4 – 10 MPa).  The Barnett correlation 
in SI units is given as: 
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where constants C1, C2, and C3 are expressed in terms of G and D as  
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where P is system pressure in psia, V is coolant velocity in ft/s, Tf is bulk tempera-
ture of the coolant in F, De is the equivalent diameter in ft and Ph is the heated pe-
rimeter in ft.  This correlation is valid for pressure ranging from 23 – 3000 psia, 
coolant velocity in the range of 4.0 – 54 ft/s, and equivalent diameter in the range 
of 0.143 – 0.66 in. 

Biasi correlation expressed in terms of pressure, mass flux, quality, and 
diameter, has a much wider range of application for pressure compared to the Bar-
nett correlation.  Since the database covers both low and high steam quality, the 
Biasi correlation is applicable to both DNB and dryout.  In SI units, the Biasi cor-
relation for G < 300 kg/s·m2 is given as: 

( )xSqCHF −= 11
"                            Vb.5.3 

where S1 = 15.048E7(100D)–nG–1/6C1 and heat flux is in W/m2.  For mass fluxes 
higher than 300 kg/s·m2, the heat flux in W/m2 is obtained from: 

( )xSSqCHF −= 32
"               Vb.5.4 



664       Vb.  Two-Phase Flow and Heat Transfer: Boiling

where S2 = ( ) 617 10010764.2 −−× GD n  and S3 = 61
2468.1 −GC .  In Equations 

Vb.5.3 and Vb.5.4, constants C1 and C2 are only functions of pressure and are 
given as  

( ) 12
1 )101(919.0exp49.1159.1 −++−+−= PPPPC     and

( )PPC 32.0exp99.07249.02 −+=

Exponent n is 0.4 if the Dchannel ≥ 0.01 m.  Otherwise, its value is 0.6.  Also P is in 
MPa.

If the channel is heated uniformly, an energy balance for a control volume ex-
tended from the inlet to height z (where CHF occurs) gives: 

)()4/()( 2
il hhGDDzq −=′′ ππ            Vb..5.5 

Substituting for the local enthalpy from hl = hf + xlhfg in Equation Vb.5.5, solving 
for xl and substituting into Equations Vb.5.3 and Vb.5.4, the Biasi correlation for 
uniformly heated tubes becomes: 

)1/()1( 11
" SSqCHF αβ ++=                           Vb.5.3 

( ) ( )232
" 1/ SSSqCHF αβ ++=                           Vb.5.4 

where α = 4z/(GDhfg) and β = ∆hsub,i/hfg.

Bowring correlation has a wide range of applicability.  It is based on the 
works of MacBeth and Barnett and in SI units is given as: 

( ) 321
" / CxhCCq fgCHF −=                           Vb.5.6 

where coefficients C1, C2 and C3 are functions of pressure, mass flux and channel 
diameter as follows: 
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where exponent n is a function of the reduced pressure (i.e., n = 2 – 0.5PR).  The 
reduced pressure in turn is defined as PR = 0.145P MPa.  Coefficients C4 through 
C7 are functions of reduced pressure.  For PR < 1 MPa; 

( )[ ]RR PPC −+= 189.20exp52.0478.0 942.18
4 ,

( )[ ]{ } 1316.1
45 1444.2exp764.0236.0

−
−+= RR PPCC ,

( )[ ]RR PPC −+= 1658.16exp6.04.0 023.17
6 , and 649.1

67 RPCC =

and for PR > 1 MPa, the above coefficients are given as: 
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( )[ ]RR PPC −= − 1648.0exp368.0
4 , ( )[ ]{ } 1448.0
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219.0
6 RPC = , 649.1

67 RPCC = .

For uniformly heated channels, we use Equation Vb.5.5 and substitute hl = hf + 
xlhfg.  The same procedure was used for the Biasi correlation to write the Bowring 
correlation as: 
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21                       Vb.5.7

CISE-4 correlation is applicable to BWRs and has a narrow range of applica-
tion for both pressure and mass flux.  This correlation is expressed in terms of 
CHF quality (xCHF) whose value approaches unity when mass flux approaches 0.0.  
This correlation in SI units is given as: 
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where C1 and C2 are functions of mass flux, pressure and critical pressure:  The 
value of coefficient C1 depends on mass flux as compared with a reference flux 

(GR given by ( )3/13375 cR PPG −= ).  Hence; 

( )[ ] 134
1 /110481.11

−−− −×+= GPPC c ; RGG ≤

( )( ) 3/1
1 1000//1 −−= GPPC c ;   RGG >

and coefficient C2 is given by ( ) 4.14.0
2 1/199.0 GDPPC c −= .  Also LCHF is the 

boiling length to the point where CHF occurs.  To find CHFq ′′  by the CISE–4 cor-

relation, we need to find relations for xCHF and LCHF.  To find LCHF, we use an en-
ergy balance, Equation Vb.5.5.  If the entire tube is uniformly heated at CHFq ′′ , the 

portion of energy consumed to bring the subcooled water at the inlet of the tube to 
saturation, is found from: 

[ ] ( ) )(4/)( 2
infCHFCHF hhDGLLDq −=−′′ ππ

Similarly, we can find xCHF from Equation Vb.5.6 applied to the boiling section: 

( )( ) ( ) fgCHFfCHFCHF hxDGhhDGDLq 4/4/ 22 πππ =−=′′

Eliminating LCHF between these equations and substituting, we obtain xCHF as: 

[ ] [ ]fginffgCHFCHF hhhGDhqLx /)()/(4 −−′′=           Vb.5.9 
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Substituting into Equation Vb.5.8, we find the following implicit equation for 

CHFq ′′ :

( ) ( )[ ]yhhLCDDChy infehfg /// 21 −−+=          Vb.5.10 

where in Equation Vb.5.10, y = 4 CHFq ′′ /(GD).

EPRI-1 correlation as reported by Pei, is based on a vast bank of data: 
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where lq ′′  is the local heat flux and both heat flux terms in Equation Vb.5.11 are 

in MBtu/h·ft2.  Mass flux G is in Mlbm/h·ft2.  Coefficients C1 and C2 are given as: 

C1 = )(
1
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C2 = )(
3
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Note the reduced pressure is Pr = P/Pcritical.  Constants P1 through P8 are given as 
P1 = 0.5328, P2 = 0.1212, P3 = 1.6151, P4 = 1.4066, P5 = –0.3040, P6 = 0.4843, P7

= –0.3285, and P8 = –2.0749. 
For uniformly heated channels, we may substitute for the local quality from xl = 

(hl – hf)/hfg and for the local heat flux from Equation Vb.5.5 to write the EPRI-1 
correlation as: 
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Katto correlation (Collier) is expressed in terms of quality, mass flux, and en-
thalpy as: 

( )[ ]iffgCHF hhKhXGq −+=′′                         Vb.5.13 

where hi is the inlet enthalpy calculated at P and Ti.  Coefficients X and K in Equa-
tion Vb.5.13 are functions of dimensionless numbers Z, R, and W defined as: 

D

z
Z = ,   

g

fR
ρ
ρ

= ,
2zG

W fσρ
=

We need to calculate five values for X and three values for K as follows: 

ZCWX /043.0
1 = , yZWRX /1.0 433.0133.0

2 = ,

yZWRX /098.0 27.0433.0133.0
3 = ,
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( )ZWWRX 233.0173.06.0
4 28.01/0384.0 += ,

yZWRX /234.0 27.0433.0513.0
5 =

( )043.0
1 /261.0 CWK = , [ ] ( )333.0133.01

2 /0124.0833.0 WRZK −+= ,

[ ] ( )173.06.01233.0
3 /52.112.1 WRZWK −+=

where y = 1 + 0.0031Z and the value of C in these relations is found as: 

     C = 0.25     if  Z < 50,
     C = 0.25 + 0.0009(Z – 50)   if  50 < Z < 150,
     C = 0.34     if  Z > 150. 

The following logic should be used to find the applicable values of X and K:

R < 0.15
If X1 < X2, X = X1                           If X1 > X2 and X2 < X3, X = X2

If X1 > X2 and X2 > X3, X = X If K1 > K2, K = K1     
If K1 < K2, K = K2

R > 0.15
If X1 < X5, X = X1                           If X1 > X5 and X4 < X5, X = X5

If X1 > X5 and X4 > X5, X = X4 If K1 > K2, K = K1     
If K1 < K2 and K2 < K3, K = K2      If K1 < K2 and K2 > K3, K = K3

General Electric correlation, devised for BWRs, expresses the lowest meas-
ured values of critical heat flux as a function of mass flux and quality: 

GqCHF 237.0705.0 +=′′    X < C1

XGqCHF 71.427.0634.1 −−=′′ C1 < X < C2

XGqCHF 653.0164.0605.0 −−=′′ C2 < X

where constants C1 and C2 are given in terms of mass flux: 

C1 = 0.197 – 0.108G
C2 = 0.254 – 0.026G

In these relations, X is the flow quality, mass flux G is in Mlbm/h·ft2, and heat flux 

CHFq ′′  is in MBtu/h·ft2.  The above relations apply to a system at a pressure of 

1000 psia.  For other pressures, we find CHFq ′′  from: 

)1000(440)1000()( PqPq CHFCHF −+′′=′′

The GE correlation is valid for P in the range of 600 – 1450 spia, G in the range of 
0.4 – 6 Mlbm/h·ft2, quality in the rage of 0 – 0.45, channel length in the range of 
29 – 108 in, and equivalent diameter in the range of 0.245 – 1.25 in.  As reported 
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by Tong, the GE lower envelope correlation for low mass velocity CHF at pres-
sures less than 1000 psia is obtained from: 

xqCHF −=′′ 84.0 ,  G < 0.5 Mlbm/h·ft2

xqCHF −=′′ 80.0 ,  0.5 < G < 0.75 Mlbm/h·ft2

where the critical heat flux is in MBtu/h·ft2.  The range of applicability of these 
correlations are shown in Table Vb.5.1.   

Table Vb.5.1.  Data base for various CHF correlations 

Correlation                   D (m)      L (m)    P (MPa)              G (kg/m2 s)
Biasi 0.0030 – 0.3750         0.20 – 6.00                0.27 – 14             100 – 6000 
Bowring 0.0020 – 0.0450         0.15 – 3.70                0.20 – 19            136–18,600 
Barnett 0.0095 – 0.0960         0.61 – 2.74                6.9                       190 – 8409 
CISE-4 0.0102 – 0.0198         0.76 – 3.66                4.96 – 7.0           1085 - 4069 
EPRI-1 0.0420 – 0.0139         0.76 – 4.27               1.38 – 17              271 – 5553 
Katto 0.0010 – 0.038           0.01 – 8.80                00.1 – 21* **
General Electric 0.0060 – 0.0320         0.74 – 2.74                4.14 – 10             550 – 8000
* Specified in terms of 0.0003 < ρg/ρf < 0.41.  ** Specified in term of 3E-9 < W < 2E-2.  

Predictions of several CHF correlations are compared in the following example.

Example Vb.5.3.  Water at 288 C (550 F) enters a uniformly heated vertical tube 
of diameter 13.4 mm (0.528 in) and length 3.66 m (12 ft) at 3508 kg/s·m2 (2.59 
Mlb/s·ft2).  The system pressure is 15.51 MPa (2250 psia).  Find CHF from the 
Biasi, the Bowring, the EPRI-1, and the Katto correlations. 

Solution:  We first find water properties at 15.51 MPa: hf = 1631 kJ/kg (701 Btu/ 
lbm), hg = 2600 kJ/kg (1118 Btu/lbm), hfg = 969 kJ/kg (417 Btu/lbm), hi(P = 15.51 
& T = 288) = 1273.7 kJ/kg (547 Btu/lbm). 

Biasi correlation:  Since G > 300 kg/s·m2, we use Equation Vb.5.4:  

( ) 12
1 )101(919.0exp49.1159.1 −++−+−= PPPPC  = 0.1123 

( )PPC 32.0exp99.07249.02 −+=  = 0.8322 

S2 = ( ) 617 10010764.2 −−× GD n  = 0.5949E7,

S3 = 61
2468.1 −GC  = 0.3134 

α = 4z/(GDhfg) = 4 × 3.66/(3508 × 0.0134 × 969E3) = 3.2E–7 
β = (hf – hin)/hfg = (1631 – 1273)/2600 = 0.3686 

( ) ( )232
" 1/ SSSqCHF αβ ++=  = 0.5949E7 × (0.3134+0.3686)/(1 + 3.2E–7 ×

0.5949E7) = 1.39 MW/m2
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Bowring correlation:  We first obtain C4 = 0.478, C5 = 0.4912, C6 = 0.4, and C7 = 
0.0345.  We then find:  

( )=+= GDChCCC fg
2/1

5421 0143.01/317.2 0.3274E7, C2 = DG/4 = 11.75,  

( )[ ]nGCCCC 1356/347.01/308.0 7623 +=  = 1.3507 

( ) ( )zChCCq subCHF +∆+=′′ 321 /  = (0.3274E7 + 11.75 × (1631 – 1273.7)E3/ 

(1.3507 + 3.66) = 1.49 MW/m2

EPRI-1 correlation:  We use Equation Vb.5.12 for which we find coefficients C1

and C2 from: 

C1 = )(
1

752 rPPPP
r GPP +  = 0.5328 × (2250/3205.6)0.1212 × 2.56[–0.3040 – 0.3285 ×

(2250/3205.6)] = 0.3069 

C2 = )(
3

864 rPPPP
r GPP +  = 1.6151 × (2250/3205.6)1.4066 × 2.56[0.4843 – 2.0749 × (2250/3205.6)]

= 0.3892 
( )

( )[ ]fg

fgisub
CHF GDhzC

hhC
q

/4

/

2

,1

+
∆+

=′′

          = 
( )

( )
0.3069 [ 701 547 / 417]

0.3892 4 3.66 /(2.59 0.0134 417

+ −
+ × × ×

 0.48 MBtu/h·ft2 = 1.52 MW/m2

Katto correlation:  We first find Z = z/D = 272.95, R = ρg/ρf = 0.17, and W = 
0.65E-7.  Now find Xi & Ki:
X1 = 0.6114E-3, X2 = 0.1732E-3, X3 = 0.1475E-3, X4 = 0.2881E-3 X5 = 0.1803E-3,
K1 = 1.564, K2 = 4.185, K3 = 2.022.
Using the selection logic, we find X = 0.2881E-3 and K = 2.022 

( )[ ]iffgCHF hhKhXGq −+=′′  = 0.2881E-3 × 3508[969E3 + 2.022(1631 – 

1273.7)E3] = 1.71 MW/m2

Example Vb.5.4.  Water at 400 F and 1000 psia enters a uniformly heated channel 
at a rate of 1E6 lbm/h·ft2.  The channel heated and equivalent diameters are Dh = 
De = 0.3 in.  Channel length is 1.5 ft.  Find the critical heat flux and wall tempera-
ture at CHF. 

Solution:  We first use a CHF correlation, such as EPRI-1 for example to find the 
critical heat flux: 

( )
( )

( )
( )

1 ,

2

/ 0.4627 166.5 / 650.5

0.3140 4 1.5/1 0.025 650.54 /

sub i fg

CHF

fg

C h h
q

C z GDh

+ ∆ +
= =′′

+ × × ×+
= 1.05E6 Btu/h·ft2
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The solution to find TCHF is basically iterative.  However, we may use the Bernath 
correlation to find the onset of the boiling crisis.  For this purpose, we need the lo-
cal enthalpy: 

hl = hi + (4z CHFq ′′ /GD) = 375.8 + [4 × 1.5 × 1.05/(1 × 0.025)] = 627.8 Btu/lbm 

Density at the onset of CHF is ρ = ρ(1000 psia, 627.8 Btu/lbm).  Hence, ρl = 46.3 
lbm/ft3:

V = G/ρ = (1E6/3600)/46.3 = 6 ft/s 
( )[ ] 645.01000/151/2.971000ln6.10232, ×−+−+=CHFsT  = 642.3 F. 

5.4.  Factors Affecting CHF 

Critical heat flux correlations show the dependency of CHF on flow path diameter 
(d), flow path length (L), mass flux (G), inlet subcooling (∆hin), and pressure (P).
To determine the effect of each parameter, the rest of the parameters are kept con-
stant.  Let’s first consider the case of upward flow of a liquid in a heated tube hav-
ing diameter d and length L.  Figure Vb.5.3 shows that CHF varies directly with 
∆hin, G, and d and varies inversely with L.  Pressure has a more interesting effect 
as CHF for water in both pool and flow boiling reaches a maximum at about 
70 bar. To investigate the effect of heat flux on CHF, we try three cases of low, 
medium, and high heat fluxes, as shown by dashed lines 1, 2, and 3 in Fig-
ure Vb.5.4(A). 

∆hin

CHFq ′′ L, d, G, P

G

CHFq ′′ L, d, ∆hin, P

d

CHFq ′′ L, G, ∆hin, P

L

CHFq ′′ d, G, ∆hin, P

P (bar)

CHFq ′′ L, d, G, ∆hin

70 1104010

For Water

Figure Vb.5.3.  Effect of various design parameters on CHF (Whalley) 
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Figure Vb.5.4.  Effect of uniform heat flux on critical heat flux 

Expectedly, the critical heat flux correlations show that CHF inversely depends 
on heat flux.  This is shown in figure B.  Superimposing figures A and B, we ob-
tain figure C.  Let’s examine this figure.  We observe that at low heat flux (dashed 
and solid lines 1), CHF does not occur.  When we increase heat flux, (dashed and 
solid lines 2), they intersect right at the tube exit.  If we further increase heat flux, 
CHF occurs at a lower part of the tube (intersection of dashed and solid lines 3). 
The point at which CHF occurs moves towards the exit of the tube, as the heat 
flux is reduced.  Hence, in uniformly heated channels, CHF always occurs first at 
the exit of the channel.  Let’s us now examine the case of non-uniform heat flux, 
which is the case in the core of nuclear plants.  Since neutron flux has a sinusoidal 
distribution in the axial direction, heat flux has also a sinusoidal distribution, as 
shown in Figure Vb.5.5 (A).  In this figure, two curves are shown for low heat flux 
(curve 1) and for high heat flux (curve 2).  CHF versus tube length for the same 
two heat fluxes is shown in figure B.  We obtain figure C by superimposing fig-
ures A and B.  As seen in figure C, CHF occurs first in the upper part of the tube.  
As heat flux is increased, then CHF occurs at other locations along the tube. 
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Figure Vb.5.5.  Effect of non-uniform heat flux on critical heat flux 

5.5.  Transition Flow Boiling 

In temperature controlled flow boiling, transition to film flow boiling occurs when 
the local heat flux exceeds the CHF.  In this regime, heat transfer alternates be-
tween nucleate and film boiling regimes.  The heat transfer coefficient for transi-
tion boiling may be calculated from the McDonough correlation: 
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)( ,1 CHFssCHF TTCqq −−′′=′′                         Vb.5.10 

where Ts and Ts,CHF are surface temperatures corresponding to q ′′  and CHFq ′′ , re-

spectively.  Coefficient C1 is given as a function of pressure.  If P > 1200 psia, 
then C1 = 1180.8 – 0.252(P – 1200).  Otherwise, C1 = 1180.8 – 0.801(P – 1200).  
The heat transfer coefficient for transition boiling is obtained by dividing q ′′  cal-

culated from Equation Vb.5.10 by (Ts – Tsat).  The transition boiling correlation is 
valid until the heat flux calculated from Equation Vb.5.10 becomes smaller than 
the heat flux corresponding to stable film flow boiling.  More recently, Cheng 
suggested a similar correlation: 

[ ]n
satCHFssatsCHF TTTTqq )/()( , −−′′=′′          Vb.5.11 

where for low-pressure n = -1.25.  Bjornard tied the transition heat flux to CHF 
and MSFB: 

MSFBCHF qCqCq ′′−+′′=′′ )1( 11                         Vb.5.12 

where coefficient C1 itself is tied to the TCHF and TMSFB as C1 = [(TMSFB – Ts)/(TMSFB

– TCHF)]2.

5.6.  Film Flow Boiling 

The heat transfer coefficient in stable film flow boiling may be calculated from the 
correlation suggested by Dougal-Rohsenow.  This correlation is a Reynolds num-
ber-modified Dittus-Boelter correlation given as: 

[ ] 4.08.0 Pr)v/vRe()/023.0( gDkh =          Vb.5.14 

The appearance of v/vg makes Equation Vb.5.14 also applicable to the flow of sin-
gle-phase vapor.   

QUESTIONS 

– What are the three conditions for bubble equilibrium?  Why should the liquid 
be superheated? 

– What is the difference between boiling by a heated surface and boiling by re-
ducing the pressure of a saturated liquid?  Why is Equation Vb.2.1 not suffi-
cient to predict the degree of superheat required for nucleation? 

– A heated plate is immersed in water.  The temperature profiles of the thermal 
sub-layer and bubble as given by the Clausius-Clapeyron relation do not inter-
sect.  What should be done to start nucleation? 

– Can we construct the entire boiling curve in a power-controlled process? 
– In which medium (liquid or vapor) is the contact angle measured? 
– Is it correct to say that the heat flux in nucleate pool boiling is a function of sur-

face conditions, surface superheat, and pressure?  
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– Consider two electrically heated stainless steel surfaces.  One surface is me-
chanically polished and the other is ground and polished.  Both surfaces are 
maintained at the same temperature and boiling with the same liquid is taking 
place at the same pressure.  Which surface requires higher power? 

– Since ρ, hfg, Tsat, and σ are functions of pressure, can we conclude that q ′′  in 

pool nucleate boiling increases as pressure increases? 
– Why does surface aging decrease the rate of surface heat flux? 
– Explain the effect of non-condensable gases on boiling and on condensation 

heat transfer. 
– Since g appears in boiling correlations, can we conclude that heat flux is a func-

tion of gravity? 
– Why is boiling heat flux not affected by surface roughness in the film boiling 

mode?
– What is the difference between dryout CHF and DNB CHF?  In what type reac-

tor is DNB a concern? 
– What effect does mass flux have on critical heat flux?   
– Can transition boiling be experienced in heat flux controlled boiling? 
– Is the Chen correlation for heat transfer coefficient applicable to post-CHF heat 

transfer? 
– In a uniformly heated tube, at what location is CHF most likely to occur? 

PROBLEMS 

1.  We noticed that the required degree of superheat depends both on the surface 
condition (the size of the nucleation sites) and the type of liquid (wetting versus 
non-wetting).  Regarding the type of liquid, we want to examine two extreme 
cases.  Find the required degree of superheat for nucleation for liquids that com-
pletely wet the surface (φ = 0o).  Similarly, find the degree of superheat for com-
pletely non-wetting liquids (φ = 180o).  [Ans.:  For φ = 0, there is no nucleation.  
For φ = 180, no superheat is required]. 

2. Similar to the bubble growth in a conical cavity, the bubble growth in a cylin-
drical cavity is shown in the figure.  Verify the accuracy of the plot of the inverse 
of bubble radius (1/r) versus bubble volume. 

φ < 90o

b
b'

c

d
e

b

b' c

d

e

1/rb
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3.  Find the degree of superheat (Ts – Tsat) for a horizontal flat plate in water at at-
mospheric pressure needed to cause nucleation if cavity sizes of 5 µm are present 
in the heated surface. 

4.  Use Equation Vb.2.4 to find the minimum degree of superheat for the onset of 
nucleate boiling. 

5.  Use Equation Vb.2.1 to compare the required degree of superheat for water and 
for sodium nucleation.  [Hint: σsodium > σwater].

6.  A polished copper plate 0.05 m2 in area is placed in water and electrically 
heated to 116 C.  Find the rate of evaporation.  [Ans.: q ′′  = 0.587E6 W/m2, =m
46.86 kg/h, and h = 36,688 W/m2·C]. 

7.  A pan made of stainless steel contains water at atmospheric pressure.  The pan 
diameter is 25 cm and its surface is mechanically polished.  The pan is now heated 
while its surface is maintained at 116 C.  Find the surface heat flux, the boil off 
(evaporation) rate, and the peak heat flux.  [Ans.:  q ′′  = 5.6E5 W/m2, =m  44 

kg/h, and CHFq ′′  = 1.27 MW/m2.  Note that the operating heat flux is less than half 

of the peak heat flux hence, a safety factor of 1.27E6/0.56E6 = 2.26]. 

8.  A platinum wire having a diameter of 1.27 mm is used to boil water at atmos-
pheric pressure.  The surface superheat is 650 C.  Find h and q ′′ .  [Ans.:  hconv = 

298 W/m2·C, htotal = 368 W/m2·C, 240 kW/m2]

9.  Use the Rohsenow pool boiling correlation to find the heat flux at which in-
cipient boiling occurs.  The natural convection heat flux is given as 

25.163.2 Tq ∆=′′  kW/m2.  Use water (Csf = 0.0132) at P = 3.5 MPa. [Ans.: 

4.2 kW/m2].

10.  A pool of liquid nitrogen at atmospheric pressure is used to cool an electronic 
device that generates a constant amount of heat.  As the temperature of the device 
is unacceptably high, the following measures are proposed to lower the tempera-
ture: 
a) substitute liquid hydrogen (a lower boiling point) for nitrogen
b) increase the heat transfer area by a factor of three 
c) do both a and b. 
Use the given data and recommend the course of action that should be followed. 
Data:  (TWall)Initial = 1000 R, q ′′  = 150,000 Btu/h·ft2, properties in British Units 

are:

         Tsat hfg ρv ρl σ kv kl µv µl

H2     37        190        0.084      4.50     1.45E-4      0.0080       0.067     0.0027       0.032 
N2     140        86        0.280      50.0     5.90E-4      0.0034       0.088     0.0130       0.440 

where Tsat (R), hfg (Btu/lbm), ρ (lbm/ft3), σ (lbf/h), k (Btu/h·ft·F), µ (lbm/h·ft). 
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You may use the Rohsenow and Griffith correlation for critical heat flux: 

( ) 6.0/143 vfgvCHF hq ρρρ ∆=′′ .

11.  A tank of water at atmospheric pressure is heated by an electric resistance 
heater.  The voltage to the heater is held constant at 1000 V.  Over the range of in-
terest, the resistance of the heater in British unites can be expressed as R(T) = –
21.07 + 0.11585T where T is in F and R is in ohms.  The water is heated to satura-
tion.  At some location the heater temperature reaches 250 F, at which point CHF 
occurs, and the boiling regime changes to film boiling.  Find the heat flux and the 
heater temperature at which the heater will be operating after this occurs.  Data:  
dHeater = 0.25 in, AHeater = 1 ft2.  Neglect radiation effects. 

12. Water at a rate of 1 lbm/s flows in a vertical heated tube (d = 1.5 in).  System 
pressure is 1250 psia.  Find heat flux at a point where steam quality is 15% and 
surface superheat is 12 F.  [Ans.: q ′′  = 108 kW/m2]

13.  Water flows at a rate of 0.1 kg/s in a tube with a diameter of 250 mm.  The 
tube is heated uniformly at a rate of 135 kW/m2.  Find the wall temperature at a 
location where Tsat = 180 C and x = 25%. [Ans.:  Ts = 188 C] 

14.  Consider the case of liquid flow in a uniformly heated channel.  Initially, heat 
flux is so low that it only increases the liquid sensible heat.  We then start to in-
crease heat flux until water starts to boil.  We keep increasing heat flux until even-
tually we attain a specific value for heat flux at which the tube first experiences 
CHF.  Under this condition at what point does CHF first occur? 

15.  A test tube for boiling water has a diameter of 25 mm.  Water at a rate of 1000 
kg/h enters the uniformly heated tube.  If pressure is 7.5 MPa, find the heat trans-
fer coefficient and heat flux at a location where mixture quality is 0.25.  ∆Tsat = 10 
C.  [hc = 18,193 W/m·K, hn = 6,669 W/m·K, q ′′  = 249 kW/m2]

16.  Water at a rate of 0.25 lbm/s flows in a vertical heated tube having a diameter 
of 0.5 inches.  Pressure in the tube is 900 psia.  Find the heat flux at a point where 
the mixture enthalpy is 640 Btu/lbm and the surface superheat is 6 F.  [Ans.: q ′′  = 

97.6 kW/m2].

17.  Two simple correlations for nucleate flow boiling (subcooled and saturated) 
of water at 500 psia ≤ P ≤ 1000 psia are given by Jens-Lottes and by Thom-1966.  
These correlations in British units are: 

   Jens-Lottes:   44 60/)900/4(Exp6E.1/ satTPq ∆=′′

   Thom:    42 72/)1260/2(Exp6E.1/ satTPq ∆=′′
where q ′′  is in Btu/hr·ft2, P is in psia, and T is in F.  These correlations in SI units 

become:

   Jens-Lottes:   44 25/)2.6/4(Exp6E.1/ satTPq ∆=′′

   Thom:    42 7.22/)7.8/2(Exp6E.1/ satTPq ∆=′′
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where q ′′  is in W/m2, P is in MPa, and T is in C.  Use these correlations to com-

pare the results with the Chen correlation for P = 800 psia, ∆Tsat = 10 F, and steam 
quality equal to 0.1. 

18.  In flow boiling, we often need to find the surface temperature and its location 
at which subcooled boiling begins.  Although such local temperature for the in-
cipience of subcooled boiling is not a single fixed temperature, we can estimate its 
value from the following relation: 

TSB = Tsat + (∆Tsat)J-L – )/( hq ′′

where (∆Tsat)J-L is found from the Jens-Lottes correlation (see Problem 9).  Find 
the location and value of the surface temperature for the following case:   

Water enters a heated pipe of 0.7 in diameter at T = 525 F, P = 1000 psia, and 
V = 8 ft/s.  Surface heat flux is uniform at a rate of 1000 Btu/h·ft2·F.  [Ans.:  
(Ts)incipient boiling = 547.8 F]. 
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Vc..  Condensation

Similar to boiling, condensation is another mode of heat transfer, which is associ-
ated with a phase change.  Thus for constant system pressure, heat transfer takes 
place at constant fluid temperature.  While boiling requires heat addition, in con-
densation, heat should be removed so that the process can take place.  Such heat 
removal may be accomplished by employing a coolant or by transferring heat to a 
solid.  Condensers are important components of steam power plants, refrigerators, 
and chemical plants.  We begin this chapter with the definition of terms pertinent 
to condensation heat transfer. 

1.  Definition of Condensation Heat Transfer Terms 

Sensible energy (cp∆T) refers to the energy transfer due to the change in tem-
perature. 

Latent energy (hfg) refers to the heat of vaporization, a process during which 
change of phase takes place at constant temperature.  The latent energy is also 
known as latent heat. 

Condensation is a process during which vapor changes phase and becomes 
liquid if vapor temperature is reduced to below the saturation temperature.  If va-
por also includes noncondensable gases, the saturation temperature corresponds to 
the condensable gas partial pressure.  The condensable gas we consider in this 
chapter is steam.  Modes of condensation are described below and shown in Fig-
ure Vc.1.1 (a) through (e). 

Homogenous condensation is a mode of condensation, which occurs within 
the vapor field, where vapor forms tiny droplets of liquid suspended in the bulk of 
the vapor to form a fog (Figure a).  At the formation, the drops are very small and 
fall so slowly that they can be considered suspended in the bulk vapor.  As the 
concentration of these drops increases, they combine to form larger drops, falling 
as rain (rainout).  If the vapor also contains gases, the fog is generated when the 
bulk vapor becomes supersaturated (relative humidity > 100%).  That is to say that 
the vapor temperature drops below the saturation temperature at the steam partial 
pressure or the steam pressure is greater than the saturation pressure at the vapor 
temperature.  A similar phenomenon, but for a liquid, is flashing, which occurs 
when the liquid temperature is above the saturation temperature at the total pres-
sure. 

Direct contact condensation is a mode of condensation where vapor is con-
densed directly on colder liquid.  Examples for such mode of condensation include 
quench-tank of a PWR (Figure b) and the suppression pool of a BWR.  Another 
example includes condensation of steam on the spray droplets.  

Heterogeneous condensation occurs on a cooler surface (Figures c, d, and e).  
Heterogeneous condensation is the basis for the operation of condensers.  During 
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the condensation process, the latent heat associated with the phase change is trans-
ferred to the cooler surface. 

Dropwise condensation is a type of heterogeneous condensation (Figure c) 
where drops randomly appear on a cooler surface placed in the bulk vapor.  This 
generally happens if the surface is not clean or the liquid does not wet the surface.  
Rate of heat transfer in dropwise condensation is very high due to the high expo-
sure of surface area to the vapor.  However, the tiny drops would eventually join, 
reducing exposed surface area for condensation.  Liquid wet-ability is discussed in 
Chapter Vb. 

Film condensation occurs when the liquid, which is formed from the conden-
sation of vapor, wets a clean and uncontaminated cooler surface, blanketing it with 
a smooth film.  In vertical plates, the thickness of the film increases as the conden-
sate flows downward (Figures d and e).  Appearance of the film on the surface re-
duces the effectiveness of condensation heat transfer, due to the temperature gra-
dient across the film and the associated thermal resistance of the film.  In this 
chapter, we consider only film condensation. 

Jakob number, after Maxim Jakob, is the ratio of sensible heat to the latent 
heat, Ja = cp∆T/hfg.

Bulk Vapor

Fog

Vapor

Pool

Bubble

(a)                                                                           (b)                                         

Bulk
 Vapor Drop Bulk

 Vapor

Condensate
 Film

               (c)                                           (d)                                                      (e) 

Figure Vc.1.1.  Various modes of condensation

2.  Analytical Solution 

To find an analytical solution for the heat transfer coefficient in condensation, we 
consider the formation of a film of condensate on the cold surface of a vertical 
plate placed in a vapor.  The vapor generally includes noncondensable gases.  As 
shown in Figures Vc.2.1.(a and b) , the film thickness increases as liquid flows 
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down since more vapor condenses on the film.  Liquid velocity is zero at the wall, 
increasing to its maximum value at the edge of the boundary layer.  Liquid tem-
perature approaches surface temperature near the wall and increases to saturation 
temperature at the edge of the boundary layer.  Nusselt’s derivation for film con-
densation now follows. 
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Figure Vc.2.1.  (a)  Film of condensate as boundary layer and (b)  Nusselt model of the 
condesate film 

2.1.  Nusselt Derivation of Film Condensation

To be able to derive an analytical solution, several simplifying assumptions are 
made, per Nusselt.  First we assume that vapor does not contain any noncon-
densable gas.  Second, we assume that the flow of the film is laminar with thermal 
properties independent of temperature.  Finally, we assume the shear stress at the 
edge of the boundary layer is negligible (∂u(δ)/∂y = 0) and temperature profile in 
the film is linear.  The governing equation for the hydrodynamic boundary layer is 
Equation IIIa.3.20-1, which reduces to: 



680      Vc.  Two-Phase Flow and Heat Transfer:  Condensation 

X
y

V
v

x

P x

ρρ
11

0
2

2

+
∂

∂
+

∂
∂−=                           Vc.2.1 

where the body force in the film is now X = ρfg and the pressure gradient is dP/dx
= ρgg. Substituting in Equation Vc.2.1, yields: 
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Integrating Equation Vc.2.2 and using the boundary conditions of Vx(0) = 0 and 
∂Vx(δ)/∂y = 0 we find: 
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Note that Vx is also a function of x since Vx = f[δ(x)].  Having the velocity profile, 
mass flow rate is: 

−== )(
0

3 )3/()()()( x
fgffx bgbdyyVxm µρρρρ           Vc.2.4 

Both Vx and m  are functions of δ, itself an unknown.  To find δ, we use an energy 
balance for the control volume of Figure Vc.2.1.  At steady state, the energy enter-
ing the control volume (d m hfg) is equal to the energy leaving the control volume 

and entering the colder surface, d Q  = kf(bdx)(Tsat – Ts)/δ.  Setting these equal and 

using Equation Vc.2.4, we find that [ fgffbg µρρρ /)( 2− ]hfg dδ/dx = 

kf(bdx)(Tsat – Ts)/δ.  So that δ becomes: 
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Having δ, we can find both Vx and m  as explicit functions of x.  Since h = kf/δ and 
Nu = hL/kf, we then have both of these parameters also as functions of x.  Integrat-

ing from x to L, we can find h  and Nu :
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Note that in Equation Vc.2.6, we replaced hfg by fgh′  = hfg(1 + 0.68Ja), per Roh-

senow’s recommendation.  This is to account for two effects: cooling of the film 
below the saturation temperature and the non-linear temperature profile in the 
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film.  Total rate of heat transfer to the plate is )( ssatL TTAhQ −=  and total rate 

of condensate produced is fghQm ′= / .  To determine a condensation Reynolds 

number, we use Equation III.6.3, )/(4Re Dm πµ= , which is appropriate for con-

densation on a vertical cylinder.  For a flat plate we have bD ≡π  hence, 

)/(4Re bm µ= .  Substituting for m  in term of Q , we obtain the Reynolds num-

ber as ReL = 4 Lh L(Tsat – Ts)/(hfgµf) where L is the plate length.  Flow is laminar if 

ReL < 30.  For sufficiently large vertical plates the flow may become turbulent.  
For fully turbulent flow Re > 1800 and in the range of 30 < Re < 1800, the con-
densate film becomes wavy and hence, referred to as the wavy laminar region. 

Example Vc.2.1.  A vertical flat plate 1.2 ft long and 2 ft wide is maintained at 
424.8 F and exposed to saturated steam at 450 psia.  Find the total rate of heat 
transfer to the plate and the condensate mass flow rate. 

Solution:  We first find Tsat(450 psia) = 456.4 F then Tfilm = (456.4 + 424.8)/2 = 
440.6 F to find the following: 
For steam at Tsat = 456.4 F:  hfg = 768.2 Btu/lbm and ρv = 0.968 lbm/ft3

For water at Tfilm = 440.6 F:  kf = 0.37 Btu/ft·h·F, µf = 0.285 lbm/ft·h,  
ρf = 52 lbm/ft3, cpf = 1.1 Btu/lbm·F 

Since Ts << Tsat we need to find fgh′  = hfg(1 + 0.68Ja) 

Ja = 1.1 × (456.4 – 424.8)/768.2 = 0.045.  Thus, fgh′  = 791.7 Btu/lbm 

Lh = 1342.6 Btu/ft2·h·F

)( ssatL TTAhQ −=  = 1342.6 × (1.2 × 2) × (456.4 - 424.8) = 101,823 Btu/h. 

fghQm ′= /  = 101,823/791.7 = 0.036 lbm/s. 

Example Vc.2.2.  A steel plate 1/8 in. thick with L = 10 ft is placed in saturated 
steam at 1 atm.  At time zero, Ts0 = 200 F.  Find the time when Ts = Tsat.  For steel, 
ρ = 488 lbm/ft3, cp = 0.1 Btu/lbm·F, and k = 26.5 Btu/ft·h·F.  For steam, ρf = 59.8 
lbm/ft3, ρg = 0.04 lbm/ft3, and hfg = 970 Btu/lbm. 
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Solution:  For this transient problem, we may estimate the plate temperature, from 
an energy balance using the lumped capacitance approach: 

( ) ( )sfilm
s TThA

dt

Tcd
−=

Vρ

In this relation, Tfilm ≈ (Tsat + Ts)/2 and h in Equation Vc.2.6 may be written as: 

h = ζ(Tsat – T)–1/4 where ζ = ( ) 25.03 )/()(943.0 Lhkg ffgfgff µρρρ ′−
Assuming θ = Tsat – Ts, the above energy balance simplifies to: 

−= dtcAd )V2/(/ 4/3 ρζθθ

Integrating and setting θ = 0, we find )V/2/(4/1
0 cAt ρζθ=

θ0 = (Tsat – Ts0) = 212 – 200 = 12 F, A/V = 12/0.125 ft, ρc = 48.8 Btu/ft3·F
For the condensate layer, we find film properties at Tfilm = 209 F 

ζ = ( ) 25.032 )1069.0/(97039.0)035.089.59(89.5936002.32943.0 ××−×× =

1772.5 Btu/ft2·h·F3/4

t = (12)1/4/[2 × 1772.5 × 12/ (44.8 × 0.125)] = 14 s 

3.  Empirical Solution 

Application of the empirical solutions depends on the value of the Reynolds num-
ber.  If we substitute for mass flow rate, the Reynolds number can also be written 

as )/(4Re bm µ=  = 4ρ xV δ /µ where the average film velocity is used and the 

plate width (b) cancels out from the numerator and the denominator.   

3.1.  Condensation on Vertical Plates and Cylinders 

By defining a condensation Nusselt number, Nuc also referred to as the condensa-
tion number, we may express the heat transfer coefficient in terms of the Reynolds 
number.  These are shown in the table below.  In the wavy laminar region, being 
the transition region between laminar and turbulent, the Kutateladze correlation 
and in the turbulent region the Labuntsov correlation are recommended. 
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Example Vc.3.1.  A vertical flat plate, 1.1 m long and 0.5 m wide maintained at 
50 C is exposed to saturated steam at 0.5 bar.  Find the total rate of heat transfer to 
the plate and the condensate mass flow rate. 

Solution:  We first find Tsat(0.5 bar) = 81.33 C then Tfilm = (81.33 + 50)/2 = 
65.67 C: 
For steam at Tsat = 81.33 C: hfg = 2305.4 kJ/kg and ρv = 0.308 kg/m3

For water at Tfilm = 65.67 C: kf = 0.659 W/m·K, µf = 429E-6 N·s/m2, ρf = 
980 kgm/m3, cpf = 4.2 kJ/kg·K 

Since Ts<< Tsat, we calculate need to find fgh′ :

Ja = 4.2(81.33 – 50)/2305.4 = 0.057 

fgh′  = 2305.4(1 + 0.68 × 0.057) = 2395 kJ/kg 

h =

25.03

1.1)5033.81(6E429

3E2395659.0)308.0980(9808.9
943.0

×−×−
××−×

 = 4310 W/m2·K

)( ssat TTAhQ −=  = 4310 (1.1 × 0.5) × (81.33 – 50) = 74,268 W 

fghQm ′= /  = 74,268/2.395E6 = 0.031 kg/s 

Finding Reδ = 4 m /µfb = 4 × 0.031/(429E-6 × 0. 5) = 578 shows the flow regime 
is actually wavy laminar.  We should then use the heat transfer coefficient based 
on the Kutateladze correlation as shown below: 
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Solving for Reδ, we find Reδ = 716.5.  Using this in the Kutateladze correlation, 
we find: 

Lh  = 716.5 × 0.659/{(1.08 × 716.51.22 –5.2)[(429E-6/980)2/9.8]1/3} = 5340 

W/m2·K

Revised values for Q  and m  are: 

Q  = 5340 (1.1 × 0.5) × (81.33 – 50) = 92,016 W 

m  = 92,016/2.395E6 = 0.0384 kg/s. 

The same procedure used for vertical flat plates is applicable to vertical cylin-
ders if δL << 0.5D.

3.2.  Condensation on Spheres, Horizontal Cylinders  
and on Banks of Tubes 

Correlations similar to Equation Vc.2.6 are obtained for condensation on radial 
systems (Dhir & Lienhard): 
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where C = 0.815 for condensation on spheres and C = 0.729 for condensation on 
horizontal tubes.  Equation Vc.3.4 is also applicable to condensers, which consist 
of banks of horizontal tubes with cold fluid flows inside the tubes and vapor con-
denses on the tubes.  For film condensation inside horizontal tubes, C = 0.555. 

Example Vc.3.2.  Find the condensate flow rate for the following data of a power 
plant condenser: P = 2 in Hg, D = 1¼ in, L = 28.5 ft, Ntube = 16500, Ts = 75 F. 

Solution:  We first find Tsat(2 in Hg) = 101 F then Tfilm = (101 + 75)/2 = 88 F 

For steam at Tsat = 101 F: hfg = 1036 Btu/lbm and ρg = 0.003 lbm/ft3

For water at Tfilm = 88 F: kf = 0.36 Btu/ft·h·F, µf = 1.9 lbm/ft·h, ρf = 62 lbm/ft3,
cpf = 1 Btu/lbm·F 

Since Ts << Tsat we need to find fgh′  = hfg(1 + 0.68Ja) 

Ja = 1 × (101 – 75)/1036 = 0.025 and fgh′  = 1054 Btu/lbm 

e now use Equation Vc.3.4 to find the average heat transfer coefficient over a sin-
gle tube: 

Dh  = 0.729 × {(32.2 × 36002) × 622 × 0.363 × 1054/[1.9 × (101 – 75) ×
(1/12)]}0.25 = 1525 Btu/ft2·h·F

)( ssatD TTAhQ −=  = 1525 × (π × 28.5 × 1.25/12) × (101 - 75) = 369,800 Btu/h 

fghQNm ′= /tube  = 16,500 × 368,800/1054 = 5.8 Mlbm/h.   

4.  Condensation Degradation

The presence of even a small amount of noncondensable gas significantly de-
grades the rate of condensation heat transfer.  As shown in Figure Vc.4.1, these 
gases tend to migrate and accumulate near the colder surface, reducing the partial 
pressure of the vapor and subsequently the corresponding saturation temperature 
of the vapor.  For containment response analysis, safety regulations require the use 
of the Tagami correlation for the case of a LOCA and the Uchida correlation dur-
ing a MSLB analysis. 

Tagami Correlation 

Tagami, an empirical correlation, applies during the forced convection period fol-
lowing the blowdown phase of a LOCA.  The key parameter in the Tagami corre-
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lation is therefore time tp, which marks the end of the blowdown-induced forced 
convection period.  As such, the Tagami correlation is only applicable up to time 
tp.  The natural convection phase of a blowdown must be analyzed by using the 
Uchida or the turbulent natural convection correlation depending on the value of 
the Ra number.  If hmaximum is the heat transfer coefficient corresponding to time tp,
then the heat transfer coefficients at other times (t < tp) are obtained as 

)/(max ptthh = .  According to Tagami, hmaximum itself is calculated from:  maxh =

( ) 0.62
/ VT pC U t , where U is the total blowdown energy released during tp and V 

is containment free volume.  In SI units, U is in J, tp in s, V in m3, and CT is 0.607.  
Time tp is not known beforehand rather it should be obtained by iteration.  A typi-
cal value for tp given a large dry containment is about 13 seconds. 

Uchida Correlation 

The Uchida correlation is given as a table of heat transfer coefficient versus the ra-
tio of air to steam mass.  The maximum value is 1590 W/m2·K and the minimum 
value is 11.4 W/m2·K.
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Figure Vc.4.1.  (a)  Effect of noncondensable gas on pressure and (b) on h (Uchida model) 

QUESTIONS 

– Find the condensation mode for the following examples, a power plant con-
denser, steam condensation on spray droplets, steam condensation in a suppres-
sion pool, rain. 

– Which condensation mode is more efficient, dropwise or film? 
– Does dropwise condensation occur if a liquid wets the surface 
– Can the heat transfer coefficient in condensation reach 10,000 Btu/ft2·h·F?
– Consider two condensers, one using horizontal tubes the other vertical tubes.  

Cold water flows inside the tubes.  If all other parameters are identical which 
condenser is more efficient? 
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– Inside the condensate film, where can you find the minimum shear stress  
– The flow of the condensate film beyond what Reynolds number becomes turbu-

lent? 

PROBLEMS 

1.  A vertical plate, 3 ft long and 5 ft wide is insulated from one side and the other 
side is exposed to steam at 15 psia.  The plate temperature is maintained at 120 F.  
At what rate is condensate produced? [Ans.:  Ja = 0.033, Re = 287.5, Nu = 7004, 

h = 878 Btu/ft2·h·F, Q  = 126 kW, and m  = 0.116 lbm/s]. 

2.  steam at 4 psia is condensing on a vertical plate 1 m long and 2 m wide.  The 
plate is at 50 C.  Find m .  [Ans.:  Ja = 0.03, Re = 297, Nu 7621, h = 4968 

W/m2·K, Q  = 278 kW, and m  = 0.12 kgm/s]. 

3.  A steam condenser consists of a square array of 529 horizontal tubes, 1 in di-
ameter and 12 ft long.  Tubes are maintained at 95 F to condense steam at 1 psia.  
Find the condensate production rate.  [Ans.:  27 lbm/min.] 

4.  Find the condensation heat transfer coefficient for saturated Freon-12 at 50 C 
on a horizontal tube, having a diameter of 3 cm and maintained at 40 C.  [Ans.:  
1244 W/m2·C]. 

5.  Consider condensation of benzene vapor at 1 bar on a vertical flat plate of 
height 0.3 m.  If the plate is kept at 60 C, find the condensation heat transfer coef-
ficient.  At 1 bar, Tsat = 80 C, ρl = 823 kg/m3, ρg = 2.74 kg/m3, hfg = 398 kJ/kg, cp,l

= 1.88 kJ/kg·K, µl = 321E-6 N·s/m2, kl = 0.131 W/m·K.  [Ans.  1270 W/m2·k].

6.  Saturated steam at 1 atm is condensing on a horizontal tube at a rate of 
300 kg/h.  The tube is 2 m long and is maintained at 60 C.  Find the tube diameter.  
[Ans.:  13 cm]. 

7.  A steam power plant produces 2700 MWe at a thermal efficiency of 29%.  Find 
the surface area and the number of tubes  

8.  A steel plate having L = 3 m, b = 1.5 m, and thickness of 0.5 cm is placed in 
steam at 1 atm.  Initially, the plate is at 80 C.  Plot the plate temperature versus 
time.  Identify the simplifying assumptions made. 

9.  Water flows at a rate of 296 kg/h in a horizontal thin-walled tube (d = 0.025 m) at 
25 C.  Benzene vapor condenses at 1 bar on the tube.  Find the rate of condensation 
per meter.  [Ans.:  By iteration 24 kg/m·h]. 



VI.  Applications 

In this chapter we will study such important topics as heat exchangers, flow-
meters, and turbomachines.  We will also evaluate the thermal hydraulics response 
of systems to transients and heat generation from nuclear energy. 

VIa..  Heat Exchangers 

Heat exchanger (HX) is a generic term applied to a wide range of mechanical sys-
tems, which are designed for the purpose of exchanging thermal energy between 
two streams of fluids separated by a solid surface.  Some heat exchangers are used 
as heat sinks including automotive inter-coolers, containment air coolers, cooling 
towers, automotive radiators, and power plant condensers.  Some other heat ex-
changers are used as a heat source including boilers, radiators for space heating, 
and steam generators.  For example, a nuclear plant utilizes many heat exchangers.  
In a typical plant, feedwater heaters are employed in the balance of plant to im-
prove plant thermal efficiency.  Also, other heat exchangers, such as the compo-
nent cooling water and shutdown cooling (also known as the residual heat re-
moval) system, provide a heat sink for the reactor during the shutdown period.  
Finally, the service water heat exchanger provides a heat sink for the balance of 
plant equipment.  Heat exchangers have a hot side and a cold side separated by 
tubes or plates.  Heat transfer between the fluids in each side takes place through 
the surface dividing the hot side and the cold side.  Heat transfer may take place 
between liquid and liquid, liquid and gas, and gas and gas.  Heat exchangers may 
also carry two-phase flow resulting in boiling or in condensation.  Heat exchang-
ers may be operating at steady-state or transient conditions.  Due to such design 
variations, heat exchangers require careful analysis in design optimization as well 
as in performance evaluation.  In this chapter we will deal primarily with the 
thermal aspects of tubular heat exchangers. 

1.  Definition of Heat Exchanger Terms 

Concentric parallel flow heat exchanger consists of a tube surrounded by a 
shell.  In parallel flow heat exchangers, both hot and cold streams flow in the same 
direction as shown in Figure VIa.1.1. 
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Figure VIa.1.2.  Schematic of a shell and tube heat exchanger
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Figure VIa.1.1.  Schematics of parallel, counterflow, and cross flow heat exchangers 

Concentric counter flow heat exchanger consists of a tube surrounded by a 
shell.  In counter flow heat exchangers, the hot and cold streams flow in opposite 
directions as shown in Figure VIa.1.1. 

Cross flow heat exchangers are generally used in gas-liquid applications.  
They include tubes with a stream flowing parallel to the xy-plane and cross flow 
parallel to the the yz-plane and perpendicular to the tube axis.  The cross flow may 
be mixed, as shown in Figure VIa.1.1, or unmixed by passing cross flow through 
parallel plates. 

Shell and tube heat exchanger is similar to the concentric heat exchanger.  
However, shell and tube heat exchangers consist of multi tubes held in place by 
baffle plates.  These plates prevent tube vibration and enhance the rate of heat 
transfer by diverting the shell-side fluid in a cross flow manner, as shown in Fig-
ure VIa.1.2.  Shell and tube heat exchangers may be arranged in series to obtain 
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several cascaded shells. Each heat exchanger has a minimum of four ports.  As 
shown in Figure VIa.1.2, there is an inlet port and an outlet port in the hot side.  
Similarly, there is an inlet and an outlet port in the cold side.  Tubes are either 
straight or bent in the form of a U.  Heat exchangers including straight tubes have 
an inlet plenum and an outlet plenum.  Tubes are installed inside tube sheets, 
which also act as barriers between the plenum fluids and the shell-side fluid. 

Fouling factor f, is a measure of cleanliness of heat exchangers.  Fluid streams 
generally carry impurities.  Sedimentation of the impurities over time leads to a 
layer of deposit.  This poses a resistance to heat transfer across the solid surface.  
The sedimentation may also consist of sludge that would pit and corrode solid sur-
faces.  Maintaining a closely monitored chemistry of the fluid stream and periodic 
cleaning of heat exchangers is essential in ensuring proper operation of the device.  
In a shell and tube heat exchanger, for example, cleaning of the shell side is espe-
cially challenging due to the presence of the baffle plates.  In such cases, the 
cleaner stream flows in the shell side, as cleaning the inside of the tubes is by far 
easier.  In power plants using large bodies of water as the heat sink, steam always 
condenses on the tubes with river, lake, bay, or ocean water flowing in the tubes.  
Fouling may be categorized as particulate fouling, crystallization fouling, corro-
sion fouling, biofouling, and chemical reaction fouling (Kakac).  One way to ac-
count for fouling in the design process of heat exchangers is to increase the sur-
face area for heat transfer.  Fouling factor has units of thermal resistance 
ft2·h·F/Btu or m2·K/W.  Some typical values are as follows: 

Fluid     f (m2·K/W)   f (ft2·h·F/Btu)

Transformer oil   0.000176                        0.0010 
Engine lube oil   0.000176                        0.0010 
Crude oil    0.000352                        0.0020 
Heavy gas oil   0.000881                        0.0050 
Heavy fuel oil   0.001233                        0.0070 
Vegetable oil   0.000528                        0.0030 
Seawater    0.000176                        0.0010 
Brackish water   0.000528                        0.0030 
Muddy or silt water  0.000705                        0.0040 
River water (< 50 C)  0.001000                        0.0060 
Refrigerating liquid  0.000200                        0.0011 

From:  Standards of Tubular Exchangers Manufacturers Association 

Overall heat transfer coefficient is given in Equation IVa.6.8 for a clean con-
centric heat exchanger.  To account for fouling resistance, Equation IVa.6.8 
should be modified as follows: 
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where subscripts i and o stand for tube inside and tube outside, respectively.  Tube 
outside is also known as the tube bundle, shell side, or secondary-side.  In Equa-
tion VIa.1.1, fi and fo are the tube-side and shell-side fouling factors, respectively.  
Typical values of U for various streams are as follows. 

Stream A / Stream B         U (W/m2·K)             U (Btu/ft2·h·F)

Condensing Steam / Water (Condenser & FWH)      1100 – 5500                      200 – 1000  
Freon 12 Condenser / Water                                         300 – 850                         50 – 150   
Water / Water                                                                850 – 1700                     150 – 300  
Water / Oil                                                                     100 – 350                         20 – 60  
Gas / Gas                                                                         10 – 40                              2 – 8  

Cleanliness factor, CF is another measure of heat exchanger cleanliness and is 
defined as the ratio of the overall heat transfer coefficient when a heat exchanger 
is fouled, to the overall heat transfer coefficient of the clean heat exchanger, CF = 
Ufouled/Uclean.  When defining CF, we need not to consider any fouling (fi and fo ) in 
Equation VIa.1.1, rather calculate Uclean and find Ufouled from Ufouled = CFUclean.

Heat Capacity, C is the product of mass flow rate and specific heat, C = pcm

having units of Btu/s·F or W/C. 

2.  Analytical Solution 

In this section we discuss steady-state operation of heat exchangers.  As shown in 
Figure VIa.2.1, we can assign control volumes to the entire hot-side,  the cold-side 
and the solid surface separating the hot and cold  sides.  In steady state conditions, 
flow rates at the inlet and outlet ports for each control volume are equal hence: 

houthinh mmm == ,,                                     VIa.2.1a 

coutcinc mmm == ,,                                     VIa.2.1b 

inhh hm ,,

incc hm ,,

Hot-side CV

Cold-side CV

outhh hm ,,

outcc hm ,,

Tube CV

hpouth cT ,, ,

cpoutc cT ,, ,

hpinh cT ,, ,

cpinc cT ,, ,
Q

Q

Figure VIa.2.1.  Control volumes for the primary and secondary sides

The hot stream enters at an enthalpy of hh,in and leaves at an enthalpy of hh,out < 
hh,in.  If the heat exchanger shell is fully insulated so that there is no heat loss to 
the environment, then under steady-state operation: 
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QQQ sh ==                                                     VIa.2.2a 

On the other hand, the cold side fluid enters at an enthalpy of hc,i and leaves at an 
enthalpy of hc,o > hc,i.  The gain in the cold stream energy is due to the transfer of 
heat from the solid surface.  In steady-state: 

QQQ sc ==                                       VIa.2.2b 

Substituting for the rate of heat transfer while assuming negligible potential and 
kinetic energies, we find: 

)( ,, outhinhh hhmQ −=                       VIa.2.3a 

)( ,, incoutcc hhmQ −=                        VIa.2.3b 

For a special case where each stream exits at the same phase as it entered the heat 
exchanger, we may replace ∆h  cp∆T.  Assuming variations in specific heat are 
small and using cp = f(Tin + Tout)/2, we can write the axial energy equations as: 

)( ,, outhinhh TTCQ −=                        VIa.2.4a 

)( ,, incoutcc TTCQ −=                                      VIa.2.4b 

So far we used the conservation equations of mass and energy in the axial direc-
tion.  In the next section we use the conservation equation of energy in the trans-
verse direction for elemental control volumes to tie the hot-side and cold-side 
temperatures by applying the overall heat transfer coefficient.  The reason for us-
ing elemental control volume is that axial temperature profiles are generally not 
linear functions of the heat exchanger length.  As a result, we cannot generally use 
average temperatures for the hot and cold side as: 

]
22

[ ,,,, outcincouthinh TTTT
T

+
−

+
=∆            VIa.2.5 

If it were possible, the rate of heat transfer would have been calculated from 

TUAQ ∆= .  The simple relation given in Equation VIa.2.5 provides only an es-

timation of ∆T.  In the next section we will see that ∆T is a logarithmic function of 
the inlet and outlet temperatures referred to as the logarithmic mean temperature 
difference (LMTD).

2.1.  LMTD Method of Analysis 

The analysis performed below applies to parallel flow heat exchangers as shown 
in Figures VIa.2.2(a).  Similar analysis can be performed for counterflow heat ex-
changers, shown in Figure VIa.2.2(b).   
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T
Th,in

Th,out

Tc,out

Tc,in

dTh

dTc

∆T
∆T0 ∆TL

x
dx

Cold Stream CV

Hot Stream CV

Tube CV

0 L

T
Th,in

Th,out

Tc,in

Tc,out

dTh

dTc

∆T

∆T0

∆TL

x
dx

Cold Stream CV

Hot Stream CV

Tube CV

0 L
                        (a)                                                                     (b) 

Figure VIa.2.2.  Hot and cold temperature profiles for (a) parallel and (b) counterflow heat 
exchangers 

Consider three elemental control volumes, one for the hot side, one for the tube 
surface, and one for the cold side of a heat exchanger, Figure VIa.2.2(a) and 
VIa.2.2(b).  These figures show the temperature profiles as a function of the heat 
exchanger length.  Similar to Equations VIa.2.4a and VIa.2.4b, we can write axial 
energy equations for the hot side and cold side of the elemental control volumes: 

hh dTCQd −=                         VIa.2.6a 

cc dTCQd =                                       VIa.2.6b 

We now write the transverse energy equation assuming negligible axial heat con-
duction in the tube.  Such thermal resistances as flow, tube wall, and fouling are 
taken into account by the use of an overall heat transfer coefficient: 

TxdAxUQd ∆= )]()([             VIa.2.7 

Note that the term ∆T in Equation VIa.2.7 represents the difference in the average 
temperatures of the hot and cold side elemental control volumes (i.e. ∆T = Th – 
Tc).  To relate Equations VIa.2.6a and VIa.2.6b to Equation VIa.2.7, we differenti-
ate ∆T and substitute for terms: 

d(∆T) = dTh – dTc = 
ch C

Qd

C

Qd −− = )
11

(
ch CC

Qd +−          VIa.2.8 
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If we integrate Equation VIa.2.8 from x = 0 to x = L, we get: 

)
11

(0
ch

L CC
QTT +=∆−∆                          VIa.2.9 

We may also substitute in Equation VIa.2.8 for Qd  from Equation VIa.2.7 and 

divide by ∆T to obtain: 

)
11

)](()([
)(

ch CC
xdAxU

T

Td +−=
∆
∆

Integrating the above equation from x = 0 to x = L, yields: 

)()(]
11

[
)(

0
0

xdAxU
CCT

Td L

ch

L

+−=
∆
∆

         VIa.2.10 

We now define an overall heat transfer coefficient, which is averaged over the 
heat exchanger length: 

A

xdAxU
U

L
0 )()(

=

where A is the heat exchanger surface area.  By defining the average U, Equation 
VIa.2.10 becomes: 

)
11

(ln 0

chL CC
UA

T

T
+=

∆
∆

          VIa.2.11 

Substituting for 1/Ch + 1/Cc from Equation VIa.2.9 we find: 

0

0ln( / )
L

LMTD
L

T T
Q UA UA T

T T
∆ − ∆= = ∆

∆ ∆
         VIa.2.12 

Note that in applying Equation VIa.2.12 to parallel and counterflow heat exchang-
ers, we must recall that (see Figure VIa.2.2): 

Parallel Flow:    ∆T0 = Th,in – Tc,in     and ∆TL = Th,out – Tc,out

Counterflow:    ∆T0 = Th,in – Tc,out    and ∆TL = Th,out – Tc,in

For the same inlet and outlet temperatures, (∆TLMTD)Counterflow > (∆TLMTD)Parallel.
This implies that for the same U and A, a counterflow heat exchanger has a higher 
rate of heat removal than a parallel flow heat exchanger.  Comparing Equation 
VIa.2.5 with Equation VIa.2.12, we note that the temperature difference unfortu-
nately contains a logarithmic term.  This complicates analysis when unknown 
temperatures must be found from Equation VIa.2.12. 
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Example VIa.2.1.  Use the given data to find a) ∆TLMTD if the heat exchanger uses 
a parallel flow arrangement and b) ∆TLMTD if the heat exchanger uses a counter-
flow arrangement.  Data:  Th,i = 195 F, Th,o = 160 F, Tc,i = 65 F, and Tc,o = 105 F. 

T Th,in = 195 F

Th,out = 160 F

Tc,out = 105 F

Tc,in = 65 F

∆T0 = 130 F
∆TL= 55 F

x

T Th,in = 195 F

Th,out = 160 F

Tc,in = 65 F

Tc,out = 105 F

∆T0 = 90 F

∆TL = 95 F

x

Solution:  a)  For parallel flow, ∆T0 = Th,i – Tc,i = 195 – 65 = 130 F, and ∆TL = Th,o

– Tc,o = 160 – 105 = 55 F 

[∆TLMTD]Parallel = [130 – 55]/ln(130/55) = 87.2 F 

b)  For counterflow, ∆T0 = Th,i – Tc,o = 195 – 105 = 90 F, and  
∆TL = Th,o – Tc,i = 160 – 65 = 95 F 

[∆TLMTD]Counterflow = [90 – 95]/ln(90/95) = 92.5 F 

Comment:  Two observations can be made from this example.  First, as discussed 
earlier and shown above (∆TLMTD)Counterflow > (∆TLMTD)Parallel.  In this example, for 
the same U and A, the counterflow HX is more efficient than the parallel flow HX 
by about 6%.  Second, an average temperature difference per Equation VIa.2.5 is 
∆T  = [(195 + 160) – (105 + 65)]/2 = 92.5 F, which happens to agree with 
(∆TLMTD)Counterflow.

Equations  and Unknowns.  For a concentric heat exchanger, we derived three 
equations, namely two axial energy equations (Equations VIa.2.4a and VIa.2.4b) 
and a transverse energy equation (Equation VIa.2.12).  The number of unknowns, 
being nine, exceeds the number of equations by a wide margin.  The unknowns are 

AUTTTTmmQ outcouthincinhch and,,,,,,,, ,,,, .  Note that cp,h and cp,c are not un-

knowns as they are functions of the related temperatures.  We have an additional 
equation for U given by Equation VIa.1.1, which introduces hi, ho, fi, fo, di, do, and 
L.  However, the heat transfer coefficients are functions of Re, Pr, fluid tempera-
ture, di, and do.  Also the heat exchanger surface area is related to tube diameter 
and tube length as A = πdL.  An additional unknown is the shell diameter, which 
can be calculated from an appropriate equation.  We increased the number of 
equations to eight.  These are Equations VIa.2.4a, VIa.2.4b, VIa.2.12, VIa.1.1, 
V.3.4 (for hi and a similar equation for ho), the relation for A = f(d, L), and the re-
lation for Dshell.  However, we increased the number of unknowns to seventeen!  
To have a consistent set, we must then specify nine of the unknowns.  This argu-
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ment indicates that, from the thermal analysis point of view, heat exchangers have 
a large degree of freedom.  On the other hand, constraints for design optimization 
include: 

– structural considerations (tube outside diameter to stand internal pressure)  
– hydraulic considerations (tube inside diameter for pumping power and pressure 

drop in tube) 
– performance (fouling characteristics of the working fluids) 
– tube material (conductivity, erosion, and corrosion characteristics) 
– size and weight limitations 
– cost 

Returning to the three equations and nine unknowns discussion, let’s consider a 
case where two inlet temperatures (Th,in and Tc,in), two flow rates ( hm , and hm ),

the heat transfer coefficient U, and the surface area A are specified.  We solve for 

the two exit temperatures (Th,out and Tc,out) and the rate of heat transfer Q .  We 

substitute for the two exit temperatures from Equations VIa.2.4a and VIa.2.4b into 

Equation VIa.2.12 to solve for Q :

)/1()/(

)1)(( ,,

ch

incinh

CC

TT
Q

−
−−

=
β

β
                       VIa.2.13 

where
]/1/1[ ,, cpchph cmcmUAe −=β .  This equation is applicable to counterflow heat 

exchangers.  See Section 2.2 for generalization of this method. 

Example VIa.2.2.  Water flows in both sides of a counterflow heat exchanger. 

Find the rate of heat transfer Q , and exit temperatures (Th,out and Tc,out) for the fol-

lowing data:  Th,i = 130 F, Tc,i = 95 F, 6E5.1=hm  lbm/h, 6E41.2=cm  lbm/h, 

U = 259 Btu/ft2·h·F, A = 5,790 ft2, and cp = 1 Btu/lbm·F. 

Solution:  To use Equation VIa.2.13, we find  
β = exp[259 × 5,790(1/1.5E6 – 1/2.41E6)] = 1.4586 

)( ,, outhinhh TTCQ −=  = (130 –95) × (1.4586 – 1)/[1.4586/1.5E6 – 1/2.41E6] = 

28.8E6 Btu/h 

Th,out = )/(, hinh CQT −  = 130 – (28.8E6/1.5E6) = 111 F 

Tc,out = )/(, cinc CQT +  = 95 + (28.8E6/2.41E6) = 107 F. 

Special Modes of Operation.  Shown in Figure VIa.2.3 are three different 
modes of operations.  Figure VIa.2.3(a) shows one stream is boiling while the 
other stream is cooling down.  In this case (i.e., in the case of a steam generator) 

0→∆T  and ∞→cC .  Figure VIa.2.3(b) shows one stream is condensing 
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Tc,out
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∆T0 = ∆TL

0
                         (c) 

Figure VIa.2.3.  (a) Steam generator, (b) Condenser, and (c) Special case of ∆Th = ∆Tc

while the other stream is heating up.  In this case (i.e. in the case of a condenser), 
we have 0→∆T  and ∞→hC .  Note that in these cases we should use Equa-

tions VIa.2.3a and VIa.2.3b.  Finally, Figure VIa.2.3(c) shows a special case in 
which Ch = Cc.  This requires that ∆Th = ∆Tc.

Multi-pass Heat Exchangers.  The LMTD method outlined above and the re-
sult culminated in Equation VIa.2.12 apply to concentric heat exchangers (Fig-
ure IVa.6.3).  The same results can be applied to the shell and tube heat exchang-
ers with multi-pass tubes and shell, by applying a correction factor Fmulti-pass so 
that:

LMTDpassMulti TUAFQ ∆= −                      VIa.2.12a 

The FMulti-pass factor is given in Figure VIa.2.4 for two cases.  The left side figure is 
for any multiples of two tube pass (four, six, etc.) and one shell pass.  The right 
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side figure is for any multiple of four tube and two shell passes.  In these figures, 
the tube-side inlet and outlet temperatures are shown by ti and to whereas the shell-
side inlet and outlet temperatures are shown by Ti and To, respectively.  The cor-
rection factor obtained from Figure VIa.2.3 should be used in conjunction with the 
∆TLMTD calculated for a counterflow configuration.  The correction factor for one 
shell path, as shown in the left side plot of Figure VIa.2.4 is obtained from: 

2

2 2

1
1

ln[(1 ) /(1 )]

ln{[2 ( 1 1)]/[2 ( 1 1)]}

Multi pass

R
F

R
P PR

P R R P R R

−
+= ×

−
− −

− + − + − + + +

                      VIa.2.14 

Parameters P and R in Figure VIa.2.4 and in Equation VIa.2.11 are known as ca-
pacity ratio and effectiveness, respectively and are given as: 

Capacity Ratio: 
ii

i

h

c

tT

tt

C

C
P

−
−

== 0

Effectiveness: 
io

oi

ioh

oic

tt

TT

ttC

TTC
R

−
−

=
−
−

=
)(

)(

Figure VIa.2.4.  Correction factor for multiple tube and shell passes 

The LMTD correction factor (F) for multi-pass shell and tube heat exchangers 
can be calculated by using the software on the accompanying CD-ROM. 

Example VIa.2.3.  Seawater is used to cool the lubricating oil of a ship’s diesel 
engine.  The shell and tube heat exchanger has one shell and two tube passes.  
Tube surface area is 100 ft2 and the overall heat transfer coefficient is given as U = 
250 Btu/ft2·h·F.  Oil enters at 160 F and leaves at 125 F.  Water enters the tube at 
75 F and leaves at 100 F.  Find the total rate of heat transfer. 



698      VIa  Applications:  Heat Exchangers 

Solution:  We find the capacity ratio and the effectiveness as follows, 
P = (100 – 75)/(160 – 75) = 0.294.  R = (160 – 125)/(100 –75) = 1.4 

Using the left plot of Figure VIa.2.3, we find FMulti-pass ≈ 0.95 

∆TLMTD = [(160 – 100) – (125 – 75)]/ln[(160 – 100)/(125 – 75)] = 54.85 F 

Q  = FMulti-passUA∆TLMTD = 0.95 × 250 × 100 × 54.85 = 1.3E6 Btu/h ≈ 0.4 MW. 

Cross Flow Heat Exchangers.  Equation VIa.2.12 is also applicable to cross 
flow heat exchangers: 

LMTDCrossFlow TUAFQ ∆=                      VIa.2.12b 

where FCross Flow is given in Figure VIa.2.5 for two cases.  The left figure is for a 
case where both streams are unmixed and the right figure is for one stream mixed 
and other stream unmixed. 

Figure VIa.2.5.  Cross flow heat exchangers 

2.2.  NTU Method of Analysis 

In cases where exit temperatures are unknown, we have to solve an equation in-
volving the logarithmic term for ∆TLMTD.  An alternative method of analyzing heat 
exchangers is the ε – NTU method where NTU = UA/C stands for number of trans-
fer units, and effectiveness (now represented by ε) is given as: 

)( ,,min incinh

actual

ideal

actual

TTC

Q

Q

Q

−
==ε
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where Cmin is the minimum of Ch and Cc.  The ideal or maximum rate of heat 
transfer is associated with maximum ∆T, which is ∆Tmax = Th,in – Tc,in.  If we find 

ε, then we can calculate actualQ  from: 

maxmin TCQactual ∆= ε

Therefore, in the ε-NTU method, rather than calculating ∆TLMTD we calculate ε,
which depends on the type of heat exchanger and flow configuration.  Since 

)()( ,,,, incoutccouthinhhactual TTCTTCQ −=−= , then 

)(

)(

,.min

,,

incinh

outhinhh

TTC

TTC

−
−

=ε                    VIa.2.15a 

and

)(

)(

,.min

,,

incinh

incoutcc

TTC

TTC

−
−

=ε                    VIa.2.15b 

We use Equations VIa.2.15a, VIa.2.15b, and VIa.2.11 to derive relations for ε for 
various types of heat exchangers.  For example, for a parallel flow heat exchanger, 
we can write Equation VIa.2.11 as: 

)]/1/1(exp[
,,

,,

0
ch

incinh

outcouthL CCUA
TT

TT

T

T
+−=

−
−

=
∆
∆

We now solve Equation VIa.2.15a for Th,out and substitute in the above equation to 
get: 

)]/1/1(exp[)1(1
,,

,,
ch

h

c

incinh

incoutc CCUA
C

C

TT

TT
+−=+

−
−

−

Substituting for the temperature ratio term in the above equation from Equa-
tion VIa.2.15b yields: 

hc

ch

CCCC

CCUA

//

)]/1/1(exp[1

minmin +
+−−

=ε

If it happens that Cc < Ch, then Cmin = Cc and the denominator becomes 1 + Cc/Ch.
Conversely, for the case of Ch < Cc, the denominator becomes 1 + Ch/Cc.  We can 
write the result in compact form of 1 + Cr where Cr = Cmin/Cmax.  Similarly, in the 
numerator, we factor out Cmin and substitute for UA/Cmin = NTU:
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maxmin

maxmin

/1

)]/1(exp[1

CC

CCNTU

+
+−−

=ε                       VIa.2.16 

Equation VIa.2.16 gives the effectiveness as a function of NTU, ε = f(NTU, Cr).
We may also solve Equation VIa.2.16 for NTU as a function of ε, NTU = f(ε, Cr).
The same method used to derive Equation VIa.2.16 for the parallel flow heat ex-
changers can be applied to other types of heat exchangers and obtain similar rela-
tions for effectiveness (Kays).  The results for ε as a function of NTU and Cr = 
Cmin/Cmax are summarized in Table VIa.2.1.  This is followed by the results ob-
tained from Kays for NTU = f(ε), as shown in Table VIa.2.2. 

Example VIa.2.4.  Water flows in both sides of a counterflow heat exchanger.  

Find the rate of heat transfer Q , and exit temperatures, Th,out, and Tc,out for the fol-

lowing data:  Th,in = 55 C, Tc,in = 30 C, =hm  200 kg/s, =cm  300 kg/s,  

U = 1.5 kW/m2·C, and A = 540 m2, cp = 4.18 kJ/kg·K. 

Solution:  In this example, Cmin = Ch = 200 × 4.18 = 836 kW/C 

min

1.5 540
0.97

836

UA
NTU

C

×
= = =

200 4.18
0.667

300 4.18
rC

×
= =

×

1 exp[ (1 )]

1 exp[ (1 )]
r

r r

NTU C

C NTU C
ε

− − −
=

− − −
 = 

1 exp[ 0.97 (1 0.667)]
0.534

1 0.667 exp[ 0.97 (1 0.667)]

− − × −
=

− × − × −

Q max = Cmin(Th,in – Tc,in) = 200 × 4.18 × (55 – 30) = 20,900 kW 

Q actual = ε Q max = 0.534 ×  20,900 = 11,161 kW 

Having Q actual, we can find exit temperatures as: 

,

11,161
55 42

200 4.18
h outT = − =

×
C

,

11,161
30 39

300 41.8
c outT = + =

×
 C. 
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Table VIa.2.1.  Heat exchanger effectiveness for various flow arrangements 

Flow Arrangement                       Effectiveness

Parallel Flow:             
1 exp[ (1 )]

1
r

r

NTU C

C
ε

− − +
=

+

Counterflow:                
1 exp[ (1 )]

1 exp[ (1 )]
r

r r

NTU C

C NTU C
ε

− − −
=

− − −
Shell & tube  
(1 shell pass, 2, 4, … n tubes passes):   

1

2/12

2/12
2/12

1
])1(exp[1

])1(exp[1
)1(12

−

+−−
+−+

+++=
r

r
rr

CNTU

CNTU
CCε

Shell & tube  
(n shell pass, 2n, 4n,… tube passes):                                        

1

1

1

1

1

1

1
1

1

1
−

−
−

−
−

−
−

= r

n

r

n

r C
CC

ε
ε

ε
εε

Cross flow 

(single path, both streams unmixed):    0.22 0.781 exp[(1 )( ) {exp[ ( ) ] 1}]r rC NTU C NTUε = − − −

Cross flow (Cmax mixed, Cmin unmixed):  (1 )(1 exp{ [1 exp( )]})r rC C NTUε = − − − −

Cross flow (Cmax unmixed, Cmin mixed):      11 exp( {1 exp[ ( )]})r rC C NTUε −= − − − −
Heat exchangers with Cr = 0:                                                                     1 exp( )NTUε = − −

Table VIa.2.2.  Heat exchanger NTU for various flow arrangements 

Flow Arrangement                      Number of Transfer Units

Parallel Flow:             
ln[1 (1 )]

1
r

r

C
NTU

C

ε− +
= −

+
Counterflow:   

                                                                   
−

−
−

−=
1

1
ln

1
1

rr CC
NTU

ε
ε

Shell & tube (1 shell pass, 2, 4, … n tubes pass): 

                                                                               
+Ε
−Ε+−= −

1

1
ln)1( 2/12

rCNTU ,

                                                                                                 1

2 1/ 2

2 / (1 )

(1 )
r

r

C

C

ε − +
Ε =

+

Cross flow (Cmax mixed, Cmin unmixed): )]1ln()1(1ln[ rr CCNTU ε−+−=
Cross flow (Cmax unmixed, Cmin mixed):             ]1)1ln(ln[)1( +−−= εrr CCNTU
Heat exchangers with Cr = 0:                                  )1ln( ε−−=NTU
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3.  Analysis of Shell and Tube Heat Exchanger 

Shell and tube heat exchangers are the most widely used type of heat exchanger.  
They are used as steam generators, condensers, feedwater heaters, and in single-
phase processes.  In this section we consider shell and tube heat exchangers with 
subcooled water flowing in both tubes and the shell.  In the next section, we con-
sider shell and tube heat exchangers as condensers, followed by the section for 
shell and tube heat exchangers as steam generators.  A schematic of a straight tube 
heat exchanger in shown in Section 1.  Shown in Figure VIa.3.1 is the schematic 
of a U-tube heat exchanger of the shell and tube type.  This figure shows a one-
shell and two-tube pass.  Shown on the right are examples of the tube arrange-
ments.  Tubes may be arranged in triangular, square, or other types of arrays.  Ear-
lier, it was mentioned that the chemically controlled stream should flow in the 
shell as tubes are easier to clean.  Straight tube cleaning is generally performed 
with projectile guns to scrape tubes of deposits.  There are other factors to con-
sider in the allocation of the streams to the tube or the shell side.  For example, 
high-pressure fluid should flow through tubes due to tube capability to withstand 
higher pressures.  The stream with lower mass flow rate and heat transfer coeffi-
cient should generally flow in the shell.  As discussed by Kakac, this facilitates in-
stallation of fins on the outside of the tubes.  Also, mixing and redirecting flow by 
the baffle plates would enhance heat transfer.  In the analysis that follows, sub-
scripts i and o refer to the tube side and shell side, respectively. 

Tube-side
Flow

Shell-side Flow

Tube Shell

Inlet
Plenum

Exit
Plenum

Baffle Plate

Tube Sheet

Figure VIa.3.1.  Schematic of a one-shell, two-tube pass shell and tube heat exchanger and 
tube arrays 

3.1.  Performance Evaluation 

Heat exchangers are designed for a rated or nominal condition.  Often we need to 
find the performance of a heat exchanger operating at conditions different than 
nominal.  In such circumstance, we generally know the shell and tube mass flow 
rates and inlet temperatures.  The goal is to determine the outlet temperatures as 
well as the rate of heat transfer and the overall heat transfer coefficient.  Hence, 
performance evaluation of a shell and tube heat exchanger for which di, do, L, and 

N are known includes finding Q , Th,out, Tc,out, and U for given hm , cm , Th,in, and 
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Tc,in.  The solution requires iteration since properties must be evaluated at an aver-
age temperature while outlet temperatures are unknown.  In the first trial, we as-
sume either the outlet temperatures or determine fluid properties based on the 
known inlet temperatures.  The solution steps are outlined as follows: 

1- find Ao having do, L, and N
2- find hh and hc having hm , cm , and the thermophysical properties 

3- find Uo having hh, hc, tube data, fi, and fo

4- find Cmin, Cmax, and Cr having hm , cp,h and cm , cp,c

5- find NTU having UA and Cmin

6- find ε having NTU and Cr

7- find Q , Th,o, Tc,o having ε, Th,in, and Tc,in

8- find F and the average temperatures having Th,out, Tc,,out , Th,in, and Tc,in.

Repeat the above steps using updated properties until the required convergence 
criterion is met.  These steps can be implemented in a spreadsheet or simple 
FORTRAN program, as shown in the next example. 

Example VIa.3.1.  Hot water flows inside tubes of a shell and tube heat ex-
changer.  Find the total rate of heat transfer for the following data (ks = 10 
Btu/h·ft·F): 

Tube flow

Shell flow

75 F

Shell flow

Tube flow

200 F

   di do          L N hm cm Th,in   Tc,in fi fo

  (in)       (in)     (ft)      (-)     (lbm/h)    (lbm/h)     (F)      (F)     (ft2·h·F/Btu)    (ft2·h·F/Btu)
0.652    0.75    40     1000      2E6         3E6        200      75       0.0005          0.0005 

Solution:  We follow the above solution steps.  Since we do not have Th,out and 
Tc,out, we use an approximation and find properties at Th,in and Tc,in:

                T ρ             cp         µ                    k         Pr 
              (F)          (lbm/ft3)       tu/lbm·F)        (lbm/h·ft)       (Btu/h·ft·F)        (-)
Tube:    200           60.1               1.0                 0.7293              0.392            1.87 
Shell:      75           62.3               1.0                 2.225                0.352            6.32 

4/0543.014.34/ 22 ×== ii da π  = 2.32E-3 ft2

4/0625.014.34/ 22 ×== oo da π  = 3.07E-3 ft2

Rei = )/( iiii adm µ  = 2E3 × 0.0543/(0.7293 × 2.32E-3) = 64,225 
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Reo = )/( oooo adm µ  = 3E3 × 0.0625/(2.225 × 3.07E-3) = 27,144 

hi = (ki/di)Nui = (ki/di)(0.023 3.08.0 PrRe ii ) = (0.392/0.0543)(0.023 × 64,2250.8 ×
1.870.3 = 1406 Btu/h·ft2·F

ho = (ko/do)Nuo = (ko/do) (0.023 4.08.0 PrRe oo ) = (0.352/0.0625)(0.023 × 27,1440.8 ×
6.320.4 = 954 Btu/h·ft2·F

1

1
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Ri = do/(dihi) = 0.0625/(0.0543 × 1406) = 8.1864E-4 h·ft2·F/Btu 
Rfi = dofi/di = 0.0625 × 0.0005/0.0543 = 5.7551E-4 h·ft2·F/Btu 
Rs = doln(do/di)/(2ks) = 0.0625 × ln(0.0625/0.0543)/(2 × 10) = 8.7901E-4 h·ft2·F/Btu 
Rfo = fo = 0.0005 h·ft2·F/Btu 
Ro = 1/ho = 1/954 = 1.0482E-4 h·ft2·F/Btu 

ΣR = 8.1864E-4 + 5.7551E-4 + 8.7901E-4 + 5.00E-4 + 1.0482E-4 = 3.382E-3 
h·ft2·F/Btu 

Uo = 1/ΣR = 1/3.382E-3 = 295.7 Btu/h·ft2·F

Cmin = 2E6 Btu/F and Cmax = 3E6 Btu/F.  We find Cr as: Cr = Cmin/Cmax = 0.667 

NTU = UoAo/Cmin = 295.7 (πdoNL)/2E6 = 295.7 × 3.14 × 0.0625 × 1000 × 40/2E6 = 
1.161

Having NTU = 1.161 and Cr = 0.667, the effectiveness is found as: ε = 0.55 

Q  = εCmin(Th,,in – Tc,in) = 0.55 × 2E6 × (200 – 75) = 1.375E8 Btu/h. 

We should now use the calculated Q  to update tube and shell average temperature 

and repeat the steps that were performed above.  These are implemented in the fol-
lowing FORTRAN program, which is also included on the accompanying CD-
ROM. 
c                                    Shell & Tube Heat Exchanger 
c This program finds Th_o, Tc_o, Qdot, e, NTU, and DTlmtd Given: 
c dmh, dmc, Th_i, Tc_i as well as di, do, aL, aN, fi, and fo for a Shell & Tube 
c heat exchanger with water in both sides 
c      implicit real*8 (a-h,o-z) 
c
c  Nomenclature: 
c  aa:   tube flow area (ft2)                 ab:  shell flow area (ft2)
c  aL:   total tube length (ft)               aN:  total number of tubes 
c  cpa:  tube-side specific heat (Btu/lbm-F)  cpb: shell-side specific heat
c      (Btu/lbm-F) 
c  di:  tube inside diameter (in)         do: tube outside diameter (in) 
c  ha:  tube-side HTC. (Btu/hr-ft2-F)     hb: shell-side HTC (Btu/hr-ft2-F) 
c  Thi: tube-sdie inlet temperature (F)  Tbi: shell-side inlet temperature (F) 
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c
     data pi/3.1415927/ 
     open(5,file='hx1.in') 
     open(6,file='hx1.out') 
     read(5,*) dmi,dmo 
     read(5,*) Ti_in,To_in 
     read(5,*) dip,dop,aL,aN 
     read(5,*) aks 
     read(5,*) fi,fo 
c
     di=dip/12.00 
     do=dop/12.00 
     fai=pi*di*di/4. 
     fao=pi*do*do/4. 
     Ao=pi*do*aL*aN 
c    Only for the first trial, find properties based on the inlet temps. 
     iter=0 
     Ti_out=Ti_in 
     To_out=To_in 
100  continue 
     iter=iter+1 
     Ti_avg=0.5*(Ti_in+Ti_out) 
     To_avg=0.5*(To_in+To_out) 
     Ts=0.5*(Ti_avg+To_avg) 
     call intrpl(Ti_avg,cpfi,cpgi,amufi,amug,akfi,akg,Prfi,Prg, 
    1            sigf,betaf,rofi,rog,anuf,anug,vf,vfg,vg) 
     call intrpl(To_avg,cpfo,cpgo,amufo,amug,akfo,akg,Prfo,Prg, 
    1            sigf,betaf,rofo,rog,anuf,anug,vf,vfg,vg) 
     call htc(Ti_avg,Ts,dmi,aN,di,fai,hi) 
     call htc(To_avg,Ts,dmo,aN,do,fao,ho) 
c
     Call Uover(di,do,hi,ho,fi,fo,aks,Uo) 
     Call NTU(dmi,cpfi,dmo,cpfo,Ao,Uo,Cmin,Cr,aNTU,eff) 
     Qdot=eff*Cmin*abs(Ti_in-To_in) 
     If(Ti_in.lt.To_in) go to 1 
     Ti_out=Ti_in-(Qdot/(dmi*cpfi)) 
     To_out=To_in+(Qdot/(dmo*cpfo)) 
     go to 2 
1    continue 
     Ti_out=Ti_in+(Qdot/(dmi*cpfi)) 
     To_out=To_in-(Qdot/(dmo*cpfo)) 
2    continue
     DTlmtd=Qdot/(Uo*Ao) 
     if(iter.eq.1) go to 100 
     Tsn=0.5*(Ti_avg+To_avg) 
     eps=abs(Tsn-Ts)/Tsn 
     if(eps.le.1.e-6) go to 101
     if(iter.lt.30) go to 100 
     print *,'Steady-State Iteration Did Not Converge' 
     stop 
101  continue 
     write(6,3) dip,dop,aL,aN,dmi,dmo,Ti_in,To_in,Ti_out,To_out,Ts, 
    1           DTlmtd,hi,ho,Qdot,Uo,aNTU,eff 
3    format( 
    1' Tube inside diameter (in):.....',f8.3,5x, 
    1' Tube outside diameter (in):....',f8.3,5x,/, 
    1' Tube total length (ft):........',f8.1,5x, 
    1' Total number of tubes (-):.....',f8.1,5x,/, 
    1' Tube mass flow rate (lbm/h):...',e8.0,5x, 
    1' Shell mass flow rate (lbm/h):..',e8.0,5x,/, 
    1' Tube inlet temperature (F):....',f8.0,5x, 
    1' Shell inlet temperature (F):...',f8.0,5x,/, 
    1' Tube outlet temperature (F):...',f8.1,5x, 
    1' Shell outlet temperature (F):..',f8.1,5x,/, 
    1' Tube surface temperature (F):..',f8.1,5x, 
    1' Log mean temp. difference (F):.',f8.1,5x,/, 
    1' Tube-side HTC (Btu/ft2 h F):...',f8.1,5x, 
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    1' Shell-side HTC (Btu/ft2 h F):..',f8.1,5x,/, 
    1' Rate of heat transfer (Btu/h):.',e8.1,5x, 
    1' Overall HTC (Btu/ft2 h F):.....',f8.1,5x,/, 
    1' Number of transfer units (-):..',f8.1,5x, 
    1' Heat exchanger effectiveness:..',f8.3,5x,/) 
     stop 
     end 

c....................................................................
  subroutine htc(Tflow,Ts,dm,aN,diam,fa,h) 
  implicit real*8 (a-h,o-z) 
  call intrpl(Tflow,cp,cpg,amu,amug,ak,akg,Pr,prg,sigf,betaf, 

1    ro,rog,anuf,anug,vf,vfg,vg) 
  Re=dm*diam/(amu*aN*fa) 
  if(Re.gt.4000.) go to 1 
  h=(48/11)*ak/diam 
  return 

1    continue 
c n=0.4 for fluid being heated up and n=0.3 for fluid being cooled down 

   b=0.4 
   if(Ts.lt.Tflow) b=0.3
   h=(ak/diam)*0.023*(Re**0.8)*(Pr**b) 
   return 
   end 

c.....................................................................
   Subroutine NTU(dmi,cpfi,dmo,cpfo,Ao,Uo,Cmin,Cr,aNTU,eff) 
   implicit real*8(a-h,o-z) 
   Cmin=dmi*cpfi 
   Cmax=dmo*cpfo 
   If(Cmax.gt.Cmin) go to 1 
   Cmin=dmo*cpfo 
   Cmax=dmi*cpfi 
   continue 
   Cr=Cmin/Cmax 
   aNTU=Uo*Ao/Cmin 
   arg=exp(-aNTU*sqrt(1.+Cr*Cr)) 
   ratio=(1.+arg)/(1.-arg) 
   eff=2./(1.+Cr+sqrt(1.+Cr*Cr)*ratio) 
   return 
   end 

c.....................................................................
      Subroutine Uover(di,do,hi,ho,fi,fo,aks,Uo) 
      implicit real*8(a-h,o-z) 
      Resi=do/(di*hi) 
      Resfi=do*fi/di 
      Ress=do*alog(do/di)/(2.*aks) 
      Reso=1./ho 
      Uo=1./(Resi+Resfi+Ress+fo+Reso) 
      return 
      end

c………………………………………………………………………………………….….

The results for the above data are obtained in 5 iterations as follows:
Tube inside diameter (in):              0.652       Tube outside diameter (in):        0.750 
Tube total length (ft):                     40.0        Total number of tubes (-):          1000 
Tube mass flow rate (lbm/h):         2E+6       Shell mass flow rate (lbm/h):      3E+6 
Tube inlet temperature (F):            200.         Shell inlet temperature (F):        75. 
Tube outlet temperature (F):          131.6       Shell outlet temperature (F):      120.8 
Tube surface temperature (F):       131.9        Log mean temp. difference (F):         58.6 
Tube-side HTC (Btu/ft2·h·F):         1145.4      Shell-side HTC (Btu/ft2·h·F):      1186 
Rate of heat transfer (Btu/h):.        1.37E8      Overall HTC (Btu/ft2·h·F):          297.6 
Number of transfer units (-):..        1.2            Heat exchanger effectiveness:        0.547
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3.2.  Performance Monitoring 

Performance of heat exchangers degrades over time primarily due to fouling.  Two 
methods can be used to evaluate heat exchanger performance.  The first method is 
to measure pressure drop and the second is to use measured flow rates and tem-
peratures to calculate the fouling factor.  The second method is accomplished by 
calculating the heat transfer coefficients in the tubes and in the shell (i.e., hi and 
ho).  The fouling factor is then obtained from Equation VIa.1.1 and VIa.1.12: 

( ) ln( / )1 1
[ ]

2
i o LMTD Fouled o i

i o i i s o oFouled

f f F T d d

A A h A Lk h AQ π
∆

+ = − + +                       VIa.3.1 

where in steady-state operation,  

)()( ,,,,,, outhinhhphincoutccpc TTcmTTcmQ −=−= .

The software on the accompanying CD-ROM can be used to analyze the perform-
ance of the shell and tube heat exchangers including the calculation of the tube-
side pressure drop. 

Example VIa.3.2.  The rate of heat transfer in a shell and tube heat exchanger is 
11.72 MW or about 4E7 Btu/h.  Water flows in both tube and shell.  The design 
values for the clean heat exchanger are as follows: 

Tin (F)      Tout (F) m  (lbm/h)    d (in)         L (ft)        N

Tube:   150      130.0           2.0E6      0.652            13      773 
Shell:     90      102.5           3.2E6    0.750            18       1 

The data for the same heat exchange in a fouled condition are: 

Tin (F)     Tout (F) m  (lbm/h)    d (in) L (ft)      N

Tube: 150    133.0          2.0E6   0.652            13     773 
Shell:   90    100.6          3.2E6   0.750            18     1 

a) Find the overall heat transfer coefficient for the clean heat exchanger.  (ks = 8 
Btu/h·ft·F) 
b) Find the cleanliness factor for the fouled heat exchanger 
c) Find the fouling factor, assuming that the fouling occurs primarily in the tubes. 
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Tube

Shell flow

flow

150

102.5

90

130
∆T0 = 47.5

∆TL = 40

Clean HX

To = 140

Ti = 96

Tube flow

Shell flow

150

100.6

90

133

∆T0 = 50.6

∆TL = 43

Fouled HX

Tube flow

Shell flow

Solution:  a)  We find ∆TLMTD for the clean heat exchanger and follow the steps 
outlined below: 

[∆TLMTD]Clean = (47.5 – 40)/ln(47.5/40) ≈ 44 F 
P = (102.5 – 90)/(150 – 90) = 0.2 and R = (90 – 102.5)/(130 – 150) = 0.21 
Figure VIa.2.3 gives F ≈ 0.97 
Ao = πdoLN = 3.14 × (0.75/12) × 13 × 773 = 1973 ft2

CleanQ  = F(Uo)CleanA[∆TLMTD]Clean

(Uo)Clean = 4E7/(0.97 × 1973 × 44) ≈ 475 Btu/h·F 

To confirm, (Uo)Clean, we perform the following calculation: 

T (F) ρ (lbm/ft3) cp (Btu/lbm·F)    µ (lbm/ft·h) k (Btu/ft·h·F) Pr

Tube 140     61.37              1.0           1.13    0.378             2.99  
Shell   96     62.03              1.0           1.73    0.362               4.77 

We use the Dittus-Boelter correlation to find heat transfer coefficient in both tube 
and shell: 

di = 0.652/12 = 0.0543 ft  → 4/2
ii da π=  = 3.14 × 0.05432/4 = 2.32E-3 ft2.

do = 0.75/12 = 0.0625 ft   → 4/2
oo da π=  = 3.14 × 0.06252/4 = 3.06E-3 ft2.

Rei = 4 im /(πNµidi) = 4 × 2.0E6/(3.14 × 773 × 1.13 × 0.0543) = 53,688 

Reo = 4 om /(πNµido) = 4 × 3.2E6/(3.14 × 773 × 1.73 × 0.0625) = 48,748 

hi = (ki/di)[0.023Re0.8Pr0.3] = (0.378/0.0543) × [0.023 × 53,6880.8 × 2.990.3] = 1352 
Btu/h·ft2·F
ho = (ko/do)[0.023Re0.8Pr0.4] = (0.362/0.0625) × [0.023 × 48,7480.8 × 4.770.4] = 
1401 Btu/h·ft2·F
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1/(Uo)Clean = [0.0625/(0.0543 × 1352)] + [0.0625ln(0.0625/0.0543)/(2 × 8)] + 
[1/1401] = 2.1126E-3 
(Uo)Clean = 1/2.1145E-3 = 473 Btu/h·ft2·F

b)  For the fouled exchanger, the average temperatures and related properties are 
as follows: 

T  (F)    ρ (lbm/ft3) cp (Btu/lbm·F)    µ (lbm/ft·h)    k (Btu/ft·h·F)    Pr

Tube   141.5       61.35     1.0  1.16         0.378        2.95 
Shell     95.3          62.03    1.0  1.75         0.361       4.82

The related Re numbers, Nu numbers, and heat transfer coefficients become: 

T  (F)          Re                Nu         h (Btu/h·ft2·F)

Tube   141.5      53,023          191.5             1333 
Shell     95.3      49,311          245.8             1420 

[∆TLMTD]Fouled = (50.6 – 43)/ln(50.6/43) ≈ 46.7 F.  
P = (100.6 – 90)/(150 – 90) = 0.17 and R = (90 – 100.6)/(133 – 150) = 0.62 
Figure VIa.2.3 gives F = 1.0 

FouledQ = 2E6 × 1 (150 – 133) = 3.4E7 Btu/h 

(Uo)Fouled = FouledQ /[FAo(∆TLMTD)Fouled] = 3.4E7/(1973 × 46.7) = 369 Btu/h·F 

CF = UFouled/UClean = 369/475 ≈ 78% 

c)  To find the fouling factor, we solve Equation VIa.1.1 for fi as fo is specified to 
be negligible: 
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= 2.71E-3 – 2.1E-3 

This results in fi = 0.0005 h·ft2·F/Btu.  Note that the calculation of ho was simpli-
fied in this problem. 
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As noted in the conclusion of Example VIa.3.1, calculation of the heat transfer 
coefficient for the tube bundle was based on a simplistic approach.  Generally, the 
design of a heat exchanger shell depends on several factors including the number 
of tube passes, tube layout (type of array for tube bundle), baffle type, geometry, 
baffle spacing, operational pressure, weight, and size limitations.  As a result, cal-
culation of the shell-side ho and ∆Po is much more involved than hi and ∆Pi for the 
tube side.  For example, the baffle plates force fluid, which without the baffles 
flows parallel to the tube axis, to flow in a cross-flow manner over the tube bun-
dle.  Also, the diameter used in a correlation for ho should be an appropriate hy-
draulic diameter.  For a concentric or a double-pipe heat exchanger, the hydraulic 
diameter is found from: 

oSh
oSh

oSh
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where Af is the flow area, Cw the wetted perimeter, Dsh the shell diameter, and do

the tube outside diameter.  The hydraulic diameter found above can then be used 
in a suitable correlation such as Dittus-Boelter to find the heat transfer coefficient.  
For shell and tube heat exchangers, the hydraulic diameter is calculated for the 
tube array.  Perry suggests correlations for calculation of ho and Kakac provides 
related examples. 

4.  Analysis of Condensers 

Power plant condensers generally use coolant from large bodies of water such as a 
lake or bay to cooldown the condensing steam.  The temperature difference be-
tween the condensing steam saturation temperature and circulating water inlet 
temperature is referred to as ITD, the initial temperature difference.  The tempera-
ture difference at the tube exit is referred to as TTD, the terminal temperature dif-
ference (Figure VIa.4.1).   

In condenser design, in addition to the steam pressure, hence steam saturation 
temperature (To), and the cooling water inlet temperature (Tc,in), we need to select 
an appropriate tube-side flow velocity to meet the heat transfer requirement while 
minimizing pumping power and tube erosion.  Tube velocity may range from 3 to 
12 ft/s.  The tube side heat transfer coefficient can be found from the Dittus-
Boelter correlation (Equation IVb.3.4) and the bundle-side heat transfer coeffi-
cient from condensation on horizontal tubes, given by Equation Vc.3.4.  Tempera-
ture rise of the cooling water for large power plants is generally in the range of 12 
to 15 F to minimize thermal pollution.  Having the temperature rise, the flow rate 
of the cooling water is then found from cm  = Q /∆Ti.  Knowing the heat sink wa-
ter temperature, we can then find the temperature of the cooling water at the out-
let.  Selection of the tube diameter (tube flow area) combined with the cooling wa-
ter density and velocity give the mass flow rate per condenser tube.  The total 
number of tubes (Ntube) is obtained by dividing the cooling water mass flow rate by 
the mass flow rate of a tube.  We then find the average tube length (Ltube) from Q ,
∆TLMTD, and Equation VIa.2.12a. 
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Figure VIa.4.1.  Schematic of a condenser 

Example VIa.4.1.  A power plant produces 855 MWe at a thermal efficiency of 
ηThermal = 30%.  Find: a) Ntube and Ltube, b) tube side pressure drop and c) Shell-side 
flow rate.  Use the following data: di = 0.93 in, do = 1 in, Tc,in = 68 F, ∆Tc = 20 F, 
Th = 123 F, Vi = 9 ft/s, ks = 26 Btu/ft·h·F, cp,c = 1 Btu/lbm⋅F.

123 F

68 F

Condensing steam

Circulating waterCirculating water
from heat sink

(Psteam = 3.75 in Hg)

Condensing steam

To condensate pump

Hot well
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Solution:  a)  First we calculate the rate of heat to be removed by the condenser.  
Total power produced is: 

ThermalH WQ η/=  = 855/0.3 = 2850 MWth.  The rate of heat to be removed in 

the condenser is: 

CQ  = 2850 – 855 = 1995 MWth = 6.8069E9 Btu/h 

-  Tube-side mass flow rate: )/( , ccpCi TcQm ∆= ≅ 6.8069E9/(1 × 20) = 3.4E8 

lbm/h   

-  Since Tc,out = 68 + 20 = 88 F, the tube-side average temperature becomes Tc = 
0.5(68 + 88) = 78 F. 

-  To find U we need hi and ho.  To find ho, we need tube temperature Ts, which 
varies along the tube length.  We use Ts calculated at average temperatures to rep-
resent the entire tube temperature.  Since we do not have tube surface area, for 
now we guess Ts from Tc and Th: Ts = 0.5(Tc + Th) = 05(78 + 123) = 100.5 F 

-  Properties for both tube-side and shell-side at the related film temperatures are: 
(Tfilm)c = 0.5(Tc + Ts) = 89.25 F.  (Tfilm)h = 0.5(100.5 + 123) = 111.75 F 

T  (F)          ρ (lbm/ft3) cp (Btu/lbm·F) µ (lbm/ft·h)   k (Btu/ft·h·F)     Pr

Shell   111.75            61.82       0.998 1.466       0.368           -  
Tube     89.25            62.12          0.998 1.868           0.358      5.207

For tube bundle (shell-side) we also find hfg(123 F) = 1023.9 Btu/lbm and 
ρg(111.75 F) = 0.004 lbm/ft3

-  Since Tsat > Ts, we find Ja = cp,h(Th – Ts)/hfg = 0.998 × (123 – 100.5)/1023.9 = 

0.0219.  Thus '
fgh  = 1023.9(1 + 0.68 × 0.0219) 1039.17 Btu/lbm 

3 ' 2 3
1/ 4 1/ 4

( ) 4.173 8 61.82 0.368 1039.17
0.729[ ] 0.729[ ]

( ) 1.466 (123 100.5) (1. /12)
f f g f fg

o
f h s o

g k h E
h

T T d

ρ ρ ρ
µ

− × × ×= =
− × − ×

       = 1707 Btu/ft2·h·F

-  To calculate hi we need to find Rei = im di/(µiNai).  This in turn requires N and 

ai, which are found as: 

ai = 4/2
idπ  = 3.14 × (0.93/12)2/4 = 0.004717 ft2.

N = im /(ρiViai) = 3.41E8/[62.12 × (9 × 3600) × 0.004717] = 35918 

Rei = 3.41E8 × (0.93/12)/(1.868 × 35918 × 0.004717) = 83,500 

hi = (ki/di)[0.023 ]PrRe 4.08.0
ii  = (0.358 × 12/0.93) × [0.023 × 835000.8 × 5.2070.4]

= 1779.5 Btu/ft2·h·F
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-  We now calculate Uo:

1 1ln( / ) 1 1 (1/12) ln(1/ 0.93) 1
[ ] [ ]

2 0.93 1779.5 2 26 1707
o o o i

o

i i s o

d d d d
U

d h k h
− −= + + = + +

× ×
 = 765.5 Btu/ft2·h·F

-  We also calculate ∆TLMTD = [ ])88123/()68123(ln

)88123()68123(

−−
−−−

 = 44.25 F 

-  To find total tube length, we use the overall energy balance CQ  = UoAo∆TLMTD

= Uo (πdoNL) ∆TLMTD

- L = 
LMTDoo

C

TNdU

Q

∆)(π
 = 

25.4435918)12/1(5.765
9E8069.6

×××× π
 = 21.2 ft. 

-  For two-tube pass per shell, Lpass = 21.2/2 = 10.68 ft. 

b)  The tube-side pressure drop is found from Equation III.6.7: 
2 2

2 0.2 2 2

0.184 21.2 (3.41E8 / 35918)
( )

(0.93 /12)2 Re 2 62.12 (32.2 3600 )(0.004717)
i

i

i i c i i

mL
P f

d g aρ
∆ = =

× × ×
       = 408 lbf/ft2 = 2.83 psi. 

c)  The rate of steam condensation is found from: 

17.1039/9E8069.6/ ' == fgCo hQm = 6.55E6 Btu/h 

The results are summarized below: 

 di do hi ho Uo L ∆TLMTD          ∆Pi

(in)           (in)         (Btu/h·ft2·F)     (Btu/h·ft2·F)    (Btu/h·ft2·F)       (ft)           (F)            (psi)
0.93            1               1779.5              1707               765.5            21.2        44.25           2.83 

Comment:  we may use a transverse heat balance  ( )i i s ch A T T− = ( )o o shh A T T−
to update tube temperature, Ts.  Note that due to high tube thermal conductivity, 
we assumed Tsi = Tso.  The updated average tube temperature becomes Ts = [Th + 
(hidi/hodo)Tc]/[1 + (hidi/hodo)] = 101.66 F.  This is 1% larger than Ts used in the 
above analysis. 

The above example shows the theoretical aspects of a condenser design.  In 
practice, such problems as tube fouling and the ingress of non-condensable gases 
in the tube bundle need to be dealt with.  The gas leakage in the tube bundle not 
only increases the hot well total pressure but also, as discussed by Harpster, tends 
to collect around some tubes, degrading condensation. 
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4.1.  Condenser Design Optimization 

For a given rate of heat transfer ( Q ) and bundle-side pressure [Th = Tsat(Psteam)],

we are interested in evaluating the effects of such parameters as tube velocity (Vi),
tube diameter (di and do) and tube length (L) on the tube-side pressure drop and 
subsequently the required pumping power.  To perform this parametric evaluation, 
we rearrange Equation VIa.3.1, noting that F = 1 for condensers: 

Q

T

NLdhNLk

dd

NLdh
LMTD

oos

io

ii

∆
=++

)(
1

2

)/ln(

)(
1

πππ
        VIa.4.1 

where ho may be calculated from Equation Vc.3.4.  Hence, it is treated here as a 
constant.  This is because the value of ho depends only on the properties of the 
condensing fluid and the outside diameter of the tube.  In Equation VIa.4.1, we 
need to substitute for hi in terms of Vi and di.  For this purpose, we use the defini-
tion of the Nusselt number: 

( )
( ) ( )

0.8 0.4

0.80.4 0.8 0.8

0.023 / Pr

0.023 Pr /

i i i i i i i i i i

i i i i i i

h d k Nu k V d

k d V

ρ µ

ρ µ

= =

=

Substituting for hidi in Equation VIa.4.1 and rearranging, we obtain: 

( ) ( )
( )

0.80.4 0.8 0.8

ln /1 1

20.023 Pr /

o iLMTD

s o oi i i i i i

d dT
NL

Q k d hk d V

π

ρ µ

∆
= + −         VIa.4.2 

Equation VIa.4.2 provides a relation between N and L.  We can find N in terms of 
di and Vi from an energy balance for the tube side: 

N = 
iiincoutccpiiii

i

VTTcd

Q

dV

m

ρππρ
1

)()(

4

)(

4

,,,
22 −

=          VIa.4.3 

Substituting N from Equation VIa.4.3 into Equation VIa.4.2, we find tube length L
as:

( )

∆
∆

−−
=

i

LMTD

pii

ii
oos

io

iiii

ii

T

T

c

Vd
hdk

dd

k

Vd

L

ρ

µρ

4

1

2

/ln

/Pr023.0
2

8.08.04.0

2.02.1

        VIa.4.4 

As shown in Tables A.III.1 and A.III.2, the selection of tube or pipe outside di-
ameter and the specification of tube gage or pipe schedule results in the 
determination of the inside diameter.  Equation VIa.4.3 shows that, for a specified 
tube size, the number of tubes is inversely proportional to the coolant velocity in 
the tubes.  On the other hand, Equation VIa.4.4 shows that tube length is nearly a 



4.  Analysis of Condensers       715 

tubes.  On the other hand, Equation VIa.4.4 shows that tube length is nearly a lin-
ear function of tube-side velocity. 

Using the above equations and the data of Example VIa.4.1, plots of tube 
length and number of tubes versus tube diameter are obtained as shown in Fig-
ure VIa.4.2.  As expected, the plots show that for a specified flow velocity, the 
number of tubes increases, whereas tube length decreases with decreasing tube di-
ameter.  Also, for a given tube diameter, tube length increases and number of 
tubes decreases with increasing tube velocity.  The same conclusion can be made 
for tube-side pressure drop and pumping power.  The pumping power is given as: 

( / )pump iW P m ρ= ∆                           VIa.4.5 

For a given tube diameter, the required pumping power decreases as the number of 
tubes increases.  This reduces operational cost.  On the other hand, as shown by 
Nahavandi, the initial capital cost increases with an increasing number of tubes.  
Therefore, an optimized value for the number of tubes should be found to satisfy 
cost criterion. 
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Figure VIa.4.2.  Tube length and tube number versus flow velocity for various tube diame-
ters 
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Figure VIa.5.1.  Schematic of a steam generator 

5.  Analysis of Steam Generators 

In the design of steam generators, the rate of heat transfer, inlet and outlet tem-
peratures, and flow rates are generally known quantities (Figure VIa.5.1).  The 
goal, therefore, is to calculate the heat transfer area of the tubes.  In steam genera-
tors, the hot fluid generally flows in the tubes with water boiling in the tube bun-
dle.  In this analysis we consider the secondary side to be at saturation condition 
along the entire length of the tubes whether tubes are oriented horizontally or ver-
tically.  To be consistent, we show tube side values with subscript i and secon-
dary-side values with subscript o, respectively.  Also, Th,in, Th,out, and Tc are tube 
inlet, tube exit, and shell-side saturation temperatures, respectively.  Known val-

ues are Q , im , Th,in, Th,out, Tc, fi, fo, di and do. We calculate the steam generator ef-

fectiveness from: 

cinh

outhinh

TT

TT

−
−

=
,

,,ε                           VIa.5.1 

Having ε from Equation VIa.5.1, we can calculate NTU from NTU = min/UA C =
ln(1 )ε− −   Therefore, 

)1ln(, ε−−= ipicmUA                          VIa.5.2 

Combining Equations VIa.1.1 and VIa.5.2, writing the total tube length as 
)/( oo dAL π= , and the surface area of the inside of the tubes as Ai = diAo/do

yields: 
1

ln( / )1 1

2
o o i o o i o

i i o i o s o o o o

d d f d d d f

d h A d A k A A h A

−

+ + + + = )1ln(, ε−− ipicm         VIa.5.3 

Total tube surface area, Ao is obtained from Equation VIa.5.3 provided hi and ho

are substituted in terms of known quantities.  We use the Dittus-Boelter correla-
tion (Equation IVb.3.4) for turbulent flow inside tubes to find hi:
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3.08.0 Pr)
4

(023.0 i
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i

i
i dN

m

d

k
h

µπ
=           VIa.5.4 

where the exponent of the Pr number is changed to 0.3 as the fluid is cooling 
down.  Also physical properties in Equation VIa.5.4 are developed at the fluid 
bulk temperature.  The secondary side heat transfer coefficient ho may be found 
from Rohsenow’s pool boiling correlation or the Chen correlation (Equations 
Vb.4.1a and Vb.5.1b, respectively).  Selecting the Rohsenow correlation, we find: 

7.1

3/1

,,,

Pr
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/
o

ogof

o

fgo

o
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σ
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         VIa.5.5 

We now correlate the surface superheat to the secondary-side thermal resistance as  

Q
AhA

f
TT

ooo

o
cs )

1
( +=−

and substitute the result in Equation VIa.5.5: 
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                                                                                              VIa.5.6 

Substituting Equation VIa.5.6 into Equation VIa.5.3 results in: 

03
3/2

21 =++ CACAC oo             VIa.5.7 

where C1 = [ ] 1
, )1ln( −− εipicm ,

C2 3/2
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1
,

where gc is given in Chapter IIa.  Equation VIa.5.7 is a non-linear algebraic equa-
tion that may be solved by Newton-Raphson iteration.  The first guess for tube 
area is obtained from an approximate solution (i.e., by assuming that the secon-
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dary-side thermal resistance is negligible (Ao)Guess = C3/C1).  Upon solving Equa-
tion VIa.5.7, we can find the average tube length from L = Ao/(πdoN).

Example VIa.5.1.  The following data are given for a steam generator.  Find a) 
the average tube length Ltube, b) tube side pressure drop, and c) shell side flow rate.  
Data: di = 0.654 in, do = 0.75 in, Th,in = 604 F, Th,out = 550 F, Ph = 2250 psia, Pc = 
850 psia, ks = 11.00 Btu/ft·h·F, Ntube = 8485, im  = 61E6 lbm/h, Cfs = 0.015, cp,o = 

1.24 Btu/lbm·F, fi = 0.0002437 ft2·h·F/Btu, fo = 0.0 ft2·h·F/Btu. 

Solution:  The solution, in a FORTRAN program, is included on the accompany-
ing CD-ROM.   

The input data and results of calculation are summarized below. 

Table VIa.5.1.  Pertinent steam generator thermal hydraulic data 

Total rate of heat transfer (Btu/h - MW): ........................................ 4.386E9 - 1285.5  
Tube inlet temperature (F - C): ....................................................... 604 - 318 
Tube exit temperature (F - C):......................................................... 550 - 288 
Tube-side pressure (psia - MPa): .................................................... 2250 - 15.51 
Tube bundle-side pressure (psia - MPa):......................................... 850 - 5.86 
Tube bundle-side temperature (F - C): ............................................ 525.2 - 274 
Total number of tubes: .................................................................... 8485 
Tube outside diameter (in - mm):.................................................... 0.75 - 19.05 
Tube wall thickness (in - mm): ....................................................... 0.048 - 1.22 
Tube inside diameter (in - mm)....................................................... 0.654 - 16.61 
Tube average heated length (ft - m): ............................................... 54.16 - 16.5 
Tube heat transfer area (ft2 - m2): .................................................... 90,232 - 8383 
Overall heat transfer coefficient (Btu/h·ft2·F - W/m2·C): ................ 1041 - 183.3 
The log mean temperature difference, ∆TLMTD (F - C): ................... 46.7 - 25.9 
Effectiveness: .................................................................................. 0.684 
Tube-side thermal resistance (h·ft2·F/Btu - m2·C/W): ..................... 0.0001744 - 0.00099 
Tube-wall thermal resistance (h·ft2·F/Btu - m2·C/W):..................... 0.0003950 - 0.00224 
Tube bundle-side thermal resistance (h·ft2·F/Btu - m2·C/W): ......... 0.0001475 - 0.00084 
Tube-side fouling resistance (h·ft2·F/Btu - m2·C/W):...................... 0.000 - 0.000 
Tube bundle-side fouling resistance (h·ft2·F/Btu - m2·C/W): .......... 0.0002437 - 0.00138 

An alternative derivation for determination of the required surface area for the 
tubes takes into account the energy balance for an elemental control volume due to 
the change in temperature from tube inlet to tube exit (Nahavandi).  Similar corre-
lations can then be used for heat transfer coefficients and the resulting differential 
equation is integrated from tube inlet to tube outlet to obtain the required surface 
area.  (see Problem VIa.18). 

In steam generators, we often need to find the temperature of the hot fluid as it 
moves inside the tubes and transfers energy to the secondary side.  This is shown 
in the next example. 
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Figure VIa.6.1.  Nodalization of a concentric heat exchanger  

Example VIa.5.2.  Hot liquid is flowing steadily at a rate of m  inside the tubes of 
a steam generator having N tubes of outside diameter do.  The secondary side is 
boiling, resulting in an overall heat transfer coefficient of Uo that remains uniform 
along the tube.  Find the tube-side temperature profile as a function of flow path. 

Solution:  Applying Equation IIa.6.4-1 to the single-phase liquid inside the tubes 
over element ds, results in: 

( )sath
p

ooh TT
cm

UdN

ds

dT
−−=

π

where s is an element of length in the flow direction and Tsat is the secondary-side 
saturation temperature.  Since m , Uo, and Tsat remain constant, we can integrate 
from Th,in(s = 0) to T(s) to find: 

( ) ( )( )*/
,, 1 ls

satinhinhh eTTTsT −−−−=                                                        VIa.5.8 

where s is an element of length along the tube and l* is given by l* = 
m cp/(πNdoUo).  This result is not applicable if liquid boils in the tube-side or liq-
uid does not boil in the secondary side. 

6.  Transient Analysis of Concentric Heat Exchangers 

A transient during heat exchanger operation is generally caused by throttling a 
valve located on the discharge line of the pump feeding the tube or the shell side.  
Heat exchanger transients also take place during starting or stopping the pump.  
Transients imposed by valves and pumps affect flow rate.  Inlet temperatures to 
tube or shell may also change due to the loss of a feedwater heater if located up-
stream of the heat exchanger.  In this analysis we consider concentric parallel and 
counterflow heat exchangers and divide the exchanger along its length to several 
nodes.  Both streams are assumed to be incompressible and average fluid proper-
ties are used.  By explicitly modeling the tube region, thermal inertia of the tube 
material would then appear in the formulation.  Shown in Figure VIa.6.1 is the 
schematic of a concentric heat exchanger, divided into N nodes but only three 
nodes are shown.  Node i, for example, receives mass and energy from node i - 1, 
as carried by the mass flow rate of stream A and, in turn, delivers mass and en-
thalpy to node i + 1.  Due to the liquid incompressibility, mass flow rate into node 
i equals the mass flow rate into node i + 1, as only energy would accumulate in 
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node i.  There is also a transverse energy transfer out of node i of stream A, 
through the tube surface into node i of stream B.  Hence, the energy balance in the 
axial direction for element i in stream A yields: 

( )ivisiii Tcm
t

QdQQ
∂
∂

=−− −−1           VIa.6.1 

where in Equation VIa.6.1, mi is the mass of stream A fluid in control volume i.
Note that in this derivation, we ignored heat conduction in the fluid compared with 
the rate of energy transfer by convection.  Replacing mi = ρiAidx, where Ai is the 
flow area of stream A, and expanding the second term in the left side, Equa-
tion VIa.6.1 becomes: 

( )[ ]iivisi
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=−+− −
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Since fluid is incompressible, we express enthalpy in terms of specific heat and 
temperature.  Parameters ρi, cp,i, and Ai are also constant.  The formulation for 
stream A becomes: 

( ) ( )AA
TAdxc
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x vsip ρ
∂
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∂
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=−− −

Substituting for the transverse energy term, yields: 

( ) ( )AAAA
)()P( TAdxc

t
TThdxdxTVAc

x vsp ρ
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∂
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=−−−

where P is the perimeter (P = πd) and h is the heat transfer coefficient.  Note that 
we have represented the elemental tube since we are using average values for 
properties, ρ, cp, cv, and h remains constant.  Since AA and VA  are also assumed to 
be constant, we can write: 

( ) 0
P

A

A

A

A

A =−++ s
vv

p TT
Ac

h

x

T

c

c
V

t

T

ρ∂
∂

∂
∂

         VIa.6.2 

Similarly, the differential equation describing axial energy of stream B becomes: 
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         VIa.6.3 

where in this equation, λ = 1  for parallel flow and λ = −1  for counterflow heat 
exchangers.  The rate of change of energy in the ith node of the tube material is 
due to the exchange of energy with streams A and B, hence the energy equation 
for the heat exchanger tube material becomes: 
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Equations VIa.6.2, VIa.6.3, and VIa.6.3 constitute an approximate formulation for 
transient analysis of parallel and counterflow heat exchangers.  Various solution 
methods are proposed for this set of equations.  For example, Li finds an exact so-
lution for the parallel flow heat exchanger by using Laplace transforms.  Lorenzini 
applies the finite element method while Romie uses several dimensionless ratios 
to describe the exit temperature response to a unit step change in the inlet tempera-
tures.  The following solution is based on the finite difference method.  The en-
ergy equations for stream A, in finite difference form is: 
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The finite difference form of the tube wall energy equation becomes: 
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and the finite difference form of stream B energy equation, considering a counter-
flow heat exchanger is: 

( ) 0
P 1

,B
1

,

B

1
1,B

1
,B

B

,B
1

,B =−−
∆
−

−
∆
− ++

+
+

++
n

i
n
is

v

n
i

n
i

v

p
n

i
n

i TT
Ac

h

x

TT

c

c
V

t

TT

ρ

These equations can be simplified by introducing dimensionless constants for 
stream A: 
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Definition of these dimensionless coefficients reduces the finite difference equa-
tions to: 
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Writing similar equations for node i = 1 through i = N, the following set of equa-
tions is obtained: 
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−= nnn CYA                           VIa.6.5 

where vector Y in Equation VIa.6.5 contains all unknown temperatures: 
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vector C contains known temperatures and the boundary terms, added to the first 
and last terms: 
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and matrix A is a 3N × 3N matrix having the structure shown in Figure VIa.6.2 (all 
other terms are zeroes).  The left matrix is for parallel and the right matrix is for 
counterflow heat exchangers. 
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-σ1
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Ν ΝΝ

Figure VIa.6.2.  Structure of the coefficient matrix for a parallel and a counterflow heat 
exchanger  

Equation VIa.6.5 is written in a semi-implicit form where the terms of coeffi-
cient matrix A are developed at the previous time step.  This prevents linearization 
of terms and formation of a Jacobian matrix.  The initial conditions for the speci-
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fied boundary conditions (inlet flows and temperatures) are obtained from the 
steady state solution to Equation Va.6.5: 

CYIA =− o)(

where I is the identity matrix and Yo includes the steady-state temperature distribu-
tion in stream A, in tube material, and in stream B. 

QUESTIONS

– What types of heat exchangers can be found in a house? 
– What is the difference between a concentric heat exchanger and a shell and tube 

heat exchanger? 
– Why a counterflow HX is more efficient than a parallel flow heat exchanger? 
– What is the purpose of the baffle plates in a shell and tube heat exchanger?  

What are the advantages and disadvantages of baffle plates? 
– Two streams are exchanging heat in a heat exchanger.  One stream is cleaner 

than the other.  Which stream should flow in the tubes and which stream should 
flow in the shell? 

– What is the difference between fouling factor and the cleanliness factor (CF)?
– If a heat exchanger has CF = 0.8 and Udirty = 2000 W/m2.K what is Uclean?
– Why does tube temperature not appear in the steady-state formulation of heat 

exchangers? 
– In a counterflow heat exchanger, can the outlet temperature of the cold stream 

be greater than the outlet temperature of the hot stream? 
–  What are the six major assumptions made in the derivation of the equations in 

Section 2 of this chapter? 
– What heat exchanger design constraints are affected by the selection of tube di-

ameter?
– What advantages and drawbacks can you identify for a horizontal versus a ver-

tical steam generator? 
– Why does the shell side of a power plant condenser operate at a partial vac-

uum?
– What effects does the ingress of non-condensable gases have on a condenser 

performance?

PROBLEMS 

1.  The following temperatures are obtained at the inlet and exit ports of a counter-

flow heat exchanger.  Find ∆TLMTD and compare it with T∆  as given by Equation 
VIa.2.5.  Data:  Th,i = 130 F, Th,o = 111.9 F, Tc,i = 95 F, and Tc,o = 106.3 F [Ans.:  

∆TLMTD = 20.1 F, T∆   = 20.3 F.  Temperature profiles are flat] 

2.  A concentric counterflow heat exchanger is used to cool oil by water.  The oil 
flow rate is 0.1 kg/s and enters at 100 C.  Water enters at 30 C and a flow rate of 
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0.2 kg/s.  The heat transfer area is 5.223 m2 and the overall heat transfer coeffi-
cient is 37.8 W/m2·K.  Find the rate of heat transfer and exit temperatures.  Data:  

cp,h = 2131 J/kg·K and cp,c = 4178 J/kg·K.  [Ans.:  Q  = 8524 W, Tho = 60 C, and 

Tco = 40 C]. 

3.  A one-shell, two-tube pass shell and tube heat exchanger has 1580 tubes with di

= 13 mm and do = 16 mm.  Tubes have an average length of 6 m per pass.  Cold 
water enters the tubes at 30 C and a rate of 110 kg/s and hot water enters shell at 
90 C and a rate of 125 kg/s.  Find the rate of heat transfer, ∆TLMTD, and the overall 
heat transfer coefficient.  Use stainless steel tubes and fi = 0.001 m2·K/W.  [Ans.:  
13 MW, 10.7 C, and 493 W/m2·K].

4.  A shell and tube heat exchanger uses 600 tubes of ¾ in B.W.G 20 (do = 0.75 in 
and di = 0.68 in) and 17.5 ft per pass.  Hot water enters the tubes at 1.5E6 lbm/h 
and 180 F.  The heat exchanger has one shell and two-tube pass per shell.  Cold 
water enters the shell at 1.5E6 lbm/h and 70 F.  The fouling factors happen to be 
equal for both tube and shell sides, fi = fo = 0.0003 h·ft2·F/Btu.  Find the tube and 
shell outlet temperatures and the heat exchanger effectiveness.  [Ans.:  130 F, 
120 F, and 0.456]. 

5.  A shell and tube heat exchanger uses 650 tubes of 5/8 in B.W.G 18 (do = 0.625 
in and di = 0.527 in) and 7.5 ft per pass.  Tubes are stainless steel.  The heat ex-
changer has one shell and two-tube passes per shell.  Cold water enters the tubes at 
a velocity of 6.818 ft/s and a temperature of 75 F.  Hot water enters the shell at 
195 F and at a rate of 2.5E6 lbm/h.  The fouling factors happen to be equal for 
both tube and shell sides, fi = fo = 0.0005 h·ft2·F/Btu.  Find Th,out, Tc,out, Uo, ε, total 
rate of heat transfer, and the tube-side pressure drop.  [Ans.:  173.67 F, 110.75 F, 
373.2 Btu/h·ft2·F, 0.298, and 2.38 psi]. 

6.  Consider the steady-state operation of a counterflow heat exchanger.  The en-
ergy balance for an elemental control volume in the cold stream is shown below.  
Write a similar energy balance for an elemental control volume in the hot stream.  
Then for each stream, derive the differential equation for temperature as function 
of the exchanger length.  [Ans.:  dTc/dx = (UP/Cc)(Th – Tc) and dTh/dx = 
(UP/Ch)(Th – Tc)].

Th,in

Tc,in
x

dx

i
i

)( dx
dx

dT
TC c

cc +CcTc

UPdx(Th - Tc)

i

7.  Solve the differential equations obtained in Problem VIa.6 using the following 
boundary conditions, Th(x = 0) = Th,o and Th(x = L) = Th,i for the hot and Tc(x = 0) 
= Tc,i and Tc(x = L) = Tc,o for the cold stream.  [Ans:  if Cc = Cmin, Th = {Th,o – 
CrTc,i – Cr(Th,o – Tc,i)exp[-(1/Cc – 1/Ch)UPx]}/(1 – Cr) similar relation for Tc].
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8.  Show that for condensers, ]1)[( /
,,,

cCUA
inchincoutc eTTTT −−−+= .

9.  In Example VIa.5.2, we derived the primary-side temperature profile for a 
steam generator.  Derive a similar temperature profile but for a counter-current 
heat exchanger in terms of tube length, area, flow rates, and inlet temperatures.  

[Ans.:  ( )Ls
inhinhh eTTTsT /)(*

,, 1)()( αβ −−−−=  where in this relation parame-

ters α, β, and T* are given as hphcmUA ,/=α , cpccmUA ,/=β , and 

( ) ( )αβαβ −−= /,,
*

ocinh TTT .  Note, Tc,o is obtained from Problem VIa.6 in 

terms of UAmmTT chincinh and,,,, ,. ].

10.  In Example VIa.5.2, we derived the primary-side temperature profile for a 
steam generator.  Now consider a case where fluid in the primary side is also boil-
ing.  Derive the profile for steam quality. 

11.  A shell and tube condenser uses saturated steam at 1 atm and 212 F (100 C) in 
the shell to heat water in the 18 tubes from 100 F (38 C) to 120 F (49 C).  The 
tubes are thin wall with do  di = 1 in (2.54 cm) and are arranged in a triangular 
pitch.  The velocity of water inside the tubes is 8 ft/s (2.44 m/s).  Find a) the mass 
flow rate of water in the tubes, b) the heat transfer coefficient on the inside and 
outside of the tubes, c) the overall heat transfer coefficient for the tubes neglecting 
any fouling, d) the length of the tubes, and e) the rate of steam condensation in this 
condenser.  Use carbon steel tubes. 

12.  In a tubular condenser, steam condenses on the tube bank at 50.5 C (123 F) 
while cooling water enters the tubes at a rate of 42.966 kg/s (3.41E8 lbm/h) and a 
temperature of 20 C (68 F).  There are 35918 tubes having an outside diameter of 
2.54 cm (1 inch) and a length of 6.5 m (21.3 ft).  The overall heat transfer coeffi-
cient for the clean condenser is 4346 W/m·C (765.5 Btu/h·F).  Find the cooling 
water temperature at the outlet.  Use copper tubes.  [Ans.:  31 C (88 F)] 

13.  A condenser is used to reject 2000 MW to a large lake.  Pressure of the con-
densing steam is 3 in Hg.  Cooling water enters at 75 F.  The maximum allowed 
temperature rise of the cooling water is 15 F.  Tube velocity is 7 ft/s.  Tubes are 1 
¼ in 18 BWG (do = 1.250 in and di = 1.152 in).  Find the number of tubes, total 
tube length, and the tube-side pressure drop.  Tubes are stainless steel.  [Ans.:  N = 
40276, L = 16.8 ft, ∆Pi = 4.88 psi]. 

14.  A condenser is used to reject 2000 MW to a large lake.  Pressure of the con-
densing steam is 3 in Hg.  Cooling water enters at 75 F.  The maximum allowed 
temperature rise of the cooling water is 15 F.  Tube velocity is 7 ft/s.  Tubes di-
ameters are do = 1.50 in and di = 1.402 in.  Find number of tubes, total tube length, 
and tube-side pressure drop.  Tubes are stainless steel.  [Ans.:  N = 23756, L = 
19.6 ft, ∆Pi = 0.93 psi]. 

15.  The core of a PWR produces 2,778.43 MWth.  The PWR is equipped with 
two recirculating U-tube steam generators.  Hot water leaves the core and enters 
the hot leg at 312.8 C (595.1 F).  The system is fully insulated.  Colder water 
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leaves the steam generator tubes and enters the cold legs at 286.7 C (548 F).  Wa-
ter is boiling in the shell-side at the saturation temperature of 277.6 C (531.64 F), 
corresponding to a pressure of 6.2 MPa (Po ≅ 900 psia).  There are a total of 8471 
tubes, each having an inside and outside diameter of 1.685 cm (0.6635 in) and 
1.904 cm (0.7495 in), respectively.  Use fo = 3.522E-6 C·m2/W (0.00002 
F·h·ft2/Btu) and Csf = 0.012 to find Ao, ∆TLMTD, hi, ho, Uo, L, ε, NTU, and ∆Pi.
[Ans.:  8548 m2 (92010 ft2), 19.3 C (34.75 F), 43420 W/m2·C (7647 Btu/ft2·h·F),
46877 W/m2·C (8256 Btu/ft2·h·F), 8417 W/m2·C (1482.4 Btu/ft2·h·F), 16.87 m 
(55.35 ft), 74.2%, 1.356, 0.2 MPa (29.67 psi)]. 

16.  The design of a steam generator as described in Section 5 of this chapter uses 
the Rohsenow pool boiling correlation.  Derive a relation for the calculation of the 
tube surface area using the Chen correlation. 

17.  The design of a steam generator as described in Section 5 ignores the pre-
heating section of the tube bundle.  a) Determine the expected tube length within 
which the feedwater reaches saturation, and b) revise the formulation to include 
the preheating calculation of the tube heat transfer area. 

18.  The steam generator design procedure outlined in Section 5 is based on the ef-
fectiveness.  In this problem we want to design the steam generator by using a dif-
ferential approach.  [Hint:  Writing a steady state energy balance in the axial and 
transverse directions for an element of length alongside the tubes gives: 
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where subscripts i, s, and o stand for tube side, tube, and tube-bundle-side.  Use 
Equation IVa.6.8-2 to relate the various thermal resistances, as shown below, to 
the overall heat transfer coefficient. 

Ti Ts To

Ri + Rs + Rf
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From the last two terms of Equation 1 conclude that Ti – To = q ′′ (Rc + Ro).  Use 

Equation VIa.5.5, to find 3/1)( qPfTT oos ′′=−  and from Equation 1 obtain 
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Substitute for Ti – To from Equation 2 and integrate from inlet (I) to exit (E) to ob-
tain: 

]})())[((ln{ 3/23/2
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−− ′′−′′+
′′
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q
RcmA       3 

To find the required tube surface area, you need to find the heat fluxes at the inlet 
and exit of the tubes.  These are determined from Equation 2 by using the Newton-
Raphson method].   

19. A cylindrical reflecting lens focuses direct solar light on a collector pipe 
through which fluid circulates.  The heated fluid is used as the heat source for a 
heat engine producing mechanical power.  The collector tube is surrounded by a 
glass tube to reduce heat loss to the ambient atmosphere.  The collector tube di-
ameter is larger than the solar image formed by the reflecting lens.  Use the given 
data and: 

a)  Find an analytical expression for the efficiency of the solar collector (i.e., 
the ratio of heat collected by the circulating fluid to the solar flux intercepted by 

the reflecting lens) as a function of the ratio (Tc – Ta)/ iQ  and the fixed parameters 

listed below,   
b)  if the thermodynamic efficiency of the heat engine is a fixed fraction of the 

Carnot efficiency of a reversible heat engine operating between heat reservoirs 
having temperatures equal to the collecting fluid temperature and the ambient tem-
perature, find an analytical expression for the collector temperature which will 
maximize the power output of the heat engine, and determine its nominal value. 

Heat
Source

Heat Sink

Work
Heat

Engine

d
Glass tube

Collector pipe

F

D

Solar flux
Cylindrical reflector

Data:  
Cord of cylindrical lens ( D = 1 m), focal length of cylindrical lens ( F = 2 m), col-
lector tube outer diameter (d = 0.03 m), design direct solar flux ( iq ′′  = 950 W/m2),

ambient atmospheric temperature (Ta = 20 C), temperature of the collecting fluid 
(Tc), absorptivity-transmissivity product for the incident solar radiation focused on 
the collector tube (ατ = 0.75), reflectivity of lens surface for solar spectrum 
(ρ = 0.9). 
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VIb..  Fundamentals of Flow Measurement 

Flow measurement is an interesting application of the principals of fluid mechan-
ics.  Measurements in fluid mechanics are performed for a variety of properties in-
cluding local (such as velocity, pressure, temperature, density, viscosity) and inte-
grated (volume and mass flow rates) properties.  In this section only measurement 
of local velocity and integrated properties are discussed.  However, first some fun-
damental terms are defined. 

1.  Definition of Flow Measurement Terms 

Invasive is a term applied mostly to classical flowmeters such as the Bernoulli 
obstruction meters, turbine meter, rotameter and even some modern instruments as 
vortex meter.  Most modern flowmeters such as electromagnetic, ultrasonic, and 
laser Doppler anemometer are noninvasive instruments.  The invasive meters must 
be integrated in the piping system.  The invasive flowmeters generally disturb the 
flow. 

Noninvasive flowmeters have several advantages compared with the invasive 
flowmeters including the lack of any moving parts, ease of installation, longevity 
as the instrument is not affected by the flow condition, cost savings, and capability 
to be bi-directional.  Since the noninvasive flowmeters are not exposed to the fluid 
flow, they do not cause any pressure drop to the flow hence, there is no need for 
any flow straightener.

Error is the difference between the measured value and the true value.  Error 
may be expressed as absolute error or relative error.  If the true value of a ruler is 
3 m, a measurement of 2.98 m has an absolute error of 0.02 m or relative error of 
0.02/2.98 = 0.7%. 

Fixed error is referred to as the amount of error appearing in repeated meas-
urement by practically the same amount.  In flow measurement, a leak upstream of 
the flowmeter introduces a fixed error regardless of the number of the times flow 
is measured.  Similarly, in temperature measurements by thermometers, some heat 
is lost to the surroundings by the instrument itself.  This additional heat transfer 
would cause the thermometer to read a lower temperature than the fluid tempera-
ture. 

Random error is due to such factors as personal fluctuations, mechanical fric-
tion associated with certain processes, and electronic fluctuations. 

Uncertainty refers to the errors associated with the measured data.  Uncer-
tainty is expressed in terms of percentage of the true value.  An instrument reading 
with an uncertainty of ±1% implies that the reading falls within 1% of the true 
value in each direction. 
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Accuracy is the degree of proximity of the measurement to the actual value and 
refers to the fractional error in the instrument.  Accuracy is a qualitative term to 
describe an instrument and is often confused with uncertainty.

Resolution of an instrument is the minimum change in output that the instru-
ment can detect.  As such, resolution can be defined as the smallest quantity that 
the instrument can measure.

Repeatability refers to the maximum difference between the same outputs for 
the same input, obtained in separate measurements but under similar test condi-
tions.  Any difference is generally due to random error.

Precision of an instrument is a measure of its repeatability with a specified de-
gree of accuracy. 

Calibration is a process to determine accuracy and resolution.  Hence, the cali-
bration of an instrument involves the measurement of known values.  Such known 
values are primary standards or a previously calibrated instrument used as a 
reference.  The calibration may also include the application of a primary meas-
urement.  Calibration of a flowmeter for example, may be based on a bucket and 
stop watch. 

Drift is an undesirable change in the output of the instrument over a period of 
time.  Drift is usually caused by the electronics of the device and not the process 
under measurement. 

Hysteresis is a property of the instrument and is the difference in output when 
the measured value is approached with increasing and then with decreasing values.  
Hysteresis may be caused by friction, elastic deformation, thermal or magnetic ef-
fects. 

Range refers to the domain within which the instrument works properly and 
beyond which the outputs are not reliable and the device may be damaged. 

Response time is the time required for the output to rise to the value corre-
sponding to the step change of the input. 

Sensitivity is the ratio of change in the instrument output to the change in the 
value of the input.  

Span is the difference between the limits of the range. 

2.  Repeatability, Accuracy, and Uncertainty   

2.1.  Repeatability and Accuracy 

Due to the importance of repeatability and accuracy in measurement, we use an 
example dealing with throwing darts at a dartboard (Baker).  In Figure VIb.2.1(a), 
10 out of 10 darts are in the bulls-eye.  Since the darts in this case have been accu-
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Figure VIb.2.1.  Accuracy and repeatability in hitting a dart board 

rate, the number of bulls-eyes is therefore, repeatable.  In Figure VIb.2.1(b), 19 
out of 20 (19/20 = 95%) shots have hit the bulls-eye.  Statistically this is a low 
value of uncertainty (±1%) with a 95% confidence level or within 2 standard de-
viations.  In Figure VIb.2.1(c), the same repeatability is reached as in case (b) but 
with a certain bias causing all the shots to be off target.  This indicates that good 
accuracy also means good repeatability whereas good repeatability does not nec-
essarily imply good accuracy.  In Figure VIb.2.1(d) 19 out of 20 have hit the target 
(±5% uncertainty with 95% confidence level) but 8 out of 20 darts have hit the 
bulls-eye.  Figure VIb.2.1(e) shows a depiction of case (d) on a linear plot.  Figure 
VIb.2.1(f) shows the normal distribution, a good representation of flow measure-
ment readings. 

2.2.  Uncertainty Analysis 

Due to the importance of the uncertainty in measurement, more details are neces-
sary for full understanding.  During any measurement, there is always the possibil-
ity of errors entering the data acquisition process, and distorting data.  This may be 
due to human error, fixed error, systematic error, or random error.  It is therefore 
customary to express data along with some degree of uncertainty to clarify accu-
racy in the measurement.  Uncertainties in the data are usually expressed as a per-
centage of the full-scale output of the instrument.  Measurement of physical values 
consisting of several parameters, where each parameter is measured by separate 
instrument, is affected by the uncertainty associated with each instrument.  One 
way to calculate the associated uncertainty in the result is to find the worst-case 
uncertainty.  To explain, suppose that we are interested in calculating the uncer-
tainty associated with pumping power from the flow rate and pressure rise over 
the pump: 

VPW ∆=

For a flow rate of 800 ft3/h ± 12 ft3/h and a pressure rise of 45 psi ± 1 psi, the 

nominal pumping power is W  = 36000 ft⋅lbf/h.  Applying the worst case uncer-

tainty, pumping power can be calculated as W max = (800 + 12)(45 + 1) = 37352 

ft⋅lbf/h and W min = (800 – 12)(45 –1) = 34,672 ft⋅lbf/h: 

W  = 36000 ± 3.7% 
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However, it is very unlikely indeed that the highest measurement of pressure rise 
occurs at the highest measurement of flow rate as these are independent instru-
ments.  The same is true for the value of flow rate to coincide with the lowest 
measurement of pressure rise.  The more accurate means of calculating the result-
ing uncertainty is the method referred to as the mean squared error.  If output F is 
a function of n independent variables as: 

),,,( 21 ni xxxxfF =

Then the uncertainty in F, also known as the expected error, is given by 
(Kline): 
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              VIb.2.1 

where
ixe  is the uncertainty associated with each independent variable xi.

Example VIb.2.1.  The rated pressure rise and flow rate of a pump are given 

as %245 ±=∆ pumpP  psi and %5.1800V ±=  ft3/h, respectively.  Find the un-

certainty in pumping power using the mean squared error method. 

Solution:  The pumping power is found as VPW ∆= .  We first find the nominal 
pumping power as: 

W  = 800 × 45 = 36000 ft⋅lbf/h.  To find the uncertainty in W , we find: 

V)(/ =∆∂∂ PW  = 800 ft3/h. 

The corresponding uncertainty is:  
12)100/5.1(800V =×=e

PW ∆=∂∂ V/  = 45 psi.   
The corresponding uncertainty is:  

9.0)100/2(45 =×=∆Pe  psi. 

Thus the uncertainty in W  is calculated as: 

1/ 22 2
0.52 2

V
(800 0.9) (45 12) 900ft lbf/h

( ) VPW

W W
e e e

P ∆
∂ ∂= ± + = ± × + × = ± ⋅

∂ ∆ ∂

Therefore the pumping power is found as W  = 36000 ± (900/36000) = 36000 ±
2.5% ft⋅lbf/h.  Earlier, the uncertainty was found as 3.7%. 

To minimize the random error, several readings must be made.  Such multiple 
observations allow the estimation of the most probable error from a normal prob-
ability distribution around an average value.  For example, in the case of a ruler 

having an average length of L , we take N measurements so that: 
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NLL N
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or σ being the standard deviation given by: 
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the error in measurement is estimated from 1/ −= NeL σ  where the error is 

enhanced by subtracting unity from the number of observations to account for the 
fact that the true value of the length is not known. 

Example VIb.2.2.  The length of a ruler is measured 10 times and the following 
readings are obtained.  Find the most probable error. 

Reading:          1        2         3         4        5         6          7         8        9         10      
Length (m):   3.97   3.82    4.10    4.01    4.16    3.87    4.15    4.05    3.89    3.92 

Solution:  Arithmetic average of the readings is 994.310/94.39 ==L  m.  Set 
up the following table: 

Reading:                 1           2          3          4          5           6         7        8           9         10  

LLi − :            -0.024   -0.174   0.106   0.016   0.166  -0.124  0.156  0.056  -0.104   -0.074 
2( ) 100iL L− × :  0.058    3.030   1.12    0.026     2.75      1.54   2.43   0.314     1.08     0.55 

Standard deviation is then found as σ = (0.1047/10)1/2 = 0.102 m.  Hence, 

=
L

e 0.135/ 9 = 0.034 m. 

3.  Flowmeter Types   

Recall that for fully developed flow, velocity varies as a function of pipe radius 
across the flow area and mass flow rate is given by (Equation IIb.2.3): 

⋅=
A

AdVm ρ

This equation was simplified for a stationary control surface, flow area normal to 
the control surface, and the uniform thermodynamic state uniform over the flow 

area at any instant to obtain Equation IIa.5.2, Vρρ == AVm .  A flowmeter may 

then measure local flow velocity (V ), volumetric flow rate ( AV=V ) or mass 
flow rate ( m ).

Flowmeters can be divided into several categories based on such factors as type 
of flow parameter to measure, cost, induced pressure drop, type of fluid, accuracy, 
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etc.  A large class of flowmeters includes those meters that measure a change in 
the flow momentum.  Examples of this class include the Bernoulli obstruction me-
ters such as venturi, nozzle, and thin plate orifice as discussed in Section IIIb.4.2. 

 Also included in this class are such devices as rotameter, pitot tube, and 90 de-
gree elbows.  Another large class of flowmeters includes instruments that measure 
the volumetric flow rate.  Examples of this class include positive displacement of 
fluid and such devices as electromagnetic, vortex shedder and turbine meters.  De-
vices that also measure volumetric flow rate and are noninvasive include the Laser 
Doppler anemometer, ultrasonic flowmeter, and pulsed neutron activation meters.  
To measure mass flow rate directly, such techniques as thermal mass flow meas-
urement, Coriolis force meter, and angular momentum measurement are used.  A 
summary of various types of flowmeters is shown in Table VIb.3.1, which pro-
vides information useful in the selection of flowmeters.  

 Depending on the application, as shown in Table VIb.3.1, the disadvantage of 
invasive floweters is the associated pressure loss.  The invasive flowmeters are de-
fined as those that cross the flow boundary.  On the other hand, the noninvasive 
flowmeters, measure the flow by indirect means and are not associated with any 
head loss nor do they need to be integrated in the piping.  For invasive flowmeters, 
it is important to install the device so that flow entering and leaving the instrument 
is not disturbed by the presence of fittings and valves.  Manufacturers generally 
specify the minimum distance required upstream and downstream of the pipe.  
This distance is specified in terms of the diameter of the pipe on which the device 
would be installed.  On occasions that such a possibility does not exist due to 
space limitations, a flow straightener is used to streamline the flow. 

3.1.  Momentum Sensing Flowmeters 

Orifice, Nozzle, Venturi.  The most famous momentum sensing instruments 
are Bernoulli obstruction meters as were discussed in Section IIIb.4.2. Ta-
ble VIb.3.1 shows that the orifice has the highest and the venturi has the lowest 
pressure loss.  The cost of these devices is inversely proportional to the pressure 
drop they introduce to the flow.  Hence, a venturi is the most expensive and a thin-
plate orifice is the least expensive.  The Bernoulli obstruction meters are found in 
various sizes.  Thin plate orifices can be found as small as 1 inch in diameter.  On 
the other hand the world’s largest flowmeter is a venturi made for Southern Ne-
vada Water authority.  The diameter of this flowmeter is 180 inches (4.6 m), hav-
ing a dry weight of 60,000 lbm and a volume of 6400 ft3 to measure a water flow 
rate in excess of 555,000 GPM (35 m3/s). The venturi flowmeter is 52 ft (15.85 m) 
long (Flow Control Magazine).   

Rotameter: the trade name of a manufacturer has been applied to the variable 
area meter.  Such meters consist of a tapered tube oriented vertically and a float as 
shown in Figure VIb.3.1(a).  There are three forces acting on the float, the drag 
force (FD), as a result of the external flow of fluid over the float, the buoyancy 
force (FB) and the float weight (FW).  When FW = FB + FD then the float is at equi-
librium and the flow rate is read from a calibrated scale.   
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Table VIb.3.1.  Comparison of Various Flowmeters 

   Class Type Fluid Accu- 
racy 

Head  
Loss 

Cost UD/ 
DD

Advantages &  
Disadvantages 

Orifice L/G M h l 20/5 Corrosion &  
wear: su 

Nozzle L/G/T M m m 20/5 High temp. &  
velocity: su 

Venturi L/G/S/T M l h 15/5 High temp. &  
velocity: su 

  Momen- 
      tum 

Rotameter L/G L m l n Low flow: st,  
Pulsating flow: li 

Ave. Pitots L/G L l l 30/5 Probe flow  
eparation: su 

Laminar G L h m 15/5 Pulsating flow:  
st, Dirty fluid: li 

Elbow L/G/S L l l 25/10 Available  
performance data: li 

Turbine L/G H h h 15/5 Bearing wear: su 
Paddle wheel L/G M l l 15/5 Bearing wear: su 
Vortex L/G H h h 20/5 Low flow: ns,  

Vibration: su 
Volume Electro- 

magnetic 
L/S/T M n h 5/3 Non-conducting  

fluid: su 
Ultrasonic L/G/T H n h 15/5 Change in  

temperature: st 
Laser Doppler L/G/S/T M n h 15/5 Reynolds  

Number: li 
Positive  
displacement 

L/G H h l n Dirty fluid: su,  
Wear: su 

Thermal L/G L m m 5/3 Dirty fluid: su,  
Low flow: st 

   Mass Angular L M m m n Aircraft fuel  
flow: st 

Coriolis L/G/S H m h N Pipe size: li,  
Fouling: su 

Table abbreviations: 
L: liquid,  n: None 
G: gas,  ns: Not suitable 
S: slurry,  st: Suitable 
T: two-phase  su: Susceptible 
h: high,  li: Limitation 
m: medium UD: Straight piping, as multiples of pipe Diameter, required Upstream 
l: low  DD: Straight piping, as multiples of pipe Diameter, required Downstream  

Substituting for weight in terms of float volume and density, for buoyancy in 
terms of float volume and liquid density, and for drag in terms of specific kinetic 
energy:

( ) 2/VV 2VACgg fFDFfFF ρρρ +=
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Figure VIb.3.1  A variable area flowmeter 

where V is the float volume, V  is the mean flow velocity, and subscripts f and F
stand for liquid and float, respectively.  In this equation, CD is the drag coefficient, 
which is pertinent to external flow over immersed bodies.  For spherical floats, the 
drag coefficient is readily available as a function of the Reynolds number.  For ex-
ample, experimental data indicate that the drag coefficient for spheres remains 
practically constant at 0.5 if the Reynolds number is between 2000 to 200,000.  At 
higher Reynolds number, the drag coefficient is even smaller.  Solving the above 
equation for flow velocity: 

2/1

1
V21 −=

f

F

F

F

D A

g

C
V

ρ
ρ

          VIb.3.1 

The volumetric flow rate can then be calculated from )(V zAV=  where A(z) = 
2 2( ) / 4b z Sπ α+ − .  Although rotameters are generally made of glass or other 

special transparent materials, there are variable area flow meters made of metal 
where the reading is obtained by magnetic coupling so that the signal can be re-
ceived and recorded remotely.

Elbow meter, as shown in Figure VIb.3.2(a), takes advantage of the centrifugal 
force applied on fluid elements when moving around a bend.  The top and the bot-
tom of the 90-degree elbow are drilled at 45 degrees for the insertion of the pres-
sure taps.  These pressure taps provide input to a differential-pressure measuring 
device (DP-cell), which, upon calibration, would show flow rate in the 90-degree 
elbow. 

Laminar flowmeters, also known as viscous flowmeters, shown in Fig-
ure VIb.3.2(b), are used to measure gas flow rate based on Equation IIIb.2.3: 
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Figure VIb.3.2.  (a) Elbow meter; (b) Laminar flowmeter; (c) Averaging pitot flowmeter 
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To change the flow regime from turbulent to laminar so that the viscous effects 
become dominant, a laminar flow element is used.  The laminar flow element con-
sists of capillary tubes with inside diameter as small as 0.01 inches (about 0.23 
mm).  The pressure taps for differential pressure measurement are located up-
stream and downstream of the laminar flow element. 

Averaging Pitot device works on the basis of differential pressure.  A bar that 
spans the pipe is inserted perpendicular to the flow.  The bar may be a circular cyl-
inder or have other profiles such as hexagonal, square, diamond, or elliptic cross 
section.  Holes are drilled in the side facing the flow and in the downstream side 
of the bar, as shown in Figure VIb.3.2(c).  The inputs to the pressure taps are car-
ried to individual pressure sensors to be sent to a DP-cell.  The advantage of an 
averaging pitot tube is its ease of installation and low impact on the flow.  Under-
estimating the flow rate is its main disadvantage.  This is because of a suction ef-
fect at the static pressure ports, due to the vortices created downstream of the 
probe.  This is generally taken into account by a flow coefficient in calibration. 
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Figure VIb.3.3. (a) Simple pitot tube; (b) Differential pitot tube; (c) Pitot-static tube  

                           (a)                                                                         (b) 
Figure VIb.3.4.  (a) Turbine meter and (b) Paddle wheel

It should be added that a pitot tube, invented by Henri Pitot in 1732, is itself a 
device for measuring flow velocity.  Shown in Figure VIb.3.3(a), is a glass pitot 
tube in an open channel.  Points 1 and 2 are on a streamline where point 2 is at the 
entrance to the tube, hence is at rest.  Point 2 is called the stagnation point.  Pres-
sure at point 1 is P1 = ρgh.  Pressure at point 2 is P2 = ρg(h + ∆h).  From the Ber-

noulli equation between point 1 and point 2 we have; P1 + (ρ 2
1V /2) = P2.   Substi-

tuting, we get hgV ∆= 21 .  We derived pressure at point 2 in terms of pressure 

at point 1 and pressure related to velocity head.  Pressure at point 2 is total or
stagnation pressure as it consists of static and dynamic heads of the flowing fluid.  
Shown in Figure VIb.3.3(b) is the differential pitot tube.  If the flowing fluid has a 
specific gravity of S and the manometer liquid has a specific gravity of S’, a force 
balance at the level a-a gives: 

1 2( h ') ( h)w wP g LS S P g L Sρ ρ+ + = + +                        VIb.3.3 

This simplifies to P2 – P1 = ρwgS[(S’/S) – 1]h.  On the other hand, P1 + (ρw
2

1V /2) 

= P2.  We find that [ ]1 2 h ( '/ ) 1V V g S S= = − .  A more compact system is the pitot-

static tube as shown in Figure VIb.3.3(c).  For this case, similar expression can be 
derived. 

3.2.  Volume Measuring Flowmeters 

Turbine flowmeter, Figure VIb.3.4(a), and its various forms have been in use for 
flow measurement for centuries.  The turbine meter consists of a shaft equipped 
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with blades and located centrally against the flow.  The shaft and the blades are 
designed to minimize the adverse effect on the flow.  The flow of fluid through the 
blades imparts momentum, causing rotation of the blade, which, in a magnetic 
field, produces current proportional to the flow volume passing over the shaft.  In 
the absence of friction, this proportionality would have been a linear function.  
However, various frictional forces result in non-linearity.  These forces include 
bearing friction, drag on the rotor and the blades, and friction due to the electro-
magnetic effects.  Like the turbine meter, there are similar flowmeters, which 
work on the transfer of momentum from the flow to a turning wheel.  These are 
paddle wheel or vane-type and the Pelton-wheel flowmeter, Figure VIb.3.4(b). 

Vortex meter is a relatively new concept in flow measurement as the idea was 
introduced in the mid 1950s.  The device become available in the mid 1970s.  In a 
vortex meter, a bluff body is placed in the flow field to cause some flow separa-
tions downstream of the bluff body, Figure VIb.3.5(a).  As flow increases, so does 
the rate of flow separation to a point that the separated flow is rolled back in the 
low-pressure area developed behind the bluff body.  This backward curl is called a 
vortex.  As the flow rate is increased, these vortexes grow in size and begin to 
travel downstream to form a so-called vortex street.  The notable feature of such 
vortex-shedding instruments is that the vortexes are formed and depart in alternate 
manner from each side of the bluff body.  This causes an alternating pressure gra-
dient across the body.  The frequency of vortex generation and pressure oscilla-
tions is proportional to flow rate. 

V

E

B

x

yz

(a) (b) 

Figure VIb.3.5.  (a) Schematics of Vortex flowmeter (b) Electromagnetic flowmeter 

Electromagnetic flowmeter works on the basis of Michael Faraday’s law of 
electromagnetic induction.  As shown in Figure VIb.3.5(b), a magnetic field is 
created in the coil surrounding the pipe carrying a conducting liquid.  The mag-
netic field may be created by an alternating current.  The pipe carrying the con-
ducting liquid is made of nonmagnetic material to allow penetration of a magnetic 
field.  We now envision molecules of the conduction liquid on a line parallel to the 
vector E.  Since these lines are moving with flow velocity V inside the coil, they 
cut through the magnetic lines, which, in turn, induce electrical current in these 
lines of fluid.  Electrodes attached to both sides of the pipe pick these electric sig-
nals and transfer them to a signal processor.  The flow of fluid is proportional with 
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the generated signals.  Major advantages of this flowmeter are lack of moving 
parts and that it is noninvasive, resulting in no pressure loss.  The major disadvan-
tage is the limitation to electrically conducting liquids.  It is not suited for such 
non-conducting fluids as hydrocarbons, hence is not widely used in petroleum in-
dustry. 

Ultrasonic flowmeter, as shown in Figure VI3.6(a), is based on the travel time 
of acoustic waves in a flow field.  Some clarification is needed regarding the term 
ultrasonic.  Some flowmeters, such as a vortex-shedding meter, use ultrasonic 
sensing in their data acquisition systems.  Ultrasonic flowmeters are of two types: 
ultrasonic doppler meter and ultrasonic transit-time meter.  The ultrasonic transit 
time meter works on the basis that sound waves in the flow direction travel at a 
speed faster by 2V compared with the sound waves travelling against the flow.  
The time it takes for the wave to travel from the transmitter to the receiver is t1 = 
L/(c + Vcosα).  Similarly, the time it takes for the wave to travel from the receiver 
back to the transmitter is t2 = L/(c – Vcosα).  This results in: 

c

LV

Vc

LV
t

α
α

α cos2

cos

cos2
222

≅
−

=∆           VIb.3.4 

indicating that the measured time is linearly proportional with the measured flow 
velocity.  Note that V is the flow velocity and c the speed of sound in the fluid.  
The transit-time meter is by far more accurate than a Doppler meter, Fig-
ure VIb.3.6(b).  The latter works on the basis of the Doppler frequency shift.  This 
occurs when sound waves are reflected from an impurity in the fluid.  If sound 
waves are reflected from stationary objects, there is no change in their wave char-
acteristics wavelength and frequency.  However, upon reflection from a moving 
target, there will be a shift in the wave characteristics hence the wave would have 
new amplitude, period, and frequency.  The flow velocity by Doppler flowmeter is 
found from V = c∆f/(2fcosα) where f is the transmission frequency and ∆f is the 
doppler shift in frequency.  Generally noninvasive flowmeters have the advantage 
of no moving parts, no induced pressure drop, no need for integration in the piping 
system, ease of use, capability to be bi-directional, and associated cost savings. 
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Figure VIb.3.6.  (a) Ultrasonic Transit-Time flowmeter and (b) Ultrasonic Doppler flow-
meter 
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Figure VIb.3.7.  Schematics of (a) Laser Doppler flowmeter; (b) Pulsed Neutron Activa-
tion Flowmeter

Laser Doppler anemometer or LDA is also used to measure flow rate using 
the concept of doppler shift.  In this method a laser - a coherent monochromatic 
light beam - passes through the fluid flow and is highly focused in an LDA.  Solid 
particles, in the order of 25 microns in the fluid will scatter the light beam.  The 
scattered light would have a different frequency than the incident light.  This is the 
Doppler shift.  A photo multiplier device receives the scattered beam to electroni-
cally sense the change in frequency with respect to a reference (non-scattered) 
beam.  Shown in Figure VIb.3.7(a) is a dual-beam LDA with α being the angle 
between the incident rays.  If l is the frequency of the incident ray, the flow veloc-
ity is then given by V = λ∆f/[2sin(a/2)].  The disadvantage of this method is the 
fact that it requires a glass window for light to pass through. 

Pulsed neutron activation or PNA is another non-invasive means of measur-
ing flow rate and is included in the class of radioisotope tracer technique.  As 
shown in Figure VIb.3.7(b), an energetic neutron source is used to induce radioac-
tivity into the flow field.  The field velocity is determined by detecting the γ-ray
emitted from the irradiated liquid, in a detector located downstream of the neutron 
source.  There are disadvantages associated with this method.  PNA uses high-
energy neutrons.  For example, for the O16 (n, p) N16 reaction, which has a half-life 
of 7.14 seconds, the neutron activation threshold is 10.24 MeV.  Such high levels 
of energy require extensive shielding.  Additionally, the neutron source and the 
detector should be circumferencially distributed to minimize radiation bias.  In-
deed radiation bias occurring due to beam attenuation is another drawback of this 
method. 

Elbow meter is another means of measuring volumetric flow rate, using the 
change of flow momentum and the associated centrifugal force.  Lansford corre-
lated the resulting differential pressure to volumetric flow rate to obtain a formula 
similar to Equation IIIb.4.3: 

[ ]{ })(/)(2V 1 ioo zzgPPgCA −+−= ρ          VIb.3.5 

where, in this relation, value of C ranges from 0.56 - 0.88 depending on the size 
and shape of the elbow. 
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Figure VIb.3.8.  (a) A Coriolis flowmeter; (b) Depiction of an inertial and a non-inertial
frame

Positive Displacement (PD) is the most widely used flowmeter for flow meas-
urement of liquid and gas for industrial, commercial and residential applications.  
A recent survey indicates that the worldwide sale of the positive displacement 
flowmeters constituted half of all the flowmeters sold in 2001.  Thus more PD 
flowmeters are sold than all other types, such as Ultrasonic, Electromagnetic, ∆P
meter, Vortex meter and mass measuring flowmeters combined (Control maga-
zine).  The PD flowmeters are of various types.  All function on the same principle 
of measuring a known volume of the fluid in a distinct compartment that is accu-
rately measured by the manufacturer.  The number of these measurements (i.e. the 
number of times these compartments are filled and emptied per unit time) would 
determine the flow rate.  The PD flowmeters are suitable for viscous fluids (such 
as oil, paint, varnish, and cosmetics), for low flow rates (as low as about 2 liter/m), 
and for corrosive products.  

3.3.  Mass Measuring Flowmeters

There is no need to measure density in these flowmeters, as mass flow rate is di-
rectly measured.  Several such instruments are discussed below. 

Coriolis flowmeters are used in the flow measurement of liquids, suspensions, 
emulsions, and gases.  The coriolis flowmeter is named after the French mathema-
tician Gustave Coriolis who in 1835 showed that an inertial force must be taken 
into account when describing the motion of bodies in non-inertial frames.  The 
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coriolis flowmeter is an instrument consisting of a twisted tube resting on two 
flexible couplings.  Figure VIb.3.8(a) shows the tube being alternatively rotated by 

a motor along the y-axis with an angular velocity of j11 ωω = .  Vibration of the 

tube coupled with the flow of fluid induces acceleration, causing the Coriolis force 

to deflect the tube ( k22 ωω = ).  Tube deflection is accurately measured.  Since 

the applied rotation to  the tube is known, the induced rotation can be used to find 
mass flow rate.  To show the relation between the tube deflection and mass flow 
rate, let’s consider mass m moving at a velocity V with respect to frame s (Vm)s.  In 
general, frame s is a non-inertial frame, having its own linear velocity (Vs)S and 
angular velocity (ω ) with respect to an inertial frame S.  Vectors in frame s can
be expressed in frame S using the following mathematical operator: 

×+= ω
sS dt

d

dt

d
           VIb.3.6 

Having the position vector smR )(  and velocity smV )(  of mass m in frame s, ve-

locity of mass m in frame S (i.e., SmV )( ) is found by applying the operator given 

by Equation VIb.3.6 to the position vector of mass m:

( ) [ ] smsmSs
Sm

Sm RRR
dt

d

dt

Rd
V )()()(

)(
×++== ω

which simplifies to smsmSsSm RVVV )()()()( ×++= ω .  Similarly, the accel-

eration of mass m in frame S is:

[ ]smsmSs
sS

Sm
Sm RVV

dt

d

dt

Vd
a )()()(

)(
)( ×++×+== ωω

                     VIb.3.7 

carrying out an operation on each of the three terms of the right-hand side bracket 
in Equation VIb.3.7, we find: 

[ ] [ ]smsmSssmsmSsSm RVVRVV
dt

d
a )()()()()()()( ×++×+×++= ωωω

                           VIb.3.8 

taking the derivative of the terms in the first bracket and performing multiplication 
in the second bracket yields: 

( ) ( ) ( )
( ) ( )s S m s m s

m S m s

d V d V d R d
a R

dt dt dt dt

ωω= + + + × +

( ) ( ) ( )s m s m sSV V Rω ω ω ω× + × + × ×
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Finally; 

smsmsmsmSsSm RR
dt

d
Vaaa )()()(2)()()( ××+×+×++= ωωωω

Newton’s second law of motion applies to the absolute acceleration; 

SmamF )(= .  Alternatively: 

××+×+×++= smsmsmsmSs RR
dt

d
VaamF )()()(2)()( ωωωω

                                                   VIb.3.9 

where;

Ssam )( :   Force due to frame s acceleration 

smam )( :   Force due to local acceleration 

2 ( )m sm Vω × :  Force due to Coriolis acceleration 

× smR
dt

d
m )(

ω
:  Force due to angular acceleration 

( )m sm Rω ω× × :  Force due to centripetal acceleration 

Thermal mass flowmeters may be used for both liquids and gases to measure 
mass flow rate.  For gases, a resistance heater is wrapped around a thin-wall pipe.  
Fluid temperatures upstream and downstream of the heater are measured.  Having 
the rate of heat transferred to the fluid and the temperature difference, flow rate of 
the fluid is then calculated.  For liquids, the instrument consists of a U-tube.  A 
heat sink in addition to a heat source is used to bring the liquid temperature down 
to the inlet temperature at the exit.  The obvious error is associated with axial heat 
transfer in the pipe wall. 
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                    (a)                                                                                   (b) 

Figure VIb.3.9.  Schematics of a thermal mass flow meter for (a) gas; (b) liquid 
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4.  Flowmeter Installation 

Since the majority of flow meters measure the average flow velocity and require 
fully developed flow, such meters should be installed in a way that ensures a 
symmetric and undisturbed velocity profile through the instrument (Fig-
ure VIb.4.1).  Flow disturbance is primarily caused by valves and fittings in a pip-
ing system.   

Figure VIb.4.1.  Comparison of disturbed and unperturbed velocity profiles 

Therefore, flow meter manufacturers require a minimum length of straight pipe 
to be considered upstream and downstream of the instrument.  For example, the 
required lengths of straight pipe for a vortex meter for various fittings are show in 
Figure VIb.4.2.  When space is at a premium and the recommended straight pipe-
length cannot be accommodated, various flow straighteners, as shown in Fig-
ure VIb.4.3 are used to enforce a symmetric profile.  This, however, is achieved at 
the cost of higher induced pressure drop.  
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Figure VIb.4.2.  Required straight pipe length upstream and downstream of a vortex meter 

Figure VIb.4.3.  Various flow straightner designs 



Questions and Problems       745 

QUESTIONS 

– What is the difference between fixed errors and random errors? 
– If an experiment has high degree of repeatability are the results necessarily 

highly accurate? 
– List 5 types of noninvasive flowmeters. 
– List 5 advantages associated with non-invasive flowmeters. 
– Why are flow straightners used?  What is the major component of a laminar 

flowmeter? 
– How does a positive displacement flowmeter measure flow? 
– What type of flowmeter should be used when fluid flows at a low velocity? 
– Why is a rotameter tube tapered? 
– What are the advantages of the mass flowmeter? 
– How do we measure the flow rate of slurry? 
– What are the advantages of the electromagnetic flowmeter? 
– What is the principle upon which a vortex flowmeter operates? 
– What is the major drawback of the pulsed neutron activation flowmeter? 

PROBLEMS 

1.  Two electric resistors are connected in series, thus R = R1 + R2.  Find the un-
certainty in power dissipated in these resistors noting that E = RI where I is the 
electric current passing through each resistor.   
Data: R1 = 0.005 ± 0.25%, R2 = 0.008 ± 0.20%, and I = 150 ± 1 A. 

2.  The mass flow rate from a Bernoulli obstruction meter is given as: 

)/(2 11 RTPPCAm ∆=

Find the percent uncertainty in the mass flow rate for the following data: 
C = 0.9 ± 0.0075, P1= 30 psia ± 0.8 psia, T1 = 85 F ± 1 F, ∆P = 1.5 psi ±
0.0035 psi, A = 1.5 in2 ± 0.001 in2

3.  In a shell & tube heat exchanger, total rate of heat transfer between the shell-

side and the tube-side is given as TUAQ ∆= .  Find the uncertainty percent in to-

tal rate of heat transfer using the following data: 
U = 500 Btu/ft2⋅h ± 5 Btu/ft2⋅h, A = 1000 ft2 ± 2.5 ft2, ∆T = 75 F ± 2 F. 

4.  In the measurement of the water mass flow rate in a pipe, the following data 
are obtained: A = 100 cm2 ± 0.5%, ρ = 950 ± 5 kg/m3, and V = 6 m/s ± 7%.  Using 
Equation VIb.2.1, show that the uncertainty in mass flow rate is dominated by the 
uncertainty in the velocity measurement.  What conclusion can then be made from 
attempts in reducing the uncertainties in area and density measurement? 

5.  A variable area flowmeter (rotameter) is used to find the flow rate of water at 
room temperature.  The rotameter is 18 inches log with the smallest and largest di-
ameters of 1.75 and 4 inches, respectively.  The floater is a stainless steel ball, 
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2 inches in diameter.  Find the volumetric flow rate when the floater mid-plane is 
at 1 foot from the entrance to the meter.  [Ans.:  27 GPM]. 

6.  Apply the Bernoulli equation and the equation of state for an ideal gas to derive 
a relation similar to Equation IIIb.1.8 for velocity of compressible fluids flowing 
in the pipe. 

(Ans.:  [ ]1)/(2 k/)1k(
121 −= −PPTcV p ).

7.  Suppose we want to use a small probe equipped with a camera at the end of the 
probe to measure the flow of a liquid.  The probe is inserted in a pipe perpendicu-
lar to the flow.  Attached to the wall opposite to the probe is a light sensitive patch 
consisted of solar cells, shown as cross-hatched regions in the figure.  When in-
serted in the pipe, the probe behaves as a cantilever, bending in the direction of the 
flow.  The device (i.e., the probe and the patch) is calibrated so that activation of 
each strip (i.e., solar cell) is associated with a certain flow rate.  Comment on ap-
plicability, advantages, and disadvantages associated with the use of this flow-
meter design.   

V V

8.  Consider the pitot tube of Figure VIb.3.3-b.  Gas is flowing over the tube at 40 
C and 1 atm.  The dynamic pressure is measured as 2 in-H2O.  Find the flow ve-
locity.  (Ans.:  29.7 m/s). 

9.  A hot-wire anemometer is a heated electric resistance placed in the pipe carry-
ing the flow.  King showed that the rate of heat transfer is proportional to the flow 
velocity as: 

( )( )fwire TTbVaQ −+= 5.0

where constants a and b are determined from a calibration of the anemometer.  
The rate of heat transfer is also given by the electric power consumed to heat up 
the resistance: 

[ ] 22 (1 ITTRIRQ owireowire −+== α

where I is the electric current, a is the temperature coefficient of resistance, and Ro

is the wire resistance at temperature To.  Obtain flow velocity as a function of the 
electric current. 
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Figure VIc.1.1.  Velocity vector diagrams of impellers of a pump and a compressor

VIc..  Fundamentals of Turbomachines

Turbomachines are mechanical devices that exchange momentum and energy with 
a fluid.  Machines in which energy is transferred to the fluid are called pumps, 
compressors, blowers, and fans depending on the type of the fluid and pressuriza-
tion.  In turbines, transfer of energy is from the fluid to the rotating shaft.  Such 
machines, depending on the type of working fluid, are called hydraulic turbine, 
steam turbine, or gas turbine.  If a turbomachine contains a blade or vane, momen-
tum is exchanged with a fluid by changing the direction and the velocity of the 
flow.  The rate of change of fluid momentum results in a force that leads to trans-
fer of work due to fluid displacement.  Next, some fundamental terms are defined 
which help in the discussion of turbomachine operation. 

1.  Definition of Turbomachine Terms  

Dimensional analysis is a third technique to analyze a flow field with the first 
and second techniques being the integral and differential methods that were dis-
cussed in Chapter IIIa.  Dimensional analysis, being a means of reducing the 
number of variables that affect a physical phenomenon, is based on the identifica-
tion of the pertinent dimensionless groups.  In this chapter we make extensive use 
of dimensionless groups. 

Scaling laws are a direct result of using the dimensional analysis technique.  
Scaling laws allow us to extrapolate the results of the study regarding the effects 
of fluid flow on a model to the prototype.  When the scaling law is valid, it is said 
that a condition for similarity between model and prototype exists. 

Velocity vector diagram refers to fluid velocity vector in the impeller of 
pumps or turbines.  Figure VIc.1.1. shows the velocity vector diagrams for a pump 
impeller rotating clockwise and for a centrifugal compressor rotating counter-
clockwise.  The fluid absolute velocity, whether at the blade inlet or outlet, has 
two components.  One component is always perpendicular to the position vector 
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hence, tangent to the impeller (VI) and another component tangent to the blade 
(VB).  The component tangent to the impeller is the peripheral speed of the impel-
ler at that location (rω).  The velocity component tangent to the blade is fluid ve-
locity relative to the blade.  The geometric similarity between the two systems re-
quires that angle α, referred to here as the velocity angle, and angle β, known as 
the blade angle,  are equal in both systems. 

Homologous systems are any two systems that are geometrically similar and 
have a similar velocity vector diagram.  For example, if a given pump (say pump 
A) is to be homologous with another pump (say pump B), the geometrical symme-
try requires that αA = αB and βA = βB.  For angle α to be constant, it requires that 

=3/V D constant. 

Dimensionless groups are generated by identifying pertinent parameters in the 
operation of turbomachines.  For example, there are three groups containing perti-
nent pump parameters.  Group one contains pump performance consisting of flow 

rate and pressure rise ( V , ∆P).  Group two contains pump geometry data given by 
the impeller diameter, speed, and roughness (D, ω, ε).  Group three contains fluid 
properties, the most pertinent being density and viscosity (ρ, µ).  According to the 
Buckingham Pi theorem, the number of dimensionless groups between N inde-
pendent variables is equal to N – N’ where N’ is equal to the number of primary 
dimensions, such as Mass, Length, and Time (m, L, t).

Pump performance curve is a term applied to the head delivered by the pump 
versus the flow rate.  A more comprehensive pump performance curve, discussed 
later in this chapter, includes head versus flow curves for a given rotor speed and 
various rotor sizes.  The pump performance curve is constructed by the pump 
manufacturer from a wide range of data and generally includes plots of pump effi-
ciency.

Classification of pumps.  There are many types of pumps in various shapes 
and forms for different industrial, residential, and medical applications.  Hence, 
pumps may be classified in various ways.  Here we classify pumps based on the 
means of momentum transfer to the working fluid.  This classification results in 
only two types of pumps, positive displacement and dynamic.   

Positive displacement pumps are devices delivering fluid that, in each cycle, 
fills a known volume or closed compartment of the pump.  This type of pump de-
livers periodic or pulsating flow.  The means of delivering varies depending on a 
specific design.  For example, fluid delivery may take place by the action of slid-
ing vanes, rotating gears and screws, or moving plungers and pistons.  Schematic 
of a piston-cylinder positive displacement pump is shown in Figure VIc.2.1. 

Dynamic pumps basically deliver momentum to the fluid through the rotation 
of vanes or impellers.  The momentum is converted to pressure head as the liquid 
passes through the pump diffuser.  Dynamic pumps may in turn be divided into 
two major categories; rotary and special applications.   
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Figure VIc.2.1.  Characteristic curve comparison of positive displacement and rotody-
namic pumps (White) 

Dynamic pumps for special applications include such pumps as electromag-
netic pumps for the delivery of liquid metals such as sodium and mercury, jet 
pumps for mixing two streams of fluids, and fluid actuated pumps.  The electro-
magnetic pumps are of either direct-current (also known as the dc-Faraday pumps) 
or of the alternating-current type.  The electromagnetic pumps operate on the same 
principle as electromagnetic flowmeters. 

Dynamic rotary pumps are also referred to as rotodynamic pumps.  They con-
sist of radial, mixed, and axial flow designs.  The design refers to the flow inside 
the pump.  The rotor of the radial flow pump is generally referred to as an impeller 
and the rotor of the axial flow pump as a propeller.  The impeller of the radial flow 
pumps, consists of vanes and the propeller of the axial flow pump consists of 
blades.  In the radial flow pump, flow enters the inlet of the pump impeller and 
primarily flows in the radial direction until exiting the impeller.  In the axial flow 
pumps, flow direction is along the axis of the pump propeller.  The most widely 
used dynamic pump is the centrifugal pump. 

2.  Centrifugal Pumps 

We begin the introduction of the centrifugal pump by comparing its characteristic 
curve with that of a positive displacement pump.  As shown in Figure VIc.2.1, 
positive displacement pumps deliver nearly constant flow at a wide range of pres-
sure while rotodynamic pumps deliver nearly  constant pressure at a range of flow 
rate. Rotodynamic pumps provide high rate of flow rates (as high as 700 ft3/s) but 
with rather low head (in the range of 100 psi).  On the other hand, positive 
displacement pumps supply high head (up to 3000 psia) but rather low flow rate 
(in the range of 2 ft3).  For example, a typical PWR plant uses positive displace-
ment pumps, each delivering about 45 GPM (3.5 lit/s) at 2250 psia (15.5 MPa). 

To investigate the design and operation of rotodynamic pumps we consider 
centrifugal pumps as shown in Figure VIc.2.2.  A centrifugal pump is a mechani-
cal device, combining centrifugal force with mechanical impulse to produce an in-
crease in pressure.  In such pumps, kinetic energy is produced by the action of 
centrifugal force and then the energy is partially converted to pressure by effi-
ciently reducing its velocity.  Centrifugal pumps consist of rotating and stationary 
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Figure VIc.2.2.  Cross-section of a single-stage centrifugal pump 

parts.  Rotating parts include the impeller, mounted on a shaft, which, in turn, rests 
in the pump bearings.  The impeller contains blades or vanes.  Liquid enters the 
pump through the central hole or eye of the impeller, at the inlet to the blades.  
Stationary parts include the casing and the diffuser.  Some casings are equipped 
with stationary blades acting as a diffuser.  Note that we must have the liquid pres-
sure at the eye of the pump greater than the liquid vapor pressure as described in 
Section 1.4 of Chapter IIa and Section 2.1 of this chapter. 

Generally, casings have spiral shape, referred to as a volute, to change the liq-
uid velocity to pressure head at the discharge.  The casing may be solid with an 
opening in one side to access the impeller or may be split either axially or radially.  
In the latter case, bolts are used to fasten the two parts of the casing together.   

Power to rotate the pump shaft is provided by the pump driver also referred to 
as the prime mover, which may be a reciprocal engine, a steam turbine, or an elec-
trical motor.  A pump coupling provides connection between the two units.  Pres-
surized liquid in the pump has the tendency to leak at the shaft access through the 
casing.  This is prevented by a pump seal, which also prevents air leakage into the 
pump in the case of a suction lift when pressure drops below atmospheric. The 
pump seal generally consists of a series of packing rings, the housing of which is 
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referred to as the stuffing box.  Pumps may also use mechanical seals as are used 
in reactor coolant pumps.  In such cases, the mechanical seals are cooled by the 
plant component cooling system.  Seal cooling is required due to the high pump-
ing power of such pumps (about 5 MW per pump for a typical 1000 MWe PWR). 

2.1.  Definition of Terms for Centrifugal Pumps 

In the definitions below, reference is made to Figure IIIb.4.1, but subscript i is 
used for suction- and e for discharge-side. 

Useful work of a pump is defined as the product of two terms.  The first term is 
the rate at which fluid passes through the pump.  The second term is the height of 
a column of fluid equivalent, under adiabatic conditions, to the total pressure dif-
ferential measured immediately before entering and right after leaving the pump.  
The first term is referred to as capacity, discharge, volumetric flow rate, flow rate,
or simply flow.  The second term is referred to as pump pressure head.

Velocity head is the vertical distance a body would have to fall to acquire the 

velocity V,
2

h
2V

V

g
= .

Static suction head is the absolute pressure at the free level (Zi) of the suction 
reservoir in feet of liquid plus the vertical distance from the pump centerline to 
this level.  This definition applies only if Zi > ZP:

h ( )i
ss i P

P
Z Z

gρ
= + −

If Zi < ZP, the term is referred to as the static-suction lift. 

Static discharge head is the absolute pressure at the pump discharge plus the 
elevation head with respect to the pump centerline: 

h ( )e
sd e P

P
Z Z

gρ
= + −

Total static head is the difference between the static discharge and the static 
suction head.   

h ( )e i
sd e i

P P
Z Z

gρ
−

= + −

Total dynamic suction head is the static suction plus the velocity head minus 
the suction friction head. 

2

h h
2

i i
s i P sf

P V
Z Z

g gρ
= + + − −
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Total dynamic discharge head is the static discharge head plus the velocity 
head plus the discharge friction head. 

2

h h
2

e e
d e P df

P V
Z Z

g gρ
= + + − +

Total dynamic head is the difference between total dynamic discharge and to-
tal dynamic suction head: 

2 2

H h h
2 2

e e i i
e i f s

P V P V
Z Z

g g g gρ ρ
= + + − + + + =

where h h hf df sf= +

Vapor pressure of a liquid is the absolute pressure at which liquid vaporizes 
and is in equilibrium with its vapor phase.  If the liquid pressure drops below the 
vapor pressure, the liquid boils.  If liquid pressure is greater than the vapor pres-
sure, then the liquid vaporizes at the interface between the two phases.  The vapor 
pressure of water at 80 F (27 C), for example, is PV = 0.50683 psia (3.5 kPa).  
Similar definition is given in Section IIa.1.4.  If pressure at the eye of the pump 
drops below the vapor pressure then the pump begins to cavitate. 

Cavitation is the major cause of damage to pumps and valves where liquid ex-
periences a large and sudden pressure drop.  Cavitation is defined as formation, 
via vaporization, and subsequent collapse, via condensation, of vapor bubbles in a 
liquid.  A pressure drop to or below the liquid vapor pressure coupled with exist-
ing nuclei (tiny voids containing vapor or gas) results in liquid vaporization.  
These voids appear as tiny bubbles that will grow if the surrounding pressure re-
mains at or below the vapor pressure of the liquid or they will collapse at higher 
pressures.  Pressure drop occurs at such locations as tip of a propeller, edges of a 
thin-plate orifice, or seats of a valve.  These unrecoverable pressure losses in these 
places are associated with dissipation of energy, which constitutes the loss coeffi-
cient of valves and fittings.  Collapse of bubbles in higher-pressure regions is as-
sociated with rapid pressure fluctuations that will eventually result in erosion and 
pitting of the hydraulic structure.   

There are various means of preventing cavitation, primarily depending on the 
type of the hydraulic system.  Prevention of cavitation in a pump is discussed in 
Section 3.  In some hydraulics systems, it may be possible to introduce a gradual 
pressure drop to the flow.  Cavitation control valves may use a tortuous flow path, 
cascaded orifices, or a combination of both to cause high velocity hence, large lo-
cal frictional losses.  Another means of preventing material erosion due to cavita-
tion is to use erosion resistant materials at locations prone to cavitation, such as 
the use of stainless steel for a turbine blade, valve seat, or pump impeller.  As 
shown in Figure VIc.2.2, during operation we must ensure that Peye > Pvapor.

Best efficiency point (BEP) is an operation mode at which the pump efficiency 
is a maximum.  While pumps should be operated at their BEP, it is especially im-
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portant for pumps that operate with liquids with abrasive contents.  At the BEP, 
the angle at which the impeller and the liquid meet is optimized, helping to reduce 
impingement and minimize erosion.  In this chapter, the pump parameters at BEP 
are shown with subscript “o”. 

Net positive suction head as required by the pump is usually given for the best 
efficiency point by the pump manufacturer.  The available net positive suction 
head (NPSHA) defined as ( )2 / 2P P vP V P+ − is obrained from: 

( ) hi v
A P i fs

P P
NPSH Z Z

g gρ ρ
= − − − −                      VIc.2.1 

where point i is on the surface of the source reservoir and point P is at the pump 
inlet.  However, for large pumps, point P should be taken at the top of the impel-
ler.  Pressure at the source reservoir is Pi.  If the reservoir is open to atmosphere 
then Pi = Patm.  In Equation VIc.2.1, Pv shows the vapor pressure of the liquid at 
operating temperature.  For example, water vapor pressure at P = 14.7 psia and T
= 80 F is about Pv = 0.5 psia.  Finally, hfs represents frictional head loss in the suc-
tion piping and is found from Equation IIIb.3.12 with L = s + δ as depicted in 
Figure VIc.1.1 where hfi is friction head loss between the suction-side reservoir 
and pump inlet and Pv is the working liquid saturation pressure at operating tem-
perature.  

i

s

(a)  Arrangement Helps NPSHA

Zi

ZP

δ
P i

δ

(b)  Arrangement Hurts NPSHA

P

Zi

ZP
s

Figure VIc.1.1.  Two arrangements for pump suction (Pi is maintained throughout the 
pumping process) 

Shutoff head is the maximum head a pump develops corresponding to the 
minimum flow rate.  

Runaway speed is the speed a centrifugal pump would reach when the pump 
impeller runs in the reverse direction.  This occurs upon failure of the discharge 
valve to close when a running pump is stopped under a high static head. 

Design pressure is the maximum pressure the pump casing can be exposed to 
before being structurally damaged. 

Rated conditions are the values of pump head and pump flow rate correspond-
ing to maximum pump efficiency.  For all practical purposes, pumps should be 
operated at the BEP.  However, we recognize that deviations will occur from 
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pump conditions during operations primarily variations in demand for flow rate.  
The more the operating conditions deviate from the BEP, the more a pump would 
be subject to degradation in performance and long-term deterioration of its com-
ponents. 

Hydraulic horsepower is the power transferred to the fluid to deliver a flow 

rate of V  at a total dynamic head of H.  To calculate the pumping power, we use 

HYDW  = FV = (∆PA)( V /A) = HVgρ  = m gH.

Brake horsepower is the power delivered by the prime mover to drive the 

pump ( T=BHPW ), where ω is the shaft angular velocity (radian/s) and T is the 

shaft torque delivered by the prime mover. 

Pump efficiency is the ratio of hydraulic horsepower to brake horsepower, 

mhv
HYDW ηηηη ==
T

.

Substituting values, efficiency can be found from ( )T2/Vh Ng πρη =  where head 

is in ft, flow rate in GPM, torque in ft·lbf, and impeller speed in rpm. 

Volumetric efficiency, as a component of pump efficiency, is defined as 

)VV/(V Lv +=η  where LV  is the leakage flow rate to the casing from the im-

peller-casing clearance. 

Hydraulic efficiency is defined by three types of losses occurring in the pump.  
The first type is the shock loss at the impeller inlet (eye) due to imperfect match 
between inlet flow and the impeller entrance.  The second type is due to frictional
losses in the impeller.  The third type is the circulation loss caused by the imper-
fect match between the exit flow and the impeller outlet.  Hence, we find 

)h/h(1 sfh −=η .

Mechanical efficiency is defined by the losses in pump bearings, packing-

glands, or mechanical seals and other contact points.  If fW  is the power wasted 

in all the contact points, )/(1 BHPfm WW−=η .  Improvement of the pump seal 

and the bearing material may increase pump efficiency by as much as 2%. 

Priming refers to the inability of rotodynamic pumps to operate if non-
condensable gases have leaked into the pump.  In positive displacement pumps, 
the moving element, whether piston, gear, screw, or sliding vane, readily evacu-
ates gases from the pump.  For this reason, positive displacement pumps are con-
sidered to be self-priming.
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3.  Dimensionless Centrifugal Pump Performance 

Earlier in this section we identified three groups containing pertinent pump 

parameters, ( V , ∆P), (D, ω, ε), and (ρ, µ) .  To obtain a relation for 

( )εµρρ ,,,,,VH DNfgPpump ==∆  with H being total dynamic head, we note 

that there are a total of seven variables.  Choosing ρ, D, and ω to represent the 
three primary dimensions mass, length, and time, we can identify four dimen-
sionless ratios.  Two obvious ones are ε/D for roughness ratio and ρND2/µ for the 
Reynolds number.  The non-dimensional flow rate and head rise become 

3/V ND and gH/N2D2, respectively.  Hence, we can write:  

),,
V

(
H 2

3122 D

ND

ND
f

DN

g ε
µ

ρ=

Similar analysis can be performed for break horsepower and pump efficiency with 

dimensionless ratios of 53/ DNWBHP ρ  and η, respectively.  The dimensionless 

ratios for flow, head, and break horsepower are referred to as capacity coefficient

( VC  = 3/V ND ), head coefficient (CH = gH/N2D2), and power coefficient ( WC  = 

53/ DNWBHP ρ ), respectively.  Similar to the power coefficient, we may also de-

fine a torque coefficient (CT = T/ρN2D5).  If we assume that head and power coef-
ficients are weak functions of Reynolds number and surface roughness, for all 
practical purposes we can then write: 

)( VHH CCC ≅ )( VCCC WW ≅ η =  η( VC )                     VIc.3.1 

Hence for two pumps to be homologous, we must have 1VC  = 2VC , CH1 = CH2,

21 WW CC = , and η1 =  η2.  These conditions are known as the similarity rules.  

Using the similarity rules, not only can we predict the performance of other ho-
mologous units of pumps but we can also predict the performance of the same 
pump at various speeds. 

Example VIc.3.1.  A performance curve of a typical centrifugal pump having an 
impeller diameter of 41.5 inches at 710 rpm (pump A) is shown in the figure.  
Find the performance curve of the homologous pump (pump B) having a head and 
flow rate of 325 ft and 3000 GPM at the point of best efficiency. 
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Solution:  We use the conditions for dynamic similarity given by three relations in 
Equation VIc.3.1.  Since head and flow rate of pump B are specified at the point 
of best efficiency, to satisfy the third condition, we also use the head and flow rate 
of pump A in the first and the second relations at the point of best efficiency.  
Flow rate and head for pump A at the point of best efficiency (i.e. at η ≅ 88%) 

are about oV = 22000 GPM and Ho = 270 ft, respectively.  Hence, from 

3
AA

A
3
BB

B VV

DNDN
=  and 

2
A

2
A

A
2
B

2
B

B HH

DN

g

DN

g
=  we solve for DB and NB, to find 

( ) ( ) A
2/1

AB
4/1

BAB V/VH/H DD =  and ( ) A
4/3

ABBAB /HHV/V NN = .

Substituting for flow rates, heads, and DA, we get DB = 14.63 inches and NB = 
2209 rpm.  Having, DB and NB, other points of the pump B characteristic curve at 
other efficiencies can be obtained by using similar points of pump A. 

In the next example, we compare pump A of Example VIc.3.1 with another 
pump, which belongs to the same homologous series of pumps (say pump C).  Our 
intention is to verify if the homologous pumps can be represented only with the 
non-dimensional groups. 

Example VIc.3.2.  A performance curve of Pump C, which is homologous to 
pump A of Example VIc.3.1, is shown below in the left-hand side plot.  Find the 
head versus the flow coefficient for these pumps. 
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Solution:  Having N and D for each pump, as well as the characteristic curves (H 

versus V ) for both pumps A and C, we find the head and flow coefficients as 
plotted in the right graph in the above figure.  This figure shows that for geometri-
cally similar pumps, the head coefficient is almost a unique function of the capac-
ity coefficient.  The reason for the slight difference is due to the assumptions we 
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made namely, ignoring the viscosity effects and the surface roughness.  Similar 
comparison can be made for the brake horsepower coefficient and efficiency of 
pumps A and C. 

Even with ignoring the effects of viscosity and surface roughness to find the 

two independent variables H and BHPW , we need to know the values of three in-

dependent variables: V , N, and D.  Shown in Figure VIc.3.1(a) are head and 
brake horsepower (also efficiency and NPSH) versus flow rate for a specified di-
ameter and a specified impeller speed.  These data, referred to as the pump charac-
teristic curves, are produced empirically by the pump manufacturer.  Due to the 
complexity of dealing with a multi-variable system, it is essential, especially for 
computer analysis, to use single graphs to represent the pump characteristic 
curves.  Example VIc.3.1 showed that dimensionless homologous curves allow us 
to make such single graph representations, as shown in Figure VIc.3.1(b). 
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Figure VIc.3.1.  Representation of (a) pump characteristic curves by (b) homologous 
curves 
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Example VIc.3.3.  Use the similarity rules and compare the performance of a se-
ries of homologous pumps for various impeller diameters and impeller speeds. 

Solution: The similarity rules require that; 

,
V

V
3

1

2

1

2

1

2 =
D

D

N

N
,

H

H
2

1

2

2

1

2

1

2 =
D

D

N

N
 and 

5

1

2

3

1

2

1

2

1

2 =
D

D

N

N

W

W

ρ
ρ

These relations indicate that brake horsepower varies significantly with impeller 
size, as it depends on the diameter to the power of 5.  The impeller size also af-
fects flow rate since for the same total dynamic head, we get higher flow rate with 
higher diameter.  Pump performance curves for various diameters and speed are 
plotted on the comparative diagrams where D1 < D2 < D3 and N1 < N2 < N3.  Note 
that the similarity rules require that we also have η1 =  η2.  In reality however, lar-
ger pumps generally have higher efficiency than smaller pumps due to the 
smoother surfaces and tighter clearances. 
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3.1.  Specific Speed 

In Example VIc.3.1, we eliminated the impeller diameter and obtained BN =

( ) ( )1/ 2 3 / 4

A B B A AV / V H /H N .  If we now assume that for pump B, 1VB =  GPM 

and HB = 1 ft, then NB is known as specific speed of the pump (Ns) given by: 

3/4
o

1/2
o H/VNN s =                                   VIc.3.2 

Therefore, for a homologous series of pumps, the specific speed is the pump speed 
that delivers a unit discharge at unit head at the BEP since Ns is generally calcu-
lated at the point of peak efficiency (shown by subscript o).  Specific speed ex-
pressed in the U.S. customary units is calculated assuming speed in RPM, flow 
rate in GPM and head in feet.  The advantage of specific speed is that it is associ-
ated with a particular range of values for each class of pumps.  For example, high-
head and low-flow pumps have a specific speed in the range of about 500 in U.S. 
customary units.  As flow rate increases and dynamic head drops, the specific 
speed increases.  Wislicenus showed (Figure VIc.3.2) that pump peak efficiency 
increases with increasing flow rate and specific speed. 



3.  Dimensionless Centrifugal Pump Performance       759 

5 GPM

30

100

1000

10,000

10

∞

100 1000300 3000 10,000 30,000
0

0.2

0.4

0.6

0.8

1.0

Ns

ηmax

300

Figure VIc.3.2.  Pump peak efficiency versus specific speed 

Example VIc.3.4.  Use the pump performance data of Example VIc.3.1 to find 
specific speed. 

Solution:  Specific speed is found at the point of peak efficiency.  Therefore, 
given an impeller speed of 710 RPM, a flow rate of 22,000 GPM (8248 lit/s), and 
head of 270 ft (82.3 m), we find: 

1581
)270(

)000,22(710
75.0

5.0

=×=sN

Example VIc.3.5.  Find the specific speed of a pump with flow rate of 50,000 
GPM and head of 23 ft.  For this pump the capacity coefficient and the head coef-
ficient at the BEP are 0.1 and 5.0, respectively. 

Solution:  Flow rate in ft3/s is 50,000 GPM × (1 ft3/7.481 gallon) × (1 min/60) = 
111.4 ft3/s.

VC  = 3/V ND , therefore, ND3 = V / VC  = 111.4/0.1 = 1114 

CH = gH/N2D2, therefore, N2D2 = gH/CH = 32.2 × 23/5 = 148.12 

Solving for N and D, we find D = 9.6 ft and N = 1.3 revolution/s = 76 RPM.  Since 
high flow rate is pumped at a low head, the impeller diameter becomes too large 
and the impeller speed too slow.  The specific speed is found as Ns = 
76(50,000)1/2/(23)3/4 = 1619. 

The disadvantages associated with large diameter impeller and slow speed 
pumps include size accommodation and cost associated with parts (bearings, shaft, 
impeller, mechanical seals, and casing) in manufacturing and operation.  As seen 
from the above example, the centrifugal pumps are well suited for low flow and 
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high head applications.  Delivering high flow rates at lower head is better accom-
plished with pumps that reduce the radial component and increase the axial flow 
component.  Figure VIc.3.3 shows that the large diameter radial flow impeller 
should be used for low specific speed.  As specific speed increases, the shape of 
the impeller changes to reduce the centrifugal component in favor of the axial 
flow component.  At very high specific speeds, pumps equipped with propeller 
should be used.   

Figure VIc.3.3.  Depiction of type and efficiency versus specific speed (White) 

3.2.  Prevention of Pump Cavitation 

The required NPSH to avoid cavitation (NPSHR) is specified by the pump manu-
facturer.  As shown in Figure VIc.3.4, NPSH is a function of flow rate and impel-
ler speed.  Installation of the pump must ensure that the available NPSH remains 
always greater than the required NPSH.  Therefore, to avoid cavitation, we must 
ensure that NPSHA > NPSHR holds during pump operation.  In fact, to enhance the 
margin to the onset of cavitation, it is recommended (Kreith) to increase the 
NPSHR by an additional 2 to 3 m (6.5 to 10 ft). 
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Figure VIc.3.4.  Effect of flow rate and speed on the required NPSH 

Example VIc.3.6.  A centrifugal pump is used to deliver water at a rate of 250 
GPM.  The pump manufacturer has specified a minimum NPSH of 17 ft.  The 
source reservoir is open to the atmosphere.  The suction piping has a diameter of 
3.5 in. with a total loss coefficient of K = 8.  Find the maximum height that the 
pump can be placed above the reservoir to prevent cavitation.  Water in the reser-
voir is at 14.7 psia and 75 F.  The horizontal suction pipe run is 18 ft.  

Solution:  We use Equation VIc.2.1.  Water is at Pi = 14.7 psia, and 75 F.  The 
vapor pressure is about Pv = 0.43 psia.  Total head loss in the suction piping is: 

g

V

D

s
ffs 2

Kh
2

++=

where s is the height we are looking for and δ = 18 ft is the specified horizontal 

pipe run to pump intake.  To find velocity, we use V  = 250/(7.481 × 60) = 0.557 
ft3/s and A = πD2/4 = 3.14 × (3.5/12)2/4 = 0.0668 ft2.  Hence, V = 0.557/0.0668 = 
8.34 ft/s and Re = ρVD/µ = 62.4 × 8.34 × (3.5/12)/6.25E-4 = 0.243E6.  Assuming 
a smooth pipe, f = 0.184/Re0.2 = 0.0154.  Using Equation VIc.2.1: 
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From here s= Zp – Zi = 6  ft.  Hence, ZP = Zi + 6 ft.  This is the maximum eleva-
tion for the pump to avoid cavitation.  Note that in this example head loss due to 
skin friction (h1 = 1.4 ft) is by far smaller than losses due to valves, filters, and fit-
tings (h2 = 8.64 ft) on the suction line.  In general, the suction line must be located 
as close to the source reservoir as possible with as few valves and fittings on the 
suction line as absolutely necessary.  Head loss due to skin friction can become 
noticeable in cases where pumps cannot be located near the source reservoir with 
only few fittings on the suction line. 
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The likelihood for cavitation increases with increasing specific speed conserva-
tively beyond about 8000. 

Example VIc.3.7.  The available NPSH for a pump delivering 50,000 GPM water 
is 40 ft.   Find the maximum impeller speed to avoid cavitation. 

Solution:  We find N from Equation VIc.3.2 with NPSH substituted for Ho:

N = Ns(NPSH)3/4/ V 1/2:
N = 8000 × (40)0.75/(50,000)1/2 = 569 RPM. 

4.  System and Pump Characteristic Curves 

The challenge of selecting a pump is to meet the required capacity while providing 
the required head at the point of best efficiency. Equation IIIb.4.8-1 (or IIIb.4.8-2) 
gives serial-path system curves for laminar and turbulent flows.  This is also plot-
ted in Figure VIc.4.1(b).  Pump head and flow rate is obtained from the intersec-
tion of the pump characteristic and system curves.  If this point does not corre-
spond with the point of peak efficiency, the pump speed should be adjusted 
otherwise alternate pumps should be sought.  We may try an analytical solution 

for turbulent flow in pipes, for example where 2
31 VH ccSystem += .  Represent-

ing pump head versus flow rate with a parabola, we find HPump = a + b 2V .  Set-

ting the system head equal to the pump head, we find (b – c3)
2V + (a – c1) = 0.  

Flow rate is then found as  

2/1
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where the two points to describe the HPump = f( V ) are taken at maximum H and 

maximum V .  The flow rate calculated above should be checked against oV ,

flow rate corresponding to best efficiency point.  If significant difference exists, 
pump speed should be changed.  If the change in speed still does not increase effi-
ciency, an alternate pump should be sought.  To find if a change in speed brings 
efficiency to its peak value, we use the homologous relations 'VV CC =  and CH = 

CH’.  If at No rpm, the flow rate and head corresponding to peak efficiency are oV

and Ho, then at any other speed these are given by )/(VV oo NN=  and H = Ho

(N/No)
2.  We now substitute the new head and flow rate into the system curve to 

get Ho (N/No)
2 = c1 + c3 [ ]2

oo )/(V NN .  We solve this equation for N to get: 



4.  System and Pump Characteristic Curves       763 

1/ 2

1 e
o o2 2 2

o 3 o o oH V H [ '/(2 )]V
iC Z Z

N N N
C fL gDA

−= =
− −

VIc.4.2 

Equation VIc.4.2 yields an acceptable answer only if the argument is greater than 
zero.  To increase accuracy, the pump curve should be represented by a higher or-
der polynomial. 
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Figure VIc.4.1.  (a) Pump in a single-path system  (b) Pump and system curves 

Example VIc.4.1.  The pump in Example VIc.3.1 is used to deliver water to a 
height of 100 ft from the source reservoir.  Total pipe length is 2000 ft and the 
pipe diameter is 14 in.  The pipe run includes a swing check valve, a fully open 
gate valve, and a fully open globe valve as well as a total of 4 threaded 90° el-
bows.  a) Find flow rate and efficiency.  b) How do you maximize efficiency in 
part (a)? 

Solution: a) We first find the system curve from Hsystem = c1 + c3
2V  where c1 = 

100 and c3 is given by c3 = fL’/(2gDA2).
However, L’ = L + Le.  From Table III.6.3 (b), Le = 4 × 30 + 50 + 8 + 340 = 518 
and from Table III.3.2, f = 0.013.  Flow area becomes A = π(14/12)2/4 = 1.069 ft2.
Finally, c3 = 0.013 × (2000 + 518)/[2 × 32.2 × (14/12) × 1.0692] = 0.38.  There-

fore, Hsystem = 100 + 0.38 2V , where flow rate is in ft3/s.   

Approximating the pump head versus flow as a parabola (HPump = a + b 2V ), we 

find coefficients a and b by using two points.  The first point is at V  = 0, HPump = 

322 ft.  Picking the second point at the best efficiency gives V  = 22000 
GPM/(7.481 × 60) = 49 ft3/s and HPump = 270 ft.  This results in, a = 322 and b = – 
0.0216 or HPump = 322 – 0.0216 2

oV .  From Equation VIc.4.1: 
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( ) ( ) /sft51.23)38.00216.0/()322100(/a-cV 3
31 =−−−=−= cb  = 

10552 GPM. 
This corresponds to a head of 310 ft and an efficiency of about 73%, far from the 
peak efficiency of 88%. 

b) To increase the pump efficiency we may change the pump speed.  To find the 

new pump speed, we use homologous relations to get oV)710/('V N=  and H’ = 

(N/710)2Ho.  We now substitute the new head and flow rate into the system curve 
to get:  (N/710)2 × 270 = 100 + 0.38 {(N/710) [22000/(7.481 × 60)]}2.  Thus, -
1.275E-3 N2 = 100.  It is clear we cannot reach peak efficiency for the operational 
condition using this pump. 

4.1.  Compound Pumping System 

Pumps may be used in serial or parallel arrangements depending on the flow or 
head requirement.  Pumps combined in series, as shown in Figure VIc.4.2(a) pro-
vide a higher head for the same flow rate and pumps combined in parallel, provide 
the same head at higher flow rate.  For optimum performance, not only the head 
and flow rate of the compound pumping system must meet the demand but they 
must also correspond to the point of best efficiency of each participating pump.  
Compound pumping systems are not always used to meet the head and flow rate 
demand.  In many cases pumps are arranged in parallel to increase system avail-
ability. 

V
.

H HPump A + Pump B = f1(V) +
.

f2(V)
.

HSystem = f
3
(V)
.

H
Pump B

 = f2(V)
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.

HPump A =

V
.
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HPump B = f2(V)
.HSystem = f3(V)
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.
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(a)                                                                         (b) 

Figure VIc.4.2.  Compound pumping system in (a) serial and (b) parallel arrangements 
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4.2.  Extension of Pump Characteristic Curves 

Earlier we discussed pump characteristic curves and the representation of the fam-
ily of such curves with the pump homologous curves.  While it is desired that 
pumps operate steadily at their rated condition, there are cases where pumps must 
be analyzed for such off normal conditions as flow reversal in the pump and re-
verse rotation of the impeller.  Such off normal operations require the extension of 
the first-quadrant pump characteristic curves (positive flow rate and positive 
speed) to all four quadrants where any combination of positive and negative flow 
rate and speed exists.  Unlike Figure VIc.3.1, where head and volumetric flow rate 
are chosen as coordinates, as shown in Figure VIc.4.3(a), the coordinates are cho-
sen to be volumetric flow rate and the impeller speed.  The resulting plots, as em-
pirically produced by the pump manufacturer, are known as the synoptic curves,
which constitute the Karman-Knapp circle diagram.  In this figure, the solid lines 
represent constant head and the dotted lines show the constant pump hydraulic 
torque.  Figure VIc.4.3(b) shows possible modes of operation of a pump during a 
transient.  The first quadrant is normal pump (N).  The solid lines between H = 0
and the speed coordinate are the familiar head versus flow rate curves.  Expect-
edly, for a constant flow rate, head increases with increasing impeller speed.  
There are also lines representing negative pump head in this quadrant for positive 
flow and positive impeller speed. 
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Figure VIc.4.3.  (a) Pump characteristic curves in four quadrants and (b) Possible modes of 
operation 

In the second quadrant (D), we find only positive pump head for positive im-
peller speed but negative flow rate.  The third quadrant (T) is referred to as normal 
turbine where, for positive pump head, flow direction is into the pump with the 
impeller rotating in the reverse direction.  Finally, in the forth quadrant (R) there 
are both positive and negative pump heads for positive flow and reverse impeller 
rotation.  It is obvious that representation of such massive pump characteristic data 
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in computer analysis is impractical.  Therefore, we resort to the non-dimensional 
homologous curves to represent the pump characteristic curves.  This, in turn, re-
quires the definition of some additional non-dimensional groups. 

For a given pump, we use the rated data, which correspond to the point of best 
efficiency, to normalize variables. Hence, we obtain speed ratio (a = ω/ωo = 

N/No), flow ratio (v = oV/V ), head ratio (h = H/Ho) and torque ratio (b = T/To).

The flow, head, and torque coefficients now take the form of VC  = b/v, CH = h/a2,

and CT = b/a2, respectively.  We then can find CH and CT as functions of VC .

During analysis of pump response to a transient flow rate and impeller speed trav-
erse positive and negative values.  As such, both variables may encounter zero.  In 
the case of the impeller speed, the values of the above coefficients would be unde-
termined.  To avoid such conditions, we update our definition of the above coeffi-

cients and produce 2'
H h/b=C  and 2' v/b=TC .

Generally, the head or torque coefficients (CH and CT or '
HC  and '

TC ) as inde-

pendent variables are expressed in terms of flow and speed ratios (a and v).  Since 
there are also four quadrants where these independent variables should be deter-
mined, it has become customary to use shorthand (a three-letter notation) to iden-
tify various variables in various quadrants.  The first letter identifies the dependent 
variables (i.e., whether we are dealing with head or torque (h or b)).  Hence, H 
designates head and T designates torque ratios.  The second letter, as a representa-
tive of the independent variable, is such that A designates division by a for the in-
dependent variable, and division by a2 for the dependent variable.  Similarly, V 
designates division by v for the independent variable and division by v2 for the 
dependent variable.  Finally, the third letter indicates the mode in which the pump 
is operating, as shown in Figure VIc.4.3(b).  These modes are N, R, T, and D for 
Normal pump, Reverse pump, normal Turbine, and energy Dissipation, respec-
tively.  These conventions are summarized in Table VIc.4.1, which defines 16 
curves: 8 for head and 8 for torque.  We now group similar curves of Ta-
ble VIc.4.1 to obtain only four curves as summarized in Table VIc.4.2.  These four 
homologous curves are shown for a typical centrifugal pump in Figure VIc.4.4(a) 
for homologous head and in Figure VIc.4.4(b) for homologous torque.  

Table VIc.4.1.  Summary of homologous curve notations 
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Table VIc.4.2. Determination of pump homologous curves from pump characteristic curves 

2.0

1.5

1.0

0.5

0.0

-0.5
-1.0 -0.5 0 0.5 1.0

HAD

HAN

HVD

HVT

HAT

HAR

HVR HVN

h/v2 h/a2or

v/a or a/v

1.5

1.0

0.5

0.0

-0.5

-1.0
-1.0 -0.5 0 0.5 1.0

BVD BAN

BAD

BVT

BVN

BAT

BVR BAR

b/v2 b/a2or

v/a or a/v

                          (a)                                                                         (b) 

Figure VIc.4.4.  Dimensionless homologous (a) pump head and (b) hydraulic torque 

Example VIc.4.2.  In a transient, the speed and flow rate of a centrifugal pump 
are given as N = –600 rpm and V  = –200,000 GPM.  Find a) pump head and 
torque, b) pump efficiency, and c) the temperature rise of the liquid across the 
pump for rated conditions.  The rated values of the pump are: 
No = 900 rpm, oV  = 370,000 GPM, Ho = 270 ft, To = 136,000 ft·lbf, and  
ρ = 50 lbm/ft3.

Solution:  a)  Having V  and N, we obtain v = V / oV  = –200,000/370,000 = –
0.54 and a = N/No = –600/900 = –0.67.  Hence, a/v = –0.54/–0.67 = 0.81. 
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From Figure VIc.4.4(a), using the HVT curve we find for a/v = 0.81, h/v2 = c1 ≅
0.8
From Figure VIc.4.4(b), using the BVT curve we find for a/v = 0.81, b/v2 = c2 ≅
0.6.  Therefore,
H = hHo = 0.8 × (0.54)2 × 270 = 63 ft and T = bTo = 0.6 × (0.54)2 × 136,000 = 
24,588 ft·lbf. 

b)  It can be easily shown that pump efficiency is related to the rated efficiency as 
η/ηo = (c1/c2)(v/a) 
Having c1 and c2 from (a), and ηo, we can find η.  However, pump efficiency is 
defined for the first quadrant.  In the third quadrant for example, where the pump 
is in the turbine mode, efficiency should be redefined to fit the mode of operation. 

c)  Total power delivered to the liquid is BHPW  = ρog oV Ho.  This is equal to the 
energy gained by the water as given by Tc po ∆oVρ .  Hence, ∆T = Hog/cp.  If the 
liquid is water, cp = 1 Btu/lbm F = 778 ft·lbf/lbm F.  Hence, ∆T = 270/778 = 
0.35 F. 

Since production of the pump homologous curves is tedious, there are several 
attempts to represent these by polynomial curve fits.  For example, Streeter rec-
ommends parabolic functions for the representation of these curves in various 
quadrants.  The dimensionless head becomes: 

2
131211 )a(v/(v/a)h ccc ++= 1v/a0 ≤≤                   VIc.4.1-1 

2
111213 )a/v((a/v)h ccc ++= 1v/a >                  VIc.4.1-2 

and the dimensionless hydraulic torque: 

2
232221 /v)a((a/v)b ccc ++= 1v/a0 ≤≤                  VIc.4.2-1 

2
232221 /v)a((a/v)b ccc ++= 1v/a >                  VIc.4.2-2 

using the coefficients cij given in Table VIc.4.3.   

Table VIc.4.3.  Coefficient for parabolic fit to pump homologous curves 
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Having the curve fit coefficients and the rated values, flow rate and hydraulic 
torque are found from: 
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Another example for curve fitting to the pump homologous curve is given by Kao 
as polynomials: 
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where coefficients c31 through c34 for positive impeller speed are 1.80, –0.30, 0.35 
and –0.85 and for negative impeller speed are 0.50, 0.51, –0.26, 0.25.  For dimen-
sionless torque, coefficients c41 through c44 for positive impeller speed are 1.37, –
1.28, 1.61, and –0.70 and for negative impeller speed are –0.65, 1.9, –1.28, 
and 0.54.  In a transient, if the impeller speed goes to zero when changing direc-
tion from positive to negative speed, the pump head versus flow for these sets of 
polynomial curves may be found from: 

vv)3181.4(h −−= E

While theoretically a centrifugal pump may operate in all four quadrants, in prac-
tice, pump operation in the first quadrant can be ensured by pump and system 
modification.  For example, installing a non-reversing ratchet prevents the impel-
ler from rotating in the reverse direction and a check valve on the discharge line 
prevents reverse flow into the pump. 

5.  Analysis of Hydraulic Turbines 

Turbines are mechanical devices to convert the energy of a fluid to mechanical 
energy.  Turbines can be classified in various ways based on process, head con-
version, or rotor type.  Regarding the process, energy transfer in turbines may take 
place in either an adiabatic or in an isothermal process.  Regarding head conver-
sion, turbines may be divided into the reaction and the impulse type for momen-
tum exchange between fluid and the turbine rotor.  Finally, turbines may be classi-
fied depending on the velocity vector resulting in an axial, radial, or mixed-flow 
rotor. 

5.1.  Definition of Terms for Turbines 

Adiabatic process turbines, as were studied in Chapter IIb, include gas and 
steam turbines where the means of energy transfer from fluid to the turbine rotor is 
primarily through the change in the fluid enthalpy.  In this type of turbine, changes 
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in the fluid potential and kinetic energy are generally negligible, compared with 
the change in fluid enthalpy. 

Isothermal process turbines include turbines used in greenpower production 
such as hydropower and wind turbines.  In this type of turbine, the transfer of me-
chanical energy to the turbine rotor is due to the fluid kinetic energy, while 
changes in enthalpy are generally negligible compared with the change in the fluid 
kinetic energy. 

Reaction type turbines or simply reaction turbines, have rotors equipped with 
blades.  In the reaction type turbines, fluid fills the blade passages of the rotor to 
deliver momentum.  Thus, the head conversion in the reaction type turbines occurs 
within the turbine rotor where fluid pressure changes from inlet to outlet.  Exam-
ples of the reaction type turbines include adiabatic, wind, and most hydropower 
turbines.   

Impulse type turbines convert the head in an injector.  Thus, in an impulse 
turbine, the head conversion takes place outside the turbine rotor.  The high veloc-
ity jet then strikes individual buckets attached to the Pelton wheel at a constant 
pressure.  Imparting the momentum of the jet to a bucket produces a force, which 
results in a torque to turn the wheel and brings the adjacent bucket to face the jet.

5.2.  Specific Speed for Turbines 

The same dimensionless groups defined in Section 3 for pumps are also applicable 
to turbines.  Recall that for pumps we expressed the head and the power coeffi-
cient in terms of the capacity coefficient.  However, for turbines, we express the 
capacity and the head coefficient in terms of the power coefficient. In the U.S., it 
is customary to find specific speed for turbines from: 

4/5

2/1

)ftH,(

)bhp)(rpm,(N
N s =                                  VIc.5.1 

5.3.  Adiabatic Turbines, Steam Turbine 

The adiabatic turbines, regardless of the type of working fluid, are generally of ax-
ial flow type.  However, turbines used for turbo-charging are generally of radial 
flow type.   

5.4.  Isothermal Turbines, Pelton Turbine 

As discussed in Chapter I, Pelton wheels are impulse turbines in which high head 
and low flow rate of water strikes the buckets attached to the wheel, as shown in 
Figure VIc.5.1.  Our goal is to determine the Pelton wheel in terms of the jet ve-
locity (Vj), the bucket velocity (Vt), and the bucket angle (β).  This is shown in the 
example that follows. 
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                  (c)  

Figure VIc.5.1.  Pelton wheel.  (a) Side view of the wheel, (b) & (c) top and frontal views 
of the bucket. 

Example VIc.5.1.  Derive the efficiency of the Pelton wheel in terms of the con-
stant velocities Vj, Vt, and the jet reflection angle of β.

Solution: Efficiency of the wheel is defined as the ratio of the power obtained 

from the wheel to the power delivered to the wheel inout WW /=η  (i.e., the break 

horsepower to the hydraulic horsepower). 

( ) ( ) ( ) ( )[ ] 2/V//2/1/2// 2222
jjjjjin VdtdVmVdtdmdtmVddtdEW ρ=+===

We find outW  from the rate of change of momentum for which we must consider 

the relative velocities.   

F = d(mV)/dt = (dm/dt)V + (dV/dt)m = VVρ .  Note that V = Vj – Vt.  The net force 

applied on the wheel is 
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∆F = Fj – Ft = ( )tj VV −Vρ  – ( ) βρ cosV)/( tjc VVg −  = 

( )( )βρ cos1V −− tj VV

=∆= FVWout ( )( )[ ] ttj VVV βρ cos1V −−

inoutltheoretica WW /=η  = ( )( )[ ] ttj VVV βρ cos1V −− / ( )2/V 2
jVρ  =

2(1 – cosβ)(Vj – Vt)Vt/
2
jV .

To find (ηtheoretical)max we set dηtheoretical/dVt = 0 resulting in Vt = Vj/2.  Hence,
(ηtheoretical)max = (1 – cosβ)/2. 

In the above example, we assumed an injector with maximum efficiency.  In 
practice however, the bucket angle is about 165o and a velocity coefficient (Cv ≅
0.94) should also be considered for the nozzle.  Hence, the efficiency becomes: 

 η = 2(1 – cosβ)(Cv – φ)φ                                             VIc.5.2 

where φ = Vt/ H2g .  Maximum efficiency, considering the velocity coefficient, 

occurs when φ = Cv/2.  In practice, the Pelton wheel efficiency is even less than 
that given by Equation VIc.5.2 due to such losses as windage and mechanical fric-
tion.  Additionally, the Pelton wheels suffer from two more losses, which are pe-
culiar only to this type of turbine.  The first has to do with the nature of a jet strik-
ing a turning wheel.  As the bucket facing the jet moving away and the neigh-
boring bucket approaches the jet, the back of the approaching bucket would first 
touch the jet before the front of the bucket faces the jet.  Although a recess or a slit 
has been made in each bucket to minimize back-splashing, there are still some 
losses associated with this feature of the Pelton wheel.  The second loss is due to 
the frontal structure of each bucket.  Each bucket is made of two split cups, the 
common edge of which constitutes a spear, as shown in Figure VIc.5.1.  The jet, 
upon entering the bucket, is divided up by the spear into two equal parts to pass 
the curvilinear surface of each cup and exit the bucket.  Machining and surface 
finish of each split cup is essential for having a uniform flow in each cup of the 
bucket. 

The Pelton wheel efficiency should, therefore, be calculated from experimen-
tally obtained data such as the data shown in Figure VIc.5.2, which gives effi-
ciency in terms of the turbine power specific speed.  Figure VIc.5.2 indeed indi-
cates that hydraulic turbines using the Pelton wheel have lower efficiency at their 
BEP than the Francis and the Kaplan turbines.  Given this fact, it then appears that 
a Francis turbine is a better choice.  Indeed Francis turbines, with radial-axial ro-
tors, are used to harness the power of water at a height of up to 700 m (2,300 ft).  
However, the Pelton wheels are used for heads as high as 1500 m.  Using a Fran-
cise turbine for such high heads, results in the rotor having to run at very high 
speeds.  Furthermore, a thick casing is required to contain water at pressures that 
may exceed 2000 psia.  
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Figure VIc.5.2.  Efficiency of hydraulic turbines as a function of specific speed (White) 

Example VIc.5.2.  The Pelton wheel of an impulse turbine has a wheel diameter 
of 4 m and an injector diameter of 10 cm.  The turbine is operating at a net head of 
600 m.  Find the power output of this turbine for best efficiency. 

Solution:  We use a return angle of 165o, a velocity coefficient of 0.94, and per-
form the following steps: 

H2gCV vj =  = 0.94(2 × 9.8 × 600) = 102 m/s and (Vj)max = 108.4 m/s.   

Find flow rate from: 

( ) jj Vd 4/V 2π=  = π(10/100)2 × 102/4 = 0.8 m3/s = 12700 GPM.   

Find η from Figure VIc.5.2. 

To use Figure VIc.5.2, we need Ns.  Recall that at best efficiency, φ = Cv/2, where 
Cv ≅ 0.94, therefore 
φ = 0.94/2 ≡ 2πRΝ/(Vj)max = π × 4 × N/108.4.   
Solving for N, we obtain N = 4 RPS = 240 RPM.   

We need to calculate the bhp: 

bhp = ( )( )[ ] ttjc VVVg βρ cos1V)/( −−  = 999 × 0.8 [102 – (102/2)](1 – cos165) 

× (102/2) = 5480 hp 
Ns = N(bhp)0.5/H5/4 = 240 × (5480)0.5/(600 × 3.2808)5/4 = 1.355.
From Figure VIc.5.2, η ≈ 0.73% 

outW  = 5480 × 0.73 = 3993 hp. 

5.5.   Classification of Hydraulic Turbines 

Classification of the hydraulic turbines in terms of specific speed and head is 
shown in Figure VIc.5.3.  As shown in this figure, axial flow turbines are suitable 
for low head and high flow.  As the available head of water increases, the runner is 
shaped so that the flow of water becomes mixed with respect to the axis of the tur-
bine runner.  Still at higher heads, the Francis wheel is used.  At low flow rates 
and very high head, the Pelton wheel is the obvious choice. 
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As seen from Figure VIc.5.3, for reaction turbines, low specific speeds are as-
sociated with radial turbines and high specific speed with axial turbines.  Similar 
association applies to pumps as shown in Figure VIc.3.2 for specific speed ranging 
from 500 –15,000.  Mott indicates that axial flow pumps may be used for pump 
specific speed in the range of 7,000 – 60,000. 
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Figure VIc.5.3.  Classification of hydraulic turbines (Krivchenko) 

5.6.   Isothermal Turbines, Wind Turbine 

As was discussed in Chapter I, there are a variety of wind turbines in operation to-
day.  The most widely used is the wind turbine type of horizontal axis design 
equipped with propellers, as shown in Figure I.4.21.  To derive the efficiency for 
the wind turbine, we use the method applied by White.  For this purpose, we use 
the mass, momentum, and energy equations for the control volume consisting of a 
stream tube and a propeller, as shown in Figure VIc.5.4.  We note that location 1 
is the upstream of the propeller at velocity V1 and pressure P1 = Patm.  Locations 2 
and 3 are right before and right after of the propeller.  Air velocity and pressure at 
these locations are V2, P2, V3, and P3, respectively.  Finally, location 4 is down-
stream of the propeller at which air velocity is V4 and air pressure reaches the at-
mospheric pressure, P4 = Patm.  In the following derivation we assume uniform 
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Figure VIc.5.4.  The stream-tube for the flow of air through a wind turbine (White) 

wake and ideal flow.  There are reasonable assumptions for V1 < 20 mph 
(32 km/h). 

The continuity and the momentum equations.  Regarding the continuity 
equation, we note that the mass flow rate of air through the propeller is found as 

AVm aρ=  where A is the area swept by the propeller and Va is the air velocity at 

the blade.  As for the momentum equation, we apply the Bernoulli equation be-
tween locations 1 and 2 and between locations 3 and 4.  Adding these equations 
and noting that P1 = P4 = Patm and V2 = V3 = Va we conclude: 

( ) 2/2
4

2
132 VVPPP −=∆=− ρ                       VIc.5.3 

We now use the momentum equation over the turbine (i.e. between locations 2 
and 3).  A free-body diagram for the turbine shows that the net force applied in the 
wind direction to the turbine is equal to the rate of the change of air momentum 
passing through the propeller: 

F = ( ) ( )4132 VVAVAPP a −=− ρ                       VIc.5.4 

where we assume an ideal wind turbine for which no frictional losses exist.  In re-
ality, however, we must also include the friction force.   
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From Equation VIc.5.4, we find ∆P in terms of the turbine upstream and down-
stream velocities ∆P = ρVa(V1 – V4).  Substituting ∆P in Equations VIc.5.3, we 
find: 

Va = (V1 + V4)/2                                              VIc.5.5 

If we define parameter α = Va/V1, we note that for wind turbines, 0.5 < α < 1.  For 
α < 1, the wake flows towards the turbine.  In an airplane equipped with a propel-
ler, α > 1.

The energy equation.  To obtain the maximum power delivered to the wind 
turbine, we treat the incoming wind toward the blades as a jet having a flow area 
equal to the swept area of the propeller.  Hence, the maximum power delivered to 
the impeller is: 

22

1

2

2
1

2
12

1

2
1 Vm

dt

dV
mV

dt

dmmV

dt

d

dt

dE
W wind

available =+===

                                                                                                              VIc.5.6 

where the derivative of the wind velocity, for constant flow of wind, is zero.  If we 
substitute for the wind mass flow rate, we find the wind power delivered to the 
propeller as: 

2

3
1AV

Wavailable

ρ
=                                   VIc.5.7 

Having the rate of energy delivered to the propeller, we need to find the rate of 
energy extracted by the propeller to find the turbine efficiency. To find the latter, 
we use Equation VIc.5.4 in conjunction with the definition of power: 

( )[ ] aaextracted VVVAVFVW 41 −== ρ                       VIc.5.8 

where F is substituted from Equation VIc.5.4.   

Turbine efficiency.  We may find efficiency by dividing Equation VIc.5.8 by 
Equation VIc.5.7.  However, we are more interested in finding the maximum effi-
ciency, which requires the calculation of the maximum extracted work.  The latter 
is found by taking the derivative of Equation VIc.5.8 and setting it equal to zero.  
To take the derivative of Equation VIc.5.8, we first substitute for Va from Equa-
tion VIc.5.5: 

( ) ( )2

1 4 1 4 / 4extractedW A V V V Vρ= − +                      VIc.5.9 

By taking the derivative of Equation VIc.5.9 with respect to V4 and setting it equal 
to zero, we find that the maximum power is extracted if V4 = V1/3.  The maximum 
extracted power is then obtained by substituting this result into Equation VIc.5.9: 
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( ) 3
1max 27

8
AVWextracted ρ=                VIc.5.10 

Having the maximum extracted power, we can now find the maximum efficiency 
from Equations VIc.5.7 and VIc.5.10: 

( ) %3.59
27

16

2

1
/

27

8 3
1

3
1max === AVAVwindmill ρρη

The result indicates that even at the ideal conditions (i.e., with no friction) this 
wind turbine can only extract about 60% of the wind energy.   

Example VIc.5.3.  A wind turbine is exposed to 50 mile/h wind.  Wind speed 
downstream of the propeller is 40 mile/h.  The propeller, consisting of two blades, 
has a diameter of 40 ft.  Assume ideal gas and standard condition for air to find a) 
the thrust on the wind turbine, b) the power delivered to the wind turbine, c) the 
maximum power extracted by the wind turbine, and d) the wind turbine maximum 
efficiency.

Solution:  First find the air speed in ft/s; V1 = 50 × 5280/3600 = 73.3 ft/s and V2 = 
58.7 ft/s.  Next we find: 
Va = 0.5   (73.3 + 58.7) = 66 ft/s.   
The swept area is A = πD2/4 = π × 402/4 = 1256.6 ft2 and the air density is: 
ρ = P/RT = 14.7 × 144/[(1535/28.97) × (460 + 60)] = 0.077 lbm/ft3.

a) F = ρVaA(V1 – V4) = 0.077 × 66 × 1256.6(73.3 – 58.7)/32.2 = 2896 lbf 

b) == 2/3
1AVWavailable ρ 0.077 × 1256.6 × 73.33/64.4 = 0.592E6 ft⋅lbf/s = 

0.8 MW 

c) ( )[ ] =−= aaextracted VVVAVW 41ρ  [0.077 × 66 × 1256.6(73.3 – 58.7)] ×
66/32.2 = 0.26 MW 
d) η = 0.26/0.8 = 32% 

6.  Analysis of Turbojets for Propulsion 

In Chapter I, various types of gas turbines for aircraft propulsion were described.  
In Chapter IIb, we discussed the air-standard cycle for reaction engines, and in 
Example IIb.1.7, we used the processes of an air-standard cycle to find the gas ve-
locity at the exit of a turbojet for a specified sets of conditions.  Our goal in this 
chapter is to find the thrust developed by various types of turbojets. 

Derivation of Thrust for Aircraft Propulsion:  
Shown in Figure VIc.6.1 are schematics of a turbojet, a turbofan, and a turboprop.  
The free stream properties are shown with subscript i.  Let’s first consider the con-
trol volume representing the turbojet.  Air enters this control volume at velocity Vi,
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Figure VIc.6.1.  Schematics of turbojet, turbofan, and turboprop 

pressure Pi, and density ρi.  These properties at the exit of the nozzle are VN, PN,
and ρN, respectively.  To obtain the thrust developed by this engine, we use the in-
tegral form of the conservation equations of mass (Equation IIa.5.1) and linear 
momentum (Equation IIIa.3.6).  In this derivation, we are interested in calculating 
the engine thrust for steady state conditions.  Therefore, the time dependent terms 
cancel out.  Thus, the net forces acting on the control volume are balanced by the 
momentum flux.  The net forces include such surface forces as the thrust on the 
engine and the pressure force at the inlet and exit of the control volume.  We then 
write Equation IIIa.3.6 as: 

( ) ( ) iieeNatmNCatmix VmVmAPPAPPF −=−−−+

Note that we assumed fuel enters the combustion chamber normal to the flow of 
air, hence it does not contribute to the momentum along the x-axis.  The difference 
between the mass flow rates at the inlet and exit is due to the contribution of the 
fuel injected into the combustion chamber. 
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Example VIc.6.1.  Air enters a turbojet at 500 km/h, 90 kPa, and a mass flow rate 
of 22 kg/s.  Fuel enters the combustion chamber at a rate of 0.45 kg/s.  The ex-
haust gases leave the nozzle at 2000 km/h and 130 kPa.  Find the thrust on this en-
gine.  Other data:  Patm = 100 kPa, AC = 0.16 m2, AN = 0.08 m2.  Ignore the mo-
mentum of the fuel entering the control volume. 

Solution:  For the control volume encompassing the engine: 

( ) ( ) iiefiNatmNCatmiEx VmVmmAPPAPPF −+=−−−+ )(,

where subscripts E and f stand for engine and fuel, respectively. Substituting val-
ues, we find: 

( ) ( ), 90 100 0.16 130 100 0.08x EF = − − × + − × +
(22 0.45) (2E6/3600) 22 (0.5E6/3600)+ × − × = 9417 N 

In turbofans and turboprops, the thrust developed by the engine is primarily due 
to the action of the fan and the propeller, respectively.  Thus, in the case of turbo-
fans and turboprops, we use the conservations of energy in addition to the conser-
vation equations of mass and momentum.  We write the conservation equation of 
energy for a control volume encompassing the fan or the propeller.  The flow ve-
locity exiting the fan or the propeller is then calculated from the energy equation 
for the specified rate of shaft work based on the power delivered to the fan or the 
propeller. 

QUESTIONS 

– To pump highly viscous liquids, do you use rotodynamic pumps or positive dis-
placement pumps? 

– Is a centrifugal pump a radial-type or an axial-type pump? 
– What is a driver or a prime mover?  Give three examples of a prime mover. 
– What does total dynamic head of a pump represent? 
– When are two centrifugal pumps homologous? 
– Why do we try to find non-dimensional groups and what are the applications of 

the similarity rules? 
– What is the significance of specific speed?  A centrifugal pump has a specific 

speed of 500.  What is the relation of head and flow to a similar pump but with 
specific speed of 1000? 

– Why are the reactor coolant pumps in PWRs located on the cold legs and not 
the hot legs? 

– Is it fair to say that operating the centrifugal pumps at the best efficiency point 
reduces impeller erosion? 

– What are the four quadrants for pump operation?  In which quadrant does a 
pump act like a turbine? 
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– What is the difference in head and flow rate between the impulse and the reac-
tion type turbines? 

– What type of turbine is a Pelton wheel? 
– A hydropower plant has 100 m of head available to be used for power produc-

tion.  Is a Pelton wheel suitable for this purpose? What type of hydraulic tur-
bine do you recommend? 

– Consider two turbines producing identical power.  Once uses a Pelton wheel 
and the other a Kaplan type propeller.  Which turbine has higher flow rate? 

– What type of turbine do you use for a flow rate of 50 m3/s at a head of 10 m? 
– Can a wind turbine of horizontal axis design achieve an efficiency of 65%? 
– How is the engine thrust calculated in turbofans? 
– How is the engine thrust calculated in turboprops? 

PROBLEMS 

1.  A charging pump in a PWR plant operates at a volumetric flow rate of =V  44 
GPM (166.5 lit/min) at a head of H = 7000 ft (2134 m).  What is the type of this 
pump?

2.  A pump delivers water from a reservoir, which is open to atmosphere.  Water 
level in the reservoir and the pump centerline are at elevations of 40 ft and 35 ft, 
respectively.  Find the static suction head of the pump.  [Ans.:  39 ft]. 

3.  A pump is delivering water at atmospheric pressure to an elevation of 400 m.  
Elevation of the pump centerline is –10 m.  Find the static discharge head.  [Ans.:  
444 ft]. 

4.  The main feedwater pump of a PWR delivers water to the steam generator at a 
rate of 15,000 GPM (946.3 lit/s).  The steam generator pressure is 900 psia 
(6.2 MPa).  The difference between the discharge and the pump centerline eleva-
tion is 100 ft (30.48 m).  Find the pump static discharge head.  Water temperature 
is 450 F (232.2 C).  [Ans.:  2600 ft (792.5 m)]. 

5.  A pump delivering water at a temperature of 400 F (204.4 C) and a rate of 
12,000 GPM (757 lit/s) to a pressurized vessel at 1000 psia.  The discharge piping 
is 135 ft (41.15 m) long schedule 40 stainless steel, and nominal pipe size of 20 in 
(7.874 cm). Find the total dynamic discharge head. 

6.  A 3 horsepower compressor, circulating air at 20 C and a head of 20 m.  Find 
the mass flow rate of the circulating air. 

7.  Use the data of Example VIc.3.1 and the definition of flow coefficient, head 
coefficient, and power coefficients to show that: Wpump CCC /HV=η .

8.  The rigorous way of calculating the pump specific speed is to use:  
3/4
H

2/1
V /

oo
CCN s =′

where
o

C
V

and
o

CH  are the flow and head coefficients corresponding to the point 

of best efficiency.  Use Equation VIc.3.2 to show that the specific speed, using the 
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customary definition (Ns) is related to sN ′  as ss NN ′=17182 .  Also show that Ns

or sN ′  represents an entire family of pumps regardless of size or speed. 

9. Using the performance curve of pump A given in Example VIc.3.2 (41.5” and 
710 rpm) and find: 
a) total dynamic head of a similar pump (pump B), at peak efficiency, having a di-
ameter of 35 inches.  Assume that both pumps A and B are operating at the same 
speed. 
b) pump head if pump B is now operating at 1170 rpm.  [Ans.:  a) H = 192 ft and 
b) H = 521.5 ft]. 

10.  A pump delivers 500 GPM water with a suction line 6 in. diameter.  The res-
ervoir is pressurized with to 17 psia.  The required NPSHR is 15 ft.  Due to the use 
of a filter and several bends on the suction line, the total loss coefficient adds up to 
K = 35.  a) Find the maximum distance between pump centerline and water sur-
face in the tank.  Water is at 80 F for which, ρ = 62.5 lbm/ft3 and µ = 2.1 lbm/ft·h.  
b) Find the NPSHA if the pump is located 5 ft below the source reservoir water 
level.  [Ans.:  a) 5 ft and b) 25 ft]. 

11.  The rated conditions (at the point of best efficiency) of a centrifugal pump, 

having an impeller diameter of 40 in, are 1V  = 22000 GPM, N1 = 700 rpm, Ns = 

2000, and η1 = 82%.  To increase the flow rate, a 1000 rpm electric motor is sug-
gested to replace the current prime mover.  Find head brake horsepower and the 
size of the current and the replacement prime movers.  ρwater = 62.4 lbm/ft3.

[Ans.:  H1 = 193.7 ft (59 m), =−1BHPW  1077 hp, =−1PMW  1313.4 hp, H2 = 

395.2 ft (120.5 m), =−2BHPW  3139 hp, =−2PMW  3832.6 hp.  Note, the available 

electric motors may not necessarily match the horsepower calculated.  In such 
cases, the next largest standard size motor should be selected.] 

12.  A centrifugal pump is used for water delivery through a pipe having a diame-
ter of 15.25 cm and total length of 61 m.  Water level elevations of the source and 
the receiving reservoirs, both measured from the sea level, are 100 m and 103 m, 
respectively.  There are losses due to pipe entrance, pipe exit and an elbow fitting 
with related loss coefficients of 0.5, 1.0, and 1.5, respectively.  For the pump char-
acteristic data given below, find flow rate and if this is a reasonably appropriate 
pump for this application. 

Flow Rate (lit/s): 0 25 38 50 76 88 114 140 
Pump Head (m): 27 26 25.8 24.7 22.8 21.3 18.3 14.3 
Efficiency (%): 0 30 42 53 73 80 84 80 

[Ans. 101 lit/s at 24 m].

13.  The pump in Example VIc.3.1 is used to deliver water to a height of 110 ft 
above the source reservoir.  Total pipe length is 600 ft and the pipe diameter is 14 
in.  The pipe run includes a fully open gate valve and 2 threaded 90 elbows.   
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a) Find the flow rate, b) How do you maximize efficiency? [Ans.  a) V  = 18,655, 
and b) N = 1432 rpm]. 

14.  Solve problem 3 for ∆Z = 50 ft, D = 16 in, and L = 500 ft.  All other data re-

main the same.  [Ans.  a) V  = 28,880,  b) N = 392 rpm]. 

15.  A pump delivering water at a rate of 100,000 GPM.  The maximum available 
NPSH is 50 ft.  Find the maximum speed to avoid cavitation. 

16.  In Example VIc.5.1, we derived the efficiency of a Pelton wheel in terms of 

Vw, Vt, and β.  Use a deflection angle of 165o, H2gVw = , and Vt = ωR, as 

shown in Figure VIc.5.1 and show that the Pelton wheel works most effectively 
when running at half the speed of the jet of water.  Find the maximum efficiency.  
Comment on the actual Pelton wheel efficiency.
[Ans.: ηmax = 97%.  ηactual < ηmax due to the involved frictions]. 

17.  Find the maximum power produced by a Pelton wheel.  The jet diameter is 
10.45 in and the available head is 2,200 ft.  [Ans.:  Maximum power is the power 

delivered to the jet at a Cv = 1.  Hence, Vj = 376.4, Aj = 0.596 ft2, inW  = 

56,000 hp]. 

18.  A screw-type reciprocating compressor having helically-grooved rotors is 
shown in the figure.  Mention two advantages associated with this design.  [Ans.:  
Pulse free and compact]. 

19.  An impulse turbine is used to produce power from an available head of 500 m 
and flow rate of 100,000 GPM.  Find the diameter of the jet and the maximum 
power that can conceivably be produced by the turbine. 

[Ans.:  H2/V gAj =  and ( ) 2/3

max jjj VAW ρ= ].

20.  An impulse turbine is operating at h = 700 m and V  = 150,000 gpm.  The 
Pelton wheel has a diameter of 20 ft and rotating at 300 rpm.  Find the power pro-
duced and the efficiency of the turbine.  Cv = 0.94. 
[Ans.:  Vj = 385.6 ft/s, Vt = Vj/2.

21.  An impulse turbine operating at a net head of 2000 ft uses a Pelton wheel of 
diameter 12 ft and a jet flow area of 5 in.  Find the turbine power corresponding to 
the best efficiency.  Use velocity coefficient of 0.94 and a bucket angle of 165o.

[Ans.:  Vj = 337 ft/s, Vt = 169 ft/s, V  = 45.95 ft3/s]. 
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22.  Use the Bernoulli equation and show that, for a wind turbine, the wind veloc-
ity is the arithmetic average of the velocity upstream and downstream of the pro-
peller.  

23.  Wind is approaching a wind turbine at 27 mph, as shown in Figure VIc.5.3.  
The wake wind has a velocity of 15 mph.  Find a) the wind velocity at the blade 
and b) the corresponding power extracted by the turbine. 

24.  A wind turbine has a diameter of 34 m and a power output of 350 kW at a 
wind velocity of 12.5 m/s.  Find the efficiency of this turbine.  Assume air at 27 C.  
[Ans.  33.6%]. 

25.  A wind turbine having an efficiency of 35% and rotor diameter of 33 m is ex-
posed to air flowing at a speed of 6 m/s.  Find the power developed by the turbine.  
Assume ρ = 1.2 kg/m3.  [Ans.:  38.8 kW]. 

26.  A two-blade wind turbine is exposed to 60 mile/h wind.  Downstream of the 
propeller the wind speed is 45 mile/h.  The propeller has a diameter of 45 ft.  As-
sume ideal gas and standard condition for air to find a) the thrust on the wind tur-
bine, b) the power delivered to the wind turbine, c) the maximum power extracted 
by the wind turbine, d) the maximum efficiency obtained from this wind turbine. 

27.  A two-blade wind turbine is installed on top of a hill experiencing winds of up 
to 80 mile/h.  Downstream of the propeller the wind speed is 50 mile/h.  Assume 
ideal gas and standard condition for air and find the tip to tip diameter of the pro-
peller to obtain a theoretical efficiency of 50%. 
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VId.  Simulation of Thermofluid Systems 

In this chapter we study the response of such systems as reactor coolant pump 
(RCP), pressurizer, steam generator, containment, and the reactor coolant system 
(RCS) of a PWR to imposed transients.  We begin by introducing some pertinent 
terms used in computer simulation and analysis of reactor thermal hydraulics. 

1.  Definition of Terms 

Mathematical model refers to the application of the fundamental and constitu-
tive equations to represent a physical phenomenon. 

Computational cell is a control volume for which the physical phenomena are 
considered and mathematical models are developed.  Since single-phase or two-
phase fluid may flow through a computational cell, we need to identify the number 
of unknowns and set up a number of equations.  For single-phase flow in a cell, 
there are five unknowns namely, P, T, Vx, Vy, and Vz.  There are also five equa-
tions, conservation equation of mass, conservation equation of energy, and three 
conservation equations of momentum.   

For two-phase flow through the cell, there are ten unknowns namely, P, Tl, Tv,
(Vx)l, (Vy)l, (Vz)l, (Vx)v, (Vy)v, (Vz)v, and void fraction (α).  Similarly, there are also 
ten equations consisting of two conservation equations of mass, two conservation 
equation of energy, and six conservation equations of momentum.  Other un-
knowns are found from constitutive equations. 

Node is the same as a computational cell.  For the flow of water in a pipe, for 
example, we may divide the length L of the pipe into N sections.  Therefore, the 
pipe now consists of N nodes, each having a length of l = L/N.  For single-phase 
flow through the node, one pressure and one temperature would represent the en-
tire node regardless of its size. Therefore, the higher the number of the nodes, the 
higher the amount of information obtained for the nodalized system.  Pressure is 
generally calculated at the center of the node. 

Node constituents in general may include several fluid fields such as continu-
ous liquid, mixture of steam and gas, liquid droplets, and ice.  The number of un-
knowns and equations increases with increasing number of the cell constituents.  
For example, if a cell contains liquid, steam, ice, drops, and 10 different non-
condensable gases, there are as many as fourteen conservation equations of mass.   

Nodalization.  To determine the state parameters in a system, such as the pri-
mary side of a PWR, the system is broken down into several nodes.  The process 
is generally referred to as nodalization.  Figure VId.1.1 shows a section of a sys-
tem, such as a hot leg, which is divided into N nodes with 1 ≤ k ≤ N.

Control volume for mass and energy is shown in Figure VId.1.1(a).  In this 
figure, nodes shown by k –1, k, and k + 1 represent three sequential control vol-
umes for calculation of mass and energy. 
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Control volume for mass and energy

k - 1 k + 1k

Control volume for momentum

j - 1 j j + 1
(a)           (b) 

Figure VId.1.1.  Nodalization of a horizontal pipe 

Junctions or flow paths allow separate nodes to communicate.  Hence, the 
mass and energy control volumes are connected together by junctions. Fig-
ure Id.1.1(b) shows junction j connecting the mass and energy control volume k to 
the mass and energy control volume k + 1. 

Control volume for momentum.  We may assign a control volume to node j
extending from the center of node k to the center of node k + 1.  This constitutes 
the control volume for the conservation of momentum for this one-dimensional 
flow.   Momentum properties are calculated for this control volume.  The most no-
table property calculated at node j is the flow velocity.  Therefore, while pressure 
and temperature are calculated at the center of the mass and energy control vol-
ume, flow velocity is calculated at the junction.   

Donor cell can be explained by considering two computational cells exchang-
ing mass, momentum, and energy.  The convective properties entering the receiv-
ing cell from the upstream cell are those of the upstream or so called donor cell.  
In Figure VId.1.1 for example, the enthalpy entering node k from node k – 1 is the 
enthalpy of node k – 1.  Since there is no gradient inside a node, the enthalpy at 
the junction between nodes k – 1 and k is the same as enthalpy at the center of 
node k – 1. 

Field, component, and phase.  In Chapter IIIa and IIIb we dealt with homoge-
nous fields (all water, all air, etc.)  In general, fields may also be heterogeneous 
(Chapter IIIc).  Consider for example, a vapor consisted of steam and several non-
condensable gases.  Each of the constituents is referred to as a component of the 
field.  Phase, on the other hand, is the various forms of the same substance such as 
ice, water, steam, mist, and drop. 

Two-flow field model (two-fluid model) refers to the treatment of the flow 
fields in a computational cell.  Assuming only water and steam exist in the cell, 
ten conservation equations are used in the two-fluid model to describe the condi-
tions in the cell.  Thus, in this mathematical model, water and steam can be at dif-
ferent temperatures flowing at different velocities. 

HEM or the homogenous equilibrium model, refers to the treatment of the fluid 
in a computational cell.  Assuming only water and steam exist in the cell, the two 
phases are assumed to be at thermodynamic equilibrium.  Thus, both phases flow 
at the same velocity in the same direction having the same temperature.   

SEM or the separated equilibrium model refers to a deviation from the HEM, 
by the introduction of the slip ratio.  This in turn requires the inclusion of the in-
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Figure VId.2.1.  Nodal diagram of a two-loop PWR primary side 

ter-phase friction force in the momentum equation.  In both HEM and SEM the 
mixture properties such as ρ and u are obtained through the use of void fraction. 

2.  Mathematical Model for a PWR Loop 

Determination of such parameters as pressure, temperature, and velocity in sys-
tems involving fluid flow and heat transfer is generally an involved task.  A nu-
clear reactor is an example of a thermofluid system for which it is important to de-
termine such parameters by mathematical modeling.  For this reason many 
computer codes are developed to study various operational aspects of a nuclear 
power plant.  For example, several codes are devised to evaluate the thermal hy-
draulic characteristics of only the reactor core.  Among the computer codes devel-
oped to analyze the reactor coolant system are RELAP, RETRAN, and TRAC.  In 
this section, we study the mathematical model based on the HEM for analysis of 
the reactor coolant system.  A nodalization example of a two-loop PWR is show in 
Figure VId.2.1.   

Control volumes for mass and energy (shown with subscripts k and k + 1) and 
for momentum (shown with subscript j) are shown in Figure VId.2.2 for constant 
and variable area channels.  The conservation equations of mass, momentum, and 
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Figure VId.2.2.  Mass, energy, and momentum control volume for channels with fixed or
variable flow area 

energy are described here.  The area change plays no role for the conservation of 
mass and energy equations but the conservation equation of momentum, which is 
more involved, must consider the variable area channel.  For node k, the conserva-
tion equation of mass, Equation IIa.5.1 can be written as: 

( ) ( ) ( )−= exitinlet
m VAVA

dt

d ρρρ V
                     VId.2.1 

where ρm = (1 – α)ρf + αρg and α is given by Equation Va.1.3.  We may also write 
Equation VId.2.1 as: 
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dM k = jj mm −−1                                VId.2.1-1 

The conservation equation of energy as given by Equation IIa.6.4 becomes: 
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where in Equation VId.2.2, we ignored the rate of change in the kinetic energy as 
compared with the internal energy.  Equation VId.2.2 includes enthalpy terms de-
veloped at the junctions.  For fine nodalization, with good degree of approxima-
tion, we may use hj – 1 = hk – 1 and hj = hk.  This is consistent with the donor cell ap-
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proach.  However, there are certain nodes that require special treatment such as 
heated nodes within which density and enthalpy change substantially. 

The one-dimensional momentum equation for the mixture can be readily ob-
tained by applying Equation IIIa.3.44 to the variable channel area of Fig-
ure VId.2.2.  The momentum control volume is centered at j and it extends from 
Lk/2 and Lk + 1/2.  Substituting for various pressure drop terms, for the lower seg-
ment we get: 

2 2
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+

where φ is the two-phase friction multiplier, as defined in Chapter VI.  Now, we 
apply Equation IIIa.3.44 to the portion of the momentum control volume extend-
ing from j, right after the change in flow area to point k + 1: 
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Adding these equations, the result for the one dimensional momentum equation 
for variable area channel becomes: 
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     VId.2.3 

Example VId.2.1.  Start with Newton’s second law and derive Equation VId.2.3. 

Solution:  The momentum equation expresses that the net momentum flux to or 
from a control volume plus the rate of change of momentum in the control volume 
is equal to the net external forces acting on the control volume.  We now apply 
this principle to a differential control volume located between z and z + dz.  This 
control volume has a flow area of A and a hydraulic diameter of De.  External 
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forces are the body force and the surface forces.  Hence, the net force acting on the 
control volume becomes: 

( ) ( ) ( K)
2z z dz
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m mdz
dF A P P s Adz g f

D A
ρ φ

ρ+= − − − +  

where s is introduced to account for the flow direction.  For upward flow s = +1, 
for horizontal flow, s = 0, and for downward flow s = –1.  The absolute value for 
flow rate signifies the fact that the friction force acts always opposite to the flow 
direction.  Hence using the convention of 0>m  for up-flow, the friction force 

becomes negative i.e., kFF −= .  Similarly for down-flow ( 0<m ), the friction 

force would act in the direction of the z-axis, kFF = .  Accounting for the rate 

of change in momentum flux, the rate of change of momentum of the control vol-
ume is therefore given by: 
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We now divide both sides of this equation by Adz and let dz approach zero: 
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We may apply this equation to the control volume of Figure VId.2.2(c), which is 
located between elevations Zk and Zk+1.  To obtain the momentum equation for this 
control volume, we multiply both sides of this equation by dz and integrate the re-
sulting equation first over the portion of the momentum control volume extending 
from k to j right before the flow area changes.  Integration over the lower portion 
of the control volume yields: 
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We now apply the resulting equation to the portion of the momentum control vol-
ume extending from j, right after the change in flow area, to point k+1, yielding: 
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Adding these equations, to get the one dimensional momentum equation for vari-
able area channels: 
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This equation includes a pressure rise term in case there is a pump in the flow 
path.  This equation while derived for single-phase flow is applied to two-phase 
mixture with the introduction of the multiplier φ and v .

Equations VId.2.1, VId.2.2, and VId.2.3 constitute a set of differential equa-
tions in mass, internal energy, and mass flow rate.  Writing similar sets for the rest 
of the nodes would result in a system of differential equations, which upon solu-
tion would result in obtaining the key parameters versus time.  The initial condi-
tions are found from the steady state operation prior to the imposition of a tran-
sient. 
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Figure VId.3.1.  (a) mass and (b) energy transfer for a typical node.  (c) Example of a
multi-port node 

3.  Simplified PWR Model

The level of information obtained from a mathematical model depends on the ex-
tent of complexities used in the model such as the multi-dimensional analysis of 
multi-component flow.  We may introduce a variety of simplifying assumptions to 
reduce the computational burden and obtain results with reasonable accuracy.  
However, simplifying assumptions impose limitations on the applicability of the 
model.  An example of a simplifying assumption is the application of an integral 
or loop-wide momentum equation.  This assumption decouples the solution of the 
momentum equation from the mass and energy equations.  To see the saving in the 
number of equations, consider a case where there are N nodes in each loop of Fig-
ure VId.2.1.  According to the model developed in Section 2, there are a total of 
6N equations for the N nodes.  By writing an integral momentum equation for 
each loop, the number of equations drops to 2N + N’ where N’ is the number of 
loops.  An integral momentum equation ignores the compressibility of fluid due to 
the local pressure changes and assumes that the pressure and velocity disturbances 
are propagated at infinite velocity.  This allows us to assign one pressure to the en-
tire RCS and one loop flow rate to each loop.

Let’s now obtain the set of equations for node k (Figure VId.3.1) using the 
above simplifying assumption.  For this purpose, we consider the various interac-
tions with node k.  Flow may enter this node from several inlet ports (shown with 
subscript i) and leaves from several exit ports (shown with subscript e).  These are 
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the inter-nodal flow rates.  Node k may also receive flow from external sources 
(shown by subscript x), such as safety injection.  This node may also discharge 
flow if a pipe break (shown with subscript B) happens to occur at this node.  Not 
all these flow rates exist simultaneously or for all the nodes.  However, we are 
considering them for the sake of generality.  The conservation equation of mass, 
Equation IIa.5.1 for node k becomes: 

−+−= kBkxkeki
k mmmm
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)()()()(         VId.3.1 

Similarly, the conservation equation of energy, Equation IIa.6.4-1 for the node be-
comes: 
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                           VId.3.2 

Note that the work term includes only the pressure work as there is no shaft work 
and the shear work is ignored.  Taking the derivative of the left side, substituting 
from the conservation equation of mass, and rearranging, yields: 
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       VId.3.3 

where c in Equation VId.3.3 is a conversion factor.  We now use the volume con-
straint for node k, given the fact that Vk remains constant hence, dVk/dt = 0:
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Substitute from Equations VId.3.1 and VId.3.3, we obtain: 
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This is the general form of the mass-energy algorithm for loops using an integral 
momentum equation.  In this relation, the unknowns are inter-nodal flow rates and 
RCS pressure.  These can be determined for specified break flow rate, rate of heat 
transfer to the node, and the external flow rates and enthalpies. 

3.1.  Determination of Nodal Flow Rates In a One Loop PWR 

To demonstrate the application of the mass-energy algorithm, Equation VId.3.5 is 
applied to a one-loop PWR as shown in Figure VId.3.2.  By using the donor cell 
concept, the algorithm simplifies to: 
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Figure VId.3.2.  A one-loop PWR, obtained by collapsing all the loops into one loop 

Equation VId.3.6 can be simply shown as: 

kRCSkkkkk Pmm εδγη =++−1

where the coefficients ηk, γk, δk, and εk in this equation represent: 
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We start from the discharge section of the cold leg as node 1.  In this case, the 
flow entering this node is from the reactor coolant pump (RCP).  Applying the 
mass-energy algorithm to all n nodes of the RCS, the following matrix equation is 
obtained: 
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At any time step, the thermodynamic properties and their derivatives are obtained 
from the equation of state by having the two independent variables of pressure and 
enthalpy of the previous time step.  Hence, for a given pump flow rate, the RCS 
pressure and the inter-nodal flow rates are obtained from Equation VId.3.7 in an 
explicit manner.  Subsequent to the calculation of the inter-nodal flow rates, nodal 
mass derivatives are found from back substitution of flow rates into the nodal con-
servation equations of mass.  Upon integration over the time step this process 
yields the new nodal mass: 

[ ] tmmmmm kBkxk
N
k

N
k ∆×−++=+ )()()(1

Nodal enthalpy derivatives are determined from Equation VId.3.3 by using the 
calculated mass flow rates and the RCS pressure derivative as well as the updated 
nodal mass.  The nodal enthalpies and the RCS pressure are then determined by 
explicit integration of the above quantities at the end of each time step.  For exam-

ple, the nodal enthalpy becomes thhh k
N
k

N
k ∆×+=+1  and the RCS pressure 

tPPP RCS
N

RCS
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RCS ∆×+=+1 .  This process is continued until the specified total 
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transient time is reached.  In steady state operation, where no external flow or 
break flow rate exists, from Equation VId.3.1 we find: 

RCPkk mmm ==−1

Similarly, for each node from Equation VId.3.2 we obtain the following energy 
balance: 

0)( 1 =−+ − kkRCPk hhmQ

3.2.  Integral Momentum Equation for a Multi-loop PWR 

The primary side of a PWR may consist of two, three, four, or six loops.  An inte-
gral momentum equation for loop L, for example, is obtained by integrating Equa-
tion IIIa.3.44 around the loop, which includes the reactor vessel: 
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where subscripts L and V stand for Loop and vessel, respectively.  We now evalu-
ate various terms in the right side of Equation VId.3.8, i.e. the friction pressure 
drop, the hydrostatic pressure head, and the pump head.   

3.3.  Friction Pressure Drop 

The vessel and the rest of the loop friction pressure drops consists of skin friction 
and pressure losses at bends, the core support plate, the grid spacers, upper ple-
num, upper internals, entrance to hot leg, entrance to steam generator plenum, 
tubesheet, etc.  As we did in Equation VId.2.3, we also consider a two-phase fric-
tion multiplier for cases where subcooling is lost and a two-phase mixture is flow-
ing in the primary side.  Calculation of the loss coefficients is discussed in Chapter 
IIIb.  The loss coefficients for components used exclusively in the nuclear indus-
try, such as the fuel rod grid spacers used in a specific design, are provided by the 
nuclear reactor vendor.  However, we may use the correlation suggested by Rust 
to estimate pressure drop due to the fuel rod grid spacers as: 

22 A

mmC
P v

grid ρ
ε

=∆

where ε is the ratio of the projected grid spacer cross section to undisturbed flow 
cross section and Cv is the drag coefficient, in turn estimated from 

0245.0
91.54

−= mCv .
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3.4  Hydrostatic Pressure Head 

The hydrostatic head in Equation VId.3.8 represents the body force due to gravity.  
During normal operation when forced convection is the dominant flow regime, the 
hydrostatic force is negligible compared to such pressure forces as friction pres-
sure drop and pressure rise over the pump.  However, in thermal loops having 
natural circulation flow regime, the hydrostatic head is the driving force.  The hy-
drostatic head then becomes: 

( ) ( ) ( )[ ]∆= +VL cos. kkk Zgsdg αρρ            VId.3.9 

where in Equation VId.3.9 the summation is over the vessel and other regions in 
the loop.  These regions, as shown in Figure VId.3.2, include downcomer, lower 
plenum, core, upper plenum, hot leg, steam generator, and cold leg.  In this equa-
tion, α is the angle between the velocity vector and the vector representing the ac-
celeration of gravity.  Hence, cos(αk) is the same as index s introduced in Exam-
ple VId.2.1.  For upward flow in the core, αk = π and cos(αk) = –1, for horizontal 
flow in the hot leg, αk = π/2 and cos(αk) = 0, and for downward flow in the down-
comer, αk = 0 and cos(αk) = 1.  In Equation VId.3.9, ∆Zk is the difference between 
the exit and the inlet elevations to a given region hence, ∆Zk = Ze – Zi.

Determination of the hydrostatic head where change in the liquid is linear is 
straightforward.  For example in the core, Figure VId.3.3(a), assuming a near lin-
ear density profile, the hydrostatic head becomes: 

( ) ( ) ( )[ ] ( )
core

eie
icorecorecore

exitCore
inletCore ggsdg H

2
cosH.

ρραρρ +
−==

Determination of the hydrostatic head in the steam generator is more involved.  In 
the following example we evaluate the hydrostatic head for the single-phase flow 
inside the tubes of a U-tube steam generator.  As shown in Figure VId.3.3(b), the 
height of each leg of the average tube is l and the length of the horizontal section 
is δ, so the average tube length becomes L = 2l + δ.

λ
l

s
g

δ

L = 2l + δ

Thermal
Center

Ti

Te

Zcore

(Zth)core

ZSG

(Zth)SG

             (a)                                                                                    (b) 

Figure VId.3.3.  Nodes representing (a) core and (b) tubes of a U-tube steam generator 
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Example VId.3.1.  Develop the hydrostatic head for flow of water in the tubes of 
a U-tube steam generator.  Flow enters tubes at pressure P and temperature TH and 
leaves at temperature TC.  The tube average length is L.

Solution:  To find the hydrostatic head in the steam generator, we find the follow-
ing: 

[ ] [ ] [ ] sdgssdgssdgs L
l H

l
H

L
H ⋅−+⋅−=⋅− +δ ρρρρρρ )()()( 00  with re-

spect to Figure VId.3.3(b).  Since in the upward leg cos(π) = –1 and in the down-
ward leg cos(0) = 1, we can write: 

[ ] [ ] [ ]gdssgdsssdgs L
l H

l
H

L
H δ ρρρρρρ + −+−−=⋅− )()()( 00

We do not have the density profile to integrate.  However, we have the tempera-

ture profile from Equation VIa.5.8 given as T(s) = Tsat + (TH – Tsat)
*/ lse−  where s

is an element of length along the tube.  To bridge the gap and relate the density 
difference to temperature difference, we use the definition of the thermal expan-
sion coefficient of Chapter IIa, β = ρρ /])/[( PT∂∂− .  It is assumed that β re-

mains constant in the temperature range of TC to TH and β is approximated as β ≈
∆ρ/∆T)/ρ or ∆ρ = ρβ∆T.  Thus, the integral becomes: 

[ ] ( ) ( ) ( ){ }L L
l

lsl ls
satHHH dsedseTTgsdgs0

/
0

/ **

11)( δρβρρ +
−− −+−−−=⋅−

The integral of the argument is found as: ( ) ** /*/1 lsls elsdse −− +=− , subject to 

the limits 0 to l and l + δ to L:

[ ]
( ) ( ){ }* * *

0

* / * * / * ( ) /

( )

( ) ( )

L

H

l l L l l l
H H sat

s g ds

g T T l l e l L l e l l e δ

ρ ρ

β ρ δ− − +

− ⋅ =

− − + − + + − + −

simplifies to: 

[ ] ( )*** //)(/*
0 1)()( lLllll

satHH
L

H eeelTTgsdgs −+− +−−−=⋅− δρβρρ .

Substituting from Equation (2), we get: 

[ ] ( )*** //)(/*
0 1)()( lLllll

satHH
L

H eeelTTgsdgs −+− +−−−=⋅− δρβρρ .

Replacing TH - Tsat with TH - TC, yields: 

[ ]
( ) ( )* * * *

0

* / ( ) / / /

( )

( ) 1 / 1

L

H

l l l l L l L l
H H C

s g ds

g T T l e e e eδ

ρ ρ

β ρ − + − −

− ⋅ =

− − − + −
            VId.3.10 



798      VId.  Applications: Simulation of Thermofluid Systems 

Two-Phase Flow in Tubes.  In Example VId.3.1, we found the hydrostatic 
head for single-phase inside tubes.  In the case of two-phase flow in the tubes, we 
must use the mixture density as defined in Chapter V, ρm = (1 – α)ρf + αρg where 
α is given by Equation Va.1.3 as α = X/(aX + b).  Therefore, the hydrostatic head 
becomes: 

( ) ( )
sdg

baX

X
sdg

L
fg

fSG m ..
0

+
−

+=
ρρ

ρρ         VId.3.11 

All we need to do now is to find the profile for flowing quality in the tubes.  This 
is accomplished by using an energy balance in an elemental length of the tube, ds
to obtain: 

[ ]dsPTPTUdNdhm ondarysatprimarysatoo )()( sec−−= π

Substituting for dh = hfg dX in the above equation allows us to solve for dX/ds = 

[ ] fgondarysatprimarysatoo hmPTPTUdN /)()( sec−− π  = *
2 phasel .  We now integrate 

the result, which yields X = *
2 phasel s + Xin.  Having the quality profile, we then 

substitute into Equation VId.3.11 and integrate.  The final answer depends on the 
length of the boiling section (LB) i.e. whether LB < l, of l < LB < l + δ, or l + δ < LB

< L.  For example if LB < l then the hydrostatic head becomes: 

( ) ( )( )
( )

+
−=

++

+−
+−=

b

baX
axaglds

bXsla

Xsl
gsdg in

phase

L L

inphase

inphasefg
fm

B B

ln. 21
*
2

0 0

*
2

*
2ρρ

ρρ

where a1 = ρf – (ρg – ρf)/a and a2 = (ρg – ρf)b/a2.  Then from LB to L we use the 
single-phase integral of Equation VId.3.10.  The solutions for all these cases are 
obtained by Kao. 

Thermal Center.  We now define a node property referred to as thermal cen-
ter.  In lumped nodes, the thermal center may be viewed as a point at which the 
heat transfer process takes place.  For example, consider the node representing the 
core or the steam generator U-tubes in Figure VId.3.3.  Thermal center for these 
nodes may be defined as: 

( )[ ]
HC

L
H

TT

dsTsT

−
−

= 0λ                                            VId.3.12 

where λ is measured from the entrance to the node.  For the core node, it is trivial 
to show that for linear temperature rise in the core, the thermal center is located at 
λcore = Lcore/2.  Determination of the thermal center for the steam generator node, 
where temperature profile is not linear, is similar to the method used in 
Example VId.3.1.  For U-tube steam generators it can be shown (see Problem 2) 
that: 
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+−−=
δ

λ                    VId.3.13 

If we now substitute λSG into Equation VId.3.10, we obtain the steam generator 
hydrostatic head as: 

[ ] SGCHH
LL

H TTgsdgssdgs λρβρρρ )()()( 00 −==⋅=⋅−

Example VId.3.2.  Find the distance to the thermal center of a steam generator 
from the tube sheet.  Tube-side data:  =m 61E6 lbm/h, cp = 1.4 Btu/lbm F, N = 
8485, do = 0.75 in, Uo = 1040 Btu/h ft2 F, L = 56 ft, l = 26 ft, average length of the 
U-tube horizontal section δ = 4 ft, cold leg temperature TC = 550 F, hot leg tem-
perature TH = 600 F. 

Solution:  According to Example VIa.6.2, l* = m cp/(πNdoUo).  Therefore, l* is 
found as: 

l* = 61E6 × 1.4/[π × 8485 × (0.75/12) × 1040] = 49.3 ft.   

We now use Equation VId.3.13: 

*

/

//)(/

*

***

1

1
l

e

eee
lL

lLllll

SG −

−+−−

−

+−−=
δ

λ =

3.49
1

1
3.49/56

3.49/563.49/)426(3.49/26

×
−

+−−
−

−+−−

e

eee
 = 13.57 ft 

This is almost equal to l/2.  Indeed as l* , λSG = 0.5(1 + δ/L)l.

Having the height of the core and the steam generator thermal centers, we can 
then find their corresponding elevations by adding the heights to the elevation of 
the bottom of the core and the tube sheet, respectively.  Hence, (Zth)core = Zcore + 
λcore and (Zth)SG = ZSG + λSG.  These are shown in Figure VId.3.3. 

The discussion on the hydrostatic head in a flow loop demonstrates that the hy-
drostatic head is primarily a function of the loop geometry and the working fluid 
density gradient.  Therefore in flow loops, the hydrostatic force is given as: 

( ) ( ) thHCLoop gsdg H. ρρρ −=                     VId.3.14 

where Hth in Equation VId.3.14 is the difference between the steam generator and 
the core thermal centers given by Hth = (Zth)SG – (Zth)core.  Note that elevations of 
the core and steam generator thermal centers are measured from a common refer-
ence.
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Example VId.3.3.  Find the pressure difference due to the buoyancy force in a 
flow loop.  Data:  P = 2250, THot = 600 F, TCold = 550 F, ZHeat Sink = 61 ft, ZHeat Source

= 31 ft.  Working fluid is water. 

Solution:  We use Equation VId.3.14 to estimate ∆Pgravity = (47.2 – 43.1) × (61 – 
31) = 0.85 psi. 

3.5.  Natural Circulation in Flow Loops 

Natural circulation is the preferred mode of operation when the enhancement of 
the passive safety features, such as elimination of any pump failure, is a design re-
quirement.  Some high rise buildings use natural circulation for the heating of their 
units.  This is accomplished by heating water in a boiler located in the basement 
resulting in warm water flowing upward inside the riser.  As water passes various 
floors it deposits energy to heat the space.  The colder and heavier water then 
flows downward and back to the boiler, pushing the warmer water upward.  
Hence, a necessary condition for establishment of natural circulation is that 
Hth > 0. 

To estimate the natural circulation flow rate, we start with the single-loop of 
Figure VId.3.4 and use Equation VId.2.3.  Since this equation is obtained for a 
single node, we integrate it over all the nodes comprising the loop.  By doing so, 
the static pressure difference term cancels out.  Integrating Equation VId.2.3 is 
equivalent to summing up all the terms of Equation IIIa.3.44 around the loop.  
This results in: 

( )
1

2 2

1 2 2 2
1 1 11

1 1 1 1
K

2 2

n

k k

n n n

pump k j j k
k k kk j j k kk k

L dm

A dt

m m L
P g Z Z f

DA A A
ρ

ρ ρ

=

+
= = =+

=

∆ − − − − − +

                                                                                                                 VId.3.15 

where in the case of Figure VId.3.4, n = 5.  Equation VId.3.15 can be simplified 
by noting that in a natural circulation loop, the pump head is zero.  Note that the 
pump head being zero does not necessarily mean that there is no pump in the loop.  
Rather, the pump is simply not operating.  A loop without a pump has by far less 
frictional losses than an identical loop but equipped with a pump that is turned off.  
This is because in the latter case, the working liquid must flow through the pump 
volute and among the blades of the impeller.  The losses due to friction in pumps 
depend on the type of the pump and whether the impeller is locked or is free to 
spin.  For example, for the canned-motor pump of the LOFT (Reeder) experiment, 
the loss coefficient for the free spinning impeller with flow in forward direction 
(from pump suction to pump discharge) was estimated to be K = 3, for flow in the 
reverse direction K = 12, and for flow through the pump with impeller locked 
K = 20. 
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Figure VId.3.4.  Schematics of a single-loop PWR primary side and related data 

     Returning to Equation VId.3.15, we may also ignore the pressure drop term due 
to the velocity change.  Thus, in steady state operation, Equation VId.3.15 simpli-
fies to: 

( ) ( )−≈−−=+
=
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=
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k
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                VId.3.16 

The left side of Equation VId.3.16 may be shown as ρ2/Rm  where 
2/]K)/[( kkkkk ADLfR += , known as the loop flow resistance.  In the right 

side of Equation VId.3.16, we made use of Equation VId.3.14 for the hydrostatic 
head.  If we relate the density difference (∆ρ) to the corresponding temperature 
difference (∆T) by ∆ρ βρ∆T, assuming constant β in the temperature range of TC

to TH, Equation VId.3.16 becomes: 

Tg
m

R th ∆= H
2

1 2

βρ
ρ

                                           VId.3.17 

The change in temperature in the loop is due to the rate of heat addition in the heat 
source (core) or the rate of heat rejection in the heat sink (steam generator).  
Therefore, from a steady state energy balance over the heat source, for example 
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we find that, )( cHp TTcmQ −= .  Substituting for ∆T we obtain the natural cir-

culation flow rate in steady state operation as: 

3/1

Core
2H2

=
Rc

Qg
m

p

th
NC

ρβ
                               VId.3.18 

Equation VId.3.18 provides a reasonable estimate for the natural circulation flow 
rate provided that the system resistances are closely approximated and the flow 
regime is turbulent (see Problem  16).  

Example VId.3.4.  Find the natural circulation flow rate using the data of the 
simplified PWR loop shown in Figure VId.3.4.  Core power during shutdown is 
5 MW.  Data:  f = 0.01, ρ  = 45 lbm/ft3, cp = 1.3 Btu/lbm·F, β = 0.001 R-1, (Zth)SG

= 60 ft, (Zth)RPV = 30 ft. 

Solution:  We must first find the loop flow resistance using the specified friction 

factor of 0.01.  Substituting values in ( ) 2/K/ kkkkkk ADLfR +=  yields:  

R1-2 = 3.86E-3 ft-4, R2-3 = 8.34E-3 ft-4, R3-4 = 3.12E-3 ft-4, and R4-1 = 0.05 ft-4.

Thus, ΣR = 0.065 ft-4.  We now substitute values into Equation VId.3.18: 

3/12

065.03.1

)3600/3412000,5(30)-(60452.32001.02

×
××××××=NCm  = 603 lbm/s 

Having determined the hydrostatic pressure head and the natural circulation 
flow rate we now proceed to deal with the pump head. 

4.  Mathematical Model for PWR Components, Pump 

In Section 3, we used the pump flow rate as a known function.  In this section, we 
want to find how such a function can be obtained.  To find the pump speed, we 
apply the conservation equation of angular momentum to the impeller of a cen-
trifugal pump.  Assuming the prime mover is an electric motor, the electric torque 
(TE) must provide for the hydraulic torque (T) and the frictional torque (TF).  The 
net torque according to Newton’s second law is then equal to the moment of iner-
tia times the rate of change of the impeller angular velocity: 

dt

d
IFE TTT =−−  VId.4.1 
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where I in Equation VId.4.1, represents the moment of inertia of the pump shaft, 
impeller, and flywheel.  The electric torque delivered by the prime mover is a 
known quantity.  If the pump is turned off, the electric torque drops exponentially 
as: 

)/2(

o
oTT et

EE e τ−=

where the rated electric torque, TEo is provided by the electric motor manufacturer.  
Also τe is the electric motor decay constant, which accounts for the inertia of the 
electric motor.  To obtain an instantaneous loss of the applied torque, the decay 
constant may be set equal to a small value such as 0.1 µs.  The hydraulic torque, 
T, due to the momentum transfer from the pump impeller to the liquid is obtained 
from the pump homologous curves as discussed in Chapter VIc.  Finally, the fric-
tional and windage torque, TF accounts for all the losses in the contact points in 
such places as the bearings and the pump seals.  The frictional and the windage 
torques may be correlated to the pump speed ratio by fitting a curve to pump 
coastdown data. 

4.1.   Implementation of Pump Model in Momentum Equation  

Determination of flow rate as a function of time due to pump startup or shutdown 
in a multi-loop PWR requires simultaneous solution of the conservation equation 
of momentum, for the fluid, and conservation equation of angular momentum for 
the pump impeller.  The momentum equation for the fluid is written as: 

),,()( V
V

V mmF
dt

md

A

L

dt

md

A

L
kkL

k

k

k =+           VId.4.2 

where Vm  represents flow rate through the vessel, being the common flow path, 

i.e. = L kmmV  where the summation is for the total number of loops.  Func-

tion F, in Equation VId.4.2, is given by the right side of Equation VId.3.8 with 
pump head given by Equation VIc.4.1.  Similarly, we may express Equation 
VId.4.1 as: 

),( kk
k mG

dt

d
=

If the transient is due to pump shutdown then, without the imposed electrical 
torque, the flow rate drops to the natural circulation flow rate at a rate determined 
by the pump inertia, pump frictional resistance, and the hydraulic torque.  This set 
of equations can be generalized, using matrix notation for the multi-loop configu-
ration, as: 

)(YBYA =
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In this relation, matrix A is a square matrix.  Elements of vector Y consist of all of 
the unknowns including the unknown loop flow rate, vessel flow area, and the 
pumps angular velocities: 

[ ] T
nn mmmY V11 ,,...,,,=

and elements of vector B are:

[ ] T
nn GFGFB ,...,,, 11=

To solve this set by a semi-implicit finite difference scheme, we first linearize the 
differential equations to set up the Jacobian matrix, which is given as 

[ ]11 )( ++ ∆+∆=∆ NNNNN YJYBtYA  where superscript N represents the previ-

ous time step and J represents the Jacobian matrix.  This equation can be rear-
ranged to get: 

[ ] NNNN YBtYJtA ∆=∆∆− +1  VId.4.3 

If we represent [ ] [ ]JtAC ∆−=  then matrix [C] would have the following struc-

ture: 

[ ]

−−−−

=

101010101

0)4()4(000000

)4()4()4(000000

000)3()3(0000

)3(00)3()3(0000

00000)2()2(00
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0000000)1()1(

)1(000000)1()1(

2221

131211

2221

131211

2221

131211

2221

131211

cc

ccc

cc

ccc

cc

ccc

cc

ccc

C

where elements of matrix C, as calculated by Kao, are given in Table VId.4.1. 

Table VIc.4.1.  Elements of matrix C

    Element     Mathematical Expression 
)(11 kc ( ) ( )∂∂∆−k

N
kk mFtAL //

)(12 kc ( )N
kFt / ∂∂∆−

)(21 kc ( )N
kGt / ∂∂∆−

)(22 kc ( )N
kGt /1 ∂∂∆−

)(13 kc ( ) N
kmFtAL )/(/ VV ∂∂∆−
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In this section we found numerical solution for the loop flow rate as a function 
of time.  Next we find analytical solutions for the loop flow rate versus time in 
two cases of pump imposed transients.  In the first case, we assume that the pump 
head remains constant and is independent of flow rate and in the second case, we 
account for pump head being a function of the loop flow rate. 

4.2.  Analytical Solution for Flow Transients, Constant Pump Head 

Our goal is to find an analytical solution to the loop flow rate in such transients as 
pump shutdown or pump start up.  For now, we assume that the pump head is a 
weak function of flow rate so that it can be treated as a constant in the loop mo-
mentum equation.  Later in this chapter, this assumption is relaxed and the pump 
head is treated as a function of flow rate.  The pump head being a constant is a 
reasonable assumption in certain cases.  For example, at low flow rates as shown 
in Figure VIc.3.1, pump head remains relatively flat and it changes rather slightly 
with flow rate.  Another example includes cases where the pump inertia is small as 
compared with the loop fluid inertia, which makes an analytical albeit approxi-
mate solution possible.   

To derive the analytical solution for flow transients we start with the single-
loop of Figure VId.3.4 and use Equation VId.2.3.  Since this equation is obtained 
for a single node, we integrate it over all the nodes comprising the loop.  By doing 
so, the static pressure differential term cancels out.  The integration of Equation 
VId.2.3 is equivalent to summing up all the terms of Equation IIIa.3.44 around the 
loop.  This results in: 
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where an average density is used for each node.  For example, in the core 
2/)( HLCLcore ρρρ += .  Since in this example, flow area remains constant 

within each control volume, the summation term for the geometric inertia is sim-
plified and is made over the five primary side nodes.  Equation VId.4.4 is a first 
order, linear differential equation of the following form: 
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where coefficients 2
1C  and 2

2C  represent: 
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To find an analytic solution for the above first order differential equation, we write 
it as

dtC
mCC

md

mCC

md
1

2121

2=
+

+
−

this can be easily integrated to obtain: 
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21 2ln CtCC
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−
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                      VId.4.6 

Where C3 is the constant of integration and is determined from the initial condi-
tion.  The above solution applies to both cases of pump start up in a stagnant loop 
and pump shutdown in a forced flow loop.  The difference is in the application of 
the boundary condition to obtain the constant C3, as discussed next. 

Case 1.  Pump Start Up in a Stagnant Loop.  Several conditions may lead to 
stagnation in flow loops.  For example, there would be no flow if the thermal cen-
ter of the heat sink is located below the thermal center of the heat source.  Other 
examples include a flow loop with very high frictional losses resulting in insig-
nificant rate of flow or an isothermal flow loop where ρH = ρC.  In a stagnant loop, 
m (t = 0) = 0 hence, C3 = 0.  Equation VId.4.6 simplifies to: 
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At steady state, when t , forced circulation flow rate is found as 

21 / CCmFC = .

Case 2.  Pump Start Up in a Natural Circulation Loop.  If a flow loop with 
pump turned off operates in natural circulation mode then m (t = 0) = NCm  hence, 

( ) ( )3 1 2 1 2ln[ / ]NC NCC C C m C C m= + − .  Substituting for C3, Equation VId.4.6 be-

comes: 
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where in Equation VId.4.8 )/()( 2121 NCNCNC mCCmCCy −+= .  At steady 

state, when t , forced circulation flow rate is found as 21 / CCmFC = .
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Example VId.4.1.  Consider the flow loop of Figure VId.3.4 as described in Ex-
ample VId.3.4.  We now start up the pump.  Pressure rise over the pump is 50 psi.  
Find flow rate one second after start up and at steady state.  ρH = 44.5lbm/ft3 and 
ρC = 45.5 lbm/ft3.

Solution:  To calculate coefficients C1 and C2 of Equation VId.4.5 we find: 
 

Σ(L/A)k = (174/20) + (18/37) + (75/20) + (66/19.5) = 16.3 ft-1

Σ(ρg∆Z)k = (ρC – ρH)gHth = (45.5 – 44.5) × 32.2 × (60 – 30) = 966 lbm·ft/s2

Σ(R/ρ)k = (3.86E-3/45.5) + (8.34E-3/45) + (3.12E-3/44.5) + (0.05/45) = 1.45E-3 
(ft·lbm)-1

C1 = [(32.2 × 50 × 144 + 966)/16.3]1/2 = 119.5 
C2 ≅  [(0.5 × 1.45E-3)/16.3]1/2 = 6.7E-3 
C1C2 = 0.8 and C1/C2 = 17,836 lbm/s 

07.1
6033E7.65.119

6033E7.65.119 =
×−−
×−+=NCy

1)6.1exp(07.1

1)6.1exp(07.1
836,17)(

+
−=

t

t
tm

)1( =tm = 17,836 × (1.07e0.8 – 1)/(1.07e0.8 + 1) = 17,836 × 0.41 = 7,313 lbm/s 

ssm − = 17,836 lbm/s. 

Case 3.  Pump Shutdown in a Forced Circulation Loop.  A similar solution can 
be found for the flow coast down due to the termination of pump operation.  In 
this case, at time zero, the flow rate is equal to a specified steady state forced cir-
culation flow.  The intention is to obtain flow rate as a function of time after the 
pump is turned off.  In this case, at time zero, FCmm = , i.e., a known value.  

Therefore, for this case the constant 3C  can be determined as 3C =

( ) ( )1 2 1 2ln[ / ]FC FCC C m C C m+ − .  Substituting, the flow coastdown is found as: 
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ey

ey

C

C
tm                                  VId.4.9 

where in Equation VId.4.9, )/()( 2121 FCFCFC mCCmCCy −+= .

In both cases of pump startup and shutdown, the integration of Equa-
tion VId.4.6 was easily carried out due to our simplifying assumption that the 
pressure increase over the pump is independent of the flow rate.  Next, we con-
sider a more general case of pump pressure rise being a function of the loop flow 
rate. 
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4.3.  Analytical Solution for Flow Transients, Pump Head a Function 
of Flow Rate 

The rigorous approach that resulted in obtaining Equation VId.4.3 requires nu-
merical solution.  Here we seek an approximate but analytical solution to the flow 
coastdown in a thermalhydraulic loop.  For this purpose we consider the reactor 
coolant pump in Figure VId.3.2 being turned off.  We are interested in the early 
part of the transient when flow is coasting down.  In steady state operation, identi-
fied with subscript o, we have: 

( )
2

o
o o2

1
H

2
k

k P

k k

L m
f g g ds

D A
ρ ρ

ρ
= + ⋅                              VId.4.10 

where HPo is the pump head in steady state.  Approximating the hydrostatic force 
by using the thermal expansion coefficient, we get: 

( ) ( ) oooo H. Sth gZTgsdg ρβρρ =∆=                    VId.4.11 

where Zth is the difference in the elevations of the heat source and heat sink ther-
mal centers, as shown in Figure VId.2.3, ρo is density at a reference temperature 
To, and Hso is the hydrostatic head at steady state.  Assuming that the friction fac-
tors in the transient remain the same as in steady state and using an average flow 
rate for the entire loop, the momentum equation integrated over the loop yields:  

( )( ) ( )+++−= SPSP gmm
g

dt

md

A

L
HH/HH)( 2

ooo

2
o ρ
ρ

ρ
           VId.4.12 

As recommended by Burgreen, we further assume that both the pump head ratio 
and the torque ratio in the transient will follow the same homologous curves as in 
steady state operation.  For the pump head, using the pump affinity laws, we can 
then write HP/HPo = (ω/ωo)

2.  Also noting that for the early part of the pump shut-
down transient, ρ ≅ ρo and HS ≅ HSo, Equation VId.4.12 simplifies to: 

( ) ( ) +++−= o
2

oo
2

ooo H/HV/V)HH(
V

)( SPSP ggg
dt

d

A

L
      VId.4.13 

For further simplification, we note that early in the flow coastdown event, the con-
tribution to flow rate due to the natural circulation is exceedingly small.  But as 
time goes on and the pump flywheel effect diminishes, the contribution of the hy-
drostatic force increases.  Hence early in the event, we can assume that HSo ≅ 0 so 
that: 

( ) ( )2
oo

2
oo /HV/VH

V
PPL gg

dt

d
I +−=          VId.4.14 

where in Equation VId.4.14, IL represents the loop inertia, Σ(L/A).  For pumps 
with negligible inertia, such as the canned motor and electromagnetic pumps, the 
third term in Equation VId.4.14 can be ignored compared with the other two terms 

and Equation VId.4.14 simplifies to ( ) 0V/V)/H(/V
2

oo =+ LP Igdtd .  The so-
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lution to this equation can be found as o
2
oo H/V)V/1V/1( PL gIt −= .  The 

time for flow to decay to half of its initial value, 2/V 2
o  is, therefore, found as: 

)/(gHV)( oo2/1 PLL It = .

Returning to Equation VId.4.14, if we now define Φ  = oV/V , θ = t/(t1/2)L,

and o/=Ω  then Equation VId.4.14 simplifies to: 

22/ Ω=Φ+Φ θdd                                 VId.4.15 

Having obtained the simplified form of the loop momentum equation following 
pump shutdown, we now turn to the impeller angular momentum given by Equa-
tion VId.4.1.  Neglecting the frictional losses and noting that the electric torque 
goes to zero upon pump trip, we find for hydraulic torque that;  

dtdI P /T =−                    VId.4.16 

Pump moment of inertia, IP, typically consists of flywheel (≅ 75%), electric motor 
(≅ 23%), impeller (≅ 1.5%) and shaft (≅ 0.5%).  Using the second approximation 
for pump break horsepower torque, T/To = (ω/ωo)

2 where To is obtained from To = 

∆Po oV /(ηoωo).  Substituting, we find 

dω/dt = –(1/IP)To(ω/ωo)
2                   VId.4.17 

this upon integration from time zero to any time results in: 

o
2

o o

T1 1 1

P

t
I

− =

If at (t1/2)P we have ω = ωo/2, then (t1/2)P = IP(ωo/To).  Equation VId.4.17 can then 

be written as d Ω /dt + 2Ω /(t1/2)P = 0.  Changing variable from t to θ, similar to 
Equation VId.4.15, Equation VId.4.17 becomes: 

  d Ω /dθ + α Ω 2 = 0                                VId.4.18 

where parameter α in Equation VId.4.18 is given as α = (t1/2)L/(t1/2)P.  Equations 
VId.4.15 and VId.4.18 constitute a set of coupled first-order, nonlinear differential 
equations describing the effects of the pump on the loop flow rate.  The solution to 
Equation VId.4.18 is obtained as: 

Ω = 1/(1 + αθ)                                            VId.4.19 

Upon substituting Equation VId.4.19 into Equation VId.4.15, we obtain the gov-
erning equation during pump coastdown as: 

0)1/(1/ 22 =+=Φ+Φ αθθdd                     VId.4.20 

The solution to Equation VId.4.20, as offered by Burgreen, is shown graphically 
in Figure VId.4.1.  To get a better interpretation of α, we note that the initial en-
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Figure VId.4.1.  Approximate fluid coastdown curves following pump shutdown 

ergy stored in the pump is EPo = ½ IP
2
o .  Similarly, the initial stored energy in 

the loop circulating fluid is ELo = ½ ρΣ( 2
oV /A)LA = ½ ρ 2

oV IL.  We can now ex-

press pump and fluid half-lives in terms of their corresponding initial stored ener-
gies as  

 (t1/2)P = 2EPo/(Toωo) and (t1/2)L = 2ELo/[ρg oV HPo]

Hence

α = (t1/2)P/(t1/2)L = ELo/(ηoEPo)

where we also took advantage of the definition of pump efficiency.  This relation 
indicates that the ratio of the fluid to pump half-lives is equal to the ratio of the 
fluid to pump effective initial stored energies.  Expectedly, as shown in Fig-
ure VId.5.1, if the pump flywheel contains high initial energy (α << 1), reasonable 
amount of fluid circulates the loop following termination of the pump operation, 
due to the pump inertial effects.  For small or no initial pump stored energy, as in 
the case of canned motor or electromagnetic pumps, termination of the pump op-
eration results in rapid flow decay due to the action of the friction forces. 

Example VId.4.2.  Find the coastdown flow fraction in a flow loop at 1, 5, 7 sec-
onds into the event.   
Loop Data:   IL = ΣL/A = 108 ft– 1, ∆Po = 93 psi, ρo = 62.87 lbm/ft3.
Pump Data:  To = 636 ft lbf, IP = 19.5 lbm ft2, ωo = 375 rad/s, ηo = 0.86. 

Solution:  We first find volumetric flow rate at steady state: 
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∆
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η
 = 

14493

37586.0636

×
××

 = 15.3 ft3/s

To find t1/2, we note that HPo = ∆Po/ρg = 93 × 144/62.87 = 213 ft 

213

15.3

2.32

108

H

V
)(

o

o
2/1 ==

P

L
L g

I
t  = 0.241 s 

To find α, we need to first find (t1/2)P:

(t1/2)P = IP(ωo/To) = (19.5/32.2)(375/636) = 0.357 s.  Therefore, α = 0.241/0.357 = 
0.68

We now find θ1 = 1/0.241 = 4.15,θ2 = 2/0.241 = 8.3, and θ3 = 3/0.241 = 12.4.  
From Figure VId.5.1, we obtain Φ1 ≅ 0.4, Φ2 ≅ 0.25, and Φ3 ≅ 0.18 

Hence, V 1 ≅ 0.4 × 15.3 ≅ 6 ft3/s, V 2 ≅ 0.25 × 15.3 ≅ 4 ft3/s, and V 3 = 0.18 ×
15.3 ≅ 2.7 ft3/s.

5.  Mathematical Model for PWR Components, Pressurizer 

PWRs are filled with water, which remains subcooled during normal operation.  
Hence, a pressurizer is necessary to control water inventory and the system pres-
sure.  The volume of this tank is about 2% of the volume of the PWR primary sys-
tem.  A pressurizer is usually about half filled with water and half with steam.  
Since water and steam co-exist at equilibrium, both phases are saturated at the sys-
tem pressure during normal operation.  The pressurizer is attached to the hot leg 
through a pipe run referred to as the surge line.  The vapor space allows for water 
to flow from the RCS into the pressurizer (in-surge) during transients that result in 
the expansion of the RCS water.  The water region also allows water to flow from 
the pressurizer into the RCS (out-surge) during transients that result in contraction 
of the RCS inventory.   

A pressurizer is equipped with spring loaded pressure safety valves (PSV), with 
pilot operated relief valves (PORV), with spray nozzles, and with two sets of heat-
ers.  The pressurizer design constraints include the existence of sufficient vapor 
space to prevent water from reaching the relief valves and sufficient water volume 
to prevent uncovering of the electric heaters.  One set of heaters is designed to off-
set the heat loss through the insulation and maintain pressure.  The other set of 
heaters is to produce steam following an out-surge, as shown in Figure VId.5.1. 

Power increase.  Events resulting in a power increase cause the RCS water 
temperature to rise.  This is associated with an increase in water specific volume 
and subsequent expansion of water.  The increase in water volume results in a rush 
of water from the surge line into the pressurizer and compression of steam in the 
bulk vapor region.  The subsequent rise in the pressurizer pressure is controlled by 
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the spray control valve injecting colder water from the cold leg into the vapor 
space.  Additional relief is provided by the chemical and volume control system 
(CVCS) by opening the letdown valve and allowing water to flow to the CVCS 
tank.  Manual depressurization of the pressurizer is also possible by remote open-
ing of the PORVs. 

Power decrease.  Events leading to a drop in the reactor power cause the water 
temperature, and hence, the water specific volume to decrease.  The subsequent 
drop in the RCS water volume is compensated by the pressurizer water rushing to 
the RCS through the surge line.  This results in the expansion of the bulk vapor 
space and a drop in the pressurizer pressure.  Pressure is partially restored due to 
the flashing of water in the pressurizer.  Additionally, the pressurizer heaters are 
activated by the pressure controller.  If water drops below the low level set point, 
indicating the likelihood of heaters to be uncovered, the positive displacement 
charging pumps are automatically started to add coolant to the RCS from the 
CVCS tank. 

Wall effect.  The pressurizer wall also participates in the pressure control 
mechanism.  During an in-surge, when steam may become superheated, the colder 
wall acts as a heat sink to condense some steam.  In an out-surge, the warmer wall 
would heat up the expanding steam, which helps prevent excessive pressure drop.  
Also, during an out-surge, the warmer wall may result in boiling water adjacent to 
the wall.  Hence, the heat transfer regime between wall and the fluid is either natu-
ral convection or results in the change of phase. 

Mass and energy processes.  Various mass and energy processes are discussed 
below.  In this discussion, we use subscript l to represent the water region and v
for the vapor region.  To be consistent, we use subscripts f and g to represent the 
saturation properties.  Hence, hl stands for the enthalpy of water.  If hl = hf then 
the water is saturated.  Otherwise, it is subcooled.  Similarly, if hv = hg then the 
steam is saturated.  Otherwise, it is superheated.  Figure VId.5.1 shows the various 
mass and associated energy transfer rates between regions.  These include: 

– surge flow rate to or from the water region, ( susu hm , ).  In an in-surge, hsu = 

hHL and in an out-surge hsu = hl

– spray flow rate, to lower pressure, added to the water region ( spsp hm , )

– spray condensation flow from the steam region to the water region ( fsc hm , )

– flashing from the water to the steam region due to depressurization ( gfl hm , )

– rainout from the steam to the water region due to depressurization ( fro hm , )

– wall condensation from steam to the water region ( fwc hm , )

– wall boiling from water to the steam region ( gwb hm , )

– safety and relief valve flow rate from the steam region ( vrv hm , )
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Figure VId.5.1.  Various mass and energy processes in a PWR pressurizer

– condensation on and evaporation from the bulk interface ( fic hm ,  and 

), gie hm , not shown on Figure VId.5.1 

– non-condensable gases, released into the steam region (-). 
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– heater power in the water region and heat transfer to wall from water and 

steam, ( hQ ),( lwQ ) and ( vwQ ).

Pressurizers use a surge sparger to dampen the momentum of the in-surge.  The 
penetration depth of the in-surge water to the water region is generally limited to 
about 30 cm (1 ft). 

Mathematical model.  Generally, the extent of information obtained from a 
mathematical model depends on the degree of complexity of the model.  While we 
may make reasonable assumptions to simplify a model, we should be careful 
about the effect of such assumptions on the accuracy of the results.  For example, 
we may use one control volume to represent the entire pressurizer by assuming 
that water and steam are well mixed and remain at one pressure and temperature 
during a transient.  While this approach simplifies the analysis it may actually lead 
to erroneous result in case of an in-surge into the pressurizer.  During an in-surge, 
the bulk vapor region is compressed causing the pressurizer pressure to rise (con-
densation of steam on the colder wall somewhat reduces the rate of pressure in-
crease).  On the other hand, by using a one-node model in which the colder in-
surge water mixes with the steam and water mixture, we would calculate a drop in 
the pressurizer pressure.   

 In a two-region model, we consider two deformable control volumes for the 
bulk water and bulk vapor region.  We use the term “bulk” to distinguish the water 
droplets in the bulk vapor region from water in the bulk water region and steam 
bubbles in the bulk water region from steam in the bulk vapor region.  A three re-
gion model could allocate another deformable control volume to the colder in-
surge in the lower portion of the pressurizer and a four region model could allo-
cate a deformable control volume to each of the bulk water region, bulk vapor re-
gion, drops in the bulk vapor region, and bubbles in the bulk water region. 

Example VId.5.1.  In a transient, water rushes into the pressurizer at 58.94 lbm/s 
for 17.5 seconds at an average pressure and temperature of 700 psia and 450 F.  
Estimate the pressurizer pressure.  Ignore any interaction at the wall and at the 
bulk fluid interface.  Assume that the pressurizer is a right circular cylinder, no 
spray or safety valve is actuated, and ignore condensation on the wall.   
Data:  VPressurizer = 700 ft3, Vwater = 100 ft3, Tinital = 500 F (Pinitial = 680.86 psia). 

Solution:  a)  No mixing assumption:  If the transient is fast and there is not suffi-
cient time for perfect mixing, we may find the peak pressure by assuming isen-
tropic compression of the steam region. 

Initially, at P= 700 psia and T = 450 F, vsu = 0.01939 ft3/lbm and hsu = 430.38 
Btm/lbm.  To find the steam volume after compression, we need the in-surge mass 
and total volume: 

tmm susu ∆=  = 58.94 × 17.5 = 1031.45 lbm 
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Table VIc.5.2.  Thermodynamic states in a 2-region model 

hv < hg        hv = hg      hv > hg

hl < hf      hl < hf      hl < hf

hl = hf      hl = hf      hl = hf

hl > hf      hl > hf      hl > hf

Hence, Vsu = msuvsu = (58.94 × 17.5) × 0.01939 = 20 ft3.  The steam volume fol-
lowing compression is: 
(Vsteam)2 = (Vsteam)1 – Vsu = 600 – 20 = 580 ft3

We find P2 from Equation IIa.4.3: 
P2 = P1[(Vsteam)1/(Vsteam)2]

(0.445/0.335) = 680.86 × (600/580)1.328 = 712.2 psia. 

b) Perfect mixing assumption:  At T1 = 500 psia, vf1 = 0.0204 ft3/lbm, vg1 = 0.6749 
ft3/lbm 
m1 = mf1 + mg1 = 4901 + 889 = 5790 lbm and x1 = 0.153 so that u1 = 486.1 + 0.153 
× 631 = 572.98 Btu/lbm 
Using Equation IIa.6.4 gives: dtmudhm ii /)(= .  The integration of this equa-

tion yields: m2u2 = m1u1 + msuhsu

u2 = [m1u1 + msuhsu]/(m1 + msu) and v2 = V/(m1 + msu)

m2 = m1 + msu = 5790 + 103.45 = 6821.7 lbm 

u2 = [5790 × 572.98 + 500 × 613]/6821.7 = 839 Btu/lbm  
v2 = 1000/22,222 = 0.045 ft3/lbm 

Pressure corresponding to v2 = 0.045 ft3/lbm and u2 = 839 Btu/lbm is P2 = 672.85 
psia.  This model predicts a drop in pressure following the in-surge.

5.1.   Two-Region Pressurizer Model 

Development of the two-region mathematical model for the pressurizer is based 
on the Nahavandi method.  We allocate one deformable control volume to the bulk 
water and another to the bulk vapor region.  To find the various thermodynamic 
states of these two control volumes, we compare the enthalpy of each region (hl

and hv) with hf(P) and hg(P).  There are a total of 12 possible states as shown in 
Table VIc.5.2.  However, we do not consider the meta-stable states where hl > hf

and hv < hg.  These meta-stable states are shown in Figure VIc.5.2 for a depres-
surization process from an initial pressure of Po to a final pressure of Po – ∆P.  By 
not allowing such meta-stable states, we need to consider only four cases of a) 
saturated liquid, superheated vapor, b) saturated liquid, saturated vapor, c) sub-
cooled liquid, saturated vapor, and d) subcooled liquid, superheated vapor.  Select-
ing P and h as the state variables for each region, we begin with Equation IIa.5.1 
and include all the transfer terms explicitly.  For the water region we find: 
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( )
lj jieiccswcraflspsu

l mmmmmmmmm
dt
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=−++++−+=

and for the vapor region, the conservation equation of mass, Equation IIa.5.1 be-
comes: 

( )
vj jieicrvcswcrofl

v mmmmmmmm
dt

dm
=+−−−−−=

We now use the conservation equation of energy for the water region, Equa-
tion IIa.6.4-1, to obtain: 

( )

V

l l
su su sp g ro wcf fl f f

wc ic ie gf f h lw l

d m h
m h m h m h m h m h

dt
m h m h m h Q Q c P

= + − + + +

+ − + − +
and apply Equation IIa.6.4-1 to the vapor region to obtain: 

( )
( )

Vwc

v v
sp sp g ro wcf fl f f

rv v ic ie g vw vf f

d m h
m h h m h m h m h

dt
m h m h m h m h Q c P

= − + − − −

− − + − +

Note that there is no shaft work and the shear work is ignored.  Following the 
same method used in Chapter IIa to analyze the dynamics of gas-filled rigid ves-
sels, we write the conservation equations as: 
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( )[ ]
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k m
dt
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for mass in each control volume or region and as: 

( ) ( )[ ] PWQhm
dt

hmd
kkj sjjjj

kk V+++=

for energy.  Subscript j represents the various processes associated with a region 
and subscript k is a region index.  We now make use of the volume constraint as 
Vl + Vv = V where V is the total volume of the pressurizer.  Taking the derivative 
of the volume constraint relation and setting it to zero yields: 
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where in Equation VId.5.1, the summation is over the two regions of liquid and 
vapor.  Hence, k = l and v.  Also in Equation VId.5.1 noting that v = f(P, h), the 
derivative of the specific volume of each region was expressed in terms of the par-
tial derivatives with respect to pressure as well as the enthalpy of each region.  We 
now carry out the derivatives of the energy equations.  For the bulk liquid region 
we find: 

( )[ ] [ ]{ } llj jlj sjjjjl mhmPWQhmh /V1 −+++=

Similarly, for the bulk vapor region, the enthalpy derivative becomes: 

( )[ ] [ ]{ } vvj jvvj sjjjjv mhmPWQhmh /V −+++=

Substituting the enthalpy derivatives ( lh  and vh ) into Equation VId.5.1 while 

also substituting from the conservation equations of mass we find the pressurizer 
pressure derivative as: 
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Similar to the solution of Section 3, back substitution of pressure derivative results 
in finding the enthalpy derivatives.  The mass and enthalpy of each region are then 
found by integration over each time step.  As seen from Equation VIc.5.2, we also 
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need the derivatives of the properties.  Such derivatives can be obtained by various 
means.  For example, if properties are represented by least square fit to the data, 
we can then take the derivatives of the related functions. 

This method of solution resulted in the explicit derivation for the control vol-
ume pressure.  We used five equations (two conservation equations of mass, two 
conservation equations of energy, and one volume constraint) and we found five 
unknowns (P, hl, hv, ml, and mv).  This in turn requires all other terms to be ob-
tained from the related constitutive equations and the equations of state.  There-
fore, we need constitutive equations for such mass flow rates as flashing, rainout, 
spray condensation, wall condensation, surface evaporation, and condensation.  If 
the pressurization of the vapor region results in the opening of a safety or relief 
valve, the corresponding flow rate is calculated from the momentum equation.  If 
flow happens to be choked in a relief valve, the momentum equation appears in 
the form of the critical flow for the related valve. 

5.2.   Constitutive Models, Spray Condensation 

To be able to find pressure from Equation VId.5.2, in general we need to find con-
stitutive equations for various mass flow rates.  Constitutive equations are also 
needed for the rate of heat transfer to or from a region.  An example for such an 
equation includes a model for the estimation of the rate of steam condensation on 
the spray droplets injected into the steam region.  If we assume that the subcooled 
spray flow rate reaches saturation to condense steam, a steady state energy balance 
predicts the rate of steam condensation as: 

sp
fs

spf
sc m

hh

hh
m

−
−

=

where hsp and hs are the spray and the steam enthalpy, respectively.  In this rela-
tion, we assumed that steam is saturated, then hs = hg.

Example VId.5.2.  A PWR pressurizer, operating at steady state condition at 
15.51 MPa, is suddenly subject to a constant in-surge flow rate for 1 minute.  De-
termine the pressurizer response to this event.  For this purpose, use a two-region 
model for water and steam, ignore all transport processes at the fluid-fluid and 
solid fluid interfaces including water flashing to steam.   
Data: D = 2.5 m, H = 10 m, Vwater = 25 m3, surge flow rate = 7 kg/s for 60 s, surge 
enthalpy = 1442 kJ/kg, Arv = 1E-4 m2, CD = 0.61, (PActuation)rv = 17 MPa, (PReset)rv = 
16 MPa.  Subscript rv stands for relief valve. 

Solution:  The rate of pressurization is given by Equation VId.5.2, which for a 
two-region system becomes (subscripts i and e stand for into and exit from a re-
gion, respectively): 
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In this equation 1imΣ  = sum , 1emΣ  = 0, 02 =im  and rve mm =2 .

Since no heater power is given and there is no interface heat transfer 

021 == QQ .  The FORTRAN program is included on the accompanying CD-

ROM.  The results for pressure and steam temperature are shown below. 

15.50

15.55

15.60

15.65

15.70

15.75

0 20 40 60 80 100 120

Time (s)

Pr
es

su
re

 (M
Pa

)

344.50

345.00

345.50

346.00

0 20 40 60 80 100 120

Time (s)

V
ap

or
 T

em
pe

ra
tu

re
 (C

)

6.  Mathematical Model for PWR Components, Containment

In addition to bulk water and bulk vapor regions, often control volumes may also 
include non-condensable gases in the bulk vapor region.  Examples include the 
pressurizer with accumulated fission gases and the BWR and PWR plant contain-
ment.  To solve for the pressures and temperatures, we use the method of Sec-
tion 5.  To simplify the formulation, we assign subscripts 1, 2, and 3 to water in 
the pool, steam in the bulk vapor region, and gas in the bulk vapor region.  Fig-
ure VId.6.1(a) shows a system which consists of two control volumes, one for the 
bulk water region or the pool and one for the bulk vapor region.  Various proc-
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esses can take place for the system shown in Figure VId.6.1(a) including water 
addition to or removal from the pool region, steam and gas addition or removal 
from the bulk vapor region, heat addition or removal from each region, and spray 
addition to the bulk vapor region.  Figure VId.6.1(b) shows steam injection into 
the bulk vapor region and the associated division of the injected two-phase into 
water and steam.   

Heat Sink

Heat Source

Heat Sink

Steam Injection

Gas Injection

Water Injection

Bulk Water Region
(Water : 1)

Bulk Vapor Region
(Steam : 2, Gas: 3)

Heat Source

Wall

Wall

Two-Phase
Injection

Bulk Water Region
(Water : 1)

Bulk Vapor Region
(Steam : 2, Gas: 3) Wall

Wall

Steam

Water

                        (a)                                                                    (b) 

Figure VId.6.1.  (a) A control volume with water and a mixture of steam and gas and (b) 
Division at the break

Following the method of Section 5, we write the conservation equations of 
mass for water in the bulk water region, steam in the bulk vapor region, and gas in 
the bulk vapor region: 

k
k

dt

dm α=                                            VId.6.1 

where for water in the bulk water region  

−−−++++== wbevflrowcscspinj mmmmmmmmm 1,1,1α ,

for steam in the bulk vapor region,  

−−−−+++== 2,2,2 2, srvrowcscevwbflinj mmmmmmmmmα ,

and for gas in the bulk vapor region, −== 3,3,3,3 srvinj mmmα  where sub-

script in refers to the two-phase injection into the bulk vapor region.  Other sub-
scripts are the same as for pressurizer in Figure VId.5.1. 
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Unlike the conservation equation of mass, we write two conservation equations 
of energy, one for the water in the bulk water region and one for steam and gas in 
the bulk vapor region.  For the pool region, we have: 

111
11 V
)(

Pc
dt

hmd
+= β                                   VId.6.2 

where += 11,1 )( Qhm jβ .  Similarly, for the steam and gas in the vapor re-

gion we write: 

)(V
)(

32232
3322 PPc

dt

hmhmd
++=

+
−β                      VId.6.3 

where P1, P2, and P3 in Equations VId.6.1 through VId.6.3 are the control volume 
total pressure and steam and gas partial pressures, respectively.  Similar to β1, in 

Equation VId.6.3, += −−− 3232,32 )( Qhm jβ .  Subscript 1 refers to the pool 

region and subscript 2-3 refers to the bulk vapor region. 
In this formulation we have assumed only one non-condensable gas to exist in 

the bulk vapor region.  If there are several gases in the bulk vapor region, we write 
as many conservation equations of mass as the number of gases in the bulk vapor 
region and include their effect in the related energy equation for the bulk vapor re-
gion (i.e., Equation VId.6.3). 

There are a total of nine unknowns: m1, m2, m3, h1, h2, h3, P1, P2, and P3.  So far 
we have obtained five equations.  We find the sixth equation from the volume 
constraint as V1 + V2 = Vtotal.  Substituting for V = mv and taking the derivative of 
both sides we obtain: 

0
)v()v( 2211 =+

dt

md

dt

md
                                 VId.6.4 

Three more equations are needed for which we use the principles of the Dalton 
model.  From P1 = P2 + P3:

321 PPP +=                        VId.6.5 

Also according to the Dalton model, T2 = T3 hence: 

032 =− TT                        VId.6.6 

The last remaining equation is obtained by noting that according to the Dalton 
model the same volume in the bulk vapor region is occupied by steam and gas so 
V2 = V3 and, thus V1 + V3 = Vtotal.  Substituting and taking the derivative we get: 

0
)v()v( 3311 =+

dt

md

dt

md
                               VId.6.7 
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The set of nine equations may be reduced to six by substitution from the continu-
ity equations into the energy equations.  The resulting set at every time step is 
found as: 
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Equation VId.6.8 can be solved by Gaussian elimination.  Having initial volumes, 
masses, enthalpies, physical properties and their derivatives, we can find enthalpy 
and pressure derivatives by solving the above set.  The mass, enthalpy, pressure 
and volume derivatives are then integrated over a time step to find pressures, 
masses, volumes and enthalpies in a subsequent time step: 

1N N
k k km m tα+ = + ∆

1N N
k k kh h h t+ = + ∆

1N N
k k kP P P t+ == + ∆

1V V VN N
k k k t+ = + ∆

This process is repeated until the end of the specified transient is reached. 
In addition to the constitutive equations required to represent many of the proc-

esses as discussed in Section 5, we use three equations of states for water, steam, 
and gas to obtain  

),(v ,1 kkkk hPf= ,

),(,2 kkkk hPfT = ,



6.  Mathematical Model for PWR Components, Containment       823 

),(/v ,3 kkkkk hPfh =∂∂ ,

),(/v ,3 kkkkk hPfP =∂∂ ,

),(/ ,5 kkikk hPfhT =∂∂ , and

),(/ ,65 kkkkk hPfPT =∂∂ ,

where index k = 1, 2, and 3.  Derivative of properties of the gas in the bulk vapor 
region, treated as an ideal gas, is readily obtained as: 

33,
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Recall that properties of saturated water and saturated steam are functions of either 
pressure or temperature.  However, properties of subcooled water and superheated 
steam are functions of two variables.  Thermal hydraulic computer codes use 
curve fits to the steam tables.  However, to simplify analysis in the following ex-
ample, we are assuming that superheated steam can be treated as an ideal gas.  
This assumption is reasonable, especially for specific volume (v = RT/P) at low 
pressures and high temperatures.  This assumption is less accurate for enthalpy of 
the superheated steam, dh = cpdT, if cp is treated as a constant. 

Example VId.6.1.  A heavy load drop inside a containment ruptures two pipes.  
One carrying superheated steam and the other compressed air.  Estimate the con-
tainment response for the first 10 minutes to this event.  Treat steam and air as 
ideal gases. Data: Vcontainment = 2E6 ft3 (56.6 m3), Po = 14.7 psia (101.3 kPa), To = 
120 F (49 C), φo = 59%, steamm  = 100 lbm/s (45.36 kg/s), hsteam = 1200 Btu/lbm 

(2791 kJ/kg), airm  = 50 lbm/s (22.68 kg/s), Tair = 350 F (177 F).  Ignore all safety 

systems and steam condensation. 

Solution:  We calculate the initial masses, pressures, volumes, and enthalpies.  
Since no pool region is specified, hence, V1 = 0, and V2 = V3 = 2E6 ft3 (56.6 m3)

P2 = 0.59 × Psat(120 F) = 1 psia (6.9 kPa), P3 = 14.7 – 1 = 13.7 psia (0.094 kPa) 
and P1 = 14.7 psia (101.3 kPa) 
h2 = h100 + cp,2(T – 100) = 1105.3 + 0.445(120 – 100) = 1114 Btu/lbm (2591 kJ/kg) 
h3 = 0.24(120 +460) = 139.2 Btu/lbm (323.7 kJ/kg) 
v2 = R2T2/P2 = 345.7 ft3/lbm (21.58 m3/kg).  Thus, m2 = V/v2 = 1.0E6/345.7 = 
5785 lbm (2624 kg) 
v3 = R3T3/P3 = 15.68 ft3/lbm (0.978 m3/kg).  Thus, m3 = V/v3 = 1.0E6/15.68 = 
1.275E5 lbm (0.578E5 kg). 

Since we have only the vapor region, Equation VId.6.8 simplifies to: 
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Next, we find the forcing functions: 
α1 = 0 lbm/s, α2 = 100 lbm/s, and α3 = 50 lbm/s 
β2 = 100 × 1200 = 1.2E5 Btu/s, and β3 = 50 × 0.24(350 + 460) = 0.972E4 Btu/s 

We now develop derivatives of specific volumes and temperatures: 

∂v2/∂h2 = R2/cp,2P2 = (1545/18)/(0.445 × 144P2) = 1.339/P2

∂v3/∂h3 = 1.543/P3

∂v2/∂P2 = –v2/P2 = –345.7/P2 = –2.4 ft5/lbm·lbf 
∂v3/∂P3 = –v3/P3 = –15.68/P3 = 7.97E-3 ft5/lbm·lbf 
∂T2/∂h2 = 1/cp,2 = 2.247 lbm·F/Btu 
∂T3/∂h3 = 1/cp,3 = 4.167 lbm·F/Btu 

Upon substitution, the set of equations for the first time step becomes: 
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h

we find the four unknowns as 2h  = 1300 Btu/lbm s, 3h  = 70 Btu/lbm s, 2P  = 

20.3 psi/s and 3P  = 24.1 psi/s.  Having the derivatives, we find h2, h3, P2, and P3

at the next time step.  The FORTRAN program to solve this problem is included 
on the accompanying CD-ROM.  The results for this problem for temperature and 
relative humidity are shown in the plots.  Containment pressure in 10 minutes 
reaches 40 psia (2.76 bar). 
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6.1.   Break Flow Split 

Consider the containment of Figure VId.6.1(b) initially being at Po and To.  We 
now inject saturated water or a two-phase mixture to the vapor region of this con-
tainment.  The pressure and temperature of the injected flow are greater than those 
of the containment, Pm > Po and Tm > To, where subscript m stand for mixture.  
Our goal is to find the percentage of the injected flow that becomes steam and 
joins the vapor region and the portion that becomes water and flows to the pool 
region.  Such injected flow split depends on the conditions at the plane of entrance 
to the containment.  If the injected flow to the vapor region is saturated water for 
example, the flow partially flashes to steam upon entering the low pressure vapor 
region.  The constitutive equations for determination of the injected flow split into 
two distinct phases in the containment are known as the pressure flash and the 
temperature flash models.  Both models assume an isoenthalpic split of the in-
jected flow so that: 



826      VId.  Applications: Simulation of Thermofluid Systems 

ggffmm hmhmhm +=                                VId.6.8 

However, the difference between the two models lies in the evaluation of the satu-
rated water and saturated steam enthalpies.  To elaborate, let’s define the fraction 
of the flow which flashes to steam,  as: 

)()(
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yhyh

yhh

fg

fm

−
−

=χ           VId.6.9 

In the pressure flash model, the saturation enthalpies are developed based on pres-
sure.  For example, y1 = y2 = P2 (i.e. the partial pressure of steam).  Another way 
to calculate the split fraction is to take y1 = P1 (i.e. total pressure in the contain-
ment) and y2 = P2 or to take y1 = y2 = T2, as summarized in Table VId.6.1. 

Table VId.6.1.  Summary of various break flow split models 

Break Flow Split      y1       y2

Model A      P1      P1

Model B     P1      P2Pressure Flash 
Model C     P2      P2

Temperature Flash                                  T      T 

Note that in some references the temperature flash model is defined differently.  
In the temperature flash model described by Hargroves for example, the injected 
flow is instantaneously mixed and reaches equilibrium with the steam in the vapor 
region.   

Example VId.6.2.  A high energy pipe break occurs inside containment.  Com-
pare the split fraction of the break flow using various models of Table VId.6.1.  
Data: Po = 16.5 psia, To = 125 F, φo = 51.5%, hm = 550 Btu/lbm. 

Solution:  We find P2 = 0.515 × Psat(125 F) = 1 psia.  Thus,  
P3 = P1 – P2 = 16.5 – 1 = 15.5 psia.   

(a) y1 = y2 = 16.5 psia;    
a = (550 – 186.11)/(1152.7 – 186.11) = 0.376 steam and 62.4% water 

(b) y1 = 16.5 psia and y2 = 1 psia;  
b = (550 – 186.11)/(1105.8 – 186.11) = 0.395 steam and 60.5% water 

(c) y1 = y2 = 1 psia;    
c = (550 – 69.730)/(1105.8 – 69.730) = 0.463 steam and 53.7% water 

(d) y1 = y2 = 125 F;    
d = (550 – 92.960)/(1115.7 – 92.960) = 0.447 steam and 55.3% water 
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7.  Mathematical Model for PWR Components, Steam Generator 

The function of a PWR U-tube steam generator is described in Chapter I.  Feed-
water entering the downcomer, Figure I.6.6(b) and mixing with the saturated water 
returning from the separator assembly enters the tube bundle to reach saturation 
and begins to boil.  Heat is transferred from the primary side through the tubes to 
the two-phase flow, which further increases steam quality.  The two-phase flow 
eventually enters the risers or stand pipes of the moisture separator.  The saturated 
water flows downward to mix with the feedwater while saturated steam enters the 
dryer and eventually the steam line.   

The primary side response was discussed in Section 3.  We now discuss 
mathematical modeling of the secondary side.  Figure VId.7.1(a) shows a simple 
nodalization of the secondary side of the steam generator.  We may use this simple 
nodalization to estimate the mass, enthalpy, pressure, and velocity distribution, 
which is helpful in refining the nodalization.  Like before, we may also apply the 
simplifying assumption of an integral, loop-wide momentum equation as dis-
cussed in Section 3.  However, the loop in the case of the secondary side of a 
steam generator consists of the following flow path; steam generator downcomer, 
tube bundle, riser, separator, dryer.  The flow path then leads to the steam dome 
and the steam line for the dry saturated steam and back to the downcomer for the 
saturated recirculation water, as shown in Figure VId.7.1(b). 

The one dimensional integral momentum equation for the flow loop in the sec-
ondary side of the SG is found by applying Equation VId.3.15 to the various re-
gions shown in Figure VId.7.1(b).

Determination of the Boil Off Rate 

To obtain a simple relation for estimation of the boil-off flow rate, we consider a 
pot-boiler (no circulation) where heat is added to the water region, steam exits the 
water region and enters the steam region, and feedwater is added to the water re-
gion to maintain inventory.  The mass flow rate of steam is given by Equa-
tion IIa.5.3: 

( )cegggggg AVAVm αρρ ==                       VId.7.1 

where αe is the void fraction at the froth level (the interface between the water and 
the steam region) and Ac is the boiler cross sectional area at the froth level, per-
pendicular to the flow direction.  Also in Equation VId.7.1, ρg and Vg are steam 
saturation density and steam velocity, respectively.  Since ρg is a function of the 
operating pressure of the boiler (a known quantity) and Ac is the boiler flow area, 
also a known quantity, we need to find relations for αe and Vg in terms of other 
known quantities.  Void fraction is given by Equation IIId.2.2: 

)/()]1)(/([ boilcgjgefgeo

e
e mAVXXC

X

ρρρ
α

+−+
=



828      VId.  Applications: Simulation of Thermofluid Systems 

Steam Dome

Rm

D
ow

nc
om

er

Feedwater

FWm

fm

Sm

gm

Steam

Tube-bundle

Tube-bundle

Tube-bundle 1Q

2Q

3Q

Separator - Dryer

sQ
1 Downcomer Region

Tube Bundle Region2

Riser Region3

LT:  Swell Level

LS:  Subcooling Length

LTB:  Tube Bundle Length

LD:  Downcomer Length

                                             (a)                                                                               

LD

LDC

LS

LTB

LT

1
3

2

ATB
DTB

AR DR

AW

DW

ADC

DDC

                                      (b) 

Figure VId.7.1.  Mass and energy control volumes and flow paths for conservation equa-
tion of momentum 

where Xe may be calculated from Xe = (he – hf)/hfg and Vgj from Equation IIId.2.4.  
Finally, we find steam velocity, Vg from Vg = J + Vgj where J may be estimated 
from J = ( )2/() Acmm egFW ρ+ .  In this relation, subscript FW stands for feed-

water and ρe is the mixture density.  Substituting for ae and Vg in Equa-
tion VId.7.1, we find an implicit second-order algebraic equation for the boil off 
mass flow rate. 
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QUESTIONS 

– An electromagnetic pump is used to circulate fluid around a flow loop.  De-
scribe the flow trend if the pump is tripped.  Compare it with a pump equipped 
with a flywheel. 

– What is the role of the buoyancy head in early flow coastdown of a forced cir-
culation loop? 

– Thermal center in Equation VId.3.12 is defined based on TH.  How do you de-
fine it based on TC?

– Can a natural circulation loop operate with the thermal center of the heat sink 
located slightly below that of  the heat source? 

– What are the important assumptions made that led to the derivation of Equation 
VId.3.16, used to estimate the natural circulation mass flow rate? 

– What types of work should be considered in the derivation of the pressurizer 
pressure? 

– In the derivation of the pressurizer pressure, only the conservation equations of 
mass and energy were used. What is the application of the momentum equation 
in the pressurizer? 

– Consider the mass flow rate due to the condensation of steam on the wall of the 
pressurizer.  Can we obtain  this term from the conservation equations of mass 
and energy written for the water and the steam regions? 

– Can Equation VIc.6.2 be applied to a three region pressurizer by taking k = 3? 
– We used one pressure for the pressurizer, taken in the steam region.  What as-

sumption makes it possible to apply this same pressure to the water region? 
–  Plot the in-surge and the out-surge processes of a pressurizer on a T-s diagram. 

PROBLEMS 

1.  Use the definition of thermal center and show that for the core, having near lin-
ear temperature profile, the thermal center is located at Hcore/2 where Hcore is the 
core height. 

2.  Derive Equation VId.3.13, the thermal center of a U-tube steam generator, 
where λSG is measured from the tube sheet.  [Hint:  Start with Equation VId.3.12.  
Then use the definition of the thermal expansion coefficient to relate density dif-
ference to temperature difference.  Find λSG from: 

( )[ ]
( )g

sdgs

HC

L
H

SG ρρ
ρρ

λ
−

⋅−
= 0

where the numerator is given in Example VId.3.1]. 

3.  The following data are given for a U-tube steam generator.  Tube mass flow 
rate =m 70E6 lbm/h, total number of tubes N = 8500, tube outside diameter do = 
0.75 in, overall heat transfer coefficient Uo = 1000 Btu/h ft2 F, average tube length 
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L = 60 ft, average tube height l = 28 ft, cold leg temperature TC = 500 F, hot leg 
temperature TH = 570 F, pressure P = 2265 psia.  For this steam generator find a) 
the hydrostatic head and b) the thermal center.  

4.  The U-tube steam generator of Problem 3 is located in a PWR loop.  Use the 
following data to find the loop hydrostatic head (i.e., the difference in the eleva-
tions of the heat source and heat sink thermal centers).  ZSG = 45 ft and (Zth)core = 
30 ft. 

5.  A PWR is operating at a steady state condition.  We now shutdown the plant 
and want to estimate the natural circulation flow rate.  Although the reactor power 
decays after shutdown, we assume the core power remains steady for the duration 
of interest.  Find the natural circulation flow rate 48 hours after shutdown.  Data:  
Nominal reactor power: 3000 MWth, reactor pressure: 2265 psia, TC = 550 F, TH = 
610 F, ΣR = 0.28 ft-4.

6.  Show that for large values of l*, given in Equation VIa.5.8, the thermal center 
of a U-tube steam generator approaches ZSG = (1 + δ) l/2. 

7.  Derive Equation VId.3.14 by integrating the hydrostatic pressure term around a 
natural circulation flow loop.  In this derivation assume a linear temperature pro-
file over the heat source and apply Equation VId.3.12 for the heat sink.  [Hint:  
Find the density profile in the core and the related hydrostatic head.  Take the 
height from the heat source exit to the heat sink inlet as hH in which ρH remains 
constant.  Take the height from the heat sink exit to the heat source inlet as hC in 
which ρC remains constant.  Then use hC – Hcore/2 = hH + Hcore/2] 

8.  An experimental flow loop is constructed to study events in a PWR plant.  The 
core consists of electrically heated rods and the two steam generators are simu-
lated by two shell and tube heat exchangers.  The vessel is connected to the heat 
exchangers by two hot legs and four cold legs.  Water flows from the hot leg in the 
tubes while the secondary side water is cooled by a cooling tower.  The following 
flow resistances are measured for this facility RV = 227 ft-4, RHL = 560 ft-4, RHX = 
369 ft-4, RCL = 767 ft-4.  Find the natural circulation flow a) assuming no pump ex-
ists in the loop and b) considering four non-operating pumps on each cold leg, 
RPump = 1793 ft-4.  Other design data are: core thermal power = 178 kW, core inlet 
temperature = 38 C, vertical distance between the core and the heat exchanger 
thermal centers = 0.75 m, average density = 985 kg/m3, average specific heat = 
4.18 kJ/kg K, and β = 0.37E-3 1/K. 

9.  Find the hydrostatic pressure in a flow loop operating at 3 MPa with TC = 150 
C and TH = 175 C.  In this loop, the distance between the heat source and heat sink 
thermal centers is 5 m.  [Ans.:  1.6 kPa]. 

10.  Derive the hydrostatic head for a once-through steam generator.  Tubes are 
oriented vertically.  Hot water enters the tubes from the top and leaves from the 
bottom.  Water boils in the secondary side. 
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11.  The flow resistance of a flow loop is given as 9.81 m-4.  The loop flow rate at 
steady state condition is 5 m3/s.  Find the total head loss in the loop.  Also find the 
pressure drop in the loop.  The average loop pressure and temperature are 2.5 MPa 
and 95 C, respectively.  [Ans.: 12.5 m]. 

12.  Show that the half life of a pump impeller is given by: 

( )
3
o

2
oo

2/1
V

2

R
It PP ρ

η
=

where η is the pump efficiency, R is the loop flow resistance, and V  is the volu-
metric flow rate in the loop.  Subscript o indicates nominal values. 

13.  A pump is operating in a flow loop at nominal speed.  We now turn off the 
pump.  Find the time it takes the impeller to reach half of its nominal speed.  Data:  

o = 124 s-1, Io = 2200 slug-ft2, V  = 85000 GPM, ηo = 0.78, R = 0.076 ft-4, ρo = 
38 lbm/ft3.  [Ans.:  2.7 s]. 

14.  A natural circulation loop is shown in the figure.  Verify the validity of Equa-
tion VId.3.14.  Assume that the thermal centers for the heat source and heat sink, 
in this case, are located at the geometrical center of each source.  The vertical dis-
tance between the two sources is shown by Hth.  Elevations L1, L2, and L3 are 
given. 

Hth

L1

L2

L3

Heat source

Heat sink

15.  Define the system thermal length as the vertical distance between the thermal 
centers of the heat source and heat sink, Hth = (Zth)V – (Zth)SG where subscript V
stands for the heat source vessel and SG stands for the steam generator.  In this 
problem we want to find the effect of the thermal length on the loop flow rate and 
the loop temperature gradient.  Therefore, we keep changing the loop configura-
tion with respect to the heat sink elevation.  Due to height limitation of the build-
ing housing the loop, we would eventually have to place the steam generator hori-
zontally.  Assume all design parameters remain the same except for the increasing 
thermal length.  a) Derive the loop flow rate as a function of the thermal length.  
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b) Prepare a table of loop flow rate and loop temperature gradient for various val-
ues of Hth.  To do this, start from Hth = 0.3 m and conclude at Hth = 15 m using a 1 
m height increment.  c) Plot the values for m  and for TH versus Hth.  d) Compare 
the vertical and the horizontal orientation of the heat sink and comment on the ad-

vantages and drawbacks of each orientation.  Other Data: P = 4.48 MPa, T  = 

243 C, Q  = 15 MW 
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16.  An approximate value for the mass flow rate in a natural circulation loop as 
given by Equation VId.3.18 was derived assuming a constant friction factor.  a) 
By using Equations IIIb.3.2 and IIIb.3.6 show that in general, the mass flow rate is 
given by: 
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where n = 0.2 for turbulent flow in all the sections of the flow loop and n = 1 for 
laminar flow in all the sections of the flow loop.  b) Show that the maximum 
power that can be removed from the heat source in a natural circulation loop is 
given by: 
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nn
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where ,, pcρ  and T  are the loop average density, specific heat, and temperature.  

Also Hth is the system thermal length, as defined in Problem 15. 

17.  Some nuclear power plants, which are facing space limitation in their spent 
fuel pool, place older fuel assemblies in steel cylinders, referred to as dry shielded 
canisters (DSC).  The DSC is then hermetically sealed and placed horizontally in-
side a concrete bunker, known as the horizontal storage module (HSM).  Decay 
heat is removed by natural convection.  Colder air entering the HSM through the 
inlet screen leaves through the vents located at the top of HSM.  The loss coeffi-
cient and flow area of the inlet and exit ports are as follows: 

  KOuter screen KInner screen KEnterance/Exit Area (m2)

Inlet port  0.4   0.5  1.4  0.5 
Exit port  0.4   0.5  1.0  1.0 

ConcreteFuel
Assembly

DSC

Exit Vent

HSM

Inlet Port

Total loss coefficient and flow area associated with the flow through the HSM are 
2.5 and 0.5 m2, respectively.  Total rate of decay heat for the DSC is 15 kW.  The 
system thermal length, as defined in Problem 14 is 3.5 m.  Air enters the HSM at a 
temperature of 22 C.  Assume air at exit is well mixed.  Use the given data to find 
a) temperature rise, b) flow rate of air through the HSM, and c) total pressure drop 
from inlet to exit.   

18.  A tank containing saturated liquid undergoes a rapid drop in pressure.  This 
results in flashing to take place in the tank.  In the absence of any other process, 
use the conservation equations of mass and energy to derive a relation for the 
flashing mass flow rate in terms of the depressurization rate. 
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[Ans.:  )/](v)/)[(/( dtdPdPdhhmm vffglfl −−= ].

19.  A tank containing saturated steam undergoes a rapid drop in pressure.  This 
results in rainout from the steam.  In the absence of any other process, use the con-
servation equations of mass and energy to derive a relation for the rainout mass 
flow rate in terms of the depressurization rate. 
[Ans.:  )/](v)/)[(/( dtdPdPdhhmm vgfgvfl −= ].

20.  Consider a tank filled with steam at enthalpy hv.  A spray valve is opened al-
lowing water at a rate of srm  and at enthalpy of hsp to flow into the vapor space.  

The rate of steam condensation on the spray droplets is scm .  Assuming both 

spray water and the condensate reach saturation, write a steady state energy bal-
ance and find the rate of spray condensation.   
[Ans.: )/()(/ fvspfspsc hhhhmm −−= ].

21.  Find the spray flow rate into the pressurizer of a PWR by using a force bal-
ance around a closed loop.  This loop starts from the inlet to the spray line and in-
cludes spray line, spray valve, pressurizer, surge line, hot leg, steam generator 
primary side, reactor coolant pump suction pipe, reactor coolant pump, and reactor 
coolant pump discharge line.  The spray valve flow area and loss coefficient are 
Asp and Ksp, respectively.  For given height and elevations, find the spray flow rate 
and the condition at which there is no spray flow. 
{Ans.:  0.5 0.5

,[( ) ( / )( ) ( / ) ] ( / K )sp HL SG CL l P c P P CL c sp sp spm P P P g g L Z g g Z Aρ ρ= ∆ + ∆ + ∆ + + − }.
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22.  Schematics of a PWR reactor coolant system and the secondary side of the 
steam generator are shown in the figure.  The reactor is shutdown and the decay 
power is being steadily removed by the residual heat removal system (not shown 
in the figure).  At this steady state operation, the average temperature in the pri-
mary side is equal to the temperature of water in the secondary side of the steam 
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generator, hence, there is no heat transfer taking place in the steam generator 
tubes.  At time zero, we lose the cooling of the residual heat removal system, we 
inject water at a specified flow rate and enthalpy into the primary side, and we 
turn on the reactor coolant pumps (not shown in the figure).  a) Set up the govern-
ing differential equations.  Use one control volume for the primary side water and 
one for the secondary side water, b) solve the differential equations to find the 
primary side and secondary side temperatures as functions of time and other sys-
tem parameters specified below, c) use the given data and plot the surge flow rate 
(out of the primary side) as a function of time for the first ten minutes from the 
start of the event.  The primary and the secondary sides are identified with sub-
scripts P and S, respectively.   

DecayQ

ii hm ,

SGQ

sum

PWR Primary side

PWR Secondary side

Volume data:  VP = 260 m3 (9,181 ft3), VS = 85 m3 (3000 ft3),
Pressure data: PP = 2 MPa (290 psia), PS = 138 kPa (20 psia),  

Injection data: iV  = 8.33 lit/s (132 GPM), Ti = 43 C (110 F),  

Heat transfer data: ASG-tubes = 8,383 m2 (90,232 ft2), U = 4531 W/m2·C (798 
Btu/h·ft2·F)

Power addition data: decayQ  = 3 MW, pumpQ  = 17 MW 

Initial condition: TP = TS = 105 C (221 F). 
Assumptions:
a) The primary and secondary sides pressures remain constant throughout the 
event,
b) water in both control volumes remains subcooled for the duration of interest 
such that du ≅ dh ≅ cdT,
c) the overall heat transfer coefficient U remains constant,  
d) no water enters or leaves the secondary side. 

23.  The steam line in a BWR is equipped with a relief valve to discharge steam to 
the pressure suppression pool during an emergency.  The valve opens upon the 
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closure of the isolation valve.  To prevent overcooling of the reactor pressure ves-
sel, the discharge of steam through the valve must not result in a cooldown rate in 
excess of 100 F/h.  Use the data and the associated simplifying assumptions to 
find pressure in the reactor pressure vessel (RPV) and temperature in the suppres-
sion pool as functions of time for a discharge period of 10 minutes.   

RPV initial condition:
Pressure: 1015 psia (7 MPa),  
water volume: 14,583 ft3 (413 m3),
steam volume: 8370 ft3 (237 m3),

RPV injection data:
feedwater flow rate: 1,252,000 lbm/h (32 kg/s), feedwater enthalpy: 335 Btu/lbm 
(780 kJ/kg), 

RPV power addition data:
rate of heat deposition to the mixture from the RPV internal structure: 950 Btu/s 
(  1 MW), rate of heat deposition to the mixture from radioisotope decay: 1% of 
the reactor nominal power of 3434 MWth,  

Suppression pool initial condition:
Water mass: 7.6E6 lbm (3,447 kg), water temperature: 90 F (32 C), pressure: 14.7 
psia (1 atm). 

Residual heat removal

Reactor pressure vessel

FWm

DecayQ

gm

Isolation valve

Relief valve

Suppression pool

RQ
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RPV assumptions:
a) water and steam are completely mixed and remain in thermodynamic equilib-
rium throughout the discharge period,  
b) only saturated steam leaves the RPV,  
c) the rate of heat deposition to the RPV from both sources remain constant 
throughout the discharge period. 

Suppression pool assumptions:
a) water in the suppression pool remains subcooled at atmospheric pressure 
throughout the event, and  
b) no residual heat removal system is activated for the suppression pool as long as 
the pool temperature remains below 110 F (43 C). 
[Ans.: PRPV  900 psia and TPool 110 F]. 

24.  Find the cooldown rate and the suppression pool temperature in Problem 23 
for a case that the relief valve has stuck open for five minutes.  The valve flow 
area is 0.1 ft2 (≈ 0.01 m2).

25.  Our goal in this problem is to find the rate of depressurization in a PWR plant.  
In this case, the depressurization is due to the pressurizer spray valve failure in the 
open position.  The stuck open spray valve allows colder water from the cold leg 
to be sprayed into the bulk vapor space.  Find the time it takes for pressurizer 
pressure of 15.5 MPa to drop to 13 MPa.  Also calculate the water volume.  As-
sume no other processes take place in the pressurizer.  Further assume that the 
spray flow rate and enthalpy remain constant and surgeoutsp mm −= .

Data: 28=spm  kg/s, hsp = 1250 kJ/kg, (Vl)initial = 18 m3 and  (Vv)initial = 28 m3.

26.  A hermetically sealed tank contains a mixture of water and steam at pressure 
P1.  The tank wall is made of carbon steel.  The wall on the inside is covered by a 
stainless steel cladding and on the outside by a layer of insulation.  Use the speci-
fied data to find the time it takes for the tank pressure to drop to P2 MPa.

Pressure data:  Initial pressure: 2030.5 psia, final pressure: 1500.0 psia,  

Geometry data:  tank total volume: 1500 ft3, water volume fraction: 40%, tank 
height: 6 ft, cladding thickness: 0.5 in, carbon steel thickness: 5 in, insulation 
thickness: 3 in, 

Heat transfer data:  ambient temperature: 85 F, heat transfer coefficient from the 
mixture to the inside of the tank wall: 150 Btu/h·ft2·F, heat transfer coefficient 
from the tank to the ambient: 25 Btu/h·ft2·F,

Property data: stainless steeel: k = 8.6 Btu/h·ft·F, cp = 0.123 Btu/lbm·F, ρ = 488 
lbm/ft3,
carbon steel: kcarbon steel = 29.6 Btu/h·ft·F, cp = 0.11 Btu/lbm·F, ρ = 487 lbm/ft3,
insulation: k = 0.3 Btu/h·ft·F, cp = 0.037 Btu/lbm·F, and ρ = 27 lbm/ft3

Assumptions:
a) heat loss takes place from all surfaces and  
b) heat transfer coefficients remain constant throughout the event.   
[Ans.: about 20 hours]. 
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27.  A tank contains saturated steam at 10.4 MPa.  The height and the inside di-
ameter of the thank are 9 m and 2.5 m, respectively.  The bottom of the tank is 
connected to a supply piping with the admission valve fully closed.  We open the 
admission valve and let water at a rate of 8 lit/s, a pressure of 17 MPa, and a tem-
perature of 275 C enter the tank.  We close the admission valve after 20 minutes.   

a) Use an isentropic compression assumption for the steam region to find the pres-
sure in the steam dome immediately after the valve is closed.   

b) Revise your estimate by considering the effect of heat transfer to the wall and 
on the water surface.   

c) Find the tank pressure 15 minutes after the admission valve is closed.  The tank 
has a wall thickness of 14 cm and is not insulated.  The ambient temperature is 
45 C and the heat transfer coefficient to ambient is 15 W/m·C. 

28.  Shown in the figure is a PWR reactor vessel, with the vessel head removed.  
Initially there are no fuel assemblies in the core and the vessel and pool are full of 
water.  We now place the assemblies in the core.  The heat produced in the core, 
due to the decay of the radio-nuclides must be removed.  For this purpose, water 
from the bottom of the pool is circulated through a heat exchanger and the colder 
water is returned to the top of the pool.  In this way, the core is cooled solely by 
natural circulation.  Use the specified data to estimate the flow rate through the 
core.
Data:  hLP = 3 m, hC = 3.5 m, hUP = 3.8 m, hPool = 7 m, DC = 2.5 m, DV = 11.3 m, 
APool = 162.5 m2, Tinitial = 50 C, Core decay power = 10 MW, Flow rate through the 
pump = 200 lit/s. 
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29.  A right circular cylinder tank, having a volume of 44 m3, contains a saturated 
mixture of water and steam at 15 MPa.  The tank has a height of 10 m and a wall 
thickness of 14 cm.  The ambient is quiescent air at 35 C and 1 atm.  The initial 
steam quality is 99%.  The tank is fully insulated with negligible heat loss.  We 
now, remove the insulation and let heat loss to ambient take place from the top 
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and the cylindrical surface.  Estimate the value of the following variables after one 
hour a) steam pressure, b) steam temperature, c) wall temperature facing the 
steam, d) wall temperature facing the ambient air, e) water level in the tank. 
[Ans.  P2 = 14.17 MPa, T2 = 337.5 C, Twi = 337.5 C, Two = 333.6 C, Lwater = 
13 cm]. 
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Canister
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       Problem 29                                                     Problem 30 

30.  A canister of diameter D, length L, and wall thickness δ has an initial tem-
perature of Tc,  We now evacuate the air from the canister by using a vacuum 
pump and place a spent fuel rod while maintaining the wall temperature at Tc.  The 
spent fuel rod produces heat at rate of 5 W.  The canister is exposed to air at 35 C 
and a heat transfer coefficient of 5 W/m2·C.  Plot the spent fuel and the canister 
wall temperatures versus time for a duration of 18 hours.  To simplify the analysis 
a) assume that the fuel rod is bare UO2, b) ignore conduction heat transfer between 
the rod and the canister ends, c) use a lumped capacitance for the fuel as well as 
the canister wall .  Heat transfer takes place at all surfaces.  Use, d = 2 mm, D = 10 
cm, L = 3 m, εUO2 = 0.8.  Canister is made of stainless steel with a wall thickness 
of 2 cm (ε = 0.4). 

31.  The models developed in Chapter VId to analyze the primary and the secon-
dary sides of a PWR are based on the thermodynamic equilibrium assumption, ex-
cept for the pressurizer and the secondary side of the steam generator, which were 
analyzed based on the thermodynamic non-equilibrium model.  In the lumped pa-
rameter approach, the perfect mixing assumption is used and only one temperature 
is allocated to a node.  Thus, a multi-node representation was required for regions 
such as the core and the steam generator primary side in which large temperature 
gradients exist (Figures VId.2.1, VId.3.2, and VId.7.1). 

Another approach, originally developed by Myers and employed by Kao, allo-
cates only one node to a region even if there is a large temperature gradient in the 
region.  For example, one node is used to represent the PWR core despite the large 
temperature rise over the core.  Similarly, the tube bundle region of the steam gen-
erator with large density gradient is modeled by only one control volume.  This is 
possible by the introduction of the linear enthalpy profile model.  In this model a 
volume-averaged mixture density, ρ* is defined as:  



840      VId.  Applications: Simulation of Thermofluid Systems 

V
* V),(

V

1
dhP mmρρ =

Similarly, a volume-averaged mixture enthalpy h* is defined as:  
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where subscript m stands for mixture.  If the volume-averaged mixture density and 
enthalpy are known, then the mass and energy of a node can be found from m = 
ρ*V and u = h*V – PV, respectively.  To find the volume-averaged mixture den-
sity and enthalpy in closed form, the mixture density profile in terms of pressure 
and enthalpy is needed to develop the above integrals. 

a) To find such profile, show that at a given pressure, density of saubcooled water 
decreases almost linearly with increasing enthalpy.  Also show that the specific 
volume of a two-phase mixture and of superheated steam increases linearly with 
enthalpy.

b) Now consider control volume i, connected to the control volumes i – 1 and 
I + 1.  Show that by a linear transformation, the volume-averaged density and en-
thalpy become functions of pressure and the inlet and exit mixture enthalpies, 
given by: 
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c) Using the linear enthalpy profile assumption show that in the single-phase re-
gion: 
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where in this region, ρm,i/ hm,i is a constant.  Also show that in the two-phase re-
gion: 
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where in this region, vm,i/ hm,i is a constant.   

d)  Substitute these profiles in the above integrals to obtain expressions for *
iρ

and *
ih .
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VIe.  Nuclear Heat Generation 

In Chapter IVa, we treated the volumetric heat generation rate, q ′′′  as a known 

quantity.  The internal heat generation in a substance may be due to various proc-
esses such as electrical resistance, chemical, or nuclear reactions.  If the internal 
heat generation is due to an electrical resistance, then the calculation of q ′′′ is

rather trivial.  Examples of chemical heat generation include the exothermic reac-
tion of some alloys with water at high temperatures.  Zircaloy, for example, reacts 
with water at elevated temperatures to produce heat and hydrogen gas.  In the case 
of the nuclear reaction, however, calculation of the volumetric heat generation rate 
is more involved since it requires the study of neutron transport as a result of neu-
tron-nucleus interactions.  This is further complicated by the interdependency of 
neutron populations on the state of the medium, such as the composition, pressure, 
and temperature.  In this chapter we first introduce several key terms that play ma-
jor roles in nuclear engineering.  This is followed by the derivation of the neutron 
transport equation, which is difficult to solve.  Therefore, we introduce the appli-
cation of Fick’s law as our constitutive equation to turn the neutron transport 
equation into an equation known as the neutron diffusion equation.  This is be-
cause the neutron diffusion equation provides nearly accurate results for many ap-
plications and has the additional advantage of being amenable to even analytical 
solutions for some familiar geometries.  We then proceed to find the rate of nu-
clear heat generation from fission.  Finally, we investigate the effect of the neutron 
flux on temperature distribution in conventional reactor cores. 

1.  Definition of Some Nuclear Engineering Terms 

1.1.  Definitions Pertinent to the Atom and the Nucleus 

Atom is defined as the smallest unit of an element that can combine with other 
elements.  Democritus in the fifth century B.C. believed that an atom is the sim-
plest thing from which all other things are made.  The Greek word atomos means 
indivisible.  It was not until the early 20th century that subatomic particles were 
identified and the structure of the atom was described in terms of the nucleus and 
electrons.  The nucleus consists of positively charged protons and neutral neu-
trons.  The protons and neutrons are tightly clustered in the nucleus.  The nega-
tively charged electrons encircle the nucleus on far away orbits.  Indeed the dis-
tance between the closest electron orbit to the nucleus is about 100,000 times the 
radius of the nucleus.  Even further away is the neighboring nucleus, which is as 
far away as about 200,000 times the radius of the nucleus.  The diameter of an 
atom is generally expressed in terms of angstrom (Ao), which is 1E–10 m.  For ex-
ample, the diameter of a chlorine atom is 2 Ao.  The hydrogen atom has the sim-
plest structure.  Its nucleus consists of a proton with one electron in its orbit, 
which makes the atom neutral.  Helium has two protons and two neutrons in the 
nucleus with two electrons orbiting the nucleus.  There are a maximum number of 
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electrons that each orbit, or shell, can possess.  In chemical reactions, electrons of 
the last shell, which is not filled to capacity, bond with the shells of other atoms to 
produce a molecule.  In this reaction, the nucleus remains intact.  In nuclear reac-
tions, the nucleus itself is affected. 

Nucleon is referred to a particle that exists in the nucleus.  Thus protons and 
neutrons are nucleons.

Nuclide refers to a specific atom or nucleus.  If a nuclide is not stable, it is re-
ferred to as a radionuclide.

Atomic number (Z) represents the number of protons in an atom.  If N is the 
number of neutrons, then the mass number (A) is equal to the total number of neu-

trons and protons, A = N + Z.  We generally show elements as EA
Z .  For example, 

natural uranium is shown as U238
92 .  There are elements for which we can find 

various mass numbers.  Atoms of these elements have the same number of protons 
but a different number of neutrons.  These are known as isotopes.  For example, 

naturally occurring uranium ore has 99.28% atoms of U238
92 , 0.714% atoms of 

U235
92 , and 0.006% atoms of U234

92 .  Thus U-233, U-234, U-235 and U-238 are 

isotopes of uranium.  The effect of isotopes on mass number is shown in Figure 
VIe.1.1(a).  We may enhance the number of atoms in an isotope in the naturally 
occurring substance; this process is referred to as enrichment.

Atomic mass unit (amu) is equal to the one-twelfth of the mass of carbon 12.  
Since one mole of 12

6C  has 6.023E23 atoms and weighs 12 gram, then 1 amu = 

(1/12) × (12/6.023E23) = 1.66E–24 gram.  On this basis, mproton = 1.007277 amu, 
mneutron = 1.008665 amu, and melectron = 0.000548597 amu as summarized in Ta-
ble VIe.1.1.  Based on Einstein’s equation, the energy equivalent with 1 amu is E
= mc2 = (1.66E–27 kg)(3E8 m/s)2 = 1.49E–10 J.  Since 1 MeV = 1.602E–13 J, 
then 1 amu = 931.5 MeV.   

Table VIe.1.1.  Approximate classical characteristics of atoms and particles 

Atom density, N is the number of the atoms of an element per unit volume 
(#/m3).  Atom density is given by N = ρNA/M.  Atom density is generally a func-
tion of space and time, ),( trNN = .

Mass defect is defined as the difference in measured mass between the con-
glomerate mass of a coalesced nucleus and the sum of the masses of the individual 
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constituent particles of that nucleus.  The mass defect for element EA
Z , for exam-

ple, is found as ∆m = Z(mproton) + N(mneutron) – (ME – Zmelectron).

Binding energy (B.E.) of a nucleus is the energy-equivalent of the mass defect 
of that nucleus (B.E. = ∆mc2).  The binding energy may be thought of as the en-
ergy that would be required to break the nucleus into its individual constituents or 
as the amount of energy that would be released upon an instantaneous coalescence 
of all individual constituents to form the nucleus.   

Example VIe.1.1.  Find the mass defect and the binding energy per nucleon for 
Beryllium, 9

4 Be .  The mass of this element is given as 9.01219 amu. 

Solution:  The mass defect is found as: 

∆m = 4 × 1.007277 + 5 × 1.008665 – (9.01219 – 4 × 0.000549) = 0.062439 amu 

The equivalent energy is found as: 

E = mc2 = (0.062439 × 1.66E–27 kg)(3E8 m/s)2 = 9.328E–12 J = 58.2 MeV. 

The binding energy per nucleon is found as: 

 58.2/9 = 6.5 MeV/nucleon. 

Binding energy per nucleon, Figure VIe.1.1(b) is a minimum for hydrogen and 
reaches a maximum of about 9 MeV per nucleon for iron.  As mass number in-
creases beyond 60, binding energy per nucleon keeps dropping.  The slope of the 
curve is an indication of relative stability and potential sources for energy release.  
For example, for such heavy elements as Uranium and Plutonium, the binding en-
ergy drops to about 7.5 MeV/nucleon.  If the atom of such materials split, energy 
is released and more stable nuclei appear. 

Neutron-nucleus interactions are of two types.  Consider bombardment of a 
target material with a beam of neutrons.  Depending on the energy and the direc-
tion of the neutrons as well as the atoms of the target, we may have an interaction.  
If an interaction occurs, it results in the neutrons being scattered from the nucleus 
or absorbed by the nucleus.   

Scattering is one of two outcomes resulting from interaction between a target 
nucleus and the bombarding neutron.  If the total kinetic energy of the neutron and 
the nucleus before and after the scattering event remains the same, the event is re-
ferred to as elastic scattering.  Otherwise, the interaction is known as inelastic 
scattering.  For low neutron energies in elastic scattering, the passing neutron is 
bounced due to the force exerted by the nucleus, hence the process is referred to as 
potential scattering.  However, for higher neutron energies, the neutron and nu-
cleus may combine to form a compound nucleus from which a neutron emerges.  
For inelastic scattering to occur, the energy of the neutron must exceed the mini-
mum energy required for a compound nucleus to form. 
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Figure VIe.1.1.  (a) Effect of isotopes on mass number and (b) Binding energy per nucleon 

Absorption is the second outcome in a neutron-nucleus interaction.  Absorp-
tion in turn may lead to several types of interactions.  The absorption of a neutron 
by the nucleus places the resulting compound nucleus is an excited state.  The 
compound nucleus may then break up, leading to fission, or it may de-excite itself 
by emitting energetic radiation such as alpha (α), gamma (γ), neutron (n), or pro-
tons (p).  Although the excited state of a nucleus can be as short as 1E–14 seconds, 
it is considered a well-defined state compared with the approximately 1E–22 sec-
onds it takes for a neutron to travel across the nucleus. 

Resonance.  Application of the wave or quantum mechanic to the atomic nu-
cleus shows that the internal energy of a nucleus is quantized (see the solution to 
Equation VIIb.1.32).  If a neutron has a sufficient amount of K.E. for the creation 
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of a compound nucleus then the neutron and the nucleus are said to be in reso-
nance.

Microscopic cross section σi, represents probability of occurrence of a given 
type of interaction between an incident neutron and the target nucleus of the me-
dium through which the neutron travels.  In this case, the subscripted variable, i,
represents the type of interaction, whereby the relative probability of occurrence 
of a scattering reaction would be represented as σs (σa for absorption and σf for 
fission).  This property, which represents probabilities of certain types of interac-
tion, is specific to the target nucleus type (as it is a property) and is also dependent 
upon incident neutron energy and type of interaction.  This probability is generally 
represented in units of area, cm2, or barns (b) where 1 barn = 1.0E–24 cm2.

Macroscopic cross section, Σi is the probability of interaction of type i per unit 
length (1/cm) of neutron travel.  Thus, the chance of interaction with an atom per 
unit distance traveled is σ and for N atoms is Σi = Nσi.

Resonance cross section refers to the range of neuron energy of 1 eV to 1E5 
eV where for many isotopes the absorption cross section of the target nucleus dis-
plays extreme variations in magnitude as shown in Figure VIe.1.2(a).  The reso-
nance cross section, indicating a high probability of interaction, occurs when the 
energy quantized or the excited state of the compound nucleus matches the sum-
mation of the neutron K.E. and the compound nucleus binding energy.

Fission event.  Figure VIe.1.1 shows that, following the stable region, binding 
energy decreases with increasing number of neutrons.  This implies that if we 
break up heavy nuclei such as uranium, we would end up with two nuclei having 
mass numbers of about one-half of the original nucleus hence being more stable.  
This is indeed the case, as the breaking up, referred to as fission, results in lighter 
and more stable nuclei with respect to fission.  The appearance of a fission prod-
ucts is a probabilistic event.  For example, the fission of uranium-235 may result 
in excess of 200 different isotopes of 35 different elements.  Examples for fission 
of a Uranium-235 nucleus include the appearance of Zr, Te, Kr, and Ba: 

n2TeZrUn 1
0

137
52

97
40

235
92

1
0 ++→+

n3BaKrUn 1
0

142
56

91
36

235
92

1
0 ++→+

It must be emphasized that the fission products are generally highly radioactive 
and thus hazardous.  

The above reactions indicate that, in a sustained interaction leading to fission, 
between 2 to 3 neutrons emerge for each neutron that is absorbed to cause fission 
in U-235.  The number of neutrons emerging in a fission is represented by v.
These newly emerged neutrons have a spectrum of energy as shown in Fig-
ure VIe.1.2(b) and mathematically described as: 

EeE E 29.2sinh453.0)( 036.1−=χ
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Figure VIe.1.2.  U-235 (a) Fission cross-section and (b) prompt fission neutron spectrum  

where E is in MeV.  While some newly emerged neutrons have energies as low as 
a fraction of MeV and a few up to 17 MeV, the most probable energy is found as 
0.73 MeV and the average energy as 1.98 MeV.  The U-235 isotope has a large 
fission cross section for slow neutrons, (i.e., neutrons that have energy in the range 
of 0.025 eV).  Hence, we must use some means of slowing down neutrons to such 
low energies.  However, the journey for neutrons from about 2 MeV to about 
0.025 eV is quite perilous.  This is because the U-235 cross section for fission is 
highly energy dependent (Figure VIe.1.2(a)).  Thus, there is a high probability that 
the neutron, before being slowed down is captured in the isotope, especially in the 
resonance region, hence not leading to fission.  In the low energy range, referred 
to as the thermal region, the nucleus cross-section is proportional with the inverse 
square root of energy, known as the 1/V region. 

Fissile, fissionable, and fertile isotopes.  A fissile material is an isotope that 
would fission upon the absorption of a neutron of essentially no kinetic energy.  In 
other words, simply the binding energy of that last neutron in the compound sys-
tem is enough to overcome the critical energy required for fission to occur.  This 
type of isotope proves to be the most useful for producing the neutron chain reac-
tion necessary to produce power with a thermal pressurized water reactor.  Fissible 
isotopes include 233U, 236U, 239Pu, and 241Pu.  Plutonium-239 is found in abun-
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dance in spent fuel rods and can be recovered in reprocessing facilities.  During 
normal operation of a nuclear reactor, plutonium-239 is produced inside the fuel 
rod such that towards the end of a fuel cycle, it is one of the major contributors (up 
to 50%) of the power produced by the reactor.  Fissionable materials are isotopes 
that, like fissile materials, fission, but only with fast or energetic neutrons (ener-
gies higher than 2 MeV for U-238).  An important fissionable isotope is the natu-
rally occurring U-238.  The contribution of this isotope to the power level of a 
thermal reactor is about 5%.  Other fissionable isotopes are 232Th and Pu-240. 

Fertile materials are isotopes that do not fission but produce fissile materials as 
a result of an interaction with neutrons.  An example of a fertile isotope is Th232

90
:

1 232 233 233 233
0 90 90 91 92n Th Th Pa Uβ β− −+ → → + → +

where β– refers to beta-decay.  The most important fertile isotope is uranium-238 
resulting in the fissile isotope plutonium-239. 

Since there are isotopes that are suited for fission if exposed to fast neutrons 
and similarly isotopes suited for fission by slow (or thermal) neutrons, there are 
also two types of reactors, fast and thermal.  However, there are many more nu-
clear reactors based on thermal fission than based on fast fission. 

Moderator is used to slow down the newly born fast neutrons in thermal reac-
tors.  The moderator in thermal reactors generally has a dual role as it is also used 
as a coolant.  Water (H2O) is used in “light water reactors” and heavy water 
(D2O), using deuterium instead of hydrogen, in “heavy water reactors”.  The latter 
reactor is of Canadian design and is known as the Canada Deuterium Uranium or 
CANDU reactor, for short.  Since a neutron loses most of its energy in scattering 
events with light nuclei, a moderator should be a substance made of light nuclei 
with low absorption and a high scattering cross section.  Properties of widely used 
moderators are listed in Table VIe.1.2, where D is the diffusion coefficient and 

aΣ is the macroscopic absorption cross sections.   

Table VIe.1.2.  Properties of some moderators (at 20 C) for thermal neutrons (Lamarsh) 

Moderator   Density (g/cm3)  D (cm)  Σa (1/cm) 
Water (H2O)             1.00    0.16 1.97E–2 
Heavy Water (D2O)             1.00    0.87 9.3E–5 
Beryllium (Be)             1.85    0.50 1.04E–3 
Graphite (C)             1.60    0.84 2.4E–4 

1.2.  Definitions Pertinent to Neutrons 

Neutron density, n( r , E, Ω , t) as shown in Figure VIe.1.3(a) is the number 
of neutrons that at time t are at location x, y, z in volume dV, of energy E about dE

and travelling in the direction of Ωx, Ωy, and Ωz (or Ωr, Ωθ, and Ωφ) in d Ω  (the 
solid angle is shown in Figure IVd.5.1).  If, for example, we want to find the num-
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ber of neutrons having all ranges of energy and travelling in all directions, we in-
tegrate over energy and solid angle*:

( )Ω
∞ ΩΩ= ddEtErntrn 0 ),,,(),(                     VIe.1.1 

While n( r , Ω , E, t) has units of s–1 cm–3 eV–1 sr–1, n( r ,t) has units of neutrons/s 
cm3.

Neutron velocity, V(E) is the length per unit time traveled by the neutrons, 
(cm/s).  Neutron velocities may range from 8,000 to 80,000,000 km/h.  The newly 
born neutrons due to fission are very energetic (average energy is about 2 MeV 
but some may emerge with energies up to 20 MeV).  Such neutrons lose their en-
ergy due to collision with the moderator nuclei.  The loss of energy would eventu-
ally result in neutrons coming to thermal equilibrium with their surrounding me-
dium.  This is why the slowed down neutrons are referred to as being thermalized.
Energy of neutrons in a neutron population can be approximately obtained from 
the Maxwell-Boltzmann distribution (see Problem 4).  Using the Maxwellian dis-
tribution, we can find the most probable velocity in terms of neutron temperature 
as V = (2 T/m)1/2 where κ is the Boltzmann constant, κ = Ru/NA = 8.314/6.023E23 
= 1.38E–23 J/K.  Thus, neutrons at room temperature of 20 C have a velocity of  V
= (2 × 1.38E-23 × [20 + 273.16/(1.008665 × 1.66E-27)]1/2  2200 m/s.  The ki-
netic energy at this velocity is: 

( ) ( )
( )

2 2

2

. . / 2 0.5 1.008665 1.66E 27 / 1.602E 13 (2200)

5.226E 15 0.0253 V

K E mV

V

= = × × − −

= − =

Neutron angular flux, φ( r , E, Ω , t)dEd Ω  is the number of neutrons at loca-
tion r, energy (E) about dE and traveling at time t through a unit area perpendicu-

lar to Ω , in the differential solid angle d Ω  in the direction of Ω .  As shown in 

Figure VIe.1.3(a), Ω  is the unit vector of the neutron velocity vector, hence, 

Ω= VV .  To find the integrated steady state neutron flux, we integrate the steady 
state angular flux over all solid angles to obtain: 

( ) ΩΩ= Ω dErEr ,,),( φφ                       VIe.1.2 

For the special case of isotropic emission of neutrons, where neutrons are distrib-
uted uniformly over the surface area of a sphere having a radius of unity, the angu-
lar flux is related to the integrated flux through: 

π
φφ

4

),(
),,(

Er
Er =Ω                       VIe.1.3 

* Another way of representing n( r , E, Ω , t) is to write  

d6n/dxdydzdEd Ω dt = d7n/dxdydzdE(sinϕdθdϕ)dt
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The integrated flux is shown in Figure VIe.1.3(b).  To relate neutron flux to the 
number density of the neutrons, we may treat neutrons as a fluid and use the simi-
larity between neutron flux (φ), neutron density (n), and neutron velocity (V) with 
mass flux (G), density (ρ) and flow velocity (V) per Equation IIa.5.3, (G = ρV).
Thus, for neutron flux we find:   

   φ( r , E) = n( r , E)V(E)                      VIe.1.4 

If the integrated flux over all directions is also integrated over all energies, we find 
neutron flux φ( r , t) or the steady state flux φ( r ).  This is referred to as the one-
speed neutron flux.
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Figure VIe.1.3.  (a) Depiction of position and direction of a neutron.  (b) Integrated flux 
over all directions at position r  (Ott).

Angular current density is a vector defined by the following relation  

( , , , ) ( , , , )J r E t r E tφΩ = Ω Ω , hence, it has an absolute value equal to the angu-

lar flux.  Thus ( , , , )J r E t dEdSdΩ Ω  represents the rate of neutrons at location 

r , passing at time t through differential area dS, with an energy (E) in dE and in 

the direction of Ω  in d Ω .

Neutron current density or simply neutron current is obtained by the integra-
tion of the angular current density over all possible directions: 

( ) ΩΩ= Ω dtErJtErJ ,,,),,(                                      VIe.1.5 

If we integrate the neutron current density over all ranges of energy we obtain 

the neutron current as ),( trJ .  The neutron current, being a vector, is instrumen-

tal in describing the leakage of neutron, into or out of a region. 
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Rate of neutron interaction, is obtained by multiplying the neutron flux by the 
macroscopic cross section of the nucleus for a specific outcome.  Thus Ri = φΣi

(neutron/s·cm2) × (atoms/cm) = interaction/s·cm3.

Rate of heat generation q ′′′  (W/cm3) is found from the rate of interaction.  If 

we consider the interaction of type i as that leads to fission, then i = f and Rf = 
φΣfr, where subscript fr stands for fission in the fuel rod.  If the energy produced 
per fission is ER, then the total power produced per unit volume is given by: 

q ′′′  = ER φ frΣ                               VIe.1.6 

The energy produced per fission, ER is about 200 MeV (1 eV = 1.6E–19 joules 
hence ER = 3.2E–11 J).  When the nucleus of a heavy element undergoes fission, 
most of the resulting energy is due to the kinetic energy of the fission fragments as 
shown in Table VIe.1.2.  Note that the deposited energy is Ed = 90% ER = 
180 MeV.  

Table VIe.1.2  Approximate distribution and deposition of fission energy (El-Wakil) 

Type                        Process Percent of  
total energy 

Energy  
deposition 

Kinetic energy of fission fragments      80.5  Fuel material 
Kinetic energy of the emergent fast  
neutrons 

      2.5 Moderator 
Fission 
(prompt) 

γ Energy associated with fission       2.5 Fuel & structure 

Kinetic energy of delayed neutrons      0.02 Moderator 
β –-decay energy of fission products       3.0 Fuel material 
Neutrinos from β –  5.0 Nonrecoverable 

Fission 
(delayed) 

γ-decay of fission products       3.0 Fuel & structure 

Capture β – and γ-decay energy of (n, γ) product  3.5 Fuel & structure 
Total                                                                       100 

Example VIe.1.2. Find the prompt energy of U-235 fission resulting in the ap-
pearance of Xe and Sr: 

( ) ( )γ7n2SrXeSrXenU 1
0

95
38

139
54

*96
38

*140
54

1
0

235
92 +++→+→+

Solution:  The prompt energy related to the mass defect is found from: 

( ) ( ) ( )235 139 95 2
92 54 38[ U Xe Sr 2 ]p n nE M m M M m c= + − − −

       = [235.043923 + 1.008665 – 138.918787 – 94.919358 – 2(1.008665)] 

Thus Ep = 0.197113 amu = 0.197113 × 931.5 MeV/amu= 183.61 MeV.  This in-
cludes 5.2 MeV kinetic energy of the two prompt neutrons and 6.7 MeV energy of 
the emerging gamma rays. 
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The six factor formula.  Earlier we discussed that the emerging fast neutrons 
from the fission of U-235 have a perilous journey from the fast to the thermal re-
gion before being used for the next fission cycle.  Aside from being absorbed in 
the nucleus (fuel) without causing fission, they may leak out of our control volume 
or may be absorbed by elements other than the fuel, such as the reactor structure 
(Table VIe.3.1).  To formulate this verbal discussion in mathematical terms, we 
consider two cases of infinite and finite media.  The infinite medium consists of 
fuel, structure, and neutrons.  In such a medium, no neutron can be lost to leakage.  
However, for the finite medium case, we do lose neutrons to leakage.  Such leak-
age is due to scattering out of the region of interest.  To keep track of the neutron 
inventory in each cycle, we define k, the multiplication factor, as the ratio of the 
number of neutrons in the new cycle to the number of neutrons in the previous cy-
cle.  We represent this ratio by k∞ for the infinite and by keff for the finite medium.  
If we divide the energy spectrum to fast and thermal, we may lose neutrons to 
leakage in both energy regions.  The relation between the ratios is: 

keff = k∞ PFNLPTNL

were PFNL is the probability that a fast neutron not leak out and PTNL is the prob-
ability that a thermal neutron does not leak out.  Having taken care of the leakage 
term for now, we begin to focus on k∞.  By definition, in an infinite medium, the 
ratio of neutrons in the present cycle to that of the previous cycle is: 

∞
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where we changed the numerator to an integral over the fuel region, as there is no 
fission anywhere else in the medium.  We further break down the above ratio by 
introducing terms in the numerator and denominator.   
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where ET ≅ 1 eV is a cutoff energy separating the thermal region from the slowing 
down region.  The first ratio represents the neutron production rate as a result of 
both fast and thermal fission to the neutron production rate due only to thermal 
fission.  This ratio is shown by ε and referred to as the fast fission factor:
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The second ratio in Equation VIe.1.7 represents the rate of neutron production due 
to thermal fission to the rate of absorption of thermal neutrons: 
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where ΣaF is the macroscopic cross section for absorption of the fuel material.  
This ratio is referred to as the eta factor.  The third ratio in Equation VIe.1.7 is the 
rate of thermal neutrons absorbed in the fuel to the rate of thermal neutrons ab-
sorbed in the entire medium: 

T

T

E
amedium

E
afuel

ErErd

ErErd
f

0

0

),(),(V

),(),(V

mediuminabsorbedneutronsthermalofNo.

fuelinabsorbededneutronsthermalofNo.

φ

φ

Σ

Σ
==

≅
a

aF

Σ
Σ

where Σa is the macroscopic cross section for absorption of the entire medium.  
This ratio is known as the thermal utilization factor.  Finally, the last ratio in 
Equation VIe.1.7 represents the absorption rate of thermal neutrons to the absorp-
tion rate of all neutrons in the medium: 
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This ratio is known as the resonance escape probability.  Therefore, we can write 
the multiplication factor of the infinite medium as k∞ = εηfp.  Upon substitution, 
the six-factor formula then becomes: 

keff = εηfpPFNLPTNL

Some one-group key constants for fast reactors are shown in Table VIe.1.3. 

Table VIe.1.3  Nominal one-group constants for a fast reactor (Lamarsh) 

Cross sections are in barn (i.e., 1E–24 cm2)

Element    σf σa σtr   v  η 
Na 0 0.0008 3.3 – – 
Al 0 0.0020 3.1 – – 
Fe 0 0.0060 2.7 –  – 
U-235 1.4 1.6500 6.8 2.6 2.2 
 U-238  0.095 0.2550 6.9 2.6 0.97 
Pu-239 1.85 2.1100 6.8 2.98 2.61 
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2.  Neutron Transport Equation 

The neutron transport equation is the mathematical expression of the following 
fact: 

rate of change of neutron population in a control volume = 
rate of neutron appearance in the control volume –  
rate of neutron disappearance in the control volume

We now evaluate each term in this neutron balance statement for a differential 
control volume dV and integrate over the volume of interest:   

– Rate of change of neutron population in a control volume: 

( )V V/),,,( ddttErdn Ω

– Rate of neutron production by the source*.  If by fission then:  

VV V),,,(),(V dtErErvsd f ΩΣ= φ
– Rate of neutron production due to scattering from all energy groups and all di-

rections into the differential control volume:  

( )[ ]{ }V 0 4 V),(,,, ddEdEEtEr s
∞ Ω′′Ω→Ω′→′ΣΩ′′π φ

– Rate of net neutron leakage into or out of dV:

( )S dStErJ ⋅Ω,,,  = ( )V V,,, dtErJ Ω⋅∇
– Rate of neutron scattering out of dV and absorption in dV:

( ) ( )[ ]V V,,,, ΩΣΩ dEddErtEr tφ

where the divergence theorem related the surface to volume integral, 

( )[ ] ( )[ ]V V,, dtrJdAntrJA ⋅∇=⋅ .  Substituting these in the above statement 

for neutron balance and dropping the integral over V, gives: 

( ) ( ) ( )

( ) ( ) ( ) ( )∞ Ω′′Ω→Ω′→′ΣΩ′′+ΣΩ=

ΣΩ+Ω⋅∇+
∂
∂

0 4 ,,,,,,,,

,,,,,,,
1

dEdEEtErErtErv

ErtErtErJ
tV

tf

t

π φφ

φφ

       VIe.2.1 

where we also substituted for n in terms of φ from Equation VIe.1.4.  Equa-
tion VIe.2.1, known as the neutron transport equation, is a linear partial differen-
tial equation.  The angular flux in this equation is a function of seven variable; 

r (x, y, z), Ω (θ, ϕ), E, and t.  Since both space and time derivatives of the angular 
flux, as well as integrals over energy and solid angle, appear together in Equation 
VIe.2.1, the neutron transport equation is considered an integrodifferential equa-
tion.  Appearance of both flux and current in Equation VIe.2.1 further complicates 
finding a solution.  It is, therefore, important to find a more useful expression for 

*  See Section 2.2 and Problem 42 for the discussion on the type of neutron source. 
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Figure VIe.2.1.  (a) Neutron scattering in dV and (b) Neutron leakage from dV

neutron current in terms of neutron flux than the one we already have, Ω= φJ .

Introduction of any type of simplification to allow us deal with Equation VIe.2.1 
undoubtedly requires introduction of assumptions.  One of the most important as-
sumptions is the scattering-dominant reaction as discussed next. 

2.1.  Neutron Current In Weakly Absorbing Media 

To express neutron current density, appearing in Equation VIe.2.1 in terms of neu-
tron flux, we consider isotropic scattering of neutrons in a weakly absorbing me-
dium.  Figure VIe.2.1(a) shows neutrons being scattered isotropically out of the 
differential control volume dV.  We want to find the neutron current density arriv-
ing at the differential surface dS at the origin located at a distance r from dV.  If 
the macroscopic scattering of the nuclei located in volume dV is Σs and the flux of 
neutron in dV is φ, then the rate of neutrons scattered out of dV in all directions is 
(φΣs)dV.  Thus, neutrons streaming out of dV are distributed over a sphere cen-
tered at dV at a rate of (φΣs)dV/(4πr2).  The fraction of these neutrons that should 
reach dS at the origin should be [(φΣs)dV/(4πr2)]dScosϕ.  However, neutron inter-
action with nuclei in the medium attenuates the rate of neutrons (see Problem 30) 
arriving at dS by a factor of exp(–Σr).  This factor is the probability of no collision 
between position r and the origin.  In this relation, Σ = Σa + Σs.  Since we consid-
ered weakly absorbing medium Σa  0 we may then use Σ Σs.  As a result, the 
rate of neutrons arriving per unit area of the differential surface dS at the origin 
due to the neutrons streaming out of dV is: 

[(φΣs)dV/(4πr2)]dScosϕ exp(–Σsr)
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The resulting neutron current in the direction shown in Figure VIe.2.1(a) is: 

( ) 2

cos
V

4
s r

z z s

dS
dJ dS dJ dS d e

r

ϕφ
π

−Σ
− −⋅ = = Σ

Substituting for differential volume dV = (dr)(rsinϕdθ)(rdϕ) and integrating, we 
get: 

2

000

( , , ) cos sin
4

ss
zJ x y z e d d dr

π π

ϕθ

φ ϕ ϕ θ ϕ
π

∞
−Σ

−
==

Σ
=   VIe.2.2 

We now expand φ(x, y, z) using the Maclaurin series in terms of flux at the origin, 
φo = φo(xo, yo, zo): 

2 2 2 2 2 2

2 2 2

( , , )

2 2 2

o
o oo

o o o

x y z x y z
x y z

x y z

x y z

φ φ φφ φ

φ φ φ

∂ ∂ ∂= + + + +
∂ ∂ ∂

∂ ∂ ∂+ + +
∂ ∂ ∂

Ignoring the higher order terms and substituting flux in Equation VIe.2.2, we ob-
tain: 

( )

2 / 2

000

2 / 2

000

cos sin
4

cos cos sin
4

s

s

rs
z o

ro s

J e d d dr

r e d d dr
z

π π

ϕϑ
π π

ϕθ

φ ϕ ϕ θ ϕ
π

φ ϕ ϕ ϕ θ ϕ
π

∞
−Σ

−
==

∞
−Σ

==

Σ
= +

∂ Σ
∂

where we have also substituted for z = rcosϕ and noted that the integral over 
x(∂φ/∂x)o and y(∂φ/∂y)o vanishes (see Problem 31).  Integrating this equation re-
sults in: 

[ ]

( ) [ ]

/ 22
2

0
00

/ 22
2

0
00

sin

4 2

sin
1

4 3

s

s

r
s o

z
s
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e
J

e
r

z

π
π

π
π

φ ϕ θ
π

φ φ ϕ θ
π

∞−Σ

−

∞−Σ

Σ −= +
Σ

Σ ∂ −
−Σ −

∂ Σ

After the substitution of the integral limits we obtain: 

os
z z

J
∂
∂

Σ
+=−

φφ
6

1

4
                      VIe.2.3 
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In order to find the net current in the z-direction at the origin due to the neutrons 
scattered from dV, we also need to find Jz+.  This component is easily obtained by 
integrating Equation VIe.2.4 for π/2 ≤ ϕ ≤ π:

os
z z

J
∂
∂

Σ
−=+

φφ
6

1

4
                      VIe.2.4 

Thus the net neutron current at the origin in the z-direction becomes: 

os
zzz z

JJJ
∂
∂

Σ
−=−= −+

φ
3

1
     VIe.2.5 

Similar analyses can be performed for the x and y directions.  Thus the total neu-
tron current becomes: 

∂
∂+

∂
∂+

∂
∂

Σ
−=

zyx
J

s

φφφ
3

1
                     VIe.2.6 

Note that in Equation VIe.2.6 we dropped subscript o (i.e., the reference to the ori-
gin).  This is because we can carry out similar analyses for any other point, taken 
as the origin of the coordinate system, in space.  We may further simplify 
Equation VIe.2.6 as: 

( ) ( ) ( )ErrDErJ ,, φ∇−=                       VIe.2.7 

where D in Equation VIe.2.7, is known as the diffusion coefficient (Table VIe.1.2) 
and is given by D = 1/3Σs.  Recall that we derived Equation VIe.2.7 assuming iso-
tropic scattering in a weakly absorbing medium.  We may still apply Equation 
VIe.2.7 to cases where scattering is not isotropic by including the mass number of 
the moderating nuclei and using D = A/(3A + 2)Σs.  In a homogeneous medium Σs

and D are constant values independent of location.  Thus Equation VIe.2.7 in the 

thermal region, for example, simply becomes ( ) ( )rDrJ φ∇−= .  This is known 

as Fick’s law expressing the fact that in weakly absorbing media, the current of 
neutrons is from the highly populated region to the sparsely populated region sim-
ply due to the net diffusion of the neutrons. 

2.2.  The One-Speed Neutron Diffusion Equation 

The neutron diffusion equation may be obtained from the neutron transport equa-
tion or derived directly by applying the balance of neutrons for the control volume 
of Figure VIe.2.1(b).  Choosing the latter method, we find the net rate of leakage 
into the differential volume in the y-direction as: 

( ) ( ) dxdydz
y

J
dxdzdy

y

J
JdxdzJ yy

yy ∂
∂

−=
∂

∂
+−
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Adding the leakage terms in the x- and z- directions, we find the total leakage for 

the control volume dV as J⋅∇− .  Thus the rate of change of neutrons in the 
control volume, (1/V)(∂φ/∂t) is equal to the rate of production from a neutron 
source such as s and the net in-leakage minus the net absorption or removal. Ex-
pressed mathematically; 

),()(),(),(
),(1

trrtrJtrs
t

tr

V a φφ Σ−⋅∇−=
∂

∂
                   VIe.2.8 

Substituting for the neutron current density from Fick’s law given by Equa-
tion VIe.2.7, we find:  

[ ])],()([),()(),(
),(1

trrDtrrtrs
t

tr

V a φφφ ∇−⋅∇+Σ−=
∂

∂
  VIe.2.9 

Expectedly, Equation VIe.2.9 is similar to Equation IVa.2.1 as it was derived for 
diffusion of heat in solids.  For a homogeneous medium, D can be treated as a 
constant and the diffusion equation is obtained as: 

),(),()(),(
),(1 2 trDtrrtrs

t

tr

V a φφφ ∇+Σ−=
∂

∂
                 VIe.2.10 

Note that in the derivation of the neutron diffusion equation we assumed that the 
flux of neutrons is isotropic (i.e., with no directional preference), otherwise the 
diffusion model does not apply.  For example, while the diffusion model is appli-
cable in water, it breaks down at the water-air boundary.  This is due to the fact 
that water is much denser than air hence more neutrons move from water to air 
than from air to water.  If we are interested only in the steady state solution, the 
diffusion equation further simplifies to: 

)()()(2 rsrrD a −=Σ−∇ φφ                    VIe.2.11 

In Equation VIe.2.11, the Laplacian operator for a rectangular parallelepiped, a 
cylinder, or a sphere is given by Equation VIIc.1.9, VIIc.1.10, or VIIc.1.11, re-
spectively.  For example, neutron flux in a slab is only a function of x, thus Equa-
tion VIe.2.11 simplifies to: 

D

xs
x

Ddx

xd a )(
)(

)(
2

2

−=
Σ

− φφ
                   VIe.2.12 

Since Σa/D is referred to as the diffusion area L2 = Σa/D then L is known as the dif-
fusion length.  In cylindrical coordinates, assuming flux varies only in the r-
direction, Equation VIe.2.11 simplifies to: 

D

rs
r

Ddr

rd
r

dr

d

r
a )(

)(
)(1 −=

Σ
− φφ

                   VIe.2.13 
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and in spherical coordinates, assuming flux varies only in the r-direction, Equa-
tion VIe.2.11 becomes: 

D

rs
r

Ddr

rd
r

dr

d

r
a )(

)(
)(1 2

2
−=

Σ
− φφ

                 VIe.2.14 

To find neutron flux we need two boundary conditions for the second order differ-
ential equation VIe.2.11.  These boundary conditions depend not only on the ge-
ometry of the medium but also on the type of the neutron source.  These are dis-
cussed next. 

Medium geometry:  The simplest geometry for Equations IVe.2.11 through 
IVe.2.14 is an infinite medium.  Other geometries include infinite slab, finite slab, 
parallelepiped, infinite cylinder, finite cylinder, and sphere.   

Type of source:  Neutron sources may be of flux-dependent or flux-indepen-
dent types.  Flux dependent sources are due to fission.  Flux-independent sources 
are sources that emit neutrons at a constant rate and are the driving force for the 
existence of neutron flux in a medium such as a moderator.  The flux-independent 
sources may either be of a localized or distributed type.  We can find analytical so-
lutions for flux-independent sources of point, line, or planar types located in a 
sphere, cylinder, or slab (See Problems 32 through 41).  If we are solving Equa-
tions VIe.2.11 through VIe.2.14 for flux-independent localized sources, s in these 
equations should be set to zero, as the neutron source would appear in the bound-
ary condition.   

Type of boundary condition:  If we are dealing with an infinite medium, one 
boundary condition is obtained by the fact that as the variable approaches infinity, 
the flux must become zero.  On the other hand, if we are dealing with finite me-
dium, the flux must be zero at the extent of the medium.   

The second boundary condition is obtained from the type of the neutron source.  
For example, the neutron current is generally known as the independent variable 
approaches the source.  For a distributed neutron source, we can take advantage of 
symmetry if the source is distributed uniformly.  If a medium is one that is cov-
ered by a blanket, also known as a reflector (see Problem 35), then at the interface 
between two regions A and B, we must satisfy: 

φA = φB      & nJnJ BA ⋅=⋅                    VIe.2.15 

For the continuity of current in a reflected slab, for example;  

–DA(∂φA/∂x)boundary = –DB(∂φB/∂x)boundary

For flux-dependent distributed sources, where the neutron flux and the neutron 
source are intertwined, we can write: 

φηφη a
a

aF
aFs Σ

Σ
Σ

=Σ=  = φη afΣ
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where f, the fuel utilization factor, is simply given as aaFf ΣΣ= /  and the multi-

plication factor k∞:

φ
φη

a

af
k

Σ
Σ

=∞

Table VIe.1.3 gives useful data such as σf, σa, v, and η for various materials, 
where η is the average number of fission neutrons emitted per neutron absorbed.  
Substituting k  into the diffusion equation, we find: 

φ2∇D  – φaΣ  = – φak Σ∞

Dividing through by the diffusion coefficient, we get: 

φ2∇  + φ)1( −
Σ

∞k
D

a  = 0 

Defining L2 = D/Σa as the diffusion area, we find: 

φ2∇  + φ2B  = 0                    VIe.2.16 

where B2 = (k∞ – 1)/L2 is known as Material Buckling.  Equation VIe.2.16 is a 
one-group (i.e., one-energy group) diffusion equation.  We can express the one 
group diffusion equation for a variety of sources such as infinite planar source, 
point source, and bare slab.  However, we are more interested in reactor cores hav-
ing such familiar geometries as parallelepiped, cylindrical, and spherical.  All we 
need to do is to express the Laplacian operator for the specified core geometry as 
discussed next.   

3.  Determination of Neutron Flux in an Infinite Cylindrical Core 

Since the cylindrical geometry is most applicable to actual reactor cores, we begin 
with an infinite circular cylinder and then reduce the solution to the finite right 
circular cylinder. 

Flux in infinite cylindrical core.  An infinite cylindrical core is a theoretical 
concept.  We analyze it to eliminate the variation of neutron flux in the z-direction, 
which will be considered later.  Assuming symmetry in the θ-direction, neutron 
flux becomes only a function of r.  The diffusion equation then becomes: 

21 ( )
( ) 0

d d r
r B r

r dr dr

φ φ+ =

If we compare this equation with Equation VIIb.1.13, we note that we are dealing 
with a Bessel differential equation of order zero (v = 0) with m also being zero.  
The solution is given by Equation VIIb.1.14: 
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φ = c1J0(Br)+c2Yo(Br)

where we must find constants c1 and c2 from the following boundary conditions: 

at r = 0, φ =  finite and at r = R, φ ≅ 0 

From the first boundary condition and Figure VIIb.3.1, we conclude that c2 = 0 
hence, φ = c1Jo(Br).  The second boundary condition is even more interesting, as 
we get a host of answers.  Figure VIIb.3.1 shows that function Jo(x) goes to zero 
for three values of x when x ranges only from 0 to 8.  This indicates that we are 
dealing with a Sturm-Liouville problem.  The diffusion equation is a boundary-
value problem having two homogenous boundary conditions.  The Sturm-
Liouville problem is discussed in Chapter VIIb.  Hence, from the second boundary 
condition we find the n answers that satisfy the secondary boundary conditions as: 

BnR = xn

where xn stands for all n zeros of Jo(x), the Bessel function of the first kind of or-
der zero.  As seen from Figure VIIb.3.1, the first zero occurs at 2.405.  Hence, B1R
= 2.405 and B1 = 2.405/R.  Thus the flux becomes: 

φ = c1Jo
R

r405.2

Although we were not able to find c1, we managed to find the square root of the 
buckling term.  To find coefficient c1, we use the power produced by the reactor.  
The power produced per unit volume is given by Equation VIe.1.5 as q ′′′ = ER φΣf.

Thus, power produced by a unit length of the infinite cylinder reactor is found as: 

( )
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V

1 1
00

( ) V ( )(2 )
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R Rf f

R R

o oR Rf f
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In Chapter VIIb the above integral is carried out so that: 
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Substituting for the integral and solving for c1, neutron flux distribution in an infi-
nite cylinder core becomes: 

  φ = 
fR RE

Q

Σ21.356
Jo

R

r405.2
                      VIe.3.1 
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Figure VIe.3.1.  Infinite slab, rectangular parallelepiped, infinite cylinder, finite cylinder
and sphere

Flux in a finite cylinder core.   Having solved the infinite cylinder core, we 
may apply the same method of solution to other geometries such as an infinite slab, 
rectangular parallelepiped or a spherical core.  The results for all these cases are 
summarized in Table VIe.3.1.  Note that the solution for a rectangular parallelepi-
ped is obtained from the solution for an infinite slab.  Similarly, the solution for a 
finite cylinder is obtained from the solutions for an infinite slab and an infinite cyl-
inder.  This is the same method we used for the determination of temperature dis-
tribution in these geometries, as shown in Table IVa.9.2.  The reason for the simi-
larity in mathematical solution is the fact that diffusion is the mechanism for both 
heat and flux transfer.  As seen from Table VIe.3.1, for a finite cylinder, which re-
sembles actual nuclear reactor cores, neutron flux varies as a cosine function in the 
axial and as the Bessel function of the first kind of order zero in the radial direction.  
Hence, maximum flux occurs in the center of the reactor.  As will be discussed later 
in this chapter, neutron flux should be as uniform as possible in nuclear reactors.  In 
practice this goal is approached by variety of means including the arrangement of 
higher power fuel assemblies in the core periphery. From Table VIe.3.1, neutron 
flux in a finite cylinder and homogenous core is then given as: 

  φ(r, z) = 
Σ fRE

Q

V

63.3
Jo

R

r405.2
cos

H

zπ
                         VIe.3.2 
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Table VIe.3.1.  Flux and geometrical buckling for various critical core geometries 

where H is the total height of the core, as shown in Figure VIe.3.1.  Reactor cores 
consist of thousands of fuel rods.  To be able to apply Equation VIe.3.2 to reac-
tors, we relate Σf for the entire core to that of the fuel rods by: 

[(πa2H)Nrod]Σfr = πR2HΣf

where Nrod is the number of fuel rods in the core.  Solving for Σf, we find: 

Σf = [a2Nrod]Σfr/ R
2.

where a is the fuel rod radius.  Substituting aFΣ  in Equation VIe.3.1.2, we get: 

φ(r, z) = 
Σ 2

2

V

63.3

aNE

RQ

rodfrR

Jo
R

r405.2
cos

H

π

           = 
Σ H

16.1
2aNE

Q

rodfrR

Jo
R

r405.2
cos

H

zπ

Multiplying φ(r, z) by energy deposited per fission (Ed) and substitute from Equa-
tion VIe.1.5, we obtain:  

q ′′′ (r, z) = 
H

16.1
2aNE

QE

rodR

d Jo
R

r405.2
cos

H

zπ
                   VIe.3.3 

Equation VIe.3.3 gives the distribution of the volumetric heat generation rate in 
reactor cores of finite cylinder.  Since [J0(x)]max = 1 and [cos(x)]max = 1, the maxi-
mum volumetric heat generation rate occurs at the center of the cylinder where r = 
z = 0.  Hence, Equation VIe.3.3 can be expressed as: 
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q ′′′ (r, z) = maxq ′′′ Jo
R

r405.2
cos

H

zπ
                    VIe.3.4 

Example VIe.3.1. A reactor core contains 41,000 fuel rods.  The nuclear plant is 
operating at 1000 MWe and 29% thermal efficiency.  Fuel pellet diameter is 0.44 
in.  Core dimensions are, D = H = 4 m.  Find the volumetric heat generation rate at 
z = H/3 and r = R/2. 

Solution:  We find the maximum volumetric heat generation rate occurring at z = 
r = 0 from: 

maxq ′′′ = =
×××

××=
4]12/)2/44.0[(41000200

%)29/1000(18016.1

H

16.1
22aNE

QE

rodR

d 65.31 MW/ft3

        = 2.23E8 Btu/h·ft3

Therefore,  q ′′′ (r, z) = 2.23E8 [J0(2.405 × R/2R) cos(π × H/3H)] = 2.23E8 × 0.67 

× 0.5 = 0.75E8 Btu/h·ft3.

Actual versus bare reactor cores.  In actual reactor cores the maximum volu-
metric heat generation rate, is less than that calculated in the above example.  To 
find maxq ′′′  in actual cores, we write: 

( )actualqmax′′′  = Σfr Edφmax = Σfr Ed (φav ) = Σfr Ed )
V

(
Rf E

Q

Σ
ζ

                    = Σfr Ed )
V)/(

(
2

2
Rrodfr ERaN

Q

Σ
ζ

or alternatively; 

( )actualqmax′′′  = 2H
d

rod R

QE

a N E

ζ
π

Heat flux distribution.  We obtained the volumetric heat generation rate in a 
cylindrical core in Equation VIe.3.4.  To obtain similar distribution, but for core 
heat flux, we write the relation between power, linear heat generation rate, heat 
flux and volumetric heat generation rate for a fuel rod as: 

HHPH FF AqqqQ ′′′=′′=′=                     VIe.3.5 

where H is the rod length, PF is the fuel pellet perimeter, and AF is the fuel pellet 
cross sectional area.  Thus, Equation VIe.3.4 can also be written as: 
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q ′′ (r, z) = maxq ′′ Jo
R

r405.2
cos

H

zπ
                 VIe.3.6 

where q ′′  is the local and maxq ′′  is the maximum fuel rod heat flux. 

Example VIe.3.2.  Data for a BWR core, bundle, and rod are given as follows: 

ZP P

z

r
H

D

s

dc2

dF
dF

dC2

dC1

Fuel

Clad

Gap

D: Core diameter (ft):     16              H: Core height (ft):                 12                 
n:  Rods per bundle:             64              s: Pitch (in):                       0.74            
dC1: Clad in-dia. (in):               0.50          dC2: Clad out-dia. (in):       0.56            

Q : Core power (MWth):      3,300        ρ: UO2 density (lbm/ft3):    644          

N: Number of fuel bundles:   585 
dF: Pellet diameter (in):           0.48 
δ: Clad thickness (in):             0.03 
Ω: avqq ′′′′′′ /max :                        2.5 
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Find,  
a) total weight of UO2 in kg,  
b) core average power density in kW/lit,  
c) specific power in kW/kg,  
d) average linear heat generation rate in kW/ft,  
e) average heat flux in kW/ft2,
f) the maximum volumetric heat generation rate in kW/ft3, and g) the volumetric 
heat generation rate at r = R/2 and z = H/3. 

Solution:
a)  We first find total volume and mass of UO2:

58.564)58588()4/12()12/48.0(4/HV 22
UO2

=×××××== ππ Fd  ft3

58.56485.643V
2UO ×== ρM  = 363,505 lbm = 164,667.7 kg ≅ 165 tons 

b)  We now calculate core volume: 

CoreV  = πD2H/4 =π × (16/3.2808)2 × (12/3.2808)/4] = 68.32E3 lit

By definition: CoreCoreQDP V/.. =  = 3,300 × 1000/68.32E3 = 48.3 kW/lit 

c)  By definition: ==
2UO/.. MQPS Core  3,300 × 1000/164,667.7 = 20 kW/kg 

d)  By definition: ]12)88585/[(1000300,3)H/( ××××=×=′ RodCore NQq  = 

7.3 kW/ft 

e) 2/( H) 3,300 1000 /[(585 8 8) (0.56 /12) 12]Core Rod Cq Q N dπ π= × = × × × × × ×′′
      = 50 kW/ft2

f) ( )
200)58564((0.48/12)12

1801000300,316.1

H

16.1
22max ××××

×××==′′′
RRod

d
Bare ENa

PE
q

                       = 4792.67 kW/ft3

ππ
ζ

16.1

5.2
67.4792

16.1H

16.1
2max ×==′′′

RRod

d

ENa

PE
q  = 3287.83 kW/ft3

g)  Since )
H

cos()
405.2

(),( max
z

R

r
Jqzrq o

π′′′=′′′

then ),( zrq ′′′ = 3287.83 × Jo[(2.405 × R/2)/R] × cos[(π × H/3)/H] = 3287.83 ×
0.669 × 0.5 = 1099.78 kW/ft3
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Average heat generation rate.  We find the core average heat generation rate 
from: 

 =
′′′

=′′′
V

V),(V dzrq
q   

HR 2

1

π H

16.1
2aNE

QE

rodR

d

−

2/H

2/H0

cos)2(
405.2

dz
H

z
rdr

R

r
J

R

o
ππ

If we carryout the integrals in the radial and the axial directions, we find 

=′′′q maxq ′′′ /(2.316 × 1.57).  Writing in terms of heat flux by using Equa-

tion VIe.3.5 and representing FN = 2.316 × 1.57 we obtain: 

maxq ′′  = q ′′ × FN                       VIe.3.7 

where in Equation VIe.3.7, FN is known as the nuclear peaking factor.  The first 

multiplier, axial
NF  = 2.316, is the axial peaking sub-factor and the second multi-

plier, radial
NF  = 1.57, is the radial peaking sub-factor.   

3.1.  Axial Temperature Distribution 

We use the volumetric heat generation rate, as given by Equation VIe.3.3 to de-
termine the axial temperature distribution in the reactor core.  To limit the analysis 
to only one variable, we choose the central channel for which r = 0 hence Jo = 1.  

We also limit the analysis to PWRs* where coolant entering and leaving the core 
remains subcooled.  This assumption allows us to write dh = cpdT.  Using sub-
script f for the bulk coolant, F for the fuel, and applying Equation IIa.6.6 to an 
elemental control volume taken at axial location z (Figure VIe.3.2(c)), yields: 

)( dhhmQdhm +=+

Simplifying, we find QddTcm fp = .  For the fuel rod of Figure VIe.3.2, 

HHPH 2 FC AqqqQ ′′′=′′=′=  where PC2,= πdC2,and AF = π 2
Fd /4.  Substituting 

for total rate of heat generation we get: 

dzAzqqddTcm Ffp )(′′′==

We now substitute from Equation VIe.3.3 and integrate from the core inlet to any 
elevation:

* Note we are assuming that boiling does not occur even in the hot channel. 
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Figure VIe.3.2.  (a) Core, (b) Fuel rods, and (c) Central rod and channel 
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Carrying out the integral and simplifying, we obtain the coolant temperature as: 

+
′′′

+=
H

sin1
H

)( max
,

z

cm

Aq
TzT

p

F
inff

π
π

    VIe.3.8 

Having the coolant temperature, we can find the clad outside temperature from a 
steady state heat balance: 

( )( )fCC TTdzhQd −= 22P

Substituting for the rate of heat transfer and for fluid temperature and solving for 
clad temperature, we get: 
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  VIe.3.9 

In this equation, we assumed that the heat transfer coefficient, h, remains constant 
from inlet to any elevation.  Having the clad outside temperature, we can find clad 
inside temperature, TC1, fuel surface temperature, TF2, and fuel centerline tempera-
ture by using the corresponding thermal resistances.  Following the procedure that 
led to derivation of Equation IVa.6.15, we can find each temperature in terms of 
Tf, in, m , and maxq ′′′  as: 

′′′+++
′′′

+=
H

cos)(V
H

sin1
V

)( max
max

,1
z

qRR
z

cm

q
TzT CfF

p

F
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ππ
π

                                                      VIe.3.10 
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                           VIe.3.11 

max
,
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1
V

( ) 1 sin
H

V ( ) cos
H

F
f in

p

F FC Gf

F
q z

T z T
mc

z
R R R R q

π
π

π

′′′= + + +

+ + + ′′′
                                    VIe.3.12 

where the thermal resistance of fuel (RF), gap (RG), clad (RC), and flow (Rf) are the 
terms in the denominator of Equation IVa.6.15.  Temperature distributions of the 
coolant, clad, and fuel are shown in Figure VIe.3.3.   

As we expect, the coolant temperature peaks at the channel exit due to the ac-
cumulation of heat.  However, the fuel rod temperature is a function of both cool-
ant temperature and the volumetric heat generation rate.  While the coolant tem-
perature keeps increasing along the channel, the volumetric heat generation rate is 
at its maximum at the center and then keeps decreasing, due to the cos(πz/H) mul-
tiplier.  Therefore, the axial fuel rod temperature increases until a maximum tem-
perature is reached, the location of which is expectedly above the core center-
plane and below the channel exit.

Now that we evaluated the axial temperature distribution of the fuel rod at a 
given radius, let’s evaluate the radial temperature distribution of the fuel rod at a 
given axial location.  By expressing fuel rod temperature at various radial loca-
tions (Equations VIe.3.9 through VIe.3.12) with temperature at each location be-
ing a function of z, we have used a two-dimensional approach for the fuel rod 
temperature, albeit for selected nodes.  Note that by using a single control volume 
for the coolant, its temperature in the radial direction is lumped.  Since at any axial 
location, fuel rod temperature is a function of both Tf and maxq ′′′ , it is then expected 

that temperature further inside the fuel rod is influenced more by maxq ′′′  and less by 
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Figure VIe.3.3.  Two dimensional temperature distribution of a fuel rod in the hot channel
of a PWR 

Tf .  This is shown by the elevations from the point of maximum temperature to 
the core center-plane for various radial location as clad outside (zC2), clad inside 
(zC1), fuel surface (zF2), and fuel centerline (zF1).

To find the location of the maximum temperatures, we take the derivative of 
the related equation for temperature and set it equal to zero.  By substituting the 
location at which temperature is maximum, we can obtain the value of Tmax in 
terms of all the known variables for any radial location of the fuel rod.  For exam-
ple, for clad outside temperature, we take the derivative of Equation VIe.3.9 and 
set it equal to zero:  

( ) ( )fpc Rcmz ππ 1
max,2 tan//H −=
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Example VIe.3.3.  A PWR core contains 217 fuel assemblies, each on the average 
containing 176 fuel rods, operating at 2700 MWth..  Use the data given below and 
find the location and the value of the peak clad outside temperature.  Data:  H = 12 
ft, m = 138.5E6 lbm/h, dF2 = 0.377 in, dC2 = 0.44 in, h = 4000 Btu/h·ft2 F, cp = 
1.392 Btu/lbm·F, Tf, in = 550 F, and Ω = 2.56. 

Solution:  We first find the number and volume of the rods: 
Nrod = 217 × 176 = 38,192
VF = π(dF2)

2/4 × H = π(0.377/12)2 × 12/4 =  9.3E–3 ft3

We now find thermal resistance of the coolant film: 
Rf = (πdC2H)h = 1/[π × (0.44/12) × 12 × 4000] =
1.81E–4 h·ft2·F/Btu (3.186E–5 m2·K/W) 
ZC2, max = (12/π)/tan–1[π × (138.5E6/38,192) × 1.392 × 1.81E–4] = (12/π)/1.235 = 
3.1 ft (1 m) 

The maximum volumetric heat generation rate is found from: 

max 2H
d

R rod

E Q
q

E N a

ζ
π

=′′′ = 2

180 2700 2.56

200 38,192 [(0.377 / 2) /12] 12π
× ×

=
× × × ×

17.51 W/ft3

= 5.97E7 Btu/h·ft3

The peak clad outside temperature is found from Equation VIe.3.9 by substituting 
for z = zc2,max = 3.1: 

TC2, max = 550 + 
5.97E7 9.3E 3 3.1

1 sin
(138.5 6 / 38,192) 1.392 12E

π
π

× − ×
+ +

× ×
5.97E7 9.3E 3 3.1

cos
1/181 4 12E

π× − ×
−

= 680 F 

Example VIe.3.4.  Shown in the figure is the surface heat flux of a rod in an ex-
perimental reactor.  Use the given data and find a) coolant temperature, b) clad 
surface temperature, and c) fuel centerline temperature at z = H/2.  Data:  H = 6 ft, 
dF2 = dC1 = 0.4 in, dC2 = 0.5 in, Tf,in = 155 F, m = 375 lb/hr per rod, h = 2000 

Btu/h·ft2·F,  kF = 1 and kC = 3 Btu/h·ft·F, 1q ′′  = 120,000 Btu/hr ft2, 1q ′′  = 250,000 

Btu/hr·ft2.
z

q ′′1q ′′ 2q ′′
)2/H(

)2/H(
)( 121

+′′−′′+′′=′′ z
qqqq

)2/H(
)2/H(

)( 212
−′′−′′−′′=′′ z

qqqq

H

z = 0

Fuel Clad

TC2TF1 TC1
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Solution:
a) We write an energy balance for an elemental control volume and integrate: 

[ ] dzdzqdzdzqTzTcm z
inffp )()()()()( 0

0
2/H, ππ ′′+′′=− −

We then substitute for heat flux and carrying out the integral: 

,

0
2 2

1 2 1 1 2 1
H/2 0

( )

( / 2) (H / 2) ( / 2) (H / 2)( ) ( )
H/2 H/2

p f f in

z

mc T z T

z z z zd q z q q q q qπ
−

− =

+ −+ − + − −′′ ′′ ′′ ′′ ′′ ′′

Solving for Tf(z) and substituting values, we find: 

( ) =′′+′′+= 21, 2

H
)( qq

cm

d
TzT

p
inff

π ( )5E5.25E2.1
13752

6)12/5.0(
155 +

××
××+ π

 = 542.5 F 

b) From a transverse heat balance we also find: 

[ ]hzqzTzT fC /)()()(2 ′′+=

Substituting values to get: 

5.602
2000

5E2.1
5.542/

H/2

)2/H(
)()( 1212 =+=−′′−′′−′′+= h

z
qqqzTT fC  F 

c) We find, TF1 from another energy balance: 

[ ] RzTzTzdzqzQ CFC Σ−=′′= /)()())(()( 212π

( )1
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221 2

)/ln(
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1
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CCF ′′++=

        = =×
×

+
×

+= 5E2.1
32

)4.0/5.0ln(

14

1

12

5.0
4741FT  1910 F 

3.2.  Determination of Incipient Boiling 

In BWRs we often need to find the surface temperature and its location corre-
sponding to the inception of subcooled boiling.  As was discussed in Chapter Vb, 
such local temperature is not a single fixed temperature.  Still, we can estimate a 
value for it from the following relation: 
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 TSB = Tsat + (TC2 − Tsat)J-L – )/( hq ′′                    VIe.3.13 

where (∆Tsat)J-L is given by the Jens-Lottes correlation, for example: 

( )
900/

4/1

2
6E1/60

PsatC
e

q
TT

′′
=−

In British units, P is in psia, temperatures are in F, q ′′  is in Btu/h·ft2 and h is in 

Btu/h·ft2·F.  In general, the heat flux is given as a function of elevation, based on 
( )H/cosmax zqq π′′′=′′′ , where the clad surface temperature is given by Equation 

VIe.3.9.  Thus, TSB = TC2 and ZSB are found by solving Equations VIe.3.9 and 
VIe.3.13 simultaneously.  We may solve the resultant set by plotting each equa-
tion and finding the intersection.  Or we set these equations equal and solve the re-
sultant nonlinear equation by numerical means.  Using the second method, the 
equation becomes: 

′′′
++

′′′
+

H
cos

PH
sin1

V

2

maxmax
,

z

h

Aqz

cm

q
T

C

F

p

F
inf

ππ
π

 =

Tsat + 
( )

900/
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We now substitute for q ′′  = ( ) ( )H/cosP/ 2max zAq CF π′′′  and rearrange the above 

relation to get: 

λ1Y – λ2(1 – Y2)1/2 – λ3 Y
1/4 + λ4 = 0 

where, in this relation, Y = cos(πz/H), and coefficients λ1 through λ4 are given as 
λ1 = 2(AF/PC2) maxq ′′′ /h, λ2 = maxq ′′′ VF/(πcp m ), λ3 = 60[(AF/PC2) maxq ′′′ /1E6]1/4/eP/900,

and λ4 = Tf,in + λ2 – Tsat.

Example VIe.3.5.  Water enters the hot channel of a BWR at a velocity of V = 8 
ft/s, temperature of 525 F, and pressure of 1020 psia.  Fuel rods are arranged in 
square array on a pitch of 0.738 in.   Heat flux can be closely represented as 

)12/cos(max zqq π′′=′′  where z is in ft.  Find the clad temperature and its location 

of the inception of subcooled boiling.  Data:  7E28.1max =′′′q  Btu/h·ft3, dC2 = 

0.563 in and dF = 0.487 in. 

Solution:  At 1020 psia & 525 F, ρ = 47.6 lbm/ft3, cp = 1.24 Btu/lbm·F, µ = 6.6E-
5 lbm·ft/s, k = 0.3 Btu/h·ft·F 

AF = π 2
Fd /4 = π(0.487)2/4 = 1.293E-3 ft2, PC2 = πdC2 = 0.147 ft, VF = AFH = 

1.293E-3 × 12 = 0.0155 ft3
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AFlow = p2 – π 2
2Cd /4 = (0.738/12)2 – π(0.563)2/4 = 2.05E-3 ft2 (1.9 cm2)

De = 4AFlow/PC2 = 4 × 2.05E-3/(π × 0.563/12) = 5.58E-2 ft (1.7 cm) 
m  = ρ × V × AFlow = 47.6 × 8 × 2.05E-3 = 0.78 lbm/s = 2810 lbm/h (0.354 kg/s) 

Calculate h from Equation IVb.3.6 for forced single phase flow: 
C = 0.042(0.7382/0.563) – 0.024 = 0.031 
Nu = hDe/kWater = 0.031Re0.8Pr1/3 = 0.031[47.6 × 8 × 5.58E-2/6.6E-5]0.8(0.873)1/3

= 754

Hence, h = 754 × 0.3377/5.58E-2 = 4563 Btu/h⋅ft2⋅F (25.91 kW/m2⋅K)

λ1 = 2(AF/PC2) maxq ′′′ /h = 2(1.293E-3/0.147) × 1.28E7/4563 = 49.35 F (9.6 C) 

λ2 = maxq ′′ VF/(πcp m ) = 1.28E7 × 0.0155/(π × 1.24 × 2810) = 18.12 F (–7.7 C) 

λ3 = 60[(AF/PC2) maxq ′′′ /1E6]1/4/eP/900 = 60(8.78E-3 × 1.28E7/1E6)1/4/e1020/900 = 11.18 

F (–11.56 C) 
λ4 = Tf,in + C2 – Tsat = 525 + 18.12 – 546.99 = –3.87 F (–15.63 C) 

49.35`Y – 18.12(1 – Y2)1/2 – 11.18Y1/4 – 3.87 = 0 

By iteration we find Y = cos(πz/H) = 0.5732 

Hence, zSB = –44 in (i.e., 44 in below the core centerline or (144/2) – 44 = 28 in 
from the core inlet).  Upon substitution in either Equation VIe.3.9 or VIe.3.12, we 
find TSB = 542.4 F (283.5 C).  Note, Tsat (1020 psia) = 547 F (286 C). 

In the above example we determined incipient boiling in a BWR.  Let us now 
investigate a similar question for a PWR.  Although there is no bulk boiling under 
normal operation, during certain transients or for the hot-channel even at steady 
state, local boiling may take place.  While PWR channels are interconnected and 
heat flux profile is not uniform, we still consider fluid flow in a single vertical 
channel, subject to uniform heating to characterize flow in a PWR hot channel.  
For this channel, the temperature profiles of water and of channel surface as well 
as the void fraction profile versus the flow quality, X are shown in Figure VIe.3.4.  
Water enters this heated channel and flows upward.  Heat transfer takes place 
from the channel wall to the single phase water in forced convection.  Somewhere 
along the channel, at the point of the incipient boiling, the first bubble appears.  As 
discussed in Chapter Vb, the surface temperature would remain nearly unchanged 
subsequent to the inception of subcooled boiling.  The bubbles eventually manage 
to leave the surface, migrate into the bulk liquid, and collapse to heat up water, 
which is eventually brought to saturation.  



874      VIe.  Applications:  Nuclear Heat Generation 

α

X

Xin

X o
Bulk

Boiling

Subcooled
Boiling

Single Phase

Bubble
Detachment

T f

T c2

T sa
t

T c2

TSB

T

X

Xin

Xo

 X = 0

Incipient
Boiling

0.0

Subcooled
Boiling

N
uc

le
at

e 
B

oi
lin

g

Thermodynamic
Equilibrium

Channel
Inlet

Channel Exit

z

Zo

ZB

Zin

ZD

ZNB

Single
Phase

Bulk
 Boiling

Figure VIe.3.4.  Incipient boiling and void-quality profile for uniform heating of water 

As the void-flow quality profile of Figure VIe.3.4 indicates, void fraction re-
main zero as long as water remains subcooled.  At the incipient boiling, void frac-
tion becomes nonzero and rises steadily.  Upon more vigorous bubble production, 
which then results in bubble detachment, the increase in void fraction occurs at a 
larger slope, which continues up to the channel exit.  The dotted curve shows void 
fraction starting from X = 0, which conforms to the assumption of thermodynamic 
equilibrium. 

 3.3.  Margin for Thermal Design 

Nuclear peaking factors.  We derived the nuclear peaking factor, FN in Equa-
tion VIe.3.7 for a right circular cylinder core using assemblies that produce equal 
power and are distributed uniformly in the core.  These peaking factors are shown 
in Table VIe.3.1 for various core geometries.  Equation VIe.3.3 shows that the 
maximum heat flux for a set of operational conditions is a fixed value and to in-
crease the core average heat flux, we must reduce the nuclear peaking factors.  
Thus, for the same maxq ′′′ , the flatter the neutron flux, the smaller the nuclear peak-

ing factors and the larger the core average heat flux.  In practice, there are various 
means of flattening the neutron flux in the core.  For example, to flatten the radial 
distribution of neutron flux, fuel assemblies with higher enrichment are placed in 
the core periphery and less enriched assemblies in the center of the core.  Instead 
of using higher enrichment, we may place older assemblies closer to the center 
and fresh assemblies in the core periphery during the plant scheduled shutdown 
for reload.  The same goal may also be achieved by using burnable poisons or 
chemical shim (neutron absorbing material such as boron).  However, placing 
higher enrichment or fresh assemblies at the core periphery would also increase 
neutron leakage.  In the axial direction, fuel rods are loaded with less enriched fuel 
or even fuel mixed with burnable poison in the center of the rod. Figure VIe.3.5 
shows two axial distributions. Figure VIe.3.5(a) shows the flux profile with cosine 
distribution at the beginning of cycle (BOC) and dipping in the central region to-
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wards the end of cycle (EOC) due to higher flux.  Figure VIe.3.5(b) shows the ef-
fect of burnable poison on flattening the neutron flux profile, hence, reducing the 
axial peaking factor. 
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Figure VIe.3.5.  Axial power distribution (a) Uniformly loaded rod and (b) rod loaded with 
poison 

Engineering peaking factors, FE, enhance the total peaking factor, F = FN ×
FE and further reduce the core average heat flux.  The engineering peaking factors 
are those that affect the temperatures of clad and fuel centerline.  These can be 
easily identified from Equations VIe.3.9 through VIe.3.12 as follows: 

– channel flow rate ( m ).  Reduction in flow rate to the central channel increases 
bulk temperature. 

– heat transfer coefficient (h).  Reduction in flow rate would adversely affect h 
through the Reynolds number. 

– clad thickness (dC2 – dC1).  Increase in clad thickness increases thermal resis-
tance to the flow of heat 

– pellet diameter (dF2).  Larger fuel diameter than nominal increases pellet/clad 
interaction. 

– gap heat transfer coefficient (hG).  Reduction in hG increases thermal resistance 
to the flow of heat. 

– clad thermal conductivity (kC).  Reduction in kC increases thermal resistance to 
the flow of heat. 

– fuel thermal conductivity (kF).  Reduction in kF increases thermal resistance to 
the flow of heat. 

– fuel density.  Increase in fuel density increases neutron flux, hence, the linear 
heat generation rate. 

Examples for such engineering sub-factors include: heat flux; 1.03, hot channel; 
1.02, rod bowing; 1.065, axial fuel densification; 1.002, and azimuth power tilt; 
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1.03.  The engineering peaking factors are primarily due to the manufacturing tol-
erances resulting in the finished product slightly deviating from the specified 
nominal value.  The deviation from the nominal is a probabilistic event.  Hence, 
the deviation can be higher or lower than the nominal value.  However, to be con-
servative, we may consider only deviations that result in undesirable outcome.  In 
this case, deviations that result in the fuel rod temperature to increase.  For exam-
ple, for the specified nominal value of 0.42 for clad outside diameter, the finished 
product may be dC2 = 0.42 ± 0.005 inch.  It is conservative to use dC2 = 0.425 in. 

We may calculate the engineering peaking factor FE from the various peaking 
sub-factors (itemized above) in two ways.  The most conservative method is to as-
sume that all sub-factors occur for the most limiting, or the hottest channel.  
Mathematically, this is equivalent to: 

×××××= FCFC k
E

k
E

d
E

d
E

m
EE FFFFFF 22

In this method, FE is a maximum, q ′′  is a minimum, and, economically, the op-

eration of the reactor is least desirable.  Obviously, such a doomsday scenario 
does not occur in practice.  A reasonable way to account for all the engineering 
sub-factors is to use a method based on statistical combination of uncertainties.   

Transient peaking factors.  So far, we discussed nuclear and engineering 
peaking factors.  These are applicable when plant is operating at steady state con-
dition and producing nominal power.  Two more sets of peaking factors are also 
considered.  The first sub-factor (FP), accounts for deviations from nominal power 
during normal operation and second peaking sub-factor (FT) accounts for such 
conditions as the build up of thermal stresses in the clad due to plant transients.  
The result is to further increase the safety factor: 

TPEN FFFFF ×××=

Figure VIe.3.7 shows the effect of various peaking factors on core heat flux.  In 
addition to the above mentioned factors, we need to consider another safety factor 
to provide margin to the critical heat flux as discussed next. 

Axial, Radial, Engineering Uncertainty,  Overpower & Transients

Axial, Radial, Engineering Uncertainty & Overpower Factor

Axial, Radial & Engineering Uncertainty

Axial & Radial Peaking Factors

Axial  Peaking Factor

Nominal Value for Core Averaged Heat Flux At Steady-state Condition

q ′′

Figure VIe.3.7.  Determination of peaking factors for reactor thermal design (Todreas) 
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4.  Reactor Thermal Design 

In the design of a power plant, many aspects must be evaluated and several con-
straints must be met. Some of the aspects that must be evaluated include federal, 
state, and local regulations, economical and environmental considerations, site 
suitability, structural, electrical, thermal, and hydraulic constraints. Focusing only 
on the thermalhydraulics of a water-cooled nuclear power plant, we start from the 
electric power demand that should be met by the utility. The balance of plant is 
designed based on the demand on the electric grid.  This design consists of the 
steam cycle including turbine, steam extraction, feedwater heaters, and other heat 
exchangers. The site selected for the power plant determines the ultimate heat 
sink.  If located on sites close to a bay, a lake, or other large bodies of water, 
selection of a condenser is warranted. Otherwise, cooling ponds or cooling towers 
should be used. If a condenser is used, the appropriate condensate pumps and con-
densate booster pumps to provide the design head and flow rate must be selected.  
This is also applied to such other pumps as the main feedwater and the feedwater 
heater pump.   

Channelq ′′
q ′′

z

H/2

-H/2

PWR CORE DNBR

Coreq ′′ CHFq ′′

MDNBR

Channeq′′
CHFq′′

DNBR =

maxq ′′ DNBR

z

x

LB

xCritical = f(LB)

Heat
Balance at
Operating
Power

Heat Balance at
Critical Power

∆xo

BWR Core

1q ′′
2q ′′

Criticalq ′′

(a) (b) 

Figure VIe.4.1.  Determination of CHFR in (a) PWRs and (b) BWRs

The selection of the steam supply system is the most crucial decision.  For nu-
clear plants the choice in the United States is primarily between a PWR or a BWR, 
although, gas cooled reactors may also be an alternative.  To determine the re-
quired thermal power of the reactor core, we need to first calculate thermal effi-
ciency of the steam cycle.  Having thermal efficiency, we then design the core. 

It is important to note that according to Carnot’s efficiency, Equation IIa.9.2, 
the higher the heat source temperature, the higher the thermal efficiency.  In 
BWRs, this is the core exit temperature and in PWRs this is the steam temperature 
in the steam dome.  The highest temperature, being directly related to the integrity 
of the fuel rods, must remain well below the melting temperature of the cladding 
metal.  The Code of Federal Regulations (10 CFR 50-46) requires the peak clad 
temperature not to exceed 2200 F (1500 K) during design basis events, as de-
scribed later in this Chapter.  If a nuclear reactor was a temperature-controlled sys-
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tem, we could have defined a safety factor for the maximum temperature and op-
erate the plant such that temperature does not exceed the calculated value.  How-
ever, as Equation VIe.3.2 shows, reactors are flux-controlled systems.  In such 
systems as Figure VIe.4.1 shows, the CHF point must not be approached since 
temperature jumps from the value corresponding to nucleate boiling to the ele-
vated value corresponding to the film-boiling region.  Thus, to ensure fuel rod 
temperature remains below limit, a regulatory approved correlation is first used to 
calculate critical heat flux.  A safety factor, FCHF, is then applied for conservatism.  
This safety factor is the critical heat flux ratio (CHFR).   

The CHF in PWRs is due to the departure from nucleate boiling (DNB), which 
is a local phenomenon.  Therefore, in PWRs this safety factor is referred to as the 
DNBR (departure from nucleate boiling ratio).  To demonstrate this graphically, 
let’s evaluate the plots of Figure VIe.4.1(a).  The dashed line shows the core aver-
age heat flux.  Note that the core average heat flux is related to the fuel rod surface 
area according to: 

( )ηrodFrodF
av N

W

N

Q
q

HPHP
==′′                     VIe.4.1 

where W  is the required power on the grid (MWe), η/WQ =  is core thermal 

power (MWth), and η is plant thermal efficiency.  The first cosine curve in Figure 
VIe.4.1(a) shows the axial heat flux distribution in an average channel.  The sec-
ond cosine curve shows the axial heat flux distribution in the hot channel.  Note 
that, similar to Equation VIe.3.7 and from our earlier discussion, the relationship 
between heat flux in an average channel to the heat flux in the hot channel is in the 
form of: 

F

q
qav

max′′
=′′                        VIe.4.2 

In Figure VIe.4.1(a), q ′′  is followed by the axial critical heat flux distribution, 

)(zqCHF′′ .  The last curve on the right side shows the plot of: 

)H/cos(

)(
)(

max zq

zq
zDNBR CHF

π′′
′′

=

   
which is the departure from nucleate boiling ratios for various points along the hot 
channel.  The minimum point on this plot is the minimum departure from nucleate 
boiling ratio, MDNBR:

)H/cos(

)(

max DNB

DNBCHF

zq

zq
MDNBR

π′′
′′

=                      VIe.4.3 

If we substitute from Equation VIe.4.3 into Equation VIe.4.2 and subsequently in 
Equation VIe.4.1, we find: 
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( ) )(HP

)H/cos(
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N
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××=

η
π

   VIe.4.4 

Equation VIe.4.4 shows the intricate relationship between power production, hot 
channel factor, and the minimum departure from nucleate boiling ratio.  Economi-
cally, for the same core design parameters, higher power is obtained when the 
MDNBR and the hot channel factor are minimized.

Example VIe.4.1.  The axial power distribution in a PWR core is represented as 
( )12/cos zCq π=′′′  where z is in ft.  Use the given data and the Bernath correla-

tion for CHF to find the MDNBR.

Data: coreQ  = 2700 MWth, P = 2250 psia (15.5 MPa), Tf,in = 550 F (560.7 K), 

corem  = 138.5E6 lbm/h (62.82 kg/h), NRod = 38,000, Hcore = 12 ft (3.66 m), dF = 

0.38 in (0.96 cm), dC1 = 0.39 in (0.99 cm), dC2 = 0.45 in (1.14 cm), s = 0.588 in 
(1.493 cm), cp = 1.3 Btu/lbm·F (5.44 kJ/kg·K), NRod = 38,000. 

Solution: Find maxq ′′′ =
Rrod

dcore

EaN

EQ
2H

16.1
 = 2

1.16 2700 3412,000 180

12 (0.38 / 2 12) 38,000 200

× × ×
× × × ×

 = 

84.13E6 Btu/h·ft3 (870.7 MW/m3)

( ) =′′′=′′′ 3/2 maxmax qq actual 56E6 Btu/h·ft3 (579.6 MW/m3)

AF = 4/2
Fdπ  = 7.87E-4 ft2.  We also find the channel flow area AFlow = s2 – 

4/2
2Cdπ  = 1.296E-3 ft2 (1.2 cm2)

De = 4AFlow/PC2 = 4 × 1.296E-3/(π × 0.45/12) = 0.044 ft (1.34 cm) 
38000/6E5.135=m  = 3565.8 lbm/h (0.45 kg/s) 

)(zq ′′  = ( ) ( )H/cos4/ max2
2 zqdd CF π′′′  = [(0.38/12)2/(4 × 0.45/12)] × 56E6 

cos(πz/H) = 0.374E6 cos(πz/H) 
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We now set up the following table for the hot channel in the core: 

where DNBq ′′  is calculated from: 

( )fCHFsCHFCHF TThq −=′′ ,

In this equation, hCHF and Ts,CHF are obtained from (the Bernoth correlation):  

6.0

48
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eeh
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=

π
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)/15(1
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ln6.10232, −

+
−+= , respectively. 

More accurate results are obtained if we use smaller increments from z = 0.0 to z = 
2H/10.  According to the Bernath correlation, the MDNBR = 2.7.  Expectedly, the 
determination of the MDNBR strongly depends on the correlation used to predict 
CHF in the hot channel.  Note that we ignored small changes in pressure due to 
friction, elevation, and acceleration pressure drops.  In this table, water tempera-
ture at each node is calculated from Equation VIe.3.9, which is used in turn to find 
water density and to obtain water velocity in the channel from Equation IIa.5.2. 

As discussed in Chapter Vb, the critical heat flux in BWRs is due to the total 
heat deposited in the channel resulting in an annular flow regime and eventually 
leading to dryout.  For this reason, in BWRs the CHFR is referred to as the critical 
power ratio, CPR.  Shown in Figure VIe.4(b), the first curve on the left side is the 
flux distribution in a channel.  The second shows the increased heat flux from 1q ′′
to 2q ′′ .  We may keep increasing the heat flux and obtaining similar curves.  The 

third plot, for example, shows the curve corresponding to the normal operational 
condition.  The heat flux may be further increased so that the corresponding curve 
is tangent to the curve representing the critical condition.  This is the limiting 
power that must not be approached.  The curve representing CHF, in terms of 
critical quality versus boiling length, is known as GEXL and is obtained by Gen-
eral Electric (GE) from proprietary data.  
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Example VIe.4.2.  The axial power distribution in a PWR core is represented as 
( )12/cosmax zqq π′′′=′′′  where z is in ft.  The core active length is 12 ft.  The 

MDNBR of 2.0 occurs 20 inches from the core mid-plane where the critical heat 
flux is calculated as 1.2E6 Btu/h·ft2.   Find a) maxq ′′ , b) avq ′′ , and c) total fuel rod 

surface area.  Data:  Hot channel factor: 2.8, Required power on grid: 1000 MWe, 
η = 29%. 

Solution:  We find the heat flux profile from q ′′′  profile since 2( / 4)HFq dπ =′′′

2( )HCq dπ′′ .  Therefore, we find qq ′′′=′′ (AF/PC2) where AF and P are the fuel 

cross sectional area and perimeter, respectively.  The heat flux profile becomes: 

( ) ′′=′′′=′′
12
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12

cosP/)( maxmax2
z

q
z

qAzq CF
ππ

a) The maximum heat flux is found from the fact that at z = 20 in, MDNBR = 2.0 

000,600
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6E2.1
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q
qq CHFπ

 Btu/h·ft2

Therefore, the maximum heat flux is found as,  

75.662026
906.0

000,600

)144/20cos(

000,600
max ===′′

π
q  Btu/h·ft2

b) The average heat flux is found as 438,236
2.8

75.026,662max ==
′′

=′′
F

q
qav

Btu/h·ft2.

c) The required surface area is found from, avCore qQA ′′= /  where 

)/( thCore WQ η= .  Hence, we find total fuel rod surface area from A = (1000 ×
3412,000/0.29)/236,438 = 50,000 ft2.

Example VIe.4.3. Use the following data and plot the temperature profile of wa-
ter in a PWR. 

Data: 2700=Q MWth, =Corem 138E6 lbm/h, TCL = 550 F, TFW = 430 F, PCore = 

2250 psia, PSG = 900 psia, PCondenser = 1 psia, =SinkHeatm lbm/h, dC2 = 0.45 in, 

HCore = 12 ft, F = 2.5, Tsink,in = 70 F, and Tsink,o = 80 F. 

Solution:  To find the plant temperature profile, we assume pipe runs are fully in-
sulated.  Then find 
– core exit temperature by applying Equation IIa.6.6 to the core: 

he = hi + ( mQ / ) = 547.15 + (2700 × 3412000/138E6) = 614 Btu/lbm 
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Hence, THL ≅ 600 F 

– the profile of the water temperature in the average channel from Equa-
tion VIe.3.8 

– steam generator inlet temperature from Th,in = THL = 600 F 
– the profile of water in the steam generator tubes from Equation VIa.6.8.  Note, 

Th,o = TCL = 550 F 
– steam generator secondary-side inlet temperature, Tc,i = TFW = 430 F. 
– turbine exit temperature from the condenser pressure, Tturbine,o = 100 F. 

Condenser or
Cooling Tower

Ultimate Heat Sink
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Steam Generator
Reactor
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Feedwater Heater

To Cold
Leg

Cold Leg

Hot Leg
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Primary
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Plant

and

430 F

550 F

530 F

Feedwater
100 F

Feedwater

100 F

70 F80 F

Steam Generator

Primary
Side
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5.  Shutdown Power Production 

Unlike other power producing systems, nuclear reactors continue to produce 
power, albeit at a much smaller rate, even after being shutdown.  Power generation 
in nuclear reactors following shutdown is due to two sources: the power produced 
by fission caused by the delayed neutrons and the power due to β and γ decays of 
radioisotopes.  Power produced by delayed neutrons is short lived.  It can be 
calculated by solving the neutron kinetic equation with the insertion of a large 
negative reactivity (–0.09).  Such solution would show that the reactor power due 
to delayed neutrons would decrease exponentially over a period of about 80 
seconds (the half-life of the longest lived delayed neutron precursor).  Hence, the 
most dominant source of power following a reactor shutdown is the decay of 
radioisotopes.   

The rate of decay heat, as shown in Figure VIe.5.1 is generally obtained from 
the models developed by the American Nuclear Society (ANS).  In this figure, 
ANS 1971_1 refers to the nominal value for the decay of fission products.  ANS 
1971_2 refers to the nominal value plus the decay of the heavy elements (U-239 
and NP-239).  ANS 1971_3 is the same as ANS 1971_2 but it accounts for 20% 
uncertainty in the nominal and 10% uncertainty in the decay of the heavy ele-
ments.  ANS 1971_4 applies 20% instead of 10% uncertainty to the decay of the 
heavy elements. 

ANS 1979_1 refers to the nominal value for the decay of fission products plus 
the decay of the heavy elements.  The ANS 1979_2 model also accounts for 2σ
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uncertainty.  The Branch Technical Position (BTP) in this figure is similar to ANS 
1971_3.  To highlight the differences between these model, the bottom figure fo-
cuses on the first 1000 seconds after shutdown. 

Figure VIe.5.1.  Various models for the estimation of decay power 



884      VIe.  Applications:  Nuclear Heat Generation 

As shown in Figure VIe.5.1, reactor decay power following shutdown drops 
rapidly in the short term (about 1000 s) and in the long term approaches zero as-
ymptotically.  Obtaining a general formula for decay power is difficult due to such 
factors as dependency on the fuel cycle and duration of operation (resulting in dif-
ferences in heavy nuclide concentration and their decay characteristics).  See 
Problem 55 for a best estimate prediction of decay heat as recommended by El-
Wakil.  This correlation is applicable for time greater than 200 s after shutdown. 

QUESTIONS 

– What is the diameter of the chlorine atom? 
– What are subatomic particles? 
– What is an isotope?  What are the isotopes of uranium? 
– Define atomic mass unit.  How much energy in MeV is associated with 1 amu? 
– Explain the difference between a chemical and a nuclear reaction 
– What is the abundance of the U-235 isotope in naturally occurring uranium?   
– What is the process by which we increase the mass of certain isotopes in natu-

rally occurring substance? 
– What is mass defect?  Why is the mass of a nucleus less than the total mass of 

its constituents? 
– Why are heavy elements such as uranium and plutonium more amenable to fis-

sion? 
– In how many ways may a neutron interact with a nucleus? 
– What are the differences between elastic and inelastic scattering? 
– Are microscopic and macroscopic cross sections properties of the neutron or of 

the nucleus? 
– What does the macroscopic cross section physically represent?   
– Why do we refer to slow neutrons as thermal neutrons?   
– What major assumption constitutes the basis of the diffusion equation? 
– Mathematically speaking, what do temperature distribution in a rectangular 

plate (Figure VIIb.2.1) and neutron flux distribution in a cylindrical core have 
in common? 

– Why, in an elastic scattering between a fast neutron and a nucleus, is most en-
ergy lost in collision with light nuclei than with heavier nuclei? 

PROBLEMS 

1.  The atomic nucleus contains protons and neutrons while the electrons are orbit-
ing the nucleus on specific shells or orbits.  Each shell is filled with a certain 
number of electrons.  The shells are identified with quantum numbers 1, 2, 3, …, 
etc.  The shell with the quantum number 1 is the closest orbit to the nucleus.  
These are also referred to as orbits K, L, M, N, etc.  Usually the shells closest to 
the nucleus are filled first.  The number of electrons each shell is filled is given by 
2n2.  Thus, shell K is filled with 2, shell L with 8, shell M with 18, and shell N
with 32 electrons.  Electrons that orbit in the outermost shell of an atom are called 
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the valance electrons.  Shown in the figure are the structure and the valance elec-
trons for hydrogen, helium, lithium, and neon.  Draw similar atomic structures for 
sodium, phosphorous, and xenon. 

1pe 2p
2n

3p
4n

10p
10n

2.  How much energy corresponds to 1 lbm? 

3.  If the energy released by the Hoover dam in 2.5 days is 2.7E14 J, find the 
equivalent mass associated with this amount of energy.  [Ans.  3 grams]. 

4.  Treating neutrons as a gas, we may describe the total number of neutrons per 
unit volume by the Maxwellian distribution.  If n(E) is the number of neutrons per 
unit volume having energy E per unit energy, then n(E)dE is the number of neu-
trons per unit volume having energies in the range of E and E + dE so that: 

TEeE
T

n
En κ

πκ
π /2/1

2/3)(

2
)( −=

where N is the total number of neutrons and T is the absolute temperature of the 
medium.  In this relation,  is Boltzmann’s constant  = 1.3806E–23 kJ/K = 
8.617E –5 eV/K.  Use the above information and find: 
a) similar distribution for neutron velocity.  [Hint:  Substitute for E from the K.E.]
b) the most probable energy, the most probable velocity, and the energy corre-

sponding to the most probable velocity. 
c) the average energy  

[Hint:  use the averaging method given by ( )( ) nEdEEnE E /0= ].

[Ans.:  a) Ep = κT/2, b) Vp = (2κT/m)1/2, and c) E  = 3κT/2]. 

5.  Calculate the most probable neutron velocity and the neutron energy corre-
sponding to the most probable velocity.  Use room temperature of 20 C.  [Ans.:  
Vp = 2200 m/s, and E = 0.0253 eV]. 

6.  Steady state neutron flux in a bare spherical reactor of radius R is approxi-
mately expressed as: 

( )
r

Rr

T

E
EEr o /sin

exp
4

),,(
π

κπ
φφ −=Ω

where ϕo is the maximum flux at the center of the reactor.  Use Equation VIe.1.4 
and the relation between energy and velocity to find the number of neutrons in the 
reactor.  Gamma function properties are given in Chapter VIIb.  [Ans.  
φo(2πm)1/2(κT)3/2R2].
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7.  Show that the atom density of an element is given by N = ρNA/M where NA is 
Avogadro’s number (6.023E23) and M is the molecular weight.  Find the atom 
density of C-12.  Use the data for scattering and absorption cross sections and find 
the total macroscopic cross section of C-12.  Since the mean free path is λ = 1/Σ,
show that C-12 is an excellent moderator. 

8.  Collision between neutrons and nucleus of the moderator results in slowing 
down the newly born fast neutrons.  Such a collision is depicted in the figure.  The 
striking fast neutron has an initial energy En and an initial momentum pn.  The tar-
get nucleus is initially at rest.  Considering an elastic scattering, following the col-

lision, the scattered neutron has an energy of '
nE  and momentum of '

np  while the 

recoiling nucleus has an energy of '
NE  and momentum of '

Np .  Use the conserva-

tion of momentum and energy to drive a relation for energy of the scattered neu-
tron in terms of the initial neutron energy and mass number of the target nucleus.  
[Hint:  Find the momentum of the recoiling nucleus in terms of the momentum of 
the initial and the scattered neutron.  Substitute for momentum terms (p2 = 2mE)
and for the recoiling energy from the energy balance]. 

Striking
 Neutron

Target
Nucleus

ϕ
θ

Recoiling
Nucleus

Scattered
Neutron

NE ′

nE′
nE NE

np′

Np′
np

ϕ
θ

pn

np′

Np′

9.  The energy of the scattered neutron following an elastic scattering between the 
neutron and the target atom is given as (note that the molecular mass of the nu-
cleus, M divided by the mass of neutron, m is M/m = A): 

2
22

2
sincos

)1(
−+

+
=′ ϕϕ A

A

E
E n

n

Find the minimum energy of the scattered neutron following a collision with the 
atom of C-12.  The striking neutron has an initial energy of 5 MeV. 

10.  An isotropic neutron source emitting So neutrons/s⋅cm2 is located on the sur-
face of a sphere of radius R.  Find a) neutron flux at the center of the sphere and b) 
neutron current at the center of the sphere through a mid plane.  [Ans.:  So/2 and 
So/4 downward]. 
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R
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δPδD

R

                      Problem 10                                                Problem 11 

11.  A plane (P) is located between a disk (D) and a point source.  The disk emits 
SD particles isotropically and is located at a distance δD from plane P.  The point 
source emits S particles isotropically and is located at a distance δP from point O
on plane P.  Find neutron flux and current at point O.

12.  The collision in Problems 8 and 9 is described from the point of view of a sta-
tionary observer, referred to as the laboratory (LAB) system.  Now, consider a 
case were the observer is instead located at the center of momentum of the neutron 
and nucleus, referred to as the center of momentum (COM) system.  In this case 
the total momentum before and after the collision is zero.  Show that the velocity 
of the center of momentum (which for non-relativistic events is the same as the 
center of mass) for the stationary nucleus is given by VCOM = Vn,LAB/(A + 1) where 
Vn,LAB is the neutron velocity in the LAB system before collision.  Also show that 
Vn,COM = A Vn,LAB/(A + 1) and VN,COM = – Vn,LAB/(A + 1) where VN,COM is the veloc-
ity of the nucleus before the collision in the COM system. 

COMNV ,COMnV ,

COMNV ,′

COMnV ,′

COM

VCOM

LABnV ,′
COMnV ,′

LABϕ
COMϕ

COMγ

                             Problems 12, 13, and 15 

13.  Use the diagram showing neutron velocity before and after a collision to con-
clude that: 
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where a = [(A – 1)/(A + 1)]2 is known as the collision parameter.  Use this relation 
to: 

a) find the angle corresponding to the minimum energy of the emerging neutron 
( minE ′ )

b)  find minE ′ , the minimum energy of the emerging neutron 

14.  Neutron lethargy is defied as )/ln(lnln EEEE ′−=′−=λ .  Use the result 

of Problem 13 and show that neutron lethargy in terms of the nucleus mass num-
ber may be expressed as λ  2/(A + 2/3). [Hint: Finde an energy-averaged leth-
argy. The probability distribution function for elastic scattering and isotropic in 
the center of mass is 1/(1 – α)E].

15.  Use the diagram to conclude that the cosine of the scattering angle in the LAB 
system in terms of the cosine of the scattering angle in the COM system is given 
as: 

1)cos(2

)cos(
)cos(

2 ++
=

COM

COM
LAB

AA

A

ϕ

ϕϕ

16.  Use the results of Problems 13 and 15 to plot E’/E as a function of both ϕLAB

and ϕCOM.

17.  Consider the case of linearly anisotropic elastic scattering in the COM system 
σs(µCOM) = σ0 + σ1µCOM where σ0 and σ1 are known constants.  Find and plot the 
distribution of the nuclear recoil energies  

18.  Find the probability of isotropic scattering into a differential solid angle is 
dΩ/4πr2 where the differential solid angle dΩ is given as 2πrsin(ϕCOM)(rdϕCOM).
[Hint:  Integrate over θ to get scattering in the segment] 

ϕ

θx

y

z

Ω
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y

z
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19.  Show that scattering in the COM system is isotropic.  For this purpose, find 

)cos( COMϕ  and interpret the result.  [Hint:  Multiply the cosine of the scattering 

angle in the COM by the probability of scattering and integrate from 0 to π].

20.  Use the result of Problem 15 and the method of Problem 18 to find the cosine 

of the scattering angle in the LAB system, )cos( LABϕ .  Does the result show that 

scattering in the LAB system is backward, isotropic, or forward scattering?  [Ans.:  
2/(3A)].

21.  In Problem 13 it is shown that there is a one-to-one relation between the 
change in neutron energy and the change in the scattering angle.  Thus, it can be 
concluded that p(E E’)dE’ = –p(Ω Ω’)dΩ’ where p is probability and the 
minus sign reflects the fact that the larger the scattering angle, the lower the en-
ergy of the scattered neutron.  We represent p(Ω Ω’) = 4πσs(Ω Ω’)/σs where 
σs(Ω Ω’) is the differential scattering cross section and Ω’σs(Ω Ω’)dΩ’ = σs.
Use this information and find p(E E’) for an elastic scattering and isotropic in 
the COM where σs(Ω Ω’)= σs/4π.  [Ans.: p(E E’) = 1/(1 – α)E].

22.  Use the result of Problem 21to find the average fractional energy loss in an 
elastic scattering collision.  The average fractional energy loss is defined as 

E∆ /E.  [Ans.  (1 – α)/2]. 

23.  Regarding neutron-nucleus interaction, so far we dealt with elastic collision 
for isotropic and anisotropic scatterings.  In this problem, we want to find E’/E for 
an inelastic scattering in which the target nucleus absorbs an amount of energy Q.
Use the energy equation, which now accounts for Q and the velocity diagram of 
Problem 12 to show that: 

2

22
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1cos2
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24.  Consider two groups of isotopes.  Group A consisting of U-233, U-235, Pu-
239, Pu-241 and group B of Th-232, U-238, Pu-240, and Pu-242.  Identify the 
group that represents fissile and the group that represents fissionable nuclides. 

25.  Find velocity (m/s) and kinetic energy (eV) of a thermal neutron at a tempera-
ture of 500 F.  [Ans.:  2964]. 

26.  Find the temperature of a thermal neutron having energy of 0.11 eV.  [Ans.:  
1000 C]. 

27.  Start with the one-group neutron diffusion equation and derive the relation for 
neutron flux in a bare critical slab reactor.  Find the maximum to average flux for 
this reactor. 

28.  An isotropic surface source of So neutrons/s⋅cm2 is located on the surface of a 
sphere of radius R.  The sphere consists of a non-absorbing material.  Find a) the 
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flux density at the center of the sphere and b) the net current of neutrons at the 
center of the sphere through a mid plane.  [Ans.:  a) So and b) 0]. 

29.  An isotropic surface source emits So neutrons/s⋅cm2 and is distributed on the 
surface of a hemisphere of radius R.  The hemisphere consists of a non- absorbing 
material.  a)  Find the flux density at the center of the hemisphere.  b) Find the net 
current of neutrons at the center of the hemisphere through a mid plane.  [Ans.: 
So/2 and So/4]. 

30.  The left side of the slab shown in the figure is exposed to a monoenergetic 
neutron beam of an intensity Io neutrons/s cm2.  The slab material is homoge-
nously distributed and has an atom density of N atoms/cm3 and a cross section of 
σt for interactions with incident neutrons.  Show that the neutron distribution in-
side the slab is given by I(x) = Ioexp(-Σtx) where Σt = Nσt.  Find a) the probability 
that a neutron does not have an interaction when moves a distance dx, b) the frac-
tion of neutrons without any interaction at x = L, and c) the average distance a 
neutron travels before interacting with a nucleus located in dx.

x = 0 x = L dx

Io

I(x)

31.  Show that the following integral is zero: 

( )[ ]=
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32.  Consider a plane neutron source emitting So neutrons/s⋅cm2 in a non-
multiplying, infinite, homogenous medium.  The material of the medium has high 
scattering and low absorption cross section for neutrons.  Find an expression for 
neutron flux in terms of D and L of the medium.  [Hint: Solve Equation VIe.2.12 
in the x-direction with s = 0 subject to the boundary conditions given by VIe.2.15].  
[Ans.:  φ(x) = (SoL/2D)e–|x|/L].

x

φ(x)

So
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33.  An isotropic point source emits So neutrons per second in an infinite non-
multiplying weakly absorbing medium.  Find neutron flux as a function of r, D,
and L of the medium.  [Ans.: φ(x) = (So/4πDr)e–r/L].

So

34.  A plane neutron source emitting So neutrons/s⋅cm2 is located at the center of a 
non-multiplying homogenous bare slab.  The material of the medium has high 
scattering and low absorption cross section for neutrons.  Find an expression for 
the neutron flux in the slab.  [Ans.:  φ(x) = (SoL/2D) sinh(c1)/cosh(c2) where c1 = 
(b – 2x)/2L and c2 = b/2L with b = δ + a/2]. 

x
δ

Infin
ite

medium

Finite
sla

b

So

φ(x)

a/2 a/2

35.  The slab of Problem 32 is now placed between two slabs of weakly absorbing 
materials.  Find the neutron flux profile in each slab.  Slab 2, which is blanketing 
slab 1 is referred to as a blanket or reflector. 

x

Reflectorφ(x)

So

L1D1D2 L2

Bare slab

a/2a/2

1 2
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36.  Consider the slab of Problem 34.  However, in this case the localized planar 
source is replaced with a uniformly distributed neutron source emitting So neu-
trons/s cm2.  Find the flux in the slab. [Ans.:  {1 – (cosh x/L)/cosh a/L}(So/Σa)].

37.  Albedo, or the reflection coefficient (α), is defined as the ratio of the reflected 
to the incident current, α = Jout/Jin.  Derive the albedo expression for a slab of 
thickness a.  [Ans.:  α = (1 – b)/(1 + b) where b = (2D/L)coth(a/L)].  [Hint:  Use 
Equations VIe.2.3 and VIe.2.4]. 

a

x

Jin

Jout

38.  Consider an infinite medium through which monoenergetic sources of neutron 
emitting So neutrons/s cm2 are uniformly distributed.  Find neutron flux in this 
medium.  [Ans.:  φ = So/Σa].

39.  An isotropic point source emitting So neutrons/s is placed in the center of a 
bare sphere of radius R.  The sphere is made up of carbon (L2 = D/Σa).  Show that 
the general solution for flux inside the sphere is given by: 

LrLr e
r

C
e

r

C
r /2/1)( += −φ

where C1 and C2 are constants of integration.  Apply the boundary conditions and 
find the neutron flux anywhere at r = R/2.  [Hint:  Start with Equation VIe.2.14 
and make a change of function; φ = ϕ/r].

8 8
88 ∆

2R

Point Source

       Problem 39                          Problem 40                                  Problem 41 

40.  Solve problem 39 considering the sphere is located in an infinite medium 
made up of water. 
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41.  Solve problem 40 considering the thickness of the water region is ∆ and be-
yond 2R + ∆ is vacuum. 

42.  Start with the one-group neutron diffusion equation and derive the relation for 
neutron flux in a bare critical parallelepiped reactor. Find the maximum to aver-
age flux for this reactor. 

43.  Start with the one-group neutron diffusion equation and derive the relation for 
neutron flux in a bare critical spherical reactor.  Find the maximum to average flux 
for this reactor. 

44.  Categorize the type of neutron source used in problems 32 through 43.  For 
this purpose, use the flow chart as shown below and find the box that best matches 
the source of neutron used in the above problems.  In this figure, 1-D for example, 
stands for neutron diffusion equation in a one dimensional medium. 

Neutron Source

Flux-dependent
(Fuel)

Flux-independent
(Moderator)

Neutron decay Distributed source

Plane source
in slab

Line source
in cylinder

Point source
in sphere

Parallelepiped Cylinder Sphere

Distributed source
(Fission)

Localized source

1-D 2-D 3-DInfinite

1-D 2-D 3-DInfinite 1-D 2-D 3-DInfinite

1-D 2-D 3-DInfinite

45.  Determine the maximum linear heat generation rate to limit the average exit 
void fraction of a BWR to 0.60.  Use the power profile of 

)/sin()( max Lzqzq π′=′  where z is the distance from the assembly inlet and L is 

the assembly length.  Use both homogeneous and drift flux models for void frac-
tion.  H = 12 ft, P = 1000 psia, Tf,in = 530 F, (AFlow)Assembly = 15 in2, =m  68E6 
lbm/h. 

46.  Water flows in a uniformly heated tube.  At the entrance to the tube, water is 
subcooled at system pressure.  Water leaves the tube as a saturated two-phase mix-
ture.  The figure below shows the heated tube and the plots of temperature versus 
quality.  Match a) numbers with the lower case letters and b) temperatures with 
the upper case letters. 
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c.  Single phase

a.  Bulk boiling

b.  Nucleat boiling

d.  Subcooled boiling

C.  Bulk liquid temperature

A.  Wall temperature

B.  Incipient boiling temperature

D.  Saturation temperature

47.  Water enters a BWR channel.  Use the following data and find the location of 
the incipient boiling and the clad temperature corresponding to the incipient boil-
ing. 
Data:  Pellet diameter: 0.45 in, Rod diameter: 0.55 in, Square array pitch: 0.8 in, 
core height = 12 ft, flow velocity: 8.5 ft/s, water inlet temperature: 530 F, system 
pressure: 1035 psia, 7E25.1max =′′′q  Btu/h·ft3.

[Ans.:  Nu = 1239, h = 5355 Btu/h·ft2·F, Y = 0.7, zSB = –36.2 in, and TSB = 
545.6 F]. 

48.  Water enters a BWR channel.  Use the following data and find the location of 
the incipient boiling and the clad temperature corresponding to the incipient boil-
ing. 
Data:  Pellet diameter: 0.5 in, Rod diameter: 0.6 in, Square array pitch: 0.9 in, core 
height = 12 ft, flow velocity: 9 ft/s, water inlet temperature: 550 F, system pres-
sure: 1050 psia, 7E3.1max =′′′q  Btu/h·ft3.

[Ans.:  zSB = –63.72 in and TSB = 553.77 F]. 

49.  In this problem we want to find the bulk temperature corresponding to the in-
cipient boiling temperature of the surface.  Use the data of Example VIe.3.5 and 
find Tf(ZSB).  [Ans.:  Tf(ZSB) = 528.3 F]. 

50.  Find the bulk temperature corresponding to the incipient boiling temperature 
of problem 45. 

51.  Use the Bowring correlation for the calculation of CHF and solve Exam-
ple VIe.4.1.  Plot the results and find the MDNBR.  [Ans.:  CHF in MBtu/h·ft2 for 
various nodes: 1.85, 1.388, 0.11, 0.9251, 0.7929, 0.6937, 0.6166, 0.5549, 0.504, 
0.4624, 0.4268.  The MDNBR = 1.5]. 

52.  Find the required number of rods for a PWR producing 1200 MWe having an 
efficiency of 30%.  Other pertinent data at steady state operation are as follows:  
MDNBR = 2.5, F = 2.3, zDNB = 25” from the core mid-plane, H = 12 ft, dc2 = 0.45 
in, 6E5.1)( =′′′ DNBCHF zq  Btu/h·ft2.  [Ans.:  NRod = 31,638]. 
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53.  We would like to load a core with fuel rods in which fuel pellet enrichment is 
such that the neutron flux increases linearly along the vertical axis as shown in the 
figure.  Water is used as coolant.  Use the given data  

Central
Rod in the

central
channel

Tf

z

′′′=′′′
H

)( max
z

qzq

Pellet

Gap

Clad

Coolant

z = 0

z = H

q ′′′

p

dC1
dC2

TF1

TF2

TC1
TC2

Gap

Clad

dF

Fuel

and find a) water temperature at the exit of the channel, b) peak temperatures of 
clad outside, clad inside, fuel surface, and fuel center, c) the incipient boiling tem-
perature, and d) critical heat flux at the channel exit.

Data:

dF (in):  0.38 P (psia): 1000   
dC1 (in)  0.39 Tin (F): 500   
dC2 (in):  0.44 m  (lbm/s): 1.00 (per rod) 

p (in):  0.59 q ′′′  (Btu/h ft3): 0.01E6 

54.  The fuel assembly shown in the left figure consists of periodic arrays of annu-
lar bare fuel rods, which are cooled by passing water through the center of the rods 
as well as over the outer surface.  We want to analyze the thermal performance of 
the fuel rods by dividing the assembly into a number of unit cells (control vol-
umes) and evaluating the performance of a cell, as shown in the right figure.   
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coolant
channel
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coolant
channel

r1

r2

a) Find the ratio of the average coolant velocities in the inner and outer channels at 
the axial level z.  At this level, the pressure drop per unit length is the same in both 
channels and the bulk coolant temperature is 293 C.  Assume that the flow is tur-
bulent and fully developed in both channels.   
b) Find the maximum temperature in the rod, and the radius at which the maxi-
mum temperature occurs, for a particular axial location where the inner and outer 
surface temperatures of the rod are 371 C.  At that level the volumetric heat gen-
eration rate may be assumed to be uniform and equal to 0.1 MW/m3.  Assume 
constant fuel conductivity for the fuel.   
c)  Find the mean temperature of the coolant at the core exit (i.e., the mixture of 
the coolant passing through the inner channel and that passing through the outer 
channel).  The fuel rod is 4.3 m long and the axial power profile along the channel 
is give by: 

( ) ′′′=′′′
3.4

cos
z

qzq o
π

where z is in m and 52.0=′′′oq  MW/m3.  Other pertinent data:  Inlet water 

temperature = 293 C, water pressure at the outlet = 14 MPa, water flow rate per 
unit cell = 18.37 kg/s, unit cell side (L) = 6.35 cm, fuel inner radius (r1) = 1.27 cm, 
and fuel outer radius (r2) = 2.54 cm. 

55.  A reactor that has been operating at nominal power level of 2700 MWth for 2 
years is shut down.  The decay power from this reactor, for any time after shut-
down, can be fairly well estimated from: 

26.0

nominal

095.0
)( −= t

Q

tQ

where t in this formula is the time after reactor shutdown in seconds.  Find a) the 
power obtained from the reactor 1 day after shutdown, and b) the amount of en-
ergy produced by the decay power in a period of 24 hours.  [Ans.:  13.35 MWth 
and 1.56E6 MJ]. 

56.  A curve fit to the rate of the decay heat data of a typical PWR fuel cycle re-
sulted in the following equation: 
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where )(tQ  is the decay power at time t, nominalQ  is the nominal reactor power, 

and t is the time after reactor shutdown.  Coefficients A and Bi are: A = 
0.3826033E-2, B1 = 276.6013, B2 = -5,124,569, B3 = 0.6344872E11, B4 = -
0.4427653E15, B5 = 0.1551979E19, and B6 = -0.2086165E22.  Evaluate the ac-
uuracy of the formula given in Problem 55 by plotting both equations and compar-
ing the results.  

57.  This problem deals with a CE-designed 2 × 4 PWR (i.e., 2 hot legs and 4 cold 
legs as shown in Figures I.6.2(b), I.6.4(CE), I.6.5, I.6.6(a), and I.6.6(b)).  Use the 
given data to find the answers to the questions that follow the set of data. 

Primary side data (BU - SI):
Core power (Btu/h - MWth): 9.2124E9 - 2700 
Pressure in lower plenum (psia - MPa): 2595 - 18 
Core pressure drop (psia - kPa): 14 - 100 
Vessel pressure drop (psia - kPa) 37.1 - 256 
Cold leg temperature (F - C): 550 - 288 
Mass flow rate through core (lbm/h - kg/s): 138.5E6 - 17451 
Number of fuel assemblies: 217 
Number of rods per assembly: 14 × 14 (square array) 
Fuel rod (Core) length (ft – m): 12 – 3.657 
Fuel rod outside diameter (in - cm): 0.44 - 1.12 
Fuel rod inside diameter (in - cm): 0.388 - 0.98 
Fuel pellet diameter (in - cm): 0.377 - 0.96 
Fuel pellet length (in - cm): 0.45 - 1.14 
Fuel rod pitch (in - cm) 0.58 - 1.473 
Gap heat transfer coefficient  
(Btu/h·ft2·F - W/m2·K): 1000 - 5678 
Thermal conductivity of fuel pellet, UO2

(Btu/h·ft·F - W/m·K): 1.5 - 2.6 
Thermal conductivity of Zircaloy  
(Btu/h·ft·F - W/m·K): 3.0 - 5.2 
Hot leg inside diameter (ft - m): 3.5 - 1.067 
Cold leg inside diameter (ft - m): 2.5 - 0.762 
Volume of one hot leg (ft3 - m3): 138 - 3.9078 
Volume of one cold leg (ft3 - m3): 224 - 6.343 
Total peaking factor: 1.15 

Steam generator (SG) data (BU - SI):
Number of steam generators: 2 
Number of tubes per SG: 8485 
Tube inside diameter (in - cm): 0.654 - 1.66 
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Tube outside diameter (in - cm): 0.750 - 1.905 
Volume of the SG inlet plenum (ft3 - m3): 250 -7.079 
Volume of the SG outlet plenum (ft3 - m3): 250 - 7.079 
Inlet plenum hydraulic diameter (ft - m): 7.6 - 2.316 
Outlet plenum hydraulic diameter (ft - m): 7.6 - 2.316 
Steam dome pressure (psia - MPa): 880 - 6.067 
Feedwater pressure (psia - MPa): 1095 - 7.5 
Feedwater temperature (F - C): 440 - 227 
Tube material: Stainless steel 
Boiling heat transfer coefficient
(Btu/h·ft2·F - W/m2·K): 6400 - 36340 

Pressurizer data (BU - SI):
Geometry: Circular cylinder 
Steam dome Pressure (psia - MPa): 2250 - 15.51 
Volume (ft3 - m3): 1500 - 42.477 
Height (ft - m): 30 - 9.15 
Water level (ft - m): 18 - 5.486 
Wall thickness (in - cm): 4.5 - 11.43 
Insulation thickness (in - cm): 0.00 
Wall material: Carbon Steel 
Number of Relief Valves: 2 
Relief valve flow area (ft2 - cm2): 0.01 - 0.01 
Relief valve discharge coefficient 0.61 
Ambient temperature (F - C): 90 - 32 
Ambient pressure (psia - kPa): 14.7 - 101.35 

Balance of plant data (BU - SI):
Total pumping power (condensate, booster,  
heater, and feewater) (MW): 190 
Condenser Pressure (in Hg - mm Hg): 26 - 660 
Circulating water inlet temperature (F - C): 60 
Circulating water flow rate (lbm/h - kg/s): 5.2E8 - 65,520 

s = 0.58 in

D = 0.44 in

Find the answer to the following questions: 

1. The centerline temperature in an average fuel rod 
2. The centerline temperature in the fuel rod located in the hot assembly 
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3.  Total power developed by the turbine (MW).  Assume ηturbine = 100% 
4. The core total ∆P due to skin friction and the core total loss coefficient  

(K = ΣKi)
5. The overall heat transfer coefficient in SG (a: assume feedwater is saturated, 

b: fouling = 0) 
6. The average tube length of one SG (for questions 5 and 6 use Equations 

VIa.1.1 and VIa.2.12) 
7. Pressure drop across the primary side of the SG (i.e., from the hot leg inlet to 

the outlet to cold leg) 
8. The ∆P across the reactor coolant pump and the total power used by a reactor 

coolant pump 
9.  The temperature rise of the circulating water 
10. We open one of the pressurizer relief valves.  Find the maximum flow rate 

through the valve if one of the pressurizer relief valves is lifted. 
11. Find the steam mass flow rate through the relief valve and the pressurizer 

pressure versus time if the relief valve is stuck open for one minute. Assume 
that the pressurizer is isolated from the rest of the reactor. 



VII..  Engineering Mathematics 

The purpose of this chapter is to discuss the commonly used mathematical con-
cepts and formulae in mathematical physics and engineering applications. This in-
cludes such topics as differential equations, mathematical functions, vector and 
matrix operations, and numerical analysis. Many of these topics are applied in 
various chapters of this book. 

VIIa.  Fundamentals 

This chapter deals exclusively with the definitions of terminologies pertinent to 
engineering mathematics. 

1.  Definition of Terms 

Independent variable is a quantity that may be equal to any one of a specified 
set of values. 

Dependent variables are variables that denote values of a function.  A function 
is a relationship between two variables such that each value of the independent 
variable corresponds exactly to one value of the dependent variable.  For example, 
x in equation xyedxdy x sin/ =+  is the independent variable and y is the function 
or the dependent variable. 

Domain includes the collection of all values assumed by the independent vari-
able.

Range is the collection of all values assumed by the dependent variable.  For 
example, the domain and range of the function 1−= xy  is determined as fol-
lows.  Since the radical should be positive for y to be defined, then the domain of x
is ∞<≤ x1  and the range of y is ∞<≤ y0

Coordinate systems.  As described in Section 1 of Chapter VIIc. 

Explicit and implicit functions.  A dependent variable is an explicit function 
of an independent variable if the function can be expressed in terms of the inde-
pendent variable.  For example, y = 2x + sin x + ln x is an explicit function of x
and the y in 01sin 5 =−++ xyxyy  is an implicit function of x.
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Continuous function.  A function in the interval (a, b) is continuous if for any 
positive number ε  there is a positive number δ  so that when δδ +<<− 00 xxx
we have ε<− )()( 0xfxf .  For example, f(x) in Figure VIIa.1.1 is not continu-
ous at x0 because for h2 – h1 < ε  there is no δ  to satisfy the condition for conti-
nuity. 

y

x

f(x)

h1

h2

x0

Figure VIIa.1.1.  Example of a discontinuous function 

Periodic functions.  Function f(x) is considered periodic if for any fixed num-
ber such as P, we could have the following relation f(x + P) = f(x).  If P is the 
smallest number for which the periodic condition exists, then x is called the period
of the function. 

Harmonic function.  A harmonic function is a solution to the Laplace partial 
differential equation (defined in Section 2.2) which has continuous second-order 
partial derivatives. 

Homogeneous function.  A function f(x, y) is considered to be homogeneous 
of degree n if for any number s and constant n, we have f(sx, sy) = sn f(x, y).  For 
example, x3 + xy2 is homogeneous of degree 3 because (sx)(sx)(sx)+(sx)(sy)(sy) = 
s3(x3 + xy2) but x3 + y is not homogeneous. 

Power series is defined as  

=
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for those values of x where the limit exists.  For such values of x, the series is said 
to converge.  An important aspect of a power series is that convergent power se-
ries can be treated as polynomials.  We now consider function f(x) which, along 
with all its derivatives, is continuous in an interval including x = x0.  This function 
can be expressed as a finite Taylor series plus a residual as follows: 
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where η  is a point in the interval (x0, x).  If x0 = 0, the Taylor series becomes a 
Maclaurin series: 
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Differential equation is an equation that relates two or more dependent vari-
ables in terms of derivatives.  Formulating the behavior of many physical phe-
nomena by a mathematical model results in differential equations as discussed in 
Section 2. 

Ordinary differential equation is a differential equation in which all deriva-
tives are taken with respect to a single independent variable.  For example, the dif-
ferential equation d2y/dx2 + f(x)dy/dx + g(x)y = h(x) is an ordinary differential 
equation. 

Partial differential equation is a differential equation that contains at least one 
partial derivative with respect to some dependent variable.  For example, the dif-
ferential equation: 
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         VIIa.1.1 

(known as Laplace equation) is a partial differential equation.  In Equa-
tion VIIa.1.1, 2∇  is the Laplacian operator, as discussed in Chapter VIIc. 

Exact differential is a first-order differential equation in the form of M(x, y)dx
+ N(x, y) dy = 0 (also called perfect differential) if and only if a function f(x, y) ex-
ists so that df(x, y) = M(x, y)dx + N(x, y)dy.  For exact differential equations df(x,
y) = 0.  Hence, f(x, y) = C.  If such a function exists, dyyxNdxyxM ),(),( +  is 
also called an exact differential.  The necessary and sufficient condition for an ex-
pression to be an exact differential is that  
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Order of a differential equation is the highest order derivative in the differen-
tial equation.  For example, 

)()( 56
2

2
4

3

3
xQyx

dx

dy
xP

dx

yd
y

dx

yd =+++

is a differential equation of order three. 

Degree of a differential equation is the power of the highest order derivative.  
For example, the following differential equation: 
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is of order four and degree three. 
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Linear differential equations are those in which no dependent variable ap-
pears in the form of a product by itself or any of its derivatives.  For example, 
Equation VII.a.1.1 is a linear differential equations while the following differential 
equation: 

)()()(
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xf

dx

yd
y =++

is a nonlinear differential equation due to the first term in the left side, which in-
cludes the product of the dependent variable y and its derivative. 

Homogeneous differential equation is a linear equation when all its terms in-
clude either the dependent function or one of its derivatives.  Hence, the following 
is a homogeneous differential equation: 
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Non-homogeneous differential equations are equations that include a term 
that is a function of only the independent variable.  Therefore, the following is a 
non-homogeneous differential equation: 
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for 0)( ≠xq .  However, if q(x) = 0 then Equation VIIa.1.2 becomes a homogene-
ous differential equation.

Homogeneous boundary condition is a boundary condition when the depend-
ent variable or its derivatives, or any linear combination of the dependent variable 
and its derivatives, vanishes at the boundary.  For example, if at x = a, y(a) = 0, 
then the boundary condition at x = a is a homogeneous boundary condition.  Simi-
larly, boundary conditions y’(a) = 0 and c1y(a) + c2y’(a) = 0 are also homogeneous 
boundary conditions whereas, boundary conditions y(a) = b, or c1y(a) + c2y’(a) = b
are nonhomogeneous boundary conditions.

Trivial solution is any homogeneous differential equation subject to homoge-
neous boundary conditions that always has a solution in the form of y(x) = 0.  This 
solution, referred to as the trivial solution, is usually of no interest. 

General or homogeneous solution to a differential equation is a non-trivial 
function for the dependent variable that satisfies the homogeneous differential 
equation.  For example, the general solution to dy/dx = 2 should satisfy dy/dx = 0.  
The general solution is, therefore, y = C.  This is also shown as yH = C.  General 
solutions to various differential equations are discussed in Section 3. 

Particular solution to a differential equation is a solution that satisfies the non-
homogeneous equation.  For example, a particular solution to dy/dx = 2 is yP = 2x.
Finding particular solutions relies on the type of the function q(x), in Equa-
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tion VIIa.1.2.  For example, q(x) may be of an algebraic, trigonometric, or expo-
nential function: 

ax

n

exq

axaxxq

xxxxq

:)(

cos,sin:)(

,,,1:)( 2

or a combination of all the above functions. 

Complete solution to a differential equation is the summation of the homoge-
neous and the particular solutions.  For example, the general solution to dy/dx = 2 
is y = yH + yP = 2x + C.  Since the solution must also satisfy the boundary or initial 
conditions, the value of the constants of integration should be obtained from the 
specified boundary or initial conditions (when x represents time). 

Initial-value problems are differential equations that require particular solu-
tions so that the function and its derivatives all satisfy a specified set of conditions 
corresponding to the same value of the independent variable.  For example, the 
general solution to an nth-order linear differential equation has n arbitrary con-
stants.  These constants should be determined from n specified sets of conditions.  
In initial-value problems, these specified sets of conditions require that y(x0) = a,
y’(x0) = b, y”(x0) = c, etc. where a, b, ,c  are specified constants.  The differen-
tial equation of displacement of mass in a spring – dashpot system is an initial 
value problem where initial conditions at a specified time are used to determine 
constants of integration. 

Boundary-value problems are differential equations that require particular so-
lutions so that the function and its derivatives satisfy a specified set of conditions.  
In boundary-value problems, the several values of the function or its derivatives 
are not all known at the same independent variable, rather at different values of 
the independent variable.  For example, the general solution to an nth-order linear 
differential equation has n arbitrary constants.  These constants can be determined 
from n specified sets of conditions at point x = a1 through point x = an.  Certain 
classes of boundary-value problems fall in the category of the characteristic-value
or eigenvalue problems as discussed later.  Determination of the deflection of a 
simply supported beam, thermal conduction, and wave equation are examples of 
boundary-value problems. 

Total differential of a function of several variables, such as f(x,y,z), is defined 
as: 

dz
z

f
dy

y

f
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x

f
df

∂
∂+

∂
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∂
∂=

provided that the partial derivatives are continuous.  In general, the variables x, y,
and z can themselves be functions of the independent variables s and t.  In this 
case, the variables x, y, and z are referred to as the intermediate variables and the 
partial derivative of f with respect to s becomes: 
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where the subscript t implies that the derivatives are carried out with respect to s
only.  For example, for the function f[x(t,s),y(t,s),z(t,s)] = xy + z2x + y2z, we can 
carry the derivative of f with respect to s as: 
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If the intermediate variables are given as x = 2s, y = st, and z = t, we can then find 
the partial derivative of f with respect to s as: 

)2()2()2()( 2 yztzxty
s

f
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This equation can be further simplified if the intermediate variables are substituted 
in terms of independent variables. 

Chain rule for derivatives follows the total differential defined above.  Con-
sider a composite function such as F = f[s, U(s)].  According to the chain rule for 
taking the derivative of composite functions, dF/ds is: 
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Linear dependence of n functions is given by 1 1( )c f x + 2 2 ( )c f x + +
( )n nc f x .  If at least one constant coefficient (ci) is nonzero then the linear de-

pendence is nontrivial.  These functions are linearly independent in the domain ab
(i.e., bxa ≤≤ ) if, over the domain, no function is linearly dependent on the other 
functions.  For example, x, sin x and xy are linearly independent over any domain 
while sin2 x, cos2 x, and –1 are linearly dependent over any domain. 

Wronskian determinant of n functions, f1 through fn, is defined as: 
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For function f1 through fn to be linearly independent over a specific domain, it is 
necessary that the Wronskian determinant is not equal zero over that domain.  
However, if the Wronskian determinant vanishes in a specific domain, it does not 
necessarily mean that the related functions are linearly dependent. 
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Eigenvalue or characteristic-value problems are special cases of the bound-
ary-value problems having particular solutions in periodic forms.  Problems deal-
ing with classical wave equation, quantum mechanics, elasticity, and vibration are 
characteristic-value problems.  To elaborate the characteristic-value problems, 
consider the following differential equation: 

0
2

2

=+ y
dx

yd
            VIIa.1.3 

which is subject to homogeneous boundary conditions y(0) = 0 and y(L) = 0.  This 
equation has a solution in the form of: 

xcxcy cossin 21 +=

From the first boundary condition, c2 = 0.  From the second boundary condition c1

= 0.  We, therefore, find y = 0 which is a trivial solution.  Now consider the fol-
lowing differential equation: 

02
2

2
=+ y

dx

yd λ            VIIa.1.4 

subject to the same boundary conditions.  The solution to this equation is 
.cossin 21 xcxcy λλ +=   From the first boundary condition, c2 = 0.  From the 

second boundary condition Lnn /πλ =  where n = 1, 2, 3, ,4 and the solution 
to the differential equation becomes nnn cy ϕ=  where )/sin( Lxnn πϕ = .  Hence: 

x
L

n
ccy nnnn

πϕ sin==           VIIa.1.5 

Comparing these two differential equations and related solutions, we conclude that 
in the case of Equation VIIa.1.4, the second boundary condition was actually used 
to determine the parameter λ .  The reason we were able to obtain a nontrivial so-
lution for Equation VIIa.1.4 is that certain values of nλ , as given by Ln /π ,
cause the determinant of the coefficients to vanish.  Equation VIIa.1.4 is a charac-
teristic-value equation.  Values obtained for nλ  are called characteristic or eigen-
values and the corresponding solutions ( nϕ ) are called the characteristic or eigen-
functions. 

In problems dealing with mechanical vibration, the eigenvalues give the natural 
frequency of the system.  The knowledge of natural frequencies of a load bearing 
system is essential.  To avoid failure, external loads should not be applied at or 
near these frequencies as resonance will cause an amplification of displacement, 
leading to failure.  An interesting aspect of the characteristic value equations is the 
fact that we now have to determine many more unknown coefficients (i.e., c1, c2,
c3, ,4c ), yet no more boundary conditions are left.  In the next definition, we’ll 
see how we can use the orthogonality aspect of the eigenfunctions to our advan-
tage. 
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Orthogonality of characteristic functions is where the scalar product of two 
vectors is zero, as discussed in Section 5.  Having this in mind, we now consider 
two functions, ym(x) and yn(x) and a weighting function, r(x).  These functions are 
orthogonal in the interval (a, b), with respect to the weighting function r(x), if the 
integral of their product over the given interval vanishes: 

=
b

a
nm dxxxxr 0)()()( ϕϕ

The characteristic functions are orthogonal.  To verify, we may use the above ex-
ample by assuming r(x) = 1: 

=
L

dx
L

xn

L

xm

0
0sinsin

ππ

An important aspect of the orthogonal functions is the ability to expand arbitrary 
functions in terms of orthogonal functions.  If a set of functions such as nϕ  are or-
thogonal in the interval (a, b) with respect to the weighting function r(x), then an 
arbitrary function f(x) can be expanded in terms of these functions as: 

=+++=
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n
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If such expansion exists, then we may multiply both sides by the following func-
tions and integrate over the above interval to get: 
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Using the orthogonality property of the eigenfunctions, the integral on the left side 
becomes zero except for k = n.  Therefore, Equation VIIa.1.6 reduces to: 
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From here we can find the unknown coefficients c1, c2, c3, ,4c .  For the charac-
teristic equation of a matrix see Chapter VIId. 

Fourier transform.  It can be shown that any reasonably well-behaved func-
tion, f(x) can be represented in the interval –L, L by a series of trigonometric func-
tions such as sines or cosines.  Indeed it can be shown that any piecewise differen-
tiable function in the interval –L, L can be represented by both sine and cosine 
functions of a common period 2L, i.e.: 
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ππ

where the coefficients are given as: 
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Laplace transform is a mathematical conversion to simplify operations.  To 
convert a function such as f(t) by this means, we multiply the function by exp(-st)
and take the integral from zero to infinity: 

{ } ∞ −=
0

)()( dtetftf st

The advantage of this type of conversion is that exponential and trigonometric 
functions are transformed into simple algebraic functions.  This simplifies the in-
tegration task.  For example, the reader may verify that 
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It is important to note that the conversion of a function by Laplace transform is a 
linear conversion.  Therefore, we conclude that: 
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In this text, the Laplace transform of a function is shown as { } ftf ˆ)( = .  The 
Laplace transforms of some exponential and trigonometric functions are presented 
in Table VIIa.1.1 

Table VIIa.1.1.  Laplace transforms of some familiar functions 

Function, )(tf  Transform, f̂

1 1/s 
t 1/s2

tn-1/(n-1)! 1/sn

ate− 1/(s + a) 

tn-1e- at/(n-1)! 1/(s + a)n

)/()( baee atbt −− −− 1/(s + a)(s + b) 

)/()( abaebe atbt −− −− s/(s + a)(s + b) 

sin at a/(s2 + a2)
cos at s/(s2 + a2)
sinh at a/(s2 – a2)
cosh at s/(s2 – a2)
t sin at 2as/(s2 + a2)2

t cos at (s2 – a2)/(s2 + a2)2

sin at – at cos at  2a3/(s2 + a2)
t sinh at 2as/(s2 – a2)2

t cosh at (s2 + a2)/(s2 – a2)2

at cosh at – sinh at 2a3/(s2 – a2)2

ate bt sin− a/[a2 + (s + b)2]

ate bt cos− (s+b)/[a2 + (s + b)2]

sin at cosh at – cos at sinh at 4a3/(s4 + 4a4)
sin at sinh at 2a2s/(s4+4a4)
sinh at – sin at 2a3/(s4 – a4)
cosh at – cos at 2a2s/(s4 – a4)

)(tδ 1

)( 0tt −δ exp(–st0)

)(tδ ′ s

)(' 0tt −δ sexp(–st0)

nt n!/sn+1

tn-1/(n – 1)! 1/sn

tn-1e-at/(n – 1)! 1/(s + a)n

[(n – 1) – at)] tn-2e-at/(n – 1)! s/(s + a)n
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VIIb.  Differential Equations 

This chapter includes two types of differential equations used in most engineering 
applications and applied physics.  These are the ordinary and the partial differen-
tial equations, ODE and PDE, respectively.  We begin with the ordinary differen-
tial equations. 

1.  Famous Differential Equations 

In this section several differential equations often used in engineering applications 
are discussed.  Solutions to some ordinary differential equations are discussed in 
Section 2. 

1.1.  Ordinary Differential Equations 

Bernoulli differential equation:  The following equation is known as the Ber-
noulli differential equation: 

nyxQyxP
dx

dy
)()( =+           VIIb.1.1 

where n may have any real value.  Unless n is 0 or 1, the Bernoulli differential 
equation is non-linear.  The Bernoulli differential equation appears in such fields 
as the study of population dynamics and hydrodynamic stability.  The Bernoulli 
differential equation can be transformed into a linear differential equation by a 
change of dependent variable from y to z = y1– n to obtain:  

)()1()()1( xQnzxPn
dx

dz −=−+

resulting in a first-order linear differential equation, the solution of which is pre-
sented in Section 2 of this chapter. 

Riccati differential equation:  This is another first order non-linear differen-
tial equation named after Italian mathematician J. F. Riccati, and has the following 
form: 

)()()( 2 xRyxQyxP
dx

dy =++          VIIb.1.2 

For R(x) = 0, Equation VIIb.1.2 becomes the Bernoulli differential equation (n =
2) with z = 1/y transforming it to a first-order linear differential equation.  If u(x)
is one solution to the Riccati differential equation, the substitution y = u(x) + 1/z
will transform the Riccati equation: 

)(2)]()([ xPzxQxuP
dx

dz =+−
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into a first-order linear differential equation.  Since there is no general rule to 
solve non-linear differential equations analytically, a change of variable, as dem-
onstrated for Bernoulli and Riccati differential equations, is an effective means of 
solving such classes of non-linear equations. 

Euler-Cauchy differential equation:  This is a linear, non-homogeneous dif-
ferential equation with coefficients being functions of the independent variable.  
Euler-Cauchy equation has the form of: 
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This equation can be transformed into an nth-order linear differential equation by 
a change of the independent variable from x to xz ln= .  The solution to Equa-
tion VIIb.1.3 is presented in Section 2. 

Special Class of Differential Equations 

Famous differential equations used in many engineering applications can be de-
rived from ordinary second-order differential equations written in the general form 
of:
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Some examples are as follows. 

Jacobi differential equation is given as: 

0)()]1([)1(
2

2
=+++−+− ynbn

dx

dy
bxa

dx

yd
xx         VIIb.1.5 

The solution to the Jacobi differential equation is the Jacobi polynomial as dis-
cussed in Section 4.  A special case of the Jacobi equation is: 
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Chebyshev differential equation is obtained from the special form of the 
Jacobi equation if c = 1: 
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The solution to this equation is known as Chebyshev’s polynomials. 

Laguerre differential equation is a second-order linear differential equation 
given as: 
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The solution to the Laguerre differential equation is known as the Laguerre poly-
nomials. 

Gauss differential equation is given as: 
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Hermite differential equation is a second-order linear differential equation 
given as: 
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The solution to the Hermite Differential equation is known as the Hermite poly-
nomials.  One of the applications of the Hermite differential equation is in the in-
vestigation of the Schrodinger equation for a harmonic oscillator.  Solution to the 
Hermit equation is discussed in Section 2. 

Legendre differential equation is developed by applying the technique of the 
separation of variables in the spherical coordinate system to the Laplace differen-
tial equation, which results in Legendre differential equation: 
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The solution to this second-order linear differential equation is known as Legendre 
polynomials.  An important application of the Legendre polynomials is that any 
polynomial of degree n can be expressed as a linear combination of the first n + 1 
Legendre polynomials. 

Associated Legendre differential equation is similar to Equation VIIb.1.10-1 
except for the coefficient of y, as follows: 
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Sturm-Liouville problem is any boundary value problem that is described by a 
differential equation in the form of: 

[ ] 0)()()( =++ yxrxq
dx
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d λ        VIIb.1.11 
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and has two homogeneous boundary conditions, is known as a Sturm-Liouville 
problem.  We can reduce the Legendre differential equation, Equation VIIb.1.10 
from the Sturm-Liouville problem.  To demonstrate, we first write the Legendre 
differential equation as: 

( ) 0)1(1 2 =++− ynn
dx

dy
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dx

d
        VIIb.1.12 

Comparing Equation VIIb.1.11 with Equation VIIb.1.12, we conclude that p(x) = 
1 – x2, q(x) = 0, r(x) = 1, λ  = n(n+1).  Therefore, the Legendre differential equa-
tion is a special case of a Sturm-Liouville problem.  The Sturm-Liouville problem 
possesses the orthogonality property associated with boundary-value differential 
equations.  Hence, the nontrivial solutions ,,, 321 yyy corresponding to distinct 
values ,,, 321 λλλ of parameter λ  form an orthogonal system with respect to 
the weighting function, p(x).

Bessel differential equation, widely used in various engineering disciplines, is 
a second-order linear differential equation and has the general form of: 

0)( 222 =−+ yvxm
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where m is a parameter and ν  can be an integer, a fractional number, or zero. 
Bessel differential equations appear in such fields as neutron flux distribution in a 
cylindrical core, and heat transfer in fins with a triangular profile, as well as elas-
ticity, electric field theory, and aerodynamics.  The solution to the Bessel differen-
tial equation is given by: 

)()()( 21 xYcxJcxy νν +=         VIIb.1.14 

where Jv(x) is the Bessel function of the first kind of order v and Yv(x) is the Bessel 
function of the second kind of order v.  These functions are given as: 
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where J-v(mx) is given by: 
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where k! is the factorial of k and Γ  is the gamma function as described in Sec-
tion 3. 
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Modified Bessel equation:  If in Equation VIIb.1.13, we replace x by ix where 

i = 1− , we get the modified Bessel equation as: 
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The solution to the modified Bessel equation is given as: 

)()()( 21 mxKcmxIcxy νν +=         VIIb.1.19 

where Iv(x) is the modified Bessel function of the first kind of order v and Kv(x) is 
the modified Bessel function of second kind of order v. where
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where I-v(mx) is given by: 
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Bessel Type 1 differential equations: It can be shown that equations of the 
general form: 
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can be expressed in terms of Bessel functions by a change of function from y to 

zxy v=  to get: 
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Bessel Type 2 differential equations:  Consider second order linear differen-
tial equations in the form of: 

0)( 2 =+ yx
dx
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where α  and β  are positive and η  may be real or imaginary.  Similar to Bessel 
Type 1 equations, it can be shown that differential equations in the general form of 
Equation VIIb.1.25 can also be reduced to a Bessel differential equation by a 
change of variable from x to µtx =  to get: 
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0]1)1([ 222
2

2
2 =++−+ yt

dx

dy
t

dx

yd
t µηαµ

This equation has the form of Equation VIIb.1.23.  Hence, the answer can be writ-
ten as )( /1/ µµ ηµxZxy v

v=  where )2/()1( +−−= αβαv  and )1/(2 αµ −= v .
The reader can verify that the Euler-Cauchy equation can also be reduced from 

Equation VIIb.1.25 if we have 2=− βα  to obtain: 
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We can solve this equation by introducing a change of variable from x to xr.

1.2.  Partial Differential Equations 

Many linear partial differential equations representing physical phenomena can be 
reduced from: 
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where the unknown function, ψ  is ,in general, a function of position and time 
(i.e., ),( trf=ψ ).  Coefficients µ  and λ  are some physical parameters and 
function f is generally a function of position. 

Laplace differential equation is the steady-state homogeneous form of Equa-
tion VIIb.1.26.  This equation is used to describe several physical phenomena such 
as flow of fluids and flow of heat.  The equation in the Cartesian coordinate sys-
tem is written as: 

0
2

2

2

2

2

2
2 =

∂
∂

+
∂
∂

+
∂
∂
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z

u

y

u

x

u
u        VIIb.1.27 

This is a 2nd-order linear partial differential equation with coefficients µ  and 
λ  as well as function f in Equation VIIb.1.26 being zero.  The derivation of this 
equation for fluid flow is shown in Chapter IIIa. 

Poisson equation is given as: 

)(2 rf=∇ ψ           VIIb.1.28 

It describes several physical phenomena.  For example, it is the governing equa-
tion in potential flow, describing the velocity potential of an incompressible, irro-
tational, ideal fluid with a continuously distributed sink or source.  The Poisson 
equation also describes the steady-state temperature distribution in a field with 
distributed heat sources.  It also describes stress due to elastic torsion of bars. 
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Heat conduction equation, in general form, may be written as: 

)(2 rf
t

+
∂

∂=∇ ψµψ          VIIb.1.29 

This equation describes the diffusion phenomenon.  If used to determine tempera-
ture distribution due to heat diffusion, it is called the conduction equation, in 
which case 1/µ α=  where α  is thermal diffusivity.  If Equation VIIb.1.29 is 
used as the heat conduction equation, then the function f(r) is described as f(r) = –

kzyxq /),,(′′′  where q ′′′  is the volumetric heat generation rate and k is the thermal 
conductivity of the diffusing medium.  The derivation of the heat conduction 
equation is shown in Chapter IVa.2.1. 

Telephone equation is a one-dimensional equation describing the rate of 
change of electric voltage ψ  along a transmission cable and is written as: 

ζψψµψλψ +
∂

∂+
∂
∂=

∂
∂

ttx 2

2

2

2
        VIIb.1.30 

where LC=λ , )( GLRC +=µ , and RG=ζ .  Here, R and L represent resis-
tance and inductance per unit length of the cable.  Also, C and G stand for the ca-
pacitance and conductance to ground per unit length of the cable. 

Wave equation is given as: 

2

2
2

t∂
∂=∇ ψλψ          VIIb.1.31 

where 2/1 c=λ  and c is the velocity of sound.  This equation is used in the fields 
of acoustics, elastic vibration, and electromagnetics.  The solution to the unknown 
function ψ  determines the velocity potential in acoustics, displacement in elastic 
vibration, and an electric or a magnetic vector in electromagnetism.  Equa-
tion VIIb.1.31, in three dimensions, represents the equation for sound waves in air.  
In two dimensions it represents the wave equation for a membrane, and in one di-
mension it represents the transverse wave equation in a string.  The latter case can 
be easily derived from Newton’s second law of motion.  To perform such a 
derivation, consider a small element of a uniform string having a linear density of 
ρ  and being under tension T as shown in Figure VIIb.1.1.  Net force in the y-
direction must be set equal to the acceleration of the string.  The net force in the 
vertical direction is given by: 

xdxxy TTdF )sin()sin( θθ −= +

We now expand the first term in the right side in the Taylor series and use the first 
two terms: 
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Figure VIIb.1.1.  An elemental string in tension

dx
x

T
Tdx

x

T
TTTdF x

x
x

xxdxxy ∂
∂

=−
∂

∂
+=−= +

)sin(
)sin(

)sin(
)sin()sin()sin(

θθθθθθ

From Newton’s 2nd law (
2

2
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yd
dmdF = ): 
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2
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x ∂
∂=

∂
∂

∂
∂ ρ

Since tension T is constant, it can be removed from the derivative.  Also represent-
ing T/ρ = b2 we obtain: 

2

2

22

2 1

t

y

bx

y

∂
∂=

∂
∂

                   VIIb.1.31-1 

Note that b has the dimension of velocity.  Having derived the one-dimensional 
wave equation, it is useful to briefly describe the fundamentals of mechanical 
waves.  A wave is the motion of a disturbance in a medium.  Wavelength ( λ ), fre-
quency ( v ), and the propagation velocity (b) are used to characterize waves.  

Wavelength is the minimum distance between any two points on a wave that 
behave identically.  Frequency is the rate at which the disturbance repeats itself.  
The wave amplitude is the maximum displacement of a particle disturbed by the 
wave.  Waves are either transverse or longitudinal.  In transverse waves, the mo-
tion of the particles of the medium is perpendicular to the wave velocity and in 
longitudinal waves, the motion of particles is parallel to the wave velocity.  The 
propagation velocity (i.e., the velocity at which a wave travels) depends on the 
properties of the medium being disturbed.  While waves generally require a me-
dium to travel (referred to as mechanical waves), the electromagnetic waves such 
as photon travel in vacuum (i.e. require no medium). 

Schroedinger wave equation in its general time-dependent form is given as: 

t

tr
itrrVtr

m ∂
∂=+∇− ),(

),()(),(
2

2
2 ψψψ       VIIb.1.32 
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where 1−=i , π2/h= , where Plank’s constant h = 6.626E-34 J-s.  In Equa-
tion VIIb.1.32, m is mass, V is potential energy, and r is the location vector.  Po-
tential energy in general is a function of location and time, V = V(x, y, z, t) but 
most often only a function of location.  Equation VIIb.1.32, as suggested by Erwin 
Schroedinger in 1926, has some similarities with Equation VIIb.1.31, the classic 
wave equation.  However, unlike the wave equation derived above, the Schroed-
inger equation as a hypothesis, can only be verified and has no rigorous deriva-
tion.  As such, Equation VIIb.1.32 is a statement similar to that of Newton’s sec-
ond law of motion, which has no proof.  Furthermore, ψ  in Equation VIIb.1.32 
(referred to as the wave function) is not displacement.  Rather; it is a measure of 
probability known as probability amplitude and the square of its absolute value is 
known as the probability density (

2ψ ).  By definition, dxdydz
2ψ  represents the 

probability that measurement of the particle’s position at the time t finds the parti-
cle in the volume element dV about the point x, y, and z.  Solution to the 
Schrödinger equation is given in Section 2.

2.  Analytical Solutions to Differntial Equations 

Differential equations can be divided into two categories.  The first category in-
cludes equations for which we can find analytical solutions.  The second category 
includes equations for which, due to complications, we cannot find the analytical 
solutions and have to solve numerically.  We start with the first category due to 
the importance of analytical solutions, then we deal with the second category. 

2.1.  Solution to First-Order Linear Ordinary Differential Equations 

The general form of a first order linear differential equation is given as: 

)()( xqyxp
dx

dy =+            VIIb.2.1 

To seek an analytic solution in closed form, we note that if the equation was writ-
ten as: 

[ ] )()( xGyxF
dx

d =            VIIb.2.2 

the solution could be readily found as: 

[ ]CdxxG
xF

y += )(
)(

1
          VIIb.2.3 

where C is the constant of integration.  To express the unknown functions F(x)
and G(x) in terms of the specified functions p(x) and q(x), respectively, we carry 
out the differential on the left-hand side of Equation VIIb.2.2, and rearrange the 
results to get: 
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)(

)()(

)(

1

xF

xG
y

dx

xdF

xFdx

dy =+

By comparing with the original equation, we find that: 

)(
)(

)(
1

xp
dx

xdF

xF
=

Integrating this first order equation, the unknown function can be determined as 
=

dxxp
exF

)(
)( .  Similarly, by comparing the right-hand sides, we find that: 

)(
)(

)(
xq

xF

xG =

From here, the unknown function G(x) can be determined as 
=

dxxp
exqxG

)(
)()( .  Substituting F(x) and G(x) in the solution (i.e. Equa-

tion VIIb.2.3) yields: 

+=
−

Cdxexqey
dxxpdxxp )()(

)(          VIIb.2.4 

Example:  Find the solution to the following equation, given y = 1 for x = 1: 

xy
dx

dy
x sin2 =+

We divide both sides by x ≠ 0, to find p(x) = 2/x and q(x) = sin x/x.  We first find: 

== 2ln2)( x
x

dx
dxxp

We then find: 

dxe
x

x x2lnsin
 = xdxx sin  = sin x – x cos x

Substituting in Equation VIIb.2.4, we obtain: 

{ }Cxxxey x +−= − cossin
2ln

Applying the boundary condition, C ≅ 0.7. Hence, { }7.0cossin
2ln +−= − xxxey x

Special Case:  In many engineering applications, both p(x) and q(x) are con-
stant values, say P and Q.  In this case, Equation VIIb.2.4 simplifies to: 

P

Q
Cey Px += −            VIIb.2.5 
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The constant of integration can be found from a boundary condition.  For exam-
ple, if at x = 0, we have y = y0, then C = y0 – Q/P.  The final solution for this spe-
cial case becomes: 

Pxe
PQy

PQy −=
−

−
)/(

)/(

0
          VIIb.2.6 

Example:  Find the solution to the following first order equation where coeffi-
cients a and b are given constants.  For the boundary condition, use x = 0, y = a/b.

bay
dx

dy =+

Solution:  For this case, P = a, Q = b, and yo = a/b.  Hence, from Equa-
tion VIIb.2.6, y = (a/b – b/a)e–ax + b/a.

2.2.  Solution to Higher Order Linear Ordinary Differential Equations 

Solution to Linear Differential Equations with Constant Coefficients 

Such equations have the general form of: 
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−

−
       VIIb.2.7 

where a1 through an are constants.  This linear non-homogeneous differential 
equation of order n is also written in the shorthand form of: 

Dy=q(x)            VIIb.2.8 

where D is a linear operator  

nnn

n

n

n

n

n
a

dx

d
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dx

d
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dx

d
a

dx

d
D +++++= −−

−

−

−

12

2

21

1

1

We can verify that a solution in the form of y = erx satisfies the homogeneous form 
of Equation VIIb.2.7 so that 

0)( 1
2

2
1

1 =+++++= −
−− rx

nn
nnn ecrarararDy        VIIb.2.9 

the solution to Equation VIIb.2.9 may yield real or complex values for r.

Real and distinct roots.  The solution to the homogeneous Equation VIIb.2.9 
becomes: 

=
=

n

i

xr
iH

iecy
1

For example, the solution to the differential equation  
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023
2

2
=+−

dx

dy

dx

yd

has two distinct roots for r2 – 3r + 2 = 0 namely, r1 = 1 and r2 = 2.  Hence, the so-
lution is y = c1e

x + c2e
2x.

Real but not distinct roots.  Consider the case where the solution to Equation 
VIIb.2.9 yields real roots but roots (r1) are repeated n-times where n is the degree 
of r in Equation VIIb.2.9.  In such case, the solution is given by: 

xrn
n excxcxccy 1)( 12

321
−++++=

For example, the linear differential operator for  

018218
2

2

3

3
=−+−

dx

dy

dx

yd

dx

yd

is r3 –8r2 +21r –18 =0 which yields r1 = 2, r2 = 3, and r3 = 3.  Hence, the solution 
to the differential equation becomes: 

xxx xecececy 3
3

3
2

2
1 ++=

As an another example, consider 

01464
2

2

3

3

4

4
=+−+−

dx

dy

dx

yd

dx

yd

dx

yd

The linear operator is given by r4 – 4r3 + 6r2 –4r + 1 =0.  This equation yields 4-
fold roots of r1 = 1.  Solution to the differential equation then becomes 

xexcxcxccy )( 3
4

2
321 +++=

Complex and distinct roots.  If the solution to Equation VIIb.2.9 yields dis-
tinct complex roots such as r1 = a + ib and r2 = a – ib, then the solution has the 
form of: 

)cossin( 21 bxcbxcey ax +=

For example, the linear operator for 

054
2

2
=+−

dx

dy

dx

yd

is r2 – 4r +5 = 0, which has the roots of r1 = 2 + i and r2 = 2 – i.  Hence, the solu-
tion to the differential equation is found as: 

)cossin( 21
2 xcxcey x +=
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Complex but not distinct roots.  If the roots are complex and not distinct, then 
the solution becomes: 

]cos)(sin)[( 1
2

2
321

12
321 bxxcxcxccbxxcxcxccey n

nnnn
n

n
ax −

+++
− +++++++++=

For example, the linear operator for 

02
2

2

4

4
=++ y

dx

yd

dx

yd

is r4 + 2r2 + 1 =0, which has two sets of identical roots r1 = r2 = i and r3 = r4 = -i.
The solution to the equation is: 

xxccxxccy cos)(sin)( 4321 +++= .

Solution to Equidimensional Linear Differential Equations 

These are linear non-homogeneous differential equations with coefficients that are 
functions of the independent variable in the form of: 

)(11

1
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10 xqyc
dx
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dx
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n =++++ −−

−
−      VIIb.2.10 

Such equations are known as Euler-Cauchy differential equations.  This equation 
can be transformed into an nth-order linear differential equation, given by Equa-
tion VIIb.2.7, by change of independent variable from x to xz ln= .

Solution to Differential Equations by Reduction of Order 

This interesting method, as generally applied to second order linear differential 
equations, requires us to have one of the solutions to find the other solution.  If we 
have one solution to the following general form of the second order differential 
equation as y1(x),

)()()( 212

2
xqyxa

dx

dy
xa

dx

yd =++           VIIb.2.11

the second solution, as shown by Hildebrand, is then given by: 

)(
)(

1
)( 122

1
12 xycdx

xzy
cxy +=        VIIb.2.12 

where c1 and c2 are arbitrary constants and z is given by = dxxaez )(1 .  One par-
ticular solution is obtained from: 
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= dx
xzy

dxxzyxq
xyxyP

)(

)()(
)()(

2
1

1
1        VIIb.2.13 

No additional constants of integration are necessary for y2(x), since already ar-
bitrary constant c1 and c2 are chosen.  The complete solution is then given by: 

y(x) = y1(x) + y2(x) + yp(x)        VIIb.2.14 

To ensure that the answers y1 and y2 are not linearly dependent, we should show that 
the Wronskian determinant is not zero.  The Wronskian determinant is given by: 

−
=

dxxa
ecyyW

)(
121

1),(

As an example, let’s try to solve the following differential equation by the method 
of reduction of order: 

023
2

2
=+−

dx

dy

dx

yd

Suppose the first answer is in the form of y1 = ex.  We find the second answer by 
first calcualting: 

xdxdxxa eeez 33)(1 −− ===

then find y2 from Equation VIIb.2.12: 

[ ] xxxx ececcdxecexycdx
xzy

cxy 2
2

121122
1

12 )(
)(

1
)( +=+=+=

Note that yp(x) = 0.  Since c1 and c2 are arbitrary constants, the answer is therefore 
y(x) = c1e

x + c2e
2x.

Solution to Differential Equations by Laplace Transform 

This approach is based on converting differential equations to algebraic equations 
by Laplace transform, finding the unknown in the converted equation, and finding 
the solution to the differential equation by an inverse transform.  In this process, 
the properties of the Laplace transform as outlined in Section VIIIa-1 and the 
functions with associated Laplace transforms of Table VIIa.1.1 are employed.  For 
example to solve 

09
2

2
=+ y

dx

yd

with the boundary conditions of y(0) = 0 and dy(0)/dx = 2, we first find the 
Laplace transform of each term.  The Laplace transform of the first term is ob-
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tained from the general relation for the transform of the derivatives repeated here 
from Section 1 of this chapter: 

)0()0(')0(][][ )1(21)( −−− −−−−= nnnnn ffsfsfsf

Hence, the equation becomes; 0ˆ9]/)0()0(ˆ[ 2 =+−− ydxdysyys .  Substituting for 

the values at x = 0 from the boundary conditions we get;  

2ˆ)9( 2 =+ ys

From the inverse transform we find; y = 2/3 sin 3x.

Solution to Differential Equations by Power Series 

The solution to a large class of second order differential equations, where the coef-
ficients are functions of the independent variable, can be found in terms of a 
power series.  The general homogeneous form of such equations is given as: 

0)()()(
2

2
=++ yxR

dx

dy
xQ

dx

yd
xP        VIIb.2.15 

To demonstrate the solution by power series, let’s solve an example where P(x) = 
Q(x) = R(x) = 1.  We now assume a solution to exist in the form of: 

++++++= 5
5

4
4

3
3

2
210 xAxAxAxAxAAy      VIIb.2.16 

Integrate Equation VIIb.2.16 twice for dy/dx and d2y/dx2, substitute in Equation 
VIIb.2.15, and collecting similar terms we get: 

0]123[]62[]2[ 2
432321210 =+++++++++ xAAAxAAAAAA

For the summation of terms with the increasing power of x to become equal to 
zero, we must have the coefficient of each term to be equal to zero: 

6/]2[

2/][

213

102

AAA

AAA

+−=
+−=

As seen above, we have solved for all the unknown coefficients in terms of two 
coefficients A0 and A1, which in turn, can be found from the boundary conditions.  
We may generalize this to obtain an algorithm.  To do this, we write Equation 
VIIb.2.16 in the more convenient way as: 

∞

=
=

0

)(
i

i
i xAxy           VIIb.2.17 

The first and second differentials of Equation VIIb.2.17 become: 
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where we have manipulated the indices to facilitate collection of the coefficients 
of like powers.  We may now substitute these terms in Equation VIIb.2.15 to ob-
tain: 
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This equation can be further simplified when the coefficients of like powers are 
grouped together: 
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From Equation VIIb.2.18, we can find the algorithm as: 

)1(/])1[( 21 −+−−= −− iiAAiA iii

This algorithm is also referred to as the recurrence formula.  To compare with our 
previous calculation of A2, we now choose i = 2 which results in A2 = − [A1+A0]/2, 
as was found earlier. 

2.3.  Solution to Solvable Non-linear Ordinary Differential Equations 

Generally, the non-linear differential equations cannot be solved by analytical 
means to obtain answers in closed form.  However, there are certain types of non-
linear differential equations, which are amenable to analytical solution.  These are 
discussed next. 

Separable Equations 

These are implicit equations that can be grouped in terms of the dependent and in-
dependent variables.  For example, any equation in the form of: 

0)()()()( 4321 =+ dyyfxfdxyfxf

can be grouped as: 
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Let’s consider a specific example such as 02 =+ dydxxy .  This equation can be 
written as xdx + dy/y2 = 0, integration of which gives x2/2 –1/y = C.  A second ex-
ample for non-linearity involving dy/dx is (dy/dx)2 + f(y) +C = 0.  Equations of this 
sort can be solved as (dy/dx)2 = –[f(y) + C].  If the right-hand side is real then, 
dy/dx = ])([ Cyf +−± .  This is a first order equation in the form of: 

dx
Cyf

dy ±=
+− ])([

         VIIb.2.19 

This can be solved if the numerator is amenable to integration.  As an exercise, the 
reader may solve the case of f(x) = ex and C = –1.  It should be mentioned that 
Equation VIIb.2.19 was obtained by multiplying both sides by dx and dividing 
both sides by the radical.  In doing so, we have excluded the special case of f(y) = 
–C.  To see if this is indeed a solution, it must be verified separately.  The reader 
may try another exercise where f(y) = –y and C = 1 which shows that f(y) = –C is 
indeed a solution. 

Exact First-Order Equations 

According to the definition of Section VIIa.1, the following differential equation 

0),(),(),( =+= dyyxNdxyxMyxdf

is an exact differential equation if: 

x

yxN

y

yxM

∂
∂=

∂
∂ ),(),(

Since the derivative of (x, y) is given as: 

0
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∂+
∂

∂= dy
y

yxf
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yxf
yxdf

we then conclude that M
x

yxf =
∂

∂ ),(
 and N

y

yxf =
∂

∂ ),(
.  Integrating the first rela-

tion gives: 

)(),(),(
0

ygdxyxMyxf
x

x
+=

where g(y) in this equation is the constant of integration.  We can find its value by 
taking the derivative with respect to y and using the second relation: 

Nygdx
y

yxM

y

yxf x
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∂=
∂

∂
)('

),(),(
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Solving to get 
∂

∂−=
x

xo

dx
y

yxM
Nyg

),(
)(' , from which g(y) is found and the 

equation is solved. Let’s try an example.  The goal is to solve the following non-

linear differential equation  

0
2

22
=++

xy

yx

dx

dy

this equation can also be written in the more familiar form of (x2 + y2) dx + 2xy dy
= 0.  Hence, M = x2 + y2 and N = 2xy.  We first see if the expression (x2 + y2) dx + 
2xy dy is an exact differential.  This can be easily verified that the derivative of M
with respect to y (i.e. 2y) is the same as the derivative of N with respect to x (i.e. 
2y).  Similarly, we may verify this for N.  To solve the differential equation, we in-
tegrate M to get f(x, y) = x3/3 + xy2 + g(y).  We now take the derivative of this with 
respect to y and set it equal to N to get:  2xy + g’(y) = 2xy.  From here, g(y) = C.
Hence, the solution to the differential equation is given as: 

Cxy
x

yxf ++= 2
3

3
),(

where C is found from the boundary condition.  The following is left for exercise, 
M = 2x + y and N = x + 2y.

Change of Variable 

This technique is applicable to first-order nonlinear differential equations.  For ex-
ample, the Bernoulli differential equation: 

nyxQyxP
dx

dy
)()( =+

can be transformed into a linear differential equation by a change of dependent 
variable from y to z = y1-n to obtain: 

)()1()()1( xQnzxPn
dx

dz −=−+

resulting in a first-order linear differential equation.  The second example includes 
the Riccati equation: 

)()()( 2 xRyxQyxP
dx

dy =++

If u(x) is one solution to the Riccati differential equation, the substitution y = u(x) 
+ 1/z will transform the Riccati equation: 

)(2)]()([ xPzxQxuP
dx

dz =+−

in to a first-order linear differential equation.  The third example includes equa-
tions in the form of: 
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)()( 21
2 xfyc

dx

dy
c

dx

dy =++         VIIb.2.20 

By assuming dy/dx = z, we may solve Equation VIIb.2.20 as an algebraic equation 
for z to obtain: 

2

)]([4 2
2
11 xfyccc

dx

dy
z

−−±−
==        VIIb.2.21 

Depending on the function f(x) and coefficients c1 and c2, Equation VIIb.2.21 may 
be amenable to integration.  This can be tried, as an exercise, for the case where c1

= 2− , c2 = 4, and f(x) = 4x – 1. 

Reduction of Order 

This method is applied to the second-order differential equations lacking a vari-
able (i.e. lacking either x, y or both).  In such cases, we can reduce the order of the 
equation by using a substitute for a derivation.  For example, consider the follow-
ing second-order nonlinear equation: 

0)( 3
2

2
=+

dx

dy

dx

yd

If we assume dy/dx = M, then d2y/dx2 = dM/dx.  Therefore, dM/M3 = – dx.  This 
can now be easily solved to find 1/M2 = 2x + C.  Substituting for M, we get dy = 
dx/(2x + C)1/2, which is a simple first order equation. 

2.4.  Solution to Partial Differential Equations 

Generally, partial differential equations of mathematical physics and engineering 
applications are solved by the method of separation of variables.  In this method, 
we seek particular product solutions.  To illustrate this method, we present two 
examples.  The first example deals with determination of temperature distribution 
in a plate and the second deals with determination of the probability amplitude of 
a subatomic particle.   

Solution to the Heat Conduction Equation 

The idea is to determine temperature distribution (i.e., T = f(x, y)) in a plate as 
shown in the figure under steady state conditions.  The two-dimensional heat con-
duction equation in steady state, as derived in Chapter IVa, reduces to the two-
dimensional Laplace differential equation: 
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T

x

T
         VIIb.2.22 

subject to the x-direction and y-direction boundary conditions as follows.  In the x-
direction, T(0, y) = 0 and T(a, y) = 0.  In the y-direction, T(x, 0) = 0 and T(x, b) = 
f(x) as shown in Figure VII.2.1. 



930      VIIb.  Engineering Mathematics:  Differential Equations 

x

y T(x, b) = f(x)

T(0, x) = 0

T(a, y) = 0T(0, y) = 0

a

b

Figure VIIb.2.1.  Boundary conditions for obtaining temperature distribution in a rectangle 

Our goal is to find a product solution such as 

)()(),( yYxXyxTP =          VIIb.2.23 

Substituting Equation VIIb.2.23 to VII.2.22, we find: 
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Separating variables, we obtain 
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Yd

Ydx

Xd

X
±==−         VIIb.2.24 

where the right side of this equation is only a function of x and the left side is only 
a function of y.  This is possible only if both sides are equal to a constant such as 
k2.  By choosing the square of a real number, we made sure that k2 is positive.  The 
next task is to choose an appropriate sign for k2, which is discussed next.  Mean-
while, note that by the method of separation of variables, we managed to replace a 
second order linear partial differential equation with two second-order linear ordi-
nary differential equations, which can be readily solved. 

To solve Equation VIIb.2.24, we must determine which sign we should use for 
k2.  The selection of a sign for the constant k2 depends on the boundary conditions.  
A direction involving homogeneous boundary conditions must be associated with 
a periodic function and the direction involving nonhomogeneous boundary condi-
tion must be associated with an exponential function.  For example, in Fig-
ure VIIb.2.1, the homogeneous boundary conditions are specified in the x-
direction whereas the y-direction includes one nonhomogeneous boundary condi-
tion.  Therefore, we select the plus sign for k2 to get: 

02
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2
=+ Xk

dx

Xd
         VIIb.2.25 

Recall that Equation VIIb.2.25 is a Sturm-Liouville problem.  Hence, constant k
will result in appearance of the eigenvalues.  The solution to Equation VIIb.2.25 
subject to the above boundary conditions was obtained in Section VIIb.1.1 as: 
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a
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AX n

π
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where n is a positive integer, n = ,3,2,1 .  Choosing plus sign for k2, the equation 

involving y becomes: 
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         VIIb.2.26 

The solution to Equation VIIb.2.26 is given in Section VIIb.2.2 as: 
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Since X(x)Y(y) is a particular solution to Equation VIIb.2.22, the following is also 
a solution: 
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Where Cn = AnBn.  To find the set of unknown coefficients Cn, we use the last 
boundary condition: 
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We now use the Fourier series expansion for f(x) to find the unknown coefficients 
Cn:
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      VIIb.2.27 

Thus, temperature at any point in the plate can be determined from Equa-
tion VIIb.2.27.  Following the same logic of the two-dimensional temperature dis-
tribution in the Cartesian coordinate system, as an exercise, the reader may solve 
for the three-dimensional temperature distribution.  To do this, consider a rectan-
gular parallelepiped where all five faces are maintained at zero and the sixth face 
is maintained at a specified temperature T(x, y, z = c) = f(x, y).
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Solution to Schrödinger Wave Equation*

Erwin Schrödinger discovered the wave equation for matter waves.  It was Max 
Born who interpreted the Shroedinger – de Broglie waves as waves of probability, 
which became the wave mechanics version of quantum mechanics.  Consider the 
classical properties of electromagnetic waves in free space such as frequency ( v ),

* Historical perspective.  Physicists have traditionally tried to unify all physical phenom-
ena under one set of mathematical rules.  For example, Newton applied the terrestrial laws 
to describe the motion of celestial bodies.  Boltzmann integrated thermodynamics into clas-
sical mechanics, Ampere and Faraday demonstrated that electricity and magnetism are two 
sides of the same coin, and James Clerk Maxwell explained optics in terms of electromag-
netic waves (Figure VIIb.2.2).  This pursuit of unification continued until around the turn of 
the 20th century, when classical physics then tried to explain every phenomenon in terms of 
two independent branches; classical mechanics and electromagnetism.  However, with this 
approach classical physics could not describe phenomena on a microscopic scale.  For ex-
ample, blackbody radiation, the photoelectric effect, and the emission of sharp spectral lines 
by atoms in a gas discharge could not be explained within the framework of classical phys-
ics.  The most challenging task facing classical physics was explaining the nature of light, 
which behaves as both wave and particle.  In classical mechanics, every elementary object 
is either wave, obeying Maxwell’s equations or a particle, obeying Newtonian laws.  The 
discrepancy between the Newtonian concept of relative motion and Michelson’s optical ex-
periment in 1881 gave birth to Einstein’s theory of relativity.  Prior to Michelson’s experi-
ment, the nature of light was based solely on the electromagnetic theory of Maxwell dating 
back to 1862.  Treating light only as an electromagnetic wave requires a medium for light to 
travel through an empty space.  Still, classical physics was in dire need of modernization to 
be able to explain such new challenging phenomena as photoelectric effects and emission of 
sharp spectral light in a gas discharge.  The shortcomings of classical physics led to the de-
velopment of modern physics (based on wave or quantum mechanics), which quantitatively 
describes the behavior of nature on a microscopic scale.  In quantum mechanics, where par-
ticles and waves are two distinct modes of behavior shared by all objects, there is no dis-
tinction between wave and particle as in classical theories.  We may then consider the clas-
sical mechanics as a special case of the more general wave mechanics. 

λ
E

B

c

Figure VIIb.2.2. A plane monochromatic electromagnetic wave 

The discovery of quantum physics proceeded in two tracks.  Max Plank, Neils Bohr, and 
Werner Heisenberg’s work led to the realization that the allowed values of energy exchange 
between subatomic particles are discrete.  The second track based on the works of Albert 
Einstein, Louis de Broglie, Erwin Schrödinger, and Max Born focused on the duality of 
light as both wave and particle.  Paul Dirac later showed that these two tracks are entirely 
equivalent.  
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wavelength ( λ ), and wave velocity (c).  The introduction of Plank’s constant (h = 
6.62559 ×  10-34 J·s) in 1901 allowed the introduction of particle properties such 
as energy (E = h v ), momentum (M = E/c = h v ), and relativistic mass (m = W/c2

= h v /c2) into the description of the electromagnetic waves.  Hence, a photon 
would have a wavelength given by Mh /=λ .

In 1924, De Broglie extended this definition of wavelength to other particles.  
Hence, such particles as electron, proton, neutron, or any other subatomic particle 
having momentum M, would have a “De Broglie wavelength” given by 

Mh /=λ .  Equation VIIb.1.32 gives the general time-dependent form of the 
Shroedinger wave equation.  This equation predicts the behavior of the probability 
amplitude (ψ ) of a particle having a mass of m and potential energy V as a func-
tion of position and time.  We now solve Equation VIIb.1.32 for the spherical 
waves.  Such waves represent, for example, a scattered particle by a nucleus or the 
emission of an α  ray from the parent nucleus.  The differential equation to solve 
is given by Equation VIIb.1.32, repeated here:  
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2 ψψψ       VIIb.1.32 

where  = h/2π.  This equation, therefore, describes the wave behavior of a parti-
cle having mass m in a field that induces potential energy V(r).  Since we consider 
the potential energy to be only a function of location, we are able to separate vari-
ables and obtain a set of spatial and temporal functions by defining ψ  as: 

)()(),( trtr ξϕψ =          VIIb.2.28 

so that time is expressed as a separate factor, then the phase of ψ  at any instant is 
the same throughout the entire wave.  Such waves are called standing waves.
Substituting for ψ  in Equation VIIb.1.32, we get: 
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If we divide both sides of this equation by that given by Equation VIIb.2.28, we 
get: 
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where E is the total energy of the state.  The time-independent Shroedinger equa-
tion is then obtained as: 
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r ϕϕ        VIIb.2.29 

The simplest case to investigate is the atom of hydrogen where an electron is 
orbiting the nucleus at a distance r, having an electrostatic potential energy of –
e2/r.  In the solution below, we leave the potential energy in its general form of 
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In the solution below, we leave the potential energy in its general form of V(r).  To 
further simplify the solution, rather than writing the equation for both electron and 
nucleus, we solve the time independent Shroedinger equation in the spherical co-
ordinate system whose origin is at the center of mass.  Since the nucleus is much 
more massive than the electron, the center of mass is very close to the nucleus.  In 
this case, mass m in Equation VIIb.2.29 represents the mass of electron and nu-
cleus and is given by: 
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+
=

Substituting for the Laplacian operator (see Section VIIc.1.1), Equation VIIb.2.29 
for a system representing both the electron and the hydrogen nucleus becomes:  
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Again, we may use the method of separation of variables if potential energy is 
only a function of r.  For ),()(),,( φθφθϕ SrRr = , the equation can be separated 

as: 
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For this relation to hold, both sides of this equation must be equal to some con-
stant.  We call this separation constant l(l+1) because the differential equation of 
the wave function in the θ  direction is a Legendre differential equation.  Before 
proceeding to solve for R, let’s use the same method of the separation of variables 
for the right side of Equation VIIb.2.30.  In this case, we use  )()(),( φθφθ ΦΘ=S

to get: 
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Again, for this relation to hold, both sides must be equal to some constant such as 
n2.  To summarize, we managed to break down the Shroedinger partial differential 
equation into three ordinary differential equations for radial, polar, and azimuthal 
directions: 
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Polar: 0
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Azimuthal: 02
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        VIIb.2.33 

These equations are valid if the potential energy V(r) is spherically symmetric and 
if l and n, referred to as quantum numbers, are suitably chosen.  The solution to 
the azimuthal differential equation is straightforward and is given as 

)exp()exp( 21 φφ incinc −+=Φ .  The integer n is known as the magnetic quantum 
number because the energy of the hydrogen atom depends on this quantum num-
ber only if the atom is placed in a magnetic field.  If the atom is placed in a mag-
netic field, then distinct values for n determine the allowed energy levels. 

We now try to find the solution to the polar differential equation.  To see if this 
equation can be cast in the form of Equation VIIb.1.7, we make a change of vari-
able as θcos=x .  We find the required derivative terms from: 
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Substituting into Equation VII.2.32, it simplifies to: 
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We can now carry out the derivative of the first term in Equation VIIb.2.34 to get: 
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We now substitute for the derivative terms in terms of θcos=x , which yields: 
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where we have used dy/dθ = (dy/dx)(dx/dθ).  Collecting terms and substituting for 
21sin x−=θ , we get: 
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If there is no magnetic field, then n = 0 (hence, =Φ constant) and Equa-
tion VIIb.2.35 can be simplified to Equation VIIb.1.7.  If l takes distinct integers 
such as 0, 1, 2, 3, etc., then l(l+1) = 0, 2, 6, 12, etc.   

In Equation VIIb.2.35, constant l is known as the angular-momentum quantum 
number.  To have a satisfactory answer for the wave function, n must have integral 
values between –l and +l.  For example, for l = 3, n can be –3, -2, -1, 0, 1, 2, 
and 3.

Finally, the solution to the radial differential equation can be obtained by mak-
ing a change in function from R(r) to R(r) = Y/r:
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This is a linear second order differential equation similar to the one-dimensional 
wave equation.  The final solution for the probability amplitude is then found as: 

rrYr nnl /)()()(),,( φθφθψ ΦΘ=

3.  Pertinent Functions and Polynominals 

We now briefly discuss such important functions and polynomials as Dirac delta-
function, the Gaussian error function, the Gamma function, and the Bessel func-
tions. 

Dirac δ-function.  This function is defined as: 
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The most useful property of the Dirac δ-function is when integrated along a well-
behaved function f(x): 

)()()( 00 xfdxxfxx =−δ

Error function.  The Gaussian error function is used in such engineering ap-
plications as conduction heat transfer and reliability engineering.  The Gaussian 
Error function is defined as: 

dzexerf x z
0

22
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π

Note that the complementary error function is erfc(x) = 1 – erf(x) (i.e., the integral 
limits are from x to ∞).

Gamma function is defined by the integral: 
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Note the following property of the gamma function Γ(z + 1) = zΓ(z).  It can be 
verified that Γ(1/2) = (π)1/2, Γ(0) = ∞, Γ(1) = ,1 , Γ(n) = (n – 1)! 

Exponential integrals are obtained by sustituting values for the index n in the 
following integral: 
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For example, E0(x) = e–x/x and ( ) )1/()()( 1 −−= −
− nxxEexE n

x
n .  Also 

)()( 1 xExE nn −−=′ .

Bessel functions, having engineering applications in cylindrical coordinates for 
nuclear reactor core design, thermal conduction and electricity, are solutions of the 
Bessel differential equation: 
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This second order differential equation is of order v and has the following general 
solution: 

)()()( 21 xYCxJCxy vv +=

where real functions Jv and Yv are referred to as Bessel functions of the first and 
the second kind of order v, respectively. 

Modified Bessel functions:  The complex form of the Bessel function is ob-
tained if x is replaced by ix:
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The solution to this equation is given as: 

)()()( 43 xKCxICxy vv +=

where real functions Iv and Kv are called the modified Bessel functions of the first 
and second kind.  The Bessel functions of the first and the second kind are of the 
following form: 
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Bessel functions of order v = 0 and v = 1 are used more frequently.  The polyno-
mial for the Bessel function of the first kind of order 0 is given as (Abramowitz): 
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The polynomial for the Bessel function of the first kind of order 1 is given as: 
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The polynomial for the Bessel function of the second kind of order 0 is given as: 
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The polynomial for the Bessel function of the second kind of order 1 is given as: 
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The polynomial for the modified Bessel function of the first kind of order 0 is 
given as: 
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The polynomial for the modified Bessel function of the first kind of order 1 is 
given as: 
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The polynomial for the modified Bessel function of the second kind of order 0, is 
given as: 
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The polynomial for the modified Bessel function of the second kind of order 1, is 
given as: 
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Abramowitz gives polynomials for x outside the ranges shown above.  Some use-
ful derivatives of Bessel functions are as follows: 

Derivatives of J0(x), Y0(x), I0(x), and K0(x):
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Derivatives of Jv(x), Yv(x), Iv(x), and Kv(x):
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Some useful integrals of Bessel functions are as follows: 
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+−= cxKdxxK )()( 01 +=− cxJxdxxJx v
v

v
v )()(1 , +−= −

+
− cxJxdxxJx v

v
v

v )()(1

Table VIIb.3.1 includes some Bessel functions for the range of 0 ≤ x ≤  4 and 
Figure VIIb.3.1 shows Bessel functions of order zero for the range of 0 ≤ x ≤  7. 

Hankel functions:  are obtained from the Bessel functions and defined as: 

)()(1, xiYxJH vvv +=
)()(2, xiYxJH vvv −=

Jacobi polynomial is the solution to the special Jacobi differential equation.  
The Jacobi polynomial is: 
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Table VIIb.3.1.  Bessel functions 
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Figure VIIb.3.1.  Bessel functions of order zero for the range of 0 ≤ x ≤  7 
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Chebyshev polynomial of the first kind is given as: 

−−+−−== −−− 224221 )1(
4

)1(
2

)coscos()( xx
n

xx
n

xxnxP nnn
Chebyshev

Hermite polynomial is the solution to the Hermite differential equation and is 
given by Rodrigue’s formula: 

n

xn
xn

Hermite
dx

ed
exP

2
2

)1()(
−

−=

Hyperbolic functions are defined as sinh(x) = (ex – e–x)/2 and cosh(x) =
(ex + e–x)/2. 
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Legendre polynomials are the solution to the Legendre differential equation 
and are given as:

21 ( 1)
( )

2 !

n n

Legendre n n

d x
P x

n dx

−=

It can be verified that P0(x) =1, P1(x) = x, P2(x) = (3x2 – 1)/2, P3(x) = (5x3 – 3x)/2, 
etc.  Also 

1

' '
1

2
( ) ( )

2 1n n nnP x P x dx
n

δ
+

−

=
+

The recurrence relations for Legendre polynomials are as follows: 

0)()()12()()1( 11 =++−+ −+ xnPxxPnxPn nnn

)()1()()(1 xPnxPxxP nnn +=′−′+

Associated Lengendre polynomials are obtained from the following formula: 

)()1()( 2/2 xP
dx

d
xxP lm

m
mm

l −=

and the spherical harmonics are given by: 

θϕ
π

im
llm eP
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Y )(cos

)!(4

)!)(12(
)(

2/1

+
−+=Ω

Lagurre polynomials are the solution to the Lagurre differential equation and 
are given as: 

n

xnn
x

Lagurre
dx

exd
exP

)(
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−
=
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VIIc.  Vector Algebra 

1.  Defintion of Terms 

Types of physical quantities:  There are three types of physical quantities, scalar
(temperature), vector (velocity), and tensor (fluid stress and thermal conductivity).  
Scalars are zero order tensors.  Vectors are first order tensors.  A second order ten-
sor is an array of nine components: 

=

zzzyzx

yzyyyx

xzxyxx

τττ
τττ
τττ

τ

In this section, an arbitrary scalar is represented by f, an arbitrary vector is repre-
sented by A  and an arbitrary tensor is represented by τ.

Coordinate systems:  There are three Orthogonal systems; Cartesian, cylindri-
cal and spherical coordinates.  The Cartesian refers to the rectangular coordinates 
for x, y, and z.  The circular cylinder refers to r, θ , and z and the spherical refers 
to r, θ , and φ .  The cylindrical and spherical are examples of curvilinear coordi-
nates.  The two-dimensional cylindrical coordinate in the x-y plane is referred to as 
the polar coordinate.  The elemental area in the Cartesian coordinates is dxdy and 
in a polar coordinate is θrdrd .

If earth is treated as a sphere and P is a point on the earth’s surface in the 
northern hemisphere, for example, then the latitude of point P is angle α = 90o – 
ϕ o.  The longitude of point P is β = 360o – θ o.  The semi-circle in the r - z plane is 
referred to as the meridian.

Differential volume:  The elemental volume in Cartesian coordinates is 
dVCartesian = dxdydz, in a cylindrical coordinates is dVCylindrical = rdrdθdz, and in a 
spherical coordinates is dVSpherical = r2sinφdθdφdr.

Unit vector:  A vector with the absolute value, magnitude, or length of unity is 
a unit vector.  Thus the unit vector for vector A  is given by AAua /= .  Unit 
vectors in the Cartesian coordinate system are traditionally shown by i , j , and 
k .  Figure VIIc.1.2 shows the unit vectors in various coordinate systems. 

Vector components:  A vector, in general, is represented by three components: 

332211 uAuAuAA uuu ++=

where uiA  is the component along the ith axes having a unit vector iu .  In the 
Cartesian coordinate system for example, the vector is represented as 

kAjAiAA zyx ++=  where i , j , and k are the unit vectors along x-, y-, and z-
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Figure VIIc.1.1.  Cylindrical and spherical coordinates in the Cartesian coordinate system
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Figure VIIc.1.2.  Unit vectors in Cartesian, cylindrical, and spherical coordinates 

axes, respectively.  In Figure VIIc.1.3, vector A  is represented by the line seg-
ment connecting point P1(x1, y1, z1) to point P2(x2, y2, z2) so that: 

12 rrA −=

Substituting for the components comprising vectors r1 and r2 we get Ax = x2 – x1,
Ay = y2 – y1, and Az = z2 – z1.
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x

y

z
A

r2r1

P1

P2

Figure VIIc.1.3.  Depiction of vector A  in Cartesian coordinates 

Absolute value of a vector written in the Cartesian coordinate system, for ex-
ample, is defined as: 

222
zyx AAAA ++=

In case of Vector A  shown in Figure VIIc.1.2, the absolute value is given as: 

2
12

2
12

2
12

222 )()()( zzyyxxAAAA zyx −+−+−=++=

Summation of vectors:  For vectors A  and B , the summation is defined as: 

( ) ( ) ( )kBAjBAiBABA zzyyxx +++++=+

Scalar or dot product of two vectors results in a scalar.  For vectors A  and 
B , dot product is defined as: 

ϕcosBABA =⋅

Where ϕ  is the angle between the two vectors.  Thus, for two vectors in the Car-

tesian coordinate system, the dot product becomes: 

( ) ( ) ( ) ( ) ( )zzyyxxzyxzyx BABABAkBjBiBkAjAiABA ++=++⋅++=⋅    VIIc.1.1 

According to this definition, 2AAA =⋅ .

Example: To find the angle between vector kjiA 643 −+=  and 

kjiB 115 ++−= , we first find: =−++−=⋅ )11)(6()5)(4()1)(3(BA  –49.  Next 

find 416.736163 =++=A , =++= 121251B 12.124, and cos(ϕ) = –

49/(7.416 × 12.124) = –0.545.  Therefore, ϕ = 123o.
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Vector or cross product of two vectors is another vector.  The cross product 
of two vectors is defined as: 

zyx

zyx

BBB

AAA

kji

BAC =×=           VIIc.1.2 

The resultant vector has an absolute value of: 

ϕsinBABAC =×=

According to this definition, 0=× AA .  The resultant vector C  is perpendicular 
to the plane of vectors A  and B .  The positive direction of vector C  follows the 
right-hand rule as shown in Figure VIIc.1.4. According to this definition, 

ABBA ×−=× .

                      (a)                                                       (b) 

Figure VIIc.1.4. a)  Unit vectors in a Cartesian coordinates.  b)  Depiction of a cross 
product vector 

Differentiation of vectors.  Since vector operations are not generally linear 
operations, care must be exercised in carrying out differentiation of vectors.  For 
example, the dot product is a linear operation.  Hence, the derivative of a dot 
product is also a linear operation: 

A
dt

Bd

dt

Ad
B

dt

Bd
AB

dt

Ad
BA

dt

d ⋅+⋅=⋅+⋅=⋅ )(

On the other hand, the cross product of two vectors is not a linear operation.  
Hence, the derivative of the cross product of two vectors is: 

A
dt

Bd

dt

Ad
B

dt

Bd
AB

dt

Ad
BA

dt

d ×+×≠×+×=× )(
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Linear independence is defined for a set of vectors so that the relation 

0=
m

ii Ac

is satisfied only if the following condition exists for the coefficients 

0321 ==== mcccc

Otherwise, the set of vectors would be linearly dependent.

Plane normal to a vector.  Consider a vector given as kAjAiAA zyx ++= .
The equation of a plane normal to this vector at point P0(x0, y0, z0) is given as: 

0)()()( 000 =−+−+− zzAyyAxxA xxx

Independence from coordinate system, Symbol del as a vector operator.  It 
is very convenient and mathematically elegant to use a symbol for making formu-
lae independent of the coordinate system.  Such a symbol is called del ( ∇ ) and 
used as a vector operator.  For example, in the Cartesian coordinate system, del is 
defined as: 

k
z

j
y

i
x ∂

∂+
∂
∂+

∂
∂=∇

Several uses of the del operator, such as gradient, divergence, and Laplacian are 
discussed below. 

The Gradient operator ( ∇ ).  The gradient operator generally acts on a scalar 
and produces a vector.  In the Cartesian coordinate system the del operator is writ-
ten as: 

k
z

f
j

y

f
i

x

f
f

∂
∂+

∂
∂+

∂
∂=∇           VIIc.1.3 

In the cylindrical coordinate system as: 

zr u
z

f
u

f

r
u

r

f
f

∂
∂+

∂
∂+

∂
∂=∇ θθ

1
          VIIc.1.4 

and in the spherical coordinate system as: 

φθ φθφ
u

f

r
u

f

r
u

r

f
f r ∂

∂+
∂
∂+

∂
∂=∇ 1

sin
1

         VIIc.1.4 

The gradient operator may also operate on a vector to produce a tensor, referred to 
as a dyad.  For example, in the Cartesian coordinate system: 
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∂
∂
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∂
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∂
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A

zzz
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xyx

In the discussion below we demonstrate that for f(x, y, z), the gradient of f is in the 
direction of the normal to the surface S described by f (Figure VIIc.1.5) 

fn
n

f ∇⋅=
∂
∂

            VIIc.1.5 

Figure VIIc.1.5.  Gradient vector normal to an isothermal or equipotential surface 

Consider a function such as w = f(x, y, z).  The points at which this function has 
the same value, such as w0 has at a specific point P0(x0, y0, z0), in general consti-
tute a surface in space.  The equation of this surface is given as f(x, y, z) – w0 = 0 
where w0 is a constant.  In electrical engineering, if w represents the electrical po-
tential, then the surface is called an equipotential surface.  In thermal sciences, if 
w represents temperature, then the surface is called an isothermal surface.  It can 
be shown that the gradient vector is normal to these types of surfaces.  For exam-
ple, suppose we want to find the plane that is tangent to the surface z = x2 – y2 at 
point P0(2, 1, 3).  To find the equation of such a plane we should find the gradient 
at point P0 which, we know is normal to the above surface (i.e., surface z = x2 – 
y2).  To do this, we first write the equation of the surface as f(x, y, z) = x2 – y2 – z = 
0 and then find the gradient vector: 

kjyixk
z

f
j

y

f
i

x

f
f −−=

∂
∂+

∂
∂+

∂
∂=∇ 22

The gradient vector at the specified point is kjikjyixf 32422 −−=−−=∇ .
This vector is normal to surface z = x2 – y2 at P0.  The equation of the plane normal 
to this vector hence tangent to the surface at P0 is 4(x – 2) –2(y – 1) – 3(z – 3) = 0 
or 3z + 2y – 4x = 1.  Later in this section, the application of the gradient operator 
in developing surface integrals is discussed. 
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The divergence operator ( ⋅∇ ).  Divergence acts on a vector and produces a 
scalar.  In Cartesian coordinates system, the divergent operator is written as: 

z

A

y

A

x

A
A zyx

∂
∂+

∂
∂

+
∂

∂
=⋅∇           VIIc.1.6 

in the cylindrical coordinate system as: 
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r
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A z
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θ
θ1

)(
1

         VIIc.1.7 

and in the spherical coordinate system as: 
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2
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If vector A  happens to be the gradient of a scalar, then the divergence operation 
produces Laplacian:

ffA 2)( ∇=∇⋅∇=⋅∇

The Laplacian operator ( 2∇ ).  This operator primarily acts on scalars and 
produces scalars: 
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The Laplacian operator in the cylindrical coordinate system is written as: 
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and in the spherical coordinate system as: 
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Laplacian may also operate on vectors but the vectors must be written in the Car-
tesian coordinate system.  The Laplacian of vector A  in the Cartesian coordinate 
system is given as: 
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For a vector written in other (i.e. cylindrical and spherical) orthogonal coordinate 
systems, the Laplacian can be found from: 
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( ) ( )AAA ×∇×∇−⋅∇∇=∇2

The Curl operator  ( ×∇ ).  This operator acts on vectors and produces vectors.  
The curl operator in the Cartesian coordinate system can be obtained from the 
definition of the cross products of two vectors: 

zyx AAA

zyx

kji

A
∂
∂

∂
∂

∂
∂=×∇         VIIc.1.12 

The result is the following vector: 
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The curl operator in the cylindrical coordinate system is written as: 
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Finally, the curl operator in the spherical coordinate system is given as: 

φθ

φθ

φ
φθ

φ

φ
rAArA

r

ururu

r
A

r

r

sin

sin

sin

1
2 ∂

∂
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∂=×∇        VIIc.1.14 

If a vector is the gradient of a potential function, then the curl of such a vector is 
always equal to zero, 0)( =∇×∇ f .  Later in this section, the application of the 

curl operator in Stokes’ theorem is discussed. 

Classical mechanics Hamiltonian operator in the Cartesian coordinate sys-
tem is defined as: 

),,()(
2

1
),,( 222 zyxVppp

m
trp zyxCM +++=Η

where m is mass, p is momentum, and V represents the potential energy of a parti-
cle.
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Quantum mechanics Hamiltonian operator is defined as 

)(
2

),,( 2
2

rV
m

trpQM +∇−=Η

Some useful relations in vector algebra.  The relations listed here are fre-
quently used in vector algebra: 

0)( =∇×∇ f

( ) 0=×∇⋅∇ A

fAAfAf ∇⋅+⋅∇=⋅∇
AfAfAf ×∇+×∇=×∇ )(

( ) ( ) ( )AAAAAA ×∇×−⋅∇=∇⋅
2

1

( ) ( ) ( ) ( ) )( ABBABAABBA ⋅∇−⋅∇+∇⋅−∇⋅=××∇

Substantial derivative operator D/Dt.  The substantial derivative is a mathe-
matical operator that can operate on both scalars or vectors, provided the vector is 
written in the Cartesian coordinate system: 

( )
t

f
fV

Dt

Df

∂
∂+∇⋅=          VIIc.1.15 

where V  is the flow field velocity vector.  We can find the substantial derivative 
of vectors written in other orthogonal coordinate systems by using Equation 
VIIc.1.15 in conjunction with the above vector relations. 

Dyadic product of two vectors is a special form of a second-order tensor: 

=

332313

322212

312111

wvwvwv

wvwvwv

wvwvwv

wv

Note that, according to this definition, vwwv ≠ .

Line, surface, and volume integrals.  Integration of vectors along lines and 
over surfaces and volumes are used to explain various physical phenomena.  For 
example, the Stokes theorem as used in flow as well as electrical fields relates line 
integrals along a closed path to the surface integral enclosed by the path.  The di-
vergence or Gauss theorem relates a volume integral to the surface integral enclos-
ing the volume. 

Line integral of a vector along the segment path C, shown in Figure VIIc.1.6, 
is defined as: 

2

1
( )P

x y zPC
A dr A dx A dy A dz⋅ = + +        VIIc.1.19 
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Figure VIIc.1.6.  Line integral along a segment in Cartesian coordinate system 

which indicates the path-dependence of line integrals.  For example, consider the 
intersection of surface z = xy2 and plane z = 1.  We would like to integrate vector 

kzyjxziyA 333 −+=  along this segment from point P1 located at 1, 1, 1 to 
point P2 located at 0.25, 2, 1.  We first find the dot product of the vector by the 
elemental segment as: 

zydzdyxzydxrdA −+=⋅ 33

Since z = xy2 = 1 this results in dz = 0.  Taking the derivative of the function repre-
senting the segment: 

022 =+ xydydxy

from this equation, we find dx = – xdy/y.  Substituting for x from xy2 = 1, we ob-
tain dx = – dy/y3.  Therefore, the integral of the dot product becomes: 
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To verify that the result depends on the path, we may assume a different path con-
necting the same points P1 and P2, such as z = xy3.  In this case, the derivative of 
the function representing the path becomes y3dx + 3xy2dy = 0.  Hence, we have dx
= –3xdy/y.  Substituting for x, the derivative becomes dx = –3dy/y4.  Finally 
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Special Case.  Now, consider a case where vector A  is gradient of a potential 

function (i.e. fA ∇= ) (recall that 0=×∇ A ).  In this case, the line integral be-

comes independent of the path and depends only on the end points P1 and P2.  To 
demonstrate, we substitute the gradient in Equation VIIc.1.19.  This results in the 
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argument of the integral to be an exact differential (see definition given in Sec-
tion 1), which upon integration would depend only on the end points. 

−==
∂
∂+

∂
∂+

∂
∂=∇=⋅

2

1

2

1

)()()(. 12
P

P
C

P

PC

PfPfdfdz
z

f
dy

y

f
dx

x

f
rdfrdA

Figure VIIc.1.7.  Line integral along a closed path or loop 

If this differential is integrated along a loop, as shown in Figure VIIc.1.7, the line 
integral becomes zero: 

==⋅∇=⋅
C C

dfrdfrdA 0

where the circle on the integral symbol emphasizes closed path integration.  For 
example, if we want to find the integral of kzxyjxyzizyA 22332 32 ++=  along 
a segment from points P1(0, 0, 0) to P2(1, 1, 1), we need not to be concerned about 
the function that represents the segment, as the given vector is the gradient of the 
potential function f = xy2z3.  Therefore: 
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The integration of an exact differential depends only on the end points and is in-
dependent of the path.  We may also try to find the result of the integration along a 
closed path: 
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Hence we conclude that if 0=×∇ A  then 0=⋅
C

rdA .
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Potential energy and conservative force.  These terms are applied in the spe-
cial case where the value of the line integral is independent of the path.  In this 
case, if vector A  represents force, then the function f is known as the potential of 
A .  Additionally, –f is called the potential energy associated with force A  and 

the force itself is said to be conservative.

Definition of surface and volume integrals.  Integral of vector A  over sur-
face S is defined as the summation of the dot products of A  and the normal vector 
n  representing an elemental area ds.  If the elemental area is sufficiently small, 
then the summation becomes: 

⋅=⋅=
SS

dsnAsdAI         VIIc.1.20 

where n is the unit vector normal to the elemental surface ds of surface S, as 
shown in Figure VIIc.1.8.  Similar definition applies to a volume integral.  If sur-
face S is a closed surface (i.e., contains a volume), then the surface integral is writ-
ten as: 

⋅=⋅=
SS

dsnAsdAI                   VIIc.1.20-1 

Figure VIIc.1.8.  Depiction of surface and the normal vector 

To find an alternative way to express Equation VIIc.1.20-1, we seek to express 
the unit vector normal to the surface in terms of the function representing the sur-
face.  To do this, you may recall that the gradient of function w = f(x, y, z) is nor-
mal to the surface described by w.  We may then express the gradient vector in 
terms of the unit vector of the surface: 

nww ∇=∇
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Since kzwjywixww )/()/()/( ∂∂+∂∂+∂∂=∇  and

222 )/()/()/( zwzwzw ∂∂+∂∂+∂∂=∇  then 

222 )/()/()/(

///

zwywxw

kzwjywixw
n

∂∂+∂∂+∂∂

∂∂+∂∂+∂∂=        VIIc.1.21 

If the surface is closed (i.e. for surfaces that contain a volume), vector n  tradi-
tionally points outward.  We now find projection of the elemental surface ds on 
the xy-plane.  Since 

     ds = dxdycosγ

and the fact that the unit vector k  is perpendicular to the xy-plane, we alterna-
tively write this as: 

dxdydskn =⋅

On the other hand, the dot product of two unit vectors is equal to the cosine of the 
angle between, hence: 

222 )/()/()/(

/
cos

zwywxw

zw
kn

∂∂+∂∂+∂∂

∂∂±=⋅=γ      VIIc.1.22 

Putting all these together, we can alternatively write the surface integral (Equa-
tion VIIc.1.20-1) as: 

dxdynAdsnAsdAI

SSS
γcos

1⋅=⋅=⋅=       VIIc.1.23 

For example, suppose we want to find the surface integral of vector jyixA 22 +=
over the hemisphere shown in Figure VIIc.1.9.  For this purpose, we first deter-
mine the unit vector normal to the surface.  The surface function is w = x2 + y2 + z2

– 1.   The components of the unit vector then become 2x, 2y, and 2z.  The absolute 
value of the unit vector is 2.  Therefore, the unit vector of the hemisphere is: 

kzjyixn ++=

Cosine of the angle between the unit vector normal to the surface and the unit vec-
tor normal to the xy-plane from Equation VIIc.1.22 becomes z=γcos .  There-
fore, from Equation VIIc.1.23, we have: 

+=++⋅+=⋅=
TSS

z

dxdy
yx

z

dxdy
kzjyixjyixdxdynAI )(2)()22(

cos
1 22

γ
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Figure VIIc.1.9.  Hemisphere for calculation of a surface integral 

Where the surface integral is now developed on the circle M which is the projec-
tion of the hemisphere.  Replacing z from the function representing the hemi-
sphere surface, 

−−

+=+=

=

−

=T
x

x

y

dxdy
yx

yx

z

dxdy
yxI

1

0

1

0
22

22
22

2

1

)(2
4)(2

Note that the limits of the double integral span only one quarter of the circle in the 
xy-plane (i.e. in the +x and +y region).  Due to symmetry we multiplied the inte-
gral by 4 to cover the entire surface of the circle. We practically solved the bulk of 
the problem.  The rest deals with carrying out this integral.  Generally, it is easier 
to carry out double integrals in a polar coordinate.  Recall that in polar coordi-
nates, θcosrx =  and θsinry = .  Therefore, x2 + y2 = r2 and θrdrddxdy = .
Therefore, the integral becomes: 

3/8
1

8
1

)(
8

2/

0

1

0
2

2
1

0

1

0
22

22
2

πθ
π

θ

=
−

=
−−

+=
= =

=

−

= r
x

x

y

rdrd
r

r
dxdy

yx

yx
I

Carrying out surface integrals is generally not a straightforward integration.  This 
can be easily verified by trying to integrate kzjyixA ++=  over the same hemi-
sphere surface instead of the vector used in the above example.  The difficulty of 
integration over surfaces is remedied by Gauss’s divergence theorem.  

Gauss divergence theorem relates an integral over a closed surface to an inte-
gral in the volume enclosed by the surface.  For example, if volume V is enclosed 
by surface S, then: 

⋅=⋅=⋅∇
SS

dsnAsdAdA V)(
V
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An intuitive case is when volume V is a sphere and A  represents density of an in-
compressible fluid multiplied by the flow velocity (mass flux).  In this case, the 
rate of change of mass inside the sphere is due to the flow of the incompressible 
liquid across the surface of the sphere. 

We now try to solve the previous example of integration over the surface of a 
hemisphere.  To obtain a closed surface, we use the circle obtained from the inter-
section of the xy-plane with the hemisphere to contain the volume.  We note that 
the integral of the given vector over this surface is zero because the given vector 
has no component in the z-direction.  Therefore, the integral over the surface of 
the hemisphere is equal to the divergence of the given vector in the volume of the 

hemisphere.  The divergence of the given vector is 4=⋅∇ A .  Therefore: 

3/8)3/2(4V4V)(
VV

ππ ===⋅∇=⋅ ddAdsnA
S

As an exercise, the reader may develop the surface integral of kzjyixA ++=
over the hemisphere of Figure VIIc.1.8. 

Stokes curl theorem is the two dimensional form of the Gauss’s theorem.  It 
expresses that the circulation of a vector around a closed curve C is equal to the 
flux of the vector over S, the area enclosed by C:

dsnASdArdA
SS

C

⋅×∇=⋅×∇=⋅ )()(       VIIc.1.24 

where rd  is an elemental vector in the direction of integration along curve C and
n  is the unit vector normal to the elemental area ds.  Directions of these two vec-
tors are as follows: if unit vector rd  moves counterclockwise around the horizon-
tal curve C (right-hand screw), the direction of unit vector n  is upward, if the 
elemental vector rd  moves clockwise around the horizontal curve C (right-hand 
screw), the direction of unit vector n  is downward.  For example, let us verify the 
Stokes curl theorem for the paraboloid of Figure VIIc.1.10.  The function repre-
senting the surface is given by z = 1 – x2 – y2 and the function representing the in-
tersection with the xy plane is given by x2 + y2 = 1.  These are surfaces S and M in 
Figure VIIc.1.10, respectively.  

z

y

x

z = 1 - x2 - y2

C

S

R=1M

Figure VIIc.1.10.  Depiction of a circular paraboloid 
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The goal is to first develop the line integral of the vector: 

kyxjxziyzA )()()( +−++−=

along the closed path C, ⋅=
C

rdAI1 .  Then to carry out ⋅×∇=
S

dsnAI2  and 

to show that I1 = I2.  To develop the line integral: 

+−++−=++⋅+−++−=
CC

dzyxdyxzdxyzkdzjdyidxkyxjxziyzI ])()()[(][])()()[(1

we first note that the integration is along path C, which is in the xy plane.  As a re-
sult, I1 simplifies to: 

+−=+−++−=
CC

xdyydxdzyxdyxzdxyzI ][])()()[(1

To simplify integration, we take advantage of the polar coordinates.  This is true, 
as in this case, r remains constant (r = R = 1).  Hence, we are replacing both x and 
y with a single variable θ .  To do this, recall that θcosrx =  and θsinry = .  Set-

ting r = 1 and substituting x and y into I1 we get: 

πθθθθθθθπ
θ

π
θ 2)])(cos(cos)sin)((sin[][ 2

0
2

01 ==+−−=+−= = = dddxdyydxI
C

Let’s now try the surface integral.  For this purpose, we must first find the curl of 
the given vector: 

)(2 kji

yxxzyz

zyx

kji

A ++−=

−−+−
∂
∂

∂
∂

∂
∂=×∇

Next, we need to find the unit vector normal to surface S and the cosine of the an-
gle between the unit vectors normal to the surfaces S and M.  The unit vector nor-
mal to S is given by Equation VIIc.1.21 where w for a positive unit vector normal 
to the surface of the paraboloid is w = z + x2 + y2 – 1: 

[ ]
mnijaA =

Therefore;

1)(4

244

1)(4

22
)(2

2222 ++

++−=
++

++⋅++−=⋅×∇
yx

yx

yx

kjyix
kjinA

Finally the cosine of the angle between the unit vector normal to S and the unit 
vector normal to M is given by Equation VIIc.1.22 as: 
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6
1)(4

1

)/()/()/(

/
cos

22222 ++
=

∂∂+∂∂+∂∂

∂∂=
yxzwywxw

zwγ

We now can find I2 as: 

⋅×∇=⋅×∇=
SS

dxdy
nAdsnAI

γcos2

Substituting for the dot product of the cosine, I2 becomes: 

++−=++−=
MM

M
M

dxdyydxdyxdxdydxdyyxI 244)244(2

where the first two integrals on the right-hand side cancel out.  Hence, I2 finally 
becomes: 

πθ
π

θ
22

2

0

1

0
2 ==

== drdrI
r

The Stokes curl theorem is useful in finding an alternative to complicated line in-
tegrals.  This is because, in the Gauss divergence theorem and the Stokes curl 
theorem, the derivative of the vector is taken, which reduces the degree of the in-
volved terms. 

Green’s theorem.  Consider 1ϕ  and 2ϕ  as two scalar functions of position.  

Green’s theorem states: 

( ) ⋅∇=∇⋅∇−∇
S

dsnd 21
V

212
2

1 V ϕϕϕϕϕϕ

Green’s theorem can alternatively be written as: 

( ) ( )⋅∇−∇=∇−∇
S

dsnd 1221
V

1
2

22
2

1 V ϕϕϕϕϕϕϕϕ

where surface S contains volume V.  There are two special cases to this theorem.  
In the first case, the two scalar functions are equal.  In this special case, Green’s 
theorem becomes: 

∂
∂=⋅∇=∇−∇

SS
ds

n
dsnd

ϕϕϕϕϕϕϕ V])([
V

22

In the second special case, one function is zero: 
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∂
∂=∇

S
ds

n
d

ϕϕ V
V

2         VIIc.1.25 

Leibnitz formula for differentiating integrals provides a useful means of dif-
ferentiating integrals without the need to carry out integrals if there is no analytic 
means of integration.  For example, if the derivative of )(xϕ  is needed where 

)(xϕ  is given as an integral function of f(x),

= )(
)( ),()( xB

xA dttxfxϕ

then, )(' xϕ  is given as: 

−+
∂

∂= )(
)(

)(
)( ),(),(

),(
),( xB

xA
xB
xA dx

dA
Axf

dx

dB
Bxfdt

x

txf
dttxf

dx

d
    VIIc.1.26 

where f(x, t), A(x), and B(x) must be continuously differentiable with respect to x.

Example:  Find the derivative of y with respect to x given 
2 2)( x

x dttxxy =

Solution:  Since f(x, t) = tx2, A(x) = x, and B(x) = x2.  Hence, =∂∂ xtxf /),( 2xt,

dB/dx = 2x, and dA/dx = 1.  Substituting in Equation VIIc.1.26 yields: 

( )( ) ( )( ) ( ) 35352342 232122
222

xxxxxtxxxtxdtdttx
dx

d x

x
x
x

x
x −=−+=−+=

To verify the results we obtained, we may directly integrate the given function and 
substitute the limits: 

( ) ( ) 2/2/)( 46222
22

xxtxdttxxy
x

x
x
x −===

Thus, dy(x)/dx = (6x5 – 4 x3)/2 = 3x5 – 2x3, which verifies the results obtained 
above.  In this example, we could easily carry out the integral with respect to t and 
then take the derivative with respect to x.  However, the Leibnitz rule is helpful in 
cases where the integral can not be easily carried out.  For example, see Equa-
tion IVa.9.10. 

Leibnitz formula for differentiating a triple integral is a description of the 
Lagrangian versus Eulerian viewpoints in describing a flow field, as discussed in 
Chapter IIIa.  The Leibnitz formula for differentiating a triple integral is an exten-
sion of the Leibnitz formula for differentiation of an integral.  This formula states 
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that the rate of change of c(x, y, z, t), either a scalar or a vector, in a closed region 
V is given by: 

SdVtrcd
t

trc
dtrc

dt

d
SS ⋅+

∂
∂=

V
V ),(V

),(
V),(                  VIIc.1.27 

In Equation VIIc.1.27, SV  represents the velocity of surface S, encompassing 

volume V.  If Volume V is a deformable volume then SV  is a function of spatial 

coordinate.  If volume V is accelerating or decelerating then SV  is also a function 

of time.  Thus in general, SV  = ),( trf .  Also ndSSd = , where n  is the unit 

vector of surface S.
Equation VIIc.1.27 is the expression of the general transport theorem.  If vol-

ume V contains certain fluid mass encompassed by surface S, the surface velocity 

becomes the fluid velocity V (i.e., SV  = V ), the total derivative (d/dt) is replaced 

by the substantial derivative, and Equation VIIc.1.27 is written as: 

⋅+
∂

∂=
Vm

mVm V
),(

V),( S SdVcd
t

trc
dtrc

Dt

D
     VIIc.1.28 

where Vm stands for the material volume enclosed by Sm.  Equation VIIc.1.28 is 
now referred to as the Reynolds transport theorem.  We may relate the total and 
the substantial derivatives by eliminating the volume integral of the partial deriva-
tive to obtain the relation between the control volume and the material volume at 
the instant they coincide: 

VV ),(V),(V),( S r SdVtrcdtrc
dt

d
dtrc

Dt

D ⋅+=      VIIc.1.29 

where in Equation VIIc.1.29, sr VVV −=  represents the relative velocity of the 

fluid in volume V with respect to the velocity of surface S encompassing volume 
V.  The intensive and extensive properties of a system can be related if we intro-
duce y such that ρ/),( trcy = .  The integral in the left side can then be replaced 

by Y so that y = DY/Dm.  Substituting, Equation VIIc.1.29 simplifies to: 

V V S r SdVydy
dt

d

Dt

DY ⋅+= ρρ                      VIIc.1.30 

Equation VIIc.1.30 applies to a general case of deformable and moving control 
volumes.  In a specific case that the control volume is fixed (Vs = 0, Vr = V), Equa-
tion VIIc.1.30 can be written as: 

( ) ⋅+
∂
∂=

V

V S SdVydy
tDt

DY ρρ  = V V S SdVydy
t

⋅+
∂
∂ ρρ

   VIIc.1.31 
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For example, a control volume representing a pump is a fixed control volume.  In 
contrast, filling a balloon or draining a tank requires deformable control volumes 
to represent the air in the balloon or water in the tank. 

Harmonic functions.  A harmonic function is the solution to the Laplace dif-
ferential equation VIIa.1.1 that has continuous second-order partial derivative. 
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VIId.  Linear Algebra 

1.  Definition of Terms 

Row vector.  A row vector is a group of real numbers written in a row.  For ex-
ample, the row vector A is defined as [ ]naaaaA ,,,, 321= .  Each individual 
number in this vector is referred to as a component. 

Column vector. A column vector is a group of real numbers written in a col-
umn.  If the column vector has n numbers, then the column vector is an n-
dimensional vector or a vector of order n.

Equal vectors.  Two row vectors or two column vectors are equal if they are of 
the same order and have identical components. 

Addition of vectors.  Only vectors of the same type (row or column) and the 
same order can be added.  For example, the addition of two row vectors of order n 
is given as: 

[ ] [ ] [ ]nnnn bababababbbbaaaaBA ++++=+=+ ,,,,,,,,,,,, 332211321321

Commutative laws of addition.  For any n-dimensional row (or column) vec-
tors such as vectors A and B:

A + B = B + A

Associative laws of addition.  If A, B, and C are any n-dimensional row (or 
column) vectors: 

(A + B) + C = A + (B + C)

Multiplication of a vector by a number.  If A is an n-dimensional row vector, 
then the product of A by a real number c is given as:  [ ]ncacacacacA ,,,, 321= .

Multiplication of vectors.  If A is a row vector and B a column vector, then the 
product of BA ⋅  is a scalar given by: 

[ ] ( ) =++++==⋅
=

n

k
kknn

n

n bababababa

b

b

b

b

aaaaBA
1

1111311321121111

1

31

21

11

1131211 ,,,,

Now consider multiplication of a column vector and a row vector: 
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[ ] ==⋅

11113112111

11311331123111

211211321122111

111111311121111

1131211

1

31

21

11

,,,,

nnnnn

nn

n

n

n

n babababa

babababa

babababa

babababa

aaaa

b

b

b

b

BA

The result is called a matrix as defined below. 

The distributive law of vectors.  If A is a row vector of dimension n and B and 
C are column vectors of dimension n, the distributive law specifies that: 

CABACBA ⋅+⋅=+⋅ )(

Matrix.  A rectangular array of real numbers is called a matrix when arranged 
as shown in Figure VIId.1.1(a).  Note that in general, the number of rows and col-
umns are different. 

=

mnmm

n

n

aaa

aaa

aaa

A

21

22221

11211

=

nnnn

n

n

aaa

aaa

aaa

A

21

22221

11211

                     (a)                                                           (b) 

Figure VIId.1.1.  Demonstrations of (a) a matrix and (b) a square matrix 

Order of a matrix defines the number of rows and columns.  For example, if a 
matrix has m rows and n columns then the matrix is of order m by n or alterna-
tively m × n.  Hence, a row vector is a 1 × m matrix and a column vector is an m
× 1 matrix.  Two matrices of the same order are referred to as comforbale.

Square matrix.  A nm ×  matrix would be referred to as a square matrix if m
= n as shown in Figure VIIc.1.1(b).

Main diagonal.  In a square matrix, the main diagonal consists of the aii ele-
ments.   

Zero matrix.  All the elements of a zero matrix are zeros. 

Upper triangular matrix.  A square matrix with elements aij = 0 for i > j is 
called an upper triangular matrix  (Figure VIId.1.2(a)). 

Lower triangular matrix.  A square matrix with elements aij = 0 for i < j is 
called a lower triangular matrix  (Figure VIId.1.2(b)). 
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=
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n

n
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aa

aaa

A

00

0 222

11211

=

nnnn aaa

aa

a

A

21

2221

11

0

00

=

nna

a

a

A

00

00

00

22

11

     (a)                                                 (b)                                               (c) 

Figure VIId.1.2.  Demonstration of (a) upper triangular, (b) lower triangular, and (c) di-
agonal matrix 

Diagonal matrix.  All elements of a diagonal matrix are zeroes except for the 
elements of the main diagonal.  In other words, a matrix which is both upper and 
lower triangular, is called a diagonal matrix: 

Scalar matrix.  A scalar matrix is a diagonal matrix with elements such that 
kaaa nn ==== 2211 .

Identity matrix.  An identity matrix is a scalar matrix with k = 1. 

Sums of matrices.  If matrix [ ]
mnijaA =  is added to (or deducted from) matrix 

[ ]
mnijbB = , the result would be matrix C with elements given as 

[ ]
mnijij baC ±= .  The commutative and associative laws of addition described for 

vectors also apply to matrices.  Only matrices of the same order can be summed. 

Multiplication of matrices.  The product of matrix [ ]
mnijaA =  by matrix 

[ ]
npijbB =  is matrix [ ]

mpijcC =  with elements given as: 

mnmm

inii

n

aaa

aaa

aaa

21

21

11211

npnjn

pj

pj

bbb

bbb

bbb

1

2221

1111

=

mpmjm

ipjii

pj

ccc

ccc

ccc

1

1

1111

Where element cij of matrix C is given by:   

njinjijiji bababac +++= 2211,

As shown above, in multiplication of two matrices A and B, these need not be 
square matrices.  However, the number of columns of matrix A must be equal to 
the number of rows of matrix B.  It is also important to note that matrix multiplica-
tion is not a linear operation hence, .BAAB ≠   An example of multiplication of 
two square matrices is as follows 

−
−

=
−
−−
−

−
−

−

114916

31566

151020

816

531

6117

315

493

211
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An example of the multiplication of two non-square matrices, A(na, m)B(m, mb) = 
C(na, mb), is: 

−
=

−
−

−

−−
−

−

3755

16342

11574

129

63

72

40

51

49126

75370

1011851

Transpose of a matrix.  The transpose of matrix A is matrix AT, obtained by 
interchanging the rows and columns of A:

=

mnmm

n

n

aaa

aaa

aaa

A

21

22221

11211

, =

mnnn

m

m

T

aaa

aaa

aaa

A

21

22212

12111

Note that (AT)T = A, (A + B)T = AT + BT, (AB)T = BTAT.  Furthermore, matrix A is 
said to be symmetric if A = AT and is said to be skew symmetric if A = – AT.

Determinant of a square matrix.  A determinant of a square matrix is a func-
tional value assigned to the numbers in the square array.  While a matrix is repre-
sented by an array of numbers within brackets, the determinant of the matrix is 
represented by the same array of numbers within two parallel lines: 

=

nnnn

n

n

aaa

aaa

aaa

A

21

22221

11211

nnnn

n

n

aaa

aaa

aaa

A

21

22221

11211

=

Minor determinant of a square matrix.  If we eliminate the row and column 
associated with element aij of matrix A then the remaining array of numbers make 
up the elements of a minor determinant shown by Mij.  Therefore, there are as 
many minor determinants as the number of elements in the matrix.  Note that if the 
order of matrix A is n, the order of each minor determinant is n – 1. .  For exam-
ple, for element a12, of matrix A, the minor determinant is found as: 

nnnn

n

n

aaa

aaa

aaa

A

21

22221

11211

= ,

nnn

n

aa

aa

M

1

221

=

Example:  Let’s find the minor determinant corresponding to elements a22, a23,
and a32 of matrix A below: 
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−
−

−
=

843

315

261

A ,
83

21
22

−
=M ,

43

61
23 −

−
=M ,

35

21
32 −

−
=M ,

Cofactor of an element of a matrix.  The minor determinant multiplied by    
(–1)i+j is called the cofactor of element aij of matrix A and is designated as c

aij
A .

For example, the cofactors of a11, a23, and a33 of matrix A below are obtained as: 

−
−

−−
=

279

450

312

A ,
27

45
)1( 2

11 −
−

−=CA ,
79

12
)1( 5

23 −
−−

−=CA ,
50

12
)1( 6

33
−−

−=CA

The cofactor matrix.  A matrix whose elements are the cofactors of the ele-
ments of matrix A is known as the cofactor matrix of A.  A matrix and its associ-
ated cofactor matrix are written as: 

=

nnnn

n

n

aaa

aaa

aaa

A

21

22221

11211

, =

c
nn

c
n

c
n

c
n

cc

c
n

cc

c

AAA

AAA

AAA

A

21

22221

11211

Example: Consider matrix A and its associated cofactor matrix (Ac): 

−
−

−−
=

679

851

325

A

−−
−−
−−−

=
23371

53579

527826
cA

Determinant of a square matrix.  For matrix A of order n, the value of the de-
terminant is given as: 

=−= + c
aijijij

ji
ij

AaMaA )1(         VIId.1.1 

where ij
jic

a MA
ij

+−= )1(  is the cofactor and Mij is the minor determinant associ-
ated with element aij.  This minor determinant is of order n – 1 and obtained by 
deleting the ith row and jth column, as discussed before.  For a matrix of order n,
there are n! terms to evaluate.  Consider first a matrix of order 2.  There are 2! = 2 
terms to evaluate.  Using Equation VIId.1.1, the determination of a matrix of or-
der 2 becomes: 

21122211
2221

1211 aaaa
aa

aa
A −==



968      VIId.  Engineering Mathematics:  Linear Algebra 

We now calculate the determinant of a matrix of order 3.  In this case, there are 3! 
= 6 terms to evaluate: 

)()()( 221323123132133312212332332211

2322

1312
31

3332

1312
21

3332

2322
11

333231

232221

131211

aaaaaaaaaaaaaaa

aa

aa
a

aa

aa
a

aa

aa
a

aaa

aaa

aaa

A

−+−−−

=+−==

Example: The determinant of matrices A, B, and C are calculated as follows: 

721

1310

561

942

−=
−−
−

−
=A , 4

774340

512827

271514

=
−

−−
−

=B , 1000

305045

403015

252010

=
−

−−
−

=C

Singular matrix.  If the determinant of a matrix is zero, then the matrix is sin-
gular. 

Adjoint matrix.  The transpose of the cofactor matrix is called the adjoint ma-
trix.  Matrix A, the cofactor matrix Ac, and the adjoint matrix of A are shown in 
Figure VIId.1.3(a), (b), and (c), respectively. 
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                      (a)                                            (b)                                                (c) 

Figure VIId.1.3.  Demonstration of (a) square matrix, (b) the cofactor matrix, and (c) the 
adjoint matrix. 

Diagonally dominant matrix.  In diagonally dominant matrices, the magnitude 
of the element located on the diagonal in each row is larger than the sum of the 
magnitude of all the other elements in that row: 

≠
>

ijall
ijii aa

2.  The Inverse of a Matrix 

The inversion of a matrix is very important in determining solutions to sets of al-
gebraic equations.  The process of matrix inversion is analogous to division for 
real numbers.  If matrix B is the inverse of matrix A, then the product of matrices 
A and B is equal to the identity matrix, AB = I.  The inverse of a matrix is denoted 



2.  The Inverse of a Matrix       969 
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−
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=

4111

792

1105

A , −−−
−−−

=
253779

115941

1018529
cA , C = ( )

−−
−−
−−

==
25115101

37985

794129

adjAA
Tc

                 (a)                                     (b)                                                                 (c)

Figure VIId.2.1.  Demonstration  of  (a)  a  square  matrix,  (b) the cofactor matrix, and (c)
the adjoint matrix 

as B = A– 1.  But not every matrix has an inverse.  There are two conditions for a 
matrix to have an inverse.  The first condition requires the matrix to be square so 
that a determinant can be calculated.  The second condition requires the determi-
nant of the matrix to be nonzero otherwise the matrix is singular.  To inverse ma-
trix A, we first replace all elements by their associated cofactors to obtain the co-
factor matrix, Ac.  We then transpose the cofactor matrix to obtain the adjoint 
matrix.  The inverse of the matrix is the result of the division of the elements of 
the adjoint matrix by the determinant of matrix A:

A

adjA
A =−1

For example, if we want to find the inverse of matrix A, Figure VIId.2.1(a), we 
must first find the cofactor matrix by replacing each element of matrix A by its 
minor determinant, using the correct sign.  This is shown in Figure VIId.2.1(b).  
The adjoint matrix of A is then obtained by transposing matrix Ac.  Finally, the in-
verse matrix A–1 is obtained by dividing elements of matrix C by the determinant 
of matrix A.

Elements of the cofactor matrix are obtained as follows.  For element a11 = –5, 
we substitute from the minor determinant obtained from eliminating elements in 
the first row and the first column of matrix A to get [ )71(49 ×−−×− ] = – 29.  We 
retain the sign as the summation of first row and first column is an even number.  
Similarly, for element a21 = 2 we substitute from )]1(1410[ −×−×  = 41.  How-
ever, the sign for this term would be minus since the summation of the row and 
column is an odd number. 

We now calculate the determinant of matrix A.  This is facilitated as we already 
have the minor matrices: 

806)79(11)41(2)29(5

4111

792

1105

−=−−−−=
−−
−

−
=A

Having the adjoint matrix, Figure VIId.2.1(c) and the determinant, the inverse ma-
trix becomes: 
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−
−
−

=−

0310.01430.0125.0

0459.00112.0105.0

0980.00509.0036.0
1A

To ensure that we have made no algebraic error, we should calculate the product 
of AA-1 = I:

−−
−

−

4111

792

1105

−
−
−

×
0310.01430.0125.0

0459.00112.0105.0

0980.00509.0036.0

=

100

010

001

Several matrices and their inverse matrices are provided below.  The reader should 
try to follow the above procedure to inverse each matrix and compare the results 
with the inverse matrices presented. 

Example 1: 

−
−−=
1271

409

213

A , −
−−−

=−

06160.01510.04320.0

0411.02330.07120.0

0274.0178.0192.0
1A , 146=A

Example 2: 

−−
−

−−
=

630.075.025.0

4000.056.030.0

079.000.115.0

A ,

−−−
−

−
=−

46.257.1968.0

953.030.101.1

060.585.7601.0
1A , 0878.0−=A

Example 3: 

1

10 14 15 8 0.393 0.194 0.113 0.188

13 3 21 13 0.0441 .0089 0.0229 0.072
,

18 12 7 11 1.12 0.431 0.243 0.602

2 19 14 10 1.40 0.581 0.274 0.769

A A−

− − −
− − − −

= =
− − − − −
− − − − −

, 6980=A

Example 4: 

−
−

−−
−−

=

9023

10108

11932

7654

A ,

−−
−

−−−
−−−

=−

091.0168.0160.0269.

106.0234.0977.0162.

101.0762.1210.1630.

127.1010.0323.0315.

1A , 5550A = −

Such operations can be easily performed by using the accompanying CD-ROM. 
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3.  Set of Linear Equations 

Mathematical modeling of most physical phenomena reduces to a set of simulta-
neous differential equations the solution of which would determine the parameters 
of interest.  The solution to such set of equations involves the approximation of 
the differential terms by finite difference, for example, and then linearization of 
the nonlinear terms.  The linearization of a set of non-linear differential equations 
is discussed in Chapter VIIe.  The net result is a set of linear simultaneous equa-
tions as given in Equation VIId.3.1, which must be solved in each time interval to 
obtain the trend of the parameters.  There are several techniques for solving a set 
of n simultaneous linear equations in n unknowns: 

=++++

=++++
=++++

nnnnnnn

nn

nn

cxaxaxaxa

cxaxaxaxa

cxaxaxaxa

332211

22323222121

11313212111

        VIId.3.1 

such as matrix inversion and the Gauss – Seidel iteration method. 

3.1.  Solution to a Set of Linear Equations by Matrix Inversion 

The above general set of linear equations can be written in the form of a matrix 
equation as: 

Ax = c            VIId.3.2 

where A is the coefficient matrix, x is the unknown vector, and c is the constant 
vector.  If we now multiply both sides of Equation VIId.3.2 by A–1 we get A–1(Ax)
= A–1c.  Since A–1A = I, the left hand-side becomes: 

x = A–1c

As a result, to solve a set of algebraic equations, we must find the inverse of the 
coefficient matrix and multiply it by the vector of the constants.  If we place the 
vector of constants c as the last column inside the coefficient matrix A, the resul-
tant is called the augmented matrix.  Several examples are provided below.  The 
reader should try to solve these sets and compare the results with those given be-
low. 

Example 1.  Consider the set of linear equations as shown in Figure VIId.3.1(a).  
This set in matrix form is shown in Figure VIId.3.1(b).  The augmented matrix of 
this set is shown is Figure VIId.3.1(c). 
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                     (a)                                               (b)                                            (c) 

Figure VIId.3.1.  Demonstration of (a) set of linear equations, (b) matrix form, and (c)
augmented matrix 

Upon solving the above set, the solution vector becomes x = [– 4.52, –3.91, 1.48, –
0.414]T.

Example 2: 

=−−+
−=++−

−=−−+
=+−−

1034137

566

1013344

15212

zyxw

zyxw

zyxw

zyxw

,
−
−

=

−−
−

−−
−−

10

5

10

15

34137

6611

13344

21112

z

y

x

w

,

−−
−−
−−−

−−

1034137

56611

1013344

1521112

The answers obtained for x1 through x4 is arranged in the transpose of the solution 
vector:

xT = [0.0343, 0.405, – 2.18, 1.41]T.

3.2.  Solution to a Set of Linear Equations by Gauss – Siedel Iteration 

This is a simple and effective method to solve sets of linear algebraic equations.  
To explain the Gauss – Seidel iteration, let’s consider a set of 3 equations in 3 un-
knowns: 

=++
=++

=++

3333232131

2323222121

1313212111

cxaxaxa

cxaxaxa

cxaxaxa

          VIId.3.3 

This set can be arranged as: 

=

3

2

1

3

2

1

333231

232221

131211

c

c

c

x

x

x

aaa

aaa

aaa

We have arranged this set so that the diagonal elements in the coefficient matrix 
have the largest magnitude in each row.  For example, for row 2 we have a22 > a21

and a22 > a23, etc.  This arrangement expedites the iteration process.  In fact, if the 
diagonal elements are larger than the summation of other elements of their corre-
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sponding rows – in other words, the coefficient matrix is diagonally dominant – 
the convergence is guaranteed. 

To demonstrate the Gauss – Seidel method, we try to solve the above set of lin-
ear equations.  For this purpose, we obtain x1 from the first, x2 from the second, 
and x3 from the third equation – assuming nonzero coefficients – as follows: 

3323213133

2232312122

1131321211

/)]([

/)]([

/)]([

axaxacx

axaxacx

axaxacx

+−=
+−=
+−=

         VIId.3.4 

To calculate x1 from Equation VIId.3.4, for example, we need to have the val-
ues for x2 and x3.  Since we do not have these values before hand, we resort to 
guessing based on the knowledge we have about the system of equations.  Using 
the initial guesses, we obtain updated values from Equation VIId.3.4.  We con-
tinue this process and at each trial we compare the updated values with the previ-
ous values.  If the difference is less than a specified convergence criterion then we 
conclude that the iteration has converged.  Using superscript k as an index of itera-
tion, the values of each parameter at iteration number k + 1 become: 

33
)1(

232
)1(

1313
)1(

3

22
)(
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)1(

1212
)1(

2

11
)(

313
)(

2121
)1(

1

/)]([

/)]([

/)]([

axaxacx

axaxacx

axaxacx

kkk

kkk

kkk
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+

+−=

+−=

+−=

Note that as soon as a new value for a variable is calculated, it is used to obtain the 
new values for the rest of parameters.  Let’s try this iterative method for the fol-
lowing set of linear equations: 

=+−
−=−+

=++

113

542

53

zyx

zyx

zyx

For the first step we obtain: 

−−=
−−−=

+−=

3/)](11[

4/)]2(5[

3/)](5[

yxz

zxy

zyx

To begin iteration, we may assume x = y = z = 0.  From the first equation, new x
becomes x(1) = 1.666.  From the second equation, new y becomes y(1) =  [–5 – 
(3.333 + 0)]/4 = –2.0833.  From the third equation, new value for z becomes z(1) = 
[11 – (1.666 + 2.0833)]/3 = 2.4168.  We will use the updated values in the next 
step of the iteration process as is summarized below.  Note that k is the iteration 
index: 
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k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 
0 1.666 1.555 1.2499 1.1195 1.0712 1.0370 1.0178 
0 –2.083 –1.4235 –1.2065 –1.0978 –1.0656 –1.031 –1.0147 
0 2.4168 2.6738 2.8478 2.880 2.9544 2.977 2.9892 

As seen from this table, the values are approaching 1, –1, and 3 for x, y, and z, re-
spectively.  The criterion for terminating the iteration is that: 

ε<
−
old
i

old
i

new
i

x

xx

where ε  is a specified convergence criterion, such as 6101 −× .  As a result, to 
solve a set of linear equations given by Ax = c, we develop the following algo-
rithm for the Gauss – Seidel iteration: 
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Solution to a set of equations can be easily found by using the software included 
on the accompanying CD-ROM. 

3.3.  The Characteristic Equation of a Matrix 

Mathematical modeling of engineering problems that are oscillatory in nature – 
such as mechanical vibration and alternating current – leads to linear algebraic 
systems of the type: 

nnnnnn

nn

nn

xxaxaxa

xxaxaxa

xxaxaxa
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λ

=+++

=+++
=+++

2211

22222121

11212111

       VIIc.1.16 

or in the matrix form: 

( ) 0=− xIA λ           VIIc.1.17 

where A is the square matrix of coefficients, x is the vector of unknowns, I is the 
identity matrix, and λ  is a parameter.  According to Cramer’s rule, the only way 
of having a nontrivial solution for the above homogeneous system is for the de-
terminant of the system of equations to be zero. 



3.  Set of Linear Equations       975 

( )

λ

λ
λ

λλ

−

−
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=−=

nnnn

n

n

aaa

aaa

aaa

IAP

21

22221

11211

det)(  = 0    VIIc.1.18 

The equation resulting from expansion of the above determinant is known as the 
characteristic polynomial of matrix A.  The roots of the characteristic polynomial 
( ),,, 21 nλλλ ) are referred to as the characteristic values or eigenvalues.  Vec-
tors corresponding to the eigenvalues are referred to as characteristic vecors or ei-
genvectors.
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VIIe.  Numerical Analysis 

In Chapter VIIIb, we studied analytical solutions of differential equations in 
closed form.  Despite all the advantages associated with analytical solutions, we 
frequently have to resort to numerical solutions.  This is due to the inability of 
analytical methods to deal with the involved complexities in dealing with many 
engineering problems.  The primary advantage of analytical solutions is to provide 
exact answers in functional relationships.  The latter makes analytical solutions 
independent of any specific problem to be analyzed.  Numerical solutions, on the 
other hand, are problem dependent.  For example, any change in a boundary con-
dition requires the entire problem to be recalculated.  Another key difference is 
that numerical solutions provide answers only in tabulated form.  On the plus side, 
numerical solutions can handle complicated problems and therefore can, remove 
the limitations inherent in analytical methods when dealing with nonlinearities.  
Numerical methods can be divided into two groups: deterministic and statistic.  
The deterministic group consists of such techniques as finite difference and finite 
element.  The statistical group deals primarily with such topics as the Monte Carlo 
method.  Finite difference methods, for example, are used to solve ordinary and 
partial differential equations.  Ordinary differential equations are solved based on 
either the Taylor’s series technique or based on the predictor-corrector technique.  
The Taylor’s series technique includes the Runge-Kotta and the Euler methods 
while the predictor-corrector technique includes Adams, Moulton, Milne, and Ad-
ams Bashford methods.  Partial differential equations can be divided into three 
categories: Elliptic, Hyperbolic, and Parabolic.  These equations are solved nu-
merically by either the explicit, semi-implicit, or fully implicit method.  In this 
chapter we consider only the finite difference methods.   

1.  Definiton of Terms 

Accuracy.  The reason this term is associated with numerical methods is that, 
unlike analytical solutions, numerical methods are always associated with certain 
degree of approximation.  Accuracy is a measure of the closeness of the result ob-
tained from a numerical solution to an exact answer obtained from an analytical 
solution.  Although, in most cases, we do not have analytical answer to compare 
with, reduction of errors associated with numerical solutions leads to increased ac-
curacy.

Backward difference.  This definition is useful in the topic of interpolation.  
Consider a set of y values associated with a specified set of x values as yi = f(xi).
For simplicity, let’s assume that all x values are equally spaced.  We now define 
the first-order backward difference as )()( 1−−=∇ iii xfxff .

Central difference.  For the same set of values described above, the central 
difference is defined as: 
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x

xfxf
∆−−∆+=δ

Forward difference.  For the same set of y values defined for backward differ-
ence, we may define the first-order difference as )()( 1 iii xfxff −=∆ + .  Simi-

larly, a second-order difference is defined as: 

)]()([)]()([)()()]()([)( 11211
2

iiiiiiiiii xfxfxfxfxfxfxfxfff −−−=∆−∆=−∆=∆∆=∆ +++++

Which simplifies to: 

)()(2)( 12
2
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Using the same procedure, we can find the nth order difference as: 
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Round-off error.  Most floating point operations involve some loss of sig-
nificant digits due to the finite word length of the computer.  This loss of digits is 
known as the round-off error.  Arithmetic operations performed in single preces-
sion carry 7 or 8 significant digits for each variable.  To reduce the round off error, 
we use double precession, which nearly doubles the number of significant digits 
assigned to the variable.  The round-off error is also a function of the degree of the 
involved arithmetic as well as the step size.  The cumulative round-off error in-
creases as the step size is reduced. 

Truncation error.  In numerical analysis, we usually represent functions by a 
limited number of terms of their expansions in Taylor’s series.  As more terms in 
the expansions are used, the truncation error is reduced. 

Mesh size.  The step size or mesh size is the increment applied to dependent 
variables and is shown as ,x∆ ,y∆ tz ∆∆ , , etc.  The mesh size affects the discreti-
zation error.  The smaller the mesh sizes, the smaller the discretization error, the 
lager the number of arithmetic operations, and consequently the running time. 

Discretization error.  The discretization error stems from using a finite value 
for the step size, such as x∆ to represent an infinitesimal value, such as dx.  The 
discretization error is a direct function of the step size.  The smaller the steps size, 
the smaller the discretization error.  On the other hand, as was discussed earlier, 
the smaller the steps size, the larger the round off error.  Therefore, there is basi-
cally an optimum value for the step size to have the minimum error, as shown in 
Figure VIIe.1.1. 
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Figure VIIe.1.1.  Depiction of dominance of numerical errors versus step or the increment 
size 

Local error.  An error that appears in the calculation of a variable at a specific 
step, of numerical integration for example, is known as the local error. 

Propagated error.  An error that appears in a step due to the accumulation of 
errors of the successive steps is a propagated error.  The propagated error is in ad-
dition to the local error corresponding to that step. 

Numerical stability.  If the propagated error is further accumulated as the nu-
merical process continues, a point may be reached where the error surpasses the 
true value of the variable.  This results in invalid values known as a numerically 
unstable condition.  A stable condition occurs where errors do not accumulate.   

Nonlinear equation.  An equation that contains multiples of a dependent vari-
able by itself or its derivatives, is a nonlinear equation.  Such equations can be lin-
earized by the use of Taylor’s series. 

Explicit numerical scheme:  Approximation of a first order differential equa-
tion dy/dt = P(t)y + Q(t) in an explicit scheme is [y(tn+1) – y(tn)]∆t = P(tn)y(tn) + 
Q(tn) where n is the discretization index. 

The partial differential equations of parabolic type can be solved by forward 
difference to explicitly calculate the dependent variable in terms of all the known 
quantities.  The size of increments in this scheme must remain below limit to 
avoid numerical instability. 

Implicit numerical scheme:  Approximation of a first order differential equa-
tion dy/dt = P(t)y + Q(t) in fully implicit numerical scheme is [y(tn+1) – y(tn)]∆t = 
P(tn+1)yn+1 + Q(tn+1) where n is the discretization index.  Approximation of the 
above equation in semi-implicit scheme is [y(tn+1) – y(tn)]∆t = P(tn)yn+1 + Q(tn).

Also the partial differential equations of a parabolic type can be solved by for-
ward difference to calculate the dependent variable in terms of all other dependent 
variables, which are also unknowns.  This requires successive simultaneous solu-
tion of sets of equations.  The implicit scheme is unconditionally stable. 
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2.  Numerical Solutions of Ordinary Differential Equations 

There are several methods for numerically solving the initial value problems of 
ordinary differential equations among which we mention such method as Taylor’s 
series, Euler, Adams, Adams-Bashforth, Adams-Moulton, Milne, and Runge-
Kutta.  These methods can be basically divided into two groups.  The first group 
includes methods based on Taylor’s series.  The second group are those based on 
the “predictor-corrector” method. 

2.1.  Methods Based on Taylor – Series 

Three such methods are discussed below including Taylor’s series, Euler, and 
Runge-Kutta. 

Taylor’s Series Method 

To explain this method, we use a first order differential equation for which we can 
readily find an exact answer by analytical means.  We then use the Taylor’s Series 
method to find an approximate solution for comparison with the exact solution to 
determine the degree of approximation.  Consider for example: 

22 xy
dx

dy =−

Subject to y(0) = 1/2.  We may find the exact solution to this equation by using 
Equation VIIb.2.4: 
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++−=+=
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xxCeCdxexey xdxdx

where the method of “integration by part” was used twice to carryout the integral.  
Applying the boundary condition, the exact solution becomes y = 0.75e2x – 0.5(x2

+ x + 0.5).  Let’s now try the Taylor’s series method.  In this method, the idea is to 
find a relation between y and x.  Such relation exists when we expand y in terms of 
powers of x about the point x0 by the Taylor’s series (Section VIIa.1).  In this ex-
ample, since the boundary condition is given at x = 0, we may expand y about 
x = 0 and use Maclaurin’s series to get: 
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Starting from x = x0, which in this case is x = 0, we can find y at any other interval 
provided that we have y(0), )0(y′ , )0(),0( yy ′′′′′ , etc.  We already have the first 

value (i.e. y(0)) from the boundary condition. The second value, )0(y′  is found 

from the differential equation itself as: 

),(2 2 yxfxy
dx

dy =+=
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Hence 10)0(2)0( =+=′ yy .  The third and subsequent values are found from 

successive derivation of the differential equation: 
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dx
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dx

d
y 22)( +′==′′

Since 1)0( =′y , then 2)0( =′′y .  For the third value: 
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Since 2)0( =′′y , then 6222)0( =+×=′′′y .  For the fourth derivative: 
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dx
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which gives 12)0( =ivy .  Similarly, for the fifth derivative; 

ivivv yy
dx

d
y 2)( ==

Therefore, yv(0) = 24.  Let’s stop here and substitute the values we obtained in the 
MacLaurin expansion of the function y to get: 
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We can now set up the following table to summarize the comparison between ana-
lytical and numerical answers corresponding to various values of x.  Note that the 
increment of x values in Table VIIe.2.1 is 0.1. 

These results indicate that we should have retained more terms in the Maclaurin 
series to increase accuracy.  The disadvantage of this method is that, for any prob-
lem, the derivatives must be carried out individually. 

Table VIIe.2.1. Taylor – series method versus the analytical solution 

x yTaylor yAnalytical

0.0 0.5 0.5 
0.1 0.61052 0.611052 
0.2 0.748864 0.748868 
0.3 0.921536 0.921589 
0.4 1.138848 1.139156 
0.5 1.412500 1.413711 
0.6 1.756352 1.760087 
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The Euler Method 

The Euler method is a simplified form of the Taylor’s series method where only 
the first derivative is retained.  This method is simple to use as no higher order de-
rivative needs to be carried out but, due to tendency to propagate local error, small 
increments must be used.  In the Euler method values of the function are obtained 
at each increment or interval based on the value marching.  To introduce the Euler 
method, we can either use the Taylor –series with only the first two terms retained 
or use Equation VIIb.2.1: 

yxPxQ
dx

dy
)()( −=            VIIb.2.1 

and approximate the derivative term: 
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yy
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This is the explicit numerical scheme.  The recursive formula is then given by: 

xyxfyy iiii ∆+=+ ),(1

Let’s apply this method to the earlier example for which we already have solutions 
from both the analytical and the Taylor’s series methods.  In that example, we 
have 22),( xyyxf += .  The procedure is to start from the initial value we have, 
which in this case is y(0) = 0.5, and calculate the successive values for y by using 
an increment, of say, .1.0=∆x   This is summarized in Table VIIe.2.2. 

Table VIIe.2.2.  Euler method ( 1.0=∆x )

x yn f(xn, yn) yn+1

0.1 0.5000 0.101 0.6010 
0.2 0.6010 0.121 0.7252 
0.3 0.7252 0.15404 0.87924 
0.4 0.87924 0.191848 1.071088 
0.5 1.071088 0.2392176 1.3103056 
0.6 1.3103056 0.2980611 1.6083667 

By comparing the result of the Euler method corresponding to 0.6 with the 
Analytical solution we see that the error is nearly 9%.  We then conclude that a 
smaller interval should be used.  Let’s try 01.0=∆x  and summarize results in Ta-
ble VIIe.2.3.  Note that the intermediate steps are not shown. 

With the smaller increment, we improved the accuracy of the Euler method by 
reducing the error to 1%.  Data of Table VIIe.2.3 are produced by FORTRAN 
Progarm VIIe.2.1, included on the accompanying CD-ROM. 
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Table VIIe.2.3.  Euler method ( 01.0=∆x )

x yn f(xn, yn) yn+1

0.0 0.5 1.0001 0.510001 
0.1 0.510001 1.2056847 0.60989922 
0.2 0.60989922 1.50221459 0.746129443 
0.3 0.746129443 1.88558226 0.916646955 
0.4 0.916646955 2.37480475 1.131150425 
0.5 1.131150425 2.9930636724 1.4014624778 
0.6 1.4014624778 3.7686172858 1.7419948229 

The Runge-Kutta Methods 

Another means of solving ordinary differential equations, also derived from the 
methods based on the Taylor series expansion, is the Runge-Kutta methods.  
These methods consist of four algorithms, which are similar in approach but differ 
in the number of subintervals used in each interval.  Like the Euler method, the 
function is assumed to remain constant over a subinterval.  The advantage of the 
Runge-Kutta methods is the much higher order of truncation error obtained than in 
the Euler method.  The general form of the Runge-Kutta methods is: 

),,(1 xyxgxyy iiii ∆∆+=+

Where function ),,( xyxg nn ∆  depends on the specific Runge – Kutta method cho-

sen for the analysis.  The simplest form for the function g is given by the three-
points Runge-Kutta method: 

)
2

,( 2/11 niiii y
x

yxgxyy ′∆+∆+= ++

The third and fourth-order Runge-Kutta methods are equivalent to the Taylor’s se-
ries method carried as far as third and fourth derivatives, respectively.  The four-
point of the third-order Runge-Kutta method is in the form of: 

)4(
6 3211 kkk
x

yy ii ++∆+=+

where k1, k2, and k3 are given as 
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The five-point of fourth-order Runge-Kutta method is in the form of: 

)22(
6 43211 kkkk
x

yy ii +++∆+=+

where k1, k2, and k3 are given as 
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The same example is solved with the fourth-order Runge – Kutta method and the 
results are summarized in Table VIIe.2.4.

Table VIIe.2.4.  The fourth-order Runge-Kotta method ( 1.0=∆x )

x yRunge - Kutta yAnalytical 

0.0 0.5000000 0.5 
0.1 0.6110508 0.611052 
0.2 0.7488653 0.748868 
0.3 0.9215829 0.921589 
0.4 1.1391452 1.139156 
0.5 1.4136948 1.413711 
0.6 1.7600627 1.760087 

By this method, the error at x = 0.6 is now reduced to 0.001%.  Data for Ta-
ble VIIe.2.4 are produced by FORTRAN program VIIe.2.2, included on the ac-
companying CD-ROM. 

2.2.  Methods Based on Predictor-Corrector 

There are several methods based on the predictor-corrector concept such as the 
modified Euler method, Adams method, and Milne method. 

The Modified Euler Method 

In the marching technique, as used in the Euler method, the value at each subse-
quent increment is calculated from the derivative at the previous increment (i.e., 
yn+1 is obtained from '

ny  rather than '
1+ny ).  In the modified Euler method, to bet-

ter represent the function in the chosen interval, )(xy′  is obtained at the average 
of '

ny  and '
1+ny .  Since the value of '

1+ny  is not known before hand, an iterative 
process must be used.  The approach in the modified Euler method is as follows: 

Predictor: )()()( 1 iii xyxxyxy ′∆+=+         VIIe.2.1 

Corrector: )]()([
2

)()( 11 ++ ′+′∆+= iiii xyxy
x

xyxy        VIIe.2.2 

The corrector (Equation VIIe.2.2) can alternatively be written as: 
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)],(),([
2

)()( )(
111

k
iiiiii yxfyxf

x
xyxy +++ +∆+=         VIIe.2.3 

where in Equation VIIe.2.3, k is the iteration index and is placed inside the paren-
theses to emphasize that it is not an exponent for y.  To demonstrate the modified 
Euler method, let’s apply the predictor-corrector concept to the same example 
used in Section 2.1.  For this purpose, we substitute: 

),(2 2 yxfxy
dx

dy =+=

into Equation VIIe.1.3 to obtain: 

)]2()2([
2

)(
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2
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2)1(
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k
iiiii

k
i yxyx

x
yy ++

+
+ +++∆+=

To find the starting value (i.e. 0
1y ) we use the Predictor (i.e. Equation VIIe.2.1).  

Using an interval size of 05.0=∆x , the iterations for y1 progress as follows: 

=0
1y  0.5 + 0.05 (0 + 2 ×  0.5) = 0.55 

=1
1y  0.5 + 0.025 [(0 + 2 ×  0.5) + (0.052 + 2 ×  0.55)] = 0.5525625 

=2
1y  0.5 + 0.025 [(0 + 2 ×  0.5) + (0.052 + 2 ×  0.5525625)] = 0.5526906 

=3
1y  0.5 + 0.025 [(0 + 2 ×  0.5) + (0.052 + 2 ×  0.5526906)] = 0.55269700 

=4
1y  0.5 + 0.025 [(0 + 2 ×  0.5) + (0.052 + 2 ×  0.55269700)] = 0.55269730 

=5
1y  0.5 + 0.025 [(0 + 2 ×  0.5) + (0.052 + 2 ×  0.55269730)] = 0.55269730 

In this case, the iteration converged in five steps.  Generally, however, we stop the 
process after the specified convergence criterion is met, then we proceed to calcu-
late y2, y3, ,4y  until the specified interval is covered.  

For higher accuracy, we may choose a smaller increment such as 0.01, 0.001, 
etc.  The results obtained from the modified Euler method for 05.0=∆x ,

01.0=∆x , and 001.0=∆x  are shown in Table VIIe.2.5.  The data for Ta-
ble VIIe.1.4 are produced by FORTRAN program Table VIIe.1.2, included on the 
accompanying CD-ROM. 

Table VIIe.2.5.  The modified Euler method 

x 05.0=∆x 01.0=∆x 001.0=∆x yAnalytical 

0.0 0.5000000 0.5000000 0.5000000 0.5000000 
0.1 0.6112050 0.6110582 0.6110521 0.611052 
0.2 0.7492421 0.7488834 0.7488687 0.748868 
0.3 0.9222736 0.9216164 0.9215894 0.921589 
0.4 1.1402705 1.1392002 1.1391562 1.139156 
0.5 1.4154136 1.4137793 1.4137121 1.413711 
0.6 1.7625828 1.7601872 1.7600888 1.760087 
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The Milne Method 

In this method the predictor – corrector are as follows: 

Predictor: )](2)()(2[
3

4
)()( 2131 −−−+ ′+′−′∆+= iiiii xyxyxy

x
xyxy    VIIe.2.4 

Corrector: )]()(4)([
3

)()( 1111 −+−+ ′+′+′∆+= iiiii xyxyxy
x

xyxy       VIIe.2.5 

The Adams–Bashforth Method 

In this method the predictor – corrector are as follows: 

Predictor:

)](9)('37)(59)(55[
24

)()( 32131 −−−−+ ′−+′−′∆+= iiiiii xyxyxyxy
x

xyxy    VIIe.2.6 

Corrector:

)]()(5)(19)(9[
24

)()( 2111 −−++ ′+′−′+′∆+= iiiiii xyxyxyxy
x

xyxy       VIIe.2.7 

In the first glance, the Milne and the Adams-Bashford equations look complicated 
and convey laborious computation.  However, these are simple relations for pro-
gramming and once coded, they can be used for any function and with any step 
size increment. 

3.  Numerical Solution of Partial Differential Equations 

Most second-order partial differential equations for engineering applications have 
a general form of: 

0),,,,(
2
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∂
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∂
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∂
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yx

u
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x

u
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Depending on the value of B2 – 4AC, the equation may be of elliptic, parabolic, or 
hyperbolic type:  

If B2 – 4AC < 0 the differential equation is elliptic 
If B2 – 4AC = 0 the differential equation is parabolic 
If B2 – 4AC > 0 the differential equation is hyperbolic 

We can alternatively describe differential equations of the elliptic type as having 
the general form of the diffusion equation: 

)()()()()( rSrrqrrp =+∇−∇ φφ          VIIe.3.1 
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If 0)( =rq  and =)(rp constant, Equation VIIe.3.1 becomes the Poisson equation 

as introduced in Chapter VIIb.  If 0)()( == rSrq , Equation VIIe.3.1 becomes the 

Laplace equation. 
Similarly, partial differential equations of the parabolic type are in the general 

form of: 

)(),(),(),(),(
),(

rStrtrqtrtrp
t

tr +−∇∇=
∂

∂ φφφ
        VIIe.3.2 

Finally, partial differential equations of the hyperbolic type are in the form of the 
wave equation: 
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∂
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To solve any of the elliptic, parabolic, or hyperbolic type partial differential equa-
tions numerically, we replace the derivatives by a difference quotient.  To demon-
strate the difference equivalent of a second order derivative, we make use of the 
Taylor series to expand )( xxf i ∆−  and )( xxf i ∆+  about point x and assume that 
the function has a continuous fourth derivative: 

+∆+∆
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We now sum these expansions to get: 

2
11 2

x

fff
f iii
i

∆

+−
=′′ −+

The error in ignoring the remaining terms is of the order of 2x∆ .  Similarly, we 
can use central difference approximation to represent the first derivative as: 

x

ff
f ii
i ∆

−
=′′ −+

2
11

with the same error of order 2x∆  as for the second derivative. 

3.1.  Elliptic Equations 

An example of the elliptic partial differential equation is the steady-state heat con-
duction equation.  In this section, we use two slightly different methods of solving 
this equation numerically.  The first method uses the derived conduction equation 
in the form of a Laplace equation and applies the difference approximation where 
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Figure VIIe.3.1.  Subdivision of a region in the xy-plane 
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Figure VIIe.3.2.  Temperature distribution in a homogeneous plate 

in the second method, we show how to derive the heat conduction equation in dif-
ference form. 

Solving the Laplace Equation 

First, to demonstrate the solution of partial differential equations by difference ap-
proximation, consider the two-dimensional Laplace equation: 

0
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2

2

2
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∂
∂+

∂
∂

y

u

x

u

We now subdivide the region of interest into incremental values (Figure VIIe.3.1).  
The Laplace equation becomes: 
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        VIIe.3.4 
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If for simplicity we assume that the x increment and the y increments are equal, we 
get the algorithm as: 

04 1,1,,,1,1 =++−+ +−+− jijijijiji uuuuu         VIIe.3.5 

or equivalently: 

)(25.0 1,1,,1,1, +−+− +++= jijijijiji uuuuu

implying that the dependent value at each node is the arithmetic average of the de-
pendent value of all the neighboring nodes.  As an example, we may use Equa-
tion VIIb.3.5 to find nodal temperatures in the interior of a plate made of a homo-
geneous material, having all the four boundary temperatures as shown in 
Figure VIIe.3.2.  Using an equal increment of 1 cm for both x and y axes, we ob-
tain the following sets of equations for nodes 1 through 12. 

For node number 1: 404 421 −=++− TTT

For node number 2: 204 5231 −=+−+ TTTT

For node number 3: 404 632 −=+− TTT

For node number 4: 204 7541 −=++− TTTT

For node number 5: 04 86542 =++−+ TTTTT

For node number 6: 204 9653 −=+−+ TTTT

For node number 7: 204 10874 −=++− TTTT

For node number 8: 04 119875 =++−+ TTTTT

For node number 9: 204 12986 −=+−+ TTTT

For node number 10: 1404 11107 −=+− TTT

For node number 11: 1204 1211108 −=+−+ TTTT

For node number 12: 1404 12119 −=−+ TTT

Since this is a set of linear algebraic equations, we can arrange it in a matrix as 
follows: 
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As pointed out in Chapter VIId, there are several ways to solve this matrix equa-
tion including matrix inversion and Gauss-Seidel iteration.  Solving this set of 
equations, we find the determinant of the coefficient matrix to be equal to 0.414E7 
and the value of T1 through T12 (in Centigrade) as: 

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12

23.3 24.7 23.3 28.7 32.0 28.7 39.5 46.0 39.5 63.1 73.1 63.1 

Expectedly, the temperature of nodes 1, 4, 7, and 10 are the same as temperature 
of nodes 3, 6, 9, and 12.  Hence, we could reduce the number of equations by tak-
ing advantage of symmetry.   

Let’s now solve a similar problem but this time as shown in Figure VII.3.3, the 
boundary conditions are specified such that there is no symmetry to reduce the 
number of equations.  Following the same procedure outlined for the previous ex-
ample, we find the following matrix equation: 

∆

∆
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Figure VIIe.3.3.  Temperature distribution in a heterogeneous plate 
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We expect to get the lowest temperature at node 1 and the highest temperature at 
node 12.  Here are the results, in Centigrade, for this case: 

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12

63.6 78.1 100 76.3 99.0 122 92.4 120 138 123 151 160 

We may use the same method to solve similar problems for other boundary tem-
peratures or other mesh sizes such as 0.1 cm.  Smaller mesh sizes give more de-
tailed information about temperature distribution in the plate. 

Direct Derivation of The Heat Conduction Equation 

In the above examples, we used the Laplace equation to solve two cases that dealt 
only with temperature boundary condition. In the second method, we will derive 
the conduction equation in its difference form. 

To do this, we use an arbitrary node such as node xi, yj for the medium shown 
in Figure VIIe.3.4.  This node represents the shaded rectangle, one side at x∆  and 
the other at y∆ .  In this method, we also consider an additional term for internal 

heat generation. 



3.  Numerical Solution of Partial Differential Equations       991 

∆ x

∆ y

x, i

y, j
 xi, yj

 xi+1, yj

 xi, yj+1

xi, yj-1

 xi-1, yj

 xi, yj

∆ x

∆ y

∆ z = 1∆ x

 xi-1, yj

∆ z = 1

Figure VIIe.3.4.  Determination of temperature distribution by direct derivation of heat 
conduction equation 

In the Cartesian coordinate system, the adjacent nodes that exchange heat with 
node (xi, yj) are nodes (xi-1, yj), (xi+1, yj), (xi, yj-1) and (xi, yj+1).  For simplicity, we 
refer to these nodes by using only their indices hence, (xi, yj) is node (i, j), etc.  
Each node in the center of a shaded area (parallelepiped of unit depth) represents 
the temperature of that area.  This shows that in order to have more accurate tem-
perature distribution, we should use a smaller mesh size or increment.  Also note 
that we are using a unit depth which makes the temperature distribution two-
dimensional.  Generally, we must also consider temperature distribution in the z-
direction, in other words, we should solve a three-dimensional problem.  We now 
apply the first law of thermodynamics to the two-dimensional problem of Fig-
ure VIIe.3.5, using each shaded area as a control volume with unit depth 
perpendicular to the plane of Figure VIIe.3.5.  The first law states that in steady 
state, summation of the rate of heat transfer from all of the adjacent nodes plus the 
rate of internal heat generation must be equal to zero: 

0V ,,1,,1,,,1,,1 =′′′++++ →+→−→+→− jijijijijijijijiji qQQQQ

If there is no internal heat generation, by substituting from the Fourier’s law of 
heat conduction we get: 
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If we assume equal increments in the x and y directions, this equation reduces to 
Equation VIIe.3.5 as derived from the Laplace equation.  Having derived the algo-
rithm for interior nodes, we can proceed with the derivation of corner nodes and 
nodes exposed to convection boundary conditions shown in Figure VIIe.3.6. 
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Figure VIIe.3.5.  Nodal heat transfer in steady state two - dimensional conduction 
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Figure VIIe.3.6.  (a) Node at interior corner, (b) node at plane surface, and (c) node at ex-
ternal corner

For the internal corner node with convection of Figure VIIe.3.6(a), we must 
consider heat conduction from half of the area and heat convection from the rest of 
the area for nodes i, j – 1 and i + 1, j.  The rate of heat transfer from nodes i – 1, j
and i, j+ 1 is the same as iven by Equation VIIe.3.4: 
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If the mesh sizes or increments are the same ( )yx ∆=∆ , we can simplify this 

equation to obtain: 

fjijijijiji T
k

xh
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k

xh
TTTT

∆−=∆+−+++ −++− 2)3(2)()(2 ,1,,11,,1        VIIe.3.6 

or the node at the plane surface with the convection boundary, Figure VIIe.3.5(b), 
we must consider heat conduction from half of the area and heat convection from 
the rest of the area for nodes i, j – 1 and i, j + 1.  The rate of heat transfer from 
node i – 1, j is the same as Figure VIIe.3.5(a): 
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If the mesh sizes or increments are the same ( )yx ∆=∆ , we can simplify Equa-

tion VIIe.3.7 to get: 
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∆−=∆+−++ −+− 2)2(2)2( ,1,1,,1        VIIe.3.8 

For the corner node with convection boundary and different heat transfer coeffi-
cients, Figure VIIe.3.5(c), we must consider heat conduction from half of the area 
and heat convection from the rest of the area for nodes i – 1, j and i, j – 1: 
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Similarly, if the mesh sizes are the same ( )yx ∆=∆ , we can simplify this equation 

to get: 
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Two- Dimensional Temptionerature Distribution with Internal Heat Genera 

We now derive similar algorithm for nodes considering internal heat generation in 
these nodes.  This includes an interior node, an interior corner node, a node at a 
plane surface, and an external corner node.   

Interior node (Figure VIIe.3.5): 
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Internal corner node with convection boundary, Figure VIIe.3.6(a): 
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Node at plane surface with convection boundary, Figure VIIe.3.6(b): 
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For the corner node with convection boundary and different heat transfer coeffi-
cients, Figure VIIe.3.6(c): 
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These results are summarized in Table VIIe.3.1.  A two-dimensional temperature 
distribution in a solid with internal heat generation is solved in Section 10 of 
Chapter IVa using the rectangular coordinates.  We can use similar procedure to 
solve problems in other orthogonal but not rectangular coordinates, such as cylin-
drical and spherical coordinates.   

3.2.  Parabolic Equations 

Partial differential equations of the parabolic type are the most important equations in 
the field of thermal science.  The parabolic differential equations deal with physical 
problems, which are time-dependent (also known as unsteady-state or transient) in 
nature.  As an example of a transient heat conduction problem, consider the same 
problem shown in Figure VIIe.3.7 when one or several of the inputs changes with 
time.  This can either be due to a change in the ambient temperature (Tf ) with time, 
change in the internal heat generation with time, or change in any of the boundary 
temperatures with time.  In the differential equations of the parabolic type, we have to 
deal with space as well as time increments.  In a three-dimensional problem, we have 
four increments such as ,x∆ ,y∆ ,z∆ and t∆ .  Since, in these types of problems, a 
whole set of distribution for the unknown parameter, temperature for example, 
changes from one time step to another, we then have to consider the concept of “val-
ues at the old time step” versus “values at the new time step”.  This, in turn, brings up 
the concept of explicit versus implicit methods.  In the explicit method, the unknown 
is defined only in terms of the known values, which are determined in the old or pre-
vious time step.  In the implicit method on the other hand, all the values that are used 
to determine the unknown are themselves expressed in the new time step.  There is 
also the semi-implicit method where, as the name implies, only some of the values 
that determine the unknown are expressed in terms of the new time step. 

An example of a one-dimensional parabolic differential equation includes time 
dependent temperature distribution in a slender solid bar.  In a slender bar, it is rea-
sonable to assume that each cross section can be represented with one temperature.  
If the two ends are maintained at different but fixed temperatures, then temperature 
varies only along the length of the bar.  Now, suppose that temperature at one or 
both ends begin to change with time.  Temperature distribution along the length of 
the bar will respond to this change and produce a time dependent profile for each 
cross section along the length of the bar.  Shown in Figure VIIe.3.8 is a schematic 
representation of the space and time nodalization for determination of temperature 
distribution in the solid bar.  Functions f1(t) and f2(t) represent variation in tempera-
tures at both ends of the solid bar while f3(x) shows the initial temperature distribu-
tion in the bar before the end temperatures begin to change with time. 
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Table VIIe.3.1.  Finite difference equations for two-dimensional transient heat conduction 
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Figure VIIe.3.7.  One-dimensional transient temperature distribution in a solid bar 

∆ y

∆ t ∆ x

x

y

t

xm

y0

xi

yj ynx0
t0

tk

tK

T(i, j, k)Boundary Condition:
T(i, 0, 0) = f1(xi )

Boundary Condition:
T(0, j, 0)=f2(yj )

Initial Condition:
T(i, j, 0) = f5(xi, yj )

Boundary Condition:
T(i, n, 0)=f3(xi )

Boundary Condition:
T(m, j, 0)=f4(yj )

Figure VIIe.3.8.  Two-dimensional transient temperature distribution in a plate 

Similar discussion is applicable to a two-dimensional parabolic partial differen-
tial equation.  For example, consider temperature distribution in the plate of Fig-
ure VIIe.3.8.  Initially, temperature at the four boundaries are specified and the 
steady-state temperature distribution in the plate is given as f3(x, y).  Then one or 
all of the four boundary temperatures are allowed to change with time.  Nodal 
temperatures within the plate then become functions of x, y, and t.

Explicit and Implicit Numerical Schemes 

The concepts of explicit and implicit numerical schemes appear when we try to 
discretize the differential terms.  Let’s consider the heat conduction equation de-
scribing time dependent temperature distribution in the plate of Figure VIIe.3.8: 
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We now begin to discretize the differential terms in finite difference.  The more 
straightforward term to tackle is the time derivative term, which describes the rate 
of change of nodal temperature.  In other words, this term describes the difference 
between nodal temperature in the new time step and the previous time step.  Here, 
for the sake of consistency, we use the same notation as used in Figure VIIe.3.8.  
Subscripts i and j are used to represent nodal temperature in the x and y directions, 
respectively.  The range of subscript i is from 0 to m and the range of subscript j is 
from 0 to n.  Superscript k is used to represent nodal temperature at the previous 
time step and k + 1 for nodal temperature at the new time step: 
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Having discretized the temporal term, we now proceed to discretize the spatial 
terms.  For this purpose, we may use the forward difference method where each 
nodal temperature is described in terms of its adjacent nodes as done in Equa-
tion VIIe.3.10: 
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What is missing in this expression is the lack of reference to time, as this expres-
sion is applicable to the steady-state condition.  If we express all the above tem-
peratures to correspond to the current time step: 
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and substitute Equations VIIe.3.12 and VIIe.3.11 into Equation VIIe.3.10, we can 

find temperature of node i, j at the next time step ( 1
,

+k
jiT ) explicitly in terms of 

nodal temperatures at the current time step: 
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If we assume that yx ∆=∆  and we also replace Fo)/( 2 =∆∆ xtα , the above ex-
pression simplifies to: 
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Equation VIIe.3.13 provides the algorithm that allows us to calculate the nodal 
temperature of the new time step in terms of all the known temperatures of the 
previous time step.  To compare this explicit approach with the fully implicit ap-
proach, we use the same equations and the same substitutions but develop the spa-
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tial finite difference in Equation VIIe.3.12 with temperatures that correspond to 
the new time step to get: 
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If we assume that yx ∆=∆  and we also replace Fo)/( 2 =∆∆ xtα , the above ex-

pression simplifies to: 
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In Equation VIIe.3.14 the intended nodal temperature as well as all the neighbor-
ing temperatures are unknown.  Equation VIIe.3.14 provides the algorithm to de-
velop a set of algebraic equations, which should be solved simultaneously to find 
nodal temperatures corresponding to the new time step. 

Stability of Explicit and Implicit Schemes 

Comparing Equations VIIe.3.13 and VIIe.3.14, we see that the nodal temperature 
for the new time step in the explicit scheme is readily calculated in terms of 
known temperatures of the previous time step as opposed to the implicit scheme 
where sets of algebraic equations must be solved in each time step.  On the other 
hand, the implicit scheme is unconditionally stable whereas in the explicit scheme 
we must ensure the spatial and temporal increments are small enough to obtain 
convergence and calculate meaningful physical quantities.  As a result, to prevent 
instability due to the numerically induced oscillations, it can be both physically 
and mathematically shown that in Equation VIIe.3.13 we must have 1 – 4Fo ≥ 0.  
Hence, the condition for stability in the explicit numerical scheme requires that Fo 
≤  1/4 or equivalently ∆t ≤ ∆x2/4α.  This implies that in solving two-dimensional 
problems by the explicit scheme, once the spatial increment is chosen, the tempo-
ral increment must remain smaller than the square of the spatial increment divided 
by 4α.

Derivation of Finite Difference Formulation for Nodal Temperature 

Earlier we derived the finite difference formulation of the nodal temperatures from 
the heat conduction equation VIIe.3.10.  We may derive the same formulation in 
both explicit and implicit schemes from the energy balance for each node.  For ex-
ample, for an interior node, as shown in Figure VIIe.3.4, we write: 

Total rate of heat transfer into the node + Rate of internal heat generation in the 
node = Rate of change of nodal internal energy 

We can substitute for each term, in either an explicit or implicit manner.  For ex-
ample, if we develop terms implicitly we get: 
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Note that, in this derivation we have assumed a constant rate of heat generation 
and thermal properties that are independent of temperature.  In general, thermal 
properties are temperature dependent and the rate of internal heat generation may 
change with time.  In this case, we should also develop such terms in a discretize 
manner based on the constitutive equations explaining each term, which is rather 
straightforward in the explicit scheme.  However, in the implicit scheme, devel-
opment of the related constitutive equations would lead to the appearance of 
nonlinear terms, which should be linearized.  Returning to the above equation, if 
we assume yx ∆=∆  and make use of the definition of thermal diffusivity, we ob-
tain Equation VIIe.3.14 with an additional term representing the internal heat gen-
eration.  Using the derivation method described here, we can derive similar rela-
tions for interior corner, plane surface, and external corner nodes as shown in 
Figure VIIe.3.5.  The derivation is left as an exercise to the reader.  The results are 
summarized in Table VIIe.3.2. 

Note that in Table VIIe.3.1, a constant internal heat generation is assumed.  If 
there is no internal heat generation, then the volumetric heat generation rate (i.e. 
term q ′′′ ) should be set equal to zero.  Also note that if a boundary is insulated 
rather than being exposed to a convection boundary, the heat transfer coefficient 
can be viewed as being zero.  Hence, for insulated, adiabatic, or symmetric sur-
faces, the Bi in equations of Table VIIe.3.2 must be set equal to zero. 

Slab Exposed to Convection Heat Transfer at the Boundary 

As an example, let’s consider the implicit formulation for temperature distribution 
in a slab of a specified initial temperature exposed to convection heat transfer at its 
boundaries.  The formulation may take into account hetrogenous internal heat 
generation and material (i.e., both q ′′′  and k are functions of location).  As shown 

in Fingure VIIe.3.9, the slab is divided into N regions.  The thickness of the inte-
rior regions is ∆x and the thickness of the boundary regions is ∆x/2.  Thus, the in-
terior nodes are located in the center of the interior regions.  Due to the symmetry, 
we may write the energy equations for only half of the slab and apply an adiabatic 
boundary to the center of the slab.  The energy equation for the ith interior node 
becomes: 
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Next, we consider the energy equation for the boundary nodes, nodes 1 and m.
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Figure VIIe.3.9.  Schematic of a slab exposed to convection boundary

For node 1, exposed to heat transfer by convection, we write: 
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and for node m, located on an adiabatic boundary, we write: 
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wkere k is thermal conductivity and k, as the superscript, is an index to advance 
time.  Writing the energy equation for all the interior nodes, we can summarize the 
results in the following matrix equation: 
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Starting at time zero (the superscript k = 0), all the nodal temperatures are known.  
Thus, we solve the above equation for nodal temperatures when time is advance 
one time step.  We continue the solution to until the end of the specified transient 
time is reached.  The accuracy of temperature distribution increases as the number 
of nodes increases.  This however, means that the array sizes to hold the matrix 
elements increases as we must inverse larger coefficient matrices at each time 
step. 

3.3.  Hyperbolic Equations 

Partial differential equations of the hyperbolic type appear basically in problems 
involving vibration and wave motion.  As such, problems in waterhammer, neu-
tron diffusion, radiation transfer, and supersonic flow are examples of hyperbolic 
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differential equations.  The general form of the wave equation is given by Equa-
tion VIIb.1.31 and the one-dimensional equation in the Cartesian coordinate sys-
tem is given in Equation VIIb.1.31-1 and repeated here: 
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where ρ/2
cTgc = .  If we now use an explicit numerical scheme, the finite dif-

ferential form of Equation VIIe.3.15 for node i at time k + 1 becomes: 
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Solving for the displacement at the new time step: 
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where in this derivation we have taken the value of the coefficient as unity (i.e. 

1)/()( 222 =∆∆ xtc ).  From here, the time step size becomes: 

c

x
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It turns out that the time step calculated above is indeed the optimum time step 
size with respect to stability and convergence.  An interesting feature of Equa-
tion VIIe.3.16, which involves a second derivative with respect to time, is the ap-
pearance of the lateral movement prior to time zero (i.e. term y–1).  Obviously, we 
find y0 from the boundary condition.  But we need to have another condition to 
find y–1.  One way is to use the initial velocity (i.e. 0/)0,( =∂=∂ ttxy i ).  Using 
the central-difference approximation, we find: 
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Substituting into Equation VIIe.3.16 to eliminate y–1, we get displacement of the 
first time step as: 
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Having displacement at the first time step in terms of displacements at time zero, 
we can proceed to find all other displacements at successive time steps from Equa-
tion VIIe.3.16. 
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Table VIIe.3.2.  Finite difference equations for two-dimensional transient heat conduction 
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Solution of One-Dimensional Wave Equation by Method of D’Alembert 

The D’Alembert method, like the Laplace transform and the method of separation 
of variables, provides an analytical solution to the one-dimensional wave equation.  
It can be easily shown that a function in the form of y(x, t) = f1(x + ct) + f2(x – ct)
is a solution to Equation VIIe.3.15.  For this equation to be the final solution, it 
must satisfy the initial and the boundary conditions.  For the initial conditions of 
y(x, 0) = f(x) and )(/)0,( xgtxy =∂∂ , we find the solution as: 
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where s is a dummy variable.  For example, consider a string, fixed at the end 
points, having a length of 4 feet.  The wire density and the tension force are so that 
c = 2.  Choosing a length increment of 1 ft, gives the optimum time step of 0.5 
seconds.  The string is now pulled to vibrate with an initial velocity of: 
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We want to find the displacement of a point located 1/5 of the length from the left 
end, 1 second after the string is disturbed.  To solve the problem, we use Equa-
tion VIIe.3.17 as follows: 

+−−==
+

− L

t

L

x

L

t

L

xL
ds

L

s

c
y

ctx

ctx

ππππ
π

π 2
cos

2
cossin4

2
1

From here, we find y for x = L/5 ft and t = 1 second as: 
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The reader should use the finite-difference method and compare the results. 

Solution of the Two-Dimensional Wave Equation 

Displacement of a vibrating membrane can be predicted by the solution to the 
two-dimensional wave equation: 
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This equation can be solved explicitly by substituting for the derivative terms from 
the central-difference approximation.

2

1
,,

1
,

22

1,,1,

2

,1,,1

)(

21

)(

2

)(

2

t

uuu

cy

uuu

x

uuu k
ji

k
ji

k
ji

k
ji

k
ji

k
ji

k
ji

k
ji

k
ji

∆

+−
=

∆

+−
+

∆

+− +−
+−+−



1004      VIIe.  Engineering Mathematics:  Numerical Analysis 

If the increments along the x and the y-axis are equal, we get: 
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To further simplify this relation, we may choose the spatial and the temporal in-
crements so that the last term vanishes and we simply get: 
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This equation applies when 2/1)/()( 222 =∆∆ xtc .  Similar to the one-dimensional 

wave problem, to find displacement corresponding to k – 1 when we begin the 
first time step, we take advantage of the specified initial velocity.  If the initial ve-
locity is zero, then displacement corresponding to the first time step is obtained 
from: 
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4.  The Newton–Raphson Method 

As was discussed in Chapter VIId, the mathematical modeling of most physical 
phenomena reduces to a set of simultaneous differential equations the solution of 
which would determine the parameters of interest.  The solution to such a set of 
equations involves the approximation of the differential terms by finite difference, 
for example, and then linearization of the nonlinear terms.  The Newton-Raphson 
method is most often used for the transformation of a set of differential equations.  
Consider the following set of first order non-linear differential equations, con-
sisted of N equations and N unknowns: 
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Functions in the right side of the above set can be linearized.  To do this, each 
function is expanded in Taylor’s series and then approximated by using only the 
first derivative term: 

( ) ( ) ( )[ ]( )n
i

n
i

N i

n
N

nnn
in

N
nnn

iNi yy
y

yyytF
yyytFyyytF −

∂
∂

+= +121
2121

,...,,,
,...,,,,...,,,



4.  The Newton–Raphson Method       1005 

We now substitute the approximated functions in the right side of Equa-
tion VIIe.4.1.  We also expand the left side of the set of differential equations by 
using a discrete difference at consecutive time steps.  Equation VIIe.4.1 can then 
be written as: 
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      VIIe.4.2 
The matrix on the right hand side of Equation VIIe.4.2, which contains the partial 
derivative terms, is called the Jacobian matrix.  The above set can now be solved 
for the increment in each variable.  To do this, the Jacobian matrix multiplied by 
the time step should be deducted from the unity matrix.  Final answer is obtained 
as: 
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Let’s demonstrate the application of the Newton-Raphson linearization method by 
solving a simple example. 

Example.  Find the friction factor from: 
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Data: De = 1 in, ε = 0.004 in, Re = 1.0E7. 

Solution: Since f appears in both sides of the correlation, we use the Newton-
Raphson method where: 
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we then expand F as: 
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Solving for x, we find: 
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This procedure is summarized in the following FORTRAN program.   

      implicit real*8(a-h,o-z) 
      data a1,a2,eps,De,Re,e/1.74,-2.00,4.00E-3,1.0,1.0E7,1.e-8/ 
      f=0.1 
1     continue 
      i=i+1 
      a3=2.00*eps/De 
      a4=18.7/Re 
      W=a3+(a4/sqrt(f)) 
      Wp=-a4*(f**(-1.5))/2.00 
      V=a1+a2*alog10(W) 
      Vp=0.4343*a2*Wp/W 
      U=1./(V*V) 
      Up=-2.00*Vp/(V*V*V) 
      Fof=f-U 
      dFdf=1.00-Up 
      error=Fof/dFdf 
      f=f-error 
      if(abs(error).le.e) go to 3 
      if(i.gt.30) go to 2 
      go to 1 
2     continue 
      Print *,'Iteration did not converge' 
      go to 4 
3     continue 
      Write(*,*) i,f 
4     continue 
9     format(i5,f15.9) 
      stop 
      end 

Using the above data, the program finds the answer after 3 iterations as 0.0284. 

5.  Curve Fitting to Experimental Data 

In many engineering applications, we prefer to use an equation to represent a set 
of experimental data.  It is therefore our goal here to represent a set of experimen-
tal data by a curve that would best fit the data.  The simplest case is fitting a line 
between points in a set of data.  In general however, the experimental data are 
such that a nonlinear curve needs to be found to best fit the data.  The most widely 
used technique for curve fitting is the method of least squares.  A polynomial of 
degree n passes exactly through a set of N data points, if n = N – 1.  Hence, in fit-
ting polynomials to a set of experimental data, we require n < N –1. 

5.1.  Regression Analysis, the Method of Least Squares 

Since polynomials can be readily manipulated, to describe the method of least 
squares, we consider the case of fitting a polynomial to a specified set of data.  In 
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this method, the goal is to find the coefficients of a function of a single variable in 
the form of: 
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to fit the data pairs (x1, y1), (x2, y2),  (xN, yN) so that the summation of the square 
of the errors as in the following summation: 
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is minimized.  Since functions fi(x) comprising the function f(x) are known, the 
unknown coefficients ci should then be determined.  This is accomplished by set-
ting the derivative of E with respect to the unknown coefficients (i.e. ci) to zero: 
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This results in the following set of M equations and M unknowns: 
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This set can be solved for the unknown coefficients ci using the methods described 
in Chapter VIId.  We may now apply the set given in Equation VIIf.4.2 to the fol-
lowing simple polynomials with linear terms:  
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Functions fi then become f1 = a0, f2 = a1x, etc.  Substituting into Equation VIIe.5.2, 
we obtain: 
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Note that the degree of the polynomial N is not known before hand.  Rather, N
should be found by iteration.  The criterion is to choose N to minimize the stan-
dard deviation. 

Example VIIe.5.1.  Find the coefficients of a polynomial to fit a portion of the 
steam tables, in the range of 100 psia ≤ P ≤ 122 psia, for saturated steam pressure 
as a function of steam temperature (F): 

Solution:  We fit polynomials of degree 1, 2, 3, etc.  The results of this polyno-
mial fit in the form of: 

+++= 2
210 TaTaaP

are tabulated below: 

As the trend in this table indicates, the best fit occurs at N = 3.  Hence, the answer 
is found as: 

32 )42181.0(01386.0438.37.305 TETTP −+−+−=
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We may use this equation to find saturation pressure corresponding to Tsat = 
338.08 F.  According to the above fit 

Psat = –305.7 + 3.438 × 338.08 –0.01386 × (338.08)2 + (0.2181E-4) × (338.08)3 = 
115.2 psia 

The corresponding pressure from the steam tables is P = 115 psia, resulting in an 
error of less than 0.2%. 

The most important task in curve fitting by the method of least squares is the 
selection of the type of functions (i.e. fi(x)) comprising function f(x).  The function 
may be in any of the following forms: 
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Polynomial fits to data (similar to the first equation shown above) can be made by 
using the regression analysis available on the accompanying CD-ROM. 
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Table A.II.1(SI).  Saturated Water and Dry Saturated Steam Properties, f(P)
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Table A.II.1(SI).  Saturated Water and Dry Saturated Steam Properties, f(P) (continued) 
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Table A.II.1(SI).  Saturated Water and Dry Saturated Steam Properties, f(P) (continued) 
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Table A.II.1(SI).  Saturated Water and Dry Saturated Steam Properties, f(P) (continued) 

See the reference for the table. This material is used by permission of John Wiley & Sons, Inc. 
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Table A.II.2(SI).  Saturated Water and Dry Saturated Steam Properties, f(T)
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Table A.II.2(SI).  Saturated Water and Dry Saturated Steam Properties, f(T) (continued) 
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Table A.II.2(SI).  Saturated Water and Dry Saturated Steam Properties, f(T) (continued) 
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Table A.II.2(SI).  Saturated Water and Dry Saturated Steam Properties, f(T) (continued) 

See the reference for this table. This material is used by permission of John Wiley & Sons, Inc.
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Table A.II.3(SI).  Superheated Steam Properties 
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Table A.II.3(SI).  Superheated Steam Properties (continued) 
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Table A.II.3(SI).  Superheated Steam Properties (continued) 
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Table A.II.3(SI).  Superheated Steam Properties (continued) 
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Table A.II.4(SI).  Subcooled Water Properties 

See the reference for this table. This material is used by permission of John Wiley & Sons, Inc. 
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Table A.II.5(SI).  Properties of Various Ideal Gases 

See the reference for this table. 
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Table A.II.1(BU).  Saturated Water and Dry Saturated Steam Properties, f(P)
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Table A.II.1(BU).  Saturated Water and Dry Saturated Steam Properties, f(P) (continued) 

See the reference for this table.  This material is used by permission of John Wiley & Sons, Inc. 
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Table A.II.2(BU).  Saturated Water and Dry Saturated Steam Properties, f(T)
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Table A.II.2(BU).  Saturated Water and Dry Saturated Steam Properties, f(T)  (continued) 

See the reference for this table. This material used by permission of John Wiley & Sons, Inc. 
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Table A.II.3(BU).  Superheated Steam Properties 
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Table A.II.3(BU).  Superheated Steam Properties (continued) 
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Table A.II.3(BU).  Superheated Steam Properties (continued) 
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Table A.II.3(BU).  Superheated Steam Properties (continued) 

See the reference for this table. This material used by permission of John Wiley & Sons, Inc. 
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Table A.II.4(BU).  Subcooled Water Properties 

See the reference for this table. This material used by permission of John Wiley & Sons, Inc.
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Table A.II.5(BU).  Properties of Various Ideal Gases 

See the reference for this table. 
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Table A.II.6. Examples of least-square fit to saturated water and dry saturated steam prop-
erties 
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Table A.III.1(SI).  Commercial Steel Pipe (Schedule Wall Thickness) 



Appendix III      1051 

Table A.III.2(SI).  Commercial Steel Pipe (Nominal Pipe Size, NPS) 
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Table A.III.2(SI).  Commercial Steel Pipe (Nominal Pipe Size, NPS), (continued) 
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Table A.III.3(SI).  Tube data, Birmingham Gauges  to millimeter and inches
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Table A.III.1(BU).  Pipe Data, Carbon & Alloy Steel 
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Table A.III.2(BU).  Tube Data 
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Table A.IV.3(SI).  Thermophysical Properties of Common Materials at 300 K 
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Table A.IV.3(SI).  Thermophysical Properties of Common Materials at 300 K (continued) 
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Table A.IV.3(SI).  Thermophysical Properties of Common Materials (continued) 
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Table A.IV.3(SI).  Thermophysical Properties of Common Materials (continued) 

See the reference for this table.  
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Table A.IV.4(SI).  Thermophysical Properties of Gases at Atmospheric Pressure 
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Table A.IV.4(SI).  Thermophysical Properties of Gases at Atmospheric Pressure (contin-
ued) 
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Table A.IV.4(SI).  Thermophysical Properties of Gases at Atmospheric Pressure (contin-
ued) 
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Table A.IV.4(SI).  Thermophysical Properties of Gases at Atmospheric Pressure (contin-
ued) 
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Table A.IV.4(SI).  Thermophysical Properties of Gases at Atmospheric Pressure (contin-
ued) 

  See reference for this table.  
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Table A.IV.5(SI).  Physical Properties of Saturated Water and Saturated Steam 
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Table A.IV.5(SI).  Physical Properties of Saturated Water and Saturated Steam (continued) 

  See reference for this table.  
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Table A.IV.6(SI).  Thermophysical Properties of Liquid Metals 

See reference for this table.  



1080      VIII.  Appendices 

Table A.IV.4(BU).  Thermophysical Properties of Gases at Atmospheric Pressure 
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Table A.IV.4(BU).  Thermophysical Properties of Gases at Atmospheric Pressure (contin-
ued) 

See the reference for this table.
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Table A.IV.5(BU).  Thermophysical Properties of Saturated Water 

See the reference for this table. 

Table A.IV.6(BU).  Thermophysical Properties of Saturated Steam  

See the reference for this table. 
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Table A.IV.7(BU).  Thermophysical Properties of Superheated Steam at Atmospheric Pres-
sure 

See the reference for this table. 
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Table A.IV.8.  Thermal Properties of Solid Dielectrics at Normal Temperature 
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Table A.IV.8.  Thermal Properties of Solid Dielectrics at Normal Temperature (continued) 

1: See Table A.IV.2(SI). 

See the reference for this table. 
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Table A.IV.9.  Normal, Total Emissivity of Metallic Surfaces 
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Table A.IV.9.  Normal, Total Emissivity of Metallic Surfaces (continued) 

 See the reference for this table.  
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Table A.IV.10.  Normal, Total Emissivity of Non-Metallic Surfaces 
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Table A.IV.10.  Normal, Total Emissivity of Non-Metallic Surfaces (continued) 

See the reference for this table.
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Table A.V.1(SI).  Absorption Coefficients of Gamma Rays for Shielding Materials 
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Table A.V.1(SI).  Absorption Coefficients of Gamma Rays for Shielding Materials (con-
tinued) 



1094      VIII.  Appendices 

Table A.V.2(SI).  Cross Sections for Neutron Interaction  
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Table A.V.2(SI).  Cross Sections for Neutron Interaction (continued) 
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    grade line, 263
    internal, 39
    kinetic, 38
    mechanical, 1-3, 9, 261
    potential, 39
Engine
    internal combustion, 2-8
    jet, 2, 9-10, 71, 97, 103, 160
    reciprocal, 9-11, 750
    rotary, 6, 8-9
English engineering system of units
    (BU), 33
Enthalpy, 39
Entrance length, 231
Entropy, 39
EPRI-1 correlation, 666
Equation



1114      Index  

    Euler, 252, 265
    of state, 26, 41-46
Equilibrium
    bubble, 642-644
    thermal, 35
Error, 728
    fixed, 728
    function, 488, 489, 491
    random, 728
Eta factor, 852
Eulerian approach, 230
Evaporation, 37, 49-50
Exergy, 105
Expansion coefficient, 413
    thermal, 47
    volumetric, 549
Explicit method, 994
Extended surfaces, 477

Feedwater, 12-16
Fertile, 5, 846, 847
Fick’s law, 26, 841
Field, 225
Film
    boiling, 638
    condensation, 678
    temperature, 520
Fin
    annular, 480-484
    cylindrical spine, 483
    longitudinal, 483
First law of thermodynamics, 67
Fissile, 846
Fission, 845
Fissionable, 846
Fittings, 175, 224, 286, 295, 302
Flash, 79, 89, 173, 622, 637, 812
Flooding, 604
Flow
    critical, 399, 622
    coefficient, 307, 322
    compressible, 399
    dimensions, 232
    external, 99, 223, 230-233
    incompressible, 231
    internal, 232

    laminar, 230
    loop, 20, 325, 549, 799
    measurement, 321, 412, 728
    over flat plate, 230, 521-535
    pattern, 555, 605, 606
    reversal, 605, 614, 765
    turbulent, 230
    two-phase, 602
Flowmeter, 302, 321, 728
    Bernoulli, 321
    Coriolis, 733
    elbow, 735
    electromagnetic, 738
    installation, 744
    laser Doppler, 728, 740
    mass, 741
    nozzle, 321
    positive displacement, 741
    pulsed neutron, 740
    rotameter, 733
    straightener, 744
    turbine, 737
    ultrasonic, 739
    venturi, 321
    vortex, 738
Fluid
    ideal, 223-224
    Newtonian, 228
    non-Newtonian, 228
Forced convection, 518
Form loss, 175, 306, 419
Forster-Zuber, 660
Fouling
    factor, 669, 690, 707
    resistance, 690, 718
Fourier equation, 439
Fourier number, 437
Fourier transform, 908
Friction 
    factor, 292-299, 305, 1005
    pressure drop, 242, 312, 617
    velocity, 293
Fuel
    fossil, 4
    nuclear, 4, 23
    pellet, 17, 466, 468
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    rod, 14, 16, 17
    spent, 23, 459, 559, 833
    utilization factor, 859
Fusion, 3, 5, 25

Gage pressure, 36
Gamma radiation, 436, 456-458
Gap, 17
Gas turbine, 6-11, 66, 97, 154
Gate valve, 305
Gauss divergence theorem, 956
Gauss-Seidel iteration, 971 - 974
General electric correlation, 667
Geothermal energy, 22
Gibbs function, 47, 639
Globe valve, 305
Gradient operator, 947
Grashof number, 549
Gray surface, 578
Greenhouse effect, 11
Greenpower, 17

Hagen-Poiseuille, 291
Hardy Cross method, 338
Hazen-Williams formula, 301
Head, 18, 224
Heat
    engine, 99
    flux, 129, 256, 432
    pump, 25, 31, 97, 103
    sink, 6, 21, 96, 97
    source, 6, 20, 22, 70, 96, 97
Heat exchanger, 71, 76, 147-167, 

687
Heat transfer coefficient, 435
Heisler, 493, 497
Helmholtz function, 46
HEM, 602, 616, 619, 621, 623, 785
Hemispherical, 574, 576
Homogeneous, 432
Heterogeneous, 432
Hewitt map, 606
Humidity ratio, 195
Hydraulic grade line, 263
Hydraulic jump, 270, 408
Hydrostatic head, 796-799

Hysteresis, 729

Ideal gas, 41
Implicit method, 976, 994
Integral analysis, 240, 248
Invasive, 728
Inviscid, 223, 228, 231, 252, 259
Irreversibility, 98, 99, 105, 109
Isotope, 5, 11, 740, 842, 844, 845
Isotropic, 229, 432, 562-566, 848

Jakob number, 678
Jacobian matrix, 1005
Jet pump, 13, 749

Katto correlation, 666
Kelvin, 33, 98
Kinematic viscosity, 228
Kinetic energy, 38
Kirchhoff, 338, 369, 442, 578
Kutateladze, 605, 652, 682

Lagrangian, 234, 237, 238-259
Laminar
    boundary layer, 535
    flow, 230
Laplace transform, 909
Laplacian operator, 949
Latent heat, 51, 53
Le System International d’Unites, 
    33
Leading edge, 232, 519
Least-square, 1006
Leidenfrost point, 650, 654
Leibnitz rule, 960
Line integral, 951
Linear heat generation rate, 432
Liquid compressibility, 373
Logarithmic mean temperature
    difference (LMTD), 691
    correction factor, 696
Lumped, 57, 207, 255, 431, 443
Lyon-Martinelli correlation, 540

Mach number, 230
Maclaurin series, 855, 902



1116      Index  

Manning formula, 301
Manometer, 36, 37, 272, 322
Martinelli-Nelson, 622
Mass defect, 842
Mass flow rate, 58
Mass flux, 65
Mass number, 842
Matrix inversion, 968
McAdams correlation, 299
Metastable state, 816
Maxwell relations, 47
MDNBR, 877
Minimum stable film boiling 

(MSFB),    653
Minimum stable film boiling 
    temperature, 656
Minor loss, 301, 302
Moderator, 5, 11, 847
Modulus of elasticity, 375
Moist air, 187-189
Moisture separator, 162
Molecular diffusion, 431, 535
Molecular weight, 41
Momentum
    conservation equation, 241, 248
    flux, 242, 262, 372, 399, 526, 778

Napier’s correlation, 425
Natural convection, 549
Natural circulation, 549, 796, 800
Navier-Stokes equations, 249, 251
Net expansion factor, 412
Net positive suction head (NPSH), 
    753, 757, 760-762
Neutron
    current, 849
    fast, 5, 846, 847, 851
    flux, 457, 466, 671, 841, 848
    thermal, 11, 846, 847, 851, 852
    transport equation, 841, 853
Newton’s law of cooling, 435
Newton-Raphson method, 1004
Nozzle, 10, 70-72, 321, 323, 324
Nuclear
    power plant, 4, 11, 144, 786
    resonance, 844

Nucleate boiling, 638
Nucleation
    homogeneous, 637
    heterogeneous, 637
    onset, 644, 646, 650
Number of transfer unit (NTU)
    method, 698
Nusselt number, 520
Nuclei, 5, 844, 845

Opaque, 575, 576, 577
Ordinary differential equations, 911
    Adam’s method, 985
    Euler method, 981
    Runge-Kutta methods, 982
Orifice meter, 321
Orthogonality, 908

Partial differential equations, 903
Partial pressure, 189
Peaking factor, 866, 874-875
Peclet number, 541
Perfect gas, 42
Pitot tube, 733, 736, 737
Planck:
    constant, 562
    distribution, 569
    statement, 97
Poisson equation, 439
Power
    cycle, 144
    density, 23, 865, 1020
    hydro, 17
    tidal, 22
Prandtl number, 520
Precision, 729
Pressure drop in
    bends, 302
    internal flow, 295
    Bernoulli obstruction meters, 323
Pressure gradient due to:
    acceleration, 616
    friction, 616
    gravity, 618
Pressurized water reactor, 5
Pressurizer, 12, 14, 811
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Primary dimensions, 33, 748
Primary side 784-785
Process
    adiabatic, 57
    isentropic, 59
    isobaric, 59
    isothermal, 59
    polytropic, 59
    reversible, 57
Property:
    critical, 41
    extensive, 40
    intensive, 40
    reduced, 41
Pump
    Booster, 173, 877
   canned-motor, 800
   centrifugal, 749
    characteristic curve, 749, 757
    head, 263, 313, 762
    homologous, 748, 755-769
    jet, 13, 749
    positive displacement, 749
Pumping power, 75, 76, 169, 314
Pure substance, 34

Quality
    steam, 50
    void and slip relation, 602
Quantum number, 884, 935
Quasi-steady, 348
Quench tank, 204
Quiescent fluid, 550, 650

Radial flow, 10, 20, 749
Radiation heat transfer, 26, 436, 561
Radiosity, 565
Range, 729
Rankine cycle, 161-162
Rateau correlation, 125
Rayleigh number, 550
Reactor shutdown, 882
Reciprocity, 581
Recirculation, 13, 16, 134, 827
Reduced pressure, 41
Reflectivity, 573, 575

Refrigerant, 662
Regression, 1007
Relative humidity, 194
Relative roughness, 312
Repeatability, 729
Resolution, 729
Resonance, 845
Reynolds-Colburn analogy, 521
Reynolds number, 230
Reynolds transport theorem, 240, 

961
Rigid column theory, 344, 371
Rohsenow correlation, 651

Safety valve, 307
Saturation
    pressure, 54, 637
    temperature, 46
Scaling laws, 747
Scattering:
    elastic, 843
    inelastic, 843
Seban-Shimazaki correlation, 540
Second law of thermodynamics, 96
Secondary side, 12-16, 30, 97, 134
Seider-Tate correlation, 538
Semi-infinite solid, 485
Sensitivity, 729
Separated flow model, 616, 621
Shaft work, 60, 69-77
Shape factor, 581
Shear work, 60, 262, 792, 816
Shearing strain, 226
Shell and tube, 688
Shell side, 314-315, 465, 688
Shock wave, 98, 151, 408
Shroedinger wave equation, 932
Similarity, 747
Siphon, 284, 285
Six factor formula, 851
Skin friction, 302
Slab, 443
Slip ratio, 603
Solar, 3, 6, 17-22, 129, 133, 727
Solid angle, 563
Specific
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    enthalpy, 40
    entropy, 40
    gravity
    heat, 40
    humidity, 195
    power, 9, 145, 156, 865
    speed, 758
    volume, 38
Spherical coordinate system, 251
Spray, 211-214, 329, 818
Stagnation enthalpy, 417
Standard temperature and pressure 

    (STP), 37
Standard temperature, 37
Stanton number, 520
State
    equilibrium, 35
    steady, 32, 66
    unsteady, 66
    thermodynamic, 38, 55, 815
Steam extraction, 12, 167-172
Steam generator, 2, 3, 12-16, 77, 

702
Stefan-Boltzmann law, 26, 436, 568
Steradian, 564
Stokes hypothesis, 249
Streamline, 230
Stress
    normal, 224
    shear, 224
    tensor, 226
Sturm-Liouville, 860, 913
Subcooled, 46
Sublimation, 48
Subsonic, 230
Substantial derivative, 235
Sudden:
    contraction, 303
    expansion, 303
Superheated vapor, 46
Supersonic, 230, 407
Surface force, 226
Surface roughness, 98, 224-299
Surface tension, 229, 618, 639, 651
Surge tank, 357
Surroundings

System
    closed, 56
    isolated, 56
    open, 57

Taylor series, 902
Terminal temperature difference 

    (TTD), 710
Terminal velocity, 366
Thermal
    capacitance, 434
    center, 796
    conductivity, 433
    diffusion, 432
    expansion, 40, 47
    neutron, 846
    pollution, 101
    radiation, 436, 561
    resistance, 435
Thermodynamic
    availability, 105
    cycle, 6
    efficiency, 100
    irreversibility, 99
    process, 36
    property, 40
    state, 38
    system, 35
Thermofluids, 1
Time constant, 446
Total directional emissivity, 579
Total hemispherical absorptivity, 

576
Total hemispherical emissivity, 575
Trailing edge, 519
Transient, 32, 66, 81-95
Translation, 39, 265
Transmissivity, 575
Tube bundle, 15, 77, 537, 690
Tubesheet, 15, 16, 688, 795
Turbine
    efficiency, 175, 776
    Francis, 20, 772
    gas, 6-11, 66, 97, 154
    impulse, 19, 770
    Kaplan, 17, 19, 772
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    Pelton, 18, 19, 738, 770-774
    rotor, 9, 10, 17, 19, 769-770
    steam, 4, 9, 15, 17, 25, 73
    wind, 21, 770, 774-777
Turbofan, 9, 777-779
Turbomachine, 6, 747
Turboprop, 9, 777-779
Turbulence, 287, 535, 660
Turbulent flow, 230
Two-phase:
    flow fundamentals, 601
    friction multiplier, 617

U-tube 
    heat exchanger, 702
    steam generator, 15, 16, 796
Uncertainty analysis, 730
Unit vector, 943
Universal gas constant, 42
Uranium
    enrichment, 842
    natural, 842

Valves, 72, 306
Van der Waals, 43
Vane, 15, 19, 748
Vapor pressure, 37
Velocity
    angular, 39
    distribution, 289
    coefficient, 322, 772
    head, 263
    of sound, 917
Vena contracta, 303, 321, 322
Venturi meter, 71, 321
View factor, 436, 579, 580

Viscoelastic, 228, 229
Viscosity, 227-228
Viscous:
    dissipation, 257
    flow, 224, 230-232, 268
     sublayer, 232, 294
Void fraction, 602
Volumetric flow rate, 58
Volumetric flow ratio, 604
Volumetric heat generation rate, 244
Von Karman, 293, 526
Vorticity, 226, 265

Wake, 233,775, 776
Wallis number, 604
Water properties, 1077, 1082
Waterhammer, 371
Wave
    equation, 917
    mechanics, 932
Wavelength, 561
Weber number, 618
Wet bulb temperature, 202
Wetted perimeter, 309
Wien’s displacement law, 570
Whitaker’s correlation, 536
Work
    definition, 57
    optimum useful, 111

Zenith angle, 563-564
Zeroth law of thermodynamic, 56
Zhukauskas, 537
Zuber and Findlay, 609-611
Zuber correlation, 652
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