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Preface

In an age of knowledge explosion, students have to meet the challenges
of maintaining perspective amid a deluge of information and change in
their developments of expertise. The traditional university courses and their
contents must therefore be designed, planned or merged accordingly so that
the students can master the core materials that are needed in their future
careers, while having enough time to study the new courses to be frequently
added to the curriculum.

With the rapid development of wireless communication technologies,
the demand on wireless spectrum has been growing dramatically. This
results in extensive and intensive research in radio frequency (RF) the-
ory and techniques, and substantial advancements in the area of radio
engineering, both in theory and practice, have emerged in recent years.
RF engineering deals with various devices that are designed to operate in
the frequency range from 3kHz to 300GHz, and therefore covers all areas
where electromagnetic fields must be transmitted or received as a carrier
wave. For this reason, a good RF engineer must have in-depth knowledge
in mathematics and physics, as well as specialized training in the areas of
applied electromagnetics such as guided structures and microwave circuits,
antenna and wave propagation, and electromagnetic compatibility (EMC)
designs of electronic circuits.

RF engineering is closely linked to three IEEE (Institute of Electrical
and Electronics Engineers) professional societies: Microwave Theory and
Techniques (MTT), Antennas and Propagation (AP) and EMC. Tradition-
ally, different courses have been created to meet the needs for different
societies. For example, the students oriented to the MTT society must
take the courses such as Microwave Engineering, or Field Theory of

vii
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Guided Waves. For the students specialized in AP and EMC societies, the
courses Antenna Theory and Design and Electromagnetic Compatibility are
compulsory. Nevertheless, these three professional societies are intimately
related as they have numerous things in common in terms of theories and
techniques. Many professionals are often active in the three societies at the
same time. In fact, a typical RF department in a wireless company has
engineers working in different areas belonging to these societies, and most
of the time, they have to work together to solve an engineering problem as
a team.

The above trends indicate that it is necessary and also possible to create
a new course or a book that provides the fundamentals of microwaves,
antennas and propagation, and EMC in a common framework for the
students, engineers and applied physicists dedicated to the three IEEE
societies. The topics in RF engineering are enormous. The contents of
the book have been selected on the basis of their fundamentality and
importance to suit various needs arising in RF engineering. All areas of
RF engineering are established on the solutions of Maxwell equations,
which can be solved either analytically or numerically. Before the inven-
tion of computers, analytical methods were the dominant tools for the
analysis of electromagnetic phenomena, often involving the applications of
sophisticated mathematics and closed-form solutions. Nowadays, computer
technology plays a tremendous role in our daily life as well as in scientific
research activities. By taking advantage of the capabilities of modern com-
puter technologies and the state-of-the-art computer-aided design (CAD)
tools, the numerical methods are capable of solving many complicated
problems encountered in practice and they occupy a significant piece of
current academic research. In electromagnetic society, numerical methods
have been treated in many references. For this reason, this book essentially
examines analytical techniques while typical numerical methods and their
applications will also be discussed.

One of the important research areas of RF engineering is the microwave
field theory which may be applied to the analysis of guided waves,
resonances, radiations and scattering. In many situations, a microwave
field problem can be reduced to a network or circuit problem, allowing
us to apply the circuit and network methods to solve the original field
problem. The network formulation has eliminated unnecessary details in the
field theory while reserving useful global information, such as the terminal
voltages and currents. As a consequence, many RF engineers now largely
rely on CAD tools and circuit analysis with little or no field analysis.
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This procedure, however, is not always successful. In fact, the initial RF
circuits resulting from CAD tools usually bear little resemblance to the
final design, and revisions are needed to achieve the required performances.
One should always remember that the field theory is the foundation of
the circuit analysis, and its importance cannot be overemphasized in order
for best innovation practices. For this reason, both microwave field theory
and circuit design theory are discussed in this book, which features a wide
coverage of the fundamental topics such as electromagnetic boundary value
problems, waveguide theory, microwave resonators, microwave circuits,
antennas and wave propagation, EMC techniques, and information theory
and typical application systems.

The book consists of 8 chapters. Chapter 1 reviews the fundamental
electromagnetic theory. The basic properties and important theorems
derived from Maxwell equations are summarized. When applied properly,
these properties and theorems may bring deep physical insight into
the practical problems and simplify them dramatically. Various solution
methods for the boundary value problems related to Maxwell equations are
discussed, which includes the method of separation of variables, the method
of Green’s functions, and the method of variations. Some important topics
such as numerical techniques and potential theory are also addressed.

Chapter 2 deals with the waveguide theory. Waveguides are the
cornerstone of microwave engineering and their counterparts are connecting
wires in low frequency circuits. The waveguide theory can be formulated as
an eigenvalue problem with the cut-off wavenumbers being the eigenvalues
and eigenfunctions being the corresponding vector modal functions. A vari-
ational principle exists for the cut-off wavenumbers and can be expressed as
a Rayleigh quotient. The vector modal functions are the extremal functions
that make the Rayleigh quotient stationary and constitute a complete
set. The typical waveguide eigenvalue problems are solved by the method
of separation of variables as well as by various numerical methods. The
waveguide discontinuities or waveguide junctions are analyzed by the field
expansions in terms of the vector modal functions as well as numerical
methods. Also presented in this chapter are inhomogeneous waveguides
such as dielectric waveguides and microstrip lines, transient phenomena in
waveguides, and periodic structures.

A resonator is a device that oscillates at some frequencies (called
resonant frequencies) with greater amplitude than at others, and it is
used to either generate waves of specific frequencies or to select specific
frequencies from a signal. Its counterpart is the LC resonant circuit at
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low frequency. A microwave resonator is an important building block
for microwave circuits. A cavity resonator also constitutes an eigenvalue
problem and there exists a variational principle for the resonant frequencies.
The theory of cavity resonators parallels that of waveguides. Chapter 3
investigates the theory of microwave resonators. It includes the solutions
of vector modal functions for typical cavity resonators, coupling between
the waveguide and cavity resonator, dielectric resonators, microstrip patch
resonators and open resonators.

A microwave circuit is composed of distributed elements with dimen-
sions comparable to the wavelength. The amplitudes and phases of the
voltage and current may vary significantly over the length of the circuit.
The essential tools for the analysis and design of microwave circuits include
the theory of transmission lines, network analysis and synthesis, impedance
matching, and filter theory. Many design problems in microwave integrated
circuit systems can be reduced to a circuit problem without too much
involvement of the field theory. According to their functions, the RF circuit
components may be classified as frequency-related, impedance-related and
power-related. The fundamental aspects of the network theory and the
design principles for various passive and active RF components, such
as phase shifters, attenuators, power combiners and dividers, directional
couplers, filters, amplifiers, oscillators, and mixers, are summarized and
elucidated in Chapter 4.

An antenna is a device which converts a guided wave in a feeding line
into a radio wave in free space, and vice versa. Antennas are essential
to all wireless systems and play a role in linking the components in the
systems through radio waves. In transmission mode, a radio transmitter
supplies RF power to the antenna’s terminals through a transmission line,
and the antenna radiates the energy into space as an electromagnetic
wave. In reception mode, the antenna intercepts the power from the
incoming electromagnetic wave, inducing a weak voltage signal at its
terminal. The induced voltage signal is then amplified for further processing.
Antennas can be designed to transmit or receive radio waves in a particular
direction (directional antennas) or in all directions equally (omnidirectional
antennas). Chapter 5 is devoted to the antenna theory as well as the
radiation mechanisms of typical antenna systems, including wire antennas,
slot and aperture antennas, broadband antennas, and array antennas. It
features a wide coverage of advanced topics, such as the spherical vector
wavefunctions, Foster reactance theorem for ideal antennas, equivalent
circuits for transmitting and receiving antennas, the physical limitations
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of antennas, and the methods for the evaluation of antenna quality
factor.

A radio propagation model is a mathematical formulation for the char-
acterization of radio wave propagation as a function of frequency, distance
and other conditions. Many factors may change propagation properties
of radio waves. The atmosphere, the ground, mountains, buildings, and
weather conditions all have major influences on wave propagations and
cause variation in receiving signal strength. The propagation models can
be roughly divided into statistical and deterministic models. The statistical
models are derived from extensive field measurements and statistical
analysis, and are valid for similar environments where the measurements
were carried out. Sometimes site-specific deterministic propagation models
are preferred for more accurate predictions of radio wave propagations.
Chapter 6 is concerned with the propagation of radio waves in atmosphere
and the ray tracing techniques, the statistical models for mobile channels,
and the propagation models for deterministic multiple-input multiple-
output (MIMO) systems.

EMC studies the unintentional generation, transmission and reception
of electromagnetic energy, and deals with the electromagnetic interferences
(EMI) or disturbance that the unintentional electromagnetic energy (as an
external source) may induce. Its aim is to ensure that the electronic equip-
ment will not interfere with each other’s normal operation. Compliance with
national or international standards is usually required by laws passed by
individual nations before the electronic devices are brought to the market.
Chapter 7 investigates the EMC in modern electronic circuits and systems.
The relationship between the fields and circuits is discussed. The basic rules
for emission reduction are expounded. The transmission line models for the
study of susceptibility are introduced. The effective techniques to cope with
the EMC issues are investigated.

The pioneering work on information theory by Shannon (1948) and
Wiener (1949) has laid the foundation of modern communication theory
and information systems. The fundamental theorem of information theory
states that it is possible to transmit information through a noise channel
at any rate less than channel capacity with an arbitrarily small probability
of error. A signal chosen from a specified class is to be transmitted through
a communication channel as an input and is received at the output of the
channel. During the transmission, the signal may be altered by noise and
distortion. For each permissible input, the output is determined statistically
by a probability distribution assigned by the channel. At the output, a
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statistical decision must be made to identify the transmitted signal as
reliably as possible. Chapter 8 gives a brief introduction to the information
theory and typical information systems. It covers the probability theory
and random process, information theory, digital communication systems,
and radar systems.

The book can be used as a graduate-level text or as a reference for
researchers and engineers in applied electromagnetics. The prerequisite for
the book is advanced calculus. The SI unit system is used throughout the
book. A ejωt time variation is assumed for time-harmonic fields. A special
symbol ‘�’ is used to indicate the end of an example or a remark. The
references are not meant to be complete but the author has tried to indicate
the origins of the important results included in the book.

In preparing this book, I have benefited from suggestions from many
colleagues and friends, and would like to take this occasion to extend
my sincere thanks to all of them. Particular thanks go to Prof. Thomas
T. Y. Wong of Illinois Institute of Technology and Prof. Jun Xiang Ge of
Nanjing University of Information Science and Technology. Last but not
least, I would like to express my deepest gratitude to my family members
for their constant encouragement and support.

Wen Geyi
Nanjing, China

May 2014
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Chapter 1

Solutions of Electromagnetic
Field Problems

One scientific epoch ended and another began with James Clerk

Maxwell.

—Albert Einstein

The electromagnetic theory is the foundation of radio frequency (RF)
engineering. In 1873, J.C. Maxwell (1831–1879) summarized the theory on
electricity and magnetism discovered by many great physicists including
H.C. Oersted (1777–1851), A.M. Ampère (1775–1836), and M. Faraday
(1791–1861), and formulated a set of equations since known as Maxwell
equations, representing one of the great achievements in physics. The
Maxwell equations describe the behavior of electric and magnetic fields,
as well as their interactions with matter, and they are the starting point
for the investigation of all macroscopic electromagnetic phenomena.

Radio frequency (RF) refers to the frequency range from 3KHz to
300GHz. RF engineering deals with various wireless systems, and is an
important subject in electrical engineering. RF technologies are widely used
in fixed and mobile communication, broadcasting, radar and navigation
systems, satellite communication, computer networks and innumerable
other applications. Different frequencies of radio waves have different
propagation characteristics in the Earth’s atmosphere. Table 1.1 shows
various frequency bands and their major applications.

Microwave frequency often refers to the frequency range from 1GHz
to 300GHz. Table 1.2 gives the old and new names for typical microwave
frequency bands. At the low end of the microwave spectrum, the traditional
lumped circuit theory starts to become ineffective, and the field theory thus
enters the picture. Microwave field theory is one of the important research
areas of RF engineering, which may be applied to solve various boundary

1
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Table 1.1 RF spectrum

Frequency/
wavelength Designation Applications

3Hz–30 Hz/
105 km–104 km

ELF (Extremely low
frequency)

Submarines

30 Hz–300 Hz/
104 km–103 km

SLF (Super low frequency) Power grids, submarines

300 Hz–3 kHz/
103 km–102 km

ULF (Ultra low frequency) Earthquake studies

3 kHz–30 kHz/
100 km–10 km

VLF (Very low frequency) Submarines near the surface

30 kHz–300 kHz/
10 km–1 km

LF (Low frequency) Submarines, aircraft beacons,
AM broadcast, navigation

300 kHz–3 MHz/
1 km–100 m

MF (Medium frequency) AM broadcast, navigation

3MHz–30 MHz/
100m–10 m

HF (High frequency) Shortwave broadcast, over the
horizon radar

30 MHz–300MHz/
10m–1m

VHF (Very high frequency) FM, TV

300 MHz–3GHz/
1m–10 cm

UHF (Ultra high frequency) TV, LAN, cellular, GPS

3GHz–30 GHz/
10 cm–1 cm

SHF (Super high frequency) Radar, GSO satellites, data
communications

30 GHz–300 GHz/
1 cm–1mm

EHF (Extremely high
frequency)

Radar, automotive, data
communications

300 GHz–3 THz/
1mm–0.1mm

THF (Tremendously high
frequency)

Sensing and imaging, security
screening, high-altitude
communications

Table 1.2 Microwave frequency bands

Frequency (GHz) Old names New names

1–2 L D
2–4 S E, F
4–8 C G, H
8–12 X I, J

12–18 Ku J
18–26 K J
26–40 Ka K

value problems such as the analysis of guided waves, resonances, radiations
and scattering.

In mathematics, a boundary value problem consists of a differential
equation together with a set of additional constraints on the boundary
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Table 1.3 Some trinities for differential equations

Trinity Description

Three types of differential
equations:

Elliptical, hyperbolic and parabolic.

Three types of problems: Boundary value problems, initial value
problems, and eigenvalue problems.

Three types of boundary
conditions:

Dirichlet boundary condition, named after the
German mathematician Johann Peter Gustav
Lejeune Dirichlet (1805–1859); Neumann
boundary condition, named after the German
mathematician Carl Gottfried Neumann
(1832–1925); and Robin boundary condition,
named after the French mathematician Victor
Gustave Robin (1855–1897).

Three important
mathematical tools:

Divergence theorem, inequalities and
convergence theorems.

Three analytical solution
methods:

Separation of variables, Green’s function
method, and variational method.

Three numerical solution

methods:

Finite element method, finite difference method,

moment method.

of the domain of the equation (called the boundary conditions). Various
methods for the solution of differential equations have been proposed.
Linear differential equations are generally solved by means of variational
method, the method of separation of variables, and the method of Green’s
function, named after the British mathematician George Green (1793–
1841). Some usual trinities for differential equations are summarized in
Table 1.3 (Gustafson, 1987).

1.1 Maxwell Equations

Maxwell equations are a set of partial differential equations that form
the foundation of electrical and optical engineering. Maxwell equations
describe how electric and magnetic fields are generated by charges and
currents and altered by each other. Maxwell equations have been proved
to be very successful in explaining and predicting a variety of macroscopic
phenomena. However, in some special situations such as extremely strong
fields and extremely short distances, they may fail and can be noticeably
inaccurate. Moreover, Maxwell equations must be replaced by quantum
electrodynamics in order for dealing with microscopic phenomena.
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1.1.1 Maxwell Equations and Boundary Conditions

Maxwell equations in the time domain can be expressed as follows

∇× H(r, t) =
∂D(r, t)
∂t

+ J(r, t),

∇× E(r, t) = −∂B(r, t)
∂t

,

∇ ·D(r, t) = ρ(r, t),

∇ · B(r, t) = 0.

(1.1)

In (1.1), r is the observation point of the fields in meter and t is the time
in second; H is the magnetic field intensity measured in amperes per meter
(A/m); B is the magnetic induction intensity measured in tesla (N/A·m); E
is electric field intensity measured in volts per meter (V/m); D is the electric
induction intensity measured in coulombs per square meter (C/m2); J is
electric current density measured in amperes per square meter (A/m2); ρ is
the electric charge density measured in coulombs per cubic meter (C/m3).
The first equation is Ampère’s law, and it describes how the electric field
changes according to the current density and magnetic field. The second
equation is Faraday’s law, and it characterizes how the magnetic field varies
according to the electric field. The minus sign is required by Lenz’s law, i.e.,
when an electromotive force is generated by a change of magnetic flux, the
polarity of the induced electromotive force is such that it produces a current
whose magnetic field opposes the change, which produces it. The third
equation is Coulomb’s law, and it says that the electric field depends on
the charge distribution and obeys the inverse square law. The last equation
shows that there are no free magnetic monopoles and that the magnetic
field also obeys the inverse square law. It should be understood that none
of the experiments had anything to do with waves at the time when Maxwell
derived his equations. Maxwell equations imply more than the experimental
facts. The continuity equation can be derived from (1.1) as

∇ · J(r, t) = −∂ρ(r, t)
∂t

. (1.2)

The charge density ρ and the current density J in Maxwell equations are
free charge density and currents and they exclude charges and currents
forming part of the structure of atoms and molecules. The bound charges
and currents are regarded as material, which are not included in ρ and
J. The current density normally consists of two parts: J = Jcon + Jimp.
Here Jimp is referred to as external or impressed current source, which
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is independent of the fields and delivers energy to electric charges in a
system. The impressed current source can be of electric and magnetic type
as well as of non-electric or non-magnetic origin. Jcon = σE, where σ is
the conductivity of the medium in mhos per meter, denotes the conduction
current induced by the impressed source Jimp. Sometimes it is convenient
to introduce an external or impressed electric field Eimp defined by Jimp =
σEimp. In more general situation, one may write J = Jind(E,B) + Jimp,
where Jind(E,B) is the induced current by the impressed current Jimp.

Sometimes it is convenient to introduce magnetic current Jm and
magnetic charges ρm, which are related by

∇ · Jm(r, t) = −∂ρm(r, t)
∂t

(1.3)

and Maxwell equations must be modified as

∇× H(r, t) =
∂D(r, t)
∂t

+ J(r, t),

∇× E(r, t) = −∂B(r, t)
∂t

− Jm(r, t),

∇ ·D(r, t) = ρ(r, t),

∇ · B(r, t) = ρm(r, t).

(1.4)

The inclusions of Jm and ρm make Maxwell equations more symmetric
although there has been no evidence that the magnetic current and charge
are physically present. The validity of introducing such concepts in Maxwell
equations is justified by the equivalence principle, i.e., they are introduced
as a mathematical equivalent to electromagnetic fields.

If all the sources are of magnetic type, Equations (1.4) reduce to

∇× H(r, t) =
∂D(r, t)
∂t

,

∇× E(r, t) = −∂B(r, t)
∂t

− Jm(r, t),

∇ ·D(r, t) = 0,

∇ · B(r, t) = ρm(r, t).

(1.5)

Mathematically (1.1) and (1.5) are similar. One can obtain one of them
by simply interchanging symbols between the left and right columns in
Table 1.4, where µ and ε denote the permeability and permittivity of the
medium respectively. This property is called duality. The importance of
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Table 1.4 Duality

Electric source Magnetic source

E H
H −E
J Jm

ρ ρm

µ ε
ε µ

the duality is that one can obtain the solution of magnetic type from the
solution of electric type by interchanging symbols and vice versa.

For the time-harmonic (sinusoidal) fields, Equations (1.1) and (1.2) can
be expressed as

∇× H(r) = jωD(r) + J(r),

∇× E(r) = −jωB(r),

∇ ·D(r) = ρ(r),

∇ · B(r) = 0,

∇ · J(r) = −jωρ(r),

(1.6)

where the field quantities denote the complex amplitudes (phasors)
defined by

E(r, t) = Re[E(r)ejωt], etc.

We use the same notations for both time-domain and frequency-domain
quantities.

The force acting on a point charge q, moving with a velocity v with
respect to an observer, by the electromagnetic field is given by

F(r, t) = q[E(r, t) + v(r, t) × B(r, t)] (1.7)

where E and B are the total fields, including the field generated by the
moving charge q. Equation (1.7) is referred to as Lorentz force equation,
named after Dutch physicist Hendrik Antoon Lorentz (1853–1928). It is
known that there are two different formalisms in classical physics. One is
mechanics that deals with particles, and the other is electromagnetic field
theory that deals with radiated waves. The particles and waves are coupled
through Lorentz force equation, which usually appears as an assumption
separate from Maxwell equations. The Lorentz force is the only means
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to detect electromagnetic fields. For a continuous charge distribution, the
Lorentz force equation becomes

f(r, t) = ρE(r, t) + J(r, t) × B(r, t) (1.8)

where f is the force density acting on the charge distribution ρ, i.e., the
force acting on the charge distribution per unit volume. Maxwell equations,
Lorentz force equation and continuity equation constitute the fundamental
equations in electrodynamics.

The boundary conditions on the surface between two different media
can be easily obtained as follows

un × (H1 − H2) = Js,

un × (E1 − E2) = 0,

un · (D1 − D2) = ρs,

un · (B1 − B2) = 0,

(1.9)

where un is the unit normal of the boundary directed from medium 2 to
medium 1; Js and ρs are the surface current density and surface charge
density respectively.

Remark 1.1: To derive the boundary conditions (1.9), we may draw a small
cylinder of height ∆h and base area ∆S so that the boundary S between
medium 1 and medium 2 intersects the middle section of the cylinder as
illustrated in Figure 1.1. If the base area is sufficiently small the fields may
be assumed to be a constant value over each end of the cylinder. Taking
the integration of the first equation of (1.4) over the surface of the cylinder,
we obtain

un × H1∆S − un × H2∆S + K∆h− ∂D
∂t

∆S∆h = J∆S∆h, (1.10)

Medium 1 

Medium 2 

nu
∆S

∆h Boundary S

Figure 1.1 Derivation of boundary conditions.
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where K∆h denotes the integral of un×H over the side walls of the cylinder.
In the limit as ∆h → 0, the ends of the cylinder lie just on either side of
the boundary S and the integral over the side walls becomes vanishingly
small. Thus

lim
∆h→0

(
K∆h− ∂D

∂t
∆S∆h

)
= 0, lim

∆h→0
J∆h = Js.

Here Js stands for the surface current density. Equation (1.10) can be
written as

un × (H1 − H2) = Js. (1.11)

The rest of the equations in (1.9) can be derived in a similar way. �

1.1.2 Constitutive Relations

Maxwell equations are a set of 7 equations involving 16 unknowns (i.e.,
five vector functions E,H,B,D,J and one scalar function ρ and the last
equation of (1.1) is not independent). To determine the fields, nine more
equations are needed, and they are given by the generalized constitutive
relations:

D = f1(E,H), B = f2(E,H)

together with the generalized Ohm’s law:

J = f3(E,H)

if the medium is conducting. The constitutive relations establish the
connections between field quantities and reflect the properties of the
medium, and they are totally independent of the Maxwell equations. An
anisotropic medium is defined by

Di(r, t) =
∑

j=x,y,z

[aji (r)Ej(r, t) + (Gji ∗ Ej)(r, t)],

Bi(r, t) =
∑

j=x,y,z

[dji (r)Hj(r, t) + (F ji ∗Hj)(r, t)],

where i = x, y, z; ∗ denotes the convolution with respect to time; aji , d
j
i

are independent of time; and Gji , F
j
i are functions of (r, t). A biisotropic

medium is defined by

D(r, t) = a(r)E(r, t) + b(r)H(r, t) + (G ∗ E)(r, t) + (K ∗ H)(r, t)

B(r, t) = c(r)E(r, t) + d(r)H(r, t) + (L ∗ E)(r, t) + (F ∗ H)(r, t)
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where a, b, c, d are independent of time and G,K,L, F are functions of (r, t).
An isotropic medium is defined by

D(r, t) = a(r)E(r, t) + (G ∗ E)(r, t),

B(r, t) = d(r)H(r, t) + (F ∗ H)(r, t).

For monochromatic fields, the constitutive relations for an anisotropic
medium are usually expressed by

D =
↔
εεε · E, B =

↔
µµµ ·H,

where
↔
µµµ and

↔
εεε are dyads. For an introduction of dyadic analysis, please

refer to Bladel (2007).
The constitutive relations are often written as

D(r, t) = ε0E(r, t) + P(r, t) + · · · ,
B(r, t) = µ0[H(r, t) + M(r, t) + · · · ],

(1.12)

where µ0 and ε0 are permeability and permittivity in vacuum respectively;
M is the magnetization vector and P is the polarization vector. Equa-
tions (1.12) may contain higher order terms, which have been omitted
since in most cases only the magnetization and polarization vectors are
significant. The vector M and P reflect the effects of the Lorentz force
on elemental particles in the medium and therefore they depend on both
E and B in general. Since the elemental particles in the medium have finite
masses and are mutually interacting, M and P are also functions of time
derivatives of E and B as well as their magnitudes. The same applies for the
current density Jind. In most cases, M is only dependent on the magnetic
field B and its time derivatives while P and J are only dependent on the
electric field E and its time derivatives. If these dependences are linear,
the medium is said to be linear. These linear dependences are usually
expressed as

D = ε̃E + ε̃1
∂E
∂t

+ ε̃2
∂2E
∂t2

+ · · · ,

B = µ̃H + µ̃1
∂H
∂t

+ µ̃2
∂2H
∂t2

+ · · · ,

Jind = σ̃E + σ̃1
∂E
∂t

+ σ̃2
∂2E
∂t2

+ · · · ,

(1.13)

where all the scalar coefficients are constants. For the monochromatic fields,
the first two expressions of (1.13) reduce to

D = εE, B = µH



January 28, 2015 11:5 Foundations for Radio Frequency Engineering - 9in x 6in b1914-ch01 page 10

10 Foundations for Radio Frequency Engineering

where

ε = ε′ − jε′′, µ = µ′ − jµ′′,

ε′ = ε̃− ω2ε̃2 + · · · , µ′ = µ̃− ω2µ̃2 + · · · , (1.14)

ε′′ = −ωε̃1 + ω3ε̃3 − · · · , µ′′ = −ωµ̃1 + ω3µ̃3 − · · · .
The parameters ε′ and ε′′ are real and are called capacitivity and
dielectric loss factor respectively. The parameters µ′ and µ′′ are real
and are called inductivity and magnetic loss factor respectively.

1.1.3 Wave Equations

The electromagnetic wave equations are second order partial differential
equations that describe the propagation of electromagnetic waves through
a medium. If the medium is homogeneous and isotropic and non-dispersive,
we have B = µH and D = εE, where µ and ε are constants. On elimination
of E or H in the generalized Maxwell equations, we obtain

∇×∇×E + µε
∂2E
∂t2

= −∇× Jm − µ
∂J
∂t
,

∇×∇×H + µε
∂2H
∂t2

= ∇× J− ε
∂Jm
∂t

.

(1.15)

These are known as the wave equations. For the time-harmonic fields,
Equations (1.15) reduce to

∇×∇× E− k2E = −∇× Jm − jωµJ,

∇×∇× H− k2H = ∇× J − jωεJm,
(1.16)

where k = ω
√
µε is the wavenumber. It can be seen that the source terms

on the right-hand side of (1.15) and (1.16) are very complicated. To simplify
the analysis, the electromagnetic potential functions may be introduced (see
Section 1.5). The wave equations may be used to solve the following three
different field problems:

(1) Electromagnetic fields in source-free region: Wave propagations in space
and waveguides, wave oscillation in cavity resonators, etc.

(2) Electromagnetic fields generated by known source distributions:
Antenna radiations, excitations in waveguides and cavity resonators,
etc.

(3) Interaction of fields and sources: Wave propagation in plasma, coupling
between electron beams and propagation mechanism, etc.
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If the medium is inhomogeneous and anisotropic so that D =
↔
εεε · E and

B =
↔
µµµ ·H, the wave equations for the time-harmonic fields are

∇× ↔
µµµ

−1 · ∇ × E(r) − ω2↔
εεε ·E(r) = −jωJ(r) −∇× ↔

µµµ
−1 · Jm,

∇× ↔
εεε

−1 · ∇ × H(r) − ω2↔
µµµ ·H(r) = −jωJm(r) + ∇× ↔

εεε
−1 · J.

(1.17)

1.1.4 Dispersion

If the speed of the wave propagation and the wave attenuation in a medium
depend on the frequency, the medium is said to be dispersive. Dispersion
arises from the fact that the polarization and magnetization and the current
density cannot follow the rapid changes of the electromagnetic fields, which
implies that the electromagnetic energy can be absorbed by the medium.
Thus, the dissipation or absorption always occurs whenever the medium
shows the dispersive effects. In reality, all media show some dispersive
effects. The medium can be divided into normal dispersive and anomalous
dispersive. A normal dispersive medium refers to the situation where
the refractive index increases as the frequency increases. Most naturally
occurring transparent media exhibit normal dispersion in the visible range
of electromagnetic spectrum. In an anomalous dispersive medium, the
refractive index decreases as frequency increases. The dispersive effects are
usually recognized by the existence of elementary solutions (plane wave
solution) of Maxwell equations in source-free region

A(k)ej(ωt−k·r), (1.18)

where A(k) is the amplitude, k is wave vector and ω is the frequency.
When the elementary solutions are introduced into Maxwell equations, a
relationship between k and ω may be found as follows

f(ω,k) = 0. (1.19)

This is called dispersion relation. For a single linear differential equation
with constant coefficients, there is a one–one correspondence between the
equation and the dispersion relation. We only need to consider the following
correspondences:

∂

∂t
↔ jω, ∇ ↔ −jk,

which yield a polynomial dispersion relation. To find the dispersion relation
of the medium, the plane wave solutions may be assumed for Maxwell
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equations as follows

E(r, t) = Re[E(r)ejωt−jk·r], etc. (1.20)

Similar expressions hold for other quantities. In the following, it is assumed
that the wave vector k is allowed to be a complex vector and there is
no impressed source inside the medium. Introducing (1.20) into Maxwell
equations (1.6) with Jimp = 0 and using the calculation ∇e−jk·r =
−jke−jk·r, we obtain

−jk× H(r) + ∇× H(r) = jωD(r) + Jcon(r),

−jk× E(r) + ∇× E(r) = −jωB(r).

In most situations, the complex amplitudes of the fields are slowly
varying functions of space coordinates. The above equations may thus
reduce to

k × H(r) = −ωD(r) + jJcon(r),

k × E(r) = ωB(r).
(1.21)

If the medium is isotropic, dispersive and lossy, we may write

Jcon = σE, D = (ε′ − jε′′)E, B = (µ′ − jµ′′)H.

Substituting these into (1.21) yields

k · k = ω2(µ′ − jµ′′)[ε′ − j(ε′′ + σ/ω)].

Assuming k = uk(β − jα)(uk is a unit vector), then we have

β − jα = ω
√

(µ′ − jµ′′)[ε′ − j(ε′′ + σ/ω)]

from which we may find that

β =
ω√
2

√
(A2 +B2)1/2 +A, α =

ω√
2

√
(A2 +B2)1/2 −A

where A = µ′ε′ − µ′′(ε′′ + σ/ω), B = µ′′ε′ + µ′(ε′′ + σ/ω).

1.1.5 Electromagnetic Field Theorems

A number of theorems can be derived from Maxwell equations, and
they usually bring deep physical insight into the electromagnetic field
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problems. When applied properly, these theorems can simplify the problems
dramatically.

1.1.5.1 Superposition Theorem

Superposition theorem applies to all linear systems. Suppose that the
impressed current source Jimp can be expressed as a linear combination
of independent impressed current sources Jkimp(k = 1, 2, . . . , n)

Jimp =
n∑
k=1

akJkimp,

where ak(k = 1, 2, . . . , n) are arbitrary constants. If Ek and Hk are
fields produced by the source Jkimp, the superposition theorem for
electromagnetic fields asserts that the fields E =

∑n
k=1 akE

k and H =∑n
k=1 akH

k are a solution of Maxwell equations produced by the source
Jimp.

1.1.5.2 Conservation of Electromagnetic Energy

The law of conservation of electromagnetic energy is known as
the Poynting theorem, named after the English physicist John Henry
Poynting (1852–1914). It can be found from (1.1) that

−Jimp · E− Jind · E = ∇ · S + E · ∂D
∂t

+ H · ∂B
∂t
. (1.22)

In a region V bounded by S, the integral form of (1.22) is

−
∫
V

Jimp ·E dV =
∫
V

Jind · E dV +
∫
S

S · un dS

+
∫
V

(
E · ∂D

∂t
+ H · ∂B

∂t

)
dV, (1.23)

where un is the unit outward normal of S, and S = E×H is the Poynting
vector representing the electromagnetic power-flow density measured in
watts per square meter (W/m2). It is assumed that this explanation holds
for all media. Thus, the left-hand side of the above equation stands for the
power supplied by the impressed current source. The first term on the right-
hand side is the work done per second by the electric field to maintain the
current in the conducting part of the system. The second term denotes the
electromagnetic power flowing out of S. The last term can be interpreted
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as the work done per second by the impressed source to establish the fields.
The energy density w required to establish the electromagnetic fields may
be defined as follows

dw =
(
E · ∂D

∂t
+ H · ∂B

∂t

)
dt. (1.24)

Assuming all the sources and fields are zero at t = −∞, we have

w = we + wm, (1.25)

where we and wm are the electric field energy density and magnetic
field energy density respectively

we =
1
2
E ·D +

t∫
−∞

1
2

(
E · ∂D

∂t
− D · ∂E

∂t

)
dt,

wm =
1
2
H ·B +

t∫
−∞

1
2

(
H · ∂B

∂t
− B · ∂H

∂t

)
dt.

Equation (1.23) can be written as

−
∫
V

Jimp · E dV =
∫
V

Jind ·E dV +
∫
S

S · un dS +
∂

∂t

∫
V

(we + wm)dV .

(1.26)

In general, the energy densityw does not represent the stored energy density
in the fields: the energy temporarily located in the fields and completely
recoverable when the fields are reduced to zero. The energy density w given
by (1.25) can be considered as the stored energy density only if the medium
is lossless (i.e., ∇ · S = 0). If the medium is isotropic and time-invariant,
we have

we =
1
2
E · D, wm =

1
2
H ·B.

If the fields are time-harmonic, the Poynting theorem takes the following
form

−1
2

∫
V

E · J̄imp dV =
1
2

∫
V

E · J̄ind dV +
∫
S

1
2
(E× H̄) · un dS

+ j2ω
∫
V

(
1
4
B · H̄− 1

4
E · D̄

)
dV , (1.27)

where the bar denotes complex conjugate. The time averages of Poynting
vector, energy densities over one period of the sinusoidal wave ejωt, denoted
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T , are

1
T

T∫
0

E× Hdt =
1
2
Re(E× H̄),

1
T

T∫
0

1
2
E · Ddt =

1
4
Re(E · D̄),

1
T

T∫
0

1
2
H ·Bdt =

1
4
Re(H · B̄).

It should be noted that the Poynting theorem (1.23) in time domain and
the Poynting theorem (1.27) in frequency domain are independent. This
property can be used to find the stored energies around a small antenna
(see Chapter 5).

1.1.5.3 Uniqueness Theorems

It is important to know the conditions under which the solution of Maxwell
equations is unique. Let us consider a multiple-connected region V bounded
by S =

∑N
i=0 Si, as shown in Figure 1.2. Assume that the medium inside V

is linear, isotropic and time invariant, and it may contain some impressed
source Jimp. So we have D = εE,B = µH, and Jind = σE. The uniqueness
theorem for time-domain fields can be expressed as follows:

Uniqueness theorem for time-domain fields: Suppose that the
electromagnetic sources are turned on at t = 0. The electromagnetic fields
in a region are uniquely determined by the sources within the region, the
initial electric field and the initial magnetic field at t = 0 inside the region,

nu

NS

1S

2S 0S

impJ

Figure 1.2 Multiple-connected region.
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together with the tangential electric field (or the tangential magnetic field)
on the boundary for t > 0, or together with the tangential electric field on
part of the boundary and the tangential magnetic field on the rest of the
boundary for t > 0.

The uniqueness theorem for time-harmonic fields may be stated as
follows:

Uniqueness theorem for time-harmonic fields: For a region that
contains the dissipation loss or radiation loss, the electromagnetic fields are
uniquely determined by the sources within the region, together with the
tangential electric field (or the tangential magnetic field) on the boundary,
or together with the tangential electric field on part of the boundary and
the tangential magnetic field on the rest of the boundary.

The uniqueness for time-harmonic fields is guaranteed if the system
has radiation loss, regardless of the medium is lossy or not. This property
has been widely validated by the study of antenna radiation problems, in
which the surrounding medium is often assumed to be lossless. Note that
the uniqueness for time-harmonic fields fails for a system that contains no
dissipation loss and radiation loss. The uniqueness in a lossless medium is
usually obtained by considering the fields in a lossless medium to be the
limit of the corresponding fields in a lossy medium as the loss goes to zero,
which is based on an assumption that the limit of a unique solution is also
unique. However, this limiting process may lead to physically unacceptable
solutions. Also notice that there is no need to introduce losses for a unique
solution in the time-domain analysis (Geyi, 2010).

1.1.5.4 Equivalence Theorems

It is known that there is no answer to the question of whether field or source
is primary. The equivalence principles just indicate that the distinction
between the field and source is kind of blurred. Let V be an arbitrary region
bounded by S, as shown in Figure 1.3. Two sources that produce the same
fields inside a region are said to be equivalent within that region. Similarly,
two electromagnetic fields {E1,D1,H1,B1} and {E2,D2,H2,B2} are said
to be equivalent inside a region if they both satisfy the Maxwell equations
and are equal in that region.

The main application of the equivalence theorem is to find equivalent
sources to replace the influences of substance (the medium is homogenized),
so that the formulae for retarding potentials can be used. The equivalent
sources may be located inside S (equivalent volume sources) or on S
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S

nu

V

3R V−

Figure 1.3 Equivalence theorem.

(equivalent surface sources). The most general form of the equivalent
principles is stated as follows.

General equivalence principle: Let us consider two electromagnetic field
problems in two different media:

Problem 1:




∇× H1(r, t) = ∂D1(r, t)/∂t+ J1(r, t),

∇× E1(r, t) = −∂B1(r, t)/∂t− Jm1(r, t),

∇ ·D1(r, t) = ρ1(r, t), ∇ ·B1(r, t) = ρm1(r, t),

D1(r, t) = ε1(r)E1(r, t),B1(r, t) = µ1(r)H1(r, t)

Problem 2:




∇× H2(r, t) = ∂D2(r, t)/∂t+ J2(r, t),

∇× E2(r, t) = −∂B2(r, t)/∂t− Jm2(r, t),

∇ ·D2(r, t) = ρ2(r, t),∇ ·B2(r, t) = ρm2(r, t),

D2(r, t) = ε2(r)E2(r, t),B2(r, t) = µ2(r)H2(r, t).

If a new set of electromagnetic fields {E,D,H,B} satisfying


∇× H(r, t) = ∂D(r, t)/∂t+ J(r, t),

∇× E(r, t) = −∂B(r, t)/∂t− Jm(r, t),

∇ · D(r, t) = ρ(r, t),∇ ·B(r, t) = ρm(r, t),

D(r, t) = ε(r)E(r, t),B(r, t) = µ(r)H(r, t),

(1.28)

is constructed in such a way that the sources of the fields {E,D,H,B} and
the parameters of the medium satisfy


J = J1,Jm = Jm1

ρ = ρ1, ρm = ρm1, r ∈ V ;
µ = µ1, ε = ε2




J = J2,Jm = Jm2

ρ = ρ2, ρm = ρm2, r ∈ R3 − V

µ = µ2, ε = ε2
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and 


J = un × (H2+ − H1−)
Jm = −un × (E2+ − E1−)
ρ = un · (D2+ − D1−)
ρm = un · (B2+ − B1−)

, r ∈ S

where un is the unit outward normal to S, and the subscripts + and −
signify the values obtained as S is approached from outside S and inside S
respectively, then we have

{E,D,H,B} = {E1,D1,H1,B1} , r ∈ V

{E,D,H,B} = {E2,D2,H2,B2} , r ∈ R3 − V
.

By the equivalence principle, the magnetic current Jm and magnetic charge
ρm, introduced in the generalized Maxwell equations, are justified in the
sense of equivalence. If E1 = D1 = H1 = B1 = J1 = Jm1 = 0 in the general
equivalence theorem, we may choose µ = µ2, ε = ε2 in (1.28) inside S. If
all the sources for Problem 2 are contained inside S, the following sources{

Js = un × H2+,Jms = −un × E2+

ρs = un · D2+, ρms = un ·B2+

, r ∈ S

produce the electromagnetic fields {E,D,H,B} in (1.28). In other words,
the above sources generate the fields {E2,D2,H2,B2} in R3−V and a zero
field in V . Thus we have:

Schelkunoff–Love equivalence (named after the American mathemati-
cian Sergei Alexander Schelkunoff, 1897–1992; and the English mathemati-
cian Augustus Edward Hough Love, 1863–1940): Let {E,D,H,B} be the
electromagnetic fields with source confined in S. The following surface
sources {

Js = un × H, Jms = −un × E
ρs = un · D, ρms = un · B

, r ∈ S (1.29)

produce the same fields {E,D,H,B} outside S and a zero field inside S.
Since the sources in (1.29) produce a zero field inside S, the interior

of S may be filled with a perfect electric conductor. By use of the Lorentz
reciprocity theorem [see (1.32)], it can be shown that the surface electric
current pressed tightly on the perfect conductor does not produce fields. As
a result, only the surface magnetic current is needed in (1.29). Similarly,
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the interior of S may be filled with a perfect magnetic conductor, and in
this case the surface magnetic current does not produce fields and only
the surface electric current is needed in (1.29). In both cases, one cannot
directly apply the vector potential formula even if the medium outside S is
homogeneous.

1.1.5.5 Reciprocity

A linear system is said to be reciprocal if the response of the system with
a particular load and a source is the same as the response when the source
and the load are interchanged. Consider two sets of time-harmonic sources,
J1,Jm1 and J2,Jm2, of the same frequency in the same linear medium. The
fields produced by the two sources are respectively denoted by E1,H1 and
E2,H2, and they satisfy the Maxwell equations{

∇× Hi(r) = jωεEi(r) + Ji(r)
∇× Ei(r) = −jωµHi(r) − Jmi(r)

, (i = 1, 2).

The reciprocity can be stated as∫
V

(E2 · J1 − H2 · Jm1)dV =
∫
V

(E1 · J2 − H1 · Jm2)dV

+
∫
S

(E1 × H2 − E2 × H1) · un dS, (1.30)

where V is a finite region bounded by S. If both sources are outside S,
the surface integral in (1.30) is zero. If both sources are inside S, it can be
shown that the surface integral is also zero by using the radiation condition.
Therefore, we obtain the Lorentz form of reciprocity∫

S

(E1 × H2 − E2 × H1) · un dS = 0 (1.31)

and the Rayleigh–Carson form of reciprocity∫
V

(E2 · J1 − H2 · Jm1)dV =
∫
V

(−H1 · Jm2 + E1 · J2)dV . (1.32)

If the surface S only contains the sources J1(r) and Jm1(r), (1.30) becomes∫
V

(E2 · J1 − H2 · Jm1)dV =
∫
S

(E2 · un × H1 − H2 ·E1 × un)dS.
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This is the familiar form of Huygens’ principle. The electromagnetic
reciprocity theorem can also be generalized to an anisotropic medium
(Kong, 1990; Tai, 1961; Harrington, 1958). Let us consider a special case
where the region V does not contain any sources. We denote the fields inside
the region V by (E1,H1) or (E2,H2) when it is endowed with medium

parameters (
↔
µµµ ,

↔
εεε ) or with transposed medium parameters (

↔
µµµ
t
,
↔
εεε
t
). It

follows from the Maxwell equations in source-free region that

∇ · (E1 × H2) = H2 · ∇ × E1 − E1 · ∇ × H2

= −jωH2 · ↔
µµµ · H1 − jωE1 · ↔

εεε
t · E2,

∇ · (E2 × H1) = H1 · ∇ × E2 − E2 · ∇ × H1

= −jωH1 · ↔
µµµ
t · H2 − jωE2 · ↔

εεε · E1.

This gives

∇ · (E1 × H2 − E2 × H1) = 0.

After integration over V , we obtain (1.31).

1.2 Method of Separation of Variables

Let us consider a differential equation

L̂u = f, (1.33)

where L̂ is a differential operator, f is a known source function and u is
the unknown function. One method of solving (1.33) is to find the spectral
representation of L̂ by studying the solution of the following eigenvalue
equation

L̂u = λu,

where λ is called eigenvalue and u is the corresponding eigenfunction.
The method of eigenfunction expansion is also called the method of
separation of variables if L̂ is a partial differential operator. The basic
idea of separation of variables is to seek a solution in the form of a product of
functions, each of which depends on one variable only, so that the solution of
original partial differential equations may reduce to the solution of ordinary
differential equations. We will use the Helmholtz equation to illustrate the
procedure in this section. The Helmholtz equation, named after the
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German physicist Hermann Ludwig Ferdinand von Helmholtz (1821–1894),
is the time-independent form of wave equation, and is defined by

(∇2 + k2)u = 0, (1.34)

where k is a constant. When k is zero, the Helmholtz equation reduces to
the Laplace equation, named after the French mathematician Pierre-Simon
marquis de Laplace (1749–1827). The Helmholtz equation is separable in
11 orthogonal coordinate systems (Eisenhart, 1934).

1.2.1 Eigenvalue Problem of Sturm–Liouville Type

First let us consider the most common eigenvalue problem for the ordinary
differential equation known as the Sturm–Liouville equation [named
after the French mathematicians Jacques Charles François Sturm (1803–
1855) and Joseph Liouville (1809–1882)][

− d

dx
p(x)

d

dx
+ q(x)

]
vn(x) = λnw(x)vn(x), a < x < b (1.35)

subject to the homogeneous boundary conditions of impedance type:

p(x)
dvn(x)
dx

+ α(x)vn(x) = 0, x = a, b. (1.36)

In the above, λn is the eigenvalue and vn is the corresponding eigenfunction.
The functions p, q and the weight function w are assumed to be real
functions of x in [a, b] and furthermore w > 0. Multiplying (1.35) by vn,
integrating over x between a and b and using integration by parts, we obtain

λn =

b∫
a

p
(
dvn

dx

)2
dx +

b∫
a

qv2
n dx+ α(b)v2

n(b) − α(a)v2
n(a)

b∫
a

wv2
n dx

. (1.37)

This indicates that λn is real. We now multiply (1.35) by the eigenfunction
vm and integrate over the x domain to obtain

b∫
a

vm
d

dx

(
p
dvn
dx

)
dx−

b∫
a

qvmvn dx+ λn

b∫
a

wvmvn dx = 0. (1.38)
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Interchanging m and n gives another equation

b∫
a

vn
d

dx

(
p
dvm
dx

)
dx−

b∫
a

qvnvm dx+ λm

b∫
a

wvnvm dx = 0. (1.39)

Subtracting (1.38) from (1.39) yields

(λm − λn)

b∫
a

wvnvm dx =
[
p

(
vn
dvm
dx

− vm
dvn
dx

)]b
a

.

In view of the boundary conditions (1.36), we obtain the following
orthogonal relationship

b∫
a

wvnvm dx = 0, m �= n. (1.40)

The eigenfunctions may be normalized as follows

b∫
a

w(x)v2
n(x)dx = 1. (1.41)

The set of eigenfunctions {vn} is said to be orthonormal if both (1.40)
and (1.41) are satisfied. If we assume vn(a) = vn(b) = 0, then all the
eigenvalues are positive from (1.37). Suppose that the eigenfunctions are
complete and therefore every square integrable function f(x) in [a, b] can
be represented by

f(x) =
∑
n

fnvn, (1.42)

where the sum is over all eigenfunctions, and

fn =

b∫
a

w(x)f(x)vn(x)dx.

The completeness and orthonormality of the set {vn} can be expressed
concisely in a symbolic manner by choosing f(x) = δ(x− x′) in (1.42)

δ(x− x′)
w(x′)

=
∑
n

vn(x)vn(x′), a < x, x′ < b. (1.43)
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1.2.2 Rectangular Coordinate System

In rectangular coordinate system (x, y, z), Helmholtz equation (1.34)
becomes

∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
+ k2u = 0. (1.44)

We seek a solution in the form of product of three functions of one
coordinate each

u = X(x)Y (y)Z(z). (1.45)

Substituting (1.45) into (1.44) gives

1
X

d2X

dx2
+

1
Y

d2Y

dy2
+

1
Z

d2Z

dz2
+ k2 = 0. (1.46)

Since k is a constant and each term depends on one variable only and
can change independently, the left-hand side of (1.46) can sum to zero for
all coordinate values only if each term is a constant. Thus we have

d2X

dx2
+ k2

xX = 0,

d2Y

dy2
+ k2

yY = 0,

d2Z

dz2
+ k2

zZ = 0,

(1.47)

where kx, ky and kz are separation constants and satisfy

k2
x + k2

y + k2
z = k2. (1.48)

The solutions of (1.47) are harmonic functions, denoted by X(kxx),
Y (kyy) and Z(kzz), and they are any linear combination of the following
independent harmonic functions:

eikαα, e−ikαα, cos kαα, sin kαα (α = x, y, z). (1.49)

Consequently, the solution (1.45) may be expressed as

u = X(kxx)Y (kyy)Z(kzz). (1.50)

The separation constants kx, ky and kz are also called eigenvalues, and they
are determined by the boundary conditions. The corresponding solutions
(1.50) are called eigenfunctions or elementary wavefunctions. The general
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solution of (1.44) can be expressed as a linear combination of the elementary
wavefunctions.

1.2.3 Cylindrical Coordinate System

In cylindrical coordinate system (ρ, ϕ, z), (1.34) can be written as

1
ρ

∂

∂ρ

(
ρ
∂u

∂ρ

)
+

1
ρ2

∂2u

∂ϕ2
+
∂2u

∂z2
+ k2u = 0. (1.51)

By the method of separation of variables, the solutions may be assumed
to be

u = R(ρ)Φ(ϕ)Z(z). (1.52)

Introducing (1.52) into (1.51) yields

d2R

dρ2
+

1
ρ

dR

dρ
+
(
µ2 − p2

ρ2

)
R = 0,

d2Φ
dϕ2

+ p2Φ = 0,

d2Z

dz2
+ β2Z = 0,

(1.53)

where µ, p and β are separation constants and satisfy

β2 + µ2 = k2. (1.54)

The first equation of (1.53) is Bessel equation, named after the German
mathematician Friedrich Wilhelm Bessel (1784–1846), whose solutions are
Bessel functions:

Jp(µρ), Np(µρ), H(1)
p (µρ), H(2)

p (µρ),

where Jp(µρ) and Np(µρ) are the Bessel functions of the first and second
kind, H(1)

p (µρ) andH(2)
p (µρ) are the Bessel functions of the third and fourth

kind, also called Hankel functions of first and second kind respectively,
named after German mathematician Hermann Hankel (1839–1873). The
Bessel function of the first kind is defined by

Jp(µz) =
∞∑
m=0

(−1)m

Γ(m+ 1)Γ(p+m+ 1)

(µz
2

)p+2m

, (1.55)
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where Γ(α) is the gamma function defined by

Γ(α) =

∞∫
0

xα−1e−xdx, α > 0.

If p is not an integer, a second independent solution is J−p(µz). If p = n is
an integer, J−n(µz) is related to Jn(µz) by

J−n(z) = (−1)nJn(z).

The Bessel function of the second kind (also known as Neumann
function) defined by

Np(µz) =
cos pπJp(µz) − J−p(µz)

sin pπ
, (1.56)

and the Bessel functions of the third (Hankel function of the first kind) and
fourth kind (Hankel function of the second kind) are defined by

H
(1)
p (µz) = Jp(µz) + jNp(µz),

H
(2)
p (µz) = Jp(µz) − jNp(µz).

(1.57)

The solutions of second and third equation of (1.53) are harmonic
functions. Note that only Jp(µρ) is finite at ρ = 0. The separation constants
µ and p are determined by the boundary conditions. For example, if the field
u is finite and satisfies homogeneous Dirichlet boundary condition u = 0
at ρ = a, the separation constant µ is determined by Jp(µρ) = 0. If the
cylindrical region contains all ϕ from 0 to 2π, the separation constant p is
usually determined by the requirement that the field is single-valued, i.e.,
Φ(0) = Φ(2π). In this case, p must be integers. If the cylindrical region only
contains a circular sector, p will be fractional numbers.

Let Rp(µz) = AJp(µz) + BNp(µz), where A and B are constant. We
have the recurrence relations

2p
µz
Rp(µz) = Rp−1(µz) +Rp+1(µz),

1
µ

d

dz
Rp(µz) =

1
2
[Rp−1(µz) −Rp+1(µz)] ,

z
d

dz
Rp(µz) = pRp(µz) − µzRp+1(µz),
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d

dz
[zpRp(µz)] = µzpRp−1(µz),

d

dz
[z−pRp(µz)] = −µz−pRp+1(µz).

1.2.4 Spherical Coordinate System

In spherical coordinate system (r, θ, ϕ), (1.34) can be expressed as

1
r2

∂

∂r

(
r2
∂u

∂r

)
+

1
r2 sin θ

∂

∂θ

(
sin θ

∂u

∂θ

)
+

1
r2 sin θ

∂2u

∂ϕ2
+ k2u = 0.

(1.58)

By means of the separation of variables, we may let

u = R(r)Θ(θ)Φ(ϕ). (1.59)

Substitution of (1.59) into (1.58) leads to

1
R

d

dr

(
r2
dR

dr

)
+ k2r2 = β2,

1
Θ sin θ

d

dθ

(
sin θ

dΘ
dθ

)
− m2

sin2 θ
= −β2,

d2Φ
dϕ2

+m2Φ = 0.

(1.60)

Let x = cos θ and P (x) = Θ(θ), the second equation of (1.60) becomes

(1 − x2)
d2P

dx2
− 2x

dP

dx
+
(
β2 − m2

1 − x2

)
P = 0. (1.61)

This is called Legendre equation, named after the French mathematician
Adrien-Marie Legendre (1752–1833). The points x = ±1 are singular.
Equation (1.61) has two linearly independent solutions and can be expressed
as a power series at x = 0. In general, the series solution diverges at x = ±1.
But if we let β2 = n(n + 1), n = 0, 1, 2, . . . , the series will be finite at
x = ±1 and have finite terms. Thus the separation constant β is determined
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naturally and (1.60) can be written as

d

dr

(
r2
dR

dr

)
+
[
k2r2 − n(n+ 1)

]
R = 0,

(1 − x2)
d2P

dx2
− 2x

dP

dx
+
[
n(n+ 1) − m2

1 − x2

]
P = 0,

d2Φ
dϕ2

+m2Φ = 0.

(1.62)

The solutions of the first equation of (1.62) are spherical Bessel
functions

jn(kr) =
√

π

2kr
Jn+1/2(kr), nn(kr) =

√
π

2kr
Nn+1/2(kr),

h(1)
n (kr) =

√
π

2kr
H

(1)
n+1/2(kr), h(2)

n (kr) =
√

π

2kr
H

(2)
n+1/2(kr).

(1.63)

Let zn(kr) = Ajn(kr) + Bnn(kr), where A and B are constants. We have
the recurrence relations:

2n+ 1
kr

zn(kr) = zn−1(kr) + zn+1(kr),

2n+ 1
k

d

dr
zn(kr) = nzn−1(kr) − (n+ 1)zn+1(kr),

d

dr
[rn+1zn(kr)] = krn+1zn−1(kr),

d

dr
[r−nzn(kr)] = −kr−nzn+1(kr).

The solutions of the second equation of (1.62) are associated Legendre
functions of first and second kind defined by

Pmn (x) =
(1 − x2)m/2

2nn!
dm+n

dxm+n
(x2 − 1)n, (1.64)

and

Qmn (x) = (1 − x2)
m
2
dm

dxm
Qn(x), m ≤ n, (1.65)
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respectively, with

Qn(x) =
1
2
P 0
n(x) ln

1 + x

1 − x
−

n∑
r=1

1
r
P 0
r−1(x)P

0
n−r(x)

being the Legendre function of the second kind.
The following integrations are useful

1∫
−1

Pmn (x)P kn (x)
1 − x2

dx =
1
m

(n+m)!
(n−m)!

δmk,

1∫
−1

Pmk (x)Pmn (x)dx =
2

2k + 1
(k +m)!
(k −m)!

δkn,

π∫
0

[
dPmn (cos θ)

dθ

dPmk (cos θ)
dθ

+
m2

sin2 θ
Pmn (cos θ)Pmk (cos θ)

]
sin θ dθ

=
2

2n+ 1
(n+m)!
(n−m)!

n(n+ 1)δnk.

The solutions of the third equation of (1.62) are harmonic functions. Note
that the separation coefficients are not related in spherical coordinate
system.

1.3 Method of Green’s Functions

Physically, the Green’s function represents the field produced by a point
source, and provides a general method to solve differential equations.
Through the use of the Green’s function, the solution of a differential
equation can be represented by an integral defined over the source region
or on a closed surface enclosing the source. Mathematically, the solution of
a partial differential equation in the source region V

L̂u(r) = f(r), r ∈ V (1.66)

can be expressed as

u(r) = L̂−1f(r),

where L̂−1 stands for the inverse of L̂ and is often represented by an integral
operator whose kernel is the Green’s function. Let us assume that there
exists a function G such that

L̂−1f(r) = −
∫
V

G(r, r′)f(r′)dV (r′), (1.67)
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Applying L̂ to both sides of the above equation yields

L̂L̂−1f(r) = f(r) = −
∫
V

L̂G(r, r′)f(r′)dV (r′).

This equation implies that the function G satisfies

L̂G(r, r′)f(r) = −δ(r− r′) (1.68)

where δ denotes the delta function. The function G is called the funda-
mental solution or Green’s function of the Equation (1.66).

1.3.1 Green’s Functions for Helmholtz Equation

Let ρ = (x, y), r = (x, y, z) and v be a constant. The fundamental solutions
of wave equations are summarized in Table 1.5, where H(x) is the unit
step function. It can be seen that the Green’s functions are symmetric
G(r, r′) = G(r′, r).

Example 1.1: The Green’s function for one-dimensional Helmholtz equa-
tion satisfies

d2G(z, z′)
dz2

+ k2G(z, z′) = −δ(z − z′),

lim
z→±∞

(
dG

dz
± jkG

)
= 0.

(1.69)

The second equation denotes the radiation condition at infinity. Let

G(z, z′) =

{
G1(z, z′), z < z′

G2(z, z′), z > z′
.

Then we may write

G1(z, z′) = a1e
−jk(z−z′) + b1e

jk(z−z′),

G2(z, z′) = a2e
−jk(z−z′) + b2e

jk(z−z′),

where a1, b1, a2, b2 are constants to be determined. Taking the radiation
condition into account, we have a1 = b2 = 0. Thus

G1(z, z′) = b1e
jk(z−z′),

G2(z, z′) = a2e
−jk(z−z′).

(1.70)



January 28, 2015 11:5 Foundations for Radio Frequency Engineering - 9in x 6in b1914-ch01 page 30

30 Foundations for Radio Frequency Engineering

Table 1.5 Green’s functions

Equations Green’s functions

2D Laplace equation:

∇2G(ρρρ,ρρρ′) = −δ(ρρρ − ρρρ′) G(ρρρ,ρρρ′) = − 1

2π
ln |ρρρ − ρρρ′|

3D Laplace equation:

∇2G(r, r′) = −δ(r − r′) G(r, r′) =
1

4π|r − r′|
2D Helmholtz equation:

(∇2 + k2)G(ρρρ,ρρρ′) = −δ(ρρρ − ρρρ′) G(ρρρ,ρρρ′) =
1

4j
H

(2)
0 (k|ρρρ − ρρρ′|)

3D Helmholtz equation:

(∇2 + k2)G(r, r′) = −δ(r − r′) G(r, r′) =
e−jk|r−r′|

4π|r − r′|
1D wave equation:8>>>><
>>>>:

„
∂2

∂z2
− 1

v2
∂2

∂t2

«
G(z, z′; t, t′)

= −δ(z − z′)δ(t − t′)

G(z, z′; t, t′) = 0, t < t′

G(z, z′; t, t′) =
v

2
H(t− t′ − |z − z′|/v)

2D wave equation:8>>>><
>>>>:

„
∇2 − 1

v2
∂2

∂t2

«
G(ρρρ,ρρρ′; t, t′)

= −δ(ρρρ − ρρρ′)δ(t − t′)

G(ρρρ,ρρρ′; t, t′) = 0, t < t′

G(ρρρ,ρρρ′; t, t′) =
H(t − t′ − |ρρρ − ρρρ′|/v)

2π
p

(t− t′)2 − |ρρρ − ρρρ′|/v

3D wave equation:8>>>><
>>>>:

„
∇2 − 1

v2
∂2

∂t2

«
G(r, r′; t, t′)

= −δ(r − r′)δ(t − t′)

G(r, r′; t, t′) = 0, t < t′

G(r, r′; t, t′) =
δ(t − t′ − |r − r′|/v)

4π|r − r′|

From the first equation of (1.69), we have

G1(z, z′) = G2(z, z′),

dG2(z, z′)
dz

− dG1(z, z′)
dz

= −1.

at z = z′. Introducing (1.70) into the above equations gives

a2 = b1 =
1
j2k

.
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Finally, we have

G(z, z′) =




1
j2k

ejk(z−z
′), z < z′

1
j2k

e−jk(z−z
′), z > z′

=
1
j2k

e−jk|z−z′|.

This is the Green’s function for one-dimensional Helmholtz equation.
�

1.3.2 Partial Differential Equations and Integral Equations

The partial differential equations can be converted into integral equations
by means of Green’s functions. Let V be a bounded region in space and
S its boundary. Let L̂ be a linear differential operator. The operator L̂∗ is
called the formal adjoint of L̂ if there exists a vector function U(r) such
that the relation

v(r)L̂u(r) − u(r)L̂∗v(r) = ∇ ·U(r)

holds for arbitrary functions u and v(U may vary with u and v). The
operator L̂ becomes self-adjoint if the right-hand side of the above
equation vanishes. Consider a differential equation

L̂u(r) = f(r), r ∈ Ω,

where u is the unknown function and f is a known source function. We may
use the direct method to establish the integral equation. From integration
by parts, we obtain∫

V

[
v(r)L̂u(r) − u(r)L̂∗v(r)

]
dV =

∫
S

b[u(r), v(r)]dS, (1.71)

where u and v are two arbitrary smooth functions and b(·, ·) is a bilinear
form. If G(r, r′) is the Green’s function of L̂∗

L̂∗G(r, r′) = −δ(r− r′),

we may let v(r) = G(r, r′) in (1.71), yielding∫
Ω

u(r)δ(r − r′)dV (r) −
∫
S

b[G(r, r′), u(r)]dS(r)

= −
∫
V

G(r, r′)f(r)dV (r).
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If S is smooth we may let r′ → S to obtain

1
2
u(r′) −

∫
S

b[G(r, r′), u(r)]dS(r) = −
∫
V

G(r, r′)f(r)dV (r).

By use of the symmetric property of the Green’s functionG(r, r′) = G(r′, r),
the above equation can be written as

1
2
u(r) −

∫
S

b[G(r, r′), u(r′)]dS(r′) = −
∫
V

G(r, r′)f(r′)dV (r′).

This is the integral equation defined on the boundary S.

Example 1.2: For the differential operator defined by

L̂u = a11(x, y)
∂2u

∂x2
+ a22(x, y)

∂2u

∂y2
+ 2a12(x, y)

∂2u

∂x∂y

+ b1(x, y)
∂u

∂x
+ b2(x, y)

∂u

∂y
+ c(x, y)u,

the formal adjoint is given by

L̂∗v =
∂2

∂x2
(a11v) +

∂2

∂y2
(a22v) + 2

∂2

∂x∂y
(a12v) − ∂

∂x
(b1v) − ∂

∂y
(b2v) + cv,

with

U(x, y) = ux

[
a11

(
v
∂u

∂x
− u

∂v

∂x

)
+ a12

(
v
∂u

∂y
− u

∂v

∂y

)

+
(
b1 − ∂a11

∂x
− ∂a12

∂y

)
uv

]
+ uy

[
a12

(
v
∂u

∂x
− u

∂v

∂x

)

+ a22

(
v
∂u

∂y
− u

∂v

∂y

)
+
(
b2 − ∂a12

∂x
− ∂a22

∂y

)
uv

]
.

Apparently, we have L̂ = ∇2 =
(
∂2

∂x2 + ∂2

∂y2

)
= L̂∗. �

1.3.3 Dyadic Green’s Functions

A dyadic is a second order tensor formed by putting two vectors side by
side. Its manipulation rules are analogous to that for matrix algebra. Dyadic
notation was first established by Josiah Willard Gibbs (1839–1903) in
1884. The application of dyadic Green’s function in solving electromagnetic
boundary value problem can be traced back to Schwinger’s work in
early 1940s. In 1950, Levine and Schwinger applied the dyadic Green’s
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function to investigate the diffraction problem by an aperture in an infinite
plane conducting screen (Levine and Schwinger, 1950). In 1953, Morse
and Feshbach discussed various applications of dyadic Green’s functions
(Morse and Feshbach, 1953). A more systematic study of dyadic Green’s
functions and their applications in electromagnetic engineering can be found
in Tai (1994). Consider an electric current element in the direction of
α(α = x, y, z) located at r′

J(α)(r) = − 1
jωµ

δ(r − r′)uα,

which produces electromagnetic fields E(α)(r) and H(α)(r) at r. Let

G(α)
e (r, r′) = E(α)(r),

G(α)
m (r, r′) = −jωµH(α)(r).

(1.72)

G(α)
e (r, r′) and G(α)

m (r, r′) are respectively referred to as electric and
magnetic Green’s function along direction α in free space. It follows
from Maxwell equations that

∇× G(α)
e (r, r′) = G(α)

m (r, r′),

∇× G(α)
m (r, r′) = uαδ(r − r′) + k2G(α)

e (r, r′).

The dyads defined by

↔
Ge(r, r′) =

∑
α=x,y,z

G(α)
e (r, r′)uα,

↔
Gm(r, r′) =

∑
α=x,y,z

G(α)
m (r, r′)uα

are respectively called electric and magnetic dyadic Green’s func-
tions in free space. Apparently, we have

∇× ↔
Ge(r, r′) =

↔
Gm(r, r′),

∇× ↔
Gm(r, r′) =

↔
I δ(r − r′) + k2

↔
Ge(r, r′),

(1.73)

where
↔
I is the identity dyad. From (1.73), we obtain

∇×∇× ↔
Ge(r, r′) − k2

↔
Ge(r, r′) =

↔
I δ(r − r′),

∇×∇× ↔
Gm(r, r′) − k2

↔
Gm(r, r′) = ∇× [

↔
I δ(r − r′)].

(1.74)
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The free space electric dyadic Green’s function
↔
Ge(r, r′) may be represented

by free space Green’s function G(r, r′) as follows

↔
Ge(r, r′) =

(↔
I +

1
k2

∇∇
)
G(r, r′). (1.75)

In fact, the first equation of (1.74) may be written as

−∇2
↔
Ge(r, r′) − k2

↔
Ge(r, r′) + ∇∇ · ↔Ge(r, r′) =

↔
I δ(r − r′). (1.76)

Taking the divergence of the first equation of (1.74) yields

∇ · ↔Ge(r, r′) = − 1
k2

∇ · [↔I δ(r − r′)] = − 1
k2

∇δ(r − r′)

Substituting the above into (1.76), we obtain

∇2
↔
Ge(r, r′) + k2

↔
Ge(r, r′) = −

(
↔
I +

1
k2

∇∇
)
δ(r − r′).

Obviously (1.75) satisfies the above equation.
The free space magnetic dyadic Green’s function may be expressed as

↔
Gm(r, r′) = ∇× ↔

Ge(r, r′) = ∇× [G(r, r′)
↔
I ] = ∇× [

↔
G0(r, r′)].

where
↔
G0(r, r′) = G(r, r′)

↔
I satisfies Helmholtz equation

(∇2 + k2)
↔
G0(r, r′) = −↔

I δ(r − r′). (1.77)

Making use of the Green’s identity, we obtain

E(r) = −jωµ
∫
V

↔
Ge(r, r′) · J(r′)dV (r′)

+
∫
S

jωµ
↔
Ge(r, r′) · [un × H(r′)]dS(r′)

−
∫
S

∇× ↔
Ge(r, r′) · [un × E(r′)]dS(r′),
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H(r) =
∫
V

↔
Ge(r, r′) · ∇′ × J(r′)dV (r′)

−
∫
S

jωε
↔
Ge(r, r′) · [un × E(r′)]dS(r′)

+
∫
S

∇× ↔
Ge(r, r′) · [un × H(r′)]dS(r′).

1.3.4 Green’s Functions and Spectral Representation

Consider the following eigenvalue problem

L̂v = λv.

Let v1, v2, . . . , vn be eigenfunctions corresponding to different eigenvalues
λ1, λ2, . . . , λn associated with the operator L̂. We assume that the eigen-
functions are orthonormal

(vm, vn) = δmn =
{

1 m = n

0 m �= n
.

The operator equation

(L̂− λ)u = f, (1.78)

where λ is a complex parameter, can be solved by substituting the
expansions

u =
∑
n

αnvn, f =
∑
n

βnvn

into (1.78). We may find that

αn = − βn
λ− λn

and

u = −
∑
n

βn
λ− λn

vn. (1.79)

Let CR be a circle of radius R at the origin in the complex λ-plane. Then
we have ∫

CR

u(λ)dλ = −
∑
n

βnvn

∫
CR

dλ

λ− λn
,
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where the sum is over those eigenvalues λn contained within the circle. The
singularities of the integrand are simple poles with residue of unity at all
λ = λn within the contour. Taking the limit as R → ∞ and using the
Residue Theorem we obtain

lim
R→∞

∫
CR

u(λ)dλ = −2πj
∑
n

βnvn,

where the sum is now over all of the eigenfunctions. Therefore

f = − 1
2πj

∫
C

u(λ)dλ (1.80)

where C is the contour at infinity obtained in the limit operation. As a
special case, we consider the Green’s function problem

(L̂− λ)G(r, r′;λ) = −δ(r − r′).

From (1.80) we have

δ(r − r′) =
1

2πj

∫
C

G(r, r′;λ)dλ (1.81)

which is called the spectral representation of the delta function for
the operator L̂. It can be shown that the Green’s function G(r, r′;λ) is
an analytic function of λ except for poles and branch-point singularities.
Therefore, the right-hand side of (1.81) reduces to a sum of residuals at
the poles (eigenvalues) plus integrals along the branch cut (continuous
spectrum) (Friedman, 1956).

Example 1.3: Let L̂ = − d2

dx2 . The domain of L̂ consist of twice-
differentiable functions satisfying the boundary conditions

v(0) = v(1) = 0. (1.82)

Then we have

vn(x) = sin(
√
λnx), λn = n2π2(n = 1, 2, . . .).

If the boundary conditions (1.82) are replaced by

v(0) = 0, v′(1) =
1
2
v(1), (1.83)
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then we have

vn(x) = sin(
√
λnx), n = 1, 2, . . . ,

where λn satisfies

tan
√
λn = 2

√
λn. �

1.4 Variational Method and Numerical Techniques

Variational method or calculus of variations deals with maximizing
or minimizing functionals, which are often expressed as definite integrals
involving functions and their derivatives. The extremal functions that make
the functional stationary (i.e., attain a maximum or minimum value) can
be obtained by assuming that the rate of change of the functional is
zero. The variational method has found wide applications in mathematical
physics. In physics, the principle of least action (or more accurately,
the principle of stationary action) is a variational principle. When the
action of a mechanical system is required to be stationary, the equations of
motion for the system can be obtained. The principle of least action leads
to the development of the Lagrangian and Hamiltonian formulations of
classical mechanics. Although these formulations seem difficult to grasp at
first, they have some merits that Newton’s formulation does not have. For
example, they can be easily transferred to the frameworks of relativistic and
quantum-mechanical physics. The principle of least action is considered as
the core strategy of modern physics. In terms of the principle of least action,
the differential equations of a given physical system (i.e., the equations
of motion) can be derived by minimizing the action of the system. The
original problem, governed by the differential equations, is thus replaced
by an equivalent variational problem. Such a procedure is also called the
energy method. It is commonly believed that the theoretical formulation
of a physical law is not complete until the law can be reformulated as a
variational problem.

1.4.1 Functional Derivative

Let F be a functional, i.e., a map from some function space into the real axis.
Let v be an arbitrary function in the space. The gradient or functional
derivative of F at u, denoted by ∇F (u) = δF (u)/δu and used to describe
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the rate of change of the functional, is defined by(
δF (u)
δu

, v

)
=

d

dt
F (u+ tv)

∣∣∣∣
t=0

, (1.84)

where (·, ·) is an inner product defined by the following rules:

(1) Positive definiteness: (u, u) ≥ 0 and (u, u) = 0 if and only if u = 0
(2) Hermitian property: (u, v) = (v, u)
(3) Homogeneity: (αu, v) = α(u, v)
(4) Additivity: (u + v, w) = (u,w) + (v, w)

where u, v, w are functions, and α is a number. A linear space equipped
with an inner product is called an inner product space.

Extremum theorem: A necessary condition for a functional F to have
an extremum at u is

δF (u)
δu

= 0. (1.85)

This equation is referred to as the Lagrangian equation.

Example 1.4: The action of the system is an integral over time of a
function called Lagrangian function L

S(q) =

t2∫
t1

L[t,q(t), q̇(t)]dt,

where q(t) = [q1(t), q2(t), q3(t)] are known as the generalized coordi-
nates. Suppose q(t) is the path that renders S to be a minimum. The
functional derivative then vanishes

δS

δqi
= 0, i = 1, 2, 3.

Let the path q(t) be changed to q(t)+ ε∆q(t), where ∆q = (∆q1,∆q2,∆q3)
is small everywhere in the time interval [t1, t2] and the endpoints of the
path are assumed to be fixed: ∆q(t1) = ∆q(t2) = 0. Assume that the inner
product between two real scalar functions u and v is defined by

(u, v) =

t2∫
t1

uv dt.



January 28, 2015 11:5 Foundations for Radio Frequency Engineering - 9in x 6in b1914-ch01 page 39

Solutions of Electromagnetic Field Problems 39

The functional derivative with respect to q1 can be found by (1.84) as

(
δS

δq1
,∆q1

)
=

t2∫
t1

δS

δq1
∆q1 dt

=
d

dε

t2∫
t1

L(t, q1 + ε∆q1, q2, q3, q̇1 + ε∆q̇1, q̇2, q̇3)dt

∣∣∣∣∣∣
ε=0

=

t2∫
t1

(
∆q1

∂L

∂q1
− ∆q1

d

dt

∂L

∂q̇1

)
dt+ ∆q1

∂L

∂q1

∣∣∣∣
t2

t1

=

t2∫
t1

(
∂L

∂q1
− d

dt

∂L

∂q̇1

)
∆q1 dt. (1.86)

Similar expressions can be obtained for the functional derivative with
respect to q2 and q3. Hence if S has a local extremum at q(t), we have

δS

δqi
=

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0, i = 1, 2, 3. (1.87)

These are the well-known Lagrangian equations in classical mechanics.
�

Example 1.5: An operator Â on an inner product space is defined as a map
from the inner product space to itself. The operator Â is called self-adjoint
if it satisfies

(Âu, v) = (u, Âv).

We may introduce the following functional (called Rayleigh quotient)

λ(u) =
(Âu, u)
(u, u)

. (1.88)

Since Â is self adjoint, λ can be shown to be real. Thus, for an arbitrary v,
we have(

δλ

δu
, v

)
=

d

dt
λ(u + εv)

∣∣∣∣
ε=0

=
d

dt

(Â(u+ εv), u+ εv)
(u+ εv, u+ εv)

∣∣∣∣∣
ε=0

=
1

(u, u)
2Re(Âu− λu, v).
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If δλ/δu = 0, we have

Âu = λu. (1.89)

This is the Lagrangian equation for the functional (1.88). �

1.4.2 Variational Expressions and Rayleigh–Ritz Method

For an operator Â defined on an inner product space, the adjoint operator
Â∗ is defined by

(Âu, v) = (u, Â∗v), (1.90)

where u, v are elements in the inner product space. Consider the following
operator equations

Âu = f, (1.91)

Â∗v = g. (1.92)

Then

(u, g) = (u, Â∗v) = (Âu, v) = (f, v), (1.93)

from which we obtain

(u, g) =
(u, g)(f, v)

(Âu, v)
. (1.94)

The expression

I1(u, v) =
(u, g)(f, v)

(Âu, v)
(1.95)

for (u, g) can be demonstrated to have variational properties. In fact (1.91)
can be obtained by letting δI1(u,v)

δv = 0 and (1.92) can be obtained by letting
δI1(u,v)
δu = 0. Another variational expression is

I2(u, v) = (Âu, v) − (u, g) − (f, v). (1.96)

Similarly (1.91) can be obtained by letting δI2(u,v)
δv

= 0 and (1.92) can be
obtained by letting δI2(u,v)

δu = 0. In the special case where Â = Â∗ (Â is a
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self-adjoint operator) and f = g, (1.95) and (1.96) reduce to

I1(u) =
(u, f)(f, u)

(Âu, u)
, (1.97)

I2(u) = (Âu, u) − (u, f) − (f, u). (1.98)

Example 1.6: Assume that the inner product between two real scalar
functions u and v is defined by

(u, v) =
∫
Ω

uv dΩ, (1.99)

where Ω is a finite region bounded by Γ in (x, y)-plane. Let Â = −(∇2 +k2)
and f be a real function. Find the variational expression for Helmholtz
equation 


Âu = −(∇2 + k2)u = f,

u|Γ = 0 or
∂u

∂n

∣∣∣∣
Γ

= 0.
(1.100)

Solution: According to (1.98), the variational expression can be expressed
as

I(u) =
∫
Ω

−u∇2u dΩ −
∫
Ω

k2u2 dΩ − 2
∫
Ω

uf dΩ.

Use of integration by parts yields

I(u) =
∫
Ω

∇u · ∇u dΩ −
∫
Γ

u
∂u

∂n
dΓ −

∫
Ω

k2u2 dΩ − 2
∫
Ω

uf dΩ.

Making use of the boundary condition we obtain

I(u) =
∫
Ω

(∇u · ∇u− k2u2)dΩ − 2
∫
Ω

uf dΩ. (1.101)

This is the variational expression for Helmholtz equation (1.100). Note that
the smoothness requirement on the unknown function u has been relaxed.
We now demonstrate that (1.101) is indeed a variational expression. Assume
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that v satisfies the homogeneous boundary condition. We have
d

dt
I(u+ tv) =

d

dt

∫
Ω

∇(u+ tv) · ∇(u+ tv)dΩ

− d

dt

∫
Ω

k2(u + tv)2dΩ − 2
d

dt

∫
Ω

(u + tv)f dΩ

=
∫
Ω

(2∇v · ∇u+ 2t∇v · ∇v − 2k2uv − 2tv2)dΩ − 2
∫
Ω

vf dΩ.

Thus(
δI(u)
δu

, v

)
=

d

dt
I(u + tv)

∣∣∣∣
t=0

=
∫
Ω

(2∇v · ∇u − 2k2uv)dΩ − 2
∫
Ω

vf dΩ

=
∫
Γ

2v
∂u

∂n
dΩ −

∫
Ω

2v∇2u dΩ −
∫
Ω

2k2uv dΩ − 2
∫
Ω

vf dΩ

= −
∫
Ω

2v∇2u dΩ −
∫
Ω

2k2uv dΩ − 2
∫
Ω

vf dΩ. (1.102)

The first equation of (1.100) follows from the Lagrangian equation δI(u)
δu

= 0.
�

Example 1.7: Assume that the inner product is defined by (1.99). Consider
the following integral equation

Âu(r) = u(r) +
∫
Γ

G(r, r′)u(r′)dΓ(r′) = f(r). (1.103)

It follows from (1.98) that

I(u) =
∫
Γ

∫
Γ

u(r)G(r, r′)u(r′)dΓ(r)dΓ(r′)

+
∫
Γ

u2(r)dΓ(r) − 2
∫
Γ

u(r)f(r)dΓ(r).

This is the variational expression for the integral equation (1.103). �
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Once the variational expression is given, the Rayleigh–Ritz method
can be used to obtain the approximate solution of the operator equation
(1.91) We use the variational expression (1.98) to illustrate the procedure.
Let

u =
N∑
j=1

ajuj, (1.104)

where {uj|j = 1, 2, . . . , N} is a set of known basis functions and
aj(j = 1, 2, . . . , N) are unknowns to be determined. Inserting (1.104) into
(1.98) yields

I =
N∑
j=1

N∑
i=1

aj āi(Âuj , ui) −
N∑
j=1

aj(uj , f) −
N∑
j=1

āj(f, uj). (1.105)

This can be written in matrix form as

I = [ū]T [A][u] − 2Re[ū]T [f ], (1.106)

where [u] = [a1, a2, . . . , aN ]T , [f ] = [(f, u1), (f, u2), . . . , (f, uN )]T and

[A] =




(Âu1, u1) (Âu2, u1) · · · (ÂuN , u1)
(Âu1, u2) (Âu2, u2) · · · (ÂuN , u2)

...
...

. . .
...

(Âu1, uN ) (Âu2, uN ) · · · (ÂuN , uN )


. (1.107)

Since Â is self adjoint, the matrix [A] is a Hermitian matrix

[A] = [Ā]T .

By letting δI
δ[u] = 0 from (1.106), we obtain

[A][u] = [f ]. (1.108)

So the operator equation (1.91) has been transformed into a matrix equation
after Rayleigh–Ritz procedure.
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1.4.3 Numerical Techniques: A General Approach

Consider the solution of operator equation (1.91). Whenever an exact
solution is not available, we have to seek numerical solution. Let
{uj | j = 1, 2, . . . , N} be a set of orthonormal basis functions in the domain
of operator Â, called basis or trial functions, which satisfy

(ui, uj) = δij =

{
1, i = j

0, i �= j
.

As an approximation, the unknown function u may be expanded as follows

u =
N∑
j=1

ajuj . (1.109)

Let {vj | j = 1, 2, . . . , N} be a another set of orthonormal basis functions
in the range of Â, called weighting functions or testing functions. The
residual left by the above approximation is given by

R = Âu− f =
N∑
j=1

ajÂuj − f,

and may be expanded in terms of the weighting functions

R =
N∑
i=1

bivi,

where bi = (R, vi), i = 1, 2, . . . , N . The absolute value of the residual should
be as small as possible. In other words, the squared residual

|R|2 =
N∑
i=1

|bi|2

must reach a minimum. A derivative with respect to |bi| gives bi = 0 for
i = 1, 2, . . . , N . Thus we have

N∑
j=1

aj(Âuj, vi) = (f, vi), i = 1, 2, . . . , N.

This can be written in matrix form as

[A][u] = [f ], (1.110)
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where [u] = [a1, a2, . . . , aN ]T , [f ] = [(f, v1), (f, v2), . . . , (f, vN )]T and

[A] =




(Âu1, v1) (Âu2, v1) · · · (ÂuN , v1)

(Âu1, v2) (Âu2, v2) · · · (ÂuN , v2)
...

...
. . .

...

(Âu1, vN ) (Âu2, vN ) · · · (ÂuN , vN )



. (1.111)

Apparently, (1.110) reduces to (1.108) if ui = vi, i = 1, 2, . . . , N . The above
procedure is called projection method or the method of weighted
residuals. When the problem is posed in the above general manner, (1.110)
may not have any solutions. If (1.110) has a unique solution for each N ,
the approximate solution (1.109) may not converge to the exact solution
of equation (1.91) as N → ∞. If we choose ui = B̂vi, where B̂ is an
operator, the projection method reduces to moment method. Especially
if we choose B̂ = Â, the projection method is equivalent to the method of
least squares. If we choose B̂ = Î (a unit operator), the projection method
reduces to Galerkin’s method. For most applications, the solution u of
the operator equation (1.91) is defined in a region Ω ∈ Rm(m = 1, 2, 3).
If we choose v = δ(r − ri), where {ri | i = 1, 2, . . . , N} is a selected set
of points in the defining region of the unknown function u, the projection
method reduces to collocation method. The selected points ri are called
collocation points.

The practical implementation of numerical methods depends on how
to construct the numerical basis or trial functions. We may choose a set of
points {ri | i = 1, 2, . . . , N} with ri = (xi1, . . . , x

i
m), which are called global

nodes. The node numbering system is called the global numbering
system. Consider a set of functions {ui(r) | i = 1, 2, . . . , N}, which satisfies

(1) For each i, there exists a positive number εi such that

ui(r) =

{ �= 0, |r − ri| ≤ εi

= 0, |r − ri| > εi

(2) ui(r)(i = 1, 2, . . . , N) are continuous and ui(rj) = δij .

It is easy to show that the set {ui(r) | i = 1, 2, . . . , N} is linearly
independent. The approximate solution u can then be expressed by

u(r) =
N∑
i=1

aiui(r).
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The set {ui(r) | i = 1, 2, . . . , N} forms a global basis. Basis functions defined
over the whole region Ω are difficult to obtain if the region is of a complex
shape. To construct these global basis functions, we may divide the region
Ω into n subregions (called elements) Ωe (e = 1, 2, . . . , n) such that the
intersection of any two elements is either empty or consists of a common
boundary curve or points (see Figure 1.4). For each element, we choose Ne
nodes rα(α = 1, 2, . . . , Ne) (the node numbering system α is called local
numbering system) and introduce the Lagrange shape functions
lαe (α = 1, 2, . . . , Ne), which are smooth and satisfy

lαe (r) = 0, r /∈ Ωe, α = 1, 2, . . . , Ne

lαe (rβ) = δαβ, α, β = 1, 2, . . . , Ne
.

The nodes that are not on the boundaries of elements are called internal
nodes. Otherwise, they are called boundary nodes. If m elements meet
at r we say that r has m-multiplicity, denoted by m(r). Let ri be a node of
m-multiplicity, i.e., there exist m elements Ω(ej)(j = 1, 2, . . . ,m) that meet
at ri. Then the global basis functions can be constructed as follows

ui(r) =
m(ri)∑
j=1

1
m(r)

lαj
ej

(r), i = 1, 2, . . . , N,

where αj is the local numbering for the node ri.
The construction of Lagrange shape function is an interpolation

process. A line element is shown in Figure 1.5(a). The global coordinates

eΩ

Figure 1.4 Discretization of the solution region.

(a) (b)

2p1p
x

2 (1)p
λ

1(0)p

Figure 1.5 (a) Linear element. (b) Standard element.
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of the two end points p1 and p2 are denoted by x1 and x2 respectively. It is
common practice to regard each line element as having been transformed
into a standard line element in a local coordinate system λ (Figure 1.5(b)).
The transformation may be assumed to be linear

x = a+ bλ, (1.112)

where the constants a and b are determined by requiring that x takes the
correct values x1 and x2 at p1 and p2 respectively. Therefore we have

x1 = a, x2 = a+ b, (1.113)

which gives

a = x1, b = x2 − x1. (1.114)

Thus (1.112) can be written as

x = (1 − λ)x1 + λx2, (1.115)

and the Lagrange shape functions for the line element are then given by{
l1e(λ) = 1 − λ

l2e(λ) = λ
, 0 ≤ λ ≤ 1. (1.116)

The line element with the above shape functions is called a linear element.
The local coordinate λ is also called natural coordinate system, which
can be expressed as

λ =
|p1p|
|p1p2| ,

where p is an arbitrary point in the element with coordinate x. The inverse
transform of (1.115) is given by

λ =
x− x1

x2 − x1
. (1.117)

In terms of this inverse transform, an arbitrary function u defined over the
linear element can be expressed as

u = (1 − λ)u(1) + λu(2) = α1(x)u(1) + α2(x)u(2), (1.118)
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where u(j) denotes the values of u at node j(j = 1, 2) and

α1(x) =
x2 − x

x2 − x1
, α2(x) =

x− x1

x2 − x1
. (1.119)

To better represent the unknowns, we may use higher order interpolation.
For a quadratic interpolation, one more node p3 must be introduced in
the middle of the standard line element (Figure 1.6). The Lagrange shape
functions for the quadratic element can be easily found as follows


l1e = (λ− 1)(2λ− 1)

l2e = λ(2λ− 1)

l3e = 4λ(1 − λ)

, 0 ≤ λ ≤ 1.

Consider a planar triangular element ∆p1p2p3 in (x, y)-plane shown in
Figure 1.7(a), which can be transformed into a standard triangle in the local
coordinate system (λ1, λ2) as shown in Figure 1.7(b). The transformation
can be assumed to be of the form

w = a+ bλ1 + cλ2, (w = x, y), (1.120)

3(1/ 2)p

2 (1)p1(0)p
λ

Figure 1.6 Quadratic element.

(a) (b)

3 (0,0)p

2λ

1λ

2 (0,1)p

1(1,0)p

3p

2p

1p

y

x

p

Figure 1.7 (a) Linear triangular element. (b) Standard triangle.
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where the constants a, b and c are determined by requiring that
w(w = x, y) takes the correct values w1, w2 and w3 at p1, p2 and p3

respectively. Therefore, we have

w1 = a+ b, w2 = a+ c, w3 = a, (1.121)

which gives

a = w3, b = w1 − w3, c = w2 − w3. (1.122)

It follows from (1.120) and (1.122) that

x = x1λ1 + x2λ2 + x3(1 − λ1 − λ2),

y = y1λ1 + y2λ2 + y3(1 − λ1 − λ2).
(1.123)

The Lagrange shape functions are thus found to be

lie(λ1, λ2) = λi, 0 ≤ λi ≤ 1, i = 1, 2, 3.

where λ3 = 1 − λ1 − λ2. Let the area of the planar triangular element
∆p1p2p3 in (x, y)-plane be denoted by ∆. The global coordinates for vertex
pi are denoted by (xi, yi)(i = 1, 2, 3). The triangle is then divided into three
small triangles using an arbitrary point p inside the triangle as a common
vortex. The local coordinate system can be expressed as

λ1 = ∆1/∆,

λ2 = ∆2/∆,

λ3 = ∆3/∆,

(1.124)

where ∆1, ∆2 and ∆3 are areas of the subtriangle ∆p2p3p, ∆p3p1p

and ∆p1p2p respectively. Note that
∑3

i=1 λi = 1, 0 ≤ λi ≤ 1. The
coordinate system (λ1, λ2) is called natural or area coordinate system. The
inverse transform of (1.123) is given by

λ1 =
x2y3 − x3y2 + x(y2 − y3) − y(x2 − x3)
(x1 − x3)(y2 − y3) − (x2 − x3)(y1 − y3)

,

λ2 =
x3y1 − x1y3 + x(y3 − y1) − y(x3 − x1)
(x1 − x3)(y2 − y3) − (x2 − x3)(y1 − y3)

.

(1.125)
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In terms of the above inverse transformation, an arbitrary function u may
be expressed in terms of the shape functions over the triangular element as

u = λ1u(1) + λ2u(2) + (1 − λ1 − λ2)u(3)

=
3∑
j=1

αj(x, y)u(j), (1.126)

where u(j) denotes the values of u at node j (j = 1, 2, 3) and

α1(x, y) =
x2y3 − x3y2 + x(y2 − y3) − y(x2 − x3)
(x1 − x3)(y2 − y3) − (x2 − x3)(y1 − y3)

α2(x, y) =
x3y1 − x1y3 + x(y3 − y1) − y(x3 − x1)
(x1 − x3)(y2 − y3) − (x2 − x3)(y1 − y3)

α3(x, y) =
x1y2 − x2y1 + x(y2 − y1) − y(x2 − x1)
(x1 − x3)(y2 − y3) − (x2 − x3)(y1 − y3)

.

(1.127)

To achieve higher accuracy, higher-order interpolation can be used. In this
case, more nodes other than the vertices must be inserted to the triangle.
For example, if we use quadratic interpolation, the mid-points 4, 5, and 6
of the sides of the standard right triangle may be introduced (Figure 1.8).
The Lagrange shape functions are then given by


l1e = λ1(2λ1 − 1), l4e = 4λ1λ2

l2e = λ2(2λ2 − 1), l5e = 4λ2λ3

l3e = λ3(2λ3 − 1), l6e = 4λ1λ3

, 0 ≤ λi ≤ 1.

1(1,0)p

4 (1/2,1/2)p

6 (1/2,0)p

5 (0,1/2)p

3(0,0)p

2λ

1λ

2 (0,1)p

Figure 1.8 Quadratic triangular element.
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(a) (b)

3p

z

y

1λ

2λ

3λ

x

2p
1p

4p

5p 6p

7p

8p 1(1,1,1)p

2 (0,1,1)p
3(0,0,1)p

4 (1,0,1)p

5 (1,1,0)p

6 (0,1,0)p
7 (0,0,0)p

8 (1,0,0)p

Figure 1.9 (a) Hexahedral element. (b) Standard cube.

In three dimensions, the element can be chosen as tetrahedron,
triangular prism or hexahedron. The construction of shape functions can
be carried out in a similar way. We use a linear hexahedral element as an
example to illustrate the process (Figure 1.9). The transformation from a
hexahedron to the standard cube may be assumed to be

w = a+ bλ1 + cλ2 + dλ3 + eλ1λ2 + fλ1λ3

+ gλ2λ3 + hλ1λ2λ3, (w = x, y, z) (1.128)

where the constants a, b, c, d, e, f, g, h are determined by requiring that w
(w = x, y, z) takes the correct values wi at pi(i = 1, 2, . . . , 8) respectively.
Thus we have

w1 = a+ b+ c+ d+ e+ f + g + h, w5 = a+ b+ c+ e,

w2 = a+ c+ d+ g, w6 = a+ c,

w3 = a+ d, w7 = a,

w4 = a+ b+ d+ f, w8 = a+ b,

which yields

a = w7, e = w5 − w6 + w7 − w8,

b = w8 − w7, f = −w3 + w4 − w8 + w7,

c = w6 − w7, g = w2 − w3 − w6 + w7,

d = w3 − w7, h = w1 − w2 + w3 − w4 − w5 + w6 − w7 + w8.
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Introducing the above solutions into (1.128), we obtain

w = w1λ1λ2λ3 + w2(1 − λ1)λ2λ3 + w3(1 − λ1)(1 − λ2)λ3

+w4λ1(1 − λ2)λ3 + w5λ1λ2(1 − λ3) + w6(1 − λ1)λ2(1 − λ3)

+w7(1 − λ1)(1 − λ2)(1 − λ3) + w8λ1(1 − λ2)(1 − λ3).

The Lagrange shape functions are then given by




l1e = λ1λ2λ3, l5e = λ1λ2(1 − λ3),

l2e = (1 − λ1)λ2λ3, l6e = (1 − λ1)λ2(1 − λ3),

l3e = (1 − λ1)(1 − λ2)λ3, l7e = (1 − λ1)(1 − λ2)(1 − λ3),

l4e = λ1(1 − λ2)λ3, l8e = λ1(1 − λ2)(1 − λ3)

0 ≤ λi ≤ 1.

Higher-order elements involving nodes on the faces can be derived in a
similar manner.

The finite element method (FEM) is commonly introduced as a
special case of Galerkin’s method for solving partial differential equations.
The basic step of FEM is to divide the domain of the problem into a
collection of subdomains (called elements) with each subdomain represented
by a set of element equations to the original problem (called partial stiffness
matrix equation in mechanics), followed by recombining all sets of element
equations into a global system of equations for the final calculation (called
global stiffness matrix equation in mechanics). The well-known finite
difference method (FDM) may be regarded as a special case of projection
method. Both the FEM and the FDM are called domain method since
the governing equation has to be solved over the entire defining region
of the problem. On the other hand, the integral equations are defined on
the boundary of the defining region and the numerical methods used to
solve them are called boundary method, such as boundary element
method (BEM), which combines the element concept and collocation
method to solve the boundary integral equations. The domain method
can be easily applied to non-linear, inhomogeneous and time varying
problems. The numerical accuracy of domain methods is generally lower
than the boundary method because the discretization error is limited only
on the boundary for the latter. The numerical methods commonly used
in RF engineering will be discussed with applications in the forthcoming
chapters.
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1.5 Potential Theory

Potential theory is the mathematical treatment of the potential-energy
functions used in physics to study gravitation and electromagnetism, and
has developed into a major field of mathematical research (Kellogg, 1953;
MacMillan, 1958). In 19th century, it was believed that all forces in nature
could be derived from a potential which satisfies Laplace equation. These
days, the term ‘potential’ is used in a broad sense, and the potential is
not necessarily a solution of Laplace equation. As long as the solution of
a partial differential equation can be expressed as the first derivative of a
new function, this new function can be considered as a potential. Usually
the solution and its potential function satisfy the same type of equation,
while the equation for the latter has a simpler source terms.

1.5.1 Vector Potential, Scalar Potential, and Gauge
Conditions

From the equations ∇ ·B = 0 and ∇×E = −∂B/∂t, a vector potential A
and a scalar potential φ can be introduced such that

E = −∇φ− ∂A
∂t

, B = ∇× A. (1.129)

If the medium is isotropic and homogeneous, we may substitute (1.129) into
∇×H = J+∂D/∂t, and insert the first of (1.129) into ∇·D = ρ to obtain

(
∇2 − 1

v2

∂2

∂t2

)
A = −µJ + ∇

(
∇ ·A +

1
v2

∂φ

∂t

)
,

(
∇2 − 1

v2

∂2

∂t2

)
φ = −ρ

ε
− ∂

∂t

(
∇ ·A +

1
v2

∂φ

∂t

)
,

(1.130)

where v = 1/
√
µε. The term ∇ · A + ∂φ/v2∂t on the right-hand sides can

be set to zero by means of the gauge transform. In fact, we may define a
new vector potential A′ and a new scalar potential φ′ through

A′ = A + ∇ψ, (1.131)

φ′ = φ− ∂ψ

∂t
, (1.132)
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where ψ is called the gauge function. The transformation from (A, φ) to
(A′, φ′) defined by (1.131) and (1.132) is called gauge transformation.
The electromagnetic fields remain unchanged under the gauge transforma-
tion. The new vector potential A′ and scalar potential φ′ satisfy

∇ ·A′ +
1
v2

∂φ′

∂t
= ∇ · A +

1
v2

∂φ

∂t
+ ∇2ψ − 1

v2

∂2ψ

∂t2
.

If the term ∇ · A + ∂φ/v2∂t is not zero, the left-hand side can be sent to
zero by forcing the gauge function ψ to satisfy

∇2ψ − 1
v2

∂2ψ

∂t2
= −

(
∇ ·A +

1
v2

∂φ

∂t

)
.

Thus the equation

∇ · A +
1
v2

∂φ

∂t
= 0 (1.133)

may be assumed and is called Lorenz gauge condition, named after the
Danish physicist Ludvig Valentin Lorenz (1829–1891). If A and φ satisfy
the Lorenz gauge condition, Equations (1.130) reduce to(

∇2 − 1
v2

∂2

∂t2

)
A = −µJ,

(
∇2 − 1

v2

∂2

∂t2

)
φ = −ρ

ε
, (1.134)

and they become uncoupled. The retarded solutions of (1.134) are given by

A(r, t) =
∫
V0

µJ(r′, t−R/v)
4πR

dV (r′), φ(r, t) =
∫
V0

ρ(r′, t−R/v)
4πεR

dV (r′),

where V0 denotes the source region. Note that the Lorenz gauge condition
implies the continuity equation of the current.

Remark 1.2 (Magnetic sources): When the sources are purely magnetic,
Maxwell equations (1.4) become

∇× H(r, t) =
∂D(r, t)
∂t

,

∇× E(r, t) = −∂B(r, t)
∂t

− Jm(r, t),

∇ ·D(r, t) = 0,

∇ · B(r, t) = ρm(r, t).
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In a similar way, we may introduce a vector potential Am and a scalar
potential φm so that

H = −∇φm − ∂Am

∂t
, D = ∇× Am.

Assuming that the potentials satisfy the Lorenz gauge condition

∇ ·Am +
1
v2

∂φm
∂t

= 0,

then (
∇2 − 1

v2

∂2

∂t2

)
Am = −εJm,

(
∇2 − 1

v2

∂2

∂t2

)
φm = −ρm

µ
.

The retarded solutions of the above equations are

Am(r, t) =
∫
V0

εJm(r′, t−R/v)
4πR

dV (r′),

φm(r, t) =
∫
V0

ρm(r′, t−R/v)
4πµR

dV (r′),

where V0 denotes the source region. �

1.5.2 Hertz Vectors and Debye Potentials

In addition to vector potential A and scalar potential φ, other potential
functions can be introduced to simplify the problems. The current source
J can be divided into the sum of two components

J(r, t) =
∫
V0

J(r′, t)δ(r − r′)dV (r′) = −∇2

∫
V0

J(r′, t)
4πR

dV (r′) = J‖ + J⊥

(1.135)

where we have used ∇2(1/4πR) = −δ(r− r′), and

J‖(r, t) = −∇∇ ·
∫
V0

J(r′, t)
4πR

dV (r′),J⊥(r, t) = ∇×∇×
∫
V0

J(r′, t)
4πR

dV (r′)

(1.136)

are referred to as the irrotational component and solenoidal compo-
nent of J respectively. If the current source J is irrotational, it only has a
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longitudinal component and can be written as

J‖(r, t) = −∇
∫
V0

∇′ ·
[
J(r′, t)
4πR

]
dV (r′) −∇

∫
V0

∇′ · J(r′, t)
4πR

dV (r′)

= ∇
∫
∂V0

J(r′, t)
4πR

· un(r′)dV (r′) −∇
∫
V0

∇′ · J(r′, t)
4πR

dV (r′)

= −∇
∫
V0

∇′ · J(r′, t)
4πR

dV (r′) = ∇ ∂

∂t

∫
V0

ρ(r′, t)
4πR

dV (r′) =
∂P
∂t
.

(1.137)

Here

P(r, t) = ∇
∫
V0

ρ(r′, t)
4πR

dV (r′)

is the equivalent polarization vector. From the continuity equation, the
corresponding polarization charge density is given by ρ = −∇ · P.
Substituting (1.137) into the first equation of (1.134), we have(

∇2 − 1
v2

∂2

∂t2

)
A = −µ∂P

∂t
.

To get rid of the differential operation on the source term, we may introduce
a new potential function Πe such that

A =
1
v2

∂Πe

∂t
. (1.138)

The new potential function Πe is called electric Hertz vector and satisfies(
∇2 − 1

v2

∂2

∂t2

)
Πe = −P

ε
. (1.139)

From (1.133) and (1.138), we obtain

φ = −∇ · Πe. (1.140)

In terms of the electric Hertz vector, the electromagnetic fields may be
represented by

B =
1
v2

∇× ∂Πe

∂t
, E = ∇(∇ · Πe) − 1

v2

∂2Πe

∂t2
. (1.141)
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If the current source J is solenoidal, it only has a transverse component
and may be written as

J = ∇× M (1.142)

where M is the equivalent magnetization vector

M(r, t) = ∇×
∫
V0

J(r′, t)
4πR

dV (r′)

by (1.136). Introducing (1.142) into the first equation of (1.134) gives

(
∇2 − 1

v2

∂2

∂t2

)
A = −µ∇× M.

To get rid of the differential operation on the source term, we can introduce
a new potential function Πm, called magnetic Hertz vector such that
A = −µ∇× Πm. The magnetic Hertz vector satisfies

(
∇2 − 1

v2

∂2

∂t2

)
Πm = −M. (1.143)

Since ∇·A = 0 implies φ = 0, the electromagnetic fields can be expressed as

B = µ∇×∇× Πm, E = −µ∇× ∂Πm

∂t
. (1.144)

In general, the current source J is of the form J = ∂P/∂t+ ∇ × M from
(1.136). For a linear medium, the superposition theorem applies and the
electromagnetic fields for a general current source can be expressed as the
sum of (1.141) and (1.144):

E = ∇(∇ ·Πe) − 1
v2

∂2Πe

∂t2
− µ∇× ∂Πm

∂t
,

H = ε∇× ∂Πe

∂t
+ ∇×∇×Πm.

In a source-free region, these equations may be written as

E = ∇×∇×Πe − µ∇× ∂Πm

∂t
, H = ε∇× ∂Πe

∂t
+ ∇×∇× Πm,
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by use of (1.139) and (1.143). Note that

Πe(r, t) =
∫
V0

P(r′, t−R/v)
4πεR

dV (r′),

Πm(r, t) =
∫
V0

M(r′, t−R/v)
4πR

dV (r′).

(1.145)

It can be shown that the electromagnetic fields in source-free region
can be represented by two scalar potential functions (Jones, 1964). Hence,
we may use the spherical coordinate system (r, θ, ϕ) and choose Πe = rue
and Πm = rum to represent the electromagnetic fields. Here ue and um
satisfy the homogeneous wave equations:

(
∇2 − 1

v2

∂2

∂t2

)
ue = 0,

(
∇2 − 1

v2

∂2

∂t2

)
um = 0,

and they are called Debye potentials, named after the Dutch physicist
Peter Joseph William Debye (1884–1966). Let ur, uθ and uϕ denote the
unit vectors in the direction of increasing r, θ and ϕ respectively. A simple
calculation gives

∇×∇× (rue) =
(
−1
r
∇2
θϕue

)
ur + ∇θϕ

[
1
r

∂(rue)
∂r

]
,

∇× (rum) = ∇θϕum × ur,

where

∇θϕ = uθ
∂

∂θ
+ uϕ

1
sin θ

∂

∂ϕ
,

∇2
θϕ =

1
sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1
sin2 θ

∂2

∂ϕ2
.

Thus the electromagnetic fields in source-free region can be expressed as

E = −
(

1
r
∇2
θϕue

)
ur + ∇θϕ

[
1
r

∂(rue)
∂r

]
+ µur × ∂

∂t
∇θϕum,

H = −
(

1
r
∇2
θϕum

)
ur + ∇θϕ

[
1
r

∂(rum)
∂r

]
− εur × ∂

∂t
∇θϕue.

(1.146)
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1.5.3 Jump Relations

In electromagnetic theory, we are often encountered with the following
potential integrals

A(r) =
∫
S

a(r′)G(r, r′)dS(r′), ϕ(r) =
∫
S

f(r′)G(r, r′)dS(r′),

where G(r, r′) = e−jkR/4πR. When the field point r is on the surface S,
these potential integrals are defined as improper but convergent integrals
as follows

A(r) = lim
δ→0

∫
S−Sδ

a(r′)G(r, r′)dS(r′),

ϕ(r) = lim
δ→0

∫
S−Sδ

f(r′)G(r, r′)dS(r′),

where r ∈ S, Sδ is a small area of arbitrary shape containing r and δ is the
maximum chord of Sδ. For r ∈ S, the following jump relations can be
established

∇ ·A±(r) =
∫
S

∇G(r, r′) · a(r′)dS(r′) ∓ 1
2
un(r) · a(r),

∇× A±(r) =
∫
S

∇G(r, r′) × a(r′)dS(r′) ∓ 1
2
un(r) × a(r),

∇ϕ±(r) =
∫
S

f(r′)∇G(r, r′)dS(r′) ∓ 1
2
un(r)f(r),

(1.147)

where un(r) is the unit outward normal of S at r and

∇ · A±(r) ≡ lim
h→+0

∇ ·A[r ± hun(r)],

∇× A±(r) ≡ lim
h→+0

∇× A[r ± hun(r)],

∇ϕ±(r) ≡ lim
h→+0

∇ϕ[r ± hun(r)].

The subscripts + and − respectively indicate the limit values as r
approaches S from the exterior and interior of S. All the integrals in (1.147)
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nu

r Sδ
S ′

Figure 1.10 Cauchy principal value.

stand for the Cauchy principal values. Moreover, we have

lim
h→+0

un(r) × {∇×∇× A[r + hun(r)] −∇×∇× A[r − hun(r)]} = 0,

r ∈ S.

We only show the derivation of the last relation in (1.147). Let the
closed surface S be split into two parts, S′ and Sδ, of which Sδ is a small
region surrounding r, and S′ the remainder of S. If S is smooth around r,
Sδ may be considered as a circular disk of radius δ centered at r, as shown
in Figure 1.10. Thus

∇ϕ±(r) = lim
h→0

∇
∫
S

f(r′)G(r ± hun(r), r′)dS(r′)

= lim
h→0

∇
∫
S′

f(r′)G(r ± hun(r), r′)dS(r′)

+ lim
h→0

∇
∫
Sδ

f(r′)G(r ± hun(r), r′)dS(r′).

The first integral on the right-hand side approaches to the principal
value as δ → 0. The integral over Sδ can be calculated through the
approximation

lim
h→0

∇
∫
Sδ

f(r′)G(r ± hun(r), r′)dS(r′)

= f(r) lim
h→0

1
4π

(
∇t ± un

∂

∂h

)∫
Sδ

dS(r′)
|r ± hun(r) − r′|
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≈ f(r) lim
h→0

1
4π

(
∇t ± un

∂

∂h

) 2π∫
0

δ∫
0

ρdρdφ√
ρ2 + h2

=
1
2
f(r) lim

h→0

(
∇t ± un

∂

∂h

)(
δ − h+

h2

2δ

)
= ∓1

2
unf(r),

which gives the last expression of (1.147).
The function

ϕ(r) =
∫
S

f(r′)G(r, r′)dS(r′), r ∈ R3 − S

is called a single-layer potential with density f and the function

ψ(r) =
∫
S

f(r′)
∂G(r, r′)
∂n(r′)

dS(r′), r ∈ R3 − S

is called a double-layer potential with density f .

1.5.4 Multipole Expansion

Let us consider the following integral

F =
∫
V

ψ(r)J(r)dV (r), (1.148)

where J is a current source distribution, ψ is a slowly varying function
over the region V bounded by a closed surface S. The function ψ can be
expanded as a Taylor series about an origin inside V

ψ(r) ≈ ψ(0) + (r · ∇)ψ(0). (1.149)

Introducing (1.149) into (1.148), we obtain

F = ψ(0)
∫
V

J(r)dV (r) +
∫
V

(r · ∇)ψ(0)J(r)dV (r). (1.150)

The first term in (1.150) can be written as

ψ(0)
∫
V

J(r)dV (r) = ψ(0)jωp. (1.151)
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Here p is the electric dipole moment of the source J defined by

p =
1
jω

∫
V

J(r)dV (r) =
∫
V

rρ(r)dV (r) +
∫
S

rρs(r)dS(r), (1.152)

where ρ and ρs are the volume charge and surface charge density
respectively

ρ = − 1
jω

∇ · J, ρs =
1
jω

un · J.

The second term in (1.150) can be written as∫
V

(r · ∇)ψ(0)J(r)dV (r) = ∇ψ(0) ·
∫
V

rJ(r)dV (r)

=
1
2
∇ψ(0) ·

∫
V

[rJ(r) + J(r)r]dV (r)

+
1
2
∇ψ(0) ·

∫
V

[rJ(r) − J(r)r]dV (r).

(1.153)

Introducing the magnetic dipole moment m and the dyadic electric

quadrupole
↔
Qe

m =
1
2

∫
V

r × J(r)dV (r),

↔
Qe =

∫
V

rrρ(r)dV (r) +
∫
S

rrρs(r)dS(r)

=
1
jω

∫
V

[rJ(r) + J(r)r]dV (r),

(1.153) may be rewritten as∫
V

(r · ∇)ψ(0)J(r)dV (r) = −∇ψ(0) × m +
1
2
jω∇ψ(0) ·

↔
Qe. (1.154)

Substituting (1.151) and (1.154) into (1.150), we have

F = jωψ(0)p−∇ψ(0) × m +
1
2
jω∇ψ(0) ·

↔
Qe. (1.155)

This relationship is useful in studying low-frequency radiation problems.
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For a magnetic current Jm, we may introduce the electric dipole
moment p, the magnetic dipole moment m and the dyadic magnetic

quadrupole
↔
Qm, defined as follows

p =
1
2

∫
V

Jm(r) × rdV (r),

m =
1
jω

∫
V

Jm(r)dV (r) =
∫
V

rρm(r)dV (r) +
∫
S

rρms(r)dS(r),

↔
Qm =

∫
V

rrρm(r)dV (r) +
∫
S

rrρms(r)dS(r)

=
1
jω

∫
V

[rJm(r) + Jm(r)r]dV (r),

(1.156)

where

ρm = − 1
jω

∇ · Jm, ρms =
1
jω

un · Jm.

We do not really deal with mathematical physics, but with physical

mathematics; not with the mathematical formulation of physical facts,

but with the physical motivation of mathematical methods.

—Arnold Sommerfeld (German physicist, 1868–1951)
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Chapter 2

Waveguides

We have seen that electromagnetic fields may be held together and

guided by the surface of a non-conducting rod and that they protect

themselves against outward radiation by a skin effect. The protection

will be complete if we embed the non-conductor in a metallic tube,

whereupon the condition of a sufficiently high dielectric constant may be

omitted and the dielectric within the tube may also be air. We thus arrive

at the configuration of the wave guides, which have become important

in high frequency practice.

—Arnold Sommerfeld (German physicist, 1868–1951)

A waveguide is a structure that guides high frequency electromagnetic
signals. In order to decrease the distortion while the signals propagate
in the waveguide, the frequency of the transmitted signals and the wave-
guide dimensions must be properly chosen. Mathematically, the theory of
waveguide reduces to eigenvalue problems of partial differential equations.
The eigenvalues are the cut-off wavenumbers (i.e., the cut-off frequency) of
the corresponding eigenvectors or guided modes. When a signal propagates
in a waveguide, the frequency components below the cut-off frequency of
the dominant mode are quickly attenuated and the higher order modes
are excited by the frequency components above the cut-off frequency of the
higher order modes, which may cause signal distortion and interference. For
this reason, the normal operation of a waveguide is limited to the frequency
range between the cut-off frequency of the dominant mode and that of the
next higher mode.

The waveguide theory is the cornerstone of electromagnetic engineering.
The early history of the waveguides has been summarized by Packard and
Oliner (Packard, 1984; Oliner, 1984). The essential basis of modern wave-
guide theory was developed by Oliver Heaviside in the late 19th century,

65
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who considered various possibilities for waves along wire lines and found
that a single conductor line was not feasible, and a guided wave needs two
wires. Heaviside also introduced the term ‘impedance’, which is defined as
the ratio of voltage to current in a circuit. The concept of the impedance was
then extended to fields and waves by Schelkunoff in 1938 in a systematic
way. The impedance is regarded as the characteristic of the field as well
as the medium, and has a direction. In 1897, Rayleigh showed that waves
could propagate within a hollow conducting cylinder and found that such
waves existed only in a set of well-defined normal modes, and to support
the modes in the hollow cylinder, the operating frequency must exceed the
cut-off frequencies of the corresponding modes. The theory of dielectric
waveguide was first studied by Sommerfeld in 1899 and then extended by
the Greek physicist Demetrius Hondros (1882–1962) in 1909. The guided
wave in a single dielectric rod is based on the fact that the discontinuity
surface between two different media is likely to bind the wave to that
surface, thus guiding the wave. The possible use of hollow waveguides
was investigated during 1930s by the American radio engineers George
Clark Southworth (1890–1972) and Wilmer Lanier Barrow (1903–1975).
Most important results on waveguide theory obtained in the first half of
last century have been included in the ‘Waveguide Handbook’ (Marcuvitz,
1951). Since then, many new guiding structures have been proposed, such
as microstrip line (Grieg and Engelmann, 1952), finline (Meier, 1972), etc.,
and they are widely used in microwave integrated circuits. Figure 2.1 shows
some waveguide structures commonly used in microwave engineering.

In practice, the waveguides are used as signal paths among different
components. When the propagating mode hits an obstacle or a discon-
tinuity, such as a conducting post across the guide, a number of higher
order modes will be excited so that the fields, which are expressed as a
linear superimposition of higher order modes, can satisfy the boundary
conditions. These higher order modes are not propagating and die out
rapidly away from the discontinuity, and they exist as stored energies.
Various discontinuities in a waveguide may be regarded as a multi-port
network characterized by network parameters or represented by a lumped-
element circuit.

2.1 Modal Theory for Metal Waveguides

The modal theory of waveguide is the foundation of microwave engineering,
and is best understood by variational analysis.
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Metal 

Rectangular waveguide Coaxial line Strip line 

Coupled strip line Microstrip line Coupled microstrip line 
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microstrip line 

Inverted 
microstrip line 

Slot line Finline Shielded microstrip 
line 

Embedded 
microstrip 

Coplanar 
waveguide 

Grounded coplanar 
waveguide 

Coupled coplanar 
waveguide 

Dielectric waveguide Image line Optical fiber 

Dielectric 

Figure 2.1 Waveguides.

2.1.1 Eigenvalue Equation

An arbitrary metal waveguide is shown in Figure 2.2. The waveguide is
assumed to be uniform along z direction and is filled with homogeneous
medium with medium parameters µ, ε and σ. The cross section of the
waveguide is denoted by Ω, its boundary by Γ. For a waveguide with
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x

y ΓΩ

o

Figure 2.2 An arbitrary waveguide.

perfectly conducting walls, the electric field in the waveguide satisfies the
wave equation

∇2E(r, t) − 1
v2

∂2E(r, t)
∂t2

− σ
η

v

∂E(r, t)
∂t

= 0, r ∈ Ω,

∇ · E(r, t) = 0, r ∈ Ω,

un × E(r, t) = 0, r ∈ Γ,

(2.1)

where v = 1/
√
µε, η =

√
µ/ε, and un is the unit outward normal to

the boundary Γ. The electric field can be decomposed into the sum of
a transverse component and a longitudinal component. Both components
may be assumed to be the separable functions of the transverse coordinates
ρρρ = (x, y) and longitudinal coordinate z with time

E(r, t) = [e(ρρρ) + uzez(ρρρ)]u(z, t) (2.2)

where uz is the unit vector along +z direction. Substituting (2.2) into (2.1)
and considering the boundary conditions, we may obtain

∇×∇× e−∇(∇ · e) = k2
ce, ρρρ ∈ Ω,

un × e = 0, ∇ · e = 0, ρρρ ∈ Γ,
(2.3)

where k2
c is the separation constant. The function u(z, t) satisfies the

modified Klein–Gordon equation,

∂2u(z, t)
∂z2

− 1
v2

∂2u(z, t)
∂t2

− σ
η

v

∂u(z, t)
∂t

− k2
cu(z, t) = 0,

named after the Swedish physicist Oskar Benjamin Klein (1894–1977) and
German physicist Walter Gordon (1893–1939), who proposed the equation
in 1927. For σ = 0, the above equation reduces to Klein–Gordon equation.
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Remark 2.1: For time-harmonic fields, we may let

E(r) = [e(ρρρ) + uzez(ρρρ)]e−jβz,

H(r) = [h(ρρρ) + uzhz(ρρρ)]e−jβz.
(2.4)

Substituting these into Maxwell equation in a source-free region

∇× H(r) = jωεeE(r),

∇× E(r) = −jωµH(r),

∇ ·E(r) = 0,

∇ ·H(r) = 0,

where εe = ε(1 − j σωε ), we obtain

∇× h = jωεeuzez,

jβuz × h + uz ×∇hz = −jωεee,
∇× e = −jωµuzhz,
jβuz × e + uz ×∇ez = jωµh,

∇ · e = jβez,

∇ · h = jβhz .

(2.5)

It follows from (2.5) that

∇×∇× e−∇(∇ · e) = k2
ce, ρρρ ∈ Ω,

un × e = 0,∇ · e = 0, ρρρ ∈ Γ,

where k2
c = ω2µεe − β2. �

2.1.2 Properties of Modal Functions

Multiplying the first equation of (2.3) by e and taking the integration over
the cross section Ω, we obtain

k2
c (e) =

∫
Ω

(|∇ × e|2 + |∇ · e|2)dΩ∫
Ω

|e|2dΩ . (2.6)

It is easy to verify that the vector function e that renders (2.6) a minimum
and the corresponding constant k2

c satisfy (2.3). Let e1 be the first
eigenfunction that minimizes (2.6) and k2

c1 be the corresponding eigenvalue;
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e2 be the eigenfunction that minimizes (2.6) under the supplementary
condition that e2 is perpendicular to e1, and k2

c2 be the corresponding
eigenvalue; and en be the nth eigenfunction that minimizes (2.6) under the
supplementary conditions (en, e1) = (en, e2) = · · · (en, en−1) = 0, and k2

cn

be the corresponding eigenvalue, and so on. This procedure generates a set
of orthogonal eigenfunctions {e1, e2, . . .}, and the corresponding eigenvalues
satisfy 0 ≤ k2

c1 ≤ k2
c2 ≤ · · · . The eigenfunction en is called nth vector

modal function, and the corresponding eigenvalue kcn(n = 1, 2, . . .) is
called cut-off wavenumber of the nth vector modal functions. It can
be shown that lim

n→∞ k2
cn = ∞, and the set of vector modal functions is

complete (Kurokawa, 1969; Geyi, 2010). From now on, we assume that all
vector modal functions are orthonormal, i.e.,∫

Ω

em · en dΩ = δmn. (2.7)

An arbitrary vector function f can then be expanded as

f =
∞∑
n=1

anen

with an =
∫
Ω

f · endΩ. The vector modal function en belongs to one of the
following three categories

1. ∇× en = 0, ∇ · en = 0,

2. ∇× en �= 0, ∇ · en = 0,

3. ∇× en = 0, ∇ · en �= 0.

The vector modal functions belonging to the first category are called
Transverse electromagnetic (TEM) modes, which satisfy ∇× en = 0
and ∇ · en = 0. For TEM modes, a scalar potential function ϕ(ρρρ) may be
introduced such that en = −∇φ and

∇ · ∇φ = 0, ρρρ ∈ Ω,

un ×∇φ = 0, ρρρ ∈ Γ.
(2.8)

The second equation implies that the potential function φ is constant along
the boundary Γ. If Ω is simply connected, the above equations imply en = 0
and a hollow waveguide does not support a TEM mode. If Ω is a multiply-
connected region (such as a coaxial cable), φ may take different values on
different conductors. In this case, the waveguide can support a TEM mode.
If en is a TEM mode, we have k2

cn = 0.
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The vector modal functions belonging to second category are called
transverse electric (TE) modes, which satisfy ∇×en �= 0 and ∇·en = 0.
A new scalar function hzn may be introduced

∇× en = −uzkcnhzn, (2.9)

which is proportional to the longitudinal magnetic field. It follows from
(2.3) and (2.9) that

∇2hzn + k2
cnhzn = 0, ρρρ ∈ Ω,

un · ∇hzn = 0, ρρρ ∈ Γ.
(2.10)

By definition, we have∫
Ω

hzmhzn dΩ =
1

kcmkcn

∫
Ω

∇× em · ∇ × en dΩ =
kcm
kcn

∫
Ω

em · en dΩ.

Hence the set {en} is orthonormal if and only if the set {hzn} is
orthonormal.

The vector modal functions belonging to the third category are called
transverse magnetic (TM) modes, which satisfies ∇×en = 0, ∇·en �= 0.
A new scalar function ezn may be introduced such that

∇ · en = kcnezn. (2.11)

The new function ezn is proportional to the longitudinal electric field. It
follows from (2.3) and (2.11) that

∇2ezn + k2
cnezn = 0, ρρρ ∈ Ω,

ezn = 0, ρρρ ∈ Γ.
(2.12)

Similarly, we have∫
Ω

ezmezn dΩ =
1

kcmkcn

∫
Ω

∇ · em · ∇ · en dΩ =
kcm
kcn

∫
Ω

em · en dΩ.

Thus the set {en} is orthonormal if and only if the set {ezn} is orthonormal.
From the orthonormal set {en}, we may obtain the following three
orthonormal set:

{uz × en |un · uz × en = 0,∇ · en = 0,ρρρ ∈ Γ},
{ezn | ezn = 0,ρρρ ∈ Γ},
{hzn, c̃ |un · ∇hzn = 0,ρρρ ∈ Γ},
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where c̃ is a constant. According to the boundary conditions, {en} is most
suitable for the expansion of transverse electric field; {uz×en} is best suited
to the expansion of the transverse magnetic field; {ezn} is most appropriate
for the expansion of longitudinal electric field; {hzn} is most proper for the
expansion of longitudinal magnetic field. Introducing the modal voltage
and modal current

Vn =
∫
Ω

E · en dΩ, In =
∫
Ω

H · uz × en dΩ, (2.13)

the electromagnetic fields in the waveguide can be expanded as follows

E =
∞∑
n=1

enVn + uz
∞∑
n=1

ezn

∫
Ω

uz · Eezn dΩ,

H =
∞∑
n=1

uz × enIn + uz
1
Ω

∫
Ω

uz · H dΩ +
∞∑
n=1

hzn

∫
Ω

H · hzn dΩ,

∇× E =
∞∑
n=1

uz × en

∫
Ω

∇× E · uz × en dΩ

+uz
1
Ω

∫
Ω

uz · ∇ × E dΩ +
∞∑
n=1

uzhzn

∫
Ω

∇× E · uzhzn dΩ,

∇× H =
∞∑
n=1

en

∫
Ω

∇× H · en dΩ + uz
∞∑
n=1

ezn

∫
Ω

uz · ∇ × Hezn dΩ.

Substituting the above expansions into Maxwell equations and comparing
the similar terms we obtain (Geyi, 2010)

−dIn
dz

+
∫
Ω

H · ∇ × en dΩ = jωεeVn,

k2
cnIn = jωεe

∫
Ω

uz · E∇ · en dΩ,

dVn
dz

+
∫
Ω

uz · E∇ · en dΩ = −jωµIn,

k2
cnVn = −jωµ

∫
Ω

H·∇ × en dΩ,

∫
Ω

H· uz
Ω1/2

dΩ = 0,
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where εe = ε(1 − j σωε) and the waveguide is assumed to be perfectly
conducting. The modal voltage and modal current satisfy the transmission
line equation

dVn
dz

= −jβnZwnIn(z), dIn
dz

= −jβnYwnVn(z), (2.14)

where Ywn = 1/Zwn and

βn =

{
k, TEM mode√
k2 − k2

cn, TE or TM mode
, Zwn =



η, TEM mode

ηk/βn, TE mode

ηβn/k, TM mode

.

(2.15)

Here k = ω
√
µεe, η =

√
µ/εe, and Zwn is called the wave impedance of

the nth mode. If βn �= 0, the solutions of (2.14) can be expressed as

Vn(z) = V +
n (z) + V −

n (z) = Ane
−jβnz +Bne

jβnz,

In(z) = I+
n (z) − I−n (z) = (Ane−jβnz −Bne

jβnz)Z−1
wn,

(2.16)

where the superscript + and − represent the wave propagating in +z and
−z direction respectively

V +
n (z) = Ane

−jβnz, V −
n (z) = Bne

jβnz,

I+
n (z) = AnZ

−1
wne

−jβnz , I−n (z) = BnZ
−1
wne

jβnz.

The characteristic impedance for the nth mode is defined by

Z0n =
V +
n

I+
n

=
V −
n

I−n
= Zwn.

The guide wavelength for the nth mode is defined by

λn =
2π
βn
.

Other expansion coefficients may be represented by∫
Ω

uz · HhzndΩ =
kcn
jβn

Vn(z)
Zwn

,

∫
Ω

uz · EezndΩ =
kcn
jβn

In(z)Zwn.
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Finally, the total fields in the waveguide may be written as

E =
∞∑
n=1

(
Vnen + InZwn

kcn
jβn

uz
∇ · en
kcn

)
,

H =
∞∑
n=1

(
Inuz × en − Vn

Zwn

kcn
jβn

∇× en
kcn

)
.

(2.17)

The above expansions are fundamental in the study of waveguide disconti-
nuities. The power along the waveguide is given by

P =
1
2
Re

∫
Ω

E× H̄ · uz dΩ =
∞∑
n=1

1
2
Re(VnĪn). (2.18)

Remark 2.2 (Equivalent voltage and current): At microwave frequencies,
there are no voltmeter and ammeters for the measurement of voltages and
currents. In addition, the definition of voltage or current is not unique in
most situations. For a TEM transmission line, it is possible to define a volt-
age and a current, which are uniquely related to the transverse electric and
transverse magnetic fields respectively. Consider a TEM transmission line
consisting of two conductors [Figure 2.3(a)], and assume that the transverse
electric field for the TEM mode propagating in the +z direction is

Et = −∇Φe−jβz. (2.19)

The voltage propagating in the +z direction may be defined by

V + =
∫
L

Et · ul dl, (2.20)

(a) (b)

x 

y 

1Γ

lu

L
Γu

nu 2Γ

o 

0VΦ =
0Φ =

2b 2a 
x 

y 

Figure 2.3 TEM waveguides. (a) An arbitrary TEM line. (b) A coaxial transmis-
sion line.
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where L is an arbitrary path connecting the two conductors. Substituting
(2.19) into (2.20) gives

V + = V0e
−jβz, (2.21)

where V0 = Φ1 −Φ2 is the potential difference between the two conductors.
Note that the potential function Φ is proportional to φ defined in (2.8).
The current propagating in the +z direction can be defined by

I+ =
∫
Γ

Js · uz dΓ =
∫
Γ

JsdΓ =
∫
Γ

Ht · uΓ dΓ, (2.22)

where Γ represents the boundary of one of the conductors, Ht is the
transverse magnetic field for the TEM mode propagating in the +z
direction, and Js = un × Ht = uzJs is the surface current flowing in
the +z direction.

For the coaxial transmission line shown in Figure 2.3(b), the potential
function Φ satisfies the boundary conditions Φ = V0 at ρ = a and Φ = 0 at
ρ = b and is given by

Φ = V0
ln(ρ/b)
ln(a/b)

.

Thus the electric and magnetic fields for the TEM mode propagating in the
+z direction are

Et = −∇Φe−jβz = V0e
−jβze0,

Ht =
1
η
uz × Et =

1
η
V0e

−jβzuz × e0,
(2.23)

where e0 is the vector modal function (not normalized)

e0 =
1

ρ ln(b/a)
uρ. (2.24)

The current propagating in the +z direction is then given by

I+ =
∫
Γ

Ht · uΓdΓ = I0e
−jβz, (2.25)

where

I0 =
2π

η ln(b/a)
V0.

The characteristic impedance may then be defined by

Z0 =
V +

I+
=
η ln(b/a)

2π
. (2.26)
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The power along the line is

P =
1
2
Re

∫
Ω

Et × H̄t · uz dΩ =
1
2
Re

b∫
a

2π∫
0

Et

× H̄t · uzρ dρ dϕ =
πV 2

0

ln(b/a)
. (2.27)

The power is also given by the following expression

P =
1
2
ReV +Ī+ =

1
2
|I+|2Z0 =

1
2
|V +|2
Z0

=
πV 2

0

ln(b/a)
. �

2.1.3 Mode Excitation

Consider a uniform waveguide excited by the electric current source J and
the magnetic current Jm confined in the region z1 < z < z2, as shown
in Figure 2.4. According to (2.17), the fields for z ≥ z2 and z ≤ z1 in
the waveguide may be respectively expanded in terms of the vector modal
functions as follows

E+ =
∞∑
n=1

(
V +
n en + I+

n Zwn
kcn
jβn

uz
∇ · en
kcn

)
=

∞∑
n=1

AnE+
n ,

H+ =
∞∑
n=1

(
I+
n uz × en − V +

n

Zwn

kcn
jβn

∇× en
kcn

)
=

∞∑
n=1

AnH+
n ,

(2.28)

E− =
∞∑
n=1

(
V −
n en − kcn

jβn
I−n Zwnuz

∇ · en
kcn

)
=

∞∑
n=1

BnE−
n ,

H− =
∞∑
n=1

(
−I−n uz × en − kcn

jβn

V −
n

Zwn

∇× en
kcn

)
=

∞∑
n=1

BnH−
n ,

(2.29)

, mJ J

1z 2z

,+ +E H,− −E H

nu

Figure 2.4 Mode excitation.
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where

E+
n = (en + uzezn)e−jβnz, H+

n = (hn + uzhzn)e−jβnz,

E−
n = (en − uzezn)ejβnz, H−

n = (−hn + uzhzn)ejβnz,
(2.30)

with

hn =
uz × en
Zwn

, ezn =
∇ · en
jβn

, hznuz = − ∇× en
jβnZwn

. (2.31)

Note that ∫
Ω

(en × hn) · uzdΩ =
1

Zwn
, (2.32)

where Ω is the cross section of the waveguide. The expansion coefficients
in (2.28) and (2.29) can be determined by using the Lorentz reciprocity
theorem. Since the fields E±

n ,H
±
n satisfy the source-free Maxwell equations,

we have

∇ · (E±
n × H− E× H±

n ) = H · ∇ × E±
n − E±

n · ∇ × H− H±
n · ∇

×E + E · ∇ × H±
n

= H · (−jωµ0H±
n ) − E±

n · (J + jωε0E)

−H±
n · (−jωµ0H− Jm) + E · (jωε0E±

n )

= −J · E±
n + Jm ·H±

n .

Integrating over the volume V bounded by the perfectly conducting walls
and the two cross-sectional planes z = z1 and z = z2, we have

−
∫

z=z1

(E±
n × H− E × H±

n ) · uz dS +
∫

z=z2

(E±
n × H− E× H±

n ) · uz dS

=
∫
V

(−J · E±
n + Jm · H±

n )dV .

It is readily found that∫
z=z1

(E+
n × H− E× H+

n ) · uz dS

=
∫

z=z1

Bn(E+
n × H−

n − E−
n × H+

n ) · uz dS = −2Bn
Zwn

,
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∫
z=z2

(E+
n × H− E× H+

n ) · uz dS

=
∫

z=z2

An(E+
n × H+

n − E+
n × H+

n ) · uz dS = 0,

∫
z=z1

(E−
n × H − E× H−

n ) · uz dS

=
∫

z=z1

Bn(E−
n × H−

n − E−
n × H−

n ) · uz dS = 0,

∫
z=z2

(E−
n × H − E× H−

n ) · uz dS

=
∫

z=z2

An(E−
n × H+

n − E+
n × H−

n ) · uz dS =
2An
Zwn

.

Thus we have

An =
Zwn
2

∫
V

(−J ·E−
n + Jm · H−

n )dV ,

Bn =
Zwn
2

∫
V

(−J ·E+
n + Jm ·H+

n )dV . (2.33)

2.2 Vector Modal Functions

The fields in the waveguide can be expanded as a linear combination of
various modes. The transverse components of the modes satisfy the vector
equation (2.3). For a waveguide filled with homogeneous medium, the
transverse components can be derived from the longitudinal components
that satisfy the Helmholtz equation and the related boundary conditions.
For typical waveguides, the method of separation of variables may be used
to solve the Helmholtz equation.

2.2.1 Rectangular Waveguide

A homogeneous rectangular waveguide shown in Figure 2.5 only supports
TE or TM modes, which can be determined from (2.10) and (2.12). Let
both ezn(x, y) and hzn(x, y) be a product of functions of separate x and y

ezn(x, y) = epe(x)eqe (y), hzn(x, y) = hph
(x)hqh

(y). (2.34)
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y 

a

b 

x 
o

Figure 2.5 Rectangular waveguide.

Substituting these back into (2.10) and (2.12) gives(
d2

dx2
+ p2

e

)
epe(x) = 0, epe(0) = epe(a) = 0,

(
d2

dy2
+ q2e

)
eqe(y) = 0, eqe(0) = eqe(b) = 0,

(
d2

dx2
+ p2

h

)
hph

(x) = 0,
∂hph

∂x

∣∣∣∣
x=0

=
∂hph

∂x

∣∣∣∣
x=a

= 0,

(
d2

dy2
+ q2h

)
hqh

(y) = 0,
∂hqh

∂y

∣∣∣∣
y=0

=
∂hqh

∂y

∣∣∣∣
y=b

= 0,

where p and q are separation constants satisfying

k2
cn,e = p2e + q2e , k2

cn,h = p2h + q2h.

The normalized eigenfunctions are given by

epe(x) =

√
2
a

sin
pπ

a
x, pe =

pπ

a
, p = 1, 2, . . . ,

eqe(y) =

√
2
b

sin
qπ

b
y, qe =

qπ

b
, q = 1, 2, . . . ,

hph
(x) =

√
εp
a

cos
pπ

a
x, ph =

pπ

a
, p = 0, 1, 2, . . . ,

hqh
(y) =

√
εq
b

cos
qπ

b
y, qh =

qπ

b
, q = 0, 1, 2, . . . ,

where εm =
{

1,m = 0
2,m ≥ 1 . These eigenfunctions satisfy

δ(x − x′) =
∞∑
p=1

epe(x)epe(x
′),
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δ(y − y′) =
∞∑
q=1

eqe(y)eqe(y
′),

δ(x − x′) =
∞∑
p=0

hph
(x)hph

(x′),

δ(y − y′) =
∞∑
q=0

hqh
(y)hqh

(y′), (2.35)

and

δ(x − x′)δ(y − y′) =
∞∑
p=1

∞∑
q=1

epe(x)eqe(y)epe(x
′)eqe(y

′)

=
∞∑
n=1

ezn(x, y)ezn(x′, y′),

(2.36)

δ(x− x′)δ(y − y′) =
∞∑
p=0

∞∑
q=0

hph
(x)hqh

(y)hph
(x′)hqh

(y′)

=
∞∑
n=0

hzn(x, y)hzn(x′, y′),

(2.37)

where

ezn(x, y) = epe(x)eqe(y) =

√
4
ab

sin
pπ

a
x sin

qπ

b
y,

hzn(x, y) = hph
(x)hqh

(y) =
√
εpεq
ab

cos
pπ

a
x cos

qπ

b
y,

are the modal solutions. Note that the subscript n represents the multiple
index (p, q). The cut-off wavenumbers for TM and TE modes are respec-
tively given by

k2
cn,e =

(pπ
a

)2

+
(qπ
b

)2

; p, q = 1, 2, . . . ,

k2
cn,h =

(pπ
a

)2

+
(qπ
b

)2

; p, q = 0, 1, 2, . . . .
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The vector modal functions can be obtained from (2.3). For TM modes,
the vector modal functions are given by

en = ux
1
kcn

pπ

a

√
4
ab

cos
pπ

a
x sin

qπ

b
y + uy

1
kcn

qπ

b

√
4
ab

sin
pπ

a
x cos

qπ

b
y,

(2.38)

and the vector modal functions for TE modes are

en = ux
1
kcn

qπ

b

√
εpεq
ab

cos
pπ

a
x sin

qπ

b
y − uy

1
kcn

pπ

a

√
εpεq
ab

sin
pπ

a
x cos

qπ

b
y

(2.39)

where ux and uy are unit vectors along x and y direction respectively. The
dominant mode in the rectangular waveguide is TE10 mode and is the most
commonly used one. The field components of this mode are (the wave is
assumed to be propagating in +z direction)

Hz = A cos
πx

a
e−jβ10z ,

Hx =
jβ10

kc10
A sin

πx

a
e−jβ10z,

Ey = −jZw10
β10

kc10
A sin

πx

a
e−jβ10z,

where

kc10 =
π

a
, β10 =

√
k2 − k2

c10, Zw10 =
ηk

β10
.

The guide wavelength for TE10 mode is

λg10 =
2π
β10

=
λ√

1 − (λ/2a)2
.

To maintain a single dominant mode operation, the dimensions of the
rectangular waveguide must satisfy

b <
λ

2
< a < λ.

Usually, we choose a = 2b, a = 0.7λ.
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2.2.2 Circular Waveguide

A uniform waveguide of circular cross section of radius a is shown in
Figure 2.6. The waveguide is best described by the cylindrical coordinate
system (ρ, ϕ, z), in which we have

∇2
t =

1
ρ

∂

∂ρ
ρ
∂

∂ρ
+

1
ρ2

∂2

∂ϕ2
. (2.40)

Let both ezn(ρ, ϕ) and hzn(ρ, ϕ) be a product of functions of separate
ρ and ϕ

ezn(ρ, ϕ) = epe(ρ)eqe(ϕ), hzn(ρ, ϕ) = hph
(ρ)hqh

(ϕ). (2.41)

Substituting these into (2.10) and (2.12), we obtain(
d2

dρ2
+

1
ρ

d

dρ
+ k2

cn,e −
q2

ρ2

)
epe(ρ) = 0, epe(a) = 0,

(
d2

dϕ2
+ q2

)
eqe(ϕ) = 0, eqe(0) = eqe(2π),

deqe(0)
dϕ

=
deqe(2π)
dϕ

,

(
d2

dρ2
+

1
ρ

d

dρ
+ k2

cn,h −
q2

ρ2

)
hph

(ρ) = 0,
dhph

(a)
dρ

= 0,

(
d2

dϕ2
+ q2

)
hqh

(ϕ) = 0, hqh
(0) = hqh

(2π),
dhqh

(0)
dϕ

=
dhqh

(2π)
dϕ

.

The normalized eigenfunctions for TM modes are

epe

(
χqp

ρ

a

)
=

√
2Jq

(
χqp

ρ
a

)
χqpJq+1 (χqp)

, q = 0, 1, 2, . . . ,

ρ

ϕ

y 

x 

a

o 

Figure 2.6 Circular waveguide.
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eqe(ϕ) =
√
εq
2π

(
cos qϕ
sin qϕ

)
, q = 0, 1, 2, . . . ,

where χqp is the pth non-vanishing root of the equation

Jq(χqp) = 0.

The cut-off wavenumbers for TM modes are given by

kcn,e =
χqp
a
.

The normalized vector modal functions for TM modes may be determined
by (2.3) as follows

en = −uρ

√
εq
π

J ′
q

(
χqp

ρ
a

)
aJq+1(χqp)

(
cos qϕ

sin qϕ

)
± uϕ

√
εq
π

q

χqp

Jq
(
χqp

ρ
a

)
ρJq+1(χqp)

(
sin qϕ

cos qϕ

)
.

(2.42)

where uρ and uϕ are unit vectors along ρ and ϕ direction respectively. The
normalized eigenfunctions for TE modes are

hph

(
χ′
qp

ρ

a

)
=

√
2Jq

(
χ′
qp
ρ
a

)
√
χ′2
qp − q2Jq(χ′

qp)
, q = 0, 1, 2, . . . ,

hqh
(ϕ) =

√
εq
2π

(
cos qϕ

sin qϕ

)
, q = 0, 1, 2, . . . ,

where χ′
qp is the pth non-vanishing root of the equation

J ′
q(χ

′
qp) = 0.

The cut-off wavenumbers for the TE modes are given by

kcn,h =
χ′
qp

a
.

The normalized vector modal functions for TE modes are

en = ±uρ

√
εq
π

q√
χ′2
qp − q2

Jq
(
χ′
qp
ρ
a

)
ρJq

(
χ′
qp

)
(

sin qϕ

cos qϕ

)

+uϕ

√
εq
π

χ′
qp√

χ′2
qp − q2

J ′
q

(
χ′
qp
ρ
a

)
aJq(χ′

qp)

(
cos qϕ

sin qϕ

)
. (2.43)
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2.2.3 Coaxial Waveguide

A coaxial waveguide is shown in Figure 2.7. The dominant mode for coaxial
waveguide is the TEM mode. The potential function φ for the TEM mode
can be determined from the Laplace equation (2.8), and it may be written as

φ =
ln ρ√

2π ln c1
,

where c1 = b/a. The normalized vector modal function for the TEM mode
may be obtained from

en = ∇φ = uρ
l√

2π ln c1

1
ρ
. (2.44)

For the higher order modes, we need to solve the Helmholtz equation. Let
both ezn(ρ, ϕ) and hzn(ρ, ϕ) be a product of functions of separate ρ and ϕ

ezn(ρ, ϕ) = epe(ρ)eqe(ϕ), hzn(ρ, ϕ) = hph
(ρ)hqh

(ϕ). (2.45)

Substituting these into (2.10) and (2.12), we obtain(
d2

dρ2
+

1
ρ

d

dρ
+ k2

cn,e −
q2

ρ2

)
epe(ρ) = 0, epe(a) = epe(b) = 0,

(
d2

dϕ2
+ q2

)
eqe(ϕ) = 0, eqe(0) = eqe(2π),

deqe(0)
dϕ

=
deqe(2π)
dϕ

,

(
d2

dρ2
+

1
ρ

d

dρ
+ k2

cn,h −
q2

ρ2

)
hph

(ρ) = 0,
dhph

(a)
dρ

=
dhph

(b)
dρ

= 0,

(
d2

dϕ2
+ q2

)
hqh

(ϕ) = 0, hqh
(0) = hqh

(2π),
dhqh

(0)
dϕ

=
dhqh

(2π)
dϕ

.

2a 

y 

x 2bo 

Figure 2.7 Coaxial waveguide.
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The normalized eigenfunctions for TM modes are easily found to be

epe

(
χqp

ρ

a

)
=

π√
2

Jq
(
χqp

ρ
a

)
Nq(χqp)−Nq

(
χqp

ρ
a

)
Jq(χqp)√

J2
q (χqp)/J2

q (cχqp)− 1
, q = 0, 1, 2, . . . ,

eqe(ϕ) =
√
εq
2π

(
cos qϕ

sin qϕ

)
, q = 0, 1, 2, . . . ,

where χqp is the pth non-vanishing root of the equation

Jq(c1χqp)Nq(χqp) −Nq(c1χqp)Jq(χqp) = 0.

The cut-off wavenumbers for TM modes are given by

kcn,e =
χqp
a

=
(c1 − 1)χqp

b− a
≈ πp

b− a
, p = 1, 2, . . . .

The normalized vector modal functions for TM modes may be determined
from (2.3) as follows

en = −uρ
χqp
a
e′pe

(
χqp

ρ

a

)√ εq
2π

(
cos qϕ

sin qϕ

)

±uϕ
q

ρ
epe

(
χqp

ρ

a

)√ εq
2π

(
sin qϕ

cos qϕ

)
, (2.46)

where e′pe
denotes the derivative with respect to its argument.

The normalized eigenfunctions for TE modes are

hph

(
χ′
qp

ρ

a

)
=

π√
2

Jq
(
χ′
qp
ρ
a

)
N ′
q(χqp) −Nq

(
χ′
qp
ρ
a

)
J ′
q(χ′

qp)√
J2

q (χ′
qp)

J2
q (c1χ′

qp)

[
1 −

(
q

c1χ′
qp

)2
]
−
[
1 −

(
q
χ′

qp

)2
] ,

q = 0, 1, 2, . . . ,

hqh
(ϕ) =

√
εq
2π

(
cos qϕ

sin qϕ

)
, q = 0, 1, 2, . . . ,

where χ′
qp is the pth non-vanishing root of the equation

J ′
q(c1χ

′
qp)N

′
q(χ

′
qp) −N ′

q(c1χ
′
qp)J

′
q(χ

′
qp) = 0.
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The cut-off wavenumbers for TE modes are given by

kcn,h =
χ′
q1

a
=

(c1 + 1)χ′
q1

b+ a
≈ 2q
b+ a

, q = 1, 2, . . . ,

kcn,h =
χ′
qp

a
=

(c1 − 1)χ′
qp

b − a
≈ (p− 1)π

b− a
, p = 2, 3, . . . .

The dominant TE mode is TE11(q=1, p=1). The normalized vector modal
functions for TE modes may be written as

en = ±uρ
q

ρ
hpe

(
χ′
qp

ρ

a

)√ εq
2π

(
sin qϕ

cos qϕ

)

+uϕ
χ′
qp

a
h′pe

(
χ′
qp

ρ

a

)√ εq
2π

(
cos qϕ

sin qϕ

)
. (2.47)

2.2.4 Numerical Analysis for Metal Waveguides

For an arbitrary metal waveguide, we have to resort to numerical methods
in order to find the modal solutions. It suffices to investigate the numerical
solution of (2.10) for TE modes and (2.12) for TM modes.

2.2.4.1 Boundary Element Method

The boundary element method (BEM) is based on the discretization
of an integral equation that is derived from original partial differential
equation and defined on the boundary of the defining domain. The
advantage of the BEM lies in the fact that only the boundary of the
defining domain requires sub-division to produce a boundary mesh. Thus
the dimension of the problem is reduced by one, which makes BEM
much easier to handle and more computationally efficient than the domain
methods.

Let φ be a scalar field representing either the longitudinal magnetic
field hz for TE mode or longitudinal electric field ez for TM mode. Then
we may write

(∇2
t + k2

c )φ(ρρρ) = 0, (2.48)

where kc is the cut-off wavenumber. For TE modes, φ satisfies the Neumann
boundary condition

∂φ

∂n

∣∣∣∣
Γ

= 0. (2.49)
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For TM modes, φ satisfies the Dirichlet boundary condition

φ|Γ = 0. (2.50)

The boundary integral equations for the waveguide problems may be easily
derived by using the Green’s identity∫

Ω

(u∇2v − v∇2u)dΩ =
∫
Γ

(
u
∂v

∂n
− v

∂v

∂n

)
dΓ (2.51)

and the Green’s function G defined by

(∇2
t + k2

c )G(ρρρ,ρρρ′) = −δ(ρρρ − ρρρ′). (2.52)

For TE modes, we may let u = φ and v = G(ρρρ,ρρρ′) in (2.51) and make use
of (2.48) and (2.49) to obtain

C(ρρρ)φ(ρρρ) +
∫
Γ

φ(ρρρ′)
∂G(ρρρ,ρρρ′)
∂n(ρρρ′)

dΓ(ρρρ′) = 0, (2.53)

where C(ρρρ) = θ/2π, and θ is the angle formed by the two half tangents
at the boundary point ρρρ, as illustrated in Figure 2.8. Equation (2.53) is
the boundary integral equation for TE modes. For TM modes, we may let
u = φ and v = G(ρρρ,ρρρ′) in (2.51) and make use of (2.48) and (2.50) to
obtain ∫

Γ

G(ρρρ,ρρρ′)q(ρρρ′)dΓ(ρρρ′) = 0, (2.54)

where q = ∂φ
∂n . Equation (2.54) is the boundary integral equation for TM

modes.

Γ

θΩ

Figure 2.8 An arbitrary boundary point.
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Figure 2.9 Boundary approximated by line elements.

To numerically solve the boundary integral equations (2.53) and (2.54),
we first choose N nodes ρρρj = (xj , yj)(j = 1, 2, . . . , N) on the boundary Γ.
We then connect these nodes successively by linear segments (called
boundary elements) as illustrated by Figure 2.9. Thus (2.53) and (2.54)
can be approximated by

C(ρρρ)φ(ρρρ) +
N∑
j=1

∫
Γj

φ(ρρρ′)
∂G(ρρρ,ρρρ′)
∂n(ρρρ′)

dΓ(ρρρ′) = 0, (2.55)

N∑
j=1

∫
Γj

G(ρρρ,ρρρ′)q(ρρρ′)dΓ(ρρρ′) = 0. (2.56)

(1) Constant Element Equations

For the method of constant elements, the unknowns φ and q on element
Γj are treated as a constant, respectively denoted by φc(j) and qc(j),
j = 1, 2, . . . , N . Equations (2.55) and (2.56) are then required to be exactly
satisfied at the collocation points, selected as the middle points of the
elements

ρρρic =
ρρρi + ρρρi+1

2
, i = 1, 2, . . . , N, (2.57)

where ρρρN+1 = ρρρ1. This process leads to the constant element equations
for TE and TM modes

[MTE(kc)][φc] = 0, (2.58)

[MTM(kc)][qc] = 0, (2.59)
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where

MTE
ij (kc) =

1
2
δij +

∫
Γj

∂G(ρρρic,ρρρ
′)

∂n(ρρρ′)
dΓ(ρρρ′), i, j = 1, 2, . . . , N,

[φc] = [φc(1), φc(2), . . . , φc(N)]T .

(2.60)

MTM
ij (kc) =

∫
Γj

G(ρρρic,ρρρ
′)dΓ(ρρρ′), i, j = 1, 2, . . . , N,

[qc] = [qc(1), qc(2), . . . , qc(N)]T .

(2.61)

The necessary and sufficient conditions for the existence of a non-trivial
solution of (2.58) and (2.59) are respectively given by

det[MTE(kc)] = 0, (2.62)

det[MTM(kc)] = 0. (2.63)

These are the generalized eigenvalue equations, from which the cut-off
wavenumber kc for TE and TM modes can be determined. The correspond-
ing eigenvectors can be found from (2.58) and (2.59). The Green’s function
in (2.60) and (2.61) may be chosen as

G(ρρρ,ρρρ′) = −1
4
N0(kc|ρρρ − ρρρ′|) + g(ρρρ,ρρρ′), (2.64)

where N0 is the Neumann function, and g(ρρρ,ρρρ′) is an arbitrary solution of
homogeneous Helmholtz equation

(∇2
t + k2

c )g(ρρρ,ρρρ
′) = 0. (2.65)

(2) Linear Element Equations

For the method of linear element, the unknowns φ and q on element Γj can
be approximated by

φ = φ(j)(1 − λ) + φ(j + 1)λ, (2.66)

q = q(j)(1 − λ) + q(j + 1)λ, (2.67)

where φ(j) and q(j) denote the values of φ and q at node j (j = 1, 2, . . . , N).
Substituting the linear interpolations (2.66) and (2.67) into (2.55) and
(2.56) respectively and using the nodes as collocation points, we obtain
the linear element equations for TE and TM modes

[MTE(kc)][φ] = 0, (2.68)

[MTM (kc)][q] = 0, (2.69)
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where

MTE
ij (kc) = C(ρρρi)δij +Gn(i, j) − G̃n(i, j) + G̃n(i, j − 1),

[φ] = [φ(1), φ(2), . . . , φ(N)]T ,

Gn(i, j) =
∫
Γj

∂G(ρρρi,ρρρ′)
∂n(ρρρ′)

dΓ(ρρρ′),

G̃n(i, j) =
∫
Γj

λ
∂G(ρρρi,ρρρ′)
∂n(ρρρ′)

dΓ(ρρρ′), i, j = 1, 2, . . . , N.

(2.70)

MTM
ij (kc) = G(i, j) − G̃(i, j) + G̃(i, j − 1),

[q] = [q(1), q(2), . . . , q(N)]T ,

G(i, j) =
∫
Γj

G(ρρρi,ρρρ′)dΓ(ρρρ′),

G̃(i, j) =
∫
Γj

λG(ρρρi,ρρρ′)dΓ(ρρρ′), i, j = 1, 2, . . . , N.

(2.71)

Remark 2.3 (Spurious solutions): When a differential equation is trans-
formed into an integral equation, the requirement of smoothness of the
unknown functions is relaxed and this raises the question of whether the
integral equation is equivalent to the original differential equation. In fact,
the spurious solutions may occur in the integral equation formulation. It
can be shown that the spurious solutions may be avoided if the Green’s
function (2.64) satisfies the radiation condition. If the Green’s function does
not satisfy the radiation condition, the spurious solutions will occur and
they are eigenvalues of exterior Dirichlet problem. Based on this property,
a criterion for discriminating the spurious solutions may be developed for
a waveguide with edges (Geyi, 1990a; 2010). �

2.2.4.2 Finite Difference Method

The finite difference method (FDM) is a domain method for solving
differential equations by using finite difference to approximate derivatives.
For generality, the waveguide cross section Ω is discretized into a number
of polygonal elements with N nodes {n1, n2, . . . , nN}, as illustrated in
Figure 2.10.

Let ni(i = 1, 2, . . . , N) be an arbitrary interior node, which is assumed
to have ei neighboring nodesmj(j = 1, 2, . . . , ei). Let qj be the middle point
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Ω

Γ

Figure 2.10 Polygonal discretization.

(a) (b)

iem

1m

2m

1iem −

1q

1p
2q2p

in

iG

1m

2m

iem

1iem −

1q

1p
2q

2p

iG

ieq in

Figure 2.11 (a) Dual element for interior node. (b) Dual element for boundary node.

of line segment nimj . In each polygon using ni as a vertex, we choose a point
pj(j = 1, 2, . . . , ei) and then connect points q1, p1, q2, p2, . . . successively,
obtaining a polygonal region Gi [Figure 2.11(a)]. This is referred to as the
dual element of ni. Taking the integral of (2.48) over the dual element
Gi, we have ∫

Gi

(∇2
t + k2

c )φdΩ = 0. (2.72)

Utilizing the Green’s identity (2.51), (2.72) can be transformed into the
following form ∫

∂Gi

∂φ

∂n
dΓ +

∫
Gi

k2
cφdΩ = 0. (2.73)

where ∂Gi denotes the boundary of the dual element Gi. The line integral
along ∂Gi can be expressed as the sum of the integrals along the broken
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segments p1q2p2, . . . , peiq1p1; then we have
ei∑
j=1

∫
pj−1qjpj

∂φ

∂n
dΓ +

∫
Gi

k2
cφdΩ = 0. (2.74)

Making use of the following approximation∫
pj−1qjpj

∂φ

∂n
dΓ = −[φ(ni) − φ(mj)]

pj−1qj + qjpj
mjni

,

∫
Gi

k2
cφdΩ = k2

cφ(ni)Si,

where Si represents the area of Gi and φ(ni) denotes the value of φ at node
ni, (2.74) can be written as

ei∑
j=1

[φ(ni) − φ(mj)]
pj−1qj + qjpj

mjni
− k2

cφ(ni)Si = 0. (2.75)

Here we have used the convention p0 = pei . Equation (2.75) is the node
equation for an interior node.

We now construct the node equation for a boundary node. For the
Dirichlet boundary condition, the node equation for a boundary node ni
is trivial and φ(ni) = 0. For the Neumann boundary condition, we may
introduce the dual element Gi for a boundary node ni as illustrated in
Figure 2.11(b), where the node ni itself is also a vortex of the polygonal
region Gi. Taking the integration of (2.48) over the region Gi and using the
Green’s identity, we obtain∫

q1p1

∂φ

∂n
dΓ +

∫
p1q2p2

∂φ

∂n
dΓ + · · · +

∫
pei−1qei

∂φ

∂n
dΓ

+
∫
Gi

k2
cφdΩ +

∫
niq1

∂φ

∂n
dΓ +

∫
niqei

∂φ

∂n
dΓ = 0.

On account of the Neumann boundary condition, the last two terms of the
above expression vanish. Hence

ei−1∑
j=2

[φ(ni) − φ(mj)]
pj−1qj + qjpj

mjni
+ [φ(ni) − φ(m1)]

p1q1
m1ni

+ [φ(ni) − φ(mei)]
pei−1qei

meini
− k2

cφ(ni)Si = 0. (2.76)
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This is the node equation for the boundary node ni. Combining the
node equations for the interior nodes and boundary nodes, we obtain the
standard algebraic eigenvalue equation

[A][φ] − k2
c [B][φ] = 0. (2.77)

Here [A] is a band matrix and [B] is a diagonal matrix, and [φ] =
[φ(n1), φ(n2), . . . , φ(nN )]T . Equation (2.77) can be used to determine the
cut-off wavenumbers.

Remark 2.4: Based on the polygon discretization, a network model for the
waveguide problem may be established to transform the original boundary
value problem into a circuit problem (Geyi, 1990b). �

2.2.4.3 Finite Element Method

The finite element method (FEM) uses the variational method to
minimize a functional derived from a partial differential equation, producing
a numerical solution for the partial differential equation. It has been
shown that the solution of (2.48) is equivalent to minimizing the following
functional (see Section 1.4)

I(φ) =
∫
Ω

(∇tφ · ∇tφ− k2
cφ

2)dΩ. (2.78)

The cross section Ω of the waveguide may be discretized into Ne triangular
elements Ωe (e = 1, 2, . . . , Ne) with Nn nodes, as illustrated in Figure 2.12.
Thus

I(φ) =
Ne∑
e=1

I(φe), (2.79)

Ω

Γ

Figure 2.12 Triangular element discretization.
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where φe denotes the unknown scalar field φ over a triangular element Ωe,
and can be expressed in terms of the linear shape functions as

φe =
3∑

m=1

αm(x, y)φe(m),

with

α1(x, y) =
x2y3 − x3y2 + x(y2 − y3) − y(x2 − x3)
(x1 − x3)(y2 − y3) − (x2 − x3)(y1 − y3)

α2(x, y) =
x3y1 − x1y3 + x(y3 − y1) − y(x3 − x1)
(x1 − x3)(y2 − y3) − (x2 − x3)(y1 − y3)

α3(x, y) =
x1y2 − x2y1 + x(y2 − y1) − y(x2 − x1)
(x1 − x3)(y2 − y3) − (x2 − x3)(y1 − y3)

.

Note that

I(φe) =
∫
Ωe

(∇tφe · ∇tφe − k2
cφ

2
e)dΩ

=
3∑

m=1

3∑
n=1

φe(m)φe(n)
∫
Ωe

∇tαm(x, y) · ∇tαn(x, y)dΩ

− k2
c

3∑
m=1

3∑
n=1

φe(m)φe(n)
∫
Ωe

αm(x, y) · αn(x, y)dΩ.

This can be written in matrix form as

I(φe) = [φe]T [Ce][φe] − k2
c [φe]

T [De][φe], (2.80)

where

[φe] = [φe(1), φe(2), φe(3)]T ,

Cemn =
∫
Ωe

∇tαm(x, y) · ∇tαn(x, y)dΩ,

De
mn =

∫
Ωe

αm(x, y) · αn(x, y)dΩ

(2.81)

are local matrices. Substituting (2.80) into (2.79), we obtain

I(φ) = [φ]T [C][φ] − k2
c [φ]T [D][φ], (2.82)
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where [φ] = [φ(1), φ(2), . . . , φ(Nn)]T , [C] and [D] are global matrices formed
by assembling the local matrices [Ce] and [De].

The nodes can be divided into free nodes where the values of the scalar
field φ are yet to be determined and fixed nodes where the values of the
scalar field φ are known. If we number the free nodes first and the fixed
nodes last, (2.82) can be written as

I(φ) =
[
φf φg

] [Cff Cfg

Cgf Cgg

] [
φf
φg

]
− k2

c

[
φf φg

] [Dff Dfg

Dgf Dgg

] [
φf
φg

]
(2.83)

where subscripts f and g denote the free nodes and fixed nodes respectively.
Letting δI

δφf
= 0 yields

[
Cff Cfg

] [φf
φg

]
− k2

c

[
Dff Dfg

] [φf
φg

]
= 0. (2.84)

For TM modes, we have φg = 0. For TE modes, all nodes are free. So we
have

[Cff ][φf ] − k2
c [Dff ][φf ] = 0. (2.85)

This equation can be used to determine the cut-off wavenumbers and the
corresponding modal fields.

2.3 Inhomogeneous Metal Waveguides

Inhomogeneously filled waveguides, such as a rectangular waveguide par-
tially filled with dielectric slabs, are used in a number of waveguide
components. The determination of the propagation constants of the modes
in the waveguides is the major focus of our interest.

2.3.1 General Field Relationships

Consider a metal waveguide, which is uniform along z-axis. The cross
section of the waveguide is denoted by Ω and its boundary is assumed
to be a perfect conductor and is denoted by Γ = Γ1 + Γ2, as shown
in Figure 2.13. The waveguide is filled with inhomogeneous medium in
which µ and ε are functions of transverse positions but are constant
along z-axis. Assume that the fields in the waveguide have a z-dependence
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Figure 2.13 Inhomogeneous waveguide.

of the form e−jβz

E(r) = e(ρρρ)e−jβz, H(r) = h(ρρρ)e−jβz, (2.86)

where ρρρ = (x, y) ∈ Ω denotes the transverse position. Introducing these
into Maxwell equations, we obtain

∇β × h = jωεe, ∇β × e = −jωµh,
∇β · εe = 0, ∇β · µh = 0.

(2.87)

Here ∇β = ∇t − jβuz denotes an operator obtained from ∇ by replacing
the derivative with respect to z with multiplication by −jβ, and ∇t is
transverse gradient operator. For an arbitrary vector function f(ρρρ) and a
scalar function u(ρρρ), we have

∇β · (∇β × f) = 0,

∇β · (uf) = u∇β · f + f · ∇tu,

∇β · (∇βu) = ∇2
tu− β2u,

∇β × (∇βu) = 0,

∇β ×∇β × f = −∇2
t f + β2f + ∇β(∇β · f).

(2.88)

It follows from (2.87) that

∇β × ε−1
r ∇β × h = k2

0µrh,

∇β × µ−1
r ∇β × e = k2

0εre,

∇β · εre = 0, ∇β · µrh = 0,

(2.89)

where µr = µ/µ0, εr = ε/ε0 and k0 = ω
√
µ0ε0. A solution of (2.89) is

called a guided mode of the waveguide if the field is non-trivial and has
finite energy:

(β, k0) ∈ R2, (e,h) �= 0, and
∫
R2

|e|2dΩ <∞,

∫
R2

|h|2dΩ <∞.
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2.3.2 Symmetric Formulation

It follows from (2.89) that the fields satisfy

∇β × ε−1
r ∇β × h = k2

0µrh, ρρρ ∈ Ω,

un · µrh = 0, un × ε−1
r ∇β × h = 0, ρρρ ∈ Γ,

(2.90)

and
∇β × µ−1

r ∇β × e = k2
0εre, ρρρ ∈ Ω,

un × e = 0, un · µ−1
r ∇β × e = 0, ρρρ ∈ Γ,

(2.91)

where un is the unit outward normal on Γ. In (2.90) and (2.91), the
propagation constant is considered as a parameter while the wavenumber
k0 is taken as the eigenvalue that is a function of β. For a given β, both
(2.90) and (2.91) define a symmetric eigenvalue problem respectively. From
(2.90) we obtain

k2
0

∫
Ω

µr|h|2dΩ =
∫
Ω

1
n2

(∇β × h) · (∇β × h)dΩ

≥ 1
n2

+

∫
Ω

(∇β × h) · (∇β × h)dΩ

=
1
n2

+

∫
Ω

(∇β ×∇β × h) · h̄dΩ,

where n =
√
εr and n+ = max

ρρρ∈Ω
n(ρρρ). Making use of the last equation of

(2.88) and integration by parts, we have

k2
0

∫
Ω

µr|h|2 dΩ ≥ 1
n2

+

∫
Ω

(−∇2
th + β2h + ∇β∇β · h) · h̄ dΩ

=
1
n2

+

∫
Ω

(|∇t × h|2 + |∇t · h|2 − |∇β · h|2)dΩ +
β2

n2
+

∫
Ω

|h|2 dΩ.

If µr is a constant, we have ∇β · h = 0 and the above is equivalent to∫
Ω

(|∇t × h|2 + |∇t · h|2)dΩ + (β2 − k2
0µrn

2
+)
∫
Ω

|h|2 dΩ ≤ 0. (2.92)

As a result, if |β| ≥ k0
√
µrn+, then h = 0 and (2.90) has a trivial solution.

In other words, no guided modes exist in this case. Hence the solution
(β, k0) of (2.90) or (2.91) must satisfy

k0 >
|β|√
µrn+

. (2.93)

This is the guidance condition for an inhomogeneously filled waveguide.
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2.3.3 Asymmetric Formulation

In engineering, the propagation constant β is usually considered as the
eigenvalue while the frequency or the wavenumber k0 is taken as a
parameter. This arrangement often yields a non-symmetric eigenvalue
problem, and is more difficult to study. The guided modes in the waveguide
may be decomposed into a transverse and a longitudinal component

E(r) = [e(ρρρ) + uzez(ρρρ)]e−jβz, H(r) = [h(ρρρ) + uzhz(ρρρ)]e−jβz. (2.94)

Introducing these into Maxwell equations, we obtain

∇× h = jωεuzez, ∇× e = −jωµuzhz ,
jβuz × h + uz ×∇hz = −jωεe,
jβuz × e + uz ×∇ez = jωµh,

∇ · εe = jβεez, ∇ · µh = jβµhz.

(2.95)

By eliminating h, ez and hz, we have the following eigenvalue problem

µ∇× µ−1∇× e−∇ε−1∇ · εe− (ω2µε− β2)e = 0, ρρρ ∈ Ω,

un × e = 0, ∇ · εe = 0, ρρρ ∈ Γ.
(2.96)

In (2.96), β2 is taken as the eigenvalue and ω2 as the parameter. The
differential operator in (2.96) is not symmetric. Let em and en be
two different eigenfunctions corresponding to the eigenvalues β2

m and β2
n

respectively. Then

µ∇× µ−1∇× em −∇ε−1∇ · εem − (ω2µε− β2
m)em = 0.

Taking the scalar product of the above equation with ∇×µ−1∇×en−ω2εen
and integrating the resultant equation over Ω yield∫

Ω

µ(∇× µ−1∇× em − ω2εem) · (∇× µ−1∇× en − ω2εen)dΩ

−
∫
Ω

ω2ε−1(∇ · εem)(∇ · εen)dΩ

+ β2
m

∫
Ω

(µ−1∇× em · ∇ × en − ω2εem · en)dΩ = 0. (2.97)

Interchanging m and n and subtracting the result from (2.97) gives

(β2
m − β2

n)
∫
Ω

(µ−1∇× em · ∇ × en − ω2εem · en)dΩ = 0. (2.98)
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This implies the following orthogonality relation∫
Ω

(µ−1∇× em · ∇ × en − ω2εem · en)dΩ = 0, (2.99)

if β2
m �= β2

n. From (2.95), the transverse magnetic field can be expressed in
terms of the transverse electric field

uz × h =
1
ωβ

(∇× µ−1∇× e − ω2εe),

and the orthogonality relation (2.99) can be written as∫
Ω

(em × hn) · uzdΩ = 0, m �= n. (2.100)

This is the most general form of the orthogonality relation in a waveguide.
The modes in a waveguide filled with homogeneous medium can be
classified into TEM, TE and TM modes. In an inhomogeneous waveguide,
such classification is impossible since the modes contain both ez and hz
components.

2.3.4 Dielectric-Slab-Loaded Rectangular Waveguides

Dielectric-slab-loaded rectangular waveguides (Figure 2.14) have significant
advantage in bandwidth and power handling capacity over unloaded
rectangular waveguide. By proper choice of dimensions and dielectrics,
the bandwidth and power handling capacity can be significantly increased
(Vartanian et al., 1958). The modes in the dielectric loaded waveguide are
not either TE or TM modes, but combinations of both, called longitudinal
section electric (LSE) modes or longitudinal section magnetic (LSM)
modes.

Consider an asymmetrically loaded waveguide as illustrated in
Figure 2.15. The dielectric slab of thickness t is along the sidewall of the
waveguide. The refractive index of the material filled in the waveguide is

(a) (b)

Figure 2.14 Dielectric-slab-loaded rectangular waveguides.
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Figure 2.15 Asymmetrically loaded waveguide.

assumed to be n(r). The LSE modes can be derived from a magnetic Hertz
vector

Πm = uxΠm(x, y)e−γz.

The electromagnetic fields are given by

E = −jωµ0∇× Πm,

H = ∇×∇× Πm = n2k2
0Πm + ∇∇ ·Πm,

(2.101)

where k0 = ω
√
µ0ε0. The potential function Πm(x, y) satisfies

∇2
tΠm + (n2k2

0 + γ2)Πm = 0, (2.102)

where

n(x) =

{
1, 0 < x < d
√
εr, t < x < a

.

To satisfy the boundary conditions on the conducting walls, we have

Πm =



A sinkx1x cos

nπ

b
y, 0 ≤ x ≤ d

A sinkx2(a− x) cos
nπ

b
y, d ≤ x ≤ a

,

with

γ2 = k2
x1 +

(mπ
b

)2

− k2
0 = k2

x2 +
(mπ
b

)2

− n2k2
0 . (2.103)

It follows from (2.101) that

Ez = jωµ0e
−γz ∂Πm

∂y
, Hy = e−γz

∂2Πm
∂y∂x

.
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These field components must be continuous at the air–dielectric interface.
So we have

A sin kx1d = B sinkx2t,
Akx1 cos kx1d = −Bkx2 cos kx2t,

(2.104)

which yields

kx2 tankx1d = −kx1 tan kx2t. (2.105)

The above equation together with (2.103) can be used to determine the
wavenumbers kx1 and kx2.

2.4 Waveguide Discontinuities

In practice, a uniform waveguide is often discontinued by components
and junctions. The waveguide discontinuities are used as various passive
components and their introduction will distort the fields in the original
uniform waveguide. One of the important tasks of microwave field theory
is to establish the circuit parameters or network parameters for various
waveguide discontinuities. In most applications, the waveguide supports a
single dominant propagating mode. When a discontinuity exists, such as
discontinuity in cross-sectional shape or an obstacle in the waveguide, an
infinite number of non-propagating modes will be excited in the vicinity of
the discontinuity by the incident dominant propagating mode.

2.4.1 Network Representation of Waveguide
Discontinuities

A typical n-port waveguide discontinuity is shown in Figure 2.16(a), which
consists of n uniform waveguides and a discontinuity (a junction). The
reference planes T1, T2, . . . , and Tn are assumed to be far away from the
discontinuity so that only the dominant modes exist at the reference planes.

The modal voltage V and the modal current I at a reference plane are
proportional to the transverse electric field and transverse magnetic field
in the waveguide respectively. The uniqueness theorem indicates that the
modal voltages at the reference planes V1, V2, . . . , Vn can be determined
by the modal currents I1, I2, . . . , In at the reference planes. If the medium
is linear, the modal voltages and currents are linearly related. So we may
write

[V ] = [Z][I], (2.106)



January 28, 2015 11:5 Foundations for Radio Frequency Engineering - 9in x 6in b1914-ch02 page 102

102 Foundations for Radio Frequency Engineering

(a) (b)

n -port
network 

1T

2T

nT

1T

2T

nT

Figure 2.16 (a) Waveguide junction. (b) Equivalent circuit.

where

[V ] =



V1

V2

...
Vn


, [I] =



I1
I2
...
In


, [Z] =



Z11 Z12 · · · Z1n

Z21 Z22 · · · Z2n

...
...

. . .
...

Zn1 Zn2 · · · Znn


,

and Zij(i, j = 1, 2, . . . , n) are called impedance parameters. It follows
from (2.106) that

Zii =
Vi
Ii

∣∣∣∣
Il=0,l �=i

, Zij =
Vi
Ij

∣∣∣∣
Il=0,l �=j

.

Hence the impedance parameters are also called open circuit parame-
ters. If the net power delivered into the network, denoted as P , is zero:

P =
1
4
[I]T [ZT + Z̄][Ī] = 0,

the network is lossless and satisfies the lossless condition

[ZT + Z̄] = 0. (2.107)

To determine the network parameters, the field distribution in the waveg-
uide junction must be known. There are a number of analytical methods,
which can be applied to solve the waveguide junction problems (e.g., Collin,
1991; Schwinger and Saxon, 1968; Lewin, 1951). The variational method is



January 28, 2015 11:5 Foundations for Radio Frequency Engineering - 9in x 6in b1914-ch02 page 103

Waveguides 103

the most commonly used analytic technique that can handle a large variety
of discontinuity problems.

2.4.2 Diaphragms in Waveguide-Variational Method

Figure 2.17 shows a general diaphragm in a uniform waveguide. The
shadowed region denotes the conducting diaphragm, which is perpendicular
to the waveguide axis and is located at z = 0. This structure covers the
common inductive and capacitive windows, and their combination, the
resonant window. Suppose the waveguide only supports the dominant mode
and the waveguide extends to infinity in ±z directions. The dominant
mode of unit amplitude is incident upon the diaphragm from z = −∞,
which excites a number of higher order modes in the neighborhood of the
diaphragm. In the region z < 0, the transverse electromagnetic fields can
be expanded as follows

E−
t = (e−jβ1z + Γejβ1z)e1 +

∞∑
n=2

Vne
jβnzen,

H−
t = (e−jβ1z − Γejβ1z)Z−1

w1uz × e1 −
∞∑
n=2

VnZ
−1
wne

jβnzuz × en,

where Vn are the modal voltages; Γ is the refection coefficient of the
dominant mode at z = 0; βn and Zwn are given by (2.15). Similarly, the

(a)

(b)

T T

11 12

21 22

Z Z

Z Z

 
 
 

0Ω

T 

0z =

Figure 2.17 (a) A diaphragm. (b) Equivalent circuit.
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fields in the region z > 0 can be expanded as

E+
t = V ′

1e
−jβ′

1ze1 +
∞∑
n=2

enV ′
ne

−jβ′
nz,

H+
t = V ′

1e
−jβ′

1zZ−1
w1uz × e1 +

∞∑
n=2

uz × enV ′
nZ

−1
wne

−jβ′
nz.

The continuity of the tangent electric field at z = 0 gives

1 + Γ = V ′
1 =

∫
Ω0

Et(0) · e1 dΩ, Vn = V ′
n =

∫
Ω0

Et(0) · en dΩ, (n ≥ 2),

(2.108)

where Ω0 denotes the aperture at z = 0. Considering the symmetry
property of the structure and that the tangential electric field must be
continuous at z = 0, we have Z11 = Z22 and the equivalent circuit shown in
Figure 2.17(b) can be simplified to a T-type circuit shown in Figure 2.18(a).
The first expression of (2.108) indicates that the two terminal voltages of

(a)

(b)

12Z

T T 
11 12Z Z−

12Z

T T 

Figure 2.18 Equivalent circuit for the diaphragm.
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the equivalent circuit are equal, which implies Z11 = Z12, and the final
equivalent circuit is shown in Figure 2.18(b). Note that the tangential
magnetic field must also be continuous at the aperture

(1 − Γ)Z−1
w1uz × e1 −

∞∑
n=2

uz × enVnZ−1
wn

= V ′
1Z

−1
w1uz × e1 +

∞∑
n=2

uz × enV ′
nZ

−1
wn.

Substituting (2.108) into the above equation, we obtain the following
integral equation

e1 = e1

∫
Ω0

Et(0) · e1 dΩ +
∞∑
n=2

enZw1Z
−1
wn

∫
Ω0

Et(0) · en dΩ, in Ω0. (2.109)

This equation can be used to determine the aperture field Et(0). The input
admittance is

Y =
1
Zw1

+
1
Z12

=
1
Zw1

1 − Γ
1 + Γ

.

From the first equation of (2.108), we obtain

1
Z12

=
1
Zw1

−2Γ
1 + Γ

=
2
Zw1

1 − ∫
Ω0

Et(0) · e1 dΩ∫
Ω0

Et(0) · e1 dΩ
. (2.110)

Multiplying both sides of (2.109) by Ēt(0) and taking integration over Ω0

yield

1 −
∫
Ω0

Et(0) · e1 dΩ =

∑∞
n=2 Zw1Z

−1
wn

∣∣∣∣ ∫
Ω0

Et(0) · en dΩ
∣∣∣∣
2

∫
Ω0

Ēt(0) · e1 dΩ
.

Introducing this into (2.110) yields

1
Z12

=
1
Zw1

−2Γ
1 + Γ

=
1
Zw1

2
∑∞
n=2 Zw1Z

−1
wn

∣∣∣∣ ∫
Ω0

Et(0) · en dΩ
∣∣∣∣
2

∣∣∣∣ ∫
Ω0

Et(0) · e1 dΩ
∣∣∣∣
2 . (2.111)

This is a variational expression on the aperture field Et(0) (Kurokawa,
1969), i.e., (2.111) is stationary with respect to the aperture field Et(0).
Figure 2.19 shows some typical capacitive and inductive diaphragms in
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(a) (b) (c)

(d) (e) (f)

Figure 2.19 (a–c) Capacitive diaphragms. (d–f) Inductive diaphragms.

a rectangular waveguide. The solution to these diaphragms can all be
obtained from (2.111).

Remark 2.5: The variatonal method is capable of analyzing a large variety
of waveguide discontinuity problem, and it takes various forms. The method
was introduced by Schwinger during the period from 1940 to 1945 and many
useful results have been summarized in the Discontinuities in Waveguides
(Schwinger and Saxon, 1968). �

2.4.3 Conducting Posts in Waveguide — Method
of Green’s Function

The post in a waveguide is often used as a matching element, a filter
or a phase shifter. Figure 2.20 shows a circular conducting post across
the narrow side of a rectangular waveguide. The dominant TE10 mode is
incident upon the post and induces current on the post, which generates
a number of higher order modes around the post. Since the electric field
of the TE10 mode has a y component only and is independent of the y

coordinate, and the whole structure is uniform in the y direction, the higher
order modes excited must be independent of y, and thus are TEm0 modes.
For TEm0 modes the magnetic energy is higher than electric energy, the
post is thus equivalent to an inductor. This boundary value problem may
be approached by the method of Green’s function. Consider the line current
source located at x = x0, z = z0

J = Iδ(x− x0)δ(z − z0)uy.
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(b)(a)

(c) (d)

T T

jX1wZ

1T
2T

1wZ

1T 2T

x
z

2r
θ

0x

T

o 
a

b

x

y

o

Figure 2.20 Inductive post in rectangular waveguide and its equivalent circuit.

Since the fields are independent of y, the electric field Ey generated by the
line source satisfies


∂2Ey
∂x2

+
∂2Ey
∂z2

+ k2Ey = jωµ0Iδ(x− x0)δ(z − z0)

Ey|x=0 = Ey |x=a = 0
.

The solution of the equation (the Green’s functions) may be written as

Ey = −ωµ0I

a

∞∑
n=1

1
βn

sin
nπ

a
x sin

nπ

a
x0e

−jβn|z−z0|, (2.112)

where β2
n = k2 − (nπ/a)2. An integral equation may be obtained by using

the Green’s function (2.112). For a very thin post, the surface current on
the post may be regarded as centered at the axis of the post x = x0, z = 0.
Let the incident field Ey,in be a TE10 mode of unit amplitude Ey,in =
sin π

a
xe−jβ1z. The current induced on the post produces a scattered field

determined by (2.112). On the surface of the post, the tangential electric
field must vanish. Introducing a polar coordinate system (r, θ) as shown in
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Figure 2.20(b), we may write

sin
π

a
(x0 + r sin θ)e−jβ1r cos θ − ωµ0I

a

×
∞∑
n=1

1
βn

sin
nπ

a
(x0 + r sin θ) sin

nπ

a
x0e

−jβn|r cos θ| = 0. (2.113)

For a very thin post, the fields may be considered as constant along θ

direction. For convenience, we may let θ = π/2(z = 0) in (2.113) and make
use of the following relation (Jones, 1964)

∞∑
n=1

1
n

sin
nπ

a
(x0 + r) sin

nπ

a
x0 ≈ 1

2
ln
(

2a
πr

sin
π

a
x0

)
, r → 0

to find that

sin
π

a
x0 − ωµ0I

a

1
β1

sin2 π

a
x0

(
1 + 2

jX

Zw1

)
= 0 (2.114)

where

X

Zw1
=

aβ1

4π sin2 π
a
x0

[
ln
(

2a
πr

sin
π

a
x0

)
− 2 sin2 π

a
x0

+ 2
∞∑
n=2

(−jπ
aβn

− 1
n

)
sin2 nπ

a
x0

]
. (2.115)

Here Zw1 is the wave impedance of TE10 mode. Equation (2.114) can be
used to determine I. The voltage reflection coefficient for the dominant
mode at z = 0 is given by

Γ = −ωµ0I

a

1
β1

sin
nπ

a
x0 =

−1
1 + 2jX/Zw1

.

The input admittance at z = 0 is

Y =
1
Zw1

1 − Γ
1 + Γ

=
1
jX

+
1
Zw1

.

The equivalent circuit for the thin conducting post is shown in
Figure 2.20(c). Since the logarithmic term in (2.115) dominates, we have
X > 0, and the thin post is an inductor. For a general thick conducting
post, the equivalent circuit is shown in Figure 2.20(d), where two capacitors
must be introduced to take the thickness into account.
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(c)(a) (b)

1T 2T 1T 2T

1wZ

a

b

x

y

o

Figure 2.21 Capacitive post and its equivalent circuit.

1a
2a

x

z
o

b

Figure 2.22 Waveguide step.

A circular conducting post across the broadside of a rectangular
waveguide is shown in Figures 2.21(a) and 2.21(b), which is equivalent to
a capacitive circuit as shown in Figure 2.21(c).

2.4.4 Waveguide Steps — Mode Matching Method

A waveguide step in broadside direction (H-plane step) is shown in
Figure 2.22 and the discontinuity occurs at z = 0. A dominant TE10 mode
of unit amplitude is assumed and is incident upon the step from the region
z < 0 (first waveguide). The fields in this region may be expanded as a
series using first N vector modal functions

Et = (e−jβ1z + Γejβ1z)e1 +
N∑
n=2

Vne
jβnzen,

Ht = (e−jβ1z − Γejβ1z)Z−1
w1uz × e1 −

N∑
n=2

VnZ
−1
wne

jβnzuz × en,
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where Zwn is the wave impedance, and

en = −uy

√
2
a1b

sin
nπ

a1
x, β2

n = k2 − (nπ/a1)2.

Similarly the fields in the region z > 0 (second waveguide) may be written as

E′
t = V ′

1e
−jβ′

1ze′1 +
N∑
n=2

e′nV
′
ne

−jβ′
nz,

H′
t = V ′

1e
−jβ′

1zZ ′−1
w1 uz × e′

1 +
N∑
n=2

uz × e′nV
′
nZ

′−1
wn e

−jβ′
nz ,

where only the dominant mode is assumed to be propagating, and

e′n = −uy

√
2
a2b

sin
nπ

a2
x, β′2

n = k2 − (nπ/a2)2.

The tangential fields must be continuous at z = 0, which yields

(1 + Γ)e1 +
N∑
n=2

Vnen = V ′
1e

′
1 +

N∑
n=2

V ′
ne

′
n, (2.116)

(1 − Γ)Z−1
w1uz × e1 −

N∑
n=2

VnZ
−1
wnuz × en

= V ′
1Z

′−1
w1 uz × e′1 +

N∑
n=2

V ′
nZ

′−1
wn uz × e′

n. (2.117)

Multiplying both sides of (2.116) by em and taking the integration over the
cross section Ω of the first waveguide yield

(1 + Γ)δm1 + Vm(1 − δm1) =
N∑
n=1

V ′
nBmn, m = 1, 2, . . . , N, (2.118)

where

Bmn =
∫
Ω

em · e′
n dΩ.

Multiplying both sides of (2.117) by uz × e′
m and taking the integration

over the cross section Ω′ of the second waveguide lead to

(1 − Γ)Z−1
w1Dm1 −

N∑
n=2

VnZ
−1
wnDmn = V ′

mZ
′−1
wm, m = 1, 2, . . . , N, (2.119)
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where

Dmn =
∫
Ω′

e′m · en dΩ.

The expansion coefficients Γ, Vn, V ′
n can be determined from (2.118) and

(2.119).

2.4.5 Coupling by Small Apertures

Consider a system of two waveguides coupled by a small aperture Sa
bounded by Γ, as shown in Figure 2.23. The impressed electric current
Jimp and magnetic current Jm,imp are assumed to be located in waveguide 1
only and there are no impressed sources in waveguide 2. By Schelkunoff–
Love equivalence principle, the original problem can be separated into
two equivalent problems as shown in Figures 2.23(b) and 2.23(c). In
waveguide 1, the fields are produced by the impressed sources Jimp, Jm,imp

(a)

(b)

(c)

Waveguide 2 

aS

ms−J

1z 2z

o

Waveguide 1 

aS

,,imp m  impJ J
msJ

1z 2z

Waveguide 1 

Waveguide 2 

z 

nu

aS
,,imp m  impJ J

1z 2zo

Figure 2.23 Two waveguides coupled by a small aperture. (a) Original problem.
(b) Equivalent problem for waveguide 1. (c) Equivalent problem for waveguide 2.
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and the equivalent magnetic current Jms =un×E over the aperture region
Sa with the aperture covered by an electric conductor. In waveguide 2,
the fields are produced by the equivalent magnetic current −Jms with
the aperture covered by an electric conductor. When the aperture is
absent (i.e., closed by a perfect conductor), the incident fields generated
by the impressed sources in waveguide 1 are denoted by E(1)

in , H(1)
in

(the superscripts 1 and 2 will be used to designate waveguide 1 and 2
respectively). Then

un × E(1)
in = 0, un · H(1)

in = 0.

The total fields in waveguide 1 can be expressed as

E(1) = E(1)
in + E(1)

s = 0, H(1) = H(1)
in + H(1)

s ,

where E(1)
s and H(1)

s are the scattered fields produced by the magnetic
current Jms and satisfy

∇× H(1)
s = jωε0E(1)

s ,

∇× E(1)
s = −jωµ0H(1)

s − Jms.

Assume that the magnetic current element Jms is located between z1
and z2. According to (2.17), the scattered fields for z ≥ z2 and z ≤ z1 in
waveguide 1 may be respectively expanded in terms of the vector modal
functions as follows

E(1)
s =

∞∑
n=1

(
V (1)+
n e(1)

n +
kcn
jβn

I(1)+
n Zwnuz

∇ · e(1)
n

kcn

)
=

∞∑
n=1

A(1)
n E(1)+

n ,

H(1)
s =

∞∑
n=1

(
I(1)+
n uz × e(1)

n − kcn
jβn

V
(1)+
n

Zwn

∇× e(1)
n

kcn

)
=

∞∑
n=1

A(1)
n H(1)+

n ,

(2.120)

E(1)
s =

∞∑
n=1

(
V (1)−
n e(1)

n − kcn
jβn

I(1)−
n Zwnuz

∇ · e(1)
n

kcn

)
=

∞∑
n=1

B(1)
n E(1)−

n ,

H(1)
s =

∞∑
n=1

(
−I(1)−

n uz × e(1)
n − kcn

jβn

V
(1)−
n

Zwn

∇× e(1)
n

kcn

)
=

∞∑
n=1

B(1)
n H(1)−

n ,

(2.121)
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where

E(1)+
n = (e(1)

n + uze
(1)
zn )e−jβ

(1)
n z, H(1)+

n = (h(1)
n + uzh

(1)
zn )e−jβ

(1)
n z ,

E(1)−
n = (e(1)

n − uze
(1)
zn )ejβ

(1)
n z, H(1)−

n = (−h(1)
n + uzh

(1)
zn )ejβ

(1)
n z,

(2.122)

with

h(1)
n =

uz × e(1)
n

Z
(1)
wn

, e(1)zn =
∇ · e(1)

n

jβ
(1)
n

, h(1)
znuz = −∇× e(1)

n

jβ1
nZ

(1)
wn

. (2.123)

Note that ∫
Ω1

(e(1)
n × h(1)

n ) · uz dΩ =
1

Z
(1)
wn

, (2.124)

where Ω1 is the cross section of waveguide 1. The expansion coefficients in
(2.120) and (2.121) can be determined by (2.33)

A(1)
n =

Z
(1)
wn

2

∫
Sa

Jms ·H(1)−
n dS, B(1)

n =
Z

(1)
wn

2

∫
Sa

Jms · H(1)+
n dS.

(2.125)

We now introduce a local coordinate system (ξ, ζ) with the origin at the
center of the aperture as illustrated in Figure 2.24. For a small aperture,
the field H(1)±

n may be expanded into a Taylor series about the origin

H(1)±
n (ξ, ζ) = H(1)±

n (0, 0) + ξ
∂H(1)±

n (0, 0)
∂ξ

+ ζ
∂H(1)±

n (0, 0)
∂ζ

= H(1)±
n (0, 0) + ra · ∇H(1)±

n (0, 0),

ξ

ζ

o
aS

bu
Γ

Figure 2.24 Aperture coordinates.
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where ra = ξuξ + ζuζ . Equation (2.125) can be written as

A
(1)
n =

Z
(1)
wn

2
H(1)−
n (0, 0) ·

∫
Sa

Jms dS +
Z

(1)
wn

2

∫
Sa

ra · ∇H(1)−
n (0, 0) · Jms dS,

B
(1)
n =

Z
(1)
wn

2
H(1)+
n (0, 0) ·

∫
Sa

Jms dS +
Z

(1)
wn

2

∫
Sa

ra · ∇H(1)+
n (0, 0) · Jms dS.

(2.126)

Since the magnetic current is confined in the aperture, for an arbitrary
function φ, we have∫

Sa

∇ · (φJms)dS =
∫
Sa

(φ∇ · Jms + Jms · ∇φ)dS

=
∫
∂Sa

(φJms) · ubdΓ = 0, (2.127)

with ub being the unit outward normal to the aperture boundary Γ. Making
use of (2.127), the first integral on the right-hand side of (2.126) can be
written as∫

Sa

Jms dS = −
∫
Sa

ra∇ · Jms dS = jω

∫
Sa

raρms dS = jωµ0m,

where

m =
1
µ0

∫
Sa

raρms dS =
1

jωµ0

∫
Sa

Jms dS =
1

jωµ0

∫
Sa

(un × E)dS (2.128)

is the magnetic dipole moment. Note that

ra · ∇H(1)±
n (0, 0) · Jms

= (ξuξ + ζuζ) ·
(

uξuξ
∂H

(1)±
nξ (0, 0)
∂ξ

+ uξuζ
∂H

(1)±
nζ (0, 0)
∂ξ

+uζuξ
∂H

(1)±
nξ (0, 0)
∂ζ

+ uζuζ
∂H

(1)±
nζ (0, 0)
∂ζ

)
· (Jmsξuξ + Jmsζuζ).

This can be written as

ra · ∇H(1)±
n (0, 0) · Jms = ξJmsξ

∂H
(1)±
nξ (0, 0)
∂ξ

+ ξJmsζ
∂H

(1)±
nζ (0, 0)
∂ξ

+ ζJmsξ
∂H

(1)±
nξ (0, 0)
∂ζ

+ ζJmsζ
∂H

(1)±
nζ (0, 0)
∂ζ

.
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Subtracting and adding similar terms, we get

ra · ∇H(1)±
n (0, 0) · Jms

=
(
ξ

2
Jmsζ − ζ

2
Jmsξ

)(
∂H

(1)±
nζ (0, 0)
∂ξ

− ∂H
(1)±
nξ (0, 0)
∂ζ

)

+
ξ

2
Jmsζ

∂H
(1)±
nξ (0, 0)

∂ζ
+
ζ

2
Jmsξ

∂H
(1)±
nζ (0, 0)

∂ξ
+ ξJmsξ

∂H
(1)±
nξ (0, 0)

∂ξ

+ ζJmsζ
∂H

(1)±
nζ (0, 0)
∂ζ

+
ξ

2
Jmsζ

∂H
(1)±
nζ (0, 0)
∂ξ

+
ζ

2
Jmsξ

∂H
(1)±
nξ (0, 0)
∂ζ

.

(2.129)

The first term on the right-hand side can be written as jωε0E
(1)±
n ·

(ra × Jms)/2. This gives

jωε0E(1)±
n (0, 0) ·

∫
Sa

ra × Jms
2

dS = −jωE(1)±
n (0, 0) · p, (2.130)

where

p = ε0
1
2

∫
Sa

(Jms × ra)dS (2.131)

is the equivalent electric dipole moment of the magnetic current. Setting
φ = ξ2/2, ζ2/2 and ξζ in (2.127), we obtain respectively∫

Sa

ξJmsξ dS =
jω

2

∫
Sa

ξ2ρms dS,

∫
Sa

ζJmsζ dS =
jω

2

∫
Sa

ζ2ρms dS,

∫
Sa

(ξJmsζ + ζJmsξ)dS = jω

∫
Sa

ξζρms dS.

Introducing the dyadic magnetic quadrupole
↔
Qm defined by

Qmξξ =
1
µ0

∫
Sa

ξ2ρms dS, Qmζζ =
1
µ0

∫
Sa

ζ2ρms dS,

Qmξζ = Qmζξ =
1
µ0

∫
Sa

ξζρms dS
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we obtain∫
Sa

ra · ∇H(1)±
n (0, 0) · JmsdS = jωE(1)±

n (0, 0) · p +
jωµ0

2
∇H(1)±

n (0, 0) :
↔
Qm,

(2.132)

where the double dot denotes the double product of two dyads. The
expansion coefficients in (2.126) are then given by

A
(1)
n =

Z
(1)
wn

2

[
− E(1)−

n (0, 0) · jωp

+H(1)−
n (0, 0) · jωµ0m +

µ0

2
∇H(1)−

n (0, 0) :
↔
Qm

]
,

B
(1)
n =

Z
(1)
wn

2

[
− E(1)+

n (0, 0) · jωp

+H(1)+
n (0, 0) · jωµ0m +

µ0

2
∇H(1)+

n (0, 0) :
↔
Qm

]
.

(2.133)

The fields in waveguide 2 are generated by the equivalent magnetic current
−Jms. The fields in the regions z ≥ z2 and z ≤ z1 in waveguide 2 may be
respectively expanded in terms of the vector modal functions as follows

E(2)
s =

∞∑
n=1

A(2)
n E(2)+

n , H(2)
s =

∞∑
n=1

A(2)
n H(2)+

n , (2.134)

E(2)
s =

∞∑
n=1

B(2)
n E(2)−

n , H(2)
s =

∞∑
n=1

B(2)
n H(2)−

n , (2.135)

where

E(2)+
n = (e(2)

n + uze
(2)
zn )e−jβ

(2)
n z, H(2)+

n = (h(2)
n + uzh

(2)
zn )e−jβ

(2)
n z ,

E(2)−
n = (e(2)

n − uze
(2)
zn )ejβ

(2)
n z, H(2)−

n = (−h(2)
n + uzh

(2)
zn )ejβ

(2)
n z,

(2.136)

with

h(2)
n =

uz × e(2)
n

Z
(1)
wn

, e(2)zn =
∇ · e(2)

n

jβ
(1)
n

, h(2)
zn = − ∇× e(2)

n

jβ
(1)
n Z

(2)
wn

. (2.137)

Similarly, we have

A(2)
n = −Z

(2)
wn

2

[
− E(2)−

n (0, 0) · jωp

+H(2)−
n (0, 0) · jωµ0m +

µ0

2
∇H(2)−

n (0, 0) :
↔
Qm

]
,
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B(2)
n = −Z

(2)
wn

2

[
− E(2)+

n (0, 0) · jωp

+H(2)+
n (0, 0) · jωµ0m +

µ0

2
∇H(2)+

n (0, 0) :
↔
Qm

]
, (2.138)

where p, m and
↔
Qm are same as defined before. In most applications,

the quadrupole terms in (2.138) can be ignored. The magnetic current
Jms and the charge ρms may be determined by using numerical methods.
Cohn proposed an electrolytic-tank method for determining the aperture
parameters of arbitrary shape (Cohn, 1951). For very small apertures, the
static field solution for the dipole moments can be readily found (Bethe,
1944; Stratton, 1941). For a small circular aperture of radius a, the dipole
moments can be obtained by solving integral equations as follows (see
Section 7.3)

m =
8
3
a3
0H

(1)
in (0),

p
ε0

= −4a3

3
E(1)
in (0). (2.139)

2.4.6 Numerical Analysis — Finite Difference Method

The exact solution of Maxwell equations for a waveguide discontinuity prob-
lem is generally very difficult. In this section, we discuss the numerical solu-
tion of an arbitrarily shaped two-dimensional waveguide junction by means
of FDM. The waveguide junction consists of n rectangular waveguide ports
and is shown in Figure 2.25, where the reference planes Γp (p = 1, 2, . . . , n)
and the metallic wall Γ0 completely enclose the waveguide discontinuity
region Ω; dp is the width ap or height bp of the waveguide p for the H-plane
(the plane containing magnetic field) or E-plane (the plane containing
electric field) junction. The waveguide p is assumed to be filled with a
dielectric of relative permittivity εrp. If the excitation by the dominant
TE10 mode is assumed, the waveguide discontinuity can then be described
by the following equations.

(∇2
t + k2)φ = 0, (2.140)

where ∇2
t = ∂2

∂x2 + ∂2

∂y2 , k2 = τk2
0, k

2
0 = ω2µ0ε0, and

τ =
{
εr, for H-plane junction
εr − (π/k0a)2, for E-plane junction

, (2.141)

φ =
{
Ez, for H-plane junction
Hz, for E-plane junction

, (2.142)
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Figure 2.25 An arbitrarily shaped waveguide junction.

where Ez and Hz are the z-components of electric and magnetic field
respectively.

Similar to the finite difference solution of the waveguide eigenvalue
problem, the discontinuity region Ω may be divided into a number of
polygons (Geyi, 1991). For the interior nodes ni as shown in Figure 2.11(a),
the node equation can be written as

ei∑
j=1

[φ(ni) − φ(mj)]
pj−1qj + qjpj

mjni
− k2φ(ni)Si = 0. (2.143)

For the boundary node ni shown in Figure 2.11(b), the following relation
can be derived in a similar way

ei−1∑
j=2

[φ(ni) − φ(mj)]
pj−1qj + qjpj

mjni
+ [φ(ni) − φ(m1)]

p1q1
m1ni

+ [φ(ni) − φ(mei)]
pei−1qei

meini
− k2

cφ(ni)Si − S(i) = 0, (2.144)

where

S(i) =
∫
niq1

∂φ

∂n
dΓ +

∫
niqei

∂φ

∂n
dΓ. (2.145)
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Note that S(i) vanishes if the boundary node is on the metallic wall Γ0.
In order to evaluate S(i) for the boundary nodes on the reference planes
Γp(p = 1, 2, . . . , n), we may assume that the dominant TE10 mode of
amplitude B(q)

1 is incident from waveguide q(q = 1, 2, . . . , n). The scalar
field φ on Γp(p = 1, 2, . . . , n) may be expressed as

φ(xp, yp) = B
(q)
1 δpqe

jβ
(q)
1 xpf

(q)
1 (yq) +

∞∑
m=1

a(p)
m e−jβ

(p)
m xpf (p)

m (yp), (2.146)

where

f (p)
m (yp) =

√
σm − 1
bp

cos
(m− 1)π

bp
yp,

β(p)
m =

√
εrpk2

0 −
(π
a

)2

−
[
(m− 1)π

bp

]2

,

σm =
{

1, m = 0
2, m �= 0

for E-plane junction and

f (p)
m (yp) =

√
2
ap

sin
mπ

ap
yp,

β(p)
m =

√
εrpk2

0 −
(
mπ

ap

)2

for H-plane junction. Introducing (2.146) into (2.145), we obtain

S(i) = −j2B(q)
1 δpqβ

(q)
1 I

(q)
1 (i) +

∞∑
m=1

jβ(p)
m a(p)

m I(p)
m (i), (2.147)

where

a(p)
m =

dp∫
0

φ(xp, yp)|xp=0dyp,

I(p)
m (i) =

∫
q1qei

f (p)
m (yp)dyp.

Let the number of nodes on Γp be denoted by n(p). The scalar field φ on
Γp can be approximated by a constant over the integration interval q1qei ,
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denoted by φ(ni). Then

a(p)
m =

n(p)∑
l=1

φ(nl)I(p)
m (l).

Substituting this into (2.147) yields

S(i) = −j2B(q)
1 δpqβ

(q)
1 I

(q)
1 (i) +

n(p)∑
l=1

φ(nl)
∞∑
m=1

jβ(p)
m I(p)

m (l)I(p)
m (i). (2.148)

Combining (2.144) and (2.148), we obtain the node equation for the
boundary nodes.

Once the node values of the scalar field φ are known, the scattering
parameter for the TE10 mode can be calculated as follows

Spp =
1

B
(q)
1

dp∫
0

φ(xp, yp)|xp=0f
(p)
1 (yp)dyp − 1,

Spq =

√√√√β
(p)
1 τq

β
(q)
1 τp

1

B
(q)
1

dp∫
0

φ(xp, yp)|xp=0f
(p)
1 (yp)dyp,

(2.149)

where τp and τq stand for the parameter τ in waveguide p and q respectively,
and they should be replaced by 1 for H-plane junctions.

2.5 Transient Fields in Waveguides

According to the linear system theory and Fourier analysis, the response
of the system to an arbitrary pulse can be obtained by superimposing its
responses to all the real frequencies. In other words, the solution to the time-
domain problem can be expressed in terms of the time-harmonic solution
through the use of the Fourier transform. This process can be assisted by
the fast Fourier transform and has been used extensively in studying the
transient responses of electromagnetic systems. The procedure, however,
is not always most effective and is not a trivial exercise since the time-
harmonic problem must be solved for a large range of frequencies, and only
an approximate time-harmonic solution valid over a finite frequency band
can be obtained.
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Moreover, the time-harmonic solution may not be able to give the
correct physical picture in some situations. The time-harmonic field theory
is founded on the assumption that a monotonic electromagnetic source
turns on at t = −∞ and the initial conditions of the fields produced by
the source are ignored. This assumption does not cause any problem if the
system has dissipation or radiation loss. When the system is lossless, the
assumption may lead to physically unacceptable solutions. For example,
the time-harmonic theory predicts that the field response of a lossless metal
cavity is sinusoidal if the excitation source is sinusoidal. The time-domain
theory, however, shows that a sinusoidal response can be built up only if
the cavity is excited by a sinusoidal source whose frequency coincides with
one of the resonant frequencies. In addition, the field responses in a lossless
cavity predicted by the time-harmonic theory are singular everywhere inside
the cavity if the frequency of the sinusoidal excitation source coincides with
one of the resonant frequencies of the cavity, while the time-domain theory
always gives finite field responses. Therefore, we are forced to seek a solution
in the time domain in some situations.

2.5.1 Field Expansions

Assume that the medium in the waveguide is homogeneous and isotropic
with medium parameters µ, ε and σ. The cross section of the waveguide
is denoted by Ω and its boundary by Γ, which is assumed to be a perfect
conductor. The fields in the waveguide may be expanded in terms of vector
modal functions as follows

E(r, t) =
∞∑
n=1

vn(z, t)en + uz
∞∑
n=1

e′zn(z, t)
∇ · en
kcn

,

H(r, t) =
∞∑
n=1

in(z, t)uz × en + uz
1√
Ω

∫
Ω

uz ·H(r, t)√
Ω

dΩ

+
∞∑
n=1

h′zn(z, t)
∇× en
kcn

,

(2.150)

∇× E =
∞∑
n=1

(
∂vn
∂z

+ kcne
′
zn

)
uz × en +

∞∑
n=1

kcnvn
∇× en
kcn

,

∇× H =
∞∑
n=1

(
−∂in
∂z

+ kcnh
′
zn

)
en + uz

∞∑
n=1

kcnin
∇ · en
kcn

,

(2.151)
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where vn and in are time-domain modal voltage and time-domain
modal current defined by

vn(z, t) =
∫
Ω

E(r, t) · en dΩ,

in(z, t) =
∫
Ω

H(r, t) · uz × en dΩ,
(2.152)

and e′zn and h′zn are given by

e′zn(z, t) =
∫
Ω

uz ·E(r, t)
∇ · en
kcn

dΩ,

h′zn(z, t) =
∫
Ω

H(r, t)·∇ × en
kcn

dΩ.

Inserting (2.150) and (2.151) into generalized Maxwell equations

∇× E(r, t) = −µ∂H(r, t)
∂t

− Jm(r, t),

∇× H(r, t) = ε
∂E(r, t)
∂t

+ J(r, t) + σE(r, t),

and comparing the transverse and longitudinal components, we obtain

∂2vTEMn

∂z2
− 1
v2

∂2vTEMn

∂t2
− σ

η

v

∂vTEMn

∂t

= µ
∂

∂t

∫
Ω

J · en dΩ − ∂

∂z

∫
Ω

Jm · uz × en dΩ. (2.153)

∂vTEMn

∂z
= −µ∂i

TEM
n

∂t
−
∫
Ω

Jm · uz × en dΩ, (2.154)

∂2vTEn
∂z2

− 1
v2

∂2vTEn
∂t2

− σ
η

v

∂vTEn
∂t

− k2
cnv

TE
n

= µ
∂

∂t

∫
Ω

J · en dΩ − ∂

∂z

∫
Ω

Jm · uz × en dΩ

+ kcn

∫
Ω

uz · Jmuz · ∇ × en
kcn

dΩ. (2.155)
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∂vTEn
∂z

= −µ∂i
TE
n

∂t
−
∫
Ω

Jm · uz × endΩ, (2.156)

∂2iTMn
∂z2

− 1
v2

∂2iTMn
∂t2

− σ
η

v

∂iTMn
∂t

− k2
cni

TM
n

= − ∂

∂z

∫
Ω

J · en dΩ − kcn

∫
Ω

uz · J∇ · en
kcn

dΩ

+ ε
∂

∂t

∫
Ω

Jm · uz × en dΩ + σ

∫
Ω

Jm · uz × en dΩ. (2.157)

∂iTMn
∂z

= −ε∂v
TM
n

∂t
− σvTMn −

∫
Ω

J · en dΩ. (2.158)

The excitation problem in the waveguide is now reduced to the solution of
a series of inhomogeneous modified Klein–Gordon equations. The modal
currents in can be determined by the time integration of vn. Other
expansion coefficients can be determined similarly.

2.5.2 Solution of Modified Klein–Gordon Equation

To find the complete solution of the transient fields in the waveguide, we
need to solve the modified Klein–Gordon equation. This can be done by
the use of retarded Green’s function (Geyi, 2006a). The retarded Green’s
function of the modified Klein–Gordon equation is defined by(

∂2

∂z2
− 1
v2

∂2

∂t2
− σ

η

v

∂

∂t
− k2

cn

)
Gn(z, t; z′, t′) = −δ(z − z′)δ(t− t′),

Gn(z, t; z′, t′)|t<t′ = 0. (2.159)

The second equation represents the causality condition. The solution of the
above equation is given by (Geyi, 2010)

Gn(z, t; z′, t′) =
v

2
e−γ(t−t′)H [(t− t′) − |z − z′|/v]

· J0

[
(k2
cnv

2 − γ2)1/2
√

(t− t′)2 − |z − z′|2/v2
]
, (2.160)

where J0(x) is the Bessel function of first kind and H(x) is the unit step
function. The retarded Green’s function can now be used to solve the
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Source  Right-traveling wave Left-traveling wave 

a b

Figure 2.26 Left-traveling wave and right-traveling wave in a waveguide.

modified Klein–Gordon equation with the known source function f(z, t):(
∂2

∂z2
− 1
v2

∂2

∂t2
− σ

η

v

∂

∂t
− k2

cn

)
un(z, t) = f(z, t).

If the source function f(z, t) is limited in a finite interval (a, b), as shown in
Figure 2.26, the solution of the above equation may be expressed, in terms
of Green’s function, as

un(z, t) =

∞∫
−∞

Gn(z, t; z′, t′)
∂un(z′, t′)

∂z′
dt′

∣∣∣∣∣∣
b

z=a

−
∞∫

−∞
un(z′, t′)

∂Gn(z, t; z′, t′)
∂z′

dt′

∣∣∣∣∣∣
b

z=a

−
b∫
a

∞∫
−∞

f(z′, t′)Gn(z, t; z′, t′)dt′dz′, z ∈ (a, b), (2.161)

where the symmetry of Green’s function about z and z′ has been used. If
we let a→ −∞ and b→ ∞, the above expression becomes

un(z, t) = −
∞∫

−∞

∞∫
−∞

f(z′, t′)Gn(z, t; z′, t′)dt′dz′, z ∈ (−∞,∞).

(2.162)

It can be shown that, in the source-free region, we have

un(z, t) + vJ0(kcnvt)H(t) ∗ ∂un(z, t)
∂z

= 0, z ≥ b > 0, (2.163)

un(z, t) − vJ0(kcnvt)H(t) ∗ ∂un(z, t)
∂z

= 0, z ≤ a < 0, (2.164)



January 28, 2015 11:5 Foundations for Radio Frequency Engineering - 9in x 6in b1914-ch02 page 125

Waveguides 125

where ∗ denotes the convolution. Both (2.163) and (2.164) are integro-
differential equations and are respectively called right-traveling condi-
tion and left-traveling condition of the wave. If the source is turned
on at t = 0, all the fields must be zero when t < 0, Equations (2.163)
and (2.164) can be solved by the single-sided Laplace transform and their
solutions are

un(z, t) = un

(
b, t− z − b

v

)
− ckcn(z − b)

×
t− z−b

v∫
0

J1

[
kcnv

√
(t− τ)2 − (z − b)2/v2

]
√

(t− τ)2 − (z − b)2/v2
un(b, τ)dτ ,

z ≥ b > 0,

un(z, t) = un

(
a, t+

z − a

v

)
+ ckcn(z − a)

×
t+ z−a

v∫
0

J1

[
kcnv

√
(t− τ)2 − (z − a)2/v2

]
√

(t− τ)2 − (z − a)2/v2
un(a, τ)dτ ,

z ≤ a < 0.

Once the input signal is known the output signal after traveling a certain
distance in the waveguide can be determined by the above convolution
integral.

2.6 Dielectric Waveguides

The theory of dielectric waveguide or optical fiber is the foundation of
microwave, millimeter-wave and optical integrated circuits. An optical fiber
consists of a core of dielectric material surrounded by a cladding of another
dielectric material which has lower refractive index than that of the core.
The electromagnetic fields are confined in the core region due to the total
internal reflection and the fiber acts as a waveguide. The optical fibers
have been widely used in fiber-optic communication, and they carry much
more information and travel longer distances than conventional metal wires.
Moreover, they are immune to electromagnetic interferences.

2.6.1 Guidance Condition

Let Ωc denote the cross section of the core region of an arbitrary fiber,
and the exterior region (the cladding) be denoted by Ω∞, as shown in
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Figure 2.27 An optical fiber.

Figure 2.27. The medium parameters of the fiber are given by µ0, εrε0. The
refractive index of the fiber is denoted by n(ρρρ) =

√
εr, which is a positive

function of the transverse coordinates ρρρ = (x, y) only. We assume that
the fiber cladding is homogeneous and extends infinitely in the transverse
(x, y)-plane. This assumption is reasonable since the radius of the core is
very small compared to the radius of the cladding in practice. The refractive
index of the cladding is thus a constant, denoted by n(ρρρ) = n∞. If the index
n is piecewise constant, the fiber is called a step-index fiber. If the index n
is a continuous function, the fiber is called a graded-index fiber. Assume
that the fields have a z dependence of the form e−jβz

E(r) = e(ρρρ)e−jβz, H(r) = h(ρρρ)e−jβz. (2.165)

Introducing these into Maxwell equations, we obtain

∇β × h = jωεrε0e, ∇β × e = −jωµ0h,

∇β · εrε0e = 0, ∇β · µ0h = 0.
(2.166)

Here ∇β = ∇t − jβuz . It follows from (2.166) that

∇β × n−2∇β × h = k2
0h, ∇β ×∇β × e = k2

0n
2e,

∇β · n2e = 0, ∇β · h = 0,
(2.167)

where k0 = ω
√
µ0ε0. A solution of (2.167) is called a guided mode of

the waveguide if the field is non-trivial and has finite energy. Multiplying
the first equation by h̄ and taking integration over the whole (x, y)-plane,
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we obtain

k2
0

∫
R2

|h|2dΩ =
∫
R2

1
n2

(∇β × h) · (∇β × h)dΩ

≥ 1
n2

+

∫
R2

(∇β × h) · (∇β × h)dΩ

=
1
n2

+

∫
R2

(∇β ×∇β × h) · h̄dΩ,

where n+ = max
ρρρ∈R2

n(ρρρ). From the last equation of (2.88), we obtain

k2
0

∫
R2

|h|2 dΩ ≥ 1
n2

+

∫
R2

(−∇2
th + β2h) · h̄ dΩ

=
1
n2

+

∫
R2

(|∇t × h|2 + |∇t · h|2)dΩ +
β2

n2
+

∫
R2

|h|2 dΩ.

This is equivalent to∫
R2

(|∇t × h|2 + |∇t · h|2)dΩ + (β2 − k2
0n

2
+)
∫
R2

|h|2 dΩ ≤ 0. (2.168)

If |β| ≥ k0n+, the above inequality implies h = e = 0, i.e., the fiber does
not support guided modes in this case. As a result, a necessary condition
for the existence of a guided mode is

k0 >
|β|
n+

. (2.169)

In the region Ω∞, the first equation of (2.167) becomes

∇2
th + (k2

0n
2
∞ − β2)h = 0, ρρρ ∈ Ω∞.

If k0 > |β|/n∞ and h is a guided mode, the above relation implies that
h must be zero from the uniqueness theorem for Helmholtz equation.
Therefore, another necessary condition for the existence of a guided mode is

k0 ≤ |β|
n∞

. (2.170)
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Combining (2.169) and (2.170) yields

|β|
n+

< k0 ≤ |β|
n∞

. (2.171)

This implies

n+ > n∞, (2.172)

which is called the guidance condition for the optical fiber.

2.6.2 Circular Optical Fiber

In a cylindrical system, the total fields can be decomposed into a sum of
the transverse component and longitudinal component

E = Et + uzEz , H = Ht + uzHz.

If the fields have a z dependence of the form e−jβz, the transverse fields
may be expressed in terms of the longitudinal fields as

Et =
1
k2
c

[−jωµ∇t × (uzHz) − jβ∇tEz ],

Ht =
1
k2
c

[jωε∇t × (uzEz) − jβ∇tHz],
(2.173)

where k2
c = ω2µε − β2. The longitudinal components satisfy the two-

dimensional Helmholtz equation

(∇2
t + k2

c )Ez = 0, (∇2
t + k2

c )Hz = 0. (2.174)

Consider the circular optical fiber shown in Figure 2.28. The core is the
circular region of radius a with medium parameters µ0, εr1ε0. The external

a

ϕ

y 

x 

ρ

o 

Figure 2.28 Circular optical fiber.
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region is the cladding with medium parameters µ0, εr2ε0. The refractive
indices ni =

√
εri (i = 1, 2) are assumed to be constants. The solutions of

(2.174) in the core region must be finite, and may be written as

Ez1 = A1
Jm(kc1ρ)
Jm(kc1a)

ejmϕe−jβz = A1
Jm(uρ′)
Jm(u)

ejmϕe−jβz,

Hz1 = B1
Jm(kc1ρ)
Jm(kc1a)

ejmϕe−jβz = B1
Jm(uρ′)
Jm(u)

ejmϕe−jβz,

where k2
c1 = k2

0n
2
1 − β2; k2

0 = ω2µ0ε0; u = kc1a; ρ′ = ρ/a; A1 and B1

are constants to be determined by boundary conditions. The solutions of
(2.174) in the cladding region must decrease as ρ increases to guarantee
that the fields are square-integrable (i.e., the energy is finite), and they are
given by

Ez2 = A2
Km(γρ)
Km(γa)

ejmϕe−jβz = A2
Km(vρ′)
Km(v)

ejmϕe−jβz,

Hz2 = B2
Km(γρ)
Km(γa)

ejmϕe−jβz = B2
Km(vρ′)
Km(v)

ejmϕe−jβz,

where Km are modified Bessel functions of the second kind, and γ2 = β2 −
k2
0n

2
2 and v = γa. The transverse field components can then be determined

from (2.173). In the core region, the transverse field components are

Eρ1 = −j
(a
u

)2
[
uβJ ′

m(uρ′)
aJm(u)

A1 +
jωµ0mJm(uρ′)

ρJn(u)
B1

]
ejmϕe−jβz,

Eϕ1 = −j
(a
u

)2
[
jβmJm(uρ′)
ρJm(u)

A1 − ωµ0uJ
′
m(uρ′)

aJm(u)
B1

]
ejmϕe−jβz,

Hρ1 = −j
(a
u

)2
[
uβJ ′

m(uρ′)
aJm(u)

B1 − jωε0n
2
1mJm(uρ′)
ρJm(u)

A1

]
ejmϕe−jβz,

Hϕ1 = −j
(a
u

)2
[
jβmJm(uρ′)
ρJm(u)

B1 +
ωε0n

2
1uJ

′
m(uρ′)

aJm(u)
A1

]
ejmϕe−jβz.

In the cladding region, the transverse field components are

Eρ2 = j
(a
v

)2
[
vβK ′

m(vρ′)
aKm(v)

A2 +
jωµ0mKn(vρ′)

ρKm(v)
B2

]
ejmϕe−jβz,

Eϕ2 = j
(a
v

)2
[
jβmKm(vρ′)
ρKm(v)

A2 − ωµ0vK
′
m(vρ′)

aKm(v)
B2

]
ejmϕe−jβz,
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Hρ2 = j
(a
v

)2
[
vβK ′

m(vρ′)
aKm(v)

B2 − jωε0n
2
2mKm(vρ′)
ρKm(v)

A2

]
ejmϕe−jβz ,

Hϕ2 = j
(a
v

)2
[
jβmKm(vρ′)
ρKm(v)

B2 +
ωε0n

2
2vK

′
m(vρ′)

aKm(v)
A2

]
ejmϕe−jβz .

The boundary conditions at ρ = a require that the tangential fields must
be continuous, and this leads to

A1 = A2, B1 = B2,

−
(a
u

)2
[
jβm

ρ
A1 − ωµ0uJ

′
m(u)

aJm(u)
B1

]

=
(a
v

)2
[
jβm

ρ
A2 − ωµ0vK

′
m(v)

aKm(v)
B2

]
,

−
(a
u

)2
[
jβm

ρ
B1 +

ωε0n
2
1uJ

′
n(u)

aJm(u)
A1

]

=
(a
v

)2
[
jβm

ρ
B2 +

ωε0n
2
2vK

′
m(v)

aKm(v)
A2

]
.

These equations can be reduced to

A1

(
1
u2

+
1
v2

)
jβm

a
−B1

ωµ0

a

[
1
u

J ′
m(u)
Jm(u)

+
1
v

K ′
m(v)

Km(v)

]
= 0,

A1
ωε0
a

[
n2

1

u

J ′
m(u)
Jm(u)

+
n2

2

v

K ′
m(v)

Km(v)

]
+B1

jβm

a

(
1
u2

+
1
v2

)
= 0.

A non-trivial solution of the above set of equations requires that the
determinant of the coefficient matrix vanishes, yielding[

1
u

J ′
m(u)
Jm(u)

+
1
v

K′
m(v)

Km(v)

] [
n2

1

u

J ′
m(u)
Jm(u)

+
n2

2

v

K ′
m(v)

Km(v)

]
=
m2β2

k2
0

(
1
u2

+
1
v2

)
,

which can be used to determine the propagation constant β. For the guided
modes, both kc1 and γ must be positive. This requires

k0n2 ≤ β ≤ k0n1. (2.175)

When β = k0n2, we have γ = 0, which is called the cut-off condition.
Note that the propagation constant β is not equal to zero when the optical
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fiber is at cut-off. This is different from a hollow metal waveguide. If γ < 0,
the fields will radiate in ρ direction, and at same time, they still propagate
along z direction. Such field distributions are called radiation modes.

2.6.3 Dielectric Slab Waveguide

The dielectric slab waveguide is an infinite planar slab, as shown in
Figure 2.29. The whole space is divided into three regions. Region I is the
dielectric slab of thickness h with relative dielectric constant εr. Regions
II and III are free space. Assume that the wave is propagating in the z
direction and the fields are independent of x. According to (2.173), the
electromagnetic fields can be expressed as

Ex =
1
k2
c

(
−jβ ∂Ez

∂x
− jωµ

∂Hz

∂y

)
,

Ey =
1
k2
c

(
−jβ ∂Ez

∂y
+ jωµ

∂Hz

∂x

)
,

Hx =
1
k2
c

(
jωε

∂Ez
∂y

− jβ
∂Hz

∂x

)
,

Hy =
1
k2
c

(
−jωε∂Ez

∂x
− jβ

∂Hz

∂y

)
.

(2.176)

Since the fields are independent of x, the above expressions reduce to

TE:



Ex = −jωµ 1

k2
c

∂Hz

∂y

Hy = −jβ 1
k2
c

∂Hz

∂y

, TM:



Ey = −jβ 1

k2
c

∂Ez
∂y

Hx = jωε
1
k2
c

∂Ez
∂y

. (2.177)

y 

x 
h 

o 

I

II

0 0, rµ ε ε

0 0,µ ε

III 

Figure 2.29 Planar slab.
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For TE modes, we may let

Hz =



Ae−γ(y−h), y > h

Be−jkc1y + Cejkc1y, 0 < y < h

Deγy, y < 0

where kc1 =
√
εrk2

0 − β2, γ =
√
β2 − k2

0. At the interfaces y = 0 and y = h,
Ex and Hz are continuous. Thus we have

A = Be−jkc1h + Cejkc1h, D = B + C,

kc1D = jγB − jγC, kc1A = −jγBe−jkc1h + jγCejkc1h.

It follows that

tan(kc1h− α) =
γ

kc1
, (2.178)

where α = arctan(γ/kc1). The propagation constant β may be determined
from (2.178).

For TM modes, we may write

Ez =



Ae−γ(y−h), y > h

Be−jkc1y + Cejkc1y, 0 < y < h

Deγy, y < 0
.

At the interfaces y = 0 and y = h, Hx and Ez are continuous. Thus

A = Be−jkc1h + Cejkc1h

D = B + C

kc1D = jγεrB − jγεrC

kc1A = −jγεrBe−jkc1h + jγεrCe
jkc1h.

From these equations, we obtain

tan(kc1h− α) =
γεr
kc1

, (2.179)

where α = arctan(γεr/kc1). The above equation can be used to find the
propagation constant β.

2.7 Microstrip Lines

Microstrip line was first proposed by Grieg and Engelmann (1952), which
consists of a conducting strip separated from a ground plane by a dielectric
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layer known as the substrate (e.g., FR-4). The microstrip is the building
block of many microwave components, such as filters, couplers, power
dividers and antennas. These components can be integrated together as
a pattern of metallization on the substrate. Compared to the traditional
waveguide, the microstrip line is less expensive, lighter and more compact.
The disadvantages of microstrip line are lower power handling capacity,
higher losses, and are susceptible to interferences due to its openness.

The microstrip line is often used as a TEM transmission line, which
is a valid approximation when the frequency is relatively low (e.g., below
a few gigahertz). In fact, the microstrip can only support hybrid modes,
a combination of TE and TM modes. Figure 2.30(a) shows a standard
microstrip line, where region I is the dielectric substrate and region II is
the outside. The width of the strip is W and its thickness is assumed to
be zero.

The fields in the microstrip can be decomposed into the sum of a
transverse component and a longitudinal component

E = Et + uzEz , H = Ht + uzHz.

If the fields are assumed to change according to e−jβz in the longitudinal
direction, we may write ∇ = ∇t − jβuz and (2.173) applies. Thus

Exi =
1
k2
ci

(
−jβ ∂Ezi

∂x
− jωµi

∂Hzi

∂y

)
,

Eyi =
1
k2
ci

(
−jβ ∂Ezi

∂y
+ jωµi

∂Hzi

∂x

)
,

(a) (b)

y

x

effw

Magnetic walls

effε

x 

y 

h

o 

I

II

1 1,µ ε

W 2 2,µ ε

Figure 2.30 (a) Standard microstrip. (b) Waveguide model.
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Hxi =
1
k2
ci

(
jωεi

∂Ezi
∂y

− jβ
∂Hzi

∂x

)
,

Hyi =
1
k2
ci

(
−jωεi∂Ezi

∂x
− jβ

∂Hzi

∂y

)
,

(2.180)

where i = I, II, k2
ci = k2

i − β2, k2
i = k2εri, k2 = ω2µ0ε0. The longitudinal

components satisfy the Helmholtz equations

(∇2
t + k2

ci)Ezi = 0, (∇2
t + k2

ci)Hzi = 0. (2.181)

2.7.1 Spectral-Domain Analysis

The microstrip may be investigated by spectral domain method (Itoh and
Mittra, 1973). Introducing the Fourier transforms along x-axis

Ẽzi(�, y, z) =

+∞∫
−∞

Ezi(x, y, z)e−j�xdx,

H̃zi(�, y, z) =

+∞∫
−∞

Hzi(x, y, z)e−j�xdx,

into (2.181), we have

d2Ẽzi(�, y, z)
dy2

− α2
i Ẽzi(�, y, z) = 0,

d2H̃zi(�, y, z)
dy2

− α2
i H̃zi(�, y, z) = 0,

(2.182)

where α2
i = �2 − k2

ci. The Fourier transforms of (2.180) are

Ẽxi =
1
k2
ci

(
�βẼzi − jωµi

∂H̃zi

∂y

)
,

Ẽyi =
1
k2
ci

(
−jβ ∂Ẽzi

∂y
−�ωµiH̃zi

)
,

H̃xi =
1
k2
ci

(
jωεi

∂Ẽzi
∂y

+�βH̃zi

)
,

H̃yi =
1
k2
ci

(
�ωεiẼzi − jβ

∂H̃zi

∂y

)
.

(2.183)
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The solutions of (2.182) may be written as

Ẽz1(�, y, z) = Aeshα1ye
−jβz,

Ẽz2(�, y, z) = Bee
−α2(y−h)e−jβz,

H̃z1(�, y, z) = Ahchα1ye
−jβz,

H̃z2(�, y, z) = Bhe
−α2(y−h)e−jβz.

(2.184)

From (2.183) and (2.184), we may obtain the field expressions in each region.
In region I, we have

Ẽx1(�, y, z) =
1
k2
c1

(�βAeshα1y − jωµ1α1Ahshα1y) e−jβz,

Ẽy1(�, y, z) =
1
k2
c1

(−jβAeα1chα1y −�ωµ1Ahchα1y) e−jβz,

H̃x1(�, y, z) =
1
k2
c1

(jωε1α1Aechα1y +�βAhchα1y) e−jβz,

H̃y1(�, y, z) =
1
k2
c1

(�ωε1Aeshα1y − jβAhα1shα1y) e−jβz .

In region II, we have

Ẽx2(�, y, z) =
1
k2
c2

(
�βBee

−α2(y−h) + jωµ2α2Bhe
−α2(y−h)

)
e−jβz,

Ẽy2(�, y, z) =
1
k2
c2

(
jβα2Bee

−α2(y−h) −�ωµ2Bhe
−α2(y−h)

)
e−jβz,

H̃x2(�, y, z) =
1
k2
c2

(
−jωε2α2Bee

−α2(y−h) +�βBhe
−α2(y−h)

)
e−jβz,

H̃y2(�, y, z) =
1
k2
c2

(
�ωε2Bee

−α2(y−h) + jβα2Bhe
−α2(y−h)

)
e−jβz.

At the interface y = h, the fields must satisfy the boundary conditions

Ẽx1(�,h, z) = Ẽx2(�,h, z) ≡ Ẽx(�,h)e−jβz ,

Ẽz1(�,h, z) = Ẽz2(�,h, z) ≡ Ẽz(�,h)e−jβz,

H̃x1(�,h, z) − H̃x2(�,h, z) = J̃z(�)e−jβz,

H̃z1(�,h, z) − H̃z2(�,h, z) = −J̃x(�)e−jβz,

(2.185)
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where J̃x(�)e−jβz, J̃z(�)e−jβz are the current distribution on the conduct-
ing strip. From (2.185) we obtain

G̃11J̃x(�) + G̃12J̃z(�) = Ẽx(�,h)

G̃21J̃x(�) + G̃22J̃z(�) = Ẽz(�,h)
(2.186)

where G̃ij(i, j = 1, 2) are the functions of � and the propagation constant
β. The terms Ẽx(�,h) and Ẽz(�,h) on the right-hand sides of (2.186) can
be eliminated by using Galerkin’s method. The current on the strip may
be expanded as follows

J̃x(�) =
M∑
m=1

cmJ̃xm(�), J̃z(�) =
M∑
m=1

dmJ̃zm(�),

where M is a positive integer; J̃xm(�) and J̃zm(�) are the basis functions.
Substituting these into (2.186), and taking the inner product of J̃xn(�),
J̃xn(�)(n = 1, 2, . . . ,M) with (2.186), we obtain



M∑
m=1

K(x,x)
nm cm +

M∑
m=1

K(x,z)
nm dm = 0

M∑
m=1

K(z,x)
nm cm +

M∑
m=1

K(z,z)
nm dm = 0

, n = 1, 2, . . . ,M, (2.187)

where

K(x,x)
nm =

∞∫
−∞

J̃xn(�)G̃11J̃xm(�)d�,

K(x,z)
nm =

∞∫
−∞

J̃xn(�)G̃12J̃zm(�)d�,

K(z,x)
nm =

∞∫
−∞

J̃zn(�)G̃21J̃xm(�)d�,

K(z,z)
nm =

∞∫
−∞

J̃zn(�)G̃22J̃zm(�)d�.
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In deriving (2.187), the Parseval identity

∞∫
−∞

J̃xn(�)Ẽx(�,h)d� = 2π

∞∫
−∞

Jxn(x)Ex(x, h)dx,

has been used. Since the current distribution vanishes except on the strip
while the tangential electric fields vanish on the strip, the right-hand side of
the above identity is zero. The propagation constant β may be determined
from (2.187) by requiring that the determinant of the coefficient matrix
is zero.

2.7.2 Closed Form Formulae for Microstrip Lines

In the following, we assume µ1 =µ2 =µ0 and ε1 = εrε0, ε2 = ε0 (see
Figure 2.30). The effective relative dielectric constant εr,eff may
be introduced for the microstrip line such that its phase velocity and
propagation constant are the same as the microstrip line filled with an
equivalent homogeneous medium with relative dielectric constant εr,eff (i.e.,
µ1 = µ2 = µ0, ε1 = ε2 = εr,effε0), and can be expressed as

vp =
c√
εr,eff

, β = k0
√
εr,eff , (2.188)

where c = 1/
√
µ0ε0, k0 = ω

√
µ0ε0.

The closed form formulae for microstrip line parameters can be
obtained by approximate analytic solutions such as conformal mapping
(Wheeler, 1965), along with empirical adjustment of various numerical
constants in the analytic solutions.

2.7.2.1 Analysis Formulae

Given the dimensions of the microstrip line, the characteristic impedance
and effective relative dielectric constant are given by (Owens, 1976)

Z0 =




119.9√
2(εr + 1)

{
H1 − εr − 1

2(εr + 1)

(
ln
π

2
+

1
εr

ln
4
π

)}
, W < 2h,

119.9π√
εr

{
W

h
+

2 ln 4
π

+
εr − 1
ε2r

· 2
π

ln
(
eπ2

16

)
+
εr + 1
πεr

H2

}−1

,

W ≥ 2h,

(2.189)
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εr,eff =



εr + 1

2

[
1 − εr − 1

2H ′(εr + 1)

(
ln
π

2
+

1
εr

· ln 4
π

)]−2

, W < h

εr + 1
2

+
εr − 1

2

(
1 +

10h
W

)−0.555

, W > h,

(2.190)
where

H1 = ln


4h
W

+

√(
4h
W

)2

+ 2


, H2 = ln

eπ

2
+ ln

(
W

2h
+ 0.94

)
.

2.7.2.2 Synthesis Formulae

Given the characteristic impedance Z0 and relative dielectric constant εr,
the ratio W/h can be found as (Owens, 1976)

W

h
=




8
eA − 2e−A

, W/h < 2,

2
π

{
B − 1 − ln(2B − 1) +

εr − 1
2εr

[
ln(B − 1) + 0.293− 0.517

εr

]}
,

W/h > 2,

where

A =
Z0

√
2(εr + 1)
119.9

+
εr − 1

2(εr + 1)

(
ln
π

2
+

1
εr

· ln 4
π

)
, B =

377π
2Z0

√
εr
.

2.7.3 Microstrip Discontinuities

Microstrip discontinuities refer to the discontinuity structures in the
strip conductor, such as open ends, gaps, notches, steps, bends, and
T-junctions, crossings, and so on, and they are often used in microwave
integrated circuits. Several typical discontinuities are shown in Figure 2.31.
The analysis of various microstrip discontinuities can be carried out by
analytical techniques such as static approximations and waveguide models,
or numerical methods.

2.7.3.1 Waveguide Models

The waveguide models are applicable to a number of microstrip disconti-
nuities (Menzel and Wolff, 1977). The waveguide model for a microstrip
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(a) Microstrip notch (b) Equivalent circuit for the notch

(c) Microstrip step (d) Equivalent circuit for the step

(e) Microstrip bend (f) Equivalent circuit for the bend

(g) Microstrip T-junction (h) Equivalent circuit for the junction

T T T

T

T1 

T2

T1

T2

T1 T1

T2

T T

T1 T2

Figure 2.31 Typical microstrip discontinuities.

line consists of a parallel plate waveguide of width weff and height h with
magnetic side walls, as shown in Figure 2.30(b). It is filled with a dielectric
medium of the relative dielectric constant εr,eff which may be determined
by (2.190) or by (Hammerstad and Jensen, 1980)

εr,eff =
εr + 1

2
+
εr − 1

2
1√

1 + 12h/w
.
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As an approximation, the effective width weff may be assumed to be
frequency independent and was given by Wheeler (1965).

If the height of the waveguide model is small, the fields may be assumed
to be independent of the y coordinate. Considering the boundary conditions
that the tangential fields must satisfy, the waveguide only supports TEM
mode and TEn0 modes, which have non-vanishing components Ey , Hx and
Hz . The longitudinal magnetic field that satisfies the boundary conditions
may be written as

hzn =
√

εn
weffh

(
nπ

weff

)−1

sin
(
nπ

weff
x

)
, (2.191)

where εn =
{

1, m = 0
2, m ≥ 1 . It follows from (2.17) that the transverse

electromagnetic fields can be expressed as

Et =
∞∑
n=1

en(Ane−jβnz +Bne
jβnz)

Ht =
∞∑
n=1

1
Zwn

uz × en(Ane−jβnz −Bne
jβnz)

(2.192)

where en = (uz ×∇hzn)/kcn. Similar to the study of diaphragm problem,
the field expressions (2.192) can be used to analyze the microstrip
discontinuities shown in Figure 2.31 by matching the transverse fields at
the interfaces between different regions.

2.7.3.2 Method of Green’s Function

A microstrip circuit may be considered as a planar circuit in the sense
that one of its dimensions is much smaller than a wavelength. Figure 2.32
shows an arbitrary discontinuity (a metallic patch) with connecting ports.
Similar to the waveguide models, all sides of the discontinuity region will
be enclosed by magnetic walls except at the reference plane of the ports. If
the fields are assumed to be independent of z, we have Ex = Ey = 0. Thus
the electric field satisfies

(∇2
t + k2

)
Ez(ρρρ) = 0, k2 = ω2µε, (2.193)
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Figure 2.32 Microstrip discontinuity.

where ∇2
t = ∂2

∂x2 + ∂2

∂y2 , ρρρ = (x, y). The magnetic field can be expressed as

H =
1
jωµ

(
−∂Ez
∂y

ux +
∂Ez
∂x

uy

)
,

and the current induced on the metallic patch is

J = −uz × H =
1
jωµ

(
∂Ez
∂x

ux +
∂Ez
∂y

uy

)

=
1
jωµ

∇Ez =
1
jωµ

(
∂Ez
∂t

ut +
∂Ez
∂n

un

)
.

where ut and un are the unit tangent vector and unit outward normal of the
boundary of the metallic patch. Let Γ denote the boundary of the metallic
patch, and Γ0 the portion of Γ less the intersections of the reference planes
with the ports. Then the normal component of the current on Γ0 must
be zero

∂Ez
∂n

∣∣∣∣
Γ0

= 0. (2.194)

One may introduce a Green’s function G


(∇2
t + k2)G(ρρρ,ρρρ′) = −δ(ρρρ − ρρρ′)

∂G

∂n

∣∣∣∣
Γ

= 0
. (2.195)
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From the Green’s identity, the following integral equation can be obtained

Ez(ρρρ) =
∫
Γ

G(ρρρ,ρρρ′)
∂Ez(ρρρ′)
∂n(ρρρ′)

dΓ(ρρρ′).

Taking the boundary condition (2.194) into account, we may write the
above equation as

Ez(ρρρ) = jωµ

m∑
i=1

∫
Ti

G(ρρρ,ρρρ′)Ji(ρρρ′)dΓ(ρρρ′),

where Ji(ρρρ) = 1
jωµ

∂Ez(ρρρ)
∂n(ρρρ)

denotes the current density flowing away from
the discontinuity at port i (i = 1, 2, . . . ,m) and m is the number of ports.
If the widths of the ports, denoted by Wi (i = 1, 2, . . . ,m), are small, the
current density Ji(ρρρ) may be considered to be constant, denoted by J̃i. The
distributed voltage at port j is defined by Vi(ρρρ) = −hEz(ρρρ), and can thus
be written as

Vj(ρρρ) = −jωµh
m∑
i=1

J̃i

∫
Ti

G(ρρρ,ρρρ′)dΓ(ρρρ′). (2.196)

The current flowing into port i is given by

Ĩi =
∫
Ti

Ji(ρρρ′)dΓ(ρρρ′) = −J̃iWi. (2.197)

The voltage Ṽj at port j may be defined as the average of the distributed
voltage

Ṽj =
1
Wj

∫
Tj

Vj(ρρρ′)dΓ(ρρρ′). (2.198)

It follows from (2.196), (2.197) and (2.198) that

Ṽj =
m∑
i=1

Ĩi
jωµh

WiWj

∫
Tj

∫
Ti

G(ρρρ,ρρρ′)dΓ(ρρρ)dΓ(ρρρ′). (2.199)

The impedance matrix elements for the discontinuity are thus given by

Zij =
jωµh

WiWj

∫
Tj

∫
Ti

G(ρρρ,ρρρ′)dΓ(ρρρ)dΓ(ρρρ′). (2.200)
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Remark 2.6: Microwave circuits can be integrated in either hybrid or
monolithic form. In a hybrid integrated circuit, the circuit interconnections
are formed by microstrip lines deposited on an insulating substrate
or printed circuit board (PCB) while the active devices and passive
components in the circuit are attached to the substrate. In a microwave
monolithic integrated circuit (MMIC), active devices, passive components
and microstrip lines are fabricated in a single block of semiconductor
material. �

2.8 Waveguide with Lossy Walls

Our previous discussions are based on the assumption that the waveguide
wall is a perfect conductor. In practice, the waveguide wall has finite
conductivity σ and thus has heat loss, which causes the attenuation of
electromagnetic wave as it propagates in the waveguide. If the waveguide
wall is smooth, the surface impedance Zs may be introduced such that the
tangential electric field and the tangential magnetic field on the wall are
related by

un × E = Zsun × (un × H). (2.201)

In most cases, the surface impedance is given by

Zs =
1 + j

σδs
, (2.202)

where δs = (2/ωµσ)1/2 is the skin depth. At the surface, the tangential
electric field must have a tangential component equal to ZsJs, where Js =
un×H is the surface current density. This implies that an axial component
of electric field must be present, which gives rise to a component of Poynting
vector directed into the conductor and caused power loss in the conductor.
Substituting the field decompositions

E(r) = [e(ρρρ) + uzez(ρρρ)]e−γz,

H(r) = [h(ρρρ) + uzhz(ρρρ)]e−γz,
(2.203)

into Maxwell equations

∇× E(r) = −jωµH(r),

∇× H(r) = jωεE(r),
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we may obtain

∇× e = −jωµuzhz, ∇× h = jωεuzez,

γuz × e + uz ×∇ez = jωµh,

γuz × h + uz ×∇hz = −jωεe,
∇ · e = γez, ∇ · h = γhz.

(2.204)

It follows from the above equations that the transverse electric field satisfies

∇×∇× e−∇(∇ · e) − (k2 + γ2)e = 0, ρ ∈ Ω. (2.205)

From (2.201), we obtain

ut · e = Zshz, ez = −Zsut · h, ρ ∈ Γ, (2.206)

where ut denotes the unit tangent vector along the boundary Γ of the cross
section of the waveguide (see Figure 2.33). Making use of (2.204), (2.206)
can be written as

ut · e = − Zs
jωµ

uz · ∇ × e, ρ ∈ Γ

∇ · e = − Zs
jωµ

ut · (γ2uz × e + γuz ×∇ez)

=
Zs
jωµ

un · (γ2e + ∇∇ · e)

=
Zs
jωµ

un · (∇×∇× e − k2e), ρ ∈ Γ.

(2.207)

Equation (2.205) and the boundary conditions (2.207) constitute
an eigenvalue problem. The solution of this eigenvalue problem can be

tu
zu

nu

Ω Γ

Figure 2.33 Cross section of waveguide.
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expressed as a linear combination of the vector modal functions derived
from (2.3) as follows

e =
∞∑
i=1

aiei, (2.208)

where ei satisfy

∇×∇× ei −∇(∇ · ei) − (k2 + γ2
i )ei = 0, ρ ∈ Ω (2.209)

where γ2
i = k2

ci−k2. Multiplying the above equation by e and (2.205) by en,
subtracting and integrating the resultant equations over Ω and converting
the surface integral into line integral, we obtain

(γ2 − γ2
n)an = − Zs

jωµ

∞∑
i=1

ai

∫
Γ

[(∇× en) · (∇× ei)

−(un · en)un · (∇×∇× ei − k2ei)]dΓ, n = 1, 2, 3, . . . .

(2.210)

This is an algebraic equation of infinite dimension. To ensure a non-
zero solution the determinant of the coefficient matrix of (2.210) must
be zero, which gives an infinite number of solutions for γ2. To every γ2,
there corresponds a set of coefficients ai, which can be used to determine
the modal solution e for the lossy waveguide through (2.208). The above
procedure is called the method of perturbation.

When the loss is present, we may write γ = α + jβ, where α is the
attenuation constant and β is the phase constant. Since the loss is present,
the power P in the line must decrease according to a factor e−2αz. Thus
the power loss per unit length is given by

Ploss = −∂P
∂z

= 2αP. (2.211)

The power loss per unit length due to the surface impedance is

Ploss =
1
2
ReZs

∫
Γ

Js · J̄s dΓ =
1
2
ReZs

∫
Γ

(un × H) · (un × H̄)dΓ. (2.212)

As a first-order perturbation, we may use the field for the loss-free case, still
denoted as H, to evaluate the above integral. Thus (2.212) can be written as

Ploss =
1
2
ReZs

∫
Γ

H · H̄ dΓ. (2.213)
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Similarly, the power propagated along the line can be evaluated using loss-
free fields as follows

P =
1
2
Re

∫
Ω

E× H̄ · uz dΩ. (2.214)

Equations (2.211), (2.213) and (2.214) can be used to determine the
attenuation constant.

Example 2.1 (Lossy coaxial line): Let the conductors of the coaxial line
in Figure 2.3(b) have finite conductivity σ. For the loss-free case, the fields
are given by (2.23). The power propagated in the line is

P =
1
2
Re

2π∫
0

b∫
a

E× H̄ · uzρ dρ dϕ =
πV 2

0

η ln(b/a)
. (2.215)

The power loss from the finite conductivity is

Ploss =
1
2
ReZs

∫
Γ1+Γ2

H · H̄ dΓ

=
1
2
ReZs

V 2
0

η2[ln(b/a)]2

2π∫
0

(
1
a

+
1
b

)
dϕ

= ReZs
πV 2

0

η2[ln(b/a)]2
a+ b

ab
. (2.216)

The attenuation constant is given by

α =
Ploss

2P
=

ReZs
2η ln(b/a)

a+ b

ab
. � (2.217)

2.9 Periodic Structures

Periodic structures refer to the structures either with periodically electrical
properties or periodic boundary conditions, and they have wide applications
in electronic devices, microwave circuits and antennas. A periodic structure
may be considered as a cascade of identical discontinuity (called elemen-
tary structure) as illustrated in Figure 2.34.
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(a)

(b)

Elementary unit 

L 

Reference 
plane 1 

Reference 
plane 2 

(2)NI(1)NI

1(2)I1(1)I

Figure 2.34 Periodic structure and its equivalent circuit.

2.9.1 Properties of Periodic Structures

The field in a periodic structure in a waveguide can be assumed to be

E(x, y, z) = Ẽ(x, y, z)e−γz, (2.218)

where γ is the propagation constant, Ẽ(x, y, z) is a periodic function along
z direction with period L. Then we have

E(x, y, z + L) = E(x, y, z)e−γL. (2.219)

This is called Floquet theorem, after French mathematician Gaston
Floquet (1847–1920). The periodic function Ẽ(x, y, z) may be expanded
as a Fourier series

E(x, y, z) =
∞∑

n=−∞
En(x, y)e−γze−j

2πn
L z, (2.220)

where

En(x, y) =
1
L

z+L∫
z

Ẽ(x, y, z)ej
2πn

L zdz.



January 28, 2015 11:5 Foundations for Radio Frequency Engineering - 9in x 6in b1914-ch02 page 148

148 Foundations for Radio Frequency Engineering

Each term in (2.220) is called a spatial harmonic. For a lossless system,
we may let γ = jβ0. The propagation constant for nth spatial harmonic is

βn = β0 +
2πn
L

.

The phase velocity of the nth spatial harmonic is given by

vpn =
ω

βn
=

ω

β0 + 2πn
L

.

Since n can take negative integers, the phase velocity of the spatial
harmonics can be negative. The group velocity of the nth spatial harmonic is

vgn =
dω

dβn
=
(
dβn
dω

)−1

=
(
dβ0

dω

)−1

= vg0.

Hence the spatial harmonics have the same group velocity.

2.9.2 Equivalent Circuit for Periodic Structures

Consider an elementary structure between two reference planes as shown in
Figure 2.34(a). When two elementary structures are in close proximity, the
higher order modes at the reference planes cannot be ignored. The incident
fields into each elementary structure are superposition of the dominant
mode and the higher order modes. Assume that the periodic structure may
be considered as a uniform waveguide in the vicinity of the reference planes.
The transverse fields at the reference planes i (i = 1, 2) can be expressed in
terms of the vector modal functions en of the uniform waveguide as follows

Et(i) =
N∑
n=1

Vn(i)en, Ht(i) =
N∑
n=1

In(i)uz × en, i = 1, 2, (2.221)

where Vn(i) and In(i) are the modal voltage and modal current at
the reference plane i. The N modes in the expansions (2.221) may be
propagating or evanescent. Define the voltage vector [V ] and current
vector [I]

[V (i)] =



V1(i)
V2(i)

...
VN (i)


, [I(i)] =



I1(i)
I2(i)

...
IN (i)
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and the elementary structure is then equivalent to a 2N port network,
which has N inputs and N outputs. If the medium is linear, the transverse
electric field at the reference plane is determined by the transverse magnetic
field and vice versa (uniqueness theorem). For convenience, we introduce
the transfer matrix [T ]

[T ] =
[
[T11] [T12]
[T21] [T22]

]

such that [
[V (2)]
[I(2)]

]
=
[
[T11] [T12]
[T21] [T22]

] [
[V (1)]
[I(1)]

]
. (2.222)

If the network is reciprocal the transfer matrix is symplectic

[T ]T [J ][T ] = [J ], (2.223)

where [J ] is a block matrix

[J ] =
[

0 [1]
−[1] 0

]
,

and [1] is N × N identity matrix. If the network is lossless (i.e., the net
power into the network is zero), the transfer matrix satisfies

[T ]+[K][T ] = [K], (2.224)

where [K] is defined by

[K] =
[

0 [1]
[1] 0

]
.

By Floquet theorem, we may write

[
[V (2)]
[I(2)]

]
=
[
[1]e−γL 0

0 [1]e−γL

] [
[V (1)]
[I(1)]

]
. (2.225)

Subtracting (2.222) from (2.225) yields the following eigenvalue problem

{[
[T11] [T12]
[T21] [T22]

]
− e−γL

[
[1] 0
0 [1]

]}[
[V (1)]
[I(1)]

]
= 0. (2.226)
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Let

λ = e−γL, [X ] =
[

[V (1)]
[I(1)]

]
.

We have

([T ] − λ[1])[X ] = 0. (2.227)

The eigenvalue λ is determined by the following algebraic equation

det([T ] − λ[1]) = 0. (2.228)

By (2.223), it is easy to show that the following properties hold for the
eigenvalue problem (2.227) (Kurokawa, 1969):

(1) If all the eigenvalues of (2.228) are distinct, an arbitrary vector of
2N dimension can be represented as a linear combination of the
corresponding eigenvectors.

(2) If λ is an eigenvalue, λ−1 is also an eigenvalue.
(3) Let λi and λj be eigenvalues, [Xi] and [Xj] their corresponding

eigenvectors. If λiλj �= 1, then

[Xi]T [J ][Xj] = 0. (2.229)

If λiλj = 1, then

[Xi]T [J ][Xj] �= 0. (2.230)

If (2.230) holds, we may let

[X̃i] =

{
c̃[Xi]T , λ2

i = 1

c̃[Xj ]T , λ2
i �= 1

,

where [Xj] is the eigenvector corresponding to λj = λ−1
i . By properly

selecting the constant c̃, we may have

[X̃i][J ][Xj ] =

{
1, i = j

0, i �= j
. (2.231)

An arbitrary vector of 2N dimension may be represented by

[X ] =
2N∑
i=1

[Xi]([X̃i][J ][X ]). (2.232)
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Applying [T ] to the above equation gives

[T ][X ] =
2N∑
i=1

λi[Xi]([X̃i][J ][X ]). (2.233)

Thus the spectral representation of [T ] is

[T ](·) =
2N∑
i=1

λi[Xi][X̃i][J ](·). (2.234)

In general, we have

[T ]n(·) =
2N∑
i=1

λni [Xi][X̃i][J ](·). (2.235)

The transverse electromagnetic fields at the reference plane can be con-
structed from the eigenvector [Xi] of [T ]. Equation (2.235) implies that
the electromagnetic fields in the nth period is the nth power of eigenvalue
times the electromagnetic fields in the first period. The electromagnetic
field pattern with this property is called a mode of the periodic structure.

2.9.3 ω–β Diagram

A waveguide is loaded at regular intervals by diaphragms, as shown in
Figure 2.35(a). The elementary structure is shown in Figure 2.35(b).
Assume that the impedance Z is purely reactive, denoted by Z = jb0Y0,
where Y0 is the wave admittance. The voltage and current at the reference
plane T1 can be written as

V1 = A1 +B1, I1 = Y0(A1 −B1). (2.236)

On the left-hand side of the reference plane T , the voltage and current are
given by

V = A1e
−jθ +B1e

jθ, I = Y0(A1e
−jθ −B1e

jθ), (2.237)

where θ = β0L/2, and β0 =
√
k2 − k2

c is the propagation constant. On
the right-hand side of the reference plane, the voltage and current are
respectively V and I − ZV

V = A+B, I − ZV = Y0(A−B). (2.238)



January 28, 2015 11:5 Foundations for Radio Frequency Engineering - 9in x 6in b1914-ch02 page 152

152 Foundations for Radio Frequency Engineering

(a) 

(b) 

L 

1T 2TT

Z

T T
1T 2T

/ 2L / 2L

1I

1V

I

V

2I

2V

I ZV−

Figure 2.35 Equivalent circuit for the elementary structure.

The voltage and current at the reference plane T2 are

V2 = Ae−jθ +Bejθ, I2 = Y0(Ae−jθ −Bejθ). (2.239)

It follows from (2.236) to (2.239) that[
V2

I2

]
=
[
T11 T12

T21 T22

] [
V1

I1

]
= [T ]

[
V1

I1

]
, (2.240)

where

T11 = T22 = cosβ0L− 1
2
b0 sinβ0L,

T12 = j
1
Y0

(
1
2
b0 − sinβ0L− 1

2
b0 cosβ0L

)
,

T21 = −jY0

(
1
2
b0 + sinβ0L+

1
2
b0 cosβ0L

)
.
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By Floquet theorem, (2.240) can be written as

[
V2

I2

]
=
[
e−γL 0

0 e−γL

] [
V1

I1

]
. (2.241)

Subtracting (2.240) from (2.241) yields

{[
T11 T12

T21 T22

]
− e−γL

[
1 0
0 1

]}[
V1

I1

]
= 0. (2.242)

The propagation constant γ may be determined from

det
{[
T11 T12

T21 T22

]
− e−γL

[
1 0
0 1

]}
= 0.

This equation has two roots for the propagation constant

e−γ1,2L = cosβ0L− 1
2
b0 sinβ0L

±
[(

1
2
b0

)2

−
(

sinβ0L+
1
2
b0 cosβ0L

)2
]1/2

. (2.243)

If the condition (
1
2
b0

)2

<

(
sinβ0L+

1
2
b0 cosβ0L

)2

is met, the eigenvalue e−γ1,2L is a complex number of unit amplitude and
the periodic structure is in passband. When condition

(
1
2
b0

)2

>

(
sinβ0L+

1
2
b0 cosβ0L

)2

is met, the eigenvalue is a real number and the periodic structure is in
stopband. If the periodic structure is in passband, we may let

γ1 = −jβL, γ2 = jβL.

Inserting these into (2.243), we obtain

cosβL = cosβ0L− 1
2
b0 sinβ0L.
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ω

ππ−2π− 2π0 Lβ

First passband 

Second passband 

Stopband 

Figure 2.36 ω–β diagram.

This gives the relationship between frequency and βL. The resultant plot
is called ω–β diagram. Such a plot is shown in Figure 2.36, where the
passbands and stopbands occur alternately.

In the new era, thought itself will be transmitted by radio.

—Guglielmo Marconi
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Chapter 3

Microwave Resonators

The further a mathematical theory is developed, the more harmoniously

and uniformly does its construction proceed, and unsuspected relations

are disclosed between hitherto separated branches of the science.

—David Hilbert (German mathematician, 1862–1943)

A resonator is a device or system that naturally oscillates at some
frequencies, called its resonant frequencies, with greater amplitude than
at others. The oscillations in a resonator can be either electromagnetic
or mechanical. Resonators are used to either generate waves of specific
frequencies or to select specific frequencies from a signal. An LC circuit
in electrical engineering is a typical resonator, where the energy oscillates
back and forth between the capacitor and the inductor and the oscillation
(resonant) frequency is determined by the capacitance and inductance
values. The number of resonant frequencies of a system corresponds to
its degree of freedom.

Microwave resonators, such as metal cavity resonators, dielec-
tric resonators, microstrip resonators, and open resonators as shown
in Figure 3.1, are widely used in microwave circuit designs. A metal
cavity resonator consists of a closed metallic structure that confines
electromagnetic energy in a specified region. The electromagnetic fields in
the cavity are excited by an external power source, which is coupled to
the cavity by a small aperture, a small probe or a loop. A dielectric
resonator, first proposed by Richtmyer (1939), is a piece of dielectric
material that exhibits resonance just as a metallic resonator. Compared to
metal cavity resonators, dielectric resonators have many advantages such
as lower weight, lower cost, smaller size, and ease of manufacturing, etc.
Although the electromagnetic fields are not zero outside the dielectric walls
of the resonator, they decay very rapidly while away from the resonator

155



January 28, 2015 11:5 Foundations for Radio Frequency Engineering - 9in x 6in b1914-ch03 page 156

156 Foundations for Radio Frequency Engineering

Figure 3.1 Microwave resonators.

walls and most of the energy is stored in the dielectric region if the dielectric
constant is sufficiently high. Dielectric resonators can exhibit extremely
high Q factor that is comparable to a metal cavity resonator.

A metal cavity resonator is often used in the frequency range where
its dimensions are of the order of wavelength. As the operating frequency
increases, the size of the cavity resonator becomes either very small (if it is
kept to the order of wavelength), or very large compared to the wavelength.
In the latter case, a large number of resonant modes will be excited and
their resonant frequencies will be squeezed together or overlap (in other
words, the density of the resonant modes increases). This phenomenon is
called mode competition. To reduce the number of the modes, one can
remove some of the walls of the cavity resonator to form an open resonator.
If the remaining walls (called mirrors) are properly designed, only a small
portion of the modes will exist (weakly damped) while other modes will
become strongly damped and thus the modal density is reduced. An open
resonator (or optical resonator) is an arrangement of mirrors that forms
a standing wave cavity resonator for high frequency (light) waves.

3.1 Theory of Metal Cavity Resonators

For a metal cavity resonator, the electric and magnetic energies are stored
in the cavity and the only losses are due to finite conductivity of cavity



January 28, 2015 11:5 Foundations for Radio Frequency Engineering - 9in x 6in b1914-ch03 page 157

Microwave Resonators 157

walls and dielectric losses of material filling the cavity. A metal cavity
resonator has an infinite number of resonant frequencies that correspond to
electromagnetic field modes satisfying necessary boundary conditions on the
walls of the cavity. If the set of modes is ordered with increasing resonant
frequencies, there is always a lowest resonant frequency but, in general,
no highest resonant frequency. As the resonant frequencies increase, the
density of the modes increases accordingly (becoming infinitely dense at
infinite frequencies). For this reason, only the first few modes are useful in
practice for a closed cavity resonator.

3.1.1 Field Expansions for Cavity Resonators

Assume that the cavity is filled with homogeneous medium with medium
parameters µ and ε. The enclosed region by a perfectly conducting wall is
denoted by V , its boundary by S, as shown in Figure 3.2. The fields inside
the cavity satisfy the Maxwell equations

∇× H(r) = jωεE(r),

∇× E(r) = −jωµH(r),

∇ · E(r) = 0, ∇ ·H(r) = 0,

(3.1)

and the boundary conditions un ×E = 0 and un ·H = 0 on S, where un is
the unit outward normal of S. It follows from (3.1) that

∇×∇×E(r) − k2E(r) = 0, r ∈ V,

un × E(r) = 0, r ∈ S,
(3.2)

∇×∇× H(r) − k2H(r) = 0, r ∈ V,

un ·H(r) = 0, un ×∇× H(r) = 0, r ∈ S.
(3.3)

As a result, we may introduce the following eigenvalue problems

∇×∇× e− k2
ee = 0, ∇ · e = 0, r ∈ V,

un × e = 0, r ∈ S,
(3.4)

S 

un 
V 

µ, ε

Figure 3.2 An arbitrary metal cavity resonator.
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∇×∇× h − k2
hh = 0, ∇ · h = 0, r ∈ V,

un · h = 0, un ×∇× h = 0, r ∈ S,
(3.5)

where k2
e and k2

h are the eigenvalues to be determined. The eigenfunctions
of (3.4) and (3.5), however, do not form a complete set. Considering the
relations ∇ · e = 0 and ∇ · h = 0, (3.4) and (3.5) may be regularized as
follows

∇×∇× e−∇∇ · e− k2
ee = 0, r ∈ V,

un × e = 0, ∇ · e = 0, r ∈ S,
(3.6)

∇×∇× h −∇∇ · h− k2
hh = 0, r ∈ V,

un · h = 0, un ×∇× h = 0, r ∈ S.
(3.7)

These are the eignevalue equations for the metal cavity resonator, which
are similar to those for a metal waveguide and can be studied in an exact
manner. Equation (3.6) has an infinite number of eigenvalues 0 ≤ k2

e1 ≤
k2
e2 ≤ · · · ≤ k2

en ≤ · · · , and k2
en → ∞ (n → ∞). The corresponding

eigenfunctions {en} are called electric vector modal functions, and
they form a complete set. The electric vector modal functions fall into the
following three categories:

1. ∇× en = 0, ∇ · en = 0,

2. ∇× en �= 0, ∇ · en = 0,

3. ∇× en = 0, ∇ · en �= 0.

Similar to the waveguide theory, the electric vector modal functions
belonging to the first category only exist in a multiply-connected region.
For the modes in the first category, we may introduce a scalar potential
function ϕn and let en = ∇ϕn. Thus

∇2ϕn = 0, r ∈ V,

ϕn = const, r ∈ S.
(3.8)

For the modal functions in the third category, we may introduce a scalar
potential function φn and let en = ∇φn. It is easy to find that

∇2φn + k2
enφn = 0, r ∈ V,

φn = 0, r ∈ S
(3.9)
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and ∫
V

|en|2 dV = k2
en

∫
V

φ2
n dV . (3.10)

Similarly, it can be shown that the magnetic vector modal functions of (3.7)
form a complete set and fall into the following three categories

1. ∇× hn = 0, ∇ · hn = 0,

2. ∇× hn �= 0, ∇ · hn = 0,

3. ∇× hn = 0, ∇ · hn �= 0.

For the vector modal functions belonging to the first and third category,
we may introduce a scalar potential function ψn and let hn = ∇ψn to find
that

∇2ψn + k2
hnψn = 0, r ∈ V

∂ψn
∂n

= 0, r ∈ S

(3.11)

and ∫
V

|hn|2 dV = k2
hn

∫
V

ψ2
n dV . (3.12)

The vector modal functions belonging to the second category in the two
sets of vector modal functions {en} and {hn} are related to each other. In
fact, if en is in the second category, we can define a function hn through

∇× en = kenhn, (3.13)

and hn belongs to Category 2. Furthermore, we have

∇×∇× hn − k2
enhn = k−1

en ∇× (∇×∇× en − k2
enen

)
= 0, r ∈ V,

un ×∇× hn = k−1
en un ×∇×∇× en = k−1

en un × k2
enen = 0, r ∈ S.

Consider the integration of un ·hn over an arbitrary part of S, denoted ∆S∫
∆S

un · hn dS = k−1
en

∫
∆S

un · ∇ × en dS = k−1
en

∫
∆Γ

en · uΓ dΓ, (3.14)
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where ∆Γ is the closed contour around ∆S and uΓ is the unit tangent
vector along the contour. The right-hand side of (3.14) vanishes. So we
have un · hn = 0 for ∆S is arbitrary. Therefore, hn satisfies (3.7), and the
corresponding eigenvalue is k2

en . If hm is another vector modal function
corresponding to em belonging to the second category, then∫

V

hm · hn dV = (kemken)−1

∫
V

∇× em · ∇ × en dV

= (kemken)−1

∫
S

un × em · ∇ × en dS

+ (ken/kem)
∫
V

em · en dV = δmn .

Consequently, the vector modal functions hn in the second category can
be derived from the vector modal functions en in Category 2 and they are
orthonormal. Conversely, if hn is in the second category, one can define en
through

∇× hn = khnen. (3.15)

A similar discussion shows that en is an eigenfunction of (3.4) with khn
being the eigenvalue. So the completeness of the two sets is still guaranteed
if the vector modal functions belonging to the second category in {en}
and {hn} are related through either (3.13) or (3.15). Hereafter, (3.13) and
(3.15) will be assumed and ke,n = kh,n will be denoted by kn. Note that the
complete set {en} is most appropriate for the expansion of electric field,
and the complete set {hn} is most appropriate for the expansion of the
magnetic field.

The Maxwell equations inside the cavity filled with homogeneous
medium with medium parameters σ, µ, and ε can be written as

∇× H(r, t) = (σ + jωε)E(r, t),

∇× E(r, t) = −jωµH(r, t).
(3.16)

The fields inside the cavity resonator may be expanded as follows

E(r) =
∑
n

Vnen(r) +
∑
ν

Vνeν(r),

H(r) =
∑
n

Inhn(r) +
∑
τ

Iτhτ (r),
(3.17)
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∇× E(r) =
∑
n

hn(r)
∫
V

∇× E(r) · hn(r)dV

+
∑
τ

hτ (r)
∫
V

∇× E(r) · hτ (r)dV ,

∇× H(r) =
∑
n

en(r)
∫
V

∇× H(r) · en(r)dV

+
∑
ν

eν(r)
∫
V

∇× H(r) · eν(r)dV ,

(3.18)

where the subscript n denotes the modes belonging to second category,
and the greek subscript ν and τ for the modes belonging to first or third
category, and

Vn(ν) =
∫
V

E(r) · en(ν)(r)dV , In(τ) =
∫
V

H(r) · hn(τ)(r)dV . (3.19)

Making use of the following calculations

∫
V

∇× E · hn dV =
∫
V

E · ∇ × hn dV +
∫
S

(E× hn) · un dS

= knVn +
∫
S

(un × E) · hn dS,

∫
V

∇× E · hτ dV =
∫
V

E · ∇ × hτ dV +
∫
S

(E× hτ ) · un dS

=
∫
S

(un × E) · hτ dS,

∫
V

∇× H · en dS =
∫
V

H · ∇ × en dV +
∫
S

(H × en) · un dS = knIn,

∫
V

∇× H · eν dS =
∫
V

H · ∇ × eν dV +
∫
S

(H × eν) · un dS = 0.
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Equation (3.18) may be written as

∇× E =
∑
n

hn


knVn +

∫
S

(un × E) · hn dS



+
∑
τ

hτ (r)
∫
S

(un × E) · hτ dS

∇× H =
∑
n

knInen.

It follows from the above equations, (3.16) and (3.17) that

∑
n

knInen = (σ + jωε)

[∑
n

Vnen(r) +
∑
ν

Vνeν(r)

]
,

∑
n

hn


knVn +

∫
S

(un × E) · hn dS

+

∑
τ

hτ (r)
∫
S

(un × E) · hτ dS

= −jωµ
[∑
n

Inhn(r) +
∑
τ

Iτhτ (r)

]
.

Comparing the expansion coefficients gives

knIn = (σ + jωε)Vn,

Vν = 0,

knVn +
∫
S

(un × E) · hn dS = −jωµIn,

∫
S

(un × E) · hτ dS = −jωµIτ .

From these equations, we obtain

Vn =
kn

σ + jωε
In,

Vν = 0,

In = −
[
jωµ+

k2
n

(σ + jωε)

]−1 ∫
S

(un × E) · hn dS,

Iτ =
1

−jωµ
∫
S

(un × E) · hτ dS.

(3.20)

Thus, once the tangential electric fields on the boundary S are known, the
fields inside the cavity resonator are then fully determined.
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Figure 3.3 Spherical cavity resonator.

Example 3.1 (Vector modal functions of spherical cavity): For a spherical
cavity resonator of radius a shown in Figure 3.3, the vector modal functions
in the third category can be obtained by solving (3.9). In spherical
coordinate system (r, θ, ϕ), the solutions of (3.9) are given by

φnmq(r) = jn(knqr)Pmn (cos θ)
{

cosmϕ
sinmϕ

}
, (3.21)

where knq satisfies the equation

jn(knqa) = 0, (3.22)

and the eigenvalues ken in (3.9) are given by

ken = knq . (3.23)

The normalization integral is∫
V

φ2
nmq dV =

a32π(m+ n)!
εm(2n+ 1)(n−m)!

[jn+1(knqa)]2. (3.24)

The corresponding vector modal functions en in the third category, denoted
by Lnmq , are

Lnmq = ∇φnmq

=
djn(knqr)

dr
Pmn (cos θ)

{
cosmϕ
sinmϕ

}
ur

+
1
r
jn(knqr)

dPmn (cos θ)
dθ

{
cosmϕ
sinmϕ

}
uθ

+
m

r sin θ
jn(knqr)Pmn (cos θ)

{− sinmϕ
cosmϕ

}
uϕ (3.25)
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where ur, uθ and uϕ are unit vectors along r, θ and ϕ direction respectively.
The vector modal functions in the second category satisfy

∇×∇× en −∇∇ · en − k2
een = 0, r ∈ V,

∇ · en = 0, r ∈ V, (3.26)

un × en = 0, r ∈ S,

and may be constructed by (We use M and N to denote the two different
classes of vector modal functions in the second category.)

M = ∇× (rψ), N =
1
k
∇×∇× (rψ),

where ψ satisfies

(∇2 + k2)ψ = 0. (3.27)

The solutions of (3.27) inside the spherical cavity are given by

ψnm(r) = jn(kr)Pmn (cos θ)
{

cosmϕ
sinmϕ

}
.

Thus, we may write

Mnmq = ∇×
[
rjn(knqr)Pmn (cos θ)

{
cosmϕ
sinmϕ

}]

=
m

sin θ
jn(knqr)Pmn (cos θ)

{− sinmϕ
cosmϕ

}
uθ

− jn(knqr)
dPmn (cos θ)

dθ

{
cosmϕ
sinmϕ

}
uϕ, (3.28)

where knq satisfy (3.22). Also we have

Nnmq =
1
knq

∇×∇×
[
rjn(knqr)Pmn (cos θ)

{
cosmϕ
sinmϕ

}]

=
n(n+ 1)
knqr

jn(knqr)Pmn (cos θ)
{− sinmϕ

cosmϕ

}
ur

+
1

knqr

d[rjn(knqr)]
dr

dPmn (cos θ)
dθ

{
cosmϕ
sinmϕ

}
uθ

+
m

knqr sin θ
d[rjn(knqr)]

dr
Pmn (cos θ)

{− sinmϕ
cosmϕ

}
uϕ, (3.29)
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where knq satisfy

d[rjn(knqr)]
dr

∣∣∣∣
r=a

= 0.

The vector modal functions Mnmq and Nnmq are called transverse electric
modes and transverse magnetic modes respectively. �

3.1.2 Vector Modal Functions for Waveguide
Cavity Resonators

The evaluation of the vector modal functions in an arbitrary metal cavity
is not an easy task. When the metal cavity consists of a section of a
uniform metal waveguide shorted at both ends, the method of separation of
variables may be applied to determine the vector modal functions of simple
cavity geometries such as rectangular waveguide cavity resonator, circular
waveguide cavity resonator and coaxial waveguide cavity resonator.

3.1.2.1 Field Expansions in Waveguide

Cavity Resonator

Consider a waveguide cavity with a perfect electric wall of length L, as
shown in Figure 3.4. The electromagnetic fields inside the waveguide cavity
can be expanded in terms of the transverse vector modal functions en in
the waveguide

E(r) =
∞∑
n=1

vn(z)en(ρ) + uz
∞∑
n=1

∇ · en(ρ)
kcn

e′zn(z),

H(r) =
∞∑
n=1

in(z)uz × en(ρ) + uz
1√
Ω

∫
Ω

uz · H√
Ω

dΩ +
∞∑
n=1

∇× en(ρ)
kcn

h′zn(z),

(3.30)

Figure 3.4 A metal cavity formed by a section of waveguide.
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where ρ =(x, y) is the position vector in the waveguide cross-section Ω, and

vn(z) =
∫
Ω

E · en dΩ, in(z) =
∫
Ω

H · uz × en dΩ,

h′zn(z) =
∫
Ω

H ·
(∇× etn

kcn

)
dΩ, e′zn(z) =

∫
Ω

uz · E
(∇ · etn

kcn

)
dΩ.

For the TEM modes, we have

dvTEM
n

dz
= −jωµiTEM

n ,
diTEM
n

dz
= −jωεvTEM

n . (3.31)

The modal voltages for the TEM modes satisfy

d2vTEM
n

dz2
+ k2vTEM

n = 0. (3.32)

For the TE modes, we have

dvTE
n

dz
= −jωµiTE

n ,

diTE
n

dz
− kcnh

′
zn = −jωεvTE

n ,

jωµh′zn = −kcnvTE
n .

(3.33)

The modal voltages vTE
n satisfy

d2vTE
n

dz2
+ (k2 − k2

cn)vTE
n = 0. (3.34)

For the TM modes, we have

dvTM
n

dz
+ kcne

′
zn = −jωµiTM

n ,

diTM
n

dz
= −jωεvTM

n ,

jωεe′zn = kcni
TM
n .

(3.35)

The modal voltages vTM
n satisfy

∂2vTM
n

∂z2
+ (k2 − k2

cn)vTM
n = 0. (3.36)

Since the tangential electric field on the electric conductor must be zero,
the voltages satisfy the homogeneous Dirichlet boundary conditions

vn(z)|z=0 = vn(z)|z=L = 0. (3.37)
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Thus, we may write

vTEM
n (z) = aTEM

n

√
2
L

sin
lπ

L
z, k =

lπ

L
,

iTEM
n (z) =

1
−jkη

dvTEM
n

dz
=
aTEM
n

−jη

√
2
L

cos
lπ

L
z,

vTE
n (z) = aTE

n

√
2
L

sin
lπ

L
z, k2 =

(
lπ

L

)2

+ k2
cn ,

iTE
n (z) =

1
−jkη

dvTE
n

dz
=

aTE
n

−jη√(lπ/L)2 + k2
cn

√
2
L

lπ

L
cos

lπ

L
z,

vTM
n (z) = aTM

n

√
2
L

sin
lπ

L
z, k2 =

(
lπ

L

)2

+ k2
cn ,

iTM
n (z) =

jk

(k2 − k2
cn )

dvTM
n

dz
=
j
√

(lπ/L)2 + k2
cn

η(lπ/L)
aTM
n

√
2
L

cos
lπ

L
z,

e′zn(z) =
kcnη

jk
iTM
n =

aTM
n kcn

k2 − k2
cn

√
2
L

lπ

L
cos

lπ

L
z = aTM

n

kcnL

nπ

√
2
L

cos
lπ

L
z.

As a result, the first equation of (3.30) can be written as

E(r) =
∞∑
n=1

aTEM
n eTEM

n (ρ, z) +
∞∑
n=1

aTE
n eTE

n (ρ, z) +
∞∑
n=1

aTM
n eTM

n (ρ, z),

(3.38)
where

eTEM
n (ρ, z) = en(ρ)

√
2
L

sin
lπ

L
z,

eTE
n (ρ, z) = en(ρ)

√
2
L

sin
lπ

L
z,

eTM
n (ρ, z) = en(ρ)

√
2
L

sin
lπ

L
z + uz∇ · en(ρ)

L

lπ

√
2
L

cos
lπ

L
z.

(3.39)

These are the vector modal functions for waveguide cavity resonators. Note
that both the vector modal functions eTE

n and eTM
n belong to the second

category.
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Figure 3.5 Rectangular waveguide cavity.

3.1.2.2 Rectangular Waveguide Cavity Resonator

For a rectangular waveguide cavity resonator shown in Figure 3.5, the vector
modal functions for the rectangular cavity resonator can be obtained from
the vector modal functions for the rectangular waveguide. The calculations
are straightforward and we merely list the results:

eTE
n (ρ, z) = ux

1
kcn

qπ

b

√
2εpεq
Lab

cos
pπ

a
x sin

qπ

b
y sin

lπ

L
z

−uy
1
kcn

pπ

a

√
2εpεq
Lab

sin
pπ

a
x cos

qπ

b
y sin

lπ

L
z,

eTM
n (ρ, z) = ux

1
kcn

pπ

a

√
8

Lab
cos

pπ

a
x sin

qπ

b
y sin

lπ

L
z

+uy
1
kcn

qπ

b

√
8

Lab
sin

pπ

a
x cos

qπ

b
y sin

lπ

L
z

−uzkcn
L

nπ

√
8

Lab
sin

pπ

a
x sin

qπ

b
y cos

lπ

L
z.

3.1.2.3 Circular Waveguide Cavity Resonator

The vector modal functions for circular waveguide cavity resonator
(Figure 3.6) are given by

eTE
n (ρ, z) = ±uρ

√
2εm
Lπ

m√
χ′2

mn −m2

1
ρ

Jm
(
χ′

mn
ρ
a

)
Jm (χ′

mn)

(
sinmϕ
cosmϕ

)
sin

lπ

L
z

+uϕ

√
2εm
Lπ

χ′
mn√

χ′2
mn −m2

1
a

J ′
m

(
χ′

mn
ρ
a

)
Jm (χ′

mn)

(
cosmϕ
sinmϕ

)
sin

lπ

L
z,
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Figure 3.6 Circular waveguide cavity resonator.

eTM
n (ρ, z) = −uρ

√
2εm
Lπ

1
a

J ′
m

(
χmn

ρ
a

)
Jm+1(χmn)

(
cosmϕ
sinmϕ

)
sin

lπ

L
z

±uϕ

√
2εm
Lπ

m

ρχmn

Jm
(
χmn

ρ
a

)
Jm+1(χmn)

(
sinmϕ
cosmϕ

)
sin

lπ

L
z

+uz
L

nπ

√
2εm
Lπ

χmn

a2

Jm
(
χmn

ρ
a

)
Jm+1(χmn)

(
cosmϕ
sinmϕ

)
cos

lπ

L
z,

where we have used the following calculation for TM modes

∇ · en(ρ) =
{
−
[

1
z1
J ′
m (z1) + J ′′

m (z1)
]

χmn

a2Jm+1(χmn)

+
1

χmn

m2Jm (z1)
ρ2Jm+1(χmn)

}√
εm
π

(
cosmϕ
sinmϕ

)

=

{[
1 − a2m2

(ρχmn)2

]
χmnJm (z1)
a2Jm+1(χmn)

+
1

χmn

m2Jm (z1)
ρ2Jm+1(χmn)

}√
εm
π

(
cosmϕ
sinmϕ

)

=
χmnJm (z1)
a2Jm+1(χmn)

√
εm
π

(
cosmϕ
sinmϕ

)
, z1 = χmn

ρ

a
.

3.1.2.4 Coaxial Waveguide Cavity Resonator

The vector modal functions for coaxial waveguide cavity resonator
(Figure 3.7) are listed below:

eTEM
n (ρ, z) = uρ

l√
2π ln c1

1
ρ

√
2
L

sin
lπ

L
z,
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Figure 3.7 Coaxial waveguide cavity resonator.

eTE
n (ρ, z) = ±uρ

m

ρ
h
(
χ′

mn

ρ

a

)√ εm
Lπ

(
sinmϕ
cosmϕ

)
sin

lπ

L
z

+uϕ
χ′

mn

a
h′
(
χ′

mn

ρ

a

)√ εm
Lπ

(
cosmϕ
sinmϕ

)
sin

lπ

L
z,

eTM
n (ρ, z) = −uρ

χmn

a
e′
(
χmn

ρ

a

)√ εm
Lπ

(
cosmϕ
sinmϕ

)
sin

lπ

L
z

±uϕ
m

ρ
e
(
χmn

ρ

a

)√ εm
Lπ

(
sinmϕ
cosmϕ

)
sin

lπ

L
z

+uz
L

nπ

(χmn

a

)2

e
(
χmn

ρ

a

)√ εm
Lπ

(
cosmϕ
sinmϕ

)
cos

lπ

L
z,

where we have used the following calculation for TM modes

∇ · en =
{
−
(χmn

a

)2
[

1
z1
e′ (z1) + e′′ (z1)

]
+
m2

ρ2
e (z1)

}√
εm
2π

(
cosmϕ
sinmϕ

)

=

{(χmn

a

)2
[
1 − a2m2

(ρχmn)2

]
+
m2

ρ2

}
e (z1)

√
εm
2π

(
cosmϕ
sinmϕ

)

=
(χmn

a

)2

e (z1)
√
εm
2π

(
cosmϕ
sinmϕ

)
,

and

e
(
χmn

ρ

a

)
=

π√
2

Jm
(
χmn

ρ
a

)
Nm(χmn) −Nm

(
χmn

ρ
a

)
Jm(χmn)√

J2
m(χmn)/J2

m(cχmn) − 1
,

m = 0, 1, 2, . . . ,
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h
(
χ′

mn

ρ

a

)
=

π√
2

Jm
(
χ′

mn
ρ
a

)
N ′
m(χmn) −Nm

(
χ′

mn
ρ
a

)
J ′
m(χ′

mn)√
J2

m(χ′
mn)

J2
m(c1χ′

mn)

[
1 −
(

m
c1χ′

mn

)2
]
−
[
1 −
(

m
χ′

mn

)2
] ,

m = 0, 1, 2, . . . ,

z1 = χmn
ρ

a
.

3.1.3 Integral Equation for Cavity Resonators

A resonant cavity filled with homogeneous medium and completely enclosed
by a perfect conductor can be studied through the integral equation
formulation. To derive an integral equation for the resonant cavity problem,
we may use the integral representation of the magnetic field inside the metal
cavity region V

H(r) = −
∫
S

[un(r′) × H(r′)] ×∇′G(r, r′)dS(r′), r ∈ V, (3.40)

where G(r, r′) = e−jk|r−r′|/4π |r − r′| and k = ω
√
µε. In deriving (3.40),

the boundary condition un(r)×E(r) = 0 has been used. Letting r approach
S from inside V and using the jump relation yield

1
2
H−(r) = −

∫
S

[un(r′) × H−(r′)] ×∇′G(r, r′)dS(r′),

where H−(r) denotes the limit value of H(r) when r approaches the
boundary S from inside V . Introducing the surface current density Js(r) =
−un(r) × H−(r), the above equation can be written as

1
2
Js(r) + un(r) ×

∫
S

Js(r′) ×∇′G(r, r′)dS(r′)=0. (3.41)

The condition that (3.41) has a nontrivial solution can be used to determine
the resonant frequencies. Numerical discretization of (3.41) is straightfor-
ward (Geyi and Hongshi, 1988a). Evidently any resonant frequencies of
(3.1) satisfy the integral equation (3.41). It can be shown that the converse
is also true. In fact, if Js(r) is a nontrivial solution corresponding to a
frequency ω obtained from (3.41), one may construct the fields

E(r) =
∫
S

[
jωµJs(r′)G(r, r′) − ρs(r′)

ε
∇′G(r, r′)

]
dS(r′),

H(r) = −
∫
S

Js(r′) ×∇′G(r, r′)dS(r′),
(3.42)
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where r ∈ R3, ρs = ∇s ·Js/jω and ∇s denotes the surface divergence. From
the jump relations, we obtain

E+(r) = −ρs(r)
2ε

un(r) +
∫
S

[
jωµJs(r′)G(r, r′) − ρs(r′)

ε
∇′G(r, r′)

]
dS(r′),

E−(r) =
ρs(r)
2ε

un(r) +
∫
S

[
jωµJs(r′)G(r, r′) − ρs(r′)

ε
∇′G(r, r′)

]
dS(r′),

H+(r) = −1
2
Js(r) × un(r) −

∫
S

Js(r′) ×∇′G(r, r′)dS(r′),

H−(r) =
1
2
Js(r) × un(r) −

∫
S

Js(r′) ×∇′G(r, r′)dS(r′),

where + and − denote the limit value from inside V and outside V

respectively. These equations imply

E+(r) − E−(r) = −ρs(r)
ε

un(r), (3.43)

un(r) × H+(r) = 0, r ∈ S. (3.44)

It is easy to show that the fields defined by (3.42) satisfy the Maxwell
equations in whole space and the radiation condition at infinity. From (3.44)
and the uniqueness theorem of Maxwell equations, the electromagnetic
fields defined by (3.42) are zero outside Ω. Therefore, we have E+(r) = 0,
r ∈ S and from (3.43) we obtain un(r) × E−(r) = 0, r ∈ S, which shows
that ω and the fields defined by (3.42) satisfy (3.1). Hence ω is a resonant
frequency of the cavity resonator.

3.2 Coupling between Waveguide and Cavity Resonator

The cavity resonators can be coupled to an external circuit (such as a
waveguide) through apertures, probes, loops and gaps, etc., depending on
the nature of the cavity resonator and the external circuit under consider-
ation. These couplings may change the field distribution inside the cavity
and can be investigated by the modal theory developed before. Figure 3.8
shows some typical coupling mechanisms and their equivalent circuits.

3.2.1 One-Port Microwave Network as a RLC Circuit

Consider a one-port network fed by a waveguide as shown in Figure 3.8(a).
Let Ω be the cross-section of the waveguide at a reference plane T (input
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Ω
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LC
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(a) (b)

(c) (d)

Figure 3.8 Typical coupling mechanisms and their equivalent circuits.

terminal). The cross-section Ω and the perfectly conducting wall S′ form a
closed region V bounded by S, in which the medium parameters are σ, µ, ε.
Applying the Poynting theorem to the fields in V , we obtain∫

S=Ω+S′

(E × H̄) · un dS = −j4ω(W̃m − W̃e) + 2P, (3.45)

where un is the unit outward normal to S and

W̃m =
1
4

∫
V

µ |H|2 dV , W̃e =
1
4

∫
V

ε |E|2 dV , P =
1
2

∫
V

σ |E|2 dV .

Since S′ is assumed to be a perfect conductor, we have∫
S=Ω+S′

(E × H̄) · un dS = −V Ī (3.46)

for waveguide in a single-mode state. It follows from (3.45) and (3.46) that
the input impedance of the one-port network is given by

Z =
V

I
= R+ j

(
ωL− 1

ωC

)
,

where

R =
2P
|I|2 , L =

4W̃m

|I|2 , C =
|I|2

4ω2W̃e

.
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Therefore, a one-port network is equivalent to a RLC circuit. In general
cases, the component values of the equivalent RLC circuit depend on the
frequency.

3.2.2 Properties of RLC Resonant Circuit

Let us consider a RLC circuit with constant components shown in
Figure 3.9. When the RLC circuit is at resonance the reactive part of
the input impedance vanishes. In this case, the input current reaches the
maximum for a given impressed voltage. The input impedance of the RLC
circuit can be written as

Z = R+ j

(
ωL− 1

ωC

)
.

The reactive part vanishes at the resonant frequency ωr, which is given by

ωr =
1√
LC

.

Then the input impedance can be expressed as

Z = Z0

[
∆ + j

(
ω

ωr
− ωr

ω

)]
, |Z| = Z0

[
∆2 +

(
ω

ωr
− ωr

ω

)2
]1/2

,

where

Z0 = ωrL =
1

ωrC
=

√
L

C
, ∆ =

R√
L/C

=
R

Z0
.

The magnitude of the current in response to a unit voltage is

|I| =
1
|Z| , |I|max =

1
Z0∆

.

If the input voltage is fixed, the current reaches maximum at the resonant
frequency. Note that we have assumed that all the component values are

RV

LC
I

Figure 3.9 RLC circuit.
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independent of frequency. The response of the current (the resonant curve)
drops to 1/

√
2 fraction of its maximum value when∣∣∣∣ ωωr − ωr

ω

∣∣∣∣ = ∆,

which has two solutions

ωL
ωr

= −1
2
∆ +

(
1 +

∆2

4

)1/2

,
ωH
ωr

=
1
2
∆ +

(
1 +

∆2

4

)1/2

.

The bandwidth of the resonant curve is defined by

B =
ωH − ωL

ωr
= ∆.

The stored energies in the inductor and capacitor can be written as

W̃m =
1
4
|I|2L, W̃e =

1
4
|I|2
ω2C

respectively. The quality factor at resonance is given by

Q = ωr
W̃m + W̃e

P
=

2ωrW̃m

P
=

2ωr
(1/2)|I|2maxR

1
4
L|I|2max

=
ωrL

R
=
Z0

R
=

1
∆

=
1
B
.

It will be shown in Chapter 5 that the above relationship approximately
holds for a high Q antenna. The input complex power can be expressed as

Pin =
1
2
V Ī =

1
2
|I|2Z =

1
2
|I|2
[
R− j

(
ωL− 1

ωC

)]

= PR + j2ω(W̃m − W̃e).

3.2.3 Aperture Coupling to Cavity Resonator

The electromagnetic energy may be coupled to a cavity resonator by a
waveguide through an aperture. Let Ω be the cross section of the waveguide
at z = 0 where the reference plane T (input terminal) intersects with the
waveguide, as shown in Figure 3.10. The cross section Ω and metallic wall
S′ form the cavity resonator region.

Suppose the waveguide only supports the dominant mode and the
waveguide extends to infinity in −z direction. A wave of unit amplitude
is incident from z = −∞, which excites a number of higher order modes
in the neighborhood of the reference plane. The transverse fields in the
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Figure 3.10 Coupling between waveguide and cavity resonator.

waveguide region z < 0 can be expanded as follows

−uz × E = −(e−jβ1z + Γejβ1z)uz × e1,g −
∞∑
m=2

Vm,ge
jβmzuz × em,g,

−uz × H = (e−jβ1z − Γejβ1z)Z−1
w1e1,g −

∞∑
m=2

Vm,gZ
−1
wme

jβmzem,g,

(3.47)

where the subscript g signifies the waveguide modes; Vm,g are the modal
voltages; Γ is the refection coefficient of the dominant mode at z = 0. The
fields in the cavity region z > 0 can be expanded as

E =
∑
n

kn
σ + jωε

In,ren,r,

H =
∑
n

In,rhn,r +
∑
τ

Iτ,rhτ,r,
(3.48)

where the subscript r denotes the resonator modes, and we have used (3.20).
The expansion coefficients In,r are determined by (3.20). Note that∫

S

(un × E) · hn,r dS =
∫
Ω

(un × E) · hn,r dS +
∫
S′

(un × E) · hn,r dS,

∫
S

(un × E) · hτ,r dS =
∫
Ω

(un × E) · hτ,r dS +
∫
S′

(un × E) · hτ,r dS.

Assuming that the cavity wall is a perfect conductor and making use of
(3.47), we have∫

S

(un × E) · hn,r dS =
∫
Ω

(un × E) · hn,r dS

= −(1 + Γ)
∫
Ω

uz × e1,g · hn,r dS

−
∞∑
m=2

Vm,g

∫
Ω

uz × em,g · hn,r dS,
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∫
S

(un × E) · hτ,r dS =
∫
Ω

(un × E) · hτ,r dS

= −(1 + Γ)
∫
Ω

uz × e1,g · hτ,r dS

−
∞∑
m=2

Vm,g

∫
Ω

uz × em,g · hτ,r dS.

Substituting these into (3.20), we obtain

In,r =

(
j + σ

ωε

) ∞∑
m=1

Vm,ginm

jωnµ
[

1
Qn

+ j
(
ω
ωn

− ωn

ω

)] , Iτ,r =
1
jωµ

∞∑
m=1

Vm,giτm, (3.49)

where Qn = ωnε/σ, V1,g = 1 + Γ and

inm =
∫
Ω

uz × em,g · hn,r dS, iτm =
∫
Ω

uz × em,g · hτ,r dS.

Note that the tangential magnetic field must be continuous at z = 0. Thus,
it follows from (3.47) and (3.48) that

(1 − Γ)Z−1
w1e1,g −

∞∑
m=2

Vm,gZ
−1
wmem,g

= −
∑
n

In,ruz × hn,r −
∑
τ

Iτ,ruz × hτ,r.

Multiplying both sides by e1,g respectively, and taking the integration over
the reference plane, we get

(1 − Γ)Z−1
w1 =

∑
n

In,rin1 +
∑
τ

Iτ,riτ1.

The input admittance is given by

Y =
1
Zw1

1 − Γ
1 + Γ

=
∑
n

(
j + σ

ωε

)
(in1)2

jωnµ
[

1
Qn

+ j
(
ω
ωn

− ωn

ω

)] +
∑
τ

(iτ1)2

jωµ

+
∑
n

∞∑
m=2

Vm,g
V1,g

(
j+ σ

ωε

)
inmin1

jωnµ
[

1
Qn

+ j
(
ω
ωn

− ωn

ω

)]+ 1
jωµ

∑
τ

∞∑
m= 2

Vm,g
V1,g

iτmiτ1.

(3.50)
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If only the dominant mode exists at the input terminal, this reduces to

Y =
1
Zw1

1 − Γ
1 + Γ

=
∑
n

(
j + σ

ωε

)
(in1)2

jωnµ
[

1
Qn

+ j
(
ω
ωn

− ωn

ω

)] +
∑
τ

(iτ1)2

jωµ
. (3.51)

3.2.4 Probe Coupling to Cavity Resonator

Consider a metal cavity with a perfectly conducting wall, and assume
that the medium in the cavity is homogeneous and isotropic with medium
parameters σ, µ and ε. The volume occupied by the cavity is denoted by V
and its boundary by S. If the cavity contains an impressed electric current
source J and a magnetic current source Jm representing a probe, the fields
excited by these sources satisfy the Maxwell equations in the cavity:

∇× H(r, t) = ε
∂E(r, t)
∂t

+ σE(r, t) + J(r, t),

∇× E(r, t) = −µ∂H(r, t)
∂t

− Jm(r, t),

(3.52)

with the boundary conditions un×E = 0 and un ·H = 0 on the boundary S.
Here un is the unit outward normal to the boundary. The fields inside the
cavity can be expanded in terms of its vector modal functions as follows

E(r, t) =
∑
n

Vn(t)en(r) +
∑
ν

Vν(t)eν(r),

H(r, t) =
∑
n

In(t)hn(r) +
∑
τ

Iτ (t)hτ (r),
(3.53)

∇× E(r, t) =
∑
n

hn(r)
∫
V

∇× E(r, t) · hn(r)dV

+
∑
τ

hτ (r)
∫
V

∇× E(r, t) · hτ (r)dV ,

∇× H(r, t) =
∑
n

en(r)
∫
V

∇× H(r, t) · en(r)dV

+
∑
ν

eν(r)
∫
V

∇× H(r, t) · eν(r)dV ,

(3.54)

where the subscript n denotes the vector modal functions belonging to
Category 2, and the greek subscript ν and τ for the vector modal functions
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belonging to Category 1 or 3, and

Vn(ν)(t) =
∫
V

E(r, t) · en(ν)(r)dV , In(τ)(t) =
∫
V

H(r, t) · hn(τ)(r)dV .

(3.55)

Considering the following calculations∫
V

∇× E · hn dV =
∫
V

E · ∇ × hn dV +
∫
S

(E × hn) · un dS = knVn,

∫
V

∇× E · hτ dV =
∫
V

E · ∇ × hτ dV +
∫
S

(E× hτ ) · un dS = 0,

∫
V

∇× H · en dS =
∫
V

H · ∇ × en dV +
∫
S

(H× en) · un dS = knIn,

∫
V

∇× H · eν dS =
∫
V

H · ∇ × eν dV +
∫
S

(H × eν) · un dS = 0,

(3.54) can be written as

∇× E =
∑
n

knVnhn, ∇× H =
∑
n

knInen.

Substituting the above expansions into (3.52) and equating the expansion
coefficients of the vector modal functions, we obtain

∂Vn
∂t

+
σ

ε
Vn − kn

ε
In = −1

ε

∫
V

J · en dV ,

∂Vν
∂t

+
σ

ε
Vν = −1

ε

∫
V

J · eν dV ,

∂In
∂t

+
kn
µ
Vn = − 1

µ

∫
V

Jm · hn dV ,

∂Iτ
∂t

= − 1
µ

∫
V

Jm · hτ dV .

(3.56)

From these equations, we may find that

∂2In
∂t2

+ 2γ
∂In
∂t

+ ω2
nIn = ωnS

I
n,

∂2Vn
∂t2

+ 2γ
∂Vn
∂t

+ ω2
nVn = ωnS

V
n ,

(3.57)
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where ωn = knv, v = 1/
√
µε, γ = σ/2ε and

SIn = v

∫
V

J · en dV − 1
knη

∂

∂t

∫
V

Jm · hn dV − σv

kn

∫
V

Jm · hn dV ,

SVn = − η

kn

∂

∂t

∫
V

J · en dV − v

∫
V

Jm · hn dV

where η =
√
µ/ε. The expansion coefficients In and Vn may be determined

by use of the retarded Green’s function defined by

∂2Gn(t, t′)
∂t2

+ 2γ
∂Gn(t, t′)

∂t
+ ω2

nGn(t, t
′) = −δ(t− t′),

Gn(t, t′)|t<t′ = 0.

(3.58)

The solution of (3.58) is readily found to be

Gn(t, t′) = − e−γ(t−t′)√
ω2
n − γ2

sin
√
ω2
n − γ2(t− t′)H(t− t′). (3.59)

Therefore, the general solution of In may be written as

In(t) = −
∞∫

−∞
Gn(t, t′)ωnSIn(t

′)dt′

+ e−γt
(
c1 cos

√
ω2
n − γ2t+ c2 sin

√
ω2
n − γ2t

)
, (3.60)

where c1 and c2 are two arbitrary constants. If the source is turned on at
t = 0, both Vn(0−) and In(0−) may be assumed to be zero due to causality.
Considering the third equation of (3.56), the second term of (3.60) vanishes.
Thus

In(t) =
ωn√
ω2
n − γ2

t∫
0−

e−γ(t−t′) sin
√
ω2
n − γ2(t− t′)

×

v∫

V

J · en dV − 1
knη

∂

∂t′

∫
V

Jm · hn dV − σv

kn

∫
V

Jm · hn dV

dt′.
(3.61)



January 28, 2015 11:5 Foundations for Radio Frequency Engineering - 9in x 6in b1914-ch03 page 181

Microwave Resonators 181

Similarly, we have

Vn(t) =
ωn√
ω2
n − γ2

t∫
0−

e−γ(t−t′) sin
√
ω2
n − γ2(t− t′)

×

− η

kn

∂

∂t′

∫
V

J · en dV − v

∫
V

Jm · hn dV

dt′. (3.62)

and

Vν(t) = −1
ε
e−2γt

t∫
0−

e2γt
′
dt′
∫
V

J · eν dV ,

Iτ (t) = − 1
µ

t∫
0−

dt′
∫
V

Jm · hτ dV .
(3.63)

Substituting (3.61), (3.62) and (3.63) into (3.53), we may find out the field
distributions inside the metal cavity.

Assume that the current source is sinusoidal and is turned on at t = 0

J(r, t) = J′(r)H(t) sinωt = Re
[−jJ′(r)H(t)ejωt

]
(3.64)

and Jm(r, t) = 0. It follows from (3.61)–(3.63) that

In(t) = ωnv

∫
V

J′ · en dV
[−(ω2

n − ω2) sinωt+ 2ωγ cosωt
(ω2
n − ω2)2 + 4ω2γ2

+
1
βn

−(ω2
n − ω2)ω sinβnt+ 2ωγ(βn cosωt+ γ sinβnt)

(ω2
n − ω2)2 + 4ω2γ2

e−γt
]
,

(3.65)

Vn(t) = −ηωωn
kn

∫
V

J′ · en dV
[
(ω2
n − ω2) cosωt+ 2ωγ sinωt

(ω2
n − ω2)2 + 4ω2γ2

+
1
βn

−(ω2
n − ω2)(γ sinβnt+ βn cosβnt) − 2ω2γ sinβnt

(ω2
n − ω2)2 + 4ω2γ2

e−γt
]
,

(3.66)



January 28, 2015 11:5 Foundations for Radio Frequency Engineering - 9in x 6in b1914-ch03 page 182

182 Foundations for Radio Frequency Engineering

Vν(t) = −1
ε

∫
V

J′ · eν dV
[
2γ sinωt− ω cosωt

ω2 + 4γ2
+

ωe−2γt

ω2 + 4γ2

]
,

Iτ (t) = 0.

The time-domain electromagnetic fields are given by

E(r, t) = −
∑
n

ηωωn
kn

en(r)
∫
V

J′ · en dV
[
(ω2
n − ω2) cosωt+ 2ωγ sinωt

(ω2
n − ω2)2 + 4ω2γ2

− 1
βn

(ω2
n − ω2)(γ sinβnt+ βn cosβnt) + 2ω2γ sinβnt

(ω2
n − ω2)2 + 4ω2γ2

e−γt
]

+
∑
ν

1
ε
eν(r)

∫
V

J′ · eν dV
[
ω cosωt− 2γ sinωt

ω2 + 4γ2
+

ωe−2γt

ω2 + 4γ2

]
,

(3.67)

H(r, t) =
∑
n

ωnvhn(r)
∫
V

J′ · en dV
[
(ω2
n − ω2) sinωt− 2ωγ cosωt

(ω2
n − ω2)2 + 4ω2γ2

+
1
βn

−(ω2
n − ω2)ω sinβnt+ 2ωγ(βn cosωt+ γ sinβnt)

(ω2
n − ω2)2 + 4ω2γ2

e−γt
]
.

(3.68)

Hence the response in a metal cavity resonator can be separated into the
sum of a steady-state response and a transient response if the medium is
lossy. The transient response tends to zero with increasing time. For more
details, please refer to Geyi (2008a).

Example 3.2 (loop coupling): Consider a small closed loop l of cross section
Ω0 and denote the area bounded by the loop by Sl as shown in Figure 3.11.

l 

l 

n 

l 

S

u

u

Figure 3.11 Loop coupling.
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We have∫
V

J′ · en dV =
∫
V

J′ · en dSul · dlul =
∫
Ω0

J′ · dSul

∫
l

en · dlul

= jI

∫
l

en · dlul = jI

∫
Sl

∇× en · dSun = jIkn

∫
Sl

hn · dSun,

∫
V

J′ · eν dV = 0,

where I is the current in the loop. Thus, in terms of phasor notations, the
steady state responses for the fields are

E(r) =
∑
n

jηωωnI

ω2 − ω2
n − j2ωγ

en(r)
∫
Sl

hn · dSun, (3.69)

H(r) =
∑
n

ωnωnI

ω2 − ω2
n − j2ωγ

hn(r)
∫
Sl

hn · dSun. (3.70)

The induced voltage in the loop may be calculated by

V =
∫
l

E · ul dl =
∫
Sl

∇× E · un dS = −jωµ
∫
Sl

H · un dS

=
∑
n

−jkηω2
nI

ω2 − ω2
n − j2ωγ


∫
Sl

hn · dSun




2

,

which gives

Z =
V

I
=
∑
n

ηkn
1
Qn

+ j
(
ω
ωn

− ωn

ω

)

∫
Sl

hn · dSun




2

. (3.71)

This is the input impedance of the resonator. �

3.3 Dielectric Resonator

Microwave integrated circuits often use dielectric resonators and other
open waveguide structures. A dielectric resonator is a structure of high
dielectric constant, which exhibits resonance at some frequencies like a
cavity resonator. The electromagnetic energy is confined to the resonator
region due to the high dielectric constant. This can be understood as follows.
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Let a plane wave be normally incident from upper half space of high εr to
the free space. The reflection coefficient at the interface is

R =
√
εr − 1√
εr + 1

.

As εr → ∞, we have R → 1. In this case, total reflection occurs and
all energy is confined in the high dielectric constant region. The dielectric
resonators are widely used in the design of filters, oscillators and antennas.
The Q factor is an important figure of merit for the dielectric resonator,
which can be expressed as

Q =
ωW̃

P
=

1
tan δ

where W̃ is the stored energy in the dielectric resonator, P is power
dissipation, ω is resonant radian frequency, and tan δ = σ/ωεrε0 is the
loss tangent.

3.3.1 Representation of the Fields in a Cylindrical System

In a source-free region, the electromagnetic fields may be represented by
two scalar functions. We may let v3 = z, h3 = 1 in an arbitrary curvilinear
coordinate system (v1, v2, v3) with metric coefficients (h1, h2, h3) to obtain
a cylindrical system (v1, v2, z) with ∂h1,2

∂z
= 0. Assume that the fields in the

cylindrical system have a z-dependence of the form e−γz. For TE wave, all
the field components may be expressed in terms of longitudinal magnetic
field Hz as

E1 = − jωµ

h2(k2 + γ2)
∂Hz

∂v2
, E2 =

jωµ

h1(k2 + γ2)
∂Hz
∂v1

, Ez = 0,

H1 =
1

h1(k2 + γ2)
∂2Hz
∂v1∂z

, H2 =
1

h2(k2 + γ2)
∂2Hz

∂v2∂z
.

(3.72)

For TM wave, all the field components may be expressed in terms of
longitudinal electric field Ez as

E1 =
1

h1(k2 + γ2)
∂2Ez
∂v1∂z

, E2 =
1

h2(k2 + γ2)
∂2Ez
∂v2∂z

,

H1 =
jωε

h2(k2 + γ2)
∂Ez
∂v2

, H2 = − jωε

h1(k2 + γ2)
∂Ez
∂v1

, Hz = 0.
(3.73)
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Note that both the field components Ez and Hz satisfy the Helmholtz
equation

(∇2 + k2)

(
Ez

Hz

)
= 0.

3.3.2 Circular Cylindrical Dielectric Resonator — Mixed
Magnetic Wall Model

A circular cylindrical dielectric resonator of radius a and height L is shown
in Figure 3.12. The origin of the circular cylindrical coordinate system
is chosen at the center of the resonator. The dielectric resonator may be
analyzed by using the mixed magnetic wall model introduced by Cohn
(1968), in which the cylindrical surface {ρ = a,−∞ < z <∞} is assumed to
be a perfect magnetic wall. The two air-filled hollow waveguides |z| > L/2
operate below the cut-off frequencies so that the fields decay exponentially
in the z-direction away from each end of the dielectric resonator.

3.3.2.1 TE Modes

The TE modes in the circular cylindrical system enclosed by the magnetic
wall may be determined from the longitudinal magnetic field componentHz.

Magnetic wall

x

y

a

L

Figure 3.12 Circular cylindrical dielectric resonator.
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We may write

Hz1 = AmJm(kcρ)
(

cosmϕ
sinmϕ

)
cos(βz + ψ), |z| < L

2
,

Hz2 = BmJm(kcρ)
(

cosmϕ
sinmϕ

)
e−α(|z|−L/2), |z| > L

2
,

where

β2 = εrk
2
0 − k2

c , α2 = k2
c − k2

0, k2
0 = ω2µ0ε0,

and kc is the separation constant. The magnetic field component Hz must
vanish on the magnetic wall ρ = a, which yields

Jm(kca) = 0.

Thus the cut-off wavenumbers are given by

kcmn =
χmn

a
,

where χmn are the nth zeros of the Bessel functions of the first kind of
order m. The tangential fields Eρ, Hϕ must be continuous at the interface
|z| = L/2. Equivalently

Hz1 = Hz2,
∂Hz1

∂z
=
∂Hz2
∂z

, z = ±L
2
.

These conditions can be met by requiring

Am cos
(
βL

2
+ ψ

)
= Bm, Amβ sin

(
βL

2
+ ψ

)
= αBm,

which yield

β tan
(
βL

2
+ ψ

)
= α. (3.74)

Considering the symmetry of the structure, Hz must be either symmetrical
or asymmetrical about the plane z = 0. Thus we have

ψ = −pπ
2
, p = 0, 1, 2, . . . .

and (3.74) becomes

βL = pπ + 2 arctan
α

β
= (p+ δ)π, (3.75)
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where δ = 2
π arctan α

β with 0 < δ < 1. The TE modes in the circular
cylindrical dielectric resonator are called TEmn(p+δ) modes, and the lowest
mode is TE01δ . Equation (3.75) can be written as√

εrk2
0 − k2

cL = pπ + 2 arctan

√
k2
c − k2

0√
εrk2

0 − k2
c

. (3.76)

This can be used to determine the resonant frequencies of the TEmn(p+δ)

modes.

3.3.2.2 TM Modes

For the TM modes, we may write

Ez1 = AmJm(kcρ)
(

cosmϕ
sinmϕ

)
cos(βz + ψ), |z| < L

2
,

Ez2 = BmJm(kcρ)
(

cosmϕ
sinmϕ

)
e−α(|z|−L/2), |z| > L

2
.

The condition that the derivative ∂Ez/∂ρ must vanish on the magnetic wall
leads to

J ′
m(kca) = 0.

Hence, the cut-off wavenumbers are

kcmn =
χ′

mn

a
,

where χ′
mn are the nth zeros of the derivative of the Bessel functions of

the first kind of mth order, i.e., J ′
m(χ′

mn) = 0. The tangential fields Eρ, Hϕ

must be continuous at the interface |z| = L/2. Equivalently

εrEz1 = Ez2,
∂Ez1
∂z

=
∂Ez2
∂z

, z = ±L
2
.

From the above equations, we obtain

Amεr cos
(
βL

2
+ ψ

)
= Bm,

Amβ sin
(
βL

2
+ ψ

)
= αBm.

Thus

β tan
(
βL

2
+ ψ

)
= εrα. (3.77)
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Similarly, we may let

ψ = −pπ
2
, p = 0, 1, 2, . . . .

It follows from (3.77) that

βL = pπ + 2 arctan
εrα

β
= (p+ δ)π, (3.78)

where δ = 2
π arctan εrα

β with 0 < δ < 1. The TM modes in the circular
cylindrical dielectric resonator are called TMmn(p+δ) modes and the lowest
mode is TM11δ.

3.3.3 Integral Equation for Dielectric Resonators

It will be assumed that the dielectric resonator with medium parameters µ
and ε is finite and homogeneous, which occupies the region V bounded by
S, as shown in Figure 3.13. The total fields outside and inside the resonator
can be represented respectively by

E(r) = −
∫
S

jωµ0G0(r, r′)Js(r′)dS(r′) −
∫
S

Jms(r′) ×∇′G0(r, r′)dS(r′)

− 1
jωε0

∫
S

∇′
s · Js(r′)∇′G0(r, r′)dS(r′),

H(r) = −
∫
S

jωε0G0(r, r′)Jms(r′)dS(r′) +
∫
S

Js(r′) ×∇′G0(r, r′)dS(r′)

− 1
jωµ0

∫
S

∇′
s · Jms(r′)∇′G0(r, r′)dS(r′),

nu

S 
V 

,′ ′E H ,E H

Figure 3.13 An arbitrary dielectric resonator.
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and

E′(r) =
∫
S

jωµJs(r′)G(r, r′)dS(r′) +
∫
S

Jms(r′) ×∇′G(r, r′)dS(r′)

+
1
jωε

∫
S

∇′
s · Js(r′)∇′G(r, r′)dS(r′),

H′(r) =
∫
S

jωεJms(r′)G(r, r′)dS(r′) −
∫
S

Js(r′) ×∇′G(r, r′)dS(r′)

+
1
jωµ

∫
S

∇′
s · Jms(r′)∇′G(r, r′)dS(r′).

Here

G0(r, r′) =
e−jk0|r−r′|
4π |r − r′| , G(r, r′) =

e−jk|r−r′|
4π |r− r′| ,

Js = un × H = un × H′, Jms = −un × E = −un × E′,

k0 = ω
√
µ0ε0, k = ω

√
µε,

where use is made of the fact that the tangential components of the total
fields must be continuous across S

(un × E)+ = (un × E′)−, (un × H)+ = (un × H′)−. (3.79)

If the observation point r approaches to a point of S and the jump relations
are used, we obtain

E(r) =
1
2
un(r) × Jms(r) − 1

j2ωε0
un(r)∇s · Js(r)

−
∫
S

jωµ0G0(r, r′)Js(r′)dS(r′) −
∫
S

Jms(r′) ×∇′G0(r, r′)dS(r′)

− 1
jωε0

∫
S

∇′
s · Js(r′)∇′G0(r, r′)dS(r′),

H(r) = −1
2
un(r) × Js(r) − 1

j2ωµ0
un(r)∇s · Jms(r)

−
∫
S

jωε0G0(r, r′)Jms(r′)dS(r′) +
∫
S

Js(r′) ×∇′G0(r, r′)dS(r′)

− 1
jωµ0

∫
S

∇′
s · Jms(r′)∇′G0(r, r′)dS(r′),



January 28, 2015 11:5 Foundations for Radio Frequency Engineering - 9in x 6in b1914-ch03 page 190

190 Foundations for Radio Frequency Engineering

E′(r) =
1
2
un(r) × Jms(r) − 1

j2ωε
un(r)∇s · Js(r)

+
∫
S

jωµJs(r′)G(r, r′)dS(r′) +
∫
S

Jms(r′) ×∇′G(r, r′)dS(r′)

+
1
jωε

∫
S

∇′
s · Js(r′)∇′G(r, r′)dS(r′),

H′(r) = −1
2
un(r) × Js(r) − 1

j2ωµ
un(r)∇s · Jms(r)

+
∫
S

jωεJms(r′)G(r, r′)dS(r′) −
∫
S

Js(r′) ×∇′G(r, r′)dS(r′)

+
1
jωµ

∫
S

∇′
s · Jms(r′)∇′G(r, r′)dS(r′).

Multiplying these equations vectorially by un yields

−1
2
ε0Jms(r) = −un(r) ×

∫
S

jωµ0ε0G0(r, r′)Js(r′)dS(r′)

−un(r) ×
∫
S

Jms(r′) × ε0∇′G0(r, r′)dS(r′)

− 1
jω

un(r) ×
∫
S

∇′
s · Js(r′)∇′G0(r, r′)dS(r′), (3.80)

1
2
µ0Js(r)(r) = −un(r) ×

∫
S

jωµ0ε0G0(r, r′)Jms(r′)dS(r′)

+un(r) ×
∫
S

Js(r′) × µ0∇′G0(r, r′)dS(r′)

− 1
jω

un(r) ×
∫
S

∇′
s · Jms(r′)∇′G0(r, r′)dS(r′), (3.81)
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−1
2
εJms(r) = un(r) ×

∫
S

jωµεJs(r′)G(r, r′)dS(r′)

+un(r) ×
∫
S

Jms(r′) × ε∇′G(r, r′)dS(r′)

+
1
jω

un(r) ×
∫
S

∇′
s · Js(r′)∇′G(r, r′)dS(r′), (3.82)

1
2
µJs(r) = un(r) ×

∫
S

jωµεJms(r′)G(r, r′)dS(r′)

−un(r) ×
∫
S

Js(r′) × µ∇′G(r, r′)dS(r′)

+
1
jω

un(r) ×
∫
S

∇′
s · Jms(r′)∇′G(r, r′)dS(r′). (3.83)

Adding (3.80) and (3.82) gives

− 1
2
(ε0 + ε)Jms(r) + jun(r) ×

∫
S

[
k2
0G0(r, r′) − k2G(r, r′)

] 1
ω

Js(r′)dS(r′)

+un(r) ×
∫
S

Jms(r′) × [ε0∇′G0(r, r′) − ε∇′G(r, r′)]dS(r′)

+
1
jω

un(r) ×
∫
S

∇′
s · Js(r′) [∇′G0(r, r′) −∇′G(r, r′)]dS(r′) = 0.

(3.84)

Adding (3.81) and (3.83) gives

1
2
(µ0 + µ)Js(r) + jun(r) ×

∫
S

[
k2
0G0(r, r′) − k2G(r, r′)

] 1
ω

Jms(r′)dS(r′)

+un(r) ×
∫
S

Js(r′) × [µ∇′G(r, r′) − µ0∇′G0(r, r′)]dS(r′)

+
1
jω

un(r) ×
∫
S

∇′
s · Jms(r′) [∇′G0(r, r′) −∇′G(r, r′)]dS(r′) = 0.

(3.85)
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Making use of the relation
∫
S
∇s · F(r)dS(r) = 0 for an arbitrary vector

field F(r), the last integral in (3.84) and (3.85) may be written as∫
S

∇′
s · Js(r′) [∇′G0(r, r′) −∇′G(r, r′)]dS(r′)

= −∇
∫
S

∇′
s · Js(r′) [G0(r, r′) −G(r, r′)]dS(r′)

= −
∫
S

[Js(r′) · ∇′]∇′ [G0(r, r′) −G(r, r′)]dS(r′).

Therefore, (3.84) and (3.85) become

− 1
2
(ε0 + ε)Jms(r) + jun(r) ×

∫
S

[
k2
0G0(r, r′) − k2G(r, r′)

] 1
ω

Js(r′)dS(r′)

+un(r) ×
∫
S

Jms(r′) × [ε0∇′G0(r, r′) − ε∇′G(r, r′)]dS(r′)

− 1
jω

un(r) ×
∫
S

[Js(r′) · ∇′] [∇′G0(r, r′) −∇′G(r, r′)]dS(r′) = 0,

(3.86)
1
2
(µ0 + µ)Js(r) + jun(r) ×

∫
S

[
k2
0G0(r, r′) − k2G(r, r′)

] 1
ω

Jms(r′)dS(r′)

+un(r) ×
∫
S

Js(r′) × [µ∇′G(r, r′) − µ0∇′G0(r, r′)]dS(r′)

− 1
jω

un(r) ×
∫
S

[Jms(r′) · ∇′] [∇′G0(r, r′) −∇′G(r, r′)]dS(r′) = 0.

(3.87)

Equations (3.86) and (3.87) are the integral equations for an arbitrary
dielectric resonator, and may be rewritten as

− 1
2

(
k0

η0
+
k

η

)
Jms(r) + jun(r) ×

∫
S

[
k2
0G0(r, r′) − k2G(r, r′)

]
Js(r′)dS(r′)

+un(r) ×
∫
S

Jms(r′) ×
[
k0

η0
∇′G0(r, r′) − k

η
∇′G(r, r′)

]
dS(r′)

− 1
j
un(r) ×

∫
S

[Js(r′) · ∇′] [∇′G0(r, r′) −∇′G(r, r′)]dS(r′) = 0, (3.88)
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1
2

(k0η0 + kη)Js(r) + jun(r) ×
∫
S

[
k2
0G0(r, r′) − k2G(r, r′)

]
Jms(r′)dS(r′)

+un(r) ×
∫
S

Js(r′) × [kη∇′G(r, r′) − k0η0∇′G0(r, r′)]dS(r′)

− 1
j
un(r) ×

∫
S

[Jms(r′) · ∇′] [∇′G0(r, r′) −∇′G(r, r′)]dS(r′) = 0,

(3.89)

where η0 =
√
µ0/ε0, η =

√
µ/ε. The integral equations (3.88) and (3.89)

can be used to determine the resonant frequencies of an arbitrary dielectric
resonator (Geyi and Hongshi, 1988b).

3.4 Microstrip Resonators

A microstrip resonator consists of a metallic patch on a grounded dielectric
substrate, as shown in Figure 3.14. It has found wide applications in filters,
oscillators, mixers, and circulators, and can also be used as an antenna. The
microstrip resonator can be analyzed by using the magnetic wall model.
We use the rectangular microstrip resonator as an example to illustrate the
procedure.

The magnetic wall model is based on the assumption that all the
side faces of the rectangular microstrip resonator are magnetic walls while
the top and the bottom faces are electric walls, as shown in Figure 3.15.
The width and length of the rectangular patch are denoted by W and L,
respectively. The height h of the substrate of relative dielectric constant εr
is assumed to be much smaller than a wavelength. In this case, the field
inside the resonator is basically a TM wave with respect to y direction, and
we have Ey �= 0, Hy = 0 and the fields are independent of y. As a result,
we have

Hx = −j ωε
k2

∂Ey
∂z

, Hz = j
ωε

k2

∂Ey
∂x

Ground Ground

Substrate

Rectangular patch Circular patch

Figure 3.14 Rectangular microstrip resonator and circular microstrip disk resonator.
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Electric wall

Magnetic wall

y

z

L

W

x

Figure 3.15 Magnetic wall model for the rectangular microstrip resonator.

with Ex = Ez = Hy = 0. The normal derivative of Ey on the magnetic
walls must be zero and this leads to

Ey = Amn cos
(mπ
W

x
)

cos
(nπ
L
z
)
, m, n = 0, 1, 2, . . . ,

where m and n are not zero simultaneously. The resonant wavenumbers are

km0n =

√(mπ
W

)2

+
(nπ
L

)2

,

and the resonant frequencies are given by

f0 =
c

2
√
εr

√(mπ
W

)2

+
(nπ
L

)2

,

where c = 1/
√
µ0ε0.

3.5 Open Resonators

Dicke (1958), Prokhorov (1958), and Schawlow and Townes (1958) indepen-
dently proposed to use the Fabry–Perot interferometer as a laser resonator
(Fabry and Perot, 1899). An open resonator in its simplest form consists
of two mirrors facing each other, between which the field is reflected back
and forth to form a standing wave. The open resonators are widely used in
microwave and optical frequency range as an oscillatory system. The theory
of the open resonator has been investigated by many researchers (Fox and
Li, 1961; Kogelnik and Li, 1966).

3.5.1 Paraxial Approximations

The coherent radiation generated by lasers or masers operating in the
optical or infrared wavelength regions usually appears as a beam whose
transverse extent is large compared to the wavelength. The properties
of such beam in the resonant structure have been studied extensively
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(Boyd and Gordon, 1961; Goubau and Schwering, 1961). A laser beam
is very similar to a plane wave but its transverse amplitude distribution is
not uniform and is concentrated near the axis of propagation with phase
front being slightly curved. A component φ of the electromagnetic fields
satisfies the Helmholtz equation

(∇2 + k2)φ(x, y, z) = 0, (3.90)

where k is the wavenumber. The scalar wave function φ may be represented
by two dimensional Fourier transform as follows

φ(x, y, z) =

∞∫
−∞

∞∫
−∞

φ̃(kx, ky, z)e−j(kxx+kyy)dkx dky , (3.91)

where

φ̃(kx, ky, z) =
1

(2π)2

∞∫
−∞

∞∫
−∞

φ(x, y, z)ej(kxx+kyy)dx dy (3.92)

is the spatial spectrum of the scalar wave function φ in the (x, y)-plane.
On substituting (3.91) into (3.90), we may find that the spatial spectrum
φ̃ satisfies

d2φ̃

dz2
+ (k2 − k2

x − k2
y)φ̃ = 0. (3.93)

The solution of the above equation can be written as

φ̃(kx, ky, z) = φ̃a(kx, ky)e−j
√
k2−k2

x−k2
yz, (3.94)

where φ̃a(kx, ky) is the amplitude independent of z. If the scalar wave
function φ is a spatial wave packet propagating in the z-direction of a
rectangular system, the spatial spectrum φ̃(kx, ky, z) is significant only for
|kx| � k, |ky| � k. Thus, we have

j
√
k2 − k2

x − k2
yz ≈ jkz − j

2k
(
k2
x + k2

y

)
z. (3.95)

Inserting this into (3.94) yields

φ̃(kx, ky, z) = φ̃a(kx, ky)e
j
2k

(
k2

x+k2
y

)
ze−jkz .
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Introducing the above expression into (3.91), we obtain

φ(x, y, z) = φa(x, y, z)e−jkz , (3.96)

where

φa(x, y, z) =

∞∫
−∞

∞∫
−∞

φ̃a(kx, ky)e
j
2k

(
k2

x+k2
y

)
ze−j(kxx+kyy)dkx dky (3.97)

is slowly varying amplitude with respect to the coordinate z. Note that

φ(x, y, 0) = φa(x, y, 0) =

∞∫
−∞

∞∫
−∞

φ̃a(kx, ky)e−j(kxx+kyy)dkx dky (3.98)

and this implies

φ̃a(kx, ky) =
1

(2π)2

∞∫
−∞

∞∫
−∞

φa(x, y, 0)ej(kxx+kyy)dx dy. (3.99)

Substituting (3.99) into (3.97), we obtain

φa(x, y, z) =

∞∫
−∞

∞∫
−∞

G(x − ξ, y − η)φa(ξ, η, 0)dξ dη, (3.100)

where

G(x− ξ, y − η)

=
1

(2π)2

∞∫
−∞

∞∫
−∞

exp

{
j
(
k2
x + k2

y

)
z

2k
− j [kx(x− ξ) + ky(y − η)]

}
dkx dky

=
jk

2πz
exp
{
− jk

2z
[
(x− ξ)2 + (y − η)2

]}
. (3.101)

On substituting (3.96) into (3.90), we may find the slowly varying amplitude
φa(x, y, z) satisfies the paraxial wave equation

∂2φa

∂x2
+
∂2φa

∂y2
− 2jk

∂φa

∂z
= 0, (3.102)
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which is a parabolic equation. In circular cylindrical system, the paraxial
wave equation may be written as

1
ρ

∂

∂ρ

(
ρ
∂φa

∂ρ

)
+

1
ρ2

∂2φa

∂ϕ2
− 2jk

∂φa

∂z
= 0. (3.103)

As an example, we assume that there is a point source at z = 0

φa(ξ, η, 0) = Cδ

(
ξ

a

)
δ
(η
a

)
,

where C is a constant. From (3.100), we obtain

φa(x, y, z) =
jka2

2πz
exp
(
−jk x2+y2

2z

)
,

φ(x, y, z) = C
jka2

2πz
exp
[
−jk

(
z +

x2 + y2

2z

)]
.

(3.104)

As a result of paraxial approximation, the spherical wave front generated
by a point source has been replaced by a parabolic wave front. This
approximation is appropriate when the wave varies only gradually along
the propagating axis.

Another example is to assume a plane wave with a transverse Gaussian
distribution at z = 0

φa(ξ, η, 0) = C exp
(
−ρ

2

a2

)
,

where ρ2 = x2 + y2 and a is the Gaussian beam width. Substituting this
into (3.100), we have

φa(x, y, z) = C
jk

2πz

∞∫
−∞

∞∫
−∞

e−
jk
2z [(x−ξ)2+(y−η)2]e−

ξ2+η2

a2 dξ dη

=
C

1 − jD
exp
[
− ρ2

a2(1 − jD)

]

=
C√

1 +D2
exp
[
− ρ2

a2(1 +D2)
− j

(
ρ2

a2

D

1 +D2
− arctanD

)]
,

(3.105)

whereD= 2z/(ka)2. It can be seen that the beam width a2(1+D2) increases
with the propagating distance z. The wave front distortion is also observed
as the distance z increases.
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3.5.2 Modes in Open Resonators

In rectangular coordinate system, the modal solutions of (3.102) are
given by

φamn(x, y, z) =
w0

w(z)
Hm

(√
2x

w(z)

)
Hn

(√
2y

w(z)

)
exp
[
−x

2 + y2

w2(z)

]

× exp
[
j(m+ n+ 1) arctan

(
z

z0

)
− jk

x2 + y2

2R(z)

]
, (3.106)

where Hm and Hn are Hermite polynomials of mth and nth order
respectively with m and n being non-negative integers. Other parameters
are defined by

z0 =
kw2

0

2
, w(z) = w0

(
1 +

z2

z2
0

)1/2
, R(z) = z +

z2
0

z
.

In circular cylindrical system, the modal solution of (3.103) are given by

φamn(x, y, z) =
w0

w(z)

(√
2ρ

w(z)

)m
Lnm

(√
2ρ

w(z)

)
exp
[
− ρ2

w2(z)

]

× exp
[
j(2n+m+ 1) arctan

(
z

z0

)
− jk

ρ2

2R(z)
−mϕ

]
,

(3.107)

where Lnm are the generalized Laguerre polynomials, m is an integer and
n is a non-negative integer. Lasers are often made to operate in the lowest
mode which corresponds to m = n = 0 and is called TEM00 mode. For the
lowest TEM00 mode, both (3.106) and (3.107) reduce to

φa00(x, y, z) =
w0

w(z)
exp
[
−x

2 + y2

w2(z)

]
exp
[
j arctan

(
z

z0

)
− jk

x2 + y2

2R(z)

]
.

(3.108)

Let us consider an open resonator consisting of two identical parallel square
metal plate (plane mirror) of width 2a separated by a distance 2l, as shown
in Figure 3.16. We use φ to denote either field component Ey or Ex. Then
φ satisfies (3.90) and the following boundary conditions

φ = 0, |x| ≤ a, |y| ≤ b, z = ±l. (3.109)
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o 

Figure 3.16 Parallel-plate resonator.

If the mirrors are sufficiently large compared to wavelength, the total
reflection happens for the modes of any order. The modal field inside the
open resonator can be written as sum of the modes of left-traveling and
right-traveling

φ(x, y, z) = Amnφ
a
mn(x, y, z)e−jkz +Bmnφ

a
mn(x, y,−z)ejkz.

The application of the boundary conditions (3.109) yields

φ(x, y,−l) = Amnφ
a
mn(x, y,−l)ejkl +Bmnφ

a
mn(x, y, l)e−jkl = 0,

φ(x, y, l) = Amnφ
a
mn(x, y, l)e−jkl +Bmnφ

a
mn(x, y,−l)ejkl = 0,

from which we obtain

2kl− 2(m+ n+ 1) arctan
(
l

z0

)
= πq, q = 0, 1, 2, . . . , (3.110)

where q is the number of nodes of the axial standing wave pattern. The
above equation can be used to determine the resonant frequencies of various
modes

kmnq =
πq

2l
+
m+ n+ 1

l
arctan

(
l

z0

)
. (3.111)

In the preceding discussions, the diffraction effects due to the finite size of
the mirrors have been ignored.

Mathematical analysis is as extensive as nature itself; it defines all

perceptible relations, measures times, spaces, forces, temperatures; this
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difficult science is formed slowly, but it preserves every principle which

it has once acquired; it grows and strengthens itself incessantly in the

midst of the many variations and errors of the human mind.

—Jean Baptiste Joseph Fourier

(French mathematician, 1768–1830)
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Chapter 4

Microwave Circuits

The ability to simplify means eliminating the unnecessary so that the

necessary can speak.

—Hans Hofmann (American artist, 1880–1966)

At frequencies where the wavelength is considerably larger than the greatest
dimensions of an electronic system being examined, the system can be built
with the usual lumped circuit elements such as resistors, inductors and
capacitors, and can be analyzed by the standard loop and node voltages
without considering the time delay at different points in the system. In
the microwave frequency range where the wavelength is comparable to the
largest dimensions of the system, the time delay, the wave propagation
effects, the radiation by the current distribution in the circuits, and the
effects of the distributed capacitance and inductance in the connecting
leads and terminals can no longer be ignored. As a result, the conventional
lumped circuit elements no longer behave in the desired manner as usual
and must be replaced by transmission line and waveguide components.
These distributed circuit elements may take a variety of forms and their
equivalent circuit parameters or network matrix elements may be obtained
from the field analysis.

A microwave circuit may consist of a number of distributed circuit
elements, including passive or active devices, and is usually studied by
scattering parameters. A typical microwave circuit may contain devices to
achieve various functions such as frequency conversions, impedance match-
ing, and power manipulations. In general, these devices can be classified
according to their functions as frequency-related, impedance-related and
power-related as illustrated in Table 4.1. The frequency is a fundamental
parameter in RF engineering and it determines the implementing structures
of RF circuits and the materials to be used. The frequency-related devices

201
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Table 4.1 Classification of microwave devices

Microwave devices Examples

Frequency-related
devices

Oscillators, resonators, frequency synthesizers, frequency
dividers and multipliers, mixers, filters, etc.

Impedance-related
devices

Impedance transformers, impedance matching circuits, phase
shifters, antennas, etc.

Power-related
devices

Power dividers, directional couplers, attenuators, amplifiers,
switches, etc.

Receiving 
antenna 

Low noise 
amplifier

Mixer 

Low pass filter Band pass filter 

Transmitting 
antenna 

Power 
amplifier Mixer AmplifierBand pass filter 

Oscillator 

LOf

IFfRFf  

Figure 4.1 A typical RF heterodyne transceiver.

include signal generators, frequency converters and frequency selective
circuits. The impedance is another important parameter that is used to
characterize the effects of circuits on the transmission of microwave signals.
In RF engineering, a central task is to design various matching circuits to
achieve maximum power transfer between different devices. The power is
used to measure the strength of signals and the final design target of various
microwave circuits or system is to realize optimal power transfer from one
part to another in the system.

The block diagram of a typical RF heterodyne transmitter/receiver
system is shown in Figure 4.1. The performance of this system is determined
by the power delivered to the transmitting antenna as well as the sensitivity
of the receiver, which is defined as the minimum signal level that the system



January 28, 2015 11:5 Foundations for Radio Frequency Engineering - 9in x 6in b1914-ch04 page 203

Microwave Circuits 203

can detect with acceptable signal-to-noise ratio. Most of the microwave
circuit devices contained in Figure 4.1 will be discussed in this chapter.

4.1 Circuit Theory of Transmission Lines

The transmission lines or waveguides are used to transmit microwave
signals. They are also used extensively in microwave circuit designs, such
as directional couplers, filters, and power dividers. In most practical
situations, the waveguides are in a state of single-mode operation, and can
be characterized by the conventional circuit theory of transmission lines.

4.1.1 Transmission Line Equations

In the time domain, the voltage and current along a short section of
transmission line, as shown in Figure 4.2, satisfy the transmission line
equations:

∂v(z, t)
∂z

= −Ri(z, t)− L
∂i(z, t)
∂t

,
∂i(z, t)
∂z

= −Gv(z, t) − C
∂v(z, t)
∂t

,

where R,L,G and C are the resistance, inductance, conductance and
capacitance per unit length of the transmission line respectively. For

(a)

(b)

z

i(z, t)

i(z, t)

v(z, t)

v(z, t) C z∆G z∆

i(z + ∆z, t)

i(z + ∆z, t)

v(z + ∆z, t)

v(z + ∆z, t)

z + ∆z

R z∆ L z∆

Figure 4.2 (a) A short section of transmission line. (b) Equivalent circuit.
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time-harmonic fields, these equations reduce to

dV

dz
= −IZunit,

dI

dz
= −VY unit, (4.1)

where V and I are phasors, and Zunit = R+jωL and Yunit = G+jωC are the
series impedance and shunt admittance per unit length of the transmission
line. From the above equations, we obtain

d2V

dz2
− γ2V = 0,

d2I

dz2
− γ2I = 0. (4.2)

The quantity γ =
√
ZunitYunit = α + jβ is called the propagation

constant. The solutions for the voltage and current can be obtained from
(4.1) and (4.2) as

V = V + + V − = Ae−γz +Beγz,

I = I+ − I− =
1
Z0

(Ae−γz −Beγz),
(4.3)

where V + = Ae−γz, V − = Beγz, I+ = Ae−γz/Z0, and I− = Beγz/Z0 are
the incident voltage wave, the reflected voltage wave, the incident current
wave, and the reflected current wave respectively; and

Z0 =
√
Zunit

Yunit
=
V +

I+
=
V −

I−

is called the characteristic impedance. The minus sign in front of I−

implies that the reference direction of I− is opposite that of I+. When the
time factor is restored, we have

V + = Ae−αzej(ωt−βz),

which stands for a wave moving along the positive z-direction with an
exponential damping factor determined by the attenuation constant α. The
phase velocity is the speed of points of constant phase and is given by
vp = ω/β. As a result, β = 2π/λ, where λ is the wavelength. The reflection
coefficient Γ at position z is defined by

Γ =
V −

V +
=
B

A
e2γz = ΓLe2γz,

where ΓL = B/A is the reflection coefficient at z = 0 (Figure 4.3), called the
load reflection coefficient. The input impedance at z can be obtained
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Z
,V V+ −

z l= −

LZ

I +

I −

0z =

Figure 4.3 Transmission line terminated in a load.

from (4.3)

Z =
V

I
=
V + + V −

I+ − I−
=
V +

I+

1 + V −/V +

1 − I−/I+
= Z0

1 + Γ
1 − Γ

= Z0
1 + ΓLe2γz

1 − ΓLe2γz
.

(4.4)

The reflection coefficient is

Γ =
Z − Z0

Z + Z0
. (4.5)

It follows from (4.4) and (4.5) that

Z = Z0
ZL + Z0 tanh(−γz)
Z0 + ZL tanh(−γz) . (4.6)

For a lossless transmission line, the input impedance at z = −l becomes

Z = Z0
ZL + jZ0 tan(βl)
Z0 + jZL tan(βl)

. (4.7)

Example 4.1: For the matched case: ZL = Z0, we have Z = Z0. For the
open circuit: ZL = ∞, we have Z = Z0/j tanβl. For the short circuit:
ZL = 0, we have Z = jZ0 tanβl. When l = λ/4, we have Z = Z2

0/ZL,
which is called the quarter wavelength transform. �

Remark 4.1 (TEM transmission line parameters): The circuit parameters
R,G,L,C for a TEM transmission line shown in Figure 4.4 can be deter-
mined from the field analysis. For the TEM mode in the line, the electric
field E propagating in +z-direction can be expressed as the gradient of a
scalar function φ, i.e., E = −∇φ. If the medium surrounding the conductors
has finite conductivity σm and a complex permittivity ε = ε′ − jε′′, the
charge density on the conductors can be found from the normal component
of the electric field at the surface: ρs = ε′un · E = −ε′∂φ/∂n. The total
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1Γ

lu
L

Γu
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bu 2Γ
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o 

Figure 4.4 Parameters for TEM transmission line.

charge per unit length on conductor Γ1 is

Q =
∫
Γ1

ε′un · E dΓ.

The capacitance C per unit length is then given by the ratio of the total
charge Q and the voltage V across the two conductors

C =
Q

V
=

∫
Γ1

ε′un ·E dΓ∫
L

E · ul dl . (4.8)

The total current on Γ1 is given by the line integral of the surface current
density Js = un × H as follows

I =
∫
Γ1

Js · uz dΓ =
∫
Γ1

H · uΓ dΓ =
∫
Γ1

1
η
uz × E · uΓ dΓ

=
∫
Γ1

1
η
un · E dΓ =

Q

ηε′
,

where the wave impedance of the medium can be approximated by

η =
(

µ

ε− jσm/ω

)1/2

=
(

µ

ε′ − jε′′ − jσm/ω

)1/2

≈
√
µ

ε′
. (4.9)

The characteristic impedance of the line is given by

Z0 =
V

I
=
ε′η
C
. (4.10)

The flux per unit length is (see Figure 4.4)

ψ =
∫
L

µH · ub dl =
∫
L

µ
1
η
uz × E · ub dl =

∫
L

µ
1
η
E · ul dl = µ

V

η
.
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So the inductance per unit length is

L =
ψ

I
=
µ

η

V

I
=
µ

η
Z0. (4.11)

It follows from (4.10) and (4.11) that

Z0 =

√
L

C
, µε′ =

√
LC. (4.12)

The total shunt current Is consists of a displacement current Id and a
conduction current Ic. The current leaving conductor Γ1 per unit length is

Is = Ic + Id = (σm + ωε′′)
∫
Γ1

E · un dΓ + jωε′
∫
Γ1

E · un dΓ,

where the first integral on the right gives the conduction current and
the second gives the displacement current. The total shunt admittance is
given by

Y = G+ jωC

where

G =
Ic
V

=
Ic
Id

Id
V

=
σm + ωε′′

ε′
C, C =

Id
jωV

=
ε′

V

∫
Γ1

E · un dΓ.

The series resistance R per unit length caused by the finite conductivity σ
of the conductors can be found from the following relation

1
2
|I|2R =

1
2
ReZs

∫
Γ1+Γ2

|Js|2dΓ =
1
2
ReZs

∫
Γ1+Γ2

|H|2dΓ, (4.13)

where Zs = (1 + j)/σδs is the surface impedance and δs is the skin depth.
The finite conductivity of the conductors can increase the series

inductance of the line by a small amount Lint, called internal inductance
(see Chapter 7), due to the penetration of the magnetic field into the
conductors. The inductance Lint can be evaluated from the inductive part
of the surface impedance Zs. The magnetic energy stored in Xs = ImZs is

Wm =
ImZs
4ω

∫
Γ1+Γ2

|Js|2dΓ

=
ImZs
4ω

∫
Γ1+Γ2

|H|2dΓ =
ImZs
4ω

R|I|2
ReZs

=
R|I|2
4ω

,
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where we have used (4.13). We define the inductance Lint by

Wm =
1
4
Lint|I|2,

and this gives

ωLint = R. (4.14)

In practice, we have R� ωL, which implies Lint � L. �

Example 4.2 (Coaxial line parameters): For a coaxial transmission line of
inner radius a and outer radius b, the fields for the TEM mode propagating
in +z direction are given by

E =
V

ρ ln(b/a)
uρ, H =

V

ηρ ln(b/a)
uϕ. (4.15)

where V = V0e
−jβz is the voltage wave and η is given by (4.9). The charge

on the inner conductor is

Q = ε′
2π∫
0

uρ ·Ea dϕ =
2πε′V
ln(b/a)

.

The capacitance per unit length is thus given by

C =
Q

V
=

2πε′

ln(b/a)
. (4.16)

The current is

I =

2π∫
0

H · uϕa dϕ =
2πV

η ln(b/a)
.

Hence the characteristic impedance is

Z0 =
V

I
=

η

2π
ln
b

a
. (4.17)

The flux per unit length is

ψ = µ

b∫
a

H · uϕ dρ = µ
V

η
.
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Thus the inductance per unit length is

L =
ψ

I
=

µ

2π
ln
b

a
. (4.18)

It follows from (4.16)–(4.18) that

Z0 =

√
L

C
, µε′ =

√
LC.

The shunt conductance is

G =
2π(σm + ωε′′)

ln(b/a)
. (4.19)

The series resistance R per unit length is given by

R =
ReZs
|I|2

∫
Γ1+Γ2

|H|2dΓ =
ReZs

2π
a+ b

ab
. � (4.20)

4.1.2 Smith Chart

Smith chart is a graphical representation of the input impedance of a length
of transmission line as given by (4.4) and was developed by Phillip H.
Smith (1905–1987) in 1939. It follows from (4.4) that the normalized input
impedance may be written as

z =
Z

Z0
= r + jx =

1 + Γ
1 − Γ

. (4.21)

Substituting Γ = Γr + jΓi into the above equation, we may obtain

r =
1 − Γ2

r − Γ2
i

(1 − Γr)2 + Γ2
i

, x =
2Γi

(1 − Γr)2 + Γ2
i

.

These equations can be rearranged as(
Γr − r

1 + r

)2

+ Γ2
i =

(
1

1 + r

)2

, (4.22)

(Γr − 1)2 +
(

Γi − 1
x

)2

=
(

1
x

)2

. (4.23)

Equations (4.22) and (4.23) represent two families of circles in the reflection-
coefficient plane for different values of r and x, respectively called resistant
circles and reactance circles, which are illustrated in Figure 4.5.
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Figure 4.5 Smith chart.

For convenience in using the chart, Smith chart has scales around its
periphery giving the angular rotation 2βl = 4πl/λ in terms of wavelength.
Moving away from the load (toward the generator) corresponds to going
around the chart in a clockwise direction. Some important properties of
Smith chart are summarized below:

(1) The matching point is the center of impedance chart where Γ = 0. The
open (short) circuit point corresponds to (1, 0) [or (−1, 0)] in the Smith
chart.

(2) The impedance points in the upper (or lower) half circle are inductive
(or capacitive).
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(3) The circle r = 1 passes through the matching point and divides the
chart into two regions 0 ≤ r < 1 and r > 1 and the latter lies inside
the circle r = 1.

(4) The circle x = 1 (or x = −1) divides the upper (or lower) half circle
into 0 < x < 1 (or −1 < x < 0) and x > 1 (or x < −1).

(5) For any impedance point z1 = r1 + jx1, the admittance g1 + jb1 =
1/(r1 + jx1) may be found from the value of impedance at a point
z2 = r2 + jx2, which is diametrically across from the impedance
point z1, provided that resistance r2 and reactance x2 are respectively
interpreted as conductance g1 and susceptance b1.

The last property indicates that the same Smith chart can be used for both
impedance and admittance calculations.

Example 4.3: Let a transmission line be terminated in a load impedance
z1 = 1 + j, labeled P1 in Figure 4.5. The input impedance at a distance
l = 0.176λ away from the load can be found by rotating an angle 2βl =
4π × 0.176 in a clockwise direction from P1, along a constant-radius circle
through P1. The new value of impedance is z2 = 1 − j, labeled P2 in
Figure 4.5. �

4.2 Network Parameters

When the voltages and currents are defined at the reference planes of a
microwave circuit, relations exist between the voltages and currents. For
a linear microwave circuit, these relations are characterized by impedance
or admittance matrices. In microwave engineering, the concept of power
is more fundamental than the concepts of voltage and current since the
latter are not easily measurable at microwave frequencies. For this reason,
the scattering parameters originated in the theory of transmission lines are
often introduced and are defined in such a way that the power relationship
in the circuit can be expressed in a simple and straightforward manner.
Scattering parameters exist for all linear passive time-invariant systems.

4.2.1 One-Port Network

Let us consider a one-port network with input impedance Z as shown in
Figure 4.6. The one-port network is connected to a voltage source Vs with
source impedance Zs. The incident voltage and the incident current
are defined as the terminal voltage and current when the one-port network
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I

ZV

Vs

Zs

Figure 4.6 One-port network.

is conjugately matched to the source (i.e., Z = Z̄s)

V + =
VsZ̄s

Zs + Z̄s
=

VsZ̄s
2ReZs

, I+ =
Vs

Zs + Z̄s
=

Vs
2ReZs

.

So we have V + = Z̄sI
+. In this case, the load Z receives the maximum

available power from the source, denoted PA

PA =
1
2
Re(V Ī) =

|Vs|2
8ReZs

=
|V +|2ReZs

2|Z̄s|2 .

The incident voltage and current are determined by the source only. The
source impedance Zs is called the reference impedance of the network.
In general, the input impedance Z may not be conjugately matched to
the source. The reflected voltage and the reflected current are then
defined by

V − = V − V +, −I− = I − I+.

The minus sign in front of I− implies that the reference direction of I− is
opposite the reference direction of I+. The normalized incident voltage
wave a and the normalized reflected voltage wave b are defined by

a =
V +

√
ReZs
Z̄s

, b =
V −√ReZs

Zs
,

which can also be expressed as

a = I+
√

ReZs, b = I−
√

ReZs.

Note that

PA =
1
2
|a|2. (4.24)
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The terminal voltage and current are thus given by

V = V + + V − =
1√

ReZs
(Z̄sa+ Zsb),

I = I+ − I− =
1√

ReZs
(a− b),

from which we obtain

a =
V + ZsI

2
√

ReZs
, b =

V − Z̄sI

2
√

ReZs
.

The voltage reflection coefficient and current reflection coefficient are

ΓV =
V −

V +
=
Zs(Z − Z̄s)
Z̄s(Z + Z̄s)

, ΓI =
I−

I+
=
Z − Z̄s
Z + Z̄s

.

In general, ΓV is not equal to ΓI . In microwave engineering, the reference
impedance Zs is usually assumed to be real, and so we have ΓV = ΓI . The
ratio of the normalized reflection wave and the normalized incident wave is
the reflection coefficient

Γ =
b

a
=
Z − Z̄s
Z + Z̄s

= ΓI .

Remark 4.2: In microwave engineering, the load is often connected to the
source through a waveguide (Figure 4.7). In this case, we use modal voltage
and modal current at the input terminal, which satisfy the transmission line
equation as discussed in Chapter 2

dV

dz
= −jβI(z), dI

dz
= −j β

Zw
V (z), (4.25)

I

Vs

Z

Zs

V

Figure 4.7 One-port microwave network.
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where β is the propagation constant and Zw is the wave impedance. The
solutions of (4.25) can be expressed as

V (z) = V + + V − = V +(1 + Γ),

I(z) = I+ − I− = I+(1 − Γ),
(4.26)

where the superscript “+” denotes the incident wave and the subscript “−”
denotes the reflected wave

V + = Ae−jβz, I+ =
A

Zw
e−jβz,

V − = Bejβz , I− =
B

Zw
ejβz,

and Γ is the reflection coefficient defined by

Γ =
V −

V +
.

The incident and reflected power are respectively given by

P+ =
1
2
Re(V +Ī+), P− =

1
2
Re(V −Ī−).

The input power can be written as

Pin =
1
2
Re(V Ī) = P+(1 − |Γ|2).

The input impedance is

Z =
V

I
=
V + + V −

I+ − I−
=
V +

I+

1 + V −/V +

1 − I−/I+
= Zw

1 + Γ
1 − Γ

. (4.27)

We can introduce the normalized voltage and current

v+ = V +/
√
Z0, v− = V −/

√
Z0,

i+ = I+
√
Z0, i− = I−

√
Z0,

where Z0 is a reference impedance (real), and can be chosen arbitrarily.
Thus the normalized input impedance is

z =
v

i
=
v+ + v−

i+ − i−
=
v+

i+
1 + v−/v+

1 − i−/i+
=
Zw
Z0

1 + Γ
1 − Γ

. (4.28)
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The normalized incident voltage wave and the normalized reflected voltage
wave are then defined by

a = v+, b = v−. (4.29)

We have

a =
1
2
(v + i) =

1
2
√
Z0

(V + Z0I),

b =
1
2
(v − i) =

1
2
√
Z0

(V − Z0I).

The reference impedance Z0 may be chosen as the wave impedance Zw of
the waveguide. �

Let us now consider two one-port networks, one with input impedance
Z ′ and the other with input impedance Z′′. The two networks are said to
be dual if the product of the two input impedances are a real constant,
denoted C2, and are independent of frequency

Z′Z ′′ = C2.

The series circuit and the parallel circuit shown in Figure 4.8 are dual if
Z = Y . This condition can be met if

Zi = Yi (i = 1, 2, . . . , n).

Two different ladder circuits are shown in Figure 4.9. The input impedance
of the circuit in Figure 4.9(a) may be written as a continued fraction

Z = Z1 +
1

Y2 + 1
Z3+ 1

Y4+

. . .

Zn−1 +
1
Yn

.

nY2Y1YY
nZ

2Z1Z

Z

Figure 4.8 Duality of series and parallel circuit.
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1nZ −

2nY −4Y2Y
nY

3Z1Z

Z

2nZ −

Y

nZ

1nY −3Y1Y

4Z2Z

(a) (b)

Figure 4.9 Duality of ladder circuits.

nI

nV

snZ

snV

1I

1V

1sZ

1sV

n-port
network

Figure 4.10 n-port network.

The input admittance of the ladder circuit in Figure 4.9(b) is

Y = Y1 +
1

Z2 + 1
Y3+

1
Z4+

. . .

Yn−1 +
1
Zn

.

Therefore, the two ladder circuits are dual (Z = Y ) if

Z2i = Y2i, Z2i−1 = Y2i−1 (i = 1, 2, . . .).

4.2.2 Multi-Port Network

For an n-port linear network with port number i = 1, 2, . . . , n shown in
Figure 4.10, the terminal voltages and currents are related by

[V ] = [Z][I], (4.30)
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where

[V ] =




V1

V2

...

Vn



, [I] =




I1

I2

...

In



, [Z] =




Z11 Z12 · · · Z1n

Z21 Z22 · · · Z2n

...
...

. . .
...

Zn1 Zn2 · · · Znn



,

and Zij(i, j = 1, 2, . . . , n) are called impedance parameters. It follows
from (4.30) that

Zii =
Vi
Ii

∣∣∣∣
Il=0,l �=i

, Zij =
Vi
Ij

∣∣∣∣
Il=0,l �=j

.

Hence the impedance parameters are also called open circuit para-
meters.

Similarly, we can write

[I] = [Y ][V ], (4.31)

where

[Y ] =




Y11 Y12 · · · Y1n

Y21 Y22 · · · Y2n

...
...

. . .
...

Yn1 Yn2 · · · Ynn



,

and Yij (i, j = 1, 2, . . . , n) are called admittance parameters. It follows
from (4.30) that

Yii =
Ii
Vi

∣∣∣∣
Vl=0,l �=i

, Yij =
Ii
Vj

∣∣∣∣
Vl=0,l �=j

.

Hence the admittance parameters are also called short circuit para-
meters.

For the analysis of a microwave network consisting of a cascade
connection of two-port networks, it will be convenient to introduce the
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transmission or ABCD matrix, defined by

[
V1

I1

]
=
[
A B

C D

] [
V2

I2

]
(4.32)

where

A =
V1

V2

∣∣∣∣
I2=0

, B =
V1

I2

∣∣∣∣
V2=0

, C =
I1
V2

∣∣∣∣
I2=0

, D =
I1
I2

∣∣∣∣
V2=0

.

We may introduce the normalized incident wave and reflected wave at each
port:

ai =
Vi + ZsiIi

2
√

ReZsi

, bi =
Vi − Z̄siIi

2
√

ReZsi

. (4.33)

For a linear network, the normalized reflected wave must be linearly related
to the normalized incident wave:

[b] = [S][a], (4.34)

where

[b] =




b1

b2

...

bn



, [a] =




a1

a2

...

an



, [S] =




S11 S12 · · · S1n

S21 S22 · · · S2n

...
...

. . .
...

Sn1 Sn2 · · · Snn




and Sij (i, j = 1, 2, . . . , n) are called scattering parameters. From (4.34),
we obtain

Sii =
bi
ai

∣∣∣∣
al=0,l �=i

, Sij =
bi
aj

∣∣∣∣
al=0,l �=j

.

The network parameters of some simple two-port networks are listed in
Table 4.2.

Remark 4.3: For an n-port microwave network, the reference plane of
each port is assumed to be in the single-mode region of the transmission
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Table 4.2 Network parameters of simple circuits

Circuits Notations S parameters ABCD parameters

Series impedance z =
Z

Z0

2
6664

z

2 + z

2

2 + z

2

2 + z

z

2 + z

3
7775

»
1 Z
0 1

–

Shunt impedance y =
Y

Y0

2
6664

−y
2 + y

2

2 + y

2

2 + y

−y
2 + y

3
7775

»
1 0
Y 1

–

Transmission line θ =
2πl

λg

"
0 e−jθ

e−jθ 0

# 2
664

cos θ jZ0 sin θ

j
sin θ

Z0
cos θ

3
775

Ideal transformer n =
n1

n2

2
6664
−1 − n2

1 + n2

2n

1 + n2

2n

1 + n2

1 − n2

1 + n2

3
7775

2
664
n 0

0
1

n

3
775
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line with real characteristic impedance Z0i (i = 1, 2, . . . , n). In this case,
the normalized incident wave and reflected wave at each port are defined
by

ai =
Vi + Z0iIi

2
√
Z0i

, bi =
Vi − Z0iIi

2
√
Z0i

. (4.35)

Thus

Vi =
√
Z0i(ai + bi), Ii =

1√
Z0i

(ai − bi). (4.36)

The normalized incident wave and reflected wave defined by (4.33) are a
generalized version of (4.35) for an arbitrary circuit. �

Example 4.4 (Lossless condition): Consider an n-port network, the power
delivered to the network is

P =
1
2
Re[V ]T [Ī] =

1
2
(
[a]T [ā] − [b]T [b̄]

)
=

1
2
[a]T

(
[1] − [S]T [S̄]

)
[ā].

If the network is lossless, then P = 0. This gives the lossless condition

[1] − [S]T [S̄] = 0, (4.37)

where [1] denotes the identity matrix. �

4.2.3 Foster Reactance Theorem

Let us consider a lossless one-port network consisting of a feeding waveguide
and a finite system, outside of which the electromagnetic fields are assumed
to be zero. Let the system be enclosed by a surface S which cuts the feeding
line perpendicular to its axis. The intersection is denoted by Ω, as illustrated
in Figure 4.11. We may introduce the complex frequency s = α+jω so that

Ω

S

Figure 4.11 One-port network.
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the Poynting theorem in complex frequency domain can be written as

∇ ·
[
1
2
E(r, s) × H̄(r, s)

]

= −1
2
α
[
µ|H(r, s)|2 + ε|E(r, s)|2]− j

1
2
ω
[
µ|H(r, s)|2 − ε|E(r, s)|2].

(4.38)

Taking the integration of (4.38) over the connected region V bounded by
S, we obtain

∫
S

1
2
[
E(r, s) × H̄(r, s)

] · un dS
= −2α

[
Wm(s) +We(s)

]− 2jω
[
Wm(s) −We(s)

]
, (4.39)

where

Wm(s) =
1
4

∫
V

µ|H(r, s)|2dV (r), We(s) =
1
4

∫
V

ε|E(r, s)|2dV (r).

If S is big enough, the fields vanish on S except on the terminal cross-
section Ω. Thus for a single-mode feeding waveguide, we have

1
2
V (s)Ī(s) = 2α[Wm(s) +We(s)] + 2jω[Wm(s) −We(s)]. (4.40)

The impedance in the complex frequency plane can then be expressed as

Z(s) =
4α

|I(s)|2 [Wm(s) +We(s)] +
4jω

|I(s)|2 [Wm(s) −We(s)]. (4.41)

This can be rewritten as

Z(s) =
4sWm(s)
|I(s)|2 +

4s̄We(s)
|I(s)|2 . (4.42)

We may introduce a new quantity W ′
e(s) = |s|2We(s) and replace all the

complex conjugate s̄ with −s so that (4.42) becomes analytic and can be
written as

Z(s) =
4sWm(s)
I(s)I(−s) +

4s−1W ′
e(s)

I(s)I(−s) . (4.43)
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If α is assumed to be small, a Taylor series expansion may be introduced.
For an arbitrary function A(s), we have

A(s) · A(−s) = |A(jω)|2 + jαT (ω) + o(α),

where T (ω) is a real function of ω. Using the following decomposition

Z(s) = R(α, ω) + jX(α, ω), (4.44)

we may find that

R(α, ω) =
4α
|I|2 (Wm +We), X(α, ω) =

4ω(Wm −We)
|I|2 , (4.45)

where the energies and current are all calculated at α = 0. From Cauchy–
Riemann conditions, we obtain

∂X

∂ω

∣∣∣∣
α=0

=
4

|I|2 (Wm +We) > 0. (4.46)

This is the Foster reactance theorem for a lossless one-port system. The
following conclusions may be drawn from (4.46):

(1) X(ω) is a monotonically increasing with frequency.
(2) X(ω) is an odd function of frequency.
(3) The poles and zeroes of X(ω) must alternate with increasing frequency.

After passing through a pole, the function X(ω) will be negative and
then pass through zero before reaching the next pole.

(4) The poles and zeros of X(ω) are symmetrical about the origin.

These properties are illustrated in Figure 4.12. There are four possible cases
for the reactance function

(1) X(0) = −∞, X(∞) = +∞.

(2) X(0) = −∞, X(∞) = 0.
(3) X(0) = 0, X(∞) = +∞.

(4) X(0) = 0, X(∞) = 0.

As a result, the reactance function may have four different forms:

X(ω) = H
(ω2 − ω2

1)(ω2 − ω2
3) . . . (ω2 − ω2

n)
ω(ω2 − ω2

2)(ω2 − ω2
4) . . . (ω2 − ω2

n−1)
,

X(ω) = H
(ω2 − ω2

1)(ω
2 − ω2

3) . . . (ω2 − ω2
n−1)

ω(ω2 − ω2
2)(ω2 − ω2

4) . . . (ω2 − ω2
n)
,
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3ω
ω

1ω 2ω

X

(a) (b)

o o
3ω

ω
1ω 2ω

X

Figure 4.12 Reactance curves.

X(ω) = H
ω(ω2 − ω2

2)(ω2 − ω2
4) . . . (ω2 − ω2

n)
(ω2 − ω2

1)(ω2 − ω2
3) . . . (ω2 − ω2

n−1)
,

X(ω) = H
ω(ω2 − ω2

2)(ω2 − ω2
4) . . . (ω2 − ω2

n−1)
(ω2 − ω2

1)(ω2 − ω2
3) . . . (ω2 − ω2

n)
.

The input impedance of the lossless network is Z(jω) = jX(ω). Introducing
s = jω, we have

Z(s) = H
(s2 − s21)(s

2 − s23) . . . (s
2 − s2n)

s(s2 − s22)(s2 − s24) . . . (s2 − s2n−1)
,

Z(s) = H
(s2 − s21)(s

2 − s23) . . . (s
2 − s2n−1)

s(s2 − s22)(s2 − s24) . . . (s2 − s2n)
,

Z(s) = H
s(s2 − s22)(s2 − s24) . . . (s2 − s2n)
(s2 − s21)(s2 − s23) . . . (s2 − s2n−1)

,

Z(s) = H
s(s2 − s22)(s

2 − s24) . . . (s
2 − s2n−1)

(s2 − s21)(s2 − s23) . . . (s2 − s2n)
.

If we let s = σ+jω, the above expressions are then extended to the complex
frequency domain and can be written as

Z(s) =
an+1s

n+1 + an−1s
n−1 + · · · + a0

ansn + an−2sn−2 + · · · + a1s
,

Z(s) =
ans

n + an−2s
n−2 + · · · + a0

an+1sn+1 + an−1sn−1 + · · · + a1s
,
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Z(s) =
an+1s

n+1 + an−1s
n−1 + · · · + a1s

ansn + an−2sn−2 + · · · + a0
,

Z(s) =
an+1s

n + an−2s
n−2 + · · · + a1s

an+1sn+1 + an−1sn−1 + · · · + a0
.

Remark 4.4: It can be shown that the driving point immittance
(impedance or admittance) of a linear lumped one-port network is a rational
function in complex frequency domain, which is defined as the ratio of two
polynomials. The driving point immittance of a passive one-port network
is a positive real function. �

Remark 4.5: A positive real function Z(s) is defined as an analytical
function that satisfies the following conditions:

(1) Z(s) is analytic in the open right-half of the s-plane.
(2) Z(s̄) = Z̄(s) for all s in the open right-half of the s-plane.
(3) ReZ(s) ≥ 0 whenever Re s ≥ 0. �

Remark 4.6: A rational function Z(s) is positive real if and only if it
satisfies the following conditions:

(1) Z(s) is real whenever s is real.
(2) Z(s) has no poles in the open right-half of s-plane.
(3) If Z(s) has poles on jω-axis, they are simple and the residues at these

poles are real and positive.
(4) ReZ(s) ≥ 0 for all ω, except at the poles. �

4.3 Impedance Matching Circuits

Impedance matching circuits are often used to maximize the power transfer
between a signal source and a load or to minimize reflections from the
load. The concept of impedance matching has been widely used in various
situations where optimum power transmission is needed between a source
and a load.

4.3.1 Basic Concept of Match

Power transfer is maximized when source is conjugately matched to the
load. In case of resistive terminations, the source resistance must be equal
to the load resistance for maximum power transfer. In practice, terminations
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generally represent complex impedances, and their real parts may not be
equal. In this case, an impedance matching circuit is required to eliminate
the mismatch. When the real parts are equal, the matching task is to
resonate the unwanted reactance or susceptance at operating frequency.
Perfect match (zero reflection coefficient) can only be achieved at selected
single frequencies. Matching a real (resistive) source to a complex load
represents two problems:

(1) The imaginary part of the load must be tuned out.
(2) The real parts must be adjusted to have equal values.

4.3.1.1 Impedance Matching for Pure Resistances

If both terminations are resistive but unequal, an impedance transformer
is needed to assure maximum power transfer (zero reflection). This can
be achieved by an L-network design. A properly chosen two-element LC
section can always match two unequal resistive terminations. The series
element is always placed on the low impedance side, and a parallel element
is used next to the high-impedance termination, as shown in Figure 4.13.
Let us consider the case depicted in Figure 4.13(a). Under the condition of
conjugate match, we have

Rs − jXs =
jRlXp
Rl + jXp

,

which implies √
R2
s +X2

s =
RlXp√
R2
l +X2

p

. (4.47)

We introduce the quality factors

Qs =
Xs

Rs
, Qp =

Rl
Xp

,

sR

gV
lRpX

sX
lR

sR
pX

sX

gV

(a) (b)

Figure 4.13 Matching for pure resistances (Rs < Rl).
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and both quality factors should be equal under conjugate match. As a result,
(4.47) may be written as

1 +Q2 =
Rl
Rs

, (4.48)

where Q = Qs = Qp. Similar discussions hold for the case in Figure 4.13(b).
The design of the L-network can be summarized as follows:

Step 1: Add a shunt reactance (capacitor or inductor) to the larger
termination, such that

Xp =
Rl
Q
, Q =

√
Rl
Rs

− 1. (4.49)

Step 2: Add a series reactance (opposite kind of what is selected in Step 1),
to the smaller termination, such that

Xs = RsQ. (4.50)

Step 3: Compute the matching element values:

C =
1

2πfXp or s
, L =

Xp or s

2πf
. (4.51)

Example 4.5: Design an L-section that matches a 500 Ω resistive load to
a 50 Ω transmission line at 500MHz.

Solution: From (4.48)–(4.50), we obtain

Q =
√
Rl
Rs

− 1 =

√
500
50

− 1 = 3,

Xp =
Rl
Q

=
500
3

= 166.7 Ω,

Xs = RsQ = 50 × 3 = 150 Ω.

The reactance Xp is connected in parallel with the load while Xs is in series
with the transmission line. If Xp is assumed to be inductive, then Xs must
be capacitive. In this case, the component values can be calculated through
(4.51) as follows

Lp =
Xp

2πf
=

166.7
2π × 500 × 106

≈ 53 nH,

Cs =
1

2πfXs
=

1
2π × 500 × 106 × 150

= 2 pF.
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The component values can be determined similarly if Xp is assumed to be
capacitive and Xs inductive. �

4.3.1.2 Impedance Matching for Complex Loads

For two complex impedances, the matching network between them may be
first designed for two pure resistances (the real parts of the two complex
impedances). The imaginary parts can be taken into account by the
following two basic steps:

Step 1 (Absorption): Reactances of the complex impedances are absorbed
into the impedance-matching network, up to the maximums, that are equal
to the matching component values.

Step 2 (Resonance): Beyond the limits of maximum absorption, the
reactances may be resonated with an equal and opposite reactance at the
frequency of interest.

Example 4.6: Design an L-section that matches a 10 + j15 Ω load to a
50 Ω transmission line at 500MHz.

Solution: We first consider the matching between the real part of the load
and the transmission line. From (4.48)–(4.50), we obtain

Q =
√
Rl
Rs

− 1 =

√
50
10

− 1 = 2,

Xp =
Rl
Q

=
50
2

= 25 Ω,

Xs = RsQ = 10 × 2 = 20 Ω.

Therefore, the reactance Xp is connected in parallel with the transmission
line and Xs is in series with the load. If Xp is assumed to be capacitive
25 Ω, Xs must be inductive 20 Ω. The inductive reactance 15 Ω of the load
can be absorbed into Xs, and another series inductor for the remaining
X ′
s = 5 Ω is needed and its value is determined by

Ls =
X ′
s

2πf
=

5
2π × 500 × 106

≈ 1.6 nH.

The parallel capacitance is given by

Cp =
1

2πfXp
=

1
2π × 500 × 106 × 25

= 12.7 pF.
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If Xp is assumed to be inductive 25 Ω,Xs must be capacitive 20 Ω. Since the
load has a 15 Ω inductive reactance, an additional 15 Ω capacitive reactance
must be introduced. Therefore, the component values are determined by

Cs =
1

2πfXs
=

1
2π × 500 × 106 × (20 + 15)

= 9.1 pF,

Lp =
Xp
2πf

=
25

2π × 500 × 106
≈ 8 nH. �

4.3.2 Quarter-Wave Impedance Transformer

A quarter-wave impedance transformer (often written as λ/4
impedance transformer) consists of a length of transmission line or
waveguide, which is one-quarter of a wavelength long and terminated in a
real load impedance, and can be used to match a real load to a transmission
line. Consider the circuit depicted in Figure 4.14, where a transmission
line of length l at design frequency with characteristic impedance Z1 (the
transformer) is inserted between a real load ZL and a transmission line
of characteristic impedance Z0. The input impedance looking into the
impedance transformer is

Z = Z1
ZL + jZ1 tanβl
Z1 + jZL tanβl

. (4.52)

When l = λ/4 (or βl = π/2) and the matching condition Z = Z0 are
applied, we have

Z2
1 = Z0ZL, (4.53)

which determines the characteristic impedance of the transformer. Using
(4.52) and (4.53), the amplitude of the reflection coefficient at the input of

Z
z l= −

LZ

z = 0

0Z
1Z

Transformer 

Figure 4.14 Impedance transformer.
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the transformer may be written as

|Γ| =
∣∣∣∣Z − Z0

Z + Z0

∣∣∣∣ =
|ZL − Z0|√

(ZL + Z0)2 + 4Z2
1 tan2 βl

. (4.54)

When βl approaches π/2, this may be approximated by

|Γ| ≈ |ZL − Z0|
2Z1

|cosβl|. (4.55)

Remark 4.1: It is noted that the reflection coefficient at the input of an
impedance transformer of length l may be expressed as

Γ =
Γ1 + Γ2e

−j2βl

1 + Γ1Γ2e−j2βl
, (4.56)

where

Γ1 =
Z1 − Z0

Z1 + Z0
, Γ2 =

ZL − Z1

ZL + Z1
,

are called partial reflection coefficients at junctions z = −l and z = 0.
If |Γ1Γ2| � 1, (4.56) can be approximated by

Γ ≈ Γ1 + Γ2e
−j2βl, (4.57)

where the factor e−j2βl denotes the phase delay when the incident wave
travels up and down the line. �

4.3.3 Tapered Line Transformer

A uniform section of transmission line may be flared out to form a
tapered transmission line transformer as illustrated in Figure 4.15. The
tapered transmission line may be considered being made up of a number
of incremental sections of length ∆z. The incremental change of the
characteristic impedance from one section to the next is assumed to be
∆Z. The partial incremental reflection coefficient at the step z is then
given by

dΓ =
Z + dZ − Z

Z + dZ + Z
≈ dZ

2Z
=

1
2
d

dz

(
ln

Z

Z0

)
dz.
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Z dZ+
Z

z dz+zo L
z

LZ

LZ
0Z

0Z

Figure 4.15 Tapered transformer approximated by multiple uniform transmission
lines.

Making use of (4.57), the total reflection coefficient at z = 0 can be
represented by the sum of all the partial reflections with proper phase shifts

Γ =
1
2

L∫
0

e−j2βz
d

dz

(
ln

Z

Z0

)
dz. (4.58)

4.4 Passive Components

A passive component refers to a component that consumes but does
not produce energy. An electronic circuit consisting entirely of passive
components is called a passive circuit. In this section, we discuss the
basic operating principles of several commonly used passive devices.

4.4.1 Electronically Controlled Phase Shifters

A phase shifter is a microwave network which provides a controllable
shift in the phase angle of the RF signal transmitted through it. Ideal
phase shifters should be perfectly matched to the input and output lines
and should provide low insertion loss in all phase states. Phase shifters
can be controlled electrically, magnetically or mechanically. Electronically-
controlled phase shifters can be analog or digital. Analog phase shifters
provide a continuously variable phase, which can be realized with varactor
diodes that change capacitance with voltage or other nonlinear dielectrics.
Digital phase shifters provide a discrete set of phase states, which can be
realized by PIN diodes that switch circuit elements in and out of the
transmission path. Each switching operation adds or subtracts a finite
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Open circuit
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Bias current input

Bias current input

Bias circuit ground Bias circuit ground

In Out 

Figure 4.16 A switched-line phase shifter.

phase-shift increment. The digital phase shifters using PIN diodes have
the advantages of being small size, high speed and easy to be integrated
with planar circuits, and are widely used in phased arrays.

Figure 4.16 shows a simple design for the phase shifter using PIN
diodes, which switch one of two alternate transmission lines of different
length into the transmission path. The bias currents are applied to the
circuit at the midpoint of a half-wave open-circuited stub. The quarter-
wave transformer of low impedance transforms the open-circuit impedance
to a short circuit or low impedance at the midpoint, which is transformed
to high impedance by a quarter-wave transformer of high impedance to
reduce the influence on the main transmission line. The short-circuited high-
impedance quarter-wave transformers connected to the input and output
lines are used as DC return path for the bias current. The differential phase
shift between the two transmission-line sections of lengths l1 and l2 is

∆ϕ = β(l2 − l1),

where β is the propagation constant. The phase shift ∆ϕ depends on the
frequency since β is a function of frequency. For a TEM transmission line,
the phase velocity vp = ω/β is independent of frequency. This implies that
the differential time delay ∆τ = (l2 − l1)/vp is a constant, which is useful
for reducing signal distortion in broadband systems. By use of a cascade
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connection of several phase shifters, any phase shift between 0◦ and 180◦

can be obtained with a resolution equal to the smallest differential phase
shift.

4.4.2 Attenuators

An attenuator is an electronic device that reduces the power of a signal
by a predetermined ratio to prevent overloading or provide isolation with-
out appreciably distorting its waveform. Attenuators are usually passive
devices made from simple voltage divider networks. Fixed attenuators are
used when attenuation is constant. Variable attenuators are formed by
switching between different resistances and the variability can be in steps
or continuous, obtained either manually or programmably. In measuring
signals, attenuators are used to lower the amplitude of the signal a known
amount to enable measurements, or to protect the measuring device from
signal levels that might damage it.

The attenuator is a two-port device as described in Figure 4.17. The
attenuation is defined by

A(dB) = 10 log
Pin

Pout
. (4.59)

Example 4.7 (Fixed power attenuator): The fixed power attenuators may
use a Tee- or Pi-network of resistors as indicated in Figure 4.18. Let α =
10−A(dB)/10. Once the attenuation A is specified, the component values can
be determined as follows.

outPinP Attenuator

Figure 4.17 Attenuator.

pR

2sR1sR

1Z 2Z 2pR1pR

sR

1Z 2Z

Figure 4.18 Tee- and Pi configurations for attenuators.
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Tee-network:

Rp =
2
√
αZ1Z2

|α− 1| , Rs1 = Z1
α+ 1
|α− 1| −Rp, Rs2 = Z2

α+ 1
|α− 1| −Rp

Pi-network:

Rs =
|α− 1|√Z1Z2

2
√
α

, Rp1 =
(

1
Z1

α+ 1
|α− 1| −

1
Rs

)−1

,

Rp2 =
(

1
Z2

α+ 1
|α− 1| −

1
Rs

)−1

. �

4.4.3 Power Dividers and Combiners

A power divider is used to divide an input signal into two or more signals of
lesser power and may be described as a three-port network as illustrated in
Figure 4.19(a). Figure 4.19(b) shows an equal-split resistive power divider.

/ 4λ

02Z

02Z

02Z

0Z

0Z

0Z

3P

2P

1P Divider 
0 / 3Z

0 / 3Z

0 / 3Z

0Z

0Z

0Z

02Z/ 4λ

02Z 0Z
0Z

Figure 4.19 Power dividers. (a) Power divider as a three-port network. (b) An equal-
split resistive power divider. (c) An equal-split microstrip Wilkinson power divider.
(d) Equivalent circuit for Wilkinson power divider.
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It is noted that

P2 = P3 =
1
4
P1.

Therefore, half of the input power to the resistive divider is dissipated in
the resistors.

The Wilkinson power divider, first proposed by Ernest J. Wilkinson
(1960), can achieve high degree of isolation between the output ports
while maintaining a matched condition on all ports. It uses quarter-wave
transformers or lumped circuit elements (inductors and capacitors).
Figure 4.19(c) shows an equal-split Wilkinson microstrip power divider. Its
equivalent circuit is depicted in Figure 4.19(d). An ideal Wilkinson power
divider would yield

P2 = P3 =
1
2
P1.

A unique feature of the Wilkinson power divider is the use of resistor
connected between the output ports. The resistor does not consume any
power if there is no current in the resistor, which can be accomplished if
the output ports are properly loaded.

We simply note that a power combiner is the reverse of a divider, and
both use exactly the same circuits.

4.4.4 Directional Couplers

Directional couplers are most frequently constructed from two coupled
transmission lines set close enough together such that energy passing
through one is coupled to the other. They are often used to provide a
signal sample for measurement or monitoring, and can be designed by
using hollow waveguides, microstrip line or strip line. Directional couplers
are four-port networks. Figure 4.20 shows two commonly used generic
symbols for them. The waves add in phase at the coupled port and are
cancelled at the isolated port. The directional couplers are characterized
by coupling factor, directivity, isolation and insertion loss, which
are defined respectively by

C = 10 log
P1

P3
,

D = 10 log
P3

P4
,
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4P 3P
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Input port  

Figure 4.20 Two commonly used generic symbols for directional couplers.

I = 10 log
P1

P4
,

IL = 10 log
P1

P2
.

Note that all these quantities are defined as positive in dB. Microwave
engineers often present these quantities as negative numbers. The coupling
factor is a primary property of directional coupler and is related to other
quantities as follows

I = D + C (dB).

A perfectly matched directional coupler is characterized by scattering
matrix in the following form

[S] =




0 α β 0
α 0 0 −β
β 0 0 α

0 −β α 0


,

where α and β are either real or imaginary and satisfy

|α|2 + |β|2 = 1.

4.4.4.1 Hole Couplers

A hollow waveguide may be coupled to another through holes. Figure 4.21
shows two waveguides coupled together by a small hole (Bethe hole
coupler) centered at z = 0, denoted by Sa. The power is assumed to be
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Figure 4.21 A single-hole coupler.

incident at Port 1 of the upper waveguide and is coupled to the lower
waveguide through the hole. A general theory for small-hole coupling has
been presented in Section 2.4.5. The theory states that the small hole is
equivalent to a combination of radiating electric and magnetic dipoles.
Choose two cross-sectional planes z = z1 and z = z2 so that the hole
lies between z1 and z2, and only the dominant modes are present in the
regions z < z1 and z > z2. The fields E,H in the lower waveguide may be
represented in terms of the dominant vector modal function as follows

E = A1E+
1 , H = A1H+

1 , z ≥ z2,

E = B1E−
1 , H = B1H−

1 , z ≤ z1,
(4.60)

where

E+
1 = (e1 + uzez1)e−jβ1z , H+

1 = (h1 + uzhz1)e−jβ1z,

E−
1 = (e1 − uzez1)ejβ1z , H−

1 = (−h1 + uzhz1)ejβ1z,
(4.61)

with

h1 =
uz × e1

Zw1
, ez1 =

∇ · e1

jβ1
, hz1uz = −∇× e1

jβ1Zw1
.

The coefficients in (4.60) may be determined by the electric and magnetic
dipoles

A1 = −Zw1

2
[−E−

1 (0, 0) · jωp + H−
1 (0, 0) · jωµ0m

]
,

B1 = −Zw1

2
[−E+

1 (0, 0) · jωp + H+
1 (0, 0) · jωµ0m

]
.

(4.62)
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Figure 4.22 A small circular hole in broad wall of rectangular waveguide.

Let us consider two identical rectangular waveguides coupled by a small
circular hole of radius a0 in the common broad wall between the two guides
as shown in Figure 4.22. For TE10 mode, we have

e1 = −uy

√
2
ab

sin
π

a
x,

h1 = ux
1
Zw1

√
2
ab

sin
π

a
x,

hz1uz = uz
1

jβ1Zw1

π

a

√
2
ab

cos
π

a
x.

Assume that the incident dominant TE10 mode at Port 1 is of unit
amplitude. Then the electric and magnetic dipole moments may be
expressed as (see Section 7.3.2)

p = uy
4a3

0

3
ε0

√
2
ab

sin
π

a
s,

m =
8
3
a3
0

[
ux

1
Zw1

√
2
ab

sin
π

a
s+ uz

1
jβ1Zw1

π

a

√
2
ab

cos
π

a
s

]
.

(4.63)

Substituting (4.61) and (4.63) into (4.62), we obtain

A1 = −jωZw1
4a3

0

3ab
ε0 sin2 π

a
s+ jωµ0

8a3
0

3abZw1

[
sin2 π

a
s+

1
β2

1

(π
a

)2

cos2
π

a
s

]
,

(4.64)

B1 = −jωZw1
4a3

0

3ab
ε0 sin2 π

a
s− jωµ0

8a3
0

3abZw1

[
sin2 π

a
s− 1

β2
1

(π
a

)2

cos2
π

a
s

]
.

(4.65)
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Therefore, the wave excited toward Port 3 is generally different from that
excited toward Port 4. The hole couplers can be divided as forward-wave
and backward-wave couplers. For example, a backward-wave coupler is
obtained by setting the power delivered to the isolated Port 4 to zero by
letting A1 = 0

(
−ε0 +

2µ0

Z2
w1

)
sin2 π

a
s+

π2

β2
1a

2

2µ0

Z2
w1

cos2
π

a
s = 0. (4.66)

This may reduce to

sin
π

a
s = π

√
2

(2π)2 − k2a2
. (4.67)

The coupling factor and directivity are respectively given by

C = 20 log
∣∣∣∣ 1
B1

∣∣∣∣, D = 20 log
∣∣∣∣B1

A1

∣∣∣∣.
A Bethe hole coupler can be designed by first determining the hole position
through (4.67). The hole radius may be determined by the requirement of
coupling factor.

In the forward-wave coupler, the waves in both waveguides have the
same energy flow directions. The forward coupler may be realized by
introducing multiple holes, which are spaced a quarter wavelength apart
so that the reverse wave cancels out, as indicated in Figure 4.23.

4.4.4.2 Branch-Line Coupler

The branch-line coupler consists of two parallel transmission lines physically
coupled together with two or more branch lines between them. The branch

Energy flow

/4gλ  

Holes

4P  
3P  

2P  
1P  

Coupled port  

Transmitted port

Isolated port

Input port

Figure 4.23 Multihole couplers.
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/ 4gλ
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4P

Figure 4.24 Branch-line coupler.

lines are spaced a quarter wavelengths apart and can be used for 3 dB
hybrids (Figure 4.24). The scattering matrix for the branch-line coupler is

[S] =
−1√

2




0 j 1 0
j 0 0 1
1 0 0 j

0 1 j 0


.

The input power at Port 1 is evenly divided between Port 2 and Port 3
with a 90◦ phase shift. There is no output power at Port 4.

4.4.5 Filters

The study of microwave filters began in late 1920s (Mason and Sykes, 1937).
Many microwave filters were developed during World War II due to the
needs in radar and electronic counter-measures. A microwave filter is a
two-port network and is used to reject unwanted frequency components of
a signal in the stopband and enhance wanted ones within the passband.
Some typical ideal filter response curves are shown in Figure 4.25. An ideal
filter would have zero attenuation in the passband and infinite attenuation
in the stopband.

4.4.5.1 Insertion Loss

The insertion loss of a network between a source and load is defined by
(Figure 4.26)

IL = 10 log
PA
PL

(dB), (4.68)
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Figure 4.25 Typical filter response curves. (a) Low-pass filter. (b) High-pass filter.
(c) Band rejection filter. (d) Bandpass filter.

LZ

1b

1a

sZ

sV

2b

2a

Two-port network 

Figure 4.26 Insertion loss.

where PA is the available power from the source; PL is the power received
by the load. If the load is matched, (4.68) can be written as

IL = 10 log
|a1|2/2
|b2|2/2 = 10 log

1
|S21|2 . (4.69)

If the network is lossless, this can be expressed as

IL = 10 log
1

1 − |Γ|2 , (4.70)
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where Γ is the reflection coefficient at the input of the network. Since

|Γ|2 = Γ(jω)Γ̄(jω) = Γ(jω)Γ(−jω),

both |S21|2 and |Γ|2 are functions of ω2. From the relationship between the
reflection coefficient and the input impedance we may find that

|Γ|2 = Γ(jω)Γ(−jω) =
A(ω2)
B(ω2)

,

where A and B are polynomials of same order and are functions of ω2. Let
s = jω. We have

Γ(s)Γ(−s) =
G(−s2)
H(−s2) =

s2n +Gn−1s
2n−2 + · · · +G1s

2 +G0

s2n +Hn−1s2n−2 + · · · +H1s2 +H0
. (4.71)

Note that the coefficients Gi (i = 0, 1, . . . , n) and Hi (i = 0, 1, . . . , n) are
real. If we let s = σ + jω, the above expression can be extended to the
complex frequency domain. By factorization, we have

Γ(s)Γ(−s)

=
(s− sG1)(s− sG2) . . . (s− sGn)(s− s′G1)(s− s′G2) . . . (s− s′Gn)
(s− sH1)(s− sH2) . . . (s− sHn)(s− s′H1)(s− s′H2) . . . (s− s′Hn)

,

(4.72)

where {sGi|i = 1, 2, . . . , n} and {sHi|i = 1, 2, . . . , n} are respectively the
roots of the numerator and denominator of (4.71) on the left half of the
complex frequency plane; {s′Gi|i = 1, 2, . . . , n} and {s′Hi|i = 1, 2, . . . , n}
are respectively the roots of the numerator and denominator of (4.71) on the
right half of the complex frequency plane. Equation (4.72) can be written as

Γ(s)Γ(−s) =
P (s)P ′(s)
Q(s)Q′(s)

, (4.73)

where P and Q are the polynomials that have roots on the left half of the
complex frequency plane; P ′ and Q′ are the polynomials that have roots
on the right half of the complex frequency plane. Thus, we may choose

Γ(s) = ±P (s)
Q(s)

. (4.74)
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The normalized input impedance can be written as

z(s) =
1 + Γ(s)
1 − Γ(s)

=
Q(s) ± P (s)
Q(s) ∓ P (s)

.

Example 4.8: For

|Γ|2 =
ω6

ω6 + 1
,

we may write

Γ(s)Γ(−s) =
−s6

1 − s6
=
P (s)P ′(s)
Q(s)Q′(s)

.

The roots of the equation −s6 = 0 are all zero. We simply choose P (s) = s3.
The equation 1 − s6 = 0 has six roots

sn = ejn
π
3 (n = 1, 2, 3, 4, 5, 6),

where s2, s3, and s4 are on the left half of the complex frequency plane.
Hence Q(s) can be chosen as

Q(s) = (s− s2)(s− s3)(s− s4) = s3 + 2s2 + 2s+ 1.

The normalized input impedance is thus given by

z(s) =
Q(s) + P (s)
Q(s) − P (s)

=
2s3 + 2s2 + 2s+ 1

2s2 + 2s+ 1
.

This can be written as

z(s) = s+
1

2s+ 1
s+ 1

1

.

The normalized input impedance can be realized by a ladder network as
shown in Figure 4.27. �

( )z ω

1

2 1

Figure 4.27 Synthesized ladder network.
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4.4.5.2 Low-Pass Filter Prototypes

Prototype filter is used as a template, and all other filters can be derived
from it by applying a scaling factor to the components of the prototype.
Most commonly, the prototype filter is a low-pass filter. The response of an
ideal low-pass filter is shown in Figure 4.25(a), which is not practical. But
it can be approximated by various practical responses. A general expression
of the insertion loss for the low-pass prototypes can be expressed as

IL = 10 log
[
1 + P 2

n(x)
]
, (4.75)

where x = ω/ωc (called normalized frequency) and ωc is referred to as cut-
off frequency. The function Pn(x) may take various forms depending on the
specified responses. The low-pass prototypes can be realized by the ladder
networks shown in Figure 4.28. The element values gi (i = 1, 2, . . . , n)
are normalized inductance for series inductors or capacitance for shunt
capacitors and they alternate between series and shunt connections. The
element values g0 and gn+1 are normalized resistance or conductance for the
source and load respectively. The element g0 is resistance (or conductance)
if g1 is capacitance (or inductance). The element gn+1 is resistance (or
conductance) if gn is a shunt capacitor (or series inductor).

The two circuits shown in Figure 4.28 are dual of each other. Once the
element values for the prototypes are known, the practical element values

2 2L g=
0 0R g=

3 3C g=

4 4L g=

1 1C g= 5 5C g= 1ng + Load

1 1L g=

2 2C g=
0 0G g=

3 3L g=

4 4C g= 1ng + Load

(a)

(b)

Figure 4.28 Ladder networks for low-pass filter prototypes. (a) Circuit starting with
a shunt capacitor. (b) Circuit starting with a series inductor.
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can be found by scaling with respect to the source resistance Zs and the
cut-off frequency ωc as follows

(1) Resistance: R0 = g0Zs, Rn+1 = gn+1Zs.

(2) Conductance: G0 = g0
Zs
, Gn+1 = gn+1

Zs
.

(3) Inductance: Li = Zsgi

ωc
.

(4) Capacitance: Ci = gi

Zsωc
.

1. Maximally Flat Response (Butterworth Response)

The Butterworth response (Figure 4.29), proposed by Butterworth in 1930,
is defined by

IL = 10 log(1 + αx2n). (4.76)

The passband is from ω = 0 to ω = ωc. In the passband the insertion loss
increases very slowly and is flat. If the insertion loss is required to be 3 dB
at the band edge (x = 1) we have α = 1. In this case, (4.76) becomes

IL = 10 log(1 + x2n). (4.77)

For x > 1, the insertion loss increases rapidly with x. If an insertion loss
ILs is required at xs in the stopband, the minimum number n (the number
of reactive components in the prototypes or the order of the filter) is thus
given by

n =
lg[10(ILs/10) − 1]

2 lg xs
. (4.78)

3dB

ILs

IL

x = 1 sx
x

Figure 4.29 Butterworth response.
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Equation (4.77) can be extended to the complex frequency plane by letting
s = jx

IL = 10 log[1 + (−s2)n]. (4.79)

This implies

|Γ|2 =
(−s2)n

1 + (−s2)n . (4.80)

It follows that

P (s) = sn, Q(s) =
n∏
i=1

(s− si).

where si (i = 1, 2, . . . , n) are the roots of the equation 1 + (−s2)n = 0,
which are on the left half of the complex frequency plane

si = ej
2i+n−1

2n π (i = 1, 2, . . . , n). (4.81)

The normalized input impedance is thus given by

z(s) =
Q(s) − P (s)
Q(s) + P (s)

=
an−1s

n−1 + an−2s
n−2 + · · · a1s+ a0

2sn + an−1sn−1 + an−2sn−2 + · · · a1s+ a0
.

(4.82)

where

an−1 = −(s1 + s2 + · · · + sn),

an−2 = s1s2 + s2s3 + · · · ,
an−3 = s1s2s3 + s1s2s4 + · · · ,
...

a0 = (−1)ns1s2s3 · · · sn.

The normalized input impedance can be realized by the ladder networks
shown in Figure 4.28. It can be shown that the element values are

gi = 2 sin(2i− 1)
π

2n
(i = 1, 2, . . . , n). (4.83)
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Table 4.3 Element values for Butterworth prototypes (g0 = 1, ωc = 1)

n g1 g2 g3 g4 g5 g6 g7 g8 g9

1 2.000 1.000
2 1.414 1.414 1.000
3 1.000 2.000 1.000 1.000
4 0.765 1.848 1.848 0.765 1.000
5 0.618 1.618 2.000 1.618 0.618 1.000
6 0.518 1.414 1.932 1.932 1.414 0.518 1.000
7 0.445 1.247 1.802 2.000 1.802 1.247 0.445 1.000

8 0.390 1.111 1.663 1.962 1.962 1.663 1.111 0.390 1.000

The element values from (4.83) are listed in Table 4.3 for n = 1–8. Note
that the load is always unity.

Example 4.9: Design a Butterworth low-pass filter with a 3 dB cut-off
frequency fc = 1 GHz. The source resistance is Zs = 50 Ω. The insertion
loss at 1.5GHz is at least 15 dB.

Solution: It follows from (4.78) that the minimum order of the filter is

n =
lg(101.5 − 1)

2 lg 1.5
= 4.2. (4.84)

So we choose n = 5. This determines the prototype element values gi (i =
1, 2, 3, 4, 5), which can be found from Table 4.3. If Figure 4.28(a) is used as
the prototype, the filter circuit element values can be determined by scaling
as follows

R0 = g0Zs= 1 × 50 =50 Ω, R6 = g6Zs= 1 × 50 =50 Ω,

L2 =
Zsg2

ωc
=

50 × 1.618

2π × 109 = 12.87 nH, L4 =
Zsg4

ωc
=

50 × 1.618

2π × 109 = 12.87 nH,

C1 =
g1

Zsωc
=

0.618

50 × 2π × 109
=1.98 pF, C3 =

g3

Zsωc
,

C5 =
g5

Zsωc
=

0.618

50 × 2π × 109
=1.98 pF. =

2

50 × 2π × 109
= 6.37 pF,

Figure 4.30 shows the final filter circuit, which starts with a shunt capacitor
and ends with a shunt capacitor. �
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2L
0R

3C

4L

1C 5C 6R

Figure 4.30 Low-pass filter for Example 4.9.

sx

1IL

ILs

IL

x = 1
x

Figure 4.31 Chebyshev response.

2. Equal-Ripple Low-Pass Filter Response (Chebyshev Response)

The Chebyshev response (Figure 4.31) is defined by

IL = 10 log
[
1 + αT 2

n(x)
]
, (4.85)

where Tn(x) is the nth order Chebyshev polynomial, defined by

Tn(x) =

{
cos(n cos−1 x), 0 ≤ x ≤ 1

cosh(n cosh−1 x), x > 1
. (4.86)

Equivalently, the Chebyshev polynomial can be defined by

T1(x) = x, T2(x) = 2x2 − 1,

Tn(x) = 2xTn−1(x) − Tn−2(x), n > 2.
(4.87)

Since Tn(x) oscillates between ±1 in |x| < 1, the insertion loss have ripples
of amplitude IL1 = 10 log(1+α), which is the maximum insertion loss in the
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passband from ω = 0 to ω = ωc. The passband ripple level is determined
by α

α = 10IL1/10 − 1. (4.88)

In the region x > 1, the insertion loss increases rapidly with x. Similarly
if an insertion loss ILs is required at xs in the stopband, the minimum
number n of the reactive components is given by

n =
cosh−1

√
(10ILs/10 − 1)/α

cosh−1xs
. (4.89)

Equation (4.85) can be extended to the complex frequency plane by letting
s = jx

IL = 10 log
[
1 + αT 2

n(−js)]. (4.90)

It follows that

|Γ|2 =
αT 2

n(−js)
1 + αT 2

n(−js) . (4.91)

Ignoring the details of derivation, one may find that

P (s) =
n∏
i=1

(s− s′i), Q(s) =
n∏
i=1

(s− si).

Here s′i and si (i = 1, 2, . . . , n) are respectively the roots of the equation
αT 2

n(−js) = 0 and equation 1 + αT 2
n(−js) = 0 on the left half of the

complex frequency plane



s′i = j cos

(2i− 1)π
2n

si = − sinh θ2 sin
(2i− 1)π

2n
+ j cosh θ2 cos

(2i− 1)π
2n

, i = 1, 2, . . . , n

(4.92)
with

sinh θ2 =
1
2
(χ1/n − χ−1/n), cosh θ2 =

1
2
(χ1/n + χ−1/n),

χ =

√
1 +

1
α

+
1√
α
.
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The normalized input impedance is thus given by

z(s) =
Q(s) − P (s)
Q(s) + P (s)

. (4.93)

From the input impedance, the normalized element values of the ladder
networks can be determined as follows

g1 =
2a1

γ
,

gi =
4ai−1ai
bi−1gi−1

(i = 2, 3, . . . , n),

gn+1 =

{
1 (n is odd)
tanh2(β/4) (n is even) ,

(4.94)

where

β = ln
[
coth

(
IL1

17.37

)]
,

γ = sinh
(
β

2n

)
,

ai = sin
(

2i− 1
2n

π

)
(i = 1, 2, . . . , n),

bi = γ2 + sin2

(
iπ

n

)
(i = 1, 2, . . . , n).

For convenience, the element values from (4.94) are listed in Table 4.4 for
n = 1–8.

Example 4.10: Design a Chebyshev low-pass filter with a bandwidth fc =
1.9 GHz. The ripple level is 0.1 dB and the insertion loss at 2.5 GHz is at
least 30 dB. The source impedance is Zs = 50 Ω.

Solution: From (4.88) and (4.89), we may find that the minimum order
of the filter is n = 7.8. So we choose n = 8. The prototype element values
can be found from Table 4.4. If Figure 4.28(b) is used as the prototype, the
filter circuit element values can be determined by scaling as follows

G0 =
g0
Zs

=
1
50

= 0.02 �,

R9 = g9Zs = 1.355× 50 = 67.75 Ω,
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Table 4.4 Element values for Chebyshev prototypes (g0 = 1, ωc = 1)

n g1 g2 g3 g4 g5 g6 g7 g8 g9

IL1 = 0.1 dB

1 0.305 1.000
2 0.843 0.622 1.355
3 1.032 1.147 1.032 1.000
4 1.109 1.306 1.770 0.818 1.355
5 1.147 1.371 1.975 1.371 1.147 1.000
6 1.168 1.404 2.056 1.517 1.903 0.862 1.355
7 1.181 1.423 2.097 1.573 2.097 1.423 1.181 1.000
8 1.190 1.435 2.120 1.601 2.170 1.564 1.944 0.87 8 1.355

IL1 = 0.5 dB

1 0.699 1.000
2 1.403 0.707 1.984
3 1.596 1.097 1.596 1.000
4 1.670 1.193 2.366 0.842 1.984
5 1.706 1.230 2.541 1.230 1.706 1.000
6 1.725 1.248 2.606 1.314 2.476 0.870 1.984
7 1.737 1.258 2.638 1.344 2.638 1.258 1.737 1.000
8 1.745 1.265 2.656 1.359 2.696 1.339 2.509 0.880 1.984

L1 =
Zsg1
ωc

=
50 × 1.19

2π × 1.9 × 109
= 4.98 nH,

L3 =
Zsg3
ωc

=
50 × 2.12

2π × 1.9 × 109
= 8.88 nH,

L5 =
Zsg5
ωc

=
50 × 2.17

2π × 1.9 × 109
= 9.09 nH,

L7 =
Zsg7
ωc

=
50 × 1.944

2π × 1.9 × 109
= 8.14 nH,

C2 =
g2
Zsωc

=
1.435

50 × 2π × 1.9 × 109
= 2.40 pF,

C4 =
g4
Zsωc

=
1.601

50 × 2π × 1.9 × 109
= 2.68 pF,

C6 =
g6
Zsωc

=
1.564

50 × 2π × 1.9 × 109
= 2.61 pF,

C8 =
g8
Zsωc

=
0.878

50 × 2π × 1.9 × 109
= 1.47 pF.
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Note that the final filter circuit begins with a series inductor and ends with
a shunt capacitor.

4.4.5.3 Frequency Transformations

Filters are often required to operate at many other different frequency bands
(other than the low-pass filters previously studied), and they can be derived
from the prototype filters by applying a transformation to achieve high-pass,
bandpass and bandstop characteristics.

1. Low-Pass to High-Pass Transformation

We use x to denote the frequency for the low-pass prototype filter, and ω for
the high-pass filter, and their frequency responses of insertion loss are shown
in Figure 4.32. It can be seen that the response of the low-pass prototype in
the second quadrant is similar to the high-pass response. A transformation
from low-pass to high-pass may be constructed by requiring that the
insertion losses for both filters are the same at the following three frequency
points

x = −∞ ↔ ω = 0,

x = −1 ↔ ω = ω1,

x = 0 ↔ ω = ∞.

The transformation is thus given by

x = −ω1

ω
. (4.95)

1IL

IL

1ω
ω

1IL

IL

x = 1

x

(a) (b)

Figure 4.32 Low-pass to high-pass transformation.
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Applying (4.95) to the series reactances jxLi and shunt susceptances jxCi
of the prototype filter, we obtain

jxLi = −j ω1

ω
Li =

1
jωC ′

i

,

jxCi = −j ω1

ω
Ci =

1
jωL′

i

,

where C ′
i = 1

ω1Li
and L′

i = 1
ω1Ci

are the normalized capacitance and
inductance in the high-pass filter. The above analysis indicates that the
inductances and capacitances in the prototype filter have been replaced by
capacitances and inductances respectively, as illustrated in Figure 4.33. If
the source resistance is Zs, the component values can be obtained by scaling
as follows

C′
i =

1
Zsω1Li

, L′
i =

Zs
ω1Ci

. (4.96)

2. Low-Pass to Bandpass Transformation

A transformation from low-pass to bandpass may be constructed by
requiring that the insertion losses for both filters are the same at the

2L

0g

3C

4L

1C 5C

x
1ng +

ω

2C′

0g

3L ′

4C′

1L ′ 5L ′ 1ng +

(a)

(b)

Figure 4.33 Transformation from low-pass prototype filter to high-pass filter. (a) Low-
pass filter. (b) High-pass filter.
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ω
1IL

IL

1IL

IL

x
1ω 0ω 2ωx = 1x = –1

(a) (b)

Figure 4.34 Low-pass to bandpass transformation.

following five frequency points (Figure 4.34)

x = −∞ ↔ ω = 0,

x = −1 ↔ ω = ω1,

x = 0 ↔ ω = ω0,

x = 1 ↔ ω = ω2,

x = ∞ ↔ ω = ∞.

The transformation is then given by

x =
1
Bf

(
ω

ω0
− ω0

ω

)
, (4.97)

where Bf = ω2−ω1
ω0

is the fractional bandwidth of the passband. Applying
(4.97) to the series reactances jxLi and shunt susceptances jxCi of the
prototype filter, we obtain

jxLi = j
1
Bf

(
ω

ω0
− ω0

ω

)
Li = j

(
ωL′

si −
1

ωC′
si

)
,

jxCi = j
1
Bf

(
ω

ω0
− ω0

ω

)
Ci = j

(
ωC′

pi −
1

ωL′
pi

)
,

where

L′
si =

Li
Bfω0

, C′
si =

Bf
ω0Li

, C′
pi =

Ci
Bfω0

, L′
pi =

Bf
ω0Ci
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iL

piL′  

siC′siL′

iC   piC′

Figure 4.35 Transformation from low-pass prototype filter to bandpass filter.

1IL

IL

x ω
1IL

IL

1ω 0ω 2ωx = 1x = –1

(a) (b)

Figure 4.36 Low-pass to bandpass transformation.

are the normalized capacitances and inductances in the bandpass filter.
Thus the inductances and capacitances in the prototype filter have been
replaced by a series LC circuit and a shunt LC circuit respectively, as
illustrated in Figure 4.35.

3. Low-Pass to Bandstop Transformation

A transformation from low-pass to bandstop may be constructed by
requiring that the insertion losses for both filters are the same at the
following frequency points (Figure 4.36)

x = ±∞ ↔ ω = ω0,

x = −1 ↔ ω = ω2,

x = 0 ↔ ω = 0,∞,

x = 1 ↔ ω = ω1.
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The transformation is found to be

1
x

= − 1
Bf

(
ω

ω0
− ω0

ω

)
. (4.98)

Similarly, we have

jxLi = −jBf
(
ω

ω0
− ω0

ω

)−1

Li =
(

1
jωL′

si

+ jωC′
si

)−1

,

jxCi = −jBf
(
ω

ω0
− ω0

ω

)−1

Ci =

(
1

jωC ′
pi

+ jωL′
pi

)−1

,

where

L′
si =

BfLi
ω0

, C′
si =

1
Bfω0Li

, C ′
pi =

BfCi
ω0

, L′
pi =

1
Bfω0Ci

are the normalized capacitances and inductances in the bandstop filter. In
order to obtain the bandstop filter, we only need to replace the inductances
and capacitances in the prototype filter by series LC circuits as illustrated
in Figure 4.37.

4.4.5.4 Filter Implementation

The previous lumped-element filters can be realized by the distributed-
elements. Paul Richards proposed the commensurate line theory in 1948
(Richards, 1948), which can be used to replace the lumped elements

siC′

siL′

iL

iC piL′ piC′

Figure 4.37 Transformation from low-pass prototype filter to bandstop filter.
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by transmission line sections of same length with different characteristic
impedances. Richards’ theory allows a lumped-element design to be trans-
formed directly into a distributed element design by using a simple transfor-
mation, called Richards transformation. The distributed element design
resulted from Richards transformation includes series connected elements,
which are generally difficult to implement. K. Kuroda solved this problem
by introducing a set of transformations known as Kuroda’s identities,
published in Kuroda’s PhD thesis in Japanese in 1955, to eliminate the
series elements. The Richards transformation is defined by

x = tanβl = tan
(

2π
λ
l

)
= tan

(
ω

vp
l

)
, (4.99)

where β is the propagation constant, λ is the wavelength, vp is the phase
velocity and l is the length of the transmission line. If x is used as the
frequency variable, the reactance of an inductor and the susceptance of a
capacitor can thus be written as

jxL = jL tanβl, jxC = jC tanβl. (4.100)

Therefore, an inductor (or a capacitor) can be replaced with a short (or
open)-circuited stub of length βl and characteristic impedance L (or 1/C).
Let x be the normalized frequency for a low-pass filter prototype. At cut-off
frequency ωc, (4.99) becomes

x = 1 = tanβl,

which implies l = λ/8, where λ is the wavelength at the cut-off frequency ωc.
Therefore, all the inductors and capacitors in the low-pass filter prototypes
can be replaced with short-circuited and open-circuited stubs of the same
length, which is λ/8 at ωc. These lines are called commensurate lines.

Example 4.11: The low-pass filter prototype shown in Figure 4.38(a) can
be transformed to the distributed element circuit shown in Figure 4.38(b)
by using Richards transformation, where the series and shunt stubs have
the same length λ/8 at ωc. �

It is noted that the series stubs in Figure 4.38(b) are difficult to
implement in practice. In addition the distance between the two series stubs
is zero, which is also difficult to implement. To solve these problems one
can use Kuroda’s identities. One of the Kuroda’s identities is shown in
Figure 4.39, where the two circuits can be easily shown to be equivalent by
using the ABCD parameters for transmission line stubs listed in Table 4.2.
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Figure 4.38 Richards transformation. (a) Low-pass filter prototype. (b) The equiva-
lent distributed element circuit.
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Figure 4.39 Kuroda identity, n = 1 + Z02/Z01.

Now we can separate the series transmission line stubs in Figure 4.38(b)
by first adding two transmission lines of length λ/8 at ωc and characteristic
impedance Z0 = 1 as illustrated in Figure 4.40(a). This process would not
affect the performance of the filter as the two transmission lines added
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Figure 4.40 Circuit transformation by Kuroda identity. (a) Adding transmission lines.
(b) Applying Kuroda identity. (c) Final circuit after scaling. (d) Layout in microstrip.

(e) Simulated insertion loss using ADS.
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Figure 4.40 (Continued)

are matched to the load and the source. The next step is to apply the
Kuroda’s transformation shown in Figure 4.39 to the distributed circuit
in Figure 4.40(a), yielding the distributed circuit shown in Figure 4.40(b).
If the system uses 50 Ω as the reference impedance, the final circuit can
be obtained by scaling as shown in Figure 4.40(c), which can be easily
fabricated using microstrip. A typical layout is shown in Figure 4.40(d)
and the simulated insertion loss using ADS is shown in Figure 4.40(e).



January 28, 2015 11:5 Foundations for Radio Frequency Engineering - 9in x 6in b1914-ch04 page 260

260 Foundations for Radio Frequency Engineering

4.5 Active Components

RF systems require some active components that are not passive to achieve
certain functions such as amplification, detection, frequency shift and
signal generation. Diodes, transistors and tubes are the building blocks
of many active components including amplifiers, oscillators, mixers, and
detectors. For this reason, an understanding of the basic principles of these
components is needed in order to properly bias the transistor or diode to
the required operating point. From the practical point of view, the diode
or transistors can be characterized by their terminal properties, usually the
measured or manufacturer’s given two-port parameters, which can be used
as our starting point to design various active components.

Microwave components are usually assembled either as hybrid
microwave integrated circuits (MIC) or as monolithic microwave integrated
circuits (MMIC). In hybrid construction, the transmission lines and
matching networks are usually realized as microstrip circuit elements on
a substrate, and the discrete components such as chip capacitors, resistors
and transistors are connected in place by soldering or using wire-bonding
techniques. In a monolithic construction, all active devices and passive
circuit elements are fabricated in a single semiconductor crystal, and the
overall design and mask making is facilitated by the use of computer-aided
design tools.

4.5.1 Amplifiers

In many applications, a signal must be amplified to a useful level in order to
perform desired operation. In the amplifier design, the noise performance is
one of the important factors to be considered. Other system requirements
include gain, bandwidth, and input and output voltage standing wave ratio
(VSWR).

At microwave frequencies, the scattering parameters of the transistor
can be measured by placing the transistor into a test circuit with
appropriate bias. The measured scattering parameters may vary with bias
conditions, temperature, and from transistor to transistor. In practice, the
design should leave some margin for the variations of scattering parameters.

4.5.1.1 Power Gains for Two-Port Network

A general two-port network is shown in Figure 4.41. The transducer
power gain is defined as the ratio of power dissipated in the load ZL
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Figure 4.41 Two-port network.

to the available power from the source

GT =
PL
PA

, (4.101)

which depends on both Zs and ZL. The power gain is defined as the ratio
of power dissipated in the load ZL to the input power to the network

GP =
PL
Pin

, (4.102)

which is independent of the source impedance Zs. The available power
gain is defined as the ratio of the available power from the network, denoted
by P ′

A, and available power from the source

GA =
P ′
A

PA
, (4.103)

which is independent of the load impedance ZL.
The input reflection coefficient is

Γin =
b1
a1

= S11 +
S12S21ΓL
1 − S22ΓL

=
Zin − Z0

Zin + Z0
, (4.104)

where Zin is the input impedance and ΓL = a2/b2 is the reflection coefficient
of the load

ΓL =
ZL − Z0

ZL + Z0
. (4.105)

The output reflection coefficient is

Γout =
b2
a2

= S22 +
S12S21Γs
1 − S11Γs

=
Zout − Z0

Zout + Z0
, (4.106)

where Zout is the output impedance and Γs = a1/b1 is the reflection
coefficient of the source

Γs =
Zs − Z0

Zs + Z0
. (4.107)
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Note that

a1 =
V1 + Z0I1

2
√
Z0

=
Vs

2
√
Z0

Zin + Z0

Zs + Zin
=

Vs(1 − Γs)
2
√
Z0(1 − ΓinΓs)

,

b1 =
V1 − Z0I1

2
√
Z0

=
Vs

2
√
Z0

Zin − Z0

Zs + Zin
=

Vs(1 − Γs)Γin

2
√
Z0(1 − ΓinΓs)

,

b2 =
S21a1

1 − ΓLS22
=

Vs(1 − Γs)
2
√
Z0(1 − ΓinΓs)

S21

1 − ΓLS22
.

The input power to the network is thus given by

Pin =
1
2
ReV1I1 =

1
2
(|a1|2 − |b1|2) =

1
2
|a1|2(1 − |Γin|2)

=
|Vs|2|1 − Γs|2

8Z0|1 − ΓinΓs|2 (1 − |Γin|2). (4.108)

The power absorbed by the load ZL is

PL = −1
2
ReV2I2 =

1
2
(|b2|2 − |a2|2) =

1
2
|b2|2

(
1 − |ΓL|2

)

= |S21|2 |Vs|2|1 − Γs|2
8Z0|1 − ΓinΓs|2

(
1 − |ΓL|2

)
|1 − ΓLS22|2 . (4.109)

The available power from the source can be determined from Pin by letting
Zs = Z̄in or Γin = Γ̄s

PA =
|Vs|2|1 − Γs|2
8Z0(1 − |Γs|2) . (4.110)

The available power from the network can be determined from PL by letting
Zout = Z̄L or Γout = Γ̄L

P ′
A =

|Vs|2|1 − Γs|2
8Z0|1 − ΓinΓs|2ΓL=Γ̄out

|S21|2
|1 − Γ̄outS22|2

(
1 − |Γout|2

)
. (4.111)

It follows from (4.104) and (4.106) that

1 − ΓinΓs = (1 − S11Γs)
1 − ΓoutΓL
1 − S22ΓL

.
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Thus, we have

P ′
A =

|Vs|2|1 − Γs|2
8Z0

(
1 − |Γout|2

) |S21|2
|1 − ΓsS11|2 . (4.112)

Making use of the preceding results, the transducer power gain is:

GT =
PL
PA

= |S21|2
(
1 − |Γs|2

)
|1 − ΓinΓs|2

(
1 − |ΓL|2

)
|1 − ΓLS22|2 . (4.113)

Note that the transducer power gain reduces to

GT =
PL
PA

= |S21|2, (4.114)

when Γs = ΓL = 0. The power gain is

GP =
PL
Pin

=
|S21|2(1 − |ΓL|2)(

1 − |Γin|2
)|1 − ΓLS22|2

. (4.115)

The available power gain is

GA =
P ′
A

PA
=

|S21|2
(
1 − |Γs|2

)
|1 − ΓsS11|2

(
1 − |Γout|2

) . (4.116)

4.5.1.2 Stability Criteria

The conditions for the stability of a two-port network indicated in
Figure 4.41 require that the reflected power from the network ports is
smaller than the incident power, i.e.,

|Γin| =
∣∣∣∣S11 +

S12S21ΓL
1 − S22ΓL

∣∣∣∣ < 1, (4.117)

|Γout| =
∣∣∣∣S22 +

S12S21Γs
1 − S11Γs

∣∣∣∣ < 1. (4.118)

If the above conditions hold for all passive source and load impedances
(i.e., |Γs| < 1 and |ΓL| < 1), the network is said to be unconditionally
or absolutely stable. Otherwise, the input or output impedance of the
network would have a negative real part. Actually if Zin = −Rin + jXin,
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then

|Γin| =
∣∣∣∣−Rin + jXin − Z0

−Rin + jXin + Z0

∣∣∣∣ =

√
(Rin + Z0)2 +X2

in

(Rin − Z0)2 +X2
in

> 1,

and the input current is

I =
Vs

Rs −Rin + j(Xs +Xin)
.

If Rs = Rin and Xs+Xin = 0, the current I becomes infinite. In this case, a
self-sustained oscillation can be produced by the thermal noise in the input
even if Vs = 0. In general, the conditions (4.117) and (4.118) only hold for
a restricted set of values for ΓLor Γs. In this case, the network is said to
be conditionally stable. Note that if Γs = ΓL = 0, (4.117) and (4.118)
imply that

|S11| < 1, |S22| < 1. (4.119)

Therefore, the two inequalities in (4.119) are necessary if the network is
absolutely stable. The stability circles are defined as the loci in the ΓL
(or Γs) plane for which |Γin| = 1 (or |Γout| = 1), and they define the
boundaries between stable and unstable regions of ΓL and Γs. The equations

|Γin| =
∣∣∣∣S11 +

S12S21ΓL
1 − S22ΓL

∣∣∣∣ = 1,

|Γout| =
∣∣∣∣S22 +

S12S21Γs
1 − S11Γs

∣∣∣∣ = 1

can be written as

|ΓL − CL| = RL, (4.120)

|Γs − Cs| = Rs, (4.121)

where

CL =
S22 − ∆S̄11

|S22|2 − |∆|2 , RL =
∣∣∣∣ S12S21

|S22|2 − |∆|2
∣∣∣∣, (4.122)

Cs =
S11 − ∆S̄22

|S11|2 − |∆|2 , Rs =
∣∣∣∣ S12S21

|S11|2 − |∆|2
∣∣∣∣, (4.123)

∆ = S11S22 − S12S21. (4.124)
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Figure 4.42 Stability circle. (a) Origin is outside stability circle. (b) Origin is inside
stability circle.

Equations (4.120) and (4.121) define the output stability and input
stability circle respectively. Consider the output stability circle plotted in
Figure 4.42. If ΓL = 0, we have |Γin| = |S11|. If |S11| < 1 (or |S11| > 1), then
the origin ΓL = 0 must be in a stable region (or an unstable region). When
the origin ΓL = 0 is outside the stability circle, the region that is exterior
(or interior) to the stability circle and satisfies |ΓL| < 1 is the stable region
for ΓL if |S11| < 1 (or |S11| > 1). When the origin ΓL = 0 is inside the
stability circle, the region that is interior (or exterior) to the stability circle
and satisfies |ΓL| < 1 is the stable region for ΓL if |S11| < 1 (or |S11| > 1).
Similar discussions can be carried out for the input stability circle.

If the network is absolutely stable, the stability circles must be
completely outside the circle |ΓL| = 1. The necessary and sufficient
conditions for the network to be absolutely stable are given by

K =
1 − |S11|2 − |S22|2 + |∆|2

2|S12S21| > 1, |∆| < 1. (4.125)

A single sufficient condition for absolute stability is available (Edwards and
Sinksy, 1992). If the following condition is met

µ =
1 − |S11|2

|S22 − ∆S̄11| + |S12S21| > 1, (4.126)

the network is absolutely stable. Furthermore, the larger the value of µ, the
greater is the stability.
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4.5.1.3 Noise Theory for Two-Port Network

Thermal noise, also known as Johnson–Nyquist noise, after John B.
Johnson (Swedish-born American electrical engineer and physicist, 1887–
1970) and Harry T. Nyquist (Swedish-born American electrical engineer
and physicist, 1889–1976), is a random process generated by the thermal
agitation of the charge carriers (usually the electrons) inside an electrical
conductor at equilibrium, which is independent of applied voltage. For
example, the electrons in a resistor will have a random motion due to the
thermal agitation, and thus produce a random voltage across the resistor
terminals.

1. Power Spectral Density

A noisy resistor may be modeled as a noise-free resistor in series with
a noise voltage generator en(t) (Thévenin equivalent circuit) or in shunt
with a noise current source in(t) (Norton equivalent circuit) as indicated in
Figure 4.43.

Thermal noise is usually considered as a stationary ergodic random
process for which ensemble averages are equal to time averages (see
Section 8.1). The time average of the noise voltage of a resistor is defined by

en(t) = lim
T→∞

1
T

T/2∫
−T/2

en(t)dt, (4.127)

which is assumed to be zero. The correlation function of the noise voltage
is defined by

Rn(τ) = en(t+ τ)en(t) = lim
T→∞

1
T

T/2∫
−T/2

en(t+ τ)en(t)dt. (4.128)

( )ne t

R
( )

( ) n
n

e t
i t

R
= R

(a) (b)

Figure 4.43 Equivalent circuits for noise resistor. (a) Thévenin equivalent circuit.
(b) Norton equivalent circuit.
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Note that R(0) = e2n(t) represents the average noise power dissipated in a
resistor of 1Ω and is considered to have the dimension of power. The power
spectral density of the noise voltage is defined as the Fourier transform
of the correlation function

Sn(ω) =

∞∫
−∞

Rn(τ)e−jωτdτ . (4.129)

Thus

Rn(τ) =
1
2π

∞∫
−∞

Sn(ω)ejωτdω. (4.130)

Equations (4.129) and (4.130) are called Wiener–Khintchine relations.
Thermal noise is approximately white, i.e., the power spectral density

is nearly constant throughout the frequency spectrum. The power spectral
density function is an even function of ω. Thus we may write

Rn(0) =
1
2π

∞∫
−∞

Sn(ω)dω =
1
2π

∞∫
0

Sp(ω)dω, (4.131)

where Sp(ω) = 2Sn(ω)(ω > 0) is one-sided power-spectral density. For
thermal noise in a resistor, the power spectral densities for the noise voltage
and current are respectively given by Nyquist’s formulae (Nyquist, 1928)

Se(ω) = 4kTR, ω > 0, (4.132)

Si(ω) =
4kT
R

, ω > 0, (4.133)

where k = 1.38 × 10−23 J/K is the Boltzmann’s constant and T is the
absolute temperature of the resistor R.

2. Filtered Noise

Consider a two-port network connected to a voltage source V and a current
source I as shown in Figure 4.44. The input power produced by voltage
source and current source are respectively given by

P Vin =
1
2

∣∣∣∣ V

Zs + Zin

∣∣∣∣
2

Rin =
1
2
|V |2 M

4Rs
,

P Iin =
1
2

∣∣∣∣ IZs
Zs + Zin

∣∣∣∣
2

Rin =
1
2
|I|2 M

4Gs
,
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Figure 4.44 A two-port network connected to voltage and current source.

where

M =
4RsRin

|Zs + Zin|2 (4.134)

is the impedance-mismatch factor, and Rin = ReZin, Rs = ReZs. Note that
M/4Rs and M/4Gs are power transfer functions. When both the voltage
and current source are present, the input power will be

Pin =
1
2

∣∣∣∣ V + IZs
Zs + Zin

∣∣∣∣
2

Rin =
|V |2
2

M

4Rs
+

|I|2
2

M

4Gs
+ Re

(
V Ī

2
2Z̄sRin

|Zs + Zin|2
)
.

(4.135)

The last term stands for the interaction between the two sources.
Now we consider the situation when the voltage generator V and

current generator I are respectively replaced by the noise voltage source
en(t) and noise current source in(t). The cross-correlation between the
voltage source and the current source is defined by

Rx(τ) = en(t+ τ)in(t) = lim
T→∞

1
T

T/2∫
−T/2

en(t+ τ)in(t)dt. (4.136)

The cross-power spectral density is the Fourier transform of the cross-
correlation

Sx(ω) =

∞∫
−∞

Rx(τ)e−jωτdτ = Sxr (ω) + jSxi(ω).

Note that Sxr (ω) is an even function of ω and Sxi(ω) is an odd function
of ω and Sx(−ω) = S̄x(ω). The input noise power spectral density Sin(ω)
can be obtained from (4.135) by replacing |V |2/2 with Se(ω), |I|2/2 with
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Si(ω), V Ī/2 with Sx(ω) as follows

Sin(ω) = Se(ω)
M

4Rs
+Si(ω)

M

4Gs
+
Sxr (ω)Rs + SxiXs

Rs
M, ω > 0. (4.137)

Note that both SxrRs and SxiXs are even functions of ω, which brings an
extra factor of 2 in the last term when only positive frequency is considered.
The power spectral density delivered to the load ZL is

Sout(ω) = GP (ω)Sin(ω)

= GP (ω)
[
Se(ω)

M

4Rs
+ Si(ω)

M

4Gs

+
Sxr(ω)Rs + SxiXs

Rs
M

]
, ω > 0. (4.138)

The total output noise power delivered to the load is given by

Pn,out =
1
2π

∞∫
0

Sout(ω)dω.

The internal noise sources in a noisy two-port network can be replaced by
a series noise voltage generator and a shunt noise current generator at the
input of the network as shown in Figure 4.45. For thermal noise sources,
we may write

Se(ω) = 4kTRe, for en(t),

Si(ω) = 4kTGi, for in(t),

2[Sxr (ω) + jSxi (ω)] = 4kT (γr + jγi),

where Re, Gi and γr+jγi are equivalent noise resistance, noise conductance,
and noise impedance respectively. The noise power spectral density Sin(ω)
input to the noise-free network include the contributions from Rs, Re, and

LZ
( )sv t

sZ Noisy 
network 

( )ne t

( )sv t
( )ni t

sZ
LZNoise-free 

network 

(a) (b)

Figure 4.45 A noisy two-port network and equivalent input noise sources.
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Gi, and can be obtained from (4.137) as follows

Sin(ω) = kTM + kTM
Re
Rs

+ kTM
Gi
Gs

+ 2kT
Rsγr +Xsγi

Rs
M, ω > 0.

(4.139)

The first term on the right-hand side denotes the input thermal noise power
spectral density from the source resistance Rs.

3. Noise Figure

The noise figure of a two-port network as shown in Figure 4.45(a) is
defined as the ratio of signal-to-noise at input and output:

F =
Sin/Nin

Sout/Nout
≥ 1, (4.140)

where Sin (or Nin) and Sout (or Nout) are the signal (noise) power at input
and output respectively. Equation (4.140) can be rewritten as

F =
Sin/Nin

Sout/Nout
=

Sin/Nin

GpSin/Gp(Nin +Ninternal)
=
Nin +Ninternal

Nin
.

(4.141)

Hence the noise figure can be obtained by dividing (4.139) by kTM as follows

F = 1 +
Re
Rs

+
Gi
Gs

+ 2
Rsγr +Xsγi

Rs
, ω > 0. (4.142)

The noise figure can be minimized by optimizing the source impedance
through ∂F/∂Rs = ∂F/∂Xs = 0. The optimized source impedance,
denoted Zopt, is given by

Zopt =

√
Re
Gi

− γ2
i

G2
i

− j
γi
Gi
. (4.143)

The noise figure (4.142) can then be written as

F = Fmin +
Gi
Rs

|Zs − Zopt|2, ω > 0, (4.144)

where Fmin is the minimized noise figure when (4.143) is introduced into
(4.142). Equation (4.144) can also be written as

F − Fmin = 4GiZ0
|Γs − Γopt|2

|1 − Γopt|2
(
1 − |Γs|2

)
= 4

Re
Z0

|Γs − Γopt|2
|1 + Γopt|2

(
1 − |Γs|2

) , ω > 0. (4.145)
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where

Γs =
Zs − Z0

Zs + Z0
, Γopt =

Zopt − Z0

Zopt + Z0
.

We may further rewrite (4.145) as

|Γs − CNF | = RNF , (4.146)

where

CNF =
Γopt

N + 1
, RNF =

√
N(N + 1 − |Γopt|2)

N + 1
,

N =
|Γs − Γopt|2

1 − |Γs|2 =
F − Fmin

4GiZ0
|1 − Γopt|2 =

F − Fmin

4Re/Z0
|1 + Γopt|2, (4.147)

which is a constant for a given noise figure. Equation (4.146) defines a set of
circles in the source reflection coefficient plane Γs, called constant noise
figure circles. When N = 0, the circle degenerates to a single point at
Γopt giving the minimum noise figure Fmin.

4.5.1.4 Amplifier Design

A general microwave amplifier circuit is shown in Figure 4.46, where
the input and output matching network transform the input and output
impedance Z0 to the source and load impedance Zs and ZL; the transistor
is characterized by the scattering matrix. The transducer power gain (4.113)
can be written as

GT = GsG0GL, (4.148)

,in inPΓ

outΓsΓ

,L LPΓ

2I

2V
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Figure 4.46 Amplifier circuit.
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where

Gs =
(1 − |Γs|2)
|1 − ΓinΓs|2 , G0 = |S21|2, GL =

(1 − |ΓL|2)
|1 − ΓLS22|2 , (4.149)

respectively represent the gains due to the impedance matching on the
source side, the transistor characterized by the scattering matrix, and the
impedance matching on the load side.

1. Unilateral Design

In amplifier design, the first step is to determine the stable region of Γs
and ΓL. Then the input and output matching circuits can be designed.
In many situations, the transistor may be considered as unilateral, i.e.,
S12 ≈ 0. In this case, we have Γin = S11 and Γout = S22. If both input and
output are conjugately matched

Γs = Γ̄in = S̄11, ΓL = Γ̄out = S̄22,

the gains for the input and output matching circuits will be maximized.
Thus

maxGs =
1

1 − |S11|2 , G0 = |S21|2, maxGL =
1

1 − |S22|2 . (4.150)

We now introduce the normalized gain factors gs and gL

gs =
Gs

maxGs
=

(
1 − |Γs|2

)
|1 − S11Γs|2

(
1 − |S11|2

)
,

gL =
GL

maxGL
=

(
1 − |ΓL|2

)
|1 − S22ΓL|2

(
1 − |S22|2

)
.

(4.151)

Rearranging gives

|Γs − Cs| = Rs, (4.152)

|ΓL − CL| = RL, (4.153)

where

Cs =
gsS̄11

1 − (1 − gs)|S11|2 , Rs =
√

1 − gs
(
1 − |S11|2

)
1 − (1 − gs)|S11|2 ,

CL =
gLS̄22

1 − (1 − gL)|S22|2 , RL =
√

1 − gL
(
1 − |S22|2

)
1 − (1 − gL)|S22|2 .

(4.154)
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Equations (4.152) and (4.153) represent two constant gain circles in
Γs- or ΓL-plane.

Example 4.12: A FET transistor has the following scattering matrix at
4 GHz:

S11 = 0.75∠−120◦, S12 = 0,

S21 = 2.5∠80◦, S22 = 0.6∠−70◦.

We wish to design an amplifier to have a gain of 11 dB at 4 GHz.

Solution: From (4.125), we may find that K > 1 and |∆| < 1. The
transistor is thus unilateral and absolutely stable. From (4.150), the
maximum matching gains are

maxGs =
1

1 − |S11|2 = 3.6 dB,

maxGL =
1

1 − |S22|2 = 1.9 dB.

The gain of the mismatched transistor is

G0 = |S21|2 = 8 dB.

Thus the maximum transducer gain is

maxGT = maxGs +G0 + maxGL = 13.47 dB,

which is 2.5 dB higher than the desired value of 11 dB. Since G0 is 8 dB, the
remaining 3 dB can be obtained through Gs and GL. We choose Gs = 2 dB
and GL = 1 dB, which determine two constant gain circles on Smith chart
with

Cs = 0.627∠120◦, Rs = 0.294,

CL = 0.520∠70◦, RL = 0.303.

determined by (4.154). The reflection coefficients Γs and ΓL are chosen
along the constant gain circles as shown in Figure 4.47 to minimize the
distance from the center of the chart, where Γs = 0.33∠120◦, ΓL =
0.22∠70◦. The input and output matching networks can be designed
according to the reflection coefficients and the final amplifier circuit is shown
in Figure 4.48 (Pozar, 1998). �
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Figure 4.47 Constant gain circles on Smith chart.
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Figure 4.48 Amplifier design.

2. Conjugately Matched Amplifier Design

When the input and output of the transistor are conjugately matched, i.e.,

Γin = Γ̄s, Γout = Γ̄L, (4.155)

the power transfer from the input matching network to the output matching
network will be maximized. From (4.113), we obtain the maximized
transducer power gain

maxGT =
1

1 − |Γs|2 |S21|2
(
1 − |ΓL|2

)
|1 − ΓLS22|2 . (4.156)
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It follow from (4.155), (4.104) and (4.106) that

Γ̄s = S11 +
S12S21ΓL
1 − S22ΓL

, (4.157)

Γ̄L = S22 +
S12S21Γs
1 − S11Γs

. (4.158)

These equations may be solved to yield the reflection coefficients

Γs =
A1 ±

√
A2

1 − 4|B1|2
2B1

, ΓL =
A2 ±

√
A2

2 − 4|B2|2
2B2

, (4.159)

where

A1 = 1 + |S11|2 − |S22|2 − |∆|2,
A2 = 1 + |S22|2 − |S11|2 − |∆|2,
B1 = S11 − ∆S̄22,

B2 = S22 − ∆S̄11.

The minus sign is used when Ai > 0 and plus sign is used when Ai < 0.
The input and output matching network can be determined from (4.159)
by using Smith chart. Using the conjugate impedance matching conditions
(4.155), the power gain (4.115) for an absolutely stable transistor can be
written as (e.g., Collin, 2001)

maxGP =
|S21|
|S12|

(
K −

√
K2 − 1

)
, (4.160)

where K is given by (4.125).

Example 4.13: The scattering parameters of a FET have the following
values at 4GHz:

S11 =0.72∠−116◦, S12 = 0.03∠57◦, S21 =2.60∠76◦, S22 = 0.73∠−54◦.

We wish to design an amplifier for maximum gain at 4GHz.

Solution: It is easy to verify that K = 1.195 > 1 and |∆| = 0.48 < 1.
So the transistor is absolutely stable. When the transistor is conjugately
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matched, the input and output reflection coefficients are given by (4.159):
Γs = 0.872∠123◦,ΓL = 0.876∠61◦. These values can be used to design the
input and output matching networks. The maximum transducer gain may
be determine from (4.156) as maxGT = 16.7 dB. �

3. Bilateral Design

If the transistor is bilateral (i.e., S12 
= 0), we need to adopt the power gain
approach to simplify the design procedure. The power gain (4.115) can be
rewritten as

GP = |S21|2gp, (4.161)

where

gp =

(
1 − |ΓL|2

)(
1 − |Γin|2

)|1 − ΓLS22|2

is the normalized gain. Introducing (4.104) into the above expression, we
obtain

gp =
1 − |ΓL|2

|1 − ΓLS22|2 − |S11 − ΓL∆|2 .

This can be rearranged as

|ΓL − Cp| = Rp (4.162)

where

Cp =
(S̄22 − ∆̄S11)gp

1 +
(|S22|2 − |∆|2)gp , Rp =

√
1 − 2Kgp|S12S21| + g2

p|S12S21|2
|1 +

(|S22|2 − |∆|2)gp|
(4.163)

with K given by (4.125). Equation (4.162) represents a set of constant
power gain circles. The boundary of Smith chart coincides with the gp = 0
circle. When Rp = 0, we have

gp =
K ±√

K2 − 1
|S12S21| . (4.164)

For passive load (i.e., |ΓL| < 1), the plus sign should be ignored. In this
case, (4.164) gives the maximum gain previously obtained in (4.160).
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In a similar way, the available power gain (4.116) can be rearranged as
constant available power gain circles:

|Γs − Ca| = Ra (4.165)

where

Ca =
(S̄11 − ∆̄S22)ga

1 +
(|S11|2 − |∆|2)ga , Ra =

√
1 − 2Kga|S12S21| + g2

a|S12S21|2
|1 +

(|S11|2 − |∆|2)ga| ,

(4.166)

where ga = GA/|S21|2. Both the constant power gain circles (4.162) and
the constant available power gain circles (4.165) can be used to design the
amplifier. For convenience, the former may be applied for the situation
where the input is required to be conjugately matched, and the latter for
the situation where the output is required to be conjugately matched.

Example 4.14: The scattering parameters of a FET have the following
values at 2.4GHz:

S11 = 0.3∠30◦, S12 = 0.2∠−60◦, S21 = 2.5∠−80◦, S22 = 0.2∠−15◦.

The input of the amplifier is assumed to be conjugately matched. We
wish to design an amplifier that provides a power gain of Gp = 8 dB at
2.4GHz.

Solution: It is easy to verify that the transistor is absolutely stable. We
use the constant power gain circle to design the amplifier. The normalized
gain is

gp =
Gp

|S21|2 = 1.0096.

The corresponding circle parameters are

Cp = 0.11∠69◦, Rp = 0.35.

The constant power gain circle is plotted on Smith chart as shown in
Figure 4.49. There are multiple choices for the reflection coefficient ΓL.
For simplicity in designing the output matching circuit, we choose ΓL as
the intersection point of the constant gain circle and the constant resistance
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Figure 4.49 Constant power gain circle on Smith chart.

r = 1 circle, which is ΓL = 0.26∠−75◦. The input reflection coefficient is
then determined by (4.104), yielding Γin = 0.277∠55.6◦. Thus the source
reflection coefficient is Γs = Γ̄in = 0.277∠−55.6◦. �

4. Low Noise Amplifier Design

In a wireless system, the receiving antenna not only picks up useful signal
energy but also a certain amount of noise-like radiation from other sources.
The received signal, along with some noise is very weak and must be
amplified to a level to be useful. The first amplifier stage must thus be
designed for minimum noise.

Equation (4.145) indicates that there is an optimum source impedance
or source reflection coefficient that will result in the lowest noise figure.
Generally, it is impossible to achieve the lowest noise figure and maximum
gain at the same time, and hence a compromise between them must be
made, which is usually done by constant gain circles and constant noise
figure circles.

Example 4.15: A transistor has the following parameters at 1 GHz:

S11 = 0.707∠−155◦, S12 = 0, S21 = 5.0∠180◦, S22 = 0.51∠−20◦,

Fmin = 3 dB, Re = 4 Ω, Γopt = 0.45∠180◦.

Design an amplifier to have a power gain of 16 dB and a noise figure of less
than 3.5 dB.



January 28, 2015 11:5 Foundations for Radio Frequency Engineering - 9in x 6in b1914-ch04 page 279

Microwave Circuits 279

Solution: It is easy to verify that the transistor is absolutely stable. From
(4.150), we obtain

maxGs = 3 dB, G0 = 13.98 dB, maxGL = 1.31 dB.

Thus the maximum transducer gain is

maxGT = maxGs +G0 + maxGL = 18.29 dB.

So we have 2.29 dB more than is required by the specifications. Since G0 ≈
14 dB, we may choose Gs = 1.22 dB and GL = 0.78 dB for an overall gain of
16 dB. The constant gain circle parameters for Gs and GL are found from
(4.154) as follows

Cs = 0.56∠155◦, Rs = 0.35, CL = 0.47∠20◦, RL = 0.26.

The 3.5 dB noise figure circle parameters may be determined from (4.147)

CNF = 0.37∠180◦, RNF = 0.40.

To meet the specifications, the input and output reflection coefficients may
be respectively chosen as A and B as indicated in Figure 4.50. �

4.5.2 Oscillators

An oscillator converts direct current (DC) from a power supply to an
alternating current signal. The oscillators can be classified as the feedback
oscillator and negative resistance oscillator. The vacuum tube feedback

3.5 dBF =

0.78 dBLG =

A

B

1.22 dBsG =

Figure 4.50 Constant noise figure circle and constant gain circle.
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oscillator was invented around 1912 by a number of researchers including
Edwin H. Armstrong (American electrical engineer, 1890–1954) Alexander
Meissner (Austrian engineer and physicist, 1883–1958), Irving Langmuir
(American chemist and physicist, 1881–1957), and Lee De Forest (1873–
1961). The most common form of the feedback oscillator is a two-port
amplifying active element (e.g., a transistor) connected in a feedback loop
with its output fed back into its input through a frequency selective filter to
boost the amplification. When the power supply to the amplifying active
element is first switched on, noise in the circuit provides a signal to get
oscillations started. The noise travels around the loop and is amplified and
filtered until it becomes a sine wave at a single frequency.

Oscillators can also be built using one-port devices with negative
resistance such as magnetron tubes, tunnel diodes and Gunn diodes. In
negative resistance oscillators, a resonant circuit is connected across a device
with negative resistance. A resonant circuit by itself is almost an oscillator
as it can store energy in the form of oscillations if excited. However, the
internal resistance in the resonant circuit will dissipate energy and cause the
oscillations to decline to zero. To sustain the oscillation, negative resistance
can be introduced to cancel the internal resistance in the resonant circuit,
forming a resonator with no damping. Negative resistance oscillators are
often used at high frequencies in the microwave range and above, since at
these frequencies feedback oscillators perform poorly due to excessive phase
shift in the feedback path.

The negative resistance oscillator model is not limited to one-port
devices like diodes. The feedback oscillator circuits with two-port amplify-
ing devices such as transistors and tubes also have negative resistance. At
high frequencies, transistors and FETs do not need a feedback loop. With
certain loads applied to one port, the transistors and FETs can become
unstable at the other port and show negative resistance due to internal
feedback. For this reason, high frequency oscillators in general are designed
using negative resistance techniques.

4.5.2.1 Feedback Oscillators

A feedback oscillator is a simple linear feedback system as depicted in
Figure 4.51, where A(ω) is the gain (or transfer function) of the amplifying
active element, and β(ω) is the transfer function of the feedback path. In
frequency domain, the output y of the system is related to the input x by

y = A(ω)[x+ β(ω)y].
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Figure 4.51 Feedback oscillator.
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Figure 4.52 A oscillator and its equivalent circuit.

The transfer function of the system is thus given by

H(ω) =
y

x
=

A(ω)
1 −A(ω)β(ω)

. (4.167)

The product A(ω)β(ω) is referred to as loop gain around the feedback
loop. When the condition A(ω)β(ω) = 1 is met, H(ω) becomes infinite.
This implies that the system has a non-zero output y even if the input x is
zero and thus the system oscillates. The conditionA(ω)β(ω) = 1 is known as
Barkhausen stability criterion, named after German physicist Heinrich
G. Barkhausen (1881–1956). It is noted that Barkhausen’s criterion is a
necessary condition for oscillation but not a sufficient condition and it
applies to linear circuits with a feedback loop and cannot be applied to
one port negative resistance active elements like tunnel diode oscillators.

A general oscillator circuit using a transistor is shown in Figure 4.52(a).
The small-signal equivalent circuit of the transistor is shown in
Figure 4.52(b), where gm is the transconductance; Yi and Yo are the input
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and output admittances, respectively. From the circuit theory, the following
algebraic equation for the node voltages can be obtained as follows:




(Y1 +Y3 +Yi) −(Y1 +Yi) −Y3 0
−(Y1 +Yi+ gm) (Y1 +Y2 +Yi +Yo + gm) −Y2 −Yo

−Y3 −Y2 (Y2 +Y3 +YL) −YL
gm −(Yo + gm) −YL (Yo +YL)




×



V1

V2

V3

V4


 = 0. (4.168)

The existence of a nontrivial solution to the equation requires that the
determinant of the coefficient matrix vanishes. This condition determines
the resonant frequency of the oscillator and places restrictions on the nature
of the circuit components. The well-known Hartley and Colpitts oscillators
are special cases where YL = ∞, as shown in Figure 4.53.

4.5.2.2 Negative Resistance Oscillators

A negative resistance oscillator is shown in Figure 4.54, where Zin =
Rin + jXin is the input impedance of an active device and ZL = RL + jXL

is the load impedance. Apparently, we have

(Zin + ZL)I = 0.

The existence of a nontrivial solution of the above equation leads to

Rin +RL = 0, Xin +XL = 0, (4.169)

1L   

3C
2L

3L

1C  

2C  

(a) (b)

Figure 4.53 Typical oscillators. (a) Hartley oscillator. (b) Colpitts oscillator.
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Figure 4.54 Negative resistance oscillator.
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Figure 4.55 Two-port transistor oscillator.

or equivalently

Γin =
Zin − Z0

Zin + Z0
=
ZL + Z0

ZL − Z0
=

1
ΓL

. (4.170)

The first equation of (4.169) indicates that Rin must be negative for a
passive load RL > 0. This implies that the active device is an energy source.
The second equation of (4.169) determines the frequency of oscillation.

Figure 4.55 shows a two-port transistor oscillator. Unlike the amplifier
design, the transistor used in an oscillator must be unstable. The reflection
coefficient ΓT is selected to produce a large negative resistance at the
input to the transistor. As the oscillator power builds up, Rin will become
less negative. The load impedance ZL must be chosen to match the input
impedance Zin so that RL +Rin < 0. In practice, we may choose

RL = −Rin

3
, XL = −Xin.

It is noted that whenever ΓinΓL = 1, we have ΓoutΓT = 1 and vice versa.
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Example 4.16: The scattering parameters of a transistor at 4 GHz are
given by (Z0 = 50 Ω)

S11 = 2.18∠−35◦, S12 = 1.26∠18◦, S21 = 2.75∠96◦, S22 = 0.52∠155◦.

Design an oscillator at 4 GHz.

Solution: From (4.125), we may find that

K = 0.21, ∆ = 2.34∠−68.9.

Therefore, the transistor is potentially not stable and can be used for an
oscillator design. From (4.122), the output stability circle parameters are
found to be

CT = 1.08∠33◦, RT = 0.665.

Since |S11| > 1, the stable region is inside the output stability circle. The
choice of ΓT should make |Γin| large. After a few trials we can select ΓT =
0.59∠−104◦ (see Figure 4.56). The input reflection coefficient Γin can be
calculated from ΓT as follows

Γin = S11 +
S12S21ΓT
1 − S22ΓT

= 3.96∠−2.4◦.

This gives

Zin = Z0
1 + Γin

1 − Γin
= −84 − j1.9 Ω

TC

TΓ  

1outΓ =  

TR  

Figure 4.56 Output stability circle.
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The load impedance can thus be chosen as

ZL = −Rin

3
− jXin = 28 + j1.9 Ω. �

4.5.2.3 Dielectric Resonator Oscillators

The dielectric resonators have many advantages over the conventional
metal cavity resonators, which include smaller size, excellent temperature
stability, lower cost, higher Q, compact and ease of manufacturing and
integration. A dielectric resonator oscillator is shown in Figure 4.57, where
the dielectric resonator DR is placed in close proximity to a microstrip line.
The magnitude of the reflection coefficient ΓL is controlled by the coupling
(or the spacing d) between the resonator and the microstrip line. The
phase angle of ΓL is controlled by the length lr of the microstrip line. The
output circuit is a standard stub-matched circuit used to transform the load
impedance to the required value for the transistor. The series reactance jX
in the common source lead is used as a feedback to make the equivalent
transistor (i.e., the transistor and the series reactance combined) more
unstable.

The dielectric resonator DR near a microstrip line is equivalent to
a series impedance as indicated in Figure 4.58. The equivalent resonator
impedance Z-coupled to the microstrip line is given by

Z =
n2R

1 + j2Q(ω − ω0)/ω0
, (4.171)

where ω0 = 1/
√

LC is the resonant frequency, Q = R/ω0L is the unloaded
resonator Q.

4.5.3 Mixers

The block diagram of a superheterodyne receiver is shown in Figure 4.59.
A low level RF signal from the antenna is first amplified by a low noise

jX
inΓLΓ

50 Ω 50 Ω

d

S 

DG
DR

rl

TΓoutΓ

Figure 4.57 Dielectric resonator oscillator.
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Figure 4.58 (a) Dielectric resonator coupled to microstrip line. (b) Equivalent circuit.
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Figure 4.59 A superheterodyne receiver.

amplifier (optional), and then is mixed with a local oscillator (LO) signal to
produce an intermediate frequency (IF), usually between 10 and 100MHz.
The mixer is a nonlinear device such as a diode or a transistor, and it will
produce signals at intermediate frequency fRF − fLO and other harmonic
frequencies mfRF ± nfLO, where m and n are integers.

4.5.3.1 Characteristics of Diode

The V–I characteristic of a typical diode is given by

id = Is(eαvd − 1) (4.172)

where α = q/nkT , q is the charge of electron, k is Boltzmann’s constant, T
is temperature in Kelvin, n is the ideality factor ranging between 1 and 2,
and Is is the saturation current typically between 10−6 and 10−15 A. At
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Figure 4.60 Equivalent circuit for the diode.

room temperature (T = 290K), we have α ≈ 1/25 (mV). Assume that Vb
is a DC bias voltage and v is a small AC signal. Letting vd = Vb + v in
(4.172), we may have the following Taylor series expansion about Vb (called
small-signal approximation)

id = Ib + gdv + g′d
v2

2
· · · , (4.173)

where

Ib = Is(eαVb − 1), gd = αIse
αVb , g′d = αgd.

The parameter gd is called the dynamic conductance of the diode and
its inverse is called junction resistance of the diode denoted by Rj .
A small signal equivalent circuit for the diode is depicted in Figure 4.60,
where Cj and Rj are junction capacitance and resistance respectively and
both depend on bias voltage, Lp and Cp are the lead inductance and
the packaging capacitance between the leads respectively, and the series
resistance Rs is the bulk resistance.

4.5.3.2 Mixer Designs

We assume that the AC voltage v consists of a local-oscillator signal vl =
Vl cosωlt, an RF signal vr = Vr cosωrt, and an IF signal vi = Vi cos(ωit+ϕ)
at the IF frequency ωi = ωr − ωl. Then we have

id = Ib + gd(vr + vl − vi) +
g′d
2

(vr + vl − vi)2 + · · ·

= Ib + gd(vr + vl − vi) +
g′d
2

(v2
r + v2

l + v2
i + 2vlvr − 2vrvi − 2vlvi) + · · ·

(4.174)

In practice, the amplitude of the local-oscillator signal is much larger than
the RF and IF signals. For this reason, the higher order powers of the RF
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and IF signals can be ignored. Retaining the terms that are linear in vr and
vi gives

id = Ib + gd(vr + vl − vi) +
g′d
2

(v2
l + 2vlvr − 2vlvi). (4.175)

Note that

v2
l =

1
2
V 2
l +

1
2
v2
l cos 2ωlt,

2vlvr = VlVr[cos(ωr − ωl)t+ cos(ωl + ωr)t],

−2vlvi = −VlVi{cos[(ωl − ωi)t− ϕ] + cos[(ωl + ωi)t+ ϕ]}.

The frequency components ωr+ωl and ωr−ωl are respectively called upper
sideband and lower sideband and are used in a mixer for up conversion
in a transmitter or down conversion in a heterodyne receiver. The total IF
current is thus given by

ii = −gdvi +
g′d
2
VlVr cos(ωr − ωl)t. (4.176)

An important performance index is the conversion loss defined by

LC = 10 log
available input RF power

IF output power
. (4.177)

Typical values for conversion loss for a single-diode mixer are 4 to 7 dB.
Mixers may be classified by their topology. A single-diode mixer is shown
in Figure 4.61. It is noted that there is no isolation between the RF and LO
ports, and the LO signal may interfere with the reception of the RF signal or
may be radiated out from the receiving antenna. The poor isolation between

L ivC

rv

bV

di

lv

Figure 4.61 Single-diode mixer.
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Figure 4.62 A single balanced mixer.

the IF port and the RF and LO port may lead to the noise interference
and the generation of many spurious signals. These shortcomings of the
single-diode mixer can be alleviated by a balanced mixer.

The basic circuit of a single balanced mixer is shown in Figure 4.62. The
voltages across the diode D1 and diode D2 are vl + vr − vi and vl− vr + vi,
respectively. Thus we have

id1 = Ib + gd(vr + vl − vi) +
g′d
2

(v2
r + v2

l + v2
i + 2vlvr − 2vrvi − 2vlvi),

id2 = Ib + gd(vl − vr + vi) +
g′d
2

(v2
r + v2

l + v2
i − 2vlvr − 2vrvi + 2vlvi).

The input current into the IF low-pass filter is

id1 − id2 = 2gd(vr − vi) + 2g′d(vlvr − vlvi).

The IF current is given by

ii = −2gdvi + g′dVlVr cos(ωr − ωl)t.

It can be seen from the above equations that there is no local-oscillator
voltage at the IF port, which implies that the LO and IF ports are isolated.
Also the LO and RF ports are isolated as can be seen from Figure 4.62.

Everything should be made as simple as possible, but not simpler.

—Albert Einstein
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Chapter 5

Antennas

It is through science that we prove, but through intuition that we

discover.

—Jules Henri Poincaré (French mathematician, 1854–1912)

Antennas are essential components in all wireless systems. Understanding
the radiation by antennas and propagation of electromagnetic waves in
space is important in radio frequency engineering. An antenna is a device
which converts a guided wave into a radio wave in free space, and vice versa.
In transmitting mode, a radio transmitter supplies RF power to the antenna
terminals through a transmission line, and the antenna radiates the energy
into space, forming a specific energy distribution pattern. In receiving mode,
the antenna intercepts the power from an incident electromagnetic wave,
generating a voltage at its terminal for further processing.

Typically an antenna consists of an arrangement of conductors (scat-
terers), which are connected to the receiver or transmitter through a
transmission line or waveguide. In 1886, Hertz invented the first wire
antennas (a dipole and a loop) to confirm Maxwell’s theory and the
existence of electromagnetic waves. In 1897, H. C. Pocklington (1870–
1952) derived an integral equation for the current on a straight wire, which
marked the start of antenna theory and analysis. Modern antenna theory
was started during the World War II and a number of classical antennas
were introduced during that time (Silver, 1949). The sources of radiation
fields are the current distributions, including both conduction current and
displacement current. The antenna can thus be classified as conduction-
current type and displacement-current type. For the conduction-current
antenna, the source of radiation is conduction current on a metallic
radiator surface. Linear antenna, loop, helix and spiral antenna are of
the conduction-current type, and they are typically for lower frequency,

291
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lower gain, and wide beamwidth applications. For the displacement-current
antenna, the source of the radiation is the electromagnetic fields at the
antenna aperture or on the antenna surface. Horn antenna, slot antenna,
aperture antenna, parabolic reflector, dielectric rod antenna belong to
this type, and they are usually for higher frequency, higher gain, and
narrow beamwidth applications. The antennas can also be categorized into
four basic types: electrically small antenna, resonant antenna, broadband
antenna, and aperture antenna. For the small antenna, its maximum extent
is much less than a wavelength and it has low directivity, low radiation
resistance, low radiation efficiency and high input reactance. Both the
resonant antenna and broadband antenna have real input impedance but
the bandwidth is narrow for the former and very wide for the latter.
The aperture antenna has very high gain and moderate bandwidth. The
radiation patterns of an antenna can be omni-directional or directional,
depending on the antenna applications. Some important inventions in
antenna history are listed in Table 5.1.

The most important parameters for characterizing antenna are gain,
efficiency, input impedance, bandwidth, radiation pattern, beamwidth, side-
lobes, front-to-back ratio, and polarization. There are trade-offs between
these antenna parameters. To satisfy one parameter requirement, one may
have to sacrifice one or more other parameter levels. Most of the antenna
parameters are subject to certain limitations, which can be understood

Table 5.1 Typical antenna types and their inventors

Antenna types Inventers

Dipole antenna and loop
antenna

Invented by Hertz in 1886.

Yagi–Uda antenna (array) Invented by Shintaro Uda and Hidetsugu Yagi in
1926.

Log-periodic antenna Invented by R. H. DuHamel and Dwight E. Isbell
in 1957.

Horn antennas Invented by Jagadish Chandra Bose (1858–1937) in
1897; first experimental research by Gorge Clark
Southworth (1890–1972) and Wilmer Lanier
Barrow (1903–1975) in 1936; theoretical analysis
by Barrow and Lan Jen Chu (1913–1973) in 1939;
corrugated horn invented by A. F. Kay in 1962.

Parabolic reflector antennas Invented by Hertz in 1888; Cassegrain antenna was
developed in Japan in 1963 by NTT, KDDI and
Mitsubishi Electric.

Microstrip antennas Invented by Robert E. Munson in 1972.
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by spherical wavefunction expansion of the fields produced by antenna.
The propagating modes supported by an antenna depend on the size of
the smallest circumscribing sphere enclosing the antenna. The bigger the
antenna size (the size of the sphere), the more propagating modes the
antenna will generate. When the antenna is very small, no propagating
modes can exist and all the spherical modes are rapidly cut-off. As a
result, the stored energy around the antenna becomes very large and the
radiation power becomes very small, and the antenna has a high quality
factor.

A more useful performance index for describing antenna is the product
of antenna gain and bandwidth for they must be maximized simultaneously
in most applications. It can be shown that antenna fractional bandwidth
is reciprocal to antenna quality factor. Thus, the product of antenna
gain and bandwidth can be expressed as the ratio of antenna gain over
antenna quality factor. The maximum possible product of antenna gain and
bandwidth is an upper bound of the antenna performance, which can be
used to determine the antenna size required to achieve a specified antenna
performance.

5.1 From Transmission Lines to Antennas

Many practical antennas are fed by a waveguide. For this reason, most
antennas may be constructed as a transition structure or an interface that
serves as a bridge between the waveguide and free space. It is noted that
a simple open-ended waveguide (such as an open transmission line) cannot
be used as an antenna. At the open end, the impedance suddenly changes
from the wave impedance in the waveguide to the impedance of free space,
and a significant portion of energy may be reflected back to the source to
form a standing wave in the waveguide due to the mismatch of impedance.
Moreover, the diameter of the waveguide cross section is normally less than
one wavelength, making it difficult to get a directive pattern as a result of
diffraction.

To avoid the abrupt change of the impedance at the open end, the ends
of the waveguide may be flared out to form a taper transition structure (such
as a horn), along which the impedance changes gradually. The transition
structure would minimize the reflected energy and guide the energy into
free space. In order to achieve a specific energy distribution pattern in
free space, the transition structure must be properly designed to form an
antenna.
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(a)

(e) (f) (g) (h)

(b) (c) (d)

Figure 5.1 Antennas transformed from two-wire lines. (a) Flared dipole. (b) Bow–tie.
(c) Biconical. (d) Double wire cones. (e) Folded dipole. (f) Circular loop. (g) Rhombic
loop. (h) Planar horn.

5.1.1 Antennas Transformed from Two-Wire Lines

A two-wire transmission line may be flared out to form a dipole antenna;
the two arms of the dipole can be transformed to form a bow–tie antenna,
and then a solid biconical antenna; the metal surface of the biconical may
be simulated by metal wires to form a double wire cones; the two ends of
the dipole antenna can be joined together to form a folded dipole, a circular
loop, and a rhombic loop etc.; the two wires may be altered to two plates to
form a planar horn antenna. All these transformations have been illustrated
in Figure 5.1.

5.1.2 Antennas Transformed from Coaxial Cables

The outer conductor of a coaxial cable may be flared out to form a
monopole antenna; the center conductor of the monopole may be deformed
into a helix or other bended wire structures; the center conductor of the
monopole can also be transformed to form a triangular sheet, and then a
cone; the end of the center conductor of the monopole may be loaded with
different wire structures or solid metal plates to form so-called top loaded
antenna; the center conductor of the monopole can be bended to form a low
profile L-shaped antenna. These transformation processes are illustrated in
Figure 5.2.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.2 Antennas transformed from coaxial cables. (a) Monopole. (b) Helix.
(c) Triangular sheet. (d) Unicone. (e)–(h) Top loaded monopoles.

(a) (b) (c) (d)

Figure 5.3 Antennas transformed from hollow waveguides. (a) Circular horn.
(b) Rectangular horn. (c) Coaxial aperture. (d) Rectangular aperture.

5.1.3 Antennas Transformed from Waveguides

As shown in Figure 5.3, a circular horn and a rectangular horn can
be formed by opened-out circular waveguide and rectangular waveguide
respectively; the outer conductor of a coaxial waveguide can be flared out
to form a coaxial aperture antenna; the rectangular waveguide can be flared
out to form a rectangular aperture antenna.

5.2 Antenna Parameters

An arbitrary transmitting antenna system and a receiving antenna system
are shown in Figure 5.4. The power incident to the matching network is
denoted by Pm; the power accepted by the antenna is denoted by Pa; and
the power radiated by the antenna is denoted by Prad. Due to the mismatch,
portion of the power Pm is reflected back to the source by the matching
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Figure 5.4 (a) Transmitting antenna. (b) Receiving antenna.

network, which is denoted by Pref . The power accepted by the antenna can
be expressed as

Pa =
1
2
ReV I = Pm − Pref − Pmatch

loss ,

where V and I are the modal voltage and modal current for the dominant
mode in the feeding waveguide respectively and they are calculated at the
reference plane, and Pmatch

loss is the power loss in the matching network. Let
E and H respectively denote the electric field and magnetic field generated
by the antenna. The radiated power of the antenna can be represented by

Prad =
1
2

∫
S

Re
(
E× H̄

) · un dS, (5.1)

where S is an arbitrary surface enclosing the antenna.
Antenna performances depend on the antenna geometry as well as how

the antenna is used. In mobile devices, the antenna position keeps changing
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as the subscriber travels around, and reasonable antenna performances are
expected for all different positions. The antenna design is thus based on
those positions that are used most often.

5.2.1 Field Regions

The space around an electromagnetic radiator can be divided into reactive
near-field region, radiating near-field region and far-field region.
The reactive near-field and the far-field region are respectively defined by
r < R1 = 0.62

√
D3/λ and r > R2 = 2D2/λ. Here r is the distance from the

radiator,D is the largest dimension of the radiator, and λ is the wavelength.
The radiating near-field region is defined by R1 < r < R2, as illustrated in
Figure 5.5.

Antennas are used for wireless communication and they are usually
located in the far-field region of each other. Many antenna parameters
are also determined in the far-field region. For this reason, the far-field
region is the most important for most applications. In this region, the
radiation pattern (the angular field distribution) does not change shape
with distance; the electric field E and magnetic field H are orthogonal to
each other and are in phase, and they both fall off with distance as 1/r; the
Poynting vector only has a radial component. The far-field region is also
called Fraunhofer region, named after Joseph von Fraunhofer (German
optician, 1787–1826). In the reactive near-field region, the relationship

1R 2R
Radiator 

Reactive 
near-field 

Radiating
near-field

Far-field 

r

Figure 5.5 Field regions of radiator.



January 28, 2015 11:5 Foundations for Radio Frequency Engineering - 9in x 6in b1914-ch05 page 298

298 Foundations for Radio Frequency Engineering

between the electric field E and magnetic field H is very complicated and
the fields change rapidly with the distance. In this region, the Poynting
vector contains both radial component and transverse components. The
radial component represents the radiating power (the far-field) and the
transverse components are reactive. The radiating near-field region is also
called Fresnel region, named after French physicist Augustin-Jean Fresnel
(1788–1827). It is a transition region where the reactive field becomes
smaller than the radiating field.

5.2.2 Radiation Patterns and Radiation Intensity

The radiation pattern of antenna is a mathematical function or a
graphical representation of the radiation properties of the antenna as a
function of space coordinates. In most cases, the radiation pattern is
determined in the far-field region. Radiation properties can be power
flux density, radiation density, field strength, phase or polarization. For a
linearly polarized antenna, the radiation pattern is usually described by E-
plane and H-plane patterns. The E-plane is defined as the plane containing
the electric field vector and the direction of the maximum radiation and
the H-plane is defined as the plane containing the magnetic field vector
and the direction of maximum radiation. The antenna radiation pattern
magnitude must be plotted relative to a recognized standard. The most
common standard level is that of a perfect isotropic radiator (antenna),
which would radiate energy equally in all directions.

Let ur be the unit vector along a far-field observation point r= rur.
The radiation intensity of an antenna in the direction ur is defined as
the power radiated from the antenna per unit solid angle

U(ur) =
r2

2
Re

[
E(r) × H̄(r)

]
=
r2

2η
|E(r)|2, (5.2)

where η =
√
µ/ε is the intrinsic impedance of the medium. The radiation

intensity for an isotropic radiator is U(ur) = Prad/4π.
A typical radiation pattern is shown in Figure 5.6. A radiation pattern

can be divided into various parts, called lobes. A major lobe refers to
the radiation lobe which contains the direction of maximum radiation. All
other lobes are called minor lobes. A side lobe refers to the minor
lobe adjacent to the major lobe. A back lobe is a minor lobe which
directs energy toward the direction opposite to the major lobe. The half
power beam width (HPBW) is the angle between the half-power (−3 dB)
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Figure 5.6 Radiation pattern.

points of the main lobe, when referenced to the peak radiated power of the
main lobe.

5.2.3 Radiation Efficiency, Antenna Efficiency and
Matching Network Efficiency

Not all the incident power to the antenna will be radiated to the free
space. The power loss may come from the impedance mismatch that causes
portion of the incident power reflected back to the transmitter, or from
the imperfect conductors and dielectrics that cause portion of the incident
power to be dissipated as heat. The radiation efficiency of the antenna
is defined by

er =
Prad

Pa
. (5.3)

The radiation efficiency reflects the conduction and dielectric losses of the
antenna. The antenna efficiency is defined by

et =
Prad

Pm
=
Pm − Pref

Pm
· Pa
Pm − Pref

· Prad

Pa
= (1 − |Γ|2)eser, (5.4)

where es=Pa/(Pm − Pref) is the efficiency describing the loss in the
matching network; Γ is the reflection coefficient at the input of the matching
network; and

em =
Pa
Pm

= (1 − |Γ|2)es (5.5)
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is the matching network efficiency. Better antenna efficiency means

(1) Better quality of communication.
(2) Better wireless coverage.
(3) Longer battery life for wireless terminals.

5.2.4 Directivity and Gain

The directivity of an antenna is defined as the ratio of the radiation
intensity in a given direction from an antenna to the radiation intensity
averaged over all directions

D(ur) =
U(ur)
Prad/4π

. (5.6)

Theoretically, there is no mathematical limit to the directivity that
can be obtained from currents confined in an arbitrarily small volume.
However, the high field intensities around a small antenna with a high
directivity will produce high energy storage around the antenna, large power
dissipation, low radiation efficiency and narrow bandwidth. For antennas
with two orthogonal polarization components, we may introduce the partial
directivity of an antenna for a given polarization component. In a spherical
coordinate system, we may write E(r) = Eθ(r)uθ + Eϕ(r)uϕ, and

U(ur) = Uθ(ur) + Uϕ(ur),

where

Uθ(ur) =
r2

2η
|Eθ(r)|2, Uϕ(ur) =

r2

2η
|Eϕ(r)|2.

The directivity can be written as

D(ur) = Dθ(ur) +Dϕ(ur), (5.7)

where

Dθ(ur) =
Uθ(ur)
Prad/4π

, Dϕ(ur) =
Uϕ(ur)
Prad/4π

are the partial directivities for θ and ϕ component, respectively.
The absolute gain of an antenna is defined as the ratio of the radiation

intensity in a given direction to the radiation intensity that would be
obtained if the power accepted by the antenna were radiated isotropically.

G(ur) =
U(ur)
Pa/4π

= erD(ur). (5.8)
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The old definition of the gain is

Gold(ur) =
U(ur)
Pm/4π

= etD(ur). (5.9)

This is also called absolute gain, which has included the effects of
matching network. The gain of an antenna often refers to the maximum
gain and is usually given in decibels. Similarly, we may introduce partial
gains in a spherical coordinate system

G(ur) = Gθ(ur) +Gϕ(ur). (5.10)

5.2.5 Input Impedance, Bandwidth and Antenna
Quality Factor

The input impedance of antenna is defined as the ratio of the voltage
to current at the input reference plane of the antenna. The bandwidth
of an antenna is defined as the range of frequencies within which the
performance of the antenna, with respect to some characteristics (such
as the input impedance, return loss, gain, radiation efficiency, pattern,
beamwidth, polarization, sidelobe level, and beam direction), conforms to
a specified standard. Antenna bandwidth is an important quantity, which
measures the quality of signal transmission such as signal distortion. For
broadband antennas, the bandwidth is usually expressed as the ratio of
the upper-to-lower frequencies of acceptable operation. For narrow band
antennas, the bandwidth is expressed as a percentage of the frequency
difference (upper minus lower) over the center frequency of the bandwidth
(fractional bandwidth). The bandwidth can be enhanced by introducing
losses, parasitic elements, loading or changing matching network.

If the impedance of antenna is not perfectly matched to that of
the source, some power will be reflected back and not transmitted. This
reflected power relative to incident power is called return loss. A figure
of merit for antenna is return loss bandwidth, which is defined as the
frequency range where return loss is below an acceptable level. For example,
a return loss of −10 dB indicates 90% of the power is transmitted. At −7 dB
return loss, 80% of the power is transmitted. The return loss bandwidth
is closely related to antenna physical volume. Increasing the return loss
bandwidth is one of the challenges in small antenna design.

According to the IEEE Standard Definitions of Terms for Antennas, the
quality factor of a resonant antenna is defined as the ratio of 2π times
energy stored in the fields excited by the antenna to the energy radiated
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per cycle:

Q =
ωW̃

Prad
=
ω
(
W̃e + W̃m

)
Prad

, (5.11)

where W̃ = W̃e + W̃m; W̃e stands for the stored electric field energy and
W̃m for the stored magnetic field energy; ω is the frequency and Prad is
the total radiated power. In most publications, antenna Q is traditionally
defined by

Q =




2ωW̃m

Prad
, W̃m > W̃e,

2ωW̃e

Prad
, W̃e > W̃m,

(5.12)

which has a conditional statement and is more difficult to handle than
(5.11) in theoretical study. The quality factor defined by (5.12) applies to
an antenna tuned to resonance only, while the IEEE standard definition
(5.11) applies to an antenna under any conditions, at resonance or above
resonance. Both definitions give the exact same values when the antenna
is tuned to resonance. For this reason, the IEEE standard definition (5.11)
may be considered as a generalization of the usual definition (5.12).

It will be shown later that, for a high quality factor antenna, the quality
factor is reciprocal of antenna fractional bandwidth for input impedance.
The antenna quality factor is a field quantity and is more convenient for
theoretical study while the antenna bandwidth requires more information
on the frequency behavior of the input impedance. We will use Qreal to
indicate that all the stored energy around antenna has been included in
the calculation of antenna quality factor, to distinguish it from another
antenna quality factor, denoted by Q, to be introduced later, in which
only the stored energy outside the circumscribing sphere of the antenna is
included. Obviously, we have Qreal � Q.

5.2.6 Vector Effective Length, Equivalent Area
and Antenna Factor

Let r= rur be a far-field observation point. The electric field of the antenna
in a homogeneous and isotropic medium can be expressed as [see (5.34)]

E(r) = − jωµI
4πr

e−jkrL(ur). (5.13)
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Here I is the exciting current at the feeding plane, and L is called the
antenna vector effective length defined by

L(ur) =
1
I

∫
V0

{
J(r′) − [

J(r′) · ur
]
ur

}
ejkur ·r′dV (r′), (5.14)

where V0 is the source region and J is the current distribution in the source
region. The open circuit voltage at the antenna-feeding plane induced by
an incident field Ein from the direction −ur is given by (e.g., Geyi, 2010)

Voc(ur) = −1
I

∫
V0

Ein(r′) · J(r′)dV (r′), (5.15)

which results from the reciprocity of transmitting and receiving antenna.
The incident field may be written as

Ein(r) = Ein(o)ejkur ·r,

where Ein(o) is the field strength at the origin (antenna position) and is
perpendicular to ur. Thus

Voc(ur) = −1
I
Ein(o) ·

∫
V0

J(r′)ejkur ·r′dV (r′) = −Ein(o) · L(ur).

This relation has been used as the definition of the vector effective length
in most literature. According to the equivalent circuit for the receiving
antenna as shown in Figure 5.7, the received power by the load is

Prec(ur) =
1
2

∣∣∣∣Voc(ur)
Z + ZL

∣∣∣∣
2

ReZL =
1
2

∣∣∣∣Ein(o) · L(ur)
Z + ZL

∣∣∣∣
2

ReZL,

where Z is the antenna input impedance.

I

ocV LZ

Z

T 

V

Figure 5.7 Equivalent circuit for receiving antenna.
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The antenna equivalent area is a transverse area defined as the ratio
of received power to the power flux density of the incident plane wave

Ae(ur) =
Prec(ur)

|Ein(o)|2/2η =
∣∣∣∣Ein(o) · L(ur)

Z + ZL

∣∣∣∣
2
ηReZL
|Ein(o)|2 . (5.16)

If the receiving antenna is conjugately matched and there is no polarization
loss, the antenna equivalent area can be simplified as

Ae(ur) =
1
4

(
η

ReZL

)
|L(ur)|2.

The antenna factor is defined as the ratio of incident electric field strength
to the induced terminal voltage

AF (ur) =
|Ein(o)|
|V (ur)| ,

where V (ur) stands for the induced terminal voltage at the reference plane
of the receiving antenna due to the incident field. From the equivalent circuit
of a receiving antenna, we obtain

V (ur) =
ZL

ZL + Z
Voc(ur).

So the relationship between the antenna factor and vector effective length is

AF (ur) =
|Ein(o)|

|Ein(o) · L(ur)|
∣∣∣∣1 +

Z

ZL

∣∣∣∣ . (5.17)

If there is no polarization loss, this reduces to

AF (ur) =
∣∣∣∣1 +

Z

ZL

∣∣∣∣ 1
|L(ur)| .

Let S∞ be a large closed surface, which encloses the antenna. The
transmitting and receiving properties of antenna can be expressed as
functions of the effective length and they are summarized in Table 5.2.

5.2.7 Polarization and Coupling

The polarization of wave is defined as the curve traced by the instanta-
neous electric field in a plane perpendicular to the propagation direction of
the wave. If the direction of electric field at a point of space is constant in
time, we say the electric filed at that point is linearly polarized. If the tip
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Table 5.2 Transmitting properties of antenna

Quantity Expression

Poynting vector S(r) =
1

2η
|E(r)|2 =

η|I|2
8r2

˛̨̨
˛L(ur)

λ

˛̨̨
˛
2

.

Radiation intensity U(ur) =
r2

2η
|E(r)|2 =

η|I|2
8

˛̨
˛̨L(ur)

λ

˛̨
˛̨2 .

Radiated power Prad =
η|I|2

8

Z
S∞

˛̨
˛̨L(ur)

λ

˛̨
˛̨2 dΩ.

Radiation resistance Rrad =
2Prad

|I|2 =
η

4

Z
S∞

˛̨
˛̨L(ur)

λ

˛̨
˛̨2 dΩ.

Directivity D(ur) =
4πU(ur)

Prad
=

πη

Rrad

˛̨
˛̨L(ur)

λ

˛̨
˛̨2 .

Gain G(ur) = erD(ur) =
πη

Rrad + Rloss

˛̨̨
˛L(ur)

λ

˛̨̨
˛
2

.

Equivalent area Ae(ur) =

˛̨
˛̨Ein(o) · L(ur)

Z + ZL

˛̨
˛̨2 ηReZL

|Ein(o)|2 .

Antenna factor AF (ur) =
|Ein(o)|

|Ein(o) · L(ur)|

˛̨
˛̨1 +

Z

ZL

˛̨
˛̨ .

of the electric field is a circle (or ellipse) centered at the point in the course
of time we say the electric field is circularly (elliptically) polarized
at that point. Elliptically polarized field is encountered in practice very
often. The polarization of antenna is defined as the curve traced by
instantaneous electric field radiated by the antenna in a plane perpendicular
to the radial direction. The radiation fields of all antennas aside from
the dipoles are elliptically polarized in general, except in some preferred
directions.

For perfect transmission of power between two antennas, their polar-
izations must match exactly. In practice the polarization mismatch loss
always exists. If two antennas have no coupling, their polarizations are
said to be orthogonal. The polarization mismatch loss between a circularly
polarized and linearly polarized antenna is 3 dB and half power is lost. Two
linear polarized antennas orientated at an angle of 45◦ will also have 3 dB
polarization mismatch loss.
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In a cellular environment, the degree of polarization match between
the mobile and base station can vary considerably. In outdoor suburban
environments, the polarization of the incident field would be mainly vertical
while in indoors and in dense urban environments, scattering and multipath
reflections can cause the incident polarization to change dramatically.
Additionally, the degree of polarization match between the incident field
and mobile antenna is impacted by the user. For example, how the device
is held and placed changes the degree of polarization match.

Minimizing the antenna coupling is important if isolation between
two signal paths is required. The coupling between two antennas can be
measured using network analyzer. The coupling is the amplitude of S21 over
the frequency range of both bands when the network analyzer is connected
to these two antennas. The coupling between two antennas in the far-field is
inversely related to the square of the distance between them (assume both
antennas are in free space). For example, if the distance is doubled, the
coupling is reduced by a factor of four (−6 dB). Antenna coupling is strongly
influenced by the out-of-band impedance of the antenna. For example, if
one antenna is very poorly matched at the band of another antenna and vice
versa, the coupling between the two antennas might be low even if they are
placed in close proximity. Unbalanced antennas are fed against the ground,
and they make the ground part of the antenna. Two unbalanced antennas
fed against the same ground tend to have less isolation than the balanced
antennas. This problem can be improved if the antenna design can make
the currents in the ground to be localized in the vicinity of the antenna.

5.2.8 Specific Absorption Rate

A variety of devices have been designed to decrease the exposure of the
users to the RF energy from the antenna. Specific Absorption Rate
(SAR) is a quantity to measure the rate at which electromagnetic energy is
absorbed by lossy dielectric media with nonmagnetic dissipative properties,
and is related to antenna desgin. It is defined as the power absorbed per
mass of the dielectric media

SAR(r) =
1
2
σ(r)|E(r)|2

ρ(r)
(W/kg) (5.18)

where σ(r) is the conductivity, ρ(r) is the mass density.
Most regions are adopting the International Commission on Non-

Ionizing Radiation Protection guidelines (e.g., Europe, Japan, Korea, etc.),
which define the basic limit for local exposure to be 2W/kg averaged over a
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volume of 10 g and a period of 6 min. Federal Communications Commission
(FCC) has adopted a slightly stricter limit of the ANSI/IEEE standard for
the uncontrolled environment, which is 1.6W/kg averaged over a volume
of 1 g and a period of 30min.

Meeting SAR limit regulations can be a difficult challenge for some
radio devices when the transmitting power is high. SAR considerations can
impact how the antenna is packaged in the device. There are two key factors
that affect the system SAR level. One is the current distribution of the
antenna and another is the distance between the antenna and the testing
probe. The use of the embedded antenna can reduce SAR level drastically
because it is less obtrusive, and introduces more distance between the
antenna and the testing probe. The commonly used embedded antenna
such as an inverted F antenna is placed at the top or bottom of the mobile
device (e.g., cell phones). This placement substantially reduces the peak
SAR in the user body. Other methods of reducing SAR include the use
of conductive coating on the inner surfaces of the back cover above the
antenna or the use of absorbing materials.

5.3 Spherical Vector Wavefunctions

If the antenna is very small compared to the wavelength, the radiated fields
will be substantially spherical. Let the antenna be enclosed by a sphere. The
radiated fields outside the sphere can be expanded as a linear combination
of spherical vector wavefunctions (SVWF), which was first reported by the
American physicist William Webster Hansen (1909–1949) (Hansen, 1935).
Consider the vector Helmholtz equation

∇×∇× F(r) −∇∇ · F(r) − k2F(r) = 0. (5.19)

To find its independent vector solutions, we may start with a scalar function
ψ, which is a solution of Helmholtz equation:

(∇2 + k2)ψ = 0. (5.20)

It can be shown that (5.19) has three independent vector solutions

L = ∇ψ, M = ∇× (rψ), N =
1
k
∇×∇× (rψ).

If {ψn} is a complete set, we may expect that the corresponding vector
functions {Ln,Mn,Nn} also form a complete set and can be used to
represent an arbitrary vector wavefunction. In the spherical coordinate
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system, the solution of (5.20) is

ψ
(q)
nml(r) = h(q)

n (kr)Y lnm(θ, ϕ).

Here Y lnm(θ, ϕ)=Pmn (cos θ)fml(ϕ) (n=0, 1, 2, . . .;m=0, 1, 2, . . . , n; l= e, o)
are the spherical harmonics; Pmn (cos θ) are the associated Legendre func-
tions; h(q)

n (kr) (q= 1, 2) are the spherical Hankel functions; and

fml(ϕ) =
{

cosmϕ, l = e

sinmϕ, l = o
.

The SVWF are defined by

L(q)
nml (r) = ∇[

ψ
(q)
nml(r)

]
,

M(q)
nml (r) = ∇× [

rψ(q)
nml (r)

]
= ∇ψ(q)

nml (r) × r,

N(q)
nml (r) =

1
k
∇×∇× [

rψ(q)
nml(r)

]
=

1
k
∇× M(q)

nml(r).

(5.21)

Explicitly

M(q)
nml(r) =

h
(q)
n (kr)
sin θ

∂Y lnm(θ, ϕ)
∂ϕ

uθ − h(q)
n (kr)

∂Y lnm(θ, ϕ)
∂θ

uϕ,

N(q)
nml(r) =

n(n+ 1)
kr

h(q)
n (kr)Y lnm(θ, ϕ)ur +

1
kr

d
[
rh

(q)
n (kr)

]
dr

∂Y lnm(θ, ϕ)
∂θ

uθ

+
1

kr sin θ
d
[
rh

(q)
n (kr)

]
dr

∂Y lnm(θ, ϕ)
∂ϕ

uϕ.

It can be shown that the SVWF {L(q)
nml ,M

(q)
nml ,N

(q)
nml} form a complete set

(e.g., Geyi, 2010). So the vector potential function can be expanded as
follows

A =
1
jω

∑
n,m,l,q

(
α

(q)
nmlM

(q)
nml + β

(q)
nmlN

(q)
nml + γ

(q)
nmlL

(q)
nml

)
. (5.22)

From Maxwell equations and µH=∇ × A, the electromagnetic fields can
be expressed by

E = −
∑

n,m,l,q

(
α

(q)
nmlM

(q)
nml + β

(q)
nmlN

(q)
nml

)
,

H =
1
jη

∑
n,m,l,q

(
α

(q)
nmlN

(q)
nml + β

(q)
nmlM

(q)
nml

)
,

(5.23)

where η=
√
µ/ε, µ and ε are medium parameters.
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Example 5.1 (Spherical waveguide): The free space may be considered as
spherical waveguide, and the transmission direction is along the radius r
in a spherical coordinate system (r, θ, φ) while the waveguide cross-sections
are spherical surfaces. The electromagnetic fields E and H in spherical
coordinates (r, θ, φ) can be decomposed into transverse components Et,Ht

and radial components urEr, urHr

E = Et + urEr, H = Ht + urHr.

Similar to the waveguide theory, we may introduce the orthonormal vector
basis functions

enml =
1

Nnm
∇θϕY

l
nm(θ, ϕ), hnml = ur × enml .

where

Nnm =

√
(1 + δm0)

2π(n+m)!n(n+ 1)
(n−m)!(2n+ 1)

(5.24)

with δm0 =
{

1, m = 0
0, m �= 0 . Then the SVWF can be expressed as

M(q)
nml = −Nnm

kr
h̃(q)
n (kr)hnml ,

N(q)
nml =

Nnm
kr

˙̃h(q)
n (kr)enml + urγ

(q)
nml ,

(5.25)

where h̃
(q)
n (kr)= krh

(q)
n (kr), γ(q)

nml =(kr)−1n(n + 1)h(q)
n (kr)Y lnm(θ, ϕ) and

˙̃
h

(q)
n (kr) is the derivative of h̃(q)

n (kr) with respect to its argument. Substi-
tuting (5.25) into (5.23) gives

rEt =
1
k

∑
m,n,l

[
Nnmh̃

(1)
n (kr)α(1)

nml +Nnmh̃
(2)
n (kr)α(2)

nml

]
hnml

−
[
Nnm

˙̃h(1)
n (kr)β(1)

nml +Nnm
˙̃h(2)
n (kr)β(2)

nml

]
enml ,

rHt =
1
jkη

∑
m,n,l

[
Nnm

˙̃h(1)
n (kr)α(1)

nml +Nnm
˙̃h(2)
n (kr)α(2)

nml

]
enml

−
[
Nnmh̃

(1)
n (kr)β(1)

nml +Nnmh̃
(2)
n (kr)β(2)

nml

]
hnml .

(5.26)
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These can be rewritten as

rEt =
∑
n,m,l

[
V TM
nml (r)enml + V TE

nml(r)hnml

]
,

rHt =
∑
n,m,l

[
ITM
nml (r)hnml − ITE

nml (r)enml

]
.

(5.27)

Here

V TE
nml (r) = V TE+

nml (r) + V TE−
nml (r),

ITE
nml (r) = ITE+

nml (r) + ITE−
nml (r),

V TM
nml (r) = V TM+

nml (r) + V TM−
nml (r),

ITM
nml (r) = ITM+

nml (r) + ITM−
nml (r)

are the equivalent modal voltages and currents for TE and TM modes with

V TM+
nml (r) = −Nnmβ

(2)
nml

k
˙̃
h(2)
n (kr), V TM−

nml (r) = −Nnmβ
(1)
nml

k
˙̃
h(1)
n (kr),

V TE+
nml (r) =

Nnmα
(2)
nml

k
h̃(2)
n (kr), V TE−

nml (r) =
Nnmα

(1)
nml

k
h̃(1)
n (kr),

ITE+
nml (r) = −Nnmα

(2)
nml

jηk
˙̃
h(2)
n (kr), ITE−

nml (r) = −Nnmα
(1)
nml

jηk
˙̃
h(1)
n (kr),

ITM+
nml (r) = −Nnmβ

(2)
nml

jηk
h̃(2)
n (kr), ITM−

nml (r) = −Nnmβ
(1)
nml

jηk
h̃(1)
n (kr),

where the superscripts + and − denote outward-going and inward-going
waves, respectively. The radially directed wave impedances for TE modes
and TM modes are defined by

ZTE
n (r) =

V TE+
nml (r)
ITE+
nml (r)

= −jη h̃
(2)
n (kr)

˙̃h(2)
n (kr)

,

ZTM
n (r) =

V TM+
nml (r)
ITM+
nml (r)

= jη
˙̃h(2)
n (kr)

h̃
(2)
n (kr)

.

Note that the wave impedances approach to η as r → ∞. �

5.4 Generic Properties of Antennas

If the antenna current distribution is known, all the antenna performances
can be determined. Some performances of antenna are very sensitive
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to the antenna current distribution while some of them are relatively
insensitive. Since the exact current distribution of antenna is very com-
plicated and is not easy to obtain, people usually use approximations
to find a simplified current distribution in order to predict the antenna
performances that are insensitive to the current distribution, such as
gain, antenna pattern, and radiation resistance. In the feeding area,
approximations have to be adopted on the basis of a good understanding
of how the current distribution affects the various antenna performances.
The factors that affect the antenna current distribution include antenna
shape, size, excitation, and the environment of the antenna. Müller has
systematically studied the properties of electromagnetic radiation patterns
(Müller, 1956; 1969) and a summary has been given by Colton and Kress
(1983; 1998).

5.4.1 Far Fields and Scattering Matrix

Let V0 be the volume occupied by the electric current source J and Jm,
as shown in Figure 5.8. The fields produced by a time-harmonic current
source J can be expressed as

E(r) = −jkη
∫
V0

G(r, r′)J(r′)dV (r′) − η

jk

∫
V0

∇′ · J(r′)∇′G(r, r′)dV (r′)

−
∫
V0

Jm(r′) ×∇′G(r, r′)dV (r′), (5.28)

H(r) = −j k
η

∫
V0

G(r, r′)Jm(r′)dV (r′) − 1
jηk

∫
V0

∇′ · Jm(r′)∇′G(r, r′)dV (r′)

+
∫
V0

J(r′) ×∇′G(r, r′)dV (r′), (5.29)

r

0V  

′r  

Figure 5.8 An arbitrary current source.
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where G(r, r′) = e−jkR/4πR with R = |r − r′|. Making use of the Gauss
theorem, we have∫

V0

∇′ · J(r′)∇′G(r, r′)dV (r′) = −
∫
V0

[
J(r′) · ∇′]∇′G(r, r′)dV (r′),

and the electromagnetic fields can be rewritten as

E(r) = −jkη
∫
V0

(↔
I +

1
k2

∇∇
)
G(r, r′) · J(r′)dV (r′)

−
∫
V0

Jm(r′) ×∇′G(r, r′)dV (r′), (5.30)

H(r) = −j k
η

∫
V0

(↔
I +

1
k2

∇∇
)
G(r, r′) · Jm(r′)dV (r′)

+
∫
V0

J(r′) ×∇′G(r, r′dV (r′), (5.31)

where
↔
I is the identity dyadic tensor. Let uR = (r − r′)/|r− r′|. Then

∇′G(r, r′) =
(
jk +

1
R

)
G(r, r′)uR,

[
J(r′) · ∇′]∇′G(r, r′) = G(r, r′)

[
−k2 +

3
R

(
jk +

1
R

)] [
J(r′) · uR

]
uR

−G(r, r′)
J(r′)
R

(
jk +

1
R

)
.

If R is sufficiently large, we may ignore the terms higher than R−1. Thus[
J(r′) · ∇′]∇′G(r, r′) ≈ −k2G(r, r′)

[
J(r′) · uR

]
uR. (5.32)

In the far-field region defined by r � r′, kr � 1, the following approxima-
tions can be made

R = |r − r′| ≈ r − ur · r′, 1
|r − r′| ≈

1
r
,

e−jk|r−r′|

|r − r′| uR ≈ e−jkr

r
ejkur ·r′ur,

(5.33)
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where ur is the unit vector along r. It is readily found from (5.28), (5.29),
(5.32) and (5.33) that the far-fields have the following asymptotic forms

E(r) =
e−jkr

r

[
E∞(ur) +O

(
1
r

)]
,

H(r) =
e−jkr

r

[
H∞(ur) +O

(
1
r

)]
. (5.34)

Here the vector fields E∞ and H∞ are defined on the unit sphere Ω, and are
known as the electric far-field pattern and magnetic far-field pattern
respectively. The far-field patterns are independent of the distance r and
are given by

E∞(ur) = − jkη
4π

∫
V0

[
J − (J · ur)ur +

1
η
Jm × ur

]
ejkur ·r′dV (r′),

H∞(ur) = − jk

4πη

∫
V0

[
Jm − (Jm · ur)ur − ηJ × ur

]
ejkur ·r′dV (r′),

(5.35)

and satisfy

ηH∞(ur) = ur × E∞(ur), ur · E∞(ur) = ur · H∞(ur) = 0. (5.36)

Remark 5.1: Let S be any closed surface that encloses the source region
V0. The far-field patterns can also be expressed as

E∞(ur) = − jkη
4π

∫
S

[
Js − (Js · ur)ur +

1
η
Jms × ur

]
ejkur ·r′dS(r′),

H∞(ur) = − jk

4πη

∫
S

[
Jms − (Jms · ur)ur − ηJs × ur

]
ejkur ·r′dS(r′),

(5.37)

where Js =un ×H and Jms = − un ×E are the equivalent surface electric
and magnetic current respectively. �

It follows from (5.34) and (5.36) that the far-fields satisfy the Silver–
Müller radiation condition

lim
r→∞ r(ur × E− ηH) = 0.
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If there are no magnetic sources, the Poynting vector in the far-field region
can be expressed as

S =
1
2
Re(E× H̄) = ur

k2η

32π2r2

∣∣∣∣∣∣ur ×
∫
V0

Jejkur ·r′dV (r′)

∣∣∣∣∣∣
2

. (5.38)

The total radiated power by the current J is

Prad =
∫
S∞

S · un dS(r′) =
∫
S∞

S · unr2dΩ

=
k2η

32π2

∫
S∞

∣∣∣∣∣∣ur ×
∫
V0

Jejkur ·r′dV (r′)

∣∣∣∣∣∣
2

dΩ(r). (5.39)

From the Poynting theorem and (5.30), the radiated power can also be
calculated by the method of induced electromotive force (EMF)

Prad = −1
2
Re

∫
V0

J(r′) · E(r′)dV (r′)

=
kη

8π

∫
V0

∫
V0

J(r) ·
(↔

I +
1
k2

∇∇
)

sin(k|r − r′|)
|r − r′| · J(r′)dV (r)dV (r′).

(5.40)

Figure 5.9 shows a typical scattering problem. An impressed source Jimp

generates the incident fields (Ein,Hin), which induce a current distribution
J on the scatterer characterized by medium tensors (

↔
µµµ ,

↔
εεε ). The induced

impJ

Scatterer 

V JEin, Hin

,s sE H

inu su

,µ ε

S 

nu

,

Figure 5.9 Scattering problem.
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current J produces the scattered fields (Es,Hs). When the impressed
source and the scatterer are in close proximity, the scattering problem
essentially becomes a radiation (antenna) problem. In the far-field region
of the impressed source, the incident fields in a direction uin are a plane
wave and may be expressed by

Ein(r) = pine
−jkuin·r, Hin(r) =

1
η
uin × pine

−jkuin·r, (5.41)

where pin is a constant vector and can be decomposed into the sum of two
orthogonal components

pin = p
(1)
in u1 + p

(2)
in u2. (5.42)

Here u1 and u2 are unit vectors, which, together with uin, form a orthogonal
set of unit vectors. Assume that the scatterer is in the far-field region of
the impressed source. At the far-field region of the induced current J, the
scattered fields due to incident fields (5.41) are of the form

Es(r) =
e−jkus·r

r
E∞(us), Hs(r) =

e−jkus·r

r
H∞(us).

The electric far-field pattern can be written as

E∞(us) = p
(1)
in E(1)

∞ (us) + p
(2)
in E(2)

∞ (us)

=
[
E(1)

∞ (us)u1 + E(2)
∞ (us)u2

] · pin =
↔
S (uin,us) · pin, (5.43)

where E(1)
∞ (us) and E(2)

∞ (us) are respectively the scattered fields induced
by the incident field Ein(r)=u1e

−jkuin·r and Ein(r)= u2e
−jkuin·r, and

↔
S (uin,us) = E(1)

∞ (us)u1 + E(2)
∞ (us)u2 (5.44)

is a dyad and referred to as the scattering matrix.
We now assume that a different plane wave

E′
in(r) = p′

ine
−jku′

in·r, H′
in(r) =

1
η
u′

in × p′
ine

−jku′
in·r (5.45)

is incident upon a scatterer which occupies the same volume as the scatterer
shown in Figure 5.9, but endowed with transposed medium parameters
↔
µµµ
t
,
↔
εεε
t
. The scattered fields induced by the incident fields (5.45) are denoted



January 28, 2015 11:5 Foundations for Radio Frequency Engineering - 9in x 6in b1914-ch05 page 316

316 Foundations for Radio Frequency Engineering

by E′
s,H

′
s. From the reciprocity theorem, we may write∫

S

[(Ein + Es) × (H′
in + H′

s) − (E′
in + E′

s) × (Hin + Hs)] · un dS(r) = 0.

This can be reduced to∫
S

(Es × H′
in − E′

in × Hs) · un dS(r)

=
∫
S

(E′
s × Hin − Ein × H′

s) · un dS(r), (5.46)

where we have used the following relations (reciprocity theorems)∫
S

(Ein × H′
in − E′

in × Hin) · un dS(r) = 0,

∫
S

(Es × H′
s − E′

s × Hs) · un dS(r) = 0.

Inserting (5.41) and (5.45) into (5.46), we obtain∫
S

p′
in · [un × Hs − η−1u′

in × (un × Es)
]
e−jku

′
in·rdS(r)

=
∫
S

pin · [un × H′
s − η−1uin × (un × E′

s)
]
e−jkuin·rdS(r). (5.47)

Making use of (5.37), this can be written as

p′
in · E∞(−u′

in) = pin · E′
∞(−uin), (5.48)

or

p′
in ·

↔
S (uin,−u′

in) · pin = pin ·
↔
S ′(u′

in,−uin) · p′
in. (5.49)

This implies
↔
S
t

(uin,−u′
in) =

↔
S ′(u′

in,−uin). (5.50)

5.4.2 Poynting Theorem and Stored Energies

The differential form of the complex Poynting theorem for time-harmonic
fields in a homogeneous and isotropic medium is

∇ · S = −1
2
J̄ ·E − j2ω(wm − we), (5.51)
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Figure 5.10 Poynting theorem.

where S = E × H̄/2 is the complex Poynting vector, wm = µH · H̄/4
and we = εE · Ē/4 are the magnetic and electric field energy densities.
Let V0 be the volume occupied by the electric current source J and ∂V0

be the surface surrounding V0. Taking the integration of the imaginary
part of (5.51) over a volume V containing V0 as shown in Figure 5.10,
we obtain

Im
∫
S

un · S dS = −Im
∫
V0

1
2
J̄ ·E dV − 2ω

∫
V

(wm − we)dV , (5.52)

where S is the boundary of V . Choosing V = V0, Equation (5.52) becomes

Im
∫
∂V0

un · S dS = −Im
∫
V0

1
2
J̄ · E dV − 2ω

∫
V0

(wm − we)dV . (5.53)

If we choose V = V∞, where V∞ is the region enclosed by a sphere S∞ with
radius r being sufficiently large so that it lies in the far-field region of the
antenna system, we get

Im
∫
S∞

un · S dS = −Im
∫
V0

1
2
J̄ · E dV − 2ω

∫
V∞

(wm − we)dV . (5.54)

Since S is a real vector in the far-field region, the above equation reduces to

−Im
∫
V0

1
2
J̄ · E dV = 2ω

∫
V∞

(wm − we)dV . (5.55)
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It follows from (5.52)–(5.54) that

Im
∫
∂V0

un · S dS = 2ω
∫

V∞−V0

(wm − we)dV , (5.56)

Im
∫
S

un · S dS = 2ω
∫

V∞−V
(wm − we)dV . (5.57)

Taking the integration of the real part of (5.51) over the volume V

containing the source region V0, we obtain the radiated power

Prad = Re
∫
S

un · S dS = −Re
∫
V0

1
2
J̄ · E dV. (5.58)

Equation (5.58) shows that the surface integral of the real part of the
Poynting vector is independent of the surface S as long as it encloses the
source region V0. Equations (5.56) and (5.57) show that the surface integral
of the imaginary part of the Poynting vector depends on the integration
surface S in the near-field region (in the far-field region it becomes zero).
Considering (5.52), (5.55) and (5.58) we may find that∫

S

un · S dS = −
∫
V0

1
2
J̄ ·E dV − j2ω

∫
V

(wm − we)dV

= Prad − jIm
∫
V0

1
2
J̄ ·E dV − j2ω

∫
V

(wm − we)dV

= Prad + j2ω
∫

V∞−V
(wm − we)dV . (5.59)

The above relation indicates that the complex power flowing out of S
is equal to the radiation power plus the reactive power outside S. This
expression is the most general form of the Poynting theorem for an open
system. Let w̃e (wrad

e ) and w̃m (wrad
m ) denote the stored (radiated) electric

field and magnetic field energy densities, respectively. The stored energies
are defined by (Counter, 1948; Collin and Rothschild, 1964)

w̃m = wm − wrad
m , w̃e = we − wrad

e . (5.60)

These calculations are physically appropriate since density is a summable
quantity. It is readily seen from (5.57) that wm is equal to we in the far-field
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zone, since the complex Poynting vector becomes real as V approaches V∞.
This observation indicates that the electric field energy and the magnetic
field energy for the radiated field are identical everywhere, i.e.,

wrad
e =

1
4
εErad · Ērad =

1
4
µHrad · H̄rad = wrad

m . (5.61)

The total energy of the radiated fields is simply twice the electric or
magnetic energy density of the radiated fields. Mathematically, Equation
(5.61) holds everywhere. Consequently, from (5.55), (5.56) and (5.59), we
obtain

W̃m − W̃e =
∫

V∞−V0

(w̃m − w̃e)dV =
∫

V∞−V0

(wm − we)dV

=
1
2ω

Im
∫
∂V0

S · un dS. (5.62)

Here W̃m and W̃e stand for the total stored magnetic and electric energy
in the volume surrounding the radiator. Note that the total stored energy
can be expressed as

W̃e + W̃m =
∫

V∞−V0

(we − wrad
e + wm − wrad

m )dV

=
∫

V∞−V0

(we + wm)dV −
∫

V∞−V0

(wrad
e + wrad

m )dV

=
∫

V∞−V0

(we + wm)dV − r

v
Re

∫
∂V0

S · un dS, (5.63)

where r is the radius of the sphere S∞, and v is the wave velocity. Both
terms on the right-hand side of (5.63) are divergent as r → ∞, but it can
be shown that their difference is finite. So the stored electric and magnetic
field energies may be obtained from (5.62) and (5.63) as

W̃m =
1
2


 ∫
V∞−V0

(we + wm)dV − r

v
Re

∫
∂V0

S · un dS

+
1
2ω

Im
∫
∂V0

S · un dS

,
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W̃e =
1
2


 ∫
V∞−V0

(we + wm)dV − r

v
Re

∫
∂V0

S · un dS

− 1
2ω

Im
∫
∂V0

S · un dS

. (5.64)

Note that the stored energies are localized in the vicinity of antenna.
Therefore (5.64) will quickly become stable (a constant independent of r) as
distance r increases. In fact, (5.64) has been directly used to calculate the
stored energy of antennas by using FDTD (Collardey et al., 2005; 2006),
and it has been demonstrated that the stored energy quickly becomes stable
if r is increased to one or a few wavelengths. This fact can also be verified by
the following reasoning. Let r be the radius of the sphere that encloses the
sources. It will be shown later that the stored energies outside the sphere
can be written as [see (5.125)]

W̃m =
∞∑
n=1

(
a2
nQn + b2nQ

′
n

)
, W̃e =

∞∑
n=1

(
a2
nQ

′
n + b2nQn

)
, (5.65)

where an and bn are positive constants determined by the sources; Qn and
Q′
n are the quality factors for spherical modes [see (5.126)]. Making use of

the properties of Qn and Q′
n, we have the following asymptotic behaviors

[see (5.127)]

W̃m ∝ 1
kr
, W̃e ∝ 1

kr
, r → ∞. (5.66)

Therefore, the stored energies outside the sphere decrease rapidly as the
radius of the sphere increases. In other words, the stored energies defined
by (5.63) and (5.64) will approach to a constant value for sufficiently large r,
and the stored energies exist only in the vicinity of antenna in a quasi-static
form. In fact, the stored energies will become a constant if r falls into the
far-field region of the antenna. This agrees with our common understanding.

5.4.3 Equivalent Circuits for Antennas

A transmitting antenna can be converted to a RLC circuit, where the
resistance R is introduced to represent the radiated energy and the heat
due to the loss of the medium around the antenna; the inductance L and
capacitancesi C are used to represent the stored magnetic energy and
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the stored electric energy around the antenna respectively. A receiving
antenna can also be converted to a RLC circuit and its derivation gets
more complicated.

5.4.3.1 Equivalent Circuit for Transmitting Antennas

We choose the source region V0 in such a way that its surface ∂V0 is
coincident with the antenna surface (except at the antenna input terminal Ω
where ∂V0 crosses the antenna reference plane T ), as shown in Figure 5.11.
Applying Poynting theorem over the lossless region V∞ − V0 yields

1
2

∫
S∞

(E × H̄) · un dS +
1
2

∫
∂V0

(E × H̄) · un dS

= −j2ω
∫

V∞−V0

(wm − we)dV . (5.67)

V

S∞

rad lossR R+

nu

Z

I

nu0V

L

C

V∞

0V∂

Ω

T

Figure 5.11 Equivalent circuit for transmitting antenna.
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If we assume that the antenna surface is perfectly conducting, E × H̄
vanishes everywhere on ∂V0 except over the input terminal Ω. We further
assume that the antenna reference plane T is away from the antenna
discontinuity so that the higher order modes excited by the discontinuity
has negligible effects at the reference plane. For a single mode feeding
waveguide, we have

1
2

∫
∂V0

(E × H̄) · un dS =
1
2

∫
Ω

(E× H̄) · un dS = −1
2
V Ī, (5.68)

where V and I are equivalent modal voltage and current at the reference
plane, respectively. Introducing (5.68) into (5.67) and using the fact that
Prad = 1

2

∫
∂V∞

(E × H̄) · un dS, we may find that

1
2
V Ī = Prad + j2ω

∫
V∞−V0

(wm − we)dV .

The antenna impedance Z is defined by

Z =
V

I
=

2Prad

|I|2 + j
4ω(Wm −We)

|I|2 ,

where Wm and We are the total magnetic energy and electric energy
produced by the antenna respectively, and both are infinite as integration
region V∞−V0 is infinite. By use of (5.62), we have Wm−We = W̃m− W̃e.
Thus

Z = Rrad + jX = Rrad + j

(
ωL− 1

ωC

)
,

where Rrad and X denote the radiation resistance, reactance respectively
and their definitions are given below

Rrad =
2Prad

|I|2 , X = ωL− 1
ωC

, L =
4W̃m

|I|2 , C =
|I|2

4ω2W̃e

. (5.69)

The equivalent circuits for the antenna are shown in Figure 5.11. It should
be noted that it is the stored energy (not the total energy) of the field
that we use to derive the inductance L and capacitance C. Physically, the
stored energy means the electromagnetic energy that is temporarily located
in the field and fully recoverable when the field is reduced to zero. The total
electromagnetic energy around an antenna is infinite while the total stored
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electromagnetic energy is always finite, which, on the other hand, can never
be made zero as will be revealed later. The above understanding makes it
possible to have a rigorous derivation of equivalent circuit for a transmitting
antenna.

5.4.3.2 Equivalent Circuit for Receiving Antennas

An equivalent circuit for a receiving antenna is shown in Figure 5.12, where
the receiving antenna has been represented by a Thévenin equivalent circuit
with a voltage source Voc and an internal impedance Z in series, and ZL
is the load connected to the receiving antenna. It is well-known that the
antenna impedance Z for the receiving antenna is approximately equal to
the antenna input impedance when the receiving antenna is in the transmit
mode. Some conditions have to be applied for this kind of “reciprocity of
impedance” to be valid. Firstly, the source of the incident field must be
far away from the receiving antenna. Secondly, the equivalent source Voc

should be taken as the open circuit voltage of the receiving antenna. Such
an equivalent circuit for the receiving antenna has certain limitations since
the power dissipation on the internal impedance Z is difficult to interpret.
Therefore an equivalent circuit for the receiving antenna, which gives a cor-
rect power balance relationship, is more appealing and useful (Geyi, 2004).

Let the fields generated from antenna 1 when antenna 2 is receiving be
denoted by E, H. Then we may write

E = Ein + Es, H = Hin + Hs,

where Ein,Hin stand for the incident fields produced by antenna 1 when
antenna 2 is not present, and Es,Hs represent the scattered fields generated
by antenna 2. We use V01 and V02 to denote the source region for antenna 1
and 2, respectively. The source regions are chosen in such a way that their
boundaries, denoted by ∂V01 and ∂V02, are coincident with the metal surface
of the antennas except for a portion Ω1 or Ω2 where the boundaries cross the

ocV LZ

Z

Figure 5.12 Equivalent circuit of receiving antenna.
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Figure 5.13 Two-antenna system.
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Figure 5.14 Equivalent network for two-antenna system.

antenna feeding planes T1 or T2. The medium around antenna is assumed
to be isotropic, homogeneous, non-dispersive and lossless. This state of
operation is illustrated in Figure 5.13, and Figure 5.14 is the corresponding
equivalent network representation.

Taking the integration of Poynting theorem in frequency domain and
using the divergence theorem over the region V∞−V01−V02 in Figure 5.13,
we get

1
2

∫
∂V∞

(E × H̄) · un dS +
1
2

∫
∂V01

(E× H̄) · un dS +
1
2

∫
∂V02

(E× H̄) · un dS

= −j2ω
∫

V∞−V01−V02

(wm − we)dV . (5.70)
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If the antenna surface is perfectly conducting, (E × H̄) · un vanishes
everywhere on ∂V01 and ∂V02 except over the antenna input terminal Ω1

and Ω2. For a single mode feeding line, we have

1
2

∫
∂V01

(E × H̄) · un dS = −V1Ī1
2

,
1
2

∫
∂V02

(E × H̄) · un dS =
V2Ī2

2
.

(5.71)

Hereafter, we will use V1(or 2) and I1(or 2) to represent the terminal voltage
and current at the feeding plane of antenna 1 (or antenna 2) when antenna 1
is transmitting. It should be noted that all the terminal voltage and current
are defined on the basis of total fields. Introducing (5.71) into (5.70), we
obtain

V1Ī1
2

− V2Ī2
2

=
1
2

∫
∂V∞

(E × H̄) · un dS + j2ω
∫

V∞−V01−V02

(wm − we)dV .

The above equation can be written as

Pin = Prad + PL + j2ω(W̃m − W̃e), (5.72)

where Pin = V1Ī1/2 is the complex power transmitted by the antenna
1; PL = V2Ī2/2 is the complex power absorbed by the load ZL; Prad =
(1/2)

∫
∂V∞

(E× H̄) · un dS is the total power radiated (escaped) away into

space; W̃m and W̃e are the stored magnetic and electric energy respectively.
In the above equation, we have used the following calculation

W̃m − W̃e =
∫

V∞−V01−V02

(wm − we)dV .

The power balance relation in (5.72) shows that if the power radiated
away into space is zero the transmitted power from antenna 1 can be
totally absorbed by the load of the receiving antenna, which is theoretically
possible. An example is a two ideal planar aperture antenna system focused
to each other, where the power transmission efficiency could attain 100%.
When the receiving antenna is in the far-field region of the transmitting
antenna the radiated power Prad is generally not zero and the power
absorbed by the load is just small portion of the total transmitted
power. From (5.72) an equivalent circuit for the receiving antenna can
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Figure 5.15 Equivalent circuits for receiving antenna.

be constructed as shown in Figure 5.15(a) by introducing the following
circuit elements

Vs =
2Pin

Ī2
, Rrad =

2Prad

|I2|2 , L =
4W̃m

|I2|2 , C =
|I2|2

4ω2W̃e

.

The physical implication of the equivalent circuit Figure 5.15(a) is very
clear. The total power of the incident field, which spreads over all the space,
is converted to a voltage source Vs. The energy radiated (or reradiated)
away into infinity by the antenna system is represented by Rrad. The energy
intercepted (or absorbed) by the receiving antenna, which is then dissipated
in the load ZL, is only a small part of the total incident energy when the
receiving antenna is far from the transmitting antenna and it depends on
the orientation of the antenna, the polarization of the incident wave and the
impedance match of the receiving antenna system. If the receiving antenna
is far from the transmitting antenna and its absorption cross section is
finite, then the receiving antenna will never be able to catch all the incident
energy.

The most well-known equivalent circuit for a receiving antenna is
shown in Figure 5.15(b) and can be obtained directly from the network
representation in Figure 5.14 by using the Norton theorem. This equivalent
circuit can also be obtained by using a fundamental theorem derived by
Collin (2003), which states that the total scattered field by a receiving
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antenna can be expressed as

Es(ZL) = Es(Zr) +
Ir
IR

ZL − Zr
ZT + ZL

ER,

Hs(ZL) = Hs(Zr) +
Ir
IR

ZL − Zr
ZT + ZL

HR,

(5.73)

where Es(ZL) is the scattered field by the receiving antenna that is
terminated in a load impedance ZL; Es(Zr) is the field scattered by the
receiving antenna when it is terminated in a reference impedance Zr and
Ir is the current that flows into Zr [see Figure 5.16(a)]; ER is the field
radiated by the receiving antenna for an input current IR in the presence of
the transmitting antenna with its source generator short-circuited (Vg = 0)
and ZT is the corresponding input impedance of the receiving antenna in
this case [see Figure 5.16(b)]. Huygens’ principle indicates that given a
source inside a hypothetical surface S, there is a certain source spreading
over S, which gives the same field outside S as the original source inside S.

rI(1)
1I

(1)
2V

rZ
(1)

1V

gV

gZ ( ),   

( ).
in            s r

in            s r

Z

Z

= +
= +

E E E

H H H

RI

(2)
1I

(2)
1V

gZ ,R RE H

TZ

(2)
2V

(a)

(b)

Figure 5.16 Two different field solutions.
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In other words, an observer outside S will be hard to tell exactly whether
the field is produced by the source inside the hypothetical surface or the
source spreading over the surface. Therefore, it is not surprising that
the equivalent circuits for a receiving antenna are not unique and their
physical implications are difficult to interpret sometimes. The equivalent
circuit in Figure 5.15(a) seems to be more convenient as its equivalent
source Vs has a clear physical implication while the power generated by
the equivalent source Voc in Figure 5.15(b) is obscure. On the other hand,
the equivalent circuit in Figure 5.15(b) reflects the fact that antenna
impedance is reciprocal, i.e., when the transmitting antenna is far away
from the receiving antenna the input impedance of the receiving antenna
in the transmitting mode is equal to the impedance of the antenna in the
receiving mode if the equivalent source Voc is viewed as the excitation
source.

The derivation of the relations in (5.73) is straightforward. We assume
that the fields [Es(ZL),Hs(ZL)] produced by the two antenna system
in a state of operation shown in Figure 5.14 can be expressed as the
superposition of the two field solutions [Es(Zr),Hs(Zr)] and (ER,HR)
produced by the two antenna system in the states of operation shown in
Figure 5.16

Es(ZL) = Es(Zr) + αER,

Hs(ZL) = Hs(Zr) + αHR,
(5.74)

where α is a constant to be determined. Clearly the fields [Es(ZL),Hs(ZL)]
satisfy the boundary conditions on the antenna surfaces and the radiation
condition at infinity since both [Es(Zr),Hs(Zr)] and (ER,HR) satisfy these
boundary conditions. On the feeding plane T1, we have

V1 = V
(1)
1 + αV

(2)
1 = Vg − I

(1)
1 Zg − αI

(2)
1 Zg = Vg − (I(1)

1 + αI
(2)
1 )Zg.

According to the second expression of (5.74), we have I1 = I
(1)
1 +αI

(2)
1 . As

a result, the above equation can be written as

V1 = Vg − I1Zg,

which indicates that the boundary condition on the feeding plane T1 is
satisfied. In order to satisfy the boundary condition on the feeding plane
T2, we must have

V2 = I2ZL = (Ir − αIR)ZL = V
(1)
2 + αV

(2)
2 = IrZr + αIRZT ,
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which can be used to solve for α

α =
Ir
IR

ZL − Zr
ZT + ZL

.

If we choose Zr = 0, (5.73) becomes

Es(ZL) = Es(Zr = 0) +
Ir
IR

ZL
ZT + ZL

ER,

Hs(ZL) = Hs(Zr = 0) +
Ir
IR

ZL
ZT + ZL

HR.

(5.75)

This is a fundamental theorem in antenna scattering and has been derived
by many authors (Aharoni, 1946; King and Harrison, 1944; Stevenson, 1948;
Collin, 1968).

If we choose Zr = Zc, where Zc represents the characteristic impedance
of the transmission line that connects the receiving antenna to its load
termination, (5.73) becomes

Es(ZL) = Es(Zc) +
Ir
IR

ZL − Zc
ZT + ZL

ER,

Hs(ZL) = Hs(Zc) +
Ir
IR

ZL − Zc
ZT + ZL

HR.

(5.76)

If the load impedance is equal to the characteristic impedance, the scattered
fields are given by only the first term on the right-hand side of (5.76). In
this case, the antenna does not radiate and the term Es(Zc) represents the
scattering from the antenna structure with no radiation mode component
present, which may be called the intrinsic scattered field as proposed
by Collin.

If we choose Zr = Z̄T , (5.73) becomes

Es(ZL) = Es(Z̄T ) +
Ir
IR

ZL − Z̄T
ZL + ZT

ER,

Hs(ZL) = Hs(Z̄T ) +
Ir
IR

ZL − Z̄T
ZL + ZT

HR.

(5.77)

If the antenna load impedance is equal to the complex conjugate of the
antenna input impedance the scattered fields are given by only the first term
on the right-hand side of (5.77), which are called structural scattered
fields as proposed by Green (1963). In general, the scattered field from an
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antenna will have a radiation pattern that can be very different from the
radiation pattern when the antenna is used to transmit.

5.4.4 Foster Reactance Theorem for Lossless Antennas

The Foster theorems, named after the American mathematician Ronald
Martin Foster (1896–1998), state that the slope of the reactance curve
or susceptance curve as a function of frequency is always positive for a
lossless circuit. Although the Foster theorems are typically stated for a
lossless network in textbooks, they can be generalized to a lossy network in
numerous situations. For example, the Foster reactance theorem holds for
a simple series RLC circuit or any lossy network that consists of a resistor
connected in series to a lossless network. From the viewpoint of circuit
theory, an ideal antenna, defined as an antenna without Ohmic loss, is
a one-port lossy network with radiation loss only. By using the complex
frequency domain approach, the Foster theorems can be shown to hold for
an ideal antenna (Geyi et al., 2000; Geyi, 2007a).

To prove that the Foster theorem holds for an ideal antenna, we
introduce the complex frequency s=α+ jω and all calculations are confined
to the complex frequency plane. For clarity, all quantities in the complex fre-
quency domain are denoted by the same symbols in real frequency domain
but explicitly showing the dependence on s. Taking the Laplace transform
of the time-domain Maxwell’s equations in a lossless medium yields

∇× E(r, s) = −sµH(r, s), ∇× H(r, s) = sεE(r, s). (5.78)

The frequency-domain quantities can be recovered by letting α = 0 in
(5.78). From (5.78) a relation similar to (5.51) can be obtained in the region
outside V0

∇ ·
[
1
2
E(r, s) × H̄(r, s)

]
= −1

2
α
[
µ|H(r, s)|2 + ε|E(r, s)|2]

− j
1
2
ω
[
µ|H(r, s)|2 − ε|E(r, s)|2] . (5.79)

Taking the integration of (5.79) over the connected region V∞−V0, as shown
in Figure 5.11, gives∫

∂V0+S∞

1
2
[E(r, s) × H̄(r, s)] · un dS

= −2α[Wm(s) +We(s)] − 2jω[Wm(s) −We(s)], (5.80)
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where

Wm(s) =
1
4

∫
V∞−V0

µ|H(r, s)|2dV (r),

We(s) =
1
4

∫
V∞−V0

ε|E(r, s)|2dV (r).

We assume again that the antenna reference plane is away from the antenna
discontinuity so that the higher-order modes excited by the discontinuity
have negligible effects at the reference plane. Thus for a single-mode feeding
waveguide, we can make the following approximation

1
2

∫
∂V0

[E(r, s) × H̄(r, s)] · un dS(r) = −1
2
V (s)Ī(s). (5.81)

Letting Prad(s) = 1
2

∫
S∞

[E(r, s) × H̄(r, s)] · un dS(r) and substituting it
into (5.80), we get

1
2
V (s)Ī(s) = Prad(s) + 2α[Wm(s) +We(s)] + 2jω[Wm(s) −We(s)].

(5.82)

We now choose the observation r such that it is located in the far-field region
of the antenna. As indicated by (5.66), the stored energies will become a
constant if r = |r| is big enough (say, r is in the far-field region). Since
v = 3 × 108 m/s in free space, we have r/v � 1 for any practical antenna
system with r in the far-field region. If α is sufficiently small, we can make
a first order approximation e−αr/c ≈ 1−αr/v, and derive directly from the
Maxwell equations, defined in the complex plane, the following:

Erad(r, s) ≈ −
(
1 − r

α

v

) jωµ
4πr

e−jkr
∫
V0

[J(r′, s)−J(r′, s) · ur]e−jkur ·r′dV (r′),

Hrad(r, s) ≈ −η
(
1 − r

α

v

)jωε
4πr

e−jkr
∫
V0

ur × J(r′, s)e−jkur·r′dV (r′).

Hence

Prad(s) = Prad(ω)(1 − rα/v)2 ≈ (1 − 2rα/v)Prad(ω) (5.83)

where Prad(ω), previously defined in (5.58), is the radiated power in the
frequency domain, which is independent of α. Substituting (5.83) into
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(5.82), we obtain

1
2
V (s)Ī(s) = Prad(ω) + 2α

[
Wm(s) +We(s) − r

v
Prad(ω)

]
+ 2jω[Wm(s) −We(s)]. (5.84)

The impedance and admittance in the complex frequency plane can then
be expressed as

Z(s) =
2Prad(ω)
|I(s)|2 +

4α
|I(s)|2

[
Wm(s) +We(s) − r

v
Prad(ω)

]

+
4jω

|I(s)|2 [Wm(s) −We(s)]. (5.85)

Similarly, we can introduce the stored energies in the complex frequency
domain

W̃m(s) + W̃e(s) = Wm(s) +We(s) − r

v
Prad(ω),

W̃m(s) − W̃e(s) = Wm(s) −We(s),

and rewrite (5.85) as

Z(s) =
2Prad(ω)
|I(s)|2 +

4sW̃m(s)
|I(s)|2 +

4s̄W̃e(s)
|I(s)|2 . (5.86)

To get rid of the complex conjugation s̄, we may introduce a new quantity
W̃ ′
e(s) = |s|2W̃e(s). Now (5.86) can be extended to an analytic function of

s by replacing all complex conjugations s̄ in W̃m(s) and W̃ ′
e(s) with −s,

and jω (resp. −jω) by s (resp. −s) in Prad(ω). Thus (5.86) become analytic
and can be written as

Z(s) =
2Prad(s)
I(s)I(−s) +

4sW̃m(s)
I(s)I(−s) +

4s−1W̃ ′
e(s)

I(s)I(−s) . (5.87)

Note that (5.86) and (5.87) are identical when α = 0. If α is assumed to
be small, a Taylor expansion may be assumed for an arbitrary analytic
function A(s) so that

A(s) · A(−s) = |A(jω)|2 + jαT (ω) + o(α),

where T (ω) is a real function of ω. When this relation is used in (5.87) and
use is made of the following decompositions

Z(s) = R(α, ω) + jX(α, ω), (5.88)
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we may find that

R(α, ω) =
2Prad

|I|2 +
4α
|I|2 (W̃m + W̃e), (5.89)

where the power, energies, voltage and current are all calculated at α = 0.
Since Z(s) is an analytic function, its real and imaginary parts satisfy the
Cauchy–Riemann conditions

∂R(α, ω)
∂α

=
∂X(α, ω)

∂ω
,

∂R(α, ω)
∂ω

= −∂X(α, ω)
∂α

. (5.90)

By direct calculation, we have

∂R(α, ω)
∂α

∣∣∣∣
α=0

=
4(W̃m + W̃e)

|I|2 . (5.91)

From (5.90) and (5.91), we obtain

∂X

∂ω

∣∣∣∣
α=0

=
4

|I|2 (W̃m + W̃e) > 0. (5.92)

This is the Foster theorem for a lossless antenna system, which indicates
that the slope of the reactance curve as a function of the frequency for an
ideal antenna is always positive. From (5.92), we obtain the stored magnetic
and electric field energies

W̃e =
1
8
|I|2

(
∂X

∂ω
− X

ω

)
, W̃m =

1
8
|I|2

(
∂X

∂ω
+
X

ω

)
. (5.93)

Note that the reactance X can be written as

X =
4ω
|I|2 (W̃m − W̃e). (5.94)

Equations (5.93) was used by Harrington to study antenna Q and
bandwidth in 1968 in his book Field Computation by Moment Methods
(Harrington, 1968) although a rigorous proof of Foster reactance theorem
for a radiating system was not available at the time. Harrington believed
that (5.93) is approximately valid for a high Q network in the vicinity of
resonance. In a discussion with Collin, Rhodes also believed that the fact
that the slope of the input reactance can be negative at some frequencies
is immaterial; it is always positive at the only frequency (resonance) for
which bandwidth and Q are defined (Collin, 1967; Rhodes, 1967).



January 28, 2015 11:5 Foundations for Radio Frequency Engineering - 9in x 6in b1914-ch05 page 334

334 Foundations for Radio Frequency Engineering

Example 5.2 (Demonstration of Foster reactance theorem for lossless
antennas): The Foster reactance theorem is valid for an ideal metal antenna,
subject to the following conditions: (a) The antenna consists of perfect
conductor and the surrounding material is lossless; (b) The antenna is
fed by a waveguide which is assumed to be in the state of single-mode
operation, and the antenna input terminal is positioned in the single-mode
region of the feeding waveguide. Equation (5.92) indicates that the slope of
the reactance of the antenna must be great than zero. This result has been
the main cause to provoke argument. Some typical numerical examples
will now be presented to validate the Foster reactance theorem for ideal
(lossless) antennas.

The reactance curves of a dipole fed by two-wire transmission line, a
coaxial aperture and a monopole antenna fed by coaxial cable, and rectan-
gular aperture antenna fed by waveguide are shown in Figures 5.17–5.20.
It can be seen that Foster reactance theorem holds very well in the frequency
range between the cut-off frequency fc of the dominant mode and the cut-
off frequency fc1 of the first higher order mode (the feeding waveguide is
assumed to be in a single-mode operation).

Although a feeding waveguide is assumed in the proof of the Foster
reactance theorem, the Foster reactance theorem is also valid for point-fed
antennas. As pointed out in Balanis (2005), the delta-gap source modeling
is the simplest and most widely used, but it is also the least accurate,
especially for impedances. Theoretically, the delta-gap source is only valid

0 0.2 0.4 0.6 0.8 1

1000

0

1000 D L d 

2a 

f GHz

R
ea

ct
an

ce
 

Figure 5.17 The reactance of a dipole (L = 125mm, D= 75mm, d = 5mm,
a= 0.5mm).
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Figure 5.18 Reactance of the coaxial aperture antenna with infinite flange.
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L h
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Figure 5.19 Reactance of a cylindrical monopole antenna.

for infinitely thin wire antennas. For thick wires, the delta-gap source
modeling produces reasonable results for the impedance only when the
calculation is limited to the low frequency range. This observation has been
widely ignored.

The reactance curves of the thin dipole antenna, loop antenna and
folded dipole antenna are shown in Figures 5.21–5.23. It can be seen that
the Foster reactance theorem holds very well. Note that the reactance curves
not only have some zeros (resonant frequencies) where the stored electric
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Figure 5.20 Reactance of a rectangular aperture.

ka ( 5
0 / 10a a −= )

2a

Figure 5.21 Reactance of a dipole antenna.

energy equals the stored magnetic energy, but also have some singularities
where the slope of the reactance curve becomes infinite caused by the zeros
of the input current. A negative slope may occur around these singularities if
either the delta-gap source is inappropriately applied or heat loss is present
(such as in the measurements). However, the slope of reactance is always
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ka ( 5
0 / 10a a −= )

2a

Figure 5.22 Reactance of a loop antenna.

2a

s 

Figure 5.23 Reactance of a folded dipole.

positive in the vicinity of resonant frequency as noted by Rhodes (1967).
Since the bandwidth and Q are defined at resonant frequency, the Foster
reactance theorem is always approximately valid for a lossy system and can
be applied to study antenna Q and bandwidth, as claimed by Harrington
(1968). �
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Remark 5.2: From the Poynting theorem in frequency domain, we may
obtain (Geyi, 2010)

P rad =
ωηv

8π

∫
V0

∫
V0

[
1
v2

J̄(r) · J(r′)
R

− ρ̄(r)ρ(r′)
R

]
sin(kR)dV (r)dV (r′),

(5.95)

W̃m − W̃e =
ηv

16π

∫
V0

∫
V0

[
1
v2

J̄(r) · J(r′)
R

− ρ̄(r)ρ(r′)
R

]
cos(kR)dV (r)dV (r′),

(5.96)

where V0 stands for the source region that the induced current J occupies.
Once the current distribution J and the input terminal current I are
known, the stored energies and thus the Q can be determined from
Equations (5.93)–(5.96). It follows from (5.94) that

∂X

∂ω
=

4(W̃m − W̃e)
|I|2 + ω

∂

∂ω

[
4(W̃m − W̃e)

|I|2
]
. (5.97)

Considering (5.96) and assuming that the normalized current distribution
J(r)/I is independent of frequency, we have

∂

∂ω

W̃m − W̃e

|I|2 =
ηv

8π

∫
V0

∫
V0

∇ · J̄(r)∇ · J(r′)
ω3|I|2R cos(kR)dV (r)dV (r′)

− η

16π

∫
V0

∫
V0

[
J̄(r) · J(r′)
v2|I|2 − ∇ · J̄(r)∇ · J(r′)

ω2|I|2
]

× sin(kR)dV (r)dV (r′). (5.98)

Taking (5.98) into account and substituting (5.97) into (5.93), we immedi-
ately get

W̃e =
ηv

16π

∫
V0

∫
V0

ρ̄(r)ρ(r′)
cos kR
R

dV (r)dV (r′)

+
ωη

32π

∫
V0

∫
V0

[
ρ̄(r)ρ(r′) − 1

v2
J̄(r) · J(r′)

]
sin kRdV (r)dV (r′),

(5.99)
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W̃m =
ηv

16π

∫
V0

∫
V0

1
v2

J̄(r) · J(r′)
cos kR
R

dV (r)dV (r′)

+
ωη

32π

∫
V0

∫
V0

[
ρ̄(r)ρ(r′) − 1

v2
J̄(r) · J(r′)

]
sin kRdV (r)dV (r′)

(5.100)
these results, implied by the Foster reactance theorem, have been obtained
by Vandenbosch in a rather involved way (Vandenbosch, 2010). In deriving
them, an assumption that the normalized current distribution J(r)/I is
independent of frequency has been applied. This assumption is, however,
generally not true for electrically large antennas. To get rid of the
assumption, a more rigorous approach will be introduced below. �

5.4.5 Quality Factor and Bandwidth

The evaluation of the antenna quality factor can be traced back to the
classical work of Chu, who derived the theoretical value of Q for an ideal
antenna enclosed in a circumscribing sphere (Chu, 1948). Chu’s analysis
is based on the spherical mode expansions and is only valid for an omni-
directional antenna that radiates either TE or TM modes. In order to avoid
the difficulty that the total electric and magnetic field energies are infinite,
Chu introduced the equivalent impedance for each mode and obtained
an expression of antenna Q through the calculation of stored energies
in the truncated equivalent ladder circuit for the impedance. Collin and
Rothschild used a method for evaluating antenna Q (Collin and Rothschild,
1964) based on the idea proposed by Counter (1948) that the total stored
energy can be calculated by subtracting the radiated field energy away from
the total energy in the fields. Such method has been successfully used by
Fante (1969) and re-examined by McLean (1996) to study the antenna Q.
All these studies only utilize the stored energies outside the circumscribing
sphere of the antenna in the calculation of antennaQ, which is much smaller
than Qreal (Collardey et al., 2005; 2006).

5.4.5.1 Evaluation of Q from Input Impedance

From the stored energies expressed by (5.93), the antenna quality factor
may be written as

Qreal =
1

2Rrad
ω
∂X

∂ω
, (5.101)
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if (5.11) is used; or

Qreal =
1

2Rrad

(
ω
dX

dω
±X

)
(5.102)

where either + or − is chosen to give the higher Q, if (5.12) is used. Thus
once the antenna input impedance is known, the quality factor may be
determined from (5.101) or (5.102).

5.4.5.2 Evaluation of Q from Current Distribution

Let us consider an arbitrary current distribution J, which occupies a finite
region V0 bounded by ∂V0 as shown in Figure 5.10. The current distribution
produces electric field E and magnetic field H. Let S be a closed surface
large enough to enclose the source region V0. We introduce the complex
frequency s = α + jω and all calculations are confined to the complex
frequency plane. Then Equation (5.79) applies. Taking the integration of
(5.79) over the region V bounded by S gives

−
∫
V0

1
2
E(r, s) · J̄(r, s)dV (r) = Prad(s) + 2α[Wm(s) +We(s)]

+ 2jω[Wm(s) −We(s)], (5.103)

where

Wm(s) =
1
4

∫
V

µ|H(r, s)|2dV (r), We(s) =
1
4

∫
V

ε|E(r, s)|2dV (r).

Prad(s) =
1
2

∫
S

[E(r, s) × H̄(r, s)] · un dS(r).

Similarly (5.83) holds. Substituting it into (5.103), we obtain

−
∫
V0

1
2
J̄(r, s) ·E(r, s)dV (r) = Prad(ω) + 2α

[
W̃m(s) + W̃e(s)

]

+ 2jω
[
W̃m(s) − W̃e(s)

]
. (5.104)

In the complex frequency domain, the fields produced by the current J(r, s)
can be represented by

E(r, s) = −ηv∇
∫
V0

ρ(r′, s)
4πR

e−
sR
v dV (r′) − η

v
s

∫
V0

J(r′, s)
4πR

e−
sR
v dV (r′).

(5.105)
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Introducing (5.105) into (5.104), we obtain

−1
2

∫
V0

J̄(r, s) · E(r, s)dV (r) = ηvs̄

∫
V0

∫
V0

ρ̄(r, s)ρ(r′, s)
8πR

e−
sR
v dV (r)dV (r′)

+
η

v
s

∫
V0

∫
V0

J̄(r, s) · J(r′, s)
8πR

e−
sR
v dV (r)dV (r′).

(5.106)

It follows from (5.104) and (5.106) that

ηv

16π

∫
V0

∫
V0

ρ̄(r, s)ρ(r′, s)
R

s̄e−
sR
v dV (r)dV (r′)

+
ηv

16π

∫
V0

∫
V0

1
v2

J̄(r, s) · J(r′, s)
R

se−
sR
v dV (r)dV (r′)

=
1
2
Prad(ω) + α

[
W̃m(s) + W̃e(s)

]
+ jω

[
W̃m(s) − W̃e(s)

]
. (5.107)

For arbitrary analytic functions a(s) = ar(α, ω) + jai(α, ω) and b(s) =
br(α, ω) + jbi(α, ω) the Cauchy–Riemann conditions hold

∂ar(α, ω)
∂α

=
∂ai(α, ω)

∂ω
,

∂ai(α, ω)
∂α

= −∂ar(α, ω)
∂ω

;

∂br(α, ω)
∂α

=
∂bi(α, ω)

∂ω
,

∂bi(α, ω)
∂α

= −∂br(α, ω)
∂ω

.

(5.108)

These relations imply

∂ā(s)
∂α

= j
∂ā(s)
∂ω

,
∂ā(s)
∂α

= j
∂ā(s)
∂ω

.

The function ā(s)b(s) may be expanded into a Taylor series at α = 0

ā(s)b(s) ≈ ā(jω)b(jω) + α[Ω1(jω) + jΩ2(jω)] + o(α),

where the Cauchy–Riemann conditions (5.108) have been used, and

Ω1(jω) = Re
[
j
∂ā(jω)
∂ω

b(jω) − jā(jω)
∂b(jω)
∂ω

]
,

Ω2(jω) = Im
[
j
∂ā(jω)
∂ω

b(jω) − jā(jω)
∂b(jω)
∂ω

]
.
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For small α, we may use the following approximations

e−
sR
v ≈ (cos kR− j sin kR) − α

R

v
(cos kR− j sin kR).

Thus we have

ā(s)b(s)s̄e−
sR
v

= αā(jω)b(jω) cos kR− jαā(jω)b(jω) sinkR

−jωā(jω)b(jω) coskR− ωā(jω)b(jω) sin kR

+ jωα
R

v
ā(jω)b(jω) cos kR+ αω

R

v
ā(jω)b(jω) sinkR

− jωαΩ1(jω) cos kR− αωΩ1(jω) sin kR

+αωΩ2(jω) cos kR− jωαΩ2(jω) sin kR+ o(α), (5.109)

and

ā(s)b(s)se−
sR
v

= αā(jω)b(jω) cos kR− jαā(jω)b(jω) sinkR

+ jωā(jω)b(jω) cos kR+ ωā(jω)b(jω) sinkR

− jωα
R

c
ā(jω)b(jω) cos kR− αω

R

v
ā(jω)b(jω) sinkR

+ jωαΩ1(jω) cos kR+ αωΩ1(jω) sin kR

−αωΩ2(jω) cos kR+ jωαΩ2(jω) sin kR+ o(α). (5.110)

It follows from (5.107), (5.109) and (5.110) that

Prad(ω) =
ωηc

8π

∫
V0

∫
V0

[
1
v2

J̄(r) · J(r′) − ρ̄(r)ρ(r′)
]

× sinkR
R

dV (r)dV (r′), (5.111)

W̃m − W̃e =
ηv

16π

∫
V0

∫
V0

[
1
v2

J̄(r) · J(r′) − ρ̄(r)ρ(r′)
]

×cos kR
R

dV (r)dV (r′), (5.112)
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W̃m + W̃e =
ηv

16π

∫
V0

∫
V0

ρ̄(r)ρ(r′)
R

cos kRdV (r)dV (r′)

+
ηv

16π

∫
V0

∫
V0

ω
R

v

ρ̄(r)ρ(r′)
R

sin kR dV (r)dV (r′)

− ηv

16π

∫
V0

∫
V0

ωΩρ1(jω)
R

sinkR dV (r)dV (r′)

+
ηv

16π

∫
V0

∫
V0

ωΩρ2(jω)
R

cos kRdV (r)dV (r′)

+
ηv

16π

∫
V0

∫
V0

1
v2

J̄(r) · J(r′)
R

cos kR dV (r)dV (r′)

− ηv

16π

∫
V0

∫
V0

1
v2
ω
R

v

J̄(r) · J(r′)
R

sinkR dV (r)dV (r′)

+
ηv

16π

∫
V0

∫
V0

1
v2

ωΩJ1(jω)
R

sin kRdV (r)dV (r′)

− ηv

16π

∫
V0

∫
V0

1
v2

ωΩJ2(jω)
R

cos kR dV (r)dV (r′), (5.113)

where

Ωρ1(jω) = Re
[
j
∂ρ̄(r)
∂ω

ρ(r′) − jρ̄(r)
∂ρ(r′)
∂ω

]
,

Ωρ2(jω) = Im
[
j
∂ρ̄(r)
∂ω

ρ(r′) − jρ̄(r)
∂ρ(r′)
∂ω

]
,

ΩJ1(jω) = Re
[
j
∂J̄(r)
∂ω

· J(r′) − jJ̄(r) · ∂J(r′)
∂ω

]
,

ΩJ2(jω) = Im
[
j
∂J̄(r)
∂ω

· J(r′) − jJ̄(r) · ∂J(r′)
∂ω

]
.
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Note that the integral∫
V

∫
V

[
j
∂ρ̄(r)
∂ω

ρ(r′) − jρ̄(r)
∂ρ(r′)
∂ω

]
sin kR
R

dV (r)dV (r′)

is real. Thus (5.113) can be written as

W̃m + W̃e =
ηv

16π

∫
V

∫
V

[
ρ̄(r)ρ(r′) +

1
v2

J̄(r) · J(r′)
]
cos kR
R

dV (r)dV (r′)

+
ωη

16π

∫
V

∫
V

[
ρ̄(r)ρ(r′) − 1

c2
J̄(r) · J(r′)

]
sin kRdV (r)dV (r′)

−ωηv
8π

∫
V

∫
V

Im
[
ρ̄(r)

∂ρ(r′)
∂ω

]
sin kR
R

dV (r)dV (r′)

+
ωηv

8π

∫
V

∫
V

1
v2

Im
[
J̄(r) · ∂J(r′)

∂ω

]
sin kR
R

dV (r)dV (r′).

(5.114)

From (5.112) and (5.114), the stored energies can be obtained as follows

W̃m =
ηv

16π

∫
V0

∫
V0

1
v2

J̄(r) · J(r′)
cos kR
R

dV (r)dV (r′)

+
ωη

32π

∫
V0

∫
V0

[
ρ̄(r)ρ(r′) − 1

v2
J̄(r) · J(r′)

]
sinkR dV (r)dV (r′)

−ωηv
16π

∫
V0

∫
V0

Im
[
ρ̄(r)

∂ρ(r′)
∂ω

]
sin kR
R

dV (r)dV (r′)

+
ωηv

16π

∫
V0

∫
V0

1
v2

Im
[
J̄(r) · ∂J(r′)

∂ω

]
sinkR
R

dV (r)dV (r′), (5.115)

W̃e =
ηv

16π

∫
V0

∫
V0

ρ̄(r)ρ(r′)
cos kR
R

dV (r)dV (r′)

+
ωη

32π

∫
V0

∫
V0

[
ρ̄(r)ρ(r′) − 1

v2
J̄(r) · J(r′)

]
sinkR dV (r)dV (r′)
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−ωηv
16π

∫
V0

∫
V0

Im
[
ρ̄(r)

∂ρ(r′)
∂ω

]
sinkR
R

dV (r)dV (r′)

+
ωηv

16π

∫
V0

∫
V0

1
v2

Im
[
J̄(r) · ∂J(r′)

∂ω

]
sin kR
R

dV (r)dV (r′). (5.116)

Equations (5.115) and (5.116) are the most general expressions for the
stored energies. The last two terms in (5.115) and (5.116) will be denoted by

W̃d = −ωηv
16π

∫
V

∫
V

Im
[
ρ̄(r)

∂ρ(r′)
∂ω

]
sin kR
R

dV (r)dV (r′)

+
ωηv

16π

∫
V

∫
V

1
v2

Im
[
J̄(r) · ∂J(r′)

∂ω

]
sin kR
R

dV (r)dV (r′), (5.117)

which represent frequency-derivative terms of the source distributions, and
disappear in (5.99) and (5.100). The contribution of W̃d to the stored
energies could be significant, and cannot be ignored in general except for
small antennas. Equations (5.115) and (5.116) reduce to (5.99) and (5.100)
if either the source distributions are assumed to be independent of frequency
or the source distributions are purely real (or imaginary). From (5.115) and
(5.116), the antenna Qreal may be determined either by (5.11) or (5.12).

Remark 5.3: A method for calculating the stored energies for small anten-
nas was proposed in Geyi (2003b). The method is based on the understand-
ing that, for a small antenna, the total energy in Poynting theorem can be
easily separated into the stored energy and radiated energy by using the low
frequency expansions. The Poynting theorem in frequency domain provides
an equation on the stored electric and magnetic energy while the Poynting
theorem in time domain can be used as another independent equation for
the stored electric and magnetic energy. By solving these equations, the
stored electric and magnetic energy can be obtained as follows

W̃e =
ηv

16π

∫
V0

∫
V0

1
R
ρ(r)ρ̄(r′)dV (r)dV (r′), (5.118)

W̃m =
ηv

16π
1
v2

∫
V0

∫
V0

J(r) · J̄(r′)
R

dV (r)dV (r′)

+
ηv

16π
k2

2

∫
V0

∫
V0

Rρ(r)ρ̄(r′)dV (r)dV (r′). (5.119)
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It can be shown that (5.115) and (5.116) reduce to (5.118) and (5.119) for
small antennas. �

5.4.5.3 Relationship between Q and Bandwidth

Consider a high quality factor system. Let ωr denote one of the resonant
frequencies of a single antenna system. Then, by definition, we have

X(ωr) = 0. (5.120)

For small α, we have X(α, ωr) ≈ X(ωr) = 0 at the resonant frequency ωr.
From (5.90), we obtain

dR

dω

∣∣∣∣
ωr

= − ∂X(α, ωr)
∂α

∣∣∣∣
α=0

≈ 0.

Thus as one moves off resonance, the antenna input impedance Z can be
written as

Z ≈ R|ωr + j(ω − ωr)
dX

dω

∣∣∣∣
ωr

+ · · · .

The frequency at which the absolute value of the input impedance is equal
to

√
2 times its value at resonance is the half-power point. The half-power

points occur when

R|ωr =

∣∣∣∣∣(ω − ωr)
dX

dω

∣∣∣∣
ωr

∣∣∣∣∣, (5.121)

so that the fractional bandwidth Bf can be written

Bf =
2|ω − ωr|

ωr
≈ 2R|ωr

ωr|dX/dω|ωr

. (5.122)

From (5.101) or (5.102), we obtain

Bf =
1

Qreal|ωr

. (5.123)

Thus we have proved that the antenna fractional bandwidth is the inversion
of antenna Qreal when Qreal � 1.

5.4.5.4 Minimum Possible Antenna Quality Factor

The study of antenna quality factor was usually based on the spherical
wavefunction expansion outside the circumscribing sphere of the antenna.
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2a

Sa

Figure 5.24 Antenna and its circumscribing sphere.

The antenna quality factor resulting from the spherical wavefunction
expansion is much lower than the real value Qreal as the stored energy
inside the circumscribing sphere has been ignored. Assume that the antenna
is enclosed by the circumscribing sphere of radius a, denoted by Va with
bounding surface Sa, as illustrated in Figure 5.24. The total stored energy
outside the circumscribing sphere can be evaluated through (5.63)

W̃e + W̃m =

∞∫
a

dr




2π∫
0

dϕ

π∫
0

r2
(ε

4
|E|2 +

µ

4
|H|2

)
sin θ dθ

− 1
2v
Re

∫
∂V∞

E × H̄ · ur dS

.

From (5.23) and (5.26), we obtain

Prad =
1
2
Re

∫
S∞

E × H̄ · ur dS =
1

2k2η

∑
n,m,l

N2
nm

(∣∣α(2)
nml

∣∣2 +
∣∣β(2)

nml

∣∣2),
(5.124)

ωW̃m =
1

4k2η

∑
n,m,l

N2
nm

(∣∣α(2)
nml

∣∣2Qn +
∣∣β(2)

nml

∣∣2Q′
n

)
,

(5.125)
ωW̃e =

1
4k2η

∑
n,m,l

N2
nm

(∣∣α(2)
nml

∣∣2Q′
n +

∣∣β(2)
nml

∣∣2Qn),



January 28, 2015 11:5 Foundations for Radio Frequency Engineering - 9in x 6in b1914-ch05 page 348

348 Foundations for Radio Frequency Engineering

where

Qn = ka− ∣∣h(2)
n (ka)

∣∣2 [1
2
(ka)3 + ka(n+ 1)

]
− 1

2
(ka)3

∣∣h(2)
n+1(ka)

∣∣2

+
1
2
(ka)2(2n+ 3)[jn(ka)jn+1(ka) + nn(ka)nn+1(ka)] (5.126)

Q′
n = ka− 1

2
(ka)3

[∣∣h(2)
n (ka)

∣∣2 − jn−1(ka)jn+1(ka) − nn−1(ka)nn+1(ka)
]
.

For the first three modes, we have

Q1 =
1
ka

+
1

(ka)3
, Q′

1 =
1
ka
,

Q2 =
3
ka

+
6

(ka)3
+

18
(ka)5

, Q′
2 =

3
ka

+
4

(ka)3
, (5.127)

Q3 =
6
ka

+
21

(ka)3
+

135
(ka)5

+
675

(ka)7
, Q′

3 =
6
ka

+
15

(ka)3
+

45
(ka)5

.

It follows from (5.11), (5.124) and (5.125) that

Q =

1
2

∑
n,m,l

N2
nm

(∣∣α(2)
nml

∣∣2 +
∣∣β(2)

nml

∣∣2)(Qn +Q′
n)

∑
n,m,l

N2
nm

(∣∣α(2)
nml

∣∣2 +
∣∣β(2)

nml

∣∣2) . (5.128)

Since Qn > Q′
n, Qn+1 > Qn and Q′

n+1 > Q′
n (Fante, 1969), we have

Q ≥
1
2

∑
n,m,l

N 2
nm

(∣∣α(2)
nml

∣∣2 +
∣∣β(2)

nml

∣∣2)(Q1 +Q′
1)

∑
n,m,l

N2
nm

(∣∣α(2)
nml

∣∣2 +
∣∣β(2)

nml

∣∣2) =
1
2
(Q1 +Q′

1).

Therefore, minimum possible value for Q is given by

minQ =
Q1 +Q′

1

2
=

1
ka

+
1

2(ka)3
. (5.129)

The antenna will attain the lowest Q if only TE1m and TM1m modes are
equally excited. In this case, the stored electric energy and magnetic energy
outside the circumscribing sphere will be equal, and the antenna will be at
resonance outside the sphere. The existence of a lower bound for antenna Q
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implies that the stored energy around antenna can never be made zero. Once
the maximum antenna size is given, this lower bound is then determined.
For a small antenna (ka < 1), Equation (5.129) can be approximated by

minQ ≈ 1
2(ka)3

. (5.130)

Since Qreal is always greater than the Q defined by (5.128), Equation (5.129)
may be considered as the minimum possible value for Qreal.

Remark 5.4: The same lowest bound (5.129) for Q may be obtained if the
traditional definition (5.12) is used (Geyi, 2003a; 2012). �

5.4.6 Maximum Possible Product of Gain
and Bandwidth

In most applications, we need to maximize antenna gain and bandwidth
simultaneously. For this reason, a reasonable quantity characterizing
antenna would be the product of antenna gain and bandwidth, or the ratio
of antenna gain to antenna Qreal. The ratio of gain to Qreal is actually
the ratio of radiation intensity over the averaged stored energy around the
antenna. In order to seek the maximum possible ratio of gain over antenna
quality factor, we may use Q defined by (5.128) to replace Qreal in the
optimization process.

5.4.6.1 Directive Antenna

We assume that the antenna is placed in a spherical coordinate system
(r, θ, ϕ) and enclosed by the smallest circumscribing sphere of radius a, and
the spherical coordinate system is oriented in such a way that the maximum
radiation is in (θ, ϕ) = (0, 0) direction. The directivity in the direction of
(θ, ϕ) = (0, 0) is then given by (Geyi, 2003a)

G = 4πr2
1
2
Re(E× H̄) · ur

P rad

= π

∣∣∣∣∑
n

(n+ 1)njn
(
β

(2)
n1e + jα

(2)
n1o

)∣∣∣∣
2

+
∣∣∣∣∑
n

(n+ 1)njn
(
β

(2)
n1o − jα

(2)
n1e

)∣∣∣∣
2

∑
n,m,l

N2
nm

(∣∣α(2)
nml

∣∣2 +
∣∣β(2)

nml

∣∣2) .

(5.131)
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From (5.128) and (5.131), we obtain

G

Q

∣∣∣∣
dir

=
2π∑

n,m,l

N 2
nm

(∣∣α(2)
nml

∣∣2 +
∣∣β(2)

nml

∣∣2)(Qn +Q′
n)

·


∣∣∣∣∣
∞∑
n=1

(n+ 1)njn
(
β

(2)
n1e + jα

(2)
n1o

)∣∣∣∣∣
2

+

∣∣∣∣∣
∞∑
n=1

(n+ 1)njn
(
β

(2)
n1o − jα

(2)
n1e

)∣∣∣∣∣
2

. (5.132)

Since only α(2)
n1l and β(2)

n1l contribute to the numerator, the ratio (5.132) can
be increased by setting α(2)

nml = β
(2)
nml = 0(m 
= 1). Thus we have

G

Q

∣∣∣∣
dir

=

∣∣∣∣ ∞∑
n=1

(Aon +Ben)
∣∣∣∣
2

+
∣∣∣∣ ∞∑
n=1

(Aen +Bon)
∣∣∣∣
2

∞∑
n=1

(Qn+Q′
n)

2n+1

[
(|Aen |2 + |Ben |2) + (|Aon|2 + |Bon|2)

] , (5.133)

where {
Aon = jn+1n(n+ 1)α(2)

n1o

Aen = −jn+1n(n+ 1)α(2)
n1e

,

{
Ben = jnn(n+ 1)β(2)

n1e

Bon = jnn(n+ 1)β(2)
n1o

.

The denominator of (5.133) depends only on the magnitudes of An and Bn.
If we adjust the phase of An and Bn such that they are in phase to maximize
the numerator, the denominator will not change. Therefore (5.133) can be
maximized as follows

G

Q

∣∣∣∣
dir

=

[ ∞∑
n=1

(∣∣Aon

∣∣ +
∣∣Ben

∣∣)]2

+
[ ∞∑
n=1

(∣∣Aen

∣∣ +
∣∣Bon

∣∣)]2

∞∑
n=1

(Qn+Q′
n)

2n+1

[(|Aen |2 + |Ben |2
)

+ (|Aon|2 + |Bon|2
)] . (5.134)

Making use of the inequality (a+ b)2 ≤ 2(a2 + b2), we get

G

Q

∣∣∣∣
dir

≤ 2

( ∞∑
n=1

an

)2

+
( ∞∑
n=1

bn

)2

∞∑
n=1

(Qn+Q′
n)

2n+1
(a2
n + b2n)

= 2
(ζ,Ca)2E + (ζ,Cb)2E

(Ca,Ca)E + (Cb,Cb)E
, (5.135)
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where

an = |Aon| + |Ben |, bn = |Aen | + |Bon|,
ζ = (ζ1, ζ2, . . .), Ca(b) = (Ca(b)1, Ca(b)2, . . .),

ζn =

√
2n+ 1
Qn +Q′

n

, Can =
|an|
ζn

, Cbn =
|bn|
ζn

,

and both ζ and Ca(b) are vectors in the Euclidean space consisting of all
vectors of infinite dimension with the inner product and norm defined by

(ζ,C)E =
∞∑
n=1

ζnCn and ‖ζ‖ = (ζ, ζ)1/2E respectively. It follows from (5.135)

and Schwartz inequality that

G

Q

∣∣∣∣
dir

≤ 2‖ζ‖2
E . (5.136)

The equality holds if Ca = Cb = c1ζ. Thus the upper limit of ratio of gain
to Q for a directional antenna is

max
G

Q

∣∣∣∣
dir

= 2‖ζ‖2
E =

∞∑
n=1

2(2n+ 1)
Qn +Q′

n

. (5.137)

This is the maximum possible ratio of gain to Q for a directive antenna.

Remark 5.5: The same upper bound (5.137) may be obtained if the
traditional definition (5.12) for Q is used (Geyi, 2003a; 2012). �

5.4.6.2 Omni-directional Antenna

We assume that the antenna has an omni-directional pattern and the field
is independent of ϕ, and consider the maximum possible ratio of gain to Q
in the direction of θ = π/2. The directivity for an omni-directional antenna
can be expressed as (Geyi, 2003a; 2010)

G = 4π

∣∣∣∣ ∞∑
n=1

jnβ
(2)
n0eP

1
n(0)

∣∣∣∣
2

+
∣∣∣∣ ∞∑
n=1

jn+1α
(2)
n0eP

1
n(0)

∣∣∣∣
2

∑
n,m,l

N2
nm

(∣∣α(2)
nml

∣∣2 +
∣∣β(2)

nml

∣∣2) . (5.138)

It follows from (5.128) and (5.138) that

G

Q

∣∣∣∣
omn

= 8π

∣∣∣∣∑
n
jnβ

(2)
n0eP

1
n(0)

∣∣∣∣
2

+
∣∣∣∣∑
n
jn+1α

(2)
n0eP

1
n(0)

∣∣∣∣
2

∑
n,m,l

N2
nm

(∣∣α(2)
nml

∣∣2 +
∣∣β(2)

nml

∣∣2)(Qn +Q′
n)
. (5.139)
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Only α
(2)
n0e and β

(2)
n0e contribute to the numerator. Therefore, the ratio

(5.139) can be increased by setting α
(2)
nml = β

(2)
nml = 0(m 
= 0), α(2)

n0o =
β

(2)
n0o = 0. Let An = jn+1α

(2)
n0e and Bn = jnβ

(2)
n0e, we have

G

Q

∣∣∣∣
omn

= 8π

∣∣∣∣ ∞∑
n=1

AnP
1
n(0)

∣∣∣∣
2

+
∣∣∣∣ ∞∑
n=1

BnP
1
n(0)

∣∣∣∣
2

∞∑
n=1

N2
n0

(|An|2 + |Bn|2
)
(Qn +Q′

n)
. (5.140)

Since the denominator of (5.140) depends only on the magnitude of An
and Bn, the denominator is not changed if the phases of An and Bn are
adjusted to maximize the ratio of gain to Q. If we choose the phases of An
and Bn to be the negative of P 1

n(0), the terms in the numerator will be
added in phase. Thus

G

Q

∣∣∣∣
omn

= 8π

( ∞∑
n=1

|An|
∣∣P 1
n(0)

∣∣)2

+
( ∞∑
n=1

|Bn|
∣∣P 1
n(0)

∣∣)2

∞∑
n=1

N2
n0

(|An|2 + |Bn|2
)
(Qn +Q′

n)
.

Introducing

an = |An|
∣∣P 1
n(0)

∣∣, bn = |Bn|
∣∣P 1
n(0)

∣∣,
we have

G

Q

∣∣∣∣
omn

= 8π

( ∞∑
n=1

an

)2

+
( ∞∑
n=1

bn

)2

∞∑
n=1

N2
n0(a2

n + b2n)(Qn +Q′
n)/

∣∣P 1
n(0)

∣∣2

= 8π
(ξ,Da)2E + (ξ,Db)2E

(Da,Da)E + (Db,Db)E
≤ 8π‖ξ‖2

E, (5.141)

where ξ = (ξ1, ξ2, . . .), Da(b) = (Da(b)1,Da(b)2, . . .) with

ξn =

∣∣P 1
n(0)

∣∣
Nn0

√
Qn +Q′

n

, Dan =
|an|
ξn

, Dbn =
|bn|
ξn

.

The ratio (5.141) reaches maximum if Da = Db = c1ξ. As a result, the
upper limit of the ratio of gain to Q for an omni-directional antenna is

max
G

Q

∣∣∣∣
omn

= 8π‖ξ‖2
E =

∞∑
n=1

2(2n+ 1)
∣∣P 1
n(0)

∣∣2
n(n+ 1)(Qn +Q′

n)
. (5.142)
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Remark 5.6: The same upper bound (5.137) may be obtained if the
traditional definition (5.12) for Q is used (Geyi, 2003a; 2012). �

Remark 5.7: Chu has shown that the maximum ratio of gain to Q for an
omni-directional antenna is (Chu, 1948)

max
G

Q

∣∣∣∣
Chu

omn

=
∞∑
n=1

(2n+ 1)
∣∣P 1
n(0)

∣∣2
n(n+ 1)QChu

n

. (5.143)

Here QChu
n is the quality factor of nth TM modes and is a function of ka.

Chu’s theory is valid only for an omni-directional antenna that radiates
either TE or TM modes, and is based on the equivalent ladder network
representation of the wave impedance of each mode and the stored energies
in some elements have been neglected. Hence the Chu’s limit just holds
approximately. Also note that the upper limit (5.142) can be twice as much
as Chu’s limit (5.143) if ka is small. �

5.4.6.3 Best Possible Antenna Performance

Since the antenna fractional bandwidth Bf is reciprocal to antenna Qreal if
Qreal is not very small, the product of antenna gain and bandwidth can be
expressed as GBf ≈ G/Qreal. The antenna quality factor used in (5.137)
and (5.142) does not include the stored energies inside the circumscribing
sphere of the antenna, it is thus smaller than the real antenna Qreal. It
follows from (5.137) and (5.142) that the products of gain and bandwidth
for an arbitrary antenna of dimension 2a are bounded by

GBf |dir ≤ max GBf |dir =
∞∑
n=1

2(2n+ 1)
Qn(ka) +Q′

n(ka)
,

GBf |omn ≤ max GBf |omn =
∞∑
n=1

2(2n+ 1)
∣∣P 1
n(0)

∣∣2
n(n+ 1)

[
Qn(ka) +Q′

n(ka)
] .

(5.144)

The first expression applies for directional antennas, and the second one
for the omni-directional antennas. It should be notified that the right-hand
sides of (5.144) are finite numbers. From (5.129), the fractional bandwidth
of an arbitrary antenna of dimension 2a has an upper limit too

Bf ≤ maxBf =
2(ka)3

2(ka)2 + 1
. (5.145)
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Figure 5.25 Upper bounds of antenna performances.

Equations (5.144) indicate that one can sacrifice the bandwidth to enhance
the gain. If the bandwidth is rendered very small, a high gain antenna can
be achieved. One can also sacrifice the gain to improve the bandwidth. But
the improvement will be limited as the bandwidth itself is bounded by the
right-hand side of (5.145).

The upper bounds maxGBf |dir, maxGBf |omn and maxBf are all
monotonically increasing functions of ka as shown in Figure 5.25. It can
be seen that maxGBf |dir is always higher than maxGBf |omn. The rate of
increase of these upper bounds for small ka is much higher than that for
large ka, which implies that a little increase in the size of the small antennas
will notably improve their performances. For the small antennas with
ka < 1, only the first terms of the infinite series in (5.144) are significant.
Thus we may write

maxGBf |dir ≈ 6
Q1 +Q′

1

=
6(ka)3

2(ka)2 + 1
,

maxGBf |omn ≈ 3
Q1 +Q′

1

=
3(ka)3

2(ka)2 + 1
.

(5.146)

The right-hand sides of (5.146) are the best possible antenna performances
that a small antenna of maximum dimension 2a can achieve. They set up
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a target that can be approached by various methods and have been proven
to be very useful for small antenna design for which try and error method
is often used.

5.5 Wire Antennas

Wire antennas are fundamental to understanding the radiation mechanisms.
This can be illustrated by the evolution of the handset antenna design from
a monopole to the planar inverted-F antenna. The monopole antennas
(see Figure 5.26) are the first type of antennas recognized for radio
communication devices. They are easy to design, light weight, and have
omni-directional radiation pattern in the horizontal plane. However, since
the physical length of a monopole antenna is quarter of its wavelength at
the operating frequency, this antenna is relatively very long. Therefore,
monopole antennas are usually used as external antennas. As the size of
handheld devices was decreasing, the inverted-L antenna (ILA) was found
to be a promising alternative to replace the external monopole antenna. The
ILA is an end-fed short monopole with a horizontal wire element placed on
top that acts as a capacitive load (see Figure 5.27). The design of the
ILA has a simple layout making it cost efficient to manufacture. Although
the radiation properties of the ILA have advantages over those of the
monopole antenna by radiating in both polarizations due to the horizontal
arm, its input impedance is similar to that of the short monopole: low
resistance and high reactance. This prompted antenna designers to search
for an antenna with nearly resistive load thus provides reduced mismatch
loss. For this purpose, the inverted-F antenna (IFA) was introduced (see
Figure 5.28) (King et al., 1960), which adds a second inverted-L section

Feed

Vertical element

Ground

Figure 5.26 Fundamental structure of the monopole antenna.
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Horizontal element

Feed 

Vertical element

Ground

Figure 5.27 ILA-modified from the monopole antenna.

Horizontal element

Feed 

Vertical element

Ground

Figure 5.28 IFA-modified from the ILA.

Ground plane

Horizontal planar element

Vertical planar element Feed 

Figure 5.29 Basic layout of the PIFA-modified from the IFA.

to the end of an ILA. The additional inverted-L segment introduces a
convenient tuning option to the original ILA and greatly improves the
antenna usability. Even with the improvement in the match of the IFA
over the ILA, both these antennas have inherently narrow bandwidths. To
obtain broad bandwidth characteristics, antenna designers transformed the
horizontal element from a wire to a plate (see Figure 5.29), and the planar
inverted-F antenna (PIFA) was introduced (Taga and Tsunekawa, 1987).
The PIFA is widely used in nowadays mobile handheld devices. It is a
self-resonating antenna with purely resistive impedance at the frequency of
operation. This makes it a practical candidate for mobile handheld design
since it does not require a matching circuit between the antenna and the
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load reducing both cost and losses. Despite the relative simple design of
the ILA, IFA, and the PIFA, the optimal design of any of these antennas is
not unique. Numerous designs have been reported in the literature. Many
of them suggest approaches to further improve the bandwidth and the
performance of these antennas.

The evolution from a monopole to the PIFA indicates that the essential
component of a handset antenna is the “wire”. The patch(s), slot(s), and
stub(s) are only used to compensate for the mismatch and improve the
radiation characteristics. Notice that at the megahertz frequency range,
the current flowing on the surface of a conductor no longer has a uniform
distribution due to the skin effect. Instead it is confined to a relatively small
area, and the effective area of the conductor is smaller than the actual
dimension. For example, by simulating a basic PIFA and examining the
current distribution on its surface at the frequency of operation, one can see
that the current distribution is concentrated at the edge(s) of the antenna.
For this reason, the length of these edge(s) where the current is concentrated
is the major parameter that tunes the antenna to the desired frequency. The
remainders of the conductor plate(s) forming the patch(s) of the antenna are
not essential in tuning the antenna but are rather to improve the antenna
characteristics. In fact, removing these parts would affect the matching
of the antenna and would not detune it much. From this intuition, many
antennas may be represented by the fundamental wires responsible for its
tuning at the frequencies of operation, and these become the backbone of
the final design.

5.5.1 Asymptotic Solutions for Wire Antennas

The wire structures have been extensively investigated by a number of
authors (e.g., Schelkunoff, 1952; King, 1956). When the radius of the wire
model for an antenna is very thin, it is possible to find an analytical
solution for the current distribution on the wire, which contains useful
information on the radiation properties of the original metal antenna, and
thus provides guidelines for practical antenna design (Geyi et al., 2008b).
Let us consider a thin wire illuminated by an incident field Ein. We assume
that the wire is a curved circular cylinder of radius a0 and a curvilinear
l-axis (l stands for arc length) runs along the axis of the circular cylinder
as shown in Figure 5.30. The scattered field due to the current in the
wire is

Es(r) = −jωA(r) −∇φ(r),
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Figure 5.30 An arbitrary thin wire illuminated by an incident field.

where A(r) is the vector potential and φ is the scalar potential. On the
surface of the thin wire the total electric field must vanish, and we have

Ein(r) = −Es(r) = jωA(r) + ∇φ(r). (5.147)

Let ul(l) be the unit tangent vector along l-axis. Multiplying both sides of
(5.147) by ul(l) leads to

Ein(r) · ul(l) = jωA(r) · ul(l) +
dφ(r)
dl

. (5.148)

The vector potential A(r) on the surface of the thin wire due to a current
distribution I(l) is given by

A(r) =
µ

2π

2π∫
0

dϕ′
l2∫
l1

I(l′)ul(l′)
e−jkR

4πR
dl′,

where R = |r(l) − r(l′)|. Since the integrand is singular at l′ = l, we may
rewrite the above as

A(r) =
µ

2π

2π∫
0

dϕ′
l−τ∫
l1

I(l′)ul(l′)
e−jkR

4πR
dl′ +

µ

2π

2π∫
0

dϕ′
l+τ∫
l−τ

I(l′)ul(l′)
e−jkR

4πR
dl′

+
µ

2π

2π∫
0

dϕ′
l2∫

l+τ

I(l′)ul(l′)
e−jkR

4πR
dl′, (5.149)
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where τ is a small positive number. The second term on the right-hand side
can be written as

µ

2π

2π∫
0

dϕ′
l+τ∫
l−τ

I(l′)ul(l′)
e−jkR

4πR
dl′

=
µ

2π
ul(l)I(l)

2π∫
0

dϕ′
l+τ∫
l−τ

1
4πR

dl′ +
µ

2π
ul(l)I(l)

2π∫
0

dϕ′
l+τ∫
l−τ

cos kR− 1
4πR

dl′

− j
µ

2π
ul(l)I(l)

2π∫
0

dϕ′
l+τ∫
l−τ

sin kR
4πR

dl′, (5.150)

where

R = |r − r′| ≈ [(l − l′)2 + α2]1/2, α2 = 4a2
0 sin2 ϕ− ϕ′

2
,

if τ is small. Making use of the following asymptotic calculations for
small τ

2π∫
0

dϕ′
l+τ∫
l−τ

1
4πR

dl′ = ln 2τ − ln a0, (5.151)

2π∫
0

dϕ′
l+τ∫
l−τ

cos kR− 1
4πR

dl′ = Ci(kτ) − ln kτ − γ, (5.152)

2π∫
0

dϕ′
l+τ∫
l−τ

sinkR
4πR

dl′ =

τ∫
0

sin ku
u

du. (5.153)

Equation (5.150) can be written as

µ

2π

2π∫
0

dϕ′
l+τ∫
l−τ

I(l′)ul(l′)
e−jkR

4πR
dl′ =

µ

2π
ul(l)I(l)(ln 2τ − ln a0)

+
µ

2π
ul(l)I(l)[Ci(kτ) − ln kτ − γ] − j

µ

2π
ul(l)I(l)

τ∫
0

sin ku
u

du

= − µ

2π
ul(l)I(l) lnka0 + finite numbers, (5.154)
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where Ci and γ are cosine integral and Euler constant respectively:

Ci(x) = −
∞∫
x

cosu
u

du, γ = 0.5772.

As a0 → 0, the first and third term on the right-hand side of (5.149) are
finite numbers. As an asymptotic approximation, we thus have

A(r) = − µ

2π
ul(l)I(l) ln ka0. (5.155)

From the Lorentz gauge condition ∇ · A + jωµεϕ = 0, we may find that

dA(r) · ul(l)
dl

+ jωµεφ = 0. (5.156)

It follows from (5.148), (5.155) and (5.156) that

dφ(l)
dl

+ jωL0I(l) = Ein(r) · ul(l),

dI(l)
dl

+ jωC0φ(l) = 0,

(5.157)

where

L0 = − µ

2π
ln ka0, C0 =

µε

L0
. (5.158)

From (5.157) we obtain

d2I(l)
dl2

+ k2I(l) = −jωC0Ein(r) · ul(l) (5.159)

where k = ω
√
µε. If the thin wire is excited by a localized incident voltage

source at l = l′, the source term Ein · ul(l) in (5.159) can be replaced by a
delta function for the thin wire

d2I(l)
dl2

+ k2I(l) = −jωC0Vsδ(l − l′) (5.160)

where Vs is the amplitude of the delta voltage source. The current
distributions for various wire structures can be determined from (5.160).
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All other antenna properties, such as gain and radiation pattern, can be
derived from the current distributions.

5.5.2 Dipole Antenna

The dipole antenna consists of two arms or poles and was first invented by
Hertz around 1886 in his pioneering experiments with radio waves. It is one
of the most commonly used types of RF antennas and is of fundamental
importance. The dipole antenna can be used on its own or incorporated into
other antenna designs as a radiating element. Figure 5.31 shows a typical
configuration of dipole antenna excited by a delta gap at l = l′. The general
solution of (5.160) for the dipole antenna may be assumed to be

I(l) =
{
C1 cos kl + C2 sin kl, 0 < l < l′

C3 cos kl + C4 sin kl, l′ < l < L,
(5.161)

where Ci (i = 1, 2, 3, 4) are constants and can be determined by applying
the following conditions

I(0) = I(L) = 0, (5.162)
dI

dl

∣∣∣∣
l=l′+

− dI

dl

∣∣∣∣
l=l′−

= −jωC0Vs. (5.163)

It is readily to find that the current distribution for the dipole is given by

I(l) = − jπVs
η sinkL ln ka0

[− cosk(L− |l − l′|) + cos k(L− l− l′)]. (5.164)

For a straight dipole excited at the center, (5.164) reduces to

I(l) =




−jπVs
η cos

(
kL
2

)
ln ka0

sin k(L− l), l > L/2

−jπVs
η cos

(
kL
2

)
ln ka0

sin kl, l < L/2
. (5.165)

l =Ll =0

l =l′

I

Figure 5.31 An arbitrary dipole antenna excited by a delta gap.
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Introducing a new variable z = l− L/2, we have

I(l) = Id sin k
(
L

2
− |z|

)
, |z| < L

2
, (5.166)

where Id = −jπVs

η cos(kL/2) ln ka0
. For a small dipole, (5.166) reduces to

I(l) ≈ Idk

(
L

2
− |z|

)
, |z| < L

2
. (5.167)

Equations (5.166) and (5.167) are the well-known results for dipole
antennas.

Example 5.3 (Fields from center-fed straight dipole antenna): Considering
the symmetry of the dipole shown in Figure 5.32. The near fields in the
cylindrical system may be obtained from (5.166) as follows

H =
1
µ
∇× A = −uϕ

1
µ

∂Az
∂ρ

= −uϕ
Id
j4πy

[
e−jkR1 + e−jkR2 − 2 cos

(
kL

2

)
e−jkr

]
,

E = uρEρ + uzEz =
1
jωε

∇× H,

with

Eρ = j
ηId
4πy

[(
z − L

2

)
e−jkR1

R1
+

(
z +

L

2

)
e−jkR2

R2
− 2z cos

(
kL

2

)
e−jkr

r

]
,

Ez = −j ηId
4π

[
e−jkR1

R1
+
e−jkR2

R2
− 2 cos

(
kL

2

)
e−jkr

r

]
,

y 

r

z

x 

θ

1R

2R

ϕ

Figure 5.32 Dipole analysis.
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where

r =
√
x2 + y2 + z2,

R1 =
√
x2 + y2 + (z − L/2)2,

R2 =
√
x2 + y2 + (z + L/2)2.

The far-fields of the center-fed dipole antenna in the spherical coordinate
system can be determined from (5.34) and (5.166) as follows

Eθ = jη
Ide

−jkr

2πr
cos

(
kL
2

cos θ
)− cos

(
kL
2

)
sin θ

,

Hϕ = j
Ide

−jkr

2πr
cos

(
kL
2

cos θ
)− cos

(
kL
2

)
sin θ

.

(5.168)

The radiation intensity is

U = η
|Id|2
8π2

[
cos

(
kL
2 cos θ

)− cos
(
kL
2

)
sin θ

]2

.

The radiated power is

Prad = η
|Id|2
4π

{
γ + ln(kL) − Ci(kL) +

1
2

sin(kL)[Si(2kL) − 2Si(kL)]

+
1
2

cos(kL) [C + ln(kL/2) + Ci(2kL) − 2Ci(kL)]
}

where Ci is the cosine integral, and Si is the sine integral defined by

Si(x) =

x∫
0

cos y
y

dy.

The input impedance may be evaluated by the induced EMF method

Z = − 1∣∣Id sin
(
kL
2

)∣∣2
L/2∫

−L/2

Īd sin k
(
L

2
− |z′|

)
Ez(ρ = a0, z

′)dz = R+ jX,

where

R =
η

2π sin2
(
kL
2

) {
γ + ln(kL) − Ci(kL) +

1
2

sin(kL)[Si(2kL)− 2Si(kL)]

+
1
2

cos(kL)[γ + ln(kL/2) + Ci(2kL) − 2Ci(kL)]
}
,
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X =
η

4π sin2(kL/2)

{
2Si(kL) + cos(kL)[2Si(kL) − Si(2kL)]

− sin(kL)
[
2Ci(kL) − Ci(2kL) − Ci

(
2k
a2
0

L

)]}
.

Note that the impedance is defined by the ratio of the voltage over the
current at the input terminal. �

5.5.3 Loop Antenna

A loop antenna excited by a delta gap at l = l′ is shown in Figure 5.33.
In this case, the boundary condition I(0) = I(L) must be imposed. The
general solution of (5.160) can be written as

I(l) =

{
C1 cos kl + C2 sin kl, 0 < l < l′

C3 cos kl + C4 sin kl, l′ < l < L
.

Making use of the facts that the current and its derivative must be
continuous at l = 0 and (5.163), we may find the current distribution for
the thin loop

I(l) =
jπVs
η ln ka0

cos k
(
L
2 − |l − l′|)

sin
(
kl
2

) ,

where we have used ωC0
k

= − 2π
η ln ka0

. Without loss of generality, we may set
l′ = L/2 to get

I(l) =
jπVs

η ln ka0 sin(kL/2)




cos kl, l <
L

2

cos k(L− l), l >
L

2

.

Making a substitution s = l − L/2, we have

I(s) = Il cos k
(
L

2
− |s|

)
, |s| < L

2
, (5.169)

l = l′

l = 0 l = L

Figure 5.33 An arbitrary loop antenna excited by a delta gap.
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Figure 5.34 A circular loop antenna.

where Il = jπVs

η lnka0 sin(kL/2)
. For a small loop, the current distribution may

be considered to be a constant

I(s) ≈ I1, |s| < L

2
.

Equation (5.169) can be used to investigate a number of loop antennas,
such as circular, triangular and rectangular loops.

Example 5.4 (Circular loop antenna): Consider a circular loop antenna
shown in Figure 5.34. The wire radius and the loop radius are respectively
denoted by a0 and a. The loop is excited by a feed at ϕ = 0, and the
impressed field is assumed to be a delta voltage source

Ein =
Vs
a
δ(ϕ).

An analytical solution for the current distribution on the circular wire loop
is found to be (Iizuka et al., 1966; Storer, 1956)

I(ϕ) =
Vs
Z00

+ 2Vs
∞∑
n=1

cosnϕ
Znn

, (5.170)

where

Znn = jπηka

[
1
2
Kn−1 +

1
2
Kn+1 −

( n

ka

)2

Kn

]
,

K0 =
1
π

ln
8

(a0/a)
− 1

2

2ka∫
0

[Ω0(x) + jJ0(x)]dx,

Kn+1 = Kn + Ω2n+1(ka) + jJ2n+1(ka),
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and

Ωn(x) =
1
π

π∫
0

sin(x sin θ − nθ)dθ

is Lommel–Weber function. Numerical results indicate that the analy-
tical solution (5.170) agrees very well with the asymptotic solution (5.169)
for the thin circular wire loop. The input admittance of the loop antenna
is given by

Y =
I(0)
Vs

=
1
Z00

+ 2
∞∑
n=1

1
Znn

. (5.171)

The ϕ-component of the radiated fields can be written as

Eϕ = −jωAϕ − 1
a

∂φ

∂ϕ

with

Aϕ = µ

2π∫
0

I(ϕ′) cos(ϕ− ϕ′)
e−jkR

4πR
adϕ′,

φ =
−1
jωε

2π∫
0

dI(ϕ′)
adφ′

cos(ϕ− ϕ′)
e−jkR

4πR
adϕ′,

where

R =
√
r2 + a2 − 2ar sin θ cos(ϕ− ϕ′).

For small loop a� 1, the function f(a) defined by

f(a) =
e−jk

√
r2+a2−2ar sin θ cos(ϕ−ϕ′)√

r2 + a2 − 2ar sin θ cos(ϕ− ϕ′)

may be expanded as a Taylor series

f(a) = f(0) + f ′(0) +
1
2!
f ′′(0)a2 + · · · ,

where

f(0) =
e−jkr

r
, f ′(0) =

(
jk

r
+

1
r2

)
e−jkr sin θ cosϕ′.

If the current is assumed to be constant I(ϕ) = Il, the field components
are found to be

Eϕ = η
Il(ka)2 sin θ

4r

(
1 +

1
jkr

)
e−jkr,
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Hr = j
Ilka

2 cos θ
2r2

(
1 +

1
jkr

)
e−jkr ,

Hθ = −Il(ka)
2 sin θ

4r

(
1 +

1
jkr

− 1
(kr)2

)
e−jkr .

Other field components are zero. �

5.6 Slot Antennas

The slot antenna was invented in 1938 by English engineer Alan Blumlein
(1903–1942). A slot antenna consists of a metal surface with a hole or
slot cut out. When the slot is driven by an incident field, it radiates
electromagnetic waves in similar way to a dipole antenna. Slot antennas
are often used at UHF and microwave frequencies and are widely used in
radar, cell phone base stations, and can be best understood by Babinet’s
principle.

5.6.1 Babinet’s Principle

In optics, Babinet’s principle states that the sum between the field behind
a screen with an opening and the field of a complementary structure is
equal to the field when there is no screen. An extension of Babinet’s
principle was introduced by Booker (1946). Assume that an electric current
J generates the fields Ein,Hin in an unbounded medium of intrinsic
impedance

√
µ/ε [Figure 5.35(a)]. The extended Babinet’s principle can be

expressed as

Ein = Ee + Em, Hin = He + Hm, (5.172)

where Ee,He are the fields produced by the current source J in the presence
of an infinite conducting screen with an opening Sa in the same medium
[see Figure 5.35(b)], and Em,Hm are the fields produced by the current
source J in the presence of a thin magnetic conductor Sa in the same
medium [see Figure 5.35(c)]. According to the duality, the problem shown
in Figure 5.35(c) is equivalent to the problem shown in Figure 5.35(d) by
replacing the magnetic conductor Sa with electric conductor Sa, J with Jm,
Em with Hd, Hm with −Ed, µ with ε and ε with µ. As a result, (5.172)
can be written as

Ein = Ee + Hd, Hin = He − Ed. (5.173)



January 28, 2015 11:5 Foundations for Radio Frequency Engineering - 9in x 6in b1914-ch05 page 368

368 Foundations for Radio Frequency Engineering

nu

sS

J ,e eE H

aS  

aS

mJ ,d dE H

Electric 
conductor 

J ,in inE H

Magnetic
conductor

aS

J ,m mE H

(a) (b)

(c) (d)

Figure 5.35 Babinet’s principle.

It is noted that the intrinsic impedance of the medium in Figure 5.35(d) is√
ε/µ. The fields Ed,Hd satisfy

∇× Ed(r) = −jωεHd(r) − Jm(r),

∇× Hd(r) = jωµEd(r).
(5.174)

Let η =
√
µ/ε. The above equations can be written as

∇× Ed1(r) = −jωµHd1(r) − ηJm(r),

∇× Hd1(r) = jωεEd1(r),
(5.175)

where

Ed1(r) = ηEd(r), Hd1(r) = η−1Hd(r).

Equations (5.175) describe a complementary problem shown in Figure 5.36,
where the intrinsic impedance of the medium is η instead of η−1 as in
Figure 5.35(d). Thus we may write (5.173) as

Ein = Ee + ηHd1, Hin = He − η−1Ed1. (5.176)
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Figure 5.36 Complementary problem in a medium with intrinsic impedance η.

When the conducting screen with an opening Sa in Figure 5.35(b) and the
electric conductor Sa in Figure 5.35(d) are combined, they form a solid
screen. For this reason, they are called complementary structures. The
Babinet’s principle can be easily demonstrated as follows. For the problem
shown Figure 5.35(b), the incident fields are Ein,Hin and we have{

un × Ee = 0, on Ss
un × He = un × Hin, on Sa

. (5.177)

The second equation comes from the fact that the induced current on the
conducting screen due to the incident fields does not generates a tangential
magnetic field at the aperture Sa on the same screen plane. Similarly for
the problem shown in Figure 5.35(c), we have{

un × Em = un × Ein, on Ss
un × Hm = 0, on Sa

. (5.178)

Adding (5.177) and (5.178) yields{
un × (Ee + Em) = un × Ein, on Ss
un × (He + Hm) = un × Hin, on Sa

. (5.179)

From uniqueness theorem and (5.179), we immediately obtain (5.172).

5.6.2 Impedance of Slot Antennas

Figure 5.37 shows a slot antenna in an infinite conducting plane and its
complementary dipole antenna, both excited by a delta voltage source. The
voltage across the dipole feed is the line integral of the electric field over
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Figure 5.37 (a) Slot antenna. (b) Complementary dipole antenna.

the arc path ab:

V =
∫
ab

Ed1 · ul dl.

The current at the feeding terminal of the dipole is the line integral of the
magnetic field over the arc path cd

I = −2
∫
cd

Hd1 · ul dl,

where the factor 2 is due to that only one-half of the closed line integral is
taken. The input impedance of the dipole is given by

Zd =
V

I
=

∫
ab

Ed1 · ul dl
−2

∫
cd

Hd1 · ul dl . (5.180)

Similarly the voltage across the feed of the slot is the line integral of the
electric field over the arc path cd

V = −
∫
cd

Ee · ul dl.

The current at the feed of the slot antenna is the line integral of the magnetic
field over the arc path ab

I = −2
∫
ab

He · ul dl.
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The input impedance of the slot is then given by

Zs =
V

I
=

− ∫
cd

Ee · ul dl
−2

∫
ab

He · ul dl . (5.181)

We now assume that the incident fields are highly localized at the feeding
point. From Babinet’s principle, we have

Ein = Ee + ηHd1 = 0, Hin = He − η−1Ed1 = 0 (5.182)

outside the feeding point. Making use of (5.182) we obtain

ZsZd =
− ∫
ab

Ed1 · ul dl
−2

∫
cd

Hd1 · ul dl ×

∫
cd

Ee · ul dl
−2

∫
ab

He · ul dl =
1
4
η2. (5.183)

This is an important relationship in antenna theory. When the shape
of the complementary dipole antenna is identical to its complementary
conducting screen, we have Zs = Zd. In this case, frequency-independent
input impedance can be achieved

Zd =
1
2
η. (5.184)

The antenna that satisfies (5.184) is called self-complementary antenna
(Mushiake, 1996).

5.7 Aperture Antennas

Some typical aperture antennas are shown in Figure 5.3. An aperture
antenna consisting of perfect conductors can be characterized by a generic
antenna model shown in Figure 5.38. In this model, the antenna is assumed
to include all possible sources, and it may be in transmitting mode,
receiving mode or in a mode that the antenna transmits and receives
at the same time (e.g., antenna is in transmitting mode but interfered
by an arbitrary incident field from the outside of antenna). The source
region V0 of the antenna is chosen in such a way that its boundary ∂V0

is coincident with the antenna surface, which is assumed to be a perfect
conductor (except for cross sectional portion Ω where ∂V0 crosses the
antenna terminal). Let ∂V∞ be a large surface that encloses the whole
antenna system. From the representation theorem for electromagnetic fields,



January 28, 2015 11:5 Foundations for Radio Frequency Engineering - 9in x 6in b1914-ch05 page 372

372 Foundations for Radio Frequency Engineering

nu

nu

0V∂

T

0VJ z

∞∂V

o 

Figure 5.38 An arbitrary aperture antenna.

the total magnetic field in the region bounded by ∂V0 and ∂V∞ can then be
expressed as

E(r) = −jkη
∫
∂V0

G(r, r′)Js(r′)dS(r′) −
∫
∂V0

Jms(r′) ×∇′G(r, r′)dS(r′)

− η

jk

∫
∂V0

∇s · Js(r′)∇′G(r, r′)dS(r′) + Eext
in (r),

H(r) = −j k
η

∫
∂V0

G(r, r′)Jms(r′)dS(r′) +
∫
∂V0

Js(r′) ×∇′G(r, r′)dS(r′)

− 1
jkη

∫
∂V0

∇s · Jms(r′)∇′G(r, r′)dS(r′) + Hext
in (r),

where η =
√
µ/ε, Js = un × H, Jms = −un × E, and G(r, r′) =

e−jk|r−r′|/4π|r − r′| is the Green’s function in free space, and

Eext
in (r) = −

∫
∂V∞

jkηG(r, r′)Js(r′)dS(r′) −
∫

∂V∞

Jms(r′) ×∇′G(r, r′)dS(r′)

− η

jk

∫
∂V∞

∇s · Js(r′)∇′G(r, r′)dS(r′),
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Hext
in (r) = −j k

η

∫
∂V∞

G(r, r′)Jms(r′)dS(r′) +
∫

∂V∞

Js(r′) ×∇′G(r, r′)dS(r′)

− 1
jkη

∫
∂V∞

∇s · Jms(r′)∇′G(r, r′)dS(r′)

represent the external incident fields. By letting the observation point
r approach the boundary of the source region ∂V0 from the interior of
∂V0 + ∂V∞ and using the jump relations, we have

E(r) = −jkη
∫
∂V0

G(r, r′)Js(r′)dS(r′) −
∫
∂V0

Jms(r′) ×∇′G(r, r′)dS(r′)

− η

jk

∫
∂V0

∇s · Js(r′)∇′G(r, r′)dS(r′) + Eext
in (r)

−1
2
Jms(r) × un(r) − η

2jk
un(r)∇s · Js(r),

H(r) = −j k
η

∫
∂V0

G(r, r′)Jms(r′)dS(r′) +
∫
∂V0

Js(r′) ×∇′G(r, r′)dS(r′)

− 1
jkη

∫
∂V0

∇s · Jms(r′)∇′G(r, r′)dS(r′) + Hext
in (r)

+
1
2
Js(r) × un(r) − 1

j2kη
un(r)∇s · Jms(r).

Multiplying both sides by un, we get

−1
2
Jms(r) = −jkηun(r) ×

∫
∂V0

G(r, r′)Js(r′)dS(r′) − un(r)

×
∫
∂V0

Jms(r′) ×∇′G(r, r′)dS(r′) − η

jk
un(r)

×
∫
∂V0

∇s · Js(r′)∇′G(r, r′)dS(r′) + un(r) × Eext
in (r)
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1
2
Js(r) = −j k

η
un(r) ×

∫
∂V0

G(r, r′)Jms(r′)dS(r′) + un(r)

×
∫
∂V0

Js(r′) ×∇′G(r, r′)dS(r′) − 1
jkη

un(r)

×
∫
∂V0

∇s · Jms(r′)∇′G(r, r′)dS(r′) + un(r) × Hext
in (r).

Making use of the boundary conditions on the metal surface of the antenna,
the above equations can be written as

un(r) ×
∫
∂V0

[
jkηG(r, r′)Js(r′) +

η

jk
∇′
s · Js(r′)∇′G(r, r′)

]
dS(r′)

=
1
2
Jms(r)UΩ(r) + un(r) ×

[
Eint

in (r) + Eext
in (r)

]
, (5.185)

−1
2
Js(r) + un(r) ×

∫
∂V0

Js(r′) ×∇′G(r, r′)dS(r′)

= −un(r) ×
[
Hint

in (r) + Hext
in (r)

]
, (5.186)

where UΩ(r) = 1 for r ∈ Ω or UΩ(r) = 0 for r /∈ Ω and

Eint
in (r) = −

∫
Ω

Jms(r′) ×∇′G(r, r′)dΩ(r′), (5.187)

Hint
in (r) = −j k

η

∫
Ω

G(r, r′)Jms(r′)dΩ(r′)

− 1
jkη

∫
Ω

∇′
s · Jms(r′)∇′G(r, r′)dΩ(r′). (5.188)

The fields Eint
in (r) and Hint

in (r) are determined by the equivalent surface
magnetic current Jm = −uz × E on the antenna input plane. To
determine the equivalent magnetic current on the input plane, we must
use the excitation conditions. The fields in the feeding waveguide may be
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expressed as

−uz × E(r) = −
∞∑
n=1

uz × en(r)Vn(z), uz × H(r) = −
∞∑
n=1

en(r)In(z),

(5.189)
where

Vn(z) = Ane
−jβnz +Bne

jβnz,

In(z) = Z−1
wn(Ane

−jβnz −Bne
jβnz),

βn =

{
k, TEM mode√
k2 − k2

cn, TE or TM mode
,

Zwn =



η, TEM mode
ηk/βn, TE mode
ηβn/k, TM mode

.

We assume that the feeding waveguide of antenna is in a single-mode
operation. Therefore, the modal voltage and current may be written as

V1(z) = δe−jβ1z +B1e
jβ1z, Vn(z) = Bne

jβnz(n ≥ 2),

I1(z) = (δe−jβ1z −B1e
jβ1z)Z−1

w1 , In(z) = −BnejβnzZ−1
wn(n ≥ 2),

where δ is unit for a transmitting antenna excited by dominant mode of
unit amplitude and is zero for a receiving antenna. Thus on the input plane
(z = 0), (5.189) may be written as

Jms(r) = −uz × e1(r)(δ +B1) −
∞∑
n=2

uz × en(r)Bn,

Js(r) = −e1(r)(δ −B1)Z−1
w1 +

∞∑
n=2

en(r)BnZ−1
wn.

The expansion coefficients can be determined by the second equation of the
above equations

B1 = δ + Zw1

∫
Ω

Js · e1 dΩ, Bn = Zwn

∫
Ω

Js · en dΩ.

The impedance of the antenna is given by

Zin =
δ +B1

δ −B1
Zw1.
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Hence the equivalent magnetic current on the reference plane may be
expressed by

Jms(r) = −2δuz × e1(r) −
∞∑
n=1

uz × en(r)Zwn
∫
Ω

Js(r′) · en(r′)dΩ(r′),

(5.190)
Inserting this into (5.187) and (5.188), we obtain

Eint
in (r) = 2δGe1(r) +

∞∑
n=1

ZwnGen(r)
∫
Ω

Js(r′) · en(r′)dΩ(r′), (5.191)

Hint
in (r) = 2δGh1(r) +

∞∑
n=1

ZwnGhn(r)
∫
Ω

Js(r′) · en(r′)dΩ(r′), (5.192)

where Gen and Ghn are defined by

Gen(r) =
∫
Ω

[uz × en(r′)] ×∇′G(r, r′)dΩ(r′),

Ghn(r) =
jk

η



∫
Ω

G(r, r′)uz × en(r′)dΩ(r′)

− 1
k2

∫
Ω

∇′
s · [uz × en(r′)]∇′G(r, r′)dΩ(r′)


 .

Thus Equations (5.185) and (5.186) can be written as

un(r) ×
∫
∂V0

[
jkηG(r, r′)Js(r′) +

η

jk
∇′
s · Js(r′)∇′G(r, r′)

]
dS(r′)

+
1
2
UΩ(r)

∞∑
n=1

uz × etn(r)Zwn
∫
Ω

Js(r′) · en(r′)dΩ(r′)

−un(r) ×
∞∑
n=1

ZwnGen(r)
∫
Ω

Js(r′) · en(r′)dΩ(r′) = Fe(r), (5.193)

−1
2
Js(r) + un(r) ×

∫
∂V0

Js(r′) ×∇′G(r, r′)dS(r′)

+un(r) ×
∞∑
n=1

ZwnGhn(r)
∫
A

Js(r′) · en(r′)dΩ(r′) = Fh(r), (5.194)
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where

Fe(r) = δ[−uz × e1(r)UΩ(r) + 2un(r) × Ge1(r)] + un(r) × Eext
in (r),

Fh(r) = −2δun(r) × Gh1(r) − un(r) × Hext
in (r).

Equation (5.193) is called electric field integral equation (EFIE), and
(5.194) is called magnetic field integral equation (MFIE). Both can
be used to find the current distribution on the antenna surface. Once the
current distribution is known, all other properties of the antenna can then
be determined (Geyi, 2006b).

5.8 Microstrip Patch Antennas

A microstrip patch antenna consists of a metallic patch bonded to an
insulating dielectric substrate with a metal layer (ground) bonded to the
opposite side of the substrate, as depicted in Figure 5.39 for a rectangular
patch. The metallic patch can take any shapes, such as rectangular,
triangular, circular, disk sector, elliptical, annular ring and square ring.
The main advantages of microstrip patch antennas are that they are low
profile, low cost and light weight; they can be shaped to conform to curved
surfaces, and are easy to integrate with other circuits and form large arrays;
and they allow both linear and circular polarizations. The microstrip patch
antennas also have some disadvantages such as low gain, low efficiency, low
power-handling capability and narrow bandwidth. Typical dimensions for
rectangular patches are

λ

3
< a <

λ

2
, 0.003λ < h < 0.05λ.

The dielectric constants of the substrate are in the range of 2.2 < εr < 12.

h 

a 

(a) (b)

Feeding Line 

h 

a 

Feeding probe

Figure 5.39 Microstrip antennas. (a) Fed by a microstrip. (b) Fed by a coaxial probe.
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Magnetic wall
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Figure 5.40 Cavity model.

The microstrip patch antennas can be fed by a microstrip line
[Figure 5.39(a)] or by a coaxial line with an inner conductor terminated
on the patch [Figure 5.39(b)]. In both cases, the induced source of the
microstrip patch antennas can be represented by a current distribution
J = uzJz, which is independent of z due to h << λ. This implies that the
charge distribution ρ = 0. A magnetic side wall may be introduced along
the perimeter of the patch to simulate the open circuit, as illustrated in
Figure 5.40. Let V denote the region bounded by a closed surface S which
consists of the lower surface of the top patch, the upper surface of the
bottom ground plane and the side wall. In the interior of the region V , the
z-component of the electric field satisfies

(∇2 + k2)Ez(x, y) = jωµJz(x, y), (5.195)

where k = ω
√
µε is the wavenumber in the dielectric substrate. The above

equation can be solved by using the orthonormal set of the eigenfunctions
ezmn of the corresponding homogeneous equation, which satisfy


(∇2 + k2

mn)ezmn(x, y) = 0, (x, y) ∈ P

∂ezmn
∂n

= 0, (x, y) ∈ ∂P
(5.196)

and ∫
P

ezmn(x, y)ezm′n′(x, y)dx dy = δmm′δnn′ ,

where P denotes the patch area and ∂P its boundary. Thus the electric
field may be expanded as follows

Ez(x, y) =
∑
m,n

amnezmn(x, y).
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Substituting the expansion into (5.195) and using the orthogonal property
of the eigenfunctions, we obtain

Ez(x, y) = jωµ
∑
m,n

ezmn(x, y)
k2 − k2

mn

∫
P

Jz(x′, y′)ezmn(x′, y′)dx′dy′. (5.197)

The magnetic field may be found by

H(x, y) =
1
jkη

uz ×∇Ez(x, y).

Once the electromagnetic fields are known, the equivalent magnetic current
on S can be determined by Jm = −un×E, where un is the outward normal
of S. Apparently, Jms vanishes on the top patch and ground. Ignoring the
sources outside S (i.e., the currents on the upper surface of the patch and the
ground, the bound sources in the dielectric substrate), the radiated fields
by the microstrip patch antenna can be determined from the equivalent
magnetic current on the side wall. For a thin circular probe located at
(x0, y0), we may assume that

Jz(x, y) =
I

2πa0
δ(x− x0)δ(y − y0),

where a0 is the radius of the probe. The voltage drop along the probe is
then given by

V =

h∫
0

E(x0, y0) · uzdz = hEz(x0, y0) =
jkηIh

2πa0

∑
m,n

e2zmn(x0, y0)
k2 − k2

mn

. (5.198)

The input impedance is found to be

Z =
V

−I = − jkηh
2πa0

∑
m,n

e2zmn(x0, y0)
k2 − k2

mn

. (5.199)

Example 5.5: For a rectangular patch shown in Figure 5.40, we have

ezmn(x, y) = Nmn cos
mπ

a
x cos

nπ

a
y, (5.200)

where

Nmn =
Cmn√
hab

, Cmn =




1, m = n = 0√
2, m = 0 or n = 0

2, m 
= 0, n 
= 0
.

�



January 28, 2015 11:5 Foundations for Radio Frequency Engineering - 9in x 6in b1914-ch05 page 380

380 Foundations for Radio Frequency Engineering

2

(a) (b) (c)

b 2b 2b

b

Figure 5.41 Enhancement of bandwidth. (a) Dipole. (b) Folded dipole. (c) Loop.

5.9 Broadband Antennas

It has been shown that the antenna fractional bandwidth is approximately
the inverse of the antenna Qreal [see (5.123)]. To enhance the antenna
bandwidth, we need to reduce the antenna Qreal, which can be achieved
by letting the metal antenna occupy the space as efficiently as possible.
For the wire antenna, bending the wires is an efficient way to enhance the
bandwidth. To demonstrate this point, let us consider a dipole antenna, a
folded dipole antenna, and a circular loop antenna shown in Figure 5.41.
Roughly, all three antennas have the same maximum dimension 2b with
wire radius a0. The fractional bandwidths for the dipole, folded dipole and
loop can be determined from (5.123) and are (Geyi, 2003b)

Bdipole =
(kb)3

6 ln(b/a)
, Bfolded dipole =

2(kb)3

6 ln(b/a)
, Bloop =

π(kb)3

6 ln(b/a)
.

respectively. Thus we have Bdipole<Bfolded dipole<Bloop. The above exam-
ples are a simple illustration that properly bending the wires can enhance
the antenna bandwidth.

5.9.1 Biconical Antenna

A biconical antenna may be considered as a finite section of biconical trans-
mission line. For this reason, we start with the biconical transmission line
shown in Figure 5.42. In spherical coordinate system, Maxwell equations in
source-free region can be written as

∂

∂θ
(sin θEϕ) − ∂Eθ

∂ϕ
= −jωµr sin θHr,

∂

∂θ
(sin θHϕ) − ∂Hθ

∂ϕ
= jωεr sin θEr,
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Figure 5.42 Biconical transmission line.

∂Er
∂ϕ

− sin θ
∂(rEϕ)
∂r

= −jωµr sin θHθ,

∂Hr

∂ϕ
− sin θ

∂(rHϕ)
∂r

= jωεr sin θEθ,

∂(rEθ)
∂r

− ∂Er
∂θ

= −jωµrHϕ,

∂(rHθ)
∂r

− ∂Hr

∂θ
= jωεrEϕ,

(5.201)

with the divergence equations

sin θ
∂

∂r
(r2Er) + r

∂

∂θ
(sin θEθ) + r

∂Eϕ
∂ϕ

= 0,

sin θ
∂

∂r
(r2Hr) + r

∂

∂θ
(sin θHθ) + r

∂Hϕ

∂ϕ
= 0.

We assume that the fields are independent of ϕ coordinate. In this case,
the Maxwell equations break up into two sets of three equations each. One
set represents a TM wave and contains {Er, Eθ, Hϕ}, and the other set
represents a TE wave and contains {Hr, Hθ, Eϕ}
TM:

∂

∂θ
(sin θHϕ) = jωεr sin θEr,

− sin θ
∂(rHϕ)
∂r

= jωεr sin θEθ,
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∂(rEθ)
∂r

− ∂Er
∂θ

= −jωµrHϕ,

(5.202)

TE:

∂

∂θ
(sin θEϕ) = −jωµr sin θHr,

− sin θ
∂(rEϕ)
∂r

= −jωµr sin θHθ, (5.203)

∂(rHθ)
∂r

− ∂Hr

∂θ
= jωεrEϕ.

On the conical boundaries, Er must vanish. This is possible when Er
vanishes outside the biconical region. Thus (5.202) reduces to

∂(rEθ)
∂r

= −jωµ(rHϕ),

∂(rHϕ)
∂r

= −jωε(rEθ), (5.204)

∂

∂θ
(sin θHϕ) = 0.

The above equations imply both Eθ and Hϕ are proportional to 1/sin θ, and
we may write

Eθ =
1

r sin θ
(Ae−jkr +Bejkr), Hϕ =

1
ηr sin θ

(Ae−jkr −Bejkr).

The voltage drop from the position A: (r, θ0, ϕ) of the upper cone to
B: (r, π − θ0, ϕ) of the lower cone is given by

V (r) =
∫
AB

E · ul dl =

π−θ0∫
θ0

Eθr dθ = V +e−jkr + V −ejkr, (5.205)

where

V + = 2A ln cot
θ0
2
, V − = 2B ln cot

θ0
2
.

The current density on the upper cone is

Js(r, θ0, ϕ) = uθ × H(r, θ0, ϕ) = urHϕ(r, θ0, ϕ)

=
ur

rη sin θ
(Ae−jkr −Bejkr).
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The total current on the upper cone is then given by the contour integral
along the boundary C of the cross section of the upper cone at z = r sin θ0:

I(r) =
∫
C

Js · ur dl =

2π∫
0

1
rη sin θ0

(Ae−jkr −Bejkr)r sin θ0 dϕ

=
2π
η

(Ae−jkr −Bejkr) =
1
Zc

(V +e−jkr − V −ejkr), (5.206)

where

Zc =
η

π
ln cot

θ0
2

(5.207)

is the characteristic impedance of the biconical line. The impedance of the
biconical line at r is

Z(r) =
V (r)
I(r)

=
Ae−jkr +Bejkr

1
Zc

(Ae−jkr −Bejkr)
= Zc

1 + Γej2kr

1 − Γej2kr
(5.208)

where Γ = B/A. The input impedance (5.208) may be rewritten as

Z(r) = Zc
Z(L) + jZc tan k(L− r)
Zc + jZ(L) tank(L− r)

, (5.209)

where Z(L) is the impedance at r = L

Z(L) = Zc
1 + Γej2kL

1 − Γej2kL
. (5.210)

The infinite biconical transmission line may be truncated at r = L to form
a finite biconical antenna. In this case, we have Z(L) = ∞ and

Z(r) = −jZc cot k(L− r). (5.211)

The total current I(r) must vanish at r = L, which yields

I(r) =
j2V +

Zc
e−jkL sin k(L− r). (5.212)

The solid biconical antenna is massive. In practice, various variations of
biconical antennas have been proposed, which include bow-tie antenna and
double wire cones as indicated in Figure 5.1.
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5.9.2 Helical Antenna

A helical antenna consists of a conducting wire wound in the form of a
helix, and it was first invented by John D. Kraus in 1946 (Kraus, 2003).
Helical antennas are often mounted over a ground plane and they can
operate in one of two principal modes: normal mode or axial mode. In the
normal-mode operation, the dimensions of the helix are small compared
with the wavelength. The helix behaves like a short monopole and the
radiation pattern is omni-directional with maximum radiation normal to
the axis. The antenna is linearly polarized in the direction of the helix axis.
In the axial-mode operation, the dimensions of the helix are comparable to a
wavelength. The antenna functions as a directional antenna with maximum
radiation along the helix axis away from the ground. In this case, the
antenna is circularly polarized.

The helix geometry is described by its radius a, circumference 2πa,
spacing between turns l, pitch angle α, length of one turn L, number of turns
N , axial length Nl, radius of helix wire a0, as illustrated in Figure 5.43.
The spacing l, the circumference 2πa and the turn length L may form a
triangle. The angle facing the spacing is the pitch angle.

5.9.2.1 Normal Mode

When the helix is in normal mode, the helix may be approximated by N

small loops of radius a and N short dipoles of length l joined together in
series, as illustrated in Figure 5.44. The far-field produced by the short
dipole is

Eθ = jη
kIdl

4πr
sin θe−jkr , (5.213)

Figure 5.43 Geometric parameters of helix.
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Figure 5.44 Helix antenna approximated by loops and dipoles connected in series.

where Id is the current along the dipole and is assumed to be constant. The
far-field produced by the loop is

Eϕ = η
Il(ka)2

4r
sin θe−jkr , (5.214)

where Il is the current along the loop and is assumed to be constant. The
axial ratio (AR) is

AR =
|Eθ|
|Eϕ| =

1
2π

λl

πa2
. (5.215)

When AR = 0 (l → 0), we have Eθ = 0 and the helix antenna reduces to
a loop. When AR = ∞ (a → 0), the helix antenna is essentially a dipole.
When AR = 1, the radiated field is circularly polarized and in this case, we
have

λl

πa2
= 2π.

This implies

tanα =
l

2πa
= π

a

λ
.
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5.9.2.2 Axial Mode

In the axial-mode operation, the maximum radiation is along the helix
axis. To achieve the circular polarization, the parameters of the helix must
satisfy

3
4
<

2πa
λ

<
4
3
, l ≈ λ

4
.

5.9.3 Frequency-Independent Antennas

The concept of frequency-independent antenna was first proposed by V. H.
Rumsey (1957), and it evolved from the observation that the pattern
and impedance characteristics of an antenna depend on its dimensions
measured in wavelengths. Antennas having similar geometric structures
will then retain the same radiation characteristics if a frequency change
does not change the ratio of antenna dimensions to wavelength. It was
found that the pattern and impedance of an antenna are independent
of frequency if its shape is specified entirely in terms of angles without
specifying any characteristic length dimensions. Rumsey’s work has been
summarized and simplified by Elliot (2003). Assume that the antenna
consists of perfect conductors and is surrounded by an infinite homogeneous
and isotropic medium. The two terminals of the antenna are assumed
to be indefinitely close to the origin and are symmetrically arranged
along the θ = 0◦, θ = 180◦ axis. Let the surface of this antenna be
described by

r = F (θ, ϕ). (5.216)

There may be several branches to the function F (θ, ϕ), corresponding to
inner and outer surfaces. Suppose that this antenna is scaled to a new
frequency, being K times lower than the original frequency. The antenna
must then be made K times bigger, resulting in a surface

r = KF (θ, ϕ). (5.217)

One can now ask that the new surface and the old one are congruent.
A necessary condition for this to occur is that both surfaces are infinite. In
fact, congruence can only be established through a rotation in ϕ (A rotation
in θ is not allowed since both pairs of terminals are symmetrically arranged
along the θ = 0◦, θ = 180◦ axis. Translation is not allowed either since the
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feeding point is fixed at the origin.). Thus if the congruence is established,
we must have

KF (θ, ϕ) = F (θ, ϕ+ C) (5.218)

where C is the angle through which the second antenna must be rotated in
order to achieve congruence with the first. It follows from (5.218) that

1
K

dK

dC
=

1
r

∂r

∂ϕ
. (5.219)

This implies

r = eaϕf(θ), a =
1
K

dK

dC
. (5.220)

where f(θ) is an arbitrary function. This result was first derived by Rumsey
and it reveals that any point-fed antenna whose geometry is described by
a function of the form (5.220) will be independent of frequency.

Example 5.6 (Planar spirals): The arbitrary function f(θ) may be chosen
to satisfy

df

dθ
= Aδ

(
θ − π

2

)
,

where A is an arbitrary positive number. Then (5.220) can be written as

r =



Aeaϕ, θ =

π

2

0, θ 
= π

2

. (5.221)

Using the polar coordinate system on the (x, y)-plane, this can be written as

ρ = ρ0e
a(ϕ−ϕ0) (5.222)

where we have set A = ρ0e
−aϕ0 . Equation (5.222) describes a planar spiral

in (x, y)-plane. Since the parameter A is arbitrary, we may fix ρ0 and use
ϕ0 as a parameter. Let ϕ0 = 0, π, the resultant two spirals are shown in
Figure 5.45(a). If we allow ϕ0 to takes all values from 0 to ϕ1, and all
values from π to π + ϕ1, two solid spirals will be obtained, as shown in
Figure 5.45(b). The planar spiral antenna is bidirectional and it radiates a
broadside main beam on both sides of the plane. By wrapping a balanced
two-arm spiral on the surface of a cone of revolution we can obtain a
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(a) (b)

Figure 5.45 Planar spiral antennas.

unidirectional radiation pattern with a single main beam in the direction
of the cone apex. �

5.10 Coupling between Two Antennas

In recent years, the use of radio communication has been growing very fast.
Due to the space limitations two or more antennas may have to be placed
in close proximity, such as in the handset or on antenna towers. When
two antennas are in close proximity, the characteristic of each antenna
will be affected by the other because of the mutual coupling between
them, which will degrade the antenna performances and cause problems
in communication systems.

The study of coupling between two antennas can be traced back to
the early work of Carter (1932). Carter derived the expressions for self and
mutual impedances (open-circuit parameters) for a radiating system by the
use of reciprocity theorem and his approach has been focused on a two-
linear antenna system. Since most electrical engineers are quite familiar
with the circuit theory such an approach of reducing a field problem into a
circuit problem is very helpful. In fact, it has been a common practice for
most microwave engineers to use the circuit theory to visualize the physical
process in a microwave circuit. For example, a transmitting antenna has
been shown to be equivalent to a RLC resonant circuit, where R stands for
the radiated and dissipated power in the antenna system, and L and C

represent the stored magnetic and electric energy around the antenna
respectively. From the equivalent RLC circuit the following physical picture
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can be obtained. Under normal operation, the antenna is matched and
tuned to resonant frequency and the exciting source of the antenna directly
delivers energy to the far field as radiated energy. The stored electric and
magnetic energy oscillate and change into each other in the vicinity of the
antenna and play the role of controlling antenna bandwidth, and they do
not contribute to the radiated field. In other words, there is no energy
exchange between stored energy around the antenna and radiated energy.
The energy exchange only happens when the antenna source is turned off,
and in this case, the stored energy will be transformed into radiated energy
or dissipated into heat. The above understanding is straightforward from
the theory of a RLC resonant circuit, but would be hardly imagined if a
pure field approach is exploited.

5.10.1 A General Approach

Consider a two-antenna system contained in a region V∞ bounded by ∂V∞.
Let the fields generated by antenna i (i = 1, 2) when antenna j (j 
= i)
is receiving be denoted by Ei,Hi (i = 1, 2). We use V0i to denote the
source region for antenna i(i = 1, 2). The source region is chosen in such
a way that its boundary, denoted by ∂V0i, is coincident with the metal
surface of the antennas except for a portion Ωi, where the boundary crosses
the antenna reference plane. We use V (j)

i and I
(j)
i (i, j = 1, 2) to represent

the modal voltage and modal current at the reference plane of antenna i
when antenna j is transmitting. One of the states of operation is illustrated
in Figure 5.46(a). Figure 5.46(b) is the corresponding equivalent network
representation with


V (1)

1

V
(1)
2


 =

[
Z11 Z12

Z21 Z22

]
I(1)

1

I
(1)
2


.

The coupling between the two antennas is characterized by Zij(i, j = 1, 2;
i 
= j), which may be determined by use of the frequency-domain reciprocity
theorem ∫

S

(E1 × H2 − E2 × H1) · un dS = 0, (5.223)

where S is assumed to be an arbitrary closed surface that does not contain
any impressed sources and un is the outward unit normal. Choosing
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Figure 5.46 (a) A two-antenna system. (b) Equivalent network.

S = ∂V∞ + ∂V01 + ∂V02 in (5.223) yields∫
∂V01

(E1 × H2 − E2 × H1) · un dS +
∫

∂V02

(E1 × H2 − E2 × H1) · un dS

+
∫

∂V∞

(E1 × H2 − E2 × H1) · un dS =
2∑
l=1

[
V

(2)
l I

(1)
l − V

(1)
l I

(2)
l

]
= 0.

(5.224)

This is the well-known reciprocity theorem in network theory. If we assume
that the antenna j is in the state of open circuit when antenna i (i 
= j) is
transmitting, the above equation reduces to V (2)

1 I
(1)
1 = V

(1)
2 I

(2)
2 , or

Z12 =
V

(2)
1

I
(2)
2

∣∣∣∣∣
I
(2)
1 =0

=
V

(1)
2

I
(1)
1

∣∣∣∣∣
I
(1)
2 =0

= Z21. (5.225)
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Therefore, the impedance matrix is symmetric. We now choose S = S′
1 +

∂V01 in (5.223), where S′
1 is a closed surface containing antenna 1 only. Then∫

∂V01

(E1 × H2 − E2 × H1) · un dS +
∫
S′

1

(E1 × H2 − E2 × H1) · un dS = 0.

This implies

V
(1)
1 I

(2)
1 − V

(2)
1 I

(1)
1 =

∫
S′

1

(E1 × H2 − E2 × H1) · un dS. (5.226)

Similarly, we have

V
(2)
2 I

(1)
2 − V

(1)
2 I

(2)
2 =

∫
S′

2

(E2 × H1 − E1 × H2) · un dS, (5.227)

where S′
2 is a closed surface containing antenna 2 only. The right-hand

sides of (5.226) and (5.227) can be shown to be equal by choosing S =
S′

1 + S′
2 + ∂V∞ in (5.223). When antenna 1 (or 2) is transmitting with the

other antenna being open, we have

V
(2)
1 I

(1)
1 = −

∫
S′

1

(E1 × H2 − E2 × H1) · un dS

= −
∫
S′

2

(E2 × H1 − E1 × H2) · un dS = V
(1)
2 I

(2)
2 . (5.228)

By definition, the mutual impedance of the two-antenna system can be
written as

Z12 =
V

(2)
1

I
(2)
2

∣∣∣∣∣
I
(2)
1 =0

= −

∫
S′

1

(E1 × H2 − E2 × H1) · un dS

I
(1)
1 I

(2)
2

= −

∫
V01

J1 · E2 dV

I
(1)
1 I

(2)
2

, (5.229)

where use is made of the following reciprocity theorem∫
V02

J2 · E1 dV =
∫
S′

2

(E2 × H1 − E1 × H2) · un dS

=
∫
S′

1

(E1 × H2 − E2 × H1) · un dS =
∫
V01

J1 · E2 dV .

(5.230)
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Equation (5.229) may be regarded as an exact expression of Huygens’
principle in a symmetrical form, and it is generally applicable to an
inhomogeneous medium.

Let Zsi be the reference impedance for the input terminal of antenna i
(i = 1, 2). Introducing

V
(i)
j =

Z̄sj√
ReZsj

a
(i)
j +

Zsj√
ReZsj

b
(i)
j ,

I
(i)
j =

1√
ReZsj

a
(i)
j − 1√

ReZsj
b
(i)
j i, j = A,B. (5.231)

into (5.224), we obtain

2∑
l=1

[
a
(1)
l b

(2)
l − a

(2)
l b

(1)
l

]
= 0. (5.232)

If we assume that the antenna j is matched when antenna i (i 
= j) is
transmitting, Equation (5.232) reduces to a

(1)
1 b

(2)
1 = a

(2)
2 b

(1)
2 , which gives

the symmetric property of scattering matrix

S12 =
b
(2)
1

a
(2)
2

∣∣∣∣∣
a
(2)
1 =0,

=
b
(1)
2

a
(1)
1

∣∣∣∣∣
a
(1)
2 =0

= S21.

In terms of incident and reflected power waves, Equations (5.226) and
(5.227) can be written as

b
(1)
1 a

(2)
1 − b

(2)
1 a

(1)
1 =

1
2

∫
S′

1

(E1 × H2 − E2 × H1) · un dS, (5.233)

b
(2)
2 a

(1)
2 − b

(1)
2 a

(2)
2 =

1
2

∫
S′

2

(E2 × H1 − E1 × H2) · un dS. (5.234)

It follows from (5.230) that

S12 =
b
(2)
1

a
(2)
2

∣∣∣∣∣
a
(2)
1 =0

= − 1

2a(1)
1 a

(2)
2

∫
S′

1

(E1 × H2 − E2 × H1) · un dS.

(5.235)
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5.10.2 Coupling between Two Antennas
with Large Separation

So far the separation between antennas is arbitrary. We now assume that
the antennas are located in the far-field region of each other. Determining
the fields Ei,Hi (i = 1, 2) produced by the antenna i with antenna j

(j 
= i) in place is not an easy task. Therefore, the following simplification
is made: the calculation of fields Ei and Hi is carried out with the antennas
j (j 
= i) removed. Physically, this assumption is equivalent to neglecting
the reflections between the antennas. To derive the expressions of the
impedance parameters Z12 when the antenna 1 and antenna 2 are far apart,
two different coordinate systems for antenna 1 and antenna 2 may be used.
The origins of the coordinate systems are chosen to be the geometrical
center of the current distributions and the separation between antenna 1
and antenna 2 satisfies kr2 � 1, r2 � d2, r2 � d1 where r2 = |r2| is the
distance between antenna 2 and an arbitrary point of the circumscribing
sphere of antenna 1 (denoted by S′

1), as shown in Figure 5.47. Let r′1 be a
point on the circumscribing sphere of antenna 1, and r12 = r12ur12 , where
r12 is the distance between the two origins and ur12 is a unit vector directed
from antenna 1 to antenna 2. Thus, the far field of antenna 2 at antenna 1
can be expressed as

E2(r2) ≈ − jkηI
(2)
2 e−jkr2

4πr2
L2(ur2), H2(r2) ≈ 1

η
ur2 × E2(r2), (5.236)

1y
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Figure 5.47 Coupling between two distant antennas.
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where r2 = r′1 − r12 is assumed to be a point on the sphere S′
1 and

L2(ur2) =
1

I
(2)
2

∫
V02

[J2 − (J2 · ur2)ur2 ] ejkr
′
2·ur2 dV (r′2)

is the antenna effective vector length. Since r′1 is very small compared
to r12 in magnitude, we can make the approximation r2 = |r′1 − r12| ≈
r12 −ur12 · r′1. The field E2 in the coordinate system o1 can then be
represented by

E2(r2) ≈ − jkηI
(2)
2 e−jkr12ejkur12 ·r′1

4πr12
L2(−ur12),

H2(r2) ≈ −1
η
ur12 × E2(r2).

(5.237)

Then ∫
S′

1

(E1 × H2 − E2 × H1) · un dS

=
∫
S′

1

[−η−1E1 × (ur12 × E2) − E2 × H1

] · un dS
=

∫
S′

1

E2 ·
[−η−1ur12 × (E1 × un) − H1 × un

]
dS

=
∫
S′

1

E2 · (J1s − η−1ur12 × J1ms)dS, (5.238)

where J1s = un×H1,J1ms = −un×E1 are the equivalent electric current
and magnetic current on the surface S′

1 respectively. Substituting (5.237)
into (5.238), we obtain∫

S′
1

(E1 × H2 − E2 × H1) · un dS

≈ −4πr12ejkr12

jkη
E1(ur12) · E2(−ur12)

=
−jkηI(1)

1 I
(2)
2 e−jkr12

4πr12
L1(ur12) · L2(−ur12). (5.239)
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Here we have used the far-field expression of antenna 1 at antenna 2

E1(r12) =
−jkηe−jkr12

4πr12

∫
S′

1

ejkur12 ·r1
[
J1s(r′1) − ur12 × η−1J1ms(r′1)

]
dS

=
−jkηI(1)

1 e−jkr12

4πr12
L1(ur12). (5.240)

It follows from (5.239) that the mutual impedance Z12 is given by

Z12 =
V

(2)
1

I
(2)
2

∣∣∣∣∣
I
(2)
1 =0

=
jkηe−jkr12

4πr12
L1(ur12) · L2(−ur12). (5.241)

Note that we have Z12 = 0 when L1 and L2 are orthogonal.

5.10.3 Power Transmission between Two Antennas

Wireless power transmission has been a research topic for years. Many
applications can benefit from the research, such as microwave imaging,
radar and directed energy weapons. The basic theory for the power
transmission between two antennas was investigated in 1960s (Goubao
and Schwering, 1961; Kay, 1960; Sherman, 1962; Borgiotti, 1966), and it
has found wide applications in many fields (Brown, 1984). Theoretically,
power transmission efficiency of almost 100% is attainable by increasing
the sizes of the antennas. For a given power transmission efficiency over
a given distance between the transmitting and receiving antenna, there
exists an optimum antenna aperture distribution which can minimize
the transmitting and receiving aperture sizes. To achieve the maximum
transmission efficiency, the transmitting antenna must be focused at the
receiving antenna. In other words, the radiated electromagnetic energy must
be focused in the vicinity of the axis of the transmitting and receiving
antenna apertures as it propagates.

5.10.3.1 Power Transmission between Two

General Antennas

Let us consider the power transmission between antenna 1 and antenna 2
when antenna 1 is transmitting and antenna 2 is receiving. It follows from
Figure 5.46(b) that

V
(1)
1 = Z

(1)
1 I

(1)
1 , V

(2)
1 = −I(2)

1 Z
(2)
L1 ,

V
(2)
2 = Z

(2)
2 I

(2)
2 , V

(1)
2 = −I(1)

2 Z
(1)
L2 .

(5.242)
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Here Z(i)
i is the input impedance of antenna i when antenna i is transmitting

and the other antenna is receiving, and Z(j)
Li is the load at ith terminal when

antenna j is transmitting. Substituting (5.242) into (5.228), we obtain

I
(2)
2 I

(1)
2

[
Z

(2)
2 + Z

(1)
L2

]
=

∫
S′

1 or S′
2

(E1 × H2 − E2 × H1) · un dS

= I
(1)
1 I

(2)
1

[
Z

(1)
1 + Z

(2)
L1

]
. (5.243)

Multiplying (5.243) by its conjugate, we obtain

∣∣∣I(2)
2

∣∣∣2 ∣∣∣I(1)
2

∣∣∣2 ∣∣∣Z(2)
2 + Z

(1)
L2

∣∣∣2 =

∣∣∣∣∣∣∣
∫

S′
1 or S′

2

(E1 × H2 − E2 × H1) · un dS

∣∣∣∣∣∣∣
2

=
∣∣∣I(1)

1

∣∣∣2 ∣∣∣I(2)
1

∣∣∣2 ∣∣∣Z(1)
1 + Z

(2)
L1

∣∣∣2 . (5.244)

If the antenna 1 and antenna 2 are conjugately matched, i.e.,

Z̄
(2)
2 = Z

(1)
L2 , Z̄

(1)
1 = Z

(2)
L1 .

Equation (5.244) can be written as

1
2

∣∣∣I(1)
2

∣∣∣2 ReZ(1)
L2

1
2

∣∣∣I(1)
1

∣∣∣2 ReZ(1)
1

=

∣∣∣∣∣ ∫
S′

1 or S′
2

(E1 × H2 − E2 × H1) · un dS
∣∣∣∣∣
2

4
∣∣∣I(1)

1

∣∣∣2 ReZ(1)
1

∣∣∣I(2)
2

∣∣∣2 ReZ(1)
2

=
1
2

∣∣∣I(2)
1

∣∣∣2 ReZ(2)
L1

1
2

∣∣∣I(2)
2

∣∣∣2 ReZ(2)
2

. (5.245)

This implies

T12 =
P

(1)
2

P
(1)
1

=

∣∣∣∣∣ ∫
S′

1 or S′
2

(E1 × H2 − E2 × H1) · un dS
∣∣∣∣∣
2

4Re
∫
S′

1

(E1 × H̄1) · un dS Re
∫
S′

2

(E2 × H̄2) · un dS

=
P

(2)
1

P
(2)
2

= T21, (5.246)

where P
(i)
i is the transmit power of antenna i when other antenna is

receiving and P
(i)
j is the power received by antenna j when antenna i



January 28, 2015 11:5 Foundations for Radio Frequency Engineering - 9in x 6in b1914-ch05 page 397

Antennas 397

is transmitting. Equation (5.246) indicates that the ratio of the power
received by antenna 2 to the transmitting power of antenna 1 (known as
the power transmission efficiency, denoted as T12) is equal to the ratio
of the power received by antenna 1 to the transmitting power of antenna 2
(denoted as T21). It also indicates that the radiation pattern of the antenna
for reception is identical with that for transmission. Equation (5.246) is
the theoretical foundation for the wireless power transmission in free space,
and is the starting point for optimizing the aperture distribution to achieve
the maximum possible power transmission efficiency. Evidently, the power
transmission efficiency gets maximized if

E1 = Ē2, H1 = −H̄2 (5.247)

hold on some closed surface that encloses either antenna 1 or 2. If the
separation between antenna 1 and 2 is large enough, we may use (5.239) to
obtain ∣∣∣∣∣∣∣

∫
S′

1 or S′
2

(E1 × H2 − E2 × H1) · un dS

∣∣∣∣∣∣∣
2

≈ (4πr12)2

η2k2
|E1(r12) · E2(−r12)|2

=
(

4λ
r12

)2

U1(ur12)U2(−ur12) cos θ12, (5.248)

where U1 and U2 are the radiation intensity of antenna 1 and 2 respectively,
and θ12 is the angle between E1(r12) and E2(−r12). Substituting (5.248)
into (5.246), we obtain the well-known Friis transmission formula

P
(1)
2

P
(1)
1

=
(

λ

4πr12

)2 4πU1(ur12)4πU2(−ur12) cos θ12
1
2Re

∫
S′

1

(E1 × H̄1) · un dS 1
2Re

∫
S′

2

(E2 × H̄2) · un dS

=
(

λ

4πr12

)2

G1(ur12)G2(−ur12) cos θ12, (5.249)

where G1 and G2 are the gains of the antenna 1 and antenna 2 respectively.
Equation (5.249) may be written as

P
(1)
2 =

EIRP
Ls

G2(−ur12) cos θ12, (5.250)
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where Ls = (4πr12/λ)2 is known as free-space path loss, and EIRP
stands for the effective isotropic radiated power defined by EIRP =
P

(1)
1 G1(ur12). The received isotropic power is defined as EIRP/Ls,

which is the power received by an isotropic antenna (G2 = 1).

5.10.3.2 Maximum Power Transmission between Two

Planar Apertures

If a two-antenna system is used to transmit electric power, the antenna
geometries and their current distributions should be chosen properly in
order that the electromagnetic power delivered from one antenna to the
other is maximized. Let us consider the maximum power transmission
between two planar apertures. The configuration of a two-planar aperture
system in free space is shown in Figure 5.48, where both apertures are in
an infinite conducting screen so that the tangential electric field outside the
aperture is zero. When the aperture i (i = 1, 2) is used as a transmitting
antenna, the aperture field is assumed to be

Ei = uxEi, Hi = uy
1
η0
Ei,

where η0 =
√
µ0/ε0 is the wave impedance in free space. We will use the

same notations for the aperture field distribution and the field produced by
the aperture, and this will not cause any confusion. By means of equivalence
theorem and image principle, the electric field produced by aperture 1 may
be represented by

E1(r) =
1
2π

∫
T1

uy × uR

(
jk0 +

1
|r − r′|

)
e−jk0|r−r′|E1(r′)dx′dy′,

(5.251)

12r
z 

x

y 

1T
2T

0 0,µ ε

Figure 5.48 Two-planar aperture system.
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where uR = (r−r′)/|r − r′|, k0 = ω
√
µ0ε0. In deriving the above expression,

we have neglected the multiple scattering between the apertures. If the
apertures are located in the Fresnel region of each other and the observation
point r is on the aperture 2, the following approximations can be made

uy × uR ≈ ux, |r− r′| ≈ r12 +
1

2r12
[(x − x′)2 + (y − y′)2].

From (5.251), we obtain

E1(r) = uxE1(r) ≈ ux
je−jk0r12

λr12

∫
T1

E1e
−jk0[(x−x′)2+(y−y′)2]/2r12dx′dy′

H1(r) = uy
1
η0
E1(r). (5.252)

Substituting these into (5.246) gives

T12 =
(

1
λr12

)2

∣∣∣∣∫
T2

m̃1m2 dx dy

∣∣∣∣
2

∫
T1

|m1|2 dx dy
∫
T2

|m2|2 dx dy
, (5.253)

where

m1(x, y) = E1e
−jk0(x

2+y2)/2r12 ,

m2(x, y) = E2e
−jk0(x

2+y2)/2r12 ,

m̃1(x, y) =
∫
T1

m1(x′, y′)ejk0(xx′+yy′)/r12 dx′dy′,

m̃2(x, y) =
∫
T2

m2(x′, y′)ejk0(xx′+yy′)/r12 dx′dy′.

Note that ∫
T1

m1m̃2 dx dy =
∫
T2

m̃1m2 dx dy.

This is equivalent to T12 = T21. Equation (5.253) may be written as

T12 = T ideal
12 · U,

where

U =

∣∣∣∣∫
T2

m̃1m2 dx dy

∣∣∣∣
2

∫
T2

|m̃1|2 dx dy
∫
T2

|m2|2 dx dy
, (5.254)
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T ideal
12 =

Re
∫
T2

(E1 × H̄1) · uz dx dy

Re
∫
T1

(E1 × H̄1) · uz dx dy =
(

1
λr12

)2

∫
T2

|m̃1|2 dx dy∫
T1

|m1|2 dx dy
.

(5.255)

Note that (5.255) is the power transmission efficiency between two ideal
apertures. The power transmission efficiency T12 reaches maximum if both
T ideal

12 and U are maximized. From Schwartz inequality, we have maxU = 1,
which can be reached by letting m2(x, y) = c1 ¯̃m1(x, y), (x, y) ∈ T2, i.e.,

E2(x, y) = c2Ē1(x, y), (x, y) ∈ T2. (5.256)

Here both c1 and c2 are arbitrary complex numbers. The above equation
implies that the aperture distribution of antenna 2 is equal to the complex
conjugate of the field produced by antenna 1 at antenna 2. We now consider
the condition for maximizing T ideal

12 . Equation (5.255) can be rewritten as

T ideal
12 =

(T̂m1,m1)
(m1,m1)

,

where (·, ·) denotes the inner product defined by (u, v) =
∫
T1
uv̄ dx dy for

two arbitrary functions u and v, and T̂ is a self-adjoint operator defined by

T̂m1 (ξ′, ς ′) =
∫
T1

K2(ξ, ς; ξ′, ς ′)m1(ξ, ς)dξ dς

with

K2(ξ, ς; ξ′, ς ′) =
(

1
λr12

)2 ∫
T2

ejk0[(ξ−ξ
′)x+(ς−ς′)y]/r12 dx dy. (5.257)

If the condition (5.256) is met, we have

T12 = T ideal
12 =

(T̂m1,m1)
(m1,m1)

. (5.258)

This is a variational expression (Rayleigh quotient), and attains an
extremum when m1 satisfies

T̂m1(x, y) = T12m1(x, y). (5.259)

Therefore, the power transmission between two planar apertures is max-
imized if the aperture field distributions satisfy (5.256) and (5.259)
simultaneously. Equation (5.259) is an eigenvalue problem and its largest
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eigenvalue is the maximum possible value for the power transmission
efficiency. Equation (5.259) may be used first to determine the aperture
distribution of antenna 1, and the aperture distribution of antenna 2 can
then be determined from (5.256).

Example 5.7: Let us consider the maximum possible power transmission
between two rectangular apertures T1 = [−a1, a1] × [−a2, a2] and T2 =
[−b1, b1] × [−b2, b2]. Equation (5.257) becomes

K2(ξ, ς; ξ′, ς ′) =
(

1
λr12

)2
b1∫

−b1

b2∫
−b2

ejk0[(ξ−ξ
′)x+(ς−ς′)y]/r12 dx dy

=
(

k0

πr12

)2 sin k0(ξ−ξ′)b1
r12

sin k0(ς−ς′)b2
r12

k0(ξ−ξ′)
r12

k0(ς−ς′)
r12

. (5.260)

Thus (5.259) becomes

(
k0

πr12

)2
a1∫

−a1

a2∫
−a2

sin k0(ξ−x)b1
r12

sin k0(ς−y)b2
r12

k0(ξ−x)
r12

k0(ς−y)
r12

m1(ξ, ς)dξ dς = T12m1(x, y).

(5.261)

If we assume that m1(x, y) is a separable function of x and y

m1(x, y) = m1x(x)m1y(y).

Equation (5.261) reduces to

a1∫
−a1

sin k0b1
r12

(ξ − x)
π(ξ − x)

m1x(ξ)dξ = T x12m1x(x),

a2∫
−a2

sin k0b2
r12

(ς − y)
π(ς − y)

m1y(ς)dς = T y12m1y(y),

(5.262)

with T12 = T x12T
y
12. Introducing the following transformations

ξ′ = ξ/a1, x′ = x/a1, ς ′ = ς/a2, y′ = y/a2,
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(5.262) can be written as

1∫
−1

sin c1(ξ′ − x′)
π(ξ′ − x′)

m1x(ξ′)dξ′ = T x12m1x(x′),

1∫
−1

sin c2(ς ′ − y′)
π(ς ′ − y′)

m1y(ς ′)dς ′ = T y12m1y(y′),

(5.263)

where

c1 =
k0a1b1
r12

, c2 =
k0a2b2
r12

. (5.264)

The eigenvalue problem (5.263) also appears in signal theory and has been
solved by Slepian and Pollak (1961). The largest eigenvalues are

T x12 =
2c1
π

[
R

(1)
00 (c1, 1)

]2

, T y12 =
2c2
π

[
R

(1)
00 (c2, 1)

]2

. (5.265)

where R
(1)
00 is the radial prolate spheroidal function. Corresponding to

(5.265), the eigenfunctions are respectively given by the angular prolate
spheroidal wave functions S00(c1, x/a1) and S00(c2, y/a2). Some values of
T x12 are listed in Table 5.3. Observe that the power transmisson efficiency
of 100% can be achieved by increasing the parameter c1. As a result, the
maximum power transmissin efficiency and the optimal distribution for
aperture T1 are respectively given by

T12 =
2c1
π

[
R

(1)
00 (c1, 1)

]2 2c2
π

[
R

(1)
00 (c2, 1)

]2
,

E1(x, y) = S00(c1, x/a1)S00(c2, y/a2)ejk(x
2+y2)/2r1,2 .

(5.266)

The optimal distribution for aperture T2 is given by (5.256).

Table 5.3 Largest eigenvalue

c1 Tx
12

0.5 0.30969
1 0.57258
2 0.88056
4 0.99589
8 1.00000
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Figure 5.49 Properties of focused antenna aperture.

Equation (5.266) indicates that the transmitting aperture must be
focused to the receiving aperture in order to achieve a maximum power
transfer between the two apertures, and the optimization process yields
a focused transmitting aperture. In addition the transverse amplitude
distribution has no sidelobes. Some important properties of the focused
antenna aperture are illustrated in Figure 5.49. The range between the
axial −3 dB points about the maximum intensity point (called principal
focal point) is called the focused region and its extension is defined as the
depth of focus.

In practice, it is difficult to realize the continuous distribution (1) with
a single aperture. For this reason, an antenna array is usually adopted. �

5.10.4 Antenna Gain Measurement

Assume that antennas 1 and 2 are separated by a distance r12 and are
located in the far-field region of each other. The Friis transmission formula
indicates that if the gain of antenna 2 is known the measurement of
the received power of antenna 2 actually gives the gain of antenna 1.
To eliminate the properties of the testing antenna 2 we either can use
a standard antenna whose gain is known, e.g., a dipole or calibrate the
antenna 2 in a known field. We assume antenna 1 is transmitting and
antenna 2 is receiving. We recall that antenna factor is defined as the ratio
of the incident electric field at the receiving antenna to the voltage received
at the antenna terminal, i.e.,

AF2(r12) =
|E1(r12)|∣∣V (1)

2

∣∣ , (5.267)
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S2V Spectrum Analyzer

Figure 5.50 Receiving antenna.

as illustrated in Figure 5.50. Since the power density of the incident wave
(Poynting vector) can be expressed as

S1(r12) =
1
2
|E1(r12)|2

η
,

the received power is

P
(1)
2 = S1(r12)A2(r12) =

|E1(r12)|2λ2G2

8πη
, (5.268)

where A2 = λ2G2/4π is the equivalent area of antenna 2. If the antenna
under test is used as the transmitting antenna, then we have

|E1(r12)| =
√

2S1(r12)η =

√
P

(1)
1 G1

2πr212
η = AF2

∣∣∣V (1)
2

∣∣∣ = AF2 |V2|Lcable,

where Lcable is the loss of the cable connecting the antenna and the
spectrum analyzer and V2 is the voltage measured by the spectrum analyzer.
So the gain for the antenna under test can be expressed as

G1 =
(2π)2

η

(AF2 |V2|Lcabler12)
2

P
(1)
1

. (5.269)

If we use a dipole as the transmitting antenna to replace the antenna under
test we will have the similar relationship as follows

G1d =
(2π)2

η

(AF2|V2d|Lcabler12)
2

P
(1)
1d

. (5.270)

It follows from (5.269) and (5.270) that

G1

G1d
=

( |V2|
|V2d|

)2
P

(1)
1d

P
(1)
1

,
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Figure 5.51 Setup of anechoic chamber.

which can be expressed in dB as

G1(dBd) = V2(dB) − V2d(dB) −
[
P

(1)
1 (dB) − P

(1)
1d (dB)

]
. (5.271)

A typical setup of anechoic chamber for the gain measurement is shown in
Figure 5.51.

5.11 Array Antennas

An array antenna is a group of radiators which are excited by currents
with different amplitudes and phases. As a result of electromagnetic
interference, the radiated fields are enhanced in the desired direction and
cancelled in the non-desired direction.

5.11.1 A General Approach

Consider two rectangular coordinate systems r = (x, y, z) and r̃n =
(x̃n, ỹn, z̃n), which are related by the following transformation

r = r̃n + dn

as shown in Figure 5.52. The vector dn starts at the origin of the coordinate
system (x, y, z) and ends at the origin of the coordinate system (x̃n, ỹn, z̃n).
The spherical coordinate systems associated with the coordinate systems
r and r̃n are denoted by (r, θ, ϕ) and (r̃n, θ̃n, ϕ̃n) respectively. In the
coordinate system (x̃n, ỹn, z̃n), the far-fields of an antenna are given by
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Figure 5.52 Transformation of coordinate systems.

(5.13), i.e.,

En(r̃n) = − jωµIn
4πr̃n

e−jkr̃nLn(ur̃n), (5.272)

where Ln is the vector effective length and In = |In|ejαn is the exciting
current at the antenna feeding plane. Note that, as r̃n → ∞, we have

rn ‖ r, uθ = uθ̃n
, θ = θ̃n, ϕ = ϕ̃n. (5.273)

Assume |dn|� r̃n and r̃n → ∞. Then, we can make the following
approximation

e−jkr̃n

r̃n
≈ e−jkr

r
ejk|dn| cosψn , (5.274)

where

cosψn = cos θ cos θn + sin θ sin θn cos(ϕ− ϕn). (5.275)

Making use of (5.273) and (5.274), we have

En(r) = − jωµ |In| e
−jkr

4πr
ej(αn+k|dn| cosψn)Ln(ur). (5.276)

This is the field expression in the coordinate system (x, y, z).
If we haveN antennas so that (5.273) holds as r̃n → ∞ for each antenna

n (n = 1, 2, . . . , N), then the total far-field can be written as

E(r) =
N∑
n=1

En(r) = − jωµ
4πr

e−jkr
N∑
n=1

|In|Ln(ur)ej(αn+k|dn| cosψn).

(5.277)
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If all antennas are identical, we may write Ln(ur) = L(ur) (n = 1, 2, . . . , N)
and the above equation can be rewritten as

E(r) = Ee(r) × AF. (5.278)

where

AF =
N∑
n=1

|In| ej(αn+k|dn| cosψn), (5.279)

is referred to as antenna array factor and

Ee(r) = − jωµ
4πr

e−jkrL(ur)

is the far-field of a single antenna normalized to the exciting current.
Equation (5.278) is known as the principle of pattern multiplication
for arrays of identical elements.

Example 5.8: Let us consider two z-directed dipoles separated by a
distance d as illustrated in Figure 5.53. In this case, we have

θ1 =
π

2
, ϕ1 = 0, θ2 =

π

2
, ϕ2 = π.

It follows from (5.275) that

cosψ1 = sin θ cosϕ, cosψ1 = − sin θ cosϕ.

x 

2z̃

y 

d 
2ỹ

2x̃

1x̃ 1ỹ

1z̃

z 

1õ

2õ

o 

Figure 5.53 Two dipole arrays.
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Assume that I1 = I∠0◦, I2 = I∠α. Then the array factor for the two-dipole
array is given by

AF = Iej
kd
2 sin θ cosϕ + Iej(α−

kd
2 sin θ cosϕ)

= 2Iej
α
2 cos

(
α

2
− kd

2
sin θ cosϕ

)
. �

5.11.2 Yagi–Uda Antenna

The Yagi–Uda antenna was first invented by Shintaro Uda in 1926 and
reported in an English journal by his colleague Hidetsugu Yagi. A Yagi–
Uda antenna is a directional antenna consisting of a driven element,
typically a dipole or folded dipole, and additional parasitic elements called
reflector or directors, as shown in Figure 5.54. The driven element
is excited by an applied source, whose length is slightly less than half
wavelength, typically 0.45λ to 0.49λ. The reflector is longer than the driven
element (typically 0.5λ) and is about a quarter wavelength away from
the driven element. Experience shows that using more than one reflector
does not help much. The directors may have different lengths which range
from 0.4λ to 0.45λ, and their separations may vary from 0.3λ to 0.4λ, as
illustrated in Figure 5.54. The number of directors varies from 6 to 12.
Experience has shown that the directivity can be improved by increasing
the number of directors. It has been found that uniformly spaced directors
of equal lengths do not make an optimum array, and analytical methods
have been developed for maximizing the directivity by adjusting both the

Reflector 

0.45∼0.49λ

Metal 
boom 

Driven 
element 

0.01λ

Directors 

0.4∼0.45λ

0.25λ
0.3∼0.4λ

Figure 5.54 Yagi–Uda antenna array.
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inter-element spacings and the lengths of the array elements (Cheng and
Chen, 1973; Chen and Cheng, 1975).

Yagi–Uda antennas are directional along the axis perpendicular to the
dipole from the reflector toward the driven element and the directors. By
adjusting the distance between the adjacent directors it is possible to reduce
the back lobe of the radiation pattern. The bandwidth of the Yagi–Uda
antenna can be enhanced by increasing the length of the reflector and
decreasing the length of directors at a sacrifice in gain.

5.11.3 Log Periodic Antennas

The log-periodic antenna was first introduced by DuHamel and Isbell (1957)
and is illustrated in Figure 5.55, which has a toothed design cut out of sheet
metal. It is assumed that the successive radii are in the common ratio

Rn+1

Rn
=
rn+1

rn
= τ.

If the shape of the original antenna is described by r = f(θ), the new
antenna described by r = Kf(θ) can be made congruent to the original
antenna only if K satisfies K = τm, where m is an integer. The antenna
of Figure 5.55 will have the same pattern and impedance at any two

Feed

1
nR

+

nR

n
r

αβ

Figure 5.55 Log-periodic antenna.
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Figure 5.56 Dipole array.

frequencies f1 and f2 in the ratio τ : f1 = τf2, or

log f2 = log f1 + log(1/τ).

For this reason, the configuration is called a logarithmically periodic planar
antenna with a period log(1/τ) although antenna characteristics will change
between the frequencies f1 and f2. The planar log-periodic antenna is
bidirectional. It can be made unidirectional if the two halves of the antenna
are folded to form a wedge-like structure. The main beam will point off the
direction of the apex.

The log-periodic antenna can be realized in several different ways. The
most common log periodic array consists of a number of dipole elements,
diminishing in length and separation between elements from the back (big
end) toward the front (small end), as shown in Figure 5.56. The element
at the back of the array is a half wavelength at the lowest frequency of
operation and the main beam comes from the smaller front. It has many
similarities to the Yagi–Uda array. The log-periodic array is much larger
than a Yagi–Uda antenna that produces the same gain. But the Yagi–
Uda has a narrower bandwidth. The various dimensions of the dipole array
increase logarithmically:

τ =
Rn+1

Rn
=
ln+1

ln
=
sn+1

sn
=
dn+1

dn
.

5.11.4 Optimal Design of Multiple Antenna Systems

Antenna arrays can be designed with a fixed beam or a scanned beam.
The scanning antenna arrays can be categorized as either switched beam
system or adaptive antenna system. A switched beam system has a finite
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number of predefined patterns or combining strategies. It detects the signal
strength, choose from one of the predefined patterns, and change from one
beam to another as the mobile user moves around. An adaptive antenna
system (or smart antenna system) is defined as a multiple antenna
system combined with signal processing in both space and time, which
is capable of optimizing the radiation patterns automatically in response
to the signal environment. The adaptive array system has more degrees of
freedom in choosing radiation patterns, which are scenario-based and can be
adjusted in real time. Compared to the switched beam system, the adaptive
array system can direct the main beam toward the signal of interests and
supress the radiation pattern in the direction of interference. The main
benefits of the scanning arrays are summarized below:

(1) High antenna gain: Multiple antennas are combined together to increase
the antenna gain in the direction of signal of interests, which results in
a better coverage and longer battery life for handsets.

(2) Spatial diversity: Multiple antennas are used to minimize the fading
caused by multipath propagations.

(3) Interference rejection: Multiple antennas can be combined to steer its
beam toward a desired signal while steering a null toward an undesired
or interfering signal, improving the signal-to-interference ratio of the
received signals and thus increasing information capacity.

Figure 5.57 shows a typical arrangement of an adaptive antenna array.
A phase shifter and an attenuator are installed at each element, which
provide proper phase and amplitude to adjust the beam direction and the
pattern shape. The amplitudes control primarily the shape of the pattern
while the phases control primarily the beam direction. A digital signal
process is usually deployed with the scanned antenna array to estimate the
direction of arrival (DOA) of all incoming signals and the magnitude and
phase of each antenna element so that a desired pattern can be achieved.
This process is called adaptive beamforming, and many beamforming
algorithms have been proposed and have been successfully applied to
various signal environments (Widrow et al., 1967; Balanis, 2005).

The antenna array theory involves two important aspects, the array
analysis and the array synthesis. In the analysis, the radiation pattern
of the antenna array is studied under the assumption that the antenna
configuration and the excitation distribution in the array are known. The
excitation distributions can be uniform amplitude or tapered amplitude
with uniform progressive phase, etc; and the array configuration can be a
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Phase shifters 

Attenuators 

Antenna elements

Figure 5.57 A typical arrangement of an adaptive antenna array.

straight line, a circle or a rectangle. The radiation properties of an antenna
array (such as beam width, sidelobes, directivity, etc.) are determined
by the number of elements, the spacing between elements, the amplitude
and phase of the excitation distribution. In synthesis, one starts with the
desired array pattern to find the excitation distribution for the antenna
array to be designed. For most practical applications, the antenna arrays
consist of identical elements which are equally spaced and similarly oriented.
Once the relative physical positioning of the antenna elements is fixed, the
main task of antenna array synthesis is to find the excitation of individual
elements so that electromagnetic energy can be directed toward the desired
direction in a specified manner. For antenna arrays with simple geometrical
configurations and identical elements, the far-fields can be expressed as the
product of the field of a single element at a selected reference point and the
array factor. The array factor can be used to determine phase difference
between elements so that the main beam can be adjusted to any desired
direction to form a scanning array. In order to control the sidelobes, the
array pattern may be prescribed by using polynomial approximations, such
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as Chebyshev polynomials. In this section, we present a universal method
for the design of antenna array, which is based on the optimization of power
transmission efficiency between the antenna array to be designed and a
test antenna array whose elements are placed in the desired directions so
that the radiations can be optimized in these directions. The optimized
distribution of excitations may be determined by an eigenvalue equation
derived from the Rayleigh quotient for the power transmission efficiency.
The method is applicable to any type of antenna array.

5.11.4.1 Power Transmission between Two

Antenna Arrays

In order to beam the energy from an antenna array to different directions
simultaneously, we may consider an nt + nr antenna system shown in
Figure 5.58(a), in which antennas 1 ∼ nt are transmitting and represent
the antenna array to be designed while antennas nt + 1 ∼ nt + nr are
receiving and represent the test antennas. The test antennas are placed in
the desired directions in which radiations need to be optimized. This system

Scatterers 

tnb

tna

1b

1a

1tnb +

1tna +

2b

2a

2tnb +

2tna +

t rn nb +

t rn na +

Array to be designed Array of test antennas 

Figure 5.58 Power transmission between two antenna arrays.
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can be described as an nt + nr-port network and can be characterized by
scattering parameters as follows[

[bt]
[br]

]
=

[
[Stt] [Str]
[Srt] [Srr]

] [
[at]
[ar]

]
, (5.280)

where the normalized incident and reflected waves for transmitting antenna
array and test antenna array are respectively given by

[at] = [a1, a2, . . . , ant ]
T ,

[bt] = [b1, b2, . . . , bnt ]
T ,

[ar] = [ant+1, ant+2, . . . , ant+nr ]T ,

[br] = [bnt+1, bnt+2, . . . , bnt+nr ]T .

The power transmission efficiency between the two antenna arrays is defined
as the ratio of the power delivered to the loads of the test antenna array to
the input power to the transmitting antenna array

Tarray =
1
2(|[br]|2 − |[ar]|2)
1
2 (|[at]|2 − |[bt]|2)

. (5.281)

Assume that the test antenna array is matched so we have [ar] = 0. Making
use of (5.280), (5.281) can be written as the well-known Rayleigh quotient

Tarray =
([A][at], [at])
([B][at], [at])

, (5.282)

where (·, ·) denotes the usual inner product of two column vectors; [A] and
[B] are two matrices defined by

[A] = [S̄rt]TSrt, [B] = [1] − [S̄tt]T [Stt].

If the power transmission efficiency Tarray reaches the maximum at [at],
then we have

[A][at] = Tarray[B][at]. (5.283)

The maximum possible value of Tarray is the largest eigenvalue of (5.283)
and can be found numerically. If the whole antenna system is matched,
(5.283) reduces to

[A][at] = Tarray[at]. (5.284)

Note that the surrounding materials and antenna types are assumed to be
arbitrary in deriving (5.283) and (5.284). Therefore, (5.283) and (5.284)
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applies to an arbitrary antenna array system. For nr = 1 (a single test
antenna), (5.284) has only one positive eigenvalue and the rest are zero since
the rank of the matrix [A] is unit in this case. Therefore, the unique non-
zero eigenvalue of (5.284) gives the maximum power transmission efficiency
between the antenna array and the test antenna and the corresponding
eigenvector is the optimal excitation for the antenna array in the sense that
the energy transmitted in the direction of the test antenna is maximized.
The eigenvectors corresponding to the zero eigenvalues of (5.284) are the
optimal excitation distributions for the antenna array in the sense that the
energy transmitted in the direction of the test antenna is minimized and
thus a null appears in the desired direction.

5.11.4.2 Optimal Design of Antenna Arrays

In order to illustrate the optimization method presented above, we consider
a 4× 4 microstrip patch antenna array operating at 2.45GHz and built on
FR-4 substrate with relative dielectric constant 4.4, loss tangent 0.02 and
thickness of 3 mm. The antenna element is a rectangular microstrip patch
with an inset-feed with the length and the width of the patch being 29mm
and 28mm respectively, as shown in Figure 5.59(a). The length of the feed
line is 12mm and the width is 3mm which is combined with the 6mm
inset to achieve 50Ω characteristic impedance. By properly selecting the

28 mm 

29 mm 

12 mm 

3 mm

6 mm 

(a) (b)

10 mm 

x

Figure 5.59 (a) Element of microstrip array. (b) Arrangement of array elements.
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Figure 5.60 Arrangement of the 4 × 4 microstrip patch array the test antenna.

depth of the inset, a good matching can be achieved without additional
matching elements. Due to the mutual coupling between antenna elements,
the spacing between two neighboring elements must be carefully designed
to avoid grating sidelobes. The distance between the neighboring elements
is chosen as 55mm for the 4 × 4 array. Figure 5.60 shows an arrangement
of the 4 × 4 array with a test antenna, which is assumed to be the same
as the elementary patch in the array and is perpendicular to the desired
direction ur (unit vector along r). In what follows, the 4 × 4 array will be
used to explain the design procedure for various applications (Geyi, 2014).

Example 5.9 (Focused array design): Focused antennas are used to focus
the electromagnetic energy to a spot to reach a high power density in
the radiating near field (Fresnel) region. They have wide applications in
many areas such as noncontract microwave sensing, medical treatment
and wireless power transmission. Consider the 4 × 4 array shown in
Figure 5.59(b) and assume that the antenna array must be focused at z =
100 mm. We may place the test antenna at (r, θ, ϕ) = (100 mm, 0, 0). The
whole system is simulated with simulation tools with one port being active
and rest terminated in 50 Ω, which generates the scattering parameters for
the whole system. The maximum power transmission efficiency Tarray can
be obtained from (5.284) by using the computed scattering parameters. For
the current configuration of the system, the maximum power transmission
efficiency between the antenna array and the test antenna is found to be
30%. The corresponding optimized distribution of excitation [at] is listed
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Table 5.4 Optimized distribution of excitations

Port No. Excitation of port Port No. Excitation of port

1 0.13 ∠0◦ 9 0.22 ∠−76◦
2 0.2 ∠−69◦ 10 0.38 ∠−138◦
3 0.2 ∠−69◦ 11 0.38 ∠−138◦
4 0.13 ∠0◦ 12 0.22 ∠−76◦
5 0.22 ∠−76◦ 13 0.13 ∠0◦
6 0.38 ∠−138◦ 14 0.2 ∠−69◦
7 0.38 ∠−138◦ 15 0.2 ∠−69◦
8 0.22 ∠−76◦ 16 0.13 ∠0◦

Figure 5.61 A 4 × 4 focused antenna array.

in Table 5.4. Note that the optimized phase distribution obeys spherical
distribution. The simulation tools may be used to model the feeding network
to achieve the optimized distribution of excitation at the outputs of the
feeding network. The phase distribution can be realized by adjusting the
length of the feeding line, and the amplitude distribution can be achieved by
power dividers with different choices of width for the feeding lines. During
the simulation of the feeding network, each antenna element connected to
the feeding network is replaced by a 50Ω termination. Finally, the feeding
network and the antenna array are joined together and simulated as a
whole to ensure that the outputs of the feeding network agree well with the
optimized values. The final design of the 4×4 microstrip array is displayed
in Figure 5.61. �
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Table 5.5 Optimized distribution of excitations

Port No. Excitation of port Port No. Excitation of port

1 0.25 ∠−46◦ 9 0.25 ∠−46◦
2 0.25 ∠−46◦ 10 0.25 ∠−46◦
3 0.25 ∠−46◦ 11 0.25 ∠−46◦
4 0.25 ∠−46◦ 12 0.25 ∠−46◦
5 0.25 ∠−46◦ 13 0.25 ∠−46◦
6 0.25 ∠−46◦ 14 0.25 ∠−46◦
7 0.25 ∠−46◦ 15 0.25 ∠−46◦
8 0.25 ∠−46◦ 16 0.25 ∠−46◦

Figure 5.62 Equally excited antenna array.

Example 5.10 (Phased array design): Consider the array configuration
shown in Figure 5.59(b) again and assume that the desired signal is in
(0◦, 0◦) direction. In order to beam the energy to the desired direction,
the test antenna is placed at (2.5 m, 0, 0), which is in the far-field region
of the antenna array. The optimized excitation distribution is listed in
Table 5.5 and uniform distributions for both amplitude and phase have
been obtained, which agrees with our common understanding. The antenna
array implemented with the feeding network is displayed in Figure 5.62.

Reexamine the 4 × 4 microstrip array shown in Figure 5.59(b) and
assume that the desired signal is in (60◦, 90◦) direction. To direct the
energy to the desired direction, the test antenna is placed at (2 m, 60◦, 90◦).
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Table 5.6 Optimized distribution of excitations

Port No. Excitation of port Port No. Excitation of port

1 0.2 ∠83◦ 9 0.21 ∠90◦
2 0.25 ∠−61◦ 10 0.21 ∠−62◦
3 0.28 ∠147◦ 11 0.23 ∠148◦
4 0.3 ∠0◦ 12 0.28 ∠0◦
5 0.21 ∠91◦ 13 0.2 ∠82◦
6 0.21 ∠−61◦ 14 0.25 ∠−61◦
7 0.23 ∠148◦ 15 0.28 ∠147◦
8 0.28 ∠0◦ 16 0.3 ∠0◦

Figure 5.63 Simulated and measured radiation patterns on (y, z)-plane.

Table 5.6 gives the optimized distribution of excitations for the antenna
array, and Figure 5.63 shows the corresponding radiation pattern. Appar-
ently, the radiated energy is directed toward the desired direction. �

Example 5.11 (Multi-beam antenna design): A multi-beam antenna can
access multiple targets simultaneously, which is useful in many areas. The
satellite communication system and the space division multiple access
(SDMA) techniques all involve multi-beam antennas to either achieve
seamless connection or increase the capacity of the system. In order
to generate multiple beams, we may place the test antennas in the
desired directions. Let us reconsider the antenna array in Figure 5.59(b)
and assume that the desired signals are in the directions (20◦, 90◦),
(60◦, 90◦), (20◦, 270◦) and (60◦, 270◦) directions. Four test antennas may be
respectively placed at (2 m, 20◦, 90◦), (2 m, 60◦, 90◦), (2 m, 20◦, 270◦), and
(2 m, 60◦, 270◦). The optimized distribution of excitations for the antenna
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Table 5.7 Optimized distribution of excitations

Port No. Excitation of port Port No. Excitation of port

1 0.33 ∠179◦ 9 0.33 ∠175◦
2 0.13 ∠175◦ 10 0.13 ∠170◦
3 0.13 ∠−2◦ 11 0.13 ∠−8◦
4 0.33 ∠0◦ 12 0.33 ∠−0◦
5 0.33 ∠175◦ 13 0.33 ∠179◦
6 0.13 ∠169◦ 14 0.13 ∠175◦
7 0.13 ∠−8◦ 15 0.13 ∠−3◦
8 0.33 ∠−4◦ 16 0.33 ∠0◦

Figure 5.64 Simulated and measured radiation pattern on (y, z)-plane.

array is listed in Table 5.7. Figure 5.64 shows the corresponding radiation
pattern, which consists of four major beams directed toward the desired
directions. �

It is the theory which decides what we can observe.

—Albert Einstein
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Chapter 6

Propagation of Radio Waves

You make experiments and I make theories. Do you know the difference?

A theory is something nobody believes, except the person who made it.

An experiment is something everybody believes, except the person who

made it.

—Albert Einstein

When radio waves travel in free space, nothing is going to affect them.
The real environment is, however, not a free space and many factors may
change propagation properties of radio waves. The Earth’s atmosphere (tro-
posphere, stratosphere and ionosphere), the ground, mountains, buildings,
and weather conditions all have major influences on wave propagations.

A radio propagation model is a mathematical formulation for the
characterization of radio wave propagation as a function of frequency,
distance and other conditions. A single model is usually developed to predict
the behavior of propagation for all similar links under similar constraints,
typically the path loss along a link or the effective coverage area of a
transmitter.

When a wave strikes an obstacle it will be reflected, refracted and
diffracted. Reflection occurs when a wave is incident upon a flat surface
with large radii of curvature compared to the wavelength, and the amount of
the reflection depends on the properties of the obstacle. The phenomenon
of reflection obeys Snell’s law and can be characterized by the coefficient
of reflection, which is defined as the ratio of the reflected wave to the
incident wave. Refraction of waves involves a change in the direction of
the wave as it passes into the obstacle. Refraction, or bending of path of the
waves, is accompanied by a change in speed and wavelength of the wave.
The phenomenon of refraction obeys Snell’s law and may be characterized
by the coefficient of refraction, which is defined as the ratio of the

421
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transmitted wave into the obstacle to the incident wave. The coefficients
of reflection and refraction are functions of the medium properties, wave
polarization, the angle of incidence and the wave frequency. Diffraction
means the ability of the radio wave to turn sharp corners and bend around
the obstacle, which is the result of Huygens’ principle. Low frequency radio
wave whose wavelength is longer than the maximum size of an obstacle can
be easily propagated around the obstruction. When frequency increases
the obstacle causes more and more attenuation and a shadow zone (an area
where the electromagnetic fields are very weak) on the opposite side of the
incidence develops. When a wave impinges upon an obstacle of small dimen-
sions compared to the wavelength, it will be reflected in various directions.
This phenomenon is referred to as scattering. The electromagnetic wave
can also be guided by certain environments such as tunnels and corridors.

The most troublesome and frustrating problem in receiving radio
signals is variation in signal strength, known as fading. Several conditions
can produce fading, which include the change of polarization of the wave,
absorption of the electromagnetic energy in the environment, e.g., by iono-
sphere and multipath that a radio wave may follow between the transmitter
and receiver. Fading may be roughly classified into two categories: large-
scale and small-scale fading. Large-scale fading, also called slow fading, is
based on the observation made over long separation distances between the
transmitter and receiver (from several hundreds to thousands of meters) and
is attributed to shadowing and diffraction. The effects of diffraction paths
to the path loss are multiplicative and become additive if expressed in dB.
From the central limit theorem, a Gaussian random variable can be used to
represent the pass-loss if the number of diffraction paths to the receiver
is sufficiently large. As a result, the large-scale fading obeys a normal
distribution in dB, called log-normal distribution, and is modeled as a
log-normal random variable. Understanding large-scale fading is important
to cell-site planning. Small-scale fading is based on the observation made
over short travel distances between the transmitter and receiver (a few
wavelengths) and is due to multipath. The level of received signal is the
vector sum of all individual signals and they may add constructively or
destructively. If the receiver is moving over a distance in the order of a
wavelength or more, the received signal strength will fluctuate rapidly. In
practice, the number of paths between a transmitter and receiver may be
very large. According to the central limit theorem, both the in-phase and
quadrature components of the received signal can be treated as a Gaussian
random variable, which yields a Rayleigh (or Rician) density function for
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Figure 6.1 Fading over multiple distance-scales.

the amplitude and a uniform probability density function for the phase.
If there is no direct path (i.e., line-of-sight) between the transmitter and
receiver the fading envelope has a Rayleigh distribution and is typified by
an urban or in-building environment. If there is a relatively strong direct
component of signal the fades will be less deep and the fading envelope
has a Rician distribution. This type of fading is likely to occur in rural
environments. Understanding small-scale multipath fading is important to
the design of reliable communication systems. The typical overall effect
on the signal strength for a mobile receiver is illustrated in Figure 6.1. It
is shown that the small-scale fading is superimposed on the local mean
signal level. The mean signal level varies very slowly and has a log-normal
distribution, which corresponds to the large-scale fading.

6.1 Earth’s Atmosphere

The atmosphere of Earth, usually called air, is a layer of gases surrounding
the Earth that is retained by Earth’s gravity and has a mass of about
5×1018 kg. The atmosphere protects life on Earth by absorbing ultraviolet
solar radiation, warming the surface through heat retention, and reducing
temperature extremes between day and night.

6.1.1 Structure of Atmosphere

There is no distinct boundary between the atmosphere and outer space. The
Kármán line, named after the Hungarian-American engineer and physicist
Theodore von Kármán, (1881–1963), at 100km above the Earth’s surface,
is often used as the boundary between the atmosphere and outer space.
Figure 6.2 shows the different atmosphere layers and the variations of
physical parameters of the atmosphere with the altitude. The troposphere
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Figure 6.2 Principal layers of atmosphere.

begins at the Earth’s surface and extends to between 9 km at the poles and
17 km at the equator. The troposphere contains roughly 80% of the mass
of the atmosphere and 99% of its water vapor and aerosols (aerosols are
extremely fine particles suspended in the atmosphere, either in the form
of liquid or solid). The stratosphere extends from about 12km to 50 km,
where the horizontal mixing of gaseous components proceeds much more
rapidly than in vertical mixing. The ozone layer is contained in the lower
portion of the stratosphere from approximately 20 to 30 km, which contains
relatively high concentrations of ozone (O3) and absorbs most of the Sun’s
ultraviolet (UV) radiation. The mesosphere extends from about 50 km to
about 80–85km. It is the layer where most meteors burn up upon entering
the atmosphere. The thermosphere extends from about 80 km to about
350–800km. Within this layer, UV causes ionization, and temperatures
highly depend on solar activity and can rise to 2,000◦C. The outermost
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layer of Earth’s atmosphere is exosphere, which extends from about 500–
1000km to about 100,000km and is usually considered a part of outer space.
The exosphere is a transitional zone where the atmosphere thins out and
merges with interplanetary space and no longer behaves like a gas. It mainly
composed of hydrogen and helium with some nitrogen, carbon dioxide, and
atomic oxygen near its base.

The ionosphere is a region of the upper atmosphere, which extends
from about 60 km to 600km, and includes the thermosphere and parts of
the mesosphere and exosphere. In this region, radiation from the Sun causes
the atmosphere particles to become electrically charged (photoelectric
effect). Based on what wavelength of solar radiation is absorbed most
frequently, the ionosphere can further be divided into three sublayers, the
D, E and F layers. The D layer is the lowest in altitude, which extends
approximately from 75 km to 95 km. In this region, ionization causes the
absorption of the most energetic radiation and high frequency (HF) radio
waves. The E layer extends approximately from 95 km to 150km, and
absorbs soft X-rays. The F layer starts around 150 km and ends at 600km
approximately. Extreme UV radiation is absorbed in this layer. Different
layers of the ionosphere make long distance radio communication (beyond
the horizon) possible by reflecting the radio waves back to Earth. The D and
E layers reflect AM radio waves back to Earth. Radio waves with shorter
wavelengths are reflected by the F region. Visible light, television and FM
wavelengths are all too short to be reflected by the ionosphere.

The constituents of the atmosphere are shown in Table 6.1. By volume,
dry air contains 78.09% nitrogen, 20.95% oxygen, 0.93% argon, 0.03%
carbon dioxide, and small amounts of other gases. Air also contains a
variable amount of water vapor, on average around 1%. The air constituents
suitable for the survival of plants and animals only exist in Earth’s
troposphere and artificial atmospheres.

The Earth’s atmosphere is characterized by a number of parameters
such as pressure, temperature, humidity, the direction and speed of the
winds, precipitations, evaporation, radiation, sunshine duration, horizontal
visibility, electronic density, etc.

6.1.2 Weather Phenomena

Weather is the state of the atmosphere, which is driven by the differences of
air pressure, temperature and moisture. Weather generally refers to day-to-
day temperature and precipitation activity and is influenced by a number
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Table 6.1 Constituents of the dry atmosphere by volume

Gas Symbol Content

Nitrogen N2 78.084%
Oxygen O2 20.947%
Argon Ar 0.934%
Carbon dioxide CO2 0.033%
Neon Ne 18.20 parts per million
Helium He 5.20 parts per million
Methane CH4 2.00 parts per million
Krypton Kr 1.10 parts per million
Sulfur dioxide SO2 1.00 parts per million
Hydrogen H2 0.50 parts per million
Nitrous oxide N2O 0.50 parts per million
Xenon Xe 0.09 parts per million
Ozone O3 0.07 parts per million
Nitrogen dioxide NO2 0.02 parts per million
Iodine I2 0.01 parts per million
Carbon monoxide CO trace
Ammonia NH3 trace

of factors including the seasons, the altitude, the latitude, and the Earth’s
magnetic field. Most weather phenomena occur in the troposphere and are
summarized below:

Solar radiation: Solar radiation is the electromagnetic fields emitted by
the Sun, which increases the temperature at the surface of the Earth, and
is expressed in W/m2.

Evaporation: Evaporation is a phase transition from the liquid phase to
gas phase that occurs at temperatures below the boiling temperature at
a given pressure. Evaporation usually occurs on the surface. The energy
necessary for the evaporation of water causes a decrease in the temperature.

Condensation: Condensation is the change of the physical state of matter
from gaseous phase into liquid phase. Cloud condensation nuclei are small
particles typically 0.2µm, on which water vapor condenses to form cloud
droplets. Condensation nuclei include sea salt crystals, mineral particles
(such as dust, sand and smoke), and charged particles.

Freezing and melting: Freezing or solidification is a phase transition
from the liquid phase into solid phase when the temperature of the liquid
is lowered below its freezing point. At temperatures lower than 0◦C, water
is solidified into snow or ice. Melting is the reverse process.
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Supercooling: Supercooling or undercooling is a process of lowering the
temperature of a liquid or a gas below its freezing point without becoming
a solid. Water droplets in the atmosphere often remain in liquid state at
temperatures significantly lower than 0◦C.

Reverse sublimation: Sublimation is a phase transition directly from
the solid into the gas phase without passing through an intermediate liquid
phase. Reverse sublimation refers to the process that a gas turns into a
solid without becoming liquid. Frost and snow are formed this way.

Wind: Wind is the horizontal movement of air caused by differences in
atmospheric pressure over the Earth’s surface.

Turbulence: Turbulence is an irregular motion of the air resulting from
the formation of vertical currents. Turbulence may exist in the atmosphere
in the form of whirlwinds with variable dimensions.

Advection: Advection refers to the transport mechanism of a substance
by a fluid due to the fluid’s bulk motion. This process allows humidity
and water transfers between the air and the ground or the sea surface,
thereby modifying the structure and composition of the lower layers of the
atmosphere.

Subsidence: Subsidence is the downward vertical motion of air due to the
low temperatures. As air cools, it becomes denser and moves toward the
ground.

Meteors: A meteor is the visible streak of light from a meteoroid or
micrometeoroid, heated and glowing from entering the Earth’s atmosphere.
Millions of meteors occur in the Earth’s atmosphere daily.

Fog and Mist: Fog is a collection of liquid water droplets or ice crystals
suspended in the air at or near the Earth’s surface. Fog is distinguished from
mist only by its density: Fog reduces visibility to less than 1 km, whereas
mist reduces visibility to no less than 1 km.

Precipitations: As condensation intensifies, the diameter of the droplets
increases. When their fall speed increases, precipitation occurs either in the
form of drizzle or rain, depending on the dimensions of the droplets.

Clouds: A cloud is a visible mass of liquid droplets or frozen crystals
made of water or various chemicals suspended in the atmosphere above
the Earth’s surface formed by the condensation of the water vapor in the
atmosphere.
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Auroras: An aurora is a natural light display in the sky particularly in
the high latitude (Arctic and Antarctic) regions, caused by the collision
of energetic charged particles with atoms in the high altitude atmosphere
(thermosphere).

Electromagnetic fields may have significant influence on atmospheric pres-
sure, precipitation and temperature. All wireless communications systems
give off electromagnetic radiations and thus have an effect on the weather
systems. On the other hand, meteorological phenomena have great impact
on microwave propagation. For example, water in any state (liquid, solid or
gas) is an obstacle to electromagnetic wave, which will absorb and scatter
its energy. As a result, the electromagnetic wave is attenuated. Accurate
prediction of losses due to various meteorological phenomena and other
factors is important to the design of the radio systems.

6.2 Wave Propagation in Atmosphere

The types of wave propagation in atmosphere largely depend on the
frequency. Waves propagating in the ionosphere and close to the Earth’s
surface are respectively called ionospheric waves (or sky waves) and ground
waves (or surface waves). The ionosphere contains charged particles and
behaves like a conductor. The ionospheric waves strike the ionosphere at
an angle θ, get refracted back to the ground from the ionosphere, strike
the ground, and are then reflected back toward ionosphere, and so on. The
boundary of the ionosphere and the Earth’s ground forms a waveguide
(Figure 6.3). The effects of the ionosphere depend on ion density, the
frequency of the radio wave, and the transmission angle θ. Extremely low
frequency (ELF, <3 kHz) and very low frequency (VLF, 3–30kHz) signals

Ionosphere 

Earth’s ground 

xRxT
θ

Figure 6.3 Earth–ionosphere waveguide.
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Earth’s ground 

Tx Rx 

Direct wave 

Reflected wave 

Figure 6.4 Direct wave and ground-reflected wave.

propagate efficiently in this waveguide. The effective height of the waveguide
varies around the surface of the Earth due to the diurnal variations of the
height of the ionospheric D-layer.

Low frequency (LF, 30–300kHz) and medium frequency (MF, 300 kHz–
3 MHz) signals can travel either as a ground wave or as an ionospheric wave
but the former is the dominant mode. HF (3–30MHz) signals often travel
as an ionospheric wave but ground wave propagation is also possible in the
HF band.

Very high frequency (VHF, 30–300MHz) and ultra-high frequency
(UHF, 300MHz–3GHz) signals only propagate as a ground wave, either
via a direct wave path (line-of-sight transmission) or a reflected wave
path (the wave strikes the Earth and then bounces off), as illustrated in
Figure 6.4.

In the super high frequency (SHF) and extremely high frequency (EHF)
band, propagation paths must include the line-of-sight path.

6.2.1 Propagation of Radio Waves over the Earth

The wave propagation is modified by the presence of the Earth and the
atmosphere. The modification highly depends on the frequency of the wave,
the directionality of the antenna as well as the proximity of the antenna
close to the ground.

6.2.1.1 A General Approach

The determination of the characteristics of wave propagation over the
Earth is important to the design of wireless communication systems.
As a simplified model, the Earth surface is assumed to be a plane at
z = 0. The Earth and the atmosphere are assumed to be homogeneous,
respectively with medium parameters µ1, ε1, σ1 and µ2, ε2, σ2, as illustrated
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Figure 6.5 Wave propagation in homogeneous atmosphere.

in Figure 6.5. In a homogeneous medium, the electromagnetic fields can be
expressed in terms of two scalar functions. In this case, we may choose
the two scalar functions as the z-components of electric Hertz vector and
magnetic Hertz vector

Πe = Πeuz, Πm = Πmuz.

The electromagnetic fields can be expressed as

E = ∇×∇× Πe − jωµ∇× Πm

= ux

(
∂2Πe

∂x∂z
− jωµ

∂Πm

∂y

)
+ uy

(
∂2Πe
∂y∂z

+ jωµ
∂Πm

∂x

)

+uz

(
∂2Πe
∂z2

+ ω2µε̃Πe

)
,

H = ∇×∇× Πm + jωε̃∇× Πe

= ux

(
∂2Πm

∂x∂z
+ jωε̃

∂Πe

∂y

)
+ uy

(
∂2Πm
∂y∂z

− jωε̃
∂Πe

∂x

)

+uz

(
∂2Πm
∂z2

+ ω2µε̃Πm

)
,

where ε̃ = ε + σ/jω denotes the complex permittivity. Assume that the
incident source J is located in Region 1, which produces an incident field,
denoted by Πe0,Πm0, when the medium in Region 1 occupies the whole
space. The incident field induces a reflected field in Region 1, denoted by
Πe1,Πm1, and a transmitted field in Region 2, denoted by Πe2,Πm2. The
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tangential fields must be continuous at the interface z = 0, which leads to(
∂2

∂x2
+

∂2

∂y2

)
∂Πe0
∂z

+
(
∂2

∂x2
+

∂2

∂y2

)
∂Πe1
∂z

=
(
∂2

∂x2
+

∂2

∂y2

)
∂Πe2
∂z

,

(
∂2

∂x2
+

∂2

∂y2

)
∂Πm0

∂z
+
(
∂2

∂x2
+

∂2

∂y2

)
∂Πm1

∂z
=
(
∂2

∂x2
+

∂2

∂y2

)
∂Πm2

∂z
,

(
∂2

∂x2
+

∂2

∂y2

)
µ1(Πm0 + Πm1) =

(
∂2

∂x2
+

∂2

∂y2

)
µ2Πm2,

(
∂2

∂x2
+

∂2

∂y2

)
ε̃1(Πe0 + Πe1) =

(
∂2

∂x2
+

∂2

∂y2

)
ε̃2Πe2.

These relations can be satisfied by requiring

µ1(Πm0 + Πm1) = µ2Πm2,

ε̃1(Πe0 + Πe1) = ε̃2Πe2,

∂Πe0

∂z
+
∂Πe1
∂z

=
∂Πe2

∂z
, (6.1)

∂Πm0

∂z
+
∂Πm1

∂z
=
∂Πm2

∂z
.

The potential functions Πe and Πm satisfy the Helmholtz equation

(∇2 + k2)Πe,m = 0, (6.2)

where k = ω
√
µε̃. The solution of the above equation can be found by using

the Fourier transform. Define the Fourier transform and the inverse Fourier
transform respectively as follows:

Π̃(ξ1, ξ2, z) =

∞∫
−∞

∞∫
−∞

Π(x, y, z)e−j(ξ1x+ξ2y)dx dy,

Π(x, y, z) =
1

4π2

∞∫
−∞

∞∫
−∞

Π̃(ξ1, ξ2, z)ej(ξ1x+ξ2y)dξ1 dξ2.

(6.3)

Then we have

d2

dz2

(
Π̃e1

Π̃m1

)
+ β2

1

(
Π̃e1

Π̃m1

)
= 0,

d2

dz2

(
Π̃e2

Π̃m2

)
+ β2

2

(
Π̃e2

Π̃m2

)
= 0,

(6.4)
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where

β2
1 = k2

1 − ξ21 − ξ22 , β2
2 = k2

2 − ξ21 − ξ22 ,

k2
1 = ω2µ1ε̃1, k2

2 = ω2µ2ε̃2,

ε̃1 = ε1 + σ1/jω, ε̃2 = ε2 + σ2/jω.

According to the behavior of the fields at infinity, the solutions of (6.4) can
be written as

Π̃e1 = Ae−jβ1z, Π̃m1 = Be−jβ1z ,

Π̃e2 = Cejβ2z, Π̃m2 = Dejβ2z ,
(6.5)

where A,B,C,D are constants to be determined by the boundary condi-
tions. Taking the Fourier transform of (6.1) gives

µ1(Π̃m0 + Π̃m1) = µ2Π̃m2,

ε̃1(Π̃e0 + Π̃e1) = ε̃2Π̃e2,

∂Π̃e0

∂z
+
∂Π̃e1

∂z
=
∂Π̃e2
∂z

,

∂Π̃m0

∂z
+
∂Π̃m1

∂z
=
∂Π̃m2

∂z
.

(6.6)

Introducing (6.5) into (6.6) yields

µ1

[
Π̃m0(0) +B

]
= µ2D,

ε̃1
[
Π̃e0(0) +A

]
= ε̃2C,

Π̃′
e0(0) − jβ1A = jβ2C,

Π̃′
m0(0) − jβ1B = jβ2D,

(6.7)

where

Π̃e0(0) = Π̃e0

∣∣
z=0

, Π̃m0(0) = Π̃m0

∣∣
z=0

,

Π̃′
e0(0) =

∂Π̃e0

∂z

∣∣∣∣∣
z=0

, Π̃′
m0(0) =

∂Π̃m0

∂z

∣∣∣∣∣
z=0

.
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It follows from (6.7) that

A = − jε̃2Π̃
′
e0(0) + β2ε̃1Π̃e0(0)
β2ε̃1 + β1ε̃2

,

B = − jµ2Π̃′
m0(0) + β2µ1Π̃m0(0)
β2µ1 + β1µ2

,

C =
−jε̃1Π̃′

e0(0) + β1ε̃1Π̃e0(0)
β2ε̃1 + β1ε̃2

,

D =
−jµ1Π̃′

m0(0) + β1µ1Π̃m0(0)
β2µ1 + β1µ2

.

(6.8)

The potential functions can then be determined by

Πe1(x, y, z) =
1

4π2

∞∫
−∞

ejξ1xdξ1

∞∫
−∞

Ae−jβ1z+jξ2ydξ2,

Πm1(x, y, z) =
1

4π2

∞∫
−∞

ejξ1xdξ1

∞∫
−∞

Be−jβ1z+jξ2ydξ2,

Πe2(x, y, z) =
1

4π2

∞∫
−∞

ejξ1xdξ1

∞∫
−∞

Cejβ2z+jξ2ydξ2,

Πm2(x, y, z) =
1

4π2

∞∫
−∞

ejξ1xdξ1

∞∫
−∞

Dejβ2z+jξ2ydξ2.

(6.9)

The above formulae are applicable to any incident field. Various techniques
can be introduced to find the approximate solutions of (6.9) (Jones, 1964).

6.2.1.2 Vertical Current Element over the Earth

As a special case, we now consider the radiation of a dipole over the
earth. This problem has been investigated by a number of authors (e.g.,
Sommerfeld, 1949; Norton, 1936; 1937). We assume that the earth is
characterized by a complex dielectric constant ε̃ = ε̃rε0 with ε̃r = εr−j σ

ωε0
.

A z-directed current element of strength Il is placed at a height h above
the surface of the earth, as illustrated in Figure 6.6, and is represented by

J(r) = uzJ = uzIlδ(x)δ(y)δ(z − h). (6.10)
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Figure 6.6 A vertical current above a flat earth.

The electric Hertz potential Πe0 in free space satisfies

(∇2 + k2
0)Πe0 = −η0Il

jk0
δ(x)δ(y)δ(z − h), (6.11)

where k2
0 = ω2µ0ε0, η0 =

√
µ0/ε0.

Applying the Fourier transform (6.3) to (6.11) yields

d2

dz2
Π̃e0 + β2

1Π̃e0 = −η0Il
jk0

δ(z − h), (6.12)

where β2
1 = k2

0 − ξ21 − ξ22 . The solution of the above equation is given by
(see Chapter 1)

Π̃e0(z) =
η0Il

jk0

1
j2β1

e−jβ1|z−h|. (6.13)

The inverse Fourier transform is

Πe0(x, y, z) =
η0Il

jk0

e−jk0R1

4πR1
, (6.14)

where R1 =
√
x2 + y2 + (z − h)2 denote the distance between the dipole

and the observation point. Equations (6.13) and (6.14) imply

e−jk0R1

4πR1
=

1
4π2

∞∫
−∞

ejξ1xdξ1

∞∫
−∞

1
j2β1

e−jβ1|z−h|ejξ2ydξ2. (6.15)
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It follows from (6.13) that

Π̃e0(0) =
1
jβ1

1
2
η0Il

jk0
e−jβ1h, Π̃′

e0(0) =
1
2
η0Il

jk0
e−jβ1h. (6.16)

The constants A and C in (6.8) can be determined as follows

A =
1

j2β1

β1ε̃− β2ε0
β1ε̃+ β2ε0

η0Il

jk0
e−jβ1h,

C =
−jε0

β2ε0 + β1ε̃

η0Il

jk0
e−jβ1h.

The reflected and transmitted fields Πe1 and Πe2 in (6.9) can be written as

Πe1(x, y, z) =
η0Il

jk0

1
4π2

∞∫
−∞

ejξ1xdξ1

∞∫
−∞

1
j2β1

β1ε̃− β2ε0
β1ε̃+ β2ε0

e−jβ1(z+h)+jξ2ydξ2,

(6.17)

Πe2(x, y, z) =
η0Il

jk0

1
4π2

∞∫
−∞

ejξ1xdξ1

∞∫
−∞

−jε0
β2ε0 + β1ε̃

ejβ2z−jβ1h+jξ2ydξ2.

(6.18)

By use of (6.15), (6.17) may be written as

Πe1(x, y, z) = −η0Il

jk0

1
4π2

∞∫
−∞

ejξ1xdξ1

×
∞∫

−∞

1
j2β1

β2ε0 + β1ε̃− 2β1ε̃

β1ε̃+ β2ε0
e−jβ1(z+h)+jξ2ydξ2

= −η0Il
jk0

e−jk0R2

4πR2
+
η0Il

jk0

ε̃

j4π2

∞∫
−∞

∞∫
−∞

ejΦ

β1ε̃+ β2ε0
dξ1 dξ2,

(6.19)

where R2 =
√
x2 + y2 + (z + h)2 is the distance between the image point

and the observation point and Φ = ξ1x+ ξ2y−β1(z+h). The first term on
the right-hand side of (6.19) represents the contribution from the image of
the dipole.
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Remark 6.1: Introducing the coordinate transformations{
ξ1 = τ cosψ
ξ2 = τ sinψ

,

{
x = ρ cosϕ
y = ρ sinϕ

,

we have

β1 =
√
k2
0 − τ2, β2 =

√
k2
2 − τ2, ξ1x+ ξ2y = τρ cos(ψ − ϕ).

On account of the relation
∫ 2π

0
ejτρ cos(ψ−ϕ)dψ = 2πJ0(τρ), (6.19) becomes

Πe1(x, y, z) = −η0Il
jk0

e−jk0R2

4πR2
+
η0Il

jk0

ε̃

j2π

∞∫
0

e−jβ1(z+h)

β1ε̃+ β2ε0
J0(τρ)τ dτ . �

In the spherical coordinate system (R2, θ, ϕ) with image of the dipole as
origin (Figure 6.6), we have

x = R2 sin θ cosϕ, y = R2 sin θ sinϕ, z + h = R2 cos θ.

Hence

Φ = R2(ξ1 sin θ cosϕ+ ξ2 sin θ sinϕ− β1 cos θ).

The integral in (6.19) can be evaluated by the method of stationary phase
(e.g., Jones, 1964). The stationary point can be determined by requiring

∂Φ
∂ξ1

=
∂Φ
∂ξ2

= 0,

and is found to be

ξ1s = −k0 sin θ cosϕ, ξ2s = −k0 sin θ sinϕ.

In the neighborhood of the stationary point, we may let

ξ1 = ξ1s + u, ξ2 = ξ2s + v.

Then
1
R2

Φ(u, v) = (ξ1s + u) sin θ cosϕ+ (ξ2s + v) sin θ sinϕ

−
√
k2
0 − (ξ1s + u)2 − (ξ2s + v)2 cos θ,

with
1
R2

Φ(0, 0) = −k0,

1
R2

∂Φ2(0, 0)
∂u2

=
1 − sin2 θ sin2 ϕ

k0 cos2 θ
,
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1
R2

∂Φ2(0, 0)
∂v2

=
1 − sin2 θ cos2 ϕ

k0 cos2 θ
,

1
R2

∂Φ2(0, 0)
∂u∂v

=
sin2 θ sinϕ cosϕ

k0 cos2 θ
.

Using Taylor’s formula, we have the following approximation

Φ(u, v) ≈ Φ(0, 0) +
1
2
∂Φ2(0, 0)
∂u2

u2 +
1
2
∂Φ2(0, 0)
∂v2

v2 +
∂Φ2(0, 0)
∂u∂v

uv

= −k0R2 +
R2

2k0 cos2 θ
[
u2(1 − sin2 θ sin2 ϕ) + v2(1 − sin2 θ cos2 ϕ)

+ 2uv sin2 θ sinϕ cosϕ
]
.

Introducing the rotation of coordinates{
u = u1 cosϕ− v1 sinϕ
v = u1 sinϕ+ v1 cosϕ

,

we obtain

Φ(u1, v1) = −k0R2 +
R2

2k0 cos2 θ
(
u2

1 + v2
1 cos2 θ

)
.

Substituting this into (6.19) yields

Πe1(x, y, z) = −η0Il
jk0

e−jk0R2

4πR2
+
η0Il

jk0

1
j4π2

ε̃

β1ε̃+ β2ε0

×
∞∫

−∞

∞∫
−∞

exp
[
jR2

(
−k0 +

u2
1 + v2

1 cos2 θ
2k0 cos2 θ

)]
du1dv1, (6.20)

where β1 and β2 are assumed to take the values at the stationary point

β1 =
√
k2
0 − ξ21s − ξ22s = k0 cos θ,

β2 = k2
2 − ξ21s − ξ22s = k0

√
ε̃r − sin2 θ.

Making use of the relation
∫∞
−∞ ejax

2
dx =

√
π
a e
jπ/4, we may find that

∞∫
−∞

∞∫
−∞

exp
(
jR2

u2
1 + v2

1 cos2 θ
2k0 cos2 θ

)
du1dv1 = j

2πk0 cos θ
R2

.
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Thus (6.20) can be rewritten as

Πe1(x, y, z) = −η0Il

jk0

e−jk0R2

4πR2
+
η0Il

jk0

e−jk0R2

2πR2

ε̃k0 cos θ
β1ε̃+ β2ε0

=
η0Il

jk0
Γv
e−jk0R2

4πR2
, (6.21)

where

Γv =
ε̃r cos θ −

√
ε̃r − sin2 θ

ε̃r cos θ +
√
ε̃r − sin2 θ

is the Fresnel reflection coefficient for a plane wave incident at the angle θ
when the electric field is in the plane of incidence.

6.2.1.3 Two-Ray Propagation Model

In a spherical coordinate system (r, θ, ϕ), the far fields produced by a
transmitting antenna in a homogeneous medium with medium parameters
µ and ε can be expressed as

E(r) =
e−jkr

r
E∞(ur), H(r) =

e−jkr

r
H∞(ur), (6.22)

where ur is the unit vector along the radial direction; k = ω
√
µε; E∞

and H∞ are the electric far-field pattern and magnetic far-field pattern
respectively. The Poynting vector in the far-field region may be written as

S(r) =
1
2η

|E∞(ur)|2
r2

ur, (6.23)

where η =
√
µ/ε. The total radiated power from the transmitting antenna

is then given by the integration of the Poynting vector over a sphere S of
radius r

Prad =

2π∫
0

π∫
0

S(r) · urr2 sin θ dθ dϕ =
1
2η

2π∫
0

π∫
0

|E∞(ur)|2 sin θ dθ dϕ.

(6.24)

The directivity of the transmitting antenna can be expressed by

D(θ, ϕ) = 4π
r2

2η
|E(r)|2
Prad

= 4π
|E∞(ur)|2

2π∫
0

π∫
0

|E∞(ur)|2 sin θ dθ dϕ
. (6.25)
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We may introduce the normalized far-field pattern, defined as the
ratio of E∞(ur) to the magnitude of E∞(ur) in the direction of maximum
transmission

Ê∞(ur) =
E∞(ur)

max
ur

|E∞(ur)| . (6.26)

The directivity can then be rewritten as

D(θ, ϕ) = 4π
|Ê∞(ur)|2

2π∫
0

π∫
0

|Ê∞(ur)|2 sin θ dθ dϕ
. (6.27)

The directivity in the direction of maximum radiation is then given by

D0 =
4π

2π∫
0

π∫
0

|Ê∞(ur)|2 sin θ dθ dϕ
. (6.28)

It follows from (6.24), (6.26) and (6.28) that

max
ur

|E∞(ur)| =

√
ηPradD0

2π
. (6.29)

Therefore, we may write

E(r) =

√
ηPradD0

2π
e−jkr

r
Ê∞(ur), (6.30)

S(r) =
PradD0

4πr2
|Ê∞(ur)|2ur, (6.31)

D(θ, ϕ) = D0|Ê∞(ur)|2. (6.32)

We will use the subscripts t and r to denote the quantities related to the
transmitting and receiving antenna respectively. The received power Prec

by a distant receiving antenna at r = (R, θt, ϕt) can be expressed by (see
Figure 6.7)

Prec = |St(R, θt, ϕt)|Ae(θr, ϕr), (6.33)

where Ae is the equivalent area of the receiving antenna. If the receiving
antenna is conjugately matched and there is no polarization loss, the
equivalent area is given by

Ae(θr, ϕr) =
λ2

4π
Dr(θr, ϕr).
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Figure 6.7 Wave propagation in free space.

Thus, we have

Prec = |S(R, θt, ϕt)|λ
2

4π
Dr(θr, ϕr).

Making use of (6.31) and (6.32), we obtain the fundamental equation for
power transmission between two antennas in free space

Prec

Prad
=
(

λ

4πR

)2

Dt0Dr0|Êt∞(θt, ϕt)|2|Êr∞(θr, ϕr)|2. (6.34)

The above equation is the well-known Friis free-space propagation model,
and has been derived in Chapter 5. It indicates that the received power
falls off as the square of the separation distance between the transmitter
and receiver (or decays with separation distance at a rate of 20 dB/decade).
The path loss for free-space propagation model, denoted as PL, is defined
as the signal attenuation measured in dB

PL(dB) = −10 log
Prec

Prad
= −10 log

[(
λ

4πR

)2

DtDr

]
. (6.35)

The minus sign ensures that the path loss is a positive quantity.
The free-space propagation model (6.34) only contains a single direct

path between the transmitting antenna and receiving antenna, and there-
fore is inaccurate for most applications related to the wave propagation
near the surface of the Earth. The presence of the Earth complicates the
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Figure 6.8 Two-ray ground reflection model.

situation in a number of ways. A two-ray ground reflection model based on
geometric optics is illustrated in Figure 6.8, where a transmitting antenna
and a receiving antenna are situated above a flat ground (earth) at height
ht and hr respectively with separation d. This model is found useful in
predicting the large-scale signal strength. The fields emanated from the
transmitting antenna take a direct path of length R1 and an indirect or
reflected path of length R2. Depending on the phase difference between the
two paths, the two rays sum at the receiving antenna and may produce
either constructive or destructive interference.

The radiating field at the receiving antenna along the direct path can
be written as

Etd(R1, θt1, ϕt1) =

√
ηPradDt0

2π
e−jkR1

R1
Êt∞(θt1, ϕt1).

If the antenna heights are small compared with the separation d, the
angles θt1, θt2, θr1 and θr2 are very small. In this case, we can use
the approximations Êt∞(θt1, ϕt1) = Êt∞(θt2, ϕt1). The radiating field at
the receiving antenna along the indirect path can be approximated by

Etr(R2, θt1, ϕt1) = Γ

√
ηPradDt0

2π
e−jkR2

R2
Êt∞(θt1, ϕt1),
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where Γ is the reflection coefficient at the ground. The total field at the
receiving antenna is then given by

Et(R1, θt1, ϕt1) = Etd(R1, θt1, ϕt1) + Etr(R2, θt1, ϕt1)

=

√
ηPradDt0

2π
e−jkR1

R1
Êt∞(θt1, ϕt1)

[
1 +

R1

R2
Γe−jk(R2−R1)

]

≈ Etd(R1, θt1, ϕt1)
[
1 + Γe−jk(R2−R1)

]
, (6.36)

where we have made the approximation R1/R2 ≈ 1. According to (6.32)
and (6.33), the power received by the receiving antenna is

Prec =
R2

1

2η
|Et(R1, θt1, ϕt1)|2 λ

2

4π
Dr0

∣∣Êr∞(θr1, ϕr1)
∣∣2

= PradDt0Dr0

(
λ

4π

)2 ∣∣Êt∞(θt1, ϕt1)
∣∣2

×∣∣Êr∞(θr1, ϕr1)
∣∣2∣∣1 + Γe−jk(R2−R1)

∣∣2. (6.37)

Note that

R1 =
√
d2 + (hr − ht)2 ≈ d+

1
2d

(hr − ht)2,

R2 =
√
d2 + (hr + ht)2 ≈ d+

1
2d

(hr + ht)2.

Thus, we have R2 −R1 ≈ 2hthr

d
and (6.37) can be approximated by

Prec

Prad
=
(
λ

4π

)2

Dt0Dr0
∣∣Êt∞(θt1, ϕt1)

∣∣2∣∣Êr∞(θr1, ϕr1)
∣∣2

×
∣∣∣∣1 + Γ exp

(
−jk 2hthr

d

)∣∣∣∣
2

. (6.38)

The above formula represents the loss due to the plane earth and is valid
for long distances.
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6.2.2 Wave Propagation in Atmosphere:
Ray-Tracing Method

In studying the atmospheric refraction, it is necessary to assume that the
properties of the atmosphere are inhomogeneous and vary with the height,
which is called stratified atmosphere. The time-harmonic Maxwell
equations in an isotropic inhomogeneous medium take the form

∇× H(r) = jωε(r)E(r),

∇× E(r) = −jωµ(r)H(r), (6.39)

∇ · [ε(r)E(r)] = 0, ∇ · [ε(r)H(r)] = 0.

The refractive index n of the medium is defined by n =
√
µε/µ0ε0,

where µ0 and ε0 are the permeability and permittivity in free space. The
wavenumber in free space will be denoted by k0 = ω

√
µ0ε0. We assume

that

E = E0(r)e−jk0L(r), H = H0(r)e−jk0L(r). (6.40)

The function L(r) is known as eikonal. The wavefronts are defined as the
surfaces of constant phase: L(r) = const. Substituting (6.40) into (6.39),
we obtain

H0(r) ×∇L(r) − ωε(r)
k0

E0(r) = j
1
k0

∇× H0(r),

E0(r) ×∇L(r) +
ωµ(r)
k0

H0(r) = j
1
k0

∇× E0(r),

E0(r) · ∇L(r) =
1
jk0

[E0(r) · ∇ ln ε(r) + ∇ ·E0(r)],

H0(r) · ∇L(r) =
1
jk0

[H0(r) · ∇ lnµ(r) + ∇ · H0(r)].

(6.41)

If the frequency is very high, k0 becomes very large and the right-hand side
of (6.41) can be equated to zero. There results

H0(r) ×∇L(r) − ωε(r)
k0

E0(r) = 0,

E0(r) ×∇L(r) +
ωµ(r)
k0

H0(r) = 0,
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E0(r) · ∇L(r) = 0,

H0(r) · ∇L(r) = 0.

(6.42)

The last two equations show that E0 and H0 are transverse to ∇L, i.e.,
transverse to the direction of propagation of the wavefront. From the first
two equations of (6.42), it is easy to see that E0 ·H0 = 0. Therefore, the field
is locally a plane wave. If H0(r) is eliminated from the first two equations
of (6.42), then

n2(r)E0(r) + [∇L(r) · E0(r)]∇L(r) − [∇L(r)]2E0(r) = 0.

The second term is zero due to the third equation of (6.42). Thus if E0 is
not identically zero it is necessary that

[∇L(r)]2 = n2(r). (6.43)

This is called eikonal equation.
Making use of the second equation of (6.42), the Poynting vector may

be written as

1
2
Re(E× H̄) =

1
2
Re

k0

ωµ
|E0(r)|2∇L̄(r)e−jk0(L−L̄).

For real L(r), we have

1
2
Re(E× H̄) =

1
2
k0

ωµ
|E0(r)|2∇L(r).

So the direction of energy flow is normal to the wavefront. The curves whose
tangent at each point is the direction of energy flow of the field are known as
rays. In optics, the rays are used to model the propagation of light through
an optical system, by representing the light field in terms of discrete rays.
The ray optics can be used to study light reflections and refractions. Since
the rays are normal to the wavefront, we may introduce a unit tangent
vector to the rays

s(r) =
1

n(r)
∇L(r). (6.44)

This implies

∇L(r) · ∇ = n(r)s(r) · ∇ = n(r)
∂

∂s
. (6.45)
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Let r be a point P on a ray and s be the arc length measured along the
ray. Then dr/ds = s, and

n(r)
dr
ds

= ∇L(r).

Taking the derivative with respect to s and making use of the relation
d
ds

= dr
ds

· ∇, we obtain

d

ds
n(r)

dr
ds

= ∇n(r). (6.46)

This is the differential equation for the rays, called ray equation, which
can be solved numerically with initial data to determine the rays in a
region. The refractive index of the atmosphere affects the curvature of
the electromagnetic wave path and gives some insight into the fading
phenomenon.

Example 6.1: To apply the above theory to the stratified atmosphere,
we assume that the surface of the earth may be treated as a plane and
introduce a cylindrical coordinate system (ρ, ϕ, z) such that the z-axis is
in the vertical direction and the plane z = 0 coincides with the surface of
the earth. A point source is assumed to be located on the z-axis at height
z1. In terms of the symmetry, all quantities are independent of ϕ. Thus the
rays are curves lying in planes passing through the z-axis. So we only need
to consider one of these planes, say (x, z)-plane as illustrated in Figure 6.9.

z 

ds
dz

dx

z1

x 

Figure 6.9 A ray for a stratified atmosphere.
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We may write (6.46) as

d

ds
n(z)

dx

ds
= 0,

d

ds
n(z)

dz

ds
=
dn(z)
dz

.

(6.47)

It follows from the first equation that

n(z)
dx

ds
= C, (6.48)

where C is a constant characteristic of the ray and can be determined by
(Figure 6.9)

n(z1) cosα0 = C. (6.49)

Since the ray is confined in (x, z)-plane, we have

dr
ds

· dr
ds

=
(
dx

ds

)2

+
(
dz

ds

)2

= 1.

It follows that

dz

ds
=

±√n2(z) − C2

n(z)
. (6.50)

Combining (6.48) and (6.50) yields

dx

dz
=

C

±√n2(z) − C2
. (6.51)

This can be used to determine the ray family. �

The behavior of the magnitude E0 can be determined by the Maxwell
equations. Introducing (6.40) into the wave equation

∇× µ−1∇× E(r) − ω2εE(r) = 0 (6.52)

yields

1
jk0

[
(∇L · ∇ lnµ−∇2L)E0 − 2(∇L · ∇)E0 − (E0 · ∇ lnµ)∇L

+ (∇ · E0)∇L
]
+ [(∇L)2 − n2]E0

+
1

(jk0)2
[∇2E0 + ∇ lnµ× (∇× E0) −∇(∇ · E0)] = 0. (6.53)
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The second term is zero due to the eikonal equation and the third term can
be ignored for large k0. From ∇·D = 0 we have ∇·E0 = −E0 ·∇ ln ε. Thus
(6.53) may be written as

(∇L · ∇)E0 +
1
2
(∇2L−∇L · ∇ lnµ)E0 + (E0 · ∇ lnn)∇L = 0. (6.54)

This is the differential equation for the amplitude E0, called transport
equation. The amplitude H0 of the magnetic field satisfies the similar
transport equation

(∇L · ∇)H0 +
1
2
(∇2L−∇L · ∇ ln ε)H0 + (H0 · ∇ lnn)∇L = 0. (6.55)

Taking the scalar product of (6.54) with Ē0 and adding the resultant
equation to its conjugate, we obtain

n
d

ds
|E0|2 + µ|E0|2∇ ·

(
1
µ
∇L

)
= 0.

The ratio of the electric field intensity at s2 of a ray to s1 is then given by

|E0|2s2
|E0|2s1

= exp


−

s2∫
s1

µ

n
∇ ·

(
1
µ
∇L

)
ds


. (6.56)

Similarly, we have

|H0|2s2
|H0|2s1

= exp


−

s2∫
s1

ε

n
∇ ·

(
1
ε
∇L

)
ds


. (6.57)

In homogeneous medium, we have

exp


−

s2∫
s1

µ

n
∇ ·

(
1
µ
∇L

)
ds


 = exp


−

s2∫
s1

ε

n
∇ ·

(
1
ε
∇L

)
ds




= exp


− 1

n

s2∫
s1

∇2Lds


. (6.58)

Remark 6.2 (Curvilinear coordinates on a surface): Let v1 and v2 be two
parameters and S be a surface so that any point P on the surface may be
represented by the position vector

r = x(v1, v2)ux + y(v1, v2)uy + z(v1, v2)uz.
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Curves along which one of the parameters remains constant are called
coordinate curves. The vectors

e1 =
∂r
∂v1

, e2 =
∂r
∂v2

are linearly independent and form a basis at the point P , which is called a
local frame. Note that the base vector ei is the tangent vector along the
coordinate curve vi (i = 1, 2). The metric tensor is defined by

gij = ei · ej =
∂x

∂vi
∂x

∂vj
+
∂y

∂vi
∂y

∂vj
+
∂z

∂vi
∂z

∂vj
.

A vector function A at the point P may be expanded in terms of the basis
{e1, e2} at the point P

A =
2∑
i=1

aiei.

The differential dr is an infinitesimal displacement from the point (v1, v2)
to a neighboring point (v1 + dv1, v2 + dv2)

dr =
2∑
i=1

∂r
∂vi

dvi =
2∑
i=1

ei dvi.

The magnitude of this displacement is denoted by ds

ds2 = dr · dr =
2∑

i,j=1

ei · ejdvidvj =
2∑

i,j=1

gijdv
idvj .

Especially an infinitesimal displacement at (v1, v2) along the vi-curve is

dri = eidvi

and the magnitude of the infinitesimal displacement along the vi-curve is

dsi =
√
dri · dri =

√
giidv

i.

The unit vector along the normal is defined by

un =
e1 × e2

|e1 × e2| .

In general, the normals at consecutive points of a surface do not intersect.
If the normals at consecutive points on a curve intersect, the curve is called
a line of curvature. The point of intersection of consecutive normals is
the center of curvature. It can be shown that, at any point P , there are
two mutually orthogonal principal directions along which the normals at
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consecutive points intersect the normal at P . Thus, there are two centers
of curvature at each point P . The distances from P to the centers of
curvature, counted positive in the direction of un, are the two principal
radii of curvature, denoted by R1 and R2, and their reciprocals are called
the principal curvatures. The sum of the principal curvatures is defined
as the first curvature J

J =
1
R1

+
1
R2

and their product is defined as Gaussian curvature (or second curva-
ture) κ

κ =
1

R1R2
.

The coordinate curves form an orthogonal system if and only if g12 = 0.
�

We now consider the evaluation of ∇2L in (6.58). Consider a short
section of the ray tube bounded by two closely spaced constant-phase
surfaces L = L1 and L = L1 + ∆L1, as illustrated in Figure 6.10. The
volume of the short section of ray tube is denoted by V and its boundary
by S. The areas of the two ends of the tube are denoted by dS1 and dS2,
and are given by

dS1 = R1R2dv
(1)dv(2) =

dv(1)dv(2)

κ1
,

dS2 = (R1 + ∆R1)(R2 + ∆R2)dv(1)dv(2) =
dv(1)dv(2)

κ2
,

(6.59)

where κ1 and κ2 are the Gaussian curvatures at constant-phase surfaces
L = L1 and L = L1 + ∆L1, respectively. Then we have∫
V

∇ · (κns)dV =
∫
S

κns · dS = κns · s∣∣
L1+∆L1

dS1 − κns · s∣∣
L1
dS2 = 0

Figure 6.10 A section of ray tube.
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where use is made of (6.59). The above equation implies

∇ · (κns) = κn∇ · s + s · ∇(κn) = 0.

This gives

∇ · s = − 1
κn

d(κn)
ds

= −d ln(κn)
ds

.

From (6.44), we obtain

∇2L = ∇ · ∇L = ∇ · (ns) = n∇ · s = −nd lnκ
ds

(6.60)

in homogeneous medium. As a result

exp


− 1

n

s2∫
s1

∇2Lds


 = exp


 s2∫
s1

d lnκ
ds

ds


 =

κ(s2)
κ(s1)

.

Equations (6.56) and (6.57) can thus be written as

|E0|2s2 = |E0|2s1
κ(s2)
κ(s1)

, (6.61)

|H0|2s2 = |H0|2s1
κ(s2)
κ(s1)

. (6.62)

A detailed study about the theory and applications of geometric optics can
be found in Kline and Kay (1965); Jones (1979a). The ray-tracing method
can be used to predict the site-specific propagation models. One of the
approaches is based on the Shooting-and-Bouncing Ray (SBR) launching
algorithm. The wave propagation models predicted by the ray-tracing
method, which has taken the wave reflections, diffractions and scattering
into account, play an important role in the design of wireless networks.

Remark 6.3: The refractive index of air depends on pressure, temperature,
and humidity. There are several models for the refractive index n of the
atmosphere. Two important ones are the exponential model (Skolnik,
1980), which assumes n− 1 decreases exponentially with altitude, and the
standard model, which assumes n varies linearly with the altitude as

n = n0 +
dn

dh
h,

where h is the height and dn/dh is assumed to be a constant. The
exponential model is better suited for the region in the higher atmosphere
where h > 1 km, and the standard model is mainly for the region in the
lower atmosphere where h < 1 km. �
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6.2.3 Ionospheric Wave Propagation

The ionosphere is a region of the atmosphere that is ionized by solar
radiation. The ionosphere can be mainly divided into three layers in which
the electron density peaks up. These are the D, E, and F layers. During
the day time, the F layer splits into two layers called F1 and F2 layers. The
D layer disappears at night. Typical variation of electron density curve vs.
height is shown in Figure 6.11, whereN denotes the number of electrons per
unit volume. The electrons and ions can be set in motion by electromagnetic
fields. In an ionized gas, the equation of motion for a single electron of mass
m and charge −e with velocity v, acted upon by an electric field E and
magnetic field B, is

m
dv
dt

= −e(E + v × B) −mνv, (6.63)

where the term −mνv represents a damping force due to the collisions
of electrons with the neutral molecules and ions and ν is the collision
frequency. For a sinusoidal field, this becomes

jωmv = −e(E + v × B) −mνv. (6.64)

Ignoring the magnetic field in (6.64), the induced current in the ionized gas
is given by

J = −eNv =
Ne2

jωm+mν
E. (6.65)
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Figure 6.11 Electron density vs. height.
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This implies

∇× H = jωε0E + J = jωε0

[
1 − Ne2

mε0ω(ω − jν)

]
E.

The relative dielectric constant of the ionized gas is

ε̃r = 1 − Ne2

mε0ω(ω − jν)
= 1 − ω2

p

ω(ω − jν)
= 1 − ω2

p

ω2 + ν2
− j

ω2
pν

ω(ω2 + ν2)
,

(6.66)

where ωp =
√
Ne2/mε0 is the plasma frequency. Equation (6.66) indicates

that the ionosphere is equivalent to a medium of relative dielectric constant

εr = 1 − ω2
p

ω2+ν2 and conductivity σ =
ε0ω

2
pν

ω2+ν2 . Therefore, the ionosphere
behaves like a dielectric at high frequencies and behaves like a conductor at
low frequencies. As a first approximation, the absorption will be neglected
(ν = 0). In this case, we have

εr < 1, for ω > ωp,

εr = 0, for ω = ωp,

εr < 0, for ω < ωp.

Plane waves propagating in an ionized gas will have a propagation constant
k =

√
ε̃rk0. For normal incidence of a plane wave on the ionosphere,

propagation ceases when the wave reaches the height at which the electron
density is high enough to make εr = 0, and the wave is then reflected
back toward the Earth. For oblique incidence as illustrated in Figure 6.12,
the wave will be turned around and returned to Earth if a height at
which

√
εr = sinψi exists (Figure 6.12). This can be explained as follows.

According to Snell’s law, the ray will follow a path such that the tangent

At this height:

z 

z 

Figure 6.12 Oblique incidence upon the ionosphere.
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to the ray satisfies the condition
√
εr sinψ(z) = sinψi, where ψ(z) is

the incidence angle at height z. The ray will return to the Earth if ψ(z)
reaches π/2.

In the proceeding discussions, the effect of Earth’s magnetic field B has
been neglected. This approximation is reasonably good at frequencies above
10MHz but is generally not valid at frequencies below 5MHz. We now will
examine the effect of Earth’s magnetic field. The Earth’s magnetic field will
be represented by a steady magnetic field B0. It follows from (6.64) and
(6.65) that

(jω + ν)J + J × e

m
B0 = ω2

pε0E. (6.67)

We now choose a rectangular coordinate system (x, y, z) so that B0 = B0uz.
The quantity ωc = e

m
B0 is referred to as the gyrofrequency. From (6.67),

we may obtain
JxJy
Jz


=

ε0ω
2
p

ω2
c − ω2 + ν2 + 2jων



jω + ν −ωc 0
ωc jω + ν 0

0 0 jω + ν +
ω2
c

jω + ν




ExEy
Ez


.

This can be written as

J =
↔
σσσ ·E, (6.68)

where
↔
σσσ is a dyadic defined by

↔
σσσ =

ε0ω
2
p

ω2
c − ω2 + ν2 + 2jων

·
[
(jω + ν)uxux + (jω + ν)uyuy

−ωc(uxuy − uyux) +
(
jω + ν +

ω2
c

jω + ν

)
uzuz

]
. (6.69)

Hence, we may write

∇× H = jωε0E +
↔
σσσ ·E = jωε0

↔
εεεr · E,

where

↔
εεεr =

↔
I +

↔
σσσ

jωε0

and
↔
I = uxux+uyuy+uzuz is the unit dyadic. It is convenient to express

↔
εεεr in the form

↔
εεεr =


 εr1 −jεr2 0
jεr2 εr1 0
0 0 εr3


, (6.70)
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where

εr1 = 1 − ω2
p(1 − jν/ω)

ω2 − ω2
c − ν2 − 2jων

,

εr2 =
ω2
p(ωc/ω)

ω2 − ω2
c − ν2 − 2jων

,

εr3 = εr1 +
ω2
pω

2
c (ω

2 − jων)−1

ω2 − ω2
c − ν2 − 2jων

.

6.2.4 Tropospheric-Scatter-Propagation

Normally, microwave signals are only used for line-of-sight applications,
where the receiver can be seen from the transmitter. Radio waves tend to
travel in straight lines, which place a limitation on the detection range
of a radar system to the objects on its horizon due to the curvature
of the Earth. Tropospheric-scatter-propagation uses tropospheric scatter
phenomenon to transmit microwave radio signals. When radio waves
from a transmitter pass through troposphere and encounter some random
irregularities or fluctuations in the index of refraction of the atmosphere,
they will be scattered. A distant receiver that beams to the irregularities
can pick up the signal if the transmitted power is sufficiently high. An
over-the-horizon communication link is thus established as illustrated in
Figure 6.13. A related system is meteor burst communications, which uses
the ionized trails of meteors to improve the strength of the scattering.
Tropospheric-scatter-propagation links operate in the frequency range of
200MHz–10GHz. At lower frequencies, the cost of building a high gain

Irregularity

Common volume

Antenna 1 
Antenna 2

Figure 6.13 Over-the-horizon transmission.
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antenna is a major concern. Operation at higher frequencies is prohibited
due to the transmission loss.

We assume that the relative dielectric constant for the atmosphere is
εr, which is very close to unity. Due to the fluctuations in temperature
and pressure, the dielectric constant may change to εr + ∆εr, where ∆εr
is typically only a few parts per million. The polarization vector under the
influence of a polarizing electric field E is

P = ε0E(εr − 1 + ∆εr) ≈ ∆εrε0E.

The polarizing field E is assumed to be the incident field from antenna 1
characterized by a current distribution J1(r1), which can be expressed as

E1(r1) = − jk0η0I1
4πr1

e−jk0r1L1(ur1). (6.71)

The induced polarization current in the region Vp (Figure 6.14) is

Jp(rp) = jωP(rp) = jω∆εrε0E1(r1) = ∆εr
k2
0I1

4πr1
e−jk0r1L1(ur1). (6.72)

In terms of the reciprocity, the open-circuit voltage at the receiver induced
by the incident field Es generated by the polarization current Jp is given by

Voc(ur2) = − 1
I2

∫
V2

Es(rp) · J2(r2)dV (r2)

= − 1
I2

∫
Vp

E2(r2) · Jp(rp)dV (rp). (6.73)

Irregularity

32

Antenna 1 Antenna 2

Figure 6.14 Coordinate systems used in tropospheric-scatter-propagation system.
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Here J2 is the current distribution of antenna 2, which occupies a volume
V2 and produces the field E2

E2(r2) = − jk0η0I2
4πr2

e−jk0r2L2(ur2) (6.74)

when it is used as a transmitting antenna. Introducing (6.72) and (6.74)
into (6.73), we obtain

Voc(ur2) = j
k3
0η0I1
16π2

∫
Vp

∆εr(rp)
e−jk0(r1+r2)

r1r2
L1(ur1) · L2(ur2)dV (rp).

(6.75)

When the antenna 2 is conjugately matched to a load ZL = RL+ jXL, the
received power is given by

Prec =
|Voc|2
8RL

=
1

8RL

(
k3
0η0 |I1|
16π2

)2

×
∫
Vp

∫
Vp

∆εr(rp)∆εr(r′p)[L1(ur1) · L2(ur2)]

× [L1(u′
r1) · L2(u′

r2)
]e−jk0(r1+r2−r′1−r′2)

r1r2
dV (rp)dV (r′p). (6.76)

6.2.5 Attenuation by Rain

Radio waves propagating through atmosphere are attenuated because of the
power absorption and scattering by particles encountered throughout the
propagation path in the atmosphere. Both the absorption and scattering
effects are especially prevalent at frequencies above 11GHz, and are
mainly affected by the dimensions of the particles and their electrical
properties. The scattering loss is usually small compared to absorption loss.
Attenuation due to rain droplets depends on frequency and the rainfall
intensity, or rain rate R0, presented in units of mm/h. The study of
absorption and scattering by rain may be started with a single raindrop. In
general, the rain droplets take on an oblate spheroidal shape under the
influence of aerodynamic forces and pressure forces as they fall. When
the frequency is not very high (wavelength is greater than 3 cm), the rain
droplet can be approximated by a dielectric sphere with a complex dielectric
constant ε̃ = ε̃rε0 with ε̃r = ε̃′r − jε̃′′r = εr − j σ

ωε0
. We now consider the

scattering of a spherical dielectric sphere of radius a illuminated by an
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x 

z 

a 
o 

Ein

Figure 6.15 Dielectric sphere illuminated by a plane wave.

incident plane wave propagating in positive x-direction (Figure 6.15)

Ein = uzE0e
−jk0x,

where k0 = ω
√
µ0ε0. Since the dielectric sphere is small relative to the

wavelength, the polarization produced inside the sphere can be assumed
to be the same as would be produced inside the sphere by a uniform
static electric field. This boundary value problem has been solved in many
textbooks (e.g., Bladel, 2007). The polarization vector P per unit volume
in the dielectric sphere is given by

P = 3
ε̃r − 1
ε̃r + 2

ε0E0uz . (6.77)

The total dipole moment of the sphere is the integral of the above expression
over the spherical volume

P0 = P0uz =
4
3
πa3P = 4πa3 ε̃r − 1

ε̃r + 2
ε0E0uz. (6.78)

Since the sphere is very small relative to the wavelength, it is equivalent to
a small electric dipole of strength P0. The scattered field from the sphere
can thus be obtained from the field produced by the equivalent dipole. The
scattered field in the far-field region is then given by [see (7.40)]

Es(r) = −ωk0η0P0 sin θ
e−jk0r

4πr
uθ. (6.79)

The total scattered power is

Ps =
1

2η0

2π∫
0

π∫
0

|Es|2r2 sin θ dθ dϕ =
4
3
πa3(k0a)4

|E0|2
η0

∣∣∣∣ ε̃r − 1
ε̃r + 2

∣∣∣∣
2

. (6.80)
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The scattering cross-section σs is defined as the ratio of the total
scattered power over the incident power density

σs =
Ps

|Es|/2η0 =
8
3
πa2(k0a)4

∣∣∣∣ ε̃r − 1
ε̃r + 2

∣∣∣∣
2

. (6.81)

The power Pa absorbed by the dielectric sphere can be obtained by the
polarization current density J = jωP and the electric field E inside the
sphere as follows

Pa =
1
2
Re

a∫
0

2π∫
0

π∫
0

E · J̄r2 sin θ dr dθ dϕ =
2
3
πa3ReE · J̄

= 6πa3 k0

η0

∣∣∣∣ ε̃r − 1
ε̃r + 2

∣∣∣∣
2

ε̃′′r |E0|2
(ε̃′r − 1)2 + (ε̃′′r )2

. (6.82)

The absorption cross-section σa is defined as the absorbed power divided
by the incident power density

σa =
Pa

|Ein|2/2η0 = 12πk0a
3

∣∣∣∣ ε̃r − 1
ε̃r + 2

∣∣∣∣
2

ε̃′′r
(ε̃′r − 1)2 + (ε̃′′r )2

. (6.83)

For small dielectric sphere, we usually have σa > σs. The extinction cross-
section σe is defined as the total power removed from the incident field
due to the scattering and absorption divided by the incident power density.
Therefore, it is the sum of scattering and absorption cross sections

σe = σs + σa. (6.84)

A radio wave going through rain encounters a large number of water
droplets with different radii. The size distribution of droplets is usually
written in the form N(a)da and it represents the number of droplets with
radii in the interval [a, a + da] per unit volume. The power removed from
a wave propagating in the z-direction with power density p = |E|2/2η0 by
the raindrops in a volume element of unit cross-sectional area and thickness
dz can be written as

−dp = pdz

∞∫
0

σeN(a)da. (6.85)

This can be rewritten as
dp

dz
= −A(z)p, (6.86)
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Table 6.2 Numerical values for N0 and Λ

Authors Rain types N0 (mm−1/m3) Λ (mm−1)

Marshall and Palmer Any intensity of rainfall 8000 8.2R−0.21
0

(1948)
Drizzle 30,000 10.14R−0.21

0

Joss et al. (1968) Continuous rain 7000 8.2R−0.21
0

Convective rain 1400 6R−0.21
0

where A(z) =
∫∞
0
σeN(a)da depends on z since the size distribution N(a)

may vary along the propagation path due to the non-uniform rain. The
size distribution is a function of rain rate R0 and has been investigated
by a number of authors. The best known empirical expressions for the
size distribution were proposed by Marshall and Palmer (1948) and Joss
et al. (1968):

N(a) = N0e
−Λa, (6.87)

where N0 and Λ are experimentally determined constants. Table 6.2 shows
the numerical values of N0 and Λ for different types of rainfall.

6.3 Statistical Models for Mobile Radio Channels

In a mobile environment, the transmission medium is very lossy and
dispersive and suffers extreme random fades due to multiple scattering
and the absence of a direct line-of-sight path between the base station
and the mobile terminal. Fades of 40 dB or more below the mean level are
common, with successive minima occurring about every half wavelength
of the carrier frequency. In addition, the mobile terminal whose location
is unknown introduces Doppler shifts, named after the Austrian physicist
Christian Doppler (1803–1853). For this reason, the conventional antenna
designs have to be tailored to the statistical nature of the environment
(Jakes, 1994).

Path loss is the reduction in power density of an electromagnetic wave
when it propagates through space. The path loss may be due to many
effects, such as free-space loss, reflection, refraction, diffraction, absorption,
terrain contours, and the distance between the transmitter and the receiver.
The prediction of the path loss information is very important in designing
a wireless communication system. The pass-loss models can be roughly
divided into statistical and deterministic models. The statistical models
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are derived from extensive field measurements and statistical analysis, and
are valid for similar environments where the measurements were carried
out. The deterministic models are usually based on the numerical methods,
which take all the effects into consideration and involve much more data
computational power.

6.3.1 Near-Earth Large-Scale Models

Channel impairments are caused by several inter-related mechanisms, which
are path loss, blockage (i.e., attenuation, radio wave in the transmission
path may be partially blocked or absorbed by some feature of the
environment), fast fading, shadowing, random FM (relative Tx/Rx motion)
and delay spread (multiple signals arrive with a slight additional delay
which spreads the received signal and causes each symbol to overlap with
proceeding and following symbols, producing intersymbol interference). The
propagation characteristics are divided into large scale (path loss plus
shadowing) and small scale. We consider large-scale models in this section.

Because of obstructions such as different types of terrains, landscapes
for outdoor environment or different building structure, layout for indoor
environment, propagation losses can be significantly higher than in free
space. In practice, the path loss or propagation model for both indoor
and outdoor applications should be modified as

Ls =
(

4πR
λ

)2

× Correction factors,

or in dB we have

Ls (dB) = 20 log f(MHz) + 20 logR (km) + 32.44 + Correction terms.

The correction terms depend on the propagation environments such as
urban, suburban, open area, mountains, hills, lakes, buildings and layout
of the buildings and streets etc., which are generally very complicated. So
the correction terms are usually based on measured data and most of the
propagation models are of semi-empirical type. The predictions from these
models may have a large deviation from the actually measured data and
special correction factors have to be introduced to account for significant
features of the environment. It should be noted that the correction factors
to be used also depend on the carrier frequency. As frequency changes
some factors might become increasingly important and others may become
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negligible. A rule-of-thumb is that radio waves are affected strongly by
objects with physical dimensions comparable to their wavelength. The best-
known outdoor models are Okumura, Hata and Cost-231 models.

6.3.1.1 Okumura Model

The Okumura model is for urban and suburban areas, which is a radio
propagation model that was built using the data collected in the city of
Tokyo, Japan. The model is ideal for cities with many urban structures but
not many tall blocking structures. The model is served as a base for the
Hata Model to be introduced later, and is given by

Ls (dB) = 20 log f(MHz) + 20 logR (km) + 32.44

+A(f,R) −G(hb) −G(hm) −Garea, (6.88)

where A(f,R) is the median attenuation relative to free space; G(hb) =
20 log(hb/200) is base station antenna height gain factor, and hb is the base
station antenna height; G(hm) = 10 log(hm/3) is mobile antenna height
gain factor, and hm is the mobile station antenna height; Garea is the area
gain. The correction factors A(f,R) and Garea are in the form of a set of
curves (Okumura et al., 1968). The applicable ranges for this model are

100 MHz < f < 3000 MHz,

1 km < R < 100 km,

20 m < hb < 1000 m,

1 m < hm < 10 m.

Okumura’s model is considered to be among the simplest and best in terms
of accuracy in path loss prediction for mature cellular and land mobile radio
systems in cluttered environments. Common standard deviations between
predicted and measured path loss values are around 10 dB to 14 dB.

6.3.1.2 Hata Model

The Hata Model is for urban areas. It is also known as the Okumura–
Hata model for being a developed version of the Okumura Model, and is the
most widely used propagation model for predicting the behavior of cellular
transmissions in built up areas. This model incorporates the graphical
information from Okumura model and develops it further to include the
effects of diffraction, reflection and scattering caused by city structures.
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The Hata model is

Ls (dB) = 26.16 log f(MHz) − 13.82 loghb + 69.55

+ [44.9− 6.55 loghb] logR−A(hm), (6.89)

where A(hm) is a correction factor for the city size,

A(hm) =




[1.1 log f − 0.7]hm − [1.56 log f − 0.8],

(small and medium city)

8.9[log(1.54hm)]2 − 1.1, (large city, f < 300 MHz)

3.2[log(11.75hm)]2 − 4.97, (large city, f > 300 MHz)

.

The applicable ranges for this model are

100 MHz < f < 1500 MHz,

1 km < R < 100 km,

20 m < hb < 1000 m,

1 m < hm < 10 m.

6.3.1.3 COST-231 Model

The COST-231 model is for urban area that extends the urban Hata Model
to cover a more elaborated range of frequencies (COST is a European Union
Forum for cooperative scientific research) and it is given by

Ls(dB) = 46.3 + 33.9 log f(MHz) − 13.82 loghb

+ [44.9− 6.55 loghb] logR−A(hm) + CM , (6.90)

where CM = 0 for suburban and mid-size city and CM = 3 for metropolitan
areas. The applicable ranges for this model are

1500 MHz < f < 2000 MHz,

1 km < R < 20 km,

30 m < hb < 200 m,

1 m < hm < 10 m.

The above three models are suitable for large outdoor cells. To increase
the capacity and lower the power, street level cells may be used, where the
antennas are low and cells are small. In these cases, the propagation model
should be based on more site-specific information such as street width,
street orientation, rooftop height, etc.
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6.3.1.4 Log-Distance Model

For indoor environment, the propagation loss can be higher because of
a combination of attenuation by walls and ceilings, and blockage due
to equipment, furniture, and even people. Experience has shown that
line-of-sight propagation holds only for about the first 20 feet. Beyond
20 feet, the propagation losses increase at up to 30 dB per 100 feet in dense
office environments. This is a good rule-of-thumb although it overstates
path loss in most cases. The best-known models for indoor applications are
log-distance path loss expressed by

Ls = Ls(R0) + 10N log
(
R

R0

)
,

where Ls(R0) is the path loss at a reference point R0 (usually 1 meter) and
N is the path loss exponent which varies according to the environment, as
shown in Table 6.3. This model is not restricted to the indoor applications
but it finds more useful in the indoor environment. Although it is not very
accurate it is very suitable for rough quick calculations.

The complexity and numerous parameters involved in determining the
path loss in an indoor environment makes it hard to have a simple statistical
model with small error variance. So the site-specific modeling will eventually
prevail.

6.3.2 Small-Scale Fading

Small-scale fading, or simply fading, is used to describe the rapid fluctua-
tion of the amplitude of radio signal over a short period of time or travel
distance, so that the large-scale path loss effects may be ignored. Signal
fading occurs when waves travel along different paths (called multipath
waves) and interfere destructively with each other when they reach a
receiving antenna as shown in Figure 6.16. The term multipath applies
when there is more than one path that the radio wave can travel from the

Table 6.3 Path loss

Environment Path loss exponent N

Free space 2
Urban area cellular radio 2.7 to 3.5
Shadowed urban cellular radio 3 to 5
Indoor line-of-sight 1.6 to 1.8
Obstructed indoor 4 to 6
Obstructed in-factories 2 to 3
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Figure 6.16 Multipath.

transmitter to the receiver. In this sense all radio channels are multipath
channels. Multipath is useful because it allows radio waves to bend around
corners to reach behind hills and buildings, into parking garages and
tunnels.

Many physical factors in the radio propagation channel influence small-
scale fading. These are summarized below:

(1) Multipath propagation — The random phase and amplitudes of the
different multipath waves that arrive at the receiver cause fluctuations
in signal strength, thereby inducing small-scale fading, signal distortion,
or both.

(2) Speed of the mobile — The relative motion between the base station
and the mobile results in random frequency modulation due to different
Doppler shifts on each of the multipath waves. Doppler shifts will be
positive or negative depending on whether the mobile receiver is moving
toward or away from the base station.

(3) Speed of surrounding objects — The motion of objects in the radio
channel will introduce a time varying Doppler shift on multipath waves.
If the objects move at a greater rate than the mobile, then this effect
will dominate the small-scale fading. Otherwise motion of surrounding
objects may be ignored, and only the speed of the mobile needs to be
considered.

(4) The transmission bandwidth of the signal — If the transmitted radio
signal bandwidth is greater than the coherence bandwidth of the
multipath channel, the received signal will be distorted, but the received
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signal strength will not fade much over a local area (i.e., the small-scale
signal fading will be insignificant). If the transmitted signal has a
narrow bandwidth as compared to the channel the amplitude of the
signal will change rapidly, but the signal will not be distorted in time.

The coherence bandwidth is a statistical measure of the range of
frequencies over which the channel can be considered “flat” (i.e., a channel
which passes all spectral components with approximately equal gain and
linear phase). In an indoor environment, multipath is almost always present
and tends to be constantly varying. Severe fading due to multipath can
result in a signal reduction of more than 30 dB, and may cause failure in
communication. The rate of power decrease in a multipath environment is
1/Rn(n > 2). One method of overcoming this problem is to transmit more
power since signal cancellation is never complete. The amount of extra RF
power radiated to overcome signal fading is called fade margin. The exact
amount of fade margin required depends on the desired reliability of the
communication link. A good rule-of-thumb is 20 dB to 30 dB.

Another method of reducing the effects of multipath is antenna
diversity (space diversity, frequency diversity, and polarization diversity).
Since the cancellation is geometry-dependent, use of two or more antennas
separated by at least half of a wavelength can drastically mitigate this
problem, which is called space diversity. On acquisition of a signal, the
receiver checks each antenna and simply selects the antenna with the best
signal quality. This reduces the required link margin that would otherwise
be needed for a system without employing diversity. The disadvantage is
that this approach requires more antennas and a more complicated receiver
design. It can be shown that the probability of two different frequencies to
be in a fade at the same time is statistically unlikely therefore frequency
diversity (also called frequency hopping) is often used. For example, the
frequency changes in a GSM system occur 217 times a second. Due to the
radio wave interacting with its surrounding, there may be some alternations
in the polarization of the wave. To combat this, dual polar antennas can be
used, which is called polarization diversity.

One can also use an adaptive channel equalizer to deal with the mul-
tipath problem. Generally speaking, equalization is a process of correcting
irregularities in the parameters of a given link by means of preset and/or
adjustable networks. In the ideal situation, an equalizer can be represented
by a two-port network with a particular transfer function Heq(ω), such
that when cascaded with the transmission system with transfer func-
tion G(ω) (Figure 6.17), the overall response is distortionless. Thus, we
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Figure 6.17 Equalizer.
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Figure 6.18 Digital equalizer.

must have

G(ω) ·Heq(ω) = K exp(−jωtd),

or

Heq(ω) =
K exp(−jωtd)

G(ω)
,

where K is a constant. The practical realization of the necessary network
is often very difficult, and normally some compromise solution is reached
such that the overall characteristic is operationally acceptable. One versatile
form of adjustable equalizer is the tapped delay line or transversal filter
(Figure 6.18). After the signal is received and digitized, it is fed through
a series of adaptive delay stages, which are summed together via feedback
loops. This technique is particularly effective in slowly changing environ-
ment. The main drawback is the increase of system cost and complexity.
The output of the equalizer is

y(t) = W1x(t) +W2x(t − τ) +W3x(t− 2τ) + · · · +Wnx[t− (n− 1)τ ].
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where Wi (i = 1, 2, . . . , n) are weighting coefficients. In frequency domain,
this equation becomes

Y (ω) = X(ω)
[
W1 +W2e

−jωτ +W3e
−j2ωτ + · · · +Wne

−j(n−1)τ
]
,

where X(ω) and Y (ω) are the Fourier transforms of x(t) and y(t), respec-
tively. By suitable choice of the weighting coefficients an approximation to
the required transfer function can be produced. The greater the number of
taps, the more flexible the overall equalizer becomes.

Spread spectrum systems are fairly robust in the presence of multipath.
The term spread spectrum simply means that the energy radiated by the
transmitter is spread out over a wider range of the frequency spectrum
than would otherwise be used. The Directive Sequence Spread Spectrum
(DSSS), Code Division Multiple Access (CDMA), and Frequency Hopping
Spread Systems (FHSS) are all considered to be spread spectrum systems.

6.4 Propagation Models for Deterministic MIMO System

Site-specific deterministic propagation models are often preferred for more
accurate predictions of radio wave propagations than would be available
from statistical models. In this section, we provide a method to predict the
propagation model for a general multiple-input multiple-output (MIMO)
system. An important performance index for characterizing a communi-
cation system is the spectral efficiency measured in bit/s/Hz. Shannon’s
channel capacity theorem (see Chapter 8) reveals that there is a maximum
spectral efficiency, called channel capacity, at which any communication
system can operate reliably (Shannon, 1948; 1949). The MIMO system has
emerged as one of the most promising technologies to increase the capacity
of the wireless link. In a MIMO wireless system, multiple antenna elements
are deployed and the data stream from a single user is demultiplexed into nt
(the number of transmitting antennas) substreams. Each substream is then
encoded into channel symbols, and the signals are received by nr receiving
antennas. Various coding schemes, such as layered space-time codes, space-
time Trellis codes and space-time block codes, have been proposed to exploit
the benefits of MIMO channels.

6.4.1 Channel Matrix

A general linear time-invariant MIMO system with nt inputs and nr outputs
is shown in Figure 6.19, where Ti (i = 1, 2, . . . , nt + nr) is the ith antenna
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Figure 6.19 An arbitrary MIMO system.

input plane (i.e., the reference plane), and the nr outputs are terminated
by loads ZLi at Ti (i = nt + 1, . . . , nt + nr).

For a noisy MIMO network, the relationship between the normalized
incident waves and reflected waves (all are considered as random processes,
see Chapter 8) can be expressed as




b1

...

bnt

bnt+1

...

bnt+nr




=




S11 · · · S1nt S1(nt+1) · · · S1(nt+nr)

...
. . .

...
...

. . .
...

S(nt)1 · · · Sntnt Snt(nt+1) · · · Snt(nt+nr)

S(nt+1)1 · · · S(nt+1)nt
S(nt+1)(nt+1) · · · S(nt+1)(nt+nr)

...
. . .

...
...

. . .
...

S(nt+nr)1 · · · S(nt+nr)nt
S(nt+nr)(nt+1) · · · S(nt+nr)(nt+nr)




×




a1

...

ant

ant+1

...

ant+nr




+




bn1
...

bnnt

bnnt+1

...

bnnt+nr




(6.91)
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where Sij is the transmission coefficient from antenna j to antenna i, and bni
is the normalized noise wave which will be assumed to be a zero-mean white
Gaussian noise. Let f denote the ensemble average of f . For a stationary and
ergodic random process f , the ensemble average equals the time average,
i.e., f = lim

T→∞
1
T

∫ T/2
−T/2 f(t)dt. Taking the ensemble average of (6.91) and

making use of the assumption that the channel is deterministic and bni
(i = 1, 2, . . . , nt + nr) have zero-mean lead to


b1
...

bnt

bnt+1

...

bnt+nr




=




S11 · · · S1nt S1(nt+1) · · · S1(nt+nr)

...
. . .

...
...

. . .
...

Snt1 · · · Sntnt Snt(nt+1) · · · Snt(nt+nr)

S(nt+1)1 · · · S(nt+1)nt
S(nt+1)(nt+1) · · · S(nt+1)(nt+nr)

...
. . .

...
...

. . .
...

S(nt+nr)1 · · · S(nt+nr)nt
S(nt+nr)(nt+1) · · · S(nt+nr)(nt+nr)




×




a1

...
ant

ant+1

...
ant+nr



. (6.92)

Hereafter all antennas will be assumed to be matched so that b1 = · · · =
bnt = 0 and ant+1 = · · · = ant+nr = 0. Then (6.92) reduces to


bnt+1

...

bnt+nr


 =



S(nt+1)1 · · · S(nt+1)nt

...
. . .

...

S(nt+nr)1 · · · S(nt+nr)nt





a1

...

ant


. (6.93)

We mention in passing that the matrix

H =



S(nt+1)1 · · · S(nt+1)nt

...
. . .

...

S(nt+nr)1 · · · S(nt+nr)nt


 (6.94)

can be identified as the channel matrix of MIMO system (Geyi, 2007b).
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6.4.2 Computation of Channel Matrix Elements

The channel matrix can be determined from electromagnetic theory.
Consider a system consisting of n antennas contained in a region V∞
bounded by S∞. Let the fields (ensemble averages) generated by antenna
i (i = 1, 2, . . . , n) when antenna j (j �= i) are receiving with all scatterers
being in place be denoted by Ei, Hi, and Vi be the source region of
antenna i, which is chosen in such a way that its boundary, denoted
by Si, is coincident with the metal surface of the antennas except for a
portion of the reference plane Ti. This state of operation is illustrated
in Figure 6.20, where the medium around the antenna is assumed to be
isotropic and inhomogeneous. The frequency-domain reciprocity theorem
for the ensemble averages of the complex envelopes of the fields may be
written as ∫

S

(
Ei ×Hj − Ej × Hi

)
· un dS = 0,

where it is assumed that the closed surface S does not contain any impressed
sources. Similar to the two-antenna system discussed in Chapter 5, we have

Sij =
b
(j)
i

a
(j)
j

∣∣∣∣∣∣∣
a
(j)
l =0,l �=j

= − 1

2a(i)
i a

(j)
j

∫
S′

i

(
Ei × Hj −Ej × Hi

)
· un dS,

(6.95)

scatterers

Si

S∞

V∞Ti
Ji

Vi

un

un

Figure 6.20 Derivation of scattering parameters.



January 28, 2015 11:5 Foundations for Radio Frequency Engineering - 9in x 6in b1914-ch06 page 471

Propagation of Radio Waves 471

where S ′
i is a closed surface containing antenna i only. Note that the fields

Ei, Hi should be determined with all antenna elements and scatterers being
in place.

The multipath fading due to the scatterers plays an important role in
a MIMO system. The presence of significant scatterers promises that the
waves from different paths will add differently at each receiving antenna
element so that the nr receiving signals are independent and can be used
to unscramble the nt transmitted signals. To predict how the MIMO
channel matrix changes with environments, the general expression (6.95)
can be used via numerical simulations with all scatterers being in place.
If the presence of the scatterers does not change the field distributions
significantly, a perturbation procedure may be adopted. Consider an
arbitrary region Vp enclosed by a surface Sp in which the medium is assumed
to be linear, isotropic and free of impressed source (Figure 6.21). The
medium in Vp may be inhomogeneous with a permeability µ(r), permittivity
ε(r), and conductivity σ(r). Thus, one may write


∇× H(r) = [σ(r) + jωε(r)]E(r) + J(r)

∇× E(r) = −jωµ(r)H(r)
. (6.96)

If the medium parameters µ(r), ε(r), σ(r)are changed to µ′(r), ε′(r), σ′(r)
in Vp, the perturbed fields in Vp will be governed by


∇× H′(r) = [σ′(r) + jωε′(r)]E′(r) + J(r)

∇× E′(r) = −jωµ′(r)H′(r)
, (6.97)

which may be rewritten as


∇× H′(r) = [σ(r) + jωε(r)]E′(r) + J′(r) + J(r)

∇× E′(r) = −jωµ(r)H′(r) − J′
m(r)

, (6.98)

Sp
Vp

Figure 6.21 An arbitrary region where medium property changes.
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where 


J′(r) = {σ′(r) − σ(r) + jω[ε′(r) − ε(r)]}E′(r)

J′
m(r) = jωH′(r) [µ′(r) − µ(r)]

. (6.99)

Comparing (6.96) and (6.98), it may be found that the perturbed fields
can be determined by introducing an equivalent electric current source J′

and an equivalent magnetic current source J′
m in the region Vp, as if the

medium parameters had not changed in Vp. This is what the compensation
theorem implies (Geyi, 2010). The differences of the fields ∆E = E′ − E,
∆H = H′ −H satisfy the following equations


∇× ∆H(r) = [σ(r) + jωε(r)]∆E(r) + J′(r)

∇× ∆E(r) = −jωµ(r)∆H(r) − J′
m(r)

. (6.100)

Therefore, the equivalent sources (6.99) generate the differential fields.
The influences of the change of the medium parameters on the

scattering parameters can be studied by means of compensation theorem.
Figure 6.22 shows any two antenna element i and j and a region Vp enclosed
by Sp, where the changes of medium parameters take place. Two scenarios
may be considered:

Scenario 1: The medium parameters are assumed to be µ, ε and σ. The
antenna i produces the fields Ei, Hi when all other antennas are receiving.
The transmission coefficient between antenna i and antenna j (j �= i) is
denoted by Sij .

Antenna i

Antenna  j 

Figure 6.22 Coupling between two antenna elements in a scattering environment.
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Scenario 2: The medium parameters µ, ε and σ in Vp are changed to µ′, ε′

and σ′ respectively. The antenna i produces the field E′
i,H

′
i when all other

antennas are receiving. The transmission coefficient between antenna i and
antenna j (j �= i) is denoted by S′

ij .
From (6.95) and the reciprocity theorem in a region with impressed

sources, the transmission coefficient for Scenario 1 may be expressed as

Sij = − 1

2a(i)
i a

(j)
j

∫
S′

i

(
Ei × Hj − Ej × Hi

)
· un dS

= − 1

2a(i)
i a

(j)
j

∫
V ′

j

Jj · Ei dV , (6.101)

where S′
i is the surface enclosing antenna i only (Vp is not contained in S′

i)
and V ′

j is the region enclosed by S′
j , which contains both antenna j and

Vp and Jj is the current distribution of antenna j. Similarly, the perturbed
transmission coefficient for Scenario 2 can be expressed as (assuming that
the impressed Jj remains unchanged)

S′
ij = − 1

2a(i)
i a

(j)
j

∫
S′

i

(
E′
i × H′

j − E′
j × H′

i

)
· un dV

= − 1

2a(i)
i a

(j)
j

∫
V ′

j

Jj · E′
i dV . (6.102)

Subtracting (6.101) from (6.102) gives

S′
ij − Sij = − 1

2a(i)
i a

(j)
j

∫
V ′

j

Jj ·
(
E′
i − Ei

)
dV . (6.103)

Considering that V ′
j contains the region Vp and the sources producing the

differential fields ∆E = E′ − E and ∆H = H′ − H are given by (6.99),
(6.103) may be written as

S′
ij − Sij = − 1

2a(i)
i a

(j)
j

∫
Vp

(
J′ · Ej − J′

m ·Hj

)
dV

=
1

2a(i)
i a

(j)
j

∫
Vp

{
jω(µ′ − µ)H′

i · Hj

− [σ′ − σ + jω(ε′ − ε)]E′
i · Ej

}
dV (6.104)
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from the reciprocity theorem. This formula is useful to study the effect of
changes in permittivity and permeability of the medium in a finite three
dimensional region. But it is not convenient to study the changes in highly
conducting bodies where the fields are confined to a shallow surface layer. In
this case, a surface integral will be more suitable. Making use of reciprocity
theorem again, (6.104) may be expressed as

S′
ij − Sij = − 1

2a(i)
i a

(j)
j

∫
Vp

J′ · Ej − J′
m ·Hj dV

= − 1

2a(i)
i a

(j)
j

∫
Sp

[(
E′
i −Ei

)
× Hj − Ej ×

(
H′
i −Hi

)]
· un dS

=
1

2a(i)
i a

(j)
j

∫
Sp

(
Ej × H′

i − E′
i × Hj

)
· un dS. (6.105)

Note that only the field components tangential to Sp contributes to (6.105).
Let Zs and Z ′

s be the surface impedances before and after the change of the
medium parameters respectively. Considering the relations Ejt = Zsun ×
Hit, E′

jt = Z ′
sun ×H′

i, (6.105) may be rewritten as

S′
ij − Sij =

1

2a(i)
i a

(j)
j

∫
Sp

(Z ′
s − Zs)Hjt ·H′

it dS, (6.106)

where the subscript t is used to represent the tangential component.
If there exist m scatterers and each scatterer occupies a region Vp (p =

1, 2, . . . ,m), then the integrations in (6.104)–(6.106) become a summation
of integrations over each scatterer. For instance, (6.104) may be written as

S′
ij = Sij +

1

2a(i)
i a

(j)
j

m∑
p=1

∫
Vp

{
jω(µ′ − µ)H′

i · Hj

− [σ′ − σ + jω(ε′ − ε)]E′
i · Ej

}
dV. (6.107)

The first term of (6.107) corresponds to the contribution due to the direct
path from antenna i to antenna j. The second term represents the m

multipath components introduced by the m scatterers and usually improve
the condition number of the channel matrix, which is important for a
wireless MIMO system to be effective.
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So far our discussion is exact. If the parameters ξ1 and ξ2 defined by{
ξ1 = σ′(r) − σ(r) + jω[ε′(r) − ε(r)]

ξ2 = jω[µ′(r) − µ(r)]

are small numbers, a perturbation method may be introduced to predict
S′
ij . In this case, the fields E′

i and H′
i may be expanded in terms of ξ1 and

ξ2 as follows 
E′

i = Ei + ξ1Ei1 + ξ2Ei2 + · · ·
H′
i = Hi + ξ1Hi1 + ξ2Hi2 + · · ·

.

As a first order approximation, (6.104), (6.105) and (6.106) can then be
approximated by

S′
ij − Sij ≈ 1

2a(i)
i a

(j)
j

∫
Vp

{
jω(µ′ − µ)Hi · Hj

−[σ′ − σ + jωc(ε′ − ε)
]
Ei ·Ej

}
dV, (6.108)

S′
ij − Sij ≈ 1

2a(i)
i a

(j)
j

∫
Sp

(
Ej ×Hi − Ei × Hj

)
· un dS, (6.109)

S′
ij − Sij ≈ 1

2a(i)
i a

(j)
j

∫
Sp

(Z ′
s − Zs)Hjt ·Hit dS. (6.110)

It is far better to foresee even without certainty than not to foresee at all.

—Jules Henri Poincaré
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Chapter 7

Electromagnetic Compatibility

One thing I have learned in a long life: that all our science, measured

against reality, is primitive and childlike — and yet is the most precious

thing we have.

—Albert Einstein

Electromagnetic compatibility (EMC) studies the unintentional
generation, transmission and reception of electromagnetic energy, and deals
with the electromagnetic interferences (EMIs) or disturbance that the
unintentional electromagnetic energy (as an external source) may induce.
Its aim is to ensure that the electronic devices or systems will not interfere
with each other’s normal operation. EMC is also referred to as EMI control
so that the interference effects can be prevented.

Before the electronic devices are brought to the market, they must
meet the EMC standards set by national and international organizations,
such as the Federal Communications Commission (FCC) in United States.
Compliance with national or international standards is usually required by
laws passed by individual nations. Different nations can require compliance
with different standards. An electronic system is said to be compatible to
its environment if it satisfies the criteria that

(1) It does not cause interference with other systems.
(2) It is not susceptible to emissions from other systems.

Therefore, the objective of EMC design for an electronic system is to
suppress its emissions and to reduce its susceptibility to other incom-
ing electromagnetic energy. The interference source, the energy coupling
mechanism and the receptor constitute three basic components of an EMI
problem, as illustrated in Figure 7.1.

477
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Source
Coupling 

mechanism Receptor

Figure 7.1 Three components of EMI problem.

The origin of the interference sources can be natural (e.g., lightening
electromagnetic pulse, electrostatic discharge and solar activity) or man-
made (e.g., spark gaps, power transmission lines, digital circuits, nuclear
electromagnetic pulse, radio frequency transmissions), and the source may
emit continuous wave at a narrow band of frequencies, or a transient wave
which is usually broadband.

Basically, there are three coupling mechanisms: conductive coupling,
near-field coupling and far-field coupling. Conductive coupling occurs when
the coupling path between the source and the receptor is formed by direct
contact with a conducting body, such as a transmission line, wire, cable,
PCB trace or metal enclosure. The near field coupling refers to the situation
where the interference source and the receptor are separated by a distance
less than a wavelength, and can be further categorized into inductive
coupling and capacitive coupling. If the stored electric (or magnetic) energy
in the vicinity of emission source is higher than the stored magnetic (or
electric) energy, the emission source produces more capacitive (or inductive)
coupling. The far-field coupling refers to the situation where the source and
the receptor are separated by a distance more than a wavelength. In this
case, the source radiates an electromagnetic wave, which propagates across
the open space in between and is received by the receptor. Various coupling
mechanisms are illustrated in Figure 7.2.

7.1 Fields and Circuits

The circuit theories for various electromagnetic systems can be derived from
the field theory. For each field quantity, there is a circuit quantity which
is defined as the integral of the corresponding field quantity. Some typical
circuit quantities are summarized in Table 7.1.

Note that all circuit quantities are algebraic quantities and they depend
on the selection of reference direction ul dl in the line integrals and the
reference direction un dS in the surface integrals. The line-integral quantity
(such as the voltage) is positive reference at the start of the path of
integration [Figure 7.3(a)]. The surface-integral quantity (such as current)
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Conductive

Source Receptor

Radiated

Figure 7.2 Various coupling mechanisms.

Table 7.1 Circuit quantities

Quantity Definition

Voltage v (volts) v =

Z
a−b

E(r) · ul dl(r)

Current i (amperes) i =

Z
S

J(r) · un dS(r)

Electric charge q (coulombs) q =

Z
V

ρ(r) dV (r)

Electric flux ψe (coulombs) ψe =

Z
S

D(r) · un dS(r)

Magnetic flux ψm(webers) ψm =

Z
S

B(r) · un dS(r)

Magnetomotive force u (amperes) u =

Z
a−b

H(r) · ul dl(r)

is positive reference in the direction of undS [Figure 7.3(b)]. Charge is a
net-amount quantity, which equals the amount of positive charge minus the
amount of negative charge.

For a thin wire, we may choose ul = un. This is called passive sign
convention, which implies that whenever the reference direction or the
current in an element is in the reference direction of voltage drop across
the element [see Figure 7.3(c)], a positive sign is used in any expression
that relates the voltage to the current. If we choose ul = −un, we have an
active sign convention.
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Figure 7.3 Reference convention.

7.1.1 Impressed Field and Scattered Field

The current density is related to the total field by the Ohm’s law

J = σE, (7.1)

where E is the sum of the incident field Ein and the scattered field Es

produced by the charges and currents in the system

E = Ein + Es. (7.2)

The scattered field Es due to charges and currents in the system can then
be expressed in terms of the scalar and vector potential

Es = −∇φ− ∂A
∂t

, (7.3)

where

φ(r) =
1

4πε

∫
V

ρ(r′)e−jk|r−r
′|

|r − r′| dV (r′),

A(r) =
µ

4π

∫
V

J(r′)ejk|r−r′|

|r − r′| dV (r′).

(7.4)

Substituting (7.1) and (7.3) into (7.2), we obtain

Ein =
J
σ

+ ∇φ+
∂A
∂t

. (7.5)

This is called the cause and effect relationship. The incident field
induces an ohmic term and terms due to the charges and currents of the
system.
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7.1.2 Kirchhoff’s Laws

According to the continuity equation

∇ · J = −∂ρ
∂t
,

we have ∫
S0

J · un dS = − ∂

∂t

∫
V0

ρ dV , (7.6)

where V0 is the region bounded by a closed surface S0 surrounding a
junction of conducting wires as shown in Figure 7.4(a). The only conduction
current flowing out of the surface is that in the wires, so the left side of
(7.6) becomes the algebraic sum of currents flowing out in the wires. Thus
(7.6) can be rewritten as

N∑
n=1

in = −dQ
dt
.

This is called Kirchhoff’s first law or Kirchhoff’s current law. If there
is no accumulation of charge at the junction we have

N∑
n=1

in = 0.

For an arbitrary circuit path shown in Figure 7.4(b), we may take the
integration of (7.5) along the path∫

a−b
Ein · ul dl =

∫
a−b

J
σ
· ul dl +

∫
a−b

∇ϕ · ul dl +
∫
a−b

∂A
∂t

· ul dl, (7.7)

Figure 7.4 (a) Kirchhoff’s current law. (b) Kirchhoff’s voltage law.
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where ul is the current reference direction in the path, and each term on
the right-hand side of (7.7) represents a voltage drop in the direction of the
current flow

vin =
∫
a−b

Ein · ul dl,

vR =
∫
a−b

J
σ
· ul dl,

vC =
∫
a−b

∇ϕ · ul dl,

vL =
∫
a−b

∂A
∂t

· ul dl.

They are respectively called applied voltage, internal impedance voltage
drop, capacitive voltage drop and inductive voltage drop. Equation (7.7) is
called Kirchhoff’s second law or Kirchhoff’s voltage law.

7.1.3 Low-frequency Approximations and Lumped
Circuit Parameters

A low-frequency circuit refers to the case where the circuit size is small
compared with wavelength or equivalently the following assumptions are
made:

(1) Current is to be taken the same about the entire path.
(2) Retardation is to be neglected in computing the potentials A and φ.

7.1.3.1 RLC Circuits

Since the term J/σ gives the electric field E, we have

vR =
∫
a−b

J
σ
· ul dl = i

∫
a−b

E
i
· ul dl = i

∫
a−b

R′dl = iR,

where R′ is the internal impedance per unit length and is defined by
R′ = E · ul/i, and i is the current flowing through the conductor defined
by i =

∫
Ω

J · uldΩ. Here Ω is the cross-section of the conducting path.
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The vector potential in (7.4) may be written as

A(r) =
µ

4π

∫
V

J(r′)dV (r′)
|r− r′| .

If the gap between the two ends a and b is small, we have∫
a−b

A · ul dl =
∫
S

∇× A · un dS =
∫
S

B · un dS, (7.8)

where S is the region bounded by the circuit path. We may define the
self-inductance as follows

L =
1
i

∫
a−b

A · ul dl =
1
i

∫
S

B · un dS. (7.9)

If the circuit is stationary, the inductive voltage drop becomes

vL =
∫
a−b

∂A
∂t

· ul dl =
d

dt

∫
a−b

A · ul dl =
d

dt
(Li) = L

di

dt
.

Even though the self-inductance is defined in terms of the magnetic flux
and current, it is actually determined by the permeability µ of the medium
and the size, length, and spacing of the conductors that form the current
path. The self-inductance increases if the current loop area increases.

For a broken path, charge may accumulate on both ends a and b as
shown in Figure 7.4(b). We assume that the break is rather small compared
with other dimensions of the circuit. Then the capacitive voltage drop may
be written as

vC =
∫
a−b

∇φ · ul dl =
∫
a−b

∂φ

∂l
dl = φb − φa.

Neglecting the retardation as before, the scalar potential φ in (7.4) can be
written as

φ(r) =
1

4πε

∫
V

ρ(r′)
|r − r′|dV (r′).

If the stray capacitances are negligible so that all significant charge is
concentrated at the discontinuity, q on one end and −q on the other, the
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value of φ will be proportional to q and so will the voltage drop ϕb − ϕa.
The capacitance C is defined by

vC =
q

C
.

The charge q may be calculated as q =
∫ t
−∞ i dt by continuity equation.

As a result, (7.7) can be written as

vin = iR+ L
di

dt
+

1
C

t∫
−∞

i dt, (7.10)

and Figure 7.5 shows the equivalent circuit. The input power pin into the
circuit may be expressed as follows:

pin = pR + pL + pC , (7.11)

where

pin = vini, pR = Ri2, pL = Li
di

dt
, pC = CvC

dvC
dt

.

The first term on the right-hand side of (7.11) is the rate of the energy
absorbed by the resistor R; the second term is the rate of magnetic energy
stored in the inductor; the third term is the rate of electric energy stored
in the capacitor. Equation (7.11) can be rewritten as

pin︷︸︸︷
vini =

pR︷︸︸︷
Ri2 +

pL︷ ︸︸ ︷
dWL

dt
+

pC︷ ︸︸ ︷
dWC

dt
, (7.12)

where

WL =
1
2
Li2, WC =

1
2
Cv2

C (7.13)

are the stored electric energy and magnetic energy, respectively.

Example 7.1 (Sinusoidal excitation): We assume vin(t) = Vin sin(ωt+ϕv),
where Vin is the amplitude. The current in the RLC circuit satisfy the

_ 

+
+ + +_ _ _ 

RLC

VR
VLVC

Vin

i

Figure 7.5 RLC circuit.
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following equation and initial conditions

Ri(t) + L
di(t)
dt

+
1
C
q(t) = Vin sin(ωt+ ϕv) (7.14)

with initial conditions

i(0) = 0, q(0) = q0.

The solution of (7.14) is the sum of the steady state solution and a transient
component:

i(t) = I(t) + e−αt
{
Vd
Lb

ebt − e−bt

2
− Vin

|Z(jω)|
ebt + e−bt

2
sin(ϕv − θ)

}
,

(7.15)

where

I(t) =
Vin

|Z(jω)| sin(ωt+ ϕv − θ)

is the steady state component of current and

Vd = Vin sinφv − VinωL

|Z(jω)| cos(ϕv − θ) − q0
C

− VinR

2 |Z(jω)| sin(ϕv − θ),

|Z(jω)| =

√
R2 +

(
ωL− 1

ωC

)2

, θ = tan−1

[
1
R

(
ωL− 1

ωC

)]
,

α =
R

2L
, b =

√
R2

4L2
− 1
LC

.

When the circuit is in the steady state, we have

Pin =
V 2

in

|Z(jω)| sin(ωt+ ϕv) sin(ωt+ ϕv − θ),

PR =
V 2

inR

|Z(jω)|2 sin2(ωt+ ϕv − θ),

PL =
V 2

inωL

2 |Z(jω)|2 sin 2(ωt+ ϕv − θ),

PC = − V 2
in

2 |Z(jω)|2 ωC sin 2(ωt+ ϕv − θ).
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If the circuit is at resonance, we have

Pin =
V 2

in

R
sin2(ωt+ ϕv),

PR =
V 2

in

R
sin2(ωt+ ϕv − θ),

PL =
1
2

√
L

C

V 2
in

R2
sin 2(ωt+ ϕv − θ),

PC = −1
2

√
L

C

V 2
in

R2
sin 2(ωt+ ϕv − θ).

Note that the resistor directly dissipates all the energy from the source
while the inductor and capacitor exchange energy from each another when
the RLC circuit is at resonance. �

7.1.3.2 Lumped Circuit Elements

The lumped circuit parameters R, L, and C can also be defined by the
energy associated with them. The power dissipated in a region V with a
current density distribution J is

P =
∫
V

J ·E dV ,

and the resistance for the loop shown in Figure 7.4(b) is defined by

R =
P

i2
. (7.16)

Remark 7.1: In the case where the conductors have a uniform cross section
with uniform flow of electric current, the resistivity ρr is defined by

ρr = R
Ω
l
, (7.17)

whereR is the resistance of the conductor, Ω is the cross sectional area of the
conductor and l is the length of the conductor. The resistivity defined this
way makes resistivity a material property. The conductivity σ is defined
as the inverse of the resistivity. �

The magnetic energy stored in the region V is

Wm =
∫
V

1
2
H ·B dV , (7.18)
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and the inductance for the loop is defined by

L =
2Wm

i2
. (7.19)

The electric energy stored in the region V is

We =
∫
V

1
2
E ·D dV , (7.20)

and the capacitance for the loop is defined by

C =
2We

v2
C

. (7.21)

Note that the volume integrals in (7.18) and (7.20) must include the entire
region where the fields are not zero. The inductance defined by (7.19) can
be divided into internal inductance and external inductance

L = Lint + Lext,

where

Lint =
2W int

m

i2
, Lext =

2W ext
m

i2
, (7.22)

with W int
m and W ext

m being respectively the magnetic energy stored inside
and outside the conductor.

The equivalent circuit for a practical resistor is shown in Figure 7.6(a),
where R is the designed value of resistance, L is the inductance including

R

LLL

R
R

C

C

C

Figure 7.6 Equivalent circuits for practical elements. (a) A resistor. (b) A capacitor.
(c) An inductor.
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the lead inductance and the inductance from the resistor itself, and C is the
shunt capacitance of the resistor. The terminal impedance of the equivalent
circuit for the resistor can be written as

Z(ω) = R
1 − (ω/ω2)2 + j(ωω1/ω2ω2)

1 + jω/ω1
,

where

ω1 =
1
RC

, ω2 =
1√
LC

. (7.23)

Usually ω1 �ω2, and the impedance of the resistor has the following
properties:

Z(ω) ≈



R, for ω < ω1,

1/jωC, for ω1 < ω < ω2,

jωL, for ω > ω2.

Thus a practical resistor behaves like a capacitor or inductor when the
frequency becomes very high.

The equivalent circuit for a practical capacitor is shown in
Figure 7.6(b), where C is the designed value of capacitance, L is the lead
inductance, and R is the equivalent series resistance characterizing the
losses in the capacitor. The terminal impedance of the equivalent circuit
for the capacitor can be written as

Z(ω) =
1

jωC

[
1 −

(
ω

ω2

)2

+ j
ωR

ω2
2L

]
,

where ω1 and ω2 are given by (7.23). Usually R/L� 1, and the terminal
impedance of the capacitor has the following properties:

Z(ω) ≈
{

1/jωC, for ω�ω2,

jωL, for ω�ω2.

The capacitor behaves like an inductor when the frequency becomes very
high.

The equivalent circuit for a practical inductor is shown in Figure 7.6(c),
where L is the designed value of inductance, C is the parasitic capacitance
between the windings of the inductor, andR represents the losses in the wire
and magnetic material. The terminal impedance of the equivalent circuit
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for the inductor can be written as

Z(ω) = jωL
1 − j(ω1/ω)

1 − (ω/ω2)2 + j(ωω1/ω2
2)
,

where

ω1 =
R

L
, ω2 =

1√
LC

, ω1 ≤ ω2.

The impedance of the inductor has the following properties:

Z(ω) ≈



R, for ω < ω1,

jωL, for ω1 < ω < ω2,

1/jωC, for ω > ω2.

The inductor behaves like a capacitor when frequency becomes very high.

7.1.4 Mutual Coupling between Low-Frequency Circuits

The electromagnetic energy may be transferred from one circuit to another
by mutual coupling such as the mutual induction in a transformer.

7.1.4.1 Inductive Coupling

Mutual inductive coupling occurs when the current in one branch of the
circuit produces an induced field in another branch. Figure 7.7 shows two
circuits coupled through inductive effects. The total electric field in circuit
1 is made up of two parts, one is generated by the current i1 and the
other part is induced by the current i2. To compute the induced voltage
in circuit 1 due to the changing current i2 in circuit 2, we consider the
inductive voltage drop∫

C1

∂A2

∂t
· ul1dl1 =

d

dt

∫
C1

A2 · ul1dl1, (7.24)

Circuit 1 Circuit 2

i1
i2

Figure 7.7 Inductive coupling.
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where A2 is the vector potential associated with the current i2, which,
neglecting the retardation, may be written as

A2 =
µi2
4π

∫
C2

ul2dl2
R

. (7.25)

The current i2 has been taken as a constant along the path. We can define
the mutual inductance by

M12 =
1
i2

∫
C1

A2 · ul1 dl1 =
1
i2

∫
Ω1

B2 · un dΩ. (7.26)

Hence (7.24) can be written as∫
C1

∂A2

∂t
· ul dl =

d

dt
(M12i2) = M12

di2
dt
.

Substituting (7.25) into (7.26), we obtain the Neumann form

M12 =
µ

4π

∫
C1

∫
C2

dl1ul1 · dl2ul2
R

. (7.27)

Apparently, the following reciprocal relation holds

M12 = M21

from (7.27).

7.1.4.2 Capacitive Coupling

By a mutual capacitive coupling we mean that the charge of one branch of
the circuit produces an induced field in another branch. Figure 7.8 shows
two circuits coupled through capacitive effects. The induced voltage drop

Circuit 1

i1
i2

Circuit 2

Figure 7.8 Capacitive coupling.
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in circuit 1 due to charges in circuit 2 may be written as
b∫
a

∇ϕ2 · ul1dl1 = ϕ2b − ϕ2a =
Q2

C12

where C12 is the mutual capacitance.

7.2 Electromagnetic Emissions and Susceptibility

Electromagnetic interference refers to the unwanted electromagnetic
energy emitted by quickly changing signals in electrical circuits, which
degrades or limit the effective performance of normal signals. Mobile
phones, for example, may interfere with other instruments such as medical
equipment and airplane controls. Integrated circuits are often a source of
EMI, which usually couple their energy to larger objects such as heat sinks,
circuit boards and cables to radiate significantly. The FCC requires that
the radiated emissions by a digital device at distances of 3 and 10 meters
from the device under test (DUT) are less than some specified limits.

Susceptibility is the sensitivity of a device’s function to incoming
EMI. In other words, susceptibility is the ability of the device to operate
correctly in the presence of EMIs. A device which has high susceptibility
has low immunity.

7.2.1 Rules for Emission Reductions

Contrary to the antenna design, EMC design endeavors to diminish the
unwanted emissions and makes the unwanted emitting sources less efficient.
Many circuit parts of a digital electronic device, such as long traces and
various discontinuities, may radiate electromagnetic energy. It will thus be
beneficial to have some rules of reducing the electromagnetic emissions in
order for a device to meet the EMC standards.

The vector wave equations in time domain can be derived from Maxwell
equations as follows

∇2E(r, t) − µε
∂2E(r, t)
∂t2

= SE(r, t), (7.28)

∇2H(r, t) − µε
∂2H(r, t)

∂t2
= SH(r, t), (7.29)

where

SE(r, t) = µ
∂J(r, t)
∂t

+ ∇× Jm(r, t) +
1
ε
∇ρ(r, t),

SH(r, t) = ε
∂Jm(r, t)

∂t
−∇× J(r, t) +

1
µ
∇ρm(r, t).
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If all the sources of the fields are confined in a finite volume V , the solutions
of (7.28) and (7.29) may be expressed by

E(r, t) = −
∫
V

SE(r′, t− |r − r′|/v)
4πR

dV (r′), (7.30)

H(r, t) = −
∫
V

SH(r′, t− |r− r′|/v)
4πR

dV (r′), (7.31)

where v = 1/
√
µε. It can be seen that the contributions of the sources to

the fields are not through the sources themselves but through their time
and space variations. As a result, wires with concentrated or distributed
loadings along their length radiate more efficiently than unloaded wires
and the major contributions to the radiation fields may come from the
ends of the wires. Physically, the loading and the discontinuities increase
the gradient of charges along the wires.

First Rule for Emission Reduction: All unintentional current
carriers should be properly designed to keep the time and space variations
of the current and charge distributions on the carriers as small as possible.
For example, avoiding long traces, sharp bends, sharp tips, and gaps are
effective measures in reducing radiations.

The emission can also be reduced by increasing the rise-time of the
pulse. To demonstrate this point, we may consider the current distribution

J(r, t) = J(r)f(t)δ(z), r ∈ Ω,

and its radiated electric field on the z-axis (Geyi, 1996a):

E(0, 0, z, t) = − µ

4πz
df(t− z/v)

dt

∫
Ω

J(r′)dΩ(r′).

The time-integrated Poynting vector of the fields is

S(0, 0, z) =
1
η

∞∫
−∞

|E(0, 0, z, t)|2 dt

= η

(
1

4πzv

)2
∣∣∣∣∣∣
∫
Ω

J(r′)dΩ(r′)

∣∣∣∣∣∣
2 ∞∫
−∞

∣∣∣∣df(t)
dt

∣∣∣∣
2

dt. (7.32)
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This indicates that the shorter the rise time of the exciting pulse, the
stronger is the radiating energy. The property implies that the radiation
intensity can be increased by decreasing the rise time of the pulse. Let us
consider an interesting case where the exciting pulse is a modulated signal
with a finite duration T and a carrier whose cycle is T0 = T/n (n > 1):

f(t) = Ag(t) sin
(
πt

T0

)
, 0 < t < T. (7.33)

If the energy of the pulse is normalized, i.e.,

T∫
0

g2(t)dt = 1,

T∫
0

f2(t)dt = 1,

we have A ≥ 1. Substituting (7.33) into (7.32) gives

S(0, 0, z) = η

(
1

4πzv

)2
∣∣∣∣∣∣
∫
Ω

J dΩ

∣∣∣∣∣∣
2

·


(nπ
T

)2

+
A2

2

T∫
0

[
dg(t)
dt

]2

dt

−A
2

2

T∫
0

[
dg(t)
dt

]2

cos
(

2nπt
T

)
dt


 . (7.34)

The last term in the curved brackets decreases rapidly as n increases. As a
result, the time integrated energy on the z-axis increases as n increases. In
other words, the energy density of the radiated electromagnetic pulse can be
enhanced by increasing the frequency of the carrier. The above discussion
leads to the second rule for Emission reduction.

Second Rule for Emission Reduction: The waveform of the high-
speed signal should be properly designed so that the rise time of the high-
speed signals is under control. A modulated signal with higher carrier
frequency intends to emit more efficiently.

7.2.2 Fields of Electric Dipoles

An electric dipole is a system consisting of two point charges of equal
magnitude q(t) but opposite sign separated by a fixed distance l, as shown
in Figure 7.9(a). According to the continuity equation, we have∫

∂V0

J · un dS = − ∂

∂t

∫
V0

ρ dV ,
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o o 

x x 

y

zz

Figure 7.9 Electric dipole.

where V0 is a volume enclosing one of the charges. Hence

i(t) =
dq(t)
dt

. (7.35)

If we define the current moment j and electric dipole moment p

j(t) = j(t)uz = i(t)luz, (7.36)

p(t) = p(t)uz = q(t)luz. (7.37)

then (7.35) can be written as

j(t) =
dp(t)
dt

. (7.38)

Equation (7.38) indicates that an electric dipole is equivalent to an electric
current element i(t)l, as shown in Figure 7.9(b).

7.2.2.1 Infinitesimal Electric Dipole

An infinitesimal dipole or a Hertzian dipole is obtained when the
length of the dipole approach to zero while the charges are increased to
infinity so that the dipole moment remains finite. To fully understand
how the dipole radiates, one should go to the time domain. In spherical
coordinate system, the electromagnetic fields generated by an infinitesimal
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dipole in time domain can be easily obtained as follows

Er(r, t) =
2 cos θ
4πε

[
1
r3
p(tr) +

1
vr2

ṗ(tr)
]
,

Eθ(r, t) =
sin θ
4πε

[
1
r3
p(tr) +

1
vr2

ṗ(tr) +
1
v2r

p̈(tr)
]
,

Hϕ(r, t) =
sin θ
4π

[
1
r2
ṗ(tr) +

1
vr
p̈(tr)

]
,

Eϕ(r, t) = Hr(r, t) = Hθ(r, t) = 0,

(7.39)

where tr = t − r/v. The electric field consists of three terms with the
radial dependences 1/r3, 1/r2, and 1/r, respectively. The first term 1/r3 is
proportional to the dipole moment which predominates close to the dipole.
This is the exact expression for a static dipole with the static moment
replaced by time-varying moment. The second term 1/r2 is proportional
to the time derivative of the dipole moment and the third term 1/r to
the second derivative of the dipole moment. The radiated electromagnetic
fields are

Eθ(r, t) =
µ

4πr
p̈(tr) sin θ,

Hϕ(r, t) =
1

4πrv
p̈(tr) sin θ.

(7.40)

For a small electric current element Il in frequency domain, we may write

p = puz =
Il

jω
uz, (7.41)

and (7.39) become

Er(r) =
2Il cos θ
4πωε

e−jkr
(
k

r2
− j

r3

)
,

Eθ(r) =
Il sin θ
4πωε

e−jkr
(
jk2

r
+
k

r2
− j

r3

)
,

Hϕ(r) =
Il sin θ

4π
e−jkr

(
jk

r
+

1
r2

)
,

Eϕ(r) = Hr(r) = Hθ(r) = 0.

(7.42)
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In the far-field region, the fields are

Eθ(r) =
jkηIl sin θ

4πr
e−jkr,

Hϕ(r) =
jkIl sin θ

4πr
e−jkr .

(7.43)

where η =
√
µ/ε.

Example 7.2: Two charges +q and −q, located at the origin of the
coordinate system, are suddenly separated by a distance l at t = 0. The
dipole moment is then given by

p(t) = U(t)qluz,

where U(t) is a unit step function. Substituting the above equation into
(7.39) yields

Er(r, t) =
2ql cos θ

4πε

[
1
r3
U(tr) +

1
vr2

δ(tr)
]
,

Eθ(r, t) =
ql sin θ
4πε

[
1
r3
U(tr) +

1
vr2

δ(tr) +
1
v2r

δ′(tr)
]
,

Hϕ(r, t) =
ql sin θ

4π

[
1
r2
δ(tr) +

1
vr
δ′(tr)

]
tr=t−r/v

.

Note that the magnetic field only appears at t = r/v and the fields are not
continuous. �

To examine the energy flow around the small dipole, let us apply the
time-domain Poynting theorem to a region V bounded by two spherical sur-
faces SR1 and SR2 with radius R1 and R2 respectively, where R1<R2 and
the smaller spherical surface encloses the dipole, as shown in Figure 7.10.
Then ∫

SR2

S · ur dS −
∫
SR1

S · ur dS = − ∂

∂t

∫
V

(we + wm)dV , (7.44)

SR2R1
S

V

Figure 7.10 Energy flow around the small dipole.
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where

S · ur = (E × H) · ur = EθHϕ, we =
1
2
εE ·E, wm =

1
2
µH ·H.

Taking the integration from t1 and t2, we obtain
t2∫
t1

∫
SR2

S · ur dS dt−
t2∫
t1

∫
SR1

S · ur dS dt

=
∫
V

(we + wm)t1dV −
∫
V

(we + wm)t2dV . (7.45)

Assume that the generator emits a short pulse and then is turned off. If
the pulse emitted by the dipole completely passes SR1 after t2, the second
term on the left-hand side vanishes and the first term is just the radiated
energy into space over the time interval [t1, t2]. The right-hand side denotes
the decrease of the total stored energy over the time interval [t1, t2] in the
region V . This relationship indicates that the stored energy around the
dipole is the source of the radiated energy when the generator is turned off.

7.2.2.2 Electrically Short Dipole Antennas

Electrically small dipole antennas can be related the electric dipole
discussed above. The antenna is electrically small in the sense that the
variation of the applied voltage source v(t) is negligible during the time for
the electromagnetic waves to travel the length of the antenna, say 2a as
shown in Figure 7.11. Let the current distribution along the dipole antenna
and the charge per unit length be noted by J(z, t) and ρ(z, t), respectively.
At the antenna terminal, the current and charge will be noted by J0(t)

0
2a o 

z 

0
( ) ( )v t v t 2a

Figure 7.11 Small dipole antennas.
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and ρ0(t), respectively. The total charge on one of the arm is assumed
to be Q(t). It is then appropriate to assume that the charges throughout
the antenna change almost instantaneously in response to a change in the
applied voltage. The antenna is then equivalent to a capacitor, i.e.,

Q(t) ≈ Cav0(t).

For the top loaded antenna shown in Figure 7.11(a), we further assume
that the current distribution is approximately uniform in the wires, i.e.,
J(z, t) ≈ J0(t), which charges and discharges the plates. Based on this
assumption, we have

∂ρ

∂t
= −∂J

∂z
≈ −∂J0

∂z
≈ 0,

which implies

ρ(z, t) ≈
t∫

−∞
0 dt = 0

and the total charge Q(t) on the upper half of the antenna is on the upper
plate. So the dipole moment for the top loaded antenna is

p(t) = 2aQ(t) = 2a

t∫
−∞

J0(t′)dt′. (7.46)

For the dipole antenna shown in Figure 7.11(b), the current at two ends
must be zero as there are no plates on which to deposit charge. We assume
that the current distribution is a triangular

J(z, t) = J0(t)
(

1 − |z|
a

)
.

So we have
∂ρ(z, t)
∂t

= −∂J(z, t)
∂z

= ±J0(t)
a

and

ρ(z, t) = ±ρ0(t) =
1
a

t∫
−∞

J0(t′)dt′,

where the + sign applies for the upper arm (z > 0) and – sign for the lower
arm (z < 0). The effective dipole moment is then

p(t) =

a∫
−a

zρ(z, t)dz = a2ρ0(t) = a

t∫
−∞

J0(t′)dt′. (7.47)
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Hence the radiated field of the uniform current distribution is twice that of
the triangular current distribution when the current at the terminals is the
same for both. When the dipoles are electrically small we can model them
as an infinitesimal electric dipole and determine their fields by inserting
(7.46) or (7.47) into (7.39). Note that

p̈(t) ∝ J̇0(t) ∝ v̈0(t).

So the radiated field is proportional to the first derivative of current
and second derivative of the applied voltage. Since the power radiated is
proportional to |p̈|2, the radiated power of uniform current distribution will
be four times larger than the triangular distribution.

7.2.3 Fields of Magnetic Dipoles

The definition of a magnetic dipole is exactly the same as the electric
dipole and we only need to replace q(t) by qm(t), and i(t) by im(t). The
magnetic dipole is fictitious entity due to the nonexistence of magnetic
charge in nature. This theoretical conception has been proved to be very
useful. Basically magnetic source is an idea from the equivalent principles.
In fact, a magnetic dipole is equivalent to a small electric current loop in
the sense that they both produce the same fields outside the source region.
The magnetic dipole moment is defined by

m(t) = m(t)ui = qm(t)lui. (7.48)

It can be shown that the electromagnetic fields produced by (7.48) will be
the same as that produced by a small electric current loop if we let

m(t) = µi(t)Sun, (7.49)

where S is the area of the loop, i(t) is the current in the loop, and un is the
unit normal whose direction is determined by the right hand rule as shown
in Figure 7.12(a).

The multi-turn loop antenna is shown in Figure 7.12(b). When the loop
is electrically small, the current is approximately uniform with the value
i0(t). At any cross section of the multi-turn loop the total current is ni0(t),
where n is the number of turns. So the magnetic dipole moment is

m(t) = m(t)un = µni(t)Sun.

The electrically small loop antenna can be modeled as an infinitesimal
magnetic dipole whose fields can be obtained by duality through (7.48)
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i(t)

v0(t) v 0(t)

un
un

s

Figure 7.12 Loop antennas.

and (7.49),

Eϕ(r, t) = − sin θ
4π

[
1
r2
ṁ(tr) +

1
vr
m̈(tr)

]
,

Hr(r, t) =
2 cos θ
4πµ

[
1
r3
m(tr) +

1
vr2

ṁ(tr)
]
, (7.50)

Hθ(r, t) =
sin θ
4πµ

[
1
r3
m(tr) +

1
vr2

ṁ(tr) +
1
v2r

m̈(tr)
]
.

The antenna behaves essentially as an inductor La, thus

v0(t) = La
di(t)
dt

.

The radiated field of the small loop is proportional to m̈(t) given by

m̈(t) = µnï(t)S =
µnS

La
v̇0(t).

So the radiated field is proportional to the first derivative of the applied
voltage or the second derivative of the current.

In frequency domain, (7.50) may be written as

Eϕ(r) = − jmω sin θ
4π

e−jkr
(
jk

r
+

1
r2

)
,

Hr(r) =
2m cos θ

4πµ
e−jkr

(
jk

r2
+

1
r3

)
, (7.51)

Hθ(r) = − jm sin θ
4πµ

e−jkr
(
− jk

2

r
− k

r2
+

j

r3

)
.
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7.2.4 Emissions from Common Mode Current
and Differential Mode Current

Consider two parallel conducting wires as shown in Figure 7.13. The two
wires carry currents I1 and I2 respectively. Then we may write

I1 = Ic + Id, I2 = Ic − Id

where

Ic =
1
2
(I1 + I2), Id =

1
2
(I1 − I2)

are called common mode current and differential mode current,
respectively. When the two wires are balanced we have I1 = −I2 and the
common mode current does not occur. With a clamp-on current probe
that encloses both wires, the differential mode current would read zero
while the common mode current would give a non-zero reading. The
desired signal currents exist only in the differential mode while the noise
current may exist in either the differential or common mode forms. The
common and differential mode emissions can be studied by the theory of
array antennas. Consider two z-directed current elements I1 dl and I2 dl

separated by a distance d as illustrated in Figure 7.14. Assuming I1 =
I∠0◦, I2 = I∠α, the array factor for the two-element array is then given by
(see Section 5.11)

AF = 2Iej
α
2 cos

(
α

2
− kd

2
sin θ cosϕ

)
.

The far-field produced by the two current elements can be expressed as

Eθ(r) =
j2ωµI dl sin θ

4π
e−jkr

r
ej

α
2 cos

(
α

2
− kd

2
sin θ cosϕ

)
. (7.52)

= +

Figure 7.13 Common mode current and differential mode current.
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o 

Figure 7.14 Two parallel current elements.

For two differential mode current elements, we may let I = Id, α = π in
(7.52) to get the far-field expression for the two-element system as follows:

Edθ(r) = −2ωµId dl
4π

e−jkr

r
sin θ sin

(
kd

2
sin θ cosϕ

)
. (7.53)

For two common mode current elements, we may let I = Ic, α = 0 in (7.52)
to find the far-field expression for the two-element system as follows

Ecθ(r) =
j2ωµIc dl

4π
e−jkr

r
sin θ cos

(
kd

2
sin θ cosϕ

)
. (7.54)

Note that ∣∣∣∣Edθ(r)Ecθ(r)

∣∣∣∣ =
∣∣∣∣IdIc tan

(
kd

2
sin θ cosϕ

)∣∣∣∣ . (7.55)

7.2.5 Multi-Conductor Transmission Line Models
for Susceptibility

An electronic device must comply with the regulatory limits on radiated
emissions and also must be insensitive to other interferences to ensure a
reliable operation. In many situations, the internal circuits of electronic
devices can be modeled as multi-conductor transmission lines. The voltage
induced by an external incident field Ein at the terminations of the
transmission line can be used to estimate the susceptibility. The external
incident field Ein may be in the form of uniform plane waves generated by
a distant radiator or non-uniform waves generated by a nearby radiator.
The effects of the external sources can be incorporated into transmission
line equation as distributed sources along the line (Paul, 2006).
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Conductor n

Conductor i

Conductor 0 (reference)

z 

a b 

c d 

Figure 7.15 Multi-conductor transmission line.

Consider a multi-conductor transmission line consisting of n+1 uniform
conductors parallel to the z-axis, as illustrated in Figure 7.15. We may draw
a rectangular region Si bounded by Li between the reference conductor and
conductor i. It follows from Maxwell equations and Stokes theorem that∫

Si

∇× E · ub dS =
∫
Li

E · ul dl = − ∂

∂t

∫
Si

B · ub dS, (7.56)

where ul is the unit tangent vector along Li in the anti-clockwise direction,
and ub is the unit vector pointing out of page. The above equation can be
written as ∫

ab

E · ul dl +
∫
bc

E · ul dl +
∫
cd

E · ul dl +
∫
da

E · ul dl

= − ∂

∂t

∫
Si

B · ub dS, (i = 1, 2, . . . , n). (7.57)

The total field may be decomposed as the sum of the incident field and the
scattered field

E = Ein + Es, B = Bin + Bs.

The scattered field Es is generated by the induced currents and charges on
the line conductors. If we assume that the currents on the line conductors
are z-directed, the scattered magnetic field Bs will be transverse to the
z-direction. As a result, a voltage corresponding to the scattered field may
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x 

y 

o 

un

Figure 7.16 Cross section of multi-conductor transmission line.

be uniquely defined between the conductor i and the reference conductor

Vsi(z, t) = −
∫
ad

Es · ul dl, Vsi (z + ∆z, t) = −
∫
bc

Es · ul dl. (7.58)

Referring to Figure 7.16, the current on the ith conductor is defined by the
line integral of surface current Js = un × H

Ii(z, t) =
∫
Γi

Js · uz dΓ =
∫
Γi

H · uΓ dΓ, (7.59)

where Γi is the boundary of ith conductor. Since the scattered magnetic
field is transverse we may write

lim
∆z→0

1
∆z

∫
Si

Bs · ub dS = −
n∑
j=1

lijIj(z, t), (7.60)

where lij (j = 1, 2, . . . , n) are inductances per unit length. The resistance
per unit length ri on the lines is defined by

∫
ba

E · ul dl = r0∆z
n∑
j=1

Ij(z, t),
∫
dc

E · ul dl = ri∆zIi(z, t). (7.61)

Substituting (7.58), (7.60) and (7.61) into (7.57), we obtain

n∑
j=1

r0Ij(z, t) + riIi(z, t) +
Vsi(z + ∆z, t) − Vsi(z, t)

∆z
+

n∑
j=1

lij
∂

∂t
Ij(z, t)

=
1

∆z
∂

∂t

∫
Si

Bin · ub dS +
1

∆z

∫
bc

Ein · ul dl + 1
∆z

∫
da

Ein · ul dl,

i = 1, 2, . . . , n. (7.62)
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As ∆z → 0, this becomes

∂

∂z
Vsi(z, t) +

n∑
j=1

r0Ij(z, t) + riIi(z, t) +
∂

∂t

n∑
j=1

lijIj(z, t)

=
∂

∂t

∫
ad

Bin · ub dl + ∂

∂z

∫
ad

Ein · ul dl, i = 1, 2, . . . , n. (7.63)

Note that (7.57) also holds for the incident fields:∫
ab

Ein · ul dl +
∫
bc

Ein · ul dl +
∫
cd

Ein · ul dl +
∫
da

Ein · ul dl

= − ∂

∂t

∫
Si

Bin · ub dS, (7.64)

which yields

− ∂

∂t

∫
Si

Bin · ub dS −
∫
bc

Ein · ul dl −
∫
da

Ein · ul dl

= −∆z Ein(z, t) · uz |conductor i + ∆z Ein(z, t) · uz |conductor0. (7.65)

As ∆z → 0, (7.65) becomes

∂

∂t

∫
ad

Bin · ub dl + ∂

∂z

∫
ad

Ein · ul dl

= Ein(z, t) · uz|conductor i − Ein(z, t) · uz|conductor 0
. (7.66)

Thus (7.63) can be rewritten as

∂

∂z
Vsi(z, t) +

n∑
j=1

r0Ij(z, t) + riIi(z, t) +
∂

∂t

n∑
j=1

lijIj(z, t)

= Ein(z, t) · uz|conductor i − Ein(z, t) · uz|conductor 0, i = 1, 2, . . . , n.

(7.67)

The above equation can be written in matrix form as

∂

∂z
[Vs] + [R] [I] + [L]

∂

∂t
[I] = [∆Ein · uz] (7.68)
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where

[Vs] = [Vs1, Vs2, . . . , Vsn]T , [I] = [I1, I2, . . . , In]
T,

[∆Ein · uz ] =




Ein(z, t) · uz|conductor 1 − Ein(z, t) · uz |conductor0

Ein(z, t) · uz|conductor 2 − Ein(z, t) · uz |conductor0

...

Ein(z, t) · uz|conductorn − Ein(z, t) · uz |conductor0



,

[R] =




r0 + r1 r0 · · · r0

r0 r0 + r2 · · · r0

...
...

. . .
...

r0 r0 · · · r0 + rn



, [L] =




l11 l12 · · · l1n

l21 l22 · · · l2n

...
...

. . .
...

ln1 ln1 · · · lnn



.

(7.69)

We now enclose the ith conductor with a cylinder of length ∆z, as illustrated
in Figure 7.17. The side surface of the ith cylinder is denoted by Sρi and
the two ends are denoted by Szi. It follows from the continuity equation

Conductor n

Conductor i

Conductor 0  

z 

(a) (b)

0Γ

iΓ

sjV

jΓ

siV

si sjV V−

Cylinder 

x 

y 

o

Figure 7.17 (a) Multi-conductor transmission line. (b) Cross-section of multi-
conductor transmission line.
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that ∫
Sρi+Szi

J · un dS = −∂Qi
∂t

, i = 1, 2, . . . , n, (7.70)

where un is the unit outward normal of the cylinder, and Qi is the net
charge contained in the cylinder. Evidently, we have∫

Szi

J · un dS = Ii(z + ∆z, t) − Ii(z, t). (7.71)

The transverse conduction current Iti(z, t) between the ith conductor and
all other conductors is given by

Iti(z, t) = lim
∆z→0

1
∆z

∫
Sρi

J · un dS

= gi1(Vsi − Vs1) + · · · + giiVsi + · · · + gin(Vsi − Vsn)

= −gi1Vs1 − · · · + Vsi

n∑
j=1

gij − · · · − ginVsn, (7.72)

where gij is the conductance per unit length between the ith conductor line
and jth conductor line. The net charge per unit length can be expressed as

lim
∆z→0

Qi
∆z

= ci1(Vsi − Vs1) + · · · + ciiVsi + · · · + cin (Vsi − Vsn)

= −ci1Vs1 − · · · + Vsi

n∑
j=1

cij − · · · − cinVsn. (7.73)

Substituting (7.71)–(7.73) into (7.70) yields

∂

∂z
Ii(z, t) − gi1Vs1(z, t) − · · · + Vsi(z, t)

n∑
j=1

gij − · · · − ginVsn(z, t)

+
∂

∂t


−ci1Vs1(z, t) − · · · + Vsi(z, t)

n∑
j=1

cij − · · · − cinVsn(z, t)


,

i = 1, 2, . . . , n. (7.74)

This can be written in matrix form as

∂

∂z
[I] + [G] [Vs] + [C]

∂

∂t
[Vs] = 0, (7.75)
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where

[G] =




n∑
j=1

g1j −g12 · · · −g1n

−g21
n∑
j=1

g2j · · · −g2n
...

...
. . .

...

−gn1 −gn1 · · ·
n∑
j=1

gnj



,

[C] =




n∑
j=1

c1j −c12 · · · −c1n

−c21
n∑
j=1

c2j · · · −c2n
...

...
. . .

...

−cn1 −cn1 · · ·
n∑
j=1

cnj



. (7.76)

The multi-conductor transmission line is characterized by (7.68) and (7.75),
which are summarized below:

∂

∂z
[Vs] + [R] [I] + [L]

∂

∂t
[I] = [∆Ein · uz ],

∂

∂z
[I] + [G] [Vs] + [C]

∂

∂t
[Vs] = 0.

(7.77)

These are a set of 2n first-order partial differential equations, which are
coupled by resistance matrix [R], conductance matrix [G], inductance
matrix [L], and the capacitance matrix [C]. All these matrices consist of
parameters per unit length. The scattered voltages can be replaced by the
total voltages through the relation

Vi(z, t) = Vsi −
∫
ad

Ein · ul dl
∣∣∣∣∣∣
conductor i

. (7.78)
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Substituting this into (7.77) gives

∂

∂z
[V ] + [R] [I] + [L]

∂

∂t
[I] = [∆Ein · uz] +

∂

∂z
[Vin],

∂

∂z
[I] + [G] [V ] + [C]

∂

∂t
[V ] = [G] [Vin] + [C]

∂

∂t
[Vin].

(7.79)

where

[V ] = [V1, V2, . . . , Vn]
T ,

[Vin] =


− ∫

ad

Ein · ul dl
∣∣∣∣∣∣
conductor1

, −
∫
ad

Ein · ul dl
∣∣∣∣∣∣
conductor 2

, . . . ,

−
∫
ad

Ein · ul dl
∣∣∣∣∣∣
conductorn



T

.

Example 7.3: Consider a two-wire transmission line of length l illuminated
by an incident field (Ein,Hin), as shown in Figure 7.18. The transmission
line lies in the (x, z)-plane and is terminated with impedances Zs and ZL
at both ends. For this arrangement, (7.79) reduces to

∂

∂z
V (z, t) + L

∂

∂t
I(z, t) + RI(z, t)

= Ein(z, t) · uz|conductor 1 − Ein(z, t) · uz |conductor0 −
∂

∂z

d∫
0

Ein · uz dx,

∂

∂z
I(z, t) + C

∂

∂t
V (z, t) +GV (z, t)

= −C
∂

∂t

d∫
0

Ein · uz dx−G

d∫
0

Ein · uz dx, (7.80)

z 

x zs 

Ein ,Hin

d 

l 

o 

Figure 7.18 Two-wire transmission line illuminated by incident field (l� d).
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where L and C are inductance and capacitance per unit length for the
two-wire line. In terms of (7.66), we may rewrite the above equations as

∂

∂z
V (z, t) + L

∂

∂t
I(z, t) +RI(z, t) = − ∂

∂t

d∫
0

Bin · uy dx,

∂

∂z
I(z, t)+C

∂

∂t
V (z, t)+GV (z, t) = −C ∂

∂t

d∫
0

Ein · uz dx−G

d∫
0

Ein ·uz dx

(7.81)
with the boundary conditions given by

V (0, t) = I(0, t)Zs, V (l, t) = I(l, t)ZL. (7.82)

It follows from (7.81) that

∂2

∂z2
V (z, t) − LC

∂2

∂t2
V (z, t) − (LG+RC)

∂

∂t
V (z, t) −RGV (z, t)

= − ∂2

∂z∂t

d∫
0

Bin · uy dx+ LC
∂2

∂t2

d∫
0

Ein · uz dx

+ (LG+RC)
∂

∂t

d∫
0

Ein · uz dx+RG

d∫
0

Ein · uz dx. (7.83)

This is the modified Klein–Gordon equation and its solution has been
discussed in Chapter 2. �

7.3 Electromagnetic Coupling through Apertures

Electromagnetic coupling through apertures in conductors, intentional or
unintentional, is widely encountered in microwave engineering and has
been extensively investigated by many authors. The apertures are often
intentionally introduced to couple the electromagnetic energy from one
part to another in electronic devices, such as the coupling from waveguide
to waveguide, waveguide to cavity, and cavity to cavity. Other desirable
aperture coupling includes aperture antennas, slot antennas and microstrip
patch antennas. Unintentional coupling often appears as leakage through
apertures from electronic devices such as ventilation holes, visual access
windows, and cracks around doors, and must be minimized or eliminated
in the EMC designs. The rigorous analysis of field coupling through
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apertures is very difficult in general. Many applications are based on the
results from the coupling through an aperture in a planar conducting
screen.

7.3.1 Coupling through Arbitrary Apertures

Consider a planar perfectly conducting screen S of infinite extent at z = 0,
which is perforated with a finite aperture A, as shown in Figure 7.19(a)
and 7.19(b). A current source J is assumed in Region 1 (z < 0), which
produces fields E,H. When the aperture is closed (i.e., absent), the
fields generated by the current J are denoted by Ein,Hin. According to
equivalence principle, the fields in Region 1 may be determined by an
equivalent magnetic current J′

ms = uz × E spread over the aperture
with Region 2 filled with a perfect conductor and the original source J,

y 

x A 
A 

z 

y 

J 

1 2 

S 

y 

z 

y 

J 

1 

z 

2 

Figure 7.19 Aperture in planar conducting screen.
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as illustrated in Figure 7.19(c). The fields in Region 1 can be written as

E1(r) = Ein(r) + Es1(r),

H1(r) = Hin(r) + Hs1(r),
(7.84)

where Es1(r) and Hs1(r) are the fields generated by the equivalent magnetic
current J′

ms. By means of the image principle, we may write

Es1(r) = −∇× 1
4π

∫
A

Jms(r′)
e−jkR

R
dS(r′)

= − 1
4π

∫
A

Jms(r′) ×∇′ e
−jkR

R
dS(r′), (7.85)

Hs1(r) =
1

j4πωµ0
∇×∇×

∫
A

Jms(r′)
e−jkR

R
dS(r′)

= − 1
4πµ0

∫
A

ρms∇e−jkR

R
dS(r′) − jωε0

4π

∫
A

Jms(r′)
e−jkR

R
dS(r′),

(7.86)

where Jms = 2uz×E, R = |r− r′|. The fields in Region 2 can be determined
by the source −J′

ms = −uz × E (the − sign ensures that the tangential
electrical field is continuous across the aperture). In a similar way, we have

E2(r) = ∇× 1
4π

∫
A

Jms(r′)
e−jkR

R
dS(r′)

=
1
4π

∫
A

Jms(r′) ×∇′ e
−jkR

R
dS(r′), (7.87)

H2(r) = − 1
j4πωµ0

∇×∇×
∫
A

Jms(r′)
e−jkR

R
dS(r′)

=
1

4πµ0

∫
A

ρms∇e−jkR

R
dS(r′) +

jωε0
4π

∫
A

Jms(r′)
e−jkR

R
dS(r′).

(7.88)
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Now the tangential magnetic field must be continuous across the aperture.
So we obtain the integro-differential equation for Jms(r)

1
2πµ0

∇
∫
A

ρms(r′)
e−jkR

R
dS(r′) +

jωε0
2π

∫
A

Jms(r′)
e−jkR

R
dS(r′) = Hin(r).

(7.89)
The electric field must also be continuous across the aperture. This gives

1
2π

∇×
∫
A

Jms(r′)
e−jkR

R
dS(r′) = Ein(r). (7.90)

Equation (7.89) or (7.90) can be solved numerically. Once Jms(r) is known,
the fields can be determined from (7.85)–(7.88).

7.3.2 Coupling through Small Apertures

When the aperture is small compared with the wavelength an approxi-
mation solution to the electromagnetic coupling may be developed along
the same line of thought as Bethe’s early work (Bethe, 1944). For a small
aperture with kR� 1, we may use the Taylor expansions

e−jkR

R
=

1
R

− jk − k2R

2
+
jk3R2

6
+ · · · ,

∇e−jkR

R
= ∇ 1

R
− k2

2
uR +

jk3R

3
uR + · · · ,

where uR = (r − r′)/R. Thus we have∫
A

Jms(r′)
e−jkR

R
dS(r′)

=
∫
A

Jms(r′)
R

dS(r′) − jk

∫
A

Jms(r′)dS(r′) − k2

2

∫
A

Jms(r′)RdS(r′),

∫
A

ρms(r′)∇e−jkR

R
dS(r′)

=
∫
A

ρms(r′)∇ 1
R
dS(r′) − k2

2

∫
A

ρms(r′)uR dS(r′)

+
jk3

3

∫
A

ρms(r′)(r − r′)dS(r′),
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∫
A

Jms(r′) ×∇e−jkR

R
dS(r′)

=
∫
A

Jms(r′) ×∇ 1
R
dS(r′) − k2

2

∫
A

Jms(r′) × uR dS(r′)

+
jk3

3

∫
A

Jms(r′) × (r − r′)dS(r′).

Substituting these into (7.89) and (7.90) yields

1
2πµ0

∫
A

ρms(r′)∇ 1
R
dS(r′)

= Hin(r) +
k2

4πµ0

∫
A

ρms(r′)uR dS(r′) − jk3

6πµ0

∫
A

ρms(r′)(r − r′)dS(r′)

− jk

2πη


∫
A

Jms(r′)
R

dS(r′) − jk

∫
A

Jms(r′)dS(r′)

− k2

2

∫
A

Jms(r′)RdS(r′)


, (7.91)

1
2π

∫
A

Jms(r′) ×∇ 1
R
dS(r′) = −Ein(r) +

k2

4π

∫
A

Jms(r′) × uR dS(r′)

− jk3

6π

∫
A

Jms(r′) × (r − r′)dS(r′). (7.92)

For a small aperture, the right-hand sides of (7.91) and (7.92) may be
assumed to be a constant and may be replaced by their values at the origin
of the aperture. Thus

1
2π

∫
A

ρms(r′)∇ 1
R
dS(r′) = f , (7.93)

1
2π

∫
A

Jms(r′) ×∇ 1
R
dS(r′) = guz, (7.94)
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where

f = µ0Hin(0) − k2

4π

∫
A

ρms(r′)r′

r′
dS(r′) +

jk3

6π
µ0m − jk3

2π
µ0m

− jkµ0

2πη


∫
A

Jms(r′)
r′

dS(r′) − k2

2

∫
A

Jms(r′)r′dS(r′)


, (7.95)

guz = −Ein(0) +
k2

4π

∫
A

r′ × Jms(r′)
r′

dS(r′) +
jk3

3π
p
ε0
, (7.96)

with the magnetic dipole m, the electric dipole p defined by

m =
1
µ0

∫
A

ρms(r′)r′dS(r′) =
1

jωµ0

∫
A

Jms(r′)dS(r′),

p = ε0

∫
A

−r′ × Jms(r′)
2

dS(r′). (7.97)

For a circular aperture of radius a, (7.93) can be solved analytically and
the solution in the cylindrical system (r, ϕ, z) is (e.g., Bladel, 1971)

ρms(r) =
4r

π
√
a2 − r2

ur · f . (7.98)

For a small circular aperture, the electric field in the vicinity of the aperture
can be derived from a scalar potential φ, i.e., E = −∇φ. Equation (7.94)
can be written as

1
π

∫
A

∇φ(r′) · ∇ 1
R
dS(r′) = g. (7.99)

The solution of above equation in the cylindrical system (r, ϕ, z) is

φ(r) =
g

π

√
a2 − r2. (7.100)

This gives

Jms = 2uz × E = uϕ
g

π

2r√
a2 − r2

. (7.101)

Substituting (7.98) and (7.101) into (7.97), we obtain

µ0m =
8
3
a3f ,

p
ε0

=
4a3

3
uzg. (7.102)
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As a static-field approximation, only the first term on the right-hand side
of (7.95) or (7.96) is important. So we have

m =
8
3
a3Hin(0),

p
ε0

= −4a3

3
Ein(0). (7.103)

These results have been widely used to study the small-hole coupling
problems in microwave engineering (see Sections 2.4.5 and 4.4.4).

7.4 EMC Techniques

Any electronic circuit that carries electric signals will tend to radiate
electromagnetic energy into space as a transmitter. At the same time,
the circuit will tend to pick up radiated electromagnetic energy from
other transmitters as a receiving antenna. A shield, a metallic enclosure,
can be used to contain the radiated emission from the electronic circuit
[Figure 7.20(a)], and can also be used to prevent unwanted radiated
emission from the outside into a device [Figure 7.20(b)].

Although a circuit may be well-protected by a shield to prevent
electromagnetic energy being radiated or being picked up by the circuit
itself, unwanted (interfering) signals can enter or leave the circuit through
its interconnections (wire lines). To reduce the levels of the unwanted signals
which are usually out of the band that a useful signal occupies, EMC filters
may be placed in the lines so that the useful signal is allowed to pass while
the interfering signals are blocked, as illustrated in Figure 7.21.

Figure 7.20 (a) A shield used to prevent the radiated emission from an electronic
device into the outside. (b) A shield used to prevent unwanted radiated emission from
the outside into a device.

Circuit 1 Circuit 2Filter

Figure 7.21 EMC filter between two circuits.
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Figure 7.22 Ground symbols. (a) Signal ground. (b) Safety ground. (c) Earth ground.

The EMC filters mainly consist of two types. One type is used to absorb
the unwanted energy. The other is used to reject the unwanted signal so
that it is reflected back along the line. For EMC applications, the absorptive
type is preferred.

In electrical engineering, ground or earth refers to the reference point
in an electrical circuit from which voltages are measured, a common return
path for electric current, or a direct physical connection to the Earth. The
grounding scheme within equipment is very important. Poor grounding can
lead to ground loops that can in turn lead to signals being radiated, or
picked up within the equipment and hence poor EMC results.

Typical ground symbols are shown in Figure 7.22. Signal grounds
serve as return paths for signals within equipment. Safety grounds, often
referred to as chassis grounds, are required to provide protection against
shock hazard, and also serve an important role in draining electrostatic
discharge (ESD).

7.4.1 Shielding Method

Electromagnetic shielding is usually achieved by placing a conducting screen
or a conductive enclosure between two regions so that it reduces or prevents
transmission of electromagnetic fields from one side to the other. Perfect
shielding of a device is impractical due to the input and output accesses
by the device. To be cost effective, many devices do not use contiguous
metallic enclosures but can still pass the EMC tests.

7.4.1.1 Shielding Effectiveness: Far-Field Sources

Consider a conductive screen of thickness d with medium parameters µ, ε, σ,
as shown in Figure 7.23. An electromagnetic field (Ein,Hin) is assumed to
be incident on the screen, which produces a reflected wave (Er,Hr) in
the Region I (z < 0) and a transmitted wave (Et,Ht) in the Region III
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zd 

I II III

o 

Ein, Hin

Figure 7.23 Conductive screen.

(z > d). If we wish to shield the Region III from Region I, the shielding
effectiveness of the screen is defined in decibels as

SEdB = 20 log
|Ein|
|Et| , (7.104)

which is a positive number since the incident field is greater than the
transmitted field in magnitude. Assume that the incident field is a
plane wave:

Ein = uxEine
−jk0z , Hin = uy

1
η0
Eine

−jk0z,

where the amplitude Ein is assumed to be known. The fields in each region
can be expressed as

E1 = ux(Eine
−jk0z + Ere

jk0z), H1 = uy

(
Ein

η0
e−jk0z − Er

η0
e−jk0z

)
,

z < 0,

E2 = ux(E2ine
−γz + E2re

γz), H2 = uy

(
E2in

η
e−γz − E2r

η
eγz

)
,

0 < z < d,

E3 = uxEte−jk0z , H3 = uy
Et
η0
e−jk0z, z > d,

(7.105)



January 28, 2015 11:5 Foundations for Radio Frequency Engineering - 9in x 6in b1914-ch07 page 519

Electromagnetic Compatibility 519

where

k0 = ω
√
µ0ε0, η0 =

√
µ0/ε0,

γ =
√
jωµ(σ + jωε) = α+ jβ,

η =

√
jωµ

σ + jωε
.

At the boundaries z = 0 and z = d, the tangential fields must be continuous.
Hence we have

Ein + Er = E2in + E2r,

Ein

η0
− Er
η0

=
E2in

η
− E2r

η
,

E2ine
−γd + E2re

γd = Ete
−jk0d,

E2in

η
e−γd − E2r

η
eγd =

Et
η0
e−jk0d.

(7.106)

From these equations, we obtain

Ein

Et
=

(η0 + η)2

4η0η

[
1 −

(
η0 − η

η0 + η

)2

e−2γd

]
eγde−jk0d. (7.107)

The shielding effectiveness can thus be written as

SEdB = RdB +AdB +MdB, (7.108)

where

RdB = 20 log
∣∣∣∣ (η0 + η)2

4η0η

∣∣∣∣ ,
AdB = 20 log

∣∣eγd∣∣ , (7.109)

MdB = 20 log

∣∣∣∣∣1 −
(
η0 − η

η0 + η

)2

e−2γd

∣∣∣∣∣
respectively denote the reflection loss caused by the interfaces, absorption
loss through the screen, and multiple reflection loss at interfaces. The reflec-
tion loss is the predominant shielding mechanism at the lower frequencies
while the absorption loss is the predominant shielding mechanism at the
higher frequencies.
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The propagation constant γ in the conductive screen can be approxi-
mated by

γ = α+ jβ ≈ 1 + j

δ
, (7.110)

where

δ =
√

2
ωµσ

(7.111)

is the skin depth for the conductive material. For a good conductor, we
have η << η0. Thus

η0 − η

η0 + η
≈ 1.

Making use of the above approximations and taking the absolute value of
(7.107) yield ∣∣∣∣Ein

Et

∣∣∣∣ =
∣∣∣∣ η04η

∣∣∣∣ ∣∣∣1 − e−
2d
δ e−j

2d
δ

∣∣∣ e d
δ . (7.112)

Therefore

RdB = 20 log
∣∣∣∣ η04η

∣∣∣∣ ,
AdB = 20 log e

d
δ , (7.113)

MdB = 20 log
∣∣∣1 − e−

2d
δ e−j

2d
δ

∣∣∣ .
7.4.1.2 Shielding Effectiveness: Near-Field Sources

Our previous study applies to the situation where the source of the incident
fields is far from the shields. When the shields are located in the near-field
region of the source, the discussion of the shielding effectiveness becomes
very complicated. In such cases, the techniques for shielding will depend on
the type of the sources.

To understand the behavior of the fields in the near-field and far-field
regions, we may consider how the wave impedance changes with the distance
from the source. In general, the wave impedance can be defined by

Zw =

{
Eθ/Hϕ, Hϕ �= 0
−Eϕ/Hθ, Hθ �= 0

. (7.114)
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For an infinitesimal electric dipole in free space, the wave impedance may
be obtained from (7.42) as follows

Zwe =
Eθ
Hϕ

= η0
j(k0r)−1 + (k0r)−2 − j(k0r)−3

j(k0r)−1 + (k0r)−2
, (7.115)

where η0 =
√
µ0/ε0 and k0 = ω

√
µ0ε0. For an infinitesimal magnetic dipole

in free space, the wave impedance can be obtained from (7.51) as follows

Zwm = −Eϕ
Hθ

= η0
j(k0r)−1 + (k0r)−2

j(k0r)−1 + (k0r)−2 − j(k0r)−3
. (7.116)

The magnitude of the wave impedances for the electric dipole and magnetic
dipole are plotted in Figure 7.24. It can be seen that the wave impedances
for both the electric dipole and magnetic dipole approach to the intrinsic
impedance η0 of the medium as r increases. In the near-field region with
k0r < 0.707, the electric (magnetic) dipole has a wave impedance greater
(less) than the intrinsic impedance of the medium and hence is known as
high(low)-impedance source.

As an approximation, when a shield is located in the near-field region
of a dipole-like source, called electric source, or a loop-like source, called
magnetic source, the shield effectiveness may be obtained from (7.108)
and (7.109) by replacing η0 with Zwe given by (7.115) or Zwm given by
(7.116). It follows from (7.113) that only reflection loss depends on the
nature of the near fields. For the electric source, the reflection loss can be

kr

Figure 7.24 Wave impedances of infinitesimal electric dipole and magnetic dipole.
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written as

RdB = 20 log
∣∣∣∣Zwe4η

∣∣∣∣ .
In the near-field region and for a good conductor, we may make the following
approximation

|Zwe| ≈ 1
ωε0r

, |η| =
√
ωµ

σ
=
√
ωµrµ0

σrσcu
,

where σ = σrσcu and σcu = 5.8 × 107 S/m is the conductivity of copper.
The reflection loss is then given by

RdB = 20 log

√
σcu/ε0

8 3
√

2π
√
µ0ε0

+ 10 log
σr

µrf3r2
= 322 + 10 log

σr
µrf3r2

,

(7.117)

which indicates that the reflection loss increases as frequency or the distance
between the electric source and the shield decreases.

In the near-field region of a magnetic source, the following approxima-
tion applies

|Zwm| = ωµ0r.

The reflection loss for the magnetic source is

RdB = 20 log
∣∣∣∣Zwm4η

∣∣∣∣ = 20 log
√

2πµ0σcu
4

+ 10 log
fr2σr
µr

= 14.6 + 10 log
fr2σr
µr

. (7.118)

Therefore, the reflection loss is negligible at low frequencies, and absorption
loss is dominant at all frequencies for a magnetic source. It is noted that
both reflection and absorption losses are very small at low frequencies, more
effective methods of shielding must be used. There are two basic methods
for shielding against low frequency magnetic source. One is to use high µr
material to provide a low-reluctance path to magnetic flux, and the other
is to generate an opposing flux via Lenz’s law (Paul, 2006).

7.4.1.3 Electrostatic Shielding

The proceeding shielding theory applies to the high frequency problems.
Some electronic devices are very sensitive to electrostatic fields. The
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damages caused by electrostatic fields may be caused either by direct
contact of a charged objects with an electronic device or by the presence
of electrostatic fields, which can be prevented by electrostatic shielding.
The basic principles of electrostatic shielding are built on the theory
of electrostatics. The field is electrostatic if the following conditions are
satisfied

∂

∂t
F = 0, J = 0, (7.119)

where F stands for the electric field or magnetic field. The fundamental
equations for the static electric field generated by a volume charge
distribution of density ρ(r) are

∇× E(r) = 0, ∇ · D(r) = ρ(r), (7.120)

with the boundary conditions on the interface of two regions given by

un × (E1 − E2) = 0, un · (D1 − D2) = ρs. (7.121)

where un is the unit normal of the boundary directed from medium 2
to medium 1 and ρs is the surface charge density. From (7.120), we may
introduce the potential function φ such that E = −∇φ to get the Poisson
equation

∇2φ(r) = −ρ(r)
ε
. (7.122)

It follows from (7.121) that

φ1(r) = φ2(r), ε1
∂φ1(r)
∂n

− ε2
∂φ2(r)
∂n

= −ρs. (7.123)

The field inside a conductor will cause electric current. Since J = σE, the
second equation of (7.119) implies that the static electric field must be
zero inside the conductor. As a result, the conductor is equipotential. It
follows from the second equation of (7.120) that the net charge inside the
conductor must also be zero and the charges are distributed on the surface
of the conductor. For a conductor, the boundary conditions (7.121) and
(7.123) respectively reduce to

un × E = 0, un · D = ρs, (7.124)

and

φ(r) = const,
∂φ(r)
∂n

= −ρs
ε
. (7.125)
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Figure 7.25 Multiply connected region.

+q Sin 

V 

Figure 7.26 A metal cavity excited by an external charge.

Consider a multiply connected region V bounded by Si (i = 0, 1, 2, . . . , n) as
illustrated in Figure 7.25. The solution of (7.122) can then be expressed as

φ(r) =
∫
V

G(r, r′)
ρ(r′)
ε

dV (r′) +
n∑
i=0

∫
Si

[φ(r′)un(r′) · ∇′G(r, r′)

−G(r, r′)un(r′) · ∇′φ(r′)]dS(r′), (7.126)

where G(r, r′) is Green’s function satisfying

∇2G(r, r′) = −δ(r − r′). (7.127)

A conductive shell can be used as an electrostatic shield. Consider a closed
metallic cavity excited by an external static charge, as shown in Figure 7.26.
The cavity occupies the region V bounded by the inner surface Sin of the
wall of the cavity. The wall of the cavity is assumed to be of finite thickness.
It can be shown that the field inside the cavity must be zero. In fact the
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potential inside the cavity can be expressed as

φ(r) =
∫
Sin

[φ(r′)un(r′) · ∇′G(r, r′) −G(r, r′)un(r′) · ∇′φ(r′)] dS(r′)

=
∫
Sin

[
φ(r′)un(r′) · ∇′G(r, r′) +G(r, r′)

ρs(r′)
ε

]
dS(r′). (7.128)

On the inner surface Sin, we have φ(r) = φ0 with φ0 being a constant and
ρs = 0 on Sin, the above equation becomes

φ(r) = φ0

∫
Sin

∂G(r, r′)
∂n′ dS(r′). (7.129)

Considering the following identity

−1 =
∫
V

∇′2G(r, r′)dV (r′) = −
∫
Sin

∂G(r, r′)
∂n′ dS(r′) (7.130)

we obtain φ(r) = φ0 in V . As a result, the electric field vanishes inside the
cavity.

When a positive charge is inside the originally neutral cavity, an equal
negative charge is induced on the inner surface of the wall. An equal positive
charge has to be present on the outer surface if the cavity is not grounded
as indicated in Figure 7.27(a). In this case, the field outside the cavity is
not zero. If the cavity is connected to an ideal reservoir of charges (i.e., the
ground such as the Earth), the positive charges on the outer surface can
be compensated by the negative charges coming from the ground and the

(a)

+q 

S

(b)

S

+q 

Figure 7.27 A metal cavity excited by a charge inside. (a) The cavity is not grounded.
(b) The cavity is grounded.



January 28, 2015 11:5 Foundations for Radio Frequency Engineering - 9in x 6in b1914-ch07 page 526

526 Foundations for Radio Frequency Engineering

grounded cavity is thus negatively charged, as illustrated in Figure 7.27(b).
In this case, the field outside the cavity is zero. In fact, the potential outside
the cavity can be expressed as

φ(r) =
∫
Sout

[
φ(r′)

∂G(r, r′)
∂n′

+G(r, r′)
ρs(r′)
ε

]
dS(r′), (7.131)

where Sout is the outer surface of the wall. Since the cavity is grounded, we
have φ(r) = 0 and ρs(r) = 0 on Sout. Thus the potential outside the cavity
is zero. It is noted that a high dielectric constant medium can also be used
as an electrostatic shield.

7.4.2 Filtering Method

Conducted emissions are the radio frequency noise current that flows
in the physical wiring or traces of an electrical system, or alternatively,
radio frequency voltage between traces. For the purposes of EMI analysis,
conducted emissions are generally of interest over the frequency range from
150 kHz to 30 MHz, which is the frequency range over which most regulatory
agencies specify conducted emissions limits.

EMC filters are very useful for the lines that only carry low frequency
signals such as the AC power cord. The EMC filters can remove high
frequency components that are coupled to the power cord from the internal
subsystems or from the outside via a number of coupling paths. The EMC
filters may be as simple as a resistor or a ferrite placed around a wire or
cable. For more complicated applications, the EMC filters may consist of
a number of components. In addition, the EMC filter design must match
both the source and load impedances.

The traditional design theory of filters has been discussed in Chapter 4,
which is, however, rarely used in the design of EMC filters. Instead of
designing a filter stage for every new piece of electronic equipment, a ready-
made module by the filter manufacturer, which is optimized to give the best
reduction of conducted interference, can be deployed for most situations.
These commercially available filters comply with the safety rules and are
cost-effective.

7.4.2.1 Line Impedance Stabilization Network

When testing a device for compliance with the regulatory limits, a line
impedance stabilization network (LISN) must be inserted between the AC
power cord of the DUT and the commercial power outlet, as illustrated in
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LISN
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Figure 7.28 Conducted emission test.
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1 kΩ 1 kΩ50 Ω 50 Ω
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Figure 7.29 FCC-specified LISN for conducted emission measurement.

Figure 7.28. The AC power cord of the device is plugged into the input of
the LISN. The output of the LISN is plugged into the commercial power
outlet. One of the objectives of LISN is to stabilize the impedance seen by
the device looking into the AC power cord, which varies considerably over
the measurement frequency range from outlet to outlet and from building
to building. The second objective of the LISN is to block external noise
that exists on the power system net from entering the product’s AC power
cord since we are only interested in the conducted emissions that are due
to the DUT.

The FCC-specified LISN for conducted emission measurement is shown
in Figure 7.29. The purpose of 1µF capacitors between phase and green
wire and between neutral and green wire on the commercial power side is
to divert external noise on the commercial power line and prevent that noise
from flowing through the DUT and thereby contaminating the test data.
Similarly, the purpose of 50µH inductors is to block that noise. The purpose
of 0.1µF capacitors is to prevent DC from entering the test receiver input.
The 1 kΩ resistors facilitate the discharge of 0.1 pF capacitors in case the
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50 resistors are removed. One of the 50Ω resistors is the input impedance of
the spectrum analyzer or receiver while the other serves as a dummy load
to make sure that the impedance between neutral and safety wire is 50 Ω at
all times. Both the phase voltage VP between the phase and safety wire and
the neutral voltage VN between the neutral and safety wire are measured
and are required to be below the specified limit over the frequency range of
the conducted emission measurement. In the measurement frequency range
from 150kHz to 30MHz, all the capacitors of the LISN are essentially short
circuits and all the inductors are open circuits. As a result, we have

VP ≈ 50IP , VN ≈ 50IN . (7.132)

7.4.2.2 Common-Mode and Differential-Mode

It follows from (7.132) that the LISN may be represented as 50Ω resistors
between phase wire and safety wire and between neutral wire and safety
wire, seen by the DUT, as illustrated in Figure 7.30. The phase current and
neutral current can be decomposed as follows

IP = IC + ID, IN = IC − ID, (7.133)

where IC is the common-mode component that flows out through the phase
conductor and the neutral conductor and returns on the safety wire; and
ID is the differential-mode component that flows out through the phase
conductor and returns on the neutral conductor. It follows from (7.133) that

ID =
1
2
(IP − IN ), IC =

1
2
(IP + IN ). (7.134)

The measured voltages are then given by

VP = 50(IC + ID), VN = 50(IC − ID). (7.135)

Phase

Neutral

Green
(Safety wire)

Device 
under test

50 Ω
50 Ω

N

LISN

Figure 7.30 Equivalent circuit for the LISN.
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7.4.2.3 Power Supply Filters

For all electronic devices with a power cord, a power supply filter must be
used so that they can pass the conducted emission test. A generic power
supply filter is shown in Figure 7.31. The differential- and common-mode
currents at the input of the filter are denoted by ID and IC . At the output
of the filter, the corresponding quantities are denoted by I ′D and I ′C . The
function of the filter is to reduce the unprimed current levels to the primed
current levels so that the measured voltages given by the primed quantities

VP = 50(I ′C + I ′D), VN = 50(I ′C − I ′D) (7.136)

are below the conducted emission limit.
The green-wire inductor LGW is used to block common-mode cur-

rent. The line-to-line capacitors CDR and CDL are introduced to divert
differential-mode currents. The capacitors CCL and CCR are used to
divert common-mode currents. The coupled inductors in the filter are
the common-mode choke, where the self-inductances are denoted by L

and the mutual inductance is denoted by M . The mutual inductance is
approximately equal to the self-inductance L≈M so that the coupling
coefficient is approximately unity:

k =
M√
LL

≈ 1.

The common-mode choke is used to block the common-mode currents. As
shown in Figure 7.32(a), the voltage drop across one side of the choke with
the common-mode currents is

V = jω(L+M)IC .

Phase

Neutral

Green

(Safety wire)

Device

50 Ω

50 Ω

LISN Filter

M

L

LL

Figure 7.31 A typical power supply filter.
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M 

L 

L 

M 

L 

L 

Figure 7.32 (a) Equivalent circuit for common-mode current. (b) Equivalent circuit
for differential-mode current.

Therefore, the common-mode current is blocked by an inductance L+M .
The common-mode choke should not affect the differential-mode current,
and this can be observed by considering the voltage drop across one side of
the choke with differential-mode current [Figure 7.32(b)]

V = jω(L−M)ID ≈ 0.

7.4.3 Grounding Method

The basic function of a ground is to provide a path to enable a current
to return to its source, and therefore it should have low impedance. For
this reason, the ground must be a good conductor of large surface area,
and is close to the system. Typical ground structures include metal part of
the building, the metal frame of a vehicle, the metal chassis of equipment,
and the Earth. Electrical circuits may be connected to ground for several
reasons:

(1) Safety ground (chassis ground): The purpose of safety grounding is to
reduce the voltage difference between exposed conducting surfaces that
might become energized. In power system, for example, exposed parts
must be connected to ground to prevent user contact with dangerous
voltage if electrical insulation fails. Connections to ground limit the
build-up of static electricity and divert the ESD currents away from
flammable products or electrostatic-sensitive devices.

(2) Signal reference: For measurement purposes at DC or low frequencies,
the ground serves as a (reasonably) constant potential reference against
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which other potentials can be measured. Different parts of a signal
system, such as analog and digital circuits must operate at the same
voltage reference. A voltage difference between reference points may
cause common mode noise for the system. To reduce the voltage
difference, the reference points may be connected together by a
conductor, called signal grounding conductor.

(3) Signal return path: In portable electronic devices such as cell phones,
the ground plane on a printed circuit board is introduced to serves as
the common return path for current from many different components
in the circuit. In some telegraph and power transmission circuits, the
Earth itself can be used as the return conductor of the circuit to save
the cost.

Therefore, there are basically two types of ground: safety ground and signal
ground.

7.4.3.1 Safety Ground

As an example, let us consider an electronic device powered by an AC
source in a metal chassis as shown in Figure 7.33. The exposed metal
chassis might become energized due to the AC source, which will produce
a voltage difference V between the chassis and the Earth and thus pose a
potential shock hazard to anyone who might touch the chassis. In order to
provide shock hazard protection, a safety wire (ground) must be connected
to chassis and to the Earth to reduce the voltage difference.

7.4.3.2 Signal Ground

A signal ground may be used as the path for signal currents to return to
their source. It should be noted that the currents will return to their source

Metal chassis

Earth

V

Phase

Neutral
Device

Safety wire

Figure 7.33 Safety ground.
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Circuit 1 Circuit 2 

Signal return 

Signal ground 

Signal return 

Metal 
frame

Figure 7.34 Signal return and signal ground.

along the path of least impedance. As a result, different components of the
signal may take different paths to return their source, and some frequency
components may follow a different path other than the one designated by
the designer. Figure 7.34 shows two signals inside a metal frame used as
a ground. One signal directly uses the ground as the signal return path,
and the other uses a dedicated conductor as the return path between two
circuits. In order that the Circuit 1 and Circuit 2 have the same voltage
reference (i.e., V = 0), the two references are bonded together by the signal
ground (part of the frame).

7.5 Lightning Protection

Lightning, or lightning discharge, is a massive ESD between the electrically
charged regions within clouds or between a cloud and the Earth’s surface
to form a long electrical spark (lightning flash), which may extend from
5 to 100km. Lightning may cause damages to a large variety of objects,
such as electronic devices, buildings, power systems, and aircrafts.

7.5.1 Lightning Discharge and Lighting Terminology

In order for an ESD to occur, a high electric potential and a high-resistance
medium must exist between two regions of space. All lightning discharges
can be divided into two categories: those that bridge the gap between the
cloud charge and the Earth, and those that do not. The latter group as
a whole is referred to as “cloud discharges” and accounts for the majority
of all lightning discharges. The cloud discharges can occur within a single
cloud. This is called intra-cloud lightning and is the most common of all
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the forms of lightning. The cloud discharges that occur between clouds are
called inter-cloud lightning, and those that occur between one cloud and
the surrounding air are called cloud-to-air lightning. The charged regions
within the atmosphere temporarily equalize themselves through a lightning
flash. A lightning discharge that involves an object on ground or in the
atmosphere is called a lightning strike. The primary source of lightning
is the thunderstorm or thundercloud. A simple model for the idealized gross
charge structure in a thundercloud is shown in Figure 7.35, which consists
of three vertically stacked point charges, positive at the top, negative in
the middle and an additional smaller positive at the bottom. The top two
charges, called main charges, form a dipole and are assumed to be equal
in magnitude. The lower positive charge may not always be present.

The soft hail particles are heavy enough to fall in the thundercloud’s
updrafts and small ice crystals are light enough to be carried upward
in those updrafts. The thundercloud charges are produced by the ice-
hail interactions, which takes place at altitudes where the temperature is
considerably cooler than freezing. After charge has been transferred between
the colliding ice and hail particles, the positively charged ice crystals are
carried further upward in updrafts to the top part of the thundercloud,
to an altitude near 10 km above sea level in temperate summer storms
while the negatively charged hail resides at an altitude of 6 to 8 km. In a
typical thundercloud, a small positive charge is also formed below the main
negative charge, at altitudes where the temperature is near or warmer than
freezing.

Any self-propagating electrical discharge creating a channel of ionized
air with electrical conductivity of the order 10−4 Sm−1 is called a leader.
When the conductivity is much lower, the channel of ionized air is called a

Ground 

Figure 7.35 A simple model for the idealized gross charge structure in a thundercloud.
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streamer. The air behind the streamer tip remains essentially an insulator.
There are usually many separate paths of ionized air stemming from the
cloud. These paths are typically referred to as stepped leaders. The
stepped leader’s movement from cloud-to-ground is not continuous. It
moves downward in discrete luminous segments and each added length
is called a step. Each leader step produces a pulse which contains a
frequency spectrum extending from radio frequency to visible light and
X-rays. The luminous diameter of the stepped leader is usually between
1 and 10m. A typical stepped leader has about 5 coulombs of negative
charge distributed over its length when it is near ground. To establish this
charge on the leader channel an average current of about 100 to 200 amperes
must flow during the whole leader process. The pulsed currents which flow in
generating the leader steps have a peak current of the order of 1000 amperes.

For cloud-to-ground discharges, the negative charge normally collects
in the cloud base, with a corresponding net positive charge in the ground
under the cloud. Lightning strikes originating from this configuration are
called negative strikes. In negative lightning, the free electrons over-run
the lower positive charge region, neutralizing most of its small positive
charge, and then continue their trip toward ground. Sometimes lightning
originates from the upper part of the thundercloud, which is a region of the
cloud that carries a big positive charge. In this case, the ground below has
a net negative charge, and any lightning from this configuration is called a
positive strike. Negative lightning usually strikes under the thunderstorm.
Positive lightning often strikes near the edge of a thundercloud or even
several miles from the cloud. Positive strikes usually have a stronger electric
field than negative strikes. The energy in a positive strike may be 10 times
higher than a negative strike, which makes positive lightning more lethal
and damaging than negative lightning. There are four types of lightning
corresponding to cloud-to-ground discharges as illustrated in Figure 7.36.
They are (a) downward negative lightning, (b) downward positive lightning,
(c) upward negative lightning, and (d) upward positive lightning.

The most common type of lightning is negative lightning. The down-
ward negative lightning accounts for 90% or more of global cloud-to-ground
lightning. When the stepped leader is near the ground, its relatively large
negative charge induces (attracts) concentrated positive charge on the
conducting Earth beneath it and especially on objects projecting above the
Earth’s surface. If the attraction between the opposite charges is strong
enough, the positive charge on the Earth or Earth-bound objects will
attempt to join and neutralize the negative charge above. This initiates an
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Ground Ground 

Ground Ground 

Figure 7.36 Types of cloud-to-ground lightning. (a) Downward negative lightning.
(b) Downward positive lightning. (c) Upward negative lightning. (d) Upward positive
lightning.

upward leader from the ground or from grounded objects. Once a downward
leader connects to an upward leader, a low-resistance path is formed and
discharge may occur. This process is referred to as attachment, which
determines the lightning strike-point and the primary lightning current
path (channel) between cloud and ground. Once a conductive channel
bridges the ionized air between the negative charges in the cloud and
the positive surface charges in the ground, a massive electrical discharge
follows and enormous current of positive charges races up the ionic channel
towards the thundercloud. This is called return stroke and is the most
luminous and noticeable part of the lightning discharge. The massive flow of
electrical current occurring during the return stroke combined with the rate
at which it occurs rapidly superheats the completed leader channel, forming
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a highly electrically-conductive plasma channel. The core temperature of
the plasma during the return stroke may exceed 50,000 K, causing it to
brilliantly radiate with a blue–white color. Once the electrical current
stops flowing, the channel cools and dissipates over 10’s or hundreds of
milliseconds, often disappearing as fragmented patches of glowing gas. The
nearly instantaneous heating during the return stroke causes the air to
explosively expand, producing a powerful shock wave that is heard as
thunder.

7.5.2 Lightning Protection

The electrical current within a typical negative cloud-to-ground lightning
discharge rises very quickly to its peak value in 1–10 microseconds, then
decays more slowly over 50–200 microseconds. The transient nature of the
current within a lightning flash results in several phenomena that need
to be addressed in the protection of ground-based structures. Rapidly
changing currents tend to travel on the surface of a conductor due to skin
effect. For this reason, conductors often used in the protection of facilities
are multi-stranded small wires woven together to increase the surface
area. The rapidly changing currents also create electromagnetic pulses
that radiate outward from the ionic channel. When the pulses pass over
conductive elements such as the electrical wires and transmission lines, they
may induce a current which travels toward its termination. This is called
lighting surge that often results in the destruction of delicate electronic
devices. As a result, two factors must be considered in lightning protection:

(1) Diversion and shielding, which diverts the lightning current away from
the protected structure and serves to reduce the lightning electric and
magnetic fields within the structure.

(2) The limiting of currents and voltages on power and communication
systems via surge protective devices (SPDs).

The protection system that is used to divert lightning current away from
a protected structure and ultimately into the Earth consists of three
electrically connected components:

(1) Air terminals, which may be vertical lightning rods connected together
on the roof of the structure, or a mesh of horizontal wires on the roof,
or overhead catenary wires above the roof, or a metal roof, with the
purpose to intercept the descending lightning stepped leader by sending
streamers upward.
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Air terminal (lightning rod) 

Down conductor 
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Figure 7.37 A simple lightning protection system.

(2) Down conductors to carry the lightning current to the grounding
electrodes.

(3) Grounding electrodes to convey the current into the Earth.

All elements of the lightning protection system must be well-bonded
electrically and all significant nearby conductors, including the ground wires
on incoming utilities, must be bonded to the overall protection system to
avoid voltage differences between the conductors that may lead to electrical
breakdown between them. Figure 7.37 shows a simple lightning protection
system.

The protection of electronic, power, or communication equipment
within a structure should include the control of currents and voltages
resulting both from direct strikes to the structure containing the equipment,
and from lightning-induced current and voltage surges propagating into
the structure on electric power, communication, or other metal wires and
metal pipes entering the structure from outside. Four types of current- and
voltage-limiting techniques are commonly used:

(1) Voltage crowbar devices, which limit the harmful voltages on the
protected wires to small values compared with the operating voltage
and attempt to short-circuit the associated current to ground. The
older carbon block arresters and the modern gas-tube arresters used
by telephone companies are good examples of crowbar devices. When
the voltage across such a crowbar device reaches a value of many
hundreds of volts, the arrester suffers an electrical breakdown in its
gas component, reducing the voltage across the arrester terminals to
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near zero. Silicon-controlled rectifiers and triacs are other examples of
crowbar devices.

(2) Voltage clamps, which are solid-state devices such as metal oxide
varistors, Zener and avalanche diodes, and p–n junction diodes that
both reflect and absorb energy while clamping the applied voltage
across their terminals to a more-or-less safe value, ideally 30 to 50%
above the system operating voltage, rather than the very small voltages
allowed by crowbar devices. Voltage clamps are nonlinear devices and
can handle less energy than crowbar devices before failing. Both voltage
clamps and voltage crowbar devices are referred to as SPDs.

(3) Circuit filters, which are linear electrical circuits that both reflect and
absorb the frequencies that form the damaging lightning transient
pulses while passing the operating waveforms. The simplest circuit filter
is a series inductor whose impedance is much higher to the frequencies
comprising the unwanted transient than to the operating frequency of
the electronics being protected. Frequently, crowbar devices, clamps,
and filters are used together in a coordinated way.

(4) Isolating devices, such as optical isolators and isolation transformers,
which can suppress relatively large transients. Isolators are connected
in series with the equipment to be protected and represent large series
impedance to the unwanted transient signals.

The SPDs discussed above are generally connected at the input terminals
of electrical devices or directly on circuit boards.

I have long held an opinion, almost amounting to conviction, in common

I believe with many other lovers of natural knowledge, that the various

forms under which the forces of matter are made manifest have one

common origin; or, in other words, are so directly related and mutually

dependent, that they are convertible, as it were, one into another, and

possess equivalents of power in their action.

—Michael Faraday
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Information Theory and Systems

Information is the resolution of uncertainty.

—Claude Elwood Shannon (American mathematician

and electrical engineer, 1916–2001)

In 1948, C. E. Shannon published his classic paper “A Mathematical Theory
of Communication” in the Bell System Technical Journal, which founded
the discipline of information theory for modern communication system.
The foundations of communications technology also lay in the discovery of
electromagnetics. A generic communication system is shown in Figure 8.1.
The information source produces message to be communicated. The
transmitter transforms the message into a signal suitable for going through
a propagation channel during which the signal may be altered by noise and
distortion. The channel assigns a probability distribution to the set of all
possible outputs for each permissible input. The output of the channel is
the received signal, which is then transformed into the original message by
the receiver for delivery to the destination. Given a communication system,
information theory attempts to build a mathematical model for each of the
blocks of Figure 8.1 and studies the following problems:

(1) What is the minimum number of bits per symbol required to fully
represent the source?

(2) What is the maximum rate at which reliable communication can take
place over the channel?

The mathematical foundation of information theory is probability theory
and statistics. The most important quantities of information are entropy
and mutual information. The former stands for the information in a random
variable and indicates how easily the message data can be compressed while
the latter stands for the amount of information in common between two

539
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Figure 8.1 A generic communication system.

random variables and can be used to find the communication data rate
across a channel. The fundamental theorem of information theory states
that it is possible to transmit information through a noise channel at any
rate less than channel capacity with an arbitrarily small probability of error.

8.1 Probability Theory and Random Process

The word “random” is used to describe various unpredictable (i.e., non-
deterministic) phenomena. A most typical random system is quantum
mechanics, which deals with small particle systems. A radio communication
system is also random in nature due to the random interferences and noises.
In these cases, we cannot predict the exact behavior of the systems. Instead
we adopt a statistical description based on probability theory.

8.1.1 Probability Space

Let Ω be a set. A σ-algebra Sω on Ω is a family of subsets of the set Ω
with the following properties:

(1) The empty set Ø belongs to Sω: Ø∈Sω.
(2) If E ∈Sω then Ω − E ∈Sω.
(3) If Ei ∈Sω (i = 1, 2, . . .), then

∞∪
i=1

Ei ∈Sω.

The pair (Ω, Sω) consisting of the set Ω and a σ-algebra Sω is called a
measurable space. The probability measure P on the measurable space
(Ω, Sω) is a function P : Sω → [0, 1] such that

(1) P (Ø) = 0, P (Ω) = 1.
(2) If Ei ∈Sω, i = 1, 2, . . . are disjoint (Ei ∩ Ej = Ø), then P

(∪
i
Ei
)

=∑
i P (Ei).
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A measurable space (Ω, Sω) together with a probability measure P defined
on the σ-algebra Sω is called a probability space, denoted by a triple
(Ω, Sω, P ). The set Ω is called sample space. An element in Ω is called
a sample or an outcome. Any element E of Sω is called an event and
P (E) is the probability that event E occurs. A major distinction between
samples and events is that the samples are fixed and are not within our
control while events can be chosen to suit our convenience. For example,
the elements of Ω may be the occurrence or nonoccurrence of a signal
pulse, Sω may be a collection of possible sequences of a certain length
of pulse and no pulse. Two events E1 and E2 are said to be mutually
exclusive if P (E1 ∩ E2) = 0. Two events E1 and E2 are said to be
statistically independent if

P (E1 ∩ E2) = P (E1)P (E2).

If P (E1) > 0 the conditional probability P (E|E1) is defined as the
probability that an event will occur when another event is known to occur
or to have occurred

P (E|E1) =
P (E ∩ E1)
P (E1)

. (8.1)

Let ω̃ = X(ω)(ω ∈Ω) be a function defined on the measurable space
(Ω, Sω), with values in a measurable space (Ω̃, Seω), i.e., ω̃∈ Ω̃. If for any set
Ẽ ∈Seω, the inverse imageX−1(Ẽ) belongs to Sω, X is called a measurable
function. A measurable function X(ω) defined on a probability space
(Ω, Sω, P ) and taking values in a measurable space (Ω̃, Seω), is called a
random element. If Ω̃ is a vector space, then X(ω) is called a random
vector. If Ω̃ = R, X(ω) is called a random variable. Random variables
may be discrete, continuous, or mixed, depending on whether they take on
a countable or uncountable number of values, or both.

Example 8.1: Let Ω = {ω1, ω2, . . .} be finite or countable, Sω be the
collection of all subsets of Ω, and {p1, p2, . . .} be a sequence of non-negative
numbers whose sum is unity. Then for any event E = {ωn|n∈J} where J
is an index set (a subset of natural numbers), we define P (E) =

∑
n∈J pn.

In this case, (Ω, Sω, P ) is called a discrete probability space. �

From now on, an upper case letter will be used to stand for a random
vector and the corresponding lower case letters for its value. Sometimes the
upper case letter and lower case letter will be used interchangeably if no
confusion occurs.
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8.1.2 Probability Distribution Function

The probability distribution FX(·) of the random element X , defined
on a probability space (Ω, Sω, P ) and taking values in a measurable space
(Ω̃, Seω), is defined by

FX(Ẽ) = P{ω|ω∈X−1(Ẽ)}, Ẽ ∈Seω .

Especially, if X is a random variable, we may introduce Ex = {ω|X(ω) ≤
x}∈Sω and FX(x) = P (Ex), which is known as the probability distribution
function of the random variable X . The first derivative of distribution
function pX(x) = dFX (x)/dx is called the probability density function.
We have the following properties:

(1) FX(x) is monotone increasing.
(2) 0 ≤ FX (x) ≤ 1.
(3) FX(−∞) = 0, FX(∞) = 1.
(4) FX(x) is right continuous.
(5) The set of points on which FX (x) is discontinuous is at most countable.
(6) P (ω|x1 < X(ω) ≤ x2) = FX (x2) − FX (x1) =

∫ x2

x1
pX(x)dx.

(7)
∫∞
−∞ pX(x)dx = 1.

If (Ω̃1, S1eω) and (Ω̃2, S2eω) are two measurable spaces, their product
(Ω̃1 × Ω̃2, S1eω × S2eω) consists of the space Ω̃1 × Ω̃2 of all pairs (x, y)
with x∈ Ω̃1, y∈ Ω̃2 and the σ-algebra S1eω × S2eω generated by all sets
Ẽ × F̃ with Ẽ ∈S1eω, F̃ ∈S2eω. A pair of random elements X,Y defined
on a fixed probability space (Ω, Sω, P ) with values in the spaces (Ω̃1, S1eω)
and (Ω̃2, S2eω) respectively can be considered as a single random element
(X,Y ), called the direct product of X and Y , with values in the space
(Ω̃1 × Ω̃2, S1eω × S2eω). The distribution P(X,Y )(·) = PXY (·) of (X,Y ) is
called the joint distribution of X and Y . If X and Y are two random
variables defined on a fixed probability space (Ω, Sω, P ), we introduce
Ex = {ω|X(ω) ≤ x}∈Sω, Ey = {ω|Y (ω) ≤ y}∈Sω and

FXY (x, y) = P (Ex ∩ Ey),

which is known as the joint probability distribution function.
The joint probability density function is defined by pXY (x, y) =
∂2FXY (x, y)/∂x∂y. We have the following properties:

(1) FXY (x, y) is a monotone increasing function of both x and y.
(2) pX(x) =

∫∞
−∞ pXY (x, η)dη (called marginal density).
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The conditional probability of the event Y ≤ y given that x < X ≤
x+ h is

P (ω|Y (ω) ≤ y, x < X(ω) ≤ x+ h) =

x+h∫
x

y∫
−∞

pXY (ξ, η)dξdη

x+h∫
x

pX(ξ)dξ

from (8.1). Making h→ 0, we have

P (ω|Y (ω) ≤ y, X(ω) = x) =

y∫
−∞

pXY (x, η)dη

pX(x)
.

The conditional probability density function of Y given that X = x

is defined by

pY (y|X = x) =
pXY (x, y)
pX(x)

.

Similarly, one can define pX(x|Y = y). Two random variables are said to
be statistically independent when

pXY (x, y) = pX(x)pY (y).

In the case of statistical independence

pX(x|Y = y) = pX(x), pY (y|X = x) = pY (y).

Therefore, the conditioning has no effects when there is statisti-
cal independence. Consider a one–one mapping from (x, y)-plane to
the (ξ, η)-plane. The probability density functions in (x, y)-plane and
(ξ, η)-plane are denoted by pXY (x, y) and q(ξ, η) respectively. Suppose that
an arbitrary domain D in (x, y)-plane is mapped to D′ in (ξ, η)-plane. Then

P [(x, y)∈D] = P [(ξ, η)∈D′],

which implies∫∫
D

pXY (x, y)dx dy =
∫∫
D′

q(ξ, η)dξ dη =
∫∫
D

q(ξ, η)
∂(ξ, η)
∂(x, y)

dx dy,

where ∂(ξ, η)/∂(x, y) is the Jacobian of the mapping

∂(ξ, η)
∂(x, y)

=
∣∣∣∣∂ξ/∂x ∂η/∂x

∂ξ/∂y ∂η/∂y

∣∣∣∣ .
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y

y = hx + z

x

Figure 8.2 Area interpretation of probability P (Y ≤ y).

Since D is arbitrary, we have

pXY (x, y) = q(ξ, η)
∂(ξ, η)
∂(x, y)

.

Example 8.2: Let X , Y and Z be random variables and y = hx+z, where
h is a constant. Referring to Figure 8.2, the probability P (Y ≤ y) can be
interpreted as the shaded area. Thus

P (Y ≤ y) = P (hx+ z ≤ y) =

∞∫
−∞

dx

y−hx∫
−∞

pXZ(x, z)dz

and

pY (y) =
d

dy

∞∫
−∞

dx

y−hx∫
−∞

pXZ(x, z)dz =

∞∫
−∞

pXZ(x, y − hx)dx.

The above equation reduces to

pY (y) =

∞∫
−∞

pX(x)pZ (y − hx)dx

if X and Z are independent. Thus

pXY (x, y) = pX(x)pZ(y − hx).

The above discussions can be generalized to random vectors. Let X, Y, and
Z be random vectors and y = [H ]x + z, where [H ] is a matrix. Then we
have

pY(y) =

∞∫
−∞

pXZ(x,y − [H]x)dx.
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If X and Z are independent, this reduces to

pY(y) =

∞∫
−∞

pX(x)pZ(y − [H ]x)dx.

Thus

pXY(x,y) = pX(x)pZ(y − [H ]x).

This is a useful relation and will be used later. �

8.1.3 Mathematical Expectations and Moments

Let X be a random variable and g be a function of X . The mathematical
expectation (or mean) of g is defined by

〈g(X)〉 =

∞∫
−∞

g(x)pX(x)dx,

where 〈·〉 is called the expectation operator. Especially, the mean of a
random variable X is given by

mX = 〈X〉 =

∞∫
−∞

xpX(x)dx.

The mean-square value of X is defined by

〈X2〉 =

∞∫
−∞

x2pX(x)dx.

The nth moment of X is defined by

〈Xn〉 =

∞∫
−∞

xnpX(x)dx.

The nth central moment of X is defined by

〈(X −mX)n〉 =

∞∫
−∞

(x−mX)npX(x)dx.

The second central moment is called the variance of X

Var(X) = σ2
X = 〈(X −mX)2〉 =

∞∫
−∞

(x−mX)2pX(x)dx.
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The square root of the variance σX is called the standard deviation of
the random variable X .

For two random variables X and Y , the joint moments are defined
by

〈XmY n〉 =

∞∫
−∞

∞∫
−∞

xmynpXY (x, y)dx dy.

Especially, the correlation of two random variables X and Y is 〈XY 〉.
The covariance of X and Y is

Cov(XY ) = 〈(X −mX)(Y −mY )〉 = 〈XY 〉 −mXmY .

The covariance of X and Y normalized with respect to σXσY is called the
correlation coefficient of X and Y

ρ =
Cov(XY )
σXσY

.

Two random variables X and Y are said to be uncorrelated iff
Cov(XY ) = 0. If 〈XY 〉 = 0, we say that X and Y are orthogonal.

8.1.4 Stochastic Process

Let T be a subset of the real numbers. For every t∈T , let X(ω, t)
be a random variable defined on a probability space (Ω, Sω, P ). Then
{X(ω, t)|t∈T } is called a real stochastic (or random) process and
T is called a linear index set or a parameter set. Let Y (ω, t) be
another real stochastic process defined on the same probability space.
Then {Z(ω, t) = X(ω, t) + jY (ω, t)|t∈T } is called a complex stochastic
process. For both random variable and process, it is customary to drop
the ω dependence. For ti ∈T (i = 1, 2, . . . , n), we have n random variables
X(ti) (i = 1, 2, . . . , n). The joint distribution of these random variables is

FX(t1)X(t2)...X(tn)(x1, x2, . . . , xn)

= P (X(t1) ≤ x1, X(t2) ≤ x2, . . . , X(tn) ≤ xn)

for a real random process. In the above xi = x(ti), i = 1, 2, . . . , n. The joint
probability density function is given by

pX(t1)X(t2)...X(tn)(x1, x2, . . . , xn)

=
∂n

∂x1∂x2 . . . ∂xn
FX(t1)X(t2)...X(tn)(x1, x2, . . . , xn),
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which is called nth order probability density function. The random process
X(t) is said to be stationary of order n if

pX(t1)X(t2)...X(tn)[x(t1), x(t2), . . . , x(tn)]

= pX(t1+t0)X(t2+t0)...X(tn+t0)[x(t1 + t0), x(t2 + t0), . . . , x(tn + t0)]

for an arbitrary t0. The random process X(t) is said to be strictly
stationary or stationary in the strict sense if it is stationary of any
order. Many important properties of the stationary process can be described
by first and second moments.

Remark 8.1: If the random process Z(t) is complex, the joint
n-dimensional distribution of random variables Z(ti) (i = 1, 2, . . . , n)
will mean the joint 2n-dimensional distribution of the real and imaginary
components of Z(ti) (i = 1, 2, . . . , n). �

8.1.4.1 Time-Average and Ensemble-Average

Given a sample function x(t), we may introduce the following time-average
quantities

x(t) = lim
T→∞

1
T

T/2∫
−T/2

x(t)dt,

x2(t) = lim
T→∞

1
T

T/2∫
−T/2

x2(t)dt,

[x(t) − x(t)]2 = lim
T→∞

1
T

T/2∫
−T/2

[x(t) − x(t)]2dt,

x(t+ τ)x(t) = lim
T→∞

1
T

T/2∫
−T/2

x(t+ τ)x̄(t)dt,

which are called mean, mean square, variance, and autocorrelation,
respectively. Given a stochastic process {X(t)|t∈T }, we may introduce the
ensemble-average quantities:

mX(t) = 〈X(t)〉,
RXX (t, s) = 〈X(t)X̄(s)〉,
KXX (t, s) = 〈[X(t) −mX(t)][X̄(s) − m̄X(s)]〉.
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They are called mean, autocorrelation, and autocovariance, respec-
tively. For a strictly stationary process, the mean of the random process
is a constant and the autocorrelation and autocovariance functions depend
on the time difference t− s only

mX(t) = mX = constant,

RXX (t, s) = RXX (t− s), (8.2)

KXX (t, s) = KXX (t− s).

The random process X(t) is said to be stationary in the wide sense
or weakly stationary, or stationary to the second order, if (8.2)
holds. For convenience, the autocorrelation function of a stationary process
is denoted as

RXX (τ) = 〈X(t+ τ)X̄(t)〉.
A stationary process X(t) is said to be ergodic if

mX = x(t), RXX (τ) = x(t + τ)x̄(t),

where x(t) is a sample function. In this case, the ensemble-average is equal
to the time-average.

8.1.4.2 Power Spectral Density

The power spectral density (PSD) of the random process X(t) is defined
as the Fourier transform of the autocorrelation function

SXX (ω) =

∞∫
−∞

RXX (τ)e−jωτdτ . (8.3)

Thus

RXX (τ) =
1
2π

∞∫
−∞

SXX (ω)ejωτdω. (8.4)

Equations (8.3) and (8.4) are the Wiener–Khintchine relations. We have
the following properties:

(1) RXX (τ) = RXX (−τ).
(2) |RXX (τ)| ≤ RXX (0).
(3) SXX (ω) ≥ 0.
(4) SXX (ω) = SXX (−ω).
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y(t)
h(t)

x(t)

Figure 8.3 LTI system.

X(t) is called a white noise process if the PSD is a constant

SXX (ω) =
N0

2
.

The autocorrelation function of the white noise process may then be
written as

RXX (τ) =
N0

2
δ(τ).

Consider a linear time-invariant (LTI) system with impulse response h(t)
and transfer function H(ω) (Figure 8.3), where h(t) and H(ω) constitute
a Fourier transform pair. Suppose that x(t) is a sample function of a
stationary stochastic process X(t) and is the input of the system. Then
the output y(t) is a sample function of a stochastic process Y (t). We have
the following properties:

(1) mY = 〈Y (t)〉 = 〈X(t)〉 ·H(0) = mX ·H(0),
(2) RYY (τ) =

∫∞
−∞

∫∞
−∞ h(α)h(β)RXX (τ + α− β)dαdβ,

(3) SYY (ω) = |H(ω)|2SXX (ω).

We may adopt a time-average approach to investigate the relationship
between correlation function and PSD. For two arbitrary functions x1(t)
and x2(t), the Parseval identity is given by

∞∫
−∞

x1(t)x̄2(t)dt =
1
2π

∞∫
−∞

x̃1(ω)¯̃x2(ω)dω, (8.5)

where x̃1(ω) and x̃2(ω) are the Fourier transforms of x1(t), and x2(t),
respectively. For a sample function x(t), we introduce the truncated
function

xT (t) =
{
x(t), |t| ≤ T/2
0, |t| > T/2
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and its Fourier transform is denoted by x̃T (ω). From (8.5), the autocorre-
lation function of xT (t) can be expressed as

1
T

T/2∫
−T/2

xT (t+ τ)x̄T (t)dt =
1
2π

∞∫
−∞

1
T

|x̃T (ω)|2 ejωτdω.

Taking the ensemble-average gives

1
T

T/2∫
−T/2

〈xT (t+ τ)x̄T (t)〉dt =
1
2π

∞∫
−∞

1
T
〈|x̃T (ω)|2〉ejωτdω.

For a stationary process, we have

lim
T→∞

1
T

T/2∫
−T/2

〈xT (t+ τ)x̄T (t)〉dt = RXX (τ).

Thus

RXX (τ) =
1
2π

∞∫
−∞

lim
T→∞

1
T
〈|x̃T (ω)|2〉ejωτdω.

The PSD can be identified as

SXX (ω) = lim
T→∞

1
T
〈|x̃T (ω)|2〉.

8.1.5 Gaussian Process

A real random variable X is said to have a Gaussian distribution
(normally distributed) if its probability density function has the form

pX(x) =
1√

2πσX
e−(x−mX)2/2σ2

X (8.6)

with mX = 〈X〉 and σ2
X = 〈(X − mX)2〉. In general, a real random

vector X = [X1, X2, . . . , Xn]T is said to be normally distributed if its
probability density function has the form (n-dimensional Gaussian density
function)

pX(x) =
1

(2π)n/2(det[Σ])1/2
e−

1
2 (x−mX)T [Σ]−1(x−mX) (8.7)

with mX = 〈X〉, [Σ] = 〈[(X − mX)(X − mX)T ]〉. A random process
X(t) is said to be a Gaussian process if the set of random variables
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X(t1), X(t2), . . . , X(tn), obtained by sampling x(t) at times t1, t2, . . . , tn
are jointly Gaussian for any n. We have the following properties:

(1) If the input to a stable linear filter is a Gaussian process the output is
also Gaussian.

(2) If a Gaussian process is wide-sense stationary, the process is also
stationary in the strict-sense.

(3) If the set of random variables X(t1), X(t2), . . . , X(tn), obtained by
sampling a Gaussian process at times t1, t2, . . . , tn are uncorrelated, i.e.,

〈[X(tk) −mX(tk)][X(ti) −mX(ti)]〉 = 0, k �= i,

then this set of random variables are statistically independent.

Let Z(t) = X(t) + jY (t) be a complex random process. If the joint
distribution of X(t1), Y (t1), . . . , X(tn), Y (tn) is 2n-dimensional Gaussian
for any choice of sample points t1, t2, . . . , tn and for any n, then Z(t) is said
to be a complex Gaussian process.

8.1.6 Complex Gaussian Density Function

Let [Q]∈Cn×n be a positive definite Hermitian matrix. The complex
Gaussian density function for an n-dimensional complex random
variable Z is defined by

pZ(z) =
1

πn det[Q]
e−(z−µ)†[Q]−1(z−µ), z, µ∈Cn. (8.8)

Then (Miller, 1974)

(z − µ)†[Q]−1(z − µ) =
1
2
(zc − µc)T [Qa]−1(zc − µc)

=
1
2
(zc − µc)†[Qd]−1(zc − µc)

=
1
2
(�z − �

µ)†[
�

Q]−1(�z − �
µ),

where

�z =
[
x
y

]
=
[
Re(z)
Im(z)

]
,

�
µ =

[
Re(µ)
Im(µ)

]
, [

�

Q] =
1
2

[
Re[Q] −Im[Q]
Im[Q] Re[Q]

]
,

zc =
[
z
z̄

]
, µc =

[
µ
�
µ

]
, [Qd] =

[
[Q] 0
0 [Q̄]

]
, [Qa] =

[
0 [Q]

[Q̄] 0

]
.
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Note that

det[
�

Q] = 2−2n(det[Q])2, det[Qa] = (−1)n(det[Q])2, det[Qd] = (det[Q])2.

Thus (8.8) may be written as

pZ(z) =
1

πn det([Qd])1/2
e−

1
2 (zc−µc)

†[Qd]−1(zc−µc)

=
1

(2π)n det[
�

Q]1/2
e−

1
2 (

�
z−�

µ)†[
�
Q]−1(

�
z−�

µ).

It follows that

〈Z〉 = µ, 〈[(Z − µ)(Z − µ)†〉 = [Q],

∞∫
−∞

∞∫
−∞

p(z)dx dy = 1.

8.1.7 Analytic Representation

Let us consider a real random signal s(t) with its Fourier transform denoted
by s̃(ω). Then

s(t) =
1
2π

∞∫
−∞

s̃(ω)ejωtdω

=
1
2π


 ∞∫

0

s̃(ω)ejωtdω +

∞∫
0

¯̃s(ω)e−jωtdω


 = Re sa(t),

where sa(t) = 1
π

∫∞
0
s̃(ω)ejωtdω is referred to as the analytic represen-

tation of s(t). The Fourier transform of the analytic signal is given by

s̃a(ω) =

∞∫
−∞

sa(t)e−jωtdt =
1
π

∞∫
−∞

dt

∞∫
0

s̃(ω′)ej(ω
′−ω)tdω′

=
1
π

∞∫
0

s̃(ω′)2πδ(ω′ − ω)dω′ =
{

2s̃(ω), ω > 0
0, ω < 0

.

Therefore, the analytic representation has no negative frequency com-
ponent, which indicates that the negative frequency components of a
real valued signal are superfluous due to the spectral symmetry. The
introduction of analytic representation allows us to use complex variable
analysis to study the random process. The autocorrelation function of the
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analytic representation is called the coherence function, denoted by

Γ(τ) = 〈sa(t+ τ)s̄a(t)〉.
If Ea(r, t) is the analytic representation of a random vector field. The
coherence tensor of the electric field is defined as the ensemble-average
of the dyad Ea(r1, t1)Ēa(r2, t2)

↔
Γ(r1, r2, t1, t2) = 〈Ea(r1, t1)Ēa(r2, t2)〉,

which can be written as

↔
Γ(r1, r2, t1, t2) =


Γ11(r1, r2, t1, t2) Γ12(r1, r2, t1, t2) Γ13(r1, r2, t1, t2)
Γ21(r1, r2, t1, t2) Γ22(r1, r2, t1, t2) Γ23(r1, r2, t1, t2)
Γ31(r1, r2, t1, t2) Γ32(r1, r2, t1, t2) Γ33(r1, r2, t1, t2)




with Γij(r1, r2, t1, t2) = 〈Ei(r1, t1)Ēj(r2, t2)〉, i, j = 1, 2, 3. If the field is
stationary, we have

↔
Γ(r1, r2, t1, t2) =

↔
Γ(r1, r2, τ). If the field is ergodic,

then

↔
Γ(r1, r2, τ) = lim

T→∞
1
T

T/2∫
−T/2

E(r1, t+ τ)Ē(r2, t)dt.

Note that
↔
Γ(r1, r2, τ) =

↔
Γ†(r2, r1,−τ), where “†” denotes the Hermitian.

The power spectral density tensor is the Fourier transform of the
coherence tensor

↔
P(r1, r2, ω) =

∞∫
−∞

↔
Γ(r1, r2, τ)e−jωτdτ

with

↔
P(r1, r2, ω) =


P11(r1, r2, ω) P12(r1, r2, ω) P13(r1, r2, ω)
P21(r1, r2, ω) P22(r1, r2, ω) P23(r1, r2, ω)
P31(r1, r2, ω) P32(r1, r2, ω) P33(r1, r2, ω)


,

Pij(r1, r2, ω) =

∞∫
−∞

Γij(r1, r2, τ)e−jωτdτ .

Similarly, we have
↔
P(r1, r2, ω) =

↔
P†(r2, r1,−ω). It is easy to show that in

free space, Γij and Pij satisfy the following equations

∇2
1Γij(r1, r2, τ) − 1

c2
∂2

∂τ2
Γij(r1, r2, τ) = 0,

∇2
1Pij(r1, r2, ω) + k2Pij(r1, r2, ω) = 0,
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where k = ω/c, and the subscript “1” stands for the differential operation
with respect to r1.

8.1.8 Narrow-Band Stationary Stochastic Process

Digital modulation is a process by which digital symbols are transformed
into waveforms that are compatible with the characteristics of the channel.
In the case of baseband modulation, these waveforms are pulses, but in
the case of bandpass modulation the desired information signal modulates
a sinusoid called a carrier. Modulation methods determine the system
bandwidth, power efficiency, sensitivity, and complexity. Digital modulation
offers many advantages over analog modulation and may be broadly
classified as linear and nonlinear. In linear modulation techniques, the
amplitude of the transmitted signal varies linearly with modulating digital
signal. Linear modulation techniques are bandwidth efficient and hence
are very useful in wireless communication systems. As a linear modulation
technique, an easy way to translate the spectrum of low-pass or baseband
signal a(t) to a higher frequency is to multiply or heterodyne the baseband
signal with a carrier wave. The resulting waveform (assumed to be a sample
function of a wide-sense stationary stochastic process) is called a double-
sided bandpass (DSB) signal and can be represented by

s(t) =



a(t) cos[ωct+ ϕ(t)],
x(t) cosωct− y(t) sinωct,
Re sen(t)ejωct,

(8.9)

where ωc = 2πfc, a(t) and ϕ(t) are the carrier frequency, envelope, and
phase of the modulated signal respectively, and

sen(t) = x(t) + jy(t),

x(t) = a(t) cosϕ(t),

y(t) = a(t) sinϕ(t),

where sen(t), x(t), and y(t) are called complex envelope, in-phase
component, and quadrature component of the modulated signal. It
is clear from (8.9) that the amplitude of the carrier varies linearly with
the modulating signal. Linear modulation schemes in general do not have
constant envelope. The spectrum of the DSB signal is given by

s̃(f) =
1
2

[ã(f − fc) + ã(f + fc)],
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Figure 8.4 Spectrum of DSB signal.

where s̃(f) is the Fourier transform of s(t). If the baseband signal a(t) has a
bandwidth Ba, the bandwidth of the DSB will be Bs = 2Ba, as illustrated
in Figure 8.4. That is, we need twice as much transmission bandwidth to
transmit a DSB version of the signal than we do to transmit its baseband
counterpart. The autocorrelation function RSS (τ) of s(t) is

RSS (τ) = 〈S(t+ τ)S(t)〉

=
1
2

[RXX (τ) +RYY (τ)] cosωcτ

+
1
2

[RXX (τ) −RYY (τ)] cosωc(2t+ τ)

− 1
2

[RYX (τ) −RXY (τ)] sinωcτ

− 1
2

[RYX (τ) +RXY (τ)] sinωc(2t+ τ).

Since s(t) is stationary, the right-hand side must be independent of t, which
implies

RXX (τ) = RYY (τ), RXY (τ) = −RYX (τ).

Note that the cross-correlation function satisfies

RXY (−τ) = RYX (τ), RXY (τ) = −RXY (−τ)

and RXY (0) = 0. Thus

RSS (τ) = RXX (τ) cosωcτ −RYX (τ) sinωcτ. (8.10)

The autocorrelation function of the complex envelope is given by

RSenSen(τ) = 〈Sen(t+ τ)Sen(t)〉 = 2[RXX (τ) + jRYX (τ)]. (8.11)
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It follows from (8.10) and (8.11) that

RSS (τ) =
1
2
Re
[
RSenSen(τ)e

jωcτ
]
.

The PSD of s(t) is the Fourier transform of RSS (τ) and can be expressed as

SSS (ω) =
1
4
[SSenSen(ω − ωc) + SSenSen(−ω − ωc)].

The definition of signal bandwidth varies with context, and there is no single
definition that suits all applications. All definitions are however based on
some measure on the PSD of the signal. The stochastic process s(t) is said to
be a narrowband bandpass process if the width of the spectral density
is much smaller than the carrier frequency fc.

Similar to (8.9), a narrowband bandpass stochastic vector field F in
the time domain can be expressed as

F(r, t) =




a(r, t) cos[ωct+ ϕ(r, t)],
x(r, t) cosωct− y(r, t) sinωct,
ReFen(r, t)ejωct,

where

Fen(r, t) = x(r, t) + jy(r, t),

x(r, t) = a(r, t) cosϕ(r, t),

y(r, t) = a(r, t) sinϕ(r, t).

If the complex envelopes of electromagnetic fields are slowly varying
functions of time compared to ejωct, we have{

∇× Hen(r, t) = jωcεEen(r, t) + Jen(r, t),

∇× Een(r, t) = −jωµHen(r, t).
(8.12)

Therefore, the complex envelopes of electromagnetic fields satisfy the time-
harmonic Maxwell equations, and most of the theoretical results about
the time-harmonic fields can be applied to the complex envelopes. Let F
denote the time-average of F: F = lim

T→∞
1
T

∫ T/2
−T/2 F(t)dt. For a stationary

and ergodic electromagnetic field, we may take the time-average of (8.12)
to obtain 


∇× Hen(r) = jωcεEen(r) + Jen(r),

∇× Een(r) = −jωcµHen(r).
(8.13)
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Hence, most of the theoretical results about the time-harmonic fields can
also be applied to the time-averages of the complex envelopes of the fields.

The autocorrelation function RFF(τ) of vector field F is defined by

RFF(τ) = 〈F(t+ τ) · F̄(t)〉 = Rxx(τ) cosωcτ −Ryx(τ) sinωcτ,

where we have assumed that F is stationary. The autocorrelation function
of the complex envelope is then given by

RFenFen(τ) = 〈Fen(t+ τ) · F̄en(t)〉 = 2[Rxx(τ) + jRyx(τ)]

and we also have

RFF(τ) =
1
2
Re[RFenFen(τ)ejωcτ ].

The PSD of F(r, t) is the Fourier transform of RFF(τ), which can be
written as

SFF(ω) =
1
4
[SFenFen(ω − ωc) + SFenFen(−ω − ωc)].

8.2 Information Theory

Information theory is essentially a branch of applied mathematics and
has found applications in many areas. The most important quantities of
information are entropy, the information in a random variable, and mutual
information, the amount of information in common between two random
variables.

8.2.1 System with One Random Variable

Let X be a discrete random variable with P (X = xj) = pj , 0 ≤ pj ≤ 1 and∑n
j=1 pj = 1. The entropy of X , denoted by H(X), is defined by

H(X) = −
n∑
j=1

pj log pj . (8.14)

The base of logarithm is not specified in the definition. The unit of entropy
is bits if base 2 is used or nats if base e is used. If pi = 0, the term
pi log pi in (8.14) is defined to be zero. If n = ∞, the sum (8.14) may not
converge. In this case, we define H(X) = +∞. The differential entropy
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of a continuous random vector X = [X1, X2, . . . , Xn]T is defined by

H(X) = −
∞∫

−∞
pX(x) log pX(x)dx,

where x = [x1, x2, . . . , xn]T and dx = dx1dx2 . . . dxn.

Remark 8.2: The entropy is a measure of uncertainty of a random variable
or is a measure of unpredictability of information content. The entropy of
a continuous random variable needs not to exist. When it does exist, it can
be negative. �

Example 8.3: The entropy of the Gaussian distribution given by (8.6)
is log[(2πe)1/2σX ]. Thus the entropy increases as σX increases. Making
use of x†x = Tr(xx†) and (8.8), the entropy of an n-dimensional complex
Gaussian random vector Z with covariance [Q] can be written as

H(Z) = 〈−log pZ(z)〉
= log det(π[Q]) + (log e)〈[(z − µ)†[Q]−1(z − µ)]〉
= log det(π[Q]) + (log e)Tr{〈[(z − µ)(z − µ)†]〉[Q]−1}
= log det(π[Q]) + n log e = log det(πe[Q]). (8.15)

Similarly, it follows from (8.7) that the entropy of an n-dimensional real
Gaussian random vector X with covariance [Σ] is

H(X) = 〈−log pX(x)〉

=
1
2

log det(2π[Σ]) +
1
2
(log e)〈[(x − mX)T [Σ]−1(x − mX)]〉

=
1
2

log det(2π[Σ]) +
1
2
(log e)Tr{〈[(x − mX)(x − mX)T ]〉[Σ]−1}

=
1
2

log det(2π[Σ]) +
1
2
n log e =

1
2

log det(2πeΣ). (8.16)

Note the difference between (8.15) and (8.16). �

We note that the probability density which gives the greatest differen-
tial entropy subject to the restriction

∞∫
−∞

x2pX(x)dx = σ2
X
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is the Gaussian distribution with zero mean and variance σ2
X (e.g., Jones,

1979b).

8.2.2 System with Two Random Variables

Let X be a discrete random variable with P (X = xj) = pj , 0 ≤ pj ≤ 1
and

∑n
j=1 pj = 1. Let Y be another discrete random variable with

P (Y = yk) = qk, 0 ≤ qk ≤ 1 and
∑m

k=1 qk = 1. The connection between
X and Y is obtained by specifying

P (X = xj , Y = yk) = pjk

subject to pjk ≥ 0, and
∑n
j=1

∑m
k=1 pjk = 1. Evidently, we have

pj =
m∑
k=1

pjk, qk =
n∑
j=1

pjk,

P (X = xj |Y = yk) =
P (X = xj , Y = yk)

P (Y = yk)
=
pjk
qk
.

The conditional entropy H(X |Y ) is defined by

H(X |Y ) = −
n∑
j=1

m∑
k=1

pjk logP (X = xj |Y = yk) = −
n∑
j=1

m∑
k=1

pjk log
pjk
qk
.

The joint entropy H(X ∩ Y ) of X and Y is defined by

H(X ∩ Y ) = −
n∑
j=1

m∑
k=1

pjk log pjk.

It is easy to show that

(1) H(X ∩ Y ) = H(Y ) +H(X |Y ) = H(X) +H(Y |X) (chain rule).
(2) H(X) −H(X |Y ) = H(Y ) −H(Y |X) = H(X) +H(Y ) −H(X ∩ Y ).
(3) H(X |Y ) ≤ H(X) with equality only if X and Y are statistically

independent.

The mutual information I(X,Y ) between X and Y is defined by

I(X,Y ) = H(X) −H(X |Y ) = H(Y ) −H(Y |X) = I(Y,X).

The mutual information I(X,Y ) is the reduction in the uncertainty of X
due to the knowledge of Y . Note that I(X,Y ) > 0.
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Let us consider two continuous random vectors X = [X1, X2, . . . , Xn]T

and Y = [Y1, Y2, . . . , Yn]T with probability density pX(x) and pY(y) respec-
tively. The joint distribution of the two random vectors is pXY(x,y). The
joint entropy, conditional entropy and mutual information are respectively
defined by

H(X ∩ Y) = −
∞∫

−∞

∞∫
−∞

pXY(x,y) log pXY(x,y)dx dy,

H(X|Y) = −
∞∫

−∞

∞∫
−∞

pXY(x,y) log
pXY(x,y)
pY(y)

dx dy,

I(X,Y) = H(X) −H(X|Y). (8.17)

We have the following properties:

(1) H(X ∩Y) = H(Y) +H(X|Y) = H(X) +H(Y|X).
(2) I(X,Y) = I(Y,X) = H(X) +H(Y)−H(X∩Y) = H(Y)−H(Y|X).
(3) I(X,Y)≥ 0, H(X)≥H(X|Y) with equality iff X and Y are statisti-

cally independent.

Note that I(X,X) = H(X). Thus entropy is actually the self-information
of a random variable.

8.2.3 System with More Than Two Random Variables

Let X be a discrete random variable with P (X = xj)= pj, 0≤ pk≤ 1
and

∑n
j=1 pj = 1. Let Y be the second discrete random variable with

P (Y = yk) = qk, 0 ≤ qk ≤ 1 and
∑m

k=1 qk = 1. Let Z be the third discrete
random variable with P (Z = zl) = sl, 0 ≤ sl ≤ 1 and

∑r
l=1 sl = 1. The

connection between the three random variables is obtained by specifying

P (X = xj , Y = yk, Z = zl) = pjkl

subject to pjkl ≥ 0 and
∑n
j=1

∑m
k=1

∑r
l=1 pjkl = 1. It is easy to show that

pjk = P (X = xj , Y = yk) =
r∑
l=1

pjkl,

pjl = P (X = xj , Z = zl) =
r∑

k=1

pjkl,

pj = P (X = xj) =
m∑
k=1

r∑
l=1

pjkl.
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X and Y are said to be statistically independent when conditioned
on Z if

P (X = xj , Y = yk|Z = zl) = P (X = xj |Z = zl)P (Y = yk|Z = zl)

for all j, k, and l such that P (Z = zl) �= 0. We introduce the following
entropies

H(X |Y ∩ Z) = −
n∑
j=1

m∑
k=1

r∑
l=1

pjkl logP (X = xj |Y = yk, Z = zl),

H(X ∩ Y |Z) = −
n∑
j=1

m∑
k=1

r∑
l=1

pjkl logP (X = xj , Y = yk|Z = zl).

The mutual information I(X ∩ Y, Z) are defined by

I(X ∩ Y, Z) = H(X ∩ Y ) −H(X ∩ Y |Z).

The mutual information between X and Y conditioned on Z is
defined by

I(X,Y |Z) = H(X |Z) −H(X |Y ∩ Z).

The following properties hold

(1) I(X,Y |Z) ≥ 0 with equality only if X and Y are said to be statistically
independent when conditioned on Z.

(2) I(X ∩ Y, Z) = I(X,Z) + I(Y, Z|X) = I(Y, Z) + I(X,Z|Y ).
(3) Data processing theorem: If X and Z are statistically independent

when conditioned on Y , then I(X,Z) ≤ I(Y, Z), I(X,Z) ≤ I(X,Y ).
(4) I(X,Y ) ≥ 0 with equality only ifX and Y are statistically independent.

Let us consider three random vectors X = [X1, X2, . . . , Xn]T , Y =
[Y1, Y2, . . . , Yn]T , and Z = [Z1, Z2, . . . , Zn]T with probability density pX(x),
pY(y), and pZ(z) respectively. The joint distribution of the three random
vectors is pXYZ(x,y, z). We introduce the following conditional entropies

H(X|Y ∩ Z) = −
∞∫

−∞

∞∫
−∞

∞∫
−∞

pXYZ(x,y, z) log
pXYZ(x,y, z)
pYZ(y, z)

dx dy dz,

H(X ∩Y|Z) = −
∞∫

−∞

∞∫
−∞

∞∫
−∞

pXYZ(x,y, z) log
pXYZ(x,y, z)

pZ(z)
dx dy dz,
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and define the conditional mutual information

I(X,Y|Z) = H(X|Z) −H(X|Y ∩ Z).

Then

(1) H(X ∩Y|Z) = H(X|Z) +H(Y|X ∩ Z).
(2) I(X ∩ Y,Z) = I(X,Z) + I(Y,Z|X) (chain rule for the mutual

information).

8.2.4 Channel Capacity of Deterministic MIMO System

The well-known Shannon’s continuous channel theorem (Shannon,
1948) gives the fundamental limit on the rate of error-free transmission for a
power-limited, band-limited Gaussian channel. This theorem indicates that
the maximum information rate C depends on three key system parameters:
channel bandwidth B, average transmitted power P and noise PSD N0 at
the channel output:

C = B log
(

1 +
P

N0B

)
. (8.18)

To approach this limit, the statistical properties of the transmitted
signal must be like a white Gaussian noise. To stretch Shannon’s above
limit, one may use multiple antenna system. The block diagram of a
multiple antenna system is shown in Figure 8.5. For an nt × nr MIMO
system, we have nt transmitting antennas and nr receiving antennas.
The input signal to the transmit antenna system is denoted by X(t) =
[x1(t), x2(t), . . . , xnt(t)]T ∈Cnt , which is a nt × 1 complex random matrix,

Antenna 1

Antenna n

TX

t

n +1t

n +t nt

Antenna 

Antenna

Scatterers

Rx 

Figure 8.5 Generic MIMO system.
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and the output of the receive antenna system is denoted by Y(t) =
[y1(t), y2(t), . . . , ynt(t)]T ∈Cnr , which is an nr × 1 complex random matrix
given by

y(t) =

∞∫
−∞

[h(t, τ)]x(t − τ)dτ + z(t), (8.19)

where Z is nr × 1 additive white Gaussian noise (AWGN) matrix with
zero mean at a given instant of time and [h(t, τ)] is the MIMO channel
response matrix

[h(t, τ)] =



h11(t, τ) h12(t, τ) · · · h1nt(t, τ)
h21(t, τ) h22(t, τ) · · · h2nt(t, τ)

...
...

. . .
...

hnr1(t, τ) hnr2(t, τ) · · · hnrnt(t, τ)




and hij(t, τ) is the time-varying impulse response between the jth
(j = 1, 2, . . . , nt) transmitting antenna and the ith receive antenna
(i = 1, 2, . . . , nr) and is the response at time t to an impulse transmitted at
t−τ . The vector [h1j(t, τ), h2j(t, τ), . . . , hnrj(t, τ)]T is referred to as spatio-
temporal signature induced by the jth transmitting antenna across the
receiving antenna array. In most applications, communications are carried
out in a passband around a center frequency ωc. In this case, we may write

x(t) = Re[xen(t)ejωct], y(t) = Re[yen(t)ejωct], z(t) = Re[zen(t)ejωct].

Let [h̃(t, ω)] be the Fourier transform of [h(t, τ)]. If the bandwidth of the
input signal vector, denoted by B, is narrow enough, h̃(t, ω) can be treated
as constant over the band of interest. Introducing these into (8.19), we
obtain

yen(t) =

∞∫
−∞

[h(t, τ)]e−jωcτxen(t− τ)dτ + zen(t)

≈
∞∫

−∞


 1
2π

[h̃(t, ωc)]

ωc+B/2∫
ωc−B/2

ejωτdω


e−jωcτxen(t− τ)dτ + zen(t)

=
1
2π
B[h̃(t, ωc)]

∞∫
−∞

[
sin(Bτ/2)
Bτ/2

]
xen(t− τ)dτ + zen(t)
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≈ 1
2π
B[h̃(t, ωc)]xen(t) + zen(t) = [h(t, 0)]xen(t) + zen(t)

= [H ]xen(t) + zen(t), (8.20)

where [H ] = [h(t, 0)] is the narrowband MIMO channel matrix. Thus,
the convolution in (8.19) can be replaced by a product as in (8.20) for
narrowband application. Equation (8.20) gives the relationship between
the input and output symbols. Assuming that X and Z are statistically
independent, we have

[RYY] = 〈[YȲT ]〉 = 〈[H ]XX̄T [H̄ ]T 〉 + 〈[ZZ̄T ]〉
= [H ][RXX][H̄ ]T + [RZZ],

[RXY] = 〈[XȲT ]〉 = 〈XX̄T [H̄ ]T 〉 + 〈[XZ̄T ]〉 = [RXX][H̄ ]T .

(8.21)

The total transmitted power at the input is then given by Tr[RXX].
Note that in order to decode nt separate transmitted signal, a necessary

condition is that the number of receiving antennas must be at least as many
as the number of transmitting antennas. When there are sufficient scatterers
in the environment, one may expect that the nr receiving signals are linearly
independent combinations of the transmitted signals. In this case, it is
possible to deduce the value of x from y through (8.20) by inverting the
matrix [H ] or performing a pseudoinverse if [H ] is not invertible. It should
be noted that the linear independence depends on the environment and
antennas. For example, if two antennas receive the same electromagnetic
field, one of them becomes redundant and the linear independence fails.
Another extreme situation is when no scatterers exist, i.e., the line-of-
sight case, where the nr receiving antennas receive essentially the same
combination of the nt different transmitted signals up to a global phase
shift.

The MIMO channel capacity is defined as the maximum mutual
information over all possible transmitted vector signals. Let X and Y be
two complex random vectors, which represent the input and output of a
memoryless wireless channel. The mutual information between X and Y is
denoted by I(X,Y). The capacity (in bits/s/Hz) of a deterministic MIMO
channel is then given by

C = sup
fX(x)|Tr [RXX]=P

I(X,Y), (8.22)
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where the supremum is taken overall input probability distribution with
the total input power limited to P , regardless of the number of transmit
antennas. Since X and Z are independent, the mutual information can be
expressed as

I(X,Y) = H(Y) −H(Y|X) = H(Y) −H(Z).

The value of H(Z) is set by the noise alone. Thus maximizing I(X,Y) is
equivalent to maximizing H(Y). It can be shown that H(Y) is maximized
if Y is Gaussian with zero-mean. From (8.15), the maximum mutual
information is given by

sup
Tr[RXX]=P

I(X,Y)

= sup
Tr[RXX]=P

log det
(
eπ
[
[H ][RXX][H̄ ]T + [RZZ]

])
− log det

(
eπ[RZZ]

)
= sup

Tr[RXX]=P

log det
(
[Inr ] + [H ][RXX][H̄ ]T [RZZ]−1

)
(8.23)

and the channel capacity is

C = sup
Tr[RXX]=P

log det
(
[Inr ] + [H ][RXX][H̄ ]T [RZZ]−1

)
. (8.24)

Remark 8.3: Equation (8.23) has an intuitive expression which relates
the channel capacity to the covariance matrix of the linear minimum mean
squared error estimate of the input X (Stocia et al., 2005). �

It is common to assume that the noises in the receiver branches are
uncorrelated so that one can write [RZZ] = σ2[Inr ]. Thus (8.23) may be
written as

sup
Tr[RXX]=P

I(X,Y)

= sup
Tr[RXX]=P

log det
(

[Inr ] +
1
σ2

[H ][RXX][H̄ ]T
)
. (8.25)

Making use of the determinant identity,

det([I] + [AB]) = det([I] + [BA]), (8.26)
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(8.25) can also be expressed as

sup
Tr[RXX]=P

I(X,Y)

= sup
Tr[RXX]=P

log det
(

[Int ] +
1
σ2

[RXX][H̄ ]T [H ]
)

(8.27)

and channel capacity (8.24) may be written as

C = sup
Tr[RXX]=P

log det
(

[Inr ] +
1
σ2

[H ][RXX][H̄ ]T
)

= sup
Tr[RXX]=P

log det
(

[Int ] +
1
σ2

[RXX][H̄ ]T [H ]
)
. (8.28)

It now remains to choose [RXX] to maximize (8.25) or (8.27) subject to the
constraint Tr[RXX] = P .

Case 1: In practice the transmitter has no channel knowledge. In this case,
it is reasonable to choose X to be spatially white (i.e., signals transmitted
by each antenna are independent) and use a uniform power distribution
(i.e., each antenna is equi-powered). Thus, the covariance matrix of X is
given by [RXX] = (P/nt)[Int ]. In this case, the capacity (in bit/s/Hz) for
a complex AWGN MIMO channel can be expressed as

C = log det
(

[Inr ] +
P

σ2nt
[H ][H̄ ]T

)
= log det

(
[Int ] +

P

σ2nt
[H̄ ]T [H ]

)
.

(8.29)

Using the singular value decomposition, [H ] can be written as

[H ] = [U ][Σ][V̄ ]T =
q∑
i=1

δiuiv̄Ti , (8.30)

where [U ] and [V ] are nr×nr and nt×nt unitary matrices respectively; [Σ]
is a nr×nt matrix whose only nonzero entries are Σ(i, i) = δi, i = 1, 2, . . . , q;
ui(vi) are column vectors of [U ]([V ]) respectively and they are orthonormal
so that [Ū ]T [U ] = Inr and [V̄ ]T [V ] = Int ; q is the number of nonzero
singular values and is the rank of the channel matrix [H ]

q = rank[H ] ≤ min(nt, nr).
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It follows from (8.30) that

[H̄ ]T [H ] = [V ][Σ̄]T [Ū ]T [U ][Σ][V̄ ]T =
q∑
i=1

δ2i viv̄
T
i ,

[H ][H̄ ]T = [U ][Σ][V̄ ]T [V ][Σ]T [Ū ]T =
q∑
i=1

δ2i uiū
T
i .

(8.31)

Thus (8.29) can be written as

C =




log det
(

[Inr ] +
P

σ2nt
[U ][Σ][Σ̄]T [Ū ]T

)

log det
(

[Int ] +
P

σ2nt
[V ][Σ̄]T [Σ][V̄ ]T

)

=




log det
(

[Inr ] +
P

σ2nt
[Σ][Σ̄]T

)

log det
(

[Int ] +
P

σ2nt
[Σ̄]T [Σ]

) =
q∑
i=1

log
(

1 +
P

σ2nt
δ2i

)
. (8.32)

Case 2: When the channel is known at the transmitter, the capacity will be
higher and the maximum capacity can be achieved by using the water-filling
principle, where power is unevenly distributed among the transmitting
antennas. Since [H̄ ]T [H ] is Hermitian it can be diagonalized with

[H̄]T [H ] = [Ū ]T [Λ][U ], (8.33)

where [U ] is the eigenvector matrix with orthonormal columns and

[Λ] = diag(λ1, λ2, . . . λnt). (8.34)

Thus

det
(

[Inr ] +
1
σ2

[H ][RXX][H̄ ]T
)

= det
(

[Int ] +
1
σ2

[RXX][H̄ ]T [H ]
)

= det
(

[Int ] +
1
σ2

[RXX][Ū ]T [Λ]1/2[Λ]1/2[U ]
)

= det
(

[Int ] +
1
σ2

[Λ]1/2[U ][RXX][Ū ]T [Λ]1/2
)

= det
(

[Int ] +
1
σ2

[Λ]1/2[R̃XX][Λ]1/2
)
, (8.35)
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where [R̃XX] = [U ][RXX][Ū ]T . Note that [R̃XX] is positive definite if and
only if [RXX] is and that Tr[R̃XX] = Tr[RXX]. As a result, the maximization
with respect to [RXX] is equivalent to the maximization with respect to
[R̃XX]. Also note that for a positive definite matrix [A] we have det[A] ≤∏
iA(i, i) from Hadamard’s inequality (Horn and Johnson, 1985), where

A(i, i) denote the diagonal matrix elements. Thus

det
(

[Int ] +
1
σ2

[Λ]1/2[R̃XX][Λ]1/2
)

≤
nt∏
i=1

(
1 +

1
σ2
λiR̃XX(i, i)

)
.

(8.36)

The equality holds only when [R̃XX] is diagonal. Thus (8.27) may be written
as

sup
Tr[RXX]=P

I(X,Y) = sup
Tr[R̃XX]=P

log
nt∏
i=1

(
1 +

1
σ2
λiR̃XX(i, i)

)

= sup
Tr[R̃XX]=P

nt∑
i=1

log
(
1 +

1
σ2
λiR̃XX(i, i)

)
.

Let Pi = R̃XX(i, i) and consider the Lagrangian

L(P1, P2, . . . , Pnt) =
nt∑
i=1

log
(

1 +
λiPi
σ2

)
− λ

(
nt∑
i=1

Pi − P

)
.

The Kuhn–Tucker condition for the optimality of a power allocation is

∂L

∂Pi

{
=0, Pi > 0
≤0, Pi = 0

,

from which the optimal diagonal entries can be determined to be

Pi =
(
µ− σ2

λi

)+

, i = 1, 2, . . . , nt, (8.37)

where a+ denotes max(0, a), µ = log e/λ, and µ is chosen such that

Tr[R̃XX] =
nt∑
i=1

Pi =
nt∑
i=1

(
µ− σ2

λi

)+

= P. (8.38)
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From (8.27), (8.35) and (8.36), the maximum mutual information is given by

sup
Tr[RXX]=P

I(X,Y)

= log
nt∏
i=1

[
1 +

λi
σ2

(
µ− σ2

λi

)+
]

=
nt∑
i=1

[
log
(
λi
σ2
µ

)]+
. (8.39)

In this case, the ergodic capacity (in bit/s/Hz) for a complex AWGN–
MIMO channel can be expressed as

C =
nt∑
i=1

[
log
(
λi
σ2
µ

)]+
. (8.40)

The optimal power allocation strategy (8.37) is called water-filling.
Let us consider some special situations.

(1) SISO channel capacity (nt = nr = 1)
In this case, [H ] = [h] and (8.28) becomes

C = log
(

1 +
P

σ2
|h|2
)

= log
(
1 + ρ|g|2), (8.41)

where g =
√
P/Prech, ρ = Prec/σ

2, and Prec is the received power at
the output of the receiving antenna.

(2) SIMO channel capacity (nt = 1)
In this case, [H ] = [h1, h2, . . . , hnr ]T and (8.28) becomes

C = log

(
1 +

P

σ2

nr∑
i=1

|hi|2
)
. (8.42)

(3) MIMO channel capacity (nt = nr = q, δ1 = δ2 = · · · = δ)
From (8.32), we obtain

C = nt log
(

1 +
P

σ2nt
δ2
)
. (8.43)

Comparing to nt = nr = 1 (SISO), the capacity of a multiple antenna
system is much higher.

8.3 Digital Communication Systems

The primary advantage of the digital communication system is the ease with
which digital signals, compared to analog signals, are regenerated. A typical
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Format Encoder Modulator Transmitter

Format Decoder Demodulator Receiver

Channel

Source

Sink

Figure 8.6 Digital communication system.

block diagram of the digital communication system is shown in Figure 8.6.
The upper blocks indicate the signal transformation from the source to the
transmitter. The lower blocks indicate the signal transformation from the
receiver to the sink, which reverses the signal processing steps performed
by upper blocks. The functions of each block are summarized as follows:

Format: The format processes performed in the transmitter typically
consists of a sampler and a quantizer, and a coder, which transforms the
source information (analog information) into digital information (digital
symbols) and makes the information compatible with the signal processing
within digital communication system. The format processes performed in
the receiver usually consists of a decoder and a low-pass filter, which
transforms digital information into analog information.

Encoder: The encoder mainly involves a source encoder and a channel
encoder. The source-encoding process removes redundant or unneeded
information and produces code-words in binary form. The goal of source
coding is either to improve the signal-to-noise ratio (SNR) for a given bit
rate or to reduce the bit rate for a given SNR. For the source encoder to
be efficient, the knowledge of statics of the source is required. The average
code word length must be greater than the entropy of the source (Shannon’s
first theorem). The channel encoder introduces redundancy in a prescribed
manner to increase the resistance of a digital communication system to
channel noise (error control encoding). Channel coding can reduce the
probability of error (PE) for a given data rate, or reduce SNR requirement,
at the expense of bandwidth or decoder complexity. The Shannon’s second
theorem (or channel coding theorem) states that the channel capacity C is
the fundamental limit on the rate at which the transmission of error-free
message can take place over a memoryless channel. For communications
security, encryption must be introduced in the encoder to prevent the
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unauthorized users from understanding messages and from injecting false
messages into the system.

Modulator and demodulator: After possible source and error control
encoding, a sequence of message symbols to be transmitted on the channel
is obtained. Each symbol belongs to a finite set of alphabet {1, 2, . . . ,M}.
The modulator performs the function to convert the digital symbols
{1, 2, . . . ,M} to digitally encoded waveforms {s1(t), s2(t), . . . , sM (t)} that
are compatible with the transmission channel. The demodulator is a device
that performs the inverse operation of modulation.

Transmitter and receiver: The transmitter usually consists of a fre-
quency up-conversion stage, a high-power amplifier, and an antenna. The
receiver portion usually consists of an antenna, a low-noise amplifier (LNA),
and a down-converter stage, typically to an intermediate frequency (IF).

8.3.1 Digital Modulation Techniques

A sinusoidal wave has three properties: amplitude, frequency, and phase.
Digital modulation refers the process of varying one or more properties of
a sine waveform, called the carrier, with a digital bit stream (baseband
signal) which contains information to be transmitted.

8.3.1.1 Baseband Transmission

An original analog waveform can be sampled to obtain a natural-sampled
data or pulse amplitude modulation (PAM), which is the output of the
sampling process and is then transformed into a quantized PAM signal
(called quantization), as illustrated in Figure 8.7. Each quantized sample

000

001

010

011

100

101

110

111

Figure 8.7 An example of 3-bit quantization.
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is then encoded into a digital word (code word) to obtain a PCM (pulse
code modulation) sequence. The PCM word size l depends on allowable
quantization distortion, which satisfies

l ≥ log2

1
2p

bits,

where p is a number chosen such that the quantization distortion error does
not exceed a fraction p of the peak-to-peak analog voltage. The sampling
process can be implemented in several ways and the most popular one is the
sample-and-hold operation. According to the uniform sampling theorem,
the sampling rate fs (the number of samples per second) should satisfy

fs ≥ 2fm,

where fm is the absolute bandwidth of a bandlimited signal (i.e., the signal
has no spectral components above fm). The sampling rate fs = 2fm is
called Nyquist rate.

Remark 8.4 (Sampling Theorem): If g(t) has finite bandwidth fm, i.e., its
Fourier transform is zero for |f | > fm, then

g(t) =
∞∑

i=−∞
g(iT )sinc

(
t− iT

T

)
,

where T = 1/2fm, sinc(t) is the normalized sinc function defined by

sinc(t) =
sinπt
πt

.

It is easy to show that
∞∫

−∞
sinc

(
t− iT

T

)
sinc

(
t− jT

T

)
dt =

{
T, i = j

0, i �= j
.

The sampling theorem indicates that a signal of bandwidth fm is totally
determined by its sampling values at the times iT (T = 1/2fm is called
Nyquist interval). If g(t) is small outside the time interval (0, T0), then
only sampling points within (0, T0) need to be considered. The number of
sampling points inside (0, T0) is given by 2fmT0. Thus, we have the following
expansion

g(t) =
2fmT0∑
i=1

g(iT ) sinc
(
t− iT

T

)
.
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The 2fmT0 samples need not be the equally spaced. Any set of
independent 2fmT0 numbers associated with the function can be used to
characterize it. �

These PCM binary digits are then represented by electrical pulses in
order to transmit them through a baseband channel. To obtain particular
spectral characteristics of a pulse train, digital baseband signals (PCM
sequence) often use line codes. The most common codes for mobile
communication are return-to-zero (RZ), non-return-to-zero (NRZ), and
Manchester codes, as illustrated in Figure 8.8. All of these may either
be unipolar or bipolar. RZ implies that the pulse returns to zero within
every bit period. This leads to spectral widening, but improves time
synchronization. NRZ codes do not return to zero during a bit period, i.e.,
the signal stays at constant levels throughout a bit period. NRZ codes are
more spectrally efficient than RZ codes, but offer poorer synchronization
capabilities. Since NRZ has a large DC component, it is used for data that

1 1 0 1 0 1 0 0 0 1 
NRZ-L(1-high level; 0-
low level)

NRZ-M(1-transition at 
the beginning of bit 
period; 0-no transition

RZ-Unipolar(1-Positive 
transition in the first half 
of bit period; 0-no 
transition) 

RZ-Bipolar(1-Positive 
transition in the first half 
of bit period; 0-negative 
transition in the first half 
of bit period)

Manchester(1-transition 
from high to low in the 
middle of bit period; 0-
transition from low to 
high in the middle of bit 
period)

Figure 8.8 Digital signal encoding formats.
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does not have to be passed through DC blocking circuits such as audio
amplifiers or phone lines. The Manchester code is special type of NRZ line
code that is ideally suited for signaling that must pass through phone lines
and other DC blocking circuits as it has no DC component and offers simple
synchronization. Manchester code use two pulses to represent each binary
symbol, and thereby provide easy clock recovery since zero crossings are
guaranteed in very bit period.

The system bandwidth required for binary PCM signaling may be
very large. In recent years, more and more telecommunications services
are needed out of a limited amount of spectrum. To relax the bandwidth
requirement one can use multilevel digital signals to modulate the carrier
to offer greater bandwidth efficiency. This is called M-ary signaling. The
original binary data stream can be subdivided into groups of k bits and each
group, which is called a symbol, is converted to one of M = 2k possible
levels by means of a D/A converter. Thus, the multilevel signaling can be
used to reduce the number of symbols transmitted per second (equal to
Rb/k), or thus to reduce the bandwidth requirement of the channel. The
resulting waveform has fewer transitions per unit time but requires higher
amplitude resolution in the detector and a greater amount of energy for
equivalent detection performance as compared to the two-level signaling,
as illustrated in Figure 8.9. Since one of M symbols is transmitted during
each symbol duration, denoted Ts, the data rate Rb can be expressed as

Rb = k/Ts = kRs.

The bandwidth efficiency of a digital system that transmits k = log2M

bits in Ts seconds using a bandwidth B is defined by

ηB =
Rb
B

=
log2M

BTs
=

1
BTb

,

1 1 0 1 0 1 0 0 1 0

11

01 01
00

10

Binary data

4-level data

Figure 8.9 Four-level digital representation of a binary data stream.
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which characterizes the capability for a modulation scheme to accommodate
data within a specified bandwidth. From the above equation the smaller the
BTs product, the more bandwidth efficient will be a digital communication
system. Thus signals with small BTs are often used with bandwidth-limited
systems. For example, GSM uses Gaussian minimum-shift keying (GMSK)
modulation having a BTs product equal to 0.3Hz/(bit/s), where B is the
bandwidth of a Gaussian filter.

One must not confuse the idea of the number of bits per PCM word,
denoted l, with the M-level transmission concept of k data bits per symbol.
Here is an example about quantization levels and multilevel signaling
to clarify the distinction. The information in an analog waveform, with
maximum frequency fm = 3 kHz, is to be transmitted over an M-level
PCM system, where the number of pulse levels is M = 16. The quantization
distortion is specified not to exceed ±1% of the peak-to-peak analog signal.
Then

(1) The PCM word size l ≥ log2
1

0.02 = 5.6, so l = 6.
(2) Using Nyquist sampling criterion, the minimum sampling rate fs =

2fm = 6000 (samples/s). Since each sample will give rise to a PCM
word of 6 bits, the bit transmission rate Rb = lf s = 36,000 bits/s.

(3) Since the multilevel pulses are to be used with M = 2k = 16 levels, k =
log2 16 = 4 bits/symbol. Therefore, the bit stream will be partitioned
into groups of 4 bits to form new 16-level PCM digits, and the resulting
symbol rate Rs = Rb/k = 9000 symbols/s.

When rectangular pulses pass through a bandlimited channel (most mobile
communication systems operate with minimal bandwidth), the pulses will
spread in time, and the pulses for each symbol will smear into the time
intervals of succeeding symbols. This causes intersymbol interference
(ISI) and leads to an increased probability of the receiver making an error
in detecting a symbol. To reduce the intersymbol effects and the spectral
width of a modulated signal, pulse shaping techniques are often used, which
is done through baseband or IF processing as it is much easier to manipulate
the transmitter spectrum at lower frequency. Nyquist showed that the
theoretical minimum system bandwidth needed to detect Rs symbols/s,
without ISI, is Rs/2. A Nyquist filter results in the minimum required
transmission bandwidth that yields zero ISI. Nyquist observed that the
effect of ISI could be completely nullified if the overall response of the
communication system (including transmitter, channel, and receiver) is
designed so that at every sampling instant at the receiver, the response
due to all symbols except the current one is equal to zero. If heff (t) is
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Transmitting 
filter

Channel Receiving 
filter

DetectorBit stream

ht (t) hc (t) hr (t)

Digital 
waveform 

Bit stream

Figure 8.10 Effective transfer function.

the impulse response of the overall communication system, this condition,
called Nyquist ISI criterion, can be mathematically stated as

heff (nTs) =
{

1 n = 0
0 n �= 0

,

where Ts is the symbol period, n is the integer. The effective transfer
function of the system can be represented as

heff (t) = ht(t) ∗ hc(t) ∗ hr(t),
where ht(t) is the transmitter impulse response, hc(t) is the channel impulse
response, and hr(t) is the receiver impulse response, as shown in Figure 8.10.
The receiving filter, called equalizing filter, should be configured to
compensate for the distortion caused by the transmitter and the channel.

To reduce ISI, the most popular pulse-shaping filter satisfying the
Nyquist criterion is the raised cosine filter,

H(f) =




Ts, 0 ≤ |f | ≤ 1 − α

2Ts
Ts
2

[
1 + cos

πTs
α

(
|f | − 1 − α

2Ts

)]
,

1 − α

2Ts
≤ |f | ≤ 1 + α

2Ts

0, |f | > 1 + α

2Ts

,

where Ts is the symbol period. The impulse response of such a filter is
given by

h(t) = sinc
(
t

Ts

) cos
(
πα
Ts
t
)

1 − 4α2

T 2
s
t2
,

where α is called roll-off factor. Let B be the absolute filter bandwidth
B = (1 + α)/2Ts. The symbol rate that can be passed through a baseband
raised cosine filter is

Rs = 1/Ts = 2B/(1 + α),
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or

BPCM = (1 + α)Rs/2,

where BPCM stands for the minimum system PCM bandwidth requirement
for a symbol rate Rs. Bandpass-modulated signals (baseband signals that
have been shifted in frequency), such as ASK and PSK require twice the
transmission bandwidth of the equivalent baseband signals (DSB signals).
Therefore, for the RF systems, the RF passband bandwidth doubles and

Rs = 1/Ts = B/(1 + α),

or

BDSB = (1 + α)Rs,

where BDSB represents the minimum required DSB bandwidth for trans-
mitting the modulated PCM sequence.

As an example, we consider the bandwidth requirement for the
baseband transmission of a four level PCM pulse sequence having a data
rate of Rb = 2400 bits/s if the system transfer characteristic consists of
a raised cosine spectrum with 100% excess bandwidth (α = 1). Since
M = 4, then k = 2. The symbol rate is Rs = Rb/k = 1200 symbols/s.
The minimum bandwidth is BPCM = (1 + α)Rs/2 = 1200Hz. If the same
PCM sequence is modulated onto a carrier wave, so that the baseband
spectrum is shifted and centered at frequency fc. The DSB bandwidth will
be BDSB = (1 + α)Rs = 2400Hz.

In practical systems, the frequency response of the channel is not known
with sufficient precision to allow for a receiver design that will compensate
for the ISI for all time. In practice, the filter for handling ISI at the receiver
contains various parameters that are adjusted on the basis of measurements
of the channel characteristics. The process of correcting the channel-induced
distortion is called equalization.

8.3.1.2 Modulation and Demodulation

The analog modulation methods include amplitude modulation (AM),
frequency modulation (FM), and phase modulation (PM). The digital
counterparts are amplitude shift keying (ASK), frequency shift keying
(FSK), and phase shift keying (PSK), respectively. FSK and PSK are
less sensitive to the amplitude noise and are widely used in RF systems.
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The digital modulator performs the function to map a digital symbol into
a digital waveform:

i∈{1, 2, . . . ,M} → si(t)∈{s1(t), s2(t), . . . , sM(t)}. (8.44)

If the symbol to waveform mapping (8.44) is fixed from one interval to the
next, the modulation is called memoryless. If the mapping in the ith symbol
interval depends on previously transmitted symbols, the modulation is said
to have memory.

We may define an N -dimensional orthogonal space spanned by
N(N < M) linearly independent functions, {ψj(t)}, called basis func-
tions. Then the digital waveforms after modulation (i.e., the transmitted
signal waveforms) can be expanded as follows


s1(t) = a11ψ1(t) + a12ψ2(t) + · · · + a1NψN (t)
s2(t) = a21ψ1(t) + a22ψ2(t) + · · · + a2NψN (t)
· · · · · ·
sM (t) = aM1ψ1(t) + aM2ψ2(t) + · · · + aMNψN (t)

.

Once a set of N orthogonal functions has been chosen, each of the digital
waveforms si(t) is completely determined by the vector of its coefficients

si = (ai1, ai2, . . . , aiN )T , i = 1, 2, . . . ,M,

which is called signal vector. Table 8.1 shows the general analytic
expressions of the digital waveforms of various digital modulators for
general M-ary signaling and the corresponding basis functions. In the table,
Ts is the symbol time duration and Es is the symbol energy. Note that
M-ary QAM does not have constant energy per symbol, nor does it have
constant distance between possible symbol states. For M-ary QAM, Esmin

is the symbol energy of the signal with the lowest amplitude, and

{ai, bi} =




(−√
M + 1,

√
M − 1) (−√

M + 3,
√
M − 1) · · ·

(−√
M + 1,

√
M − 3) (−√

M + 3,
√
M − 3) · · ·

· · · · · · · · ·
(−√

M + 1, −√
M + 1) (−√

M + 3, −√
ML+ 1) · · ·

(
√
M − 1,

√
M − 1)

(
√
M − 1,

√
M − 3)

· · ·
(
√
M − 1, −√

M + 1)
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Table 8.1 Digital waveforms

Digital modulation schemes Power spectral density
and basis functions Digital waveforms (PSD)/Bandwidth B

Phase shift keying (PSK)

ψ1(t) =

r
2

Ts
cosωct

ψ2(t) =

r
2

Ts
sinωct

si(t) =

r
2Es

Ts
cos[ωct+ ϕi(t)]

=
√
Es cosϕiψ1(t) +

√
Es sinϕiψ2(t)

ϕi =
2πi

M
, 0 ≤ t ≤ Ts, i = 1, . . . ,M

PSD =
Es

2

»
sinπ(f − fc)Ts

π(f − fc)Ts

–2

+
Es

2

»
sinπ(f − fc)Ts

π(f − fc)Ts

–2
,

B = 2Rb/ log2 M

Frequency shift keying (FSK)

ψj(t) =

r
2

Ts
cosωjt

j = 1, 2, . . . , N

si(t) =

r
2Es

Ts
cos(ωit) =

√
Esψi(t)

0 ≤ t ≤ Ts, i = 1, . . . ,M

B =
Rb(M + 3)

2 log2 M
(coherent)

B =
RbM

2 log2M
(non-coherent)

Quadrature amplitude modulation (QAM)

ψ1(t) =

r
2

Ts
cosωct

ψ2(t) =

r
2

Ts
sinωct

si(t) =

r
2Es min

Ts
ai cosωct+

r
2Es min

Ts
bi sinωct

=
√
Es minaiψ1(t) +

√
Es minbiψ2(t)

0 ≤ t ≤ Ts, i = 1, . . . ,M

B =
2Rb

log2 M

Amplitude shift keying (ASK)
si(t) =

r
2Esi

Ts
cos(ωct+ ϕ)

0 ≤ t ≤ Ts, i = 1, . . . ,M

Amplitude phase keying (APK)
si(t) =

r
2Esi

Ts
cos[ωct+ ϕi(t)]

0 ≤ t ≤ Ts, i = 1, . . . ,M
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Unlike the MPSK or MQAM, MFSK signals are bandwidth inefficient.
However, the power efficiency has been improved as M increases because
the M signals are orthogonal and they are less crowding in the signal space
as compared to MPSK. Actually for MFSK, the distance between any two
reference signal vectors is

‖si − sj‖ =
√

2Es.

The geometrical representation of signal vectors in signal space is called
constellation diagram, which provides a graphical representation of the
complex envelope of each possible symbol state. Some of the properties
of a modulation scheme can be inferred from its constellation diagram. For
example, if a modulation scheme has a constellation diagram that is densely
(sparsely) packed, it is more bandwidth (power) efficient than a modulation
scheme with sparsely (densely) packed constellation. However, it should be
noted that the bandwidth occupied by a modulated signal increases with
the dimensionN of the constellation. For example, consider the set of BPSK
signals

s1(t) =
√

2Eb
Tb

cos(2πfct), s2(t) = −
√

2Eb
Tb

cos(2πfct), 0 ≤ t ≤ Tb.

The basis function for this signal set consists of a single waveform

ψ1(t) =
√

2
Tb

cos(2πfct), 0 ≤ t ≤ Tb,

and the BPSK signal can be represented as

s1(t) =
√
Ebψ1(t), s2(t) = −

√
Ebψ1(t), 0 ≤ t ≤ Tb.

The constellation diagram is shown in Figure 8.11(a). Similarly, a QPSK
signal can be expressed as

si(t) =
√
Es cos

[
(i− 1)

π

2

]
ψ1(t) −

√
Es sin

[
(i− 1)

π

2

]
ψ2(t), i = 1, 2, 3, 4

and the constellation is shown in Figure 8.11(b). The x-axis of the
constellation diagram represents the in-phase component of the complex
envelope, and y-axis represents the quadrature component of the complex
component.

The noise can be partitioned into two components n(t) = n̂(t) + ñ(t),
where n̂(t) =

∑N
j=1 njψj(t) is the noise component in the signal space

spanned by {ψj(t)}, and ñ(t) is the noise component outside the signal
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Figure 8.11 Constellation diagram.

space, which satisfy

Ts∫
0

ñ(t)ψj(t)dt = 0, j = 1, 2, . . . , N.

Physically, n̂(t) is the noise component that will interfere with the detection
process, and ñ(t) is the noise component that will be tuned out by
the detector. The interfering portion of the noise n̂(t) will henceforth
be referred to simply as n(t). In a similar manner, we may introduce
the noise vector n = (n1, n2, . . . , nN )T . In digital communications, the
terms demodulation and detection are used somewhat interchangeably,
although the demodulation emphasizes removal of the carrier, and detection
includes the process of symbol decision. A typical detection problem can
be conveniently viewed in terms of signal vectors, as is geometrically shown
in Figure 8.12. Vectors sj and sk are the prototype or reference signals
belong to the set of M waveforms {si(t)}. The receiver knows the location
in the signal space of each reference signals belonging to the M -ary set as
a priori. During the transmission the signal is perturbed by noise so that
the resultant vector received is a perturbed version of the original one (e.g.,
sj + n). Since the noise is additive and has a Gaussian distribution, the
resulting distribution of possible received signals is a cluster or cloud of
points around sj . The cluster is dense in the center and becomes sparse
with increasing distance from the reference signal. The task of the detector
is to decide which of the reference signals within the signal space is closest
in distance to the received signal during some symbol interval, denoted
r = s + n in Figure 8.12.
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Figure 8.12 Signal space.

The selection of modulation method depends on the several factors
such as signal quality (e.g., SNR), bandwidth efficiency (bits/s/Hz), power
efficiency (Joule/bit), implementation cost etc. When transmitted power
and channel attenuation (path loss) are given, the signal quality of the
output of the detector depends on the type of the modem (modulator-
demodulator). If the modems can achieve higher tolerance of noise, either
the transmitted power can be reduced or a higher path loss can be
accommodated. Bandwidth efficiency describes the ability of a modulation
scheme to accommodate data within a limited bandwidth. In general,
increasing the data rate implies decreasing the pulse width of a digital
symbol, which increases the bandwidth of the signal. Therefore, there is a
tradeoff between the data rate and bandwidth occupancy. Some modulation
scheme performs better than the others in making this tradeoff. The typical
bandwidths and other information for various digital modulation methods
are listed in Table 8.2.

Remark 8.5: The system capacity of a digital mobile communication
system is directly related to bandwidth efficiency of the modulation
scheme, since modulation with a greater value of bandwidth efficiency will
transmit more data in a given spectrum allocation. According to Shannon’s
channel capacity theorem there is an upper bound on achievable bandwidth
efficiency, i.e.,

ηB =
C

B
= log2

(
1 +

P

N0B

)
.

So the maximum bandwidth efficiency is limited by the noise in the channel.
�
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Table 8.2 Digital modulation methods

Modulation
M-ary
signaling

Number of
states

(M logic
levels)

Theoretical
bandwidth
efficiency

(bits/s/Hz)

Bits sent
each

symbol

Required
bandwidth

(symbol rate)
Hz

2-PSK 2 1 1 bit rate
4-PSK 4 2 2 1/2 bit rate
8-PSK 8 3 3 1/3 bit rate
16-PSK 16 4 4 1/4 bit rate
64-QAM 64 6 6 1/6 bit rate
256-QAM 256 8 8 1/8 bit rate

Remark 8.6: Power efficiency describes the ability of a modulation scheme
to preserve the fidelity of the digital message (i.e., an acceptable bit error
probability) at low power levels. In a digital communication system, in
order to increase noise immunity it is necessary to increase the signal
power. However, the amount by which the signal power should be increased
to obtain a certain level of fidelity depends on the particular type of
modulation employed. The power efficiency ηP of a digital modulation
scheme is a measure of how favorably this tradeoff between fidelity and
signal power is made, and is often expressed as the ratio of the signal
energy per bit, denoted by Eb, to noise PSD, denoted by N0, required at
the receiver input for a certain probability of error (say 10−5)

ηP = Eb/N0. �

Remark 8.7: The signal quality of a digital modem can be expressed in
terms of the bit error rate (BER), or bit error probability, defined as
the average number of erroneous bits observed at the output of the detector
divided by the total number of bits received in a unit time. �

The manner in which the baseband signal is extracted from the
modulated waveform has great impact on the overall system performance,
in particular the signal quality in the output of the detector. The detectors
can be categorized as either coherent or non-coherent. A coherent detector
requires the knowledge of the phase of the carrier wave to demodulate the
signal while a non-coherent detector does not. Given a received signal

r(t) = si(t) + n(t), 0 ≤ t ≤ Ts, i = 1, 2, . . . ,M,

where si(t) are known signal and n(t) is AWGN. The received signal is
used as an input to a linear, time-invariant filter with transfer function
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Figure 8.13 Detection.
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Figure 8.14 Conditional probability density functions.

H(f) followed by a sampler, as shown in Figure 8.13. The output of the
sampler is

z(Ts) = ai(Ts) + n0(Ts), i = 1, 2, . . . ,M, (8.45)

where ai(Ts) is the desired signal component and n0(Ts) is the noise
component. The probability density function of the Gaussian random noise
n0 may be expressed as

p(n0) =
1√

2πσ0

exp

[
−1

2

(
n0

σ0

)2
]

(8.46)

where σ2
0 is the noise variance. ForM = 2 (binary signaling), the conditional

probability density functions f(z|si)(i = 1, 2) can be obtained from (8.45)
and (8.46)

p(z|si) =
1√

2πσ0

exp

[
−1

2

(
z − ai
σ0

)2
]
, i = 1, 2. (8.47)

These conditional probability density functions are depicted in Figure 8.14
The conditional probability density function f(z|si) represents the
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probability density function of the random variable z(Ts) given that the
symbol si was transmitted, and is called the likelihood of si.

The detection shown in Figure 8.13 can be carried out by choosing the
hypothesis from the threshold measurement

z(Ts)

H1
>

<
H2

γ. (8.48)

The inequality implies that the hypothesis H1 (the signal s1 was sent) is
chosen if z(Ts) > γ and the hypothesis H2 (the signal s2 was sent) is chosen
if z(Ts) < γ. An optimum threshold γ = γ0 can be obtained by minimizing
the probability of error. One may start with the likelihood ratio test

p(z|s1)
p(z|s2)

H1
>

<
H2

P (s2)
P (s2)

, (8.49)

where P (si)(i = 1, 2) denotes the a priori probability of the signal si
being present. This decision criterion corresponds to (8.48) and is called
the maximum a posteriori (MAP) criterion or minimum error criterion.
Assume that the signals s1 and s2 are equally likely. The substitution of
(8.47) into (8.49) gives

z(Ts)

H1
>

<
H2

γ0 =
1
2
(a1 + a2). (8.50)

The two-sided PSD of the input noise is N0/2. The variance of the output
noise (average noise power) is denoted by σ2

0 , so that the ratio of the
instantaneous signal power to average noise power out of the receiver at
time t = Ts is

S

N

∣∣∣∣
t=Ts

=
a2
i

σ2
0

∣∣∣∣
t=Ts

, (8.51)

where ai is the signal component after sampler. We wish to find the filter
transfer function that maximizes the above equation. Substituting

ai(t) =

∞∫
−∞

H(f)s̃i(f)e−j2πftdf

and

σ2
0 =

N0

2

∞∫
−∞

|H(f)|2df
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into (8.51), we obtain

S

N

∣∣∣∣
t=Ts

=

∣∣∣∣∣
∞∫

−∞
H(f)s̃i(f)ej2πfTsdf

∣∣∣∣∣
2

N0
2

∞∫
−∞

|H(f)|2df
≤ 2
N0

∞∫
−∞

|s̃i(f)|df =
2Es
N0

,

where we have used Schwartz inequality. Thus the maximum output S/N
at t = Ts depends on the input signal energy and the PSD, not on the
particular shape of the waveform. In digital communication system, Es
usually stands for the symbol energy. The equality in the above equation
holds if the filter transfer function satisfies

H(f) = c¯̃si(f)e−j2πfTs

or the impulse response of the filter takes the form

h(t) =
{
cs(Ts − t) 0 ≤ t ≤ Ts
0 elsewhere

.

The output of the filter is

z(Ts) =

Ts∫
0

r(τ)h(Ts − τ)dτ =

Ts∫
0

r(τ)s(τ)dτ ,

which is called the correlation of r(t) with s(t).
According to the above discussion, the detection process consists of

two basic steps. In the first step, the received waveform r(t) is reduced
to a single random variable z(Ts), or a set of random variables, zi(Ts),
i=1, 2, . . . ,M at time t = Ts, where Ts is the symbol duration. In the
second step, a symbol decision is made by comparing zi(Ts) to a threshold
or choosing the maximum zi(Ts). A detector can be optimized in the sense
of minimizing the error probability by using matched filters or correlators
in Step 1 and optimizing the decision criterion in Step 2. A correlation
receiver is shown in Figure 8.15.

8.3.2 Probability of Error

An error occurs if hypothesis Hi is chosen when the signal sj (j �= i)
was actually transmitted. The probability of error is the sum of all the
probabilities that an error can occur. For the binary decision-making shown
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MM s
z T r t s t dt

Reference signal

)(ts
M
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selects )(ts
i

with max )(tz
i

(t)ŝ
i

Figure 8.15 Correlation receiver.

in Figure 8.14, the probability of bit error can be expressed as

Pb = P (H2 ∩ s1) + P (H1 ∩ s2) = P (H2|s1)P (s1) + P (H1|s2)P (s2).

If the a priori probabilities are equal, i.e., P (s1) = P (s2) = 1/2, we have

Pb =
1
2
[P (H2|s1) + P (H1|s2)] = P (H2|s1) = P (H1|s2),

where we have used the symmetry of the probability density functions.
Therefore, we may write

Pb =

γ0∫
−∞

p(z|s1)dz =

∞∫
γ0

p(z|s2)dz.

Substituting (8.47) into the above equation yields

Pb = Q

(
a1 − a2

2σ0

)
, (8.52)

where Q stands for the complementary error function

Q(x) =

∞∫
x

1√
2π

exp
(
−u

2

2

)
du.

In order to minimize the probability of bit error, we need to choose
the optimum linear filter and the optimum decision threshold shown in
Figure 8.13. For the binary system, the optimum decision threshold has
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already been given in (8.48). Thus we only need to determine the linear
filter that maximizes (a1 − a2)/2σ0, or equivalently, (a1 − a2)2/σ2

0 . Assume
that the filter is matched to the input difference signal s1(t) − s2(t). The
maximum output SNR at time t = Ts is then given by

S

N

∣∣∣∣
Ts

=
(a1 − a2)2

σ2
0

=
2Ed
N0

, (8.53)

where N0/2 is the two-sided PSD of the noise at the filter input and

Ed =

Ts∫
0

[s1(t) − s2(t)]2dt

is the energy of the difference signal at the filter input. Note that

Ed =

Ts∫
0

s21(t)dt+

Ts∫
0

s22(t)dt− 2

Ts∫
0

s1(t)s2(t)dt

= 2Eb(1 − ρ), (8.54)

where

ρ =
1
Eb

Ts∫
0

s1(t)s2(t)dt

is called time cross-correlation coefficient. Considering (8.53) and (8.54),
(8.52) can be written as

Pb = Q



√
Eb(1 − ρ)

N0


. (8.55)

If the two signals s1 and s2 are orthogonal, (8.55) reduces to

Pb = Q

(√
Eb
N0

)
. (8.56)

If the two signals s1 and s2 are antipodal (i.e., the angle between the signal
vectors is 180◦), we have ρ = −1. In this case, (8.55) can be written as

Pb = Q

(√
2Eb
N0

)
. (8.57)
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Table 8.3 Probability of bit error

Modulation Pb (probability of bit error)

Equally likely coherent BPSK Q

 s
2Eb

N0

!

Differentially non-coherent DPSK
1

2
exp

„
−Eb

N0

«

Equally likely coherent FSK Q

 s
Eb

N0

!

Equally likely non-coherent FSK
1

2
exp

„
−1

2

Eb

N0

«

Table 8.4 Probability of symbol error

Modulation Ps (probability of symbol error)

Equally likely coherent MPSK 2Q

 s
2Es

N0
sin

π

M

!

Differentially coherent MDPSK 2Q

 s
2Es

N0
sin

π√
2M

!
,
Es

N0
>> 1

Equally likely coherent MFSK ≤(M − 1)Q

 s
Es

N0

!

Equally likely non-coherent
MFSK

1

M
exp

„
−Es

N0

« MX
j=2

(−1)j M !

j!(M − j)!
exp

„
Es

jN0

«

Coherent MQAM 4

„
1 − 1√

M

«
Q

 s
2Es min

N0

!

The typical probability of bit error Pb vs. Eb/N0 curve has a waterfall-
like shape. The error performances for binary systems are summarized
in Table 8.3. The error performances for M-ary systems are summarized
in Table 8.4, where Es = Eb log2M is the energy per symbol, and
M = 2k is the size of the symbol set, and Ps is the probability of symbol
error.

The ratio Eb/N0 is a natural figure-of-merit for digital communication
systems, which allow us to compare one system with another. At the bit
level, it indicates how much energy per bit is required for a given bit error
probability.
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Remark 8.8: The digital waveform may contain 1 bit (binary), 2 bits
(4-ary), 3 bits (8-ary), . . . , a description of the digital waveforms in terms
of S/N is thus virtually useless. �

Remark 8.9: It can be shown that for an M-ary orthogonal signal set, the
relationship between probability of bit error Pb and probability of symbol
error Ps is

Pb
Ps

=
2k−1

2k − 1
=

M/2
M − 1

→ 1
2

for large k. �

The design of any digital communication system begins with a descrip-
tion of the channel (received power, available bandwidth, noise statistics,
and other impairments such as fading), and a definition of the system
requirements (data rate and error performance). Two primary commu-
nication resources are the received power and the available transmission
bandwidth. In many communication systems, one of these resources may
be more precious than the other, and hence most systems can be classified as
either bandwidth-limited or power-limited. In bandwidth-limited systems,
spectrally efficient modulation techniques can be used to save bandwidth at
the expenses of power. In power-limited systems, power-efficient modulation
techniques can be used to save power at the expense of bandwidth. In both
bandwidth- and power-limited systems, error correction coding (often called
channel coding) can be used to save power or to improve error performance
at the expense of bandwidth. Given the available bandwidth, the available
received SNR (determined by transmit power, antenna gains, path loss,
etc.), the required data rate, and the required probability of bit error, a
modulation scheme can be chosen to meet the performance requirements
(Sklar, 1993).

Example 8.4: Consider a bandwidth-limited system with an AWGN radio
channel of available bandwidth B = 4 kHz. The received SNR is assumed
to be S/N0 = 53dB. The required data rate is Rb = 9600bit/s, and the
required error performance is Pb ≤ 10−5. Since the required data rate
is much higher than the available bandwidth, the channel is bandwidth
limited. Therefore, we may select MPSK as the modulation scheme. From
the relationship

Rs =
Rb

log2M
,
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we may find the smallest possible value of M that satisfies Rs < B is
M = 8. The power efficiency is given by

ηp =
Eb
N0

(dB) =
S

N0
(dB) −Rb(dB) = 13.2 dB.

It can be shown that the above power efficiency value meets the requirement
of bit-error performance for 8-PSK modulation scheme. �

8.3.3 Link Budget Analysis

The link budget is a balance sheet of gains and losses. By examining the
link budget we can learn many things about overall system design and
performance. The link budget outlines the distribution of transmission
and reception resources, noise sources, signal attenuators, and effects of
processes throughout the link. As radio waves propagate in free space, power
falls off as the square of range. This effect is due to the spreading of the radio
waves as they propagate. For an isotropic point source, the power density
on a sphere at distance R is Prad

4πR2 (W/m2), where Prad is the radiated power
of the point source. The power accepted by receiving antenna can then be
written

Prec(ur) =
Prad

4πR2
Ae(ur),

where Ae(ur) is the effective area of the receiving antenna in the direction
of ur (a unit vector directed from receiving antenna to the point source).
If the transmitting antenna is not an isotropic source, the received power
in general will be of the form

Prec(ut,ur) =
PaGt(ut)

4πR2
Ae(ur)

= EIRP(ut)
Ae(ur)
4πR2

= EIRP(ut)
Gr(ur)
Ls

, (8.58)

where Pa is the input power to the antenna terminal, ut is the unit vector
directed from the transmitting antenna to receiving antenna,

Ls =
(

4πR
λ

)2

is the free space path loss, Gt and Gr are the transmitting and receiving
antenna gain respectively, and EIRP is the effective isotropic radiated
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power, which is defined by

EIRP = PaGt(ut).

The received isotropic power is defined as

prec =
EIRP
Ls

, (8.59)

which is the power received by an isotropic antenna (Gr = 1).

8.3.3.1 Link Margin, Noise Figure

and Noise Temperature

The SNR after the receiving antenna as shown in Figure 8.16 (before the
LNA) is

SNR =
Prec

N
= EIRP

Gr
LsLoN

,

where Lo represents other possible losses.
For optimum (matched filter) detection signal bandwidth is equal to

the noise bandwidth. Therefore noise is usually normalized, i.e., the noise
spectral density N0 = kTi is used instead of the total noise power N :

SNR =
Prec

N0
= EIRP

Gr
LsLoN0

.

Figure 8.17 shows a typical waterfall-like curve of error probability vs.
Eb/N0 for the digital communication system, where Eb is the energy per

Low noise amplifier

Receiving 
antenna

Antenna terminal

LNA 

SNR

Prec

Figure 8.16 Signal-to-noise ratio.
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10

Link margin

Operating point 2

Operating point 1

12 Eb/N0 (dB)

(Eb/N0)r

(Eb/N0)rqd

10–3

–510

Figure 8.17 Error probability.

bit. Once a modulation scheme has been chosen, the requirement to meet
a particular error probability dictates a particular point on the curve
(operating point 1). In other words, the required error performance dictates
the value of Eb/N0 that must be made available at the receiver input
to meet that performance. The task of a link analysis is to determine
an actual system operating point (operating point 2) and to establish
that the error probability associated with that point is less than or
equal to the system requirement. The link margin (or safety factor) is
defined by

M =
(Eb/N0)r

(Eb/N0)rqd
.

where (Eb/N0)rqd is the value required to yield a specified bit error ratio,
(Eb/N0)r is the value actually received. Since Prec = EbRb, where Rb is the
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bit rate, we have

M =
(Eb/N0)r

(Eb/N0)rqd
=

Prec/N0

(Eb/N0)rqdRb
= EIRP

Gr
LsLokTi(Eb/N0)rqdRb

.

The noise figure of an amplifier is given by

F =
Sin/Nin

Sout/Nout
=

Sin/Nin

GpSin/Gp(Nin +Ninternal)
= 1 +

Ninternal

Ni
, (8.60)

where Gp is the amplifier gain, Nin is the noise power into amplifier
and Ninternal is the amplifier noise referred to input. The noise figure is
a measure of the amount of noise added by the amplifier itself. If we
introduce the amplifier equivalent noise temperature Tr, which is
defined by

Ninternal = kTrB,

then from (8.60) and Nin = kTiB, we obtain amplifier equivalent noise
temperature

Tr = (F − 1)Ti.

The line loss can be treated like noise figure, which is defined by

Fl =
Sin/Nin

Sout/Nout
=

Sin/Nin

ASin/A(Nin +Nl)
= 1 +

Nl
Nin

,

where A is the attenuation of the line, Nin is the noise power into the lossy
line and Nl is the equivalent line noise referred to input. If we introduce
the line equivalent noise temperature Tl, i.e.,

Nl = kTlB,

we have

Tl = (Fl − 1)Ti.

The overall noise figure for a cascade of stages can be obtained in terms
of the noise figure and gain of each stage. Consider the system shown in
Figure 8.18, the composite noise figure is of the form

Fcomp = F1 +
F2 − 1
G1

.
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Fcomp

Figure 8.18 Noise figure of composite system.

8.3.3.2 Link Budget Analysis for Mobile Systems

The link budget analysis for a wireless system is based on the following
relation

Prec = EIRP
Gr
LsLo

, (8.61)

where Lo stands for all possible losses other than free space path loss. We
can also start from (8.60) to obtain

Prec(dBm) = F (dB) +Eb/N0(dB) +Rb(dB) + kT (dBm/Hz). (8.62)

The sensitivity of an RF receiver is defined as the minimum signal level
that the system can detect with acceptable SNR, which can be obtained
from the above equation by requiring the BER not exceed a specified value
(say 2%, thus the required Eb/N0 is known).

When we do the link budget analysis, two major margins should be
added to the loss Lo, which are model margin and fading margin. Model
margin is considered because of the lack of confidence of the propagation
model accuracy. Sometimes this is not necessary if we can make direct
measurement or have more accurate modeling. The fading margin is
necessary unless we can eliminate fading by other means. In the following,
we give an example from GSM system design to explain the link budget
analysis using (8.62).

1. The Minimum Signal Level at Base Station

The first step in performing the link budget is to determine the required
signal strength at the receiver input, i.e., receiver sensitivity. The receiver
input sensitivity at base station can be determined from

Prec,b(dBm) = F (dB) +Eb/N0(dB) +Rb(dB) + kT (dBm/Hz),
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where kT = −174dBm/Hz@290K. For 10−2 BER, we have Eb/N0 = 8 dB.
Assume that

Rb = 10 log 270.833 kbit/s = 54.32 dB, F = 8 dB.

Thus, the receiver sensitivity is Prec,b = −104 dBm. The received isotropic
power is then given by

prec,b =
EIRP
Ls

=
Prec,b

Gr
.

Hence, the minimum isotropic power at base station required from the
mobile station is

min prec,b = Receiver input sensitivity (−104 dBm)

−Receiving antenna gain (12 dBi)

+ Interference margin (3 dB)

+ Cable loss (4 dB)

+ log normal fading margin (5 dB)

+ Rayleigh fading margin (10 dB)

= −94 dBm. (8.63)

2. The Minimum Mobile Transmit Power

The minimum required power from the mobile station to maintain a
10−2 BER can be found by (8.63) after the characterization of the path
loss. Here we use Hata propagation model. If f = 900 MHz, hb = 62 m,
hm = 2 m and the city is large we have

Ls = 121 + 33 logR(dB).

According to (8.59), the minimum power needed from the mobile station
to maintain a 10−2 BER is

min EIRP = min prec,b(dBm) + Ls(dB)

=



−94 + 121 = 27 dBm@1 km (500 mW)
−94 + 121 + 33 log 1.5 = 32.8 dBm@1.5 km (1.9 W)
−94 + 121 + 33 log 2 = 36.9 dBm@2 km (4.9 W)

.

8.3.4 Mobile Antennas and Environments

In a mobile environment, there is a strong correlation between antenna
pattern and the statistics of the received signal strength.
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8.3.4.1 Incident Signal

Consider two reference systems S and S̃, where S̃ is moving in the positive
x-direction with a velocity v = vux as viewed from S (Figure 8.19). The
two reference systems are related by the Lorentz transformation (e.g., Geyi,
2010)

r = ↔
α · r̃ + γβct̃,

ct = γ(ct̃+ β · r̃), (8.64)

where β = v/c, γ = 1/
√

1 − β2, β = v/c, and ↔
α is a dyadic defined by

↔
α =

↔
I + (γ − 1)

ββ

β2
,

and
↔
I is the identity dyad.
An incident plane wave (modulated signal) in the S system can be

represented by

Ein = E0 cos(ωct+ k · r),
where k = kuk is the wave vector with k = ωc

√
µε being the wavenumber,

and E0 is a constant vector. The plane wave in the S̃ system can be
expressed as

Ẽin = Ẽ0 cos(ω̃ct̃+ k̃ · r̃).
Under the Lorentz transformation (8.64), the field components that parallel
to the velocity v is invariant. So we have

E0x cos(ωct+ k · r) = Ẽ0x cos(ω̃ct̃+ k̃ · r̃),
where the subscript x denotes the x component. The Lorentz transfor-
mation assumes that the two origins of the systems S and S̃ coincide at

z 

y 

x v 

  

Figure 8.19 Transformation of plane wave.
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t = t̃ = 0. As a result, we have E0x = Ẽ0x. This implies that the phase
ϕ = ωct+ k · r is an invariant

ωct+ k · r = ω̃c t̃+ k̃ · r̃. (8.65)

Introducing the Lorentz transformation into the above equation, we obtain

k̃ = ↔
α · k +

ωcγ

c
β,

ω̃c = γ(ωc + v · k).
(8.66)

Equation (8.66) indicates that the relative motion between two observers
introduces a Doppler shift. Let us consider a mobile terminal traveling in
the x direction with speed v, illuminated by N -plane waves of the same
carrier frequency ωc. The incident electric field at the mobile terminal can
be written as

Ein =
N∑
n=1

Ẽ0n cos(ω̃ct+ k̃n · r̃) ≈
N∑
n=1

E0n cos[(ωc + v · kn)t+ kn · r]

=
N∑
n=1

E0n cos(ωct+ θn)

where θn = ωnt + ϕn with ωn = v · kn, ϕn = kn · r. According to the
central limit theorem (e.g., Proakis, 1995), the electric field Ein may be
considered as a Gaussian random process as N → ∞. The above equation
can be written as

Ein = x(t) cosωct− y(t) sinωct = ReEin,en(t)ejωct, (8.67)

where Ein,en(t) = x(t) + jy(t) is the complex envelope of the modulated
signal Ein, and

x(t) =
N∑
n=1

E0n cos(ωnt+ ϕn),

y(t) =
N∑
n=1

E0n sin(ωnt+ ϕn)

(8.68)

are the in-phase and quadrature components of Ein respectively. They are
also Gaussian random processes.

Remark 8.10 (Rayleigh distribution and Rician distribution): Rayleigh
distributions and Rician distributions are used to model scattered signals
that reach a receiver by multiple paths. Rayleigh distributions are used to
characterize dense scatterers, while Rician distributions are used for the
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scenario with a line-of-sight path between the transmitter and the receiver.
Consider a field component seen at the mobile

E =
N∑
n=1

En cos(ωct+ θn) = x cosωct− y sinωct = ReEene
jωct, (8.69)

where

x =
N∑
n=1

En cos θn, y =
N∑
n=1

En sin θn, Ein = x+ jy.

If x and y are Gaussian random processes, they have probability density
functions of the form

p(x) =
1√
2πσ

e−x
2/2σ2

,

where σ is the variance. It can be shown that the envelope

r =
√
x2 + y2

obeys Raleigh distribution

p(r) =



r

σ2
e−r

2/2σ2
, r ≥ 0

0, r < 0
.

If the incident field consists of a strong sinusoidal wave and a random noise
E given by (8.69)

F = q cosωct+ E

= (q + x) cosωct− y sinωct

= r cos θ cosωct− r sin θ sinωct

= r cos(ωct+ θ), (8.70)

where the envelope r and the phase angle θ are defined by

r cos θ = q + x, r sin θ = y.

It can be shown that the envelope r obeys Rician distribution

p(r) =
r

σ2
I0

( rq
σ2

)
e−(r2+q2)/2σ2

, (8.71)

where I0 is the zero-order modified Bessel function of the first kind. �
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8.3.4.2 Received Signal by Mobile Antenna

In terms of the reciprocity theorem, the open circuit voltage at the antenna
terminal induced by the incident fields Ein, Hin can be written as (see
Chapter 5)

Voc = −1
I

∫
V0

Ein(r′) · J(r′)dV (r′)

= −1
I

∫
S

[E(r′) × Hin(r′) − Ein(r′) × H(r′)] · undS(r′), (8.72)

where J is the current distribution confined in the source region V0 and
it generates the fields E,H when the antenna is used as a transmitting
antenna; I is the terminal current; and S is a closed surface containing the
source region V0. Let S be a sphere located in the far-field region of the
antenna. Then we have

ηH = un × E.

Substituting the above equation into (8.72) gives

Voc = −1
I

∫
S

[E× Hin − η−1Ein × (un × E)] · undS

= −1
I

∫
S

[−E · (un × Hin) − η−1(Ein ·E) + η−1(un ·E)(un · Ein)]dS

=
1
Iη

∫
S

E · (ηun × Hin + Ein)dS.

Let us consider a mobile receiving antenna. If the incident field (8.67)
consists of plane waves such that the approximation ηun × Hin ≈ Ein

is valid, we have

Voc(t) =
2
Iη

∫
S

E(r) ·Ein(r, t)dS(r). (8.73)

When the antenna is conjugately matched to a load RL, the received power
is given by

Prec(t) =
|Voc(t)|2

8RL
=

1
2|I|2RLη2

∫
S

∫
S

[
E(r) ·Ein(r, t)

]

× [Ē(r′) · Ēin(r′, t)
]
dS(r)dS(r′). (8.74)
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In spherical coordinate system, we may write

E = Eθuθ + Eϕuϕ, Ein = Ein,θuθ + Ein,ϕuϕ.

Substituting these into (8.74) yields

Prec(t) =
1

2|I|2RLη2


∫
S

∫
S

Eθ(r)Ēθ(r′)Ein,θ(r)Ēin,θ(r′)dS(r)dS(r′)

+
∫
S

∫
S

Eϕ(r)Ēϕ(r′)Ein,ϕ(r)Ēin,ϕ(r′)dS(r)dS(r′)

+
∫
S

∫
S

Eθ(r)Ēϕ(r′)Ein,θ(r)Ēin,ϕ(r′)dS(r)dS(r′)

+
∫
S

∫
S

Eϕ(r)Ēθ(r′)Ein,ϕ(r)Ēin,θ(r′)dS(r)dS(r′)


. (8.75)

We now assume that the field components (either co-polarized or cross-
polarized) of plane waves arriving from different directions are independent:

〈Ein,θ(r)Ēin,θ(r′)〉 = 〈Ein,θ(r)Ēin,θ(r)〉δ(r − r′),

〈Ein,θ(r)Ēin,ϕ(r′)〉 = 〈Ein,ϕ(r)Ēin,θ(r′)〉 = 0.
(8.76)

The received power averaged over a random route is then given by

〈Prec(t)〉 =
1

|I|2RLη
∫
Ω

1
2η
r2
[|Eθ(r)|2〈|Ein,θ(r, t)|2〉

+ |Eϕ(r)|2〈|Ein,ϕ(r, t)|2〉]dΩ(r), (8.77)

where Ω is the unit sphere. Let

〈|Ein,θ(r, t)|2〉 = C1pθ(ur), 〈|Ein,ϕ(r, t)|2〉 = C2pϕ(ur),

where C1 and C2 are two constants; pθ(ur) and pϕ(ur) are angular power
density function satisfying∫

Ω

pθ(ur)dΩ(r) = 1,
∫
Ω

pϕ(ur)dΩ(r) = 1.

Equation (8.77) can be rewritten as

〈Prec(t)〉 =
∫
Ω

[P1Gθ(ur)pθ(ur) + P2Gϕ(ur)pϕ(ur)]dΩ(r), (8.78)



January 28, 2015 11:5 Foundations for Radio Frequency Engineering - 9in x 6in b1914-ch08 page 602

602 Foundations for Radio Frequency Engineering

where P1 and P2 are two constants and can be interpreted as the received
power (averaged over the same route) by an isotropic antenna polarized in
uθ and uϕ respectively.

8.3.4.3 Mean Effective Gain

In a mobile environment, the evaluation of the antenna performance is not
a trivial task due to the multipath propagations. The mean effective gain
(MEG) is a statistical measure of the antenna gain in a mobile environment.
It is defined as the ratio between the mean received power of the antenna
and the total mean incident power when moving the antenna over a random
route. In terms of (8.78), the MEG can be expressed as

MEG =
〈Prec(t)〉
P1 + P2

=
∫
Ω

[
XPR

1 + XPR
Gθ(ur)pθ(ur) +

1
1 + XPR

Gϕ(ur)pϕ(ur)
]
dΩ(r),

(8.79)

where XPR is the cross-polarization power ratio defined by XPR = P1/P2.

8.4 Radar Systems

Radar is an object detection system which transmits radio waves toward
various targets including aircraft, spacecraft, missiles, vehicles, ships,
weather formations, and terrain, etc. The targets reflect a tiny part of the
wave’s energy to the receiver of the radar. By comparing the transmitting
and receiving waves, the properties of the targets such as the distance, alti-
tude, direction, or speed can be determined. The term RADAR was coined
by the United States Navy as an acronym for Radio Detection And Ranging
in 1940. The applications of radar systems are highly diverse, including vari-
ous surveillance systems, air and marine navigation, remote sensing, meteo-
rological precipitation monitoring, and geological observations etc.

8.4.1 Radar Signals

There are basically two different radar systems, monostatic system and
bistatic system. A monostatic system uses the same antenna for both
transmit and receive, while the bistatic system deploys two separate
antennas. Figures 8.20(a) and 8.20(b) respectively show the basic block
diagram of a pulsed radar system and the pulse radar signals. The range
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Figure 8.20 (a) Basic block diagram of a pulsed radar. (b) Transmitted and received
pulses.

of the target is determined by measuring the round-trip time of pulsed
microwave signal. If a narrow beam antenna is used the target’s direction
may be determined from the beam direction of the antenna. The duration
of the pulse is called pulse width during which the transmitter is radiating
energy. The number of pulses transmitted per second is called pulse
repetition frequency (PRF). The time from the beginning of one pulse
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to the beginning of next pulse is called pulse repetition time (PRT),
denoted Tr. The time between pulses is called receiver time during which
the transmitter is turned off. The modulator consists of a pulse-forming
circuit, a high-voltage power supply and a timer. The timer controls the
PRF, and triggers the pulse-forming circuit and generates high-voltage
pulses of rectangular shape. These pulses are used as supply voltage to
turn the transmitter on and off, which generates RF carrier. The duplexer
is a device that allows bi-directional communication over a single path so
that a common antenna can be used for both transmitting and receiving. It
also isolates the receiver from the transmitter. The receiver is of common
superheterodyne type.

The output of the transmitter can be modeled as a Thevenin’s
equivalent circuit consisting of a voltage source s(t) in series with an output
impedance Zout = R+ jX . The voltage source may be expressed by

s(t) = a(t) cos[ωct+ ϕ(t) + ϕ0]

where a(t) denotes the amplitude; ωc is the carrier frequency; ϕ(t) is the
phase and ϕ0 is a random phase angle. We assume that both a(t) and ϕ(t)
are slowly varying function and can thus be considered as constants during
one cycle of the carrier. When the antenna is conjugately matched to the
transmitter, the maximum instantaneous power that can be delivered to
the antenna is (called available instantaneous power)

Pm =
1

4R
s2(t) =

1
4R

a2(t)
2

{1 + cos[2ωct+ 2ϕ(t) + 2ϕ0]}.

The (average) peak transmitted power, denoted Pt, is defined as the
available instantaneous power at the output of the transmitter averaged
over one cycle of the carrier when s(t) has maximum amplitude. Thus we
have

Pt =
1

4R
max a2(t)

2
. (8.80)

The average transmitted power, denoted by Pav, is defined as the
available instantaneous power at the output of the transmitter averaged
over the time interval Tr

Pav =
1

4R
1
Tr

Tr∫
0

s2(t)dt. (8.81)
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Usually, we use normalized power so that the factor 1/4R does not appear
in (8.80) and (8.81). Let the pulse width be denoted by τ(τ < Tr). The
average transmitted power is related to peak power by

Pav ≈ DrPt, (8.82)

where Dr = τ/Tr is called the duty cycle of radar.

8.4.2 Radar Cross Section

The basic function of a radar system is to find targets. In order to
characterize how a target interacts with the electromagnetic waves, a
quantity called radar cross section (RCS) is often introduced. The RCS
of a target is defined as a hypothetical area required to intercept the
transmitted power density at the target such that if the total intercepted
power were re-radiated isotropically, the power density actually observed at
the receiver is produced (Skolnick, 1980). Quantitatively, RCS is calculated
in three-dimensions as

σ(ut,us) = lim
R2→∞

4πR2
2

ps
pin

= lim
R2→∞

4πR2
2

|Es|2
|Ein|2

, (8.83)

where pin and ps are the incident and scattered power density in ut and
us direction respectively; Ein and Es are the corresponding electric field
intensities; R2 is the observation distance from the target, as illustrated in
Figure 8.21.

If the target is not very big, the incident wavefronts may be considered
plane. Thus the calculation of RCS becomes the scattering problem of

Target

Ein, Hin

Transmitter

Receiver

Figure 8.21 Radar cross section.
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a plane wave in free space. The problem can be solved exactly only for
some regular shapes. In many situations, we have to resort to numerical
solutions.

8.4.2.1 Scattering by Conducting Targets

Let us consider the scattering of a perfectly conducting target bounded
by S, which is illuminated by a plane wave coming from z-direction, as
illustrated in Figure 8.22. Let un be the unit normal pointing out of S.
The locus of points such that un · uz = 0 is the shadow boundary and
will be denoted by Γ. The shadow boundary Γ divides the surface S

into two parts S = S1 + S2, where S1 is the shadowed side and S2 the
illuminated side. Let the coordinate system be oriented so that the z-axis
lies along the backscattering direction, and passes through the point on the
surfaces S, where the normal to the surface un also points in the direction
of backscattering. This point is called specular point whose position is
denoted by (0, 0, a). We further assume that the positive directions of x and
y-axes will be along the two principal directions of curvature at the specular
point. The fields on the surface will be assumed to drop abruptly to zero as
one moves from the illuminated side to the shadowed side. This assumption
implies that the fields suffer a discontinuity at the shadow boundary. In this
case, the scattered fields can be represented by (e.g., Geyi, 2010)

Es(r) = −
∫
S

[jkηG(r, r′)un(r′) × H(r′) + un(r′) ·E(r′)∇′G(r, r′)]dS(r′)

+
j

ωε

∫
Γ

ut(r′) ·H(r′)∇′G(r, r′)dΓ(r′), (8.84)

where E and H are the total fields on S2, G(r, r′) = e−jk|r−r′|/4π|r − r′|,
and ut is the unit tangent vector of Γ in a positive sense that an observer

o 

x 

y 

z

Specular pointun

Γ

Ein

Figure 8.22 Backscattering of conducting target.
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moving in the direction ut will have the illuminated side of S on his left.
Making use of the following identity

∫
Γ

[ut(r′) ·H(r′)]∇′G(r, r′)dΓ(r′)

=
∫
S2

{[un(r′) ×∇′] ·H(r′)}∇′G(r, r′)dS(r′)

=
∫
S2

∇′G(r, r′) [un(r′) · ∇′ × H(r′)]dS(r′)

−
∫
S2

{[un(r′) × H(r′)] · ∇′}∇′G(r, r′)dS(r′)

=
∫
S2

jωε [un(r′) · E(r′)]∇′G(r, r′)dS(r′)

−
∫
S2

{[un(r′) × H(r′)] · ∇′}∇′G(r, r′)dS(r′),

we obtain

Es(r) =
1
jωε

∫
S2

k2G(r, r′)un(r′) × H(r′)dS(r′)

+
1
jωε

∫
S2

{[un(r′) × H(r′)] · ∇′}∇′G(r, r′)dS(r′). (8.85)

In order to convert the above integral equations into definite integrals
we must relate the scattered fields at the surface to the incident fields.
This is difficult in general except when the surface of the reflecting target
is such that its radii of curvature at all points are large enough that
one can approximate the surface at and near any point as an infinite
plane tangent to the surface at that point. Then the relationship between
incident and reflected fields at the surface is easily obtained from elementary
considerations of plane wave reflection from an infinite plane. These
relations are given below:

un(r′) × H(r′) = 2un(r′) × Hin(r′). (8.86)
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Introducing this into (8.85), we have

Es(r) =
2
jωε

∫
S2

k2G(r, r′)un(r′) × Hin(r′)dS(r′)

+
2
jωε

∫
S2

{[un(r′) × Hin(r′)] · ∇′}∇′G(r, r′)dS(r′). (8.87)

Let r = (0, 0, z). For large z, we have the following approximation

[(un × Hin) · ∇′]∇′G ≈ −k2 [(un × Hin) · uz]Guz.

Then, we can rewrite (8.87) as

Es(r) = − 2k2

jωε
uz ×

∫
S2

G(r, r′)uz × [un(r′) × Hin(r′)] dS(r′). (8.88)

We can further use the approximation |r − r′| ≈ z in the denominator of
G and

|r − r′| ≈ r − ur · r′ = z − uz · r′ (8.89)

inside the exponential of G. Evidently, (x′, y′) = (0, 0) is a stationary point
of (8.89), and in the vicinity of this point the phase of the integrand in
(8.88) varies very slowly. So the dominant contribution of the integration
(2 1) comes from the immediate neighborhood of (x′, y′) = (0, 0). In this
neighborhood, the surface S2 can be approximated by its osculating quadric,
which, in the coordinate system chosen, is given by

z′ = a−
[
(x′)2

2R1
+

(y′)2

2R2

]
. (8.90)

Substituting (8.89) and (8.90) into (8.88) and neglecting the higher-order
terms than quadratic one in the exponential, we have

Es(r) = −kηe
−jkz

j2πz
uz ×

∫
S2

uz × [un(r′) × Hin(r′)] ejkuz ·r′dS(r′). (8.91)

Example 8.5: Let Ein(r)=uxEine
jkz . Then we have Hin(r)= −uy

Ein

η
ejkz .

For a conducting plate as shown in Figure 8.23, we have R1 = R2 = ∞.
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Figure 8.23 Backscattering by a conducting plate.
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Specular point
un

z

Ein

Figure 8.24 Backscattering of conducting sphere.

For large z, (8.91) reduces to

Es(r) = uxEin
ke−jkz

j2πz
A, (8.92)

where A is surface area of the plate. From (8.83), we may obtain the radar
backscatter cross section for a conducting plate as follows

σ =
4πA2

λ2
. (8.93)

This is an important result and is valid for a conducting plate of any shape.
�

Example 8.6: Let Ein(r) = uxEine
jkz . For a conducting sphere of radius

a as shown in Figure 8.24, we have R1 = R2 = a. For large z, (8.91)
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reduces to

Es(r) =
kηe−jkz

j2πz
Ein

η
uz ×

∫
S2

uz ×
[
ur × uyejkz

′]
ejkuz ·r′dS(r′)

= ux
kEine

−jkz

j2πz

π/2∫
0

2π∫
0

a2 sin θ′ cos θ′ej2ka cos θ′dθ′dϕ′

= −ux
Einae

−jkzej2ka

2z

(
1 +

j

2ka
− je−j2ka

2ka

)
. (8.94)

In terms of (8.83), the radar backscatter cross-section for a conducting
sphere may be written as

σ = πa2

∣∣∣∣1 +
j

2ka
− je−j2ka

2ka

∣∣∣∣
2

. (8.95)

Evidently, the RCS σ approaches the geometrical cross section πa2 as the
sphere becomes electrically large (i.e., ka→ ∞). �

8.4.2.2 Scattering by Rain

The rain droplet can be approximated by a dielectric sphere with a complex
dielectric constant ε̃ = ε̃rε0 with ε̃r = ε̃′r− jε̃′′r , as shown in Figure 8.25. An
incident plane wave Ein = uzE0e

jk0x with k0 = ω
√
µ0ε0 is assumed to be

incident upon the dielectric sphere from positive x-direction. The scattered
field in the far-field region is then given by (see (6.79))

Es(r) = −ωk0η0P0 sin θ
e−jk0r

4πr
uθ.

x

z 

a 
o 

Ein

Figure 8.25 Scattering by rain droplet.
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The backscattered power density is

ps =
1

2η0
|Es(r)|2

∣∣
θ=π/2

=
ω2k2

0η0|P0|2
32π2r2

.

The backscatter cross section is then given by

σbs = lim
r→∞ 4πr2

|Es|2
|Ein|2

= 4πa2(k0a)4
∣∣∣∣ ε̃r − 1
ε̃r + 2

∣∣∣∣
2

. (8.96)

Note that the scattering cross section is very weak at the longer wavelengths
since the cross section depends on (k0a)4. Now we assume that the dielectric
sphere is located at (r, θ, ϕ), where r is the distance from the radar and θ

and ϕ are the polar and azimuthal angles measured relative to the bore-
sight direction of the radar antenna, as illustrated in Figure 8.26. The power
density at the location of the dielectric sphere is

p =
PtGt(θ, ϕ)

4πr2
, (8.97)

where Pt is the input power to the antenna terminal, Gt(ut) is the gain of
the transmitting antenna in the direction (θ, ϕ). The backscattered power
density at the radar location is

ps = p
σbs

4πr2
. (8.98)

The received power by the radar antenna is obtained by multiplying the
antenna equivalent area by the backscattered power density ps. If there
is no polarization and impedance mismatch at the antenna, the received
power by the radar antenna from a single rain drop is given by

dPrec = Ae(θ, ϕ)ps =
λ2

(4π)3r4
PtG

2
t (θ, ϕ)σbs, (8.99)

where λ is the wavelength in free space. For an extended volume of rain,
we let N(a)da denote the number of droplets with radii in the interval

Rain dropletTransmitter

Bore-sight

Ein

Figure 8.26 Rain droplet illuminated by radar.
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[a, a + da] per unit volume. The average backscattering cross section per
unit volume, denoted by 〈σbs〉, is thus given by

〈σbs〉 =

∞∫
0

σbsN(a)da =

∞∫
0

4πa2(k0a)4
∣∣∣∣ ε̃r − 1
ε̃r + 2

∣∣∣∣
2

N(a)da. (8.100)

The average received power by the radar antenna from a unit volume of
rain drops can be written as

〈dPrec〉 =
λ2

(4π)3r4
PtG

2
t (θ, ϕ)〈σbs〉. (8.101)

For non-uniform rain rate, the drop size distribution N(a) depends on the
position (r, θ, ϕ). Therefore, the average cross-section 〈σbs〉 is a function of
(r, θ, ϕ). The total backscattered power is thus given by

Prec =
∫
V

〈dPr〉dV = Pt
λ2

(4π)3

∫
V

G2
t (θ, ϕ)

〈σbs〉
r2

sin θdr dθ dϕ, (8.102)

where V stands for the volume of rain illuminated by the radar. For a
pulsed radar with pulse width τ , the integration along r is only needed to
be carried out in an interval of length cτ/2, where c = 1/

√
µ0ε0 This can

be understood as follows. We assume that the leading edge of the pulse
signal leaves at time t = 0, which returns a signal to the receiver from
drops at range r0 (the range of the rain cell being explored and chosen
by radar operator) at time 2r0/c. The signal that leaves the transmitter
at time t(0 < t ≤ τ) will be returned to the receiver at the same time
2r0/c as the leading edge by the drops located at a range r0 − ct/2. Thus,
the range interval that returns signals at the same instant of time is cτ/2
long. The average received power from a single transmission of pulse is
then given by the integration over the illuminated region by pulse radar
(Figure 8.27)

Prec =
∫
V

〈dPr〉dV = Pt
λ2

(4π)3r20

cτ

2

∫
Ω

G2
t (θ, ϕ)〈σbs〉 sin θ dθ dϕ, (8.103)

where Ω is the solid angle of the antenna beam.

8.4.2.3 Effect of Polarization

All antennas transmit radio waves in a particular polarization and most
of them are linearly polarized. The reflection and scattering will typically
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Antenna

Illuminated region 

r0 – cτ/2

Figure 8.27 Region illuminated by pulsed radar.

introduce a change in polarization. For instance, reflections from airplane
or ionosphere can change the wave’s polarization. As a result, the received
power at the radar will be lowered due to the mismatch of polarization.
When the rain drops are spherical in shape and multiple scattering can be
neglected, a circularly polarized incident wave is returned as a circularly
polarized wave of the opposite sense and is not received by the radar
antenna. Therefore, the back scattering of radar pulses by rain drops can be
avoided by using circular polarization and this phenomenon may be used
to reduce the clutter interference produced by rain.

The far-field of the radar antenna generated by a current distribution
J in a homogeneous and isotropic medium can be expressed as

E(r) = − jk0η0I

4πr
e−jk0rL(ur). (8.104)

Here I is the exciting current at the feeding plane, and L is the antenna
vector effective length. The induced dipole moment in a single rain drop is
given by

P = 3
ε̃r − 1
ε̃r + 2

ε0E. (8.105)

The equivalent current is jωP, which produces a field Es. The open-circuit
voltage at the radar antenna-feeding plane induced by the incident field Es

generated by a single rain drop is (see Chapter 5)

dVoc(ur) = −1
I

∫
V0

Es(r′) · J(r′)dV (r′) = −1
I

∫
Vr

E(r′) · [jωP(r′)] dV (r′),

where Vr denotes the volume occupied by the rain drop, and ur is the
unit vector in the direction of the rain drop. In the above, the reciprocity



January 28, 2015 11:5 Foundations for Radio Frequency Engineering - 9in x 6in b1914-ch08 page 614

614 Foundations for Radio Frequency Engineering

theorem has been used. For a small rain drop, this may be approximated by

dVoc = −1
I
E · jωP

4
3
πa3 = − jk04πa3

Iη0

ε̃r − 1
ε̃r + 2

E · E

=
jIη0k

3
0

4πr2
ε̃r − 1
ε̃r + 2

a3e−2jk0rL · L. (8.106)

In spherical coordinates, we may write

L = Lθuθ + Lϕuϕ,

where Lθ and Lϕ are the components along θ and ϕ direction. For a
circularly polarized antenna, we have Lϕ = ±jLθ. This leads to

L · L = L2
θ + L2

ϕ = 0.

This implies a complete mismatch in polarization between the antenna and
the scattered field by the rain drop, and the received voltage is zero. The
received open-circuit voltage from a volume of drops can be expressed as
the sum of (8.106) overall drops

Voc =
jIη0k

3
0

4π
ε̃r − 1
ε̃r + 2

∑
i

a3
i

r2i
e−j2k0ri(L · L)i, (8.107)

where the subscript i denotes the value of the corresponding parameter for
the ith drop located at (ri, θi, ϕi) at time t. When the antenna is conjugately
matched to a load RL, the received power at time t is

|Voc|2
8RL

=
|I|2η2

0k
6
0

128π2RL

∣∣∣∣ ε̃r − 1
ε̃r + 2

∣∣∣∣
2∑

i

∑
j

a3
i a

3
j

r2i r
2
j

e−j2k0(ri−rj)(L · L)i(L̄ · L̄)j .

(8.108)

The relative phase angle ∆ij = 2k0(ri − rj) changes with time t and may
be considered uniformly distributed over the range [0, π] with a probability
density 1/2π. The ensemble-average of e−j∆ij is

〈e−j∆ij 〉 =

2π∫
0

e−j∆ij

2π
d∆ij =

{
0, i �= j

1, i = j
.

Taking the ensemble-average of (8.108) gives the average received power as
follows

Prec =
〈|Voc|2〉

8RL
=

|I|2η2
0k

6
0

128π2RL

∣∣∣∣ ε̃r − 1
ε̃r + 2

∣∣∣∣
2∑

i

a6
i

r4i
|(L · L)i|2. (8.109)



January 28, 2015 11:5 Foundations for Radio Frequency Engineering - 9in x 6in b1914-ch08 page 615

Information Theory and Systems 615

For a large number of rain drops with different radii, the above sum becomes
an integral

Prec =
〈|Voc|2〉
8RL

=
|I|2η2

0k
6
0

128π2RL

∣∣∣∣ ε̃r − 1
ε̃r + 2

∣∣∣∣
2 ∞∫

0

da

∫
V

|L · L|2
r2

N(a)a6 sin θ dr dθ dϕ, (8.110)

where N(a)da is the number of drops per unit volume, and V is the volume
occupied by the rain drops.

8.4.3 Radar Range Equation

The power density at a distance R1 (target position) from the radiating
antenna of the radar is given by (Figure 8.21)

p(ut) =
PtGt(ut)

4πR2
1

, (8.111)

where Pt is the input power to the antenna terminal, Gt(ut) is the gain of
the transmitting antenna in the direction ut. When the target is illuminated
by the incident wave from the transmitting antenna, it will reflect the
incident wave in various directions. Power captured by the target that will
be re-radiated and the scattered power density in the direction us may be
expressed as the product of incident power density times the RCS divided
by 4πR2

2

ps(−us) =
PtGt(ut)

4πR2
1

σ(ut,us)
4πR2

2

. (8.112)

The power received by the antenna is

Prec = ps(−us)Ae(−us) = Ae(−us)
PtGt(ut)

4πR2
1

σ(ut,us)
4πR2

2

. (8.113)

Here Ae is the equivalent area of the receiving antenna, which can be
expressed as (Chapter 5)

Ae(−us) =
∣∣∣∣Es(us) · L(−us)

Z + ZL

∣∣∣∣
2
ηReZL

|Es(us)|2 =
|L(−us)|2ηReZL

|Z + ZL|2 |uEs · uL|2,

where uEs and uL are the polarization unit vector of the scattered field and
the receiving antenna respectively. If the receiving antenna is conjugately
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matched, the above equation reduces to

Ae(−us) =
λ2

4π
πη

(Rrad +Rloss)
|L(−us)|2

λ2
|uEs · uL|2

=
λ2

4π
Gr(−us) |uEs · uL|2 , (8.114)

where Gr(−us) stands for the gain of the receiving antenna in −us
direction. Introducing this into (8.113), we obtain

Prec

Pt
=

1
(4π)3

λ2σ(ut,us)
R2

1R
2
2

Gt(ut)Gr(−us) |uEs · uL|2 . (8.115)

This is called radar range equation, a relationship between radar range,
transmitted power, received power, antenna gain, and the target’s RCS. For
polarization-matched receiving antenna, (8.115) reduces to

Prec

Pt
=

1
(4π)3

λ2σ(ut,us)
R2

1R
2
2

Gt(ut)Gr(−us). (8.116)

For a monostatic system, (8.116) may be simplified as below

Prec

Pt
=

G2
t

(4π)3
λ2σ

R4
. (8.117)

This relation can be used to measure the RCS.

If we consider what science already has enabled men to know-the

immensity of space, the fantastic philosophy of the stars, the infinite

smallness of the composition of atoms, the macrocosm whereby we

succeed only in creating outlines and translating a measure into numbers

without our minds being able to form any concrete idea of it-we remain

astounded by the enormous machinery of the universe.

—Guglielmo Marconi
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troscopie Interférentielle”, Ann Chim. Phys., Vol. 16, 115–146, 1899.

Fano, R. M., L. J. Chu and R. B. Adler, Electromagnetic Fields, Energy,
and Forces, John Wiley & Sons, New York and MIT Press, Cambridge,
MA, 1960.

Fante, R. L., “Quality factor of general idea antennas”, IEEE Trans. Antennas
and Propagat., Vol. AP-17, 151–155, 1969.

Fante, R. L., “Maximum possible gain for an arbitrary ideal antenna with specified
quality factor”, IEEE Trans. Antennas and Propagat., Vol. AP-40, 1586–
1588, Dec. 1992.

Farago, P. S., An Introduction to Linear Network Analysis, English Universities
Press, 1961.

Felsen, L. B. (Ed.), Transient Electromagnetic Fields, Springer-Verlag, 1976.
Felsen, L. B. and N. Marcuwitz, Radiation and Scattering of Electromagnetic

Waves, Prentice Hall, Englewood Cliffs, New Jersey, 1973.
Fooks, E. H. and R. A. Zakarevicius, Microwave Engineering using Microstrip

Circuits, Prentice Hall, 1990.
Ford, P. J. and G. A. Saunders, The Rise of the Superconductors, CRC Press,

2005.
Foschini, G. J. and M. J. Gans, “On limits of wireless communications in

a fading environment when using multiple antennas”, Wireless Personal
Communications, Vol. 40, No. 6, 311–335, 1998.

Fox, A. G. and T. Li, “Resonant modes in a maser interferometer”, Bell Syst.
Tech. J., Vol. 40, No. 2, 453–488, Mar. 1961.

Fox, A. G. and T. Li, “Modes in a maser interferometer with curved and tilted
mirrors”, Proc. IEEE, Vol. 51, 80–89, January 1963.

Franceschetti, G. and C. H. Papas, “Pulsed antennas”, IEEE Trans. Antennas
and Propagat., Vol. AP-22, 651–661, Sept. 1974.

Frankl, D. R., Electromagnetic Theory, Prentice Hall, New York, 1986.
Frey, J., Microwave Integrated Circuits, Artech House, 1975.
Friedman, B., Principles and Techniques of Applied Mathematics, John Wiley &

Sons, Inc., 1956.
Friis, H. T., “A note on a simple transmission formula”, Proc. IRE, Vol. 34,

254–256, 1946.
Fujimoto, K. and J. R. James, Mobile Antenna Systems Handbook, Artech House,

2001.
Fujimoto, K. and H. Morishita, Modern Small Antennas, Cambridge University

Press, 2014.
Fusco, V. F., Microwave Circuits, Prentice Hall, 1987.
Gallager, R. G., Information Theory and Reliable Communication, John Wiley &

Sons, 1968.
Gandhi, O. P., Microwave Engineering and Applications, Pergamon Press,

1981.
Garg, R. and I. J. Bahl, “Microstrip Discontinuities,” Int. J. Electronics, Vol. 45,

No. 1, 81–87, 1978.



January 28, 2015 11:5 Foundations for Radio Frequency Engineering - 9in x 6in b1914-bib page 623

Bibliography 623

Geyi, W. and W. Hongshi, “Solution of the resonant frequencies of cavity
resonator by boundary element method”, IEE Proc., Microwaves, Antennas
and Propagation, Vol. 135, Pt.H, No. 6, 361–365, 1988a.

Geyi, W. and W. Hongshi, “Solution of the resonant frequencies of a microwave
dielectric resonator using boundary element method”, IEE Proc., Micro-
waves, Antennas and Propagation, Vol. 135, Pt.H, No. 5, 333–338, 1988b.

Geyi, W., L. Xueguan and W. Wanchun, “Solution of the characteristic impedance
of an arbitrary shaped TEM transmission line using complex variable
boundary element method”, IEE Proc., Microwaves, Antennas and Propa-
gation, Vol. 136, Pt. H, No. 1, 73–75, 1989.

Geyi, W., “On the spurious solutions in boundary integral formulation for
waveguide eigenvalue problems”, Proc. of European Microwave Conference,
Vol. 2, 1311–1316, 1990a.

Geyi, W., “Numerical solution of the transmission line problems by a network
model decomposition method based on polygon discretization”, IEEE
Trans. Microw. Theory Tech., Vol. MTT-38, No. 8, 1086–1091, 1990b.

Geyi, W., “Numerical analysis of waveguide discontinuity problems by using
network model decomposition method”, IEEE Trans. Microw. Theory
Tech., Vol. MTT-39, No. 10, 1766–1770, 1991.

Geyi, W., Y. Chengli and L. Weigan, “Unified theory of the backscattering of
electromagnetic missiles by a perfectly conducting target”, J. Appl. Phys.,
Vol. 71, 3103–3106, Apr. 1992.

Geyi, W., “Neumann series solutions for low frequency electromagnetic scattering
problems”, Chinese Journal of Electronics (English version), Vol. 4, No. 3,
89–92, 1995.

Geyi, W., “Further research on the behavior of energy density of electromagnetic
pulse”, Microwave and Optical Technology Letters, Vol. 9, 331–335, Aug.
20, 1996a.

Geyi, W., “Enhancement of backscattering by electromagnetic focusing,” Journal
of UEST of China, Vol. 25, 177–184, Aug. 1996b.

Geyi, W., “Theoretical study of microwave power transmission,” Journal of
Electronics, Vol. 20, 538–545, July 1998 (in Chinese).

Geyi, W., Advances in Electromagnetic Theory, National Defense Publishing
House of China, 1999 (in Chinese).

Geyi, W., P. Jarmuszewski and Y. Qi, “Foster reactance theorems for antennas
and radiation Q”, IEEE Trans. Antennas and Propagat., Vol. AP-48, 401–
408, Mar. 2000.

Geyi, W., “Physical Limitations of Antenna”, IEEE Trans., Antennas and
Propagat., Vol. AP-51, 2116–2123, Aug. 2003a.

Geyi, W., “A Method for the Evaluation of Small Antenna Q”, IEEE Trans.
Antennas and Propagat., Vol. AP-51, 2124–2129, Aug. 2003b.

Geyi, W., “Derivation of equivalent circuits for receiving antenna”, IEEE Trans.
Antennas and Propagat., Vol. AP-52, 1620–1624, June 2004.

Geyi, W., “A time-domain theory of waveguide”, Progress in Electromagnetics
Research, PIER 59, 267–297, 2006a.



January 28, 2015 11:5 Foundations for Radio Frequency Engineering - 9in x 6in b1914-bib page 624

624 Bibliography

Geyi, W., “New magnetic field integral equation for antenna system”, Progress
in Electromagnetics Research, PIER 63, 153–176, 2006b.

Geyi, W., “Reply to comments on ‘The Foster reactance theorem for antennas
and radiation Q’”, IEEE Trans. Antennas and Propagat., Vol. AP-55, 1014–
1016, 2007a.

Geyi, W., “Multi-antenna information theory”, Progress in Electromagnetics
Research, PIER 75, 11–50, 2007b.

Geyi, W., “Time-domain theory of metal cavity resonator”, Progress in Electro-
magnetics Research, PIER 78, 219–253, 2008.

Geyi, W., Q. Rao, S. Ali and D. Wang, Handset antenna design: Practice and
theory, Progress in Electromagnetics Research, PIER 80, 123–160, 2008b.

Geyi, W., Foundations of Applied Electrodynamics, New York: Wiley, 2010.
Geyi, W., “A New Derivation of the upper bounds for the ratio of gain to Q”, IEEE

Trans. Antennas and Propagat., Vol. AP-60, No. 7, 1916–1922, July 2012.
Geyi, W., “Optimization of the ratio of gain to Q”, IEEE Trans. Antennas and

Propagat., Vol. AP-61, No. 4, 3488–3490, April 2013.
Geyi, W., “Optimal design of antenna arrays (Invited),” International Workshop

on Antenna Technology, Sydney, March 2014.
Ginzburg, V. L., The Propagation of Electromagnetic Waves in Plasmas, Oxford:

Pergamon Press, 1964.
Glisson, A. W. and D. R. Wilton, “Simple and efficient numerical methods for

problems of electromagnetic radiation and scattering from surfaces”, IEEE
Trans. Antennas and Propagat., Vol. AP-28, No. 5, 593–603, Sept. 1980.

Golio, J. M., The RF and Microwave Handbook, CRC Press, 2001.
Gonschorek, K.-H. and R. Vick, Electromagnetic Compatibility for Device Design

and System Integration, Springer, 2009.
Good, R. H., “Particle aspect of the electromagnetic field equations”, Phys. Rev.,

Vol. 105, No. 6, 1914–1919, 1957.
Gosling, W., Radio Antennas and Propagation, Newnes, 1998.
Goubao, G. and F. Schwering, “On the guided propagation of electromagnetic

wave beams”, IRE Trans. Antennas and Propagat., Vol. AP-9, 248–256,
May 1961.

Goubau, G. (Ed.), Electromagnetic Waveguides and Cavities, London: Pergmon,
1961.

Gradsheyn, L. S. and I. M. Ryzhik, Tables of Integrals, Series, and Products,
Academic Press, 1994.

Graglia, R. D., “On the numerical integration of the linear shape functions times
the 3-D Green’s function or its gradient on a plane triangle”, IEEE Trans.
Antennas and Propagat. Vol. AP-41, 1448–1455, Oct. 1993.

Graham, W. J., “Analysis and synthesis of axial field patterns of focused
apertures”, IEEE Trans. Antennas Propag., Vol. 31, 665–668, July 1962.

Green, R. B., “The general theory of antenna scattering,” Antenna Lab., Ohio
State Research Foundation, Rept., 1223–17, Nov. 30, 1963.

Grieg, D. D. and H. F. Engelmann, “Microstrip-A new transmission technique for
the kilomegacycle range”, Proceedings of the IRE, Vol. 40(12), 1644–1650,
Dec. 1952.



January 28, 2015 11:5 Foundations for Radio Frequency Engineering - 9in x 6in b1914-bib page 625

Bibliography 625

Griffiths, D. J., Introduction to Electrodynamics, Prentice Hall, 1999.
Gupta, K. C., R. Garg and I. Bahl, Microstrip Lines and Slotlines, Artech House,

1979.
Gupta, K. C., R. Garg and R. Chadha, Computer-aided Design of Microwave

Circuits, Artech House, 1981.
Gustafsson, M. and S. Nordebo, “Optimal antenna currents for Q, superdirec-

tivity, and radiation patterns using convex optimization,” IEEE Trans.
Antennas Propagat., Vol. AP-61, 1109–1118, Mar. 2013.

Hallén, E., “Theoretical investigations into transmitting and receiving qualities of
antennae”, Nova Acta Regial Soc. Sci. Upsaliensis, Ser. IV, Vol. 2, No. 4,
1–44, Nov. 1938.

Hammond, P., Energy Methods in Electromagnetism, Clarendon Press Oxford,
1981.

Hammerstad, E. and O. Jensen, “Accurate models for microstrip computer-aided
design,” IEEE MTT-S Digest, Vol. 80, 407–409, May 1980.

Hammerstad, E., “Computer-aided design of microstrip couplers with accu-
rate discontinuity models”, IEEE MTT-S Digest, Vol. 81, 54–56, June
1981.

Hanson, G. W. and A. B. Yakovlev, Operator Theory for Electromagnetics: An
Introduction, Springer, 2002.

Hansen, R. C., “Fundamental limitations in antennas”, Proc. IEEE, Vol. 69, 170–
182, Feb. 1981.

Hansen, R.C., Electrically Small, Superdirective, and Superconducting Antennas,
Wiley & Sons, 2006.

Hansen, W. W., “A new type of expansion in radiation problems”, Phys. Rev.,
Vol. 47, 139–143, 1935.

Harrington, R. F., “On the gain and beamwidth of directional antennas”, IRE
Trans. on Antennas and Propagat. Vol. 6, 219–225, 1958.

Harrington, R. F., “Effect of antenna size on gain, bandwidth, and efficiency”,
Journal of Research of the National Bureau of Standards-D. Radio Propa-
gation, Vol. 64D, No. 1, Jan.–Feb. 1960.

Harrington, R. F., Time-Harmonic Electromagnetic Fields, McGraw-Hill Book
Company, Inc, 1961.

Harrington, R. F., Field Computation by Moment Methods, MacMillan, 1968.
Harrington, R. F. and J. R. Mautz, “A generalized formulation for aperture

problems”, IEEE Trans. Antennas and Propagat., Vol. AP-24, 870–873,
Nov. 1976.

Harrington, R. F. and A. T. Villeneuve, “Reciprocal relationships for gyrotropic
media”, IRE Trans. Microwave Theory and Techniques, Vol. MTT-6, 308–
310, July 1958.

Hartemann, F. V., High Field Electrodynamics, CRC Press, 2002.
Hata, M., “Empirical formula for propagation loss in land mobile radio service”,

IEEE Trans. on Veh. Tech., VT-29, Vol. 3, 317–325, Aug. 1980.
Hazard, C. and M. Lenoir, “On the solution of time-harmonic scattering problems

for Maxwell equations”, SIAM J. Math. Anal., Vol. 27, No. 6, 1597–1630,
1996.



January 28, 2015 11:5 Foundations for Radio Frequency Engineering - 9in x 6in b1914-bib page 626

626 Bibliography

Heras, J. A., “How the potentials in different gauges yield the same retarded
electric and magnetic field”, Am. J. Phys., Vol. 75, No. 2, 176–183, 2007.

Heurtley, J. C., “Maximum power transfer between two finite antennas”, IEEE
Trans. Antennas Propagat., Vol. Ap-15, 298–300, Mar. 1967.

Hoffmann, R. K., Handbook of Microwave Integrated Circuits, Artech House,
1987.

Holzman, E., Essentials of RF and Microwave Grounding, Artech House,
2006.

Hondros, D., “Ueber elektromagnetische Drahtwelle,” Annalen der Physik,
Vol. 30, 905–949, 1909.

Hong, J.-S. and M. J. Lancaster, Microstrip Filters for RF/Microwave Applica-
tions, John Wiley & Sons, 2001.

Hooft, G., “A confrontation with infinity”, Reviews of Modern Physics, Vol. 72,
No. 2, 333–339, April 2000.

Hoop, T. A., Handbook of Radiation and Scattering of Waves: Acoustic Waves in
Fluids, Elastic Waves in Solids, Electromagnetic Waves, Academic Press,
1995.

Horn, R. A. and C. R. Johnson, Matrix Analysis, Cambridge University Press,
1985.

Howard J. and W. C. Lin, “Simple Rules Guide Design of Wideband Stripline
Couplers”, Microwaves and RF, Vol. 27, No. 5, 201–211, May 1988.

Hsiao, G. C. and R. E. Kleinmann, “Mathematical foundations for error
estimation in numerical solutions of integral equations in electromagnetics”,
IEEE Trans. Antennas and Propagat. Vol. AP-45, 316–328, Mar. 1997.

Hu, M. K., “Near zone power transmission formula”, IRE Nat’l Conv. Rec., Part 8,
128–135, 1958.

Huang, K., “On the interaction between the radiation field and ionic crystals”,
Proc. Roy. Soc. (London) A, Vol. 208, 352–365, Sept. 1951.

Huurdeman, A. A., The Worldwide History of Telecommunications, Wiley-IEEE,
2003.

Huygens, C., Treatise on Light, Dover Publications INC, New York, 1962; first
published in 1690.

Idemen, M., “The Maxwell equations in the sense of distribution”, IEEE Trans.
Antennas and Propagat., Vol. AP-21, 736–738, Jul. 1973.

Iizsuka, K., R. King and C. Harrison, Jr., “Self and mutual admittances of two
identical circular loop antennas”, IEEE Trans. Antennas and Propagat.,
Vol. AP-14, No. 4, 440–450, July 1966.

Ito, M., “Dispersion of very short microwave pulses in waveguide”, IEEE Trans.
Microw. Theory Tech., Vol. MTT-13, 357–364, May 1965.

Itoh, T. and R. Mittra, “Spectral-domain approach for calculating the dispersion
characteristics of microstrip lines”, IEEE Trans. Microw. Theory Tech.,
Vol. MTT-21, No. 7, 496–499, July 1973.

Jackson, J. D., Classical Electrodynamics, 3rd Edition, John Wiley & Sons, New
York, 1999.

Jakes, W. C., Microwave Mobile Communications, IEEE Press, 1994.
James J. R. and P. S. Hall, Handbook of Microstrip Antennas, INSPEC, Inc.,

1988.



January 28, 2015 11:5 Foundations for Radio Frequency Engineering - 9in x 6in b1914-bib page 627

Bibliography 627

Jarry, P. and J. Beneat, Design and Realizations of Miniaturized Fractal
Microwave and RF Filters, John Wiley and Sons, 2009.
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finite element method, 52, 93
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Floquet theorem, 147
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format, 570
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frequency diversity, 465
frequency hopping spread systems,
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frequency modulation, 577
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frequency transformations, 251
frequency-independent antenna, 386
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gauge transformation, 54
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Gaussian distribution, 550
Gaussian process, 550
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generic communication system, 540
generic MIMO system, 562
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inductive coupling, 489
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inductive post, 107
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line impedance stabilization network
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link budget, 591
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load reflection coefficient, 204
lobes, 298
local frame, 448
local oscillator, 286
log-distance model, 463
log-normal distribution, 422
log-periodic antenna, 409
Lommel–Weber function, 366
longitudinal section electric (LSE)

modes, 99
longitudinal section magnetic (LSM)

modes, 99
loop antenna, 364
loop gain, 281
Lorentz force equation, 6, 7
Lorentz transformation, 597
Lorenz gauge condition, 54, 55
lossless condition, 220
low noise amplifier, 278
low-pass filter, 240, 243
low-pass prototypes, 243
lower sideband, 288

M-ary signaling, 574
magnetic dipole, 499
magnetic dipole moment, 62, 63, 499
magnetic field energy density, 14
magnetic field integral equation, 377
magnetic loss factor, 10
major lobe, 298
matching network efficiency, 300
mathematical expectation, 545
Maxwell equations, 3, 4, 157, 160, 330
mean, 547, 548
mean effective gain, 602
mean-square, 545, 547
measurable function, 541
measurable space, 540
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method of Green’s function, 28, 106,
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method of induced electromotive
force, 314

method of perturbation, 145
method of separation of variables, 20
method of weighted residuals, 45
microstrip, 133, 134, 137, 138
microstrip discontinuities, 139, 141
microstrip line, 132
microstrip patch antenna, 377
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microwave filter, 239
MIMO channel response matrix, 563
MIMO system, 468, 562
minor lobes, 298
mixed magnetic wall model, 185
mixer, 285
modal current, 72, 101, 122
modal functions, 69
modal voltage, 72, 101, 122, 166
mode excitation, 76
mode matching method, 109
modulated signal, 554, 597
modulator, 571
moment, 545
moment method, 45
monostatic system, 602
multi-beam antenna, 419
multi-conductor transmission line,
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multipath propagation, 464
multipath waves, 463
multipole expansion, 61
mutual information, 559–561
mutually exclusive, 541

narrowband bandpass process, 556
narrowband MIMO channel matrix,

564
natural coordinate system, 47
negative resistance oscillator, 279, 282
negative strikes, 534
Neumann function, 25
node equation, 92
noise figure, 270
normal dispersive medium, 11
normalized far-field pattern, 439
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normalized incident voltage wave, 212
normalized incident wave, 218
normalized reflected voltage wave,

212
normalized reflected wave, 218
Norton equivalent circuit, 266
Nyquist filter, 575
Nyquist interval, 572
Nyquist ISI criterion, 576
Nyquist rate, 572
Nyquist’s formulae, 267

Ohm’s law, 8, 480
Okumura model, 461
open circuit parameters, 102, 217
open circuit voltage, 303, 455, 600
open resonator, 156, 194
optical fiber, 125, 128
orthonormal, 22, 70
oscillator, 279

paraxial approximation, 197
paraxial wave equation, 196, 197
parseval identity, 549
partial reflection coefficients, 229
passive sign convention, 479
path loss, 459
pattern multiplication, 407
peak transmitted power, 604
periodic structures, 146
phase modulation, 577
phase shift keying, 577
phase shifter, 230
phased array, 418
planar spiral antenna, 387
plasma frequency, 452
polarization diversity, 465
polarization of antenna, 305
polarization of wave, 304
positive real function, 224
positive strike, 534
power divider, 233
power efficiency, 583
power gain, 261
power spectral density, 267, 548
power spectral density tensor, 553

power transmission efficiency, 397,
414

Poynting theorem, 13, 316, 318, 345
Poynting vector, 13, 317–319, 404,

438, 444
principal curvatures, 449
principal focal point, 403
principle of least action, 37
probability density function, 542
probability distribution, 542
probability measure, 540
probability space, 541
projection method, 45
propagation constant, 204
propagation model, 460
pulse amplitude modulation (PAM),

571
pulse repetition frequency, 603
pulse repetition time, 604
pulse width, 603

quadrature component, 554
quality factor, 175, 301, 339, 346
quantization, 571
quarter wavelength transform, 205
quarter-wave impedance transformer,

228

radar cross section, 605
radar range equation, 615, 616
radial prolate spheroidal function, 402
radiation condition, 29, 313
radiation efficiency, 299
radiation intensity, 298
radiating near-field region, 297
radiation modes, 131
radiation pattern, 298
radio propagation model, 421
raised cosine filter, 576
random element, 541
random variable, 541
random vector, 541
ray equation, 445
Rayleigh distribution, 598, 599
Rayleigh quotient, 39, 400, 414
Rayleigh–Ritz method, 40, 43
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rays, 444
reactance circles, 209
reactive near-field region, 297
received isotropic power, 398, 592
receiver, 571
receiver time, 604
reciprocity, 19
reciprocity theorem, 389–391, 470
rectangular waveguide, 78, 237
rectangular waveguide cavity

resonator, 168
reference impedance, 212
reflected current, 212
reflected current wave, 204
reflected voltage, 212
reflected voltage wave, 204
reflection, 421
reflection coefficient, 204, 205, 213,

229, 241
refraction, 421
refractive index, 443
resistant circles, 209
resistivity, 486
resonant frequencies, 155, 172, 174,

187
resonator, 155
retarded Green’s function, 123, 180
return loss, 301
return stroke, 535
RF engineering, 1
Richards transformation, 256
Rician distribution, 598, 599
right-traveling condition, 125
RLC circuit, 172, 174, 320, 321, 482,

484

safety ground, 530, 531
sample, 541
sampling theorem, 572
SAR limit, 307
scalar potential, 53, 55
scattering, 422
scattering cross-section, 458
scattering matrix, 315
scattering parameters, 218
Schelkunoff–Love equivalence, 18, 111

self-adjoint, 31, 39
self-complementary antenna, 371
self-inductance, 483
sensitivity, 595
Shannon’s continuous channel

theorem, 562
shielding effectiveness, 518
shielding method, 517
short circuit parameters, 217
side lobe, 298
signal ground, 531
signal vector, 578
sine integral, 363
single-layer potential, 61
skin depth, 143
slot antenna, 367, 369, 370
small aperture, 111
small dipole, 497
small-scale fading, 422
smart antenna system, 411
Smith chart, 209, 274, 276–278
solenoidal component, 55
space diversity, 465
spatial harmonic, 148
spatio-temporal signature, 563
specific absorption rate (SAR), 306
spectral representation, 35, 36
specular point, 606
spherical Bessel functions, 27
spherical cavity, 163, 164
spherical cavity resonator, 163
spherical vector wavefunctions, 307
spherical waveguide, 309
spurious solutions, 90
stability circle, 264, 265
stability criteria, 263
standard deviation, 546
stationary, 547
stationary in the strict sense, 547
stationary in the wide sense, 548
stationary to the second order, 548
statistically independent, 541, 543
step, 534
step-index fiber, 126
stepped leaders, 534
stochastic process, 546
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stored energies, 318, 320, 344, 345
stratified atmosphere, 443, 445
streamer, 534
strictly stationary, 547
structural scattered fields, 329
Sturm–Liouville equation, 21
superheterodyne receiver, 286
superposition theorem, 13, 57
surface impedance, 143
surge protective devices, 536
susceptibility, 491
SVWF, 308
switched beam system, 410
symbol, 574

tapered line transformer, 229
TE modes, 71, 87
TEM mode, 70
testing functions, 44
Thévenin equivalent circuit, 266
thermal noise, 266
TM modes, 71, 87
transducer power gain, 260
transfer matrix, 149
transmission line equation, 73, 203
transmitter, 571
transport equation, 447
trial functions, 44
tropospheric-scatter-propagation,

454
two-ray ground reflection model, 441
two-ray propagation model, 438

unilateral design, 272
uniqueness theorem, 15, 16, 149, 172
upper sideband, 288

variance, 545, 547
variational expression, 40–43, 105,

400
variational method, 37, 103
vector effective length, 303, 304
vector modal function, 70, 75, 78, 81,

83–86, 158, 159, 163, 167
vector potential, 53, 55
voltage reflection coefficient, 213

water-filling, 569
wave equation, 10, 11, 29, 30
wave impedance, 73, 520
wavefronts, 443
waveguide, 65–67, 121, 144, 236, 428
waveguide cavity, 165
waveguide step, 109
weakly stationary, 548
weighting functions, 44
white noise process, 549
Wiener–Khintchine relations, 267
Wilkinson power divider, 234
wire antennas, 355, 357

Yagi–Uda antenna, 408
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