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Preface
Introduction to Fluid Mechanics, Fourth Edition is intended for use at the undergraduate level in a
mechanical or civil engineering or applied sciences curriculum. It is assumed that the students have
a knowledge of calculus and physics, so that learning to use mathematics to model physical
principles in fluid mechanics proceeds without much difficulty.

The book is arranged into 13 chapters and is written using SI units as well as British
gravitational units. To exclude either of these unit systems from any fundamental area of study
would be premature at this time, although efforts have been made for many years at a national level
to convert entirely to SI units. A brief description of the engineering system, complete with a
discussion of gc, is also included (for illustrative purposes only).

CONTENTS

The first chapter, which introduces the text, presents definitions appropriate to the study of fluid
mechanics. Chapter 2 deals with fluid statics, including pressure measurement, forces exerted by
fluids at rest, buoyancy, and stability. In Chapter 3, the basic equations of fluid mechanics are
derived from a general conservation equation. The control volume concept is explained, and the
continuity, momentum, energy, and Bernoulli equations are presented. Chapter 4 deals mainly with
dimensional analysis and modeling and introduces the Rayleigh method, the Buckingham Pi
method, and the inspection method. This chapter also discusses dimensional homogeneity, illus-
trates by example the use of dimensional analysis to correlate data, and shows mathematical
techniques for modeling prototypes.

Chapter 5 provides an important application of the basic concepts. This application—
incompressible flow in conduits—is of great significance to mechanical and civil engineers. Topics
include laminar and turbulent flow, nominal pipe sizes, standard tubing sizes, friction factor and
pipe roughness, minor losses, noncircular cross sections, and pump sizing for piping systems.
Friction factor equations for the Moody diagram are given, as are correlations for coiled tubes
and internally finned tubes. Chapter 6 continues with applications to fluid flows past objects and
discusses lift and drag forces. It also presents analyses for flows past tractor–trailer trucks,
automobiles, and bicycle–rider combinations. Chapter 7, on open-channel flow, is primarily of
importance to civil engineers, and the first few sections follow a format similar to that found in
classic hydraulics texts. Chapter 8 is an introduction to compressible flow, covering the basic
concepts that lead to the solution of practical problems in the field.

In a one-semester course, completion of Chapter 8 could coincide with the end of the semester.
The rest of the text is intended for use at an intermediate or second level of study in fluid mechanics.
Chapter 9 provides a study of turbomachinery, including design criteria, a description of commer-
cially available machines and installations, and the method used to select pumps and hydraulic
turbines for various situations, as well as a section on windmill propellers. Chapter 10 surveys
measurement techniques commonly employed in fluid mechanics, such as fluid properties, closed-
conduit flows, and open-channel flows.

Some of the more mathematically oriented and classical topics of fluid mechanics then follow.
Chapter 11 is an introduction to the equations of motion for isothermal systems (Navier–Stokes
equations), and includes applications to a number of laminar flow problems. Chapter 12 presents simple
solutions to the equations of inviscidflow and illustrates themethod of superposition to obtain equations
for more complex flows. Chapter 13 discusses boundary-layer flows; the boundary-layer equations are
derived and applied to the problem of flow over a flat plate. The momentum integral equation is derived
and applied to both laminar and turbulent flows over a flat plate.

xiii



Each chapter concludes with a ‘‘Problems’’ section. These problems are arranged so that the
easier ones are presented first, which helps in building the students’ confidence and skill in learning
the principles involved. The more difficult problems then allow the students to analyze the topic in
more detail. The problems are designed to systematically improve the students’ ability to understand
and apply the equations of fluid mechanics to various practical problems such as a flow from a
draining coffee pot or drag force exerted on a bicycle–rider combination.

In addition, the end-of-chapter problems have been grouped together by topic. This feature
makes it easier for the instructor to select and assign problems that pertain to the specific area under
study. It will also be easier for the students to review specific portions of the text by solving the
pertinent problems.

Computer and design problems are also included at the end of each of the first eight chapters.
The computer problems are formulated so that the student can use a spreadsheet or any of the
traditional programming languages to solve them. The design problems are open-ended and require
the greater part of the semester to complete. Each design is set up to be completed by a group of
student-engineers working together.

In adding new material, I have tried to achieve a thorough and comprehensible presentation of
fluid mechanics from a practical viewpoint, without producing an encyclopedic and therefore
inaccessible volume.

Learning is enhanced and strengthened when we use equations to mathematically model
phenomena that we see and interact with every day. In all chapters, therefore, a strong emphasis
is placed on solving practical problems. This approach makes learning a visual experience and
provides the students with an introduction to the types of problems they are likely to encounter in
practice.

The text has been used successfully in three different courses: a first course in fluid mechanics
covering Chapters 1 through 6; an intermediate course in fluid mechanics covering Chapters 7, 8,
10, and 11; and a final course in turbomachinery covering Chapter 9, supplemented with informa-
tion from other sources.

Regardless of how many times a manuscript is checked, the occasional mistake does seem to
slip past. The author invites readers to report any errors to the publisher, so that misconceptions are
not taught as truths. The author also invites readers’ comments, which will be gratefully accepted as
advice on how to improve the text.

xiv Preface
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Introduction to Fluid Mechanics
Other texts by William S. Janna:

Engineering Heat Transfer, 2nd edition, CRC Press, Boca Raton, FL, 2000.

Most of the texts on heat transfer have focused on the mathematics of the subject, typically at an
advanced level. Engineers need a reference that provides a strong, practical foundation in heat
transfer that emphasizes real-world problems and helps develop problem-solving skills.

The second edition of Engineering Heat Transfer fulfills that need. This book emphasizes
effective, accurate modeling of heat transfer problems. It contains several real-world examples to
amplify theory and to show how to use the derived equations to model physical problems.
Confidence-building exercises begin with easy problems and progress to more difficult ones.
Problem-solving skills are developed methodically and thoroughly.

The text is concise and user-friendly. It covers the topics of conduction, convection, and
radiation heat transfer in a manner that does not overwhelm the reader. It contains a multitude of
drawings, graphs, and figures to clearly convey information that is critical to envisioning the
modeling of problems in an abstract study like heat transfer.

The text is uniquely suited to the actual practice of engineering.

Design of Fluid Thermal Systems, 2nd edition, PWS Publishing Co., Boston, MA, 1998.

The course for which this book is intended is a capstone course in energy systems or thermal
sciences that corresponds to the machine design course in mechanical systems. The text is divided
into two major sections. The first is on piping systems, blended with the economics of pipe size
selection and the sizing of pumps for piping systems. The second is on heat exchangers, or, more
generally, devices available for the exchange of heat between two process streams.

‘‘Show and Tell’’ exercises are provided in this text; these require students to provide brief
presentations on various topics (e.g., various types of valves that are commonly used, venturi
meters, and pump impellers).

The text also contains 51 project descriptions. A student group can select one of these design
projects and devote the entire semester to finishing it.

Project management methods are described and students are taught how to complete task
planning sheets to keep track of the progress made on the designs. Project report writing is also
discussed, and a suggested format is provided.

When a student completes the course material, he=she will have mastered some practical design
skills. For example, a student will acquire the ability to size a pipeline to meet least annual cost
criteria, to select a pump and ensure that cavitation is avoided, and to select and size a heat
exchanger to provide a required fluid outlet temperature or a heat transfer rate. The student will
also gain the experience of working in a group and in observing the effective planning and
management of project design activities.

The text is comprehensible and gives much practical information on design in the fluid thermal
systems area. It relates industrial practice to fundamental engineering concepts in a capstone design
experience.
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1 Fundamental Concepts

Fluid mechanics is the branch of engineering that deals with the study of fluids— both liquids and
gases. Such a study is important because of the prevalence of fluids and our dependence on them.
The air we breathe, the water transported through pipes, and the blood in our veins are examples
of common fluids. Further, fluids in motion are potential sources of energy that can be converted
into useful work—for example, by a waterwheel or a windmill. Clearly, fluids are important, and a
study of them is essential to the engineer. The objectives of this chapter are to define a fluid, to
describe the unit systems used in the chapter, to discuss common properties of fluids, to establish
features that distinguish liquids from gases, and to present the concept of a continuum.

1.1 DEFINITION OF A FLUID

A fluid is a substance that deforms continuously under the action of an applied shear stress. This
definition can be easily illustrated if a fluid is compared to a solid. Recall from strength of materials
how a solid material deforms when a shear stress is applied. Figure 1.1 shows a planar element Dx
by Dy that is acted upon by shear stress t. The element is fixed at its base and will deflect a
finite amount until an equilibrium position is reached. The final position depends on the magnitude
of the shear stress.
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Consider next a fluid-filled space formed by two horizontal parallel plates that are a distance Dy
apart (Figure 1.2). The upper plate has an area A in contact with the fluid. The upper plate is moved
to the right when pulled with a force F; the lower plate is stationary. The applied shear stress then is
t¼F=A. As soon as the plate is pulled, it continues to move but, unlike the solid, never reaches a
final equilibrium position. The fluid deforms continuously.

1.2 DIMENSIONS AND UNITS

In this text, we use two unit systems: the British gravitational system and the international system
(SI). Whatever the unit system, dimensions can be considered as either fundamental or derived. In
the British system, the fundamental dimensions are length, time, and force. The units for each
dimension are given in the following table:

British Gravitational System
Dimension Abbreviation Unit

Length L foot (ft)
Time T second (s)
Force F pound-force (lbf)

Δx Δx

Δy

ε

FIGURE 1.1 Deformation of a planar element.

Fluid

FA

Δy

FIGURE 1.2 A fluid acted upon by an applied shear stress.
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Mass is a derived dimension with units of slug and defined in terms of the primary dimensions as

1 slug ¼ 1
lbf � s2

ft
(1:1)

Converting from the unit of mass to the unit of force is readily accomplished because the slug is
defined in terms of the lbf (pound-force).

Example 1.1

An individual weighs 150 lbf.

a. What is the person’s mass at a location where the acceleration due to gravity is 32.2 ft=s2?
b. On the moon, the acceleration due to gravity is one-sixth of that on earth. What is the weight of

this person on the moon?

SOLUTION

a. Applying Newton’s law, we write

F ¼ ma

Substituting gives

150 lbf ¼ m(32:2 ft=s2)

Solving for mass, we obtain

m ¼ 150 lbf

32:2 ft=s2
¼ 4:66 lbf � s2=ft

or

m ¼ 4:66 slug

b. The mass is the same on the moon as on the earth. Again we apply Newton’s law,

F ¼ ma

where m¼ 4.66 slug and the acceleration due to gravity is

a ¼ 1
6
32:2 ft=s2 ¼ 5:37 ft=s2

Substituting, the weight on the moon becomes

F ¼ 4:66 slug (5:37 ft=s2)

or

F ¼ 25:0 lbf

Fundamental Concepts 3



The second unit system we use is the international system (SI). In the SI system, there are three
fundamental dimensions, as shown in the following table:

SI Unit System
Dimension Abbreviation Unit

Mass M kilogram (kg)
Length L meter (m)
Time T second (s)

In this system, force is a derived dimension given in newtons (abbreviated N). The newton is
defined in terms of the other units as

1 N ¼ 1
kg �m
s2

(1:2)

As with the British gravitational system, force and mass units are defined in terms of one another.
Conversion is thus a relatively simple task.

Example 1.2

a. What is the weight of 1 m3 of water on earth’s surface if the water has a mass of 1 000 kg?
b. What is its weight on Mars, where the acceleration due to gravity is about two-fifths that

on Earth?

SOLUTION

a. We use Newton’s law,

F ¼ ma

where: m¼ 1 000 kg
a¼ 9.81 m=s2

We then have

F ¼ 1 000 kg
9:81 m

s2
¼ 9 810 kg �m=s2

or

F ¼ 9 810 N

b. On Mars, a ¼ 2
5 (9:81) ¼ 3:92 m=s2 and m¼ 1 000 kg. Hence, we obtain

F ¼ 1 000 kg (3:92) m=s2 ¼ 3 920 kg �m=s2

or

F ¼ 3 920 N

4 Introduction to Fluid Mechanics



Certain conventions are followed in using SI. For instance, in the preceding example, four-digit
numbers were written with a space where one might normally place a comma. Other conventions
and definitions will be pointed out as we encounter them.

It is permissible in SI to use prefixes with the units for convenience. Table A.1 gives a complete
listing of the names of multiples and submultiples of SI units. As an example of the usage of
prefixes, consider the answer to Example 1.2(b):

F ¼ 3 920 N ¼ 3:920 kN

where, by definition, 103 is a factor by which the unit is multiplied and is represented by the
lowercase letter k.

Mention has been made of derived dimensions. An example is area A, which has dimensions of
L2—units of square feet in the English system and square meters in SI. In general, all derived
dimensions are made up of fundamental dimensions.

For purposes of illustration, let us briefly examine the English engineering system of units. In
this system, mass, length, time, and force are fundamental dimensions with units of pound-mass,
foot, second, and pound-force, respectively (see the following table):

English Engineering System
Dimension Abbreviation Unit

Mass M pound-mass (lbm)
Length L foot (ft)

Time T second (s)
Force F pound-force (lbf)

These units are related by Newton’s law, written as a proportionality, that force is proportional to the
product of mass and acceleration:

F / ma

By introducing a constant of proportionality K, we obtain

F ¼ Kma

Next let us define 1 lbf as the force required to accelerate a mass of 1 lbm at a rate of 32.2 ft=s2.
By substitution into the previous equation, we get

1 lbf ¼ K(1 lbm)(32:2 ft=s2)

Solving for the reciprocal of the constant yields

gc ¼ 1
K

¼ 32:2 lbm � ft=lbf � s2 (1:3)

where gc is a constant that arises in equations in the English system to make them dimensionally
correct. Thus, Newton’s law in the English system is written as

F ¼ ma

gc
(1:4)
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Remember that 1=gc¼K and K was introduced as a proportionality constant; gc is not the
acceleration due to gravity. When one is using the British gravitational system or the SI system with
equations of fluid mechanics, the conversion factor gc is not necessary, nor is it used. The advantage
of working in the English engineering system is that the pound-mass and the pound-force are equal
numerically at locations where the acceleration due to gravity g is 32.2 ft=s2. In other words, an
object having a mass of 10 lbm will weigh 10 lbf where the acceleration due to gravity is 32.2 ft=s2.
The main disadvantage of using the English engineering system is that the equations of fluid
mechanics are correctly written with gc appearing where appropriate. This usage can be a source
of confusion to the student. In the British gravitational and SI unit systems, gc is not necessary
because its effect is already accounted for by the way mass and force are related. For reference
purposes, it is useful to note that

32:174 lbm ¼ 1 slug (1:5)

Other unit systems that have been developed are the British absolute and the CGS absolute. The
dimensions and units of each are given in Table 1.1 along with those of the British gravitational, SI,
and English engineering systems. Note that only in the English engineering system are both force
and mass defined as fundamental dimensions. Thus, we must use the conversion factor gc for
converting mass units to force units and vice versa when working with the English engineering
system. The other systems directly define these two variables in terms of each other.

Solving problems in fluid mechanics often requires us to convert from one set of units to
another. For easing this burden, a set of conversion tables appears as Table A.2. The listing is
alphabetical by physical quantity; factors are given as multipliers to change other units into SI units.

There is a controversy regarding the terms weight and weighing. When a substance is
weighed, the result can be expressed as a force or as a mass. It is common to hear of something
weighing 10 N. There are proponents of this type of reporting as well as proponents of the
alternative—something weighing 10 kg. In this section, we shall take no formal stand; but to
avoid confusion, we will arbitrarily interpret the act of weighing to produce a force and give the
result with an accompanying value for gravity. When gravity is not noted, we assume 32.2 ft=s2

(9.81 m=s2).
The units for angular measurement are the radian (rad) or the degree (8). There are 2p radians

per 3608. It is important to remember that the radian is a dimensionless unit but the degree is not.
Rotational speed is correctly specified in terms of radians per second (rad=s) or, alternatively, in
units of revolutions per unit time. Here again, radians are dimensionless but revolutions are not.
There are 2p radians per revolution.

TABLE 1.1
Conventional Systems of Units

Dimension
British

Gravitational SI
English

Engineering
British

Absolute
CGS

Absolute

Mass (fundamental) kg lbm lbm g
Force (fundamental) lbf lbf

Mass (derived) slug
Force (derived) N poundal dyne
Length ft m ft ft cm

Time s s s s s
gc (conversion factor) — — 32:2

lbm � ft
lbf � s2 — —
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The unit for temperature (t) measurement in the British gravitational system is the degree
Rankine (8R). The Rankine scale is an absolute temperature scale. The degree Fahrenheit (8F) is
commonly used and is related to the degree Rankine by

t(�R) ¼ t(�F)þ 460 (1:6)

In SI units, the unit for absolute temperature measurement is the degree Kelvin (K, correctly
written without the 8 symbol). Also used is the degree Celsius (8C). These two temperature scales
are related by

t(K) ¼ t(�C)þ 273 (1:7)

1.3 PROPERTIES OF FLUIDS

The equations of fluid mechanics allow us to predict the behavior of fluids in various flow situations.
To use the equations, however, there must be information regarding properties. The properties we
discuss in this chapter include viscosity, pressure, density, kinematic viscosity, surface tension,
specific heat, internal energy, enthalpy, and compressibility.

1.3.1 VISCOSITY

A fluid has many properties. One important property is viscosity, which is a measure of the resistance
the fluid has to an externally applied shear stress. This property arises from the definition of a fluid,
so we will examine it in that regard. Recall from Section 1.1 that a fluid is defined as a substance
that deforms continuously under the action of an applied shear stress. Consider again a fluid-filled
space formed by two horizontal parallel plates (Figure 1.3). The upper plate has an area A in contact
with the fluid and is pulled to the right with a force F1 at a velocity V1. If the velocity at each point
within the fluid could be measured, a velocity distribution like that illustrated in Figure 1.3 would
result. The fluid velocity at the moving plate is V1 because the fluid adheres to that surface. This
phenomenon is called the nonslip condition. At the bottom, the velocity is zero with respect to the
boundary, owing again to the nonslip condition. The slope of the velocity distribution is dV1=dy.

If this experiment is repeated with F2 as the force, a different slope or strain rate results: dV2=dy. In
general, to each applied force there corresponds only one shear stress and only one strain rate. If data
from a series of these experiments were plotted as t versus dV=dy, Figure 1.4 would result for a fluid
such as water. The points lie on a straight line that passes through the origin. The slope of the resulting
line in Figure 1.4 is the viscosity of the fluid because it is a measure of the fluid’s resistance to shear.
In other words, viscosity indicates how a fluid will react (dV=dy) under the action of an external
shear stress (t).

A F

Slope = dV1/dy

V1

y

x

Δy

FIGURE 1.3 Shear stress applied to a fluid.
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The plot of Figure 1.4 is a straight line that passes through the origin. This result is characteristic
of a Newtonian fluid, but there are other types of fluids called non-Newtonian fluids. A graph of t
versus dV=dy, called a rheological diagram, is shown in Figure 1.5 for several types of fluids.
Newtonian fluids follow Newton’s law of viscosity and are represented by the equation

t ¼ m
dV

dy
(1:8)

where: t¼ the applied shear stress in dimensions of F=L2 (lbf=ft2 or N=m2)
m¼ the absolute or dynamic viscosity of the fluid in dimensions of F � T=L2 (lbf � s=ft2
or N � s=m2)

dV=dy¼ the strain rate in dimensions of 1=T (rad=s)

dV/dy
dV1/dy dV2/dy dV3/dy

0
0

1

2

3

=
Δ
dV
dy

Δ )(

FIGURE 1.4 A plot of t versus dV=dy (a rheological diagram) for Newtonian fluids.

Bingham
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  )
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FIGURE 1.5 A rheological diagram for Newtonian and non-Newtonian time-independent fluids.
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Examples of Newtonian fluids are water, oil, and air. If a fluid cannot be described by
Equation 1.8, it is called a non-Newtonian fluid. On the basis of their behavior, these fluids are
divided into three categories: time-independent, time-dependent, and viscoelastic.

1.3.1.1 Time-Independent Fluids

Wet beach sand and other water solutions containing a high concentration of powder are examples
of dilatant fluids (Figure 1.5). These fluids exhibit an increase in viscosity with increasing shear
stress. A power law equation (called the Ostwald–deWaele equation) usually gives an adequate
description:

t ¼ K
dV

dy

� �n

(n > 1) (1:9)

where: K is called a consistency index with dimensions of (F � Tn)=L2 (lbf � sn=ft2 or N � sn=m2)
n is a flow behavior index

Greases,mayonnaise, and starch suspensions are examples of pseudoplasticfluids (see Figure 1.5).
These fluids exhibit a decrease in viscosity with increasing shear stress. Again a power law equation
applies:

t ¼ K
dV

dy

� �n

(n < 1) (1:10)

Chocolate mixtures, drilling muds, greases, paint, paper pulp, soap, toothpaste, and sewage
sludge are examples of Bingham plastic fluids (see Figure 1.5). These fluids behave as solids until
an initial yield stress t0 is exceeded. Beyond t0, Bingham plastics behave like Newtonian fluids.
The descriptive equation is

t ¼ t0 þ m0
dV

dy
(1:11)

1.3.1.2 Time-Dependent Fluids

A gypsum suspension is an example of a rheopectic fluid. A shear stress that increases with time
gives the rheopectic fluid a constant strain rate. In Figure 1.3, t1 would have to increase with time to
maintain a constant strain rate dV1=dy.

Fast-drying paints, some liquid foods, and shortening are common examples of thixotropic
fluids. These fluids behave in a manner opposite to rheopectic fluids. A shear stress that decreases
with time gives a thixotropic fluid a constant strain rate. In Figure 1.4, t1 would have to decrease
with time to maintain dV1=dy.

1.3.1.3 Viscoelastic Fluids

Flour dough is an example of a viscoelastic fluid. Such fluids show both elastic and viscous
properties. They partly recover elastically from deformations caused during the flow.

Most common fluids follow Newton’s law of viscosity, however, and we will deal primarily
with them in this text. The preceding paragraphs simply illustrate that many types of fluids exist.
The absolute or dynamic viscosity of various Newtonian fluids appears in the property tables in the
appendix—Table A.3 for air, Table A.4 for water, Table A.5 for common liquids, and Table A.6 for
common gases.
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Example 1.3

A fluid is placed in the area between two parallel plates. The upper plate is movable and connected to a
weight by a cable as shown in Figure 1.6. Calculate the velocity of the plate for three cases.

a. Assume the fluid to be linseed oil (Newtonian)
b. Assume the fluid to be water
c. Assume the fluid to be grease having t0¼ 4 N=m2 and m0¼ 0.004 N � s=m2

In all cases, take m¼ 0.001 kg, Dy¼ 5 mm, g¼ 9.81 m=s2, and the area of contact A¼ 0.5 m2. Assume
that steady state is achieved.

SOLUTION

a. From Table A.5, m for linseed oil is 0.033 1 N � s=m2. The force applied is
mg¼ 0.001 kg (9.81 m=s2)¼ 0.009 8 N, and the shear stress is t¼ 0.009 8 N=0.5 m2 or
t¼ 0.02 N=m2. By definition,

t ¼ m
dV

dy

or

t ¼ m
DV

Dy

Now at y¼ 0 we have V¼ 0, and at y¼Dy¼ 0.005 m we have the velocity of interest. By
substitution,

0:02 N=m2 ¼ 0:033 1 N � s=m2 V

0:005 m

and

V ¼ 0:003 02 m=s ¼ 3 mm=s

b. From Table A.5, m for water is 0.89� 10�3 N � s=m2. Applying Newton’s law of viscosity,

t ¼ m
dV

dy

m

y

x

Δy

FIGURE 1.6 Sketch for Example 1.3.
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we get

0:02 N=m2 ¼ 0:89� 10�3 N � s=m2 V

0:005 m

or

V ¼ 0:11 m=s

c. The applied shear stress is 0.02 N=m2, and the initial shear stress of the grease is 4 N=m2. The
velocity of the plate is, therefore, V¼ 0 m=s. The plate will not move unless the applied shear
stress exceeds 4 N=m2.

Example 1.4

The first two columns of Table 1.2 shows actual viscosity data obtained on Jif1 creamy peanut butter.
The data were obtained with TA Rheometer, which consists of a flat stationary surface and a rotating
disk. A tablespoon of the liquid of interest is placed on the flat surface which is roughly 3 in. in diameter.
The flat surface is then raised until the fluid touches the disk. The apparatus begins rotating the disk and
simultaneously measuring the rotational speed and torque required. The torque is related directly to the
applied shear stress (column 1 of the table), and the rotational speed is directly related to the strain rate
(column 2). Assuming a power law relationship, determine the equation that best describes the data and
the type of fluid tested.

SOLUTION

The data can be analyzed by hand with a calculator using equations for a least squares analysis.
Alternatively, the data can be entered onto a spreadsheet and a trend line equation is provided. The
latter of these two methods yields the following power law equation:

t ¼ K
dV

dy

� �n

¼ 395:9
dV

dy

� �0:1163

A graph of the data is shown in Figure 1.7a. Comparing this graph with that of Figure 1.5, we conclude
that the peanut butter is a pseudoplastic fluid.

The third column of Table 1.2 shows the apparent viscosity of the peanut butter, and is merely the
numbers in column 1 divided by those in column 2. A graph of the apparent viscosity versus strain rate

TABLE 1.2
Viscosity Data for JifW Creamy Peanut Butter

t (Pa) dV=dt (1=s) m (Pa � s)
268.4 0.06065 4426

310.5 0.5699 544.8
352.6 1.535 229.8
394.7 2.609 151.3

436.8 3.775 115.7
478.9 5.555 86.21
521.0 12.28 42.43

563.2 52.08 10.81
605.3 136.9 4.422
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for the last six data points is given in Figure 1.7b. We see that as the strain rate increases, the apparent
viscosity decreases, and so the peanut butter is referred to as a shear thinning fluid. That is, as shear
stress increases, the strain rate increases, and the apparent viscosity decreases.

1.3.2 PRESSURE

Pressure is defined as a normal force per unit area existing in the fluid. Pressure (p) has dimensions
F=L2 (lbf=ft2 or N=m2) and is treated in detail in Chapter 2. Fluids, whether at rest or moving, exhibit
some type of pressure variation—either with height or with horizontal distance. In closed-conduit
flow, such as flow in pipes, differences in pressure from beginning to end of the conduit maintain the
flow. Pressure forces are significant in this regard.

1.3.3 DENSITY

The density of a fluid is its mass per unit volume, represented by the letter r. If the mass of 1 ft3 of
water is 1.94 slug, its density is r¼ 1.94 slug=ft3. If the mass of 1 m3 of liquid is 820 kg, its density
is r¼ 820 kg=m3. Density has dimensions of M=L3. The density of various substances is given in
Tables A.3 and A.6.

One quantity of importance related to density is specific weight. Whereas density is mass per
unit volume, specific weight is weight per unit volume. Specific weight is related to density by

SW ¼ rg (1:12)

with dimension F=L3 (lbf=ft3 or N=m3).
Another useful quantity is specific gravity, which is also related to density of a substance. The

specific gravity of a substance is the ratio of its density to the density of water at 48C:

s ¼ r

rw
(rw ¼ density of water) (1:13)

Values of specific gravity of various substances appear in the property tables of the appendix: Table
A.4 for water at various temperatures, Tables A.5 for common liquids, Table A.7 for various solids,
and Table A.8 for various metals and alloys. For our purposes here, we will take rw to be
1.94 slug=ft3 or 1 000 kg=m3.
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FIGURE 1.7 Graph of the viscosity data for Jif1 creamy peanut butter.
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1.3.4 KINEMATIC VISCOSITY

Absolute or dynamic viscosity m has already been discussed. In many equations, however, the ratio
of absolute viscosity to density often appears. This ratio is given the name of kinematic viscosity n:

n ¼ m

r
(1:14)

From Table A.5, for example, the density of ethylene glycol is 1 100 kg=m3, whereas the dynamic
viscosity is 16.2� 10�3 N � s=m2. Hence, the kinematic viscosity is

n ¼ 16:2� 10�3 N � s=m2

1 100 kg=m3 ¼ 1:48� 10�5 m2=s

The dimensions of kinematic viscosity are L2=T (ft2=s or m2=s).
It is important to note that the viscosity and density of fluids both change with temperature. This

can easily be seen in Table A.3 for air and in Table A.4 for water. Table A.3, for example, shows
that over the range �23.158C to 146.858C, density changes from 1.413 to 0.840 kg=m3. Viscosity
varies from 15.99 to 23.66 N � s=m2 over this same temperature range.

1.3.5 SURFACE TENSION

Surface tension is a measure of the energy required to reach below the surface of a liquid bulk and
bring molecules to the surface to form a new area. Thus, surface tension arises from molecular
considerations and has meaning only for liquid–gas or liquid–vapor interfaces. In the liquid bulk
sketched in Figure 1.8, compare molecules located at point A well below the surface to those at point
B near the surface. A fluid particle at A is drawn uniformly in all directions to its neighboring
particles. A particle at B is drawn more strongly to liquid particles in its vicinity than to those in the
vapor above the surface. Consequently, a surface tension exists; in water, this surface tension is
strong enough to support the weight of a needle. Figure 1.9 further illustrates this phenomenon as a
platinum–iridium ring is being moved through a liquid–gas interface.

The previous discussion concerned the surface tension at a liquid–gas interface, where the
forces of attraction were cohesive forces. If the liquid is in contact with a solid, however, adhesive
forces must be considered as well. Some fluids, such as water, contain molecules that are drawn
more closely to glass than to each other. This effect is illustrated in Figure 1.10a, which depicts
water in a glass tube. Adhesive forces (water to glass) are greater than cohesive forces (water to

B

A

Liquid

Vapor

FIGURE 1.8 An illustration of differences in molecular attraction between two particles at separate locations.
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water). Mercury exhibits the opposite effect, as shown in Figure 1.10b. Mercury-to-mercury forces
are greater than those between mercury and glass. The resulting curved surface, called a meniscus,
illustrates this phenomenon. The surface tension of various liquids is given in Tables A.5 and A.9.

As stated earlier, surface tension is the energy required to bring molecules to the surface to form a
new area; thus, the dimension of surface tension is energy=area by definition: F � L=L2¼F=L (lbf=ft
or N=m). Surface tension, represented by the letter s, is important in studies of droplets and jet flows.
In the majority of problems we will investigate, surface tension forces are negligible in comparison to
pressure, gravity, and viscous forces.

Example 1.5

a. Develop an expression to calculate the pressure inside a droplet of liquid.
b. Determine the pressure inside of a 0.01-cm-diameter water droplet exposed to atmospheric

pressure (101 300 N=m2).

SOLUTION

a. A sketch of a droplet in equilibrium is shown in Figure 1.11. The pressure difference from
inside to outside tends to expand the droplet. The pressure force is constrained by the surface

(a) (b)

FIGURE 1.9 An illustration of surface tension. A platinum–iridium ring (ring circumference is 6 cm, wire
diameter is 0.018 cm) (a) being pulled upward through the surface of a tap water–liquid soap mixture and
(b) being pushed downward through the surface of liquid mercury of 90% purity.

(a) Water (b) Mercury

FIGURE 1.10 Capillary action in a glass tube showing a water meniscus and a mercury meniscus.
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tension. The bursting force is pressure difference times area, and this force is balanced by the
surface tension force. A force balance on the droplet of Figure 1.11 gives

Pressure
difference

� �
� Cross-sectional

area

� �
¼ Surface

tension

� �
� Surface

length

� �

or

(pi � po)pR
2 ¼ s(2pR)

Solving, we get

pi � po ¼ 2s
R

b. From Table A.5 for water, we read

s ¼ 71:97� 10�3 N=m

The pressure outside the droplet is po¼ 101 300 N=m2, and the radius is R¼ 0.01=2¼ 0.005 cm¼
0.000 05 m. The pressure inside the droplet is thus found as

pi ¼ po þ 2s
R

¼ 101 300 N=m2 þ 2(71:97� 10�3) N=m
0:000 05 m

or

pi ¼ 104 200 N=m2

Example 1.6

A capillary tube is one that has a very small inside diameter. When a capillary tube is immersed slightly
in a liquid, the liquid will rise within the tube to a height that is proportional to its surface tension. This
phenomenon is referred to as capillary action. Figure 1.12a depicts a glass capillary tube slightly
immersed in water. As shown, the water rises by an amount h within the tube, and the angle between the
meniscus and glass tube is u. Perform a force balance on the system and develop a relationship between
the capillary rise h and surface tension s.

pi

po

FIGURE 1.11 Sketch for Example 1.5.
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SOLUTION

Figure 1.12b shows a cross section of the liquid column of height h and diameter 2R. Also shown are the
forces that act—the weight of W of the column of liquid and the surface tension force T. The weight is
found with

W ¼ mg ¼ m

V�V�g

where m=V� is the density and volume is given by V� ¼ pR2h. Thus,

W ¼ r(pR2h)g

The force due to surface tension acts at the circumference where the liquid touches the glass wall. The
surface tension force is, therefore, the product of surface tension and circumference:

T ¼ s(2pR)

Summing forces in the vertical direction shows that the vertical component of the surface tension force
must equal the weight of the liquid column:

W ¼ T cos u

or

rpR2hg ¼ 2pRs( cos u)

Solving for capillary height gives

h ¼ 2s
rRg

cos u

1.3.6 SPECIFIC HEAT

The specific heat of a substance is the heat required to raise a unit mass of the substance by 18. The
dimension of specific heat is energy=(mass � temperature): F � L=(M � t).* The process by which the

* Note that when the denominator of a unit is written in shilling style (with a slash, =), to avoid confusion parentheses are used
if a product is involved.
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(a) (b)

FIGURE 1.12 Capillary tube submerged in liquid and the resultant forces.
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heat is added also makes a difference, particularly for a gas. The specific heat for a gas that
undergoes a process occurring at constant pressure involves a different specific heat than that for
a constant volume process. For example, the specific heat at constant pressure cp for carbon dioxide
is 0.205 Btu=(lbm � 8R), or 876 J=(kg � K), and the specific heat at constant volume cv is 0.158
Btu=(lbm � 8R), or 674 J=(kg � K). (Table A.6 gives the specific heat of various gases.) Also of
importance when dealing with these properties is the ratio of specific heats, defined as

g ¼ cp
cy

For carbon dioxide, the ratio of specific heats g is 1.30. For air g¼ 1.4.
The Btu (British thermal unit) is the unit of energy measurement in the English engineering

system. One Btu is defined as the energy required to raise the temperature of 1 lbm of water by 18F.
However, because we are using the British gravitational system, the units we will encounter for
specific heat are Btu=(slug � 8R). Although both specific heats vary with temperature for real
substances, they are in many cases assumed to be constant to simplify calculations.

Example 1.7

Suppose that 3 kg of air is placed in a cylinder-piston arrangement, as in Figure 1.13. The piston is
weightless, is free to move vertically without friction, and provides a perfect seal.

a. How much heat must be added to increase the temperature of the air by 10 K?
b. How much heat must be added for the same temperature increase if the piston is constrained?

SOLUTION

a. As heat is added, the air expands and forces the piston to move upward. The expansion
therefore takes place at constant pressure if we assume a frictionless piston. From the definition
of specific heat at constant pressure,

~Q ¼ mcp(T2 � T1)

Piston

Air

Heat

FIGURE 1.13 Sketch for Example 1.7.
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where: ~Q¼ heat added
the specific heat is assumed to be constant
T2� T1 is given as 10 K

The specific heat of air is 1 005 J=(kg � K) from Table A.6. By substitution,

~Q ¼ 3 kg[1 005 J=(kg � K)](10 K)

Solving, we get

~Q ¼ 30 150 J ¼ 30:2 kJ

b. With the piston held in place, the heat addition occurs at constant volume. Assuming constant
specific heat, we have by definition

~Q ¼ mcy(T2 � T1)

The specific heat at constant volume cy is not found specifically in Table A.6 but can be
determined from the data available. Table A.6 gives for air,

cp ¼ 1 005 J=(kg � K)

and

g ¼ cp
cy

¼ 1:4

Thus, the specific heat we are seeking is

cy ¼ cp
1:4

¼ 1 005
1:4

¼ 718 J=(kg � K)

After substitution, we get

~Q ¼ 3 kg[718 J=(kg � K)](10 K)

or

~Q ¼ 21 540 J ¼ 21:5 kJ

More heat is required for the constant-pressure process because some of the added heat goes into
work done in raising the piston. In the constant-volume process, by contrast, added heat goes
directly into raising the temperature of the gas.

1.3.7 INTERNAL ENERGY

Internal energy is the energy associated with the motion of the molecules of a substance. Consider
a quantity of gas. The gas can have three types of energy: energy of position (potential energy),
energy of translation (kinetic energy), and energy of molecular motion (internal energy). In the
preceding example, the heat added at constant volume went into internal energy of the oxygen.
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The added heat did not increase the potential or kinetic energies but instead affected the motion of
the molecules. This effect is manifested as an increase in temperature. In fact, for a perfect gas with
constant specific heats, it can be shown that

Du ¼ cyDT (1:15)

where Du is a change in internal energy per unit mass with dimensions of energy=mass (F � L=M).

1.3.8 ENTHALPY

A quantity that appears often in equations is uþ p=r; this quantity is given the special name
enthalpy, h. The ratio of p=r is often referred to as flow work. In Example 1.7, the air was heated
at constant pressure. The added heat went into increasing the internal energy of the gas and work
done by raising the piston. Again for the case of a perfect gas with constant specific heats, it can be
shown that

Dh ¼ cpDT (1:16)

Enthalpy, like internal energy, has the dimension of energy=mass (F � L=M).

Example 1.8

Two slugs of air at 14.7 lbf=in.2 and 708F are placed in a constant-volume container. Heat is added until
the final temperature is 1008F. Calculate the change in internal energy for the air.

SOLUTION

Under the pressure and temperature conditions stated, the air can be assumed to have constant
specific heats. From Table A.6 for air cp¼ 7.72 Btu=slug � 8R and cp=cy¼ 1.4. Therefore,
cy¼ 7.72=1.4¼ 5.51 Btu=slug � 8R. The internal energy change is found with Equation 1.15:

Du ¼ cyDT ¼ 5:51(100� 70)

or

Du ¼ 165 Btu=slug

Note that the units for specific heat contain 8R in the denominator, but the air temperatures are given
in 8F. The temperature difference of the air, however, is still 408, whether or not the temperatures are first
converted to 8R. A 18F temperature difference equals a 18R temperature difference. Likewise, a 1 K
temperature difference equals a 18C temperature difference.

1.3.9 COMPRESSIBILITY FACTOR=BULK MODULUS

Consider water at atmospheric pressure, 101.3 kN=m2, and at room temperature. The density of the
water if measured would be about 1 000 kg=m3. Suppose that the pressure exerted on the water is
increased by a factor of 100 to 10 130 kN=m2. The change in density, if measured, will be found to
be less than 1% of the initial value, although the pressure exerted has been greatly increased. The
property that describes this behavior is called the compressibility factor:

b ¼ � 1
V�

@V�
@p

� �
T

(1:17)
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where: V�¼ volume
@V�=@p describes the change in volume with respect to pressure
the subscript notation indicates that the process is to occur at constant-temperature
conditions

The reciprocal of the compressibility factor is the isothermal bulk modulus:

k ¼ �V� @p

@V�
� �

T

(1:18)

which can be written in difference form as

k ¼ �V� Dp

DV�
� �

¼ � Dp

(DV�=V�)
(1:19)

The dimensions of the change in volume DV� and the volume V� are the same, so the denominator of
the above equation is dimensionless. The isothermal bulk modulus k therefore has the same units as
pressure.

The isothermal bulk modulus can be measured, but it is usually more convenient to calculate it
using data on the velocity of sound in the medium. The sonic velocity in a liquid (or a solid) is
related to the isothermal bulk modulus and the density by

a ¼
ffiffiffi
k

r

s
(1:20)

where a is the sonic velocity in the medium. Sonic velocity of various liquids is provided in Table A.5.

Example 1.9

Determine the change in pressure required to decrease the volume of liquid acetone by 1% from its value
at room temperature and pressure.

SOLUTION

From Table A.5, we read

r ¼ 0:787(1 000) kg=m3

a ¼ 1 174 m=s

The isothermal bulk modulus is calculated as

k ¼ ra2 ¼ 0:787(1 000) kg=m3
h i

(1 174 m=s)2

or

k ¼ 1:085� 109 N=m2

The 1% decrease in volume means that �(DV�=V�) ¼ 0:01. Equation 1.19 is rearranged to solve for the
change in pressure:

Dp ¼ �k
DV�
V�

� �
¼ �1:085� 109(�0:01)
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Solving,

Dp ¼ 1:085� 107 N=m2

Thus acetone initially at atmospheric pressure (101.3 kN=m2) would have to experience a pressure
increase of 10 850 kN=m2 to change its volume by 1%. This represents a 100-fold pressure increase to
yield a negligible change in volume. All liquids typically behave in this way under the action of external
pressure changes. Consequently, we can consider liquids, in general, to be incompressible. Although
these calculations were made for volume changes, the conclusions apply to density changes as well
(r ¼ m=V�).

1.3.10 IDEAL GAS LAW

In the discussion of isothermal bulk modulus, a relationship was stated between changes in pressure
and changes in volume for liquids. For gases, we use an equation of state to obtain such a
relationship. Many gases under suitable conditions can be described by the ideal gas law:

pV� ¼ mRT

Using this equation, the density can be expressed as

r ¼ p

RT
¼ m

V� (1:21)

where: T¼ temperature in absolute units
R is the gas constant (values of which are given in Table A.6 for various gases)

The gas constant for any gas can be obtained by dividing the universal gas constant by the molecular
weight (called molecular mass in SI) of the gas. The universal gas constant is

�R ¼ 49,709 ft � lbf=(slugmol � R) ¼ 1545 ft � lbf=(lbmol � R)
¼ 8 312 N �m=(mol � K) (1:22)

(The molecular weight has units of slug=slugmol in the British gravitational system. In SI, the
molecular mass has units of kg=mol. The mass unit does not appear in the denominator.) The ideal
gas law closely approximates the behavior of most real gases at moderate pressures.

By way of comparison, let us calculate the percent change in density of a gas under a change
of pressure. Consider a volume of air under a pressure of 100 kN=m2 and again at a pressure of
500 kN=m2. Thus,

p1
p2

¼ 100
500

¼ 1
5

From the ideal gas law applied to both states, and assuming constant temperature,

r2
r1

¼ p2
p1

¼ 5

and the percent change in density is

r2 � r1
r1

� �
100 ¼ 400%

This result is in contrast to liquids, the density of which changes less than 1% for p2¼ 100p1.
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1.4 LIQUIDS AND GASES

Although liquids and gases are both fluids, there are significant differences between them. We have
already seen that liquids are incompressible, whereas gases are not. Another difference that is more
obvious is that a liquid retains its own volume but takes the shape of its container. A gas takes the
volume and the shape of its container. This difference is illustrated in Figure 1.14.

1.5 CONTINUUM

There are two possible mathematical approaches to the treatment of problems in fluid mechanics. In
the microscopic approach, fluid behavior is described by specifying motion of the individual
molecules. This is done traditionally using concepts from probability theory. In the macroscopic
approach, fluid behavior is described by specifying motion of small fluid volumes containing many
molecules. The macroscopic approach uses the average effect of many molecules and means that we
are treating the fluid as a continuous medium or a continuum. In this section, we use the continuum
approach throughout.

Now let us redefine pressure with regard to the concept of a continuum. Consider a fluid particle
made up of many molecules. We are interested in the average effects of these many molecules.
Pressure at a point in a continuum is defined as a time-averaged normal force exerted by molecules
on a unit surface. The area of the unit surface must be small, but large enough (compared to
intermolecular distances) to yield representative results. If the unit area were too small, it is possible
that no molecules would strike it. Thus a zero normal force would be obtained, and pressure at a
point in this case would have no significance. Mathematically, pressure at a point in a continuum is
defined as

p ¼ lim
A!A*

F

A

Here A* is a very small area not equal to zero but experiencing enough molecular collisions to be
representative of the fluid bulk; F is the time-averaged normal force exerted by the collisions.

In a similar fashion, we can redefine density with regard to the concept of a continuum. Density
is a mass per unit volume; mathematically,

r ¼ lim
V�!V�*

M

V�

Liquid Gas

FIGURE 1.14 An illustration of one difference between a liquid and a gas.
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where: V� is a volume that contains a mass M of fluid
V�* is a small volume not equal to zero but containing a large enough number of
molecules that it is representative of the fluid

If V�* were allowed to shrink to zero, it would contain no molecules and density would have no
significance.

To get an idea of how small V�* can be, consider a cube of air at room temperature and pressure
that is 0.01 mm on each side. The 0.01-mm dimension is smaller than most measuring instruments
and probes used in engineering, yet the cube contains 3� 1010 molecules. So the 0.01-mm
dimension is consistent with the continuum approach.

PROBLEMS

Dimensions and Units

1.1 Determine the following conversions:

a. The number of teaspoons per tablespoon
b. The number of milliliters per cup

1.2 At a location where g¼ 32.0 ft=s2, what weight does a mass of 6 slugs have?
1.3 An object has a mass of 46 kg and weighs 450 N on a spring scale. Determine the acceleration

due to gravity at this location.
1.4 A plastic milk container is labeled with the following information:

Net 128 fluid ounces (1 gal)(3:78 L)

Table A.2 lists the ounce, the gallon, and the liter as units for volume. If the specific gravity of
milk is 1.03, determine the mass of the milk in the container and express it in kilograms.

1.5 Soft drinks are available in what are advertised to be 2-L bottles. Previously, the same soft
drinks were available in 1=2-gal sizes. Could the manufacturers use the same container in both
cases? (Assume that the smaller container can take a 10% increase in liquid.)

1.6 On the earth’s surface, 1 ft3 of water weighs 62.4 lbf.

a. What is themass of 1 ft3 ofwater on the earthwhere the accelerationdue to gravity is 32.2 ft=s2?
b. What is the weight of 1 ft3 of water on the moon where the acceleration due to gravity is

one-sixth that on the earth?

1.7 What is the conversion factor between Btu=h and horsepower? Use the conversion factors
from Table A.2 to determine the answer.

1.8 What is the weight of 1 gal of water in pound-force and in newton?

Fluid Properties: Density

1.9 Graph the density of air as a function of temperature.
1.10 Water has a density of 1 000 kg=m3. What is its density in terms of each of the unit systems

listed in Table 1.1?
1.11 The earth may be considered as a sphere whose diameter is 8000mi and whose density is roughly

approximated to be 6 560 kg=m3.What is the mass of the earth in pounds-mass and in kilograms?
1.12 It is commonly known that there are 16 oz in 1 lb. However, Table A.2 lists the ounce as a unit

of volume for liquids. Consider a 1
2 lbf glass that weighs 1 lbf when filled with 8 oz of liquid.

Determine the liquid density in British gravitational units and in SI units. Also calculate the
specific weight in both unit systems.

1.13 What is the weight of 1 ft3 of carbon tetrachloride? Express the result in newtons.
1.14 What is the mass in kilograms of 5 ft3 of kerosene?
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Fluid Properties: Viscosity

1.15 In Example 1.3(c), what is the minimum mass required to move the upper plate?
1.16 If the mass in Example 1.3(c) is 0.25 kg, determine the plate velocity.
1.17 Referring to Figure 1.6, assume that the fluid in the space is turpentine. What weight is

required to move the plate at 5 cm=s?
1.18 Referring to Figure 1.6, it is known that a force of 0.89 N will move the upper plate to the right

at 12 cm=s. For an area of contact of 0.16 m2 and mercury in the space, determine Dy.
1.19 Referring to Figure 1.6, let the area of contact be 0.75 m2 and Dy be 1 cm. The fluid inside is

castor oil. Determine the velocity of the upper plate if the pulling force is due to a mass of 25 g.
1.20 Graph absolute and kinematic viscosity of air as a function of temperature.
1.21 A weightless plate is moving upward in a space as shown in Figure Pl.21. The plate has a

constant velocity of 2.5 mm=s, and kerosene is placed on both sides. The contact area for
either side is 2.5 m2. The plate is equidistant from the outer boundaries with Dy ¼ 1.2 cm.
Find the force F.

F

Δy Δy

FIGURE P1.21

1.22 Referring to Figure Pl.21, the plate is being pulled upward in a space filled with chloroform.
The plate velocity is 12 in.=s and Dy ¼ 0.05 in. The force is 2 lbf. Determine the area of
contact of each side of the plate.

1.23 In Figure Pl.23, the total space between stationary boundaries is 1 cm. Ethylene glycol is
placed on the left side and propylene glycol is placed on the right. When the infinite plate that
separates the liquids is pulled upward, it finds an equilibrium position. Determine the lateral
location of the plate if it has a thickness of 1 mm.

F

Δy2 Δy1

FIGURE P1.23
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1.24 Figure Pl.23 illustrates an infinite plate being pulled upward in a space filled with ethyl
alcohol on the right and an unknown fluid on the left. The plate is not equidistant from the
boundaries; in fact, Dy1¼ 2Dy2. Determine the viscosity of the unknown fluid.

1.25 What type of fluid is described by the following shear stress–strain rate data?

t (N=m2) 0.4 0.82 2.50 5.44 8.80

dV=dy (rad=s) 0 10 50 120 200

1.26 What type of fluid is described by the following shear stress–strain rate data?

t (N=m2) 0 0.005 8 0.008 9 0.010 7 0.011

dV=dy (rad=s) 0 25 50 75 100

1.27 What type of fluid has the following shear stress–strain rate relationship?

t (lbf=ft2) 0 4 9 14 19

dV=dy (rad=s) 0 12.5 25.0 37.5 50.0

1.28 Actual tests on vaseline yielded the following data:

t (N=m2) 0 200 600 1 000

dV=dy (1=s) 0 500 1 000 1 200

Graph the data and determine the fluid type.
1.29 Kraft1 mayonnaise was tested in the laboratory, and the following data were obtained. Is this

a Newtonian fluid, and is it a shear thinning fluid?

Shear Stress (Pa) Shear Rate (1=s)

130.4 11.39
174.2 92.15

195.2 172.8
211.7 253.4
225.8 334.1

235.2 414.8
243.4 495.4
250.9 576.2

257.3 656.8
263.6 737.5
269.6 818.1

274.6 898.8
279.6 979.5
284.7 1060
289.1 1141
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1.30 Honey was tested in the laboratory, and the following data were obtained. Is honey a
Newtonian fluid?

Shear Stress (Pa) Shear Rate (1=s)

63.9 4.832

127 10.37
190.1 15.88
253.2 22.29

316.3 28.73
379.4 34.59
442.5 40.64

505.6 46.11
568.7 53.15
631.8 59.01
694.9 64.96

758 70.97
821.1 77.24
884.2 83.08

1.31 Consider the act of spreading soft butter on bread with a knife. In essence, we have a
stationary surface (the bread), a moving surface (the knife), and a Newtonian fluid occupying
the space in between. The part of the knife in contact with the butter has dimension of
9 cm� 1.6 cm. The knife is moved across the bread at a rate of 5 cm=s. The average thickness
of the butter during the process is about 2 mm (a rough approximation).

a. Calculate the shear stress exerted on the butter if the force required to move the knife is
0.07 N.

b. Calculate the strain rate.
c. Calculate the absolute viscosity of the butter.

1.32 Figure Pl.32 shows a shaft 4 in. in diameter moving through a well-oiled sleeve that is 12 in.
long. The force required to move the shaft is 25 lbf, and the shaft velocity is 5 in.=s. The oil-
filled clearance between the shaft and sleeve is 0.005 in. Calculate the viscosity of the
lubricating oil (a Newtonian fluid).

Sleeve

25 lbf 4 in.

12 in.

5 in./s

0.005 in.
clearance

(filled  
with oil)

FIGURE P1.32

1.33 Mayonnaise is tested in the laboratory to obtain its rheological diagram. Two data points are

(A) t ¼ 4:63� 10�2 lbf=ft2 dV=dy ¼ 25 rad=s

(B) t ¼ 6:52� 10�2 lbf=ft2 dV=dy ¼ 50 rad=s
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Determine the consistency index and the flow behavior index. Calculate the strain rate if the
shear stress is increased to 7� 10�2 lbf=ft2.

1.34 Two data points on a rheological diagram of a certain grease are

(A) t ¼ 8:72� 10�3 N=m2 dV=dy ¼ 20 rad=s

(B) t ¼ 2:10� 10�3 N=m2 dV=dy ¼ 40 rad=s

Determine the consistency index and the flow behavior index. Calculate the strain rate if the
shear stress is increased to 3� 10�2 N=m2.

1.35 A highly viscous slow-drying paint has a viscosity m0 of 0.029 lbf � s=ft2. At a shear stress of
2.7 lbf=ft2, the strain rate is 74.5 rad=s. Calculate its initial yield stress.

1.36 Determine the kinematic viscosity of acetone in the unit systems listed in Table 1.1.
1.37 What is the change in dynamic viscosity of water from 08C to 1008C? Express the result in

terms of percentage of viscosity at 08C. Repeat for the kinematic viscosity.
1.38 A fluid with a viscosity of 8 cp (centipoise) has a density of 59 lbm=ft3. What is its kinematic

viscosity in the CGS system?

Fluid Properties: Surface Tension

1.39 Calculate the pressure inside a 2-mm-diameter drop of acetone exposed to atmospheric
pressure (101.3 kN=m2).

1.40 Determine the pressure inside a water droplet of diameter 500 mm in a partially evacuated
chamber where p¼ 70 kN=m2.

1.41 Calculate the pressure inside a 1
16-in.-diameter drop of chloroform in contact with air at a

pressure of 14.7 lbf=in.2.
1.42 A drop of benzene is 1 mm in diameter and is in contact with air at a pressure of 100 kN=m2.

a. Calculate its internal pressure.
b. If the pressure difference (inside minus outside) for the benzene droplet is the same as that

for a mercury droplet, what is the diameter of the mercury droplet?

1.43 If a small-diameter tube is immersed slightly in a liquid, the rise of a column of liquid inside is
due to surface tension. This phenomenon is referred to as capillary action, examples of which
are illustrated in Figure Pl.43. The weight of the liquid column in the tube equals the product
of force due to the pressure difference across the gas–liquid interface and the tube area. These
are also equal to the peripheral force around the tube circumference due to surface tension.
Thus, we write

rgh(pR2) ¼ s2pR cos u

The capillary rise can be solved for in terms of surface tension as

h ¼ 2s
rRg

cos u

As shown in Figure Pl.43, three cases can exist, depending on the value of the angle u. When
u equals p=2, there is no rise in the tube. The angle u is usually taken as 08 for water and 1408
for mercury, if the tube is made of glass.

a. Determine the height h to which water at room temperature would rise in a 4-mm-diameter
tube.

b. Determine the height h to which mercury at room temperature would rise in a
4-mm-diameter tube.

Fundamental Concepts 27



h

2R

θ

θ

θ

θ <   /2 θ =  /2 θ >  /2

FIGURE P1.43

1.44 Following are surface tension data for water given as a function of temperature. If a
6-mm-diameter tube is inserted into a sample at each temperature, the capillary rise as
explained in Problem 1.43 would vary according to

h ¼ 2s
rRg

cos u

Determine h for each temperature and plot h versus T.

T (8C) s (N=m)

0 75.6� 10�3

10 74.2� 10�3

18 73.1� 10�3

30 71.2� 10�3

40 69.6� 10�3

50 67.9� 10�3

60 66.2� 10�3

70 64.4� 10�3

80 62.6� 10�3

100 58.9� 10�3

1.45 An interesting variation of the capillary tube method of measuring surface tension is the
hyperbola method. With the hyperbola method, two glass plates that have a small
angle between them are positioned vertically as shown in Figure Pl.45. The glass plates
(5 in. � 5 in.) are separated by a small wedge at one end and held together by two binder clips
at the other end. A transparency of graph paper is attached to one of the plates. If the plates are
partially submerged, liquid rises between them and, when viewed from the side, the liquid
surface forms a hyperbola. An x–y coordinate system is imposed on the graph paper. The
x-axis is the free surface of the liquid in the reservoir and the y-axis is at the touching edges of
the plates. Readings of x–y pairs of various points on the hyperbola are taken and can be used
to calculate surface tension with

s ¼ xyu

2
rg ¼ (geometry factors) � rg
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Suppose that the fluid used in the hyperbola method is water and that the angle u is 18.
Determine the equation of the hyperbola and sketch its shape. Is there any similarity between
the above equation and that derived for the capillary tube?

θ

bL

y

x

Square glass plates
with grid attached

Test liquid

FIGURE P1.45 Schematic of the apparatus used in the hyperbola method.

1.46 A capillary tube that is 0.2 in. in diameter has its end submerged in mercury. The capillary
depression (see Problem 1.43) is 0.052 in. Calculate the surface tension of the mercury.

1.47 Determine the height h to which ethyl alcohol at room temperature would rise in a
5-mm-diameter tube. The contact angle is 08. (See Problem 1.43.)

1.48 The surface tension of benzene is measured with a capillary tube whose inside diameter is
4 mm. The contact angle is 08. What is the expected height h to which the benzene will rise in
the tube? (See Problem 1.43.)

1.49 Determine the height h to which carbon tetrachloride at room temperature would rise in a
3-mm-diameter tube given that the contact angle is 08. (See Problem 1.43.)

1.50 The surface tension of glycerin at room temperature is measured with a capillary tube. If the
inside diameter of the tube is 2.5 mm and the contact angle is 08, what is the expected rise of
glycerin in the tube? (See Problem 1.43.)

1.51 Determine the height h to which octane at room temperature would rise in a 2-mm-diameter
tube given that the contact angle is 08. (See Problem 1.43.)

1.52 When glass tubes are used with mercury, instrumentation guides recommend tubes with a
minimum bore of 10 mm to avoid capillary error. Estimate the height mercury rises in a tube
of this diameter. (See Problem 1.43.)

Fluid Properties: Specific Heat, Internal Energy, and Enthalpy

1.53 Figure P1.53 depicts 0.1 slugs of air in a piston-cylinder arrangement. Heat is removed from
the air so that the air temperature is reduced by 258F. Assuming a frictionless, movable piston,
determine the amount of heat removed.
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1.54 The vessel in Figure P1.53 contains 1.5 kg of carbon dioxide. The gas is cooled so that its
temperature is decreased by 258C. Determine the amount of heat removed per unit mass of
carbon dioxide. Assume a frictionless, movable piston.

1.55 A rigid vessel contains 8 kg of argon heated by 50 kJ of energy. Determine the temperature
change of the gas.

1.56 Carbon dioxide is inside of a constant-volume container. Initially, the carbon dioxide is at
101.3 kN=m2 and 258C. The container is heated until the gas reaches 508C. What is the change
in the internal energy of the gas?

1.57 One kg of gas is in a piston-cylinder arrangement. It is desired to raise the temperature of the
gas by 258C. When heat is added, the piston is free to move due to a frictionless seal. If the gas
is helium, will more heat be required than if it were hydrogen? Calculate the heat required in
both cases and also calculate the change in enthalpy for each gas.

1.58 Figure Pl.58 shows two constant-volume containers that are equal in size and in contact with
one another. The air and its container are at 1208F, whereas the hydrogen and its container are
at 608F. The containers are well insulated except where they touch. Heat is transferred from
the air to the hydrogen, and both fluids and container eventually reach the same final
temperature. The mass of air is twice that of the hydrogen. Calculate the final temperature.

Piston

Air

Heat removal

FIGURE P1.53

Insulation

Air at 120 F Hydrogen at 60 F

FIGURE P1.58
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Fluid Properties: Isothermal Bulk Modulus

1.59 The pressure exerted on a liquid increases from 500 to 1 000 kPa. The volume decreases by
1%. Determine the bulk modulus of the liquid.

1.60 Determine the coefficient of compressibility for the liquid of Problem 1.59.
1.61 Water at 458F has a bulk modulus of about 300,000 lbf=in.2. Determine the pressure rise

required to decrease its volume by 1%.
1.62 Water at 208C has a bulk modulus of 21.8� 108 N=m2. Determine the pressure change

required to decrease its volume by 1%.
1.63 What is the bulk modulus of a liquid whose volume decreases by 0.5% for a pressure increase

of 1,000 lbf=in.2? For a density of 1.8 slug=ft3, what is the sonic velocity in the liquid?
1.64 What is the bulk modulus of a liquid whose volume decreases by 0.5% for a pressure increase

of 60 kN=m2?
1.65 What change in pressure is required to decrease the volume of benzene by 1%?
1.66 The volume of glycerin changes by 2% under the action of a change in pressure. What is the

change in pressure required to do this?

Fluid Properties: Ideal Gas Law

1.67 What is the density of air at 308C and 300 kN=m2?
1.68 With the ideal gas law, derive an expression that is useful for relating pressures and volumes at

the beginning and end of a process that occurs at constant temperature and constant mass.
1.69 Use the ideal gas law to derive an expression that is useful for relating temperatures and

volumes at the beginning and end of a process that occurs at constant pressure and constant
mass.

1.70 Beginning with the universal gas constant as

�R ¼ 49:709 ft � lbf=slugmol � � R

use the conversion factor table to determine its value in SI units.
1.71 A piston-cylinder arrangement contains 0.07 slug of air. Heat is removed from the air until the

air temperature has been reduced by 158F. For a frictionless piston, determine the change in
volume experienced by the air if the pressure remains constant at 2500 lbf=ft2.

1.72 Carbon dioxide gas exists in a chamber whose volume is 5 ft3. The temperature of the gas is
uniform at 408C and the pressure is 3 atm. What is the mass of carbon dioxide contained?

1.73 A rigid vessel containing 8 kg of argon is heated until its temperature increases by 208C.
Determine the final pressure of the argon if its initial temperature is 288C and its pressure is
150 kN=m2.

1.74 A certain gas has a molecular mass of 40. It is under a pressure of 2.5 atm and a temperature of
258C. Determine its density and pressure in CGS absolute units.

1.75 Table A.3 gives properties of air at atmospheric pressure and for various temperatures.
Atmospheric pressure is 101.3 kN=m2. With this information, verify values of density in the
table corresponding to any four temperatures of your choice.

1.76 A gas mixture has a density of 0.01 kg=m3 when a pressure of 4 atm is exerted on it.
Determine its molecular mass if its temperature is 408C.

1.77 The carbon dioxide gas inside of a constant-volume container is initially at 101.3 kN=m2 and
258C. The container is heated until the gas reaches 508C. Calculate the final pressure of the gas.

1.78 What volume of air would have the same weight of 1 ft3 of carbon dioxide if both are at room
temperature and atmospheric pressure?
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Computer Problems

1.79 Prepare a plot of density of water as a function of temperature. Determine an equation for the
density.

1.80 Prepare a graph of absolute viscosity of water as a function of temperature and generate an
equation for the graph.

1.81 Prepare a plot of kinematic viscosity of water as a function of temperature. What is the
equation of the graph?

1.82 In the petroleum industry, the specific gravity of a substance (usually oil) is expressed in terms
of degrees API, or 8API (American Petroleum Institute). The specific gravity and the 8API are
related by

�API ¼ 141:5
Specific gravity

� 131:5

Graph 8API (vertical axis) versus specific gravity over the range that encompasses all fluids in
Table A.5.

1.83 A Saybolt viscometer is used in the petroleum industry to measure viscosity of lubricating
oils. The test oil is placed in a cup surrounded by a constant-temperature bath. At time zero
(a stopwatch is started), test oil is allowed to flow out of the bottom of the cup, through an
orifice. The oil leaves in the form of a stream and is collected in a calibrated beaker.
When 60 mL of oil flows through the orifice, the elapsed time is recorded. The time required
for 60 mL of oil to flow through the orifice is thus experimentally determined. The viscosity
of the oil is expressed in terms of the elasped time; for example, one would say that the oil
has ‘‘a viscosity of 100 Saybolt universal seconds.’’ This is abbreviated as ‘‘100 SUS.’’
The equation to convert SUS to units of m2=s is given by

n (m2=s) ¼ 0:224� 10�6 (SUS)� 185� 10�6

SUS

Graph this equation as n on the vertical axis versus SUS. Allow SUS to vary from 34 to 115 in
increments of 5 SUS. (The equation is valid over this range only.)

Design Problems

1.84 Conversion of Units
The discussion of converting the unit system used in the United States to SI is a recurring one.
There are a number of difficulties and problems that arise in doing so. Some of these
difficulties are encountered in this problem.

Consider the food industry and the desirability of marketing cookbooks that currently
contain recipes written in the U.S. customary system. Commonly, found recipes direct the
user to combine carefully measured specific amounts of various ingredients into a mix for
further processing (e.g., heating, cooking, baking, etc.). The specific amounts are listed in
terms of cups, tablespoons, teaspoons, and so on. Converting recipes from these units to SI
units is easy, but will the converted recipe be easy to follow, be convenient to use, and
produce a dish of the same quality?

Locate a recipe for baking bread. The recipe selected should contain at least six ingredients,
including yeast, and involve some baking.

a. Convert the quantities listed to SI units, remembering to convert oven temperature as well.
b. Note how much time was involved in making the conversion.
c. Consult an experienced bread baker and ask about unit systems used.
d. Select a recipe book and estimate how much time it would take to convert all recipes in the

book.
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e. If possible, purchase measuring spoons and containers that are calibrated in SI (or metric)
units.

f. If possible, have the two breads prepared—one using the original bread recipe and one
using the converted recipe. Compare the results.

1.85 A New System for Measuring Time
It is proposed to convert the current method for measuring time into a decimal system. Thus,
the second, the minute, and the hour as we know them would no longer be used. (There would
still be 365 days=year, however.) It will be necessary to devise new units for measuring time—
for the moment, refer to them as ‘‘no. 1 time units,’’ ‘‘no. 2 time units,’’ and so on, as
necessary, in the new system that you will define. These units are related such that there are
10 (or 100 or 10n) no. 1 time units per no. 2 time unit.

a. Determine how time is to be broken down. For example, we now have
years–months–days–hours–minutes–seconds
Change the system so that we will have
years–months–days–no. 1 time units–no. 2 time units–etc.

b. The conversions between the new time units must be factors of 10. Names for the new time
units must be selected; that is, new names for no. 1 time unit, no. 2 time unit, and so on
must be assigned.

c. Completely define the new time-measurement system.
d. Apply your new system to the current conventions of the 8-h working day and 40-h

working week, and define new work-time standards. Select other time-dependent defin-
itions (such as ‘‘bake for 25 min’’) and redefine them.

e. Determine how clocks would have to be modified in order to conform to your new time
standard.

f. Consult electrical engineers who work with microprocessors and determine how your new
time definitions would affect their industry.

g. Justify your new system and give an opinion on whether such a conversion should be
made.

1.86 A Falling Shaft Viscometer
Figure Pl.86 shows a rough sketch of a circular shaft that is free to move vertically in a
stationary sleeve. The clearance is to be filled with a liquid. It is desired to use such a design to

Clearance

Sleeve

Shaft
diameter

mg

FIGURE P1.86
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measure the absolute viscosity of the liquid in the clearance. The shaft will move under the
action of gravity, and the presence of the liquid will keep the shaft centered within the sleeve.
In this type of apparatus, the shaft is released from rest and, as it moves, it eventually reaches a
constant velocity. That is, the shaft accelerates initially, but after a very short time (usually less
than 1 s), its velocity no longer changes. This ‘‘final,’’ or ‘‘terminal,’’ shaft velocity is to be
measured. The greater the fluid viscosity, the lower the shaft velocity. Of the fluids to be
tested, ethylene glycol is the most viscous and octane is the least viscous.

a. Select a shaft diameter and a sleeve diameter, and determine the clearance.
b. Select a shaft and sleeve length. Remember that when the shaft is released, the distance d it

falls must be measurable. The time interval t must also be measured so that the terminal
velocity V¼ d=t can easily be calculated with little error.

c. Design a method for making sure that liquid is continually fed into the clearance space.
An airspace should not form.

d. Make up an analysis for determining viscosity using your design and the data obtained.
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2 Fluid Statics

In this chapter, we study the forces present in fluids at rest. Knowledge of force variations—or, more
appropriately, pressure variations—in a static fluid is important to the engineer. Specific examples
include water retained by a dam or bounded by a levee, gasoline in a tank truck, and accelerating
fluid containers. In addition, fluid statics deals with the stability of floating bodies and submerged
bodies and has applications in ship hull design and in determining load distributions for flat-
bottomed barges. Thus, fluid statics concerns the forces that are present in fluids at rest, with
applications to various practical problems.

The objectives of this chapter are to discuss pressure and pressure measurement, to develop
equations for calculating forces on submerged surfaces, and to examine problems involving the
stability of partially or wholly submerged bodies.

2.1 PRESSURE AND PRESSURE MEASUREMENT

Because our interest is influids at rest, let us determine the pressure at a point in a fluid at rest. Consider a
wedge-shaped particle exposed on all sides to a fluid as illustrated in Figure 2.1a. Figure 2.1b is a free-
body diagram of the particle cross section. The dimensions Dx, Dy, and Dz are small and tend to zero
as the particle shrinks to a point. The only forces considered to be acting on the particle are due to
pressure and gravity. On either of the three surfaces, the pressure force is F¼ pA. By applying
Newton’s second law in the x- and z-directions, we get, respectively,
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X
Fx ¼ pxDzDy� psDsDy sin u ¼ r

2
DxDyDz

� �
ax ¼ 0

X
Fz ¼ pzDxDy� psDsDy cos u� rg

DxDyDz

2

¼ r

2
DxDyDz

� �
az ¼ 0

where: px, pz, and ps are average pressures acting on the three corresponding faces
ax and az are the accelerations
r is the particle density

The net force equals zero in a static fluid. After simplification, with ax¼az¼ 0, these two
equations become

pxDz� psDs sin u ¼ 0

and

pzDx� psDs cos u� rg

2
DxDz ¼ 0

The third term on the left-hand side of the second equation can be neglected because it is a higher-
order term containing DxDz, which is very small in comparison to the other terms. From the
geometry of the wedge, we find that

Dz ¼ Ds sin u

and

Dx ¼ Ds cos u

with u being arbitrarily chosen. Substituting into the pressure equations yields

px ¼ ps
pz ¼ ps

)
px ¼ pz ¼ ps (2:1)

2
g ΔxΔyΔz

Δy

Δz

Δx

ΔzΔs

ps

(y-axis into page)

y

x

z(a) (b)

pz

px

Δx

z

x

FIGURE 2.1 A wedge-shaped particle.
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which illustrates that pressure at a point is the same in all directions. This concept was shown for a
two-dimensional model, but the proof is easily extended to three dimensions.

From the preceding paragraphs, we have seen that the forces acting on a fluid at rest are due to
pressure and gravity. It is therefore important to learn how these forces vary in a static fluid.
Consider an element of a fluid at rest, as illustrated in Figure 2.2a. The element chosen has a volume
dx dy dz and is sketched in a coordinate system where the positive z-direction is downward,
coincident with the direction of the gravity force. Figure 2.2b is a view of the element looking in
the positive y-direction; the force acting on the right face is p dy dz and that on the left face is
[pþ (@p=@x)dx]dy dz, both normal to their respective surfaces. Summing forces in the x-direction,
we have the following for a static fluid:

X
Fx ¼ 0 ¼ p dy dz� pþ @p

@x
dx

� �
dy dz

Simplifying, we get

@p

@x
¼ 0 (2:2)

which means that pressure does not vary with respect to x. A similar argument can be made for the
forces in the y-direction, which would yield

@p

@y
¼ 0 (2:3)

Thus, Equations 2.2 and 2.3 show that there is no variation of pressure in any lateral direction.
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FIGURE 2.2 An element of fluid at rest.
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Figure 2.2c gives a free-body diagram for the z-direction. Summing forces, we obtain

X
Fz ¼ 0 ¼ p dx dyþ rg dx dy dz� pþ @p

@z
dz

� �
dx dy

or

dp ¼ rg dz (2:4)

Therefore, pressure does vary in a static fluid in the z-direction—it increases with depth, as shown
by Equation 2.4. Integrating both sides yields

ðp2
p1

dp ¼
ðz2
z1

rg dz (2:5)

where point 1 is a reference point such as the free surface of a liquid and point 2 is a point of
interest. For incompressible fluids, the density is a constant, and Equation 2.5 can be easily
evaluated to give

p2 � p1 ¼ rg z2 � z1ð Þ ¼ rgDz (2:6)

where Dz is the depth below the liquid surface. This relationship is the basic equation of hydrostatics
and is often written as

Dp ¼ rgz (2:7)

Example 2.1

A cylindrical open-topped tank that serves as a reservoir for octane before it is piped to another location
is 140 ft in diameter. Determine the pressure difference between the top and the bottom of the walls due
to the octane when the tank is filled to a depth of 30 ft.

SOLUTION

We use the hydrostatic equation

p2 � p1 ¼ rg z2 � z1ð Þ

Section 1 refers to the free surface of the octane and section 2 is at the bottom. For octane,
r¼ 0.701(1.94 slug=ft3) (Table A.5). By substitution,

p2 � p1 ¼ Dp ¼ 0:701(1:94 slug=ft3)(32:2 ft=s2)(30� 0)ft

or

Dp ¼ 1310 lbf=ft2

The result is independent of diameter.
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Example 2.2

A cup of coffee is 7 cm in diameter and filled to a depth of 8 cm with coffee (assume properties are
the same as for water). Calculate the pressure difference between the surface of the coffee and the bottom
of the cup.

SOLUTION

The hydrostatic equation applies with r¼ 1 000 kg=m3 for water:

Dp ¼ rgz ¼ 1 000 kg=m3
� �

9:81 m=s2
� �

(0:08 m)

Dp ¼ 785 N=m2

The result is independent of the cup diameter.

Equation 2.5 was integrated for the case of incompressible fluids (constant density), which is
reasonable for liquids. The hydrostatic equation resulted. Gases, on the other hand, are compressible
fluids with properties that are related by the ideal gas law, under certain simplifying conditions:

r ¼ p

RT

By substitution into Equation 2.4, we get

dp ¼ p

RT
g dz

or

dp

p
¼ g

RT
dz

For constant temperature, this equation can be integrated from point 1 to point 2, yielding

ðp2
p1

dp

p
¼ g

RT

ðz2
z1

dz

‘n
p2
p1

¼ g

RT
z2 � z1ð Þ

Rearranging, we get

z2 � z1 ¼ RT

g
‘n

p2
p1

(2:8)

In the most common example of a compressible fluid, our atmosphere, temperature is not a
constant throughout but varies with height in the troposphere according to

T ¼ T0 � ah (2:9)
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where: T is the temperature at any point from sea level (where T¼ T0) to an altitude h of
approximately �36,000 ft, or 11 km

a is called a lapse rate (3.68F=1000 ft or 6.58C=km)

The stratosphere, the layer above the troposphere, can be described by the same ideal gas
equation. A lapse rate equation is not necessary for the stratosphere because it is approximately
isothermal.

Whether the fluid is compressible or incompressible, it is important to note that pressure
variations in static fluids are the result of gravity. The pressure increases with depth in either case.

Example 2.3

Graph the relationship between pressure and elevation in the stratosphere assuming it to be isothermal
at �578C. The stratosphere begins at an altitude of approximately 11 000 m, where the pressure is
22.5 kPa. Extend the graph to an elevation of 20 000 m.

SOLUTION

In this case, Equation 2.8 applies, but it must first be modified. Equation 2.8 was derived from Equation
2.4, but Equation 2.4 is based on the assumption that the positive z-direction is coincidental with the
direction of the gravity force. In this example, we are dealing with the atmosphere, and we are quoting
measurements of altitude using the earth’s surface as a reference. So the positive z-direction is upward,
which is opposite from the direction of the gravity force. Therefore, if we use Equation 2.8, we must
account for this discrepancy. We can do so by using a negative g. Thus,

Dz ¼ z2 � z1 ¼ RT

�g
‘n

p2
p1

We select as our reference z1¼ 11 000 m, where p1¼ 22.5 kPa. From Table A.6 we read
R¼ 286.8 J=(kg � K) for air, and we were given T¼ 578C¼ 216 K. In applying the preceding equation,
let z1¼ z¼ any value ranging from 11 to 20 km and p2¼ p¼ the corresponding pressure.

Substituting gives

z� 11 000 ¼ � 286:8(216)
9:81

‘n
p

22 500

or

z ¼ 11 000� 6 315 ‘n
p

22 500

� �

Rearranging yields

11 000� z

6 315
¼ ‘n

p

22 500

Solving for pressure, we get

p ¼ 22 500 exp
11 000� z

6 315

� �

A graph of this equation is provided in Figure 2.3.
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It is instructive at this point to examine techniques for measuring pressure. One common
method in industry is the use of a bourdon-tube pressure gauge (Figure 2.4). The gauge consists
of a housing that contains a fitting at the bottom for attachment to a pressure vessel. The fitting is
connected to a curved tube that is elliptical in cross section. The other end of the bourdon tube is
in turn connected to a rack-and-pinion assembly. The pinion shaft extends through the face of the
gauge. A needle is pressed onto the pinion shaft outside the face. The face of the gauge is marked
appropriately with numbers, and the gauge is calibrated. When a high-pressure fluid enters the
fitting, the pressure is contained internally by the bourdon tube, which tends to straighten out.
In the process, the rack is pulled and the pinion and needle rotate. When an equilibrium position is
reached, the pressure is read directly on the face of the gauge. These gauges register the difference
in pressure across the bourdon tube. When disconnected and exposed to atmospheric pressure,
the dial is calibrated to read zero; readings from these instruments are therefore called gauge
pressures.
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FIGURE 2.3 Pressure variation with elevation in the stratosphere.

Inside view Outside view

FIGURE 2.4 A bourdon-tube pressure gauge.
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Alternatively, one can measure absolute pressure as opposed to gauge pressure. Absolute
pressure is zero only in a complete vacuum. Thus by definition,

pg þ patm ¼ p (2:10)

where: pg¼ gauge pressure
patm¼ atmospheric pressure
p¼ absolute pressure

Commonly used British units of pressure are psig (lbf=in.2 gauge pressure) and psia (lbf=in.2

absolute). In the SI system, the unit of pressure is the pascal (Pa), where 1 Pa¼ 1 N=m2.
It is important to be able to measure atmospheric pressure because it relates gauge pressure to

absolute pressure. One technique is to use a barometer. This device consists of a tube that is
inverted while submerged and full of liquid. For a sufficiently long tube, this operation results in the
configuration represented schematically in Figure 2.5a. The space above the liquid in the tube is
almost a complete vacuum. Because the reservoir is open to the atmosphere, the pressure at section
2 is atmospheric pressure. The difference in pressure between points 2 and 1 is sufficient to support
the weight of the liquid column. A free-body diagram of the liquid is shown in Figure 2.5b.
Summing forces gives

X
F ¼ 0 ¼ patmA� rgAz� 0

or, for a barometer,

patm ¼ rgz (2:11)

Vacuum
p = 0

Liquid
reservoir

2

(a) (b)

1

Area A

p = 0

patm

z
gAz

FIGURE 2.5 Schematic of a barometer.
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Equation 2.11 is recognized as the hydrostatic equation. By experiment, it is known that when the
barometer liquid is mercury (s¼ 13.6 from Table A.5), z¼ 760 mm. Atmospheric pressure is then
calculated as

patm ¼ 13:6 1 000 kg=m3
� �

9:81 m=s2
� �

(0:760 m)

¼ 101:3 kPa

The preceding remarks concerning gauge pressure, absolute pressure, and atmospheric pressure are
illustrated graphically in Figure 2.6.

Example 2.4

Mexico City, Mexico, has an elevation of 7575 ft. A barometer located there would read �22.8 in.
(57.912 cm) of mercury. Determine the local atmospheric pressure at that location and express it in

a. psia
b. psig
c. kPa (absolute is implied)
d. Meters of water at 758F

Assume standard atmospheric pressure as given in Figure 2.6.

SOLUTION

a. The hydrostatic equation applies with the specific gravity of mercury, s¼ 13.6 (Table A.5):

p ¼ rgz ¼ 13:6 1:94 slug=ft3
� �

32:2 ft=s2
� � 22:8 in:

12 in:=ft

¼ 1610 lbf=ft2 absolute

Pressure
greater than
atmospheric

pressure

Partial
vacuum

Absolute pressure

1 atm = 14.7 psia = 10.34 m water = 33.91 ft water
1 atm = 101 325 Pa = 0.760 m mercury = 29.29 in. mercury

Gauge pressure

Perfect
vacuum

Atmospheric
pressure

14.7 psia

0 psia

101 325 N/m2

0 N/m2

Positive
gauge

pressure

Negative
gauge pressure

0 psig

–14.7 psig

0 N/m2

–101 325 N/m2

FIGURE 2.6 Pressure diagrams comparing absolute and gauge pressures.
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Dividing by 144 yields

p ¼ 11:2 psia

b. If we use Equation 2.10, we obtain

pg ¼ 11:2� 14:7

or

pg ¼ �3:5 psig

However, a bourdon-tube gauge would indicate 0 psig because it reads relative to local
atmospheric pressure.

c. Applying the hydrostatic equation, we get

p ¼ rgz ¼ 13:6 1 000 kg=m3
� �

9:81 m=s2
� �

(0:58 m)

Solving, we obtain

r ¼ 77:4 kPa

d. Let us derive an equation to find the equivalent height in meters of water. Writing the
hydrostatic equation for each liquid gives

p ¼ rgz Hg ¼ rgz
�� ��

H2O

After simplification and rearrangement, we get

rHg
rH2O

¼ s ¼ zH2O

zHg

where the ratio of densities as written is the specific gravity of mercury. Thus,

zH2O ¼ 13:6zHg ¼ 13:6(0:58 m)

zH2O ¼ 7:89 m

The analysis of the barometer shows that vertical columns of liquid can be used to measure
pressure. One device used to effect this measurement is the manometer. A sketch of a U-tube
manometer is given in Figure 2.7. One leg of the manometer is attached to a tank whose pressure is
to be measured. The other leg is open to the atmosphere and is long enough to prevent the
manometer liquid from overflowing. We can now use the hydrostatic equation to relate p to patm:

pA þ r1gz1 ¼ pB

which states that the pressure at A plus the weight per unit area of a column of liquid equals the
pressure at B. In other words, the difference in pressure between points A and B is the weight per
unit area of the column of liquid with height z1 and density r1. Next we can write

pB ¼ pC
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because both are at the same elevation. Finally,

pC ¼ pD þ r2gz2

Combining these three equations, we get

pA þ r1gz1 ¼ pD þ r2gz2

Now pA¼ p¼ pressure of interest and pD¼ atmospheric pressure. By substitution and after
rearrangement, we have the following for the manometer of Figure 2.7:

p� patm ¼ r2z2 � r1z1ð Þg

Another application of manometers is in the measurement of pressure differential between two
fluid reservoirs, as illustrated in Figure 2.8. Applying the hydrostatic equation to each leg yields

pA þ r1gz1 ¼ pD þ r3gz3 þ r2gz2

and

pA � pD ¼ r3z3 þ r2z2 � r1z1ð Þg

patm

z1

z2

p A

B

1

2
C

D

FIGURE 2.7 A simple U-tube manometer.
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FIGURE 2.8 Use of a manometer to measure differential pressure.
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In many cases, an inverted U-tube is used as a manometer, as shown in Figure 2.9, where again
the hydrostatic equation applies:

pB þ r1gz1 ¼ pA
pB þ r2gz2 ¼ pC
pC þ r3gz3 ¼ pD

By substitution, we obtain

pD � r3gz3 � r2gz2 þ r1gz1 ¼ pA

After rearranging, we get

pA � pD ¼ (r1z1 � r2z2 � r3z3)g

Example 2.5

Figure 2.10 shows a portion of a pipeline that conveys benzene. A gauge attached to the line reads 150 kPa.
It is desired to check the gauge reading with a benzene-over-mercury U-tube manometer. Determine the
expected reading Dh on the manometer.

z1

A

z2

z3

BB

C

D

2

1 3

FIGURE 2.9 An inverted U-tube differential manometer.

Open to
atmosphere

D
A

BC

Δh 3 cm

Pressure
gauge Pipeline

Mercury

FIGURE 2.10 Sketch for Example 2.5.
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SOLUTION

From Table A.5, we read

r ¼ 876 kg=m3
(benzene)

r ¼ 13 000 kg=m3
(mercury)

Applying the hydrostatic equation to the manometer gives

pA þ rg(0:03) ¼ pD þ rHggDh

Rearranging and solving for Dh gives

Dh ¼ pA � pD þ rg(0:03)
rHgg

The pressures are given as

pA ¼ 150 000 N=m2
and pD ¼ 0 N=m2

The 150 kPa is a pressure reading from a gauge. Substituting gives

Dh ¼ 150 000 N=m2 � 0 N=m2 þ 876 kg=m3 9:81 m=s2ð Þ(0:03 m)

13 600 kg=m3 9:81 m=s2ð Þ

Solving,

Dh ¼ 1:13 m

2.2 HYDROSTATIC FORCES ON SUBMERGED PLANE SURFACES

Consider a vertical surface that is in contact with liquid on one side (Figure 2.11). If we apply the
hydrostatic equation to each point of the wall and sketch the pressure variation, a distribution
triangular in cross section results: a pressure prism. The pressure distribution is linear, and pressure
increases with depth. Mathematically, it is more convenient for us to replace the distribution shown
with a single force Rf acting at a distance zr below the surface. Both Rf and zr are yet to be
determined. We will develop expressions for them from a general approach.

Wall
Liquid

Pressure
distribution

Rf

zr

Wall

FIGURE 2.11 Pressure distribution and equivalent force on a submerged surface.
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Figure 2.12 gives a profile view of a submerged, inclined plane surface having an irregular cross
section (shown in frontal view). Also shown is the pressure distribution acting on the surface. An
element of area dA has a force dRf acting on it given by

dRf ¼ p dA

From the hydrostatic equation, p is found in terms of the space variable z as

p ¼ rgz sin u

where z sin u is the vertical depth to dA. Note that atmospheric pressure acts on both sides and does
not affect the resultant force or its location. The element of force acting on dA becomes

dRf ¼ (rgz sin u)dA

Integration yields the total force exerted on the submerged plane as

Rf ¼ rg sin u

ðð
z dA (2:12)

Recall from statics that the centroid of a plane area can be calculated with

zc ¼
Ð Ð

z dA

A

With this definition, Equation 2.12 now becomes

Rf ¼ rgzcA sin u (2:13)

where zc is the distance to the centroid of the portion of the plane in contact with the liquid as
measured from the liquid surface in the z-direction.

dA

z
z

(a) Profile views (b) Frontal view

Rf

zr

patmpatm

patm

patm

OO

y

x

FIGURE 2.12 A submerged, inclined plane surface.
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To find the location of Rf, let us write an expression for zrRf, the moment exerted about point O:

zrRf ¼
ðð

zp dA ¼
ðð

z(rgz sin u) dA

¼ rg sin u

ðð
z2 dA (2:14)

The integral on the right-hand side is recognized as the second moment of area of the submerged
plane about the x-axis (Figure 2.12):

Ixx ¼
ðð

z2 dA

Rather than using Ixx, it is more convenient to use a moment of area that passes through the centroid
of the submerged plane. With the parallel axis theorem, we get

Ixx ¼ Ixxc þ Az2c

Substituting into Equation 2.14 yields

zrRf ¼ rg sin u Ixxc þ Az2c
� �

Combining with Equation 2.13, we get

zr ¼
(rg)(sin u) Ixxc þ Az2c

� �
(rg)(sin u) zcAð Þ

or

zr ¼ zc þ Ixxc
zcA

(2:15)

which is independent of liquid properties.
To determine the lateral location in the x-direction (Figure 2.12), we follow the same procedure.

The moment about the z-axis is

xrRf ¼
ðð

xp dA

¼ rg sin u

ðð
xz dA (2:16)

By definition, the product of inertia is

Ixz ¼
ðð

xz dA

Using the parallel axis theorem, we get

Ixz ¼ Ixzc þ Axczc
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where Ixzc is a second moment about the centroid of the submerged plane and xc is the distance from
the z-axis to the centroid. Thus, Equation 2.16 becomes

xrRf ¼ rg sin u(Ixzc þ Axczc)

Combining this result with Equation 2.13, we obtain

xr ¼ xc þ Ixzc
zcA

(2:17)

Equation 2.13 provides a means for determining the magnitude of the resultant force acting on a
submerged plane surface. Equations 2.15 and 2.17 give the location of that force vertically from the
free surface and laterally from an assigned coordinate axis. For areas that are symmetric, xr is
coincident with the centroid because when one of the centroidal axes is an axis of symmetry,
Ixzc¼ 0. The moments of inertia of various plane areas are given in Table B.1.

Example 2.6

A plywood sheet 4� 8 ft is used as a form for poured concrete (Figure 2.13). The sheet is hinged at the
top, and a stop is nailed down at the floor. The concrete is poured to a depth of 3 ft 2 in. Assume that the
specific gravity of concrete is 2.4.

a. Sketch the pressure prism.
b. Calculate the magnitude and location of the resultant force.
c. Find the force exerted on the stop while the concrete is still in liquid form.

SOLUTION

a. The pressure prism is triangular and starts at zero at the top. At the bottom,

p ¼ rgz ¼ (2:4)(1:94 slug=ft3)(32:2 ft=s2) 3 ftþ 2
12

ft

� �
¼ 474 lbf=ft2

The distribution is sketched in Figure 2.13.

Plywood
sheet

Concrete

Stop F

474 psf

4430 lbf

10 in.

2.11 ft

6020 lbf

FIGURE 2.13 Sketch for Example 2.6.

50 Introduction to Fluid Mechanics



b. The magnitude of the resultant force is

Rf ¼ rgzcA sin u

with

zc ¼ z

2
¼ 3:17 ft

2
¼ 1:58 ft

and

A ¼ zb ¼ (3:17 ft)(8 ft) ¼ 25:4 ft2

The angle u in this case is p=2 rad. Hence,

Rf ¼ 2:4(1:94 slug=ft3)(32:2 ft=s2)(1:58 ft)(25:4 ft2)

from which we get

Rf ¼ 6020 lbf

The force is located laterally 4 ft from either end. For a rectangle,

Ixxc ¼ bz3

12
(Table B:1)

Therefore,

Ixxc ¼ (8 ft)(3:17 ft)3

12
¼ 21:2 ft4

Substituting into Equation 2.15, we get

zr ¼ zc þ Ixxc
zcA

¼ 1:58 ftþ 21:2 ft

(1:58)(25:4)

zc ¼ 2:11 ft (measured downward from the surface)

Because Ixxc is always positive, zr> zc.
c. The force on the stop is found by summing moments about the top:

X
M ¼ 0

4(F) ¼ 10
12

þ 2:11

� �
6020

Solving, we get

F ¼ 4430 lbf

These results are given in Figure 2.13.
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Example 2.7

A container manufactured to store bags of ice is sketched in Figure 2.14. As shown, the slanted surface
contains an access door; how well it seals when closed must be tested. The method involves filling the
container with water to a predetermined depth. Calculate the force exerted on the door and the location of
the force for H¼ 70 cm and u¼ 308.

SOLUTION

Figure 2.15a shows the pressure prism that acts on the door. Figure 2.15b shows the equivalent force Rf

and its location zr. Note that the origin is found by extending the plane of the door to the surface level of
the water. The force Rf is found with

Rf ¼ rgzcA sin u

For water, Table A.5 gives r¼ 1 000 kg=m3. The distance to the centroid zc from the origin is measured
along the slant:

zc ¼ 0:70
sin 30�

¼ 1:4 m

The area of the access door is calculated to be

A ¼ (0:3 m)(0:4 m) ¼ 0:12 m2

30 cm × 40 cm
access door H

FIGURE 2.14 Ice container filled with liquid for Example 2.7.

O O

(a) (b)

Rf

zr

FIGURE 2.15 Profile views of container showing pressure prism, resultant force, and location.
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Substituting, we get

Rf ¼ (1 000 kg=m3)(9:81 m=s2)(1:4 m)(0:12 m2) sin 30�

or

Rf ¼ 824 N

The force acts at a distance zr from the origin, which is given by

zr ¼ zc þ Ixxc
zcA

For a rectangular door, Table B.1 gives

Ixxc ¼ bz3

12
¼ 0:4(0:3)3

12
¼ 9:0� 10�4 m4

Substituting,

zr ¼ 1:4þ 9:0� 10�4

1:4(0:12)

or

zr ¼ 1:41 m

Example 2.8

The gas tank of an automobile is sketched in a profile view in Figure 2.16. The lower edge of a
semicircular plug is located 1 cm from the tank floor. The tank is filled to a height of 20 cm with gasoline

Plug

pt

pt

20 cm

1 cm

Semicircular 
plug

4 cm

35

Fill tube

patm

FIGURE 2.16 Sketch of a gas tank and plug for Example 2.8.
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and pressurized to 130 kPa. Calculate the force exerted on the semicircular plug. Assume that gasoline
properties are the same as those for octane.

SOLUTION

A free-body diagram of the plug is shown in Figure 2.16. We identify three pressure distributions: one
due to overpressure pt of 130 kPa, one due to gasoline in contact with the plug, and one due to
atmospheric pressure patm. Furthermore, the three pressure distributions can be replaced with three
resultant forces.

The first resultant force we seek is due to the overpressure and is given by

Rf 1 ¼ ptA

where pt¼ 130 000 N=m2 and A¼pD2=8¼p(4)2=8¼ 6.28 cm2. Thus

Rf 1 ¼ (130 000 N=m2)(6:28� 10�4 m2)

or

Rf 1 ¼ 81:6 N

This result is independent of fluid density. Although the information is not asked for in the problem
statement, this force acts at the centroid of the plug.

The second force is that associated with the gasoline in contact with the plug and is given by

Rf 2 ¼ rgzcA sin u

Using the data of Table B.1, we write

zc ¼ 20 cm

sin u
� 1 cm

sin u
� 4(2 cm)

3p

	 


or

zc ¼ 32:3 cm

From Table A.5 for octane, r¼ 701 kg=m3. Substituting, we get

Rf 2 ¼ 701 kg=m3
� �

9:81 m=s2
� �

(0:323 m) 6:28� 10�4 m2
� �

sin 35�

Solving,

Rf 2 ¼ 0:8 N

This force acts at a distance zr from the free surface, as given by Equation 2.15.
The third force is due to atmospheric pressure and is given by

Rf 3 ¼ patmA ¼ 101 300 N=m2
� �

6:28� 10�4 m2
� �
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or

Rf 3 ¼ 63:6 N

Like Rf1, the force Rf3 acts at the centroid of the plug.
The total resultant force acting on the plug is calculated with

Rf ¼ Rf 1 þ Rf 2 þ Rf 3 ¼ 81:6þ 0:8� 63:6

or

Rf ¼ 18:8 N

2.3 HYDROSTATIC FORCES ON SUBMERGED CURVED SURFACES

As we saw in previous examples, there are many cases of plane surfaces in contact with fluids.
Another important area of interest involves determining forces on submerged curved surfaces. The
hull of a floating ship is a curved surface in contact with liquid, as is the wall or sides of a drinking
glass or funnel or culvert. To develop equations for these cases, consider the configuration
illustrated in Figure 2.17a. A curved surface is shown in profile and projected frontal views. Let
us examine the element of area dA. The force acting is p dA (Figure 2.17b). It is convenient to
resolve this force into vertical and horizontal components, dRy and dRh, respectively. We write the
horizontal component of this force directly as

dRh ¼ p dA cos u

where dA cos u is the vertical projection of dA. Integrating this expression gives a result similar to
that for a submerged plane:

Rh ¼ rgzcAy (2:18)

p

Profile view

Frontal view

dx dy dRυ

dRυ

zc

dRh

dA
dA

(a) (b) (c)

p dA

dA cos 

Volume of liquid
above dA

xr O

FIGURE 2.17 A submerged, curved surface.
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where: rgzc¼ pressure at the centroid of the surface
Ay¼ its area projected onto a vertical plane

The line of action, or location, of the horizontal force Rh is found by summing moments as was
done for the plane surfaces in Section 2.2. The result is the same equation as was derived there
except that we are now working with the vertical projection of the area—namely, Ay:

zr ¼ zc þ Ixxc
zcAy

Here zc is the distance from the free surface to the centroid of the area Ay. The second moment of
inertia Ixxc also applies to the vertical projected area Ay.

Next consider the vertical component of force, which is given by

dRy ¼ p dA sin u

where dA sin u is the horizontal projection of dA. Combining this result with the hydrostatic
equation, we obtain

dRy ¼ rgzc dA sin u (2:19)

where again zc, as shown in Figure 2.17c, is the vertical distance from the liquid surface to the
centroid of dA. The quantity zc dA sin u is the volume of liquid above dA. Equation 2.19 thus
becomes

dRy ¼ rg dV�

and, after integration, yields

Ry ¼ rg�V (2:20)

Therefore, the vertical component of force acting on a submerged curved surface equals the weight
of the liquid above it.

The location of Ry is found by first specifying an origin, point O in Figure 2.17c, and taking
moments about it:

dRyxr ¼ rgx dV�

Integrating over the entire submerged curved surface gives

Ryxr ¼ rg

ððð
x dV�

Combining this equation with Equation 2.20, we get

xr ¼ (rg)
Ð Ð Ð

x dV�
(rg)V�

xr ¼
Ð Ð Ð

x dV�
V�

(2:21)

Thus, xr is located at the centroid of the volume above the surface.
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Example 2.9

A concrete culvert that contains water is 2.0 m in diameter. Determine the forces exerted on the portion
labeled A–B in Figure 2.18 if the culvert is filled halfway. Determine also the location of the forces.
Culvert length (into the paper) from joint to joint is 2.5 m.

SOLUTION

The horizontal force is given by Equation 2.18:

Rh ¼ rgzcAy

where: zc¼ distance from the liquid surface to the centroid of the vertical projection of the surface in
contact with the liquid

zc ¼ D

4
¼ 2:0

4
or zc ¼ 0:5 m

The vertical projection is a rectangle with area

Ay ¼ 2:0
2

� �
(2:5) ¼ 2:5 m2

By substitution, we get

Rh ¼ (1 000 kg=m3
)(9:81 m=s2)(0:5 m)(2:5 m2)

Solving, we obtain

Rh ¼ 12:3 kN

The vertical projected area is a rectangle whose second moment of inertia is given by

Ixxc ¼ bz3

12
¼ 2:5(2:0=2)3

12
¼ 0:208 3 m4

The line of action of the horizontal force Rh then is

zr ¼ zc þ Ixxc
zcAy

¼ 0:5þ 0:208 3
0:5(2:5)

B 2.0 m

A

zr Rh

xr

Rυ

B

A

FIGURE 2.18 Cross section of a half-filled culvert.
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or

zr ¼ 0:667 m below the free surface

The vertical force is given by Equation 2.20:

Ry ¼ rgV�

and

V�¼ 1
4

pD2

4

� �
b ¼ 1

4
p(2:0)2

4

	 

(2:5) m3

so

V�¼ 1:96 m3

Therefore,

Ry ¼ (1 000 kg=m3
)(9:81 m=s2)(1:96 m3)

or

Ry ¼ 19:2 kN

The line of action of the vertical force passes through the centroid of the quarter circle at a distance into
the page of 1.25 m. Referring to Table B.1, the centroid of the quarter circle is given by

xr ¼ 4R
3p

¼ 4(2:0=2)
3p

or

xr ¼ 0:42 m from the centerline

Thus, Rh acts at a depth zr below the centroid of the plane area formed by the projection of the curved
surface onto a vertical plane normal to Rh, and Ry acts through the centroid of the liquid volume.

Example 2.10

When the culvert described in Example 2.9 was installed and still empty, it was buried halfway in mud
(Figure 2.19). Determine the forces acting on half the submerged portion, assuming that the mud has a
density equal to that of water.

SOLUTION

As before, there is a horizontal and a vertical force component. The horizontal force is given by Equation
2.18 with zc¼ 0.5 m and Ay¼ 2.5 m2 as in Example 2.9:

Rh ¼ rgzcAy ¼ (1 000 kg=m3
)(9:81 m=s2)(0:5 m)(2:5 m2)

Rh ¼ 12:3 kN
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In comparing Figures 2.18 and 2.19, note that the pressure distributions are equal but opposite in
direction. Therefore, Ry in Example 2.9 is the same in magnitude as the vertical force in this example
(just like the horizontal forces). Hence,

Ry ¼ rgV�¼ 1 000 kg=m3
� �

9:81 m=s2
� �

1:96 m3
� �

Ry ¼ 19:2 kN

Again Rh acts at a depth zr below the centroid of the plane area formed by the projection of the curved
surface onto a vertical plane normal to Rh, and Ry acts through the centroid of the displaced volume.
From Example 2.9,

zr ¼ 0:667 m below the free surface

and

xr ¼ 0:42 m from the centerline

Example 2.11

Figure 2.20a shows a gate that is 4 ft wide (into the page) and has a curved cross section. When the liquid
level gets too high, the moments due to liquid forces act to open the gate and allow some liquid to
escape. For the dimensions shown, determine whether the liquid is deep enough to cause the gate to
open. Take the liquid to be castor oil.

SOLUTION

Figure 2.20b is a sketch of the gate with the pressure distributions acting on it. Figure 2.20c is of the
equivalent forces and their locations. We now proceed to calculate the magnitude of the forces and to
evaluate the moment these forces exert about the hinge. The force Rh is given by Equation 2.18:

Rh ¼ rgzcAy

For castor oil, r¼ 0.96(1.94) slug=ft3 from Table A.5. The distance to the centroid of the vertical
projected area is zc¼ 0.5 ft. The vertical projected area becomes Ay¼ 1(4)¼ 4 ft2. The horizontal force is
then

Rh ¼ 0:96 1:94 slug=ft3
� �

32:2 ft=s2
� �

(0:5 ft) 4 ft2
� �

zr

xr

Rh

Rυ

B

A

FIGURE 2.19 A partially submerged culvert.
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or

Rh ¼ 120 lbf

Now for Ay, which is a rectangle 4 ft wide� 1 ft tall,

Ixcc ¼ 4(1)3

12
¼ 0:333 ft4

The line of action of the horizontal force Rh is then

zr ¼ zc þ Ixcc
zcAy

¼ 0:5þ 0:333
0:5(4)

or

zr ¼ 0:667 ft from the free surface

The vertical force acting on the curved part of the gate is given by

Ry1 ¼ rgV�

Gate

Castor oil

(a)

(b) (c)

Hinge

1 ft

1 ft
zr

Aυ

xr1
xr2

Rυ1
Rυ2

Rh

2 ft
1.2 ft

FIGURE 2.20 A liquid-retaining gate.
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where V� is the displaced volume of the liquid. Thus,

V�¼ 1
4

pD2

4

� �
b ¼ 1

4
p(2)2

4

� �
(4)

¼ 3:14 ft3

The vertical force is

Ry1 ¼ 0:96 1:94 slug=ft3
� �

32:2 ft=s2
� �

3:14 ft3
� � ¼ 188 lbf

The line of action of this vertical force is through the centroid of the displaced volume. Hence,

xr1 ¼ 4R
3p

¼ 4(1)
3p

¼ 0:424 ft from the hinge

The third force to consider is also a vertical force due to the weight of the liquid. At a depth of 1 ft,

p ¼ rgz ¼ 0:96 1:94 slug=ft3
� �

32:2 ft=s2
� �

(1 ft) ¼ 60 lbf=ft2

The equivalent force Ry2 is the product of pressure and area over which the pressure acts:

Ry2 ¼ pA ¼ 60 lbf=ft2
� �

(1:2 ft)(4 ft)

¼ 288 lbf

The line of action of this force is

xr2 ¼ 0:6 ft to the right of the hinge

To find out whether the gate tends to open, we sum moments about the hinge, assuming counter-
clockwise to be positive (an arbitrary decision). If our answer turns out negative, then we know that the
forces exert moments that will open the gate. Thus,

X
M ¼ Ry2 xr2ð Þ � Ry1 xr1ð Þ � Rh 1 ft� zrð Þ

¼ 288(0:6)� 188(0:424)� 120(1� 0:667)

Solving, we get

X
M ¼ þ53:1 ft lbf

Because our answer is positive, we conclude that the gate will remain closed.

2.4 EQUILIBRIUM OF ACCELERATING FLUIDS

In the problems we have discussed thus far, forces due to pressure variations were simple to
compute because the fluid was at rest and hence there were no shear stresses between adjacent
layers of fluid. A liquid transported at a uniform rate of acceleration is also motionless with respect
to its container. Consequently, there are no shear stresses, and here too forces due to pressure
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variations are simple to calculate. Uniformly rotating fluids represent another case of interest. When
a liquid is rotating at a constant angular velocity, it is acted upon by centripetal acceleration forces.
Because the liquid is at rest with respect to its container, forces due to pressure variations are again
simple to calculate.

To illustrate this phenomenon, consider the setup shown in Figure 2.21. A rectangular trans-
parent box is attached to a model railroad flatcar that is free to traverse a track. A rope tied to the car
is wrapped over a pulley and attached to a weight. As the weight falls, the car accelerates at a. Next
we establish a coordinate system that moves with the car as shown in Figure 2.21. The positive
x-axis is in the direction of motion of the car, the y-axis is directed inward to the plane of the paper,
and the z-axis is upward. Applying Newton’s law to the liquid in each of these directions gives the
following pressure variations:

@p

@x
¼ �ra (2:22a)

@p

@y
¼ 0 (2:22b)

@p

@z
¼ �rg (2:22c)

Integration of Equation 2.22a yields

p ¼ �raxþ f1(y, z)þ C1 (2:23a)

where f1 is a function of y and z and C1 is a constant of integration. Both naturally become zero
when the partial derivative with respect to x is taken. Integration of Equation 2.22c yields

p ¼ �rgzþ f2(x, y)þ C2 (2:23b)

Taking the derivative of p in both equations with respect to y, we obtain

@p

@y
¼ @f1

@y
(2:24)

and

@p

@y
¼ @f2

@y

z Free surface when car is 
motionless or has
zero acceleration
Free surface when car is 
uniformly accelerating

Acceleration a
x

m

z0
zi zf x0

FIGURE 2.21 An experiment to investigate a uniformly accelerating liquid.
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Inspection of Equation 2.22b leads to the conclusion that neither f1 nor f2 is a function of y. Equating
Equations 2.23a and 2.23b, we get

�raxþ f1(z)þ C1 ¼ �rgzþ f2(x)þ C2

which leads to

f1(z) ¼ �rgz

f2(x) ¼ �rax

C1 ¼ C2

Therefore, the pressure in Equation 2.23 becomes

p ¼ �rax� rgzþ C1 (2:25)

The constant C1 is evaluated at the left edge of the tank where x¼ 0, z¼ zi¼ height of the liquid at
the left wall, and p¼ ps¼ surface pressure. Substitution into Equation 2.25 gives

ps ¼ �rgzi þ C1

or

C1 ¼ ps þ rgzi

The pressure is then

p� ps ¼ r g zi � zð Þ � ax½ � (2:26)

The equation of the free surface results when p¼ ps in Equation 2.26:

g zi � zð Þ ¼ ax

z ¼ zi � ax

g
(2:27)

This is a straight line with intercept zi and slope �a=g.

Example 2.12

A lawn fertilizer company has a flatbed truck on which a rectangular, plastic tank is transported to
various job sites. The tank is sketched in Figure 2.22. As indicated, the tank is 4 ft long, 3 ft tall, and 5 ft
wide (into the plane of the page). The tank is filled to a depth of 2 ft with liquid fertilizer (specific
gravity¼ 0.97). The truck can accelerate at a rate equal to a¼ g=2. Determine the equation of the free
surface of the fertilizer at this rate.

SOLUTION

The surface during acceleration is shown in Figure 2.22. From the geometry, the slope of the line is

tan u ¼ z0
x0

¼ a

g
¼ g=2

g
¼ 0:5

or

z0 ¼ 0:5x0
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With x0¼ 2 ft, z0¼ 0.5(2)¼ 1 ft. Also,

zi ¼ zf þ z0 ¼ 2þ 1 ft ¼ 3 ft

The free surface then is given by

z ¼ zi � a

g

� �
x

or

z ¼ 3� 0:5x ft

This equation is independent of fluid properties. Although the problem statement specified liquid
fertilizer, the same equation would result for any liquid.

Consider next a liquid-filled cylindrical container rotating at a constant angular velocity
(Figure 2.23). Cylindrical coordinates appear in the figure with the origin at the center of the bottom
of the tank. The acceleration in the u-direction is zero. The acceleration in the r-direction is –rv2,

zi
zf

z0

x0

2 ft

4 ft

a

H

FIGURE 2.22 Accelerating truck with tank attached.

Free surface at rest

p

p

p +dz

Free surface during rotation

2R2/2g
2R2/4g

dr

r

d

zzp

p
r dr

p + p
r dz

FIGURE 2.23 A rotating cylinder of radius R containing a liquid.
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where v is the angular velocity. The acceleration in the z-direction is due to gravity. Applying
Newton’s law in the r- and z-directions to the forces acting on a fluid element yields

p dz(r du)� pþ @p

@r
dr

� �
dz(r du) ¼ � rv2

g
rg dr(r du)dz

and

p dr(r du)� pþ @p

@z
dz

� �
dr(r du) ¼ rg(r du)dr dz

These equations simplify to

@p

@r
¼ rv2

g
rg

@p

@z
¼ �rg

Integration brings

p ¼ r2v2

2g
rgþ f1(u, z)þ C1 (2:28a)

p ¼ �rgzþ f2(r, u)þ C2 (2:28b)

where: f1 and f2 are functions of two variables
C1 and C2 are constants of integration

Differentiation of both equations with respect to u yields

@p

@u
¼ @f1

@u

@p

@u
¼ @f2

@u

Because there is no acceleration in the u-direction, both these equations equal zero. Therefore,
neither f1 nor f2 is a function of u. Equating Equations 2.28a and 2.28b, we obtain

r2v2

2g
rgþ f1(z)þ C1 ¼ �rgzþ f2(r)þ C2

after which we conclude that

f1(z) ¼ �rgz

f2(r) ¼ r2v2

2g
rg

C1 ¼ C2
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Equation 2.28 now becomes

p ¼ r2v2

2g
rg� rgzþ C1 (2:29)

At r¼ 0, we get z¼ zp and p¼ ps¼ surface pressure. By substitution, we obtain

ps ¼ �rgzp þ C1

C1 ¼ ps þ rgzp

Thus, Equation 2.29 finally becomes

p� ps ¼ rg
r2v2

2g
� z� zp
� �	 


(2:30)

The equation of the free surface results if p is set equal to ps:

z ¼ r2v2

2g
þ zp (2:31)

which is the equation of a parabola. The liquid in the rotating cylinder forms a paraboloid of
revolution. For this geometry, it can be shown that the distance between the bottom of the parabola
and the top of the liquid at the wall is R2v2=2g by setting r¼R in Equation 2.31. It can also
be shown that the distance between the free surface before rotation to the bottom of the parabola
is R2v2=4g.

Example 2.13

The rotating cylinder of Figure 2.23 is 30 cm in diameter and 42 cm high. It is filled to a depth of 35 cm
with liquid. Determine the angular velocity required to spill liquid over the top.

SOLUTION

Equation 2.31 is the free-surface equation:

z ¼ r2v2

2g
þ zp

If r¼R, then z¼ 0.42 m. Thus,

0:42 m ¼ R2v2

2g
þ zp

It is known that the free-surface height at rest is

0:35 m ¼ zp þ R2v2

4g

Combining these equations, we get

0:42 m� R2v2

2g
¼ 0:35 m� R2v2

4g
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or

0:07 m ¼ R2v2

4g

Solving for the angular velocity, we obtain

v2 ¼ 4(0:07 m) 9:81 m=s2ð Þ
0:15 m2ð Þ ¼ 122

v ¼ 11:0 rad=s ¼ 1:76 rev=s

Therefore, liquid will spill over the top when

v > 11:0 rad=s

2.5 FORCES ON SUBMERGED BODIES

When a body is submerged, the fluid exerts a net force on it in an upward direction. For example, a
cube submerged in a fluid will have hydrostatic pressure acting on its lower surface and on its upper
surface. The pressure exerted on its lower surface is greater than that exerted on its upper surface
because pressure increases with depth. The difference in these pressures multiplied by the area over
which they act is defined as the buoyant force, a force that acts in the direction opposite to that of
the gravity force.

To illustrate this definition in more detail, consider the submerged object shown in Figure 2.24a.
The object has dimensions a� b� c. Figure 2.24b shows the same object in a two-dimensional
profile view. The pressure distributions acting on the upper and lower surfaces are found with

pu ¼ rgz1

and

pl ¼ rgz2

Forces are easier to work with than pressure distributions, and so we find it convenient to replace the
pressures with equivalent forces. These forces are shown in Figure 2.24c and are determined using

Ru ¼ puA ¼ rgz1(ac)

z1

b

(a) (b) (c) (d)

a
c

z2
Ru Rb

Rl

pu

pl

FIGURE 2.24 A submerged object and the hydrostatic forces acting on it.
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and

Rl ¼ plA ¼ rgz2(ac)

In order to simplify this development even further, we combine these two hydrostatic forces into one
force that we have already defined as the buoyant force Rb:

Rb ¼ Rl � Ru ¼ plA� puA ¼ rgz2(ac)� rgz1(ac)

or

Rb ¼ rg z2 � z1ð Þ(ac)

We see from the figure that (z2� z1)¼ b, so that the buoyant force can be rewritten as

Rb ¼ rg(abc) ¼ rgV�

where the volume V� of the object is (abc). The buoyant force therefore equals the weight of the
volume of liquid displaced by the object.

Thus, we have illustrated the definition of the buoyant force as being the difference in
hydrostatic forces (due to pressures) acting in the vertical direction on the object. Also, we have
concluded that for the object of Figure 2.24, a consequence of our definition is that the buoyant force
equals the weight of the liquid displaced by the object. To establish this fact with more mathematical
rigor, however, we should work with an object of arbitrary shape to determine if the same
conclusion can be drawn.

Consider an irregularly shaped submerged object as shown in Figure 2.25. A rectangular
coordinate system is established with the z-direction positive downward. Choose a slice having a
cross-sectional area dA and length z2 – z1. At 1 we have a pressure p1, and at 2 we have p2; both act
over an area equal to dA. The buoyant force is due to this difference in pressure and is therefore
equal to

dRb ¼ p2 � p1ð ÞdA

acting upward. From hydrostatics, p¼ rgz. Substituting, we have

dRb ¼ rgz2 � rgz1ð ÞdA
¼ rg z2 � z1ð ÞdA

z

x Rb z1

z2

p1dA

dV

g dV

p2 dA

dA

1

xr

2

O

FIGURE 2.25 A submerged body.
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But the volume of the element is (z2� z1)dA, and our equation becomes

dRb ¼ rg dV�

Integrating over the entire volume gives the total vertical force:

Rb ¼ rg

ððð
dV� (2:32)

Thus, the buoyant force equals the weight of the volume of fluid displaced. This concept is known
as Archimedes’ principle. (Recall that pressure does not vary with horizontal distance, so there
are no unbalanced forces in the x- or y-direction).

With reference to Figure 2.25, we can now evaluate the moment of the buoyant force about
the origin:

Rbxr ¼ rg

ððð
x dV�

Combining with Equation 2.32, we obtain an expression for the line of action of Rb:

xr ¼
Ð Ð Ð

x dV�
V� (2:33)

Thus, the buoyant force acts through the centroid of the submerged volume: the center of
buoyancy.

When the buoyant force exceeds the object’s weight while submerged in a liquid, the object will
float in the free surface. A portion of its volume will extend above the liquid surface, as illustrated in
Figure 2.26. In this case,

dRb ¼ rgz2 � ragz1ð ÞdA

where ra is the air density or density of the fluid above the liquid. For most liquids,

ra � r

and thus we can write

dRb ¼ rgz2 dA ¼ rg dV�s

z1

z2

1

2

FIGURE 2.26 A floating body.
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where dV�s is the submerged volume. Integration gives

Rb ¼ rg

ððð
dV�s (2:34)

Thus, the buoyant force exerted on a floating body equals the weight of the displaced volume of
liquid. It can be shown that this force acts at the center of buoyancy of only the submerged volume.

Example 2.14

Figure 2.27 shows a 4-cm-diameter cylinder floating in a basin of water, with 5 cm extending above the
surface. If the water density is 1 000 kg=m3, determine the density of the cylinder.

SOLUTION

A free-body diagram of the cylinder includes gravity and buoyancy forces. The total weight of the object
is supported by the buoyant force that acts on the submerged portion of the cylinder. Summing these
forces, we get

mg ¼ Rb

or

rcV�g ¼ rV�sg

or

rc ¼
rV�s

V�

where rc is the density of the cylinder and V�s is the volume of the submerged portion of the cylinder.
Thus,

mg4 cm

5 cm

20 cm

Rb

FIGURE 2.27 A cylinder floating in the surface of a liquid.
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V�¼ pD2

4

� �
L

and

V�s ¼ pD2

4

� �
Ls

where Ls¼ 20 cm as indicated in Figure 2.27. Substituting,

rc ¼
r pD2=4ð ÞLs
pD2=4ð ÞL ¼ rLs

L

rc ¼ 1 000
20
25

� �

or

rc ¼ 800 kg=m3

2.6 STABILITY OF SUBMERGED AND FLOATING BODIES

In this section, we consider two cases of stability: objects that are submerged and objects that are
floating. An object is considered to be in stable equilibrium if it returns to its original position after
being displaced slightly from that position. For the case of a submerged object, consider a gondola
being carried in air by a balloon as sketched in Figure 2.28. Since the hot air in the balloon is lighter
than ambient air at ground level, the balloon rises to a height at which atmospheric density nearly

mgmg

GG

B

B

Rb

Rb

(b)(a)

FIGURE 2.28 A balloon and basket submerged in air.
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equals hot air density (accounting for the weight of the balloon). The buoyant force is shown to act
through the center of buoyancy B. The weight of the system is shown to act at the center of gravityG.
If the system is disturbed by, say, a gust of wind, then the buoyant force and the weight together form a
moment that returns the balloon and basket to the equilibrium position. The system depicted in Figure
2.28a is then considered stable. For submerged bodies, we conclude that when the center of buoyancy
lies directly above the center of gravity in a static position, the system is considered stable.

For the case of a body floating in a liquid surface, the stability requirements can be examined
by using the body sketched in Figure 2.29. The buoyant force acts through B, and the weight
acts through point G. Figure 2.29a depicts a stable situation; yet, unlike the submerged body of
Figure 2.28, G is above B. Thus a somewhat different criterion is necessary for floating bodies.

First extend the line of action of Rb until it intersects the centerline of the body (Figure 2.29b).
The point of intersection is called the metacenter M. The distance MG is known as the metacentric
height. The force Rb acts through M. The object is stable if the metacenter lies above the center of
gravity because in this case a restoring moment is set up when the object is disturbed from its
equilibrium position.

Example 2.15

Figure 2.30a shows a bar of soap floating in a basin of water. Sketch its position for 08, 308, 608, and 908
from the position of Figure 2.30a. Show the center of buoyancy (B) and the center of gravity (G), and
comment on the stability.

SOLUTION

Figure 2.30 shows all the positions with comments on the stability.

The preceding example shows how an intuitive analysis can be performed on a stability
problem. In many cases, however, a mathematical approach is necessary. Consider the hull of a
ship as sketched in Figure 2.31. A plan view is shown as well as a cross-sectional view at A–A. From
the previous discussion, we know that there is a buoyant force acting at B and the weight of the
entire ship acting at G. The weight of only the submerged volume V�s also acts at B. When the ship is
rolled (rotated about axis y–y), it becomes deflected through an angle u known as the angle of heel.
As shown in Figure 2.31c, the submerged volume changes geometry, and the center of buoyancy
moves to B0. Correspondingly, a restoring moment is set up; this moment is given as DRbx0. The
weight of the submerged volume (equal to the weight of liquid displaced) now acts through B0.
Summing moments about B, we have

DRbx0 ¼ rgV�sr (2:35)

mg

mg

Rb
Rb

B
B G
G

(b)(a)

M

FIGURE 2.29 Stability of a floating body.

72 Introduction to Fluid Mechanics



The magnitude of DRbx0 can be determined again by taking moments about point O, where the
liquid surface intersects the cross section at the centerline. Choose an element of area dA a distance x
from O. The volume of this element is x tan u dA or, for small u, xu dA. The buoyant force due to it
is (rgxu dA). The moment of the element about O is rgx2u dA; therefore,

mg

mg

G
B

mg

G

B

(d) 90   unstable; any slight disturbance
moves M above G giving a moment

to move soap to 0

(c) 60  clockwise moment; return to 0  ;
M above G; stable

(b) 30  clockwise moment; return to 0 ;
M above G; stable

Rb

G

B

M

Rb

Rb
Rb

(a) 0  stable

B

mg

G

M

FIGURE 2.30 Solution to Example 2.15.

ΔRb

ΔRb

M
O

B

B

B

r

G
G

AA

x x

y

y

(a) (b) (c)View A–A

x

x0

FIGURE 2.31 A sketch for calculating metacentric height.
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DRbx0 ¼
ðð

rgx2u dA (2:36)

Equating Equations 2.35 and 2.36 gives

rgu

ðð
x2dA ¼ rgV�sr

The double integral is recognized as the moment of inertia about axis y–y of the ship. After
simplification, we obtain

uIyyc ¼ V�sr (2:37)

Now r¼MB sin u¼MBu, for small u. Combining this result with Equation 2.37, we have

uIyyc ¼ V�sMBu

or

MB ¼ Iyyc
V�s

(2:38)

The metacentric height is found in terms of distance to be

MB ¼ MGþ GB

Thus, MG¼MB�GB or

MG ¼ Iyyc
V�s

� GB

The criteria for stability become

MG ¼ Iyyc
V�s

� GB > 0 ! Iyyc
V�s

> GB (stable) (2:39a)

MG ¼ Iyyc
V�s

� GB ¼ 0 ! Iyyc
V�s

¼ GB (neutral) (2:39b)

MG ¼ Iyyc
V�s

� GB < 0 ! Iyyc
V�s

< GB (unstable) (2:39c)

Example 2.16

It is known that a long log floats with its axis horizontal. A very short log, however, floats with its axis
vertical. Determine the maximum length of a cylindrical walnut log 40 cm in diameter that will cause it
to float with its axis vertical.

SOLUTION

For walnut, the specific gravity ranges from 0.64 to 0.70 (Table A.7); we will use the average value of
0.67. Take the log as floating horizontally and about to tip to a vertical position. In this instance, then,
Iyyc is the same for either position. We will calculate length L by using Equation 2.39b:
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Iyyc
V�s

¼ GB (neutral stability)

Note that if L is larger than that calculated here, the log remains horizontal; if L is shorter, the log
becomes vertical. From Table B.1 for a cylinder,

Iyyc ¼ pD4

64
¼ p(0:4)4

64
¼ 1:26� 10�3 m4

For a vertical log, G is L=2 from the bottom. The log has s¼ 0.67, and thus B is 0.67L=2 from the bottom
because the log is only 67% submerged, as shown in Figure 2.32. Hence,

GB ¼ L

2
� 0:67L

2
¼ 0:165L

With submerged volume given as

V�¼ 0:67pD2L

4
¼ 0:67p(0:4)2L

4
¼ 8:42� 10�2L m3

Equation 2.39b becomes, after substitution,

1:26� 10�3

8:42� 10�2L
¼ 0:165L

or

L2 ¼ 0:0907

Solving, we get

L ¼ 0:301 m ¼ 30:1 cm

2.7 SUMMARY

In this chapter, we discussed pressure and its measurement by manometers and pressure gauges. We
examined the pressure distributions existing in a static fluid in contact with submerged plane and
curved surfaces. Moreover, we developed equations that are useful in finding forces and their

0.67L/2

0.67L
L/2

G

B

L

FIGURE 2.32 Floating log with axis vertical showing distances from bottom.
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locations that were equivalent to the pressure variations existing in static fluids. It was shown that
accelerating liquid containers can be analyzed by methods of fluid statics. Finally, we derived
expressions for predicting hydrostatic forces on submerged bodies and discussed the criterion of
stability for submerged and for floating bodies.

PROBLEMS

The Hydrostatic Equation

2.1 Repeat the derivation in Section 2.1 for a three-dimensional prism to prove that pressure at a
point is independent of direction.

2.2 A hydraulic jack is used to bend pipe as shown in Figure P2.2. What force F2 is exerted on the
pipe if F1 is 100 lbf, assuming pressure is constant throughout the system.

1.5 cm

5 cm

Oil

Pipe

F1

F2

FIGURE P2.2

2.3 A hydraulic elevator is lifted by a 10 in. diameter cylinder under which oil is pumped
(Figure P2.3). Determine the output pressure of the pump as a function of z if the weight of
the elevator and occupants is 1600 lbf. Take the specific gravity of the oil to be 0.86.
The elevator cylinder does not contain oil.

24 ft

10 in. Oil z

From
pump

Elevator
cylinder

FIGURE P2.3

2.4 A suited diver can dive to a depth at which the pressure is 1 814 kPa. Calculate the depth in
seawater where this pressure exists.

2.5 A free diver (unsuited) can dive to a depth at which the pressure is about 71 psi. What is the
corresponding depth in seawater?
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2.6 The deepest descent in seawater of a diving bell is 1370 ft. The deepest descent in seawater of
a human-carrying vessel is 35,820 ft. What is the pressure at each of these depths?

2.7 A cylindrical tank is used to store methyl alcohol after its production and before it is pumped
to its user. The tank is 75 ft in diameter and is filled to a depth of 20 ft. Calculate the pressure
exerted at the bottom of the walls.

2.8 Linseed oil can be mixed with powders to produce paint. The oil is shipped via rail in tank
cars that are 6 ft in diameter and 40 ft long. Calculate the pressure exerted at the bottom of a
full tank.

2.9 The pressure at the bottom of an open top tank of ethyl alcohol is 17 psia. What is the depth of
the liquid?

2.10 Water towers are often used to maintain city water pressure. In many locations, the static
pressure is 65 psig. Calculate the height of liquid in a water tower that is necessary to maintain
this pressure.

2.11 The output pressure of a pump is 3.0 psi. The pump is used to deliver propyl alcohol to a tank, as
shown in Figure P2.11. To what depth can the tank be filled at this pump pressure, provided that
inflow stops when pump pressure equals hydrostatic pressure in the tank? Ignore frictional losses.

Open to atmosphere

Propyl alcohol
from pump

z

FIGURE P2.11

2.12 Methyl alcohol and gasoline (assume octane) are mixed together in an open fuel tank. The
methyl alcohol soon absorbs water from the atmosphere, and the water–alcohol mix separates
from the gasoline, as shown in Figure P2.12. Find the pressure at the bottom of the tank wall.

Open to
atmosphere

Gasoline

Water–alcohol
s = 0.85

1

2
0.3 m

0.7 m

3

FIGURE P2.12

2.13 A tank is filled to a depth of 10 ft with liquid. Using the same axis scales, sketch p versus z
according to the hydrostatic equation for (a) water, (b) ether, and (c) carbon disulfide.

2.14 A common drinking glass is 7 cm in diameter and filled to a depth of 12 cm with water.
Calculate the pressure difference between the top and the bottom of the glass sides.

2.15 Figure P2.15 shows a tank containing three liquids. What is the expected reading on the
pressure gauge?
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Castor oil

Water

Carbon tetrachloride
12 in.

2 in.

4 in.

FIGURE P2.15

2.16 A concrete dam is constructed as shown in Figure P2.16. When the water level on the left is
30 ft, determine the pressure at the bottom of the dam.

30 ft

FIGURE P2.16

2.17 A floating cover is used in oil- and gasoline-storage tanks to keep moisture out (Figure P2.17).
If the cover weighs 300 N and the depth of gasoline (assume octane) is 8 m, determine the
pressure at the bottom of the tank wall.

30 m

Gasoline

Floating cover

Open to atmosphere

FIGURE P2.17

2.18 Figure P2.18 shows a tank containing turpentine. The tank bottom has a plug with a cable
attached that leads to a weightW. It is desired to have the plug close when the turpentine depth
is 1.1 m. Calculate the weight required to do this.
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W
1.1 m

2 cm

3 cm

FIGURE P2.18

The Atmosphere

2.19 At what atmospheric elevation is the pressure equal to 15 kPa if the temperature is –578C?
Assume a lapse rate of 6.58C=km from sea level, where the temperature is taken to be 288 K.

2.20 Calculate the atmospheric pressure at an elevation of 50,000 ft. Express the answer in kPa,
psia, and psig.

2.21 Verify that the pressure variation in the stratosphere is given by

p ¼ 22 500 exp
11 000� z

6 315

� �

where T¼�578C¼ a constant, z 	 11 000 m, and p¼ 22.5 kPa at z¼ 11 000 m.
2.22 It was stated that in the troposphere the temperature is given by

T ¼ T0 � ah

where T is the temperature from sea level to 11 000 m, T0 is the temperature at sea level
(¼ 288 K), a is the lapse rate (¼ 6.58C=km).

a. Starting with the differential form of the hydrostatic equation (Equation 2.4), substitute for
r from the ideal gas law; for temperature, substitute the equation given here.

b. Separate the variables and integrate from p1¼ 101.3 kPa (z1¼ 0) to p2¼ p (z2¼ 11 000 m).
c. Show that

p ¼ 101:3 kPa(1� 0:000 022 6z)5:26

d. Plot p versus z for 0 
 z 
 11 000 m.
e. Combine this plot with the result for z 	 11 000 m.

2.23 At what elevation is atmospheric pressure equal to 7 kN=m2? Use the equation in Problem 2.21
or in Problem 2.22 as appropriate.

Fluid Statics 79



2.24 At what elevation is atmospheric pressure equal to 4 psia? Use the equation in Problem 2.21 or
in Problem 2.22 as appropriate.

2.25 The elevation above sea level at Denver, Colorado, is 5283 ft, and the local atmospheric
pressure there is 83.4 kPa. If the temperature there is 758F, calculate the local air density and
the barometric pressure in centimeters of mercury.

2.26 Select a city and use a reference text to determine its elevation above sea level. Use the
appropriate equation (as found in Example 2.3 or in Problem 2.22) to calculate the local
atmospheric pressure there. Express the result in centimeters of mercury. Use a temperature of
258C if necessary.

2.27 Determine the height of mercury in a barometer if atmospheric pressure is 10 psia.
2.28 At an elevation of 12 km, atmospheric pressure is 19 kN=m2. Determine the pressure at an

elevation of 20 km if the temperature at both locations is �578C.

Manometry

2.29 Figure P2.29 shows a tank containing linseed oil and water. Attached to the tank 3 ft below the
water–linseed oil interface is a mercury manometer. For the dimensions shown, determine
the depth of the linseed oil.

Linseed oil

Water

Mercury

3.5 in.2 in.

3 ft

z

FIGURE P2.29

2.30 Determine the pressure above the glycerine in Figure P2.30.

Open to atmosphere

Carbon
tetrachloride

Glycerine 20 in.

4 in.

FIGURE P2.30

2.31 Figure P2.31 shows a manometer and a gauge attached to the bottom of a tank of kerosene.
The gauge reading is 2 psig. Determine the height z of mercury in the manometer.
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Open to atmosphere

Open to 
atmosphere

z
1 in.

FIGURE P2.31

2.32 A pump is a device that puts energy into a liquid in the form of pressure. The inlet side of a
pump usually operates at less than atmospheric pressure. As shown in Figure P2.32, a
manometer and a vacuum gauge are connected to the inlet side of a pump, and the vacuum
gauge reads the equivalent of 34 kPa (absolute).

a. Express the gauge reading in psig.
b. Calculate the deflection when the manometer liquid is mercury.

Open to
atmosphere

Pump

3 cm
z

Inlet

Motor

Outlet

FIGURE P2.32

2.33 Twopipelines are connectedwith amanometer, as shown in Figure P2.33. Determine the pressure
p2 if the manometer deflection is 28 in. of water and p1 is 50 psig. The fluid in each pipe is air.

z

p1

p2

FIGURE P2.33
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2.34 Figure P2.34 shows a pressure vessel containing propylene glycol with a manometer attached.
The propylene glycol level within the manometer rises 6 in. above the top of the vessel.
Determine the pressure at the top of the vessel.

6 in.

Open to atmosphere

FIGURE P2.34

2.35 If turpentine pressure is 20 psi, find the water pressure for the system shown in Figure P2.35.

Turpentine

Water

Mercury

6 in.

7 in.
4 in.

20 psi

FIGURE P2.35

2.36 Calculate the air pressure in the tank shown in Figure P2.36. Take atmospheric pressure to
be 101.3 kPa.

Air

Air

4 cm

6 cm
15 cm21

3

4

Oil
s = 0.89

Open to
atmosphere

Water

FIGURE P2.36
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2.37 The pressure difference between two vessels containing air is to bemeasured. Amanometer that is
12 in. tall is available, and the maximum pressure difference between the two vessels is 2.5 psi.
Methyl alcohol, water, andmercury are available asmanometer liquids. Are any of them suitable?

2.38 The pressure of the air in Figure P2.38 is 10.7 kPa, and the manometer fluid is of unknown
specific gravity s. Determine s for the deflections shown.

Air

Mercury

4 cm

1

Open to atmosphere

Heptane

10.7 kPa

7 cm

8 cm
3

2

4
ρs

FIGURE P2.38

2.39 For the sketch of Figure P2.39 (all dimensions in inches), determine the pressure of the linseed
oil if the glycerine pressure is 150 psig.

Glycerine

1

2

9 in. 8 in.

8 in.

4

9 in.

5

6
12 in.3

Mercury Water

Linseed oil

Castor oil

FIGURE P2.39

2.40 Find z in Figure P2.40 if p2 – p1¼ 3.0 psig.

Water

2 ft

10 ft

Water

2

1

z

Oxygen

FIGURE P2.40
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2.41 Two pipes containing air are connected with two manometers, as shown in Figure P2.41.
One manometer contains glycerine, and the difference in liquid levels is 10 cm. The other
manometer contains an unknown liquid, and it shows a difference in liquid levels of 15 cm.
What is the density of the unknown liquid?

Unknown liquid Glycerine

10 cm

Air

15 cm
Air

FIGURE P2.41

2.42 An inverted U-tube manometer is connected to two sealed vessels, as shown in Figure P2.42.
Heptane is in both vessels, and the manometer shows a difference in heptane levels of 10 cm.
Calculate the pressure difference between the two vessels.

10 cm

Air

FIGURE P2.42

2.43 A manometer is used to measure pressure in a tank as a check against a simultaneous
measurement with a gauge. The tank liquid is benzene; the manometer fluid is mercury. For
the configuration shown in Figure P2.43, determine the gauge pressure at A.

Open to
atmosphere

Benzene

22 cm

10 cm

A

1

2

B C

D

FIGURE P2.43
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Forces on Submerged Plane Surfaces

2.44 Figure P2.44 shows a rectangular retaining door holding water. Sketch the pressure prism and
determine the resultant force on the door and its location.

0.5 m

4.5 m 
4 m

Water

FIGURE P2.44

2.45 Figure P2.45 shows a rectangular gate holding water. Floating atop the water is a layer of oil.
For the dimension shown,

a. Sketch the pressure prism for water only in contact with the door
b. Sketch an additional pressure distribution due to the oil
c. Determine the magnitudes of the resultant forces

5 ft

2 ft

Water

Oil

s = 1.0

s = 0.88

6 ft

3 ft

FIGURE P2.45

2.46 A rectangular gate is holding water that has a layer of kerosene over it. With both liquids in
contact with the gate as shown in Figure P2.46:

a. Sketch the pressure prisms
b. Determine the magnitude of the resultant forces

2 ft

8 ft

4 ft
Kerosene

Water1.5 ft

FIGURE P2.46
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2.47 A rectangular gate is used to separate carbon disulfide from liquid ether as shown in Figure
P2.47. The gate is 0.4 m wide. Determine the height of ether that is required to balance the
force exerted by the carbon disulfide such that the moment about O is zero.

Ether
z1.5 m

O

Carbon
disulfide 0.9 m

FIGURE P2.47

2.48 A rectangular gate 3 ft wide is used as a partition to separate glycerine and water as shown in
Figure P2.48. A stop is located on the floor of the water side of the gate. Calculate the force
required to hold the door closed.

Glycerine

O

Water

F

3.2 ft
2 ft

FIGURE P2.48

2.49 A rectangular gate 1.6 m wide is used as a partition as shown in Figure P2.49. One side has
linseed oil filled to a depth of 10 m. The other has two fluids—castor oil over water.
Determine the depth of castor oil required to keep the door stationary (no moment about
point O).

Castor oil

Water2 m

z

O1 m

Linseed oil

10 m

FIGURE P2.49

2.50 A hinged rectangular door 2 ft wide is free to rotate about point O but is held securely by a
block at A. On the left side of the door is methyl alcohol filled to a depth of 3 ft. Find the
restraining force at A. (See Figure P2.50.)
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A

O

6 ft

3 ft

FIGURE P2.50

2.51 A rectangular gate is used as a retaining wall for seawater as shown in Figure P2.51. The gate
is hinged at point O located 1 m from the bottom. Determine the depth of seawater required for
the resultant force to be located at the hinge. The gate width into the page is 1.8 m.

Seawater

4 m

3 m

O
z

FIGURE P2.51

2.52 Figure P2.52 shows triangular retaining door holding acetone. Sketch the pressure prism and
determine the resultant force on the door and its location.

Acetone

4 ft

15 ft

FIGURE P2.52

2.53 A porthole in the wall of a loaded ship is just below the surface of the water as shown in
Figure P2.53. Sketch the pressure prism for the window, determine the magnitude of the
resultant force, and find its location.
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Seawater

30 cm

25 cm

FIGURE P2.53

2.54 An aquarium is designed such that a viewing window is elliptical, as shown in Figure P2.54.
Sketch the pressure prism for the window, determine the magnitude of the resultant force, and
find its location.

Water

2 ft

1 ft

4 ft

FIGURE P2.54

2.55 Figure P2.55 shows a 4-ft-wide (into the page) gate that has an L-shaped cross section and is
hinged at its comer. The gate is used to ensure that the water level does not get too high. Once
the level rises over a certain point, the fluid forces acting on the gate tend to open it and release
some liquid. Determine the height z above which the gate tends to open.

Gate

Hinge

Water

2 ft
z

6 ft

FIGURE P2.55
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2.56 Figure P2.56 shows a hinged gate used as a retainer for castor oil. The liquid depth to the
horizontal portion of the gate is 2 ft, and the gate itself is to be designed so that the oil depth
does not exceed 5 ft. When the depth is greater than 5 ft, the fluid forces act to open the gate,
and some oil escapes through it. The gate is 2 ft wide (into the page). Determine the angle u
required for the gate to open when necessary.

GateHinge

5 ft

2 ft 6 in.
2 ft

FIGURE P2.56

2.57 A dam is constructed as in Figure P2.57. Determine the resultant force and its location acting
on the inclined surface. Perform the calculations assuming a unit width into the page.

120 ft

Seawater

50

FIGURE P2.57

2.58 A tank having one inclined wall contains chloroform as shown in Figure P2.58. The inclined
wall has a rectangular plug 20 cm wide by 40 cm high. Determine the force exerted on the
plug if a pressure gauge at the tank bottom reads 17 kPa (gauge).

Open to atmosphere

25

40 cm

20 cm

60 cm 17 kPa

Chloroform

FIGURE P2.58
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2.59 A small, narrow, flat-bottomed fishing boat is loaded down with two crew members and a
catch of fish. The rear of the boat is a plane inclined at an angle u of 758 with the horizontal.
Thirty centimeters below the water surface is a hole in the boat plugged with a cork that is
8 cm in diameter. Determine the force and its location on the cork due to the saltwater if the
liquid density is 1025 kg=m3. (See Figure P2.59.)

30 cm

FIGURE P2.59

2.60 Figure P2.60 shows a tank that contains hexane. A circular gate in the slanted portion of one
wall is 6 in. in diameter. Determine the resultant force acting on the gate and its location.

6 in.
diameter

6 in. 

1 ft

1 ft

30

FIGURE P2.60

2.61 Figure P2.61 shows an inclined wall of a tank containing water. The tank wall contains a plug
held in place by a weight. The liquid depth can be maintained constant in the tank, and the
depth can be controlled by the amount of weight W that is used. For the conditions shown,
determine the weight required to keep the plug in place.
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2 ft

5 in. 1 in.
40

W

6 in.

12 in.

FIGURE P2.61

2.62 A trough formed by two sides of wood is used to convey water. Every 0.8 m, a turnbuckle
and wire are attached to support the sides. Calculate the tension in the wire using the data in
Figure P2.62.

Turnbuckle

0.38 m

0.62 m
Water

90

FIGURE P2.62

2.63 The location of the force due to a pressure distribution is written in terms of the centroid,
second moment, and area according to

zr ¼ zc þ Ixxc
zcA

Write the equation for zc and for zr in terms of depth h for a rectangular gate that is completely
in contact with liquid.

2.64 The location of the force due to a pressure distribution is written in terms of the centroid,
second moment, and area according to

zr ¼ zc þ Ixxc
zcA

Write the equation for zc and for zr in terms of depth h for a circular gate that is completely in
contact with liquid.
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2.65 The location of the force due to a pressure distribution is written in terms of the centroid,
second moment, and area according to

zr ¼ zc þ Ixxc
zcA

Write the equation for zc and for zr in terms of depth h for a triangular gate that is completely
in contact with liquid. The orientation of the gate is the same as that shown in Table B.1.

2.66 The location of the force due to a pressure distribution is written in terms of the centroid,
second moment, and area according to

zr ¼ zc þ Ixxc
zcA

Write the equation for zc and for zr in terms of depth h for a semicircular gate that is
completely in contact with liquid. The orientation of the gate is the same as that shown in
Table B.1.

2.67 The location of the force due to a pressure distribution is written in terms of the centroid,
second moment, and area according to

zr ¼ zc þ Ixxc
zcA

Write the equation for zc and for zr in terms of depth h for an elliptical gate that is completely
in contact with liquid. The orientation of the gate is the same as that shown in Table B.1.

Forces on Submerged Curved Surfaces

2.68 The reservoir of a tank truck is elliptical in cross section—4 ft high, 6 ft wide, and 12 ft long.
Calculate the forces exerted on one of the lower quadrants of the tank when half-filled with
gasoline (Figure P2.68). Take gasoline properties to be the same as those for octane.

B

D

CA

6 ft

4 ft

FIGURE P2.68

2.69 Find the forces exerted on the portion labeled ABC of the elliptical tank truck of Figure P2.68
when it is half-filled with gasoline. Take gasoline properties to be the same as those for octane.

2.70 The tank truck of Figure P2.68 has ends as sketched as in Figure P2.70. Determine the
horizontal force acting on the end when the tank is filled with gasoline (assume the same
properties as octane).
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4 ft

4 × 6 ft elliptical
cross section

FIGURE P2.70

2.71 In many regions of the United States, home heating is effected by burning propane. A side
view of a typical propane storage tank is sketched in Figure P2.71. Determine the forces
exerted on quadrant DE for the case when the tank is filled to the top (point B). Tank length
into the page is 2 m.

65 cm

30 cm

A C

F D

E

B

FIGURE P2.71

2.72 In many regions of the United States, home heating is effected by burning propane. A side
view of a typical propane storage tank is sketched in Figure P2.71. Determine the forces
exerted on the bottom portion labeled FED for the case when the tank is filled to the top
(point B). Tank length into the page is 2 m.

2.73 In many regions of the United States, home heating is effected by burning propane. A side
view of a typical propane storage tank is sketched in Figure P2.71. Sketch the pressure
distribution acting on quadrant DE for the case when the tank is filled to the top (point B).
Tank length into the page is 2 m.

2.74 A side view of a typical fuel storage tank is sketched in Figure P2.71. Sketch the pressure
distribution acting on quadrant BC if the tank is filled with gasoline (assume it is octane). Tank
length into the page is 2 m.

2.75 Figure P2.75 shows a seawater-retaining gate with a curved portion. When the water level gets
to a certain height, the fluid forces acting on the gate open it, and the seawater passes through.
The gate is 1 m wide (into the page) and is to be designed so that the water depth does not
exceed 2 m. Determine the length L of the straight portion of the gate required to do this.
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1 m

L

2 m

Gate

Hinge

FIGURE P2.75

2.76 Figure P2.76 shows the side view of a tank with a curved gate. The gate width into the page is
24 in. The tank contains glycerine and is filled to a depth of 32 in. Determine the magnitude
and location of the forces acting on the gate.

Gate

16 in.

12 in.

4 in.

FIGURE 2.76

Equilibrium of Accelerating Fluids

2.77 At what acceleration must the car of Figure 2.21 be moving for the fluid to spill over the rear
wall? The tank attached to the car is 6 in. long and 4 in. high. It is filled to a depth of 2 in. with
linseed oil.

2.78 The car of Figure 2.21 is traveling at a constant velocity of 15 cm=s but goes around a curve of
radius 56 cm. Viewing the car from the front, what is the equation of the surface? The tank
attached to the car is 20 cm long and 10 cm high. It is filled to a depth of 5 cm with linseed oil.

2.79 The car of Figure 2.21 is decelerating uniformly at 12 g. Determine the free surface of the liquid.
The car is 6 in. long and 4 in. high. It is filled to a depth of 2 in. with linseed oil.

2.80 A passenger in a car is holding a cup of coffee. The cup has an inside diameter of 7.8 cm and
an internal height of 8 cm. The cup is filled with liquid to a height of 7 cm. The car accelerates
uniformly from rest until it reaches 40 mi=h. What is the maximum acceleration rate that can
be attained without spilling coffee over the top of the cup if the passenger holds the cup level?

2.81 At what rate of deceleration will the liquid level of Figure 2.22 just reach the top of the tank?
2.82 The liquid container of Figure 2.23 is rotating at 1.5 rev=s. Determine the shape of the liquid

surface. The tank diameter is 1 ft; tank height is 18 in.; and the liquid depth when the tank is
stationary is 6 in.
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2.83 The liquid acceleration experiment depicted in Figure 2.21 is to be run with glycerin. The tank
measures 6 in. long and 4 in. high. Glycerine is poured in until its height is 2 in. The weight is
allowed to fall freely. Owing to wheel and pulley friction, the car accelerates at only 0.7g.
Determine the free surface of the glycerine.

Forces on Submerged Bodies

2.84 Derive an equation for the buoyant force exerted on a submerged cylinder with its axis
vertical.

2.85 A 1.2-ft3 block of aluminum is tied to a piece of cork, as shown in Figure P2.85. What volume
of cork is required to keep the aluminum from sinking in castor oil?

Cork

FIGURE P2.85

2.86 What percentage of total volume of an ice cube will be submerged when the ice cube is
floating in water?

2.87 A copper cylinder of diameter 4 cm and length 15 cm weighs only 14 N when submerged in
liquid. Determine the liquid density.

2.88 A cylinder 8 cm in diameter is filled to a depth of 30 cm with liquid. A cylindrical piece of
aluminum is submerged in the liquid, and the level rises 4 cm. The weight of the aluminum
when submerged is 2.5 N. Determine the liquid density.

2.89 A glass is filled to a depth d with linseed oil and allowed to float in a tank of water. To what
depth can the glass be filled with linseed oil such that the tank water will just reach the brim of
the glass? (See Figure P2.89).

2 in.

4 in.

d

Linseed
oil

Water in
tank

3
16

FIGURE P2.89
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2.90 A cube of material is 4 in. on a side and floats at the interface between kerosene and water, as
shown in Figure P2.90. Find the specific gravity of the material.

b/3

2b/3
Water

b

Kerosene

FIGURE P2.90

2.91 Ablock of tin of cross-sectional area 2m2 is resting on theflat bottomof a tank, as in Figure P2.91.
No water can get beneath the block, which is only 0.1 m high. The water depth is 30 m.

a. Determine the force required to lift the block just off the bottom.
b. When the block has been raised just 1 cm and the water can get beneath it, determine the

force required to lift the block further.

30 m

0.1 m

1 cm
A = 2 m2

F F

FIGURE P2.91

2.92 A flat barge carrying a load of dirt is sketched in Figure P2.92. The barge is 30 ft wide, 60 ft
long, and 8 ft high. The barge is submerged 6.5 ft. Determine the weight of the dirt load if the
weight of the barge is 400,000 lbf.

30 ft

8 ft

Seawater

6.5 ft

FIGURE P2.92
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2.93 A bar of soap of dimensions 10 cm long, 5 cm wide, and 3 cm tall is floating in a basin of
water with 8 mm extending above the surface. If the water density is 997 kg=m3, determine the
density of the soap. (See Figure P2.93.)

8 mm

10 cm

3 cm

FIGURE P2.93

Stability of Submerged and Floating Bodies

2.94 Rework Example 2.16 for a balsa log.
2.95 Figure P2.95 shows a prismatic body, such as a barge, floating in water. The body is 6 m wide

and 18 m long, and it weighs 1.96 MN. Its center of gravity is located 30 cm above the water
surface. Determine the metacentric height if Dz is 30 cm.

6 m

OΔz

FIGURE P2.95

2.96 Figure P2.95 shows a prismatic body, such as a barge, floating in water. The body is 6 m
wide and 18 m long, and it weighs 1.96 MN. Its center of gravity is located 30 cm above the
water surface. Determine the restoring couple if Dz is 30 cm.

Computer Problems

2.97 Figure P2.97 shows a tank with two chambers. The oil level in the tank can vary, and when oil
fills the tank, air in the smaller chamber escapes through a one-way valve. As oil drains out of
the tank, a certain volume remains in the smaller chamber, which serves as a depth gauge. The
oil will not drain out of the smaller chamber until the level falls below point A. Determine
the air pressure in the topmost portion of the smaller chamber as a function of z. Let z vary
from 1 to 10 ft in 1-ft increments. When z¼ 10 ft, the air pressure equals 14.7 psia. Produce a
chart and=or a graph of air pressure versus depth z.
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Oil
Specific gravity = 0.826

10 ft

Check valve

Air

Drain

z

A

FIGURE P2.97

2.98 Figure P2.98 shows a tank with a curved gate at the bottom. The gate extends 24 cm into the
page. Derive an equation for the horizontal force acting on the gate in terms of the depth.
Allow the depth from tank bottom to vary from 10 to 20 cm in 1-cm increments. Produce a
chart and=or a graph of horizontal force versus depth z.

20 cm

Turpentine

10 cm

Gate

FIGURE P2.98

2.99 Figure P2.98 shows a tank with a curved gate at the bottom. The gate extends 24 cm into the
page. Derive an equation for location zr of the horizontal force acting on the gate in terms of
the depth. Allow the depth from tank bottom to vary from 10 to 20 cm in 1-cm increments.
Produce a chart and=or a graph of the location zr versus depth z.

2.100 Figure P2.98 shows a tank with a curved gate at the bottom. The gate extends 24 cm into the
page. Derive an equation for the vertical force acting on the gate in terms of the depth. Allow
the depth from tank bottom to vary from 10 to 20 cm in 1-cm increments. Produce a chart
and=or a graph of vertical force versus depth z.

2.101 Figure P2.98 shows a tank with a curved gate at the bottom. The gate extends 24 cm into the
page. Derive an equation for location of the vertical force acting on the gate in terms of
the depth. Allow the depth from tank bottom to vary from 10 to 20 cm in 1-cm increments.
Produce a chart and=or a graph of the location of the vertical force versus depth z.
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Design Problems

2.102 A Method for Verifying the Hydrostatic Equation
The hydrostatic equation says that pressure varies linearly with increasing depth for
static fluids:

p ¼ rgh

This result stems from our mathematical description of how fluids behave. It is always
appropriate, however, to experimentally verify mathematical results. Consider a fluid in
contact with a vertical gate as shown in Figure P2.102. It is desired to design an apparatus
similar to the one in the figure with provision for measuring pressure at a number of points
along the gate.

a. Design a tank to be used for the experiment. Explain how the dimensions selected were
determined.

b. Determine the number of places where pressure is to be measured.
c. Determine how the pressure is to be measured at the selected points. All pressures should

be displayed simultaneously.
d. Justify your design.

Gate

Liquid

FIGURE P2.102

2.103 Measuring Density of an Oil Finish
In a company that markets linseed-oil finishes, control of product quality is essential. The oil
finish is a liquid that contains linseed oil mixed with several chemicals. It has been
determined that if the density of the liquid is in the range 950–1000 kg=m3, then the product
is acceptable. The oil finish is transported in a pipeline. It has been suggested that a sample of
the liquid be withdrawn from this line and the liquid density be measured by using the
concept of buoyant force.

a. Design a method, using the concept of buoyant force, to measure density; that is, by
measuring the weight of a submerged object, determine if the oil sample is within
acceptable limits. Select object, container, scale, and so on. Give reasons for the decisions
made.

b. Determine how much of the liquid is required to make a measurement of density.
c. Show a schematic of the entire process, from obtaining a liquid sample to returning the

sample to a holding tank.
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3 Basic Equations of Fluid
Mechanics

The purposes of this chapter are to discuss the behavior of fluids while they are flowing, to present a
unified mathematical approach to solving fluid flow problems, and to derive the basic equations of
fluid mechanics. The continuity, momentum, and energy equations are derived for a general case.
The Bernoulli equation is developed from the momentum and energy equations.

Before we begin a discussion of the equations, it is important to examine types of flows and how
they can be characterized. Closed-conduit flows are completely enclosed by restraining solid
surfaces; examples are flow through a pipe and flow between parallel plates where there is no
free surface. Open-channel flows have one surface exposed to atmospheric pressure; examples are
flow in a river and flow in a spillway. In unbounded flows, the fluid is not in contact with any
solid surface; examples are the jet that issues from a household faucet and the jet from a can of
spray paint.

3.1 KINEMATICS OF FLOW

In flow situations, solution of a problem often requires determination of a velocity. As we will see,
however, velocity varies in the flow field. Moreover, the flow can be classified according to how the
velocity varies. If the parameters of both the fluid and the flow are constant at any cross section
normal to the flow, or if they are represented by average values over the cross section, the flow is
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said to be one-dimensional. Velocity distributions for one-dimensional flow are illustrated in Figure
3.1. Although flow velocity may change from point to point, it is constant at each location.

A flow is said to be two-dimensional if the fluid or the flow parameters have gradients in two
directions. In Figure 3.2a—flow in a pipe—the velocity at any cross section is parabolic. The
velocity is thus a function of the radial coordinate; a gradient exists. In addition, a pressure gradient
exists in the axial direction that maintains the flow. That is, a pressure difference from inlet to outlet
is imposed on the fluid that causes flow to occur. The flow is one-directional, but because we have
both a velocity and a pressure gradient, it is two-dimensional. Another example of two-dimensional
flow is given in Figure 3.2b. At the constant-area sections, the velocity is a function of one variable.
At the convergent section, velocity is a function of two space variables. In addition, a pressure
gradient exists that maintains the flow. Figure 3.2c gives another example of a one-directional, two-
dimensional flow; gradients exist in two dimensions.

It is possible to assume one-dimensional flow in many cases in which the flow is two-
dimensional to simplify the calculations required to obtain a solution. An average constant velocity,
for example, could be used in place of a parabolic profile, although the parabolic profile gives a
better description of the flow of real fluids because velocity at a boundary must be zero relative to
the surface (except in certain special cases such as rarefied gas flows).

A flow is said to be three-dimensional when the fluid velocity or flow parameters vary with
respect to all three space variables. Gradients thus exist in three directions.

Flow is said to be steady when conditions do not vary with time or when fluctuating variations
are small with respect to mean flow values, and the mean flow values do not vary with time.
A constant flow of water in a pipe is steady because the mean liquid conditions (such as velocity and
pressure) at one location do not change with time. If flow is not steady, it is called unsteady: mean
flow conditions do change with time. An example would be the flow of water through a pipe during

FIGURE 3.1 One-dimensional flow where velocity and pressure are uniform at any cross section.

r
A

Velocity
distribution

Flow
direction

A(a)

z

(b) A

A

Flow
direction

B

A
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x
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V

Velocity distribution

(c)

FIGURE 3.2 Two-dimensional flow.
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the closing or opening of a valve. Emptying a sink creates an unsteady flow. In some unsteady
flows, it may be permissible or even necessary to assume that steady flow exists to obtain a solution.
The flow is then assumed to be quasi-steady.

Consider a 1
4-in.-diameter tube used to siphon water from a tank 4 ft in diameter. The flow is

unsteady; as the water level in the tank decreases, the velocity of the water in the tube decreases.
Because the change in tank level is comparatively slow, however, the time dependence is not strong.
Consequently, equations developed for steady flow could be applied to this unsteady problem at
selected instants of time. An inaccuracy is involved in this procedure, however, and the question
ultimately reduces to whether or not the magnitude of the error is acceptable. The final test of
this approximation (or any mathematical model) is how well it describes the physical phenomena
in question.

Velocity at a point has magnitude and direction. Velocity at a point is thus a vector quantity. It is
often helpful to sketch the direction of velocity at each point in the flow field by using streamlines.
Streamlines are tangent to the velocity vector throughout the flow field. The magnitude of the
velocity at every point in the cross section is not specified—only direction. Furthermore, there is no
flow across a streamline. Figure 3.3a shows a single streamline, and Figure 3.3b illustrates
streamlines of flow in a diverging duct.

A passageway for the fluid made up of a ‘‘bundle’’ of streamlines is called a streamtube (Figure
3.4). It is referred to as a passageway because its wall or boundary is made up of streamlines across
which there is no flow. A pipe is an example of a streamtube.

Streaklines are yet another aid in visualizing flow direction. A streakline is defined as the locus
of all fluid particles that have passed through a point. If we injected dye into the flow of a fluid at a
single point, the dye would follow the path of the fluid particles passing through the point. A
photograph of the flow pattern would then show a streak of dye: a streakline. If the flow varies with
time, successive photographs show different streaklines. For steady flow, however, the flow does
not vary with time; streaklines and streamlines are coincident. With these definitions and concepts
of flow behavior, we can now proceed with the development of the equations of fluid mechanics.

3.2 CONTROL VOLUME APPROACH

As we saw in the last section, there are many types of flow. We now address the question of how to
determine the velocity in the flow field. There are two possible approaches: the Lagrangian
approach and the Eulerian approach.

(x, y)

V Streamline

Vx

Vy

(a) (b)

FIGURE 3.3 (a) Velocity vector at a point on a streamline. (b) Streamlines in a diverging duct.

FIGURE 3.4 A streamtube formed by a bundle of streamlines.
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The Lagrangian approach is used in solid mechanics and involves describing the motion of a
particle by position as a function of time. This approach might be used in describing the motion of
an object falling under the action of gravity: s ¼ 1

2 gt
2. At any time, distance from the body’s original

position is known. This approach is difficult to use in fluid mechanics, however, because a fluid is a
continuous medium—a single fluid volume changes shape, and different particles within the fluid
volume are traveling at different velocities. In other words, because of the nature of fluids, the
Lagrangian approach is generally not a desirable method for analysis. There are some problems in
fluid mechanics, however, where this approach can be used.

The Eulerian (or control volume) approach is preferred in fluid mechanics. In this method, we
choose a region in the flow field for study. As an example, consider flow draining from a sink, as
illustrated in Figure 3.5. A control volume is chosen about the region of study and is bounded by the
dashed line called the control surface. Everything outside is called the surroundings. We can
choose the control volume or shape of the control surface as necessary for convenience in solving
the problem. In general, the shape of the control volume is selected such that fluid and flow properties
can be evaluated at locations where mass crosses the control surface—or, if no mass enters or exits,
where energy crosses the control surface. Furthermore, the control surface can move or change shape
with time (as in Figure 3.5). The control volume is to fluids as the free-body diagram is to solids. The
Eulerian approach lends itself nicely to the solution of fluid mechanics problems.

Our objective is to develop equations of fluid dynamics that, in effect, are conservation
equations: the continuity equation (conservation of mass), the momentum equation (conservation
of linear momentum), and the energy equation (conservation of energy). Each will be developed
from a general conservation equation.

Let us define N as a flow quantity (mass, momentum, or energy) associated with a fluid volume
or system of particles. Let n represent the flow quantity per unit mass. Thus,

N ¼
ððð

nr dV� (3:1)

Consider a system of particles at two different times: V�1 at t1 and V�2 at t2. Referring to Figure 3.6,
we see that V�1 is bounded by the solid line and V�2 is bounded by the double line. Note that V�1

consists of V�A and V�B; V�2 consists of V�B and V�C. The control volume is bounded by the dashed
line. The amount of flow quantity N contained in V�1 is the amount in V�A and the amount in V�B at t1
which is NA1

þNB1
. The amount of flow quantity contained in V�2 is the amount in V�B and V�C at t2,

which is NB2
þNC2

. During the time interval, the change in N is, therefore,

DN ¼ NB2 þ NC2ð Þ � NA1 þ NB1ð Þ
¼ NB2 � NB1 þ NC2 � NA1

Control surface

Control volume

Drain

FLGURE 3.5 A control volume about the liquid in a sink.
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On a per-unit-time basis with t2� t1¼Dt, we have

DN

Dt
¼ NB2 � NB1

Dt
þ NC2 � NA1

Dt
(3:2)

We now take the limit as Dt approaches zero to obtain an instantaneous time rate of change of flow
quantity N:

lim
Dt!0

DN

Dt
¼ lim

Dt!0

NB2 � NB1

Dt
þ lim

Dt!0

NC2 � NA1

Dt
(3:3)

where:

lim
Dt!0

DN

Dt
¼ dN

dt

����
system

¼
instantaneous rate of

change of flow

quantity N

8><
>:

lim
Dt!0

NB2 � NB1

Dt
¼ @N

@t

����
control volume

¼
rate of accumulation (or

storage) of flow quantity

N in control volume

8><
>:

lim
Dt!0

NC2 � NA1

Dt
¼ lim

Dt!0

dN

Dt
¼

net rate out (out minus in)

of flow quantity N

from control volume

8><
>:

To obtain a specific limiting expression for this last term, consider a differential area dA through
which fluid particles flow (Figure 3.7). The fluid velocity at dA is ~V , which has components normal

VCVBVA

V1, t1 V2, t2

FIGURE 3.6 A fluid volume at two different times.

Vt Vn

Vn Δt
dA dA

Ṽ

FIGURE 3.7 Flow through a differential area dA.
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and tangential to dA: Vn and Vt. The tangential velocity carries no fluid out of the control volume
with it; all fluid leaving dA is in the Vn direction. During the time interval Dt, the mass of fluid
crossing dA is

dm ¼ r dV�

The differential volume of fluid dV� is the product of cross-sectional area and height:

dV� ¼ (VnDt)dA

so that

dm ¼ r(VnDt)dA

The amount of the quantity N being taken across the area dA is

dN ¼ n dm

or

dN ¼ nrVn Dt dA

Dividing by Dt gives

dN

Dt
¼ nrVn dA

and in the limit

lim
Dt!0

dN

Dt
¼
ðð

nrVn dA

Control
Surface

By substitution into Equation 3.3, we have the general conservation equation:

dN

dt

����
S

¼ @N

@t

����
CV

þ
ðð
CS

nrVn dA

total amount net rate out
particles stored (out minus in)

(3:4)

where: S¼ system
CV¼ control volume
CS¼ control surface

Equation 3.4 gives a relationship between the various quantities associated with a system of
particles. In words, Equation 3.4 says

instantaneous time
rate of change in N

for a system of particles

0
@

1
A ¼

instantaneous time
rate of accumulation of N
within the control volume

0
@

1
Aþ

amount of N leaving
the control volume minus
the amount of N entering

0
@

1
A
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3.3 CONTINUITY EQUATION

The continuity equation is a statement of conservation of mass. The flow quantity N becomes m, and
n¼m=m¼ 1. Equation 3.4 becomes

dm

dt

����
S

¼ @m

@t

����
CV

þ
ðð
CS

rVn dA

For a system of particles, mass is constant because it can be neither created nor destroyed. Thus

@m

@t

����
CV

þ
ðð
CS

rVn dA ¼ 0 (3:5)

In other words, the mass entering the control volume equals mass stored plus mass leaving. For steady
flow with no storage, the mass entering equals mass leaving. For steady flow, Equation 3.5 becomes

ðð
CS

rVn dA ¼ 0 (3:6)

For incompressible fluids (liquids), r is a constant, and we obtain the following for steady
incompressible flow:

ðð
CS

Vn dA ¼ 0 (3:7)

This equation states that the volume of fluid entering the control volume per unit time equals the
amount leaving. Equation 3.7 also states that a velocity distribution normal to the control surface
must be integrated over the cross-sectional area at exits and inlets to the control volume.

For many flow situations, however, a velocity distribution may not be known or derivable; in
such cases, it is more convenient to use an average velocity at a cross section that is independent of
area. (This assumes that we have one-dimensional flow or at least flow that can be treated as one-
dimensional.) Thus, by definition,ðð

Vn dA ¼ V

ðð
dA ¼ VA

or

V ¼
Ð Ð

Vn dA

A
(3:8)

in which V is the average velocity. The product AV¼Q is known as the volume flow rate with
dimensions of L3=T (m3=s or ft3=s). Also used in fluid mechanics is the term _m, defined as the mass
flow rate, where _m¼ rQ¼ rAV. The mass flow rate has dimensions of M=T (kg=s or slug=s).

To illustrate the concept of average velocity, again consider flow in a pipe (Figure 3.2a). Take
the velocity distribution to be

Vz ¼ 5 1� r2

R2

� �
ft=s
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where R is the pipe radius. This equation gives the velocity at any radial location within the pipe,
and is defined as the instantaneous velocity. At a control surface normal to the axial direction,
Vz¼Vn and the average velocity is

V ¼
Ð 2p
0

Ð R
0 5(1� r2=R2)r dr du

pR2
¼

Ð R
0 5(1� r2=R2)2pr dr

pR2

¼ 10p r2=2� r4=4R2ð ��R
0
Þ

pR2
¼ 10

1
2
� 1
4

� �
¼ 2:5 ft=s

where we have used dA¼ r dr du for cylindrical coordinates in the integral.
Physically, this result means we can replace the velocity distribution with an average velocity

such that the volume flow rate remains unchanged (see Figure 3.8). In various practical problems,
volume flow rate and area are known but velocity distribution is not. In many cases, an average
velocity is all that can be determined.

By using average velocity, the continuity equation becomes

X
in

rAV ¼
X
out

rAV þ @m

@t

����
CV

(3:9)

For steady flow with no storage of mass,

X
in

rAV ¼
X
out

rAV (3:10)

Example 3.1

A pipeline with a 30 cm inside diameter is carrying liquid at a flow rate of 0.025 m3=s. A reducer is
placed in the line, and the outlet diameter is 15 cm. Determine the velocity at the beginning and end of
the reducer.

SOLUTION

Select the control volume as shown in Figure 3.9. Flow crosses the control surface at sections 1 and 2,
where the streamlines are all parallel and flow properties are all known or can be determined. There is no
mass stored. Applying Equation 3.6, we get

ðð
CS

rVn dA ¼ 0 (mass flow out � mass flow in) ¼ 0

Vz = 5(1  –  r2/R2) ft/s V = 2.50 ft/s

R

FIGURE 3.8 Definition of average velocity.
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or

ðð
2

rVn dA�
ðð
1

rVn dA ¼ 0

With a liquid flowing, r1¼ r2. Using the concept of average velocity, we have
A2V2¼A1V1¼Q (a constant)

Now Q is given as 0.025 m3=s. So at section 1,

V1 ¼ Q

A1
¼ 0:025 m3=s

(p=4)(0:30)2 m2
¼ 0:35 m=s

At section 2,

V2 ¼ Q

A2
¼ 0:025

(p=4)(0:15)2
¼ 1:4 m=s

Although diameter was halved, the velocity changed by a factor of 4.

Example 3.2

A 4-ft-diameter tank containing solvent (acetone) is sketched in Figure 3.10. The solvent is drained from
the bottom of the tank by a pump so that the velocity of flow in the outlet pipe is constant at 3 ft=s. If the
outlet pipe has an inside diameter of 1 in., determine the time required to drain the tank from a depth of
3 ft to a depth of 6 in.

30 cm

1

2

15 cm

FIGURE 3.9 Sketch for Example 3.1.

3 ft

4 ft

z

V = 3 ft/s

Outlet
pipe

FIGURE 3.10 Circular tank of solvent being drained.
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SOLUTION

We choose the control volume to be the volume of liquid in the tank at any time. The flow is unsteady;
the continuity equation applies:

@m

@t

����
CV

þ
ðð
CS

rVn dA ¼ 0

We now evaluate each term in the equation. The volume of fluid in the tank at any time is given by

V�¼ p(4)2

4
z ¼ 12:57z ft3

The density of acetone from Table A.5 is 0.787(1.94) slug=ft3. The mass of acetone in the tank is

m ¼ rV�¼ 0:787(1:94)(12:57z) ¼ 19:2z slugs

The rate of change of mass in the tank then becomes

@m

@t
¼ 19:2

@z

@t
¼ 19:2

dz

dt

where the exact differential notation is used because depth z varies only with time t.
The second term in the continuity equation is evaluated for mass leaving and mass entering the

control volume:

ðð
CS

rVn dA ¼
ðð
out

rVn dA�
ðð
in

rVn dA

In this case, density is constant and average velocity is given. With no mass entering, we therefore have

ðð
CS

rVn dA ¼ rAV
��
out � 0 ¼ 0:787(1:94)

p(1=12)2

4
(3)

or

ðð
CS

rVn dA ¼ 0:025

Substituting into the continuity equation yields

19:2
dz

dt
þ 0:025 ¼ 0

Rearranging and separating variables, we get

dz ¼ �0:00130 dt

When the depth in the tank is 3 ft, the corresponding time is 0. When the depth is 0.5 ft, the
corresponding time is t, which is the time we seek. Integrating between these limits gives

ð0:5
3

dz ¼ �0:00130
ðt
0

dt
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or

(0:5� 3) ¼ �0:00130(t � 0)

Solving for time, we obtain

t ¼ 2:5
0:00130

t ¼ 1920 s ¼ 32 min ¼ 0:53 h

Example 3.3

In most metalworking shops, plate steel is cut by means of an oxyacetylene torch. Oxygen for cutting is
supplied via tanks 30 cm in diameter by 1.3 m tall. These tanks are charged to an internal pressure of
13 800 kPa gauge. A valve 12.5 mm in diameter is located at the top of the tank. If the tank valve is
opened fully, oxygen escapes at 1.5 m=s. Assuming that this exit velocity is constant, determine the tank
pressure after 60 s. Take the temperature in the tank to be unchanging and equal to 258C.

SOLUTION

Select the control volume to include the entire tank contents and to cross just upstream of the valve
perpendicular to the flow direction, as in Figure 3.11. Thus, flow leaves the control volume at the
location where flow properties are known or can be determined.

The continuity equation is

@m

@t

����
CV

þ
ðð
CS

rVn dA ¼ 0

To evaluate the first term, we find the mass in the tank at any time to be m ¼ rV�. Assuming an ideal gas,
r¼ p=RT. For a constant-temperature process,

@m

@t

����
CV

¼ V�
RT

dp

dt

Valve

O2

FIGURE 3.11 Sketch for Example 3.3.
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Take the tank to be a right circular cylinder; thus,

V�¼ area� height ¼ p(0:3)2(1:3)
4

¼ 0:091 9 m3

From Table A.6 for oxygen, R¼ 260 J=(kg �K) and T¼ 25þ 273¼ 298 K. We now have

@m

@t

����
CV

¼ 0:091 9
(260)(298)

dp

dt
¼ 1:19� 10�6 dp

dt

The second term of the continuity equation, evaluated where mass crosses the control surface, becomes

ðð
CS

rVn dA ¼ rAV joutlet ¼
p

RT

pD2

4
V

¼ p

260(298)
p(0:012 5)2

4
(1:5) ¼ 2:37� 10�9p

By substitution, we have

1:19� 10�6 dp

dt
¼ �2:37� 10�9p

After rearranging, we get

ðp
13 800

dp

p
¼

ð60
0

�2:0� 10�3dt

Upon integration, we obtain

‘n
p

13 800
¼ 2:0� 10�3(60) ¼ �0:12

or

p ¼ 13 800e�0:12

Solving, we get

p ¼ 12 200 kPa

3.4 MOMENTUM EQUATION

As we have seen, the continuity equation is a conservation of mass equation with which we can
account for mass transfers across boundaries and mass storage within control volumes. Next, we
will derive a conservation of momentum equation and use the same technique in applying it.
Because there are expressions for linear momentum and for angular momentum, we will derive
equations for each.
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3.4.1 LINEAR MOMENTUM EQUATION

We will apply the general conservation equation: Let N be momentummV, and n, which is N per unit
mass, becomes V. By substitution into Equation 3.4, the general conservation equation, we obtain

d

dt
(mV)

����
S

¼ @

@t
(mV)

����
CV

þ
ðð
CS

VrVn dA (3:11)

In addition, we have from Newton’s law for the system

X
Fx ¼ d

dt
(mV)x

X
Fy ¼ d

dt
(mV)y

X
Fz ¼ d

dt
(mV)z

Combining these equations with Equation 3.11, we obtain a conservation of linear momentum
equation for the three principal directions:

X
Fx ¼ d

dt
(mV)x

����
S

¼ @

@t
(mV)x

����
CV

þ
ðð
CS

VxrVn dA (3:12a)

X
Fy ¼ d

dt
(mV)y

����
S

¼ @

@t
(mV)y

����
CV

þ
ðð
CS

VyrVn dA (3:12b)

X
Fz ¼ d

dt
(mV)z

����
S

¼ @

@t
(mV)z

����
CV

þ
ðð
CS

VzrVn dA (3:12c)

Two velocities appear in the integrands of the last terms on the right-hand sides of the preceding
equations. One of the velocities refers to a principal flow direction; for example, Vx. The other
velocity, Vn, is normal to the control surface where mass crosses the boundary. These two velocities
are not always equal. Because force and velocity have magnitude and direction, they are vectors.
Thus, Equation 3.12 can be written in vector form as

X
F ¼ d

dt
(mV)

����
S

¼ @

@t
(mV)

����
CV

þ
ðð
CS

V( rV � dA) (3:13)

This equation is a conservation of linear momentum equation. As required by Newton’s law, the
term

P
F represents all forces applied externally to the control volume. These include forces due to

gravity, electric and magnetic fields, surface tension effects, pressure forces, and viscous forces
(friction). The first term on the right-hand side represents the rate of storage of linear momentum in
the control volume. The last term is a net rate out (out minus in) of linear momentum from the
control volume. For steady one-dimensional flow, Equation 3.13 becomes, for any direction i,

X
Fi ¼

ðð
CS

VirVn dA
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For one fluid stream entering and one leaving the control volume, we have the following for one-
dimensional flow:

X
Fi ¼ V2ir2A2V2 � V1ir1A1V1

¼ VirAV
��
out

� VirAV
��
in

or

X
Fi ¼ _m(V2i � V1i)

¼ _m(Vout � Vin)i direction (3:14)

The momentum equation can be used to set up a general equation for frictional effects existing
within a pipe, for a certain type of phenomenon in open channel flow, and for other kinds of
applications-oriented problems. Because such applications will appear later in the text, we devote
our study of the linear momentum equation here to some general one-dimensional problems for
which Equation 3.14 applies.

Example 3.4

A gardener is squirting the side of a house with a hose. The nozzle produces a 1
2-in.-diameter jet having a

velocity of 5 ft=s. Determine the force exerted by the jet on the wall when the angle between the jet and
the house is 908.

SOLUTION

A schematic of the jet in the vicinity of the wall is shown in Figure 3.12, along with the control volume
selected. Also shown is the restraining force, Fz, which acts in the negative z-direction. For a smooth
wall, the jet is divided upon impact into a thin sheet that travels in all directions, similar to a faucet jet
striking a flat-bottomed sink. Flow crosses the control volume boundary at locations where liquid and
flow properties can be determined. We have the continuity and momentum equations at our disposal.
Recall that the continuity equation involves only the magnitude of each velocity, whereas the velocities
in the momentum equation are dependent on the direction selected. Applying the one-dimensional
continuity equation, we get

r1A1V1 ¼ r2A2V2

Fz

r
2

1

2

z

FIGURE 3.12 Sketch of the axisymmetric jet of Example 3.4.
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Because the fluid is a liquid (incompressible), r1¼ r2, and so

A1V1 ¼ A2V2

We have not yet discussed frictional effects. However, in problems of this type, the effect of friction is to
reduce the velocity of the liquid as it flows through the control volume. Assuming frictionless flow, we
write

V1 ¼ V2

Combining with the previous equation, we further conclude that A1¼A2.
The control volume has the external force acting directly on it. In this case, because of symmetry, we

have forces only in the z-direction. We therefore write

X
Fz ¼ _m(Vout � Vin)z

The sum of the external forces acting on the control volume is the restraining force Fz acting in the
negative z-direction, which equals the force exerted by the jet. Note that the velocity of flow out of the
control volume in the z-direction is zero; the flow entering in the z-direction is denoted as V1. By
substitution,

X
Fz ¼ r1A1V1(0� V1) ¼ �r1A1V

2
1

�Fz ¼ �(1:94 slug=ft3)
p

4

1
2

� �2
ft2(5 ft=s)2

(12)2

Solving, we get

Fz ¼ 0:066 lbf

Note that the control volume was set up so that fluid crosses the control surface at a right angle.

Example 3.5

A vane in the shape of a flat plate is struck by a free jet. The vane has a velocity of Vn and is moving in
the opposite direction of the jet (Figure 3.13a). Develop an expression for the force exerted on the vane.

SOLUTION

Select a control volume as shown in the figure. Note that the control volume is moving with the
vane and that the flow properties can be evaluated where fluid crosses the control surface. For
convenience, let us impose a velocity of Vn acting to the right of each velocity currently in the

Vi Vj  +  VV
r

z
A

2

1
2

Fz

(a) (b)

FIGURE 3.13 Sketch of the axisymmetric jet of Example 3.5.
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figure. This arrangement will render the vane and the control volume motionless. The jet velocity now
becomes VjþVn. The continuity equation for steady, one-dimensional flow of an incompressible fluid
becomes

A1V1 ¼ A2V2

where V1¼VjþVn and V1¼V2 for frictionless flow. The momentum equation for the z-direction is

X
Fz ¼ _m(Vout � Vin)z

The only external force acting on the control volume is Fz, the restraining force required to hold the vane
stationary, which equals the force exerted by the jet. Thus,

�Fz ¼ _m(0� V1) ¼ rA(Vj þ Vn) 0� (Vj þ Vn)
� �

Fz ¼ rA(Vj þ Vn)
2

If the vane were moving to the right instead, we would obtain

Fz ¼ rA(Vj � Vn)
2

In this case, the force is zero when the vane is traveling at the jet velocity.

Example 3.6

Figure 3.14 shows a jet of water striking a curved vane, which turns the jet through an angle of 1208. The
vane is moving to the right at a velocity of 1 m=s. The jet velocity is 2.5 m=s and its cross-sectional area
is 0.03 m2. Assuming no frictional losses between the jet and the surface, determine the reaction forces
Fx and Fy.

SOLUTION

Figure 3.14a shows the jet impacting the moving vane. Figure 3.14b shows the vane rendered stationary.
Also shown are the reaction forces and the x–y axes. The control volume we select is moving with the vane
itself and is set up so that fluid crosses the control surface at right angles. We use the relative velocity
Vj�Vn, which is that of the jet with respect to the vane. For water, Table A.5 shows r¼ 1 000 kg=m3.
The one-dimensional steady-flow continuity equation for incompressible flow is

A1V1 ¼ A2V2

Vj

Vj

Vj  – V

Fy

Fx

Vj– V

V

y

x

120 120

1
2

(a) (b)

FIGURE 3.14 A liquid jet striking a moving vane.
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where V1¼V2¼Vj�Vn for frictionless flow. The momentum equation applied in the x-direction is

�Fx ¼ _m(Vout rel � Vin rel)x
¼ rA(Vj � Vv) �(Vj � Vn) cos 60

� � (Vj � Vn)
� �

Fx ¼ rA(Vj � Vn)
2( cos 60þ 1)

Substituting,

Fx ¼ 1 000(0:03)(2:5� 1)2(cos 60� þ 1)

Solving,

Fx ¼ 101:3 N

Applying the momentum equation in the y-direction, we write

Fy ¼ _m(Vout rel � Vin rel)y
¼ rA(Vj � Vn) (Vj � Vn) sin 60

� � 0
� �

Fy ¼ rA(Vj � Vn)
2 sin 60�

Substituting and solving gives

Fy ¼ 1 000(0:03)(2:5� 1)2 sin 60�

Fy ¼ 58:5 N

3.4.2 ANGULAR MOMENTUM EQUATION

In some problems of fluid mechanics, it is necessary to be able to evaluate moments exerted by
moving fluid volumes. This condition is especially true in the case of rotating machinery such as
turbines and pumps. The equation that is applicable in these instances is known as the angular
momentum equation. This equation is derivable by using the linear momentum equation.

Consider a control volume in the xy plane, as illustrated in Figure 3.15. It is located a distance r
from the origin; and as fluid passes through the control volume, a force is exerted. The force can be
resolved into two components—one normal and one tangential to r. The torque exerted by the force
equals the product of force and moment arm. In differential form, we have

dT0 ¼ r dFt

y

O x

Vt
Vn

dFt
dFn

dF
V

r

FIGURE 3.15 Definition sketch for derivation of the angular momentum equation.

Basic Equations of Fluid Mechanics 117



where: dT0 is the differential torque exerted about the origin
dFt is the tangential component of the differential force perpendicular to r

Because the force is regarded as being caused by fluid motion through the control volume, we
can use the linear momentum equation (Equation 3.12) applied in the tangential direction to obtain
the following:

dFt ¼ @

@t
(Vt dm)þ (VtrVn dA)

The differential torque is then

dT0 ¼ r
@

@t
(Vt dm)þ r(VtrVn dA)

By integrating this expression over all control volumes that contribute to the total torque, we get

T0 ¼ @

@t

ððð
CV

rVt dmþ
ðð
CS

rVt( rVn dA) (3:15)

The left-hand side represents the sum of all externally applied torques on the control volume. The
first term on the right-hand side represents a storage of angular momentum in the control volume;
the last term is the net rate out (out minus in) of angular momentum from the control volume.

As seen in Figure 3.15, V sin u¼Vt. Equation 3.15 thus becomes

T0 ¼ @

@t

ððð
CV

rV sin u dmþ
ðð
CS

rV sin u( rVn dA) (3:16)

Using vector notation, we define the cross product as

r� V ¼ rV sin u

Equation 3.16 can thus be written in vector form as

T0 ¼ @

@t

ððð
CV

(r� V)dmþ
ðð
CS

(r� V)( rV � dA) (3:17)

Although derived from two-dimensional considerations, Equation 3.17 is applicable to the three-
dimensional case.

Example 3.7

Figure 3.16 shows a plan view of a two-nozzle lawn-sprinkler head. The sprinkler discharges water at a
rate of 2 ft3=min and rotates at 1 rev=s. The length from pivot to nozzle exit is 12 in., and the nozzles
produce jets that are 1

4 in. in diameter. Determine the external resisting torque due to friction in the
bearings. The angle between the radial direction and the nozzle-jet direction is 258.

SOLUTION

Select a control volume as shown in Figure 3.16 (bounded by the dashed line). The flow properties are
easily determined at locations where liquid crosses the control surface.
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It is instructive to sketch a velocity diagram for flow at the exit (Figure 3.17). We now identify each
of the velocities as follows:

V¼ absolute velocity leaving nozzle as seen by stationary observer
Vrel¼ relative velocity leaving as seen by the observer moving with nozzle
Vt¼ tangential velocity component of V
Ut¼ rotational tip speed of nozzle
Vrel sin b¼ tangential component of relative velocity

From Figure 3.17, it is apparent that

Vt þ Ut ¼ Vrel sinb

or

Vt ¼ Vrel sinb� Rv

The relative velocity is perpendicular to the nozzle exit. Therefore, for one nozzle, we have

Q
��
1 ¼ AVrel ¼ pD2

4
Vrel

or

Vrel ¼ 4Q
pD2

where D is the nozzle exit diameter, and the volume flow rate is one-half of that given in the problem
statement. The tangential velocity now becomes

Vt ¼ 4Q
pD2

sinb� Rv

=1 rev/s

= 25

FIGURE 3.16 Plan view of a sprinkler head.

R  = Ut

Vrel
Vrel sin

Vt

Vn

V

FIGURE 3.17 Velocity diagram for flow out of one sprinkler nozzle.
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In this case, there is no mass or angular momentum storage. Applying the angular momentum
equation (Equation 3.15), we get the following for steady flow:

T0 ¼
ðð
CS

rVt( rVn dA)

which is written for one nozzle. With the efflux at r¼R and no inflow in the tangential direction, the
preceding equation becomes, for two nozzles:

T0 ¼ 2rR
ðð
CS

Vt(Vn dA)

Substituting and integrating yield

T0 ¼ 2rR
ðð

4Q
pD2

sinb� Rv

� �
Vn dA

¼ 2rQR
4Q
pD2

sinb� Rv

� �

All quantities on the right-hand side were given in the problem statement:

Q
��
1nozzle

¼ 1 ft3=min ¼ 0:0166 ft3=s

D ¼ 1
4
in: ¼ 0:0208 ft

b ¼ 25�

R ¼ 12 in: ¼ 1 ft

v ¼ 1 rev=s ¼ 6:28 rad=s

We therefore obtain

T0 ¼ 2(1:94)(0:0166)(1)
4(0:0166)

p(0:0208)2
sin 25� 1(6:28)

	 


T0 ¼ 0:925 ft � lbf CCW

3.5 ENERGY EQUATION

In this section, we will develop an equation that expresses the conservation of energy. When energy
crosses the boundary of a system, the energy in the system changes by an equal amount. So a
decrease in the energy of a system equals the increase in energy of the surroundings and vice versa.
Energy can cross a system boundary in the form of heat transfer (to or from the system), in the form
of work (done by or on the system), or by mass entering or leaving. A process during which no heat
is transferred to or from a system is known as an adiabatic process.

The law of conservation of energy states that for a system of particles,

E2 � E1 ¼ ~Q�W 0

or

dE ¼ d~Q� dW 0
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where: E2�E1 is the change in energy experienced by the system
~Q is the heat added to the system
W0 is work done by the system

The total energy is a property of the system and includes internal, kinetic, and potential energies:

E ¼ U þ KE þ PE

On a per-unit-mass basis, we have

e ¼ E

m
¼ uþ V2

2
þ gz

Heat and work are not properties of the system, but they do represent energy transfers moving across
the system boundaries in specific forms.

In applying the general conservation expression (Equation 3.4), N¼E and n¼ e. After substi-
tution, we obtain

dE

dt

����
S

¼ @E

@t

����
CV

þ
ðð
CS

erVn dA

which becomes

dE

dt

����
S

¼ d~Q

dt
� dW 0

dt
¼ @E

@t

����
CV

þ
ðð
CS

erVn dA

or

d(~Q�W 0)
dt

¼ @E

@t

����
CV

þ
ðð
CS

uþ V2

2
þ gz

� �
rVn dA (3:18)

The term W0 consists of all forms of work crossing the boundary—shaft work, electric and magnetic
work, viscous shear work, and flow work. The last of these forms represents work done by the fluid
system in pushing mass into or out of the control volume. Thus

dW 0

dt
¼ dW

dt
þ dWf

dt
(3:19)

where dWf=dt is flow work per unit time. To develop an expression for dWf=dt, consider an element
of mass dm leaving a control volume through an area dA, as shown in Figure 3.18. The fluid in the
control volume must work against the external pressure p to move dm out. With work¼ force�
distance, we have

dWf

dt

����
out

¼ p dA
dL

dt

����
out

¼ pVn dA
��
out

¼ p

r
rVn dA

����
out

Similarly, for an element of mass entering, work is being done on the system.
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Therefore,

dWf

dt

����
in

¼ �p dA
dL

dt

����
in

¼ � p

r
rVn dA

����
in

Combining equations, we obtain the flow work as

dWf

dt

����
S

¼ p

r
rVn dA

����
out

� p

r
rVn dA

����
in

which can be written as

dWf

dt

����
S

¼
ðð
CS

p

r
rVn dA (3:20)

Substitution of Equations 3.19 and 3.20 into Equation 3.18 gives

d(~Q�W)
dt

�
ðð
CS

p

r
rVn dA ¼ @E

@t

����
CV

þ
ðð
CS

uþ V2

2
þ gz

� �
rVn dA

Combining the integral terms gives

d

dt
(~Q�W)

����
S

¼ @E

@t

����
CV

þ
ðð
CS

uþ p

r
þ V2

2
þ gz

� �
rVn dA

Enthalpy is a property defined as h¼ uþ p=r; the conservation of energy equation now becomes

d

dt
(~Q�W)

����
S

¼ @E

@t

����
CV

þ
ðð
CS

hþ V2

2
þ gz

� �
rVn dA (3:21)

A special form of the energy equation results for the case of steady, one-dimensional flow:

d

dt
(~Q�W)

����
S

¼ hþ V2

2
þ gz

� �����
out

� hþ V2

2
þ gz

� �����
in

	 

rAV (3:22)

dm

dA

dL

p

FIGURE 3.18 Sketch for the development of an expression for flow work Wf.
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For many incompressible flows, ~Q is usually assumed to be zero, and changes in internal energy
are frequently negligible. Equation 3.22 then reduces to

� dW

dt
¼ _m

p

r
þ V2

2
þ gz

� �����
out

� p

r
þ V2

2
þ gz

� �����
in

	 

(3:23)

For compressible flows, however, the change in internal energy is significant.
We will deal primarily with energy conversions between various forms of thermal and mech-

anical energies. We will not consider energy transfers in nuclear or chemical reactions; nor will we
examine work done as a result of magnetic, capillary, or electric effects. Equation 3.18 is generally
known as the first law of thermodynamics, which, as we noted earlier, is a statement of the
conservation of energy. For greater detail, the reader is referred to any text on classic engineering
thermodynamics.

Example 3.8

Using the generalized dimensions of mass (M), length (L), and time (T), examine the units of each term
in Equation 3.23.

SOLUTION

Power:
dW

dt
¼ F � L

T
¼ M � L

T2

L

T
¼ M � L2

T3

First term: _m
p

r

� �
¼ M

T

F

L2
L3

M
¼ L

T

M � L
T2

¼ M � L2
T3

Second term: _m
V2

2

� �
¼ M

T

L2

T2
¼ M � L2

T3

Third term: _m(gz) ¼ M

T

L

T2
L ¼ M � L2

T3

In the English system, horsepower (hp) is a common unit for power, and the British thermal unit (BTU)
is a common unit for heat transfer, internal energy, and enthalpy. In the SI system, the watt (W) is the
unit for power, and the joule (J) is the unit for energy.

Example 3.9

Turbines convert the energy contained within a fluid into mechanical energy or shaft work. Turbines are
often used in power plants with generators to produce electricity. One such installation is in a dam as
shown in Figure 3.19. Water is permitted to flow through a passageway to the turbine, after which the
water drains downstream. For the data given in Figure 3.19, determine the power available to the turbine
when the discharge at the outlet is 30 m3=s.

SOLUTION

Select a control volume with mass flows crossing the surface at points where properties are known. Point 1
is the reservoir surface with velocity downward. Point 2 is the exit of the passageway downstream from
the turbine. Assuming negligible heat transfer, no change in internal energy of the water, and steady,
one-dimensional flow, Equation 3.23 applies:

� dW

dt
¼ _m

p2
r
þ V2

2

2
þ gz2

� �
� p1

r
þ V2

1

2
þ gz1

� �	 
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We now evaluate each known term of the equation:

_m ¼ rA1V1 ¼ rA2V2 ¼ rQ ¼ (1 000 kg=m3)(30 m3=s) ¼ 30 000 kg=s

p1 ¼ p2 ¼ patm

V2 ¼ Q

A2
¼ 30

p(2:7)2=4
m=s ¼ 5:24 m=s

Compared to the velocity at 2, V1� 0. Moreover, z1¼ 20 m and z2¼ 6 m. By substitution,

� dW

dt
¼ (30 000 kg=s)

(5:24)2

2
þ 9:81(6)� 9:81(20)

	 

¼ (30 000 kg=s)(�123:6 N �m=kg)

or

dW

dt
¼ 3 708 000 N �m=s ¼ þ3:7 MW

where the positive sign indicates work done by the fluid. Thus, by measuring various flow quantities, we
have determined that 3.7 MW of power have left the water and are available for doing shaft work on the
turbine.

Example 3.10

A schematic of a garden fountain is given in Figure 3.20. A pump located beneath a water reservoir
discharges a single jet vertically upward to a height of 6 ft above the reservoir surface. Determine the rate
of work being done by the pump if the volume flow of liquid is 250 gpm. Neglect friction.

SOLUTION

The control volume we select includes all the water in the reservoir, the pump and piping, and the
amount discharged. We identify point 1 as the reservoir surface, whereas point 2 is at the top of the jet.

V1

20 m

1

Water

2.7 m

6 m

2

FIGURE 3.19 Sketch for Example 3.9.
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Properties are known at both locations. Assuming negligible heat transfer, no change in internal energy,
and steady, one-dimensional flow, Equation 3.23 applies:

� dW

dt
¼ _m

p2
r
þ V2

2

2
þ gz2

� �
� p1

r
þ V2

1

2
þ gz1

� �	 


We next evaluate each term in the equation. The volume flow rate is given as

Q ¼ 250 gal=min� 2:229� 10�3 ¼ 0:557 ft3=s

The water density is 1.94 slug=ft3, and so the mass flow rate is

_m ¼ rQ ¼ (1:94 slug=ft3)(0:557 ft3=s) ¼ 1:08 slug=s

The pressure at sections 1 and 2 is equal to atmospheric pressure:

p1 ¼ p2 ¼ patm

The water velocity at the reservoir surface is zero; the water velocity at the top of the jet is also zero:

V1 ¼ V2 ¼ 0

If we let the reservoir surface be a datum from which to make vertical measurements, we have

z1 ¼ 0

and

z2 ¼ 6 ft

Substituting these parameters into Equation 3.23 gives

� dW

dt
¼ (1:08 slug=s) 0þ 0þ (32:2 ft=s2)(6 ft)

h i
� (0þ 0þ 0)

n o

Solving,

dW

dt
¼ �208:8 ft � lbf=s

1

2

6 ft

2 ft 

18 in.

FIGURE 3.20 Sketch for Example 3.10.
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This power goes entirely into raising the water a distance of 6 ft. The negative sign indicates that work
was done on the fluid. The horsepower is the customary unit for power in the English system. There are,
by definition, 550 ft � lbf=s per horsepower. The pump power required is

dW

dt
¼ � 208:8 ft � lbf=s

550 ft � lbf=(s � hp)

or

dW

dt
¼ �0:38 hp

Therefore, the pump must deliver 0.38 hp to the water in order to raise it by 6 ft.

3.6 BERNOULLI’S EQUATION

The Bernoulli equation gives a relationship between pressure, velocity, and position or elevation in
a flow field. Normally, these properties vary considerably in the flow, and the relationship between
them if written in differential form is quite complex. The equations can be solved exactly only under
very special conditions. Therefore, in most practical problems, it is often more convenient to make
assumptions to simplify the descriptive equations. The Bernoulli equation is a simplification that has
many applications in fluid mechanics. We will derive it in two ways. First, consider a flow tube
bounded by streamlines in the flow field as illustrated in Figure 3.21. Recall that a streamline is
everywhere tangent to the velocity vector and represents the path followed by a fluid particle in the
stream; no flow crosses a streamline. Because the flow is steady and frictionless, viscous effects are
neglected. Pressure and gravity are the only external forces acting. For this analysis, we will select a
control volume, apply the momentum equation, and finally integrate the result along the streamtube.
In the s-direction for the control volume, we have

X
Fs ¼

ðð
CS

VsrVn dA

Evaluating each term separately, we obtainX
Fs ¼ pdA� (pþ dp)dA� rg ds dA cos u

ds

A

V + dV

(p + dp)  A

g ds  A

V
p  A

FIGURE 3.21 A differential control volume for the derivation of Bernoulli’s equation.
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where u is the angle between the s-direction and gravity. Also,ðð
CS

VsrVn dA ¼ (V þ dV � V)rV dA

By substitution, we get

�dp dA� rg ds dA cos u ¼ rV dV dA

The term dA divides out; ds cos u is dz. Therefore, after simplification, we get

dp

r
þ V dV þ g dz ¼ 0

Integrating between points 1 and 2 along the streamtube gives

ð2
1

dp

r
þ 1
2

V2
2 � V2

1

� �þ g(z2 � z1) ¼ 0

For the special case of an incompressible fluid, density is constant (not a function of pressure), and
the equation then becomes

p2 � p1
r

þ V2
2 � V2

1

2
þ g(z2 � z1) ¼ 0 (3:24)

or

p

r
þ V2

2
þ gz ¼ a constant (3:25)

Equation 3.25 is the Bernoulli equation for steady, incompressible flow along a streamline with no
friction (no viscous effects).

The Bernoulli equation can be developed from the one-dimensional energy equation (Equation
3.21):

d

dt
(~Q�W)

����
S

¼ _m h2 þ V2
2

2
þ gz2

� �
� h1 þ V2

1

2
þ gz1

� �	 


Now let us briefly examine the conditions under which this equation becomes identical to the
Bernoulli equation. For an incompressible flow with no shaft work, the energy equation reduces to

d~Q

dt

����
S

¼ _m u2 þ p2
r
þ V2

2

2
þ gz2

� �
� u1 þ p1

r
þ V2

1

2
þ gz1

� �	 


Now compare this equation to the Bernoulli equation for steady, frictionless, one-dimensional,
incompressible flow (Equation 3.24). We conclude that for both equations to be identical, any
change in internal energy of the fluid must equal the amount of heat transferred. It can be seen that
for an incompressible flow with no work, no heat transfer, and no changes in internal energy, the
energy equation and the Bernoulli equation derived from the momentum equation become identical.
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Thus, under certain flow conditions, the energy and momentum equations reduce to the same
expression. Hence, the Bernoulli equation is referred to as the mechanical energy equation. For
many flow problems, only the continuity and Bernoulli equations are required for a description of
the flow.

Example 3.11

Consider the flow of water through a venturi meter, as shown in Figure 3.22. Liquid passing through
encounters a contraction to the throat area, followed by a gradual expansion to the original diameter. A
manometer is placed in the line to measure the pressure difference from the inlet to the throat. For the
dimensions given, determine the volume flow rate of water through the meter.

SOLUTION

We select the control volume so that liquid and flow properties are known or can be determined, as
shown in the figure. Next, we assume one-dimensional, incompressible flow. The continuity and
Bernoulli equations apply and are written from section 1 to section 2:

Q ¼ A1V1 ¼ A2V2

and

p1
r
þ V2

1

2
þ gz1 ¼ p2

r
þ V2

2

2
þ gz2

All measurements of height z are made from the centerline, so for a horizontal meter, z1¼ z2. Rearran-
ging the Bernoulli equation gives

p1 � p2
r

¼ V2
2 � V2

1

2

Hg
sp.gr. = 13.6

Δh = 6 cm

5.252 cm Water

x

Control 
volume Contraction

section

Throat

Divergent 
section or a

gradual
expansion 

3.504 cm

2
1

5.252 cm

FIGURE 3.22 Flow of water through a venturi meter with pressure drop measured by a water-over-mercury
U-tube manometer.
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From the continuity equation,

V1 ¼ Q

A1

and

V2 ¼ Q

A2

Combining these equations with the Bernoulli equation and simplifying gives

p1 � p2
r

¼ 1
2

Q2

A2
2

� Q2

A2
1

� �
(i)

We now relate the manometer reading to the pressure difference. Assuming that the pressure varies
negligibly across the pipe cross section (which is the case for a real flow situation), we select the pipe
centerline as a reference location. Applying the hydrostatic equation from the centerline, we get

p1 þ rgxþ rg Dh ¼ p2 þ rgxþ rmg Dh

where r is the flowing fluid and rm is the manometer fluid. The term rgx cancels from both sides of this
equation, so that the distance x does not enter into the calculations. The pressure drop from 1 to 2 then is

p2 � p1 ¼ rmg Dh� rg Dh

or

p2 � p1
r

¼ g Dh
rm
r

� 1

� �

Combining this result with Equation i yields

g Dh
rm
r

� 1

� �
¼ Q2

2
1
A2
2

� 1
A2
1

� �

Solving for volume flow rate, we get

Q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2g Dh( rm=r � 1)

1=A2
2 � 1=A2

1

s

We now evaluate all terms on the right-hand side:

A1 ¼ pD2
1

4
¼ p(0:052 52)2

4
¼ 0:002 17 m2

and

A2 ¼ pD2
2

4
¼ p(0:035 04)2

4
¼ 0:000 964 m2
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From Table A.5 for mercury, r¼ 13.6(1 000) kg=m3; for water, r¼ 1 000 kg=m3. Thus

rm
r

¼ 13:6(1 000)
1 000

¼ 13:6

and

Dh ¼ 0:06 m

Substituting these quantities into the volume-flow-rate equation, we find

Q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2(9:81)(0:06)(13:6� 1)

(1=0:000 964)2 � (1=0:002 17)2

s

or

Q ¼ 0:004 16 m3=s

Example 3.12

A siphon is set up to remove gasoline from a tank as illustrated in Figure 3.23. Quarter-inch-inside-
diameter flexible tubing is used. Estimate the exit velocity at the instant shown and the volume flow rate.

SOLUTION

We will select a control volume such that point 1 is the velocity of the downward-moving liquid surface
and point 2 is the end of the tube from which gasoline flows. Assuming quasi-steady, one-dimensional
flow of an incompressible fluid, we can write the continuity and Bernoulli equations as

Q ¼ A1V1 ¼ A2V2

p1
r
þ V2

1

2
þ gz1 ¼ p2

r
þ V2

2

2
þ gz2

16 in.

1

2

patm

6 in. 1/4-in. tubing

FIGURE 3.23 Siphoning gasoline from a tank.
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The area of the reservoir at point 1 is much larger than that at point 2, so we regard V1 in Bernoulli’s
equation as being negligible. Note also that p1¼ p2¼ patm Bernoulli’s equation becomes

gz1 � gz2 ¼ V2
2

2

or

V2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2g(z1 � z2)

p

This result is independent of liquid properties. Taking measurements from z2¼ 0, we have z1¼ 22 in.
By substitution,

V2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(32:2)

22
12

� �s
¼ 10:86 ft=s

The volume flow rate is

Q ¼ A2V2 ¼ p

4
(0:25)2

(12)2
10:86 ¼ 0:0037 ft3=s

This is an unsteady-flow problem because z1 changes with time. In unsteady-flow problems, however, it
is often necessary to assume a quasi-steady process wherein we can apply the steady-flow equations to
any instant in time for the flow depicted. A more accurate description is obtained if a differential
equation for z1 is written and solved starting with the unsteady form of the continuity equation.

In Section 3.3, we solved a draining tank problem; specifically in Example 3.2, we had a tank
that was being drained with a pipe. The exit velocity was constant. In a more realistic model,
however, the fluid leaving a tank through a pipe at the bottom will have a velocity that varies with
liquid height in the tank. We can formulate such problems now with the continuity and Bernoulli
equations together.

Consider a tank of liquid with an attached pipe as indicated in Figure 3.24. Liquid drains from
this tank and encounters friction within the pipe, which we assume is negligible. In the quasi steady
draining tank problems, we have considered thus far, the liquid surface velocity in the tank is

V

D

2

1

h

b

d

FIGURE 3.24 The unsteady draining tank problem.
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assumed negligible. In this analysis, however, it is our desire to determine how the depth of liquid in
the tank varies with time, and account for the volume of liquid in the tank. We consider unsteady
flow from the draining tank and we wish to determine how long it will take for the tank to drain from
an initial depth to some final depth.

As indicated in Figure 3.24, the tank is circular and has a diameter d. The pipe diameter is D,
and the distance from the pipe exit to the free surface of the liquid in the tank is h. The distance from
tank bottom to pipe exit is b, which is a constant. We identify the free surface of liquid in the tank as
section 1, and the pipe exit as section 2. The equation relating areas and velocities at any time is

A1V1 ¼ A2V2

At any time and for any depth, the velocity of the liquid surface at 1 (V1) in terms of the velocity in
the pipe is given by

V1 ¼ A2

A1
V2 (3:26)

The Bernoulli equation written from 1 (free surface in tank) to 2 (pipe exit) is

p1gc
rg

þ V2
1

2g
þ z1 ¼ p2gc

rg
þ V2

2

2g
þ z2

Evaluating properties, we have

p1 ¼ p2 ¼ patm z2 ¼ 0 z1 ¼ h V2 ¼ V

Simplifying Equation 3.26, and substituting these values, the Bernoulli equation becomes

V2
1

2g
þ h ¼ V2

2

2g

or

A2

A1

� �2 V2

2g
þ h ¼ V2

2g

which simplifies to

h ¼ V2

2g
1� A2

A1

� �2
" #

Solving for velocity,

V ¼ 2gh

1� (A2=A1)2

	 
1=2
(3:27)

This is the equation of motion relating depth of liquid in the tank to efflux velocity. Note that if we
assume the velocity at section 1 (V1) is much smaller than the velocity in the exit pipe (V2), the area
ratio is negligible. Incorporating this assumption gives the familiar result: V ¼ ffiffiffiffiffiffiffiffi

2gh
p

.
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Next, we will write the unsteady continuity equation for the tank liquid:

0 ¼ @m

@t
þ
ðð
CS

rVn dA (3:5)

where @m=@t is the change of mass in the tank, and the integral term must be evaluated at locations
where mass leaves the tank and where mass enters the tank. The mass of liquid in the tank at any
time is

m ¼ rV�¼ r
pd2

4
(h� b) ¼ pd2

4
rh� pd2

4
rb

Noting that b is a constant, the change of mass in the tank with respect to time is

@m

@t
¼ pd2

4
r
dh

dt

which is the first term on the right-hand side of Equation 3.5. The second term—the integral term—

becomes

ðð
CS

rVn dA ¼
ðð
out

rVn dA�
ðð
in

rVn dA

With no fluid entering the tank, the preceding equation reduces to

ðð
CS

rVn dA ¼ r
pD2

4
V � 0

Substituting this equation and Equation 3.27 into Equation 3.5, we get

0 ¼ pD2

4
r
dh

dt
þ r

pD2

4
V

or

0 ¼ A1
dh

dt
þ A2V

Rearranging,

dh

dt
¼ �A2

A1
V (3:28)

For the draining tank problem, then, Equation 3.28 must be solved simultaneously with Equation
3.27. This will take into account the variation of liquid height and efflux velocity with time, as well
as the fluid volume within the tank. A solution to Equation 3.28 can be obtained by direct
integration. Note that Equations 3.27 and 3.28 are independent of fluid properties.
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Substituting Equation 3.27 into Equation 3.28 gives

dh

dt
¼ �A2

A1

2gh

1� (A2=A1)2

	 
1=2
dh

dt
¼ � 2(A2=A1)2gh

1� (A2=A1)2

	 
1=2 (3:29a)

All terms on the right-hand side of this equation except h are constants. The equation can thus be
rewritten as

dh

dt
¼ �C1h

1=2 (3:29b)

where

C1 ¼ 2(A2=A1)2g

1� (A2=A1)2

	 
1=2

Rearranging Equation 3.29b, we have

h�1=2 dh ¼ �C1 dt

We can integrate this expression from time¼ 0 (where h¼ h0) to some future time t (where h¼ h):

ðh
h0

h�1=2 dh ¼ �
ðt
0

C1 dt

The result is

2 h1=2 � h1=20

� 
¼ �C1t

Solving for the height h at any time,

h ¼ h1=20 � C1t=2
� 2

(3:30)

This equation gives the variation of liquid height in the tank with depth. Substituting into Equation
3.27 gives the variation of velocity also with time. Fluid properties, specifically density, does not
enter into the equations.

Example 3.13

The 20-cm-diameter (¼ d) tank of Figure 3.24 contains water and it is being drained by the attached
piping system. The pipe itself has an inside diameter of 5.1 cm. Neglecting friction, determine
the variation of velocity and height with time if the height h is allowed to vary from an initial value
of 1 m to 0.5 m.
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SOLUTION

For water, the density is r¼ 1 000 kg=m3. With the tank diameter of 0.2 m, we calculate

A1 ¼ pd2

4
¼ p(0:2)2

4
¼ 0:031 42 m2

The pipe area is

A2 ¼ pD2

4
¼ p(0:051)2

4
¼ 0:002 m2

The area ratio then is

A2

A1

� �2

¼ 0:002
0:031 42

� �
¼ 0:0041

The constant then becomes

C1 ¼ 2(A2=A1)2g

1� (A2=A1)2

	 

¼ 2(0:004 1)(9:81)

1� (0:004 1)

	 
1=2
¼ 0:284

Rearranging Equation 3.30 and solving for time, we have

t ¼ �
2 h1=2 � h1=20

� 
C1

Substituting h¼ 0.5 m, h0¼ 1 m, the time is

t ¼ � 2 0:51=2 � 11=2
� �

0:284

t ¼ 2:06 s

3.7 SUMMARY

In this chapter, we developed the basic equations of fluid mechanics by using the control volume
approach. The continuity, momentum, and energy equations were written by beginning with the
general conservation equation. The momentum and the energy equations both gave the Bernoulli
equation for frictionless flow with no external heat transfer and no shaft work. Various examples
were solved to illustrate the use of the expressions, but compressible flows have been reserved for
Chapter 8 because a different mathematical formulation is necessary. Frictional or viscous forces
were not included because they too will be covered in later chapters. The purpose of this chapter has
been to present the basic equations and show how they are derived.

PROBLEMS

Average Velocity

3.1 By integrating the expression

Vz ¼ Vmax 1� r2

R2

� �

over the cross-sectional area of a circular duct, show that the average velocity is 1
2Vmax.
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3.2 Flow through a pipe under certain conditions has a velocity distribution given by

Vz

Vmax
¼ 1� r

R

� 1=7

Determine the average velocity in the pipe.
3.3 Consider flow through the tubing arrangement illustrated in Figure P3.3. The velocity distri-

bution in the 24-in. pipe is given by

Vz ¼ 2 1� r2

R2

� �
ft=s

24 in. 16 in.

10 in.

18 in.

1 2 3 4

Flow direction

FIGURE P3.3

Calculate the volume flow rate through the system, and determine the average velocity at
section 2. Is the result dependent on fluid properties?

3.4 The velocity distribution in the 24-in. pipe of Figure P3.3 is given by

Vz ¼ 0:8 1� r2

R2

� �
m=s

Determine the volume flow rate through the system and the average velocity at section 3.
3.5 With regard to the piping system of Figure P3.3, express the average velocity at section 4 in

terms of the average velocity at sections 1, 2, and 3.
3.6 Air is flowing through the configuration of Figure P3.3 at a mass flow rate of 0.003 slug=s.

Assuming ideal gas behavior, calculate the velocity at section 1 if p1¼ 18 psia and T1¼ 5208R.

Continuity Equation—Steady Flow

3.7 The fuel tank of a lawnmower measures 3 in.� 3.5 in.� 1 in. The tank is filled with gasoline
(assume octane), and the engine is started. After 3 1

2 h of running, the tank is empty. The cap of
the fuel tank contains four vent holes, each 1

16 in. diameter. Determine the velocity of the air
entering the vent holes when the engine is running.

3.8 Figure P3.8 shows a T-joint found in a water piping system. At section 1, the velocity is given by

Vz ¼ 1 1� r2

R2

� �
ft=s

2

3

1

Vz

FIGURE P3.8
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The pipe radius R at section 1 is 3 in. At sections 2 and 3, the radius is 2 in. Measurements
indicate that two-thirds of the total flow entering at section 1 leaves at section 2, Determine the
average velocity at sections 2 and 3.

3.9 A long pipe has an inside diameter of 12 cm. Air enters the pipe at a pressure of 150 kPa and a
temperature of 208C. The mass flow rate of air is 0.05 kg=s. The pipe is heated by an external
source, and the air thus becomes warmed as it travels through. At the exit, the air pressure is
140 kPa, and the temperature is 808C. Is the velocity at the inlet equal to the velocity at the
exit? Is the volume flow rate of the air at the inlet equal to the volume flow rate of the air at the
outlet? Assume ideal gas behavior.

3.10 Freon-12 refrigerant enters a condenser (a heat exchanger) as vapor and leaves it as a liquid.
Energy removed from the Freon-12 causes it to condense, and liquid leaves the exchanger at a
velocity of 1 ft=s. The condenser is made of 1

4-in.-ID tubing, as indicated in Figure P3.10.
Calculate the mass flow rate of Freon-12 entering the condenser.

Freon-12
vapor

Freon-12 liquid

Air flow

Fan

-in. -ID tubing1
4

FIGURE P3.10

3.11 Figure P3.11 shows a jet pump that consists of a tube within a tube. Air is forced into the smaller
tube at a pressure of 700 kPa, a temperature of 300K, and a velocity of 3m=s. This high-velocity
jet draws atmospheric air into the larger tube at a pressure of 101.3 kPa, a temperature of 300 K,
and a velocity of 8 m=s. Determine the velocity of the air drawn in by the jet.

Mixed
air

flows

101.3 kPa
300 K

700 kPa
300 K

p  =  101.3 kPa
T =  300 K

Air drawn
into pipe

Air
supply

2.5 cm

4.5 cm

FIGURE P3.11
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Continuity Equation—Unsteady Flow

3.12 Figure P3.12 shows a 30-m-diameter fuel tank used to store heptane, which enters the tank
through a 32-cm-ID inlet line. The average velocity of flow in the inlet is 2 m=s. The initial
depth of heptane in the tank is 1 m. Determine the time required for the heptane depth to
reach 6 m.

Inlet

Tank vented to atmosphere
12 m

30 m

FIGURE P3.12

3.13 A tank with a volume of 3 ft3 is charged to an internal pressure of 2000 psig with carbon
dioxide. The gas is to provide an inert environment for a welding operation. The tank valve is
regulated to allow 10 ft3=h to escape. Assuming that the temperature in the tank remains
constant at 658F, estimate the tank pressure after 1 h of use. The escaping carbon dioxide is at
14.7 psia and 658F.

3.14 An air compressor is used to pressurize an initially evacuated tank. The tank is 36 in. in diameter
and 58 in. long. The supply line is 6 in. in diameter and conveys a flow of 5 ft=s. The air
compressor’s output pressure and temperature are constant at 50 psia and 908F. The tank temp-
erature of 708F is also constant. Calculate the time required for the tank pressure to reach 15 psia.

3.15 A circular swimming pool 16 ft in diameter is being filled with two garden hoses, each having
an inside diameter of 3

4 in. The velocities of flow from the hoses are 6 ft=s and 4 ft=s. Calculate
the time required to fill the pool to a depth of 4.5 ft. (See Figure P3.15.) If we start filling the
pool by 8:00 A.M., will we be able to swim in a filled pool by noon?

z 4.5 ft

16-ft diameter

-in.-ID3
4

FIGURE P3.15

Linear Momentum Equation

3.16 A typical fire hose is 10 cm in diameter and can deliver 1 m3=s of water. A nozzle attached to
the end changes the flow into a jet 6 cm in diameter. This flow strikes a flat wall at 908.
Calculate the force exerted by the jet on the wall.

3.17 A two-dimensional jet in the form of a liquid sheet strikes a piece of angle iron, as shown in
Figure P3.17. Derive an expression for the force F.
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A, V
45

45

F

FIGURE P3.17

3.18 The vane in Figure P3.17 is moving to the right at half the jet velocity. Determine the force F.
3.19 A two-dimensional jet in the form of a liquid sheet impinges on a semicircular, concave object

as shown in Figure P3.19. Derive an expression for the force.

A, V F

FIGURE P3.19

3.20 The vane in Figure P3.19 is moving to the left at a velocity equal to one-fourth of the jet
velocity. Determine the force F.

3.21 A two-dimensional jet in the form of a liquid sheet impinges on a semicircular object, as
shown in Figure P3.21. Develop an expression for the restraining force.

A, V

F

FIGURE P3.21

3.22 The vane in Figure P3.21 moves to the right at a velocity equal to one-third the jet velocity.
Determine the force F.

3.23 The vane in Figure P3.21 moves to the right such that the force is exactly half that obtained if
the jet is stationary. Determine the vane velocity in terms of the jet velocity.

3.24 A two-dimensional jet in the form of a liquid sheet is turned through an angle of 308 by a
curved vane, as shown in Figure P3.24. Derive an expression for the restraining forces
required to hold the vane stationary.

30

Fy

Fx

V, A

FIGURE P3.24
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3.25 The forces Fx and Fy of Figure P3.25 are such that their magnitudes are related by Fy¼ 2Fx.
Determine the angle u through which the vane turns the liquid jet. The angle should vary over
the range 0 � u � 908.

Fy

Fx
V, A

FIGURE P3.25

3.26 A two-dimensional jet in the form of a liquid sheet is turned through an angle of 1108 by a
curved vane, as shown in Figure P3.26. Derive an expression for the forces exerted on the
object by the liquid.

Fy

FxA, V
110

FIGURE P3.26

3.27 The forces Fx and Fy of Figure P3.27 are such that their magnitudes are related by Fx¼ 3Fy.
Determine the angle through which the vane turns the liquid jet. The angle should range from
908 to 1808.

V, A

Fy

Fx

FIGURE P3.27

3.28 A liquid jet of velocity V and area A1 strikes a vane that has a sharp-edged orifice, as shown in
Figure P3.28. Liquid that leaves through the orifice has a volume flow rate equal to one-half
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that of the incoming jet. For frictionless flow, determine the force required to hold the plate
stationary.

V A1 A2

V

V

V

FIGURE P3.28

3.29 A liquid jet strikes a plate containing a sharp-edged orifice, as shown in Figure P3.29. The
liquid jet velocity approaching the plate is V. For frictionless flow, determine the forces
exerted on the plate by the liquid.

V A1 A2

V

V

V

FIGURE P3.29

3.30 A liquid jet of velocity V and area A strikes a vane, as shown in Figure P3.30. The jet is
deflected into two separate directions. Determine a relationship between the areas (inlet and
both exits) if the magnitudes of the restraining forces are related by Fx¼ 2Fy and the angle u is
358. Assume frictionless flow.
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V
Fy

Fx

V

A

FIGURE P3.30

3.31 A water jet of velocity 12 ft=s and a cross-sectional area of 5 ft2 strike a curved vane, as shown
in Figure P3.31. The vane is moving at a velocity of 3 ft=s in the positive x-direction, and it
deflects the jet through an angle u of 608. Assuming no frictional losses between the jet and the
surface, determine the reaction forces.

Vj

Vj

V

FIGURE P3.31

3.32 Figure P3.32 shows a water jet of velocity V and area A that impacts a curved vane. Determine
the forces exerted on the vane.

Fx

Fy

1
2

V, A

y

x

FIGURE P3.32

Angular Momentum Equation

3.33 In Example 3.7, assume that the torque due to bearing friction is 0.120 N � m and v¼ 2 rev=s.
Determine the angle b if all other parameters remain unchanged.

3.34 In Example 3.7, what torque is required to hold the sprinkler head stationary?
3.35 A three-nozzle sprinkler head is shown schematically in Figure P3.35. For the given condi-

tions, show that the angular velocity is given by

v ¼ 4Q
pD2R

sinb� T0
3rQR2
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R

FIGURE P3.35

3.36 A three-nozzle sprinkler head is shown schematically in Figure P3.35. The total flow through
the sprinkler is 10.2 gpm of water, and the torque due to friction is 0.15 ft � ibf. Each nozzle
produces a jet that is 9 mm in diameter, and all nozzles are identical. Determine the angular
velocity. (Use the results of the previous problem.)

3.37 For the sprinkler head of Problem 3.35, assume that the bearings are frictionless and determine
how the flow rate should be increased in order to double the angular velocity.

3.38 The sprinkler head of Figure P3.38 discharges an equal amount of water through each nozzle.
If the jet diameter produced by each nozzle is the same, determine an equation for the speed of
rotation assuming no friction.

R1 R2

FIGURE P3.38

3.39 Power is the product of rotational speed and torque. Determine the power or rate of work done
by the water of Example 3.7. Express the answer in units of horsepower.

The Energy Equation

3.40 An amusement park has a water slide consisting of a curving channel, down which people
slide on rubber mats. Water is pumped to the top of the slide, which is 60 ft high (see Figure
P3.40). The inlet pipe to the pump is 6 in. in diameter; the outlet pipe to the slide is 4 in. in
diameter. Determine the power required by the pump if the flow rate is 1 ft3=s. Neglect friction.

60 ft
4 in.

4 in.

4 ft

1 ft

6 in.Motor
Pump

FIGURE P3.40
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3.41 An axial-flow window fan is used to ventilate a room. The fan is placed in a square housing
60 cm� 60 cm, which can be taken as the flow area. Typically, the difference in pressure
across the fan is 0.08 cm of water. Determine the flow rate of air removed from the room if the
fan power is 25 W. Take the room temperature to be 258C. Neglect friction and assume the air
to behave as an incompressible fluid (a good assumption at moderate temperatures and
pressures).

3.42 An air turbine is used with a generator to generate electricity. Air at the turbine inlet is at 700
kPa and 258C. The turbine discharges air to the atmosphere at a temperature of 118C. Inlet and
outlet air velocities are 100 m=s and 2 m=s, respectively. Determine the work per unit mass
delivered to the turbine from the air.

3.43 Diesel engines are used as motive power for pumping water. To recapture some of the energy
contained in the diesel exhaust gases, they are to be run through a turbine. The exhaust gases
enter the turbine in a line with a 12-in. inside diameter at a velocity of 10 ft=s with a
temperature and pressure of 12008F and 25 psia, respectively. At the turbine exit, the gases
are at 6008F, 14.7 psia, and they have a velocity of 5 ft=s. Determine the work per unit mass
delivered to the turbine and the horsepower. Take the properties of the exhaust gases to be the
same as those for carbon dioxide and assume ideal gas behavior. (Enthalpy changes equal
specific heat at constant pressure times temperature changes.) The process is considered to
be adiabatic.

3.44 A steam turbine is used with an alternator in power plants for generation of electricity. Steam
at 800 kPa and 4008C (enthalpy¼ 3 267.5 kJ=kg) traveling at 80 m=s enters the turbine from
the boiler. The steam exits from the turbine; at a point 12 m below the inlet, the pressure is
10 kPa, the temperature is 1008C (enthalpy¼ 2 687.5 kJ=kg), and the velocity is 65 m=s.
Determine the work per unit mass delivered to the turbine. (Note: These enthalpy values, taken
from thermodynamics textbooks, are based on actual steam data.) Neglect heat-transfer
effects.

3.45 A pump is used in a piping system to move oil from one tank to another tank at a higher
elevation, as indicated in Figure P3.45. The flow velocity in the piping system is 2 m=s, and
the oil has a specific gravity of 0.87. The pipe has an inside diameter of 10.23 cm. Determine
the power required to pump the oil under these conditions.

3 m

6 m

2 m/s

Pump Motor

FIGURE P3.45

The Bernoulli Equation

3.46 Equation 3.24 was derived for an incompressible fluid. Derive a corresponding expression for
an ideal gas at constant temperature.

3.47 A household faucet produces a jet that gets smaller in diameter as it approaches the sink. At a
certain flow, water coming out will fill an 8-oz glass in 8 s and produce a jet diameter at faucet
exit of 1

2 in. If the sink bottom is 8 in. below the faucet exit, what is the jet diameter at impact?
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3.48 In Lake Geneva (Switzerland), there is a water jet (called the Jet d’Eau) that is discharged
130 m straight upward (measured from the surface of the lake). The exit of the discharge pipe
is 20 cm in diameter. Calculate the velocity of the water as it leaves the pipe and the volume
flow rate of the water.

3.49 A venturi meter is a device placed in a pipeline and is calibrated to give the volume rate of
liquid through it as a function of pressure drop (see Figure P3.49). For a flow rate of 4 ft3=s
through the 16� 8 in. meter shown, determine the reading Dh on the manometer. Assume that
the liquid in the meter and in the manometer is water.

16 in.

8 in.

1
2

Δh

FIGURE P3.49

3.50 Linseed oil flows steadily through the system of Figure P3.50. A linseed-oil-over-water
U-tube manometer between the 3- and 5-cm sections reads 6 cm. The oil is discharged
through a 2-cm diameter exit. Calculate the exit velocity of the linseed oil.

Water

5 cm

6 cm

2 cm
Linseed

oil Vexit3 cm

FIGURE P3.50

3.51 Water flows steadily through the system shown in Figure P3.51. The 4-in. section leads to a
3-in. throat, followed by a divergent section and, finally, a nozzle whose exit diameter is 2 in.
An air-over-water manometer is connected between the 4-in. and 3-in. sections. Determine the
expected reading Dh on the manometer if the velocity at the exit is 8 ft=s.

Water
4 in. 4 in.

Air
Δh

2 in.3 in.

FIGURE P3.51
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3.52 An open-top tank is discharging glycerine through an opening onto which an elbow has been
placed, as in Figure P3.52. Determine the height of the glycerine jet, assuming frictionless
flow and a tank diameter that is much greater than the exit pipe diameter.

h

FIGURE P3.52

3.53 Suppose the tank of Figure P3.52 is capped tightly and the space above the liquid surface is
pressurized with compressed air. Determine the air pressure that would be required to make
the liquid jet rise to a level equal to 2h.

3.54 Water flows into a 1-m-diameter tank at a rate of 0.006 m3=s, as illustrated in Figure P3.54.
Water also leaves the tank through a 5-cm-diameter hole near the bottom. At a certain height h,
the efflux equals the influx. Determine the equilibrium height h.

h

FIGURE P3.54

3.55 Water flows into the tank of Figure P3.54 at a rate of 0.1 ft3=s. Water also leaves the tank
through a l-in.-diameter hole near the bottom. At a certain height h, the efflux and the influx
are equal. Determine the equilibrium height h.

3.56 How does doubling the volume inflow of Problem 3.55 affect the equilibrium height?
3.57 Determine the exit velocity of the water for the system of Figure P3.57 at the instant shown.

Water 3 ft

Vexit

Castor oil 1 ft

FIGURE P3.57
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3.58 A garden hose is used as a siphon to empty a pool, as shown in Figure P3.58. The inside
diameter of the hose is 1

2 in. and the pool diameter is 12 ft. Find the rate of water discharge
through the hose.

4 ft 6.5 ft

2 ft

FIGURE P3.58

3.59 Figure P3.59 shows a pressurized tank that contains air and water. An exit pipe attached near
the tank bottom directs the liquid upward in the form of a jet to a height h. Derive an equation
that relates the height h attained to the pertinent variables of the problem.

p

h

z0

FIGURE P3.59

3.60 A siphon is used to drain a tank of water, as shown in Figure P3.60. The siphon tube has
an inside diameter of 3 in., and at the exit there is a nozzle that discharges liquid in a
2-in.-diameter jet. Assuming no losses in the system, determine the volume flow rate through
the siphon. Also calculate the flow velocity in the 3-in.-ID tube.

3 ft

5 ft
2-in.-OD jet

3-in.-ID

FIGURE P3.60
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3.61 A pot contains coffee that is being drained through a valve. For the conditions shown in
Figure P3.61, determine the velocity at the valve exit, where the jet diameter is 0.375 in. The
inside diameter of the pot is 10 in.

Coffee
sp.gr. 1.0

9 in.

1 in.

6 in.

Valve

Jet dia. at
exit = 0.375 in.

Point
of

impact

Coffee
stream

FIGURE P3.61

3.62 Referring to Figure P3.61, determine the diameter of the jet of coffee at its point of impact.
3.63 Figure P3.63 shows a water nozzle attached to a 3-in.-ID hose. The nozzle discharges a

l-in.-OD jet, and the pressure in the hose just upstream of the nozzle is 15 psig. Determine the
volume flow rate through the nozzle if it is held horizontally.

3 in.

1 in.

FIGURE P3.63

3.64 A fire hydrant expelling water is shown schematically in Figure P3.64. The impact of the
jet is measured to occur at L¼ 5 ft. Determine pressure within the hydrant if the nozzle is
18 in. above the ground. Take the kinetic energy within the center of the hydrant to be
negligible.

L

FIGURE P3.64
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3.65 A hose whose outlet is inclined at an angle of 608 with the horizontal has an inside diameter of
4.3 in. A nozzle at the end has a diameter of 1.9 in. The maximum height attained by a jet of
water from the nozzle is 3 ft above the nozzle exit. Determine the pressure inside the hose.

3.66 The tallest building in a small community is 60 ft tall. For fire protection, the fire marshal
wants to be able to direct a water jet so that at the top of its trajectory, it will reach the roof of
this building. If the water nozzle is to be located 30 ft from the building, determine the
required water velocity at the nozzle exit. See Figure P3.66.

Nozzle

Path of
water jet

60 ft

30 ft

FIGURE P3.66

3.67 How long will it take a water particle to travel from the nozzle exit to the roof of the building
in P3.66?

3.68 Consider water flow through an enlargement placed in a circular duct (Figure P3.68). A
manometer is placed in the line and used to measure pressure difference across the expansion.
For the dimension given, calculate the volume flow rate through the pipe. Take the manometer
fluid to be mercury.

6 cm

10 cm
18 cm

14 cm

2
1

Specific gravity = 13.6

FIGURE P3.68

Unsteady Draining Tank Problems

3.69 Figure P3.61 shows a draining pot of coffee. For the conditions shown, determine the time
required for the pot to drain from a coffee depth of 10 in. to a depth of 2 in., as measured from
the bottom of the pot. The pot inside diameter is 10 in.

3.70 Lemonade (sp. gr.¼ 1.02) is drained through a hole in the side of a container, as shown in
Figure P3.70. Calculate the outlet velocity through the side wall for a depth that ranges from
6 ft to 6 in. using an increment of 6 in. Graph velocity versus depth. The inside diameter of the
container is 75 cm, and the hole diameter is 7 cm.
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sp. gr. = 1.02

Depth

Voutlet

FIGURE P3.70

3.71 Figure P3.71 shows a tank being drained by a 10-cm-ID siphon tube. Determine the time it
takes to drain the tank from a depth of 1 m to a depth of 10 cm.

3 m

1.9 m 10-cm-ID

1 m ≤ z ≥ 10 cm

FIGURE P3.71

3.72 Figure P3.72 shows a 3-gallon tank positioned 6 ft (¼ h2) above a reference plane. Such tanks
were used extensively in the nineteenth century with toilets. When the tank plug was pulled
up, water drained out through a 6-ft- (approximately) long tube to the toilet. The tank is 18 in.
wide (¼w) by 6 in. into the page. Determine the variation of velocity with liquid tank depth
for a height h1 that varies from 9 in. to 2 in. The tube inside diameter is 11=4 in.

h2

h1

w

Plug

FIGURE P3.72
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3.73 A 458 (¼ u) funnel (see Figure P3.73) contains linseed oil that is draining out of the attached
tube. The tube itself has an inside diameter of 1.1 cm (¼D) and is 5 cm (¼ h2) long. The
funnel and the tube are one-piece cast plastic. Determine the variation of the efflux velocity
with time for a height h1 that varies from 16 cm to 4 cm.

D

h1

h2

FIGURE P3.73

3.74 Figure P3.74 shows a vane impacted by a jet of liquid. The jet inlet area is 0.5 m2 and inlet
velocity is 1 m=s. The angle u1 is 458 and the angle u2 can vary from 0 to 908.

a. Determine the x-directed force exerted on the vane allowing u2 to vary in increments
of 108.

b. Determine the y-directed force exerted on the vane by allowing u2 to vary in increments
of 108.

c. Graph Fx and Fy, as a function of u2.

Fx

Fy

1
2

V, A

y

x

FIGURE P3.74

3.75 For the configuration of Figure P3.74 and the situation described in Problem 3.74, determine
and graph the ratio Fx=Fy as a function of u2.

3.76 Figure P3.74 shows a vane impacted by a jet of liquid. The jet inlet area is 1 ft2 and inlet
velocity is 2 ft=s. The angle u2 is 608 and the angle u1 can vary from 08 to 908.

a. Determine the x-directed force exertedon thevanebyallowingu1 tovary in increments of 108.
b. Determine the y-directed force exerted on the vane by allowing u1 to vary in increments

of 108.
c. Graph Fx and Fy as a function of u1.

Basic Equations of Fluid Mechanics 151



3.77 For the configuration shown in Figure P3.74 and the situation described in Problem 3.76,
determine and graph the ratio Fx=Fy as a function of u1.

3.78 The turbine in the dam of Example 3.9 is used to generate power and the output is a function
of the upstream water height. Allow the upstream height h to vary from 10 to 20 m in 1-m
increments and determine the corresponding output power. Owing to frictional effects, the exit
velocity downstream of the turbine is given by

V2 ¼ 1:17h0:5

All other conditions remain unchanged. Graph power as a function of upstream height.

Design Problems

3.79 Design of a Tank-Type Flow Meter
Flow meters are used in pipelines to determine the flow rate. Consider a pipeline that
discharges kerosene into a tank. It is desired to install a ‘‘tank-type’’ meter at the pipe exit
to get an indication of the volume flow rate. Figure P3.79 is a sketch of the proposed design.
Kerosene enters the tank through a 5.252-cm-ID pipeline and leaves the tank under the action
of gravity. The kerosene flow rate varies from 0 to 10 gpm; the higher the flow rate, the greater
the liquid depth h. Note that in the proposed design, a sight glass is attached; however, with a
translucent plastic tank, the liquid level can be seen without a sight glass.

a. Select dimensions for the design of a tank-type flow meter.
b. Determine a tank cross section (square, circular, rectangular, etc.); select a tank material

(metal versus plastic) appropriate for use with the liquid. Note that the tank need not have a
constant cross section. The tank could be shaped like a funnel, for example. Does the tank
need a sight glass?

c. Select an outlet diameter, and determine how the depth h varies with flow rate. (Note:
There can be several outlets along the vertical part of the tank wail, if necessary.)

d. Explain all design decisions.

Inlet Vent hole

Tank
flow

meter Sight glass

To receiver tank

ID

ID = 5.252 cm

h

FIGURE P3.79
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3.80 Design of a Water Lift
An amusement park director wishes to install a water lift. The proposed design, which is
intended to lift children a vertical distance of 1 m, is shown in Figure 3.80. As indicated, the
child stands at the end of a plank or lever. A water jet is then directed upward at the bottom of
the lever and the child is lifted. The child then steps off to a platform. The design of such a
device has many aspects, but here the interest is limited to the lever, the impact object, and the
water jet. Prior to making any decisions on these items, it is first necessary to consider the
weight to be lifted.

a. Weight: Determine the maximum weight that is to be lifted. What can be expected
regarding a typical or maximum weight of any person using the lift?

b. Lever: The lever shown in the figure is one that pivots about a point. As it moves, the axis
labeled A–A rotates through an angle u. Is a lever design that keeps A–A aligned vertically
a better one? How long should the lever be and how should it be hinged? What material
should be used? Design a lever for this system.

c. Impact object: What is the shape of the object to be impacted by the water jet? If the lever
rotates as indicated in the sketch, the orientation of the object with respect to the jet also
changes. Design an impact object for this system.

d. Water jet: Select a jet diameter and velocity at the exit of the nozzle, assuming the jet
diameter equals the nozzle exit diameter. As the object moves away from the nozzle, the
jet has further to travel before impact. The velocity and area of the jet change with height.
Is it better to let the nozzle move with the object? If so, account for this movement by
requiring the jet to lift 1.15 times the agreed-upon weight of part (a). Compose the
specifications for the nozzle, water jet velocity, jet diameter, and flow rate.

e. Comment on all decisions made and on whether this water lift is feasible.

Hinge

Child
stands
here

Liquid
inlet

1 m

Impact object

A

A

A

A

θ

(a)

(b)

FIGURE P3.80
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4 Dimensional Analysis and
Dynamic Similitude

In the preceding chapter, we wrote equations that are basic to the study of fluid mechanics. We were
able to apply them and solve them for many practical problems under special conditions. In a
number of cases, the descriptive equations cannot be solved exactly, however. Consequently, we
must formulate an alternative method of analysis. In this chapter, we will develop such a method by
relying initially on the fact that equations must be dimensionally homogeneous. Further, we will
define several dimensionless ratios that are commonly encountered in various flow situations. We
will also see how these dimensionless ratios are used to advantage in correlating experimental data
and in modeling problems.

Modeling problems involve testing a model of a prototype. Consider, for example, a company
that wishes to manufacture an airplane. Under ideal conditions, a prototype might be built and
tested in a wind tunnel in which a controlled airflow can be directed past the plane. Tests
and measurements would be made on the stationary plane while it is in the wind tunnel. If the
airplane is large, however, a sizable wind tunnel is needed with huge fans and a tremendous power
requirement, since speeds in excess of 500 mi=h may be necessary. The cost of building a
prototype aircraft and testing it in an appropriate facility can therefore be prohibitive. Alterna-
tively, a scale model of the plane can be built and tested in a smaller tunnel. Measurements on the
model can then be scaled up to predict performance of the prototype even though the prototype
has not been built. Clearly, the cost is considerably less. Modeling wind flow past a building, for
example, is an economical way of finding the effect of a hurricane on the structure. Thus,
modeling problems have many useful applications. In this chapter, we will see how dimensionless
ratios are used in modeling problems.

4.1 DIMENSIONAL HOMOGENEITY AND ANALYSIS

An equation must be dimensionally homogeneous. That is, each term in the equation must have the
same dimensions or units. To compare dimensions of various terms within an equation, it is
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convenient to first convert the dimensions into fundamental units. Suppose we are working within
the British gravitational system, in which force (F), length (L), and time (T) are considered
fundamental. Mass (M) is a derived unit defined asM¼F � T2=L. Consider, for example, Bernoulli’s
equation, derived in Chapter 3:

p

r
þ V2

2
þ gz ¼ a constant

If we use the generalized notation, the dimensions of each term become

p

r
¼ F

L2
L3

M
¼ F

L2
L3

L

F � T2
¼ L2

T2

V2

2
¼ L2

T2

gz ¼ L

T2
L ¼ L2

T2

Thus, each term has dimensions of L2=T2 in a system in which F, L, and T dimensions are
considered fundamental (British gravitational system). We could reformulate the dimensions of
the Bernoulli equation in the system in which only mass (M), length (L), and time (T) are
fundamental (SI system). Force is a derived unit defined as F¼M � L=T2. Evaluating the Bernoulli
equation in this system, we get

p

r
¼ M � L

T2

1
L2

L3

M
¼ L2

T2

V2

2
¼ L2

T2

gz ¼ L

T2
L ¼ L2

T2

In Chapter 1, we discussed the English engineering system, in which force, mass, length, and time
are considered fundamental. In this system, equations are often written with a conversion factor
because mass and force are both considered fundamental. Bernoulli’s equation, for example, would
be written as

p

r
þ V2

2gc
þ gz

gc
¼ a constant

where gc¼ 32.2 lbm � ft=(lbf � s2). Thus, gc has dimensions ofM � L=(F � T2). The dimensions of each
term in the Bernoulli equation become

p

r
¼ F

L2
L3

M
¼ F � L

M

V2

2gc
¼ L2

T2

F � T2

M � L ¼ F � L
M

gz

gc
¼ L

T2

F � T2

M � L L ¼ F � L
M
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Again each term of the equation has the same dimensions. The equation is thus dimensionally
homogeneous. Table 4.1 provides dimensions of physical quantities that are commonly encountered
in fluid mechanics.

4.1.1 RAYLEIGH METHOD

We now formulate the first technique of dimensional analysis—known as the Rayleigh method—
by an example. Consider that we are trying to determine the force exerted on a flat plate by a jet of
liquid. Without knowing what was derived in Chapter 3, we might speculate that this force is a
function of liquid density (r), jet velocity (V), jet area (A), angle of attack between the jet and the
plate (u), and the distance between the nozzle and the plate (‘). Thus, force (F) is an as yet
undetermined function of these variables.

F ¼ F(r, V , A, u, ‘) (4:1)

Next we assume that the functional dependence can be written as a product by separating the
variables according to

F ¼ C1r
a1Va2Aa3ua4‘a5 (4:2)

where the ai exponents are unknown, as is the constant C1. We now write Equation 4.2 with
respective dimensions substituted for each term:

TABLE 4.1
Dimensions and Units of Common Parameters in Fluid Mechanics

Symbol Quantity

Dimensional System

SI
Units—British

Gravitational or EnglishF, L,T M, L, T F,M, L,T

A Area L2 L2 L2 m2 ft2

a Acceleration L=T2 L=T2 L=T2 m=s2 ft=s2

a Sonic velocity L=T L=T L=T m=s ft=s

F Force F M � L=T2 F N¼ kg � m=s2 lbf
L Length L L L m ft
m Mass F � T2=L M M kg slug or lbm
_m Mass flow rate F � T=L M=T M=T kg=s slug=s or lbm=s
P, W Power F � L=T M � L2=T3 F � L=T W¼N � m=s ft � lbf=s
p Pressure F=L2 M=(L � T2) F=L2 Pa¼N=m2 lbf=ft2

Q Volume flow rate L3=T L3=T L3=T m3=s ft3=s
t Time T T T S s
V � U Velocity L=T L=T L=T m=s ft=s

V� Volume L3 L3 L3 m3 ft3

W Work F � L M � L2=T2 F � L J¼N � m lbf � ft
b Coefficient of

compressibility
L2=F L � T2=M L2=F m2=N ft2=lbf

u Angle (radians) — — — — —

m Absolute viscosity F � T=L2 M(L � T) F � T=L2 N � s=m2 lbf � s=ft2
v Kinematic viscosity L2=T L2=T L2=T m2=s ft2=s

r Density F � T2=L4 M=L3 M=L3 kg=m3 slug=ft3 or lbm=ft3

s Surface tension F=L M=T2 F=L N=m lbf=ft
t Shear stress F=L2 M=L � T2 F=L2 Pa¼N=m2 lbf=ft2

v Angular velocity I=T I=T I=T I=s I=s
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M � L
T2

¼ C1
M

L3

� �a1 L

T

� �a2

L2
� �a3

(0)a4 (L)a5

where we have arbitrarily elected to use the M, L, T system. However, either system is acceptable.
The dimension of u is in radians. Taking the natural logarithm of each quantity yields

‘n M þ ‘n L� 2 ‘n T ¼ ‘n C1 þ (a1 ‘n M � 3a1 ‘n L)

þ (a2 ‘n L� a2 ‘n T)þ (2a3 ‘n L)

þ (a4 ‘n 0)þ (a5 ‘n L)

Since this equation must be dimensionally homogeneous, all coefficients of the time terms on both
sides of the equation must be equal. Thus,

T: �2 ¼ �a2

For M and L, we have

M: 1 ¼ a1
L: 1 ¼ �3a1 þ a2 þ 2a3 þ a5

There are three equations and four unknowns. Solving simultaneously gives

a2 ¼ 2

a1 ¼ 1

a3 ¼ 1� a5
2

Substituting into Equation 4.2, we get

F ¼ C1rV
2 A

Aa5=2
ua4‘a5

Combining like terms yields

F

rV2A
¼ C1

l

A1=2

� �a5

ua4 (4:3)

In functional form,

F

rV2A
¼ F

‘

A1=2
, u

� �
(4:4a)

As a check on this result, we see that each resulting term is dimensionless.
Note that in solving the algebraic equations simultaneously, a5 was left as an unknown. If a3 is

left as unknown instead, the final form of the equation becomes

F

rV2‘2
¼ F

A

‘2
, u

� �
(4:4b)

Both forms, Equations 4.4a and 4.4b, are correct. In fact, multiplication of F=rV2‘2 by ‘2=A in
Equation 4.4b gives F=rV2A of Equation 4.4a. This result suggests that it is possible to manipulate
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the final result algebraically to obtain other forms with no loss in accuracy or generality. In other
words, once the dimensionless terms or groups are determined, the result can be modified to obtain
other dimensionless groups without starting over and solving for different exponents. As an
example, consider Equation 4.4a:

F

rV2A
¼ F

‘

A1=2
, u

� �
(4:4a)

We can use any combination of groups to yield other groups. Thus

F

rV2A
� A1=2

‘

� �2

¼ F

rV2‘2

The new term F=rV2‘2 can now be substituted in Equation 4.4a for either of the terms used to
produce it to obtain a different relationship:

F

rV2‘2
¼ F

‘

A1=2
, u

� �
(4:4c)

or

F

rV2A
¼ F

F

rV2‘2
, u

� �
(4:4d)

Equations 4.4a through 4.4d are equally correct because in each equation we have a dimensionally
homogeneous relationship. In addition, as was done here, we can use the reciprocal of any term or
the square of any term (or more than two terms) as long as our result is a relationship that is
dimensionally homogeneous. Thus, dimensional analysis provides a means for us to express a
functional relationship in terms of the variables of the problem at hand.

Returning to our original objective of predicting the force exerted on a flat plate by a jet of
liquid, we would at this point have to make actual measurements on a jet impinging on a flat plate to
determine values for the exponents and constants that are still unknown (for example, C1, a4, and a5
of Equation 4.3).

Thus, we began with a functional relationship in an equation (Equation 4.2) containing one
unknown constant and five unknown exponents. By using dimensional analysis to reduce the number
of unknowns to three, we are required to perform fewer experiments—and, moreover, the final form
of the equation is known. At the outset, we speculated as to which variables were important. In
performing experiments to evaluate exponents, we would learn whether the variables originally
chosen were significant. If the final derived equation did not correlate the measurements satisfactorily,
we would rederive an expression with dimensional analysis and include more quantities.

Example 4.1

Liquid in a tank is being drained through a pipe at tank bottom. The time it takes to drain the liquid is to
be determined. Use dimensional analysis to obtain an expression for the time in terms of the pertinent
variables.

SOLUTION

The problem does not state what variables we are to use in the analysis. We therefore rely on intuitive
reasoning to determine which variables are significant. Thus, we hypothesize that the time t depends on
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the liquid height h above the exit pipe, the liquid velocity V in the exit pipe, the exit pipe diameter D, and
the fluid properties—density and viscosity, r and m, respectively. We therefore write

t ¼ t(h, V , D, r, m)

or

t ¼ C1h
a1Va2Da3ra4ma5 (i)

In terms of dimensions,

T ¼ C1L
a1 L

T

� �a2

La3
F � T2

L4

� �a4 F � T
L2

� �a5

where in this case we have selected the F, L, T system. For each dimension, the exponents from this
equation are written directly without the intermediate step of taking the logarithm of the equation:

F: 0 ¼ a4 þ a5
L: 0 ¼ a1 þ a2 þ a3 � 4a4 � 2a5
T: 1 ¼ �a2 þ 2a4 þ a5

Rewriting the force equation to solve for a4, we get

a4 ¼ �a5

Substituting into the time equation, we get

1 ¼ �a2 � 2a5 þ a5

or

a2 ¼ �1� a5

Substituting into the length equation yields

0 ¼ a1 � 1� a5 þ a3 þ 4a5 � 2a5

which becomes

a1 ¼ 1� a3 � a5

Combining these underlined expressions with Equation i of this example, the following results:

t ¼ C1h
(1�a3�a5)V (�1�a5)Da3r�a5ma6

or

t ¼ C1
h

ha3ha5
1

VVa5
Da3 1

ra5
ma5

160 Introduction to Fluid Mechanics



Grouping terms with like exponents gives

t ¼ C1
h

V

D

h

� �a3 m

rVh

� �a5

In functional form,

Vt

h
¼ t

D

h
,
m

rVh

� �

The original assumption of the variables thought important now has to be proven by experiment. If a low
or no correlation (statistically) between the preceding variables is found to exist, the analysis must be
repeated with more or with different terms to find a new functional dependence.

It is prudent in problems of the type in the preceding example to have methods of checking the
results. As can be discerned from the solution, the final equation should contain only dimensionless
terms or groups. In addition, we can determine how many dimensionless terms or groups to expect.
Consider for example, the relationship written in Equation 4.1 for the force exerted on a flat plate by
a jet of liquid:

F ¼ F(r, V , A, u, ‘) (4:1)

There are six variables in this equation (F, r, V, A, u, and ‘). We used the M, L, T systems (three
fundamental dimensions), which yielded three equations that related the ai exponents. The number
of dimensionless groups that result is

number of

variables

� �
�

number of

fundamental

dimensions

0
@

1
A ¼

number of

dimensionless

groups

0
@

1
A

For Equation 4.1, we would therefore expect to obtain

6 variables� 3 dimensions ¼ 3 dimensionless groups

Equations 4.4a through 4.4d show this to be the case.
Likewise for the draining tank in Example 4.1, we wrote

t ¼ t(h, V , D, r, m)

We used the F, L, T system and each dimension yielded an equation. We would therefore expect

6 variables� 3 dimensions ¼ 3 dimensionless groups

4.1.2 BUCKINGHAM PI METHOD

Another approach to dimensional analysis is through the Buckingham pi method. In this method,
the dimensionless ratios are called P groups or P parameters and could have been developed in a
manner outlined by the following steps:
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1. Select variables that are considered pertinent to the problem by using intuitive reasoning
and write the relationship between the variables all on one side of the equation.

2. Choose repeating variables—that is, variables containing all m dimensions of the
problem. It is convenient to select one variable that specifies scale (a length, for
example), another that specifies kinematic conditions (velocity), and one that is a
characteristic of the fluid (such as density). For a system with three fundamental dimen-
sions, r, V, and D are suitable. For a system with four fundamental dimensions, r, V, D,
and gc are satisfactory. The repeating variables chosen should be independent of
each other.

3. Write P groups in terms of unknown exponents.
4. Write the equations relating the exponents for each group and solve them.
5. Obtain the appropriate dimensionless parameters by substitution into the P groups.

Solving a problem by following these five steps is illustrated in the next example.

Example 4.2

Liquid flows horizontally through a circular tube filled with sand grains that are spherical and of the same
diameter. As liquid flows through this sand bed, the liquid experiences a pressure drop. The pressure
drop Dp is a function of average fluid velocity V, diameter D of the sand grains, spacing S between
adjacent grains, liquid density r, and viscosity m. Use dimensional analysis to determine an expression
for the pressure drop in terms of these variables.

SOLUTION

We solve using the F, M, L, T system:

Step 1: f(Dp, V, D, S, r, m, gc)¼ 0.

Step 2: Repeating variables ! r, V, D, gc.

Step 3: We are expecting three dimensionless groups or P parameters (7 variables – 4 dimensions¼
3 groups):

�1 ¼ ra1Vb1Dc1gd1c Dpe1 ¼ M

L3

� �a1 L

T

� �b1

(L)c1
M � L
F � T2

� �d1 F

L2

� �e1

�2 ¼ ra2Vb2Dc2gd2c Se2 ¼ M

L3

� �a2 L

T

� �b2

(L)c2
M � L
F � T2

� �d2

(L)e2

�3 ¼ ra3Vb3Dc3gd3c me3 ¼ M

L3

� �a3 L

T

� �b3

(L)c3
M � L
F � T2

� �d3 F � T
L2

� �e3

Step 4:
P1 group:

M: 0 ¼ a1 þ d1

L: 0 ¼ �3a1 þ b1 þ c1 þ d1 � 2e1

T: 0 ¼ �b1 � 2d1

F: 0 ¼ d1 þ e1

Solving, we get a1¼�d1, b1¼�2d1, c1¼ 0, e1¼ d1.
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P2 group:

M: 0 ¼ a2 þ d2
L: 0 ¼ �3a2 þ b2 þ c2 þ d2 � e2
T: 0 ¼ �b2 � 2d2
F: 0 ¼ d2

Solving, we get a2¼ 0, b2¼ 0, c2¼�e2, d2¼ 0.

P3 group:

M: 0 ¼ a3 þ d3
L: 0 ¼ �3a3 þ b3 þ c3 þ d3 � 2e3
T: 0 ¼ �b3 � 2d3 þ e3
F: 0 ¼ �d3 þ e3

Solving, we get a3¼�d3, b3¼�d3, c3¼�d3, e3¼ d3.

Step 5:

�1 ¼ Dpgc
rV2

� �d1

�2 ¼ D

S

� �c2

�3 ¼ mgc
rVD

� �d3

We can now write the solution as

Dpgc
rV2

¼ f
D

S
,
mgc
rVD

� �

4.2 DIMENSIONLESS RATIOS

There are several main classes of problems in fluid mechanics: those that involve closed-conduit
flows (such as pipe flow), those that involve flows with one surface exposed (such as flow in a river),
those that involve flow past an object (such as an airplane in flight), and those that involve no
contact with any surfaces (such as a spray). In this section, we will derive dimensionless ratios that
are significant for these categories to serve as an introduction to each.

4.2.1 FLOW IN A PIPE OR CONDUIT

Flow in a closed conduit results from a difference in pressure Dp from inlet to outlet. The pressure
inside decreases linearly with length L and is affected by fluid properties and flow rate. If the
velocity of flow is high with respect to the sonic velocity of the fluid medium, as with compressible
flows, then sonic velocity too must be included. Thus, for a general pipe flow problem, we have

Dp ¼ Dp(r, V , m, D, L, a) (4:5a)

where a is introduced as the sonic velocity. Performing a dimensional analysis, we obtain

Dp

rV2
¼ Dp

rVD

m
,
V

a
,
L

D

� �
(4:5b)
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The term on the left-hand side, when written Dp= 1
2 rV

2, is called the pressure coefficient; the 1
2 is

added as a matter of custom to make the denominator a kinetic energy term. Next, rVD=m is called
the Reynolds number of the flow.

Finally, V=a is known as the Mach number, which is important in gas flows. It is interesting to
manipulate these dimensionless ratios to discover that each is a ratio of forces. Suppose we examine
the Reynolds number. The dimensions of numerator and denominator are

rVD ¼ M

L3
L

T
L ¼ F � T2

L4
L

T
L ¼ F � T

L2

m ¼ F � T
L2

The force in the numerator is an inertia force; the denominator is a viscous force. Thus the Reynolds
number is a ratio of inertia to viscous forces in the flow. Similarly, the pressure coefficient is a ratio of
pressure forces to inertia forces. The Mach number is a ratio of dynamic force at the flow velocity to
the dynamic force at the sonic velocity. Flow of incompressible fluids in conduits is treated in more
detail in Chapter 5, and flow of compressible fluids in conduits is treated in more detail in Chapter 8.

4.2.2 FLOW OVER IMMERSED BODIES

When an object flows through a fluid medium, forces are exerted on the object due to pressure
variations in the flow field and due to skin friction or viscous effects along the surface. The force
exerted in the direction of flow is called the drag force Df. The flow acting perpendicular to the flow
direction is the lift force Lf. Both act over an area. We therefore write

Dp ¼ Dp(Df , Lf , r, V , m, D) (4:6a)

Solving, we obtain

Dp

rV2
¼ Dp

Df

rV2D2
,

Lf
rV2D2

,
rVD

m

� �
(4:6b)

The term containing drag force when written as Df =
1
2 rV

2D2 is called the drag coefficient and
represents the ratio of drag to inertia forces. The term Lf = 1

2 rV
2D2 is called the lift coefficient. Flow

over immersed bodies is treated in detail in Chapter 6.
The previous discussion has introduced some basic concepts and dimensionless ratios encoun-

tered in fluid mechanics. They are by no means complete, however, as there are many more
dimensionless ratios not discussed here. A summary of the common ratios appears in Table 4.2.
Note that in this table, a number of ratios have 1

2 rV
2 (¼ kinetic energy) in the denominator. Often

such ratios are simply called coefficients. Thus drag force=kinetic energy may be called the drag
coefficient.

4.2.3 OPEN-CHANNEL FLOW

Flow in an open channel such as a river or spillway is maintained by gravity forces analogous to
pressure forces in pipe flow. Because pressure on the surface is atmospheric, pressure is not a
significant parameter. Instead, differences in liquid depth at two points a distance L apart influence
the flow. Therefore, we can write

Dz ¼ Dz(V , g, L) (4:7a)
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Solving, we obtain

Dzg

V2
¼ Dz

V2

gL

� �
(4:7b)

The term on the left-hand side, when written Dzg= 1
2V

2 is called a head coefficient; V2=gL (or in
some texts V=

ffiffiffiffiffiffi
gL

p
) is called the Froude number, which represents the ratio of inertia to gravity

forces. Open-channel flows are treated in more detail in Chapter 7.

4.2.4 UNBOUNDED FLOWS

Flows at gas–liquid or liquid–liquid interfaces where no solid surfaces are in contact are called
unbounded flows. Examples include sprays and jets. In this case, pressure forces acting at an
interface are balanced by surface tension forces that act over an area. Thus, we write

Dp ¼ Dp(r, s, L, V) (4:8a)

Solving yields

Dp

rV2
¼ Dp

rV2L

s

� �
(4:8b)

where rV2L=s is known as the Weber number and represents the ratio of inertia to surface
tension forces.

4.3 DIMENSIONAL ANALYSIS BY INSPECTION

Table 4.2 contains dimensionless ratios that are commonly used in fluid mechanics. Therefore, when
performing a dimensional analysis, we find it useful to express the result in terms of generally
accepted ratios.

A table such as Table 4.2 can be used to advantage in performing a dimensional analysis.
In Section 4.1, when an analysis was performed, the dimensions of each term were substituted into
the equation, and exponents were equated. The equations were solved simultaneously to obtain
values for the exponents. The values were then substituted back into the original equation, and like
terms were collected to yield a functional relationship between dimensionless groups.

In this section, we will see that the technique of solving for exponents can be skipped with the
aid of Table 4.2 if we remember that the objective is to find commonly recognized dimensionless
groups. Suppose, for example, that we are analyzing a turbine that can be run with water or a liquid

TABLE 4.2
Some Common Dimensionless Ratios

Ratio Name Symbol Force Ratio

rVD=m Reynolds number Re Inertia=viscous
Dp= 1

2 rV
2 Pressure coefficient Cp Pressure=inertia

V2=gL Froude number Fr Inertia=gravity
rV2L=s Weber number We Inertia=surface tension

Df =
1
2 rV

2D2 Drag coefficient CD Drag=inertia
Lf = 1

2 rV
2D2 Lift coefficient CL Lift=inertia

V=a Mach number M Inertia at V=inertia at a

FT=
1
2 rV

2D2 Thrust coefficient CT Thrust=inertia
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refrigerant as the working fluid. It is believed that the shaft torque Ts is a function of velocity (V),
fluid density (r), viscosity (m), angular velocity of the blades (v), efficiency (h), and some
characteristic dimension of the turbine blade geometry (D). We write

Ts ¼ Ts(V , r, m, v, h, D) (4:9)

In the F, L, T system, the dimensions of each term are written as

F � L ¼ Ts L=T ,F � T2=L4,F � T=L2, 1=T , 0, L� �
We have seven variables and three dimensions, so we are seeking 7 – 3¼ 4 independent dimension-
less groups. If we combine the geometry term D with rotational speed v, we obtain dimensions of
velocity V. Thus Dv=V (or V=Dv) is a dimensionless group. Efficiency h is already dimensionless.
Density r can be combined with velocity V and geometry term D to obtain the dimensions of shaft
torque Ts as follows:

r V2 D3! Ts

F � T2

L4
� L

2

T2
� L3 ¼ F � L

Therefore, Ts=rV
2D3 (or rV2D3=Ts) is our third dimensionless group. (Note that this term when

divided by 1
2 could be called a torque coefficient¼ torque=kinetic energy.) Viscosity m, velocity V,

and geometry term D can be combined to give dimensions of torque as

m V D2 ! Ts

F � T
L

� L
T
� L2 ¼ F � L

The ratio Ts=mVD
2 (or its reciprocal) is the fourth term. Note that the four ratios that we have written

are all independent. That is, none of them can be obtained by manipulating the others together.
It is possible to put together another dimensionless group by using the variables of Equation 4.9.

We see that the density r, velocity V, geometry term D, and viscosity m can be combined to form a
recognizable ratio: the Reynolds number rVD=m. This is a fifth group, but we are seeking only four
independent groups. The Reynolds number can be obtained by multiplication of our third and fourth
groups:

rV2D3

Ts

Ts
mVD2

¼ rVD

m

So even though we have five groups, they are not all independent. We can express our solution to
this problem in terms of any of the four groups, but we want to give priority to the recognized
groups without omitting terms that appear only once (efficiency h in this case).

The solution we select, then, is

Ts
1
2 rV

2D3
¼ Ts

V

Dv
,h,

rVD

m

� �
(4:10)

Although Ts=mVD
2 can be used in place of rVD=m, the latter, being an easily recognizable quantity,

is preferred.
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Example 4.3*

When ships were built with wood-clad hulls, it was important to know how the finish on the wood
surface affected the drag. The drag force directly influenced the power required to propel the ship
through water. Measurements of drag force were made by pulling wooden boards, each with different
surface finishes, while they were submerged. The force was thus measured directly.

Consider that the drag force Df in such an experiment is a function of liquid properties—density r and
viscosity m, the length L of the board, the width w of the board, and the velocity V of the board as it is
being pulled through the water. Develop a relationship between these variables.

SOLUTION

The drag force can be written in functional form as

Df ¼ Df (r, m, L, v, V)

We have six variables and three dimensions, so we expect three dimensionless groups (6 variables� 3
dimensions). We can solve this problem by inspection with the aid of Table 4.2.

For our first group, examine the functional equation just given to determine if any obvious ratios
stand out. Length L and width w both have the same dimension, so we identify L=w (or w=L) as one of
our groups.

From Table 4.2, we examine the drag coefficient CD. If our functional equation contains all the
parameters that appear in the drag coefficient CD, then the drag coefficient is one of the groups we seek.
So the ratio

CD ¼ Df
1
2 rV

2L2

is selected as our second group.
We next compare our terms to the definition of the Reynolds number. Because density, velocity,

length, and viscosity all appear in our functional equation,

Re ¼ rVL

m

is identified as our third group. The final result is

Df
1
2 rV

2L2
¼ Df

L

v
,
rVL

m

� �

Note that width w could be used instead of length L in the drag coefficient and in the Reynolds number.
The 1

2 was added to the denominator of the left-hand side so that the denominator becomes a kinetic
energy term. Our final result relates commonly recognized groups. Although other dimensionless groups
might be derivable, the recognized groups are preferred.

4.4 SIMILITUDE

In fluid mechanics, physical modeling depends on similitude, or similarity. That is, a prototype can
be scaled down (or up), and a model can be built that represents the prototype. Measurements made
on the model can then be scaled up (or down) to predict what will occur with the prototype. In many
cases, a model is much less costly to build and easier to take data from than a prototype. Before a

* Information for this example was provided by Professor C.R. Wimberly and Ms L.K. Morse.

Dimensional Analysis and Dynamic Similitude 167



scale model can be constructed, however, certain rules of similitude must be observed. Because the
prototype and model must be geometrically and dynamically similar, we will discuss the rules of
similarity first and then apply them to various problems.

4.4.1 GEOMETRIC SIMILARITY

Geometric similarity between two configurations is achieved when they are of different sizes but
otherwise appear identical. Consider two cylinders of different diameter and length as shown in
Figure 4.1. The prototype has diameter D and length L; the model has diameter DM and length LM.
The ratios of diameters and of lengths are

DM

D
¼ l1

LM
L

¼ l2

We require that for geometric similarity, l1¼ l2; in other words, we require that every linear
dimension on the two must be related by the same scale ratio.

As another example, consider two square tubes of different size (see Figure 4.2). For geometric
similarity, we require that

LM
L

¼ SM
S

¼ l (4:11)

D
DM

LM
L

FIGURE 4.1 Similar cylinders.

S

S SM

SM

LM

L

FIGURE 4.2 Similar square tubes.
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4.4.2 DYNAMIC SIMILARITY

Dynamic similarity is the second condition that must be met before two flow situations can be
considered similar. The dynamic parameters must be related in a certain manner. Just as Equation
4.11 gives a scale ratio for length, we must have corresponding expressions for force, mass, and
time. These are

FM ¼ hF (4:12a)

mM ¼ zm (4:12b)

tM ¼ tt (4:12c)

respectively, where the subscript M refers to the model.
From these expressions, we can obtain scale ratios for any dynamic or kinematic parameter and

for fluid properties. With the scale ratio ‘M¼ l‘, we have

Velocity:VM ¼ l

t
V

Acceleration: aM ¼ l

t2
a

Density: rM ¼ z

l3
r

Pressure: pM ¼ h

l2
p

(4:12d)

Whether we are working with a model or a prototype, Newton’s law applies:

F ¼ ma (4:13a)

and

FM ¼ mMaM (4:13b)

By substitution from Equations 4.11 and 4.12, Equation 4.13b becomes

hF ¼ zm
l

t2
a

Dividing by Equation 4.13a gives

h ¼ zl

t2

or

1 ¼ zl

t2h

The form of this equation will be adjusted slightly to obtain an expression that is more convenient to
use in fluid mechanics. Multiplying numerator and denominator by l3 yields
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1 ¼ zl4

t2l3h

Separating these terms appropriately gives

1 ¼ z

l3
l2

t2
l2

h

or

1 ¼ rM=rð Þ V2
M=V

2
� �

‘2M=‘
2

� �
FM=F

This equation can be rewritten as

F

rV2‘2

����
M

¼ F

rV2‘2
(4:14)

Equation 4.14 expresses the condition for dynamic similarity between model and prototype; the
value of the dimensionless parameter F=rV2‘2 must be the same in model and in prototype at
geometrically similar locations. The force F includes gravity forces, electric forces, pressure forces,
magnetic forces, and surface tension forces.

Let us examine a case in which pressure forces are important. Force due to pressure is F¼Dp‘2.
Substitution into Equation 4.14 gives

Dp‘2

rV2‘2

����
M

¼ Dp‘2

rV2‘2

or, after multiplication by 2,

Dp
1
2 rV

2

�����
M

¼ Dp
1
2 rV

2
(4:15)

Thus, for dynamic similarity in problems in which pressure forces are important, the pressure
coefficient in model and prototype must be identical at geometrically similar locations.

Let us next examine viscous forces. For Newtonian fluids,

t ¼ m
dV

dy

and

F ¼ t‘2 ¼ m
dV

dy
‘2

We can write

F ¼ m
DV

D‘
‘2
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or

F / mV‘

Using Equation 4.14, we have

mV‘

rV2‘2

����
M

¼ mV‘

rV2‘2

or, inverting, we get

rV‘

m

����
M

¼ rV‘

m
(4:16)

Thus, when viscous or frictional effects are important, the Reynolds number between model and
prototype must be the same.

Let us now examine a case in which gravity forces are important. The force due to gravity is
F¼mg, which is proportional to r‘3g. Substituting into Equation 4.14 yields

r‘3g

rV2‘2

����
M

¼ r‘3g

rV2‘2

or, inverting,

V2

g‘

����
M

¼ V2

g‘
¼ Froude number (4:17)

Thus, the Froude number in both model and prototype must be identical at geometrically similar
locations for dynamic similarity in problems in which gravity forces are important.

Finally, consider surface tension forces. The force due to surface tension is F¼s‘. Combining
with Equation 4.14, we obtain

s‘

rV2‘2

����
M

¼ s‘

rV2‘2

or, inverting,

rV2‘

s

����
M

¼ rV2‘

s
(4:18)

Thus, in problems in which surface tension forces are important, the Weber numbers must be
identical in model and prototype. The importance of using the widely recognized ratios in fluid
mechanics is now evident.

4.4.3 MODELING

We have seen that geometric and dynamic similarity must be ensured if a prototype is to be modeled
properly. Furthermore, these criteria imply that various dimensionless ratios between model and
prototype must be identical. Use of these dimensionless ratios in modeling problems is best
illustrated by example.
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Example 4.4

A capillary tube has an 8-mm inside diameter through which liquid fluorine refrigerant R-11 flows at a rate
of 0.03 cm3=s. The tube is to be used as a throttling device in an air conditioning unit. A model of this flow
is constructed by using a pipe of 3 cm inside diameter and water as the fluid medium.

a. What is the required velocity in the model for dynamic similarity?
b. When dynamic similarity is reached, the pressure drop in the model is measured as 50 Pa.

What is the corresponding pressure drop in the capillary tube?

SOLUTION

a. In this case the model is much larger than the prototype. For dynamic similarity between the
two, the Reynolds numbers must be identical. Thus,

rVD

m

����
M

¼ rVD

m

or

VM ¼ V
D

DM

� �
mM

m

� �
r

rM

� �

In the prototype,

A ¼ p(0:008)2

4
¼ 5:03� 10�5 m2

so, from continuity,

V ¼ Q

A
¼ 0:03� 10�4

5:03� 10�5
¼ 0:059 6 m=s

From Table A.5,

mM

m
¼ 0:89� 10�3

0:42� 10�3

and

rM
r

¼ 1
1:48

By substitution,

VM ¼ 0:0596
0:008
0:03

� �
0:89
0:42

� �
(1:48)

VM ¼ 0:050 m=s

b. In this case, the pressure coefficient in model and prototype must be the same. Thus

Dp

rV2

����
M

¼ Dp

rV2
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or

Dp ¼ DpM
r

rM

� �
V2

V2
M

� �

By substitution, we get

Dp ¼ (50 Pa)
1:48
1

� �
0:059 6
0:05

� �2

Dp ¼ 105 Pa

Example 4.5

The characteristics of a ship 50 ft in length are to be studied with a 5-ft-long model. The ship velocity is
12 knots. What is the required velocity of the model for dynamic similarity? Measurements on the model
indicate a drag force of 5 lbf. What is the expected drag on the prototype? Assume water to be the fluid in
both cases and neglect viscous effects.

SOLUTION

The flow involves an open channel type of geometry, so dynamic similarity is achieved for equal Froude
numbers. Thus,

V2

g‘

����
M

¼ V2

g‘

or

V2
M ¼ V2 ‘M

‘

The scale ratio is given as

l ¼ ‘M
‘

¼ 5 ft

50 ft
¼ 1

10

With the ship velocity given as 12 knots, the corresponding model velocity for dynamic similarity is

V2
M ¼ (12)2

1
10

¼ 14:4

or

VM ¼ 3:8 knots

To relate drag measurements between model and prototype, we use the drag coefficient. We have,
from Table 4.2,

Df
1
2 rV

2D2

�����
M

¼ Df
1
2 rV

2D2
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Since the liquid is the same in both cases, we can solve for the drag force exerted on the prototype to get

Df ¼ DfM
V2

V2
M

D2

D2
M

All parameters are known. Substituting gives

Df ¼ 5
12
3:8

� �2 10
1

� �2

Df ¼ 5000 lbf

Thus, if dynamic similarity conditions are met, the drag force on the prototype will be 5000 lbf.

Example 4.6

Octane is used as a fuel for a certain engine and is sprayed into air at the engine intake. The spray nozzle
orifice is 0.122 in. in diameter. The average velocity of the droplet–air mix is 100 ft=s, and the octane
concentration is small enough that the density of the mix is about equal to that of air. The system is to be
modeled with an orifice that is 0.25 in. in diameter spraying water in air. Determine the average velocity
of the water–air mix for dynamic similarity between the two.

SOLUTION

In this case, the Weber numbers must be identical:

rV2‘

s

����
M

¼ rV2‘

s

Taking the densities in both cases as being equal gives

V2
M ¼ V2 ‘

‘M

sM

s

Surface tension values are given in Table A.5; by substitution, we get

V2
M ¼ (100)2

0:122
0:25

� �
72

21:14

� �
¼ 1:66� 104

Solving, we get

VM ¼ 129 ft=s

Two devices that are commonly used in model studies are a wind tunnel and a tow tank. The top view
of a wind tunnel is given schematically in Figure 4.3. As indicated, the motor and fan assembly
circulates air through the system. The ductwork is designed so that losses due to friction are
minimized by use of turning vanes and gradually diverging ducts. Flow at the test section must be
as smooth and as uniform as possible. Models of automobiles, trucks, airplanes, groups of houses,
buildings, and the like can be placed in the test section to determine the effects of speed or winds such
as hurricanes. Data so obtained can then be scaled up to predict similar effects on the prototype.

A tow tank consists of a huge reservoir of water, usually rectangular in cross section, that is used
extensively for testing ship hull designs. Once a design is made, a scale model is built and tested in
the basin for drag and other forces. The appropriately instrumented model is usually pulled along the
water surface to obtain data.
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It is not always possible to assure dynamic similarity between model and prototype, however. In
the tow tank, for example, it is nearly impossible to satisfy both Froude andReynolds number similarity.
Despite this shortcoming, modeling remains a viable alternative to testing a full-scale prototype.

4.5 CORRELATION OF EXPERIMENTAL DATA

This section presents data from an actual experiment and then correlates them by using dimensional
analysis. For many years, most design engineers have selected what is known as a globe valve for
controlling the flow rate in a piping system. A globe valve uses a multiturn handwheel that operates
a control element, which closes onto a seating surface.

One advantage of using this valve is the high level of precision obtained when throttling. One
disadvantage, however, is the high pressure drop experienced by the fluid as it flows through the
valve, because the globe values has a restricted flow passage when open.

In order to eliminate the high pressure losses, it has been suggested that ball valves may be used
in place of globe valves. Ball valves are very compact and operate on a 908 turn from fully closed to
fully open. When fully open, pressure losses across these valves are small compared to those in
globe valves. The main disadvantage of the ball valve is its failure to maintain the desired flow rate
versus pressure drop characteristics that the globe valve offers. To achieve the desired performance,
orifice plate inserts, usually made of brass, can be used with ball valves. The orifice plates are placed
just upstream of the valve and are merely threaded, calibrated restrictions intended to maintain the
desired flow rate and have a small pressure drop.

Figure 4.4 is a sketch of an orifice plate insert. As indicated in the figure, the insert is threaded so
that it can be easily installed into the body of a threaded ball valve, upstream of the spherical control

Flow direction

Turning
vanes

Test section

Fan

Convergent
nozzleFlow straighteners

FIGURE 4.3 Schematic of a closed-loop wind tunnel.

FIGURE 4.4 Profile and end views of the brass orifice insert.

Dimensional Analysis and Dynamic Similitude 175



element. An orifice hole is drilled through the body of the insert. The black ‘‘dots’’ in the end view
represent cavities positioned to accept a special installation tool supplied with the insert.

The objective here is to measure the pressure loss through a ball valve that contains an orifice
plate insert. Pressure loss is expressed in terms of the pressure coefficient, Cp:

Cp ¼ 2(p1 � p2)

rV2

where p1 – p2 is the pressure drop across the valve, and the denominator is the kinetic energy of the
flow. One ball valve can be used in combination with a variety of inserts, each having a different
orifice hole diameter. The correct orifice size to use must be determined by the engineer who is
sizing the piping system and its installation. It is customary to gather data, and report the pressure
coefficient versus orifice diameter for a pressure drop of 1 psi. For example, the flow rate through
a 1=2 in. ball valve with an insert having a 0.3 in hole diameter is 1.06 gpm when the pressure drop
is 1 psi.

Actual data were obtained using 1=2 in., 3=4 in., and 1 in. ball valves, each containing a threaded
brass orifice insert, and these data are presented in what follows. Different inserts were used with
each valve in order to obtain loss coefficients. Dimensional analysis is then used to correlate the data
using two parameters or groups. The results can be used by a design engineer to select the correct
valve insert for a system.

Equation formulation—Consider the systems shown in Figure 4.5. Figure 4.5a shows a pipe with a
ball valve=insert in place. To determine the pressure loss, it is necessary to measure the flow rate
through the pipe that will correspond to a pressure drop from section 1 to section 2 (Dp12) of 1 psi. It
would seem simple enough to merely set up this system and obtain the necessary measurements.
However, due to flow separation and other anomalies that exist in the pipeline, obtaining an accurate
and repeatable measure of pressure at 1 and at 2 is difficult. Consequently, another method must be
used to find Dp12.

The accepted procedure for obtaining Dp12 in this case involves measuring the pressure
drop from section 3 to section 4 (Dp34), which will include the friction loss over the lengths denoted
as L31 and L24, as well as the minor loss across the valve. The pipe in Figure 4.5a is replaced
with the pipe shown in Figure 4.5b, and we measure the pressure drop from section 3 to section 4.

Flow direction Ball valve

Valve body
length

Valve body
length

L31 L24

L34

(b)

(a)

3

3 21 4

4

FIGURE 4.5 Sketch of pipe and valve systems.
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The overall length in Figure 4.5b is shorter than the overall length in Figure 4.5a by the length of
the valve body as indicated. In equation form:

Dp34 ¼ Dp31 þ Dp12 þ Dp24

The pressure drop obtained from the setup of Figure 4.5b (just the pipe) is subtracted from that
obtained in Figure 4.5a, which will yield the sought after Dp12. These pressure drops are obtained as
functions of flow rate, and we are seeking the flow rate that corresponds to Dp12¼ 1 psi.

Standard practice in making pressure drop measurements entails making the length L31 at least
two pipe diameters, and L24 is at least six diameters.

The results of all measurements taken and calculations made are provided in Tables 4.3 through
4.5. These data are graphed in Figure 4.6, with orifice diameter do in inches on the horizontal axis, and
volume flow rate in gallons per minute (gpm) on the vertical axis. Water is working fluid in all cases.

TABLE 4.3
Orifice Diameters and Valve
Coefficients for the 1=2 in. Ball
Valve (Pipe ID¼ 0.546 in.)

Orifice
Diameter, do (in.)

Volume Flow
Rate Q (gpm)

0.300 1.06
0.380 2.00

0.500 4.96
0.580 9.00

TABLE 4.4
Orifice Diameters and Valve
Coefficients for the 3=4 in. Ball
Valve (Pipe ID¼ 0.818 in.)

Orifice
Diameter, do (in.)

Volume Flow
Rate Q (gpm)

0.4805 4.89

0.5235 8.00
0.575 14.09

TABLE 4.5
Orifice Diameters and Valve
Coefficients for the 1 in. Ball Valve
(Pipe ID¼ 0.957 in.)

Orifice
Diameter, do (in.)

Volume Flow
Rate Q (gpm)

0.563 7.90
0.5959 11.89

0.6735 21.08
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Dimensional analysis—We now use dimensional analysis to obtain a relationship among the
variables in this problem. We assume the pressure drop is a function of liquid density, velocity
through the orifice, viscosity, orifice diameter, and pipe diameter. We write:

Dp ¼ Dp(r, V , m, do, D)

We are expecting three dimensionless groups, and by inspection, they are

2Dp
rV2

¼ Dp
rVD

m
,
do
D

� �

Our interest is in a correlation between the pressure coefficient (the left-hand side of the equation),
and the orifice diameter. Because the inserts are actually orifices, reliance is made on previous work
with orifice meters; one important dimensionless group in such studies is the Reynolds number at
the throat of each orifice, based on actual flow rate. So based on experience, we try correlating the
pressure coefficient with Reynolds number at the orifice; that is,

2Dp
rV2

¼ Dp
rVdo
m

� �
(4:19)

If we had yet to obtain such experience, we would try several combinations of the dimensionless
groups to try to obtain a useable result.

The velocity based on the orifice diameter is

V ¼ Q

A
¼ 4Q

pd2o
(4:20)

The Reynolds number in terms of flow rate then becomes

Re ¼ rVdo
m

¼ 4rQ
pdom

(4:21)

The calculations that need to be made are summarized in Table 4.6. The second and third columns
are of the raw data. The fourth and fifth columns are the converted numbers for orifice diameter and

Orifice diameter (in.)
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1/2 in. pipe
3/4 in. pipe
1 in. pipe
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20.00

15.00

10.00

5.00

0.00
0.000 0.200 0.400 0.600 0.800

FIGURE 4.6 Results of volume flow rate versus orifice diameter for all three line sizes.
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volume flow rate. The sixth column is the water velocity through the orifice, as calculated with
Equation 4.20. The Reynolds number is in the next column, and it was calculated with Equation
4.21. The pressure coefficient is in the final column.

A graph of pressure coefficient versus Reynolds number (Equation 4.21) is provided in
Figure 4.7. The equation of that line is

Cp ¼ 84:86 Re�1:312

with a correlation coefficient of R2¼ 0.981.
Note that experimental results ‘‘collapse’’ onto a single line, which represents all the data. If

more data were gathered for other orifice insert, we would expect those results to fall on this same
line. The advantages of dimensional analysis are now evident.

TABLE 4.6
Summary of Calculations for the Orifice Inserts

Pipe Size do (in.) Q (gpm) do (ft) Q (ft3=s) V (ft=s) Re Cp

1=2 in. 0.300 1.06 0.025 0.0024 4.8 1.23Eþ 04 3.1E – 04
0.380 2.00 0.032 0.0045 5.7 1.83Eþ 04 2.2E – 04
0.500 4.96 0.042 0.0111 8.1 3.45Eþ 04 1.1E – 04
0.580 9.00 0.048 0.0201 10.9 5.39Eþ 04 6.0E – 05

3=4 in. 0.481 4.89 0.040 0.0109 8.7 3.54Eþ 04 9.6E – 05
0.524 8.00 0.044 0.0178 11.9 5.31Eþ 04 5.0E – 05
0.575 14.09 0.048 0.0314 17.4 8.52Eþ 04 2.4E – 05

1 in. 0.563 7.90 0.047 0.0176 10.2 4.88Eþ 04 6.9E – 05
0.596 11.89 0.050 0.0265 13.7 6.94Eþ 04 3.8E – 05
0.674 21.08 0.056 0.0470 19.0 1.09Eþ 05 2.0E – 05

Notes: r¼ 1.94 slug=ft3; m¼ 1.9� 10�5 lbf � s=ft2; 1.06 gpm� 0.0022283¼ 0.0024 ft3=s.
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FIGURE 4.7 Pressure coefficient as a function of orifice Reynolds number for all pipe sizes.
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4.6 SUMMARY

In this chapter, we used dimensional analysis to develop nondimensional ratios that are useful for
correlating data. We also derived various dimensionless ratios such as Reynolds, Froude, and Weber
numbers and examined the requirements of geometric and dynamic similarity. Similitude and
modeling were discussed, as were dimensionless ratios that are important in various flow situations.

PROBLEMS

Dimensions of Terms and Equations

4.1 Another form of Bernoulli’s equation is obtained by dividing by g, yielding

p

rg
þ V2

2g
þ z ¼ a constant

What is the dimension of each term?
4.2 The velocity profile for laminar flow in a circular tube is given by

Vz ¼ Dp

L

R2

4m
1� r

R

� 	2

 �

where: Dp=L¼ pressure drop per unit length
R¼ tube radius
m¼ absolute viscosity of the fluid

Show that the right-hand side of this equation has the correct dimensions.
4.3 The equation for volume flow rate for laminar flow of a Newtonian fluid in a circular duct is

given by

Q ¼ pR4

8m
Dp

L

� �

where: Q¼ volume flow rate
Dp=L¼ pressure drop per unit length
R¼ pipe radius
m¼ absolute viscosity of the fluid

Determine if this equation is dimensionally consistent.
4.4 The equation for velocity for laminar flow of a Newtonian fluid down an incline is given by

Vx ¼ rg

m

h2

2
2z
h
� z2

h2

� �
sin u

where: r¼ density of liquid
m¼ absolute viscosity of liquid
g¼ acceleration due to gravity
h¼ depth of liquid
sin u¼ slope of incline (dimensionless)

Determine the dimensions of this equation.
4.5 The equation for volume flow rate for laminar flow of a Newtonian liquid down an incline is

given by
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Q ¼ gh3b

3v
sin u

where: Q¼ volume flow rate of liquid
h¼ depth of liquid
b¼width of channel down which liquid flows
v¼ kinematic viscosity of liquid
sin u¼ slope of the incline (dimensionless)
g¼ acceleration due to gravity

Determine if this equation has the proper dimensions.
4.6 The steady-state-flow energy equation from Chapter 3 can be written as

d(Q�W)

dt
¼ _m h2 þ V2

2

2
þ gz2

� �
� h1 þ V2

1

2
þ gz1

� �
 �

What are the dimensions of each term?

Dimensional Analysis—Four- and Five-Variable Problems

4.7 Sonic velocity in a gas is assumed to be a function of gas density r, pressure p, and dynamic
viscosity m. Determine a relationship using dimensional analysis.

4.8 A weir is an obstruction placed in the flow of a liquid in an open channel. The liquid height
upstream of the weir can be used to determine the volume flow rate over the weir. Assuming
that the volume flow Q is a function of upstream height h, gravity g, and channel width b,
develop an expression for Q by using dimensional analysis.

4.9 For flow over a flat plate, the flow velocity V in the vicinity of the surface varies with the wall
shear stress tw, distance from the wall y, and fluid properties r and m. Use dimensional
analysis to determine an expression relating these variables.

4.10 In a falling-sphere viscometer, spheres are dropped through a liquid, and their terminal
velocity is measured. The liquid viscosity is then determined. Perform a dimensional analysis
for the viscometer assuming that viscosity m is a function of sphere diameter D and mass m,
local acceleration due to gravity g, and liquid density r.

4.11 The height h a liquid attains inside a partly submerged capillary tube is a function of surface
tension s, tube radius R, gravity g, and liquid density r. Determine an expression for the
height by using dimensional analysis.

4.12 The main bearing on an engine crankshaft is lubricated with engine oil. The torque due to
friction T0 depends on shaft diameter D, rotational speed v, lubricant viscosity m, and
density r. Use dimensional analysis to derive an expression for torque.

4.13 The power ~P delivered by an internal combustion engine is a function of the mass flow rate of
air consumed _m, the energy contained in the fuel E, the rotational speed of the engine v, and
the torque Ts developed. Determine an expression for power by using dimensional analysis.

4.14 A rocket expels high-velocity gases as it travels through the atmosphere. The thrust FT exerted
depends on exit pressure of the gases pe, ambient pressure pa, gas velocity at exit V, and exit
area A. Use dimensional analysis to develop an expression for the thrust.

Dimensional Analysis—Six-Variable Problems

4.15 The friction factor f is a dimensionless quantity used in pipe flow problems as an aid in
calculating pressure drop. The friction factor is a function of fluid properties density r and
viscosity m, of average velocity V, of pipe diameter D, and of the roughness of the pipe wall.
The wall roughness is traditionally represented by a single term « having the dimension of
length. Determine a relationship between these variables to predict friction factor.
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4.16 A surface explosion sends a sound wave through air. The wave travels at the sonic velocity.
The pressure ratio across the wave p2=p1 is a function of the energy released by the
explosive E, distance from blast location d, sonic velocity in the air a, time t since the
explosion, and density r of the air. Use dimensional analysis to develop an expression for
the pressure ratio.

4.17 An open-top tank is filled to a depth h with liquid of density r and viscosity m. A hole of
diameter D is drilled in the side of the tank, and a jet of liquid issues from it. Assuming that the
efflux velocity V is a function of these parameters and also of gravity g, develop an expression
for V using dimensional analysis.

4.18 A pneumatic spray nozzle is a two-fluid device that directs high-velocity air at a liquid jet to
break the liquid into a spray. The average droplet diameter D of the spray depends on the mass
flow rate of air _m, the volume flow of liquid Q the density of each fluid ra and r‘, and the
difference in velocity of the two streams DV. Use dimensional analysis to derive a relationship
for D.

4.19 In a spray drying operation, eggs in liquid form are sprayed into a heated drying chamber to
produce powdered eggs. Moisture from the liquid droplets is released to the hotter environ-
ment through the surface area of the drops. The amount of moisture released in terms of mass
of liquid per unit time is a function of volume flow rate through the nozzle Q, liquid density r,
surface tension s, average droplet diameter D, and residence time t that the droplets are
suspended before they settle. Use dimensional analysis to derive an expression for the
moisture released.

4.20 The efficiency of a pump is assumed to be a function of discharge flow rate Q, pressure
increase Dp, pipe diameter D, and fluid properties density r and viscosity m. Use dimensional
analysis to find an expression for pump efficiency.

4.21 Power input to a pump depends on flow rate Q, pressure rise Dp, liquid density r, efficiency
h, and impeller diameter D. Determine an expression for power by using dimensional
analysis.

4.22 Vanes located on the periphery of a rotor are struck by a jet of liquid, causing the rotor to
rotate. The torque measured at the rotor shaft T0 depends on the rotational speed of the rotor v
the jet velocity V, the jet area A, the radial distance R from shaft center to point of impact
of the jet, and the liquid density r. Use dimensional analysis to determine an expression for
the torque.

4.23 A two-nozzle water sprinkler discharges water while the sprinkler head itself rotates. The
angular velocity v depends on water density r, volume flow of water Q exit velocity through
the nozzles V, nozzle exit area A, and torque Ts to overcome bearing friction. Use dimensional
analysis to develop an expression for the angular velocity.

4.24 The power required to drive a fan dW=dt is a function of fluid properties r and m, fan blade
diameter D, mass flow rate _m, and rotational speed v. Use dimensional analysis to determine
an expression for power.

4.25 A jet-propelled boat takes in water at its bow, passes it through pumps, and discharges it
through ducts at the stern. The propulsive force Fp is a function of the velocity of the boat V,
water velocity at the exit duct Ve, exit pressure pe, pumping power ~P, and liquid density r. Use
dimensional analysis to develop an expression for the propulsive force.

4.26 The designers of an all-terrain vehicle decide not to use a propeller to move the vehicle
through water. Instead, the rotation of the wheels is expected to provide the necessary thrust.
The thrust or propulsive force FT is determined to be a function of rotational speed of
the wheels v, diameter of the tires D, width of the tires w, and density and viscosity r and
m of the liquid medium (muddy water vs. fresh water). Determine an expression for the
propulsive force by using dimensional analysis.

4.27 The amount of time t that clothes must stay in a washing machine for cleaning is a function of
the height of the agitator h, the frequency of oscillation or its reciprocal v, the mass of water in

182 Introduction to Fluid Mechanics



the tank m, the mass of soap used ms, and the tank volume V�. Use dimensional analysis to
determine an expression for the time.

4.28 A water turbine is located in a dam. The shaft torque Ts delivered to its blades is a function of
water flow rate Q through the system, total water head H upstream of the dam, liquid density
r, angular velocity of the blades v, and efficiency h. Determine an expression for torque.

Dimensional Analysis—Seven- and Eight-Variable Problems

4.29 A thin sheet of liquid flows down a roof. The liquid sheet velocity is a function of density r,
slope angle u, viscosity m, surface tension s, roof length ‘, and gravity g. Develop an
expression for the velocity.

4.30 A viscous liquid is placed in the annulus between concentric cylinders. The outer cylinder is
fixed, while the inner cylinder rotates. Determine an expression for torque T0 required to rotate
the inner cylinder if it depends on the constant rotational speed v, the liquid properties r and
m, the cylinder diameters D2 and D1, and the inner cylinder length L.

4.31 When a vertical flat surface is sprayed with paint, the paint will run if too thick a coat is
applied. A thick coat, however, is desirable in many cases to make the surface coating glossy.
An optimum thickness t is thought to exist which is a function of droplet diameter D of the
spray, initial yield stress t0, viscosity m0, surface tension s and density r of the paint, and flow
rate Q. Use dimensional analysis to develop an expression for the thickness.

4.32 A jet engine takes in air at atmospheric pressure, compresses it, and uses it in a combustion process
to generate high-temperature gases. These gases are then passed through a turbine to provide
power for compressing the inlet air. After passing through the turbine, the gases are exhausted to
the atmosphere to deliver thrust. The thrust FT developed is a function of inlet air density ra and
pressure pa, pressure after the compressor pc, energy content in the fuelE, exhaust gas pressure pe,
and velocity V. Use dimensional analysis to develop an expression for the thrust.

4.33 The lift force on a wing Lf is a function of its chord length c, velocity V, maximum thickness t,
angle of attack a, fluid density r, fluid viscosity m, and sonic velocity a. Determine a
dimensionless relationship among these variables.

4.34 Paint (a Bingham fluid) is applied with a spray gun by forcing it under high pressure through a
small orifice. The average diameter of the droplets produced is known to be a function of

t0¼ initial yield stress
m0¼Bingham liquid viscosity
r¼ liquid density
p¼ liquid pressure at the spray gun
s¼ surface tension of liquid
Q¼ volume flow of liquid
d¼ orifice diameter

Use dimensional analysis to find an expression for average droplet diameter D.

Dimensional Analysis—Miscellaneous Problems

In Problems 4.35–4.42, only the dependent variable is given, and you arc required to select the
appropriate independent variables on the basis of your experience and intuition. Include enough
independent variables in these problems that at least three dimensionless groups result.

4.35 Liquid lubricant is purchased in pressurized spray cans. When the button is depressed, a spray
of lubricant is produced in a conical configuration. The average diameter of the droplets
produced is a function of a number of variables. Use dimensional analysis to find an
expression for average droplet diameter.

4.36 The drag force exerted by air friction on a moving automobile must be overcome by power
produced by the engine. Use dimensional analysis to formulate an expression for power.
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4.37 The wings of a flying airplane experience a lift force great enough to elevate the plane.
Determine the dimensionless ratio (or ratios) that affect the lift force.

4.38 An upright funnel is plugged and then filled with liquid. When the plug is removed, liquid
issues from the end and empties the funnel after time t has elapsed. Use dimensional analysis
to develop an expression for t.

4.39 A pump is a device used to increase energy in a liquid by raising its pressure. A compressor
is such a device made for gases. When gases are compressed, however, both temperature
and pressure increase. Thus, many compressors have coolers that reduce the compressed air
temperature to that of the ambient temperature. Given such an arrangement, develop an
expression to predict the power required for compressing a gas. Neglect heat-transfer effects.

4.40 A fan is a device used to increase the energy of air by raising its pressure. The increase in
pressure experienced by the air is a function of a number of variables. Use dimensional
analysis to determine an expression for the pressure rise.

4.41 Liquid flows horizontally through a circular tube filled with sand grains that are spherical and
of the same diameter. As liquid flows through this sand bed, the liquid experiences a pressure
drop. Use dimensional analysis to determine an expression for the pressure drop in terms of
the pertinent variables.

4.42 Fins are used by a swimmer to increase the swimmer’s forward velocity. The propulsive force
is increased because of the fins. Use dimensional analysis to develop a functional equation to
relate the propulsive force to the pertinent variables.

Modeling Problems

4.43 Acetone flows through a tube at a volume flow rate of 18 ft3=s. If glycerine is used in the tube
instead of acetone, what volume flow rate is required for complete dynamic similarity?

4.44 Castor oil flows in a pipe with an inside diameter of 12 in. The average velocity of the oil is
9 ft=s. For dynamically similar flow, determine the average flow velocity for air at 1708F and
18 psig in a 5-in. pipe.

4.45 Various control systems use pneumatic devices to direct the desired operations. These devices
require that air be piped to them. In one design, the pneumatic line diameter is 1

2 in., and the air
flow rate is 0.03 in.3=s. If such a line is to be modeled with water flowing through a 6-in.-ID
line, determine the average water velocity required for dynamic similarity.

4.46 Gasoline (assume octane) flows at a rate of 6 in.=s in a 3
8-in.-diameter fuel line of an

automobile. The flow is modeled with water flowing in a 1-in.-ID pipe. What is the corre-
sponding water velocity in the water pipe? Assuming that the pressure drop in the water pipe
is 4 psi, determine the pressure drop in the fuel line.

4.47 Glycerine flows at a rate of 1 ft3=s in an 8-in.-diameter pipe. The pressure drop measured over
a stretch of pipe is to be determined by making suitable measurements on a model. The model
is a 1-in. pipe carrying benzene. Determine the volume flow rate of benzene required for
dynamic similarity. If the pressure drop in the benzene line is 1 psi per 40 ft, predict the
corresponding pressure drop in the glycerine line.

4.48 A fan is to be purchased to provide adequate ventilation for workers in an underground mine.
The fan is to move 0.05 m3=s through a mine shaft 2.5 m high by 2 m wide. A model of the
duct 25 cm by 20 cm has been constructed. If water is used as the fluid medium in the model,
determine the required flow rate for dynamic similarity. For the characteristic length of each
duct, use D¼ 4� area=perimeter.

4.49 An airplane wing of chord length 0.8 m travels through air at 58C and 75 kPa. The wing
velocity is 100 m=s. A one-tenth scale model of the wing is tested in a wind tunnel at 258C and
101 kPa. For dynamic similarity between the two, determine the velocity required in the
tunnel.

4.50 You are asked to determine the drag force exerted on an automobile at a speed of 60 mph and
an air temperature of 628F. A one-fifth scale model is to be tested in a water tunnel at 708F.
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Determine the required water velocity for dynamic similarity between the full-size car and the
model. If the drag force on the model is measured to be 10 lbf, determine the expected drag
force on the automobile.

4.51 The drag characteristics of a blimp traveling at 15 ft=s are to be studied by modeling. The
prototype is 25 ft in diameter and 200 ft long. The model is one-twelfth scale and will
be tested underwater. What velocity must the model have for dynamic similarity between the
two? If the drag on the model is 3.5 lbf, what is the corresponding drag for the prototype?
Neglect buoyant effects.

4.52 A ship 104 m in length is tested by a model that is only 14 m long. The ship velocity is
42 km=h. What model velocity is required for dynamic similarity if the liquid used for each is
the same? If the drag on the model is 7.4 N, what drag is expected for the prototype? Neglect
viscous effects.

4.53 Swim fins are tested by a diver in a water tunnel. The fins are 60 cm long and develop a thrust
of 6 N when the water velocity is 1.25 m=s. The manufacturer has decided to market a
geometrically similar fin for children that is 30 cm long. What is the expected thrust if test
conditions are dynamically similar to those on the full-size fin?

4.54 A ship 300 ft long travels through water at 15 knots. A one-fiftieth scale model is to be tested
in a towing basin containing a liquid mixture of water and a thinning agent. Determine the
kinematic viscosity of the mixture if the Reynolds number and the Froude number are the
same for both model and prototype. Also calculate the required velocity of the model.

4.55 Tests on drag force exerted on tractor-trailer trucks are to be made. For actual conditions, a
truck travels at 55 mi=h and pulls a trailer that is about 40 ft long. It is desired to model this
situation with a 5-ft-long model in a wind tunnel. What is the required flow velocity in the
wind tunnel for dynamically similar conditions between the model and the prototype?
Suppose that the 5-ft-long model could be submerged in water that is circulated in a water
tunnel. What is the required water velocity for dynamically similar conditions between model
and prototype?

4.56 A propeller of a ship is to be modeled. The model has a diameter of 10 cm and it exerts a
propulsive force of 150 N when the flow velocity is 0.5 m=s. The prototype is 2 m in diameter.
What is the velocity and the propulsive force for the prototype that correspond to what was
obtained with the model? The fluid is water in both cases.

4.57 A yacht is 21 ft long and a model of it is only 1 ft long. The yacht can travel at 10 knots. What
velocity of the model is required for dynamic similarity between the two if water is the fluid in
both cases? What velocity is required if glycerine is used for tests on the model?

4.58 The finish on the hull of a ship has an influence on the power required to move the ship through
water. Tests are made by coating an aluminum plate with the surface finish of interest and then
dragging the plate through water. Consider a painted aluminum plate 2 m long that is dragged at
5 knots through water. The measured drag force is 10 N. It is proposed to use the same finish on
a ship hull that is 8 m long. Determine the velocity of the prototype required for dynamic
similarity between the ship and the plate. Estimate the drag force exerted on the ship using the
drag force obtained on the plate. Water is the fluid in both cases.

Miscellaneous Problems

4.59 Pump performance data are sometimes correlated by using several dimensionless terms, two
of which are:

Volumetric flow coefficient¼ Q

vD3

Energy transfer coefficient¼ gDH

v2D2
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where: Q¼ volume flow rate through the pump
v¼ rotational speed of pump
D¼ characteristic length associated with the pump, usually the dimension of an

internal component of the pump
g¼ acceleration due to gravity
DH¼ energy added to fluid in the form of an increase in head, expressed as a

length dimension

Actual performance data on a centrifugal pump are as follows: rotational speed¼ 3500 rpm;
total head=energy added¼ 80 ft of water; volume flow rate¼ 50 gpm; characteristic
dimension¼ 5 1

8 in.; fluid¼water. It is desired to operate this pump at 1750 rpm and to change
the characteristic dimension to 4 5

8. Determine how the new configuration will affect the flow
rate and the total head=energy added to the fluid.

4.60 Assume that the same fluid is used in model and prototype for any system. Determine, then,
the ratio of velocities—model to prototype—if the criterion for similarity is (a) Froude
number, (b) Reynolds number, and (c) Weber number.

4.61 Kerosene flows through a 2-in.-ID pipe at 4 ft=s. This flow is modeled using a 1
2-in.-ID pipe

with water as the working fluid.

a. What is the corresponding water velocity in the model for dynamic similarity between
model and prototype?

b. Suppose that by mistake the Froude number is used rather than the correct dimensionless
group. What is the corresponding water velocity in the model when the Froude number is
the same in the model and the prototype?

4.62 Acetone is a solvent that is used as a degreaser. The acetone is sprayed through a nozzle onto
a surface that needs cleaning. It is believed that the cleaning action is most effective with a
nozzle with orifice diameter 0.25 cm and discharge velocity (at the nozzle exit) of 1 m=s.
A similar cleaning system is to be tested using carbon tetrachloride and a nozzle whose orifice
diameter is 0.30 cm.

a. What is the required discharge velocity of the carbon tetrachloride if the Reynolds number
is used to assure similarity?

b. Suppose that the Froude number is used instead. What would the corresponding discharge
velocity be in this case?

c. What if the Weber number is used? What is the corresponding discharge velocity of the
carbon tetrachloride in this case?

d. Which is the correct dimensionless group to use for this problem?

Correlation of Experimental Results

4.63 Consider a tube with an inside diameter D through which water flows. The tube is placed in
a horizontal position, and pressure taps on it are located 5 ft, 3 ft, and 2 ft apart. The
pressure taps are connected to a manometer that gives the pressure drop in terms of a head
loss as water flows through the pipe. Head loss increases with flow rate. The test setup is
shown in Figure P4.63. Data on pressure drop in a pipe are given in the following table.
Determine an equation to fit the data and predict Dh=L (L¼ 5 ft; D¼ 0.785 in.) in terms of
Reynolds number.
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FIGURE P4.63

Test Q (gpm) Dh (in. Water) V (fps)

1 1.50 0.50 0.995
2 1.85 0.50 1.23

3 2.00 0.75 1.33
4 2.45 0.93 1.62
5 2.80 1.00 1.86

6 3.30 1.75 2.19
7 3.50 1.81 2.32
8 3.90 2.31 2.59
9 4.10 2.63 2.72

4.64 Data on pressure drop in a pipe as described in Problem 4.63 are given in the following table.
Determine an equation to predict Dh=L (L¼ 5 ft; D¼ 1.025 in.).

Test Q (gpm) Dh (in. Water) V (fps)

1 1.50 0.063 0.583

2 1.85 0.13 0.719
3 2.00 0.19 0.778
4 2.45 0.31 0.953
5 2.80 0.44 1.09

6 3.30 0.63 1.28
7 3.50 0.69 1.36
8 3.90 0.75 1.52

9 4.10 0.88 1.59
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4.65 Figure P4.63 shows a system used to measure pressure drop versus flow rate for water flowing
through a tube. As indicated, pressure taps are located 5 ft, 3 ft, and 2 ft apart. Data obtained
with this apparatus are provided in the following table, columns 1, 2, 3, and 4. Group I data are for
L¼ 5 ft; Group II data for L¼ 3 ft, and Group III data for L¼ 2 ft. The pipe diameter is 0.545 in.

Test Q (gpm) Dh (in.) V (ft=s)

Group I

1 1.50 2.50 2.06
2 1.85 3.69 2.54
3 2.00 4.38 2.75

4 2.45 6.25 3.37
5 2.80 8.88 3.85
6 3.30 11.75 4.54
7 3.50 13.13 4.81

8 3.90 16.13 5.36
9 4.10 17.81 5.64

Group II
11 1.50 1.50 2.06

12 1.85 2.20 2.54
13 2.00 2.63 2.75
14 2.45 3.80 3.37

15 2.80 5.33 3.85
16 3.30 7.00 4.54
17 3.50 7.88 4.81

18 3.90 9.70 5.36
19 4.10 10.70 5.64

Group III
21 1.50 1.00 2.06
22 1.85 1.48 2.54

23 2.00 1.75 2.75
24 2.45 2.50 3.37
25 2.80 3.56 3.85

26 3.30 4.70 4.54
27 3.50 5.25 4.81
28 3.90 6.45 5.36
29 4.10 7.13 5.64

Note: Group I data for 5 ft length; group II data

for 3-ft length; group III data for 2-ft
length. T¼ 708F; v¼ 10.3�10�6 ft2=s;
D¼ 0.545 in.; A¼ 0.00162 ft2.

a. Graph Dh versus Q for each group of data on the same set of axes.
b. Calculate Dh=L and Re for each group.
c. Graph Dh=L versus Re for all data on one set of axes.

4.66 A hemisphere is placed in a wind tunnel and oriented as shown in Figure P4.66. The air
(T¼ 24.58C) moves past the hemisphere at a uniform and controllable velocity. The air exerts
a drag force on the hemisphere and its mounting stand equal to W. When the drag of the
mounting stand is subtracted from the raw numbers, drag force on the hemisphere Df versus
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velocity V data are obtained. The experiment is performed with three different-sized hemi-
spheres, and the results are as given in the following table.

D¼ 1 in. D¼2 in. D¼3 in.

Df (lbf) V (mph) Df (lbf) V (mph) Df (lbf) V (mph)

0.038 45.1 0.072 44.3 0.155 44.0
0.037 39.6 0.072 41.1 0.141 40.9

0.029 30.9 0.043 30.6 0.083 30.3
0.019 20.0 0.026 20.0 0.040 20.0
0.011 10.0 0.014 10.0 0.020 10.0

Data obtained by Mary Franck and Darryl Wilson.

For flow past immersed objects, it was determined in this chapter that drag coefficient and the
Reynolds number are important parameters. So for the data given above:

a. Graph the drag force versus velocity for each hemisphere.
b. Also graph the drag coefficient versus the Reynolds number on semilog paper. (Note that

the area term in the denominator of the drag coefficient is the projected frontal area or, in
this case, the area of a circle.)

Mounting standD

W

V

FIGURE P4.66

4.67 Data in the accompanying table are for a water pump operating at v¼ 1750 rpm. (These are
actual pump-performance data obtained from a catalog). The first column is of volume flow
rate in gpm. The second column is of a change in head DH when the pump is operated with
an 8-in.- (¼ characteristic length, D) diameter impeller. The parameter DH is defined as

DH ¼ p

rg
þ V2

2g
þ z

� �����
pump outlet

� p

rg
þ V2

2g
þ z

� �����
pump inlet

( )

The third and fourth columns are also of DH but for different impeller sizes.
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Fluid¼Water v¼ 1750 rpm DH in ft of Water

Q (gpm) DH (D¼8 in.) DH (D ¼ 7 1
2 in.) DH (D¼7 in.)

80 67 59 48
160 65 56 45
240 58 50 40
320 50 39 28

400 35 20 —

a. Construct a graph of DH (vertical axis) versus Q for this pump.
b. From a dimensional analysis performed for a pump, the following groups can be derived:

gDH

v2D2
¼ energy-transfer coefficient

Q

vD3
¼ volume-flow coefficient

and

dW=dt

rv3D5
¼ QgDH

v3D5
¼ power coefficient

Construct a graph of the energy-transfer coefficient (vertical axis) versus the volume-flow
coefficient.

c. Construct a graph of the power coefficient (vertical axis) versus the volume-flow
coefficient.

Design Problems

4.68 An Experiment to Verify Bernoulli’s Equation and to Correlate Data
It is desired to construct an apparatus to illustrate the application of Bernoulli’s equation
and to show how dimensional analysis can be used to correlate data from an experiment.
Figure P4.68 is a sketch of the proposed apparatus made for these purposes. The sketch shows
a tank of liquid with outlets and valves attached. Outlet 1 is located a distance h1 from the
floor and has an outlet diameter d1. When valve 1 is opened, a jet of liquid issues forth and
impacts the floor at a distance L1 from the exit of the pipe. Other outlets are located at h2 and
h3, with corresponding diameters d2 and d3 and impact lengths L2 and L3.

a. Perform a dimensional analysis to predict the point of impact L (for any outlet) in terms of
the pertinent parameters.

b. Determine how Bernoulli’s equation could be illustrated with this apparatus.
c. Suppose that d1¼ d2¼ d3. How well is dimensional analysis illustrated? How well is

Bernoulli’s equation illustrated?
d. Suppose that d1, d2, and d3 are sized so that L1¼ L2¼ L3. How well is dimensional

analysis illustrated? How well is Bernoulli’s equation illustrated?
e. Select a material to be used for the tank. Determine where h1, h2, and h3 should be located.

Specify d1, d2, and d3. Select a tank and specify its cross-sectional dimensions. Select a
tank height. What liquid should be used?

f. Explain all design decisions.
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FIGURE P4.68

4.69 Dimensional Analysis Applied to Surface Tension Measurement
It is desired to verify the equation for surface tension measured with a capillary tube, as given
in Chapter 1:

h ¼ 2s
rRg

cos u

Essentially, the equation states that for a specific fluid,

rRgh

s
¼ a constant

or

hR ¼ a constant

where h equals the capillary rise of the fluid in the tube and R equals the tube radius.

a. Derive the equation hR¼ a constant using dimensional analysis.
b. Devise an experimental method that can be used to obtain data to verify this equation.
c. Specify tube size(s) and fluid(s) to be used. Make sure that the tube sizes specified are

commercially available.
d. Write step-by-step directions for performing the experiment(s).
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5 Flow in Closed Conduits

Flow in closed conduits is a very important part of the study of fluid mechanics—primarily because
examples are so commonplace. Water for domestic use is distributed to all parts of the household
in pipes; sewers and drains carry wastewater away. Crude oil is pumped from well to refinery in
pipes. Natural gas is brought to the user via pipes. Heated air is distributed to all parts of a house
in circular and rectangular ducts. Many other examples of conduit flow can be found in everyday
life. In this chapter, we will examine the variables that are important in mathematically describing
such flows.

The purpose of this chapter is to describe laminar and turbulent flow phenomena, to determine
the effect of viscosity, to present the equations of motion for conduit flow, and to analyze various
piping systems. Because pumps are commonly used to convey liquid in pipes, a brief survey of
pumps is also presented.

5.1 LAMINAR AND TURBULENT FLOW

Early experiments with flow in pipes demonstrated that two different flow regimes exist—laminar
and turbulent. When laminar flow exists in a system, the fluid flows in smooth layers called laminae.
A fluid particle in one layer stays in that layer. The layers of fluid slide by one another without
apparent eddies or swirls. Turbulent flow, on the other hand, exists at much higher flow rates in
the system. In this case, eddies and vortices mix the fluid by moving particles tortuously about the
cross section.

The existence of two types of flow is easily visualized by examining results of experiments
performed by Osborne Reynolds. His apparatus is shown schematically in Figure 5.1a. A transparent
tube is attached to a constant-head tank with water as the liquid medium. The opposite end of the tube
has a valve to control the flow rate. Dyed water is injected into the water at the tube inlet, and the
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resulting flow pattern is observed. For low rates of flow, something similar to Figure 5.1b results.
The dye pattern is regular and forms a single line like a thread. There is no lateral mixing in any part
of the tube, and the flow follows parallel streamlines. This type of flow is called laminar, or
viscous flow.

As the flow rate of water is increased beyond a certain point, the dye is observed not to follow a
straight threadlike line but to disperse. The dyed water mixes thoroughly with the pipe water as
shown in Figure 5.1c as a result of erratic fluid behavior in the pipe. This type of flow is called
turbulent flow. The Reynolds number at the point of transition between laminar and turbulent flow
is called the critical Reynolds number.

This experiment can be repeated with several pipes of different diameter. A dimensional
analysis, when performed and combined with the data, shows that the criterion for distinguishing
between these flows is the Reynolds number:

Re ¼ rVD

m
¼ VD

n
(5:1)

where: V¼ average velocity of the flow
D¼ inside diameter of the tube

For straight circular pipes, the flow is always laminar for a Reynolds number less than about
2 100. The flow is usually turbulent for Reynolds numbers over 4 000. For the transition regime in
between, the flow can be either laminar or turbulent, depending upon details of the apparatus that
cannot always be predicted or controlled. For our work, we will sometimes need to have an exact
value for the Reynolds number at transition. We will arbitrarily choose this value to be 2 100.

A distinction must be made between laminar and turbulent flows because the velocity distribu-
tion within a duct is different for each. Figure 5.2a shows a coordinate system for flow in a tube, for
example, with corresponding velocities. As indicated, there can be three different instantaneous
velocity components in a conduit—one for each of the three principal directions. Furthermore, each
of these velocities can be dependent upon at most three space variables and one time variable. If the
flow in the tube is laminar, we have only one nonzero instantaneous velocity: Vz. Moreover, Vz is

Flow control valve

Dye 
injector

Inlet

Overflow
tube

(a)

(b) (c)

To flow 
meter

FIGURE 5.1 An experiment for visualizing laminar and turbulent flow.
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a function of only the radial coordinate r, and the velocity distribution is parabolic as shown in
Figure 5.2b. An equation for this distribution can be derived from the equation of motion performed
later in this chapter.

If the flow is turbulent, all three instantaneous velocities Vr, Vu, and Vz are nonzero. Moreover,
each of these velocities is a function of all three space variables and of time. An equation for
velocity (Vr, Vu, or Vz) is not derivable from the equation of motion. Therefore, to envision the
axial velocity, for instance, we must rely on experimental data. Figure 5.2c shows the axial
instantaneous velocity Vz for turbulent flow in a tube.

The instantaneous velocity Vz fluctuates randomly about the mean axial velocity Vz. We would
need a very sensitive measuring instrument to obtain Vz but a relatively insensitive instrument to
obtain Vz. If the velocity profile in the turbulent flow of Figure 5.2c were measured at another instant
in time, a different instantaneous profile (Vz) would result. It would, however, fluctuate about the
same mean axial velocity Vz. Thus, the mean axial velocity would be obtained by removing the
time dependence (by integration if the function were known) from the instantaneous velocity Vz.
The time dependence can be further illustrated by looking at data in the axial or z-direction at a point
(say the tube centerline) as a function of time (see Figure 5.3).

Vz (Jagged line)

(a)

r r

r

R
(Vr)

(Vθ)
(Vz)

Vz(r)

z z

z

(b)

(c)

Vz max

Vz max

Vz (Smooth line)θ

FIGURE 5.2 (a) Cylindrical coordinates and velocity directions in a tube. (b) Axial velocity distribution for
laminar flow in a tube. (c) Axial velocity distribution for turbulent flow in a tube.

Vz

O
O t

Vz

FIGURE 5.3 Variation of centerline axial velocity with respect to time (turbulent flow).
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TABLE 5.1
Comparison of Laminar and Turbulent Flow

r

z
θ

r

z
θ

Laminar Flow Parameter Turbulent Flow

Vz only; Vr¼Vu¼ 0 Velocity Vr, Vu, Vz all nonzero
Vz¼Vz(r) only Functional dependence Vr¼Vr(r, u, z, t)

Vu¼Vu(r, u, z, t)

Vz¼Vz(r, u, z, t)
Parabolic (see above);
solution from equation
of motion

Velocity distribution Determined from experimental data

Vz

Vz max

¼ 1� r

R

� �2

V

Vz max

¼ 1
2

for Re � 2 100

Equation
�Vz

Vz max

� 1� r

R

� �1=7

�V

Vz max

� 4
5

for 5� 105 � Re � 107

Note: V¼ average velocity in principal flow direction.

As indicated in the preceding discussion, the axial velocity Vz in turbulent flow fluctuates
about some mean velocity. In general, the fluctuations are small in magnitude, but they cause
slower-moving particles in one region of the pipe cross section to exchange position with faster-
moving particles in another region. This is in contrast to what happens in laminar flow, in which a
fluid particle in one layer stays in that layer. The fluctuations in turbulent flow are responsible for a
mixing effect that manifests itself in a more evened-out velocity profile than that for laminar flow.
Also, these fluctuations cause the mixing of the injected water with the tube water in the Reynolds
experiment of Figure 5.1c. For both laminar and turbulent flow, maximum velocity in the axial
direction, Vz max, occurs at the centerline of the duct or conduit. These comments concerning laminar
and turbulent flows are summarized in Table 5.1.

The Reynolds number (Equation 5.1) is used to distinguish between laminar and turbulent
flows. The velocity in the Reynolds number expression is the average velocity V. In principle, the
average velocity is obtained by integrating the equation for instantaneous velocity Vz over the cross-
sectional area and dividing the result by the area. This procedure is correct for laminar, transition, or
turbulent flow. If there is no equation available, then experimental means are necessary to find the
average velocity. In the simplest case, we measure volume flow rate (for an incompressible fluid)
and divide by cross-sectional area: V¼Q=A.

5.2 EFFECT OF VISCOSITY

Table 5.1 shows the velocity distribution for laminar and turbulent flow. In both cases, the velocity at
the wall is zero. This phenomenon, called the nonslip condition, is due to viscosity. In laminar flow,
in which inertia or momentum of the fluid is small, the viscous effect is able to penetrate farther into
the cross section from the wall than it can in turbulent flow. Stated another way, in turbulent flow, in
which the viscous effects are small, the momentum or inertia of the flow is able to penetrate farther
outward toward the wall from the centerline than it can in laminar flow. This penetration of
momentum or inertia is called the momentum transport phenomenon. Consider the case of a
fluid between two parallel plates, with the upper plate moving as shown in Figure 5.4. The upper plate
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FIGURE 5.4 Layers of fluid flow between parallel plates.
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FIGURE 5.5 Laminar sublayer in turbulent pipe flow.

has fluid adhering to it owing to friction. The plate exerts a shear stress on the particles in layer A. This
layer in turn exerts a shear stress on layer B and so on. It is the x-component of velocity in each layer
that causes this shear stress to be propagated in the negative z-direction; that is, the A layer pulls the B
layer along, and so forth. As this shear stress approaches the stationary wall, movement is retarded by
the effect of zero velocity at the bottom propagating upward; that is, theE layer retards theD layer, and
so on. The momentum (mass � velocity) of the plate in the x-direction is transported in the z-direction.
The resultant effect on velocity is the distribution sketched in Figure 5.4.

As we saw earlier, in turbulent flow the velocity at a stationary wall is zero. Near the wall, then,
there must be a region of flow that is laminar. This region is called the laminar sublayer, and the
flow in the remainder of the cross section is called the turbulent core. Both regions are illustrated
for flow in a pipe in Figure 5.5.

5.2.1 ENTRANCE EFFECTS

Another effect of viscosity is evident at the entrance to a pipe, as illustrated in Figure 5.6. Flow is
uniform at the entrance; but as the fluid travels downstream, the effect of zero wall velocity
propagates throughout the cross section. The flow is divided into a viscous region and a core
region. Particles in the core do not sense that a wall is present. Eventually, the core disappears, and
the velocity distribution becomes fully developed. A fully developed profile does not change with
further increases in length. Mathematically, we write

d Vzð Þ
dz

¼ 0 (fully developed laminar flow)

d Vz

� �
dz

¼ 0 (fully developed turbulent flow)
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The distance Le (Figure 5.6) is called the entrance length, and its magnitude is dependent upon the
forces of inertia and viscosity. It has been determined from numerous experimental and analytical
investigations that the entrance length can be estimated with

Le ¼ 0:06D(Re) (laminar flow) (5:2a)

Le ¼ 4:4D(Re)1=6 (turbulent flow) (5:2b)

where Re¼ rVD=m¼VD=n. For laminar flow, we see that the entrance length varies directly with
the Reynolds number. For the largest Reynolds number encountered in laminar flow of 2 100,
Equation 5.2a predicts

Le ¼ 0:06D(2 100) ¼ 126D

Thus, 126 diameters is the maximum length that would be required for fully developed conditions to
exist in laminar flow.

For turbulent flow, the entrance length varies with the one-sixth power of the Reynolds number.
Conceptually, there is no upper limit for the Reynolds number in turbulent flow, but in many
engineering applications, 104<Re< 106. Over this range, we calculate, with Equation 5.2b:

20 <
Le
D

< 44

So in turbulent flow, the entrance length values are considerably less than the 126 diameters
required at a Reynolds number of 2 100. The reason that a shorter length is required in turbulent
flow is the mixing action. For abrupt or sharp-edged entrances, additional turbulence is created at the
inlet. The effect is to further decrease the inlet length required for fully developed flow to exist.

Example 5.1

Methyl alcohol flows through a well-rounded entrance to a pipe whose inside diameter is 1.05 in. The
volume flow rate of methyl alcohol is 0.03 ft3=s.

Calculate the entrance length required for the flow to become fully developed.

SOLUTION

From Table A.5, we read the following values:

Methyl alcohol r ¼ 0:789(1:94) slug=ft3

m ¼ 1:17� 10�5 lbf � s=ft2

Flow

Le

Well-rounded
entrance

Core region

Viscous region

Fully developed
flow

D

FIGURE 5.6 Laminar flow near a pipe inlet.
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The flow area is calculated as follows:

A ¼ pD2

4
¼ p(1:05=12)2

4
¼ 0:006 ft2

The average velocity in the pipe is then

V ¼ Q

A
¼ 0:03

0:006
¼ 5:0 ft=s

The Reynolds number becomes

Re ¼ rVD

m
¼ 0:789(1:94)(5:0)(1:05=12)

1:17� 10�5

¼ 5:72� 104

Because this flow is turbulent, we use Equation 5.2b to determine the entrance length:

Le ¼ 4:4D(Re)1=6 ¼ 4:4
1:05
12

� �
(5:72� 104)1=6

Solving,

Le ¼ 2:39 ft

Thus the velocity profile remains unchanged with increasing axial distance after a distance of 2.39 ft
from the inlet.

5.3 PIPE DIMENSIONS AND SPECIFICATIONS

This section presents various standards regarding pipe specifications. Pipes are specified according
to what is called a nominal diameter—for example, 1

8-nominal or 1 1
2-nominal.* The nominal

diameter does not necessarily indicate the exact inside or outside diameter of the pipe, however.
Another specification is the pipe schedule. A schedule 40 pipe is considered standard in 6-nominal
and lower pipe sizes. A schedule 80 pipe has a thicker wall than a schedule 40, so schedule 80 in the
lower sizes is designated XS for extra strong. Table C.1 gives the dimensions of numerous pipe
sizes from 1

8-nominal to 40-nominal for wrought steel and wrought iron pipe.
A proper specification for a pipe would thus include a nominal diameter and a schedule. For

example, a 1-nominal, schedule 40 pipe would have an outside diameter of 3.34 cm (1.315 in.) and
an inside diameter of 2.664 cm (0.0874 ft), where these dimensions are obtained from Table C.1.
The nominal diameter specifies the outside diameter of the pipe, whereas the schedule specifies the
wall thickness and hence the inside diameter. Thus, all 1-nominal pipe, regardless of schedule, has
the same outside diameter.

During the early days of pipe manufacturing, the nominal diameter was equal to the inside
diameter of the pipe. However, improvements in the strengths of materials have meant that pipe-
wall thickness could be decreased with little or no decrease in the ability of the pipe to perform
satisfactorily. The options were to increase the inside diameter or to decrease the outside diameter.

* It is standard industrial practice to specify nominal pipe sizes with an inch dimension (for example, 1 1
2-in. nominal). The

nominal dimension is considered to be a name for the size only. Far convenience, the ‘‘inch’’ is dropped from the
designation in this book because the reference may be to an English or to an SI measurement. For further discussion,
refer to ASTM E 380.76, p. 6, sec. 3.4.3.1, and to ASME Guide SI-1, p. 9, para 8.
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A decision was made based on the need to use fittings (elbows, T-joints, valves, and so on) with
pipes. Fittings attach to the outside wall, so it seemed prudent to keep the outside diameter the same,
decreasing the wall thickness required by enlarging the inside diameter. Hence, for 12-nominal and
smaller pipe sizes, the nominal and actual diameters are not equal. For 14-nominal and larger, the
nominal diameter is equal to the outside diameter.

Pipes are attached together in various ways. Pipe ends can be threaded, for example, and the
number of threads per length (usually per inch) is standardized. Standard pipe threads are tapered
(Figure 5.7). Before attachment, pipe threads are wrapped with special tape or coated with a viscous
compound to ensure a fluid-tight connection. Threaded connections are common with cast iron,
wrought iron, and wrought steel pipe. Alternatively, if the metal is weldable, pipes can be welded
together to form a fluid-tight connection. Welding is common in the larger pipe sizes.

Pipe ends may also have flanges attached. Flanges are made in various sizes. Before two flanges
are bolted together to form a secure connection, a rubber or gasket-type material is placed between
them to ensure a fluid-tight joint. A flanged pipe joint is shown in Figure 5.8.

Another type of pipe material is polyvinyl chloride (PVC) plastic pipe, which can be threaded or
joined together with an adhesive. Plastic pipe can be specified in the same manner as wrought steel
pipe.

Another conventional circular conduit for conveying fluid is called tubing. Copper tubing is
used extensively in plumbing applications. Note that copper can also be a pipe material, in which
case it would be specified with a nominal diameter and schedule. It is important to realize that there
is a difference between pipe and tubing. The most obvious difference is that tubing has a much
thinner wall than does pipe. Also, there is an entirely different way to specify tubing. For copper
water tubing, there are three types—K, L, and M—and a number of standard sizes. Type K is used
for underground service and general plumping. Type L is used for interior plumbing. Type M is for
soldered fittings only. Dimensions of copper tubing for 1

4-standard to 12-standard are provided
in Table C.2.

A proper specification for tubing would include a standard size and type. For example, a
1-standard, type K copper tube has an outside diameter of 2.858 cm (1.125 in.) and an inside

FIGURE 5.7 A threaded pipe end showing a taper.

FIGURE 5.8 A flanged pipe connection.
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diameter of 2.528 cm (0.08292 ft), from Table C.2. The standard dimension fixes the outside
diameter, whereas the type specifies the wall thickness directly or the inside diameter indirectly.

Another type of tubing in common use is refrigeration tubing. It is specified in the sameway as the
copper tubing just discussed and is also usually made of copper. The difference is that refrigeration
tubing is ductile (in fact, it is easily bent by hand), but copper water tubing is quite rigid.

Copper tubing ends can be flared with a tool to make them suitable for joining, as illustrated in
Figure 5.9a. Another joining method is by use of a compression fitting (Figure 5.9b). The tube is
inserted through a ring that is part of the fitting. As the fitting nut is tightened, the ring is
compressed, causing the copper tube to expand tightly against the inside wall of the fitting. Still
another joining method is soldering. The tube is inserted into a fitting and the two are soldered
together—commonly called sweating.

5.3.1 EQUIVALENT DIAMETERS FOR NONCIRCULAR DUCTS

Noncircular conduits can be found in many fluid-conveying systems. For example, sheet metal is
bent appropriately into a rectangular cross section for use in heating or air conditioning ducts,
gutters, and downspouts. In double-pipe heat exchangers, one tube is placed within a larger tube,

(a)

(b)

FIGURE 5.9 (a) Flared tube end and fitting. (b) A compression fitting.
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and the fluid-flow section between the tubes is an annulus. Recall that the definition of Reynolds
number (VD=v¼ rVD=m) contains a dimension or characteristic length D that is used to represent
the flow area. The question then arises as to what dimension to select for rectangular, square,
annular, or any other noncircular cross section. We examine three different choices that have been
proposed for modeling flows in noncircular conduits.

The first characteristic dimension we discuss is called the effective diameter, Deff. The effective
diameter is the diameter of a circular duct that has the same area as the noncircular duct. So, for
example, consider a rectangular duct of cross-sectional dimension h (height)�w (width). Its area is
hw, and we are seeking the diameter of a circular duct that has the same area:

pD2
eff

4
¼ hw

Solving, we get

Deff ¼ 2

ffiffiffiffiffiffi
hw

p

r
(rectangular duct)

A consequence of the definition of effective diameter is that the volume flow rate of fluid through the
noncircular conduit equals that through the equivalent circular duct. Again for the rectangular duct,

Q ¼ AV ¼ hwV ¼ pD2
eff

4
V

Thus, the effective diameter is one that satisfies the continuity equation.
The second characteristic dimension that we discuss is called the hydraulic diameter, Dh.

The hydraulic diameter is defined as

Dh ¼ 4� cross-sectional area of fluid flow

perimeter of duct in contact with fluid
(5:3)

For a circular cross section flowing full, A¼pD2=4 and P¼pD. Thus,

Dh ¼ pD2

pD
¼ D ¼ diameter of pipe

For a square duct flowing full, A¼ s2 and P¼ 4s. Therefore,

Dh ¼ 4s2

4s
¼ s ¼ length of one side

Hydraulic diameter can also be determined when the duct is only half full. For a circular duct
flowing half full, A¼pD2=8 and P¼pD=2. Then

Dh ¼ pD2=2
pD=2

¼ D ¼ diameter of pipe

Historically, the hydraulic diameter Dh is used far more widely than the effective diameter Deff. The
hydraulic diameter arises from applying the momentum equation to flow in a duct, which is
illustrated in the next section.
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A third characteristic dimension (used primarily in open-channel flow modeling) is called the
hydraulic radius Rh, defined as

Rh ¼ cross-sectional area of fluid flow

perimeter of duct in contact with fluid

For a circular cross section flowing full, the hydraulic radius is

Rh ¼ pD2=4
pD

¼ D

4

For a circular duct, we would like to use the diameter D (not D=4) as the characteristic length, and so
the hydraulic diameter Dh is preferred over the hydraulic radius in closed-conduit flows.

In this chapter, we will primarily adopt the traditional approach and use the hydraulic diameter
for closed-conduit flow modeling. We will investigate to a lesser degree the use of the effective
diameter in a few of the exercises. It is necessary to be able to use a hydraulic diameter because it is
best to have only one characteristic dimension to represent the duct shape of an irregular cross
section. Equation 5.3 is a general expression that applies to any cross section of flow.

5.4 EQUATION OF MOTION

Consider flow in a pipe of constant diameter where pressure is measured at two different points a
distance L apart (see Figure 5.10). Assume one-dimensional, steady, uniform flow of an incom-
pressible fluid; assume also that there is no heat transfer and no shaft work being done. If as a first
approximation we further assume frictionless flow, the momentum and energy equations reduce to
the same expression—the Bernoulli equation. Applying Bernoulli’s equation, we obtain

p1
rg

þ V2
1

2g
þ z1 ¼ p2

rg
þ V2

2

2g
þ z2

For a horizontal pipe, z1¼ z2. From continuity, A1V1¼A2V2. Because D1¼D2, then A1¼A2;
therefore, V1¼V2. The Bernoulli equation reduces to

p1 ¼ p2

This result is not a proper description of the situation, however. For flow to be maintained in the
direction indicated in Figure 5.10, p1 must be greater than p2 in an amount sufficient to overcome
friction between the fluid and the pipe wall. To be able to apply Bernoulli’s equation and obtain an
accurate description, we must first modify the equation by adding a friction term to the right-hand
side. We next derive an equation for the friction term for fully developed, steady, one-dimensional
flow of an incompressible fluid.

p2p1

L

FIGURE 5.10 Flow in a constant-diameter pipe.
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Consider flow in a pipe, as shown in Figure 5.11. A control volume that extends to the wall
(where the friction force acts) is selected for analysis. Note that a circular cross section is illustrated,
but the results are general until we substitute specific equations for the geometry of the cross section.
The forces acting on the control volume are pressure normal to the surface and shear stress acting at
the wall. The momentum equation is

X
Fz ¼

ðð
VzrVn dA

Since the flow out of the control volume equals the flow in, the right-hand side of this equation is
zero. The sum of the forces is

pA� twP dz� ( pþ dp)A ¼ 0

where: A¼ cross-sectional area
P dz¼ the surface area (perimeter times length) over which the wall shear tw acts

The equation reduces to

twP dzþ A dp ¼ 0

Rearranging and solving for pressure drop, we get

dp ¼ �tw
P dz

A

Multiplying numerator and denominator by 4 gives

dp ¼ �tw
4P dz

4A

Recalling the definition of hydraulic diameter Dh (¼ 4A=R), the preceding equation becomes

dp

dz
¼ � 4tw

Dh
(5:4)

We have thus expressed the pressure drop per unit length of conduit in terms of the wall shear and
the hydraulic diameter. The equation was modified to obtain the hydraulic diameter, which is our
preferred choice for the characteristic dimension. Equation 5.4 is a general expression for any cross
section, because at this point we have yet to specify whether the conduit is circular, square, or

D Vz pA (p + dp)A

w Pdz

r

z

FIGURE 5.11 Control volume of a system: flow in a duct.
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annular, for instance. We next introduce a friction factor f, which is customarily defined as the ratio
of friction forces to inertia forces:*

f ¼ 4tw
1
2 rV

2
(5:5)

By substitution into Equation 5.4, we obtain

dp ¼ � rV2

2
f dz

Dh
(5:6)

Integrating this expression from point 1 to point 2 a distance L apart in the conduit yields

ðp2
p1

dp ¼ � rV2

2

ðL
0

f dz

Dh

Assuming that the friction factor f is constant gives

p2 � p1 ¼ � rV2

2
fL

Dh
(5:7)

where the negative sign indicates that pressure decreases with increasing z in the flow direction due
to friction. With this equation, the Bernoulli equation can be rewritten as

p1
rg

þ V2
1

2g
þ z1 ¼ p2

rg
þ V2

2

2g
þ z2 þ

X fL

Dh

V2

2g
(5:8)

which now takes wall friction into account. The summation indicates that if several pipes of
different diameter are connected in series, the total friction drop is due to the combined effect of
them all. The frictional effect is manifested in either a heat loss from the fluid or a gain in internal
energy of the fluid.

Example 5.2

A 2-nominal pipe is inclined at an angle of 308 with the horizontal and conveys 0.001 m3=s of water
uphill. Determine the pressure drop in the pipe if it is 7 m long (see Figure 5.12). Take the friction factor f
to be 0.03.

SOLUTION

From Table A.5, we read for water:

r ¼ 1 000 kg=m3

* The friction factor defined in Equation 5.5 is known as the Darcy–Weisbach friction factor. The Fanning friction factor, f 0,
is used in some texts and is defined as

f 0 ¼ tw
1
2 rV

2

The Darcy–Weisbach equation is preferred here because the 4 in Equation 5.4 becomes included in f, which yields a simpler
formulation for Equation 5.6 and other equations that follow.
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From Table C.1, we find for 2-nominal, schedule 40 pipe (because a schedule was not specified, we
assume the standard):

D ¼ 5:252 cm A ¼ 21:66 cm2

The continuity equation applied to the pipe is

Q ¼ A1V1 ¼ A2V2

and because diameter is constant, A1¼A2. Therefore, V1¼V2.
The Bernoulli equation with the friction term applies:

p1
rg

þ V2
1

2g
þ z1 ¼ p2

rg
þ V2

2

2g
þ z2 þ

X fL

Dh

V2

2g

If z1 is our reference point, then z1¼ 0 and z2¼ 3.5 m. The average velocity is

V ¼ Q

A
¼ 0:001

21:66� 10�4
¼ 0:462 m=s

Rearranging the Bernoulli equation, we obtain, for a circular duct with Dh¼D,

p1 � p2 ¼ r

2
V2
2 � V2

1

� �þ rg z2 � z1ð Þ þ fL

D

rV2

2

Substituting,

p1 � p2 ¼ 0þ 1 000(9:81)(3:5� 0)þ 0:03(7)
0:05252

1 000(0:462)2

2
¼ 34 340þ 426:7 ¼ 34 760 Pa

or

p1 � p2 ¼ 34:8 kPa

5.5 THE FRICTION FACTOR AND PIPE ROUGHNESS

The preceding section introduced the concept of friction and a friction factor. In this section, we will
discuss this concept further for two flow regimes—laminar and turbulent flow. Because the friction
factor is influenced by the fluid velocity, we begin with a velocity distribution for circular pipe flow
and later extend the results to other cross sections.

1

2-nominal

7.0 m

2

3.5 m

30

FIGURE 5.12 Sketch for Example 5.2.
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Consider laminar flow in a circular pipe as shown in Figure 5.13. Cylindrical coordinates are
chosen with z as the axial direction. A control volume that does not extend to the solid surface is
selected as shown, and in applying the momentum equation, we obtain

X
Fz ¼

ðð
CS

VzrVn dA

Because the pipe is of constant diameter, the right-hand side of this equation is zero. Summing
forces acting on the control volume yields

pAþ t dAp � ( pþ dp)A ¼ 0

Simplifying,

t dAp � Adp ¼ 0 (5:9)

For a circular conduit, A¼pr2, and the area over which the shear stress acts is dAp¼ 2pr dz. After
substitution and simplification, Equation 5.9 becomes

t(2pr dz)� pr2 dp ¼ 0

dp

dz
¼ 2t

r

(5:10)

Equation 5.10 is valid for any circular cross section conveying any fluid. For a Newtonian fluid,

t ¼ m
dVz

dr

and, by substitution,

dp

dz
¼ 2

r
m
dVz

dr
(5:11)

Now dp=dz is a pressure drop per length of pipe; pressure does not vary across the cross section, and
thus p is a function of neither r nor u, only z. The right-hand side of the equation is a function of r
alone. Because r and z are independent variables, the entire equation must equal a constant and must
therefore be easily integrable to find the velocity Vz. Rearranging Equation 5.11 yields

dVz

dr
¼ dp

dz

� �
r

2m

R
r

z pA (p + dp)A

dAp

FIGURE 5.13 Laminar flow in a circular pipe.
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Integrating gives

Vz ¼ dp

dz

� �
r2

4m
þ C1 (5:12)

where C1 is a constant of integration. At the boundary r¼R, the velocity Vz¼ 0. Substituting,
we obtain

0 ¼ dp

dz

� �
R2

4m
þ C1

or

C1 ¼ � dp

dz

� �
R2

4m

The velocity distribution now becomes

Vz ¼ dp

dz

� �
1
4m

r2 � R2
� �

or

Vz ¼ � dp

dz

� �
R2

4m
1� r

R

� �2
	 


(5:13)

Note that dp=dz is negative because dp becomes smaller as dz becomes larger. That is, the pressure
decreases with increasing length, and the term (�dp=dz) is actually positive.

The average velocity is obtained from

V ¼
Ð Ð

Vz dA

A
¼ �R2=4mð Þ(dp=dz) Ð 2p0 Ð R

0 1� r2=R2ð Þr dr du
pR2

or

V ¼ R2

8m
� dp

dz

� �
(5:14)

In the preceding section, Equation 5.6 was developed to express the friction factor in terms of
the average velocity as

dp ¼ � rV2

2
f dz

Dh

which becomes, for a circular duct of radius R,

dp

dz
¼ � rV2

2
f

2R
(5:15)
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Combining with Equation 5.14 gives

V ¼ � R2

8m
� rV2

2

� �
f

2R

Solving for the friction factor, we get

f ¼ 32m
rVR

¼ 64m
rVD

or

f ¼ 64
Re

(5:16)

for laminar flow in circular conduits.
For turbulent flow, a rigorous mathematical derivation of an accurate velocity distribution for

pipes is not possible. Consequently, we must resort to intuitive reasoning, experimental data, and
dimensional analysis to develop a means for finding friction factor f. We know that frictional effects
are greatest at the wall, where a shear stress acts owing to viscosity. An examination of flow near a
wall would show that a great number of protuberances exist; each protuberance may contribute to
the frictional effect. Furthermore, some of these protuberances extend beyond the laminar sublayer
into the turbulent core as shown in Figure 5.14. We conclude, then, that wall roughness influences
the friction factor. Other parameters of significance are the fluid density and viscosity, average
velocity of flow, and pipe diameter. Thus,

f ¼ f ( r,V ,D,m, «)

where « is a characteristic dimension of the wall roughness or, more simply, an average height of the
protuberances. Performing a dimensional analysis, we obtain

f ¼ f
rVD

m
,
«

D

� �
(5:17)

Many investigators have performed experiments to obtain data on pipe friction. In some
experiments, pipe walls were coated with sand particles of constant height. Thus, a control for «
was established, and today commercially available pipe is assigned an equivalent sand roughness for
calculation purposes. A plot of the data to predict f with the Reynolds number Re and the relative
roughness «=D as independent variables is called a Moody diagram (Figure 5.15). The Reynolds
number ranges from 600 to 100 000 000; the friction factor ranges from 0.008 to 0.1.

Viscous
sublayer

FIGURE 5.14 Turbulent flow in the vicinity of a wall.
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In the laminar range, a plot of friction factor for circular pipes is given. For laminar flow, the
friction factor depends only on Reynolds number and is not affected by wall roughness. Beyond this
region, a critical zone exists wherein it is difficult to predict the friction factor because the flow can
be either laminar or turbulent. Beyond the critical zone is a smooth-to-rough transition regime for
rough pipes. In this region, the friction factor depends on both the relative roughness and the
Reynolds number. Transition extends as far as the dashed line, beyond which a completely rough
regime exists for rough pipes. In the turbulent region, the Reynolds number no longer influences the
friction factor, as in the laminar and transition zones. For complete turbulence, the friction factor
depends only on relative roughness.

It is necessary to have information on « to find f. Typical values of « for various types of
material are given in Table 5.2. These data are for new, clean pipe. After years of service, minerals
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FIGURE 5.15 Friction factors for pipe flow (Moody diagram). (Adapted from Moody, L.F., Trans. ASME,
68, 672, 1944. With permission.)

TABLE 5.2
Values of « for Various Materials

Pipe Material « (ft) « (cm)

Riveted steel 0.003–0.03 0.09–0.9
Concrete 0.001–0.01 0.03–0.3

Wood stave 0.0006–0.003 0.018–0.09
Cast iron 0.00085 0.025
Galvanized surface 0.0005 0.015
Asphalted cast iron 0.0004 0.012

Commercial steel or wrought iron 0.00015 0.0046
Drawn tubing 0.000005 0.00015
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dissolved in the flowing fluid may deposit on the conduit wall, or the wall itself may corrode. Both
processes affect « and decrease the inside diameter. The net effect is to increase friction and reduce
the volume-carrying capacity of the pipe. In water pipes for home use, for example, calcium
deposits are common. In the petroleum industry, pipes carrying crude oil are cleaned frequently
to remove deposits and prevent buildup. Buildup on the tube wall may have a substantial effect on «.

5.5.1 FLOW THROUGH PIPES OF NONCIRCULAR CROSS SECTIONS

Flow through noncircular cross sections is somewhat different, and caution must be exercised when
determining the friction factor f. Consider the case of fully developed laminar flow through a
rectangular duct, as shown in Figure 5.16. The flow is assumed to be two-dimensional—that is, the
width w is very large in comparison to the height h. Applying the momentum equation gives

X
Fz ¼

ðð
CS

VzrVn dA

Because the cross section is constant, the right-hand side of this equation is zero. Summing forces
acting on the control volume gives

X
Fz ¼ 0 ¼ 2wypþ twdzþ twdz� 2wy( pþ dp)

or

dp

dz
¼ t

y
(5:18)

For a Newtonian fluid,

t ¼ m
dVz

dy

By substitution into Equation 5.18, we have

y

m

dp

dz
¼ dVz

dy

Integrating gives an expression for Vz:

Vz ¼ y2

2m
dp

dz
þ C1

2y 2wy( p + dp)2ywp

w dz

w dz

w

h
y

z

x
Vz

FIGURE 5.16 Laminar flow through a rectangular duct.
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where C1 is a constant. Now at y¼�h=2, we find that Vz¼ 0. Therefore,

0 ¼ h2

8m
dp

dz
þ C1

C1 ¼ � dp

dz

� �
h2

8m

The velocity becomes

Vz ¼ h2

2m
� dp

dz

� �
1
4
� y2

h2

� �
(5:19)

The average velocity is found from

V ¼
Ð h=2
�h=2 Vz dy

h

V ¼ h2

12m
� dp

dz

� �
(5:20)

The friction factor defined previously is obtained from Equation 5.6 as

dp ¼ � rV2

2
f dz

Dh

For this rectangular duct, the hydraulic diameter is

Dh ¼ 4A
P

¼ 4(hw)
2hþ 2w

¼ 4hw
2w

¼ 2h (5:21)

Because w � h. Combining these equations with Equation 5.20 gives

V ¼ h2

12m
rV2

2
f

2h

� �

Solving for f gives

f ¼ 48m
rVh

¼ 96m
rV(2h)

or

f ¼ 96
Re

(5:22)

for two-dimensional fully developed laminar flow through a rectangular duct with the Reynolds
number based on the length 2h. This result is for an infinitely wide rectangle; results are available for
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other ratios of h=w, as shown in Figure 5.17. The product fRe ranges from 96 for a two-dimensional
flow to 56.91 for a square. Thus, for laminar flow, the surface roughness does not affect f. For
turbulent flow in a rectangular or square duct, the Moody diagram can be applied if the hydraulic
diameter is used in expressions for relative roughness and Reynolds number.

5.5.2 FLOW THROUGH AN ANNULUS

The third type of flow that we will consider is flow in an annulus. Care must be exercised, however,
in identifying the dimensions of the annulus. Figure 5.18 shows a cross-sectional view of a
concentric annular duct. The annular flow area is bounded by the inside surface of the outer duct
(radius R1) and the outside surface of the inner duct (R2). We define the ratio of these diameters as

k ¼ R2

R1

and we conclude that 0< k< 1.
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FIGURE 5.17 Friction factor for laminar flow in a rectangular duct.
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FIGURE 5.18 Laminar flow in an annulus.
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For fully developed laminar flow in a concentric annular duct, the control volume is taken to be
a cylindrical shell, as also shown in Figure 5.18. Applying the momentum equation yields

X
Fz ¼

ðð
CS

VzrVn dA

Because the cross section is constant, the right-hand side of this equation is zero. Summing forces
acting on the control volume gives

X
Fz ¼ 0 ¼ pAþ (t þ dt)dAP1 � t dAP2 � ( pþ dp)A

The shell area A is 2pr dr. The surface areas dAPi are

dAP1 ¼ 2p(r þ dr)dz

dAP2 ¼ 2pr dz

By substitution the momentum equation becomes

(t þ dt)(2p)(r þ dr)dz� t(2pr)dz� 2pr dr dp ¼ 0

Simplifying, we get

t dr þ r dt þ dr dt ¼ r dr
dp

dz

The term dr dt is small in comparison to the others and can be omitted. The equation becomes

t

r
þ dt

dr
¼ dp

dz

For a Newtonian fluid,

t ¼ m
dVz

dr

By substitution, we obtain

m

r

dVz

dr
þ d

dr

m dVz

dr

� �
¼ dp

dz

or

1
r

d

dr
r
dVz

dr

� �
¼ 1

m

dp

dz

After multiplication by r and integration with respect to r, we have

r
dVz

dr
¼ r2

2m
dp

dz
þ C1
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Division by r and integration once again with respect to r yields

Vz ¼ r2

4m
dp

dz
þ C1 ‘n(r)þ C2 (5:23)

We have two boundary conditions:

1. r¼R; Vz¼ 0
2. r¼ kR; Vz¼ 0 (0< k< 1)

Applying the first, we have

0 ¼ R2

4m
dp

dz
þ C1 ‘n(R)þ C2

or

C2 ¼ � R2

4m
dp

dz
� C1 ‘n(R) (5:24a)

Applying the second boundary condition yields

0 ¼ k2R2

4m
dp

dz
þ C1 ‘n(kR)þ C2

or

C2 ¼ � k2R2

4m
dp

dz
� C1 ‘n(kR) (5:24b)

Equating these expressions for C2 gives

C1 ¼ 1
‘n(k)

R2

4m
dp

dz
1� k2
� �

C2 ¼ � R2

4m
dp

dz
1þ 1� k2

‘n(k)
‘n(R)

� �

Substituting into Equation 5.23 and simplifying, we get

Vz ¼ R2

4m
� dp

dz

� �
1� r2

R2
� 1� k2

‘n(k)
‘n

r

R

� �	 

(5:25)

The average velocity is found by integration:

V ¼
Ð R
kR Vz2pr dr

p R2 � k2R2ð Þ
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Solving, we get

V ¼ R2

8m
� dp

dz

� �
1þ k2
� �þ 1� k2

‘n(k)

� �
(5:26)

The hydraulic diameter for an annular flow area is

Dh ¼ 4A
P

¼ 4p R2 � k2R2ð Þ
2pRþ 2pkR

¼ 2(R� kR)

or

Dh ¼ 2R(1�k) (5:27)

Equation 5.6 gives the friction factor in terms of the pressure drop as

dp

dz
¼ � rV2

2
f

Dh

Combining with Equations 5.27 and 5.26 yields

1
f
¼ Re

64
1þ k2

(1� k)2
þ 1þ k

(1� k)‘n(k)

� �
(5:28)

for fully developed laminar flow in a concentric annulus. For turbulent flow, the results for circular
tubes are applicable when hydraulic diameter is used in expressions for relative roughness and
Reynolds number and when k is less than or equal to 0.75 (based on experimental results). The
friction factor for concentric annular ducts is about 6%–8% greater than that for a smooth circular
tube in the range of Reynolds numbers from 15 000 to 150 000.

Summarizing, we have considered flow in three types of cross sections—circular, rectangular,
and annular. We have stated the friction factor for each of these shapes in both laminar and turbulent
flow. The results are provided in Table 5.3.

5.5.3 MISCELLANEOUS GEOMETRIES

In heat-exchanger applications, it is not uncommon to find a tube that has been manufactured with
internally spiraling fins. The added internal fins increase the surface area, and the heat-transfer rate is
increased over that obtained from using an unfinned or plain tube. The friction factor for internally
finned tubes is given in Problem 5.78 of the exercises.

In a number of industrial fluid-handling processes, coil-shaped tubes are used. The friction
factor for such an arrangement is given in Problem 5.79.

5.6 SIMPLE PIPING SYSTEMS

Simple piping systems are those that contain no fittings, such as elbows or tee joints. The only head
loss in such systems is due to friction at the wall. In this section, we consider examples that illustrate
the use of the Moody chart.

In simple piping systems, six variables enter the problem:

L¼ pipe length
D¼ pipe diameter or hydraulic diameter of conduit
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TABLE 5.3
Summary of Friction Factor Determinations for Three Common Cross Sections

Dh Re Vz (Laminar) V (Laminar) f (Laminar) f (Turbulent)

Circular D
rVD

m
Vz ¼ � dp

dz

� �
R2

4m
1� r

R

� �2
	 


V ¼ R2

8m
� dp

dz

� �
64

Re
Moody diagram
(Figure 5.15)

Rectangular
2-D flow

(w � h)

2h
rV(2h)

m
Vz ¼ h2

2m
� dp

dz

� �
1
4
� y2

h2

� �
V ¼ h2

12m
� dp

dz

� �
96

Re
Moody diagram
(Figure 5.15)

Rectangular
general

2hw
hþ w

2rV
m

hw

hþ w

� �
— — Figure 5.17 Moody diagram

(Figure 5.15)

Concentric
annular duct

2R(1�k)
rV(2R)

m
(1� k) Vz ¼ R2

4m
� dp

4m

� �

� 1� r2

R2
� 1� k2

‘n(k)
‘n

r

R

� �	 
 V ¼ R2

8m
� dp

dz

� �
1þ k2
� �þ 1� k2

‘n(k)

� �
1
f
¼ Re

64
1þ k2

(1� k)2
þ 1þ k

(1� k)‘n(k)

� �
Moody diagram
(Figure 5.15) only

if k � 0.75 (with
small error)

where k ¼ outer diameter of inner conduit

inner diameter of outer conduit
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n ¼ m

r
¼ kinematic viscosity of fluid

«¼wall roughness
Q¼ volume flow rate

hf ¼ V2

2g
fL

D
¼ head loss due to friction

Of these variables, L, v, and « are generally known. Thus, three types of problems are commonly
encountered:

1. Given L, v, «, Q, and D, find hf.
2. Given L, v, «, D, and hf, find Q.
3. Given L, v, «, hf, and Q, find D.

The solution technique for each of these problem types is illustrated by the following examples.

Example 5.3

Castor oil flows through 100 m of 4-nominal, schedule 40 cast-iron pipe. Determine the pressure drop
experienced by the liquid if the volume flow rate is 0.01 m3=s.

SOLUTION

We know the volume flow rate, Q¼ 0.01 m3=s, and the pipe length, L¼ 100 m. From the appendix
tables,

castor oil r ¼ 0:960(1 000) kg=m3

m ¼ 650� 10�3 N � s=m2 [Table A:5]

4-nom, sch 40 D ¼ 10:23 cm

A ¼ 82:19� 10�4 m2
[Table C:1]

From Table 5.2, we find, for cast iron,

« ¼ 0:025 cm

The continuity equation for this problem is

Q ¼ A1V1 ¼ A2V2

where the subscript 1 refers to inlet conditions, and the subscript 2 refers to conditions at the end of the
pipe. Because diameter is constant, A1¼A2 and so V1¼V2. The Bernoulli equation with the friction
factor term applies:

p1
rg

þ V2
1

2g
þ z1 ¼ p2

rg
þ V2

2

2g
þ z2 þ

X fL

Dh

V2

2g

Evaluating known terms, we have

V1 ¼ V2 (from continuity)

z1 ¼ z2 (for a horizontal pipe)
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The Bernoulli equation reduces to

p1 � p2 ¼ fL

D

rV2

2

By definition, and after substitution,

V ¼ Q

A
¼ 0:01

82:19� 10�4
¼ 1:22 m=s

So,

Re ¼ rVD

m
¼ 960(1:22)(0:1023)

650� 10�3
¼ 184

We thus have laminar flow because the Reynolds number is less than 2 100. The friction factor for
laminar flow of a Newtonian fluid in a circular duct is (from Table 5.3):

f ¼ 64
Re

¼ 64
184

or

f ¼ 0:347

Substituting into the Bernoulli equation, we get

p1 � p2 ¼ 0:347(100)
0:1023

960(1:22)2

2

or p1 � p2 ¼ 2:42� 105 N=m2 ¼ 242 kPa

Another way to express this result is in terms of a head loss, defined as

Dh ¼ p1 � p2
rg

¼ 2:42� 105

960(9:81)

Dh ¼ 25:7 m of castor oil

Note that for laminar flow, the value of the roughness « does not enter into the problem.

Example 5.4

Decane flows through a 6-nominal, schedule 80 pipe that is 300 ft long at a flow rate of 250 gpm.
Calculate the corresponding pressure drop if the pipe is made of commercial steel.

SOLUTION

We are given a length L¼ 300 ft. The flow rate is given in gallons per minute, which we can change to
cubic feet per second by using the conversion factor tables of Table A.2. We convert to SI units by
multiplication and convert back by division:
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gallons

minute
� 3:785� 10�3 m3=gal

2:831� 10�2 m3=ft3
� 1 min

60 s
¼ 2:228� 10�3 ft3=s

gpm

So the flow rate in fundamental units is

Q ¼ 250 gpm� 2:228� 10�3 ft3=s

gpm
¼ 0:557 ft3=s

From the appendix tables and from Table 5.2, we read

Decane r ¼ 0:728(1:94) slug=ft3

m ¼ 1:79� 10�5 lbf � s=ft2
[Table A:5]

6-nom, sch 80 D ¼ 0:4801 ft

A ¼ 0:1810 ft2
[Table C:1]

Commercial steel « ¼ 0:00015 ft [Table 5:2]

The continuity equation for this problem is

Q ¼ A1V1 ¼ A2V2

Because diameter is constant, A1¼A2 and so V1¼V2. The Bernoulli equation with the friction factor
term applies:

p1
rg

þ V2
1

2g
þ z1 ¼ p2

rg
þ V2

2

2g
þ z2 þ

X f L

Dh

V2

2g

Evaluating known terms, we write

V1 ¼ V2 (from continuity)

z1 ¼ z2 (for a horizontal pipe)

The Bernoulli equation reduces to

p1 � p2 ¼ fL

D

rV2

2

The average velocity is

V ¼ Q

A
¼ 0:557

0:1810
¼ 3:08 ft=s

Therefore,

Re ¼ rVD

m
¼ 0:728(1:94)(3:08)(0:4801)

1:79� 10�5
¼ 1:17� 105

The flow is thus turbulent. The friction factor is found from Figure 5.14:

Re ¼ 1:17� 105

«

D
¼ 0:00015

0:4801
¼ 0:00031

)
f ¼ 0:0195
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Substituting into the Bernoulli equation gives

p1 � p2 ¼ 0:0195(300)
0:4801

0:728(1:94)(3:08)2

2

Solving,

p1 � p2 ¼ 81:6 psf ¼ 0:57 psi

Example 5.5

Benzene flows through a 12-nominal, schedule 80 wrought iron pipe. The pressure drop measured at
points 350 m apart is 34 kPa. Determine the flow rate through the pipe.

SOLUTION

The method and calculations in the preceding example, where pressure drop is unknown, are
quite straightforward. In this example, volume flow rate Q is the unknown; therefore, velocity V
and friction factor f are also unknown. A trial-and-error solution method will be required to solve
this problem, but the technique is simple. From property and data tables, we determine the following:

Benzene r ¼ 0:876(1 000) kg=m3

m ¼ 0:601� 10�3 N � s=m2
[Table A:5]

12-nom, sch 80 D ¼ 28:89 cm

A ¼ 655:50 cm2
[Table C:1]

Wrought iron « ¼ 0:004 6 cm [Table 5:2]

The continuity equation is

Q ¼ A1V1 ¼ A2V2

Because diameter is constant, A1¼A2 and so V1¼V2. The Bernoulli equation with the friction factor
term applies:

p1
rg

þ V2
1

2g
þ z1 ¼ p2

rg
þ V2

2

2g
þ z2 þ

X fL

Dh

V2

2g

Evaluating properties,

V1 ¼ V2 (from continuity)

z1 ¼ z2 (for a horizontal pipe)

L ¼ 350 m (given)

p1 � p2 ¼ 34 kPa (given)

The Bernoulli equation becomes

p1 � p2 ¼ fL

D

rV2

2
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In problems of this type, where volume flow rate Q is the unknown, it is convenient to solve the
Bernoulli equation for velocity:

V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2D p1 � p2ð Þ

rfL

s

Trial and error is necessary because velocity is unknown, but it is needed to calculate the Reynolds
number, which in turn is needed to determine the friction factor. Substituting yields

V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(0:288 9)(34 000)

876f (350)

s

or

V ¼ 0:253ffiffiffi
f

p (i)

The Reynolds number is

Re ¼ rVD

m
¼ 876V(0:288 9)

0:601� 10�3

¼ 4:21� 105V (ii)

In addition, we have

«

D
¼ 0:004 6 cm

28:89 cm
¼ 0:000 16

With reference to the Moody diagram, Figure 5.14, we know that our operating point is somewhere
along the «=D¼ 0.000 16 line. As our first estimate, we assume a value for the friction factor that
corresponds to the fully turbulent value for this line. Thus we have the following first trial:

f ¼ 0:013 (fully turbulent value for «=D ¼ 0:000 16)

Then

V ¼ 0:253ffiffiffi
f

p ¼ 0:253ffiffiffiffiffiffiffiffiffiffiffi
0:013

p ¼ 2:22 m=s (from Equation i)

Re ¼ 4:21� 105(2:22) (from Equation ii)

Thus

Re ¼ 9:35� 105

«

D
¼ 0:000 16

)
f ¼ 0:014 5 (from Figure 5:14)

For the second trial,

f ¼ 0:014 5 V ¼ 0:253ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:014 5

p ¼ 2:10 m=s
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Re ¼ 4:21� 105(2:10) ¼ 8:85� 105

«

D
¼ 0:000 16

)
f � 0:014 5

(from Figure 5:14)

which agrees with our assumed value. So

V ¼ 2:10 m=s

Q ¼ AV ¼ 655:50� 10�4(2:10)

or Q ¼ 0:138 m3=s

The method converges very rapidly. Seldom are more than two trials necessary.

Example 5.6

Glycerine flows through a 2-standard, type K copper tube that is 20 ft long. The head loss Dh over this
length is 1 ft of glycerine. Calculate the flow rate through the pipe.

SOLUTION

Length and head loss are given in this problem and volume flow rate is unknown. We proceed as in the
last example. From property and data tables, we obtain the following values:

Glycerine r ¼ 1:263(1:94) slug=ft3

m ¼ 1983� 10�5 lbf � s=ft2
[Table A:5]

2-std, type K D ¼ 0:1633 ft

A ¼ 0:02093 ft2
[Table C:2]

Drawn tubing « ¼ 0:000005 ft [Table 5:2]

The continuity equation is

Q ¼ A1V1 ¼ A2V2

Because diameter is constant, A1¼A2 and so V1¼V2. The Bernoulli equation with the friction factor
term applies:

p1
rg

þ V2
1

2g
þ z1 ¼ p2

rg
þ V2

2

2g
þ z2 þ

X fL

Dh

V2

2g

Evaluating properties,

V1 ¼ V2 (from continuity)

z1 ¼ z2 (for a horizontal pipe)

L ¼ 20 ft (given)

Dh ¼ p1 � p2ð Þ
rg

¼ 1 ft (given)
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The Bernoulli equation becomes

p1 � p2
rg

¼ Dh ¼ fL

D

V2

2g

Solving for velocity V in terms of head loss Dh gives

V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2gDDh

fL

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(32:2)(0:1633)(I)

20f

s

or

V ¼ 0:725ffiffiffi
f

p (i)

The Reynolds number is

Re ¼ rVD

m
¼ 1:263(1:94)V(0:1633)

1983� 10�5

¼ 20:18V
(ii)

Also,

«

D
¼ 0:000005

0:1633
¼ 0:00003

At this point, we see that the coefficient of velocity V in the Reynolds number equation is quite
small. We conclude that the flow is probably laminar. So as our first trial, we substitute for the friction
factor:

f ¼ 64
Re

¼ 64m
rVD

which is valid for laminar flow of a Newtonian fluid in a circular duct. Squaring Equation i and
substituting for the friction factor gives

V2 ¼ 0:526
f

¼ 0:526
64

rVD

m

Simplifying and substituting,

V ¼ 0:0082
rD

m
¼ 0:0082(1:263)(1:94)(0:1633)

1983� 10�5

¼ 0:166 ft=s

As a check on the laminar flow assumption,

Re ¼ 20:18 V ¼ 20:18(0:166) ¼ 3:34 < 2100

So the flow is laminar. The volume flow rate is

Q ¼ AV ¼ 0:02093(0:166)

Q ¼ 0:0035 ft3=s ¼ 1:6 gpm
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Example 5.7

A riveted steel pipeline is used to convey 2 ft3=s of gasoline a distance of 800 ft. The available pump can
overcome a pressure drop of 40 psi. Select a suitable pipe size for the installation. Assume that gasoline
properties are the same as those for octane.

SOLUTION

In this example, the diameter D is unknown. Therefore, friction factor f and velocity V are also
unknown, and again a trial-and-error solution method is required. From property and data tables, we
determine the following:

Octane r ¼ 0:701(1:94) slug=ft3

m ¼ 1:07� 10�5 lbf � s=ft2
[Table A:5]

Riveted steel « ¼ 0:003þ 0:03
2

¼ 0:0165 ft [Table C:1]

(Table 5.2 shows that the roughness « for riveted steel varies from 0.003 to 0.03 ft. For our purposes, the
average value of 0.0165 ft is satisfactory.) The continuity equation is

Q ¼ A1V1 ¼ A2V2

Because diameter is constant, A1¼A2 and so V1¼V2. The Bernoulli equation with the friction factor
term applies:

p1
rg

þ V2
1

2g
þ z1 ¼ p2

rg
þ V2

2

2g
þ z2 þ

X fL

Dh

V2

2g

Evaluating properties,

V1 ¼ V2 (from continuity)

z1 ¼ z2 (for a horizontal pipe)

L ¼ 800 ft (given)

p1 � p2 ¼ (40 lbf=in:2)(144 in:2=ft2) (given)

¼ 5760 lbf=ft2

The Bernoulli equation becomes

p1 � p2 ¼ fL

D

V2

2

The right-hand side of this equation contains a velocity term. We were given volume flow rate, and so it
is convenient at this point to substitute for the velocity:

V ¼ Q

A
¼ 4Q

pD2

The Bernoulli equation now becomes

p1 � p2 ¼ fL

D

r

2
16Q2

p2D4
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Rearranging and solving for diameter gives

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8rfLQ2

p2 p1 � p2ð Þ
5
s

Substituting all known quantities and simplifying, we get

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8(0:701)(1:94)f (800)(2)2

p2(5760)

5
s

¼ 0:907f 1=5 (i)

Likewise, the Reynolds number can be expressed in terms of volume flow rate:

Re ¼ rVD

m
¼ rD

m

4Q
pD2

¼ 4rQ
pDm

Substituting,

Re ¼ 4(0:701)(1:94)(2)
pD 1:07� 10�5ð Þ

¼ 3:24� 105

D
(ii)

As a first trial, assume f¼ 0.02 (a completely random selection); then

D ¼ 0:907f 1=5 ¼ 0:907(0:02)1=5 ¼ 0:415 ft

Also,

Re ¼ 7:8� 105 (Equation ii)

«

D
¼ 0:0165

0:415
¼ 0:0398

9>=
>; f ¼ 0:065 (from Figure 5:14)

For the second trial:

f ¼ 0:065 D ¼ 0:525 ft

Re ¼ 6:2� 105

«

D
¼ 0:0165

0:525
¼ 0:0314

)
f ¼ 0:057 (from Figure 5:14)

For the third trial:

f ¼ 0:057 D ¼ 0:511 ft

Re ¼ 6:3� 105

«

D
¼ 0:0165

0:511
¼ 0:032

)
f � 0:057 (from Figure 5:14)

226 Introduction to Fluid Mechanics



The calculations indicate that diameter D¼ 0.511 ft. This value does not appear explicitly in Table C.1,
however, because pipe and tubing are sized in discreet values. So we choose the next larger size.
Furthermore, nothing special was specified in the problem statement, so in addition we choose the
standard schedule within the size we select. We see that 6-nominal schedule 40 is too small. The next
larger size is the one we select for our solution:

8-nominal schedule 40

D ¼ 0:6651 ft

5.7 MINOR LOSSES

The losses due to flow through valves or fittings in a pipeline are known as minor losses. As fluid
flows through a fitting, it may encounter an abrupt change in area or flow direction. Such abrupt
changes cause pressure drops in the fluid flow. The flow pattern existing at a pipe inlet, for example,
is not fully developed, and a pressure loss results that takes energy away from the flow. In a globe
valve, the fluid is forced through a very small opening as it travels through, which results in a
pressure loss. This loss is customarily expressed in terms of a loss coefficient K:

Dp ¼ �K
rV2

2
(5:29)

For any piping system, the overall loss in pressure due to the combined effect of all fittings is found
by summing the loss coefficients.

It is interesting to compare the preceding equation for minor loss to that for the friction loss.
Both have the same form; for pipe friction, we have

Dp ¼ � fL

D

rV2

2
¼ friction

loss term

� �
� kinetic energy

of the flow

� �

Similarly, for the minor losses,

Dp ¼ �
X

K
rV2

2
¼ sum of loss

coefficients

� �
� kinetic energy

of the flow

� �

For many fittings, the loss coefficient K must be measured; in a few cases, however, it can be
determined analytically.

An alternative method of accounting for minor losses involves the use of what is called an
equivalent length. Conceptually, the loss due to a fitting is equal to the loss due to a certain
length of pipe in the same pipeline. So a fitting could be removed and replaced with additional pipe.
We write

K ¼ fLeq
D

where Leq is the length of pipe required. For further discussion, see Problem 5.56.
In the design of pipelines, energy loss due to friction is dominant for pipe lengths of 100 ft

(30.5 m) or greater. For shorter lengths, losses at elbows, valves, tee joints, and the like may be
equal to or greater than the frictional losses. These losses, calculated in the form of Equation 5.29,
can be incorporated into Bernoulli’s equation with friction. The result is
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p1
rg

þ V2
1

2g
þ z1 ¼ p2

rg
þ V2

2

2g
þ z2 þ

X fL

Dh

V2

2g
þ
X

K
V2

2g
(5:30)

which is called the modified Bernoulli equation. Minor losses due to fittings are merely added
together. Thus, it is important to have information on K, the loss coefficient for various fittings, as
will be discussed in the following paragraphs.

Consider flow through an elbow as shown in Figure 5.19. As the fluid is turned, the fluid tends
to separate from the inner wall. The separation region consists mostly of swirls and eddies; thus, a
portion of the cross section is not being used to convey fluid in the primary flow direction. The result
is a pressure drop in the fitting. Table 5.4 gives the loss coefficient for various elbows, both flanged
and threaded. Since similar losses occur in tee joints, loss coefficients for these fittings too are given
in Table 5.4.

Next consider flow through a contraction, as illustrated in Figure 5.20. At section 1, the flow
begins to separate so that the main stream can negotiate the comer. At section 2, the flow area has
reduced to a minimum, called the vena contracta. At section 3, the flow again fills the pipe. The
separation between sections 1 and 3 causes a pressure drop. Empirical results for the loss coefficient
in a reducing bushing are given in Table 5.4.

Flow through a sudden enlargement is shown in Figure 5.21 (see page 232). At section 1, the
flow encounters the enlargement and separates. At section 2, the flow again fills the cross section.
By applying the momentum equation to sections 1 and 2, we obtain

X
Fz ¼

ðð
CS

VzrVn dA

or

p1A2 � p2A2 ¼ rA2V2 V2 � V1ð Þ

From continuity, A1V1¼A2V2. By substitution and after simplification, we have

p1 � p2
rg

¼ V2
2

g
1� A2

A1

� �
(5:31)

By applying the modified Bernoulli equation to sections 1 and 2, we get

p1
rg

þ V2
1

2g
þ z1 ¼ p2

rg
þ V2

2

2g
þ z2 þ

X fL

D

V2

2g
þ
X

K
V2

2g

Separation
region

FIGURE 5.19 Flow through an elbow.
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TABLE 5.4
Loss Coefficients for Various Fittings

Well-rounded
entrance or
bell-mouth
inlet
K = 0.05

Square-edged
inlet
K = 0.5

Reentrant
inlet or inward-
projecting pipe
K = 1.0

Basket stainer
K = 1.3

Foot valve
K = 0.8

Threaded 90° elbow
K = 1.4 (regular)
K = 0.75 (long radius)

Flanged 90° elbow
K = 0.31 (regular)
K = 0.22 (long radius)

Threaded 45° elbow
K = 0.35 (regular)

Flanged 45° elbow
K = 0.17 (long radius)

Threaded return bend
K = 1.5 (regular)

Flanged return bend
K = 0.30 (regular)
K = 0.20 (long radius)

(continued)
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TABLE 5.4 (continued)
Loss Coefficients for Various Fittings

Flanged tee joint
K = 0.14 (line flow)
K = 0.69 (branch flow)

Couplings and unions
K = 0.08 

V2
V1

0.1
0

0.2

0.2 0.3 0.4

0.4

0.6

0.6 0.8 1
(D2/D1)2

K

Reducing bushing and
coupling (sudden contraction)

hm =
2g

K
V2

2

V2V1

0.1 0.2 0.3 0.6 1

1.0

0.5

0.3

0.2

0.1

0.05

0.03
0.02

0.01

(D1/D2)2

K

Sudden
expansion

hm = =
2g(1– –1)D2

2 V2
1

2

D2
2 ( )D2

2
2

D2
1

2g
V2

2

Threaded tee joint
K = 0.9 (line flow)
K = 1.9 (branch flow)
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TABLE 5.4 (continued)
Loss Coefficients for Various Fittings

Globe valve
fully open
K = 10

Gate valve

Fraction closed =

Fraction closed =

0
K = 0.15 0.26 0.81 2.06

K = 5.52 17.0 97.8

Angle valve
K=2

α°

Ball valve

α° =

α° =

0

30 40 60 70 8050

10
K  = 0.05 0.29 1.56

20

K  = 5.47 17.3 25.6 206 485 ∞

Swing-type
check valve

Check valves:
K=2.5 (swing type)
K=70.0 (ball type)
K=12.0 (lift type)

0.4

Convergent
outlet

0

0.02

0.04

0.06

0.6 0.8 1
d/D

K

DV d

Pipe exit
K=1.0

5
8

3
4

7
8

1
4

3
8

1
2

Source: Provided courtesy of Hydraulic Institute, Parsippany, NJ. www.Pumps.org.
Note: Many fittings have losses that vary with nominal diameterDn:K for threaded fittings is taken atDn¼ 1 in.;

K for flanged fittings is taken at Dn¼ 4 in. With plastic pipe, fittings can be sleeved and cemented. With
copper tubing, fittings can be soldered together. Both can be taken as equivalent to threaded fittings.
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or

p1 � p2
rg

¼ V2
2 � V2

1

2g
þ K

V2
1

2g
(5:32)

Combining Equations 5.31 and 5.32 yields

V2
2

g
1� A2

A1

� �
¼ V2

2

2g
1� V2

1

V2
2

� �
þ K

V2
1

2g

¼ V2
2

2g
1� A2

2

A2
1

� �
þ K

A2
2

A2
1

V2
2

2g

Rearranging and simplifying, we get

K ¼ 1� 2A1

A2
þ A2

1

A2
2

or

K ¼ 1� A1

A2

� �2

(5:33)

The corresponding minor loss is

hm ¼ V2
1

2g
1� A1

A2

� �2

¼ A2

A1
� 1

� �2 V2
2

2g
(5:34)

1

2 3

Separation
region

Vena contracta

FIGURE 5.20 Flow through a contraction (such as a reducing bushing).

1

Separation
region

2

FIGURE 5.21 Flow through a sudden enlargement.
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where the continuity equation has been used. Table 5.4 plots K versus A1=A2 for use with Equation
5.34. Note that as A2 approaches infinity, K ! 1, which is for an exit from a pipe into a reservoir
(also given in Table 5.4).

Loss coefficients for valves are usually measured. Table 5.4 gives K for a globe valve, a gate
valve, an angle valve, a ball valve, and check valves.

The values of the loss coefficient for most fittings are sensitive to nominal diameter Dn. In fact,
values of K for many of the fittings in Table 5.4 are available for diameters ranging from 0.3 to 4 in.
for threaded fittings and from 1 to 20 in. for flanged fittings. The values of K given in Table 5.4
correspond to Dn¼ 1 for threaded fittings and Dn¼ 4 for flanged fittings. These values are
satisfactory for design.

Difficulties may arise in trying to evaluate minor losses for a given piping system. Before
solving a number of piping problems, let us review the control volume concept and how to apply it
using the modified Bernoulli equation (Equation 5.30). First we decide where the control volume is
to be located, and we then identify those places where mass crosses the control surface. The
modified Bernoulli equation contains pressure p, velocity V, and height z terms, which apply only
at locations where mass crosses the boundary—nothing inside or outside of the control volume can
be described or accounted for by these terms. The friction factor term fL=D and the minor loss
coefficient term SK account for what happens inside (and not outside) of the control volume.
To illustrate these concepts, consider Figure 5.22. Five drawings of the same piping system
are shown, a different control volume having been selected for each case. As is indicated in
Figure 5.22a, the control volume extends from the free surface labeled ‘‘1’’ to the free surface
labeled ‘‘2’’ and includes all the liquid in between. The modified Bernoulli equation is written, and
the terms are evaluated. The pressures p1 and p2 are equal to atmospheric pressure. The velocities
at the free surfaces are negligible. The heights z1 and z2 are measured from the same reference line,
which could be at any location, although here we arbitrarily select the bottom of the lower
tank. The friction factor f applies only to the pipe itself, as does the length L and the inside
diameter D. The minor losses include all fittings encountered by a fluid particle in going from
1 to 2. In this case, we include an entrance, a valve, two elbows, and an exit loss. The coefficient of
the friction and minor loss terms is V2=2g, where V is the velocity associated with these terms—that
is, the velocity in the pipe itself.

In Figure 5.22b, the control volume extends from the free surface at 1 to a section downstream
of the pipe exit where the exit kinetic energy of the flow has dissipated so that the velocity V2 is
zero. The pressures p1 and p2 are equal to atmospheric pressure. The velocity V1 is negligible, and
the heights are measured from a reference plane. The friction factor term fL=D applies to the pipe.
The minor loss term includes an entrance, a valve, two elbows, and an exit loss. The kinetic energy
of the fluid within the pipe is V2=2g. The resultant equation is the same as in Figure 5.22a. Thus, if
we say that the outlet pressure p2 equals atmospheric pressure in the open-ended pipe of Figure
5.22b, then the corresponding velocity V2 is zero, and we would include an exit loss in our minor
losses.

In Figure 5.22c, the control volume extends from the free surface at point 1 to some point 2
downstream. The pressure p1 is equal to atmospheric pressure. The pressure p2 is unknown. The
velocity V2 is the velocity in the pipe, and V1 is negligible in comparison to V2. The heights z1 and z2
are again measured from the same plane. The friction term fL=D applies to only the pipe. The minor
losses that we include here are an entrance, a valve, and two elbows. We do not include an exit loss
in this case because the actual loss itself would not be realized until after the exit is encountered,
which is outside the control volume where none of the terms in the modified Bernoulli equation
apply. The kinetic energy within the pipe is based on velocity V(¼V2).

In Figure 5.22d, the control volume extends from some location labeled 1 to the free surface
of the liquid in a tank. The pressure p1 is unknown, but p2 equals atmospheric pressure. The velocity
V1 is the velocity in the pipe, and V2 is negligible. The heights z1 and z2 are measured from the same
datum. The friction term fL=D applies only to the pipe. The minor losses include a valve,
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two elbows, and an exit loss. An entrance loss is not included in this case. The kinetic energy of the
flow within the pipe is based on the velocity V(¼V1).

In Figure 5.22e, the control volume includes the liquid contained in the pipe between points
1 and 2. The pressures p1 and p2 are not known. The velocities V1 and V2 are nonzero but equal, so
the kinetic energy terms containing them in the modified Bernoulli equation cancel each other. The
heights z1 and z2 are measured from the same plane. The friction term fL=D applies to the pipe.

z2

z2

z2

z1

z1

z1

z2

z1

z1

2

2

2
To a tank or 

continued in a
pipe or discharged

2

2

1

1

1

1

1

From 
pump pipe

or tank

z2

(Kentrance + Kvalve + 2Kelbow + Kexit)z2 p1
ρg

p2
ρg

V2
1

2g
V2

2
2g

V2

2g
V2

2g
fL
D+ + + + + +z1 =

=

=

=

=

(Kentrance + Kvalve + 2Kelbow + Kexit)z2 
p1
ρg

p2
ρg

V2
1

2g
V2

2
2g

V2

2g
V2

2g
fL
D+ + + + + +z1 

(Kentrance + Kvalve + 2Kelbow)z2 
p1
ρg

p2
ρg

V2
1

2g
V2

2
2g

V2

2g
V2

2g
fL
D+ + + + + +z1 

(Kvalve + 2Kelbow  + Kexit )z2 
p1
ρg

p2
ρg

V2
1

2g
V2

2
2g

V2
2g

V2

2g
fL
D

+ + + + + +z1 

(Kvalve + 2Kelbow)z2 
p1
ρg

p2
ρg

V2
1

2g
V2

2
2g

V2

2g
V2

2g
fL
D+ + + + + +z1 

(a)

(b)
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(d)

(e)

FIGURE 5.22 The modified Bernoulli equation applied to five different control volumes drawn about the
same piping system. (Suggested by Professor Ernest Blattner.)
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The minor losses that we consider include a valve and two elbows. The kinetic energy of the flow is
based on velocity V, which equals V1 and V2.

We are now able to solve piping problems that are more complex than those in Section 5.6.
The types of problems, however, are the same—where hf is unknown, where Q is unknown, or
where D is unknown.

Example 5.8

In a processing plant, turpentine is piped from tanks to cans that are to be sealed and sold to retail outlets.
A portion of the pipeline is sketched in Figure 5.23. There are 60 m of 12-nominal pipe and 22 m of
8-nominal pipe. All elbows are standard and flanged, and the line is made of schedule 80 wrought iron
pipe. Determine the pressure drop p1 – p2 if the volume rate of flow is 0.05 m3=s.

SOLUTION

The control volume we select includes all the liquid in the piping system from gauge to gauge. We use
the property and data tables:

Turpentine r ¼ 870 kg=m3

m ¼ 1:375� 10�3 N � s=m2
[Table A:5]

12-nom, sch 80 D12 ¼ 28:89 cm

A12 ¼ 655:50 cm2
[Table C:1]

8-nom, sch 80 D8 ¼ 19:37 cm

A8 ¼ 294:70 cm2
[Table C:1]

Wrought iron « ¼ 0:004 6 cm [Table 5:2]

Next, we write the modified Bernoulli equation from sections 1 to 2:

p1
rg

þ V2
1

2g
þ z1 ¼ p2

rg
þ V2

2

2g
þ z2 þ fL

D
þ
X

K

� �
V2

2g

����
12-pipe

þ fL

D
þ
X

K

� �
V2

2g

����
8-pipe

The flow velocities are

V12 ¼ Q

A12
¼ 0:05

0:065 550
¼ 0:763 m=s

V8 ¼ Q

A8
¼ 0:05

0:029 470
¼ 1:70 m=s

3 m 2.7 m

Gate
valve

12-nominal

8-nominal

p1
p2

FIGURE 5.23 A pipeline for Example 5.8.

Flow in Closed Conduits 235



Thus

Re12 ¼ rVD

m
¼ 870(0:763)(0:289)

1:375� 10�3
¼ 1:39� 105

Re8 ¼ 870(1:70)(0:194)
1:375� 10�3

¼ 2:08� 105

Also,

«

D12
¼ 0:004 6

28:89
¼ 0:000 16

«

D8
¼ 0:004 6

19:37
¼ 0:000 24

From the Moody diagram,

f12 ¼ 0:018

f8 ¼ 0:017 5

The minor losses in the 12-pipe are from one gate valve and four standard elbows:

X
Kj12 ¼ 0:15þ 4(0:31) ¼ 1:39

The minor losses in the 8-pipe area are from the contraction D2
8=D

2
12 ¼ 0:45

� �
and two 458 elbows:

X
Kj8 ¼ 0:29þ 2(0:17) ¼ 0:63

After rearranging the Bernoulli equation and substituting, we obtain

p1 � p2
rg

¼ (1:70)2

2(9:81)
� (0:763)2

2(9:81)
þ (2:7� 3)þ 0:018(60)

0:289
þ 1:39

� �

� (0:763)2

2(9:81)
þ 0:017 5(22)

0:194
þ 0:63

� �
(1:70)2

2:(9:81)

¼ 0:147� 0:029 6þ (� 0:3)þ 0:152þ 0:384

¼ 0:353 m of turpentine

or

p1 � p2 ¼ 0:353(870)(9:81) ¼ 3 010 N=m2

p1 � p2 ¼ 3:01 kPa

Example 5.9

A water tank is fitted with a drain and outlet pipe as sketched in Figure 5.24. The system has 82 ft of
cast iron pipe of 112-nominal diameter. Determine the flow rate through the pipe. All fittings are threaded
and regular.
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SOLUTION

We select as our control volume all the fluid in the tank and in the piping system. Section 1 is the free
surface of the tank liquid and section 2 is as indicated in the figure. We use the data and property tables:

Water r ¼ 1:94 slug=ft3

m ¼ 1:9� 10�5 lbf � s=ft2
[Table A:5]

112 -nom, sch 40 D ¼ 0:1342 ft

A ¼ 0:01414 ft2
[Table C:1]

Cast iron « ¼ 0:00085 ft [Table 5:2]

Minor losses
X

K ¼ Kentrance þ Kreturn bend þ Kelbow þ Kglobe valve þ KexitX
K ¼ 0:5þ 1:5þ 1:4þ 10þ 1:0 ¼ 14:4

[Table 5:4]

Write the Bernoulli equation from section 1 (the free surface of the liquid in the tank) to section 2:

p1
rg

þ V2
1

2g
þ z1 ¼ p2

rg
þ V2

2

2g
þ z2 þ

X fL

Dh

V2

2g
þ
X

K
V2

2g

The figure shows that p1¼ p2¼ patm and that if z2¼ 0, then z1¼ 23 ft. The reservoir surface velocity V1

and the velocity of the jet after the exit V2 are both negligible in comparison to the velocity in the pipe.
Because all the piping is of the same diameter, the equation becomes

z1 ¼ V2

2g
fL

D
þ
X

K

� �

By substitution,

23(2)(32:2) ¼ V2 f (82)
0:1342

þ 14:4

� �

or

V ¼ 1480
14:4þ 611f

� �1=2

Fully open
globe valve

15 ft.

8 ft.

Pond
2

1

FIGURE 5.24 Piping system for Example 5.9.
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Because V and f are unknown, a trial-and-error solution is required. As a first trial, assume f¼ 0.03;
then

V ¼ 6:72 ft=s

Re ¼ rVD

m
¼ 1:94(6:72)(0:1342)

1:9� 10�5
¼ 9:21� 104

«

D
¼ 0:00085

0:1342
¼ 0:0063

)
Moody diagram:

f ¼ 0:0335

As a second trial assume f¼ 0.0335; then

V ¼ 6:52 ft=s

Re ¼ 9:0� 104

«

D
¼ 0:0063

�
Moody diagram: f ¼ 0:034 (close enough)

Using f¼ 0.034, V¼ 6.5 ft=s, and the continuity equation, we find

Q ¼ AV ¼ 0:01414(6:5)

Q ¼ 0:092 ft3=s ¼ 5:5 ft3=min

Example 5.10

Methyl alcohol is used in a processing plant where a flow rate of 0.4 m3=min of the liquid must be
supplied. The available liquid pump can supply this flow rate only if the pressure drop in the supply line
is less than 15 m head of water. The pipeline is made up of 50 m of soldered drawn copper tubing and
follows the path shown in Figure 5.25. Determine the minimum size of tubing required.

SOLUTION

The control volume we select extends from the inlet at section 1 to the outlet at section 2. The area at 2 is
large enough so that the liquid pressure after the exit is atmospheric. We use the property and data tables
to find

Water r ¼ 1 000 kg=m3
[Table A:5]

Methyl alcohol r ¼ 789 kg=m3

m ¼ 0:56� 10�3 N � s=m2
[Table A:5]

1

2

From 
pump 1 m 1 m

FIGURE 5.25 Sketch for Example 5.10.
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Drawn tubing « ¼ 0:000 15 cm [Table 5:2]

Minor losses soldered fittings, as stated in a

footnote of Table 5:4, may be

assumed to have the same loss as threaded fittings:P
K ¼ 4K90	 elbow þ 2K45	 elbow þ Kexit

¼ 4(1:4)þ 2(0:35)þ 1 ¼ 7:3 [Table 5:4]

Write the Bernoulli equation from 1 to 2 as

p1
rg

þ V2
1

2g
þ z1 ¼ p2

rg
þ V2

2

2g
þ z2 þ

X fL

D

V2

2g
þ
X

K
V2

2g

The pressure drop is given in terms of meters of water:

p1 � p2
rg

¼ 15 m of water

where r is for water. To convert the pressure drop to meters of alcohol, multiply by the ratio of densities:

p1 � p2
rg

¼ 15(1 000)
789

¼ 19:0 m of methyl alcohol

The velocity at point 1 is the same as that at point 2 because the area at these points is the same.
Moreover, z1¼ z2. Thus, the Bernoulli equation becomes

p1 � p2
rg

¼ V2

2g
fL

D
þ
X

K

� �

From continuity, we have V¼ 4Q=pD2. By substitution into the Bernoulli equation, we get

19:0 ¼ 16Q2

2gp2D4

f (50)
D

þ 7:3

� �

With Q¼ 0.4 m3=min¼ 0.006 7 m3=s, the equation becomes

19:0(2)(9:81)p2

16(0:006 7)2
¼ f (50)

D5
þ 7:3

D4

or

f ¼ 1:025� 105D5 � 0:146D (i)

A trial-and-error approach is required. In this case, because of the form of the equation, it is easier to
assume a diameter. As a first trial, assume

D ¼ 0:05 m f ¼ 1:025� 105(0:05)5 � 0:146(0:05) ¼ 0:025

A ¼ pD2

4
¼ p(0:05)2

4
¼ 0:001 96 m2

V ¼ Q

A
¼ 0:006 7

0:001 96
¼ 3:41 m=s
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Re ¼ rVD

m
¼ 789(3:41)(0:05)

0:56� 10�3

Re ¼ 2:4� 105

«

D
¼ 0:000 15 cm

5 cm
¼ 0:000 03

�
f ¼ 0:015 (from Figure 5:14)

The diameter for this value of the friction factor is our second assumed value. Successive trials with
Equation i give the following values:

D f

0.05 0.025
0.04 0.005 4
0.045 0.013

0.046 0.015 3

Continuing, we have the following as the next trial:

D ¼ 0:046 f ¼ 0:015 A ¼ p(0:046)2

4
¼ 0:001 66 m2

V ¼ 0:006 7
0:001 66

¼ 4:03 m=s; Re ¼ 789(4:03)(0:046)
0:56� 10�3

Re ¼ 2:6� 105

«

D
¼ 0:000 15 cm

4:6 cm
¼ 0:000 033

�
f � 0:015 (close enough; from Figure 5:14)

The solution suggests that D¼ 4.6 cm. Referring to Table C.2 for type M copper tubing, we seek a
diameter equal to or greater than 4.6 cm. Anything smaller will reduce the volume flow rate; anything
larger will work, but in order to not incur an unnecessary expense, we select the next larger diameter.
Thus we specify

2-standard type M

D ¼ 5:102 cm

5.8 FORCES EXERTED ON FITTINGS BY MOVING FLUIDS

Chapter 3 introduced the continuity, momentum, and energy equations. We used the momentum
equation in particular to relate the forces exerted by moving fluids to the rate of change of
momentum experienced by the fluid. In this chapter, we used the momentum equation to derive a
relationship between pressure drop in a duct to frictional effects at the wall. In this section, we use
the momentum equation to determine the forces exerted on pipe fittings. The calculation method is
illustrated by the following example.

Example 5.11

A 458 reducing elbow can be found in domestic water piping systems. As illustrated in Figure 5.26,
water flows into the elbow in the positive x-direction and is deflected through an angle of 458. The inlet
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diameter is 2.5 cm, and the outlet diameter is 1.2 cm. The volume flow rate of water is 0.000 4 m3=s. The
inlet gauge pressures is 160 kPa. If the elbow is located in a horizontal plane, determine the forces
exerted on it by the moving water. The fitting is made of copper tubing.

SOLUTION

Select the control volume shown bounded by the dashed line in Figure 5.26. Again, the flow and liquid
properties are known or can be determined at the locations where flow crosses the control surface.
Applying the one-dimensional, steady-flow continuity equation, we get

r1A1V1 ¼ r2A2V2 ¼ _m

For constant density

A1V1 ¼ A2V2 ¼ Q

Now

A1 ¼ pD2
1

4
¼ p(0:025)2

4
¼ 0:000 49 m2

Similarly,

A2 ¼ 0:000 11 m2

From the continuity equation, we have

V1 ¼ Q

A1
¼ 0:000 4

0:000 49
¼ 0:82 m=s

V2 ¼ Q

A2
¼ 0:000 4

0:000 11
¼ 3:6 m=s

The external forces acting to keep the elbow stationary are the reaction forces Fx and Fy (which
equal the forces exerted by the water) and the pressure forces. The pressure distributions are always
directed inward, regardless of the flow directions.

y

x

V1

A1

p1

Fy

Fx

p2

A2

V2

θ

FIGURE 5.26 The reducing elbow of Example 5.11.
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At this point, we know the pressure at section 1 but not at section 2. We can calculate the pressure
there by using the minor loss coefficients provided in this chapter. We will calculate the loss due to the
458 elbow, and the loss due to the sudden contraction. For a typical copper fitting that is probably
soldered in place, the loss may be assumed to be the same as that for a long radius flanged fitting. From
Table 5.4, K458 elbow¼ 0.17. With the density of water equal to 1 000 kg=m3, the loss due to the elbow is

Dp ¼ 0:17
rV2

1

2
¼ 0:17(1 000)

(0:820)2

2
¼ 57:2 N=m2

For the sudden contraction, we first determine

A2

A1
¼ 0:000 11

0:000 49
¼ 0:22

Then from Table 5.4 at this ratio, we read Kbushing¼ 0.4. The pressure drop for a reducing bushing is
based on the downstream kinetic energy:

Dp ¼ 0:4
rV2

2

2
¼ 0:4(1 000)

(3:6)2

2
¼ 2 592 N=m2

The pressure drop from 1 to 2 then is

Dp ¼ p1 � p2 ¼ 57:2þ 2 592 ¼ 2 649:2 N=m2

The pressure at section 2 is found as

p2 ¼ 160 000� 2 649:2 ¼ 157:3 kPa

Applying the momentum equation in the x-direction yields

X
Fx ¼ _m Vout � Vinð Þx

�Fx þ p1A1 � p2A2 cos u ¼ rQ V2 cos u� V1ð Þ

After rearranging and substituting, we obtain

�Fx ¼ p2A2 cos u� p1A1 þ rQ V2 cos u� V1ð Þ
¼ �

157 300 N=m2��0:000 11 m2
�
cos 45	

� �
160 000 N=m2��0:000 49 m2

�
þ �

1 000 kg=m2��0:000 4 m2=s
�
(3:6 cos 45	 � 0:82) m=s

Fx ¼ 65:5 N

The momentum equation written for the y-direction is

Fy � p2A2 sin u ¼ _m Vout � Vinð Þ ¼ rQ V2 sin uð Þ

After substitution, we find

Fy ¼ (157 300)(0:000 11) sin 45	 þ 1 000(0:000 4)(3:6) sin 45	

or

Fy ¼ 13:3 N
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5.9 PIPES IN PARALLEL

Complex pipe friction problems sometimes involve fluid flow in a parallel piping system. In pipeline
design, a common method of increasing the capacity of a line is by looping or laying a pipeline
parallel to the main line, as shown in Figure 5.27. The pressure drop from A to B along either path
(A2 or A3) is the same. Usually, the diameters of all the pipes are known; the problem involves
finding Q2 and Q3. The solution technique requires use of the Moody diagram and trial and error.
The technique is best illustrated by an example.

Example 5.12

For the piping system of Figure 5.27, the distance from A to B is 4500 ft, and the main line is made of
10-nominal, schedule 40 wrought iron pipe. The attached loop is 8-nominal, schedule 40 wrought iron
pipe. The flow Q1 is 0.3 ft3=s of water. Determine the flow rate in both branches.

SOLUTION

Minor losses are usually neglected in this type of problem. We use the property and data tables to find

Water r ¼ 1:94 slug=ft3

m ¼ 1:9� 10�5 lbf � s=ft2
[Table A:5]

10-nom, sch 40 D2 ¼ 0:8350 ft

A2 ¼ 0:5476 ft2
[Table C:1]

8-nom, sch 40 D3 ¼ 0:6651 ft

A3 ¼ 0:3474 ft2
[Table C:1]

Wrought iron « ¼ 0:00015 ft [Table 5:2]

(The subscripts 2 and 3 refer to the labels in Figure 5.27.) From the continuity equation,

Q1 ¼ Q2 þ Q3 ¼ 0:3 ft3=s

Also pA – pB along Q2 must be equal to pA � pB along Q3. Thus,

pA � pBð Þj2 ¼ pA � pBð Þj3
or

f2L2
D2

V2
2

2g
¼ f3L3

D3

V2
3

2g

A

A1, V1, Q1

Q3, A3

Q2, A2
Q1

B

FIGURE 5.27 Pipes in parallel.
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With L2¼ L3, the equation reduces to

f2V2
2

D2
¼ f3V2

3

D3

In terms of volume flow rate,

f2
D2

16Q2
2

p2D4
2

¼ f3
D3

16Q2
3

p2D4
3

or

f2Q2
2

D5
2

¼ f3Q2
3

D5
3

From Table C.1,

D2 ¼ 0:8350 ft and A2 ¼ 0:5476 ft2

D3 ¼ 0:6651 ft and A3 ¼ 0:3474 ft2

By substitution, the equation now becomes

2:46 f2Q
2
2 ¼ 7:68 f3Q

2
3

or

Q2 ¼ Q3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3:119f3

f2

s

From Table 5.2, «¼ 0.000 15; hence,

«

D2
¼ 0:000180

«

D3
¼ 0:000226

From Table A.5, r¼ 1.94 slug=ft3 and m¼ 1.9� 10�5 lbf � s=ft2. The Reynolds number is

Re ¼ rVD

m
¼ rD

m

4Q
pD2

¼ 4rQ
pDm

For each line,

Re2 ¼ 4(1:94)Q2

p(0:8350) 1:9� 10�5ð Þ ¼ 1:58� 105Q2

Re3 ¼ 1:99� 105Q3

From these calculations, our working equations are

Q2 þ Q3 ¼ Q ¼ 0:3 ft3=s

Re2 ¼ 1:58� 105Q2
«

D2
¼ 0:000180
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Re3 ¼ 1:99� 105Q3
«

D3
¼ 0:000226

Q2 ¼ Q3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3:119f3

f2

s

Because D2>D3 we expect that Q2>Q3.
As a first trial assume that Q2 ¼ 1

2Q ¼ 0:15 ft3=s; then

Q3 ¼ 0:30� 0:15 ¼ 0:15

Re2 ¼ 2:37� 104

Re3 ¼ 2:99� 104

From the Moody diagram

f2 ¼ 0:0255

f3 ¼ 0:0241

and by substitution into the working equation, we get

Q2 ¼ 0:258 ft3=s

If this value is used for the second trial, the next iteration gives Q2¼ 0.0898. The third iteration gives
Q2¼ 0.33, which shows that successive trials lead to divergence. A more successful method involves
taking as a second assumed value the average of the initially assumed Q2 and the calculated Q2. For the
second iteration, therefore, assume that

Q2 ¼ 0:15þ 0:26
2

¼ 0:20

Then

Q3 ¼ 0:1

Re2 ¼ 3:17� 104

Re3 ¼ 1:99� 104

f2 ¼ 0:024

f3 ¼ 0:0265

and, by equation,

Q2 ¼ 0:18

For the next trial, assume that

Q2 ¼ 0:18þ 0:20
2

¼ 0:19
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Then

Q3 ¼ 0:11

Re2 ¼ 3:01� 104

Re3 ¼ 2:19� 104

f2 ¼ 0:024

f3 ¼ 0:026

and, by equation,

Q2 ¼ 0:20

which is close enough to the assumed value. Thus, the solution is

Q2 ¼ 0:19 ft3=s and Q3 ¼ 0:11 ft3=s

An alternative iteration scheme involves assuming choices for the friction factors where fully developed
turbulent flow values are taken as first estimates.

All pipe friction problems in this chapter have been solved by using the Moody diagram.
Although reference to a figure is highly impractical if one is using a computer for the calculations,
the computer is well suited for these problems, especially the trial-and-error type. Thus, an equation
fit of the Moody diagram is helpful.

Many equations have been written, and a sampling is provided here. These equations are easily
entered on a programmable calculator or in a computer program. They apply for turbulent flow
conditions.

Chen equation:

1ffiffiffi
f

p ¼ �2:0 log
«

3:706 5D
� 5:045 2

Re
� log

1
2:825 7

«

D

� �1:109 8
þ 5:850 6

Re0:898 1

	 
 �
(5:35)

Churchill equation:

f ¼ 8
8
Re

� �12
þ 1

(Bþ C)1:5

" #1=12

(5:36)

where:

B ¼ 2:457 ‘n
1

(7=Re)0:9 þ (0:27«=D)

� �16

C ¼ 37 530
Re

� �16

The Haaland equation

f ¼ �0:782 ‘n
6:9
Re

þ «

3:7D

� �1:11
	 
 ��2

(5:37)
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The Swamee–Jain equation

f ¼ 0:250

log
«

3:7D
þ 5:74

Re0:9

	 
 �2 (5:38)

If «=D and Re are known, then f can be determined, just as with the Moody diagram.

5.10 PUMPS AND PIPING SYSTEMS

To make fluid flow from one point to another in a closed conduit a driving force is required. Where
elevation differences exist, this force may be gravity, but the driving force is usually supplied by
pumps (for liquids) or blowers (for gases). These devices add to the mechanical energy of the fluid
in the form of velocity, pressure, and=or elevation increases. Common methods of effecting the
increase are by positive displacement or centrifugal action. In this section, we discuss pumps in
general and learn how to calculate pumping power requirements. Techniques for determining fan
power requirements are similar to those for pumps.

With positive-displacement pumps, a finite volume of liquid is drawn into a chamber and then
forced out under high pressure. In a reciprocating positive-displacement pump, the chamber is
formed by a cylinder-piston arrangement. As the piston is withdrawn from the cylinder, liquid is
drawn in through the inlet. On the return stroke, the liquid is forced out the outlet tube. One-way
valves are placed in the liquid lines to control flow direction. In a rotary positive-displacement
pump, the chamber moves from inlet to discharge and back. In a rotary gear pump, the space
between intermeshing, rotating gears carries liquid from inlet to discharge (see Figure 5.28).
Positive-displacement pumps can be used to deliver very high pressures, but pulsations in the
flow are also present. At constant speed, the flow capacity of these pumps is a constant. In general,
the discharge rate is directly dependent on the speed and independent of the type of liquid. For
gases, rotary blowers and compressors are available that work on the same principles.

Centrifugal pumps are more commonly used than positive-displacement pumps in process
conditions. Centrifugal pumps add energy to the fluid by means of a rotating impeller within a

FIGURE 5.28 A positive-displacement pump. Liquid enters on one side of housing, moves along the housing
periphery between gear teeth, and exits on the other side of the housing.
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casing. Figure 5.29 shows a frontal view of an impeller and the casing cover. A centrifugal pump is
shown schematically in Figure 5.30. The liquid enters the pump in the axial direction (with respect
to the motion of the impeller). It enters the rotating eye of the impeller and moves radially through
the channels between the vanes. At the periphery, the liquid exits through the discharge pipe. The
rotating impeller imparts a high-velocity head to the liquid, a portion of which is converted to
pressure head after the liquid leaves the impeller. Pumping power requirements are determined with
the energy equation, as illustrated by the following example.

Example 5.13

A house is located near a freshwater lake. The homeowner decides to install a pump near the lake to
deliver 25 gpm of water to a tank adjacent to the house. The water can then be used for lavatory facilities
or sprinkling the lawn. For the system sketched in Figure 5.31, determine the pump power required.

FIGURE 5.29 Centrifugal pump impeller and casing.

Outlet

2

Motor

Inlet

Pump
1

z2

z1

FIGURE 5.30 Schematic of a centrifugal pump.
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SOLUTION

The control volume we select includes all liquid in the piping system and in the pump. The control
volume extends from the free surface of the lake (section 1) to the free surface of the receiver tank
(section 4). Further, for purposes of illustration, we identify sections 2 and 3 located about the pump.
From the property and data tables, we determine the following:

Water r ¼ 1:94 slug=ft3

m ¼ 1:9� 10�5 lbf � s=ft2
[Table A:5]

112 -nom, sch 40 D ¼ 0:125 ft

A ¼ 0:01227 ft2
[Table C:1]

Smooth pipe « � 0

Minor losses
P

K ¼ Kbasket strainer þ 2K45	 elbow

þ 3K90	 elbow Kexit ¼ 1:3

þ 2(0:35)þ 3(1:4)þ 1:0 ¼ 7:2

[Table 5:4]

The following equations can be written for the system:

p1
rg

þ V2
1

2g
þ z1 ¼ p2

rg
þ V2

2

2g
þ z2 þ V2

2g
fL

D
þ
X

K

� �

p2
rg

þ V2
2

2g
þ z2 ¼ p3

rg
þ V2

3

2g
þ z3 þ 1

_m

dW

dt

1
g

p3
rg

þ V2
3

2g
þ z3 ¼ p4

rg
þ V2

4

2g
þ z4 þ V2

2g
fL

D
þ
X

K

� �

30 ft.

Pump

1 2 3

4

1 basket strainer
2 45  elbows
3 90  elbows
115 ft. of 1  -nominal
PVC schedule 40 pipe
  throughout

1
2

FIGURE 5.31 Pumping system for Example 5.13.
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These equations can be added to obtain a single equation for the entire system:

p1
rg

þ V2
1

2g
þ z1 ¼ p4

rg
þ V2

4

2g
þ z4 þ

X fL

D

V2

2g
þ
X

K
V2

2g
þ 1

_m

dW

dt

1
g

Thus, only inlet and outlet conditions must be known. At sections 1 and 4 (both are reservoir surfaces),
velocity is negligible. With section 1 as the reference,

� 1
_m

dW

dt
¼ z4gþ V2

2
fL

D
þ
X

K

� �

The volume and flow mass required are

Q ¼ 25 gpm� 0:002228 ¼ 0:0557 ft3=s

_m ¼ rQ ¼ 0:108 slug=s

The velocity is

V ¼ Q

A
¼ 0:0557

0:01227
¼ 4:54 ft=s

with which we obtain

Re ¼ 1:94(4:54)(0:125)
1:9� 10�5

¼ 5:8� 104

It is permissible to use the ‘‘smooth pipe’’ curve on the Moody diagram for PVC pipe. At Re¼ 5.8� 104,
we read f¼ 0.020 5.

By substitution into the equation, we have

� dW

dt
¼ 0:108 30(32:2)þ (4:54)2

2
0:0205(115)

0:125
þ 7:2

� �	 


� dW

dt
¼ 0:108(966þ 268) ¼ 133 ft � lbf=s

By definition, 1 hp¼ 550 ft � lbf=s; therefore,

dW

dt
¼ �0:242 hp

The negative sign indicates power transferred to the fluid. This value represents the power that must be
added to the fluid. The power input to the pump shaft must be greater, however, to overcome losses. It is
considered good design practice to place a strainer on the submerged pipe inlet of Figure 5.31. Also, to
prevent backflow through the system due to a siphoning effect, it is necessary to install a one-way valve
in the flow line.

5.11 SUMMARY

This chapter presented the basic design procedures for piping systems. Laminar and turbulent flow
regimes were defined. The friction factor and the relative roughness were both discussed, and their
importance in pipe friction calculationswas illustrated. Losses due tofittingswere also discussed. Finally,
pumping requirements for existing systems were calculated by application of the energy equation.

It should be pointed out that all the example problems in this chapter dealt with circular pipe,
although other cross sections were discussed. The methods of this chapter can easily be extended to
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noncircular cross sections by using the concept of hydraulic diameter. Such problems are included
in the exercises that follow.

PROBLEMS

Laminar versus Turbulent Flow

5.1 Castor oil is flowing at 20 ft=s in a pipe with an inside diameter of 4 in. Is the flow laminar or
turbulent?

5.2 Air at atmospheric pressure and 258C flows in a pipe having an inside diameter of 18 cm.
What is the maximum average velocity permissible for the flow to be considered laminar?

5.3 Methyl alcohol flows in a tube with an inside diameter of 6 in. at a rate of 1 in.3=s. Is the flow
laminar or turbulent?

5.4 Water flows in a pipe at an average velocity of 1 in.=s. What is the maximum pipe diameter
required for the flow to be considered laminar?

5.5 Acetone flows in a pipe that is 4 in. in diameter. The average velocity of the acetone is 0.2 in.=s.
Determine whether laminar or turbulent flow exists. What is the average velocity of the acetone
at transition?

5.6 Oxygen at 258C and atmospheric pressure is conveyed at 350 ft3=min through a 30� 10 cm
rectangular duct. Is the flow laminar or turbulent?

5.7 A rectangular duct has inside dimensions of 12� 18 in. What is the hydraulic diameter of the
duct? If 3 ft3=min of air at 718F flows through the duct, determine the Reynolds number.

Characteristic Length

5.8 A rectangular duct has internal dimensions of 4� 112 in. Calculate (a) effective diameter,
(b) hydraulic diameter, and (c) hydraulic radius.

5.9 A rectangular duct is 1 in. tall and is to be constructed so that its effective diameter equals its
hydraulic diameter. What is the required width of the duct (or can’t this be done)?

5.10 A circular annulus is made up of two concentric tubes. The inner tube has an outside diameter
of 15 cm, whereas the outer tube has an inside diameter of 40 cm. The annulus will convey
carbon tetrachloride under laminar flow conditions. Calculate the maximum permissible
average velocity in the conduit.

5.11 A concentric circular annulus conveys benzene at 0.2 m3=s. The annulus is made up of two
tubes. The inside diameter of the outer tube is 20 cm and the outside diameter of the inner tube
is 10 cm. Determine the hydraulic diameter and the Reynolds number.

5.12 An annular duct is formed by an outer tube with an inside diameter of 10 cm and an inner tube
with an outside diameter of 5 cm. Calculate (a) effective diameter, (b) hydraulic diameter, and
(c) hydraulic radius.

5.13 A conduit that conveys air is rectangular, having dimensions of 6� 6 in. Due to space limitations,
a circular tube having an outside diameter of 3 in. has to be mounted within this duct, and it has
been decided to mount the tube directly in the center. (See Figure P5.13.) Determine the (a)
hydraulic diameter, (b) the effective diameter, and (c) the hydraulic radius of the duct flow area.

3-in. OD

6 in. × 6 in.
internal
dimensions

Flow area

FIGURE P5.13
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Entrance Length

5.14 Ethyl alcohol flows into a piping system through a well-rounded entrance. After 22 cm of pipe
length, measurements taken in the pipe show that the flow is fully developed. Determine the
volume flow in the pipe, assuming laminar flow exists.

5.15 Helium at 258C and 110 kPa (absolute) flows into a copper tube (114-standard, type M) that is
12 m long. Is the flow fully developed at tube end if the helium mass flow rate is 0.01 kg=s?

5.16 Propylene glycol flows from a tank into a 2-nominal, schedule 80 pipe. Measurements
indicate that the flow becomes fully developed 25 diameters downstream. Determine the
volume flow rate through the pipe in cubic meters per second (a) if laminar conditions exist
and (b) if turbulent conditions exist.

5.17 Turpentine flows at 0.03 ft3=s from a tank into a 1-nominal, schedule 40 pipe. Determine the
length required for the flow to become fully developed.

5.18 Do Equations 5.2a and 5.2b predict the same entrance length when the Reynolds number is
2 100? Should they? Why or why not?

5.19 Which fluid requires the shortest length of pipe before fully developed conditions are reached:
water at 208C or water at 808C, given equal velocities and duct sizes?

5.20 Water at room temperature flows through a well-rounded entrance to a 10-cm-ID pipe.

a. Determine the velocity in the pipe at transition.
b. Calculate the entrance length required for the flow to become fully developed, also at

transition.

Piping Systems—Pressure Drop Unknown

5.21 A 4-nominal riveted steel pipe 35 m long is laid horizontally and is to convey castor oil at a
rate of 0.1 m3=s. Determine the pressure drop in the pipe.

5.22 A 3-nominal, schedule 40 cast-iron pipe conveys water at an average velocity of 5 ft=s.
The pipe is 65 ft long. Determine the pressure drop experienced by the water.

5.23 An 8-nominal, schedule 80 wrought iron pipe that is 100 m long conveys octane at a flow rate
of 0.06 m3=s. What is the pressure drop under these conditions?

5.24 A 12-standard, type K copper tube conveys water at a rate of 1 800 gpm. If the tube is 15 ft
long, determine the pressure drop.

5.25 A rectangular galvanized duct 4 in.� 2 ft conveys heated air (T¼ 988F) to a locker room.
The duct is 30 ft long, and the mass flow rate is 0.04 slug=s. Assuming ideal gas conditions
and relatively constant density in the system, determine the pressure drop in the duct.

5.26 A main duct of an air-conditioning system is a rectangular conduit of dimension 1� 0.5 m.
It conveys air at a flow rate of 1.1 kg=s. The conduit wall is galvanized sheet metal. Calculate
the pressure drop over the 6-m length of conduit.

5.27 A 15-ft-long annulus made of 4-nominal, schedule 40 pipe and 2-nominal, schedule 40 pipe
conveys carbon disulfide at a volume flow rate of 0.3 ft3=s. Determine the pressure drop over
the 15-ft length. Both pipes are made of cast iron.

5.28 Solve Problem 5.27 using effective diameter instead of hydraulic diameter and compare the
results of the two methods.

5.29 An underground salt dome can be used as a storage volume for gasoline. Access to the salt
dome is established with several circular annuli. Consider one annulus and take the salt
dome to be filled with gasoline, as sketched in Figure P5.29. The outer pipe is schedule
160, 24-nominal; the inner pipe is schedule 80, 12-nominal. Both pipes are made of cast iron.
When salt water is pumped into the pipe, gasoline is forced upward through the annulus. For a
saltwater flow rate of 10 ft3=s, determine the pressure drop of the gasoline in the annulus.
Take the depth to be 1,500 ft and neglect entrance and exit losses. Take the viscosity of
salt water to be equal to that of plain water and the properties of gasoline to be the same as
those of octane.
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Gasoline

Salt water

FIGURE P5.29

5.30 Water at 0.02 m3=s flows through 350 m of 8-nominal cast-iron pipe. Determine the head
loss if the water temperature is 228C.

5.31* The fuel line in an automobile is made of drawn copper tubing, 3
8-standard, type M.

A schematic of a fuel line from tank to fuel pump is shown in Figure P5.31. For a fuel
flow of 10 cm3=s, determine the pressure drop in this portion of the line (1 to 2). The system
includes 2 m of tubing. Take the fuel to have the same properties as those of octane.

8 cm

6 cm

1

2patm

FIGURE P5.31

5.32* A vacuum pump is used to lower the existing pressure above a tank of water. As air is
removed, water from a sump tank fills the main tank, as shown schematically in Figure
P5.32. The inlet flow of water is 600 ft3=h. If the air pipe is schedule 40, 2-nominal wrought
iron, determine the pressure drop in the piping system (1 to 2). All fittings are regular and
threaded, and the total pipe length is 60 ft. Neglect compressibility effects.

27 in.

1

2

To vacuum pump

Sealed

Inlet water

FIGURE P5.32

* Minor losses are included.
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Piping Systems—Volume Flow Rate Unknown

5.33 A 12-nominal, schedule 80 wrought iron pipe is inclined at an angle of 108 with the
horizontal and conveys chloroform downhill. If the allowable pressure drop in the pipe is
2 psi and the pipe length is 100 ft, determine the volume carrying capacity in the pipe.

5.34 Ether flows through a horizontally laid, 4-nominal schedule 40 wrought iron pipe. The
pressure drop measured at points 280 m apart is 100 kPa. Determine the volume flow rate
through the pipe.

5.35 Syrup flows through a schedule 80, 4-nominal stainless steel pipe to a bottling machine in a
production plant. The pipe is 250 ft long, and the pressure drop is 12 psia. Determine the
volume flow rate. Take the properties of syrup to be the same as those of glycerine and
the pipe wall to be smooth. The syrup is at room temperature.

5.36 A refinery plant separates crude oil into various components. One constituent produced is hep-
tane, which is conveyed through a schedule 30, 14-nominal cast-iron pipe that is 150 ft long.
The pressure drop in the pipe is 0.75 psi. Determine the volume flow rate of heptane in the pipe.

5.37 A rectangular conduit of dimension 5� 7 in. conveys hydrogen. The conduit wall is asphalt
coated and is 25 ft long. The hydrogen compressor provides enough power to overcome a
pressure drop of 0.01 in. of water. Determine the mass flow of hydrogen.

5.38 Solve Problem 5.37 using effective diameter instead of hydraulic diameter and compare the
results of the two methods.

5.39 An annular flow passage is formed by placing a 1-standard, type M copper tube within a
3-standard, type M copper tube. The annulus is 2 m long and conveys glycerine. The
pressure drop over the 2-m length is 19 kPa. Determine the volume flow rate of glycerine.

5.40 Benzene flows through a 12-nominal, schedule 80 wrought iron pipe. The pressure drop
measured at points 1200 ft apart is 5 psi. Determine the volume flow rate through the pipe.

5.41* The evaporator of a household air conditioner is located in the attic. Water at 408F condenses
from the air when the air is cooled bymoving past the coil. The condensedwater falls downward
into a catch pan. A pipe of 12-nominal, schedule 40 PVC is attached to the pan and conveys the
water to a roof vent located in the soffit. A schematic of the piping system is shown in Figure
P5.41. There are 8 ft of pipe and three standard elbows. The water-discharge system is
completely gravity fed. Determine the volume flow rate through the pipe for the case shown.

Condenser

Catch pan
2 in. 18 in.

Screen

FIGURE P5.41

5.42* Gutters and downspouts are attached to roofs to drain rainwater. Both circular and rectangu-
lar downspouts are conventionally used. Figure P5.42 is a schematic of a downspout
containing 2.2 m of galvanized ductwork and one 458 elbow. Determine the volume-
carrying capacity if the duct cross section is round with an inside diameter of 13.1 cm.

* Minor losses are included.
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2.4 m

FIGURE P5.42

5.43* Repeat Problem 5.42 but take the duct cross section to be a 7� 10 cm rectangle.

Piping Systems—Diameter Unknown

5.44 A nozzle is used to provide a water spray for keeping dust from escaping from a dirt
pile into the atmosphere. Just before entering the nozzle, the fluid must have a pressure of
60 psi at a flow rate of 12 ft3=min. The water source is a city water main in which the
pressure is maintained at 70 psi. The distance from the main to the proposed nozzle location
is 65 ft. Select a suitable pipe size for the installation if galvanized iron pipe is all that is
available.

5.45 A diesel engine is used as a power source for a generator as part of an electrical backup system
for a remotely located manufacturing plant. The diesel requires 0.01 m3=s of kerosene.
A kerosene tank is located 10 m from the engine. The tank pressure is maintained at a constant
200 kPa, and the engine fuel injectors require that the kerosene be delivered at 115 kPa or less.
Drawn copper tubing will be used for the fuel line; select an appropriate diameter.

5.46 Linseed oil is often used as a wood finish and can be purchased in half-gallon containers. On
the assembly line, one machine can fill and cap 20 containers per minute. The linseed oil
tank is located 36 ft from a machine. The oil is pumped from the tank to the machine; the
pump outlet pressure is 35 psig, and the machine requires 15 psig pressure for optimum
operation. Select a suitable diameter for a pipeline if drawn copper tubing is to be used.

5.47 An annulus is to be made of two type M copper tubes that are 2.5 m long. The outer tube size
is limited by space and is 2-standard, whereas the size of the inner tube must be selected.
The fluid is turpentine, and the available pump can overcome a pressure loss of 30 kPa while
delivering 0.01 m3=s of liquid. Select a suitable inner-tube size.

5.48 A riveted steel pipeline is used to convey 0.5 m3=s of gasoline (assume properties the same
as octane) a distance of 40 km. The available pump can overcome a friction loss of 300 kPa.
Select a suitable pipe size for the installation.

5.49* Ethylene glycol is used in a heat-recovery system where exhausted warm air passes over
soldered copper tubing with fins attached. A schematic of the piping system is shown in
Figure P5.49. The system must be able to convey 0.002 m3=s of ethylene glycol at an
allowable pressure drop (1 to 2) of 50 kPa. Select a suitable tubing diameter. The total length
of tubing is 12 m.

* Minor losses are included.

Flow in Closed Conduits 255



1.5 m

Finned tubes
1

2
FIGURE P5.49

5.50* Overhead sprinklers are commonly used in buildings for fire protection. If a fire starts,
sufficient heat is produced to melt a metal tab, which opens the sprinkler head. One such
installation is shown schematically in Figure P5.50. Water is supplied at the main at a
pressure of 75 psig. The nozzle requires a pressure of 60 psig at a flow rate of 15 gpm for
effective coverage. Assuming that 39 ft of wrought iron pipe with threaded fittings is to be
used in the installation, select a suitable pipe diameter.

30 ft.

Water main
FIGURE P5.50

Surface Roughness and Equivalent Length

5.51* The owners of an above-ground pool wish to empty it by using a 7-cm-diameter plastic hose
as a siphon (Figure P5.51). The 12-m-long flexible hose is placed over the pool wall, and the
siphon is started. The volume flow rate of water through the hose is 0.007 7 m3=s. Determine
the friction factor f and an equivalent roughness «. The tube configuration shows a return
bend and an elbow (assume same minor losses as flanged fittings).

1.4 m

10 cm

FIGURE P5.51

* Minor losses are included.
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5.52 Ethylene glycol is used in an experiment to determine the roughness of a pipe material.
The liquid is pumped through the pipe at a flow rate of 0.01 m3=s. The measured pressure drop
is 3.8 kPa over a 3-m length. The pipe itself is 3-nominal, schedule 40. Determine the
roughness «.

5.53 Water is used to determine the roughness « of a new pipe material. The pipe is 2-nominal,
schedule 40 and it is 21 ft long. The water is pumped through at a rate of 50 gpm, and the
measured pressure loss over 18 ft is 1.0 psi. Determine the roughness «.

5.54 Table 5.2 gives values of surface roughness for new, clean conduit surfaces. Conduit walls
become rougher with time, however, owing to corrosion, incrustations, and deposition of
materials (usually minerals) on the pipe wall. The time it takes for the wall surface to roughen
depends greatly on the fluid conveyed. It has been found that the absolute roughness «
increases linearly with time according to

«t ¼ «þ kt

where: «¼ absolute roughness of a new surface
k¼ a constant to be determined from tests
t¼ time in years*

A 4-nominal cast-ion pipe conveys water at a rate of 0.015 m3=s. Determine the pressure
drop per kilometer of new pipe. Next, estimate the pressure drop per kilometer of the pipe
after 35 y if the flow velocity remains unchanged. Every 9 y the absolute roughness of the wall
doubles.

5.55 A 16-nominal cast-iron pipe conveys carbon disulfide at a rate of 9 ft3=s. The pipe itself is
1,100 ft long. Determine the pressure drop in the pipe when new if it is laid horizontally.

Previous experiments with this fluid-pipe combination have shown that k¼ 0.00007 ft=y.
Assuming the pressure drop in the pipe is the same as when it was new, determine the volume
flow rate of liquid through the pipe after 10 y has elapsed. (See Problem 5.54.)

5.56 As seen by working the more complex pipe friction problems, minor losses can consume
significant amounts of energy in the form of a pressure loss. Also, the inclusion of minor
losses in the modified Bernoulli equation can make the trial- and-error-type problems
tedious. Efforts have therefore been made to represent minor losses using what is known
as equivalent length. Recall from the modified Bernoulli equation the friction and minor
loss terms:

fL

Dh

V2

2g
þ
X

K
V2

2g
¼ fL

Dh
þ
X

K

� �
V2

2g

The concept of equivalent length allows us to replace the minor loss coefficient term as

X
K ¼ fLeq

Dh

where f is the friction factor that applies to the pipe, Dh is the characteristic length, and Leq is
the equivalent length. Physically what we are doing is calculating the length of pipe (of the

* C. F. Colebrook and C. M. White, The reduction of carrying capacity of pipes with age. Journal of the Institute of Civil
Engineers (London, 1937).

Flow in Closed Conduits 257



same material, size, and schedule) with which we can ‘‘replace’’ the fittings to obtain the same
pressure drop. Calculate the equivalent length of the fittings for the piping system described in
Example 5.9.

5.57 Repeat Problem 5.56 for the piping system of Example 5.13.

Forces Exerted by Moving Fluids

5.58 An elbow and an enlargement are located in a horizontal section of pipeline as indicated in
Figure P5.58. The gauge pressure at section 1 is 210 kPa and the volume flow rate through
the system is 0.001 m3=s. The inlet pipe has an inside diameter of 2.664 cm; at the outlet, the
inside diameter is 4.09 cm. Determine the forces exerted on this section of pipeline by the fluid
if it is decane.

Enlargement

Elbow
1

2

V

y

p1A1

p2 A2

x

Fy

Fx

FIGURE P5.58

5.59 A reducing elbow is used in a horizontal section of pipeline, as shown in Figure P5.59. The
inlet gauge pressure at 1 is 305 kPa, and flow through the pipe is 0.04 m3=s. Assuming that
the elbow reduces from a 20-cm to a 16-cm diameter, determine the forces required to hold
the elbow in place if the fluid flowing is chloroform.

1

y

x

2

FIGURE P5.59

5.60 Figure P5.60 shows a return piping system located in a horizontal plane, This system contains
two reducer elbows. Calculate the force required to hold the return in place if the liquid
flowing is ethyl alcohol. Neglect friction.
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16 in.

12 in.

p = 25 psig
V = 0.4 ft./s

Fx

Fy

FIGURE P5.60

Pipes in Parallel

5.61 Rework Example 5.12, assuming as first guesses the fully turbulent flow values for friction
factor rather than volume flow rates. Is convergence achieved more quickly?

5.62 Consider the piping system of Figure 5.27. The distance from A to B is 6 km. The main line
is 24-nominal, schedule 20 and the looped line is 12-nominal; both are cast iron. For
Q¼ 0.25 m3=s of acetone, determine the volume flow rate in each line.

5.63 An automatic sprinkler for a narrow plot of lawn is sketched in Figure P5.63. Water is
supplied by the main such that p1¼ 400 kPa (gauge) and Q1 is variable. The sprinkler pipeline
is made of schedule-40 PVC pipe. For a wide-open ball valve, determine the flow delivered to
each sprinkler head. Do not neglect minor losses. Fluid paths and notes:

1-nominal

2

3

1

Ball valve4

1   -nominal1
2

FIGURE P5.63

from 1 to the T-joint at 2: 1 1
2-nominal; pipe length is 6.5 m

from 2 to the sprinkler head at 3: 1 1
2-nominal; pipe length is 0.3 m

from 2 to the sprinkler head at 4: 1-nominal; pipe length is 8.3 m
fittings: K for each sprinkler head is 50, which includes the exit loss; T-joint at 2;
reducing bushing and elbow between 2 and 4; ball valve.

5.64 A home air-conditioning system contains a fan that forces air over cooling coils (condenser).
The cooled air (T¼ 78C) goes to a plenum chamber to which three circular ducts are attached,
as shown in Figure P5.64. The chamber pressure is 108 kPa, and the ducts are of length 2, 2.6,
and 3.8 m. Ducts all have a 30-cm inside diameter and are made of galvanized sheet metal.
Neglect minor losses and determine the volume flow in each if the air flow into the plenum
chamber is 20 m3=min and each duct exhausts into rooms at 101.3 kPa pressure. Assume
constant temperature.
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FIGURE P5.64

Pumps and Piping Systems

5.65 The homeowners of Example 5.13 have decided that they would rather install a smaller pump
that will deliver 10 gpm rather than 25 gpm. Determine the pump power required for the
smaller pump.

5.66 Octane is to be pumped overland in a piping system. The octane is routed from storage tanks
to the main pump by smaller pumps. One such arrangement is sketched in Figure P5.66.
This pump must supply 0.4 m3=s of octane to the main pump. All fittings are flanged;
the pipe is cast iron, schedule 160, 24-nominal, with L¼ 65 m. The absolute pressure at
section 2 is 282.5 kPa. Determine the power required to be transferred to the liquid.
Assuming an overall pump-motor efficiency of 75%, determine the input power required
by the motor.

12 m
18 m

1

2

Strainer

Input
power

FIGURE P5.66

5.67 In a dairy products processing plant, milk (r¼ 1 030 kg=m3, m¼ 2.12� 10�3 N � s=m2)
is pumped through a piping system from a tank to a container packaging machine.* The
pump and piping are all stainless steel (smooth walled), arranged as shown in Figure P5.67.
The pump inlet line (4-nominal, schedule 40 pipe) is 2 m long. The pump outlet line
(3 1

2-nominal, schedule 40 pipe) is 15 m long. All fittings are flanged, and the flow rate through
the system is 0.015 m3=s. Determine the electrical power input to the pump if the pump-motor
efficiency is 88%.

* Christie G. Geonkoplis, Transport Processes and Unit Operations (Boston: Aliyn & Bacon, 1978), p. 629, Table A.4-2.
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Swing-type
check valve

Basket
strainer

6 m

FIGURE P5.67

5.68 Since the early 1900s, the Grand Canyon has become a popular place for tourists to visit. The
lack of potable water became a major hindrance to visitors, however, as permanent natural
sources of water are rare or nonexistent on the rims. In 1928, the Utah Parks Company
constructed a 12,500-ft pipeline of 3 1

2-nominal pipe. Water is piped up to the North Rim from
Roaring Springs, in Roaring Springs Canyon, a vertical distance of almost 3,900 ft (1 200 m).
Water flows through the pipe at 95 gpm into one of two 2,000,000-gal storage tanks. Water
can then be taken from the tanks and used for showers, consumption, irrigation, and so on.
Given this information, calculate the pump power required for this installation. Assume that
inlet and outlet pressures are equal, that minor losses can be neglected, and that the pipe is
made of wrought iron. (Much of the data for this problem were obtained from a National Park
Service tourist publication.)

5.69 Decorative water fountains consist of a water reservoir and underground piping to and from a
pump. One such system is shown schematically in Figure P5.69. The inlet line to the pump is
20 m of 16-nominal PVC pipe. The outlet line from the pump is 18 m of 12-nominal PVC
pipe. The outlet line leads to the bottom of an annular flow line. The expansion there has a loss
value of K¼ 2 based on the kinetic energy in the 12-nominal line. The annular flow passage
has a length L¼ 180 cm and is bounded by Do¼ 30 cm and Di¼ 20 cm. It, too, is made of
PVC material. There is a negligible loss at the exit of the annulus; the pressure at that location
is atmospheric. What is the pump power required for the flow configuration shown? If the
pump-motor combination has an efficiency 92%, determine the electrical power requirements.
If electricity costs $0.05=kW � h, determine the cost of running the fountain for 8 h.

3 m

70 cm

L

Di

Do

Annular flow
discharge

FIGURE P5.69
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Miscellaneous Problems

5.70 A 16-nominal, schedule 30 pipe made of cast iron is inclined at a controllable angle with the
horizontal. The 100-m-long pipe is to convey 0.2 m3=s of decane downhill. At what angle of
inclination will the pressure drop due to friction overcome the change in potential energy
of the liquid?

5.71 Derive Equation 5.25 in detail, starting with Equation 5.23.
5.72 Derive Equation 5.28 in detail, starting with Equation 5.25.
5.73 Show that Equation 5.28 reduces to Equation 5.16 when k¼ 0.
5.74 Select five Reynolds numbers and «=D values at random from the Moody diagram and obtain

the corresponding friction factors. Substitute the Reynolds numbers and the «=D values into
the Chen or the Haaland equation and calculate f. Compare your results to the values read
from the Moody diagram.

5.75 Select five Reynolds numbers and «=D values at random from the Moody diagram and obtain
the corresponding friction factors. Substitute the Reynolds numbers and the «=D values into
the Churchill or Swamee–Jain equation and calculate f. Compare your results to the values
read from the Moody diagram.

5.76 A positive displacement pump delivers lubricating oil (r¼ 1.6 slug=ft3; m¼ 0.003 lbf � s=ft2)
to a journal bearing. Lubricating the bearing properly requires a volume flow rate of oil of
250 in.3=min. The flow line is made of 1

8-nominal, schedule 40 cast-iron pipe 35 ft long. The
line contains six regular elbows and one ball valve, all threaded fittings. The pump transfers
100 ft � lbf=s to the fluid. Determine the correct setting for a on the ball valve if the line
pressure at inlet equals that at outlet and the line is horizontal.

5.77 Although not discussed in this chapter, fluid temperature influences pipe flow calculations.
Consider, for example, the system sketched in Figure P5.77, which shows a tank of water with
a piping system attached. Water exits through a 3-nominal, schedule 40 wrought iron pipe that
is 25 m long and is discharged to a nearby reservoir. The system contains a basket strainer,
three 908 elbows, two 458 elbows, and a half-closed gate valve. All fittings are of long radius
and are flanged. Determine the volume flow rate through the system for water temperatures of
108C, 508C, and 908C. What parameters are affected by temperature?

3-nominal, schedule 40 wrought iron pipe
1 basket strainer
3 90  elbows
2 45  elbows
1 gate valve, half-closed

6 m

3 m

FIGURE P5.77
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5.78 Figure P5.78 shows an end view of an internally finned tube. The spiraled fins are an integral
part of the tube wall. The friction factor for such a configuration is given by

f ¼ 0:046

Re0:2
De

Di
sec3=4u

where: u¼ helix angle measured from tube axis
Di¼ diameter to base of fins
De¼ effective diameter based on actual cross-sectional area (tube area minus fin area)
Re¼VDh=v> 2 100 (turbulent flow)
Dh¼ hydraulic diameter

¼ 4� cross-sectional area=perimeter

A finned tube has the same basic dimensions of 1-standard, type K drawn tubing with
internal fins attached. The fins are rectangular in cross section (from an end view perpendicu-
lar to the axis of the tube). They are equal to the wall thickness in height, and they are double
the wall thickness in width. The tube contains equally spaced fins, and the helix angle is 308
from the tube axis. The tube conveys water at a flow rate of 0.002 m3=s.

a. Determine the friction factor and the pressure drop per unit length.
b. Determine the friction factor and pressure drop per unit length if no fins are attached to the

drawn tubing wall and the flow rate is the same.

FIGURE P5.78

5.79 The friction factor for flow in a coiled tube is somewhat different from that for a straight tube.
Correlations based on experimental work have been derived for laminar and turbulent flow in
a coiled tube. These are as follows:

Laminar flow:

fcoiled
fstraight

¼ 1� 1� 5:8
De

� �0:45
" #2:22

8<
:

9=
;

�1

valid for 5:8 < De < 1000
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Turbulent flow:

fcoiled
fstraight

¼ Re
D

Dc

� �2
" #0:05

valid if Re
D

Dc

� �2
" #

> 6

where: fcoiled¼ friction for the coiled tube
fstraight¼ friction factor if the coiled tube were straight

De ¼ Dean number ¼ Re
2

D
Dc

� �1=2

D¼ pipe inside diameter
Dc¼ diameter of coil measured to centerline
Re ¼ VD

v

Also, for flow in a curved tube, the critical Reynolds number above, for which fully turbulent
flow exists in the duct, is given by

Recr ¼ 2� 104
D

Dc

� �0:32

The flow is thus turbulent if Re>Recr.
Two enterprising chemical engineering students have decided to produce homemade beer

for their own consumption. In the final phase of the production process, beer is siphoned
from a 5-gal container through a plastic hose that leads to a coiled copper tube, as shown in
Figure P5.79. The copper tube is located within a water tank that is used to cool the beer.
The tube has a straight length that extends to the bottom of the water tank and then
coils upward, making loops until it reaches the top of the water tank. The beer proper-
ties change somewhat during the time that it passes through the water tank, but for our
purposes, we can assume them to be essentially constant: specific gravity¼ 1.0042 and
m¼ 1.4� 10�5 lbf � s=ft2. For the following data, determine the volume flow rate of beer
through the tubing:

L¼ 22 ft (total for the copper tubing)
Dc¼ 8 in.
D¼ 1

4-in.-ID drawn copper tubing

number of coils¼ 6 1
2

The length of 1
4-in.-ID plastic tubing (which has the same roughness factor as drawn copper

tubing) is 10 ft. Neglect minor losses. Does coiling the tube have a significant effect?

264 Introduction to Fluid Mechanics



in. ID plastic tubing

4 ft.

2 in.

in. ID plastic tubing

Cooling
water out

Cooling
water in

1
4

1
4

FIGURE P5.79

Computer Problems

5.80 Consider the graph and table of f Re versus h=w for a rectangular duct (Figure 5.17). Using the
tabulated values, show that the equation of the line is

f Re ¼ 96---95
h

w

� �
þ 56

h

w

� �2

5.81 a. Consider the graph and table of f Re versus h=w for a rectangular duct (Figure 5.17). Using
the tabulated values, construct a graph of hydraulic diameter Dh versus h=w.

b. Using the tabulated values, construct a graph of effective diameter Deff versus h=w.
c. Plot Dh and Deff versus h=w (horizontal axis) on the same set of axes.

5.82 A system curve for a piping system is defined as a graph of any flow variable as a function of
volume flow rate Q (horizontal axis). A system curve can be drawn for any piping system.

Water flows through 1,000 ft of 2-nominal, schedule 40 galvanized pipe. Construct a
system curve of pressure drop versus flow rate over a velocity range of 4–10 ft=s.

5.83 Figure P5.67 shows a pump moving milk from one tank to another. For the description of the
system given in Problem 5.67, it is possible to draw what is known as a system curve.
A system curve is a graph of any flow variable as a function of volume flow rate Q (horizontal
axis). For the configuration of Figure P5.67, allow the power delivered to the fluid (not
including the effect of efficiency) to vary from 0.5 to 2 kW, and graph a system curve of
power versus volume flow rate.

5.84 Problem 5.76 describes a piping system that contains elbows and a ball valve. The ball valve
is used to control the volume flow rate in the piping system. In this type of problem, a system
curve is most beneficial. A system curve is a graph of any flow variable as a function of
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volume flow rate Q (horizontal axis). For the piping configuration of Problem 5.76, construct a
system curve of valve angle setting a versus volume flow rate Q. Take inlet and outlet
pressures to be equal.

Design Problems

Pump Sizing and Selection

Example 5.13 provides a method for sizing a pump that is to be installed in a piping system. Before
purchasing a pump for this service, it is necessary to consult a pump manufacturer’s catalog to find
one that will work. Pump manufacturers display flow properties of their pumps in such a way that
the most efficient pump they produce will be selected. Figure P5.85 shows a pump composite
graph of the type typically provided by a manufacturer. The horizontal axis is of the volume flow
rate, and the vertical axis is of total head (or energy) that the pump must impart to the liquid. The
graph shows small areas that represent various pumps by catalog number. Each small area
corresponds to the operating region where the pump operates at its maximum efficiency.

To illustrate the use of this graph, consider the results of Example 5.13:

_m ¼ rQ ¼ 0:108 slug=s

Q ¼ 25 gpm ¼ 0:0557 ft3=s

dW

dt
¼ �133 ft � lbf=s ¼ �0:242 hp

The total head or energy is

Total head ¼ DH ¼ 1
_mg

� dW

dt

� �
¼ 1

0:108(32:2)
(133)

¼ DH ¼ 38:2 ft (of water, the flowing liquid)

Entering the chart at Q¼ 25 gpm and DH¼ 38.2 ft, we select the pump labeled 07 for this job.
There are established standards for drawing piping systems. Such systems can be drawn using

double lines or single lines. Symbols are used for certain types of joints and fittings. Such standards
are found in a publication by the American National Standards Institute (ANSI Z32.2.3) and in most
engineering graphics textbooks. Locate these standards and become familiar with them. For the
pump and piping system selected by your instructor from the list that follows:

a. Construct a single line drawing of the piping system, showing all joints and fittings.
b. Size the pump required in the installation.
c. Locate a catalog from a pump manufacturer and select a commercially available pump for the

installation. (Do not use Figure P5.85.)
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Pump Sizing Problems
(See instructions on the previous page.)

5.85 Complete pump sizing and selection for the piping system in Problem 5.65.
5.86 Complete pump sizing and selection for the piping system in Problem 5.66.
5.87 Complete pump sizing and selection for the piping system in Problem 5.67.
5.88 Complete pump sizing and selection for the piping system in Example 5.13.

Problems Involving Hydraulic and Energy Grade Lines

Hydraulic and energy grade lines give a graphic presentation of the flow quantities in a particular
configuration. The hydraulic grade line is a plot of pressure versus distance; the energy grade line
is a plot of the sum of pressure and kinetic energy as a function of distance. These concepts are best
illustrated by example.

Consider two large reservoirs connected with a pipe, as shown in Figure P5.89. Because one
liquid reservoir surface is elevated above the other, a flow exists in the pipe. The total mechanical
energy in the system at section 1 is

E1 ¼ p1
rg

þ V2
1

2g
þ z1
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FIGURE P5.89

The total mechanical energy at section 2 is

E2 ¼ p2
rg

þ V2
2

2g
þ z2

These are related by

E1 ¼ E2 þ Dhf þ Dhm

where Dhf is the loss due to friction between the fluid and the conduit wall [identified with the
friction factor term ( fL=D)(V2=2g)], and Dhm is the minor losses [identified with the sum of the loss
coefficient term

P
K V2=2gð Þ].

The total energy, including friction and minor losses, must be constant, so the plot of the total
energy versus distance along the pipe is a horizontal line (Figure P5.89). The plot of p=rg (as
measured from the pipe) versus L is the hydraulic grade line (HGL). The curve of V2=2g
(as measured from the hydraulic line) versus L is the energy grade line (EGL). The difference
between the energy grade line and the total energy line represents frictional losses. The advantage of
plotting these lines is that the conversion of pressure energy to friction is visually displayed and the
pattern of energy transfer can be seen at a glance. For complex systems, however, these lines tend to
be confusing. They are most useful for simple piping systems.

5.89 Sketch hydraulic and energy grade lines for the system in Example 5.1.
5.90 Sketch hydraulic and energy grade lines for the system in Example 5.2.
5.91 Sketch hydraulic and energy grade lines for the system in Example 5.3.
5.92 Sketch hydraulic and energy grade lines for the system in Example 5.4.
5.93 Sketch hydraulic and energy grade lines for the system in Problem 5.21.
5.94 Sketch hydraulic and energy grade lines for the system in Problem 5.25.
5.95 Sketch hydraulic and energy grade lines for the system in Problem 5.33.
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6 Flow over Immersed Bodies

In this chapter, we examine the forces that are exerted on a body moving through a fluid. Consider,
for example, a wing or airfoil moving at a velocity V through air. For convenience, and in keeping
with the control volume approach, we impose a velocity on the system equal to –V, thus rendering
the airfoil stationary while air moves past the wing. The air velocity is given the symbol U, or U1,
to denote this transformation. The forces of interest are the drag force and the lift force. These forces
act parallel and perpendicular to the principal airspeed direction, respectively. These concepts are
illustrated in Figure 6.1.

The purpose of this chapter is to describe the effects that cause lift and drag forces to be exerted
on immersed bodies—namely, boundary-layer growth and separation. Data or drag of variously
shaped bodies are presented, and, finally, the combined effects of lift and drag on different airfoils
are discussed.

6.1 BOUNDARY-LAYER GROWTH AND SEPARATION

The boundary layer is the portion of flow in the vicinity of a solid boundary. In this section, we
examine the boundary layer and its growth along a surface. In addition, we discuss the phenomenon
of separation. When a region in the flow field has velocity components that are not within the main
flow direction, the flow is said to separate from a solid boundary. Later, we see how the effects of
boundary-layer growth and separation combine to yield the forces of interest that act on a body
immersed in a flowing fluid.

6.1.1 BOUNDARY-LAYER GROWTH

Consider uniform flow passing over a flat plate that is aligned parallel to the flow direction. In the
region upstream of the plate, the flow has velocity U1. Along the plate surface, however, the
velocity is zero. In the region very near the plate along its surface, the velocity is not constant but
increases from zero at the wall to the free-stream value or nearly so at a certain vertical distance
from the plate. This vertical distance, called the boundary-layer thickness, is shown schematically
in Figure 6.2.
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As seen in Figure 6.2, the boundary-layer thickness d increases with distance along the plate.
Moreover, there are three definite zones: the laminar zone near the leading edge, the transition zone,
and the turbulent zone downstream. Note that a laminar sublayer exists in the turbulent zone because
the velocity along the wall must be zero. Also shown in the figure is a displacement thickness d*,
which refers to the displacement of the external flow due to the presence of the plate, which in turn has
caused a boundary layer to form. In other words, the flow must be displaced an amount d* to satisfy
the continuity equation. Upstream the velocity is U1, and the flow area for an undisturbed height is
the product of H and a unit width into the page. The continuity equation applied to the flow is

Area� Velocity upstream ¼ Area� Velocity anywhere along the plate

or

U1H ¼ U1d*þ U1(H � d)þ
ðd
0

Vx dy

in free dispalcement between H and within
stream thickness boundary boundary

layer layer

(6:1)

There is a drag force acting on the plate that is due to skin friction between the fluid and the plate. In
the laminar zone, the wall shear stress decreases with distance. In the turbulent zone, the wall shear
stress is greater than that in the laminar zone and likewise decreases with distance, but much more

= 0

(a) Airfoil moving in air (b) Control volume with airfoil stationary

= –V

V V = 0

Lift

Drag

FIGURE 6.1 Forces acting on an airfoil.

H y

x

*

Flat plate

Laminar zone Transition
zone

Turbulent
zone

Laminar
sublayer

FIGURE 6.2 Growth of the boundary layer along a flat plate. The vertical scale is greatly exaggerated.
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slowly than that in the laminar zone. Both contribute to the force that tends to move the plate in the
direction of flow.

Details of the flow in the boundary layer are derived in Chapter 13. For purposes of illustration,
the results of the analysis are given here. It can be shown that for the laminar boundary layer, the
boundary-layer thickness for flow over a flat plate is

d ¼ 5:0xffiffiffiffiffiffiffiffi
Rex

p (6:2)

where: Rex¼ rU1x=m
x is the distance along the plate

In addition, the displacement thickness is

d* ¼ 1:73xffiffiffiffiffiffiffiffi
Rex

p (6:3)

and the drag force exerted on the plate in the direction of flow is given by

Df ¼ 0:664brU2
1xffiffiffiffiffiffiffiffi

Rex
p (laminar flow) (6:4)

where b is the width of the flat plate.
Experiments have shown that transition between the laminar and turbulent boundary layers

occurs at a Reynolds number of approximately 5� 105. Furthermore, if the boundary layer is
turbulent, it can be shown that the boundary-layer thickness is

d ¼ 0:37x

Rexð Þ1=5
(6:5)

The displacement thickness is

d* ¼ 0:046x

Rexð Þ1=5
(6:6)

and the drag force is

Df ¼ 0:036rU2
1bx

Rexð Þ1=5
(turbulent flow) (6:7)

These equations are valid if it is assumed that the turbulent boundary layer begins at the leading
edge of the plate. Although this is not actually the case, desired results can be obtained by
appropriate manipulation of the equations as illustrated in Example 6.1.

It is customary to express data on drag as drag coefficient versus Reynolds number, where both
are defined as

CD ¼ Df
1
2 rU

2
1A

(6:8)
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and

Re ¼ rU1D

m
(6:9)

where: Df ¼ drag force
r ¼ density of the fluid
m ¼ viscosity of the fluid
U1 ¼ free-stream velocity
A is a projected frontal area or some other characteristic area of the body
D is a characteristic dimension of the object

For flow over a flat plate, we can express Equations 6.4 and 6.6 in these terms and calculate drag
coefficients and Reynolds numbers. When these results are supplemented with experimental data,
the graph of Figure 6.3 results. The drag coefficient varies from 0.001 to 0.1, while the Reynolds
number ranges from 104 to 109. Note that the characteristic length used in the Reynolds number of
Figure 6.3 is the length of the plate. It can be seen that the drag coefficient reaches a low point at
transition and again at high Reynolds numbers.

Example 6.1

A 10 m=s wind at a temperature of 228C blows over the flat plate of Figure 6.2. The plate is 12 m long
and 6 m wide.

a. Sketch the boundary-layer growth for both laminar and turbulent regimes.
b. Determine the force acting on the plate due to the fluid in contact with it.

0.1
8
6
4

2

0.01
8
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x
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TransitionLaminar

y

C D

CD =
Df

ReL

ReL =

= free stream velocity (L/T)
A= bL = plate width × length
   = surface area of plate
v = kinematic viscosity (L2/T)

 
2 A

Df  = drag force (F)

L L

  = absolute viscosity (F . T/L2)

=1
2

= density (M/L3)

FIGURE 6.3 Drag coefficient versus Reynolds number at the end of a surface for flow over a flat plate.
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SOLUTION

a. The laminar boundary layer is given by

d ¼ 5:0xffiffiffiffiffiffiffiffi
Rex

p ¼ 5:0x

rU1x=mð Þ1=2

or

d ¼ 5:0
ffiffiffiffiffiffiffiffiffiffi
mx

rU1

r

From Table A.3, for air at 228C, r¼ 1.197 kg=m3 and m¼ 18.22� 10�6 N � s=m2.
By substitution, we get

d ¼ 5:0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
18:22� 10�6ð Þ(x)

1:197(10)

s

¼ 6:17� 10�3 ffiffiffi
x

p
(i)

up to transition. The distance along the wall where transition occurs, xcritical, or xcr, is found
from

Rex ¼ 5� 105 ¼ rU1xcr
m

so

xcr ¼
5� 105 18:22� 10�6

� �
1:197(10)

¼ 0:76 m

For turbulent flow,

d ¼ 0:37x

Rexð Þ1=5
¼ 0:37x

rU1x
m

� �1=5

¼ 0:37x4=5
18:22� 10�6

1:197(10)

� �1=5

or

d ¼ 0:025 4x4=5 for x � 0:76 m (ii)

A plot of Equations i and ii is given in Figure 6.4.
b. The drag force is found by applying Equations 6.4 and 6.7. However, Equation 6.7 was derived

by assuming that the turbulent boundary layer began at the leading edge. Therefore, we must
compose an equation to obtain the correct results:

Drag ¼ Laminar drag from x ¼ 0 to xcr ¼ 0:76 m

þ turbulent drag from x ¼ 0 to L ¼ 12 m

� turbulent drag from x ¼ 0 to xcr ¼ 0:76 m
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By substitution, the drag force Df is

Df ¼ 0:664brU2
1xcrffiffiffiffiffiffiffiffiffiffi

Rexcr
p þ 0:036brU2

1L

ReLð Þ1=5
� 0:036brU2

1xcr

Rexcrð Þ1=5

Now

Rexcr ¼ 5� 105

and

ReL ¼ rU1L

m
¼ 1:197(10)(12)

18:22� 10�6
¼ 7:9� 106

Hence,

Df ¼ 0:664(6)(1:197) 102ð Þ(0:76)
5� 105ð Þ1=2

þ 0:036(6)(1:197) 102ð Þ(12)
7:9� 106ð Þ1=5

� 0:036(6)(1:197) 102ð Þ(0:76)
5� 105ð Þ1=5

¼ 0:513þ 12:9� 1:42

Df ¼ 12 N

This problem can also be solved by using Figure 6.3. The Reynolds number at the plate end is
calculated as

ReL ¼ 7:9� 106

At this value. Figure 6.3 shows

CD ¼ Df
1
2 rU

2
1A

¼ 0:003

The drag force is found to be

Df ¼ 0:003 1
2

� �
(1:197) 102

� �
(6)(12)
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FIGURE 6.4 Plot of (a) laminar and (b) turbulent boundary-layer growths on the plate of Example 6.1.
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or

Df ¼ 12:9 N

The result obtained with the equations (12 N) is based on transition occurring at a single point. The result
of 12.9 N is believed to be more accurate because it is obtained from a graph constructed in part with
experimental data. Either answer is acceptable.

We see that the laminar boundary-layer thickness grows to just less than 0.8 cm and begins transition
within approximately 1 m from the leading edge. The turbulent boundary-layer thickness grows to nearly
20 cm over a 12-m length. The combined effect is to exert a drag force on the surface of 12 N, most of
which is due to the turbulent boundary layer.

6.1.2 SEPARATION

We have discussed the formation of a boundary layer in flow over a flat plate. Now we examine
fluid behavior in flow over a curved surface. Consider flow past a curved boundary like that
illustrated in Figure 6.5. Again the surface is stationary, and the free-stream velocity is U1.
Point A at the nose is where the velocity normal to the surface is zero. This point is referred to as
a stagnation point, and the pressure measured at A is termed stagnation pressure. The boundary
layer begins its growth from here. At B and C, the boundary layer has experienced a growth that is
intuitively predictable. Over the rear portion of the surface, starting at point D, the pressure increases
with distance. The fluid particles are slowed down in the boundary layer. The decelerating effect
is due to the positive or adverse pressure gradient that has developed. If the decrease in kinetic
energy is great, a region of flow reversal may form. The velocity distribution changes as depicted at
points E and F. The velocity at the wall is zero owing to viscosity. At point D, where separation
begins, dVx=dy¼ 0 at the wall surface. The region of flow reversal is called the separation region
because the forward flow has been separated from the boundary by the adverse pressure gradient
dp=dx> 0. Vortices, swirls, and, in general, reversed flows occur in the separation region. More-
over, the pressure in the separation region is nearly equal to the pressure at point D. The location
of point D has a strong effect on the drag and lift forces exerted. This effect is discussed in more
detail in the following sections.

x

y

A

B

C D
E

F
dp/dx > 0

Separation
region

Edge of boundary layer

FIGURE 6.5 Flow past a curved surface.
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6.2 DRAG ON VARIOUS TWO-DIMENSIONAL BODIES

The drag force exerted on various types of bodies is presented in this section. The first body to be
discussed is an infinitely long cylinder immersed in a uniform flow of velocity U1. The velocity
profile and pressure distribution about the cylinder are important. From observations of the flow
pattern around the cylinder, streamlines can be sketched as in Figure 6.6. Point A is the stagnation
point, and B is the point of separation. Beyond point B and immediately downstream of the cylinder
is the separation region (or wake). Separation occurs because of the adverse pressure gradient that
forms. Because the flow cannot easily negotiate the turn past B, the main flow separates from the
cylinder boundary. Because of the complex nature of the flow, the velocity distribution at every
point on the cylinder cannot be derived mathematically. To determine the pressure distribution,
therefore, experimental means are necessary.

Suppose that a hollow cylinder drilled every 108 with a static pressure tap is placed in a uniform
flow (such as that produced in a wind tunnel). Each tap is connected to a manometer. The arrangement
shown in Figure 6.7 would give the pressure distribution on the surface of the cylinder. Only half the
cylinder is used because the distribution is symmetric. Experiment shows that at the stagnation
point (A), pressure is greater than the reference pressure (atmospheric pressure) because the velocity
at this point is zero. The pressure measured at this point is the stagnation pressure. The pressure
decreases with the angle u until at 708 (or thereabouts), the minimum pressure corresponding to
maximum velocity is reached. Beyond this, at 1208, separation occurs because the flow cannot
negotiate the abrupt boundary change. In the separation region, the pressure on the surface of the
cylinder is a constant and very nearly equals that at 1208. For a more meaningful representation, a
typical pressure distribution is sketched on a polar coordinate grid in Figure 6.8. The cylinder surface
is drawn as a circle, and the pressure at any point along the surface is represented as a line with an
arrowhead. The length of any line is proportional to the magnitude of the pressure at its location.

A
B

B
C Wake

A = stagnation point
B = point of separation

FIGURE 6.6 Uniform flow past an infinitely long cylinder.

0

(a) (b)

20
40

60 80 100 120
140

160
180

0

A

B

p

30 60 90 120 150 180 θ( )

A = stagnation point
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FIGURE 6.7 An experimental arrangement to determine pressure distribution on the surface of a cylinder
immersed in a uniform flow: (a) each pressure tap is connected to a manometer and (b) representative results.
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The direction (signified by the arrowhead) indicates whether the pressure at a location is greater or
less than the free-stream pressure p1. A line with an arrow pointing at the cylinder surface means
that the pressure at that location is greater than p1, and the converse is also true.

From Figure 6.8, it is apparent that the pressure distribution over the front half of the cylinder is
different from that over the rear half. This difference in pressure, which acts over the projected
frontal area of the cylinder, results in a net force acting on the cylinder in the direction of flow. This
net force due to pressure differences is called pressure drag or form drag. Form drag combined
with skin friction drag gives the total drag exerted on the cylinder.

The form drag force exerted on a cylinder can be calculated from a pressure distribution
obtained experimentally by integration over the cylinder surface. Figure 6.9 gives the direction of
the pressure force component that contributes to the drag. By integration of experimental data, we
obtain

Df ¼
ð2p
0

ðL
0

p cos u dA

p

FIGURE 6.8 Polar plot of pressure distribution on the surface of a cylinder immersed in a uniform flow.

(b)(a)

p cos θ

θ
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xx
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dA
dθ

y

L

p

dA

FIGURE 6.9 (a) Definition sketch of the area dA on a cylinder and (b) pressure p and its component, p cos u,
in the main flow direction.
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where L is the cylinder length. Now dA¼ dL(R du), so

Df ¼
ð2p
0

ðL
0

p cos u dL(R du)

Integrating once, we get

Df ¼ RL

ð2p
0

p cos u du

or

Df ¼ 2RL
ðp
0

p cos u du

due to symmetry.
For another illustration of the concepts of skin friction drag and form drag, let us examine two

cases of flow past a flat plate (Figure 6.10). In one case, the plate is aligned parallel to the flow, and
there is no separation from the boundary. Here the total drag on the plate is due to skin friction. In
the second case, the plate is normal to the flow. Separation occurs, a wake forms, and the drag
exerted on the plate is due primarily to the pressure difference from front to back.

The location of the point of separation affects the drag force, and this in turn can be influenced by
whether the boundary layer is laminar or turbulent. A typical velocity profile for each type of
boundary layer is shown in Figure 6.11. The laminar profile near the wall is more positively sloped

(a) Plate aligned with flow direction (b) Plate normal to flow direction

FIGURE 6.10 Two cases of flow past a flat plate.

(a) Laminar (b) Turbulent

FIGURE 6.11 Laminar and turbulent boundary-layer velocity profiles.

278 Introduction to Fluid Mechanics



than the turbulent profile. There is considerably more mixing action in the turbulent case, which tends
to distribute the kinetic energy of the flow evenly. Thus, the turbulent profile can offer more resistance
to an adverse pressure gradient. For a turbulent boundary layer, we therefore expect that separation
will occur farther downstream than that for a laminar boundary layer. To see how the location
of the point of separation affects our example of flow past a cylinder, refer to Figure 6.12. In the
laminar case, the boundary layer remains laminar to the point of separation. In the turbulent case,
the laminar boundary layer experiences a transition to a turbulent boundary layer; as a result, the point
of separation is moved farther downstream on the cylinder surface, and the form drag is thus reduced.
A common technique of inducing transition is to roughen the surface of the object. A familiar example
for a sphere is the surface of a golf ball.

Figure 6.13 is a graph of drag coefficient as a function of Reynolds number for a cylinder having
a large length-to-diameter ratio. The drag coefficient decreases steadily from 60 to 1 as the Reynolds
number increases from 10�1 to 103. For a Reynolds number in the range 103 to 104, CD remains

B

B
A

A

(a) Separation in laminar flow (b) Separation in turbulent flow

A
θ θ

B

B

p p

B

B
A

FIGURE 6.12 A comparison of laminar and turbulent separation.
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FIGURE 6.13 Drag coefficient as a function of Reynolds number for long circular cylinders. (Adapted from
Schlichting, H., Boundary Layer Theory, 7th ed., McGraw-Hill, Inc., New York, 1979. With permission.)
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approximately constant. At a Reynolds number greater than 4� 104, a roughened cylinder exhibits a
different drag coefficient curve than does a smooth cylinder. The entire plot can be obtained from
experimental results measured with the setup shown in Figure 6.14.

Example 6.2

A flagpole consists of two telescoping cylinders. The smaller cylinder is made of 3 1
2-nominal, schedule

40 galvanized pipe, which is 6 ft long. This pipe just fits into 4-nominal, schedule 40 pipe (also
galvanized). The pipes are welded together end to end to form a flagpole that is to extend 12 ft above
ground. Local safety requirements stipulate that the flagpole must withstand 80-mi=h winds. Before
deciding on how deep to bury the lower portion of the pole, it is necessary to calculate forces due to the
wind.

a. Determine the total drag force exerted on the installed flagpole for a wind speed of 80 mi=h.
b. Determine the moment at the base of the pole exerted by these forces. Assume a temperature of

718F.

SOLUTION

We can determine the drag forces acting on the flagpole by using Figure 6.13. We use the property tables
to find

Air at 71�F r ¼ 0:00232 slug=ft3

m ¼ 0:3801� 10�6 lbf � s=ft2 Table A:3
3 1
2 ---nom, sch 40 OD ¼ 4 in: ¼ 0:333 ft Table C:1

4-nom, sch 40 OD ¼ 4:5 in: ¼ 0:375 ft Table C:1

The flow velocity is

U1 ¼ 80 mi

1h
5280 ft

1 mi

1 h

3600 s
¼ 117 ft=s

Test section

Object

Stop

Balancing
weight

FIGURE 6.14 An experimental setup for measuring drag on an object immersed in a uniform flow of
velocity U1.
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The Reynolds number of the flow past the 3 1
2-nominal pipe is

Re3 ¼ rU1D

m
¼ 0:00232(117)(0:333)

0:3801� 10�6
¼ 2:38� 105

Similarly, for the 4-nominal pipe,

Re4 ¼ rU1D

m
¼ 0:00232(117)(0:375)

0:3801� 10�6
¼ 2:7� 105

For these Reynolds numbers, Figure 6.13 gives

CD3 ¼ 1:2

CD4 ¼ 1:1

where the smooth cylinder curve was selected for a galvanized surface. (It is difficult to read the figure
with great accuracy.) By definition,

CD ¼ Df
1
2 rU

2
1A

which is rearranged to solve for the drag force:

Df ¼ CD
1
2 rU

2
1A

The area A is the projected frontal area. A cylinder viewed from the direction of the approach flow
appears as a rectangle whose area is length times diameter. For the pipes of this example,

A3 ¼ LDj3 ¼ 6(0:333) ¼ 2:0 ft2

A4 ¼ LDj4 ¼ 6(0:375) ¼ 2:25 ft2

a. Substituting, we find the drag force for each as

Df 3 ¼ 1:2
2

(0:00232)(117)2(2:0)

Df 3 ¼ 38:1 lbf

and

Df 4 ¼ 1:1
2

(0:00232)(117)2(2:25)

Df 4 ¼ 39:3 lbf

b. The moment exerted at the base will equal the sum of force times distance for both pipes.
We take each force to act at the centroid of the projected frontal area. So the force exerted
on the 3 1

2-nominal pipe acts at a distance of 9 ft (¼ 6þ 6=2) from the base. The force
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exerted on the 4-nominal pipe acts at a distance of 3 ft (¼ 6=2) from the base. The
moment, then, isX

Mbase ¼ 38:1(9)þ 39:3(3)P
Mbase ¼ 460 ft � lbf

Drag coefficient versus Reynolds number is available for other two-dimensional shapes; these data
are provided in Figure 6.15.

Example 6.3

A 6-m-tall utility pole used for a streetlight is square in cross section. At its base, the pole is 15� 15 cm,
and at the top it is 7� 7 cm. The cross section tapers linearly from base to top. The wind velocity past the
pole is 30 m=s. Determine the drag force exerted on the pole for both square cylinder configurations
illustrated in Figure 6.15. Take the air temperature to be 258C.

SOLUTION

The pole is tapered, but we can estimate the force acting on the entire pole by using dimensions at its
midpoint. We use Table A.3 to find

air at 26:85�C r ¼ 1:177 kg=m3 m ¼ 18:46� 10�6 N � s=m2

At the midpoint of the pole, its dimension is 11� 11 cm [¼ (15þ 7)=2]. We perform the calculations for
two configurations that have these dimensions. The first is for D1¼ 0.11 m. The second is for
D2¼ 0.11=cos 458¼ 0.156 m. The Reynolds numbers are calculated as
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FIGURE 6.15 Drag coefficient of various two-dimensional bodies. (Data from several sources; see references
at end of this text.)
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Re1 ¼ rU1D1

m
¼ 1:177(30)(0:11)

18:46� 10�6
¼ 2:1� 105

Re2 ¼ 1:177(30)(0:156)
18:46� 10�6

¼ 3:0� 105

From Figure 6.15, we read

CD1 ¼ 2

CD2 ¼ 1:5

By definition,

CD ¼ Df
1
2 rU

2
1A

which is rearranged to solve for the drag force:

Df ¼ CD
1
2 rU

2
1A

For the first configuration, the area is

A1 ¼ 0:11(6) ¼ 0:66 m2

Likewise,

A2 ¼ 0:156(6) ¼ 0:93 m3

The drag forces are calculated as

Df 1 ¼ 2
2 (1:177)(30)

2(0:66)

Df 1 ¼ 700 N

and

Df 2 ¼ 1:5
2

(1:177)(30)2(0:93)

Df 2 ¼ 740 N

6.3 DRAG ON VARIOUS THREE-DIMENSIONAL BODIES

This section presents data on drag coefficients for several three-dimensional bodies. A curve for a
sphere is given in Figure 6.16. Note that the drag coefficient decreases from more than 200 to 0.4
over the Reynolds number range of 10�1 to 104. The drag coefficient is nearly constant for Reynolds
numbers from 103 to 2� 105, but there is a sudden drop in drag coefficient beyond 2� 105.
An analytic solution has been derived by Stokes for flow about a sphere. The analysis shows that
for Re< 1,
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CD ¼ 24
Re

(6:10)

where Re¼ rU1D=m.
A second graph of drag data on spheres is presented in Figure 6.17. The vertical axis of this

graph, drag coefficient CD, is identical to that of Figure 6.16. The horizontal axis, however, is of a
different parameter: Re

ffiffiffiffiffiffi
CD

p
. The curve of Figure 6.17 extends from about 2 on the horizontal axis

to about 4� 105 and looks similar to that of Figure 6.16.
Figures 6.16 and 6.17 are useful when making calculations on finding what is known as

terminal velocity for spheres. When a body travels steadily through a fluid (acceleration is zero)
and the forces acting are in equilibrium, the body is said to be traveling at a constant terminal
velocity. One familiar example of this phenomenon is a parachutist. There are other examples: a
sphere, such as a ball bearing falling through liquid; pulverized coal particles suspended in an
airstream that is traveling in a pipe to a boiler; and liquid fuel particles sprayed into the airstream of
an engine carburetor. The terminal velocity of a particle can be determined from the data presented
in this chapter. In the case of a sphere, finding its terminal velocity using Figure 6.16 involves a
trial-and-error calculation method. Trial and error is avoided when using Figure 6.17. Both graphs
are merely different forms of the same data.

Consider a sphere of known properties falling through a fluid at terminal velocity. The forces
acting on the sphere are due to drag, buoyancy, and gravity, as shown in Figure 6.18. Applying
Newton’s law, we have

X
F ¼ ma ¼ 0

103

102

101

100

10–1

10–2

10–1 100 101 102

Re
103 104 105 106

CD =

C D

Df  = drag force exerted on sphere (F)

Df
2A

A = projected frontal area (L2)

Re =

= density of  fluid (M/L3)

D

= free-stream fluid velocity (L/T )
D = diameter of sphere (L)

= viscosity of fluid (F · T/L2)

1
2

FIGURE 6.16 Drag coefficient as a function of Reynolds number for spheres. (Adapted from Schlichting, H.,
Boundary Layer Theory, 7th ed., McGraw-Hill, Inc., New York, 1979. With permission.)
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because the sphere is not accelerating. By substitution, we get

mg� rg V�� 1
2CDrV2A ¼ 0

Now the sphere volume is V� ¼pD3=6, and the projected frontal area is A¼pD2=4. If the sphere
density rs is known, the preceding equation can be rewritten as

rsg
pD3

6
� rg

pD3

6
� 1
2
CDrV

2 pD
2

4
¼ 0 (6:11a)
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= free-stream fluid velocity (L/T )
D = diameter of sphere (L)
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FIGURE 6.17 Drag coefficient as a function of Re
ffiffiffiffiffiffi
CD

p
for spheres. (Note on how this figure was developed:

An enlarged copy of Figure 6.16 was scanned into a computer. The drawing was scaled and digitized to yield
tabular data of CD versus Re. The data were then manipulated appropriately to obtain Re

ffiffiffiffiffiffi
CD

p
, which was

graphed versus CD.)

Df

gV

mg

FIGURE 6.18 Forces acting on a sphere falling at terminal velocity in a fluid.
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Solving for the terminal velocity, we obtain

V ¼ 4
3
gD

CD

rs
r
� 1

	 
� �1=2
(6:11b)

The difficulty in using this equation is that the drag coefficient CD depends on the terminal velocity,
which is not known. The technique for finding velocity is illustrated in the following example.

Example 6.4

A 1-cm-diameter marble is falling through a tank of water at 258C. Calculate the terminal velocity of the
marble, assuming that it has the same properties as glass.

SOLUTION

From Table A.7, for glass, s¼ 2.6 (the average value). From Table A.5, for water, r¼ 1 000 kg=m3 and
m¼ 0.89� 10�3 N � s=m2. By substitution into Equation 6.11b, we get

V ¼ 4
3
gD

CD

rs
r
� 1

	 
� �1=2

¼ 4
3
(9:81)(0:01)

CD

2:6(1 000)
1 000

� 1

� �� �1=2

¼ 0:457 5ffiffiffiffiffiffi
CD

p (i)

Also

Re ¼ rVD

m
¼ 1 000(V)(0:01)

0:89� 10�3
¼ 1:12� 104 V

Assume CD¼ 1.0; then V¼ 0.458 m=s and Re¼ 5.12� 103. From Figure 6.16 at Re¼ 5.12� 103, we find
CD¼ 0.4, which is our second trial value. Therefore, assume that CD¼ 0.4; then V¼ 0.723 m=s and
Re¼ 8.10� 103. From Figure 6.16 at Re¼ 8.10� 103, we find CD¼ 0.4, which checks with the assumed
value. Thus, the terminal velocity of the marble is

V ¼ 0:723 m=s

The trial-and-error process can be avoided by using Figure 6.17. We begin in the usual way and derive
Equation i:

V
ffiffiffiffiffiffi
CD

p ¼ 0:457 5 (i)

Next, we multiply both sides by pD=m to obtain

rVD

m

ffiffiffiffiffiffi
CD

p ¼ 0:457 5
1 000(0:01)
0:89� 10�3

or

Re
ffiffiffiffiffiffi
CD

p ¼ 5:14� 103
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At this value. Figure 6.17 gives

CD ¼ 0:4

which leads to the same result obtained after several trials with Figure 6.16.

Curves of drag coefficient versus Reynolds number for various three-dimensional bodies are
provided in Figure 6.19. Data for a disk, two hemispheres, and a streamlined body of revolution
are shown.

6.4 APPLICATIONS TO GROUND VEHICLES

As was mentioned in Section 6.2, the total drag force exerted on an object immersed in a uniform
flow is made up of two components: skin friction drag and form (or pressure) drag. In this section,
we discuss how these two components affect ground vehicles. Specifically, we shall examine
bicycle–rider combinations, automobiles, and tractor-trailer trucks.

First it is necessary to define the concept of streamlining. A ground vehicle requires power to
move it over land. A portion of this power goes to overcoming the rolling resistance offered by
friction between the tires (or wheels) and the road and by friction in bearings or other surfaces
moving with respect to each other. Another portion of the power required goes to overcoming the
drag encountered by the vehicle as it moves through air. With ground vehicles, it will in general not
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FIGURE 6.19 Drag coefficient versus Reynolds number for various three-dimensional bodies. (Data from
various sources; see references at end of text.)
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be possible to significantly reduce the skin friction drag. We can, however, modify the shape of the
vehicle so that the form or pressure drag is reduced. When the shape is modified and the pressure
drag is reduced, the object is said to be streamlined.

Consider, for example, the streamlined body of revolution in Figure 6.19. The thickness of the
rear half of the object gradually decreases with length. Because the flow no longer has an abrupt turn
to make, separation occurs over only a small portion of the trailing edge. Thus, form drag has been
minimized, and most of the drag exerted on the streamlined shape is skin friction drag. Note that a
typical airship hull is shaped like the streamlined body of revolution of Figure 6.19.

6.4.1 BICYCLE–RIDER COMBINATIONS

The design of a conventional bicycle has remained almost unchanged for nearly a century.
Aerodynamically, a bicycle–rider combination is not considered to be streamlined. A tremendous
wake exists behind the bicycle and rider, which contributes to a substantial form or pressure drag.
Designers have long recognized that air resistance is a significant factor, but constraints have been
placed on design that have prevented streamlining of the vehicle. Until 1900, the crouched position
commonly used with downturned handlebars was an accepted means of reducing air resistance. The
multiple-rider bicycle was placed ahead of a single rider to reduce the wind resistance encountered
by the single rider. After 1900, a streamlined enclosure for bicycle riders, resembling a dirigible,
was patented. Human-powered vehicles set speed records with this enclosure and others like it. Also
in an effort to reduce wind resistance, a recumbent bicycle, in which the rider pedaled while in a
reclined position, was built and later streamlined.

The people who were interested in designing and riding streamlined bicycles were primarily
bicycle racers. But the world governing body for cycle racing banned the use of aerodynamic
devices and recumbents in racing, thus deterring research and development of streamlined
bicycles. Recently, however, regular races for human-powered vehicles have been instituted in
which there are no restrictions on the aerodynamic design of bicycle–rider combinations. As a
result, streamlined bicycles have been pedaled to speeds in excess of 60 mi=h (27 m=s). (The
record for an unaided bicycle–rider combination is 43.45 mi=h (19.42 m=s), set by a world-class
racing cyclist.)

Figure 6.20 shows some of the early designs of aerodynamic devices for bicycles. Note that in
all cases, there is a gradual reduction in the thickness of the trailing edge, the objective being to
reduce the size of the wake behind the vehicle. Figure 6.21 shows a few of the more conventional
designs.

As we have seen, a rider must overcome rolling resistance and air resistance to move the
vehicle. Neglecting rolling resistance for the moment, we know that the drag force increases with
the square of the velocity. Power is proportional to the product of drag force and velocity, or, in
other words, power is proportional to the cube of the velocity. Riding at 20 mi=h (8.9 m=s), for
example, requires eight times the power required to ride at 10 mi=h (4.5 m=s). Studies have shown
that a well-trained athlete can produce 1 hp (750 W) for about 30 s and about 0.4 hp (300 W) for
about 8 h. A healthy individual can sustain 1 hp (750 W) of output for about 12 s and roughly 0.1 hp
(75 W) for 8 h.

Table 6.1 shows aerodynamic data for a number of bicycle–rider combinations. Drag coefficient
and rolling resistance data are given for a speed of 20 mi=h (8.9 m=s). Several trends can be noticed
from the data. First, in comparing the ‘‘arms straight’’ (no. 2) position to the ‘‘fully crouched’’
(no. 3) position, we see that the frontal area, the drag coefficient, and the drag force are all smaller
when the rider is in the crouched position. Second, when the components—brake calipers, crankset,
rims, and so on—are streamlined, there is only a small reduction in the drag force (compare no. 3 to
no. 4) over the unstreamlined case. Third, the technique of riding in the wake of another rider—
called drafting, no. 7—provides a decrease in the drag force (compare no. 3 to no. 7). Fourth,
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aerodynamic devices (nos. 5, 8, and 9) yield substantial reductions in drag force over the unstream-
lined rider (no. 1). Other trends can be seen as well.

Figure 6.22 gives data on drag coefficient versus Reynolds number for bicycle–rider combin-
ations with and without streamlining. Streamlining in this case is achieved with a wing-shaped shell
that fits over the rider. From a top view, the fairing appears to be like the streamlined body of
revolution in Figure 6.19.

Once the drag force (or the total resisting force, which equals dragþ rolling resistance) is
known, the power required to maintain speed is given by

dW

dt
¼ DfU1 (6:12)

Note that in Table 6.1, data are given for both drag force and for rolling resistance.

Velodyne (1933)

Rocket (1933)Bunau–Varilla design (1912–1913)

Goricke (1914) Velocar (1933–1938)

FIGURE 6.20 Early designs of aerodynamic devices for human-powered vehicles. Dates indicate the year
of invention or the year when speed records were set. (Reprinted from Gross, A.C. et al., Sci. Am., 249, 142,
December 1983. With permission.)
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Example 6.5

A cyclist rides at 20 mi=h, and 20% of her output goes into overcoming rolling resistance. What power is
required to maintain this speed if the ‘‘not-streamlined’’ curve of Figure 6.22 applies?

SOLUTION

Figure 6.22 was prepared by using data listed with the figure. We assume the rider of this example has
similar body features. Our result must, therefore, be an estimate at best. The rider velocity is

U1 ¼ 20 mi

1 h
� 5280
3600

¼ 29:3 ft=s

The Reynolds number for use with Figure 6.22 is

Re ¼ U1D

v
¼ 29:3(5:42)

1:69� 10�4
¼ 9:4� 105

The drag coefficient is read as

CD ¼ Df
1
2 rU

2
1A

� 0:85

The drag force becomes

Df ¼ 0:85
2

(0:0022)(29:3)2(5:87) ¼ 4:71 lbf

Zzipper Vector single

Easy racerKyle streamliner

FIGURE 6.21 Conventional designs of aerodynamic devices for human-powered vehicles. (Reprinted from
Gross, A.C. et al., Sci. Am., 249, 142, December 1983. With permission.)
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TABLE 6.1
Aerodynamic and Rolling Resistance Data for Several Bicycle–Rider Configurations Traveling at a Speed of 20 mi=h (8.9 m=s)

Drag Force, Df Rolling Resistance Drag Coefficient,
CD ¼ Df

1
2rU

2
1A

Frontal Area, A

Configuration lbf N lbf N ft2 m2

European upright
commuter

40-lb bike,
160-lb rider, tires:
27 in. diameter, 40 psi

6.14 27.3 1.20 5.34 1.1 5.5 0.51

Touring (arms
straight)

25-lb bike,
160-lb rider, tires:
27 in. diameter, 90 psi

4.40 19.6 0.33 3.69 1.0 4.3 0.40

Racing (fully

crouched)

20-lb bike, 160-lb rider, tires:

27 in. diameter, 105 psi

3.48 15.5 0.54 2.4 0.88 3.9 0.36

Aerodynamic
components
(fully crouched)

20-lb bike,
160-lb rider, tires:
27 in. diamater,105 psi

3.17 14.5 0.54 2.4 0.83 3.9 0.36

Partial fairing

(Zzipper, crouched)

21-lb bike,

160-lb rider, tires:
27 in. diameter, 105 psi

2.97 13.2 0.54 2.4 0.70 4.1 0.38

Recumbent

(Easy Racer)

27-lb bike,

160-lb rider, tires:
20 in. front,
27 in. rear, 90 psi

2.97 13.2 0.94 4.2 0.77 3.8 0.35

Drafting
(closely following
another bicycle)

20-lb bike,
160-lb rider, tires:
27 in. diameter, 105 psi

1.94 8.63 0.54 2.4 0.50 3.9 0.36

Blue Bell
(two wheels,
one rider)

40-lb bike, 160-lb rider, tires:
20 in. front, 27 in. rear, 105 psi

0.61 2.7 0.8 4 0.12 5.0 0.46

Vector Single

(three wheels)

68-lb bike, 160-lb rider, tires:

24 in. front, 27 in. rear

0.51 2.3 1.02 4.54 0.11 4.56 0.424

Source: Modified from Gross, A.C., Kyle, C.R., and Malewicki, D.J., Sci. Am., 249(6), 142, December 1983.
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The total force the rider must overcome includes the 4.71 lbf drag force plus 20% of the total for rolling
resistance. Thus,

Ftotal ¼ 4:71þ 0:2Ftotal

or

0:80Ftotal ¼ 4:71

Solving,

Ftotal ¼ 5:90 lbf

The power required is force times velocity:

dW

dt
¼ 5:90(29:3) ¼ 173 ft � lbf=s

With 1 hp¼ 550 ft � lbf=s, we calculate

dW

dt
¼ 173

550

4

3

2

1
0.8

0.6

0.4

0.2

0.1
105 2 3 4 5 7 8 106

C D

Not streamlined

Streamlined

2 3 4 5 6
Re

CD =

D = height of each rider = 5.42 ft = 1.65 m

Df
2A

A = projected frontal area; both cases = 5.87 ft2=0.545 m2

Re =

= 0.002 2 slug/ft3 = 1.13 kg/m3

D
v

v = 1.69 × 10–4 ft2/s = 1.54 × 10–5 m2/s

1
2

FIGURE 6.22 Drag coefficient versus Reynolds number for streamlined and unstreamlined bicycle–rider
combinations. (Data from ASME, 2(1), I.)
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or

dW

dt
¼ 0:31 hp

6.4.2 AUTOMOBILES

For ground vehicles, the power required to propel an object through a fluid depends on the drag
force, as we have seen. In the case of an automobile traveling at constant velocity, the power
required to maintain speed is the sum of the power required to overcome rolling resistance between
the tires and the road plus the power required to overcome aerodynamic drag. At low speeds, the
predominant resistance to motion is rolling resistance. At high speeds, aerodynamic drag predom-
inates as the resisting force.

Figure 6.23 shows a pressure profile sketched on a side view of an automobile. As with the
cylinder of Figure 6.8, data are represented as arrows, and the length of each line is proportional to the
magnitude of the pressure at each location. An arrow pointing away from the vehicle signifies a
pressure that is less than the free-stream pressure, and the converse is also true (somewhat different
than in Figure 6.8). The pressure profile shows that there is a difference in pressure from the front of
the vehicle to the rear. The horizontal component of each pressure, multiplied by the area over which it
acts, gives the drag force. The area of importance is the projected frontal area for the vehicle.

Table 6.2 gives data useful for estimating automobile drag coefficients. The drag coefficient for
a particular body style is calculated with

CD ¼ 0:16þ 0:009 5
X
i

CDi (6:13)

where values of CDi are obtained and summed from each of eight categories listed. It can be seen
from the sketches that squared ends, where the flow must make abrupt turns, contribute greatly to
the overall drag of the vehicle.

6.4.3 TRACTOR-TRAILER TRUCKS*

Tractor-trailer trucks are used primarily for transporting goods from one location to another. The
actual transportation process itself adds no tangible value to the product being shipped, although

FIGURE 6.23 Pressure profile on an automobile.

* This discussion is based on a report, courtesy of Professor Colin H. Marks, entitled ‘‘A study of aerodynamic methods for
improving truck fuel economy,’’ prepared by F. T. Buckley Jr., C. H. Marks, and W. H. Watson Jr. of the University of
Maryland, for the National Science Foundation.
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TABLE 6.2
Estimates of Automobile Drag Coefficient

A–1

B–1

C–1

D–1

E–1

A–2

B–2

C–2

D–2

E–2

A–3

B–3

C–3

D–3

E–3

A–4

B–4

G–1

H–1

E–4

A–5

G–2

H–2

E–5

A–6

G–3

H–3

E–6

F–1

G–4

H–4

E–7

F–2

G–5

H–5

E–8

F–3

G–6

H–6

A. Plan view, front end D. Plan view, lower rear end G. Side elevation, rear roof=trunk
A–1 Approximately
semi circular (1)

D–I Well- or medium-
tapered to rear (1)

G–I Fastback (roofline
continuous to tail) (1)

A–2 Well-rounded
outer quarters (2)

D–2 Small taper to rear
or constant width (2)

G–2 Semi fastback (with discontinuity
in line to tail) (2)

A–3 Rounded corners
without protuberances (3)

D–3 Outward taper
(or flared-out fins) (3)

G–3 Squared roof with trunk rear edge
squared (3)

A–4 Rounded corners
with protuberances (4)

E. Side elevation, front end
E–1 Low, rounded front,
sloping up (1)

G–4 Rounded roof with rounded trunk (4)

A–5 Squared tapering-in
corners (5)

E–2 High, tapered, rounded hood (1) G–5 Squared roof with short or no trunk (4)

A–6 Squared constant-
width front (6)

E–3 Low, squared front,
sloping up (2)

G–6 Rounded roof with short or no trunk (5)

B. Plan view, windshield E–4 High, tapered, squared hood (2) H. Front elevation, cowl and fender
cross section at wind-shield

B–1 Full wraparound
(approximately semicircular) (1)

E–5 Medium-height,
rounded front, sloping up (3)

H–1 Flush hood and fenders,
well-rounded body sides (1)

B–2 Wraparound ends (2) E–6 Medium-height,
squared front, sloping up (4)

H–2 High cowl, low fenders (2)

B–3 Bowed (3) E–7 High, rounded front,
with horizontal hood (4)

H–3 Hood flush with rounded-top fenders (3)

B–4 Flat (4) E–8 High, squared front,
with horizontal hood (5)

H–4 High cowl with rounded-top fenders (3)

C. Plan view, roof F. Side elevation, windshield peak H–5 Hood flush with square-edged fenders (4)
C–1 Well- or medium-
tapered to rear (1)

F–1 Rounded (1) H–6 Depressed hood with high
squared-edged fenders (5)

C–2 Tapering to front and
rear (maximum width at
BC post) or approximately
constant width (2)

F–2 Squared (including
flanges or gutters) (2)

C–3 Tapering to front
(max. width at rear) (3)

F–3 Forward-projecting peak (3)

Source: Reprinted from Bolz, R.E. and Tuve, G.L. (eds.), CRC Handbook of Tables for Applied Engineering Science,

2nd ed., CRC Press, Cleveland, OH, 1973. With permission.
Note: Drag rating values in parentheses are for use in Equation 6.13.
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the purchaser must necessarily pay for the service. It is, therefore, important to reduce this cost in
any feasible manner. One way of cutting transportation costs is to reduce the fuel consumption of
the shipping vehicle, which in turn can be done by reducing the power needed to overcome drag
forces. Thus, streamlining can become a significant cost-effective technique for reducing the price
we have to pay for desired goods.

The vehicle that we consider in this discussion is a cab-over-engine tractor-trailer combination.
Figure 6.24 shows plan and profile views of the vehicle as well as streamlines of airflow about the
vehicle. Neglecting the wake behind the vehicle, we shall focus on the interaction between the cab
and the trailer. As shown in the figure, there are a number of locations where the flow has separated
from the vehicle surface. Figure 6.24 shows the vehicle moving through still air. Figure 6.25 shows
the flow pattern that results if there is a cross wind. Note the substantial separation region on the
downstream side of the truck. In both figures, it appears that the flow patterns contain regions that
contribute greatly to the drag exerted on the vehicle.

Figure 6.26 shows a definition sketch of the velocities and angles associated with the analysis.
The velocity vector labeled VT is the forward velocity of the vehicle. The vector labeled VW is the
wind velocity, which makes an angle f with the axis of the truck. The angle c is defined as the
yaw angle, which is found from the following equation:

Separation

Separation
Separation

Separation

FIGURE 6.24 Plan and profile views of streamlines about a cab-over-engine tractor-trailer combination.

Separation

FIGURE 6.25 Plan view of the flow pattern on a yawed truck.
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sinc ¼ VW sinfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VW cosfþ VTð Þ2þ VW sinfð Þ2

q

Experiments with a number of designs of aerodynamic devices have yielded useful results that
lead to substantial savings in fuel costs. One small but important design change involves rounding
the front corners on the trailer of the vehicle (see Figure 6.26). This change tends to reduce the
separation region along the front sides of the trailer (see top portion of Figure 6.24). A second drag
reduction method involves the addition of what is known as a fairing. Figure 6.27 shows a fairing
placed on the roof of the cab. The fairing illustrated is as long and wide as the cab roof, and it
extends to the height of the trailer. It contains no abrupt changes in curvature that might
produce separation. Of the fairing designs currently in use or available, the one illustrated here
gives the greatest reduction in drag for the cab-over-engine vehicle. A third drag reduction
technique involves the use of a gap seal, as illustrated in Figure 6.27. A gap seal is a flat vertical

Rounded corners

VT

VW Vrel

FIGURE 6.26 Wind velocity diagram for analysis of flow about a truck.

Fairing

Fairing Gap seal

FIGURE 6.27 A fairing and gap seal attached to a tractor–trailer truck.
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piece of material that extends from the bottom of the trailer and cab to the top of the trailer and
fairing. The gap seal is most effective when there is a crosswind. Recent designs of tractor trailers
do not use gap seals, however. Instead the sides of the cab are extended back and the effect is to
reduce the amount of crosswind that passes through.

In the study upon which this discussion is based, a 1
8-scale model of a truck was constructed and

tested in a wind tunnel. Data were recorded at Reynolds numbers of 106 (using the trailer width as
the characteristic length) to simulate full-scale vehicles traveling at highway speeds. Underbody
details, air horns, and cab roof lights were not included in the model because they have a negligible
effect on the drag coefficient. The exhaust stack (see top portion of Figure 6.27) was found to have
the greatest effect at a yaw angle of 08, but its effect is not considered here.

To correlate all the data obtained (including effects of various yaw angles and crosswind
velocities), a wind-averaged drag coefficient was used. This parameter is defined as

�CD ¼ 1
p

ðp
0

CD(c) 1þ VW

VT

	 
2

þ2
VW

VT

	 
2

cosf

" #
df (6:14)

where: �CD ¼ wind-averaged drag coefficient
c ¼ yaw angle (Figure 6.26)
f ¼ angle between the wind velocity vector and the truck axis (Figure 6.26)
�CD(c) ¼ drag coefficient at the yaw angle c
VT ¼ absolute velocity of the truck (assumed to be 55 mi=h¼ 80.7 ft=s¼ 24.6 m=s)
VW ¼ wind velocity (assumed to be the national average of 9.5 mi=h¼ 13.9 ft=s¼

4.25 m=s)

The need for a parameter such as the wind-averaged drag coefficient arises from the number of
uncontrollable variables involved, such as wind speed and direction, amount of city driving at
speeds less than 55 mi=h (24.6 m=s), and so on. The problem, then, became one of finding the effect
that drag-reducing devices have on the wind-averaged velocity to determine the percent reduction in
�CD when aerodynamic devices are added to the vehicle. For comparison, the results of measure-
ments taken are provided in Table 6.3.

TABLE 6.3
Wind-Averaged Drag Coefficient �CD for a Number
of Tractor-Trailer Configurations

Model Description
Basic

Configuration
With Fairing
(Figure 6.27)

With Fairing and
Gap Seal

(Figure 6.27)

Square-edged trailer 0.96 0.76 0.70
Round-edged trailer 0.89 0.73 0.68

Conditions:

Re ¼ VTD

n
¼ 106 where D¼ trailer width¼ 8 ft¼ 2.44 m (full scale)

�CD ¼ Df
1
2 rV

2
TA

where A ¼ trailer width above ground� width

¼ 108 ft2 ¼ 10:0 m2 (full scale)
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Example 6.6

A truck having a square-edged trailer like that shown in Figure 6.24 travels about 100,000 mi=year
(highway driving) and averages 5 mi=gal of fuel. The owner purchases a fairing and attaches it to the cab.
By how much are the fuel costs reduced in 1 year if the owner pays $5.00=gal of fuel?

SOLUTION

Without any fairing, the owner’s fuel cost is

Fuel cost ¼ (100,000 mi=year)(1 gal=5 mi)($5:00=gal)

¼ $100,000=year

By attaching a fairing, the drag coefficient is reduced by 21% (calculated as (0.96 – 0.76)=0.96 with
values from Table 6.3). The mileage increase of the vehicle is 5� 0.21¼ 1.05 mi=gal. In other words,
with the fairing, the owner can expect to get 6.05 mi=gal. The fuel cost becomes

Fuel cost with fairing ¼ (100,000 mi=year)(1 gal=6:05 mi)� ($5:00=gal)

¼ $82,645=year

The savings in fuel costs become $100,000 – $82,645 or

Savings ¼ $17,355=year

6.5 LIFT ON AIRFOILS

In the preceding sections, we discussed the effect of drag on various bodies. In this section, we
examine both lift and drag forces on airfoils. As illustrated in Figure 6.28, the geometric dimensions
of importance are the wingspan b, the length or chord of the wing c, and the maximum thickness D.
A common definition associated with airfoil geometry is aspect ratio: AR¼ b=c. The dynamic
features of importance include the free-stream velocity, the lift and drag forces, and the angle of
attack a of the wing. These features are also shown in Figure 6.28.

From observations of flow patterns about airfoils at various angles of attack, streamlines can be
sketched as in Figure 6.29. It is known that as the angle of attack a is increased, fluid moving over
the top surface must accelerate to keep up with the slower-moving fluid on the bottom surface.
Moreover, the faster-moving fluid with the higher kinetic energy must have a correspondingly lower
pressure. The difference between the pressure acting on the lower surface and that acting on the
upper surface results in a net lifting force on the foil. The lift force, like the drag force, is usually
expressed in terms of a lift coefficient:

Maximum thickness D

Lf

Angle of attack
(b)(a)

Df
Chord lengthc

Span
b

FIGURE 6.28 Geometric and dynamic parameters of airfoils.
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CL ¼ Lf
1
2 rU

2
1A

(6:15)

where A is the planform area (the area seen in the plan view) perpendicular to the chord (a constant
for the wing).

As the angle of attack is increased, the point of separation on the upper surface moves toward
the leading edge of the foil, as in Figure 6.29. The pressure in the wake is nearly equal to that at the
separation point. When the separation point is almost to the leading edge, the entire upper surface is
in the wake; the flow has separated from the entire upper surface. For this condition, the pressure on
the upper surface is approximately the same as that upstream with the net effect that a decrease in lift
is noticed at this angle of attack. This condition is called stall; its location is shown in Figure 6.30, a
typical plot of CL versus a. Figure 6.31 gives a measured pressure distribution acting on an airfoil
immersed in a uniform flow.

Abundant data on lift and drag of various airfoils have been obtained by wind tunnel testing.
The results of such tests are typically presented as plots of lift and drag coefficients versus angle of

Point of separation

Wake

Wake

(a)

(b)

(c) Wake

FIGURE 6.29 Streamlines of flow about an airfoil at various angles of attack.

CL
Stall

α

FIGURE 6.30 A typical plot of lift coefficient versus angle of attack for an airfoil.
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attack. Efficiency of an airfoil, however, is more appropriately defined as a function of the ratio of
lift to drag or CL=CD. To consolidate the results of a series of tests on one airfoil at a given free-
stream velocity, a polar diagram is helpful. A polar diagram is a plot of CL versus CD with various
angles of attack represented by different points on the curves. The ratio CL=CD at any point is the
slope of the line from the origin to that point; the maximum value of the ratio is the line that passes
through the origin tangent to the curve. The stall point is easily discernible. A polar diagram for the
Clark Y airfoil is given in Figure 6.32. The data were obtained with a rectangular airfoil (36-ft span
by 6-ft chord). An important reference is that which corresponds to zero lift—in this case, �5.68. In
general, this point corresponds to minimum drag.

Example 6.7

The cruising speed of an airplane with a Clark Y airfoil cross section is 145 mi=h. The plane flies at an
altitude of 20,000 ft (p1¼ 6.8 psi, T1¼ 4508R). Using the data of Figure 6.32, determine the lift and
drag forces for an angle of attack of 8.08. Calculate the horsepower required to overcome drag.

SOLUTION

The forces are found from

Lf ¼ 1
2CLrV2A

Df ¼ 1
2CDrV2A

From Figure 6.32, at a¼ 88, we find that CL¼ 1.0 and CD¼ 0.065. From the ideal gas law,

r ¼ p

RT
¼ 6:8(144)

1710(450)
¼ 0:0013 slug=ft3

The area is the planform area 6� 36 ft¼ 216 ft2. By substitution, we get

Lf ¼ 1
2
(1:0)(0:0013)

145(5280)
3600

� �2
(216)

Lf ¼ 6300 lbf

Chord c
Negative

pressure on
upper surface

Positive pressure
on lower surface

Stagnation
point

Pressure distribution(a) (b)

+

–

c

Streamlines

Cp

FIGURE 6.31 Pressure coefficient versus chord length for an airfoil.
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Similarly,

Df ¼ 1
2
(0:065)(0:0013)

145(5280)
3600

� �2
(216)

Df ¼ 410 lbf

The power required to overcome drag is

dW

dt
¼ Df V ¼ 410(145)(5280)

3600
¼ 87,000 ft � lbf=s

By definition, 1 hp¼ 550 ft � lbf=s, so

dW

dt
¼ 87,000

550
¼ 158 hp

So far in our consideration of flow past wings, we have discussed lift and drag forces exerted on
a wing in a two-dimensional analysis. There is a three-dimensional effect known as a wing vortex,

1.6

1.4

1.2

1.0

0.8

0.6

C L

0.4

0.2

0

–0.2
0 0.1

–8.2

–6.8

–5.6

–4.1

–2.7

–1.4

–0.1 = α

1.4

2.6

3.9

5.4

6.7

8.0

9.4

10.8

12.4

14.3

15.6

15.8

16.0

19.6
22.8

0.2

6 ft

36 ft

CD
0.3

FIGURE 6.32 A polar diagram for the Clark Y airfoil. (Data from Silverstein, A., NACA Report 502,
1934, p. 15.)
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which is illustrated in Figure 6.33. The air in the wake of a wing is set in motion, and at the wing tip
this motion is recognized as a vortex. We normally refer to this phenomenon as a vortex being shed
from the wing. The rotational movement of the air is said to occur about an imaginary line called a
vortex filament. At the trailing edge of the wing, we have what is referred to as a vortex sheet,
which ‘‘rolls up’’ into a pair of discrete vortices. The distance between the rolled-up vortices is less
than the wing span. In a fluid that has zero viscosity, the vortices continue to infinity. In a real fluid,
however, the vortices become unstable and break up due to viscous effects.

The vorticity shed from a wing is usually greatest near the wing tip. Air pressure below the wing
is greater than that above it. The pressure difference causes air to flow around the tip from bottom to
top, as indicated in Figure 6.33. There is a decrease in pressure near the center of the vortex, which
leads to a corresponding decrease in temperature. If the humidity is high, the temperature drop
causes vapor to condense, which makes the helical flow of a trailing vortex clearly visible.
At takeoff and landing of an aircraft, detractable wing flaps are used as an aid to increase the lift,
and similar vortices are shed at the tips of these flaps.

The trailing vortices of a moving wing cause what is known as a downwash in the wake of the
wing (Figure 6.33). The downwash affects a large region or volume of air that extends well above
and below the aircraft. One effect is that when the plane flies close to the ground, some of the
downwash is suppressed, leading to an increase in lift. This increase is manifested in a tendency of
the plane to ‘‘float’’ during the time that it is landing and when its height is less than one-third to
one-half of the wing span.

An interesting phenomenon occurs when an airplane flies into the trailing vortex shed by another
airplane. The vortex causes a lift increase on one end of the wing of the trailing craft and a lift decrease
on the other end. This results in a rolling moment exerted on the aircraft, which is a dangerous
condition, especially if the trailing airplane is a much smaller craft. Thus the Federal Aviation
Administration specifies air-traffic rules, which, among other things, require that a minimum separ-
ation distance be maintained between flying aircraft. Although the vortices eventually break up, they
exist for a long enough time to cause a limitation on the capacity of airport runways.

An airplane in the downwash of another will experience what is called induced drag. The
trailing airplane is essentially pushed down, and the flow of air past the wing is affected. Figure 6.34

Downwash

Wing-tip vortex

Upwash

V

FIGURE 6.33 Three-dimensional flow effects about a wing showing helical motion of the wing-tip vortices,
induced downwash in the wake of the wing, and induced upwash outboard of the wing.
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shows how this phenomenon is modeled. Figure 6.34a shows flow past a wing and the angle of
attack a. Figure 6.34b shows a velocity diagram with the air velocity U1, the downwash velocity
vector, and the relative air velocity Urel. The angle between the air velocity U1. and the relative air
velocity Urel is denoted as b. The angle between the chord c of the wing and the relative air velocity
Urel is the effective angle of attack aeff (¼a – b). For a real wing traveling into a downwash, the lift
and the drag are both affected. The change in drag is called induced drag. With regard to operation
of the aircraft, the engines must exert additional power so that additional lift will overcome the
downwash forces. Alternatively, the aircraft must change its orientation so that the angle of attack is
increased, again so that additional lift will overcome downwash forces.

There are other practical applications of this three-dimensional effect. One occurs in the case of
a fighter aircraft that is approaching a tanker aircraft from the rear. The fighter flies into the
downwash of the tanker and, to avoid a dangerous situation, the engine thrust of the fighter must
be markedly increased.

Another practical example deals with the upwash beyond the tip of the wing, or outboard
of a lifting wing, as shown in Figure 6.33. Downwash causes downward forces to be exerted on
a trailing craft, whereas upwash causes upward forces to be exerted. With regard to the power
(¼ drag force� velocity) required, downwash forces cause an increase in drag to be exerted on a
trailing craft; an increase in power is thus required to restore the aircraft to its prior condition.
Upwash forces cause an increase in lift, and a corresponding decrease in drag and power will be
realized. Birds flying in a V-formation make use of upwash forces. Figure 6.35 shows a frontal view
of a flying bird with wings extended. As indicated, there is a downwash in the wake of the wing with
arrows pointing downward. Outboard of the wing tip, there is an upwash. Also shown are
streamlines of flow about the wing. When in a V-formation, each bird (except the lead bird) flies
in the upwash of its neighbors, with less lifting power needed.*

Figure 6.36 shows a graph of drag ratio versus spacing for a V-formation of birds. The vertical
axis is a ratio of the ideal drag of an entire formation to the sum of the individual drags of the birds
flying solo. The horizontal axis is a ratio of the wing span, b, to the wing span plus spacing, bþ s,
as defined in the diagram. The graph shows that a minimum drag ratio occurs when the spacing
s equals 0 (R¼ 1). In addition, there is little difference between the performance of 25 birds and an
infinite number of birds.

rel

eff= –

Downwash
velocity vector

(a)

(b)

FIGURE 6.34 Flow past a wing showing how angle of attack is affected by downwash.

* These results were obtained from an analysis that was performed to model the flight formation of birds: P. B. S. Lissaman
and C. A. Shollenberger, Formation flight of birds, Science, 168(3934): 1003–1005, May 1970.
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The ideal formation is not exactly a V, but instead is a formation that is more swept back at
the tips and less at the apex. Such a formation is indicated in Figure 6.37, which shows the plan view
of a nine-bird formation with a tip spacing s equal to one-fourth of the span b. Note that the
outermost birds are a little further behind their neighbors and that this lag distance changes as we
approach the apex.

Upwash forces

Streamlines of vortex
about the tip of the wing

Downwash forces

FIGURE 6.35 Flow field about a lifting wing of a bird as viewed in the downstream direction. (From
Lissaman, P.B.S. and Shollenberger, C.A., Science, 168(3934), 1003, May 1970. With permission.)
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FIGURE 6.36 Drag reduction by V-formation flight. (From Lissaman, P.B.S. and Shollenberger, C.A.,
Science, 168(3934), 1003, May 1970. With permission.)
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6.6 SUMMARY

In this chapter, we examined the concepts of boundary-layer growth and separation. We saw how
these phenomena affect forces that are exerted on variously shaped objects immersed in a uniform
flow. The drag and lift coefficients were defined, and data on drag and lift forces were expressed in
terms of these coefficients.

PROBLEMS

Flow Past a Flat Plate

6.1 Using the information provided in Example 6.1, calculate the displacement thickness for the
problem and plot d* versus x.

6.2 a. In Example 6.1, what is the velocity U1 required for the boundary layer to remain laminar
over the entire plate?

b. What is its thickness at the end of the plate?

6.3 a. If U1 in Example 6.1 is slow and the boundary layer remains laminar over the entire plate
with transition occurring at the end, determine the drag force exerted on the plate.

b. Plot the boundary-layer thickness versus x.

6.4 Repeat Example 6.1b for U1¼ 120 mi=h.
6.5 A sailboat has a rudder that is 6 in. wide and extends into water a distance of 18 in. At 5 knots,

what is the drag force exerted on the rudder?
6.6 A 6-m=s wind blows past a billboard measuring 10 m wide by 8 m high. The billboard is

aligned with the wind direction as shown in the plan view of Figure P6.6. Calculate the force
exerted on the billboard (T¼ 228C).

9 birds
Tip spacing:   span1

4

FIGURE 6.37 Optimum V-formation for nine birds flying at a tip spacing equal to one-fourth of the span.
(From Lissaman, P.B.S. and Shollenberger, C.A., Science, 168(3934), 1003, May 1970. With permission.)
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10 m

= 6 m/s

FIGURE P6.6

6.7 A flat plate is falling through a tank of water. The plate is 2 ft long by 1 ft wide and travels as
illustrated in Figure P6.7 at 2 ft=s. Determine the drag force on the plate (T¼ 688F).

2 ft

Water

V

FIGURE P6.7

6.8 Air at 208C and 101.3 kPa absolute flows over a flat plate at a speed of 15 m=s. How thick is
the boundary layer at a distance of 1 m from the front edge of the plate? What is the Reynolds
number at that point?

6.9 A square duct in an air conditioning system is used to convey 508F air to a plenum chamber.
The duct is 3 ft on a side and 9 ft long. Estimate the skin friction drag exerted on the inside
walls if the average air velocity in the duct is 5 ft=s.

6.10 A boxcar is pulled at a velocity of 16 m=s along a straight stretch of rail. The boxcar is 16.8 m
long, and the sides are 2.44 m high. Assuming that the sides are perfectly flat, estimate the skin
friction drag force exerted on them.

Flow Past Two-Dimensional Objects

6.11 The following data give pressure versus u for a 3.75-in.-diameter cylinder that is 10.5 in. high
and immersed in a uniform flow of 36.5 mi=h. The pressure data collected are Dp (¼ p� p1)
and the ambient pressure p1¼ 14.7 psia. The form drag is obtainable from integration of the
pressure distribution around the surface of the cylinder.

Df ¼ DL

ðp
0

p cos u du
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or

Df ¼ DL

ðp
0

Dpþ p1ð Þ cos u du

This becomes

Df ¼ DL

ðp
0

Dp cos u duþ p1
ðp
0

cos u du

0
@

1
A

Because the latter integral is equal to zero, we get

Df ¼ DL

ðp
0

Dp cos u du

The data are as follows:

u (8) Dp (psf)

0 1.07
10 1.29
20 0.21

30 �1.80
40 �4.72
50 �8.15
60 �11.59

70 �14.38
80 �16.09
90 �15.88

100 �14.81
110 �13.73
120 �10.73

130 �9.87
140 �9.44
150 �9.44
160 �9.44

170 �9.44
180 �9.44

U1¼ 36.5 mi=h
L¼ 10.5 in.
D¼ 3.75 in.
T¼ 718F

a. Sketch Dp versus u on polar coordinate paper.
b. Sketch Dp versus u on rectangular coordinate paper.
c. SketchDp cos u versus u on rectangular coordinate paper. Determine the area under the curve

and note which portions are positive and which are negative. Calculate the form drag force.
d. Calculate the drag coefficient and the Reynolds number.
e. Compare the results to those of Figure 6.12. (There will be discrepancies because of the

measurement technique. The wind tunnel test section is small, and interference between
the flow at the wall and flow past the cylinder affects the results. Data were taken at the
University of New Orleans Fluid Mechanics Laboratory.)
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6.12 Repeat Problem 6.11 for the following data:

u (8) Dp (psf)

0 0.90
10 0.82
20 �0.086

30 �1.63
40 �3.48
50 �5.58

60 �7.99
70 �9.58
80 �10.31

90 �9.88
100 �9.45
110 �8.81
120 �7.52

130 �7.09
140 �6.87
150 �6.87

160 �6.87
170 �6.87
180 �6.87

U1¼ 43.3 ft=s
L¼ 10.5 in.
D¼ 3.75 in.
T¼ 718F

6.13 Repeat Problem 6.11 for the following data:

u (8) Dp (Pa)

0 22.6
10 20.6

20 �2.06
30 �41.1
40 �102.8

50 �162.5
60 �226.2
70 �269.4
80 �290.0

90 �277.6
100 �267.3
110 �246.8

120 �236.5
130 �232.4
140 �226.2

150 �226.2
160 �226.2
170 �226.2

180 �226.2
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U1¼ 10.3 m=s
L¼ 26.7 cm
D¼ 9.53 cm
T¼ 228C

6.14 Repeat Problem 6.11 for the following data:

u (8) Dr (psf)

0 0.086

10 0.043
20 �0.13
30 �0.43

40 �1.12
50 �1.72
60 �2.23

70 �2.58
80 �2.58
90 �2.49

100 �2.49
110 �2.49
120 �2.49
130 �2.49

140 �2.49
150 �2.49
160 �2.49

170 �2.45
180 �2.40

U1¼ 22 ft=s
L¼ 10.5 in.
D¼ 3.75 in.
T¼ 718F

6.15 A cylindrical smokestack is 26 m high and has an average diameter of 4 m. For a wind speed
past the smokestack of 1.5 m=s, determine the drag force exerted (T¼ 78C).

6.16 A flagpole consists of two sections and each is 6 m long. The lower section has a diameter of
15 cm and the upper section has a diameter of 12.5 cm. Determine the bending moment
exerted at the base of the pole if no flag is flying and if the wind velocity is 50 km=h. Assume
smooth cylinder surfaces.

6.17 An automobile aerial consists of three telescoping sections (6, 4, and 2 mm in diameter).
When fully extended, each section is 23 cm long. For an automobile speed of 75 km=h,
estimate the force exerted on the aerial and the moment exerted on its base (T¼ 278C).

6.18 An electrical wire on a utility pole is 2.6 cm in diameter and 20 m long. If a 4-m=s wind passes,
determine the drag force exerted on the wire. Ignore any translational motion of the wire.

6.19 Two cylinders are attached to a balance arm, as illustrated in Figure P6.19. The cylinder
on the left has a roughened surface; otherwise, they are identical. A uniform flow of
air is directed upward past both of them. At what velocity will the balance arm tilt clock-
wise? At what velocity will it tilt counterclockwise? Take the diameter of each cylinder
to be 15 cm.
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Roughened
surface

Balance arm

FIGURE P6.19

6.20 Two square rods of equal length are immersed in a uniform flow of oxygen, as illustrated in
Figure P6.20. The oxygen velocity is 5 m=s. If D1 is 10 cm, determine D2, assuming that the
drag force exerted on each is the same.

U

D2

D1

FIGURE P6.20

6.21 A Savonius rotor is a type of windmill (Figure P6.21). For a uniform airspeed of 2 mi=h
directed at a stationary rotor, estimate the torque exerted about the shaft. (The data of this
chapter will not yield an accurate result because here the half cylinders are attached together.)

6 ft

2 ft

Pivot

FIGURE P6.21
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6.22 Consider airflow past a square cylinder 10 cm on a side and 6 m long as shown in Figure
P6.22a. The free-stream velocity is 4.5 m=s.

a. Use Figure 6.15 to find the drag force exerted.
b. Find the drag force for the cross section consisting of three flat plates pieced together as in

Figure P6.22b. Compare the results.

10 cm

(a) (b) 10 cm

10 cm

10 cm

FIGURE P6.22

Flow Past a Sphere

6.23 A stainless steel sphere of diameter 2 cm falls through castor oil. Calculate the terminal
velocity of the sphere.

6.24 Paraffin in the form of a sphere is released in a tank of water. Determine the terminal velocity
of the sphere if its diameter is 3 cm.

6.25 A simple trick performed with a table tennis ball and a vacuum cleaner exit hose is sketched in
Figure P6.25. The exhaust air causes the ball to remain suspended at a certain height above the
exit. If a typical table tennis ball weighs 3.08 g and is 3.81 cm in diameter, determine the air
velocity required to perform the trick. Take the exhaust air temperature to be 378C.

Exhaust air 
from vacuum 

cleaner

FIGURE P6.25

6.26 A steel sphere is dropped into a tank of glycerine. The sphere diameter is 3 mm. Calculate its
terminal velocity. Repeat for a steel sphere of 3 cm in diameter.

6.27 Equation 6.11b was derived for the general case of a sphere falling through a liquid. Rederive
Equation 6.11b for the case in which the Reynolds number of the flow is less than 1.
Show that
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V ¼ 1
18

g
D2

m
rs � rð Þ if Re < 1

6.28 A lead ball that is 1 in. in diameter is suspended by a thin piece of thread in the test section of a
wind tunnel. The uniform speed past the sphere is 150 mi=h. Determine the resultant angle that
the thread makes with the horizontal (see Figure P6.28). Take T¼ 628F.

Lead sphere
θ

D = 1 in.= 150 mi/h

FIGURE P6.28

6.29 A brass sphere that is 1.2 cm in diameter falls through a tank of turpentine. Determine the
terminal velocity of the sphere.

6.30 A gasoline (assume octane) fuel droplet 500 mm in diameter is injected into an airstream at the
intake of an engine. The air velocity is a uniform 2 m=s downward. Determine the final
velocity of the droplet (T¼ 228C).

6.31 If a solid sphere made of brass is dropped into a tank of glycerine, its terminal velocity is
measured as 30 mm=s. Determine the sphere’s diameter.

Flow Past Three-Dimensional Objects

6.32 A 10-in.-diameter hemisphere is supported in a uniform airflow of 12 ft=s (Figure P6.32).
What diameter sphere will have the same drag exerted on it by the air at the same uniform flow
velocity?

FIGURE P6.32

6.33 Repeat Problem 6.32 but turn the hemisphere around (Figure P6.33).

FIGURE P6.33
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6.34 A four-cup wind speed indicator or anemometer is shown in a plan view in Figure P6.34. The
bearings onwhich the assemblage turns are rusty, and the torque required to start the cups rotating
is high. Determine the torque exerted if a velocity U1 of 12 mi=h is required to start rotation.
Ignore the effects of the cups labeled A and the connecting rods (T¼ 628F).

A
A

12 in.

2 in.

FIGURE P6.34

6.35 A motorist wishes to install a rear view mirror on the front fender of his car. The mirror
housing is a hemisphere of diameter 6 in.; the convex side faces forward. Determine the
additional drag on the automobile at 20 mi=h if two of these mirrors are installed.

6.36 A disk and a hemisphere are attached to a balance arm, as shown in Figure P6.36. Both are
subjected to a uniform upward air velocity of 15 m=s. The hemisphere is 6 cm in diameter. If
the scale is to balance, what is the required diameter of the disk?

FIGURE P6.36

6.37 Repeat Problem 6.36 but replace the hemisphere with a streamlined body having D¼ 0.2 m.

Flow Past Ground Vehicles: Cyclists

6.38 Calculate the power required to overcome drag for a cyclist riding at 8.9 m=s in a touring
position (no. 2 of Table 6.1). Is it enough to power a 100-W light bulb?

6.39 a. Determine the power required for a cyclist to ride at 20 mi=h in the racing position (no. 3 of
Table 6.1).

b. If the cyclist maintains this speed and drafts another cyclist (no. 7), what power is required?

6.40 Which vehicle requires more power to overcome drag at 20 mi=h: the vector single of
Table 6.1 or the streamlined vehicle of Figure 6.22? Calculate the power for both vehicles.

6.41 A cyclist rides at 7 m=s. At this velocity, 18% of her total power input goes into overcoming
rolling resistance. If the cyclist uses this same input to power the streamlined vehicle of
Figure 6.22, what is the expected velocity, again assuming that 18% of the input goes into
overcoming rolling resistance?
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6.42 Two athletes intend to have a bicycle race. Athlete 1 is in fairly good condition and can
maintain an output equivalent to 0.1 hp for 1 h on a bicycle. Athlete 2 is not in such good
shape; his output is equivalent to only 0.08 hp for 1 h on a bicycle. Athlete 2, however, is
permitted the use of a fairing. Determine how far each rider can travel after 1 h if only 90% of
each rider’s output goes to overcoming drag. (Assume that Figure 6.22 applies.)

Flow Past Ground Vehicles: Automobiles

6.43 Using the data of Table 6.2, estimate the drag coefficient for an automobile of your choice.
Then determine the projected frontal area A of the automobile. Next calculate the aerodynamic
drag as a function of velocity using

Df ¼ 1
2CDArV2

Let the velocity vary from 0 to 100 mi=h. Calculate the horsepower required to overcome the
aerodynamic drag at each velocity by using

Horsepower ¼ DfV

550

where: Df is in lbf
V is in ft=s

Construct a plot of Df and horsepower as a function of V.
6.44 Sketch an automobile that has minimum drag.
6.45 Sketch an automobile that has maximum drag.
6.46 According to a popular automotive magazine, the drag coefficient of a 1986 Honda Accord

LXi is 0.32, and its frontal area is 53 in.� 66 in. wide. Locate such a vehicle and determine
whether Equation 6.13 predicts the same result. Using a drag coefficient of 0.32, calculate the
power required for the vehicle to maintain a speed of 55 mi=h.

6.47 According to a popular automotive magazine, the drag coefficient of a 1986 Mazda RX-7 is
0.29, and its frontal area is 126.5 cm� 160 cm wide. Locate such a vehicle and determine
whether Equation 6.13 predicts the same result. Using a drag coefficient of 0.29, calculate the
power required for the vehicle to maintain a speed of 24.6 m=s.

Flow Past Ground Vehicles: Trucks

6.48 If the square-edged trailer of Example 6.6 were replaced with a round-edged trailer, how
would the savings in fuel costs be affected? Use the data for the square-edged, unstreamlined
trailer as a basis for comparison.

6.49 A truck having a square-edged trailer like that shown in Figure 6.24 travels 160 000 km=year
and averages 2 000 km=(m3 of fuel). A fairing and a gap seal are then attached to the vehicle.
Calculate the power required to overcome drag at 24.6 m=s for both configurations and
compare the results.

6.50 A truck having a round-edged trailer like that shown in Figure 6.26 travels 80,000 mi=year and
averages 5.1 mi=(gal of fuel). Diesel fuel costs $1.16=gal.

a. Calculate the yearly cost of fuel to run the vehicle.
b. Calculate the yearly cost of fuel to run the vehicle if it has a fairing attached.
c. Calculate the yearly cost of fuel to run the vehicle if it has a fairing and a gap seal attached.

6.51 Calculate the horsepower required to overcome drag for a tractor-trailer combination where the
trailer has rounded front edges for the following cases: (a) basic configuration, (b) with a fairing
attached, and (c) with a fairing and gap seal attached. Take the speed in all cases to be 55 mi=h.
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Flow Past Airfoils

6.52 The data given in Figure P6.52 are for a NACA 23012 airfoil.

a. Construct a polar diagram for the airfoil.
b. Determine the angle of attack for maximum CL=CD. (Data from NACA Report 524.)

y/
c

x/c
–0.2

0.2

0

0 1.0

0.024

0.020

0.016

0.012C D
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0.008

0.004

0
–0.8 –0.4 0 0.4 0.8 1.2

C L
–0.4

–8 0 8 16 24

2.0

1.6

1.2

0.8

0.4

0

0

α (degrees)

FIGURE P6.52

6.53 An airplane with a NACA 23012 airfoil cruises at 138 m=s at an altitude of 6 100 m
(p1¼ 46.5 kPa, T1¼ 250 K). The airfoil has an aspect ratio of 10 with a span of 36 m.
Using the data of Figure P6.52, determine the lift and drag forces. Then determine the
horsepower required to overcome drag. Take the angle of attack to be 88.

6.54 The following data were obtained on a NACA 2412 airfoil. Plot the polar diagram for the
airfoil. (Data from NACA Technical Note 404.)

a CD CL

�3.4 0.0096 �0.178
�1.7 0.0092 �0.026
�0.4 0.0090 þ0.133

þ1.1 0.0090 þ0.288
þ2.6 0.0095 þ0.439
þ5.6 0.0110 þ0.744

þ8.7 0.0143 þ1.049
þ11.8 0.0201 þ1.328
þ13.4 0.0261 þ1.457
þ15.0 0.0352 þ1.566

þ15.8 0.0422 þ1.589
þ19.8 0.2269 þ1.307
þ26.8 0.4189 þ1.003

Flow over Immersed Bodies 315



6.55 Airfoils have a maximum lift coefficient corresponding to a certain angle of attack. When
operated beyond this angle of attack, the wing stalls, as indicated in Figure 6.30 in general and
in Figure 6.32 for the Clark Y airfoil. At the stall condition, the wing is supporting the dead
weight W of the aircraft. Thus, at stall we have

Lf ¼ W ¼ CLmaxð Þ rV
2
stallA

2

The stall velocity found in this above equation is the absolute minimum landing speed for an
aircraft.

A modified version of the North American P-51D Mustang Fighter plane of World War II
is the speed record holder for a propeller-driven plane (499 mi=h). Consider a Mustang racer
having a wing area of 233 ft2 and a weight of 9,500 lbf. Its landing speed is designed to be
1.25 times the stall speed. At stall, the lift coefficient of the wing is 1.65. Calculate the stall
velocity of the aircraft and its minimum landing speed.

6.56 A Clark Y airfoil is on an aircraft whose stall speed is 100 mi=h. Determine the weight of the
aircraft if the wing area is 216 ft2. (See Problem 6.55.)

6.57 An aircraft has a Clark Y airfoil and is flying at 130 knots, with an angle of attack of the wing
of 88. The plane is following another aircraft such that the downwash vector is represented by
a velocity of 8 knots. Determine

a. The effective angle of attack
b. The change in the lift coefficient
c. The change in the drag coefficient
d. The ratio lift coefficient=drag coefficient for both angles

Miscellaneous Problems

6.58 Assuming that the velocity distribution in the boundary layer for flow over a flat plate is
given by

Vx

U1
¼ y

d

and that the boundary-layer thickness is given by

d

x
¼ 3:46

Rexð Þ1=2

use Equation 6.1 to show that the displacement thickness is given by

d*
x

¼ 1:73

Rexð Þ1=2

Compare your answer to the results for the displacement thickness from the exact solution
given by Equation 6.3.

6.59 Repeat Problem 6.58 for

Vx

U1
¼ 2

y

d

� �
� y

d

� �2

d

x
¼ 5:48

Rexð Þ1=2
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to obtain

d*
x

¼ 1:83

Rexð Þ1=2

6.60 Repeat Problem 6.58 for

Vx

U1
¼ 3y

2d
� 1
2

y

d

� �3

d

x
¼ 4:64

Rexð Þ1=2

to obtain

d*
x

¼ 1:74

Rexð Þ1=2

6.61 Repeat Problem 6.58 for

Vx

U1
¼ sin

py

2d

d

x
¼ 4:80

Rexð Þ1=2

to obtain

d*
x

¼ 1:74

Rexð Þ1=2

6.62 Assume that the velocity distribution in a turbulent boundary layer for flow over flat plate is
given by

Vx

U1
¼ y

d

� �1=7

and that the boundary layer thickness is given by

d

x
¼ 0:37

Rexð Þ1=5

Show that Equation 6.1 gives the following for the displacement thickness

d*
x

¼ 0:046

Rexð Þ1=5

6.63 An ornamental iron gate consists of six vertical rods welded at their ends to horizontal
crosspieces. Each vertical rod is a 1

2 � 1
2 in. square rod 5 ft 6 in. long; the horizontal top and

bottom pieces are in. diameter cylinders 42 in. long. The square rods are placed as illustrated
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in Figure P6.63. For a uniform wind speed of 20 mi=h, estimate the total force exerted on the
gate (T¼ 718F).

= 20 mi/h

FIGURE P6.63

6.64 A 12-in.-diameter telephone pole 30 ft tall has four crosspiece wire hangers attached as in
Figure P6.64. The crosspieces are 2 in. square in cross section and 4 ft long; they are separated
by a distance of 1 ft. Estimate the moment exerted about the base of the pole in a uniform wind
of velocity 25 mi=h. Assuming that the surface of the pole affects the results (smooth versus
rough), perform calculations for both cases.

1 ft
1 ft
1 ft
1 ft

FIGURE P6.64

6.65 Figure P6.65 shows a cylindrical aluminum rod of diameter 1 cm and length 15 cm falling
with axis vertical through water. For a small diameter, the drag force is due primarily to skin
friction, which can be approximated by using flat plate data. The cylinder surface is treated as
if it were a flat plate that has been rolled up into a rod. The surface area of this ‘‘rolled-up
plate’’ is pDL. Estimate the terminal velocity of the rod as it falls through the water by
completing the following steps:

a. Perform a force balance for the cylinder and show that the descriptive equation is

rcg
pD2

4
L� rg

pD2

4
L� 1

2
CDrV

2pDL ¼ 0

where rc is the density of the cylinder material and r is the density of the liquid.
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b. Substitute and simplify the preceding equation to show that it becomes

CDV
2 ¼ 0:083 2 (i)

c. Show that the Reynolds number (¼ rVL=m) at terminal velocity is given by

Re ¼ 1:685� 105V (ii)

d. Initiate the trial-and-error procedure by assuming a value for drag coefficient; substitute
into Equation i and calculate the velocity; determine the Reynolds number; use Figure 6.3
for flow over a flat plate and read a new value for drag coefficient. Repeat the calculations
until the results converge. What is the terminal velocity of the cylinder?

Water

AluminumL

D

V

FIGURE P6.65

6.66 A billboard measures 12 m wide by 6 m high. It is attached to vertical posts set in the ground
(see Figure P6.66). The posts are 10 cm in diameter and hold the billboard 10 m above the
ground. Estimate the moment exerted about the posts at ground level in a uniform wind of
velocity 0.5 m=s.

12 m

10 cm 10 m

6 m

FIGURE P6.66

Flow over Immersed Bodies 319



Computer Problems

6.67 Equation 6.11a was written for a sphere falling at terminal velocity, but it can be modified to
describe themotion of the spherewhile it is still accelerating (or decelerating). This period lasts for
only a few moments after the sphere is released in the fluid. Equation 6.11a can be rewritten as

rsg
pD3

6
� rg

pD3

6
� 1
2
CDrV

2 pD
2

4
¼ rs

pD3

6

	 

dV

dt

in which the left-hand side is a summation of forces and the right-hand side is mass times
acceleration. Because the preceding equation is a nonlinear differential equation that does not
have a known solution, we must resort to an approximation to solve it. We rewrite dV=dt as
DV=Dt and when solving, choose a suitable small increment of time for Dt. After substitution
and rearrangement, we obtain

DV ¼ g� rg

rs
� 3
4
CDrV2

rsD

	 

Dt (i)

Use of this equation in solving an accelerating sphere problem requires a stepwise solution. It
is also necessary to use Figure 6.16 for spheres to determine CD. Although the data of that
figure were obtained at steady state, it is assumed that a quasi-steady process occurs because
the flow is unsteady.

Consider the marble (rs¼ 2 600 kg=m3) of Example 6.4 (D¼ 0.01 m, terminal velocity
V¼ 0.723 m=s). If the marble starts from rest in water (r¼ 1 000 kg=m3, m¼ 0.89� 10�3 N �
s=m2), determine a velocity–time history for its fall during the first 0.1 s by following these steps:

a. By substitution in Equation i, show that the following working equation results:

DV ¼ 6:037� 28:8CDV
2

� �
Dt (ii)

b. Show that the Reynolds number of the sphere at any time is given by

Re ¼ 1:12� 104 V (iii)

c. Verify that the initial condition (V¼ 0 at t¼ 0) reduces the previous equation to

DV(after 1 Dt) ¼ (6:037)Dt

d. From the example, it is known that the terminal velocity is 0.723 m=s. So if Dt is chosen
as 0.12 s, for example, then DV(after 1 Dt)¼ 6.037(0.12)¼ 0.72 m=s. We therefore conclude
that 0.12 s is too large a time increment and that for an accurate and realistic representation,
Dt should be kept small. Arbitrarily, we select Dt¼ 0.01 s. With this choice and with a
modification in the notation, we find the change in velocity from time 0 to time 0.01 s to be

DV(after 1Dt) ¼ DV0:01 ¼ (6:037)(0:01) ¼ 0:060 m=s

The velocity of the sphere after 0.01 s thus becomes

V0:01 ¼ V0 þ DV0:01 ¼ 0þ 0:06 ¼ 0:06 m=s

The Reynolds number is Re¼ 1.12� 104 V, or after 0.01 s

Re0:01 ¼ 1:12� 104(0:06) ¼ 6:72� 102
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and from Figure 6.15, we get CD¼ 0.55. By substitution into the working equation, we
obtain

DV0:02 ¼ [6:037� 28:8(0:55)(0:06)2](0:01) ¼ 0:06 m=s

Therefore,

V0:02 ¼ V0:01 þ DV0:02 ¼ 0:12 m=s

With this value, a new Reynolds number is calculated, a new drag coefficient is deter-
mined, and a new velocity is found. Continue this stepwise procedure and produce a table
of results showing the following as column headings: t (s), V (m=s), Re, CD, and DV (m=s).

e. Prepare a graph of velocity versus time (horizontal axis). Show the terminal velocity on the
graph.

6.68 The graph of Figure 6.22 shows drag coefficient versus Reynolds number for a streamlined
and an unstreamlined cyclist. Use the not-streamlined cyclist curve.

a. Read values from the graph and prepare a table of CD and corresponding Re.
b. Use the data below the graph with your table to produce values of free-stream velocity U1

and drag force Df.
c. Make calculations of power for each velocity and drag force.
d. Construct a graph of power dW=dt (vertical axis) versus velocity U1. Let U1 vary from

5 to 25 mi=h.

6.69 The graph of Figure 6.22 shows drag coefficient versus Reynolds number for a streamlined
and an unstreamlined cyclist. Use the streamlined cyclist curve.

a. Read values from the graph and prepare a table of CD and corresponding Re.
b. Use the data below the graph with your table to produce values of free-stream velocity U1

and drag force Df.
c. Make calculations of power for each velocity and drag force.
d. Construct a graph of power dW=dt (vertical axis) versus velocity U1. Let U1 vary from

5 to 40 mi=h.

6.70 A 3-in.-diameter sphere was immersed in a uniform flow of air at room temperature. The sphere
has a smooth surface; as a result of measurements made, the following data were reported:

Smooth Surface Sphere

Free-Stream
Velocity, U1 (ft=s)

Drag Force,
Df (lbf)

19.8 0.025
30.3 0.043
38.8 0.045

45.1 0.083
48.9 0.102
55.2 0.129

59.5 0.151
64.2 0.173
69.2 0.201

77.2 0.232
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Use these data to produce a graph of drag coefficient versus Reynolds number and compare
the results to those in Figure 6.16. (Data were obtained by Lance Lane.)

6.71 A 3-in.-diameter sphere was immersed in a uniform flow of air at room temperature. The sphere
has a roughened surface and as a result of measurements made, the following data were reported:

Rough Surface Sphere

Free-Stream
Velocity, U1 (ft=s)

Drag
Force, Df (lbf)

19.8 0.025
25.6 0.027

34.3 0.026
38.8 0.039
47.5 0.057

51.8 0.069
58.4 0.084
63.2 0.105
67.7 0.126

81.0 0.192

Use these data to produce a graph of drag coefficient versus Reynolds number and compare
the results to those in Figure 6.16. (Data were obtained by Lance Lane.)

Design Problems

6.72 Design of a Drag Flow Meter
A flow indicator is sketched in Figure P6.72. The meter consists of a hinged flat plate
(a proposed design) inserted into the flow line. Drag on the plate causes it to deflect by
an amount that is proportional to the flow rate. At the other end of the plate is a pointer that
is used to give an indication of the flow rate. A prototype of this meter is to be designed for a
12-nominal pipeline that conveys water at an average velocity that varies from 0.1 to 2.2 m=s.

a. Select a flat plate (or some other shape) that can be used as a drag object.
b. Design the readout system such that it is calibrated in cubic meters per second (not velocity

units). Is the hinge system shown acceptable or is some other mechanism preferable?
c. Determine how the meter would be installed in a preexisting piping system.
d. Select the materials of construction.
e. Complete the design and give reasons for all decisions made.

Pointer

Hinge

Plate

FIGURE P6.72
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6.73 Golf Ball Testing Method
The manufacturer of golf balls believes it is necessary to test its products before selling them.
The test involves a method that is sketched in Figure P6.73. A jet of air issuing from the exit of
a tube is directed upward. A golf ball placed in the path of the air stream has certain forces
acting on it, with the result that the ball is elevated to a certain height. A ‘‘good’’ golf ball will
rise to a predetermined height; otherwise, the ball is unacceptable (due, for example, to it not
being acceptably spherical or to some other anomaly).

a. A golf ball manufacturer might produce too many balls to test each one individually (too
costly). From a statistical viewpoint, how many balls per thousand should be tested and
judged acceptable in order that the entire thousand be considered good?

b. A jet of air issuing from a pipe like that in the figure dissipates. The velocity profile and
magnitude change with distance from the exit. Determine (either by locating results of
previous research or by experiment) the velocity at selected locations from the exit.

c. Using results from part b, predict the expected height a good golf ball will reach. (This will
require measurements to be made on golf balls.)

d. Design an assembly line type of system where balls enter and are tested and sorted
according to acceptability. The design should include pipe exit diameter, golf ball feeding
and sorting, associated equipment, and directions to the company on how the system is to
be used.

hJet of air

FIGURE P6.73
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7 Flow in Open Channels

The flow of liquid in a conduit may be either pipe flow or open-channel flow. The feature that
differentiates these two types is that open-channel flow must have a free surface subject to
atmospheric pressure or a constant pressure—examples include flow in a river, a roadside gutter,
an irrigation canal, or a submerged culvert. There are many examples of open-channel flow, and in
this chapter, we will examine the variables that are useful in mathematically modeling such flows.
Topics of discussion will include types of open-channel flow, properties of open channels, momen-
tum and energy considerations, critical flow, gradually varied flow, and rapidly varied flow.

7.1 TYPES OF OPEN-CHANNEL FLOWS

Open-channel flows can be classified into many categories according to how the depth of the flow
changes with respect to time and position:

. Steady flow exists if the volume flow rate does not change during the interval of interest.

. Unsteady flow exists if the volume flow rate does change with time. (Floods and surges are
examples.)

. Nonuniform flow exists in a channel if liquid enters or leaves along the course of the flow.
This type is also known as spatially varied or discontinuous flow. (Flow in roadside gutters,
main drainage canals, flood surges, and feeding channels of irrigation systems are examples.)

. Uniform flow exists if the depth is uniform (i.e., unchanging) at every section of the
channel. Uniform flow occurs when the flow is steady.

. Steady uniform flow exists if the depth of flow does not change during the time interval
under consideration.

. Unsteady uniform flow exists if the water surface fluctuates while remaining parallel to
the channel bottom—a practically impossible condition.

. Varied flow exists if the depth changes with increasing distance along the channel.

. Rapidly varied flow exists if the liquid depth changes abruptly over a relatively short
channel length. (Hydraulic jump and hydraulic drop are examples.) Otherwise, the flow is
gradually varied.

325



These descriptions are summarized in Figure 7.1. In this chapter, we are concerned only with
steady uniform flow and varied flow.

The forces of importance in open-channel flow are due to inertia, viscosity, and gravity. The
ratio of the inertia force to the viscous force is the Reynolds number; accordingly, the flow can be
further classified as laminar, transitional, or turbulent. Experiments have shown that the flow is
always turbulent when the Reynolds number exceeds 1 000* and that most open-channel flows are
turbulent.

The ratio of inertia to gravity forces is known as the Froude number given by Fr¼V2=g‘.
Accordingly, the flow can be further classified as critical, subcritical, or supercritical. When the
Froude number of the flow equals 1, the flow is critical. If the Froude number is less than 1, the flow
is subcritical—it has a low velocity and can be described as tranquil and streaming. When the
Froude number is greater than 1, the flow is supercritical—it has a high velocity and can be
described as rapid and torrential.

7.2 OPEN-CHANNEL GEOMETRY FACTORS

An open-channel conduit can be either natural or artificial. Natural channels include brooks,
streams, and rivers—in general, any watercourse that exists naturally. Artificial open-channel
conduits include canals, flumes, and culverts. The analysis of artificial channels produces results
that are applicable to natural conditions.

In this section, we will consider geometric factors of four different types of prismatic channels—
that is, channels with unvarying cross sections and constant bottom slopes. These cross sections are
rectangular, triangular, trapezoidal, and circular. A rectangular section is the shape produced

Hydraulic jump

(d) Rapidly varied flow(b) Uniform flow

z1

z2

Hydraulic
drop

(c) Gradually varied flow

Open-channel flows

Steady flow Unsteady flow

Unsteady varied flow Unsteady uniform flow
(practically impossible)

Uniform flow Varied flow

Gradually varied
(a) Summary of types

Gradually variedRapidly varied Rapidly varied

FIGURE 7.1 Types of open-channel flows.

* Based on one-fourth of the hydraulic diameter (as defined in Chapter 5) for characteristic length; see Section 7.2.
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by common building materials such as brick and timber. A triangular section is usually constructed
for small ditches and roadside gutters. The rectangular and triangular sections are both special
cases of the trapezoidal section. The circular section is conventionally used for sewers and culverts
of small to intermediate size. Each of these cross sections is shown schematically in the first column
of Table 7.1.

The geometric factors for each cross section given in Table 7.1 are defined as follows:

. Depth of flow z is the vertical distance from the channel bottom to the liquid surface.

. Top width bt is the width of the channel section at the free surface.

. Flow area A is the cross-sectional area of flow perpendicular to the flow direction.

. Wetted perimeter P is the length of the channel cross section in contact with liquid.

. Hydraulic radius Rh is the ratio of area to wetted perimeter:

Rh ¼ A

P
(7:1)

This definition seems to be inconsistent with the definition of hydraulic diameter in
Chapter 5:

Dh ¼ 4A
P

because for a pipe, Rh¼pR2=2pR¼R=2 and Dh¼ 4pR2=2pR¼ 2R. However, most
hydraulics (open-channel flow) texts use Equation 7.1 because of its convenience. Con-
sider an open channel of rectangular cross section flowing with liquid of depth z. The width
is b. The flow area thus becomes bz, and the wetted perimeter is bþ 2z. For very wide
channels, b � 2z, and the hydraulic radius becomes

Rh ¼ bz

bþ 2z
� bz

b
¼ z

where z is the depth of flow.
. Mean depth zm is the ratio of water area to top width:

zm ¼ A

bt
(7:2)

This expression, useful in modeling wide natural channels, allows us to calculate the depth
of an equivalent rectangular channel. For the wide channel of Figure 7.2, an equivalent
rectangular channel would have depth zm.

. Section factor Z (used in making critical flow calculations) is the product of water area and
square root of hydraulic depth.

Z ¼ A
ffiffiffiffiffi
zm

p ¼ A

ffiffiffiffi
A

bt

r
(7:3)

. Depth to centroid zc is the distance from the free surface to the centroid of the flow area.

Table 7.1 provides definitions for each of these factors for four different channel sections.
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TABLE 7.1
Geometric Elements of Various Channel Sections

Section Area, A
Wetted

Perimeter, P
Hydraulic
Radius, Rh

Top
Width, bt

Hydraulic
Depth, zm Section Factor, Z

Depth to
Centroid, zc

bt

z

b

bz bþ 2z
bz

bþ 2z
b z bz1.5

z

2

bt

b

m
1 z

(bþmz)z bþ 2z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ m2

p (bþ mz)z

bþ 2z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ m2

p bþ 2mz
(bþ mz)z

bþ 2mz
[(bþ mz)z]1:5ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

bþ 2mz
p z(3bþ 2mz)

6(bþ mz)

bt

m

1
z

mz2 2z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ m2

p mz

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ m2

p 2mz
z

2

ffiffiffi
2

p

2
mz2:5

z

3

bt

zα

D

(a� sin a) D
2

8

aD

2
D

4
1� sina

a

� �
sin 1

2a
� �

D or 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z(D� z)

p D

8
a� sina

sin 1
2a

 ! ffiffiffi
2

p

32
(a� sina)0:5

sin 1
2a

� �0:5 D2:5 —

Source: Adapted from Chow, V.T., Open-Channel Hydraulics, McGraw-Hill, Inc., New York, 1959.
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7.3 ENERGY CONSIDERATIONS IN OPEN-CHANNEL FLOWS

The equations of motion for flow in open channels are the continuity, momentum, and energy
equations. The momentum equation is particularly useful for flows with friction, which are primarily
uniform, and rapidly varied flows (discussed in Section 7.7.2). The energy or Bernoulli equation is
applicable to steady one-dimensional frictionless flows or gradually varied flows where area
changes predominate over frictional effects. We illustrate the use of the energy equation in solving
frictionless open-channel flow problems in this section.

7.3.1 FLOW UNDER A SLUICE GATE

A sluice gate is a vertical gate used in spillways to retain the flow. A sketch of a partially raised gate
is shown in Figure 7.3. For frictionless flow under a partially raised gate in a rectangular channel, we
can write the following equations:

Continuity: Q ¼ AV ¼ bz1V1 ¼ bz2V2 (7:4)

Energy:
p1
rg

þ V2
1

2g
þ z1 ¼ p2

rg
þ V2

2

2g
þ z2

where b is the width of the channel. Now p1¼ p2¼ patm; and with V1 � V2, the energy equation
becomes

z1 ¼ V2
2

2g
þ z2 (7:5)

bt

zm

FIGURE 7.2 Equivalent or mean depth.

p1

p2

z1

z2

Gate

FIGURE 7.3 Flow under a sluice gate.
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Combining with Equation 7.4 and rearranging give

1 ¼ Q2

2b2z22gz1
þ z2
z1

or

2 1� z2
z1

� �
¼ Q2

b2z1z22g
(7:6)

To remove z2 from the denominator, multiply Equation 7.6 by (z2=z1)
2:

2
z2
z1

� �2

1� z2
z1

� �
¼ Q2

b2z31g
(7:7)

This equation is the frictionless sluice gate equation for a rectangular channel. Note that when the
gate is touching the bottom of the channel, z2¼ 0. When the gate is withdrawn from the liquid,
z1¼ z2. Thus, z2=z1 varies from 0 to 1. The right-hand side of Equation 7.7 is the upstream Froude
number. A rectilinear plot of the sluice gate equation is given in Figure 7.4a. Point A represents a
condition of maximum flow determined by differentiating Equation 7.7 and setting the result equal
to zero:

d Q2=b2z31g
� �
d z2=z1ð Þ ¼ 2

z2
z1

� �2

(�1)þ 2(2)
z2
z1

� �
1� z2

z1

� �
¼ 0

or

2� 3
z2
z1

� �
¼ 0

with solution

z2
z1

¼ 2
3

(7:8)

1.0

0.8

0.6

0.4

0.2

0
0

(a) (b)
0.1 0.2 0.3

z1

z2

A

Q2/b2z3
1g

z 2
/z

1

FIGURE 7.4 (a) A plot of the sluice gate equation for a rectangular channel and (b) flow over the crest of a dam.
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Thus, maximum flow occurs at this ratio of liquid depths. Substituting Equation 7.8 back into
Equation 7.7 yields

2
2
3

� �2

1� 2
3

� �
¼ Q2

max

b2z31g

from which we obtain the upstream Froude number at maximum flow:

Q2
max

b2z31g
¼ 8

27
(7:9)

The downstream Froude number is

Q2
max

b2z32g
¼ Q2

max

b2z31g

z1
z2

� �3

¼ 8
27

3
2

� �3

or

Q2
max

b2z32g
¼ 1 (7:10)

Thus, at maximum flow conditions, the flow upstream of the sluice gate is subcritical, whereas
downstream the flow is critical.

Data taken from a sluice gate under laboratory conditions agree well with the curve of Figure
7.4a for frictionless flow over the lower portion of the curve—that is, for z2=z1< 2

3. Above this point,
the assumption V1 � V2 is no longer valid.

The equation and results obtained for a sluice gate are applicable to flow over a crest of a dam
shown in Figure 7.4b, Let z1 be the upstream height and z2 be the height directly over the dam.
The flow rate curve that results is given in Figure 7.4a.

7.3.2 FLOW THROUGH A VENTURI FLUME

Consider a channel of rectangular cross section where the width gradually changes with distance
(Figure 7.5). We apply Bernoulli’s equation to any streamline of the flow; but for convenience,
we choose the free surface where pressure is a constant. Applied to points 1 and 2, Bernoulli’s
equation is

p1
rg

þ V2
1

2g
þ z1 ¼ p2

rg
þ V2

2

2g
þ z2

With p1¼ p2 and Q¼ b1z1V1¼ b2z2V2, after simplification and substitution, we have

Q2

2b21z
2
1g

þ z1 ¼ Q2

2b22z
2
2g

þ z2

or

Q2

2g
1

b21z
2
1

� 1

b22z
2
2

� �
¼ z2 � z1
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Solving for flow rate, we obtain

Q ¼ 2g z1 � z2ð Þ
1=b22z

2
2 � 1=b21z

2
1

� �1=2
(7:11)

Thus, volume flow rate in a rectangular channel can be measured by inserting a venturi flume and
measuring liquid depths at the minimum width and upstream sections.

When Bernoulli’s equation was applied in the preceding problems, the following term appeared:

E ¼ V2

2g
þ z (7:12)

The sum of kinetic and potential energies is labeled E and defined as the specific energy of the flow.
Let us examine this equation in general. From continuity, V¼Q=A; after substitution, we have

E ¼ Q2

2gA2
þ z (7:13)

and thus for a given rate of flow, E depends only on z. If the depth of flow is plotted as a function of
specific energy for a constant area and flow rate, the resulting graph is referred to as a specific-
energy diagram (Figure 7.6). Two intersecting curves result for any constant Q line, such as BC
and AC in Figure 7.6. Curve BC asymptotically approaches a 458 line that passes through the origin.
(A 458 line corresponds to channels of zero or very small slopes.) Curve AC asymptotically
approaches the horizontal axis.

There are several points of interest in the diagram. First, the point at which minimum specific
energy exists, Emin, corresponds to what is called critical flow; the flow depth is thus called critical
depth. The Froude number is unity at the critical depth zcr. To investigate this point, we first
differentiate the expression for E:

E ¼ Q2

2gA2
þ z

b1

z1 z2

b2
V1 V2

(a) Plan

(b) Profile

Free surface

FIGURE 7.5 Flow through a rectangular venturi flume.
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With Q equal to a constant,

dE

dz
¼ � Q2

gA3

dA

dz
þ 1 ¼ �V2

gA

dA

dz
þ 1 (7:14)

At the free surface,

dA ¼ bt dz

and, by definition, the mean depth is

zm ¼ A

bt

By substitution into Equation 7.14, we obtain

dE

dz
¼ �V2bt

gA
þ 1 ¼ � V2

gzm
þ 1

At the minimum, dE=dz¼ 0. Thus, at critical flow,

V2

gzm
¼ Fr ¼ 1 (7:15)

So at the critical state, zm¼ zcr—that is, the critical depth equals the mean flow depth.
Figure 7.6 shows that two depths correspond to any value of specific energy greater than the

minimum; for example, z1 and z2 correspond to E12. The depths z1 and z2 are called alternate depths.
If the depth is greater than the critical depth, the velocity will be less than the critical flow velocity,
and subcritical flow therefore exists. If the depth of flow is less than zcr, the flow is supercritical
because the velocity will be greater than the critical flow velocity. Thus, by definition, z1 is the depth
of a supercritical flow, whereas z2 is the depth of a subcritical flow. Generalizing, we conclude that

V ¼ ffiffiffiffiffiffiffiffi
gzcr

p
Fr ¼ 1 (critical flow)

V <
ffiffiffiffiffiffiffiffi
gzcr

p
Fr < 1 (subcritical flow)

V >
ffiffiffiffiffiffiffiffi
gzcr

p
Fr > 1 (supercritical flow)

(7:16)

which is true for any of the prismatic channels sketched in Table 7.1.

z

z

b1

dA

0

B

C

Subcritical

Supercritical

Qa     Q
Qa    Q

Q = constant

E12

A

E = + zQ2

2gA2Emin

z2

zcrz1

dz

FIGURE 7.6 Specific-energy diagram and corresponding depths for various conditions.
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Example 7.1

Consider a rectangular channel of width 8 m.

a. Plot a family of specific-energy lines for Q¼ 0, 10, 20, 40, and 80 m3=s.
b. Draw the locus of critical depth points.
c. Plot Q as a function of critical depth.

SOLUTION

For a rectangular channel, A¼ bz; therefore,

E ¼ Q2

2gA2
þ z

becomes

E ¼ Q2

2gb2z2
þ z ¼ Q2

2(9:81)(8)2z2
þ z

¼ Q2

1 260z2
þ z

The resulting equations are

Q ¼ 0 E ¼ z

Q ¼ 10 E ¼ 1
12:6z2

þ z

Q ¼ 20 E ¼ 1
3:14z2

þ z

Q ¼ 40 E ¼ 1
0:785z2

þ z

Q ¼ 80 E ¼ 1
0:196z2

þ z

A plot of these equations appears in Figure 7.7a along with the locus of critical depth points. A plot of Q
versus zcr is given in Figure 7.7b. For other than rectangular cross sections, area either is derived or can
be obtained from Table 7.1.
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FIGURE 7.7 Solution curves for Example 7.1.
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7.4 CRITICAL FLOW CALCULATIONS

It has been shown that at critical flow, zm¼ zcr; therefore,

Vcr ¼ ffiffiffiffiffiffiffiffi
gzcr

p ¼ ffiffiffiffiffiffiffi
gzm

p

or

V2
cr

g
¼ zm (7:17a)

from which we have

V2
cr

2g
¼ zm

2
(7:17b)

where the notation Vcr has been introduced to denote the velocity corresponding to critical depth or
critical velocity. Thus, at critical flow in any channel, half the mean depth equals the kinetic energy
of the flow. The section factor Z has been previously defined as

Z ¼ A
ffiffiffiffiffi
zm

p

Combining this definition with Qcr¼AVcr and Equation 7.17, we obtain the following at
critical flow:

Z ¼ Qcrffiffiffi
g

p (7:18)

Because Z is a function of depth, Equation 7.18 implies that only one depth is possible for critical
flow. Similarly, for a fixed depth, there is only one flow rate, Qcr, that corresponds to critical flow.

Example 7.2

Determine the critical depth and the flow velocity in the rectangular channel of Example 7.1 (b¼ 8 m)
for a volume flow rate of 40 m3=s.

SOLUTION

From Table 7.1 for a rectangular channel, A¼ bzcr. Also, at critical flow, zm¼ zcr. Therefore,
we write

Vcr ¼ Q

A
¼ 40

bzcr
¼ 40

8zcr
¼ 5

zcr

Substituting into Equation 7.17a gives

V2
cr

g
¼ zm

25
9:81z2cr

¼ zcr
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or

z3cr ¼ 2:55

Solving,

zcr ¼ 1:37 m

This result can be obtained by using Equation 7.18 where the section factor for a rectangular channel is
found from Table 7.1:

Z ¼ Qcrffiffiffi
g

p

Substituting, we get

bz1:5cr ¼ Qcrffiffiffi
g

p

z1:5cr ¼ 40

8
ffiffiffiffiffiffiffiffiffi
9:81

p ¼ 1:60

or

zcr ¼ 1:37 m

Example 7.3

A trapezoidal channel with a bottom width of 15 ft has sides with slopes 1=m¼ 2. For a flow rate of
60 ft3=s, determine the critical depth.

SOLUTION

From Table 7.1, the section factor for a trapezoidal channel is

Z ¼ [(bþ mz)z]1:5

(bþ 2mz)0:5

With b¼ 15 ft, m ¼ 1
2, and Qcr¼ 60 ft3=s, substitution into Equation 7.18 gives the following at critical

flow:

15þ 0:5zcrð Þzcr½ �1:5
15þ zcrð Þ0:5 ¼ 60ffiffiffiffiffiffiffiffiffi

32:2
p ¼ 10:57

By trial and error, we find

zcr ¼ 0:785 ft

Owing to the variety of channel widths, slopes, and volume flow rates requiring trial-and-error
solutions for critical depth determinations, design calculations can be quite time consuming.
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FIGURE 7.8 Curves for determining critical depth in trapezoidal and circular channels. (From Chow, V.T.,
Open-Channel Hydraulics, McGraw-Hill, Inc., New York, 65, 1959. With permission.)

Consequently, a chart has been prepared for critical depth computations (Figure 7.8). Use of the
chart is straightforward, as is illustrated in the following example.

Example 7.4

Rework Example 7.3 using Figure 7.8.

SOLUTION

To use the chart, we first find

Z

b2:5
¼ Qcr

b2:5g0:5
¼ 60

152:532:20:5
¼ 0:012

With m given as 1
2, enter the chart at the horizontal axis for Z=b

2.5¼ 0.012 to the m ¼ 1
2 line; find

zcr
b

¼ 0:052

Solving, we obtain

zcr ¼ 0:052(15)

zcr ¼ 0:78 ft
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7.5 EQUATIONS FOR UNIFORM OPEN-CHANNEL FLOWS

In this section, we will develop equations for laminar and for turbulent open-channel flow. The
conditions are that the liquid depth and flow rate are constant at any cross section; the water surface
and the channel bottom are parallel. Up to now, we have considered the open channels of study to be
horizontal, whereas in fact there must be at least a very mild slope in the channel to sustain the flow.
The forces of importance are friction (due to viscosity) and gravity. Pressure forces, as we will see,
are not as significant. For open-channel flow to exist, gravity forces must overcome the friction or
viscous forces, and this requires a nonzero slope.

7.5.1 LAMINAR OPEN-CHANNEL FLOW

Let us first consider laminar flow down an incline. This type of flow occurs in a thin sheet of liquid
flow on, for example, a long, sloping roof. Frictional forces are significant. The case we will
examine is flow down a very wide incline that is essentially two-dimensional. Figure 7.9 illustrates
the situation—the x-direction is along the surface, the z-direction is normal to it, and the y-direction
is into the plane of the page. For laminar flow, only the velocity in the x-direction, Vx, is nonzero.
Moreover, we expect Vx to be a function of only z. An expected-velocity profile (Vx versus z) is
shown in the figure.

Figure 7.10a shows a control volume consisting of an infinitesimal volume element with
x-directed forces of pressure, gravity, and shear acting on it. By applying the momentum equation,
we obtain

z

h
x

Vx (z)

FIGURE 7.9 Laminar uniform open-channel flow.
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z

g V sin

g V cos 

dx

+ d

 p
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z

p +       dz
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FIGURE 7.10 Control volume with forces acting on it for uniform open-channel flow.
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X
Fx ¼ ma ¼ 0

because the acceleration is zero. By substitution,

X
Fx ¼ �t dx dyþ (tþ dt)dx dyþ rg dx dy dz sin uþ p dy dz� pþ @p

@x
dx

� �
dy dz ¼ 0

Simplifying yields

dt

dz
þ rg sin u� @p

@x
¼ 0 (7:19)

To evaluate p and @p=@x, we now write the momentum equation for the z-direction. Referring to
Figure 7.10b, we have, for a non-accelerating control volume,

X
Fz ¼ 0

or

X
Fz ¼ p dx dy� pþ @p

@z
dz

� �
dx dyþ rg dx dy dz cos u ¼ 0

Simplifying, we get

@p

@z
¼ rg cos u (7:20)

Integrating with respect to z gives

p ¼ rgz cos uþ f1(x)þ C1 (7:21)

where: f1(x) is an unknown function of x
C1 is a constant of integration

To evaluate f1(x) and C1, we must ensure that Equation 7.21 satisfies the boundary condition

At z ¼ h, p ¼ patm ¼ a constant

Applying the boundary condition to Equation 7.21 brings

patm ¼ rgh cos uþ f1(x)þ C1

We therefore conclude that

f1(x) ¼ 0

and

C1 ¼ patm � rgh cos u
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Substitution into Equation 7.21 gives

p� patm ¼ rgz 1� h

z

� �
cos u (7:22)

which is the hydrostatic equation. Differentiating with respect to x, we get

@p

@x
¼ 0

Thus, the x-directed momentum Equation 7.19 becomes

dt

dz
¼ rg sin u

Integrating with respect to z yields

t ¼ �rgz sin uþ C2 (7:23a)

This equation must satisfy the boundary condition

At z ¼ h, t ¼ 0 ¼ shear stress exerted on surface of liquid by air

Applying the boundary condition to Equation 7.23a, we obtain

C2 ¼ rgh sin u

and therefore,

t ¼ �rg(z� h) sin u (7:23b)

For laminar flow in the x-direction, Newton’s law of viscosity is

t ¼ m
dVx

dz

Combining with Equation 7.23b and rearranging give

dVx

dz
¼ rg(h� z) sin u

After integrating with respect to z, we have

Vx ¼ rg hz� z2

2

� �
sin uþ C3 (7:24a)

which must satisfy the boundary condition of zero velocity at the wall:

At z ¼ 0, Vx ¼ 0
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Applying this boundary condition gives C3¼ 0. Thus, after simplification, the velocity is

Vx ¼ rg

m

h2

2
2z
h
� z2

h2

� �
sin u (7:24b)

The maximum velocity occurs where z¼ h:

Vx max ¼ rg

m

h2

2
sin u (7:25)

In terms of Vxmax, Vx is

Vx

Vxmax

¼ 2z
h
� z2

h2

� �
laminar flow

down an incline

� �
(7:26)

A dimensionless plot of Vx=Vxmax versus z=h is provided in Figure 7.11.
The volume flow rate is obtained by integration of Equation 7.24b over the cross-sectional

flow area:

Q ¼
ðh
0

ðb
0

Vx dy dz

where b is the width of the channel. After substitution and integration, we obtain

Q ¼ rgh3b

3m
sin u ¼ gh3b

3n
sin u

laminar flow

down an incline

� �
(7:27)

Thus, gravity directly influences the volume flow rate, whereas kinematic viscosity is inversely
proportional to it. Forces due to pressure do not influence Q.

7.5.2 REYNOLDS NUMBER AND TRANSITION

Just as in pipe flow, there exists a transition region in open-channel flow between the laminar and
turbulent regimes. Again, the Reynolds number is the basis on which the flow can be classified. In
open-channel flow, the Reynolds number is defined as

Re ¼ rVRh

m
(7:28)

z/h

1

0

Vx /Vx max

FIGURE 7.11 Dimensionless velocity distribution for laminar flow down an incline.
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where the characteristic length Rh is the hydraulic radius defined earlier as the ratio of cross-
sectional flow area to wetted perimeter. The hydraulic radius is one-fourth the hydraulic diameter,
which was introduced in Chapter 5. For flow in an open channel, transition occurs over the
Reynolds number in the range of 5� 102 to 2� 103. For our purposes, we will assume that
transition occurs at a Reynolds number of 1 000. To achieve this value in a rectangular channel
3 m wide carrying water at a depth of 1 m, the velocity of flow is calculated to be

V ¼ 1 000m
rRh

¼ 1 000 0:89� 10�3ð Þ
(1 000)(3)(1)=5

¼ 1:48� 10�3 m=s ¼ 1:48 mm=s

where property values were obtained from Table A.5. In most open-channel flows, the velocity is
usually several meters per second. Thus, most common open-channel flows are turbulent.

As with flow in pipes, open-channel flows exhibit frictional characteristics. Because of the
highly turbulent nature of the flow, these frictional effects are for the most part independent of
the Reynolds number. Experiments have shown that the one-dimensional approximation is suitable
for modeling open-channel flows. In the following paragraphs, we will develop equations for this
purpose.

7.5.3 TURBULENT OPEN-CHANNEL FLOW

Consider a uniform open-channel flow in a prismatic channel at steady conditions. The flow is fully
turbulent and is assumed to be one-dimensional; that is, the velocity is a constant at any point in a
given cross section. Figure 7.12 illustrates the situation with the x-direction along the channel and
the z-direction upward and normal to the channel bottom. The y-direction is into the paper. The
liquid depth is h.

The control volume shown has forces due to pressure, gravity, and viscosity acting on it. The
momentum equation in the x-direction is

X
Fx ¼ 0

¼ �tw dAs þ rgA dx sin uþ pA� pþ @p

@x
dx

� �
A ¼ 0

where: tw¼wall shear stress
dAs¼wall area over which tw acts and is equal to the product of wetted perimeter and dx
A¼ cross-sectional area of the flow

x

z

h

pA

p+     dx  A
p

xw dAs

dx

gA dx
g A dx sin 

FIGURE 7.12 A control volume for one-dimensional, turbulent, uniform open-channel flow.
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As with laminar flow, it can be shown that @p=@x¼ 0; consequently, pressure does not enter into the
mathematical model for uniform flow. The x-momentum equation thus becomes

tw(Pdx)þ rgA dx sin u ¼ 0

or

tw ¼ rg
A

P
sin u ¼ rgRh sin u (7:29)

where P is the wetted perimeter. The wall shear stress is expressed in terms of a friction factor as in
pipe flow:

tw ¼ f

4
rV2

2
(7:30)

Combining with Equation 7.29 and solving for velocity, we obtain

V ¼ 8gRh

f
sin u

� �1=2

(7:31)

The term sin u is called the slope because for small angles, sin u¼ tan u¼ u, or the slope S. Equation
7.31 is known as the Chezy formula, which was later modified to better describe experimental data.
It was originally believed that

ffiffiffiffiffiffiffiffiffiffi
8g=f

p
was a constant dependent on surface roughness only. When

experiments showed that it also depends on channel dimensions, the following formula was derived:

ffiffiffiffiffi
8g
f

s
¼ 1

n
Rhð Þ1=6 (7:32)

where n is called the Manning roughness coefficient with dimensions of (L)1=6. Coefficient n is a
function of several factors: the roughness of the channel wall; the vegetation, if any, that is common
in natural streams; channel irregularity such as changes in cross section (sand bars, ridges,
depressions, holes, etc.); channel alignment, which depends on curvature of the path (smooth as
opposed to sharp); and several other factors detailed in hydraulics texts. This coefficient has the
same significance in open-channel flow as «=D has in pipe flow. Typical values of the Manning
coefficient for various channel shapes and beds are provided in Table 7.2.

Combining Equations 7.31 and 7.32 gives the Manning formula for open-channel flow:

V ¼ Rhð Þ2=3(S)1=2
n

(7:33)

This equation is independent of liquid properties and applies only to fully developed turbulent flow.
The liquid velocity in an open channel is thus a function of slope, channel geometry, and an inverse
function of the wall roughness.

Example 7.5

Water flows in a 2-m-diameter culvert at a depth of 1.2 m. The culvert is uniform in cross section, made
of concrete, and laid on a slope of 0.58. Determine the volume flow rate through the culvert.
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SOLUTION

The geometry of the cross section is given in Table 7.1, where z¼ 1.2 m and D¼ 2 m. The equations for
area and the other factors are given in terms of a, and a is found in terms of z by writing

D

2
þ D

2
cos 180� a

2

	 

¼ z

or

1þ cos 180� a

2

	 

¼ 1:2

Solving, we get

a ¼ 203� ¼ 3:53 rad

Substituting into the appropriate equations of Table 7.1 gives

A ¼ D2

8
(a� sina) ¼ (2)2

8
(3:53� sin 3:53)

¼ 1:95 m2

TABLE 7.2
Average Values of the Manning Roughness Coefficient for Various Channels
and Bed Materials

Manning Coefficient, n

Channel or Bed Material (m)1=6 (ft)1=6

Metal
Brass 0.010 0.0067
Steel (smooth painted or unpainted) 0.012 0.0081

Steel (welded) 0.012 0.0081
Steel (riveted) 0.016 0.011
Cast iron (coated) 0.013 0.0087

Cast iron (uncoated) 0.014 0.0094
Wrought iron (black) 0.014 0.0094
Wrought iron (galvanized) 0.016 0.011

Corrugated metal 0.024 0.016

Nonmetal
Cement (concrete) 0.012 0.0081
Wood 0.012 0.0081
Wood planks 0.015 0.010

Clay 0.015 0.010
Brickwork 0.014 0.0094
Rubble masonry (cemented) 0.025 0.017
Asphalt (smooth) 0.013 0.0087

Excavated or dredged
Earth (straight, uniform, weathered) 0.022 0.012
Earth (winding, sluggish, some weeds) 0.030 0.020
Channels (not maintained, weeds, brush) 0.080 0.054

Source: Adapted from Chow, V.T., Open-Channel Hydraulics, McGraw-Hill, Inc., New York, 1959.
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and

Rh ¼ D

4
1� sina

a

� �
¼ 2

4
1� sin 3:53

3:53

� �
¼ 0:55 m

For a slope of 0.58, we calculate S¼ sin u¼ sin 0.5¼ 0.008 73. (Note also that tan 0.5¼ 0.008 73 and
0.58¼ 0.008 73 rad.) For a concrete culvert, Table 7.2 shows n¼ 0.012 m1=6. Assuming fully turbulent
flow, the Manning equation (Equation 7.33) applies:

V ¼ Rhð Þ2=3(S)1=2
n

¼ (0:55)2=3(0:008 73)1=2

0:012
¼ 5:23 m=s

As a check on the turbulent-flow assumption, we find

Re ¼ rVRh

m
¼ 1 000(5:23)(0:55)

0:89� 10�3
¼ 3:23� 106 > 103

Because the Reynolds number is greater than 1 000 (the transition value), the flow is turbulent.
The volume flow rate is calculated as

Q ¼ AV ¼ 1:95(5:23)

Q ¼ 10:2 m3=s

Example 7.6

A rectangular concrete channel with a width of 18 ft conveys water at 350 ft3=s. The channel has a slope
of 0.001. Determine the liquid depth for uniform flow. Is the flow supercritical or subcritical?

SOLUTION

From Table 7.2, we get n¼ 0.0081 ft1=6. For a rectangular cross section, Table 7.1 shows that

Rh ¼ bz

bþ 2z

Substitution into Equation 7.33 yields

V ¼ bz

bþ 2z

� �2=3 S1=2

n
¼ Q

bz

or

18z
18þ 2z

� �2=3 ffiffiffiffiffiffiffiffiffiffiffi
0:001

p

0:0081
¼ 350

18z

Simplifying, we get

18z
18þ 2z

� �2=3

¼ 4:981
z
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Solving by trial and error yields the following:

z (ft) LHS RHS

5 2.18 0.996
4 2.77 1.25
3 1.72 1.66
2.75 1.64 1.81

2,85 1.67 1.75
2.9 1.69 1.72
2.92 1.69 1.705

2.93 1.70 1.70

Thus, the depth for uniform flow is

z ¼ 2:93 ft

For critical flow, we use Equation 7.17a:

V2
cr

g
¼ zm

where: Vcr ¼ Q

bzcr

zm ¼ zcr

So, by substitution,

Q2

b2z2crg
¼ zcr

or

z3cr ¼
(350)2

182(32:2)

zcr ¼ 2:27 ft

Because z> zcr we conclude that the flow is subcritical. Alternatively, we find that

V2

gz
¼ Q2

b2z3g
¼ 3502

182(32:2)(2:93)3
¼ 0:466

Because the Froude number is less than unity, the flow is subcritical.

As we saw in the last example, uniform flow calculations require a trial-and-error solution.
As with critical flow, dimensionless curves have been prepared for uniform flow to simplify the
calculation procedure. Figure 7.13 is a graph of AR2=3

h =b8=3 and AR2=3
h =D8=3 versus z=b and z=D.

Thus, knowing the channel cross section and material allows us to find the depth for uniform flow.
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Example 7.7

Find the uniform flow depth for the channel described in Example 7.6 (rectangular; b¼ 18 ft, S¼ 0.001,
n¼ 0.008 1 ft1=6, and Q¼ 350 ft3=s). Use Figure 7.13.

SOLUTION

The volume flow rate in the channel is given by

Q ¼ AV ¼ AR2=3
h S1=2

n

from which we find

AR2=3
h ¼ Qn

S1=2
¼ 350(0:0081)ffiffiffiffiffiffiffiffiffiffiffi

0:001
p ¼ 89:65

With b¼ 18 ft,

AR2=3
h

b8=3
¼ 89:65

(18)8=3
¼ 0:0403

Using Figure 7.13, enter the chart from the horizontal axis at 0.0403; moving to the m¼ 0 line, read from
the vertical axis:

z

b
¼ 0:16
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FIGURE 7.13 Curves for finding uniform depth in open-channel flow. (From Chow, V.T., Open-Channel
Hydraulics, McGraw-Hill, Inc., New York, 130, 1959. With permission.)
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which yields

z ¼ 0:16(18)

z ¼ 2:88 ft

This result is different by only 1.7% from the 2.93 ft found by trial and error in Example 7.6.

7.6 HYDRAULICALLY OPTIMUM CROSS SECTION

A hydraulically optimum cross section in open-channel flow is one that provides maximum
conveyance or volume-carrying capacity for a given flow area. In the preceding discussion, we
found that the discharge in an open channel can be obtained from the Manning formula for velocity:

Q ¼ AV ¼ AR2=3
h S1=2

n

or

Q ¼ A5=3S1=2

P2=3n
(7:34)

from which it is seen that for a given slope and area, the wetted perimeter P must be minimized if Q
is to be maximized. Of the four cross sections in Table 7.1, the semicircle has the least perimeter
with the same area. Thus, the semicircle is said to be the most hydraulically efficient of all cross
sections. In practice, however, it may be impractical to construct a semicircular channel owing to
conventional construction techniques and use of materials. (Digging and earth-moving methods
produce planar walls more conveniently, for example, and materials such as bricks and wood are
manufactured in planar configuration.) It is therefore of practical interest to examine hydraulically
optimum cross sections for other shapes.

Consider a channel of rectangular cross section. The channel width is b, and the liquid depth
is z. The flow area is

A ¼ bz

or

b ¼ A

z

and the wetted perimeter is

P ¼ 2zþ b

In terms of area,

P ¼ 2zþ A

z

For maximum discharge, the perimeter P must be a minimum; differentiating with respect to z and
setting the result equal to zero yield
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dP

dz
¼ 2� A

z2
¼ 0

Solving, we get

z2 ¼ A

2
¼ bz

2

or

z ¼ b

2

So for maximum flow through a rectangular open channel, the liquid depth should equal half the
channel width.

Example 7.8

Determine the dimensions of a hydraulically optimum trapezoidal cross section using the notation of
Figure 7.14.

SOLUTION

The area for the trapezoidal section is

A ¼ bzþ z2 cosa

sina
¼ bzþ z2 cota (i)

Rewriting, we have

b ¼ A

z
� z cota

The wetted perimeter is

P ¼ bþ 2z
sina

¼ A

z
� z cotaþ 2z

sina

Differentiating with respect to z gives

dP

dz
¼ � A

z2
� cot aþ 2

sina

b

z

m

1
z/sin 

FIGURE 7.14 A trapezoidal cross section.
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For minimum perimeter, dP=dz¼ 0. Solving, we obtain

z2 ¼ A sina

2� cosa
(ii)

Next differentiate z with respect to a and set the result equal to zero:

2z
dz

da
¼ A

(2� cosa) cosa� sina(sina)

(2� cosa)2

� �
¼ 0

which becomes

2 cosa� 1 ¼ 0

We find that

cosa ¼ 1
2

a ¼ 60�

Substituting into Equation ii for a gives

z2 ¼ Affiffiffi
3

p

or

A ¼ z2
ffiffiffi
3

p

Combining with the equation for area (Equation i),

A ¼ bzþ z2 cota ¼ bzþ z2ffiffiffi
3

p

we obtain

bzþ z2ffiffiffi
3

p ¼ z3
ffiffiffi
3

p

or

b ¼ 2
ffiffiffi
3

p

3
z

The length of the sloping side is

z

sin a
¼ z

sin 60
¼ 2

ffiffiffi
3

p

3
z ¼ b

The wetted length along the sloping sides is the same as the bottom width b. Thus, for a given cross-
sectional area, the trapezoidal section that gives a minimum perimeter is half a hexagon. This result can
also be derived with the equations of Table 7.1.
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7.7 NONUNIFORM OPEN-CHANNEL FLOW

As we mentioned earlier, we will confine our discussion to steady flows. Having previously
examined uniform flows, in this section we focus on the two types of nonuniform flow: gradually
varied flow and rapidly varied flow.

7.7.1 GRADUALLY VARIED FLOW

In preceding sections, we considered only uniform flow in which the liquid surface in the open
channel remained parallel to the channel bottom. We were able to develop expressions for velocity
in both laminar and turbulent regimes. Although these expressions are adequate for most open-
channel flows, the water depth in a river can change by as much as 100 ft over a distance of 5 mi.
In modeling such flows, it is important to remember that the change in depth is gradual. Here again,
forces of pressure, viscosity, and gravity influence the flow. In contrast to uniform flow, we will see
that pressure does influence the velocity of nonuniform flow. Because the change in flow depth is
gradual, moreover, we can assume that frictional losses at any section are given by the Manning
equation for uniform flow. Gravity is the primary driving force.

Figure 7.15 illustrates a control volume for analysis of gradually varied flow. The x-direction
is taken to be in the direction of flow, the z-direction is normal to the channel bottom, and the
y-direction is into the page. The momentum equation for the x-direction is

X
Fx ¼

ð
C

ð
S

Vx(rVn)dA

Applied to Figure 7.15, we have

pA� (pþ dp)(Aþ dA)� tw dAs þ rgA dx sin u ¼ rQ(V þ dV � V)

where: p¼ pressure
A¼ cross-sectional area
tw¼wall shear stress
dAs¼wetted perimeter times dx
u¼ angle of inclination of the channel

Simplifying, we obtain

�p dA� A dp� dp dA� twP dxþ rgA dx sin u ¼ rAV dV

pA

(p+ dp)(A+ dA)

+d

V+dV

w dAs

dx

g V

x

V
z

FIGURE 7.15 Gradually varied flow.
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Neglecting dp dA as a second-order term leaves

�d(Ap)� twP dxþ rgA dx sin u ¼ rAV dV (7:35)

The continuity equation is

Q ¼ AV ¼ (Aþ dA)(V þ dV)

or

AV ¼ AV þ AdV þ V dAþ dA dV

Again neglecting the second-order term, we rearrange this equation to solve for V dV:

V dV ¼ �V2 dA

A

Substituting into Equation 7.35 yields

�d(Ap)� twP dxþ rgA dx sin u ¼ �rV2 dA (7:36)

It is now necessary to evaluate the term

d(Ap) ¼ A dpþ p dA

This evaluation can be done only if a specific cross section is chosen. In this discussion, we
will assume a rectangular section of width b and varying water depth z. The area is A¼ bz, and
dA¼ b dz. The pressure at the centroid at any section is found with the hydrostatic equation

p ¼ rgzc

where zc is the liquid depth from the surface to the centroid of the cross section. For a rectangular
section of liquid depth z,

zc ¼ z

2
cos u

and so

p ¼ rg
z

2
cos u

By substitution, then,

d(Ap) ¼ d bz rg
z

2
cos u

	 

¼ b rg

2
cos u

� �
d z2
� �

¼ rgbz dz cos u

Substitution into Equation 7.36 yields

�rgbz dz cos u� twP dxþ rgbz dx sin u ¼ �rV2b dz
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Dividing by bz and regrouping terms give

rg sin u� tw
P

A

� �
dx ¼ rg cos u� rV2

z

� �
dz

After further rearrangement, we have

cos u� V2

gz

� �
dz ¼ sin u� tw

Rhrg

� �
dx (7:37)

By combining the following definition of tw,

tw ¼ f

4
rV2

2
¼ f

8g
rgV2

with

ffiffiffiffiffi
8g
f

s
¼ 1

n
R1=6
h

we get

tw ¼ n2

R1=3
h

rgV2

Substitution into Equation 7.37 yields

cos u� V2

gz

� �
dz ¼ sin u� n2V2

R4=3
h

 !
dx

or

dz

dx
¼ sin u� n2V2=R4=3

h

cos u� V2=gz
(7:38)

which is the differential equation for gradually varied flow. Because this equation is nonlinear, it
cannot be integrated directly to obtain a closed-form solution for the depth z. Instead, numerical
means or a stepwise integration is required.

Before proceeding, however, let us investigate Equation 7.38 for uniform supercritical and
subcritical flows. First we use the approximation that cos u¼ 1 for small u. This assumption is
reasonable for gradually varied flow. If the flow is uniform and V2=gz 6¼ 1, then dz=dx¼ 0; Equation
7.38 becomes

0 ¼ sin u� n2V2

R4=3
h
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With V¼Q=A, we have

sin u ¼ n2Q2

A2R4=3
h

or

Q ¼ AR2=3
h

n

ffiffiffiffiffiffiffiffiffiffiffi
sin u

p

which is identical to the previously derived equation (Equation 7.34) for Q for uniform flow. Only
one depth corresponds to this condition of uniform flow for a given slope, flow rate, and area. If the
flow is supercritical, then V2=gz> 1, and the denominator of the right-hand side of Equation 7.38 is
negative. If the slope sin u is greater than that corresponding to uniform flow, then dz=dx is negative.
Thus, the depth decreases with distance downstream. Alternatively, if the slope sin u is less than
that corresponding to uniform flow, then dz=dx is positive, and depth increases with distance
downstream. For subcritical flow, V2=gz< 1, and the opposite effects are predicted. These com-
ments are summarized in Figure 7.16. The surface curves illustrated there can be calculated with
Equation 7.38.

One important application of Equation 7.38 is in calculating a backwater curve—the liquid
surface upstream of a barrier placed in the channel. The results obtained, in turn, depend on the
upstream flow conditions. If the upstream flow is subcritical V <

ffiffiffiffiffiffiffiffi
gzcr

p� �
, then Equation 7.38

predicts the situation depicted in Figure 7.17a. If the upstream flow is supercritical V >
ffiffiffiffiffiffiffiffi
gzcr

p� �
,

then Equation 7.38 predicts that height increases in the upstream direction as in Figure 7.17b. It is
not physically possible for the height to increase in the upstream direction, because far upstream
the backwater curve should smoothly intersect the uniform flow curve. Figure 7.17b shows the
backwater curve diverging from it.

dz sin   – n2V 2/Rh
4/3

dx 1 – V 2/gz

Subcritical
V 2/gz   1

Supercritical
V 2/gz   1

Uniform flow
sin     n2V 2/Rh

4/3

dz/dx   0

sin     n2V 2/Rh
4/3

dz/dx   0
sin     n2V 2/Rh

4/3

dz/dx   0
sin     n2V 2/Rh

4/3

dz/dx   0
sin     n2V 2/Rh

4/3

dz/dx   0

FIGURE 7.16 Analysis of Equation 7.38 with cos u� 1.
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When a supercritical flow encounters a barrier, the flow adjusts in the vicinity of the barrier,
producing a rapidly varied flow such as a hydraulic jump (huge barrier with respect to the flow
depth) or a rise and drop (small barrier). Figure 7.18 illustrates both of these flows.

From the previous discussion, we conclude that in backwater curve calculations, Equation 7.38
is useful only for the physical situation depicted in Figure 7.17a: subcritical flow. To use the
equation for solving practical problems, we must rewrite it in a finite difference form as

Dz

Dx
¼ sin u� n2V2

avg=R
4=3
havg

cos u� V2
avg=gz

(7:39a)

where the subscript ‘‘avg’’ denotes an average value. It is apparent that over a channel length Dx, all
the flow variables change. To overcome this difficulty, we use average values.

Example 7.9

The city of Memphis, Tennessee, is subject to heavy rainfalls during certain times of the year. Drainage
ditches have been dug throughout the city. Most are concrete-lined and all drain ultimately into the
Mississippi River.

Consider one such rectangular, concrete-lined channel dug out to a width of 2.5 m and inclined at a
slope of 0.002. The channel is very long, and at one end there is a dam that partially restricts the flow. At
the dam, the water depth is 3.5 m as sketched in Figure 7.19. Determine the variation of depth with
upstream distance if the volume flow rate is 8 m3=s.

SOLUTION

From Table 7.2 for a concrete-lined channel, n¼ 0.012 m1=6. We must first determine if the flow is
subcritical. If not, a rapidly varied flow situation exists, and the backwater curve Equation 7.39a does not
apply. To find critical depth, use Equation 7.17a:

zcr

(a) Subcritical flow (b) Supercritical flow

Backwater curve predicted
by Equation 7.38

Uniform flow
without barrier

zcr

FIGURE 7.17 Flow upstream of a barrier.

Hydraulic swell
Hydraulic

jump

FIGURE 7.18 Supercritical flow adjustment to a barrier: (a) a hydraulic jump ahead of the barrier and (b) a
hydraulic swell over the barrier.
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V2
cr

g
¼ zm ¼ zcr

With V¼Q=A¼Q=bzcr, we have

Q2

b2z2crg
¼ zcr

After rearranging and substituting,

z3cr ¼
Q2

b2g
¼ (8)2

(2:5)2(9:81)
¼ 1:044

Solving, the critical flow depth is

zcr ¼ 1:014 m

Next, to find the uniform flow depth, we can formulate a trial-and-error solution or we can use
Manning’s equation and Figure 7.13. Here we use the latter method:

Q ¼ AV ¼ A
R2=3
h S1=2

n

Rearranging and substituting,

AR2=3
h ¼ Qn

S1=2
¼ 8(0:012)ffiffiffiffiffiffiffiffiffiffiffi

0:002
p ¼ 2:147

So

AR2=3
h

b8=3
¼ 2:147

(2:5)8=3
¼ 0:19

At this value, Figure 7.13 gives

z

b
¼ 0:52

from which we find

z ¼ 0:5(2:5) ¼ 1:3 m

3.5 m

FIGURE 7.19 Backwater curve upstream of a dam.
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The flow is subcritical because the uniform flow depth is greater than the critical depth; that is, z> zcr.
Equation 7.39a (which applies) is rewritten to solve for Dx:

Dx ¼ Dz
cos u� V2

avg=gzavg

sin u� n2V2
avg=R

4=3
havg

 !

After substituting, we get

Dx ¼ Dz
1� V2

avg=9:81zavg

0:002� (0:012)2V2
avg=R

4=3
havg

 !
(i)

Far upstream of the dam, the depth is 1.3 m. At the dam, the depth is given as 3.5 m. The depth z thus
varies from 1.3 to 3.5 m. We arbitrarily divide this depth range into five increments, as shown in columns
1 and 2 of Table 7.3, which displays a summary of the calculations. The last column shows the values of
Dx upstream of the dam. A sketch of the backwater curve (z versus x) is given in Figure 7.20.

TABLE 7.3
Summary of Calculations for the Channel of Example 7.9

z Dz zavg R4=3
havg ¼

bzavg
bþ 2zavg

� �4=3

Vavg ¼ Q
bzavg

1� V2
avg

9:81zavg
0:002� (0:012)2V2

avg

R4=3
havg

Dx
(Equation i)

3.5
0.5 3.25 0.872 5 0.984 6 0.969 6 0.001 883 529

3.0
0.5 2.75 0.817 0 1.164 0.949 8 0.001 745 544

2.5

0.5 2.25 0.747 1 1.422 0.908 4 0.001 570 579
2.0

0.5 1.75 0.656 3 1.829 0.805 1 0.001 155 697

1.5
0.2 1.4 0.575 1 2.286 0.619 5 0.000 427 1 451

1.3

Note: Channel data: b¼ 2.5 m, n¼ 0.012 m1=6, Q¼ 8 m3=s, and S¼ 0.002.

1 451 697
x (m)

544 529
0

1

2

3

3.5

z (
m

)

579

FIGURE 7.20 Backwater curve of Example 7.9.
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Note that Equation 7.39a applies only to a rectangular channel. For other types, we have

dz

dx
¼ sin u� n2V2=R4=3

h

cos u� 2V2=gz
(triangular) (7:39b)

and

dz

dx
¼ sin u� n2V2=R4=3

h

cos u� V2(bþ 2mz)=[g(bþ mz)z]
(trapezoidal) (7:39c)

The derivation of each of these formulas is reserved as an exercise. By inspection of Equation 7.39
and Table 7.1, we conclude that the general form of these equations is

sin u� n2V2

R4=3
h

 !
dx ¼ cos u� V2

gzm

� �
dz

gravity friction pressure momemtum
term term term or

inertia
term

Example 7.10

The city of New Orleans, Louisiana, is situated at a relatively low elevation. It is bounded on the north by
Lake Pontchartrain and on the south by the Mississippi River. To prevent flooding, levees have been
built along the shores of these water masses. Drainage canals have been dug within the city; each leads to
the edge of the levee, where a pump is used at appropriate times (as during heavy rainfall) to pump water
from the canal and over the levee into the lake.

Consider a single drainage canal, trapezoidal in cross section and lined with concrete. The bottom
width is 11 ft, and the channel sides slope upward at 608. During a rainfall of significant amount, the
canal water rises to a point at which the pump is actuated and begins moving water over the levee. After
the rainfall, water still drains into the canal from streets, and the pump continues working until the water
level drops to nearly its original depth. For this example, we will examine the water surface profile
upstream of the pump but neglect the runoff contribution to the flow. The channel slopes downward in
the flow direction at an angle of S¼ 0.0001. The pump flow rate is 350 ft3=s. At the pump, the water
depth is 5.5 ft. Determine the shape of the backwater curve. (See Figure 7.21.)

Pumping
station

Levee

Lake

1
m 60 5.5 ft

FIGURE 7.21 Schematic of the system described in Example 7.10.
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SOLUTION

For a concrete-lined channel, n¼ 0.0081 ft1=6 from Table 7.2. From Table 7.1 for a trapezoidal channel,

A ¼ (bþ mz)z

Rh ¼ (bþ mz)z

bþ 2z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ m2

p

zm ¼ (bþ mz)z

bþ 2mz

Z ¼ [(bþ mz)z]1:5ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bþ 2mz

p

From the geometry of the section,

tan (90� � a) ¼ m

If a¼ 608, then

m ¼ tan 30�ð Þ ¼ 0:577

With b¼ 11 ft, by substitution we get

A ¼ (11þ 0:577z)z

Rh ¼ (11þ 0:577z)z
11þ 2:309z

zm ¼ (11þ 0:577z)z
11þ 1:154z

Z ¼ (11þ 0:577z)zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11þ 1:154z

p

The critical depth of the flow can be calculated with Equation 7.17a:

V2
cr

g
¼ zm

From continuity, Vcr¼Q=A; therefore,

Q2

11þ 0:577zcrð Þ2z2crg
¼ 11þ 0:577zcrð Þzcr

11þ 1:154zcr

3502

11þ 0:577zcrð Þ2z2cr(32:2)
¼ 11þ 0:577zcrð Þzcr

11þ 1:154zcr

Or, after simplifying,

11þ 0:577zcrð Þ3z3cr
11þ 1:154zcr

¼ 3804
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By trial and error, we find

zcr LHS

10 209,000
8 96,360
6 36,400
3 3,850

2.9 3,460
2.99 3,811

or

zcr ¼ 2:99 ft

Alternatively, Figure 7.8 can be used to find the critical depth as follows. Equation 7.18 gives

Z ¼ Qffiffiffi
g

p ¼ 350ffiffiffiffiffiffiffiffiffi
32:2

p ¼ 61:9

To use the chart, we first find

Z

b2:5
¼ 61:9

112:5
¼ 0:154

Using this value with m¼ 0.577, we find from Figure 7.8 that

zcr
b

¼ 0:26

So

zcr ¼ 0:26(11) ¼ 2:86 ft

This result is 4% different from the 2.99 ft obtained by trial and error. Although use of either value is
permissible, 2.99 ft is closer to being exact. To find the uniform flow depth, we use Manning’s equation
and Figure 7.13:

Q ¼ AV ¼ AR2=3
h S1=2

n

AR2=3
h

b8=3
¼ Qn

S1=2b8=3

¼ (350)(0:0081)

(0:0001)1=2(11)8=3
¼ 0:473

Using this value with m¼ 0.577, we find from Figure 7.13 that

z

b
¼ 0:66

and for uniform flow, we obtain

z ¼ 0:66(11) ¼ 7:26 ft
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Since the uniform flow depth is greater than the critical depth, the flow is subcritical, and Equation 7.39c
applies. At the pump, the depth is 5.5 ft; far upstream, the depth is uniform at 7.26 ft. The depth range is
divided into four increments arbitrarily, and Equation 7.39c is rewritten in difference form:

Dx ¼ Dz
1� V2

avg 11þ 0:577zavg
� �

= (32:2) 11þ 0:577zavg
� �

zavg
� �

0:0001� n2V2
avg=R

4=3
h avg

( )
(i)

Table 7.4 summarizes the calculations for this equation. A plot of the results is given in Figure 7.22.

7.7.2 RAPIDLY VARIED FLOW

As we previously discussed, an open-channel flow can adjust in two ways to a barrier placed in the
stream. If the flow is subcritical, the flow adjusts gradually, and Equation 7.39 can be applied. If the
flow is supercritical, the flow adjusts over a relatively short channel length and is therefore called a
rapidly varied flow. An example of such a flow is the hydraulic jump. Downstream of the jump, the
flow becomes subcritical. Because this change occurs over a short length of channel, the energy loss
is considerable. One common example of a hydraulic jump is in a kitchen sink where a downward-
moving jet strikes the flat horizontal surface; the flow moves outward radially along the sink surface,
and a jump occurs.

In this discussion, we will consider jumps occurring in rectangular cross sections; other cross
sections are reserved for the problems at the end of the chapter. A hydraulic jump is illustrated in
profile view in Figure 7.23. The channel bed is horizontal. The forces acting are due to gravity and a
change in pressure across the jump. It is permissible to neglect the forces due to viscosity because of
the relatively short channel length and the highly turbulent nature of the jump.

The momentum equation for one-dimensional flow becomes

X
Fx ¼ rQ V2 � V1ð Þ

or

p1A1 � p2A2 ¼ rQ V2 � V1ð Þ (7:40)

From hydrostatics, for a rectangular cross section,

p ¼ rgzc

where zc is the distance from the centroid of the liquid cross section to the surface. For a rectangular
section,

zc ¼ z

2

(See Table 7.1 for other cross sections.) By substitution into Equation 7.40, we obtain

rg
z1
2

bz1ð Þ � rg
z2
2

bz2ð Þ ¼ rQ V2 � V1ð Þ (7:41)

From continuity,

Q ¼ AV ¼ bz1V1 ¼ bz2V2
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TABLE 7.4
Summary of Calculations for the Channel of Example 7.10

z Dz zavg Aavg¼ (11þ 0.577zavg) zavg R4=3
havg ¼

Aavg

11þ 2:309zavg

� �4=3

Vavg ¼ Q
Aavg

1� V2
avg

	 

11þ 0:577zavg
� �

(32:2) 11þ 0:577zavg
� �

zavg
� � 0:0001� n2V2

avg

R4=3
havg

0
@

1
A Dx (Equation i)

7.26
0.26 7.13 107.8 6.192 3.247 0.9416 �1.171�10�5 �20,906

7.0
0.5 6.75 100.5 5.889 3.486 0.9296 �3.516�10�5 �13,219

6.5

0.5 6.25 91.29 5.496 3.834 0.9089 �7.548�10�5 �6,020
6.0

0.5 5.75 82.33 5.095 4.251 0.8798 �1.327�10�4 �3,311

5.5 SDx¼�43,466 ft

Note: Channel data: b¼ 11 ft, m¼ 0.577, Q¼ 350 ft3=s, n¼ 0.0081 ft1=6, and S¼ 0.0001.
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Combining with Equation 7.41 and simplifying give

bz21
2

þ Q2

gbz1
¼ bz22

2
þ Q2

gbz2
(7:42)

Rearranging, we get

z22 � z21 ¼
2Q2

gb2
1
z1

� 1
z2

� �
¼ 2Q2

gb2
z2 � z1
z1z2

� �

Dividing by z2 – z1 gives

z2 þ z1 ¼ 2Q2

gb2z1z2
(7:43)

from which we get

z22 þ z1z2 � 2Q2

gb2z1
¼ 0

This quadratic equation can be solved for the downstream height as

z2 ¼ � z1
2
	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z21
2
þ 2Q2

gb2z1

s
(7:44a)

We reject the negative root because a negative z2 has no physical meaning. The equation can now be
rearranged to give dimensionless quantities:

z2
z1

¼ � 1
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4
þ 2Q2

gb2z31

s
(7:44b)

0.577

11 ft 20,906 ft 13,219 ft
6,020 ft

3,311 ft

0 ft
2 ft
4 ft
6 ft
8 ft

1

FIGURE 7.22 Backwater curve for the trapezoidal channel of Example 7.10.

z

x

V1

V2

p1A1

p2A2

z1

z2

FIGURE 7.23 A hydraulic jump.
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A graph of this equation is given in Figure 7.24, where the horizontal axis is the upstream Froude
number and the vertical axis is z2=z1. If z1¼ z2, then it is obvious that no jump has occurred, so the
only portion of the graph that is physically significant is the portion corresponding to z2=z1> 1. The
upstream Froude number, as mentioned earlier, must be greater than 1 (supercritical flow) if a jump
is to exist.

The energy loss across the jump, ghj, can be calculated by using the modified Bernoulli equation
applied at the free surface:

patm
r

þ V2
1

2
þ gz1 ¼ patm

r
þ V2

2

2
þ gz2 þ ghj

from which we have

ghj ¼ V2
1 � V2

2

2
þ g z1 � z2ð Þ

By combining with the continuity equation,

Q ¼ AV ¼ bz1V1 ¼ bz2V2

we get

ghj ¼ Q2

2b2z21
� Q2

2b2z22
þ g z1 � z2ð Þ (7:45)

Substitution for Q2=b2 from Equation 7.43 gives

ghj ¼ z2 þ z1ð Þgz2
2 2z1ð Þ � z2 þ z1ð Þgz1

2 2z2ð Þ þ g z1 � z2ð Þ

which finally becomes

hj ¼ z2 � z1ð Þ3
4z1z2

(7:46a)

which is valid only for a rectangular channel. Thus, for a given volume flow, the rate of energy loss
in a hydraulic jump is

dW

dt
¼ rgQhj (7:46b)

0
0

1

2

3

4

5

1 2 3 4 5
Fr1= Q2/gb2z3

1

z 2
/z

1

6 7 8 9 10

FIGURE 7.24 Depth ratio for hydraulic jump as a function of upstream Froude number.
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An alternative representation of hydraulic jump can be developed from a graph of height z as a
function of the parameter appearing in Equation 7.42—namely, the momentum of the flow:

M ¼ Q2

gbz
þ bz2

2
(7:47)

Figure 7.25 illustrates the relationship between this graph and a hydraulic jump. The curve is similar
to a specific-energy diagram but should not be confused with it. The heights z1 and z2 are known as
conjugate depths of the jump that lie on a vertical line through the graph. The critical depth zcr
occurs when M is a minimum. When z< zcr, the flow is supercritical, and the curve corresponds to
the upstream condition. When z> zcr, the flow is subcritical, and the curve corresponds to the
downstream condition. The momentum of the flow in both conditions is the same.

Example 7.11

A hydraulic jump occurs in a channel 1 m wide that conveys water at 0.6 m3=s. The upstream depth of
flow is 0.2 m.

a. Determine the downstream height.
b. Calculate the energy loss in the jump.
c. Sketch a momentum diagram for the channel and show where the operating point appears.

SOLUTION

a. For water, r¼ 1 000 kg=m3. For the hydraulic jump of the problem, Equation 7.44b applies:

z2
z1

¼ � 1
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4
þ 2Q2

gb2z31

s

By substitution, we find

2Q2

gb2z31
¼ 2(0:6)2

9:81(1)2(0:2)3
¼ 9:17

and so

z2
z1

¼ � 1
2
þ 3:07 ¼ 2:57

Mmin

zcr

z

z2z1

M= Q2

gbz
bz2

2
+

M

Fr2    1

Fr1    1

FIGURE 7.25 A momentum diagram for a hydraulic jump.
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Therefore,

z2 ¼ 2:57(0:2)

z2 ¼ 0:514 m

b. The rate of energy loss in the jump is found with

hj ¼ z2 � z1ð Þ3
4z1z2

¼ (0:514� 0:2)2

4(0:514)(0:2)

hj ¼ 0:075 3 m

The rate of energy loss is

dW

dt
¼ rgQhj ¼ 1 000 kg=m3

	 

9:81 m=s2
	 


0:6 m3=s
� �

(0:075 3 m)

or

dW

dt
¼ 443 W

c. The momentum for this flow situation is

M ¼ Q2

gbz
þ bz2

2
¼ (0:6)2

9:81(1)z
þ z2

2

or

M ¼ 0:036 7
z

þ z2

2

This equation is written for a constant flow rate. A plot of this equation is given in Figure 7.26.
The operating point is shown.

Similar developments for other than rectangular cross sections lead to the following formulas
for a hydraulic jump:

Triangular channel:

z31
z23

þ z1
z2

þ 1

� �
z22

z1 þ z2
¼ 3Q2

m2gz22z
2
1

(7:48)

Trapezoidal channel:

3b z1 þ z2ð Þ þ 2m z21 þ z1z2 þ z32
� � ¼ 6Q2

gz1z2

bþ m z1 þ z2ð Þ
bþ mz2ð Þ bþ mz1ð Þ

� �
(7:49)

The derivation of these equations is left as an exercise.
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7.8 SUMMARY

This chapter introduced some of the simpler topics of open-channel flow.We saw that various types of
flows can exist and that geometry greatly influences the flow itself. We calculated energies associated
with open-channel flows; from these, we determined that critical depth and uniform flow depth are
very significant. We were able to formulate an expression for velocity in both laminar and turbulent
regimes and used the turbulent expression to predict backwater surface profiles. We also found the
hydraulically optimum cross section, and finally, we wrote descriptive equations for hydraulic jumps.
This introduction to open-channel flow constitutes a solid foundation for further study in hydraulics.

PROBLEMS

Sluice Gate and Venturi Flume

7.1 The right-hand side of Equation 7.7 for flow under a sluice gate in a rectangular channel is
Q2=b2z31g. Show that this term is really the Froude number upstream of the gate.

7.2 A rectangular channel 8 ft wide conveys water at 300 ft3=s. A partially raised sluice gate
in the channel restricts the flow. Determine the downstream liquid height if the upstream
height is 6 ft.

7.3 A rectangular channel 0.5 m wide conveys water. A partially raised sluice gate in the channel
restricts the flow such that the upstream height is 1 m and the downstream height is 0.3 m.
Determine the volume flow rate under the gate.

7.4 A rectangular channel 2.3 m wide conveys water at a volume flow rate of 30 m2=s. A partially
raised sluice gate in the channel restricts the flow so that the downstream water height is 0.68 m.
Determine the upstream water height.

7.5 Plot the sluice gate equation (Equation 7.7) to obtain a curve similar to that in Figure 7.4a.

a. Plot the following data on the same graph to determine how well the sluice gate equation
describes actual conditions:

Qac ¼ 0:341 ft3=s (all cases)

b ¼ 0:5 ft

0.1

z1= 0.2 m

z2= 0.514 m

Q = 0.6 m
3 /s

0

0.25

0.5

0.75

1.0

0.2

z (
m

)

0.3
M (m3)

0.4 0.5

FIGURE 7.26 Graph of the momentum function for the channel of Example 7.11.
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z1 (ft) z2 (ft)

0.479 0.167

0.500 0.161
0.510 0.156
0.552 0.155
0.625 0.135
0.635 0.135
0.667 0.125
0.708 0.104

0.906 0.0989

b. Use the height data with the sluice gate equation to find Q2
th=b

2z31g. Compare to Q2
ac=b

2z31g.
(Data were taken in the University of New Orleans Fluid Mechanics Laboratory.)

7.6 a. Derive the sluice gate equation for flow in a triangular cross-sectional channel:

z2
z1

� �4

1� z2
z1

� �
¼ Q2

2m2z51g

b. Construct a plot of z2=z1 versus Q2=m2z51g.
c. Differentiate the expression to find the location of z2=z1 that corresponds to Qmax.
d. Substitute this ratio into the equation and evaluate Q2

max=m
2z51g.

7.7 Derive the sluice gate equation for a trapezoidal cross-sectional channel:

bz2 þ mz22
bz1 þ mz22

� �2

1� z2
z1

� �
¼ Q2

2gz1 bz1 þ mz21
� �2

7.8 Derive the sluice gate equation for open-channel flow in a circular channel.
7.9 A venturi flume is placed in a rectangular channel. The upstream channel width is 3 m, and the

minimum area section is of width 2 m. The upstream water height is 2 m; the height at the
throat is 1 m. Determine the volume flow rate through the channel.

7.10 A venturi flume is placed in a rectangular channel that conveys water at 250 ft3=s. The
upstream channel width is 12 ft, and the minimum width in the flume is 10 ft. The upstream
water depth is 8 ft. What is the expected water depth at the minimum width?

7.11 An open-channel-flow apparatus in a hydraulics laboratory is rectangular in cross section and
16 in. wide. A venturi flume is to be placed in the channel to give the volume flow rate. The
water height upstream of the flume is 18 in., and at the minimum width it is desired to make
the depth about 14 in. Determine the minimum width of the venturi flume for a volume flow
rate of 7 ft3=s.

Specific-Energy Diagram

7.12 Consider a rectangular channel of width 2 ft.

a. Plot a family of specific-energy lines for Q¼ 0, 3, 6, 10, and 20 ft3=s.
b. Draw the locus of critical depth points.
c. Plot Q as a function of critical depth.

368 Introduction to Fluid Mechanics



7.13 Consider a rectangular channel of width 12 m.

a. Plot a family of specific-energy lines for Q¼ 0, 8, 12, 20, and 35 m3=s.
b. Draw the locus of critical depth points.
c. Plot Q as a function of critical depth.

7.14 Consider a triangular channel of m¼ 0.4.

a. Plot a family of specific-energy lines for Q¼ 0, 4, 8, 12, and 16 ft3=s.
b. Draw the locus of critical depth points.
c. Plot Q versus critical depth.

7.15 Consider a triangular channel of m¼ 1.2.

a. Plot a family of specific-energy lines for Q¼ 0, 5, 10, 15, and 20 m3=s.
b. Draw the locus of critical depth points.
c. Plot Q versus critical depth.

7.16 Consider a trapezoidal channel with b¼ 2 ft and m¼ 0.4.

a. Plot a family of specific-energy lines for Q¼ 0, 3, 6, 12, and 20 ft3=s.
b. Draw the locus of critical depth points.
c. Plot Q versus critical depth.

7.17 Consider a trapezoidal channel of width b¼ 12 m and m¼ 0.6.

a. Plot a family of specific-energy lines for Q¼ 0, 5, 10, 20, and 30 m3=s.
b. Draw the locus of critical depth points.
c. Plot Q versus critical depth.

7.18 Consider a circular channel of diameter 2 m carrying water.

a. Plot a family of specific-energy lines for Q¼ 0, 2, 5, 10, and 20 m3=s.
b. Draw the locus of critical depth points.
c. Plot Q versus critical depth.
d. Plot depth z versus angle a.

Critical Depth and Velocity

7.19 A rectangular channel conveys water at 120 ft3=s and has a width of 12 ft. Determine
the critical depth and the corresponding critical velocity.

7.20 A rectangular channel conveys water at 100 m3=s and has a width of 15 m. Calculate the
critical depth and corresponding critical velocity.

7.21 A triangular channel with sides having m¼ 1.2 conveys water at 50 ft3=s. Determine
the critical depth and the corresponding critical velocity.

7.22 A triangular channel with sides having m¼ 1.5 conveys water at 25 m3=s. Determine the
critical depth and the corresponding critical velocity.

7.23 A trapezoidal channel with b¼ 8 ft and m¼ 1.0 conveys water at 50 ft3=s. Determine
the critical depth and the corresponding critical velocity.

7.24 A trapezoidal channel with b¼ 4 m and m¼ 1.2 conveys water at 30 m3=s. Determine the
critical depth and the corresponding critical velocity.
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7.25 A circular channel with D¼ 3.5 m conveys water at 12 m3=s. Determine the critical depth and
the corresponding critical flow velocity.

7.26 Determine the critical depth for each of the following cases assuming where applicable b¼ 10m,
m¼ 1.0, and Q¼ 200 m3=s: (a) a triangular channel, (b) a rectangular channel, and (c) a
trapezoidal channel.

7.27 Show that alternate depths in a rectangular channel are related to the critical depth by

2z21z
2
2

z1 þ z2
¼ z3cr

7.28 A triangular channel with m¼ 1.2 is made of cement rubble masonry and conveys water at a
flow rate of 50 ft3=s. At what slope will the flow be critical?

7.29 Calculate the critical depth and velocity of flow in the rectangular channel of Example 7.1 for
a volume flow rate of 80 m3=s.

7.30 Figure 7.8 for determining critical depth in trapezoidal and circular sections was presented
with no information about how the curves were derived. The derivation is investigated in this
problem for a rectangular cross section. The graph of Figure 7.8 is of zcr=b versus Z=b2.5 and
so we are seeking a relationship between these two variables for m¼ 0. In terms of the critical
depth zcr, the section factor Z for a rectangular channel is given in Table 7.1 as

Z ¼ bz1:5cr

a. By manipulating this equation appropriately, show that

zcr
b

¼ Z

b2:5

� �1=1:5

b. Select five different points on the graph of Figure 7.8 and show that they fit this equation.

7.31 Figure 7.8 for determining critical depth in trapezoidal and circular sections was presented
with no information about how the curves were derived. The derivation is investigated in this
problem for a trapezoidal cross section. The graph of Figure 7.8 is of zcr=b versus Z=b2.5, and
so we are seeking a relationship between these two variables for any m. In terms of the critical
depth zcr, the section factor Z for a trapezoidal channel is given in Table 7.1 as

Z ¼ bþ mzcrð Þzcr½ �1:5ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bþ 2mzcr

p

a. Divide this equation by b2.5 and appropriately manipulate the right-hand side to
show that

Z

b2:5
¼ zcr=bþ mz2cr=b

2
� �1:5

1þ 2mzcr=bð Þ0:5

b. Select five different points on the graph of Figure 7.8 and show that they fit this equation.
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Laminar Open-Channel Flow

7.32 Starting with Equation 7.24b, derive Equation 7.27 in detail.
7.33 Determine the average velocity for laminar flow of a Newtonian fluid down an incline. Begin

with Equation 7.24b.
7.34 A thin film of glycerine flows down an inclined surface. The film thickness is 0.2 in., and the

angle of inclination is 0.18. Plot the velocity distribution in the film. Calculate the Reynolds
number of the flow.

7.35 A 1-mm-thick film of carbon tetrachloride flows down an incline. The free-surface velocity is
3 mm=s. Plot the velocity distribution in the film.

7.36 A thin layer of liquid is falling downward along an upward-moving inclined surface, as
indicated in Figure P7.36. The liquid is Newtonian, and it is flowing under laminar conditions.
Determine the wall velocity U such that the liquid surface velocity is zero.

U

Vx

FIGURE P7.36

7.37 A thin layer of liquid is falling downward along an upward-moving inclined surface, as
indicated in Figure P7.36. The liquid is Newtonian and it is flowing under laminar conditions.
Determine the wall velocity U such that there is no net flow of liquid down the incline.

Turbulent Open-Channel Flow

7.38 Rectangular channels made of brick and known as aqueducts were once used to convey
water over land. Consider an aqueduct 6 ft wide, filled to a depth of 4 ft, and laid on a slope of
0.0008. Determine the volume carrying capacity of the channel.

7.39 Cooling water used in condensers of power plants is sometimes conveyed to cooling ponds
before being returned to the body of water from which it came. Since the cooling pond gives
the water opportunity to lose heat, the risk of thermal pollution is reduced. One such pond is
fed by a channel that is rectangular in cross section, 3 m wide, and formed by dredging. The
channel is well maintained, uniform, and weathered. If the water depth is 2 m and the channel
slope is 0.09, calculate the flow rate in the channel.

7.40 A triangular channel is asphalt-lined and has m¼ 1.2. The channel is laid on a slope of 0.001
and filled to a depth of 2 m. Calculate the volume-carrying capacity of the channel.

7.41 A trapezoidal channel carries water at a flow of 200 ft3=s. Its width is 8 ft, and m¼ 1.0. The
channel is made of riveted steel.

a. Calculate the slope necessary to maintain a uniform depth of 3 ft.
b. Calculate the critical depth of the flow.

7.42 A circular culvert 4 ft in diameter and made of corrugated metal is filled to a depth of 3.2 ft.
Determine the volume flow rate through the culvert and the critical depth of flow. Take the
slope to be 0.001.

Flow in Open Channels 371



7.43 A triangular channel made of clay conveys water and has m¼ 1.6. If the channel slope is 0.002
and the water depth is 1 m, determine the volume flow rate and the critical depth of flow.

7.44 Water is flowing in a 6 m diameter culvert at a depth of 4.7 m. The culvert is uniform, made of
concrete, and laid on a slope of 18. Determine the volume flow rate through the culvert.

Uniform Open-Channel Flow

7.45 A trapezoidal channel has b¼ 2 m and conveys water at 60 m3=s. The channel is made of
wood and is laid on a slope of 0.001. Calculate m if the water depth is uniform at 4 m.

7.46 A rectangular cement channel 8 ft wide conveys water at 120 ft3=s. The channel slope is 0.001.
Determine the liquid depth for uniform flow. Is the flow supercritical or subcritical?

7.47 A rectangular brick-lined channel is 2 m wide and conveys water at 40 m3=s. The channel
slope is 0.000 8. Determine the liquid depth for uniform flow and for critical flow. Is the flow
supercritical or subcritical?

7.48 A triangular channel with m¼ 1.1 is made of cemented rubble masonry and laid on a slope of
0.000 5. The channel conveys water at a flow rate of 10 m3=s. Determine the depth for uniform
flow and for critical flow. Is the flow supercritical or subcritical?

7.49 An excavated earth-lined trapezoidal channel that is poorly maintained conveys water at a
flow of 2 m3=s. If the channel slope is 0.001, b¼ 0.4 m, and m¼ 0.6, what is the uniform flow
depth? Is the flow subcritical or supercritical?

7.50 A trapezoidal channel made of wood planks is used as a log slide so that freshly cut timber can
be transported to a waterway. The channel conveys water at 2 ft3=s, b¼ 4 ft, m¼ 0.4, and the
sloping angle at which it is laid is 388. Determine the depth of water for uniform flow. Is the
flow subcritical or supercritical?

7.51 A semicircular channel of diameter 0.9 m is used as a water slide in an amusement park. The
slide starts at a position 10 m high and over the course of 100 m descends to the ground.
The channel is made of a plastic having n¼ 0.004 m1=6. The volume flow of water is 2 m3=s.
What is the uniform flow depth? Is the flow subcritical or supercritical?

Hydraulically Optimum Cross Section

7.52 Determine the hydraulically optimum cross section for the triangular channel shown in
Figure P7.52.

z

m

1

FIGURE P7.52

7.53 Rework Example 7.8 using the equations of Table 7.1.
7.54 In the discussion of hydraulically optimum cross sections, a rectangular channel was used to

show how the depth and width were related. Perimeter was expressed in terms of area
(P¼ 2zþA=z) and then differentiated with respect to z to obtain z¼ b=2. So for a rectangular
section, the flow is maximized when liquid depth is equal to half the width.

a. As an alternative method of obtaining this same result, express area in terms of perimeter
and differentiate with respect to z.

b. Show that this method also yields z¼ b=2.
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7.55 Repeat Example 7.8 by expressing perimeter P in terms of area A and differentiating the
expression for area with respect to z. Set the result equal to zero and solve.

Backwater Curve

7.56 Consider a rectangular brick-lined channel of width 10 ft and inclined at a slope of 0.0001.
The channel is long and contains a dam at one end. The water depth just before the dam is
6.5 ft. The flow rate in the channel is 30 ft3=s. Determine the shape of the backwater curve
(see Figure 7.19).

7.57 A rectangular channel made of cement is 3.5 m wide and conveys water at a flow rate of
12 m3=s. A dam is placed at the channel end; the water depth there is 5 m. The channel slope is
0.000 2. Determine the shape of the backwater curve (see Figure 7.19).

7.58 Derive an expression for gradually varied flow in triangular channels (Equation 7.39b).
7.59 A triangular channel is made of cement (m¼ 1.0) and conveys water at a flow rate of 20 m3=s.

A dam in the channel is used to contain the flow; the water depth at the dam is 6.2 m.
The channel slope is 0.000 1. Determine the shape of the backwater curve (see Figure 7.19).

7.60 Derive an expression for gradually varied flow in trapezoidal channels (Equation 7.39c).
7.61 A trapezoidal channel is brick-lined with b¼ 4 m, m¼ 0.8, and S¼ 0.000 2. The water

depth over a dam placed at the downstream end is 7.2 m. For a volume flow rate over the
dam of 100 m3=s, determine the shape of the backwater curve (see Figure 7.19).

7.62 Consider a rectangular earth channel dug out to a width of 3 m and inclined at a slope of
0.001. The channel is very long, and at its end a dam partially restricts the flow. At the dam,
the water depth is 5 m and the flow rate over the dam is 10 m3=s. Determine the variation of
depth upstream.

Hydraulic Jump

7.63 A hydraulic jump occurs in a rectangular channel 6 ft wide that conveys water at 150 ft3=s.
The upstream flow depth is 2 ft.

a. Determine the downstream height.
b. Calculate the energy loss in the jump.
c. Sketch a momentum diagram for the channel and show where the operating point appears.

7.64 A rectangular open channel is 3 m wide and contains a sluice gate. When the gate is partially
raised, the flow passing underneath is supercritical. Downstream, the flow encounters a barrier
and adjusts via a hydraulic jump. (See Figure P7.64.) The height upstream of the gate is 3 m,
and the volume flow rate is 20 m3=s. Determine the water height after the jump.

z
3 m

FIGURE P7.64

7.65 Equations 7.44 through 7.46 were derived for a hydraulic jump in a rectangular channel.
Derive similar expressions for a triangular channel; that is, derive Equation 7.48.

7.66 Repeat Problem 7.54 for a trapezoidal channel; that is, derive Equation 7.49.
7.67 A hydraulic jump occurs in a rectangular channel 3 m wide that conveys water at 20 m3=s. The

upstream depth of flow is 1 m.
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a. Determine the downstream height.
b. Calculate the energy loss in the jump.
c. Sketch a momentum diagram for the channel and show where the operating point appears.

Computer Problems

7.68 It is indicated in Problem 7.30 that the critical depth in a rectangular channel is given by

zcr
b

¼ Z

b2:5

� �1=1:5

Use the computer to generate a log–log graph of zcr=b versus Z=b2.5 (horizontal axis).
7.69 It is indicated in Problem 7.31 that the critical depth in a trapezoidal channel is given by

Z

b2:5
¼ zcr=bþ mz2cr=b

2
� �1:5

1þ 2mzcr=bð Þ0:5

Use the computer to generate a log–log graph of zcr=b versus Z=b2.5 (horizontal axis) for
m¼ 0.5 and for m¼ 1.

7.70 It is indicated in Problem 7.31 that the critical depth in a trapezoidal channel is given by

Z

b2:5
¼ zcr=bþ mz2cr=b

2
� �1:5

1þ 2mzcr=bð Þ0:5

Use the computer to generate a log–log graph of zcr=b versus Z=b2.5 (horizontal axis) for
m¼ 1.5 and for m¼ 2.

7.71 Solve the backwater curve problem of Example 7.9 by letting Dz¼ 0.1 m. Compare the results
for SDx of both solutions.

7.72 In Example 7.2, the critical depth for a rectangular channel having b¼ 8 m was found to be
1.37 m when Q¼ 40 m3=s. For this same channel, let Q vary from 0 to 80 m3=s and determine
the corresponding critical depths. Graph zcr versus Q (horizontal axis).

Supplementary Problems

Parts a through c refer to the prismatic cross sections given in Problems 7.73 through 7.80. For the
prismatic section assigned, perform the following calculations, assuming where appropriate that
b¼ 6 m and m¼ 2:

a. Write geometry factor equations for each column in Table 7.1.
b. Plot a family of specific-energy lines for Q¼ 0, 10, 20, 40, and 80 m3=s. Draw the locus of

critical depth points.
c. Determine the critical depth of flow for various flow rates ranging from 0 to 80 m3=s and

plot Q versus zcr.
d. Write the general backwater curve equation for the cross section.
e. Determine the depth necessary if the cross section is hydraulically optimum.

7.73

z
m

1

b

FIGURE P7.73
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7.74

z
m/2 m

11

b

FIGURE P7.74

7.75

z

b
3b

b/3

FIGURE P7.75

7.76

zm
1

b

b/3

FIGURE P7.76

7.77

z

4b
7

m
1

b

3b
7

FIGURE P7.77

7.78

z

b/3

m
1

FIGURE P7.78

7.79

1
8 m

z

FIGURE P7.79
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7.80

z

m

bt

1

b

FIGURE P7.80

Design Problems

7.81 Open Channel Inlet to a Power Plant
A power plant is located near a river and uses river water as a cooling medium. Steam in the
power plant passes through a turbine and is then condensed in a condensing unit. Heat is
transferred from the condensing steam to the river water. Water is drawn from the river into an
open channel that must be sized. The open channel conveys the river water to pumps, which
move the water through condensers and back to the river.

The open-channel inlet is to convey water at a flow rate of 1000 gal=s over a straight run
length of 250 ft. The water will usually contain a number of contaminants that might harm the
pumps. Contaminants include anything someone might want to discard into the river, and they
must be kept out of the open-channel inlet. In addition, there might be fish in the river that
could enter as well, which is also unacceptable for a number of reasons.

a. Interview an engineer who practices in the area of water resources to determine the type of
things to expect in an open-channel inlet.

b. Determine currently acceptable methods for filtering out contaminants and keeping fish
away from an open-channel inlet.

c. Design the channel by selecting its width, depth, channel material, and filters, if any.
Should the water velocity in the channel be kept under a certain limit to help with the
contaminant problem?

d. Explain all design decisions.

7.82 Design of a Water Slide

An amusement park water slide is to be designed. People of all ages, sizes, and body shapes
will climb stairs to the top of the slide and ride down on mats. The slide is to be inclined at a
specified angle and can contain many curves. Water is fed to the slide to help the fun-lover
slide down with little frictional resistance. Several features of the design need attention, but
here we consider only the slide itself.

a. Select height, width, path, and material of construction for the slide. What shape should its
cross section have? Should the slide be one long piece of material, or should it consist of
many parts that are attached together?

b. Select a material and a size for the mats.
c. How much water should be directed down the slide?
d. Make a layout drawing of the slide and limit the size of the slide itself to no more than

1 acre of land.
e. Determine the cost of the slide and its life expectancy.
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8 Compressible Flow

In previous chapters, we primarily investigated the flow of liquids. The density of a liquid remains
essentially constant under the action of externally applied pressures. For example, a pressure of 200
atm exerted on water raises its density by less than 1% of that at 1 atm. It is therefore assumed with
negligible error that no changes of density occur in a liquid as a result of its flow. Such flows are
generally referred to as incompressible. On the other hand, flowing gases can experience consid-
erable density changes as a result of externally applied pressures. Consider the ideal gas equation
presented in Chapter 1:

r ¼ p

RT

It is seen that density depends directly on pressure and inversely on temperature. Thus, density
changes in the flow can in fact occur. Such flows, called compressible flows, are discussed in this
chapter.

A study of compressible flows is important because of the wide range of examples that exist:
natural gas piped from producer to consumer, high-speed flight through air, discharging of com-
pressed gas tanks, flow of air through a compressor, flow of steam through a turbine, and many
others. Mathematical modeling of compressible flows thus has many applications. The material
presented here includes calculation of sonic velocity in a fluid, the concept of isentropic flow, flow
through a nozzle, shock waves, and compressible flow in a pipe with friction.

However, several preliminaries should first be presented. The energy equation was presented in
Chapter 3. In the study of thermodynamics, the energy equation is known as the first law, with
which the idea or existence of internal energy is associated. That is, the energy equation forms a
basis for the postulate that substances or systems possess a property called internal energy. There is
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also a second law of thermodynamics, analogous to the first law, that forms a basis for the postulate
that substances or systems possess still another property called entropy (denoted as S or, on a per-
unit-mass basis, s). The dimension of entropy is (F � L=t) or per unit mass [F � L=(t �M)], where t is a
temperature unit—for example, Btu=slug � R in engineering units or J=(kg � K) in SI units.

Entropy can be thought of as being associated with probability. As a substance changes from a
less probable state to a more probable state, its entropy increases. Specifically, consider a membrane
separating two chambers. One chamber contains a gas; the other is evacuated. When the membrane
is ruptured, we are more likely to find gas on both sides of the membrane than on just one side with a
vacuum on the other. After we rupture the membrane, the system goes from a less probable state to
a more probable one with a net increase in entropy.

A concept related to entropy is that of an irreversible process. All naturally occurring processes
are irreversible. If a cup of hot coffee is placed in a room, heat is transferred from the coffee to the
surroundings. It is unlikely that the coffee will regain its heat merely by being removed from the
room; to personify the situation, it is unlikely that we can convince molecules in a room to become
more active in a region about the coffee in order to heat it. There is a continuing increase in entropy
in all naturally occurring processes because they tend to change from a less probable to a more
probable state. The idea of efficiency is related to the concept of entropy. A higher efficiency means
that we are accomplishing a given objective with a smaller total increase in entropy.

It is convenient in many problems to make calculations for a reversible process and later, if
necessary, to determine the magnitude of the deviations from the irreversible process being
modeled. Thus, in many of the topics presented in this chapter, we will assume a reversible process
with no losses and no change in entropy. Such processes are also adiabatic. And because they
involve no change in entropy, they are called isentropic processes. The mathematical implications
associated with isentropy are not obvious but will be presented where appropriate.

8.1 SONIC VELOCITY AND MACH NUMBER

Consider a long cylinder filled with a fluid and containing a piston. The piston is suddenly moved to
the right an infinitesimal amount at a velocity dV (Figure 8.1). If the fluid is incompressible, the
entire liquid volume will move to the right. If the fluid is compressible, the gas molecules in layer A
will first compress and in turn compress those in layer B. These will then compress the molecules in
layer C, and so on. The process of compression of gaseous layers propagates to the right at a finite
velocity called the sonic velocity; the compression process is like a wave traveling through the
medium at sonic speed. After passage of the wave, the fluid velocity equals the piston velocity dV.

Figure 8.2a shows a wave traveling to the right in a duct. Upstream of the wave, the fluid is
stationary. After passage of the wave, the fluid velocity is dV. To analyze the wave, we must first
render it stationary by imposing a velocity equal to �a on all velocities in the system (assuming
one-dimensional flow, of course). The result is shown in Figure 8.2b. The wave is stationary in the
new coordinate system and the control surface is drawn about it. Fluid moves into the control
volume (and into the wave) from the right at a velocity of a, with a pressure p and density r. After
passing through the control volume, the fluid velocity becomes a� dV. The pressure and density

Piston

A

dV
a

B C D E F

FIGURE 8.1 A piston-cylinder arrangement containing a fluid.
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downstream are pþ dp and rþ dp. We write the continuity equation for the control volume of
Figure 8.2b as

rAa ¼ (r þ dr)A(a� dV)

Canceling area A and eliminating second-order terms leaves

a dr ¼ r dV

or

dV ¼ a dr

r
(8:1)

The momentum equation in the flow direction is

X
F ¼ _m(Vout � Vin)

¼ rAa(a� dV � a)

¼ �rAa dV

Neglecting viscous effects (shear stress at the wall), the forces acting in the flow direction on the
control volume are due only to pressure differences. Thus, the momentum equation is

pA� (pþ dp)A ¼ �rAa dV

Simplifying yields

dp ¼ ra dV (8:2)

Combining with Equation 8.1 gives

dp ¼ a2dr

Fluid velocity   0

(a)

(b)

dV a

a
pp + dp

+ da – dV

y

x

FIGURE 8.2 A moving wave rendered stationary.
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or

a2 ¼ dp

dr
(8:3)

Thus, to determine sonic velocity, we must know the variation of density with pressure. We will
assume that the gas with which we are concerned is ideal or perfect and that it has constant specific
heats cp and cy. The flow upstream and downstream is uniform. There is a temperature gradient
within the control volume but not at the control surface bounding the control volume itself.
Therefore, there is no heat transfer across the control surface, so the process of wave propagation
is adiabatic. Changes in other properties occur across the wave; but because these are infinitesimal,
the departure from reversibility is negligible. The process of wave propagation, since it is both
adiabatic and reversible (with negligible error), is thus assumed to be isentropic. From thermo-
dynamics, we get the following for a perfect gas with constant specific heats undergoing an
isentropic process:

p

rg
¼ C1 (8:4)

where g¼ cp=cy and C1 is a constant. Evaluating the derivative in Equation 8.3 using Equation 8.4
gives

dp

dr
¼ C1gr

g�1 ¼ gC1r
g

r

dp

dr
¼ gp

r

With the ideal gas assumption,

r ¼ p

RT

we get

dp

dr
¼ gRT (8:5)

Combining with Equation 8.3 gives the sonic velocity for an ideal gas with constant specific heats:

a ¼
ffiffiffiffiffiffiffiffiffi
gRT

p
(8:6)

As an example, let us calculate the sonic velocity in air at room temperature (T¼ 708F¼ 5308R):

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:4(1710 ft � lbf=slug � �R)(530�R)

p
¼ 1126 ft=s

where values for g and R can be found in Table A.6. Note that absolute temperature units must be
used.

Equation 8.3 gives the sonic velocity in terms of dp and dr. For an incompressible fluid, dr¼ 0,
and Equation 8.3 predicts an infinite sonic velocity. Generally, the more incompressible the
substance, the higher the sonic velocity.
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As we saw in the piston-cylinder arrangement, the presence of a disturbance in a compressible
medium is signaled by the propagation of a compression or sound wave. The speed at which the
wave travels is the sonic velocity. This leads us to the question of what happens if an object that is
causing a disturbance travels faster than the sonic velocity. We can analyze such a situation by
considering a wing traveling through air. The wing acts very much like the piston, compressing air
just ahead of it and thereby sending sound waves in all directions. For a wing traveling at subsonic
speed, we can sketch streamlines about the wing, as in Figure 8.3. The air layer at A senses the
presence of the wing and signals point B. The layer at B has time to adjust to the oncoming wing and
in addition signals point C and so forth. The resultant streamline pattern is gradually changing and
denotes smooth flow past the wing. For supersonic flow, the wing moves faster than the compres-
sion waves it is creating. The resultant flow pattern is illustrated in Figure 8.4. The air layer at point
A signals point B, but the airfoil reaches point B before the signal does. Thus, point B has no time to
adjust smoothly to the oncoming wing. Instead, the layer at B must adjust abruptly via formation of
a shock wave. A shock wave is a very abrupt change in flow properties; in reality, it is a small
fraction of an inch in thickness. It is a discontinuity in the flow and is by no means isentropic. After
the flow passes the leading edge of the airfoil, it encounters a corner where it must turn sharply.
After the turn, the air has room to expand because the wing thickness is decreasing. The abrupt turn
is accomplished by what is called an expansion wave. Finally, at the trailing edge of the airfoil, the
flow again adjusts via another shock wave.

From the preceding discussion, it is apparent that two different flow regimes exist in compres-
sible flow: subsonic and supersonic. The criterion used to distinguish between the two is the Mach
number, defined as the ratio of flow velocity to the sonic velocity in the medium:

M ¼ V

a

If the Mach number is less than 1, subsonic flow exists. If the Mach number is greater than 1, the
flow is supersonic. If the Mach number equals 1, the flow is sonic.

A
D C B

FIGURE 8.3 A wing traveling at subsonic velocity through air.

C B

Shock
wave Expansion

wave
Shock
wave

A

FIGURE 8.4 A diamond-shaped airfoil traveling at supersonic velocity.
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8.2 STAGNATION PROPERTIES AND ISENTROPIC FLOW

In this section, we discuss stagnation properties, in particular stagnation temperature and stagnation
pressure. Stagnation temperature is the temperature attained in a fluid by bringing the flow
adiabatically to rest at a point. The kinetic energy of the flow is transformed entirely into enthalpy.
A stagnation property is not to be confused with a static property, which is measured by an instrument
moving at the local stream velocity. The two states that we are considering are the stagnation (or total)
state and the static state. We can write the energy equation between these two states as

ht ¼ hþ V2

2

in which the subscript t represents the stagnation or total property where the velocity is zero. The
energy equation is written for steady flow in the absence of potential-energy changes and no heat
transfer or shaft work. Assuming that we have an ideal or perfect gas with constant specific heats,
the change in enthalpy is

dh ¼ cp dT

and the energy equation becomes

cpTt ¼ cpT þ V2

2

This is a defining equation for stagnation temperature in terms of static temperature and kinetic
energy of the flow. Dividing by cp and rearranging give

Tt ¼ T þ V2

2cp

or

Tt ¼ T 1þ V2

2cpT

� �
(8:7)

Combining the ideal gas law

r ¼ p

RT

with the definition of enthalpy

h ¼ uþ p

r

yields the following:

h� u ¼ RT

For a perfect gas with constant specific heats,

du ¼ cy dT
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and, by substitution,

cpT � cyT ¼ RT

or

cp � cy ¼ R

Multiplying by cp=cy gives

cp
cp
cy

� 1

� �
¼ Rcp

cy

or

cp(g � 1) ¼ gR

Solving for cp yields

cp ¼ gR

g � 1
(8:8)

Combining with Equation 8.7 and the definition a2¼ gRT gives

Tt
T

¼ 1þ V2(g � 1)
2gRT

¼ 1þ V2

a2
g � 1
2

or

Tt
T

¼ 1þ g � 1
2

M2 (8:9)

Thus, for any ideal gas with a known value of specific heat ratio, the ratio of stagnation to static
temperature is known when the Mach number is given. Equation 8.9 is tabulated in Table D.1 as
T=Tt versus M for g¼ 1.4.

To illustrate the importance of stagnation temperature, consider adiabatic flow in a channel of
varying cross section (Figure 8.5). The energy equation written between points 1 and 2 is

M
1 2

FIGURE 8.5 Adiabatic flow in a channel of varying cross section.
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d~Q

dt
¼ _Q ¼ _m1 h1 þ V2

1

2

� �
� _m2 h2 þ V2

2

2

� �

For adiabatic flow, _Q¼ 0. Assuming a perfect gas, the equation becomes

cpT1 þ V2
1

2
¼ cpT2 þ V2

2

2
cpTt1 ¼ cpTt2

or

Tt1 ¼ Tt2

Regardless of how the static properties and the kinetic energy vary in an adiabatic process, the
stagnation temperature thus remains constant. It can therefore be used as a reference property
throughout the flow field, provided that adiabatic flow exists.

Stagnation pressure or total pressure pt of a flowing fluid is the pressure attained by bringing
the flow isentropically to rest at a point. For an ideal gas,

r ¼ p

RT

and at the stagnation state,

rt ¼
pt
RTt

Combining, we obtain

rtTt
rT

¼ rt
p

(8:10)

For an isentropic process, p=rg¼ a constant, or

p

rg
¼ pt

rgt

which becomes

rt
r
¼ pt

p

� �1=g

Combining with Equation 8.10 gives

Tt
T

� �
pt
p

� �1=g

¼ pt
p

pt
p

� �(g�1)=g

¼ Tt
T
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or

Tt
T

� �g=(g�1)

¼ pt
p

Substituting into Equation 8.9 yields

pt
p
¼ 1þ g � 1

2
M2

� �g=(g�1)

(8:11)

Thus for an ideal gas with a known ratio of specific heats g, pt=p can be determined when the Mach
number M is given. Equation 8.11 is tabulated in Table D.1 as p=pt versus M for g¼ 1.4. For
isentropic flow, stagnation pressure and stagnation temperature are constant; for adiabatic flow,
stagnation temperature is constant, but stagnation pressure can change.

Example 8.1

Air flows in a duct of inside area 12 in.2. At a certain point in the flow, the velocity, temperature, and
pressure are measured to be 1000 ft=s, 4808R, and 12 psia, respectively.

a. Determine the mass flow rate.
b. Determine the Mach number.
c. Determine the stagnation pressure.
d. Determine the stagnation temperature.

SOLUTION

a. The mass flow rate is found with

_m ¼ rAV

The density is calculated by assuming an ideal gas:

r ¼ p

RT
¼ (12 lbf=in:2)(144 in:2=ft2)

1710 ft � lbf=(slug � �R)½ �(480�R)

where the gas constant R for air was obtained from Table A.6. The density then is

r ¼ 0:002105 slug=ft3

The area and velocity were given in the problem statement, so

_m ¼ (0:002105 slug=ft3(12=144 ft2)(1000 ft=s)

or

_m ¼ 0:175 slug=s

b. The sonic velocity is calculated with

a ¼
ffiffiffiffiffiffiffiffiffi
gRT

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:4 1710 ft � lbf=(slug � �R)½ �(480�R)

p
¼ 1072 ft=s
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The Mach number then is

M ¼ V

a
¼ 1000

1072

M ¼ 0:93

c. The stagnation pressure is found with Equation 8.11:

pt
p
¼ 1þ g � 1

2
M2

� �g=(g�1)

We can use this equation or we can use instead the values found in Table D.1. Here we use the
table; at a Mach number of 0.93, we read

p

pt
¼ 0:5721

T

Tt
¼ 0:8525

The stagnation pressure is found as

pt ¼ p

0:5721
¼ 14:7 psia

0:5721

or pt ¼ 25:7 psia

d. For the stagnation temperature,

Tt ¼ T

0:8525
¼ 480�R

0:8525

or Tt ¼ 5638R

Regarding these properties, we note that sensors moving with the fluid would read 4808R and 14.7
psia (static properties). If the kinetic energy of the flow is converted without heat loss (adiabatically)
to enthalpy, the properties would be measured as 5638R and 25.7 psia.

8.3 FLOW THROUGH A CHANNEL OF VARYING AREA

The type of flow considered in this section is steady isentropic flow. Examples of channels of
varying area include rocket nozzles, jet engine intake, or passage between adjacent turbine
blades. Again we will assume one-dimensional flow with properties considered constant at any
cross section.

Figure 8.6 illustrates flow in a channel of varying cross section. The control volume chosen
shows only pressure forces acting. Viscous effects are assumed to be negligible because the flow is
taken as being isentropic. Gravitational forces too are negligible because we are dealing with a
gaseous medium. The continuity equation for the flow is

ðð
CS

rVn dA ¼ 0

_mout � _min ¼ 0

(r þ dr)(Aþ dA)(V þ dV)� rAV ¼ 0

386 Introduction to Fluid Mechanics



Simplifying and dropping second-order terms yield

dr

r
þ dA

A
þ dV

V
¼ 0 (8:12)

The momentum equation in the direction of flow is

X
F ¼

ðð
CS

VrVn dA

With pressure as the only external force, we have

X
F ¼ pAþ pþ dp

2

� �
dA� (pþ dp)(Aþ dA)

Combining, simplifying, and neglecting the dp dA term give

X
F ¼ �A dp (8:13a)

The integral term (the momentum flux) becomes

ðð
CS

VrVn dA ¼ rAV(V þ dV � V) ¼ rAV dV (8:13b)

The momentum equation is then

�dp ¼ rV dV (8:13c)

Substitution for dV from the continuity Equation 8.12 yields

dpþ rV2 � dr

r
� dA

A

� �
¼ 0

V + dV
+ d

A + dA
V
A

pA (p + dp)(A + dA)

(A + dA – A)p + p + dp
2

FIGURE 8.6 Control volume for flow through a channel of varying area.
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or

dp� V2dr ¼ rV2 dA

A

Using the definition of sonic velocity, a2¼ (dp=dr), the momentum equation now becomes

dp� V2dr

a2
¼ rV2 dA

A

dp(1�M2) ¼ rV2 dA

A

(8:14)

This equation shows the effect of area change on the other flow variables for both subsonic and
supersonic flows. For subsonic flow, M< 1 and 1�M2> 0. If dA increases, as in a diverging
channel, pressure increases (from Equation 8.14) and velocity decreases (Equation 8.13c). If dA
decreases as in a converging channel, however, pressure decreases (Equation 8.14) and velocity
increases (Equation 8.13c). These are the same results as would be obtained with the equations
written in Chapter 5 for incompressible flow.

For supersonic flow, M> 1 and 1�M2< 0. If dA increases, pressure decreases and velocity
increases. If dA decreases, pressure increases and velocity decreases. This effect is the opposite of
that in the subsonic case. These comments, applied to subsonic and supersonic flows in diverging
and converging channels, are summarized in Figure 8.7.

M   1 M   1

M   1M   1

dp(1 – M2)     V 2 dA

dp   –   V dV

(a) Subsonic case

(b) Supersonic case

1 – M2   0
dA
dp
dV

1 – M2   0
dA
dp
dV

1 – M2   0
dA
dp
dV

1 – M2   0
dA
dp
dV

FIGURE 8.7 Effect of varying area on the flow variables for subsonic and supersonic flow.
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It is apparent that a subsonic flow cannot be accelerated to a supersonic velocity in a converging
nozzle. This procedure can be done only with a converging–diverging nozzle. To investigate this
effect, let us consider a converging nozzle attached to a large reservoir in which conditions are
maintained constant. Compared to flow through the nozzle, reservoir velocity is negligible; hence,
properties in the reservoir are stagnation properties. The system is sketched in Figure 8.8, which also
shows a graph of pressure versus distance from the reservoir to outside the nozzle. We will
determine how reducing the back pressure pb below the reservoir pressure pr influences the mass
flow through the nozzle. If the back pressure pb equals the reservoir pressure, then no flow exists
(curve A). If the back pressure is reduced slightly, some flow goes through the nozzle (curves B
and C), and the pressure decreases somewhat with distance. As the back pressure is further reduced,
a point is eventually reached at which sonic velocity exists at the exit plane of the nozzle (curve D).
This point is a limiting point because it is known that, in a converging nozzle, the flow cannot be
accelerated to supersonic speeds. In each case, a decrease in back pressure is sensed by the reservoir,
and in turn more flow exits through the nozzle. The decrease in back pressure is analogous to a small
disturbance that transmits a signal traveling at sonic speed to the reservoir. If the velocity at the exit
plane is sonic, however, any further decrease in back pressure is not sensed by the reservoir;
consequently, no more flow is induced.

At point D, then, the nozzle is said to be choked. For all back pressures less than that
corresponding to curve D, the pressure distribution remains the same as curve D up to the exit
plane. The flow at the exit plane is at pressure pe and expands to the back pressure pb via expansion
waves after exiting the nozzle (curves E and F).

When the nozzle is choked, the back pressure is said to be critical. The critical exit pressure
ratio is found from Equation 8.11:

pt
p
¼ 1þ g � 1

2
M2

� �g=(g�1)

m·

F E D

C

B

A

Apr

pb

p

B
C

D
E
F

x0 0
(c)(b)

Reservoir properties
pr   a constant
Tr   a constant

pe
pb

(a)

V ≈ 0

FIGURE 8.8 Flow through a converging nozzle.
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In this case, the stagnation pressure pt, which is constant throughout the nozzle, equals the reservoir
pressure pr. Also, p equals the pressure at the exit plane pe, where the Mach number equals 1; thus,
for choked flow,

pt
p
¼ pr

pe

����
cr

¼ g þ 1
2

� �g=(g�1)

(8:15)

For g¼ 1.4,

pe
pr

����
cr

¼ 0:5283

Another important parameter is the mass flow rate. This can be calculated at any point in the
nozzle where properties are known with

_m ¼ rAV

or

_m ¼ p

RT
AM

ffiffiffiffiffiffiffiffiffi
gRT

p
(8:16)

For isentropic flow, stagnation pressure and stagnation temperature are constants. By substituting
Equations 8.9 and 8.11 for Tt=T and pt=p, respectively, into Equation 8.16, we obtain an alternative
expression for mass flow rate:

_m ¼ ptffiffiffiffiffiffiffi
RTt

p A
ffiffiffi
g

p
M 1þ g � 1

2
M2

� ��(gþ1)= 2(g�1)½ �
(8:17)

Example 8.2

A converging nozzle of area 3 cm2 is attached to the exhaust of a rocket as shown in Figure 8.9.
The exhaust nozzle is supplied from a reservoir in which the pressure is 150 kPa and the temperature is
1 400 K. Calculate the mass flow rate through the nozzle for back pressures of 100 and 50 kPa. Assume
that the rocket exhaust gases have a specific heat ratio of 1.4 and a mean molecular weight of 20 kg=mol.
Assume isentropic flow through the nozzle.

SOLUTION

We first find the mass flow at critical conditions—that is, Me¼ 1. The nozzle critical pressure ratio for
g¼ 1.4 is

pe
pte

¼ 0:528

e
pr   150 kPa
Tr   1 400 K

Fuel

Oxidizer

FIGURE 8.9 Rocket nozzle of Example 8.2.
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from which we obtain

pe ¼ 0:528(150) ¼ 79:2 kPa ¼ 79 200 Pa

From Table D.1 at Me¼ 1, we find Te=Tte¼ 0.833 3; so

Te ¼ 0:833 3(1 400) ¼ 1 166 K

The gas constant is found from

R ¼
�R

MW
¼ 8:312 kJ=(mol � K)

20 kg=mol

¼ 415:7 J=(kg � K)

where �R is the universal gas constant. The mass flow can now be calculated from

_m ¼ pe
RTe

AMe

ffiffiffiffiffiffiffiffiffiffiffi
gRTe

p

At the critical point,

_m ¼ 79 200
415:7(1166)

(0:000 3)(1)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:4(415:7)(1166)

p

or

_m ¼ 0:040 kg=s for pb � 79:2 kPa

This is the mass flow rate for all back pressures that are equal to or less than 79.2 kPa. The exit pressure
will not fall below this value if the reservoir conditions are maintained.

With a back pressure of 100 kPa, we find

pe
pte

¼ 100
150

¼ 0:666

From Table D.1 at pe=pte¼ 0.666, we find Te=Tte¼ 0.89 and Me¼ 0.78. Thus,

Te ¼ 0:89(1 400) ¼ 1 246 K

The mass flow rate is

_m ¼ pe
RTe

AMe

ffiffiffiffiffiffiffiffiffiffiffi
gRTe

p
¼ 100 000

415:7(1 246)
(0:000 3)(0:78)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:4(415:7)(1 246)

p

or

_m ¼ 0:038 kg=s for pb ¼ 100 kPa

It is now apparent that the position at which Mach number equals 1 can be used as a reference
point. We have equations for critical temperature and pressure ratio. Regarding the expression for
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mass flow rate, we see that a third parameter—area—exists and that it is convenient to determine
critical area ratio. We denote the area where Mach number equals 1 as A*. Using Equation 8.17, we
write

_m ¼ ptffiffiffiffiffiffiffi
RTt

p A
ffiffiffi
g

p
M 1þ g � 1

2
M2

� ��(gþ1)= 2(g�1)½ �

and

_m* ¼ ptffiffiffiffiffiffiffi
RTt

p A*
ffiffiffi
g

p
(1) 1þ g � 1

2

� ��(gþ1)= 2(g�1)½ �

These equations could be applied to two points having different areas in a single nozzle wherein
mass flow rate and stagnation properties are constant. Taking the ratio of these equations gives

1 ¼ A

A*
M

1þ g�1
2 M2

gþ1
2

 !�(gþ1)=2(g�1)

or

A

A*
¼ 1

M

gþ1
2

1þ g�1
2 M2

 !�(gþ1)=2(g�1)

(8:18)

This equation is tabulated in Table D.1 for g¼ 1.4 as A=A* versus M. Note that for any value of
A=A*, two values of M are possible, corresponding to subsonic and supersonic flows. This
characteristic is in agreement with the statement that a converging–diverging nozzle is required to
accelerate a flow to supersonic speed.

Example 8.3

Air flows into a converging duct from an inlet with cross-sectional area of 25 in.2 to the exit, where the
area is 10 in.2. If the inlet temperature is 708F, inlet pressure is 14.7 psia, and inlet velocity is 200 ft=s,
find the conditions at the exit: Mach number, pressure, and temperature.

SOLUTION

Figure 8.10 is a sketch of the nozzle. We find

a1 ¼
ffiffiffiffiffiffiffiffiffi
gRT

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:4(1710)(70þ 460)

p
¼ 1126 ft=s

A1 A2 A*

Hypothetical
extension

FIGURE 8.10 Converging nozzle of Example 8.3.
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and

M1 ¼ V1

a1
¼ 200

1126
¼ 0:17

If the nozzle were extended, the flow would be accelerated to the point at which M¼ 1 and the area is
A*. This hypothetical point is our reference point. From Table D.1 at M1¼ 0.17,

p1
pt1

¼ 0:9800

T1
Tt1

¼ 0:9943

A1

A*
¼ 3:4635

We now calculate A2=A*:

A2

A*
¼ A2

A1

A1

A*
¼ 10

25
(3:4635) ¼ 1:385

From Table D.1 at A2=A*¼ 1.38,

M2 ¼ 0:48

p2
pt2

¼ 0:8541

T2
Tt2

¼ 0:9560

For isentropic flow, pt1¼ pt2 and Tt2¼ Tt2. With these ratios, we obtain

p2 ¼ p2
pt2

pt2
pt1

pt1
p1

p1 ¼ 0:8541(1)
1

0:9800

� �
14:7 psia

p2 ¼ 12:8 psia

and

T2 ¼ T2
Tt2

Tt2
Tt1

Tt1
T1

T1 ¼ 0:9560(1)
1

0:9943

� �
530�R

T2 ¼ 510�R

Now let us add a diverging section to the nozzle and tank of Figure 8.8 and again investigate the
effect of decreasing the back pressure (Figure 8.11). Conditions in the reservoir are assumed to be
constant. With negligible reservoir velocity, we note that reservoir temperature and pressure are
stagnation properties. If the back pressure equals the reservoir pressure, then no flow goes through
the nozzle, and curve A of pressure versus distance results. If the back pressure is slightly decreased,
curve B results. As shown, pressure decreases to a minimum at or near the minimum area, called the
throat, and increases to the back pressure at the exit. As the back pressure is further decreased, more
flow is induced through the nozzle. Eventually, the point will be reached at which sonic velocity
exists at the throat and the flow at the exit is subsonic (curve C). Any further decrease in back
pressure is not sensed by the reservoir owing to sonic velocity at the throat. Therefore, the flow is
maximum, and the nozzle is said to be choked.
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It is possible to continue lowering the back pressure until the flow at the exit is supersonic. This
condition corresponds to curve D and is in agreement with our previous conclusion that a stagnant
fluid can be accelerated to supersonic speeds with a converging–diverging nozzle and that two
solutions exist for a given area ratio with isentropic flow. For all curves shown in Figure 8.11, the
exit pressure equals the back pressure. For back pressures corresponding to curves between C and
D, the flow within the nozzle is not isentropic because a shock wave will exist in the diverging
portion. For back pressures below those of curve D, the exit pressure does not equal the back
pressure. Instead, the flow must adjust abruptly via expansion waves beyond the exit.

Example 8.4

Air flows through a converging–diverging nozzle as shown in Figure 8.12. At the throat, the
Mach number is 1. At point 1, the Mach number is 0.35, and the area is 25 cm2. The area at point

Reservoir
pr   a constant   pt
Tr   a constant   Tt

Throat

b·e·

p

pr

0 0 pb

D C

B

A

D

x

C
B
A

m·

FIGURE 8.11 Isentropic flow through a converging–diverging nozzle.

1

Air

2

3

FIGURE 8.12 Converging–diverging nozzle of Example 8.4.
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3 is 45 cm2. For both subsonic and supersonic flow at the exit (corresponding to curves C and D of
Figure 8.11), determine the following:

a. The throat area
b. The exit Mach number
c. The pressure ratio p3=p1
d. The temperature ratio T3=T1

SOLUTION

From Table A.6, for air, g¼ 1.4, and so Table D.1 can be used. The subsonic and supersonic calculations
are presented side by side:

M1 ¼ 0:35 ! Table D:1 ! p1=pt1 ¼ 0:918 8, T1=Tt1 ¼ 0:976 1,

A1=A* ¼ 1:778 0

Isentropic flow ! pt1 ¼ pt2 ¼ pt3 ; Tt1 ¼ Tt2 ¼ Tt3

Subsonic Supersonic

a: A1 ¼ 25 cm2

A* ¼ A*
A1

A1 ¼ 25
1:778 0

A* ¼ 14:06 cm2

a: A* ¼ 14:06 cm2

A3 ¼ 45 cm2

A3

A*
¼ 45

14:06
¼ 3:20

A3 ¼ 45 cm2

A3

A*
¼ 3:20

From Table D.1: From Table D.1:

b: M3 ¼ 0:18 b: M3 ¼ 2:71

p3
pt3

¼ 0:977 6

T3
Tt3

¼ 0:993 6

p3
p1

¼ p3
pt3

pt3
pt1

pt1
p1

¼ (0:977 6)(1)
1

0:918 8

� �

p3
pt3

¼ 0:042 29

T3
Tt3

¼ 0:405 1

p3
p1

¼ p3
pt3

pt3
pt1

pt1
p1

¼ (0:042 29)(1)
1

0:918 8

� �

c:
p3
p1

¼ 1:064 c:
p3
p1

¼ 0:046

T3
T1

¼ T3
Tt3

Tt3
Tt1

Tt1
T1

¼ (0:993 6)(1)
1

0:976 1

� �
T3
T1

¼ T3
Tt3

Tt3
Tt1

Tt1
T1

¼ (0:405 1)(1)
1

0:967 1

� �

d:
T3
T1

¼ 1:018 d:
T3
T1

¼ 0:415
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Example 8.5

A huge compressed air tank is slowly being emptied through a valve into a much smaller tank. The valve
itself can be considered as a converging–diverging nozzle with an exit area of 12 in.2 and a throat area of
6 in.2. Reservoir conditions are pr¼ 45 psia and Tr¼ 758F. The second tank initially has a pressure of
14.7 psia; as it fills, this pressure steadily increases.

a. Find the maximum back pressure at which the nozzle or valve is choked.
b. Determine the mass flow rate at the choked condition.

SOLUTION

Because the fluid is air (g¼ 1.4), Table D.1 can be used. A choked nozzle corresponds to curve
C or D of Figure 8.11. The maximum back pressure for choking occurs with curve C, the subsonic
solution.

a. The exit area Ae¼ 12 in.2, and the throat area for choked flow is A*¼ 6 in.2. From Table D.1,
at Ae=A*¼ 2, for subsonic flow,

Me ¼ 0:31
pe
pte

¼ 0:9355
Te
Tte

¼ 0:9811

With pte¼ pr, for isentropic flow, the valve is choked for all back pressures less than

pe ¼ pe
pte

pr ¼ 0:9355(45 psia)

pe ¼ 42:1 psia

b. The temperature at the exit for the conditions of curve C is found as

Te ¼ Te
Tte

Tr ¼ 0:9811(75þ 460)�R

Te ¼ 525�R

The mass flow rate can be calculated with the exit properties at choked conditions:

_m ¼ pe
RTe

AeMe

ffiffiffiffiffiffiffiffiffiffiffi
gRTe

p
¼ 42:1(144)

1710(525)
12
144

(0:31)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:4(1710)(525)

p

Solving, we get

_m ¼ 0:196 slug=s

As a check, we can also calculate the mass flow rate with the throat properties at choked conditions:

pth ¼ pth
pt

pr ¼ 0:528(45) ¼ 23:76 psia

Tth ¼ Tth
Tt

Tr ¼ 0:833(75þ 460) ¼ 445:7�R
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We thus obtain

_m ¼ pth
RTth

A*M
ffiffiffiffiffiffiffiffiffiffiffiffi
gRTth

p
¼ 23:76(144)

1710(445:7)
6

144
(1)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:4(1710)(445:7)

p

_m ¼ 0:193 slug=s

The discrepancy is attributed to not interpolating values from Table D.1.

8.4 NORMAL SHOCK WAVES

A shock wave, as we stated earlier, is a process wherein a sudden change in fluid properties takes
place in supersonic flow. The shock itself is very thin—only a fraction of an inch in thickness. In
this section, we deal with shock waves that are normal to the flow direction.

Consider steady, one-dimensional, supersonic flow in which a normal shock occurs. We select a
control volume that includes the shock wave and assume that all property changes occur within this
control volume (Figure 8.13). In addition, the shock process is taken to be adiabatic because the
temperature change occurs within the control volume. The continuity equation is

r1V1 ¼ r2V2 (8:19)

If we assume a perfect gas with constant specific heats, the continuity equation becomes

p1
RT1

M1

ffiffiffiffiffiffiffiffiffiffiffi
gRT1

p
¼ p2

RT2
M2

ffiffiffiffiffiffiffiffiffiffiffi
gRT2

p
(8:20)

The momentum equation is written in the direction of flow as

X
F ¼

ðð
CS

VrVn dA

Evaluating the left-hand side, we note that the only external forces acting are pressure forces—
gravitational forces are negligible in this case for the gas, and viscous forces can be omitted with

M1   1 M2

p1

T1

V1

p2

T2

V2

FIGURE 8.13 Supersonic flow with a normal shock wave.
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small error because most gases have a relatively low viscosity. Thus, the momentum equation
becomes

p1A1 � p2A2 ¼ r2A2V
2
2 � r1A1V

2
1

Canceling areas and rearranging yield

p1 þ r1V
2
1 ¼ p2 þ r2V

2
2

or

p1 1þ r1V
2
1

p1

� �
¼ p2 1þ r2V

2
2

p2

� �

For a perfect gas with constant specific heats, r¼ p=RT. With a2¼ gRT, the momentum equation
can be rewritten as

p1 1þ V2
1

RT1

� �
¼ p2 1þ V2

2

RT2

� �
p1 1þ gM2

1

� � ¼ p2 1þ gM2
2

� � (8:21)

The energy equation for an adiabatic process is

h1 þ V2
1

2
¼ h2 þ V2

2

2

For a perfect gas with constant specific heats, we have

cpT1 þ V2
1

2
¼ cpT2 þ V2

2

2

T1 1þ V2
1

2cpT1

� �
¼ T2 1þ V2

2

2cpT2

� �

Recalling that cp¼ gR=(g� 1) and that a2¼ gRT, we rewrite the energy equation after substitution
and simplification as

T1 1þ g � 1
2

M2
1

� �
¼ T2 1þ g � 1

2
M2

2

� �
(8:22)

Combining Equations 8.21 and 8.22 with Equation 8.20 gives

M1

1þ gM2
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g � 1

2
M2

1

r
¼ M2

1þ gM2
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g � 1

2
M2

2

r
(8:23)

Solving for M2, we obtain

M2
2 ¼

M2
1 þ 2=(g � 1)

2gM2
1=(g � 1)� 1

(8:24)
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This equation is plotted in Figure 8.14 for g¼ 1.4 and M1> 1. A calculation of entropy change for
the process (which is beyond the scope of this chapter) would show a decrease in entropy
corresponding to a shock wave forming in a subsonic flow. An increase in entropy occurs for a
shock wave forming in a supersonic flow. From the discussion of entropy in the introduction of this
chapter, recall that entropy increases for all naturally occurring processes. We thus conclude that a
shock forming in a subsonic flow is not a naturally occurring process and therefore violates the
second law of thermodynamics. Equation 8.24 has no physical meaning if M1< 1. The figure shows
that M2 is always less than 1 if M1 is supersonic. Equation 8.21 will predict that p2> p1, which
denotes what is known as a compression shock.

The equations thus developed describe flow of an ideal gas through a shock wave. If the ratio of
specific heats g and the inlet Mach number are both known, then M2 can be determined from
Equation 8.24, T2=T1 can be determined from Equation 8.22, p2=p1 can be determined
from Equation 8.21, V2=V1 can be calculated by appropriately combining Equation 8.24 and the
definition of sonic velocity, r2=r1 (¼V1=V2) can be calculated with Equation 8.19, and pt2=pt1 can
be determined by combining Equation 8.21 with Equation 8.11. Since the flow is adiabatic through
the shock, Tt2=Tt1. If we know g and M1, in other words, the equations developed so far can be
used to find M2, p2=p1, T2=T1, V2=V1, r2=r1, and pt2=pt1. These results are tabulated in Table D.2
for g¼ 1.4.

Example 8.6

A stream of air travels at 500 m=s, has a static pressure of 75 kPa and a static temperature of 158C, and
undergoes a normal shock. Determine air velocity and the stagnation and static conditions after the shock
wave.

SOLUTION

For air, g¼ 1.4; from Table A.6, R ¼ 286.8 J=(kg � K). By definition,

a1 ¼
ffiffiffiffiffiffiffiffiffiffiffi
gRT1

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:4(286:8)(288)

p
¼ 340 m=s

We now find

M1 ¼ V1

a1
¼ 500

340
¼ 1:47

1.0

0.5

0
0 1 2

M1

M
2

3

FIGURE 8.14 Mach number relationship across a shock wave (Equation 8.24).
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From Table D.2, at M1¼ 1.47, we get

M2 ¼ 0:712
p2
p1

¼ 2:354
T2
T1

¼ 1:300
pt2
pt1

¼ 0:939 0

From Table D.1 at M1¼ 1.47, we get

p1
pt1

¼ 0:284 5 and
T1
Tt1

¼ 0:698 2

With these ratios, we obtain

p2 ¼ p2
p1

p1 ¼ 2:354(75 kPa) ¼ 176:55 kPa

T2 ¼ T2
T1

T1 ¼ 1:3(288) ¼ 374:4 K ¼ 101:4�C

pt1 ¼
pt1
p1

p1 ¼ 1
0:284 5

(75 kPa) ¼ 263:6 kPa

pt2 ¼
pt2
pt1

pt1 ¼ 0:939 0(263:6) ¼ 247:5 kPa

Tt1 ¼
Tt1
T1

T1 ¼ 1
0:698 2

(288) ¼ 412:5 K

and finally, for adiabatic flow,

Tt2 ¼ Tt1 ¼ 412:5 K

We can confirm this result with a different calculation. From Table D.1 at M2¼ 0.712,

T2
Tt2

¼ 0:908

The stagnation temperature at Section 8.2 then is

Tt2 ¼
Tt2
T2

T2 ¼ 1
0:908

� �
374:4 K

Tt2 ¼ 412:3 K

Example 8.7

A normal shock with a velocity of 3000 ft=s travels through still air at 14.7 psia (708F), as illustrated in
Figure 8.15. Determine the air velocity Va and static properties behind the wave.

SOLUTION

To use the equations developed in this section, we must reformulate the problem to render the wave
stationary. This is illustrated in Figure 8.15, where a velocity of 3000 ft=s to the right is imposed on all
velocities in the system. The inlet Mach number is

M1 ¼ V1ffiffiffiffiffiffiffiffiffiffiffi
gRT1

p ¼ 3000ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:4(1710)(530)

p

¼ 2:66
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From Table D.2, at M1¼ 2.66,

M2 ¼ 0:4988
p2
p2

¼ 8:088
r2
r1

¼ 3:516
T2
T1

¼ 2:301

So the properties behind the wave are

p2 ¼ p2
p1

p1 ¼ 8:088(14:7) ¼ 119 psia

T2 ¼ T2
T1

T1 ¼ 2:301(530) ¼ 1220�R

r2
r1

¼ V1

V2
¼ 3:516 and V2 ¼ V1

3:516
¼ 3000

3:516

so

V2 ¼ 853 ft=s

But, as is seen in Figure 8.15,

V2 ¼ 3000� Va

or

Va ¼ 3000� 853

Va ¼ 2150 ft=s

We can now return to the converging–diverging nozzle of Figure 8.11 and add the results of
this section. For a back pressure slightly below that of curve C, a normal shock forms in the nozzle,
just downstream of the throat, as is illustrated in Figure 8.16 (curve E). The flow leaves the nozzle
with an exit pressure that is equal to the back pressure and still subsonic. As the back pressure is
further reduced, the normal shock moves closer to the exit until it eventually reaches the exit
plane (curve F). If the back pressure is even further reduced, oblique shock waves form at the exit
(curve G), and the nozzle is said to be overexpanded. Curve D represents supersonic exit flow; at
this condition, the nozzle is said to be perfectly expanded. For back pressures below that of
curve D, the back pressure is less than the exit pressure; expansion waves form at the exit, and the
nozzle is said to be underexpanded.

14.7 psia
70  F

14.7 psia
70  F

Still
air

(b) Fixed shock(a) Moving shock

3000 ft/s

V1    3000 ft/s V2   3 000 – Va

Va

FIGURE 8.15 Moving shock of Example 8.7 rendered stationary.
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Example 8.8

A converging–diverging nozzle is supplied by a huge air reservoir. The nozzle has a throat area of
10 cm2 and an exit area of 20 cm2. The reservoir conditions are pr¼ 300 kPa and Tr¼ 308C. Determine
the range of back pressures over which

a. Shocks appear in the nozzle
b. Oblique shocks form beyond the exit
c. Expansion waves form
d. Calculate the mass flow rate through the nozzle for the case in which a normal shock appears at

the exit plane

SOLUTION

A shock just downstream of the throat exists when the back pressure is slightly below that of curve C in
Figure 8.16. For curve C, from Table D.1, at Ae=A*¼ 20=10¼ 2, we find

Me ¼ 0:31
pe
pte

¼ 0:936

Thus,

pe ¼ pe
pte

pte ¼ 0:936 (300 kPa)

¼ 280:8 kPa ¼ pb (curve C)

E

F

G

D

H

A
B
C
E

F
G
D
H

x

p

pr

FIGURE 8.16 Summary of possible flows in a converging–diverging nozzle.
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For a shock at the nozzle exit plane, curve F of Figure 8.16, we find the following from Table D.1 at
Ae=A*¼ 2.0:

Me ¼ 2:2
pe
pte

¼ 0:093 52
Te
Tte

¼ 0:508 1

where it is assumed that isentropic flow exists up to the shock wave. From Table D.2, at Me¼M1¼ 2.20,
we find

M2 ¼ Mb ¼ 0:547 1
p2
p1

¼ pb
pe

¼ 5:480
T2
T1

¼ Tb
Te

¼ 1:857

The back pressure for this case is found by

pb ¼ pb
pe

pe
pte

pte ¼ 5:480(0:093 52)(300 kPa)

¼ 153:7 kPa (curve F)

For curve D, we found previously that Me¼ 2.20 and pe=pte¼ 0.093 52; thus,

pe ¼ pb ¼ 0:093 52(300) ¼ 28:1 kPa (curve D)

Summarizing these results, we have the following.

a. 153:7 < pb < 280:8 kPa (shock appears in nozzle)

b. 28:1 < pb < 153:7 kPa (oblique shocks beyond exit)

c. pb < 28:1 kPa (expansion waves beyond exit)

d. For a normal shock at the exit, we found that Mb¼ 0.547 1 and pb¼ 153.7 kPa. Similarly,

Tb ¼ Tb
Te

Te
Tte

Tte ¼ 1:857(0:508 1)(30þ 273)

Tb ¼ 285:9 K (curve F)

Mass flow is

_m ¼ pb
RTb

AMb

ffiffiffiffiffiffiffiffiffiffiffi
gRTb

p
¼ 153 700
286:8(285:9)

20
104

(0:5471)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:4(286:8)(285:9)

p
_m ¼ 0:695 kg=s

As a check, let us calculate mass flow for conditions before the shock. First we find

pe ¼ pe
pte

pte ¼ 0:093 52(300) ¼ 28:1 kPa

Te ¼ Te
Tte

Tte ¼ 0:508 1(303) ¼ 153:9 K

With Me¼ 2.20, we obtain

_m ¼ pe
RTe

AeMe

ffiffiffiffiffiffiffiffiffiffiffi
gRTe

p
¼ 28 100
286:8(153:9)

20
104

(2:2)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:4(286:8)(153:9)

p
_m ¼ 0:696 kg=s
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8.5 COMPRESSIBLE FLOW WITH FRICTION

In this section, we consider compressible flow with friction in insulated ducts of constant area. In
real situations, frictional forces are present and may significantly affect the flow. In addition, such a
study provides insight into the general effects of friction on compressible flow.

Consider flow in a constant-area duct and select a control volume like that shown in Figure
8.17. The continuity equation is

rV ¼ C1 ¼ a constant (8:25)

Implicitly differentiating yields

r dV þ V dr ¼ 0

Dividing by rV, we get

dr

r
þ dV

V
¼ 0 (8:26)

We can obtain Equation 8.26 alternatively by logarithmic differentiation of Equation 8.25. Taking
the natural logarithm of Equation 8.25 gives

‘n r þ ‘nV ¼ ‘nC1 (8:27)

Implicit differentiation gives Equation 8.26.
Returning to Figure 8.17, the momentum equation in the direction of flow is

X
Fx ¼

ðð
CS

VxrVn dA

pA

w  dAs

( p + dp)A

V + dV

p + dpp
V

dx

FIGURE 8.17 Control volume for flow in a constant-area duct.
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The external forces acting on the control volume are due to pressure and wall friction. By substitu-
tion, the momentum equation becomes

pA� (pþ dp)A� tw dAs ¼ rAV(V þ dV � V) (8:28)

where: A¼ cross-sectional area
dAs¼ surface area over which the friction shear stress tw acts

From Chapter 5, recall the definition of hydraulic diameter:

Dh ¼ 4A
P

where P is perimeter. For a circular duct,

Dh ¼ 4(pD2=4)
pD

¼ D

and the surface area is

dAs ¼ Pdx ¼ pDdx ¼ 4A dx

D

By substitution into Equation 8.28 and after simplification, we obtain

�dp� tw
4 dx
D

� �
¼ rV dV (8:29)

As was done for incompressible flow, we will introduce a friction factor f, which is dependent upon
Reynolds number and relative roughness:

f ¼ 4tw
1
2 rV

2

Combining with Equation 8.29 gives

�dp� rV2

2
f dx

D
¼ rV dV (8:30)

We are working toward integration of this expression to obtain an equation relating duct length to
velocity or Mach number. Dividing by p and substituting r¼ p=RT, we obtain

� dp

p
� 1
2

1
RT

V2 f dx

D
¼ V dV

RT

With the definitions a2¼ gRT and M¼V=a, we have

� dp

p
� gM2

2
f dx

D
¼ gM2 dV

V
(8:31)
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Logarithmic differentiation of the ideal gas law, p¼ rRT, gives

dp

p
¼ dr

r
þ dT

T
(8:32)

Similarly, for the definition of Mach number,

M ¼ Vffiffiffiffiffiffiffiffiffi
gRT

p
dM

M
¼ dV

V
� 1
2
dT

T

(8:33)

Combining Equations 8.26, 8.32, and 8.33 with Equation 8.31 yields

þ 1
2
dT

T
� dM

M
þ g

2
M2 f dx

D
þ gM2 dM

M
þ g

2
M2 dT

T
¼ 0

For an adiabatic flow, stagnation temperature is constant, so

T 1þ g � 1
2

M2

� �
¼ a constant

Logarithmically differentiating, we obtain

dT

T
þ (g � 1)M2(dM=M)

1þ g�1
2 M2

¼ 0 (8:34)

Substituting, we get

(g � 1)M2(dM=M)

1þ g�1
2 M2

1
2
þ gM2

2

� �
� (gM2 � 1)

dM

M
¼ g

2
M2 f dx

D

Combining terms, we get

f dx

D
¼ 2 dM

M

1�M2

1þ g�1
2 M2

� �
gM2

" #
(8:35)

The left-hand side of Equation 8.35 is always positive. However, the bracketed term on the
right-hand side can be positive or negative, depending on whether the flow is subsonic or super-
sonic. It is interesting to analyze this equation for both cases. If the flow is subsonic, then the term in
brackets in Equation 8.35 is positive. Consequently, dM=dx must also be positive, which means that
the Mach number of the flow is predicted to increase with distance along the duct. If the flow is
supersonic, the bracketed term is negative, so that dM=dxmust be negative. The Mach number of the
flow is thus predicted to decrease with distance. For either condition, wall friction causes the Mach
number of the flow to approach unity. Therefore, a subsonic flow cannot be accelerated to
supersonic speed in a duct. Sonic speed can be achieved, however, and this will occur at the end
of the duct. Conversely, a supersonic flow can undergo a shock and change to subsonic flow.

From Chapter 5, we know that the friction factor depends on Reynolds number and wall
roughness. If the fluid is a liquid, moreover, the Reynolds number is essentially constant along
the length of the constant area pipe, and velocity is a constant. If the fluid is a gas, the product rV is a
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constant. Temperature, however, can vary by as much as 20% for subsonic airflow in a pipe, causing
a viscosity variation of roughly 10%. In turn, the Reynolds number would change by about 10%,
affecting the friction factor. For turbulent flow, which is usually the case in compressible flow, the
change in friction factor f is quite small. It is therefore reasonable to assume that friction factor f is a
constant when integrating Equation 8.35 and that f is equal to some average value. Often the initial
value in the pipe is used.

We are now ready to integrate Equation 8.35. It is convenient to choose as our limits the
following:

0 � dx � Lmax

M � M � 1

Thus the flow at the pipe entrance (or the control volume entrance) has a Mach number of M and is
accelerated to M¼ 1, where x¼ Lmax. The location, x¼ Lmax, can exist at the end of the pipe or it
may be at the end of a hypothetical extension. It serves merely as a reference point in our equations
where the Mach number equals unity. Integrating Equation 8.35 gives

fLmax

D
¼ 1�M2

gM2 þ g þ 1
2g

‘n
g þ 1
2

M2 1þ g � 1
2

M2

� ��1
" #

(8:36)

Calculations of fLmax=D as a function of M made with this equation are tabulated in Table D.3
for g¼ 1.4.

A similar analysis can be developed to obtain an expression between pressure and Mach
number. Using Equation 8.31 and substituting from continuity for dV=V in terms of M yields the
following, after simplification:

dp

p
¼ � dM

M

1þ (g � 1)M2

1þ g�1
2 M2

" #

Integrating between p and p* corresponding to limits M and 1 gives the following relationship for
p=p* versus M:

p

p*
¼ 2M2

g þ 1
1þ g � 1

2
M2

� �� 	�1=2

(8:37)

Calculations made with this equation are also tabulated in Table D.3 for g¼ 1.4. Again M¼ 1
is a reference point, and the corresponding pressure is denoted with an asterisk.

Similarly, we can derive the following expression for T=T* versus M from Equation 8.22
for adiabatic flow:

T

T*
¼ g þ 1

2
1þ g � 1

2
M2

� ��1

(8:38)

Combining Equations 8.33 and 8.34 yields an integrable expression for dV versus dM. After
integration, the result is

V

V*
¼ M

g þ 1
2

1þ g � 1
2

M2

� ��1
" #1=2

(8:39)
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Finally, the stagnation pressure ratio pt=pt* is found to be

pt
pt*

¼ 1
M

2
g þ 1

1þ g � 1
2

M2

� �� 	 (gþ1)= 2(g�1)½ �f g
(8:40)

Results of calculations made with these equations are also tabulated in Table D.3 for g¼ 1.4. With
the equations thus described and tabulated, one-dimensional, adiabatic, compressible flow of an
ideal gas with friction, referred to as Fanno flow, can be adequately modeled.

Example 8.9

An airflow enters a constant-area pipe at 100 ft=s, 15 psia, and 5308R. The pipe is 500 ft long and made
of 2-nominal schedule 40 PVC. Determine conditions at the pipe exit.

SOLUTION

From the appendix tables,

m ¼ 0:3801� 10�6 lbf � s=ft2 (Table A:3 for air)

D ¼ 0:1723 ft A ¼ 0:02330 ft2 (Table C:1 for pipe)

Also for air,

r ¼ p

RT
¼ 15(144)

1710(530)
¼ 0:00238 slug=ft3

The sonic velocity at inlet is

a1 ¼
ffiffiffiffiffiffiffiffiffiffiffi
gRT1

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:4(1710)(530)

p
¼ 1126 ft=s

Therefore,

M1 ¼ V1

a1
¼ 100

1126
¼ 0:09

From Table D.3 at M1¼ 0.09, we get

T1
T*

¼ 1:1981
p1
p*

¼ 12:162
fLmax

D

����
1

¼ 83:496

where Lmax is the duct length required for the flow to achieve M¼ 1, at which the pressure is p* and the
temperature is T*.

The Reynolds number at inlet is

Re1 ¼ rV1D

m
¼ 0:00238(100)(0:1723)

0:3801� 10�6
¼ 1:08� 105

For PVC pipe, assume that the surface is very smooth. At Re1¼ 1.08� 105, the Moody diagram
of Chapter 5 gives

f ¼ 0:0175
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and for the actual pipe in this example, we have

fL

D

����
ac

¼ 0:0175(500)
0:1723

¼ 50:78

To find the properties at the pipe exit, it is necessary to combine fL=D terms using M¼ 1 as a reference
point. From the definition of length, we recall that L1max is the distance required to accelerate the flow
from the conditions at point 1 to a Mach number equal to 1 at pipe end. Thus,

L1max ¼ Lactual þ L2max

Multiplying all terms by f=D, which we assume to be a constant, gives

fLmax

D

����
1

¼ fL

D

����
actual

þ fLmax

D

����
2

This relationship is illustrated in Figure 8.18.

Thus

fLmax

D

����
2

¼ fLmax

D

����
1

� fLmax

D

����
actual

¼ 83:496� 50:78 ¼ 32:71

From Table D.3 at fLmax=D¼ 32.71, we read

M2 ¼ 0:14
T2
T*

¼ 1:1953
p2
p*

¼ 7:8093

With these ratios, we find

p2 ¼ p2
p*

p*
p1

p1 ¼ (7:8093)
1

12:162

� �
(15 psia) ¼ 9:63 psia

T2 ¼ T2
T*

T*
T1

T1 ¼ (1:1953)
1

1:1981

� �
(530�R) ¼ 528:8�R

As we see from these results, temperature did not change significantly. We were justified in assuming a
constant value of friction factor, evaluated in this case at the pipe inlet.

8.6 COMPRESSIBLE FLOW WITH HEAT TRANSFER

In this section, we consider compressible flow in a constant-area duct and how heat addition or heat
loss affects this flow. Figure 8.19 is a sketch of the control volume used in the analysis. Flow
entering the control volume has properties that change by an infinitesimal amount upon leaving.
The amount of heat added is denoted by dq, with dimensions of F � L=M (Btu=slug or J=kg). The
continuity equation for the control volume is

M   1

fL
D fLmax

D

fLmax
Dactual

V1 V2

1

2

1 2 *

FIGURE 8.18 Sketch for Example 8.9.
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rAV ¼ (r þ dr)A(V þ dV)

Canceling area and higher-order terms gives, after rearrangement,

dr

r
þ dV

V
¼ 0 (8:41)

or rV¼ a constant. The momentum equation written for the control volume is

X
Fx ¼

ðð
VxrVn dA

The only forces we consider are pressure forces, so that the preceding equation becomes

pA� (pþ dp)A ¼ rAV(V þ dV � V)

Canceling area A and simplifying gives

dp ¼ �rV dV

With rV equal to a constant, the preceding equation can be integrated from point 1 to 2 to give

dp ¼ (constant)� dV

p1 � p2 ¼ (constant)(V2 � V1) ¼ �rV(V2 � V1)

Noting that rV¼ (rV)1¼ (rV)2, the last equation can be rewritten to yield

(pþ rV2)j1 ¼ (pþ rV2)j2 (8:42)

Control
volume

p
V

M

p + dp
V + dV

M+ dM
+ d

pA ( p + dp)A

dx

dq

FIGURE 8.19 Control volume for compressible flow in a constant area duct with heat transfer.
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Factoring out the pressure term,

p 1þ r

p
V2

� �����
1

¼ p 1þ r

p
V2

� �����
2

With the ideal gas law (r¼ p=RT), the preceding becomes

p 1þ V2

RT

� �����
1

¼ p 1þ V2

RT

� �����
2

Using the definition of sonic velocity (a2¼ gRT) and Mach number (M¼V=a), the last equation is
rewritten as

p(1þ gM2)j1 ¼ p(1þ gM2)j2 (8:43)

It is convenient to select as a reference point the location where the Mach number is 1. Pressure (and
other properties) at this location would then be denoted with an asterisk superscript. Thus with
regard to Equation 8.43, we let point 1 be any location where the Mach number is M and point 2 be
where M¼ 1. Equation 8.43 then becomes

p(1þ gM2) ¼ p*(1þ g)

or

p

p*
¼ 1þ g

1þ gM2 (8:44)

We now work toward deriving similar expressions for the remaining properties.
The ideal gas law gives, for temperature,

T ¼ p

rR
(8:45)

From the definition of mass flow rate, we write

r ¼ _m

AV

and from the definition of Mach number (M¼V=a), we have

V ¼ M
ffiffiffiffiffiffiffiffiffi
gRT

p
Combining these equations with Equation 8.45 gives

T ¼ p

rR
¼ pAV

_mR
¼ pAM

ffiffiffiffiffiffiffiffiffi
gRT

p
_mR

or

ffiffiffiffi
T

p
¼ pM� (constant)
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Squaring both sides and writing this equation between any two points in the duct gives

T

(pM)2

����
1

¼ T

(pM)2

����
2

Denoting point 1 as anywhere in the duct and point 2 (with an asterisk) as the location where M¼ 1,
this equation becomes

T

(pM)2
¼ T

(p*)2

or

T

T*
¼ p

p*

� �2

M2

Substituting from Equation 8.44 yields

T

T*
¼ (1þ g)2M2

(1þ gM2)2
(8:46)

We now have relationships for static pressure and static temperature. For velocity, we use the
continuity equation and the ideal gas law to obtain

V

V*
¼ r*

r
¼ p*

RT*
RT

p
¼ p*

p

T

T*

Substituting from Equations 8.44 and 8.46 and simplifying, we get

V

V*
¼ (1þ g)M2

1þ gM2 ¼ r*
r

(8:47)

For adiabatic flow, Equation 8.9 was derived to relate stagnation and static temperatures:

Tt ¼ T 1þ g � 1
2

M2

� �
(8:9)

We rewrite this equation for the reference point, where M¼ 1:

Tt* ¼ T* 1þ g � 1
2

� �

Dividing Equation 8.9 by the last equation yields

Tt
Tt*

¼ T

T*

1þ g�1
2 M2

1þ g�1
2

 !
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Combining with Equation 8.46 for T=T*, we get

Tt

T*t
¼ (1þ g)2M2

(1þ gM2)2
1þ g�1

2 M2

1þ g�1
2

 !
(8:48)

Also from the section on isentropic flow, we derived a relationship between static and stagnation
pressures:

pt ¼ p 1þ g � 1
2

M2

� �g=(g�1)

(8:11)

At the location where Mach number is 1, we write

pt* ¼ p* 1þ g � 1
2

� �g=(g�1)

Dividing the preceding equation into Equation 8.11 and substituting Equation 8.44 for p=p*, we get
the following, after some simplification:

pt
pt*

¼ 1þ g

1þ gM2

� �
1þ g�1

2 M2

1þ g�1
2

 !g=(g�1)

(8:49)

Thus far we have relationships for p=p*, T=T*, V=V*, r=r*, Tt=Tt*, and pt=pt* for one-dimensional,
compressible flow of an ideal gas with heat transfer for flow in a duct. Results of calculations made
with these equations are tabulated in Table D.4 for g¼ 1.4.

Another equation we can derive relates the heat transferred to the stagnation temperature
change. In Section 8.2, we wrote the energy equation between the static and stagnation states as

ht ¼ hþ V2

2

For an ideal gas with constant specific heats,

dh ¼ cp dT

In terms of specific heat, the energy equation becomes

cpTt ¼ cpT þ V2

2

Differentiating,

cp dTt ¼ cp dT þ V dV (8:50)

We write the energy equation again, but now for the control volume of Figure 8.19, to obtain

d~Q

dt
¼ _Q ¼ _m hout � hin þ V2

out

2
� V2

in

2

� �
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Thus the heat transferred per unit time reflects changes in enthalpy and in kinetic energy of the flow.
Dividing by mass flow rate _m and differentiating yields

d
_Q

_m

� �
¼ dq ¼ (dhþ V dV)

The heat transfer dq is the quantity with which we have been working in this section; as mentioned
earlier, it has dimensions of F � L=M (Btu=slug or J=kg). The enthalpy term is rewritten in terms of
temperature to give

dq ¼ cp dT þ V dV

Substituting from Equation 8.45, we get

dq ¼ cp dTt

So the heat transfer directly affects the stagnation temperature of the fluid. This equation can be
integrated between two points in the duct to obtain the following working equation:

q ¼ cp Tt2 � Tt1ð Þ (8:51)

The concept of entropy can be used to draw conclusions about the behavior of a flowing compres-
sible fluid under various conditions. Althoughwe do not provide proof here, wewill discuss the effect of
heat addition on the properties of the fluid. Consider a compressible fluid flowing at subsonic velocity
into a duct that is being heated. The fluid will gain energy from the duct walls and eventually reach the
point where M¼ 1. Any heat addition beyond this point serves only to reduce the mass flow rate. This
means that a maximum amount of heat can be added before the flow will choke. Choked flow,
remember, can also occur for flow through a converging–diverging nozzle and for flow with friction.

For supersonic flow entering a duct, the addition of sufficient heat ultimately causes the fluid to
attain a Mach number of 1. Cooling (or removal of heat from the fluid) has the effect in both cases of
driving the Mach number away from unity. Note that the heat addition can be in any of a number of
forms and is not dependent on duct shape or length. Heat can be added over a very short distance, as
in a chemical reaction, or over a long distance, as in a heat exchanger.

With the equations thus derived and tabulated, we are now in a position to solve problems
dealing with heat transfer to a frictionless one-dimensional flow of an ideal gas (referred to as
Rayleigh flow).

Example 8.10

Air flows in a constant-area duct. At the inlet the Mach number is 0.2, the static pressure is 90 kPa, and
the static temperature is 278C. Heat is added at a rate of 120 kJ=(kg of air). Assuming a perfect gas with
constant specific heats, determine the properties of the air at the end of the duct. Assume also that the
flow is frictionless and that cp¼ 1 000 J=(kg � K).

SOLUTION

For subsonic flow being heated in duct, the fluid will eventually reach the point where M¼ 1. This is
illustrated in Figure 8.20. The properties we seek are those at Section 8.2. From Table D.1 at M1¼ 0.2,
we read

p1
pt1

¼ 0:972 5
T1
Tt1

¼ 0:992 1
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From Table D.4 at M1¼ 0.2, we also read

Tt1
Tt*

¼ 0:173 55
T1
T*

¼ 0:206 61
p1
p*

¼ 2:272 7

pt1
p*t

¼ 1:234 6
V1

V*
¼ 0:090 91

We can relate the stagnation temperature at 2 to that at Section 8.1 through the heat transfer Equation
8.51:

q ¼ cp Tt2 � Tt1ð Þ

or

Tt2 ¼
q

cp
þ Tt1 ¼

120 000
1 000

þ (27þ 273)

¼ 420 K

The temperature ratio we seek can be found by using the ratios already found:

Tt2
T*t

¼ Tt2
Tt1

Tt1
T*t

¼ 420
300

0:173 55 � 0:24

Entering Table D.4 at this value yields

M2 ¼ 0:24
T2
T*

¼ 0:284 11
p2
p*

¼ 2:220 9

pt2
pt*

¼ 1:221 3
V2

V*
¼ 0:127 92

Other properties can be found in a similar way:

T2 ¼ T2
T*

T*
T1

T1 ¼ (0:284 11)
1

0:206 61

� �
(300 K)

T2 ¼ 412 K ¼ 139�C

and

p2 ¼ p2
p*

p*
p1

p1 ¼ (2:2209)
1

2:272 7

� �
(90 kPa)

p2 ¼ 87:95 kPa

120 kJ/kg

1

p1   90 kPa
T1   25 C   298 K
M1   0.2

p2
T2
M2

p*
T*
M   1

2 *

FIGURE 8.20 Flow in a duct with heat addition.
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The static temperature changed a great deal, but static pressure changed only slightly. We can investigate
the change in sonic velocity also. At inlet,

a1 ¼
ffiffiffiffiffiffiffiffiffi
gRT

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:4(286:8)(300)

p
¼ 347:1 m=s

At exit,

a2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:4(286:8)(412)

p
¼ 406:7 m=s

The velocity at each of these points is

V1 ¼ M1a1 ¼ 0:2(347:1) ¼ 69:4 m=s

V2 ¼ M2a2 ¼ 0:24(406:7) ¼ 97:7 m=s

Thus, heat addition has increased all properties except pressure.

8.7 SUMMARY

In this chapter, we examined some concepts associated with compressible flow. We determined an
expression for sonic velocity in a compressible medium and also developed equations for isentropic
flow. We examined in detail the behavior of a compressible fluid as it goes through a nozzle. We
derived equations for normal shock waves and saw the effect of friction and heat transfer on
compressible flow through a constant-area duct.

PROBLEMS

Sonic Velocity and Mach Number

8.1 Determine the sonic velocity in air at a temperature of 08F.
8.2 Calculate the sonic velocity in argon at a temperature of 258C.
8.3 Calculate the sonic velocity in carbon dioxide at a temperature of 208C.
8.4 Determine the sonic velocity in helium at a temperature of 508C.
8.5 Calculate the sonic velocity in hydrogen at a temperature of 758F.
8.6 Determine the sonic velocity in oxygen at a temperature of 758F.
8.7 Sonic velocity in a solid can be calculated with what is known as the bulk modulus, defined as

bs ¼ r
dp

dr

� �

with which sonic velocity is determined from

a ¼
ffiffiffiffiffi
bs

r

s

For copper, bs¼ 17.9� 106 psi, and the density can be found in Table A.8. Calculate the
velocity of sound in copper.

8.8 A wing travels at 800 ft=s in air at a temperature of 408F and 10 psia. Determine the Mach
number.
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8.9 A bullet fired from a high-powered rifle travels at 3000 ft=s through air at 758F and 14.7 psia.
Is the speed of the bullet supersonic?

8.10 A wing travels at 400 m=s through air at 88C and 50 kPa. Is the wing moving at subsonic
velocity? Calculate the Mach number.

8.11 At what temperature will an object traveling at 900 ft=s have a Mach number of 1?

Ideal Gas Law

8.12 Following the development leading to the derivation of Equation 8.8, similarly derive the
equation for specific heat at constant volume:

cy ¼ R

g � 1

8.13 Using corresponding data for five different temperatures in Table A.3, verify the ideal
gas law.

8.14 Using corresponding data for any two of the gases in Table A.6, verify whether the following
equation is accurate:

cp ¼ gR

g � 1

8.15 Using corresponding data for any two of the gases in Table A.6, verify whether the following
relationship is accurate:

cy ¼ R

g � 1

8.16 Using corresponding data for any two of the gases in Table A.6, (a) calculate cy ¼ cp=g
and (b) verify whether the following equation is accurate:

cp � cy ¼ R

lsentropic Flow through a Channel of Varying Area

8.17 A converging nozzle of area 3 in.2 is attached to a reservoir containing air. The pressure and
temperature in the reservoir are 50 psia and 10008R. Calculate the mass flow rate through the
nozzle for choked conditions.

8.18 A reservoir discharges air through a converging nozzle with an exit area of 8 cm2. The
reservoir pressure is 150 kPa, and the temperature is 1000 K. Calculate the mass flow rate
through the nozzle for back pressures of 100 and 50 kPa.

8.19 A converging nozzle of area 5 cm2 is attached to a reservoir containing oxygen maintained at
150 kPa and 300 K. Determine the flow rate through the nozzle for back pressures of 100, 50,
and 0 kPa.

8.20 Air flows into a converging duct from an inlet area of 15 in.2 to the exit, where the area is
10 in.2. For inlet conditions of 858F, 18 psia, and 400 ft=s, determine conditions at the exit.

8.21 Air flows through a diverging nozzle from an area of 20 cm2 to the exit, where the area is
30 cm2. For inlet conditions of 278C, 200 kPa, and 300 m=s, determine conditions at the exit.

8.22 Hydrogen flows into a converging duct from an inlet area of 20 cm2 to the exit, where the
area is 10 cm2. For exit conditions of 408C, 100 kPa, and 950 m=s, determine conditions at
the inlet.
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8.23 Determine the mass flow rate through the nozzle of Example 8.4 for p1¼ 150 kPa and
T1¼ 300 K.

8.24 A converging–diverging nozzle is attached to an air reservoir in which the conditions are
60 psia and 5508R. The throat area is 10 in.2, and the exit area is 20 in.2. Determine the back
pressure required to choke the nozzle.

8.25 In a compressed air bottling plant, huge air reservoirs are slowly emptied through valves into
smaller tanks intended for consumer use. In one such system, consider the valve as a conver-
ging–diverging nozzle of exit area 12 cm2 and throat area 8 cm2. The reservoir conditions are
400 kPa and 258C. The smaller tank is initially evacuated; as it fills, its pressure steadily
increases.

a. Determine the back pressure at which the valve is no longer choked.
b. Calculate the mass flow rate at the choked condition.

Normal Shock

8.26 Re-derive Equation 8.24 in detail and verify the plot in Figure 8.14.
8.27 An airstream travels at 2100 ft=s and has static properties of 15 psia and 758F. The stream

undergoes a normal shock. Determine air velocity and the stagnation and static conditions
after the shock wave.

8.28 A stream of oxygen travels at 600 m=s and undergoes a normal shock. Upstream properties are
50 kPa and 128C. Determine velocity and stagnation and static conditions after the wave.

8.29 A stream of helium travels at 4000 ft=s and undergoes a normal shock. Determine helium
velocity and static conditions after the shock if the upstream conditions are 15 psia and 308F.

8.30 A normal shock with a velocity of 1200 m=s travels through still air with properties 101.3 kPa
and 258C. Determine the air velocity and static properties behind the wave.

8.31 A normal shock of velocity 800 m=s travels through still air. Downstream properties are 600
kPa and 400 K. Determine downstream air velocity and upstream pressure and temperature.

Normal Shock in a Channel of Varying Area

8.32 A converging–diverging nozzle is supplied by a huge air reservoir in which conditions are
50 psia and 1008F. The nozzle has throat and exit areas of 12 in.2 and 18 in.2, respectively.
Determine the range of back pressures over which a normal shock appears in the nozzle or
oblique shocks form at the exit.

8.33 A huge reservoir of air supplies a converging–diverging nozzle with throat and exit areas of
2 and 20 cm2, respectively. The reservoir pressure and temperature are 150 kPa and 208C,
respectively. Determine the range of back pressures over which (a) shocks appear in the
nozzle, (b) oblique shocks form at the exit, and (c) expansion waves form at the exit.

8.34 A converging–diverging nozzle is supplied by a huge oxygen reservoir, The nozzle has
throat and exit areas of 5 in.2 and 12 in.2, respectively. The reservoir conditions are 100
psia and 08F. Calculate the mass flow rate through the nozzle for the case in which a normal
shock appears at the exit plane. Make the calculations both at the throat and just downstream
of the shock.

8.35 A converging–diverging nozzle is supplied by a huge oxygen reservoir. The nozzle has a
throat area of 10 in.2 and an exit area of 18 in.2. Reservoir conditions are pr¼ 100 psia and
Tr¼ 5008R. Determine the range of back pressures over which (a) shocks appear in the nozzle,
(b) oblique shocks form at the exit, and (c) expansion waves form at the exit.

Flow with Friction

8.36 Oxygen flows into a constant-area pipe at 60 ft=s, 40 psia, and 328F. The pipe is 2000 ft
long and made of 3-nominal galvanized iron (schedule 40). Determine the Mach number at the
pipe exit.
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8.37 Air flows into a 12-nominal schedule 80 asphalted cast-iron pipe at 4 m=s, 200 kPa, and 308C.
What length of pipe is required for the exit Mach number to be unity? What is the exit
pressure?

8.38 Oxygen flows into a 300-m-long pipe at inlet conditions of 20 m=s, 400 kPa, and 68C. The
pipe is made of drawn metal (smooth walled), and the system must be capable of delivering
the air at a Mach number of about 0.8. Select a suitable pipe diameter. Calculate exit pressure
and temperature.

8.39 Air flows into a 6-nominal schedule 80 PVC pipe. At the exit, the velocity is 1500 ft=s, the
pressure is 8 psia, and the temperature is 5308R. If the pipe length is 20 ft, calculate the inlet
conditions.

8.40 Oxygen enters a smooth-walled 1-nominal schedule 40 pipe at a velocity of 100 m=s, 210 kPa,
and 300 K. The pipe length is 4.8 m. Determine conditions at the exit.

8.41 Air enters a 1
2-nominal schedule 40 pipe at a velocity of 1400 ft=s, 12 psia, and 4808R.

Determine the length required for flow to be sonic at the exit, and calculate the pressure there.
Take «=D to be 0.00001.

Flow with Heat Transfer

8.42 Air at 108F and 2 psia enters a duct at an inlet velocity of 300 ft=s. Heat is added to the
fluid at a rate of 1000 Btu=(slug of air). Determine the pressure and temperature of the
air at the exit. Assume specific heat at constant pressure to be 7.72 Btu=(slug � 8R) and no
friction.

8.43 Oxygen at 258C and 101.3 kPa enters a duct at a velocity of 1 400 m=s. Heat is removed from
the oxygen at a rate of 15 000 J=kg. Assuming frictionless flow, determine the properties
(pressure, temperature, Mach number, and velocity) at the exit.

8.44 Air enters a duct at a velocity of 100 ft=s and it is desired to determine how much heat is
required such that the Mach number of the air will reach a value of 1. For inlet static
conditions of 758F and 14.7 psia, determine the conditions (pressure and temperature) at the
exit and the heat transfer rate.

8.45 Nitrogen [g¼ 1.4, cp¼ 1.04 kJ=(kg � K)] enters a duct and is heated so that at the exit, the
Mach number is 0.4. The heat added amounts to 40 000 J=kg. Determine pressure, tempera-
ture, and Mach number at the inlet if the exit properties are 90 kPa and 290 K.

8.46 Air at 328F and 10 psia enters a duct and is heated by an amount equal to 2000 Btu=(slug of
air). Calculate the mass flow rate of air using properties at the inlet and again using conditions
at the outlet. Assume frictionless flow, a flow area of 4 in.2, and an inlet velocity of 400 ft=s.

Computer Problems

8.47 Table D.1 is an isentropic flow table for a fluid having a ratio of specific heats g¼ 1.4.
A number of other fluids exist that have a different value for g, as indicated in Table A.6.
Using the appropriate equations, generate an isentropic flow table for any of the fluids listed in
Table A.6 for which g 6¼ 1.4.

8.48 Table D.2 applies to a supersonic flow of a fluid having a ratio of specific heats g¼ 1.4 that
undergoes a normal shock. A number of other fluids exist that have a different value for g, as
indicated in Table A.6. Using the appropriate equations, generate a normal shock table for any
of the fluids listed in Table A.6 for which g 6¼ 1.4.

8.49 Table D.3 applies to a flow with friction of a compressible fluid having a ratio of specific
heats g¼ 1.4 in a constant area duct (also known as Fanno flow). A number of other
fluids exist that have a different value for g, as indicated in Table A.6. Using the appropriate
equations, generate a Fanno flow table for any of the fluids listed in Table A.6 for which g 6¼ 1.4.

8.50 Table D.4 applies to a flow with heat transfer of a compressible fluid having a ratio of
specific heats g¼ 1.4 in a constant-area duct (also known as Rayleigh flow). A number of
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other fluids exist that have a different value for g, as indicated in Table A.6. Using the
appropriate equations, generate a Rayleigh flow table for any of the fluids listed in Table A.6
for which g 6¼ 1.4.

8.51 For any of the problems in this chapter (including example problems) that involve flow
through a converging–diverging nozzle due to a decrease in back pressure: (a) write the
descriptive equations and outline the procedure for determining mass flow rate through the
nozzle and (b) construct a graph of mass flow rate versus back pressure (similar to that of
Figure 8.11).

Design Problems

8.52 Effects of Friction on Compressible Flow
An experiment is to be designed to illustrate the effects of friction on compressible flow. The
proposed design is shown in Figure P8.52. A pipe is attached to a tank. The pipe has a number
of static pressure taps, which are all attached to a manometer board. Air in the tank is
evacuated with a vacuum pump until a predetermined pressure is reached. The valve is then
opened and air is drawn through the pipe into the tank. The initial tank pressure should be low
enough so that the flow through the pipe is choked for a finite time. Just after the valve is
opened, a photograph is taken of the manometer board to obtain a pressure-versus-distance
graph for a choked, compressible flow of air in a pipe.

a. Design the system: Select the tank dimensions, tube diameter, the tube length, and
materials of construction. Determine the number of static pressure taps and design the
manometer board.

b. Select a valve. Should the valve be electrically operated so that it can be opened quickly by
a solenoid? What is the best type of valve to use?

c. What is proved by obtaining data of pressure versus distance for choked, compressible
flow? How would the pressure-versus-distance data change for an unchoked condition?
Compose a theoretical basis for predicting the results obtained.

d. Determine the total cost of the apparatus.

To vacuum
pump

Tank On–off
valve

Distance

Well-rounded
inlet

Static pressure taps
all attached to 

manometer board

FIGURE P8.52

8.53 Hot Air Source for Calibrating Flow Meters
A system for testing airflow meters operating at various temperatures is to be designed. The
proposed system is sketched in Figure P8.53. Air from a fan is discharged into a 4-nominal,
schedule 40 pipe that has heating tape (not shown) wound around it. The heating tape applies
a uniform addition of heat to the air. Downstream, the air enters a flow meter whose
performance will be evaluated. The flow through the pipe is controlled by the rotational
speed of the fan. The flow meter is to be tested at inlet (to the flow meter) temperatures that
vary to 1508F and at flow rates that vary to as large as 0.001 slug=s. Inlet pressures have no
restrictions. The fan draws in air at 708F, 14.7 psia.
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a. Design the system: Select a line length; determine the fan power required; and calculate the
heat input rate. There is to be a flanged fitting at the end of the pipe where the flow meter
will attach.

b. Select materials of construction for each component.
c. Size and select the fan needed for this installation.
d. Determine the cost of the test system.
e. Explain all design decisions.

Fan

Airflow

Flow meter
Wound with
heating tape

Exit

FIGURE P8.53
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9 Turbomachinery

A turbomachine is a device that transfers energy between its own rotating parts and a moving fluid.
Examples include steam turbines (as found in conventional power plants), pumps, compressors,
ordinary window fans, and windmills. Our objective in this study is to learn to predict general
performance characteristics of turbomachines.

A turbomachine can be either of two types: those that use external power to impart energy to a
fluid (such as fans, blowers, pumps, compressors, and propellers) and those that produce external
power by absorbing energy from a fluid (such as propeller turbines, impulse turbines, and wind-
mills). In this chapter, we study various turbines and pumps and examine their performance
characteristics.

The two principal components of a turbomachine are the output shaft, which transmits
mechanical energy to or from the machine, and the rotor, which has vanes or blades attached. In
many cases, the rotor is connected directly to the output shaft. In some designs, such as steam
turbines, the rotor is housed in a casing to allow the working fluid to change pressure within the
machine; the casing completely separates the fluid and machine from the surroundings. In other
designs, such as windmills, the rotor is completely exposed.

The majority of turbomachines can be classified into axial-flow, radial-flow, or mixed-flow
types. In an axial-flow machine, the main path of the fluid through the device is in the same direction
as the rotor axis. In the radial-flow type, the main flow direction is perpendicular to the axis of
rotation. In the mixed-flow type, the main flow direction is neither purely radial nor purely axial but
a combination of the two. Radial- and axial-flow types are discussed in detail in this chapter.

The chapter concludes the study of turbomachines by giving an overview of general equations
that are used to characterize them. Dimensional analysis is employed to obtain expressions that are
useful for modeling purposes. An analysis and performance data for a centrifugal pump are also
presented. This machine is the only one considered in detail here, but the information given is
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representative of the type of data to be expected in describing performance characteristics of
turbomachines. The chapter ends with a discussion of hydraulic turbines.

In mathematically modeling flows through turbomachines, it is important to remember the
common thread that runs throughout the analyses: the objective is to relate the shaft work or torque
to the properties of the fluid while it flows through the machine.

9.1 EQUATIONS OF TURBOMACHINERY

In Chapter 3, we derived the linear momentum equation from Newton’s law of motion. In applying
this law to rotating bodies, such as parts of a turbomachine, it is necessary to consider moments
relative to the axis of rotation and to evaluate moments exerted on the fluid volume. Because the
axis of rotation is fixed, we can use Newton’s law to develop what we will call the angular
momentum equation.

Consider the general two-dimensional case depicted in Figure 9.1. A differential element
located at a distance r from the origin is acted upon by a force dF. The force may be due to fluid
moving through a turbine, for example, whereas the differential element might be part of the rotor.
The component of the force acting perpendicular to r is dFt, where the subscript t denotes a
tangential force. The moment exerted on the differential element is dTs, found from

dTs ¼ r dFt (9:1)

The differential force in the tangential direction is determined by applying the linear momentum
equation in the tangential direction:

X
Ft ¼ @

@t
(mV)t

����
CV

þ
ð
C

ð
S

VtrVn dA

or, in differential form,

dFt ¼ @

@t
(Vt dm)

��
CV

þ VtrVn dA (9:2)

where Vt is the tangential velocity at radius r. Combining Equations 9.1 and 9.2 gives the following
for the differential moment:

dTs ¼ r
@

@t
(Vt dm)

��
CV

þ rVt(rVn dA)

y

O x

r

dFn

Control surface

dFt Vt
Vn

V
dF

θ θ

FIGURE 9.1 Force acting on a differential element at a fixed distance from the origin.
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The total torque is determined by integration:

Ts ¼ @

@t

ððð
CV

rVt dmþ
ð
C

ð
S

rVt(rVn dA) (9:3)

The term Ts represents the sum of all externally applied moments or torques due to pressure forces,
gravity, viscous forces, and so on. The first term on the right-hand side is the rate at which angular
momentum is stored in the control volume. The second term represents the net rate out (out minus
in) of angular momentum from the control volume.

From Figure 9.1, we see that Vt¼V sin u. Equation 9.3 can therefore be rewritten as

Ts ¼ @

@t

ððð
CV

rV sin u dmþ
ð
C

ð
S

rV sin u(rVn dA) (9:4)

We can generalize this result into a vector form that is applicable to the three-dimensional case:

T ¼ @

@t

ððð
CV

(r� V) dmþ
ð
C

ð
S

(r� V)(rV � dA) (9:5)

For steady flow, Equation 9.4 becomes

Ts ¼
ð
C

ð
S

rV sin u(rVn dA) (9:6)

The angular momentum equation is applied to a simple problem in the following example.

Example 9.1

A lawn sprinkler is shown schematically in Figure 9.2. The sprinkler consists of two nozzles at opposite
ends of a rotor that rotates about its center. Water leaving the nozzles causes the rotor to spin at a
constant angular velocity depending on the volume flow of water and the magnitude of the opposing
torque due to bearing friction. Determine an expression for the torque in terms of the operating variables.

SOLUTION

Select a control volume to include the entire sprinkler rotor, as shown in Figure 9.2. Next choose a
constant moment arm R from the pivot to the center of the exit. All fluid particles leaving the exit do not
exert the same torque, but we can make this assumption with negligible error because the nozzle exit
dimension is small in comparison to R. While the rotor is rotating, the only external applied torque is due
to bearing friction. No angular momentum is stored in the control volume. Further, all fluid enters in the
axial direction and therefore has no angular momentum.

It is helpful to sketch a velocity diagram for the water leaving the nozzles (Figure 9.3). We have the
following:

V¼ absolute velocity of water leaving nozzle (as seen by stationary observer)
Vrel¼ relative velocity of water leaving nozzle (as seen by observer moving with nozzle)
Vn¼ velocity normal to control surface with Vn¼V cos u¼Vrel cos a
Vt¼ tangential velocity component of V, Vt¼V sin u

Turbomachinery 425



Vrel sin a¼ tangential velocity component of Vrel¼Vrelt

Ut¼Rv¼ tip velocity of rotor in tangential direction

From the velocity diagram, we see that the tangential velocity components must balance; that is,

Vrel sina ¼ Vt þ Ut

or

Vt ¼ V sin u ¼ Vrel sina� Rv

As indicated in Figure 9.2, the relative velocity is perpendicular to the nozzle exit. Therefore, for one
nozzle, we have

Qj1nozzle ¼ Q1 ¼ AVrel ¼ pD2

4
Vrel

R

R

Control surface

FIGURE 9.2 Lawn sprinkler of Example 9.1.

Exit diameter

R   =Ut

Vt

Vrel sin 
Vrel

Vn

V

FIGURE 9.3 Velocity diagram for the water leaving the nozzle.
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or

Vrel ¼ 4Q1

pD2

where D is the nozzle exit diameter and Q1 is the volume flow rate through only one nozzle (equal to half
that delivered by the sprinkler). The tangential velocity now becomes

Vt ¼ V sin u ¼ 4Q1

pD2
sina� Rv

Equation 9.4 applied to one nozzle discharging liquid out of the control volume becomes

Ts ¼
ð
C

ð
S

rVt(rVn dA)

With the efflux at r¼R, for constant density r, and with no inflow in the tangential direction, the
preceding equation becomes, for two identical nozzles,

Ts ¼ 2rR
ð
C

ð
S

Vt(Vn dA)

Substituting for tangential velocity, we get

Ts ¼ 2rR
ð
C

ð
S

4Q1

pD2
sina� Rv

� �
Vn dA

Integrating, and recalling that the volume flow rate Q1 is for one nozzle, we obtain, for the torque,

Ts ¼ 2rQ1R
4Q1

pD2
sina� Rv

� �

If the nozzles are discharging equal amounts of flow, then the total flow rate Q equals 2Q1. The torque
then becomes

Ts ¼ rQR
2Q
pD2

sina� Rv

� �

We are now ready to apply the angular momentum equation to the case of a generalized turboma-
chine. A typical control volume is given in Figure 9.4. It is customary to take Vt as positive when it
is in the direction of rotation. The normal velocities Vn are assumed to be average velocities. The
continuity equation for the control volume is

ð
C

ð
S

rVn dA ¼ 0

or

r2A2Vn2 � r1A1Vn1 ¼ 0 (9:7a)
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For an incompressible fluid, r1¼ r2, and the continuity equation becomes

A1Vn1 ¼ A2Vn2 ¼ Q (9:7b)

Applying the steady-flow angular momentum equation, we get

Ts ¼
ð
C

ð
S

rVt(rVn dA) ¼ R2Vt2r2Q2 � R1Vt1r1Q1ð Þ

Combining with Equation 9.7, we get

Ts ¼ rQ R2Vt2 � R1Vt1ð Þ (9:8)

in which R1 and R2 are average radial distances at inlet and outlet, whereas Vt1 and Vt2 are
corresponding average tangential velocities. Equation 9.8—known as the Euler turbine
equation—relates shaft torque to fluid velocities through a turbomachine. The shaft torque is
taken as positive if the turbomachine is a pump; it is taken as negative for a turbine.

By definition, the power or rate of doing work is the product of shaft torque and rotational
speed:

� dWs

dt
¼ Tsv ¼ rQv R2Vt2 � R1Vt1ð Þ (9:9)

The tangential velocity of the rotor is Ut (¼Rv), and by substitution, Equation 9.9 becomes

� dWs

dt
¼ Tsv ¼ rQ Ut2Vt2 � Ut1Vt1ð Þ (9:10a)

On a per-unit-mass basis, we have

� 1
rQ

dWs

dt
¼ Tsv

rQ
¼ Ut2Vt2 � Ut1Vt1ð Þ (9:10b)

Thus, the difference of the product of two velocities (UtVt) is proportional to the power per unit mass
of fluid passing through the turbomachine. The power in Equation 9.10 is the actual power
measured at the shaft.

R2R1
Ts

Vn2

Vn1

Vt1
Vt2

Control surface

FIGURE 9.4 Control volume for a generalized turbomachine.
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Applying the steady-flow energy equation (Equation 3.21) to the control volume of Figure 9.4 gives

d ~Q�W
� �

dt
¼ hþ V2

2
þ gz

� �����
out

� hþ V2

2
þ gz

� �����
in

� �
rQ

In the absence of heat transfer (as with an adiabatic machine) and using subscript notation, the
energy equation becomes

� dW

dt
¼ h2 þ V2

2

2
þ gz2

� �
� h1 þ V2

1

2
þ gz1

� �� �
rQ

Thework termW ismade up of two parts—shaft work and frictionwork. Rewriting the energy equation,
we get

� dWs

dt
� dWf

dt
¼ rQ h2 þ V2

2

2
þ gz2

� �
� h1 þ V2

1

2
þ gz1

� �� �
(9:11a)

If work is done by the fluid, the shaft work Ws is a positive quantity (as in turbines). If work is done
on the fluid (pumps, fans, and compressors), however, Ws is negative. The friction work Wf is
always a positive quantity because it represents shear work done by the fluid.

Equation 9.11a gives the power based on the change in fluid properties across the machine and
is useful primarily for turbomachines that have a gas or vapor as the fluid medium (as in an air
compressor or steam turbine). With these fluids in general, enthalpy differences are far more
significant than differences in kinetic and potential energies, which are therefore usually ignored
in the equation. Equation 9.11a thus becomes for a gas or vapor fluid medium

� dWs

dt
� dWf

dt
¼ rQ Dh (9:11b)

where Dh¼ h2� h1, the enthalpy difference across the machine.
If the fluid medium is a liquid (as in a water turbine or pump), a modified version of Equation

9.11a is more appropriate. Recall the definition of enthalpy:

h ¼ uþ p

r

For liquids, the change in internal energy of the fluid from inlet to outlet is negligible in comparison
to the changes in pressure, kinetic energy, and potential energy. Thus, Equation 9.11a becomes

� dWs

dt
� dWf

dt
¼ rQ

p2
r
þ V2

2

2
þ gz2

� �
� p1

r
þ V2

1

2
þ gz1

� �� �
(9:12a)

The quantity

p

rg
þ V2

2g
þ z ¼ Z

is called the total head Z. In terms of total head, Equation 9.12a is, for a liquid,

� dWs

dt
� dWf

dt
¼ rQ DZg (9:12b)

where DZ¼ Z2� Z1.
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Equation 9.10 is an expression for power measured at the shaft of a turbomachine, whereas
Equations 9.11 and 9.12 tell how the fluid itself changes properties across the machine. The
difference in these expressions is due to friction and other irreversibilities. This condition leads us
to the concept of efficiency. For a fan or a pump, we put work into the system by rotating the shaft
(Equation 9.10) while the output goes into overcoming frictional effects and increasing the energy
of the fluid (Equations 9.11 or 9.12). By defining efficiency as

h ¼ Energy out

Energy in

we obtain the following for a pump, fan, or compressor:

h ¼ � dWs=dtð Þ � dWf =dt
� �

� dWs=dtð Þ

By substitution from Equations 9.10 through 9.12, we have

Compressor or fan efficiency:h ¼ Dh

Ut2Vt2 �Ut1Vt1
(9:13)

Pump efficiency:h ¼ gDZ

Ut2Vt2 � Ut1Vt1
(9:14)

For a gas turbine or a water turbine, the fluid loses energy on its way through the machine. This
energy goes into overcoming frictional effects and into useful power as measured at the output shaft.
So for a turbine, efficiency is

h ¼ Energy out

Energy in

¼ � dWs=dtð Þ
� dWs=dtð Þ � dWf =dt

� �
By substitution from Equations 9.10 through 9.12, we obtain

Gas or vapor turbine efficiency:h ¼ Ut2Vt2 � Ut1Vt1

Dh
(9:15)

Water turbine efficiency:h ¼ Ut2Vt2 � Ut1Vt1

gDZ
(9:16)

These equations were developed for a generalized turbomachine and give an idea of what is to be
expected in analyzing fluid machinery. The general equations will be modified where appropriate to
make them applicable specifically to the various devices discussed in this chapter.

9.2 AXIAL-FLOW TURBINES

In an axial-flow turbine, the flow through the machine is mainly in the axial direction. A schematic
of a conventional axial-flow turbine is given in Figure 9.5. It consists of a stator, which is a
stationary housing onto which fixed blades are attached, and a rotating rotor, also with blades
attached. The flow of fluid is through the passage between adjacent blades in the same row.
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The passage is sometimes referred to as a nozzle. A turbine stage is defined as one stator and one
rotor set of blades. The dimensions of the rotor and stator can change with distance along the
machine to make better use of the energy in the fluid from stage to stage—that is, to extract as much
energy from the fluid as efficiently as possible. The multistage machine shown in Figure 9.5 is used
primarily for gas and steam flows. Steam turbines are used extensively in conventional power plants
for the production of electricity.

A simple approach to the study of such a machine is to assume that conditions at the mean
flow radius (the pitch line) fully represent the flow at all other radii in one set of blades. This
two-dimensional analysis is reasonable if the ratio of blade height to mean radius is small. If this
ratio is large, however, a three-dimensional analysis is required. Because a three-dimensional
analysis is beyond the range of what we wish to study, we will formulate only a two-dimensional
approach.

A velocity diagram for one stage is given in Figure 9.6. It is assumed that radial velocities
are zero and that the flow does not vary in the circumferential direction. The velocities of
importance are the absolute velocities V0, V1, and V2, the relative velocity Vrel, the tangential
velocity Vt, the rotor tangential velocity Ut, and the axial velocity Va. The stage is referred to as
normal if V0¼V2. It is customary to take the axial velocity as constant through the machine.
Because the change of fluid properties within each stage is small, the fluid can be assumed to
be incompressible in each stage. A different density is then selected for each successive stage to
account for the compressibility effect. The controllable features of importance are the blade
angles a1 and b2. The angle a1 is determined by the setting of the stator blades; b2 is
determined by the setting of the moving rotor blades. Because these blade angles are independ-
ent of the flow through the machine, it is desirable to express our equations in terms of these
design angles.

Equations 9.10a and 9.11a can be applied to any stage in the turbine. For the velocity diagram
of Figure 9.6, Equation 9.10a becomes

Casing
Stator blades

Mean pitch line

Rotor blades
Inlet flow

One stage

View A–A

Ut Ut

AA

FIGURE 9.5 Schematic of an axial-flow turbine.
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dWs

dt
¼ Tsv ¼ rQUt Vt2 þ Vt1ð Þ (9:17)

The sign on the shaft work term is positive because we are dealing with a turbine. Moreover, the
peripheral velocities are taken at the same radius, so Ut2 ¼ Ut1 ¼ Ut. Finally, the sign convention
that the tangential velocity is positive if in the same direction as Ut requires the sign change on Vt1 .

Next we apply Equation 9.11a, assuming frictionless flow through the stage and no changes in
potential energy:

� dWs

dt
¼ rQ h2 þ V2

2

2

� �
� h0 þ V2

0

2

� �� �

Because we are treating each stage as though the fluid medium passing through is incompressible,
the enthalpy terms become pressure terms. We therefore obtain

� dWs

dt
¼ rQ

p2
r
þ V2

2

2

� �
� p0

r
þ V2

0

2

� �� �
(9:18a)

For a normal stage (V0¼V2), Equation 9.18a becomes

� dWs

dt
¼ Q(p2 � p0) (9:18b)

V0 Va

Vrelt1

Vrelt1

Vrelt2

Vrel2

Va

1

2

1

2

Vt1

Vt2

Ut

Ut1

Ut2

V1

V2 Va

FIGURE 9.6 Velocity diagram for the axial-flow turbine stage.
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Combining Equations 9.17 and 9.18 gives the following for the pressure drop across the stage:

p0 � p2 ¼ rUt Vt2 þ Vt1ð Þ (9:19)

Another important pressure-drop term that we will need is across the rotor row. Again we apply
Equations 9.10a and 9.11a. The following equations result:

dWs

dt
¼ rQUt Vt2 þ Vt1ð Þ (9:20)

and

� dWs

dt
¼ rQ

p2
r
þ V2

2

2

� �
� p1

r
þ V2

1

2

� �� �
(9:21)

Equating and regrouping give

p1 � p2
r

þ V2
1 � V2

2

2
� Ut Vt2 þ Vt1ð Þ ¼ 0

From the velocity diagrams, we have the following for both V1 and V2:

V2 ¼ V2
a þ V2

t

By substitution, we get

p1 � p2
r

þ V2
t1
� V2

t2

2
� Ut Vt1 þ Vt2ð Þ ¼ 0

because Va is a constant. Further simplification gives

p1 � p2
r

þ 1
2

Vt1 � Vt2ð Þ Vt1 þ Vt2ð Þ � 2U t Vt1 þ Vt2ð Þ½ � ¼ 0

or

p1 � p2
r

þ 1
2

Vt1 þ Vt2ð Þ Vt1 �U tð Þ � Vt2 þ Utð Þ½ � ¼ 0 (9:22)

Again from the velocity diagrams, the tangential velocities must balance:

Vt1 � Ut ¼ Vrelt1

Vt2 þ Ut ¼ Vrelt2

(9:23)

Adding these gives yet another relationship:

Vt1 þ Vt2 ¼ Vrelt1 þ Vrelt2 (9:24)
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Substituting Equations 9.23 and 9.24 into Equation 9.22 gives

p1 � p2
r

þ 1
2

Vrelt1 þ Vrelt2ð Þ Vrelt1 � Vrelt2ð Þ ¼ 0

p1 � p2
p

þ 1
2

V2
relt1

� V2
relt2

	 

¼ 0

Adding and subtracting V2
a from the kinetic-energy term yield

p1 � p2
r

þ V2
relt1

þ V2
a � V2

relt2
� V2

a

2
¼ 0

Simplifying and dividing by g, we obtain

p1 � p2
rg

þ V2
rel1

� V2
rel2

2g
¼ 0 (9:25a)

Thus, we have proved that, through the rotor, Bernoulli’s equation using relative velocities is valid.
The pressure drop across the rotor row of blades is thus

p1 � p2 ¼ r

2
V2
rel2

� V2
rel1

	 

(9:25b)

Performance of an axial-flow turbine stage is conveniently described by means of what is called
degree of reaction or reaction ratio, RR. The classic definition is the ratio of static pressure drop in
the rotor to the static pressure drop in the stage:

RR ¼ p1 � p2
p0 � p2

(9:26)

In terms of velocities, the reaction ratio is

RR ¼ V2
rel2

� V2
rel1

2Ut Vt2 þ Vt1ð Þ (9:27)

where Equations 9.19 and 9.25b for pressure drops have been substituted. With

V2
rel ¼ V2

a þ V2
relt

and Equation 9.24, Equation 9.27 becomes

RR ¼ V2
relt2

� V2
relt1

2Ut Vt2 þ Vt1ð Þ ¼
Vrelt2 � Vrelt1ð Þ Vrelt2 þ Vrelt1ð Þ

2Ut Vt1 þ Vt2ð Þ

or

RR ¼ Vrelt2 � Vrelt1

2U t
(9:28)
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In terms of axial velocity, the tangential velocities can be written as

Vrelt1 ¼ Va tanb1

Vrelt2 ¼ Va tanb2

(9:29)

Combining these and Equation 9.23 with Equation 9.28 gives

RR ¼ Va

2Ut
( tanb2 � tanb1)

RR ¼ 1
2
þ Va

2Ut
( tanb2 � tana1)

(9:30)

Two cases of note are the zero reaction stage and the 50% reaction stage. From Equation 9.30, if
RR¼ 0, then b1¼b2. We can now resketch the velocity diagram as in Figure 9.7 to illustrate a zero
reaction stage. According to Equation 9.26, this means that there is no pressure drop across the rotor
row. A 50% reaction stage can be represented by the velocity diagram of Figure 9.8. From Equation
9.30, if RR¼ 0.5, then b2¼a1. Half the pressure drop in the stage occurs across the rotor row.

In conventional machines, the reaction ratio falls between zero and unity. However, an
undesirable phenomenon occurs if the reaction ratio exceeds unity. For this case, the absolute
velocity leaving the stator row V1 is less than the inlet velocity V0. Accordingly, an adverse pressure
gradient exists that causes separation of the flow from the blades in the stator. Since this separation
results in large-scale losses, reaction ratios greater than unity are avoided in good design.

Example 9.2

Measurements on a single-stage gas turbine indicate that at stage entry the pressure is 110 psia and
temperature is 10008R. Pressure drop across the stage is 10 psf. The rotational speed of the rotor
is 180 rpm; at this speed, the shaft torque is measured to be 2.0 ft� lbf. The rotor diameter is 1.5 ft,
and blade height is 1 in. The mean pitch line is at half the blade height. The mass flow of gas is

V1

V2Vrel1

Vrel2

UtRR   0
  1       2

1 2

FIGURE 9.7 Combined velocity diagram for a zero reaction turbine stage.

V1

V2Vrel1

Vrel2

UtRR   0.5
  1      2

1

1

2

2

FIGURE 9.8 Combined velocity diagram for a 50% reaction turbine stage.
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0.062 slug=s, and the specific heats are the same as those for air. Assume ideal gas behavior and that the
stage is normal. The inlet flow angle between the absolute velocity and the axial velocity is 388.
Determine

a. Velocity diagrams
b. Efficiency of the turbine
c. The reaction ratio

SOLUTION

For the following calculations, it is helpful to refer to Figure 9.6.

a. The density is found with the ideal gas law as

r ¼ p

RT
¼ 110(144)

1710(1000)
¼ 0:00926 slug=ft3

where R for air has been used. Density is assumed to be constant through the stage. The gas
flows through the annulus formed by the rotor and the casing. The clearance is 1 in. (the blade
height). The flow area is

A ¼ p

4
D2

o � D2
i

� � ¼ p

4
1:5þ 2

12

� �2

�(1:5)2
" #

¼ 0:415 ft2

The axial velocity can now be determined with

_m ¼ rAVa

Va ¼ 0:062
0:00926(0:415)

¼ 16:2 ft=s

The inlet velocity is calculated by using

Va ¼ V0 cosa0

With a0 given as 388, we find

V0 ¼ 16:2
cos 38�

¼ 20:6 ft=s

Because the stage is normal,

V2 ¼ V0 ¼ 20:6 ft=s

For a constant axial velocity, then

a2 ¼ a0 ¼ 38�

Also,

Vt2 ¼ V2 sina2 ¼ 12:7 ft=s
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The mean pitch line is found at a radius located at half the blade height:

R ¼ 1:5þ 1
12

2
¼ 0:79 ft

Given a rotational speed of 180 rev=min, the tangential velocity of the rotor is

Ut ¼ Rv ¼ 0:79 ft 180 rev=minð Þ 2p rad=revð Þ 1 min=60 sð Þ
¼ 14:9 ft=s

Summing tangential velocities, we have

Vrelt2 ¼ Vt2 þ Ut ¼ 12:7þ 14:9 ¼ 27:6 ft=s

We can now find b2 with

tanb2 ¼
Vrelt2

Va
¼ 27:6

16:2
¼ 1:71

b2 ¼ 59:6�

In addition, we also have

Vrel2 sinb2 ¼ Vrelt2

Vrel2 ¼ 32:0 ft=s

Equation 9.17 gives the power as

dWs

dt
rQUt Vt2 þ Vt1ð Þ ¼ Tsv

For a torque of 2.0 ft � lbf at 180 rev=min, we have

dWs

dt
¼ (2:0 ft � lbf) 180 rev=minð Þ 2p rad=revð Þ 1 min=60 sð Þ
¼ 37:7 ft � lbf=s

Rearranging the preceding power equation, we find

Vt1 ¼
dWs

dt

1
_mUt

� Vt2

¼ 37:7
0:062(14:9)

� 12:7 ¼ 40:7� 12:7 ¼ 28:0 ft=s

Using the tangential velocity relationship, we obtain

Vrelt1 ¼ Vt1 � Ut ¼ 28:0� 14:9 ¼ 13:1 ft=s

Also,

tana1 ¼ Vt1

Va
¼ 28:0

16:2
¼ 1:73

a1 ¼ 59:9�
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Next,

tanb1 ¼
Vrelt1

Va
¼ 13:1

16:2
¼ 0:808

b1 ¼ 39:0�

From the velocity triangles, we get

V1 ¼ Va

cosa1
¼ 16:2

cos 59:9�
¼ 32:3 ft=s

and finally

Vrel1 ¼
Va

cosb1
¼ 16:2

cos 39:0�
¼ 20:9 ft=s

The velocity diagrams are sketched to scale in Figure 9.9.
b. The efficiency of the turbine is the ratio of the power measured at the output shaft to the energy

loss in the fluid:

h ¼ dWs=dt

Q(p0 � p2)

10 ft/s

V0

Vrelt1
Vt1

V1

V2

Ut

Ut

Vrel1

Va

Va

Vt2
Vrelt2

Vrel2

Va

FIGURE 9.9 Velocity diagrams for the turbine of Example 9.2.
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With Q¼ _m=r¼ 0.062=0.00926¼ 6.73 ft3=s, we get

h ¼ 37:7
6:73(10)

h ¼ 0:56 ¼ 56%

c. The reaction is found with Equation 9.28:

RR ¼ Vrelt2 � Vrelt1

2Ut
¼ 27:6� 13:1

2(14:9)

RR ¼ 0:49

As was mentioned earlier, a mean pitch line can be selected as representative of the entire stage
when the blade height is small in comparison to the rotor diameter. When the blades are not short,
however, we must account for the radial distance variation. This difficulty can be circumvented by
dividing the blade into elements, as shown in Figure 9.10, and adding the contribution to the torque
of each element. The total shaft torque thus becomes the sum of the individual contributions, and the
angular momentum Equation 9.11 can be applied to each element.

Another type of axial-flow turbine is the hydraulic propeller turbine. This machine can be
located in or near a dam, for example, so that water passing through provides power for the
turbine to rotate a generator to produce electricity. As shown in Figure 9.11, the flow enters
the system through the guide vanes, which give the liquid a tangential velocity before it
reaches the turbine blades. (That is, the guide vanes cause a vortex to form.) The propeller blades
are in the midst of the vortex, and the transfer of energy is thus enhanced. In a fixed turbine blade
runner, the guide vanes can be set to any desired angle (within limits) to accommodate changes in
head water elevation and output power demand. The objective in an electrical generation installation
is to achieve the constant rotational speed required by the generator to produce a constant frequency.
This control could be achieved by adjusting the guide vanes. In a Kaplan turbine system, the
turbine blades themselves and the inlet guide vanes can be made to change their orientation. The two
adjustments are made simultaneously to accommodate changes in conditions. The Kaplan turbine
system is suited for a wider range of operating variables than the fixed-blade type.

The turbine blades are few in number, and each is relatively flat. The blades are placed so that
the relative velocity at the entrance (or exit) to the rotor is tangential to the leading edge of the blade

Axis of rotation

R

Δz

FIGURE 9.10 A rotor blade divided into a number of elements.
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Guide vane

Plan view of guide vanes

r
Vrg

Rg

VgVtg

Guide vane

b

Ro

R1

Profile view of system(a)

(b) Vertical(c)

FIGURE 9.11 (a) Axial-flow propeller turbine. (b) Kaplan runner of an axial-flow turbine. (Courtesy of Allis-
Chalmers Hydro Turbine Division. With permission.) (c) Typical installation of an axial-flow turbine system.
(Courtesy of Allis-Chalmers Hydro Turbine Division. With permission.)
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(or trailing edge). The liquid relative velocity is high and changes slightly while passing through the
turbine. Thus, a change in head requires a change in guide vane setting and, if possible, an
accompanying change of the blade setting.

Analysis of the flow through the turbine is based on the same axial-flow equations that have been
derived previously. The difference here, however, is that we must in addition describe the vortex flow
field that is caused by the presence of the guide vanes. For this purpose, we select as our control
volume the region downstream of the guide vanes and upstream of the turbine blades. Assuming
steady flow without any external torques on this fluid, the angular momentum equation becomes

0 ¼
ð
C

ð
S

rVtrVn dA

Applying this between the entrance point at radius Rg and at any radial position r, we have

rVtrQ� RgVtgrQ ¼ 0

or

rVt ¼ RgVtg

where Vtg is the tangential velocity component at the radius Rg. In terms of the absolute entrance
velocity Vg and the guide vane angle a, the preceding equation becomes

Vt ¼ RgVg sina

r
(9:31)

This equation gives the tangential fluid velocity input to the turbine blades. Furthermore, the flow
rate through the turbine is

Q ¼ 2pRgbVrg ¼ 2pRgbVg cosa (9:32)

where: b¼ guide vane height
Vrg¼ radial component of Vg

the product 2pRgb is the inflow area (customarily discounting guide vane thickness)

Finally, the axial velocity at the turbine blades is found with

Va ¼ Q

p R2
o � R2

i

� � (9:33)

where Ro and Ri are casing and hub radii, respectively. The casing and tip radii are assumed to be
equal, although there must be a slight clearance.

Example 9.3

An axial-flow propeller turbine installation is sketched in Figure 9.11a. The guide vanes are set at
an angle of 308 from the radial direction. The inner radius of the guide vanes is 1.5 m, and their
height is 0.5 m. The guide vanes are in a location where the water head is equivalent to 0.45 m.
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The turbine blades have a hub radius of 0.15 m and a tip radius of 0.8 m. The rotor speed is 360 rev=min.
Select appropriate blade angles for the leading edge of the turbine blades.

SOLUTION

We can apply Bernoulli’s equation at the guide vanes to calculate Vg:

V2
g

2g
¼ DH

or

Vg ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2gDH

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(9:81)(0:45)

p
¼ 2:97 m=s

First make calculations for the fluid at the hub; then repeat for the tip. At the hub, Ri¼ 0.15 m. Then

Vti ¼ RgVg sina

Ri
¼ 1:5(2:97) sin 30�

0:15

¼ 14:9 m=s

The radial velocity at the guide vanes is

Vrg ¼ Vg cosa ¼ 2:97 cos 30� ¼ 2:57 m=s

From Equation 9.32, the volume flow rate is

Q ¼ 2pRbbVrg ¼ 2p(1:5)(0:5)(2:57)

¼ 12:1 m3=s

Using Equation 9.33, we determine the axial velocity to be

Va ¼ Q

p R2
o � R2

i

� � ¼ 12:1
p(0:82 � 0:152)

¼ 6:23 m=s

The tangential velocity at the hub is

Uti ¼ Riv

¼ 0:15(360) 2p=60ð Þ
¼ 5:65 m=s

The velocity diagram at the hub can now be drawn as shown in Figure 9.12a. The blade angle can be
found from

tan (bi � 90�) ¼ Va

Vti � Uti
¼ 6:23

14:9� 5:65
¼ 0:674

Solving, we find the blade angle at the hub:

bi ¼ 123:9�
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Performing similar calculations at the tip yields the following:

1: Vto ¼ RgVg sina

Ro
¼ 1:5(2:97) sin 30�

0:8
¼ 2:78 m=s

2: Vrg ¼ Vg cosa ¼ 2:97 cos 30� ¼ 2:57 m=s

3: Q ¼ 2pRgbVrg ¼ 2p(1:5)(0:5)(2:57) ¼ 12:1 m3=s

4: Va ¼ Q

p R2
o � R2

i

� � ¼ 12:1
0:82 � 0:152

¼ 6:23 m=s

5: Uto ¼ Rov ¼ 0:8(360) 2p=60ð Þ ¼ 30:16 m=s

9>>>>>>>>>>=
>>>>>>>>>>;
(constants)

The velocity diagram is sketched in Figure 9.12b. The blade angle is found with

tan (270� � bo) ¼
Va

Uto � Vto
¼ 6:23

30:16� 2:78
¼ 0:228

Solving, we find the blade angle at the tip:

bo ¼ 257:2�

A similar procedure can be followed at selected points along the blade between 0.15 and 0.8 m. With the
one-dimensional assumption, the product UtVt at any blade location is a constant.

The third type of axial-flow turbine that we will consider is the windmill. Windmills are
primarily open turbines that are not surrounded by a casing (except in some experimental or
nontraditional designs). The familiar Dutch windmill with sail-like blades has been used to pump
water. These huge, four-bladed types have efficiencies of �5%. Recently, there has been a renewed
interest in windmills, especially as electrical generation devices. For our purposes, we will examine
the factors that directly influence the machine’s performance—specifically, the factors that control
the efficiency of the conversion of wind motion to propeller rotation.

Uto

Vrelo
VaVa

Vto

Uti

Va

(a)

(b)

Blade

Blade

Vti

Vi

i

o

Vrelt

FIGURE 9.12 Velocity diagrams at the hub (a) and tip (b) of the propeller turbine of Example 9.3.
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An interesting result becomes evident when the momentum equation is applied to the airflow in the
vicinity of a windmill. Consider the sketch of Figure 9.13. Thewindspeed upstream is uniform atA1, the
area of moving air to be intercepted by the disk formed by blade rotation. The pressure sufficiently far
upstream is p1 and equals the pressure sufficiently far downstream p4. The pressure steadily increases
from p1 to p2, then drops across the blades to p3, then increases back to p4. This pressure variation causes
the moving air to take on the characteristic shape, called a slipsteam, of Figure 9.13a. Selecting the
slipstream between points 1 and 4 as our control volume, we write the momentum equation:

X
Fz ¼

ð
C

ð
S

VzrVn dA

The only force acting is exerted by the windmill on the air at the propeller to keep the machine
stationary. This must balance the change in momentum experienced by the fluid:

X
Fz ¼ �Fw ¼ (p3 � p2)A ¼ rAVa(V4 � V1) (9:34a)

or

p3 � p2 ¼ rVa(V4 � V1) (9:34b)

Applying Bernoulli’s equation between points 1 and 2, we get

p1
rg

þ V2
1

2g
¼ p2

rg
þ V2

2

2g

p
p1 = p4

O
(b)

x

V1

Va

p3

p4

p1

(a)

A4V4

p2

A

Fw

Va

A1

FIGURE 9.13 (a) Flow of air through the blades of a windmill (a) and corresponding pressure profile (b).
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Between points 3 and 4, we have

p3
rg

þ V2
3

2g
¼ p4

rg
þ V2

4

2g

Adding these gives

p3
rg

þ V2
1

2g
¼ p2

rg
þ V2

4

2g
(9:35)

where the relationships p1¼ p4 and V2¼V3¼Va have been used. Equating Equations 9.34b and
9.35 gives

Va ¼ V4 þ V1

2
(9:36)

This states that the velocity through the disk at the propeller is the average of the uniform velocities
far ahead of and far behind the unit.

For frictionless flow through the machine, the power delivered to the windmill equals exactly
the power extracted from the air. Applying the energy equation about the blade shows that this
power equals the change in kinetic energy of the fluid:

dWs

dt
¼ rAVa

2
¼ V2

1 � V2
4

� �
(9:37)

The power originally available in the wind of cross-sectional area A and velocity V1 is

dWa

dt
¼ rAV3

1

2
(9:38)

found also by application of the energy equation. Windmill efficiency is defined as

h ¼ dWs=dt

dWa=dt
¼ rAVa V2

1 � V2
4

� �
rAV3

1

¼ Va V2
1 � V2

4

� �
V3
1

or, after combining with Equation 9.36,

h ¼ (V1 þ V4) V2
1 � V2

4

� �
2V3

1

¼ 1
2

1þ V4

V1

� �
1� V4

V1

� �2
" #

(9:39)

The maximum efficiency is found by differentiating this expression with respect to V4=V1 and
setting the result equal to zero. This gives

V4

V1

����
hmax

¼ 1
3

(9:40)

which can then be substituted into Equation 9.39 to find

hmax ¼
16
27

¼ 59:3%
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This efficiency is the maximum that exists for frictionless flow. Because of friction and other losses,
this value can only be approached in practice. The maximum efficiency for a real windmill appears
to be about 50%.

Example 9.4

A two-bladed windmill with a diameter (tip-to-tip) of 35 ft is in a stream of air of velocity 70 ft=s. The air
temperature is 658F, and atmospheric pressure is 14.69 psia. Downstream the uniform flow velocity is
60 ft=s. Under these conditions, find the electrical power output. Calculate the thrust on the windmill and
the overall efficiency of the installation.

SOLUTION

The velocity at the blades is found with Equation 9.36:

Va ¼ V1 þ V4

2
¼ 70 ft=sþ 60 ft=s

2
¼ 65 ft=s

Assuming a constant air density and ideal gas behavior,

r ¼ p

RT
¼ 14:69(144)

1710(460þ 65)
¼ 0:00236 slug=ft3

The disk area is

A ¼ pD2

4
¼ p(35)2

4
¼ 962 ft2

The thrust is calculated with Equation 9.34a as

�Fw ¼ rAVa(V4 � V1)

¼ 0:00236(962)(65)(60� 70)

Fw ¼ 1470 lbf

The power originally available in the airstream is

dWa

dt
¼ rAV3

1

2
¼ 0:00236(962)(70)3

2
¼ 3:89� 105 ft � lbf=s

The actual power output is, from Equation 9.37,

dWs

dt
¼ rAVa

2
V2
1 � V2

4

� �
¼ 0:00236(962)(65)

2
(702 � 602)

¼ 9:59� 104 ft � lbf=s

Converting to kilowatts (conversion factor from Table A.2), we find the actual power output for
frictionless flow to be

dWs

dt
¼ 9:59� 104(1:355� 10�3) ¼ 130 kW
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The overall efficiency is

h ¼ 9:59� 104

3:89� 105
¼ 0:246

h ¼ 24:6%

In preceding discussions, we used one-dimensional flow theory to predict performance of axial-
flow turbines. The one-dimensional assumption gives an accurate description of the flow when the
number of blades in the machine is large. When the number of blades is few and the distance
between them is large, however, each acts like an airfoil. Consequently, we must resort to airfoil
theory to analyze a machine such as a two- or three-bladed windmill. To begin, consider the
situation sketched in Figure 9.14, which incorporates the notation of Figure 9.13. An airfoil
(represented in cross section) is moving at a tangential velocity Ut. The absolute velocity of the
approach flow is V2, whereas the flow leaves at an absolute velocity V3. For the analysis centered
about Figure 9.13, the one-dimensional assumption is made. The velocity at the blade is an axial
velocity that is constant. With airfoil theory, Figure 9.14 is appropriate.

In this figure, V2 and V3 are no longer axial or equal as in Figure 9.13. For the moving airfoil, we
therefore construct a velocity diagram before and after the blade. Note that the blade’s leading and
trailing edges are tangential to the local relative velocity. To simplify the analysis, we reconstruct a
single velocity diagram with only one relative velocity found by

V rel ¼ Vrel2 þ Vrel3

2
(9:41)

as sketched in Figure 9.15. The average relative velocity V rel has an angle of incidence of d. From
Chapter 6, we know that an airfoil experiences lift and drag forces perpendicular and parallel,
respectively, to the flow direction. These are shown in Figure 9.16. To determine the forces acting

Vrel3

Va
V3

Ut

Ut

Ut

Va

V2Vrel2

2

3

2

3

FIGURE 9.14 Flow past a moving airfoil.
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on the rotor, it is necessary to resolve the lift and drag forces into axial and tangential components.
Taking the direction of Va as positive, the axial force is

Fa ¼ Lf sinbþ Df cosb (9:42a)

The tangential force is

Ft ¼ Lf cosb� Df sinb (9:42b)

+

Ut

Vrel2

Va

VVrel3

UtVrel

FIGURE 9.15 Average relative velocity for flow past an airfoil.

Va

Lf

Lf

Df

Df

Vrel

FIGURE 9.16 Forces of lift and drag acting on the airfoil resolved into axial and tangential components.
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where the direction of Ut is considered positive. In terms of lift and drag coefficients, the lift and
drag forces are

Lf ¼ CL
rV

2
relAp

2

Df ¼ CD
rV

2
relAp

2

where Ap is the planform area (chord length times span) of the airfoil. Before combining these
equations, note that it is necessary to account for changes in Ut with distance for the rotor and,
moreover, that it may be desired to change the dimension of the airfoil with blade length. We
therefore divide the blade into incremental elements Dz wide, as shown in Figure 9.17. The area
becomes A¼ c Dz. Combining the lift and drag expressions with Equation 9.42 yields the following
after simplification:

Fa ¼ (CL sinbþ CD cosb)
rV

2
relcDz

2

Ft ¼ (CL cosbþ CD sinb)
rV

2
relcDz

2

(9:43)

These forces exerted on the airfoil can now be related to the properties of the flow (static pressure
and velocity). The momentum in the tangential direction is

X
Ft ¼

ð
C

ð
S

VtrVn dA

which becomes, for the left-hand side,

X
Ft ¼ NFt ¼ N(CL cosb� CD sinb)

rV
2
relcDz

2

where N is the number of blades that contribute to the total force exerted. The change in momentum
term isð

C

ð
S

VtrVn dA ¼ rVa Vt3 � Vt2ð Þ2prDz

r

c
Δz

FIGURE 9.17 An element of a blade.
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where the notation of Figure 9.13 has been used on the tangential velocity terms. Here the flow
rate is the product of axial velocity, which is a constant, and area of an annulus Dz thick and located
at r away from the axis of rotation. The momentum equation is

N(CL cosb� CD sinb)
rV

2
relcDz

2
¼ rVa Vt3 � Vt2ð Þ2prDz

Substituting Va¼V rel cos b and simplifying yield

Vt3 � Vt2 ¼
V relcN

4pr
(CL � CD tanb) (9:44)

We now have a relationship between the tangential fluid velocities and the characteristics of the
airfoil.

The momentum equation can also be applied in the axial direction:

X
Fa ¼

ð
C

ð
S

VarVn dA

Using the notation of Figure 9.13, we obtain

NFa ¼ (p2 � p3)2pr Dz (9:45)

and

ð
C

ð
S

VarVn dA ¼ (r2prDzVa) Va3 � Va2ð Þ

but because Va3¼Va2¼Va, the momentum equation reduces to Equation 9.45. By substitution from
Equation 9.43, then, Equation 9.45 becomes

N(CL sinb� CD cosb)
rV

2
relcDz

2
¼ (p2 � p3)2prDz

Simplifying and rearranging give

p3 � p2 ¼ � rV
2
relcN

4pr
(CL sinbþ CD cosb) (9:46)

This equation relates the pressure drop across the blade to the characteristics of the foil at a location
r from the axis of rotation.

Example 9.5

Consider the windmill of the previous example. A summary of the data given there is as follows:

. Number of blades (N)¼ 2

. Tip-to-tip diameter (D)¼ 35 ft

. Disk area (A)¼ 962 ft2
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. Upstream air velocity (V1)¼ 70 ft=s

. Downstream air velocity (V4)¼ 60 ft=s

. Air velocity at blades (V)¼ 65 ft=s

. Air density (r)¼ 0.00236 slug=ft3

. Shaft work (dWs=dt)¼ 130 kW

It is assumed that each blade can be treated as being invariant in cross section—there are no taper and no
blade twist variation with blade length. The blade makes an angle of 608with the axial direction; the chord
length is 24 in. Determine the aerodynamic properties of the airfoil and calculate the pressure drop at the
midpoint of the blade. Assume a rotational speed of 400 rev=min.

SOLUTION

The axial velocity is the same as the air velocity at the blades:

Va ¼ 65 ft=s

The relative velocity is found with

V rel ¼ Va

cosb
¼ 65

cos 60�
¼ 130 ft=s

At blade midpoint, r¼ 17.5=2¼ 8.75 ft. Equation 9.46 gives the pressure in terms of lift and drag
coefficients:

p3 � p2 ¼ � rV
2
relcN

4pr
(CL sinbþ CD cosb)

¼ � 0:00236(130)2(24=12)(2)
4p(8:75)

(CL sin 60
� þ CD cos 60�)

¼ �1:45(0:866CL þ 0:5CD)

In addition, the pressure drop can be calculated with Equation 9.35:

p3 � p2 ¼
r V2

4 � V2
1

� �
2

¼ 0:00236(602 � 702)
2

¼ �1:53 psf

Equating the pressure drop equations gives

CL þ 0:5
0:866

CD ¼ � �1:53
1:45(0:866)

CL þ 0:577CD ¼ 1:22 (i)

The tangential velocity difference must be evaluated next. Using Equation 9.10a for the shaft work,
written with the notation of Figure 9.13, we have

� dWs

dt
¼ rAVaUt Vt3 � Vt2ð Þ
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The shaft work is

� dWs

dt
¼ 130 kW

1ft � lbf=s
1:355� 10�3 kW

� �
¼ 9:59� 104 ft � lbf=s

The rotational speed of the blade at midpoint is

Ut ¼ rv ¼ 8:75 400
2p
60

� �
¼ 367 ft=s

By substitution, we find

Vt3 � Vt2 ¼
9:59� 104

0:00236(962)(65)(367)
¼ 1:77 ft=s

Combining with Equation 9.44 gives

CL � CD tanb ¼ Vt3 � Vt2ð Þ4pr
V relcN

CL � CD tan 60� ¼ 1:77(4p)(8:75)
130(24=12)(2)

or

CL � 1:732CD ¼ 0:374 (ii)

Subtracting this equation from Equation i gives

0:577CD þ 1:732CD ¼ 1:22� 0:374

or

CD ¼ 0:366

Using either Equation i or Equation ii, we find

CL ¼ 1:008

The blade has these characteristics at its midpoint, where V rel¼ 130 ft=s and Ut¼ 367 ft=s.

If the values of CL and CD cannot be attained by any known airfoil, the designer must use more
blades to meet the conditions. The preceding analysis was based on the assumption that the number
of blades is large. More specifically, the analysis applies if

2pr
cN

> 1

If this ratio is less than 1, the effects of the blades on the airflow are found to interfere with each
other. The proximity of another airfoil reduces the lift coefficient. Thus, we would expect a
multibladed windmill to have a slower rotational speed than a two-bladed type in the same
airstream.
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9.3 AXIAL-FLOW COMPRESSORS, PUMPS, AND FANS

The axial-flow compressor was first regarded as being the reverse of the axial-flow turbine. In
early designs, efficiencies of these reversed turbines ran as high as 55%. This low value is
attributed to blade stall and flow separation, or diffusion. In a turbine, the fluid pressure decreases
through the machine. With a compressor, however, the pressure increases through the machine,
setting up an adverse pressure gradient. If the pressure increases too abruptly, there is flow
separation from the individual blades and a corresponding loss in performance. Because of this
limitation, conventional designs have many stages, each contributing only a small portion of the
total pressure rise. Multistage axial compressors can have as many as 20 stages. As a result,
efficiencies of 90% are reported for axial-flow compressors that operate on a 6:1 or 7:1 pressure
ratio (inlet to outlet).

Figure 9.18 is a schematic of an axial-flow compressor. A stage is defined as a rotor row
followed by a stator row of blades. The rotor blades are attached to the rotating portion of the
machine, whereas the stator blades are part of the casing. The inlet guide vanes are not considered to
be part of the first stage; their function is to accelerate the flow away from the purely axial direction.

The study of axial-flow compressors requires the use of compressible flow equations. Since in
this chapter we wish to examine only incompressible flow machines, we will not discuss axial-flow
compressors in great detail. The preceding paragraphs were included to show that such machines do
exist and to illustrate the use of axial-flow compressors in conventional gas turbines.

The next turbomachine that we will discuss is the axial-flow pump. In this case, the fluid
medium is an incompressible fluid, and temperature changes are not as significant as pressure
changes. Consequently, the descriptive equations can be written using static pressures. Figure 9.19
shows one design of an axial-flow pump. At the inlet or suction side are placed straightener vanes
to ensure that the flow into the pump is purely axial. The impeller is made up of a hub and blades
that act much like a propeller, adding energy to the liquid. The outlet guide vanes have the
function of removing any tangential velocity component the liquid might have. The outflow is thus
purely axial. The axial-flow pump has a high capacity and corresponding low head output.

Inlet guide vanes

AA

One stage
View A–A(a)

FIGURE 9.18 (a) An axial-flow compressor.
(continued )
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FIGURE 9.18 (continued) (b) Section view of a gas turbine. Air enters the gas turbine at 1. The axial-flow
compressor (2) delivers high-pressure air to the combustion chamber (3). Hot exhaust gases travel through the
axial turbine (4) to the outlet at 5. Turbine and compressor are on the same shaft. Compressor input power
is from the turbine. Thrust is delivered by exhaust gases. (Courtesy Williams & Lane, Inc. With permission.)
(c) Velocity diagrams for an axial-flow compressor stage.
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A summary of the descriptive equations is helpful. Applying Equation 9.10a to the velocity
diagram of Figure 9.19, with Vt1¼ 0, gives the power as

dWs

dt
¼ Tsv ¼ rQUtVt2 (9:47)
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Impeller blade

Outlet vane

V3   Va

Ut

Ut

2
2

1

V2

Ut

Vrel2

Vrel1

Va

Va   V1

Input shaft

CasingImpeller

Liquid flow
in the annulus

(b)

Input shaft

Casing

Liquid flow in
the annulus

Impeller

(c)

FIGURE 9.19 (a) Schematic of an axial-flow pump and the associated velocity diagram. (b) An axial-flow
pump. (Courtesy of Fairbanks Morse Pump Division. With permission.) (c) A mixed-flow pump. (Courtesy of
Fairbanks Morse Pump Division. With permission.)
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Equation 9.18b applied to this machine gives a second expression for the power in terms of the
pressure rise:

dWs

dt
¼ Q(p3 � p1) (9:18b)

Equating Equations 9.47 and 9.18b yields

p3 � p1 ¼ rUtVt2 (9:48)

For the pressure rise across the impeller blade only, we apply Bernoulli’s equation with relative
velocities (Equation 9.25b):

p2 � p1 ¼ r

2
V2
rel1

� V2
rel2

	 


The reaction ratio is given by rewriting Equation 9.28 for a pump as

RR ¼ p2 � p1
p3 � p1

¼ Vrelt1 þ Vrelt2

2Ut
(9:28)

In terms of blade angles, the reaction ratio can be written as Equation 9.30 with a1¼ 0:

RR ¼ 1
2
þ Va

2Ut
tanb2 (9:49)

Example 9.6

An axial-flow pump rotates at 600 rev=min and conveys water at 0.12 m3=s. The hub radius is 5 cm, and
the casing radius is 15 cm. The absolute velocity of the flow leaving the rotor blades makes an angle of
238 with the axial direction. Determine the angles at the leading edge of the blades (b1 and b2). Use the
blade element procedure of dividing the blade into a number of finite widths and averaging the
contributions to find the total torque and power.

SOLUTION

As we mentioned earlier, when the blade height is small in comparison to the mean pitch radius, the
properties at the radius can be taken to represent the flow characteristics in the stage. For long blades,
however, the radial distance variation must be accounted for. This is done by dividing the blade into
small elements and adding the contribution to the torque of each element. Total shaft power becomes the
sum of the individual contributions divided by the number of elements selected. The angular momentum
equation must be applied to each element of the blade. In so doing, blade angles at each location can be
ascertained, and the blade can then be constructed.

At the hub, Ri¼ 0.05 m; at the tip, Ro¼ 0.15 m. The flow area is then

A ¼ p

4
D2

o � D2
i

� � ¼ p

4
(0:32 � 0:12) ¼ 0:062 8 m2

With Q¼ 0.12 m3=s, we have

Va ¼ Q

A
¼ 0:12

0:062 8
¼ 1:91 m=s

which is a constant across the cross section and throughout the machine.
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We will now find the appropriate parameters in terms of the blade radius. The rotational speed is
600 rev=min, so the tangential blade speed in terms of the radius is

Ut � Rv ¼ R 600
2p
60

� �
¼ 62:8R

With the angle a2 given as 238, we find (referring to Figure 9.19)

Vt2 ¼ Va tana2 ¼ 1:91 tan 23� ¼ 0:811 m=s

which is also a constant and not a function of the radius. The pressure gain across the pump at any
location r is determined with Equation 9.48:

D(p3 � p1) ¼ rUtVt2

¼ 1 000(62:8R)(0:811)

¼ 50 957R

where D has been added to denote the blade element value. The shaft torque at any location is calculated
with

DTs ¼ Q

v
D(p3 � p1) ¼ 0:12

62:8
(50 957R)

¼ 97:4R

and the power input is

D
dWs

dt
¼ DTsv

Results of calculations made with these equations are displayed in Table 9.1. As shown in column 1,
the blade is divided into five elements, each 2 cm long. The average radial value for each increment, Ravg,
is determined and used in the expressions. The last two columns show the incremental contributions

TABLE 9.1
Solution for the Axial-Flow Pump of Example 9.6

DR (m) Ravg (m)
Ut¼Ravgv

(m=s)
b1 ¼ tan�1

Ut
Va

	 

(8)

b2 ¼ tan�1

Ut�Vt3
Va

	 

(8)

D(p3 � p1) ¼
rUtVt2 (Pa)

DTs ¼ Q
v

D( p3 � p3) (N �m)
D dWs

dt

	 

¼

DTsv (W)

0.05–0.07 0.06 3.76 63 57.1 3 049 5.82 366
0.07–0.09 0.08 5.03 69.2 65.7 4 079 7.79 489

0.09–0.11 0.10 6.28 73.1 70.7 5 093 9.73 611
0.11–0.13 0.12 7.54 75.8 74.2 6 114 11.68 734
0.13–0.15 0.14 8.80 77.8 76.5 7 137 13.63 856

Ts ¼ 48:65
5

¼ 9:73

dWs

dt
¼ 3056

5
¼ 611

Conditions: Do¼ 0.3 m, Di¼ 0.1 m, A¼ 0.062 8 m2, Vt2¼ 0.811 m=s, Va¼ 1.91 m=s, Q¼ 0.12 m2=s, and v¼ 600 rev=min.
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to torque and power. By summing values in these columns and then dividing by the number of elements,
the total torque and total power are found to be

Ts ¼ 9:73 N �m

and

dWs

dt
¼ 0:611 kW

Note that these values are the same as those calculated at Ravg¼ 0.10 m. Thus, Ravg¼ 0.10 m would be
the mean flow radius if it were necessary to use it in our model.

Just as our discussion of axial-flow turbines involved airfoil theory, there is a corresponding
development for axial-flow compressors, fans, and pumps. It is necessary to use airfoil theory when
the one-dimensional flow assumption is no longer adequate—that is, when the number of blades in
the machine is small and the distance between them is large. To examine this case, consider the
airfoil depicted in Figure 9.20. The approach flow has an absolute velocity V1 at an angle a1 with the
axial direction. The flow leaving has an absolute velocity V2. The velocity diagrams of Figure 9.20
can be combined into a single graph, as shown in Figure 9.21. Flow past the moving airfoil is
represented as the average relative velocity V rel:

V rel ¼ Vrel1 þ Vrel2

2

This velocity approaches the blade at an angle of incidence of d.
From Chapter 6, we know that flow past an airfoil causes lift and drag forces to be exerted

perpendicular and parallel to the flow direction. These forces must be resolved into components

Vrel1

Vrel2

Vrelt2

Va

V2

Ut

Ut

Ut

Va V1

11

22

FIGURE 9.20 Flow past an isolated airfoil with associated velocity diagrams.
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(as illustrated in Figure 9.22) in the axial and tangential direction—to calculate bearing forces, for
example, and so that blade aerodynamic properties can be related to fluid properties. The tangential
force acting in the direction opposite of Ut (considered negative) is

Ft ¼ �(Lf cosbþ Df sinb) (9:50)

Taking the direction of the axial velocity as being positive, we find the axial force to be

Fa ¼ �Lf sinbþ Df cosb (9:51)

Lift and drag forces are usually expressed in terms of lift and drag coefficients for an airfoil:

Lf ¼ CL
rV

2
relAp

2

Df ¼ CD
rV

2
relAp

2

where Ap is the planform area of the airfoil (chord length times span). Before combining these
equations, it is necessary to make provision for the variation of Ut with radial distance from the
rotor. The blade is therefore divided into incremental elements Dz wide, as shown in Figure 9.23.

Ut

Vrel2

Vrel1 VaVrel

FIGURE 9.21 Combined velocity diagram.

Ut

Va

Lf

Lf

Df

Df

Vrel

FIGURE 9.22 Forces of lift and drag resolved into axial and tangential components.
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The area of the element is c Dz, where c is the chord length. After combining the lift and drag
expressions with Equations 9.50 and 9.51, we obtain the tangential and axial forces:

Ft ¼ �(CL cosbþ CD sinb)
rV

2
relcDz

2
(9:52)

and

Fa ¼ �(CL sinb� CD cosb)
rV

2
relcDz

2
(9:53)

These forces can now be related to the properties of the flow before and after the blades. The
momentum equation in the tangential direction is

X
Ft ¼

ð
C

ð
S

VtrVn dA

Evaluating each side of this equation, we obtain

NFt ¼ �N(CL cosbþ CD sinb)
rV

2
relcDz

2

where N is the number of blades and

ð
C

ð
S

VtrVn dA ¼ rVa Vt2 � Vt1ð Þ2prDz

Equating yields

N(CL cosbþ CD sinb)
rV

2
relcDz

2
¼ rVa Vt1 � Vt2ð Þ2prDz

Substituting Va¼V rel cosb and simplifying yield

Vt1 � Vt2 ¼ (CL þ CD tanb)
V relcN

4pr
(9:54)

r

Δz

FIGURE 9.23 An incremental blade element.
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The momentum equation in the axial direction is

X
Fa ¼

ð
C

ð
S

VarVn dA

Evaluating each term, we get

NFa ¼ (p1 � p2)2pr Dzð
C

ð
S

VarVn dA ¼ (r2pr DzVa) Va2 � Va1ð Þ (9:55)

Because Va is a constant, the momentum equation reduces to Equation 9.55. By substitution from
Equation 9.53, we get

�N(CL sinb� CD cosb)
rV

2
relc Dz

2
¼ (p1 � p2)2pr Dz

Simplifying and rearranging give the pressure rise as

p1 � p2 ¼ � rV
2
relcN

4pr
(CL sinb� CD sinb) (9:56)

Equations 9.54 and 9.56 relate the change in properties across the fan to aerodynamic properties of
the blades.

Example 9.7

A typical three-speed window fan is placed in a square housing 56� 56� 15 cm wide. The fan itself has
five identical evenly spaced blades, a hub diameter of 14.5 cm, and a blade tip-to-tip diameter of 48 cm.
The chord length at the hub is 7.6 cm; the chord length at the tip is 17.8 cm. The inlet blade angle at the
hub is 708 with respect to the axial direction. At high speed (v¼ 3600 rev=min), the fan motor runs on
115 V and uses 2 A. Only 50% of this power is transferred to the air. Assuming purely axial inflow to the
fan and an air density of 1.2 kg=m3, determine the pressure rise across the blades. Also calculate the
aerodynamic properties of the blades.

SOLUTION

At the hub, Ri¼ 14.5=2¼ 7.25 cm¼ 0.072 5 m. So

Uti ¼ Riv ¼ 0:072 5 3 600
2p
60

� �
¼ 27:3 m=s

Now bi1¼ 708; with a1¼ 0 (purely axial inflow), the velocity diagram shows

Va ¼ Uti

tanbi

As a first approximation, assume that bi1�bi; later, when bi2 is determined, we will return to this point if
a second approximation is necessary. Thus,

Va � Uti

tanbi
¼ 27:3

tan 70�
¼ 9:94 m=s
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which is a constant over the flow area. The area itself is

A ¼ p

4
D2

o � D2
i

� �

With Do¼ 0.48 m and Di¼ 0.145 m,

A ¼ p

4
(0:482 � 0:1452) ¼ 0:164 m2

The volume flow of air is then

Q ¼ AV ¼ 0:164(9:94) ¼ 1:63 m3=s

The fluid is air, but there is no significant increase in stagnation temperature across the blades. Therefore,
the incompressible form of the energy equation (Equation 9.12b) can be applied:

� dWs

dt
� dWf

dt
¼ rQ

p1
r
þ V2

1

2

� �
� p2

r
þ V2

2

2

� �� �
¼ rgQ DZ

where DZ is the head difference across the machine. The electrical power input is

dWs

dt
¼ (115 V)(2 A) ¼ 230 W

Only 50% of this power is transferred to the fluid as the head difference. Therefore,

� dWs

dt
� dWf

dt
¼ �0:5(230) ¼ rgQ DZ

or

DZ ¼ � 115
rQg

By substitution,

DZ ¼ �115
1:2(1:63)(9:81)

¼ �5:98 m of air

which is a constant over the flow area. With V1¼Va, then Vt1¼ 0. Equation 9.9 for the power becomes

� dWs

dt
¼ Tsv ¼ rQv �RVt2ð Þ ¼ �rQUtVt2

At the hub, Uti¼ 27.3 m=s; therefore,

Vt2

����
i

¼ � �dWs=dtð Þ
rQUti

¼ 115
1:2(1:63)(27:3)

¼ 2:15 m=s

The increase in kinetic energy across the blades is

V2
2 � V2

1

2
¼

V2
a þ V2

t2

	 

� V2

a þ V2
t1

	 

2

¼ V2
t2

2
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By definition,

gDZ ¼ p1 � p2
r

þ V2
1 � V2

2

2

After rearranging, the pressure rise across the blades is found to be

p2 � p1 ¼ r �V2
t2

2
� gDZ

 !

At the hub,

(p2 � p1)ji ¼ 1:2 � 2:152

2
� 9:81(�5:98)

� �

(p2 � p1)ji ¼ 67:6 Pa

Calculations can be formulated for the tip, where Ro¼ 0.48=2¼ 0.24 m. Thus,

Uto ¼ Rov ¼ 0:24 3 600
2p
60

� �
¼ 90:47 m=s

Also,

Vt2 jo ¼
�dWs=dtð Þ
rQUto

¼ 115
1:2(1:63)(90:47)

¼ 0:649 m=s

By substitution into the expression for pressure rise,

p2 � p1 ¼ r �V2
t2

2
� gDZ

 !

we find at the tip

(p2 � p1)jo ¼ 1:2 � 0:6492

2
� 9:81(�5:98)

� �

(p2 � p1)jo ¼ 70:1 Pa

The velocity diagrams at the hub and the tip are given in Figure 9.24.
To find the aerodynamic properties of the blades, we first determine the average blade angles. At the

hub,

bi1 ¼ tan�1 Uti

Va
¼ tan�1 27:3

9:94
¼ 70�

bi1 ¼ tan�1 Uti � Vt2 ji
Va

¼ tan�1 27:3� 2:15
9:94

¼ 68:4�

Because bi1 and bi2 are nearly equal, a second approximation is not necessary. Now

Vreli1 ¼
Va

cosbi1

¼ 9:94
cos 70�

¼ 29:1 m=s
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and

Vreli2 ¼
Va

cosbi2

¼ 9:94
cos 68:4�

¼ 27:0 m=s

Therefore,

V reli ¼
29:1þ 27:0

2
¼ 28:05 m=s

which gives

cosbi ¼
Va

Vreli

¼ 9:94
28:05

¼ 0:354

The average blade angle at the hub is

bi ¼ 69:2�

Similarly, at the tip,

bo1 ¼ tan�1 Uto

Va
¼ tan�1 90:47

9:94
¼ 83:7�

bo2 ¼ tan�1 Uto � Vt2 jo
Va

¼ tan�1 90:47� 0:649
9:94

¼ 83:68�

Vreli1

Vrelo1

Vreli2

Vrelo2

Vt2|i

Vt2|o

Va

Va

V2

V2

Va   V1

i1

i2

o1

o2

Uti

(a)

(b)

At the hub

At the tip

Uti

Uto

Uto

Va   V1

FIGURE 9.24 Velocity diagrams for the fan of Example 9.7.
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These values are close, a result that implies that the blade is almost perfectly flat at the tip. It is
permissible to use an average angle of

bo ¼ 83:69�

with which we obtain at the tip

V relo ¼ Va

cosbo
¼ 9:94

cos 83:69�
¼ 90:43 m=s

Equation 9.54 can now be used. At the hub,

Vt2 � Vt1ð Þji ¼ (CL þ CD tanbi)
V relcN

4pR

� �����
i

2:15 ¼ (CL þ CD tan 69:2�)
28:05(0:076)(5)
4p(0:072 5)

or

CL þ 2:63CD ¼ 0:1838 (i)

Also at the hub,

(p1 � p2)

����
i

¼ � rV
2
relcN

4pR

 !����
i

(CL sinbi � CD cosbi)

and, by substitution,

�67:6 ¼ � 1:2(28:05)2(0:076)(5)
4p(0:072 5)

(CL sin 69:2
� � CD cos 69:2�)

or

CL � 0:379CD ¼ 0:183 6

Subtracting from Equation i yields

263CD þ 0:379CD ¼ 0:183 8� 0:183 6

or

CD � 0

We also find

CL � 0:18

Similarly, at the tip,

(p1 � p2)jo ¼ � rV
2
relcN

4pR

 !����
o

(CL sinbo � CD cosbo)

�70:1 ¼ � 1:2(90:43)2(0:178)(5)
4p(0:24)

(CL sin 83:69
� � CD cos 83:69�)
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or

CL � 0:111CD ¼ 0:024 35 (ii)

Also

Vt2 � Vt1ð Þ��
o
¼ (CL þ CD tanbo)

V relcN

4pR

� �����
o

0:649 ¼ (CL þ CD tan 83:69�)
(90:43)(0:178)(5)

4p(0:24)

from which we obtain

CL þ 9:04CD ¼ 0:024

Subtracting from Equation ii, we find the following at the tip:

�0:111CD � 9:04CD ¼ 0:024 35� 0:024

CD � 0

CL � 0:024

Because the drag coefficient is quite small, CD can usually be neglected in the equations. This is true
especially if the average blade angle is greater than 458. The implication is not that there is no drag
exerted but that the drag contribution to axial and tangential forces is negligible in comparison to the lift
(see Figure 9.22).

9.4 RADIAL-FLOW TURBINES

Figure 9.25a depicts a radial-flow or Francis turbine. It consists of stationary guide vanes, rotor
blades that take in and discharge water in the radial direction, and a draft tube, which is a diverging

Δz
Rotor blades

(a)

Rotor

Draft tube
Tailwater

Guide vanes

FIGURE 9.25 (a) A radial-flow turbine.
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circular passage on the discharge side leading to the tailwater. The guide vanes can adjust to account
for variations in available water head or local power requirements. The diverging tube allows the
pressure at the rotor exit to be less than atmospheric pressure, thereby increasing the total head
across the turbine and thus inducing more flow to pass through. The velocity diagrams shown in
Figure 9.26 correspond to flow leaving the guide vanes or gates (subscript 1) and flow leaving the
turbine blades (subscript 2). In many conventional designs, the exit flow is in the axial direction.
However, in this discussion, we will take inlet and outlet flows through the turbine blades to be in
the radial direction.

For this turbine, the shaft torque exerted by the fluid is found with Equation 9.8:

Ts ¼ rQ R2Vt2 � R1Vt1ð Þ
From the continuity equation,

Q ¼ A1Vr1 ¼ A2Vr2

(b) (c)

FIGURE 9.25 (continued) (b) Francis turbine runner during installation. (Courtesy of Allis-Chalmers Hydro
TurbineDivision.Withpermission.) (c)AFrancis turbine installation. (CourtesyofAllis-ChalmersHydroTurbine
Division.)

211 2
Vrel2

Vrel1

Vr1

Vt1

Ut1
Ut2

Vt2

V1 V2

Vr2

FIGURE 9.26 Velocity diagrams for a radial-flow turbine.
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or

Q ¼ 2pR1bVr1 ¼ 2pR2bVr2

where: b¼ height of the blades or gates
Vr¼ radial velocity
A¼ peripheral area about the rotor open to the flow and normal to Vr

By simplifying, the continuity equation becomes

R1Vr1 ¼ R2Vr2 (9:57)

From the velocity diagram,

Vt

Vr
¼ tana

Combining this result with Equation 9.57 and substituting into Equation 9.8 yield

Ts ¼ rQ R2Vr2 tana2 � R1Vr1 tana1ð Þ
¼ rQ R2Vr2 tana2 � tana1ð Þ

which is similar to the expression for axial-flow turbines except that the radial velocity is used
instead of the axial velocity.

In the radial-flow turbine, the vanes are designed such that the angle a2 is 08; the absolute flow
velocity out of the turbine is in the radial direction. Thus, Vt2¼ 0, and the expression for torque
becomes

Ts ¼ rQR1Vr1 tana1 (9:58)

From the velocity diagram

V1 cosa1 ¼ Vr1

and in terms of V1, the shaft torque becomes

Ts ¼ �rQR1V1 sina1 (9:59)

Alternatively, from the velocity diagram, we get

Vt1 ¼ Ut1 � Vr1 tanb1

and the expression for shaft torque in terms of exit blade angle is

Ts ¼ rQR1Ut1 1� Vr1

Ur1
tanb1

� �
(9:60)

The power or rate of doing work is found with

� dWs

dt
¼ Tsv ¼ rQvR1Ut1 1� Vr1

Ut1
tanb1

� �
(9:61)
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Equation 9.12b gives the total power available as

� dWs

dt
� dWf

dt
¼ rgQDz

where Dz is the total head available. From Equation 9.16, we have the efficiency of the Francis
turbine:

h ¼ �dWs=dt

�dWs=dt � dWf =dt
¼ vR1Ut1

Dzg
1� Vr1

Ut1
tanb1

� �
(9:62)

Example 9.8

A Francis turbine is used in an installation to generate electricity. The generator requires an input
rotational speed of 1260 rev=min. For a total head of 300 ft, the volume flow rate of water through the
turbine is 15 ft3=s. The absolute water velocity leaving the gates and entering the rotor makes an angle of
708 with the radial direction. The radius of the turbine rotor is 2 ft, and the inlet gate height is 0.10 ft. The
absolute velocity leaving the rotor is in the radial direction. Determine the torque and power exerted by
the liquid. Calculate the efficiency of the turbine.

SOLUTION

For purely radial outflow, Equation 9.58 applies:

Ts ¼ �rQR1Vr1 tana1

For water, r¼ 1.94 slug=ft3. The inlet area is

A ¼ 2pR1b ¼ 2p(2)(0:10) ¼ 1:26 ft2

Because this area is perpendicular to the inlet radial velocity,

Vr1 ¼
Q

A
¼ 15

1:26
¼ 11:9 ft=s

By substitution into the expression for torque, we obtain

Ts ¼ �1:94(15)(2)(11:9) tan 70�

Ts ¼ �1900 ft � lbf

The power is found with

dWs

dt
¼ �Tsv ¼ �(�1900) 1260

2p
60

� �
¼ 250,700 ft � lbf=s

or

dWs

dt
¼ 455 hp ¼ 340 kW
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where conversion factors were obtained from Table A.2. Efficiency for a hydraulic turbine is

h ¼ Tsv

rgQDz
¼ 250,700

1:94(32:2)½ �(15)(300)
or

h ¼ 0:892 ¼ 89:2%

Note that the total head for the radial turbine is from inlet water surface to tailwater surface.

9.5 RADIAL-FLOW COMPRESSORS AND PUMPS

Radial-flow machines are those that impart centrifugal energy to the fluid. These machines consist
essentially of a rotating impeller within a housing. Fluid enters the housing at the inlet to the center
or eye of the impeller. As the impeller itself rotates, it adds to the energy of the fluid while it is being
spun outward. The angular momentum, the static pressure, and the fluid velocity are all increased
within the impeller. As the fluid leaves the impeller, it enters a volute or scroll, where it is delivered
to an outlet channel. The term compressor refers to a device that gives a substantial pressure
increase to a flowing gas. The term fan refers to a machine that imparts a small pressure increase to a
flowing gas. (The term blower is often used in place of fan.) The term pump refers to a machine that
increases the pressure of a flowing liquid.

Figure 9.27a is a schematic of a centrifugal compressor showing an impeller followed by
diffuser vanes and a volute. The diffuser vanes convert some of the kinetic energy of the gas into
pressure energy. Depending on the desired result, the diffusion process can be accomplished with or

Diffuser vanes
Volute

Impeller

Hub

Shroud

Inducer sectionSection 2 velocity profile(a)

Ro1

Ri1

2

1

2

3

Vrel2 Vrel1Vr2 U1

Ut

V2

Vt2

2 1
2

V1   Va1

FIGURE 9.27 (a) Schematic of a centrifugal compressor and associated velocity diagrams.
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A. Investment-cast
 impeller

B. “Polygon”impeller
mounting

C. Process seals

D. Vaned diffuser
/inlet shroud

E. Compressor casing

F. Pivoting shoe bearings

G. Integral speed increaser

(b)

Performance
on process gases and  air

Head                       — to 40 000 ft. (12 200 m)
Pressure ratio        — to 3.2:1 on air
Vacuum service    — from 4.6 psia
               (.323 kg/cm2) on air
Working pressure— to 500 psia (35 kg/cm2)

F

G

E

D

CB

A

FIGURE 9.27 (continued) (b) A centrifugal compressor. (Courtesy of Atlas Copco Turbonetics Inc., Latham, NY.)
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without diffuser vanes. At the flow entrance (section 1), the relative velocity is Vrel1 at an angle b1

with respect to the axial direction. The flow velocity is turned into the purely axial direction by the
inducer section, sometimes referred to as rotating guide vanes. At the exit (section 2), the absolute
velocity is V2 inclined at an angle of a2 with the radial direction. The flow is now directed toward
the diffuser vanes. An accurate description of flow through a centrifugal compressor is a three-
dimensional problem beyond the range of what we wish to cover. The preceding discussion is
included here merely to introduce the machine and its principle components.

The next radial-flow machine that we will consider is the centrifugal pump. Equations for a
centrifugal fan are identical to those for the pump. In a fan or blower, the pressure and temperature
changes are not as significant as those in a compressor. Thus, for analysis of a fan, the incompress-
ible equations are adequate.

Figure 9.28a is a schematic of a centrifugal pump and associated velocity diagrams. A pump
consists of an impeller that rotates within a housing. Fluid enters the housing in the axial direction at
the eye of the impeller. The fluid then turns so that its principal direction is radial both before and
after the impeller vanes. At the vane inlet, the flow is purely radial; the relative velocity is at an angle
b1 with the radial direction. At the outlet, the absolute velocity is V2, and the relative velocity is Vrel2.
The continuity equation for the impeller is

Q ¼ A1Vr1 ¼ A2Vr2

where A is the peripheral area of flow. For thin vanes,

Q ¼ 2pR1bVr1 ¼ 2pR2bVr2

or

R1Vr1 ¼ R2Vr2 (9:63)
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3
2

b

R2

R1
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Ut2

2
2

V2Vr2

FIGURE 9.28 (a) Schematic of a centrifugal pump and associated velocity diagrams.
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In the following development, our objective is to express the pressure rise in terms of conditions
at the impeller exit, specifically including the blade angle b2. Equation 9.10a with Vt1¼ 0 applied to
the impeller gives the power delivered to the liquid:

dWs

dt
¼ Tsv ¼ rQUt2Vt2

From the velocity diagram,

Vt2 þ Vrelt2 ¼ Ut2

Vt2 ¼ Ut2 � Vr2 tanb2 ¼ Ut2 1� Vr2

Ut2
tanb2

� �

The power thus becomes

dWs

dt
¼ Tsv ¼ rQU2

t2
1� Vr2

Ut2
tanb2

� �
(9:64)

Equation 9.12b gives the power in terms of liquid properties for frictionless flow as

� dWa

dt
¼ rQ

p1
r
þ V2

1

2

� �
� p2

r
þ V2

2

2

� �� �
(9:65a)

or in terms of stagnation pressures,

dWa

dt
¼ Q pt2 � pt1ð Þ (9:65b)

Impeller

Liquid discharge

Liquid
inlet

Input shaft

(b)

FIGURE 9.28 (continued) (b) Section view of a centrifugal pump and support housing (Courtesy of
Allis-Chalmers Corp. With permission.)
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Introducing the efficiency and equating Equation 9.64 to Equation 9.65b, we obtain the stagnation
pressure rise across the impeller:

pt2 � pt1 ¼ Dpt ¼ rU2
t2
h 1� Vr2

Ur2
tanb2

� �
(9:66)

For pumps and compressors, impeller blade designs require that b2 	 p=2. If b2<p=2, the blades
would be curved forward with respect to the direction of Ut, and the flow of fluid would be inward
toward the axis of rotation. This is the case for the Francis turbine of the preceding section. Equation
9.66 gives the pressure rise across the impeller in terms of conditions at the impeller exit. Note that
for frictionless flow, h¼ 1.0.

Example 9.9

The impeller of a centrifugal water pump rotates at 900 rev=min. The impeller has an eye radius (R1) of
2 in. and an outside diameter of 16 in. The impeller vane height is 2 1

2 in., and measurements indicate that
the vane angles are b1¼ 758 and b2¼ 838. Assuming radial inflow and an efficiency of 89%, determine

a. Volume flow rate through the impeller
b. Rise in stagnation pressure and increase in static pressure across the impeller
c. Pumping power transferred to the fluid
d. Input shaft power

SOLUTION

a. Using the notation of Figure 9.28a, we have R1¼ 2 in., R2¼ 8 in., and b ¼ 2 1
2 in. The

tangential impeller velocity at inlet is

Ut1 ¼ vR1 ¼ 900� 2p
60

� �
2
12

� �
¼ 15:7 ft=s

From the velocity diagram (Figure 9.28a),

Ut1

V1
¼ Ut1

Vr1
¼ tanb1

V1 ¼ Vr1 ¼
15:7

tan 75�
¼ 4:2 ft=s

The volume flow through the pump is

Q ¼ A1V1 ¼ 2pR1bVr1 ¼ 2p
2
12

� �
2:5
12

� �
(4:2)

Q ¼ 0:916 ft3=s

b. The continuity equation (Equation 9.63) is used to calculate Vr2:

R1Vr1 ¼ R2Vr2

Vr2 ¼
2=12ð Þ(4:2)
8=12ð Þ ¼ 1:1 ft=s
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The tangential velocity at impeller outlet is

Ut2 ¼ vR2 ¼ 900� 2p
60

� �
8
12

� �
¼ 62:8 ft=s

The stagnation pressure rise is given by Equation 9.66:

pt2 � pt1 ¼ rU2
t2
h 1� Vr2

Ut2
tanb2

� �

¼ 1:94(62:8)2(0:89) 1� 1:1
62:8

tan 83�
� �

pt2 � pt1 ¼ 5831:7 lbf=ft2 ¼ 40:5 psi

From the velocity diagram of Figure 9.28a at impeller exit,

Vt2 ¼ Ut2 � Vr2 tanb2

¼ 62:8� 1:1 tan 83�

¼ 53:8 ft=s

The absolute velocity at exit is

V2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
r2
þ V2

t2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:12 þ 53:82

p
¼ 53:8 ft=s

Also,

tana2 ¼ Vt2

Vr2
¼ 53:8

1:1
¼ 48:9

a2 ¼ 88:8�

By definition,

pt2 � pt1
r

¼ p2
r
þ V2

2

2
� p1

r
� V2

1

2

Solving for the static pressure rise, we obtain

p2 � p1 ¼ pt2 � pt1 þ
r V2

1 � V2
2

� �
2

¼ 5831:7þ 1:94(4:22 � 53:82)
2

p2 � p1 ¼ 3044 lbf=ft2 ¼ 21:1 psi
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c. The power received by the fluid is calculated with Equation 9.65b:

dWa

dt
¼ Q pt2 � pt1ð Þ ¼ 0:916(5831:7)

dWa

dt
¼ 5342 ft � lbf=s

Converting with 1 hp¼ 550 ft � lbf=s, we get

dWa

dt
¼ 9:71 hp

d. This power is transferred directly to the water. For an efficiency of 89%, the input shaft power
must be

dWa

dt
¼ dWa=dt

h
¼ 9:71

0:89

dWa

dt
¼ 10:9 hp

9.6 POWER-ABSORBING VERSUS POWER-PRODUCING MACHINES

In this section, we will compare fluid behavior in two machines that can be considered opposites: the
axial-flow turbine and the axial-flow compressor. Figure 9.6 gives the velocity diagrams for a fluid
flowing through a normal stage in a turbine. Flow enters the stage with an absolute velocity V0 and
constant axial velocityVa. The stator blades turn the flow into theV1 direction at an anglea1 with respect
to Va. After passing through the rotor row, the flow is turned into the V2(¼V0) direction at an angle a2.

Figure 9.18c shows the velocity diagrams for flow through a normal axial-flow compressor
stage. The flow enters the stage at an absolute velocity V1 at an angle a1 with respect to the axial
velocity Va. The moving rows of blades turns the flow into the V2 direction at an angle a2. The stator
blades then redirect the flow into the V3 direction at an angle a3.

Comparison of these figures shows several features of note. For the turbine, V1>V2, whereas
for the compressor, V2>V1. In addition, the turbine has a1>a2 in contrast to the compressor,
where a2>a1. The comparison can be continued for other corresponding velocities and angles and
is summarized in Table 9.2.

It is also of interest to examine the expression for torque for axial-flow machines. Equation 9.9
is a general expression applicable to either turbines or pumps. This equation relates shaft torque to
flow velocities:

Ts ¼ rQR Vt2 � Vt1ð Þ (9:67)

From the velocity diagrams for the pump (or the turbine), we can write

Vt2 ¼ Ut � Vrelt2 ¼ Ut � Va tanb2

Vt1 ¼ Va tana1

The tangential velocity difference in terms of blade angles thus becomes

Vt2 � Vt1 ¼ Ut � Va tanb2 � Va tana1 (9:68)
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Combining with Equation 9.67 yields

Ts ¼ rQR(Ut � Va tanb2 � Va tana1)

¼ rQRVa
Ut

Va
� (tanb2 þ tana1)

� �

or

Ts
rQRVa

¼ Ut

Va
� (tanb2 þ tana1) (9:69)

The angles a1 and b2 are determined by blade settings and are not a function of flow through the
machine. Thus, the parenthetical term in the preceding equation is a constant.

Equation 9.69 can be plotted as shown in Figure 9.29. The line is slanted upward and to the
right at a slope of unity. The intercept is where the shaft torque is zero. To the left of the zero shaft
torque point is the region describing flows through turbines; to the right is the region describing
compressors.

Turbine Compressor

Ut/Va   tan   2 + tan   1

Ts/  QRVa

Ut/Va

FIGURE 9.29 Dimensionless plot of shaft torque versus flow velocity.

TABLE 9.2
Comparison of Corresponding Turbine
and Compressor Velocity Diagrams

Turbine Compressor

1. V1>V2 V1<V2

a1>a2 a1<a2

Va¼ a constant Va¼ a constant
Vt1>Vt2 Vt1<Vt2

2. Vrel1<Vrel2 Vrel1>Vrel2

B1<b2 b1>b2

Vrelt1<Vrelt2 Vrelt1>Vrelt2

3. Vrelt1¼Vt1�Ut Vrelt1¼Ut�Vt1

4. Vrelt2¼UtþVt2 Vrelt2¼Ut�Vt2
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In this section, we have qualitatively compared flow through turbines and flow through
compressors. Similar comparisons for other pairs of opposite machines can be formulated.

9.7 DIMENSIONAL ANALYSIS OF TURBOMACHINERY

In the preceding sections, we derived expressions to relate power and torque to velocities through the
machine, to blade angles, and to blade properties. Such equations are useful for designing the machines,
but an alternative representation is required for determining the applicability of a particular machine to a
specific task. The alternative is provided by methods outlined in Chapter 4 on dimensional analysis.
However, it is necessary to distinguish between an incompressible flow and a compressible flow.
Because our interest here is only with incompressible flows, we restrict our attention to them.

Consider an incompressible flow through a turbomachine such as a propeller turbine, Francis
turbine, axial-flow pump, or centrifugal pump. For any of these machines, a dimensional analysis
could be performed to express the performance parameters in terms of the geometry and the fluid
properties. It is convenient to select three different dependent variables and perform a dimensional
analysis three times to relate each variable to the flow quantities. The energy transfer gDZ, the efficiency
of the machine h, and the power dW=dt can all be written as functions of the flow parameters:

gDZ ¼ f1(r, m, Q, v, D) (9:70a)

h ¼ f2(r, m, Q, v, D) (9:70b)

dW

dt
¼ f3(r, m, Q, v, D) (9:70c)

We select the density r and viscosity m because they are liquid properties. The volume flow rate Q
affects each independent variable, as was shown earlier. Each hydraulic machine described contains
a rotating component whose rotational speed v must be considered as an independent variable.
Finally, each machine has a characteristic dimension D that differentiates it from another.

It should be mentioned that flow rate Q and rotational speed v have special significance. Let us
consider them specifically in regard to pump operation. The input rotational speed to a pump can be
controlled by varying the power to the motor. The output flow of the pump can be controlled by a
valve in the line. Thus, the quantities Q and v are independently operated and, as such, are referred
to as control variables.

Performing a dimensional analysis yields the following:

gDZ

v2D2
¼ f1

Q

vD3
,
rvD2

m

� �
(9:71a)

h ¼ f2
Q

vD3
,
rvD2

m

� �
(9:71b)

dW=dtð Þ
rv3D5

¼ ~P ¼ f3
Q

vD3
,
rvD2

m

� �
(9:71c)

where: gDZ
v2D2 ¼ energy transfer or head coefficient
Q

vD3 ¼ volumetric flow coefficient or flow coefficient
rvD2

m ¼ rotational Reynolds number
dW=dtð Þ
rv2D2 ¼ ~P¼ power coefficient
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Experiments with turbomachines have shown that the rotational Reynolds number does not affect
the dependent variables as significantly as does the flow coefficient. Thus, for incompressible flow
through a turbomachine, Equations 9.71 become

gDZ

v2D2
¼ f1

Q

vD3

� �
(9:72a)

h ¼ f2
Q

vD3

� �
(9:72b)

~P ¼ f3
Q

vD3

� �
(9:72c)

9.8 PERFORMANCE CHARACTERISTICS OF CENTRIFUGAL PUMPS

Performance of pumps requires a lengthy discussion if each type is covered in great detail.
Consequently, for the purpose of illustration, we will examine the specific characteristics of only
centrifugal pumps and draw general conclusions regarding the performance of other machines.

The user of a centrifugal pump is concerned about how the device will operate in the intended
application. Thus, standardized tests of performance have been devised that can be translated into a
form suitable for making design calculations. Consider the test setup of Figure 9.30. A centrifugal
pump circulates water from a sump tank, through a discharge line containing a flow meter and valve,
then back to the sump. The pump impeller is rotated by an electric motor that is free to pivot (within
limits) about its axis of rotation. The motor rotates the impeller within the stationary pump housing.
Owing to the reaction experienced by the motor, it tends to rotate in the opposite direction but can be
brought to its original position by means of hanging weights. The product of weight and arm length
to axis of rotation yields the input torque to the impeller. The product of torque and rotational speed
is the power input from the motor:

dWs

dt
¼ Tsv (9:73)

Motor
Pump

Datum

p2

p1

z1

z2

Valve
Flow meter

Return

Weight
hanger

FIGURE 9.30 Schematic of a test setup for a centrifugal pump.
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The flow meter provides data for calculating volume rate flow through the pump. The pressure rise
across the impeller is another quantity to be measured—by pressure gauges, for example. The
output power absorbed by the liquid is found with the energy equation

p1
rg

þ V2
1

2g
þ z1 ¼ p2

rg
þ V2

2

2g
þ z2 þ 1

g _m

dWa

dt
(9:74a)

If elevation differences are neglected (z1¼ z2) and the inlet and discharge pipes are the same
diameter (V1¼V2), the energy equation reduces to

p1
rg

þ p2
rg

¼ 1
grQ

dWa

dt

For this special case, the power thus becomes

dWa

dt
¼ Q(p1 � p2) (9:74b)

Data can be taken by varying the input electrical power (and hence rev=min) to the motor. Data are
then collected and reduced to the form illustrated in Figure 9.31.

Figure 9.31 is referred to as a performance map of a centrifugal pump. Pressure head
(as defined in Equation 9.70a) is on the vertical axis plotted as a function of flow rate on the

0 0 1 2 3 4
Flow rate, Q (ft3/min)

Pr
es

su
re

 h
ea

d,
 Δ

z (
ft 

of
 w

at
er

)

5 6 7 8 9

10

20

30

40

50

60

70
30% 2 400 rev/min

2 200
rev/min

2 000
rev/min

1 800
rev/min

1 600
rev/min

1 400
rev/min

1 200
rev/min

800 rev/min

60% 80% 90%

90%

80%

60%

30%

20%

FIGURE 9.31 Centrifugal pump performance characteristics. (Data from Fluid Mechanics Laboratory,
University of New Orleans, New Orleans, LA.)
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horizontal axis. Next, lines of constant rotational speed are graphed. For selected points on each of
these lines, efficiency is then calculated with

h ¼ dWa=dt

dWs=dt

(from Equation 9:74a)
(from Equation 9:73)

(9:75)

Points of equal efficiency are connected to obtain the isoefficiency lines that appear in the figure.
The optimum operating region for the pump is in the 80% or higher efficiency portion of the graph,
a cutoff point selected arbitrarily.

According to the dimensional analysis performed for incompressible flow, the data can also be
reduced by plotting g DZ=v2D2 versus Q=vD3. This plot is given in Figure 9.32. For low values of
the flow coefficient, the data converge onto a single line. As the flow coefficient increases, the data
points diverge from a linear profile (presumably owing to the Reynolds number dependence, which
was assumed to be negligible).

Because the data can be represented as shown in Figure 9.32, it is apparent that the dimension-
less ratios can be used to simulate the performance of geometrically and dynamically similar pumps.
Hence, data obtained on one pump provide sufficient information for predicting the performance of
a similar pump.

Example 9.10

The pump of Figure 9.31 delivers 6 ft3=min of water and rotates at 2000 rev=min. The impeller
on the pump is 5 in. in diameter. Determine the volume flow rate delivered if a 4 in. dia-
meter impeller is used and the rotational speed is increased to 2200 rev=min. Calculate the new pressure
head.
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FIGURE 9.32 Dimensionless plot of the centrifugal pump data.
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SOLUTION

Assuming that similarity exists between the first and the modified pump, we can write

Q

vD3

����
1

¼ Q

vD3

����
2

For case 1, Q¼ 6 ft3=min, D¼ 5 in., and v¼ 2000 rev=min. Thus,

Q

vD3

����
1

¼ 6=60

2000 2p=60ð Þ 5=12ð Þ3 ¼ 0:0066

For case 2, D¼ 4 in. and v¼ 2200 rev=min. So

Q

vD3

����
2

Q2

2000 2p=60ð Þ 4=12ð Þ3 ¼ 0:0066

Solving, we get

Q2 ¼ 0:056 ft3=s ¼ 3:38 ft3=min

From Figure 9.31 at Q¼ 6 ft3=min and v¼ 2000 rev=min, we find DZ¼ 46 ft of water. The head
coefficient written for both cases is

gDZ

v3D2

����
1

¼ gDZ

v3D2

����
2

By substitution,

32:2(46)

(2000)2(5)2
¼ 32:2(DZ2)

(2200)2(4)2

where conversion factors cancel. Solving, we get

DZ2 ¼ 35:6 ft of water

For centrifugal fans, axial-flow fans, and compressors, performance maps similar to that of Figure 9.31
for a pump can be developed from experimental data.

An important consideration in the design of a pump installation is the elevation of the pump itself
over the level in the reservoir from which liquid is taken. The suction line contains liquid at less than
atmospheric pressure. At the eye of the impeller, where the flow area is smaller, the liquid pressure is
even lower. If this pressure is sufficiently low, the liquid being pumped begins to boil at the local
temperature. Water, for example, boils at 928F (33.38C) if its pressure is 0.735 psia (5.065 kPa). This
phenomenon of forming vapor bubbles through the pump is called cavitation. Bubbles may form near
the eye of the impeller and then move outward with the surrounding liquid through the impeller vanes
to a higher pressure region. The high pressure causes the bubbles to collapse, thus sending waves
outward that have an erosive effect on the impeller called cavitation erosion. The pump’s efficiency
falls drastically once it starts cavitating, and subsequent failure occurs because of metal erosion and
fatigue failure of seals on the shaft itself. Thus, it is important to have data on boiling or vapor pressure
of various liquids as a function of temperature. These data are provided in Figure 9.33.

It is relatively simple to predict the inception of cavitation. Let the sum of pump elevation above
the reservoir surface, kinetic energy head, and friction losses in the suction pipe be the total suction
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head Zs. If Zs is less than the difference between atmospheric pressure and the vapor pressure of
the liquid, the pump will cavitate. The condition is commonly described by the cavitation
parameter:

CP ¼ pa=rg� py=rgð Þ � Zs
DZ

(9:76)

where: pa¼ local atmospheric pressure
py¼ vapor pressure of the liquid
DZ¼ total dynamic head of the pump
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FIGURE 9.33 Vapor pressure of various liquids. (Data from Bolz, R.E. and Tuve, G.L., CRC Handbook of
Tables for Applied Engineering Science, 2nd ed., CRCPress, Cleveland, OH, 1973, pp. 54–55.With permission.)
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The numerator of this expression is called the net positive suction head (NPSH). The cavitation
parameter varies from 0.05 to 1.0 and is usually supplied by the pump manufacturer on the basis of
tests performed on the pump itself. Alternatively, some manufacturers supply the net positive
suction head required rather than a cavitation parameter. For pumps that produce high-volume
flow rates at low heads, it is possible that NPSH< 0. This head value requires that the pump be
installed below the reservoir level to eliminate cavitation.

Example 9.11

The pump represented by Figure 9.31 delivers a volume flow rate of water of 7 ft3=min at 1 800 rev=min.
If the cavitation parameter at that point is 0.75, determine the maximum allowable suction head of the
pump. Take the water temperature to be 1508F.

SOLUTION

Equation 9.76 applies:

CP ¼ pa � pyð Þ=rg½ � � Zs
DZ

From Figure 9.31 at Q¼ 7 ft3=min and v¼ 1800 rev=min, we find DZ¼ 34 ft of water. From Figure 9.33
at T¼ 1508F,

py ¼ 0:31 atm� 14:7 psia

atm
¼ 4:56 psia

By substitution into the cavitation equation, we get

0:75 ¼ (14:7� 4:56) 144=1:94(32:2)½ � � Zs
34

Solving, we get

�Zs ¼ 34(0:75)� 23:4

Zs ¼ �2:1 ft

The inlet at the eye of the impeller must therefore be 2.1 ft below the water surface.

The engineer must usually decide what type of pump is appropriate for a given application.
Preliminary data such as head required and volume flow rate are usually all that is known.
A dimensionless number referred to as the specific speed can be used as an aid in the decision-
making process. This ratio is developed from the ratios in Equation 9.72 such that the characteristic
diameter D is eliminated. Specific speed (also called shape number) ensures that a machine
operating in its high-efficiency range is selected. The specific speed vSS is found by combining
head coefficient and flow coefficient to eliminate D:

vSS ¼ v2D2

gDZ

� �3=4
Q

vD3

� �1=2

¼ vQ1=2

(gDZ)3=4
(9:77a)

It is possible to select exponents other than 3
4 and

1
2, but these are customarily chosen for pumps. An

alternative expression that is used more widely in industry is of the same form but is not
dimensionally consistent. Specifically,
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vS ¼ vQ1=2

DZ3=4
(9:77b)

where v is rotational speed in rev=min, Q is volume flow rate in gal=min, and DZ is in feet of liquid.
The specific speed found with Equation 9.77b is different by orders of magnitude from that
calculated with 9.77a; vS is assigned the unit of rev=min.

Pumps with identical proportions but of different size have the same specific speed. The specific
speed for pumps (vS) can vary from 500 to 2000 rev=min for low-flow–high-pressure machines.
Specific speed varies from 5000 to 15,000 rev=min for high-flow–low-pressure pumps. To attach
further significance to this ratio, it is assigned a value only at the point of maximum efficiency for the
pump. For the performance map of Figure 9.31, the point of maximum efficiency is at approximately

Q ¼ 7:25 ft3=min ¼ 0:121 ft3=s ¼ 54:2 gal=min

DZ ¼ 65 ft

v ¼ 2400 rev=min ¼ 251:3 rad=s

Equation 9.77a gives

vSS ¼ vQ1=2

(gDZ)3=4
¼ (251:3)(0:121)1=2

(32:2)(65)½ �3=4
¼ 0:282

Equation 9.77b gives

vS ¼ vQ1=2

DZ3=4
¼ 2400(54:2)1=2

653=4

¼ 772 rev=min

On the basis of tests performed with all types of pumps, the results of Figure 9.34 have been
developed. This figure is a plot of efficiency versus specific speed over a range 500>vS> 15,000
rev=min. The graph relates specific speed to impeller shape and discharge, simultaneously predict-
ing pump efficiency.

Example 9.12

Determine the type of pump suited for moving 2000 gal=min (¼ 4.456 ft3=s) of water while overcoming
a 6-ft head. The available engine for the pump rotates at 800 rev=min. Calculate the power required.

SOLUTION

Figure 9.34 is used with Equation 9.77b:

vS ¼ vQ1=2

DZ3=4

By substitution, we get

vS ¼ 800(2000)1=2

63=4
¼ 9332 rev=min
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At this specific speed, Figure 9.34 indicates that a propeller or axial-flow pump is a suitable choice. The
efficiency is about 75%. The power required is

dWa

dt
¼ rgQDZ ¼ 1:94(32:2)(4:456)(6)

¼ 1668 ft � lfb=s

This is the power that must be delivered to the water. The power required at the shaft is

dWs

dt
¼ dWa=dt

h
¼ 1668

0:75

dWs

dt
¼ 2224 ft � lbf=s

40

50

60

70

Effi
ci

en
cy

,  
 (

%)

80

90

100 0.2 0.3 0.4 0.5
SS     Q1/2/(gΔZ)3/4

S         Q1/2/ΔZ3/4(rev/min)

1.0 1.5 2.0 3.0 4.0 5.0

500 1000

Centrifugal Mixed flow Propeller

2000 4000 6000 10,000

 10 000 gal/min3 000–10 000 gal/min
1 000–3 000 gal/min

500–1 000 gal/min

200–500 gal/min

100–200 gal/min

100 gal/min

1.

2.

3.

4.

5.

6.

7.

FIGURE 9.34 Relation of specific speed to impeller shape and pump efficiency. (Courtesy of Worthington
Group, McGraw-Edison Company. With permission.)
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With 550 ft � lbf=s¼ 1 hp,

dWs

dt
¼ 4:04 hp

9.9 PERFORMANCE CHARACTERISTICS OF HYDRAULIC TURBINES

Turbines, both hydraulic and compressible flow types, can be analyzed in much the same way as
pumps (described in the last section). A test setup can be devised and a performance map generated.
In addition, dimensionless ratios can be used as illustrated in Example 9.10 to relate performance
characteristics of similar devices. One significant difference, however, is in how specific speed is
defined for a turbine. In this case, the power specific speed vPS is more useful. It is obtained
customarily by appropriately combining Equations 9.72a and 9.72c:

vPS ¼ ~p1=2

gDZ
v2D2

	 
5=4 ¼ dW=dtð Þ
rv3D5

� �1=2
v2D2

gDZ

� �5=4

¼ v dW=dtð Þ1=2
r1=2(gDZ)5=4

(9:78a)

To attach further significance to this parameter, it is assigned a value only at the point of maximum
efficiency of the machine. Moreover, it is common practice to modify this equation slightly to obtain
an alternative expression for power specific speed:

vP ¼ v dW=dtð Þ1=2
DZ5=4

(9:78b)

where: vR¼ power specific speed of the hydraulic turbine in rev=min
v¼ actual rotational speed in rev=min
dW=dt¼ power in terms of hp
DZ¼ head difference in ft of liquid

Equation 9.78b is not dimensionally consistent.
Figure 9.35 is a graph of efficiency versus power specific speed vR for two hydraulic turbines.

Because specific speed has significance only at the point of maximum efficiency, Figure 9.35 can be
used to obtain information on which turbine is best for a given application.

Example 9.13

A turbine is to be installed in a dam where the available head varies over the course of a year; the average
is 130 ft of water. The volume flow rate through the channel upstream is 1200 ft3=s. Determine the type
of turbine most appropriate, assuming a rotational speed of 150 rev=min.

SOLUTION

The power is found with Equation 9.74:

dWa

dt
¼ rgQDZ ¼ 1:94(32:2)(1200)(130) ¼ 9,734,400 ft � lbf=s
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The power specific speed is found with Equation 9.78b:

vP ¼ v dWa=dtð Þ1=2
DZ5=4

¼ 150(9,734,400=550Þ1=2
(130)5=4

¼ 45:46 rev=min

According to Figure 9.35, a Francis turbine would be most appropriate for the application.

9.10 SUMMARY

In this chapter, we developed equations that are applicable to turbomachines. The angular momen-
tum equation was derived and used to analyze a water sprinkler. Next we wrote general equations of
turbomachinery that apply to the turbines, fans, and the like.

Equations for common types of turbines were also presented. Axial-flow turbines, radial-flow
turbines, axial-flow compressors, fans, axial-flow pumps, centrifugal compressors, and centrifugal
pumps were all discussed. It is unfortunate that in turbomachinery the material presentation seems to
consist of a barrage of equations. The reader is reminded that the objective is to develop equations
that relate the shaft torque or work to the change in fluid properties. This theme underlies the
derivations. Thus, the equations are meant to lead to an understanding of the concepts behind the
design and analysis of turbomachines.

We concluded the study of turbomachinery with a brief overview of performance characteristics
of selected turbomachines. Centrifugal pump characteristics were presented in some detail because
these machines are very common. Characteristics of other types of machines are usually supplied by
manufacturers. Finally, we formulated a dimensional analysis for the incompressible case. The
results are useful for modeling purposes.
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FIGURE 9.35 Hydraulic turbine efficiency ranges. (From Daugherty, R.L. and Franzini, J.B.,
Fluid Mechanics with Engineering Applications, 8th ed., McGraw-Hill Book Co., New York, 1977. With
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PROBLEMS

General Equations

9.1 Rework Example 9.1 for a sprinkler with three discharge nozzles.
9.2 In a typical two-nozzle lawn sprinkler (as described in Example 9.1), the radius R¼ 6 in. and

the volume flow rate through the sprinkler is 1 ft3=min. For a rotational speed of 2 rev=s,
determine the shaft torque exerted on the bearings. Take the nozzle angle setting to be 308 with
respect to the radial direction; take the exit diameter to be 0.3 in. Calculate also the rate of shaft
work being done.

Axial-Flow Machines

9.3 A single-stage axial-flow turbine uses compressed air as the working fluid. The inlet pressure
and temperature are 2 000 kPa and 258C. The absolute velocity of the flow leaving the stator
(pitch line is at a radius of 1.8 m) is 7.0 m=s. The angle between this velocity and the axial
direction is 308. The volume flow rate is 18 m3=s, and the rotor rotates at 360 rev=min.
Determine the torque exerted on the rotor and the average axial velocity. Assume that the
flow leaves the rotor in the purely axial direction.

9.4 Show the equivalence for reaction ratio of the two equations labeled 9.30.
9.5 Sketch the velocity diagram for the case in which the reaction ratio for an axial-flow turbine is

1.0. Determine which blade angles are equal.
9.6 Measurements on the first stage of a multistage gas turbine indicate that pressure and temperature

at stage entry are 1 000 kPa and 400 K. At stage exit, the pressure is 960 kPa. The rotational speed
is 360 rev=min, and the corresponding shaft torque is 825N �m. The rotor diameter is 1m, and the
blade height is 8 cm. The mean pitch line is at two-thirds the blade height as measured from the
rotor. The mass flow of gas is 25 kg=s, and the gas constant is 300 J=(kg � K). Assume ideal gas
behavior and assume that the stage is normal. The inlet flow angle between absolute and axial
velocities is 408. Determine the velocity diagrams, the stage efficiency, and the reaction ratio.

9.7 A single-stage gas turbine operates at inlet conditions of 50 psia and 6008R. The mass flow
through the stage is 0.776 slug=s, while the rotor blade speed is 490 ft=s. The axial-flow
velocity at rotor exit is 250 ft=s. The gas constant is 1610 ft � lbf=slug � 8R. The angle between
the absolute inlet flow velocity and the axial direction is 158. The shaft power is 400 hp. If the
stage is normal, determine all other blade angles and draw the velocity diagrams. Calculate the
reaction ratio.

9.8 Show that the reaction ratio for a normal stage can be written as

RR ¼ 1
2Ut

2 _m
rA

tana0 þ 2Ut � Tsv

_mUt

� �

9.9 Rework the calculations of Example 9.3 for turbine blade radii of 0.2, 0.3, 0.4, 0.5, 0.6, and 0.7 m.
9.10 An axial-flow propeller turbine while in operation has guide vanes set at an angle of 358 with

respect to the radial direction. The inner radius of the vanes is 15 ft; the vane height is 3 ft. The
absolute inlet velocity at the vanes is 12 ft=s. The turbine blades have a tip radius of 13 ft and a
hub radius of 3 ft. The rotor speed is 72 rev=min. Determine the blade angles for the leading
edge of the blade at the hub and at the tip.

9.11 The inner radius of the guide vanes of a propeller turbine is 2.2m, and the gate height is 0.8m. The
turbine itself is designed to produce power at a flow rate of 180m3=s and a rotational speed of 270
rev=min. The tip radius of the blades is 2 m; the inlet tangential fluid velocity at the tip is 14 m=s.
Calculate the power output of the turbine. Determine the angle that the guide vanes makewith the
radial direction. Assume that the tangential velocity leaving the turbine blades at the tip is zero.
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9.12 Examples 9.4 and 9.5 deal with a two-bladedwindmill. If the number of blades is changed to three
and all other conditions remain the same, determine the characteristics of the required airfoil.

9.13 Calculate the maximum power that can be developed by a windmill in a 60 km=h wind.
Assume a disk radius of 25 m and ambient conditions of 110 kPa and 258C.

9.14 A 90 ft diameter windmill operates in a wind of 60 mi=h. Assuming ideal conditions and that
the windmill efficiency is 48%, determine (a) the velocity through the disk, (b) the thrust on
the windmill, and (c) the pressure drop across the disk.

9.15 A single-stage axial-flow air turbine has blade angles of 508 (a1) and 558 (b2). The airflow
through the turbine is 4 kg=s. The reaction ratio is 0.65. The inside casing diameter is 0.8 m,
and the blade height is 4 cm. The mean pitch line is at three-fourths of the blade height
measured from the rotor. The inlet pressure is 650 kPa, and the rotational speed is 120
rev=min. Determine the inlet air temperature, the power, the shaft torque, and the pressure
drop across the stage.

9.16 Consider one stage of a three-stage gas turbine. At stage entry, the pressure is 500 kPa, and the
temperature is 600K. The pressure drop across the stage is 1 kPa. Rotational speed of the rotor is
180 rev=min, at which the shaft torque is measured to be 520 N � m. Each stage contributes
equally to the shaft torque. The rotor diameter is 1 m, and the blade height is 7 cm. Assume that
the mean pitch line is located at the midpoint of the blades. The mass flow of gas is 10 kg=s, and
its molecular mass is 40 kg=mol. The specific heats are the same as those for oxygen. Each stage
is normal, and the inlet flow angle between the absolute velocity and the axial velocity is 408.
Determine the efficiency of the turbine, the reaction ratio, and the blade angles a1 and b2.

9.17 An axial-flow propeller turbine installation produces 15,500 hp under a water head of 37 ft,
with a rotational speed of 106 rev=min. The turbine blades have a tip radius of 8 ft and a hub
radius of 2 ft. The guide vanes are 9 ft high and have an inner radius of 8.2 ft. The vanes are
set at an angle of 358 with respect to the radial direction. Determine angles at the leading edge
of the turbine blades for the tip and for the hub. Determine the shaft torque.

9.18 An axial-flow propeller turbine installation has a runner that rotates at 94.7 rev=min. The outer
radius at the runner tip is 3.048 m; the hub radius is 0.762 m. The water head available is
24.7 m, and the shaft torque is 5.376� 106 N � m. The guide vanes are 2.6 m tall and have an
inner radius of 3.1 m. Determine the angle at the leading edge of the turbine blades for the tip
if the angle at the leading edge for the hub is 1308. Determine the angle setting of the guide
vanes with respect to the radial direction, the volume flow rate through the system, and the
power output of the installation.

9.19 A two-bladed windmill, diameter 12 ft, in an airstream of velocity 30 mi=h, delivers 12.8 kW to
the shaft. The air temperature is 728F, and pressure is 14.7 psia. Downstream of uniform flow
velocity is 25 mi=h. Calculate thrust and efficiency. If the rotational speed is 500 rev=min and the
blade angle (b) is 508, sketch the velocity diagram. Take the chord length to be 6 in. Determine
aerodynamic properties of the blades. Use the midpoint of each blade for the calculations.

9.20 A Clark Y airfoil has a lift coefficient of 1.2 and a drag coefficient of 0.1 at an angle of attack
of 10.88. If it is used as a windmill propeller, determine the rotational speed of the blade in a
wind of 30 mi=h assumed to be at the disk. The chord length is 10 in., and the blade length is
15 ft (tip to tip). The blade is set at an angle of 61.68 (¼bþ d) from the axial direction.
Calculate also the pressure drop across the blades. Perform all calculations at the blade
midpoint for N¼ 2 and for a shaft power of 6918 ft � lbf=s.

9.21 An axial-flow propeller turbine installation has a turbine runner with a tip radius of 3.71 m and
a hub radius of 1.62 m. The rotational speed is 85.7 rev=min under a water head of 13.11 m.
The guide vanes are 2.75 m tall, and the radius to the guide vanes is 3.8 m. The vanes are set at
an angle of 508 with respect to the radial direction. Determine the angles at the leading edge of
the blades for radial locations of 2, 2.5, 3.0, and 3.5 m as well as at the hub and at the tip. If at
each of these locations the tangential water velocity leaving the blades is zero, calculate the
shaft power at each radial distance. (These should all be approximately equal.)
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9.22 If the tangential velocity leaving the runner of an axial-flow turbine installation is zero, the
shaft power equation becomes

dWs

dt
¼ rQUtVt1

where subscript 1 denotes an inlet condition, and the product of the tangential velocities can be
taken at any radial location on a turbine blade. By substitution, show that this equation can
be rewritten as

dWs

dt
¼ 4prR2

gbvDzg cosa sina

9.23 An axial-flow propeller turbine installation has a runner with a tip radius of 3.57 m and a
hub radius of 1.52 m. The water head is 24.38 m. The guide vanes are 2.6 m high, and the
radius to the guide vanes is 3.7 m. The blade angles at the leading edge of the turbine runner at
the hub is 1308, which is fixed. Determine and graph the variation of rotational speed and flow
rate with the angle at which the guide vanes are set. Determine also the power output
variation, assuming that the outlet tangential fluid velocity at the hub of the turbine blades
is zero.

9.24 In an axial-flow turbine installation, the tip radius of the turbine runner is 9.82 ft, and the hub
radius is 3.77 ft. The water head is 45 ft. The guide vanes are located at a radius of 10 ft from
the axis of rotation. The vanes themselves are 4.5 ft tall and set at an angle of 358 with respect
to the radial direction. Determine the blade angle at the leading edge of the turbine blade tip if
the power output is 136,000 hp. Take the outlet tangential fluid velocity at the tip to be zero.
Determine also the rotational speed.

9.25 An axial-flow pump rotates at 450 rev=min and conveys 30 ft3=s of glycerine. The hub radius
is 10 in., and the casing radius is 27 in. The absolute flow velocity leaving the rotor blades is
6 ft=s. Using the blade element procedure, determine the torque and power.

9.26 The three-speed fan of Example 9.7 is turned down at 1800 rev=min. If the flow angles are the
same, determine the pressure rise across the fan at the hub. Calculate the power drawn,
assuming the pressure rise at the hub is constant over the cross section.

9.27 An axial-flow water pump has a rotor with blade angles that are invariant with radial distance.
The rotor blade angles are b1¼ 608 and b2¼ 458. An outlet vane downstream removes the
tangential fluid velocity component. For an inflow velocity of 12 ft=s, determine the change in
pressure across the pump and the angle between the axial direction and the absolute fluid
velocity leaving the rotor.

9.28 An axial-flow fan has 12 blades and is in a circular housing with an inside diameter of 2 m.
The hub diameter is 1.6 m. Each blade is straight, and all are identical with a chord length of
10 cm and a mean pitch diameter of 1.8 m. All blades are set at an angle of 628 with respect to
the axial direction. The inflow is purely axial with static properties of 101.3 kPa and 208C. The
pressure rise across the blades is 0.3 m of water when the rotor speed is 1800 rev=min.
Determine the aerodynamic properties of the blades and the power.

Radial-Flow Machines

9.29 A Francis turbine is used in an installation for the generation of electricity. The volume flow
rate through the turbine is 45 m3=s. The absolute water velocity leaving the gates makes an
angle of 608 with the radial direction. The radius of the turbine rotor is 6 m, and the inlet gate
height is 0.3 m. The absolute exit velocity is in the radial direction. The turbine efficiency is
94%. Calculate the required water head, the torque, and the power exerted by the water. Take
the rotational speed to be 180 rev=min.
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9.30 A Francis hydraulic turbine runs at a speed of 180 rev=min and has an efficiency of 90%. The
absolute velocity leaving the gates makes an angle of 808 with the radial direction. The radius
of the turbine rotor is 12 ft, and the inlet gate height is 1 ft. Calculate the volume flow rate
through the turbine if the head under which it acts is 120 ft.

9.31 Derive Equation 9.25b in detail.
9.32 A Francis turbine is used in an installation to generate power. The power output is 115,000 hp

under a head of 480 ft. The outer radius of the rotor blades is 6.75 ft; the inner radius is 5.75 ft.
The rotational speed is 180 rev=min and the blade height is 1.5 ft. The turbine efficiency is
95%. The absolute velocity leaving the rotor is in the radial direction. Determine the angle the
absolute velocity entering the rotor makes with the radial direction. Sketch the velocity
diagram at the rotor inlet. The fluid medium is water.

9.33 A Francis turbine installation produces 111 MW. The blade height is 0.732 m; the outer radius
at the inlet to the runner is 5.52 m. The rotational speed is 167 rev=min. The flow leaving the
runner is purely radial. Determine the volume flow rate through the installation if the angle
between the radial direction and the direction of the absolute velocity entering the rotor is 308.
Also find the water head to the gates.

9.34 A Francis turbine installation produces 172,000 hp under a water head of 162 ft from the
reservoir surface to the tailwater. The blade height is 10 ft. The radius to the rotor blade at inlet
is 18 ft. The rotational speed is 105.9 rev=min. For a volume flow through the installation of
9,851 ft3=s, determine the angle between the absolute inlet velocity to the rotor and the axial
direction. Determine also the angle between the inlet relative velocity to the rotor and the
axial direction, and calculate the efficiency. Assume that the absolute exit velocity is in
the radial direction.

9.35 The impeller of a centrifugal water pump rotates at 1 260 rev=min and has 2 cm high vanes.
The inlet eye radius is 3 cm, and the outside radius is 7 cm. The vane angles are b1¼ 608 and
b2¼ 808. Assuming radial inflow to the impeller vanes, determine the volume flow rate and
the pumping power. Calculate also the stagnation pressure rise across the impeller.

9.36 The input power to a centrifugal water pump is 200 hp and the shaft torque is 1150 ft � lbf.
The impeller has an outside diameter of 24 in. and a diameter at the eye of 5 in. Measurements
on the impeller indicate that b1¼ 658 and b2¼ 838. For a blade height of 2 in., determine
the volume flow rate through the pump, the expected static pressure rise, and the rotational
speed.

Performance Analysis and Comparisons

9.37 Compare velocity diagrams for the axial-flow propeller turbine and the axial-flow pump.
Prepare a summary similar to Table 9.2 and a plot like that in Figure 9.29.

9.38 Repeat Problem 9.37 for Francis turbines versus centrifugal-flow pumps.
9.39 Derive Equation 9.71a.
9.40 Derive Equation 9.71b.
9.41 Derive Equation 9.71c.
9.42 Verify that the head coefficient, the volumetric flow coefficient, the rotational Reynolds

number, and the power coefficient are all dimensionless.
9.43 The inlet of a centrifugal pump is 8-nominal schedule 40 pipe. The discharge is 6-nominal

schedule 40 pipe. The pressure gauge on the outlet reads 250 kPa, and the gauge at the inlet
reads 30 kPa. If the volume flow rate of water through the pump is 0.1 m3=s and the efficiency
is 85%, determine the power. Neglect elevation differences and derive an expression by
applying the energy equation from inlet to outlet.

9.44 The inlet and discharge of a centrifugal pump are 1 1
2-nominal and 1-nominal schedule 40 pipe,

respectively. The pressure increase from inlet to outlet is 20 ft of water. The motor input
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is 1
2 hp, and the efficiency is 72%. Determine the volume flow rate through the pump. Neglect

elevation differences.
9.45 A centrifugal water pump under test discharges 0.015 m3=s against a head of 18 m when the

rotational speed is 1800 rev=min. The impeller diameter is 32 cm, and the power input is
4.5 kW. A geometrically and dynamically similar turpentine pump has an impeller diameter of
38 cm and will run at 2200 rev=min. Assuming equal efficiencies between the two pumps,
determine the head developed, the volume flow rate, and the power required for the second
pump.

9.46 A large pump is to be used in a glycerine-bottling plant. The glycerine pump is to be driven by
a 10 hp motor at 800 rev=min. The system is modeled with a small 1

4 hp motor–pump
combination that runs at 1800 rev=min and pumps water. What should be the ratio of glycerine
impeller diameter to water impeller diameter?

Cavitation and Specific Speed

9.47 In a liquor-bottling plant, a centrifugal pump discharges 0.02 m3=s against a head of 28 m. The
cavitation parameter for the pump is 0.5. Where should the pump inlet location be with respect
to the surface of the ethanol? Take the ethanol temperature to be 108C.

9.48 How do the results of Example 9.11 change if the liquid is carbon tetrachloride?
9.49 The inlet of a pump is level with the surface of a water reservoir. The pump draws 708F water

at a rate of 200 gal=min and delivers it against a head of 60 ft. If the cavitation parameter is
0.5, is the pump expected to cavitate?

9.50 Verify that Equation 9.77a is dimensionless.
9.51 What are the actual units of Equation 9.77b?
9.52 What type of pump is most suitable for moving 100 gal=min of water against a 20 ft head

when the rotational speed is 2400 rev=min? Determine the input power required.
9.53 What type of pump is best suited for pumping 1 m3=s of water against a head of 12 m while

rotating at 100 rev=min? Calculate the power required.

Performance of Hydraulic Turbines

9.54 What type of pump is most appropriate for pumping 6 ft3=s of water against a head of 15 ft
while rotating at 600 rev=min? What is the required power?

9.55 Verify that Equation 9.78a is dimensionless.
9.56 What are the actual dimensions of Equation 9.78b?
9.57 A water turbine is to operate under a head of 100 m of water with a flow rate of 400 m3=s.

If the rotational speed is 120 rev=min, determine the most suitable type of turbine and the
power output.

9.58 A turbine operates under a head of 36 ft at a location where the volume flow rate is 110 ft3=s.
A Francis turbine is installed. For efficiency greater than 94%, determine the allowable limits
on rotational speed.

9.59 An axial-flow propeller turbine has the following characteristics: power output¼ 15,500 hp,
water head¼ 37 ft, and rotational speed¼ 106 rev=min. Estimate the efficiency of the
installation. While keeping other conditions the same, what should the rotational speed be
changed to in order to obtain 95% efficiency?

9.60 An axial-flow propeller turbine has the following data: v¼ 94.7 rev=min, DZ¼ 24.7 m, and
Ts¼ 5.376� 106 N � m. Estimate the efficiency of the installation.

9.61 A Francis turbine has the following data: v¼ 180 rev=min, DZ¼ 480 ft, and h¼ 95%.
Estimate the power output of the installation.

9.62 An axial-flow turbine installation produces 136,000 hp under a water head of 45 ft. For an
efficiency of 90%, determine the required rotational speed.
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9.63 A Francis turbine installation produces 111 MW at a runner rotational speed of 167 rev=min.
The water head to the gates is calculated to be 53.3 m. Determine what the water head should
be from headwater to tailwater under maximum efficiency conditions.

9.64 A Francis turbine installation produces 172,000 hp under a total head of 162 ft. The rotational
speed of the runner is 105.9 rev=min. Estimate the efficiency of the installation. (Note: The
data of this problem are from Problem 9.34; the efficiency calculated in that problem, for
purposes of comparison, is 95%.)
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10 Measurements in Fluid
Mechanics

Fluid measurements—including the measurement of viscosity, pressure, velocity, and flow rate—
are the subject of this chapter. Viscosity is a property related to how a fluid reacts under the action of
an applied shear; two methods for measuring viscosity are presented. Pressure, as we will see, is
measured with a pitot and pitot-static tube. Velocity of the flow can be determined by using a pitot-
static tube. Flow rate in closed conduits can be measured with meters; for open-channel flow, weirs
can be used.

Although it is not discussed in detail here, the accuracy of measurement is critical in fluid
mechanics. Consider, for example, a soft drink–bottling company. One such operation might bottle
100,000 gal of liquid (approximately 800,000 16-oz bottles) per year. Say the company uses a meter
in the main supply line that is usually accurate to within 2%. In that case, as much as 2000 gal of
liquid a year may be sold without being paid for or paid for but never sold. Now multiply this
amount by the number of soft drink– and liquor–bottling companies that use conventional in-line
instrumentation. If we also include oil companies, gas stations, residential and industrial water
meters, and so forth, we can conclude that a significant amount of liquid may go unaccounted for
each day. Accuracy of instrumentation in fluid mechanics is indeed important.

10.1 MEASUREMENT OF VISCOSITY

Several devices are commercially available for measuring the viscosity of a fluid. These devices are
commonly called viscometers or viscosimeters. Suchmeters contain the fluid and cause it to undergo
a laminar motion by the imposition of a pressure drop or by the motion of a component. The laminar
motion generated can usually be described by an analytic solution with which viscosity can be
calculated.

The rotating-cup viscometer, a device used to measure viscosity, consists of two concentric
cylinders. Liquid is placed in the annulus between the cylinders, and viscosity can be calculated with
descriptive equations. A rotating-cup viscometer is illustrated in Figure 10.1. The outer cylinder or
cup rotates at a constant rotational speed that is carefully controlled. The inner cylinder is held
stationary. Torque is transmitted from the outer cylinder through the liquid to the inner cylinder. The
torque required to hold this cylinder stationary is then measured. This measurement could be done by
attaching a torsion wire to the inner cylinder and determining its deflection. The viscosity of the liquid
is related to the torque exerted on the inner cylinder by Newton’s law of viscosity:

t ¼ m
dV

dr
¼ m

Vu

R2 � R1
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With Vu¼R2v, we have

t ¼ m
R2v

R2 � R1

The measured torque on the inner cylinder is related to the shear stress as:

Ts ¼ Fs � R1 ¼ t 2pR1Lð ÞR1

or

t ¼ Ts
2pR2

1L

By substitution,

Ts
2pR2

1L
¼ m

R2v

R2 � R1

Solving, we get

m ¼ Ts R2 � R1ð Þ
2pR2

1R2Lv
(10:1)

A second type of viscosity-measuring device is the falling-sphere viscometer. In this case, a sphere
of known dimensions is dropped into a liquid medium. By determining the time required for the
sphere to fall through a certain interval, its terminal velocity can be calculated. The concept is
illustrated in Figure 10.2 along with a free-body diagram for a sphere falling at terminal velocity.
The forces acting are weight W, buoyancy B, and drag Df :

W ¼ rsg
pD3

6
(10:2a)

Inner cylinder
held stationary

Constant-temperature
bath

L

R2
R1

Vθ

FIGURE 10.1 A rotating-cup viscometer.
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B ¼ rg
pD3

6
(10:2b)

Df ¼ CD
rV2

2
pD2

4
(10:2c)

where: rs¼ sphere density
D¼ sphere diameter
r¼ liquid density
V (¼ L=t) is the terminal velocity of the sphere falling through the liquid
CD¼ drag coefficient determined from Figure 6.15 for flow past a sphere

Applying Newton’s second law for a nonaccelerating sphere, we get

X
F ¼ rsg

pD3

6
� rg

pD3

6
� CD

rV2

2
pD2

4
¼ 0 (10:3)

If the sphere is sufficiently small in diameter, or if its density is not much greater than that of
the liquid, it falls at a very low velocity. From Chapter 6, we know that if the Reynolds number
of the sphere is less than 1, then Stokes flow exists. For this case,

CD ¼ 24
Re

¼ 24m
rVD

for Re < 1

Therefore, Equation 10.2c becomes

Df ¼ 24m
rVD

rV2

2
pD2

4
¼ 3pmVD

and Equation 10.3 becomes

rsg
pD3

6
� rg

pD3

6
� 3pmVD ¼ 0

D L
W

B

Dt

Df

FIGURE 10.2 Falling-sphere viscometer and free-body diagram for the sphere.
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Rearranging and solving for viscosity, we have

m ¼ g

18
D2

V
rs � rð Þ (10:4)

Once viscosity is determined with this equation, the Reynolds number should be calculated to verify
that it is indeed less than 1.

Equation 10.4 applies only to the case in which the sphere diameter is much smaller than the
cylinder diameter. If this is not the case, then interference will exist between the wall itself and the
falling motion of the sphere. Thus, the drag will be affected. To account for this wall effect, we
modify the drag equation:

Df ¼ 3pmVDz

where z represents a multiplication factor for the wall effect. The factor z has been determined
analytically, and the results have been confirmed with experimental data. They are plotted in Figure
10.3 as z versus the ratio of the sphere diameter to the tube diameter. Equation 10.4 then becomes

m ¼ g

18
D2

Vz
rs � rð Þ (10:5)

Example 10.1

A commercially available shampoo is brought into the lab for viscosity measurement. A stainless steel
sphere of diameter 3

32 in. falls through the shampoo at a terminal velocity of 1 in. per 24.95 s. The tube
holding the liquid has an inside diameter of 4 in. Determine the viscosity of the shampoo if its specific
gravity is 0.998.

SOLUTION

Equation 10.5 applies:

m ¼ g

18
D2

Vz
rs � rð Þ

0
0

5

10

15

20

25

0.1 0.2 0.3
D/Dt = sphere diameter/tube diameter

0.4 0.5 0.6 0.7

FIGURE 10.3 Wall correction factor for a falling-sphere viscometer.
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The sphere diameter is D ¼ 3
32

� �
1
12

� � ¼ 0:00781 ft. The ratio of the sphere to the tube diameter is

D

Dt
¼

3
32

4
¼ 0:023

Figure 10.3 gives z� 1. The sphere density from Table A.8 is

rs ¼ 8:02(1:94) ¼ 15:6 slug=ft3

The liquid density is

r ¼ 0:998(1:94) ¼ 1:94 slug=ft3

The terminal velocity is

V ¼ 1
24:95

� �
1
12

� �
¼ 0:00334 ft=s

By substitution, then,

m ¼ 32:2
18

(0:00781)2

0:00334(1)
(15:6� 1:94)

m ¼ 0:445 lbf � s=ft2

As a check, the Reynolds number is calculated as

Re ¼ rVD

m
¼ 1:94(0:00334)(0:00781)

0:445

¼ 0:0001 < 1

Thus, Equation 10.5 is valid for this problem.

Another way to measure viscosity involves moving the fluid through a tube under laminar flow
conditions. For a Newtonian fluid, the velocity profile (from Chapter 5) for laminar flow through a
circular tube is

Vz ¼ � dp

dz

� �
R2

4m
1� r

R

� �2
� 	

Integrating this equation over the tube cross-sectional area and dividing by the area gives the
average velocity:

V ¼ � dp

dz

� �
R2

4m
’ Dp

L

R2

8m

Solving for viscosity gives

m ¼ Dp

L

R2

8V
(10:6)
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The volume flow rate of the liquid through the tube is measured, and dividing by the area gives the
average velocity V. The tube length L and inside radius R are easily measured. The pressure drop Dp
over the distance L must also be measured. Once these quantities are known, the viscosity can be
calculated with Equation 10.6.

10.2 MEASUREMENT OF STATIC AND STAGNATION PRESSURES

In fluid flow, there are two pressures of importance: static pressure and stagnation pressure. Static
pressure is indicated by a measuring device that moves with the flow or by a device that causes no
change in velocity within the stream. A conventional method for measuring static pressure is by
means of a hole drilled through the flow conduit. The hole, which must be located normal to the wall
surface, is then connected to a manometer or a pressure gauge. If it is not possible to use an existing
wall, a probe that has a static pressure tap can be inserted into the flow to create an effective wall
(Figure 10.4).

When measuring the static pressure in a pipe, it is often desirable or necessary to drill several
static pressure taps and connect them with a tube that goes around the pipe. The tube is called a
piezometer ring. This method will account for imperfections in the pipe wall (see Figure 10.5).

Static pressure taps

V

ΔhΔh

FIGURE 10.4 Methods for measuring static pressure of flow.

Piezometer
ring

Pipe wall

To manometer
or gauge

FIGURE 10.5 Piezometer ring connected to static pressure taps.
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An application of the method for measuring static pressure is used in a device called a
direction-finding tube (Figure 10.6). In two-dimensional or three-dimensional flows, the actual
flow direction may not be known; a direction-finding tube will indicate it. As shown in Figure 10.6,
the tube consists of two piezometer holes located at equal angles from the center. Each hole is
connected to a separate manometer or gauge. The tube is then rotated in the flow until the readings
on both manometers or gauges are identical. If the angle between the centerline and the holes is
39 1

4
�
, the indicated pressure is very close to that recorded by an instrument moving with the flow.
Stagnation pressure is the pressure indicated when bringing the flow to rest isentropically. A

pitot tube, an open-ended tube facing the flow direction as shown in Figure 10.7, is used to measure
stagnation pressure.

10.3 MEASUREMENT OF VELOCITY

Velocity in a flow of fluid can be measured in several ways. The first method that we will discuss
involves use of a pitot-static tube. This device consists of a tube within a tube that combines static
pressure measurement with stagnation pressure measurement. A cross section of a pitot-static tube
is given in Figure 10.8. Applying the Bernoulli equation to the static and stagnation holes in the
tube gives

pt
rg

¼ p

rg
þ V2

2g

Solving for velocity, we get

V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pt � p

r
2

r

V

39 1
4

39 1
4

FIGURE 10.6 Direction-finding tube.

V

Δh

FIGURE 10.7 Measurement of stagnation pressure with a pitot tube.
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The pressure difference thus gives the velocity of the flow. If the pitot-static tube is connected to
opposing limbs of a differential manometer, then the reading Dh is

Dh ¼ pt � p

rg

In terms of the manometer reading (see Figure 10.8), the flow velocity is

V ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2gDh

p
(10:7)

Example 10.2

Acetone flows through a pipe in which the velocity at the centerline is measured with a pitot-static tube.
The attached manometer indicates a pressure drop of 5 cm of mercury, as shown in Figure 10.9.
Calculate the velocity at the centerline.

Liquid
velocity, V

pt

ptpt

p

p

p

p

Δh

FIGURE 10.8 Cross section of a pitot-static tube and manometer connection.

p1

zp

V

Acetone

Mercury

Δh

FIGURE 10.9 Measurement of velocity with a pitot-static tube (Example 10.2).
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SOLUTION

The derivation of Equation 10.7 was for an inverted, air-over-liquid, U-tube manometer. In this example,
however, we have a slightly different method for measuring pressure difference, and so Equation 10.7
does not apply. Here, we are using a two-liquid manometer in a U-tube configuration. As shown in the
figure, we define z as the vertical distance from the pitot-static tube to the mercury–acetone interface in
the right leg of the manometer. Applying the hydrostatic equation to the manometer gives

pt þ rag(zþ Dh) ¼ pþ ragzþ rHggDh

or

pt � p ¼ gDh rHg � ra

� �

Next we write, for the pitot-static tube,

pt
rag

¼ p

rag
þ V2

2g

which becomes

V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 pt � pð Þ

ra

s

Substituting from the hydrostatic equation gives

V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2gDh

rHg � ra

ra

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(9:81)(0:05)

13:6(1 000)� 0:787(1 000)
0:787(1 000)

s

Solving,

V ¼ 4:0 m=s

Equation 10.7 is appropriate for velocity measurements in incompressible fluids. For a compressible
fluid, a pitot tube can still be used, but consideration must be given to whether the flow is subsonic
or supersonic. For subsonic flow, we apply the energy equation to a stagnation reading and to a
static reading made independently. The energy equation written between the stagnation and static
states for an adiabatic process with no work is

ht ¼ hþ V2

2

where ht and h are the stagnation and static enthalpies, respectively. For an ideal gas with constant
specific heats, this equation becomes

cpTt ¼ cpT þ V2

2

or

Tt ¼ T 1þ V2

2cpT

� �
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By definition,

cp ¼ gR

g � 1

where R is the gas constant and g is the ratio of specific heats (cp=cv). Thus,

Tt ¼ T 1þ V2(g � 1)
2gRT

� 	

Substituting from the definition of sonic velocity, a2¼ gRT, we get

Tt
T

¼ 1þ g � 1
2

V2

a2
¼ 1þ g � 1

2
M2 (10:8)

where M is the Mach number of the flow, which in this case is less than 1. For an isentropic flow, we
can write

pt
p
¼ Tt

T

� �g=(g�1)

Equation 10.8 now becomes

pt
p
¼ 1þ g � 1

2
M2

� �g=(g�1)

(10:9)

As was stated in Chapter 8, the values of p=pt versus M are tabulated in Table D.1 for g¼ 1.4. Use of
the table will make calculations easier. By measuring the stagnation and static pressures in the flow,
and by measuring the static temperature, the subsonic flow velocity can therefore be calculated with

V ¼ Ma ¼ M
ffiffiffiffiffiffiffiffiffi
gRT

p
(10:10)

Example 10.3

The velocity of a commercial airliner is measured by a pitot tube attached near the front of the plane. The
plane travels at an altitude of 30,000 ft, where the ambient conditions are T¼� 26.28F and z¼ 9.38 in.
of mercury. The gauge attached to the pitot tube reads 7.0 psia. Determine the velocity.

SOLUTION

The equivalent static pressure is calculated with the hydrostatic equation

p ¼ rgzHg ¼ 13:6(1:94)(32:2)
(9:38)
12

¼ 663:4 psfa ¼ 4:61 psia

where r for mercury is obtained from Table A.5. For the pressure ratio

p

pt
¼ 4:61

7:0
¼ 0:658
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Table D.1 gives M¼ 0.80. Assuming air as an ideal gas with constant specific heats, Equation 10.10
yields

V ¼ M
ffiffiffiffiffiffiffiffiffi
gRT

p
¼ 0:8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:4(1710)(460� 26:2)

p
¼ 0:8(1021)

V ¼ 816 ft=s ¼ 557 mi=h

If the flow is supersonic, a shock wave will exist in front of the pitot probe, as in Figure 10.10. The
flow velocity to be measured is upstream of the shock. Owing to the presence of the shock wave, the
probe will exist in a subsonic flow, but because the shock is normal to the flow at the pitot tube, normal
shock tables can be used. For the configuration of Figure 10.10, then, the pitot tube will indicate the
stagnation pressure behind the shock, pt2. Additionally, upstream static measurements of p1 and T1 are
necessary to provide sufficient information to determine velocity. Table D.2 gives a tabulation of
p1=pt2 versusM1 for a gaswith g¼ 1.4. The technique ofmeasuring velocity thus involves using Table
D.2 for convenience to determine M1 and then substituting into Equation 10.10 to find V1.

Example 10.4

A supersonic transport plane has a pitot tube attached to allow the pilot to determine when supersonic
speed is reached. When the plane is flying at an altitude of 12 200 m (temperature is �52.18C and
pressure is 20.25 kPa), the gauge to which the pitot tube is attached reads 42 kPa. Determine the Mach
number and absolute velocity of the plane.

SOLUTION

For the ratio

p1
pt2

¼ 20:25
42

¼ 0:482

Table D.2 gives M1¼ 1.08. After substitution into Equation 10.10, we obtain

V ¼ Ma ¼ M
ffiffiffiffiffiffiffiffiffi
gRT

p
¼ 1:08

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:4(286:8)(273� 52:1)

p
V ¼ 322 m=s

Another device used to measure velocity in a gas is the hot-wire anemometer. This apparatus
consists of a wire, generally made of platinum or tungsten, connected to two prongs as shown in

pt2

pt1

V1
M1
p1

FIGURE 10.10 Pitot tube in a supersonic flow.
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Figure 10.11a. Electricity is passed through the wire and heats it. The heat in turn is transferred to
the flowing fluid at a rate that is proportional to the flow velocity. If the current through the wire is
maintained constant, the resistance of the wire can then be easily measured and the fluid velocity
determined. If the wire temperature is maintained constant, the resistance will remain constant. In
this case, the current is measured, and again the velocity can be determined. For either method of
use, extensive calibration is required. One difference between a hot-wire anemometer and a pitot
tube is the response time. Because the wire is thin (5� 10�6 m characteristically), it transfers heat
very quickly. Thus, sudden changes in velocity are sensed and displayed immediately by an
appropriate electronic readout device; the velocity measured is the instantaneous velocity at a certain
point. By comparison, a pitot-static tube is not as sensitive and indicates only a mean velocity.

A device used to measure velocity in a liquid is the hot-film probe. This apparatus (Figure
10.11b) works on the same principle as the hot-wire probe. (A hot wire is too delicate for use in a
liquid.)

Another velocity-measuring device is the dual-beam laser-Doppler anemometer (LDA). This
device passes two laser beams through the flow field. When particles in the fluid (liquid or gas)
scatter the light at the intersection of the beams, a shift in the frequency occurs. The magnitude of
this so-called Doppler shift is proportional to the flow velocity. One advantage of the LDA is that no
physical disturbance of the flow occurs as with a pitot tube. One disadvantage is that the fluid must
be transparent and contain impurities or particles that scatter the light. If no particles are present, the
fluid must be doped. Perhaps the biggest disadvantage of the LDA is its cost. There are other devices
that are useful for measuring velocity, from floats or buoyant particles to rotating anemometers,
depending on the application.

10.4 MEASUREMENT OF FLOW RATES IN CLOSED CONDUITS

Readings from a pitot-static tube can be used to calculate the volume flow rate in a closed conduit.
Because the pitot-static tube gives a measurement of velocity at selected points, the velocity profile
can then be plotted and graphically integrated over the cross-sectional area to obtain the volume
flow rate through the conduit. The integration procedure might present some difficulty, however, so
an alternative method has been devised. Consider the circular duct of Figure 10.12. It is divided into
five circular concentric equal areas (A1 through A5):

A ¼ A1 þ A2 þ A3 þ A4 þ A5 ¼ 5A1 (10:11)

The velocity within each concentric area is presumed to be constant in that area. The velocity in
each area must be measured with any suitable device at the prescribed point, or the velocity at these
locations can be scaled from the velocity profile. The flow rate through each area is then

V V

Hot film

Hot wire

(a) (b)

FIGURE 10.11 (a) A hot-wire anemometer used to measure flow velocity in a gas. (b) A hot-film anemom-
eter used to measure flow velocity in a liquid.
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Q1 ¼ A1V1

Q2 ¼ A2V2

Q3 ¼ A3V3

Q4 ¼ A4V4

Q5 ¼ A5V5

The total volume flow rate through the conduit is

Q ¼ Q1 þ Q2 þ Q3 þ Q4 þ Q5

¼ A1V1 þ A2V2 þ A3V3 þ A4V4 þ A5V5

Q ¼ A1 V1 þ V2 þ V3 þ V4 þ V5ð Þ

By combining with Equation 10.11, the volume flow rate is

Q ¼ A

5
V1 þ V2 þ V3 þ V4 þ V5ð Þ

from which we conclude that the average velocity can be found by taking the arithmetic average of
the five measured values:

V ¼ Q

A
¼ V1 þ V2 þ V3 þ V4 þ V5

5
(10:12)

A similar analysis can be developed for flows through a rectangular or square ducts where the
velocitiesmust be known at selected points in the cross section. Such points are shown in Figure 10.13.

R

V1
V2
V3

V4

V5

A5
A4A3A2A1

0.949R0.837R0.707R0.548R
0.316R

FIGURE 10.12 Circular cross section divided into five equal areas.
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The number of equal areas chosen for the cross section varies with its dimensions. Generally, the
number of readings should be between 16 and 64 at the center of equal rectangular areas. The velocities
are then averaged. The product of the average velocity and the cross-sectional area gives the flow rate.

Example 10.5

In a liquor-bottling plant, ethyl alcohol is piped to a mixing tank through a pipe. A pitot-static tube is
used to measure a velocity profile in the pipe (24-nominal, schedule 20 stainless steel). The data are
given in the following table.

Distance from
Centerline (in.)

Pitot-Static Tube Reading
(in. Ethyl Alcohol)

0 11.9

1 11.6
2 11.3
3 11.0

4 10.8
5 10.5
6 10.1
7 9.8

8 9.1
9 6.5
10 2.9

11 0.7

a. Sketch the velocity profile to scale.
b. Estimate the volume flow rate through the pipe.

SOLUTION

a. Equation 10.7 applied to each reading gives the results in the following table. A sample
calculation for 0 in. is

V ¼
ffiffiffiffiffiffiffiffiffiffiffi
2gDh

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(32:2)(11:9=12)

p
¼ 8:0 ft=s

FIGURE 10.13 Division of a rectangular cross section into a number of equal areas.
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From Table C1, for a 24-nominal, schedule 20 pipe,

D ¼ 1:938 ft and A ¼ 2:948 ft2

At the wall, R¼ 1.938 ft=2¼ 11.63 in., at which distance the velocity is zero. A plot of the data is
given in Figure 10.14.

b. To calculate the volume flow rate, we can use the velocity profile to estimate the average velocity.
From Figure 10.12, the velocity must be known at the following locations (R¼ 11.63 in.):

0:316R ¼ 3:68 in: ! A5

0:548R ¼ 6:37 in: ! A4

0:707R ¼ 8:22 in: ! A3

0:837R ¼ 9:73 in: ! A2

0:949R ¼ 11:03 in: ! A1

Wall

V (ft/s)

Ra
di

al 
di

sta
nc

e (
in

.)

Pipe centerline
0

0

5

10

2 4 6 8

FIGURE 10.14 Velocity profile for ethyl alcohol in a pipe (Example 10.5).

Distance from
Centerline (in.)

Velocity
(ft=s)

0 8.0

1 7.9
2 7.8
3 7.7
4 7.6

5 7.5
6 7.4
7 7.25

8 7.0
9 5.9
10 3.9

11 1.9
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From the velocity diagram, the corresponding velocities are

V1 ¼ 1:7 ft=s

V2 ¼ 5 ft=s

V3 ¼ 6:7 ft=s

V4 ¼ 7:3 ft=s

V5 ¼ 7:7 ft=s

The average velocity is

V ¼
P

V

5
¼ 5:68 ft=s

The volume flow rate is

Q ¼ AV ¼ 2:948(5:68)

Q ¼ 16:7 ft3=s

Using a pitot-static tube to measure velocity can be quite cumbersome and sometimes—in the
case of small tubes, for example—impossible. Fortunately, alternatives exist. Fluid meters specif-
ically made for measuring flow rate have been proposed, tested, and developed to a high degree.
Flow meters are of two types: those that measure quantity and those that measure rate. Measure-
ments of quantity (either volume or mass) are obtained by counting successive isolated portions of
flow. Rate measurements, on the other hand, are determined from the effects on a measured physical
property of the flow—for example, the pressure drop within a meter related to the flow rate through it.
A quantity meter reading can be modified to obtain a flow rate.

One example of a quantity-measuring device is the nutating disk meter illustrated in Figure
10.15. This meter is used extensively for metering cold water in service lines, both domestic and
commercial. The nutating disk meter contains a metering chamber with spherical sides, a conical
roof, and a radial baffle. A disk that passes through a sphere inside divides the chamber in two. A
shaft attached to the sphere extends upward. As liquid flows through the meter alternately above and
below the disk, the disk wobbles or nutates, thus moving the sphere and causing the shaft to
generate the shape of an inverted cone. This circular motion of the shaft drives a counter that
registers the total quantity of flow passing through. For gases, a bellows meter is used for both
domestic and commercial applications. The meter contains a bellows that alternately fills and
empties. The bellows is mechanically linked to a counter.

The remainder of this section is devoted to a discussion of the common types of rate meters.
Rate meters are devices used to measure flow rate as volume per unit time or as mass per unit time.
One of the most accurate commercially available types is the turbine-type flow meter. As shown in
Figure 10.16, it consists of a pipe or tube (brass or stainless steel is commonly used) with
appropriate pipe fittings. Inside the tube are flow straighteners on either side of a small propeller
or turbine. Flow through the tube rotates the propeller at an angular velocity that is proportional to
the flow rate. A magnetic pickup registers blade passages and sends a signal to a readout device that
totals the pulses. Turbine-type meters are usually accurate to within 1%.

A flow can be metered by what is known as a variable-area meter, or a rotameter. A rotameter
contains a float that is free to move within a vertical tapered glass or transparent plastic tube. The
tube is etched or marked with a scale. Flow enters the meter at the bottom, raising the float within
the tube (see Figure 10.17). The higher the float position, the larger the annular flow area between
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a  Register box assembly
b  Register change gear
c  Meter change gear
d  Top gear and shaft
e  Control roller
f  Gear plate
g  Strainer
h  Casing gasket
i   Disk pin

j   Inter pinion and shaft
k  Hex nut, driver block
ℓ   Bottom chamber
m Disk assembly
n  Bottom casing
o  Top chamber
p  Top casing
q  Driver block
r   Inter gear 2

s  Inter gear 1
t  Pivot
u  Nut, stuffing box
v  Idler, change gear
w Register
x  Register, dial face
y  Retainer, glass
z  Glass, register box

a

b

c

d

e

f

g

h

i j k ℓ m n

o
P

q
r

s
u

v
w

x

yz

t

FIGURE 10.15 A nutating disk meter. (Courtesy of Hersey Products, Inc., Cleveland, NC.)

Magnetic
pickup

Outlet flow
straightener

TurbineInlet flow
straightener

FIGURE 10.16 A turbine-type flow meter. (Courtesy of Flow Technology, Inc., Roscoe, IL.)
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Typical outlet
float stops

Ball float

Tube formed
for inlet

float stop

(b) Beadguide tube: cutaway view of a typical meter

Drain plug

Inlet end fitting

Tube rest gasket

Inlet float stop
for floats without

tail guide

Inlet float stop
(for tail-

guide-type float)
or

(Tail guide)

Float
Meter body
Meter tube

or

Outlet float stop

Packing gland

Packing

Washer

Teflon liner

Outlet end
fitting

Packing compression
screw (4)

Operator
protection

shield

(a) Tri-flat tube: 5-in.
      scale length used in
      smaller frame      ,
        , and         in.
     meters only 

1
161

8
1
4

FIGURE 10.17 A rotameter. (Courtesy of ABB=Fischer and Porter Co., Warminster, PA.)
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the float and the tube. The float reaches an equilibrium position where forces due to drag, buoyancy,
and gravity are all balanced. The flow rate is determined by reading the scale at the float position.
Alternatively, a sensing device can transmit a signal to a remote location. Of the direct reading
types, scales are available for flow rate metering for a specific fluid and for determining the
percentage of full scale; the latter requires calibration by the user. Floats are usually either spherical
or cylindrical. Variable-area meters can be obtained for liquids or for gases. Accuracy is usually
within 1% on expensive units and within 5% on less expensive rotameters.

Another type of rate meter introduces a flow constriction that affects a measurable property of
the flow. The changed property is then related to the flow rate through the meter. The venturi meter
is an example of this type (Figure 10.18). Basically a casting lined with a corrosion-resistant
material such as bronze, this device is placed directly in the flow line. The meter consists of an
upstream section that attaches to the pipeline and a convergent section that leads to a constriction
or a smaller-diameter pipe. A divergent section is then connected downstream to the pipeline.
Upstream and at the throat are attached static pressure taps or piezometer rings. These are connected
to the two limbs of a differential manometer. It is considered good practice to provide at least 10
diameters of approach piping before the meter to ensure that a uniform, fully developed flow exists
at the meter entrance. The size of a constriction meter such as a venturi is usually specified by the
pipe and throat sizes. For example, an 8� 4 venturi attaches to an 8-nominal pipe and has a throat
diameter corresponding to a 4-nominal pipe.

The continuity equation can be applied to flow through the venturi meter at points 1 and 2,
where the pressure change is measured. The objective here is to relate the affected property
(pressure drop) to the flow through the meter. For an incompressible fluid, the continuity equation is

Q ¼ A1V1 ¼ A2V2 (10:13)

V

V

1

2

Throat
z1– z2

z2– z1

m

(a) (b)

Δh

Δh

k

k

Air

FIGURE 10.18 (a) A venturi meter with a two-liquid U-tube manometer. (b) A venturi meter with an inverted
U-tube manometer.
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Because the area A2 is less than A1, the continuity equation predicts that V1<V2. In other words, the
flow velocity must increase at the throat. The Bernoulli equation for a frictionless flow through the
meter is

p1
rg

þ V2
1

2g
þ z1 ¼ p2

rg
þ V2

2

2g
þ z2 (10:14)

Because V1<V2, then p1> p2; that is, a pressure drop exists in the meter from upstream to the
throat. Substituting from Equation 10.13 for velocity, Equation 10.14 becomes, after rearranging,

p1 � p2
rg

þ z1 � z2 ¼ Q2

2g
1
A2
2

� 1
A2
1

� �

¼ Q2

2gA2
2

1� A2
2

A2
1

� �

Solving for flow rate, we get

Q ¼ A2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2g p1 � p2ð Þ=rg½ � þ z1 � z2ð Þf g

1� A2
2=A

2
1

� �
s

This equation is the theoretical equation for the venturi meter written for a frictionless incompressible
flow. Noting that A2=A1 ¼ D2

2=D
2
1 and introducing the subscript ‘‘th’’ to denote a theoretical

flow, we have

Qth ¼ A2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2g p1 � p2ð Þ=rg½ � þ z1 � z2ð Þf g

1� D4
2=D

4
1

� �
s

(10:15)

The manometer reading provides the pressure drop required in the equation. From hydrostatics, we
obtain the following for the manometer of Figure 10.18a:

p1 þ rg z1 � z2ð Þ þ k þ Dh½ � ¼ p2 þ rgk þ rmgDh

After rearrangement and simplification, we get

p1 � p2
rg

þ z1 � z2 ¼ Dh
rm � r

r
¼ Dh

rm
r

� 1

� �
(10:16)

Substitution into Equation 10.15 yields

Qth ¼ A2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2gDh rm=r � 1ð Þ
1� D4

2=D
4
1

� �
s

[Figure 10:18a] (10:17a)

Thus, the theoretical flow rate through the meter is related to the manometer reading in such a
manner that the meter orientation is not important; the same equation results whether the meter is
horizontal, inclined, or vertical.

For the manometer of Figure 10.18b, we write

p1 þ rg(k þ Dh) ¼ p2 þ rg z2 � z1ð Þ þ k½ � þ rairg Dh
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The density of air is very small in comparison to the liquid density, so the term containing rair can be
neglected. After rearrangement and simplification, we obtain

p1 � p2
rg

þ z1 � z2 ¼ Dh

Substitution into Equation 10.15 yields

Qth ¼ A2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2gDh

1� D4
2=D

4
1

� �
s

[Figure 10:18b] (10:17b)

This equation differs from Equation 10.17a in that Equation 10.17a contains the term (rm=r �1)
because there are two fluids in the manometer of Figure 10.18a.

For a given combination of meter (D1, D2, and A2 known), liquid, and manometer fluid (r and
rm known), a curve of pressure drop Dh versus flow rate Qth can be plotted by using Equation 10.17.
Consider the line labeled Qth in Figure 10.19 as such a curve. Next suppose that measurements are
made on the meter over a wide range of flows and that the actual data (Qac versusDh) are plotted again
on Figure 10.19, yielding the line labeled Qac. Thus, for any pressure drop Dhi, there correspond two
flow rates: Qac and Qth. The ratio of these rates is called the venturi discharge coefficient, CV:

CV ¼ Qac

Qth

for any Dhi (10:18)

The coefficient CV can be calculated for many Dh’s on the plot and will vary over the range. The fact
that Qac is different from Qth is due to frictional effects that are not accounted for in the Bernoulli
equation from which the expression for Qth was obtained. For each CV that can be determined, a
corresponding upstream Reynolds number can be calculated:

Re1 ¼ V1D1

v
¼ 4Qac

pD2
1

D1

v

Δhi

Δh0

Q

Qth

Qth

Qac

Qac

FIGURE 10.19 Flow rate versus pressure drop for a venturi meter.
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or

Re1 ¼ 4Qac

pD1v
(10:19)

A graph of discharge coefficient CV versus Reynolds number Re1 can now be constructed. For
venturi meters, the plot of Figure 10.20 applies. Such plots are available in fluid meter handbooks
along with design or configuration recommendations for venturi installations. The plot of Figure
10.20 can be used with an uncalibrated meter to generate a Qac versus Dh curve from a Qth versus
Dh curve.

Example 10.6

An oil pipeline company is responsible for pumping kerosene overland from a refinery to a wholesale
distributor. The company wants to install a meter in the line to check on the meter already installed. A
10� 6 venturi is available but without a calibration curve—that is, without a plot of Qac versus Dh.
Furthermore, facilities are not available for calibrating it. A mercury manometer is also on hand. The
installation of the meter requires that it be inclined at 308. A sketch is given in Figure 10.21. Generate a
calibration curve for the meter up to a flow rate of 6 ft3=s.

SOLUTION

From Table A.5,

Kerosene: r ¼ 0:823(1:94) ¼ 1:60 slug=ft3

m ¼ 3:42� 10�5 lbf � s=ft2

Mercury: rHg ¼ 13:6(1:94) ¼ 26:4 slug=ft3

0.94

104 2 3 4 5 6 8 105

Re
2 3 4 5 6 8 106

0.96

C V

0.98

1.00

FIGURE 10.20 Discharge coefficient versus Reynolds number for venturi meters. (Reprinted from Fluid
Meters—Their Theory and Application, 5th edn., The American Society of Mechanical Engineers, New York,
1959. With permission.)
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For the manometer,

p1 � p2ð Þ
rg

þ z1 � z2 ¼ Dh
rHg
r

� 1

� �

¼ Dh
13:6
0:823

� 1

� �
¼ 15:52 Dh

From Table C.1,

D1 ¼ 0:8350 ft A1 ¼ 0:5476 ft2 (10-nominal, schedule 40; standard assumed)

D2 ¼ 0:5054 ft A2 ¼ 0:2006 ft2 (6-nominal, schedule 40)

By substitution into Equation 10.17, we get

Qth ¼ A2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2gDh rHg=r � 1

� �
1� D4

2=D
4
1

� �
vuut

¼ 0:2006

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(32:2)(15:52)Dh

1� 0:50544=0:83504ð Þ

s

or

Qth ¼ 6:82
ffiffiffiffiffiffi
Dh

p
(i)

Let the manometer deflection Dh vary from 0 to 1 ft of mercury in increments of 0.2 ft. A tabulation of
Qth versus Dh using Equation i is given in Table 10.1.

The Reynolds number for the flowing kerosene is found with Equation 10.19:

Re1 ¼ 4Qac

pD1v

¼ 4 CvQthð Þ(1:60)
p(0:8350) 3:42� 10�5ð Þ

30

Mercury
manometer

Kerosene
Δh

FIGURE 10.21 The venturi meter of Example 10.6.
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or

Re1

CV
¼ 7:13� 104Qth

Results of calculations made with this equation are given in the third column of Table 10.1.
To find CV from Figure 10.20 for each Re1=CV value, it is necessary to resort to a trial-and-error

procedure if the range of interest lies below a Reynolds number of 2� 105. But because the range over
which our meter operates is greater than 2� 105, Figure 10.20 shows that CV is a constant equal to 0.984.
This value is listed in Table 10.1. A plot of Qth and Qac as a function of Dh is given in Figure 10.22, and
the calibration curve for the meter is known.

It can be concluded that the venturi meter is a well-designed instrument because frictional effects and
losses in general are small.

Another type of constriction meter is called a flow nozzle (Figure 10.23). The flow nozzle can be
installed easily by cutting the pipe, attaching flanges, and inserting the nozzle. As liquid passes
through, a region of flow separation and reversal exists just downstream, and this adds to the losses

TABLE 10.1
Summary of Calculations for Example 10.6

Dh (ft) Qth (Equation i) (ft3=s) Re1=CV CV Qac¼CVQth (ft
3=s)

0.0 0 0 — 0
0.2 3.04 2.16� 105 0.984 2.99
0.4 4.31 3.06� 105 0.984 4.24
0.6 5.28 3.75� 105 0.984 5.19

0.8 6.10 4.34� 105 0.984 6.00
1.0 6.82 4.85� 105 0.984 6.71

00

1

2

3

4

5

6

7

0.2 0.4
Δh (ft of mercury)

Q 
(ft

3 /s
)

0.6 0.8 1.0

Qac

Qth

FIGURE 10.22 Calibration curve for the venturi meter of Example 10.6.
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encountered in a flow nozzle. The Bernoulli equation can be applied to the flow nozzle as was done for
the venturi. The results are identical for the theoretical flow rate. For the flow nozzle, then, we get

Qth ¼ A2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2g p1 � p2ð Þ

rg 1� D4
2=D

4
1

� �
s

¼ A2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2gDh rm=r � 1ð Þ
1� D4

2=D
4
1

� �
s

(10:20)

Elevation differences are usually negligible in this case because the flow nozzle is relatively short
and a small distance thus exists between the static pressure taps. It is desirable in practice to provide
an upstream approach length of 10 diameters to ensure uniform flow at the meter.

Equation 10.20 gives the theoretical flow rate through the meter. Owing to losses, however, the
actual flow rate is less. We therefore introduce a discharge coefficient for the nozzle defined as

Cn ¼ Qac

Qth

(10:21)

Aswith the venturi meter, experimental data are collected; for each value ofCn, there corresponds one
pressure drop. The reduced data can be plotted as Cn versus Re1, where Re1¼V1D1=v ¼ 4Qac=pD1v.
Tests on a series of flow nozzles have yielded the results of Figure 10.24. The variable b is the ratio of
the throat diameter to the pipe diameter.

Example 10.7

Ethylene glycol is sold in retail outlets as antifreeze. A flow nozzle is to be installed in an ethylene
glycol–piping system (a 12-nominal pipeline). A 12� 6 flow nozzle is available. When the nozzle is
installed with an inverted U-tube manometer, the pressure drop is measured as 42 cm of ethylene glycol,
as illustrated in Figure 10.25. Determine the actual flow rate through the line.

SOLUTION

From Table A.5, for ethylene glycol,

r ¼ 1:1(1 000) kg=m3

m ¼ 16:2� 10�3 N � s=m2

Flow nozzle
Δh

m

Flanges

A2A1

p1 p2

FIGURE 10.23 Flow nozzle and a conventional installation method.
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From Table C.1, for pipe,

D1 ¼ 30:48 cm A1 ¼ 729:7 cm2 (12-nominal standard schedule)

D2 ¼ 15:41 cm A2 ¼ 186:5 cm2 (6-nominal, schedule 40)

Equation 10.20 gives the theoretical flow rate through the nozzle as

Qth ¼ A2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2g p1 � p2ð Þ

rg 1� D4
2=D

4
1

� �
s

With

p1 � p2
rg

¼ Dh ¼ 0:42 m

1.00

0.98

0.96

0.94

0.92

0.90

0.88

0.86 2 4 6 8 2 4 6 8 2

Re1

C n

4 6 8 2 4 6 8 2 4 6 8
102 103 104 105 106 107

0.4 0.6 0.8

√A2/A1

D2/D1

0.2

FIGURE 10.24 Discharge coefficient versus Reynolds number for flow nozzles. (Reprinted from Fluid
Meters—Their Theory and Application, 5th edn., The American Society of Mechanical Engineers, New York,
1959. With permission.)

V1

42 cm

FIGURE 10.25 Flow nozzle installation of Example 10.7.
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we get the following after substitution:

Qth ¼ 186:5
104

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(9:81)(0:42)

1� 15:414=30:484ð Þ

s

¼ 0:055 4 m3=s

The nozzle diameter ratio is

b ¼ D2

D1
¼ 15:41

30:48
¼ 0:506

The pipe Reynolds number is

Re1 ¼ 4Qac

pD1v
¼ 4Qac(1:1)(1 000)

p(0:3048) 16:2� 10�3ð Þ
¼ 2:83� 105Qac

At this point, we must use Figure 10.24 to find a discharge coefficient. A trial-and-error procedure is
required because Qac is unknown. If Qth is substituted into the Reynolds number expression, we find

Re1 ¼ 2:83� 105(0:055 4) ¼ 1:6� 104

This represents an upper limit. The corresponding Cn from Figure 10.24 is 0.96 for b¼ 0.5. To begin,
assume a slightly lesser value:

Cn ¼ 0:95

Then

Qac ¼ CnQth ¼ 0:95(0:055 4) ¼ 0:052 6 m3=s

and

Re1 ¼ 2:83� 105Qac ¼ 1:49� 104

From Figure 10.24, at this Reynolds number, the discharge coefficient is 0.955, which is our second trial
value. Assume

Cn ¼ 0:955

Then

Qac ¼ CnQth ¼ 0:955(0:055 4) ¼ 0:052 9 m3=s

and

Re ¼ 2:83� 105Qac ¼ 1:49� 104

Figure 10.24 shows Cn¼ 0.955, which is the assumed value. Thus

Qac ¼ 0:052 9 m3=s of ethylene glycol
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A third type of constriction meter is the orifice meter, shown in Figure 10.26. The orifice plate,
merely a flat plate with a hole, is inserted into a pipeline, conventionally between flanges. The hole
can be either sharp edged or square edged. As the flow goes through the plate, it follows a streamline
pattern similar to that shown in Figure 10.26. Downstream of the plate, the flow reaches a point of
minimum area called a vena contracta. The static pressure tap p2 is located at this point, where the
streamlines are uniform and parallel. The upstream pressure is measured at point 1.

The Bernoulli equation can be applied to points 1 and 2 to obtain an expression relating flow
rate to pressure drop. Although the area at point 2 (the vena contracta) is unknown, it can be
expressed in terms of the orifice area AO:

A2 ¼ CCAO

where CC is called a contraction coefficient. Applying Bernoulli’s equation yields the same results
as before except that CC AO is substituted for A2 in the theoretical equation:

Qth ¼ CCAO

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2g p1 � p2ð Þ

rg 1� D4
2=D

4
1

� �
s

The actual flow rate through the meter is considerably less than the corresponding theoretical flow.
By introducing an orifice discharge coefficient, defined as

C ¼ Qac

Qth

we obtain the following for the actual flow rate:

Qac ¼ CCCAO

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2g p1 � p2ð Þ

rg 1� D4
2=D

4
1

� �
s

To simplify the formulation for an orifice meter, we can rewrite the equations for Qth and Qac as

Qth � AO

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2g p1 � p2ð Þ

rg 1� D4
0=D

4
1

� �
s

(10:22)

Qac ¼ COAO

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2g p1 � p2ð Þ

rg 1� D4
0=D

4
1

� �
s

(10:23)

Δh
Orifice plate Square edged Sharp edged

p1 p2

A2A0

FIGURE 10.26 Orifice plates and a typical meter installation.
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The area of significance in the equation is AO, the orifice area. Furthermore, the orifice coefficient
becomes

CO ¼ CCC ¼ Qac

Qth

It should be remembered that the static pressure p2 is not measured at the orifice area AO, but this
discrepancy and the losses encountered due to friction and separation are accounted for in the
overall coefficient CO for the meter. Tests on a series of orifice meters yield data that can be
presented in a form of CO versus Re1, where again

Re1 ¼ V1D1

v
¼ 4Qac

pD1v

Such a plot is provided in Figure 10.27, where the ratio of orifice diameter to pipe diameter is an
independent variable:

b ¼ D0

D1

Because of the reliance on experimentally determined coefficients, it is good practice to allow at
least a 10-diameter approach section before the orifice plate.

Example 10.8

An orifice meter is to be installed in a water main that supplies cooling water to a condensing unit.
The water main is 24-nominal, schedule 160 pipe. The orifice hole should be drilled or turned in a
lathe to make b¼ 0.5. The Bernoulli equation indicates that the theoretical flow rate through the line
is 12,000 gpm.

0.68

0.66

0.64

0.62

0.60

2 4 6 8

Re1

C O

103 104 105 106 107
2 4 6 8 2 4 6 8 2 4 6 8

D0/D1

0 .6

0 .5

0 .4
0 .3

0 .2

FIGURE 10.27 Orifice discharge coefficient as a function of pipe Reynolds number for circular concentric
orifices. (Reprinted from Fluid Meters—Their Theory and Application, 5th edn., The American Society of
Mechanical Engineers, New York, 1959. With permission.)
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a. Calculate the actual flow rate.
b. The only available manometer is 6 ft tall. Can it be used as an inverted U-tube for this

installation?

SOLUTION

a. From Table A.5, for water,

r ¼ 1:94 slug=ft3

m ¼ 1:9� 10�5 lbf � s=ft2

From Table C.1, for a 24-nominal, schedule 160 pipe,

D1 ¼ 1:609 ft and A1 ¼ 2:034 ft2

With b¼ 0.5,

D0 ¼ 0:805 ft and AO ¼ pD2
0

4
¼ 0:508 ft2

Using conversion factors from Table A.2, we get

Qth ¼ 12,000 gpm ¼ 26:7 ft3=s

The Reynolds number upstream is

Re1 ¼ 4Qac

pD1v
¼ 4Qac(1:94)

p(1:609)(1:9� 10�5)
¼ 8:08� 104Qac

The maximum Reynolds number we have exists at

Re1 ¼ 8:08� 104Qth ¼ 8:08� 104(26:7) ¼ 2:16� 106

The corresponding CO from Figure 10.27 is 0.62, our starting value for the trial-and-error
procedure. Assume

CO ¼ 0:62

Then

Qac ¼ COQth ¼ 0:62(2:67) ¼ 16:6 ft3=s

and

Re1 ¼ 8:08� 104Qac ¼ 1:34� 106

At b¼ 0.5, Figure 10.24 gives CO� 0.62, which agrees with our assumed value. Thus,

Qac ¼ 16:6 ft3=s ¼ 7440 gpm

b. The corresponding pressure drop is found with Equation 10.22:

Qth ¼ AO

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2g p1 � p2ð Þ

rg 1� D4
0=D

4
1

� �
s

¼ AO

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2gDh

1� D4
0=D

4
1

� �
s
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By substitution, we get

26:7 ¼ 0:508

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(32:2)Dh

1� (0:805=1:609)4

s

Dh ¼ 40:2 ft of water

A 6-ft-tall water manometer will not suffice. A water-over-mercury manometer that is 6 ft tall will
work, however.

The equation formulation for constriction meters has thus far been concerned only with
incompressible flow. For compressible flows, however, gas density varies through the meter. We
will, therefore, rewrite the descriptive equations to account for the change. Consider an isentropic,
subsonic, steady flow of an ideal gas through a venturi meter. The continuity equation is

r1A1V1 ¼ r2A2V2 ¼ _misentropic ¼ _ms

If we neglect changes in potential energy, the energy equation is

h1 þ V2
1

2
¼ h2 þ V2

2

2

For an ideal gas with constant specific heats,

h2 � h1 ¼ cp T2 � T1ð Þ

The energy equation becomes

cpT1 þ V2
1

2
¼ cpT2 þ V2

2

2

Combining this equation with the continuity equation, we get

cpT1 þ _m2
s

2r21A
2
1

¼ cpT2 þ _m2
s

2r22A
2
2

or

_m2
s

1
r22A

2
2

� 1
r21A

2
1

� �
¼ 2cp T1 � T2ð Þ ¼ 2cpT1 1� T2

T1

� �
(10:24)

For an isentropic compression from points 1 to 2,

p2
p1

¼ T2
T1

� �g=(g�1)

Also, cp¼Rg=(g – 1). After substitution and rearrangement, Equation 10.24 becomes

_m2
s

r22A
2
2

1� r22A
2
2

r21A
2
1

� �
¼ 2

Rg

g � 1
T1 1� p2

p1

� �(g�1)=g
" #
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For an ideal gas, r¼ p=RT; substituting and simplifying give

_m2
s

A2
2

¼
r222[g=(g � 1)] p1=r1ð Þ 1� p2=p1ð Þ(g�1)=g

h i
1� r22A

2
2=r

2
1A

2
1

� �
For an isentropic process,

p1
rg1

¼ p2
rg2

Substitution yields

_m2
s

A2
2

¼
r21 p2=p1ð Þ2=g2[g=(g � 1)] p1=r1ð Þ 1� p2=p1ð Þ(g�1)=g

h i
1� p2=p1ð Þ2=g A2=A1ð Þ2

from which we finally obtain

_ms ¼ A2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 p1r1ð Þ[g=(g � 1)] p2=p1ð Þ2=g� p2=p1ð Þ(g�1)=g

h i
1� p2=p1ð Þ2=g D2=D1ð Þ4

vuut
(10:25)

With this isentropic equation, it is apparent that the measurements needed on a venturi are p1, p2 (not
necessarily p1� p2), T1, the venturi dimensions, and the gas properties. The actual flow rate through
the venturi meter is

_mac ¼ CV _ms

¼ CVA2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 p1r1ð Þ g=(g � 1)½ � p2=p1ð Þ2=g� p2=p1ð Þ(g�1)=g

h i
1� p2=p1ð Þ2=g D2=D1ð Þ4

vuut
(10:26)

where CV is the discharge coefficient given in Figure 10.20. It is convenient to rewrite Equation
10.26 in a form that is similar to the incompressible case by introducing another coefficient called
the compressibility factor Y:

_mac ¼ CVYr1A2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2g p1 � p2ð Þ

r1g 1� D4
2=D

4
1

� �
s

(10:27)

By equating Equations 10.26 and 10.27, the compressibility factor is determined to be

Y ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g

g � 1

p2=p1ð Þ2=g � p2=p1ð Þ(gþ1)=g
h i

1� D4
2=D

4
1

� �
1� D4

2=D
4
1

� �
p2=p1ð Þ2=g

h i
1� p2=p1ð Þ

vuuut (10:28)

For a given gas, the ratio of specific heats g is known. This equation could be plotted as the
compressibility factor Y versus the pressure ratio p2=p1 for various values of D2=D1. This plot is
shown in Figure 10.28 for a venturi meter with g¼ 1.4. The advantage of rewriting the mass flow
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rate equation like the incompressible case is that a pressure drop term appears in the equation, which
is more convenient to use if a manometer is available for pressure measurements. Moreover, the
compressibility effect is isolated into one factor, Y, that adds a measure of elegance and ease to the
formulation. A similar analysis can be performed for a flow nozzle. The results are identical to
those for the venturi meter including the compressibility factor of Equations 10.27 and 10.28 and
Figure 10.28.

For the orifice meter, the area change is very abrupt, causing a flow configuration in which
isentropic flow cannot be assumed. Further, the pressure p2 is measured at A2, which is generally not
known, so the orifice area AO is used in the equations. Therefore, a formulation like that for the
venturi and flow nozzle meters does not yield an acceptable model. Consequently, Equation 10.28
cannot be used to obtain the compressibility factor for orifices. Experimental means must be resorted
to, and the results are presented in Figure 10.29 for squared-edge orifices. The compressibility factor
Y for a series of orifice meters is plotted as a function of pressure ratio p2=p1, where the fluid has
g¼ 1.4. For a compressible fluid with an orifice meter used to measure the flow rate,

_mac ¼ COYr1AO

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2g p1 � p2ð Þ

r1g 1� D4
0=D

4
1

� �
s

(10:29)

where CO is obtained from Figure 10.27 and Y is found in Figure 10.29.
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FIGURE 10.28 Compressibility factor Y versus pressure ratio p2=p1 for venturi meters and flow nozzles with
a compressible fluid of g¼ 1.4. (Reprinted from Fluid Meters—Their Theory and Application, 5th edn., The
American Society of Mechanical Engineers, New York, 1959. With permission.)
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Example 10.9

In an oxygen-bottling plant, gaseous oxygen is fed from a tank through a 10-nominal pipe to a manifold
assembly. The flow is monitored in the 10-nominal line with a 10� 6 venturi meter. The mass flow rate
of oxygen is a constant 4 kg=s. Owing to an accident in the plant, the venturi meter is rendered
inoperative and must be replaced. It is desirable to continue operations, however, until another one
can be obtained. An orifice plate made to the same dimensions of 10� 6 can be installed temporarily
between two flanges, static taps drilled, and gauges attached. For a line pressure of 150 kPa and an
oxygen line temperature of 258C, determine the expected reading on the pressure gauge downstream of
the orifice if the flow rate of 4 kg=s can be maintained.

SOLUTION

From Table A.6, for oxygen,

R ¼ 260 J= kg ��Cð Þ
m ¼ 20� 10�6 N � s=m2

g ¼ 1:4

From Table C.1, for pipe,

D1 ¼ 25:46 cm and A1 ¼ 509:1 cm2 (10-nominal, schedule 40)

DO ¼ 15:41 cm and AO ¼ 186:5 cm2 (6-nominal, schedule 40)
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FIGURE 10.29 Compressibility factor Y as a function of pressure ratio p2=p1, for square-edged orifices where
the fluid has g¼ 1.4. (Reprinted from Fluid Meters—Their Theory and Application, 5th ed., The American
Society of Mechanical Engineers, New York, 1959. With permission.)
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Equation 10.29 gives the actual mass flow rate through an orifice meter as

_mac ¼ COYr1AO

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 p1 � p2ð Þ

r1 1� D4
0=D

4
1

� �
s

We now evaluate each term in this expression. The mass flow rate is given as

_mac ¼ 4 kg=s of oxygen

Assuming an ideal gas, the oxygen density in the line is

r1 ¼
p1
RT1

¼ 150 000
260(273þ 25)

¼ 1:936 kg=m3

The average velocity in the pipe is found with

V1 ¼ _mac

r1A1
¼ 4

1:936(0:050 91)
¼ 40:6 m=s

The Reynolds number is calculated to be

Re1 ¼ r1V1D1

m
¼ 1:936(40:6)(0:254 6)

20� 10�6
¼ 1� 106

For the orifice meter,

b ¼ orifice diameter

pipe diameter
¼ D0

D1
¼ 15:41

25:46
¼ 0:605

At a Reynolds number of 1� 106 and b¼ 0.6, Figure 10.27 shows

CO ¼ 0:65

We are now ready to substitute into the mass flow rate expression:

4 ¼ 0:65Y(1:936)(0:018 65)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 150 000� p2ð Þ

1:936 1� (0:605)4
� �

s

This simplifies to

Y ¼ 156:05ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
150 000� p2

p (i)

Because p2 and Y are both unknown, a trial-and-error solution is required, using Figure 10.29.
Arbitrarily assume that

Y ¼ 0:95

Then at b¼ 0.605, from Figure 10.29,

p2
p1

¼ 0:84

p2 ¼ 0:84(150 000) ¼ 126 000
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The right-hand side of Equation i becomes 1.007. Next assume that

Y ¼ 0:90

Then

p2
p1

¼ 0:69

p2 ¼ 0:69(150 000) ¼ 103 500

and

RHS ¼ 0:723

Third trial:

Y ¼ 0:92
p2
p1

¼ 0:75

p2 ¼ 0:75(150 000) ¼ 112 500

RHS ¼ 0:805

Fourth trial:

Y ¼ 0:93
p2
p1

¼ 0:78

p2 ¼ 0:78(150 000) ¼ 117 000

RHS ¼ 0:859

Fifth trial:

Y ¼ 0:94
p2
p1

¼ 0:82

p2 ¼ 0:82(150 000) ¼ 123 000

RHS ¼ 0:95

The operating point is near Y¼ 0.94; it is difficult to use Figure 10.29 and obtain more accurate results.
Thus

p2 � 123 000 Pa ¼ 123 kPa

Another example of a rate meter is shown in Figure 10.30. The meter housing is made of metal
and it can be attached to the piping system via flanges or threaded ends. The meter consists of a
paddle and a mechanism to which the paddle is attached, as shown in Figure 10.30b. Flow through
the meter causes the paddle (labeled 1) to deflect by an amount that is proportional to the flow rate.
A greater flow rate causes a greater deflection, A return spring (2) acts to bring the paddle back to its
equilibrium position. A bellows (3) made of metal acts as a fluid seal while allowing the paddle to
deflect. The paddle (1) is attached to a lever arm, which in turn is attached to a pointer (4) such that
the paddle motion is accompanied directly by the motion of the pointer. The pointer indicates the
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volume flow rate through the meter on a dial (5). An electrical circuit (6) can be added to operate an
indicator light (7) when the flow rate exceeds a certain preset value. Such meters are typically
accurate to �3% and are used extensively for liquids.

10.5 MEASUREMENTS IN OPEN-CHANNEL FLOWS

Useful measurements in open-channel flows include velocity, flow rate, and depth. Velocity
measurements are based on techniques that we have already discussed for determining flow velocity
in closed conduits. Flow rate measurement in open channels usually involves introducing an
obstruction in the flow and then relating a changed property to the flow rate.

A common method of measuring flow is to insert a vertical plate called a weir into the channel.
The weir extends the entire width of the channel; it can be flat across its top edge or it may contain
an opening. Flow over the weir is then related to the liquid height upstream. Consider, for example,
the flow over a weir placed in a rectangular channel as in Figure 10.31. The weir in this figure is
sharp crested and extends the entire width of the channel. Flow at the sides follows the walls and is
not contracted. The end contractions are thus said to be suppressed. Upstream the channel sides

(a) (b)

2

8

4
57

6

3

1

FIGURE 10.30 A paddle-bellows type of rate flow meter. (From Kobold Instruments Inc., Pittsburgh, PA.
With permission.)
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FIGURE 10.31 Flow over a suppressed sharp-crested rectangular weir placed in a rectangular channel.
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must therefore be regular and smooth. Downstream it is necessary to extend the sides to keep the
nappe (see Figure 10.31) laterally confined. The nappe entrains air downstream of the weir. Note
that H is measured in relation to the liquid height above the crest of the weir.

To develop an equation that predicts flow rate, we begin by determining the flow through a
differential area given by

dA ¼ b dz (10:30)

Bernoulli’s equation applied to the elemental area dA is

p1
rg

þ V2
1

2g
þ z ¼ p2

rg
þ V2

2

2g

Bernoulli’s equation as written assumes no friction. The pressures are both equal to atmospheric
pressure, and the upstream velocity is negligible in comparison to V2. Bernoulli’s equation
simplifies to

V2 ¼
ffiffiffiffiffiffiffi
2gz

p
The volume flow rate through the incremental area is then

dQ ¼ V2 dA ¼
ffiffiffiffiffiffiffi
2gz

p
b dz

The total flow is found by integration; that is,

Q ¼
ðH
0

ffiffiffiffiffi
2g

p
bz1=2 dz ¼ b

ffiffiffiffiffi
2g

p 2z3=2

3


H

0

Qth ¼ 2b
3

ffiffiffiffiffi
2g

p
H3=2

(10:31)

where the subscript ‘‘th’’ has been added to denote a theoretical flow rate. Directly over the crest of
the weir, the liquid accelerates, and its height at this location is not exactly equal to H. Thus,
Equation 10.31 must be modified slightly to account for this discrepancy by introducing a discharge
coefficient, Cs; this coefficient also takes into account the frictional effects that are not included in
the Bernoulli equation:

Qac ¼ 2Csb

3

ffiffiffiffiffi
2g

p
H3=2 (10:32a)

By experiment, the coefficient of discharge has been determined to be

Cs ¼ 0:605þ 0:08H
Wh

(10:32b)

where Wh is the height of the weir.
The suppressed rectangular weir in Figure 10.31 forms a nappe that extends the entire width of

the channel. A variation of this style is illustrated in Figure 10.32, where a vertical plate extends the
entire width of the channel. The plate has a rectangular cutout through which liquid flows. Because
the sides of the nappe are not in contact with any solid surface, they are free to contract, and the weir
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is thus called a contracted rectangular weir. The contraction effectively reduces the width of the
nappe by about one-tenth of H, the height of the liquid above the crest.

To obtain an expression for flow rate, we first determine the incremental flow through an area of
thickness dz and width L:

dA ¼ L dz (10:33)

Applying Bernoulli’s equation to the incremental area gives the same expression as was obtained for
the sharp-crested weir:

V2 ¼
ffiffiffiffiffiffiffi
2gz

p
The incremental flow rate is

dQ ¼ V2 dA ¼
ffiffiffiffiffiffiffi
2gz

p
L dz

Integrating from z¼ 0 to z¼H gives the total flow as

Qth ¼ 2L
3

ffiffiffiffiffi
2g

p
H3=2 (10:34)

The contractions cause dA to be somewhat less than the ideal value given in Equation 10.33. Thus,
Equation 10.34 must be modified slightly, to account for the discrepancy, by introducing a discharge
coefficient, Cc:

Qac ¼ 2CcL

3

ffiffiffiffiffi
2g

p
H3=2 (10:35)

By experiment, the coefficient Cc has been determined to have an average value of about 0.65.
The third type of weir that we will discuss is the triangular, or V-notch, weir illustrated in Figure

10.33. This weir allows liquid to flow only through the V-shaped cutout in the plate. The vertex
angle u varies in conventional designs from 108 to 908. To obtain an expression for flow rate, we first
write an equation for the incremental area dA:.

dA ¼ x dz

(a) (b)

z

dz2

1

L

H

Wh

Profile view End view

FIGURE 10.32 A contracted rectangular weir installed in a rectangular channel.
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The vertex half-angle is

tan
u

2
¼ x=2

H � z

or

x ¼ 2(H � z) tan
u

2

The incremental area now becomes

dA ¼ 2(H � z) tan
u

2
dz (10:36)

The Bernoulli equation applied to flow through the weir gives

V2 ¼
ffiffiffiffiffiffiffi
2gz

p
The incremental flow rate is

dQ ¼ V2 dA ¼
ffiffiffiffiffiffiffi
2gz

p
2(H � z) tan

u

2
dz

The total flow rate is found by integration:

Q ¼ 2
ffiffiffiffiffi
2g

p
tan

u

2

ðH
0

z1=2(H � z)dz

or

Qth ¼ 8H5=2

15

ffiffiffiffiffi
2g

p
tan

u

2
(10:37)

(a) Profile view End view(b)
b
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dz θ2
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L

FIGURE 10.33 Flow over a triangular, or V-notch, weir placed in a rectangular channel.
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Owing to frictional and real fluid effects, the volume flow rate is somewhat smaller. Thus, Equation
10.37 must be modified by introducing a discharge coefficient, Cvn:

Qac ¼ 8CvnH5=2

15

ffiffiffiffiffi
2g

p
tan

u

2
(10:38)

By experiment, the discharge coefficient has been found to vary with head H and with u. Results of
extensive tests with V-notch weirs have produced the results given in Figure 10.34 for Cvn versus H
with u as an independent variable.

It should be mentioned that at low flow rates the nappe clings to the weir downstream. In other
words, there is no air entrainment. When this occurs, the equations just written for various weirs
no longer give an accurate descriptions of the flow rates. Other devices that are useful for measuring
flow rates in open channels are the sluice gate and the venturi flume; both were discussed in
Chapter 7.

As we saw in the development of the equations for weirs, the flow rate depends on the
measurement of the liquid height upstream. It is essential that the liquid height be measured
accurately. This can be accomplished with two conventional devices—the point gauge and the
hook gauge (Figure 10.35). The sharpened end of either gauge is positioned so that it just touches
the liquid surface. The vernier scale then gives the measurement of depth.
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FIGURE 10.34 Discharge coefficient for V-notch weirs. (Reprinted from Lenz, A.T., Trans. ASCE, 108, 739,
1943. With permission.)
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Example 10.10

A 458 V-notch weir is placed in an open channel that conveys water in an irrigation ditch. The height of
the water above the vertex of the weir is 0.6 ft. Determine the volume flow rate in the channel.

SOLUTION

Equation 10.38 applies:

Qac ¼ 8CvnH5=2

15

ffiffiffiffiffi
2g

p
tan

u

2

For H¼ 0.6 ft and u¼ 458, Figure 10.33 gives

Cvn ¼ 0:592

By substitution, we get

Qac ¼ 8(0:592)(0:6)5=2

15

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(32:2)

p
tan

45
2

Qac ¼ 0:293 ft3=s

10.6 SUMMARY

In this chapter, we examined the techniques and methods of measuring various parameters in fluids.
A pitot tube and a pitot-static tube were used to measure pressure and velocity. Ways of measuring
fluid viscosity were presented. For closed-conduit flow, a summary of flow rate meters was given.
For open-channel flow, a discussion of weirs was presented. This presentation, then, has offered
some insights into theories of measurement.

Vernier
scale

FIGURE 10.35 Point gauge and hook gauge used to measure liquid depth.
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PROBLEMS

Viscosity Measurement

10.1 A rotating-cup viscometer has two cylinders of radii 1.000 and 1.250 in. The cylinder depth
is 4.000 in. A liquid of unknown viscosity is placed in the annulus between the two
cylinders, and the outer cylinder begins rotating. Under steady-state conditions, the rotational
speed is 30 rev=min. The torque exerted on the inner cylinder is 1� 10�4 ft � lbf. Calculate
the viscosity of the liquid.

10.2 In a process by which glycerine is produced, its purity is measured at various times at one
location in the flow line. To measure its viscosity, for example, a rotating-cup viscometer is
used. This viscometer is 15 cm high and has cups with diameters of 4.00 and 7.00 cm. If the
rotational speed of the outer cylinder is 20 rev=min, determine the expected torque reading
on the inner cylinder.

10.3 A rotating-cup viscometer is used to measure the viscosity of an unknown liquid. The
cylinders have radii of 3 and 4 cm. A liquid of unknown viscosity is placed in the annulus
between the cylinders. The liquid is tested at two different rotational speeds of the outer cup.
Under steady conditions, when the rotational speed is 30 rev=min, the torque is 1� 10�6 N �m.
When the rotational speed is 40 rev=min, determine the expected torque reading if the liquid is
Newtonian. Take the inner cup length to be 4 cm.

10.4 Refer to Example 10.1. If an aluminum sphere of diameter 1
2 in. is dropped into the shampoo,

what is its expected terminal velocity?
10.5 A marble that is 1.5 mm in diameter falls through a jar of honey 15 cm tall. Approximately

how long will it take the marble to reach the bottom? Assume the marble’s properties to be
the same as those of glass and the properties of honey to be equal to those of glycerine. The
jar diameter is 7 cm.

10.6 A glass tube 1 1
2 in. in diameter contains a commercial automotive oil additive. A steel sphere

1
8 in. in diameter falls through it at a rate of 1 in.=4 s. Determine the viscosity of the additive if
its specific gravity is 0.86.

10.7 A hard rubber sphere 1
8 in. in diameter falls through linseed oil in a cylinder. The cylinder

diameter is such that the drag coefficient on the sphere is expressed by CD¼ 24=Re.
Determine the maximum cylinder diameter that is permissible for this case.

10.8 The properties of pancake syrup are being measured in a lab. The syrup’s density is found to
be 868 kg=m3. A steel sphere 5 mm in diameter falls through the syrup at a rate of 3 cm=s.
The tube used is 10 cm in diameter. As a check on the viscosity calculations, the syrup is
placed in a rotating-cup viscometer. The cups have radii of 4 and 5 cm; the length is 12 cm.
At rotational speeds of 5, 10, 20, and 30 rev=min, determine the expected torque readings.

Pressure and Velocity Measurements

10.9 If the pitot tube reading of Example 10.3 is treated as being incompressible, what is the
percentage of error from the correct reading?

10.10 When making velocity measurements in a tube, it is possible to divide the tube cross section
into five equal areas and calculate the volume flow rate from the data. Devise a scheme for
dividing the cross section into six equal areas. Where must the velocity be known in the cross
section? Rework Example 10.5 using the six-area formulation.

10.11 A huge axial-flow fan is used to force air into an underground mine shaft for ventilation. The
fan is located in a circular length of ductwork 8 ft in diameter.

To measure flow rate through the fan, a traverse of the cross section is made with a pitot-
static tube. The readings are given in Table P10.11.

Assuming a symmetric profile, sketch the velocity distribution and determine the mass
flow rate of air if the temperature is 608F and the static pressure is 14.8 psia.
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10.12 A commercial air conditioning unit has a return air duct that is 3 m tall by 2 m wide. Air flow
into the unit is to be measured with a pitot-static tube. The return air duct is thus divided into
20 equal rectangular areas as shown in Figure P10.12. The readings taken are summarized in
the following table:

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

FIGURE P10.12

Position
Pressure Drop
(mm Water) Position

Pressure Drop
(mm Water)

1 5 11 8.5
2 6.0 12 7.5

3 6.5 13 5.0
4 6.0 14 7.0
5 5.0 15 7.5

6 6.5 16 7.0
7 7.5 17 5.0
8 7.0 18 6.0

9 5.0 19 6.5
10 7.5 20 6.0

Determine the average flow velocity and the mass flow rate for an air temperature of 258C
and a static pressure of 100 kPa.

10.13 In Example 10.5, velocity data were used to calculate the volume flow rate through a pipe
divided into five equal areas. Suppose instead that the cross section is divided into four equal
areas, concentric rings with radii of 2.91 (¼ 11.63=4), 5.82, 8.72, and 11.63 in. Calculate the
volume flow rate by taking velocities at radii of

TABLE P10.11

Distance below
Centerline (ft)

Pitot-Static Tube
Reading (in. Water)

0 0.7

1 0.6
2 0.42
3 0.2
4 0
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1:45 in: (¼2:91=2)

4:36 in: (¼ [5:82� 2:91]=2þ 2:91)

7:27 in:

10:18 in:

Compare your answer with the results of Example 10.5.

Volume Flow Rate Measurement

10.14 A venturi meter is calibrated in the laboratory. For a particular flow rate through the meter,
the water is directed into a volume-measuring tank. Readings of pressure drops are also
obtained. The data are as follows:

Upstream diameter ¼ 1:025 in:

Throat diameter ¼ 0:625 in:

Qac at Tank (gpm) Dh at Meter (in. Water)

0.9 0.4

1.8 0.9
2.5 1.3
2.9 1.6
3.5 2.3

3.8 2.7
4.5 3.75
5.0 4.6

6.0 5.75

Source: Data from Fluid Mechanics Laboratory,

University of New Orleans, New Orleans, LA.

a. Plot Qac versus Dh.
b. On the same graph, plot Qth versus Dh.
c. Plot Re1 versus CV on semilog paper.

10.15 An orifice meter is calibrated in the laboratory. For a certain flow rate through the meter,
water is directed into a volume-measuring tank yielding data of actual flow rate versus
pressure drop in the meter. The results are as follows:

Flow Rate Measured (m3=s) Pressure (cm Water)

5.68� 10�5 0.762

1.14� 10�4 3.81
1.58� 10�4 5.72
1.83� 10�4 8.38

2.21� 10�4 11.4
2.40� 10�4 15.0
2.84� 10�4 20.3

3.15� 10�4 24.8
3.79� 10�4 29.5

Source: Data from Fluid Mechanics Laboratory,
University of New Orleans, New Orleans, LA.
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Upstream diameter ¼ 2:60 in:

Throat diameter ¼ 1:59 in:

a. Plot Qac versus Dh.
b. On the same graph, plot Qth versus Dh.
c. Plot Re1 versus CO on semilog paper.

10.16 Water flows in an 8� 4 venturi meter. The meter itself is in a vertical flow line with the flow
direction downward. The difference in elevation between the static pressure taps is 45 cm. A
mercury manometer attached to the meter reads 10 cm of mercury. Calculate the flow rate
through the meter.

10.17 Repeat Problem 10.16 for a meter placed in a horizontal line. All other data and dimensions
are the same.

10.18 Carbon tetrachloride flows through a 10� 8 venturi meter inclined at an angle of 308 with the
horizontal; flow is in the downward direction. A mercury manometer attached to the meter
reads 5 in. Calculate the flow rate through the meter.

10.19 Linseed oil flows through a 12� 10 venturi meter in a horizontal line. Determine the
equivalent readings on a mercury manometer attached to the meter for the following flow
rates: (a) 1 m3=s, (b) 0.5 m3=s, and (c) 2 m3=s.

10.20 Octane is piped through a line into which a 10� 8 venturi is installed. The line pressure is
220 kPa, and the volume flow through the meter is 0.6 m3=s. The meter is inclined at 858
from the horizontal with flow in the downward direction. The distance between static
pressure taps is 25 cm.

a. Determine the pressure at the throat.
b. If a mercury manometer is attached as in Figure 10.18a, determine Dh.
c. If an air-over-octane manometer is used in an inverted U-tube configuration, determineDh.

10.21 Water is transported through a pipe into which a 12� 8 flow nozzle has been installed with
an inverted U-tube manometer. The pressure drop is measured as 12 cm of water. Determine
the actual flow rate through the line.

10.22 Octane flows in a pipe into which a 4� 3 flow nozzle has been installed. A water manometer
attached to the static pressure taps of the nozzle reads 95 cm of water. Calculate the volume
flow of octane.

10.23 Benzene flows in a pipe that has an 8� 6 flow nozzle. A mercury manometer attached to the
meter reads 4 in. Determine the volume flow rate through the meter.

10.24 Castor oil flows at 0.06 m3=s through a pipe. A 10� 8 flow nozzle is installed. Determine the
pressure drop in terms of meters of mercury.

10.25 A 12� 10 venturi and a 12� 10 flow nozzle are installed in a line that conveys 12 ft3=s of
chloroform. Pressure gauges are attached to the meters. What are the expected pressure drops?

10.26 Using the charts developed for flow through constriction meters (CV versus Re, for example)
often requires a trial-and-error procedure. How can the same data be used to generate a plot
that requires no trial-and-error method? Show results by equations and show logic. Assume
that meter dimensions and pressure head loss are known.

10.27 In Example 10.8, the pressure drop calculated was 40.2 ft of water. Calculate the correspond-
ing pressure drop if the following types of manometers are used in a U-tube: (a) water over
mercury and (b) water over kerosene.

10.28 Glycerine flows through a 6-nominal, schedule 80 pipeline into which an orifice plate with a
4.00-cm hole has been installed. Pressure gauges are attached about the plate. What is the
flow rate if the pressure drop is equivalent to 65 m of mercury?

10.29 Heptane flows through a 10-nominal, schedule 80 pipeline into which an orifice with a 6.0-in
hole has been installed, A water manometer attached to the meter reads 6 ft of water.
Determine the flow rate through the line.
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10.30 Three different flow meters have been installed in a single pipeline: an orifice meter, a flow
nozzle, and a venturi meter. All have dimensions of 16� 8. The flow rate through the line is
0.2 m3=s of propylene glycol. What will be the readings of a mercury manometer attached to
the meters?

10.31 Derive Equation 10.28.
10.32 If the venturi meter of Example 10.9 is replaced with a 10� 6 flow nozzle, what is the

expected downstream pressure reading?
10.33 Hydrogen flows in a 1-nominal pipe. A 1� 1

2 venturi meter has been installed with pressure
gauges. For readings of 10 and 8 psia from the meter, determine the mass flow rate. Take the
line temperature to be 608F.

10.34 An 8� 6 venturi is placed in a line carrying air. The line temperature is 408F; the line
pressure is 100 psia. Prepare a graph of mass flow rate as a function of throat pressure over
the range of 60–90 psia.

10.35 An orifice plate with a hole diameter of 5.1 cm is placed in a 4-nominal line that conveys
helium at a flow rate of 0.2 kg=s. The line pressure and temperature are 200 kPa and 258C,
respectively. Assuming that helium has a ratio of specific heats of 1.4, determine the pressure
downstream of the orifice. (Note that g for helium is not 1.4 but 1.66. Without a chart such as
Figure 10.29 or an equation, the pressure found assuming g¼ 1.4 is a best estimate.)

Flow over a Weir

10.36 A rectangular sharp-crested weir extends across a rectangular channel. The weir is 1 m high
and 3 m wide. The upstream head measured from the channel bottom is 2.4 m. Determine the
flow of water over the weir.

10.37 A rectangular sharp-crested weir is installed in an open channel that conveys water at
250 ft3=s. The channel width is 6 ft, and the weir height is 4 ft. Determine the height of
the liquid upstream.

10.38 A contracted rectangular weir is placed in a channel 12 m wide. The rectangular cutout is 6 m
wide and 2 m deep. The weir height is 6.5 m. Determine the volume flow over the weir if the
water head as measured from channel bottom is 5 m.

10.39 Derive Equation 10.37.
10.40 Repeat Example 10.10 if the weir has an included angle of 908 and all other conditions

remain the same.
10.41 A 608 V-notch weir is placed in a channel that conveys water at a flow rate of 1 m3=s.

Determine the water head upstream.
10.42 How do the equations for flow over weirs change with fluid properties? Rewrite all affected

equations.
10.43 A weir consists of a semicircular cutout in a vertical flat plate as shown in Figure P10.43.

Derive an equation for Qth versus H for the weir.

H

FIGURE P10.43
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10.44 A V-notch weir is placed in a channel that conveys water at a flow rate of 0.006 m3=s.
Determine and graph the variation of upstream height with included angle—that is, H as a
function of u.

10.45 The flow rate in a rectangular open channel must be measured. A V-notch weir is to be
placed in the channel, and it is necessary to determine which angle u will provide the most
convenient results. As the first step in the calculations, plot Qac versus H for V-notch weirs,
using u as an independent variable.

10.46 Construct a plot of the suppressed-weir equation:

Cs ¼ 0:605þ 0:08H
Wh

Place H on the horizontal axis, Cs on the vertical axis, and Wh as an independent variable.
Let H vary from 0 to 1 ft, and let Wh take on values of 1, 2, 3, and 4 ft.

10.47 A suppressed rectangular weir is placed in a channel that conveys water at a flow rate of
0.5 ft3=s. For a channel width of 4 ft and a weir height of 2 ft, determine the height H.

10.48 A contracted rectangular weir is placed in a rectangular channel. The liquid height H is
15 cm, and the volume flow rate is 0.03 m3=s. Determine the width L of the rectangular
cutout.

10.49 The flow rate of water over a suppressed rectangular weir is 100 ft3=s. The channel width is
4 ft, and the liquid height H above the weir is 2 ft. Determine the weir height Wh.

10.50 A suppressed rectangular weir is placed in a 3-m-wide channel that conveys water at 3 m3=s.
The weir height is 1 m. Determine the liquid height H.
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11 The Navier–Stokes Equations

Chapter 5 was concerned with flow in closed conduits. In Section 5.5, for example, we modeled
laminar flow through circular, rectangular, and annular passages. For each case, a control volume
was set up, and then the continuity and momentum equations were written. Solving the resulting
differential equation and applying boundary conditions yielded a velocity distribution for the
problem. We performed a similar analysis in Chapter 7 for laminar flow down an incline.

Can a control volume for a general fluid mechanics problem be set up to obtain a comprehensive
set of differential equations from which we can obtain differential equations for the simpler
problems like those described above? Such differential equations do exist and will be presented
in this chapter.

Turbulence is an important area of study in fluid mechanics because most flows with which we
are familiar (in a pipe or a channel, for example) are turbulent flows. The equations of motion for
turbulent flow will be discussed in this chapter. To show how these equations can be applied to a
simple problem, the velocity profile for turbulent flow in a circular tube will be formulated.

11.1 EQUATIONS OF MOTION

A set of differential equations to describe fluid motion can be derived for the general case. Consider
the control volume of Figure 11.1. It is a differential element in a fluid continuum. Forces acting on
it are to include gravitational, viscous or frictional, and pressure forces to encompass the majority of
fluid problems. If the continuity and momentum equations are written for all three principal
directions, and the fluid is Newtonian with constant properties of density and viscosity, a set of
differential equations results. The momentum equation written for each principal direction gives
what are called the Navier–Stokes equations. Their derivation is lengthy, involved, and beyond the
scope of this text. The equations will be given without derivation here, but interested readers may
refer to the specific references cited at the end of the book.

For the general problem in fluid mechanics, assuming that we have a Newtonian fluid with
constant properties, the governing equations in Cartesian coordinates are the following.
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Continuity equation:

@r

@t
þ @(rVx)

@x
þ @(rVy)

@y
þ @(rVz)

@z
¼ 0 (11:1)

Navier–Stokes equations:
x-component:

r
@Vx

@t
þ Vx

@Vx

@x
þ Vy

@Vx

@y
þ Vz

@Vx

@z

� �

¼ � @p

@x
þ m

@2Vx

@x2
þ @2Vx

@y2
þ @2Vx

@z2

� �
þ rgx (11:2a)

y-component:

r
@Vy

@t
þ Vx

@Vy

@x
þ Vy

@Vy

@y
þ Vz

@Vy

@z

� �

¼ � @p

@y
þ m

@2Vy

@x2
þ @2Vy

@y2
þ @2Vy

@z2

� �
þ rgy (11:2b)

z-component:

r
@Vz

@t
þ Vx

@Vz

@x
þ Vy

@Vz

@y
þ Vz

@Vz

@z

� �

¼ � @p

@z
þ m

@2Vz

@x2
þ @2Vz

@y2
þ @2Vz

@z2

� �
þ rgz (11:2c)

Vx|x + Δx

Vy|y + Δy

Vz|z

(x + Δx, y + Δy, z + Δz)

(x, y, z)

y

Vz|z + Δz
Vy|y

Vx|x

z

x

FIGURE 11.1 A differential fluid element.
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The left-hand sides of Equations 11.2 are acceleration terms. These terms are nonlinear and
present difficulties in trying to solve the equations. Even though a variety of exact solutions for
specific flows have been found, the equations have not been solved in general—owing primarily to
the presence of the nonlinear terms. The right-hand side of the equations includes pressure,
gravitational or body, and viscous forces. In polar cylindrical coordinates, these equations are the
following.

Continuity equation:

@r

@t
þ 1

r

@(rrVr)

@r
þ 1

r

@(rVu)

@u
þ @(rVz)

@z
¼ 0 (11:3)

Navier–Stokes equations:
r-component:

r
@Vr

@t
þ Vr

@Vr

@r
þ Vu

r

@Vr

@u
þ Vz

@Vr

@z
� V2

u

r

� �

¼ � @p

@r
þ m
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@r

1
r

@(rVr)

@r

� �
þ 1
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@2Vr

@u2
þ @2Vr
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� 2
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@Vu

@u

� �
þ rgr (11:4a)

u-component:
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@Vu
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@Vu

@r
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r

@Vu

@u
þ VrVu

r
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@Vu

@z

� �

¼ � 1
r

@p

@u
þ m

@

@r

1
r

@(rVu)
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@Vr

@u
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þ rgu (11:4b)

z-component:

r
@Vz

@t
þ Vr

@Vz

@r
þ Vu

r

@Vz

@u
þ Vz

@Vz

@z

� �

¼ � @p

@z
þ m

1
r

@

@r
r
@Vz

@r

� �
þ 1
r2

@2Vz

@u2
þ @2Vz

@z2

� �
þ rgz (11:4c)

In cylindrical coordinates, the term rV2
u=r is the centrifugal force that gives the effective r-directed

force resulting from fluid motion in the u-direction. When one is transforming equations from
Cartesian to cylindrical coordinates, this term arises automatically. The term rVrVu=r is the Coriolis
force, which is the effective u-directed force resulting from flow in both the r- and u-directions. This
term also arises automatically when one is transforming from Cartesian to cylindrical coordinates.

In vector notation, the equations are as follows:

Continuity equation:
@r

@t
þr � rV ¼ 0 (11:5)

Navier–Stokes equations:

@V

@t
þ (V � r)V ¼ � 1

r
rp�rgþ nr2V (11:6)
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where the vector operator del, r, is defined in Cartesian coordinates—for example, as

r( ) ¼ i
@( )

@x
þ j

@( )

@y
þ k

@( )

@z
(11:7)

r2( ) ¼ @2( )

@x2
þ @2( )

@y2
þ @2( )

@z2
(11:8)

11.2 APPLICATIONS TO LAMINAR FLOW

The equations that we have just written are easily applied to various laminar flow problems to obtain
the descriptive differential equation. The types of problems that are encountered are classified in a
number of ways. For example, a steady-flow problem is one in which there is no time dependence.
A parallel flow problem is one in which only one velocity exists within the fluid. Regardless of
problem type, if the Navier–Stokes equations can be solved for the geometry of interest, subject to
the boundary conditions (and this is not always possible), the solution will yield a velocity profile.
Once the velocity profile is known, all other parameters of the flow can be found. The volume flow
rate is obtained by integrating the velocity profile over the cross-sectional area. The average velocity
is obtained by dividing the volume flow rate by the cross-sectional area. The maximum velocity can
be obtained either by inspection or by differentiation. The shear stress at the wall is found by
differentiating the velocity according to Newton’s law of viscosity. The instantaneous velocity is
thus an important parameter.

In this section, we will illustrate a number of cases that involve setting up the differential
equation, solving it, and deriving the pertinent flow details, which vary from problem to problem.
For all problems discussed, we will follow a solution format that includes several steps:

1. Discussion of conditions and assumptions.
2. Sketch of the problem with an expected velocity profile.
3. Derivation of the differential equation.
4. Solution for the instantaneous velocity.
5. Solution for the pertinent flow details.

11.2.1 FLOW IN A CIRCULAR DUCT

Consider steady laminar flow in a tube or pipe as shown in Figure 11.2, where the flow is in the
z-direction and the effect of gravity is neglected. At most, we can have three velocity components;
in cylindrical coordinates, these are

r
θ

z

1 2

R

z1

r1 r1

z2

FIGURE 11.2 Laminar flow in a tube.
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Vr Vu Vz

For laminar flow, Vr and Vu are zero. Only the axial velocity Vz is nonzero. This velocity can be a
function of three space variables and of time; that is,

Vz ¼ Vz(r, u, z, t)

We can eliminate the time dependence because the flow is steady. Referring to Figure 11.2, we
see that the velocity is independent of z. Specifically, for two different axial locations that have the
same r and u (points 1 and 2), the velocity is the same. Similar reasoning shows that Vz is also
independent of u.

For steady laminar flow in a tube, we thus have

Vz ¼ Vz(r)

Equations 11.3 and 11.4 reduce to the following:

Continuity:
@Vz

@z
¼ 0 (11:9a)

r-component: 0 ¼ � @p

@r
(11:9b)

u-component: 0 ¼ � 1
r

@p

@u
(11:9c)

z-component: 0 ¼ � @p

@z
þ m

r

@

@r
r
@Vz

@r

� �
(11:9d)

The continuity equation states that Vz is not a function of z. The r- and u-component equations state
that pressure does not vary in the r- and u-directions. The differential equation to be solved, then, is
Equation 11.9d.

It is instructive to digress momentarily to consider steady laminar flow in an annulus as another
example. Following the same lines of reasoning as for steady laminar flow in a tube, we can show
that again Equation 11.9d is the equation to be solved. What differentiates these problems are the
boundary conditions that must be written for each and used when solving the differential equation.
For a complete statement of a problem, therefore, the differential equation and its boundary
conditions must be given.

For flow in a tube, the boundary conditions are

r ¼ R Vz ¼ 0 (condition 1)

r ¼ 0
@Vz

@r
¼ 0 (condition 2)

The first of these is the nonslip condition at the wall. The second states that the slope at the
centerline is zero, or that the velocity is finite at the centerline. Equation 11.9d can be solved by
direct integration as in Chapter 5:

m

r

d

dr
r
dVz

dr

� �
¼ dp

dz

or

d

dr
r
dVz

dr

� �
¼ r

m

dp

dz
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Integrating with respect to r gives

r
dVz

dr
¼ r2

2m
dp

dz

� �
þ C1

where C1 is a constant of integration. Applying boundary condition 2 yields

C1 ¼ 0

Thus, we are left with

dVz

dr
¼ r

2m
dp

dz

Integrating, we get

Vz ¼ r2

4m
dp

dz
þ C2

Applying boundary condition 1 gives

0 ¼ R2

4m
dp

dz
þ C2

or

C2 ¼ � R2

4m
dp

dz

The velocity now becomes

Vz ¼ r2

4m
dp

dz
� R2

4m
dp

dz

Vz ¼ R2

4m
� dp

dz

� �
1� r

R

� 	2
� �

(11:10)

For steady laminar flow in a tube, the velocity distribution is therefore parabolic.
The volume flow rate is found by integrating the velocity profile over the cross-sectional area:

Q ¼
ðð

Vz dA ¼
ð2p
0

ðR
0

R2

4m
� dp

dz

� �
1� r

R

� 	2
� �

r dr du

Integrating and solving, we get

Q ¼ pR4

8m
� dp

dz

� �
(11:11)
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The average velocity is

V ¼ Q

A
¼ R2

8m
� dp

dz

� �
(11:12)

The shear stress in the circular duct is found with Newton’s law of viscosity:

trz ¼ �m
dVz

dr
¼ � r

2
dp

dz

This equation shows that for tube flow the shear stress varies linearly with the radial coordinate r.
At the centerline, trzjr¼0 ¼ 0; at the wall,

trzjr¼R ¼ tw ¼ �R

2
dp

dz
(11:13)

where the notation tw denotes a wall shear stress.

11.2.2 FLOW DOWN AN INCLINED PLANE

Consider steady laminar flow down an inclined plane, as shown in Figure 11.3, which also shows
the coordinate system that we will use in formulating the problem. The driving force for fluid
motion is gravity, and the flow is in the z-direction. Thus, only Vz is nonzero. Moreover, Vz will
depend only on x. Hence,

Vx ¼ 0

Vy ¼ 0

Vz ¼ Vz(x)

Equations 11.1 and 11.2 become

Continuity equation:
@Vz

@z
¼ 0

x-component: 0 ¼ � @p

@r
þ rgx

y-component: 0 ¼ � @p

@y

z-component: 0 ¼ � @p

@z
þ m

@2Vx

@x2
þ rgz

x

θ

z

FIGURE 11.3 Laminar flow down an incline.
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The boundary conditions are

x ¼ 0
@Vz

@x
¼ 0 (condition 1)

x ¼ d Vz ¼ 0 (condition 2)

The solution to the equation, as obtained also in Chapter 7, is

Vz ¼ rgd2

2m
cos u 1� x

d

� 	2
� �

(11:14)

The volume flow is found to be

Q ¼
ðð

V dA ¼
ðb
0

ðd
0

rgd2

2m
cos u 1� x

d

� 	2
� �

dx dy

where b is the width into the page. Integrating gives

Q ¼ rgd3b

3m
cos u ¼ gd3b

3n
cos u (11:15)

Shear stress is found with

txz ¼ m
dVz

dx
¼ � rgd2

2
cos u � 2x

d2

� �

The maximum shear stress occurs when x¼ d at the wall:

tw ¼ rgx cos u (11:16)

11.2.3 FLOW THROUGH A STRAIGHT CHANNEL

Consider steady laminar flow through a straight channel of width 2h and depth (into the page) b, as
illustrated in Figure 11.4. With both walls fixed, the flow is in the z-direction, and gravity forces are
neglected. We therefore write

Vx ¼ Vy ¼ 0

Vz ¼ Vz(x)

x

z
2h

FIGURE 11.4 Steady parallel flow through a straight two-dimensional channel.
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Equations 11.1 and 11.2 thus become

@Vz

@z
¼ 0

0 ¼ � @p

@x

0 ¼ � @p

@y

0 ¼ � @p

@z
þ m

@2Vz

@x2

� �

The boundary conditions are

x ¼ h Vz ¼ 0

x ¼ �h Vz ¼ 0

The solution to the equation (as obtained by direct integration) is

Vz ¼ h2

2m
� dp
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� �
1� x

h

� 	2
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(11:17)

The volume flow rate through the channel is

Q ¼
ð ð

Vz dA ¼
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or

Q ¼ 2h3b
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(11:18)

The average velocity is

V ¼ Q

A
¼ h3

3m
� dp

dz

� �
(11:19)

The shear stress is found with

txz ¼ m
@Vz

@x
¼ m
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� �
� dp

dz

� �
� 2x
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txz ¼ � dp
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The wall shear stresses thus become

twjx¼h ¼ h � dp

dz

� �

twjx¼�h ¼ �h � dp

dz

� � (11:20)
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11.2.4 PLANE COUETTE FLOW

Plane Couette flow is flow through a two-dimensional channel that has one wall moving. As
illustrated in Figure 11.5, the z-directed flow is steady, and gravity forces are neglected. A pressure
gradient is imposed on the fluid, and the upper wall is moving at a velocity equal to U. The channel
height is h, and the origin is at the lower wall (different from Figure 11.4). According to the
assumptions, we have

Vx ¼ Vy ¼ 0

Vz ¼ Vz(y)

Equations 11.1 and 11.2 become

@Vz

@z
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0 ¼ � @p

@x

0 ¼ � @p

@y

0 ¼ � @p

@z
þ m

@2Vz

@y2

� �

These equations are exactly what was obtained for the straight-channel problem in which both walls
were stationary. The difference between the two problems will be in the boundary conditions. For
plane Couette flow,

y ¼ h Vz ¼ U

y ¼ 0 Vz ¼ 0

By direct integration, the solution is easily found to be

Vz

U
¼ y

h
þ � dp

dz

� �
h2

2mU

� �
y

h

� 	
1� y

h

� 	
(11:21)

The terms on the right-hand side of Equation 11.21 represent two separate effects. The y=h term is
the simple shear solution. This solution indicates a linear profile extending from Vz¼ 0 at the fixed
wall to Vz¼U at the moving wall. The second term represents the effect of the pressure gradient.
Within that term, h2=2mU, y=h, and (1� y=h) are all positive terms. The quantity (�dp=dz) tells

h

Fixed wall

y Vz(y)
dp
dz

z

U

– 0

FIGURE 11.5 Plane Couette flow.
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how pressure varies with the z-direction. In other words, as z increases, p can increase or decrease.
If p increases with increasing z, then (�dp=dz) is actually a negative quantity; and if p decreases
with increasing z, then (�dp=dz) is positive. If (�dp=dz) is zero, then the simple shear solution
results. The effect that (�dp=dz) has on the velocity profile is significant. To illustrate this effect,
let us examine Equation 11.21 in detail. For purposes of simplifying the notation, define the
constant C as

C ¼ � dp

dz

� �
h2

2mU

� �

and let Y¼ y=h. The velocity profile thus becomes

Vz

U
¼ y

h
þ C

y

h
� y2

h2

� �
¼ Y þ C(Y� Y)2 (11:22)

or

Vz

U
¼ (1þ C)Y� CY2 (11:23)

Our objective is to graph Vz=U (the dimensionless velocity) on a horizontal axis as a function of Y
(dimensionless position) on the vertical axis. We now examine three separate cases defined by the
value (or sign) of the pressure gradient and represented by C.

Case 1: (�dp=dz)¼ 0 or C¼ 0
The velocity becomes (from Equation 11.22)

Vz

U
¼ y

h

which is graphed in Figure 11.6.

Case 2: (�dp=dz)> 0 or C> 0
For calculation purposes, assign C the value of þ1. The velocity becomes

Vz

U
¼ 2Y� Y2

This quadratic equation is graphed in Figure 11.7.

h

y

Uy
h

z

U

U

Vz 

C 0

FIGURE 11.6 Velocity profile for plane Couette flow without a pressure gradient.
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Case 3: (�dp=dz)< 0 or C< 0
For calculation purposes, assign C the value of �1. The velocity becomes

Vz

U
¼ �2Yþ Y2

which is graphed in Figure 11.8.
To represent a family of velocity profiles, we use a composite graph, as shown in Figure 11.9.

Each velocity profile has an associated volume flow rate, average velocity, maximum velocity, and
wall shear stress. The flow details are reserved for the exercises.

h

U
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+ U –Uy y y2

h2hh
Vz 

C 1

y
U

FIGURE 11.7 Velocity profile for plane Couette flow with a favorable pressure gradient.
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FIGURE 11.8 Velocity profile for plane Couette flow with an adverse pressure gradient.
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FIGURE 11.9 Family of velocity profiles for plane Couette flow.
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11.2.5 FLOW BETWEEN TWO ROTATING CONCENTRIC CYLINDERS

Figure 11.10 shows the plan view of two concentric cylinders. The annular space between the
cylinders contains a fluid. Both cylinders are rotating, and the rotation causes the fluid to flow.
Assuming steady, laminar flow in the tangential direction only, with no gravity forces and no
pressure gradients in the u-direction, we conclude that

Vr ¼ Vz ¼ 0

Vu ¼ Vu(r)

Equations 11.3 and 11.4 become

1
r

@

@u
rVuð Þ ¼ 0

� rV2
u

r
¼ � @p

@r

(11:24)

0 ¼ m
@

@r

1
r

@

@r
rVuð Þ

� �� �

0 ¼ � @p

@z

(11:25)

The boundary conditions are

r ¼ R2 Vu ¼ R2v2

r ¼ R1 Vu ¼ R1v1

R1

θ
r

2

1

R2

FIGURE 11.10 Flow between two rotating concentric cylinders.
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Solving Equation 11.25 subject to the boundary conditions gives

V0 ¼ v2 � v1K2

1� K2

� �
r þ v1 � v2ð ÞR2

1

1� K2

� �
1
r

(11:26)

where K¼R1=R2. Several features of importance can be investigated. For example, consider that the
outer cylinder is very large, such that R2 ! 1; or that the inner cylinder is very small, R1 ! 0; or
that one of the cylinders is fixed. These problems are easily solved by using Equation 11.26.

Equation 11.24 is the r-component of the Navier–Stokes equations applied to Figure 11.10. As
is indicated, there is a pressure gradient in the radial direction that depends on the tangential velocity
Vu. If Equation 11.24 is solved subject to the boundary condition

r ¼ R1 p ¼ p1

the solution becomes
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(11:27)

The shear stress is determined with

tru ¼ m r
@ Vu=rð Þ

@r

� �

tru ¼ � 2m(v1 � v2)VR2
1R

2
2

R2
2 � R2

1
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r2

(11:28)

and we see that the shear stress is independent of u.
There is a moment exerted on the cylinders by the fluid. On the inner cylinder, we have

M1 ¼ tangential force� R1 ¼ [(tru)jr¼R] A1R1

where A1 is the surface area over which the shear stress acts. For a cylinder of length L, we have
A1¼ 2pR1L, and the moment becomes

M1 ¼ � 4pm(v1 � v2)R2
1R

2
2L

R2
2 � R2

1

(11:29)

Under steady conditions, the magnitude of the moment exerted on the outer cylinder M2 equals that
exerted on the inner cylinder; that is, at steady state,

M1 ¼ �M2 (11:30)

There are many exact solutions to a number of problems described by the Navier–Stokes equations.
Several more are given in the section that follows and in the exercises at the end of this chapter. We
hope that this sampling has served as an inspiring introduction to the field of viscous fluid flow.
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11.3 GRAPHICAL SOLUTION METHODS FOR UNSTEADY
LAMINAR FLOW PROBLEMS

To this point, we have examined a number of problems, all of which were for steady laminar flow.
That is, the instantaneous velocity did not vary with time. In this section, we formulate several
unsteady-flow problems. The analytical solution techniques for the problems we consider are beyond
the scope of this text. Alternatively, we can solve such problems using graphical solution methods.

Graphical solution methods allow a quick and easy determination of instantaneous time-
dependent velocity profiles. Graphical techniques have traditionally played an important role in
engineering, At one time, before numerical methods could be implemented easily with a computer,
graphical solutions were the only practical means of obtaining a solution. The emphasis today is on
numerical methods, and so the need for graphical methods has been diminished. It is a mistake,
however, to discard graphical solution methods as they have a place in fluid mechanics. Graphical
methods can be used to solidify understanding and build confidence with only a minor expenditure of
effort. They can be applied to certain more advanced (than we have heretofore considered) problems,
which can be solved only by using more sophisticated mathematical techniques. Advanced problems
can be discussed with graphical methods at a much earlier time during the education process.

Consider a viscous flow problem in which the velocity is a function of time and of only one
space variable. Suppose that the Navier–Stokes equations for such a problem reduce to

@Vz

@t
¼ n

@2Vz

@y2
(11:31)

where Vz is the instantaneous velocity in the z-direction and the kinematic viscosity is n¼m=r.
The graphical method (as well as the numerical method, by the way) relies on our ability to rewrite
the differential equation in terms of an algebraic expression. This can be done in a number of ways,
but here we rely on the Saul’ev method. Equation 11.31 thus becomes

@Vz

@t
¼ n

@

@y

@Vz

@y

� �

or

Vz

��kþ1

j
� Vz

��k
j

Dt
¼ n

Vz
k
jþ1�Vzj jk

j

� 	
Dy �

Vz
kþ1
j �Vzj jk

j�1

� 	
Dy

Dy

where the superscript k denotes a particular time and the subscript j indicates a position in the fluid.
Rearranging gives

Vzjkþ1
j ¼ Dy2=nt � 1

Dy2=nt þ 1

� �
Vzjkj þ 1

Dy2=nt þ 1

� �
Vzjkjþ1 þVzjkþ1

j�1 (11:32)

The quantity Dy2=nt is defined as the cell Reynolds number, Rec, the value of which influences
what is known as the stability of the solution method. When calculations are performed using this
equation, as time increases to infinity, the solution should approach the steady-state solution (if there
is one). The value of the cell Reynolds number influences whether this occurs and how quickly. In
the Saul’ev equation formulation, the preceding equation is unconditionally stable. So, any value of
the cell Reynolds number can be assumed. If we assume arbitrarily that
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Rec ¼ Dy2

nt
¼ 1

then Equation 11.32 simplifies somewhat to yield:

Vzjkþ1
j ¼ 1

2
Vzjkjþ1 þVzjkþ1

jþ1

or

Vzjkþ1
j ¼ Vzjkjþ1þVzjkþ1

j�1

2
(11:33)

Equation 11.33 has a very useful graphical interpretation, which is illustrated in Figure 11.11. As
indicated, the flow field is divided into segments that are Dy wide. Lines in the field (identified as
nodes) are labeled from 0 and extend to jþ 2 (as needed). We expect our solution to give us the
value of the velocity Vz at all nodes from 0 to jþ 2 for any time k. Shown in the diagram is
the velocity in the j� 2 to jþ 2 region at the time denoted by k. At the time kþ 1, we will
know Vzjkþ1

j�1 from a boundary condition or a time condition. To apply Equation 11.33, we align
Vzjkþ1

j�1 with Vzjkj�1 and draw a straight line from Vzjkþ1
j�1 to the j line to obtain Vzjkþ1

j . Next, we align
the newfound point with Vzjkj�2 and draw to the jþ 1 line to obtain Vzjkþ1

j�1 . The drawing process is
continued until the boundary conditions are met or the problem requirements are satisfied. Note that
the grid spacing Dy, when selected, automatically determines the time interval because these
quantities are related through the cell Reynolds number (Rec¼Dy2=nt).

j + 2
j+2
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Vz

Vz
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k

k

k

Δy

Δy
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j + 1

j – 1

j – 2

2

1

0

j

FIGURE 11.11 Graphical construction of Equation 11.33.
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11.3.1 SUDDENLY ACCELERATED FLAT PLATE

Consider a semi-infinite region of fluid initially at rest, as shown in Figure 11.12a. As shown, the
fluid extends to infinity in the y-direction and the plate lies along the x-axis. At some time that we
define as t¼ 0, the plate is suddenly accelerated to a velocity U in the x-direction. It is our objective
to determine graphically the velocity within the fluid.

This problem is a classic diffusion problem. Assuming unsteady laminar flow of a Newtonian
fluid with no gravity forces or pressure gradients, we conclude that

Vy ¼ Vx ¼ 0

Vz ¼ Vz(y, t)

The continuity and momentum equations (Equations 11.1 and 11.2, respectively) become

@Vz

@z
¼ 0

r
@Vz

@t
¼ m

@2Vz

@y2

(11:34)

with the following boundary conditions:

1. t � 0 y¼ 0 Vz¼U (nonslip condition)
2. t � 0 y¼1 Vz¼ 0

The solution to the differential equation subject to the boundary conditions is

Vz

U
¼ 1� erf(h) (11:35)

where U is the velocity of the boundary, h ¼ y= 2
ffiffiffiffi
nt

p
 �
, and the error function is

erf(h) ¼ 2ffiffiffiffi
p

p
ðh
0

e�j2 dj (11:36)

The graphical solution method begins as shown in Figure 11.13. The region is divided up by a
number of lines separated by a distance Dy. The drawing process is as follows:

y

z
Vz U

t 0 t 0 t 0

y

U zz
(a) (b) (c)

y

FIGURE 11.12 Semi-infinite fluid in contact with a suddenly accelerated flat plate.
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1. Align point a and point c; draw line ba.
2. Align point b and point d; draw line eb.
3. Align point e and point f; draw line ge.

The process is continued until the desired height is reached. The result shown in Figure 11.13 is a
velocity profile that exists after one time interval has passed. The time interval is easily calculated.
Suppose that in Figure 11.13, the distance Dy is selected as 0.5 cm, and the fluid we are analyzing is
glycerine (r¼ 1 263 kg=m3 and m¼ 950� 10�3 N � s=m2 from Table A.5). The cell Reynolds
number is 1. So

Rec ¼ Dy2

nt
¼ r Dy2

mt

Substituting,

1 ¼ 1 263(0:005)2

950� 10�3t

or

t ¼ 30:1 s

The velocity profile of Figure 11.13 will exist in the fluid at t¼ 30.1 s.
To obtain the velocity profile in the fluid after 60.2 s, we proceed in the same manner as before,

beginning with the preceding profile. Referring to Figure 11.14, the procedure is as follows:

1. Align a and c; draw line ga.
2. Align g and d; draw line hg.
3. Align h and e; draw line ih.

f

d

c

U

a
b

z

e

g

Δy

y

Δy

FIGURE 11.13 Graphical solution for the velocity after one time interval for the suddenly accelerated
flat plate.
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The procedure is continued until the desired height is reached. Figure 11.15 shows the solution for
the first five time intervals.

Note that if this problem were solved with a numerical calculation technique, the results would
be in the form of numbers for the velocities at the nodes; that is, the results would give a numerical
value of the velocity at the points in Figure 11.14 labeled a, b, c, d, e, f, and so on.

f

d

e
i

h

a
b

z

c
g

y

FIGURE 11.14 Graphical solution for the velocity after the first and second time intervals for the suddenly
accelerated flat plate.

Time t 0

t 1

54

3

2

U
z

0

y

FIGURE 11.15 Solution for the velocity for the first five time intervals for the suddenly accelerated fiat plate.
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11.3.2 UNSTEADY PLANE COUETTE FLOW

As stated in the previous section, plane Couette flow is flow through a two-dimensional channel that
has one wall moving. In this instance, however, we examine the case where there is no pressure
gradient. The channel height is h and one of the walls is given a sudden acceleration from rest to a
uniform velocity U. The fluid is Newtonian with constant properties. Figure 11.16 is a sketch of the
problem statement.

The formulation here is the same as in the last problem:

Vy ¼ Vx ¼ 0

Vz ¼ Vz(y, t)

The continuity and momentum equations (Equations 11.1 and 11.2, respectively) become

@Vz

@z
¼ 0

r
@Vz

@t
¼ m

@2Vz

@y2
(11:37)

with boundary conditions (both nonslip conditions):

1. t � 0 y¼ 0 Vz¼U
2. t � 0 y¼ h Vz¼ 0

The analytical solution to this problem is usually expressed as an infinite series of error functions.
Alternatively, Figure 11.17 is the graphical solution using the Saul’ev method. The channel width is
divided arbitrarily into 10 Dy’s. With this value, we use the cell Reynolds number and find the time
interval to be

Rec ¼ rDy2

mt
¼ Dy2

nt
¼ 1

and so

t ¼ Dy2

n

UVz U

t 0t 0 t 0
zzz

y y y

h
Steady
state

(c)(a) (b)

FIGURE 11.16 Unsteady plane Couette flow (unsteady flow in a two-dimensional channel).
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With h¼ 10 Dy, we find

t ¼ h2

100n

11.3.3 UNSTEADY FLOW BETWEEN CONCENTRIC CIRCULAR CYLINDERS

Figure 11.18 shows the plan view of two concentric cylinders. At time¼ 0, the inner cylinder rotates
at a fixed angular velocity. The outer cylinder remains stationary. Assuming unsteady laminar flow
of a Newtonian fluid with no gravity forces or pressure gradients, we conclude that

Vr ¼ Vz ¼ 0

Vu ¼ Vu(y, t)

z
U Moving wall

h

y

2

3 5

t 0
t 1

t

Steady state

Δy h
10

Fixed wall

4

FIGURE 11.17 Graphical solution to the unsteady plane Couette flow problem.

R2 – R1

(c)(a)

R2

(b) t 0t 0 t 0

R1

FIGURE 11.18 Unsteady flow between concentric cylinders with only the inner cylinder rotating.
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The continuity and momentum equations become

1
r

@

@u
(rVu) ¼ 0

r
@Vu

@t
¼ m

@

@r

1
r

@

@r
(rVu)

� �� �
(11:38)

with the following conditions:

1. r¼R2 Vu¼ 0
2. r¼R1 Vu¼R1v¼U

When the right-hand side of Equation 11.38 is differentiated, according to the chain rule, we get

m
@

@r

1
r

@

@r
(rVu)

� �� �
¼ m

@2Vu

@r2
þ 1

r

@Vu

@r

� �

The second term in parentheses on the right-hand side is known as a curvature term. It is this term
that makes the differential equation in its present form unsuitable to solve graphically. So, further
analysis is required. We introduce a new independent variable z, defined as

z ¼ ‘n(r) (11:39a)

or

r ¼ ez (11:39b)

The derivative with respect to r, as found in the differential equation (Equation 11.38), is
evaluated as

@

@r
¼ @

@z

@z

@r
¼ @

@z

1
r
¼ @

@z

1
ez

Substituting into the differential equation gives, after simplification,

r
@Vu

@t
¼ m

r2
@2Vu

@z2
(11:40)

This form is suitable for graphical solution.
The cell Reynolds number for the preceding equation becomes

Rec ¼ r r Dzð Þ2
m Dt

¼ 1

In order to solve this problem, it is necessary to perform graphically the transformation given in
Equation 11.39. This transformation is illustrated in Figure 11.19. Shown are two grids that are
aligned vertically. The top grid is logarithmic, with the widest mesh located near the inner cylinder.
The bottom mesh is linearly graded. Both meshes have 10 lines, which divide the flow field into
nine spaces. The number of Dy’s is fixed by the logarithmic grid. Given the line AB in the log mesh,
we project each nodal point downward to the linear mesh to obtain the corresponding line A0B0.
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With regard to the viscous flow problem at hand, unsteady flow between concentric cylinders,
the transformation allows us to perform the solution by drawing straight lines on the log mesh.
Projecting the resulting points down the linear mesh gives us the solution in the radial plane.
The solution for several times is given in Figure 11.20. With the cell Reynolds number equal to 1,
the time increment is found as

t ¼ r(R2 � R1)
2

81m

11.3.4 UNSTEADY FLOW IN A PLANE CHANNEL (START-UP FLOW)

Consider a plane channel of width 2h that contains a fluid. At time¼ 0, a pressure drop Dp is
suddenly imposed on the system, and the fluid begins to flow in the direction of decreasing pressure.
Figure 11.21 is a sketch of the problem statement.

The pressure gradient is given by

� dp

dz
¼ �Dp

L

� �
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FIGURE 11.19 Effects of the logarithmic transformation function.
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FIGURE 11.20 Solution to the problem of unsteady flow between two concentric cylinders.
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FIGURE 11.21 Unsteady start-up flow in a plane channel.
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As before, we assume unsteady laminar flow of a Newtonian fluid with no gravity forces; we
conclude that

Vy ¼ Vx ¼ 0

Vz ¼ Vz(y, t)

The continuity and momentum equations (Equations 11.1 and 11.2, respectively) become

@Vz

@z
¼ 0

r
@Vz

@t
¼ m

@2Vz

@y2
� Dp

L
(11:41)

with the following boundary conditions:

1. t � 0 y¼ h Vz¼ 0 (nonslip condition)

2. t � 0 y¼ 0 @Vz

@y ¼ 0 (finite velocity at centerline)

The pressure gradient added to the equation in this fashion means, graphically, that we add Dpt=rL
to each velocity profile in order to determine the succeeding one. To illustrate, consider the grid of
Figure 11.22. The field (which is half the channel width) is divided into five regions Dy wide. The
line labeled OO0 is the initial velocity. To this initial velocity, we add Dpt=rL at every node to obtain
points labeled a through f. We draw the t¼ 1 line in the usual way, beginning at point O and using
the points c through f. The profile is drawn perpendicular to the topmost line (the centerline of the
channel), which represents the second boundary condition dVz=dy¼ 0. Next we add Dpt=rL to every
node of the t¼ 1 profile to obtain the points labeled g through k. This profile, as before, should meet
the centerline at a right angle.

Figure 11.23 shows the solution for the first seven time intervals for the problem at hand—
unsteady (start-up) flow in a plane channel of width 2h. The channel half-width is divided into 10 Dy
sections. At the centerline, each profile intersects the line at a 908 angle.
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L

FIGURE 11.22 Illustration of the imposition of a pressure drop on a flow field.
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11.4 INTRODUCTION TO TURBULENT FLOW

In the preceding sections, we discussed only laminar flow problems and derived the differential
equations for laminar flow situations from general equations. In many cases, the nonlinear terms
vanish, and the remaining expression, if not too complex, can be solved. Although there is no
correspondingly simple methodology for turbulent flow, the Navier–Stokes equations apply. None
of the velocities in the Navier–Stokes equations vanish. Solving them, if possible, yields instant-
aneous values of velocity and pressure. In turbulent flow, as was indicated briefly in Chapter 5,
velocity and pressure fluctuate wildly about mean values. To illustrate, consider turbulent flow in a
circular tube, as shown in Figure 11.24. If the velocity at each point in the cross section were
measured with a pitot-static tube, the resultant distribution would be that of Figure 11.24a. If a more
sensitive instrument, such as a hot-wire anemometer, were used, a distribution such as that in
Figure 11.24b would result. The instantaneous velocity at any point oscillates randomly about a
mean value.

Laminar flow exists in a pipe when the Reynolds number (rVD=m) is less than about 2 100. Above
2 100, laminar flow can be maintained if the pipe wall is smooth and no vibrations are present.
Any slight disturbance would probably induce the random motion recognized as turbulent flow.

t 0

t 1 2 3 4 5 6 7

h

Δy h
10

FIGURE 11.23 Solution for the first seven time intervals for unsteady start-up in a plane channel.

(a) (b)

FIGURE 11.24 Turbulent flow in a tube.
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It should be mentioned that for turbulent flow, a region exists near the wall where the flow is not
random. A change in the flow exists near the wall where velocity is zero. It is customary to define
three arbitrary zones within a tube as shown in Figure 11.25. In the central region of the tube, a fully
developed turbulent flow exists. Near the wall, a laminar sublayer forms within which Newton’s law
of viscosity describes the flow. Between the two is the buffer zone, within which both laminar and
turbulent effects are considered to be important.

Now we examine in detail the velocity fluctuations introduced in Figure 11.24b. Suppose we are
using a sensitive instrument to measure velocity at a point in a tube in which turbulent flow exists.
The results that we would obtain are shown schematically in Figure 11.26. Two velocities can be
identified: the mean velocity Vz, which is an average or mean value, and the instantaneous velocity
Vz, which fluctuates randomly about the mean. The instantaneous velocity can be time-smoothed to
obtain the mean; that is, if the instantaneous velocity is averaged over a finite time interval, the mean
value results. By definition, then,

Vz ¼ 1
t

ðt
0

Vz dt (11:42)
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FIGURE 11.25 Flow near a pipe wall.
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FIGURE 11.26 Velocity at a point in a turbulent flow.
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The instantaneous velocity is a function of all three space variables and time. By using Equation
11.42, we have integrated out the dependence on time. The mean velocity and the instantaneous
velocity differ by a velocity fluctuation V 0

z. In equation form,

Vz ¼ Vz þ V 0
z (11:43)

By substitution into Equation 11.42, we find

Vz ¼ 1
t

ðt
0

Vz dt þ 1
t

ðt
0

V 0
z dt

¼ Vz

t

ðt
0

dt þ 1
t

ðt
0

V 0
z dt

or

Vz ¼ Vz þ 1
t

ðt
0

V 0
z dt

We therefore conclude that the time average of the fluctuations is zero; that is,

1
t

ðt
0

V 0
z dt ¼ V

0
z ¼ 0 (11:44)

Further manipulation, however, will show that V 02
z 6¼ 0. In fact, a measure of the magnitude of

turbulence is given as

Intensity of turbulence ¼
ffiffiffiffiffiffiffi
V 02
z

q
V

(11:45)

where V is the time-smoothed average velocity. The intensity of turbulence varies in tube flow from
about 1% to 10%. A similar time-smoothing operation can be performed for pressure at a point that
also fluctuates in turbulent flow.

We are now in a position to time-smooth the equations of motion—namely, the continuity and
Navier–Stokes equations. To perform this task, we substitute ViþV0 for Vi and �pþ p0 for p
everywhere in Equations 11.1 and 11.2 in Cartesian coordinates. By integrating as indicated in
Equation 11.42, the results for steady incompressible turbulent flow become the following.

Continuity equation:

@ Vx


 �
@x

þ @ Vy


 �
@y

þ @ Vz


 �
@z

¼ 0 (11:46)
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Equations of motion:
x-component:

r Vx
@Vx

@x
þ Vy

@Vx
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@Vx
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� �

¼ � @(�p)
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þ m
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rV 0

xV
0
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 �� @

@y
rV 0
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rV 0

xV
0
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 �þ rgx (11:47)

y-component:

r Vx
@Vy
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@Vy

@y
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þ rgy (11:48)

z-component:

r Vx
@Vz
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þ Vy

@Vz

@y
þ Vz

@Vz
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� �

¼ � @(�p)
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rV 0
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 �þ rgz (11:49)

These equations are similar to the Navier–Stokes equations except that the time-smoothed velocities
replace the instantaneous velocities. Moreover, these equations of motion have the time-smoothed
pressure. Finally, new terms have appeared. These new terms (underscored) are related to the
turbulent velocity fluctuations. The dimension of the product rVV is force per unit area. It is
therefore convenient to introduce the notation

�t(t)xx ¼ rV 0
xV

0
x

�t(t)xy ¼ rV 0
xV

0
y

�t(t)xz ¼ rV 0
xV

0
z

(11:50)

and so on. These terms make up what is referred to as the turbulent momentum flux and are
usually called Reynolds stresses.

In vector notation, the continuity equation and the equations of motion become the following.

Continuity: r � V ¼ 0 (11:51)

Equation of motion:

@V

@t
þ (V � r)V ¼ �rp

r
�rgþ nr2Vþr � rV0V0 (11:52)
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where it is understood that the terms V are mean velocity vectors and V0V0 are the turbulent velocity
fluctuations.

To apply Equations 11.46 through 11.49 to various flows and obtain velocity distributions, it is
necessary to relate the Reynolds stresses to a strain rate in the fluid. For laminar flow, shear stresses
are related to strain rate by Newton’s law of viscosity: tyx¼�m(dVx=dy) For turbulent flow, we use
an analogous formulation to write

�t(t)yx ¼ �m(t) dVx

dy
(11:53)

where m(t) is the turbulent coefficient of viscosity, also called the eddy viscosity. The total mean
shear stress is then

�tyx ¼ �t(‘)yx þ �t(t)yx

�tyx ¼ �m
dVx

dy
� m(t) dVx

dy

where m is a viscosity that results from molecular motions, whereas m(t) is the eddy viscosity that
results from eddying motions in turbulent flow. Physically, this motion implies that the molecular
action that is responsible for viscous shear is analogous to the eddies that cause turbulent stress. This
implication is a semiempirical result that was proposed early in the study of turbulent flow.

A second empirical relationship can be written by assuming that eddies move about in a fluid in
the same way that molecules move about in a gas. This mixing-length hypothesis is illustrated
in Figure 11.27. Two points, y1 and y2, are selected from the boundary such that they extend well
into the turbulent portion of the flow. These points are separated by a distance ‘ that equals the
average size of the eddies:

y1 � y2 ¼ ‘

The time-smoothed velocities corresponding to y1 and y2 are Vx1 and Vx2. It is theorized that a
positive turbulent fluctuation in the vertical direction at y2(V 0

y2
) causes a corresponding reduction in

the x-directed component of Vx1, the instantaneous velocity at y1. The reduction V
0
x1
is approximately

equal to the differences in mean velocities. So at y1,

V 0
x1
� V1 � V2 � ‘

dVx

dy

y1

y

ℓ

x

dVx

y2

Vx1

Vx2

FIGURE 11.27 Illustration of mixing length ‘.
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The shear stress �t(t)yx becomes (from Equation 11.50)

�t(t)yx ¼ rV 0
xV

0
y � rV 0

y‘
dVx

dy
(11:54)

If it is further assumed that the turbulent fluctuation V 0
y is approximately equal to the horizontal

fluctuation V 0
x, then Equation 11.54 becomes

�t(t)yx � p‘2
dVx

dy

dVx

dy

����
���� (11:55)

where absolute value signs are placed to ensure that the sign on the shear stress properly reflects the
sign of the gradient.

A third expression for the Reynolds stresses has resulted from the performance of many
experiments. This empirical expression is intended for use in the vicinity of solid surfaces:

�t(t)yx ¼ �rn2Vxy 1� exp � n2Vxy

n

� �� �
dVx

dy
(11:56)

The parameter n is a constant that has been determined to be 0.124 from measurements in turbulent
flow in tubes.

The mixing-length expression can be used to derive an equation for velocity distribution for
turbulent flow in a circular duct. The tube radius is R, and we will take the variable y to be

y ¼ R� r

Thus, the independent variable y is measured from the wall as opposed to r, which is measured from
the centerline.

For flow in tubes, a formulation similar to that in laminar flow can be performed by using the
time-smoothed equations. The only velocity that we consider is Vz, the mean axial flow velocity.
Moreover, this velocity is a function of only the radial coordinate r. In terms of shear stress, the
equation of motion in cylindrical coordinates is

0 ¼ � dp

dz
� 1

r

d(r�trz)

dr

where �trz ¼ �t(‘)rz þ �t(t)rz . Integrating the preceding equation gives

d(r�trz)

dr
¼ �r

dp

dz

r�trz ¼ � r2

2
dp

dz
þ C1

At the centerline, the velocity must be finite. Therefore, one boundary condition is

r ¼ 0 �trz ¼ 0

This gives C1¼ 0. The equation now becomes

�trz ¼ � r

2
dp

dz
¼ � r

R

R

2
dp

dz
(11:57)
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Equation 11.13 gives the wall shear stress for flow in a tube as

tw ¼ �R

2
dp

dz

Combining with Equation 11.57 gives

�trz ¼ r

R
tw

With y¼R – r, this becomes

�trz ¼ tw 1� y

R

� 	

Therefore,

�t(‘)rz þ �t(t)rz ¼ tw 1� y

R

� 	
(11:58)

Two simplifying assumptions can now be made. The first is that molecular motions in the turbulent
core are negligible in comparison to eddying motion. Thus,

�t(‘)rz � �t(t)rz

The second is that

tw 1� y

R

� 	
� tw

which is introduced to make the mathematics easier. Equation 11.58 now reduces to

�t(t)rz ¼ tw

At this point, it is necessary to introduce Equation 11.55 written in cylindrical coordinates to relate
�trz to a strain rate. For axial tube flow,

�t(t)rz ¼ r‘2
dVz

dr

� �2

(11:59)

We must have a relationship between the mixing length and the independent variable. A suitable
relationship results if it is assumed that the mixing length is proportional to ‘:

‘ ¼ ky

where k is a proportionality constant. In terms of y, Equation 11.59 becomes

�t(t)rz ¼ rk2y2
dVz

dy

� �2

¼ tw
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Rearranging to solve for the velocity gradient, we get

dVz

dy
¼ �

ffiffiffiffiffi
tw
r

r
1
ky

where the negative sign will have to be rejected. The square root term has the dimensions of a
velocity and may for convenience be rewritten as V*. The differential equation now becomes

dVz

dy
¼ V*

ky

Integrating this expression gives

Vz ¼ V*

k
‘n(y)þ C1 (11:60)

At the edge of the buffer layer, at yb, the velocity is Vzb. Applying this boundary condition,
we obtain

Vzb ¼ V*

k
‘n ybð Þ þ C1

C1 ¼ Vzb � V*

k
‘n ybð Þ

Substitution into Equation 11.60 gives

Vz ¼ V*

k
‘n(y)þ Vzb � V*

k
‘n(y)

or

Vz

V*
¼ 1

k
‘n

y

yb

� �
þ Vzb

V*

Now let s¼ rV*y=m and sb¼ rV*yb=m, both dimensionless Reynolds numbers. The velocity
distribution now becomes

Vz

V*
¼ 1

k
‘n

s

sb

� �
þ Vzb

V*

Experiment has shown that the best value of k is 0.36. Moreover, the outer edge of the buffer zone
can be selected at sb¼ 26, where correspondingly Vzb=V*¼ 12.85. After substitution and simplifi-
cation, we finally obtain

Vz

V*
¼ 1

0:36
‘n(s)þ 3:8 s � 26 (11:61)

This is the well-known logarithmic distribution. It has been found that for Reynolds numbers
greater than 20 000, Equation 11.61 gives a good description in the turbulent core. Near the wall,
Equation 11.56 can be used with success. We will not derive an expression for velocity, however,
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because iterative integration procedures are required, and these are beyond the scope of our study.
Nevertheless, a comparison between the results given here and experiment has shown good
agreement. A plot of the turbulent profile is given in Figure 11.28.

11.5 SUMMARY

The Navier–Stokes equations for a general fluid mechanics problem were stated in this chapter.
Descriptive equations were derived for various laminar flow problems. Graphical solution tech-
niques for unsteady laminar flow problems were also presented. Next we obtained the equations of
motion for turbulent flow. These equations were then simplified and applied to the problem of
turbulent flow in a tube.

PROBLEMS

Steady Laminar Flow Problems

11.1 Write the boundary conditions for steady laminar flow of a Newtonian fluid in an annulus.
11.2 Show that for steady laminar flow of a Newtonian fluid in an annulus, the velocity is

Vz ¼ � dp

dz

� �
R2

4m
1� r

R

� 	2
þ 1� k2

‘n(1=k)
‘n

r

R

� 	� �
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V z
/V

*

FIGURE 11.28 Velocity distribution for turbulent, incompressible flow in a tube. (Adapted from Deissler,
R.G., NACA Report, 1210, 1955.)
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11.3 Verify the derivation of Equation 11.11.

11.4 a. Determine the maximum velocity Vzmax for flow in a circular duct.
b. Express the instantaneous velocity Vz in terms of Vzmax.
c. Write the equation for volume flow rate (Equation 11.11) in terms of Vzmax.

11.5 Verify the derivation of Equation 11.15.

11.6 a. Determine the maximum velocity Vzmax for flow down an incline.
b. Express the instantaneous velocity Vz in terms of Vzmax.
c. Write the equation for volume flow rate (Equation 11.15) in terms of Vzmax.

11.7 Solve the differential equation for flow through a straight channel and derive Equation 11.17.
11.8 Integrate the equation for instantaneous velocity Vz through a straight channel over the cross-

sectional area and derive Equation 11.18.
11.9 Derive the velocity profile of Equation 11.21.
11.10 For plane Couette flow, the velocity profile is

Vz

U
¼ y

h
þ � dp

dz

� �
h2

2mU

� �
y

h

� 	
1� y

h

� 	

Integrate this equation over the cross-sectional area and show that the volume flow rate is
given by

Q ¼ Ubh

2
þ bh3

12m
� dp

dz

� �

where b is the width of the flow area.
11.11 For plane Couette flow, the volume flow rate is given by

Q ¼ Ubh

2
þ bh3

12m
� dp

dz

� �

a. Show that the required relationship between the velocity of the upper plate and the
pressure drop such that the volume flow rate is zero is given by

U ¼ � h2

6m
� dp

dz

� �

b. Substitute this relationship into the instantaneous velocity profile and show that forQ¼ 0,

Vz

U
¼ y

h
� 3

y

h

� 	
1� y

h

� 	
11.12 Verify that Figure 11.9 is a correct representation.
11.13 Derive Equation 11.26 for flow between two rotating concentric cylinders.
11.14 Consider a cylinder moving axially within a tube, as illustrated in Figure P11.14. Write the

differential equation and boundary conditions for steady laminar axial flow through the annulus.

D 2R kD 2kR

V

FIGURE P11.14
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11.15 Show that for the system of Problem 11.14, the fluid velocity is given as

Vz ¼ V
‘n(r=R)

‘n(k)

11.16 Consider the flow of two immiscible fluids between two flat plates as shown in
Figure P11.16. A pressure gradient imposed from inlet to outlet causes flow.

Write the differential equation and boundary conditions for the system if the flow is steady
and laminar.

z

x
1

2

h

h

FIGURE P11.16

11.17 Consider two coaxial cylinders with fluid in the space between them, as shown in Figure
P11.17. The outer cylinder is rotating at an angular velocity of v0. Write the differential
equation and boundary conditions for the system if the flow is steady and laminar.

o

FIGURE P11.17

11.18 Repeat Problem 11.17 for the case in which only the inner cylinder is rotating at vi.
11.19 A Newtonian liquid is being rotated in a cylindrical container of radius R as shown in Figure

P11.19. Write the differential equation and boundary conditions if the angular velocity is v.

z

r

FIGURE P11.19
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11.20 Starting with the continuity equation in Cartesian conditions, use the definitions

x ¼ r cos u

y ¼ r sin u

z ¼ z

to obtain the continuity equation in cylindrical coordinates.
11.21 A wall is in contact with a fluid. Suddenly the wall is set in motion as illustrated in Figure

P11.21. Verify that the differential equation is

@Vz

@t
¼ m

r

@2Vz

@y2

z

y

(b) Wall moves at velocity V (c) Resultant velocity profile(a) Wall and fluid at rest

y

U

t 0 t 0t 0

y

U

FIGURE P11.21

and that the initial and boundary conditions are

IC: t 	 0, Vz ¼ 0
BC 1: y ¼ 0, Vz ¼ U, t > 0
BC 2: y ¼ 1, Vz ¼ 0, t > 0

11.22 A Newtonian fluid in a pipe is initially at rest. Suddenly a pressure drop dp=dz is imposed on
the fluid (in the axial direction). Show that the differential equation, the initial condition, and
the boundary conditions are

r
@Vz

@t
¼ � dp

dz
þ m

1
r

@

@r
r
@Vz

@r

� �� �

IC: t ¼ 0, Vz ¼ 0
BC 1: r ¼ 0, @Vz=@r ¼ 0 (V is finite)

BC 2: r ¼ R, Vz ¼ 0

11.23 A Newtonian fluid in a narrow slit is initially at rest. Suddenly, a pressure drop in the
longitudinal direction is imposed on the fluid. For unsteady laminar flow, determine the
differential equation and boundary conditions for the system. (See Problem 11.22.)

Graphical Solution Methods for Unsteady Problems

11.24 Obtain a table of values for the error function (usually found in heat transfer textbooks or
math handbooks) as given in Equation 11.36. Generate a graphical solution to the suddenly
accelerated flat problem for the first four time intervals. Use the error function table to obtain
the solution for the velocity at the fourth time interval. Plot the error function results on your
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solution graph and determine how well the graphical method works for this problem. (Some
error is expected due to the finite Dy distance selected.) If it is necessary to specify a fluid,
use glycerine. Also, select a Dy that is different from the one used in the text. Note that

Rec ¼ Dy2

nt
¼ Dy2

n(4Dt)
¼ 1

where the 4 is inserted to represent the fourth Dt or the fourth time interval. Continuing,

n Dt ¼ Dy2

4

From the exact solution, we have defined the independent variable h as

h ¼ y

2
ffiffiffiffi
nt

p

Combining with the previous equation gives

h ¼ y

4 Dy

where y is position and Dy is the increment you are to select. Thus there is a relationship
between the graphical solution variables and the error function variable h.

11.25 Generate two graphical solutions to the unsteady plane Couette flow problem using two
different Dy values. Compare the results obtained in the solutions by evaluating profiles at
equal times.

11.26 In the problem of unsteady flow between concentric circular cylinders, the solution given
was for the inner cylinder rotating. Generate a solution for when the outer cylinder rotates at
a fixed angular velocity and the inner cylinder is stationary.

11.27 Verify that the time increment for unsteady flow between concentric cylinders is given by

t ¼ r R2 � R1ð Þ2
81m

11.28 Using the graphical method, generate velocity profiles for the first five time intervals for
unsteady start-up in a plane channel. Solve the problem using a Dy that is different from that
in the text. Plot also the steady-state solution (Equation 11.17) on the same axes. Note that
when this is done, the relationship between Dpt=rL and Vzmax is automatically fixed. To
develop such a relationship, rewrite Equation 11.17 as

Vz

Vz max

¼ 1� y

h

� 	2
� �

Let the graph vary from 0 to 1 for velocity and from 0 (at the centerline) to 1 (at the wall) for
position. Using the definition of Vzmax and Rec¼ 1 solve for Dpt=rL in terms of Vzmax and
construct the graphical solution.

Turbulent Flow Problems

11.29 Ethyl alcohol flows in a 1
2 -nominal, schedule 40 pipe. Determine the pressure drop (in Pa=m)

at transition.
11.30 Repeat Problem 11.29 for glycerine.
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11.31 Repeat Problem 11.29 for air.
11.32 Repeat Problem 11.29 for hydrogen.
11.33 Benzene flows in a long 6-nominal, schedule 40 tube. The pressure drop in the pipe is

0.03 lbf=ft2 per foot of length. Calculate the wall shear stress and plot the velocity profile in
the pipe. Use Figure 11.28 if appropriate.

11.34 Water flows in a long tube made of 10-nominal, schedule 40 wrought iron. The pressure
drop in the pipe is 3.0 kPa per meter of length. Plot the velocity profile. Use Figure 11.28
if appropriate.

11.35 Examine Equations 11.5 through 11.8 and determine the dimension of the del operator.
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12 Inviscid Flow

In real-life situations, most flow is turbulent. In pipe flow, in open-channel flow, and in flow over
immersed bodies, laminar conditions exist only rarely. To analyze problems in these areas of study,
it is most beneficial to be able to obtain a velocity or a velocity distribution for the problem at hand.
As we saw in the last chapter, however, solution of the Navier–Stokes equations for turbulent flow
problems is no easy task. Exact solutions were obtainable only for simplified laminar flow cases.
Consequently, it is often necessary to make approximations so that the engineer can formulate a
working solution to a number of important problems.

Let us for the moment consider flow past an object, as illustrated in Figure 12.1. Streamlines of
flow about the object also appear in the diagram. Upstream the flow is uniform. In the vicinity of the
object, the flow pattern is altered from the uniform incoming flow—the object displaces the flow.
Far from the surface, however, the fluid is not affected by the presence of an object. In the regions
labeled A in Figure 12.1, the streamlines are therefore uniform and parallel. At the surface, the fluid
adheres because of friction. Regardless of how small the viscosity of the fluid is, velocity at the wall
is zero. We therefore conclude that viscous effects can be neglected in a flow field except in the
vicinity of a surface. It is thus possible to divide the flow into two regions. The first of these is a
nonviscous region where viscosity need not be included in the equations of motion. The second is a
viscous region for the fluid in the immediate vicinity of the object.

A study of flow of a nonviscous or inviscid fluid is the topic of interest in this chapter. Flow in
the vicinity of an immersed object or near a surface is often referred to as boundary-layer flow, the
topic of the following chapter. In this chapter, we will develop equations for steady, incompressible,
inviscid flow. The continuity and Euler equations will be derived from the Navier–Stokes equations
of Chapter 11. Stream and potential functions will be introduced and used to describe a multitude of
flow fields. We will then use superposition to combine simpler flow fields and form more complex
ones. Finally, we will discuss irrotationality of an inviscid flow and write the Laplace equation for
stream and potential functions.

12.1 EQUATIONS OF TWO-DIMENSIONAL INVISCID FLOWS

The continuity and momentum (Navier–Stokes) equations were presented in the last chapter for a
general three-dimensional flow of a Newtonian fluid. Now, we will reduce those equations to
describe the flow of a nonviscous fluid, restricting our study to a two-dimensional, inviscid,
incompressible flow. Solutions to the inviscid equations for several problems will be presented.
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12.1.1 CONTINUITY EQUATION

For two-dimensional flow in Cartesian coordinates, we eliminate the velocity in the z-direction, Vz,
from the continuity equation of Chapter 11 (Equation 11.1). For steady, incompressible, inviscid,
two-dimensional flow, Equation 11.1 becomes

@Vx

@x
þ @Vy

@y
¼ 0 (12:1)

Correspondingly, in polar cylindrical coordinates, the continuity equation (Equation 11.3) becomes

@ rVrð Þ
@r

þ @ Vuð Þ
@u

¼ 0 (12:2)

12.1.2 MOMENTUM EQUATION

Again we refer to Chapter 11. Equations 11.2a through 11.2c are the Navier–Stokes equations. For
an inviscid flow, the viscosity m in those equations is set equal to zero. For two-dimensional flow,
Vz¼ 0; and for the steady case, all differentiation with respect to time is zero. The equations of
motion become in Cartesian coordinates

x-component: r Vx
@Vx

@x
þ Vy

@Vx

@y

� �
¼ � @p

@x
þ rgx (12:3)

y-component: r Vx
@Vx

@x
þ Vy

@Vy

@y

� �
¼ � @p

@y
þ rgy (12:4)

The z-component equation vanishes. Performing similar operations for the Navier–Stokes equations
in polar cylindrical coordinates (Equation 11.4a through 11.4c) yields

r-component: r Vr
@Vr

@r
þ Vu

r

@Vr

@u
� V2

u

r

� �
¼ � @p

@r
þ rgr (12:5)

u-component: r Vr
@Vu

@r
þ Vu

r

@Vu

@u
þ VrVu

r

� �
¼ � 1

r

@p

@u
þ rgu (12:6)

Equations 12.3 through 12.6 in differential form for frictionless flow are called the Euler equations.
The continuity and Euler equations are the equations of two-dimensional, steady, inviscid flow.

A

A

FIGURE 12.1 Streamlines of flow past an object.
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12.2 STREAM FUNCTION AND VELOCITY POTENTIAL

For two-dimensional inviscid flow problems, the continuity and Euler equations must be solved
subject to boundary conditions. For viscous flow, the tangential and normal velocity at a boundary is
zero owing to friction; for inviscid flow, the tangential fluid velocity at a boundary is nonzero
because the fluid has no viscosity. The normal fluid velocity is zero, however. These, in general, are
the boundary conditions in inviscid flow.

The continuity and Euler equations contain three unknowns—Vx, Vy, and p. The equations must
be solved simultaneously; and because they are nonlinear, it is difficult to apply direct solution
methods successfully. This complexity can be reduced, however, by the introduction of two
functions, both capable of describing the velocity components of the flow field. These are the
stream function c and the potential function f.

The stream function c is a function of x and y. It is defined in terms of the flow velocities as

Vx ¼ @c

@y

Vy ¼ � @c

@x

(12:7)

The stream function defined here satisfies the two-dimensional continuity equation. Thus, if c(x, y)
is known and is a continuously differentiable function, the velocity components Vx and Vy can be
determined. The reason for defining the stream function in this manner is that the velocity vector

V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
x þ V2

y

q� �
is in the direction of the tangent of the streamline at any point (x, y) in the flow

field. From calculus, the total differential of the stream function can be written as

dc ¼ @c

@x
dxþ @c

@y
dy

Combining this equation with Equation 12.7, we get

dc ¼ �Vy dxþ Vx dy (12:8)

On a line of constant c, dc¼ 0, and Equation 12.8 can be rearranged to solve for the slope as

dy

dx

����
c

¼ Vy

Vx
(12:9)

which is the differential equation of the streamlines. This concept is illustrated in Figure 12.2. The
streamline is denoted as a ‘‘dc¼ 0’’ or a ‘‘c¼ a constant’’ line. The velocity vector and components
are drawn at the point of interest (x, y). The slope of the tangent to the streamline at (x, y) is
dy=dx¼Vy=Vx.

The potential function f is a function of x and y. It is defined in terms of the flow velocities as

Vx ¼ @f

@x

Vy ¼ @f

@y

(12:10)
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Thus, if the velocity potential f is known and is continuously differentiable, the velocity compon-
ents Vx and Vy can be found. The differential of f is written as

df ¼ @f

@x
dxþ @f

@y
dy

Combining this equation with Equations 12.10, we get

df ¼ Vx dxþ Vy dy (12:11)

On a line of constant f, df¼ 0, and Equation 12.11 can be rearranged to solve for the slope as

dy

dx

����
f

¼ �Vx

Vy
(12:12)

This is the differential equation of the potential lines. Equation 12.9 multiplied by Equation 12.12
yields

dy

dx

����
c

 !
dy

dx

����
f

 !
¼ Vy

Vx
� �Vx

Vy
¼ �1

Therefore, at any point (x, y) in a flow field, the streamline is normal to the potential line (see
Figure 12.3).

Similar definitions for c and f can be stated for velocity components in polar cylindrical
coordinates:

Vr ¼ 1
r

@c

@u
¼ @f

@r

Vu ¼ � @c

@r
¼ 1

r

@f

@u

(12:13)

It can be shown in this coordinate system that streamlines and potential lines are normal to each
other.

V

dy/dx

d   0 or
  a constant

Vy

Vx(x, y)

FIGURE 12.2 Streamline and velocity through a point.
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Example 12.1

A flow field is described by the streamline equation

c ¼ xy

a. Determine the velocity field.
b. Determine the velocity potential function.
c. Determine whether the flow satisfies the continuity equation.
d. Plot the streamlines and potential lines on the same set of axes.

SOLUTION

a. The potential function is found by applying Equations 12.7 and 12.10. By definition,

Vx ¼ @c

@y
¼ x

Vy ¼ � @c

@x
¼ �y

Also,

@f

@x
¼ Vx ¼ x

from which we obtain by integration

f ¼ x2

2
þ f1(y)þ C1

where: f1(y) is an unknown function of y
C1 is a constant

dy/dx     –Vx/Vy

dy/dx     Vy/Vx

a constant

(x, y)

a constant

FIGURE 12.3 Orthogonality of streamlines and potential lines.
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Moreover,

@f

@y
¼ Vy ¼ �y

which gives

f ¼ � y2

2
þ f2(x)þ C2

where: f2(x) is an unknown function of x
C2 is a constant

Equating both expressions for f yields

x2

2
þ f1(y)þ C1 ¼ � y2

2
þ f2(x)þ C2

We thus conclude that

f1(y) ¼ � y2

2

f2(x) ¼ x2

2
C1 ¼ C2

b. Because determining velocity involves only derivatives of f or c, constants are generally not
important and arbitrarily can be set equal to zero. The potential function, then, is

f ¼ 1
2 x2 � y2ð Þ

c. The continuity equation is

@Vx

@x
þ @Vy

@y
¼ 0

By substitution, we get

þ1� 1 ¼ 0

Thus, continuity is satisfied.

d. For simplicity, we will restrict the plot to the first quadrant, where x � 0 and y � 0. The stream
function is

c ¼ xy

Selecting constants for c gives various equations, each of which must be graphed:

c ¼ 0 xy ¼ 0 x ¼ 0, y ¼ 0
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c ¼ 8 xy ¼ 8

y x

8 1
4 2

2 4
1 8

c ¼ 16 xy ¼ 16

y x

10 1.6
8 2
4 4
2 8

1.6 10

c ¼ 24 xy ¼ 24

y x

10 2.4

8 3
6 4
4 6
3 8

2.4 10

c ¼ 32 xy ¼ 32

y x

10 3.2
8 4

4 8
3.2 10

Similarly, for the velocity potential

f ¼ 1
2 x2 � y2ð Þ

we have

f ¼ 0 y ¼ x y ¼ �x
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f ¼ 8 y2 ¼ x2 � 16

y x

0 4
4.47 6

6.9 8

f ¼ �8 x2 ¼ y2 � 16

y x

4 0
6 4.47
8 6.90

10 9.17

f ¼ 16 y2 ¼ x2 � 32

y x

0 5.65
2 6
5.65 8

f ¼ �16 x2 ¼ y2 � 32

y x

5.65 0

6 2
8 5.65

f ¼ 24 y2 ¼ x2 � 48

y x

0 6.92
4 8
5.74 9

f ¼ �24 x2 ¼ y2 � 48

y x

6.92 0

8 4
9 5.74

A plot of these equations is given in Figure 12.4. This type of graph is called a flow net. The field
represents flow into a corner. If the corresponding plot for the second quadrant were also drawn (it is
symmetric about the y- and x-axis), we would have a model of inviscid flow striking a flat surface.
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12.3 IRROTATIONAL FLOW

Rotation is a characteristic of flow. Rotational flow occurs if a fluid element rotates while the fluid
is flowing. Consider, for example, Figure 12.5a for a viscous fluid and Figure 12.5b for an inviscid
fluid; in both cases the flow is between parallel boundaries. In Figure 12.5a, a fluid element at
position 1 will deform as it moves to position 2. The lower horizontal line is carried downstream
faster than the upper line. The upper line is nearer the wall, where the velocity is zero. Because the
sides of the element have rotated, we use the name rotational flow. Figure 12.5b shows a fluid
element at positions 1 and 2, but the sides of the element have not rotated because the fluid is
inviscid. The velocity at the wall in the main flow direction is not zero; the shape of the element has
been preserved. This is called irrotational flow.

As a second example, consider briefly circular or vortex flow, as illustrated in Figure 12.6. In
Figure 12.6a (for a viscous fluid), the flow is rotational as compared to Figure 12.6b for irrotational
flow. A final example of irrotational flow is illustrated in Figure 12.7 for flow through a converging
duct. As the flow accelerates, the fluid element elongates. The diagonals of the element rotate in

10

8

6

4

2

0
0 2 4 6

x

y

8 10

32

24

16

8

0

0

 24
 16

 8
 0

 –8
 –16

 –24

FIGURE 12.4 Graph of stream and potential functions for Example 12.1.

x

(a) Rotational flow

1 2

y

(b) Irrotational flow

1 2x

y

FIGURE 12.5 Rotational and irrotational flow in a duct.
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equal amounts but in opposite directions, thus balancing each other and preserving the direction of
each side of the element.

Now let us develop an expression for the rotation in a flow field. Figure 12.8 shows a fluid
element in the xy plane. The element dimensions are dx by dy, and two of the sides are drawn

Fixed

(a) Rotational flow (b) Irrotational flow

Fixed

FIGURE 12.6 Rotational and irrotational flow.

FIGURE 12.7 Irrotational flow through a converging duct.
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dx

D

C D

D

dy dy

dx dx

Vx
∂Vx

∂y
dy+

Vy

Vx

Vy

∂Vy

∂x
dx+

FIGURE 12.8 Rotation of a fluid element.

592 Introduction to Fluid Mechanics



separately to indicate the velocity at each corner. The rotation of each of the sides about point C is
determined by dividing the difference in endpoint velocities by the length of the appropriate side.
Taking the counterclockwise direction as positive, we obtain

Rotation of CA about point C:

Vx � Vx þ @Vx=@yð Þdy½ �
dy

¼ � @Vx

@y

Rotation of CD about point C:

Vyþ @Vy=@x
� 	

dx

 �� Vy

dx
¼ @Vy

@x

These equations are written with the assumption that the element is not translating. The average of
these two angular velocities in the plane normal to the z-axis is called the rotation. Thus

vz ¼ 1
2

@Vy

@x
� @Vx

@y

� �
(12:14)

Similarly, for the general three-dimensional case, we also have

vx ¼ 1
2

@Vz

@y
� @Vy

@z

� �

and

vy ¼ 1
2

@Vx

@z
� @Vz

@x

� �

For our study of potential flow, we will be concerned only with vz. In polar cylindrical coordinates,
there results

vz ¼ 1
2

1
r

@ rVuð Þ
@r

� 1
r

@ Vrð Þ
@u

� 
(12:15)

For irrotational flow, Equation 12.14 gives another useful relationship between the velocities:

@Vy

@x
� @Vx

@y
¼ 0 (12:16)

Example 12.2

Determine whether the flow of Example 12.1 is rotational. That flow was described by

c ¼ xy and f ¼ 1
2 x2 � y2ð Þ
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SOLUTION

For irrotational flow, Equation 12.16 applies:

@Vy

@x
� @Vx

@y
¼ 0

By definition,

Vx ¼ @c

@y
¼ x

and

Vy ¼ @c

@x
¼ �y

From these definitions, we obtain

@Vy

@x
¼ 0 and

@Vx

@y
¼ 0

The flow velocities thus satisfy the condition of irrotationality.

The stream function is applicable in both rotational and irrotational flows because the stream
function satisfies the continuity equation. The potential function applies only to irrotational flows.

For irrotational flow, it is possible to integrate the Euler equations to obtain another relationship
between the velocity and pressure in the flow. If we work in Cartesian coordinates and let gravity be
nonzero only in the vertical direction, the Euler Equations 12.3 and 12.4 are

Vx
@Vx

@x
þ Vy

@Vx

@y
¼ � 1

r

@p

@x
(12:3)

Vx
@Vy

@x
þ Vy

@Vy

@y
¼ � 1

r

@p

@x
� g (12:4)

Gravity is thus positive downward. By using the irrotational flow condition, namely,

@Vx

@y
¼ @Vy

@x

the preceding equations become

Vx
@Vx

@x
þ Vy

@Vy

@x
¼ � 1

r

@p

@x

and

Vx
@Vx

@y
þ Vy

@Vy

@y
¼ � 1

r

@p

@y
� g
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These two equations can be simplified to obtain

1
2

@ V2
x

� 	
@x

þ 1
2

@ V2
y

� �
@x

¼ � 1
r

@p

@x

and

1
2

@ V2
x

� 	
@y

þ 1
2

@ V2
y

� �
@y

¼ � 1
r

@p

@y
� g

For constant density, both equations can now be integrated to give

1
2

V2
x þ V2

y

� �
¼ � p

r
þ f1(y)

1
2

V2
x þ V2

y

� �
¼ � p

r
� gyþ f2(x)

(12:17)

where
f1 is an unknown function of y
f2 is an unknown function of x

Equating gives

f1(y) ¼ �gyþ f2(x)

or

f2(x) ¼ f1(y)þ gy

The left-hand side is a function of only x, whereas the right-hand side is a function of only y.
For this to occur, both sides must equal a constant. Combining the last equation with Equation
12.17 gives

1
2

V2
x þ V2

y

� �
¼ � p

r
� gyþ a constant

p

r
þ V2

2
þ gy ¼ a constant ¼ C (Bernoulli’s equation) (12:18)

This equation is recognized as Bernoulli’s equation derived by assuming inviscid, irrotational flow
in two dimensions. By knowing the equation of the streamlines or the velocity potential, we can
determine the total velocity V. Bernoulli’s equation then allows for finding the pressure in the flow.

12.4 LAPLACE’S EQUATION AND VARIOUS FLOW FIELDS

The velocity potential and the stream function can be used to solve simple problems in two-
dimensional, inviscid, irrotational flow. The differential equation that f and c must satisfy is the
Laplace equation. It can be obtained by combining the continuity equation and the irrotationality
relation with the definition of velocity in terms of these functions:
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Continuity:
@Vx

@x
¼ @Vy

@y
¼ 0 (12:1)

Potential function: Vx ¼ @f

@x

Vy ¼ @f

@y

(12:10)

Combining equations, we obtain

@

@x

@f

@x

� �
þ @

@y

@f

@y

� �
¼ 0

or

@2f

@x2
þ @2f

@y2
¼ 0 (12:19)

This is Laplace’s equation for the velocity potential; it can be rewritten as

r2f ¼ 0

A similar development can be performed for the stream function:

Irrotationality relation:
@Vy

@x
� @Vx

@y
¼ 0 (12:16)

Stream function: Vx ¼ @c

@y

Vy ¼ � @c

@x

(12:17)

Combining equations, we obtain

@

@x
� @c

@x

� �
� @

@y

@c

@y

� �
¼ 0

or

@2c

@x2
þ @2c

@y2
¼ 0 (12:20)

which is Laplace’s equation for the streamlines. In del operator notation,

r2c ¼ 0

In polar cylindrical coordinates, Laplace’s equation for the velocity potential is

@2f

@r2
þ 1

r

@f

@r
þ 1
r2

@2f

@u2
¼ 0 (12:21)

which is easily derivable from Equation 12.19. We will now examine several solutions to the
equations for some simple flows.
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12.4.1 UNIFORM FLOW

Uniform flow can be described as flow parallel to, say, the x-axis moving in the positive direction at
a constant velocity U. Thus,

Vx ¼ U

and

Vy ¼ 0

By definition,

Vx ¼ @f

@x
¼ U

from which we obtain

f ¼ Uxþ f1(y)

Also,

Vy ¼ @f

@y
¼ 0

f ¼ f2(x)

Equating both expressions for f gives

Uxþ f1(y) ¼ f2(x)

or

f1(y) ¼ Uxþ f2(x)

We therefore conclude that

f ¼ Ux (uniform flow) (12:22a)

Following a similar procedure for the stream function, we obtain

c ¼ Uy (uniform flow) (12:22b)

A plot of uniform flow is provided in Figure 12.9 for values of 0, U, 2U, 3U, and 4U.

12.4.2 SOURCE FLOW

Source flow can be described as a radially outward flow emanating from a point. The velocity in the
xy plane is radial at any location, as is illustrated in Figure 12.10. At any location along a circle of
radius r, the radial velocity Vr is a constant. The flow rate per unit length into the page is a constant
that is equal to the product of radial velocity and circumferential distance:
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Q

L
¼ q ¼ 2prVr

Because q is a constant, the flow is steady. At the origin, where r¼ 0, the radial velocity Vr must be
infinite. Mathematically, a point source is known as a singular point and does not exist in nature.
From the preceding equation and discussion,

0

U

2U

3U

4U

4U3U2UU
0

3

4

2

1

0

y

0 1 2 3
x

4

FIGURE 12.9 Streamlines and potential lines for uniform flow.

Vr

Vx

x

Vr
Vy

(x, y)

y

r
r θ

FIGURE 12.10 Flow emanating from a point or source flow.
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Vr ¼ q

2pr
Vu ¼ 0

By definition,

Vr ¼ @f

@r
¼ q

2pr

Integrating gives

f ¼ q

2p
‘n(r)þ f1(u)

Moreover,

Vu ¼ 1
r

@f

@u
¼ 0

Integrating yields

f ¼ f2(r)

Equating both expressions for f, we obtain

q

2p
‘n(r)þ f1(u) ¼ f2(r)

It is concluded, then, that for source flow

f ¼ q

2p
‘n(r) (source flow) (12:23a)

Following a similar procedure for the stream function, we find

c ¼ qu

2p
(source flow) (12:23b)

For source flow, it is seen that potential lines are concentric circles and streamlines are radial lines from
the origin. Potential lines and streamlines are illustrated in Figure 12.11 for various values of f and c.

12.4.3 SINK FLOW

Sink flow is radially inward flow directed at a point; it is the opposite of source flow. At any location
along a circle of radius r, the radial velocity Vr is a constant. The flow rate per unit length into the
page is a constant that is equal to the product of radial velocity and circumferential distance:

Q

L
¼ q ¼ �2prVr

Again we take q as a constant and assume the flow to be steady. At the origin, where r¼ 0, Vr must
therefore be infinite. This is a singular point that has no counterpart in nature. From the preceding,
we have
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Vr ¼ � q

2pr
Vu ¼ 0

By definition,

Vr ¼ @f

@r
¼ � q

2pr

Integrating gives

f ¼ � q

2p
‘n(r)þ f1(u)

Further, with

Vu ¼ 1
r

@f

@u
¼ 0

we obtain

f ¼ f2(r)

Equating both expressions for f, we find

� q

2p
‘n(r)þ f1(u) ¼ f2(r)

Thus, for radial flow into a sink, we get

f ¼ � q

2p
‘n(r) (sink flow) (12:24a)

 q/4

 q/8

 q/2

0

 3q/8

0

7q/8

3q/4

5q/8

q/2

3q/8

q/4

q/8

FIGURE 12.11 Potential lines and streamlines for source flow.
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Similarly, it can be shown that for a sink,

c ¼ � qu

2p
(sink flow) (12:24b)

12.4.4 IRROTATIONAL VORTEX FLOW

A counterclockwise irrotational vortex (Figure 12.12) is characterized by the following velocity
components:

Vr ¼ 0

Vu ¼ C

r

where C is a constant. By definition,

Vr ¼ @f

@r
¼ 0

which leads to

f ¼ f1(u)

Also,

Vu ¼ 1
r

@f

@u
¼ C

r

Integrating yields

f ¼ Cuþ f2(r)

3Г/8

Г/4

Г/2

3Г/4

5Г/8

0

Г/2

7Г/8

Г/8

Г/4

Г/8

3Г/8

0

FIGURE 12.12 Potential lines and streamlines for vortex flow.
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Equating both expressions for f, we find

f ¼ Cu

Similarly, it can be shown that for free vortex flow,

c ¼ �C ‘n(r)

It is convenient when dealing with vortex flow to introduce the term circulation, denoted as G. The
circulation is defined as the result obtained by integrating the tangential velocity around any closed
contour. A simple contour that we can select is that of a circle of radius r. Thus,

G ¼
ð
Vu ds

where the arc length for a circle is ds¼ r du, to be integrated from 0 to 2p. Thus,

G ¼
ð2p
0

Vur du ¼
ð2p
0

C

r

� �
r du

or

G ¼ 2pC

In terms of the circulation, then, we have for vortex flow

f ¼ Gu

2p
(vortex flow) (12:25a)

c ¼ G

2p
‘n(r) (vortex flow) (12:25b)

Streamlines and potential lines for a vortex are illustrated in Figure 12.12. Flow nets for a free
vortex and for a source (or sink) have the same form; the difference is that streamlines and potential
lines are exchanged. (See Equations 12.24 and 12.25.) Note that at r¼ 0, the tangential velocity Vu

becomes infinite, so the origin is a singular point in vortex flow.

Example 12.3

The eye of a tornado has a diameter of 40 m. In the eye, the tornado flow field is approximated as solid
body rotation. Outside the eye, the flow is a free vortex. Determine the tangential velocity distribution in
the tornado if the maximum wind velocity is 50 m=s. Neglect translational motion. Determine also the
pressure variation in the tornado and calculate the minimum pressure.

SOLUTION

The streamlines of the tornado are circular as shown in Figure 12.13, and we have for the eye

Vu1 ¼ rv (r � R)
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Outside the eye,

Vu2 ¼
C

r
(r � R)

The maximum wind velocity occurs where r¼R, at the edge of the eye. Given R as 20 m and Vumax as
50 m=s, we calculate

v ¼ Vumax

R
¼ 50

20
¼ 2:5 rad=s

Moreover, at the edge of the eye the two velocities must be equal. Hence,

Rv ¼ C

R

Solving for the constant C, we obtain

C ¼ vR2 ¼ 2:5(400) ¼ 1 000 m2=s

The expressions for velocity thus become

Vu1 ¼ 2:5r (m=s) (r < 20 m)

Vu2 ¼
1 000
r

(m=s) (r < 20 m)

The pressure distribution within the eye is found by applying Euler’s equations because flow is rotational
in the eye. Outside the eye, the flow is irrotational; consequently, Bernoulli’s equation can be used.
Within the eye, Vr¼ 0, and Vu is a function of only r; therefore, partial derivatives of Vu with respect to u
vanish. The Euler equations in polar cylindrical coordinates (Equations 12.5 and 12.6) reduce to

r
V2
u

r
¼ @p

@r

R

FIGURE 12.13 Streamlines and velocity distribution for flow in a tornado.
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and

1
r

@p

@u
¼ 0

The second of these equations indicates that pressure is not a function of u. The first equation, then, can
be rewritten as an ordinary differential equation with Vu1

inserted for Vu because we are concerned with
the center of the eye:

dp

dr
¼ rV2

u1

r
¼ rr2v2

r
¼ rrv2

We now obtain

p ¼ rr2v2

2
þ C1 (r � R) (i)

where C1 is a constant of integration.
Outside the eye, Bernoulli’s equation is applied to the region near R and to a location far from the

tornado, where the pressure is atmospheric and the velocity is zero. We get

p

r
þ V2

u2

2
¼ pa

r

from which we obtain

p ¼ pa �
rV2

u2

2
¼ pa � rC2

2r2

or

p ¼ pa � rv2R4

2r2
(r � R) (ii)

At the edge of the eye, r¼R; Equations i and ii must be equal at this point Thus

rR2v2

2
þ C1 ¼ pa � rv2R2

The constant of integration becomes

C1 ¼ pa � rv2R2

Substitution into Equation i gives

p ¼ rr2v2

2
þ pa � rv2R2

2

or

pa � pð Þ
r

¼ R2v2 � r2v2

2
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Recalling that Vumax ¼ Rv, we find the following after substitution and simplification:

pa � pð Þ
rV2

umax

¼ 1� r2

2R2
(r � R)

Rewriting Equation ii, we get

pa � pð Þ
rV2

umax

¼ R2

2r2
(r � R)

The pressure distribution is plotted in Figure 12.14. As we see in the figure, the minimum pressure
occurs at the center of the eye. Moreover, the entire pressure profile is less than atmospheric in the region
about the tornado. For this example, the minimum pressure is calculated, with r¼ 0, as

pa � pð Þ
rV2

umax

¼ 1

After substitution, we get

101 300� p

1:19(50)2
¼ 1

where r for air was obtained from Table A.6. Solving, we get the minimum pressure in the eye:

p ¼ 98:3 kPa

One of the damaging effects of a passing tornado on a dwelling is on windows. Pressure inside may still
be near atmospheric while the pressure drops outside; in many cases, this pressure difference is sufficient
to blow windows out.
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FIGURE 12.14 Pressure profile in the tornado of Example 12.3.
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12.5 COMBINED FLOWS AND SUPERPOSITIONS

In each of the inviscid flows of the preceding section, the potential function satisfied Laplace’s
equation. It is possible to add the potential functions of various flows to obtain more complex
potential flows. The prime requirement of a newly created flow is that its potential function must
also satisfy Laplace’s equation. It is possible to do this because Laplace’s equation is linear and
adding potential flows is a linear operation. To illustrate, consider two potential functions f1 and f2;
both satisfy Laplace’s equation:

@2f1

@x2
þ @2f1

@y2
¼ 0 (12:26a)

and

@2f2

@x2
þ @2f2

@y2
¼ 0 (12:26b)

The test for linearity is this: if f1 and f2 are solutions, then f1þf1 must also be a solution:

@2 f1 þ f2ð Þ
@x2

þ @2 f1 þ f2ð Þ
@y2

¼ 0

Because this equation equals Equations 12.26a and 12.26b added together, the Laplace equation is
said to be linear. Examples of nonlinear equations are the Euler equations and the Navier–Stokes
equations.

12.5.1 FLOW ABOUT A HALF-BODY

The flow field that results from combining a source and uniform flow is known as flow about a
half-body. The potential function is found by adding Equations 12.22a and 12.23a:

f ¼ Uxþ q

2p
‘n(r)

f ¼ Ur cos uþ q

2p
‘n(r) (flow about a half-body) (12:27a)

c ¼ Uyþ qu

2p

c ¼ Ur sin uþ qu

2p
(flow about a half-body) (12:27b)

The resulting flow pattern is illustrated in Figure 12.15. The source is placed at the origin, and
uniform flow is from left to right. At the front of the body is a stagnation point. The velocity at any
point is determined by differentiation of the stream or potential function:

Vr ¼ 1
r

@c

@u
¼ U cos uþ q

2pr

and

Vu ¼ � @c

@r
¼ �U sin u
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The stagnation point exists where the velocity is zero. Thus

Vu ¼ 0 ¼ �U sin u

u ¼ 0 or p

Moreover,

Vr ¼ 0 ¼ U cos uþ q

2pr

If u¼ 0, then this equation indicates a negative r, which has no meaning. Therefore, u¼p and

0 ¼ �U þ q

2pr

The location of the stagnation point, then, is

r ¼ q

2pU
u ¼ p

The streamline that passes through the stagnation point is determined by substituting these values
for r and u into Equation 12.27b:

c ¼ Ur sin uþ qu

2p
¼ q

2

The constant q=2 when substituted for c in Equation 12.27b is the equation of the stagnation
streamline that approaches from the left and divides in two to form the outline of the half-body:

q

2
¼ Ur sin uþ qu

2p

The body extends to infinity on the right.

Source
Uniform
flow,    

Stagnation
point

q/2   

q/2

q/2

y

x

FIGURE 12.15 Flow about a half-body.
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12.5.2 SOURCE AND SINK OF EQUAL STRENGTHS

Consider a source and sink both of strength q=2p and located at (x, y) coordinates of (�a, 0) and
(a, 0), respectively, as sketched in Figure 12.16a. The potential for this combined flow is obtained
by adding Equations 12.23a and 12.24a:

f ¼ q

2p
‘n r1ð Þ � q

2p
‘n r2ð Þ

The equations for these flows were originally written assuming the origin to be the location of the
sink and the source. To accomplish an appropriate phase shift and to transform from polar to
Cartesian coordinates, we use

r21 ¼ (xþ a)2 þ y2

r22 ¼ (x� a)2 þ y2

The potential function becomes

f ¼ q

2p
‘n

(xþ a)2 þ y2

(x� a)2 þ y2

� 1=2
(source and sink) (12:28a)

The stream function for the combined source and sink is obtained by adding Equations 12.23b and
12.24b, giving

c ¼ qu1
2p

� qu2
2p

Source

–a

y

a x

Sink

(a) (b)

FIGURE 12.16 Streamlines of flow for a source and sink of equal strength. Centers of circles are located
at the intersection of corresponding radial lines from source and sink. Each circle passes through both
singularities.
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For a source or a sink at the origin, tan u¼ y=x. Similar expressions can be written for the angles of
the preceding equation; after substitution, the stream function would become

c ¼ q

2p
tan�1 y

xþ a
� tan�1 y

x� a

� �

We now use the trigonometric identity

tan�1 a1 � tan�1 a2 ¼ tan�1 a1 � a2

1þ a1a2

and rewrite the stream function as

c ¼ q

2p
tan�1 [y=(xþ a)]� [y=(x� a)]

1� y2= x2 � a2ð Þ½ �

Simplifying leads to

c ¼ � q

2p
tan�1 2ay

x2 þ y2 � a2
(source and sink) (12:28b)

The streamline pattern, diagrammed in Figure 12.16b, consists of circles with each center falling on
the y-axis. All circles pass through the source and the sink at (�a, 0). The potential lines are also all
circles; their centers fall on the x-axis.

12.5.3 FLOW ABOUT A DOUBLET

The flow pattern for a source and sink of equal strength was given in the preceding paragraphs. The
source was located at (�a, 0) and the sink at (a, 0). If the distance between them is allowed to shrink
to zero (that is, as a ! 0) and the product of qa is held constant, the resulting flow pattern is known
as a doublet. To obtain a potential and stream function for a doublet, consider Figure 12.17. The
source is denoted as point B, the sink is point C, point P is any arbitrary location in the flow field,

x

C

r2
r1

θ1

θz

θ2 – θ1A

B

Py

r

FIGURE 12.17 Source and sink flow.
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and A is located such that CA is perpendicular to PB. The potential function is found by adding
Equations 12.23a and 12.24a:

f ¼ q

2p
‘n r1ð Þ � ‘n r2ð Þ½ � ¼ q

2p
‘n

r1
r2

Referring to Figure 12.17, we see that the length r1 is

r1 ¼ BAþ AP ¼ 2a cos u1 þ r2 cos u2 � u1ð Þ

By substitution, the potential function becomes

f ¼ q

2p
‘n

2a cos u1
r2

þ cos u2 � u1ð Þ
� 

As a!0, then,

r2 ! r

u2 ! u

and

cos u2 � u1ð Þ ! 1

The potential function becomes in the limit

f ¼ q

2p
‘n

2a cos u
r

þ 1

� �

For any quantity d,

‘n(dþ 1) � d if d 	 1

The velocity potential then reduces to

f ¼ qa cos u

pr
(doublet flow) (12:29a)

The stream function for a doublet is obtained by adding Equations 12.23b and 12.24b:

c ¼ q

2p
u1 � u2ð Þ

Referring to Figure 12.17, we see the length AC is

AC ¼ r2 sin u2 � u1ð Þ ¼ 2a sin u

Now as a! 0, r2!r, and sin (u2 – u1) ! u2 – u1. The preceding equation then becomes

u2 � u1 ¼ 2a
r

sin u
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and the stream function is

c ¼ � qa

pr
sin u (doublet flow) (12:29b)

The streamline pattern is provided in Figure 12.18.

12.5.4 FLOW ABOUT A RANKINE BODY

The flow field that results from combining a source and a sink of equal strength with a uniform flow
gives what is known as flow about a Rankine body. The potential function is found by adding
Equations 12.22a and 12.28a:

f ¼ Uxþ q

2p
‘n

(xþ a)2 þ y2

(x� a)2 þ y2

� 1=2
(Rankine body) (12:30a)

The stream function plotted in Figure 12.19 is obtained by adding Equations 12.22b and 12.28b:

c ¼ Uy� q

2p
tan�1 2ay

x2 þ y2 � a2
(Rankine body) (12:30b)

The velocity components are determined by differentiating the potential function

Vx ¼ @f

@x
¼ U þ q

2p
xþ a

(xþ a)2 þ y2
� x� a

(x� a)2 þ y2

� 
(12:31a)

FIGURE 12.18 Streamlines of flow for a doublet.
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This simplifies to

Vx ¼ U � qa

2p
x2 � y2 � a2

(xþ a)2 þ y2

 �

(x� a)2 þ y2

 � (12:31b)

Also,

Vy ¼ @f

@y
¼ q

2p
y

(xþ a)2 þ y2
� y

(x� a)2 þ y2

� 

or

Vy ¼ � 2qaxy
p

1

(xþ a)2 þ y2

 �

(x� a)2 þ y2

 �

( )
(12:32)

The stagnation points along the body are located where the velocity components are zero:

Vx ¼ 0

and

Vy ¼ 0

The second of these conditions, when combined with Equation 12.32, leads to the conclusion that
y¼ 0. The stagnation points are expected to fall on the x-axis; the flow is symmetric about the x-axis.
Setting Vx¼ 0 and y¼ 0 in Equation 12.31a gives

U ¼ � q

2p
xþ a

(xþ a)2
� x� a

(x� a)2

� 

¼ � q

2p
1

xþ a
� 1
x� a

� �

¼ qa

p x2 � a2ð Þ

FIGURE 12.19 Streamlines of flow about a Rankine body.
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Solving for x, we obtain

x ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ qa

pU

r
(12:33a)

Thus, there are two stagnation points located at the x-axis. The stream function can now be
evaluated to determine the value of the stagnation streamline. Substituting y¼ 0 into Equation
12.30b gives

c ¼ 0� q

2p
tan�1 0

x2 � a2
¼ 0

The stagnation and body streamline result when c is set equal to zero in Equation 12.30b:

0 ¼ Uy� q

2p
tan�1 2ay

x2 þ y2 � a2

or

tan
2Upy

q
¼ 2ay

x2 þ y2 � a2
(12:33b)

12.5.5 FLOW ABOUT A CIRCULAR CYLINDER

Flow about a Rankine body results when we combine uniform flow with a source and a sink. As the
distance between the source and sink decreases, approaching a doublet, the length of the Rankine
body approaches its width. When we combine uniform flow with a doublet, therefore, flow about a
circular cylinder results. The potential function is obtained by adding Equations 12.22a and
12.29a:

f ¼ Uxþ qa cos u

pr

f ¼ Ur cos uþ qa cos u

pr
(circular cylinder)

(12:34a)

Similarly, by adding Equations 12.23a and 12.29b, the stream function becomes

c ¼ Uy� qa

pr
sin u

c ¼ Ur sin u� qa

pr
sin u (circular cylinder)

(12:34b)

The streamline pattern is shown in Figure 12.20. As with the Rankine body, the stagnation
streamline occurs at c¼ 0:

0 ¼ Ur sin u� qa

pr
sin u

Solving, we get

rjc¼0 ¼ �
ffiffiffiffiffiffiffiffi
qa

Up

r
¼ R
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which is a constant and equal to the radius of the circle. Rewriting the potential and stream functions
in terms of the radius gives

f ¼ U r þ R2

r

� �
cos u (12:35a)

and

c ¼ U r � R2

r

� �
sin u (12:35b)

The velocity components can be determined by differentiation:

Vr ¼ @f

@r
¼ U 1� R2

r2

� �
cos u (12:36a)

Vu ¼ 1
r

@f

@u
¼ �U 1þ R2

r2

� �
sin u (12:36b)

The stagnation points exist where Vr¼ 0 and Vu¼ 0 and are given by Equation 12.33. On the
surface of the cylinder, where r¼R, the velocity components are

Vr(R) ¼ 0

Vu(R) ¼ �2U sin u
(12:37)

Thus, there is no radial flow through the cylinder surface (or through any other streamline).
Moreover, Vu varies from zero at u¼ 0 to a maximum of �2U at u¼p=2 and back to zero at u¼p.

In Chapter 6, results of experiments performed with flow past a circular cylinder were presented.
A drag coefficient versus Reynolds number curve was also given. It was stated that part of the drag
exerted on a cylinder in a uniform flow is due to a pressure difference between the front of its
surface and the rear. For purposes of comparison, let us examine the forces exerted on a cylinder in
an inviscid flow. Using Bernoulli’s equation, we can first determine the pressure distribution along
the surface of the cylinder and then integrate the distribution to obtain the forces of interest—lift and
drag. Bernoulli’s equation (Equation 12.18) is written for any point on the surface of the cylinder
and any other point far from the cylinder in the uniform-flow stream:

p

r
þ V2

2
þ gy ¼ p1

r
þ U2

2
þ gy

FIGURE 12.20 Flow about a circular cylinder.
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where: p¼ pressure on the cylinder surface
V¼ velocity along the surface made up of Vr(R) and Vu(R)
p1¼ free-stream pressure
U (corresponding to U1 of Chapter 6)¼ free-stream velocity

Rearranging and substituting, we get

p

r
¼ p1

r
þU2

2
� Vr(R)½ �2þ Vu(R)½ �2

2

Using Equations 12.36, we obtain

p ¼ p1 þ r

2
U2 � 4U2 sin2 u
� 	 ¼ p1 þ rU2

2
1� 4 sin2 u
� 	

(12:38a)

The pressure difference in dimensionless terms is

2 p� p1ð Þ
rU2 ¼ 1� 4 sin2 u (12:38b)

where the left-hand side was first introduced in Chapter 4 as the pressure coefficient. This equation
is plotted on polar and Cartesian coordinates in Figure 12.21. Note that the pressure on the cylinder
surface equals the free-stream pressure at angles of 308 with respect to the flow direction.

To determine the lift and drag forces exerted on the cylinder, it is necessary to integrate the
y- and x-components, respectively, of Equation 12.38a, the pressure distribution, about the surface.
Figure 12.22 illustrates the forces of interest. The drag force is found as

θ

–4

–3

–2

–1

0

1
2

3

4
Cp

18090–90–180
30

30

FIGURE 12.21 Pressure coefficient versus angle for flow about a circular cylinder.

Inviscid Flow 615



Df ¼
ðð

p cos u dAs

where the surface area dAs¼ L(R du) and p is given by Equation 12.38b.
We obtain

Df ¼ RL

ð2p
0

p1 þ rU2 � 2rU2 sin2 u
� 	

cos u du

where L is the cylinder length. Simplifying, we get

Df

RL
¼ p1 þ rU2

2

� � ð2p
0

cos u du� 2rU2
ð2p
0

sin2 u cos u du

The values of both integrals are zero. Thus

Df ¼ 0 (12:39)

Similarly, for the lift force per unit length,

Lf ¼
ðð

�p sin u dAs

Lf
RL

¼ p1 þ rU2

2

� � ð2p
0

sin u du� 2rU2
ð2p
0

sin3 u du

Again the values of both integrals are zero. Thus

Lf ¼ 0

Thus, the total force exerted on a cylinder immersed in a uniform flow of an inviscid fluid is zero. We
might expect this result because the pressure distribution is symmetric about both the x and y axes.

x

θ–p sin θ

p cos θ

p

Df

Lf

y

FIGURE 12.22 Pressure on the surface of a cylinder.
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This result is typical for potential flow about a body. One exception, however, is for the flow field
considered next.

12.5.6 FLOW ABOUT A CIRCULAR CYLINDER WITH CIRCULATION

Uniform flow with a doublet, as we have seen, results in flow past a cylinder. We can further
combine a circulatory flow with flow past a cylinder to obtain a new flow field. Streamlines for the
combined flow can take on one of three configurations, as illustrated in Figure 12.23. The pattern
depends on the strength of the circulation G in comparison with the free-stream velocity. The
potential function is obtained by adding Equations 12.35a and 12.25a (modified to reflect a
clockwise rotation):

f ¼ U r þ R2

r

� �
cos u� Gu

2p
(circular cylinder with circulation) (12:40a)

The stream function can be determined by adding Equations 12.35a and 12.25b:

c ¼ U r � R2

r

� �
sin uþ G

2p
‘n(r) (circular cylinder with circulation) (12:40b)

The velocity components are found by differentiation:

Vr ¼ @f

@r
¼ U 1� R2

r2

� �
cos u

and

Vu ¼ 1
r

@f

@u
¼ �U 1þ R2

r2

� �
sin u� G

2pr

(a) (b) (c)

R
+

FIGURE 12.23 Flow about a circular cylinder with circulation.
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Along the cylinder surface,

Vr(R) ¼ 0

and

Vu(R) ¼ �2U sin u� G

2pR

For purposes of comparison, let us calculate lift and drag for this case to determine how the
circulation affects these forces. Applying the Bernoulli equation to the cylinder surface and to a
point far from the cylinder, we get

p

r
þ V2

2
þ gy ¼ p1

r
þ U2

2
þ gy

Simplifying and substituting for V, we obtain

p ¼ p1 þ rU2

2
� rV2

u

2
(12:41)

or

2 p� p1ð Þ
r

¼ U2 � 2U sin uþ G

2pR

� �2

In dimensionless terms,

2 p� p1ð Þ
rU2 ¼ 1� 2 sin uþ G

2pRU

� �2

The drag force per unit length is found by integration:

Df ¼
ðð

p cos u dAs

Df

RL
¼
ð2p
0

p1 þ rU2

2
� r

2
2U sin uþ G

2pR

� �2
" #

cos u du

Expanding, we get

Df

RL
¼ p1

ð2p
0

cos u duþ rU2

2

ð2p
0

cos u du

� 2rU2
ð2p
0

sin2 u cos u du

� rUG

pR

ð2p
0

sin u cos u du� rG2

4p2R2

ð2p
0

cos u du
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Each integral is zero. Therefore,

Df ¼ 0 (12:42)

The lift force per unit length is found also by integration:

Lf
RL

¼ �
ð2p
0

p sin u du

¼ �
ð2p
0

p1 þ rU2

2
� r

2
2U sin uþ G

2pR

� �2
" #

sin u du

Expanding, we get

Lf
RL

¼ �p1
ð2p
0

sin u du� rU2

2

ð2p
0

sin u duþ 2rU2
ð2p
0

sin3 u du

þ rUG

pR

ð2p
0

sin2 u duþ rG2

4p2R2

ð2p
0

sin u du

This equation reduces to

Lf
RL

¼ rUG

pR

ð2p
0

sin2 u du ¼ rUG

pR

u

2
� sin 2u

4

� �����
2p

0

¼ rUG

pR
(p)

The lift force, then, is

Lf
L

¼ rUG (12:43)

Circulation is related to rotational speed. The tangential velocity in terms of circulation is

Vu ¼ G

2pR

Also, Vu¼Rv, and by combining with the preceding equation, we get

v ¼ G

2pR2

The dimension of G is L2=T.
The circulation can be varied independently from the free-stream velocity. The relative magni-

tudes of these parameters will determine whether the resulting flow pattern is represented by
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Figure 12.23a through 12.23c. To evaluate this feature quantitatively, we will next determine the
location of the stagnation points indicated in the figure. The velocity is zero at a stagnation point.
Because Vr is already zero on the surface of the cylinder, we need work only with Vu.

Vu(R) ¼ �2U sin u� G

2pR
¼ 0

sin u ¼ � G

4pUR

Three cases can be described. If G¼ 4pUR, then sin u¼�1, and u becomes 3p=2. The resulting
flow pattern is illustrated in Figure 12.23b. If G< 4pUR, then sin u<�1, and two stagnation points
occur on the cylinder surface, as shown in Figure 12.23a. If G> 4pUR, then sin u>�1, an
imaginary solution that means there are no stagnation points on the cylinder surface; this is seen
in Figure 12.23c, where the cylinder is entirely within the circulatory flow.

For a three-dimensional example of the effect of circulation on uniform flow, imagine a pitcher
throwing a baseball. As the sphere rotates and translates, it tends to curve. The amount of curve
depends on the magnitude of the spin given by the pitcher and the speed of the ball with respect to
the air. A wind blowing from the outfield, for instance, would reduce the relative velocity and the
tendency for the ball to curve.

Another example of the effect of circulation on uniform flow is the design and construction
of the Flettner rotor ship. This vessel used rotating cylinders that developed a lift or thrust if
wind blew past them. The original ship displaced about 300 tons and was 100 ft long. It had two
cylinders or rotors that extended 50 ft above the ship’s deck. Each rotor was 9 ft in diameter
and rotated at 750 rev=min. The ship was built in Germany in 1924 but never gained popularity.
(See Problem 12.41.)

12.6 INVISCID FLOW PAST AN AIRFOIL

As we saw in the last part of the preceding section, a lift force is generated when a circulatory flow is
added to flow past a cylinder. Two practical examples of this phenomenon were cited: the flight of a
baseball and the design of the Flettner rotor ship. In this section, we will use those results to examine
potential flow past an airfoil.

Figure 12.24 illustrates the streamlines of two-dimensional flow about an airfoil. The math-
ematics involved in determining a functional form for the streamlines will not be discussed here. We
simply accept this configuration as being correct. The airfoil has a rounded front and a sharp trailing
edge. Two stagnation points exist—one at the front and one on the upper surface upstream of the
trailing edge (points 1 and 2 in the figure). Because the airfoil is completely immersed in the flow of
an inviscid fluid, forces of lift and drag are zero.

1

2

FIGURE 12.24 Streamlines of flow about an airfoil.
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Note that the flow must make a sharp turn at the rear edge on the upper surface and travel
slightly in the upstream direction. This figure is not a good model of a real flow, however, for
experiments on various airfoils indicate that point 2 should be located at the rear edge. Such a flow
pattern can be generated by superimposing a clockwise rotation about the wing. The result is
illustrated in Figure 12.25. The pressure distribution, if integrated about the surface of the wing,
would indicate that drag is still zero but lift is not. In fact, the lift force per unit length is given by
Equation 12.43:

Lf
L

¼ rUG

where: U¼ free-stream velocity
G¼ strength of the circulatory flow

But unlike flow past a circular cylinder, here the circulation must have a certain value and cannot be
controlled independently of the free-stream velocity because G must be just strong enough to move
point 2 to the trailing edge.

As was reported in Chapter 6, lift on an airfoil varies with the properties of the airfoil section
and with the angle of incidence. Lift varies linearly with angle of incidence up to a certain point and
then drops off somewhat.

12.7 SUMMARY

This chapter gave a brief introduction to the field of inviscid flow (flow of a nonviscous fluid). We
began with the Navier–Stokes equations for steady incompressible flow and reduced them following
various assumptions—no viscosity and that the flow is two-dimensional. We then obtained the
continuity equation and the Euler equations. Next the stream and potential functions were intro-
duced, and it was shown that these functions are normal to each other. The concept of irrotationality
was also discussed. Laplace’s equation was presented, and various inviscid flows that satisfy
Laplace’s equation were given. Because of the linearity of Laplace’s equation, we formed various
complex flows by adding simpler flows—a process called superposition. Finally, we examined
inviscid flow past an airfoil.

+
Г

Lf

FIGURE 12.25 Superposition of uniform flow past an airfoil and circulation about an airfoil.
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PROBLEMS

Equations of Motion

12.1 Beginning with Equation 12.1, use the coordinate transformation

x ¼ r cos u

y ¼ r sin u

to derive Equation 12.2.
12.2 Determine the vector form of the Euler equations.

Stream Function and Velocity Potential

12.3 In Section 12.2, it was shown that in Cartesian coordinates, the stream and potential
functions are normal to each other. Show this for polar cylindrical coordinates.

12.4 The stream function for a certain flow is

c ¼ xþ 2y

Determine the velocity potential function and the velocity components. Does the flow satisfy
the continuity equation?

12.5 Construct the flow net for Problem 12.4.
12.6 Determine whether the flow of Problem 12.4 is irrotational.
12.7 A flow field can be described by following stream function:

c ¼ xyþ 2xþ 3y

Determine the velocity components and the potential function. Does the flow satisfy
continuity?

12.8 Construct the flow net for Problem 12.7
12.9 Show that the flow of Problem 12.7 is irrotational.
12.10 A certain flow field has the following potential function:

f ¼ r cos u

Determine the stream function and the velocity components. Does the flow satisfy
continuity?

12.11 Construct the flow net for Problem 12.10.
12.12 Is the flow of Problem 12.10 irrotational?
12.13 Is the flow represented by c ¼ x3y3 irrotational?
12.14 A flow is described by the following potential function:

f ¼ ‘n x2 þ y2
� 	1=2

Show that the stream function is

c ¼ tan�1 y

x

12.15 Is the flow described in Problem 12.14 irrotational?
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12.16 The stream function for a certain flow is

c ¼ 4r cos u� r sin u

a. Determine the velocity components.
b. Find the potential function.
c. Is the flow irrotational?

12.17 Sketch the flow net for Problem 12.16.
12.18 The velocity components of a certain flow field are

Vx ¼ � 3
2
y

Vy ¼ x

Does the flow satisfy continuity? Is the flow rotational? Can a stream function be written for
this flow? If so, find it.

12.19 The velocity components for a certain flow field are

Vx ¼ x2y

Vy ¼ �xy2

Does the flow satisfy continuity? Is the flow irrotational? Determine, if possible, the stream
function for this flow.

12.20 A certain flow is given by

Vr ¼ cos u� sin u

Vu ¼ �r cos u� r sin u

Does the flow satisfy continuity? Is the flow irrotational? Determine, if possible, the stream
and potential functions.

12.21 A stream function is given in polar coordinates by

c ¼ 2rp=a sin (pu=a)

Show that it satisfies Laplace’s equation.
12.22 A potential function is given in polar coordinates by

f ¼ 2rp=a cos (pu=a)

Show that the corresponding stream function is

c ¼ 2rp=a sin (pu=a)

12.23 Sketch the flow net given by the stream and potential functions of Problem 12.22. Take a to
be 2108 in all cases.

Inviscid Flow 623



12.24 A flow is described by the following stream and potential functions:

c ¼ Urp=a sin (pu=a)

f ¼ Urp=a cos (pu=a)

Show that this flow reduces to simple uniform flow when a¼p.
12.25 Does the flow in Problem 12.24 (for any a) satisfy continuity?

Laplace’s Equation and Flow Field Equations

12.26 Starting with Equation 12.19, derive Equation 12.21.
12.27 Derive Equation 12.22b.
12.28 Derive Equation 12.23b.
12.29 Derive Equation 12.24b.
12.30 Derive Equation 12.25b.
12.31 The eye of a tornado has a maximum wind velocity of 100 ft=s. Determine the minimum

pressure. Determine also the pressure at the location of the maximum wind velocity.

Combined Flows and Superposition

12.32 Consider the flow field represented by adding a source and a circulation both located at the
origin. Sketch the streamlines. Determine the location of any stagnation points. Let
q¼G¼ 4p.

12.33 Find the potential function of the flow described in Problem 12.32.
12.34 Show that the Euler equations are nonlinear.
12.35 Following the steps outlined below, it is possible to compose the flow about a half-body

graphically. The discharge q is assigned a value of 16 units. The uniform flow is given by
q¼ 2pU.

a. Using a plain sheet of paper, select a point for the origin and draw radial lines spaced at
angular intervals of p=16 rad. (Show where p=16 comes from.)

b. The stream function becomes c¼ 8y=p. (Show its derivation.) Sketch uniform flow lines
according to this equation on the same sheet where the source was drawn.

c. The result is many four-sided adjacent figures. Connect opposite corners of each appro-
priately to obtain the streamline pattern. Refer to Figure 12.15.

12.36 Verify Equation 12.31b.
12.37 Verify Equation 12.32.
12.38 Asource and a sinkhaving an equal strength of 5m3=s are immersed in a uniformflowof velocity

3 m=s. Determine the velocity at a location given by x¼ 6 m, y¼ 6 m. (See Figure P12.38.)

3 m/s

Source Sink

(6, 6)

4 m

y

x

4 m

FIGURE P12.38
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12.39 A doublet whose qa product is 100 ft4=s is located in a uniform flow of 15 ft=s, as shown in
Figure P12.39. Determine the velocity at a point located at x¼ 1.0 and y¼ 1.5. Give a sketch
of the results.

1.5

1.0

Doublet

15 ft/s

y

x

FIGURE P12.39

12.40 A circular cylinder having a diameter of 10 ft rotates at a speed of 360 rev=min and moves
through air at 25 mi=h. What is the lift per unit length of the cylinder for maximum possible
circulation?

12.41 Figure P12.41 illustrates a moored Flettner rotor ship in a uniform crosswind of velocity
1500 ft=min. The rotors (length 50 ft, diameter 9 ft) rotate at 750 rev=min. Determine the
magnitude of the force that tends to propel the ship forward. Calculate also the lift coefficient
for each cylinder.

FIGURE P12.41

12.42 A pitcher throws a curve ball with a velocity of 27 m=s. For simplicity, the ball is taken to
have a spin about the vertical axis. The lift coefficient is determined to be about 0.3. The
catcher is 18.3 m away. If the baseball has a diameter of 7.4 cm, determine the rotational
speed imparted by the pitcher and the horizontal deviation of the ball from its straightline
path at the position of the catcher. Assume that Equation 12.43 applies; for length in that
expression, let L¼ sphere volume=surface area.
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13 Boundary-Layer Flow

In the last chapter, the remark was made that most fluids problems involve turbulent flow. An exact
analysis to determine velocities in the principal flow directions requires a simultaneous solution to
the continuity and momentum equations. Because of the nonlinearity of the equations of motion,
some simplifications have to be made. In that regard, the flow field may be divided into two
portions. One of these is a nonviscous region away from any solid boundaries. Near a boundary,
however, fluid adheres to the surface, and the velocity relative to the boundary at the surface is zero.
Because this result is a viscous effect, the second flow region is one where viscosity is important.
The flow in this region, known as boundary-layer flow, is the subject of this chapter.

Beginning with the continuity, Bernoulli, and Navier–Stokes equations, we will derive the
boundary-layer equations for laminar flow. The derived expressions will then be applied to flow
over a flat plate, and the Blasius solution for laminar flow will be presented. We will discuss laminar
and turbulent boundary-layer flows and select a point for transition. A displacement thickness
expression will also be derived. Local and total skin friction drag equations will be written for the
problem as well.

Next we will derive the momentum integral equations from the boundary-layer equations.
Although approximate, the momentum integral equations are used to solve the problem of laminar
flow over a flat plate, and there is good agreement between the results obtained and the exact
solution. The momentum integral equation will then be applied to the problem of turbulent flow
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over a flat plate. The results of the laminar and turbulent flow problems will be combined to obtain a
graph of skin friction drag as a function of Reynolds number at the end of the plate.

13.1 LAMINAR AND TURBULENT BOUNDARY-LAYER FLOW

Let us begin our discussion of boundary-layer flow by considering uniform flow over a flat plate,
as illustrated in Figure 13.1a. If the fluid is inviscid, the velocity profile appears as in Figure 13.1b.
The velocity at the wall is not zero, as it would be for a real fluid. A better description of a real flow
is given in Figure 13.1c. Velocity at the wall is zero owing to the nonslip condition (a viscous
effect). Far from the surface, the fluid is not influenced by the presence of the plate; consequently,
the effect of viscosity in this region can be neglected. Everywhere outside the boundary layer, the
velocity is equal to the free-stream value U, and the pressure equals the free-stream value p1. These
are related by the Bernoulli equation if the flow is inviscid, incompressible, and Newtonian. Inside
the boundary layer, the velocity varies from zero at the wall to the free-stream value U at the edge of
the boundary layer. The thickness of the boundary layer increases with length downstream and is
only a few thousandths of a millimeter thick. In spite of its size, its effect is extremely important in
such problems as calculating resistance to motion of a body through a fluid (a ship through water) or
determining heat transfer characteristics at a body surface (cold wind blowing past the window of a
heated dwelling). Even the Moody diagram for pipe flow is a correlation of a surface effect (wall
shear stress) for ducts with constant cross sections.

As was mentioned before, to obtain a solution for some problems, it is convenient to divide the
flow into portions—the inviscid region and the boundary-layer region. At the edge of the boundary
layer, Bernoulli’s equation is applied to determine the pressure variation or distribution. The
pressure distribution is then used in the boundary-layer equations to obtain the velocity distribution
close to the wall. The inviscid and boundary-layer regions are thus patched together at the edge of
the boundary layer.

Now let us resort to the flat plate example. Near the leading edge, the flow in the boundary layer
is laminar, and viscous forces are great. As the flow moves downstream, it becomes unstable and
goes through a transition region to a region of turbulence. This process is analogous to vertical flow
of smoke from a cigarette. At a certain height, the smoke changes from a smooth-flowing jet to a
turbulent jet. The regimes for flow over a flat plate are illustrated in Figure 13.2. Even in the
turbulent boundary layer, however, velocity at the wall is zero. Thus, near the wall, there exists a
laminar sublayer, but, as will be shown, it is quite thin.

In laminar flow, shear stress is due to the sliding of one fluid layer over another. The shear stress
is related to the strain rate by Newton’s law of viscosity:

t(‘)yx ¼ m
dVx

dy
(13:1)

(a) Uniform flow over flat plate (b) Profile for inviscid fluid

Inviscid
region

Boundary-layer

region

(c) Profile for real fluid

FIGURE 13.1 Uniform flow over a flat plate.
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In turbulent flow, random motions of particles and velocity fluctuations are responsible for a mixing
action that transports faster-moving particles into slower-moving layers and the reverse. The
turbulent shear stress is related to the time-averaged velocity by

t(t)yx ¼ m(t) dVx

dy
(13:2)

where m(t) is the eddy viscosity. The eddy viscosity is many times greater than the absolute viscosity in
turbulent flow. As was mentioned in Chapter 11, the absolute viscosity m is a property of the fluid, but
the eddy viscosity is not; it is a property of the flow. The velocity profiles in the laminar and turbulent
boundary layers are somewhat different, as is shown in Figure 13.3. Owing primarily to the turbu-
lent mixing effect, the turbulent profile is flatter over a greater portion of the boundary layer.

Because laminar and turbulent flows are so different, it is extremely important that a criterion be
established for transition, In pipe flow, the Reynolds number based on hydraulic diameter is used to
determine the type of flow. In flow over a flat plate, again the Reynolds number is used, but here it
will be based on distance downstream along the plate:

Re ¼ Ux

v
(13:3)

Many factors affect the change: pressure gradient along the surface, surface roughness, and heat
transfer to or from the fluid. Thus, no exact point can be specified for transition. Rather, a transition
region exists where the flow is said to be critical. As we mentioned in Chapter 6, transition can vary
over the range

2� 105 � Recr � 3� 106

Laminar
y

x

Transition Turbulent

FIGURE 13.2 Laminar, transition, and turbulent flow regimes for flow over a flat plate.

(a) Laminar (b) Turbulent

FIGURE 13.3 Velocity profiles in the boundary layer.
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where Recr is the critical Reynolds number. For purposes of calculation, however, we will take the
critical Reynolds number for flow over a flat plate to be 5� 105.

13.2 EQUATIONS OF MOTION FOR THE BOUNDARY LAYER

In this section, we will derive the continuity and momentum equations for the boundary layer,
beginning with the equations of Chapter 11. We will assume that the flow is two-dimensional and
steady. Further, the fluid is taken to be Newtonian and incompressible with constant properties.
Gravity is neglected, and the radius of curvature of the body is large. This last stipulation is included
so that centrifugal forces can be neglected and also to ensure that flow separation does not occur.
The boundary-layer equations that we will derive are not applicable to a region of backflow.
Because the boundary layer is very thin, pressure does not vary in the direction that is normal to
the surface. A schematic of the general boundary-layer problem is given in Figure 13.4. The
x-coordinate is in the main flow direction along the body surface; the y-coordinate extends upward
normal to the surface; the z-coordinate points out of the page.

Now we will perform what is known as an order of magnitude analysis. The boundary layer is
thin; thus, velocities and thicknesses in the y-direction have orders of magnitude of d. In equation
form, we would write, for example,

Vy � O(d)

This states that the velocity in the y-direction has an order of magnitude of d. Relative to the
y-directed factors, velocities and distances in the x-direction have orders of magnitude of unity. For
example,

Vx � O(1)

The values of d and unity are important in a comparative rather than an absolute sense. In this
regard, we will determine the order of magnitude of each term in the continuity, Bernoulli, and
Navier–Stokes equations and discard the terms of order d as being negligible. The continuity
equation in differential form (from Chapter 11), with each term’s order of magnitude term written
underneath, is

@Vx

@x
þ @Vy

@y
¼ 0

1
1

d

d

Thus, both terms are of order 1, and neither can be neglected.

x

Vy

Vx

y

FIGURE 13.4 Flow in the boundary layer.
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The Bernoulli equation (from Chapter 12) applies to the region outside the boundary layer.
In differential form, we have the following:

1
r

@p

@x
þ U

@U

@x
¼ 0

1
1
1 1

1
1

If we assume that density is of order 1, then the pressure gradient must also be of order 1. Hence,
none of the terms in this expression can be neglected.

The x-component of the Navier–Stokes equation is, neglecting gravity,

Vx
@Vx

@x
þ Vy

@Vx

@y
¼ � 1

r

@p

@x
þ v

@2Vx

@x2
þ @2Vx

@y2

� �

11
1

d
1
d

1
1
12

1

d2

To ensure that the term @2Vx=@y
2 does not make the rest of the terms negligible, we assign the

kinematic viscosity an order of magnitude d2. This value implies that the viscosity of the fluid can be
extremely small and a boundary-layer flow will still exist. From the preceding equation, we find that
all terms except @2Vx=@x

2 are of order 1 and thus remain.
The y-component of the Navier–Stokes equations is

Vx
@Vy

@x
þ Vy

@Vy

@y
¼ � 1

r

@p

@y
þ v

@2Vy

@x2
þ @2Vy

@y2

� �

1
d

1
d
d

d

1
1

d2
d

1
d

d2

� �

We conclude that the pressure gradient in the y-direction must be of order d. In fact, the entire
equation must be of order of magnitude d. Comparing to the x-component equation, which is of
order 1, we can neglect the y-component equation. With @p=@y negligible, we infer that the pressure
gradient across the boundary layer is invariant and that the free-stream pressure equals that in the
boundary layer. Summarizing the foregoing analysis, we now write the boundary-layer equations as
follows:

Continuity:
@Vx

@x
þ @Vy

@y
¼ 0 (13:4)

x-component: Vx
@Vx

@x
þ Vy

@Vx

@y
¼ � 1

r

@p

@x
þ v

@2Vx

@y2
(13:5)

y-component:
@p

@y
¼ 0 (13:6)

Bernoulli equation:
1
r

@p

@x
¼ �U

@U

@x
(13:7)

These equations are for two-dimensional, steady, incompressible flow of a Newtonian fluid with
constant properties.
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13.3 LAMINAR BOUNDARY-LAYER FLOW OVER A FLAT PLATE

For laminar boundary-layer flow over a flat plate, Equations 13.4 through 13.7 must be solved
simultaneously for Vx, Vy, and p. Assuming uniform flow (@U=@x¼ 0), Equation 13.7 shows that
there is no pressure variation with x. Equation 13.6 states that there is no pressure variation with y.
The pressure everywhere, then, is a constant. The equations to be solved are

@Vx

@x
þ @Vy

@y
¼ 0 (13:8)

Vx
@Vx

@x
þ Vy

@Vx

@y
¼ v

@2Vx

@y2
(13:9)

The boundary conditions are

y ¼ 0 Vx ¼ 0 (condition 1) (13:10)

y ¼ 0 Vy ¼ 0 (condition 2) (13:11)

y ¼ 1 Vx ¼ U (condition 3) (13:12)

Equation 13.12 is the patching condition between the inviscid and boundary-layer regions. The
problem was solved in 1908 by Blasius by using a coordinate transformation, the mathematical
details of which are beyond the scope of this discussion. The solution form is

Vx

U
¼ f (h) h ¼ y

U

vx

� �1=2

(13:13)

The function f has no known analytic form; it is a power series, the values of which are provided in
Table 13.1 as a function of h. A plot of f versus h is given in Figure 13.5. The solution was obtained

TABLE 13.1
Laminar Boundary-Layer Velocity Profile for Flow Past
a Flat Plate: The Blasius Solution

h ¼ y
U

vx

� �1=2

f ¼ Vx

U
h ¼ y

U

vx

� �1=2

f ¼ Vx

U

0.0 0.0 2.8 0.811 52
0.2 0.066 41 3.0 0.846 05

0.4 0.132 77 3.2 0.876 09
0.6 0.198 94 3.4 0.901 77
0.8 0.264 71 3.6 0.923 33

1.0 0.329 79 3.8 0.941 12
1.2 0.393 78 4.0 0.955 52
1.4 0.456 27 4.2 0.966 96

1.6 0.516 76 4.4 0.975 87
1.8 0.574 77 4.6 0.982 69
2.0 0.629 77 4.8 0.987 79
2.2 0.681 32 5.0 0.991 55

2.4 0.728 99 1 1.000 00
2.6 0.772 46
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by formulating a power series expansion about h¼ 0 and matching it with an asymptotic solution
about h¼1. It is customary to select the boundary-layer thickness at the location where
Vx=U¼ 0.99. This occurs at h� 5. We therefore write

h ¼ d
U

vx

� �1=2

¼ 5:0

d ¼ 5:0x

Ux2=vxð Þ1=2

or, the boundary-layer thickness is

d ¼ 5:0x

(Re)1=2
(13:14)

where Re¼Ux=v. The velocity profile in the laminar boundary layer at any location is represented
by Figure 13.5. This implies that all profiles, regardless of downstream location, are similar.

In addition to the boundary-layer thickness, a displacement thickness can be defined and
determined. Consider Figure 13.6. In the flow upstream of the plate, the velocity is uniform
and equal to U. Along the plate, however, the velocity is zero, and a boundary layer has formed.
Owing to the decrease in velocity in the boundary layer from the free-stream value, the flow
contained in a height H upstream must be displaced upward by an amount d* to satisfy conservation
of mass.

Mass flow at 1¼mass flow at 2:

UH ¼ Ud* þU(H � d)þ
ðd
o

Vx dy

0.250
0

1.0

2.0

3.0

4.0

5.0

0.5
f = Vx /

=
y (

/v
x)

1/
2

0.75 1.0

FIGURE 13.5 Blasius velocity profile for a laminar boundary layer.
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or

Ud* ¼ Ud�
ðd
0

Vx dy

Dividing by U, we get

d* ¼ d�
ðd
0

Vx

U
dy

The right-hand side may be further manipulated:

d* ¼
ðd
0

dy�
ðd
0

Vx

U
dy

d* ¼
ðd
0

1� Vx

U

� �
dy

Moreover, because Vx=U¼ 1 over the range y¼ d to infinity, the preceding equation can be
generalized as

d* ¼
ð1
0

1� Vx

U

� �
dy (13:15)

With the Blasius profile for laminar incompressible flow over a flat plate, it can be shown that

d* ¼ 1:73xffiffiffiffiffiffi
Re

p (13:16)

To determine the force exerted on the plate, we use the Newtonian expression for shear stress
applied at the wall:

tw ¼ m
@Vx

@y

� �����
y¼0

H

Boundary
layer

H–

1 2

*

FIGURE 13.6 Displacement thickness formation due to presence of the plate.
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From the Blasius solution, the slope of the velocity distribution at the wall is

@Vx

@y

����
y¼0

¼ 0:33U
x

ffiffiffiffiffiffi
Re

p

The wall shear stress thus becomes

tw ¼ 0:33Um

x

ffiffiffiffiffiffi
Re

p
(13:17)

A drag coefficient can now be calculated by using this expression for wall shear stress. (Remember
that the drag determined here is a surface or skin friction drag that does not include form drag.) But
because tw varies with x, the drag coefficient too varies with x. Hence, we define a ‘‘local’’ drag or
skin friction coefficient as

Cd ¼ tw

rU2=2
¼ 2tw

rU2

Substituting gives

Cd ¼ 0:664Um
ffiffiffiffiffiffi
Re

p

xrU2

or

Cd ¼ 0:664ffiffiffiffiffiffi
Re

p (13:18)

The total drag (skin friction drag) can be obtained by integration of the wall shear stress over the
length of the plate. Then, by dividing by the kinetic energy of the stream, we get the total skin
friction drag coefficient. With b defined as the plate width, we thus obtain

Df ¼
ðL
0

twb dx ¼
ðL
0

0:332Umb

x

Ux

v

� �1=2

dx

or

Df ¼ 0:664Umb
ffiffiffiffiffiffiffiffi
ReL

p
(13:19)

where

ReL ¼ rUL

m
(13:20)

Thus the drag force varies with the square root of the length. The total skin friction drag coefficient
is defined as

CD ¼ Df

rU2bL=2
¼ 2Df

rU2bL
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Substituting Equation 13.19 brings

CD ¼ 2(0:664)Umb(rUL=m)1=2

rU2bL

or

CD ¼ 1:328ffiffiffiffiffiffiffiffi
ReL

p (13:21)

Note that Cd is a local coefficient, whereas CD is the total obtained by integration over the length
of the plate.

Example 13.1

The top view of a small water tunnel is given in Figure 13.7. An object can be placed in the test section (a
free diver, for example, testing flipper thrust) and observed as water is moved around the circuit by a
propeller. Upstream of the test section is vertically placed flow straighteners. Each is submerged in 4 ft of
liquid, each is 3 ft long, and all are braced across the top. For a flow velocity past the plates of 1.5 ft=s:

a. Determine boundary-layer growth with length.
b. Determine displacement-thickness growth with length.
c. Graph each of the above and also graph the velocity distribution in the boundary layer

at x¼ 1.5 ft.
d. Determine total skin friction drag on each plate.

SOLUTION

a. From Table A.5, for water, m¼ 1.9� 10�5 lbf � s=ft2. Therefore,

v ¼ m

r
¼ 1:9� 10�5

1:94
¼ 9:6� 10�6 ft2=s

The free-stream velocity is given as 1.5 ft=s, and plate length is 3 ft. The Reynolds number at
plate end is

ReL ¼ UL

v
¼ 1:5(3)

9:6� 10�6
¼ 4:7� 105

Test section

Flow
straighteners

Propeller

FIGURE 13.7 Water tunnel of Example 13.1.
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The boundary layer is laminar over the entire length. The boundary-layer growth is given by
Equation 13.14:

d ¼ 5:0x

(Re)1=2
¼ 5:0x

Ux
v

� �1=2
or, after substitution,

d ¼ 1:26� 10�2x1=2 (i)

b. The displacement thickness is given by Equation 13.16 as

d* ¼ 1:73xffiffiffiffiffiffi
Re

p ¼ 1:73x
Ux
v

� �1=2
After substitution and simplification, we get

d* ¼ 4:38� 10�3x1=2 (ii)

c. A graph of Equations i and ii is provided in Figure 13.8.
The velocity distribution is given by the data of Table 13.1. The independent variable for this
problem becomes

h ¼ y
U

vx

� �1=2

¼ y
1:5

9:6� 10�6ð Þ(1:5)
� 	1=2

h ¼ 3:23� 102y

0.5

0.5 ft/s
Scale for Vx

1.0 1.5 2.0 2.5 3.00
0

1 × 10–2

2 × 10–2

3 × 10–2

4 × 10–2

y

x

*

FIGURE 13.8 Boundary-layer growth and displacement-thickness growth with distance and velocity distri-
bution at x¼ 1.5 ft.
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Also,

Vx ¼ Uf ¼ 1:5f

Using the data, we obtain Table 13.2 and the velocity profile of Figure 13.8.
d. The total drag on one side of any of the plates is given by Equation 13.19:

Df j1 ¼ 0:664U mb
ffiffiffiffiffiffiffiffi
ReL

p

The Reynolds number at plate end was calculated earlier as

ReL ¼ 4:7� 105

With U¼ 1.5 ft=s, m¼ 1.9� 10�5 lbf � s=ft2, and b¼ 4 ft, the drag force becomes

Df j1 ¼ 0:664(1:5) 1:9� 10�5
� �

(4)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4:7� 105

p

¼ 0:051 lbf

Owing to the presence of a boundary layer on each side of one plate, the total skin friction drag
per plate is

Df ¼ 0:102 lbf

The Blasius solution presented here is valid only for laminar flow. Further, although the results
are called an exact solution, the boundary-layer equations are only approximate. The Navier–Stokes
equations are the equations that apply; the boundary-layer equations are simplifications. Thus, the
Blasius solution is really an exact solution to approximate equations.

The boundary-layer equations can be further modified and placed in integral form. They can
then be solved for the flat-plate problem, for example, and compared to the Blasius solution. The
technique, developed by von Karman, is known as the momentum integral method.

13.4 MOMENTUM INTEGRAL EQUATION

The momentum integral equation is derived from the boundary-layer equations; recall that for
steady flow, we wrote

@Vx

@x
þ @Vy

@y
¼ 0 (13:4)

TABLE 13.2
Results of Calculations for Example 13.1

h y (ft) f¼Vx=U Vx (ft=s)

0 0 0 0
1 3.10� 10�3 0.329 79 0.49
2 6.20� 10�3 0.629 77 0.94
3 9.3� 10�3 0.846 05 1.27

4 1.24� 10�2 0.955 52 1.43
5 1.55� 10�2 0.991 55 1.49
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Vx
@Vx

@x
þ Vy

@Vx

@y
¼ � 1

r

dp

dx
þ v

@2Vx

@y2
(13:5)

Integrating Equation 13.5 with respect to y from zero to d, the edge of the boundary layer gives

ðd
0

Vx
@Vx

@x
dyþ

ðd
0

Vy
@Vx

@y
dy ¼ � 1

r

ðd
0

dp

dx
dyþ

ðd
0

v
@2Vx

@y2
dy (13:22)

The second term on the left-hand side can be integrated by parts to obtain

ðd
0

Vy
@Vx

@y
dy ¼

ðd
0

@ VxVy

� �
@y

dy�
ðd
0

Vx
@Vy

@y
dy

Now at y¼ d, we have Vx¼U; at y¼ 0, we have Vx¼ 0. The preceding equation thus becomes

ðd
0

Vy
@Vx

@y
dy ¼ U

ðd
0

@Vy

@y
dy�

ðd
0

Vx
@Vy

@y
dy (13:23)

From continuity, we get

@Vy

@y
¼ � @Vx

@x

Combining this equation with Equation 13.23, we obtain

ðd
0

Vy
@Vx

@y
dy ¼ �U

ðd
0

@Vx

@x
dyþ

ðd
0

Vx
@Vx

@x
dy

Substituting into Equation 13.22 gives

ðd
0

Vx
@Vx

@x
dy� U

ðd
0

@Vx

@x
dyþ

ðd
0

Vx
@Vx

@x
dy ¼ � 1

r

ðd
0

dp

dx
dyþ v

ðd
0

@2Vx

@y2
dy

Simplifying and integrating where possible, we get

ðd
0

Vx
@V2

x

@x
dy� U

ðd
0

@Vx

@x
dy ¼ � d

r

dp

dx
þ m

r

@Vx

@y

� �����
d

0

(13:24)

We now evaluate each term except for pressure. The first and second terms are evaluated by using
the Leibniz rule for differentiating an integral. The formula is

d

dt

ðb(t)
a(t)

f (x, f ) ¼
ðb(t)
a(t)

@f

@x
dxþ f (b, t)

db

dt
� f (a, t)

da

dt

� 	
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The upper and lower limits of the integral on the left-hand side are functions of t. By using
the Leibniz rule, the first and second terms of Equation 13.24 become

ðd
0

@V2
x

@x
dy ¼ d

dx

ðd
0

V2
x dy� V2

x

��
d

dd

dx

¼ d

dx

ðd
0

V2
x dy� U2 dd

dx

and

U

ðd
0

@Vx

@x
dy ¼ U

d

dx

ðd
0

Vx dy� U Vxð jdÞ
dd

dx

¼ U
d

dx

ðd
0

Vx dy� U2 dd

dx

where, at the edge of the boundary layer, Vx¼U. Proceeding with the last term on the right-hand
side, we have

m

r

@Vx

@y

� �����
d

0

¼ m

r

@Vx

@y

� ����
d

�
� m

r

@Vx

@y

� ����
0

�

¼ 0� tw
r

The slope @Vx=@y¼ 0 at d, and Newton’s law of viscosity is applied at the wall:

tw ¼ m
@Vx

@y

� �����
y¼0

Substituting these terms back into Equation 13.24, we obtain the following after simplification:

d

dx

ðd
0

V2
x dy� U

d

dx

ðd
0

Vx dy ¼ � d

r

dp

dx
� tw

r
(13:25)

This equation is known as the momentum integral equation. It incorporates the continuity expres-
sion and is valid for both laminar and turbulent flows. The equation as written is independent of the
y variable. The velocity Vx may contain y, but y is integrated out of each term where it might appear.

13.5 MOMENTUM INTEGRAL METHOD FOR LAMINAR FLOW
OVER A FLAT PLATE

The momentum integral equation can be applied to flow over a flat plate. First, however, it is
necessary to assume a velocity profile for Vx in terms of y. The more accurate the assumption of a
velocity profile, the closer the results will be to the exact solution. To investigate further, let us write
a general profile equation and see how it can be refined. The profiles are assumed to be similar at
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different locations downstream. Experimentally, it has been shown that the velocity is a function of
y=d. Assume a polynomial, then, such as

Vx

U
¼ C0 þ C1

y

d
þ C2

y2

d2
þ C3

y3

d3
þ C4

y4

d4
þ C5

y5

d5
þ � � � (13:26)

We must now write boundary conditions to determine the constants Ci. If we write only that

y ¼ 0 VX ¼ 0 (condition 1)

y ¼ d VX ¼ U (condition 2)

then all constants from C2 onward are made zero. Moreover, C0 becomes zero from condition 1, and
C1¼ 1 from condition 2. Thus, the velocity distribution is

Vx

U
¼ y

d
(13:27)

which is linear. Suppose next that we include a third boundary condition:

y ¼ d
@Vx

@y
¼ 0 (condition 3)

This ensures that the velocity profile has a vertical slope at the edge of the boundary layer and that
the velocity is no longer changing with y. Combining boundary conditions 1, 2, and 3 with Equation
13.26, we get

Vx

U
¼ 2y

d
� y2

d2
(13:28)

For still another boundary condition, we could refer to the boundary-layer equation for the flat plate
with no pressure gradient (Equation 13.9):

Vx
@Vx

@x
þ Vy

@Vx

@y
¼ v

@2Vx

@y2

Now at y¼ 0, we have Vx¼ 0 and Vy¼ 0. Thus, the preceding equation provides us with

y ¼ 0
@2Vx

@y2
¼ 0 (condition 4)

Combining all four boundary conditions with Equation 13.26 yields

Vx

U
¼ 3y

2d
� y3

2d3
(13:29)

The effect of including more boundary conditions is illustrated graphically in Figure 13.9, where all
three distributions are plotted. Figure 13.10 shows the Blasius solution with polynomial profiles
plotted for comparison. Note that we can select other forms for an assumed profile. One frequently
selected profile is

Vx

U
¼ sin

py

2d
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Now we will select the linear profile given by Equation 13.27 and determine expressions for
boundary layer and displacement thicknesses and also the skin friction coefficient:

Vx

U
¼ y

d
(13:27)

The momentum integral equation for flow over a flat plate is

d

dx

ðd
0

V2
x dy� U

d

dx

ðd
0

Vx dy ¼ � tw
r

(13:30)

1.0

1.0

0.5

0.5001.0

1.0

0.5

0.500 1.0

1.0

0.5

0.500
Vx/

Vx / y / Vx/ 2y/ – y2/  2 Vx / 3y/2 – y3/2 3

Vx/ Vx/

y/

FIGURE 13.9 Three possible velocity profiles.

Blasius
profile

0.5

0
0 0.5

y/

Vx/

y/

3y/2 – y3/2 3

2y/ – y2/2 2

1.0

1.0

FIGURE 13.10 Blasius profile compared to the polynomial representations.
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For the linear profile,

tw ¼ m
dVx

dy

����
y¼0

¼ m
U

d

� �����
y¼0

¼ Um

d

Substitution into Equation 13.30 gives

d

dx

ðd
0

U2y2

d2
dy�U

d

dx

ðd
0

Uy2

d
dy ¼ �Um

dr

Integrating, we get

d

dx

U2y3

3d2

� �����
d

0

�U
d

dx

Uy2

2d

� �����
d

0

¼ �Um

dr

or

U2

3
dd

dx
� U2

2
dd

dx
¼ �Um

dr

Simplifying further, we finally obtain

d
dd

dx
¼ 6m

rU

Integrating

ðd
0

d dd ¼
ðx
0

6m
rU

dx

we obtain

d2

2
¼ 6mx

rU

The boundary-layer thickness then becomes

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
12mx2

rUx

s

or

d ¼ 3:46xffiffiffiffiffiffi
Re

p (13:31)
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The displacement thickness is found with

d* ¼
ðd
0

1� Vx

U

� �
dy

Substituting the linear profile and integrating, we get

d* ¼
ðd
0

1� y

d


 �
dy ¼ y� y2

2d

� �����
d

0

¼ d

2

Therefore,

d* ¼ 1:73xffiffiffiffiffiffi
Re

p (13:32)

The skin friction or local drag coefficient is

Cd ¼ 2tw
rU2 ¼

2Um

drU2 ¼
2m
rU

ffiffiffiffiffiffi
Re

p

3:46x

or

Cd ¼ 0:578ffiffiffiffiffiffi
Re

p (13:33)

By determining a drag force and defining a total drag coefficient, it can be shown that

CD ¼ 1:156ffiffiffiffiffiffiffiffi
ReL

p (13:34)

A comparison of these results to the Blasius solution is given in Table 13.3. Also shown are the
results for other profiles. It is seen that the results compare favorably to the exact solution.

TABLE 13.3
Comparison of Approximate Results to Exact Solution
for Flow over a Flat Plate

Velocity Profile d d* CD

Blasius (Exact Solution)
5:0xffiffiffiffiffiffi
Re

p 1:73xffiffiffiffiffiffi
Re

p 1:328ffiffiffiffiffiffiffiffi
ReL

p

Momentum Integral Method

Vx

U
¼ y

d

3:46xffiffiffiffiffiffi
Re

p 1:73xffiffiffiffiffiffi
Re

p 1:156ffiffiffiffiffiffiffiffi
ReL

p

Vx

U
¼ 2y

d
� y2

d2
5:48xffiffiffiffiffiffi
Re

p 1:83xffiffiffiffiffiffi
Re

p 1:462ffiffiffiffiffiffiffiffi
ReL

p

Vx

U
¼ 3y

2d
� y3

2d3
4:64xffiffiffiffiffiffi
Re

p 1:74xffiffiffiffiffiffi
Re

p 1:292ffiffiffiffiffiffiffiffi
ReL

p

Vx

U
¼ sin

py

2d
4:80xffiffiffiffiffiffi
Re

p 1:74xffiffiffiffiffiffi
Re

p 1:310ffiffiffiffiffiffiffiffi
ReL

p

Re¼Ux=v; ReL¼UL=v.
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Remember that the von Karman momentum integral method is an approximate solution, whereas the
Blasius formulation is the exact solution (to approximate equations).

13.6 MOMENTUM INTEGRAL METHOD FOR TURBULENT FLOW
OVER A FLAT PLATE

As we saw in the preceding section, the momentum integral method for laminar flow gives results
that agree well with the exact solution. This result is true even for the crude linear profile. The
success of the method thus brings us to an attempt to use it for turbulent flow. The profile that we
assume must, of course, be different from that for laminar flow. As seen from Chapter 11, an exact
analysis for a turbulent flow problem is not available. Consequently, we have to resort to experi-
mental results. It has been found that a seventh-root profile correlates well with turbulent boundary-
layer data over a wide range of Reynolds numbers:

Vx

U
¼ y

d


 �1=7
(13:35)

A plot of this equation is provided in Figure 13.11 along with a laminar profile for purposes of
comparison. Equation 13.35 does not apply at the wall surface because it predicts an infinite wall
shear stress; that is,

dVx

dy
¼ U

7y6=7d1=7

At the wall, y¼ 0, and the gradient becomes infinite. Because this is physically impossible, the
laminar sublayer along the wall is assumed to have a linear profile that becomes tangent to the
seventh-root profile at the edge of the buffer layer, where y¼ d (see Figure 13.11). The wall shear
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FIGURE 13.11 Turbulent boundary-layer profile compared to the laminar case.
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stress has to be obtained from experimental results. An equation that agrees well with data is the
Blasius formula:

tw ¼ 0:0225rU2 v

Ud


 �1=4
(13:36)

which is valid over the range

5� 105 � Re � 107

This equation was developed from pipe flow tests. Equations 13.35 and 13.36 can now be
substituted into Equation 13.30, the momentum integral expression for flow over a flat plate:

d

dx

ðd
0

V2
x dy� U

d

dx

ðd
0

Vx dy ¼ � tw
r

(13:30)

U2 d

dx

ðd
0

y

d


 �2=7
dy�U2 d

dx

ðd
0

y

d


 �1=7
dy ¼ �0:0223U2 v

Ud


 �1=4

Integrating and simplifying, we get

7
72

dd

dx
¼ 0:0225

v

Ud


 �1=4

d1=4dd ¼ 0:229
v

U


 �1=4
dx

Integrating, we get

4d5=4

5
¼ 0:229

v

U


 �1=4
xþ C1

where C1 is a constant. The constant can be set equal to zero, which is equivalent to assuming that
the boundary layer begins at the leading edge of the plate. Although this assumption is not strictly
accurate, for long plates the laminar boundary layer exists over a very small percentage of the
length, so neglecting it introduces only a small error. Moreover, a turbulent boundary layer can be
induced in tests by roughening the leading edge of the plate. In cases in which the laminar boundary
layer cannot be neglected, we will compensate by appropriately combining the laminar and
turbulent results. With the constant equal to zero, the preceding equation becomes

d ¼ 0:368x

(Re)1=5
(13:37)

The displacement thickness is found with

d* ¼
ðd
0

1� Vx

U

� �
dy ¼

ðd
0

1� y

d


 �1=7
� 	

dy
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Integrating, we obtain

d* ¼ d

8

d* ¼ 0:046x

(Re)1=5
(13:38)

To find the drag force, it is first necessary to evaluate the wall shear, rewriting it in terms of x:

tw ¼ 0:0225rU2 v

Ud


 �1=4

¼ 0:0225rU2 v(Re)1=5

U(0:368x)

� 	1=4

After simplification, we get

tw ¼ 0:0286rU2 1
Re

� �1=5

(13:39)

The local skin friction coefficient is then

Cd ¼ 2tw
rU2 ¼

0:0573

(Re)1=5
(13:40)

The drag force is determined by integrating the wall shear over the surface area; with b equal to the
plate width, we obtain

Df ¼ b

ðL
0

tw dx ¼ 0:0286rU2b

ðL
0

dx

(Ux=v)1=5

Integrating and simplifying yield

Df ¼ 0:0358rU2 bL

ReLð Þ1=5
(13:41)

The drag coefficient is

CD ¼ 2Df

rU2bL
¼ 0:0715

ReLð Þ1=5
(13:42a)

The preceding expression is approximate because we began with the momentum integral equation
and relied on empirical results. Better agreement with experimental data is obtained if the equation
is altered slightly:

CD ¼ 0:074

ReLð Þ1=5
(13:42b)
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which is valid over the range

5� 105 � Re � 107

Other expressions for velocity and wall shear stress must be used if the Reynolds number is outside
this range. These expressions are summarized in Table 13.4.

Turbulent flow in a pipe was discussed in Chapter 11. Recall that the results of the development
were expressed as a graph of Vz=V* as a function of s—that is, dimensionless mean axial velocity in
terms of a dimensionless space coordinate measured from the wall. According to Figure 11.8, the
laminar sublayer exists over the interval

0 � s � 5

where

s ¼ V*y
v

At the edge of the buffer layer, we have (from Chapter 11)

5 ¼ V*d‘
v

Vz

V*
¼ 5

With Vz¼U,

d‘ ¼ 5v

V*
¼ 25v

U
(13:43)

The ratio of the laminar-sublayer thickness to the boundary-layer thickness given by Equation 13.37 is

d‘
d
¼ 25v

U

(Re)1=5

0:368x

d‘
d
¼ 67:9

(Re)4=5

(13:44)

TABLE 13.4
Results of Momentum Integral Method Applied to Turbulent
Boundary-Layer Flow over a Flat Plate

Assumed
Profile Vx=U Wall Shear Stress tw d

Skin Friction Drag
Coefficient CD

Reynolds
Number Range

y

d


 �1=7
0:0225rU2 v

Ud


 �1=4 0:368x

(Re)1=5

0:074

ReLð Þ1=5 5� 105 to 5� 107

y

d


 �1=8
0:0142rU2 v

Ud


 �1=5 0:252x

(Re)1=6
0:045

ReLð Þ1=6
1:8� 105 to 4:5� 107

y

d


 �1=10
0:0100rU2 v

Ud


 �1=6 0:201x

(Re)1=7
0:0305

ReLð Þ1=7
2:9� 107 to 5� 108
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At Re¼ 5� 105, we have

d‘
d
¼ 0:001 87

At Re¼ 107, we have

d‘
d
¼ 0:000 17

The laminar sublayer is thus very thin.

13.7 LAMINAR AND TURBULENT BOUNDARY-LAYER FLOW
OVER A FLAT PLATE

In the preceding section, we derived expressions for turbulent boundary-layer flow on a flat plate. It
was assumed that the turbulent boundary layer started at the leading edge. For the real situation,
however, the boundary layer is laminar at the leading edge and then changes to a turbulent profile.
An error is introduced by assuming that the turbulent boundary layer begins at x¼ 0. An approxi-
mate method for correcting the results is to write the total drag as follows:

Total drag ¼ laminar drag 0 � x � xcrð Þ
þ turbulent drag (0 � x � L)

� turbulent drag 0 � x � xcrð Þ

The turbulent drag contribution over the laminar portion is subtracted out. The preceding expression
presumes that turbulent flow begins immediately after laminar flow ends; that is, transition exists at
a single point. By selecting the transition Reynolds number as Recr¼ 5� 105 and substituting from
Equation 13.21 for laminar flow and Equation 13.42b for turbulent flow, the drag expression
becomes

CD
rU2

2
bL ¼ 1:328

Recrð Þ1=2
rU2

2
bL

xcr
L

þ 0:074

ReLð Þ1=5
rU2

2
bL

� 0:074

Recrð Þ1=5
rU2

2
bL

xcr
L

Rearranging and simplifying, we get

CD ¼ 1:328 Recrð Þ1=2
Recr

xcr
L

þ 0:074

ReLð Þ1=5
� 0:074 Recrð Þ4=5

Recr

xcr
L
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It is seen that

Recr

ReL
¼ Uxcr

v

v

UL
¼ xcr

L

By substitution, then, we obtain the following for the drag coefficient:

CD ¼ 1:328 5� 105
� �1=2
ReL

þ 0:074

ReLð Þ1=5
� 0:074 5� 105

� �4=5
ReL

or

CD ¼ 0:074

ReLð Þ1=5
� 1 743

ReL
(13:45)

This expression is valid up to a Reynolds number of 1� 107 because the first term on the right-hand
side is valid only to that point. An expression that fits experimental data over a wider range is the
Prandtl–Schlichting equation:

CD ¼ 0:455

log ReLð Þ2:58 �
1 700
ReL

(13:46)

This expression is valid up to a Reynolds number of 1� 109. By combining the following equations,
the graph of Figure 13.12 results:

CD ¼ 1:328

ReLð Þ1=2
(laminar) x � 5� 105 (13:21)

0.1
8
6
4

2

0.01C D 8
6
4

2

0.001
104 2 4 6 8105 2 4 6 8106 2

Equation 13.21
Equation 13.42b

Equation 13.46

ReL

4 6 8 107 2 4 6 8 108 2 4 6 8 109

FIGURE 13.12 Drag coefficient versus Reynolds number at end of surface for flow over a flat plate.
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CD ¼ 0:074

ReLð Þ1=5
(turbulent) 5� 105 � x � 1� 107 (13:42b)

CD ¼ 0:455

log ReLð Þ2:58 �
1 700
ReL

(turbulent) 1� 107 � x � 1� 109 (13:46)

The drag coefficient is graphed as a function of the Reynolds number that exists at the end of the
plate. Data taken on flow over a flat plate agree well with the graph.

From Figure 13.12, it can be seen that skin friction drag is lowest at a Reynolds number of
5� 105 (where the flow is laminar) or at very high Reynolds numbers. One way of effectively
decreasing drag, then, is to keep the boundary layer laminar if possible. Ensuring that the plate
surface is very smooth will reduce disturbances that might cause turbulence. If the transition
Reynolds number can be raised to 106, for example, xcr is effectively doubled from that correspond-
ing to Recr¼ 5� 105; the skin friction drag is cut almost in half.

Example 13.2

A truck trailer is pulled by a cab at 60 mi=h. The boxlike trailer is 40 ft long, 12 ft high, and 7.5 ft wide.
Using the results of this chapter, estimate the skin friction drag on the trailer top and sides.

SOLUTION

From Table A.6, for air, we find

r ¼ 0:0023 slug=ft3 and m ¼ 0:3758� 10�6 lbf � s=ft2

The free-stream velocity is 60 mi=h, or 88 ft=s. The trailer length is 40 ft. The Reynolds number at the
end of the trailer is

ReL ¼ rUL

m
¼ 0:0023(88)(40)

0:3748� 10�6
¼ 2:15� 107

From Figure 13.12, the skin friction drag coefficient is

CD ¼ 0:0025

The drag force is found with

Df ¼ CD
rU2

2
bL

For the trailer top, b¼ 7.5 ft and L¼ 40 ft; therefore,

Df ¼ 0:0025
0:0023(88)

2
(7:5)(40)

Df ¼ 6:67 lbf (top)
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For either side, b¼ 12 ft. Thus,

Df ¼ 0:0025
0:0023(88)

2
(12)(40)

Df ¼ 10:7 lbf (one side)

13.8 SUMMARY

In this chapter, we discussed laminar and turbulent boundary-layer flows. Boundary layer and
momentum integral equations were both derived. Moreover, we examined laminar and turbulent
boundary-layer flows over a flat plate and presented solutions. The result of the combined problems
led to a graph of skin friction drag as a function of Reynolds number at plate end.

PROBLEMS

Equations of Motion for Boundary-Layer Flow

13.1 How is Equation 13.5 affected if it is written for unsteady, two-dimensional, incompressible
flow of a Newtonian fluid?

13.2 Derive Equation 13.19 in detail.
13.3 Derive Equation 13.21.
13.4 Amodel airplane made of balsa wood is gliding through the air with a velocity of 1.5 m=s. The

front wing is flat; it is 30 cm wide (tip to tip) and 10 cm long. Plot the variation of the
boundary-layer thickness with length for the wing. Repeat for the displacement thickness.
Calculate the skin friction drag on the wing.

13.5 Consider the problem of laminar flow of a thin film down a vertical wall as illustrated in
Figure P13.5.* Using an order of magnitude analysis:

a. Show that the Navier–Stokes equations reduce to

Vx
@Vx

@x
þ Vy

@Vx

@y
¼ � 1

r

dp

dx
þ gþ v

@2Vx

@y2

b. Write boundary conditions for the problem.
c. Neglecting the pressure gradient, and with the aid of the continuity equation, shows that

the boundary-layer equations can be used to obtain

d

dx

ðd
0

V2
x dy� gd(x) ¼ �v

@Vx

@y

����
y¼0

List all assumptions inherent in this equation.

* Nabil A. Hassan, Laminar flow along a vertical wall, Journal of Applied Mechanics, September 1967, p. 135.
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x

dx

y

FIGURE P13.5

Momentum Integral Method for Laminar Flow

13.6 Derive Equation 13.34 in detail.
13.7 In the development that led to Equation 13.34, a linear velocity profile was used with the

momentum integral boundary-layer equations. Repeat the same analysis using

Vx

U
¼ 2y

d
� y2

d2

and verify the corresponding entries in Table 13.3.
13.8 Repeat Problem 13.7, using

Vx

U
¼ 3y

2d
� y3

2d3

13.9 Repeat Problem 13.7, using

Vx

U
¼ sin

py

2d

Then plot this function on the same axes as the Blasius profile for comparison.

Momentum Integral Method for Turbulent Flow

13.10 In the development that led to Equation 13.42a, a seventh-root profile was used. Beginning
with the eighth-root profile of Table 13.4 and the wall shear stress given for it, verify the
corresponding entries for the skin friction drag coefficient.

13.11 Repeat Problem 13.10 for the tenth-root profile of Table 13.4.
13.12 Derive the boundary-layer thickness equation that corresponds to the eighth-root profile of

Table 13.4.
13.13 Derive the boundary-layer thickness equation that corresponds to the tenth-root profile of

Table 13.4.

Total Drag on a Flat Plate

13.14 A barge travels on a river with a velocity of 2 m=s, as illustrated in Figure P13.14.
Estimate the skin friction drag on the bottom surface (assuming that it is flat). The barge
width is 4 m.
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12 m

2 m/s

FIGURE P13.14

13.15 Determine the ratio of the boundary-layer thickness just before transition to just after
transition.

13.16 A smooth flat plate has air flowing over it at a rate of 20 ft=s. Estimate the airspeed at a
vertical distance of 1 cm from the plate at the following locations: (a) 10 ft from the leading
edge and (b) 25 ft from the leading edge.

13.17 Flow straighteners are placed in the section upstream of the observation area in a wind tunnel.
The flow straighteners consist of a series of vertical and horizontal plates as shown in Figure
P13.17. The plates form 25 square ducts that are 10 in.� 10 in.� 2 ft long. The inlet flow
velocity is 20 ft=s. Calculate the drag exerted on the entire bundle. Neglect edge effects.

2 ft

10 in.

10 in.

20 ft/s

FIGURE P13.17

13.18 Determine the boundary-layer thickness and the displacement thickness at the end of the
straighteners of Problem 13.17.

13.19 The keel of a boat is about 42 in. deep and tapers linearly from a length of 36 in. at the hull to
a length of 24 in. at the tip (see Figure P13.19.) When the speed of the boat in water is 1 knot,
determine the skin friction drag exerted on the keel. {Hint: Assume that the keel is a
rectangular plate 42 in.� 30 in. [¼ (36þ 24)=2].} Also calculate the power required to
overcome this drag.

24 in.

36 in.

42 in. Rudder

FIGURE P13.19
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13.20 The rudder of the boat in Figure P13.19 is 25 cm long and is 60 cm deep from hull to tip. At a
velocity in water of 7 knots, determine the skin friction drag exerted on the rudder. What is
the power required to overcome this drag?

13.21 Air flows at 5 m=s past a flat plate that is aligned with the flow direction. Determine the
boundary-layer thickness of the flow 1 m past the leading edge of the plate, using each of
the relations given in Table 13.3 if applicable.

13.22 Figure P13.22 shows a windmill located on a plateau. The structure is placed such that the
plane of the blades is 90 ft past the leading edge of the plateau. For an expected wind speed
of 30 mi=h, determine the height h that the blade axis of rotation should be placed so that the
tip of each blade stays at least 10 ft above the edge of the boundary layer formed along
the plateau surface. Assume that the plateau behaves as a flat plate.

30 mph

100 ft

90 ft

h

FIGURE P13.22

13.23 Air flows at 50 m=s past a flat plate aligned with the flow. Determine the boundary
layer thickness 10 m past the leading edge of the plate, using all applicable equations of
Table 13.4.
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Appendices
APPENDIX A: CONVERSION FACTORS AND PROPERTIES OF SUBSTANCES

TABLE A.1
Prefixes for SI Units

Factor by which
Unit is Multiplied Prefix Symbol

1012 tera T

109 giga G
106 mega M
103 kilo k

102 hecto h
10 deka da
10�1 deci d
10�2 centi c

10�3 milli m
10�6 micro m

10�9 nano n

10�12 pico p
10�15 femto f
10�18 atto a

Source: Mechtly, E.A., NASA SP-7012, 1969.

TABLE A.2
Conversion Factors Listed by Physical Quantity

To Convert from To Multiply by

Acceleration

foot=second2 meter=second2 �01 3.048*

inch=second2 meter=second2 �02 2.54*

Area

foot2 meter2 �02 9.290 304*
Inch2 meter2 �04 6.4516*
mile2 (U.S. statute) meter2 þ06 2.589 988 110 336*
yard2 meter2 �01 8.361 273 6*

Notes: * indicates an exact conversion, numbers not followed by asterisk (*) are only

approximations of definitions or the result of physical measurements. The first two digits
of each numerical entry represent a power of 10. Thus,�01 3.048¼ 3.048� 10�1¼ 0.304 8.

(continued)
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TABLE A.2 (continued)
Conversion Factors Listed by Physical Quantity

To Convert from To Multiply by

Density

gram=centimeter3 kilogram=meter3 þ03 1.00*
lbm=inch3 kilogram=meter3 þ04 2.767 990 5
lbm=foot3 kilogram=meter3 þ01 1.601 846 3

slug=inch3 kilogram=meter3 þ05 8.912 929 4
slug=foot3 kilogram=meter3 þ02 5.153 79

Energy

British thermal unit (thermochemical) joule þ03 1.054 350 264 488
calorie (thermochemical) joule þ00 4.184*

foot lbf joule þ00 1.355 817 9
kilocalorie (thermochemical) joule þ03 4.184*
kilowatt hour joule þ06 3.60*

watt hour joule þ03 3.60*

Energy=Area Time

Btu (thermochemical)=foot2 second watt=meter2 þ04 1.134 893 1
Btu (thermochemical)=foot2 minute watt=meter2 þ02 1.891 488 5
Btu (thermochemical)=foot2 hour watt=meter2 þ00 3.152 480 8

Btu (thermochemical)=inch2 second watt=meter2 þ06 1.634 246 2
calorie (thermochemical)=centimeter2 minute watt=meter2 þ02 6.973 333 3
watt=centimeter2 watt=meter2 þ04 1.00*

Force

lbf (pound force, avoirdupois) newton þ00 4.448 221 615 260 5*

Length

foot meter �01 3.048*

inch meter �02 2.54*
mile (U.S. statute) meter þ03 1.609 344*
mile (U.S. nautical) meter þ03 1.852*

Yard meter �01 9.144*

Mass

gram kilogram �03 1.00*
lbm (pound mass, avoirdupois) kilogram �01 4.535 923 7*
slug kilogram þ01 1.459 390 29

Power

Btu (thermochemical)=second watt þ03 1.054 350 264 488

Btu (thermochemical)=minute watt þ01 1.757 250 4
calorie (thermochemical)=second watt þ00 4.184*
calorie (thermochemical)=minute watt �02 6.973 333 3
foot lbf=hour watt �04 3.766 161 0

foot lbf=minute watt �02 2.259 696 6
foot lbf=second watt þ00 1.355 817 9
horsepower (550 foot lbf=second) watt þ02 7.456 998 7

kilocalorie (thermochemical)=minute watt þ01 6.973 333 3

Notes: * indicates an exact conversion, numbers not followed by asterisk (*) are only

approximations of definitions or the result of physical measurements. The first two digits
of each numerical entry represent a power of 10. Thus,�01 3.048¼ 3.048� 10�1¼ 0.304 8.
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TABLE A.2 (continued)
Conversion Factors Listed by Physical Quantity

To Convert from To Multiply by

Pressure

atmosphere newton=meter2 þ05 1.013 25*
bar newton=meter2 þ05 1.00*
centimeter of mercury (08C) newton=meter2 þ03 1.333 22

centimeter of water (48C) newton=meter2 þ01 9.806 38
dyne=centimeter2 newton=meter2 �01 1.00*
foot of water (39.28F) newton=meter2 þ03 2.988 98

inch of mercury (328F) newton=meter2 þ03 3.386 389
inch of mercury (608F) newton=meter2 þ03 3.376 85
inch of water (39.28F) newton=meter2 þ02 2.490 82

inch of water (608F) newton=meter2 þ02 2.488 4
lbf=foot2 newton=meter2 þ01 4.788 025 8
lbf=inch2 (psi) newton=meter2 þ03 6.894 757 2

pascal newton=meter2 þ00 1.00*
torr (08C) newton=meter2 þ02 1.333 22

Speed

foot=hour meter=second �05 8.466 666 6
foot=minute meter=second �03 5.08*
foot=second meter=second �01 3.048*

inch=second meter=second �02 2.54*
kilometer=hour meter=second �01 2.777 777 8
knot (international) meter=second �01 5.144 444 444

mile=hour (U.S. statute) meter=second �01 4.470 4*
mile=minute (U.S. statute) meter=second þ01 2.682 24*
mile=second (U.S. statute) meter=second þ03 1.609 344*

Temperature

Celsius Kelvin tK¼ tCþ 273.15

Fahrenheit Kelvin tK¼ (5=9)(tFþ 459.67)
Fahrenheit Celsius tC¼ (5=9)(tF �32)
Rankine Kelvin tK¼ (5=9)tR

Time

day (mean solar) second (mean solar) þ04 8.64*
hour (mean solar) second (mean solar) þ03 3.60*
minute (mean solar) second (mean solar) þ01 6.00*

month (mean calendar) second (mean solar) þ06 2.628*
second (ephemeris) second þ00 1.000 000 000
year (calendar) second (mean solar) þ07 3.153 6*

Notes: * indicates an exact conversion, numbers not followed by asterisk (*) are only
approximations of definitions or the result of physical measurements. The first two digits

of each numerical entry represent a power of 10. Thus,�01 3.048¼ 3.048� 10�1¼ 0.304 8.

(continued)
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TABLE A.2 (continued)
Conversion Factors Listed by Physical Quantity

To Convert from To Multiply by

Viscosity

centistokes meters2=second �06 1.00*
stoke meters=second �04 1.00*
foot2=second meters=second �02 9.290 304*

centipoise newton � second=meter2 �03 1.00*
lbm=foot second newton � second=meter2 þ00 1.488 163 9
lbf second=foot2 newton � second=meter2 þ01 4.788 025 8

poise newton � second=meter2 �01 1.00*
slug=foot second newton � second=meter2 þ01 4.788 025 8

Volume

barrel (petroleum, 42 gallons) meter3 �03 1.233 481 9
cup meter3 �04 2.365 882 365*

foot3 meter3 �02 2.831 684 659 2*
gallon (U.S. liquid) meter3 �03 3.785 411 784*
inch3 meter3 �05 1.638 706 4*

liter meter3 �03 1.00*
ounce (U.S. fluid) meter3 �05 2.957 352 956 25*
gallon (U.S. dry) meter3 �03 4.404 883 770 86*
pint (U.S. dry) meter3 �04 5.506 104 713 575*

pint (U.S. liquid) meter3 �04 4.731 764 73*
quart (U.S. dry) meter3 �03 1.101 220 942 715*
quart (U.S. liquid) meter3 �04 9.463 529 5

tablespoon meter3 �05 1.478 676 478 125*
teaspoon meter3 �06 4.928 921 593 75*
yard3 meter3 �01 7.645 548 579 84*

Source: Mechtly, E.A., NASA SP-7012, 1969.
Notes: * indicates an exact conversion, numbers not followed by asterisk (*) are only

approximations of definitions or the result of physical measurements. The first two digits
of each numerical entry represent a power of 10. Thus,�01 3.048¼ 3.048� 10�1¼ 0.304 8.
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TABLE A.4
Specific Gravity and Viscosity of Water at Atmospheric Pressure

Temperature Specific
Gravity

Absolute or Dynamic Viscosity, m Kinematic Viscosity, v� 106

8C 8F (N � s=m2)� 103 (lbf � s=ft2)�105 (m2=s) (ft2=s)

0 32.0 0.9999 1.787 3.730 1.787 19.22
2 35.6 1.0000 1.671 3.490 1.671 17.98
4 39.2 1.0000 1.567 3.273 1.567 16.86

6 42.8 1.0000 1.472 3.074 1.472 15.84
8 46.4 0.9999 1.386 2.895 1.386 14.91

10 50.0 0.9997 1.307 2.730 1.307 14.06
12 53.6 0.9995 1.235 2.579 1.236 13.30
14 57.2 0.9998 1.169 2.441 1.170 12.59

16 60.8 0.9990 1.109 2.316 1.110 11.94
18 64.4 0.9986 1.053 2.199 1.054 11.34

Notes on reading the table: Density, r¼ (sp. gr.� 1.94) slug=ft3¼ (sp. gr.� 1 000) kg=m3¼ (sp. gr.� 62.4) lbm=ft3 and
kinematic viscosity at 08C, v� 106¼ 1.787 m2=s, v¼ 1.787� 10�6 m2=s.

(continued)

TABLE A.3
Properties of Dry Air at Atmospheric Pressure

K 8C 8R 8F r (Slug=ft3) r (kg=m3)

m� 106

(lbf � s=ft2) (N � s=m2)

250 �23.15 450 �10 0.00274 1.413 0.3335 15.99

260 �13.15 468 8 0.00264 1.359 0.3444 16.50
270 �3.15 486 26 0.00254 1.308 0.3550 17.00
280 6.85 504 44 0.00245 1.261 0.3652 17.50
290 16.85 522 62 0.00236 1.218 0.3752 17.98

295 21.85 531 71 0.00232 1.197 0.3801 18.22
300 26.85 540 80 0.00228 1.177 0.3854 18.46
310 36.85 558 98 0.00221 1.139 0.3950 18.93

320 46.85 576 116 0.00214 1.103 0.4047 19.39
330 56.85 594 134 0.00208 1.070 0.4143 19.85
340 66.85 612 152 0.00201 1.038 0.4236 20.30

350 76.85 630 170 0.00196 1.008 0.4329 20.75
360 86.85 648 188 0.00190 0.980 5 0.4419 21.18
370 96.85 666 206 0.00185 0.953 9 0.4509 21.60

380 106.85 684 224 0.00180 0.928 8 0.4593 22.02
390 116.85 702 242 0.00176 0.905 0 0.4683 22.44
400 126.85 720 260 0.00171 0.882 2 0.4770 22.86
410 136.85 738 278 0.00167 0.860 8 0.4854 23.27

420 146.85 756 296 0.00163 0.840 0.4938 23.66

Source: Reprinted From Bolz, R.E. and Tuve, G.L. (eds.), CRC Handbook of Tables for Applied Engineering Science,
2nd ed., CRC Press, Cleveland, OH, 1973. With permission.

Note on reading viscosity: For air at 250 K, m� 106¼ 15.99 N � s=m2, m¼ 15.99� 10�6 N � s=m2.
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TABLE A.4 (continued)
Specific Gravity and Viscosity of Water at Atmospheric Pressure

Temperature Specific
Gravity

Absolute or Dynamic Viscosity, m Kinematic Viscosity, v� 106

8C 8F (N � s=m2)� 103 (lbf � s=ft2)�105 (m2=s) (ft2=s)

20 68.0 0.9982 1.002 2.093 1.004 10.80

22 71.6 0.9978 0.9548 1.994 0.9569 10.30
24 75.2 0.9973 0.9111 1.903 0.9135 9.829
26 78.8 0.9968 0.8705 1.818 0.8732 9.396
28 82.4 0.9963 0.8327 1.739 0.8358 8.993

30 86.0 0.9957 0.7975 1.665 0.8009 8.618
32 89.6 0.9951 0.7647 1.597 0.7685 8.269

34 93.3 0.9944 0.7340 1.533 0.7381 7.942
36 96.8 0.9937 0.7052 1.473 0.7097 7.636
38 100 0.9930 0.6783 1.417 0.6831 7.350

40 104 0.9922 0.6529 1.364 0.6580 7.080

42 108 0.9915 0.6291 1.314 0.6345 6.827

44 111 0.9907 0.6067 1.267 0.6124 6.589
46 115 0.9898 0.5856 1.223 0.5916 6.366
48 118 0.9890 0.5656 1.181 0.5719 6.154

50 122 0.9881 0.5468 1.142 0.5534 5.955
52 126 0.9871 0.5290 1.105 0.5359 5.766

54 129 0.9862 0.5121 1.069 0.5193 5.588
56 133 0.9852 0.4961 1.036 0.5036 5.419
58 136 0.9842 0.4809 1.005 0.4886 5.257

60 140 0.9832 0.4665 0.9744 0.4745 5.106
62 144 0.9822 0.4528 0.9458 0.4610 4.960

64 147 0.9811 0.4398 0.9184 0.4483 4.824
66 151 0.9800 0.4273 0.8923 0.4360 4.691
68 154 0.9789 0.4155 0.8678 0.4245 4.5677

70 158 0.9778 0.4042 0.8442 0.4134 4.448
72 162 0.9766 0.3934 0.8218 0.4028 4.334

74 165 0.9755 0.3831 0.8000 0.3927 4.225
76 169 0.9743 0.3732 0.7795 0.3830 4.121
78 172 0.9731 0.3638 0.7599 0.3738 4.022

80 176 0.9718 0.3537 0.7388 0.3640 3.917
82 180 0.9706 0.3460 0.7226 0.3565 3.836

84 183 0.9693 0.3377 0.7052 0.3484 3.749
86 187 0.9680 0.3297 0.6884 0.3406 3.665
88 190 0.9667 0.3221 0.6726 0.3332 3.588

90 194 0.9653 0.3147 0.6574 0.3260 3.508
92 198 0.9640 0.3076 0.6424 0.3191 3.434

94 201 0.9626 0.3008 0.6281 0.3125 3.363
96 205 0.9612 0.2942 0.6145 0.3061 3.294
98 208 0.9584 0.2879 0.6011 0.3000 3.228

100 212 0.9584 0.2818 0.5887 0.2940 3.163

Source: Reprinted from Bolz, R.E. and Tuve, G.L. (eds.), CRC Handbook of Tables for Applied Engineering Science,
2nd ed., CRC Press, Cleveland, OH, 1973. With permission.

Notes on reading the table: Density, r¼ (sp. gr.� 1.94) slug=ft3¼ (sp. gr.� 1 000) kg=m3¼ (sp. gr.� 62.4) lbm=ft3 and

kinematic viscosity at 08C, v� 106¼ 1.787 m2=s, v¼ 1.787� 10�6 m2=s.
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TABLE A.5
Properties of Common Liquids at 1.0 atm Pressure, 778F (258C)

Specific
Gravity

Viscosity Sound
Velocity
(m=s)

Surface
Tension

[(N=m)� 103]Name (lbf � s=ft2)� 105 (N � s=m2)� 103

Acetone 0.787 0.659 0.316 1 174 23.1
Alcohol, ethyl 0.787 2.29 1.095 1 144 22.33

Alcohol, methyl 0.789 1.17 0.56 1 103 22.2
Alcohol, propyl 0.802 4.01 1.92 1 205 23.5

Benzene 0.876 1.26 0.601 1 298 28.18
Carbon disulfide 1.265 0.752 0.36 1 149 32.33
Carbon tetrachloride 1.59 1.90 0.91 924 26.3

Castor oil 0.960 1356 650 1 474 —

Chloroform 1.47 1.11 0.53 995 27.14

Decane 0.728 1.79 0.859 — 23.43
Dodecane — 2.87 1.374 — —

Ether 0.715 0.466 0.223 985 16.42

Ethylene glycol 1.100 33.8 16.2 1 644 48.2
Fluorine refrigerant R-11 1.480 0.876 0.42 — 18.3

Fluorine refrigerant R-12 1.315 — — — —

Fluorine refrigerant R-22 1.197 — — — 8.35

Glycerin 1.263 1 983 950 1 909 63.0
Heptane 0.681 0.786 0.376 1 138 19.9
Hexane 0.657 0.622 0.297 1 203 18.0

Kerosene 0.823 3.42 1.64 1 320 —

Linseed oil 0.93 69.0 33.1 __ __

Mercury 13.6 3.20 1.53 1 450 484
Octane 0.701 1.07 0.51 1 171 21.14
Propane 0.495 0.23 0.11 — 6.6

Propylene 0.516 0.19 0.09 — 7.0
Propylene glycol 0.968 88 42 — 36.3

Seawater 1.03 — — 1 535 —

Turpentine 0.87 2.87 1.375 1 240 —

Water 1.00 1.9 0.89 1 498 71.97

Source: Reprinted from Bolz, R.E. and Tuve, G.L. (eds.), CRC Handbook of Tables for Applied Engineering Science,
2nd ed., CRC Press, Cleveland, OH, 1973. With permission.

Notes: Density, r¼ (sp. gr.� 1.94) slug=ft3¼ (sp. gr.� 1 000) kg=m3¼ (sp. gr.� 62.4) lbm=ft3; viscosity of acetone,
m� 103¼ 0.316 N � s=m3, m¼ 0.316� 10�3 N � s=m2.
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TABLE A.6
Physical Properties of Gases at Room Temperature and Pressure

Gas Constant, R Density, r Dynamic Viscosity, m� 106 Specific Heat, Cp

Gas (ft � lbf=slug � 8R) [ J=(kg � K)] (slug=ft2) (kg=m3) (Ibf � s=ft2) (N � s=m2) (Btu=slug � 8R) [ J=(kg � K)] Cp=Cn¼g

Air 1,710 286.8 0.0023 1.19 0.3758 18.0 7.72 1 005 1.40
Argon 1,250 208 0.00318 1.61 0.4162 20.0 4.02 523 1.67
Carbon dioxide 1,130 189 0.00354 1.82 0.2919 14.0 6.60 876 1.30
Helium 12,400 2 077 0.000317 0.164 0.4161 20.0 39.9 5 188 1.66

Hydrogen 24,700 4 126 0.000160 0.082 6 0.1879 9.0 110 14 310 1.405
Oxygen 1,550 260 0.00254 1.31 0.4161 20.0 7.08 920 1.40

Notes: R¼R=MW, where R¼ 1545 ft � lbf=lb mol � 8R¼ 49,700 ft � lbf=slug mol � 8R¼ 8 312 N � m=(mol � K) and MW¼molecular weight (engineering units)¼molecular mass (SI
units); 1 Btu¼ 778 ft � lbf.
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TABLE A.7
Specific Gravity of Various Solids at Ordinary Atmospheric
Temperature

Substance
Specific
Gravity Substance Specific Gravity

Amber 1.06–1.11 Porcelain 2.3–2.5

Asbestos slate 1.8 Quartz 2.65
Asphalt 1.1–1.5 Rock salt 2.18
Beeswax 0.96–0.97 Rubber (hard) 1.19

Bone 1.7–2.0 Rubber (soft)
Brick 1.4–2.2 Commercial 1.1
Butter 0.86–0.87 Pure gum 0.91–0.93
Camphor 0.99 Slate 2.6–3.3

Cardboard 0.69 Sugar 1.59
Cement (set) 2.7–3.0 Talc 2.7–2.8
Chalk 1.9–2.8 Topaz 3.5–3.6

Clay 1.8–2.6 Wax (sealing) 1.8
Cocoa butter 0.89–0.91 Wood (seasoned)
Cork 0.22–0.26 Ash 0.65–0.85

Diamond 3.01–3.52 Balsa 0.11–0.14
Emery 4.0 Bamboo 0.31–0.40
Gelatin 1.27 Basswood 0.32–0.59
Glass 2.4–2.8 Birch 0.51–0.77

Glue 1.27 Cedar 0.49–0.57
Granite 2.64–2.76 Cherry 0.70–0.90
Graphite 2.30–2.72 Dogwood 0.76

Gypsum 2.31–2.33 Elm 0.54–0.60
Ice 0.917 Hickory 0.60–0.93
Ivory 1.83–1.92 Maple 0.62–0.75

Linoleum 1.18 Oak 0.60–0.90
Marble 2.6–2.84 Walnut 0.64–0.70
Paraffin 0.87–0.91

Sources: Reprinted from Bolz, R.E. and Tuve, G.L. (eds.), CRC Handbook of Tables for

Applied Engineering Science, 2nd ed., CRC Press, Cleveland, OH, 1973. With

permission.
Note: Density, r¼ (sp. gr.� 1.94) slug=ft3¼ (sp. gr.� 1 000) kg=m3¼ (sp. gr.� 62.4) lbm=ft3.
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TABLE A.8
Specify Gravity of Common Metals and Alloys

Common Name Specific Gravity

Aluminum 2.70
Aluminum alloy 2017, annealed (ASTM B221) 2.8
Aluminum bronze 7.8
Beryllium 1.85

Beryllium copper 8.25
Cast gray iron (ASTM A48–48, class 25) 7.2
Chromium 7.2

Copper 8.96
Gold 19.32
Ingot iron 7.86

Iridium 22.42
Iron 7.87
Lead 11.35

Magnesium 1.74
Magnesium alloy (AZ31 B) 1.77
Mercury 13.546
Nickel 8.90

Plain carbon steel (AISI-SAE 1020) 7.86
Platinum 21.45
Potassium 0.86

Silicon 2.33
Silver 10.50
Sodium 0.97

Solder 50–50 8.89
Stainless steel (type 304) 8.02
Tin 7.31
Titanium 4.54

Tungsten 19.3
Uranium 18.8
Vanadium 6.1

Yellow brass (high brass) 8.47
Zinc 7

Source: Reprinted from Bolz, R.E. and Tuve, G.L. (eds.), CRC

Handbook of Tables for Applied Engineering Science, 2nd ed.,
CRC Press, Cleveland, OH, 1973. With permission.

Note: Density, r¼ (sp. gr.� 1.94) slug=ft3¼ (sp. gr.� 1 000) kg=m3¼
(sp. gr.� 62.4) lbm=ft3.
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TABLE A.9
Surface Tension of Liquids at Atmospheric Pressure and Room
Temperature

Name In Contact with Surface Tension [(N=m)�103]

Acetone Air or vapor 23.1
Benzene Air 28.2
Butyl alcohol Air or vapor 24.6
Carbon tetrachloride Vapor 26.3

Chloroform Air 27.1
Ethyl alcohol Vapor 22.4
Ethyl ether Vapor 16.5

Glycerol Air 63.0
n-Hexane Air 18.4
Isobutyl alcohol Vapor 23.0

Isopropyl alcohol Air or vapor 21.7
Mercury Air 484
Methyl alcohol Air 22.2

Octane Vapor 21.8
Propyl alcohol Vapor 23.8
Water Air 72

Source: Reprinted from Bolz, R.E. and Tuve, G.L. (eds.), CRC Handbook of Tables for

Applied Engineering Science, 2nd ed., CRC Press, Cleveland, OH, 1973. With
permission.

Note: Surface tension of acetone, s� 103¼ 23.1 N=m, s¼ 23.1� 103 N=m.
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APPENDIX B: GEOMETRIC ELEMENTS OF PLANE AREAS

TABLE B.1
Areas, Centroidal Distances, and Area Moments of Inertia about Centroidal Axes
for Various Plane Areas

h x x
C

b

yc

xc A¼ bh

h

b

yc

xx
C

xc

k A¼ bh=2

xc¼ b=2 xc¼ (bþ k)=3

yc¼ h=2 yc¼ 2h=3

Ixxc¼ bh3=12 Ixxc¼ bh3=36

Ixyc¼ 0 Ixyc¼ bh2 (2k¼ b)=72

xx

R
C

yc

xc A¼pR2

xx RC
yc

xc A¼pR2=2

xc¼R xc¼R

yc¼R yc¼ 4R=3p

Ixxc¼pR4=4 Ixxc¼R4(9p2� 64)=72p

Ixyc¼ 0 Ixyc¼ 0

xx R
C yc

xc A¼pR2=4

xxb
C yc

xc

a

A¼pab

xc¼ 4R=3p xc¼ a

yc¼ 4R=3p yc¼ b

Ixxc¼R4(9p2� 64)=144p Ixxc¼pab3=4

Ixyc¼R4(31� 9p)=72p Ixyc¼ 0

xxb C

yc
xc

a

A¼pab=2

xxb C

yc
xc

a

A¼pab=4

xc¼ a xc¼ 4a=3p

yc¼ 4b=3p yc¼ 4b=3p

Ixxc¼ ab3(9p2� 64)=72p Ixxc¼ ab3(9p2� 64)=144p

Ixyc¼ 0 Ixyc¼ a2b2(32� 9p)=72p
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APPENDIX C: PIPE AND TUBE SPECIFICATIONS

TABLE C.1
Dimensions of Wrought Steel and Wrought Iron Pipe

Pipe Size

Outside Diameter

Schedule

Internal Diameter Flow Area

in. cm ft cm ft2 cm2

1
8 0.405 1.029 40 (STD) 0.02242 0.683 0.0003947 0.366 4

80 (XS) 0.01792 0.547 0.0002522 0.235 0

1
4 0.540 1.372 40 (STD) 0.03033 0.924 0.0007227 0.670 6

80 (XS) 0.02517 0.768 0.0004974 0.463 2

3
8 0.675 1.714 40 (STD) 0.04108 1.252 0.001326 1.233

80 (XS) 0.03525 1.074 0.0009759 0.905 9

1
2 0.840 2.134 40 (STD) 0.05183 1.580 0.002110 1.961

80 (XS) 0.04550 1.386 0.001626 1.508
160 0.03867 1.178 0.001174 1.090

(XXS) 0.02100 0.640 0.0003464 0.322

3
4 1.050 2.667 40 (STD) 0.06867 2.093 0.003703 3.441

80 (XS) 0.06183 1.883 0.003003 2.785
160 0.05100 1.555 0.002043 1.898

(XXS) 0.03617 1.103 0.001027 0.956

1 1.315 3.340 40 (STD) 0.08742 2.664 0.006002 5.574
80 (XS) 0.07975 2.430 0.004995 5.083

160 0.06792 2.070 0.003623 3.365
(XXS) 0.04992 1.522 0.001957 1.815

1 1
4 1.660 4.216 40 (STD) 0.1150 3.504 0.01039 9.643

80 (XS) 0.1065 3.246 0.008908 8.275
160 0.09667 2.946 0.007339 6.816

(XXS) 0.07467 2.276 0.004379 4.069

1 1
2 1.900 4.826 40 (STD) 0.1342 4.090 0.01414 13.13

80 (XS) 0.1250 3.810 0.01227 11.40
160 0.1115 3.398 0.009764 9.068

(XXS) 0.09167 2.794 0.006600 6.131

2 2.375 6.034 40 (STD) 0.1723 5.252 0.02330 21.66
80 (XS) 0.1616 4.926 0.02051 19.06

160 0.1406 4.286 0.01552 14.43
(XXS) 0.1253 3.820 0.01232 11.46

2 1
2 2.875 7.303 40 (STD) 0.2058 6.271 0.03325 30.89

80 (XS) 0.1936 5.901 0.02943 27.35
160 0.1771 5.397 0.02463 22.88

(XXS) 0.1476 4.499 0.01711 15.90

3 3.500 8.890 40 (STD) 0.2557 7.792 0.05134 47.69

80 (XS) 0.2417 7.366 0.04587 42.61
160 0.2187 6.664 0.03755 34.88

(XXS) 0.1917 5.842 0.02885 26.80

Notes: STD implies standard; XS is extra strong; and XXS is double extra strong.

(continued)
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TABLE C.1 (continued)
Dimensions of Wrought Steel and Wrought Iron Pipe

Pipe Size

Outside Diameter

Schedule

Internal Diameter Flow Area

in. cm ft cm ft2 cm2

3 1
2 4.000 10.16 40 (STD) 0.2957 9.012 0.06866 63.79

80 (XS) 0.2803 8.544 0.06172 57.33

4 4.500 11.43 40 (STD) 0.3355 10.23 0.08841 82.19

80 (XS) 0.3198 9.718 0.07984 74.17
120 0.3020 9.204 0.07163 66.54
160 0.2865 8.732 0.06447 59.88

(XXS) 0.2626 8.006 0.05419 50.34

5 5.563 14.13 40 (STD) 0.4206 12.82 0.1389 129.10

80 (XS) 0.4011 12.22 0.1263 117.30
120 0.3803 11.59 0.1136 105.50
160 0.3594 10.95 0.1015 94.17

(XXS) 0.3386 10.32 0.09004 83.65

6 6.625 16.83 40 (STD) 0.5054 15.41 0.2006 186.50

80 (XS) 0.4801 14.64 0.1810 168.30
120 0.4584 13.98 0.1650 153.50
160 0.4322 13.18 0.1467 136.40

(XXS) 0.4081 12.44 0.1308 121.50

8 8.625 21.91 20 0.6771 20.64 0.3601 334.60

30 0.6726 20.50 0.3553 330.10
40 (STD) 0.6651 20.27 0.3474 322.70
60 0.6511 19.85 0.3329 309.50
80 (XS) 0.6354 19.37 0.3171 294.70

100 0.6198 18.89 0.3017 280.30
120 0.5989 18.26 0.2817 261.90
140 0.5834 17.79 0.2673 248.60

(XXS) 0.5729 17.46 0.2578 239.40
160 0.5678 17.31 0.2532 235.30

10 10.750 27.31 20 0.8542 26.04 0.5730 532.60
30 0.8447 25.75 0.5604 520.80
40 (STD) 0.8350 25.46 0.5476 509.10

60 (XS) 0.8125 24.77 0.5185 481.90
80 0.7968 24.29 0.4987 463.40
100 0.7760 23.66 0.4730 439.70

120 0.7552 23.02 0.4470 416.20
140 (XXS) 0.7292 22.23 0.4176 388.10
160 0.7083 21.59 0.3941 366.10

Notes: STD implies standard; XS is extra strong; and XXS is double extra strong.
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TABLE C.1 (continued)
Dimensions of Wrought Steel and Wrought Iron Pipe

Pipe Size

Outside Diameter

Schedule

Internal Diameter Flow Area

in. cm ft cm ft2 cm2

12 12.750 32.39 20 1.021 31.12 0.8185 760.60

30 1.008 30.71 0.7972 740.71
(STD) 1.000 30.48 0.7854 729.70

40 0.9948 30.33 0.773 722.50
(XS) 0.9792 29.85 0.7530 699.80

60 0.9688 29.53 0.7372 684.90
80 0.9478 28.89 0.7056 655.50
100 0.9218 28.10 0.6674 620.20

120 (XXS) 0.8958 27.31 0.6303 585.80
140 0.8750 26.67 0.6013 558.60
160 0.8438 25.72 0.5592 519.60

14 14.000 35.56 30 (STD) 1.104 33.65 0.9575 889.30
160 0.9323 28.42 0.6827 634.40

16 16.000 40.64 30 (STD) 1.271 38.73 1.268 1 178.00
160 1.068 32.54 0.8953 831.60

18 18.000 45.72 (STD) 1.438 43.81 1.623 1 507.00
160 1.203 36.67 1.137 1 056.00

20 20.000 50.80 20 (STD) 1.604 48.89 2.021 1 877.00

160 1.339 40.80 1.407 1 307.00

22 22.000 55.88 20 (STD) 1.771 53.97 2.463 2 288.00

160 1.479 45.08 1.718 1 596.00

24 24.000 60.96 20 (STD) 1.938 59.05 2.948 2 739.00

160 1.609 49.05 2.034 1 890.00

26 26.000 66.04 (STD) 2.104 64.13 3.477 3 230.00

28 28.000 71.12 (STD) 2.271 69.21 4.050 3 762.00
30 30.000 76.20 (STD) 2.438 74.29 4.666 4 335.00
32 32.000 81.28 (STD) 2.604 79.34 5.326 4 944.00

34 34.000 86.36 (STD) 2.771 84.45 6.030 5 601.00
36 36.000 91.44 (STD) 2.938 89.53 6.777 6 295.00
38 38.000 96.52 __ 3.104 94.61 7.568 7 030.00

40 40.000 101.6 __ 3.271 99.69 8.403 7 805.00

Source: Dimensions in English units obtained from ANSI B36.10-1979, American National Standard Wrought Steel and

Wrought Iran Pipe, The American Society of Mechanical Engineers, New York.
Notes: STD implies standard; XS is extra strong; and XXS is double extra strong.
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TABLE C.2
Dimensions of Seamless Copper Tubing

Standard Size

Outside Diameter

Type

Internal Diameter Flow Area

in. cm ft cm ft2 cm2

1
4 0.375 0.953 K 0.02542 0.775 0.0005074 0.471 7

L 0.02625 0.801 0.0005412 0.503 9

3
8 0.500 1.270 K 0.03350 1.022 0.0008814 0.820 3

L 0.03583 1.092 0.001008 0.936 6
M 0.03750 1.142 0.001104 1.024

1
2 0.625 1.588 K 0.04392 1.340 0.001515 1.410

L 0.04542 1.384 0.001620 1.505
M 0.04742 1.446 0.001766 1.642

5
8 0.750 1.905 K 0.05433 1.657 0.002319 2.156

L 0.05550 1.691 0.002419 2.246

3
4 0.875 2.222 K 0.06208 1.892 0.003027 2.811

L 0.06542 1.994 0.003361 3.123

M 0.06758 2.060 0.003587 3.333

1 1.125 2.858 K 0.08292 2.528 0.005400 5.019

L 0.08542 2.604 0.005730 5.326
M 0.08792 2.680 0.006071 5.641

1 1
4 1.375 3.493 K 0.1038 2.163 0.008454 7.858

L 0.1054 3.213 0.008728 8.108
M 0.1076 3.279 0.009090 8.444

1 1
2 1.625 4.128 K 0.1234 3.762 0.01196 11.12

L 0.1254 3.824 0.01235 11.48

M 0.1273 3.880 0.01272 11.82

2 2.125 5.398 K 0.1633 4.976 0.02093 19.45
L 0.1654 5.042 0.02149 19.97
M 0.1674 5.102 0.02201 20.44

2 1
2 2.625 6.668 K 0.2029 6.186 0.03234 30.05

L 0.2054 6.262 0.03314 30.80
M 0.2079 6.338 0.03395 40.17

3 3.125 7.938 K 0.2423 7.384 0.04609 42.82

L 0.2454 7.480 0.04730 43.94
M 0.2484 7.572 0.04847 45.03

3 1
2 3.625 9.208 K 0.2821 8.598 0.06249 58.06

L 0.2854 8.700 0.06398 59.45
M 0.2883 8.786 0.06523 60.63

4 4.125 10.48 K 0.3214 9.800 0.08114 75.43
L 0.3254 9.922 0.08317 77.32

M 0.3279 9.998 0.08445 78.51

Notes: Type K is for underground service and general plumbing; type L is for interior plumbing; and type M is for use only

with soldered fittings.
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APPENDIX D: COMPRESSIBLE FLOW TABLES

TABLE C.2 (continued)
Dimensions of Seamless Copper Tubing

Standard Size

Outside Diameter

Type

Internal Diameter Flow Area

in. cm ft cm ft2 cm2

5 5.125 13.02 K 0.4004 12.21 0.1259 117.10

L 0.4063 12.38 0.1296 120.50
M 0.4089 12.47 0.1313 122.10

6 6.125 15.56 K 0.4784 14.58 0.1798 167.00
L 0.4871 14.85 0.1863 173.20
M 0.4901 14.39 0.1886 175.30

8 8.125 20.64 K 0.6319 19.26 0.3136 291.50
L 0.6438 19.62 0.3255 302.50

M 0.6488 19.78 0.3306 307.20

10 10.125 25.72 K 0.7874 24.00 0.4870 452.50

L 0.8021 24.45 0.5053 469.50
M 0.8084 24.64 0.5133 476.80

12 12.125 30.80 K 0.9429 28.74 0.6983 648.80
L 0.9638 29.38 0.7295 677.90
M 0.9681 29.51 0.7361 684.00

Source: Dimensions in English units obtained from ANSI¼ASTM B88-78, Standard Specifications for Seamless Copper

Water Tube, American Society for Testing Materials, West Conshohocken, PA.

Notes: Type K is for underground service and general plumbing; type L is for interior plumbing; and type M is for use only
with soldered fittings.

TABLE D.1
Isentropic Flow Tables for a Gas Having g¼ 1.4

M p=pt T=Tt A=A* M p=pt T=Tt A=A*

0.00 1.0000 1.0000 1 0.10 0.9930 0.9980 5.8218

0.01 0.9999 1.0000 57.8738 0.11 0.9916 0.9976 5.2992
0.02 0.9997 0.9999 28.9421 0.12 0.9900 0.9971 4.8643
0.03 0.9994 0.9998 19.3005 0.13 0.9883 0.9966 4.4969

0.04 0.9989 0.9997 14.4815 0.14 0.9864 0.9961 4.1824

0.05 0.9983 0.9995 11.5914 0.15 0.9844 0.9955 3.9103

0.06 0.9975 0.9993 9.6659 0.16 0.9823 0.9949 3.6727
0.07 0.9966 0.9990 8.2915 0.17 0.9800 0.9943 3.4635
0.08 0.9955 0.9987 7.2616 0.18 0.9776 0.9936 3.2779

0.09 0.9944 0.9984 6.4613 0.19 0.9751 0.9928 3.1123

Note on reading the table: 0.9956�1¼ 0.9956� 10�1¼ 0.09956.

(continued)
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TABLE D.1 (continued)
Isentropic Flow Tables for a Gas Having g¼ 1.4

M p=pt T=Tt A=A* M p=pt T=Tt A=A*

0.20 0.9725 0.9921 2.9635 0.60 0.7840 0.9328 1.1882
0.21 0.9697 0.9913 2.8293 0.61 0.7778 0.9307 1.1767
0.22 0.9668 0.9904 2.7076 0.62 0.7716 0.9286 1.1657
0.23 0.9638 0.9895 2.5968 0.63 0.7654 0.9265 1.1552

0.24 0.9607 0.9886 2.4956 0.64 0.7591 0.9243 1.1452

0.25 0.9575 0.9877 2.4027 0.65 0.7528 0.9221 1.1356
0.26 0.9541 0.9867 2.3173 0.66 0.7465 0.9199 1.1265
0.27 0.9506 0.9856 2.2385 0.67 0.7401 0.9176 1.1179
0.28 0.9470 0.9846 2.1656 0.68 0.7338 0.9153 1.1097

0.29 0.9433 0.9835 2.0979 0.69 0.7274 0.9131 1.1018

0.30 0.9395 0.9823 2.0351 0.70 0.7209 0.9107 1.0944

0.31 0.9355 0.9811 1.9765 0.71 0.7145 0.9084 1.0873
0.32 0.9315 0.9799 1.9219 0.72 0.7080 0.9061 1.0806
0.33 0.9274 0.9787 1.8707 0.73 0.7016 0.9037 1.0742

0.34 0.9231 0.9774 1.8229 0.74 0.6951 0.9013 1.0681

0.35 0.9188 0.9761 1.7780 0.75 0.6886 0.8989 1.0624

0.36 0.9143 0.9747 1.7358 0.76 0.6821 0.8964 1.0570
0.37 0.9098 0.9733 1.6961 0.77 0.6756 0.8940 1.0519
0.38 0.9052 0.9719 1.6587 0.78 0.6691 0.8915 1.0471

0.39 0.9004 0.9705 1.6234 0.79 0.6625 0.8890 1.0425

0.40 0.8956 0.9690 1.5901 0.80 0.6560 0.8865 1.0382

0.41 0.8907 0.9675 1.5587 0.81 0.6495 0.8840 1.0342
0.42 0.8857 0.9659 1.5289 0.82 0.6430 0.8815 1.0305
0.43 0.8807 0.9643 1.5007 0.83 0.6365 0.8789 1.0270

0.44 0.8755 0.9627 1.4740 0.84 0.6300 0.8763 1.0237

0.45 0.8703 0.9611 1.4887 0.85 0.6235 0.8737 1.0207

0.46 0.8650 0.9594 1.4246 0.86 0.6170 0.8711 1.0179
0.47 0.8596 0.9577 1.4018 0.87 0.6106 0.8685 1.0153
0.48 0.8541 0.9560 1.3801 0.88 0.6041 0.8659 1.0129

0.49 0.8486 0.9542 1.3595 0.89 0.5977 0.8632 1.0108

0.50 0.8430 0.9524 1.3398 0.90 0.5913 0.8606 1.0089

0.51 0.8374 0.9506 1.3212 0.91 0.5849 0.8579 1.0071
0.52 0.8317 0.9487 1.3034 0.92 0.5785 0.8552 1.0056
0.53 0.8259 0.9468 1.2865 0.93 0.5721 0.8525 1.0043

0.54 0.8201 0.9449 1.2703 0.94 0.5658 0.8498 1.0031

0.55 0.8142 0.9430 1.2550 0.95 0.5595 0.8471 1.0022

0.56 0.8082 0.9410 1.2403 0.96 0.5532 0.8444 1.0014
0.57 0.8022 0.9390 1.2263 0.97 0.5469 0.8416 1.0008
0.58 0.7962 0.9370 1.2130 0.98 0.5407 0.8389 1.0003

0.59 0.7901 0.9349 1.2003 0.99 0.5345 0.8361 1.0001

Note on reading the table: 0.9956�1¼ 0.9956� 10�1¼ 0.09956.
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TABLE D.1 (continued)
Isentropic Flow Tables for a Gas Having g¼ 1.4

M p=pt T=Tt A=A* M p=pt T=Tt A=A*

1.00 0.5283 0.8333 1.000 1.40 0.3142 0.7184 1.115
1.01 0.5221 0.8306 1.000 1.41 0.3098 0.7155 1.120
1.02 0.5160 0.827 1.000 1.42 0.3055 0.7126 1.126
1.03 0.5099 0.8250 1.001 1.43 0.3012 0.7097 1.132

1.04 0.5039 0.8222 1.001 1.44 0.2969 0.7069 1.138

1.05 0.4979 0.8193 1.002 1.45 0.2927 0.7040 1.144
1.06 0.4919 0.8165 1.003 1.46 0.2886 0.7011 1.150
1.07 0.4860 0.8137 1.004 1.47 0.2845 0.6982 1.156
1.08 0.4800 0.8108 1.005 1.48 0.2804 0.6954 1.163

1.09 0.4742 0.8080 1.006 1.49 0.2764 0.6925 1.169

1.10 0.4684 0.8052 1.008 1.50 0.2724 0.6897 1.176

1.11 0.4626 0.8023 1.010 1.51 0.2685 0.6868 1.183
1.12 0.4568 0.7994 1.011 1.52 0.2646 0.6840 1.190
1.13 0.4511 0.7966 1.013 1.53 0.2608 0.6811 1.197

1.14 0.4455 0.7937 1.015 1.54 0.2570 0.6783 1.204

1.15 0.4398 0.7908 1.017 1.55 0.2533 0.6754 1.212

1.16 0.4343 0.7879 1.020 1.56 0.2496 0.6726 1.219
1.17 0.4287 0.7851 1.022 1.57 0.2459 0.6698 1.227
1.18 0.4232 0.7822 1.025 1.58 0.2423 0.6670 1.234

1.19 0.4178 0.7793 1.026 1.59 0.2388 0.6642 1.242

1.20 0.4124 0.7764 1.030 1.60 0.2353 0.6614 1.250

1.21 0.4070 0.7735 1.033 1.61 0.2318 0.6586 1.258
1.22 0.4017 0.7706 1.037 1.62 0.2284 0.6558 1.267
1.23 0.3964 0.7677 1.040 1.63 0.2250 0.6530 1.275

1.24 0.3912 0.7648 1.043 1.64 0.2217 0.6502 1.284

1.25 0.3861 0.7619 1.047 1.65 0.2184 0.6475 1.292

1.26 0.3809 0.7590 1.050 1.66 0.2151 0.6447 1.301
1.27 0.3759 0.7561 1.054 1.67 0.2119 0.6419 1.310
1.28 0.3708 0.7532 1.058 1.68 0.2088 0.6392 1.319

1.29 0.3658 0.7503 1.062 1.69 0.2057 0.6364 1.328

1.30 0.3609 0.7474 1.066 1.70 0.2026 0.6337 1.338

1.31 0.3560 0.7445 1.071 1.71 0.1996 0.6310 1.347
1.32 0.3512 0.7416 1.075 1.72 0.1966 0.6283 1.357
1.33 0.3464 0.7387 1.080 1.73 0.1936 0.6256 1.367

1.34 0.3417 0.7358 1.084 1.74 0.1907 0.6229 1.376

1.35 0.3370 0.7329 1.089 1.75 0.1878 0.6202 1.386

1.36 0.3323 0.7300 1.094 1.76 0.1850 0.6175 1.397
1.37 0.3277 0.7271 1.099 1.77 0.1822 0.6148 1.407
1.38 0.3232 0.7242 1.104 1.78 0.1794 0.6121 1.418

1.39 0.3187 0.7213 1.109 1.79 0.1767 0.6095 1.428

Note on reading the table: 0.9956�1¼ 0.9956� 10�1¼ 0.09956.

(continued)
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TABLE D.1 (continued)
Isentropic Flow Tables for a Gas Having g¼ 1.4

M p=pt T=Tt A=A* M p=pt T=Tt A=A*

1.80 0.1740 0.6068 1.439 2.20 0.9352�1 0.5081 2.005
1.81 0.1714 0.6041 1.450 2.21 0.9207�1 0.5059 2.023
1.82 0.1688 0.6015 1.461 2.22 0.9064�1 0.5036 2.041
1.83 0.1662 0.5989 1.472 2.23 0.8923�1 0.5014 2.059

1.84 0.1637 0.5963 1.484 2.24 0.8785�1 0.4991 2.078

1.85 0.1612 0.5936 1.495 2.25 0.8648�1 0.4969 2.096
1.86 0.1587 0.5910 1.507 2.26 0.8154�1 0.4947 2.115
1.87 0.1563 0.5884 1.519 2.27 0.8382�1 0.4925 2.134
1.88 0.1539 0.5859 1.531 2.28 0.8251�1 0.4903 2.154

1.89 0.1516 0.5833 1.543 2.29 0.8123�1 0.4881 2.173

1.90 0.1492 0.5807 1.555 2.30 0.7997�1 0.4859 2.193

1.91 0.1470 0.5782 1.568 2.31 0.7873�1 0.4837 2.213
1.92 0.1447 0.5756 1.580 2.32 0.7751�1 0.4816 2.233
1.93 0.1425 0.5731 1.593 2.33 0.7631�1 0.4794 2.254

1.94 0.1403 0.5705 1.606 2.34 0.7512�1 0.4773 2.274

1.95 0.1381 0.5680 1.619 2.35 0.7396�1 0.4752 2.295

1.96 0.1360 0.5655 1.633 2.36 0.7281�1 0.4731 2.316
1.97 0.1339 0.5630 1.646 2.37 0.7168�1 0.4709 2.338
1.98 0.1318 0.5605 1.660 2.38 0.7057�1 0.4688 2.359

1.99 0.1298 0.5580 1.674 2.39 0.6948�1 0.4668 2.381

2.00 0.1278 0.5556 1.688 2.40 0.6840�1 0.4647 2.403

2.01 0.1258 0.5531 1.702 2.41 0.6734�1 0.4626 2.425
2.02 0.1239 0.5506 1.716 2.42 0.6630�1 0.4606 2.448
2.03 0.1220 0.5482 1.730 2.43 0.6527�1 0.4585 2.471

2.04 0.1201 0.5458 1.745 2.44 0.6426�1 0.4565 2.494

2.05 0.1182 0.5433 1.760 2.45 0.6327�1 0.4544 2.517

2.06 0.1164 0.5409 1.775 2.46 0.6229�1 0.4524 2.540
2.07 0.1146 0.5385 1.790 2.47 0.6133�1 0.4504 2.564
2.08 0.1128 0.5361 1.806 2.48 0.6038�1 0.4484 2.588

2.09 0.1111 0.5337 1.821 2.49 0.5945�1 0.4464 2.612

2.10 0.1094 0.5313 1.837 2.50 0.5853�1 0.4444 2.637

2.11 0.1077 0.5290 1.853 2.51 0.5762�1 0.4425 2.661
2.12 0.1060 0.5266 1.869 2.52 0.5674�1 0.4405 2.686
2.13 0.1043 0.5243 1.885 2.53 0.5586�1 0.4386 2.712

2.14 0.1027 0.5219 1.902 2.54 0.5500�1 0.4366 2.737

2.15 0.1011 0.5196 1.919 2.55 0.5415�1 0.4347 2.763

2.16 0.9956�1 0.5173 1.935 2.56 0.5332�1 0.4328 2.789
2.17 0.9802�1 0.5150 1.953 2.57 0.5250�1 0.4309 2.815
2.18 0.9649�1 0.5127 1.970 2.58 0.5169�1 0.4289 2.842

2.19 0.9500�1 0.5104 1.987 2.59 0.5090�1 0.4271 2.869

Note on reading the table: 0.9956�1¼ 0.9956� 10�1¼ 0.09956.
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TABLE D.1 (continued)
Isentropic Flow Tables for a Gas Having g¼ 1.4

M p=pt T=Tt A=A* M p=pt T=Tt A=A*

2.60 0.5012�1 0.4252 2.896 3.00 0.2722�1 0.3571 4.235
2.61 0.4935�1 0.4233 2.923 3.01 0.2682�1 0.3556 4.275
2.62 0.4859�1 0.4214 2.951 3.02 0.2642�1 0.3541 4.316
2.63 0.4784�1 0.4196 2.979 3.03 0.2603�1 0.3526 4.357

2.64 0.4711�1 0.4177 3.007 3.04 0.2564�1 0.3511 4.399

2.65 0.4639�1 0.4159 3.036 3.05 0.2526�1 0.3496 4.441
2.66 0.4568�1 0.4141 3.065 3.06 0.2489�1 0.3481 4.483
2.67 0.4498�1 0.4122 3.094 3.07 0.2452�1 0.3466 4.526
2.68 0.4429�1 0.4104 3.123 3.08 0.2416�1 0.3452 4.570

2.69 0.4362�1 0.4086 3.153 3.09 0.2380�1 0.3437 4.613

2.70 0.4295�1 0.4068 3.183 3.10 0.2345�1 0.3422 4.657

2.71 0.4229�1 0.4051 3.213 3.11 0.2310�1 0.3408 4.702
2.72 0.4165�1 0.4033 3.244 3.12 0.2276�1 0.3393 4.747
2.73 0.4102�1 0.4015 3.275 3.13 0.2243�1 0.3379 4.792

2.74 0.4039�1 0.3998 3.306 3.14 0.2210�1 0.3365 4.838

2.75 0.3978�1 0.3980 3.338 3.15 0.2177�1 0.3351 4.884

2.76 0.3917�1 0.3963 3.370 3.16 0.2146�1 0.3337 4.930
2.77 0.3858�1 0.3945 3.402 3.17 0.2114�1 0.3323 4.977
2.78 0.3799�1 0.3928 3.434 3.18 0.2083�1 0.3309 5.025

2.79 0.3742�1 0.3911 3.467 3.19 0.2053�1 0.3295 5.073

2.80 0.3685�1 0.3894 3.500 3.20 0.2023�1 0.3281 5.121

2.81 0.3629�1 0.3877 3.534 3.21 0.1993�1 0.3267 5.170
2.82 0.3574�1 0.3860 3.567 3.22 0.1964�1 0.3253 5.219
2.83 0.3520�1 0.3844 3.601 3.23 0.1936�1 0.3240 5.268

2.84 0.3467�1 0.3827 3.636 3.24 0.1908�1 0.3226 5.319

2.85 0.3415�1 0.3810 3.671 3.25 0.1880�1 0.3213 5.369

2.86 0.3363�1 0.3794 3.706 3.26 0.1853�1 0.3199 5.420
2.87 0.3312�1 0.3777 3.741 3.27 0.1826�1 0.3186 5.472
2.88 0.3263�1 0.3761 3.777 3.28 0.1799�1 0.3173 5.523

2.89 0.3213�1 0.3745 3.813 3.29 0.1773�1 0.3160 5.576

2.90 0.3165�1 0.3729 3.850 3.30 0.1748�1 0.3147 5.629

2.91 0.3118�1 0.3712 3.887 3.31 0.1722�1 0.3134 5.682
2.92 0.3071�1 0.3696 3.924 3.32 0.1698�1 0.3121 5.736
2.93 0.3025�1 0.3681 3.961 3.33 0.1673�1 0.3108 5.790

2.94 0.2980�1 0.3665 3.999 3.34 0.1649�1 0.3095 5.845

2.95 0.2935�1 0.3649 4.038 3.35 0.1625�1 0.3082 5.900

2.96 0.2891�1 0.3633 4.076 3.36 0.1602�1 0.3069 5.956
2.97 0.2848�1 0.3618 4.115 3.37 0.1579�1 0.3057 6.012
2.98 0.2805�1 0.3602 4.155 3.38 0.1557�1 0.3044 6.069

2.99 0.2764�1 0.3587 4.194 3.39 0.1534�1 0.3032 6.126

Note on reading the table: 0.9956�1¼ 0.9956� 10�1¼ 0.09956.

(continued)
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TABLE D.1 (continued)
Isentropic Flow Tables for a Gas Having g¼ 1.4

M p=pt T=Tt A=A* M p=pt T=Tt A=A*

3.40 0.1512�1 0.3019 6.184 3.80 0.8629�2 0.2572 8.951
3.41 0.1491�1 0.3007 6.242 3.81 0.8512�2 0.2562 9.032
3.42 0.1470�1 0.2995 6.301 3.82 0.8396�2 0.2552 9.115
3.43 0.1449�1 0.2982 6.360 3.83 0.8283�2 0.2542 9.198

3.44 0.1428�1 0.2970 6.420 3.84 0.8171�2 0.2532 9.282

3.45 0.1408�1 0.2958 6.480 3.85 0.8060�2 0.2522 9.366
3.46 0.1388�1 0.2946 6.541 3.86 0.7951�2 0.2513 9.451
3.47 0.1368�1 0.2934 6.602 3.87 0.7844�2 0.2503 9.537
3.48 0.1349�1 0.2922 6.664 3.88 0.7739�2 0.2493 9.624

3.49 0.1330�1 0.2910 6.727 3.89 0.7635�2 0.2484 9.711

3.50 0.1311�1 0.2899 6.790 3.90 0.7532�2 0.2474 9.799

3.51 0.1293�1 0.2887 6.853 3.91 0.7431�1 0.2464 9.888
3.52 0.1274�1 0.2875 6.917 3.92 0.7332�2 0.2455 9.977
3.53 0.1256�1 0.2864 6.982 3.93 0.7233�2 0.2446 10.07

3.54 0.1239�1 0.2852 7.047 3.94 0.7137�2 0.2436 10.16

3.55 0.1221�1 0.2841 7.113 3.95 0.7042�2 0.2427 10.25

3.56 0.1204�1 0.2829 7.179 3.96 0.6948�2 0.2418 10.34
3.57 0.1188�1 0.2818 7.246 3.97 0.6855�2 0.2408 10.44
3.58 0.1171�1 0.2806 7.313 3.98 0.6764�2 0.2399 10.53

3.59 0.1155�1 0.2795 7.382 3.99 0.6675�2 0.2390 10.62

3.60 0.1138�1 0.2784 7.450 4.00 0.6586�2 0.2381 10.72

3.61 0.1123�1 0.2773 7.519 4.01 0.6499�2 0.2372 10.81
3.62 0.1107�1 0.2762 7.589 4.02 0.6413�2 0.2363 10.91
3.63 0.1092�1 0.2751 7.659 4.03 0.6328�2 0.2354 11.01

3.64 0.1076�1 0.2740 7.730 4.04 0.6245�2 0.2345 11.11

3.65 0.1062�1 0.2729 7.802 4.05 0.6163�2 0.2336 11.21

3.66 0.1047�1 0.2718 7.874 4.06 0.6082�2 0.2327 11.31
3.67 0.1032�1 0.2707 7.947 4.07 0.6002�2 0.2319 11.41
3.68 0.1018�1 0.2697 8.020 4.08 0.5923�2 0.2310 11.51

3.69 0.1004�1 0.2686 8.094 4.09 0.5845�2 0.2301 11.61

3.70 0.9903�2 0.2675 8.169 4.10 0.5769�2 0.2293 11.71

3.71 0.9767�2 0.2665 8.244 4.11 0.5694�2 0.2284 11.82
3.72 0.9633�2 0.2654 8.320 4.12 0.5619�2 0.2275 11.92
3.73 0.9500�1 0.2644 8.397 4.13 0.5546�2 0.2267 12.03

3.74 0.9370�2 0.2633 8.474 4.14 0.5474�2 0.2258 12.14

3.75 0.9242�2 0.2623 8.552 4.15 0.5403�2 0.2250 12.24

3.76 0.9116�2 0.2613 8.630 4.16 0.5333�2 0.2242 12.35
3.77 0.8991�2 0.2602 8.709 4.17 0.5264�2 0.2233 12.46
3.78 0.8869�2 0.2592 8.789 4.18 0.5195�2 0.2225 12.57

3.79 0.8748�2 0.2582 8.870 4.19 0.5128�2 0.2217 12.68

Note on reading the table: 0.9956�1¼ 0.9956� 10�1¼ 0.09956.
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TABLE D.1 (continued)
Isentropic Flow Tables for a Gas Having g¼ 1.4

M p=pt T=Tt A=A* M p=pt T=Tt A=A*

4.20 0.5062�2 0.2208 12.79 4.60 0.3053�2 0.1911 18.02
4.21 0.4997�2 0.2200 12.90 4.61 0.3015�2 0.1905 18.17
4.22 0.4932�2 0.2192 13.02 4.62 0.2978�2 0.1898 18.32
4.23 0.4869�2 0.2184 13.13 4.63 0.2942�2 0.1891 18.48

4.24 0.4806�2 0.2176 13.25 4.64 0.2906�2 0.1885 18.63

4.25 0.4745�2 0.2168 13.36 4.65 0.2871�2 0.1878 18.79
4.26 0.4684�2 0.2160 13.48 4.66 0.2836�2 0.1872 18.94
4.27 0.4624�2 0.2152 13.60 4.67 0.2802�2 0.1865 19.10
4.28 0.4565�2 0.2144 13.72 4.68 0.2768�2 0.1859 19.26

4.29 0.4507�2 0.2136 13.83 4.69 0.2734�2 0.1852 19.42

4.30 0.4449�2 0.2129 13.95 4.70 0.2701�1 0.1846 19.58

4.31 0.4393�2 0.2121 14.08 4.71 0.2669�2 0.1839 19.75
4.32 0.4337�2 0.2113 14.20 4.72 0.2637�2 0.1833 19.91
4.33 0.4282�2 0.2105 14.32 4.73 0.2605�2 0.1827 20.07

4.34 0.4228�2 0.2098 14.45 4.74 0.2573�2 0.1820 20.24

4.35 0.4174�2 0.2090 14.57 4.75 0.2543�2 0.1814 20.41

4.36 0.4121�2 0.2083 14.70 4.76 0.2512�2 0.1808 20.58
4.37 0.4069�2 0.2075 14.82 4.77 0.2482�2 0.1802 20.75
4.38 0.4018�2 0.2067 14.95 4.78 0.2452�2 0.1795 20.92

4.39 0.3968�2 0.2060 15.08 4.79 0.2423�2 0.1789 21.09

4.40 0.3918�2 0.2053 15.21 4.80 0.2394�2 0.1783 21.26

4.41 0.3868�2 0.2045 15.34 4.81 0.2366�2 0.1777 21.44
4.42 0.3820�2 0.2038 15.47 4.82 0.2338�2 0.1771 21.61
4.43 0.3772�2 0.2030 15.61 4.83 0.2310�2 0.1765 21.79

4.44 0.3725�2 0.2023 15.74 4.84 0.2283�2 0.1759 21.97

4.45 0.3678�2 0.2016 15.87 4.85 0.2255�2 0.1753 22.15

4.46 0.3633�2 0.2009 16.01 4.86 0.2229�2 0.1747 22.33
4.47 0.3587�2 0.2002 !6.15 4.87 0.2202�2 0.1741 22.51
4.48 0.3543�2 0.1994 16.28 4.88 0.2177�2 0.1735 22.70

4.49 0.3499�2 0.1987 16.42 4.89 0.2151�2 0.1729 21.88

4.50 0.3455�2 0.1980 16.56 4.90 0.2126�2 0.1724 23.07

4.51 0.3412�2 0.1973 16.70 4.91 0.2101�2 0.1718 23.25
4.52 0.3370�2 0.1966 16.84 4.92 0.2076�2 0.1712 23.44
4.53 0.3329�2 0.1959 16.99 4.93 0.2052�2 0.1706 23.63

4.54 0.3288�2 0.1952 17.13 4.94 0.2028�2 0.1700 23.82

4.55 0.3247�2 0.1945 17.28 4.95 0.2004�2 0.1695 24.02

4.56 0.3207�2 0.1938 17.42 4.96 0.1981�2 0.1689 24.21
4.57 0.3168�2 0.1932 17.57 4.97 0.1957�2 0.1683 24.41
4.58 0.3129�2 0.1925 17.72 4.98 0.1985�2 0.1678 24.60

4.59 0.3090�2 0.1918 17.87 4.99 0.1912�2 0.1672 24.80

5.00 0.1890�2 0.1667 25.00

Source: NACA, Equations, tables and charts for compressible flow, NACA Report 1135, 1953.
Note on reading the table: 0.9956�1¼ 0.9956� 10�1¼ 0.09956.
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TABLE D.2
Normal Shock Tables for a Gas Having g¼ 1.4

M1 M2 p2=p1 r2=r1 T2=T1 pt2=pt1 p1=pt2

1.00 1.000 1.000 1.000 1.000 1.000 0.5283
1.01 0.9901 1.023 1.017 1.007 1.000 0.5221
1.02 0.9805 1.047 1.033 1.013 1.000 0.5160
1.03 0.9712 1.071 1.050 1.020 1.000 0.5100

1.04 0.9620 1.095 1.067 1.026 0.9999 0.5039

1.05 0.9531 1.120 1.084 1.033 0.9999 0.4980
1.06 0.9444 1.144 1.101 1.039 0.9997 0.4920
1.07 0.9360 1.169 1.118 1.046 0.9996 0.4861
1.08 0.9277 1.194 1.135 1.052 0.9994 0.4803

1.09 0.9196 1.219 1.152 1.059 0.9992 0.4746

1.10 0.9116 1.245 1.169 1.065 0.9989 0.4689

1.11 0.9041 1.271 1.186 1.071 0.9986 0.4632
1.12 0.8966 1.297 1.203 1.078 0.9982 0.4576
1.13 0.8892 1.323 1.221 1.084 0.9978 0.4521

1.14 0.8820 1.350 1.238 1.090 0.9973 0.4467

1.15 0.8750 1.376 1.255 1.097 0.9967 0.4413

1.16 0.8682 1.403 1.272 1.103 0.9961 0.4360
1.17 0.8615 1.430 1.290 1.109 0.9953 0.4307
1.18 0.8549 1.458 1.307 1.115 0.9946 0.4255

1.19 0.8485 1.485 1.324 1.122 0.9937 0.4204

1.20 0.8422 1.513 1.342 1.128 0.9928 0.4154

1.21 0.8360 1.541 1.359 1.134 0.9918 0.4104
1.22 0.8300 1.570 1.376 1.141 0.9907 0.4055
1.23 0.8241 1.598 1.394 1.147 0.9896 0.4006

1.24 0.8183 1.627 1.411 1.153 0.9884 0.3958

1.25 0.8126 1.656 1.429 1.159 0.9871 0.3911

1.26 0.8071 1.686 1.446 1.166 0.9857 0.3865
1.27 0.8016 1.715 1.463 1.172 0.9842 0.3819
1.28 0.7963 1.745 1.481 1.178 0.9827 0.3774

1.29 0.7911 1.775 1.498 1.185 0.9811 0.3729

1.30 0.7860 1.805 1.516 1.191 0.9794 0.3685

1.31 0.7809 1.835 1.533 1.197 0.9776 0.3642
1.32 0.7760 1.866 1.551 1.204 0.9758 0.3599
1.33 0.7712 1.897 1.568 1.210 0.9738 0.3557

1.34 0.7664 1.928 1.585 1.216 0.9718 0.3516

1.35 0.7618 1.960 1.603 1.223 0.9697 0.3475

1.36 0.7572 1.991 1.620 1.229 0.9676 0.3435
1.37 0.7527 2.023 1.638 1.235 0.9653 0.3395
1.38 0.7483 2.055 1.655 1.242 0.9630 0.3356

1.39 0.7440 2.087 1.672 1.248 0.9607 0.3317

Note on reading the table: 0.7214�1¼ 0.7214� 10�1¼ 0.07214.
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TABLE D.2 (continued)
Normal Shock Tables for a Gas Having g¼ 1.4

M1 M2 p2=p1 r2=r1 T2=T1 pt2=pt1 p1=pt2

1.40 0.7397 2.120 1.690 1.255 0.9582 0.3280
1.41 0.7355 2.153 1.707 1.261 0.9557 0.3242
1.42 0.7314 2.186 1.724 1.268 0.9531 0.3205
1.43 0.7274 2.219 1.742 1.274 0.9504 0.3169

1.44 0.7235 2.253 1.759 1.281 0.9476 0.3133

1.40 0.7397 2.120 1.690 1.255 0.9582 0.3280
1.41 0.7355 2.153 1.707 1.261 0.9557 0.3242
1.42 0.7314 2.186 1.724 1.268 0.9531 0.3205
1.43 0.7274 2.219 1.742 1.274 0.9504 0.3169

1.44 0.7235 2.253 1.759 1.281 0.9476 0.3133

1.45 0.7196 2.286 1.776 1.287 0.9448 0.3098

1.46 0.7157 2.320 1.793 1.294 0.9420 0.3063
1.47 0.7120 2.354 1.811 1.300 0.9390 0.3029
1.48 0.7083 2.389 1.828 1.307 0.9360 0.2996

1.49 0.7047 2.423 1.845 1.314 0.9329 0.2962

1.50 0.7011 2.458 1.862 1.320 0.9298 0.2930

1.51 0.6976 2.493 1.879 1.327 0.9266 0.2898
1.52 0.6941 2.529 1.896 1.334 0.9233 0.2366
1.53 0.6907 2.564 1.913 1.340 0.9200 0.2835

1.54 0.6874 2.600 1.930 1.347 0.9166 0.2804

1.55 0.6841 2.636 1.947 1.354 0.9132 0.2773

1.56 0.6809 2.673 1.964 1.361 0.9097 0.2744
1.57 0.6777 2.709 1.981 1.367 0.9061 0.2714
1.58 0.6746 2.746 1.998 1.374 0.9026 0.2685

1.59 0.6715 2.783 2.015 1.381 0.8989 0.2656

1.60 0.6684 2.820 2.032 1.388 0.8952 0.2628

1.61 0.6655 2.857 2.049 1.395 0.8915 0.2600
1.62 0.6625 2.895 2.065 1.402 0.8877 0.2573
1.63 0.6596 2.933 2.082 1.409 0.8838 0.2546

1.64 0.6568 2.971 2.099 1.416 0.8799 0.2519

1.65 0.6540 3.010 2.115 1.423 0.8760 0.2493

1.66 0.6512 3.048 2.132 1.430 0.8720 0.2467
1.67 0.6485 3.087 2.148 1.437 0.8680 0.2442
1.68 0.6458 3.126 2.165 1.444 0.8640 0.2417

1.69 0.6431 3.165 2.181 1.451 0.8598 0.2392

1.70 0.6405 3.205 2.198 1.458 0.8557 0.2368

1.71 0.6380 3.245 2.214 1.466 0.8516 0.2344
1.72 0.6355 3.285 2.230 1.473 0.8474 0.2320
1.73 0.6330 3.325 2.247 1.480 0.8431 0.2296

1.74 0.6305 3.366 2.263 1.487 0.8389 0.2273

Note on reading the table: 0.7214�1¼ 0.7214� 10�1¼ 0.07214.

(continued)
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TABLE D.2 (continued)
Normal Shock Tables for a Gas Having g¼ 1.4

M1 M2 p2=p1 r2=r1 T2=T1 pt2=pt1 p1=pt2

1.75 0.6281 3.406 2.279 1.495 0.8346 0.2251
1.76 0.6257 3.447 2.295 1.502 0.8302 0.2228
1.77 0.6234 3.488 2.311 1.509 0.8259 0.2206
1.78 0.6210 3.530 2.327 1.517 0.8215 0.2184

1.79 0.6188 3.571 2.343 1.524 0.8171 0.2163

1.80 0.6165 3.613 2.359 1.532 0.8127 0.2142
1.81 0.6143 3.655 2.375 1.539 0.8082 0.2121
1.82 0.6121 3.698 2.391 1.547 0.8038 0.2100
1.83 0.6099 3.740 2.407 1.554 0.7993 0.2080

1.84 0.6078 3.783 2.422 1.562 0.7948 0.2060

1.85 0.6057 3.826 2.438 1.569 0.7902 0.2040

1.86 0.6036 3.870 2.454 1.577 0.7857 0.2020
1.87 0.6016 3.913 2.469 1.585 0.7811 0.2001
1.88 0.5996 3.957 2.485 1.592 0.7765 0.1982

1.89 0.5976 4.001 2.500 1.600 0.7720 0.1963

1.90 0.5956 4.045 2.516 1.608 0.7674 0.1945

1.91 0.5937 4.089 2.531 1.616 0.7627 0.1927
1.92 0.5918 4.134 2.546 1.624 0.7581 0.1909
1.93 0.5899 4.179 2.562 1.631 0.7535 0.1891

1.94 0.5880 4.224 2.577 1.639 0.7488 0.1873

1.95 0.5862 4.270 2.592 1.647 0.7442 0.1856

1.96 0.5844 4.315 2.607 1.655 0.7395 0.1839
1.97 0.5826 4.361 2.622 1.663 0.7349 0.1822
1.98 0.5808 4.407 2.637 1.671 0.7302 0.1806

1.99 0.5791 4.453 2.652 1.679 0.7255 0.1789

2.00 0.5774 4.500 2.667 1.688 0.7209 0.1773

2.01 0.5757 4.547 2.681 1.696 0.7162 0.1757
2.02 0.5740 4.594 2.696 1.704 0.7115 0.1741
2.03 0.5723 4.641 2.711 1.712 0.7069 0.1726

2.04 0.5707 4.689 2.725 1.720 0.7022 0.1710

2.05 0.5691 4.736 2.740 1.729 0.6975 0.1695

2.06 0.5675 4.784 2.755 1.737 0.6928 0.1680
2.07 0.5659 4.832 2.769 1.745 0.6882 0.1665
2.08 0.5643 4.881 2.783 1.754 0.6835 0.1651

2.09 0.5628 4.929 2.798 1.762 0.6789 0.1636

2.10 0.5613 4.978 2.812 1.770 0.6742 0.1622

2.11 0.5598 5.027 2.826 1.779 0.6696 0.1608
2.12 0.5583 5.077 2.840 1.787 0.6649 0.1594
2.13 0.5568 5.126 2.854 1.796 0.6603 0.1580

2.14 0.5554 5.176 2.868 1.805 0.6557 0.1567

Note on reading the table: 0.7214�1¼ 0.7214� 10�1¼ 0.07214.
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TABLE D.2 (continued)
Normal Shock Tables for a Gas Having g¼ 1.4

M1 M2 p2=p1 r2=r1 T2=T1 pt2=pt1 p1=pt2

2.15 0.5540 5.226 2.882 1.813 0.6511 0.1553
2.16 0.5525 5.277 2.896 1.822 0.6464 0.1540
2.17 0.5511 5.327 2.910 1.831 0.6419 0.1527
2.18 0.5498 5.378 2.924 1.839 0.6373 0.1514

2.19 0.5484 5.429 2.938 1.848 0.6327 0.1502

2.20 0.5471 5.480 2.951 1.857 0.6281 0.1489
2.21 0.5457 5.531 2.965 1.866 0.6236 0.1476
2.22 0.5444 5.583 2.978 1.875 0.6191 0.1464
2.23 0.5431 5.636 2.992 1.883 0.6145 0.1452

2.24 0.5418 5.687 3.005 1.892 0.6100 0.1440

2.25 0.5406 5.740 3.019 1.901 0.6055 0.1428

2.26 0.5393 5.792 3.032 1.910 0.6011 0.1417
2.27 0.5381 5.845 3.045 1.919 0.5966 0.1405
2.28 0.5368 5.898 3.058 1.929 0.5921 0.1394

2.29 0.5356 5.951 3.071 1.938 0.5877 0.1382

2.30 0.5344 6.005 3.085 1.947 0.5833 0.1371

2.31 0.5332 6.059 3.098 1.956 0.5789 0.1360
2.32 0.5321 6.113 3.110 1.965 0.5745 0.1349
2.33 0.5309 6.167 3.123 1.974 0.5702 0.1338

2.34 0.5297 6.222 3.136 1.984 0.5658 0.1328

2.35 0.5286 6.276 3.149 1.993 0.5615 0.1317

2.36 0.5275 6.331 3.162 2.002 0.5572 0.1307
2.37 0.5264 6.386 3.174 2.012 0.5529 0.1297
2.38 0.5253 6.442 3.187 2.021 0.5486 0.1286

2.39 0.5242 6.497 3.199 2.031 0.5444 0.1276

2.40 0.5231 6.553 3.212 2.040 0.5401 0.1266

2.41 0.5221 6.609 3.224 2.050 0.5359 0.1257
2.42 0.5210 6.666 3.237 2.059 0.5317 0.1247
2.43 0.5200 6.722 3.249 2.069 0.5276 0.1237

2.44 0.5189 6.779 3.261 2.079 0.5234 0.1228

2.45 0.5179 6.836 3.273 2.088 0.5193 0.1218

2.46 0.5169 6.894 3.285 2.098 0.5152 0.1209
2.47 0.5159 6.951 3.298 2.108 0.5111 0.1200
2.48 0.5149 7.009 3.310 2.118 0.5071 0.1191

2.49 0.5140 7.067 3.321 2.128 0.5030 0.1182

2.50 0.5130 7.125 3.333 2.138 0.4990 0.1173

2.51 0.5120 7.183 3.345 2.147 0.4950 0.1164
2.52 0.5111 7.242 3.357 2.157 0.4911 0.1155
2.53 0.5102 7.301 3.369 2.167 0.4871 0.1147

2.54 0.5092 7.360 3.380 2.177 0.4832 0.1138

Note on reading the table: 0.7214�1¼ 0.7214� 10�1¼ 0.07214.

(continued)
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TABLE D.2 (continued)
Normal Shock Tables for a Gas Having g¼ 1.4

M1 M2 p2=p1 r2=r1 T2=T1 pt2=pt1 p1=pt2

2.55 0.5083 7.420 3.392 2.187 0.4793 0.1130
2.56 0.5074 7.479 3.403 2.198 0.4754 0.1122
2.57 0.5065 7.539 3.415 2.208 0.4715 0.1113
2.58 0.5056 7.599 3.426 2.218 0.4677 0.1105

2.59 0.5047 7.659 3.438 2.228 0.4639 0.1097

2.60 0.5039 7.720 3.449 2.238 0.4601 0.1089
2.61 0.5030 7.781 3.460 2.249 0.4564 0.1081
262 0.5022 7.842 3.471 2.259 0.4526 0.1074
2.63 0.5013 7.908 3.483 2.269 0.4489 0.1066

2.64 0.5005 7.965 3.494 2.280 0.4452 0.1058

2.65 0.4996 8.026 3.505 2.290 0.4416 0.1051

2.66 0.4988 8.088 3.516 2.301 0.4379 0.1043
2.67 0.4980 8.150 3.527 2.311 0.4343 0.1036
2.68 0.4972 8.213 3.537 2.322 0.4307 0.1028

2.69 0.4964 8.275 3.548 2.332 0.4271 0.1021

2.70 0.4956 8.338 3.559 2.343 0.4236 0.1014

2.71 0.4949 8.401 3.570 2.354 0.4201 0.1007
2.72 0.4941 8.465 3.580 2.364 0.4166 0.9998�1

2.73 0.4933 8.528 3.591 2.375 0.4131 0.9929�1

2.74 0.4926 8.592 3.601 2.386 0.4097 0.9860�1

2.75 0.4918 8.656 3.612 2.397 0.4062 0.9792�1

2.76 0.4911 8.721 3.622 2.407 0.4028 0.9724�1

2.77 0.4903 8.785 3.633 2.418 0.3994 0.9658�1

2.78 0.4896 8.850 3.643 2.429 0.3961 0.9591�1

2.79 0.4889 8.915 3.653 2.440 0.3928 0.9526�1

2.80 0.4882 8.980 3.664 2.451 0.3895 0.9461�1

2.81 0.4875 9.045 3.674 2.462 0.3862 0.9397�1

2.82 0.4868 9.111 3.684 2.473 0.3829 0.9334�1

2.83 0.4861 9.177 3.694 2.484 0.3797 0.9271�1

2.84 0.4854 9.243 3.704 2.496 0.3765 0.9209�1

2.85 0.4847 9.310 3.714 2.507 0.3733 0.9147�1

2.86 0.4840 9.376 3.724 2.518 0.3701 0.9086�1

2.87 0.4833 9.443 3.734 2.529 0.3670 0.9026�1

2.88 0.4827 9.510 3.743 2.540 0.3639 0.8966�1

2.89 0.4820 9.577 3.753 2.552 0.3608 0.8906�1

2.90 0.4814 9.645 3.763 2.563 0.3577 0.8848�1

2.91 0.4807 9.713 3.773 2.575 0.3547 0.8790�1

2.92 0.4801 9.781 3.782 2.586 0.3517 0.8732�1

2.93 0.4795 9.849 3.792 2.598 0.3487 0.8675�1

2.94 0.4788 9.918 3.801 2.609 0.3457 0.8619�1

Note on reading the table: 0.7214�1¼ 0.7214� 10�1¼ 0.07214.
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TABLE D.2 (continued)
Normal Shock Tables for a Gas Having g¼ 1.4

M1 M2 p2=p1 r2=r1 T2=T1 pt2=pt1 p1=pt2

2.95 0.4782 9.986 3.811 2.621 0.3428 0.8563�1

2.96 0.4776 10.06 3.820 2.632 0.3398 0.8507�1

2.97 0.4770 10.12 3.829 2.644 0.3369 0.8453�1

2.98 0.4764 10.19 3.839 2.656 0.3340 0.8398�1

2.99 0.4758 10.26 3.848 2.667 0.3312 0.8345�1

3.00 0.4752 10.33 3.857 2.679 0.3283 0.8291�1

3.01 0.4746 10.40 3.866 2.691 0.3255 0.8238�1

3.02 0.4740 10.47 3.875 2.703 0.3227 0.8186�1

3.03 0.4734 10.54 3.884 2.714 0.3200 0.8134�1

3.04 0.4729 10.62 3.893 2.726 0.3172 0.8083�1

3.05 0.4723 10.69 3.902 2.738 0.3145 0.8032�1

3.06 0.4717 10.76 3.911 2.750 0.3118 0.7982�1

3.07 0.4712 10.83 3.920 2.762 0.3091 0.7932�1

3.08 0.4706 10.90 3.929 2.774 0.3065 0.7882�1

3.09 0.4701 10.97 3.938 2.786 0.3038 0.7833�1

3.10 0.4695 11.05 3.947 2.799 0.3012 0.7785�1

3.11 0.4690 11.12 3.955 2.811 0.2986 0.7737�1

3.12 0.4685 11.19 3.964 2.823 0.2960 0.7689�1

3.13 0.4679 11.26 3.973 2.835 0.2935 0.7642�1

3.14 0.4674 11.34 3.981 2.848 0.2910 0.7595�1

3.15 0.4669 11.41 3.990 2.860 0.2885 0.7549�1

3.16 0.4664 11.48 3.998 2.872 0.2860 0.7503�1

3.17 0.4659 11.56 4.006 2.885 0.2835 0.7457�1

3.18 0.4654 11.63 4.015 2.897 0.2811 0.7412�1

3.19 0.4648 11.71 4.023 2.909 0.2786 0.7367�1

3.20 0.4643 11.78 4.031 2.922 0.2762 0.7323�1

3.21 0.4639 11.85 4.040 2.935 0.2738 0.7279�1

3.22 0.4634 11.93 4.048 2.947 0.2715 0.7235�1

3.23 0.4629 12.01 4.056 2.960 0.2691 0.7192�1

3.24 0.4624 12.08 4.064 2.972 0.2668 0.7149�1

3.25 0.4619 12.16 4.072 2.985 0.2645 0.7107�1

3.26 0.4614 12.23 4.080 2.998 0.2622 0.7065�1

3.27 0.4610 12.31 4.088 3.011 0.2600 0.7023�1

3.28 0.4605 12.38 4.096 3.023 0.2577 0.6982�1

3.29 0.4600 12.46 4.104 3.036 0.2555 0.6941�1

3.30 0.4596 12.54 4.112 3.049 0.2533 0.6900�1

3.31 0.4591 12.62 4.120 3.062 0.2511 0.6860�1

3.32 0.4587 12.69 4.128 3.075 0.2489 0.6820�1

3.33 0.4582 12.77 4.135 3.088 0.2468 0.6781�1

3.34 0.4578 12.85 4.143 3.101 0.2446 0.6741�1

Note on reading the table: 0.7214�1¼ 0.7214� 10�1¼ 0.07214.

(continued)
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TABLE D.2 (continued)
Normal Shock Tables for a Gas Having g¼ 1.4

M1 M2 p2=p1 r2=r1 T2=T1 pt2=pt1 p1=pt2

3.35 0.4573 2.93 4.151 3.114 0.2425 0.6702�1

3.36 0.4569 3.00 4.158 3.127 0.2404 0.6664�1

3.37 0.4565 3.08 4.166 3.141 0.2383 0.6626�1

3.38 0.4560 3.16 4.173 3.154 0.2363 0.6588�1

3.39 0.4556 3.24 4.181 3.167 0.2342 0.6550�1

3.40 0.4552 13.32 4.188 3.180 0.2322 0.6513�1

3.41 0.4548 13.40 4.196 3.194 0.2302 0.6476�1

3.42 0.4544 13.48 4.203 3.207 0.2282 0.6439�1

3.43 0.4540 13.56 4.211 3.220 0.2263 0.6403�1

3.44 0.4535 13.64 4.218 3.234 0.2243 0.6367�1

3.45 0.4531 13.72 4.225 3.247 0.2224 0.6331�1

3.46 0.4527 13.80 4.232 3.261 0.2205 0.6296�1

3.47 0.4523 13.88 4.240 3.274 0.2186 0.6261�1

3.48 0.4519 13.96 4.247 3.288 0.2167 0.6226�1

3.49 0.4515 14.04 4.254 3.301 0.2148 0.6191�1

3.50 0.4512 14.13 4.261 3.315 0.2129 0.6157�1

3.51 0.4508 14.21 4.268 3.329 0.2111 0.6123�1

3.52 0.4504 14.29 4.275 3.343 0.2093 0.6089�1

3.53 0.4500 14.37 4.282 3.356 0.2075 0.6056�1

3.54 0.4496 14.45 4.289 3.370 0.2057 0.6023�1

3.55 0.4492 14.54 4.296 3.384 0.2039 0.5990�1

3.56 0.4489 14.62 4.303 3.398 0.2022 0.5957�1

3.57 0.4485 14.70 4.309 3.412 0.2004 0.5925�1

3.58 0.4481 14.79 4.316 3.426 0.1987 0.5892�1

3.59 0.4478 14.87 4.323 3.440 0.1970 0.5861�1

3.60 0.4474 14.95 4.330 3.454 0.1953 0.5829�1

3.61 0.4471 15.04 4.336 3.468 0.1936 0.5798�1

3.62 0.4467 15.12 4.343 3.482 0.1920 0.5767�1

3.63 0.4463 15.21 4.350 3.496 0.1903 0.5736�1

3.64 0.4460 15.29 4.356 3.510 0.1887 0.5705�1

3.65 0.4456 15.38 4.363 3.525 0.1671 0.5675�1

3.66 0.4453 15.46 4.369 3.539 0.1855 0.5645�1

3.67 0.4450 15.55 4.376 3.553 0.1839 0.5615�1

3.68 0.4446 15.63 4.382 3.568 0.1823 0.5585�1

3.69 0.4443 15.72 4.388 3.582 0.1807 0.5556�1

3.70 0.4439 15.81 4.395 3.596 0.1792 0.5526�1

3.71 0.4436 15.89 4.401 3.611 0.1777 0.5497�1

3.72 0.4433 15.98 4.408 3.625 0.1761 0.5469�1

3.73 0.4430 16.07 4.414 3.640 0.1746 0.5440�1

3.74 0.4426 16.15 4.420 3.654 0.1731 0.5412�1

Note on reading the table: 0.7214�1¼ 0.7214� 10�1¼ 0.07214.
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TABLE D.2 (continued)
Normal Shock Tables for a Gas Having g¼ 1.4

M1 M2 p2=p1 r2=r1 T2=T1 pt2=pt1 p1=pt2

3.75 0.4423 16.24 4.426 3.669 0.1717 0.5384�1

3.76 0.4420 16.33 4.432 3.684 0.1702 0.5356�1

3.77 0.4417 16.42 4.439 3.698 0.1687 0.5328�1

3.78 0.4414 16.50 4.445 3.713 0.1673 0.5301�1

3.79 0.4410 16.59 4.451 3.728 0.1659 0.5274�1

3.80 0.4407 16.68 4.457 3.743 0.1645 0.5247�1

3.81 0.4404 16.77 4.463 3.758 0.1631 0.5220�1

3.82 0.4401 16.86 4.469 3.772 0.1617 0.5193�1

3.83 0.4398 16.95 4.475 3.787 0.1603 0.5167�1

3.84 0.4395 17.04 4.481 3.802 0.1589 0.5140�1

3.85 0.4392 17.13 4.487 3.817 0.1576 0.5114�1

3.86 0.4389 17.22 4.492 3.832 0.1563 0.5089�1

3.87 0.4386 17.31 4.498 3.847 0.1549 0.5063�1

3.88 0.4383 17.40 4.504 3.863 0.1536 0.5038�1

3.89 0.4380 17.49 4.510 3.878 0.1523 0.5012�1

3.90 0.4377 17.58 4.516 3.893 0.1510 0.4987�1

3.91 0.4375 17.67 4.521 3.908 0.1497 0.4962�1

3.92 0.4372 17.76 4.527 3.923 0.1435 0.4938�1

3.93 0.4369 17.85 4.533 3.939 0.1472 0.4913�1

3.94 0.4366 17.94 4.538 3.954 0.1460 0.4889�1

3.95 0.4363 18.04 4.544 3.969 0.1448 0.4865�1

3.96 0.4360 18.13 4.549 3.985 0.1435 0.4841�1

3.97 0.4358 18.22 4.555 4.000 0.1423 0.4817�1

3.98 0.4355 18.31 4.560 4.016 0.1411 0.4793�1

3.99 0.4352 18.41 4.566 4.031 0.1399 0.4770�1

4.00 0.4350 18.50 4.571 4.047 0.1388 0.4747�1

4.01 0.4347 18.59 4.577 4.062 0.1376 0.4723�1

4.02 0.4344 18.69 4.582 4.078 0.1364 0.4700�1

4.03 0.4342 18.78 4.588 4.094 0.1353 0.4678�1

4.04 0.4339 18.88 4.593 4.110 0.1342 0.4655�1

4.05 0.4336 18.97 4.598 4.125 0.1330 0.4633�1

4.06 0.4334 19.06 4.604 4.141 0.1319 0.4610�1

4.07 0.4331 19.16 4.609 4.157 0.1308 0.4588�1

4.08 0.4329 19.25 4.614 4.173 0.1297 0.4566�1

4.09 0.4326 19.35 4.619 4.189 0.1286 0.4544�1

4.10 0.4324 19.45 4.624 4.205 0.1276 0.4523�1

4.11 0.4321 19.54 4.630 4.221 0.1265 0.4501�1

4.12 0.4319 19.64 4.635 4.237 0.1254 0.4480�1

4.13 0.4316 19.73 4.640 4.253 0.1244 0.4459�1

4.14 0.4314 19.83 4.645 4.269 0.1234 0.4438�1

Note on reading the table: 0.7214�1¼ 0.7214� 10�1¼ 0.07214.

(continued)
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TABLE D.2 (continued)
Normal Shock Tables for a Gas Having g¼ 1.4

M1 M2 p2=p1 r2=r1 T2=T1 pt2=pt1 p1=pt2

4.15 0.4311 19.93 4.650 4.285 0.1223 0.4417�1

4.16 0.4309 20.02 4.655 4.301 0.1213 0.4396�1

4.17 0.4306 20.12 4.660 4.318 0.1203 0.4375�1

4.18 0.4304 20.22 4.665 4.334 0.1193 0.4355�1

4.19 0.4302 20.32 4.670 4.350 0.1183 0.4334�1

4.20 0.4299 20.41 4.675 4.367 0.1173 0.4314�1

4.21 0.4297 20.51 4.680 4.383 0.1164 0.4294�1

4.22 0.4295 20.61 4.685 4.399 0.1154 0.4274�1

4.23 0.4292 20.71 4.690 4.416 0.1144 0.4255�1

4.24 0.4290 20.81 4.694 4.432 0.1135 0.4235�1

4.25 0.4288 20.91 4.699 4.449 0.1126 0.4215�1

4.26 0.4286 21.01 4.704 4.466 0.1116 0.4196�1

4.27 0.4283 21.11 4.709 4.482 0.1107 0.4177�1

4.28 0.4281 21.20 4.713 4.499 0.1098 0.4158�1

4.29 0.4279 21.30 4.718 4.516 0.1089 0.4139�1

4.30 0.4277 21.41 4.723 4.532 0.1080 0.4120�1

4.31 0.4275 21.51 4.728 4.549 0.1071 0.4101�1

4.32 0.4272 21.61 4.732 4.566 0.1062 0.4082�1

4.33 0.4270 21.71 4.737 4.583 0.1054 0.4064�1

4.34 0.4268 21.81 4.741 4.600 0.1045 0.4046�1

4.35 0.4266 21.91 4.746 4.617 0.1036 0.4027�1

4.36 0.4264 22.01 4.751 4.633 0.1028 0.4009�1

4.37 0.4262 22.11 4.755 4.651 0.1020 0.3991�1

4.38 0.4260 22.22 4.760 4.668 0.1011 0.3973�1

4.39 0.4258 22.32 4.764 4.685 0.1003 0.3956�1

4.40 0.4255 22.42 4.768 4.702 0.9948�1 0.3938�1

4.41 0.4253 22.52 4.773 4.719 0.9867�1 0.3921�1

4.42 0.4251 22.63 4.777 4.736 0.9787�1 0.3903�1

4.43 0.4249 22.73 4.782 4.753 0.9707�1 0.3886�1

4.44 0.4247 22.83 4.786 4.771 0.9628�1 0.3869�1

4.45 0.4245 22.94 4.790 4.788 0.9550�1 0.3852�1

4.46 0.4243 23.04 4.795 4.805 0.9473�1 0.3835�1

4.47 0.4241 23.14 4.799 4.823 0.9396�1 0.3818�1

4.48 0.4239 23.25 4.803 4.840 0.9320�1 0.3801�1

4.49 0.4237 23.35 4.808 4.858 0.9244�1 0.3785�1

4.50 0.4236 23.46 4.812 4.875 0.9170�1 0.3768�1

4.51 0.4234 23.56 4.816 4.893 0.9096�1 0.3752�1

4.52 0.4232 23.67 4.820 4.910 0.9022�1 0.3735�1

4.53 0.4230 23.77 4.824 4.928 0.8950�1 0.3719�1

4.54 0.4228 23.88 4.829 4.946 0.8878�1 0.3703�1

4.55 0.4226 23.99 4.833 4.963 0.8806�1 0.3687�1

4.56 0.4224 24.09 4.837 4.981 0.8735�1 0.3671�1

4.57 0.4222 24.20 4.841 4.999 0.8665�1 0.3656�1

4.58 0.4220 24.31 4.845 5.017 0.8596�1 0.3640�1

4.59 0.4219 24.41 4.849 5.034 0.8527�1 0.3624�1

Note on reading the table: 0.7214�1¼ 0.7214� 10�1¼ 0.07214.
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TABLE D.2 (continued)
Normal Shock Tables for a Gas Having g¼ 1.4

M1 M2 p2=p1 r2=r1 T2=T1 pt2=pt1 p1=pt2

4.60 0.4217 24.52 4.853 5.052 0.8459�1 0.3609�1

4.61 0.4215 24.63 4.857 5.070 0.8391�1 0.3593�1

4.62 0.4213 24.74 4.861 5.088 0.8324�1 0.3578�1

4.63 0.4211 24.84 4.865 5.106 0.8257�1 0.3563�1

4.64 0.4210 24.95 4.869 5.124 0.8192�1 0.3548�1

4.65 0.4208 25.06 4.873 5.143 0.8126�1 0.3533�1

4.66 0.4206 25.17 4.877 5.160 0.8062�1 0.3518�1

4.67 0.4204 25.28 4.881 5.179 0.7998�1 0.3503�1

4.68 0.4203 25.39 4.885 5.197 0.7934�1 0.3488�1

4.69 0.4201 25.50 4.889 5.215 0.7871�1 0.3474�1

4.70 0.4199 25.61 4.893 5.233 0.7809�1 0.3459�1

4.71 0.4197 25.71 4.896 5.252 0.7747�1 0.3445�1

4.72 0.4196 25.82 4.900 5.270 0.7685�1 0.3431�1

4.73 0.4194 25.94 4.904 5.289 0.7625�1 0.3416�1

4.74 0.4192 26.05 4.908 5.307 0.7564�1 0.3402�1

4.75 0.4191 26.16 4.912 5.325 0.7505�1 0.3388�1

4.76 0.4189 26.27 4.915 5.344 0.7445�1 0.3374�1

4.77 0.4187 26.38 4.919 5.363 0.7387�1 0.3360�1

4.78 0.4186 26.49 4.923 5.381 0.7329�1 0.3346�1

4.79 0.4184 26.60 4.926 5.400 0.7271�1 0.3333�1

4.80 0.4183 26.71 4.930 5.418 0.7214�1 0.3319�1

4.81 0.4181 26.83 4.934 5.437 0.7157�1 0.3305�1

4.82 0.4179 26.94 4.937 5.456 0.7101�1 0.3292�1

4.83 0.4178 27.05 4.941 5.475 0.7046�1 0.3278�1

4.84 0.4176 27.16 4.945 5.494 0.6991�1 0.3265�1

4.85 0.4175 27.28 4.948 5.512 0.6936�1 0.3252�1

4.86 0.4173 27.39 4.952 5.531 0.6882�1 0.3239�1

4.87 0.4172 27.50 4.955 5.550 0.6828�1 0.3226�1

4.88 0.4170 27.62 4.959 5.569 0.6775�1 0.3213�1

4.89 0.4169 27.73 4.962 5.588 0.6722�1 0.3200�1

4.90 0.4167 27.85 4.966 5.607 0.6670�1 0.3187�1

4.91 0.4165 27.96 4.969 5.626 0.6618�1 0.3174�1

4.92 0.4164 28.07 4.973 5.646 0.6567�1 0.3161�1

4.93 0.4163 28.19 4.976 5.665 0.6516�1 0.3149�1

4.94 0.4161 28.30 4.980 5.684 0.6465�1 0.3136�1

4.95 0.4160 28.42 4.983 5.703 0.6415�1 0.3124�1

4.96 0.4158 28.54 4.987 5.723 0.6366�1 0.3111�1

4.97 0.4157 28.65 4.990 5.742 0.6317�1 0.3099�1

4.98 0.4155 28.77 4.993 5.761 0.6268�1 0.3087�1

4.99 0.4154 28.88 4.997 5.781 0.6220�1 0.3075�1

5.00 0.4152 29.00 5.000 5.800 0.6172�1 0.3062�1

Source: NACA, Equations, tables and charts for compressible flow, NACA Report 1135, 1953.
Note on reading the table: 0.7214�1¼ 0.7214� 10�1¼ 0.07214.
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TABLE D.3
Fanno Flow (Flow with Friction) Tables for a Gas Having g¼ 1.4

M T=T* p=p* pt=pt* V=V* fLmax=D

0.00 1.2000 1 1 0 1
0.01 1.2000 109.544 57.874 0.01095 7134.40
0.02 1.1999 54.770 28.942 0.02191 1778.45
0.03 1.1998 36.511 19.300 0.03286 787.08

0.04 1.1996 27.382 14.482 0.04381 440.35

0.05 1.1994 21.903 11.5914 0.05476 280.02
0.06 1.1991 18.251 9.6659 0.06570 193.03
0.07 1.1988 15.642 8.2915 0.07664 140.66
0.08 1.1985 13.684 7.2616 0.08758 106.72

0.09 1.1981 12.162 6.4614 0.09851 83.496

0.10 1.1976 10.9435 5.8218 0.10943 66.922

0.11 1.1971 9.9465 5.2992 0.12035 54.688
0.12 1.1966 9.1156 4.8643 0.13126 45.408
0.13 1.1960 8.4123 4.4968 0.14216 38.207

0.14 1.1953 7.8093 4.1824 0.15306 32.511

0.15 1.1946 7.2866 3.9103 0.16395 27.932

0.16 1.1939 6.8291 3.6727 0.17482 24.198
0.17 1.1931 6.4252 3.4635 0.18568 21.115
0.18 1.1923 6.0662 3.2779 0.19654 18.543

0.19 1.1914 5.7448 3.1123 0.20739 16.375

0.20 1.1905 5.4555 2.9635 0.21822 14.533

0.21 1.1895 5.1936 2.8293 0.22904 12.956
0.22 1.1885 4.9554 2.7076 0.23984 11.596
0.23 1.1874 4.7378 2.5968 0.25063 10.416

0.24 1.1863 4.5383 2.4956 0.26141 9.3865

0.25 1.1852 4.3546 2.4027 0.27217 8.4834

0.26 1.1840 4.1850 2.3173 0.28291 7.6876
0.27 1.1828 4.0280 2.2385 0.29364 6.9832
0.28 1.1815 3.8820 2.1656 0.30435 6.3572

0.29 1.1802 3.7460 2.0979 0.31504 5.7989

0.30 1.1788 3.6190 2.0351 0.32572 5.2992

0.31 1.1774 3.5002 1.9765 0.33637 4.8507
0.32 1.1759 3.3888 1.9219 0.34700 4.4468
0.33 1.1744 3.2840 1.8708 0.35762 4.0821

0.34 1.1729 3.1853 1.8229 0.36822 3.7520

0.35 1.1713 3.0922 1.7780 0.37880 3.4525

0.36 1.1697 3.0042 1.7358 0.38935 3.1801
0.37 1.1680 2.9209 1.6961 0.39988 2.9320
0.38 1.1663 2.8420 1.6587 0.41039 2.7055

0.39 1.1646 2.7671 1.6234 0.42087 2.4983

0.40 1.1628 2.6958 1.5901 0.43133 2.3085

0.41 1.1610 2.6280 1.5587 0.44177 2.1344
0.42 1.1591 2.5634 1.5289 0.45218 1.9744
0.43 1.1572 2.5017 1.5007 0.46257 1.8272
0.44 1.1553 2.4428 1.4739 0.47293 1.6915
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TABLE D.3 (continued)
Fanno Flow (Flow with Friction) Tables for a Gas Having g¼ 1.4

M T=T* p=p* pt=pt* V=V* fLmax=D

0.45 1.1533 2.3865 1.4486 0.48326 1.5664
0.46 1.1513 2.3326 1.4246 0.49357 1.4509
0.47 1.1492 2.2809 1.4018 0.50385 1.3442
0.48 1.1471 2.2314 1.3801 0.51410 1.2453

0.49 1.1450 2.1838 1.3595 0.52433 1.1539

0.50 1.1429 2.1381 1.3399 0.53453 1.06908
0.51 1.1407 2.0942 1.3212 0.54469 0.99042
0.52 1.1384 2.0519 1.3034 0.55482 0.91741
0.53 1.1362 2.0112 1.2864 0.56493 0.84963

0.54 1.1339 1.9719 1.2702 0.57501 0.78662

0.55 1.1315 1.9341 1.2549 0.58506 0.72805

0.56 1.1292 1.8976 1.2403 0.59507 0.67357
0.57 1.1268 1.8623 1.2263 0.60505 0.62286
0.58 1.1244 1.8282 1.2130 0.61500 0.57568

0.59 1.1219 1.7952 1.2003 0.62492 0.53174

0.60 1.1194 1.7634 1.1882 0.63481 0.49081

0.61 1.1169 1.7325 1.1766 0.64467 0.45270
0.62 1.1144 1.7026 1.1656 0.65449 0.41720
0.63 1.1118 1.6737 1.1551 0.66427 0.38411

0.64 1.1091 1.6456 1.1451 0.67402 0.35330

0.65 1.10650 1.6183 1.1356 0.68374 0.32460

0.66 1.10383 1.5919 1.1265 0.69342 0.29785
0.67 1.10114 1.5662 1.1179 0.70306 0.27295
0.68 1.09842 1.5413 1.1097 0.71267 0.24978

0.69 1.09567 1.5170 1.1018 0.72225 0.22821

0.70 1.09290 1.4934 1.09436 0.73179 0.20814

0.71 1.09010 1.4705 1.08729 0.74129 0.18949
0.72 1.08727 1.4482 1.08057 0.75076 0.17215
0.73 1.08442 1.4265 1.07419 0.76019 0.15606

0.74 1.08155 1.4054 1.06815 0.76958 0.14113

0.75 1.07865 1.3848 1.06242 0.77893 0.12728

0.76 1.07573 1.3647 1.05700 0.78825 0.11446
0.77 1.07279 1.3451 1.05188 0.79753 0.10262
0.78 1.06982 1.3260 1.04705 0.80677 0.09167

0.79 1.06684 1.3074 1.04250 0.81598 0.08159

0.80 1.06383 1.2892 1.03823 0.82514 0.07229

0.81 1.06080 1.2715 1.03422 0.83426 0.06375
0.82 1.05775 1.2542 1.03047 0.84334 0.05593
0.83 1.05468 1.2373 1.02696 0.85239 0.04878

0.84 1.05160 1.2208 1.02370 0.86140 0.04226

0.85 1.04849 1.2047 1.02067 0.87037 0.03632

0.86 1.04537 1.1889 1.01787 0.87929 0.03097
0.87 1.04223 1.1735 1.01529 0.88818 0.02613
0.88 1.03907 1.1584 1.01294 0.89703 0.02180
0.89 1.03589 1.1436 1.01080 0.90583 0.01793

(continued)
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TABLE D.3 (continued)
Fanno Flow (Flow with Friction) Tables for a Gas Having g¼ 1.4

M T=T* p=p* pt=pt* V=V* fLmax=D

0.90 1.03270 1.12913 1.00887 0.91459 0.014513
0.91 1.02950 1.11500 1.00714 0.92332 0.011519
0.92 1.02627 1.10114 1.00560 0.93201 0.008916
0.93 1.02304 1.08758 1.00426 0.94065 0.006694

0.94 1.01978 1.07430 1.00311 0.94925 0.004815

0.95 1.01652 1.06129 1.00215 0.95782 0.003280
0.96 1.01324 1.04854 1.00137 0.96634 0.002056
0.97 1.00995 1.03605 1.00076 0.97481 0.001135
0.98 1.00664 1.02379 1.00033 0.98324 0.000493

0.99 1.00333 1.01178 1.00008 0.99164 0.000120

1.00 1.00000 1.00000 1.00000 1.00000 0

1.01 0.99666 0.98844 1.00008 1.00831 0.000114
1.02 0.99331 0.97711 1.00033 1.01658 0.000458
1.03 0.98995 0.96598 1.00073 1.02481 0.001013

1.04 0.98658 0.95506 1.00130 1.03300 0.001771

1 05 0.98320 0.94435 1.00203 1.04115 0.002712

1.06 0.97982 0.93383 1.00291 1.04925 0.003837
1.07 0.97642 0.92350 1.00394 1.05731 0.005129
1.08 0.97302 0.91335 1.00512 1.06533 0.006582

1.09 0.96960 0.90338 1.00645 1.07331 0.008185

1.10 0.96618 0.89359 1.00793 1.08124 0.009933

1.11 0.96276 0.88397 1.00955 1.08913 0.011813
1.12 0.95933 0.87451 1.01131 1.09698 0.013824
1.13 0.95589 0.86522 1.01322 1.10479 0.015949

1.14 0.95244 0.85608 1.01527 1.11256 0.018187

1.15 0.94899 0.84710 1.01746 1.1203 0.02053

1.16 0.94554 0.83827 1.01978 1.1280 0.02298
1.17 0.94208 0.82958 1.02224 1.1356 0.02552
1.18 0.93862 0.82104 1.02484 1.1432 0.02814

1.19 0.93515 0.81263 1.02757 1.1508 0.03085

1.20 0.93168 0.80436 1.03044 1.1583 0.03364

1.21 0.92820 0.79623 1.03344 1.1658 0.03650
1.22 0.92473 0.78822 1.03657 1.1732 0.03942
1.23 0.92125 0.78034 1.03983 1.1806 0.04241

1.24 0.91777 0.77258 1.04323 1.1879 0.04547

1.25 0.91429 0.76495 1.04676 1.1952 0.04858

1.26 0.91080 0.75743 1.05041 1.2025 0.05174
1.27 0.90732 0.75003 1.05419 1.2097 0.05494
1.28 0.90383 0.74274 1.05809 1.2169 0.05820

1.29 0.90035 0.73556 1.06213 1.2240 0.06150

1.30 0.89686 0.72848 1.06630 1.2311 0.06483

1.31 0.89338 0.72152 1.07060 1.2382 0.06820
1.32 0.88989 0.71465 1.07502 1.2452 0.07161
1.33 0.88641 0.70789 1.07957 1.2522 0.07504
1.34 0.88292 0.70123 1.08424 1.2591 0.07850

692 Appendices



TABLE D.3 (continued)
Fanno Flow (Flow with Friction) Tables for a Gas Having g¼ 1.4

M T=T* p=p* pt=pt* V=V* fLmax=D

1.35 0.87944 0.69466 1.08904 1.2660 0.08199
1.36 0.87596 0.68818 1.09397 1.2729 0.08550
1.37 0.87249 0.68180 1.09902 1.2797 0.08904
1 38 0.86901 0.67551 1.10419 1.2864 0.09259

1.39 0.86554 0.66931 1.10948 1.2932 0.09616

1.40 0.86207 0.66320 1.1149 1.2999 0.09974
1.41 0.85860 0.65717 1.1205 1.3065 0.10333
1.42 0.85514 0.65122 1.1262 1.3131 0.10694
1.43 0.85168 0.64536 1.1320 1.3197 0.11056

1.44 0.84822 0.63958 1.1379 1.3262 0.11419

1.45 0.84477 0.63387 1.1440 1.3327 0.11782

1.46 0.84133 0.62824 1.1502 1.3392 0.12146
1.47 0.83788 0.62269 1.1565 1.3456 0.12510
1.48 0.83445 0.61722 1.1629 1.3520 0.12875

1.49 0.83101 0.61181 1.1695 1.3583 0.13240

1.50 0.82759 0.60648 1.1762 1.3646 0.13605

1.51 0.82416 0.60122 1.1830 1.3708 0.13970
1.52 0.82075 0.59602 1.1899 1.3770 0.14335
1.53 0.81734 0.59089 1.1970 1.3832 0.14699

1.54 0.81394 0.58583 1.2043 1.3894 0.15063

1.55 0.81054 0.58084 1.2116 1.3955 0.15427

1.56 0.80715 0.57591 1.2190 1.4015 0.15790
1.57 0.80376 0.57104 1.2266 1.4075 0.16152
1.58 0.80038 0.56623 1.2343 1.4135 0.16514

1.59 0.79701 0.56148 1.2422 1.4195 0.16876

1.60 0.79365 0.55679 1.2502 1.4254 0.17236

1.61 0.79030 0.55216 1.2583 1.4313 0.17595
1.62 0.78695 0.54759 1.2666 1.4371 0.17953
1.63 0.78361 0.54308 1.2750 1.4429 0.18311

1.64 0.78028 0.53862 1.2835 1.4487 0.18667

1.65 0.77695 0.53421 1.2922 1.4544 0.19022

1.66 0.77363 0.52986 1.3010 1.4601 0.19376
1.67 0.77033 0.52556 1.3099 1.4657 0.19729
1.68 0.76703 0.52131 1.3190 1.4713 0.20081

1.69 0.76374 0.51711 1.3282 1.4769 0.20431

1.70 0.76046 0.51297 1.3376 1.4825 0.20780

1.71 0.75718 0.50887 1.3471 1.4880 0.21128
1.72 0.75392 0.50482 1.3567 1.4935 0.21474
1.73 0.75067 0.50082 1.3665 1.4989 0.21819

1.74 0.74742 0.49686 1.3764 1.5043 0.22162

1.75 0.74419 0.49295 1.3865 1.5097 0.22504

1.76 0.74096 0.48909 1.3967 1.5150 0.22844
1.77 0.73774 0.48527 1.4070 1.5203 0.23183
1.78 0.73453 0.48149 1.4175 1.5256 0.23520
1.79 0.73134 0.47776 1.4282 1.5308 0.23855
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TABLE D.3 (continued)
Fanno Flow (Flow with Friction) Tables for a Gas Having g¼ 1.4

M T=T* p=p* pt=pt* V=V* fLmax=D

1.80 0.72816 0.47407 1.4390 1.5360 0.24189
1.81 0.72498 0.47042 1.4499 1.5412 0.24521
1.82 0.72181 0.46681 1.4610 1.5463 0.24851
1.83 0.71865 0.46324 1.4723 1.5514 0.25180

1.84 0.71551 0.45972 1.4837 1.5564 0.25507

1.85 0.71238 0.45623 1.4952 1.5614 0.25832
1.86 0.70925 0.45278 1.5069 1.5664 0.26156
1.87 0.70614 0.44937 1.5188 1.5714 0.26478
1.88 0.70304 0.44600 1.5308 1.5763 0.26798

1.89 0.69995 0.44266 1.5429 1.5812 0.27116

1.90 0.69686 0.43936 1.5552 1.5861 0.27433

1.91 0.69379 0.43610 1.5677 1.5909 0.27748
1.92 0.69074 0.43287 1.5804 1.5957 0.28061
1.93 0.68769 0.42967 1.5932 1.6005 0.28372

1.94 0.68465 0.42651 1.6062 1.6052 0.28681

1.95 0.68162 0.42339 1.6193 1.6099 0.28989

1.96 0.67861 0.42030 1.6326 1.6146 0.29295
1.97 0.67561 0.41724 1.6461 1.6193 0.29599
1.98 0.67262 0.41421 1.6597 1.6239 0.29901

1.99 0.66964 0.41121 1.6735 1.6284 0.30201

2.00 0.66667 0.40825 1.6875 1.6330 0.30499

2.01 0.66371 0.40532 1.7017 1.6375 0.30796
2.02 0.66076 0.40241 1.7160 1.6420 0.31091
2.03 0.65783 0.39954 1.7305 1.6465 0.31384

2.04 0.65491 0.39670 1.7452 1.6509 0.31675

2.05 0.65200 0.39389 1.7600 1.6553 0.31965

2.06 0.64910 0.39110 1.7750 1.6597 0.32253
2.07 0.64621 0.38834 1.7902 1.6640 0.32538
2.08 0.64333 0.38562 1.8056 1.6683 0.32822

2.09 0.64047 0.38292 1.8212 1.6726 0.33104

2.10 0.63762 0.38024 1.8369 1.6769 0.33385

2.11 0.63478 0.37760 1.8528 1.6811 0.33664
2.12 0.63195 0.37498 1.8690 1.6853 0.33940
2.13 0.63914 0.37239 1.8853 1.6895 0.34215

2.14 0.62633 0.36982 1.9018 1.6936 0.34488

2.15 0.62354 0.36728 1.9185 1.6977 0.34760

2.16 0.62076 0.36476 1.9354 1.7018 0.35030
2.17 0.61799 0.36227 1.9525 1.7059 0.35298
2.18 0.61523 0.35980 1.9698 1.7099 0.35564

2.19 0.61249 0.35736 1.9873 1.7139 0.35828
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TABLE D.3 (continued)
Fanno Flow (Flow with Friction) Tables for a Gas Having g¼ 1.4

M T=T* p=p* pt=pt* V=V* fLmax=D

2.20 0.60976 0.35494 2.0050 1.7179 0.36091
2.21 0.60704 0.35254 2.0228 1.7219 0.36352
2.22 0.60433 0.35017 2.0409 1.7258 0.36611
2.23 0.60163 0.34782 2.0592 1.7297 0.36868

2.24 0.59895 0.34550 2.0777 1.7336 0.37124

2.25 0.59627 0.34319 2.0964 1.7374 0.37378
2.26 0.59361 0.34091 2.1154 1.7412 0.37630
2.27 0.59096 0.33865 2.1345 1.7450 0.37881
2.28 0.58833 0.33641 2.1538 1.7488 0.38130

2.29 0.58570 0.33420 2.1733 1.7526 0.38377

2.30 0.58309 0.33200 2.1931 1.7563 0.38623

2.31 0.58049 0.32983 2.2131 1.7600 0.38867
2.32 0.57790 0.32767 2.2333 1.7637 0.39109
2.33 0.57532 0.32554 2.2537 1.7673 0.39350

2.34 0.57276 0.32342 2.2744 1.7709 0.39589

2.35 0.57021 0.32133 2.2953 1.7745 0.39826

2.36 0.56767 0.31925 2.3164 1.7781 0.40062
2.37 0.56514 0.31720 2.3377 1.7817 0.40296
2.38 0.56262 0.31516 2.3593 1.7852 0.40528

2.39 0.56011 0.31314 2.3811 1.7887 0.40760

2.40 0.55762 0.31114 2.4031 1.7922 0.40989

2.41 0.55514 0.30916 2.4254 1.7956 0.41216
2.42 0.55267 0.30720 2.4479 1.7991 0.41442
2.43 0.55021 0.30525 2.4706 1.8025 0.41667

2.44 0.54776 0.30332 2.4936 1.8059 0.41691

2.45 0.54533 0.30141 2.5168 1.8092 0.42113

2.46 0.54291 0.29952 2.5403 1.8126 0.42333
2.47 0.54050 0.29765 2.5640 1.8159 0.42551
2.48 0.53810 0.29579 2.5880 1.8192 0.42768

2.49 0.53571 0.29395 2.6122 1.8225 0.42983

2.50 0.53333 0.29212 2.6367 1.8257 0.43197

2.51 0.53097 0.29031 2.6615 1.8290 0.43410
2.52 0.52862 0.28852 2.6865 1.8322 0.43621
2.53 0.52627 0.28674 2.7117 1.8354 0.43831

2.54 0.52394 0.28498 2.7372 1.8386 0.44040

2.55 0.52163 0.28323 2.7630 1.8417 0.44247

2.56 0.51932 0.28150 2.7891 1.8448 0.44452
2.57 0.51702 0.27978 2.8154 1.8479 0.44655
2.58 0.51474 0.27808 2.8420 1.8510 0.44857

2.59 0.51247 0.27640 2.8689 1.8541 0.45059
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TABLE D.3 (continued)
Fanno Flow (Flow with Friction) Tables for a Gas Having g¼ 1.4

M T=T* p=p* pt=pt* V=V* fLmax=D

2.60 0.51020 0.27473 2.8960 1.8571 0.45259
2.61 0.50795 0.27307 2.9234 1.8602 0.45457
2.62 0.50571 0.27143 2.9511 1.8632 0.45654
2.63 0.50349 0.26980 2.9791 1.8662 0.45850

2.64 0.50127 0.26818 3.0074 1.8691 0.46044

2.70 0.48820 0.25878 3.1830 1.8865 0.47182
2.65 0.49906 0.26658 3.0359 1.8721 0.46237
2.66 0.49687 0.26499 3.0647 1.8750 0.46429
2.67 0.49469 0.26342 3.0938 1.8779 0.46619

2.68 0.49251 0.26186 3.1234 1.8808 0.46807
2.69 0.49035 0.26032 3.1530 1.8837 0.46996

2.71 0.48606 0.25726 3.2133 1.8894 0.47367
2.72 0.48393 0.25575 3.2440 1.8922 0.47551
2.73 0.48182 0.25426 3.2749 1.8950 0.47734

2.74 0.47971 0.25278 3.3061 1.8978 0.47915

2.75 0.47761 0.25131 3.3376 1.9005 0.48095

2.76 0.47553 0.24985 3.3695 1.9032 0.48274
2.77 0.47346 0.24840 3.4017 1.9060 0.48452
2.78 0.47139 0.24697 3.4342 1.9087 0.48628

2.79 0.46933 0.24555 3.4670 1.9114 0.48803

2.80 0.46729 0.24414 3.5001 1.9140 0.48976

2.81 0.46526 0.24274 3.5336 1.9167 0.49148
2.82 0.46324 0.24135 3.5674 1.9193 0.49321
2.83 0.46122 0.23997 3.6015 1.9220 0.49491

2.84 0.45922 0.23861 3.6359 1.9246 0.49660

2.85 0.45723 0.23726 3.6707 1.9271 0.49828

2.86 0.45525 0.23592 3.7058 1.9297 0.49995
2.87 0.45328 0.23458 3.7413 1.9322 0.50161
2.88 0.45132 0.23326 3.7771 1.9348 0.50326

2.89 0.44937 0.23196 3.8133 1.9373 0.50489

2.90 0.44743 0.23066 3.8498 1.9398 0.50651

2.91 0.44550 0.22937 3.8866 1.9423 0.50812
2.92 0.44358 0.22809 3.9238 1.9448 0.50973
2.93 0.44167 0.22682 3.9614 1.9472 0.51133

2.94 0.43977 0.22556 3.9993 1.9497 0.51291

2.95 0.43788 0.22431 4.0376 1.9521 0.51447

2.96 0.43600 0.22307 4.0763 1.9545 0.51603
2.97 0.43413 0.22185 4.1153 1.9569 0.51758
2.98 0.43226 0.22063 4.1547 1.9592 0.51912

2.99 0.43041 0.21942 4.1944 1.9616 0.52064
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TABLE D.3 (continued)
Fanno Flow (Flow with Friction) Tables for a Gas Having g¼ 1.4

M T=T* p=p* pt=pt* V=V* fLmax=D

3.0 0.42857 0.21822 4.2346 1.9640 0.52216
3.5 0.34783 0.16850 6.7896 2.0642 0.58643
4.0 0.28571 0.13363 10.719 2.1381 0.63306
4.5 0.23762 0.10833 16.562 2.1936 0.66764

5.0 0.20000 0.08944 25.000 2.2361 0.69381

6.0 0.14634 0.06376 53.180 2.2953 0.72987
7.0 0.11111 0.04762 104.14 2.3333 0.75281
8.0 0.08696 0.03686 190.11 2.3591 0.76820
9.0 0.06977 0.02935 327.19 2.3772 0.77898

10.0 0.05714 0.02390 535.94 2.3905 0.78683

1 0 0 1 2.4495 0.82153

T

T*
¼ g þ 1

2
1þ g � 1

2
M2

� ��1 p

p*
¼ 2M2

g þ 1
1þ g � 1

2
M2

� �� ��1=2

pt
pt*

¼ 1
M

2
g þ 1

1þ g � 1
2

M2

� �� �(gþ1)= 2(g�1)½ �

V

V*
¼ M

g þ 1
2

1þ g � 1
2

M2

� ��1
" #1=2

fLmax

D
¼ 1�M2

gM2 þ g þ 1
2g

‘n
g þ 1
2

M2 1þ g � 1
2

M2

� ��1
" #

TABLE D.4
Rayleigh Flow (Flow with Heat Addition) Tables for a Gas Having g¼ 1.4

M T=T* Tt=Tt* p=p* pt=pt* V=V*

0 0 0 2.4000 1.2679 0

0.01 0.000576 0.000480 2.3997 1.2678 0.000240
0.02 0.00230 0.00192 2.3987 1.2675 0.000959
0.03 0.00517 0.00431 2.3970 1.2671 0.00216

0.04 0.00917 0.00765 2.3946 1.2665 0.00383

0.05 0.01430 0.01192 2.3916 1.2657 0.00598

0.06 0.02053 0.01712 2.3880 1.2647 0.00860
0.07 0.02784 0.02322 2.3836 1.2636 0.01168
0.08 0.03621 0.03022 2.3787 1.2623 0.01522
0.09 0.04562 0.03807 2.3731 1.2608 0.01922

0.10 0.05602 0.04678 2.3669 1.2591 0.02367

0.11 0.06739 0.05630 2.3600 1.2573 0.02856
0.12 0.07970 0.06661 2.3526 1.2554 0.03388
0.13 0.09290 0.07768 2.3445 1.2533 0.03962
0.14 0.10695 0.08947 2.3359 1.2510 0.04578
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TABLE D.4 (continued)
Rayleigh Flow (Flow with Heat Addition) Tables for a Gas Having g¼ 1.4

M T=T* Tt=Tt* p=p* pt=pt* V=V*

0.15 0.12181 0.10196 2.3267 1.2486 0.05235
0.16 0.13743 0.11511 2.3170 1.2461 0.05931
0.17 0.15377 0.12888 2.3067 1.2434 0.06666
0.18 0.17078 0.14324 2.2959 1.2406 0.07439

0.19 0.18841 0.15814 2.2845 1.2377 0.08247

0.20 0.20661 0.17355 2.2727 2.2346 0.09091
0.21 0.22533 0.18943 2.2604 1.2314 0.09969
0.22 0.24452 0.20574 2.2477 1.2281 0.10879
0.23 0.26413 0.22244 2.2345 1.2247 0.11821

0.24 0.28411 0.23948 2.2209 1.2213 0.12792

0.25 0.30440 0.25684 2.2069 1.2177 0.13793

0.26 0.32496 0.27446 2.1925 1.2140 0.14821
0.27 0.34573 0.29231 2.1777 1.2102 0.15876
0.28 0.36667 0.31035 2.1626 1.2064 0.16955

0.29 0.38774 0.32855 2.1472 1.2025 0.18058

0.30 0.40887 0.34686 2.1314 1.1985 0.19183

0.31 0.43004 0.36525 2.1154 1.1945 0.20329
0.32 0.45119 0.38369 2.0991 1.1904 0.21495
0.33 0.47228 0.40214 2.0825 1.1863 0.22678

0.34 0.49327 0.42056 2.0657 1.1822 0.23879

0.35 0.51413 0.43894 2.0487 1.1779 0.25096

0.36 0.53482 0.45723 2.0314 1.1737 0.26327
0.37 0.55529 0.47541 2.0140 1.1695 0.27572
0.38 0.57553 0.49346 1.9964 1.1652 0.28828

0.39 0.59549 0.51134 1.9787 1.1609 0.30095
0.40 0.61515 0.52903 1.9608 1.1566 0.31373
0.41 0.63448 0.54651 1.9428 1.1523 0.32658

0.42 0.65346 0.56376 1.9247 1.1480 0.33951
0.43 0.67205 0.58076 1.9065 1.1437 0.35251
0.44 0.69025 0.59748 1.8882 1.1394 0.36556

0.45 0.70804 0.61393 1.8699 1.1351 0.37865
0.46 0.72538 0.63007 1.8515 1.1308 0.39178

0.47 0.74228 0.64589 1.8331 1.1266 0.40493
0.48 0.75871 0.66139 1.8147 1.1224 0.41810
0.49 0.77466 0.67655 1.7962 1.1182 0.43127

0.50 0.79012 0.69136 1.7778 1.1141 0.44444
0.51 0.80509 0.70581 1.7594 1.1099 0.45761
0.52 0.81955 0.71990 1.7409 1.1059 0.47075

0.53 0.83351 0.73361 1.7226 1.1019 0.48387
0.54 0.84695 0.74695 1.7043 1.0979 0.49696

0.55 0.85987 0.75991 1.6860 1.0940 0.51001
0.56 0.87227 0.77249 1.6678 1.0901 0.52302
0.57 0.88416 0.78468 1.6496 1.0863 0.53597

0.58 0.89552 0.79648 1.6316 1.0826 0.54887
0.59 0.90637 0.80789 1.6136 1.0789 0.56170
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TABLE D.4 (continued)
Rayleigh Flow (Flow with Heat Addition) Tables for a Gas Having g¼ 1.4

M T=T* Tt=Tt* p=p* pt=pt* V=V*

0.60 0.91670 0.81892 1.5957 1.0753 0.57447
0.61 0.92653 0.82957 1.5780 1.0717 0.58716
0.62 0.93584 0.83983 1.5603 1.0682 0.59978
0.63 0.94466 0.84970 1.5428 1.0648 0.61232

0.64 0.95298 0.85920 1.5253 1.0615 0.62477

0.65 0.96081 0.86833 1.5080 1.0582 0.63713
0.66 0.96816 0.87708 1.4908 1.0550 0.64941
0.67 0.97503 0.88547 1.4738 1.0519 0.66158
0.68 0.98144 0.89350 1.4569 1.0489 0.67366

0.69 0.98739 0.90118 1.4401 1.0460 0.68564

0.70 0.99290 0.90850 1.4235 1.0431 0.69751

0.71 0.99796 0.91548 1.4070 1.0403 0.70928
0.72 1.00260 0.92212 1.3907 1.0376 0.72093
0.73 1.00682 0.92843 1.3745 1.0350 0.73248

0.74 1.01062 0.93442 1.3585 1.0325 0.74392

0.75 1.01403 0.94009 1.3427 1.0301 0.75524

0.76 1.01706 0.94546 1.3270 1.0278 0.76645
0.77 1.01970 0.95052 1.3114 1.0255 0.77755
0.78 1.02198 0.95528 1.2961 1.0234 0.78853

0.79 1.02390 0.95975 1.2809 1.0213 0.79939

0.80 1.02548 0.96395 1.2658 1.0193 0.81013

0.81 1.02672 0.96787 1.2510 1.0175 0.82075
0.82 1.02763 0.97152 1.2362 1.0157 0.83125
0.83 1.02823 0.97492 1.2217 1.0140 0.84164

0.84 1.02853 0.97807 1.2073 1.0124 0.85190

0.85 1.02854 0.98097 1.1931 1.0109 0.86204

0.86 1.02826 0.98363 1.1791 1.0095 0.87207
0.87 1.02771 0.98607 1.1652 1.0082 0.88197
0.88 1.02689 0.98828 1.1515 1.0070 0.89175

0.89 1.02583 0.99028 1.1380 1.0059 0.90142

0.90 1.02452 0.99207 1.1246 1.0049 0.91097

0.91 1.02297 0.99366 1.1115 1.0039 0.92039
0.92 1.02120 0.99506 1.0984 1.0031 0.92970
0.93 1.01922 0.99627 1.0856 1.0024 0.93889

0.94 1.01702 0.99729 1.0728 1.0017 0.94797

0.95 1.01463 0.99814 1.0603 1.0012 0.95693

0.96 1.01205 0.99883 1.0479 1.0008 0.96577
0.97 1.00929 0.99935 1.0357 1.0004 0.97450
0.98 1.00636 0.99971 1.0236 1.0002 0.98311

0.99 1.00326 0.99993 1.0117 1.0000 0.99161

1.00 1.00000 1.00000 1.0000 1.0000 1.00000

1.01 0.99659 0.99993 0.98841 1.0000 1.00828
1.02 0.99304 0.99973 0.97698 1.0002 1.01645
1.03 0.98936 0.99940 0.96569 1.0004 1.02450
1.04 0.98554 0.99895 0.95456 1.0006 1.03246
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TABLE D.4 (continued)
Rayleigh Flow (Flow with Heat Addition) Tables for a Gas Having g¼ 1.4

M T=T* Tt=Tt* p=p* pt=pt* V=V*

1.05 0.98161 0.99838 0.94358 1.0012 1.04030
1.06 0.97755 0.99769 0.93275 1.0017 1.04804
1.07 0.97339 0.99690 0.92206 1.0024 1.05567
1.08 0.96913 0.99601 0.91152 1.0031 1.06320

1.09 0.96477 0.99501 0.90112 1.0039 1.07063

1.10 0.96031 0.99392 0.89087 1.0049 1.07795
1.11 0.95577 0.99275 0.88075 1.0059 1.08518
1.12 0.95115 0.99148 0.87078 1.0070 1.09230
1.13 0.94645 0.99013 0.86094 1.0082 1.09933

1.14 0.94169 0.98871 0.85123 1.0095 1.10626

1.15 0.93685 0.98721 0.84166 1.0109 1.11310

1.16 0.93196 0.98564 0.83222 1.0124 1.11984
1.17 0.92701 0.98400 0.82292 1.0140 1.12649
1.18 0.92200 0.98230 0.81374 1.0157 1.13305

1.19 0.91695 0.98054 0.80468 1.0175 1.13951

1.20 0.91185 0.97872 0.79576 1.0194 1.14589

1.21 0.90671 0.97684 0.78695 1.0214 1.15218
1.22 0.90153 0.97492 0.77827 1.0235 1.15838
1.23 0.89632 0.97294 0.76971 1.0257 1.16449

1.24 0.89108 0.97092 0.76127 1.0279 1.17052

1.25 0.88581 0.96886 0.75294 1.0303 1.17647

1.26 0.88052 0.96675 0.74473 1.0328 1.18233
1.27 0.87521 0.96461 0.73663 1.0354 1.18812
1.28 0.86988 0.96243 0.72865 1.0380 1.19382

1.29 0.86453 0.96022 0.72078 1.0408 1.19945

1.30 0.85917 0.95798 0.71301 1.0437 1.20499

1.31 0.85380 0.95571 0.70536 1.0466 1.21046
1.32 0.84843 0.95341 0.69780 1.0497 1.21585
1.33 0.84305 0.95108 0.69036 1.0528 1.22117

1.34 0.83766 0.94873 0.68301 1.0561 1.22642

1.35 0.83227 0.94637 0.67577 1.0594 1.23159

1.36 0.82689 0.94398 0.66863 1.0629 1.23669
1.37 0.82151 0.94157 0.66158 1.0664 1.24173
1.38 0.81613 0.93914 0.65464 1.0701 1.24669

1.39 0.81076 0.93671 0.64778 1.0738 1.25158

1.40 0.80539 0.93425 0.64103 1.0777 1.25641

1.41 0.80004 0.93179 0.63436 1.0816 1.26117
1.42 0.79469 0.92931 0.62779 1.0856 1.26587
1.43 0.78936 0.92683 0.62130 1.0898 1.27050

1.44 0.78405 0.92434 0.61491 1.0940 1.27507

1.45 0.77874 0.92184 0.60860 1.0983 1.27957

1.46 0.77346 0.91933 0.60237 1.1028 1.28402
1.47 0.76819 0.91682 0.59623 1.1073 1.28840
1.48 0.76294 0.91431 0.59018 1.1120 1.29273
1.49 0.75771 0.91179 0.58421 1.1167 1.29700
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TABLE D.4 (continued)
Rayleigh Flow (Flow with Heat Addition) Tables for a Gas Having g¼ 1.4

M T=T* Tt=Tt* p=p* pt=pt* V=V*

1.50 0.75250 0.90928 0.57831 1.1215 1.30120
1.51 0.74732 0.90676 0.57250 1.1265 1.30536
1.52 0.74215 0.90424 0.56676 1.1315 1.30945
1.53 0.73701 0.90172 0.56111 1.1367 1.31350

1.54 0.73189 0.89920 0.55552 1.1419 1.31743

1.55 0.72680 0.89669 0.55002 1.1473 1.32142
1.56 0.72173 0.89418 0.54458 1.1527 1.32530
1.57 0.71669 0.89168 0.53922 1.1583 1.32913
1.58 0.71168 0.88917 0.53393 1.1640 1.33291

1.59 0.70669 0.88668 0.52871 1.1697 1.33663

1.60 0.70174 0.88419 0.52356 1.1756 1.34031

1.61 0.69680 0.88170 0.51848 1.1816 1.34394
1.62 0.69190 0.87922 0.51346 1.1877 1.34753
1.63 0.68703 0.87675 0.50851 1.1939 1.35106

1.64 0.68219 0.87429 0.50363 1.2002 1.35455

1.65 0.67738 0.87184 0.49880 1.2066 1.35800

1.66 0.67259 0.86939 0.49405 1.2131 1.36140
1.67 0.66784 0.86696 0.48935 1.2197 1.36475
1.68 0.66312 0.86453 0.48472 1.2264 1.36806

1.69 0.65843 0.86212 0.48014 1.2333 1.37133

1.70 0.65377 0.85971 0.47562 1.2402 1.37455

1.71 0.64914 0.85731 0.47117 1.2473 1.37774
1.72 0.64455 0.85493 0.46677 1.2545 1.38088
1.73 0.63999 0.85256 0.46242 1.2618 1.38398

1.74 0.63545 0.85019 0.45813 1.2692 1.38705

1.75 0.63095 0.84784 0.45390 1.2767 1.39007

1.76 0.62649 0.84551 0.44972 1.2843 1.39306
1.77 0.62205 0.84318 0.44559 1.2920 1.39600
1.78 0.61765 0.84087 0.44152 1.2999 1.39891

1.79 0.61328 0.83857 0.43750 1.3078 1.40179

1.80 0.60894 0.83628 0.43353 1.3159 1.40462

1.81 0.60464 0.83400 0.42960 1.3241 1.40743
1.82 0.60036 0.83174 0.42573 1.3324 1.41019
1.83 0.59612 0.82949 0.42191 1.3409 1.41292

1.84 0.59191 0.82726 0.41813 1.3494 1.41562

1.85 0.58774 0.82504 0.41440 1.3581 1.41829

1.86 0.58359 0.82283 0.41072 1.3669 1.42092
1.87 0.57948 0.82064 0.40708 1.3758 1.42351
1.88 0.57540 0.81845 0.40349 1.3849 1.42608

1.89 0.57136 0.81629 0.39994 1.3940 1.42862

1.90 0.56734 0.81414 0.39643 1.4033 1.43112

1.91 0.56336 0.81200 0.39297 1.4127 1.43359
1.92 0.55941 0.80987 0.38955 1.4222 1.43604
1.93 0.55549 0.80776 0.38617 1.4319 1.43845
1.94 0.55160 0.80567 0.38283 1.4417 1.44083
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TABLE D.4 (continued)
Rayleigh Flow (Flow with Heat Addition) Tables for a Gas Having g¼ 1.4

M T=T* Tt=Tt* p=p* pt=pt* V=V*

1.95 0.54774 0.80358 0.37954 1.4516 1.44319
1.96 0.54392 0.80152 0.37628 1.4616 1.44551
1.97 0.54012 0.79946 0.37306 1.4718 1.44781
1.98 0.53636 0.79742 0.36988 1.4821 1.45008

1.99 0.53263 0.79540 0.36674 1.4925 1.45233

2.00 0.52893 0.79339 0.36364 1.5031 1.45455
2.01 0.52525 0.79139 0.36057 1.5138 1.45674
2.02 0.52161 0.78941 0.35754 1.5246 1.45890
2.03 0.51800 0.78744 0.35454 1.5356 1.46104

2.04 0.51442 0.78549 0.35158 1.5467 1.46315

2.05 0.51087 0.78355 0.34866 1.5579 1.46524

2.06 0.50735 0.78162 0.34577 1.5693 1.46731
2.07 0.50386 0.77971 0.34291 1.5808 1.46935
2.08 0.50040 0.77782 0.34009 1.5924 1.47136

2.09 0.49696 0.77593 0.33730 1.6042 1.47336

2.10 0.49356 0.77406 0.33454 1.6162 1.47533

2.11 0.49018 0.77221 0.33182 1.6282 1.47727
2.12 0.48684 0.77037 0.32912 1.6404 1.47920
2.13 0.48352 0.76854 0.32646 1.6528 1.48110

2.14 0.48023 0.76673 0.32382 1.6653 1.48298

2.15 0.47696 0.76493 0.32122 1.6780 1.48484

2.16 0.47373 0.76314 0.31865 1.6908 1.48668
2.17 0.47052 0.76137 0.31610 1.7037 1.48850
2.18 0.46734 0.75961 0.31359 1.7168 1.49029

2.19 0.46418 0.75787 0.31110 1.7300 1.49207

2.20 0.46106 0.75613 0.30864 1.7434 1.49383

2.21 0.45796 0.75442 0.30621 1.7570 1.49556
2.22 0.45488 0.75271 0.30381 1.7707 1.49728
2.23 0.45184 0.75102 0.30143 1.7846 1.49898

2.24 0.44882 0.74934 0.29908 1.7986 1.50066

2.25 0.44582 0.74768 0.29675 1.8128 1.50232

2.26 0.44285 0.74602 0.29446 1.8271 1.50396
2.27 0.43990 0.74438 0.29218 1.8416 1.50558
2.28 0.43698 0.74276 0.28993 1.8562 1.50719

2.29 0.43409 0.74114 0.28771 1.8710 1.50878

2.30 0.43122 0.73954 0.28551 1.8860 1.51035

2.31 0.42838 0.73795 0.28333 1.9012 1.51190
2.32 0.42555 0.73638 0.28118 1.9165 1.51344
2.33 0.42276 0.73482 0.27905 1.9319 1.51496

2.34 0.41998 0.73326 0.27695 1.9476 1.51646

2.35 0.41723 0.73173 0.27487 1.9634 1.51795

2.36 0.41451 0.73020 0.27281 1.9794 1.51942
2.37 0.41181 0.72868 0.27077 1.9955 1.52088
2.38 0.40913 0.72718 0.26875 2.0119 1.52232
2.39 0.40647 0.72569 0.26676 2.0284 1.52374
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TABLE D.4 (continued)
Rayleigh Flow (Flow with Heat Addition) Tables for a Gas Having g¼ 1.4

M T=T* Tt=Tt* p=p* pt=pt* V=V*

2.40 0.40384 0.72421 0.26478 2.0451 1.52515
2.41 0.40122 0.72275 0.26283 2.0619 1.52655
2.42 0.39864 0.72129 0.26090 2.0789 1.52793
2.43 0.39607 0.71985 0.25899 2.0962 1.52929

2.44 0.39352 0.71842 0.25710 2.1136 1.53065

2.45 0.39100 0.71699 0.25522 2.1311 1.53198
2.46 0.38850 0.71558 0.25337 2.1489 1.53331
2.47 0.38602 0.71419 0.25154 2.1669 1.53461
2.48 0.38356 0.71280 0.24973 2.1850 1.53591

2.49 0.38112 0.71142 0.24793 2.2033 1.53719

2.50 0.37870 0.71006 0.24615 2.2218 1.53846

2.51 0.37630 0.70871 0.24440 2.2405 1.53972
2.52 0.37392 0.70736 0.24266 2.2594 1.54096
2.53 0.37157 0.70603 0.24093 2.2785 1.54219

2.54 0.36923 0.70471 0.23923 2.2978 1.54341

2.55 0.36691 0.70340 0.23754 2.3173 1.54461

2.56 0.36461 0.70210 0.23587 2.3370 1.54581
2.57 0.36233 0.70081 0.23422 2.3569 1.54699
2.58 0.36007 0.69952 0.23258 2.3770 1.54816

2.59 0.35783 0.69826 0.23096 2.3972 1.54931

2.60 0.35561 0.69700 0.22936 2.4177 1.55046

2.61 0.35341 0.69575 0.22777 2.4384 1.55159
2.62 0.35122 0.69451 0.22620 2.4593 1.55272
2.63 0.34906 0.69328 0.22464 2.4805 1.55383

2.64 0.34691 0.69206 0.22310 2.5018 1.55493

2.65 0.34478 0.69084 0.22158 2.5233 1.55602

2.66 0.34266 0.68964 0.22007 2.5451 1.55710
2.67 0.34057 0.68845 0.21857 2.5671 1.55816
2.68 0.33849 0.68727 0.21709 2.5892 1.55922

2.69 0.33643 0.68610 0.21562 2.6117 1.56027

2.70 0.33439 0.68494 0.21417 2.6343 1.56131

2.71 0.33236 0.68378 0.21273 2.6571 1.56233
2.72 0.33035 0.68264 0.21131 2.6802 1.56335
2.73 0.32836 0.68150 0.20990 2.7035 1.56436

2.74 0.32638 0.68037 0.20850 2.7270 1.56536

2.75 0.32442 0.67926 0.20712 2.7508 1.56634

2.76 0.32248 0.67815 0.20575 2.7748 1.56732
2.77 0.32055 0.67705 0.20439 2.7990 1.56829
2.78 0.31864 0.67595 0.20305 2.8235 1.56925

2.79 0.31674 0.67487 0.20172 2.8482 1.57020
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TABLE D.4 (continued)
Rayleigh Flow (Flow with Heat Addition) Tables for a Gas Having g¼ 1.4

M T=T* Tt=Tt* p=p* pt=pt* V=V*

2.80 0.31486 0.67380 0.20040 2.8731 1.57114
2.81 0.31299 0.67273 0.19910 2.8982 1.57207
2.82 0.31114 0.67167 0.19780 2.9237 1.57300
2.83 0.30931 0.67062 0.19652 2.9493 1.57391

2.84 0.30749 0.66958 0.19525 2.9752 1.57482

2.85 0.30568 0.66855 0.19399 3.0014 1.57572
2.86 0.30389 0.66752 0.19275 3.0278 1.57661
2.87 0.30211 0.66651 0.19151 3.0544 1.57749
2.88 0.30035 0.66550 0.19029 3.0813 1.57836

2.89 0.29860 0.66450 0.18908 3.1084 1.57923

2.90 0.29687 0.66350 0.18788 3.1359 1.58008

2.91 0.29515 0.66252 0.18669 3.1635 1.58093
2.92 0.29344 0.66154 0.18551 3.1914 1.58178
2.93 0.29175 0.66057 0.18435 3.2196 1.58261

2.94 0.29007 0.65960 0.18319 3.2481 1.58343

2.95 0.28841 0.65865 0.18205 3.2768 1.58425

2.96 0.28675 0.65770 0.18091 3.3058 1.58506
2.97 0.28512 0.65676 0.17979 3.3350 1.58587
2.98 0.28349 0.65583 0.17867 3.3646 1.58666

2.99 0.28188 0.65490 0.17757 3.3944 1.58745

3.00 0.28028 0.65398 0.17647 3.4245 1.58824

3.50 0.21419 0.61580 0.13223 5.3280 1.61983
4.00 0.16831 0.58909 0.10256 8.2268 1.64103
4.50 0.13540 0.56982 0.08177 12.502 1.65588

5.00 0.11111 0.55556 0.06667 18.634 1.66667

6.00 0.07849 0.53633 0.04669 38.946 1.68093

7.00 0.05826 0.52438 0.03448 75.414 1.68966
8.00 0.04491 0.51647 0.02649 136.62 1.69536
9.00 0.03565 0.51098 0.02098 233.88 1.69930

10.00 0.02897 0.50702 0.01702 381.61 1.70213

1 0.00000 0.48980 0.00000 1 1.71430

p

p*
¼ 1þ g

1þ gM2

T

T*
¼ (1þ g)2M2

(1þ gM2)2
V

V*
¼ (1þ g)M2

1þ gM2

Tt
Tt*

(1þ g)2M2

(1þ gM2)2
1þ g�1

2 M2

1þ g�1
2

 !
pt
pt*

¼ 1þ g

1þ gM2

� �
1þ g�1

2 M2

1þ g�1
2

 !g=(y�1)
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APPENDIX E: MISCELLANEOUS

TABLE E.1
Greek Alphabet

English Spelling Capital Greek Letters Lowercase Greek Letters

Alpha A a

Beta B b

Gamma G g

Delta D d

Epsilon E e
Zeta Z z

Eta H h

Theta Q u

Iota I i

Kappa K k

Lambda L l

Mu M m

Nu N n

Xi � j

Omicron O o

Pi P p

Rho P r

Sigma S s

Tau T t

Upsilon Y y

Phi F f

Chi X x

Psi � c

Omega V v
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Answers to Selected Problems

CHAPTER 1

1.3 9.78 m=s2 1.32 23.8� 10�3 lbf � s=ft2 1.56 1.68� 104 J=kg
1.5 Same container 1.34 53.1 rad=s 1.58 67.48F
1.10 1 g=cm3 1.36 4.32� 10�6 ft2=s 1.60 2� 10�8 m2=N
1.12 59.9 lbf=ft3 1.38 8.47� 10�2 cm2=s 1.62 2.18� 107 N=m2

1.14 124 kg 1.40 70 576 N=m2 1.64 1.2 MPa
1.16 1.13 m=s 1.42 8.6 mm 1.66 9.21� 107 N=m2

1.18 3.3� 10�5 m 1.46 0.0198 lbf=ft 1.72 0.73 kg of CO2

1.22 375 ft2 1.48 3.28 mm 1.74 4.089� 10�3 g=cm3

1.24 0.55� 10�3 N � s=m2 1.50 8.14 mm 1.76 15.5
1.26 Pseudoplastic 1.52 1.11 mm 1.78 1.54 ft3

1.28 Dilatant 1.54 2.2� 104 J=kg

CHAPTER 2

2.2 1100 lbf 2.33 49 psig 2.65 3h=4
2.5 159 ft 2.35 21.9 psi 2.67 5b=4
2.7 986 psf 2.37 Hg will work 2.69 4950 lbf
2.9 6.74 ft 2.39 146 psig 2.71 3.27 kN
2.11 8.6 ft 2.41 842 kg=m3 2.75 1 m
2.13 790 psf 2.43 29.3 kPa gauge 2.77 21.5 ft=s2

2.15 130 psfg 2.47 1.26 m 2.81 16.1 ft=s2

2.17 55 kPa 2.49 5.06 m 2.85 2.9 ft3

2.19 13 560 m 2.52 11.25 ft 2.87 1 410 kg=m3

2.23 18 405 m 3.54 4.02 ft 2.89 0.95 in.
2.25 2.05 ft 2.56 43.98 2.91 12.3 kN
2.28 5.41 kPa 2.58 523 N 2.93 731 kg=m3

2.29 0.86 ft 2.60 1.66 ft 2.95 2.53 m
2.31 0.344 ft 2.63 2h=3

CHAPTER 3

3.3 1.77 ft=s 3.31 680 lbf 3.55 5.22 ft
3.7 0.0057 ft=s 3.33 38.98 3.57 16 ft=s
3.11 2.3 m=s 3.39 0.0015 hp 3.61 7.33 ft=s
3.13 1950 psig 3.41 8.9 m=s 3.63 0.26 ft3=s
3.15 8.2 h 3.43 84.4 hp 3.65 1.68 psig
3.19 2rAV2 3.45 450W 3.67 1.93 s
3.21 2rAV2 3.47 0.17 in. 3.68 0.014 m3=s
3.25 53.18 3.49 1.90 ft 3.71 4.63 min
3.27 143.18 3.51 3.23 in. 3.73 1 in.
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CHAPTER 4

4.3 Correct for Q 4.47 3.44� 103 psi=(40 ft) 4.55 26.4 mi=h water
4.5 Correct for Q 4.49 839 m=s 4.57 2.18 knots
4.43 3.83� 104 in.3=s 4.51 1.15 lbf 4.59 16.3 ft
4.45 6.37� 10�5 ft=s 4.53 0.75 N

CHAPTER 5

5.1 Laminar 5.25 0.18 in. of water 5.45 2 std any type
5.3 Laminar 5.27 0.803 psi 5.47 3

4 std type M
5.5 0.326 in.=s 5.29 478 psi 5.49 1 1

2 std type M
5.7 1.2 ft 5.31 598 N=m2 5.51 0.000 14 m
5.9 No solution 5.33 21.1 ft3=s 5.53 0.0057 ft
5.11 1.24� 106 5.35 0.089 ft3=s 5.57 43.9 ft
5.15 Fully developed 5.37 0.00076 slug=s 5.65 0.08 hp
5.17 2.09 ft 5.39 0.29 m=s 5.67 1.42 kW
5.21 849 kPa 5.41 0.0064 ft3=s 5.69 $11.45
5.23 12 kPa 5.43 0.031 m3=s 5.79 1.5 ft=s coiled

CHAPTER 6

6.3 0.032 5 N 6.23 0.877 m=s 6.39 0.13 hp
6.5 0.48 N 6.25 10.1 m=s 6.41 10.9 m=s
6.7 0.0348 lbf 6.29 1.85 m=s 6.47 6.6 hp
6.9 0.0085 lbf 6.31 2.7 mm 6.53 2075 hp
6.15 44.3 N 6.33 14.9 in. 6.55 7748 lbf
6.17 0.37 N �m 6.35 0.155 lbf 6.63 3.61 lbf
6.21 0.124 ft � lbf 6.37 0.038 m 6.65 5.36 m=s

CHAPTER 7

7.3 0.56 m3=s 7.29 2.17 m 7.51 Supercritical
7.9 9.4 m3=s 7.39 73.8 m3=s 7.53

ffiffiffiffiffiffiffiffi
3=3

p
7.11 12.4 in. 7.41 2.42 ft 7.55 608
7.19 6.85 ft=s 7.43 0.9 m 7.63 3.52 ft
7.21 6.4 ft=s 7.45 0.762 7.67 2.55 ft
7.23 5.55 ft=s 7.47 Subcritical
7.25 1.44 m 7.49 Subcritical

CHAPTER 8

8.1 1050 ft=s 8.21 333 K 8.39 2788R
8.3 268 m=s 8.23 0.53 kg=s 8.41 16.55 psia
8.5 4308 ft=s 8.25 0.749 kg=s 8.43 1 444 m=s
8.7 12,180 ft=s 8.27 856 ft=s 8.45 252.2 K
8.9 Supersonic 8.29 25.9 psia 8.47 0.019 slug=s
8.11 3388R 8.31 98.5 K
8.17 0.0785 slug=s 8.37 1.83 kPa
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CHAPTER 9

9.3 2.7 kN �m 9.29 35.1 MW 9.53 138.5 kW
9.7 54.7% 9.33 255 m3=s 9.57 373 MW
9.11 142.5 MW 9.35 36.4 kPa 9.59 73.3 rpm
9.13 3.49 MW 9.43 27 kW 9.61 3.9� 105 hp
9.15 377 Pa 9.45 22.3 kW 9.63 80.1 m
9.17 7.68� 105 ft � lbf 9.47 �4 m
9.27 2.46 psi 9.49 No cavitation

CHAPTER 10

10.1 4.38� 10�4 lbf � s=ft2 10.13 19.3 ft3=s 10.37 4.95 ft
10.3 1.33� 10�6 N �m 10.21 0.054 4 m3=s 10.41 1.09 m
10.5 1.45 min 10.23 4.3 ft3=s 10.47 1.36 in.
10.7 0.3 in. 10.29 1.9 ft3=s 10.49 0.153 ft
10.9 7.5% error 10.33 0.000475 slug=s
10.11 3.84 slug=s 10.35 156 kPa

CHAPTER 11

11.29 25.9 Pa=m 11.31 4.64 Pa=m

CHAPTER 12

12.7 Continuity satisfied 12.15 Irrotational 12.31 14.62 psi
12.9 Irrotational 12.19 Continuity satisfied 12.41 628
12.13 Rotational 12.25 Continuity satisfied

CHAPTER 13

13.15 0.265 13.17 0.352 lbf 13.19 3� 10�4 hp
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Index
A
Absolute pressure, 42
Accelerating fluids, 61
Adiabatic process, 120
Air properties, 661
Airfoil, flow past, 620
Alternate depths, 333
Angular momentum equation, 117, 424
Annulus, 213
Answers to selected problems, 709
Archimedes Principle, 69
Area moments of plane surfaces, 668
Atmosphere, 39, 79
Atmospheric pressure, 42
Average velocity, 108, 135
Axial flow compressor, 453
Axial flow fan, 453
Axial flow pump, 453
Axial flow turbines, 430

B
Backwater curve, 354
Barometer, 42
Bed materials, 344
Bellows meter, 510
Bernoulli equation, 126, 202
Bibliography, 707
Bingham plastic, 8
Blasius solution, 632
Blattner, Prof. Ernest, 234
Blower, 470
Boundary layer, 269
Boundary layer flow, 627
Boundary layer thickness, 269
Bourdon tube, 41
British Gravitational System, 2
Buckingham Pi method, 161
Bulk modulus, 19
Buoyant force, 67

C
Capillary action, 15
Cavitation, 482
Cell Reynolds number, 557
Center of buoyancy, 69
Centrifugal pump, 247, 479
Centroidal distances of plane areas, 668
Chen equation, 246
Chezy formula, 343
Choked flow, 389
Churchill equation, 246
Circular cylinder, 613

Circular duct, 546
Circulation, 617
Clark Y airfoil, 301
Closed conduit flow, 101, 193
Coffee pot problem, 148
Coiled tube, 263
Compressibility factor, 19, 526
Compressible flow, 377
Compressible flow tables, 673
Compressible flow with friction, 404
Compressible flow with heat transfer, 409
Compression shock, 399
Compressor, 470
Conservation equation, 106
Continuity equation, 107
Continuum, 22
Contracted rectangular weir, 533
Contraction coefficient, 522
Control surface, 104
Control volume 104,
Control volume approach, 103
Conventional unit systems, 6
Converging-diverging nozzle, 394, 401
Converging nozzle, 390
Conversion factor tables, 657
Correlation of data, 175
Couette flow, 552, 562
Critical depth, 332
Critical flow, 326, 335, 389
Critical Reynolds number, 194

D
Darcy-Weisbach friction factor, 205
Degree of reaction, 434
Degrees API (8API), 32
Density of water, 12
Density, 12
Depth of flow, 327
Depth to centroid, 327
Diamond shaped airfoil, 381
Dilatant, 8
Dimensional analysis, 155
Dimensional analysis of turbomachinery, 478
Dimensional homogeneity, 155
Dimensionless ratios, 163
Dimensions, 2, 157
Direction finding tube, 501
Discharge coefficient, 535
Displacement thickness, 270, 637
Doublet, 609
Downwash, 302
Drag, 272
Drag coefficient, 164
Drag flow meter, 322
Drag on a cylinder, 276, 279
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Drag on a flat plate, 649
Drag on a sphere, 284
Drag on automobiles, 293
Drag on bicycle rider, 288
Drag on birds, 304
Drag on three dimensional bodies, 283, 287
Drag on trucks, 293
Drag on two dimensional bodies, 276, 282
Draining tanks, 131
Dynamic similarity, 169

E
Eddy viscosity, 572
Effective diameter, 202
Energy equation, 120
Energy grade line, 267
Engineering unit system, 5
Enthalpy, 19
Entrance effects, 197
Entrance length, 198
Equation of motion, 543
Equation of state, 21
Equations of fluid mechanics, 101
Equivalent diameter, 201
Equivalent length, 227
Error function, 559
Euler equations, 594
Euler turbine equation, 428
Eulerian approach, 103
Expansion wave, 381

F
Fairing, 296
Falling sphere viscometer, 496
Fan, 453
Fanning friction factor, 205
Fanno flow, 408
Fanno flow equations, 697
Fanno flow tables, 690
Finned tube, 263
Fire hydrant, 148
Fittings, forces on, 240
Fittings, losses through, 229
Flat plate, 272
Flat plate, suddenly accelerated, 559
Flettner rotor, 625
Flow about a half body, 606
Flow area, 327
Flow down an incline, 549
Flow in open channels, 325
Flow nozzle, 519
Flow over a flat plate, 629
Flow through a straight channel, 550
Flow with friction, tables, 690
Fluid, definition, 1
Fluids, properties, 7
Forces on fittings, 240
Form drag, 277
Francis turbine, 466

Friction factor, 205, 217, 405
Froude number, 165, 171, 326
Fully developed flow, 197
Funnel, 151

G
Gage pressure, 41
Gases, 22
gc, 5
Gear pump, 247
General conservation equation, 106
Geometric elements of plane areas, 668
Geometric similarity, 168
Gradually varied flow, 351
Graphical solution methods, 557
Greek alphabet, 705

H
Haaland equation, 246
Half body, 606
Head coefficient, 165
Honey, properties, 26
Hook gage, 536
Hot film probe, 506
Hot wire anemometer, 505
Hydraulic diameter, 202
Hydraulic grade line, 267
Hydraulic jump, 363
Hydraulic radius, 203, 327
Hydraulic turbines, 487
Hydraulically optimum cross section, 348
Hydrostatic equation, 38
Hydrostatic force, 47
Hyperbola method, 29

I
Ideal gas law, 21
Immersed bodies, flow over,

164, 269
Impeller, 248
Incompressible, 377
Induced drag, 302
Inspection method, 165
Internal energy, 18
Inviscid flow, 583
Inviscid fluid, 8
Irreversible process, 378
Irrotational flow, 591
Irrotational vortex flow, 601
Isentropic flow, 382
Isentropic flow tables, 673

J
Jet d-Eau, 145
Jif1 Peanut Butter, properties, 11
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K
Kaplan turbine, 439
Kinematics of flow, 101
Kinematic viscosity, 13
Kraft1 mayonnaise, properties, 25

L
Lagrangian approach, 103
Laminar boundary layer flow, 628
Laminar flow, 193, 546
Laminar open channel flow, 338
Laminar sublayer, 197
Laplace equation, 595
LDA, 506
Lift coefficient, 164
Lift on airfoils, 298, 621
Linear momentum equation, 113
Liquids, 22

M
Mach number, 378
Macroscopic approach, 22
Manning roughness coefficient, 343
Manometer, 44, 80
Mass flow rate, 107
Mayonnaise, properties, 26
Mean depth, 327
Measurement of flow rate, 506
Measurement of velocity, 501
Measurement of viscosity, 495
Measurements in open channels, 531
Measurements, 495
Mechanical energy equation, 128
Memphis, TN, 355
Meniscus, 14
Metacentric height, 73
Mexico City, 43
Microscopic approach, 22
Milk, properties, 260
Minor losses, 227
Mixing length hypothesis, 572
Modeling, 171
Momentum equation, 112
Momentum integral method, 638, 645
Momentum transport, 196
Moody diagram 209–210

N
NACA 23012 airfoil, 315
Navier–Stokes equations, 543
Net positive suction head, 484
New Orleans, LA, 358
Newtonian fluid, 8
Nominal diameter, 199
Non circular ducts, 201, 211
Non-Newtonian fluids, 8

Nonslip condition, 196
Nonuniform flow, 325, 351
Normal shock tables, 680
Normal shock waves, 397
Normal stage, 431
Nozzle, 431
NPSH, 484
Nutating disk meter, 510

O
One-dimensional flow, 102
Open channel flow, 101, 164, 325
Open channel flow rate measurement, 531
Order of magnitude analysis, 630
Orifice insert, 175
Orifice meter, 522
Orifice plate, 522
Overexpanded nozzle, 401
Oxy-acetylene torch, 111
Parallel flow, 546
Parallel pipes, 243
Perfectly expanded nozzle, 401
Performance of centrifugal pump, 479
Piezometer ring, 500
Pipe flow, 163
Pipe roughness, 206, 210
Pipe schedule, 199
Pipes in parallel, 243
Pipe specifications, 199, 669
Piping systems, 216
Pitot static tube, 501
Pitot tube, 501
Plane Couette flow, 552
Point gage 536
Polar diagram, 300
Positive-displacement pump, 247
Potential function, 585
Pressure, 12, 35
Pressure coefficient, 164, 176, 615
Pressure drag, 277
Pressure gage, 41
Pressure measurement, 35
Properties of air, 661
Properties of gases, 664
Properties of selected liquids, 663
Properties of water, 661
Pseudoplastic, 8
Pump, 247, 470
Pump performance map, 266
Pump performance, 185

Q
Quasi-steady flow, 103

R
Radial flow compressor, 470
Radial flow pump, 470
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Radial flow turbine, 466
Rankine body, 611
Rapidly varied flow, 325, 361
Rate meters, 510
Ratio of specific heats, 17
Rayleigh flow, 414
Rayleigh flow equations, 704
Rayleigh flow tables, 697
Rayleigh method, 157
Reaction ratio, 434
Rectangular duct, 211
Rectangular weir, 531
Reynolds number, 164, 326, 341
Reynolds stresses, 571
Rheological diagram, 8
Rheopectic fluid, 9
Rotameter, 510
Rotating concentric cylinders, 555, 563
Rotating container, 64
Rotating cup viscometer, 495
Rotational flow, 591
Rotor, 423

S
Saul’ev method, 557
Savonius rotor, 310
Schedule, pipe, 199
Separation region, 275
Separation, 269, 275
Sharp crested weir, 531
Shear thinning fluid, 12
Shock wave, 381
SI unit system, 4
Similitude, 155, 167
Sink flow, 599
Siphon, 130
Slipstream, 444
Sluice gate, 329
Sonic velocity, 20, 378
Source flow, 597
Specific energy, 332
Specific gravity, 12
Specific gravity of metals, 666
Specific gravity of various solids, 665
Specific heat, 16
Specific speed, 484
Specific weight, 12
Sprinkler, 119, 426
Stability of floating bodies, 71
Stability of numerical solution, 557
Stagnation point, 275
Stagnation pressure, 275, 382, 384, 500
Stagnation properties, 382
Stagnation temperature, 382
Stall, 299
Startup flow in a plane channel, 565
Static pressure measurement, 500
Steady flow, 102, 325, 546
Steady uniform flow, 325
Stokes flow, 497
Stratosphere, 40

Streakline, 103
Stream function, 585
Streamlines, 103
Streamlining, 287
Streamtube, 103
Subcritical flow, 326
Submerged bodies, 67
Submerged curved surface, 55, 92
Submerged plane surface, 47, 85
Subsonic flow, 381
Suddenly accelerated flat plate, 559
Supercritical flow, 326
Superposition, 606
Supersonic flow, 381
Surface tension, 13
Surface tension of liquids, 667
Surroundings, 104
Swamee-Jain equation, 247
System curve, 265

T
Terminal velocity, 284
Thixotropic fluid, 9
Three-dimensional flow, 102
Throat, 393
Time dependent fluid, 9
Top width, 327
Tornado, 603
Total pressure, 384
Tow tank, 174
Tube fittings, 201
Tubing specifications, 672
Tubing, 200
Turbine stage, 431
Turbine-type flow meter, 510
Turbomachinery, 423
Turbulent boundary layer flow, 628
Turbulent core, 197
Turbulent flow, 193, 568
Turbulent momentum flux, 571
Turbulent open channel flow, 342
Two-dimensional flow, 102

U
Unbounded flows, 101
Underexpanded nozzle, 401
Uniform depth, 347
Uniform flow, 325, 597
Units, 2, 157
Unsteady flow, 102, 325
Unsteady plane Couette Flow, 562
Unsteady uniform flow, 325
Upwash, 303

V
V-notch weir, 533
Variable area nozzle, 386
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Varied flow, 325
Vaseline, 25
Velocity diagrams, 443
Venturi discharge coefficient, 515
Venturi flume, 331
Venturi meter, 128, 145, 513
Viscoelastic fluid, 9
Viscosity, absolute, 7
Viscosity, kinematic, 13
Viscous flow, 194
Volume flow rate, 107
Vortex filament, 302

W
Wall correction, 498
Water properties, 661
Water slide, 143
Water tunnel, 636
Water, density, 12
Weber number, 165
Weir, 531
Wetted perimeter, 327
Wind tunnel, 174
Windmill, 444
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