

Learn	C#	In	One	Day	and	Learn	It	Well
C#	for	Beginners	with	Hands-On	Project

The	only	book	you	need	to	start	coding	in	C#
immediately

	
By	Jamie	Chan

	
http://www.learncodingfast.com/csharp

	
Copyright	©	2015
	
All	rights	reserved.	No	part	of	this	publication	may	be	reproduced,	distributed,
or	transmitted	in	any	form	or	by	any	means,	including	photocopying,	recording,
or	other	electronic	or	mechanical	methods,	without	the	prior	written	permission
of	the	publisher,	except	in	the	case	of	brief	quotations	embodied	in	critical
reviews	and	certain	other	noncommercial	uses	permitted	by	copyright	law.
	

http://www.learncodingfast.com/csharp

Preface

	
This	book	is	written	to	help	you	learn	C#	FAST	and	learn	it	WELL.
	
The	book	does	not	assume	any	prior	background	in	coding.	If	you	are	an
absolute	beginner,	you'll	find	that	this	book	explains	complex	concepts	in	an
easy	to	understand	manner.	If	you	are	an	experienced	coder	but	new	to	C#,	this
book	will	provide	you	with	enough	depth	to	start	coding	in	C#	immediately.
	
All	examples	in	the	book	are	carefully	chosen	to	demonstrate	each	concept	so
that	you	can	gain	a	deeper	understand	of	the	language.	Topics	are	carefully
selected	to	give	you	a	broad	exposure	to	C#,	while	not	overwhelming	you	with
information	overload.	These	topics	include	object-oriented	programming
concepts,	error	handling	techniques,	file	handling	techniques	and	more.
	
In	addition,	as	Richard	Branson	puts	it:	"The	best	way	of	learning	about
anything	is	by	doing".	This	book	comes	with	a	project	where	you’ll	be	guided
through	the	coding	of	a	simple	payroll	software	from	scratch.	The	project	uses
concepts	covered	in	the	book	and	gives	you	a	chance	to	see	how	it	all	ties
together.
	
You	can	download	the	source	code	for	the	project	and	all	the	sample	programs	in

this	book	at	
http://www.learncodingfast.com/csharp

	
Contact	Information

	
I	would	love	to	hear	from	you.

For	feedback	or	queries,	you	can	contact	me	at	jamie@learncodingfast.com.
	
	

http://www.learncodingfast.com/csharp
mailto:jamie@learncodingfast.com

More	Books	by	Jamie

Python:	Learn	Python	in	One	Day	and	Learn	It	Well
	

	
CSS:	Learn	CSS	in	One	Day	and	Learn	It	Well

	

http://mybook.to/Python
http://mybook.to/CSS

Table	of	Contents
	
Chapter	1:	Introduction	to	C#

What	is	C#?
Why	Learn	C#?

	
Chapter	2:	Getting	ready	for	C#

Installing	Visual	Studio	Community
Your	First	C#	Program
Basic	Structure	of	a	C#	Program
Directive
Namespace
The	Main()	Method
Comments

	
Chapter	3:	The	World	of	Variables	and	Operators

What	are	variables?
Data	Types	in	C#
int
byte
float
double
decimal
char
bool
Naming	a	Variable
Initializing	a	Variable
The	Assignment	Sign
Basic	Operators
More	Assignment	Operators
Type	Casting	In	C#

	
Chapter	4:	Arrays,	Strings	and	Lists

Array
Array	Properties	and	Methods
String
String	Properties	and	Methods
Lists

List	Properties	and	Methods
Value	Type	vs.	Reference	Type

	
Chapter	5:	Making	our	Program	Interactive

Displaying	Messages	to	Users
Escape	Sequences
Accepting	User	Input
Converting	a	String	to	a	Number
Putting	it	all	Together

	
Chapter	6:	Making	Choices	and	Decisions

Condition	Statements
Control	Flow	Statements
If	Statement
Inline	If
Switch	Statement
For	Loop
Foreach	Loop
While	Loop
Do	while
Jump	Statements
Break
Continue
Exception	Handling
Specific	Errors

	
Chapter	7:	Object-Oriented	Programming	Part	1

What	is	Object-Oriented	Programming?
Writing	our	own	class
Fields
Properties
Methods
Constructors
Instantiating	an	Object
Static	Keyword
Advanced	Method	Concepts
Using	Arrays	and	Lists
Using	params	keyword
Passing	Value	Type	vs	Reference	Type	Parameters

	
Chapter	8:	Object-Oriented	Programming	Part	2

Inheritance
Writing	the	Parent	Class
Writing	the	Child	Class
The	Main()	method
Polymorphism
GetType()	and	typeof()
Abstract	Classes	and	Methods
Interfaces
Access	Modifiers	Revisited

	
Chapter	9:	Enum	and	Struct

Enum
Struct

	
Chapter	10:	LINQ
	
Chapter	11:	File	Handling

Reading	a	Text	File
Writing	to	a	Text	File

	
Project	–	A	Simple	Payroll	Software

Overview
The	Staff	Class
Fields
Properties
Constructor
Method
The	Manager	:	Staff	Class
Fields
Properties
Constructor
Method
The	Admin	:	Staff	Class
Fields
Property
Constructor
Method

The	FileReader	Class
The	PaySlip	Class
Fields
Enum
Constructor
Methods
The	Program	Class
The	Main()	Method

	
Thank	You
	
Appendix	A	–	Project	Answer
	

Chapter	1:	Introduction	to	C#
	
Welcome	to	C#	programming	and	thank	you	so	much	for	picking	up	this	book!
Whether	you	are	a	seasoned	programmer	or	a	complete	novice,	this	book	is
written	to	help	you	learn	C#	programming	fast.	Topics	are	carefully	selected	to
give	you	a	broad	exposure	to	C#	while	not	overwhelming	you	with	information
overload.
	
By	the	end	of	the	book,	you	should	have	no	problem	writing	your	own	C#
programs.	In	fact,	we	will	be	coding	a	simple	payroll	software	together	as	part	of
the	project	at	the	end	of	the	book.	Ready	to	start?
	
First,	let’s	answer	a	few	questions:
	
What	is	C#?
	
C#,	pronounced	as	C	Sharp,	is	an	object-oriented	programming	language
developed	by	Microsoft	in	the	early	2000s,	led	by	Anders	Hejlsberg.	It	is	part	of
the	.Net	framework	and	is	intended	to	be	a	simple	general-purpose	programming
language	that	can	be	used	to	develop	different	types	of	applications,	including
console,	windows,	web	and	mobile	applications.	
Like	all	modern	programming	languages,	C#	code	resembles	the	English
language	which	computers	are	unable	to	understand.	Therefore,	C#	code	has	to
be	converted	into	machine	language	using	what	is	known	as	a	compiler	(refer	to
footnote).	The	compiler	that	we’ll	be	using	in	this	book	is	the	free	Visual	Studio
Community	2015	provided	by	Microsoft.
	
Why	Learn	C#?
	
C#	has	syntax	and	features	that	resemble	other	programming	languages	like	Java
and	C++.	As	such,	if	you	have	any	prior	programming	experience,	you	will	find
learning	C#	a	breeze.	Even	if	you	are	totally	new	to	programming,	C#	is
designed	to	be	easy	to	learn	(unlike	C	or	C++)	and	is	a	great	first	language	to
learn.
	
In	addition,	C#	is	part	of	the	.Net	framework.	This	framework	includes	a	large
library	of	pre-written	code	that	programmers	can	use	without	having	to	write
everything	from	scratch.	This	allows	programmers	to	rapidly	develop	their

everything	from	scratch.	This	allows	programmers	to	rapidly	develop	their
applications	in	C#,	making	C#	the	ideal	language	to	work	with	if	you	are	on	a
tight	schedule.
	
Lastly,	C#	is	an	object-oriented	programming	(OOP)	language.	Object-oriented
programming	is	an	approach	to	programming	that	breaks	a	programming
problem	into	objects	that	interact	with	each	other.	We’ll	be	looking	at	various
object-oriented	programming	concepts	in	this	book.	Once	you	master	C#,	you
will	be	familiar	with	these	concepts.	This	will	make	it	easier	for	you	to	master
other	object-oriented	programming	languages	in	future.
	
Ready	to	dip	your	toes	into	the	world	of	C#	programming?	Let’s	get	started.
	
	
	
Footnote:
The	conversion	of	a	C#	program	into	machine	language	is	actually	a	bit	more	complicated	than	this.	Visual
Studio	Community	merely	converts	a	C#	program	into	MIL,	which	stands	for	Microsoft	Intermediate
Language.	This	MIL	code	is	then	converted	into	machine	language	by	a	virtual	execution	system	known	as
the	Common	Language	Runtime.	For	more	information,	you	can	check	out	https://msdn.microsoft.com/en-
us/library/z1zx9t92.aspx.	Nonetheless,	for	our	purpose,	we	do	not	need	to	know	these	intricate	details	to
develop	our	own	C#	programs.
	

https://msdn.microsoft.com/en-us/library/z1zx9t92.aspx

Chapter	2:	Getting	ready	for	C#
	
Installing	Visual	Studio	Community
	
Before	we	can	start	developing	applications	in	C#,	we	need	to	download	Visual
Studio	Community.	As	mentioned	in	Chapter	1,	Visual	Studio	Community
(VSC)	is	a	free	complier	provided	by	Microsoft.
	
In	fact,	VSC	is	more	than	just	a	compiler.	It	is	an	Integrated	Development
Environment	(IDE)	that	includes	a	text	editor	for	us	to	write	our	code	and	a
debugger	to	help	us	identify	programming	errors.
	
To	download	VSC,	go	to	https://www.visualstudio.com/en-
us/products/visualstudio-community-vs.aspx.
	

	
Click	on	the	“Download	Community	2015”	button	to	download	the	file.	Once
you	have	downloaded	the	file,	double	click	to	install	VSC.	After	you	install,
you’ll	be	prompted	to	restart	your	computer.
	
Once	you	restart	your	computer,	you	are	ready	to	start	coding	your	first	C#
program.
	
Your	First	C#	Program

https://www.visualstudio.com/en-us/products/visual-studio-community-vs.aspx

	
To	write	our	first	program,	let’s	create	a	folder	on	our	desktop	and	name	it	“C#
Projects”.	We	will	save	all	our	C#	projects	to	this	folder.
	
Next,	launch	VSC	and	select	File	>	New	>	Project….	(You	may	have	to	search
for	“Visual	Studio	2015”	if	you	cannot	find	VSC.)	The	first	program	that	we	are
going	to	write	is	a	console	application.	Console	applications	refer	to	programs
that	have	no	graphical	user	interface.
	
From	the	New	Project	dialog	box,	select	“Visual	C#	>	Windows”	(on	the	left)
and	select	“Console	Application”	in	the	main	box.
	
Name	this	program	“HelloWorld”	and	save	it	in	the	“C#	Projects”	folder	created
earlier.	You	can	use	the	“Browse…”	button	to	browse	to	the	correct	folder.
Finally,	click	OK	to	create	the	project.
	

	
You	will	be	presented	with	a	default	template	that	VSC	created	for	you
automatically.
	
Replace	the	code	in	the	template	with	the	code	below.	Note	that	line	numbers	are
added	for	reference	and	are	not	part	of	the	actual	code.	You	may	want	to
bookmark	this	page	for	easy	reference	later	when	we	discuss	the	program.	Due
to	the	small	screen	sizes	of	most	mobile	devices,	the	code	may	look	jumbled	up
if	you	are	viewing	it	on	a	Kindle,	tablet	or	mobile	phone.	If	you	have	problems
reading	the	code,	you	can	try	changing	your	screen	to	landscape	mode.
Alternatively,	you	can	download	the	source	code	for	this	sample	program	and	all
other	sample	programs	in	this	book	at	http://www.learncodingfast.com/csharp.
	

http://www.learncodingfast.com/csharp

1	using	System;

2	using	System.Collections.Generic;

3	using	System.Linq;

4	using	System.Text;

5	using	System.Threading.Tasks;

6

7	namespace	HelloWorld

8	{

9

10	//A	Simple	Program	to	display	the	words	Hello	World

11

12	class	Program

13	{

14	static	void	Main(string[]	args)

15	{

16	Console.WriteLine("Hello	World");

17	Console.Read();

18	}

19	}

20	}

	
I	strongly	encourage	that	you	type	the	code	yourself	to	get	a	better	feel	for	how
VSC	works.	As	you	type,	you	will	notice	that	a	box	appears	near	the	cursor	with
some	help	messages	occasionally.	That	is	known	as	Intellisense.	For	instance,
when	you	type	a	period	(.)	after	the	word	“Console”,	a	dropdrop	list	appears	to
let	you	know	what	you	can	type	after	the	period.	This	is	one	of	the	features	of
VSC	to	help	make	coding	easier	for	programmers.
	
After	you	finish	typing,	you	can	execute	this	program	by	clicking	on	the	“Start”
button	at	the	top	menu	(refer	to	image	below).
	

	
If	your	program	fails	to	run,	VSC	will	inform	you	of	the	error	in	the	“Output
Window”.	Double	clicking	on	the	error	moves	the	cursor	to	where	the	error	is.
Double	check	your	code	against	the	code	above	to	rectify	the	error	and	run	the
program	again.
	
If	all	goes	well	and	your	program	runs	successfully,	a	black	window	will	appear
with	the	words	“Hello	World”	in	white.	This	black	window	is	known	as	the
console.	Press	Enter	to	close	the	window.
	
That’s	it!	You	have	successfully	coded	your	first	program.	Give	yourself	a	pat
on	the	shoulders.
	
If	you	navigate	to	your	“C#	Projects”	folder	now,	you’ll	find	a	folder	named

If	you	navigate	to	your	“C#	Projects”	folder	now,	you’ll	find	a	folder	named
“HelloWorld”.	Within	the	folder,	you’ll	find	another	“HelloWorld”	folder	and	a
“HelloWorld.sln”	file.	This	.sln	file	is	the	solution	file.	Whenever	you	need	to
reopen	a	project,	this	is	the	file	to	open.	If	the	text	editor	does	not	display	your
code	when	you	open	the	solution	file,	simply	double	click	on	the	“Program.cs”
file	in	the	“Solution	Explorer”	on	the	right	(refer	to	the	previous	image)	to	open
it.
	
The	executable	file	(.exe)	of	your	code	can	be	found	in	the	HelloWorld	>
HelloWorld	>	bin	>	Debug	folder.
	
Basic	Structure	of	a	C#	Program
	
Now,	let	us	do	a	quick	run-through	of	the	basic	program	that	you	have	just
coded.
	
Directive
	
From	line	1	to	5,	we	have	a	few	statements	that	start	with	the	word	using.	These
statements	are	known	as	directives.	They	tell	the	compiler	that	our	program	uses
a	certain	namespace.
	
For	instance,	the	first	line
	
using	System;

	
tells	the	compiler	that	our	program	uses	the	System	namespace.
	
Namespace
	
A	namespace	is	simply	a	grouping	of	related	code	elements.	These	elements
include	classes,	interfaces,	enums	and	structs	etc	(we’ll	cover	each	of	these
elements	in	subsequent	chapters).
	
C#	comes	with	a	large	amount	of	pre-written	code	that	are	organised	into
different	namespaces.	The	System	namespace	contains	code	for	methods	that
allow	us	to	interact	with	our	users.	We	use	two	of	these	methods	in	our	program
-	the	WriteLine()	and	Read()	methods.	The	other	namespaces	are	not	needed	in
our	program.	However,	since	these	namespaces	are	included	in	the	default

template,	we’ll	leave	it	in	our	code.	

In	addition	to	the	pre-written	namespaces	provided	by	Microsoft,	we	can	also
declare	our	own	namespaces.
	
One	advantage	of	declaring	namespaces	is	that	it	prevents	naming	conflicts.	Two
or	more	code	elements	can	have	the	same	name	as	long	as	they	belong	to
different	namespaces.	For	instance,	the	code	below	defines	two	namespaces,
both	of	which	contain	a	class	named	MyClass.	This	is	allowed	in	C#	as	the	two
classes	belong	to	different	namespaces	(First	and	Second).
	
namespace	First

{

class	MyClass

{

}

}

	
namespace	Second

{

class	MyClass

{

}

}

	
In	our	example,	we	declared	one	namespace	-	HelloWorld.
	
The	HelloWorld	namespace	starts	on	line	7,	with	an	opening	curly	brace	on	line
8.	It	ends	on	line	20	with	a	closing	curly	brace.	Curly	braces	are	used	extensively
in	C#	to	indicate	the	start	and	end	of	a	code	element.	All	opening	braces	in	C#
must	be	closed	with	a	corresponding	closing	brace.
	
Within	the	HelloWorld	namespace,	we	have	the	Program	class	which	starts	on
line	12	and	ends	on	line	19.	Within	the	Program	class,	we	have	the	Main()
method	that	starts	on	line	14	and	ends	on	line	18.
	
The	Main()	Method
	
The	Main()	method	is	the	entry	point	of	all	C#	console	applications.	Whenever	a
console	application	is	started,	the	Main()	method	is	the	first	method	to	be	called.
	
In	this	book,	whenever	you	are	asked	to	try	out	a	certain	code	segment,	you

should	create	a	new	“Console	Application”	and	type	the	given	code	segment	into
the	Main()	method	(between	the	curly	braces).	You	can	then	run	the	program	to
test	the	code.
	
Notice	the	words	“string[]	args”	inside	the	parenthesis	of	our	Main()	method?
This	means	the	Main()	method	can	take	in	an	array	of	strings	as	input.	Do	not
worry	about	this	for	the	moment.	We’ll	cover	these	topics	in	subsequent
chapters.	

In	our	example,	the	Main()	method	contains	two	lines	of	code.	The	first	line
Console.WriteLine(“Hello	World”);

	
displays	the	line	“Hello	World”	(without	the	quotes)	on	the	screen.
	

The	second	line
	
Console.Read();

	
waits	for	a	key	press	from	the	user	before	closing	the	window.	

Both	of	the	statements	above	end	with	a	semi-colon.	This	is	common	for	most
statements	in	C#.	After	the	Console.Read()	statement,	we	end	our	code	with
three	closing	braces	to	close	the	earlier	opening	braces.
	
That’s	it!	There’s	all	there	is	to	this	simple	program.
	
Comments
	
We’ve	covered	quite	a	bit	in	this	chapter.	You	should	now	have	a	basic
understanding	of	C#	programming	and	be	reasonably	comfortable	with	VSC.
Before	we	end	this	chapter,	there’s	one	more	thing	to	learn	-	comments.	

If	you	refer	back	to	our	“HelloWorld”	example	and	look	at	line	10,	you	should
notice	that	this	line	starts	with	two	forward	slashes	(//).
	
//A	Simple	Program	to	display	the	words	Hello	World

	
This	line	is	actually	not	part	of	the	program.	It	is	a	comment	that	we	write	to
make	our	code	more	readable	for	other	programmers.	Comments	are	ignored	by
the	compiler.
	
To	add	comments	to	our	program,	we	type	two	forward	slashes	(//)	in	front	of
each	line	of	comment	like	this
//	This	is	a	comment

//	This	is	another	comment

//	This	is	yet	another	comment

	
Alternatively,	we	can	also	use	/*	…	*/	for	multiline	comments	like	this
/*	This	is	a	comment

This	is	also	a	comment

This	is	yet	another	comment

*/

	
Comments	can	also	be	placed	after	a	statement,	like	this:
	

Console.Read();	//reads	the	next	character

	

Chapter	3:	The	World	of	Variables	and	Operators
	
Now	that	you	are	familiar	with	VSC	and	have	written	your	first	program,	let’s
get	down	to	the	real	stuff.	In	this	chapter,	you’ll	learn	all	about	variables	and
operators.	Specifically,	you’ll	learn	what	variables	are	and	how	to	name,	declare
and	initialize	them.	You’ll	also	learn	about	the	common	operations	that	we	can
perform	on	them.
	
What	are	variables?
	
Variables	are	names	given	to	data	that	we	need	to	store	and	manipulate	in	our
programs.	For	instance,	suppose	your	program	needs	to	store	the	age	of	a	user.
To	do	that,	we	can	name	this	data	userAge	and	declare	the	variable	userAge
using	the	following	statement:
int	userAge;

	
The	declaration	statement	first	states	the	data	type	of	the	variable,	followed	by
its	name.	The	data	type	of	a	variable	refers	to	the	type	of	data	that	the	variable
will	store	(such	as	whether	it’s	a	number	or	a	piece	of	text).	In	our	example,	the
data	type	is	int,	which	refers	to	integers.	The	name	of	our	variable	is	userAge.
	
After	you	declare	the	variable	userAge,	your	program	will	allocate	a	certain	area
of	your	computer's	storage	space	to	store	this	data.	You	can	then	access	and
modify	this	data	by	referring	to	it	by	its	name,	userAge.
	
Data	Types	in	C#
	
There	are	a	number	of	commonly	used	data	types	in	C#.
	
int
	
int	stands	for	integer	(i.e.	numbers	with	no	decimal	or	fractional	parts)	and
holds	numbers	from	-2,147,483,648	to	2,147,483,647.	Examples	include	15,
407,	-908,	6150	etc.
	
byte
	

byte	also	refers	to	integral	numbers,	but	has	a	narrower	range	from	0	to	255.
	
Most	of	the	time,	we	use	int	instead	of	byte	for	integral	numbers.	However,	if
you	are	programming	for	a	machine	that	has	limited	memory	space,	you	should
use	byte	if	you	are	certain	the	value	of	the	variable	will	not	exceed	the	0	to	255
range.
	
For	instance,	if	you	need	to	store	the	age	of	a	user,	you	can	use	the	byte	data
type	as	it	is	unlikely	that	the	user’s	age	will	ever	exceed	255	years	old.
	
float
	
float	refers	to	floating	point	numbers,	which	are	numbers	with	decimal	places
such	as	12.43,	5.2	and	-9.12.
	
float	can	store	numbers	from	-3.4	x	1038	to	+3.4	x	1038.	It	uses	8	bytes	of
storage	and	has	a	precision	of	approximately	7	digits.	This	means	that	if	you	use
float	to	store	a	number	like	1.23456789	(10	digits),	the	number	will	be	rounded
off	to	1.234568	(7	digits).
	
double
	
double	is	also	a	floating	point	number,	but	can	store	a	much	wider	range	of
numbers.	It	can	store	numbers	from	(+/-)5.0	x	10-324	to	(+/-)1.7	x	10308	and	has	a
precision	of	about	15	to	16	digits.
	
double	is	the	default	floating	point	data	type	in	C#.	In	other	words,	if	you	write	a
number	like	2.34,	C#	treats	it	as	a	double	by	default.
	
decimal
	
decimal	stores	a	decimal	number	but	has	a	smaller	range	than	float	and
double.	However,	it	has	a	much	greater	precision	of	approximately	28-29	digits.
	
If	your	program	requires	a	high	degree	of	precision	when	storing	non	integral
numbers,	you	should	use	a	decimal	data	type.	An	example	is	when	you	are
writing	a	financial	application	where	precision	is	very	important.
	
char

	
char	stands	for	character	and	is	used	to	store	single	Unicode	characters	such	as
‘A’,	‘%’,	‘@’	and	‘p’	etc.
	
bool
	
bool	stands	for	boolean	and	can	only	hold	two	values:	true	and	false.	It	is
commonly	used	in	control	flow	statements.	We’ll	cover	control	flow	statements
in	Chapter	6.
	
Naming	a	Variable
	
A	variable	name	in	C#	can	only	contain	letters,	numbers	or	underscores	(_).
However,	the	first	character	cannot	be	a	number.	Hence,	you	can	name	your
variables	userName,	user_name	or	userName2	but	not	2userName.
	
In	addition,	there	are	some	reserved	words	that	you	cannot	use	as	a	variable
name	because	they	already	have	preassigned	meanings	in	C#.	These	reserved
words	include	words	like	Console,	if,	while	etc.	We’ll	learn	about	each	of	them
in	subsequent	chapters.
	
Finally,	variable	names	are	case	sensitive.	username	is	not	the	same	as
userName.
	
There	are	two	conventions	when	naming	a	variable	in	C#.	We	can	either	use	the
camel	case	notation	or	use	underscores.	Camel	casing	is	the	practice	of	writing
compound	words	with	mixed	casing,	capitalising	the	first	letter	of	each	word
except	the	first	word	(e.g.	thisIsAVariableName).	This	is	the	convention	that
we’ll	be	using	in	the	rest	of	the	book.	Alternatively,	another	common	practice	is
to	use	underscores	(_)	to	separate	the	words.	If	you	prefer,	you	can	name	your
variables	like	this:	this_is_a_variable_name.
	
Initializing	a	Variable
	
Every	time	you	declare	a	new	variable,	you	need	to	give	it	an	initial	value.	This
is	known	as	initializing	the	variable.	You	can	change	the	value	of	the	variable	in
your	program	later.
	
There	are	two	ways	to	initialize	a	variable.	You	can	initialize	it	at	the	point	of
declaration	or	initialize	it	in	a	separate	statement.	

declaration	or	initialize	it	in	a	separate	statement.	

The	examples	below	show	how	you	can	initialize	a	variable	at	the	point	of
declaration:
Example	1
	
These	examples	show	how	you	can	initialize	byte	and	int	variables.	
byte	userAge	=	20;

int	numberOfEmployees	=	510;

	
As	byte	and	int	are	for	data	with	no	decimal	places,	you	will	get	an	error	if	you
write	something	like
byte	userAge2	=	20.0;

	
20.0	is	not	the	same	as	20	in	C#.
	
Example	2
	
The	next	examples	show	how	you	can	initialize	double,	float	and	decimal
variables	with	integral	values.	Although	these	data	types	are	for	numbers	with
decimal	parts,	we	can	also	use	them	to	store	integral	values	as	shown	below.
	
double	intNumberOfHours	=	5120;

float	intHourlyRate	=	60;

decimal	intIncome	=	25399;

	
Example	3
	
The	examples	below	show	how	you	can	initialize	double,	float	and	decimal
variables	with	non	integers.
	
double	numberOfHours	=	5120.5;

float	hourlyRate	=	60.5f;

decimal	income	=	25399.65m;

	
As	mentioned	previously,	the	default	data	type	for	a	number	with	decimal	places
is	double.
	
Hence,	in	the	examples	above,	when	you	initialize	hourlyRate,	you	need	to	add
‘f’	as	a	suffix	after	60.5	to	explicitly	tell	the	complier	to	change	60.5	to	a	float.	

Similarly,	when	you	initialize	income,	you	need	to	add	‘m’	as	a	suffix	to	change

25399.65	into	a	decimal	data	type.
	
Example	4
	
A	char	data	type	can	only	contain	a	single	character.	When	we	initialize	a	char
variable,	we	need	to	enclose	that	character	in	single	quotes.	An	example	is:
char	grade	=	‘A’;

	
Example	5
	
A	bool	variable	can	only	be	either	true	or	false.	The	example	below	shows
how	you	can	initialize	a	bool	variable.
	
bool	promote	=	true;

	
Example	6
	
In	addition	to	initializing	variables	individually,	you	can	also	initialize	multiple
variables	in	the	same	statement	as	long	as	they	are	of	the	same	data	type.	The
following	example	shows	how	this	can	be	done.	Note	that	the	two	variables	are
separated	with	a	comma	and	the	statement	ends	with	a	semi-colon.
	
byte	level	=	2,	userExperience	=	5;

	
The	six	examples	above	show	how	you	can	initialize	a	variable	at	the	point	of
declaration.	Alternatively,	you	can	choose	to	initialize	a	variable	in	a	separate
statement.	An	example	is	shown	below:
byte	year;	//declare	the	variable

year	=	20;	//initialize	it

	
The	Assignment	Sign
	
The	=	sign	in	programming	has	a	different	meaning	from	the	=	sign	we	learned
in	Math.	In	programming,	the	=	sign	is	known	as	an	assignment	sign.	It	means
we	are	assigning	the	value	on	the	right	side	of	the	=	sign	to	the	variable	on	the
left.	A	good	way	to	understand	a	statement	like	year	=	20	is	to	think	of	it	as
year	<-	20.
	
In	programming,	the	statements	x	=	y	and	y	=	x	have	very	different	meanings.
	
Confused?	An	example	will	likely	clear	this	up.

	
Suppose	we	have	two	variables	x	and	y	and
x	=	5;	y	=	10;

	

If	you	write
	
x	=	y;

	
your	Math	teacher	is	probably	going	to	be	upset	at	you	since	x	is	not	equal	to	y.
	
However,	in	programming,	this	is	fine.	This	statement	means	we	are	assigning
the	value	of	y	to	x	(think	of	it	as	x	<-	y).	It	is	alright	to	assign	the	value	of	a
variable	to	another	variable.	In	our	example,	the	value	of	x	is	now	changed	to	10
while	the	value	of	y	remains	unchanged.	In	other	words,	x	=	10	and	y	=	10
now.
	
Now	suppose	we	change	the	values	of	x	and	y	back	to
x	=	5;	y	=	10;

	

If	you	now	write
	
y	=	x;

	
it	means	you	are	assigning	the	value	of	x	to	y	(think	of	it	as	y	<-	x).
Mathematically,	x	=	y	and	y	=	x	mean	the	same	thing.	However,	this	is	not	so	in
programming.	Here,	the	value	of	y	is	changed	to	5	while	the	value	of	x	remains
unchanged.	In	other	words,	x	=	5	and	y	=	5	now.
	
Basic	Operators
	
Besides	assigning	an	initial	value	to	a	variable	or	assigning	another	variable	to	it,
we	can	also	perform	the	usual	mathematical	operations	on	variables.	Basic
operators	in	C#	include	+,	-,	*,	/	and	%	which	represent	addition,	subtraction,
multiplication,	division	and	modulus	respectively.
	
Example	

Suppose	x	=	7,	y	=	2
	
Addition:	x	+	y	=	9
Subtraction:	x	-	y	=	5
Multiplication:	x*y	=	14
Division:	x/y	=	3	(rounds	down	the	answer	to	the	nearest	integer)
Modulus:	x%y	=	1	(gives	the	remainder	when	7	is	divided	by	2)
	
In	C#,	division	gives	an	integer	answer	if	both	x	and	y	are	integers.	However,	if
either	x	or	y	is	a	non	integer,	we	will	get	a	non	integer	answer.	For	instance,
7	/	2	=	3
7.0	/	2	=	3.5
7	/	2.0	=	3.5
7.0	/	2.0	=	3.5
	
In	the	first	case,	when	an	integer	is	divided	by	another	integer,	you	get	an	integer
as	the	answer.	The	decimal	portion	of	the	answer,	if	any,	is	truncated.	Hence,	we
get	3	instead	of	3.5.
	
In	all	other	cases,	the	result	is	a	non	integer	as	at	least	one	of	the	operands	is	a
non	integer.

	
More	Assignment	Operators
	
Besides	the	=	sign,	there	are	a	few	more	assignment	operators	in	C#	(and	most
programming	languages).	These	include	operators	like	+=,	-=	and	*=.
	
Suppose	we	have	the	variable	x,	with	an	initial	value	of	10.	If	we	want	to
increment	x	by	2,	we	can	write
x	=	x	+	2;

	
The	program	will	first	evaluate	the	expression	on	the	right	(x	+	2)	and	assign
the	answer	to	the	left.	So	eventually	the	statement	above	becomes	x	<-	12.
	
Instead	of	writing	x	=	x	+	2,	we	can	also	write	x	+=	2	to	express	the	same
meaning.	The	+=	sign	is	actually	a	shorthand	that	combines	the	assignment	sign
with	the	addition	operator.	Hence,	x	+=	2	simply	means	x	=	x	+	2.
	
Similarly,	if	we	want	to	do	a	subtraction,	we	can	write	x	=	x	-	2	or	x	-=	2.
The	same	works	for	all	the	5	operators	mentioned	in	the	section	above.
	
Most	programming	languages	also	have	the	++	and	––	operators.	The	++	operator
is	used	when	you	want	to	increase	the	value	of	a	variable	by	1.	For	instance,
suppose
int	x	=	2;

	

If	you	write
	
x++;

	
the	value	of	x	becomes	3.
	
There	is	no	need	to	use	the	=	sign	when	you	use	the	++	operator.	The	statement
x++;	is	equivalent	to
x	=	x	+	1;

	
The	++	operator	can	be	placed	in	front	of	or	behind	the	variable	name.	This
affects	the	order	in	which	tasks	are	performed.
	
Suppose	we	have	an	integer	named	counter.	If	we	write
Console.WriteLine(counter++);

	
the	program	first	prints	the	original	value	of	counter	before	incrementing
counter	by	1.	In	other	words,	it	executes	the	tasks	in	this	order
Console.WriteLine(counter);

counter	=	counter	+	1;

	
On	the	other	hand,	if	we	write
	
Console.WriteLine(++counter);

	
the	program	first	increments	counter	by	1	before	printing	the	new	value	of
counter.	In	other	words,	it	executes	the	tasks	in	this	order
counter	=	counter	+	1;

Console.WriteLine(counter);

	
In	addition	to	the	++	operator,	we	also	have	the	––	operator	(two	minus	signs).
This	operator	decreases	the	value	of	the	variable	by	1.
	
Type	Casting	In	C#
	
Sometimes	in	our	program,	it	is	necessary	to	convert	from	one	data	type	to
another,	such	as	from	a	double	to	an	int.	This	is	known	as	type	casting.
	
To	convert	one	numeric	data	type	to	another,	we	just	need	to	add	(new	data
type)	in	front	of	the	data	that	we	want	to	convert.
	
For	instance,	we	can	cast	a	non	integer	into	an	integer	like	this:

For	instance,	we	can	cast	a	non	integer	into	an	integer	like	this:
	
int	x	=	(int)	20.9;

	
When	we	cast	20.9	into	an	integer,	the	resulting	value	is	20,	not	21.	The	decimal
portion	is	truncated	after	the	conversion.
	
We	can	also	cast	a	double	into	a	float	or	a	decimal.	Recall	that	we	mentioned
earlier	that	all	non	integers	are	treated	as	double	by	default	in	C#?	If	we	want	to
assign	a	number	like	20.9	to	a	float	or	decimal,	we	need	to	add	the	‘f’	and	‘m’
suffixes	respectively.	Another	way	to	do	it	is	to	use	a	cast,	like	this:
float	num1	=	(float)	20.9;

decimal	num2	=	(decimal)	20.9;

	
The	values	of	num1	and	num2	will	both	be	20.9.
	
In	addition	to	casting	between	numeric	types,	we	can	also	do	other	types	of
casting.	We’ll	explore	some	of	these	conversions	in	subsequent	chapters.
	
	

Chapter	4:	Arrays,	Strings	and	Lists
	
In	the	previous	chapter,	we	covered	some	of	the	basic	data	types	that	are
commonly	used	in	C#.	Besides	these	basic	data	types,	C#	also	comes	with	a	few
advanced	data	types.	In	this	chapter,	we	are	going	to	cover	three	advanced	data
types:	arrays,	strings	and	lists.	In	addition,	we	are	going	to	discuss	the	difference
between	a	value	data	type	and	a	reference	data	type.
	
Array
	
An	array	is	simply	a	collection	of	data	that	are	normally	related	to	each	other.
Suppose	we	want	to	store	the	ages	of	5	users.	Instead	of	storing	them	as
user1Age,	user2Age,	user3Age,	user4Age	and	user5Age,	we	can	store	them	as
an	array.
	
An	array	can	be	declared	and	initialized	as	follows:
	
int[]	userAge	=	{21,	22,	23,	24,	25};

	
int	indicates	that	this	variable	stores	int	values.
[]	indicates	that	the	variable	is	an	array	instead	of	a	normal	variable.
userAge	is	the	name	of	the	array.
{21,	22,	23,	24,	25}	are	the	five	integers	that	the	array	stores.
	
In	addition	to	declaring	and	initializing	an	array	at	the	point	of	declaration,	we
can	declare	an	array	first	and	initialize	it	later.	To	do	that,	we	need	to	use	the	new
operator:
int[]	userAge	=	new	int[5];

userAge	=	new	[]	{21,	22,	23,	24,	25};

	
The	first	statement	declares	and	creates	an	array	for	storing	5	integers.	The
second	statement	initializes	the	array.
Individual	values	in	the	array	are	accessible	by	their	indexes,	and	indexes	always
start	with	a	value	of	ZERO,	not	1.	This	is	a	common	practice	in	almost	all
programming	languages,	such	as	Python	and	Java.	The	first	value	of	the	array
has	an	index	of	0,	the	next	has	an	index	of	1	and	so	forth.
	

If	we	type
	
Console.WriteLine(userAge[0]);

	
the	value	‘21’	will	be	displayed	on	the	screen.
	

If	we	type
	
userAge[2]	=	userAge[2]	+	20;

	
the	array	becomes	{21,	22,	43,	24,	25}.	That	is,	20	is	added	to	the	third
element.
	
Array	Properties	and	Methods
	
C#	comes	with	a	number	of	useful	properties	and	methods	that	we	can	use	with
an	array.
	
We’ll	learn	more	about	properties	and	methods	in	Chapter	7	when	we	discuss
classes.	For	now,	all	we	have	to	know	is	that	to	use	a	property	or	method,	we
need	to	use	the	dot	(.)	operator.	To	use	a	property,	we	type	the	property	name
after	the	dot.	To	use	a	method,	we	type	the	method	name	after	the	dot	operator,
followed	by	a	pair	of	parenthesis	().
	
Length
	
The	Length	property	of	an	array	tells	us	the	number	of	items	the	array	has.
	
For	instance,	if	we	have
	
int	[]	userAge	=	{21,	22,	26,	32,	40};

	
userAge.Length	is	equal	to	5	as	there	are	5	numbers	in	the	array.
	
Copy()
	
The	Copy()	method	allows	you	to	copy	the	contents	of	one	array	into	another
array,	starting	from	the	first	element.
	
In	C#,	a	method	may	have	many	different	variations.	For	instance,	the	Copy()
method	comes	in	four	different	variations.	The	example	below	discusses	one	of
the	four	variations.	If	you	learn	how	to	use	one	variation,	you	can	figure	out	how
to	use	the	other	Copy()	methods	with	relative	ease.
	
Whenever	we	use	a	method,	we	need	to	put	a	pair	of	parenthesis	()	after	the
method	name.	Some	methods	require	certain	data	for	it	to	work.	These	data	are

known	as	arguments.	We	include	these	arguments	in	the	pair	of	parenthesis.	The
Copy()	method	requires	three	arguments.
	

Suppose	you	have
	
int	[]	source	=	{12,	1,	5,	-2,	16,	14};

	

and
	
int	[]	dest	=	{1,	2,	3,	4};

	
You	can	copy	the	first	three	elements	of	source	into	dest	by	using	the	statement
below:
Array.Copy(source,	dest,	3);

	
The	first	argument	is	the	array	that	provides	the	values	to	be	copied.	The	second
is	the	array	where	the	values	will	be	copied	into.	The	last	argument	specifies	the
number	of	items	to	copy.
	
In	our	example,	our	dest	array	becomes	{12,	1,	5,	4}	while	the	source	array
remains	unchanged.
	
Sort()
	
The	Sort()	method	allows	us	to	sort	our	arrays.	It	takes	in	an	array	as	the
argument.
	

Suppose	you	have
	
int	[]	numbers	=	{12,	1,	5,	-2,	16,	14};

	
You	can	sort	this	array	by	writing
	
Array.Sort(numbers);

	
The	array	will	be	sorted	in	ascending	order.	Thus,	numbers	becomes	{-2,	1,	5,
12,	14,	16}.
	
IndexOf()
	
We	use	the	IndexOf()	method	to	determine	if	a	certain	value	exists	in	an	array.
If	it	exists,	the	method	returns	the	index	of	the	first	occurrence	of	that	value.	If	it
does	not	exist,	the	method	returns	-1.	

For	instance,	if	you	have
int	[]	numbers	=	{10,	30,	44,	21,	51,	21,	61,	24,	14};

	
you	can	find	if	the	value	21	exists	in	the	array	by	writing
	
Array.IndexOf(numbers,	21);

	
The	method	returns	the	index	of	the	first	value	found,	which	is	3	in	this	case
since	21	is	the	fourth	element	in	the	array.	You	can	then	assign	the	answer	to	a
variable	like	this:
int	ans	=	Array.IndexOf(numbers,	21);

	
The	value	of	ans	is	thus	3.	If	you	write
ans	=	Array.IndexOf(numbers,	100);

	
the	value	of	ans	is	-1	as	100	does	not	exist	in	the	numbers	array.
	
We’ve	covered	some	of	the	more	commonly	used	array	methods	in	this	section.
For	a	complete	list	of	all	the	array	methods	available	in	C#,	check	out	this	page
https://msdn.microsoft.com/en-us/library/system.array_methods(v=vs.110).aspx
	
String
	
Next,	let	us	look	at	the	string	data	type.	A	string	is	a	piece	of	text.	An	example

https://msdn.microsoft.com/en-us/library/system.array_methods(v=vs.110).aspx

of	a	string	is	the	text	“Hello	World”.
	
To	declare	and	initialize	a	string	variable,	you	write
string	message	=	“Hello	World”;

	
where	message	is	the	name	of	the	string	variable	and	“Hello	World”	is	the
string	assigned	to	it.	Note	that	you	need	to	enclose	the	string	in	double	quotes
(“).
	
You	can	also	assign	an	empty	string	to	a	variable,	like	this:
	
string	anotherMessage	=	“”;

	
Finally,	we	can	join	two	or	more	strings	using	the	concatenate	sign	(+)	and
assign	them	to	a	variable.	For	instance,	we	can	write
string	myName	=	“Hello	World,	”	+	“my	name	is	Jamie”;

	

This	is	the	same	as
	
string	myName	=	“Hello	World,	my	name	is	Jamie”;

String	Properties	and	Methods
	
Like	arrays,	strings	come	with	a	number	of	properties	and	methods.
	
Length
	
The	Length	property	of	a	string	tells	us	the	total	number	of	characters	the	string
contains.
	
To	find	the	length	of	the	string	“Hello	World”,	we	write
	
“Hello	World”.Length

	
We	will	get	the	value	11	as	“Hello”	and	“World”	both	have	5	characters	each.
When	you	add	the	space	between	the	two	words,	you	get	a	total	length	of	11.
	
Substring()
	
The	Substring()	method	is	used	to	extract	a	substring	from	a	longer	string.
	
It	requires	two	arguments.	The	first	tells	the	compiler	the	index	of	the	starting
position	to	extract	and	the	second	tells	the	compiler	the	length.	

Suppose	we	declare	a	string	variable	message	and	assign	the	string	“Hello
World”	to	it.
string	message	=	“Hello	World”;

	
We	can	then	use	message	to	call	the	Substring()	method	as	shown	below.
	
string	newMessage	=	message.Substring(2,	5);

	
Substring(2,	5)	extracts	a	substring	of	5	characters	from	message,	starting
from	index	2	(which	is	the	third	letter	as	indexes	always	start	from	0).
	
The	resulting	substring	is	then	assigned	to	newMessage.	

newMessage	is	thus	equal	to	“llo	W”.
	

message,	on	the	other	hand,	is	not	changed.	It	remains	as	“Hello	World”.
	
Equals()
	
We	can	use	the	Equals()	method	to	compare	if	two	strings	are	identical.
	
If	we	have	two	strings	as	shown	below
	
string	firstString	=	“This	is	Jamie”;

string	secondString	=	“Hello”;

	
firstString.Equals(“This	is	Jamie”);	

returns	true	while
firstString.Equals(secondString);

returns	false	as	the	two	strings	(firstString	and	secondString)	are	not	equal.
	
Split()
	
The	Split()	method	splits	a	string	into	substrings	based	on	an	array	of	user-
defined	separators.	After	splitting	the	string,	the	Split()	method	returns	an
array	that	contains	the	resulting	substrings.
	
The	Split()	method	requires	two	arguments	-	an	array	of	strings	that	act	as
separators	and	a	second	argument	to	specify	whether	you	want	to	remove	empty
strings	from	the	result.
	
Suppose	you	want	to	split	the	string	“Peter,	John;	Andy,	,David”	into	substrings,
you	can	do	it	as	follows	(line	numbers	are	added	for	reference):
1	string	[]	separator	=	{“,	”,	“;	”};

2	string	names	=	“Peter,	John;	Andy,	,	David”;

3	string	[]	substrings	=	names.Split(separator,

StringSplitOptions.None);

	
On	Line	1,	we	first	declare	an	array	of	two	strings	to	act	as	separators.	The	first
string	is	a	comma	followed	by	a	space	and	the	second	is	a	semi-colon	followed
by	a	space.
	
On	Line	2,	we	assign	the	string	that	we	want	to	split	to	the	names	variable.	On
Line	3,	we	use	the	names	variable	to	call	the	Split()	method	and	assign	its

result	to	the	substrings	array.
	
The	result	of	the	code	above	is	the	following	array
	
{“Peter”,	“John”,	“Andy”,	“”	,	“David”}

	
This	array	contains	an	empty	string	as	there	is	a	space	between	the	comma	after
“Andy”	and	the	comma	before	“David”	in	the	original	string.	If	you	want	to
remove	the	empty	string	from	the	result,	you	have	to	change	Line	3	to
string	[]	substrings	=	names.Split(separator,

StringSplitOptions.RemoveEmptyEntries);

	
The	substrings	array	thus	becomes
{“Peter”,	“John”,	“Andy”,	“David”}

	
As	usual,	we’ve	only	covered	a	number	of	the	more	commonly	used	string
methods.	For	a	complete	list	of	all	the	string	methods	available	in	C#,	check	out
this	page	https://msdn.microsoft.com/en-
us/library/system.string_methods(v=vs.110).aspx
	
Lists
	
Now,	let	us	look	at	the	last	data	type	in	this	chapter	–	lists.	A	list	stores	values
like	an	array,	but	elements	can	be	added	or	removed	at	will.

An	array	can	only	hold	a	fixed	number	of	values.	If	you	declare
int	[]	myArray	=	new	int[10];

	
myArray	can	only	hold	10	values.	If	you	write	myArray[10]	(which	refers	to	the
11th	value	since	array	index	starts	from	zero),	you	will	get	an	error.
	
If	you	need	greater	flexibility	in	your	program,	you	can	use	a	list.
	
To	declare	a	list	of	integers,	we	write
	
List<int>	userAgeList	=	new	List<int>();

	
userAgeList	is	the	name	of	the	list.	
List	is	a	keyword	to	indicate	that	you	are	declaring	a	list.
The	data	type	is	enclosed	in	angle	brackets	<	>.
	
You	can	choose	to	initialize	the	list	at	the	point	of	declaration	like	this

https://msdn.microsoft.com/en-us/library/system.string_methods(v=vs.110).aspx

You	can	choose	to	initialize	the	list	at	the	point	of	declaration	like	this
	
List<int>	userAgeList	=	new	List<int>	{11,	21,	31,	41};

	
To	access	the	individual	elements	in	a	list,	we	use	the	same	notation	as	when	we
access	elements	in	an	array.	For	instance,	to	access	the	first	element,	you	write
userAgeList[0].	To	access	the	third	element,	you	write	userAgeList[2].
	
List	Properties	and	Methods
	
The	list	data	type	also	comes	with	a	large	number	of	properties	and	methods.
	
Add()
	
You	can	add	members	to	a	list	using	the	Add()	method.
	
userAgeList.Add(51);

userAgeList.Add(61);

	
userAgeList	now	has	6	members:	{11,	21,	31,	41,	51,	61}.
	
Count
	
To	find	out	the	number	of	elements	in	the	list,	use	the	Count	property.
	
userAgeList.Count	gives	us	6	as	there	are	6	elements	in	the	list	at	the	moment.
	
Insert()
	
To	add	members	at	a	specific	position,	use	the	Insert()	method.
	
To	insert	a	member	at	the	3rd	position,	you	write
	
userAgeList.Insert(2,	51);

	
where	2	is	the	index	and	51	is	the	value	you	want	to	insert.
	
userAgeList	now	becomes	{11,	21,	51,	31,	41,	51,	61}.
	
Remove()
	
To	remove	members	from	the	list,	use	the	Remove()	method.	The	Remove()

method	takes	in	one	argument	and	removes	the	first	occurrence	of	that	argument.
For	instance,	if	we	write
userAgeList.Remove(51);

	
userAgeList	becomes	{11,	21,	31,	41,	51,	61}.	Only	the	first	‘51’	is
removed.
	
RemoveAt()
	
To	remove	a	member	at	a	specific	location,	use	the	RemoveAt()	method.	For
instance,	to	remove	the	4th	item	(index	3),	you	write
userAgeList.RemoveAt(3);

	
where	3	is	the	index	of	the	item	to	be	removed.
	
userAgeList	now	becomes	{11,	21,	31,	51,	61}.
	
Contains()
	
To	check	if	a	list	contains	a	certain	member,	use	the	Contains()	method.
	
To	check	if	userAgeList	contains	‘51’,	we	write
	
userAgeList.Contains(51);

	
We	will	get	true	as	the	result.
	
Clear()
	
To	remove	all	items	in	a	list,	use	the	Clear()	method.	If	we	write
userAgeList.Clear();

	
we	will	have	no	elements	left	in	the	list.
	
For	a	complete	list	of	all	the	list	methods	available	in	C#,	check	out	this	page
https://msdn.microsoft.com/en-us/library/s6hkc2c4(v=vs.110).aspx
	
Value	Type	vs.	Reference	Type
	
Now	that	we	are	familiar	with	strings,	arrays	and	lists,	let	us	discuss	an
important	concept	regarding	data	types	in	C#.

https://msdn.microsoft.com/en-us/library/s6hkc2c4(v=vs.110).aspx

	
All	data	types	in	C#	can	be	classified	as	either	a	value	type	or	a	reference	type.
The	data	types	discussed	in	Chapter	3	are	value	types.	Those	discussed	in	this
chapter	are	reference	types.
	
A	value	data	type	is	a	variable	that	stores	its	own	data.
	

When	we	write
	
int	myNumber	=	5;

	
the	variable	myNumber	stores	the	actual	value	5.
	
A	reference	type,	on	the	other	hand,	does	not	store	the	actual	data.	Instead,	it
stores	a	reference	to	the	data.	It	does	not	tell	the	compiler	what	the	value	of	the
data	is;	it	tells	the	compiler	where	to	find	the	actual	data.
	
An	example	of	a	reference	type	is	a	string.	When	you	write	a	statement	like
string	message	=	“Hello”;

	
the	variable	message	actually	does	not	store	the	string	“Hello”.
	
Instead,	the	string	“Hello”	is	created	and	stored	elsewhere	in	the	computer’s
memory.	The	variable	message	stores	the	address	of	that	memory	location.
	
That’s	all	that	we	need	to	know	about	reference	types	at	the	moment.	As	this	is	a
book	for	beginners,	we	will	not	go	into	details	about	why	reference	types	are
necessary.	Just	be	aware	that	there	is	a	difference	between	value	types	and
reference	types;	the	former	stores	a	value	while	the	latter	stores	an	address.
	

Chapter	5:	Making	our	Program	Interactive

	
Now	that	we	have	covered	the	basics	of	variables	and	data	types,	let	us	write	a
program	that	makes	use	of	them.	In	this	chapter,	we’ll	learn	how	to	accept	input
from	users,	store	the	data	in	a	variable	and	display	messages	to	our	users.
Ready?
	
Displaying	Messages	to	Users
	
To	display	messages	to	our	users,	we	use	the	Write()	or	WriteLine()	method
provided	by	C#,	available	in	the	System	namespace.
	
The	difference	between	WriteLine()	and	Write()	is	that	Writeline()	moves
the	cursor	down	to	the	next	line	after	displaying	the	message	while	Write()	does
not.
	
If	we	write
	
Console.WriteLine(“Hello	”);

Console.WriteLine(“How	are	you?”);

	
we’ll	get
	
Hello

How	are	you?

	
If	we	write
	
Console.Write(“Hello	”);

Console.Write(“How	are	you?”);

	
we’ll	get
	
Hello	How	are	you?

	
Note	that	in	the	examples	above,	we	added	the	word	Console	in	front	of	the
method	name	whenever	we	call	the	WriteLine()	or	Write()	method.	This	is
because	both	methods	are	static	methods	of	the	Console	class.	We’ll	talk	more

about	static	methods	in	Chapter	7.
	
If	you	find	it	troublesome	to	add	the	word	Console	whenever	you	use	these	two
methods,	you	can	add	the	directive
using	static	System.Console;

	
to	the	start	of	your	program.	If	you	do	that,	you	can	simply	write
	
WriteLine(“Hello	World”);

	
instead	of
	
Console.WriteLine(“Hellow	World”);

	
whenever	you	use	any	of	the	static	methods	in	the	Console	class.	This	is	a	new
feature	in	C#	6	(the	latest	version	of	C#)	and	is	available	only	if	you	use	the
latest	IDE	(i.e.	Visual	Studio	2015).	For	the	rest	of	our	examples,	we’ll	stick	to
the	first	method	for	backwards	compatibility.
	
We	have	already	seen	an	example	of	how	we	can	use	the	WriteLine()	method
when	we	wrote	the	“Hello	World”	program	in	Chapter	2.	Let	us	now	look	at
more	examples.	In	the	examples	below,	we’ll	focus	on	the	WriteLine()	method.
The	Write()	method	works	exactly	the	same	way.
	
Example	1
	
To	display	a	simple	string,	we	write
	
Console.WriteLine(“Hello,	how	are	you?”);

	
Output
	
Hello,	how	are	you?

	
Example	2
	
To	display	the	value	of	a	variable,	we	pass	in	the	variable	name	as	an	argument.
For	instance,	suppose	we	have
int	userAge	=	30;

	
we	display	the	value	of	userAge	by	writing
Console.WriteLine(userAge);

	
Output
	
30

	
Note	that	we	do	not	enclose	the	variable	name	(userAge)	in	double	quotes.	If	we
write
Console.WriteLine(“userAge”);

	
we’ll	get
	
userAge

	
as	the	output	instead.
	
Example	3
	
To	combine	two	or	more	strings	and	display	them,	we	use	the	concatenation	(+)
sign	mentioned	in	the	previous	chapter.	

For	instance,	if	we	write
Console.WriteLine(“Hello,	”	+	“how	are	you?”	+	“	I	love	C#.”);

	
we’ll	get
	
Hello,	how	are	you?	I	love	C#.

	
Example	4
	
We	can	also	use	the	concatenation	sign	to	combine	a	string	and	a	variable.
Suppose	we	have
int	results	=	79;

	
The	statement
	
Console.WriteLine(“You	scored	”	+	results	+	“	marks	for	your

test.”);

	
gives	us
	
You	scored	79	marks	for	your	test.

	
Again,	we	do	not	enclose	the	variable	name	in	double	quotes.	Else	we	will	get

Again,	we	do	not	enclose	the	variable	name	in	double	quotes.	Else	we	will	get
You	scored	results	marks	for	your	test.

	
Example	5
	
In	addition	to	using	the	concatenation	sign	to	combine	strings	and	variables,	we
can	use	placeholders.	Suppose	we	have
int	results	=	79;

	
If	we	write
	
Console.WriteLine(“{0}!	You	scored	{1}	marks	for	your	test.”,	“Good

morning”,	results);

	
we	will	get
	
Good	morning!	You	scored	79	marks	for	your	test.

	
In	this	example,	we	passed	in	three	arguments	to	the	WriteLine()	method,
separated	by	commas.	
The	three	arguments	are
	
1)	“{0}!	You	scored	{1}	marks	for	your	test.”
2)	“Good	morning”
3)	results
	
The	first	is	the	string	that	will	be	displayed.	Within	the	string,	the	curly	braces
act	as	placeholders	and	will	be	replaced	by	the	arguments	that	follow.
	
{0}	is	a	placeholder	for	the	next	argument,	which	is	the	string	“Good	morning”
in	this	case.
	
{1}	is	a	placeholder	for	the	variable	results.
	
Therefore	the	output	is
	
Good	morning!	You	scored	79	marks	for	your	test.

	
If	you	wrote
	
Console.WriteLine(“{1}!	You	scored	{0}	marks	for	your	test.”,	“Good

morning”,	results);

	
you’ll	get

you’ll	get
	
79!	You	scored	Good	morning	marks	for	your	test.

	
Of	course,	such	a	statement	makes	no	sense.	However,	it	demonstrates	how
placeholders	are	replaced	by	the	corresponding	arguments.
	
We	can	specify	how	we	want	numeric	values	to	be	displayed	when	using
placeholders.	This	is	done	using	a	format	specifier,	such	as	the	C	and	F
specifiers.
	
The	F	specifier	specifies	the	number	of	decimal	places	a	number	should	be
displayed	with.
	
If	we	write
	
Console.WriteLine(“The	number	is	{0:F3}.”,	123.45678);

	
we’ll	get
	
The	number	is	123.457.
	
The	F3	specifier	rounds	the	number	123.45678	off	to	123.457.	Note	that	there
should	not	be	any	space	before	the	specifier.	In	other	words,	it	has	to	be	{0:F3}
and	not	{0:	F3}.
	
The	C	specifier	is	for	formatting	currencies;	it	adds	the	“$”	symbol	in	front	of	the
number	and	displays	the	number	with	2	decimal	places.	In	addition,	it	separates
every	thousand	with	a	comma.
	
If	you	write
	
Console.WriteLine(“Deposit	=	{0:C}.	Account	balance	=	{1:C}.”,

2125,	12345.678);

	
you’ll	get
	
Deposit	=	$2,125.00.	Account	balance	=	$12,345.68

	
Example	6
	
We	can	also	use	Console.WriteLine()	to	print	the	result	of	a	method.

	
In	Chapter	4,	we	learned	how	to	use	the	Substring()	method	to	extract	a
substring	from	a	longer	string.	In	that	example,	we	assigned	the	result	to	another
string.	Alternatively,	we	can	use	Console.WriteLine()	to	display	the	result
without	assigning	it	a	variable.
	
For	instance,	if	you	write
	
Console.WriteLine(“Microsoft”.Substring(1,	3));

	
The	output
	
icr

	
will	be	displayed	on	the	screen.
	
Besides	displaying	the	result	of	a	method,	Console.WriteLine()	can	also	be
used	to	display	the	value	of	a	property.	If	we	write
Console.WriteLine(“Hello	World”.Length);

	
the	value
	
11

	
will	be	displayed	on	the	screen.
	
Escape	Sequences
	
Sometimes	in	our	programs,	we	may	need	to	print	some	special	“unprintable”
characters	such	as	a	tab	or	a	newline.	In	this	case,	you	need	to	use	the	\
(backslash)	character	to	escape	characters	that	otherwise	have	a	different
meaning.
	
For	instance	to	print	a	tab,	we	type	the	backslash	character	before	the	letter	t,
like	this:	\t.
	
Without	the	\	character,	the	letter	“t”	will	be	printed.	With	it,	a	tab	is	printed.
Hence,	if	you	type
Console.WriteLine(“Hello\tWorld”);

	
you’ll	get

	
Hello	World

	
Other	common	uses	of	the	backslash	character	include:
	
To	prints	a	newline	(\n)
	
Example
Console.WriteLine(“Hello\nWorld”);

	
Output
	
Hello

World

	
To	print	the	backslash	character	itself	(\\)
	
Example
	
Console.WriteLine(“\\”);

	
Output
	
\

	
To	print	double	quotes	(\”)	so	that	the	double	quote	does	not	end	the	string
	
Example
	
Console.WriteLine(“I	am	5’9\”	tall”);

	
Output
	
I	am	5’9”	tall

	
Accepting	User	Input
	
Now	that	we	know	how	to	display	messages	to	our	users,	let	us	look	at	how	we
can	accept	input	from	them.	

To	accept	user	input,	we	can	use	either	the	Read()	or	ReadLine()	method.
	

Read()reads	the	next	character	from	standard	input	while	ReadLine()	reads	a
line	of	characters.	Standard	input	refers	to	the	standard	device	that	users	use	to
enter	data,	which	is	usually	the	keyboard.
	
The	example	below	shows	how	we	can	use	the	ReadLine()	method	to	read	input
from	users.	The	Read()	method	works	the	same	way.
	
string	userInput	=	Console.ReadLine();

	
Both	the	Read()	and	ReadLine()	methods	read	in	user	input	as	a	string.	Hence,
in	the	example	above,	we	assign	the	result	of	Console.ReadLine()	to	a	string
variable	called	userInput.
	
We	can	then	use
	
Console.WriteLine(userInput);

	
to	print	out	the	input	that	the	user	entered.
	
Converting	a	String	to	a	Number
	
Sometimes,	it	is	necessary	to	convert	the	input	that	users	entered	into	a	numeric
data	type	so	that	you	can	perform	calculations	on	it.	C#	provides	us	with	a
number	of	methods	to	do	the	conversion.	The	methods	that	we	use	are	found	in
the	Convert	class,	which	is	also	grouped	under	the	System	namespace.
	
To	convert	a	string	to	an	integer,	we	use	the	ToInt32()	method.	For	instance,	if
we	have
string	userInput	=	Console.ReadLine();

	
and	the	user	keys	in	20,	userInput	will	be	equal	to	“20”	(which	is	a	string	and
not	an	integer	because	of	the	double	quotes).
	
We	can	then	use
	
int	newUserInput	=	Convert.ToInt32(userInput);

	
to	convert	the	string	to	the	integer	20	and	assign	it	to	an	int	variable.	We	can
now	perform	the	usual	mathematical	operations	on	this	new	int	variable.
	
Besides	converting	a	string	to	an	integer,	we	can	also	convert	a	string	to	a

decimal,	float	or	double	using	the	ToDecimal(),	ToSingle()	and	ToDouble()
methods	respectively.
	
Putting	it	all	Together
	
Now	let	us	put	everything	that	we’ve	learned	together	to	write	a	complete
program.	We’ll	modify	the	“Hello	World”	program	that	we	wrote	in	Chapter	2.
Instead	of	just	saying	hello	to	the	world,	we	want	the	world	to	know	our	names
and	ages	too.
	
First,	fire	up	Visual	Studio	Community	and	create	a	new	Visual	C#	Console
Application	project.	Name	the	project	“HelloWorldAgain”.
	
Type	the	following	code	segment	into	the	Main()	method	(line	numbers	are
added	for	reference).
	
1	string	userName	=	"";

2	int	userAge	=	0;

3	int	currentYear	=	0;

4

5	Console.Write("Please	enter	your	name:	");

6	userName	=	Console.ReadLine();

7	Console.Write("Please	enter	your	age:	");

8	userAge	=	Convert.ToInt32(Console.ReadLine());

9	Console.Write("Please	enter	the	current	year:	");

10	currentYear	=	Convert.ToInt32(Console.ReadLine());

11

12	Console.WriteLine("Hello	World!	My	name	is	{0}	and	I	am	{1}

years	old.	I	was	born	in	{2}.",	userName,	userAge,	currentYear	-

userAge);

	
Run	the	program	and	enter	the	following	information
	
Please	enter	your	name:	Jamie

Please	enter	your	age:	39

Please	enter	the	current	year:	2015

	
The	program	should	give	you	the	following	output
	
Hello	World!	My	name	is	Jamie	and	I	am	39	years	old.	I	was	born	in

1976.

	
This	program	should	be	quite	easy	to	understand.	However,	there	are	two	points
to	mention	about	the	program.

to	mention	about	the	program.
	
Firstly,	Line	10	shows	an	example	of	how	we	can	use	two	methods	within	the
same	statement.	When	we	write
userAge	=	Convert.ToInt32(Console.ReadLine());

	
the	Console.ReadLine()	method	is	executed	first	as	it	is	within	a	pair	of
parenthesis	().	This	is	similar	to	how	operations	within	parenthesis	have	a	higher
order	of	precedence	when	we	evaluate	a	mathematical	expression.	For	instance,
when	we	evaluate	3	(5	+	9),	we	have	to	add	5	to	9	first	before	multiplying	the
answer	to	3	(i.e.	314).
	
After	Console.ReadLine()	is	executed,	the	value	entered	by	the	user	is
converted	to	an	integer	using	Convert.ToInt32().
	
Suppose	the	user	entered	39.	

Convert.ToInt32(Console.ReadLine())

becomes

Convert.ToInt32(“39”).
	
The	result	of	Convert.ToInt32(“39”)	is	the	integer	39.	This	integer	is	then
assigned	to	variable	userAge.
	
The	next	thing	to	point	out	about	the	program	is	Line	12	as	shown	below:
Console.WriteLine(“Hello	World!	My	name	is	{0}	and	I	am	{1}	years

old.	I	was	born	in	{2}.”,	userName,	userAge,	currentYear	-

userAge);

	
Notice	that	the	last	argument	(currentYear	-	userAge)	involves	a
Mathematical	operation?	This	is	allowed	in	C#.	WriteLine()	will	perform	the
subtraction	and	display	the	result	of	the	calculation.
	

Chapter	6:	Making	Choices	and	Decisions

	
Congratulations	on	making	it	thus	far.	We’ve	come	a	long	way.	You	now	know
the	different	data	types	in	C#	and	are	able	to	code	a	simple	program	that
interacts	with	users.
	
In	this	chapter,	we	are	going	to	cover	another	fundamental	concept	in
programming;	we’ll	learn	how	to	control	the	flow	of	a	program	using	control
flow	statements.
	
Specifically,	we	will	learn	about	the	if	statement,	the	inline	if	statement,	the
switch	statement,	the	for	loop,	the	foreach	loop,	the	while	loop	and	the	do
while	loop.	In	addition,	we	will	also	learn	about	the	try-catch-finally
statement	that	controls	the	flow	of	the	program	when	an	error	occurs.
	
However,	before	we	go	into	these	control	tools,	we	have	to	first	look	at	condition
statements.
	
Condition	Statements
	
Most	control	flow	statements	involve	evaluating	a	condition	statement.	The
program	will	proceed	differently	depending	on	whether	the	condition	is	met.
	
The	most	common	condition	statement	is	the	comparison	statement.	If	we	want
to	compare	whether	two	variables	are	the	same,	we	use	the	==	sign	(double	=).
For	instance,	if	you	write	x	==	y,	you	are	asking	the	program	to	check	if	the
value	of	x	is	equal	to	the	value	of	y.	If	they	are	equal,	the	condition	is	met	and
the	statement	evaluates	to	true.	Else,	the	statement	evaluates	to	false.
	
In	addition	to	evaluating	whether	one	value	is	equal	to	another,	there	are	other
comparison	operators	that	we	can	use	in	our	condition	statements.
	
Not	equal	(!=)
	
Returns	true	if	the	left	is	not	equal	to	the	right
	
5	!=	2	is	true

6	!=	6	is	false
	
Greater	than	(>)
	
Returns	true	if	the	left	is	greater	than	the	right
	
5	>	2	is	true
3	>	6	is	false
	
Smaller	than	(<)
	
Returns	true	if	the	left	is	smaller	than	the	right
	
1	<	7	is	true
9	<	6	is	false
	
Greater	than	or	equal	to	(>=)
	
Returns	true	if	the	left	is	greater	than	or	equal	to	the	right
5	>=	2	is	true
5	>=	5	is	true
3	>=	6	is	false
	
Smaller	than	or	equal	to	(<=)
	
Returns	true	if	the	left	is	smaller	than	or	equal	to	the	right
11	<=	7	is	true
7	<=	7	is	true
9	<=	6	is	false
	
We	also	have	three	logical	operators	(&&,	||,	!)	that	are	useful	if	we	want	to
combine	multiple	conditions.
	
The	AND	operator	(&&)
	
Returns	true	if	all	conditions	are	met
5==5	&&	2>1	&&	3!=7	is	true
5==5	&&	2<1	&&	3!=7	is	false	as	the	second	condition	(2<1)	is	false
The	OR	operator	(||)
	

Returns	true	if	at	least	one	condition	is	met.
	
5==5	||	2<1	||	3==7	is	true	as	the	first	condition	(5==5)	is	true	5==6	||	2<1
||	3==7	is	false	as	all	conditions	are	false

Control	Flow	Statements
	
Now	that	we	are	familiar	with	condition	statements,	let	us	proceed	to	learn	how
we	can	use	these	statements	to	control	the	flow	of	a	program.
	
If	Statement
	
The	if	statement	is	one	of	the	most	commonly	used	control	flow	statements.	It
allows	the	program	to	evaluate	if	a	certain	condition	is	met,	and	to	perform	the
appropriate	action	based	on	the	result	of	the	evaluation.	The	structure	of	an	if
statement	is	as	follows	(line	numbers	are	added	for	reference):
1	if	(condition	1	is	met)

2	{

3	do	Task	A

4	}

5	else	if	(condition	2	is	met)

6	{

7	do	Task	B

8	}

9	else	if	(condition	3	is	met)

10	{

11	do	Task	C

12	}

13	else

14	{

15	do	Task	E

16	}

	
Line	1	tests	the	first	condition.	If	the	condition	is	met,	everything	inside	the	pair
of	curly	braces	that	follow	(lines	2	to	4)	will	be	executed.	The	rest	of	the	if
statement	(from	line	5	to	16)	will	be	skipped.	
If	the	first	condition	is	not	met,	you	can	use	the	else	if	statements	that	follow
to	test	more	conditions	(lines	5	to	12).	There	can	be	multiple	else	if
statements.	Finally,	you	can	use	the	else	statement	(lines	13	to	16)	to	execute
some	code	if	none	of	the	preceding	conditions	are	met.
	
To	fully	understand	how	the	if	statement	works,	add	the	following	code	to	the

Main()	program	in	the	VSC	template.
	
int	userAge;

	
Console.Write("Please	enter	your	age:	");

userAge	=	Convert.ToInt32(Console.ReadLine());

	
if	(userAge	<	0	||	userAge	>	100)

{

Console.WriteLine("Invalid	Age");

Console.WriteLine("Age	must	be	between	0	and	100");

}

else	if	(userAge	<	18)

Console.WriteLine("Sorry	you	are	underage");

else	if	(userAge	<	21)

Console.WriteLine("You	need	parental	consent");

else

{

Console.WriteLine("Congratulations!");

Console.WriteLine("You	may	sign	up	for	the	event!");

}

	
The	program	first	prompts	the	user	for	his	age	and	stores	the	result	in	the
userAge	variable.
	
Next	the	statement	

if	(userAge	<	0	||	userAge	>	100)

checks	if	the	value	of	userAge	is	smaller	than	zero	or	greater	than	100.	If	either
of	the	conditions	is	true,	the	program	will	execute	all	statements	within	the
curly	braces	that	follow.	In	this	example,	it’ll	print	“Invalid	Age”,	followed	by
“Age	must	be	between	0	and	100”.
	
On	the	other	hand,	if	both	conditions	are	false,	the	program	will	test	the	next
condition	-	else	if	(userAge	<	18).	If	userAge	is	less	than	18	(but	more	than
or	equal	to	0	since	the	first	condition	is	not	met),	the	program	will	print	“Sorry
you	are	underage”.
	
You	may	notice	that	we	did	not	enclose	the	statement	

Console.WriteLine(“Sorry	you	are	underage”);

in	curly	braces.	This	is	because	curly	braces	are	optional	if	there	is	only	one
statement	to	execute.
	
If	the	user	did	not	enter	a	value	smaller	than	18,	but	entered	a	value	greater	than
or	equal	to	18	but	smaller	than	21,	the	next	else	if	statement	will	be	executed.
In	this	case,	the	message	“You	need	parental	consent”	will	be	printed.
	
Finally,	if	the	user	entered	a	value	greater	than	or	equal	to	21	but	smaller	than	or
equal	to	100,	the	program	will	execute	the	code	in	the	else	block.	In	this	case,	it
will	print	“Congratulations”	followed	by	“You	may	sign	up	for	the	event!”.
	
Run	the	program	five	times	and	enter	-1,	8,	20,	23	and	121	respectively	for	each
run.	You’ll	get	the	following	outputs:
Please	enter	your	age:	-1

Invalid	Age

Age	must	be	between	0	and	100

	
Please	enter	your	age:	8

Sorry	you	are	underage

	
Please	enter	your	age:	20

You	need	parental	consent

	
Please	enter	your	age:	23

Congratulations!

You	may	sign	up	for	the	event!

	
Please	enter	your	age:	121

Invalid	Age

Age	must	be	between	0	and	100

	
Inline	If
	
An	inline	if	statement	is	a	simpler	form	of	an	if	statement	that	is	very
convenient	if	you	want	to	assign	a	value	to	a	variable	depending	on	the	result	of
a	condition.	The	syntax	is:
condition	?	value	if	condition	is	true	:	value	if	condition	is

false;

	
For	instance,	the	statement
	
3>2	?	10	:	5;

	

returns	the	value	10	since	3	is	greater	than	2	(i.e.	the	condition	3	>	2	is	true).
This	value	can	then	be	assigned	to	a	variable.
	
If	we	write
	
int	myNum	=	3>2	?	10	:	5;

	
myNum	will	be	assigned	the	value	10.
	
Switch	Statement
	
The	switch	statement	is	similar	to	an	if	statement	except	that	it	does	not	work
with	a	range	of	values.	A	switch	statement	requires	each	case	to	be	based	on	a
single	value.	Depending	on	the	value	of	the	variable	used	for	switching,	the
program	will	execute	the	correct	block	of	code.
	
The	syntax	of	a	switch	statement	is	as	follows:
	
switch	(variable	used	for	switching)

{

case	firstCase:

do	A;

break	(or	other	jump	statements);

	
case	secondCase:

do	B;

break	(or	other	jump	statements);

	
case	default:

do	C;

break	(or	other	jump	statements);

}

	
You	can	have	as	many	cases	as	you	want	when	using	a	switch	statement.	The
default	case	is	optional	and	is	executed	if	no	other	case	applies.
	
When	a	certain	case	is	satisfied,	everything	starting	from	the	next	line	is
executed	until	a	jump	statement	is	reached.	A	jump	statement	is	a	statement	that
instructs	the	compiler	to	jump	to	another	line	in	the	program.	We’ll	look	at	jump
statements	in	greater	depth	later.	The	most	commonly	used	jump	statement	is	the
break;	statement.
	

Let’s	look	at	an	example	of	how	the	switch	statement	works.
	
1	Console.Write("Enter	your	grade:	");

2	string	userGrade	=	Console.ReadLine();

3

4	switch	(userGrade)

5	{

6	case	"A+":

7	case	"A":

8	Console.WriteLine("Distinction");

9	break;

10	case	"B":

11	Console.WriteLine("B	Grade");

12	break;

13	case	"C":

14	Console.WriteLine("C	Grade");

15	break;

16	default:

17	Console.WriteLine("Fail");

18	break;

19	}

	
The	program	first	prompts	the	user	for	his	grade.
	
If	grade	is	“A+”	(Line	6),	the	program	executes	the	next	statement	until	it
reaches	the	break;	statement.	This	means	it’ll	execute	Line	7	to	9.	Thus	the
output	is	“Distinction”.
	
If	grade	is	“A”	(Line	7),	the	program	executes	Line	8	and	9.	Similarly,	the	output
is	“Distinction”.
	
If	grade	is	not	“A+”	or	“A”,	the	program	checks	the	next	case.	It	keeps	checking
from	top	to	bottom	until	a	case	is	satisfied.	If	none	of	the	cases	applies,	the
default	case	is	executed.
	
If	you	run	the	code	above,	you’ll	get	the	following	output	for	each	of	the	input
shown:
Enter	your	grade:	A+

Distinction

	
Enter	your	grade:	A

Distinction

	
Enter	your	grade:	B

B	Grade

	
Enter	your	grade:	C

C	Grade

	
Enter	your	grade:	D

Fail

	
Enter	your	grade:	Hello

Fail

	
For	Loop
	
The	for	loop	executes	a	block	of	code	repeatedly	until	the	test	condition	is	no
longer	valid.
	
The	syntax	for	a	for	loop	is	as	follows:
	
for	(initial	value;	test	condition;	modification	to	value)

{

//Do	Some	Task

}

	
To	understand	how	the	for	loop	works,	let’s	consider	the	example	below.
	
1	for	(int	i	=	0;	i	<	5;	i++)

2	{

3	Console.WriteLine(i);

4	}

	
The	main	focus	of	the	for	loop	is	Line	1:
	
for	(int	i	=	0;	i	<	5;	i++)

	
There	are	three	parts	to	it,	each	separated	by	a	semi-colon.
	
The	first	part	declares	and	initializes	an	int	variable	i	to	zero.	This	variable
serves	as	a	loop	counter.
	
The	second	part	tests	if	i	is	smaller	than	5.	If	it	is,	the	statements	inside	the	curly
braces	will	be	executed.	In	this	example,	the	curly	braces	are	optional	as	there	is
only	one	statement.
	

After	executing	the	WriteLine()	statement,	the	program	returns	to	the	last
segment	in	Line	1.	i++	increments	the	value	of	i	by	1.	Hence,	i	is	increased
from	0	to	1.
	
After	the	increment,	the	program	tests	if	the	new	value	of	i	is	still	smaller	than
5.	If	it	is,	it	executes	the	WriteLine()	statement	once	again.
	
This	process	of	testing	and	incrementing	the	loop	counter	is	repeated	until	the
condition	i	<	5	is	no	longer	true.	At	this	point,	the	program	exits	the	for	loop
and	continues	to	execute	other	commands	after	the	for	loop.
	
The	output	for	the	code	segment	is:
	
0

1

2

3

4

	
The	output	stops	at	4	because	when	i	is	5,	the	WriteLine()	statement	is	not
executed	as	5	is	not	smaller	than	5.
	
The	for	loop	is	commonly	used	to	loop	through	an	array	or	a	list.	For	instance,	if
we	have
int[]	myNumbers	=	{	10,	20,	30,	40,	50	};

	
we	can	use	a	for	loop	and	the	Length	property	of	the	array	to	loop	through	the
array	as	shown	below.
	
for	(int	i	=	0;	i	<	myNumbers.Length;	i++)

{

Console.WriteLine(myNumbers[i]);

}

	
As	myNumbers.Length	is	equal	to	5,	this	code	runs	from	i	=	0	to	i	=	4.	If	we
run	the	code,	we’ll	get	the	following	output:
10

20

30

40

50

	

Foreach	Loop
	
In	addition	to	for	loops,	we	can	also	use	a	foreach	loop	when	working	with
arrays	and	lists.	A	foreach	loop	is	very	useful	if	you	want	to	get	information
from	an	array	or	list,	without	making	any	changes	to	it.
	
Suppose	you	have
	
char[]	message	=	{	‘H’,	‘e’,	‘l’,	‘l’,	‘o’	};

	
You	can	use	the	following	code	to	display	the	elements	of	the	array.
	
foreach	(char	i	in	message)

Console.Write(i);

	
In	the	code	above,	we	have	a	char	variable	i	that	is	used	for	looping.	Each	time
the	loop	runs,	an	element	in	the	message	array	is	assigned	to	the	variable	i.	For
instance,	the	first	time	the	loop	runs,	the	character	‘H’	is	assigned	to	i.
	
The	line
	
Console.Write(i);	

then	prints	out	the	letter	‘H’.
	
The	second	time	the	loop	runs,	the	character	‘e’	is	assigned	to	i.	The	line
Console.Write(i);	

prints	out	the	letter	‘e’.
	
This	continues	until	all	the	elements	in	the	array	have	been	printed.
	
While	Loop
	
Like	the	name	suggests,	a	while	loop	repeatedly	executes	instructions	inside	the
loop	while	a	certain	condition	remains	valid.	The	structure	of	a	while	statement
is	as	follows:
while	(condition	is	true)

{

do	A

}

	
Most	of	the	time	when	using	a	while	loop,	we	need	to	first	declare	a	variable	to

function	as	a	loop	counter.	Let’s	call	this	variable	counter.	The	code	below
shows	an	example	of	how	a	while	loop	works.
	
int	counter	=	5;

	
while	(counter	>	0)

{

Console.WriteLine(“Counter	=	{0}”,	counter);

counter	=	counter	–	1;

}

	
If	you	run	the	code,	you’ll	get	the	following	output
	
Counter	=	5

Counter	=	4

Counter	=	3

Counter	=	2

Counter	=	1

	
A	while	statement	has	a	relatively	simple	syntax.	The	statements	inside	the	curly
braces	are	executed	as	long	as	counter	>	0.
	
Notice	that	we	have	the	line	counter	=	counter	–	1	inside	the	curly	braces?
This	line	is	crucial.	It	decreases	the	value	of	counter	by	1	each	time	the	loop	is
run.	
We	need	to	decrease	the	value	of	counter	by	1	so	that	the	loop	condition
(counter	>	0)	will	eventually	evaluate	to	false.	If	we	forget	to	do	that,	the	loop
will	keep	running	endlessly,	resulting	in	an	infinite	loop.	The	program	will	keep
printing	counter	=	5	until	you	somehow	kill	the	program.	Not	a	pleasant
experience	especially	if	you	have	a	large	program	and	you	have	no	idea	which
code	segment	is	causing	the	infinite	loop.
	
Do	while
	
The	do	while	loop	is	similar	to	the	while	loop	with	one	main	difference	-	the
code	within	the	curly	braces	of	a	do	while	loop	is	executed	at	least	once.	Here’s
an	example	of	how	a	do	while	loop	works.
	
int	counter	=	100;

	
do	{

Console.WriteLine(“Counter	=	{0}”,	counter);

counter++;

}	while	(counter<0);

	
As	the	test	condition	(while	(counter<0))	is	placed	after	the	closing	curly
brace,	it	is	tested	after	the	code	inside	the	curly	braces	is	executed	at	least	once.
If	you	run	the	code	above,	you	will	get
	
Counter	=	100;

	
After	the	WriteLine()	statement	is	executed	for	the	first	time,	counter	is
incremented	by	1.	The	value	of	counter	is	now	101.	When	the	program	reaches
the	test	condition,	the	test	fails	as	counter	is	not	smaller	than	0.	The	program
will	then	exit	the	loop.	Even	though	the	original	value	of	counter	does	not	meet
the	test	condition	(counter	<	0),	the	code	inside	the	curly	braces	is	still
executed	once.
	
Note	that	for	a	do	while	statement,	a	semi-colon	(;)	is	required	after	the	test
condition.
	
Jump	Statements
	
We’ve	now	covered	most	of	the	control	flow	statements	in	C#.	Next,	let	us	look
at	jump	statements.
	
A	jump	statement	is	a	statement	that	instructs	the	program	to	deviate	from	its
normal	flow	sequence	and	jump	to	another	line	of	code.	Jump	statements	are
commonly	used	in	loops	and	other	control	flow	statements.
	
Break
	
The	break	keyword	causes	the	program	to	exit	a	loop	prematurely	when	a
certain	condition	is	met.	We	have	already	seen	how	the	break	keyword	can	be
used	in	a	switch	statement.	Now,	let	us	look	at	an	example	of	how	the	break
keyword	can	be	used	in	a	for	loop.
	
Consider	the	code	segment	below:
	
1	int	i	=	0;

2

3	for	(i	=	0;	i	<	5;	i++)

4	{

5	Console.WriteLine("i	=	{0}",	i);

6	if	(i	==	2)

7	break;

8	}

	
In	this	example,	we	used	an	if	statement	inside	a	for	loop.	It	is	very	common
for	us	to	‘mix-and-match’	various	control	tools	in	programming,	such	as	using	a
while	loop	inside	an	if	statement	or	using	a	for	loop	inside	a	while	loop.	This
is	known	as	a	nested	control	statement.
	
If	you	run	the	code	segment	above,	you	will	get	the	following	output.
	
i	=	0

i	=	1

i	=	2

	
Notice	that	the	loop	ends	prematurely	at	i	=	2?
	
Without	the	break	keyword,	the	loop	should	run	from	i	=	0	to	i	=	4	because
the	loop	condition	is	i	<	5.	However	with	the	break	keyword,	when	i	=	2,	the
condition	on	line	6	evaluates	to	true.	The	break	keyword	on	line	7	then	causes
the	loop	to	end	prematurely.
	
Continue
	
Another	commonly	used	jump	keyword	is	the	continue	keyword.	When	we	use
continue,	the	rest	of	the	loop	after	the	keyword	is	skipped	for	that	iteration.	An
example	will	make	it	clearer.
	
If	you	run	the	code	segment	below
	
for	(int	i	=	0;	i<5;	i++)

{

Console.WriteLine(“i	=	{0}”,	i);

if	(i	==	2)

continue;

Console.WriteLine(“I	will	not	be	printed	if	i=2.\n”);

}

	
You	will	get	the	following	output:
	
i	=	0

I	will	not	be	printed	if	i=2.

	
i	=	1

I	will	not	be	printed	if	i=2.

	
i	=	2

i	=	3

I	will	not	be	printed	if	i=2.

	
i	=	4

I	will	not	be	printed	if	i=2.

	
When	i	=	2,	the	line	after	the	continue	keyword	is	not	executed.	Other	than
that,	everything	runs	as	per	normal.
	
Exception	Handling
	
We’ve	now	learned	how	to	control	the	flow	of	a	program	under	‘normal’
circumstances	using	control	flow	statements	and	jump	statements.	Before	we
end	this	chapter,	we	need	to	look	at	one	last	control	statement,	the	try-catch-
finally	statement.	The	try-catch-finally	statement	controls	how	the
program	proceeds	when	an	error	occurs.	The	syntax	is	as	follows:
try

{

do	something

}

catch	(type	of	error)

{

do	something	else	when	an	error	occurs

}

finally

{

do	this	regardless	of	whether	the	try	or	catch	condition	is

met.

}

	
You	can	have	more	than	one	catch	blocks.	In	addition,	the	finally	block	is
optional.
	
Let’s	consider	an	example.
	
int	numerator,	denominator;

	

Console.Write("Please	enter	the	numerator:	");

numerator	=	Convert.ToInt32(Console.ReadLine());

	
Console.Write("Please	enter	the	denominator:	");

denominator	=	Convert.ToInt32(Console.ReadLine());

	
try

{

Console.WriteLine("The	result	is	{0}.",	numerator/denominator);

}

catch	(Exception	e)

{

Console.WriteLine(e.Message);

}

finally

{

Console.WriteLine(“----	End	of	Error	Handling	Example	----”);

}

	
If	you	run	the	code	and	enter	12	and	4,	you’ll	get	the	message
	
The	result	is	3.

----	End	of	Error	Handling	Example	----

	
In	this	example,	the	code	in	the	try	block	executes	successfully.	After	the	code
in	the	try	block	is	executed,	the	code	in	the	finally	block	is	executed.
	
Now	suppose	you	enter	12	and	0	instead.	You’ll	get
	
Attempted	to	divide	by	zero.

----	End	of	Error	Handling	Example	----

	
In	this	case,	the	code	in	the	catch	block	is	executed	instead.	This	is	because
when	the	program	tries	to	execute	the	statement	in	the	try	block,	an	error	occurs
since	you	cannot	divide	a	number	by	zero.	Hence,	the	statement	in	the	catch
block	is	executed.	In	addition,	the	code	in	the	finally	block	is	also	executed.
The	finally	block	is	always	executed	regardless	of	whether	the	try	or	catch
block	is	executed.
	
The	catch	block	allows	us	to	specify	the	type	of	error	that	it	should	catch.	In	this
case,	we	are	trying	to	catch	a	general	error.	Therefore,	we	write
catch	(Exception	e)

	
where	Exception	refers	to	the	class	that	the	error	belongs	to	and	e	is	the	name

given	to	the	error.
	
The	Exception	class	handles	all	general	errors	and	has	a	property	called	Message
that	explains	the	reason	for	the	exception.	To	display	that	property,	we	write
Console.WriteLine(e.Message);

	
Specific	Errors
	
In	addition	to	the	Exception	class	that	handles	general	errors,	we	also	have	other
classes	that	can	handle	more	specific	errors.	This	is	useful	if	you	want	to
perform	specific	tasks	depending	on	the	error	caught.	For	instance,	you	may
want	to	display	your	own	error	message.
	
Try	running	the	code	below:
	
int	choice	=	0;

int[]	numbers	=	{	10,	11,	12,	13,	14,	15	};

Console.Write("Please	enter	the	index	of	the	array:	");

	
try

{

choice	=	Convert.ToInt32(Console.ReadLine());

Console.WriteLine("numbers[{0}]	=	{1}",	choice,

numbers[choice]);

}catch	(IndexOutOfRangeException)

{

Console.WriteLine("Error:	Index	should	be	from	0	to	5.");

}catch	(FormatException)

{

Console.WriteLine("Error:	You	did	not	enter	an	integer.");

}catch	(Exception	e)

{

Console.WriteLine(e.Message);

}

If	you	enter
	
10

	
You	will	get
	
Index	was	outside	the	bounds	of	the	array.

Index	should	be	from	0	to	5.

	
If	you	enter

If	you	enter
Hello

	
You	will	get
	
Input	string	was	not	in	a	correct	format.

You	did	not	enter	an	integer.

	
The	first	error	is	a	IndexOutOfRangeException	exception	and	was	handled	by
the	first	catch	block.	This	exception	occurs	when	you	try	to	access	an	element
of	an	array	with	an	index	that	is	outside	its	bounds.
	
The	second	error	is	a	FormatException	exception	and	was	handled	by	the
second	catch	block.	The	FormatException	exception	occurs	when	the	format	of
an	argument	is	invalid.	In	our	example,	Convert.ToInt32("Hello")	generated	a
FormatException	exception	as	the	argument	“Hello”	cannot	be	converted	into
an	integer.	In	contrast,	if	you	entered	4,	Convert.ToInt32(“4”)	will	not
generate	a	FormatException	exception	as	the	string	“4”	can	be	converted	into	an
integer.
	
After	the	two	specific	catch	blocks,	we	have	one	more	catch	block	to	catch	any
general	errors	that	we	did	not	pre-empt.
	
This	example	above	shows	two	of	the	many	exceptions	in	C#.	For	a	complete
list	of	all	exceptions,	refer	to	https://msdn.microsoft.com/en-
us/library/system.systemexception.aspx.
	

https://msdn.microsoft.com/en-us/library/system.systemexception.aspx

Chapter	7:	Object-Oriented	Programming	Part	1

	
We	have	covered	a	fair	bit	so	far.	In	the	next	two	chapters,	we	are	going	to	look
at	another	important	concept	in	programming	–	the	concept	of	object-oriented
programming.
	
In	this	chapter,	we’ll	learn	what	object-oriented	programming	is	and	how	to
write	our	own	classes	and	create	objects	from	them.	In	addition,	we’ll	also
discuss	the	concept	of	fields,	properties,	constructors	and	methods.
	
What	is	Object-Oriented	Programming?
	
Simply	stated,	object-oriented	programming	is	an	approach	to	programming	that
breaks	a	programming	problem	into	objects	that	interact	with	each	other.
	
Objects	are	created	from	templates	known	as	classes.	You	can	think	of	a	class	as
the	blueprint	of	a	building.	An	object	is	the	actual	“building”	that	we	build	based
on	the	blueprint.
	
Writing	our	own	class
	
To	write	our	own	class,	we	use	the	class	keyword,	following	by	the	name	of	the
class.
	
For	instance,	to	create	a	Staff	class,	we	write
	
class	Staff	{

//Contents	of	the	class

//including	fields,	properties	and	methods

}

	
It	is	common	practice	to	use	PascalCasing	when	naming	our	classes.
PascalCasing	refers	to	the	practice	of	capitalizing	the	first	letter	of	each	word,
including	the	first	word	(e.g.	ThisIsAClassName).	This	is	the	convention	that
we’ll	be	following	in	the	book.
	
The	content	of	the	class	is	enclosed	within	the	pair	of	curly	braces	that	follow

the	class	name.	Contents	of	a	class	include	constructors,	destructors,	constants,
fields,	methods,	properties,	indexers,	operators,	events,	delegates,	interfaces,
structs	and	other	classes.
We’ll	cover	some	of	the	more	common	elements	of	a	class	in	this	chapter,
namely	fields,	methods,	properties	and	constructors.
	
To	understand	what	these	are,	let’s	build	a	class	from	scratch.
	
First,	create	a	new	Console	Application	project	in	Visual	Studio	Community	and
name	this	project	“ClassDemo	”.
	
Study	the	code	that	is	automatically	generated	for	you.	Notice	that	inside	the
ClassDemo	namespace,	VSC	has	already	created	a	class	called	Program	for	you?
Inside	the	Program	class,	we	have	the	Main()	method.
	
By	default,	the	Main()	method	(which	is	the	starting	point	for	all	C#
applications)	is	put	into	the	Program	class	created	by	VSC.	If	we	want,	we	can
change	the	name	of	the	Program	class	to	something	else,	but	the	Main()	method
must	be	called	Main().	The	Main()	method	must	be	present	in	all	C#	programs.
	
In	this	chapter,	we	are	going	to	add	a	second	class	to	the	ClassDemo	namespace.
We’ll	call	this	new	class	Staff	and	add	fields,	properties	and	methods	to	the
class.	The	complete	code	for	this	chapter	can	be	downloaded	at
http://www.learncodingfast.com/csharp.
	
Let’s	first	declare	the	class.	Add	the	following	code	just	before	the	line	class
Program	in	our	auto-generated	code.
	
class	Staff

{

}

	
We	now	have	two	classes	in	our	project:	Staff	and	Program.
	
Fields
	
Inside	the	Staff	class,	add	the	following	lines:
	
private	string	nameOfStaff;

private	const	int	hourlyRate	=	30;

private	int	hWorked;

http://www.learncodingfast.com/csharp

	
Here,	we	declare	one	string	variable	(nameOfStaff)	and	two	int	variables
(hourlyRate	and	hWorked).	These	variables	are	known	as	fields	of	the	class.	A
field	is	simply	a	variable	that	is	declared	inside	a	class.	Like	any	other	variables,
they	are	used	to	store	data.
	
Notice	that	there	is	a	word	private	in	front	of	each	declaration	statement?	This
is	known	as	an	access	modifier.	Access	modifiers	are	like	gate	keepers,	they
control	who	has	access	to	that	field	(i.e.	who	can	read	and	modify	the	value	of
that	field).
	
A	field	can	either	be	private,	public,	protected	or	internal.	In	our	case,	we
declared	the	three	fields	as	private.	This	means	they	can	only	be	accessed	from
within	the	Staff	class	itself.
	
There	are	two	reasons	why	we	do	not	want	the	three	fields	to	be	accessible
outside	the	class.
	
The	first	reason	is	that	there	is	no	need	for	other	classes	to	know	about	those
fields.	In	our	case,	the	field	hourlyRate	is	only	needed	within	the	Staff	class.
We	have	a	method	inside	the	Staff	class	that	uses	the	field	hourlyRate	to
calculate	the	monthly	salary	of	an	employee.	Other	classes	do	not	use	the
hourlyRate	field	at	all.	Hence,	it	is	appropriate	to	declare	hourlyRate	as
private	so	as	to	hide	this	field	from	other	classes.
	
This	is	known	as	encapsulation.	Encapsulation	enables	an	object	to	hide	data	and
behaviour	from	other	classes	that	do	not	need	to	know	about	them.	This	makes	it
easier	for	us	to	make	changes	to	our	code	in	future	if	necessary.	We	can	safely
change	the	value	of	hourlyRate	inside	Staff	class	without	affecting	other
classes.
	
The	second	reason	for	declaring	a	field	as	private	is	that	we	do	not	want	other
classes	to	freely	modify	them.	This	helps	to	prevent	the	fields	from	being
corrupted.
	
We’ll	talk	more	about	access	modifiers	in	the	next	chapter.
	
In	addition	to	the	private	keyword,	we	also	added	the	const	keyword	when	we
declared	the	hourlyRate	field.
	

private	const	int	hourlyRate	=	30;

	
The	const	keyword	indicates	that	the	value	cannot	be	changed	after	it	is	created.
Any	variable	that	is	declared	as	const	must	be	initialized	at	the	point	of
declaration.	In	our	example,	we	initialized	hourlyRate	to	30.	This	value	cannot
be	changed	subsequently	anywhere	in	the	code.
	
Properties
	
Next,	let	us	look	at	properties.
	
A	property	is	commonly	used	to	provide	access	to	a	private	field	in	cases	where
the	field	is	needed	by	other	classes.	This	may	sound	like	a	contradiction.	Earlier,
we	mentioned	that	we	use	private	fields	so	that	other	classes	do	not	have	access
to	them.	If	that	is	the	case,	why	are	we	allowing	access	to	them	via	properties?
	
One	of	the	main	reasons	is	that	using	properties	gives	us	greater	control	over
what	rights	other	classes	have	when	assessing	these	private	fields.	We’ll	see	how
to	do	that	later.
	
For	now,	let	us	first	learn	how	to	declare	a	property.
	
Add	the	following	lines	of	code	to	our	Staff	class,	just	after	the	line	private
int	hWorked;.
	
public	int	HoursWorked

{

get

{

return	hWorked;

}

set

{

if	(value	>	0)

hWorked	=	value;

else

hWorked	=	0;

}

}

	
We	declared	our	property	as
	

public	int	HoursWorked

{

}

	
The	access	modifier	is	public	as	we	want	other	classes	to	have	access	to	this
property.
	
The	data	type	is	int	because	this	property	is	used	to	provide	access	to	the	private
int	field	hWorked.	hWorked	is	known	as	the	backing	field	of	the	property.
	
The	name	of	the	property	is	HoursWorked.	We	normally	use	PascalCasing	for
property	names.
	
A	property	contains	two	special	methods	known	as	accessors.	The	first	accessor
is	a	getter	and	the	second	is	a	setter.
	
The	basic	getter	simply	returns	the	value	of	the	private	field.	Hence,	we	write
	
get

{

return	hWorked;

}

	
where	return	is	a	keyword	and	hWorked	is	the	name	of	the	backing	field.
The	setter	sets	the	value	of	the	private	field.	We	write
	
set

{

if	(value	>	0)

hWorked	=	value;

else

hWorked	=	0;

}

	
value	is	a	keyword	when	it	used	inside	a	setter.	It	refers	to	the	value	that	is	on
the	right	side	of	the	assignment	statement	when	users	use	the	property	to	set	the
value	of	the	private	field.	We’ll	learn	how	to	do	that	later.
	
Inside	the	setter,	we	did	a	simple	check	using	an	if	statement.	We	checked	if
value	is	more	than	zero.	If	it	is,	we	assign	it	to	hWorked.	Else,	we	set	hWorked	to
zero.	This	setter	demonstrates	how	we	can	use	properties	to	control	what	values
can	be	assigned	to	our	private	field.

	
By	default,	getter	and	setter	have	the	same	access	level	as	the	property	itself
(public	in	this	case).	Hence,	we	do	not	need	to	specify	them.	However,	if	you
do	not	want	the	setter	to	have	the	same	access	level	as	the	property,	you	can
declare	the	setter	as	private	so	that	other	classes	cannot	modify	your	private
field:
private	set

{

}

	
The	property	is	then	a	read-only	property	outside	the	Staff	class.	Its	value	can
only	be	set	within	the	Staff	class	itself.
	
Auto-implemented	Properties
	
Note	that	in	cases	where	no	additional	logic	is	required	in	the	getter	and	setter,
C#	provides	us	with	a	shorthand	to	declare	the	property.	This	is	known	as	an
auto-implemented	property.
	
To	declare	an	auto-implemented	property,	we	write
	
public	int	HoursWorked	{	get;	set;	}

	
This	is	equivalent	to
	
private	int	hWorked;

public	int	HoursWorked

{

get

{

return	hWorked;

}

set

{

hWorked	=	value;

}

}

	
When	you	use	this	shorthand,	you	do	not	have	to	declare	a	private	field.	The
compiler	will	create	an	anonymous	private	backing	field	for	you	automatically.
	
If	you	want	to	make	the	property	read-only,	you	can	set	the	setter	to	private
like	this:

public	int	HoursWorked	{	get;	private	set;	}

	
Methods
	
Next,	let	us	look	at	methods.
	
A	method	is	a	code	block	that	performs	a	certain	task.	
Let’s	add	a	simple	method	to	our	Staff	class.
	
public	void	PrintMessage()

{

Console.WriteLine(“Calculating	Pay…”);

}

	
This	method	is	declared	as
	
public	void	PrintMessage()

{

}

	
The	method	declaration	first	states	the	accessibility	level	of	the	method.	Here	we
declared	the	method	as	public	so	that	the	method	is	accessible	everywhere	in
the	program	(not	just	within	the	Staff	class).
	
Next,	we	state	the	return	type	of	the	method.	A	method	may	return	a	certain
result	after	performing	its	task.	If	the	method	does	not	return	any	result,	we	use
the	void	keyword	like	in	our	example.
	
Finally,	we	state	the	name	of	the	method	(PrintMessage	in	our	example).
	
The	parenthesis	()	after	the	method	name	is	where	we	include	the	parameters	of
the	method.	Parameters	are	names	given	to	data	that	we	pass	in	to	the	method	in
order	for	it	to	perform	its	task.	If	the	method	requires	no	data	(like	in	our
example),	we	just	add	a	pair	of	empty	parenthesis	after	the	method	name.
	
After	we	declare	the	method,	we	define	what	it	does	inside	the	pair	of	curly
braces	that	follow.	This	is	known	as	implementing	the	method.	In	our	example,
the	PrintMessage()	method	simply	prints	the	line	“Calculating	Pay…”.
	
That’s	all	there	is	to	the	PrintMessage()	method.
	

Next,	let	us	move	on	to	a	more	complex	method.	This	second	method	calculates
the	pay	of	each	employee	and	returns	the	result	of	the	calculation.	Add	the
following	lines	of	code	to	Staff.
	
public	int	CalculatePay()

{

	
PrintMessage();

	
int	staffPay;

staffPay	=	hWorked	*	hourlyRate	;

	
if	(hWorked	>	0)

return	staffPay;

else

return	0;

}

	
This	method	is	declared	as
	
public	int	CalculatePay()

{

}

	
The	int	keyword	indicates	that	this	method	returns	a	value	that	is	of	int	type.
	
Inside	the	curly	braces,	we	have	the	statement
	
PrintMessage();

	
This	is	known	as	calling	the	PrintMessage()	method.	When	the	program
reaches	this	statement,	it	will	execute	the	PrintMessage()	method	first	and	print
the	line	“Calculating	Pay…”	before	executing	the	rest	of	the	CalculatePay()
method.	This	example	demonstrates	how	you	can	call	one	method	inside	another
method.
	
Next,	we	declare	a	local	variable	called	staffPay	and	assign	the	product	of	the
private	fields	hourlyRate	and	hWorked	to	it.
	
A	method	can	access	all	the	fields	and	properties	that	are	declared	inside	the
class.	In	addition,	it	can	declare	its	own	variables.	These	are	known	as	local
variables	and	only	exist	within	the	method.	An	example	is	the	staffPay	variable
in	our	example.

	
After	assigning	the	staffPay	variable,	we	use	an	if	statement	to	determine	what
result	the	method	should	return.
	
A	method	usually	has	at	least	one	return	statement.	return	is	a	keyword	that	is
used	to	return	an	answer	from	the	method.	There	can	be	more	than	one	return
statement	in	a	method.	However,	once	the	method	executes	a	return	statement,
the	method	will	exit.
	
In	our	example,	if	hWorked	is	greater	than	zero,	the	program	will	execute	the
statement
return	staffPay;

	
and	exit	the	method.	This	return	value	can	then	be	assigned	to	a	variable.	For
instance,	if	hWorked	is	10	and	hourlyRate	is	20,	we	can	use	the	statement
int	pay	=	CalculatePay();

	
to	assign	the	result	of	CalculatePay()	to	the	variable	pay.	The	value	of	pay	will
then	be	200.
	
On	the	other	hand,	if	hWorked	is	less	than	or	equal	to	zero,	the	program	will
execute	the	statement
return	0;

	
and	exit	the	method.	The	value	of	pay	will	be	0.
	
Overloading
	
In	C#	(and	most	other	languages),	you	can	create	two	methods	of	the	same	name
as	long	as	they	have	different	signatures.	This	is	known	as	overloading.	The
signature	of	a	method	refers	to	the	name	of	the	method	and	the	parameters	that	it
has.
	
Add	the	following	method	below	the	previous	CalculatePay()	method.
	
public	int	CalculatePay(int	bonus,	int	allowance)

{

PrintMessage();

	
if	(hWorked	>	0)

return	hWorked	*	hourlyRate	+	bonus	+	allowance;

else

return	0;

}

	
The	signature	of	the	first	method	is	CalculatePay()	while	that	of	the	second
method	is	CalculatePay(int	bonus,	int	allowance).
	
This	second	method	has	two	parameters	-	bonus	and	allowance.	It	calculates	the
pay	of	the	employees	by	adding	the	values	of	these	two	parameters	to	the
product	of	hWorked	and	hourlyRate.	In	this	example,	we	did	not	use	a	local
variable	to	store	the	result	of	hWorked	*	hourlyRate	+	bonus	+	allowance.
We	simply	return	the	result	of	the	computation	directly.	This	is	perfectly	fine.
We’ll	learn	how	to	use	this	method	later.
	
The	ToString()	method
	
Finally,	before	we	move	on	to	the	next	section,	we	need	to	write	one	more
method	–	the	ToString()	method.
	
The	ToString()	method	is	a	special	method	that	returns	a	string	that	represents
the	current	class.	In	C#,	all	classes	come	with	a	pre-defined	ToString()	method.
However,	it	is	customary	(and	expected	of	us)	to	override	this	method.
Overriding	a	method	simply	means	writing	our	own	version	of	the	method.
	
Typically,	the	ToString()	method	that	we	write	displays	the	values	of	the	fields
and	properties	of	the	class.	Add	the	following	code	to	the	Staff	class:
public	override	string	ToString()

{

return	"Name	of	Staff	=	"	+	nameOfStaff	+	",	hourlyRate	=	"	+

hourlyRate	+	",	hWorked	=	"	+	hWorked;

}

	
As	you	can	see,	the	ToString()	method	returns	a	string	type.	The	string	that	it
returns	contains	information	about	the	Staff	class.	The	override	keyword	in	the
method	declaration	indicates	that	this	method	overrides	the	default	method.
We’ll	discuss	more	about	the	override	keyword	in	the	next	chapter.
	
Constructors
	
Now,	let	us	look	at	constructors.
	
A	constructor	is	a	special	method	that	is	used	to	‘construct’	an	object	from	the

class	template.	It	is	the	first	method	that	is	called	whenever	we	create	an	object
from	our	class.	Constructors	are	commonly	used	to	initialize	the	fields	of	the
class.

A	constructor	always	has	the	same	name	as	the	class	(Staff	in	our	case)	and
does	not	return	any	value.	We	do	not	need	to	use	the	void	keyword	when
declaring	a	constructor.
	
Add	the	following	lines	to	our	Staff	class.
	
public	Staff(string	name)

{

nameOfStaff	=	name;

Console.WriteLine("\n"	+	nameOfStaff);

Console.WriteLine("--------------------------");

}

	
In	this	constructor,	we	first	initialize	the	field	nameOfStaff	with	the	string	that	is
passed	in	to	the	constructor	(name).	We	then	display	the	value	of	nameOfStaff
on	the	screen	and	underline	it	with	a	series	of	dashes.
	
Like	any	other	methods,	we	can	have	more	than	one	constructor	as	long	as	the
signature	is	different.	We	can	add	another	constructor	to	our	class.
	
public	Staff(string	firstName,	string	lastName)

{

nameOfStaff	=	firstName	+	"	"	+	lastName;

Console.WriteLine("\n"	+	nameOfStaff);

Console.WriteLine("--------------------------");

}

	
This	constructor	has	two	parameters	-	firstName	and	lastName.	The	first	line
concatenates	the	two	strings	and	assigns	the	resulting	string	to	nameOfStaff.	The
next	two	lines	print	nameOfStaff	on	the	screen	and	underline	it	with	a	series	of
dashes.
	
Declaring	a	constructor	is	optional.	If	you	do	not	declare	your	own	constructor,
C#	creates	one	for	you	automatically.	The	default	constructor	simply	initializes
all	the	fields	in	the	class	to	default	values,	which	is	normally	zero	for	numeral
fields	and	empty	string	for	string	fields.
	

Instantiating	an	Object
	
Now	that	we	know	how	to	create	a	class,	let’s	look	at	how	we	can	make	use	of
the	class	to	create	an	object.	This	process	is	known	as	instantiating	an	object.	An
object	is	also	known	as	an	instance.
	
To	recap,	our	Staff	class	has	the	following	components:
	
Fields
	
private	const	int	hourlyRate

private	string	nameOfStaff

private	int	hWorked

	
Properties
	
public	int	HoursWorked

	
Methods
	
public	void	PrintMessage()

public	int	CalculatePay()

public	int	CalculatePay(int	bonus,	int	allowance)

public	override	string	ToString()

	
Constructors
	
public	Staff(string	name)

public	Staff(string	firstName,	string	lastName)

	
We	shall	instantiate	a	Staff	object	in	the	Main()	method	inside	the	Program
class.
	
The	syntax	for	instantiating	an	object	is
	
ClassName	objectName	=	new	ClassName(arguments);

	
Add	the	following	lines	inside	the	curly	braces	of	the	Main()	method	in	the
Program	class.
	
int	pay;

	
Staff	staff1	=	new	Staff("Peter");

staff1.HoursWorked	=	160;

pay	=	staff1.CalculatePay(1000,	400);

Console.WriteLine("Pay	=	{0}",	pay);

	
Here,	we	use	the	first	constructor	(with	one	parameter)	to	create	our	staff1
object.
	
Once	we	create	the	object,	we	can	use	the	dot	operator	after	the	object’s	name	to
access	any	public	field,	property	or	method	in	the	Staff	class.	Note	that	we	need
to	use	the	dot	operator	here	as	we	are	trying	to	access	members	of	the	Staff
class	from	the	Program	class.	The	dot	operator	is	necessary	whenever	we	want	to
access	a	field,	property	or	method	from	another	class.
	
If	you	are	accessing	members	of	the	same	class,	you	do	not	need	to	use	the	dot
operator.	An	example	is	when	we	called	the	PrintMessage()	method	from	the
CalculatePay()	method	earlier.	We	did	not	use	the	dot	operator	as	both
methods	are	from	the	same	class.
	
After	creating	our	staff1	object,	the	next	line	shows	how	we	can	use	the	public
EmployeeType	property	to	assign	a	value	to	the	hWorked	field.
	
staff1.HoursWorked	=	160;

	
If	we	try	to	access	the	private	field	hWorked	directly	by	writing
staff1.hWorked	=	160;

	
we	will	get	an	error	as	hWorked	is	a	private	field	and	is	therefore	only	accessible
within	the	Staff	class.
	
To	call	the	CalculatePay()	method,	we	write
	
staff1.CalculatePay(1000,	400);

	
In	this	example,	as	we	have	the	numbers	1000	and	400	inside	the	parenthesis,	we
are	using	the	second	CalculatePay()	method.	We	are	passing	in	the	values
1000	and	400	to	the	parameters	bonus	and	allowance	respectively.	The	values
that	we	passed	in	are	known	as	arguments.	The	program	then	uses	that	method	to
calculate	the	pay	and	return	the	answer.	This	answer	is	assigned	to	the	variable
pay.
	
Finally,	we	use	the	Console.WriteLine()	method	to	display	the	value	of	pay	on

the	screen.
	
If	you	run	the	code	above,	you	will	get
	
Peter

Calculating	Pay...

Pay	=	6200

	
Play	around	with	the	code	a	bit	to	get	a	better	feel	of	how	classes	work.	Try
adding	the	following	lines	of	code
Staff	staff2	=	new	Staff("Jane",	"Lee");

staff2.HoursWorked	=	160;

pay	=	staff2.CalculatePay();

Console.WriteLine("Pay	=	{0}",	pay);

	
If	you	run	the	code	above,	you	will	get
	
Jane	Lee

Calculating	Pay...

Pay	=	4800

	
Finally,	let’s	create	a	third	object	to	demonstrate	how	data	validation	works
when	we	use	properties.	Add	the	following	lines	of	code.
	
Staff	staff3	=	new	Staff("Carol");

staff3.HoursWorked	=	-10;

pay	=	staff3.CalculatePay();

Console.WriteLine("Pay	=	{0}",	pay);

	
Here,	we	tried	to	set	the	HoursWorked	property	to	-10,	which	is	an	invalid	value.
The	setter	of	that	property	sets	the	value	to	zero	instead.	If	you	run	this	code,	you
will	get
Carol

Calculating	Pay...

Pay	=	0

	
Static	Keyword
	
We’ve	covered	some	pretty	complicated	concepts	in	this	chapter.	I	strongly
suggest	that	you	download	the	complete	program	for	this	chapter	from

http://www.learncodingfast.com/csharp	and	play	around	with	it.	Study	the	code
and	make	sure	you	fully	understand	the	topics	covered	in	this	chapter	so	far
before	moving	on.
	
In	this	section,	we’ll	look	at	another	keyword	that	is	sometimes	used	when	we
declare	classes	or	class	members	(i.e.	methods,	fields,	properties,	constructors
etc).
	
Previously,	we	looked	at	how	we	can	use	the	Staff	class	to	create	our	staff1,
staff2	and	staff3	objects.	However,	there	are	some	classes	or	class	members
that	can	be	accessed	without	the	need	to	create	any	objects.	These	are	known	as
static	classes	or	class	members	and	are	declared	using	the	static	keyword.
	
Consider	the	following	class:
	
1	class	MyClass

2	{

3	//Non	static	members

4	public	string	message	=	"Hello	World";

5	public	string	Name	{	get;	set;	}

6	public	void	DisplayName()

7	{

8	Console.WriteLine(“Name	=	{0}”,	Name);

9	}

10

11	//Static	members

12	public	static	string	greetings	=	"Good	morning";

13	public	static	int	Age	{	get;	set;	}

14	public	static	void	DisplayAge()

15	{

16	Console.WriteLine("Age	=	{0}",	Age);

17	}

18	}

	
MyClass	contains	one	non	static	field	message,	one	non	static	property	Name	and
one	non	static	method	DisplayName()	(lines	4	to	9).
	
It	also	contains	one	static	field	greetings,	one	static	property	Age	and	one	static
method	DisplayAge()	(lines	12	to	17).
	
To	access	the	non	static	members	of	MyClass	from	another	class,	we	need	to
instantiate	an	object	as	before:
MyClass	classA	=	new	MyClass();

http://www.learncodingfast.com/csharp

	
Console.WriteLine(classA.message);

classA.Name	=	“Jamie”;

classA.DisplayName();

	
However,	to	access	the	static	members,	we	do	not	need	to	create	any	object.	We
simply	use	the	class	name	to	access	them	as	shown	below.
	
Console.WriteLine(MyClass.greetings);

MyClass.Age	=	39;

MyClass.DisplayAge();

	
If	you	run	the	code	above,	you	will	get	the	following	output
	
Hello	World

Name	=	Jamie

Good	Morning

Age	=	39

	
In	addition	to	having	static	methods,	fields,	properties	and	constructors,	we	can
also	have	static	classes.	A	static	class	can	only	contain	static	members.	An
example	is	shown	below.
	
static	class	MyStaticClass

{

public	static	int	a	=	0;

public	static	int	B{get;	set;}

}

	
Some	of	the	pre-written	classes	in	C#	are	declared	as	static	classes.	An	example
is	the	Console	class.	We	do	not	need	to	create	a	Console	object	when	using
methods	from	the	Console	class.	We	simply	write	Console.WriteLine(“Hello
World”);.
	
Advanced	Method	Concepts
	
Now	that	you	are	familiar	with	classes,	let	us	move	on	to	some	advanced
concepts	regarding	the	declaration	and	use	of	methods	in	a	class.	These	concepts
are	more	complex	and	may	require	more	than	one	reading	to	fully	understand
them.
	
Using	Arrays	and	Lists

	
Previously,	we	learned	how	to	use	basic	data	types	like	int	and	float	as
parameters	to	a	method.	In	addition	to	using	basic	data	types,	we	can	also	use
arrays	and	lists.
	
To	use	an	array	as	a	parameter,	we	add	a	square	bracket	[]	after	the	parameter’s
data	type	in	the	method	declaration.	An	example	is	shown	below.
public	void	PrintFirstElement(int[]	a)

{

Console.WriteLine("The	first	element	is	{0}.\n",	a[0]);

}

	
To	call	this	method,	we	need	to	declare	an	array	and	pass	it	in	as	an	argument	to
the	method:	
int[]	myArray	=	{1,	2,	3,	4,	5};

PrintFirstElement(myArray);

	
The	next	example	shows	how	we	can	use	a	list	as	a	parameter.
	
public	void	PrintFirstListElement(List<int>	a)

{

Console.WriteLine(“The	first	list	element	is	{0}.\n”,	a[0]);

}

	
To	call	the	method,	we	need	to	declare	a	list	and	pass	it	in	as	an	argument	to	the
method.
	
List<int>	myList	=	new	List<int>	{1,	2,	3};

PrintFirstListElement(myList);

	
In	addition	to	using	arrays	or	lists	as	parameters	to	a	method,	we	can	also	return
an	array	or	list	from	a	method.	To	return	an	array	from	a	method,	we	add	a
square	bracket	[]	after	the	return	type	in	the	method	declaration.
	
public	int[]	ReturnUserInput()

{

int[]	a	=	new	int[3];

	
for	(int	i	=	0;	i	<	a.Length;	i++)

{

Console.Write("Enter	an	integer:	");

a[i]	=	Convert.ToInt32(Console.ReadLine());

Console.WriteLine("Integer	added	to	array.\n");

}

return	a;

}

	
To	use	this	method,	we	need	to	declare	an	array	and	assign	the	method’s	result	to
it.
	
int[]	myArray2	=	ReturnUserInput	();

	
To	return	a	list	from	a	method,	we	use	the	List<>	keyword	as	the	return	type	in
the	method	declaration.	An	example	is
public	List<int>	ReturnUserInputList()

{

List<int>	a	=	new	List<int>();

int	input;

	
for	(int	i	=	0;	i	<	3;	i++)

{

Console.Write("Enter	an	integer:	");

input	=	Convert.ToInt32(Console.ReadLine());

Console.WriteLine("Integer	added	to	list.\n");

a.Add(input);

}

return	a;

}

	
To	use	this	method,	we	need	to	declare	a	list	and	assign	the	method’s	result	to	it.
	
List<int>	myList2	=	ReturnUserInputList();

	
Using	params	keyword
	
Next,	let’s	explore	the	params	keyword.	The	params	keyword	is	useful	when	we
do	not	know	the	number	of	arguments	a	method	has.	For	instance,	we	may	have
a	method	that	prints	a	series	of	names,	but	we	do	not	know	how	many	names
there	are	in	advance.	In	cases	like	this,	we	can	use	an	array	as	the	parameter	and
add	the	params	keyword	in	front	of	it.
	
An	example	is
	
public	void	PrintNames(params	string[]	names)

{

for	(int	i	=	0;	i	<	names.Length;	i++)

{

Console.Write(names[i]	+	“	“);

}

Console.WriteLine();

}

	
To	use	this	method,	we	can	pass	in	any	number	of	strings	as	arguments.
	
Example
	
PrintNames(“Peter”);

PrintNames(“Yvonne”,	“Jamie”);

PrintNames(“Abigail”,	“Betty”,	“Carol”,	“David”);

	
Output
	
Peter

Yvonne	Jamie

Abigail	Betty	Carol	David

	
Note	that	no	additional	parameters	are	permitted	after	the	params	keyword	in	a
method	declaration,	and	only	one	params	keyword	is	permitted	in	a	method
declaration.
	
Hence,	the	following	method	declaration	is	fine
	
public	void	PrintNames2(int	a,	double	b,	params	int[]	ages)

	
but	the	following	declarations	are	not
	
public	void	PrintNames3(int	a,	params	string[]	names,	double	b)

	
public	void	PrintNames4(params	string[]	names,	params	int[]	ages)

	
PrintNames3	is	not	allowed	because	double	b	comes	after	params	string[]
names.

PrintNames4	is	not	allowed	because	there	are	two	params	keywords.
	
Passing	Value	Type	vs	Reference	Type	Parameters
	
I	hope	you	now	have	a	good	understanding	of	how	classes	and	methods	work.
Before	we	end	this	chapter,	I’d	like	to	revisit	the	concept	of	value	data	types	and

reference	data	types.	In	Chapter	4,	we	learnt	that	there	are	two	main	categories
of	data	types	in	C#	-	value	types	and	reference	types.	There	is	a	difference	when
you	pass	in	a	value	type	variable	to	a	method	vs	a	reference	type	variable.	

When	you	pass	in	a	value	type	variable,	any	change	made	to	the	value	of	that
variable	is	only	valid	within	the	method	itself.	Once	the	program	exits	the
method,	the	change	is	no	longer	valid.
	
On	the	other	hand,	if	you	pass	in	a	reference	type	variable,	any	change	made	to
the	variable	is	valid	even	after	the	method	ends.
	
Consider	the	class	below:
	
class	MethodDemo

{

public	void	PassByValue(int	a)

{

a	=	10;

Console.WriteLine("a	inside	method	=	{0}",	a);

}

	
public	void	PassByReference(int[]	b)

{

b[0]	=	5;

Console.WriteLine("b[0]	inside	method	=	{0}",	b[0]);

}

}

	
Within	the	class,	we	have	two	methods.	The	first	method	accepts	a	value	type
variable	and	tries	to	change	the	value	of	that	variable.	It	then	prints	the	value	of
the	variable.
	
The	second	method	accepts	an	array	(reference	type)	and	tries	to	change	the
value	of	the	first	element	in	the	array.	It	then	prints	the	value	of	that	element.
	
In	our	Main()	program,	suppose	we	have	the	following	lines	of	code:
int	a	=	2;

int[]	b	=	{	1,	2,	3	};

MethodDemo	obj	=	new	MethodDemo();

	
Console.WriteLine("a	before	=	{0}",	a);

obj.PassByValue(a);

Console.WriteLine("a	after	=	{0}",	a);

	
Console.WriteLine("\n\n");

	
Console.WriteLine("b[0]	before	=	{0}",	b[0]);

obj.PassByReference(b);

Console.WriteLine("b[0]	after	=	{0}",	b[0]);

	
If	you	run	the	program,	you	will	get
	
a	before	=	2

a	inside	method	=	10

a	after	=	2

	
b[0]	before	=	1

b[0]	inside	method	=	5

b[0]	after	=	5

	
The	value	of	a	stays	the	same	before	and	after	the	method	call;	the	change	is
only	valid	inside	the	method	itself.
	
On	the	other	hand,	the	value	of	b[0]	changes	after	the	method	call.
	
Be	aware	of	this	difference	when	you	pass	in	a	value	type	variable	to	a	method
(e.g.	int,	float	etc)	vs	a	reference	type	variable	(such	as	an	array	or	list).
	
	

Chapter	8:	Object-Oriented	Programming	Part	2

	
Now,	let	us	move	on	to	some	of	the	more	advanced	topics	in	object-oriented
programming.	In	this	chapter,	we’ll	learn	about	inheritance,	polymorphism,
abstract	classes	and	interfaces.
	
Inheritance
	
Inheritance	is	one	of	the	key	concepts	of	object-oriented	programming.	Simply
stated,	inheritance	allows	us	to	create	a	new	class	from	an	existing	class	so	that
we	can	effectively	reuse	existing	code.
	
Writing	the	Parent	Class
	
Suppose	we	are	writing	a	program	for	a	fitness	club	that	has	two	types	of
membership	–	VIP	and	Normal.	To	do	that,	let’s	create	a	class	called	Member
first.
	
class	Member

{

protected	int	annualFee;

private	string	name;

private	int	memberID;

private	int	memberSince;

}

	
Member	contains	one	protected	field	and	three	private	fields.	A	protected	field	is
a	field	that	is	only	accessible	within	the	class	in	which	it	is	declared	and	any
class	that	is	derived	from	it.	We’ll	talk	about	derived	classes	very	soon.
	
Next,	let	us	write	a	ToString()	method	to	display	the	values	of	the	four	fields.
	
public	override	string	ToString()

{

return	"\nName:	"	+	name	+	"\nMember	ID:	"	+	memberID	+

"\nMember	Since:	"	+	memberSince	+	"\nTotal	Annual	Fee:	"	+

annualFee;

}

	

Finally,	let’s	add	two	constructors	to	the	Member	class.
	
public	Member()

{

Console.WriteLine("Parent	Constructor	with	no	parameter");

}

	
public	Member(string	pName,	int	pMemberID,	int	pMemberSince)

{

Console.WriteLine("Parent	Constructor	with	3	parameters");

	
name	=	pName;

memberID	=	pMemberID;

memberSince	=	pMemberSince;

}

	
The	first	constructor	merely	prints	the	line	“Parent	Constructor	with	no
parameter”.
	
The	second	constructor	is	more	interesting.	It	prints	the	line	“Parent	Constructor
with	3	parameters”	and	assigns	its	parameters	to	the	three	private	fields	in	the
Member	class.
	
Writing	the	Child	Class
	
Now,	let	us	learn	how	to	derive	a	class	from	the	Member	class.	Derived	classes
are	known	as	child	classes,	while	the	classes	from	which	they	are	derived	are
known	as	parent	classes	or	base	classes.
	
A	derived	class	inherits	all	the	public	and	protected	members	from	the	parent
class.	In	other	words,	it	can	use	those	fields,	properties	and	methods	as	if	they
are	part	of	its	own	code.
	
Our	parent	class	(Member)	has	the	following	contents:
	
Fields
	
protected	int	annualFee

private	string	name

private	int	memberID

private	int	memberSince

	

Methods
	
public	override	string	ToString()

	
Constructors
	
public	Member()

public	Member(string	pName,	int	pMemberID,	int	pMemberSince)

	
We	shall	derive	two	classes	–	NormalMember	and	VIPMember	–	from	the	Member
class.
	
First,	let’s	declare	the	child	class	NormalMember.	We	indicate	that	it	is	derived
from	the	Member	class	using	a	colon	(:)	like	this
class	NormalMember	:	Member

{

}

	
Now,	we	need	to	write	the	constructor	for	the	child	class.	The	constructor	of	a
child	class	is	built	upon	the	parent’s	constructor.	Whenever	we	create	a	child
object,	the	parent	class	constructor	is	always	called	first.
There	are	two	ways	to	create	a	child	constructor.	The	first	way	is	to	simply
declare	it	like	any	other	constructor.
	
public	NormalMember()

{

Console.WriteLine("Child	constructor	with	no	parameter");

}

	
When	we	declare	our	constructor	as	above,	C#	looks	for	a	parameterless
constructor	(i.e.	a	constructor	with	no	parameter)	in	the	parent	class	and	calls
that	first	before	executing	the	code	in	the	child	constructor.	If	you	use	this
constructor	to	create	a	child	object,	the	following	two	lines	will	be	displayed	on
the	screen
Parent	Constructor	with	no	parameter

Child	constructor	with	no	parameter

	
The	first	line	is	from	the	parent	constructor	while	the	second	line	is	from	the
child	constructor.
	
The	second	way	to	declare	a	child	constructor	is	to	use	the	colon	sign	(:)	and	the
base	keyword	to	call	a	non	parameterless	constructor	in	the	parent	class.	An

example	is	shown	below:
public	NormalMember(string	remarks)	:	base	(“Jamie”,	1,	2015)

{

Console.WriteLine("Remarks	=	{0}",	remarks);

}

	
When	we	call	a	non	parameterless	constructor	in	the	parent	class,	we	need	to
pass	in	values	to	its	parameters.	In	the	example	above,	we	passed	in	the	values
“Jamie”,	1	and	2015	to	the	parent	constructor.	These	values	are	then	assigned	to
the	fields	name,	memberID	and	memberSince	in	the	base	class	respectively.
	
In	this	example,	we	passed	in	fixed	values	as	arguments	to	the	base	constructor.
However,	a	better	way	is	to	pass	in	the	arguments	through	the	child	constructor.
The	example	below	shows	how	this	can	be	done.	Replace	the	previous
constructor	with	the	constructor	below:
public	NormalMember(string	remarks,	string	name,	int	memberID,	int

memberSince)	:	base	(name,	memberID,	memberSince)

{

Console.WriteLine("Child	Constructor	with	4	parameters");

Console.WriteLine("Remarks	=	{0}",	remarks);

}

	
This	new	child	constructor	has	four	parameters.	The	first	parameter	is	a	string
parameter	called	remarks.	This	parameter	is	used	inside	the	child	constructor.
	
The	second,	third	and	fourth	parameters	are	not	used	in	the	child	constructor.
Instead,	they	are	passed	in	as	arguments	to	the	parent	constructor	based	on	their
names.	For	instance,	the	second	parameter	in	the	child	constructor	(string
name)	is	passed	in	as	the	first	argument	to	the	parent	constructor	(name).
	
When	we	create	a	child	object	with	this	constructor,	we	write	something	like
	
NormalMember	myChildMember	=	new	NormalMember(“Special	Rate”,

"James",	1,	2010);

	
The	base	constructor	with	3	parameters	is	called	and	executed	first.	The	values
“James”,	1	and	2010	are	passed	to	the	base	constructor.	Behind	the	scene,	these
values	are	assigned	to	the	fields	name,	memberID	and	memberSince	in	the	base
class	respectively.
	

After	executing	the	base	constructor,	the	child	constructor	will	be	executed.	The
string	“Special	Rate”	is	assigned	to	remarks	and	displayed	on	the	screen.
	
When	you	run	the	code,	you	will	get	the	following	output
	
Parent	Constructor	with	3	parameters

Child	Constructor	with	4	parameters

Remarks	=	Special	Rate

	
Now	that	we	have	created	the	constructors	for	our	child	class,	let	us	move	on	to
create	a	method	to	calculate	the	annual	fee	of	a	normal	member.	The	code	is
simply
public	void	CalculateAnnualFee()

{

annualFee	=	100	+	12*30;

}

	
When	we	write	“annualFee”	in	the	code	above,	we	are	accessing	the	protected
field	annualFee	in	the	parent	class.	Recall	that	a	child	class	has	access	to	all
public	and	protected	fields	in	its	parent	class?	Hence,	the	child	class	can	use	this
field	as	if	it	is	its	own	field.	The	child	class	does	not	need	to	create	an	instance	of
the	parent	class	in	order	to	access	its	protected	fields.
	
That’s	all	for	our	child	class	NormalMember.	The	class	has	the	following
contents:
Fields
	
Inherited	from	parent	class:
protected	int	annualFee

	
Methods
	
Inherited	from	parent	class:
public	override	string	ToString()

	
Declared	in	child	class:
public	void	CalculateAnnualFee()

	
Constructors
	
public	NormalMember()

public	NormalMember(string	remarks,	string	name,	int	memberID,	int

memberSince)

	
Next,	let	us	write	another	class	that	inherits	from	Member.	This	time,	the	derived
class	is	called	VIPMember.	The	code	is	shown	below.
	
class	VIPMember	:	Member

{

public	VIPMember(string	name,	int	memberID,	int	memberSince)	:

base	(name,	memberID,	memberSince)

{

Console.WriteLine("Child	Constructor	with	3	parameters");

}

	
public	void	CalculateAnnualFee()

{

annualFee	=	1200;

}

}

	
This	class	has	one	constructor	(with	3	parameters)	and	one	method
CalculateAnnualFee().	The	CalculateAnnualFee()	method	here	uses	a
different	formula	for	calculating	annual	fee	from	the	CalculateAnnualFee()
method	in	the	NormalMember	class.	It	is	alright	for	the	two	methods	to	share	the
same	name	(and	signature)	as	they	are	in	different	classes.
	
VIPMember	class	has	the	following	contents:
	
Fields
	
Inherited	from	parent	class:
protected	int	annualFee

	
Methods
	
Inherited	from	parent	class:
public	override	string	ToString()

	
Declared	in	child	class:
public	void	CalculateAnnualFee()

	
Constructors
	
public	VIPMember(string	name,	int	memberID,	int	memberSince)

	
The	Main()	method
	
Now	that	we	have	written	the	three	classes	that	we	need,	let’s	write	the	code	for
the	Main()	method.
	
First,	we’ll	create	two	objects	from	the	two	derived	classes.
	
NormalMember	mem1	=	new	NormalMember("Special	Rate",	"James",	1,

2010);

VIPMember	mem2	=	new	VIPMember("Andy",	2,	2011);

	
mem1	is	created	using	the	4	parameters	constructor	from	the	NormalMember	class.
mem2	is	created	using	the	3	parameters	constructor	from	the	VIPMember	class.
	
Next,	we’ll	use	the	CalculateAnnualFee()	methods	in	the	respective	classes.
	
mem1.CalculateAnnualFee();

mem2.CalculateAnnualFee();

	
As	mem1	is	an	instance	of	the	NormalMember	class,	the	CalculateAnnualFee()
method	from	that	class	is	executed.	The	annual	fee	for	mem1	is	thus	100	+	12*30
=	460.	For	mem2,	the	annual	fee	is	1200	as	it	uses	the	method	from	the	VIPMember
class.
	
Finally,	let’s	use	the	ToString()	method	from	the	parent	class	(Member)	to
display	the	information	on	our	screen.	We	write
Console.WriteLine(mem1.ToString());

Console.WriteLine(mem2.ToString());

	
Since	the	ToString()	method	belongs	to	the	parent	class	and	is	public,	both
mem1	and	mem2	have	inherited	the	method	and	are	thus	able	to	use	it	in	the	Main()
method.	This	facilitates	code	reuse	as	we	do	not	need	to	rewrite	the	ToString()
method	for	both	the	child	classes.
	
You’ll	get	the	following	output	when	you	run	the	program:
	
Parent	Constructor	with	3	parameters

Child	Constructor	with	4	parameters

Message	=	Special	Rate

Parent	Constructor	with	3	parameters

Child	Constructor	with	3	parameters

	
Name:	James

Member	ID:	1

Member	Since:	2010

Total	Annual	Fee:	460

	
Name:	Andy

Member	ID:	2

Member	Since:	2011

Total	Annual	Fee:	1200

	
Polymorphism
	
Now	that	we	have	seen	an	example	of	how	inheritance	woks,	let	us	move	on	to
discuss	another	topic	that	is	closely	related	to	inheritance	-	the	concept	of
polymorphism.	Polymorphism	refers	to	a	program’s	ability	to	use	the	correct
method	for	an	object	based	on	its	runtime	type.
	
The	best	way	to	explain	polymorphism	is	through	an	example.	Let’s	expand	on
our	Fitness	club	example	above.
	
First,	delete	all	the	code	in	the	previous	Main()	method	and	add	the	following
lines:
Member[]	clubMembers	=	new	Member[5];

	
clubMembers[0]	=	new	NormalMember("Special	Rate",	"James",	1,

2010);

clubMembers[1]	=	new	NormalMember("Normal	Rate",	"Andy",	2,	2011);

clubMembers[2]	=	new	NormalMember("Normal	Rate",	"Bill",	3,	2011);

clubMembers[3]	=	new	VIPMember("Carol",	4,	2012);

clubMembers[4]	=	new	VIPMember("Evelyn",	5,	2012);

	
Here,	we	declare	an	array	of	Member	type	and	add	5	members	to	it.	The	first	three
members	are	instances	of	the	NormalMember	class	while	the	last	two	are
instances	of	the	VIPMember	class.
	
Although	clubMembers	is	declared	to	be	an	array	of	Member	type,	we	can	assign
instances	of	NormalMember	and	VIPMember	to	it	as	they	are	child	classes	of	the
Member	class.	We	do	not	need	to	declare	separate	arrays	for	NormalMember	and
VIPMember	objects.
	
Next,	we’ll	use	a	foreach	loop	to	calculate	the	annual	fee	of	each	member	and

display	the	information.
	
To	do	that,	we	write
	
foreach	(Member	m	in	clubMembers)

{

m.CalculateAnnualFee();

Console.WriteLine(m.ToString());

}

	
If	you	try	to	run	the	program	at	this	stage,	you’ll	get	an	error	that	says	Member
does	not	contain	a	definition	for	‘CalculateAnnualFee’.	This	is	because
clubMembers	is	declared	to	be	an	array	of	Member	type.	Hence,	the	complier	tries
to	execute	the	CalculateAnnualFee()	method	in	the	Member	class	when	we
write	m.CalculateAnnualFee().	An	error	occurs	because	we	do	not	have	such	a
method	in	our	Member	parent	class;	we	only	have	it	in	the	two	child	classes.	To
rectify	this	error,	we	have	to	add	the	following	method	to	our	parent	class.
	
public	void	CalculateAnnualFee()

{

annualFee	=	0;

}

	
Now	run	the	program	and	pay	attention	to	the	“Total	Annual	Fee”	for	each
member.	What	do	you	notice?	It	should	all	show	$0.	This	means	the
CalculateAnnualFee()	method	that	is	invoked	is	the	one	in	the	parent	class.
This	is	not	surprising	as	clubMembers	is	declared	to	be	of	Member	type.
	
If	you	want	the	child	method	to	be	invoked	instead,	you	have	to	make	two
changes.
	
First,	you	need	to	declare	the	parent	method	as	virtual,	like	this
public	virtual	void	CalculateAnnualFee()

{

annualFee	=	0;

}

	
The	virtual	keyword	tells	the	compiler	that	this	method	may	be	overridden	in
derived	classes.	When	the	compiler	encounters	this	keyword,	it’ll	look	for	the
same	method	in	the	derived	class	and	execute	that	method	instead.
	
Next,	in	the	derived	class,	you	have	to	declare	that	your	method	overrides	the

method	in	the	parent	class	using	the	override	keyword,	like	this
//In	VIPMember	child	class

public	override	void	CalculateAnnualFee()

{

annualFee	=	1200;

}

	
//In	NormalMember	child	class

public	override	void	CalculateAnnualFee()

{

annualFee	=	100	+	12	*	30;

}

	
Now	if	you	run	the	program	again,	the	annual	fee	for	the	first	three	members
(NormalMember)	and	the	last	two	members	(VIPMember)	will	be	$460	and	$1200
respectively.
	
This	is	the	result	of	polymorphism.	At	run	time	(i.e.	when	the	program	runs),	the
program	determines	that	the	first	three	members	of	clubMembers	are	of
NormalMember	type	and	executes	the	CalculateAnnualFee()	method	from	that
class.	It	also	determines	that	the	last	two	members	are	of	VIPMember	type	and
executes	the	method	from	that	class.
	
Polymorphism	simply	means	that	at	run	time,	the	program	is	smart	enough	to
use	the	CalculateAnnualFee()	method	from	the	correct	child	class	even	when
that	object	is	declared	to	be	of	Member	type.
	
We	say	that	the	runtime	type	of	the	first	three	elements	of	clubMembers	is
NormalMember	while	the	runtime	type	of	the	last	two	elements	is	VIPMember.	The
declared	type	of	all	the	5	elements	is	Member.
	
GetType()	and	typeof()
	
In	the	previous	example,	we	let	the	program	determine	the	run	time	type	of	each
member	of	the	clubMembers	array	and	invoke	the	correct
CalculateAnnualFee()	method.	However,	sometimes,	it	may	be	necessary	for
us	to	determine	the	runtime	type	of	each	individual	member	ourselves	when	we
code.	We’ll	see	an	example	of	that	later	in	our	project.
	
The	if	statement	below	shows	how	you	can	determine	whether	the	first	element
of	the	clubMember	array	is	of	VIPMember	type	at	run	time:

if	(clubMembers[0].GetType()	==	typeof(VIPMember))

Console.WriteLine(“Yes”);

else

Console.WriteLine(“No”);

	
The	GetType()	method	returns	the	runtime	type	of	an	object.
	
The	typeof()	method	takes	the	name	of	a	data	type	(e.g.	int,	float,	or	the
name	of	a	class)	and	returns	the	type	of	that	name,	which	we	can	then	compare
with	the	result	of	the	GetType()	method	on	the	left.
	
If	you	run	the	code	above,	you’ll	get	“No”	as	the	output	since	clubMembers[0]
is	not	of	VIPMember	type.
	
Abstract	Classes	and	Methods
	
Now	that	we	are	familiar	with	inheritance	(and	polymorphism),	let	us	move	on
to	discuss	two	special	types	of	“parent	class”	in	C#	-	abstract	classes	and
interfaces.
	
First,	let’s	look	at	abstract	classes.
	
An	abstract	class	is	a	special	type	of	class	that	is	created	strictly	to	be	a	base
class	for	other	classes	to	derive	from.	They	cannot	be	instantiated.	In	other
words,	if	FourWheelVehicles	is	an	abstract	class,	the	statement
FourWheelVehicle	myVeh	=	new	FourWheelVehicle();

	
will	give	you	an	error	as	you	cannot	create	an	object	of	an	abstract	class.
	
Abstract	classes	may	have	fields,	properties	and	methods	just	like	any	other
classes.	However,	they	cannot	have	static	members.	In	addition,	abstract	classes
can	have	a	special	type	of	method	known	as	abstract	methods.	Abstract	methods
are	methods	that	have	no	body	and	MUST	be	implemented	in	the	derived	class.
They	can	only	exist	in	abstract	classes.	In	a	way,	an	abstract	method	is	like	a
contract.	If	you	want	to	ensure	that	any	class	that	inherits	your	class	implements
a	certain	method,	you	can	declare	the	class	as	an	abstract	class	and	the	method	as
an	abstract	method.
	
To	declare	an	abstract	class,	simply	add	the	abstract	keyword	before	the
keyword	class	like	this:

abstract	class	MyClass

{

}

	
To	declare	an	abstract	method	inside	an	abstract	class,	add	the	abstract
keyword	before	the	return	type,	like	this:
public	abstract	void	MyAbstractMethod();

	
As	abstract	methods	have	no	body,	we	end	the	declaration	with	a	semi-colon	(;).
	
To	implement	an	abstract	method	in	the	derived	class,	we	use	the	override
keyword,	like	this.
	
public	override	void	MyAbstractMethod()

{

}

	
The	code	below	shows	an	example	of	an	abstract	class.
	
1	using	System;

2	using	System.Collections.Generic;

3	using	System.Linq;

4	using	System.Text;

5	using	System.Threading.Tasks;

6

7	namespace	AbstractClassDemo

8	{

9	class	Program

10	{

11	static	void	Main(string[]	args)

12	{

13	//MyAbstractClass	abClass	=	new	MyAbstractClass();

14	ClassA	a	=	new	ClassA();

15	a.PrintMessage();

16	a.PrintMessageAbstract();

17	Console.Read();

18	}

19	}

20

21	abstract	class	MyAbstractClass

22	{

23	private	string	message	=	"Hello	C#";

24	public	void	PrintMessage()

25	{

26	Console.WriteLine(message);

27	}

28	public	abstract	void	PrintMessageAbstract();

29	}

30

31	class	ClassA	:	MyAbstractClass

32	{

33	public	override	void	PrintMessageAbstract()

34	{

35	Console.WriteLine("C#	is	fun!");

36	}

37	}

38	}

	
The	abstract	class	is	from	Line	21	to	29.	It	contains	a	private	field	message	and	a
public	method	PrintMessage().	It	also	contains	an	abstract	method
PrintMessageAbstract()	on	line	28.	Lines	31	to	37	show	the	derived	class
which	implements	the	abstract	method	(lines	33	to	36).
	
If	you	run	the	program	above,	you	will	get

Hello	C#

C#	is	fun!

	
Notice	that	Line	13	is	commented	out	with	the	//	sign?	If	you	remove	the	two
slashes,	you	will	get	an	error	as	an	abstract	class	cannot	be	instantiated.
	
Interfaces
	
Next,	let’s	look	at	interfaces.	Interfaces	are	much	like	abstract	classes	in	that
they	cannot	be	instantiated	and	must	be	inherited.	However,	interfaces	are	more
conceptual	than	abstract	classes.	They	can	only	contain	methods	with	no	bodies.
In	addition,	they	cannot	contain	fields	but	can	contain	properties.	Interfaces	also
cannot	have	static	members.	When	a	child	class	inherits	an	interface,	we	say	that
it	implements	the	interface.
	
One	of	the	key	differences	between	an	abstract	class	and	an	interface	is	that	a
class	can	only	inherit	one	abstract	class	but	can	implement	multiple	interfaces.
We	won’t	be	showing	an	example	of	multiple	interfaces	implementation	as	that
is	an	advanced	topic	beyond	the	scope	of	this	book.
	
The	code	below	shows	an	example	of	how	a	class	can	implement	one	interface.

It	is	common	to	start	the	name	of	an	interface	with	the	letter	I.	All	properties	and
methods	in	an	interface	are	public,	so	there	is	no	need	to	add	any	access
modifiers	to	them.	
1	using	System;

2	using	System.Collections.Generic;

3	using	System.Linq;

4	using	System.Text;

5	using	System.Threading.Tasks;

6

7	namespace	InterfaceDemo

8	{

9	class	Program

10	{

11	static	void	Main(string[]	args)

12	{

13	ClassA	a	=	new	ClassA();

14	a.MyNumber	=	5;

15	a.InterfaceMethod();

16	Console.Read();

17	}

18	}

19

20	interface	IShape

21	{

22	int	MyNumber

23	{

24	get;

25	set;

26	}

27	void	InterfaceMethod();

28	}

29

30	class	ClassA	:	IShape

31	{

32

33	private	int	myNumber;

34	public	int	MyNumber

35	{

36	get

37	{

38	return	myNumber;

39	}

40	set

41	{

42	if	(value	<	0)

43	myNumber	=	0;

44	else

45	myNumber	=	value;

46	}

47	}

48

49	public	void	InterfaceMethod()

50	{

51	Console.WriteLine("The	number	is	{0}.",	MyNumber);

52	}

53	}

54	}

	
The	interface	is	declared	on	lines	20	to	28.	On	lines	22	to	26,	we	declared	a
property	and	on	line	27,	we	declared	a	method.
	
ClassA	implements	the	IShape	interface.	The	property	is	implemented	on	lines
33	to	47	where	we	declared	a	private	backing	field	(myNumber)	for	the	property
and	implemented	some	control	rules.
	
The	method	is	implemented	on	lines	49	to	52.	We	do	not	need	to	use	the
override	keyword	when	implementing	a	method	that	belongs	to	an	interface.
	
If	you	run	this	program,	you’ll	get
	
The	number	is	5.

	
Access	Modifiers	Revisited
	
Now	that	we	have	covered	various	topics	related	to	inheritance,	let	us	take	a
second	look	at	the	concept	of	access	modifiers	in	object	oriented	programming.
Earlier,	we	learnt	that	an	access	modifier	is	like	a	gate-keeper.	It	controls	who
has	access	to	a	certain	field,	property	or	method.	C#	comes	with	4	access
modifiers:	private,	public,	protected	and	internal.
	
Anything	declared	as	internal	is	only	accessible	within	the	current	assembly.
As	we	won’t	be	covering	assemblies	in	this	book,	we	will	not	be	demonstrating
how	internal	works.
	
To	understand	how	private,	public	and	protected	work,	let’s	consider	the
example	below.	We’ll	be	using	fields	to	demonstrate	the	concept.	The	same
applies	to	methods	and	properties.

	
Suppose	we	have	a	class	with	three	fields:
	
class	ClassA

{

private	int	privateNum	=	1;

public	int	publicNum	=	2;

protected	int	protectedNum	=	3;

	
}

	
If	ClassB	is	derived	from	ClassA,
class	ClassB:ClassA

{

public	void	PrintMessages()

{

//This	is	ok

Console.WriteLine(publicNum);

	
//This	is	ok

Console.WriteLine(protectedNum);

	
//This	is	NOT	ok

Console.WriteLine(privateNum);

}

}

	
the	first	two	WriteLine()	statements	will	not	give	us	any	error	as	a	derived	class
can	access	any	public	and	protected	fields	in	the	parent	class.
	
However,	the	third	statement	gives	us	an	error	as	privateNum	is	a	private	field
and	is	thus	only	accessible	in	ClassA	itself.
	
If	a	class	is	not	derived	from	ClassA,	we	need	to	instantiate	a	ClassA	object	in
order	to	access	the	public	field	of	ClassA.	However,	even	with	a	ClassA	object,
we	cannot	access	the	private	and	protected	fields	of	ClassA.	In	the	example
below,	ClassC	is	not	derived	from	ClassA.	Hence,	the	first	WriteLine()
statement	will	not	give	us	any	error	but	the	second	and	third	statements	will.
	
class	ClassC

{

ClassA	a	=	new	ClassA();

	
public	void	PrintMessages()

{

//This	is	ok

Console.WriteLine(a.publicNum);

	
//This	is	NOT	ok

Console.WriteLine(a.protectedNum);

	
//This	is	NOT	ok

Console.WriteLine(a.privateNum);

}

}

	
In	short,	anything	that	is	declared	as	public	is	accessible	everywhere;	there	are
no	restrictions	on	accessing	public	members.	On	the	other	hand,	anything
declared	as	private	is	only	accessible	within	the	class	in	which	it	is	declared.
Anything	declared	as	protected	is	accessible	within	the	class	in	which	it	is
declared	and	any	class	that	is	derived	from	it.
	

Chapter	9:	Enum	and	Struct

	
In	Chapter	3	and	4,	we	looked	at	some	built	in	data	types	provided	by	C#.	These
include	value	types	like	int,	float	and	double	and	reference	data	types	like
arrays,	strings	and	lists.	In	addition,	we	also	looked	at	how	you	can	write	your
own	classes	in	Chapter	7	and	8.	A	class	can	be	considered	to	be	an	advanced
user-defined	data	type	that	groups	a	set	of	related	fields,	properties	and	methods
into	a	logical	unit.
	
In	this	chapter,	we	are	going	to	look	at	two	more	user-defined	data	types	in	C#	–
enum	and	struct.
	
Enum
	
An	enum	(which	stands	for	enumerated	type)	is	a	special	data	type	that	allows
programmers	to	provide	meaningful	names	for	a	set	of	integral	constants.
	
To	declare	an	enum,	we	use	the	enum	keyword	followed	by	the	name	of	the
enum.	The	members	of	the	enum	are	enclosed	in	a	set	of	curly	braces	and
separated	by	commas.
	
An	example	is	shown	below:
	
enum	DaysOfWeek

{

Sun,	Mon,	Tues,	Wed,	Thurs,	Fri,	Sat

}

	
Note	that	we	do	not	put	a	semi-colon	at	the	end	of	the	last	member.
	
After	declaring	the	DaysOfWeek	enum,	we	can	declare	and	initialize	a
DaysOfWeek	variable	like	this:
DaysOfWeek	myDays	=	DaysOfWeek.Mon;

	
The	name	of	the	variable	is	myDays.	If	we	write
Console.WriteLine(myDays);

	
we’ll	get

	
Mon

	
By	default,	each	member	in	the	enum	is	assigned	an	integer	value,	starting	from
zero.	That	is,	in	our	example,	Sun	is	assigned	a	value	of	0,	Mon	is	1,	Tues	is	2
and	so	on.
	
As	members	of	an	enum	are	essentially	integers,	we	can	cast	a	DaysOfWeek
variable	into	an	int	and	vice	versa.	For	instance,
Console.WriteLine((int)myDays);

	
gives	us	the	integer	1	while
	
Console.WriteLine((DaysOfWeek)1);

	
gives	us	Mon.
	
If	you	want	to	assign	a	different	set	of	integers	to	your	enum	members,	you	can
do	the	following
enum	DaysOfWeekTwo

{

Sun	=	5,	Mon	=	10,	Tues,	Wed,	Thurs,	Fri,	Sat

}

	
Now,	Sun	is	assigned	a	value	of	5	and	Mon	is	assigned	10.	As	we	did	not	assign
values	for	Tues	to	Sat,	consecutive	numbers	after	10	will	be	assigned	to	them.
That	is	Tues	=	11,	Wed	=	12	and	so	on.
	
All	enums	are	stored	internally	as	integers	(int).	If	you	want	to	change	the
underlying	data	type	from	int	to	another	data	type,	you	add	a	colon	after	the
enum	name,	followed	by	the	desired	data	type.	Any	integer	data	type	is	allowed
except	for	char.	An	example	is
enum	DaysOfWeekThree	:	byte

{

Sun,	Mon,	Tues,	Wed,	Thurs,	Fri,	Sat

}

	
Of	course,	if	you	use	a	byte	data	type,	you	cannot	do	something	like
enum	DaysOfWeekFour	:	byte

{

Sun	=	300,	Mon,	Tues,	Wed,	Thurs,	Fri,	Sat

}

	

as	the	range	for	byte	is	from	0	to	255.
	
There	are	two	main	reasons	for	using	enums.	The	first	is	to	improve	the
readability	of	your	code.	The	statement
myDays	=	DaysOfWeek.Mon;

	
is	more	self-explanatory	than	the	statement
	
myDays	=	1;

	
The	second	reason	is	to	restrict	the	values	that	a	variable	can	take.	If	we	have	a
variable	that	stores	the	days	of	a	week,	we	may	accidentally	assign	the	value	10
to	it.	This	can	be	prevented	when	we	use	an	enum	as	we	can	only	assign	the	pre-
defined	members	of	the	enum	to	the	variable.
	
Struct
	
Now,	let’s	look	at	the	struct	data	type.
	
A	struct	is	similar	to	a	class	in	many	aspects.	Like	classes,	they	contain	elements
like	properties,	constructors,	methods	and	fields	and	allow	you	to	group	related
members	into	a	single	package	so	that	you	can	manipulate	them	as	a	group.
	
To	declare	a	struct,	you	use	the	struct	keyword.	An	example	is:
1	struct	MyStruct

2	{

3	//Fields

4	private	int	x,	y;

5	private	AnotherClass	myClass;

6	private	Days	myDays;

7

8	//Constructor

9	public	MyStruct(int	a,	int	b,	int	c)

10	{

11	myClass	=	new	AnotherClass();

12	myClass.number	=	a;

13	x	=	b;

14	y	=	c;

15	myDays	=	Days.Mon;

16	}

17

18	//Method

19	public	void	PrintStatement()

20	{

21	Console.WriteLine("x	=	{0},	y	=	{1},	myDays	=	{2}",	x,	y,

myDays);

22	}

23	}

24

25	class	AnotherClass

26	{

27	public	int	number;

28	}

29

30	enum	Days	{	Mon,	Tues,	Wed	}

	
The	struct	is	declared	from	lines	1	to	23.	On	line	4,	we	declared	two	private
int	fields	for	the	struct.	On	line	5,	we	declared	another	private	field	called
myClass.	This	field	is	an	instance	of	the	class	AnotherClass.	On	line	6,	we
declared	an	enum	variable	myDays.	The	two	fields	(myClass	and	myDays)	are
specially	included	in	this	example	to	demonstrate	how	we	can	include	a	class
instance	and	an	enum	variable	as	the	fields	of	a	struct.	Structs	(and	classes)	can
contain	enum	variables	and	instances	of	other	structs	and	classes	as	fields.
	
After	declaring	the	fields,	we	declared	the	constructor	for	the	struct	(lines	9	to
16),	followed	by	a	method	to	print	the	values	of	x,	y	and	myDays.	(lines	19	to	22).
	
After	declaring	the	struct,	we	declared	the	class	AnotherClass	on	lines	25	to	28
and	the	enum	Days	on	line	30.	In	this	example,	we	declared	the	class	and	enum
outside	the	struct	myStruct.	However,	it	is	possible	for	us	to	declare	the	enum	or
class	inside	the	struct	itself.	An	enum,	struct	or	class	can	be	nested	inside	another
struct	or	class.	We’ll	look	at	an	example	of	an	enum	declared	inside	a	class	when
we	work	through	the	project	at	the	end	of	the	book.
	
To	use	the	struct	above,	we	can	add	the	following	code	to	our	Main()	method:
MyStruct	example	=	new	MyStruct(2,	3,	5);

example.PrintStatement();

	
If	we	run	the	code,	we’ll	get
	
x	=	3,	y	=	5,	myDays	=	Mon

	
There	are	two	main	differences	between	a	struct	and	a	class.	Firstly,	the	struct
data	type	does	not	support	inheritance.	Hence	you	cannot	derive	one	struct	from
another.	However,	a	struct	can	implement	an	interface.	The	way	to	do	it	is

identical	to	how	it	is	done	with	classes.	Refer	to	Chapter	8	for	more	information.
	
The	second	difference	between	structs	and	classes	is	that	structs	are	value	types
while	classes	are	reference	types.
	
For	a	complete	list	of	differences	between	a	struct	and	a	class,	check	out	the
following	page:	https://msdn.microsoft.com/en-us/library/saxz13w4.aspx
	
	
	

https://msdn.microsoft.com/en-us/library/saxz13w4.aspx

Chapter	10:	LINQ

	
LINQ	stands	for	Language-Integrated	Query	and	is	an	interesting	feature	of	C#
that	allows	you	to	query	data	in	your	program.	In	this	chapter,	we’ll	cover	a	brief
introduction	to	LINQ	followed	by	two	examples	of	how	LINQ	can	be	used.
	
Let’s	first	learn	how	to	write	a	LINQ	query.	The	typical	syntax	for	a	LINQ	query
is
from…	where…	orderby…	select

	
Let’s	suppose	we	have	an	array	of	numbers	and	we	want	to	select	all	even
numbers	from	the	array.	We	can	do	that	easily	with	LINQ.
	
First,	let’s	declare	the	array.
	
int[]	numbers	=	{	0,	1,	2,	3,	4,	5,	6	};

	
Next,	we	write	a	LINQ	query	as	follows:
	
var	evenNumQuery	=

from	num	in	numbers

where	(num	%	2)	==	0

select	num;

	
The	query	is	from	the	second	to	the	fourth	line.	Readers	who	have	experience
with	SQL	will	probably	find	this	query	quite	familiar.	The	query	consists	of
three	parts.	The	first	part
from	num	in	numbers

	
states	that	we	are	performing	the	query	on	the	numbers	array.	num	is	the	name
that	we	use	to	represent	the	individual	items	in	the	array.	The	next	line
where	(num	%	2)	==	0

	
tests	the	individual	items	to	determine	if	the	remainder	of	num	divided	by	2	is
zero.	If	it	is,	num	is	an	even	number.	The	third	line
select	num;

	
selects	all	elements	that	satisfy	this	criteria.
	

This	result	is	then	assigned	to	the	variable	evenNumQuery,	which	is	declared	to
be	of	var	type.	var	is	a	special	data	type	that	we	use	whenever	we	want	the
complier	to	determine	the	data	type	itself.	This	is	necessary	because	in	our
example,	the	data	type	of	evenNumQuery	is	quite	complex;	we	are	better	off
letting	C#	figure	the	data	type	out	for	us.
After	we	create	the	query	statement,	we	can	execute	the	query	by	writing
	
foreach	(int	i	in	evenNumQuery)

{

Console.WriteLine("{0}	is	an	even	number",	i);

}

	
If	you	run	this	code,	you	will	get
	
0	is	an	even	number

2	is	an	even	number

4	is	an	even	number

6	is	an	even	number

	
That’s	it.	That’s	how	easy	it	is	to	use	LINQ.	Let	us	now	move	on	to	a	more
complex	example	of	LINQ.
	
Suppose	you	have	a	Customer	class	with	Name,	Phone,	Address	and	Balance	as
its	properties	and	a	constructor	to	initialize	each	of	these	properties.
	
We	can	create	a	list	of	Customer	objects	in	our	Main()	method	using	the	code
below.
	
List<Customer>	customers	=	new	List<Customer>();

	
customers.Add(new	Customer("Alan",	"80911291",	"ABC	Street",

25.60m));

customers.Add(new	Customer("Bill",	"19872131",	"DEF	Street",

-32.1m));

customers.Add(new	Customer("Carl",	"29812371",	"GHI	Street",

-12.2m));

customers.Add(new	Customer("David",	"78612312",	"JKL	Street",

12.6m));

	
Now	suppose	we	want	to	search	for	all	customers	with	negative	account
balances,	we	can	use	the	following	LINQ	query.
	
var	overdue	=

from	cust	in	customers

where	cust.Balance	<	0

orderby	cust.Balance	ascending

select	new	{	cust.Name,	cust.Balance	};

	
This	query	is	similar	to	the	first	query,	with	two	main	differences.	Here,	we	used
two	additional	keywords,	orderby	and	ascending,	to	arrange	the	results	in
ascending	order.
	
In	addition,	we	used	the	new	keyword	in	the	select	statement.	The	new	keyword
is	needed	whenever	we	want	to	select	more	than	one	field	from	the	objects.
	
To	execute	and	print	the	results,	we	can	use	the	foreach	loop	below:
foreach	(var	cust	in	overdue)

Console.WriteLine("Name	=	{0},	Balance	=	{1}",	cust.Name,

cust.Balance);

	
We	will	get
	
Name	=	Bill,	Balance	=	-32.1

Name	=	Carl,	Balance	=	-12.2

	

Chapter	11:	File	Handling

	
Cool!	We’ve	come	to	the	last	chapter	of	the	book	before	the	project.	In	this
chapter,	we’ll	learn	how	to	read	and	write	to	an	external	file.
	
In	Chapter	5	previously,	we	learned	how	to	get	input	from	users	using	the
ReadLine()	method.	However,	in	some	cases,	getting	users	to	enter	data	into	our
program	may	not	be	practical,	especially	if	our	program	needs	to	work	with	large
amounts	of	data.	In	cases	like	this,	a	more	convenient	way	is	to	prepare	the
needed	information	as	an	external	file	and	get	our	programs	to	read	the
information	from	the	file.
	
C#	provides	us	with	a	number	of	classes	to	work	with	files.	The	classes	that	we
are	going	to	look	at	in	this	chapter	are	the	File,	StreamWriter	and
StreamReader	classes.	All	three	classes	are	available	in	the	System.IO
namespace.	To	use	the	methods	in	this	chapter,	you	have	to	add	the	directive
	
using	System.IO;

	
to	the	start	of	your	code.
	
Reading	a	Text	File
	
To	read	data	from	a	text	file,	we	use	the	StreamReader	class.
	
Suppose	we	want	to	read	data	from	the	file	“myFile.txt”	located	on	the	C	drive.
The	example	below	shows	how	to	do	it.
	
1	string	path	=	“c:\\myFile.txt”;

2	using	(StreamReader	sr	=	new	StreamReader(path))

3	{

4	while	(sr.EndOfStream	!=	true)

5	{

6	Console.WriteLine(sr.ReadLine());

7	}

8

9	sr.Close();

10	}

	

On	line	1,	we	first	declare	a	string	variable	path	and	assign	the	path	of	the	file
to	the	variable.
	
string	path	=	“c:\\myFile.txt”;

	
Note	that	we	have	to	use	double	slashes	\\	when	writing	the	path.	This	is
because	if	we	only	use	a	single	slash,	the	compiler	will	think	the	single	slash	is
the	beginning	of	an	escape	sequence	and	interpret	\m	as	an	escape	sequence.
This	will	result	in	an	error.
	
On	line	2,	we	create	a	StreamReader	instance.	The	StreamReader	constructor
takes	in	one	argument	–	the	path	of	the	file	to	be	read.
	
StreamReader	sr	=	new	StreamReader(path)

	
Notice	that	we	create	this	StreamReader	instance	inside	a	pair	of	parenthesis	that
follows	the	word	using	on	line	2?
	
The	using	keyword	here	is	different	from	the	one	that	we	use	when	writing	a
directive.
	
The	using	keyword	here	ensures	that	the	Dispose()	method	is	always	called.
The	Dispose()	method	is	a	pre-written	method	in	the	System	namespace	that
closes	or	releases	any	unmanaged	resources	such	as	files	and	streams	once	they
are	no	longer	needed.	When	we	use	the	using	keyword,	we	ensure	that	the
Dispose()	method	is	called	even	if	an	exception	occurs	and	prevents	our	code
from	reaching	Line	9	where	we	manually	close	the	file.	It	is	good	practice	to
always	use	the	using	keyword	whenever	you	are	dealing	with	files.	The	code	to
read	and	close	the	file	is	enclosed	within	curly	braces	{	}	after	the	using
statement.
	
From	lines	4	to	7,	we	use	a	while	loop	to	read	the	text	file	line	by	line.
	
while	(sr.EndOfStream	!=	true)

{

Console.WriteLine(sr.ReadLine());

}

	
EndOfStream	is	a	property	of	the	StreamReader	class	that	returns	true	when	the
end	of	the	file	is	reached.	As	long	as	the	end	of	file	is	not	reached,	the	while
loop	will	continue	to	run.

	
Inside	the	while	loop,	we	have	the	statement
	
Console.WriteLine(sr.ReadLine());

	
sr.ReadLine()	reads	a	line	from	the	text	file	and	returns	it	as	a	string.	This
string	is	then	printed	onto	the	screen	using	the	Console.WriteLine()	method.
	
Finally,	after	we	finish	reading	the	file,	we	close	the	file	so	that	other	programs
may	use	it.	You	should	always	close	your	file	once	you	no	longer	need	it.
	
sr.Close();

	
That’s	it.	That’s	how	you	read	a	text	file	in	C#.	Pretty	straightforward	right?
	
However,	there	is	one	problem	with	the	code	above.	This	code	will	generate	an
error	if	the	file	“myFile.txt”	cannot	be	found.	We	have	two	options	here.
	
Option	1:	try…catch
	
The	first	option	is	to	use	a	try…catch	statement	as	shown	below:
1	try

2	{

3	using	(StreamReader	sr	=	new	StreamReader(path))

4	{

5	while	(!sr.EndOfStream)

6	{

7	Console.WriteLine(sr.ReadLine());

8	}

9	sr.Close();

10	}

11	}catch	(FileNotFoundException	e)

12	{

13	Console.WriteLine(e.Message);

14	}

	
From	lines	1	to	11,	we	try	to	open,	read	and	close	the	file	in	the	try	block.
	
From	lines	11	to	14,	we	use	a	catch	block	to	catch	the	FileNotFoundException
exception	if	the	file	is	not	found.	Inside	the	catch	block,	we	print	an	error
statement	to	inform	users	that	the	file	is	not	found.
	
Option	2:	File.Exists()

	
The	second	method	to	deal	with	a	“file	not	found”	scenario	is	to	use	the
Exists()	method	in	the	File	class.	As	the	name	suggests,	the	Exists()	method
checks	if	a	file	exists.	The	File	class	is	a	pre-written	class	in	the	System.IO
namespace	that	provides	static	methods	for	the	creation,	copying,	deletion,
moving,	and	opening	of	a	single	file.
	
To	use	the	Exists()	method,	we	use	an	if	statement	to	check	if	the	file	exists
before	using	a	StreamReader	to	open	and	read	the	file.
	
if	(File.Exists(path))

{

using	(StreamReader	sr	=	new	StreamReader(path))

{

while	(!sr.EndOfStream)

{

Console.WriteLine(sr.ReadLine());

}

sr.Close();

}

}else

{

//Do	something	else

}

	
In	the	else	block,	we	can	write	code	to	create	the	file	if	it	is	not	found.
	
As	you	can	see,	the	two	methods	for	dealing	with	cases	where	the	file	is	missing
are	quite	similar.	However,	the	File.Exists()	method	is	the	preferred	method
as	it	is	faster	than	the	try…catch	statement.
	
Writing	to	a	Text	File
	
Next,	let	us	look	at	how	to	write	to	a	text	file.
	
To	write	to	a	text	file,	we	use	the	StreamWriter	class.
	
If	you	want	to	append	data	to	an	existing	file,	you	create	a	StreamWriter
instance	like	this
StreamWriter	sw	=	new	StreamWriter(path,	true);

	
where	path	is	the	path	of	the	file	and	true	indicates	that	we	want	to	append	the

data.
	
If	you	want	to	overwrite	any	existing	data	in	the	file,	you	create	a	StreamWriter
instance	like	this
StreamWriter	sw	=	new	StreamWriter(path);

	
When	we	create	the	StreamWriter	instance,	the	constructor	looks	for	the	file	at
the	given	path.	If	the	file	is	not	found,	it	creates	the	file.
	
After	we	instantiate	our	StreamWriter	object,	we	can	start	writing	to	our	file
using	the	WriteLine()	method	as	shown	below:
sw.WriteLine(“It	is	easy	to	write	to	a	file.”);

	
After	we	finish	writing	to	the	file,	we	have	to	close	the	file	by	writing
	
sw.Close();

	
Note	that	when	you	write	to	a	text	file,	it	is	also	good	practice	to	enclose	your
code	in	a	using	statement.	The	code	below	shows	a	complete	example	of	how
all	these	come	together.	
using	System;

using	System.Collections.Generic;

using	System.Linq;

using	System.Text;

using	System.Threading.Tasks;

using	System.IO;

	
namespace	FileDemo

{

class	Program

{

static	void	Main(string[]	args)

{

//declaring	the	path	to	the	file

string	path	=	"myfile.txt";

	
//Writing	to	the	file

using(StreamWriter	sw=new	StreamWriter(path,	true))

{

sw.WriteLine("ABC");

sw.WriteLine("DEF");

sw.Close();

}

	

//Reading	from	the	file

if	(File.Exists(path))

{

using(StreamReader	sr=new	StreamReader(path))

{

while	(!sr.EndOfStream)

{

Console.WriteLine(sr.ReadLine());

}

sr.Close();

}

}

Console.Read();

}

}

}

	
In	this	example,	we	choose	to	append	data	to	our	file	when	we	write	to	it.	When
you	run	this	program	for	the	first	time,	you	will	get
ABC

EFG

	
as	the	file	output	and	screen	display.	If	you	run	it	for	the	second	time,	you	will
get
	
ABC

EFG

ABC

EFG

	
As	the	full	path	of	“myfile.txt”	is	not	given	in	this	example,	the	text	file	will	be
created	in	the	same	folder	as	the	.exe	file,	which	is	in	the	FileDemo	>	FileDemo
>	Debug	>	Bin	folder.
	
	
	

Project	–	A	Simple	Payroll	Software
	
Congratulations!
	
We	have	now	completed	the	core	concepts	in	C#.	In	this	final	chapter,	we	are
going	to	get	our	feet	wet	by	coding	a	complete	console	application	that	generates
the	salary	slips	of	a	small	company.
	
Ready?
	
Overview
	
First,	let’s	create	a	new	console	application	and	name	it	CSProject.
	
This	application	consists	of	six	classes	as	shown	below.
	
Staff

Manager	:	Staff

Admin	:	Staff

FileReader

PaySlip

Program

	
The	Staff	class	contains	information	about	each	staff	in	the	company.	It	also
contains	a	virtual	method	called	CalculatePay()	that	calculates	the	pay	of	each
staff.
	
The	Manager	and	Admin	classes	inherit	the	Staff	class	and	override	the
CalculatePay()	method.
	
The	FileReader	class	contains	a	simple	method	that	reads	from	a	.txt	file	and
creates	a	list	of	Staff	objects	based	on	the	contents	in	the	.txt	file.
	
The	PaySlip	class	generates	the	pay	slip	of	each	employee	in	the	company.	In
addition,	it	also	generates	a	summary	of	the	details	of	staff	who	worked	less	than
10	hours	in	a	month.
	
Finally,	the	Program	class	contains	the	Main()	method	which	acts	as	the	main
entry	point	of	our	application.
	

The	Staff	Class
	
First,	let’s	start	with	the	Staff	class.	The	Staff	class	contains	basic	information
about	an	employee	and	provides	a	method	for	calculating	basic	pay.	It	serves	as
a	parent	class	from	which	two	other	classes	will	be	derived.
	
Fields
	
This	class	has	one	private	float	field	called	hourlyRate	and	one	private	int
field	called	hWorked.	Try	declaring	these	fields	yourself.
	
Properties
	
Next,	declare	three	public	auto-implemented	properties	for	the	class.	The
properties	are	TotalPay,	BasicPay	and	NameOfStaff.
	
TotalPay	is	a	float	property	and	has	a	protected	setter.	BasicPay	is	a	float
property	and	has	a	private	setter.	NameOfStaff	is	a	string	property	and	has	a
private	setter.	The	getters	of	all	three	properties	are	public.	Hence,	you	do	not
need	to	declare	the	access	modifiers	of	these	getters	as	they	have	the	same	access
level	as	the	properties.
	
In	addition	to	these	three	auto-implemented	methods,	the	Staff	class	also	has	a
public	property	called	HoursWorked.	The	backing	field	for	this	property	is	the
hWorked	field.
	
This	property	has	a	getter	that	simply	returns	the	value	of	hWorked.	The	setter
checks	if	the	value	set	for	HoursWorked	is	greater	than	0.	If	it	is,	it	assigns	value
to	hWorked.	If	it	is	not,	it	assigns	0	to	hWorked.	Try	declaring	this	property
yourself.	You	can	refer	to	Chapter	7	for	help.
	
Constructor
	
The	Staff	class	has	a	public	constructor	with	two	parameters,	name	(string)
and	rate	(float).	Inside	the	constructor,	we	assign	the	two	parameters	to	the
property	NameOfStaff	and	the	field	hourlyRate	respectively.	Try	coding	this
constructor	yourself.
	

Method
	
Now,	let’s	write	the	methods	for	the	class.
	
First,	we’ll	code	a	virtual	method	called	CalculatePay().
	
CalculatePay()	is	public,	has	no	parameters	and	does	not	return	a	value.	The
method	does	three	things:
First,	it	prints	the	line	“Calculating	Pay…”	on	the	screen.	Next,	it	assigns	the
value	of	hWorked*hourlyRate	to	the	BasicPay	property.	Finally,	it	assigns	the
value	of	BasicPay	to	the	TotalPay	property.	In	other	words,	BasicPay	and
TotalPay	will	have	the	same	value.	Try	coding	this	method	yourself.
	
Finally,	write	a	ToString()	method	to	display	the	values	of	the	fields	and
properties	of	the	Staff	class.	That’s	all	there	is	to	the	Staff	class.
	
The	table	below	shows	a	summary	of	the	Staff	class.
	
Fields
	
private	float	hourlyRate

private	int	hWorked	(backing	field	for	HoursWorked)

	
Properties
	
public	float	TotalPay

public	float	BasicPay

public	string	NameOfStaff

public	int	HoursWorked

	
Constructor
	
public	Staff(string	name,	float	rate)

	
Methods
	
public	virtual	void	CalculatePay()

public	override	string	ToString()

	
The	Manager	:	Staff	Class
	

Next,	let’s	move	on	to	code	the	Manager	class.
	
Fields
	
The	Manager	class	is	a	child	class	of	the	Staff	class.	It	has	one	private	const
field	called	managerHourlyRate	that	is	of	float	type.	Try	declaring	this	field
and	initializing	it	with	a	value	of	50.
	
Properties
	
Manager	also	has	a	public	auto-implemented	property	called	Allowance.
Allowance	is	of	int	type	and	has	a	private	setter.	Try	coding	this	property.
	
Constructor
	
Now,	let’s	declare	the	constructor	for	Manager.	The	Manager	class	has	a	public
constructor	with	a	string	parameter,	name.
	
The	task	of	the	constructor	is	to	call	the	base	constructor	and	pass	the	parameter
name	and	the	field	managerHourlyRate	to	the	base	constructor.	Other	than	that,
the	child	constructor	does	nothing.	Hence,	there	is	nothing	within	the	curly
braces	of	the	child	constructor.	Try	coding	this	constructor	yourself.	You	can
refer	to	the	Manager	class	summary	below	for	help	if	you	have	problems	coding
the	constructor.
	
Method
	
Next,	let’s	code	a	method	to	override	the	CalculatePay()	method	in	the	Staff
class.	As	Manager	is	derived	from	Staff,	it	has	access	to	the	BasicPay,
TotalPay	and	HoursWorked	properties	declared	in	the	Staff	class.	
In	addition,	Manager	also	has	its	own	property	–	Allowance.	We’ll	be	making
use	of	these	four	properties	in	this	method.
	
First,	let’s	declare	the	method.	CalculatePay()	is	public	and	does	not	return
any	value.	We	have	to	use	the	override	keyword	when	declaring	this	method	as
it	overrides	the	CalculatePay()	method	in	the	Staff	class.
	
Within	the	CalculatePay()	method	in	the	Manager	class,	we	shall	first	call	the
CalculatePay()	method	in	the	parent	class	and	use	it	to	set	the	values	of

BasicPay	and	TotalPay.	To	call	a	virtual	method	in	the	parent	class,	you	have	to
use	the	base	keyword.	Add	the	following	line	to	your	CalculatePay()	method.
	
base.CalculatePay();

	
This	calls	the	CalculatePay()	method	in	the	base	(parent)	class,	which	sets	the
values	of	BasicPay	and	TotalPay.	After	setting	the	values	of	these	two
properties,	let’s	go	on	to	set	the	value	of	Allowance.	We’ll	set	the	value	to	1000.
	
Next,	we	want	to	change	the	value	of	TotalPay.	Based	on	the	CalculatePay()
method	in	the	base	class,	TotalPay	is	equal	to	BasicPay,	both	of	which	are	equal
to	the	product	of	hWorked	and	hourlyRate.
	
However,	in	the	Manager	child	class,	we	want	to	update	the	value	of	TotalPay
by	adding	an	allowance	to	it.	Suppose	a	manager	is	paid	an	allowance	of	$1000
if	he/she	worked	more	than	160	hours	within	that	month.	Try	using	an	if
statement	to	update	the	value	of	TotalPay	based	on	the	value	of	HoursWorked.
	
After	updating	the	value	of	TotalPay,	the	CalculatePay()	method	is	complete.
	
Finally,	we	need	to	code	the	ToString()	method	for	the	Manager	class.	Try
coding	this	method.
	
Once	you	are	done,	the	Manager	class	is	complete.	The	table	below	shows	a
summary	of	the	Manager	class.
	
Fields
	
private	const	float	managerHourlyRate

	
Properties
	
public	int	Allowance

	
Constructor
	
public	Manager(string	name)	:	base(name,	managerHourlyRate)

	
Methods
	
public	override	void	CalculatePay()

public	override	string	ToString()

	
The	Admin	:	Staff	Class
	
The	next	class	is	the	Admin	class	which	is	also	derived	from	the	Staff	class.
	
Fields
	
The	Admin	class	has	two	private	const	fields:	overtimeRate	and
adminHourlyRate.	Both	fields	are	of	float	type.	Try	declaring	these	two	fields
and	initializing	them	with	the	values	15.5	and	30	respectively.
	
Property
	
Next,	try	declaring	a	public	auto-implemented	property,	Overtime.
	
Overtime	is	of	float	type	and	has	a	private	setter.
	
Constructor
	
Now,	let’s	declare	the	constructor.	Similar	to	the	constructor	of	the	Manager
class,	the	constructor	of	the	Admin	class	is	public	and	has	one	string	parameter,
name.	Its	job	is	to	simply	call	the	base	constructor	and	pass	the	parameter	name
and	the	field	adminHourlyRate	to	the	base	constructor.
	
Method
	
Finally,	we	are	ready	to	code	the	CalculatePay()	method	for	the	Admin	class.
The	CalculatePay()	method	in	the	Admin	class	is	very	similar	to	the	method	in
the	Manager	class.	Let’s	first	declare	the	method.
	
Next,	within	the	curly	braces,	we	use	the	CalculatePay()	method	of	the	base
class	to	set	the	BasicPay	and	TotalPay	properties	of	an	admin	staff.
	
After	setting	the	values	of	these	two	properties,	we	check	if	HoursWorked	is
greater	than	160.	If	it	is,	we’ll	update	the	value	of	the	TotalPay	property.
	
Suppose	an	admin	staff	is	paid	an	overtime	pay	on	top	of	the	basic	pay	if	he/she
worked	more	than	160	hours.	Try	using	an	if	statement	to	update	the	TotalPay

property	of	an	admin	staff.
	
The	overtime	pay	is	calculated	with	the	following	formula
	
Overtime	=	overtimeRate	*	(HoursWorked	-	160);

	
where	overtimeRate	is	a	private	field	in	the	Admin	class	and	Overtime	is	a
property	in	the	same	class.	HoursWorked	is	a	property	inherited	from	the	Staff
class.
	
Done?
	
Great!	Now,	go	on	to	code	the	ToString()	method.	With	that,	the	Admin	class	is
complete.	The	table	below	shows	a	summary	of	the	class.
	
Fields
	
private	const	float	overtimeRate

private	const	float	adminHourlyRate

	
Properties
	
public	float	Overtime

	
Constructor
	
public	Admin(string	name)	:	base(name,	adminHourlyRate)

	
Methods
	
public	override	void	CalculatePay()

public	override	string	ToString()

	
The	FileReader	Class
	
Now,	we	are	ready	to	code	the	FileReader	class.	The	FileReader	class	is
relatively	straightforward.
	
It	consists	of	one	public	method	called	ReadFile()	that	has	no	parameter.	The
method	returns	a	list	of	Staff	objects.	The	method	declaration	is	as	follows:
public	List<Staff>	ReadFile()

{

}

	
The	ReadFile()	method	reads	from	a	.txt	file	that	consists	of	the	names	and
positions	of	the	staff.	The	format	is:
Name	of	Staff,	Position	of	Staff

	
An	example	is:
	
Yvonne,	Manager

Peter,	Manager

John,	Admin

Carol,	Admin

	
The	name	of	the	text	file	is	“staff.txt”	and	is	stored	in	the	same	folder	as	the	.exe
file.	Create	this	file	yourself	using	Notepad	and	store	it	in	the	CSProject	>
CSProject	>	Bin	>	Debug	folder	where	the	.exe	file	is	located.
	
Now,	we	can	start	coding	the	ReadFile()	method.	We	first	declare	four	local
variables	named	myStaff,	result,	path	and	separator	as	shown	below.
	
List<Staff>	myStaff	=	new	List<Staff>();

string[]	result	=	new	string[2];

string	path	=	"staff.txt";

string[]	separator	=	{“,	”};

	
Next,	we	check	if	the	file	“staff.txt”	exists	using	an	if	statement	and	the
File.Exists()	method.	You	need	to	add	the	directive
using	System.IO;

	
in	order	to	use	the	File.Exists()	method.
	
If	the	file	exists,	we	use	a	StreamReader	object	to	read	the	text	file	line	by	line.
(Refer	to	Chapter	11	if	you	need	help	with	this.)	Each	time	we	read	a	line,	we
use	the	Split()	method	(refer	to	Chapter	4)	to	split	the	line	into	two	parts	and
store	the	result	in	the	result	array.	For	instance,	when	we	read	the	first	line,	the
Split()	method	splits	it	into	two	strings	“Yvonne”	and	“Manager”.	Hence,
result[0]	=	“Yvonne”	and	result[1]	=	“Manager”.
	
Based	on	the	value	of	result[1],	we	use	an	if	statement	to	create	a	Manager
object	if	the	value	of	result[1]	is	“Manager”	or	an	Admin	object	if	the	value	is
“Admin”.	We	add	these	objects	to	the	list	myStaff.
	

After	we	finish	reading	the	file,	we	close	the	file	using	the	Close()	method.
	
If	the	file	does	not	exist,	we	display	a	message	to	inform	users	of	the	error.
	
Finally,	we	return	the	list	myStaff	to	the	caller	after	the	if-else	statement.
	
That’s	all	there	is	to	the	FileReader	class.	We	do	not	need	to	declare	a
constructor	for	this	class.	We’ll	just	use	the	default	constructor	that	C#	creates
for	us	automatically.	The	summary	for	the	FileReader	class	is	shown	below:
Methods
	
public	List<Staff>	ReadFile()

	
The	PaySlip	Class
	
Now,	let’s	code	the	PaySlip	class.	This	class	is	slightly	different	from	the	other
classes	we’ve	seen	so	far.	In	addition	to	having	fields,	properties,	methods	and
constructors,	the	PaySlip	class	also	has	an	enum	called	MonthsOfYear.
	
Fields
	
First,	let’s	declare	the	fields.	The	class	has	two	private	int	fields	named	month
and	year.	Try	declaring	them.
	
Enum
	
Next,	we	shall	declare	an	enum	named	MonthsOfYear	inside	the	PaySlip	class.
MonthsOfYear	represents	the	twelve	months	of	the	year,	where	JAN	=	1,	FEB	=
2	etc.	Try	declaring	this	enum	yourself.	You	do	not	need	to	specify	any	access
modifier	for	this	enum.	An	enum	declared	inside	a	class	is	private	by	default.
	
Constructor
	
Now,	try	adding	a	constructor	to	the	PaySlip	class.	The	constructor	is	public
and	has	two	int	parameters	payMonth	and	payYear.	Inside	the	constructor,	we
assign	the	two	parameters	to	the	private	fields	month	and	year	respectively.
	
Methods
	

Next,	let	us	code	the	GeneratePaySlip()	method.	This	method	takes	in	a	list	of
Staff	objects	and	does	not	return	anything.	The	method	declaration	is
public	void	GeneratePaySlip(List<Staff>	myStaff)

{

}

	
Inside	the	method,	we	declare	a	string	variable	called	path.	Next,	still	within
the	GeneratePaySlip()	method,	we	use	a	foreach	loop	to	loop	through	the
elements	in	myStaff.	This	can	be	done	as	follows:
foreach	(Staff	f	in	myStaff)

{

}

	
Everything	that	follows	from	here	for	the	GeneratePaySlip()	method	is	to	be
coded	within	the	curly	braces	of	the	foreach	loop.
	
First,	we	assign	a	value	to	the	path	variable	based	on	the	name	of	the	staff.
	
Recall	that	the	Staff	class	has	a	property	called	NameOfStaff?
	
Suppose	NameOfStaff	=	“Yvonne”,	we	want	to	assign	the	string	“Yvonne.txt”	to
the	path	variable.
	
How	would	you	do	that?	Try	coding	it	yourself.	(Hint:	You	can	use
f.NameOfStaff	to	access	the	staff’s	name	and	use	the	+	operator	to	concatenate
the	“.txt”	extension)
After	assigning	a	value	to	path,	we	want	to	instantiate	a	StreamWriter	object	to
write	to	the	file	at	the	path	specified	by	the	path	variable,	overwriting	any
existing	content	on	the	file	so	that	each	pay	slip	generated	does	not	contain
content	from	the	previous	month.	Refer	to	Chapter	11	if	you	have	forgotten	how
to	use	the	StreamWriter	class.	Let’s	call	the	StreamWriter	object	sw.
	
We	can	then	proceed	to	use	a	series	of	sw.WriteLine()	statements	to	generate
the	pay	slip	of	each	employee.	

A	typical	payslip	for	a	manager	looks	like	this:
1	PAYSLIP	FOR	DEC	2010

2	==========================

3	Name	of	Staff:	Yvonne

4	Hours	Worked:	1231

5

6	Basic	Pay:	$61,550.00

7	Allowance:	$1,000.00

8

9	==========================

10	Total	Pay:	$62,550.00

11	==========================

	
The	numbers	on	the	left	are	added	for	reference	and	are	not	part	of	the	actual	pay
slip.
	
A	typical	payslip	for	an	admin	staff	looks	similar	except	for	line	7.	For	an	admin
staff,	line	7	will	read	something	like:
Overtime	Pay:	$1,286.50

	
Let	us	now	look	at	how	to	generate	this	payslip.
	
To	write	line	1,	we	need	to	access	the	month	and	year	fields	in	the	class.	As
month	is	an	integer,	we	need	to	cast	it	into	a	MonthsOfYear	enum	value	so	that	it
will	be	written	as	DEC	instead	of	12.	The	statement	below	shows	how	line	1	can
be	written.
	
sw.WriteLine("PAYSLIP	FOR	{0}	{1}",	(MonthsOfYear)month,	year);

	
Line	2	is	easy	to	write.	It	is	simply	made	up	of	a	series	of	equal	signs	(=).	Try
coding	it	yourself.
	
To	write	lines	3	and	4,	we	need	to	access	the	NameOfStaff	and	HoursWorked
properties	in	the	Staff	class.	The	statement	below	shows	how	it	can	be	done	for
line	3.
	
sw.WriteLine("Name	of	Staff:	{0}",	f.NameOfStaff);

	
Try	coding	line	4	yourself.	

Next,	we	use	a	sw.WriteLine(“”);	statement	to	print	an	empty	line.
	
To	write	line	6,	we	need	to	access	the	BasicPay	property	in	the	Staff	class.	In
addition,	we	also	need	to	use	the	C	specifier	to	display	the	BasicPay	property	in
currency	notation	(refer	to	Chapter	5).	Try	it	yourself.
	
Line	7	is	harder	as	we	need	to	determine	the	runtime	type	of	the	current	object	in
the	foreach	loop.	We	learned	how	to	do	that	in	Chapter	8.	If	the	current	instance

is	a	Manager	object,	we	access	and	print	the	Allowance	property	in	the	Manager
class.	In	order	to	access	the	Allowance	property	in	the	Manager	class,	we	need	to
cast	f	into	a	Manager	object	by	writing
	
((Manager)f).Allowance

	
If	the	current	instance	is	an	Admin	object,	we	access	and	print	the	Overtime
property	in	the	Admin	class.	Try	coding	line	7	yourself.
	
Line	8	is	another	empty	line	and	line	9	is	made	up	of	a	series	of	equal	signs.	Line
10	shows	the	total	pay	of	the	current	staff,	which	we	can	get	from	the	TotalPay
property	of	the	Staff	class.	Finally,	line	11	is	another	line	made	up	of	equal
signs.	Try	coding	these	lines	yourself.
	
Last	but	not	least,	after	generating	the	pay	slip	for	each	staff,	we	need	to	close
the	file	using	the	sw.Close()	method.
	
That	brings	us	to	the	end	of	the	GeneratePaySlip()	method.	Once	you	have
finished	coding	this	method,	we	can	move	on	to	the	next	method	in	the	PaySlip
class.
	
The	next	method	generates	a	summary	of	employees	who	worked	less	than	10
hours	in	that	month.	Let’s	call	this	method	GenerateSummary().
	
Like	the	GeneratePaySlip()	method,	the	GenerateSummary()	method	is
public,	takes	in	a	list	of	Staff	objects	and	does	not	return	any	value.	Try
declaring	this	method	yourself.
	
Inside	the	GenerateSummary()	method,	we	use	LINQ	to	select	all	employees
who	worked	less	than	10	hours	in	that	month.	We	want	to	know	the
NameOfStaff	and	HoursWorked	properties	for	these	employees.	In	addition,	we
want	to	arrange	the	result	in	ascending	order	based	on	NameOfStaff.	Try	coding
this	LINQ	statement	yourself	and	assigning	the	result	to	a	var	variable	called
result.	You	can	refer	to	Chapter	10	for	help.
	
Done?
	
Good.
	
Next,	let	us	declare	a	string	variable	path	and	assign	the	string	“summary.txt”	to

it.
	
Now	we	are	ready	to	write	to	“summary.txt”.	Declare	a	StreamWriter	instance
to	write	to	this	file.	A	typical	“summary.txt”	file	looks	like	this	(numbers	on	the
left	are	added	for	reference):
1	Staff	with	less	than	10	working	hours

2

3	Name	of	Staff:	Carol,	Hours	Worked:	2

4	Name	of	Staff:	Peter,	Hours	Worked:	6

	
Lines	1	and	2	should	be	quite	easy	to	code.	Try	coding	them	yourself.
	
To	print	lines	3	and	4,	we	need	to	use	a	foreach	loop	to	loop	through	each
element	in	the	result	variable	obtained	from	the	LINQ	statement.	Try	coding
this	yourself.	
After	displaying	the	result,	you	can	close	the	“summary.txt”	file	using	the
Close()	method.
	
That’s	it	for	our	GenerateSummary()	method.
	
After	coding	the	GenerateSummary()	method,	we	simply	need	to	code	the
ToString()	method	and	our	PaySlip	class	is	complete.	The	table	below	shows	a
summary	of	the	PaySlip	class.
	
Fields
	
private	int	month

private	int	year

	
Enum
	
enum	MonthsOfYear

	
Constructor
	
public	PaySlip(int	payMonth,	int	payYear)

	
Methods
	
public	void	GeneratePaySlip(List<Staff>	myStaff)

public	void	GenerateSummary(List<Staff>	myStaff)

public	override	string	ToString()

	
The	Program	Class
	
We’ve	now	come	to	the	most	important	part	of	the	project	–	the	Program	class.
The	Program	class	only	has	one	method	–	the	Main()	method.
	
The	Main()	Method
	
First,	let	us	declare	four	local	variables	for	the	Main()	method.	The	first	is	a	list
of	Staff	objects.	We	shall	call	this	list	myStaff.	The	next	is	a	FileReader	object
called	fr.	The	remaining	two	are	int	variables.	Let’s	call	them	month	and	year
and	initialize	them	to	zero.	Try	declaring	these	local	variables	yourself.
	
Now,	we	shall	use	a	while	loop	and	a	try	catch	statement	to	prompt	users	to
input	the	year	for	the	payslip.	The	loop	will	repeatedly	prompt	users	to	enter	the
year	until	it	gets	a	valid	value.
	
To	do	that,	we	use	the	while	loop	below:
	
1	while	(year	==	0)

2	{

3	Console.Write("\nPlease	enter	the	year:	");

4

5	try

6	{

7	//Code	to	convert	the	input	to	an	integer

8	}

9	catch	(FormatException)

10	{

11	//Code	to	handle	the	exception

12	}

13	}

	
Inside	the	try	block	(Line	7),	we	read	the	value	that	the	user	entered	and	try	to
convert	it	to	an	integer.	We	then	assign	it	to	the	variable	year.	If	it	is	successful,
year	will	no	longer	be	zero	and	the	while	loop	will	exit.	Try	coding	the	try
block	yourself.
	
If	the	conversion	is	not	successful,	we	catch	the	error	in	the	catch	block	to
prevent	the	program	from	crashing.	Try	coding	an	error	message	in	the	catch
block	(Line	11).	When	conversion	is	unsuccessful,	year	remains	as	zero	and	the

while	loop	continues.	Users	will	be	repeatedly	prompted	to	enter	the	year	until
they	enter	a	valid	value.
	
Once	you	are	done	with	this	while	block,	you	can	move	on	to	code	the	while
block	to	prompt	users	to	enter	the	month.	The	while	block	for	the	month	variable
is	very	similar	to	the	one	for	the	year	variable.	However,	we	want	to	do	more
checks	for	the	month	variable.
	
In	the	try	block,	we	first	try	to	convert	the	input	to	an	integer	and	assign	it	to	the
month	variable.	If	it	is	successful,	we	use	an	if	statement	to	check	if	month	is
less	than	1	or	greater	than	12.	If	it	is,	the	input	is	invalid.	We’ll	display	an	error
message	to	inform	users	that	they	have	entered	an	invalid	value.	In	addition,
we’ll	also	reset	month	to	zero	so	that	the	while	loop	will	repeat	itself.	Try	coding
this	try	block	yourself.
	
After	coding	the	try	block,	you	can	proceed	to	code	the	catch	block	which
simply	informs	users	of	the	error.
	
Done?	Good.
	
Next,	we	shall	add	items	to	our	myStaff	list.	We	do	that	by	using	the	fr	object	to
call	the	ReadFile()	method	in	the	FileReader	class	and	assigning	the	result	to
myStaff.
	
We	can	then	start	to	calculate	the	pay	for	each	staff.	We’ll	use	the	following	for
loop	for	this.
	
for	(int	i	=	0;	i	<	myStaff.Count;	i++)

{

try

{

}

catch	(Exception	e)

{

}

}

	
Within	the	for	loop,	we	use	a	try	catch	statement.	In	the	try	block,	we	do	the
following:
First,	prompt	the	user	to	enter	the	number	of	hours	worked	for	each	staff.	An
example	of	a	prompt	is	

Enter	hours	worked	for	Yvonne:

	
where	“Yvonne”	is	the	name	of	the	staff.	You	need	to	access	the	NameOfStaff
property	for	each	staff	by	writing	myStaff[i].NameOfStaff.
	
Next,	read	the	input,	try	to	convert	it	to	an	integer	and	assign	it	to	the
HoursWorked	property	of	the	Staff	object.
	
After	that,	we	call	the	CalculatePay()	method	on	the	Staff	object	to	calculate
the	pay	of	that	staff.
	
Finally,	we	use	the	ToString()	method	to	get	information	about	the	Staff
object	and	display	this	information	on	the	screen	using	the
Console.WriteLine()	method.
	
Try	coding	this	try	block	yourself.
	
Next	in	the	catch	block,	we	try	to	catch	any	errors	that	might	occur.	Within	this
catch	block,	we	simply	display	an	error	message	and	reduce	the	value	of	i	by
one	(i--;)	so	that	the	for	loop	will	iterate	again	for	the	current	Staff	object
instead	of	moving	on	to	the	next	element	in	myStaff.
	
Try	coding	this	catch	block	yourself.
	
With	that,	we’ve	come	to	the	end	of	the	for	loop.	We	are	now	ready	to	generate
the	pay	slips	for	each	staff.	To	do	that,	we	need	to	first	declare	and	instantiate	a
PaySlip	object.	Let’s	call	that	object	ps.	We	pass	in	the	variables	month	and
year	to	the	constructor	when	instantiating	the	object.
	
Next,	we	use	the	ps	object	to	invoke	the	GeneratePaySlip()	and
GenerateSummary()	methods	and	pass	in	myStaff	as	the	argument.	Finally,	we
add	a	Console.Read();	statement	to	prevent	the	console	from	closing
immediately	after	the	program	ends.
	
Done?
	
If	you	have	successfully	coded	the	Main()	program,	give	yourself	a	pat	on	the
shoulders.	You	have	just	coded	a	complete	program	in	C#!	Well	done!
	
If	you	have	problems	coding	it,	keep	trying.	You	can	refer	to	the	suggested

If	you	have	problems	coding	it,	keep	trying.	You	can	refer	to	the	suggested
solution	in	Appendix	A	for	reference.
	
Once	you	are	done	coding	the	Main()method,	you	are	ready	to	run	your
program.	Excited?	Let’s	do	it!
	
Click	on	the	“Start”	button	to	run	the	program	and	key	in	the	values	requested.
The	pay	slips	generated	can	be	found	in	the	same	folder	as	the	.exe	file,	which	is
in	the	CSProject	>	CSProject	>	Bin	>	Debug	folder.	Try	making	errors	and
keying	in	alphabetical	letters	instead	of	numbers.	Play	around	with	the	program
to	see	how	it	works.	Does	everything	work	as	expected?	If	it	does,	great!	You
have	done	an	excellent	job!	Try	to	think	of	ways	to	improve	the	software.	For
instance,	you	can	include	more	checks	to	ensure	that	users	entered	the	correct
values	for	year	and	HoursWorked.
	
If	your	code	does	not	work,	compare	it	with	the	sample	answer	and	try	to	figure
out	what	went	wrong.	You’ll	learn	a	lot	by	analysing	your	mistakes.	Problem
solving	is	where	the	fun	lies	and	where	the	reward	is	the	greatest.	Have	fun	and
never	give	up!	The	sample	answer	can	be	found	in	Appendix	A.
	

Thank	You
	
We’ve	come	to	the	end	of	the	book.	Thank	you	for	reading	this	book	and	I	hope
you	have	enjoyed	the	book.	More	importantly,	I	sincerely	hope	the	book	has
helped	you	master	the	fundamentals	of	C#	programming.
	
I	know	you	could	have	picked	from	a	dozen	of	books	on	C#	programming,	but
you	took	a	chance	with	this	book.	Thank	you	once	again	for	downloading	this
book	and	reading	all	the	way	to	the	end.	Please	try	the	exercises	and	the	project.
You’ll	learn	a	lot	by	doing.
	
Now	I’d	like	to	ask	for	a	“small”	favor.	Could	you	please	take	a	minute	or	two	to
leave	a	review	for	this	book	on	Amazon?
	
This	feedback	will	help	me	tremendously	and	will	help	me	continue	to	write
more	guides	on	programming.	If	you	like	the	book	or	have	any	suggestions	for
improvement,	please	let	me	know.	I	will	be	deeply	grateful.	:)
Last	but	not	least,	remember	you	can	download	the	source	code	for	the	project	at
http://www.learncodingfast.com/csharp.
	
You	can	also	contact	me	at	jamie@learncodingfast.com.
	

http://www.learncodingfast.com/csharp
mailto:jamie@learncodingfast.com

Appendix	A	–	Project	Answer
	
The	source	code	for	this	program	can	be	downloaded	at
http://www.learncodingfast.com/csharp.
	
using	System;

using	System.Collections.Generic;

using	System.Linq;

using	System.Text;

using	System.Threading.Tasks;

using	System.IO;

	
namespace	CSProject

{

class	Program

{

static	void	Main(string[]	args)

{

List<Staff>	myStaff	=	new	List<Staff>();

FileReader	fr	=	new	FileReader();

int	month	=	0,	year	=	0;

	
while	(year	==	0)

{

Console.Write("\nPlease	enter	the	year:	");

	
try

{

year	=	Convert.ToInt32(Console.ReadLine());

}

catch	(Exception	e)

{

Console.WriteLine(e.Message	+	"	Please	try	again.");

}

}

	
while	(month	==	0)

{

Console.Write("\nPlease	enter	the	month:	");

	
try

{

month	=	Convert.ToInt32(Console.ReadLine());

	

http://www.learncodingfast.com/csharp

if	(month	<	1	||	month	>	12)

{

Console.WriteLine("Month	must	be	from	1	to	12.	Please	try	again.");

month	=	0;

}

}

catch	(Exception	e)

{

Console.WriteLine(e.Message	+	"	Please	try	again.");

}

}

	
myStaff	=	fr.ReadFile();

	
for	(int	i	=	0;	i<	myStaff.Count;	i++)

{

try

{

Console.Write("\nEnter	hours	worked	for	{0}:	",

myStaff[i].NameOfStaff);

myStaff[i].HoursWorked	=	Convert.ToInt32(Console.ReadLine());

myStaff[i].CalculatePay();

Console.WriteLine(myStaff[i].ToString());

}

catch	(Exception	e)

{

Console.WriteLine(e.Message);

i--;

}

}

	
PaySlip	ps	=	new	PaySlip(month,	year);

ps.GeneratePaySlip(myStaff);

ps.GenerateSummary(myStaff);

	
Console.Read();

}

}

	
class	Staff

{

private	float	hourlyRate;

private	int	hWorked;

	
public	float	TotalPay	{	get;	protected	set;	}

public	float	BasicPay	{	get;	private	set;	}

public	string	NameOfStaff	{	get;	private	set;	}

	
public	int	HoursWorked

{

get

{

return	hWorked;

}

set

{

if	(value	>	0)

hWorked	=	value;

else

hWorked	=	0;

}

}

	
public	Staff(string	name,	float	rate)

{

NameOfStaff	=	name;

hourlyRate	=	rate;

}

	
public	virtual	void	CalculatePay()

{

Console.WriteLine("Calculating	Pay...");

	
BasicPay	=	hWorked	*	hourlyRate;

TotalPay	=	BasicPay;

}

	
public	override	string	ToString()

{

return	"\nNameOfStaff	=	"	+	NameOfStaff

+	"\nhourlyRate	=	"	+	hourlyRate	+	"\nhWorked	=	"	+	hWorked

+	"\nBasicPay	=	"	+	BasicPay	+	"\n\nTotalPay	=	"	+	TotalPay;

}

}

	
class	Manager	:	Staff

{

private	const	float	managerHourlyRate	=	50;

	
public	int	Allowance	{	get;	private	set;	}

	
public	Manager(string	name)	:	base(name,	managerHourlyRate)	{	}

	

public	override	void	CalculatePay()

{

base.CalculatePay();

	
Allowance	=	1000;

	
if	(HoursWorked	>	160)

TotalPay	=	BasicPay	+	Allowance;

}

	
public	override	string	ToString()

{

return	"\nNameOfStaff	=	"	+	NameOfStaff	+	"\nmanagerHourlyRate	=	"

+	managerHourlyRate	+	"\nHoursWorked	=	"	+	HoursWorked	+

"\nBasicPay	=	"

+	BasicPay	+	"\nAllowance	=	"	+	Allowance	+	"\n\nTotalPay	=	"	+

TotalPay;

}

}

	
class	Admin	:	Staff

{

private	const	float	overtimeRate	=	15.5f;

private	const	float	adminHourlyRate	=	30f;

	
public	float	Overtime	{	get;	private	set;	}

	
public	Admin(string	name)	:	base(name,	adminHourlyRate)	{	}

	
public	override	void	CalculatePay()

{

base.CalculatePay();

	
if	(HoursWorked	>	160)

Overtime	=	overtimeRate	*	(HoursWorked	-	160);

}

	
public	override	string	ToString()

{

return	"\nNameOfStaff	=	"	+	NameOfStaff

+	"\nadminHourlyRate	=	"	+	adminHourlyRate	+	"\nHoursWorked	=	"	+

HoursWorked

+	"\nBasicPay	=	"	+	BasicPay	+	"\nOvertime	=	"	+	Overtime

+	"\n\nTotalPay	=	"	+	TotalPay;

}

}

	
class	FileReader

{

public	List<Staff>	ReadFile()

{

List<Staff>	myStaff	=	new	List<Staff>();

string[]	result	=	new	string[2];

string	path	=	"staff.txt";

string[]	separator	=	{	",	"	};

	
if	(File.Exists(path))

{

using	(StreamReader	sr	=	new	StreamReader(path))

{

while	(!sr.EndOfStream)

{

result	=	sr.ReadLine().Split(separator,

StringSplitOptions.RemoveEmptyEntries);

	
if	(result[1]	==	"Manager")

myStaff.Add(new	Manager(result[0]));

else	if	(result[1]	==	"Admin")

myStaff.Add(new	Admin(result[0]));

}

sr.Close();

}

}else

{

Console.WriteLine("Error:	File	does	not	exist");

}

	
return	myStaff;

}

}

	
class	PaySlip

{

private	int	month;

private	int	year;

	
enum	MonthsOfYear	{	JAN	=	1,	FEB	=	2,	MAR,	APR,	MAY,	JUN,	JUL,	AUG,

SEP,	OCT,	NOV,	DEC	}

	
public	PaySlip(int	payMonth,	int	payYear)

{

month	=	payMonth;

year	=	payYear;

}

	
public	void	GeneratePaySlip(List<Staff>	myStaff)

{

string	path;

	
foreach	(Staff	f	in	myStaff)

{

path	=	f.NameOfStaff	+	".txt";

	
using	(StreamWriter	sw	=	new	StreamWriter(path))

{

sw.WriteLine("PAYSLIP	FOR	{0}	{1}",	(MonthsOfYear)month,	year);

sw.WriteLine("====================");

sw.WriteLine("Name	of	Staff:	{0}",	f.NameOfStaff);

sw.WriteLine("Hours	Worked:	{0}",	f.HoursWorked);

sw.WriteLine("");

sw.WriteLine("Basic	Pay:	{0:C}",	f.BasicPay);

	
if	(f.GetType()	==	typeof(Manager))

sw.WriteLine("Allowance:	{0:C}",	((Manager)f).Allowance);

else	if	(f.GetType()	==	typeof(Admin))

sw.WriteLine("Overtime:	{0:C}",	((Admin)f).Overtime);

	
sw.WriteLine("");

sw.WriteLine("====================");

sw.WriteLine("Total	Pay:	{0:C}",	f.TotalPay);

sw.WriteLine("====================");

	
sw.Close();

}

}

	
}

	
public	void	GenerateSummary(List<Staff>	myStaff)

{

var	result

=	from	f	in	myStaff

where	f.HoursWorked	<	10

orderby	f.NameOfStaff	ascending

select	new	{	f.NameOfStaff,	f.HoursWorked	};

	
string	path	=	"summary.txt";

	
using	(StreamWriter	sw	=	new	StreamWriter(path))

{

sw.WriteLine("Staff	with	less	than	10	working	hours");

sw.WriteLine("");

	
foreach	(var	f	in	result)

sw.WriteLine("Name	of	Staff:	{0},	Hours	Worked:	{1}",

f.NameOfStaff,	f.HoursWorked);

	
sw.Close();

}

}

	
public	override	string	ToString()

{

return	"month	=	"	+	month	+	"year	=	"	+	year;

}

}

}

	
	
	

	Chapter 5: Making our Program Interactive
	Chapter 6: Making Choices and Decisions
	Chapter 7: Object-Oriented Programming Part 1
	Chapter 8: Object-Oriented Programming Part 2
	Chapter 9: Enum and Struct
	Chapter 10: LINQ
	Chapter 11: File Handling

