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SI UNITS

Base Units

Quantity  Unit Symbol
Length l metre m
Mass m kilogram kg
Time t second s
Electric current I ampere A
Temperature T kelvin K
*Amount of substance n mole mol
Luminous intensity candela cd

*The mole is the amount of substance that contains as many elementary entities as
there are atoms in 0.012 kg of carbon-12. The elementary entities may be atoms, ions,
electrons, other particles or groups of particles.

Supplementary Units

Plane angle radian rad
Solid angle steradian sr

Derived Units with Special Names

Equivalence in
Quantity Special Symbol

other derived base unitsname
units

Frequency hertz Hz — s–1

Force, weight newton N — kg m s–2

Stress, strength, pascal Pa N m–2 kg m–1 s–2

pressure
Energy, work, joule J N m kg m2 s–2

quantity of heat
Power watt W J s–1 kg m2 s–3

Electric charge coulomb C — A s
Electric potential volt V W A–1 kg m2 s–3 A–1

Resistance ohm � V A–1 kg m2 s–3 A–2

Capacitance farad F C V–1 kg–1 m–2 s4 A2

Magnetic flux weber Wb V s kg m2 s–2 A–1

Magnetic flux tesla T Wb m–2 kg s–2 A–1

density
Inductance henry H Wb A–1 kg m2 s–2 A–2
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Prefix Names of Multiples and Submultiples

Factor by which
unit is multiplied Name Symbol

1012 tera T
109 giga G
106 mega M
103 kilo k
102 hecto h
101 deka da

10–1 deci d
10–2 centi c
10–3 milli m
10–6 micro �
10–9 nano n
10–12 pico p
10–15 femto f
10–18 atto a

Note: All multiple prefix symbols (except kilo, hecto and deka) are written in capitals
and all submultiple symbols are written in lower case letters.

Have a feel for SI units !

Sir Issac Newton, the Apple and SI units

Length unit: 1 metre ~ distance the apple travelled
Time unit: 1 second ~ time of fall of the apple
Force unit: 1 newton ~ weight of the apple

xii SI Units



Conventions to be followed when using SI units

1. When writing unit symbols, do not use full stops, plurals, dots or dashes.

2. No degree symbol for kelvin, write as K and not as °K.

3. No kgm (kilogram mass) or kgf (kilogram force). The mass unit is
kilogram (kg) and the force unit is newton (N).

4. No space between the prefix symbol and the unit symbol, e.g.,
meganewton should be written as MN and not as M N.

5. One space between two symbols for clarity, e.g., metre second should be
written as m s and not as ms, which means millisecond.

6. All symbols associated with proper names are written with a capital, e.g.,
A, K, N, etc. When they are written as a word, the lower case is used
throughout: ampere, kelvin and newton.

7. Prefix symbols for multiples and submultiples are preferred in steps of 103.
Thus, tera (T), giga (G), mega (M), kilo (k), milli (m), micro (�), nano (n)
and pico (p) are preferred prefix symbols.

8. Attach prefix to numerator and not to denominator, e.g., use MN m–2

instead of N mm–2, even though both are identical.

9. Three digits are grouped together on either side of the decimal point, e.g.,

1.256 637 83

60 023

Four digit number need not be so grouped, e.g.,

7386

0.6921

Some non-SI units generally accepted

1. degree (celsius), °C.

2. minutes, hours, days, months and years.

3. Angstrom Å for 10–10 m.

4. Electronvolt, eV for energy equal to 1.602 � 10–19 J. (1 electronvolt is the
kinetic energy acquired by an electron when falling through a potential of
1 volt.)

SI Units xiii



PHYSICAL CONSTANTS

Avogadro’s number N = 6.023 � 1023 mol–1

Boltzmann’s constant k = 1.380 � 10–23 J K–1

= 8.614 � 10–5 eV K–1

Gas constant R = 8.314 J mol–1 K–1

Planck’s constant h = 6.626 � 10–34 J s

Electronic charge e = 1.602 � 10–19 C

Electron rest mass m0 = 9.109 � 10–31 kg

Velocity of light c = 2.998 � 108 m s–1

Bohr magneton (magnetic moment) �B = 9.273 � 10–24 A m2

Permittivity of free space �0 = 8.854 � 10–12 F m–1

Permeability of free space �0 = 4� � 10–7 H m–1

= 1.257 � 10–6 H m–1

Faraday’s constant F = 96.49 kC mol–1 (of electrons)

Atomic mass unit (amu) 1/(103N) = 1.660 � 10–27 kg

Acceleration due to gravity g = 9.81 m s–2

xiv



CONVERSION FACTORS

1 inch = 25.4 mm
1 nm = 10–9 m

1 Å = 10–10 m = 0.1 nm
1° = 1/57.3 rad

T °C = (T + 273.15) K
T °F = 5/9(T + 459.67) K
1 per °F = 9/5 K–1

1 kgf = 9.81 N
1 lb = 4.45 N

1 dyne = 10–5 N
1 dyne/cm = 10–3 N m–1

1 atmosphere = 0.101 325 MN m–2

1 bar = 10–1 MPa
1 psi = 6.89 kN m–2

1 ksi (103 psi) = 6.89 MN m–2

1 ton/sq.in. = 15.46 MN m–2

1 kgf/cm2 = 98.1 kN m–2

1 kgf/mm2 = 9.81 MN m–2

1 dyne/cm2 = 0.1 N m–2

1 torr (mm of Hg) = 133.3 N m–2

1 kgf/mm3/2 = 0.310 MN m–3/2

1 ksi �in = 1.10 MN m–3/2

1 eV = 1.602 � 10–19 J
1 erg = 10–7 J

1 calorie = 4.18 J
1 eV/entity = 96.49 kJ mol–1

1 erg/cm = 10–5 J m–1

1 erg/cm2 = 10–3 J m–2

1 erg/cm3 = 0.1 J m–3

1 lb-in/in2 = 175 J m–2

1 lb/cu.in = 27 680 kg m–3

1 cm/cm3 = 104 m m–3

1 mole/cm2/sec = 104 mol m–2 s–1

1 mole/cm3 = 106 mol m–3

1 cm2/sec = 10–4 m2 s–1

xv



1 poise = 0.1 Pa s
1 debye = 3.33 � 10–30 C m
1 mA/cm2 = 10 A m–2

1 A hr = 3.6 kC
1 ohm cm = 10–2 ohm m
1 mho/cm = 102 ohm–1 m–1

1 volt/mil = 39 370 V m–1

1 cm2/volt sec = 10–4 m2 V–1s–1

1 gauss = 10–4 Wb m–2

1 oersted = 79.6 A m–1
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Name Forms Sound Name Forms Sound

alpha � a nu � n
beta � b xi �, � x
gamma �, � g omicron � o

delta �, � d pi �, 	 p
epsilon � e rho � r
zeta � z sigma �, 
 s

eta � e tau � t
theta �, � th upsilon � u
iota � i phi �, � ph

kappa � k khi � kh
lambda �,  l psi �, � ps
mu � m omega �, � o
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In this introductory chapter, we briefly discuss the nature of Materials Science
and Engineering. After defining or explaining what Materials Science and
Engineering is, we classify engineering materials according to their nature and
the various categories of applications. Then we discuss the different levels of the
internal structure of materials. Finally, we emphasize the importance of the
structure–property relationships in materials, outlining the general approach of
the ensuing chapters.

1.1 Materials Science and Engineering

The phrase ‘Materials Science and Engineering’ needs some elucidation for the
beginner. The word ‘materials’ here does not refer to all matter in the Universe.
If this were so, it would include all the physical sciences and the life sciences—
from astronomy to zoology! By including the word ‘inanimate’ in the definition,
we can exclude the life sciences from our purview. Further, we can restrict the
definition only to matter useful to mankind. Even here, the range is too broad for
the purposes of the engineer. For example, we can list a large number of things
useful to man, such as food, medicines, explosives, chemicals, water, steel,
plastics and concrete, only some of which qualify as engineering materials. We
then have to be more specific and define materials as that part of inanimate
matter, which is useful to the engineer in the practice of his profession. In the
currently understood sense of the term, materials refer only to solid materials,
even though it is possible to quote a number of examples of liquid and gaseous
materials such as sulphuric acid and steam, which are useful to the engineer.

The word ‘science’ in the phrase refers to the physical sciences, in particular
to chemistry and physics. As we confine ourselves mainly to solids in materials
science, the subject is related to solid state chemistry and solid state physics.
The word ‘engineering’ indicates that the engineering usefulness of the matter
under study is always kept in mind, irrespective of whether the basic laws of
science can be applied rigorously or not. Where the basic laws cannot be
applied, the materials engineer does not give up what is important to him from a
practical point of view. He uses the best possible approximation, develops
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empirical rules, and extrapolates available information to unknown situations. In
this respect, materials science and engineering draws heavily from the
engineering sciences such as metallurgy, ceramics and polymer science. These,
in their own time, have grown out of their interaction with the basic sciences of
chemistry and physics.

1.2 Classification of Engineering Materials

Having defined the limits of materials that come under our purview, we can
classify them in three broad groups according to their nature:

(i) Metals and alloys

(ii) Ceramics and glasses

(iii) Organic polymers.

Metals are familiar objects with a characteristic appearance; they are capable
of changing their shape permanently, and have good thermal and electrical
conductivity. An alloy is a combination of more than one metal. Ceramics and
glasses are nonmetallic inorganic substances, which are brittle and have good
thermal and electrical insulating properties. Organic polymers are relatively inert
and light, and generally have a high degree of plasticity. Figure 1.1 lists typical
examples from each of these three groups of materials. In addition, examples of
materials which lie between two groups are also shown.

Metals and Alloys
Steels, aluminium, copper,

silver, gold
Brasses, bronzes, manganin,

invar
Superalloys

Boron rare earth
magnetic alloys

Ceramics and Glasses
MgO, CdS, Al2O3, SiC,

BaTiO3

Silica, soda-lime-glass,
concrete, cement

Ferrites and garnets
Ceramic

superconductors

Organic Polymers
Plastics: PVC, PTFE,

polyethylene
Fibres: terylene, nylon,

cotton
Natural and synthetic

rubbers
Leather

Si
, 

G
e,

 G
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s

B
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etal-reinforced plastics

Fig. 1.1 The three major groups of engineering materials.

Glass fibre-reinforced
plastics



An alternative way of classifying materials is according to the three major
areas in which they are used:

(i) Structures
(ii) Machines

(iii) Devices.

Structures (not to be confused with the internal structure of a material) refer to
the objects without moving parts erected by engineers, such as a concrete dam, a
steel melting furnace, a suspension bridge and an oil refinery tower. Machines
include lathes, steam and gas turbines, engines, electric motors and generators.
Devices are the most recent addition to engineering materials and refer to such
innovations as a transistor, a photoelectric cell, piezoelectric pressure gauges,
ceramic magnets and lasers.

Invariably, in each category of applications, we find materials from all the
three groups described above. To give some examples, an aircraft structure is built
of aluminium alloys and plastics; a steel melting furnace is built of refractory
oxides and structural steel; safety helmets are made of glass-reinforced plastics.
Similarly, we have metal-oxide semiconductors. The block diagram in Fig. 1.2
depicts this interplay between material groups and categories of applications.

Metals and Alloys Ceramics and Glasses Polymers

Engineering Materials

Applications

Structures Machines Devices

Fig. 1.2 Each category of engineering application requires materials from any or
all of the three groups of materials.

1.3 Levels of Structure

The internal structure of a material, simply called the structure, can be studied
at various levels of observation. The magnification and resolution of the physical
aid used are a measure of the level of observation. The higher the magnification,
the finer is the level. The details that are disclosed at a certain level of
observation are generally different from the details disclosed at some other level.
Henry Sorby was one of the first to realize this, when he wrote in 1886:

Levels of Structure 3
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Though I had studied the microscopical structure of iron and steel for many
years, it was not until last autumn that I employed what may be called high
powers. This was partly because I did not see how this could be satisfactorily
done and partly because it seemed to me unnecessary. I had found that in
almost every case a power (magnification) of 50 linear showed on a smaller
scale as much as one of 200, and this led me to conclude that I had seen the
ultimate structure. Now that the results are known, it is easy to see that my
reasoning was false, since a power of 650 linear enables us to see a structure of
an almost entirely new order.

We have now come a long way since Sorby’s time. Magnifications with
matching resolutions of a million times linear are now common.

Depending on the level, we can classify the structure of materials as:

Macrostructure
Microstructure
Substructure
Crystal structure
Electronic structure
Nuclear structure.

Macrostructure of a material is examined with naked eye or under a low
magnification. The internal symmetry of the atomic arrangements in a crystalline
material may reflect in the external form of a crystal such as quartz. Large
individual crystals of a crystalline material may be visible to the naked eye, as in
a brass doorknob by the constant polishing and etching action of the human
hand and sweat.

Microstructure generally refers to the structure as observed under the optical
microscope, see Fig. 1.3. This microscope can magnify a structure up to about
1500 times linear, without loss of resolution of details of the structure. The limit

Fig. 1.3 Crystal boundaries in nickel ferrite, Fe2NiO4, magnified 900 times linear.
(W.D. Kingery, Introduction to Ceramics, with permission from John Wiley,

New York)



of resolution of the human eye is about 0.1 mm (10–4 m), that is, the eye can
distinguish two lines as separate lines, only when their distance of separation is
more than 0.1 mm. The optical microscope can resolve details down to a limit of
about 0.1 �m (10–7 m).

Substructure refers to the structure obtained by using a microscope with a
much higher magnification and resolution than the optical microscope. In an
electron microscope, a magnification of 1 000 000 times linear is possible. By
virtue of the smaller wavelength of electrons as compared to visible light, the
resolving power also increases correspondingly so that much finer details show
up in the electron microscope. We can obtain a wealth of additional information
on very fine particles or on crystal imperfections such as dislocations. Figure 1.4

Fig. 1.4 Substructure of a Ni–Fe–Cr alloy showing curved dislocation lines,
magnified 30 000 times in an electron microscope.

(R.B. Nicholson, Strengthening Methods in Crystals, with permission from Applied
Science Publishers Ltd., Barking, UK)

Levels of Structure 5

shows dislocations imaged in a transmission electron microscope. Here, electrons
pass through a thin foil of the specimen and the associated diffraction effects
produce the image. The electron diffraction patterns obtained along with the
photograph of the substructure greatly aid in understanding the processes taking
place in materials on such a minute scale.

In a scanning electron microscope, an electron beam is scanned across the
surface of the specimen, which must be conducting. Back scattered electrons at
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each point are collected and displayed at the same scanning rate on a cathode
ray tube. The result is an image, much like a television image, of the surface
features of the specimen. This image has a very great depth of field so that even
a fractured surface without any polishing can be imaged (refer Fig. 12.1e).
Magnifications range from 10 � to 50 000 �.

In the electron probe microanalyzer, a beam of electrons bombards the
specimen surface. X-rays that have wavelengths characteristic of the elements in
the specimen are emitted. Using suitable standards, elements present in the
specimen can be identified and their concentration determined from the X-ray
intensity. Thus this technique allows microchemical analysis on spots as small as
1 �m.

Another modern microscope is the field ion microscope. It produces images
of individual atoms (Fig. 1.5) and imperfections in atomic arrangements.

Fig. 1.5 Field–ion micrograph of a hemispherical tip of platinum. The white dots
arranged in circles are images of individual atoms.

(Courtesy: E.W. Mueller)



Crystal structure tells us the details of the atomic arrangement within a
crystal. It is usually sufficient to describe the arrangement of a few atoms within
what is called a unit cell. The crystal consists of a very large number of unit
cells forming regularly repeating patterns in space. The main technique
employed for determining the crystal structure is the X-ray diffraction.

The electronic structure of a solid usually refers to the electrons in the
outermost orbitals of individual atoms that constitute the solid. Spectroscopic
techniques are very useful in determining the electronic structure.

Nuclear structure is studied by nuclear spectroscopic techniques such as
nuclear magnetic resonance (NMR) and Mossbauer studies.

1.4 Structure–Property Relationships in Materials

Until recently, it has been the practice in a course on engineering materials to
list the composition, treatment, properties and uses of as many materials as
possible. The number and variety of engineering materials and applications have
increased tremendously in recent years. Now we have more than a thousand
types of steel alone, each with a specific composition, thermal and mechanical
history. Therefore, it is impossible to describe an adequate number of
engineering materials in one course. Moreover, our knowledge of the internal
structure of materials and how this structure correlates with the properties has
rapidly advanced in recent decades. So, it is more interesting and appropriate to
study some of the key factors that determine the structure–property relationships,
rather than go for a fully descriptive account of a large number of materials.
This approach is adopted in this book. The discussion of a structure-dependent
property is usually followed by typical applications.

The levels of structure which are of the greatest interest in materials science
and engineering are the microstructure, the substructure and the crystal structure.
The chemical, mechanical, electrical and magnetic properties are among the
most important engineering properties. We first develop the basic concepts
pertaining to the levels of structure. These include concepts in equilibrium and
kinetics, the geometry of crystals, the arrangement of atoms in the unit cell of
crystalline materials, the substructural imperfections in crystals, and the
microstructure of single phase and multi-phase materials. We then discuss how
changes in the structure are brought about and how they can be controlled to the
best possible advantage. Solid state diffusion and control of phase
transformations by heat treatment are the main topics here. In the latter half of
the book, corrosion among chemical properties, elastic and plastic deformation
among mechanical properties and several electrical and magnetic properties are
discussed with numerous examples of typical engineering materials.

The gross composition of a material is important in determining its
structure. Yet, for a given gross composition, radical changes in the structure and
properties can be brought about by subtle changes in the concentration and

Structure–Property Relationships in Materials 7



distribution of minute quantities of impurities. The same may also be possible by
a thermal or a mechanical treatment that involves no change in the overall
composition of the material. Materials Science and Engineering deals more with
this kind of changes rather than with the effect of gross composition on the
properties.

Suggestions for Further Reading

A. Street and W. Alexander, Metals in the Service of Man, Penguin Books
(1976).

D.L. Weaire and C.G. Windsor (Eds.) Solid State Science—Past, present and
predicted, Adam Hilger, Bristol, UK (1987).
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CHAPTER

In this chapter, we introduce the concept of stability and metastability using the
mechanical analog of a tilting rectangular block. We discuss the importance of
the indefinite existence of materials in the metastable state. After defining basic
thermodynamic functions, we also discuss the statistical nature of entropy and
the role of the high-energy fraction of atoms in the statistical distribution in
surmounting activation barriers for reactions in materials.

Units

 
Quantity

   SI units
Other units

 Unit  Symbol

Temperature T kelvin K °C, °F

Pressure P megapascal MPa atmosphere,
or or psi, kg/cm2,

meganewton MN m–2 dyne/cm2,
per square mm of Hg

metre
Internal energy E
External energy PV
Enthalpy H
Gibbs free energy G joule per J mol–1 cal/mole,
Thermal energy RT mole cal/gm
Activation energy Q

Entropy S joule per mole J mol–1 K–1 cal/mole/°C,
Specific heat Cv, Cp per kelvin cal/gm/°C

Constants

Avogadro’s number N = 6.023 � 1023 mol–1

Boltzmann’s constant k = 1.380 � 10–23 J K–1

Gas constant R = 8.314 J mol–1 K–1
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10 Equilibrium and Kinetics

2.1 Stability and Metastability

The concept of stability is easily understood by considering a mechanical
analog. In Fig. 2.1, a rectangular block of square cross-section is shown in

1

1

2 3
4

5

5

4

3
2

Fig. 2.1 Various positions of a tilting rectangular block illustrate the concept of
stability and metastability.

various tilted positions. In position 1, the block is resting on the square base; the
arrow from the centre of mass indicates the line along which the weight acts. In
position 2, the block is tilted slightly to the right, about one of its edges such
that the line along which the weight acts is still within the square base. The
centre of mass has moved up due to the tilt. In position 3, the tilt is increased to
such an extent that the line of force just falls on the periphery of the base. The
centre of mass is now at the maximum possible height from the base. Further
tilting lowers it. The line of force now falls outside the square base but within
the rectangular base, position 4. On coming to rest on the rectangular face,
position 5, the centre of mass is at the lowest possible position for all
configurations of the block.

The centres of mass for the various positions of the block are joined by a
curve. The potential energy of the block is measured by the height of the centre
of the mass from the base. Position 5 corresponds to the lowest potential energy
for all configurations and is correspondingly described as the most stable state
or simply the stable state. A system always tends to go towards the most stable
state. Position 3 has the maximum potential energy and is called an unstable
state. Positions 2 and 4 are also unstable states but do not have the maximum
energy. Position 1 is called a metastable state.

We can use this mechanical analogy to illustrate various equilibrium
configurations of a system. Figure 2.2 shows the potential energy of a system as
a function of configuration. The potential energy curve has two valleys and a
peak. At these positions, the curve has zero slope, that is, the energy does not



vary as a function of configuration for infinitesimally small perturbations. Such
configurations are called equilibrium configurations. Corresponding to the
terminology used for the tilting block, we have stable equilibrium, unstable
equilibrium and metastable equilibrium, see Fig. 2.2. Even though the potential
energy is a minimum in the metastable state, it is not the lowest for all
configurations of the system. Due to the valley position, after small
perturbations, the original configuration is restored in both stable and metastable
equilibrium. Such restoration does not occur in the case of unstable equilibrium.

Unstable

P
ot

en
ti

al
 e

ne
rg

y

Metastable

Activation barrier

Stable

Fig. 2.2 Potential energy as a function of the configuration coordinate.
Configuration

A metastable state of existence is very common in materials. For example,
most metals at room temperature are stable only in the form of an oxide.
Oxygen is easily available in the surrounding air. Yet a metal may not combine
with oxygen at room temperature (except for a very thin film on the surface). It
may exist in the metastable metallic state for an indefinite period. This period
could be centuries, as is borne out by the unchanging state of some ancient
metallic statues and pillars. This fortunate set of circumstances enables us to use
metals in many engineering applications.

In the mechanical analogy we used, the block can be tilted and brought to
the most stable configuration starting from a metastable state by an external
supply of energy in the form of a hand push or a jiggling base. In materials, the
most common source of such energy is the thermal energy. As the temperature
of a solid is increased from 0 K, the atoms in the solid vibrate about their mean
positions with increasing amplitude. When the temperature is sufficiently high,
rotation of atoms (or small groups of atoms) also becomes possible in some
solids. The translational motion of atoms past one another is more characteristic
of liquids and gases. The energy associated with the vibrations, rotations and
translations aids in taking a material from a metastable state to a stable state. In
the above example of the oxidation of metals, at sufficiently high temperatures,
thermal energy will aid the chemical combination of the metal with the
surrounding oxygen, taking it from the metastable to the stable state. This, of
course, poses the problem of protecting metals against oxidation, when used at
high temperatures.

Stability and Metastability 11
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2.2 Basic Thermodynamic Functions

The concepts of equilibrium and kinetics are intimately associated with the basic
thermodynamic parameters. Pressure P and temperature T are familiar intensive
parameters. As opposed to these, we have extensive (or capacity) parameters,
which depend on the extent or quantity of the material that comprises the
system. The extensive thermodynamic functions are now described.

Internal energy E (also denoted by U) at temperature T is given by

E = E0 + 
0

T

vC dT� (2.1)

where E0 is the internal energy of the material at 0 K and Cv is the specific heat
at constant volume. The enthalpy or the heat content of a material H is defined
in a similar manner:

H = H0 + 
0

T

pC dT� (2.2)

where H0 is the enthaply at 0 K and Cp is the specific heat at constant pressure.
E and H are related through P and V, where V is the volume of the material:

H = E + PV (2.3)

PV represents the external energy as opposed to the internal energy and is equal
to the work done by the material at constant pressure in creating a volume V for
itself. For condensed systems like the liquid and the solid state, at atmospheric
pressure, the PV term is negligible so that E � H. This approximation can be
used in most of the problems concerning solid materials.

H0 represents the energy released when the individual atoms of the material
are brought together from the gaseous state to form a solid at 0 K. The gaseous
state (where there is no interaction between the atoms) is taken as the reference
zero energy state. To indicate that the system has lost energy, H0 is written with
a negative sign. As the temperature increases from 0 K, the material absorbs heat
from the surroundings and H increases. The solid melts on reaching the melting
point and a further quantity of heat �H called the enthalpy of fusion is added at
the melting temperature. When all the solid has melted, the temperature of the
liquid may further increase with the absorption of more energy.

All the energy that a system possesses is not available as work during a
chemical change. That part of the energy which can become available as work is
called the Gibbs free energy (or simply the Gibbs energy). The part which
cannot be released as work is called the bound energy. Another thermodynamic
function called entropy defines the relationship between the total energy and the
Gibbs energy. At constant pressure, the entropy S of a system is given by

S = 
0

/

T

pC dT T� (2.4)



The entropy of a material is zero at 0 K, in contrast to the enthalpy and the
internal energy terms, which have non-zero negative values at 0 K. The entropy
increases with increasing temperature. It is a measure of the thermal disorder
introduced in the solid, as it is heated above 0 K. The solid state is characterized
by the random vibrations of atoms about their mean positions. In the liquid state,
the atoms have more freedom and can also move past one another, resulting in
greater disorder. Correspondingly, the entropy increases when a solid melts at
constant temperature.

Example 2.1 Calculate the entropy increase when one mole of ice melts into
water at 0°C.

Solution The latent heat of fusion of ice, �H = 6.02 kJ mol–1

(80 cal/gm). This heat is absorbed at the constant temperature Tm (0°C). The
entropy increase in the process

�S =
heat added
temperature m

H
T
��

= 6.02 � 103/273.15

= 22.04 J mol–1 K–1

In addition to thermal entropy, a system may also possess configurational
entropy, which is dependent on the configurations of the system. Following
Boltzmann’s definition, the configurational entropy can be written as

S = k ln w (2.5)

where k is Boltzmann’s constant and w is the number of different configurations
of equal potential energy in which the system can exist. The next section gives a
more detailed discussion of configurational and thermal entropies.

The Gibbs energy G is defined in terms of the enthalpy H and the entropy S:

G = H – TS (2.6)

As already pointed out, the free energy represents the available part of the
energy which can be converted to work. As the temperature increases, H
increases, but TS increases more rapidly than H and so G decreases with
increasing temperature (see Problem 2.3).

The Gibbs energy is used as a criterion of stability. The most stable state
of a material is that which has the minimum Gibbs energy. For a process to
occur spontaneously, the Gibbs energy must decrease during the process.
Changes in thermodynamic quantities are always defined as the final value
minus the initial value:

�G = Gfinal – Ginitial (2.7)

Basic Thermodynamic Functions 13
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Then, for a spontaneous process, the free energy change �G during the process
must be negative. At a constant temperature and pressure, we can write this
condition for a spontaneous change as

�G = (�H – T �S) < 0 (2.8)

Only if there is no change in the entropy of a system during a process, the
enthalpy change �H can be used in place of �G as a criterion of stability. In the
example of the tilting block, where no entropy change occurs during the tilt, we
were justified in defining the stable state as a state of lowest potential energy (or
enthalpy). In general, however, the entropy change may not be negligible.
Several chemical reactions are known to be endothermic, that is, they absorb
heat during the reaction making �H positive, however, they may occur
spontaneously, indicating that �G is negative. In such cases, T �S > �H.

2.3 The Statistical Nature of Entropy

The entropy of a system has been defined by Eqs. (2.4) and (2.5). The meaning
of these equations can be understood with reference to physical processes.
Taking the configurational entropy first, consider the arrangement of equal
numbers of white and black spheres on 16 sites shown in Fig. 2.3. Four possible
configurations of these spheres are shown. In Figs. 2.3(a) and 2.3(b), the
arrangement is disordered and random. In Fig. 2.3(c), every white sphere is
surrounded by black spheres and every black sphere is surrounded by white
spheres. In Fig. 2.3(d), all white spheres are separated from the black spheres. It
is easy to calculate the total number w of such distinguishable configurations
that we can have with these spheres. For generality, if we call the total number
of sites as N and the number of white spheres as n, the number of black spheres
is (N – n), and it is easily seen that

w = 
!

( )! !
N

N n n�
(2.9)

For the above example, substituting N = 16 and n = 8, we obtain w = 12 870.
Among these, only two arrangements shown in Figs. 2.3(c) and 2.3(d) are
perfectly ordered and are thus very unlikely to occur in a random choice. The
probability of the system existing in a disordered configuration is almost unity.

Fig. 2.3 Some possible arrangements of 16 spheres, eight of which are white and
the other eight are black.

(a) (b) (c) (d)



Equation (2.5) states that the configurational entropy increases as the
logarithm of w. One mole of a solid contains more than 1023 atoms. If we mix
two different kinds of atoms randomly in a solid, we end up with an extremely
large number of distinguishable configurations and an appreciable amount of
configurational entropy. Since w can never be less than one, the configurational
entropy is either zero or positive. It is zero for an absolutely pure solid,
consisting of the same kind of atoms on all its sites or for a perfectly ordered
solid like a compound.

Consider a mole of atomic sites N in a solid. Let n atoms of B and (N – n)
atoms of A be mixed randomly on these sites. The configurational entropy is
zero before mixing. The increase in entropy due to mixing is given by

�S = Sfinal – Sinitial = k ln 
!

( )! !
N

N n n�
(2.10)

The following Stirling’s approximation is valid for n � 1:

ln n! = n ln n – n (2.11)

Combining Eqs. (2.10) and (2.11), we obtain

�S = k [N ln N – (N – n) ln (N – n) – n ln n)] (2.12)

Equation (2.4) gives the thermal part of entropy as a function of temperature.
At 0 K, we can visualize the atoms of a solid to be at rest, so that there is no
disorder due to temperature and, consequently, the entropy is zero. As the
temperature increases, the atoms begin to vibrate about their mean positions in the
solid with increasing frequency and amplitude. The atoms can be considered to
oscillate in three modes corresponding to the three orthogonal directions. For
many solids above room temperature, the frequency of these oscillations reaches a
constant value, about 1013 s–1. In contrast, the amplitude of the oscillations
continues to increase with increasing temperature. The average energy per atom
per mode of oscillation is called the thermal energy and is equal to kT, where T is
the temperature in kelvin and k is Boltzmann’s constant equal to 1.380 � 10–23 J
K–1. For one mole of atoms, the thermal energy becomes

NkT = RT (2.13)

where N is Avogadro’s number and R is the gas constant given by

R = Nk = 6.023 � 1023 � 1.380 � 10–23 = 8.314 J mol–1 K–1

All the atoms of a solid do not vibrate with the same amplitude and energy at
any instant. The vibrating atoms interact with their neighbours and, as a very
large number of atoms are involved, the interaction effects are very complex.
Consequently, the vibrational energy of any particular atom fluctuates about the
average value in a random and irregular way. In other words, there is a statistical
distribution of vibrational energies between the atoms. This distribution is the
source of the thermal disorder. The entropy given by Eq. (2.4) should be
associated with this distribution. The thermal entropy arises from the vibrational
energy distribution in a solid, while the configurational entropy arises from the
distribution in the configurational arrangements.

The Statistical Nature of Entropy 15
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In the vibrational energy distribution, the fraction of atoms that possess
energy equal to or greater than E is given by the Maxwell-Boltzmann equation:

n/N = exp (–E/kT ) (2.14)

where n is the number of such atoms and N is the total number of atoms in the
solid. The exponential term on the right side, which is a fraction, also gives the
probability that any given atom will have energy equal to or greater than E. The
Maxwell-Boltzmann equation is basic to the understanding of the equilibrium
and kinetic processes in materials.

Example 2.2 Find the fraction of atoms with energy equal to or greater than
1 eV in a solid (i) at room temperature (300 K) and (ii) at 1500 K.

Solution (i) At 300 K, thermal energy kT = 1.380 � 10–23 � 300 J
One electron volt is the kinetic energy acquired by an electron (having a charge
of 1.6 � 10–19 coulomb) falling through a potential of 1 V:

1 eV = 1.6 � 10–19 C � 1 V

= 1.6 � 10–19 J

So, kT = 1.38 � 10–23 � 300/(1.6 � 10–19) eV

= 0.026 eV

n/N = exp (–1/0.026) = exp (–38.5)

= 10–16.70 = 2 � 10–17

(ii) At 1500 K, kT = 0.129 eV

n/N = exp (–7.75) = 4.3 � 10–4

With a five-fold increase in temperature, the fraction of the highly energetic
atoms has increased by about 13 orders of magnitude.

2.4 The Kinetics of Thermally Activated Processes

Arrhenius first measured the rate of a chemical reaction as a function of
temperature. He found that the rate is an exponential function of temperature
according to the following equation:

Rate = A exp
Q
RT

� ��� �� � (2.15)

where A is a pre-exponential constant and Q is called the activation energy. In
Fig. 2.4, the logarithm of the rate of a reaction is plotted as a function of the



reciprocal of temperature. Such a plot is called the Arrhenius plot. The straight
line relationship is evident. The slope of the straight line is equal to –Q/R and
the intercept on the y-axis is the logarithm of A. This exponential dependence of
a reaction rate on temperature can be justified as follows: Consider a reaction
between different atomic species A, B and C. Let atom A interact with molecule
BC to produce molecule AB and atom C:

A + BC � AB + C

For this reaction to go in the forward direction as indicated, A and BC must
come into contact, the bond between B and C must be broken and the bond
between A and B must be formed. This usually involves an intermediate step
through which the reaction has to proceed:

A + BC � (ABC)* � AB + C

The complex species (ABC)* forms in the intermediate step. The exact nature of
this complex is not a matter of concern to us here. The important point is that
this complex has a high energy. The energy variation along the path of the
reaction is shown schematically in Fig. 2.5. The activated complex is at the peak
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Fig. 2.4 The Arrhenius plot for the reaction: I2 + H2 �  2HI.
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Fig. 2.5 Energy variation along the reaction path. The activation barrier is �H*.
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of this energy curve. This figure can be compared with the potential energy
variation, when the rectangular block is tilted. The activated complex here
corresponds to the unstable position of the tilting block.

For the reaction to occur, the reacting species A and BC must first form the
activated complex, that is, they must reach the energy peak. Once the activated
state is reached, the reaction can instantly proceed to the final step. Just one out
of the 1013 vibrations that occur every second can take the reaction down the
energy hill to the final product AB and C.

The average thermal energy of an atom is insufficient to surmount a typical
activation barrier, which has a height of 1 eV. The average thermal energy of any
mode reaches 1 eV, only at an extremely high temperature, 12 000 K. Yet many
processes in materials that are dependent on thermal energy proceed vigorously
at much lower temperatures. This dilemma is resolved by considering the
Maxwell-Boltzmann energy distribution. Equation (2.14) tells us that there is
always a small fraction of species with energies much greater than the average.
We then have to rely on this small fraction to surmount the activation barrier.
The small fraction of atoms, which has energy equal to or greater than the
activation barrier �H*, would reach the final state at the very start, thus making
the reaction to proceed in the forward direction by a small amount. The
consequent depletion that occurs in the number of the high energy species is
replenished immediately, with the restoration of the equilibrium statistical
distribution. The reaction thus continues as a function of time. The rate of the
reaction is proportional to the number of species n with energy equal to or
greater than that of the activation barrier, as well as to the vibrational frequency
�. The vibrational frequency determines the rate of the final step from the
activated state to the product species.

Rate � n� � N� exp
*H

kT
�� �

�� �
� �

(2.16)

where N is the total number of species. The similarity in form of this equation
with the Arrhenius equation (2.15) is evident. The height of the barrier �H* is to
be equated to the experimental activation energy Q. The vibrational frequency �
and the total number of species N form part of the pre-exponential term A.

�������

1. The concept of stability and metastability can be understood with reference
to various positions of a rectangular block.

2. As we tilt the block from the metastable position to the stable position, we
pass through the high-energy unstable state.

18 Summary



3. Pressure and temperature are intensive thermodynamic parameters, as
opposed to internal energy, enthalpy, entropy and free energy, whose
values depend on the quantity of the material.

4. Entropy defines the relationship between the total energy and the free
energy of a material.

5. Entropy can be subdivided into thermal and configurational parts. It
measures the thermal disorder, determined by the random distribution of
vibrational energies between atoms and the configurational disorder,
determined by the variations in configurational arrangements.

6. The Maxwell-Boltzmann energy distribution law is basic to the
understanding of the equilibrium and kinetic processes in materials. It
provides an explanation for the exponential dependence on temperature of
the rate of a thermally activated process.

��	
����

2.1 Calculate the increase in the enthalpy and the entropy of copper, as it is
heated from room temperature (300 K) to 1000 K. The specific heat in this
temperature range is given by

Cp = 22.61 + 6.27 � 10–3T J mol–l K–l.

Answer: �H = 18.7 kJ mol–l and �S = 31.6 J mol–l K–l.

2.2 Calculate the entropy change and the free energy change during the
melting of gold at its melting point. The enthalpy of fusion for gold is
12.6 kJ mol–l.

Answer: �S = 9.43 J mol–l K–l; �G = 0.

2.3 Show that 
P

G
S

T
	� � 
 �� �	� �

.

Make a schematic plot of G as a function of temperature for a solid,
starting from 0 K.

2.4 Show that the entropy of mixing equal numbers of two different kinds of
atoms on one mole of fixed atomic sites is 5.76 J mol–l K–l.

2.5 Calculate the fraction of atoms with energies equal to or greater than 2 eV
at 300 K and 1500 K. Compare these values with those calculated in
Example 2.2.

Answer: 4.0 � 10–34; 1.9 � 10–7.

2.6 Show that the logarithm of the ratio of the reaction rates at two temperatures
T1 and T2 is equal to Q �T/(RT2T1). From this, find the temperature increase
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starting from room temperature required to double the reaction rate for a
value of Q equal to (i) 100 kJ mol–l and (ii) 200 kJ mol–l.

Answer: (i) ~5°C, (ii) ~2.5°C.

2.7 Find the activation energy from an Arrhenius plot for a reaction that
requires the following times for completion at the indicated temperatures:

Temperature, K Time, s

600 9360
700 27.5
800 0.73
900 0.01

Answer: ~200 kJ mol–l.

2.8 A reaction takes 500 min at 10°C for completion. It takes 1 min at 80°C.
Find the time it would take at 40°C.
Answer: 25 min.

2.9 The vibrations of atoms in a solid can be considered as elastic waves. The
limiting wavelength of the elastic waves can be taken to be the interatomic
spacing, which has a value of about 10–10 m. Estimate in order of
magnitude the velocity of elastic waves in a solid above room temperature.

Answer: 1 km s–l.

2.10 In Eq. (2.12), show that (d�S/dn) � �, as n � 0. Explain why it is very
difficult to remove the last traces of impurities during purification of a
material.

2.11 A reaction with activation energy equal to 100 kJ mol–l takes 50 min for
completion at 300 K. At what temperature will it be complete in 5 min?

Answer: 318.3 K.

�������� ��	���� �����	��

1. The number of ways of arranging 6 Ni atoms and 6 Cu atoms on 12
atomic sites are

A. 432 B. 924 C. 12870 D. 36

2. The number of ways of arranging 7 white spheres and 7 black spheres on
15 sites are
A. 3432 B. 12870 C. 51480 D. none of these

3. The entropy of mixing of 0.4 mole of Au atoms, 0.4 mole of Ag atoms and
0.2 mole of Cu atoms on one mole of sites in J mol–1 K–1 is

A. 8.77 B. 5.76 C. 5.59 D. 4.16
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4. The entropy of mixing of 0.5 mole of Ni atoms and 0.49 mole of Cu
atoms on 1 mole of sites in J mol–1 K–1 is

A. 5.76 B. 5.79 C. 5.85 D. 6.17

5. The slope of the Gibbs energy G versus T curve at 0 K and constant
pressure is
A. 0 B. H0 C. S0 D. –H

6. The thermal energy at room temperature per mode of oscillation of one
mole of atoms is

A. 2.49 kJ B. 7.48 kJ C. 1.24 � 10–20 J D. 4.14 � 10–21 J

7. The free energy change during melting of ice at 0°C is equal to

A. enthalpy of melting–entropy of melting
B. 0 C. 273
D. can’t say without more data

8. The entropy becomes zero at 0°C for a

A. pure element B. perfect crystal

C. random solid solution D. none of these

9. The number of atoms in one mole of an elemental crystal possessing
energy equal to or greater than 1 eV at 1000°C is
A. 0 B. 1.1 � 10–4 C. 6.67 � 1019 D. 6.02 � 1023

10. A reaction takes 500 min at 10°C and 25 min at 40°C for completion. The
activation energy for the reaction in kJ/mol is

A. 73.5 B. 33.4 C. 96.49 D. 100

11. A reaction takes 500 and 1 min respectively at 10° and 80°C. The time it
would take at 50°C is

A. 25 min B. 15 min C. 10 min D. 6 min

12. The rate of a thermally activated reaction is 5 at 5°C and 10 at 10°C. Its
rate at 20°C in the same units is
A. 14.1 B. 20 C. 37.3 D. 40

13. The temperature increase from 25°C required to triple a reaction rate is
10°C. The activation energy (kJ mol–l) for the reaction is

A. 0.8 B. 53 C. 106 D. 84

Answers

1. B 2. C 3. A 4. D 5. A
6. A 7. B 8. D 9. C 10. A

11. C 12. C 13. D
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Sources for Experimental Data

I. Barin, O. Knacke, and O. Kubaschewski, Thermochemical Properties of
Inorganic Substances, Springer-Verlag, Berlin (1973) and Supplement
(1977).

R. Hultgren et al. (Eds.), Selected Values of the Thermodynamic Properties of the
Elements, American Society for Metals, Metals Park, Ohio (1973).

Suggestions for Further Reading

E.A. Guggenheim, Thermodynamics, North-Holland, Amsterdam (1967).

C.H.P. Lupis, Chemical Thermodynamics of Materials, North-Holland,
Amsterdam (1983).
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CHAPTER

Materials can be broadly classified as crystalline and noncrystalline solids. In a
crystal, the arrangement of atoms is in a periodically repeating pattern, whereas
no such regularity of arrangement is found in a noncrystalline material. A
crystalline solid can be either a single crystal, where the entire solid consists of
only one crystal, or an aggregate of many crystals separated by well-defined
boundaries. In the latter form, the solid is said to be polycrystalline.

In this chapter, we introduce the elementary concepts of crystal geometry.
We first discuss the geometry of arranging points in regular patterns in space. A
crystal can be generated starting from such patterns. We then introduce the
conventions associated with representing directions and planes in crystals. We
describe in some detail the experimental method of determining simple crystal
structures using the x-ray diffraction technique.

Units

 
Quantity

    SI units
Other units

 Unit  Symbol

Lattice parameter a
Atomic diameter
Interplanar spacing d nanometre nm Å

Wavelength of radiation �

Camera radius R millimetre mm inch
Bragg angle � radian rad °(degree)

Note: Lengths of atomic dimensions can be expressed in units of nanometre. However,
another submultiple of the metre, the angstrom unit (Å), is still used extensively, even
though it is not a preferred submultiple. We will continue to use the angstrom unit, as it
is convenient and as the conversion to metre is straightforward. Likewise, we will
continue to use °(degree) for angle.

�
�
�
�
�
�
�
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24 Crystal Geometry and Structure Determination

GEOMETRY OF CRYSTALS

3.1 The Space Lattices

Before discussing the periodic patterns of atomic arrangements in crystals, we
need to look into arrangements of points in space in periodically repeating
patterns. This leads us to the concept of a space lattice. A space lattice provides
the framework with reference to which a crystal structure can be described.

A space lattice is defined as an infinite array of points in three dimensions
in which every point has surroundings identical to that of every other point in
the array. As an example, for ease of representation on paper, consider a two-
dimensional square array of points shown in Fig. 3.1. By repeated translation of

Fig. 3.1 A two-dimensional square array of points gives a square lattice. Two
ways of choosing a unit cell are illustrated.

1

1

1

1

b

a

5

2

5

2

the two vectors a and b on the plane of the paper, we can generate the square
array. The magnitudes of a and b are equal and can be taken to be unity. The
angle between them is 90°; a and b are called the fundamental translation
vectors that generate the square array. To ignore end effects near the boundary,
we will assume that the array can be extended infinitely. If we locate ourselves
at any point in the array and look out in a particular direction that lies on the
plane of the paper, the scenery is the same, irrespective of where we are.
Consider the immediate surroundings of a point in the array. If we look due
north or due east from this point, we see another point at a distance of 1 unit.

Along northeast, we see the nearest point at a distance of 2  units and along

north-northeast, the nearest point is at a distance of 5  units. As this is true of
every point in the array, the array satisfies the definition given above and can be
called a two-dimensional square lattice.



Example 3.1 Draw a two-dimensional pentagonal lattice.

Solution A regular pentagon has an interior angle of 108°. As 360° is not
an integral multiple of 108°, pentagons cannot be made to meet at a point bearing
a constant angle to one another. Hence, a pentagonal lattice is not possible. On the
other hand, a square or a hexagonal two-dimensional lattice is possible.

A space lattice can be defined by referring to a unit cell. The unit cell is the
smallest unit which, when repeated in space indefinitely, will generate the space
lattice. In the above example of the square lattice, the unit cell is the square
obtained by joining four neigbouring lattice points, as shown in Fig. 3.1. Since
every corner of this square is common to four unit cells meeting at that corner,
the effective number of lattice points in the unit cell is only one. Alternatively,
the unit cell can be visualized with one lattice point at the centre of the square
and with none at the corners (see Fig. 3.1).

A three-dimensional space lattice is generated by repeated translation of three
noncoplanar vectors, a, b and c. It so turns out that there are only 14
distinguishable ways of arranging points in three-dimensional space such that each
arrangement conforms to the definition of a space lattice. These 14 space lattices
are known as Bravais lattices, named after their originator. They belong to seven
crystal systems and are listed in Table 3.1 according to the crystal system.

The cubic system is defined by three mutually perpendicular translation
vectors a, b, and c, which are equal in magnitude. The angle between b and c is
�, the angle between c and a is �, and that between a and b is �. This notation
about angles is general and should be consistently followed. As shown in
Table 3.1, there are three space lattices in the cubic crystal system: the simple
cubic, the body centred cubic, and the face centred cubic space lattices.

Example 3.2 Derive the effective number of lattice points in the unit cell of
the three cubic space lattices.

Solution The unit cell in all these three cases is the cube. The corners of
a cube are common to eight adjacent cubes. The faces are common to two
adjacent cubes. The body centre is not shared by any other cube. So, the
effectiveness of a corner lattice point is 1/8, that of a face centred lattice point is
1/2 and that of the body centre is 1.
Referring to Table 3.1, we can write:

Space lattice Abbreviation
Effective number of lattice

points in unit cell

Simple cubic SC 1
Body centred cubic BCC 2
Face centred cubic FCC 4

The Space Lattices 25
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TABLE 3.1

The Bravais Lattices

    Crystal system    Space lattice    Unit cell

I. Cubic (1) Simple (Lattice
a = b = c points at the eight
� = � = � = 90° corners of the

unit cell)

(2) Body centred
(Points at the eight
corners and at the
body centre)

(3) Face centred
(Points at the eight
corners and at the
six face centres)

II. Tetragonal
a = b � c
� = � = � = 90° (4) Simple (Points at

the eight corners of
the unit cell)

(5) Body centred
(Points at the eight
corners and at the
body centre)

III. Orthorhombic
a � b � c
� = � = � = 90° (6) Simple (Points at

the eight corners of
the unit cell)
(7) End centred (Also
called side centred
or base centred)
(Points at the eight
corners and at two
face centres opposite
to each other)
(8) Body centred (Points
at the eight corners and
at the body centre)
(9) Face centred
(Points at the eight
corners and at the
six face centres)

c

b

a� �

�

c

b

a�
�

�

c

b

a� �

�



������ �	
� ������	

The Bravais Lattices

    Crystal system    Space lattice    Unit cell

IV. Rhombohedral
a = b = c
� = � = ��� 90° (10) Simple (Points at

the eight corners of
the unit cell)

V. Hexagonal
a = b � c
� = � = 90°
� = 120° (11) Simple [(i) Points at the

eight corners of the unit cell
outlined by thick lines

or
(ii) Points at the
twelve corners of the
hexagonal prism and
at the centres of the
two hexagonal faces]

VI. Monoclinic (12) Simple (Points at
a � b � c the eight corners of
� = � = 90° � � the unit cell)

(13) End centred
(Points at the eight
corners and at two
face centres opposite
to each other)

VII. Triclinic
a � b � c (14) Simple (Points at
� � � � � � 90° the eight corners

of the unit cell)

c

b

a

c

b

a�
�

�

c

b

a
�

�

�

c

b
a

�

�

�

�
�
�
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Crystals have inherent symmetry. A cubic crystal is said to have a four-fold rotation
symmetry about an axis passing through the centres of two opposite faces of the unit
cube. During each complete rotation about this axis, the crystal passes through identical
positions in space four times. The rotational, translational and reflection symmetry
operations constitute the symmetry elements of a crystal. The crystal systems in Table
3.1 are arranged in order of decreasing symmetry, the cube being the most symmetric
and the triclinic system being the least symmetric. The details of symmetry elements of a
crystal are given in books on crystallography and will not be covered here.

After the cubic system, the next less symmetric crystal system is the
tetragonal system. It is defined by three mutually perpendicular vectors, only
two of which are equal in magnitude. There are two space lattices here.

Space lattice Abbreviation
Effective number of lattice

points in unit cell

Simple tetragonal ST 1
Body centred tetragonal BCT 2

It is interesting to note that there is no face centred tetragonal space lattice. Any
array of lattice points that can be represented by an FCT cell can equally well be
described by a BCT cell, as illustrated in Fig. 3.2. When there are two such
alternatives of the same crystal system available to describe the same array of
lattice points, the unit cell which has the smaller number of lattice points is
chosen for the Bravais list.

a�a a�

a

c
c

Fig. 3.2 An array of lattice points that fit in an FCT unit cell should be
represented by a BCT cell (outlined by thick lines inside two adjacent FCT cells).

[For clarity, the face centred atoms on the front and back faces are omitted.]

An orthorhombic cell is defined by three unequal but mutually
perpendicular translation vectors. There are four orthorhombic space lattices.

Space lattice Abbreviation
Effective number of lattice

points in unit cell

Simple orthorhombic SO 1
End centred orthorhombic ECO 2
Body centred orthorhombic BCO 2
Face centred orthorhombic FCO 4



As a final example, let us examine the unit cell of the hexagonal system. In
order that the hexagonal symmetry becomes evident, we can take the unit cell to
be a regular hexagonal prism, see Table 3.1. The effective number of lattice
points in this unit cell is 3. For generating the entire space lattice by translation
of the unit cell, a smaller cell with only one lattice point is used, refer Table 3.1.

Example 3.3 List the lattice (unit cell) parameters required to specify fully
the unit of each crystal system.

Solution

Crystal system To be specified Total number

axes angles of parameters

Cubic a — 1
Tetragonal a, c — 2
Orthorhombic a, b, c — 3
Rhombohedral a � 2
Hexagonal a, c — 2
Monoclinic a, b, c � 4
Triclinic a, b, c �, �, � 6

3.2 Space Lattices and Crystal Structures

A space lattice is combined with a basis to generate a crystal structure.

Space lattice + Basis � Crystal structure

In many elemental crystals, the basis is simple and consists of one atom per
lattice point. In such cases, the crystal is generated by just positioning one atom
of the element at each lattice point. For example, the crystal structures of
chromium and copper are generated as:

BCC space lattice + 1 Cr atom per lattice point � BCC crystal of Cr

FCC space lattice + 1 Cu atom per lattice point � FCC crystal of Cu

These crystals are called monoatomic crystals, to denote the fact that the basis is
one atom per lattice point. This adjective is often omitted. A BCC crystal means
a monoatomic BCC crystal, unless otherwise stated.

Figure 3.3 shows unit cells of monoatomic cubic crystals. The atoms are
visualized to be hard balls and are shown such that any two nearest neighbours
touch each other. This is consistent with the definition that the diameter of an
atom in an elemental crystal is the closest distance of approach between two
atoms. In the simple cubic unit cell, this distance is the cube edge. In the BCC
cell, it is half of the body diagonal. In the FCC cell, it is half of the face
diagonal. If a is the lattice parameter (cube edge), we can write:

Space Lattices and Crystal Structures 29
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Crystal Number of nearest Closest distance of approach
(monoatomic) neighbours  or atomic diameter

SC 6 a

BCC 8 3/2a

FCC 12 / 2a

The student should check the number of nearest neighbours listed above for each
case.

In principle, an infinite number of crystal structures can be generated by
combining different bases and different lattice parameters with the same space
lattice. In Fig. 3.4, three different bases are combined with the simple cubic
lattice. In Fig. 3.4a, the crystal is monoatomic, with just one atom at each lattice
point. For clarity, neighbouring atoms are shown separately. Figure 3.4b
illustrates a molecular crystal, with a diatomic molecule at each lattice point.
The centre of the larger atom of the molecule coincides with a lattice point,
while the smaller atom is not at a lattice point. In molecular crystals, the basis is
fully defined by giving the number and types of atoms, the internuclear distance
of separation between neighbours in the molecule and the orientation of the
molecule in relation to the unit cell. In Fig. 3.4c, the corner atoms of the cube
are of one type, but the atom at the body centre is of a different type. The basis
is two atoms, the larger one in this case at a lattice point and the smaller one
positioned half-way along the body diagonal, at the body centre, which is not a

(a)

(c)

(b)

Fig. 3.3 Unit cells of monoatomic crystals of (a) simple cubic (SC),
(b) body centred cubic (BCC), and (c) face centred cubic (FCC) structure.



lattice point. In the crystal, of course, the unit cell can be shifted such that the
body centre becomes a lattice point and the body corners are no longer lattice
points. This crystal should not be confused with the monoatomic BCC crystal,
where the body corner and the body centre atoms are of the same type.

The number of crystal structures known to exist runs into thousands. This
indicates that there can be more complex bases than those we have considered
above. For example, one crystal form of manganese has the structure referred to
the BCC space lattice, with 29 atoms grouped together at each lattice point. In
protein structures, the number of atoms in the basis may be as high as 10 000!
Obviously, the description of such bases would include a number of complex
details.

3.3 Crystal Directions and Planes

It is necessary to use some convention to specify directions and planes in a
crystal. For this purpose, the system devised by Miller known as Miller indices
is widely used. In Fig. 3.5, the vector r, passing through the origin o to a lattice
point, can be expressed in terms of the fundamental translation vectors a, b and
c, which form the crystal axes, as

r = rla + r2b + r3c (3.1)

(a)

(c)

(b)

Fig. 3.4 Three different crystal structures referred to the same simple cubic
lattice. [For clarity, neighbouring atoms or molecules are shown separated.]
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If there is a negative component along a crystal axis such as –2, it is written
as 2  and read as bar 2. A family of directions is obtained by all possible
combinations of the indices, both positive and negative. The family [230], [203],

[203],  [302],  [320],  etc., is represented by �230�, where the angular brackets
�� � denote the entire family. Such a convention of representing a family is very
convenient for cubic crystals.

Example 3.4 Find the family of crystal directions represented by cube edges,
face diagonals and body diagonals of the unit cube. Give the number of

members in each family.

Solution

Direction Miller indices Number in the family

Cube edge �100� 6
Face diagonal �110� 12
Body diagonal �111� 8

It is left as an exercise to the student to write down the Miller indices of each
member of the three families.

The magnitude of the vector r gives the magnitude of that crystal direction.
The crystal directions [230], [460] and [1 1½ 0] all have the same direction, but
different magnitudes. Since Miller indices for directions are usually specified as
the smallest possible integers, the differences in magnitude for the above three
directions are indicated using the following convention:

[230], 2 [230] and 1/2 [230]

21b
o

2

3

a

r

Fig. 3.5 The Miller indices of the crystal direction denoted by vector r
are [230].

where r1, r2 and r3 are integers. The c-axis is not shown in the figure as r is
assumed to lie on the ab plane. The components of r along the three axes are:
r1 = 2, r2 = 3 and r3 = 0. Then the crystal direction denoted by r is written as
[230] in the Miller notation, with square brackets enclosing the indices.



The Miller indices of a crystal plane are determined as follows. Referring to the
plane shown in Fig. 3.6:

1 2 3

b

0
1

2
3

4
5

2

c

a

1

Fig. 3.6 A crystal plane making intercepts 2, 3 and 1 on the crystal axes a, b
and c. Its Miller indices are (326).

Step 1 Find the intercepts of the plane along the axes
a, b and c (the intercepts are measured as 2   3  1
multiples of the fundamental vectors)

Step 2 Take reciprocals of the intercepts# 1
2

 
1
3

 1

Step 3 Convert into smallest integers in the same ratio 3   2  6

Step 4 Enclose in parentheses (326)

The factor that results in converting the reciprocals to integers may be indicated
outside the brackets, but it is usually omitted. The family of planes with
members (236), (263), (362),  (326),  (632);  etc., is denoted by {326}, the
curly brackets { } standing for the family.

Example 3.5 Find the Miller indices of the direction r and the plane
indicated by unit normal s in Fig. 3.7.

1

–1–2

1

2

c
3

1 2 3
a

b
s

r
1

2

3
4

Fig. 3.7 A crystal direction r and a crystal plane denoted by unit normal s.

#The reciprocal procedure avoids the intercept of � for a plane parallel to an axis, by
making it 0.

4
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Solution The direction r does not pass through the origin in the figure.
As the choice of origin is arbitrary, shift the origin so that r passes through it or,
alternatively, draw a vector parallel to r and passing through the origin. Then the
Miller indices are found to be [110].

The plane s passes through the origin. Draw a parallel plane that makes the
smallest integral intercepts on the coordinate axes. The intercepts for the parallel
plane drawn in Fig. 3.7 are 3, 2 and �, so that the Miller indices are given by
(230).

Example 3.6 Draw a (110) and a (1 11)  plane inside a cubic unit cell.
Determine the Miller indices of the direction that is common to both these
planes.

Solution In Fig. 3.8, the plane (110) is sketched using the origin O.
Shifting the origin to the opposite corner of the bottom face, the plane (1 11)  is
sketched. The direction common to the two planes [110]  is also shown.

(110)
c

a

b

O

(1 11)

[110]

Fig. 3.8 (110) and (111)  planes in a cubic unit cell, with the common direction

[110] .

Some useful conventions and results of the Miller notation are as follows:

(i) Unknown Miller indices are denoted by symbols h, k and l. For
example, for an unknown family of directions, we write �hkl�.

(ii) When the integers used in the Miller indices contain more than one
digit, the indices must be separated by commas for clarity, e.g.
(3, 10, 15).

(iii) The crystal directions of a family are not necessarily parallel to one
another. Similarly, not all members of a family of planes are parallel to
one another.



(iv) By changing the signs of all the indices of a crystal direction, we
obtain the anti-parallel or opposite direction. By changing the signs of
all the indices of a plane, we obtain a plane located at the same
distance on the other side of the origin.

(v) In cubic crystals, a crystal plane and a crystal direction normal to it

have the same indices, e.g., [11 1] (11 1)� .

As a review, some common directions and planes in cubic crystals are
illustrated below:

c

a

b

[010]

c

a

b

[011]

c

a

b

c

a

b

[112]

c

a

b

(001)

c

a

b

c

a

b

c

a

b

(112)(1 11)

(110)

[1 1 1]
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The interplanar spacing between adjacent planes of Miller indices (hkl), dhkl,
is defined as the spacing between the first such plane and a parallel plane
passing through the origin. For example, the interplanar spacing of (100) planes
in cubic crystals is equal to the lattice parameter a. In x-ray studies, it becomes
necessary to make a distinction between parallel sets of planes such as (100) and
(200). For this purpose, the first (200) plane is taken to make an intercept of
1/2 along the a-axis, 1/2 being the reciprocal of the corresponding index. Hence,
the interplanar spacing for (200) planes is only half of that for (100) planes. In
cubic crystals, the following relationship gives the interplanar spacing as a
function of the Miller indices and the lattice parameter:

d{hkl} = 
2 2 2

a

h k l� �
(3.2)

The interplanar spacing is the same for all members of a family of planes, as the
indices are squared and summed in the denominator of Eq. (3.2).

Even though three noncoplanar vectors are sufficient to describe a plane or a
direction in any crystal, a four-digit notation, hkil, called the Miller-Bravais indices, is
used for hexagonal crystals. The use of such a notation enables crystallographically
equivalent planes or directions in a hexagonal crystal to be denoted by the same set of
indices. Three of the axes a1, a2 and a3 are coplanar and lie on the basal plane of the
hexagonal prism (see the unit cell in Table 3.1), with a 120° angle between them. The
fourth axis is the c axis perpendicular to the basal plane.

The determination of the Miller-Bravais indices is illustrated in Fig. 3.9 for the two
examples given below. The indices of a prismatic plane (one of the vertical faces of the

hexagonal prism) is of the type (10 10). It makes an intercept of 1 along at a1, is
parallel to a2 axis, makes an intercept of –1 along a3 axis and is again parallel to the
c-axis. Note that, in this notation, h + k = –i. This equality always holds good for the
Miller-Bravais indices. The indices of a direction that lies along one of the three axes

(parallel to a side of the hexagon) is of the type [2 1 10]. In the example given, the
direction is parallel to the a1 axis and is resolved into components along a2 and a3. Each
of these components being –1, the value of the first index corresponding to the a1 axis

can be obtained as – (–1 –1) = 2 from the condition that h + k = –i. This yields [2 1 10].

–a3a2

–a1

–a2a3

a1

Trace of (1010)

Fig. 3.9 Plan view of the hexagonal unit cell showing the plane (1010)  and the

direction [2110]  in the Miller-Bravais notation.

[2110]



STRUCTURE DETERMINATION BY X-RAY DIFFRACTION

It is well known that, for visible electromagnetic radiation to be diffracted, the
spacing between lines in a two-dimensional grating must be of the same order as
the wavelength range for light (3900–7800 Å). The same principle holds good
for diffraction by the three-dimensional grating of the periodic array of atoms in
crystals. The typical interatomic spacing in crystals is 2–3 Å. So, the wavelength
of the radiation used for crystal diffraction should be in the same range. X-rays
have wavelengths in this range and are, therefore, diffracted by crystals. This
property is widely used for the study of crystal structures.

3.4 The Bragg Law of X-ray Diffraction

When electrons moving at high speeds are directed to a metal target, a small
percentage of their kinetic energy is converted into x-rays. The x-rays emitted by
the target consist of a continuous range of wavelengths, called white radiation,
by analogy with white light consisting of a range of wavelengths. The minimum
wavelength in the continuous spectrum is inversely proportional to the applied
voltage which accelerates the electrons towards the target. If the applied voltage
is sufficiently high, in addition to the white radiation, a characteristic radiation
of a specific wavelength and high intensity is also emitted by the target. The
radiation emitted by a molybdenum target at 35 kV includes both types of
radiation as illustrated in Fig. 3.10. In spectroscopic notation, the characteristic
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Fig. 3.10 The spectrum of x-rays emitted from a molybdenum target at
35 kV.
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radiations are named K�, K�, L�, etc. K� radiation has a high intensity and is
commonly used in diffraction studies. The wavelengths of this radiation for
typical target metals are given in Table 3.2.

TABLE 3.2

Wavelengths of K� Radiation for Typical Target Metals

Target metal Mo Cu Co Fe Cr

K� wavelength, Å 0.71 1.54 1.79 1.94 2.29

nm 0.071 0.154 0.179 0.194 0.229

A beam of x-rays directed at a crystal interacts with the electrons of the
atoms in the crystal. The electrons oscillate under the impact and become a new
source of electromagnetic radiation. The waves emitted by the electrons have the
same frequency as the incident x-rays. The emission is in all directions. As there
are millions of atoms in a crystal, the emission in a particular direction is the
combined effect of the oscillations of electrons of all the atoms. The emissions
will be in phase and reinforce one another only in certain specific directions,
which depend on the direction of the incident x-rays, their wavelength as well as
the spacing between atoms in the crystal. In other directions, there is destructive
interference of the emissions from different sources. The easiest way to visualize
the diffraction effects produced by the three-dimensional grating provided by the
crystal is to consider the Bragg law.

In Fig. 3.11, a set of parallel planes in a crystal is shown. A beam of x-rays
of wavelength � is directed towards the crystal at an angle � to the atomic

180 – 2�

�

d
�

��

d sin �

Plane 1

Plane 2

Plane 3

Fig. 3.11 Illustration of the Bragg law.

planes. In Bragg law, the interaction described above between x-rays and the
electrons of the atoms is visualized as a process of reflection of x-rays by the
atomic planes. This is an equivalent description of the diffraction effects
produced by a three-dimensional grating. The atomic planes are considered to be



semi-transparent, that is, they allow a part of the x-rays to pass through and
reflect the other part, the incident angle � (called the Bragg angle) being equal
to the reflected angle. Referring to Fig. 3.11, there is a path difference between
rays reflected from plane 1 and the adjacent plane 2 in the crystal. The two
reflected rays will reinforce each other, only when this path difference is equal
to an integral multiple of the wavelength. If d is the interplanar spacing, the path
difference is twice the distance d sin �, as indicated in Fig. 3.11. The Bragg
condition for reflection can therefore be written as

n� = 2d sin � (3.3)

where n is an integer and � is the wavelength of the x-rays used. A first order
reflection is obtained, if n = l; a second order reflection occurs if n = 2, and so
on.

As sin � has a maximum value of 1, for a typical value of interplanar
spacing of 2 Å, Eq. (3.3) gives the upper limit of � for obtaining a first order
reflection as 4 Å. There will be no reflection if � is greater than 4 Å. � can be
reduced indefinitely, obtaining reflections from other sets of planes that have
spacing less than 2 Å as well as an increasing number of higher order
reflections. A very small wavelength of the order of 0.1 Å is not necessarily an
advantage as it tends to produce other effects such as knocking off electrons
from the atoms of the crystal and getting absorbed in the process. The
wavelengths of the K� radiation given in Table 3.2 for typical target metals lie in
the right range.

The Bragg equation can be used for determining the lattice parameters of
cubic crystals. Let us first consider the value that n should be assigned. A second
order reflection from (100) planes should satisfy the following Bragg condition:

2� = 2d100 sin �
or

� = d100 sin � (3.4)

Similarly, a first order reflection from (200) planes should satisfy the following
condition:

� = 2d200 sin � (3.5)

We have earlier noted that the interplanar spacing of (100) planes is twice that
for (200) planes. So, Eqs. (3.4) and (3.5) are identical. For any incident beam of
x-rays, the Bragg angle � would be the same, as the two sets of planes in
question are parallel. As Eqs. (3.4) and (3.5) are identical, the two reflections
will superimpose on each other and cannot be distinguished. By a similar
argument, it can be shown that the third order reflection from (100) planes will
superimpose on the first order reflection from (300) planes. In view of such
superimposition, there is no need to consider the variations in n separately;
instead, we take n to be unity for all reflections from parallel sets of planes such
as (100), (200), (300), (400), etc. In a crystal, it may turn out, for example, that
there is no (200) plane with atoms on it. Then, what is designated as a (200)
reflection actually refers to the second order reflection from (100) planes.
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Example 3.7 A diffraction pattern of a cubic crystal of lattice parameter
a = 3.16 Å is obtained with a monochromatic x-ray beam of wavelength 1.54 Å.
The first four lines on this pattern were observed to have the following values:

Line � (in degrees)

1 20.3
2 29.2
3 36.7
4 43.6

Determine the interplanar spacing and the Miller indices of the reflecting planes.

Solution Using the Bragg equation, we can write the interplanar spacing
d = �/(2 sin �). n is assumed to be 1, as higher order reflections superpose on
the lower order ones for parallel sets of planes. The d values can now be

determined. Since d = 2 2 2/a h k l� �  for cubic crystals, h2 + k2 + l2 can also
be determined. The results are tabulated below:

Line dhkl, Å (h2 + k2 + l2) = a2/d2 hkl

1 2.220 2 110
2 1.579 4 200
3 1.288 6 211
4 1.116 8 220

Starting from the lowest index plane, we notice that there are no reflections
corresponding to (h2 + k2 + l2) = 1, 3 and 5. There is no plane which has
(h2 + k2 + l2) = 7. Corresponding to (h2 + k2 + l2) = 2, 4, 6 and 8, there are
reflections from {110}, {200}, {211} and {220} planes, respectively.

In diffraction studies, in order to increase the probability that crystals with the right
orientation for Bragg reflection are available, one of the following procedures is adopted:

(i) A monochromatic x-ray beam of a specific wavelength is combined with numerous
possible � values so that reflection occurs at the right combination that satisfies
the Bragg law. This is done by placing thousands of crystals of random orientation
in the path of the beam. The crystals are usually in powder form.

(ii) A single crystal is held stationary in the path of the beam so that � is kept
constant. A white radiation is then directed at the crystal so that numerous values
of the wavelength are available, and again the right combination will lead to the
diffraction condition. This method is called the Laue technique.

(iii) A single crystal is held in the beam of a monochromatic radiation and is rotated
such that at some position of the crystal, the diffraction condition is satisfied. This
method is known as the rotating crystal method. Even though this is not the most
widely used method, it provides greater certainty in identification, as well as more
accurate measurement of the intensities of the reflected beam.



3.5 The Powder Method

The powder method is a widely used experimental technique for the routine
determination of crystal structures. It is highly suitable for identification and for
determination of the structures of crystals of high symmetry. Here, a
monochromatic x-ray beam, usually of K� radiation, is incident on thousands of
randomly oriented crystals in powder form. The powder camera, called the
Debye-Scherrer camera, consists of a cylindrical cassette, with a strip of
photographic film positioned around the circular periphery of the cassette. The
powder specimen is placed at the centre of the cassette in a capillary tube or
pasted on a thin wire. The tube, the wire and the paste material must be of some
nondiffracting substance such as glass or glue. The x-ray beam enters through a
small hole, passes through the powder specimen and the unused part of the beam
leaves through a hole at the opposite end. The geometry of the powder method
is illustrated in Fig. 3.12.

Film

Incident beam

Exit beam

4�

Specimen

(a)

S

�R

(b)

Fig. 3.12 The geometry of the powder method.

Consider a set of parallel crystal planes making an angle � with the incident
direction. When this angle satisfies the Bragg equation, there is reflection. By
virtue of the large number of randomly oriented crystals in the powder, there are
a number of possible orientations of this set of planes in space for the same
angle � with the incident direction. So the reflected radiation is not just a pencil
beam like the incident one; instead, it lies on the surface of a cone whose apex
is at the point of contact of the incident radiation with the specimen. Also, the
interplanar spacing d being the same for all members of a family of crystal
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planes, they all reflect at the same Bragg angle �, all reflections from a family
lying on the same cone. After taking n = 1 in the Bragg equation, there are still
a number of combinations of d and � that would satisfy the Bragg law. For each
combination of d and �, one cone of reflection must result and, therefore, many
cones of reflection are emitted by the powder specimen. If the reflected cones
were recorded on a flat film placed normal to the exit beam, they will be in the
form of concentric circles. In the powder camera, however, only a part of each
reflected cone is recorded by the film strip positioned at the periphery of the
cylindrical cassette. The recorded lines from any cone are a pair of arcs that
form part of the circle of intersection. When the film strip is taken out of the
cassette and spread out, it looks like Fig. 3.12b.

Note that the angle between a reflected line lying on the surface of the cone
and the exit beam is 2�. Therefore, the angle included at the apex of the cone is
twice this value, 4�, Fig. 3.12a. When the Bragg angle is 45°, the cone opens out
into a circle and reflection at this angle will make a straight line intersection
with the film strip at the midpoint between the incident and the exit points in
Fig. 3.12b. When the Bragg angle is greater than 45°, back reflection is obtained,
that is, the reflected cones are directed towards the incident beam. Bragg angles
up to the maximum value of 90° can be recorded by the film of the powder
camera, which is not possible on a flat film placed in front of the exit beam.

The exposure in a powder camera must be sufficiently long to give reflected
lines of good intensity. The exposure time is usually a few hours. After the film
is exposed and developed, it is indexed to determine the crystal structure. It is
easily seen that the first arc on either side of the exit point corresponds to the
smallest angle of reflection. The pairs of arcs beyond this pair have larger Bragg
angles and are from planes of smaller spacings, recall that d = �/(2 sin �). The
distance between any two corresponding arcs on the spread out film is termed S,
Fig. 3.12b. S is related to the radius of the powder camera R:

S = 4R� (3.6)

where � is the Bragg angle expressed in radians. For easy conversion of the
distance S measured in mm to Bragg angle in degrees, the camera radius is often
chosen to be 57.3 mm, as 1 rad = 57.3°.

In the powder method, the intensity of the reflected beam can also be
recorded in a diffractometer, which uses a counter in place of the film to
measure intensities. The counter moves along the periphery of the cylinder and
records the reflected intensities against 2�. Peaks in the diffractometer recording
(Fig. 3.13) correspond to positions where the Bragg condition is satisfied.

3.6 Structure Determination

The determination of a complex crystal structure is often time consuming,
requiring a lot of patience and ingenuity. A step-by-step procedure is followed in
such cases, first determining the macroscopic symmetry of the crystal, then the
space lattice and its dimensions, and finally the atomic arrangement within the
unit cell. Measurement of the density of the crystal and the chemical
composition also assist the process of structure determination.



In simple crystals of high symmetry, the space lattice and its dimensions can
be determined relatively easily. If the crystal is monoatomic, the space lattice
together with the lattice parameters is a complete description of the crystal
structure. If, on the other hand, the basis is two or more atoms per lattice point,
the number and distribution of atoms within the unit cell can be determined only
from quantitative measurements of the reflected intensities. For such
measurements, the recording from a diffractometer is more useful than the
pattern obtained from a powder camera.

The procedure for determining the structure of monoatomic cubic crystals is
outlined below. Combining Eq. (3.2) for the interplanar spacing d with the Bragg
equation, we obtain

sin2 � = 
2

24a

�
(h2 + k2 + l2) (3.7)

n is assumed to be 1 for reasons already outlined. �-values can be determined
from a powder pattern using Eq. (3.6). Since monochromatic radiation is used in
the powder technique, the value of � is known. Then, the unknowns in Eq. (3.7)
are the Miller indices of the reflecting planes that correspond to the measured
angles of reflection. For a given cubic lattice, it is possible to list all
combinations of h, k and l and arrange (h2 + k2 + l2) in increasing order which
will also be the increasing order of � values, as seen from Eq. (3.7). The sin2 �
values will be in the same ratio as (h2 + k2 + l2), if the assumed and actual
lattices coincide.
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Fig. 3.13 The tracing from a diffractometer.
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The distinction between lattices of the cubic system is possible by using the
fact that not all combinations of (h2 + k2 + l2) lead to reflection for a given lattice.
Consider, for example, the first order reflection from the (100) planes of a BCC
crystal. These planes are the faces of the unit cube and contain the ‘corner’ atoms
of the cube, see Fig. 3.14. The path difference between reflected beams from two
adjacent (100) planes is one full wavelength and, therefore, the reflected beams
are in phase. The midway parallel plane between these two (100) planes contains
the body centred atoms. It is easily seen that the reflection from this midplane will
be out of phase by exactly half of a wavelength with the (100) reflections, see
Fig. 3.14. As the effective number of body centred atoms is equal to the effective
number of corner atoms in a BCC crystal, the intensity of the reflected beams

from atoms at these two locations will be exactly equal. The phase difference �/2
then results in a net zero reflected intensity. (Note that the terms, body centred
atoms and body corner atoms, are defined only in a relative sense and are
interchangeable.) There is thus no first order reflection from (l00) planes in a BCC
crystal. A second order reflection from (100) planes is possible, but this will
superimpose on the first order reflection from (200) planes.

By following a similar reasoning, it is possible to derive extinction rules for
different cubic crystals, as given in Table 3.3.

TABLE 3.3

Extinction Rules for Cubic Crystals

Crystal Reflections are allowed

SC for all values of (h2 + k2 + l2)

BCC for even values of (h + k + l)

FCC when h, k and l are all odd or all even
DC when h, k and l are all odd, or when all are even,

(h + k + l) should be divisible by four

Fig. 3.14 The (100) reflection is absent for a BCC crystal, as reflection from the
corner atoms is exactly cancelled out by that from body centred atoms.



In the above, zero is taken as an even number. The diamond cubic (DC) crystal
is based on the FCC space lattice, with a basis of two atoms per lattice point.
The DC structure is discussed in Chap. 5.

From the extinction rules, we can derive the ratio of (h2 + k2 + l2) values for
allowed reflections from different crystals:

SC 1 : 2 : 3 : 4: 5 : 6 : 8 	
BCC 1 : 2 : 3 : 4 : 5 : 6 : 7 	
FCC 3 : 4 : 8 : 11 : 12 	
DC 3 : 8 : 11 : 16 	

A simple comparison of the observed ratios of sin2 � values with the above is
then sufficient to identify the crystal structure.

Example 3.8 From a powder camera of diameter 114.6 mm, using an x-ray
beam of wavelength 1.54 Å, the following S values in mm are obtained for a
material:

86, 100, 148, 180, 188, 232, and 272

Determine the structure and the lattice parameter of the material.

Solution As the camera radius R = 57.3 mm, the Bragg angles in
degrees at which reflections are observed are equal to S/4:

21.5, 25, 37, 45, 47, 58 and 68.

The sin2
 � values are in the ratio

0.1346 : 0.1788 : 0.3620 : 0.5003 : 0.5352 : 0.7195 : 0.8596

Within experimental error, these values can be expressed in the ratio of integral
numbers

3 : 4 : 8 : 11 : 12 : 16 : 19

From the extinction rules, we note that the structure is FCC. The lattice
parameter calculated from the highest Bragg angle is 3.62 Å. By referring to
table on back inside cover, we note that the material is likely to be copper.

�������

1. A space lattice is an infinite array of points, all with identical
surroundings.

2. A crystal structure is obtained by combining a space lattice with a basis.
The basis must give the number of atoms per lattice point, their types,
mutual orientations and distances of separation.
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3. Space lattices are limited to fourteen, but known crystal structures run into
thousands.

4. Crystal directions and crystal planes are denoted by the Miller indices. A
family of crystal directions or planes includes all possible combinations of
the indices, both positive and negative.

5. The Bragg law gives the condition for diffraction by a crystal.

6. The powder method is the commonly used x-ray diffraction technique.

7. From the positions of lines in a powder pattern and from the extinction
rules for different cubic crystals, the space lattice and its dimensions can
be determined.

��	
����

3.1 Draw two adjacent FCC unit cells and join the top and bottom face centres
of each cell. Also join these four face centres to the nearest common
corners.

(i) What is the unit cell outlined by this procedure?

(ii) Is it in the Bravais list?
(iii) If so, the FCC cell with a higher symmetry must be a special case of

the outlined cell. Explain.
3.2 There is no end-centred tetragonal lattice in the Bravais list, but there is an

end-centred orthorhombic lattice. Explain why this is so.

3.3 Draw a:

(i) (111) plane in a triclinic lattice;

(ii) (120)  plane in a tetragonal lattice;

(iii) [11 1]  direction in an orthorhombic lattice; and

(iv) [211]  direction in a cubic lattice.

3.4 Draw a (111) plane and a (222) plane in the unit cell of a cubic lattice
with lattice parameter a. Determine their distances from a parallel plane
through the origin.

Answer: / 3a  and /(2 3)a .

3.5 Find the Miller indices of a plane that makes an intercept of 1 on the
a-axis and 2 on the b-axis and is parallel to the c-axis.
Answer: (210).

3.6 Determine the Miller indices of a plane that makes an intercept of 2 Å,
3 Å and 4 Å on the coordinate axes of an orthorhombic crystal with
a : b : c = 4 : 3 : 2.
Answer: (421).
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3.7 Find the Miller indices of a plane that makes intercepts on a, b and c axes
equal to 3 Å, 4 Å and 3 Å in a tetragonal crystal with the c/a ratio of 1.5.

Answer: (436).

3.8 Draw a (11 1)  plane in the unit cell of a cubic crystal. Show all the �110�
directions that lie on this plane, giving the Miller indices of each one of
them.

Answer: [110], [0 1 1],  [101] and the three opposite directions [1 10],

[011], [10 1].

3.9. Sketch a (110) plane in the unit cell of a cubic crystal. Show all the �111�
directions that lie on this plane, giving the Miller indices of each one of
them.

Answer: [1 11], [111]  and [11 1], [1 1 1].

3.10 What are the Miller indices of the line of intersection of a (111)  and a

(1 1 1)  plane in a cubic crystal? Determine the answer both geometrically
and analytically.

Answer: [1 10]  or [110] .

3.11 Calculate the atomic density (number of atoms per unit area) in (111),
(110) and (100) planes of copper (FCC) with the lattice parameter of
3.61 Å. Can you pack atoms more closely than in (111) plane?

Answer: 1.77 
 1019, 1.08 
 1019 and 1.53 
 1019 atoms m–2.

3.12 Calculate the number of atoms per unit area of (111), (110) and (100)
planes of a BCC crystal. The answer may be derived as a function of the
lattice parameter a.

Answer: 21/( 3)a , 22/a  and 1/a2.

3.13 Express the edge, face diagonal and body diagonal of the unit cell in terms
of the atomic radius r for SC, BCC and FCC crystals.

3.14 The distance between (111) planes in a face centred cubic crystal is 2 Å.
Determine the lattice parameter and the atomic diameter.

Answer: 2 3 Å, 6 Å.

3.15 A BCC crystal is used to measure the wavelength of some x-rays. The
Bragg angle for reflection from (110) planes is 20.2°. What is the
wavelength? The lattice parameter of the crystal is 3.15 Å.

Answer: 1.54 Å.

3.16 X-rays with a wavelength of 1.54 Å are used to calculate the spacing of
(200) planes in aluminium. The Bragg angle for this reflection is 22.4°.
What is the size of the unit cell of the aluminium crystal?
Check your answer with table on back inside cover.

3.17 Determine the structure of the crystal in Example 3.7.

Answer: BCC.
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3.18 Using a diffractometer and a radiation of wavelength 1.54 Å, only one
reflection from an FCC material is observed when 2� is 121°. What are the
indices of this reflection? What is the interplanar spacing? Show that the
next higher index reflection cannot occur.

Answer: {111}, 0.885 Å.

3.19 The first three lines from the powder pattern of a cubic crystal have the
following S values: 24.95, 40.9 and 48.05 mm. The camera radius is
57.3 mm. Molybdenum K� radiation of wavelength 0.71 Å is used.
Determine the structure and the lattice parameter of the material.

Answer: DC, 5.66 Å.

3.20 The Bragg angle corresponding to a reflection for which (h2 + k2 + l2) = 8
is found to be 14.35°. Determine the lattice parameter of the crystal.
X-rays of wavelength 0.71 Å are used. If there are two other reflections
with smaller Bragg angles, what is the crystal structure?

Answer: 4.05 Å, FCC.

3.21 Aluminium (FCC) has a lattice parameter of 4.05 Å. When a monochro-
matic radiation of 1.79 Å is used in a powder camera, what would be the
first four S values? The camera diameter is 114.6 mm.

Answer: 90.1, 105.0, 154.7, and 188.4 mm.

3.22 The first reflection using copper K� radiation from a sample of copper
powder (FCC) has an S value of 86.7 mm. Compute the camera radius.

Answer: 57.3 mm.

3.23 Copper and nickel (both FCC) dissolve in each other in all proportions at
room temperature in the solid state. From a sample of Cu–Ni alloy of
unknown composition, a powder pattern is obtained using monochromatic
radiation of wavelength 1.54 Å. The spread-out film showed that, for the
first reflection, S = 88.4 mm. The distance between inlet and outlet points
of the x-ray beam was 180 mm. Estimate the percentage of copper in the
alloy, assuming a linear variation of lattice parameter with composition.

Answer: 28 atomic %.

3.24 The diffractometer tracing shown in Fig. 3.13 is of silicon (DC). Index the
reflecting planes corresponding to each peak.

3.25 Name the space lattices, which have four lattice parameters.

3.26 In an orthorhombic unit cell, a : b : c = 1 : 2 : 3. The magnitude of a is
2 Å. What are the intercepts in Å of a plane of Miller indices (230)?
Answer: 1 Å, 1.33 Å, �.

3.27 In cubic crystals, {110} and {112} planes have a common <111> type of
direction. Within a cubic unit cell, sketch one plane of each type such that
a member of the above family of directions is common to both the planes.
Indicate in your sketch the Miller indices of the two planes and the line of
intersection.

3.28 Explain why there is no end-centred cubic space lattice.
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3.29 Explain with a neat sketch why a (100) reflection is not possible from an
FCC crystal.

3.30 A Debye-Scherrer pattern is obtained from an FCC crystal with
a = 3.61 Å. X-rays of wavelength equal to 1.54 Å are used. Determine the
Miller indices of the planes with the lowest and the highest Bragg angles
in this pattern.

Answer: {111} and {420}.

3.31 Only two reflections are observed on the powder pattern of a cubic crystal
at Bragg angles of 34.06° and 65.51°. Chromium K� radiation is used.
Determine the crystal structure (if possible) and the lattice parameter.
Show that the third and higher reflections cannot occur.

Answer: DC, 3.56 Å.

3.32 The entry point and the exit point of x-rays on a powder pattern taken
from a cubic material could not be distinguished. Assuming one of the
points to be the exit point, the following S values were obtained: 311.95,
319.10 and 335.05 mm. The camera radius is 57.3 mm. Molybdenum K�

radiation was used. Determine the structure and the lattice parameter of the
material.

Answer: DC, 5.66 Å.
3.33 The first two reflections as seen in the powder photograph of a cubic

material have S values of 90.1 and 154.7 mm, respectively. As the film
between these two reflections was torn, it was not clear whether an
additional line was present between the two observed lines. Determine, if
possible, the crystal structure and the lattice parameter. The third and the
fourth reflections as seen in the torn film have S values of 188.4 and
199.8 mm. The camera radius is 57.3 mm. Cobalt K� radiation was used.

Answer: FCC, 4.05 Å.

3.34 In the damaged powder film of a cubic material, the locations of only the
first two pairs of lines could be accurately measured. They had S values of
24.95 and 40.9 mm. The camera radius is 57.3 mm. Molybdenum K�

radiation was used. If possible, determine the crystal structure and the
lattice parameter of the material. The third pair of lines in the damaged
film was estimated to have an S value of about 49 mm. Determine whether
this confirms your conclusion or not.

Answer: DC, 5.66 Å.

�������� ��	���� �����	��

1. The space lattices with two lattice parameters belong to the crystal systems

A. tetragonal B. rhombohedral C. hexagonal D. triclinic
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2. The number of lattice points in the rhombohedral unit cell is

A. 8 B. 4 C. 2 D. 1

3. There is no end-centred orthorhombic lattice

A. as it violates the definition of a space lattice
B. as it can be represented by a simple orthorhombic unit cell
C. as it can be represented by a simple monoclinic unit cell
D. the question is wrong

4. The effective number of lattice points in the unit cell of end-centred
monoclinic lattice is
A. 1 B. 2 C. 4
D. can’t be found unless the angle � is given

5. There is no end-centred cubic space lattice, because

A. it can be represented by the simple cubic lattice
B. it can be represented by the simple orthorhombic lattice
C. it violates the cubic symmetry
D. none of these

6. The unit cell with three lattice parameters is

A. tetragonal B. orthorhombic C. monoclinic D. triclinic

7. A unit cell has a = 5 Å, b = 8 Å, c = 3 Å, � = 90°, � = 65° and � = 54°.
The space lattice for this unit cell is

A. orthorhombic B. monoclinic C. rhombohedral D. triclinic

8. The number of Bravais space lattices with two lattice points are

A. 2 B. 3 C. 4 D. 5

9. The tetragon has

A. 4 faces B. 12 edges C. 6 corners D. 8 edges

10. The minimum number of ions in the unit cell of an ionic crystal with FCC
space lattice is

A. 4 B. 8 C. 12 D. 16

11. The atomic diameter of an FCC crystal (lattice parameters is a) is

A. 2/2a B. 2/4a C. 3/4a D. a/2

12. If the radius of an atom in a simple cubic crystal is r, the body diagonal of
the unit cell is

A. 3r B. 2 3r C. 4 / 3r D. 3r /4

13. The number of unit cells in 1 m3 of FCC nickel (rNi = 1.243 Å) is
A. 2.3 
 1028 B. 4.2 
 1028 C. 6.5 
 1028 D. 18.4 
 1028

14. The acute angle between [101] and [101]  directions in a tetragonal crystal
with c/a = 1.5 is

A. 90° B. 67.38° C. 56.30° D. 33.69°
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15. The angle between [111] and [112]  directions in a cubic crystal is

A. 0° B. 45° C. 90° D. 180°

16. The number of members in the family <123> in a cubic crystal are

A. 8 B. 12 C. 24 D. 48

17. The (1 11)  plane is parallel to

A. (111) B. (111) C. (111) D. (11 1)

18. The Miller indices of a plane in an orthorhombic unit cell (a : b : c =
1 : 2 : 3) making intercepts of 3, 2, 1 Å on a, b, c, axes are
A. (931) B. (139) C. (321) D. (123)

19. The four non-parallel body diagonals of a cube have Miller indices

A. [111], [111], [1 11], [11 1] B. [111], [1 1 1], [1 11], [11 1]

C. [1 1 1], [1 1 1], [11 1], [1 11] D. [1 11], [11 1], [1 11], [111]

20. The Miller indices of the line of intersection of a (1 11)  and a (1 10)
plane are

A. [1 10] B. [110] C. [1 10] D. [111]

21. If the interplanar spacing obtained from the second reflection of a DC
crystal is 1.81 Å, the lattice parameter is

A. 0.905 Å B. 2.56 Å C. 3.62 Å D. 5.12 Å

22. The first S value on the powder pattern of an FCC crystal (a = 4.05 Å)
taken with a camera of radius 57.3 mm using cobalt K� radiation of
1.79 Å is

A. 45 mm B. 51 mm C. 72.8 mm D. 90.0 mm.

23. The second order reflection from (200) planes coincides with the first
order reflection from

A. (100) B. (200) C. (400) D. none of these

24. The interplanar spacing of the first reflecting plane (lowest �) in an FCC
crystal

A. 3a B. / 3a  C. / 2a D. a

25. The first reflection from polonium powder (SC) occurs at Bragg angle of
28.7°. The fourth reflection is at Bragg angle

A. 57.4° B. 114.8° C. 73.8° D. none of these

26. If the first reflection from a BCC crystal has a Bragg angle � of 22.2°, the
second reflection will have a � of

A. 32.3° B. 25.9° C. 38.1° D. 44.4°

27. No reflection will be observed from a DC crystal (a = 3 Å) if the
wavelength of x-rays is greater than

A. 3.0 Å B. 3.25 Å C. 3.37 Å D. 3.46 Å
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28. If the first reflection from a FCC crystal has a Bragg angle � of 21.5°, the
second reflection will have an angle � of

A. 18.5° B. 25° C. 31.2° D. 36.8°

29. The first three reflecting planes of silicon (DC) are

A. 111, 200, 220 B. 110, 200, 211
C. 111, 220, 311 D. 100, 110, 111

30. Using X-rays of 2.29 Å, the first two reflections have Bragg angles of
34.06° and 65.51°. The Bragg angle for the third reflection is
A. 68.1° B. 75.9° C. 89.9° D. reflection absent

31. The Miller indices of the fifth reflection in an FCC crystal is
A. 331 B. 222 C. 311 D. 400

Answers

1. A, B, C 2. D 3. D 4. B 5. C
6. B 7. D 8. D 9. B 10. B

11. A 12. B 13. A 14. B 15. C
16. D 17. B 18. B 19. A, C 20. B, C
21. D 22. D 23. C 24. B 25. C
26. A 27. D 28. B 29. C 30. D
31. B

Source for Experimental Data

P. Villars and L.D. Calvert, Pearson’s Handbook of Crystallographic Data for
Intermetallic Phases, Vols. 1–3, American Society for Metals, Metals Park, Ohio
(1985).

Suggestions for Further Reading

B.D. Cullity, Elements of X-ray Diffraction, Addison Wesley, Reading, Mass.
(1978).

C. Hammond, The Basics of Crystallography and Diffraction, Oxford University
Press, Oxford (2001).

52 Source for Experimental Data/Suggestions for Further Reading



� ���������	
��
	����
��������������

CHAPTER

The rigidity of a solid arises from the fact that the atoms in the solid are held
together by interatomic bonds. The spatial arrangement of atoms in a solid is
strongly influenced by the nature of these bonds, which in turn is influenced by
the electronic structure of the atoms. The topic of chemical bonding is usually
covered in the first course on general chemistry. Here, we shall briefly review
the structure of the atom in relation to the periodic table and then the chemical
bonding, as relevant to our discussion in the later chapters. The general variation
of properties with bonding character is discussed at the end of the chapter.

Units

 Quantity
SI units

Other units
 Unit  Symbol

Frequency of radiation � per second s–1 —
or or

hertz Hz

Momentum kilogram metre kg m s–1 —
per second

Electron energy level joule J eV (electron
volt), erg

Ionization potential kilojoule per kJ mol–1 eV/atom,
Electron affinity mole kcal/mole
Bond energy

Bond length nanometre nm Å

Dipole moment coulomb metre C m debye
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54 Atomic Structure and Chemical Bonding

Constants

Planck’s constant h = 6.626 � 10–34 J s

Electronic charge e = 1.602 � 10–19 C
Electron rest mass mo = 9.109 � 10–31 kg

Velocity of light c = 2.998 � 108 m s–1

STRUCTURE OF THE ATOM

As the reader is aware, the atom consists of a nucleus and surrounding electrons.
The nucleus is composed of protons and neutrons. As the mass of the electron is
negligible compared to that of protons and neutrons, the mass of the atom
depends mostly on the number of protons and neutrons in the nucleus. The
neutrons carry no charge, the protons are positively charged and the electrons
carry a negative charge. The charge on a proton or an electron is equal to
1.602 � 10–19 C.

4.1 The Quantum States

The electrons surrounding the nucleus in an atom occupy different orbitals. The
Heisenberg uncertainty principle states that the momentum and the position of
an electron cannot be specified precisely. The product of the uncertainty in the
momentum �p and the uncertainty in the position �x cannot be less than a
certain value:

�p �x � 
�2
h

(4.1)

where h is Planck’s constant. An outcome of this principle is that we cannot
visualize an electron orbital to be a discrete path around the nucleus. Instead, we
think of the orbital as an electron probability density cloud surrounding the
nucleus.

Each electron orbital is called a quantum state with a set of quantum
numbers n, l, ml and ms assigned to it. The characteristics of these quantum
numbers are summarized as follows:

(i) n is called the principal quantum number as it defines a principal
electron orbital. n takes integer values 1, 2, 3, 4, 5, ��� The larger the
value of n, the farther removed is the orbital from the nucleus.

(ii) l is called the orbital angular momentum quantum number. It is related
to the shape of the electron orbital. l can take integer values from l = 0
to l = n – 1. If n = 1, l = 0. If n = 2, l = 0 or 1, and so on. The value
of l defines suborbitals, which are denoted by certain letters:

l = 0, 1, 2, 3, 4
notation: s, p, d, f, g



(iii) ml is the magnetic quantum number and defines the spatial orientation
of the electron probability density cloud. ml can take values: –l,
–l + 1, …, –1, 0, +1, …, l – 1, and l, so that there are (2l + 1) values
of ml.

(iv) ms is called the electron spin quantum number. It defines the spin of
the electron. There are two possible spins: spin up � and spin down �,
corresponding to ms = +1/2 and –1/2.

The Pauli exclusion principle states that no two electrons can have the same set
of quantum numbers. In other words, only one electron can occupy a given
quantum state. When there are a number of electrons surrounding the nucleus of
an atom, they have to occupy different quantum states. In the lowest energy state
of the atom known as the ground state, the electrons occupy the lowest energy
levels, without at the same time violating the Pauli exclusion principle. The
order of increasing energy of the orbitals is as follows:

1s

2s 2p

3s 3p

4s 3d 4p

5s 4d 5p

6s 4f 5d 6p

7s

In the above, the digit gives the value of the principal quantum number n. The
following letter denotes the suborbital corresponding to different values of l.

An electron can be excited from a lower energy state to a higher energy
vacant state by the supply of energy from an external source. When there is such
an electronic transition from one level to another, electromagnetic radiation of a
specific frequency and wavelength is absorbed or emitted. Energy is absorbed, if
the electron is excited to a higher energy level. It is emitted if the electron is
falling to a lower energy level from a higher level. The energy difference �E
between the two states is related through the Einstein relationship to the
frequency � of the radiation emitted or absorbed:

�E = h� (4.2)

where h is Planck’s constant. We can relate the frequency of the radiation to its
wavelength � through the velocity of light c:

c = �� (4.3)

4.2 The Periodic Table

The periodic table of elements is given in the front inside cover of the book. The
following discussion is best understood by frequent reference to that table. Let
us start from the first element, hydrogen, the lightest known atom. The atomic
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56 Atomic Structure and Chemical Bonding

number Z of hydrogen is 1, equal to the number of protons in the nucleus or the
number of electrons surrounding the nucleus in the neutral atom. When the
hydrogen atom is in the ground state, the electron occupies the 1s orbital
immediately surrounding the nucleus. This electron configuration is denoted
by 1s1.

The electron probability cloud of an s-orbital is spherically symmetric, as
shown in Fig. 4.1a. The electron probability density � decreases with increasing
distance from the nucleus. The radial density, 4� r2� measures the probability of
finding the electron in a thin spherical shell of radius r. The radial density is
zero at the nucleus. It increases to a maximum value at a radial distance r0 from
the nucleus, where the electron is most likely to be found, see Fig. 4.1b.
Thereafter, the radial density falls with further increase in the radial distance.
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Distance from nucleus r
r0

4�
r2 �

(b)

Fig. 4.1 (a) The electron probability cloud of hydrogen. (b) The electron density
as a function of distance from nucleus.

The energy of the 1s electron is equal to –2.18 � 10–18 J (–13.6 eV). The
reference state of zero energy is that in which the electron is at an infinite
distance from the nucleus. The negative value of the energy indicates that the
system of the proton and the electron has lost energy to the surroundings, as the
electron was attracted to the 1s orbital from infinity. The 2s orbital of the
hydrogen atom (which is normally vacant) has a higher energy equal to
–5.44 � 10–19 J (–3.4 eV).

Example 4.1 Calculate the frequency and the wavelength of the radiation
emitted, when an electron falls from the 2s level to the 1s level of the hydrogen
atom.

Solution The energy difference between the two levels �E is

2.18 � 10–18 – 5.44 � 10–19 = 1.64 � 10–18 J

(a)



From the Einstein relation (Eq. (4.2)),

Frequency of radiation emitted, � = 1.64 � 10–18/(6.626 � 10–34)

= 2.48 � 1015 Hz
From Eq. (4.3),

Wavelength of radiation emitted, � = 2.998 � l08/(2.48 � 1015)

= 1.21 � 10–7 m

= 1210 Å

The element next to hydrogen is the inert gas helium with an atomic number
Z = 2. It has two protons and two neutrons in its nucleus. The charge of the
protons is balanced by two electrons in the ls orbital. When n = 1,

l = 0, ml = 0, ms = 	 1/2

Thus, only two quantum states are possible for n = 1. The two electrons of the
1s orbital are of opposite spins and have spin quantum numbers ms = + 1/2 and
– 1/2. When the helium atom is in the ground state, the 2s orbital is vacant as in
the case of hydrogen.

When n = 2, we can have

l = 0, ml = 0, ms = 	 1/2 2s

l = 1, ml = – 1, ms = 	 1/2

ml = 0, ms = 	 1/2 2p

ml = + 1, ms = 	 1/2

Therefore, the maximum number of electrons in the second principal orbital is
eight. Correspondingly, there are eight elements in the second row of the
periodic table. The first element is the alkali metal lithium with Z = 3. It has two
electrons of opposite spin in the 1s orbital and a third electron in the 2s orbital.
This filling order is in accord with the Pauli exclusion principle and the
minimum energy criterion. This electronic configuration is denoted as 1s22s1. As
can be seen from the first column of the periodic table, a lone s1 electron in the
outermost principal orbital is the characteristic of all alkali metals.

Beryllium with Z = 4 has an electronic configuration of 1s22s2. After
beryllium, the electrons start to fill the states of the second principal orbital. Two
linear combinations (addition and subtraction) of the electron density clouds
corresponding to ml = +1 and –1 yield the px and py orbitals. The pz orbital
results when ml = 0. In contrast to the s orbital, the probability cloud of a p
orbital is not spherically symmetric. Each of px, py and pz orbitals has the
maximum electron density along one of the three coordinate directions, as
shown in Fig. 4.2. When bonds are formed by electrons of the p orbitals, this
directional nature of the orbital plays an important role in determining the bond
angles. The electron configuration of the elements from lithium to neon is
summarized in Table 4.1.
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58 Atomic Structure and Chemical Bonding

Hund’s rule states that, in order to reduce the electron–electron repulsive
energy, the number of electrons of the same spin in p, d or f states should be
maximum. The filling order in the p orbital shown in Table 4.1 is in accord with

TABLE 4.1

Elements in the Second Row of the Periodic Table

Atomic Electronic Electron spin distribution
Element Symbol number configuration in p states

px py pz

Lithium Li 3 1s22s1 – – –

Beryllium Be 4 1s22s2 – – –

Boron B 5 1s22s22p1 � – –

Carbon C 6 1s22s22p2 � � –

Nitrogen N 7 1s22s22p3 � � �
Oxygen O 8 1s22s22p4 �� � �
Fluorine F 9 1s22s22p5 �� �� �
Neon Ne 10 1s22s22p6 �� �� ��

this rule. Nitrogen, for example, has three electrons in the p orbital. They are
distributed one each in the px, py and pz orbitals so that all three can have the
same spin.

The halogen fluorine is only one electron short for the full complement of p
electrons—a characteristic common to all the halogens. When all the electrons
are present in the p orbital, the sum of the electron probability clouds along the
three coordinate axes results in spherical symmetry. Neon has all the six p
electrons and has a spherically symmetric cloud around it. This configuration is
called the inert gas configuration. All the elements at the end of a row in the
periodic table are inert gases.

The third row of the periodic table starts (as in the second row) with an
alkali metal (sodium) having a s1 configuration in the outermost orbital. The

y

z

x

px

y

z

py

x

pz

z

x

y

Fig. 4.2 The electron density clouds of px, py and pz orbitals are concentrated
each along one of the three coordinate axes.



complete electron configuration of sodium is 1s22s22p63s1. The row ends with
the inert gas argon, with configuration 1s22s22p63s23p6. The number of quantum
states in the third principal orbital is 18 since, for n = 3, we can have

l = 0, ml = 0, ms = 	 1/2 3s

l = 1, ml = –1, ms = 	 1/2

ml = 0, ms = 	 1/2 3p

ml = +1, ms = 	 1/2

l = 2, ml = –2, ms = 	 1/2

ml = –1, ms = 	 1/2

ml = 0, ms = 	 1/2 3d

ml = +1, ms = 	 1/2

ml = +2, ms = 	 1/2

However, the 3d states corresponding to l = 2 remain vacant till the fourth row is
reached in accordance with the order of increasing energy of the orbitals.
Therefore, the third row of the periodic table has only eight elements.

The fourth row starts with potassium of configuration 1s22s22p63s23p64s1.
Next comes calcium. After calcium, the first transition series begins, where the
3d orbitals begin to get filled. The d orbitals are directional in nature like p
orbitals and can hold a maximum of 10 electrons. The order of filling of 3d
orbitals is summarized in Table 4.2. When the d shell is exactly half-filled as in
chromium, we have five electrons of the same spin in the d shell.

TABLE 4.2

Elements of the First Transition Series

Atomic Outer electron Electron spin distribution
Element Symbol number configuration in d states

d1 d2 d3 d4 d5

Scandium Sc 21 3s23p63d1 4s2 � – – – –

Titanium Ti 22 3s23p63d2 4s2 � � – – –

Vanadium V 23 3s23p63d34s2 � � � – –

Chromium Cr 24 3s23p63d54s1 � � � � �
Manganese Mn 25 3s23p63d54s2 � � � � �
Iron Fe 26 3s23p63d64s2 �� � � � �
Cobalt Co 27 3s23p63d74s2 �� �� � � �
Nickel Ni 28 3s23p63d84s2 �� �� �� � �
Copper Cu 29 3s23p63d104s1 �� �� �� �� ��
Zinc Zn 30 3s23p63d104s2 �� �� �� �� ��
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60 Atomic Structure and Chemical Bonding

When all the ten electrons are filled, the d orbital acquires spherical
symmetry and we move out of the transition series. The copper atom with the
outer configuration 3d104s1 has a spherical electron probability cloud around the
nucleus. Next to copper, zinc has the outer configuration 3d104s2. The 4p orbitals
begin to get filled from gallium onwards up to the inert gas krypton (see the
Periodic Table).

The fifth row contains the second series of transition elements and is
similar to the fourth row, in the order of filling. The 4f and the 5f orbitals are
filled in the sixth and the seventh rows of the periodic table. There are
14 f-orbitals corresponding to the value of l = 3 and ml = –3, –2, –1, 0, +1, +2,
and +3. Elements with partially filled f orbitals are called the rare earth
elements. The sixth row has 32 elements in it, while the seventh row goes up to
lawrencium (Z = 103). In recent years, some elements with Z > 103 have been
discovered.

4.3 Ionization Potential, Electron Affinity and Electronegativity

We have already noted that electrons in the orbitals around the nucleus can
absorb energy and get promoted to higher energy levels. If sufficient energy is
supplied, an electron in the outer orbital can break away completely from the
atom and become free. The energy required to remove an electron in this manner
is known as the ionization potential. The energy to remove the outermost
electron, which is weakly bound to the atom, is called the first ionization
potential.

Figure 4.3 gives the first ionization potentials of the elements. The potential
is the least for the first atom in a row of the periodic table and increases as we
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Fig. 4.3 First ionization potentials of the elements.



go to the right along the row. The alkali metals have a lone s electron in their
outermost orbital, which can be removed with relative ease. The inert gases, on
the other hand, have the full complement of s and p electrons in their outermost
principal orbital. Removing an electron from the stable inert gas configuration
requires a relatively large expenditure of energy. Further, as we go down a
column of the periodic table, the outermost electrons are less and less tightly
bound to the nucleus. Correspondingly, among the alkali metals, the first
ionization potential is highest for lithium at the top of the column and lowest for
cesium at the bottom. Among the inert gases, the potential is highest for helium
and lowest for xenon.

When an electron is removed from the neutral atom, there is a decrease
in the mutual repulsion between the orbital electrons. They can approach
one another more closely and are therefore attracted more strongly to the
nucleus, resulting in the shrinking of all the orbitals. As a result, the energy
required to remove the second and successive electrons becomes increasingly
greater.

Example 4.2 Give the electronic configuration of a neutral iron atom, a
ferrous ion and a ferric ion. Compare their sizes.

Solution

Species Electronic configuration Radius, Å

Neutral iron Fe 1s22s22p63s23p63d64s2 1.24

Ferrous ion Fe2+ 1s22s22p63s23p63d6 0.83

Ferric ion Fe3+ 1s22s22p63s23p63d5  0.67

The size of the atom decreases considerably as more and more electrons are
removed from the outer orbital.

Consider a system of a neutral atom and an extra electron. The work done
by this system, when the extra electron is attracted from infinity to the outer
orbital of the neutral atom, is known as the electron affinity of the atom. The
electron affinities of some elements are shown in Table 4.3. The stable
configuration of the inert gases has no affinity for an extra electron. The
halogens, which are just one electron short to achieve the stable inert gas
configuration, have the largest electron affinities. When an extra electron is
added to a neutral atom, there is a weakening of the attraction of the electrons to
the nucleus, resulting in an expansion of the electron orbitals and an increase in
the size of the atom.
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TABLE 4.3

Electron Affinities of Some Elements
(Values are given in eV and kJ mol–1)

For one electron
H He

0.7 0
68 0
Li Be B C N O F Ne

0.54 0 0.54 1.13 0.2 1.48 3.62 0
52 0 52 109 19 143 349 0
Na Mg Al Si P S Cl Ar

0.74 0 0.4 1.90 0.80 2.07 3.82 0
71 0 39 183 77 200 369 0

Br Kr
3.54 0
342 0

I Xe
3.24 0
313 0

The tendency of an atom to attract electrons to itself during the formation of
bonds with other atoms is measured by the electronegativity of that atom. This is
not the same as the electron affinity, where the tendency of an atom to attract an
isolated electron is measured. Consider, for example, the bond formation
between hydrogen and fluorine by the sharing of their outer electrons. Fluorine
has a greater tendency to attract the bonding electrons to itself than hydrogen.
Fluorine has thus a larger electronegativity than hydrogen. Pauling has worked
out empirically the electronegativities of elements, Table 4.4. As seen from the
table, the halogens have the largest electronegativities and the alkali metals have
the smallest. Qualitatively, the nonmetals such as the halogens are said to be
electronegative. A value of 2 on the electronegativity scale can be taken as the
approximate dividing line between metals and nonmetals.

TABLE 4.4

Pauling’s Electronegativities of Elements

H
2.1
Li Be B C N O F
1.0 1.5 2.0 2.5 3.0 3.5 4.0
Na Mg Al Si P S Cl
0.9 1.2 1.5 1.8 2.1 2.5 3.0

K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br
0.8 1.0 1.3 1.5 1.6 1.6 1.5 1.8 1.8 1.8 1.9 1.6 1.6 1.8 2.0 2.4 2.8

Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I
0.8 1.0 1.2 1.4 1.6 1.8 1.9 2.2 2.2 2.2 1.9 1.7 1.7 1.8 1.9 2.1 2.5

Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At
0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.2 2.2 2.2 2.4 1.9 1.8 1.8 1.9 2.0 2.2



CHEMICAL BONDING

4.4 Bond Energy, Bond Type and Bond Length

The forces between two atoms (or ions) as a function of their distance of
separation r are schematically shown in Fig. 4.4. When the distance of
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Fig. 4.4 Interatomic forces and potential energy in a system of two atoms, as a
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separation is large, the significant force is the attractive (negative) force, Fa. At
closer distances of approach, a repulsive (positive) force, Fr, also becomes
significant and increases rapidly with decreasing distance of separation. When
the distance of separation is r0, the attractive and the repulsive forces exactly
balance each other and the net force is zero. This distance corresponds to stable
equilibrium with a minimum in potential energy W. The magnitude of the
minimum energy W0 is called the bond energy.
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Bond energy should be expressed in kilojoules per mole of bonds
(kJ mol–1). Other units such as electron volt per bond and kilocalories per mole
of bonds are also used. It is useful to remember that 1 eV/bond is approximately
equal to 100 kJ mol–1 and that 1 kilocalorie is equal to 4.18 kilojoules. The
energy per mole of bonds is not necessarily equal to the enthalpy of atomization
which is the energy required to convert one mole of atoms in a solid into its
component atoms in the gaseous state. This is so because each atom in the solid
may form bonds with a number of neighbours, and all these bonds are broken
during vapourization. If the bonds are discrete, the enthalpy of atomization
equals z/2 times the energy per mole of bonds, where z is the number of nearest
bonding neighbours of an atom. The factor 2 arises as each bond between a pair
of neighbours is counted twice.

According to strength, chemical bonds can be grouped into primary
and secondary bonds. Primary bonds have bond energies in the range 100–
1000 kJ mol–1 (1–10 eV/bond). Covalent, metallic and ionic bonds are all
primary bonds. Among these, covalent and ionic bonds are generally stronger
than metallic bonds. Secondary bonds have energies in the range 1–50 kJ mol–1

(0.01–0.5 eV/bond), one or two orders of magnitude smaller than those of
primary bonds. Examples of secondary bonds are van der Waals bonds and the
hydrogen bond. Generally, van der Waals bonds are very weak.

Few materials have pure bonds of one type or the other. Occurrence of
mixed bonds in materials is the rule rather than the exception. In fact, empirical
rules exist to apportion a fraction of a bond to a particular type. Notwithstanding
this, it is useful to classify materials according to the bond type that is dominant
in a given material. This classification helps in predicting the approximate
properties and behaviour of a material under a given set of conditions even if the
actual behaviour may sometimes not agree with this prediction.

The length of a bond (r0 in Fig 4.4) is defined as the centre-to-centre
distance of the bonding atoms. Strong bonds pull the bonding atoms closer
together and so have smaller bond lengths as compared to weak bonds. Primary
bonds have lengths in the range 1–2 Å (0.1–0.2 nm). Secondary bond lengths
are larger, in the range 2–5 Å (0.2–0.5 nm).

The length of a bond can be used to define atomic or ionic diameters. When
bonding is between two neighbouring atoms of the same kind, the atomic
diameter is simply equal to the bond length, see Fig. 4.5a. For example, the
equilibrium distance between the atomic centres in the diatomic chlorine
molecule is 1.81 Å, which is also the diameter of the chlorine atom. To indicate
the character of the bond, this can be called the covalent diameter of chlorine.
The equilibrium distance between two nearest bonding copper atoms in a copper
crystal is 2.56 Å, which is also the (metallic) diameter of copper. Some
ambiguity in this definition arises if the element in question exhibits different
crystal forms. For example, the diameter of the iron atom is 2.48 Å when it is
surrounded by eight neighbours in the BCC crystal and 2.54 Å when it has 12
nearest neighbours in the FCC crystal. When two bonding atoms are of different
types, as in the ionic bonding, the bond length is equal to the sum of their radii,
rc + ra, as illustrated in Fig. 4.5b.



The equilibrium distance of separation shown in Fig. 4.4 applies to 0 K, where there
is no thermal energy. At higher temperatures, under the influence of thermal energy, atoms
vibrate about their mean positions, the amplitude of vibrations increasing with increasing
temperature. As can be seen from Fig. 4.6, at temperature T1, the amplitude is a1b1 and at
T2 (T2 > T1) the amplitude is a2b2. The corresponding mean spacings between the atoms are
given by r �0 and r��0. As the repulsive force is short range in nature as compared to the
attractive force, the potential energy curve is steeper on the left side of r0 than on the right
side. Therefore, r��0 > r �0 > r0 as shown in Fig. 4.6. That is, the mean bond length increases
on heating. In other words, the material exhibits thermal expansion.
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Fig. 4.5 The relationship between atomic (or ionic) size and the bond length.
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4.5 Ionic Bonding

Ionic bonding forms between two oppositely-charged ions which are produced
by the transfer of electrons from one atom to another. The steps in the formation
of an ionic bond between sodium and chlorine can be visualized as follows:
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4.5.1 Production of Ions of Opposite Sign

The element sodium has an atomic number Z = 11 and an electronic
configuration 1s22s22p63s1. Being an alkali metal, the first ionization potential
for sodium is relatively small, 496 kJ mol–1 (5.1 eV/atom). The outermost
electron is removed by supplying this much energy:

Na 
 Na+ + e–

The released electron is then available to occupy the only vacant state in the
chlorine atom to produce a negatively charged ion:

Cl + e– 
 Cl–

The electron affinity of chlorine is 369 kJ mol–1 (3.8 eV/atom). Thus, the
electron transfer from sodium to chlorine produces two oppositely charged
univalent ions, with a net increase in the potential energy �E = 496 – 369 =
127 kJ mol–1 (1.3 eV/pair). This increase is more than compensated during
bonding by the energy decrease due to electrostatic attraction between the two
oppositely charged ions.

4.5.2 The Coulomb Attraction

The electron transfer results in the inert gas configuration around both the
nuclei. This configuration has spherical symmetry of the electron probability
cloud. So, the bonding force between the ions is the same in all directions. The
ionic bond is said to be nondirectional. To start with, the ions can be considered
to be point charges. From Coulomb’s law of electrostatics, as two opposite
charges are brought together, the attractive force between them increases in
magnitude inversely as the square of the distance of separation r. So, the
potential energy decreases inversely as the distance. The potential energy is
equal to –A�z1z2e2/r, where z1 and z2 are the valency of the two ions, e is the
electronic charge and A� is a conversion factor.

4.5.3 The Short Range Repulsion

The assumption that the ions are point charges will be valid only when the
electron clouds surrounding the two nuclei do not overlap. The Pauli exclusion
principle will come into the picture if there is an appreciable overlap between
the two electron clouds. Not more than one electron can occupy a given
quantum state. This gives rise to a repulsive force between the ions, which is
short range in nature. When the electron clouds start to overlap, the repulsive
force increases sharply with decreasing distance. The repulsive energy is taken to
vary as the reciprocal of some power m (m > 1) of the distance of separation r.
It is represented by B/rm, where B and m are empirically determined constants.
The value of m varies between 9 and 15.

Summing up the three steps, the potential energy W of the system of the
bond forming atoms is given by

W = �
�

� �
2

1 2
m

A z z e B
E

r r
(4.4)



The minimum in the energy function can be obtained by setting dW/dr = 0, to
yield the bond energy W0 and the equilibrium bond length r0. The strength of an
ionic bond will depend on the relative magnitudes of the three energy terms on
the right side of Eq. (4.4). Considering �E first, this must be as small as
possible. Electropositive elements such as the alkali metals have small ionization
potentials. Electronegative elements such as halogens have large electron
affinities. Hence ionic bonds form most readily between electropositive and
electronegative elements. �E is almost zero for electron transfer from a cesium
atom to a chlorine atom. Consequently, these two elements form a bond that is
dominantly ionic in character. The Coulomb term is dependent on the charges of
the ions forming the bond. Ionic crystals with multivalent ions have generally
stronger bonds and hence higher melting points than crystals with univalent ions.
Thus, MgO, BeO and Al2O3 are refractory oxides with melting points above
2000°C. MgO (magnesia) has important applications as a refractory in the steel
making industry. Al2O3 (alumina) crucibles can hold almost all common metals
in the molten condition.

As ionic bonds are nondirectional, a cation in a crystal tends to surround itself by as
many anions as possible and vice versa. The Coulomb term for a crystal is then
dependent on the mutual attractive as well as repulsive interaction of a given ion with all
the other ions in the crystal, e.g., attractive interaction with the nearest neighbours,
repulsive interaction with the next-nearest neighbours (which are of the same sign) and
so on. This is an interesting problem in the spatial array of the ions and was first solved
by Madelung. The Coulomb energy term for a pair of isolated ions is simply multiplied
by a constant to obtain the energy of a pair of ions in the crystal. This constant called
the Madelung constant is 1.748 for a NaCl-type crystal and 1.763 for a CsCl-type
crystal.

The enthalpies of atomization of some typical ionic crystals are shown in
Table 4.5.

TABLE 4.5

Enthalpy of Atomization of Some Ionic Crystals

Enthalpy of
Crystal atomization, Melting point, °C Boiling point, °C

kJ mol–1

(of compound)

LiF 864 850 1680

NaCl 640 801 1445

KCl 669 770 1415

CsCl 649 605 1300

MgO 1000 2850 3260

BeO 1170 2550 —

CaF2 1548 1420 2510

Al2O3 3060 2050 —
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4.6 Covalent Bonding

Covalent bonding occurs by the sharing of electrons between neighbouring
atoms. This is in contrast to the transfer of electrons from one atom to another in
the ionic bonding. For sharing with a net decrease in potential energy, good
overlap of the orbitals, which will bring the shared electrons close to both the
nuclei, is necessary. This occurs readily when there are vacant electron states in
the outermost orbital of the bonding atoms. When the overlapping orbitals are
directionally oriented and not spherically symmetric, good overlapping and
substantial decrease in the potential energy can occur. This also gives
directionality to the covalent bond.

Consider first the formation of a hydrogen molecule. When two hydrogen
atoms are very far apart, they do not interact, and the lone electrons of the atoms
stay in their respective 1s ground states. When the atoms come closer, the
electron probability clouds of the 1s states overlap. As the 1s orbitals can have
two electrons of opposite spin, the sharing of electrons between the two atoms
takes place, without having to promote the electrons to higher energy levels.
Both the electrons are close to both the nuclei and, in fact, spend much of the
time in between the two nuclei. The hydrogen molecule has a bond energy
436 kJ mol–1 and a bond length of 0.74 Å. The next element helium cannot form
a covalent bond as this requires promotion of the 1s electrons to the second
principal orbital.

Sharing of electrons and the formation of covalent bonds readily occurs
between atoms which have unfilled p orbitals. The p orbitals are directional in
nature and hence permit efficient overlapping of the orbitals in the direction of
the maximum electron probability density. Fluorine with Z = 9 and an electronic
configuration 1s22s22p5 has a vacant state in the pz orbital. Two fluorine atoms
can come together such that the half-filled pz orbitals overlap. As there are no
other half-filled orbitals, each fluorine atom forms only one bond. In the
elemental state, fluorine forms the diatomic molecule F2 with a bond energy of
154 kJ mol–1 and a bond length of 1.42 Å.

In oxygen to the left of fluorine, the py and pz orbitals have one vacant state
each. Each of the unpaired electrons in these orbitals can share an electron with
another atom. In the water molecule, the unpaired 1s electrons of two hydrogen
atoms pair up with the two unpaired 2p electrons of oxygen. If the overlap
occurred without any distortion of the p orbitals, the angle between the bonds
would be the same 90° as between the unbonded p orbitals. However, the
observed H–O–H bond angle in the water molecule is 104°. The formation of
the bond here is more appropriately visualized to occur between hybridized
orbitals produced by the interaction between the 2s orbitals and the 2p orbitals
of the oxygen atom. The hybridized orbitals, known as the (sp3) orbitals, are
four in number and can hold a total of eight electrons. Their mutual orientation
is ideally the one between the four lines joining the centre to the four corners of
a regular tetrahedron. (A regular tetrahedron is a solid figure made up of four
faces, all of which are equal and equilateral triangles.) The interbond angle
corresponding to this orientation is 109.5°. In the water molecule, two of the



hybridized orbitals of oxygen are occupied by four electrons of oxygen and
hence do not take part in bonding. In the other two orbitals, electrons are shared
between two hydrogen atoms. By a similar bonding mechanism, the other
elements of the sixth column form two bonds. That is, each atom is bonded to
two neighbours. The S–S–S bond in sulphur has a bond angle of 107°. The
Se–Se–Se bond in selenium and the Te–Te–Te bond in tellurium have a bond
angle of 104°.

The above are examples of an end-to-end overlap of p orbitals giving rise to
what is known as a � (sigma) bond. When there is lateral overlap of p orbitals,
� (pi) bonds are said to form. Double and triple bonds are examples of � bonds.
Figure 4.7 illustrates the difference between the end-to-end overlap and the
lateral overlap of p orbitals. In the diatomic oxygen molecule, one double bond
holds together the two oxygen atoms, with a bond energy of 494 kJ mol–1 and a
bond length of 1.21 Å.

(a)
(b)

Fig. 4.7 (a) End-to-end overlap gives rise to a � bond. (b) Lateral overlap gives
rise to a � bond.

A fifth column element has all three p electrons unpaired. Hence an atom
here forms three covalent bonds. The bond angles reflect the fact that the three p
orbitals have a mutually perpendicular orientation. Some examples are given in
Table 4.6.

TABLE 4.6

Bonding Characteristics of Fifth Column Elements

Atomic Bond Covalent Bond energy,
Element number Bond angle radius, Å kJ mol–1

Phosphorus 15 P–P–P 99° 1.10 214

Arsenic 33 As–As–As 97° 1.25 134

Antimony 51 Sb–Sb–Sb 96° 1.45 126

Bismuth 83 Bi–Bi–Bi 94° 1.56 105

These bond angles are closer to the 90° angle between unbonded p orbitals,
rather than to the tetrahedral angle of 109.5°, which is characteristic of
hybridized orbitals. With increasing atomic number, the bond length increases
and the bond strength decreases. As we go down the column, the increasing
shielding effect of the electrons of the inner orbitals binds the outer electrons
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less and less tightly to the nucleus. This explains the decrease in the bond
strength as the atomic number increases. Nitrogen in this column forms a
diatomic molecule with a triple bond between two nitrogen atoms, which has a
bond energy of 942 kJ mol–1 and a bond length of 1.10 Å.

The diamond form of carbon and other fourth column elements share all the
four hybridized orbitals with four neighbours. The four bonds formed are of
equal strength and bear the ideal tetrahedral angle of 109.5° to one another.
They form crystals with a three-dimensional network of covalent bonds. The
bonding characteristics are given in Table 4.7.

TABLE 4.7

Bonding Characteristics of Fourth Column Elements

Atomic Bond energy, Bond Melting Boiling
Material number kJ mol–1 length, Å point,°C point, °C

Diamond C 6 347 1.54 3550 (gr) 4000 (gr)
Silicon Si 14 176 2.36 1410 2680
Germanium Ge 32 159 2.44 937 2830
Gray tin Sn 50 146 3.02 232 2270
Silicon carbide

SiC — 308 1.88 ~2500 —

The first four are elements of the fourth column with increasing atomic number.
As with the fifth column elements, they form bonds of decreasing strength and
increasing bond length.

Example 4.3 The enthalpy of atomization of diamond is 713 kJ mol–1. The
listed bond energy is 347 kJ mol–1. How do you reconcile this difference?

Solution In diamond, each carbon atom forms four discrete bonds. As
two atoms are required to form a bond, the effective number of bonds per atom
is 4/2 = 2. So, when one mole of diamond is converted into carbon atoms in the
gaseous state, 2 moles of C–C bonds are broken. 347 � 2 = 694 kJ mol–1 should
be the enthalpy of atomization of diamond. It is close to the given value.

The bond energy of single, double and triple bonds increases in that order,
with a corresponding decrease in the bond length. This is illustrated in Table 4.8
for carbon.

TABLE 4.8

Single and Multiple Bonds of Carbon

Nature of bond Bond energy, kJ mol–1 Bond length, Å

Single C–C 347 1.54

Double C=C 614 1.33
Triple C�C 811 1.20



4.7 Metallic Bonding

The elements to the left of the fourth column in the periodic table exhibit
metallic characteristics. The sharing of electrons between neighbouring atoms
now becomes delocalised as there are not enough electrons to produce the inert
gas configuration around each atom. The metallic sharing changes with time and
the bonding electrons resonate between different atoms. The metallic state can
be visualized as an array of positive ions, with a common pool of electrons to
which all the metal atoms have contributed their outer electrons. This common
pool is called the free electron cloud or the free electron gas. These electrons
have freedom to move anywhere within the crystal and act like an all-pervasive,
mobile glue holding the ion cores together. This is in sharp contrast to the
electrons in covalent bonding, which are localised, bind just two neighbouring
atoms, and stay with them. This freedom makes the metallic bonds
nondirectional. Note that the ion cores have spherical electron density clouds
around them. The bond energies of common metals are listed in Table 4.9.

TABLE 4.9

Bond Energies of Metals

Bond energy, No. of bonding Melting Boiling
  Metal kJ mol–l neighbours of point, °C point, °C

(of bonds) an atom

Copper Cu 56.4 12 1083 2595
Silver Ag 47.5 12 961 2210

Gold Au 60.0 12 1063 2970

Aluminium Al 54.0 12 660 2450
Nickel Ni 71.6 12 1453 2730

Platinum Pt 94.3 12 1769 4530

Lead Pb 32.5 12 327 1725
Cobalt Co 70.8 12 1495 2900

Magnesium Mg 24.6 12 650 1107

Cadmium Cd 18.6 12 321 765
Zinc Zn 21.9 12 420 906

Sodium Na 27.0  8 98 892

Tungsten W 212.3  8 3410 5930
Iron Fe 104.0  8 1535 3000

Chromium Cr 99.3 8 1875 2665

Molybdenum Mo 164.6  8 2610 5560
Vanadium V 128.5  8 1900 3400

Niobium Nb 180.8 8 2468 4927

Bond lengths can be derived from the data in the table on the back inside cover.
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4.8 Secondary Bonding

In many molecules, where hydrogen takes part in the covalent bonding, the
centres of the positive and the negative charges do not coincide. Consider the
example of the water molecule. The electronegativity of oxygen is 3.5 and that of
hydrogen is 2.1. Therefore, the oxygen atom pulls the bonding electrons to itself
more strongly than hydrogen does. This results in a net negative charge at the
oxygen end and a net positive charge at the hydrogen end of the molecule. Due to
this imbalance in electrical charge, the water molecule possesses a permanent
dipole moment. The bond that is formed between water molecules due to attraction
between the positively-charged hydrogen end of a molecule and the negatively-
charged oxygen end of another molecule is called the hydrogen bond, see Fig. 4.8.

– + –
+ +

–

+

–

+

Fig. 4.8 Hydrogen bond between water molecules.

–

Hydrogen bonds are evidently directional. The bond between water molecules is
strong enough to persist in the liquid state. It is responsible for the unusual
properties of ice and water. For example, the relatively open network of
hydrogen bonds in ice as shown in Fig. 4.8 collapses to a more closely packed
liquid, accounting for the anomalous increase in density on melting. The
hydrogen bond energies and the permanent dipole moments of some common
molecules are shown in Table 4.10.

TABLE 4.10

Hydrogen Bond Energies and Dipole Moments of Some Molecules

 Molecule Dipole moment Bond energy, Melting Boiling
   C m Debye kJ mol–1 point, °C point, °C

Water H2O 6.2 � 10–30 1.85 20.5 0 100
Ammonia NH3 4.9 � 10–30 1.48 7.8 –78 –33

HF 6.7 � 10–30 2.00 31.5 –83 20



Example 4.4 From the enthalpy of fusion of ice, estimate the fraction of
hydrogen bonds that are broken when ice melts.

Solution The enthalpy of fusion of ice = 6.02 kJ mol–1. There are two
moles of hydrogen bonds per mole of H2O in ice. From Table 4.10, the
hydrogen bond energy = 20.5 kJ mol–1. Assuming that all the heat absorbed
during melting goes into breaking the bonds, the fraction of bonds broken is
given by

6.02/(20.5 � 2) = 0.15

As bonds are continuously broken and remade in a liquid, this should be
considered as a time-averaged value.

Inert gas atoms have spherically symmetric electron probability clouds
around them and, therefore, have no permanent dipole moments. Yet, inert gases
form solid crystals at sufficiently low temperatures. The bonding in such solids
is called the van der Waals bonding. It is the result of momentary fluctuations in
the charge distribution around an atom. Even though the time averaged electron
probability distribution is spherically symmetric, the electronic charge at any
instant of time is concentrated locally, resulting in a weak fluctuating dipole
within the atom. The electric field of this imbalance can induce a dipole moment
in a neighbouring atom, in such a way as to attract it. The dipole in the second
atom can in turn induce a dipole in a third atom in order to attract it, and so on.
This dipole-induced-dipole attraction is nondirectional in nature. When the
atoms come closer, a repulsion arises, which can be explained (as in other
bonds) on the basis of the Pauli exclusion principle. The bond energies and the
bond lengths of some inert-gas crystals formed by van der Waals attraction are
given in Table 4.11. The very low bond energies are associated with
correspondingly large bond lengths.

TABLE 4.11

Bonding Characteristics of Some Inert-Gas Crystals

No. of bonding Bond Bond Melting Boiling
Crystal Symbol neighbours of energy, length, point, point,

an atom kJ mol–1 Å °C °C

Helium He 12 0.29 3.57 –270 –269

Neon Ne 12 0.30 3.15 –249 –246

Argon Ar 12 1.09 3.76 –189 –186

Krypton Kr 12 1.50 3.99 –157 –152

Xenon Xe 12 2.10 4.34 –112 –108
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4.9 Variation in Bonding Character and Properties

We will examine some generalizations between properties and the bonding
character of a material. The solid state can be visualized as atoms vibrating
about their mean positions on fixed atomic sites. In the liquid state, the atoms
have also translational freedom and can slide past one another. The bonds
between atoms in the liquid are continuously broken and remade. In the gaseous
state, the bonds are totally broken. The thermal energy of atoms must be
sufficient to achieve these disruptions in bonding. The higher the bond strength,
the more will be the thermal energy required to break the bonds.
Correspondingly, strongly bonded materials tend to have high melting and
boiling temperatures. Among the primary bonds, covalent and ionic bonds are
generally stronger than metallic bonds. Hence, covalent and ionic solids have
high melting and boiling points. The general trend of correlation between bond
strength and the melting and boiling temperatures is already shown in several
tables of this chapter.

When a solid consists of molecules held together by secondary bonds, the
melting and boiling points of the solid reflect only the strength of the secondary
bonds between the molecules, and not the strength of the primary bonds within
the molecule. Here, the molten state and the gaseous state are to be visualized as
consisting of units of molecules and not individual atoms of the molecule. The
silica (SiO2) crystal, which has a three-dimensional network of Si–O bonds
without any secondary bonding, has a melting point of 1723°C. During melting,
the Si–O bonds are broken. In sharp contrast to this, methane (CH4) has C–H
bonds in the molecule. The molecules are held together by van der Waals bonds
in the solid which melts at –182°C. Here, the C–H bond strength of 413 kJ
mol–1, which is even larger than the Si–O bond strength of 375 kJ mol–1, has no
correlation with the melting point of methane. Rather, the van der Waals bond
strength of 1.36 kJ mol–1 is to be associated with the low melting temperature.

The thermal and electrical conductivities of a solid are, to a large extent,
dependent on the presence of free electrons in the solid. In ionic solids, the
electron transfer produces the stable inert gas configuration around both the
cations and the anions. Hence, there are no free electrons in ionic solids.
Likewise, covalent bonding produces the inert gas configuration around atoms
sharing the electrons, with the result that there are no free electrons here either.
Hence, typical ionic and covalent materials are good thermal and electrical
insulators. Solids which have secondary bonds such as van der Waals bonds
(wholly or in addition to ionic or covalent bonds) are also good insulators. In
contrast, metals have free electrons and are therefore good conductors of heat
and electricity. The best known conductors of heat and electricity are copper,
silver and gold.

We noted that the thermal expansion of materials arises from the asymmetry
of the potential energy versus distance curve (refer Fig. 4.6). Deep potential
wells are more symmetrical about the equilibrium position r0 than shallow



potential wells. So, the thermal expansion at a given temperature tends to be less
for strongly bonded materials than for weakly bonded materials. The thermal
expansion coefficients of a number of materials at room temperature are given in
Appendix I.

The mechanical properties of solids are dependent on the strength of the
bonds as well as the directional nature of bonding. Solids with strong and
directional bonds tend to be brittle. For example, covalently bonded diamond is
very hard and brittle. As metallic bonds are relatively weak and nondirectional,
metals are soft, ductile and malleable. They can change their shape permanently
without breaking. Ionic solids fall in between covalent and metallic solids in that
they may exhibit a very limited amount of ductility.

In any one row of the periodic table, as we go from left to the right, the
metallic character of the bond decreases and the covalent character increases.
Metallic bonds being weaker than covalent bonds, this transition is reflected in
the increasing bond energy and the decreasing bond length from left to the right,
as shown in Table 4.12 for the third row of the periodic table. Similarly, the
transition from covalent to metallic character, as we go from top to the bottom
of a column, is seen in the decreasing bond energy in Table 4.7.

TABLE 4.12

Properties of Elements of the Third Row

Element Na Mg Al  Si  P  S Cl

Bond energy, kJ mol–1 27 25 54 176 214 243 242

Bond length, Å 3.72 3.18 2.86 2.36 2.20 2.08 1.81

Melting point, °C 98 650 660 1410 44 119 –101

Boiling point, °C 892 1107 2450 2680 280 445 –35

Many important engineering metals and alloys belong to the three transition
series. Here, in addition to one or two electrons in the outermost s orbital, there
are partially filled d orbitals. When bonding occurs, there is overlap of s orbitals
as well as some overlap of d orbitals. As d orbitals have directional
characteristics, the electronic structure of transition elements lends a partial
covalent character to the bonding. This reflects in their properties, which fall
between those of covalent crystals and typical metals. The thermal and electrical
conductivities of transition metals are lower than those of typical metals such as
copper and aluminium. The transition metals are also hard and not so ductile as
copper or silver. The melting points of transition metals are higher than those of
typical metals. Figure 4.9 shows the variation in bond energy, melting point,
thermal expansion and density in the first transition series of elements.
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1. The atom consists of a nucleus and surrounding electrons. Each electron
occupies a quantum state with a unique set of quantum numbers.

2. With increasing atomic number, the elements in the periodic table have
increasing number of protons and electrons. The order of occupation of
quantum states by electrons is determined by the Pauli exclusion principle,
the Hund’s rule, and the minimum energy criterion.

3. Ionization potential is the energy required to remove an electron from the
outer orbital of an atom. Electron affinity is the energy released, when a
free electron is added to the outer orbital. The electronegativity of an atom
is a measure of its tendency to attract bonding electrons to itself.

4. The magnitude of the energy released, when two atoms come together
from a large distance of separation to the equilibrium distance, is called
the bond energy. It is related to the enthalpy of atomization of the solid.
The centre to centre distance of the atoms at equilibrium is the bond
length.

5. Primary bond energies are in the range 100–1000 kJ mol–1. Secondary
bond energies are in the range 1–50 kJ mol–1.
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and density of the metals of the first transition series.
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6. Electrons can be transferred from an electropositive atom to an
electronegative atom, producing ions of opposite sign and giving rise to
the nondirectional ionic bond.

7. Sharing of electrons between neighbouring atoms results in a covalent
bond, which is directional.

8. A metal is an array of positive ions which are held together in a cloud of
free electrons. The metallic bond is nondirectional and generally weaker
than ionic and covalent bonds.

9. Melting and boiling points of materials increase with increasing bond
strength. Strong and directional bonds result in hard and brittle solids. Free
electrons are responsible for the high thermal and electrical conductivities
of metals.

��	
����

4.1 Find the minimum uncertainty in determining the position of a particle, if
the uncertainty in its momentum �p is not to exceed 10–30 kg m s–1.

Answer: 1.055 � 10–4 m.

4.2 Using the rest mass of the electron and the mass of a cricket ball, calculate
the uncertainty in the velocity of each for �p = 10–30 kg m s–1.

Answer: 1 m s–1 and ~10–29 m s–1.

4.3 Calculate the limits within which the energy difference of an electronic
transition should be, in order that the emitted or absorbed radiation is in
the visible range (3900 to 7800 Å) of the electromagnetic spectrum.
Answer: 5.09 � 10–19 J (3.18 eV) to 2.55 � 10–19 J (1.59 eV).

4.4 Prepare a table similar to Table 4.2, showing the outer electron
configuration of the second transition series of elements.

4.5 On the basis of values permissible for the four quantum numbers, derive
the number of quantum states corresponding to the fourth principal shell
(n = 4).

Answer: 32.

4.6 Give the electronic configuration of the fluorine atom and the F– ion.
Compare their sizes.

4.7 The heat of dissociation of the chlorine molecule is 121.3 kJ mol–1. The
Cl–Cl bond energy is 242.4 kJ mol–1. Reconcile this difference.

4.8 Derive the units of the constant A� in Eq. (4.4). Compare it with the units
of the dielectric constant in Chap. 17.
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4.9 The potential energy W for the formation of a bond between two univalent
ions is given by Eq. (4.4). A� = 1.13 � 1011 in appropriate SI units. The
equilibrium spacing r0 = 2.50 Å. Find the value of the constant B, given
m = 9.

Answer: 4.92 � 10–105 J m9.

4.10 The potential energy W of a system of two atoms varies as a function of
their distance of separation r as follows:

W = –A /rn
 + B/rm

Show that at equilibrium

(i) r = r0 = (mB/nA)1/(m – n),
(ii) the energy of attraction is m/n times the energy of repulsion, and

(ii) the bond energy W0 = A/r0
n (m – n)/m.

4.11 Calculate the enthalpy of atomization of copper and tungsten from the
bond energy values given in Table 4.9.

Answer: 338.4 kJ mol–1; 849.2 kJ mol–1.

4.12 Explain why the bond lengths in Table 4.11 increase with increasing
atomic number, in spite of the increase in the bond energy.

4.13 Make a plot of the melting points and the boiling points of materials of
different bonding characteristics as a function of their bond energy.

4.14 Compare the values of the dipole moments given in Table 4.10 with the
electronegativity differences of the appropriate atoms and give reason for
any correlation you notice.

4.15 Explain why the increasing trend of melting and boiling points in
Table 4.12 shows a reversal after silicon, even though the bond energy
continues to increase.

4.16 The fraction of ionic character of a bond in a compound AB is given by

fionic = 1 – exp [–(XA – XB)2/4]

where XA and XB are the electronegativities of the elements A and B.
Calculate the fraction of ionic character of (i) GaAs, (ii) ZnS, and
(iii) AgCl.
Comment on the trend you observe.

Answer: (i) 0.04 (ii) 0.18 (iii) 0.26.

�������� ��	���� �����	��

1. When the quantum number l = 3, the quantum number ml takes the
following number of values
A. 6 B. 10 C. 7 D. 14
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2. The order of increasing energy of orbitals in the sixth row of the Periodic
Table is

A. 6s4f 5d6p B. 6s6p4 f 5d C. 6s6p6d6f D. 6s5f 5d6p

3. If an electron transition occurs across the energy gap in GaAs of 1.43 eV,
the radiation emitted or absorbed has a wavelength (Planck’s constant =
6.626 � 10–34 J s; velocity of light = 2.998 � 108 m s–1)

A. 86.7 Å B. 12400 Å C. 8670 Å D. 13890 Å

4. Nickel, which is to the left of Cu (3d104s1) in the first transition series, has
an outer electron configuration

A. 3d94s1 B. 3d84s2 C. 3d114s1 D. 3d104s2

5. If there are six electrons in the d orbital of a transition metal, the number
of unpaired electrons are

A. 6 B. 5 C. 4 D. 0

6. The electron affinity of He in kJ mol–1 is

A. 369 B. –704 C. 86 D. 0

7. Primary bonds have energy range in kJ mol–1

A. 1000–5000 B. 100–1000  C. 10–100  D. 1–10

8. If the Fe–Fe bond length is 2.48 Å, the radius of the iron atom is

A. 2.48 Å B. 1.75 Å C. 1.43 Å D. 1.24 Å

9. The tetrahedral bond angle of (sp3) bonds is

A. 90° B. 99° C. 104° D. 109.5°

10. If copper has bond energy of 56 kJ mol–1 of bonds, the enthalpy of
atomization of copper in the same units is about

A. 56 B. 112 C. 336 D. 672

11. Thermal expansion of materials arises from

A. strong bonds C. thermal vibrations

B. weak bonds D. asymmetry of potential energy curve

12. Hydrogen bonds are stronger than

A. van der Waals bonds C. ionic bonds

B. metallic bonds D. covalent bonds

13. If the radius of anion is ra and of cation is rc, the bond length is

A. (rc + ra) B. 3 (rc + ra) C. 3 /2 (rc + ra) D. ra – rc
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Answers

1. C 2. A 3. C 4. B 5. C

6. D 7. B 8. D 9. D 10. C

11. D 12. A 13. A

Suggestions for Further Reading

M.F.C. Ladd, Structure and Bonding in Solid State Chemistry, Ellis Horwood,
Chichester, UK (1979).

L. Pauling, The Nature of the Chemical Bond, Cornell University Press, Ithaca
(1960).

H.H. Sisler, Electronic Structure, Properties and the Periodic Law, Reinhold
Publishing Corporation, New York (1963).
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CHAPTER

As already noted, solids can be either crystalline or noncrystalline. In this
chapter, we first look at a general comparison between the crystalline and the
noncrystalline states. Following a bond-wise classification, we then describe the
structure of elements, solid solutions and simple compounds. The structure of
silica and the silicates is covered separately in a section. Towards the end, the
structure and the general characteristics of polymers are described in some
detail.

Units

 Quantity
 SI units

Other units
 Unit Symbol

Density kilogram per kg m–3 g/cm3,

cubic metre lb/cu.in.

Specific gravity – – –

Packing efficiency – – –

Note: The density of water is 1000 kg m–3 (1 g/cm3). The specific gravity of a material
is the ratio of its density to the density of water. For example, the density of iron is
7800 kg m–3. Its specific gravity is 7.8. The densities of typical materials are given in
Appendices I and II.

Constants

Avogadro’s number N = 6.023 � 1023 mol–1

Atomic mass unit (amu)* = (103N)–1 = 1.660 � 10–27 kg
(also called atomic weight unit)

*For example, the mass of the carbon atom = 12 amu

= 12 � 1.660 � 10–27 kg

= 1.992 � 10–26 kg
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5.1 The Crystalline and the Noncrystalline States

The number and kind of nearest neighbours, that an atom or an ion has in a
solid, is nearly the same for both the crystalline and the noncrystalline forms of
the solid. However, the noncrystalline structure does not have the long range
periodicity characteristic of the crystalline state. In a crystal, any number of
integral lattice translations would take us from an atom located at a lattice point
to another identical atom located at a different lattice point. This is not true for
the noncrystalline state. As long range periodicity is the basis of diffraction
effects, the noncrystalline solids do not give rise to sharp diffraction patterns like
crystals.

Several factors promote the formation of noncrystalline structures. When
primary bonds do not extend in all directions, one-dimensional chain molecules
or two-dimensional sheet molecules are formed. Such units have to be aided by
secondary bonding forces to form a three-dimensional crystal. Consider a
structure consisting of long chain molecules. In the molten state, the chains
persist and are like a bowl of wriggling earthworms, see Fig. 5.la. The
“wriggling” refers to the translational motion of the chains past one another. On
cooling, if the secondary bonding forces are not strong enough to exert
themselves, the chains cannot get straightened out of the tangle to become the
orderly, parallel arrangement of a crystal as in Fig. 5.lb. The translational
freedom is gradually lost during cooling, till the noncrystalline, glassy state is
reached, where only the vibrational degree of freedom remains. The
“earthworms” are frozen in place in the solid in some random configuration
similar to that in Fig. 5.1a.

(a)

Fig. 5.1 (a) The tangled up configuration of long chain molecules, (b) the
parallel array of the chain molecules characteristic of a crystal.

(b)

The free energy of the crystalline state is always lower than that of the
noncrystalline state. Only when the free energy difference between the two states
is large in magnitude, the tendency to crystallize will be strong. Some materials
form a relatively open network structure of atoms, where there is little free



energy difference between an orderly array and a disorderly array of the units. In
such cases, the tendency to crystallize will be weak.

A third factor that promotes the formation of noncrystalline structures is the
rate of cooling from the liquid state. Kinetic barriers exist along the path of
transition from the liquid to the crystalline state. Slow cooling rates allow
enough time for crystallization, while fast cooling rates may prevent
crystallization altogether. The rate of cooling which is considered as slow or fast
will vary widely for different materials, depending on the magnitude of the
kinetic barrier. For a metal, the cooling rate required to prevent crystallization
may be as high as 106 K s–1. For a silicate, cooling at the rate of a fraction of K
per hour may be sufficient to prevent crystallization.

The crystal exhibits a sharp melting point in contrast to the noncrystalline
material, which gradually softens over a range of temperature. As a result of the
regularity of the arrangement, the atoms or molecules in a crystal are more
closely packed. Hence, the crystalline form has a higher density than the
noncrystalline form. The closer packing in the crystal tends to increase the
average strength of the secondary bonds present.

INORGANIC SOLIDS

5.2 Covalent Solids

Starting from the seventh column of the periodic table, we note that the halogens
are only one electron short to fill their outermost p orbitals and, therefore, each
atom forms one covalent bond. This results in diatomic molecules of F2, Cl2, Br2

and I2. Only weak secondary forces can hold these molecules together in a
crystal. Fluorine and chlorine are in the gaseous state at ambient temperatures,
bromine is a liquid, and iodine forms an orthorhombic crystal.

The sixth column elements form two covalent bonds, by the sharing of the
two half-filled p orbitals of each atom. A number of these elements form long
zigzag chains which are held together by secondary bonds in a solid. The
zigzagging reflects the angular relationship between the p orbitals taking part in
bonding. It is difficult to produce a stable three-dimensional structure by holding
together long, one-dimensional chains with the aid of weak bonds. Hence, these
elements are frequently in the noncrystalline form.

The two bonding electrons can also produce ring molecules such as S8,
small molecules like H2O and H2S, or doubly bonded diatomic molecules such
as O2. These molecules are bonded together by secondary forces when they form
a crystal. For example, H2O forms the hexagonal ice crystal with hydrogen
bonds between the water molecules.

P, As, Sb and Bi of the fifth column with three half-filled p orbitals form
three bonds. Their structure consists of puckered sheets in which each atom has
three nearest neighbours. The angular relationships between the p orbitals are
more or less preserved. The sheets are held together by van der Waals forces.
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The intersheet bonding, even though stronger than the interchain bonding, is still
weak, so that these materials are also found in the noncrystalline form. The
covalent bond length within a sheet is smaller than the van der Waals bond
length across two neighbouring sheets. This difference, however, decreases as we
go down the column from phosphorus to bismuth, with the changing character
of the primary bond. Antimony and bismuth form in the molten state nearly
close packed structures characteristic of typical molten metals with as many as
10 or 11 nearest neighbours on an average. However, they crystallize with three
covalently bonded neighbours to an atom. As a result of this, they expand on
solidification, filling minute cavities and reproducing the mould details
accurately, a property that is exploited in type casting. The three bonding
electrons of the fifth column elements also produce small molecules such as NH3

and triply bonded N2.
When each carbon atom forms three covalent bonds due to (sp2)

hybridization, sheets of graphite are produced. Unlike the puckered sheets of the
fifth column elements, the graphite sheets are planar, as the three (sp2) bonds are
co-planar with an interbond angle of 120°. The sheets are held together in a
crystal by van der Waals bonds as depicted in Fig. 5.2. The fourth bonding

sp2 bonds

Fig. 5.2 Sheets of graphite are held together by secondary bonds in the
crystal.

van der Waals
bonds

electron of carbon is delocalized and resonates between the three (sp2) bonds. Its
mobility accounts for a 100-fold increase in electrical and thermal conductivity
in a direction parallel to the sheets, as compared to the perpendicular direction.
The weak intersheet bonding explains the softness of graphite in sharp contrast
to diamond, the other crystalline form of carbon, which is the hardest known
mineral. Consequently, graphite is used as a lubricant. It is also the ‘lead’ in



pencils, where the softness is controlled by varying the proportion of clay to
graphite, giving different grades of pencils, from 4B to 4H. Its high sublimation
temperature and appreciable electrical conductivity are utilized in resistance
heating applications. Also, if the sheets are aligned in a fibre such that the sheets
are parallel to the fibre axis, the mechanical strength and the elastic modulus can
be increased by orders of magnitude.

In the other crystal form of carbon, diamond, each atom forms four bonds,
as a result of (sp3) hybridization. These four bonds produce a three-dimensional
network of primary bonds. Diamond exists in two crystal forms: the cubic and
the hexagonal. In both the forms, the directions of the bonds from any atom in
the network are given by the lines joining the centre to the corners of a regular
tetrahedron, with an interbond angle of 109.5°. We will discuss only the better
known diamond cubic (DC) structure. The DC unit cell is shown in Fig. 5.3a. A
plan view of the positions of atoms in the unit cell is shown in Fig. 5.3b. The
numbers indicated at atom positions represent the height of those positions from
the base of the cube, the height of the unit cell being taken as unity. Two
numbers at the same position denote two atoms, one above the other.

(a) (b)

0,1 1/2 0,1

1/4 3/4

3/4

1/21/2

1/4

1/20,1 0,1

Fig. 5.3 (a) The diamond cubic (DC) unit cell, (b) plan view of atom positions in
the unit cell. [The numbers indicate the height from the base of the cell, the total

height of the cell being taken as unity.]

0,1

The space lattice of the DC crystal is FCC, with two atoms per lattice point.
The basis has one atom at a lattice point, say, at one corner of the unit cell and
the other atom at a point quarter way along the body diagonal, which is not a
lattice point. The distance of separation between the two atoms of the basis,

which are nearest neighbours, is 3/4,a where a is the lattice parameter. This
distance (1.54 Å) defines the diameter of the carbon atom in the DC crystal. The
number of nearest neighbours of a carbon atom, known as the coordination
number, is four. This low coordination, dictated by the covalent bonding, results
in a relatively inefficient packing of the carbon atoms in the crystal.
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Example 5.1 Calculate (i) the packing efficiency, and (ii) the density of
diamond.

Solution

(i) Effective number of atoms in the DC unit cell

 =
1
8

 � 8 (corner atoms)

+ 
1
2

 � 6 (face centred atoms)

+ 1 � 4 (atoms fully within the unit cell)

� = 8.

Volume of each atom = (4/3)�r3 = (4/3)� 3( 3/8)a ,

where r is the radius of the atom and a is the lattice parameter.

Packing efficiency = 
Volume of atoms in the unit cell

Volume of unit cell

= 
�� 3

3

8 (4/3) (a 3/8)

a
= 0.34

(ii) Density = Mass of atoms in unit cell
Volume of unit cell

= 
�

�

� � �
�

27

10 3

12 1.660 10 8

(3.57 10 )

= 3500 kg m–3

= 3.5 g cm–3

Recently, several new structures of carbon, known by the general name of
fullerenes, have been discovered. One of them is the giant C60 molecule. Like
graphite, it is made up of (sp2) bonds, which are somewhat distorted to make the
three-dimensional molecule. The structure of C60 molecule is illustrated in
Fig. 5.4. The starting three-dimensional framework is the icosahedron, which has
twenty equal and equilateral triangular faces as illustrated in Fig. 5.4a. By
sniping off each of the twelve vertices of this figure, we obtain the (football-
like) truncated icosahedron, see Fig. 5.4b. At each junction in Fig. 5.4b, a carbon
atom is located, which is bonded to three neighbours. As compared to the planar
graphite sheet, the three bonds here do not lie on a plane. In another related
structure known as carbon nanotubes, the graphite sheets are rolled into a
number of concentric hollow tubes, with the average diameter ranging from 20



to 60 Å. The tubes can be up to 1 mm in length. As very small fibres of high
strength, they have the potential to be a very effective reinforcing material for a
softer matrix e.g. a polymer.

The other elements of the fourth column Si, Ge, and gray tin also have the
diamond cubic structure of carbon. The lattice parameter of the DC type crystal
increases with increasing atomic number as tabulated as follows:

Element C (dia) Si Ge Gray tin

Atomic number 6 14 32 50

Lattice parameter, Å 3.57 5.43 5.65 6.46

A large number of compounds with equal atomic fractions of two elements
crystallize in forms closely related to the cubic and hexagonal forms of diamond.
They are made up of two elements of IV column or one element each of III and V
columns or II and VI columns or I and VII columns of the periodic table. Equal
atomic fractions of these combinations give on an average four electrons per atom
needed for the tetrahedral covalent bonding. Some examples are:

IV–IV Compound: SiC

III–V Compounds: AlP, AlAs, AlSb, GaP, GaAs, GaSb, InP, InAs, InSb

II–IV Compounds: ZnO, ZnS, CdS, CdSe, CdTe

I–VII Compounds: CuCl, AgI

For example, in cubic ZnS, the sulphur atoms are at the body corners and the
face centres of the unit cell. The zinc atoms are at the (1/4, 1/4, 3/4, 3/4)
positions within the unit cell.

Si, Ge and the compounds listed above form the vast majority of
semiconductor crystals. They are used in a number of solid state devices such as
diodes, transistors, radiation detectors, photoelectric devices, solar batteries,
thermistors and lasers.

(a) (b)

Fig. 5.4 Structure of C60 molecule: (a) the icosahedron; (b) the truncated
icosahedron.
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Diamond, being very hard, is used in wire drawing dies and as an abrasive
in polishing and grinding operations. Silicon carbide is cubic and is used as an
abrasive and as heating element in furnaces.

5.3 Metals and Alloys

As metallic bonds are nondirectional, each metal atom in a crystal tends to
surround itself with as many neighbours as possible, for minimizing the potential
energy. As a first approximation, we can take the metal atoms to be hard,
incompressible spheres and look at the geometry of close packing of such equal-
sized spheres. Close packing is used here to mean the closest possible packing.
Close packing along a row is obtained by arranging spheres in contact with one
another along a row, as shown in Fig. 5.5a. Another row of close packed spheres
can be placed against the first row, such that each sphere of the second row fits
in the space between two adjacent spheres of the first row touching both of
them, as illustrated in Fig. 5.5b. Repetition of this step produces a close packed
plane, see Fig. 5.5c.

(a)

(b) (c)

Fig. 5.5 Close packing of spheres (a) along a row, (b) on two adjacent rows,
(c) on a plane, (d) three-dimensional …ABCABC… stacking, and

(e) …ABABA… stacking.

(d) (e)

A

B

C

A

A

B

B

A

A



A three-dimensional block of close packed planes can be built in the
following ways. Consider the configuration of a central sphere surrounded by six
spheres in a close packed plane. The spheres are all labelled A and are shown
slightly separated from one another for the sake of clarity in Fig. 5.6a. There is

a triangular valley between any three neighbouring spheres of the plane. There
are six such valleys between the central sphere and the six neighbours. A set of
three alternate valleys out of the six can be chosen to fit the spheres of a second
close packed plane. One set is marked BBB and the other CCC in Fig. 5.6a. Let
us choose the set BBB to position the three second-plane spheres BBB
(Fig. 5.6b) on top of the first. The other spheres of the second plane (not shown)
would then automatically fit into appropriate valleys of the first plane. Let a
third plane be now stacked such that any three of its spheres CCC (Fig. 5.6c) are
vertically over the second set of valleys CCC of the first plane. These three
planes of the stacking are laterally shifted with respect to one another, that is,
the projections of the centres of the spheres on the base do not overlap. We can
call these planes A, B and C. Note that no other lateral position such as D is
possible. By repeating this sequence of stacking, we obtain the face centred
cubic (FCC) stacking, see Fig. 5.5d,

� ABCABCABCAB�

as this gives rise to the FCC monoatomic crystalline arrangement.
Figure 5.7 shows the orientation of the close packed planes in the FCC unit

cell. The neighbouring atoms are shown separated to improve clarity. The ABCA
sequence is indicated. This figure should be compared with Fig. 3.3c, where the
atoms are drawn to their correct sizes touching along the face diagonal. When
the close packed planes are tilted to the horizontal position, the vertical direction
will coincide with the body diagonal XY in Fig. 5.7.
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A

A

B

BB

C

C

C
B

B B

C

C

C

(a) (c)

Fig. 5.6 (a) A central sphere surrounded by six spheres on a close packed plane
forms two sets of alternate valleys BBB and CCC; (b) three spheres to fit in

the set of alternate valleys BBB; (c) three spheres to fit in the set of alternate
valleys CCC.

(b)



90 Structure of Solids

Example 5.2 Determine the Miller indices of the close packed planes of an
FCC crystal.

Solution From Fig. 5.7, it is seen that the close packed planes belong to
the {111} family. There are four pairs of these planes. The two planes
comprising a pair are parallel. However, the pairs are nonparallel to one another.

(i) (111), (1 1 1)
(ii) (111),  (111)

(iii) (111),  (111)
(iv) (11 1),  (111)

The FCC stacking can be visualized as parallel planes of anyone of the
above four sets. The direction perpendicular to the planes will then coincide with
one of the four nonparallel body diagonals of the cube.

In the FCC stacking, after choosing one set of valleys BBB for positioning
the second plane, we used the other set CCC for the third plane. Instead, we
could have positioned the spheres of third plane such that their projections will
coincide with those of the first plane AAA. Repetition of this sequence gives rise
to the hexagonal close packed (HCP) stacking (Fig. 5.5e),

� ABABABA �

as this sequence results in the HCP crystal.
The unit cell of the HCP crystal is shown in Fig. 5.8. For clarity, the close

packed planes are shown separated. They are parallel to the hexagonal base of
the unit cell. Hence, they are called the basal planes. The spheres on the top
hexagon (A plane) are vertically above the spheres of the bottom hexagon (also
A plane). The middle plane is a B plane with its spheres fitting in the triangular

Y

X

A

B

C

Fig. 5.7 Orientation of the close packed planes in the FCC unit cell.

A



valleys of the A planes. The A plane atoms are at lattice points, while the B
plane atoms are not, refer to Table 3.1 for lattice point distribution in the
hexagonal lattice. The effective number of lattice points is 3, whereas the
effective number of atoms in the unit cell is 6, three of which are from the B
plane. The basis therefore consists of two atoms per lattice point.

There are other ways of stacking close packed planes of spheres, the only
restriction being that no two adjacent close packed planes can have the same
symbol. A stacking such as ...ABBA… is not permissible. The packing efficiency
of all close packed stackings is 0.74, that is, 26% of the space in the close
packing of equal sized spheres is ‘empty’. The coordination number for all close
packings is 12, that is, each sphere has 12 nearest neighbours, 6 in the same
plane and 3 each in the two adjacent planes above and below.

Some crystals have arrangements of atoms which do not correspond to close
packing. The most important of these is the arrangement in which each sphere
has 8 nearest neighbours. This gives rise to the body centred cubic crystal, the
unit cell of which is shown in Fig. 3.3b. The effective number of atoms or lattice
points in the unit cell is 2. The atoms touch each other along the body diagonal.
It can easily be shown that the packing efficiency of this arrangement is 0.68,
only 6% lower than that for close packing.

The packing efficiency depends on the coordination number as shown in
Table 5.1.

TABLE 5.1

Coordination Number and Packing Efficiency

Crystal Coordination number Packing efficiency

Diamond cubic (DC) 4 0.34

Simple cubic (SC) 6 0.52

Body centred cubic (BCC) 8 0.68
Face centred cubic (FCC) 12 0.74

A

B

A

Fig. 5.8 The unit cell of the HCP crystal. For clarity, the close packed planes are
shown separated.
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Packing efficiencies higher than 0.74 are possible only with spheres of
different sizes.

Example 5.3 Calculate the c/a ratio for an ideally close packed HCP crystal.

Solution The …ABA… type of stacking represents the HCP structure
depicted in Fig. 5.9. Joining the centres of the three neighbouring atoms of the

A

B

A

P

Q

U
T

S

P

Fig. 5.9 In the …ABA… packing, which is HCP, the centres of three atoms Q, R
and S on plane B are joined to the centres of P atoms in plane A above and

below.

R

middle plane to the centres of the atoms of the top and the bottom planes results
in two tetrahedra with a common base. The top and the bottom atoms are
centred at two lattice points, one above the other on the two hexagonal basal
planes of the unit cell. So, the distance between them is the unit distance along
the c-axis. The distance between any two adjacent atoms of a plane is unit
distance along the a-axis. Unit of c is equal to twice the normal from the apex
of a tetrahedron to its base. Unit of a is equal to the side of the tetrahedron.

In Fig. 5.9,

c/a = 
2PT
RS

RU = 2 2 2 2 /4 3 /2RS SU a a a� � � �

RT = �2
/ 3

3
RU a

PT = � � � �2 2 2 2 /3 2/ 3PR RT a a a

c/a = 2 ( 2/ 3)/a a  = 1.633.



Any three-dimensional array of spheres gives rise to void space between the
spheres. These voids are called interstitial voids. There are two main types of
interstitial voids in close packed structures:

� tetrahedral voids

� octahedral voids.

A tetrahedral void is formed between three spheres on a close packed plane and
a fourth sphere on an adjacent plane fitting in the cavity space between the three
spheres—either on top (upright tetrahedral void, Fig. 5.10a) or at the bottom
(inverted tetrahedral void, Fig. 5.10b). The name ‘tetrahedral void’ comes from
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the regular tetrahedron obtained by joining the centres of the four spheres. There
are two tetrahedral voids for every sphere in the three-dimensional array. For
example, in the FCC unit cell, the centres of the tetrahedral voids lie quarter-way
and three-quarter-way along the four nonparallel body diagonals of the cube.
There are thus eight tetrahedral voids in the unit cell. As the effective number of
atoms in the unit cell is 4, this works out to a ratio 2:1 for the tetrahedral voids
to the atoms.

(a) (b)

(c) (d)

Fig. 5.10 Geometry of tetrahedral and octahedral voids in close packed
structures.

(e)
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Example 5.4 Find the size of the largest sphere that can fit into the
tetrahedral void of a close packed structure without distorting it.

Solution Let r be the radius of the close packed spheres that form the
tetrahedral void. Referring to Fig. 5.9, the distance from the corner of the
tetrahedron to the centre is 3/4PT. This distance is equal to the sum of the radii
of the close packed sphere and the smaller sphere that fits in the tetrahedral
void. So, the size of the sphere that fits the tetrahedral void is 3/4PT – r

= 3 / 2r  – r = 0.225r.

An octahedral void is formed with three spheres on a close packed plane
and three more spheres on an adjacent close packed plane, as shown in
Fig. 5.10c. Note that the three spheres of the adjacent plane are positioned such
that the centres of the three spheres are directly over the three triangular valleys
surrounding the central valley of the first plane, with no sphere over the central
valley. Figure 5.10d is a tilted view of .the octahedral arrangement, showing the
square base with one sphere each on top and at the bottom. The name comes
from the regular octahedron (a polyhedron with six corners and eight faces, the
faces being equal and equilateral triangles) formed by joining the centres of the
six spheres. There is one octahedral void per sphere in the three-dimensional
array. For example, in the FCC unit cell, the centres of the octahedral voids fall
at the body centre and at the middle of the 12 cube edges. The effective number
of octahedral voids per unit cell is then 1 + 12 � 1/4 = 4. This is equal to the
effective number of atoms in the unit cell. It can be shown that the largest sphere
that can fit an octahedral void is 0.4l4r, where r is the radius of the spheres of
the close packed array.

The crystal structures of some common metals are given below. More details
of the crystal structures and the lattice parameters of metallic elements can be
obtained from the table on the back inside cover of the book.

FCC Ag Al Au Cu Fe (910 to 1410°C) Ni Pb Pt

BCC Cr Fe (below 910°C) K Li Mo Na Nb Ta V W

HCP Be Cd Mg Ti Zn

A number of metals have more than one crystal form. Iron, for example, is
BCC at room temperature and changes over to the FCC form at 910°C. At
1410°C, iron again changes over to the BCC form. In general, at higher
temperatures, the BCC crystal structure is to be expected as it allows larger
vibrational amplitudes for atoms, thereby increasing the (thermal) entropy and
lowering the free energy of the crystal. This is believed to be the reason for a
number of alkali metals adopting the BCC form at room temperature, which is
close to their melting range of 20–200°C. The partial covalent character of the
transition metals is a possible reason for a number of them having the BCC
structure at low temperatures.



As a review, the space lattices, the unit cells and the sharing of atoms by the
unit cells are illustrated below for BCC, FCC and HCP crystals:

The space lattices

BCC unit cell

FCC unit cell

HCP unit cell
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A number of metals dissolve in each other forming solid solutions. Solid
solutions are analogous to liquid solutions. The mixing of the elements in the
solid is on the atomic scale. When a solute atom is much smaller than the
solvent atom, it may dissolve interstitially occupying a void space in the parent
structure. For example, carbon is an interstitial solute in FCC iron and occupies
the octahedral voids in the FCC structure. When the solute and the solvent atoms
are of comparable sizes, the solute substitutes for the solvent atom on a regular
atomic site. For example, a 70% Cu-30% Zn alloy (alpha brass) has an FCC
structure, with copper and zinc atoms occupying randomly the atomic sites of
the FCC crystal. Hume Rothery has framed empirical rules that govern the
formation of substitutional solid solutions. Extensive solid solubility by
substitution occurs when

(i) the solute and the solvent atoms do not differ by more than 15% in
diameter;

(ii) the electronegativity difference between the elements is small; and

(iii) the valency and the crystal structure of the elements are the same.

Ag–Au, Cu–Ni and Ge–Si systems satisfy the Hume Rothery conditions very
well as shown in Table 5.2. These systems therefore form complete solid
solutions, that is, the two elements mix in each other in all proportions. Starting
from pure silver, for example, the silver atoms can be continuously replaced by
gold atoms in the FCC structure till pure gold is obtained.

TABLE 5.2

Parameters Relevant to the Hume Rothery Rules

Crystal Radius of Electro-
System structure atoms, Å Valency negativity
Ag–Au Ag FCC 1.44  1 1.9

Au FCC 1.44  1 2.4
Cu–Ni Cu FCC 1.28  1 1.9

Ni FCC 1.25  2 1.8
Ge–Si Ge DC 1.22  4 1.8

Si DC 1.18  4 1.8

This obviously is not possible in the case of Cu and Zn which have FCC
and HCP structures, respectively. They, therefore, form solid solutions up to a
certain extent only. At room temperature, up to 35% of zinc can dissolve in the
FCC crystal of copper, as the Hume Rothery conditions are partially satisfied.
However, only about 1% of copper dissolves in the HCP structure of zinc. The
reason for this difference in behaviour seems to lie in the fact that an excess of
bonding electrons, for example, when zinc is dissolved in copper, is more easily
accommodated than a deficiency of bonding electrons which is seen when
copper is dissolved in zinc.

Substitutional solid solutions have usually a random arrangement of the
constituent atoms on the atomic sites, especially at elevated temperatures. This is



so, as configurational entropy makes a greater contribution in lowering the free
energy with increasing temperature, recall that G = H – TS. This random
arrangement of the constituent atoms in a solid solution may change over to an
ordered arrangement on cooling to lower temperatures if ordering lowers the
enthalpy of the crystal sufficiently. For example, the solid solution of copper and
zinc mixed in equal atomic proportions forms a disordered BCC structure at
temperatures above 470°C. The atomic sites in the BCC crystal are fixed, but the
probability of finding a given atomic site occupied by a copper atom or a zinc
atom is 0.5, that is, in the same proportion as the concentration of the
constituent atom. Below 470°C, the alloy becomes ordered, with all the copper
atoms occupying the cube corners and the zinc atoms occupying the body
centres (or vice versa). Such a structure is identical to the one shown in
Fig. 3.4c. This ordering occurs, as there is some preference for Cu–Zn bonds
which have a larger bond energy than Cu–Cu or Zn–Zn bonds. Note that in the
ordered state, all the zinc atoms have copper nearest neighbours and all the
copper atoms have zinc neighbours, that is, all the bonds are of the Cu–Zn type.

The above example of the 50 Cu–50 Zn alloy is an intermediate structure
that forms in a system of limited solid solubility. Its crystal structure (BCC) is
different from that of either copper (FCC) or zinc (HCP). If an intermediate
structure exists only at a fixed composition, it is called an intermetallic
compound. For example, iron carbide (Fe3C), a common constituent of steels, is
an intermetallic compound. It has a complex crystal structure referred to an
orthorhombic lattice and is hard and brittle.

Intermediate structures, which have appreciable difference in electronegativity of the
constituent atoms, obey the normal rules of valency. Examples, where magnesium is one
of the constituent atoms, are Mg2Si, Mg3P2, MgS, Mg2Ge, and MgSe.

Some intermediate compounds, which do not obey the normal rules of valency, are
called electron compounds. Hume Rothery has shown that they occur at certain definite
values of free electron to atom ratio in the alloy such as 3 : 2, 21 : 13 and 7 : 4. Typical
examples are CuZn (3 : 2), Cu5Zn8 (21 : 13) and CuZn3 (7 : 4).

5.4 Ionic Solids

In Chapter 4, we noted that the size of an atom increases on adding extra
electrons and shrinks on removing electrons. Consequently, the cation is usually
smaller than the anion. Exceptions to this exist in a few cases such as RbF, with
Rb+ larger than F–. Ionic bonds are nondirectional. Therefore, each ion tends to
surround itself with as many ions of opposite sign as possible to reduce the
potential energy. This tendency promotes the formation of close packed
structures. Unlike the metallic structures, here the differences in size of the two
(or more) ions forming the crystal should also be taken into account in the
geometry of close packing.

Consider first the local packing geometry of one type of cation and one type
of anion. The cation is assumed to be the smaller ion. The number of anions
surrounding a central cation is called the coordination number or ligancy. The
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ligancy is a function of the ion sizes and can be worked out from space filling
geometry when the following conditions corresponding to a stable configuration
are satisfied simultaneously:

(i) An anion and a cation assumed to be hard spheres always touch each
other.

(ii) Anions generally will not touch, but may be close enough to be in
contact with one another in a limiting situation.

(iii) As many anions as possible surround a central cation for the maximum
reduction in electrostatic energy.

When the cation is very small compared to the anion, it is easily seen that
only two anions can be neighbours to the cation in order to satisfy all the above
three conditions. Consider next the configuration shown in Fig. 5.11a. Here, the
three surrounding anions are touching one another and also the central cation.

rc/ra = 0.155 0 < rc/ra < 0.155 0.155 < rc/ra < 0.225

(a) (b) (c)

Fig. 5.11 Triangular coordination of anions around a central cation: (a) the
critical configuration, (b) the unstable configuration; and (c) stable (but not

critical) configuration.

The ratio of the cation to anion radius rc/ra for this configuration is 0.155, which
can be worked out from the simple geometry (Example 5.5). The triangular
arrangement in Fig. 5.11a is one of the limiting situations. The radius ratio is
said to be a critical value because for values of rc/ra smaller than 0.155, the
central cation will rattle in the hole and not touch all the three anions at the
same time, as illustrated in Fig. 5.11b. This violates condition (i) above and
leads to instability. When the radius ratio is less than 0.155, the only way to
satisfy all three conditions is to reduce the number of anions to 2. For values of
rc/ra slightly greater than 0.155, all the anions touch the central cation but do not
touch one another, as shown in Fig. 5.11c. All three conditions of stability are
still satisfied. This situation will prevail till the radius ratio increases to 0.225,
the next higher critical value corresponding to a tetrahedral (four) coordination.
At rc/ra = 0.225, the four surrouding anions touch one another and also the
central cation. This configuration is the same as that obtained by fitting the
largest possible sphere in the tetrahedral void of a close packed structure, see
Example 5.4.



A ligancy of five does not satisfy all the three conditions for stable
configuration because it is always possible to have six anions as an alternative to
any arrangement that contains five anions, without a change in the radius ratio.
The critical condition for octahedral (six) coordination occurs at rc/ra = 0.414,
which is the same as the size of the octahedral void in a close packed structure.
Ligancies of 7, 9, 10 and 11 are again not permissible. The radius ratio ranges in
which different values of ligancy are obtained are summarized in Table 5.3. At
the end of the table, the limiting case of rc/ra = 1 is identified with configurations
of close packing of equal sized spheres.

TABLE 5.3

Ligancy as a Function of Radius Ratio

Ligancy Range of radius ratio Configuration

2 0.0 – 0.155 linear
3 0.155 – 0.225 triangular
4 0.225 – 0.414 tetrahedral
6 0.414 – 0.732 octahedral
8 0.732 – 1.0 cubic

12  1.0 “FCC” or “HCP”

Example 5.5 Find the critical radius ratio for triangular coordination.

Solution The critical condition for triangular coordination is shown in
Fig. 5.11a. The three anions touch one another as well as the central cation.
From the simple geometry, we can write

rc + ra = 
2
3

(2ra) sin 60°

= 1.155ra

rc/ra = 0.155.

The ligancy rules outlined above are obeyed in a number of cases. For
example, in the NaCl crystal, the radius ratio rNa+/rCl– = 0.54, which lies between
0.414 and 0.732. As listed in Table 5.3, the predicted ligancy is six. The
octahedral geometry of six chlorine ions surrounding a central cation is
experimentally observed. In MgO, rMg2+/rO2– = 0.59 and again the octahedral
coordination is observed. In CsCl, rCs+/rCl– = 0.91. This value lies in the range of
0.732–1.0. The predicted coordination of eight anions surrounding a cation is
observed. In a marginal case such as CaF2, where rCa2+/rF– = 0.73, it is difficult
to predict whether a six-fold or an eight-fold coordination will occur. It so turns
out that the eight coordination is observed in this case, that is, every calcium
cation is surrounded by eight fluorine anions.
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The Si–O bond in silica as well as in silicates is about 50% ionic and 50%
covalent. Here, the central silicon cation is surrounded by four oxygen anions
located at the corners of a regular tetrahedron. This arrangement satisfies both
the ligancy rules (as rc/ra = 0.29, the tetrahedral coordination is predicted from
Table 5.3), as well as the orientation relationships of (sp3) bonds.

The stability criteria listed above for predicting the ligancy may not always
be valid. If directional characteristics of bonding persist to any significant
degree, the considerations based on the radius ratio alone will not lead to the
correct prediction of ligancy. In the above-discussed example of Si–O
coordination, the radius ratio criterion and the bond angle requirements happen
to coincide. In ZnS, where the bond is more covalent than ionic, the ligancy
predicted from rZn2+/rS2– = 0.48 is octahedral. Yet the four-fold coordination
characteristic of (sp3) bonding is what is observed.

In the formation of ionic crystals, the ligancy rules described above
determine the local packing around a cation. The long-range arrangement of ions
in the crystal is dependent on the following factors:

(i) In the crystal, the overall electrical neutrality should be maintained,
whatever be the net charge on a local group of a cation and
surrounding anions. For example, in NaCl, where a cation is
surrounded by six anions, the net charge on (NaCl6) is five. Evidently,
this has to be neutralised in the long range arrangement.

(ii) The ionic bond being nondirectional, the ions are packed as closely as
possible in the crystal, consistent with the local coordination.

(iii) If small cations with a large net charge are present in the crystal, the
cation–cation repulsion will be high. Then it may be necessary to have
a long range arrangement that maximizes the cation–cation distance,
even if close packing is not possible. Such a situation usually arises
when the charge on the cation increases to three or four.

When the cation charge is not more than two or at best three and when the
radius ratio is in the range 0.414–0.732, the crystal structure can be described as
a FCC or HCP packing of anions with the cations occupying all or part of the
octahedral voids in the structure. The fraction of octahedral voids that are filled
depends on the number of cations to anions in the chemical formula. Thus, for
the rock salt (NaCl) structure, adopted by hundreds of binary ionic compounds,
rNa+/rCl– = 0.54, and the anion packing is FCC with all octahedral voids filled
with sodium cations. Recall that there is one octahedral void per sphere in a
close packed array. A unit cell of NaCl crystal is shown in Fig. 5.12, wtih the
larger chlorine ions occupying the face centred cubic positions and the sodium
ions in the octahedral voids. The octahedral positions are at the body centre and
at the midpoints of the cube edges. Note that, unlike in the monoatomic FCC
crystal (refer Fig. 3.3c), the chlorine ions do not touch one another along the
face diagonal. This is so because the radius ratio of 0.54 is greater than the size
of the octahedral void in a close packed structure, which is 0.414. The FCC
close packing is ‘opened up’ here to the extent necessary to accommodate the
sodium cations in the octahedral voids.



As the FCC positions and the octahedral void centres are interchangeable
like the body centre and the body corners in the BCC cell, the NaCl structure
can also be described as two interpenetrating monoatomic FCC cells, one
corresponding to the anions and the other to the cations. The basis of the NaCl
structure is one sodium ion plus one chlorine ion. The sum of their radii,
rNa+ + rCl– = a/2, where a is the lattice parameter.

Example 5.6 Calculate the density of MgO from the following data.

Structure: FCC anion packing, cations in the octahedral voids.

Radius of Mg2+ ion = 0.78 Å

Radius of O2– ion = 1.32 Å

Solution MgO has the same structure as NaCl. So,

the lattice parameter a = 2 (rMg2+ + rO2–)

= 2 (0.78 + 1.32) = 4.20 Å

The effective number of oxygen anions at FCC positions in the unit cell = 8 �
1/8 (corner ions) + 6 � 1/2 (face centred ions) = 4.

The effective number of magnesium cations in the octahedral voids = 1 (body
centre) + 12 � 1/4 (midpoints of cube edges) = 4.

Density = 
Mass of atoms in unit cell

Volume of unit cell

= 
�

� � �
�

–27

3 30

(16 + 24.3) 1.660 10 4

4.20 10

= 3610 kg m–3

= 3.61 g cm–3

Fig. 5.12 Unit cell of NaCl with chlorine ions at the FCC positions and the
sodium ions in the octahedral voids.
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Several ionic crystals, which have the radius ratio in the range of octahedral
coordination, are listed in Table 5.4. In alumina (Al2O3), the cation positions in
neighbouring planes of octahedral voids are staggered such that the mutual
repulsion of the trivalent cations is minimized. Due to multivalent ions, the bond
strength in Al2O3 is high, producing a hard crystal with a high melting point.

TABLE 5.4

Structure of Some Ionic Crystals

Fraction of octahedral
Crystal rc/ra Anion packing  voids with cations

NaCl 0.54 FCC All
MgO 0.59 FCC All

CdCl2 0.57 FCC Half

Al2O3 0.43 HCP Two-thirds

The electrical insulating properties of Al2O3 are excellent. Al2O3 is used as a
substrate for building integrated circuits and in spark plugs of automobiles. In
the Al2O3 structure, it is possible to replace part or all of the Al3+ ions by other
ions, provided the size difference between them is small. The structure thus
produced is a substitutional solid solution already discussed in connection with
alloys. Replacing a small fraction of the Al3+ ions by other ions such as Cr3+ and
Fe3+ results in the gemstones, ruby and blue sapphire. Ruby (Cr3+ ions added to
Al2O3) is a LASER (Light Amplification through Stimulated Emission of
Radiation) which is a crystal device. Sapphire is very hard and is used in
jewelled bearings and cutting tools.

When rc/ra is in the range 0.732–1, the eight-fold coordination is observed.
CsCl with rCs+/rCl– = 0.91 is a typical example of this structure. Referring to
Fig. 3.4c, the cesium ions are at the body centre and the chlorine ions are at the
body corners. The space lattice is simple cubic, with a basis of one cesium ion
plus one chlorine ion per lattice point. In CaF2 also, the coordination around the
cation is eight, with the difference that only one body centre for every two unit
cells is occupied by Ca2+.

As an example of an ionic crystal with more than two types of ions, consider the
crystal structure of spinels. Spinels are compounds with two different cations A2+ and B3+

and oxygen as the anion, with the general formula, AB2O4. Here, the oxygen anions form
the FCC packing. For every four oxygen anions, there are four octahedral sites and eight
tetrahedral sites. Out of these twelve, only three are needed to fill the cations of the above
formula. In the normal spinel structure, the A cations are in the tetrahedral voids and the B
cations are in the octahedral voids. Alternatively, half of the B cations can occupy the
tetrahedral voids while the remaining half of the B cations and all the A cations are
randomly distributed in octahedral voids, resulting in the inverse spinel structure. In both
normal and inverse spinels, only half of the octahedral sites and 1/8 of the tetrahedral sites
are filled. When B2O3 = Fe2O3, we have a series of compounds called ferrites, where
different A cations can be present in varying proportions. Ferrites have the inverse spinel
structure. They are important soft magnetic materials (refer  Chap. 16).



5.5 The Structure of Silica and the Silicates

The silicate tetrahedron, shown in Fig. 5.13, is a basic repeating unit in the
structure of silica and the silicates. A tetravalent silicon ion is surrounded by

Silicon cation

Oxygen anion

four oxygen anions, the formula of the unit being (SiO4)4–. The four excess
negative charges on the unit should be neutralised by the formation of primary
bonds with other units (or other cations). The cation–cation repulsion is high
here. Therefore, silica (SiO2) cannot form a close packed layer of oxygen anions
with cations in the tetrahedral voids. Such a structure brings neighbouring
silicon cations so close to one another that it results in an appreciable increase in
the potential energy due to the repulsion between them.

The structure of silica is shown in Fig. 5.14. It forms a three-dimensional
network of tetrahedra, each one of which shares all its four corners with other

Fig. 5.13 The silicate tetrahedron has a silicon cation at the centre of the
tetrahedron and four oxygen anions at the four corners.

(b)

Fig. 5.14 Structure of silica in (a) crystalline and (b) noncrystalline forms.

(a)
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tetrahedra, that is, the oxygen anions at the corners are common to two
tetrahedra. The effective number of silicon cation per tetrahedral unit is 1, and
the effective number of oxygen per unit is 4 � 1/2 = 2, as each corner is shared
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by two tetrahedra. This arrangement maintains the electrical neutrality of the
network as a whole. In the crystalline form such as quartz, the tetrahedra are
arranged in a periodically repeating pattern, see Fig. 5.l4a. In the noncrystalline
form, silica glass, the tetrahedra are randomly bonded to other tetrahedra, as
shown in Fig. 5.l4b. Note that there is no difference in the silicon-oxygen
coordination between the crystalline and the noncrystalline forms.

Quartz is used in optical components. It is also piezoelectric (piezo =
press). A mechanical stress applied to the crystal displaces the ions in the crystal
and induces electric polarization. Similarly, an electric field will cause the crystal
to be elastically strained. Quartz is used in watches and clocks and for accurate
frequency control in electronic circuits. Fused silica glass is used in applications
requiring low thermal expansion. It is highly viscous even in the molten state
because of the Si–O bond between the tetrahedra.

In the three-dimensional network of silica, other oxides can be dissolved to
yield a number of both crystalline and noncrystalline silicates. Soda lime glass is
a noncrystalline silicate with Na2O and CaO added to silica. The alkali cations
break up the network of the silicate tetrahedra, as shown in Fig. 5.15. For each
Na2O introduced, one Si–O bridge is disrupted and the extra oxygen atom from
Na2O splits up one common corner into separate corners. The two sodium ions

Na+

N
a+

N
a+

Na+
Na+

Fig. 5.15 Addition of Na2O to silica introduces weaker bonds in the network.

Na+

stay close to the disrupted corner due to the electrostatic attraction. The network
at the corner is bonded through the Na–O bonds. The Na–O bond being weaker
than the Si–O bond, the viscosity of the glass is drastically reduced as a result of
the alkali addition. Along similar lines, we can explain the much lower softening
temperature of pyrex (80% SiO2, 14% B2O3, 4% Na2O) as compared to fused
silica (99.8% SiO2).

When the tetrahedra share all corners, the only cation in the structure is the
silicon at the centre of the tetrahedron. By introducing other cations, a number
of different structures can be produced. These can be described by reference to
the number of corners the tetrahedra share amongst themselves without an
intervening link provided by a different cation. According to the corners shared,
the structures of many minerals can be classified as island, chain, sheet and
three-dimensional network of tetrahedra, as shown in Table 5.5.



TABLE 5.5

Silicate Structural Units

Number
of oxygen Structural Structural Charge Examples of

ions shared unit formula balance minerals

0 Island (SiO4)
4– Si + 4 Olivine

(ortho) O – 8 (Mg,Fe)2SiO4

Net – 4

1 Island (Si2O7)6– Si + 8 Hemimorphite
(pyro) O – 14 Zn4Si2O7(OH)2.

Net – 6 H2O

2 Single (SiO3)2 – Si + 4 Enstatite
chain O – 6 MgSiO3

Net – 2

Ring (SiO3)
2– Si + 4 Beryl

O – 6 Be3Al2(SiO3)6

Net – 2

1
2

2
Double (Si4O11)6– Si + 16 Tremolite

chain O – 22 (Asbestos)

Net – 6 Ca2Mg5(OH)2�
(Si4O11)2

3 Sheet (Si2O5)
2– Si + 8 Muscovite

O – 10 (Mica)

Net – 2 KAl2(OH)2�
(Si3Al)O10

4 Three-dimensional
network   (SiO2)

0 Si + 4 Quartz
O – 4 SiO2

Net 0

When the tetrahedra do not share any corner directly, we have the island
structure, that is, at all the four corners, each tetrahedron is joined to other
tetrahedra only through other cations in the mineral. A single chain structure is
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produced when each tetrahedron is joined at two corners to two other tetrahedra
directly (that is, by having a common oxygen), with the remaining two corners
joined through other cations. This results in some interesting cleavage properties
of the minerals. A cleavage direction refers to the direction along which the bonds
are broken during fracture. The fibrous quality of asbestos (which has a double
chain structure) is attributable to the cleavage along certain crystallographic
directions which go through the weaker bonds of the structure. Similarly, mica
with tetrahedra arranged in sheet form breaks parallel to the sheets. The bond
between sheets of clay is van der Waals, which explains the softness of clay. The
excess charge on one side of the sheet compared to the other side provides ideal
sites for absorption of the polar water molecules. So, clay has the characteristic
plasticity when mixed with water. Talc is soft, like clay, due to van der Waals
bonding between sheets but does not absorb water like clay.

Cement and concrete are common building construction materials used in
huge quantities. Portland cement consists of a number of silicate minerals with
the approximate composition given in Table 5.6. Cement mixed with water sets
as a function of time due to several hydration reactions. Water binds the sheet-
like silicate molecules together, thereby hardening the cement. Concrete is a
sized aggregate of rocks embedded in a cement matrix, which binds the rock
pieces together.

TABLE 5.6

Approximate Composition of Portland Cement

Constituent Symbol Percentage

Tricalcium silicate C3S 45
Dicalcium silicate C2S 30

Tricalcium aluminate C3A 10

Tetracalcium aluminoferrite C4AF 8
Other bonding agents   — 7

POLYMERS

Most organic polymers are based on the covalent bonds formed by carbon. The
electrons are bonded strongly by the localized sharing, characteristic of covalent
bonding so that polymers are good thermal and electrical insulators. The relative
inertness of polymeric materials (they do not corrode in the sense that metals do)
can be attributed to covalent bonding.

5.6 Classification of Polymers

The word ‘mer’ in Greek means a unit, and so monomer stands for a single unit
and polymer for many units joined together. A polymer usually has thousands of



monomers bonded by a chemical reaction. For this reason, it is often called a
macromolecule. If joining occurs essentially along one direction, we produce
long chain polymers. These long chains are held together by secondary bonds in
a polymeric solid. If joining occurs in other directions as well, we may produce
a network of primary bonds yielding a three-dimensional giant molecule.

Polymers are broadly classified as

(i) thermoplasts, and

(ii) thermosets,

depending on their behaviour with a change in temperature. Thermoplasts have
the property of increasing plasticity, that is, increasing ability to deform
plastically with increasing temperature. Thermoplasts are long chain molecules
held together by secondary bonds. As the thermal energy increases, the
secondary bonds between the chains are broken more readily, rendering the
plastics easily mouldable and ultimately melting it. This high degree of plasticity
is one of the technologically attractive properties of plastics. At the same time,
this easy melting at temperatures of the order of a few hundred degrees Celsius
renders the plastics unsuitable for high temperature applications or for high
strength applications at room temperature.

Thermosets have a three-dimensional network of primary bonds as
polymerization proceeds in all directions. They are, therefore, relatively hard and
rigid at room temperature and do not soften on heating. In fact, they become
harder due to the completion of any left-over polymerization reaction. However,
on heating, before reaching the melting temperature, they degrade, that is, they
decompose owing to their reaction with atmospheric oxygen. Bakelite used for
electrical insulation is a thermoset. The smell of bakelite in a short circuited
electrical appliance is a sign of degradation.

Long chain polymers can be subdivided into three types:

� Plastics

� Fibres
� Elastomers.

The long chain molecules are randomly oriented in a plastic. The plastic has
therefore no directional property, unless it has been mechanically worked in such
a way as to align the chains. In fibres, all the chains are more or less aligned in
the long direction of the fibre. This alignment gives the fibres unique directional
properties. Their strength and elastic modulus in a direction parallel to the fibre
length are an order of magnitude larger as compared to the nonaligned structure.
The third type of polymers are the elastomers which are long chain molecules
exhibiting the unique rubbery behaviour.

5.7 Structure of Long Chain Polymers

The formation of a long chain polymer starting from a monomer is easily
understood by considering the ethylene molecule C2H4, which has a double bond

Structure of Long Chain Polymers 107



108 Structure of Solids

In the bond representation above, it must be borne in mind that each carbon
atom is tetrahedrally bonded to four neighbours with an (sp3) bond angle of
109.5°, as shown in Fig. 5.16.

�

H H

C C

H H

The monomers are bonded together end-to-end in a polymerization reaction:

H H

C C

H H

109.5°

mer
Carbon

Hydrogen

The degree of polymerization (D.P.) defines the number of repeating
monomers in a chain. The molecular weight of the chain molecule is equal to
D.P. multiplied by the molecular weight of the monomer. Molecular weights of
chains typically range from 10 000 to 1 000 000.

Table 5.7 lists the structure of typical ethylene-based long chain polymers.
The structure is described by giving the formula of the four side groups (or
radicals) denoted by R1, R2, R3 and R4. A number of familiar plastics such as
polyethylene, polypropylene, PVC and PTFE are ethylene based, as shown in
Table 5.7.

Fig. 5.16 The structure of a polyethylene chain.
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necessary for chain formation. During polymerization, the double bond is
opened up into two single bonds:



TABLE 5.7

Ethylene Based Long Chain Polymers

Name
Monomer structure

Uses
R1 R2 R3 R4

Polyethylene (polythene) H H H H Sheets, tubes and
containers

Polyvinyl chloride (PVC) H H H Cl Electrical insulation,
gramophone records

Polypropylene H H H CH3 Ropes and filaments,
vacuum flasks, flash
light casings

Polymethylmethacrylate H H CH3 COOCH3 Transparent windows
(Plexiglass) and fixtures

Polystyrene H H H C6H5 As styrofoam, sound
proofing in
refrigerators and
buildings

Polytetrafluoroethylene F F F F Coating for frying
(PTFE) (Teflon) pans, razors and

bearings, chemical
ware, human body
implants

Polyacrylonitrile H H H CN Acrylic fibre used as
(Orlon) wool substitute in

clothings

Many fibres are based on monomers which are not ethylene derivatives. The

polyamide fibres are characterized by C

O

N

H

 linkage.

Nylon (6,6), which belongs to this category, has the following monomer
formula:

—NH(CH2)6NH � CO(CH2)4CO—

Here, six carbon atoms are present in the backbone of the chain between two
neighbouring (NH) groups. The oxygen in the side group of the linkage provides
for a bond with a hydrogen of an adjacent chain, as illustrated now.
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Hydrogen bonds, being stronger than van der Waals bonds, account for the
greater resistance of nylons to softening with increase in temperature. The

polyester fibres are characterized by the 

O

CO
 linkage. The fibre

terylene (or dacron) comes under this category. Note that, in contrast to the
polyamide linkage, there is an oxygen here in place of carbon in the backbone
of the chain. This oxygen provides flexibility, so that a polyester softens easily
with increasing temperature, in spite of the hydrogen bonding between chains.

The main constituent of wood is the cellulose chain, with the following
monomer formula:

CH2
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Hydrogen bond
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Alignment of the long chains gives wood its highly directional properties. The
elastic modulus and the tensile strength are some 10–20 times more in the
longitudinal direction as compared to the transverse direction. Rayon, or
regenerated cellulose, is natural cellulose rendered highly crystalline. Cotton is a
related natural plant fibre.

The structure of elastomers can be understood with reference to natural
rubber. The monomer here is the isoprene molecule. The side groups in the
monomer are both on the same side of the molecule. This arrangement results in
a natural tendency for the molecule to bend and promotes rubbery behaviour.
One of the two double bonds is used in chain formation:
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The remaining double bond is necessary for producing an elastomer. Natural
rubber, as tapped from a tropical tree, is a viscous liquid, in which the long
polyisoprene molecules are able to flow past one another at room temperature. An
elastomer is produced by heating raw rubber with sulphur. Sulphur forms covalent
bonds with the carbon, by using the remaining double bond in the monomer. This
reaction, known as vulcanization, produces additional links between chains called
cross links. The degree of vulcanization determines the stiffness of rubber. With
increasing cross links, the rubber becomes more rigid; for example, a cycle tube is
less vulcanized than a rubber pocket comb. In the limit, when all the double bonds
are used up by sulphur bridges, a three-dimensional network of primary bonds
results. The material thus produced, ebonite, is hard and brittle. The elastic
properties of rubber are discussed in Chap. 10.

5.8 Crystallinity of Long Chain Polymers

Long chain polymers are usually in the noncrystalline form or in the
semicrystalline form. In the noncrystalline form, the long chains are randomly
tangled with one another. In the semicrystalline form, parts of the polymer
volume have the parallel chain arrangement while other parts are randomly
oriented, as shown in Fig. 5.17. Sometimes it is possible to grow single crystals
of a polymer. These crystals have a folded chain structure, where the same chain
folds back and forth many times into a parallel arrangement. For example, the
single crystal of polyethylene has an orthorhombic unit cell.

Fig. 5.17 Many polymers are semicrystalline, with random and parallel
arrangements of chains in different regions.

In all polymers, the long chains can be aligned to some extent by mechanical
working. Such an alignment promotes crystallinity. As the chains are more closely
packed in the crystalline form, the density increases with increasing alignment of
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the chains. Thus low density polyethylene (sp. gr. 0.92) is less than 50%
crystalline, as compared to high density polyethylene (sp. gr. 0.97) which is about
80% crystalline. Crystallinity is also promoted by the formation of a hydrogen
bond between chains in place of the weaker van der Waals bond. For example,
nylon and cellulose crystallize owing to the hydrogen bond.

There are several factors which promote noncrystallinity. Chains that are
very long get tangled more easily and are therefore more difficult to crystallize.
Another factor which impedes crystallization is the phenomenon of branching. A
long chain at some point along its length can bifurcate into two branches. This
introduces primary bond bridges between chains at random points and impedes
the parallel arrangement of chains necessary for crystallization. Irradiation of a
polymer can knock off a small side group such as hydrogen, where the end of
another molecule can be bonded, producing a branched structure. Branching
makes the polymer stiffer.

In many polymers, the four side groups are not the same. In polystyrene, for
example, one of the side groups is the phenyl group, which is large and bulky, as
compared to the other three groups which are hydrogen atoms. During
polymerization, different arrangements along the chain length are possible. If the
large side groups are randomly arranged on either side of the chain (atactic
arrangement), crystallization is obviously difficult, as this arrangement does not
allow neighbouring chains to come close to one another all along the length of the
chains. On the other hand, an isotactic arrangement, where all the bulky side
groups are on the same side, or the syndiotactic arrangement, where the bulky
side groups alternate on either side of the chain in a regular fashion, makes it
possible for the chains to be packed closely and uniformly, promoting
crystallinity.

When two or more monomers are polymerized together, the monomers can
get bonded in a random sequence along the length of the chain, producing what
are known as copolymers. These are the polymeric analog of solid solutions
discussed earlier. Clearly, copolymers promote noncrystallinity. If a polymer
contains low molecular weight additives called plasticizers, chains are impeded
in coming together by the presence of the extraneous molecules, and
crystallization is difficult.

�������

1. In a noncrystalline solid, the nearest neighbours of an atom may be the
same as in a crystal, but it lacks the long range periodic arrangement
characteristic of a crystal.

2. A three-dimensional tetrahedral network of covalent bonds is found in
elements of the fourth column of the periodic table and in compounds
which, on an average, have four electrons per atom in the outer orbital.
Many semiconductor crystals fall under this category.
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3. More than half of the elements are metals with simple crystal structures
such as FCC, HCP or BCC.

4. Many ionic crystals can be described as an FCC or HCP packing of
anions, with the cations in the interstitial voids of the structure.

5. The structure of silica and the silicates can be described with reference to
the basic unit, the silicate tetrahedron.

6. Polymers are broadly classified as thermoplasts and thermosets. The
thermoplasts comprise plastics, fibres and elastomers.

7. The crystallinity of long chain polymers is influenced by a number of
factors such as chain length, branching, presence of large random
sidegroups, and plasticizers.

��	
����

5.1 Draw a regular tetrahedron inside a cubic unit cell, such that its corners
touch four corners of the cube. From this figure, find the tetrahedral angle
between lines joining the centre to the four corners of the tetrahedron.

5.2 Referring to the diamond cubic unit cell of Fig. 5.3, explain why the
second set of positions (1/4, 1/4, 3/4, 3/4) are vacant, even though there is
enough space for four more carbon atoms to fit into these positions.

5.3 Give the coordinates of atom positions in cubic diamond and ZnS.

5.4 Calculate the effective number of atoms in the HCP unit cell. Describe the
basis for generating the HCP structure starting from the hexagonal space
lattice.

5.5 Calculate the packing efficiency of (i) close packed structures (FCC and
HCP) (ii) monoatomic BCC and SC crystals.

5.6 Give the Miller indices of the family of close packed directions in SC,
BCC, FCC and DC crystals, indicating the magnitude of the closest
distance of approach between neighbouring atoms.

Answer: <100>, <111>, <110>, none. a, 3/2,a / 2a  and 3/4a .

5.7 Calculate the void space in closest packing of n spheres of radius 1.000, n
spheres of radius 0.414, and 2n spheres of radius 0.225.
Answer: 19%.

5.8 Find the diameter of the largest atom that would fit an interstitial void in
FCC nickel without distortion.
Answer: 1.03 Å.

5.9 Find the size of the largest sphere that will fit an interstitial void in a BCC
crystal as a function of the atomic radius r. The void is located at (0, 1/2,
1/4) and other equivalent positions.
Answer: 0.29r.
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5.10 Calculate the critical radius ratio for tetrahedral, octahedral and eight-fold
coordination around a central cation in an ionic crystal.

5.11 Distinguish between atom sites and lattice points in a monoatomic FCC
crystal and a NaCl crystal.

5.12 State the differences and common points between (i) CsCl, (ii) a
monoatomic BCC crystal, and (iii) a monoatomic SC crystal.

5.13 What are the factors that determine the density of a crystal? Which of
these factors is dominant in determining the decreasing order of density
with increasing atomic number in the following elements?

Cu (Z = 29) 8960, Ge (Z = 32) 5320, and Se (Z = 34) 4790 kg m–3.

5.14 Aluminium has an FCC structure. Its density is 2700 kg m–3 (sp.gr. 2.7).
Calculate the unit cell dimension and the atomic diameter.

Answer: 4.05 Å, 2.86 Å.

5.15 Iron changes from BCC to FCC form at 910°C. At this temperature, the
atomic radii of the iron atoms in the two structures are 1.258 Å and
1.292 Å, respectively. What is the per cent volume change during this
structural change?

Answer: –0.45%.

5.16 X-ray analysis of a Mn–Si alloy with 75 atomic per cent of Mn and 25
atomic per cent of Si showed that the unit cell is cubic and the lattice
parameter a = 2.86 Å. The density of the alloy is 6850 kg m–3. Find the
number of atoms in the unit cell.

Answer: 2.

5.17 Calculate the density of the CsCl crystal from the radii of the ions: Cs+ =
1.65 Å and Cl– = 1.81 Å.

Answer: 4380 kg m–3.

5.18 Find the local packing arrangement in the ionic crystal CaO. Assuming
the crystal structure to be cubic, calculate the density of the crystal. Given
the radii: Ca2+ = 0.94 Å and O2– = 1.32 Å.

Answer: Octahedral, 4030 kg m–3.

5.19 The bonds in diamond are predominantly covalent in character and so are
the bonds along the chains of a long chain polymer. Why does the
polymer melt at a much lower temperature?

5.20 The melting point of a polymer increases with increasing molecular
weight of the chain. Explain why this is so.

5.21 Calculate the end-to-end distance of an uncoiled chain molecule of
polyethylene that has 500 mers in it. The C–C bond length is 1.54 Å.
Answer: 1258 Å.

5.22 The degree of polymerization of a polystyrene chain is 10 000. Calculate
the molecular weight of the chain.
Answer: 1 040 000.
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5.23 By considering the bond energies involved, show that, during
polymerization of ethylene monomers, there is a decrease in the enthalpy
of the system.

5.24 What is the weight of sulphur that is required to fully cross link 68 kg of
polyisoprene (ebonite) starting from natural rubber?

Answer: 32 kg.

5.25 Determine the shortest centre-to-centre distance between any two atoms
among the four atoms located inside the diamond-cubic unit cell.

Answer: / 2a

5.26 In the DC unit cell of silicon (a = 5.43 Å),

(a) derive the number of atoms per unit area of the {110} planes, and
(b) derive the number of atoms per metre along <111> directions.

Answer: 7.2 � 1018 m–2; 2.1 � 109 m–1

5.27 The Bragg angle for the first reflection from SiC is 17.2°. Determine the
Bragg angle for the second reflection.
[Hint: A weak reflection will be observed for (h2 + k2 + l2) = 4, as there
are two types of atoms in the DC unit cell.]

Answer: 20.0°.

5.28 In cubic ZnS, the radii of the Zn and S atoms are 0.83 and 1.74 Å,
respectively. Determine the lattice parameter.
Answer: 5.94 Å.

5.29 What is the distance from an atom of an A plane to the nearest atom of a
B plane in an ideal HCP crystal?
Answer: a (lattice parameter).

5.30 The density of cubic manganese is 7440 kg m–3. The lattice parameter
a = 8.92 Å. Find the number of atoms in the unit cell. List the possible
space lattices.

Answer: 58, BCC, SC.

5.31 Find the radius of the largest sphere that will fit an interstitial void in
magnesium (HCP). aMg = 3.21 Å. Take the c/a ratio of Mg to be the ideal
value.
Answer: 0.66 Å.

5.32 Find the diameter of the largest sphere that will fit the void at the centre
of the cube edge of a BCC crystal.
Answer: 0.134a (a is lattice parameter).

5.33 Make neat sketches of a random substitutional solid solution and an
interstitial solid solution, stating their probabilities of formation as a
function of the atomic sizes involved.

5.34 An elemental crystal has a density of 8570 kg m–3. The packing efficiency
is 0.68. Determine the mass of one atom if the closest distance of
approach between neighbouring atoms is 2.86 Å.

Answer: 93.01 amu.
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5.35 Calculate the density and packing efficiency of the NaCl crystal.

Answer: 2230 kg m–3, 0.66.

5.36 List the space lattice, basis, number of ions of each type in the unit cell,
and lattice parameter-ionic radii relationships for the cubic ionic crystals
MgO and CsCl. The cation-to-anion ratios are 0.59 and 0.91, respectively.

5.37 Distinguish between thermoplastics and thermosets, using any three of
their characteristics.

5.38 On the basis of their structure, describe how elastomers are different from
the other long-chain polymers.

5.39 List the factors that promote noncrystallinity in long-chain polymers.

�������� ��	���� �����	��

1. In the DC unit cell of silicon (a = 5.43 Å), the number of atoms per metre
along the body diagonal are
A. 8.5 � 109 m–l B. 2.1 � 109 m–1

C. 2.6 � 109 m–1 D. 1.84 � 109 m–1

2. The average distance between atoms along the body diagonal of the DC
crystal is

A. 3/4a B. 3/8a C. 3/2a D. 3a

3. If the lattice parameter of Si = 5.43 Å and the mass of Si atom is 28.08 �
1.66 � 10–27 kg, the density of silicon in kg m–3 is

A. 2330 B. 1115 C. 3445 D. 1673

4. The close packed direction in Ge crystal is

A. [100] B. [110] C. [111] D. none of these

5. The lattice parameter of GaAs (radius of Ga = 1.22 Å, As = 1.25 Å) is

A. 5.635 Å B. 5.704 Å C. 5.774 Å D. 4.94 Å

6. In cubic ZnS (II-VI compound), if the radii of Zn and S atoms are 0.83 Å
and 1.74 Å, the lattice parameter of cubic ZnS is
A. 11.87 Å B. 5.94 Å C. 5.14 Å D. 2.97 Å

7. The number of atoms along the body diagonal of the diamond cubic unit
cell is

A. 1 B. 2 C. 3 D. 4

8. The close packed directions that lie on a (111) plane of an FCC crystal are

A. [101], [110], [0 1 1] B. [11 1], [1 11]

C. [100], [0 10], [00 1] D. [10 1], [1 10],  [011]
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9. An elemental crystal has a density of 8570 kg m–3. The packing efficiency
is 0.68. If the closest distance between neighbouring atoms is 2.86 Å, the
mass of one atom is (1 amu = 1.66 � 10–27 kg)

A. 186 amu B. 93 amu C. 46.5 amu D. 43 amu

10. Tick the close-packing arrangements in the following:
A. � ABABABA � B. �ABCABCABCA�
C. � ABABCBCABC� D. �ACCBCABCABC�

11. The packing efficiency of a simple cubic crystal with an interstitial atom
exactly fitting at the body centre is

A. 0.52 B. 0.68 C. 0.73 D. 0.91

12. The basis of Zn crystal (HCP) contains (l.p. = lattice point)

A. 1 Zn atom/l.p. B. 2 Zn atoms/l.p.

C. 4 Zn atoms/l.p. D. none of these

13. Sb has a hexagonal unit cell with a = 4.307 Å and c = 11.273 Å. If its
density is 6697 kg m–3 and its atomic weight is 121.75 amu, the number of
atoms per unit cell (hexagonal prism) is (1 amu = 1.66 � 10–27 kg)

A. 3 B. 6 C. 12 D. 18

14. The atomic fraction of tin in bronze (FCC) with a density of 7717 kg m–3

and a lattice parameter of 3.903 Å is (at.wt. Cu = 63.54, Sn = 118.7;
1 amu = 1.66 � 10–27 kg)

A. 0.01 B. 0.07 C. 0.10 D. 3.8

15. The diameter of the largest sphere that fits the void at the centre of a cube
edge of a BCC crystal of lattice parameter a is
A. 0.293a B. 0.414a C. 0.134a D. 0.336a

16. Expressed as a function of atom radius r, the radius of the void at the
midpoint of the edge of a BCC crystal is

A. 0.36r B. 0.414r C. 0.15r D. 0.19r

17. Assuming the ideal c/a ratio for HCP Ti, the radius of the largest sphere
that will fit interstitially in Ti (a = 2.95 Å) is

A. 0.53 Å B. 0.61 Å C. 0.66 Å D. 1.22 Å

18. An octahedron has

A. 8 corners B. 8 faces C. 8 edges D. 12 edges

19. The number of tetrahedral voids in HCP unit cell (hexagonal prism) is

A. 4 B. 6 C. 8 D. 12

20. In Hume-Rothery rules for extensive solid solubility, the atomic diameter
of the solute and the solvent atoms should not differ by more than
A. 50% B. 15% C. 2% D. 0%
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21. The density of the CsCl crystal with ionic radii of Cs+ = 1.65 Å and Cl–

= 1.81 Å is (at.wt. Cs = 132.9, Cl = 35.45; 1 amu = 1.66 � 10–27 kg)

A. 4383 kg m–3 B. 3373 kg m–3 C. 2386 kg m–3 D. 6746 kg m–3

22. The fraction of octahedral voids filled by Al3+ ions in Al2O3

(rAl3+/rO2– = 0.43) is
A. 0.43 B. 0.287 C. 0.667 D. 1

23. If the lattice parameter of CsCl is 3.995 Å, the bond length (between
bonding species) is
A. 3.46 Å B. 6.92 Å C. 1.73 Å D. 5.65 Å

24. The packing efficiency of a NaCl crystal (radius of Na+ = 0.98 Å, Cl– =
1.81 Å) is

A. 0.52 B. 0.66 C. 0.68 D. 0.74

25. In ruby, Cr3+ ions substitute for

A. Al3+ ions B. Fe3+ ions C. Mg2+ ions D. O2– ions

26. In CaF2 with the eight-fold cubic coordination, the fraction of voids at the
body centre occupied by Ca2+ ions is

A. 1 B. 0.5 C. 0.25 D. 0

27. The length of an uncoiled polyethylene chain with 500 mers is (C–C bond
length = 1.54 Å)
A. 500 Å B. 770 Å C. 1540 Å D. 1258 Å

28. Apart from three H atoms, the fourth side group in the monomer of
polypropylene is

A. Cl B. CH3 C. C6H5 D. COOCH3

29. The side groups in polyvinyl chloride are

A. H, H, H, H B. H, H, H, Cl C. H, H, CH3, Cl D. H, Cl, Cl, Cl

30. The weight of sulphur in kg required to achieve 5% cross-linking of 68 kg
of polyisoprene is

A. 1.6 kg B. 3.2 kg C. 16 kg D. 32 kg

31. The factors that promote noncrystallinity in polymers are

A. large random side groups B. branching

C. addition of plasticizers D. copolymerization

32. The degree of polymerization in polyethylene is 50,000. The average
molecular weight in amu is
A. 700,000 B. 1,300,000 C. 1,400,000 D. none of these

33. In the PTFE (teflon) monomer, the four side groups are

A. F, F, F, F B. H, H, H, H C. H, H, H, Cl D. H, H, H, CH3

34. The weight in amu of a polyethylene chain with 1000 mers is

A. 28,000 B. 280,000 C. 62,000 D. 42,000
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35. The minimum number of double bonds required in the monomer for cross-
linking is

A. 0 B. 1 C. 2 D. 3

36. The bulkiest side group in the monomer is in

A. teflon B. PVC C. PTFE D. polystyrene

37. The chemical formula of the isoprene molecule is
A. C4H5CH3 B. C3H4CH3Cl C. C4H3Cl D. C2H3CH3

Answers

1. B 2. C 3. A 4. D 5. B

6. B 7. B 8. A, D 9. B 10. A, B, C
11. C 12. B 13. D 14. C 15. C

16. C 17. B 18. B, D 19. D 20. B

21. A 22. C 23. A 24. B 25. A
26. B 27. D 28. B 29. B 30. A

31. A, B, C, D 32. C 33. A 34. A 35. C

36. D 37. A

Sources for Experimental Data

C.A. Harper, Modern Plastics Handbook, McGraw-Hill, New York (2000).

P. Villars and L.D. Calvert, Pearson’s Handbook of Crystallographic Data for
Intermetallic Phases, Vols. 1–3, American Society for Metals, Metals Park,
Ohio (1985).

Suggestions for Further Reading

R.C. Evans, An Introduction to Crystal Chemistry, Cambridge University Press,
Cambridge (1964).

A.F. Wells, Structural Inorganic Chemistry, Clarendon Press, Oxford (1975).
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CHAPTER

Up to now, we have described ideal crystals which are obtained by combining a
basis with an infinite space lattice. We have also described at the other extreme
noncrystalline structures which, except for local coordination, have no regularity
or periodicity whatsoever in the atomic arrangement. In this chapter, we shall
consider real crystals. First of all, we note that real crystals are finite in extent.
Therefore, they have a surface as their boundary, where some of the atomic
bonds are broken. The surface itself is then an imperfection. In addition, there
are other occasional disruptions in periodicity within a crystal. Volumewise, the
disrupted regions may be as small as 0.01% of the total volume. If this is so, the
beginner starts to wonder why at all then we are bothered about such infrequent
disruptions. This view would be fully justified if we were studying structure-
insensitive properties such as the density of a crystal. If 0.01% of the atoms
were missing from the atomic sites, the density of the crystal would be lower by
the same amount (0.01%), which is small enough to be ignored for all practical
purposes. However, many of the properties of crystalline materials that we deal
with in engineering practice are structure-sensitive properties. They vitally
depend on the presence or absence of imperfections, however infrequent they
may be when present. For example, a few parts per million of aluminium
impurity may radically change the character of a silicon semiconductor. If the
impurity gets in inadvertently, it could destroy the rectifying or transistor action
of junctions altogether. Likewise, line imperfections known as dislocations
decrease the mechanical strength of crystals drastically.

Crystalline imperfections can be classified on the basis of their geometry as
follows:

1. Point imperfections

2. Line imperfections
3. Surface imperfections

4. Volume imperfections.

We will discuss only the first three in this chapter. Volume imperfections can be
foreign-particle inclusions, large voids or pores, or noncrystalline regions which
have the dimensions of at least a few tens of Å.
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Units

 Quantity
SI units

Other units
 Unit Symbol

Concentration of — —
point imperfections n/N

Enthalpy of formation of kilojoule per mole kJ mol–1 eV/entity
point imperfections �Hf

Dislocation density � metre per cubic metre m m–3 in-in–3

or per square metre or m–2 or in–2

Dislocation energy E joule per metre J m–1 erg/cm
Shear modulus � giganewton per GN m–2 dyne/cm2,

square metre psi

Energy of surface joule per square J m–2 erg/cm2

imperfections � metre

Surface tension newton per metre N m–1 dyne/cm

Constants

Gas constant R = 8.314 J mol–1 K–1

6.1 Point Imperfections

Point imperfections are also referred to as zero-dimensional imperfections. As
the name implies, they are imperfect point-like regions in the crystal. One or two
atomic diameters is the typical size of a point imperfection. Different kinds of
point imperfections are now described.

A vacancy refers to an atomic site from where the atom is missing, as
shown in Fig. 6.1a. Figure 6.1d depicts a vacancy in platinum photographed in a
field ion microscope.

We have already introduced the substitutional and the interstitial solid
solutions in Chap. 5. A substitutional impurity (or solute) is a point imperfection.
It refers to a foreign atom that substitutes for or replaces a parent atom in the
crystal, see Fig. 6.1b. Aluminium and phosphorus doped in silicon are
substitutional impurities in the crystal. An interstitial impurity is also a point
imperfection. It is a small sized atom occupying the void space in the parent
crystal, without dislodging any of the parent atoms from their sites, as shown in
Fig. 6.1c. An atom can enter the interstitial void space only when it is
substantially smaller than the parent atom. In close packed structures, the largest
atom that can fit the octahedral and the tetrahedral voids have radii 0.414r and
0.225r, respectively, where r is the radius of the parent atom. For example,
carbon is an interstitial solute in iron. It occupies the octahedral voids in the
high temperature FCC form of iron. The iron atom in the FCC crystal has a
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122 Crystal Imperfections

radius of 1.29 Å, whereas the carbon atom has a radius of 0.71 Å (covalent
radius in graphite). The carbon radius is clearly larger than 0.414 � 1.29 =
0.53 Å, which is the size of the octahedral void. Therefore, there are strains
around the carbon atom in the FCC iron, and the solubility is limited to 2 wt.%.
In the room temperature BCC form of iron, the voids are still smaller and hence
the solubility of carbon is very limited, that is, only 0.008 wt.%.

In ionic crystals, the formation of point imperfections is subject to the
requirement that the overall electrical neutrality is maintained. An ion displaced
from a regular site to an interstitial site is called a Frenkel imperfection, see
Fig. 6.2a. As cations are generally the smaller ions, it is possible for them to get
displaced into the void space. Anions do not get displaced like this, as the void
space is just too small for their size. A Frenkel imperfection does not change the
overall electrical neutrality of the crystal. The point imperfections in silver
halides and CaF2 are of the Frenkel type.

A pair of one cation and one anion can be missing from an ionic crystal as
shown in Fig. 6.2b. The valency of the missing pair of ions should be equal to
maintain electrical neutrality. Such a pair of vacant ion sites is called a Schottky
imperfection. This type is dominant in alkali halides.

(c)

Fig. 6.1 Point imperfections in an elemental crystal: (a) vacancy;
(b) substitutional impurity; (c) interstitial impurity; and (d) field ion micrograph

of platinum showing a vacancy. [(d) Courtesy: E.W. Mueller.]

(d)

(a) (b)
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We noted in Chap. 5 that trivalent cations such as Fe3+ and Cr3+ can
substitute for trivalent parent Al3+ cations in the Al2O3 crystal. If, however, the
valency of the substitutional impurity is not equal to the parent cation, additional
point defects may be created due to such substitution. For example, a divalent
cation such as Cd2+ substituting for a univalent parent ion such as Na+ will, at
the same time, create a vacant cation site in the crystal so that electrical
neutrality is maintained.

Defect structures are produced when the composition of an ionic crystal does
not correspond to the exact stoichiometric formula. Such defect structures have an
appreciable concentration of point imperfections. Consider deviations from the
stoichiometric formula in compounds of ZnO and FeO. In ZnyO, where y > 1, the
excess cations occupy interstitial voids. Such a compound can be produced by
heating a stoichiometric compound in zinc vapour. The two electrons released
from each zinc atom that enters the crystal stays around an interstitial cation, as
shown in Fig. 6.3a. In FexO, where x < 1, vacant cation sites are present. Such a
compound can be produced by heating a stoichiometric FeO in an oxygen
atmosphere. The two electrons required by each excess oxygen atom is donated by
two Fe2+ ions which become Fe3+ (ferric) ions, see Fig. 6.3b.

(a) (b)

Fig. 6.2 Point imperfections in an ionic crystal: (a) Frenkel defect; and
(b) Schottky defect.

(a) (b)

2+Zn

2+Zn
–

–

–
–

Fig. 6.3 Defects present in ZnO and FeO owing to deviations from stoichiometry.
Vacant cation sites are indicated by .
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The presence of a point imperfection introduces distortions in the crystal. If
the imperfection is a vacancy, the bonds that the missing atom would have
formed with its neighbours are not there. In the case of an impurity atom, as a
result of the size difference, elastic strains are created in the region of the
crystal immediately surrounding the impurity atom. The elastic strains are
present irrespective of whether the impurity atom is larger or smaller than the
parent atom. A larger atom introduces compressive stresses and corresponding
strains around it, while a smaller atom creates a tensile stress-strain field.
Similarly, an interstitial atom produces strains around the void it is occupying.
All these factors tend to increase the enthalpy (or the potential energy) of the
crystal. The work required to be done for creating a point imperfection is called
the enthalpy of formation (�Hf) of the point imperfection. It is expressed in
kJ mol–l or eV/point imperfection. The enthalpy of formation of vacancies in a
few crystals is shown in Table 6.1.

TABLE 6.1

Enthalpy of Formation of Vacancies in Some Crystals

   Crystal Kr Cd Pb Zn Mg Al Ag Cu Ni

�Hf, kJ mol–l 7.7 38 48 49 56 68 106 120 168

eV/vacancy 0.08 0.39 0.50 0.51 0.58 0.70 1.10 1.24 1.74

By virtue of the fact that a point imperfection is distinguishable from the
parent atom, the configurational entropy of a crystal increases from zero for a
perfect crystal to positive values with increasing concentration of the point
imperfection, refer to Eqs. (2.5) and (2.12). When we introduce n point
imperfections, in one mole of a crystal, the change in the free energy �G of the
crystal can be written as

�G = �H – T�S = n�Hf – kT [N ln N – (N – n) ln (N – n) – n ln n] (6.1)

where N is Avogadro’s number. The equilibrium state of the crystal will
correspond to the minimum in its free energy, as shown in Fig. 6.4. The

Fig. 6.4 The variation of Gibbs free energy G with the number of point
imperfections n (schematic).
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minimum in G also corresponds to the minimum in �G (note that �G is negative
here). By setting d�G/dn = 0, we obtain the equilibrium concentration:

exp fHn
N RT

�� �
� �	 
� �

(6.2)

Example 6.1 Find the equilibrium concentration of vacancies in aluminium
and nickel at 0 K, 300 K and 900 K.

Solution Using the data of Table 6.1 in Eq. (6.2), we obtain n/N. For
aluminium, (i) at 0 K,

368 10
exp exp ( ) 0

8.314 0
n
N

� ��� � � �� �� 	�
 �

(ii) at 300 K,

n
N

= 
368 10

exp exp ( 27.26)
8.314 300

� ��� � �� 	�
 �

= 1.45 � 10–12

Similarly, the other required values are obtained.

Temperature 0 K 300 K 900 K

Aluminium 0 1.45 � 10–12 1.12 � 10–4

Nickel 0 5.59 � 10–30 1.78 � 10–10

As �Hf is smaller for aluminium, the n/N values are larger for aluminium at all
temperatures above 0 K.

In ionic crystals, point defects occur as pairs, the Frenkel defect being a cation
vacancy and a cation interstitial, and the Schottky defect being a pair of cation and anion
vacancies. In a stoichiometric compound, the concentration of Schottky imperfections in
thermal equilibrium is given by

Sch
Sch exp

2
fH

n N
RT

� ��
� �� �

	 

(6.3)

where �Hf
Sch is the enthalpy of formation of one mole each of cation and anion

vacancies. A similar equation describes the concentration of Frenkel defects.
Point imperfections of different types can interact with one another and lower the

total energy. For example, a solute atom which is larger than the parent atom can have a
smaller distortional energy if it stays close to a vacancy. This reduction in energy is
called the binding energy between the two point imperfections. It is typically in the
range 10–20% of the enthalpy of formation of point imperfections.
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6.2 The Geometry of Dislocations

Line imperfections are called dislocations. Note that the word ‘dislocations’ is
used by convention to denote only line imperfections, even if the word means
any general discontinuity in the crystal. Line imperfections are one-dimensional
imperfections in the geometrical sense. The concept of a dislocation was first put
forward in 1930s. Abundant experimental evidence for the presence of
dislocations in crystals has since accumulated. The static and dynamic properties
of dislocations have been studied in great detail because of the vital role they
play in determining the structure-sensitive properties of crystalline materials.

Dislocations are best understood by referring to two limiting straight-line
types: (i) the edge dislocation, and (ii) the screw dislocation.

Discussing the edge dislocation first, Fig. 6.5a shows a perfect crystal, the
top sketch depicting a three-dimensional view and the bottom one showing the

(a)

Fig. 6.5 An incomplete plane in a crystal results in an edge dislocation.

(b)

atoms on the front face. We can consider the perfect crystal to be made up of
vertical planes parallel to one another and to the side faces. If one of these
vertical planes does not extend from the top to the bottom of the crystal but ends
part way within the crystal, as in Fig. 6.5b, a dislocation is present. In the lower
sketch, notice the atomic arrangements on the front face. In the perfect crystal,
the atoms are in equilibrium positions and all the bond lengths are of the
equilibrium value. In the imperfect crystal on the right, just above the edge of
the incomplete plane, the atoms are squeezed together and are in a state of
compression. The bond lengths have been compressed to smaller than the
equilibrium value. Just below the edge, the atoms are pulled apart and are in a



state of tension. The bond lengths have been stretched to above the normal
value. This distorted configuration extends all along the edge into the crystal.
Recall from Fig. 4.4 that the potential energy increases from the minimum value
for the normal bond length (r0) to higher values on both sides, that is, for an
increase as well as a decrease in the bond length. Thus there is extra energy due
to the distortion in the region immediately surrounding the edge of the
incomplete plane. As the region of maximum distortion is centred around the
edge of the incomplete plane, this distortion represents a line imperfection and is
called an edge dislocation. Edge dislocations are symbolically represented by 
or 

�
, depending on whether the incomplete plane starts from the top or from the

bottom of the crystal. These two configurations are referred to as positive and
negative edge dislocations.

An alternative way of looking at an edge dislocation is illustrated in
Fig. 6.6. The hatched region ABFE is part of the plane marked ABCD in
Fig. 6.6a. In Fig. 6.6b, the top part of the crystal above the hatched area ABFE

D E

C F B

A D
E

C F B

A
�

(a) (b)

is displaced to the left by one interatomic distance with respect to the bottom
part of the crystal. No such displacement is done over the unhatched area EFCD.
Starting from the right side face, the first vertical plane over the hatched area is
now in alignment with the second vertical plane below the hatched area. The
second plane above is in alignment with the third plane below and so on, till we
reach the boundary EF of the hatched area. As the displacement operation ends
here, there is no change in the alignment of the top and the bottom part of the
vertical planes in the unhatched part. The displacement has thus resulted in an
incomplete vertical plane over the edge EF, which thus becomes an edge
dislocation.

The plane ABCD is called a slip plane in dislocation terminology. The
region ABFE over which the displacement is done is called the slipped part of
the slip plane. The region EFCD over which the displacement is not done is
called the unslipped part of the slip plane. The dislocation line EF is then

Fig. 6.6 Displacement of the top part with respect to the bottom by one step
across the hatched area introduces an edge dislocation EF in the crystal.
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defined as the boundary between the slipped and the unslipped parts of the slip
plane. This definition of a dislocation is, in fact, general and applies to any
dislocation line.

In the above example, we considered a particular case in which the
displacement was one interatomic distance. The magnitude and the direction of
the displacement are defined by a vector called the Burgers vector (BV), which
characterizes a dislocation line. The Burgers vector of a dislocation is
determined as follows: Consider the perfect crystal shown in Fig. 6.7a. Starting
from the point P, if we go up by x number of steps (x = 4 in Fig. 6.7a), then

take y steps to the right (y = 5 in the figure), then x steps down and finally y
steps to the left, we end up at the starting point. We have now traced a Burgers
circuit in taking these steps. We returned to the starting point because the region
enclosed by the Burgers circuit is perfect, with no line imperfection cutting
across it. If we now do the same operation on a crystal which has a dislocation
in it as shown in Fig. 6.7b, starting from point P, we end up at Q. We need an
extra step to return to point P (or to close the Burgers circuit). The magnitude
and the direction of this step define the Burgers vector:

BV = QP = b (6.4)

The Burgers vector is perpendicular to the edge dislocation line.
We have taken the Burgers circuit to be clockwise in the above example.

The direction of the Burgers vector depends on the direction of the circuit,
which can be clockwise or anticlockwise. To avoid this ambiguity, a unit vector
t is first assigned to denote the direction of the dislocation line. The direction
vector is drawn tangential to the dislocation line at the point of interest. Then a
right-hand screw (RHS) convention is followed in tracing the circuit. If we place
the end of an ordinary (right handed) screw on the paper and turn the head
clockwise, the screw tends to move into the plane of the paper. If the vector t
has a direction vertically into the plane of the paper as in Fig. 6.7b, using the
RHS convention, the Burgers circuit should be drawn clockwise.

t

P
b
Q P

(a) (b)

Fig. 6.7 Burgers circuits (a) in a perfect crystal; and (b) in an imperfect crystal
with an edge dislocation.



The other limiting type of dislocation is a screw dislocation. Consider the
hatched area AEFD on the plane ABCD in Fig. 6.8a. As before, let the top part
of the crystal over the hatched area be displaced by one interatomic distance to
the left with respect to the bottom part, as shown in Fig. 6.8b. As a different area
is hatched here as compared to the edge dislocation case in Fig. 6.6, for the

same sense of displacement, we now produce a screw dislocation at the
boundary EF between the displaced and the undisplaced parts of the slip plane.
Let the t vector be defined such that it points from right to left, as shown in
Fig. 6.8b. The Burgers circuit is then drawn using the RHS convention on the
right side face in a clockwise sense. The Burgers vector is determined by the
step needed to close the circuit. In this case of a screw dislocation, the Burgers
vector b has the same direction as the t vector. The Burgers vector is parallel to
the screw dislocation line.

We note that there is no extra plane at the screw dislocation in contrast to
what we saw in the edge dislocation. Examine the atomic arrangement around
the dislocation line. If we go round the dislocation line once as illustrated in
Fig. 6.9, we move along the line by a step equal in magnitude to the Burgers
vector. If we turn a screw through one full rotation, we move the screw
backward or forward by a distance equal to its pitch. This feature has led to the
name screw dislocation. The atomic bonds in the region immediately
surrounding the dislocation line have undergone a shear distortion, as seen
clearly in Fig. 6.9. The vertical atomic planes parallel to the side faces in the
perfect crystal of Fig. 6.8a have become continuous due to the displacement in
Fig. 6.8b. They can be compared to a spiral staircase, whose central pillar
coincides with the screw dislocation line. Screw dislocations are symbolically
represented by  or , depending on whether the Burgers vector and the t
vector are parallel or antiparallel. These two cases are referred to as positive and
negative screw dislocations.
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Fig. 6.8 A screw dislocation EF is created by displacement of the top part of the
crystal with respect to the bottom across the hatched area.
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Any general dislocation line is a combination of the edge and the screw
types. In Fig. 6.10, the hatched area on the slip plane is bounded by a curved
line. If we do the same displacement over the hatched area as before, the
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Fig. 6.9 The atoms around a screw dislocation line are arranged in a spiral
screw-like fashion.

b
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t

Fig. 6.10 Displacement across the hatched area with a curved boundary produces
a mixed dislocation line at the boundary.

boundary of the hatched area that lies within the crystal becomes a curved
dislocation line. The dislocation has pure screw character at the right face and
pure edge character on the front face. It has mixed character in between. Note
that the t vector goes into the plane of the paper on the front face. It changes
continuously its direction as the dislocation is curved and finally it emerges out
on the right side face. Burgers circuits are drawn on both the front face and the
right side face, following the RHS convention. The circuit is clockwise on the
front face as the t vector is facing inwards. It is anticlockwise on the right side
face as the t vector is emerging out of that face. The Burgers vector b has the
same magnitude and direction in both cases. Thus we obtain the important result
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that the Burgers vector is invariant, that is, it has the same direction and
magnitude all along a dislocation line, irrespective of the character of the
dislocation (edge, screw or mixed).

In Fig. 6.11a, the hatched area on the slip plane is enclosed by an elliptical
loop. When the displacement is carried out as before over the hatched area, an

(a) (b)

�
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b

b
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�
t
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t
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Fig. 6.11 Displacement over the hatched area enclosed by an elliptical loop
produces a dislocation loop with varying character.

elliptical dislocation loop is produced at the boundary. In Fig. 6.11b, a plan view
of the loop is shown. It has four points on it, corresponding to pure positive edge
, pure positive screw , pure negative edge 

�
 and pure negative screw . In

between these points, the dislocation has a mixed character. Here, the Burgers
vector can be resolved in two directions, parallel and perpendicular to the line,
thereby defining the screw and the edge components of the combination.

Dislocations have certain other geometrical characteristics. For instance, the
vectorial sum of the Burgers vectors of the dislocations meeting at a point called
the node must be zero, analogous to Kirchhoff’s law for electrical currents,
meeting at a junction. For consistency, the t vectors of all the dislocations
meeting at a node must either point towards it or away from it. A dislocation
line cannot end abruptly within the crystal. It either ends at a node or at the
surface. Alternatively, it can close on itself as a loop.

6.3 Other Properties of Dislocations

Dislocations have distortional energy associated with them as is evident from the
compressive and the tensile strains around an edge dislocation or the shear
strains around a screw dislocation. As a first approximation, we take these
strains to be elastic strains. The elastic strain energy E per unit length of a
dislocation of Burgers vector b is approximately given by

E � �b2/2 (6.5)

where � is the shear modulus of the crystal.
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Example 6.2 Compute the line energy of dislocations in BCC iron. The
Burgers vector in iron is of the 1/2 <111> type. The shear modulus of iron is
80.2 GN m–2.

Solution From the lattice parameter of BCC iron (a = 2.87 Å), we

obtain the magnitude of the Burgers vector b = 2.87 3/2  = 2.49 Å. The line

energy of the dislocation from Eq. (6.5) is

E = 80.2 � 109 � 2.492 � l0–20/2

= 2.49 � 10–9 J m–1

Dislocations in real crystals can be classified as full and partial dislocations.
For a partial dislocation, the Burgers vector is a fraction of a lattice translation.
For a full dislocation, the Burgers vector is an integral multiple of a lattice
translation. We will deal with full dislocations only. As the elastic strain
energy of a dislocation is proportional to the square of the Burgers vector
equation (6.5), dislocations tend to have as small a Burgers vector as possible.
Consider, for example, an edge dislocation in a simple cubic crystal, where the
unit translation vector is b. Let two incomplete planes be together on the slip
plane so that the Burgers vector of this dislocation is 2b. The two planes will
have a tendency to break up as two separate planes, that is, the giant dislocation
will tend to break up into two dislocations of Burgers vector b each.

Dislocation reaction: 2b � b + b

Energy change: �(2b)2/2 � �b2/2 + �b2/2

The elastic energy decreases by 50% during this breakup. In general, a
dislocation with Burgers vector b1 will tend to dissociate into two (or more)
dislocations of Burgers vectors b2 and b3 if

b1
2 > b2

2 + b3
2 (6.6)

For the same reason, full dislocations tend to have the smallest lattice translation
as the Burgers vector. The most probable Burgers vectors of full dislocations in
cubic crystals are given in Table 6.2.

TABLE 6.2

Burgers Vectors of Dislocations in Cubic Crystals

Monoatomic FCC 1/2 �110�
Monoatomic BCC 1/2 �111�
Monoatomic SC �100�
NaCl structure 1/2 �110�
CsCl structure �100�
DC structure 1/2 �110�
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Note that the Burgers vector in a CsCl crystal cannot be from a body corner
to the body centre, as this is not a full lattice translation. If we have an edge
dislocation with Burgers vector of 1/2 �111� in a CsCl crystal, the extra plane
will have excess electrical charges. The crystal as a whole will not be electrically
neutral and, therefore, such a configuration is not stable. Similarly, the Burgers
vector in a NaCl crystal cannot be from the centre of a chlorine ion at the cube
corner to the centre of a sodium ion halfway along the cube edge. This
restriction in ionic crystals tends to make the Burgers vectors large. For example,
in the FCC crystal of copper, the Burgers vector of a full dislocation is only
2.55 Å in magnitude, whereas in the NaCl crystal, the Burgers vector is 3.95 Å.

The distortional geometry above the slip plane for a positive edge
dislocation is opposite in sense to the distortion above the slip plane for a
negative edge dislocation. The former is a region of compressive strains, while
the latter is a region of tensile strains. Therefore, when two edge dislocations of
opposite sign are in the same slip plane, they tend to attract each other. They
may totally annihilate each other, that is, the distortional strain fields may
superpose and exactly cancel out both above and below the slip plane if the
Burgers vectors are also of the same magnitude. Dislocations of the same sign,
on the other hand, repel each other. These characteristics are also true of screw
dislocations.

Dislocations can interact with point imperfections if there is a decrease in the total
energy (the energy of the dislocation plus the energy of the point imperfection). A
substitutional solute atom is different in size from the parent atom and hence causes a
local tensile or compressive strain field around it in the crystal. Such a strain centre can
elastically interact with an edge dislocation which has compressive and tensile strains on
either side of the slip plane. A smaller substitutional atom can reduce the total energy by
displacing a parent atom in the compressive region. A larger atom will displace a parent
atom in the tensile region. Similarly, interstitial solutes which are usually too big to fit
into the interstitial voids can enter the more openly packed central core region of an edge
dislocation. Such an interaction is particularly strong in mild steel, where interstitial
carbon atoms form atmospheres around dislocations in the BCC crystal of iron. This
interaction has an important effect on the mechanical behaviour of mild steel.

Dislocations are usually present in a crystal, as a result of accidents during
growth of the crystal from the melt or as a result of prior mechanical
deformation of the crystal. Unlike point imperfections, they are not
thermodynamically stable, as the enthalpy of the crystal increases much more
rapidly with their presence than the entropy. Many of them can be removed by
heating the crystal to high temperatures, where the thermal energy will allow
them to mutually cancel each other or to move out of the crystal through the
surface. The density of dislocations in a crystal is measured by counting the
number of points at which they intersect a random cross-section of the crystal.
These points, called etch pits, can be seen under the microscope, after chemical
etching of a prepolished surface. In an annealed crystal, the dislocation density �
is in the range of 108–1010 m–2. The dislocation density can also be expressed as
the total length of dislocation lines in unit volume, m m–3. In order of
magnitude, these two densities are the same.
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In Fig. 6.6, if the area of the hatched region ABFE had been gradually
increased, keeping EF straight and parallel to the side faces, the edge dislocation
defined by the boundary EF would have successively occupied positions to the
left starting from the right end. In other words, the dislocation would have
moved from right to left. A dislocation already present in a crystal can be made
to move in this manner by an externally applied stress. Figure 6.12 shows a
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Fig. 6.12 Successive positions of an edge dislocation as it moves in response to
an externally applied shear stress �.

shear stress � being applied parallel to the slip plane which has an edge
dislocation lying on it. If the applied stress is sufficiently large, the dislocation
will move in such a direction as to bring about the displacement corresponding
to the sense of the shear stress. The sense of the stress in Fig. 6.12 is such that
the top of the crystal will be displaced to the right in relation to the bottom part.
This displacement can occur with reference to the slip plane by the movement
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towards the right of the (positive) edge dislocation lying on it. The successive
positions of the dislocation during this motion are illustrated in Fig. 6.12. The
atoms have been labelled to show their positions before and after the dislocation
motion. It is important to note that there is no bodily shift of the incomplete
plane during the motion and that the configuration of the dislocation is what is
moving. The configuration is shifted from one position to the next by small
variations of bond lengths in the dislocation region.

The dislocation can eventually reach the surface in Fig. 6.12. As soon as this
happens, the compressive and the tensile strains will be relieved at the free
surface, and we would have a step on the right side face. This step at the surface
does not have the compressive and tensile strains characteristic of the edge
dislocation. It should not be called a dislocation any more. We say that the
dislocation disappears on reaching the surface, leaving a step behind. The
magnitude of the step is equal to the Burgers vector of the dislocation.

The motion of a dislocation on a plane that contains the direction vector t
and the Burgers vector b is called the glide motion. The motion of the edge
dislocation that we considered with reference to Fig. 6.12 is glide motion. The
dislocation loop in Fig. 6.11 can glide on the slip plane as b and t lie on this
plane at all points around the loop. In fact, it cannot glide on any other plane. As
there is only one plane which can contain both b and t when they are not
parallel, the glide plane is uniquely defined for a pure edge dislocation as well
as for a mixed dislocation. The unit normal defining the glide plane is given by
the cross product of b and t. For a screw dislocation, b and t are parallel or
antiparallel so that a glide plane is not uniquely defined. The cross product of b
and t is zero for a screw dislocation.

Example 6.3 A circular dislocation loop has edge character all round the
loop. What is the surface on which this dislocation can glide?

Solution By definition, the Burgers vector is perpendicular to an edge
dislocation line. Also, the Burgers vector is invariant. The edge dislocation can
glide only on a surface that contains both the Burgers vector and the t vector.
These considerations are satisfied only when the given dislocation moves on a
cylindrical surface containing the loop.

The motion of an edge dislocation on a plane perpendicular to the glide plane
is called climb motion. As the edge dislocation moves above or below the slip
plane in a perpendicular direction, the incomplete plane either shrinks or increases
in extent. This kind of shifting of the edge of the incomplete plane is possible only
by subtracting or adding rows of atoms to the extra plane. Climb motion is said to
be nonconservative. This is in contrast to the glide motion which is conservative
and does not require either addition or subtraction of atoms from the incomplete
plane. During climbing up of an edge dislocation, the incomplete plane shrinks.
Atoms move away from the incomplete plane to other parts of the crystal. During
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climbing down, the incomplete plane increases in extent. Atoms move into the
plane from other parts of the crystal. This results in an interesting interaction
between the climb process and the vacancies in the crystal.

Example 6.4 If there are 1010 m–2 of edge dislocations in a simple cubic
crystal, how much would each of these climb down on an average when the
crystal is heated from 0 to 1000 K? The enthalpy of formation of vacancies is
100 kJ mol–1. The lattice parameter is 2 Å. The volume of one mole of the
crystal is 5.5 � 10–6 m3 (5.5 cm3).

Solution At equilibrium, there are no vacancies in the crystal at 0 K. To
maintain equilibrium concentration, the number of vacancies that must be
created on heating from 0 to 1000 K is given by

n = N exp (–�Hf /RT)

= 6.023 � 1023 exp [(–100 � 1000)/(8.314 � 1000)]

= 3.60 � 1018 mol–1

= 6.54 � 1023 m–3

If the edge dislocations in the crystal climb down, atoms will be added to the
extra plane and these atoms coming from the other parts of the crystal would
create vacancies. As one step is 2 Å, 5 � 109 atoms are required for 1 m of the
dislocation line to climb down by one step. The average amount of climb down
is then 6.54 � 1023/(5 � 109 � 1010) = 1.31 � 104 steps = 2.62 � 10–6 m.

As there is no unique glide plane defined for a screw dislocation, it can
change its slip plane during its motion. For example, the common slip planes in
an FCC crystal are of {111} type. Let a screw dislocation moving on a (1 11)
plane come across some kind of an obstacle on this plane. If the shear stress is
sufficient on a (11 1)  plane, which is nonparallel to the (1 11)  plane, then the
screw dislocation can cross-slip into that plane and continue to glide.
Figure 6.13 illustrates the cross-slip of a screw dislocation. As the glide plane
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Fig. 6.13 A screw dislocation cross-slips from one slip plane onto another
nonparallel slip plane (cont.).



(or the slip plane) is uniquely defined for an edge or a mixed dislocation, they
cannot cross-slip in this manner.

6.4 Surface Imperfections

Surface imperfections are two dimensional in the mathematical sense. They refer
to regions of distortions that lie about a surface having a thickness of a few
atomic diameters. The external surface of a crystal is an imperfection in itself as
the atomic bonds do not extend beyond the surface. External surfaces have
surface energies that are related to the number of bonds broken at the surface.
For example, consider a close packed plane as the surface of a close packed
crystal. An atom on the surface of this crystal has six nearest bonding
neighbours on the surface plane, three below it, and none above. Therefore, three
out of twelve neighbours of an atom are missing at the surface. The surface
energy of a crystal bears a relationship to this number.

Example 6.5 The surface of a copper crystal is of the {111} type. Calculate
the surface energy (enthalpy) of copper.

Solution
The bond energy per atom of copper

= bond energy per bond � no. of bonds per atom � 1/2

= (56.4 � 1000 � 12)/(6.023 � 1023 � 2)

= 5.62 � 10–19 J

Three out of twelve bonds are broken at the surface.

Energy of broken bonds per atom = 5.62 � 10–19 � 1/4 J

No. of atoms on {111} planes in copper (see Problem 3.11)

= 1.77 � 1019 m–2

Dislocation meets the surface here

(c)

Fig. 6.13 A screw dislocation cross-slips from one slip plane onto another
nonparallel slip plane.
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Surface enthalpy of copper = 5.62 � 10–19 � 1/4 � 1.77 � 1019

= 2.49 J m–2

= 2490 erg/cm2.

Experimentally measured surface free energies for some crystals are listed in
Table 6.3.

TABLE 6.3

Surface Free Energies of Some Crystals (J m–2)

NaCl LiF CaF2 Ag MgO Si Fe Au Cu
0.30 0.34 0.45 1.14 1.20 1.24 1.40 1.40 1.65

In addition to the external surface, crystals may have surface imperfections
inside. A piece of iron or copper is usually not a single crystal. It consists of a
number of crystals and is said to be polycrystalline. During solidification or
during a process in the solid state called recrystallization, new crystals form in
different parts of the material. They are randomly oriented with respect to one
another. They grow by the addition of atoms from the adjacent regions and
eventually impinge on each other. When two crystals impinge in this manner, the
atoms caught in between the two are being pulled by each of the two crystals to
join its own configuration. They can join neither crystal due to the opposing
forces and, therefore, take up a compromise position. These positions at the
boundary region between two crystals are so distorted and unrelated to one
another that we can compare the boundary region to a noncrystalline material.
The thickness of this region is only a few atomic diameters, because the
opposing forces from neighbouring crystals are felt by the intervening atoms
only at such short distances. The boundary region is called a crystal boundary or
a grain boundary and is depicted in Fig. 6.14.

(a) (b)

Fig. 6.14 The atomic arrangements at grain boundaries are distorted and
unrelated.



The crystal orientation changes sharply at the grain boundary. The
orientation difference is usually greater than 10–15°. For this reason, the grain
boundaries are also known as high angle boundaries. The average number of
nearest neighbours for an atom in the boundary of a close packed crystal is 11,
as compared to 12 in the interior of the crystal. On an average, one bond out of
the 12 bonds of an atom is broken at the boundary. The grain boundary between
two crystals, which have different crystalline arrangements or differ in
composition, is given a special name, viz. an interphase boundary or an
interface. In an Fe–C alloy, the energies of grain boundaries and interfaces are
compared in the following manner:

Grain boundary between BCC crystals 0.89 J m–2

Grain boundary between FCC crystals 0.85 J m–2

Interface between BCC and FCC crystals 0.63 J m–2

When the orientation difference between two crystals is less than 10°, the
distortion in the boundary is not so drastic as compared with a noncrystalline
material. Such boundaries have a structure that can be described by means of
arrays of dislocations. They are called low angle boundaries. Figure 6.15 shows
a low angle tilt boundary, where neighbouring crystalline regions are tilted with
respect to each other by only a small angle. The tilt boundary can be described

Fig. 6.15 A tilt boundary consists of equally spaced edge dislocations of the same
sign one above the other.
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as a set of parallel, equally-spaced edge dislocations of the same sign located
one above the other. The angle of tilt � is related to the Burgers vector b of the
edge dislocations:

b
h

 = tan � (6.7)

where h is the vertical spacing between two neighbouring edge dislocations. For
small angles of tilt, b/h ~ �. Similar low angle boundaries formed by screw
dislocations are called twist boundaries. Note that both tilt and twist boundaries
are planar surface imperfections in contrast to grain boundaries which need not
be planar.

Stacking faults are also planar surface imperfections created by a fault (or
error) in the stacking sequence of atomic planes in crystals. Consider the
stacking arrangement in an FCC crystal

�
�ABCABCABCABC�

If an A plane indicated by an arrow above is missing, the stacking sequence
becomes

�ABCABCBCABC�

The stacking in the missing region is �BCBC� which is HCP stacking. This thin
region is a surface imperfection and is called a stacking fault. The number of
nearest neighbours in the faulted region remains 12 as in the perfect regions of the
crystal, but the second nearest neighbour bonds in the faulted region are not of the
correct type for the FCC crystal. Hence, a small surface energy is associated with
the stacking fault, in the range 0.01–0.05 J m–2 (10–50 erg/cm2). Similarly, we can
define a stacking fault in an HCP crystal as a thin region of FCC stacking.

Another planar surface imperfection is a twin boundary. The atomic
arrangement on one side of a twin boundary is a mirror reflection of the
arrangement on the other side, as illustrated in Fig. 6.16. Twin boundaries occur

Fig. 6.16 The atomic arrangement on one side of a twin boundary is a mirror
reflection of that on the other side.

Twin boundaries



Surface imperfections are not stable in a thermodynamic sense. They are
present as metastable imperfections. If the thermal energy is increased by
heating a crystal close to its melting point, many of the surface imperfections
can be removed. The grain boundary area decreases as a polycrystalline material
is heated above 0.5Tm, where Tm is the melting point in K. Larger crystals grow
at the expense of smaller crystals. Even though the average size of a crystal
increases during this grain growth, the number of crystals decreases, resulting in
a net decrease in the grain boundary area per unit volume of the material.

Example 6.6 A metal heated to elevated temperatures exhibits grooves on
the surface at positions where the grain boundaries meet the surface, see
Fig. 6.18. Assume that the ratio of the surface energy of the free surface to that
of the grain boundary is 3 to 1. Compute the angle at the bottom of the groove
of a boundary, which makes an angle of 90° with the external surface.

Fig. 6.17 Annealing twins and grain boundaries in brass (J. Nutting and R.G.
Baker, The Microstructure of Metals, with permission from The Institute of Metals,

London.)
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in pairs such that the orientation change introduced by one boundary is restored
by the other, as shown in Fig. 6.16. The region between the pair of boundaries is
called the twinned region. Twin boundaries are easily identified under an optical
microscope. Figure 6.17 shows the microstructure of brass with a number of
twins in the grains. Twins which form during the process of recrystallization are
called annealing twins, and those which form during plastic deformation of the
material are called deformation twins.



Solution At elevated temperatures, the surface tension forces come to an
equilibrium. Let � be the angle at the bottom of the groove. �gb and � s are the
surface tensions of the grain boundary and the external surface. At equilibrium,
the surface tension of the grain boundary acting vertically inwards into the
crystal balances the two vertical components of the surface tensions acting along
the two sloping sides of the groove. So,

�gb = 2� s cos
2
�� �

� �� �

cos 
2
�

= 
1
6

� = 161°.

�������

1. Crystal imperfections can be classified according to their geometry.

2. Point imperfections are vacancies and impurity atoms in elemental crystals.
They are Frenkel and Schottky imperfections in ionic crystals.

3. A certain concentration of point imperfections is present in equilibrium in
a crystal as the configurational entropy due to their presence lowers the
free energy of the crystal.

4. Edge and screw dislocations are the limiting types of line
imperfections. Any general dislocation can be resolved into edge and screw
components.

5. The elastic strain energy of dislocations varies as the square of their
Burgers vector. This favours small Burgers vectors.

Fig. 6.18 Grooves are formed at high temperature on the surface along the lines
where the grain boundaries meet the external surface.

�s �s�

�gb
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6. The glide motion of dislocations under an applied shear stress can deform
a crystal. The climb of an edge dislocation occurs with the aid of point
imperfections. Only screw dislocations can cross-slip from one slip plane
to another nonparallel slip plane.

7. The external surface and the internal grain boundaries are typical
nonplanar surface imperfections in a crystal.

8. The atomic arrangement can be described in detail at planar boundaries
such as tilt boundaries, twin boundaries and stacking faults.

��	
����

6.1 Calculate the ratio of the number of vacancies in equilibrium at 300 K in
aluminium to that produced by rapid quenching from 800 K.

Answer: 3.99 � 10–8.

6.2 A copper rod heated from 0 to 1300 K shows an increase in length of
2.1%. Estimate the fraction of this increase that comes from the
formation of vacancies in the crystal.

Answer: 2.38 � 10–4.

6.3 Using sketches, show how two edge dislocations on the same slip plane
with Burgers vectors of equal magnitude can come together and
annihilate each other.

6.4 What are the possible end results if the above two dislocations are in
adjacent slip planes?

6.5 Make two neat sketches to show the climbing up and the climbing down
of an edge dislocation. What happens to the vacancy concentration in the
crystal during each process?

6.6 In a simple cubic crystal (a = 3 Å), a positive edge dislocation 1 mm
long climbs down by 1 �m. How many vacancies are lost or created?

Answer: 1.1 � 1010 created.

6.7 Estimate approximately the atomic per cent of interstitial carbon required
to fill all the core sites of edge dislocations in iron. Assume the edge
dislocation density to be 1011 m–2. Comment on the result that you
obtain.
Answer: 5 � 10–9.

6.8 Does the Burgers vector change with the size of the Burgers circuit?
Explain.

6.9 Draw a Burgers circuit that encloses a positive and a negative edge
dislocation each with one incomplete plane in a simple cubic crystal.
What is the Burgers vector obtained? Comment on your result.
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6.10 The Burgers vector of a mixed dislocation line is 1/2[110]. The
dislocation line lies along the [112] direction. Find the slip plane on
which this dislocation lies. Find also the screw and the edge components
of the Burgers vector.

Answer: (1 10);  1/6 [112] and 1/3 [11 1] .

6.11 Sketch the arrangement of atoms in Fig. 6.12, after the edge dislocation
has reached the right side face.

6.12 Distinguish between the direction of the dislocation line, the Burgers
vector, and the direction of motion for both edge and screw dislocations,
differentiating between positive and negative types.

6.13 An aluminium crystal has a dislocation density of 1010 m–2. The shear
modulus of aluminium is 25.94 GN m–2. Calculate the elastic energy of
line imperfections stored in the crystal.
Answer: 10.61 J m–3.

6.14 Show both graphically and analytically that the first two dislocations add
to give the third dislocation in the following reaction:

1/6 [211]  + 1/6 [121] � 1/2 [110].

6.15 Calculate the square of the Burgers vectors of the above dislocations and
determine whether the reaction from left to right is energetically
favoured.

6.16 Calculate the surface enthalpy of copper when the external surface is of
(i) {100}, and (ii) {110} type.

Answer: 2.87 and 2.54 J m–2.

6.17 A gold wire of radius of 0.08 mm is held at a temperature just below its
melting point and is strained in tension by a small suspended weight.
Under a load of 0.736 mN (including the weight of the wire itself), the
wire maintains a constant length. Under smaller loads, it shortens; under
larger loads, it lengthens. What is the surface tension of gold at this
temperature?
Answer: 1.46 N m–1.

6.18 The interfaces between three phases �, �, and � meet along an edge. The
angles subtended at the edge by the three phases are respectively 120°,
105° and 135°. If the surface energy of the �–� boundary is 1.00 J m–2,
find the surface energy of �–� and �–� interfaces.

Answer: 1.225 and 1.366 J m–2.

6.19 The grains in a polycrystalline solid are space-filling polyhedra which can
be approximated to spheres of equivalent volume. Calculate the change in
the grain boundary energy per m3 of the solid, when the average grain
diameter increases from 0.01 mm to 0.1 mm. From the result obtained,
deduce whether grain growth is an energetically favoured process.

Answer: A decrease of 90%.
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6.20 Calculate the spacing between dislocations in a tilt boundary in FCC
nickel, when the angle of tilt is 2°.

Answer: 71.3 Å.

6.21 At a twin boundary, the orientation difference between adjacent parts of
the crystal is as large as that at a grain boundary. Yet, the twin boundary
energies are in the range 0.01–0.05 J m–2, as compared to grain boundary
energies in the range 0.2–0.6 J m–2. What is the reason for this
difference?

6.22 In an aluminium crystal, the number of vacancies triples itself, on
increasing the temperature from 300 K to 312.5 K. Calculate the enthalpy
of formation of vacancies.
Answer: 68.5 kJ mol–1.

6.23 Arrive at an order of magnitude value for the concentration of vacancies
in any elemental crystal just below its melting point from the following
data:

Element �Hf , kJ mol–1 Melting point, °C
Pb 48 327
Ag 106 961

Cu 120 1083

Answer: 10–4 to 10–5.

6.24 Draw a Burgers circuit around a dislocation of symbol 
�

 and determine
its Burgers vector.

6.25 In a neat sketch, draw Burgers circuits and determine Burgers vectors at
two different locations of the same curved dislocation line.

6.26 For edge and screw dislocations, list in a tabular form

(i) the symbols,
(ii) the angular relationship between the Burgers vector b and t vector,

and

(iii) the angular relationship between the direction of motion and the
applied stress.

6.27 Calculate the dislocation energy per m3 of FCC copper with a dislocation
density of 1010 m–2. The shear modulus of copper is 45 GN m–2 and the
lattice parameter is 3.61 Å.

Answer: 14.7 J m–3.

6.28 During a grain growth process, the average grain diameter is initially
0.03 mm. Estimate the maximum possible decrease in the energy during
grain growth. The specific grain boundary energy is 0.5 J m–2.
Answer: 50 kJ m–3.
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1. If the vacancy concentration in a crystal doubles itself between 25°C and
31°C, the enthalpy of formation of vacancies (kJ/mole) is

A. 138 B. 87 C. 51 D. 0.7

2. The ratio of vacancy concentration in copper quenched drastically from
1000°C to that slowly cooled to 0°C is (�Hf for Cu is 120 kJ/mole):

A. 1 B. 1.1 � 1018 C. 9.2 � 10–19 D. 1.2 � 10–5

3. The fraction of vacancies in equilibrium close to the melting point of an Al
crystal (m.p. = 660°C and �Hf  = 68 kJ/mol) is

A. 1.55 � 10–4 B. 1.56 � 10–5 C. 1.58 � 10–4 D. none of these

4. In a CdCl2 crystal, the following point imperfections are energetically
feasible:

A. cation displaced to interstitial site
B. anion displaced to interstitial site
C. one cation and one anion vacancy
D. one cation and two anion vacancies

5. A cation vacancy and an anion vacancy in a crystal of the type AB is
called

A. Schottky defect B. Frenkel defect
C. pair of vacancies D. none of these

6. In ZnyO with y > 1, the defects present are

A. cation interstitials B. anion vacancies
C. cation vacancies D. anion interstitials

7. The t vector is parallel to the b vector in a dislocation of the type:

A. screw B. edge C. mixed D. none of these

8. The line energy of dislocations in BCC iron (a = 2.87 Å) is (shear
modulus of Fe = 80 GN m–2)

A. 2.47 � 10–9 J m–1 B. 3.29 � 10–9 J m–1

C. 3.29 � 10–12 J m–1 D. 2.47 � 10–12 J m–1

9. The edge component of the Burgers vector of a mixed dislocation line of
B.V. = 1/2 [110] lying along the [112] direction is

A. 1/2 [112] B. 1/6 [112] C. 1/6 [211] D. 1/3 [11 1]

10. The Burgers vector of a dislocation in NaCl (a = 5.58 Å) is
A. 5.58 Å B. 4.83 Å C. 3.95 Å D. 2.79 Å

11. No. of missing neighbours of an atom on a {100}-type external surface in
FCC copper is

A. 4 B. 3 C. 2 D. 0
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12. The stacking which has a stacking fault in the following is

A. …ABCABABCABABCAB…
B. …ABCABABCABCABC…
C. …ABABABCABABABCABABABC…
D. …ABCABCABABCABCABABCABCAB…

13. The stackings with the closest packing of equal-sized spheres are

A. …ABBA… B. …ABCCAB…
C. …ACBACB… D. …ABABCABABC…

14. The local stacking arrangement at a stacking fault in a HCP crystal

A. …ABCABABC… B. …ABABCABABAB…
C. …ABABCABABC… D. …ABCABABCABABC…

15. The tilt angle of a tilt boundary in BCC iron (a = 2.87 Å) with edge
dislocations 7500 Å apart is
A. 0.04° B. 0.2° C. 0.02° D. 0.33 rad

16. The maximum possible decrease in energy during grain growth in Cu
(grain boundary energy = 0.5 J m–2) of initial grain diameter of 0.3 mm is

A. 0.5 kJ m–3 B. 2.5 kJ m–3 C. 5 kJ m–3 D. 10 kJ m–3

Answers

1. B 2. B 3. A 4. A, D 5. A
6. A 7. A 8. A 9. D 10. C

11. A 12. B 13. C, D 14. B 15. C
16. C

Source for Experimental Data

Institute of Metals, London, Dislocations and Properties of Real Materials
(1985).

Suggestions for Further Reading

J.P. Hirth and J. Lothe, Theory of Dislocations, McGraw-Hill, New York (1984).

A. Kelly, G.W. Groves and P. Kidd, Crystallography and Crystal Defects, John
Wiley, Chichester, UK (2000).
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CHAPTER

The study of phase relationships plays an important role in the understanding of
the properties of materials. Phase diagrams are maps that give the relationships
between phases in equilibrium in a system as a function of temperature, pressure
and composition. The phases as determined from the microstructure of a
material may or may not correspond to the equilibrium phases indicated by the
phase diagram. In fact, the thermal treatment given to a material often results in
phases other than those in the diagram. This fact, however, does not diminish the
importance of the study of phase diagrams as a first step towards gaining an
insight into the control of microstructure.

Units

 Quantity
  SI units

Other units
 Unit Symbol

Temperature  kelvin K °C, °F
Pressure pascal Pa atm, psi,

or or kbar
newton per N m–2

square metre

The compositions given in the text are weight %, unless stated otherwise.

7.1 The Phase Rule

The phase rule enunciated by Gibbs has a simple form:

F = C – P + 2 (7.1)

where F is the degrees of freedom, C is the number of components and P is the
number of phases in equilibrium in a system. Let us examine each of these terms
in some detail.
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In the classical definition, a phase is a physically distinct, chemically
homogeneous and mechanically separable region of a system. The various states
of aggregation of matter, namely, the gaseous, the liquid and the solid states, form
separate phases. The gaseous state is always a single phase, as the atoms (or
molecules) in the gas are mixed at the atomic (or molecular) level. A liquid
solution is also a single phase. For example, if salt is dissolved in water, the water
molecules, the sodium ions and the chlorine ions are mixed at the atomic level in
the solution. A liquid mixture (e.g. oil and water), on the other hand, forms two
separate phases as there is no mixing at the molecular level. In the solid state,
different chemical compositions and different crystal structures are possible so
that a solid may consist of several phases. For the same composition, different
crystal structures represent different phases. A solid solution has the atoms mixed
at the atomic level within the unit cell and is therefore a single phase.

The components of a system may be elements, ions or compounds. They
refer to the independent chemical species that comprise the system. In the ice–
water–steam system, the component is H2O. In the Cu–Ni system, the elements
Cu and Ni are the components, whereas in the Al2O3–Cr2O3 system, the two
oxides can be taken to be components. In the Fe–C system, iron and graphite
can be the components, but it may be often convenient to choose iron and iron
carbide (Fe3C) as the components.

The variables of a system include the two external parameters, temperature
and pressure. Within the system, there are variables that specify the compositions
of the phases present. Compositions are expressed as weight (or atom %) so that
the number of variables required to specify completely the composition of a phase
is (C – 1), where C is the number of components in the system. Knowing the
percentage of (C – 1) components automatically fixes the percentage of the last
component. If there are P phases in a system, the total number of composition
variables is P(C – 1). Including the two external variables (pressure and
temperature), the total number of variables is P(C – 1) + 2. The number of
independent variables among these gives the degrees of freedom F. Clearly, this
number cannot be more than the total number of variables:

F = C – P + 2 � P (C – 1) + 2 (7.2)

It is easy to see from Eq. (7.2) that, when only one phase is present in a system,
the degrees of freedom are equal to the total variables. As the number of phases
increases, the degrees of freedom decrease. The degree of freedom cannot be
less than zero so that we have an upper limit to the number of phases that can
exist in equilibrium in a given system.

Example 7.1 What are the degrees of freedom of a system of two
components when the number of phases is one, two, three, and so on?

Solution For C = 2, we can list the total variables and the degrees of
freedom as follows:
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No. of phases Total variables Degrees of freedom
P(C – 1) + 2 C – P + 2

1 3 3
2 4 2

3 5 1

4 6 0

The system cannot have more than four phases in equilibrium.

Phase diagrams are classified on the basis of the number of components in
the system. Single-component systems have unary diagrams, two-component
systems have binary diagrams, three-component systems give rise to ternary
diagrams, and so on.

7.2 Single-component Systems

In single-component systems, there is no composition variable and the only other
variables are temperature and pressure. The phase diagram for iron is shown in
Fig. 7.1. Pressure is plotted on the x-axis and temperature on the y-axis. The
pressure axis starts from 0.1 MPa but can be extended to lower pressures. In phase
diagrams, solid phases are denoted by Greek alphabets �, �, �, etc.
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Fig. 7.1 Pressure-temperature diagram for the one-component system of iron.
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Consider first the single-phase regions on the diagram such as gas, liquid
and several crystal forms of iron. From the phase rule [Eq. (7.1)] for C = 1 and
P = 1, we have F = 2. Therefore, in a single-phase region, both temperature and
pressure can be varied independently within the limits prescribed by the
boundaries of the region.

When two phases are in equilibrium, F = 1, that is, either temperature or
pressure can be varied independently, but not both. Two-phase equilibrium exists
along the phase boundaries of Fig. 7.1. When we are at a point on the phase
boundary if we change the temperature by an arbitrary amount and thereby
exercise a degree of freedom in order to preserve the two-phase equilibrium, we
need to change the pressure by such an amount that we return to a point on the
phase boundary.

Three-phase equilibrium exists at points on the phase diagram, where three
phase boundaries meet. Two such points are shown in Fig. 7.1. Such points are
called triple points. Here, F = 0; neither pressure nor temperature can be varied
arbitrarily. Three phases will co-exist at only one particular combination of
pressure and temperature. If we alter pressure or temperature from the fixed
triple-point value, one or two of the phases will disappear.

The equilibrium crystal form of iron at ambient temperature and pressure is
BCC (�). On heating to 910°C, � changes over to the FCC (�) form* . On
heating to 1410°C, the � iron changes over to the BCC (�) form. As the pressure
is increased, the � � � transition temperature is lowered, whereas the � � �
transition temperature is increased. Recent high pressure experiments have
shown that, when a pressure of about 15 GPa (~150 000 atm) is applied at room
temperature, the BCC iron transforms to the HCP (�) phase, as illustrated in
Fig. 7.1.

7.3 Binary Phase Diagrams

Two-component systems have binary phase diagrams. Apart from temperature
and pressure, we have one composition variable for each of the phases in
equilibrium. We then need a three-dimensional diagram to plot the variations in
pressure, temperature and composition. In order to simplify the representation of
the phase relationships on paper, binary phase diagrams are usually drawn at
atmospheric pressure, showing variations in temperature and composition only.
Pressure changes often produce no significant effect on the equilibrium and,
therefore, it is customary to ignore the pressure variable and the vapour phase.
In such cases, one of the variables has been arbitrarily omitted and the phase
rule for the condensed phases (solid and liquid phases only) is written in a
modified form as

F = C – P + 1 (7.3)
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*Originally, it was believed that a � form of iron also existed, which was later disproved.
To avoid confusion, the original naming sequence of the solid phases has been retained
with the � phase deleted.
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Fig. 7.2 The Al2O3–Cr2O3 phase diagram. Microstructural changes in an overall
composition c0 are sketched on the right.

Example 7.2 At atmospheric pressure (pressure arbitrarily chosen), a
material of unknown composition shows four phases in equilibrium at 987 K.
What is the minimum number of components in the system?

Solution As pressure is arbitrarily chosen, we can use the modified form
of the phase rule as given in Eq. (7.3). The minimum number of components
corresponds to the minimum degree of freedom, which is zero. Taking F = 0, we
get

0 = C – 4 + 1, C = 3.

The simplest binary phase diagram is obtained for a system exhibiting
complete liquid solubility as well as solid solubility. The two components
dissolve in each other in all proportions both in the liquid and the solid states.
Clearly, the two components must have the same crystal structure besides
satisfying the other Hume Rothery’s conditions for extensive solid solubility, see
Sec. 5.3. Cu–Ni, Ag–Au, Ge–Si and Al2O3–Cr2O3 are examples of such systems.

Figure 7.2 shows the phase diagram of Al2O3–Cr2O3. Pure Al2O3 and pure
Cr2O3 form the left and the right end of the composition axis. They are arranged
in alphabetical order from left to right. The composition is read as per cent of
Cr2O3 starting from 0% at left and going to 100% at the right end. Alternatively,
the composition can be read as per cent of Al2O3 from right to left. Temperature
is shown along the y-axis.

There are only two phases on the phase diagram, the liquid and the solid
phases. The single-phase regions are separated by a two-phase region (L + S),
where both liquid and solid co-exist. In all binary phase diagrams, a two-phase
region separates single-phase regions, as given by the “1-2-1” rule. As we move
from a single-phase region (1), we cross into a two-phase region (2), and then

L + S



again into a single-phase region (1)* *. The phase boundary between the liquid
and the two-phase region is called the liquidus. The boundary between the solid
and the two-phase region is called the solidus.

When only one phase is present, the composition axis gives the composition
of that phase directly. When two phases are present, the compositions of the
phases are not the same. They should be read according to the following
convention: At the temperature of interest T, a horizontal line called the tie-line is
drawn as shown in Fig. 7.2. The points of intersection of the tie-line with the
liquidus and the solidus give, respectively, the liquid and the solid compositions, cl

and cs, which are in equilibrium with each other. Thus, in Fig. 7.2, at 2180°C, for

an overall composition co = 73% Cr2O3 (27% Al2O3),
we have

The liquid composition cl = 57% Cr2O3 (43% Al2O3), and

The solid composition cs = 82% Cr2O3 (18% Al2O3).

The phase rule can be applied to this phase diagram, using the modified
form given in Eq. (7.3). For the single-phase region (liquid or solid), from
Eq. (7.3), F = 2 – 1 + 1 = 2. So, both temperature and the composition of the
phase can be independently varied (within limits). In the two-phase region,
F = 2 – 2 + 1 = 1.

Here, we have three variables:

(i) Temperature
(ii) Composition of the liquid phase

(iii) Composition of the solid phase

As F = 1, only one of these three is independent. If we arbitrarily choose the
temperature, the compositions of the two phases are automatically fixed and are
given by the ends of the tie-line drawn at that temperature. If we specify the
composition of one of the phases arbitrarily, the temperature and the
composition of the other phase are automatically fixed. There is no three-phase
equilibrium in systems exhibiting complete solid solubility.

Many pairs of elements and compounds are unlikely to satisfy the
conditions for complete solid solubility. For instance, the size difference between
two atoms or ions can be appreciably more than 15%, as the table of atomic and
ionic radii indicates (see back inside cover of the book). Similarly, the other
conditions for extensive solubility may not be satisfied. The solid solubility is
therefore limited in a number of binary systems. But it is never zero. However
unfavourable the conditions for solid solubility are, a very small quantity of any
component will always dissolve in another component as this increases the
configurational entropy and lowers the free energy of the crystal, recall
Problem 2.10. The solubility may be so small that, for all practical purposes,
only the pure component may be shown on the phase diagram.

When solid solubility is limited and the melting points of the components
are not vastly different, a eutectic phase diagram usually results. As an example,
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**This is true, except when the phase boundary is a horizontal line, corresponding to an
invariant temperature.
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the Pb–Sn phase diagram is shown in Fig. 7.3. As there is complete liquid
solubility, the liquid phase extends over all compositions above the melting
temperatures of the components. The solid phase at the left end is the lead-rich
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Fig. 7.3 The lead–tin phase diagram. Microstructural changes for composition co
are sketched.

� which dissolves only a limited amount of tin. This solubility decreases with
decreasing temperature. This limit of the solid solubility is indicated by the
phase boundary between � and � + �, called solvus. The solid solution phase at
the right end is the tin-rich �, with only a very small quantity of lead dissolved
in it. The phase boundaries on this diagram are as follows:

Liquidus I: boundary between L and L + � regions
Liquidus II: boundary between L and L + � regions
Solidus I: boundary between � and L + � regions
Solidus II: boundary between � and L + � regions
Solvus I: boundary between � and � + � regions
Solvus II: boundary between � and � + � regions

The three two-phase regions are separated by a horizontal line
corresponding to the temperature Te called the eutectic temperature. Below the
eutectic temperature, the material is fully solid for all compositions. The
composition which remains fully liquid up to the eutectic temperature during
cooling is called the eutectic composition ce. At the eutectic temperature, the
following eutectic reaction takes place:

cooling �
L � � + � (7.4)

� heating

Here, cooling refers to heat being extracted from the system at the eutectic
temperature, and heating refers to heat being added to the system. As there is some
heat evolution or absorption during the reaction, it is possible to add or subtract
heat at constant temperature. The eutectic horizontal is used as a tie-line, the ends
of which give the compositions of the � and � phases at this temperature.
Summarizing the eutectic characteristics of the Pb–Sn system, we have



eutectic temperature Te = 183°C,
composition of liquid ce = 62% Sn (38% Pb),
composition of �, c�e = 18% Sn (82% Pb), and
composition of �, c�e = 97% Sn (3% Pb).

The phase rule is readily applied in the single-phase and the two-phase
regions of the diagram, on the same lines as discussed for the Al2O3–Cr2O3

system. At the eutectic temperature Te, three phases are in equilibrium. From
Eq. (7.3), F = 2 – 3 + 1 = 0. The eutectic temperature Te and the compositions
of the three phases, ce, c�e and c�e are all fixed and none of them can be varied
arbitrarily. On slightly increasing the temperature above Te, either one or both of
� and � phases would disappear. On slight decrease of temperature below Te, the
liquid phase would transform as per reaction (7.4) to a mixture of � and �. To
denote the zero degree of freedom, the eutectic reaction is called an invariant
reaction. The eutectic temperature is known as an invariant temperature.

A similar invariant reaction occurring entirely in the solid state, where the
liquid phase is replaced by a third solid phase �, is called a eutectoid reaction:

cooling �
� � � + �

� heating (7.5)

The corresponding invariant temperature is called the eutectoid temperature.
When the melting points of the components are vastly different from each

other, a peritectic phase diagram may be formed. As an example, the Ag–Pt
phase diagram is shown in Fig. 7.4. The melting points of the components differ
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Fig. 7.4 The silver–platinum phase diagram.
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by more than 800°C. At the peritectic temperature Tp, the following invariant
reaction occurs:

cooling �
L + � � �

� heating (7.6)

In contrast to the eutectic reaction, the peritectic reaction is between a liquid and
a solid phase to yield on cooling a single solid phase. The peritectic composition
cp is the composition of the product solid phase. The peritectic horizontal is the
tie-line which defines the composition of the liquid phase and the � phase at the
peritectic temperature.

Analogous to the eutectoid reaction, we have a peritectoid reaction, where
two solids react on cooling to produce a third solid phase:

cooling �

� + � � � (7.7)

� heating

The invariant reactions that we have considered up till now are summarized
in Table 7.1.

TABLE 7.1

Invariant Reactions

Name of the Details of the
reaction reaction Phase boundaries at the invariant line

Eutectic cooling �
L � � + �
� heating

Eutectoid cooling �
� � � + �
� heating

Peritectic cooling �
L + � � �
� heating

Peritectoid cooling �
� + � � �
� heating

Binary diagrams have other invariant reactions, such as monotectic and
syntectic reactions. In addition, many binary systems have compounds at certain
ratios of the components, e.g., Mg2Pb in the Mg–Pb system. Some of these
compounds exist over a range of composition rather than at a fixed value.
Further details about binary phase diagrams and systems with more than two
components can be found in the references listed at the end of this chapter.

� �
L

� �
�

L �
�

�
�

�



7.3 Microstructural Changes during Cooling

The microstructural changes that occur on cooling an overall composition co in
the Al2O3–Cr2O3 diagram are illustrated in Fig. 7.2. Above the liquidus, the
material is a single phase (liquid). On cooling, we cross the liquidus and enter
the two-phase region. At temperature T, solid crystals of composition cs co-exist
with liquid of composition cl. On further cooling, we cross the solidus and the
material is now fully crystallized into a polycrystalline solid of composition co.

In the eutectic system of Fig. 7.3, let us consider the cooling of an overall
composition co. At temperature T1, solidification starts with a very small quantity
of � crystals of composition c�1 coming out of the liquid. At a lower temperature
T2, the amount of � phase has increased. Its composition is now different and is
given by the tie-line drawn at this temperature. Just above the eutectic
temperature, the quantity of � crystals has further increased, their composition
now being c�e. The microstructure of the alloy at this stage would be composed
of � crystals floating in the liquid of eutectic composition, as shown in Fig. 7.3.
On cooling just below the eutectic temperature, the liquid transforms according
to the eutectic reaction (7.4) to yield a fine mixture of thin plate-like crystals of
� and �, see Fig. 7.3. The microstructure below the eutectic temperature is re-
sketched in Fig. 7.5. The large equiaxed crystals of proeutectic �, that is, �

Fig. 7.5 Microstructure of a hypereutectic Pb–Sn alloy, showing the proeutectic �
crystals in a matrix of the eutectic mixture (schematic).
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formed before the eutectic reaction took place, are clearly seen. The matrix in
which they are embedded is the eutectic mixture consisting of thin, parallel
plates of alternate � and � crystals. Since the eutectic region is clearly
distinguishable as a separate entity under the microscope, it is called a micro-
constituent. It should not, however, be called the eutectic phase as it is not a
single phase.
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of the eutectic composition, then the microstructure consists of large equiaxed
crystals of proeutectic � that form prior to the eutectic reaction. These � crystals
get embedded in the eutectic matrix that forms at the eutectic temperature. Alloy
compositions to the left of the eutectic mixture are called hypoeutectic alloys,
and those to the right are called hypereutectic alloys.

What we have described above corresponds to an extremely slow cooling so
that the concerned phases have the equilibrium composition as given by the tie-
line at every temperature. This means that the composition of the equiaxed �
crystals of the hypereutectic alloy of Fig. 7.3 should change continuously from c�1

to c� e, as we cool from T1 to Te. Atoms must move across the liquid-crystal
boundary (from or to the liquid) to bring about these compositional adjustments.
Atom movements in the solid are so slow that these adjustments are rarely
complete. At ordinary cooling rates, the crystals show a gradation of composition
from c�1 at the centre of the crystals, where solidification first started, to c�e at the
peripheral rims of the crystals which solidified just above the eutectic temperature.
This compositional inhomogeneity is called coring. Coring can be identified by
the contrast a cored crystal shows on chemical etching.

Sometimes crystals grow preferentially along certain crystallographic
directions. Frequently, in cubic crystals, the three mutually perpendicular �100�
directions are the preferred directions of growth. During the early stages of
solidification, the shape of the crystal is like a fir tree, with arms protruding out
in three directions, as seen in Fig. 7.7. This structure is called the dendritic
structure. The liquid between the dendritic arms undergoes solidification
subsequently. The compositional differences caused by the coring effect enable
the identification of the dendrites even after complete solidification.

Fig. 7.6 Microstructure of a Pb–Sn alloy of eutectic composition (schematic).

If the overall composition of the alloy is ce, the entire solidification takes
place at the eutectic temperature and the microstructure in this case has only the
eutectic mixture, as illustrated in Fig. 7.6. If the overall composition is to the left



7.5 The Lever Rule

As already described, the compositions of the two co-existing phases of a binary
system are given by the tie-line rule. For all overall compositions that lie on the
tie-line, the compositions of the two phases remain the same, cs and cl in
Fig. 7.2. A little reflection will show that this will be possible only if the relative
amounts of the co-existing phases change, as the overall composition is varied
along the tie-line. Lever rule derived from mass balance gives the relative
amounts of the co-existing phases. It is applied as follows: The tie-line is treated
as a lever arm, with the fulcrum at the overall composition. For the arm to be
horizontal, the weight to be hung at each end must be proportional to the arm
length on the other side of the fulcrum. The “weight” at each end corresponds to
the amount of the phase at that end. At temperature T and overall composition co

in Fig. 7.2, the relative amounts of the liquid and the solid phases are
determined as follows. Figure 7.8 illustrates the procedure. Expressing the

Fig. 7.7 The dendritic structure.

fl fs

A

cl (57% Cr2O3) co(73% Cr2O3) cs(82% Cr2O3)

B C

Fulcrum

Fig. 7.8 Illustration of the lever rule.
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weight fractions of liquid and solid as fl and fs, we obtain

fl = s o

s l

82 73
82 57

c cCB
CA c c

� �� �
� �  = 0.36  (7.8)

fs = o l

s l

73 57
82 57

c cBA
CA c c

� �� �
� �  = 0.64  (7.9)
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Example 7.3 The H2O–NaCl system has the following eutectic reaction
occurring at –21°C:

cooling �
L � ice + salt

23.3% 0% 100% NaCl

How much pure water can be extracted from sea water (3.5% NaCl) by cooling
to –20.9°C?

Solution –20.9°C is just above the eutectic temperature of –21°C. Here,
liquid of eutectic composition (23.3% NaCl) is in equilibrium with pure ice (0%
NaCl). The ice crystals can be separated from the liquid and melted into water.
With the fulcrum at the overall composition of sea water (3.5% NaCl) and the
lever arm extending to 23.3% NaCl on one side to 0% on the other side, we obtain

fice = (23.3 – 3.5)/(23.3 – 0) = 19.8/23.3 = 0.85

In the above examples, only two phases are present. The lever rule cannot
be applied at the eutectic or the peritectic temperature, where there are three
phases in equilibrium and an isothermal reaction, changing the relative amounts
of the phases, can occur. It can be applied just above or just below the invariant
temperature. By using the lever rule, it is possible to estimate

(i) the fraction of a proeutectic phase,
(ii) the fraction of the eutectic mixture, and

(iii) the fraction of a phase that forms part of the eutectic mixture.

Referring to Fig. 7.3, just below the eutectic temperature, for the overall
composition co, the fraction of proeutectic �, fpro �, is determined as follows: The
fulcrum of the lever is positioned at the overall composition. One end of the
lever arm ends at the phase boundary corresponding to �, that is, at the
composition c� e. The other end of the lever arm extends up to the average
composition of the eutectic mixture ce. We can then write

fpro � = o e

e e

c c
c c�

�
�

(7.10)

The fraction of the eutectic mixture is given by

feut = 
e o

e e

c c

c c
�

�

�
� (7.11)

In order to determine the total �, which is the sum of the proeutectic � and the
� in the eutectic mixture, the fulcrum as before remains at the overall
composition. The ends of the lever arm, however, extend up to c�e on the � side
and up to c�e on the � side.

ftotal � = o e

e e

c c
c c

�

� �

�
�

(7.12)



Example 7.4 What is the fraction of � that forms part of the eutectic
mixture in the alloy of overall composition of co in Fig. 7.3?

Solution The fraction of the � phase that forms part of the eutectic
mixture is equal to the total � in the material minus the proeutectic �. From
Eqs. (7.10) and (7.12),

feut � = ftotal � – fpro �

= o e o e

e e e e

c c c c
c c c c

�

� � �

� �
�

� �

This fraction can also be expressed as the product of two fractions as follows:

feut � = feut in this alloy 	 f� in eut alloy

= e o e e

e e e e

c c c c
c c c c
� �

� � �

� �
�

� �

It is left as an exercise for the student to show that both these expressions for
fraction of eutectic � are equal.

7.6 Summary of Phase Diagram Rules

As a review, the rules pertaining to phase diagrams are summarized as follows:

7.6.1 The Phase Rule

The Gibbs phase rule states that

F = C – P + 2

where F is the degrees of freedom, P the number of phases, and C the number of
components. A phase is a region of a system with the same structure and uniform
composition and differs from other regions of the system either in structure and/or
composition. The component refers to the individual chemical species. The
degrees of freedom are the number of independent variables associated with the
equilibrium. It is equal to the total variables, when there is only one phase in the
system. It decreases as the number of phases increases. The maximum number of
phases in equilibrium in a system corresponds to F = 0.

7.6.2 The Tie-Line Rule

The tie-line rule is applied to determine the compositions of two co-existing
phases in a binary phase diagram. The tie-line is a horizontal line drawn at the
temperature of interest within the two-phase region. If, for example, a liquid
phase and a solid phase co-exist at a temperature T, the intersection of the
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tie-line drawn at that temperature with the liquidus gives the composition of the
liquid, and the intersection with the solidus gives the composition of the solid.
The tie-line rule is not concerned with the fraction of the co-existing phases. It
can be applied only in the two-phase region. Note that, for all overall
compositions that lie on the tie-line, the compositions of the two co-existing
phases remain the same. There is change only in their relative amounts, which is
determined by the lever rule.

7.6.3 The Lever Rule

The lever rule gives the fractions of two co-existing phases. The tie-line at the
temperature of interest is treated as a lever arm, with the fulcrum at the overall
composition. For the lever arm to be horizontal, the weight hung at each end
must be proportional to the arm length on the other side of the fulcrum. The
“weight” at each end corresponds to the amount of the phase at that end.

It should be noted that the tie-line rule gives the composition of the
co-existing phases, whereas the lever rule gives the fractions (or amounts) of the
phases. In a binary system of A and B, if a liquid of 35% A (65% B) is
co-existing with a solid of 75% A (25% B), for an overall composition of
40% A, the fraction of the liquid is given by

fl = 
75 40
75 35

�
�

 = 0.875

The fraction of the solid fs = 1 – fl = 1 – 0.875 = 0.125.
Stating the tie-line rule and the lever rule together, for the above example,

we get

fraction of liquid with 35% A = 0.875

fraction of solid with 75% A = 0.125
0.875 	 35 + 0.125 	 75 = 40% A

= overall composition of the alloy

The lever rule cannot be applied at an invariant temperature, where three
phases are in equilibrium. It can, however, be applied just above or below the
invariant line. The lever rule can be used to calculate the fraction of a
proeutectic phase, the fraction of a eutectic mixture or the fraction of a phase
that forms part of the eutectic mixture. In such calculations, the fulcrum is
always at the overall composition. If the fraction of a eutectic mixture is to be
calculated, one end of the lever arm must end at the average composition of the
eutectic mixture, that is, at the eutectic composition.

7.6.4 The 1-2-1 Rule

The 1-2-1 rule is an aid to label the phase fields in a binary phase diagram. As
we move from a single-phase region (1), we cross into a two-phase region (2),
and then again into a single-phase region (1). The 1-2-1 rule is not applicable
across an invariant horizontal line.



Note that the boundaries of a two-phase region always meet at a point on
reaching a pure component. This is consistent with the fact that a pure
component undergoes a phase change such as crystallization at a constant
temperature.

7.7 Some Typical Phase Diagrams

Phase diagrams may look somewhat complicated if there is more than one
invariant reaction in the system. As examples, we consider a few more typical
phase diagrams.

7.7.1 Magnesia–Alumina System

The MgO–Al2O3 phase diagram is shown in Fig. 7.9. It has two eutectic
reactions, and an intermediate phase, MgO 
 Al2O3. There is very little terminal
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Fig. 7.9 The MgO–Al2O3 phase diagram.

solubilities, that is, Al2O3 dissolves only a negligible amount of MgO and vice
versa. So, for all practical purposes, the pure end phases are the same as
components. This is in contrast to the Pb–Sn system, where we have Pb and Sn
as the two components and � and � as the two phases near the pure ends, see
Fig. 7.3. The MgO–Al2O3 system can also be considered as two separate phase
diagrams, the components for one being MgO and MgO 
 Al2O3, and for the
other being MgO 
 Al2O3 and Al2O3.

Note that a small quantity of MgO in A12O3 lowers its melting point
appreciably, even though MgO has a very high melting point. Such a
phenomenon can cause problems when oxides are used as high temperature
refractories. High quality pure refractories with a high softening temperature can
be ruined due to the presence of impurities that lower their melting point.
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7.7.2 Copper–Zinc System

Commercially important Cu–Zn alloys, brasses, have a composition up to about
40% Zn. The Cu–Zn phase diagram from 0 to 60% Zn is shown in Fig. 7.10a.
Zinc melts at 419°C and copper at 1083°C. This large difference in the melting
points results in a number of peritectic reactions in the system, two of which fall
in the range shown in Fig. 7.10a. The phases present in brass at room temprature
as a function of zinc content are listed as follows:

� � + � �

0–35% Zn 35–46.6% Zn 46.6–50.6% Zn
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Fig. 7.10 (a) The copper–zinc phase diagram up to 60% zinc; (b) the variation in
strength and % elongation with zinc content.

(b)

Zinc is cheaper than copper and, therefore, brasses are more economical to
use than pure copper. In addition, the mechanical properties of copper such as
tensile strength and % elongation improve with the addition of zinc, see

� + L
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905°C
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Fig. 7.10b. Brasses are widely used in a variety of applications. Where electrical
conductivity is an important consideration, pure copper is used.

7.7.3 lron–Iron-carbide System

Fe and Fe3C (iron carbide) are the components in the Fe–Fe3C phase diagram. It
is also possible to have a phase diagram with Fe and C (graphite) as the
components. Graphite is more stable than Fe3C. So, the Fe–Fe3C diagram can be
considered to be a metastable phase diagram. Most steels contain only iron
carbide and not graphite.
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Fig. 7.11 The Iron–Iron-Carbide phase diagram.

In Fig. 7.11, the composition is plotted on the x-axis as weight per cent of
carbon. Pure iron melts at 1535°C. A peritectic invariant reaction occurs at
1493°C with the peritectic composition at 0.18% carbon:

cool �
� + L � � (7.13)

The product phase � is called austenite. A eutectic reaction occurs at 1150°C
with the eutectic composition at 4.3% carbon:

cool �

L � � + Fe3C (7.14)
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A eutectoid reaction occurs at 725°C with the eutectoid composition at 0.8%
carbon:

cool �

� � � + Fe3C (7.15)

Here, austenite (� ) decomposes into two phases—ferrite (� ) and cementite
(Fe3C).

Fe–C alloys containing 0–1.4% carbon are called steels. The approximate
range of carbon content of mild steels is 0–0.3%, for medium carbon steels it is
0.3–0.6%, and for high carbon steels, it is 0.8–1.4%. Here, we will consider the
microstructures of slowly cooled steels of different carbon content. When the
carbon content is negligible, the structure of steel is essentially polycrystalline �
(ferrite), which is the interstitial solid solution of carbon in BCC iron.

When the steel has the eutectoid composition of 0.8% carbon, the
microstructure consists of alternate layers of thin, parallel plates of � (ferrite)
and Fe3C (cementite). This eutectoidal mixture is called pearlite. Pearlite is a
microconstituent, and not a single phase. It is so named as it has an iridescent
appearance under the microscope, resembling the mother of pearl, see Fig. 7.12.

Fig. 7.12 Microstructure of eutectoid steel showing pearlite, magnified 1000
times. (E.C. Bain and H.W. Paxton, Alloying Elements in Steel, with permission from

ASM International, Materials Park, Ohio.)



Applying the lever rule, with fulcrum at 0.8% carbon and the lever arm
extending up to ferrite (~ 0.0% carbon) at one end and up to cementite (6.67%
carbon) at the other end, we have, in pearlite, the relations

f� = (6.67 – 0.8)/(6.67 – 0.0) = 0.88

fFe3C = (0.8 – 0.0)/(6.67 – 0.0) = 0.12

The approximately-parallel lines in the microstructure indicate the layer
arrangement of ferrite and cementite. As the fraction of cementite is less than
that of ferrite, the cementite plates are thinner than ferrite in Fig. 7.12. Both the
boundaries of a cementite plate are clearly visible in some regions of the
microstructure, while in other parts, the cementite plates appear to be just a line,
as the two boundaries of a plate are too close to be resolved as separate lines. At
lower magnifications or when the pearlite mixture is very fine, even ferrite and
cementite may not be resolved as separate platelets and pearlite may appear as
just dark regions under the microscope.

Mild steel with 0.2% carbon consists of about 75% of proeutectoid ferrite
that forms above the eutectoid temperature and about 25% of pearlite. When the
carbon content in the steel is increased, the amount of pearlite increases, until
we get the fully pearlitic structure at 0.8% carbon. Beyond 0.8%, high carbon
steels contain proeutectoid cementite in addition to pearlite.

Example 7.5 How much proeutectoid ferrite is there in a slowly cooled
0.6% steel? How much eutectoid ferrite is there in the same steel?

Solution Applying lever rule between 0.0 and 0.8% carbon with fulcrum
at 0.6% carbon,

fpro � = (0.8 – 0.6)/(0.8 – 0.0) = 0.25

fpearlite = 1.0 – 0.25 = 0.75

The fraction of ferrite in a eutectoid steel = 0.88

feut � in this steel = 0.75 	 0.88 = 0.66.

In slowly cooled carbon steels, the overall hardness and ductility of the steel
are determined by the relative proportions of the soft, ductile ferrite and the
hard, brittle cementite. The cementite content increases with increasing carbon
content, resulting in an increase of hardness and a decrease of ductility, as we go
from low carbon to high carbon steels. Table 7.2 lists typical applications of
steels according to carbon content. A rivet (at the top of the list) should have
good deformability, and hence has a low carbon content. In contrast, a file (at
the bottom of the list) should have high hardness and wear resistance and hence
has a high carbon content. Even though we may increase the hardness by
increasing the carbon content further, the alloy becomes too brittle to be useful
above 1.4% carbon. A rail (in the middle of the table) has 0.6% carbon. It
combines some toughness with some hardness and wear resistance.
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TABLE 7.2

Some Applications of Plain Carbon Steels

Type of steels Carbon percentage Uses

0.0–0.1 Chain links, nails, rivets
Mild steels 0.1–0.2 Ship hulls, car bodies

0.2–0.3 Bridges

0.4–0.5 Train axles and wheels
Medium carbon steels 0.5–0.6 Rails

0.6–0.7 Chisels

0.8–0.9 Saw cutters, hammers
1.0–1.1 Axes

High carbon steels* 1.1–1.2 Razor blades
1.3–1.4 Scissors, knives, files

*Many of these are used after an appropriate thermal treatment.

Fe–C alloys with more than 2% carbon are called cast irons. Consider, for
example, the cooling of a cast iron with 3% carbon, see Fig. 7.11. On crossing
the liquidus into the (L + � ) region, proeutectic �  (austenite) crystallizes first.
On passing through the eutectic temperature, liquid of eutectic composition
decomposes to a mixture of austenite and cementite. On further cooling through
the eutectoid temperature, the austenite decomposes to pearlite, yielding white
cast iron. The microstructure of white cast iron consists of cementite and
pearlite, see Fig. 7.13. Due to the presence of the large fraction of cementite,
white cast iron is very hard and brittle.

Fig. 7.13 Microstructure of white cast iron, magnified 650 times. White regions
are cementite and dark regions are unresolved pearlite. (Y. Lakhtin, Engineering

Physical Metallurgy, with permission from Mir Publishers, Moscow.)



Depending on the cooling rate and the other alloying elements present in
cast iron, the carbon may be present as graphite or cementite. Gray cast iron
contains graphite in the form of flakes. Slow cooling rates and the presence of
silicon promote the formation of graphite. The microstructure of gray cast iron is
shown in Fig. 7.14 and consists of graphite flakes in a matrix of ferrite. The

Fig. 7.14 Microstructure of gray cast iron, magnified 140 times. Graphite flakes
are embedded in a matrix of ferrite. (A.L. Ruoff, Introduction to Materials Science,

with permission from Prentice Hall, Inc., Englewood Cliffs, New Jersey.)

graphite flakes are sharp at their tips and act as stress raisers. Due to this, gray
cast iron is brittle under tensile loads, in spite of the softness of graphite as
compared to the very hard cementite present in white cast iron. The brittleness
can be avoided by producing the graphite in the form of spherical nodules
(which do not have stress-raising sharp ends), as is done in malleable cast iron
and SG (spheroidal graphite) iron.

Malleable cast iron is produced by heat treating white cast iron for prolonged
periods at about 900°C and then cooling it very slowly. The silicon content in the alloy
must be 1% or less to ensure that cementite and not flaky graphite forms during
solidification. The cementite decomposes to the more stable graphite during the
subsequent heat treatment. Graphite appears in the heat-treated microstructure as
approximately spherical particles of temper carbon. SG iron (also known as nodular
iron) is produced by making certain alloy additions such as Mg or Ce to molten iron.
Here, the silicon content must be about 2.5% to promote graphitization. The alloy
additions have the effect of modifying the growth rate of graphite from the melt to be
more or less equal in all directions, so that nodules (and not flakes) of graphite are

produced. No subsequent heat treatment is required for SG iron.
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7.7 Other Applications of Phase Diagrams

One of the important uses of a phase diagram is in the zone refining of
materials. Consider the schematic phase diagram shown in Fig. 7.15. We need to
purify (or refine) A, which has B as the impurity component. Let the starting

T2

T1

Liquid

Solid
L + S

A c��s c�s co

% B

Fig. 7.15 The zone refining process is based on the fact that the solid to
crystallize first from a melt is usually purer in A than the liquid.

composition be co. This composition starts to solidify at temperature T1. Just
below this temperature, a small quantity of solid of composition c�s, purer in A
than co, separates from the liquid. Imagine that we stop cooling further, throw
away the liquid part and remelt the left-over solid. This small quantity of liquid
is now purer, as its composition is c �s. This overall composition will now start to
solidify at a higher temperature T2. Again, the first solid to separate will have a
composition c��s purer in A than c�s. By repeating this sequence of operations a
few times, we can get very pure A, even though the quantity of the purified
material will be extremely small compared to the starting material.

In zone refining, this principle of phase separation is used. The material to
be purified is in the form of a long rod. At any time, only a small length of this
rod is melted with the aid of an induction coil or an electron beam. The coil or
beam is moved slowly from one end to the other end of the rod, continuously
solidifying the molten zone and remelting fresh material ahead. Surface tension
forces are usually strong enough to hold the molten zone in place without the
need for a container, which may contaminate the melt. If the zone is passed
across many times, each time in the same direction, the material at the starting
end becomes much purer than the rest of the rod. In a typical case, ten passes of
the molten zone can reduce the impurity level to as low as 10–6 times the initial
value. This technique to produce ultra high purity materials has enabled us to
achieve the sophistication required in the control of impurity concentration in
semiconductor crystals.

The depression of the melting point of a pure solid, when another
component goes into solution, has its advantages and disadvantages. The
problem of softening and melting of refractories due to impurities was referred
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to earlier. Some of the advantages are described below. The eutectic reaction in
the iron-carbon alloys facilitates the melting of cast irons at a lower temperature
than is required for steels. So, the making of cast iron is easier and more
economical. In cold countries, the depression of the freezing point of water by
the addition of salt is used to melt the ice on roads. Pb–Sn eutectic alloys are
useful as soldering material. Low melting eutectic alloys are used as safety
devices in fire fighting equipment and petroleum storage tanks. Gold–silicon
eutectic finds uses in the manufacture of semiconductor devices. Closing this
section of applications in a lighter vein, a teaspoon made out of a four-
component eutectic of Pb, Sn, Bi and Cd melts at 70°C, inside a hot cup of tea!

�������

1. The phase rule gives the degrees of freedom that are permissible for a
system of a given number of components and phases in equilibrium.

2. The pressure-temperature diagrams of one component systems have phase
boundaries corresponding to two-phase equilibrium and triple points
corresponding to three phase equilibrium.

3. Binary phase diagrams are temperature-composition plots, where the
pressure variable is omitted.

4. Eutectic and peritectic systems have a fixed (invariant) temperature for the
existence of three-phase equilibrium. Here, the compositions of all the
three phases are fixed.

5. The solid state analog of the eutectic and the peritectic reactions are the
eutectoid and the peritectoid reactions.

6. Lever rule is a simple rule of mass balance, giving the relative amounts of
two phases (or microconstituents) for a given overall composition.

7. Brasses are more economical and have better mechanical properties than
copper.

8. The microstructures of slowly cooled steels and cast irons correspond to
the phases shown in the phase diagram.

9. The zone refining process is based on the fact that the first solid to
crystallize in a two-component system is generally purer than the liquid.

��	
����

7.1 Water vapour, ice and water are in equilibrium at 0.01°C and at a
pressure of 613 Pa. Which of these phases would disappear, if

(i) the temperature is decreased, and

(ii) the pressure is increased?
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7.2 In a binary phase diagram (pressure omitted), what is the maximum
number of phases that can co-exist for at least one degree of freedom?

7.3 Give the number of variables and the degrees of freedom at the peritectic
temperature of a binary phase diagram.

7.4 Trace the microstructural changes on slow cooling from the liquid state
of an alloy of any overall composition that undergoes the peritectic
reaction in the Ag–Pt system (Fig. 7.4).

7.5 Dendritic growth cannot be identified by an etching technique in pure
materials. Why?

7.6 Show that, for correct mass balance, the relative amounts of two
co-existing phases or microconstituents must be as given by the lever
rule.

7.7 The following data apply to the binary system of A and B:

Melting point of pure A = 1050°C

Melting point of pure B = 1900°C

At 1250°C, the � solid solution (containing 50% of B), the � solid
solution (containing 80% of B) and liquid (containing 30% of B) are in
three-phase equilibrium. At room temperature, the maximum solubility of
B in the � phase is 30% and the maximum solubility of A in the � phase
is 10%.

(i) Sketch the phase diagram of A and B, showing the phases present in
each area of the diagram.

(ii) What is the reaction that takes place at 1250°C?

(iii) What are the weight fractions of the phases present in a material of
overall composition 75% B, at 1251°C, 1249°C and at room
temperature (RT)?

Answer: (iii) At 125l°C, fl = 0.1, f� = 0.9;

at 1249°C, f� = 0.167, f� = 0.833; and

at RT, f� = 0.25, f� = 0.75.

7.8 In the Pb–Sn system, determine the fraction of � phase in an alloy of
80% Sn at 184°C and 182°C.
Answer: 0.51 and 0.78.

7.9 In the microstructure of a Pb–Sn solder alloy, it was found that 88% of
the area is occupied by the eutectic constituent and the remaining area by
the proeutectic � phase. Assuming that the area fractions are equal to the
volume fractions, determine the approximate composition of the alloy.
The densities of � and � phases are 10 300 and 7300 kg m–3.

Answer: 65.7%.
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7.10 The phase diagram of a binary system of A and B has a three-phase
equilibrium at 250°C, with the compositions of �, liquid and � phases
equal to 10%, 55% and 95% B. Just below 250°C, find the compositions
at which the proeutectic phase is 1½ times the eutectic mixture.

Answer: 28%, 79%.

7.11 Draw the steel region of the Fe–Fe3C phase diagram and make neat
sketches of microstructures expected for four compositions between 0.0
and 1.2% C.

7.12 From the Fe–Fe3C phase diagram, for a 0.2% C steel, name the phases
and their fractions at equilibrium at the following temperatures:

(i) just above 1493°C,

(ii) just below 1493°C,
(iii) just above 725°C, and

(iv) just below 725°C.

Answer: (i) f� = 0.75, fl = 0.25  (ii) f� = 0.94, fl = 0.06

(iii) f� = 0.77, f� = 0.23 (iv) f� = 0.97, fFe3C = 0.03.

7.13 What is the fraction of proeutectoid cementite in (i) 1.4% C, (ii) 1.0% C,
and (iii) 0.7% C steels?

Answer: (i) 0.10, (ii) 0.034, and (iii) 0.

7.14 In cooling from the � range, both proeutectoid ferrite and proeutectoid
cementite form at the austenite grain boundaries. If a structure at room
temperature contains 5% of grain boundary phase and 95% of pearlite,
what are the possible values for the carbon content? Suggest a method to
determine the right composition.

Answer: 1.09% and 0.76%.

7.15 In the binary phase diagram (Fig. 7.16), mark the various phase fields.
Give all the invariant reactions that occur, stating their names.
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7.16 If an impurity raises the melting point of a pure component, how will the
zone refining process be affected?

7.17 Derive the degrees of freedom for a system, which has equal number of
components and phases.

Answer: 2.

7.18 One solid phase on heating through an invariant temperature becomes
two solid phases. Name the invariant reaction. Sketch the phase
boundaries near the invariant line.

7.19 In the Pb–Sn system, calculate the alloy composition at which the
fraction of total � is 2½ times the fraction of the � phase at 182°C.
Answer: 40.6% Sn.

7.20 For soldering with Pb–Sn alloys, at least 85% of the eutectic mixture is
preferred in the microstructure. Determine the composition limits of tin
that will satisfy this condition.

Answer: 55.4–67.25%.

7.21 Calculate the fraction of proeutectoid ferrite, eutectoid ferrite and total
ferrite in a 0.2% C steel.

Answer: 0.75, 0.22 and 0.97.

7.22 The potassium–sodium binary phase diagram has the following invariant
reactions:

cooling �
at 6.9°C, � + L � Na2K

wt.% Na 99 47 54

cooling �
at –12.6°C, L � � + Na2K
wt.% Na 23 3 54

(i) Give the name of each of the above reactions.
(ii) Make an approximate sketch of the phase diagram.

(iii) Find the fraction of Na2K in a 33 wt.% Na alloy at –12.5°C.

Answer: (iii) 0.32.

7.23 In the Ge–P system, a compound GeP exists. At 725°C, Ge, GeP and
liquid of 62 at.% P are in three-phase equilibrium. At 577°C, GeP, P and
liquid of 94.5 at.% P are in equilibrium. The melting points of Ge and P
are 937 and 593°C respectively. Draw an approximate phase diagram of
this system. Write down the invariant reactions, giving their names.

7.24 In the Ti–Ti2Co system, liquid of 27 wt.% Co,  of 17 wt.% Co and
Ti2Co of 38 wt.% Co are in equilibrium at 1020°C. At 685°C, � of 8
wt.% Co, � of 1 wt.% Co and Ti2Co are in equilibrium. Pure Ti melts at
1670°C and also undergoes a crystal structure change from � (BCC) to �
(HCP) on cooling through 882°C. Ti2Co is stable up to 1058°C.

174 Problems



(i) Make an approximate sketch of the phase diagram showing
temperatures, compositions and phases.

(ii) Write down the invariant reactions, giving their names.
(iii) How much � and Ti2Co are present in a 6 wt.% Co alloy at room

temperature?

Answer: (iii) 0.86, 0.14.

7.25 The data on the gold–lead phase diagram are given below. Melting point
of Au = 1063°C, Melting point of lead = 327°C. At 434°C, Au, liquid of
43 at.% Pb and Au2Pb are in equilibrium. At 253°C, Au2Pb, liquid of 74
at.% Pb and AuPb2 are in equilibrium. At 222°C, AuPb2, AuPb3 and
liquid of 82 at.% Pb are in equilibrium. At 212°C, AuPb3, Pb and liquid
of 84 at.% Pb are in equilibrium. Draw the phase diagram on a graph
paper using a suitable scale. Write down the invariant reactions, giving
the name of each.

7.26 In the Fe–Fe2Nb system, at 1373°C, � of 3% Nb, liquid of 12% Nb and
� of 27% Nb are in equilibrium. At 1210°C, � of 1% Nb, � of 1.5% Nb
and � of 27% Nb are in equilibrium. At 961°C, � of 0.4% Nb, � of 0.7%
Nb and � of 27% Nb are in equilibrium. All compositions are in
atomic%. The melting point of Fe is 1535°C and of Fe2Nb (33.3 at.%
Nb) is 1627°C. The � phase is stable over a composition range of 27 to
33.3 at.% Nb,

(i) Draw an approximate phase diagram for this system.

(ii) Write down the invariant reactions in the system, giving their names.

(iii) What is the fraction of � in an alloy with 10% Nb at 960°C?

Answer: (iii) 0.65.

7.27 The Al–Si phase diagram is of the simple eutectic type. At 577°C, solid
Al with 1.5% Si dissolved in it, solid Si and liquid of 12.5% Si are in
equilibrium. An aluminium wire is welded to a silicon substrate. Just
below the weld inside the substrate, the microstructure shows 2% of a
eutectic-like mixture. What is the composition at this location?

Answer: 98.28% Si.

�������� ��	���� �����	��

1. The maximum number of co-existing in a C-component system is

A. C – P + 2 B. P(C – 1) C. F – C + 2 D. C + 2

2. In a single-component system, the maximum number of phases that can
coexist in equilibrium is

A. 2 B. 3 C. 4 D. 5
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3. The degree of freedom when ice, water and water vapour co-exist in
equilibrium is

A. 1 B. triple pt C. 0 D. –1

4. The degrees of freedom, when FCC iron and BCC iron co-exist in
equilibrium, are
A. 2 B. 1 C. 0 D. –1

5. The phase boundary between alpha and (alpha + beta) regions is called

A. liquidus B. solidus C. solvus D. none of these

6. The reaction that yields two solid phases on cooling a single solid phase is
called

A. eutectoid B. peritectoid C. eutectic D. congruent

7. If one solid phase splits into two solid phases on heating, the reaction is
A. eutectic B. peritectic C. eutectoid D. peritectoid

8. The reaction that, on heating one solid phase, yields another solid phase
plus one liquid phase is called

A. eutectic B. eutectoid C. peritectic D. peritectoid

9. If alpha of 82% B and liquid of 57% B are in equilibrium in an alloy of
73% B, the fraction of liquid is

A. 0.36 B. 0.64 C. 36% B D. 0

10. If the fraction of liquid with 57% B, which is in equilibrium with solid of
82% B, is 0.7, the overall composition is
A. 0.3 B. 74.5% B C. 64.5% B D. 25% B

11. In the eutectic phase diagram of Ag–Cu system, the solubility limit at
500°C of copper is 3% in the Ag-rich phase and of Ag is 2% in the
Cu-rich phase. In sterling silver (92.5% Ag –7.5% Cu), the per cent of
copper in the Ag-rich phase at 500°C is

A. 95.26 B. 4.74 C. 3 D. 98

12. The eutectic mixture in a Pb–Sn solder alloy should be 90%. At the
eutectic temperature, alpha of 19% Sn, liquid of 62% Sn and beta of 97%
Sn are in equilibrium. The possible compositions of the solder alloy are

A. 57.7% Sn B. 61% Sn C. 65.5% Sn D. 66.3% Sn

13. The fraction of pearlite in a 0.55% C steel is

A. 0.55 B. 0.31 C. 0.69 D. 0

14. At 30°C, hot chocolate (liquid) with 35% chocolate and 65% vanilla
transforms to chocolate ripple (eutectic mixture of vanilla containing 10%
chocolate and chocolate containing 5% vanilla). Just below 30°C, the
fraction of chocolate ripple in a composition with 45% chocolate is
A. 0.17 B. 0.83 C. 0.41 D. 0.59
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15. Zone refining will be more efficient if the ratio of impurity in the solid to
that in the liquid is

A. 0.01 B. 0.1 C. 0.4 D. ~1.0

Answers

1. D 2. B 3. C 4. B 5. C

6. A 7. D 8. C 9. A 10. C
11. C 12. A, C 13. C 14. B 15. A

Sources for Experimental Data

American Ceramic Society, Phase Equilibria Diagrams (Phase Diagrams for
Ceramists),  Columbus, Ohio, Vol. I (1964) to Vol. XI (1993).

T.B. Massalski (Ed.), Binary Alloy Phase Diagrams, Vols. 1–3, ASM
International, Materials Park, Ohio (1990).

Suggestions for Further Reading

W.D. Kingery, H.K. Bowen and D.R. Uhlmann, Introduction to Ceramics, Wiley,
New York (1976), Chap. 7.

A. Prince, Alloy Phase Equilibria, Elsevier, Amsterdam (1966).

F.N. Rhines, Phase Diagrams in Metallurgy, McGraw-Hill, New York (1956).
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CHAPTER

Diffusion refers to the movement of atoms in solids. Structural control in a solid
to achieve the optimum properties is dependent on the rate of diffusion. The
carburization of a steel or the oxidation of a metal is controlled by the diffusion
rate of atoms (or ions) through the surface layer. The introduction of a very
small concentration of an impurity in a solid state device requires knowledge of
the diffusion phenomenon.

In this chapter, we first consider the macroscopic laws of diffusion, with a
discussion of how they can be used in practical applications. The atomistic
model of diffusion is considered in the later sections.

Units

 
Quantity

SI units
Other units

 Unit Symbol

Flux J mole per square mol m–2 s–1 No. of atoms/
metre per second cm2/sec

Concentration c mole per cubic mol m–3 No. of atoms/
metre cm3

Concentration mole per cubic mol m–4 No. of atoms/
gradient dc /dx metre per metre cm4

Diffusion coefficient D metre squared m2 s–1 –
Diffusion constant D0 per second

Activation energy for
diffusion, Q
Enthalpy of motion kilojoule per mole kJ mol–1 kcal per mole,
of vacancy, �Hm eV/atom
Enthalpy of formation
of vacancy, �Hf

Vibration frequency � per second s–1 –
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8.1 Fick’s Laws of Diffusion

Diffusion can be defined as the mass flow process by which atoms (or
molecules) change their positions relative to their neighbours in a given phase
under the influence of thermal energy and a gradient. The gradient can be a
concentration gradient, an electric or magnetic field gradient or a stress gradient.
We shall consider mass flow under concentration gradients only. Thermal energy
is necessary for mass flow, as the atoms have to jump from site to site during
diffusion. The thermal energy is in the form of the vibrations of atoms about
their mean positions in the solid.

We first describe Fick’s macroscopic laws of diffusion, before going into the
atomistic models. Consider the unidirectional flow of matter in a binary system
of A and B atoms. The two types of atoms will move in opposite directions
under the influence of a concentration gradient. Let us assume that B is the only
moving species. Fick’s First Law states:

dn dc
DA

dt dx
� � (8.1)

where dn/dt is the number of moles of B atoms crossing per unit time a cross-
sectional plane of area A perpendicular to the diffusion direction x and dc/dx is
the concentration gradient in the x-direction. D is called the diffusion coefficient
(or diffusivity) and is a constant characteristic of the system. The diffusion
coefficient depends on the nature of the diffusing species, the matrix in which it
is diffusing, and the temperature at which diffusion occurs. The negative sign
indicates that the flow of matter occurs down the concentration gradient. By
definition, flux J is flow per unit cross-sectional area per unit time so that Fick’s
First Law can also be written as

1 dn dc
J D

A dt dx
� � � (8.2)

Fick’s First Law can be used to describe flow under steady state conditions.
It is identical in form to Fourier’s law for heat flow under a constant temperature
gradient and Ohm’s law for current flow under a constant electric field gradient.
Under steady state flow, the flux is independent of time and remains the same at
any cross-sectional plane along the diffusion direction:

J � f(x, t) (8.3)

Figure 8.1 shows the concentration-distance profile under steady state flow.
The profile is a straight line, when D is independent of concentration.
When D = f(c), the profile will be such that the product D(dc/dx) is a constant.
In neither case, the profile changes with time, under conditions of steady state
flow.
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Example 8.1 A steel tank contains hydrogen at a constant pressure of
10 atm, with a vacuum outside. The hydrogen concentration at the inner surface
of the tank is equal to 10 kg m–3. The diffusion coefficient of hydrogen in steel
at room temperature is 10–9 m2 s–1. Calculate the rate at which hydrogen escapes
through the wall of the steel tank, which has a thickness of 5 mm.

Solution As soon as steady state flow is established, a constant flux of
hydrogen will escape through the tank wall, as the pressure drop inside the tank
is negligible. There is vacuum on the outside. So, the concentration of hydrogen
on the outer surface of the wall is zero. From Fick’s First Law,

Flux outward J = 10–9 � 10/(5 � 10–3) = 2 � 10–6 kg m–2 s–1.

Fick’s Second Law is an extension of the first law to nonsteady state flow.
Here, at any given instant, the flux is not the same at different cross-sectional
planes along the diffusion direction x. Also, at the same cross-section, the flux is
not the same at different times. Consequently, the concentration-distance profile
changes with time. Nonsteady state flow is frequently met with in practical
applications of the diffusion laws.

Consider an elemental slab of thickness �x along the diffusion distance x.
Let the slab cross-section be perpendicular to x and its area be unity.
The volume of the slab is then �x. Under nonsteady state conditions, the flux
into the slab Jx is not equal to the flux out of the slab, Jx + �x. The rate
of accumulation (or depletion) of the diffusing atoms within this elemental
volume is (�c/�t)�x. It can be expressed as the difference of fluxes in and out of
the slab:

c
x

t
�� � �� ��� 	

 = Jx – Jx + �x = Jx – {Jx + 
J
x
�� �

� ��� � � x} (8.4)
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Fig. 8.1 Concentration-distance profile for steady-state flow.



or

c
t

�
�  = 

J
x

��
� (8.5)

Equation (8.2) can be rewritten in partial form and substituted in Eq. (8.5):

c c c
D x D

t x x x
� � � �� � � �	 
 
 	 �� � � �� � � �� � � � (8.6)

Equation (8.6) is Fick’s Second Law for unidirectional flow under nonsteady
state conditions. If D is independent of concentration, Eq. (8.6) simplifies to

2

2

c c
D

t x

� ��
� �

(8.7)

Even though D may vary with concentration, solutions to the differential
equation (8.7) are quite commonly used for practical problems, because of their
relative simplicity.

8.2 Solution to Fick’s Second Law

The solution to Eq. (8.7) for unidirectional diffusion from one medium to
another across a common interface is of the general form

( , ) erf
2

� � x
c x t A B

Dt
(8.8)

where A and B are constants to be determined from the initial and boundary
conditions of a particular problem. Here, the diffusion direction x is
perpendicular to the common interface. The origin for x is at the interface. The
two media are taken to be semi-infinite, that is, only one end of each of them,
which is at the interface, is defined. The other end of each is at an infinite
distance. The initial uniform concentrations of the diffusing species in the two
media are different, with an abrupt change in concentration at the interface.

In Eq. (8.8), ‘erf’ stands for error function, which is a mathematical function
defined as follows:

/2

2

0

2
erf exp ( )

2

x Dt
x

d
Dt

� �
�

� �� (8.9)

� is an integration variable that gets deleted as the limits of the integral are
substituted. The lower limit of the integral is always zero, while the upper limit

of the integral is the quantity whose error function is required. The factor 2/ �

is a normalization factor. In Fig. 8.2, exp (–�2) is plotted against �. The area

under the curve from � = 0 to x/2 Dt  is the value of the integral in Eq. (8.9).

The area integrated from � = 0 to � = + � comes out to be /2�  and the area

from � = 0 to � = – � is – /2� .
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�

Fig. 8.2 Illustration of the error function. The hatched area is equal to the value
of the integral in Eq. (8.9).

Therefore,

erf (�) = 2/ �  � /2�  = 1

erf (–�) = 2/ �  � – /2�  = –1

erf (0) = 0
and

erf 
2

�
x

Dt
= – erf 

2

x

Dt

A number of applications of the solution (8.8) are discussed in Sec. 8.3.

8.3 Applications Based on the Second Law Solution

8.3.1 Experimental Determination of D

The diffusion coefficient D can be determined experimentally using a diffusion
couple. A diffusion couple, shown in Fig. 8.3, consists of two long bars welded

t2 > t1 t1 > 0 t = 0
c2

c1

Bar 1Bar 2

c

C
on

ce
nt

ra
ti

on

– +0

Distance x

Fig. 8.3 The diffusion couple set-up for nonsteady-state flow.



face to face, the concentration of the diffusing species is one, c2, being higher
than that in the other, c1. Diffusion takes place across the common face. In
Fig. 8.3, the concentration is shown along the y-axis; the origin of the diffusion
direction x is at the common interface.

The initial conditions for the diffusion couple set-up are:

1

2

0
( , 0)

0

	
�� � ��

c x
c x

c x
(8.10)

So, the constants in Eq. (8.8) are given by

A = (c2 + c1)/2 (8.11)

B = (c2 – c1)/2 (8.12)

The thermal energy at room temperature is usually insufficient to cause an
appreciable rate of diffusion. If the diffusion couple is heated to a high
temperature, say, near the melting point, sufficient thermal energy becomes
available and the diffusing species start to move from bar 2 to bar 1. The effect
of this movement will be first felt near the common face, and after time t1, the
concentration distance profile will change near the junction as shown. The
concentration has decreased from the initial value of c2 on the left side of the
origin and has increased from the initial value of c1 on the right side of the
origin. After a longer time t2 at the elevated temperature, the concentration
changes penetrate deeper on both sides of the origin, as indicated by the
changing concentration-distance profile. It is clear that the flux is changing as a
function of x at a given t, as well as with time t at constant x, under the
nonsteady state conditions prevailing. When D is independent of concentration,
the concentration-distance profiles are symmetrical about the junction as shown
in Fig. 8.3. The concentration at the junction is independent of time and is
c  = (c1 + c2)/2, where c  is the average concentration.

The diffusion anneal is done at a constant temperature (to keep D constant)
for a known length of time t. The temperature chosen is such that there is
a measurable amount of diffusion, after a reasonable length of time. After
the anneal, thin slices of the couple perpendicular to the diffusion direction x
are machined out in a precision lathe and chemically analyzed to give the
value of c as a function of x. Since the annealing time t is known, from

the initial compositions c2 and c1, A, B and erf (x/2 Dt ) can be determined

using Eq. (8.8). (x/2 Dt ) is then obtained from a standard mathematical table

of error functions, as shown in Table 8.1. With x and t known, D can be
calculated.
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TABLE 8.1

The Error Function

z erf (z) z  erf (z)

0.000 0.0000 0.85 0.7707

0.025 0.0282 0.90 0.7970
0.05 0.0564 0.95 0.8209

0.10 0.1125 1.0 0.8427

0.15 0.1680 1.1 0.8802
0.20 0.2227 1.2 0.9103

0.25 0.2763 1.3 0.9340

0.30 0.3268 1.4 0.9523
0.35 0.3794 1.5 0.9661

0.40 0.4284 1.6 0.9763

0.45 0.4755 1.7 0.9838
0.50 0.5205 1.8 0.9891

0.55 0.5633 1.9 0.9928

0.60 0.6039 2.0 0.9953
0.65 0.6420 2.2 0.9981

0.70 0.6778 2.4 0.9993

0.75 0.7112 2.6 0.9998
0.80 0.7421 2.8 0.9999

If D is a function of concentration, the above procedure can still be used, by
choosing c2 and c1 within a narrow composition range for anyone diffusion
couple. The experiment can then be repeated with additional diffusion couples to
cover the entire composition range.

The diffusion couple experiment can be done at different temperatures
of anneal so that D can be determined as a function of temperature. The
experimental results indicate an Arrhenius type of relationship:

D = D0 exp 
Q
RT

� �
� �� � (8.13)

where D0 is a pre-exponential constant and Q is the activation energy for
diffusion. The values of D0 and Q are determined from a plot of ln D along the
y-axis and 1/T along the x-axis. This plot yields a straight line, the slope of
which is –Q/R. The intercept on the y-axis is ln D0. Table 8.2 lists the
experimentally determined values of D0 and Q for a number of diffusion
processes. When a species diffuses in its own matrix, the process is called self-
diffusion, e.g., copper diffusion in a copper matrix. Some self-diffusion data are
also given in the table. These are determined by studying the diffusion of
radioactive isotopes of the element in a nonradioactive matrix of the same
element.



TABLE 8.2

D0 and Q Values for Selected Diffusion Processes*

Diffusion process D0, 10–4 m2 s–1 Q, kJ mol–1

Cu in Cu 0.20 196

Zn in Zn 0.15 94

Al in Al 1.98 143

Fe in Fe (�) 118 281

Ge in Ge 9.3 288

Si in Si 5400 477

W in W 43 640

C in graphite 7 681

H in Fe (�) 0.001 13

N in Fe (�) 0.005 76

C in Fe (�) 0.008 83

C in Fe (� ) 0.7 157

V in Fe 3.9 244

Mn in Fe 4.0 305

Ni in Fe 2.6 295

Zn in Cu 0.73 170

Ni in Cu 2.0 230

Cu in Al 0.25 121

* In many cases, the diffusion coefficient varies significantly with composition of
the matrix. Therefore, these values should be considered as approximate. More accurate
values can be obtained for specific matrix compositions in the references listed at the end
of this chapter.

8.3.2 Corrosion Resistance of Duralumin

Duralumin is primarily an alloy of aluminium with 4% copper. In the properly
heat-treated condition, this alloy has a strength which is several times more than
that of aluminium. It is, therefore, used widely in the aircraft industry. The
corrosion resistance of duralumin is poor compared to that of aluminium. Hence,
sheets of duralumin are covered on both sides with thin pure aluminium sheets
and passed through rolls to produce a sandwich like material called Alclad.
When this material is heated to 550°C for giving the appropriate heat treatment
to increase the strength, copper diffuses out of duralumin into the outer layers
and impairs the corrosion resistance of pure aluminium. To minimize the damage
due to diffusion, the thickness of the aluminium sheets used for protection and
the time of heating at the elevated temperature should be controlled.
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Example 8.2 In Alclad, 20 mm thick duralumin sheets are covered on either
side with 0.2 mm thick pure aluminium sheets. For retaining the corrosion
resistance, the copper concentration at a depth of 0.1 mm from the outer surface
should not exceed 0.4%. How long can the material be kept at 550°C, without
damaging the corrosion resistance?

Solution From Table 8.1, the diffusion coefficient of copper in
aluminium at 550°C is obtained:

DCu in Al = D0 exp (–Q/RT)

= 0.25 � 10–4 exp {– (121.0 � 103)/(8.314 � 823)}

= 5.25 � 10–13 m2 s–1.

Taking the duralumin-aluminium interface as the diffusion couple interface, we
can write

c(x, 0) = 
4% 0

0% 0

	

� ��

x

x

x = 0.2 – 0.1 = 0.1 mm

c(x) = 0.4%

D = 5.25 � 10–13 m2 s–1

t = ?
From Eq. (8.8),

A = 2%, B = 2%

erf (x/2 Dt ) = 0.8
From Table 8.1,

x/2 Dt  = 0.90

t = (0.12 � 10–6)/(0.92 � 4 � 5.25 � 10–13)

= 5879 s � 100 min.

8.3.3 Carburization of Steel

Surface hardening of steel objects such as gears is frequently done by
carburizing or nitriding. The process consists of diffusing carbon (or nitrogen)
into the surface layers of the steel object. In pack carburizing, the object is
packed in solid carbon powder. In gas carburizing, an atmosphere of methane
gas that is rich in carbon surrounds the object to be carburized. Here, the
following reaction takes place at the steel surface:

CH4 (g) � 2H2 (g) + C (steel)

When the steel object is annealed at an elevated temperature in the carburizing
medium, carbon diffuses into the steel from the surface under a concentration



gradient. Surface hardening improves the wear resistance of components such as
gears, without impairing the bulk mechanical properties such as toughness.

If the carbon content of the carburizing atmosphere remains constant, it
would give rise to a constant carbon concentration cs at the surface of the steel,
Fig. 8.4a.

Carburizing
atmosphere

Steel

cs

c1

0
x

(a)

Steel
c2

cs

0
x

(b)

Decarburizing
atmosphere

The initial carbon content of the steel is c1. We can then write

c (x, 0) = c1, x > 0

c (0, t) = cs

So, from Eq. (8.8),
A = cs, B = cs – c1

With D, cs and c1 known, the amount and depth of carbon penetration as a
function of time can be computed.

8.3.4 Decarburization of Steel

The opposite of carburization is decarburization. Here, the carbon is lost from the
surface layers of the steel, due to an oxidizing atmosphere that reacts with carbon
to produce CO or CO2. The fatigue resistance of steels is lowered due to
decarburization and, therefore, it should be avoided by using a protective
atmosphere during the heat treatment of the steel. When the heat treatment is
carried out in a non-protective atmosphere (e.g., air), the extent of decarburization

Fig. 8.4 Concentration-distance profiles for (a) carburization, and
(b) decarburization.
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can be estimated from the diffusion equation and post-machining operations can
be undertaken to remove the decarburized layer.

Referring to Fig. 8.4b, the decarburizing atmosphere is equivalent to a lower
carbon content at the steel surface, as compared to the initial carbon
concentration (c2) of the steel. Here

c(x, 0) = c2, x < 0

c(0, t) = cs

So, from Eq. (8.8),
A = cs, B = c2 – cs

With D, cs and c2 known, the depth and the degree of decarburization can be
determined at a function of the heat treating time t.

Example 8.3 At 950°C, a 0.8% carbon steel is getting decarburized for a
duration of 4 hr in an atmosphere equivalent to 0% carbon at the surface of the
steel. Determine the minimum depth up to which post-machining is to be done,
if the carbon content at the surface after-machining should not be below 0.6%.

Solution From Table 8.2,

DC in Fe(�) = 0.7 � 10–4 exp {(–157 � 1000 )/(8.314 � 1223)}

= 1.38 � 10–11 m2 s–1

c2 = 0.8%

cs = 0%

 c(x) = 0.6%

t = 4 � 3600 = 14 400 s

D = 1.38 � l0–11 m2 s–1

x = ?

Substituting in Eq. (8.8), we get

erf
2

x

Dt
 = –0.75

From Table 8.1,

2

x

Dt
 = –0.81

x = – 7.22 � 10–4 m

The depth up to which machining is required is ~ 0.75 mm.



8.3.5 Doping of Semiconductors

Semiconductor devices are doped with small controlled quantities of impurities
for obtaining the desired electrical characteristics. The dopant atoms may be
diffused into the pure semiconductor crystal from a gaseous atmosphere. The
depth of penetration and the amount of dopant in the crystal can be estimated
following the same procedure as given for the carburization problem.

Example 8.4 To produce a p-type semiconductor, the third column element
boron is doped in pure silicon. The doping is done through a B2O3 vapour phase
of partial pressure equal to 1.5 N m–2. This atmosphere is equivalent to a surface
concentration of 3 � 1026 boron atoms per m3. Calculate the time required to get
a boron content of 1023 atoms per m3 at a depth of 2 �m. The doping
temperature is 1100°C and DB in Si at this temperature is 4 � 10–17 m2 s–1.

Solution
c1 = 0

cs = 3 � 1026 atoms

c(x) = 1023 atoms

x = 2 � 10–6 m

D = 4 � 10–17 m2 s–1

t = ?
Substituting in Eq. (8.8), we get

erf (x/2 Dt ) = 0.99967
From Table 8.1,

(x/2 Dt ) = 2.55

t = (22 � 10–12)/(4 � 2.552 � 4 � 10–17)

= 3845 s

When accurate calculations are not needed, the depth of penetration of the
diffusing species can be quickly estimated, using the following approximation:

x = Dt (8.14)

If c1 is negligible compared to c2, for the diffusion couple set-up, this
approximation yields the concentration at x as c(x) = 0.24 c2.

8.4 The Kirkendall Effect

In a binary solution of A and B, the rates at which A and B diffuse are not necessarily
equal. Usually, the lower melting component diffuses much faster than the other. This
leads to certain interesting effects as first observed by Kirkendall.
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Inert markers (thin rods of a high melting point substance which is insoluble in the
diffusion matrix) are placed at the weld joint of the couple, prior to the diffusion anneal.
These markers are found to shift during the anneal in the same direction as the slower
moving species. The extent of this shift is found to be proportional to the square root of
the diffusion time. This kind of movement indicates that the net mass flow due to the
difference in diffusivities is being compensated by a bulk flow of matter in the opposite
direction within the diffusion zone. That is, lattice planes are created on one side of the
diffusion zone, while they are destroyed on the other side, and the resulting bulk flow
carries the markers along. Notice that the bulk flow occurs relative to the ends of the
diffusion couple. It is quite a different phenomenon from the diffusion process itself. In
many cases, porosity is observed on the lower-melting component side, indicating that the
bulk flow does not fully compensate for the difference in diffusivities of the two species.

The following analogy of gaseous interdiffusion aids in the understanding of the
Kirkendall effect. Let hydrogen and argon at the same pressure be kept in two chambers
interconnected through a tube. A frictionless piston in the tube separates the gases. On
opening an orifice in the piston, the gases interdiffuse. The lighter hydrogen will diffuse
faster, resulting in a pressure difference that will tend to shift the piston in the same
direction as the slower diffusing argon is moving.

8.5 The Atomic Model of Diffusion

Diffusion occurs as a result of repeated jumps of atoms from their sites to other
neighbouring sites. Even when atoms jump randomly, a net mass flow can occur
down a concentration gradient, when a large number of such jumps take place.
The unit step in the diffusion process is a single jump by the diffusing species.

In interstitial diffusion, solute atoms which are small enough to occupy
interstitial sites, diffuse by jumping from one interstitial site to another, as
illustrated in Fig. 8.5a. In vacancy diffusion, atoms diffuse by interchanging

(a) (b)

(c) (d)

Fig. 8.5 Mechanisms of diffusion.



positions with neighbouring vacant sites, Fig. 8.5b. In interstitialcy mechanism,
the configuration where two atoms share a common atomic site moves through
the crystal, Fig. 8.5c. In the direct interchange mechanism, Fig. 8.5d, severe
local distortion is involved during motion. In the ring mechanism, three or four
atoms in the form of a ring move simultaneously round the ring, thereby
interchanging their positions, Fig. 8.5d. We will consider in some detail only the
interstitial and the vacancy diffusion.

The unit step in interstitial diffusion is the jump of the difusing atom from
one interstitial site to a neighbouring site. If the interstitial solution is dilute, the
probability that the neighbouring site will be vacant is high. Consider the
diffusion of interstitial carbon in FCC iron. In a 1% carbon steel, the atomic
fraction of carbon is about 0.05. The probability that an interstitial site will be
vacant and be available for a diffusing atom to jump into it is then 1 – 0.05 =
0.95, which can be approximated to unity.

The potential energy of the crystal as a function of the position of the
diffusing interstitial is schematically shown in Fig. 8.6. The energy is a

Fig. 8.6 Variation in potential energy along the path of the diffusing atom.

1 2

�Hm

minimum when the interstitial atom is at site l or at site 2. The energy increases
along the path from site 1 to 2, reaching a maximum at the midpoint of the path.
The interstitial atom has to push its way through the parent atoms, with its outer
electron cloud having a maximum overlap with the parent atoms at the midpoint.
The potential energy barrier �Hm is called the enthalpy of motion. It is clear that
the unit step involves a momentary increase in the enthalpy of the crystal and
that thermal energy is needed to overcome the barrier. At absolute zero, the
probability of a jump occurring is zero. As the temperature increases, the
vibrational amplitude of atoms also increases. There is a statistical distribution of
vibrational amplitudes and the probability that an atom will have sufficient
vibrational energy to overcome the energy barrier is exp (–�Hm/RT) from the
Maxwell-Boltzmann statistics. If � is the frequency of the vibrations and � � is
the number of successful jumps per unit time, we have

� � = �  exp (–�Hm/RT) (8.15)
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This composition change occurs in a volume of � 3. We can then
approximate the concentration gradient dc/dx to (–1/� 3)/�  = –1/� 4, where
concentration is expressed as number of atoms per unit volume. During an
individual jump, the flow is across a cross-sectional area � 2. So, the flux is
� �/� 2, in units of number of atoms per unit area per second. The diffusion
coefficient D is given by

D = 4 2
2( / )

J
dc dx

�
� � �

�

� �� �
�

= �� 2 exp (–�Hm/RT) (8.16)

Comparison of Eqs. (8.16) and (8.13) shows that the pre-exponential constant
D0 = ��2 and that the activation energy for interstitial diffusion Q = �Hm.

Substitutional diffusion generally proceeds by the vacancy mechanism. In
the unit step, a substitutional atom jumps into a neighbouring vacant site. Here,
we have to take into account the probability that the neighbouring site will be
vacant. In Chap. 6, the number of vacancies in thermal equilibrium in a crystal
was shown to be n/N = exp (–�Hf /RT), where �Hf is the enthalpy of formation
of vacancies. The fraction exp (–�Hf /RT ) also gives the probability that a given
atomic site will be vacant. In addition, we have to consider as for the interstitial
case the probability that the vibrating substitutional atom will have sufficient
energy to push its way through to the vacant site. This probability is equal to
exp (–�Hm/RT), where �Hm is the enthalpy of motion as applicable to the jump

� � is directly related to the diffusion coefficient D. A simplified view of this
relationship is as follows: For an individual jump, the composition varies from
unity to zero over the jump distance � which is about one atomic diameter, see
Fig. 8.7.

�

�

�

Diffusing atom

Vacant site

Fig. 8.7 The unit jump.



of the substitutional atom. The product of these two probabilities gives the
probability that a vacant site will be available at the same time as a vibration of
sufficient amplitude occurs. The number of successful jumps per unit time is
then given by

� � = �  exp (–�Hm/RT) exp (–�Hf /RT ) (8.17)

As in the interstitial case, the diffusion coefficient is related to � �, yielding

D = �� 2 exp
� ��� �

�� �� �
m fH H

RT
(8.18)

The pre-exponential constant of Eq. (8.13) is equated to �� 2 and the
activation energy for diffusion Q = �Hm + �Hf . Table 8.3 compares the values
of �Hf and �Hm with the experimental activation energy Q for self-diffusion in
silver and gold occurring by the vacancy mechanism.

TABLE 8.3

Calculated and Experimental Activation Energies for Vacancy Diffusion
(kJ mol–1)

Element �Hf �Hm �Hm + �Hf Q

Silver 97 80 177 174

Gold 95 79 174 184

There is no probability factor involving �Hf for interstitial diffusion, as we
have already noted. This fact is responsible for interstitial diffusion generally
being much faster than substitutional diffusion by the vacancy mechanism. For
example, the diffusion coefficient of carbon in FCC iron at 1000°C is
3 � 10–11 m2 s–1, while that of nickel in FCC iron at the same temperature is
much less, 2 � 10–16 m2 s–1.

8.6 Other Diffusion Processes

In ionic crystals, Schottky and Frenkel defects assist the diffusion process. When
Frenkel defects dominate in an ionic crystal, the cation interstitial of the Frenkel
defect carries the diffusion flux. When Schottky defects dominate, the cation
vacancy carries the diffusion flux. In addition to these defects in thermal
equilibrium, ionic crystals may have defects generated by impurities and by
deviation from stoichiometry, see Sec. 6.1. For example, a Cd2+ cation in a NaCl
crystal generates a cation vacancy. Since cation vacancies carry the diffusion
flux in NaCl, the presence of cadmium as an impurity increases the diffusivity of
NaCl. Even a small concentration such as 0.1% will markedly increase the
diffusivity, in relation to that of pure NaCl, as the number of cation vacancies
generated by this concentration of the impurity is several orders of magnitude
larger than that in thermal equilibrium.
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The generation of point defects due to deviation from stoichiometry was
discussed in Chap. 6. Referring to Fig. 6.3, excess Zn2+ interstitials are present
in a non-stoichiometric compound of ZnO. These increase the diffusivity of Zn2+

ions markedly. Similarly, the presence of cation vacancies in a nonstoichiometric
FeO increases the diffusivity of the cations in FeO.

Measurements of electrical conductivity of ionic crystals yield diffusivity
from the Nernst-Einstein relation:

2ne z
D kT
�


 (8.19)

where � is the electrical conductivity due to the diffusing ions, n is the number
of diffusing ions per unit volume, z their valency and e is the electronic charge.
This electrical conductivity is called ionic conductivity, in contrast to the more
familiar form of electrical conduction by the flow of electrons. It is not
surprising that this electrical conductivity and the diffusivity are linearly related,
as both of them arise from the same atomic process, viz., the diffusion of ionic
defects.

Up till now, we have considered diffusion in the crystal with the aid of point
imperfections. This can be called lattice diffusion. The diffusion process may
also be aided by other imperfections in the crystal, such as line and surface
imperfections. Consider the external surface of a crystal. Here, there are no
constraints on one side. Hence, the enthalpy of motion for an atom diffusing
along the surface is considerably less than that for an atom moving within the
crystal. In a polycrystalline material, the grain boundary regions are not as
closely packed as the crystal. �Hm for grain bolmdary diffusion is
correspondingly smaller than that for lattice diffusion. The experimentally
determined activation energy Q shows the following qualitative variation:

Qsurface < Qgrain boundary < Qlattice (8.20)

Likewise, diffusion along dislocation lines known as pipe diffusion is faster than
lattice diffusion.

A lower activation energy Q does not necessarily mean that diffusion along
high diffusivity paths such as grain boundaries and external surfaces will always
dominate the lattice diffusion. The cross-sectional area across which mass
transport can occur is usually much smaller for special diffusion paths than for
lattice diffusion.

Example 8.5 In a cylindrical crystal of radius r (r = 10 mm), calculate the
ratio of cross-sectional area available for diffusion through the surface layers to
the area available for mass transport through the cylinder.

Solution The cross-sectional area for diffusion along the axis of the
cylinder is

� r2 = 314 mm2



Assuming the effective thickness of the surface to be 4 Å (about two atomic
diameters), the cross-sectional area for diffusion along the surface is

2� r � 4 � 10–7 = 2.51 � 10–5 mm2

The ratio of the two cross-sectional areas is given by

2.51 � 10–5/314 = 8 � 10–8

The diffusion coefficient for self-diffusion of silver determined for a single
crystal and a polycrystalline solid are shown in Fig. 8.8, as a function of 1/T. At
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Fig. 8.8 Diffusion data for a single crystal and for polycrystalline silver.

lower temperatures, diffusion through the polycrystalline material is faster, as
grain boundary diffusion dominates here. At higher temperatures, lattice
diffusion becomes dominant so that the diffusivity is the same for both single
crystal and polycrystalline silver. The activation energies calculated from the
slopes yield

Qgb = 110 kJ mol–1

Qlattice = 192 kJ mol–l

Gaseous molecules diffuse through long chain polymers, without much
chemical interaction (bonding) with the chains, using the void space between
them. Smaller molecules such as H2 diffuse more rapidly than larger molecules.
The segmental mobility in a polymer assists the diffusion process, as half of a
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rotation of a chain segment can be equivalent to the diffusing molecule jumping
from one side to the other side of the chain. Cross-linking which restricts chain
mobility is found to decrease the diffusion rate. Adding a plasticizer, which
allows greater chain mobility, increases the diffusion rate.

Gaseous molecules such as H2 or He can easily diffuse through the open
network structure of silicate glasses. There have been instances, where a liquid
helium plant near a high-vacuum equipment built of glass had posed problems in
obtaining the desired vacuum. The higher concentration of helium in the surround-
ing atmosphere finds its way inside the vacuum equipment through the glass!

�������

1. Fick’s First Law is applicable under steady state conditions of mass flow.
Here, the flux is proportional to the concentration gradient. The
proportionality factor is the diffusion coefficient D.

2. Under nonsteady-state conditions, the flux changes with time and position
along the diffusion direction. Fick’s Second Law describes the nonsteady-
state flow.

3. Solutions to Fick’s Second Law are available for a given set of initial and
boundary conditions. The solution to the diffusion couple set-up can be
used to determine D experimentally. It can be adapted for other practical
problems such as doping of a semiconductor crystal and carbon diffusion
in steel. Experimental values of D indicate an Arrhenius type of
relationship between D and T.

4. Substitutional solutes diffuse by interchanging positions with vacancies.
Interstitial solutes simply jump to the next interstitial site, without having
to wait for a vacancy. Consequently, interstitial diffusion is much faster
than substitutional diffusion.

5. The presence of impurities and deviations from stoichiometry enhance the
diffusion rate of ions in ionic crystals by several orders of magnitude.

6. The activation energy for diffusion along surfaces and grain boundaries is
lower than that for lattice diffusion. Diffusion along these special paths is
effective at low temperatures or for very small particle or grain sizes,
which have a high boundary area to volume ratio.

��	
����

8.1 The ratio of diffusion rate of silver in silicon at 1350°C to that at 1100°C
was found to be 8 in a doping process. Calculate the activation energy Q
for silver diffusion in silicon.
Answer: 154 kJ mol–1.
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8.2 The diffusion rate of A in B was studied at 500°C and 850°C. It was found
that, for the same diffusion time, the depths of penetration x1 and x2 in the
two experiments were in the ratio of 1 : 4. Calculate the activation energy
for diffusion of A in B.

Answer: 57 kJ mol–l.

8.3 Amorphous selenium used as a semiconductor material exhibits unusual
diffusion characteristics. The following is a set of experimental data for
self-diffusion in amorphous selenium. Calculate D0 and Q and comment on
your results.

T, °C D, m2 s–1

35 7.7 � 10–16

40 2.4 � 10–15

46 3.2 � 10–14

56 3.2 � 10–13

Answer: D0 = 1027 m2 s–1; Q = 248 kJ mol–l.

8.4 At 900°C, what is the time required to carburize a steel with an initial
composition of 0.2% carbon to 1% carbon at a depth of 0.2 mm? Assume
a constant surface concentration of 1.4% carbon due to the carburizing
atmosphere.

Answer: 14 900 s.

8.5 A 1.2% carbon steel is getting decarburized in an atmosphere of 0.0%
carbon. After some time t, plot (i) c(x) curve near the surface of the steel,
and (ii) J(x) curve below the above curve, using the same x-axis.

8.6 A diffusion couple of 95% Cu-5% Zn and pure copper is annealed at
900°C for 50 hr. The zinc concentration at a depth of 2 mm inside the
copper bar was found to be 0.3% after the anneal. Determine the diffusion
coefficient of zinc in copper.

Answer: 5.0 � 10–12 m2 s–1.

8.7 In a steel, during carburization at 937°C, 0.6% carbon is found at a depth
of 0.2 mm after 1 hr. Find the time required to achieve the same
concentration at the same depth, if carburization is done at 1047°C.
Answer: 980 s.

8.8 Compare the diffusivities of hydrogen, nitrogen, and nickel in iron at
300 K and explain the difference between the three values.

8.9 Compute the rate at which a vacancy jumps in copper at 20°C. The
activation barrier for the jump is 100 kJ mol–l.

Answer: 1.5 � 10–5 s–1.

8.10 An Al-4% Cu alloy is heated to 550°C during heat treatment and quenched
to room temperature. Immediately after quench, the diffusion rate of
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copper (which proceeds by a vacancy mechanism) was found to be 107

times faster than what would be expected from the listed diffusion data.
What fraction of vacancies in equilibrium at 550°C is retained at room
temperature by the rapid quenching? The enthalpy of motion of vacancy in
this alloy is 50 kJ mol–1.

Answer: 0.14.

8.11 How will the diffusivity of NaCl change, when it is doped with (i) KCl,
and (ii) CaCl2? Explain.

8.12 Determine the ratio of cross-sectional area available for diffusion along the
surface and through the lattice, when the two diffusion rates are equal at
room temperature. Assume D0 to be the same for both the processes.
Qsurface = 100 kJ mol–l and Qlattice = 150 kJ mol–l.
Answer: 2 � 10–9.

8.13 Find the grain size of a polycrystalline solid for the same amount of
material to be transported through (i) the grain and (ii) the grain boundary
at 500°C. Assume that the grains are cube shaped and the grain boundaries
are 5 Å thick.

For lattice diffusion: D0 = 0.7 � 10–4 m2 s–1

Q = 188 kJ mol–l

For grain boundary diffusion: D0 = 0.09 � 10–4 m2 s–1

Q = 90 kJ mol–l

Answer: 0.54 mm.

8.14 Make a plot of the activation energy Q for diffusion of different species as
a function of the melting point of the species. Comment on your result.

8.15 From the data in Table 8.2, calculate the diffusion coefficient of carbon in
ferrite (�) and austenite (� ) at 900°C. Explain the difference in the values
on the basis of the two crystal structures.

Answer: 1.61 � 10–10 m2 s–1 in �; 7.14 � 10–12 m2 s–1 in �.

8.16 In a diffusion anneal, to what level should the initial temperature of 900°C
be increased to double the depth of penetration? D0 = 0.4 m2 s–1 and
Q = 100 kJ mol–l.

Answer: 1083°C.

8.17 An amount Q of a dopant is deposited on the surface of a silicon substrate.
During a subsequent anneal without the dopant in the atmosphere, the
concentration c of the dopant as a function of depth x and time t is given
by

c = (Q/ DT� ) exp [–x2/(4Dt)]

Show that this is a solution of Fick’s Second Law, when D is independent
of concentration.
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8.18 A steel containing 0.002% N is to be nitrided to yield a nitrogen content
of 0.12% at depth of 4 mm from the surface. The nitriding atmosphere is
equivalent to a surface concentration of 0.35% N. How long is to be the
nitriding process? The steel is BCC (�) at the nitriding temperature of
700°C.

Answer: 53 hr

�������� ��	���� �����	��

1. The unit of the diffusion coefficient D is

A. m s–2 B. m–2 s–1 C. m2 s–1 D. m2 s

2. The unit of flux J is

A. atoms m–2 s–1 B. atoms m2 s–1

C. moles m–2 s–1 D. moles m–3 s–1

3. The error function of � is

A. 0 B. –1 C. 1 D. �
4. The error function of 0 is

A. –1 B. 0 C. 1 D. �
5. For the same diffusion time, the depth of diffusion penetration at 500 and

850°C is in the ratio of 1 : 6. The activation energy for diffusion is

A. 57 kJ mol–l B. 37 kJ mol–l

C. 114 kJ mol–l D. 74 kJ mol–l

6. If D0 = 0.4 � 10–4 m2 s–1 and Q = 100 kJ mol–l, to double the depth of
penetration, the initial temperature of 900°C should be increased to
A. 910°C B. 923°C C. 986°C D. 1083°C

7. In a steel, during carburization at 937°C, 0.6% carbon is found at a depth
of 0.2 mm after 1 hr. The time required to get 0.6% C at double this depth
at the same temperature is
A. 60 s B. 1.414 hr C. 2 hr D. 4 hr

8. Among the following elements, the one with the largest diffusion
coefficient in steel at l000°C is
A. Mn B. W C. Ni D. C

9. The fastest diffusing species in Fe is
A. H B. Ni C. C D. W

10. If the diffusion jump distance is 1.5 Å, the theoretical value of D0 in m2 s–1

is approximately
A. 1.5 � l03 B. 1.5 � 10–3 C. 2.25 � 10–7 D. 2.25 � 107
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11. If the enthalpy of motion of a vacancy is 100 kJ mol–1, the time that a
vacancy takes to jump to an adjacent site at 25°C is about

A. 3 � 1017 s B. 2 � 1026 s C. 1013 s D. 3 � 104 s

12. The units of the ratio �/D (= ne2z/kT) are

A. A2 m–3 J–1 B. C2 m–3 J–1 C. C2 m–3 J D. V2 A–2 m–3 J

Answers

1. C 2. A, C 3. C 4. B 5. D
6. D 7. D 8. D 9. A 10. C

11. D 12. B

Source for Experimental Data

E.A. Brandes, Smithells Metals Reference Book, Butterworths, London (1983).

Suggestions for Further Reading

J. Crank and G.S. Park, Diffusion in Polymers, Academic Press, New York
(1968).

W.D. Kingery, H.K. Bowen and D.R. Uhlmann, Introduction to Ceramics, Wiley,
New York (1976), Chap. 6.

P.G. Shewmon, Diffusion in Solids, McGraw-Hill, New York (1963).
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CHAPTER

The phases present in a material may undergo changes, as a function of
temperature or pressure. Such changes are called phase transformations. The
control of structure and thereby the properties of materials is often achieved by
deliberately inducing or suppressing a phase transformation. A knowledge of the
kinetics and the mechanism of the transformation is essential for this purpose. In
this chapter, we shall discuss the elementary principles that govern phase
transformations in materials. In the latter half of the chapter, a number of
applications of practical interest based on these principles are discussed.

Units

 
Quantity

SI units
Other units

 Unit Symbol

Free energy change �g joule per J m–3 erg/cm3,
Enthalpy change �h cubic metre cal/cm3

Energy of nucleation �f * joule per event J erg, eV
or kilojoule per or
mole kJ mol–1

Interfacial energy � joule per J m–2 erg/cm2

square metre
Strain energy � joule per J m–3 erg/cm3

Strain energy factor A cubic metre

Contact angle � radian rad °(degree)

Enthalpy of diffusion �Hd kilojoule per mole kJ mol–1 kcal/mole

Vibration frequency � or � � per second s–1 –

Nucleation rate, dN/dt per cubic metre m–3 s–1 –
per second

Growth rate, U (= dr/dt) metre per second m s–1 –
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202 Phase Transformations

Units (cont.)

 Quantity
SI units

Other units
 Unit Symbol

Transformation rate, dX/dt per second s–1 –
Viscosity � pascal second Pa s poise
Tensile strength meganewton MN m–2 kgf/mm2, psi

per square metre
Hardness Rc __ __ __

Specific volume cubic metre m3 kg–1 ft3/lb, cm3/gm
per kilogram

Constants

Boltzmann’s constant k = 1.38 � 10–23 J K–l

Gas constant R = 8.314 J mol–l K–l

9.1 Time Scale for Phase Changes

The time taken for a transformation to go to completion is important in the
control of the structure of a material. On this depends our ability to suppress or
induce a phase transformation. The time taken depends on the nature and the
mechanism by which a phase transformation is brought about. The free energy
change during the transformation also determines its rate. Consider a simple
transformation where a liquid L transforms to crystals of �:

L � � (9.1)

The free energies of the two phases are shown in Fig. 9.1. At the equilibrium
melting point Tm, the free energies are equal. Above the melting point, the liquid
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g�

gl

Tm

Temperature

Fig. 9.1 Schematic variation of the free energy g of a material in the liquid and
crystalline forms as a function of temperature.



has a lower free energy than �, so that the free energy change for the
transformation L � � is positive. The reaction cannot proceed under such
conditions. Below Tm, the free energy of the �-phase is lower and the free
energy change �g for the above reaction is negative:

�g = g� – gl < 0 (9.2)

The transformation can now proceed spontaneously. Just below the equilibrium
temperature, where the magnitude of the free energy change is very small, the
reaction proceeds very slowly. With a large supercooling below Tm, the magnitude
of the free energy change is large and the reaction can proceed much faster.

A qualitative time scale for phase transformations is indicated in Table 9.1.
The following general discussion is valid for a phase transformation that occurs
on cooling a material from an elevated temperature such as the L � � reaction.

TABLE 9.1

Time Scale for Phase Transformations

  Qualitative nature  Time for transformation  Suppressibility

Extremely fast microseconds Insuppressible

Very fast milliseconds to seconds Suppressed by very
fast cooling

Normal seconds to hours Suppressible

Slow hours to days Suppressed easily

Extremely slow years Transformation
virtually impossible

Extremely fast transformations, having time scale in microseconds, cannot
be normally suppressed. However, in recent years, a very fast cooling technique
called splat cooling has been developed, which yields cooling rates exceeding a
million degrees per second. With such fast cooling rates, even those
transformations, which are traditionally considered insuppressible such as the
crystallization of a liquid metal, can be suppressed. Metallic glass produced by
splat cooling has several unusual properties.

Very fast transformations going to completion in a fraction of a second can
be suppressed by drastic quenching. Whether drastic quenching is feasible in
industrial practice or not, will depend on the size and the thermal conductivity of
the material and the effect of thermal stresses arising from the temperature
difference between the inside and the outside of the component.

Normal transformations that take place in a matter of seconds or minutes are
usually suppressible. There is no problem in suppressing a slow transformation
that takes hours to complete. The problem here may turn out to be the other
way. If the transformation is desired, we may want to accelerate it so that the
industrial production time is cut. Very slow transformations taking years to set in
are usually ignored, as the time required for any appreciable amount of
transformation can easily exceed the service life of the component in question.
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204 Phase Transformations

NUCLEATION AND GROWTH

Once the condition for the spontaneous occurrence of a phase transformation has
been satisfied, that is, �g < 0, the next question is by what mechanism the
transformation takes place. Consider the formation of � crystals from a liquid. It
is highly improbable that all the atoms in the liquid can coordinate their
movements and, at the same instant of time, change over to the crystalline
configuration of �. The more likely event is the initial formation of the
crystalline configuration among a few atoms of the liquid. This arrangement then
extends into the surrounding liquid, by more and more atoms leaving the liquid
and joining the crystalline configuration. The transformation thus proceeds step
by step, as illustrated in Fig. 9.2, with a number of crystals growing from
different points. The growing � crystals eventually impinge on one another and
stop growing to yield a polycrystalline solid.

L

L

�

�

�

L

�

� �

�

� �

Fig. 9.2 Progressive transformation of the liquid to � crystals by nucleation and
growth.

The transformation can be divided into two discrete steps that occur one
after the other:

(i) the formation of tiny stable particles of �, called nucleation, and

(ii) the increase in size of these stable particles, called growth.

A distinction between the nucleation and the growth stages of a
transformation becomes necessary for the following reason. When a � particle is
formed, a new interface is created between the particle and the liquid. Like all
surfaces, this interface has a positive energy, which must be supplied during the
transformation process. A tiny particle has a large surface area to volume ratio
and can therefore be unstable. For a spherical particle of radius r,

Surface area/volume = (4�r 2)/(4�r 3/3) = 3/r (9.3)

As r � 0, this ratio can become very large and the energy of the surface can
effectively prevent the initial formation of a tiny particle. A particle is said to
have nucleated, when it becomes stable and will not disappear due to thermal
fluctuations. Once the particle has attained this stage, it can grow further with a
continuous decrease in energy. The surface energy is no longer a dominant
factor in the growth process.

L



9.2 The Nucleation Kinetics

In homogeneous nucleation, the probability of nucleation occurring at any given
site is identical to that at any other site within the volume of the parent phase.
We will consider this type of nucleation first. If �f is the free energy change
accompanying the formation of a spherical new phase particle, we can write

�f = 
4
3
� r3�g + 4� r2� (9.4)

where r is the radius of the particle, �g is the Gibbs free energy change per unit
volume and � is the surface energy per unit area of the interface separating the
parent and the product phases. The surface energy term is always positive. If �g
is negative, the function �f passes through a maximum. Initially as the new
phase particle starts to form, the energy of the system increases, as the surface
energy term is dominant. At the maximum, the variations with r of the surface
energy and the volume (Gibbs) free energy exactly balance each other.
Thereafter, the variation in the volume term becomes dominant and, as this term
is negative, there is a continuous decrease in the energy of the system.

By setting (df/dr) = 0, the values corresponding to the maximum, called the
critical values and denoted by the superscript *, are obtained:

r* = 
2

g
��
�

(9.5)

� f * = 
16
3
�� 3/(�g)2 (9.6)

�f is plotted as a function of r for different temperatures in Fig. 9.3. The critical
values of the free energy of nucleation � f * and of the particle radius r* are

T0

�
f

Critical barrier � f *

Em
br

yo
s T1

T2

T3

Supercritical nuclei

0 r

r* at T1

T0 > T1 > T2 > T3

Fig. 9.3 The free energy change �f during nucleation, as a function of the
particle radius r at different temperatures.
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206 Phase Transformations

indicated in the figure. Particles which are smaller than the critical size are
called embryos. Those which are larger than the critical size are called nuclei
(not to be confused with atomic nuclei). The critical sized particle is a critical
nucleus. As �g becomes more negative with a lowering of the temperature, the
critical condition occurs at smaller values of � f and r.

For the L � � transformation, the following simplification usually holds
good:

m

m m

T T T
g h h

T T
�

� � �
�

� � (9.7)

where �h is the enthalpy change (the heat of reaction) per unit volume of the
product assumed to be independent of temperature. Tm is the equilibrium melting
point at which �g = 0, T is the transformation temperature and �T is the degree
of supercooling. Combining Eqs. (9.6) and (9.7), we obtain

�f * = 
16
3

�� 3
2

2 2( ) ( )
mT

h T� �
(9.8)

Example 9.1 Calculate the critical free energy of nucleation of ice from
water at (i) 0°C, (ii) –5°C, and (iii) –40°C. Also, calculate the critical radius at
each temperature. The enthalpy of fusion of ice is 6.02 kJ mol–l. The energy of
the ice-water interface, 0.076 J m–2, can be taken to be independent of
temperature.

Solution (i) At 0°C, there is no supercooling, i.e., �T = 0. So, � f * = ��
There is no critical radius.

(ii) At –5°C, taking the molar volume of ice as 19 cm3,

�f * = (16 � 3.142 � 0.0763 � 2732)/{3 � (6020 � 106/19)2 � 52}

= 2.2 � 10–16 J

r* = (2 � 0.076 � 273)/{–(6020 � 106/19) � 5} m

= 262 Å

(iii) At –40°C, the degree of supercooling is eight times larger than at
–5°C.

Therefore, �f * is smaller by a factor of 82.

�f* = 3.4 � 10–18 J

r* = 33 Å

The Maxwell-Boltzmann statistics can be used to estimate the number of
critical sized particles in the parent phase. Let the total number of particles per
unit volume of the parent phase be Nt. Then the number of critical sized
particles N* is given by



N* = Nt exp
*f

RT
��� �

� �� �
(9.9)

where �f * is expressed in units of joule per mole. The process of nucleation is
to be identified with that unit step which makes the critical sized particle to
become just supercritical.

Let there be s* atoms in the parent phase facing the critical sized particle
across the interface, as shown in Fig. 9.4. If anyone of these jumps from the parent

Pa
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Product 
part
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e

r*

Fig. 9.4 The transfer of atoms from the parent phase to the product particle of
critical size r* across the interface.

phase to the product phase, the particle becomes just supercritical and is said to
have nucleated. Any further addition of atoms to the particle is to be considered as
the subsequent process of growth. The frequency � � with which anyone of the s*
atoms can cross the interface to join the product particle is given by

� � = s*�  exp dH
RT
��� �

� �� � (9.10)

where � is the lattice vibration frequency (~1013 s–1) and �Hd is the enthalpy of
activation for diffusion across the interface. The rate of formation of the new
phase particles or the rate of nucleation, dN/dt ( = I), is approximately the
product of the number of critical sized particles and the frequency with which
they can become supercritical:

I = N*� ��= Nt s*�  exp
*� �	� ��� �� �

df H
RT

(9.11)

As a first approximation, in homogeneous nucleation, Nt can be taken as the
number of atoms in the parent phase per unit volume. Then the pre-exponentia1
term Nt s*� is in the range 1042 m–3 s–1.
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Example 9.2 For a measurable (homogeneous) nucleation rate of
106 m–3 s–1, calculate the value of (�f * + �Hd) at room temperature. By how
much � f * should be changed to increase the nucleation rate by a factor of 104

to 1010 m–3 s–1?

Solution Substituting the appropriate values in Eq. (9.11), the exponent
= (42 – 6) � 2.303 = 82.9. At room temperature (300 K), (�f * + �Hd) comes
out as 82.9 � 8.314 � 300 = 207 kJ mol–l.

For a nucleation rate equal to 1010 m–3 s–1, we can similarly write
(�f * + �Hd) = (42 – 10) � 2.303 � 8.314 � 300 = 184 kJ mol–1, a decrease of
23 kJ mol–1. All this decrease is brought about by a decrease in �f *, as the
enthalpy of activation for diffusion �Hd is constant. If the change in �f * is
brought about by a change in temperature, the corresponding change in the RT
term has also to be taken into account in the calculations.

As already noted, �f * is a function of temperature. Its value at the
equilibrium temperature (�T = 0) is infinite. Therefore, the nucleation rate I as
given by Eq. (9.11) is zero at the equilibrium temperature. At temperatures
below the equilibrium temperature, � f * is finite. I increases with decreasing
temperature, as � f * decreases. At some degree of supercooling, I reaches a
maximum value. Thereafter, the decrease in the thermal energy RT dominates the
exponential term in Eq. (9.11) and the nucleation rate decreases with decreasing
temperature. It becomes zero again at zero kelvin. This temperature dependence
of I is shown in Fig. 9.7.

A change in volume accompanies most phase transformations. When the
adjoining parent phase is a fluid, volume changes during transformation can be
accommodated by flow in the parent phase. If the transformation occurs entirely
within a solid, volume changes will introduce elastic strains in the phases. Like
surface energy, the elastic strain energy is also positive and tends to inhibit the
transformation. The equation for the free energy change � f during nucleation
should be modified, when strain energy is a factor in a transformation. In such
cases, the balance between the surface energy and the strain energy usually
results in a plate like product particle.

In a transformation where strain energy is a factor, let the product phase be a disc-
shaped particle of semi-thickness c and radius r. The volume of this disc can be
approximated to 4�r 2c/3 and the surface area to 2�r2. A simple form of the strain
energy valid for a number of situations is

� = A (c /r) (9.12)

where � is the strain energy per unit volume and A is the strain energy parameter that
includes the elastic constants of the phases. Now, a modified expression for �f can be
written as follows:

� f = 
4
3
� r 2c �g + 

4
3
� r2cA(c/r) + 2� r2� (9.13)

A plot of �f as a function of r and c is a surface with a saddle point corresponding to
� f *. The critical values denoted by the superscript * can be obtained by setting the
partial derivatives (� � f /�r) and (� �f /�c) equal to zero:



c* = –2� /�g (9.14)

r* = 4A�/(�g)2 (9.15)
and

	f* = 
32
3
�A2� 3/(�g)4 (9.16)

Example 9.3 A new phase forms in the shape of a disc of radius r and
semi-thickness c. If the strain energy per unit volume is A(c/r), show that the

free energy of the nucleus of a given volume is a minimum, when c = /r A� ,
where � is the interfacial energy.

Solution For minimizing the free energy change � f at constant particle
volume V, substitute c = V/(4�r2/3) in Eq. (9.13):

� f = V�g + V 2A/(4�r3/3) + 2�r2�

Setting d�f /dr = 0, we have

–9V2A /(4�r 4) = –4�r�

Resubstituting V = 4�r2c/3, we get

c2A = � r, c = /r A�

In heterogeneous nucleation, the probability of nucleation occurring at
certain preferred sites in the assembly is much greater than that at other sites.
During solidification of a liquid, inclusions of foreign particles in the liquid and
the walls of the container holding the liquid provide preferred nucleation sites.
In a solid-solid transformation, foreign inclusions, grain boundaries, interfaces,
stacking faults and dislocations can provide sites for preferred nucleation. As an
example, consider the nucleation of � from 
 occurring on the planar surface of
a foreign inclusion �, as illustrated in Fig 9.5.

���

��� �

�
�

O ��� �

Fig. 9.5 The � particle nucleates on the surface of �, which is a foreign inclusion
in the matrix of �.
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The � particle forms in the shape of a half lens on the � surface. To
calculate the nucleation kinetics, we assume that the surface tension forces at
point such as O in Fig. 9.5 are in equilibrium:

��� = ��� cos � + � �� (9.17)

where � is the contact angle. An expression for �f can now be written in terms
of the volume energy (using the volume of the lens-shaped particle) and the
surface energies of the interfaces involved. During nucleation, a new 
–�
interface of area equal to the curved surface of the lens is created. In addition, a
� �� interface equal in area to the circle of intersection of the lens with the
planar � surface is created. But an 
�� interface of the same area is consumed.
This leads to a total of three surface energy terms: two of them positive and one
negative. When the expression for �f is written taking all these terms into
account and the equilibrium condition from Eq. (9.17) is substituted, �f* comes
out to be

�f *
het = 

3

2

4

3( )

��

�

��

g
 (2 – 3 cos � + cos3 �) (9.18)

Compare Eq. (9.18) with Eq. (9.6) for homogeneous nucleation. The factor
outside the brackets on the right side of Eq. (9.18) is 1

4
� f *

homo. � f *
het can be

derived as a fraction of �f *
homo for the following cases:

(i) The product particle makes only point contact with the foreign surface.
Then clearly, the foreign particle does not play any role in the
nucleation process. The contact angle � for this case is 180°. cos 180°
= –1, so, from Eq. (9.18), �f *

het = � f *
homo.

(ii) The product particle completely wets the foreign surface. It forms a
vanishingly thin film on the � particle. The contact angle � = 0. cos 0°
= 1; so, from Eq. (9.18), �f *

het = 0. There is no barrier to nucleation.

(iii) The product particle is hemispherical in shape. ��� = ��� . Hence,

� = 90°, cos � = 0 and �f *
het = 1

2
�f *

homo.

This provides us a clue for selecting a heterogeneous nucleation agent,
when a nucleation process is to be deliberately induced. A small value of the
contact angle � promotes heterogeneous nucleation. For a given value of the
energy of the 
�� interface, � can be minimized, by choosing a nucleating agent
� that would form a low energy ��� interface. If the crystal structure of � and �
are similar and the lattice parameters are nearly equal, ��� can be kept quite
small and this criterion is used in selecting a heterogeneous nucleating agent.
For example, the purpose of seeding rain-bearing clouds with AgI or NaCl
crystals is to provide for the easy nucleation of the ice crystals, which
subsequently melt to form the rain drops. AgI and NaCl have atomic planes that
match those of the ice crystal to provide a low energy interface. In a similar
way, the nucleation rate of ice crystals can be increased and thereby the size of
the product particles can be reduced, to minimize the damage caused by a
hailstorm. Nickel is used as a heterogeneous nucleating agent in the production
of artificial diamonds from graphite. It is interesting to note that both nickel and



diamond are referred to the FCC space lattice, with a lattice parameter of 3.52 Å
and 3.57 Å, respectively.

Example 9.4 Calculate �f *
het as a fraction of �f *

homo, when the interfaces
shown in Fig. 9.5 have the following energies:

��� = 0.5 J m–2, ��� = 0.5 J m–2, and ��� = 0.01 J m–2

Solution From surface tension equilibrium [Eq. (9.17)],

cos � = (��� – � ��)/��� = (0.5 – 0.01)/0.5 = 0.98

From Eq. (9.18),

�f *het = 1
4
�f *

homo (2 – 3 � 0.98 + 0.983) = 0.0003 �f *
homo

The nucleation barrier virtually disappears due to the very low energy of the
interface between � and �.

The rate of heterogeneous nucleation can be expressed in a form similar to
that of Eq. (9.11). In addition to the difference in the �f * term as discussed
above, the pre-exponential term will now include the number of preferred
nucleation sites only. This is usually many orders of magnitude smaller than the
number of potential sites available for nucleation in the homogeneous case. A
typical value here for the pre-exponential term is ~1026 m–3 s–1, as compared to
1042 m–3 s–1 for homogeneous nucleation. In spite of this large difference in the
pre-exponential term, Ihet > Ihomo, because the result that �f *

het < �f *
homo

dominates the nucleation kinetics through the exponential term.

9.3 The Growth and the Overall Transformation Kinetics

Growth is the increase in size of the product particle after it has nucleated.
Growth usually occurs by the thermally activated jump of atoms from the parent
phase to the product phase. Consider the transformation 
����. As illustrated in
Fig. 9.6, the unit step in the growth process consists of an atom leaving the 


�Hd

�-phase

�-phase

�Hd – v�g

Fig. 9.6 Unit step in the growth of a �-particle into the �-matrix.
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matrix and jumping across the 
�� interface to join the product phase �. The
activation barrier for the 
� �� � jump is the same as the activation barrier for
diffusion across the interface, �Hd.

At the equilibrium temperature, 
 and � phases have the same free energy,
so that the frequency of jumps from 
 to � is equal to that from � to 
. The net
growth rate is zero. At lower temperatures, the �-phase has a lower free energy
and the barrier for the reverse � � 
 jump is larger: �Hd – v�g, where v is the
volume per atom and �Hd is in units of J atom–1. Now there is a net flow of
atoms from the 
-phase to �-phase. The growth rate can be expressed as
U = dr/dt, where r is the radius of the particle.

As a function of temperature, the growth rate first increases with increasing
degree of supercooling, but eventually starts to decrease as the thermal energy
RT falls. In Fig. 9.7, the temperature dependence of the growth rate U is shown
along with the temperature dependence of the nucleation rate I. As seen from the
figure, the growth rate is also a maximum at some intermediate degree of
supercooling. The maximum in the growth rate usually occurs at a higher
temperature than the maximum in the nucleation rate.
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Fig. 9.7 The temperature dependence of the nucleation rate I, the growth rate U,
and the transformation rate dX/dt.

The overall transformation kinetics can be described as some function of the
growth rate and the nucleation rate:

dX /dt = f (U, I) (9.19)

where dX /dt is the rate at which the fraction X of the new phase increases with
time t. Assuming that a constant rate of nucleation occurs randomly in the
untransformed phase and that the product particles grow at a constant rate as
spheres, till impingement with neighbouring particles occurs, the fraction X can
be derived as a function of t:



As the transformation rate is a function of both the nucleation and the
growth rates, the dX /dt curve has the same shape as the U and I curves of
Fig. 9.7. It also passes through a maximum at some intermediate degree of
supercooling. The temperature of the maximum transformation rate lies between
the temperatures of maximum growth rate and maximum nucleation rate, as can
be seen from Fig. 9.7. It is often convenient to plot the time taken at various
temperatures for a fixed fraction of transformation X, in the form of a T-T-T
(time-temperature-transformation) curve. The T-T-T curve is inversely related to
the dX/dt curve. It has, therefore, a C shape, which is the inverse of the dX/dt
curve. The nose of the C curve corresponds to the minimum time for a specified
fraction (or per cent) of transformation. The nose temperature is the temperature
at which dX/dt is a maximum. A T-T-T diagram for austenite-to-pearlite
transformation in a steel is shown in Fig. 9.9 with two C curves for 1% and 99%
transformations, respectively.

APPLICATIONS

Some typical applications of the principles of nucleation and growth are
discussed below, as examples of how the control of a desired structure can be
achieved in a material.

X = 3 41 exp
3

I U t
�� �

� �� �� �
(9.20)

A plot of X versus t shown in Fig. 9.8 has the sigmoidal form.
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Fig. 9.8 The fraction transformed X is plotted against t. The curve has a
sigmoidal form.
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9.4 Transformations in Steel

The phase transformations in steel are of great technological importance. The
heat treatment of steel to obtain the optimum properties is dependent on the
mechanism and the kinetics of phase transformations.

Consider the binary phase diagram of Fe and Fe3C shown in Fig. 7.11. The
following eutectoid reaction occurs on cooling a steel of 0.8% carbon through
the eutectoid temperature (725°C):

cooling �
Austenite () �� ferrite (
) + cementite (Fe3C)
FCC BCC Orthorhombic
0.8% C 0.02% C 6.67% C

The transformation takes place with a compositional change. The FCC
austenite () of 0.8% carbon decomposes to a mixture of BCC ferrite (
) of
0.02% carbon and orthorhombic cementite (Fe3C) of 6.67% carbon. This
mixture is called pearlite. This compositional change is brought about by the
diffusion of interstitial carbon (which is much faster than the diffusion of iron).
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Fig. 9.9 The T-T-T diagram for a eutectoid steel.



As the product phase particle (ferrite or cementite) grows, carbon diffuses away
from or into the transforming region.

The time-temperature-transformation characteristics of the eutectoid steel are
shown on a T-T-T diagram in Fig. 9.9. A slow cooling rate from the eutectoid
temperature Te as indicated by curve 1 in Fig. 9.9 yields coarse pearlite—a
mixture of relatively coarse crystals of ferrite and cementite like that shown in
Fig. 7.12. Such a slow cooling is called annealing. Here, sufficient time is
available for the carbon in the austenite to diffuse and redistribute itself to
0.02% in ferrite and 6.67% in cementite. Small plate-like regions of austenite
transform into pairs of parallel, plate-like crystals of ferrite and cementite. The
diffusion distance of carbon is approximately half the thickness of a pair of
plates. During annealing, the effective transformation temperature is just below
Te, where the rate of growth is rapid compared to the rate of nucleation, recall
Fig. 9.7. Such a combination of growth and nucleation rates promotes the
formation of coarse crystals.

A somewhat faster cooling rate obtained by air cooling lowers the effective
range of the transformation temperature. The range is now nearer to the
maximum nucleation rate where the growth rate is not so high, see Fig. 9.7. This
combination of rates yields finer crystals of ferrite and cementite. Curve 2 in
Fig. 9.9 corresponds to air cooling. The steel is said to be normalized to yield
fine pearlite. The diffusion rate of carbon decreases with the decrease in the
effective transformation temperature. This effect is, however, compensated by the
fact that here the carbon atoms need to diffuse over shorter distances than in
coarse pearlite, as the plates are thinner. There is also the additional advantage
of a larger undercooling.

The transformation of austenite to pearlite is suppressed by rapid cooling
past the nose of the C curve, as represented by cooling curve 3 in Fig. 9.9. If the
austenite is then held isothermally below the nose temperature, it transforms to
bainite. Bainite is also a mixture of ferrite and cementite. This mixture has a
very fine distribution of the two phases but has a different morphology as
compared to pearlite. Here, the cementite particles are short needles embedded
in plates of ferrite. (The nomenclature of the microconstituents in steel is
dependent on the shapes of the product phases. Only the lamellar arrangement of
pairs of parallel, plate-like crystals of ferrite and cementite is called pearlite.)
The diffusion rate of carbon becomes still less below the nose of the C curve.
This causes the very fine distribution of the phases in bainite.

The pearlite and the bainite transformations can be represented by separate
C curves. In the case of plain carbon steels, the C curves overlap and only the
top part of the pearlite C curve and the bottom part of the bainite C curve are
evident in Fig. 9.9. Alloy steels contain other substitutional alloying elements in
addition to interstitial carbon. The T-T-T diagram for a Ni–Cr–Mo low alloy
steel is shown in Fig. 9.10 and has two separate C curves.

If the metastable austenite is cooled rapidly below the bainitic range, the
available thermal energy decreases. The diffusion of carbon required to bring
about the compositional changes becomes negligible. The austenite has been
supercooled by nearly 500°C and there is a large driving force to convert the
FCC structure to BCC. Now a new phase transformation that does not require
the diffusion of carbon sets in. Austenite transforms to martensite (
�).
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rapid cooling

austenite (� ) � martensite (	 �)
FCC BCT

0.8% C 0.8% C

In most steels, the amount of martensite that forms is a function of the
temperature to which the austenite is cooled and not a function of time. This is
in contrast to the pearlitic and bainitic transformations. The temperature at which
martensite starts to form is called Ms (martensite start). The temperature at which
the transformation is virtually complete is called Mf (martensite finish). These
temperatures are indicated in both Figs. 9.9 and 9.10. Within the martensitic
range, the time scale in these figures is not relevant. Figure 9.11 shows plates of
martensite in a matrix of austenite.

The martensitic transformation occurs without a compositional change. The
transformation is a process of shear, that occurs without any need for diffusion.
The atomic movements that bring about the transformation are only a fraction of
an interatomic distance. The shear changes the shape of the transforming region.
This results in a considerable amount of strain energy, due to the resistance of
the matrix (parent phase) to the shape change. As a result of the strain energy
factor, martensite has a plate-like shape, as seen in Fig. 9.11.
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Fig. 9.10 T-T-T diagram for Ni–Cr–Mo low alloy steel depicting two C-curves.



Austenite is an interstitial solution of carbon in FCC iron, the carbon atoms
occupying the octahedral voids of the FCC structure. These voids are located at the body
centre and at the twelve edge centres of the FCC unit cell. With the carbon content of
the order of 1%, only a small fraction of the total number of octahedral voids is
occupied by the carbon atoms. During martensitic transformation, the shear process
converts the FCC structure of austenite to the BCT structure of martensite. The
mechanism of the transformation is illustrated in Fig. 9.12.

Fig. 9.11 Martensite plates in an austenite matrix at 1000 �.

c

a2 a1

Fig. 9.12 A BCT unit cell outlined in two adjacent FCC unit cells. (The face
centred atoms on the front and back faces of the FCC cells are not shown.)

A BCT unit cell is outlined in two adjacent FCC cells. During the transformation,
the vertical c-axis of the BCT cell (which is the same as the cube edge) contracts by
about 20% and the horizonta1 a1 and a2 axes (which are half of the face diagonal of the
cube) expand by about 12% each, so that the BCT cell takes on the cell dimensions
characteristic of the product martensitic phase. The iron atoms move only by a fraction
of the interatomic distance. There are no individual jumps of atoms from site to site,
characteristic of the diffusion process. As the carbon atoms are all situated at the middle
of the c-axis (or equivalent positions), the shear displacement of the iron atoms during
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contraction of the c-axis is obstructed by the carbon in between. Note that there are no
carbon atoms at the middle of the a1 and a2 axes. This obstruction along the c-axis
results in a tetragonal product, with c/a ratio slightly greater than unity. The c/a ratio of
the BCT martensite is a function of the carbon content and varies from 1.0 at 0.0%
carbon (BCC martensite) to 1.08 at 1.2% carbon. When the carbon atoms are not present
(i.e., in pure iron), on rapid quenching from the FCC region, the shear process converts
the FCC to BCC iron. Here, the c-axis contracts and the a1 and a2 axes expand to a

sufficient degree to make them all equal.

The hardness of martensite is a function of its carbon content. It increases
rapidly with increasing carbon content, reaching a more or less constant value of
65 on the Rc scale at about 0.6% carbon, Fig. 9.13. The approximate hardness
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Fig. 9.13 The hardness of martensite on the Rc scale as a function of the carbon
content of a steel.

values of the various transformation products in an eutectoid steel are given in
Table 9.2. The corresponding tensile strengths are also indicated. The tensile
strength increases with increasing hardness. However, when the hardness is a very
high value such as Rc 65, the steel is brittle, resulting in poor tensile strength.

TABLE 9.2

Properties of the Transformation Products in a 0.8% Carbon Steel

Hardness, Tensile strength,
Constituent Rc scale MN m–2

Coarse pearlite 15 710

Fine pearlite 30 990
Bainite 45 1470

Martensite 65 –

Martensite tempered at 250°C 55 1990



Martensite is an extremely hard and brittle phase. Its presence is desirable in
tool steels but it is too brittle to be useful in the as-quenched condition. It is
reheated to reduce its brittleness, without much loss of its hardness. This process
is called tempering. During tempering, the metastable martensite decomposes
into the more stable products of ferrite and cementite by the process of carbon
diffusion.

temper
Martensite (
�) � ferrite (
) + cementite (Fe3C)

As very fine cementite particles form, the excess carbon in martensite is
gradually lost. The decrease in hardness and increase in ductility during
tempering can be controlled quite accurately, by a proper choice of tempering
temperature and time. The final hardness (and related ductility) of the quenched
steel depends on the application. For example, a tool for cutting glass can be
used in the as-quenched condition with a hardness of over Rc 65. A chisel or a
punch requires some shock resistance in addition to hardness. The tool steel for
such applications is quenched and then tempered to yield a final hardness in the
range Rc 45–55.

Quenching to obtain martensite induces stresses in the steel. As the heat is
extracted by the quenching medium through the surface, there is a temperature
gradient from the inside to the outside of the component. This gradient induces
not only thermal stresses but also residual stresses in the steel, as the austenite
transformation does not occur simultaneously throughout the cross-section. If the
size of the component is large, the stresses may be severe enough to induce
cracks in the steel. The presence of cracks or residual stresses is not desirable in
most applications.

In a steel containing only carbon, the nose of the C curve is close to the
temperature axis (see Fig. 9.9) and a very fast cooling rate (water quenching) is
necessary to avoid transformation to pearlite. Alloying elements such as Mn, Ni,
Cr, V, W and Mo added to steel, have the effect of shifting the nose of the C
curve or C curves to the right. Compare the nose positions in Figs. 9.9 and 9.10.
To obtain martensite, a slower cooling rate (oil quenching) can be adopted for
low alloy steels as compared to plain carbon steels. This enables the formation
of martensite without cracking the steel. This is one of the main functions of
alloying elements in steel. They are said to increase the hardenability, which is
the ability to harden without having to resort to drastic quenching.

Another function of alloying elements is to provide a fine distribution of
alloy carbides during tempering. High speed steel contains very fine tungsten
carbide particles after tempering and the tool made out of this steel retains its
strength at elevated temperatures. It continues to machine, even when it gets red
hot! Cutting speeds can be more than ten times higher for the high speed steel as
compared to a carbon steel, resulting in a substantial saving in production time.*

The contributions of alloying elements to the properties of steel are
summarized in Table 9.3.

*Still higher cutting speeds are obtained in tungsten carbide tools. These have about 80%
of brittle WC particles embedded in a ductile matrix of cobalt.
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TABLE 9.3

Contributions of Alloying Elements to the Properties of Steel

Alloying element Cr Co Mn Mo Ni W V

Hardenability ++ – ++ ++ + ++ +++
High temperature strength + + – ++ – ++ ++
Ductility and toughness – – + – ++ – –
Abrasion resistance + – – + – ++ +
Fine austenite grain size – – – + – + +++
Corrosion resistance ++ – – + + – –

Some special heat treatment processes are used to enhance the properties of steel.
Martempering consists of quenching the steel from the austenitizing temperature to a
bath just above Ms, holding in the quenching medium until the temperature of the steel
becomes uniform throughout the cross-section and then cooling it in air to produce
martensite. The martensite is then tempered as required. As austenite transforms to
martensite simultaneously throughout the steel in this process, the distortion in
quenching is minimized. This induces greater toughness in the steel. Austempering refers
to quenching a steel to a temperature below the nose and holding it isothermally to
produce bainite. The austempered steel possesses greater ductility and toughness than
one quenched and tempered in the conventional manner to give the same hardness.
Ausforming refers to working the steel plastically in the temperature range below the
nose and then cooling it to produce martensite. The martensitic plates formed are smaller
in size, yielding greater ductility for the same strength after the tempering treatment. An
ausformed low alloy steel may have a tensile strength as high as 3000 MN m–2, with an
adequate ductility of 10% elongation in a tensile test.

9.5 Precipitation Processes

Solubility in the solid state often decreases with decreasing temperature. A solid
solution that is stable at higher temperatures can become unstable and
supersaturated with respect to the solute at lower temperatures. Then the free
energy change favours the rejection of the excess solute in the form of
precipitate particles, the matrix solution becoming poorer in solute and
approaching equilibrium solubility characteristic of the lower temperature. The
precipitation reaction can be written in the following form:

Matrixsupersaturated � Matrixsaturated + Precipitate

The precipitate particle nucleates and grows by the diffusion of solute atoms into
it from the matrix phase.

Precipitation in metallic systems can be illustrated with the transformation in
duralumin. Duralumin is an alloy of aluminium with about 4% copper and
smaller quantities of other alloying elements. Figure 9.14 shows the aluminium
rich end of the Al–Cu phase diagram. The alloy with 4% Cu exists as a single
phase 
 solid solution at 550°C and at room temperature as a mixture of 
 (with
less than 0.5% Cu in solution) and an intermetallic compound, CuAl2 (�) with



52% Cu. On slow cooling from 550°C to room temperature, the 
 phase
becomes supersaturated with respect to the copper solute and rejects the excess
copper as precipitate particles of �.


supersat � 
sat + CuAl2 (�)
FCC FCC tetragonal
4% Cu 0.5% cu 52% Cu

These particles are relatively coarse in size and can be identified under the
optical microscope.

On rapid cooling of the alloy, there is not enough time for diffusion of
copper atoms to form the precipitate particles. Therefore, a supersaturated solid
solution is obtained at room temperature. As a function of time at room
temperature and at higher temperatures up to 200°C, the diffusion of copper may
take place and the precipitate particles can form. Due to the limited diffusion
that is possible in this temperature range, very fine precipitate particles are
obtained, with the diffusion distance in the range of 100–500 Å. Such precipitate
particles are not visible under the optical microscope due to their fine size. The
finely distributed particles effectively hinder the motion of dislocations in the
aluminium matrix and increase the strength of the alloy, as discussed in greater
detail in Chap. 11. Controlling the progress of the precipitation reaction so as to
obtain the maximum hindrance to dislocation motion and hence the maximum
strength of the alloy is the aim of the heat treatment of this alloy. The variation
in the hardness of the alloy at three temperatures of ageing between 20°C and
200°C is shown in Fig 9.15. Hardness is a measure of the strength of the alloy.
Obviously, the maximum hardness and strength is obtained only for the right
combination of temperature and time. This combination is a function of the
copper content and the other impurities in the aluminium. Note that the ageing
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� + �

Precipitation Processes 221



222 Phase Transformations

time axis in Fig. 9.15 is on log scale, so that the optimum peak is not obtained
at room temperature, even after several years!

The increase in the hardness in the initial stages of the ageing curves can be
attributed to the precipitation process taking place progressively. After reaching a
peak value, the hardness starts to decrease. This phenomenon is called
overageing. As the precipitate particles are very fine in size, they have a high
surface to volume ratio. Therefore, they have a tendency to coalesce or coarsen,
that is, a number of small particles merge to form a large particle. For a given
volume fraction of precipitate particles, the coarsening process decreases the
total number of precipitate particles and increases the interparticle spacing. The
hindrance to the dislocation motion is thereby reduced, accounting for the
decrease in hardness beyond the peak in the curve. A temperature between 100
and 180°C (see Fig. 9.15) would be the optimum ageing temperature, where the
ageing time is not unduly large. An alloy aged to the optimum peak at such a
temperature would not overage during service at room temperature.

Duralumin alloy corresponding to U.S. specification 2024-T6 can have a
tensile strength of 500 MN m–2 (~50 kgf/mm2), as compared to the strength of
aluminium, which is about 100 MN m–2. Another age-hardening alloy of Al–Zn
of specification 7075-T6 has a tensile strength of 550 MN m–2. These two alloys
are technologically important, as they are used as aircraft structural material. An
increase in strength by a factor of five as in the above cases makes a vital
difference to the economics of air transportation, where the ratio of the dead
load (nonpaying load) to the pay load is an important criterion in the choice of a
material of construction. The density of these alloys is not very much higher
than that of aluminium, as the alloy content is less than 10%.

In recent years, lithium, the density of which is only 20% of that of
aluminium, has been added as an alloying element to precipitation-hardened
aluminium alloys. In addition to lowering the density, lithium increases the
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Fig. 9.15 Ageing curves for a duralumin alloy.



elastic modulus of aluminium (an anomolous effect!). When Al–Li alloys are
fully developed, it is expected that the aircraft structural material in many
military aircrafts will be composed of Al–Li alloys.

In a precipitation process, if the crystal structures of the precipitate and the matrix
phases are such that a good match can be obtained at the interface, the nucleation barrier
is reduced considerably by the formation of a low energy interface between the
precipitate and the matrix. If the crystallographic matching is poor, a metastable
precipitate of a crystal structure different from the stable one, but which matches better
with the parent crystal at the interface, may form due to favourable nucleation
conditions. In fact, in the duralumin alloy, the precipitation process is characterized by a
series of transition precipitates. They form at different ageing temperatures evolving
through the following stages:

G–P zones � ��� � �� � �

G–P zones are small regions in the parent matrix, where the solute atom (copper)
has segregated. ��� and �� are metastable transition precipitates with distinct crystal
structures of their own. They both form on {100} planes of the parent FCC matrix, with
full or partial matching at the interface. � is the equilibrium stable precipitate of CuAl2.

Example 9.5 Aluminium alloy rivets are often age hardenable. During the
riveting operation, they must be in the soft condition so that they can be
deformed easily. They age harden slowly at ambient temperature. What
precautions are necessary to prevent age hardening before the riveting operation?

Solution If the alloy is already in the aged condition, the precipitated
particles should first be put into solution by heating to about 550°C. Then the
alloy should be quenched to obtain the supersaturated state. The riveting
operation must be undertaken immediately. If the operation is to be delayed,
then the quenched alloy should be stored under refrigeration to prevent ageing,
which will make the rivets hard and difficult to cold form. Lower temperatures
slow down the diffusion process, which is necessary for precipitation, and hence
prevent the increase in hardness.

Silicate glasses dissolve almost all the chemical elements in the molten state, but on
cooling some phases may precipitate due to supersaturation. These precipitate particles
are usually fine crystals of a different composition and refractive index from the matrix.
By controlling the number, size, distribution and chemical composition of the
precipitating phases, opaque glasses or glasses with different colours can be produced.
The scattering of a part of the visible spectrum occurs when the spacing between the
precipitate particles matches the wavelength of that part of the radiation. Colour filters,
railroad signals and neon lamp tubes are examples of materials produced by this type of
controlled precipitation. TiO2 precipitated from the melt is an excellent opacifier, as its
refractive index is very high compared to that of silicate glass. For high translucency, the
second phase particles must have a refractive index not very different from the matrix.
NaF and CaF2 have refractive indices of 1.3 and 1.4 as compared to 1.5 of a silicate
glass and hence are used for making translucent glass.
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9.6 Solidification and Crystallization

Solidification is the transformation of materials from the liquid to the solid
crystalline state on cooling. During solidification, the disordered structure of the
liquid transforms to the orderly arrangement characteristic of the crystal. When
the disordered structure is frozen as it is, the change is called a glass transition
which is described in the next section. Crystallization is a term used to refer to
the transformation to the crystalline state starting from either a liquid or a glass.

It is in general difficult to prevent the crystallization of liquids which have a
large value of the heat of fusion �h. Recall that the activation barrier for
nucleation decreases inversely as the square of the heat of fusion, Eq. (9.8).
Crystallization is facilitated by a low value of the activation enthalpy �Hd for
atom transfer across the interface, recall Eq. (9.11). �Hd is approximately
proportional to the logarithm of the viscosity of the liquid. A low �Hd is
characteristic of a low viscosity liquid.

The heat of fusion of metals is relatively large, in the range of
10–15 kJ mol–1. The viscosity of liquid metals is relatively low, in the range
0.1–1 Pa s (1–10 poises). Both of these factors favour the rapid crystallization of
liquid metals on cooling. In fact, by ordinary methods of quenching, the
crystallization of metals cannot be suppressed. Splat cooling involving cooling
rates as high as 107 K s–1 prevents crystallization in some alloys.

A fine grain size in the solidified product is often desirable for obtaining
superior mechanical properties. As we have already noted, the combination of a
high nucleation rate with a slow growth rate yields fine crystals in the product.
Increasing the cooling rate increases the nucleation rate, thereby yielding fine
crystals. The full potential of this principle is being realized in recent years with
techniques such as rapid solidification processing, which has resulted in ultrafine
grain sizes. The cooling rates employed here (104–105 °C s–1) fall between those
in conventional quenching and splat cooling. Grain refinement can also be
achieved by adding nucleating agents, which increase the heterogeneous
nucleation rate. External nucleating agents offer the only means of grain
refinement in cases, where the metal part cannot be cold worked or recrystallized
(Sec. 9.8) or where there are no solid state transformations to manipulate.

As each nucleus grows into a crystal, for obtaining a single crystal from a
melt, only one nucleus must be allowed to grow. Single crystals are grown by
seeding the melt with a solid piece of crystal of the same material. The seed
provides a ready made stable nucleus. It is made to just touch the liquid and is
then pulled out slowly. The assembly is kept under a temperature gradient so as
to keep the melt above the freezing temperature and the pulled out crystal below
the freezing temperature. This avoids any nucleation in the bulk of the melt and
also prevents the remelting of the growing crystal. As the seed is pulled out, the
new crystal grows in the same orientation as the seed crystal without the need
for an interface (grain boundary) between them. The pulling rate is in the range
of 0.01 mm s–1. The slow pulling rate promotes the formation of a crystal with
very few line imperfections. Such nearly perfect crystals are a prerequisite to
ensure proper operation of solid state devices fabricated out of them.



Silicates, borates and phosphates tend to form glasses. As a consequence of
the high cation-cation repulsion, they have open structures. For example, in
silicates, the tetrahedra are joined at the corners with a certain amount of
freedom of position for the tetrahedral units surrounding a central unit. The
difference in the total bond energy between a regular and an irregular array of
basic units in space is small, as the bond energy is primarily determined by the
first neighbours of the central cation within a unit. Therefore, the heat of fusion
�h, which is a measure of the bond energy between the regular and the irregular
arrays, is small for open structures. Also, the viscosity (which is related to the
activation enthalpy for atom transfer �Hd) is high, of the order of 1000 Pa s at
the equilibrium freezing temperature. Both these factors are unfavourable for
rapid nucleation and growth. The nucleation and the growth rates of crystals are
so negligible that, for all practical purposes, there is no crystallization. Addition
of certain oxides to silica promotes closer packing and hence increases the
tendency to crystallize. As forming operations are readily carried out in the
glassy state, the silicate glass manufacturer carefully controls the composition of
his working material so as to avoid crystallization.

Formed glass articles can be crystallized by a special subsequent heat
treatment process to yield better mechanical and thermal properties. In the
production of crystallized glass known as pyroceram (also called glass-ceramic),
heterogeneous nucleating agents such as TiO2 are first dissolved in the molten
silicate. After shaping the material in the glassy state, the TiO2 is allowed to
precipitate as very fine particles. The surfaces of these particles provide easy
nucleation sites for crystals of the matrix to form. A large number of crystals are
nucleated by keeping the material for a period at the temperature corresponding
to the maximum nucleation rate. The material is then heated to the temperature
of the maximum growth rate, where the already formed stable nuclei grow to
larger sizes. Even at the end of the heat treatment, the crystallization is
incomplete and the fine crystals remain embedded in the glassy matrix. This
time saving cycle is illustrated in Fig. 9.16. The size of the crystals is about
0.1 �m, as compared to a typical value for a fine grain size in metals, which is
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Fig. 9.16 Heat treatment cycle for the crystallization of pyroceram.
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10 �m. This ultrafine grain size is the reason for the good mechanical and
thermal shock resistance of pyroceram. Cookware made of pyroceram can be
heated under direct fire on a gas range, without the risk of cracking.

Under industrial casting conditions, the kinetics of solidification is often
controlled by heat flow. When a melt is poured into a container or mould, which is
at a much lower temperature than the melt, large supercooling occurs in regions
where the melt comes into direct contact with the cold container walls. This large
supercooling results in a rapid rate of nucleation and a layer of fine crystals is
formed adjacent to the wall. The latent heat released in the formation of this layer
increases the temperature and reduces the nucleation rate in the liquid next to it.
Heat flows out of the mould through the walls. As a result, the crystals adjacent to
the layer of fine crystals at the mould wall grow inwards towards the centre (in a
direction opposite to that of the heat flow) producing long columnar crystals.
These crystals ultimately meet near the centre of the mould and a cross-section
after solidification shows crystals radially branching out from the centre.

Quite often, crystals grow preferentially along certain crystallographic
directions, along which the thermal conductivity (and hence the heat extraction)
is a maximum. This fact is exploited in certain applications to produce a
polycrystalline material with crystals aligned in a particular crystal direction. In
magnetic applications, for example, the alignment of crystals enhances the
magnetic properties.

9.7 The Glass Transition

Some liquids do not crystallize easily and can be supercooled to become a rigid
noncrystalline solid. The changes in viscosity of a soda-lime-silicate on cooling
from the liquid range are shown schematically in Fig. 9.17. If the liquid were to
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Fig. 9.17 Viscosity changes during cooling of a liquid. Crystallization increases
the viscosity abruptly in contrast to the gradual increase that occurs when there
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crystallize, the viscosity would change abruptly at the freezing temperature from
a low value (about 100 Pa s) in the liquid state to a very high value (about
1020 Pa s) in the crystalline state, a change of 18 orders of magnitude at the
freezing temperature. However, crystallization does not occur due to kinetic
barriers. The viscosity gradually increases with decreasing temperature and
attains high values only at low temperatures. The highest rate of change of
viscosity with temperature occurs around 1012 Pa s at the glass transition
temperature Tg, see Fig. 9.17. This provides a convenient point for making a
distinction between a glass (noncrystalline solid) and a supercooled liquid. In
fact, a solid can be defined as a material with viscosity greater than 1012 Pa s,
irrespective of whether it is crystalline or not.

The supercooled liquid, even though it has a higher free energy than the crystals, is in
internal equilibrium within itself. That is, the atomic configurations in the supercooled
liquid are such that its free energy is a minimum for the liquid-like structure at that
temperature. At the glass transition temperature, the thermal energy becomes insufficient
for any further configurational adjustments to take place within a reasonable amount of
time. The freezing of the first few configurations on approaching Tg favours the freezing of
other neighbouring configurations in a cooperative fashion. The range of temperature over
which the entire atomic configuration is rendered immobile (except for atomic vibrations
about their mean positions characteristic of a solid) is some 10°C for organic polymeric
glasses and somewhat larger for inorganic glasses such as silicates and borates.

In glass transitions, the cooling rate around Tg is important in the control of
properties. For a slower cooling rate, the transition temperature is lower and the
specific volume (volume per unit mass) at any temperature below the transition
region is also smaller, as illustrated in Fig. 9.18. Obtaining a specific volume as
close as possible to the equilibrium volume (which of course is the specific
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volume of the crystalline state) is important in all glass applications. Even small
amounts of shrinkage over a period of time at service temperatures (which are
below Tg) in measuring apparatus such as glass thermometers can lead to
important errors. Such shrinkage in optical glasses can lead to nonuniformity in
the refractive index and consequent errors in observations made with their aid.
For minimum shrinkage in service, the glass should be cooled as slowly as
possible through the glass transition temperature. A rapidly cooled glass can be
reheated and annealed at a temperature just below Tg and cooled slowly, to
protect against future shrinkage.

In organic polymers, the glass transition temperature is dependent on the
molecular weight of the polymer. Smaller molecular weights correspond to
shorter chain lengths and a lower glass transition temperature. Plasticizers
increase the distance of separation between chains and reduce the interfering
effect on each other and this lowers Tg. PVC cable sheaths, rain coats, etc., are
manufactured at room temperature, after lowering the glass transition
temperature of polyvinyl chloride by the addition of a plasticizer.

Typical glass transition temperatures Tg of some common long chain
polymers are compared with their melting points Tm as illustrated in Table 9.4.
The ratio of Tg/Tm lies in the range ~0.4–0.75.

TABLE 9.4

Glass Transition Temperatures (Tg) and Melting Points (Tm) for Some
Common Long Chain Polymers

Polymer Tm (K) Tg (K) Tg/Tm

LD polyethylene 388 153 0.39
HD polyethylene 410 153 0.37
Polyvinylchloride 465 360 0.37
Polypropylene 445 257 0.58
Polystyrene 513 378 0.74
Polyacrylonitrile 593 380 0.64
6,6 Nylon 538 323 0.60
Polyester 528 348 0.66
Polyisoprene 303 220 0.73

9.8 Recovery, Recrystallization and Grain Growth

Recovery, recrystallization and grain growth are phenomena intimately
associated with the annealing of a plastically deformed crystalline material. In
crystalline materials, the density of point imperfections and dislocations
increases with increasing amount of plastic deformation carried out at
temperatures below the range 0.3–0.5Tm, where Tm is the melting point in
kelvin. Plastic working below 0.3–0.5Tm is called cold work. Recall from
Chap. 6 that point imperfections and dislocations have strain energy associated
with them. Between 1 and 10% of the energy of plastic deformation is stored in



the material in the form of this strain energy. On annealing, that is, on heating
the deformed material to higher temperatures and holding, thermal energy comes
into play. The material tends to lose the extra strain energy and revert to the
original condition before deformation, by the processes of recovery and
recrystallization.

During recovery, which takes place at low temperatures of annealing, the
excess point imperfections that are created during plastic deformation are
absorbed at the surface or the grain boundaries or at dislocations by the climbing
up process, see Sec. 6.3. Also, random dislocations of opposite sign come
together and mutually annihilate each other. Dislocations of the same sign
arrange themselves into lower energy configurations, such as tilt and twist
boundaries. However, the decrease in the dislocation density during recovery is
not substantial.

Recrystallization is the process of nucleation and growth of new, strain-free
crystals, which replace all the deformed crystals of the worked material. It starts
on heating to temperatures in the range of 0.3–0.5Tm, which is above the
recovery range. There is no crystal structure change during recrystallization. As
such, recrystallization is not a phase transformation in a strict sense. The free
energy change during recrystallization arises from the excess strain energy of the
deformed material as compared to the undeformed material.

Example 9.6 The dislocation density in a copper sample is increased by
cold working from 109 m m–3 to 1013 m m–3. Calculate the free energy change
during recrystallization.

Solution Strain energy of dislocations in the cold worked copper

= 
1
2

b2 � 1013

= 
1
2

 � 45.5 � 109 � 2.552 � 10–20 � 1013

= 14 800 J m–3

We can neglect the strain energy in copper before cold working, as it is four
orders of magnitude smaller. The free energy change during recrystallization is
then given by

�g = –14 800 J m–3

The strain energy difference between the cold-worked and the strain-free
material is known as the driving force for recrystallization. Nucleation in the
usual sense may not occur in recrystallization. An existing grain boundary with
local differences in dislocation density on either side may simply migrate into
the region of higher dislocation density. The recrystallization temperature is
arbitrarily defined as that temperature at which 50% of the material recrystallizes
in 1 hr.
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Some well-known empirical laws of recrystallization are:

1. The higher is the degree of deformation, the lower is the recrystallization
temperature.

2. The finer is the initial grain size, the lower is the recrystallization
temperature.

3. Increasing the amount of cold work and decreasing the initial grain size
produce finer recrystallized grains.

4. The higher is the temperature of cold working, the less is the strain energy
stored in the material. The recrystallization temperature is correspondingly
higher.

5. The recrystallization rate increases exponentially with temperature.

The recrystallization temperature is strongly dependent on the purity of a
material. Very pure materials may recrystallize around 0.3Tm, while impure
materials may recrystallize around 0.5–0.6Tm. For example, aluminium of
99.999% purity recrystallizes at 75°C (348 K = 0.37Tm). Commercial aluminium
recrystallizes at 275°C (548 K = 0.59Tm). The recrystallization temperature Tr of
some pure metals are compared with the melting point Tm as shown in Table 9.5.
The ratio of Tr /Tm lies in the range 0.35–0.5.

TABLE 9.5

Recrystallization Temperatures (Tr) and Melting Points (Tm)

Metal Tm (K) Tr (K) Tr/Tm

Mg  923  473 0.51
Al  933  423 0.45
Ag 1235  473 0.38
Au 1337  473 0.35
Cu 1358  473 0.35
Ni 1726  873 0.51
Fe 1811  723 0.40
Pt 2042  723 0.35

Mo 2883 1173 0.41
Ta 3269 1273 0.39
W 3683 1473 0.40

During recrystallization, the impurity atoms segregated at the grain
boundaries retard their motion and obstruct the processes of nucleation and
growth. This solute drag effect can be exploited in raising the recrystallization
temperature in applications where the increased strength of a cold worked material
is to be maintained at the service temperature without letting it to recrystallize.

Recrystallization is also slowed down in the presence of second phase
particles. When the particle lies in the migrating boundary during recrystallization,
the grain boundary area is less by an amount equal to the cross-sectional area of
the particle. When the boundary moves out, it has to pull away from the particle
and thereby create new boundary area equal to the cross-section of the particle.
This increase in energy manifests itself as a pinning action of the particle on the
boundary. Consequently, the rate of recrystallization decreases.



Grain growth refers to the increase in the average grain size on further
annealing, after all the cold worked material has recrystallized. As a reduction in
the grain boundary area per unit volume of the material occurs during grain
growth, there is a decrease in the free energy of the material. Consider a curved
grain boundary. The atoms on one side of the boundary have on an average
more nearest neighbours than on the other side. Therefore, the atoms tend to
jump across the boundary to increase their overall bond energy. It is easy to see
that the boundary must move towards its centre of curvature for the atoms to go
into a position of greater binding. This results in a tendency for larger grains to
grow at the expense of smaller grains. As the grains grow larger, the curvature of
the boundaries becomes less. The rate of grain growth decreases
correspondingly. The state of binding on either side of a planar boundary is the
same and, therefore, a planar boundary tends to remain stationary.

In practical applications, grain growth is usually not desirable. Incorporation
of impurity atoms (which give rise to the solute drag effect) and insoluble
second phase particles (which produce the pinning action on migrating
boundaries) are effective in retarding grain growth as well.

The effect on mechanical and some physical properties of the phenomena
discussed in this section are summarized in Fig. 9.19. With increasing cold work,
the tensile strength increases, but the electrical conductivity and the ductility
decrease. On recovery, the electrical conductivity is mostly restored, as it
depends mainly on the presence of point imperfections. On recrystallization, the
tensile strength decreases and the ductility increases to the values prior to cold
working. The microstructural changes are also sketched in Fig. 9.19. During cold
work, the grains become elongated in the direction of working. During
recrystallization, new equiaxed grains form. During grain growth, these new
grains increase in size, but decrease in number.
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Fig. 9.19 Effect of cold work, recovery, recrystallization and grain growth on
some properties of crystalline materials.
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1. Our ability to suppress a phase transformation depends on the time taken
by the transformation to go to completion.

2. Phase transformations commonly occur by the processes of nucleation and
growth.

3. Even when the volume free energy change is negative, the energy of the
interface created between the parent and the product phases inhibits the
formation of the product phase in the very early stages, when the surface
to volume ratio is high.

4. Strains due to volume and shape changes in solid-solid transformations add
to the inhibiting effect of the surface energy.

5. Surface energy requirements can be effectively lowered by choosing a
proper nucleating agent to promote heterogeneous nucleation.

6. Most phase transformations that occur on cooling pass through a critical
temperature of maximum transformation rate. If the cooling rate is fast
enough to avoid transformation in the critical range, the parent phase can
be obtained in a highly metastable condition.

7. Our ability to harden steel by the formation of martensite depends on
avoiding the pearlitic and bainitic transformations. A good hardenability
(ability to harden) is a practical necessity to avoid cracking due to drastic
cooling.

8. Proper control of the size and spacing of the precipitate particles that form
from the supersaturated solution yields the optimum strength after ageing.

9. Inducing crystallization or preventing it in a glass forming material would
depend on the requirements of processing or final properties of the
material.

10. A cold worked material undergoes recovery, recrystallization and grain
growth at successively higher temperatures of annealing. The retardation of
the grain boundary motion is the key factor in raising the recrystallization
temperature and preventing grain growth.

��	
����

9.1 Derive the results given in Eqs. (9.5)–(9.7).

9.2 Calculate the ratio of the surface energy term to the volume energy term in
the nucleation energy equation at the critical condition.

Answer: –3/2.
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9.3 Calculate the undercooling that is required for liquid to crystal
transformation in tin. The enthalpy of fusion for tin is 0.42 GJ m–3

(14 cal/gm). Appreciable nucleation occurs when the free energy of the
critical nucleus is 1.5 � 10–19 J. The liquid-crystal interfacial energy is
0.055 J m–2.

Answer: 163 K.

9.4 Calculate the critical radius of the copper nucleus during solidification of
liquid copper at 983°C. The enthalpy of fusion of copper is 1.88 GJ m–3

(50 cal/gm). The liquid-crystal interfacial energy is 0.144 J m–2.
Answer: 21 Å.

9.5 In a phase transformation, an appreciable rate of nucleation of 106 m–3 s–1

occurs at room temperature when the critical nucleation energy is 2.07 �
10–19 J. The energy of the interface between the product and parent phases
is 0.05 J m–2. Calculate the nucleation rate, if the interfacial energy had
been 10% larger than this.

Answer: 6.5 � 10–2 m–3 s–1.

9.6 Derive the results given in Eqs. (9.14)–(9.16).

9.7 For a solid-solid phase transformation, the strain energy due to volume
change during the transformation is 0.1 GJ m–3. At what magnitude of the
free energy change, �g, the nucleation becomes just feasible?

Answer: 0.1 GJ m–3.

9.8 Liquid nucleus forming on a solid surface of the same composition
completely wets it. Explain why melting occurs without superheating.

9.9 What are the crystal planes that are likely to match atom by atom at the
interface in the FCC�HCP transformation? What is the relationship
between the lattice parameters of the two crystals for an ideal matching?

9.10 Arrange the following carbides in order of their effectiveness as
heterogeneous nucleating agents for the crystallization of aluminium. The
% misfits for the best matching crystal planes at the interface are given in
brackets: TiC (6%), ZrC (14.5%), VC (l.4%), and NbC (8.6%). Give a
reason for your sequence.

9.11 Explain why the matching of planes at the interface must be only between
the product and the nucleating agent and not between the parent phase and
the nucleating agent.

9.12 The interlamellar spacing of pearlite � is given by � = 25/�T �m, where
�T is the degree of supercooling below the eutectoid temperature. Estimate
the temperature at which the pearlite in Fig. 7.12 formed.
Answer: ~700°C.

9.13 Draw a T-T-T diagram for a 0.6% carbon steel and show by neat sketches
the microstructures you would expect for different rates of cooling.
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9.14 State the simplest heat treatment necessary for steel to convert a 0.8%
carbon steeel from one structure to another:

(i) martensite to pearlite,
(ii) pearlite to bainite, and

(iii) austenite to bainite.

9.15 Describe the special features of the martensitic transformation as compared
to the other transformations in steels.

9.16 Pearlite nucleates heterogeneously at the austenite grain boundaries. Show
two C curves for 1% transformation to pearlite—one for a coarse grain
size and the other for a fine grain size of austenite.

9.17 Referring to the Cu–Zn phase diagram in Fig. 7.10, explain whether it is
possible to have a precipitation reaction by quenching a 30% Zn alloy
from the 
 region.

9.18 Is an appreciable rate of age hardening of a commercial aluminium alloy
always desirable at room temperature? Explain.

9.19 Nylon crystallizes at slow rates of cooling but forms glass on quenching in
water. Copper always crystallizes even during rapid quenching. Soda-lime-
silica forms glass, even when cooled very slowly. Show these differences
schematically by drawing C curves for crystallization in these materials.

9.20 A polymer that is in the rubbery state has a Tg below room temperature.
Explain why this is so.

9.21 Some metals can be worked almost indefinitely at room temperature
without any noticeable hardening, while others harden at room
temperature. Explain the reason for this difference in behaviour, by listing
the room temperature in each case as a fraction of Tm for Cu, Ni, Fe, Pb,
Sn and Zn.

9.22 Tungsten can be cold rolled at 1200°C. Justify this statement.

9.23 Hard rolled copper shows 50% recrystallization after heating for 9 min at
135°C or 240 min at 88°C. What is the time required for 50%
recrystallization at 50°C?

Answer: 6864 min.

9.24 Compare the methods available for refining the grain size of copper and
mild steel.

9.25 Show that the temperature of the maximum rate of nucleation Tmax satisfies
the following relationship: d(� f*)/dT = (� f * + �Hd)/Tmax, where the
symbols have the same meaning as in the text. Suggest a graphical method
of determining Tmax.

9.26 Distinguish between hardness and hardenability of a steel, outlining the
factors that influence each of these.

9.27 List and describe briefly the microstructural changes that occur during
overageing.
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9.28 At any instant of time, the grain growth, i.e., the rate of increase of the
grain radius with time, dr /dt, is proportional to the grain boundary energy
stored per unit volume of the material. Show that the radius of spherical
grains increases as the square root of time.

�������� ��	���� �����	��

1. For a spherical particle of radius r, the volume-to-surface area ratio is

A. 3/r B. r/3 C. 3r D. �r/3

2. If the interfacial energy increases by 10%, the homogeneous nucleation
barrier for a spherical particle increases by

A. 10% B. 21% C. 33% D. 100%

3. If the nucleation barrier at 10°C of supercooling is 10–17 J, at 20°C of
supercooling, it is
A. 2 � 10–17 J B. 4 � 10–17 J C. 2.5 � 10–18 J D. 5 � 10–18 J

4. If the product phase completely wets a nucleating agent, the nucleation
barrier as a fraction of homogeneous barrier is

A. 1 B. 
1
2

C. 
1
4

D. 0

5. If the product phase does not wet at all the parent phase, the contact angle
between the two phases is
A. 0° B. 45° C. 90° D. 180°

6. When the contact angle is 60°, the heterogeneous nucleation barrier
expressed as a fraction of the homogeneous barrier is

A. 
1
2

B. 
1
4

C. 
1
8

D. none of these

7. As compared to the nucleation-rate maximum, the growth-rate maximum
is at

A. a higher temperature
B. a lower temperature
C. the same temperature
D. the temperature of maximum transformation rate

8. Fine grain sizes are obtained by
A. slow cooling B. increasing nucleation rate

C. decreasing growth rate D. fast cooling

9. During pearlitic transformations

A. new phases form B. crystal structures change
C. compositions of phases change D. there is no diffusion
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10. The hardness of martensite in a steel is a function of

A. C content B. cooling rate C. Ni content D. nose location

11. Martensitic transformations
A. are diffusion-controlled
B. are shear processes
C. yield two products of different compositions
D. yield a hard product in steels

12. The c/a ratio of martensite depends on the concentration of

A. Ni B. Mn C. C D. N

13. Bainite has
A. the same morphology as austenite
B. a non-lamellar morphology of ferrite and cementite
C. the coarsest morphology among all the products from austenite
D. none of these

14. During overageing, hardness

A. decreases B. increases
C. is constant D. increases abruptly

15. Overageing refers to

A. ageing above room temperature
B. ultrafine precipitate size
C. long ageing times
D. coarsening of precipitate particles

16. The maximum temperature up to which tungsten (m.p. = 3410°C) can be
cold worked is approximately

A. 0°C B. 27°C C. 1200°C D. 1940°C

17. Lead melts at 327°C. It is hot rolled at
A. –273°C B. –200°C

C. room temperature D. none of these

18. The free energy decrease during recrystallization comes mainly from
A. excess point defects
B. excess dislocations
C. grain boundaries
D. lower energy of the new crystal structure

19. The recrystallization rate increases with

A. increasing amount of cold work
B. higher working temperature
C. higher annealing temperature
D. decreasing initial grain size

20. Grain growth occurs in the temperature range

A. 0.2–0.3 Tm B. < 0.4 Tm C. 0.4–1.0 Tm D. >Tm
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Answers

1. B 2. C 3. C 4. D 5. D

6. D 7. A 8. B, C, D 9. A, B, C 10. A

11. B, D 12. C 13. B 14. A 15. D
16. C 17. C 18. B 19. A, C, D 20. C

Sources for Experimental Data

ASM International, Metals Handbook, 10th ed., Vol. 1—Properties and
Selection: Iron, Steels and High Performance Alloys, Materials Park, Ohio
(1990).

W.D. Kingery, H.K. Bowen and D.R. Uhlmann, Introduction to Ceramics, Wiley,
New York (1976), Chaps. 8–10.

Suggestions for Further Reading

W.D. Kingery, H.K. Bowen and D.R. Uhlmann, Introduction to Ceramics, Wiley,
New York (1976), Chaps. 8–10.

V. Raghavan, Solid State Phase Transformations, Prentice-Hall of India, New
Delhi (1987).
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Materials deform in response to an externally applied stress. This deformation
can be permanent or temporary. Permanent deformation stays after the removal
of the applied stress, while temporary deformation disappears on removal of the
stress. Both temporary and permanent deformations can be functions of time or
virtually independent of time. Permanent plastic deformation of inorganic
crystalline materials is the subject matter of the next chapter. The time
dependent part of the permanent deformation in crystalline materials called creep
is also discussed there.

In this chapter, we first consider deformation which is temporary or
recoverable. Fully recoverable deformation, which is virtually time independent,
is called elastic deformation. Within the range of elastic behaviour, a distinction
should be made between ordinary elasticity and rubber-like elasticity. Fully
recoverable but time dependent deformation is called anelastic deformation.
When both recoverable and permanent deformation occur together and are time
dependent, we have viscoelastic deformation. This phenomenon is discussed at
the end of this chapter.

Units

 
Quantity

SI units
Other units

 Unit Symbol

Interatomic force F newton N kgf, lb, dyne
Applied force Fapp

Uniaxial stress � meganewton per MN m–2 kgf/mm2, psi,
square metre or dyne/cm2

Shear stress � or MPa
megapascal

Uniaxial strain � – – –
Shear strain �
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Units (cont.)

 
Quantity

SI units
Other units

Unit Symbol

Young’s modulus Y giganewton per GN m–2 kgf/mm2,
Shear modulus � square metre or or ksi, psi,

gigapascal GPa dyne/cm2

Entropy S joule per mole per J mol–1 K–1 cal/gm/°C
kelvin

Viscosity � pascal second Pa s poise

Hysteresis loss joule per cubic J m–3 –
metre

* Note: Values of elastic moduli are given conveniently in units of GN m–2 (�109 N m–2).
In this unit, a very low elastic modulus such as that of soft rubber is 0.001 GN m–2

(�1 MN m–2) and a very high modulus such as that of diamond is 1140 GN m–2.
GN m–2 can also be written as GPa. The Young’s moduli of typical materials are listed
in Appendices I and II.

ELASTIC BEHAVIOUR

Brittle materials, such as concrete, cast iron and silicate glasses, under tensile
stress show elastic deformation right up to the point of fracture. Ductile
materials such as copper and aluminium are elastic up to a certain stress called
the elastic limit. Thereafter, they plastically deform. In both these groups of
materials, within the elastic region, the strain is proportional to the stress
applied, as given by Hooke’s law. This behaviour can be called ordinarily elastic
(or truly elastic) behaviour. The rubber-like behaviour, where the elastic strain is
very large and is not a linear function of stress, is discussed in Sec. 10.3.

10.1 Atomic Model of Elastic Behaviour

The potential energy of a pair of atoms and the interatomic forces between them
are shown as a function of their distance of separation r in Fig. 4.4. A general
expression for the potential energy W is

W = 
n m

A B

r r
� � (10.1)

where A, B, n and m are constants and m > n. The negative term on the right is
the attractive energy term. The positive energy term arises due to the mutual
repulsion between the atoms at close distances of approach. The net interatomic
force F is the negative of the derivative of W with respect to r:

�
�
�
�
�
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F = 
dW
dr

� (10.2)

The potential energy is a minimum and the net interatomic force is zero at the
equilibrium distance of separation r0, see Fig. 4.4.

In order to decrease or increase the interatomic distance of separation
starting from the equilibrium value r0 to r, an external force Fapp equal in
magnitude but opposite in sign to the interatomic force F at r must be applied.

Fapp = –F = 
dW
dr

(10.3)

Referring to Fig. 10.1, to decrease the interatomic distance from r0 to r �, a
compressive force equal in magnitude to F � must be applied. To increase the

F
or

ce

r0
F��

F�

r�
r��

r

Fig. 10.1 The interatomic force-distance curve. Changing the bond length from r0
to r � or r �� requires an external force of magnitude F � or F ��.

interatomic distance from r0 to r��, a tensile force equal in magnitude to F �� must
be applied. A tangent to the force-distance curve drawn at r0 practically
coincides with the curve over a small range of displacement on either side of r0,
see Fig. 10.1. Strains in the elastic region for both brittle and ductile materials
lie in the range 0.001 to 0.005 and are, therefore, within this small range of
displacement. Then, the negative of the slope of the force-distance curve at r0 is
proportional to the Young’s modulus Y of a material. Also, the curvature of the
potential energy curve at r0 is proportional to the elastic modulus:

Y � 
2

2

dF d W
dr dr

� � (10.4)



Example 10.1 Estimate the Young’s modulus of a material, which has
bonding characteristics as given by Eq. (10.1). Take that n = 1, m = 9, and
A = 7.68 � 10–29 J m. The equilibrium distance between bonding atoms is 2.5 Å.

Solution By setting the first derivative of the W–r function to zero, i.e.

2 10

9
0

dW A B
dr r r

� � �

we obtain
B = A � r8/9 = 7.68 � 10–29 � 2.58 � 10–80/9

= 1.30 � 10–106 J m9

Differentiating again, we have

0

2

2
r r

d W

dr
�

= 3 11
0 0

2 90A B

r r
� �

= 
29 106

3 30 11 110

2 7.68 10 90 1.30 10

2.5 10 2.5 10

� �

� �

� � � �� �
� �

= 39.3 J m–2

The curvature obtained above is also equal to the slope of the force-distance
curve. To obtain the Young’s modulus, we can take that the force is acting over
an area of r0

2. So,

Y = 
2
0

0

/stress
strain /

dF r
dr r

�

= 

0

2

2
0

1

r r

d W
r dr

�

� �
� �� �

= 157 GN m–2

Materials with strong bonds have a deep potential energy well with a sharp
curvature. Hence, strong bonding results in large values for the elastic modulus.
By the same token, the shallow potential well of the weakly bonded materials
results in small values for the modulus. As we move to the right along a row of
the periodic table, the covalent character of the bond and its strength increase.
The Young’s moduli of Li, Be, B and C (dia) in a row of the periodic table
increase in that order.

Element Li Be B C (dia)

Atomic number Z 3 4 5 6

Young’s modulus Y, GN m–2 11.5 289 440 1140
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Elements beyond carbon do not form solids with a three-dimensional
network of covalent bonds. These would have moduli according to the strength
of the secondary bonds in the solid, which are primarily stretched by an external
stress. For the same reason, graphite, which consists of two-dimensional sheets
held together by van der Waals bonds, has an average Young’s modulus of only
8 GN m–2, as compared to 1140 GN m–2 for diamond, which has a three-
dimensional network of primary bonds.

The covalent nature of the bonding decreases as we go down any given
column of the periodic table. The elastic modulus shows a corresponding
decrease. This trend is illustrated below for elements of the fourth column:

Element C (dia) Si Ge Sn Pb

Atomic number Z  6 14 32 50 82

Young’s modulus Y, GN m–2 1140 103 99 52 16

In a crystal, the interatomic distance varies with crystal direction, with a
corresponding variation in the bond strength. This gives rise to elastic
anisotropy, that is, the elastic properties become a function of the crystal
direction. This anisotropy is particularly evident in materials which have two
kinds of bonds. For example, the Young’s modulus of graphite in the a direction
parallel to the sheets is 950 GN m–2, which is much larger than that averaged
over all directions, which is only 8 GN m–2.

The transition metals have elastic moduli much higher than those of the
alkali metals, as a result of the partial covalent character of their bonds. Metals
of the first transition series have Young’s moduli in the range 200 GN m–2.
Metals of the second and the third transition series have higher moduli, reaching
up to 600 GN m–2. As is the case with some other physical properties, the
modulus reaches a peak value for the electronic configuration of d5, see Fig. 4.9.

The application of a tensile stress causes an elongation �l along the tensile
axis and a transverse contraction �t. The ratio of these two strains defines the
Poisson ratio �:

t

l

�

�
�

� � (10.5)

The Poisson ratio for metals is around 0.3, for polymers and rubber it is between
0.4 and 0.5; for ionic solids, it is around 0.2.

The shear modulus of a material is defined as the ratio of the shear stress
applied to the shear strain. The shear modulus � is related to the Young’s
modulus Y through the Poisson ratio:

� = 
2 (1 )

Y
��

(10.6)

Similarly, the bulk modulus K, which is the ratio of the hydrostatic stress to
the relative volume change, is related to Y:

K = 
3(1 – 2 )�

Y
(10.7)



10.2 The Modulus as a Parameter in Design

The stiffness of a material is its ability to resist elastic deformation or deflection
on loading. The stiffness is dependent on the shape of the structural component.
For identical shapes, it is proportional to the elastic modulus. Therefore, the
elastic modulus is an important material parameter in mechanical design.
Materials with high stiffness and hence high modulus are often required.

Covalently bonded elements such as diamond have a very high modulus
(1140 GN m–2). However, they are not suitable for use in engineering practice,
due to high cost, nonavailability and brittleness. Brittle materials cannot
withstand accidental overloading during service and may fail in a catastrophic
manner. Hence, they are not suitable as structural members, even though they
may have a high modulus.

Ductile elements such as metals withstand accidental overloading without
catastrophic failure and as such are suitable for structural components. Among
the metals, the elements of the first transition series offer a good compromise of
adequate ductility and a moderately high modulus, in the range 200 GN m–2.
The metals of the second and the third transition series have an even higher
modulus but have the disadvantage of high density. By suitable alloying, the
Young’s modulus of metals can be increased. However, the modulus being a

The equilibrium distance of separation r0 between atoms shown in Figs. 4.4
and 10.1 is applicable at 0 K, where there is no thermal energy. At higher
temperatures, under the influence of thermal energy, the atoms vibrate about their
mean positions, the amplitude of the vibrations increasing with increasing
temperature. With more thermal energy, we can visualize the bonds to be
somewhat loosened up. This reflects in a decrease in the elastic modulus with
increasing temperature, see Fig. 10.2. In a majority of cases, on heating from 0 K
to the melting point, the decrease in elastic modulus is in the range 10–20%.
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Fig. 10.2 Young’s modulus for a few materials plotted against T/Tm.
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structure-insensitive property, it can be increased only in proportion to the
concentration of the higher modulus additive. For producing a high modulus Fe-
based material, reinforcement with TiB2 is a promising route. With 50 vol% of
TiB2 particles in the Fe matrix, there is an increase of more than 50% in the
modulus. The TiB2 particles are in stable equilibrium with Fe. As the particles
are approximately spherical, the modulus is not dependent on direction as in
fibre-reinforced materials.

The Young’s moduli of some ionic solids are given below.

Material NaCl MgO Al2O3 TiC Silica glass

Young’s modulus Y, GN m–2 37 310 402 308  70

Even though the modulus values of some of them are quite high, they also suffer
from the lack of ductility like covalent solids.

In spite of their plasticity, polymers are not suitable for applications where
high stiffness is required. They have a low modulus, as the chains are bonded
together by secondary bonds. The value of the modulus is dependent on the
nature of the secondary bonding (van der Waals or hydrogen bonding), the
presence of bulky side groups, branching in the chains and cross-linking. For
example, unbranched polyethylene has a Young’s modulus of 0.2 GN m–2,
whereas polystyrene with a large phenyl side group in the monomer has a
modulus of 3 GN m–2. (Refer to Table 5.7 for comparison of the monomer
structure.) Three-dimensionally bonded network polymers such as phenol
formaldehyde and fully cross-linked rubber (ebonite) have a modulus in the
range 3–5 GN m–2. It is evident that polymers as a whole have much lower
moduli, as compared to other primarily bonded materials. This places a severe
restriction on the use of polymers as structural components.

In composite materials, an attempt is made to increase the stiffness, without
the disadvantages of brittleness. Boron has a low density and is suitable for light
weight applications and for air borne structures. Its elastic modulus is one of the
highest for elements (Y = 440 GN m–2), but it is brittle. It can be used as a
reinforcing fibre for a ductile matrix such as aluminium. In the Al-B composite,
the elastic modulus is increased due to the presence of the boron fibres. At the
same time, the disadvantages of the brittleness of boron are countered, by the
cushioning effect of the ductile matrix. The ductile matrix stops a propagating
crack if a fibre embedded in it breaks accidentally. If the entire material were to
consist of boron only, a propagating crack would culminate in the fracture of the
entire cross-section.

The Young’s modulus Yc of a composite in a direction parallel to the fibres
can be expressed as a linear function of the moduli of the fibre and the matrix,
Yf and Ym:

Yc = Vf Yf + VmYm (10.8)

where Vf and Vm are the volume fractions of the fibre and the matrix. Thus, a
40 vol.% of boron in an aluminium matrix can raise the Young’s modulus from
71 GN m–2 for pure aluminium to 219 GN m–2 for the composite. This
composite would then be as stiff as steel but less than one-third its density! The



volume fraction of the fibre in a composite material cannot be increased
indefinitely, as at some stage the problems of aligning the fibres and keeping
them separated from one another become serious.

Example 10.2 A tensile load of 100 N is applied to an aluminium-boron
composite of 1 mm2 cross-sectional area. The volume of the parallel fibres is
30%. What is the stress in the fibres, when the load axis is

(i) parallel to the fibres, and

(ii) perpendicular to the fibres?

Solution (i) When the load is applied parallel to the fibres, the elastic
strain � is the same in both the fibres and the matrix. If �f and �m are the
stresses in the fibres and the matrix,

Yf = ,f

f

�

�

 Ym = m

m

�

�

Since �f = �m, we have

440
6.20

71
f f

m m

Y

Y

�

�

� � �

Also, 0.3�f + 0.7�m = 100 N, or

�m = 
100 0.3

0.7
f��

 = 143 – 0.43�f

Then,
143 0.43

f

f

�

��
 = 6.20

�f = 242 N mm–2 (= 242 MN m–2)

(ii) When the load is applied perpendicular to the fibres, the stress in the fibre
and the matrix is the same, i.e. 100 MN m–2.

Figure 10.3 shows an aluminium–silica composite, where the aluminium-
coated silica glass fibres have been partially pressed together to form the
composite. One of the most popular composites comprises silica glass fibres
embedded in an epoxy resin matrix. A typical thermosetting epoxy resin has a
Young’s modulus of 3 GN m–2, while a silicate glass has a modulus of about
70 GN m–2. So, the reinforcing effect is quite marked. The density of the
composite being quite low, it can compete in terms of stiffness and strength for
the same weight with some of the high strength steels. However, the cost of the
fibre glass composite is on the high side.

Aligning molecules in the direction of high modulus is another method of
increasing the stiffness in practical applications. The long chains in a polymer can
be aligned by plastic working. When a stress is applied parallel to the chain length,
the strong covalent bonds along the backbone of the chain tend to be stretched
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rather than the van der Waals bonds between chains. This increases the modulus of
the aligned polymer. Polymeric fibres can have a modulus at least one order of
magnitude higher than that of a non-aligned polymeric structure. By extending
this argument, one would have expected that single crystals of a polymer should
have a very high stiffness, when stressed in a direction parallel to the chains, as
there is perfect alignment in a crystalline arrangement. Unfortunately, this has not
been realized in practice, as the single crystals tend to have a folded chain
structure. The fold tends to be a weak point in the parallel arrangement.

Some applications require a near-zero variation in elastic modulus with changes in
ambient temperature. Alloys of iron with 36% Ni and 5% Cr have this property and are
called elinvars. These alloys are used in tuning forks and radio synchronization, where
an invariant modulus is required. Here, the usual decrease in modulus with increasing
temperature is compensated by a slight decrease in the interatomic distance due to a
magnetic effect. As may be expected, the magnetic effect also affects the thermal
expansion. The related alloy of iron with 36% nickel called invar has zero coefficient of
thermal expansion around room temperature.

10.3 Rubber-like Elasticity

Materials which undergo recoverable deformation of a few hundred per cent are
called elastomers and exhibit rubber-like elasticity. The stress is not proportional
to strain in these materials, in contrast to ordinary elastic materials. Elastomers

Fig. 10.3 Aluminium coated fibres of silica are pressed together to produce a
strong and light composite material. (Courtesy: Rolls Royce Limited, Derby, UK.)



are long chain molecules with some cross-linking between the chains. This
cross-linking is important, because this feature is what keeps the molecules from
slipping past one another permanently during stretching. After cross-linking, the
translational motion of chains gets restricted to segmental mobility between
cross-linking points. When a stress is applied to an elastomer, equilibrium in the
molecular configuration is established fairly quickly so that we can ignore the
time dependent aspects of stretching as a first approximation.

In the unstretched state, the chain molecules are randomly coiled. A large
number of configurations of equal potential energy are then possible. This large
number of distinguishable arrangements means an appreciable configurational
entropy and a low free energy. On application of an external stress, the coiled
molecules respond by stretching out. The stretching reduces the number of
possible configurations and hence lowers the configurational entropy. In the
limit, when the molecules are all fully stretched out, the possible configuration is
only one and the configurational entropy is zero, recall Eq. (2.5). When a
stretched rubber is heated, the increase in thermal energy tends to coil back the
uncoiled molecules against the stretching force.

The coiling and uncoiling of a long chain molecule in an elastomer is
schematically illustrated in Fig. 10.4. Note that full stretching out does not mean

Increase tensile stress

Increase temperature

High entropy Low entropy

Fig. 10.4 The coiling and uncoiling of an elastomer chain molecule as a function
of tensile stress and temperature.

a change in the C–C bond angle of 109.5° along the backbone of the chain. If
this were to happen, the enthalpy (bond energy) of the elastomer would also
change, in addition to the configurational entropy. Experimental results indicate
that the change in the enthalpy on stretching a rubber is zero. The stretching
process merely uncoils the coiled molecules, but does not change the bond
lengths or bond angles. This behaviour is in contrast to what happens in an
ordinary elastic material, where bond lengths are clearly changed, see Fig. 10.1.
Using this experimental result, with the first and second laws of
thermodynamics, it can be shown that the stretching force F at temperature T is
related to the entropy S and length L of the material as follows:
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F = 
T

S
T

L
�� �� � ��� 	

(10.9)

The stretching is assumed to be a slow isothermal process, with equilibrium
maintained at all times. From the Boltzmann’s equation for configurational
entropy (Eq. (2.5)), we can write for the entropy change in going from length L0

to length L as

S – S0 = k ln
0

w
w

� �
� �	 


(10.10)

where S0 and w0 are the entropy and the number of possible configurations
before stretching and S and w refer to the same quantities after stretching. Using
permutations, the entropy change can be expressed in terms of length as follows:

S – S0 = 
2

0
0

0

1
2 3

2

� �� � � �� �� 	 �
 � 
 ��  � � �� �

LL
N k

L L
(10.11)

where N0 is the number of chain segments between cross-linking points.
Combining Eqs. (10.9) and (10.11), we get

F = 
2

0 0

0 0
–

N kT LL
L L L

� �� � � �� �
 � 
 ��  � � �� �
(10.12)

Note that, at constant temperature, the quantity outside the square brackets on
the right-hand side is constant. This relationship can be experimentally verified,
by merely noting the force required to obtain a certain change in length.

Equation (10.12) is the equation of state of the rubbery material. This can
be written as

� (F, L, T ) = 0 (10.13)

If this function � is continuous and single valued, there is a theorem of
differential calculus which states that:

– 1
� � �� � � � � � �� � � � � �� � �	 
 	 
 	 
T F L

F L T
L T F

(10.14)

Equation (10.14) can also be verified experimentally, by obtaining the
incremental slopes corresponding to each of the three partial differentials.

The stress-strain curve for an elastomer is shown in Fig. 10.5. The dotted
curve is calculated from Eq. (10.12). The experimental curve follows the dotted
curve up to a large amount of strain. The steep increase in the slope of the
experimental curve in the later stages can be attributed to bond stretching in the
straightened-out molecules. Bond stretching is not accounted for in Eq. (10.12).



ANELASTIC BEHAVIOUR

Recoverable deformation that occurs as a function of time is called anelastic
deformation. The elastic deformation of the material continues even after the
application of the load, due to some relaxation process within the material. On
removal of the load, some part of the elastic deformation is recovered only as a
function of time, with the reversal of the relaxation process.

10.4 Relaxation Processes

Several relaxation processes take place within a material in response to an
externally applied stress. If the time scale of a relaxation process is too fast or
too slow compared to the time interval over which the stress is applied, the
stress-strain relationship is essentially independent of time. If, however, the time
scale of the process is comparable to the time interval of stress application, the
stress-strain relationship is dependent on time and results in anelastic behaviour.

The fraction X of a relaxation process that has been completed up to time t
can be described by an exponential relation:

X = 1 – exp 
r

t
t

� ��� �	 
 (10.15)

where tr is called the relaxation time. When t = tr, X = 0.63. The relaxation time
tr is then the time taken for 63% of the relaxation to take place and is a useful
parameter to specify the time scale of a relaxation process.
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Fig. 10.5 The stress-strain curve for an elastomer.
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Consider the following relaxation process in a dilute solution of carbon in
BCC (	) iron. The interstitial carbon atoms stay at the middle of the cube edges
(which are �100� directions) in the BCC unit cell of iron. The largest sphere that
will fit in this interstitial position has a radius of about 0.2 Å. This is very much
smaller than the radius of the carbon atom, 0.71 Å. A carbon atom in this
interstitial position tends to push apart the two iron atoms on either side of it,
resulting in a large distortional energy. Consequently, only a very small
percentage of carbon (0.008%) goes into solution in BCC iron.

On applying a tensile stress, one of the three �100� directions approximately
parallel to the tensile axis elongates, while the other two axes perpendicular to it
contract due to the Poisson effect. The carbon atoms along the two contracting
axes jump to occupy vacant positions along the elongated axis, as there is more
space available there. This reduces the total distortional energy around the
interstitial atoms. This jumping results in an additional stretching in the direction
of the applied stress. The jumping of the carbon atoms is a time dependent
diffusion process with a relaxation time tr ~ 100 s at room temperature.

Let the BCC iron with a small quantity of carbon in solution be subjected to
a number of alternating cycles of loading and unloading within the elastic
region. If the time taken for each cycle is very small compared to the relaxation
time given above, the carbon atoms will not have enough time to jump from the
contracted axis to the elongated axis before the stress reversal takes place. Under
such conditions, the carbon atoms do not jump at all. The stres-strain curve
(Fig. 10.6a) simply corresponds to bond stretching, which is instantaneous and
accounts for the ordinary elastic behaviour.

If the time taken for stress reversals during cyclic loading is very large
compared to the relaxation time for carbon jumping, the carbon atoms will
redistribute themselves readily as loading or unloading proceeds. At every stage
during loading or unloading, the additional strain due to the preferential
occupation by carbon atoms of sites along the tensile axis will add to the strain
due to bond stretching. The slope of the stress-strain curve will be
correspondingly smaller, Fig. 10.6b, as compared to the case in Fig. 10.6a,
where no redistribution occurs.
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Fig. 10.6 The stress-strain curve under cyclic loading at different frequencies.



Finally, consider the situation where the time taken for each cycle of loading
and unloading is about the same as the relaxation time. The carbon jumping will
continue to occur, as loading is done. The strain due to carbon jumping will
somewhat lag behind the strain due to bond stretching, which is instantaneous.
Even after the maximum load has reached, the strain due to carbon jumping will
continue to occur, resulting in further strain as a function of time. Due to this
effect, the stress-strain curve during loading does not coincide with the curve
during unloading, which is lower as illustrated in Fig. 10.6c. As the cyclic
loading is continued, the strain continues to lag behind stress, so that a
hysteresis loop is traced during each cycle. The elastic strain energy equal to the
area under the loop is lost during each cycle.

Example 10.3 Estimate the diffusion coefficient D for carbon at room
temperature, using the experimental value of the relaxation time tr ~ 100 s.

Solution From Eq. (8.16), D = � �
 2, where 
  is the jump distance and
� � is the jump frequency of carbon atoms. As the relaxation time tr ~ 100 s, the
jump frequency is 1/l00 = 0.01 s–1. Taking the jump distance to be 2.5 Å, the
diffusion coefficient D = 2.52 � 10–20 � 0.01 = 6.25 � 10–22 m2 s–1. The value
calculated from the data in Table 8.2 is 2.8 � 10–21 m2 s–1, agreeing with the
above result in order of magnitude.

Relaxation processes in materials have a very wide range of time spectrum
from 10–13 second for atomic vibrations to more than 106 seconds for the
viscous flow of grain boundaries. For a given process, the relaxation time is
strongly dependent on temperature and decreases with increasing temperature in
an exponential fashion. A relaxation process that does not give rise to hysteresis
losses at a certain temperature may do so at some other temperature, as the
relaxation time changes on heating or cooling, in relation to the frequency of the
loading cycle.

It is important that, during anelastic deformation, the heat generated during
each cycle of loading equal to the area of the hysteresis loop should be
dissipated as soon as possible. The fraction of this energy that is dissipated is
dependent on the nature of the material and is called the damping capacity of
the material. Gray cast iron has a good damping capacity as compared to mild
steel. This can be attributed to the presence of graphite flakes in the
microstructure of gray cast iron, see Fig. 7.14. It is, therefore, used as a base for
erection of machinery to damp out vibrations efficiently. Polymers including
rubber have very good damping capacity compared to other materials and find
uses such as mounting pads for delicate instruments.

A low damping capacity is desirable only in some special applications as in
temple bells and piezoelectric devices. For example, the quartz crystal is used as
ultrasonic flaw detector and for obtaining elastic constants. This is done by
measuring the time interval for the echo from an ultrasonic wave traversing up
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and down the crystal. Here, the time between two successive echos is measured
and a low damping capacity aids in delineating the echo peaks, before
appreciable decay occurs.

For a given relaxation process, the energy loss during a cycle is obviously a
maximum at some frequency of loading. In automobile tyres, the frequency of
loading increases with the speed of the vehicle. In the common type of tyres, the
energy loss becomes a large value at high speeds such as 100 km per hr. This
would increase the heating effect in the tyres, reducing their lifetime as well as
increasing the risk of a tyre burst at high speeds. Recent improvements such as
fibre-glass reinforced polyester tyres yield a much larger relaxation time than the
unreinforced tyres for the same temperature, so that tyre life and the safety
factor are increased.

VISCOELASTIC BEHAVIOUR

Viscoelastic behaviour is found in materials which respond to an applied stress
by both recoverable and permanent deformations, which are time dependent.
This behaviour is very common in noncrystalline organic polymers. Time-
dependent permanent deformation is called viscous flow. It is analogous to the
creep phenomenon in crystalline materials discussed in Chapter 11.

10.5 Spring-Dashpot Models

Macroscopic mechanical models are often used to describe the viscoelastic
behaviour of a material. Combinations of the classical linear laws of Hooke and
Newton are the bases for these models. The shear strain � is proportional to the
shear stress � in Hooke’s law:

� = �� (10.16)

where � is the shear modulus. Newton’s law for viscous flow states that the
(viscous) shear strain rate (d� /dt) is proportional to the stress applied:

� = 
d
dt
�

�
� �
� �� �

(10.17)

where � is the viscosity of the material. A spring represents the perfectly elastic
behaviour. A dashpot represents a pure viscous behaviour. The dashpot consists
of a container with a piston moving in a viscous liquid.

The Maxwell element is a series combination of a spring and a dashpot, as
depicted in Fig. 10.7a. The spring and the dashpot support the same stress. The
strain in the element is the sum of the strain in the spring and the strain in the
dashpot:

� = �spring + �dashpot (10.18)



Differentiating Eq. (10.18) with respect to time, we have

spring dashpot

� � �	 
 	 
� ��  � � � � �
d d d
dt dt dt

(10.19)

Noting that (d� /dt)spring = (d�/dt)/� and (d� /dt)dashpot = �/�, we obtain, for the
stress on the element, the equation

r
d d d d

t
dt dt dt dt
� � � � �

� � �
�

� � � � � � � �� � � �� � � � � � � �	 
 	 
 	 
 	 
 (10.20)

where the relaxation time tr = �/�.
The Maxwell element can be subjected to two different kinds of

experiments. The first is called the creep test. Here, a stress is applied

Stress removed

Con
sta

nt 
str

es
s

Stress appliedS
tr

ai
n

Time
(b) Creep experiment

�

(a) Maxwell element

Stress applied

S
tr

es
s

Constant strain

Time

(c) Stress relaxation experiment

Fig. 10.7 The creep and the stress-relaxation experiments on a Maxwell element.
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instantaneously; the spring responds, giving an instantaneous strain. Then, as a
function of time, the dashpot responds, increasing progressively the viscous
strain. After a certain time interval, the stress can be removed. The spring then
responds by immediate recovery of the elastic strain. This is illustrated in
Fig. 10.7b. In the other type of experiment called the stress relaxation test, the
stress is applied instantaneously and the strain thereafter is kept constant. The
stress on the element decreases as a function of time, as the elastic strain is
replaced by plastic strain induced by the viscous flow of the dashpot (see Fig.
10.7c). The Maxwell element thus exhibits instantaneous elastic deformation and
elastic recovery (like a solid) and viscous flow (or creep) as a function of time
(like a liquid).

In the Voigt–Kelvin element, the spring and the dashpot are connected in
parallel, as shown in Fig. 10.8a. Then the strain in both of them is the same at
any time:

� = �spring = �dashpot (10.21)

The stress supported by the element is the sum of the stresses in the spring and
the dashpot:

� = � spring + �dashpot (10.22)

Combining Eq. (10.22) with the Hooke’s and the Newton’s laws, we obtain

� = �� + 
d
dt
�

�
� �
� �� 	 (10.23)

On instantaneous application of the stress, the dashpot offers a high initial
resistance, as it cannot respond instantaneously. With time, the strain in the
element increases, but the spring offers an increasing amount of resistance so
that the strain rate decreases progressively. Eventually, the system attains
equilibrium, with only the spring supporting the entire stress. On removal of
stress, the strain decays exponentially. This is illustrated in Fig. 10.8b. In the
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Fig. 10.8 The strain-time relationship for a Voigt–Kelvin element.



Voigt–Kelvin element, the strain always changes only as a function of time and
not instantaneously. There is no permanent deformation at the end of the
experiment.

Consider a linear combination of a Maxwell element and a Voigt–Kelvin
element. This is called a four parameter model, as four parameters (two
viscosities and two shear moduli) should be known to describe the exact
behaviour of a material, that is modelled on this basis. The spring of the
Maxwell element would represent the stretching of bonds in the material, which
is instantaneous and fully elastic. The dashpot of the Maxwell element would
represent pure viscous flow, such as slippage of chain molecules past one
another permanently. The Voigt–Kelvin element would represent a time
dependent but recoverable deformation, such as the coiling and the uncoiling of
chain molecules. Note that we ignored the time dependence of this process,
when we considered the rubber-like elasticity. The time dependent uncoiling of
molecules on application of a stress is called retarded elasticity. The time
dependent coiling on removal of the stress can be called the entropy elasticity, as
it is due to the restoring force of the thermal agitation to revert the molecules to
the coiled, high-entropy state. Both the coiling and uncoiling of molecules can
be treated as relaxation processes that give rise to anelastic behaviour.

�������

1. The response of materials to an externally applied stress can be
recoverable or permanent deformation or both. Each of these deformations
can be time dependent or independent.

2. Ordinary elastic behaviour can be attributed to the instantaneous stretching
of atomic bonds. The stress is proportional to strain here, as given in
Hooke’s law. Strongly bonded materials have high modulus, while weakly
bonded materials have low modulus.

3. Several methods are available to increase the elastic modulus of a material,
such as making composites and aligning chain and sheet molecules in
directions of high bond strength.

4. Rubber-like elasticity arises from entropy changes during stretching, when
the coiled long chain molecules uncoil.

5. The time dependent part of recoverable deformation is always associated
with a relaxation phenomenon. The relaxation processes in materials are
numerous, covering a wide range of time scale.

6. Energy losses due to anelastic processes should be kept a minimum and
should be dissipated efficiently in most applications.

7. Long chain polymers exhibit viscoelastic behaviour. Using combinations of
macroscopic models due to Maxwell and Voigt–Kelvin, the entire spectrum
from purely elastic to fully viscous behaviour of polymers can be
described.
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10.1 The Young’s moduli of alkali metals are given below in units of
GN m–2: Li (11.5), Na (9.0), K (3.5), Rb (2.7), Cs (1.8) and Fr (1.7).
Compare this with the corresponding values of the melting points. Give
a reason for this sequence.

10.2 Arrange the Young’s moduli of the elements from Na to Si in order of
increasing atomic number and compare it with the trend from Li to
C (dia). Comment on your findings.

10.3 Plot the Young’s modulus of the elements of the first, the second and the
third transition series as a function of their atomic number, using the
data from Appendix I. Comment on your findings.

10.4 The shear modulus of graphite averaged over all crystal directions is
8 GN m–2. How can graphite be used to reinforce titanium, which has a
shear modulus of 40 GN m–2?

10.5 A steel bar and an aluminium bar are each under a load of 5000 N. If
the cross-sectional area of the steel bar is 100 mm2, what must be the
area of aluminium for the same elastic deformation?

Answer: 290 mm2.

10.6 A tensile load of 5000 N is applied to a plastic-glass fibre composite of
100 mm2 cross-sectional area, with 25 vol% of glass fibre. Calculate the
cross-sectional area of the plastic alone (without reinforcement) to
withstand the same load with the same elastic deformation.
Given: Yplastic = 0.35 GN m–2 and Yfibre = 70 GN m–2

Answer: 5075 mm2.

10.7 A fibre-reinforced polystyrene contains 75 wt% of borosilicate glass
fibre-oriented in a parallel fashion. Estimate the Young’s modulus of the
composite in the longitudinal direction of the fibres. Given:

Property Borosilicate Polystyrene

Young’s modulus, GN m–2 65 2.6
Specific gravity 2.4 1.05

Answer: 38 GN m–2.

10.8 Explain why an elastomer under tensile load contracts on heating.
Compare this with the behaviour of ordinary materials.

10.9 Does the thermodynamic analysis of rubber elasticity apply to rubber in
compression? Explain.

10.10 The Young’s modulus of an elastomer increases from 0.001 GN m–2 to
1 GN m–2 on cross-linking. Explain why this is so.

10.11 Elevated temperatures are required to observe the relaxation due to
viscous sliding of grain boundaries. Why?
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10.12 Derive the result given in Eq. (10.20).

10.13 Using Eq. (10.20), show that the stress � as a function of time t at
constant strain in the stress-relaxation experiment decays exponentially
as � = �0 exp (–t /tr), where �0 is the initial stress.

10.14 Sketch the time-strain curve for anelastic behaviour and compare it with
the time-strain curve in the Voigt–Kelvin element. What do you deduce
from this?

10.15 Explain how the four constants corresponding to the linear combination
of the Maxwell and the Voigt–Kelvin elements can be determined from a
strain-time experiment at constant stress.

10.16 Calculate the Young’s modulus of a composite containing 60 vol% of
glass fibre (Y = 70 GN m–2) in a matrix of epoxy resin (Y = 3 GN m–2)
under isostress conditions.
Answer: 7.0 GN m–2.

�������� ��	���� �����	��

1. High elastic modulus in materials arises from

A. High strength of bonds
B. Weak bonds
C. Sharp curvature at the minimum potential energy
D. Shallow potential well

2. As we go along a row of the periodic table, if the three-dimensional
network of primary bonds persists, the elastic modulus

A. increases B. remains constant
C. decreases D. decreases sharply

3. As we go down a column of the periodic table, the elastic modulus
A. increases sharply B. increases

C. remains constant D. decreases

4. The change in Young’s modulus of ordinarily-elastic materials between
0 K and melting point is

A. 10–20% increase B. no change

C. 10–20% decrease D. 80–90% decrease

5. Covalent and ionic solids are not suitable as structural components,
because

A. they have weak bonds B. they are ductile
C. they are brittle D. they have high elastic moduli
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6. During stretching of an ideal elastomer, its enthalpy

A. increases B. remains constant
C. decreases D. decreases slowly

7. On heating an elastomer under tensile load, it shrinks
A. to maximize the enthalpy B. to maximize the entropy

C. to minimize the free energy D. to avoid breaking

8. On heating a rubber under a tensile force, it

A. shrinks B. expands
C. expands rapidly D. shows no change

9. In BCC iron, residual carbon occupies the midpoints of

A. �100� B. �110� C. �111� D. none of these

10. During cyclic loading, hysteresis loss occurs due to anelastic deformation,
when

A. time for stress reversal is large compared to relaxation time
B. time for stress reversal is small compared to relaxation time
C. time for stress reversal and the relaxation time are about the same
D. none of these

11. The Voigt–Kelvin element is a

A. series combination of a spring and a dashpot
B. parallel combination of a spring and a dashpot
C. a four-parameter model
D. none of these

12. A linear combination of a Maxwell and a Voigt–Kelvin element is a

A. one parameter model B. two parameter model
C. three parameter model D. four parameter model

Answers

1. A, C 2. A 3. D 4. C 5. C

6. B 7. B, C 8. A 9. A 10. C

11. B 12. D

Sources for Experimental Data

K.A. Gschneidner Jr., in Solid State Physics (1964), Vol. 16, p. 275 on Physical
Properties and Interrelationships of Metallic and Semimetallic Elements.
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R.C. Progelhof and J.L. Throne, Polymer Engineering Principles, Carl Hanser
Verlag, Munich (1993).

Suggestions for Further Reading

N.G. McCrum, C.P. Buckley and C.B. Bucknall, Principles of Polymer Enginee-
ring, Oxford University Press, Oxford (1988).

D. Rosenthal, Resistance and Deformation of Solid Media, Pergamon Press, New
York (1974), Chaps. 1 and 3.
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The permanent deformation of materials on the application of a load can be either
plastic deformation or creep. In crystalline materials, at temperatures lower than
~0.4Tm, where Tm is the melting point in kelvin, the permanent deformation is
called plastic deformation. In this temperature range, the amount of deformation
that occurs after the application of load is small enough to be ignored. The rate at
which the material is deformed may, however, play a role in determining the
deformation characteristics. At temperatures above ~0.4Tm, permanent
deformation continues as a function of time, following the application of the load.
This behaviour is termed creep and is discussed at the end of this chapter.

Units

 
Quantity

  SI units  
Other units  Unit   Symbol

Shear stress �
Tensile stress � psi, ksi,
Yield strength �y meganewton MN m–2 kgf/mm2,
Ultimate tensile square metre tons/sq. in.
strength (UTS)
Strain � – – –
Strain rate (d� /dt) per second s–1 –
Shear modulus � giganewton per GN m–2 psi, kgf/mm2,

square metre dyne/cm2

Dislocation velocity vd metre per second m s–1 –
Dislocation density � per square metre m–2 per sq. inch.
Grain diameter d millimetre, mm, �m inch

micrometre
Hall–Petch constant k meganewton per MN m–3/2 kgf/mm3/2

(metre)3/2
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*Note: Yield strengths and tensile strengths are conveniently written in units of
MN m–2 (�106 N m–2). In this unit, a low strength such as that of a linear chain
polymer is about 20 MN m–2 (2 kgf/mm2), while that of a high strength alloy steel is
about 2000 MN m–2 (200 kgf/mm2). MN m–2 can also be written as MPa or N mm–2.
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PLASTIC DEFORMATION

11.1 The Tensile Stress-Strain Curve

Plastic deformation can occur under tensile, compressive or torsional loads. A
typical tensile stress-strain curve is shown in Fig. 11.1. The applied load is
plotted against the elongation or extension of the test specimen in Fig. 11.1a.
The applied load P divided by the initial cross-sectional area A0 of the specimen
gives the engineering stress:

Engineering stress = 
0

P
A

(11.1)

Engineering strain is given by the fractional increase in the gauge length l0:

Engineering strain = 
0

l
l
�

(11.2)

where �l is the increase in gauge length.
The deformation of the specimen is elastic up to the yield point, beyond

which it becomes plastic. The load at the yield point divided by the initial cross-
sectional area of the test specimen is called the yield stress or the yield strength
of a material. Mild steel exhibits a clearly defined yield point, but a number of
other materials do not have a clear demarcation between the elastic and the
plastic regions.

Beyond the yield point, the linear elastic region is followed by a nonlinear
plastic region. In this region, the load required to cause further deformation
increases with increasing strain. This phenomenon is called work hardening. The
slope of the load-elongation curve decreases, as the elongation increases. It
becomes zero at some maximum load. The engineering stress corresponding to
the maximum load is called the ultimate tensile strength (UTS) of the material.
Beyond this maximum, a neck forms somewhere in the middle of the specimen,
where the cross-sectional area locally decreases. The applied load decreases up
to the point of fracture, where the specimen breaks into two pieces across the
reduced cross-section of the neck.

Figure 11.1a can be replotted in terms of true stress and true strain. True
stress is the actual stress, which is the applied load divided by the minimum
cross-sectional area Ai of the specimen at any instant:

True stress = 
i

P
A (11.3)

When the increase in length dl is expressed as a fraction of the length l at any
instant, we obtain the true strain:

True strain = 

0

l

l

dl
l� (11.4)
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When the deformation of the specimen becomes nonuniform after necking starts,
the true strain becomes a function of the length over which it is measured. In
order to avoid ambiguity, it is specified as the integral of –dA/A, where A is the
cross-sectional area at the neck. The true stress-true strain curve is plotted in
Fig. 11.1b. Unlike the load-elongation curve, there is no maximum in the true
stress-true strain curve. The slope in the plastic region decreases with increasing
strain, but does not become zero before fracture. This indicates that there is no
work softening beyond the maximum in the load-elongation curve. The material
work hardens continuously till fracture, although at a decreasing rate.

A power relationship is often used to express the true stress � as a function
of true strain �:

� = K�n (11.5)

where K is called the strength coefficient and n is the work hardening exponent.
Materials which have a high work hardening exponent such as copper and brass
(n ~ 0.5) can be given a large plastic strain more easily than those which have a
smaller n, such as heat treated steel (n ~ 0.15).

Time does not enter as a parameter in Fig. 11.1. Ordinarily, the deformation
characteristics can be taken to be independent of time. If, however, the rate of
straining is varied over several orders of magnitude, the stress-strain curve may
change as a function of strain rate (d� /dt). Another power relationship can be
used to express � at a given strain � , in terms of the strain rate (d� /dt):

� = 
m

d
A

dt
�� �

� �� 	 (11.6)

where A is a constant and m is the index of strain rate sensitivity. If m = 0, the
stress is independent of the strain rate and the stress-strain curve would be the
same for all strain rates. m ~ 0.2 for common metals. If m = 0.4–0.9, the
material may exhibit superplastic behaviour, that is, deform by several hundred
per cent of strain without necking. The reason for this is that, as soon as necking
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Fig. 11.1 The tensile load-elongation curve and the true stress-true strain curve
for a ductile material.
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starts in some region, the strain rate increases locally, resulting in a rapid
increase of the stress required to cause further deformation in that region. The
deformation then shifts to another region of the material, where there is no
necking. Here, the strain rate and hence the stress to cause deformation are
smaller. Some stainless steels and aluminium alloys with a very fine grain size
exhibit superplastic behaviour. The glass blower is able to pull his working
material to very long rods without necking, because the exponent m for glass
approaches one. If m = 1, the material behaves like a viscous liquid and exhibits
Newtonian flow, see Eq. (10.17).

11.2 Plastic Deformation by Slip

X-ray diffraction studies show that the crystalline order in the solid is not lost
during plastic deformation, even though more imperfections are introduced. The
atom movements are such that the crystal structure remains the same before and
after plastic deformation.

There are two basic modes of plastic deformation called slip and twinning.
Slip is a shear deformation that moves atoms by many interatomic distances
relative to their initial positions, as illustrated in Fig. 11.2b. Steps are created at
the surface of the crystal during slip, but the orientation of all parts of the crystal
remains the same before and after slip. Twinning, on the other hand, changes the
orientation of the twinned parts, see Fig. 11.2c. Here, the movement of an atom

(a)
Before slip or twinning

(b)
After slip

(c)

After twinning

Fig. 11.2 The slip mode and the twinning mode of plastic deformation.
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relative to its neighbours is only a fraction of an interatomic distance. The slip
mode of deformation is the common mode in many crystals at ambient and
elevated temperatures. At low temperatures, the mode of deformation changes
over to twinning in a number of cases. We shall consider deformation by slip only.

Careful examination of the surface of a deformed crystal under the
microscope shows groups of parallel lines, which correspond to steps on the
surface. They are called slip lines. They indicate that the atomic planes within the
crystal have sheared with respect to one another resulting in the surface steps. It is
generally found that the slip planes are the closest packed planes in the crystal.
Also, the directions along which slip occurs are the closest packed directions. It
turns out that the planes of the greatest atomic density, having the highest number
of atoms per unit area, are the most widely spaced planes. The directions of the
greatest linear atomic density (close packed directions) have the smallest
translation distance from one minimum energy position to the next. In ionic
crystals, the slip planes and the slip directions are such that the ions of the same
polarity do not become juxtaposed as nearest neighbours during shear, as this
would mean a big increase in the potential energy of the crystal. The common slip
planes and slip directions for some simple crystals are given in Table 11.1.

TABLE 11.1

Slip Planes and Directions in Some Crystals

Crystal Slip planes Slip directions

FCC {111} 
110�
BCC more common {110} 
111�

less common {112}, {123}
NaCl {110} 
110�
HCP more common basal plane close packed

less common prismatic and directions
pyramidal planes

A slip plane and a slip direction that lies on it together constitute a slip
system. For example, the combination (111) and [ 1 10] forms a slip system, but
not (111) and [110], as the [110] direction does not lie on the (111) plane.
Counting the slip systems for the most densely packed slip planes only, there are
12 slip systems in FCC and BCC crystals, while there are only 3 in HCP
crystals. The NaCl crystal has 6 slip systems.

In a polycrystalline material, slip in any crystal has to be accommodated by slip in
neighbouring crystals, if the grain boundaries are to remain continuous during slip.
According to the Von Mises criterion, a minimum of five independent slip systems is
necessary to maintain the integrity of the grain boundaries during plastic deformation. In
FCC and BCC crystals, this condition is fulfilled. In HCP crystals, for slip on the basal
close packed plane, there are only two independent slip systems. These correspond to
any two of the three close packed directions. A slip displacement in the third direction
can be expressed as the resultant of the slip along the other two directions and is
therefore not independent. In polycrystalline form, HCP materials can deform only by
slip on less common slip systems or alternatively by twinning.

�
�
�

�
�
�
�
�



The stress at which slip starts in a crystal depends on the relative orientation
of the stress axis with respect to the slip plane and the slip direction. When a
tensile stress � is applied to a crystal, as illustrated in Fig. 11.3, the shear stress �

�

Tensile axis

� Slip direction

Slip plane

Slip plane normal
�1

�

Fig. 11.3 The resolved shear stress � on a slip plane along a slip direction
depends on their orientation with respect to the tensile axis.

�2

resolved on a slip plane whose normal makes an angle of �1 with the stress axis,
along a slip direction inclined at an angle of �2 to the stress axis, is given by

� = � cos �1 cos �2 (11.7)

This resolved shear stress should reach a critical value called the critical
resolved shear stress (CRSS) for plastic deformation to start. It is evident that all
slip systems in a crystal will not have the same resolved shear stress for a given
tensile stress along an axis. As the applied tensile stress is increased from zero,
deformation will be initiated first on that slip system for which the resolved
shear stress is a maximum and so reaches the critical value first.

Example 11.1 The axis of a cylindrical crystal of copper lies in the (111)
plane. Show that, when a tensile stress � is applied along the axis of the crystal,
the resolved shear stress � in any direction on this plane is zero. Does this mean
that this crystal will not plastically deform however large is the applied stress?

Solution The angle �1 is 90° for the plane (111) so that cos �1 = 0. So,
from Eq. (11.7), the resolved shear stress � for any value of �2 is zero. This does
not mean that the crystal will not plastically deform, as all planes in the family
of {111} are not parallel to one another. There are planes other than (111),
which will have a finite resolved shear stress. As soon as this reaches the critical
value, plastic deformation will be initiated.

Plastic Deformation by Slip 265



266 Plastic Deformation and Creep in Crystalline Materials

11.3 The Shear Strength of Perfect and Real Crystals

Figure 11.2b illustrates how a perfect crystal can undergo plastic deformation by
the slip process. By using simplifying assumptions, we can estimate the stress
required to cause slip in the perfect crystal. Figure 11.4 shows the stress-potential
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Fig. 11.4 Stress-potential energy-displacement curves during shear over one
interatomic distance in a perfect crystal.

energy-displacement relationships, when a plane perpendicular to the paper
(denoted by a row of atoms in the figure) is sheared towards the right by one
interatomic distance with respect to another parallel plane (denoted by a second
row of atoms). At position 1, no stress is applied and the potential energy is a
minimum. The stress � required to cause a displacement x will be proportional to
dW/dx, where W is the potential energy. As the atoms of the top plane are
displaced to position 2, the applied stress reaches its maximum value,
corresponding to the inflection point on the potential energy curve. Position 2 is
quarter way from position 1 in going to the next equilibrium position. Beyond
position 2, the slope of the potential energy-displacement curve decreases.
Consequently, a progressively-decreasing amount of stress will be required to
cause further displacement, until the stress falls to zero at the half way position 3.

1



This position is in unstable equilibrium (recall Sec. 2.1) and the potential energy
here is a maximum. Beyond 3, the slope of the potential energy curve becomes
negative. The stress is also negative till the next equilibrium position is reached.
The negative sign of the stress means that a stress in the opposite direction is
necessary to stop the top plane from sliding into position 4, after it has crossed
position 3. If the stress-displacement curve is taken to be sinusoidal, we can write:

� = K sin 
2 x

b
�� �

� �� � (11.8)

where b is the atomic spacing in the direction of displacement and K is a
constant. For small displacements, 2�x/b � 1, and so we can write:

� = 
2 x

K
b
�� �

� �� �
(11.9)

Also, for small displacements, Hooke’s law is valid and hence

� = 
x
d

�
� �
� �� � (11.10)

where � is the shear modulus of the crystal and x/d is the shear strain, d being
the distance of separation between the planes. Combining Eqs. (11.9) and
(11.10), we obtain

K = 
2

b
d

�

�
(11.11)

Substituting for K in Eq. (11.8), we get

� = 
2

sin
2

b x
d d

� �

�

� �
� �� � (11.12)

The stress �max that is necessary for causing plastic deformation in a perfect
crystal corresponds to the maximum amplitude of the sinusoidal wave and is
equal to �b/(2�d); b/d is about 1 for many crystals so that �max ~ �/6.

The shear modulus for typical crystals that exhibit plastic deformation is in
the range 10–100 GN m–2, so that the maximum stress �max should be in the
range 2–20 GN m–2 or 2000–20 000 MN m–2. The experimental values of the
critical resolved shear stress (CRSS) for initiating plastic deformation in some
typical crystals are given in Table 11.2. These values are very much lower than
the range 2000–20 000 MN m–2. Table 11.2 also gives the shear moduli and the
ratio �/� for the same crystals. The ratio �/� is predicted to be around 6 on the
basis of the perfect crystal calculations above. But the observed ratios given in
Table 11.2 fall in the range 5000–100 000, indicating again the large discrep-
ancy between the above model of plastic deformation and the  experimental
results. Real crystals deform at a much lower stress than predicted by the model
for a perfect crystal. This discrepancy can be explained only on the basis of the
presence of dislocations in real crystals. The measured CRSS values should be
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TABLE 11.2

Observed Shear Strengths and Shear Moduli of Some Crystals

  Crystal Structure CRSS �, MN m–2 �, GN m–2 �/�
Copper FCC 0.5 44 88 000
Aluminium FCC 0.75 25 33 000
Gold FCC 0.5 26 52 000
Nickel FCC 5 70 14 000
Silver FCC 0.5 26 52 000
Iron BCC 15 70 4 700
Zinc HCP 0.3 33 110 000

associated with the stress required to move a dislocation that is already present
in a real crystal and not with the stress required to shear a perfect crystal.

When a shear stress is applied parallel to a slip plane in a crystal, the
dislocations on it move. As they sweep through the crystal, each one of them
causes a displacement of the top part of the crystal with respect to the bottom
by a distance equal to the magnitude of its Burgers vector. Unlike in the perfect
crystal model of plastic deformation, the shear does not occur by the
simultaneous displacement of all the atoms in a slip plane. The dislocation
moves in a sequential fashion, occupying successive positions during its motion.
Recall the atomic displacements during the motion of an edge dislocation shown
in Fig. 6.12. During each step of the motion, the displacement of the atoms
surrounding the dislocation is only a fraction of an interatomic distance and not
a full one, as in the case of the perfect crystal. The incomplete plane of atoms is
not bodily shifted but the configuration of the dislocation moves by small
adjustments in the bond lengths in the dislocation region.

The analogy of the motion of a caterpillar helps in visualizing the
dislocation motion. As illustrated in Fig. 11.5, the caterpillar moves by making a
hump on its back and then transferring the hump from the tail to the head. It

Fig. 11.5 The motion of a caterpillar.

does not move forward all along its length simultaneously, but the hump moves
sequentially. The frictional forces between the hump and the ground are absent,
just as the bonds in the dislocation region are strained, though not broken.
Therefore, the caterpillar spends much less effort in moving the hump. The
magnitude of the displacement caused by the hump moving from one end to the
other depends on the size of the hump. This aspect bears a direct analogy to the
magnitude of the displacement caused by a moving dislocation, which is equal
to its Burgers vector.



Normally, dislocations are always present in crystals. Whiskers are special
crystals, which are very thin and almost free of dislocations. Such crystals can
withstand stresses much higher than ordinary crystals, without undergoing plastic
deformation. If, however, a dislocation is introduced accidentally, for example at
the surface, the crystal abruptly loses all its strength and there is a big drop in
the stress required to cause further strain, which is permanent. This is illustrated
for a copper whisker in Fig. 11.6. The maximum stress the whisker withstands is
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Fig. 11.6 A copper whisker deforms plastically, as soon as a dislocation is
created, with a big drop in the stress required to cause further strain.
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700 MN m–2, but on the introduction of a dislocation, this stress falls
precipitously to a much lower value and considerable plastic deformation ensues.
(Compare the maximum stress that the copper whisker can carry, with the CRSS
of an ordinary copper crystal listed in Table 11.2.)

11.4 The Stress to Move a Dislocation

The stress required to move a dislocation in a crystal in the absence of
other imperfections and impurities has been computed by R. Peierls and
F.R.N. Nabarro. These calculations from first principles are not accurate enough
to predict the CRSS of different crystals and to correlate it with the observed
value. However, we are in a position to understand the differences in the plastic
deformation behaviour of crystals in a qualitative way.

Consider the two edge dislocations sketched in Fig. 11.7. In Fig. 11.7a, the
dislocation is stiff, that is, no relaxing displacements have taken place in the
adjacent planes surrounding the dislocation region. In Fig. 11.7b, such
displacements have occurred around the incomplete plane. In the first case, the
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bond lengths are the normal value around the dislocation except in the region
below the incomplete plane, where the bonds are virtually broken. In the second
case, the strains are distributed more evenly among the bonds around the edge,
resulting in some compression above and some tension below. Here, we say that
the dislocation is relaxed. The width of a dislocation is a measure of the distance
on either side of the dislocation, up to which the stress-relaxing displacements
are appreciable. When a dislocation is said to be wide, it is meant that the
displacements are distributed over an appreciable distance. When a wide
dislocation moves, the adjustments that take place in the bond lengths in the
dislocation region are distributed over a number of bonds in the region, but the
change in anyone bond length is very small. In a narrow dislocation such as that
shown in Fig. 11.7a, it is clear that, during the motion of the dislocation, the row
of atoms below the slip plane has to move through a distance of one full
interatomic distance. Therefore, narrow dislocations are more difficult to move
than wide dislocations.

Peierls and Nabarro related the stress to move a dislocation �PN to its width w

�PN = � exp
2 w

b
�� ��� �� � (11.13)

where � is the shear modulus of the crystal and b is the magnitude of the
Burgers vector of the dislocation. Because of the exponential form of this
relationship, the Peierls–Nabarro stress (�PN) is a very sensitive function of the
width and the Burgers vector. The effect of width on �PN is illustrated as follows:

Width w 0 b 5b l0b

�PN � �/400 �/1014 �/1027

When the dislocation has zero width, the crystal requires a very high stress to
move a dislocation, comparable to the stress to deform a perfect crystal. Even as
the width increases to l0b, the stress falls to negligible values. A very precise
determination of the dislocation width is then necessary to calculate the P–N
stress in any reliable manner. Unfortunately, such measurements are inherently
difficult and have not been made. We have to limit our discussion to the
qualitative variation of the P–N stress.

The nature of the chemical bonding in a crystal determines the extent of the
relaxation and the width of a dislocation. In covalent crystals, where the bonding

(a) (b)

Fig. 11.7 An unrelaxed and a relaxed edge dislocation.



is strong and directional, the relaxation is small resulting in narrow dislocations.
The Peierls–Nabarro stress is correspondingly high. The application of a tensile
stress usually results in brittle fracture by crack propagation, before the stress
required to move a dislocation is attained. Hence, covalent crystals such as
diamond and silicon are brittle. They do not undergo plastic deformation. In
typical metallic crystals, such as copper, the bonds are nondirectional and not so
strong as in a covalent crystal. So, the dislocations are wide and the Peierls–
Nabarro stress is low. These crystals exhibit a considerable amount of plastic
deformation and are said to be ductile. A copper wire can be cold drawn to
hundred times its original length without breaking, in spite of the work
hardening that occurs during drawing. In metals of the transition groups, such as
iron, some covalent character persists due to d orbital bonding which is
directional and, correspondingly, the transition metal crystals are harder than
copper. They cannot be cold worked to the same extent as copper.

In ionic crystals, the bonds are of moderate strength and nondirectional.
From this, one would have expected simple ionic crystals to have some ability to
undergo plastic deformation. However, plastic deformation occurs here only
under special circumstances when the crystal surface is free of cracks that can
cause brittle failure. The main reason for this behaviour seems to lie in the fact
that the Burgers vector of dislocations in ionic crystals tends to be large. b is in
the denominator of the exponential in Eq. (11.13). This tends to increase the
Peierls–Nabarro stress. Only dislocations with a full lattice translation for the
Burgers vector will not bring two cations as nearest neighbours during the slip
process. The Burgers vector of a full dislocation in NaCl is 3.95 Å, as compared
to that in copper, which is 2.55 Å.

Intermetallic compounds and other complex crystal structures such as Fe3C
and CuAl2 do not have favourable crystal planes and directions for easy slip and
therefore tend to be brittle. Ordered compounds such as CuZn require
dislocations to move in pairs in order to preserve the order during slip. Hence,
they possess very limited ductility.

11.5 The Effect of Temperature on the Stress to Move a
Dislocation

The motion of a dislocation can be assisted by thermal energy. The rate of
plastic deformation, that is, the strain rate (d�/dt) is proportional to a
Boltzmann’s probability factor:

exp
d Q
dt kT
� � �	 �� �� � (11.14)

where Q is the activation energy for dislocation motion. Q arises from the
activation barrier that a dislocation faces in moving from one minimum energy
position to the next. This barrier will be much smaller than the barrier shown for
shear of a perfect crystal in Fig. 11.4. The strain rate during plastic deformation
can be expressed in terms of the velocity vd of the dislocations:
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d
dt
�

 = �bvd (11.15)

where � is the density of mobile dislocations and b is their Burgers vector.
Equation (11.14) indicates that a dislocation can change its position solely

due to thermal fluctuations even without the application of an external stress.
Such motion will be random, where a dislocation line will have equal probability
of moving to the next minimum energy position on either side of the line.
Therefore, such motion does not result in plastic deformation. A certain
threshold stress is necessary for dislocations to move in a specified direction. In
addition to this, the applied stress can lower the activation energy Q. Let �PN be
the stress to move a dislocation in the absence of thermal energy, that is, at 0 K.
(Note that the Peierls–Nabarro equation (11.13) does not have a kT term.) At
0 K, an applied stress �app equal to �PN is necessary to move a dislocation, as no
assistance from thermal energy is available. At higher temperatures, an applied
stress lower than the P–N stress can move a dislocation, using thermal energy.
The two stress terms can be multiplied by a volume term called the activation
volume v to relate them to Q:

Q = (�PN – �app) v (11.16)

Substituting Eq. (11.16) in Eq. (11.14), we have

PN app( )
exp

vd
dt kT

� �� � �
� �� �

� �
(11.17)

This equation tells us that, for a constant strain rate, the term within the
exponential is constant. �PN as given by Eq. (11.13) is a constant for a particular
crystal. For our purposes, we can assume the activation volume v to be constant.
It follows then that, with increasing temperature, less and less applied stress is
required to cause plastic deformation at a specified strain rate. Alternatively, to
cause plastic deformation at an increasing strain rate at a constant temperature,
the applied stress should be increased. By taking logarithms, Eq. (11.17) can be
rewritten as

PN app
app

( )
ln

vd
A A B

dt kT

� ��
�

�� � 
� � � � �� �� � (11.18)

where A, A� and B are constants at constant temperature.

Example 11.2 The activation volume for dislocation motion in a crystal is
20 b3, where b is the Burgers vector of the moving dislocation. b = 2 Å. The
P–N stress for this crystal is 1000 MN m–2. For a specified rate of dislocation
motion, the activation energy Q = 40 kT. Calculate the stress required to move
the dislocation at (i) 0 K, (ii) 100 K, (iii) 300 K, and (iv) 500 K.

Solution (i) At 0 K, kT = 0. The stress required to move the dislocation
is equal to the P–N stress, 1000 MN m–2.



(ii) At 100 K,

(�PN – �app)20 b3 = Q = 40kT = 5.52 � 10–20 J

�app = 1000 – (5.52 � 10–20 � l0–6)/(20 � 23 � 10–30) MN m–2

= 655 MN m–2—which is about two-thirds of the P–N stress.

(iii) At 300 K, the thermal energy kT is three times larger than at 100 K.
Hence, the stress to be applied externally falls to zero. That is, the
barrier to dislocation motion is entirely overcome by thermal
fluctuations. However, a threshold stress to move the dislocations in a
specified direction will be necessary.

(iv) The thermal energy available at 500 K is more than that needed to
overcome the barrier to dislocation motion.

The activation volume denotes the volume over which the thermal energy is to
concentrate in order to achieve the activation. In the above example, the activation
volume was relatively small, 20b3. Dislocations face different kinds of obstacles during
their motion through the crystal. In the Peierls–Nabarro model, the obstacle is due to
lattice friction, as the barrier depends on the basic crystal structure. For other kinds of
obstacles, the activation volume may be large. In such cases, the thermal energy may not
be of much help in overcoming the obstacles. These obstacles are called athermal
obstacles to dislocation motion. For example, the stress fields of the other dislocations in
a crystal may pose an obstacle to the motion of a dislocation. Such obstacles have a
large activation volume (~10 000b3). Overcoming them would require virtually the entire
stress to be applied externally, irrespective of the available thermal energy.

The yield stress of a number of crystalline materials is shown in Fig. 11.8 as
a function of temperature. The P–N stress for a ductile crystal such as copper is
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Fig. 11.8 The yield stress of some crystalline materials as a function of
temperature.
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so low that the thermal energy at most temperatures even below room
temperature is sufficient to overcome the P–N stress. The temperature
dependence of the yield stress is small, as only the threshold stress and the stress
required to overcome athermal obstacles, if any, are needed at most
temperatures. In a transition metal such as iron, the P–N barrier is comparatively
large and a high stress is needed to move the dislocation near absolute zero. This
stress decreases more or less linearly with increasing temperature. Eventually,
around room temperature, the stress levels off to a nearly constant value, that is
characteristic of the threshold stress and other athermal obstacles in the crystal.
In covalent crystals such as diamond and silicon, the P–N stress is very high so
that even at room temperature, a high stress is needed to move a dislocation.
These crystals show no plastic deformation at room temperature. However, as
the stress to move a dislocation is decreasing with increasing temperature, these
crystals may exhibit some plastic deformation at elevated temperatures.

11.6 Multiplication of Dislocations during Deformation

In an annealed crystal, the dislocation density is about 1010 m–2. On application
of a stress, if all of these were to move out and disappear at the surface of the
crystal, we would be left with a nearly perfect crystal with very few dislocations
in it. Experimental observations are quite contrary to this picture. During plastic
deformation, the dislocation density in the crystal increases by two to six orders
of magnitude, depending on the amount of deformation undergone by the
crystal. A lightly cold worked crystal may have a dislocation density of
1012 m–2, while a very heavily cold worked crystal may have 1016 m–2 of
dislocations. This indicates that there are sources within the crystal, which
generate new dislocations during plastic deformation. One such source is called
the Frank–Read source.

In Fig. 11.9, a segment AB of a dislocation line lies on a slip plane that is
the most common one for this crystal. A and B are dislocation nodes or points
beyond which the dislocation line does not lie on the slip plane. Only the
segment AB is capable of moving easily in response to an applied stress. Let a
shear stress � be applied parallel to the slip plane on which AB is lying. The
segment cannot pull itself away from the anchoring points, because of the
geometrical requirement that a dislocation cannot end abruptly within the
crystal. It responds to the applied stress, by bending itself to position 2 about the
fixed points A and B and thereby increasing its length. The total line energy of
the segment increases in the process. The extra energy comes from the work
done by the externally applied stress in bending the dislocation. Between
positions 1 and 2, the slip displacement equal in magnitude to the Burgers vector
b of the dislocation occurs over the shaded area of the slip plane, see Fig. 11.9.

As the stress is increased, the dislocation bends progressively to a
semicircular shape as illustrated. The t vector indicated in Fig. 11.9 follows the
bent dislocation line, going from B to A. On further increase of the stress, the
dislocation bends back on itself and the slip displacement spreads to regions on



the other side of the line AB. In one of these configurations, the direction of the
dislocation line at point C is opposite in sense to the direction at point C�. The t
vectors are in opposite directions at these two points. As the Burgers vector is
invariant, this means that the segment of the dislocation line near C is opposite
in sign to that near C�. The two segments attract and annihilate each other. This
produces a full dislocation loop and a left-over piece, which springs back to the
initial position AB. Note that, during this entire cycle, the direction of dislocation
motion at any point on the line is always perpendicular to the line at that point
(except at A and B).

The cycle can now be repeated to produce another full loop and so on. A
Frank–Read source can operate continuously and produce an indefinite number
of loops, provided the loops produced move out and disappear at the surface of
the crystal. If, however, the loops are piled up against an obstacle such as a
grain boundary, back stress will begin to build up at the source, the operation of
the source eventually coming to a halt.

The stress required to operate a Frank–Read source is given by

� = 
b
l
�

(11.19)

where � is the shear modulus of the crystal and l is the length of the segment
AB. The longer is the segment, the lower is the stress required to operate it.

11.7 Work Hardening and Dynamic Recovery

In HCP crystals, the close packed basal planes are the common slip planes. They
are all parallel to one another. In such cases, in a single crystal that is favourably
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Fig. 11.9 Successive stages in the operation of a Frank–Read source.
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oriented with respect to the tensile axis, the Frank–Read sources in the basal
planes can operate continuously for an unlimited period, as the loops produced
by the sources can move out and disappear at the surface of the crystal. There is
very little work hardening here, as the same source operates at the same resolved
shear stress. The stress to cause plastic deformation remains virtually
independent of the plastic strain. If, however, the tensile stress axis happens to
be such that there is only a small amount of resolved shear stress on the basal
planes, then slip on less common slip planes can also occur. These less common
slip planes (prismatic and pyramidal planes) are nonparallel to the basal planes.
Dislocations moving on nonparallel slip planes can intersect each other. In BCC
and FCC crystals, the intersection of dislocations moving on nonparallel slip
planes is very common. This intersection generally increases the stress required
to cause plastic deformation with increasing amount of plastic strain, resulting in
work hardening.

For example, consider the dislocations moving on nonparallel planes of an
FCC crystal. The slip planes in FCC belong to the {111} family. Let a

dislocation of Burgers vector 1/2[0 1 1] moving on ( 1 11) plane meet another

dislocation of Burgers vector 1/2[10 1 ] moving on (1 1 1) plane along the line of
intersection of these two planes, Fig. 11.10. These two dislocations can interact
and produce a third dislocation with a decrease in the potential energy:

1 1 1
[0 11] [10 1] [1 10]

2 2 2
� � (11.20)

b2

b1

b3

Mobile
dislocations

Sessile dislocation

Piled-up
dislocations

b2

b1

b3

Fig. 11.10 Formation of a sessile dislocation in an FCC crystal by a dislocation
reaction.



The strain energy decreases by 50% during this dislocation reaction. As the
Burgers vector of the product dislocation lies in neither of these two slip planes,
it becomes immobile (or sessile). Once the immobile dislocation forms by the
dislocation reaction given above, it acts as an obstacle to the oncoming
dislocations from the respective sources, which get piled up against the obstacle.
A back stress builds up and the dislocation sources stop operating.

The most effective Frank–Read source (which is the longest) is expected to
operate first (see Eq. (11.19)). Once this gets immobilized, less effective sources,
consisting of shorter segments, have to operate. This requires an increase in the
stress as given by Eq. (11.19). These sources will in turn get immobilized by the
formation of the sessile dislocation. The plastic deformation can continue only
with the activation of still shorter sources. Thus, a progressively increasing
amount of stress is required to continue the plastic deformation process,
resulting in work hardening even in single crystals. The formation of the
immobile dislocation is at best one possible explanation for work hardening.
There are several other detailed theories to explain work hardening, but we need
not go into these.

Empirically, it is found that the shear stress � to move a dislocation
increases with increasing dislocation density � according to the equation

� = �0 + A�� (11.21)

where �0 is a base stress to move the dislocation in the crystal in the absence of
other dislocations and A is a constant. This equation describes equally well the
work hardening behaviour, as the dislocation density increases with increasing
plastic strain.

For a soft crystal, the CRSS for initiation of plastic deformation is typically
0.5 MN m–2. If the constant A = 10 N m–l, a low dislocation density of 1010 m–2

corresponding to an annealed crystal gives a CRSS of 1.5 MN m–2. If the crystal is
now heavily cold worked, the dislocation density can increase to 1014 m–2 and the
flow stress � will now be 100 MN m–2, a large increase.

The stress-strain curves for specimens of mild steel with increasing amount
of cold work are shown in Fig. 11.11. Cold working increases the yield stress
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Fig. 11.11 The stress-strain curves for specimens of mild steel cold worked to
different degrees.
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but decreases the per cent elongation. Cold working is a common strengthening
method used in engineering practice. Under suitable conditions, the dislocation
density can be increased to very high values, with the strength approaching that
of a perfect crystal.

Example 11.3 The length of a dislocation line between two pinning points
is on an average equal to the reciprocal of the square root of the dislocation
density in a crystal. Calculate the dislocation density in copper, work hardened
to a stage where slip occurs at a shear stress of 35 MN m–2.

Solution The shear modulus of copper is 44 GN m–2. The Burgers vector
of dislocations in copper is 3.61/�2 = 2.55 Å. From Eq. (11.19),

l = 
9 10

6

44 10 2.55 10

35 10

b�
�

�� � ��
�

 = 0.32 �m

� = 
2 2 12

1 1

0.32 10l �

�
�

 = 1.0 � 1012 m–2

Single crystal experiments show that after a certain stress level is reached, the
rate of strain hardening decreases with further strain. This phenomenon is called
dynamic recovery. This stress level is sufficient to activate screw dislocations to
cross-slip. As the Burgers vector of the screw dislocations is parallel to the
dislocation line, they are free to move on any out of several equivalent slip
planes. When deformation is initiated, they move on those planes where the
resolved shear stress is a maximum. If they happen to pile up against an immobile
dislocation, they can cross-slip provided the applied shear stress is sufficiently
large to give the necessary resolved shear stress on the new slip plane.

11.8 The Effect of Grain Size on Dislocation Motion

Grain boundaries provide obstacles to dislocation motion. As the orientation of
the crystals on either side of a grain boundary is different and random, a
dislocation moving on a common slip plane in one crystal can rarely move onto
a similar slip plane in the adjacent crystal. In addition, the crystals are separated
by a thin noncrystalline region, which is the characteristic structure of a large
angle grain boundary. Hence, dislocations are stopped by a grain boundary and
pile up against it. The smaller is the grain size, the more frequent is the pile up
of dislocations. A twin boundary can act as an obstacle to dislocations in a
similar manner. Figure 11.12 shows the pile up of dislocations against twin
boundaries in a Cu-8% Al alloy.



In a piled up array of stationary dislocations, the stress concentration at the leading
dislocation (which is nearest to the grain boundary) is equal to the product of the
resolved shear stress on the slip plane and the number of other dislocations in the pile-
up. The magnitude of this concentration depends on the grain size which determines the
average distance from a dislocation source to the grain boundary. In large grain sizes, the
concentration factor may be as high as 100 and is more than sufficient to initiate plastic
deformation in the adjoining grain, by activating the Frank–Read sources in it. The
spreading of the plastic deformation from one grain to the next is then obviously a
function of the grain size, and is more effective for a large grain size. The yield strength
of a polycrystalline material as observed macroscopically in a tensile test requires the
initiation of the plastic deformation in a large number of grains by the spreading process.
Hence, the observed yield stress increases with decreasing grain size.

E.O. Hall and N.J. Petch have derived the following equation for the yield
stress � y of a polycrystalline material:

�y = � i + kd–1/2 (11.22)

where � i is the yield stress for a crystal of the same material where there are no
grain boundaries, k is a constant and d is the average grain diameter. The yield
strength increases with decreasing grain diameter.

The grain diameter can be approximately calculated from the ASTM
specification for grain size. For an ASTM number n, the number of grains per
square inch (per 645 mm2) at a magnification of 100 � is equal to 2n–1. Grain
size number ASTM 1 corresponds to 1 grain per square inch at a magnification
of 100 � or 104/645 = 15.5 grains per mm2 without any magnification. This can

Fig. 11.12 Electron micrograph of dislocations piled up against twin boundaries
in Cu-8%Al alloy. Magnification 15 000 �. (J. Nutting and R.G. Baker, The
Microstructure of Metals, by permission from the Institute of Metals, London.)
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be approximated to a grain diameter of 1/�15.5 = 0.25 mm. The values of � i and
k for some polycrystalline materials are listed in Table 11.3.

TABLE 11.3

Hall–Petch Constants for Some Materials

Material Fe Mo Nb Cu Al Zn

�i, MN m–2 48 110 126 26 16 33

k, MN m–3/2 0.71 1.77 0.034 0.11 0.068 0.22

Example 11.4 The yield strength of a polycrystalline material increases
from 120 MN m–2 to 220 MN m–2, on decreasing the grain diameter from
0.04 mm to 0.01 mm. Find the yield stress for a grain size of ASTM 9.

Solution By substituting the two yield stresses and the two grain
diameters in Eq. (11.22), we obtain

120 = �i + k (0.04 � 10–3)–1/2

220 = �i + k (0.01 � 10–3)–1/2

Solving for �i and k, we get

�i = 20 MN m–2

k = 0.633 MN m–3/2.

Grain diameter for ASTM 9 is

d = 
4

1

10 256/645�
 = 0.0159 mm

Yield stress for this grain size is

�y = 20 + 0.633 � (0.0159 � 10–3)–1/2

= 179 MN m–2

The normal range of grain sizes in metals varies in ASTM specification from ASTM
1 to ASTM 8. In recent years, ultra fine grain sizes have been produced in microalloyed
steels, which contain small quantities of strong carbide forming elements such as Nb, V
or Ti. These elements go into solution in austenite on reheating the steel billet to about
1300°C. When the steel is subsequently hot rolled, the temperature falls gradually and
the solubility of the alloying elements decreases. Very fine particles of alloy carbides
precipitate from austenite. These precipitates effectively pin down the migrating grain
boundaries during repeated recrystallization of the deformed austenite between passes at
successive stands of the rolling mill. This decreased growth rate due to pinning yields a
fine-grained recrystallized austenite. A fine-grained austenite provides more potential
sites at the grain boundaries for the nucleation of ferrite as the temperature further drops.



The end result is thus a very fine grain size of ferrite in the steel of about 2–3 �m
(ASTM 14–15). The yield strength increases as per the Hall–Petch equation. The
increase is about 50%. The other advantages are that the excellent weldability of mild
steel remains unaffected and the microalloyed steel is produced without a heat-treatment
step, which adds to the cost.

11.9 The Effect of Solute Atoms on Dislocation Motion

Solid solutions, in general, offer a greater resistance to dislocation motion than
pure crystals. The stress fields around solute atoms interact with the stress field
of a moving dislocation, thereby increasing the stress required for plastic
deformation. The solute strengthening effect depends mainly on two factors:

(i) The size difference between the solute and the solvent atom

(ii) The concentration of the solute atom.

The more the size difference between the solute and the solvent, the more
intense is the stress field around the solute and its interaction with the moving
dislocation is correspondingly stronger. With a large concentration of the solute,
the moving dislocation interacts with the solute stress fields at many points
along its length. The effect of different solutes on the yield stress of copper is
shown in Fig. 11.13, as a function of the concentration of the solute. The yield
stress is approximately proportional to the concentration of the solute. The slope

Fig. 11.13 Solute strengthening of a copper crystal by solutes of different sizes.
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of the straight lines in the figure depends on the size difference. For example,
zinc and nickel have a size difference of 0.03 Å with respect to copper:

| rZn – rCu | = 0.03 Å

| rNi – rCu | = 0.03 Å

This size difference is small and, accordingly, the strengthening effect of zinc and
nickel is the least among the solutes shown in Fig. 11.13. The size difference
between copper and tin is large and the slope of the line for tin is also large.

For the same size difference, the smaller atom, viz. nickel, produces a
greater strengthening effect than zinc. In addition to the size difference, the
intensity of the stress field around a solute atom is also dependent on the elastic
modulus of the solute. Nickel having a higher elastic modulus than zinc
produces a more intense stress field and a greater strengthening effect.

In order to improve the strength of a crystal by solute strengthening, it
would appear that the maximum size difference coupled with the maximum
concentration of the solute would give the best results. However, these two
factors are mutually exclusive. Recall from Hume–Ruthery’s rules: the more the
size difference between the solute and the solvent, the smaller is the equilibrium
solubility. The solubility can be increased by producing a supersaturated
metastable solid solution by quenching from an elevated temperature.

The effect of the size difference and the concentration of the solute
described above for substitutional solutes is also valid for interstitial solutes. The
interstitial atoms are usually larger than the interstitial voids they occupy. Here,
the strengthening effect can be very strong, except that the equilibrium solubility
tends to be small. Nature has provided mankind with a unique reaction in steel,
which permits an unusually large solubility of interstitial carbon in iron in spite
of a very unfavourable size effect. Martensite in steels is a supersaturated
solution of carbon in iron, obtained by quenching the steel and not allowing the
carbon to diffuse out of the iron lattice. For example, an eutectoid steel contains
0.8% carbon in martensite, which is some 40 times more than the equilibrium
solubility in ferrite (~0.02%) at the eutectoid temperature. On quenching, the
carbon gets trapped in the interstitial positions, as the austenite shears over to
form the martensitic structure. The stress field produced by the oversized carbon
atoms is so intense that the dislocation motion is very effectively hindered.
Indeed, it is so effective that it becomes necessary to temper the martensite to
restore some ductility, at the expense of some hardness.

In addition to solute strengthening, the martensitic plates may contain either
a high dislocation density or very fine transformation twins, depending on the
type of martensite obtained. These features also aid in increasing the strength of
martensite.

The carbon atoms in the ferrite phase are responsible for the occurrence of a sharp
yield point in mild steel. They segregate around the dislocation cores and reduce the total
distortional energy. The segregation is known as a Cottrell atmosphere and the pinning
effect of the atmosphere on the dislocations raises the yield stress of the crystal. The
dislocations are strongly locked by the atmosphere and do not get freed for motion during
plastic deformation. Very few free dislocations are available at the start of the plastic



deformation near the upper yield point of the mild steel. Once the deformation starts, the
rapid multiplication of new dislocations and the stress dependence of their velocity are
responsible for a fall in stress to the lower yield point at the beginning of plastic region.
Thereafter, the stress-strain curve shows the usual work hardening characteristics.

After a mild steel specimen has been strained beyond the yield point, if the load is
released and reapplied immediately, no yield point is observed, as carbon atoms have not
had the time to diffuse to the new dislocation cores for forming atmospheres. If the steel
is aged for some time at room temperature or above, the carbon atoms diffuse to the
dislocations and lock them up. So, the yield point returns after ageing.

11.10 The Effect of Precipitate Particles on Dislocation Motion

Precipitate particles in a matrix provide obstacles to the motion of dislocations.
The dislocations moving through the matrix phase have two alternatives. They
can either cut through the precipitate particles or bend around and bypass them,
Fig. 11.14. The first alternative will be possible only when the slip plane is
continuous from the matrix through the precipitate particle and when the stress
to move a dislocation in the crystal structure of the precipitate particle is
comparable to that in the matrix. Cutting through occurs for very small
precipitate particles, which can be considered to be groups of segregated solute
atoms. Cutting through will not be possible, if there is an interface between the
precipitate and the matrix and if the orientation changes abruptly at the interface.
Under such circumstances, the dislocations bend around and bypass the
precipitate particles, as illustrated in Figs. 11.14b and 11.14d. The mechanism of
bypassing is very similar to the operation of a Frank–Read source. The stress
required to bend a dislocation is inversely proportional to the average
interparticle spacing, see Eq. (11.19). Effective strengthening is achieved in the
bending process, when the precipitate particles are submicroscopic in size. The
spacing between them should be typically a few hundred angstroms. Optimum
ageing results in the right interparticle spacing. Overageing allows the fine
particles to coalesce into larger and fewer particles. The interparticle spacing is
increased thereby and the yield stress decreases.

Example 11.5 One million precipitate particles per unit volume of a
precipitation hardened alloy coalesce into 1000 particles due to overageing.
Assuming the particles to be uniformly distributed and their volume to be small
compared to the volume of the matrix, estimate by how much the yield strength
would have changed.

Solution When 106 particles coalesce to form 103 particles, the linear

distance of separation between them increases to 3 6 310 /10 10�  times the
initial value. The stress required to bend the dislocation around precipitate
particle is inversely proportional to the spacing between the particles. So, the
yield strength would have decreased to 10% of the initial value, due to the
coarsening.
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Fig. 11.14 A moving dislocation either (a) cuts through the precipitate particles or
(b) bypasses them. Electron micrographs depicting these two processes are shown in

(c) and (d). [(c) and (d) Courtesy: F.J. Humphreys and V. Ramaswamy.]



Table 11.4 lists the yield strength and per cent elongation of some
precipitation hardened alloys.

TABLE 11.4

Yield Strength and Per cent Elongation of Some Precipitation Hardened
Alloys

Alloy
Approximate Heat-treated Yield strength, Per cent
composition condition MN m–2 elongation

Al–Zn–Mg 5.6%Zn, 2.6%Mg Annealed 103 16

Aged 503 11

Cu–Be 2%Be Annealed 221 47
Aged 1069 7

Stainless 17%Cr, 7%Ni, Annealed 324 39

steel 0.07% C Aged 1276 9
Maraging 8%Co, 5%Mo, Annealed 648 18

steel 0.8%Nb, 0.4%Ti Aged 1530 11

11.11 Review of Strengthening Methods

As a review, the four main methods of strengthening crystalline materials against
plastic yield are summarized below.

Real crystals are weak due to the presence of dislocations in them. Perfect
crystals (whiskers) which are free of dislocations have very high strength, but
they are so thin that they cannot be used as structural and machine components.

The key to increase the strength of crystalline materials against plastic yield
is to increase the stress required to move a dislocation.

11.11.1 Strain Hardening

When metals are cold worked, their strength and hardness increase. Annealed
crystals have a dislocation density of about 108 m–2. This can be increased to
1010–1012 m–2 by moderate cold working and to 1014–1016 m–2 by heavy cold
working. As the dislocation density increases, the stress required to move any
one dislocation increases due to the interfering effect of the stress fields of the
surrounding dislocations. This phenomenon is the basis of work hardening and is
described by means of the following equation:

� = �0 + A��

where � is the stress to move a dislocation in a matrix of dislocation density �,
�0 is the stress to move the dislocation in the same matrix with zero dislocation
density and A is a constant.
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11.11.2 Grain Refinement

As the orientation changes at a grain boundary, the slip plane in a grain does not
continue in the same direction beyond the boundary. So, dislocations gliding on a
slip plane are unable to cross the boundary but get piled up against it. This
happens more often in a fine grained material. The yield strength of a polycry-
stalline material is a function of its grain size as given by the Hall–Petch equation:

�y = �i + kd–1/2

where �i is the yield strength at ‘infinite’ grain size (single crystal), k is the
Hall–Petch constant, and d is the mean grain diameter, which can be derived
from the ASTM grain size number.

The strengthening effect for a given grain size depends on the magnitude of
the constant k. For example, k for BCC iron is 0.71 MN m–3/2, whereas it is only
0.11 and 0.07 for the FCC metals, copper and aluminium. So, a given amount of
grain refinement produces a greater strengthening effect in iron.

11.11.3 Solid Solution Strengthening

The strengthening effect of solute atoms in a crystal depends on the size
difference between the solute and the solvent atoms and the concentration of the
solute. The more is the difference in the atomic sizes, the more is the
strengthening effect. Higher concentrations of the solute also increase the
strength proportionately. It is not possible to dissolve a large concentration of a
solute, which differs substantially in size from the solvent, as this would be
contradicting the Hume–Rothery’s rules. However, this difficulty could be partly
overcome by quenching from an elevated temperature and retaining the larger
solubility at the higher temperature in the form of a supersaturated solution at
the lower temperature. Quenching austenite retains all the carbon in solution in
the product phase martensite, producing very hard steels.

11.11.4 Precipitation Strengthening

A microstructure that consists of a very fine, submicroscopic distribution of
precipitates in a matrix has a good strength. The dislocations moving in the
matrix are effectively hindered by the closely spaced precipitate particles, as
they have to bend around and bypass the particles. The strengthening effect is
inversely proportional to the particle spacing, the minimum attainable spacing
being of the order of 100 Å.

Such a microstructure tends to become unstable at elevated temperatures, as
the particles undergo coarsening which increases the interparticle spacing and
decreases the strength correspondingly. This happens during overageing in
aluminium alloys.



CREEP

Creep is the permanent deformation of a material under load as a function of
time. It is appreciable only at temperatures above 0.4Tm. Room temperature for
iron is 0.16Tm and for copper it is 0.22Tm so that creep at room temperature is
negligible in these materials. On the other hand, room temperature is about half
of the melting point (in kelvin) for lead and so it undergoes creep at room
temperature. Creep of lead under its own weight is seen in old time roofs, where
a thick rim of lead is found at the edge of the roofs.

11.12 Mechanisms of Creep

Figure 11.15 shows typical creep curves. The strain is plotted as a function of
time under constant load or constant stress. The creep curve exhibits three
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Fig. 11.15 Creep curves showing the increase in plastic strain as a function of
time.

stages. In stage I, the creep rate decreases with time; the effect of work
hardening is more than that of recovery in this stage. In stage II, the creep rate is
a minimum and is constant with time; here, the work hardening and recovery
processes are exactly balanced. In stage III, the creep rate increases with time
until fracture occurs. In this stage, necking of the specimen starts and other
processes that ultimately result in failure set in.

The temperature and time dependence of creep deformation indicates that it
is a thermally activated process. Several atomic processes are known to be
responsible for creep in crystalline materials, see Fig. 11.16.

When considering work hardening in Section 11.7, it was pointed out that
dynamic recovery occurs in the later stages of the plastic deformation process.
Dynamic recovery was attributed to the cross-slip of screw dislocations. In the
low temperature region of creep, the cross-slip continues with the aid of thermal
energy and causes further plastic strain as a function of time.
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The Burgers vector b and the t vector of edge dislocations are nonparallel.
Therefore, they cannot cross-slip like screw dislocations. However, if the
temperature is high enough for an appreciable diffusion rate of vacancies, these
may diffuse to the edge dislocations or away from them, making them to climb
up or down, see Fig. 11.16a. Thus edge dislocations piled up against an
immobile dislocation can move to other parallel slip planes by climb and
continue their motion in response to the stress. The rate controlling step in the
climb process is the diffusion of vacancies. The measured activation energy for
creep agrees with the activation energy for self-diffusion by the vacancy
mechanism in a number of materials.

Another mechanism of creep is called diffusional creep. Here also the
diffusion of vacancies controls the creep rate, but the mechanism does not
involve the climb of edge dislocations. Vacancies move in response to the
applied stress from surfaces of the specimen transverse to the stress axis to the
surfaces that are parallel to the stress axis. Over a period of time, this movement
would elongate the specimen in the direction of the stress axis and contract it in
the transverse direction resulting in creep, as shown in Fig. 11.16b.

The third mechanism of creep is the sliding of neighbouring grains with
respect to the boundary that separates them (see Fig. 11.16c). Grain boundaries
lose their strength at a lower temperature than the grains themselves. This effect
arises from the noncrystalline structure of the grain boundaries. As illustrated in

(a) (b) (c)
�

�

Vacancy flow
directions

Fig. 11.16 Mechanisms of creep: (a) dislocation climb; (b) vacancy diffusion; and
(c) grain boundary sliding.



Fig. 9.17, the viscosity of a noncrystalline substance decreases continuously on
heating into the liquid range, whereas a crystalline substance maintains its
viscosity at a high value right up to the melting point. At temperatures above
0.5 Tm, the viscosity of the grain boundaries is small enough for them to behave
like a very viscous liquid separating the neighbouring grains and allowing them to
slide against each other. This behaviour of the grain boundaries is in contrast to
their low temperature behaviour. At low temperatures, they do not flow viscously,
but provide effective obstacles to dislocation motion. At high temperatures, the
grain boundaries facilitate the deformation process by sliding, whereas at low
temperatures, they increase the yield strength by stopping the dislocations.

11.13 Creep Resistant Materials

Materials for machine parts and structural components used at elevated
temperatures must be creep resistant. A number of engineering processes require
the use of elevated temperatures. Cracking stills in the petroleum industry need
high temperatures to accelerate the reaction rates (recall the Arrhenius law) and
to control the reaction products. In energy conversion, the efficiency � of a heat
cycle such as the Carnot cycle is dependent on the difference between the
operating temperature T2 and the sink temperature T1:

� = 2 1

2

T T
T
�

(11.23)

A thermodynamic efficiency of less than 30% with the use of steam at
atmospheric pressure can be increased to more than 75% for a gas turbine with
an operating temperature of 900°C. Materials used for turbine blades must be
creep resistant. They should not deform by creep during service. Creep can
result in seizing of the blades with the turbine casing.

As a first requirement, the materials to be used at high temperatures must
have a high melting point, as creep becomes significant at temperatures greater
than 0.4Tm. Refractory oxides such as MgO and Al2O3 have high melting points
and, as such, are very suitable for high temperature use. Their brittleness limits
their use to applications where only compressive stresses are encountered.
Recent developments of tougher ceramics such as silicon nitride (Si3N4) indicate
that selected parts of a heat engine such as piston rings and cylinder heads can
be produced from ceramic materials.

Metals and alloys can be used under more versatile conditions. Most creep
resistant alloys consist of a base metal of a fairly high melting point. Since the
ability to fabricate into required shapes of the components, the relative cost of
production and the density are the other considerations in the choice of a
material, metals such as tungsten with a melting point of well over 3000°C have
not found widespread use. The commonly used high temperature alloys are iron-
base, nickel-base and cobalt-base alloys. All the three base metals have
moderately high melting points around 1500°C. The creep resistance of these
alloys in the temperature range from 0.5Tm up to the melting point is
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considerably improved by a special strengthening process called dispersion
hardening. In TD (thoria dispersed) nickel, fine particles of thoria (ThO2) are
dispersed in the nickel matrix and the interparticle distance is small enough for
effective hindrance of dislocation motion in the matrix. TD nickel maintains its
strength up to 0.9Tm. The strengthening mechanism is similar to that of
precipitation hardening discussed in Sec. 11.10 under plastic deformation.
However, there is an important difference. At high temperatures, a precipitation-
hardened alloy would lose its strength by the coarsening process. The tiny
precipitate particles would coalesce into fewer and bigger particles, thereby
increasing the interparticle distance and lowering the strength. The high surface
area to volume ratio of the fine particles provides the driving force for the
coarsening process. In dispersion hardening, on the other hand, oxide particles
are embedded in a metallic matrix, with very little solubility of the oxide in the
metallic phase. This negligible solubility effectively prevents coarsening, as the
coalescence of the particles can occur only by the smaller particles dissolving
and reprecipitating on larger particles. In nickel base superalloys, the coarsening
is prevented by a different mechanism. Here, the precipitate particles of
Ni3(Ti,Al) form an interface with the matrix of a very low energy, about
0.005 J m–2 (5 erg/cm2). As the decrease in the total surface energy is the
driving force for coarsening, very little driving force is available here.

Among the other strengthening processes discussed under plastic
deformation, cold working cannot be used for creep resistance. At temperatures
above 0.4Tm, recrystallization will occur quite readily and the cold-worked
strength will be lost on recrystallization, recall Fig. 9.19. Solid solution
strengthening can be used for better creep resistance, in the same way as in
plastic deformation.

A fine grained material is desirable for better mechanical properties in a low
temperature application, where creep is not important. On the other hand, for
high temperature applications, fine-grained materials are to be avoided, as grain
boundary sliding can add to creep deformation. There are no grain boundaries in
a single crystal and, therefore, grain boundary sliding is not a problem here.
Single crystal titanium turbine blades have been tried out, even though the cost
is an inhibiting factor here. A less expensive way of minimizing grain boundary
sliding is to orient the grains in such a way that the boundary sliding does not
result in cavities at grain junctions. These cavities, if present, can coalesce
together and cause creep fracture.

�������

1. The common tensile test on a ductile crystalline material gives data on
yield strength, ultimate tensile strength, per cent elongation and per cent
reduction in area.

2. Slip is the common mode of plastic deformation at ambient and elevated
temperatures. Slip occurs along well defined crystallographic planes and
directions.
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3. The observed shear strengths of crystals are some three or four orders of
magnitude smaller than the theoretical strengths. The motion of
dislocations at low stresses accounts for this discrepancy. Only in perfect
crystals such as whiskers, the theoretical strength is attainable.

4. The stress to move a dislocation in a crystal is determined by the bond
strength and the bond directionality. Covalent crystals, requiring a large
stress to move a dislocation, are not ductile. Typical metals need small
stresses to move a dislocation and are ductile.

5. Crystals that are inherently hard show a strong dependence of yield stress
on temperature.

6. There are sources for the generation of dislocations within crystals. These
sources account for the increase in dislocation density with increasing
amount of plastic deformation.

7. Work hardening is due to the formation of sessile (immobile) dislocations
by the interaction of dislocations moving on non-parallel slip planes. The
plastic flow strength increases during work hardening as the square root of
the dislocation density.

8. Grain boundaries provide effective obstacles to dislocation motion. The
yield stress of a polycrystalline material increases as the reciprocal of the
square root of the grain diameter.

9. Dislocations interact with the stress fields of solute atoms, leading to solid
solution strengthening. The hardness of martensite is an extreme example,
where all the carbon dissolved in austenite is retained in martensite by
quenching, resulting in substantial strengthening due to supersaturation.

10. Very closely spaced precipitate particles obstruct dislocation motion. The
yield stress varies as the reciprocal of the particle spacing.

11. Creep is the thermally activated deformation that occurs as a function of
time at temperatures above 0.4Tm. Dispersion hardening is an effective
method of improving creep resistance.

��	
����

11.1 The yield stress, the strength coefficient K, and the work hardening
exponent n for a quenched and tempered steel and for annealed copper
are listed below.

Material �y, M
–2 K, M m–2 n

Steel 520 1270 0.15
Copper 55 317 0.54

Calculate the difference between the flow stress at 0.1 plastic strain and
the yield stress for the two materials.

Answer: Steel: 379 and copper: 36 MN m–2.
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11.2 Find all the slip systems that have the following slip planes: (i) (111) in

an FCC crystal and (ii) (1 1 0) in a BCC crystal.

11.3 Show that the resolved shear stress reaches a maximum value, when
�1 = �2 = 45°.

11.4 Sometimes, slip occurs on planes other than the close packed planes in
HCP crystals. If the c/a ratio of Zn is 1.86 and that of Co is 1.62, which
one is likely to slip more often on close packed planes and why?

11.5 A tensile stress of 10 MN m–2 is applied along the [112] direction of an
iron (BCC) crystal. What is the shear stress in the [010] direction lying
on the (001) plane?

Answer: 3.33 MN m–2.

11.6 A zinc crystal (HCP) is oriented with normal to the basal plane making
an angle of 60° with the tensile axis and the three slip directions x1, x2

and x3 lying on its plane making angles of 38°, 45° and 84°, respectively
with the tensile axis. If the plastic deformation is first observed at a stress
of 2.3 MN m–2, find which of the three slip directions has initiated slip
and at what value of the resolved shear stress?
Answer: x1 at 0.9 MN m–2.

11.7 An FCC crystal has a CRSS of 0.7 MN m–2. What tensile stress must be
applied along the [100] direction of the crystal to initiate plastic
deformation?

Answer: 1.7 MN m–2.

11.8 Estimate the width of dislocations in copper. The shear stress to initiate
plastic deformation is �/105.

Answer: 4.7 Å.

11.9 The activation volume for the intersection of a moving dislocation with
other dislocations in the matrix can be as high as 5000 b3. Show that the
dislocation intersection is essentially an athermal process at room
temperature.

11.10 A cube of copper of 10 mm � 10 mm � 10 mm is sheared at a rate of
10 mm per min. Estimate in order of magnitude the minimum number of
dislocations in motion in this cube at a given instant. Assume a
dislocation velocity of 1 km s–1.
Answer: 10

11.11 Make a series of sketches to show how a Frank–Read source operates.
How many loops are created from a F–R source in a single crystal of
copper, when the corresponding slip displacement is 1 mm along the slip
plane?

Answer: 4 � 106.
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11.12 The lengths of Frank–Read sources in a copper crystal vary from 10–8 m
to l0–6 m. Estimate the shear stress at which plastic deformation is
initiated.

Answer: 11 MN m–2.

11.13 Compute the stored energy of copper cold worked from the annealed
state to a dislocation density of 1014 m–2.
Answer: 0.14 MJ m–3.

11.14 In a cold-worked copper crystal, having a dislocation density of
3 � 1014 m–2, the shear stress to move a dislocation is found to be
100 MN m–2. This value reduces to 1 MN m–2 on annealing. Find the
shear stress to move a dislocation in a copper crystal cold worked to a
dislocation density of 2 � 1012 m–2.

Answer: 9.08 MN m–2.

11.15 Show that the average grain diameter decreases by half, for every
increase of 2 in the ASTM number for grain size.

11.16 Estimate the yield stress of a polycrystalline Fe-3% Si alloy, when the
grain size is ASTM 1, 4, and 8, respectively. Assume �i = 80 MN m–2

and k = 0.63 MN m–3/2.

Answer: 120, 147 and 214 MN m–2.

11.17 What difficulty would you expect in increasing the concentration of the
solute tin in bronze to 40% as in brass, for increasing the solid solution
strengthening?

11.18 In a duralumin alloy, the precipitates are 1 �m diameter and the average
distance between centres of neighbouring particles is 10 �m. Estimate the
yield stress of the alloy. Is this alloy aged to the optimum extent?
Explain.
Answer: 0.79 MN m–2.

11.19 Supersonic aircraft with a speed greater than Mach 2 attain a skin
temperature of over 250°C. Explain why a duralumin alloy cannot be
used for such an application.

11.20 Compare the methods available for increasing the low temperature
strength and the creep strength of a crystalline solid.

11.21 In an FCC crystal, the tensile axis is along the [12 1 ] direction.
Determine the slip system that is most favourably oriented for slip to start
at the lowest applied tensile stress.

[Hint: cos � = 1 2 1 2 1 2

2 2 2 2 2 2
1 1 1 2 2 2( )( )

h h k k l l

h k l h k l

� �

� � � �

where � is the angle between two planes or two directions.]

Answer: (111) [01 1 ] or ( 1 1 1 ) [110]
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11.22 Compute the mean grain diameters in mm, corresponding to ASTM grain
size numbers (i) 3, (ii) 0, and (iii) –2.5.

Answer: 0.125 mm, 0.35 mm, and 0.84 mm.

11.23 A grain size of ASTM 7 in a mild steel is refined to ASTM 14 by the
addition of microalloying elements. Estimate the increase in the yield
strength of the steel.
Answer: 300 MN m–2.

11.24 Two samples of an Fe-3%Si alloy have grain sizes of ASTM 1 and 8
respectively. They have yield strengths of 118 and 207 MN m–2.
Calculate the yield strength of a single crystal of this alloy.

Answer: 8l MN m–2.

11.25 Estimate the yield strength of a cold-worked microalloyed steel from the
following data:

Peierls–Nabarro (tensile) stress for Fe : 35 MN m–2

Solid solution strengthening by Mn and Si : 135 MN m–2

Dislocation density due to cold working : 1014 m–2

ASTM grain size number : 13
Assume that the constant A in the work hardening equation is 10 N m–1.

Answer: 630 MN m–2.

11.26 Describe briefly the main strengthening methods against plastic yield at
low temperatures.

11.27 Reexamine critically the above strengthening methods against plastic
yield for temperatures above 0.4Tm.

11.28 Discuss the role of (i) grain boundaries and (ii) precipitate particles, in
strengthening crystalline materials against yield at low as well as high
temperatures of deformation.

�������� ��	���� �����	��

1. As compared to engineering stress-strain curve, the true stress-strain curve
is

A. above and to the left B. below and to the right

C. crosses the engineering curve D. parallel to the engineering curve

2. In a tensile test, the engineering stress corresponding to the maximum load
is called
A. yield strength B. tensile strength

C. UTS D. upper yield stress
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3. In a tensile test, necking starts at

A. lower yield stress B. upper yield stress
C. ultimate tensile stress D. just before fracture

4. Superplastic materials have an index of strain-rate sensitivity m in the
range of

A. 0 B. 0.1–0.2 C. 0.4–0.9 D. 1.5–2.0

5. The critical resolved shear stress (CRSS) for a polycrystalline copper is

A. � /6 B. � /88,000 C. � /110,000 D. not defined

6. The resolved shear stress for plastic deformation to start in an iron crystal
is (� = shear modulus)
A. � B. �/6 C. �/30 D. �/4700

7. Crystals like diamond and silicon are brittle, because

A. they contain no dislocations

B. they are noncrystalline

C. the stress to move a dislocation is high in them
D. they contain very few dislocations

8. Copper is ductile, because

A. it is a perfect crystal

B. it contains a very high density of dislocations

C. it has glassy structure
D. the stress to move a dislocation in it is low

9. For copper, the yield stress �y and the brittle fracture stress �f are related
as

A. �y > � f B. � f > � y C. � f << �y D. �y = � f

10. The length of the Frank–Read source operating after work hardening to
double the initial yield stress is approximately

A. half B. same as before C. double D. 4 times

11. The yield strength of an annealed copper crystal is 1 MPa. It increases to
9 MPa on cold working to a dislocation density of 2 � 1012 m–2. The value
of the constant A in the equation describing the work-hardening effect is

A. 5.66 N m–1 B. 5.66 N m–2

C. 5.72 N m–1 D. 3 � 10–13 N m–2

12. The yield stress of 1 MN m–2 of an annealed copper crystal increases to
100 MN m–2 on cold working to a dislocation density of 1014 m–2. If cold
working had been done to a dislocation density of 1012 m–2, the yield
stress would be
A. 109 MN m–2 B. 67 MN m–2 C. 10.9 MN m–2 D. no change
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13. The yield stress of a copper crystal is 100 and 10 MN m–2, when cold
worked to a dislocation density of 3 � 1014 and 2 � 1012 m–2, respectively.
The yield stress of the softest crystal is

A. 0 MN m–2 B. 2 MN m–2 C. 10 MN m–2 D. 3.33 MN m–2

14. If ASTM grain size number 7 corresponds to grain diameter of 0.03 mm,
ASTM 4 corresponds to
A. 0.24 mm B. 0.085 mm C. 0.011 mm D. 0.004 mm

15. A grain size measured wrongly at a magnification of 300 � gave an ASTM
number of 2. The correct grain size number should be

A. –1 B. 5.2 C. 6.0 D. 5.0

16. The mean grain diameter corresponding to ASTM number = –0.5 is

A. 5 mm B. 0.05 mm C. 0.43 mm D. 0.30 mm

17. The ASTM grain size number of a material which has 28 grains per sq.in.
at a magnification 75 � is about
A. 14 B. 7 C. 5 D. 4

18. A mild steel (k = 0.7 MN m–3/2) of 0.03 mm grain diameter is grain
refined to 0.003 mm. The increase in yield strength (MN m–2) will be
about

A. 275 B. –275 C. –0.00275 D. 8.1

19. The yield stresses of an Fe-4%Si alloy at grain sizes of 0.015 and
0.045 mm are 214 and 147 MN m–2. The yield stress of a single crystal is

A. 55.5 MN m–2 B. 120 MN m–2 C. 80 MN m–2 D. 360 MN m–2

20. The yield stresses of both Au and Ag single crystals are 0.7 MPa. The
yield stress of a 50 : 50 solid solution is
A. 0.7 MPa B. > 0.7 MPa C. < 0.7 MPa D. 0

21. The radii of copper, zinc and tin are 1.28, 1.31 and 1.51 Å respectively. As
compared to zinc, tin in copper will produce a strengthening effect that is

A. large B. small C. very small D. same

22. When the inter-precipitate spacing increases from 200 to 2000 Å, the ratio
of the new yield strength to the initial strength is

A. 10 B. 1 C. 0.1 D. none of these

23. The methods to increase the yield strength of a crystalline material are
A. grain refinement B. annealing

C. solute additions D. precipitation hardening

24. The most desirable method of increasing the yield strength of mild steel is

A. grain refinement B. cold working
C. solute additions D. precipitation hardening
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25. If the melting point of polyethylene is 140°C, it will not creep at

A. room temperature B. 0°C
C. –60°C D. –196°C

26. With melting points given in brackets, tick those materials which will
creep significantly at 180°C

A. Pb (327°C) B. Cu (1084°C) C. Al (660°C) D. W (3410°C)

27. TD (thoria dispersed) nickel has adequate creep resistance up to 0.7 Tm

because

A. thoria has a high melting point

B. thoria does not dissolve in nickel
C. nickel has a high melting point

D. nickel gets work hardened during service

Answers

1. A 2. B, C 3. C 4. C 5. D
6. D 7. C 8. D 9. B 10. A

11. A 12. C 13. B 14. B 15. B
16. C 17. C 18. A 19. A 20. B
21. A 22. C 23. A, C, D 24. A 25. D
26. A, C 27. B

Sources for Experimental Data

ASM International, Metals Handbook, 10th ed., Vol. 1, Irons and Steels and
High Performance Alloys: Specialty Steels and Heat Resistant Alloys,
pp. 755–1003, Materials Park, Ohio (1990).
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CHAPTER

Fracture refers to the failure of a material under load by breaking into two or
more pieces. Fracture can occur under all service conditions. Materials subjected
to alternating or cyclic loading (as in machines) fail due to fatigue. The fracture
under such circumstances is called fatigue fracture. Materials used at high
temperatures can fail due to creep fracture. The characteristics of the various
fractures have been studied extensively. Preventing failure during service is one
of the most important problems facing the engineer.

In this chapter, we briefly discuss the nature of ductile and brittle fracture
and the fracture toughness of materials. We describe the methods of protecting
materials against fracture and fatigue failure at the end of the chapter.

Units

 
Quantity

 SI units  
Other unitsUnit  Symbol

Fracture stress �f meganewton MN m–2 kgf/mm2,
per square dyne/cm2,

metre psi, ksi
Crack length c micrometre �m inch, cm
Surface energy � joule per J m–2 erg/cm2

square metre
Young’s modulus Y giganewton GN m–2 kgf/mm2,

per metre2 dyne/cm2

Fracture toughness Gc joule per J m–2 lb-in/in2

square metre
Fracture toughness KIc meganewton MN m–3/2 ksi�in

per (metre)3/2

12.1 Ductile Fracture

Ductile fracture is the rupture of a material after a considerable amount of
plastic deformation. Materials begin to neck beyond the ultimate tensile strength,
which is at the maximum point in the load-elongation curve, see Fig. 11.la. The
neck refers to the reduced cross-section of the specimen near the middle. The
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true stress in this region is increasing, in spite of the fall in the load and the
engineering stress. Fully ductile materials will continue to neck down to an
infinitesimally thin edge or a point and thus fail, as the cross-section at the neck
becomes so small that it cannot bear the load any longer. The more common
type of ductile fracture occurs when the reduced cross-section has still an
appreciable area. Here, the cracks are found to nucleate at brittle particles:
either the natural kind found in multiphase materials, e.g., cementite in steel, or
foreign inclusions, e.g., oxide inclusions in copper. When a brittle particle is
present, it is difficult to maintain compatibility in the neck region between the
continuously deforming matrix and the nondeforming particle. This results in the
formation of very tiny voids near the matrix-particle interface. If fracture
initiates at pores in the neck region, then the voids are already present. The
voids grow with increasing deformation and ultimately reach sizes of the order
of a mm. At this stage, the material may tear apart, see Fig. 12.1. The effective

(a) (b)

(c) (d)

Fig. 12.1 (a–d) Successive stages in the ductile fracture of a tensile test specimen.
(e) Scanning electron micrograph of the fractured surface of an aluminium alloy,

showing dimples suggestive of void growth. [(e) A.S. Argon (Ed.), Physics of
Strength and Plasticity, by permission from the MIT Press, Cambridge, Mass.]

(e)
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cross-section of the neck is small due to the presence of these discontinuities,
even though the apparent cross-section may be appreciable. This model of
ductile fracture is supported by the finding that materials of ultra high purity
which do not have inclusions or pores, do rupture in a fully ductile manner, that
is, after thinning down to a point or an edge.

12.2 Brittle Fracture

Brittle fracture is the failure of a material without apparent plastic deformation.
If the broken pieces after a brittle fracture are fitted together, the original shape
and dimensions of the specimen are restored. In an ideal material, fracture can
be visualized as the pulling apart and breaking of the interatomic bonds across
two neighbouring atomic planes. A simple calculation similar to that done for
the theoretical shear strength of a perfect crystal (Sec. 11.3) shows that the
tensile stress required to break the interatomic bonds across two adjacent atomic
planes is of the order of Y/6, where Y is the Young’s modulus of the material.
Brittle materials, however, break at a much lower stress, of the order of Y/1000.
This difference of two orders of magnitude between the calculated and the
observed strengths is similar to the discrepancy between the strengths of perfect
and real crystals, see Sec. 11.3. Just as the presence of dislocations in real
crystals explains the discrepancy, here the existence of tiny cracks in brittle
materials is the reason for their poor tensile strength.

Griffith has postulated a criterion for the propagation of a pre-existing crack
in a brittle material. Consider a lens shaped crack of length 2c shown in
Fig. 12.2. The material is of unit thickness and the crack runs from the front to

Fig. 12.2 Illustration of Griffith’s criterion. The flow lines depict elastic lines of
force.

c

�

2c

1

�



the back face. When a longitudinal tensile stress � is applied, the crack tends to
increase its length in the transverse direction. If the crack spreads, the surface
area of the crack increases, while the elastic strain energy stored in the material
decreases; this is because the elastic strains cannot be continuous across the
cracked region. If � is the surface energy per unit area of the material, then the
surface energy of the crack is 4� c. Note that two surfaces are created, as the
crack spreads. The elastic energy density (elastic energy per unit volume of the
material) is (1/2)��, where � is the elastic strain. Substituting for � in terms of
the Young’s modulus Y, the elastic energy density becomes (1/2)� 2/Y. As a first
approximation, we can take that no elastic energy is stored in a cylindrical
volume around the crack, where there are no lines of force in Fig. 12.2. Thus the
elastic energy released, when the crack is introduced, is equal to �� 2c2/2Y. A
more detailed calculation shows that this strain-free volume is, in fact, larger. It
is better approximated to twice the volume of the cylindrical region.
Correspondingly, the elastic energy release is also twice the above value.

If we write an energy equation for the crack formation, the energy change
�U as the crack forms is given by

�U = 4�c – 
2 2c

Y
��

(12.1)

The negative sign of the second term indicates that the elastic energy stored
in the material is released, as the crack forms. This is opposite in sense to the
energy consumed in creating the two surfaces of the crack. In Fig. 12.3, �U is
plotted as a function of c, showing that, for a given value of �, �U passes
through a maximum at a critical value of c equal to c*. The larger is the value of

�U

�2

�1

�U*
2

�U*
1

c*
1

c*
2

c

Fig. 12.3 The energy �U as a function of the crack half-length c for two tensile
stresses �1 and � 2 (�1 > �2).
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� , the smaller is c*. The critical value can be found by setting d�U/dc = 0. As
the applied tensile stress is the external variable for a given material with a pre-
existing crack of length 2c, it is appropriate to express the critical condition as a
critical fracture stress �f :

�f = 
2 Y

c
�

�
(12.2)

When the critical stress is applied to a brittle material, the pre-existing
crack propagates spontaneously with a decrease in energy, culminating in
fracture. Thus, Eq. (12.2) gives Griffith’s energy balance criterion for crack
propagation.

Example 12.1 A sample of glass has a crack of half length 2 �m. The
Young’s modulus of the glass is 70 GN m–2 and the specific surface energy is
1 J m–2. Estimate its fracture strength and compare it with its Young’s modulus.

Solution Substituting the given values of the crack half-length, the
Young’s modulus and the surface energy in Eq. (12.2), we obtain

�f = 
9

6

2 1 70 10

3.14 2 10�

� � �
� �

= 150 MN m–2

The fracture strength of 150 MN m–2 is 1/500th of the Young’s modulus, which
is 70 GN m–2. Thus the Griffith’s criterion bridges the gap between the observed
and the ideal strengths of brittle materials.

The Griffith equation (12.2) is equally valid for a surface crack of length c.
So, a surface crack of depth c (see Fig. 12.2) is as effective as an internal crack
of length 2c. Hence, in a given material, surface cracks are more effective than
internal cracks. A brittle material held with grips that do not extend up to the
surface usually shows a higher strength. Here, the surface is free of stresses. The
surface cracks are consequently ineffective.

All materials have a statistical distribution of cracks in them. The longest
crack that is most favourably oriented with respect to the stress axis is the most
effective one. It, therefore, propagates first to cause fracture, as the applied stress
is increased. If a second test is carried out on one of the broken pieces, the
strength is usually higher as a direct consequence of the elimination of the most
effective crack in the first test.

A crack may not propagate even after the Griffith condition is satisfied, if
there is not sufficient stress concentration at the crack tip. Consider the
schematic crack tip depicted in Fig. 12.4 on the atomic scale. The propagation of
the crack obviously requires the breaking of the interatomic bonds at the tip of



the crack. This bond rupture would be feasible only if there is a stress
concentration at the tip equal to the theoretical stress required to pull apart the
atomic bonds. The stress concentration �max at the tip of a crack, when a stress �
is applied, is given by

�max = 2� /c � (12.3)

where � is the radius of curvature at the tip of the crack. Note that the lines of
force, shown in Fig. 12.2, are crowded at the tip, indicating a stress
concentration there. For the atomically sharp crack shown in Fig. 12.4, � is
about 1 Å (10–10 m). With c ~ 1 �m, this yields �max = 200�. This concentrated
stress is of the same order as the ideal strength (Y/6) and, therefore, is sufficient
to cause rupture of the atomic bonds at the tip.

In brittle materials such as silicate glass, plastic deformation is nonexistent.
The stress concentration at the tip of the crack is not relaxed due to plastic
deformation and consequently the crack tip remains sharp. The term � in the
Griffith equation is truly representative of the surface energy of the crack faces,
as no other additional work such as plastic work is done during the propagation
of the crack. In such cases the Griffith’s criterion for crack propagation is fully
valid.

In many crystalline materials, fracture occurs in an apparently brittle manner
where the broken pieces can be fitted together to restore the original shape and
dimension of the specimen. However, on a microscopic scale, some plastic
deformation always occurs in a few grains in the neighbourhood of the crack tip,
where the stress is concentrated. This deformation has a two-fold effect. It
increases the work that is necessary to propagate a crack, because the work now
includes not only the surface energy of the crack faces but also the energy
consumed in plastically deforming the matrix adjacent to the crack tip. The other
effect is to relax the stress concentration at the tip, making the crack blunt. Both
these effects tend to make the crack propagation more difficult, thereby
increasing the fracture resistance of the material.

�

Fig. 12.4 An atomically sharp crack has a radius of curvature � at its tip equal
to about 1–2 Å.

Brittle Fracture 303



304 Fracture

Attempts have been made to take into account the plastic work, by using a
modified form of the surface energy term called �p in the Griffith equation. In a
number of cases, the plastic work term is much larger than the surface energy
term, requiring much longer cracks or much higher stresses to reach the critical
condition in a ductile material.

Example 12.2 The half length of cracks in a steel is 2 �m. Taking Y =
200 GN m–2, estimate the brittle fracture strength at low temperatures, if the
true surface energy is 1.5 J m–2. The actual fracture strength is found to be
1200 MN m–2. Explain the difference, if any, between this and your result.

Solution From Griffith’s equation,

�y = 
9

6

2 2 1.5 200 10

3.14 2 10

Y
c
�

� �

� � ��
� �

= 310 MN m–2

The observed strength is four times larger than the calculated value. As iron
plastically deforms, the higher observed strength can be attributed to the plastic
work done by the crack as it propagates. Resubstituting the observed strength in
the Griffith equation, the effective surface energy that includes the plastic work
is 16 times larger than the true surface energy.

12.3 Fracture Toughness

Defects, cracks or flaws are inevitably present in all engineering materials. They
may be introduced during solidification, fabrication or heat treatment stages of
the material. The fracture resisting capability of a machine component or an
engineering structure therefore must be evaluated in the presence of cracks. The
fracture resistance of a material in the presence of cracks or discontinuities is
known as its fracture toughness.

From the Griffith type of approach, the fracture toughness is defined by the
critical value of a parameter Gc. Gc gives the value of the strain energy released
per unit area of the crack surface when unstable crack extension (leading to
fracture) takes place. For an elastic crack of length 2c, the critical strain energy
release rate Gc is equal to � f

2�c/Y. A comparison of this with Eq. (12.2) shows that

Gc = 2� (12.4)

In an ideally brittle material such as a silicate glass, Gc can be equated to
2�. In materials, where plastic deformation occurs during crack initiation, Gc can
be much larger than 2�. Since the plastic work term is dominant as compared to
the true surface energy term, Gc for such materials may be written as

Gc = 2�p (12.5)



For example, Gc for an aluminium alloy is in the range 20–100 kJ m–2, but the
true surface energy � is less than 2 J m–2. Polystyrene, even though relatively
brittle as compared to polyethylene, has Gc of about 3 kJ m–2 and � of only
about 1 J m–2.

Another parameter, which is more commonly used to describe the fracture
toughness of a material, is known as the critical stress intensity factor KIc (or
Kc). For a sharp crack in an infinitely wide plate, when the applied tensile stress
is perpendicular to the crack faces, the critical stress intensity factor is given by

KIc = �f C� (12.6)

Fracture initiates in a material as soon as KIc is reached, either through
increasing stress or increasing c or both. When the width of the material is finite
or the loading geometry is not as stated above, a geometrical factor � is added
to the right side of Eq. (12.6). KIc is a material property, just as yield strength,
UTS, etc., and can be determined from fracture tests. KIc for mild steel has been
determined to be about 25 MN m–3/2, which is much larger than that for a fully
elastic fracture.

In fracture safe design, if the size of the most damaging defect is known,
the design stress can be computed from KIc. Alternatively, if the design stress is
given, the critical crack size calculated from KIc must be sufficiently larger than
the smallest size of the crack detectable by available inspection techniques.

12.4 The Ductile-Brittle Transition

Common BCC metals become brittle at low temperatures or at extremely high
rates of strain. Many FCC metals, on the other hand, remain ductile even at very
low temperatures. When the slip systems on the basal plane are the only ones
operating, polycrystalline HCP metals are brittle, as there are not enough slip
systems to maintain the grain boundary integrity. For the same reason,
polycrystalline ionic crystals are also brittle.

The conditions under which a material behaves in a brittle fashion depend on
several factors. BCC metals generally require a high stress to move dislocations
and this stress increases rapidly with decreasing temperature. The stress required
to propagate a crack, on the other hand, is not a strong function of temperature.
So, at some temperature called the ductile-brittle transition temperature, the stress
to propagate a crack, �f, is equal to the stress to move dislocations, �y. At
temperatures higher than the transition temperature, �y < �f and the material first
yields plastically. At temperatures lower than the transition temperature, the
material is brittle. Here, the actual brittle fracture stress may be controlled by the
yield stress, as some microscopic yielding may be necessary to nucleate a crack.
So, at all temperatures below the transition temperature, �f = �y. As soon as the
applied stress reaches �y, the crack is nucleated at the intersection of slip planes
and propagates rapidly.

Figure 12.5 shows the impact test results of steels of different carbon
content as a function of temperature. The energy to break a specimen under
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impact loading decreases abruptly at a certain temperature, which corresponds to
the transition from ductile to brittle behaviour.

The yield stress � y is a function of grain size, recall the Hall–Petch equation
(11.22). The yield strength increases with decreasing grain size. So, the stress to
nucleate a crack by slip intersection increases with decreasing grain size. The
stress to propagate a crack �f is also a function of grain size, as the length 2c of
the nucleating crack can be equated to the grain diameter. The stress to
propagate a crack therefore increases with decreasing grain diameter. Thus, fine-
grained materials have a lower transition temperature as compared to coarse-
grained materials. The transition temperature is a function of several other
variables. Sharp notches in the specimen provide stress concentration centres and
hence increase the transition temperature. A high strain rate increases the stress
needed to move a dislocation and, therefore, increases the transition temperature.

Example 12.3 The temperature and strain rate dependence of yield stress in
MN m–2 for molybdenum is given by

�y = 20.6 + 173 600/T + 61.3 log10 (d� /dt)

where T is the temperature in kelvin and (d� /dt) is the strain rate in s–1. Sharp
cracks of half length 2 �m are present in the metal. Estimate the temperature at
which the ductile to brittle transition occurs at a strain rate of (i) 10–2 s–1 and
(ii) 10–5 s–1. Y = 350 GN m–2 and specific surface energy is 2 J m–2.

Solution At the transition temperature, the yield stress should be equal to
the fracture stress.
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Fig. 12.5 The variation of impact energy as a function of temperature for
different materials.



From Eq. (12.2), the fracture stress is

�f = 
9

6

2 2 350 10

3.14 2 10�

� � �
� �

= 470 MN m–2

(i) At a strain rate of 10–2 s–1, the yield stress is

(ii) �y = 20.6 + 173 600/T + 61.3 � (–2)

Setting �y = �f, the transition temperature can be calculated as

T = 173 600/(470 – 20.6 + 122.6) = 300 K

(iii) Setting again �y = �f , for a strain rate of 10–5 s–1, we have

T = 173 600/(470 – 20.6 + 306.5) = 230 K

Polymeric materials are brittle below the glass transition temperature Tg.
Molecular motion is frozen below Tg, so that viscous flow or high elasticity
becomes restricted. The brittle behaviour of polymers under such conditions can
be described following the Griffith approach.

The behaviour of ionic crystals is strongly dependent on their surface
condition. Crystals free of surface defects exhibit limited plastic deformation
caused by dislocation motion. But the presence of surface flaws makes the crystals
prone to brittle failure. Under these conditions, even single crystals can be brittle.

12.5 Fracture Mechanism Maps

Attempts have been made mainly by M.F. Ashby and his co-workers to classify
the large amount of experimental data on fracture characteristics of different
groups of materials. The general correlations identified by them are plotted in
what are called fracture mechanism maps. On these maps (Fig. 12.6), the
mechanisms are shown for different groups of materials as a function of T/Tm and
of the normalised tensile stress (tensile stress divided by the Young’s modulus).
Here, the term transgranular fracture refers to the propagation of fracture across
grains. Intergranular (IG) fracture is fracture along the grain boundaries.

In FCC metals (Fig. 12.6a), the brittle fracture is absent at all temperatures.
The ductile fracture is dominant at lower temperatures and creep failure at
higher temperatures. The creep fracture can be transgranular or intergranular.
Rupture refers to a fully-ductile failure at over 90% of reduction in area.

In refractory BCC metals such as W, Mo, Ta, Nb and Cr (Fig. 12.6b), at low
temperatures, brittle intergranular fracture (BIF) is dominant. In Fig. 12.6, BIF I
refers to brittle fracture by the propagation of preexisting cracks. BIF II refers to
brittle fracture caused by cracks nucleated by the initiation of slip or twinning.
BIF III refers to fracture by crack propagation after a significant amount of
plastic strain (1–10%) has occurred. As the temperature increases, refractory
BCC metals exhibit ductile fracture, creep fracture and rupture at successively
higher temperatures.
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In refractory oxides such as MgO, Al2O3 and Si3N4 (Fig. 12.6c), the brittle
intergranular fracture (BIF) dominates the temperature range, the creep fracture
appearing only at very high temperatures. Again, in covalently-bonded materials,
such as C, Si and the silicates (Fig. 12.6d), the BIF region is dominant over
almost the entire temperature range.

12.6 Methods of Protection against Fracture

We have already seen that a surface crack of length c is as effective as an
internal crack of length 2c. In addition, for a crack exposed to the atmosphere,
the surface energy term � can be effectively lowered by chemical adsorption of
molecules on the crack faces. This in turn reduces the critical fracture stress.

Surface treatment is the most important method used to protect against brittle
fracture. The fact that surface cracks are the ones which cause failure can be
shown by several experiments. When the surface of a glass is etched with
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hydrofluoric acid, the surface layers and the cracks in them are removed.
Consequently, a freshly etched glass has a higher strength than the unetched glass.
If this fact is to be exploited as a method of strengthening, then the etched surface
should be protected against further mechanical abrasion that is likely to occur
during service, as well as against the environmental effects such as corrosion. The
surface of freshly drawn glass fibres is covered with a resin for protection. In
addition, the drawing of glass into thin filaments or fibres has the effect of
elongating any internal cracks in the direction of pulling. When a stress is applied
parallel to the fibre length, the elongated cracks are ineffective, as there is no
tensile stress perpendicular to the crack faces. Glass fibres of very high strengths
have been produced and are used for strengthening a soft matrix in a composite
material. During service, if some fibres break accidentally, there is no catastrophic
failure, as the crack through the fibre gets blunted on reaching the soft matrix.

The surface cracks can be made ineffective also by other methods. If a
compressive stress is introduced at the surface, the tensile stress required to cause
the surface cracks to propagate is increased by a magnitude equal to the
compressive stress. This method is adopted in the production of tempered glass
used for shop windows and automobile windshields. The silicate glass is heated
above its softening temperature and annealed long enough to remove all residual
stresses. Then a blast of cold air is directed against the glass, so that the surface
layers cool rapidly. They contract and become rigid. Glass being a poor thermal
conductor, the heat conduction from the inside to the surface is slow. The interior
is still above the softening temperature and is capable of flowing viscously to
compensate for the contraction at the surface. There are no residual stresses
introduced at this stage. Eventually, the inside is also cooled to room temperature.
The associated contraction is now resisted by the rigid outer layers, so that
compressive stresses are introduced in the outer layers and tensile stresses in the
interior. This heat treatment called tempering results in better resistance to crack
propagation. The compressive stresses can increase the fracture strength of the
glass by 2–3 times. A faulty heat treatment, however, can introduce tensile stresses
at the surface, making the glass more prone to fracture after heat treatment.

Compressive stresses can also be introduced in the surface layers by the ion
exchange method, where smaller cations such as Na+ of a sodium silicate glass are
replaced at the surface by larger cations such as K+, by a chemical reaction at the
surface. This chemical strengthening can introduce compressive stresses, which
are of larger magnitude, compared to that obtained by the tempering method.

Grinding of brittle ceramic materials usually introduces cracks near the
surface, which extend up to a depth of one grain diameter. Hence, fine grain
sizes effectively decrease the size of the surface cracks and are desirable for
improved strength of the ceramic. The very fine grain sizes (about 0.1 �m)
obtained in crystallized glass (pyroceram) accounts for its excellent thermal and
mechanical shock resistance.

In many metals, intergranular failure, that is, failure along the grain
boundaries, occurs, if there is a continuous brittle phase present at the
boundaries. In steels, sulphur can be present at the grain boundaries as a thin
brittle iron sulphide film. This dangerous distribution can be prevented if there is
enough manganese in the steel to form spherical manganese sulphide particles
within the grains in place of the continuous film at the boundary.
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Example 12.4 Iron tested at –196°C is brittle. It, however, becomes ductile
at this temperature, if a thin layer of silver is diffused along the grain boundaries
of iron. Explain this change in behaviour.

Solution Silver being an FCC metal has a low Peierls–Nabarro stress and
hence is ductile at –196°C. The ductile layer of silver at the grain boundaries of
iron effectively prevents crack propagation from one grain of iron into a
neighbouring grain. With the cracks not propagating, the stress can be increased
sufficiently to initiate plastic deformation in iron.

12.7 Fatigue Fracture

Rotating shafts, connecting rods, aircraft wings and leaf springs are some
examples of structural and machine components that are subjected to millions of
cycles of alternating stresses during service. The majority of failures of such
components in service are due to fatigue. A fatigue failure can occur even below
the yield stress of a material. For example, the yield strength of mild steel is
220 MN m–2, but it will fail at a stress of 140 MN m–2, if it is subjected to a
very large number of stress reversals.

The fatigue behaviour of a material is understood from the results of a
fatigue test, which are presented in the form of S–N curves. Samples of the
material are subjected to alternating stresses of different levels. The number of
cycles of stress reversals N required to cause fracture is plotted against the
applied stress level S as shown in Fig. 12.7.
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Some materials such as mild steel show a clearly defined fatigue limit. If the
applied stress is below the fatigue limit, the material will withstand any number
of stress reversals. Other materials do not show a clearly defined limit. Here, the
fatigue limit (or the endurance limit) is defined as the stress that would cause
failure after a specified number of stress reversals.

Fatigue fracture occurs by crack propagation. The crack usually initiates at
the surface of the specimen and propagates slowly at first into the interior. At
some critical stage, the crack propagation becomes rapid culminating in fracture.

The fatigue life of a component can be improved by several methods. Good
design plays an important role in increasing the fatigue life. Sharp corners
should be avoided in design, so that regions of stress concentration are not
present. Polishing the surface of the component to a good finish also removes
some of the surface irregularities, which may initiate a crack. Shot peening of
metals introduces compressive stresses at the surface and improves the fatigue
strength. Carburizing and nitriding introduce strong surface layers and increase
the resistance to crack initiation at the surface. On the other hand,
decarburization produces a soft surface layer that lowers the fatigue resistance. A
fine grain size improves the fatigue resistance.

�������

1. Prevention of fracture in materials during fabrication or service is an
important problem for the engineer.

2. Ductile fracture is commonly caused by the formation and coalescence of
pores or voids in the necked region.

3. Brittle fracture is usually caused by the propagation of pre-existing cracks
in a material. Griffith’s criterion gives the critical stress required to
propagate a crack spontaneously.

4. In truly brittle materials, cracks are atomically sharp, so that there is
sufficient stress concentration at their tips to break open the bonds during
crack propagation.

5. In ductile materials, plastic deformation at the crack tip blunts the cracks
as well as increases the energy of propagation of the crack.

6. Many materials exhibit a transition to brittle behaviour at low
temperatures. Surface perfection, grain size, the stress required to move a
dislocation and molecular mobility in polymers are some of the factors
determining the brittle transition.

7. Surface treatments such as introduction of compressive stresses at the
surface improve the resistance to crack propagation in brittle materials.

8. The majority of failures of structural and machine components are due to
fatigue. The resistance to fatigue crack propagation is increased by surface
treatments and also by a fine grain size.
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12.1 Show that the critical value of �U in Eq. (12.1) is equal to 2� c. For
typical values of � and c, show that the thermal energy available at most
temperatures is unlikely to be of assistance in nucleating a crack of
critical dimensions in a crack free material.

12.2 Estimate the surface energy of a surface-etched sodium silicate glass,
which has a fracture strength of 100 MN m–2 and a Young’s modulus of
70 GN m–2. Assume that etching has removed all surface cracks. A
number of cracks are present inside the glass sample and they vary in
length from 1 �m to 5 �m.
Answer: 0.56 J m–2.

12.3 A sheet of glass with a Young’s modulus of 70 GN m–2 and a surface
energy of 0.5 J m–2 has an internal crack of length equal to 2 �m. If an
external crack of length 10 �m is introduced by scratching the surface
with a diamond tool, by how much would the fracture strength change?
Assume that both the cracks are oriented perpendicular to the stress axis.
Answer: Decrease by 102 MN m–2.

12.4 A sheet of glass has an internal crack of length equal to 2 �m. What
stress should be applied along an axis inclined at 60° to the crack surface
to cause fracture? Y = 70 GN m–2 and � = 1 J m–2.
Answer: 244 MN m–2.

12.5 A tensile stress is applied to a glass rod having a surface crack 2 �m
deep. Find the stress necessary to satisfy the Griffith condition.
Check whether this stress is sufficient to cause fracture. Assume the
radius of curvature at the tip of the crack to be 2 Å. Y = 70 GN m–2 and
� = 1 J m–2.
Answer: 149 MN m–2.

12.6 What is the reason for the variation of strength from specimen to
specimen in ceramic materials?

12.7 Brittle materials are found to be stronger, if the total volume under test is
reduced drastically. Why?

12.8 Why are brittle materials used more often in compression than in tension
in structural design?

12.9 The ends of two cables are to be tied to a ceramic insulating support such
that they are not in electrical contact with each other. How would you
design the support, such that the ceramic does not break, when the cables
are pulled apart?

12.10 A sodium chloride crystal is brittle when tested in air but becomes
ductile when tested under water. Why is this so?
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12.11 A heat treated steel chisel and a glass window pane are both brittle.
Explain why the chisel is strong and the window pane is weak.

12.12 Suggest one of the following alloys for use as a container for liquid
oxygen in a rocket, giving your reasons for the choice: mild steel, copper
and austenitic stainless steel.

12.13 When a sodium silicate glass is immersed in a lithium nitrate bath at
260°C for a few minutes, cracks develop on the surface. Why?

12.14 A sample of borosilicate glass contains two cracks: a surface crack of
1 �m deep and an inner crack of 1.8 �m long. Both the cracks
are normal to the tensile axis. Determine which one will propagate
first on increasing the applied load and at what stress? Y = 65 GN m–2;
� = 0.5 J m–2.

Answer: Surface crack at 144 MN m–2.

12.15 A sheet of glass, with Y = 70 GN m–2 and � = 0.5 J m–2, has an internal
crack of length equal to 2 �m. A surface crack of 0.8 �m depth is
introduced by scratching the surface with a sharp tool. Adsorption at the
surface lowers the surface energy by 50%. Determine which crack will
propagate first, on increasing the applied stress and at what value of the
stress?
Answer: Surface crack at 118 MN m–2.

12.16 Estimate the fracture strength of a sodium silicate glass with Y = 70 GN
m–2 and � = 0.5 J m–2. A number of cracks are present both inside and on
the surface of the glass, varying in size from 1 to 5 �m. How will the
fracture strength change, if the glass is dipped in (i) HF solution, and
(ii) LiNO3 solution?
Answer: 67 MN m–2.

�������� ��	���� �����	��

1. In the Griffith equation, the fracture stress is proportional to
A. �c B. l/�c C. l/c D. 1/2c

2. The fracture strength of borosilicate glass (Y = 65 GN m–2; � = 0.5 J m–2)
with a surface crack of 1 �m deep and with the crack faces parallel to the
tensile axis is
A. 144 MN m–2 B. 203 MN m–2 C. ~Y/6 D. 0

3. If the surface crack causing fracture in a brittle material is made twice as
deep, the fracture strength will

A. decrease by a factor of �2 B. decrease by a factor of 2

C. decrease by a factor of 4 D. not change
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4. A silicate glass has a relatively low fracture strength, because

A. the Young’s modulus of glass is low
B. the cracks propagate, before Griffith criterion is satisfied
C. plastic deformation during crack propagation causes fracture
D. the cracks are sharp and propagate as soon as Griffith condition is met

5. In brittle materials with atomically sharp cracks, the stress concentration at
the tip of the crack is a factor of

A. 2 B. 200 C. 5000 D. 106

6. Liberty ships in World War II failed by brittle fracture due to:

A. going above the ductile-brittle transition temperature
B. going below the ductile-brittle transition temperature
C. glass superstructure
D. defective riveting

7. The residual stresses in the interior of a tempered glass are

A. nil B. tensile
C. compressive D. highly compressive

8. An ion-exchange method of strengthening will be effective for a sodium
silicate glass if it is dipped in

A. LiNO3 B. NaNO3 C. KNO3 D. none of these

9. Tick the methods that improve fatigue resistance of materials

A. fine grain size B. shot peening
C. polishing the surface D. decarburizing a steel

10. The fatigue strength of mild steel is

A. equal to its tensile strength B. more than its tensile strength

C. equal to its yield strength D. lower than its yield strength

Answers

1. B 2. C 3. A 4. D 5. B
6. B 7. B 8. C 9. A, B, C 10. D

Suggestions for Further Reading

F.A. McClintock and A.S. Argon (Eds.), Mechanical Behavior of Materials,
Addison-Wesley, Reading, Mass. (1966), Chaps. 15–17.

A.S. Tetelman and A.J. McEvily, Jr., Fracture of Structural Materials, John
Wiley, New York (1967).
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CHAPTER

The attack of environment on materials can take different forms. At high
temperatures, metals get oxidized. Polymers react with oxygen and degrade.
Ceramic refractories may be dissolved by the liquid they are in contact with.
Materials used in a nuclear reactor may undergo radiation damage. Metals
corrode under atmospheric conditions. Rusting of iron is a common example of
atmospheric corrosion.

In this chapter, as examples, we first consider the high temperature
oxidation of metals. The rest of the chapter is devoted to the atmospheric
corrosion of metals. The importance of the study of corrosion, in these days of
scarce raw material resources, can be hardly overemphasized. One estimate puts
the loss due to corrosion at 3% of the annual income of countries.

Units

    
Quantity

 SI units  
Other unitsUnit  Symbol

Pilling–Bedworth number – – –
Standard electrode
potential V volt V –
Current density J ampere per A m–2 mA/cm2

square metre
Electrical conductivity � per ohm per ohm–1 m–1 mho/cm

metre

Constants

Faraday’s constant F = 96.49 kC mol–l (of electrons)
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OXIDATION

13.1 Mechanisms of Oxidation

At ordinary temperatures, the stable state of most metals is in the form of an
oxide. This is seen from Table 13.1, which lists the free energy of formation �G of
one mole of different oxides at 25°C. Except in the case of gold, the free energy
change is negative, indicating that the stable form is the oxide. Only gold occurs
in the metallic form in nature. All the other metals are to be reduced to the
metallic state by an extraction process. While using most metals in the metastable
state, we depend on the fact that the thermal energy at the service temperature is
small enough to keep the oxidation rate within the desired limits. As the service
temperature increases, the oxidation becomes a serious problem.

TABLE 13.1

Free Energy of Formation of Metal Oxides at 25°C (kJ mol–1)

Al2O3 Cr2O3 TiO2 Fe2O3 MgO NiO Cu2O Ag2O Au2O3

–1576 –1045 –853 –740 –568 –217 –145 –13 +163

The rate of oxidation of a metal at an elevated temperature depends on the
nature of the oxide layer that forms on the metal surface. For good oxidation
resistance, the oxide layer should be adherent to the surface. The adherence of
an oxide film is dependent on the ratio of the volume of oxide formed to that of
metal consumed during oxidation. This ratio known as the Pilling–Bedworth
ratio as given in Table 13.2 for some oxides. If the ratio is less than unity,
tensile stresses will be set up in the oxide layer. The oxide being brittle cannot
withstand tensile stresses and, therefore, it cracks and is not protective against
further oxidation. If the ratio is more than unity, the oxide layer will be in
compression, will uniformly cover the metal surface and be protective. If the
ratio is much greater than unity, there is the risk of too much compressive
stresses being set up, again resulting in the cracking of the layer.

TABLE 13.2

The Pilling–Bedworth Ratio for Some Oxides

K2O Na2O MgO Al2O3 NiO Cu2O Cr2O3 Fe2O3

0.41 0.58 0.79 1.38 1.60 1.71 2.03 2.16

When a metal is subject to alternate heating and cooling cycles in service, the
relative thermal expansion of the oxide and the metal also determines the
stability of the protective layer. Thermal shock caused by rapid heating or
cooling may cause the layer to crack. If the oxide layer is volatile as is the case
with molybdenum and tungsten oxides at high temperatures, there will be no
protection.



When the oxide layer is adherent to the metal surface, further oxidation can
take place only by means of diffusion through the oxide layer of the oxygen
anions or the metal cations. When the diffusion of the oxygen anions controls the
oxidation rate, oxidation takes place at the metal-oxide interface. If the metal
cations diffuse through the oxide layer in the opposite direction, then oxidation
takes place at the oxide–oxygen interface. As the oxide layer increases in
thickness as a function of time, the diffusion distance through the layer also
increases.

Example 13.1 Assuming the oxidation of a metal to be controlled by the
diffusion of oxygen anions through the oxide layer, find the functional
dependence of oxide thickness x on time t.

Solution Referring to Fig. 13.1, we have a constant oxygen concentration
c2 in the atmosphere and c1 at the metal-oxide interface, c2 > c1. The oxidation

Metal
Oxide

c1 c1

t2 > t1

x2 at t2
x1 at t1

c2

Atmosphere

Metal–oxide interface

takes place at the latter interface. At t2 > t1, the oxide thickness is more and the
concentration gradient across it is less. The rate of thickening of the oxide layer
dx /dt is proportional to the flux J so that

2 1c cdx dc
J D D

dt dx x
�

� � � � �

2 1( )x dx D c c dt� � �� �
x2 � Dt

Fig. 13.1 The concentration-distance profile for the diffusion of oxygen anions
during oxidation.
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x � Dt

The thickness of the layer increases as the square root of time at constant
temperature.

The above square root relationship is called the parabolic law of oxidation.
Many metals obey the parabolic law at some temperature range of oxidation.
Note that the square of the layer thickness is proportional to the diffusion
coefficient D. Recall from Chap. 8 that the diffusion coefficient increases with
temperature in an exponential manner. Correspondingly, the oxidation rate also
increases exponentially with temperature, thus rapidly aggravating the problem
of protection as the temperature increases. The activation energy for oxidation is
the same as the activation energy for diffusion through the oxide layer. The
diffusion coefficient at a given temperature depends on the nature of the oxide
layer as well as its defect structure.

If the Pilling–Bedworth ratio is much greater than unity, the oxide layer
tends to crack on reaching a critical thickness. This is especially so if the
oxidation process occurs at the metal-oxide interface, where the expansion
cannot be accommodated as easily as at the oxide-gas interface. When the excess
layer beyond the critical thickness peels off, the oxidation rate becomes constant
indicating a constant critical oxide thickness at the metal surface.

13.2 Oxidation Resistant Materials

The key to the control of oxidation is to form a protective layer of oxide on the
metal surface. The oxide layer should also offer a high diffusion barrier to the
motion of the species that control the oxidation process. The electrical
conductivity of the oxide is a measure of the diffusivity of the moving ions, as
already discussed in Sec. 8.6. A very low conductivity indicates negligible
deviation from stoichiometry and hence a low diffusivity, which effectively
reduces the oxidation rate. A high conductivity implies a significant deviation
from stoichiometry. A nonstoichiometric oxide will allow much faster diffusion
of the diffusing species.

The oxidation resistance of a metal is improved by the addition of suitable
alloying elements to the base metal. The alloying element must be present in
sufficient concentration to produce the desired oxide layer. The most common
alloying elements added to iron for this purpose are chromium, aluminium and
nickel. The oxidation rate of iron as a function of chromium content is shown in
Fig. 13.2. The rate decreases with increasing chromium content. The addition of
chromium enables the formation of a thin protective layer of Cr2O3 on the
surface of iron. The electrical conductivity of Cr2O3 is one-thousandth of that of
Fe2O3. Up to 10% of chromium is alloyed with iron for improving the oxidation
resistance of oil refinery components. Alloys with greater than 12% chromium
are known as stainless steels. They are used for turbine blades, furnace parts and
valves for IC engines. 12% chromium gives excellent oxidation resistance up to



1000°C, while 17% chromium is used above 1000°C. 18-8 stainless steel, which
contains 18% Cr and 8% Ni, is among the best commercially-available oxidation
resistant alloys. 24% Cr, 5.5% Al and 2% Co alloyed with iron, known as
kanthal, is used for furnace windings up to 1300°C.

80% Ni–20% Cr (nichrome) and 76% Ni, 16% Cr and 7% Fe (inconel) have
excellent oxidation resistance and good mechanical properties. 10% Cr alloyed
with nickel (chromel) and 2% Al, 2% Mn and 1% Si alloyed with nickel
(alumel) are used up to 1100°C as heat resistant thermocouple wires.
Molybdenum in a protective atmosphere of hydrogen can be used for furnace
windings up to 1500°C.

Aluminium is normally covered with a highly protective oxide film.
Therefore, there is usually no need to add alloying elements to aluminium to
improve its oxidation resistance. Similarly, titanium forms a protective oxide
layer. Addition of aluminium, beryllium or magnesium to copper improves its
oxidation resistance.

CORROSION

The direct losses due to corrosion of structural and machine components is
estimated to be 30 billion dollars annually. It is, therefore, essential for an
engineer to understand the basic principles of corrosion and the methods of
protection against corrosion.
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Fig. 13.2 The oxidation rate of iron decreases with increasing chromium content.
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13.3 The Principles of Corrosion

13.3.1 The Electrode Potential

If a piece of iron rod (electrode) is immersed in a polar solvent like water, some
of the metal ions leave the crystal and go into solution. They get hydrated, that
is, they form bonds with the polar water molecules. As the metal continues to
dissolve, more and more electrons are left back and a net negative charge builds
up in the metal. Similarly, the presence of excess positive ions builds up a
positive charge in the adjacent solution. These opposing electrical layers
discourage further dissolution of the metal. Soon, a dynamic equilibrium is
reached with no net flow of metal ions into the solution.

The potential developed by an electrode in equilibrium is a property of the
metal forming the electrode. This potential is measured under standard
conditions with a pure metal as the electrode and an electrolyte containing unit
concentration of ions of the same metal. As only potential differences can be
measured in an experiment, the potential of an electrode is determined against a
standard hydrogen electrode whose potential is taken to be zero. The standard
potentials for various metals are listed in Table 13.3. The sign convention used
here is that adopted by the International Union of Pure and Applied Chemistry.

TABLE 13.3

Standard Electrode Potentials of Metals

Electrode Standard potential Electrode Standard potential
system V0 at 25°C, volt system V0 at 25°C, volt

Noble end Au/Au3+ +1.50 Zn/Zn2+ –0.76
Ag/Ag+ +0.80 Mn/Mn2+ –1.18
Cu/Cu2+ +0.34 Zr/Zr4+ –1.53
H2/H+ 0.0 Ti/Ti2+ –1.63
Pb/Pb2+ –0.13 Al/Al3+ –1.66
Sn/Sn2+ –0.14 U/U3+ –1.80
Mo/Mo3+ –0.20 Be/Be2+ –1.85
Ni/Ni2+ –0.25 Mg/Mg2+ –2.37
Co/Co2+ –0.28 Na/Na+ –2.71
Cd/Cd2+ –0.40 Ca/Ca2+ –2.87
Fe/Fe2+ –0.44 K/K+ –2.93
Cr/Cr3+ –0.74 Li/Li+ –3.05 Active end

Gold at the top of the list is the most noble metal and will not dissolve
easily. Lithium at the bottom of the list is the most active and base metal; it will
go into solution readily.

The standard potential will be changed if the metal is not pure or if the
metal ion concentration in the electrolyte is not unity. The potential V under
nonstandard conditions is given by

V = V0 – ln
�

� �
� �� �

RT M
nF M

(13.1)



where V0 is the standard potential, M+ is the metal ion concentration in the
electrolyte, M is the concentration of the metal in the electrode, n is the valence
of the metal ion and F is Faraday constant equal to 96.49 kC/mole of electrons.
Under standard conditions, the second term on the right side of Eq. (13.1) is
zero. If M+ < 1, that is, if the electrolyte is deficient in metal ions, the potential
decreases and goes more towards the active end of Table 13.3. If the electrode is
in the alloyed condition, M < 1, and then the potential increases and goes
towards the noble end.

13.3.2 The Galvanic Series

The structure and composition of the alloys used in service are complex. The
environmental conditions which provide the electrolyte are also difficult to
define in terms of M +. The role of environment in determining the corrosion rate
of mild steel is seen from the data in Table 13.4.

TABLE 13.4

Role of Environment on the Corrosion Rate of Mild Steel

Environment Corrosion rate, mm per year

Dry and nonidustrial 0.001

Marine, humid and nonindustrial 0.02
Humid and industrial 0.2

To describe the tendency to corrode in a given environment, common metals
and alloys are arranged on a qualitative scale called the galvanic series. For
example, the galvanic series for the sea water environment is given in
Table 13.5. In sea water, 18-8 stainless steel in the passive condition at the top
of the table is the least active and magnesium at the bottom of the table is the
most active.

TABLE 13.5

Galvanic Series in Sea Water

Noble end 18-8 stainless steel (passive)
Nickel (passive)
Copper
Brass
Tin
Lead
18-8 stainless steel (active)
Mild steel
Alclad
Aluminium
Zinc

Active end Magnesium
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13.3.3 The Galvanic Cells

Figure 13.3 shows a galvanic cell with zinc and copper as the two electrodes.
The excess electrons left back at the zinc electrode are more than that in the

Zn Cu

Zn2+ Cu2+

Electrolyte

Fig. 13.3 The zinc–copper galvanic cell. On closing the circuit, the zinc anode
starts to corrode.

copper electrode, as zinc is less noble than copper, see Table 13.3. If the
electrodes are pure and if the metal ion concentration near each electrode is
unity, the cell will develop a potential of 0.34 – (–0.76) = 1.10 V. On closing the
circuit, the excess electrons at the zinc will flow through the external circuit to
the copper electrode under the concentration gradient. The conventional current
will flow in the opposite direction.

If the current continues to flow, the zinc electrode will gradually dissolve in
the electrolyte or in other words corrode. Zinc is the anode of the galvanic cell.
The anode reaction is the dissolution of zinc:

Zn � Zn2+ + 2e– (13.2)

Copper is the cathode of the galvanic cell. Copper will deposit on the cathode
through the following reduction reaction:

Cu2+ + 2e– � Cu (13.3)

If cupric ions are not available in the electrolyte, the reduction at the cathode
may still proceed through other reactions. Hydrogen ion may get reduced,
resulting in the evolution of hydrogen gas at the cathode:

2H+ + 2e– � H2 (13.4)



Alternatively, the reduction may take place through oxygen and water combining
with the excess electrons to produce hydroxyl ions:

O2 + 2H2O + 4e– � 4OH – (13.5)

Two different phases in the same metal may form a galvanic couple at the
microstructural level. For example, cementite in steel is more noble (cathodic)
with respect to ferrite. Under corrosive conditions, ferrite will form the anode
and corrode away. The finer is the distribution of ferrite and cementite in a steel,
the more are the number of galvanic cells that can form and the faster will be
the corrosion rate. This effect is illustrated in Fig. 13.4, where the corrosion rate
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Fig. 13.4 Corrosion rate of a quenched and tempered steel as a function of the
tempering temperature.

of a quenched and tempered steel is plotted against the tempering temperature.
Initially, the quenched steel has only one phase, martensite. On tempering the
martensite, cementite precipitates in a fine form, resulting in the formation of a
number of galvanic cells, with cementite and ferrite as the two ‘electrodes’.
Accordingly, the corrosion rate increases initially with increasing tempering
temperature, see Fig. 13.4. When the tempering temperature is above 400°C, the
corrosion rate decreases. Here, during tempering, the cementite particles
coalesce or coarsen into larger particles resulting in a decrease of the number of
galvanic cells, as compared to that at a lower tempering temperature. Hence, a
decrease in the corrosion rate is observed.

A galvanic cell may be set up due to differences in concentration of the
metal ion in the electrolyte. If, in a region of the electrolyte, the metal ions are
deficient, the metal near that region will be anodic with respect to the metal near
a different region where the electrolyte has excess metal ions. This can be easily
deduced from Eq. (13.1). A galvanic cell set up due to such differences in metal
ion concentration is known as a concentration cell.

The Principles of Corrosion 323



324 Oxidation and Corrosion

A concentration cell can also arise due to differences in oxygen concentration.
The cathodic reaction (13.5) takes place more readily where oxygen is available,
so that an oxygen-rich region is cathodic with respect to an oxygen-depleted
region. This results in crevice corrosion, which occurs at inaccessible locations
(crevices) deficient in oxygen. Examples of such locations are the interfaces of
two coupled pipes, threaded connections and areas covered with rust or dirt.
Corrosion occurs just below the water line in a tank. This location being deficient
in oxygen is anodic to the metal just above the water line. An underground
pipeline that goes through impervious clays in some regions and through porous
sands in some other regions may corrode in the clay region.

A galvanic cell can form due to different residual stresses in the same metal.
The stressed region is more active and is anodic with respect to a stress-free
region. Such stress cells can form between regions of different dislocation
density in a cold-worked metal or in a polycrystalline metal, where the grain
boundaries are anodic to the interior of the grains. A bent wire is likely to
corrode at the bend, where it has been plastically deformed.

13.3.4 Polarization

When a galvanic cell is short circuited, a corrosion current flows through the
cell. This current would set up differences in concentration of the metal ions near
the electrodes. In the zinc–copper cell, due to continued dissolution of zinc at the
anode, the zinc ion concentration near the anode builds up. Unless the diffusion
rate of these ions is fast enough to keep the electrolyte composition uniform, the
potential of the zinc electrode will shift towards the noble end, that is, towards
that of copper. Similarly, at the cathode, the cupric ions are being used up in the
cathode reaction, resulting in a deficiency of these ions near the cathode. This
shifts the cathode potential towards the active side, that is, towards that of zinc.
In addition, the two electrode potentials tend to move towards each other due to
the limited rates of the anodic and the cathodic reactions (which proceed by the
reacting species crossing an activation barrier). Figure 13.5 shows schematically
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Fig. 13.5 The anode and the cathode polarization as a function of current I.



the variations in the cathode and the anode potentials with increasing current
density. The electrodes are said to be polarized, as the current flows. A steady
state current is established, when the potential difference between the cathode
and the anode becomes equal to the IR drop through the electrolyte.

13.3.5 Passivation

A piece of iron or steel readily dissolves in dilute nitric acid, but may become
resistant or passive in concentrated nitric acid. The concentrated acid oxidizes the
iron effectively and produces a thin protective layer on the surface. Dilute acid is
not strong enough to oxidize and hence continues to attack. The formation of an
oxide film on a corroding metal can passivate it in a similar fashion.

On increasing the potential of a metal electrode, the current density
increases at first. When the current density reaches a critical value, it may
abruptly fall to a much lower value and remain more or less constant for some
further increase in potential. This phenomenon is called passivation. For
chromium, the critical current density just before passivation is about
200 A m–2. The current after passivation is less than 0.1 A m–2. This big drop in
current density is associated with the simultaneous formation of a thin oxide
layer on the metal surface. The phenomenon of passivation affords an important
means of corrosion prevention.

13.4 Protection against Corrosion

The methods of corrosion prevention are based on the above principles of
corrosion. From the table of electrode potentials, one can deduce that use of
noble metals will prevent corrosion. However, it is clear that the choice of a
material is dependent on many other factors. We can use noble metals only in
very limited applications such as ornaments and delicate scientific instruments.

Alternatively, we can design to avoid physical contact between dissimilar
metals so that a galvanic couple does not form. Yet, we often come across
designs such as a steel screw in brass marine equipment, a Pb–Sn solder on
copper wire and a steel shaft in a bronze bearing. When contact between
dissimilar metals is unavoidable, it is necessary to see that the metal forming the
anode does not have a small surface area as compared to the cathode. As the
same corrosion current passes through the anode and the cathode, a small anode
area would mean a high current density at the anode and a consequent high rate
of corrosion. A copper nut and bolt is permissible on a large steel plate or pipe,
but not a steel bolt and nut on a copper article of large surface area.

In materials with two-phase structures, where the phases form galvanic cells
at the microstructural level, the contact between the two phases is inevitable. We
have already referred to the example of untempered, tempered and overtempered
martensites, which corrode at different rates (see Fig. 13.4). The two-phase
structure of duralumin corrodes faster than pure aluminium. However, the
optimum aged two-phase structure is often required for obtaining the desired
mechanical properties. In the case of duralumin, the corrosion prevention is
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achieved by making Alclad, which has two thin pure aluminium sheets covering
either side of a duralumin sheet.

Removing a cathodic reactant such as dissolved oxygen from water by
means of a chemical reagent may prevent corrosion. For example, sulphites are
used for this purpose in boiler feed water and cooling water systems. Inhibitors
form a protective layer on the metal surface and prevent corrosion. Anodic
inhibitors are oxidizing anions such as nitrites and chromates. For example,
nitrites promote the formation of a thin passivating oxide film on iron. These
must be used in sufficient quantity to cover the whole surface. Otherwise, small
uncovered areas may lead to severe localized corrosion known as pitting.
Cathodic inhibitors generally form a thick protective film on the surface.

Vapour phase inhibitors consist of nitrite or bicarbonate anions attached to a
heavy organic cation. The inhibitor compound is placed alongside the metal part
to be protected in the storage room. The compound has a vapour pressure of
about 10–3 atm at ambient temperature, so that it evaporates rapidly to ensure its
adequate availability in the vicinity of the metal surface. Sewing needles are first
wrapped in thin paper saturated with a vapour phase inhibitor (ethanolamine
acetate) and then in thick black paper, which retains the vapour.

Metallic coatings are used for corrosion prevention. If a metal coating is
noble with respect to the underlying metal, it is necessary to avoid flaws in the
coating such as cracks and pores. Such flaws could initiate corrosion, with the
coating acting as the cathode and the underlying metal as the anode. As the
exposed part of the anode at a crack or pore is very small, corrosion takes the
form of a localized attack. Tin on steel is an example, exhibiting localized
pinhole attack.

The tin coating on a steel article is produced either by dipping it in molten tin
or by electroplating. The most common use of tinplate is for making food
containers. The pinhole corrosion referred to above can take place on the outside
of the container. Inside, many organic acids that are present in foodstuffs and fruit
juices form complexes with tin. The concentration of the stannous ions is thereby
lowered. The potential of tin decreases enough to make it anodic with respect to
iron. In the absence of a suitable cathodic reaction, the corrosion rate is low.

If the metal coating is baser than the substrate (e.g., zinc or aluminium on
steel), galvanic protection is offered to the underlying metal. The coating is anodic
and corrodes first. Zn and Al, however, become passive after the initial attack.
Galvanized iron (G.I.) is produced by dipping a low carbon steel sheet in molten
zinc bath at about 450°C. On cooling in air, the zinc coating crystallizes forming
‘zinc flowers’. Articles such as buckets and drums made of galvanized iron are
very suitable for aqueous environments. In the presence of oxygen, zinc hydroxide
is precipitated as a protective layer. Aluminium coatings are deposited by the
process of calorizing mainly to improve the oxidation resistance of steel.
Decorative chromium plating is done over a first coating of nickel on automobile
exterior components. Hard chromium plating produces a thicker, wear resistant
surface.

Nonmetallic coatings such as enamel, oil, paint and tar act by simply
excluding water and oxygen and by providing a layer of high electrical resistance.



For articles used indoors, it is often enough to coat them with one layer of paint.
For the protection of outdoor structures such as bridges, elevator cranes, harbour
equipment, railway carriages, automobiles and bicycles, which are exposed to the
action of the atmosphere, paints are of more complex composition. Also, their
method of application is more intricate, involving several coatings.

Cathodic protection is based on the electrochemical principles already
outlined. Protection by galvanic action is provided by connecting the structure to
be protected to a sacrificial anode, which is periodically replaced. The objects
thus protected are either buried in the earth or immersed in water, e.g.,
underground and underwater pipelines, foundations, piers, jetties, ships and
offshore structures. A piece of magnesium, zinc or aluminium is attached to the
article to be protected making electrical contact with it. In the artificial galvanic
cell thus created, the added electrode piece is the anode, which is gradually
destroyed.

Example 13.2 For cathodic protection, a ship hull requires a current density
of 15 mA m–2. Magnesium is used as the sacrificial anode. What is the quantity
of magnesium required per square metre of the hull surface for a design life of
ten years?

Solution One mole of magnesium (0.0243 kg) will be used up as anode
for every two Faraday of charge, 2 � 96490 C (A s), as magnesium is divalent.
The charge required per m2 of hull surface for a design life of 10 yr = 15 �
10–3 � 10 � 365 � 24 � 3600 A s. So,

the amount of magnesium needed

= 
30.0243 15 10 10 365 24 3600

2 96490

�� � � � � �
�

= 0.6 kg m–2

Cathodic protection can also be obtained by using an external dc source in
conjunction with an inert (or expendable) electrode. The negative end of the dc
source is connected to the metal to be protected (cathode) and the positive end
to the inert anode. Thus, the impressed voltage ensures that the potential of the
part to be protected is such as to keep it cathodic. Inert anodes include platinum
in the form of a thin electrodeposit on titanium and stainless steel. Expendable
electrodes are usually scrap of the same material that is being protected.

Alloying additions such as chromium to iron (as in stainless steel) improve
the corrosion resistance by reducing the critical current density for passivation.
Steels with more than 12% chromium require only a very small critical current
density, in order to become passive.

An improperly heat treated 18/8 stainless steel may exhibit intergranular
corrosion. Chromium carbide may precipitate at the grain boundaries, due to
excessive residual carbon in the stainless steel or due to prolonged exposure to
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an elevated temperature, as shown in Fig. 13.6. The region immediately next to
the chromium carbide particles is denuded of chromium and, therefore, becomes

Chromium depleted
region (<12% Cr)

Carbide precipitate

Normal composition (18% Cr)

Fig. 13.6 Intergranular corrosion of 18-8 stainless steel.

anodic to the interior of the grain. A galvanic cell is thus set up and corrosion
occurs close to the grain boundaries. Intergranular corrosion can be prevented in
three ways:

(i) by reducing the carbon level in the stainless steel to less than 0.05%;

(ii) by quenching the stainless steel from a high enough temperature to
prevent chromium carbide precipitation; and

(iii) by adding strong carbide forming elements to the steel such as Nb or
Ti, so that carbon precipitates as niobium carbide or titanium carbide
and not as chromium carbide.

Some special types of corrosion are also known. One such type is the dezincification.
During corrosion of alpha brass, the zinc is preferentially dissolved from the brass, leaving
a spongy mass of copper of little strength. Dezincification is prevented by adding 0.04%
arsenic to brass. The phenomenon of stress corrosion occurs under the combined action of
a corrosive environment and a mechanical stress. In season cracking, a cold-worked brass
with high residual stresses cracks along the grain boundaries in environments containing
ammonia. The grain boundaries have piled-up dislocations in their neighbourhood due to
the cold working. The high energy due to this causes the boundaries to become anodic
with respect to the grain interior and selective dissolution of the boundary region occurs. If
the cold-worked brass is stress relieved at 300°C, season cracking can be avoided. Stress
corrosion of austenitic stainless steels occurs in chloride environments. The crack here is
transgranular, that is, it propagates across the grains. Addition of molybdenum or
increasing the nickel content of the stainless steel reduces the tendency for this type of
corrosion. Caustic embrittlement of boilers occurs under the combined action of stress and
a high concentration of hydroxyl ions in the environment. Addition of tannins and
phosphates to the environment prevents caustic cracking.
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1. The formation of an adherent oxide film is necessary to improve the
oxidation resistance of a metal. The oxide film should offer a high
diffusion barrier to the diffusing species that control the oxidation.

2. The common alloying elements added to steel for improving its oxidation
resistance are chromium, aluminium and nickel.

3. The standard electrode potential measures the tendency of a metal to go
into solution. Metals with positive potentials are noble, as compared to
metals with negative potentials.

4. A galvanic cell may form under different conditions, e.g., due to a two-
phase structure, due to concentration differences in the electrolyte or due
to stress differences.

5. Passivation refers to the formation of a thin, high resistance oxide layer,
which reduces the corrosion current by two or three orders of magnitude.

6. (a) Designing to avoid contact between dissimilar metals, (b) use of
inhibitors, (c) metallic and nonmetallic coatings, (d) cathodic protection
with a sacrificial anode or with an impressed voltage, and (e) passivation
by alloy additions are the main methods of corrosion prevention.

��	
����

13.1 Calculate the Pilling–Bedworth ratio for CaO. The density of CaO and
Ca are 4030 and 1550 kg m–3, respectively.

Answer: 0.54

13.2 The electrical conductivity of Al2O3 is about 10–5 ohm–l m–1 and that of
Cu2O is about 103 ohm–1 m–1. Explain why aluminium can be used to
improve the oxidation resistance of copper, but not copper to improve the
oxidation resistance of aluminium.

13.3 In metals with the Pilling–Bedworth ratio less than unity, the oxidation
rate is linear from the beginning of the oxidation process, whereas in
metals with ratio substantially larger than unity, the linear rate is
observed after an initial parabolic region of oxidation. Explain why this
is so.

13.4 The activation energy for cuprous ion diffusion in Cu2O is 160 kJ mol–l.
Cuprous ion diffusion controls the oxidation of copper above 500°C. Find
the ratio of oxidation rates of copper at 900 and 600°C.
Answer: 280.5.
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13.5 What is the potential difference that is observed, when a standard zinc
electrode is connected to the calomel reference electrode whose potential
is + 0.334 V?
Answer: 1.094 V.

13.6 Calculate the ampere-hour required to plate out one mole of copper from
a copper sulphate solution.
Answer: 53.61 A hr.

13.7 Calculate the cupric ion concentration in the elecrolyte that is required to
make the potential of copper to become equal to that of the standard zinc
electrode. Is this potential likely to be realized in practice? Explain.
Answer: 1.0 � 10–37.

13.8 1 mm thick layer of nickel is to be plated on a steel article. What is the
current density required to do this in one hour?
Answer: 8130 A m–2.

13.9 Why is tin preferred to zinc on a steel food can? Why is enamelling
preferred to paint on a steel refrigerator body?

13.10 Show how rust, Fe(OH)3, can form in a galvanic cell, where iron is the
anode and the cathode reaction is as given in Eq. (13.5).

13.11 Which of the following coatings is expected to protect iron even if the
coating has cracks: Polyethylene, enamel, Zn, Ni, Sn and Pb? Give a
reason for your answer.
Answer: Zn.

�������� ��	���� �����	��

1. For a protective oxide layer to form, the ratio of the volume of oxide
formed to that of metal consumed should be

A. < 1 B. 1 C. > 1 D. � 1

2. The keys to good oxidation resistance of an oxide film are

A. low electrical conductivity B. low electrical resistivity
C. continuous oxide film D. porous oxide film

3. In parabolic rate of oxidation, the oxide thickness is proportional to

A. t1/2 B. t C. t2 D. none of these

4. Tick the elements added to iron to improve its oxidation resistance
A. zinc B. chromium C. magnesium D. aluminium

5. If the activation energy for oxidation is 100 kJ/mol, the ratio of oxidation
rates at 800 and 500°C is
A. 8270 B. 78 C. 1.0 D. 0.031
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6. The standard potential of a zinc electrode is –0.76 V, its potential at 300 K
at a zinc ion concentration of 0.001 in the electrolyte is (F = 96490 C/mol)

A. –0.85 V B. –0.67 V C. –0.72 V D. 0 V

7. The potential of a galvanic cell of copper (potential of +0.34 V) and
aluminium (potential of –1.66 V) is
A. 2.00 V B. –1.32 V C. 1.32 V D. 0 V

8. The peak in corrosion rate of martensite occurs when

A. in untempered condition B. tempered at 800°C

C. tempered at about 400°C D. in spherodized state

9. Pore-free coating is required when
A. coating is noble with respect to the protected metal

B. coating is base with respect to the protected metal

C. coating has the same potential as the protected metal
D. none of these

10. For cathodic protection at a current density of 10 mA m–2, the quantity of
zinc (atomic weight = 65.4) required per m2 of ship hull per year is
(F = 96490 C/mol)

A. 0.1 kg B. 0.2 kg C. 107 kg D. 213 kg

Answers

1. C 2. A, C 3. A 4. B, D 5. B
6. A 7. A 8. C 9. A 10. A

Source for Experimental Data

S. Lamb (Ed.) Practical Handbook of Stainless Steels and Nickel Alloys, ASM
International, Materials Park, Ohio (1999).

Suggestions for Further Reading

D.A. Jones, Principles and Prevention of Corrosion, Prentice-Hall, Englewood-
Cliffs, New Jersey (1996).

J.C. Scully, The Fundamentals of Corrosion, Pergamon, Oxford (1975).
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CHAPTER

The electrons in the outermost orbitals of the atoms of a solid determine its
electrical properties. In this chapter, the free electron model is introduced,
starting with a brief description of the wide range of resistivity of materials. The
justification for Ohm’s law is given, in terms of the free electron motion and the
collision processes in crystals. Materials for conductive and resistive functions
are discussed. The phenomenon of superconductivity and the recent discovery of
oxide superconductors are discussed at the end.

Units

 
Quantity

 SI units  
Other unitsUnit  Symbol

Resistivity � ohm metre ohm m microohm-inch,
ohm-cm

Temperature coefficient per kelvin K–1 per °F
of resistance �
Conductivity � per ohm per ohm–1 m–1 mho/cm

metre
de Broglie wavelength � metre m Å
Wave number k per metre m–1 –
Kinetic energy E
Fermi energy EF joule J erg, eV
Drift velocity v metre per second m s–1 –
Field gradient � volt per metre V m–1 volts/mil
Current density Je ampere per m2 A m–2 amp/cm2

Constants

Planck’s constant h = 6.626 � 10–34 J s
Rest mass of electron m0 = 9.109 � 10–31 kg

Charge of electron e = 1.602 � 10–19 C
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14.1 The Resistivity Range

Electrical resistivity (or conductivity) is probably the most remarkable of all
physical properties, in that it varies over 25 orders of magnitude. To get a feel
for this wide range, Table 14.1 lists the electrical resistivity, at room temperature,
of a number of materials which are important from the engineering point of
view. The materials fall into three broad categories.

TABLE 14.1

The Resistivity of Materials (ohm m)

10–9 10–7 10–5 10–3 10–1 101 103

Ag
Cu Al Ni Sb Bi Ge Ge Si
Au Fe Graphite (doped) (pure) (pure)

Metals Semiconductors  

105 107 109 1011 1013 1015 1017

Window Bakelite Porcelain Lucite PVC SiO2

glass Diamond Mica (pure)
Rubber, Nylon
Polyethylene

 Insulators 

Conductors are metals and alloys. Gold, silver and copper are among the
best conductors of electricity. Therefore, their electrical resistivities are the
lowest, as shown in Table 14.1. They are followed by aluminium whose
resistivity is 60% higher than that of copper. Transition metals such as iron and
nickel are not as good conductors as the above. Still poorer conductors are the
semimetals of the fifth column, e.g., antimony and bismuth. Graphite, with one
of its bonding electrons resonating between the (sp2) bonds, also fall in this
category of semimetals. The electrical resistivity of conductors ranges from 10–9

to 10–3 ohm m. The electrical conductivity, being the reciprocal of resistivity,
ranges from 109 ohm–l m–l to 103 ohm–1 m–1.

When the resistivity is in the range 10–3–103 ohm m, we have the second
category of materials known as semiconductors. They form the base for a
number of solid state devices. Here, the resistivity is a strong function of small
concentrations of impurities. Doped germanium, with an impurity content of a
few tens per million, can have a resistivity about two orders of magnitude lower
than that of pure germanium, see Table 14.1. Pure silicon has a higher resistivity
than pure germanium.

The third category of materials are insulators. Common electrical insulating
materials such as polyethylene, bakelite, lucite, mica, PVC, rubber and porcelain
fall in this category. The resistivity range for this category extends from 104 to
beyond 1017 ohm m. Here, a difference in resistivity of some twelve orders of
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magnitude is noticeable between a silica glass and soda-lime-silica (window
glass). This striking difference is a result of the ionic conductivity of window
glass. The relatively loosely-bound sodium and calcium cations in soda-lime
glass diffuse and conduct much more readily, as compared to the tightly-bound
immobile silicon cations in pure silica. Ionic conduction and ionic diffusivity are
closely related phenomena, recall Sec. 8.6.

14.2 The Free Electron Theory

The conducting properties of a solid are not a function of the total number of
electrons in the solid, as only the outermost electrons of the atoms can take part
in conduction. In the free electron model, the outermost electrons of an atom are
not bound to that atom, but are free to move through the whole solid. These
electrons have been variously called the free electron cloud, the free electron gas
or the Fermi gas.

In the free electron theory, the basic assumption is that the potential field
due to the ion cores is uniform throughout the solid. The free electrons have the
same potential energy everywhere in the solid. Due to the electrostatic attraction
between a free electron and the ion cores, this potential energy will be a finite
negative value. As we are interested only in energy differences, we can assume
this constant potential to be zero. Then the only energy that we have to consider
is the kinetic energy. This kinetic energy is substantially lower than that of the
bound electrons in an isolated atom, as the field of motion for the free electron
is considerably enlarged in the solid as compared to the field around an isolated
atom. This effect is explained below.

Electrons have both particle-like and wave-like characteristics. The de
Broglie wavelength of an electron � is related to its momentum mv as

� = 
h

mv
(14.1)

where h is Planck’s constant, m is the mass of the free electron and v is its
velocity. The wavelength is inversely related to the magnitude of the wave
number vector k:

k = 
2�
�

(14.2)

As the velocity of the free electrons is much smaller than that of light, we can
ignore relativistic effects and use the classical relation for kinetic energy E:

E = 
1
2

mv2 (14.3)

Substituting Eqs. (14.1) and (14.2) into Eq. (14.3), we obtain

E = 
2 2

28�

h k

m
(14.4)



Even though the variation in the kinetic energy E is shown to be continuous
in Fig. 14.1, these are in fact very closely spaced discrete energy levels, as the
quantum restrictions arising from the Pauli exclusion principle apply to the free
electrons as well. Let us consider a solid, in which the electron motion is
unidirectional. Let L be the length of this axis of motion. The longest
wavelength that is permissible for the free electron is equal to twice this length
as shown in Fig. 14.2, as the amplitude of the wave should be zero at both ends

The kinetic energy E increases as the square of the wave number. This parabolic
relationship between E and k is shown in Fig. 14.1. As � is inversely related to
k, the electron with the largest de Broglie wavelength will have the lowest
kinetic energy. With the enlarged field of motion in the solid, the electrons can
have larger wavelengths and hence lower kinetic energies.

E

k0

Fig. 14.1 The parabolic relationship between the kinetic energy E of a free
electron and its wave number k.
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� = (2/3)L
� = L � = 2L

x0 L

Fig. 14.2 The de Broglie wavelengths of the first few electrons moving along x.
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of this length. The next smaller wavelength that is permissible is equal to L, the
third one is equal to (2/3)L, and so on. The corresponding values of the
wavenumber k are �/L, 2�/L, �, as obtained from Eq. (14.2).

In a solid that is electrically neutral, a free electron having a certain speed in
one direction will always be associated with another electron having the same
speed but moving in the opposite direction. (If this were not so, there will be a net
flow of electrons in one direction, even in the absence of an externally applied
field.) In other words, the wave number k takes on both positive and negative
values. Thus, for the first two states, we have k equal to ��/L and
�2�/L. In general, k = � n�/L, where the quantum number n takes on successively
increasing integer values. Substituting k = �n� /L in Eq. (14.4), we obtain

E = 
2 2

28

h n

mL
(14.5)

In a three-dimensional solid, the free electron can move in any direction in
space. So, three quantum numbers nx, ny and nz corresponding to the three
coordinate axes are used to define each quantum state. nx, ny and nz take on
successively-increasing integer values. (nx

2 + ny
2 + nz

2) is substituted in place of
n2 used for the unidirectional motion. Equation (14.5) can be rewritten for three-
dimensional motion as

E = 
2 2 2

2
28

� �� �
� �
� �

x y zn n n
h

mL
(14.6)

Each distinct combination of nx, ny and nz corresponds to a quantum state, where
two electrons of opposite spins can reside. Several combinations of nx, ny and nz

can result in the same value of E. Quantum states with the same energy are said
to be degenerate. The successive energy levels calculated from Eq. (14.6) are so
close to one another that E can be considered to be varying continuously as
illustrated for unidirectional motion in Fig. 14.1.

Example 14.1 Calculate the energy difference between the nx = ny = nz = 1
level and the next higher energy level for free electrons in a solid cube of
10 mm � 10 mm � 10 mm.

Solution
L = 10 mm = 10–2 m

From Eq. (14.6),

E = 
34 2 2 2 2

31 2 2

(6.626 10 ) (1 1 1 )

8 9.109 10 (10 )

�

� �

� � �
� � �

= 1.81 � 10–33 J

There are many equal energy quantum states above this energy level, with values
of nx, ny and nz as (1,1,2), (1,2,1), (2,1,1), �� . For these states,



E = 
34 2 2 2 2

31 2 2

(6.626 10 ) (1 1 2 )

8 9.109 10 (10 )

�

� �

� � �
� � �

= 3.62 � 10–33 J

The energy difference between the first and the next higher energy levels is
extremely small, only 1.81 � 10–33 J, so that we are justified in assuming E to be
continuously varying with k. Compare this energy difference with the value of
thermal energy at temperature as low as 1 K, 1.38 � 10–23 J, which is ten orders
of magnitude larger.

The wave forms for the free electrons starting from the lowest energy level
are sketched in Fig. 14.2 for unidirectional motion. The probability of finding an
electron at any point along the length is proportional to the square of the
amplitude of the wave at that point. This means that, for the free electron with
� = 2L, the probability of finding it at the midpoint of the length is a maximum.
This, however, is not an acceptable result, as the probability of finding the free
electron must be the same anywhere within the solid. To overcome this
difficulty, the waves are considered to be travelling waves with a constant
velocity, so that the time averaged probability of finding an electron is constant
throughout the solid.

In keeping with the minimum energy criterion and the Pauli exclusion
principle, the free electrons occupy successive quantum states of increasing
kinetic energy. The energy corresponding to the highest filled level at 0 K is
called the Fermi energy EF. At 0 K, the free electrons occupy all the levels up to
the Fermi level, leaving all those above it empty. At temperatures above 0 K, due
to thermal excitation, there is a finite probability of some of the electrons from
below the Fermi level moving to levels above EF. This probability is given by
the Fermi–Dirac statistics, which takes into account the quantum restrictions due
to the Pauli exclusion principle. The probability of occupation P(E) of an energy
level E by an electron is given by

P(E) =
F

1
1 exp [( )/ ]E E kT� � (14.7)

If EF is independent of temperature, P(E) varies with E as shown in
Fig. 14.3. At 0 K, P(E) remains constant at unity with increasing E up to EF,
where it falls abruptly to zero. At T1 > 0 K, some of the electrons just below the
Fermi level are thermally excited to higher levels just above EF. So, P(E) is less
than one just below the Fermi level and is greater than zero just above the Fermi
level. At a still higher temperature, more electrons leave the lower energy levels
and occupy higher levels. The cross-over point, where P(E) is 0.5 for different
temperatures in Fig. 14.3, occurs at the same value of the energy level which is
EF. This is true, provided that EF is independent of temperature, an assumption
valid for most ordinary temperatures. Under such conditions, the Fermi level can
be defined as that level which has a 50% probability of occupation by an
electron at any temperature.
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14.3 Conduction by Free Electrons

We have already noted that the wave number k takes both positive and negative
values. For every electron moving with a certain speed in a direction, there is
another electron moving with the same speed in the opposite direction. This equal
and opposite velocity distribution in a neutral solid can be biased by an externally
applied electric field to yield a net velocity in one direction. With this biasing, the
solid conducts electricity. Under an applied field, the E–k relationship of Fig. 14.1
gets modified to the distribution shown in Fig. 14.4. The negatively charged

T1 > T0T2 > T1

T0 = 0 K
1

P
(E

)

0 EFE

Fig. 14.3 The Fermi–Dirac distribution of free electrons at different
temperatures.

Field
– +

E

0

EF

k

Fig. 14.4 Electrons moving towards the positive end of the applied field acquire
extra velocity, while those moving in the opposite direction lose some velocity.

electrons are accelerated towards the positive end of the field. The velocity of the
fastest electron moving in the direction of the positive end has a larger magnitude
than that of the fastest electron moving towards the negative end of the field. Such
redistribution is possible, only when empty electron states are available
immediately above the Fermi level. This availability is a basic characteristic of
conductors, as opposed to semiconductors and insulators.



The force experienced by an electron of charge e in an applied field of
gradient � can be equated to the force as defined in the classical law:

�e = ma (14.8)

where m is the mass of the electron and a is the acceleration due to the applied
field. The electrons that are accelerated towards the positive end of the field do
not continue to increase their velocity indefinitely. They collide with obstacles
on their way. Depending on the time interval between two successive collisions,
the electrons acquire an average increment of velocity called drift velocity, all of
which they lose during a collision, as illustrated in Fig. 14.5. The drift velocity
is the extra velocity that electrons acquire over and above their normal velocity
in the absence of a field.

Collisions

V
el
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it

y

vd

�

Fig. 14.5 The extra velocity acquired by an electron due to an applied field is
lost on collision with an impurity, imperfection or phonon.

Time

If the average collision time is � and vd is the drift velocity acquired by the
electrons, Eq. (14.8) can be rewritten as

m (vd/�) = �e (14.9)
or

vd = 
� �e
m

(14.10)

The flux Je due to the flow of electrons is called the current density:

Je = nevd = 
2
��ne

m
(14.11)

where n is the number of free electrons of charge e. This is in the form of
Ohm’s law. As conductivity � is by definition the flux per unit potential
gradient, we have

� = 
2
�ne

m
(14.12)

The electrical resistivity � is the reciprocal of conductivity.
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Example 14.2 Calculate the conductivity of copper at 300 K. The collision
time � for electron scattering is 2 � 10–14 s at this temperature.

Solution The number of free electrons per m3 of copper is given by

n = 6.023 � 1023 � 8960/0.06354 = 8.50 � 1028 m–3

Electronic charge e = 1.602 � 10–19 C
Mass of a free electron ~ rest mass

= 9.1 � 10–31 kg
Using Eq. (14.12),

� = 8.50 � 1028 � 1.6022 � 10–38 � 2 � 10–14/(9.1 � 10–31)

= 4.8 � 107 ohm–1 m–1

The mean free path l of an electron is the mean distance it travels between
successive collisions. For an ideal crystal with no impurities and imperfections,
the mean free path at 0 K is infinite. That is, there are no collisions and the
electrical conductivity is ideally infinite.

Solute atoms provide effective scattering centres for the electrons. Their
introduction into the crystal results in collisions, decreasing the mean free path
and the conductivity. Similarly, other point imperfections, dislocations and grain
boundaries also increase the scattering and decrease the conductivity. Among
these scattering centres, impurities dissolved in the crystal lattice as solutes are
more effective than the others.

At temperatures above 0 K, the atoms vibrate randomly about their mean
positions. These vibrations can be considered as elastic waves in the crystal and
are called phonons. Their random nature destroys the ideal periodicity of a
crystal and interferes with the electron motion. Consequently, the mean free path
and the conductivity decrease with increasing temperature. At low temperatures,
the mean free path and the collision time are proportional to the cube of the
reciprocal of temperature in kelvin. At higher temperatures, the vibrational
frequency tends to become constant. Here, the mean free path and the collision
time are proportional to the reciprocal of temperature.

The electrical resistivity of pure copper with a low density of imperfections
is shown as a function of temperature in Fig. 14.6. The variation is cubic at low
temperatures and is linear at higher temperatures. If nickel is introduced in the
copper lattice as a solute, the resistivity of the alloy is higher at all temperatures
than that of pure copper. The increase in resistivity is proportional to the amount
of nickel added. The resistivities of Cu-2% Ni and Cu-3% Ni are shown in
Fig. 14.6. The resistivities of the Cu–Ni alloys at 0 K have a finite residual
value, in contrast to pure copper, where the resistivity is tending to zero at 0 K.
This residual resistivity is attributable to the scattering centres provided by the
solute atoms which are present even at 0 K, where there is no phonon scattering.
The additivity rule of Mattheissen describes this behaviour:

� = �T + �r (14.13)



where �T is the thermal part of the resistivity and �r is the residual resistivity
due to solute atoms and other imperfections in the crystal.

Example 14.3 The resistivity of pure copper at room temperature is
1.8 � 10–8 ohm m. The resistivity of Cu-4% Ni alloy at room temperature is
7.0 � 10–8 ohm m. Estimate the resistivity due to impurity scattering by 1% of
nickel in the copper lattice.

Solution Taking the resistivity of copper at 0 K to be negligible,
1.8 � 1.0–8 ohm m is the thermal part of resistivity of copper as well as of the
alloy between 0 K and room temperature. The impurity scattering by 1% of
nickel is then equal to (7.0 – 1.8) � 10–8/4 = 1.3 � 10–8 ohm m.

14.4 Conductor and Resistor Materials

The resistivity, the temperature coefficient of resistance, the density and the
tensile strength of typical conductor and resistor materials are listed in
Table 14.2.
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Fig. 14.6 The electrical resistivity of pure copper and Cu–Ni alloys as a function
of temperature.
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TABLE 14.2

Properties of Typical Conductors and Resistors at Room Temperature

Resistivity, Temperature Density, Tensile
Material 10–8 ohm m coefficient �, 103 kg m–3 strength*,

K–1 MN m–2

Silver 1.5 0.0040 10.49 125

Copper 1.7 0.0043 8.96 210

Gold 2.2 0.0035 19.32 138
Aluminium 2.8 0.0042 2.70 60

Tungsten wire 5.5 0.0045 19.3 2800

Molybdenum wire 4.9 0.0050 10.2 700
Platinum wire 10.9 0.0037 21.45 350

Tantalum wire 15.5 0.0032 16.6 490

Nichrome wire 108 0.0001 8.41 1000
Manganin 48 0.00002 8.2 420

Kanthal wire 135 0.00003 7.2 800

*The tensile strength values given here are approximate, as they depend on the prior
thermal and mechanical history of the metal.

For use as conductors in applications such as transmission lines and
distribution lines, low I 2R loss is the primary consideration and the choice would
be from amongst the best conductors, keeping in view the cost, fabricability and
mechanical strength. Copper and aluminium are the most likely choices. For
long distance transmission lines, aluminium is chosen. As a large cross section
would reduce the I2R loss, thick cables are preferred. If the elastic modulus of
the aluminium cables is improved by reinforcement with steel as in ACSR
(aluminium conductor steel reinforced) cables, the distance between successive
poles along the transmission line can be substantially increased. More expensive
copper is used for distribution lines, busbars and other energy conversion
applications. OFHC (oxygen-free high conductivity) copper is often specified.
Among the common solutes in copper, Fe, P and As are the most harmful in
impairing the electrical conductivity.

For electrical contacts used in switches, brushes and relays, the material
must possess high electrical conductivity, high thermal conductivity, high
melting point and good oxidation resistance. High thermal conductivity helps to
dissipate the heat effectively. High melting point is desirable so that any
accidental overheating does not fuse together the contact points. Good oxidation
resistance is necessary to keep the contact clean and free of insulating oxides.
Copper and silver largely satisfy the above requirements. For low cost, copper is
commonly used. For critical contacts such as those used in aircrafts, silver is
preferred. The low mechanical strength of pure silver is increased by the
dispersion of fine particles of CdO. Dislocations moving in silver have to bend



around the dispersed CdO particles and a fine dispersion increases the strength.
CdO improves the wear resistance of silver. It also decomposes at the melting
point of silver, thereby absorbing much of the heat generated by arcing and
minimizing the loss of expensive silver by evaporation.

For resistor applications, the primary requirements are uniform resistivity
(achieved in a homogeneous alloy), stable resistance (achieved by avoiding
metallurgical changes such as ageing and relaxation of residual stresses), small
temperature coefficient of resistance (�) and low thermoelectric potential with
respect to copper. A small � minimizes the error in measurements due to
variations in the ambient temperature. � is defined as

� = 
1 dR
R dT

(14.14)

where R is the resistance of the alloy at temperature T. For manganin alloy
(87% Cu and 13% Mn), � is only 20 � 10–6 K–1 as against 4000 � 10–6 K–l for
pure copper. Constantan (60% Cu and 40% Ni) is another such alloy. These
alloys have also good resistance to atmospheric corrosion, another desirable
property in a resistor.

A low thermoelectric potential with respect to copper, to which the resistor
is commonly connected, reduces errors due to temperature differences between
junctions. For high precision, dissimilar junctions should be maintained at the
same temperature so that no thermoelectric potential develops.

Ballast resistors are used to maintain constant current in some industrial
circuits. If the flow of current increases, the temperature increases and the
resistance of the ballast increases. This in turn decreases the current in the circuit
towards the initial value. An iron–nickel alloy with 71% Fe and 29% Ni with
excellent oxidation resistance and a high � of 4500 � 10–6 K–l is used for this
application.

For heating elements, the primary requirements are high melting point, high
electrical resistance, good oxidation resistance, good creep strength, low elastic
modulus and low thermal expansion. The last two requirements help in reducing
thermal fatigue due to repeated heating and cooling. The heating elements
should be designed in a way as to allow unhindered expansion and contraction,
for example, in the form of a coil of wire. Nichrome (80% Ni and 20% Cr) and
Kanthal (69% Fe, 23% Cr, 6% Al and 2% Co) are used for heating elements up
to 1300°C. SiC and MoSi2 can be used at higher temperatures up to 1700°C.
Graphite, by virtue of its high sublimation temperature and good fabrication
properties, is also widely used up to 1800°C. Molybdenum and tantalum need
protective atmospheres at high temperatures, as their oxidation resistance is poor.
By virtue of its very high melting point (3410°C), tungsten is used for filaments
in incandescent lamps. Its creep resistance at white heat (above 1500°C) can be
improved by dispersion hardening with thoria (ThO2).

Resistance thermometers should have a high temperature coefficient of
resistance for good sensitivity. A pure metal is obviously the choice for this
application. Platinum, obtainable in very pure form, is used.
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The resistivity of tin, on the other hand, falls abruptly at about 4 K to a value
below the measurable limit of 10–20 ohm m. The temperature at which this
abrupt fall occurs is called the superconducting transition temperature Tc. Tin is
in the normal state above Tc and in the superconducting state below Tc. The
resistivity in the superconducting state is zero for all practical purposes. A
current induced in a superconducting ring persists for years with negligible
decay.

The first application that was conceived of the superconducting effect was to
produce a large permanent magnetic field by inducing a perpetual current in a
superconductor. However, at temperatures below Tc, as the magnetic field
strength reaches a critical value Hc, the superconductivity disappears. This is
illustrated in Fig. 14.8. At T = Tc, Hc = 0. Hc increases as the temperature
decreases below Tc. A similar graph relates the critical current density Jc that a
superconductor can carry at temperatures below Tc. At T = Tc, Jc = 0. Jc

increases as the temperature decreases below Tc in a manner similar to Hc in
Fig. 14.8. In other words, the maximum current that a superconductor carries at
a given temperature below Tc is limited by the magnetic field it produces at the
surface of the superconductor.

In the superconducting state, the flux lines of a magnetic field are ejected
out of the superconductor, as illustrated in Fig. 14.9. This effect is known as the
Meissner effect. A superconductor is a perfect diamagnetic material, with the
magnetic susceptibility � equal to –1.

14.5 Superconducting Materials

14.5.1 The Superconducting Phenomenon

Referring to Fig. 14.7, the resistivity of pure silver decreases gradually to a low
but measurable value of ~10–11 ohm m at 0 K. Silver is not a superconductor.
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Fig. 14.7 The electrical resistivity � of (a) pure silver, and (b) tin, as a function
of temperature near 0 K.



The superconducting effect has been explained in the Bardeen–Cooper–
Schreiffer (BCS) theory as a three-way interaction between two electrons and a
phonon (a phonon is the quantum of energy in an elastic wave, analogous to a
photon, which is the quantum of energy in an electromagnetic wave). The
phonon scattering due to lattice vibrations felt by electron 1 is exactly nullified
by electron 2, such that the electron pair moves through the lattice without
feeling any scattering effect from lattice vibrations. This attractive interaction
energy is more than the repulsive energy between the two electrons; yet it is
small enough in magnitude to be disrupted by the thermal energy available at
T > Tc.
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Fig. 14.8 The critical magnetic field Hc as a function of temperature for the
superconducting-to-normal transition. Hc = 0 at Tc.

T > Tc T < Tc

(a) (b)

Fig. 14.9 The flux lines of an applied magnetic field are ejected out of the solid
on crossing to the superconducting state.
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14.5.2 Type I and Type II Superconductors

Type I or the ideal superconductor when placed in a magnetic field repels the
flux lines totally, till the magnetic field attains the critical value Hc. The
magnetization M is equal to –H up to Tc, where it drops to zero, as shown in
Fig. 14.10a. Type II or hard superconductors are those in which the ideal
behaviour is seen up to a lower critical field Hc1, beyond which the magnetiz-
ation gradually changes and attains zero at an upper critical field designated Hc2,
see Fig. 14.10b. The Meissner effect is incomplete in the region between Hc1 and
Hc2; this region is known as the vortex region. The normal behaviour is observed
only beyond Hc2. The magnetic flux lines gradually penetrate the solid, as the
field is increased beyond Hc1 and the penetration is complete only at Hc2.
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Fig. 14.10 The magnetization M versus the critical magnetic field Hc for
(a) Type I and (b) Type II superconductors.
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Type II superconductors are of great practical interest because of the high
current densities that they can carry. The type II state is determined by the
microstructural condition of the material. Heavily cold-worked and recovery
annealed material have cell walls of high dislocation density and this
microstructure effectively pins the magnetic flux lines and makes their
penetration difficult. Grain boundaries also exert a pinning action; an extremely
fine grain size is effective in increasing Hc2. Similarly, the dispersion of very
fine precipitates in the matrix with the interparticle spacing of about 300 Å
results in optimum flux pinning. The critical current density Jc also increases, as
Hc2 increases. The very high current densities obtainable in a Nb-40% Ti alloy at
4.2 K at a magnetic field strength of 0.9Hc2 are listed below as a function of the
microstructural condition.

Microstructure Jc, A m–2

Recrystallized 105

Cold worked and recovery annealed 107

Cold worked and precipitation hardened 108



14.5.3 Potential Applications

Superconducting materials are already in use for producing very strong magnetic
fields of about 50 Tesla, which is much larger than the field obtainable from an
electromagnet. Such high magnetic fields are required in MHD power
generators. At high magnetic field strengths, a conventional copper solenoid
consumes about 3 MW, whereas a superconducting magnet consumes about
10 kW. In addition, the copper solenoid will require about 2000 l/min of water
circulation to avoid burning down due to Joule heating. Magnetic energy can be
stored in large superconductors and drawn as required, to counter voltage
fluctuations during peak loading.

Superconductors can be used to perform logic and storage functions in
computers. A Josephson junction consists of a thin layer of insulating material
between two superconducting solids. The unique current-voltage characteristics
associated with the Josephson junction are suitable for memory elements.
Switching times of the order of 10 ps (l0–11 s) have been measured.

Arising from the Meissner effect, a superconducting material can be
suspended in air against the repulsive force from a permanent magnet. This
magnetic levitation effect can be used in transportation. As there is no I2R loss
in a superconductor, power can be transmitted through superconducting cables
without loss. With the liquid N2 environment, the economics of such
transmission has become more favourable for adoption.

14.5.4 New Developments

Till the year 1986, the highest known transition temperature Tc was 23 K in the
Nb3Ge alloy. In 1986, Bednorz and Mueller reported a significant increase in Tc

to 34 K in a La–Ba–Cu–O ceramic material. This Nobel prize-winning discovery
was soon followed by further big increases in the transition temperature. The
oxide with the nominal formula YBa2Cu3O7–x has a transition temperature of
~90 K.* This transition temperature is 13 K above the boiling point of liquid N2

(77 K). Compare this with the boiling point of liquid He (4 K) and that of liquid
H2 (23 K), which is a safety hazard. That a superconductor can function in
liquid nitrogen is itself a remarkable achievement. A liquid nitrogen environment
is far easier and cheaper to obtain than a liquid helium medium. Further, it takes
about 25 times more energy to cool from 77 K to 4 K than from room
temperature to 77 K.

The oxide YBa2Cu3O7–x is prepared by heating compacted powder mixtures
of Y2O3, BaCO3 and CuO in the right proportion to temperatures between 900
and 1100°C. BaCO3 decomposes at this temperature to BaO and CO2. This is
often followed by another annealing treatment at 800°C in an atmosphere of
oxygen. The heat treatment conditions such as the partial pressure of oxygen in
the atmosphere are critical for obtaining a high Tc. The crystal structure of the
powder product obtained is related to the cubic perovskite structure as illustrated
in Fig. 14.11. Three body-centered cubic unit cells are stacked one above
another. The atom distributions in the unit cells are as follows:
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Cu at the body corners : 8 � 1/8 � 3 = 3
Ba at two body centres : 1 � 2 = 2

Y at one body centre : 1 � 1 = 1

O at mid-points of edges : 12 � 1/4 � 3 = 9

Some oxygen positions are vacant and their number is between 6.5 and 7.
The superconducting properties appear to be a sensitive function of the oxygen
content and, therefore, of the partial pressure of oxygen during heat treatment.

The engineering aspects of this oxide superconductor still remain elusive. It
is reactive, brittle, unable to support any significant stress and cannot be easily
formed or joined. Also, the superconducting properties deteriorate during heating
for forming purposes or even in a humid room. Explosive forming and isotactic
pressing are two forming processes that appear to be promising. In explosive
forming, the oxide powder is placed between two copper plates in a container,
which is filled with an explosive. On detonating, shock waves are generated and
compressive pressures up to 50 000 atm are exerted on the composite sandwich-
like arrangement, which gets compacted into one solid mass. The temperature
attained in the chamber is less than 100°C. The very high compressive stress
plastically deforms the oxide, which should help to increase its critical-current
carrying capacity. Once encapsulated, the outer copper layer provides for easy
external connection and also ensures that there is no deterioration of the
superconducting properties due to environmental effects.

Fig. 14.11 The crystal structure of yttrium–barium–copper oxide.
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1. Electrical resistivity of materials covers a very wide range, over 25 orders
of magnitude.

2. In a solid where the potential field is uniform, the total energy of the free
electrons can be taken to be their kinetic energy. This energy varies as the
square of the wave number k.

3. The Fermi energy level is defined as that level which has a 50%
probability of occupation by an electron. At 0 K, the Fermi level is the
highest filled electron energy level.

4. At temperatures above 0 K, due to thermal excitation, the distribution of
electrons near the Fermi level changes as given by the Fermi–Dirac
statistics.

5. The availability of empty electron states immediately above the Fermi level
is a basic requirement for electrical conduction.

6. Ohm’s law arises, as conducting electrons acquire a drift velocity under an
applied field, due to collisions with impurities, imperfections and phonons.

7. For high conductivity and large temperature coefficient of resistance, �,
pure metals are chosen. For heating purposes by I2R dissipation and for
low temperature coefficient of resistance, alloys are more suitable.

8. The transition temperature Tc, the critical magnetic fields Hc1 and Hc2, and
the critical current density Jc are the main properties of interest of
superconductors. Among these, Jc is structure sensitive and can be
maximized by proper control of the microstructure.

9. The recent discovery of high Tc oxide superconductors is an important
advance in scientific research, with far reaching technological implications.

��	
����

14.1 Calculate the kinetic energy and the de Broglie wavelength of an electron
that falls through a potential of (i) 500, (ii) 5000, and (iii) 50000 V.
Answer: (i) 500 eV, 0.55 Å, (ii) 5000 eV, 0.17 Å, and (iii) 50000 eV,
0.055 Å

14.2 Derive the kinetic energy of free electrons as a function of their wave
number.

14.3 What should be the energy of the quantum state, which has 19 for the sum
of the squares of the quantum numbers nx, ny and nz ? What is the
degeneracy of this state? Assume the solid to be 10 mm � 10 mm � 10 mm.
Answer: 1.15 � 10–32 J; 24.
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14.4 Show that the probability of occupancy of energy level E by an electron
is (i) negligible for E �  EF, (ii) 0.5 for E = EF, and (iii) ~1 for
E �  EF.

14.5 The Fermi level for potassium is 2.1 eV. Calculate the velocity of the
electrons at the Fermi level.
Answer: 8.6 � 105 m s–l.

14.6 The Fermi level of silver is 5.5 eV. Calculate the fraction of free
electrons at room temperature located up to a width of kT on either side
of EF.
Answer: 0.01.

14.7 The resistance of a sample of copper wire of 0.1 mm diameter and 0.2 m
long is 0.439 ohm. Calculate its resistivity and conductivity.
Answer: 1.72 � 10–8 ohm m and 5.81 � 107 ohm–1 m–1.

14.8 The resistivity of silver at room temperature is 1.6 � 10–8 ohm m.
Calculate the collision time for electron scattering.
Answer: 3.8 � 10–14 s.

14.9 The resistivity of aluminium at room temperature is 2.62 � 10–8 ohm m.
Calculate the incremental velocity acquired by the free electrons in a
field gradient of 100 V m–l.
Answer: 0.39 m s–1.

14.10 Calculate the per cent increase in resistivity of (i) copper and
(ii) nichrome on heating from 300 K to 1000 K.
Answer: (i) 300%, (ii) 7%.

14.11 If the ambient temperature varies by �10°C about the mean value of
20°C, what is the maximum possible error between two measurements of
resistance made at different times of (i) a copper resistor, and (ii) a
manganin resistor?
Answer: (i) 8.6%, (ii) 0.04%

14.12 Resistivity changes of 1 in 104 can be detected by means of a bridge.
What is the smallest change in temperature that you can measure with a
platinum thermometer at –200°C. At this temperature, � = 0.03 K–1.
Answer: 0.0033°C.

14.13 Explain why nichrome and not copper is used as a heating element.

14.14 A wire whose diameter is 2 mm must carry a 20 A current in an
application. The maximum power dissipation along the wire is 5 W m–l.
Calculate the minimum permissible conductivity of the wire for this
application.
Answer: 2.55 � 107 ohm–1 m–l.

14.15 Estimate the mean free path of free electrons in pure copper at 4 K. The
collision time for phonon scattering at 4 K is 10–9 s. The Fermi energy
level for copper is 7 eV.
Answer: 1.57 mm.
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14.16 Explain why aluminium used in long distance transmission lines cannot
be strengthened by solid solution.

�������� ��	���� �����	��

1. The SI units of electrical conductivity are
A. kg–1 m–3 s3 A2 B. kg m3 s–3 A–2 C. ohm m D. ohm–l m–3

2. The correct order of increasing resistivity of the following is

A. nickel, doped silicon, sodium silicate, pure silica

B. doped silicon, pure silica, nickel, sodium silicate

C. pure silica, doped silicon, sodium silicate, nickel

D. nickel, pure silica, doped silicon, sodium silicate

3. Volt in SI units is

A. W A B. N m2 s–1 A–1 C. kg m2 s–3 A–1 D. ohm A–1

4. The degeneracy of the quantum states with (nx
2 + ny

2 + nz
2) = 6 is

A. 8 B. 12 C. 24 D. 48

5. The energy level difference between two successive levels for the lowest
energy free electrons is in order of magnitude

A. 1 eV B. 10–33 J C. 10–23 J D. 10–19 J

6. In a metal of 1 cm � 1 cm � 1 cm, the lowest energy free electron has a
wavelength of

A. 0.5 cm B. 1 cm
C. 2 cm D. need Fermi energy to compute

7. The probability of finding a free electron in Ag at 300 K at an energy level
1.01EF is given by (EF for Ag = 5.5 eV)

A. 0.5 B. 0.11 C. 0.005 D. 0

8. If the Fermi energy of silver is 5.5 eV, the wave number of the fastest
electron at 0 K has the magnitude (in m–l)

A. 0.85 � 1010 B. 7.54 � 1010 C. 1.20 � 1010 D. 0.19 � 1010

9. The Fermi level for Cu is 7 eV. The maximum velocity of free electrons at
0 K is

A. 1570 km s–1 B. 1110 km s–1 C. 860 km s–1 D. 0 km s–1

10. The acceleration (m s–2) of a free electron in an electric field of
100 V m–1 is

A. 1.76 � 103 B. 1.1 � 1013 C. 1.76 � 1013 D. 1.1 � 1032

Multiple Choice Questions 351



11. The Fermi level EF depends on the length L of a linear solid as

A. l/L2 B. l/L3

C. l/L D. is independent of L

12. At 0 K, the probability of finding an electron at energy level E is unity,
when
A. E �  EF B. E < EF C. E > EF D. E �  EF

13. The classical equation for the kinetic energy can be used for the free
electrons, because, as compared to the velocity of light, their velocity is

A. more B. slightly less C. much less D. zero

14. The probability of occupation by a free electron of the energy level 3.5 eV
at room temperature in Cu is (EF for Cu = 7 eV)
A. 0 B. 0.5 C. 1 D. exp (–134.6)

15. The collision time for electron scattering in pure Ag (EF = 5.5 eV) at
300 K is 10–14 s. The mean free path of electrons is

A. 19.4 mm B. 1.39 � 10–8 m C. 3.3 � 10–8 m D. none of these

16. If the collision time for electron scattering in copper is 10–9 s at 4 K, the
conductivity of copper in units of ohm–1 m–1 is

A. 2.4 � 1012 B. 9.6 � 107 C. 4.8 � 107 D. 1.04 � 10–8

17. The number of degenerate quantum states corresponding to 9 for the sum
of the squares of the quantum numbers nx, ny and nz in the free electron
model is
A. 32 B. 6 C. 30 D. 24

18. The probability of occupation of an energy level E, when E – EF = kT, is
given by

A. 0.73 B. 0.63 C. 0.27 D. 0.5

19. The resistivity of pure copper at 300 K is 2 � 10–8 ohm m and that of
a copper-3% nickel alloy at 300 K is 5 � 10–8 ohm m. The impurity
scattering effect for 1 per cent of nickel in copper is

A. 5 � 10–8 ohm m B. 3 � 10–8 ohm m
C. 10–8 ohm m D. 7 � 10–8 ohm m

20. The error in measurement of resistance per kelvin with manganin
(temperature coefficient of resistance of 20 � 10–6 K–1) is

A. 0.04% B. 0.08% C. 0.00002 D. nil

21. The unit of electrical conductivity is
A. ohm m B. mho–1 m–1 C. m–3 C–2 s–1 kg–1 D. ohm–1 m–1

22. To increase the mechanical strength of an Al conductor, we can use

A. solute strengthening B. cold working
C. doping D. steel reinforcement
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23. High conductivity aluminium should not have

A. steel rod reinforcement

B. solute atoms such as Cu, Ag and Au

C. high dislocation density

D. dissolved impurities

24. The electrical resistivity of very pure silver near 0 K is
A. not measurable B. below 10–20 ohm m

C. very low but measurable D. very high

25. Tick the materials with the approximately correct superconducting
transition temperature given in brackets

A. Sn (4 K) B. Nb3Ge (23 K)
C. Y–Ba–Cu oxide (90 K) D. Y–Ba–Cu oxide (300 K)

26. The magnetization of a superconductor is

A. 0 B. –B C. –1 D. –H

27. The atoms that are located at the body centres of the cubic unit cells of the
YBa2Cu3O7-x superconductor are

A. Y B. Ba C. Cu D. O
28. The first measured Tc in a ceramic superconductor by Bednorz and

Mueller was
A. 4 K B. 23 K C. 34 K D. 90 K

29. The following microstructural features can improve Jc in a superconductor
A. dislocation tangles B. grain boundaries

C. fine precipitates D. low test temperature

30. Explosive forming of a ceramic superconductor causes

A. Jc to increase B. Tc to increase
C. plastic deformation D. brittle fracture of the ceramic

31. Cold working of oxide superconductors is possible with

A. high hydrostatic pressure B. moderate tensile stress

C. large tensile force D. none of these

32. Switching times with a Josephson junction are in order of magnitude
A. 10–2 ns B. 0.1 �s C. 10–15 s D. 1 �s

33. The room temperature electrical resistivity (ohm-m) of the new oxide
superconductors lies around

A. 10–9 B. 10–5 C. 107 D. 1018

34. The critical current density Jc that a superconductor can carry depends on

A. T with respect to Tc B. dislocation density
C. precipitate distribution D. none of these
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Answers

1. A 2. A 3. C 4. C 5. B

6. C 7. B 8. C 9. A 10. C

11. D 12. A, B 13. C 14. C 15. B

16. A 17. C 18. C 19. C 20. C

21. D 22. D 23. B, C, D 24. C 25. A, B, C

26. D 27. A, B 28. C 29. A, B, C 30. A, C

31. A 32. A 33. B 34. A, B, C

Sources for Experimental Data

G.W.A. Dummer, Materials for Conductive and Resistive Functions, Hayden
Book Co., New York (1971).

Metals Handbook, 10th ed., Vol. 3, Special Purpose Materials, ASM
International, Materials Park, Ohio (1990), pp. 804–1024.

Suggestions for Further Reading

C. Kittel, Introduction to Solid State Physics, Wiley, New York (1976), Chaps. 6
and 12.

L.E. Murr, A.W. Hare and N.G. Eror, Introducing the Metal Matrix High
Temperature Superconductor, in Advanced Materials and Processes, ASM
International, Materials Park, Ohio (1987), Vol. 145(10), pp. 36–44.
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CHAPTER

A number of solid state devices have come into use in the last several decades,
using semiconductor crystals. The field of electronics has been revolutionized
since the discovery of the transistor in 1948. The fragile vacuum tubes have now
been largely replaced by solid state diodes and triodes. This technological
progress has been in a large measure due to improved techniques in the
preparation, purification and characterization of the raw materials needed to
make the solid state devices.

In this chapter, we shall consider briefly the energy band model for solids in
general and for pure and doped semiconductors in particular. We shall also deal
with common semiconductor materials and their fabrication. The last section is
devoted to a description of some common semiconductor devices.

Units

Quantity  SI units  Other units
Unit  Symbol

de Broglie wavelength � metre m Å
Wave number k per metre m–1 –
Energy gap Eg joule J eV
Contact potential eV0 joule J eV
Concentration of conduction per cubic metre m–3 –
electrons or holes, ne or nh

Mobility �e or �h metre squared per m2 V–1 s–1 –
volt per second

Conductivity � per ohm per metre ohm–1 m–1 –

Constants

Boltzmann’s constant k = 1.380 � 10–23 J K–1

Electronic charge e = 1.602 � 10–19 C
Electron rest mass m0 = 9.109 � 10–31 kg
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15.1 The Energy Gap in Solids

In the model of free electrons discussed in the last chapter, the potential field in
which the electrons are moving within the crystal is assumed to be constant. In
reality, of course, this is a gross approximation. The potential energy of an
electron will be undoubtedly a function of its position with respect to the ion
cores and the other electrons in the system. For example, its potential energy
will be less if it is close to a (positive) ion core and more than the average when
it is farthest away from neighbouring ion cores. This fact combined with the
diffracting properties of electrons has an important effect on the electron energy
calculations, especially at certain critical values of the de Broglie wavelength �
of the electrons.

Consider the motion of electrons along only one axis as before. Electrons
moving to the right or to the left are scattered by the atoms in the path. This
scattering is largely coherent and is being reinforced in the direction of motion
of the electrons. If, however, the spacing d between neighbouring atoms along
the axis is such that the Bragg equation

n� = 2d sin � (15.1)

is exactly satisfied, the electrons are totally reflected. For the unidirectional
motion under consideration, the atoms along the axis can be visualized as
successive ‘planes’ perpendicular to the direction of electron motion so that
sin � = 1. Then, from Eq. (15.1), the wavelength � of the electron takes on critical
values of 2d, d, 2d/3, and so on, for successively increasing order of reflection,
denoted by n. Expressed in terms of the wave number k (k = 2�/�), we get the
critical conditions at k = ��/d, �2�/d, �3�/d, ��. The electrons are reflected back
and forth repeatedly, when they have the critical wave number. We can say that the
net velocity of the electrons in a given direction is zero, due to repeated reflection.

The wave form of the electrons under such critical conditions comes out to
be two standing waves rather than the travelling wave we visualized for the free
electron. As pointed out in the last chapter, the travelling wave gives a constant,
time-averaged density of electrons throughout the solid. The standing wave, on
the other hand, gives a periodic variation in the amplitude and in the electron
probability density in the crystal. Standing waves can be obtained from linear
combinations of two travelling waves moving in opposite directions, consistent
with the repeated change in the direction of electron motion due to reflection.
Two possible combinations (the sum and the difference) of the travelling waves
give respectively a cosine wave and a sine wave, see Fig. 15.1. These waves
have the maximum amplitude at fixed points in space.

The probability of finding an electron at a point is proportional to the square
of the amplitude of the wave at that point. The probability density � corresponding
to the cosine and the sine waves is shown in the middle in Fig. 15.1. (For
comparison, the constant, time-averaged probability of the travelling wave is also
shown.) The electron is most likely to be found at the crest of the probability
density curve. In other words, the electron is localized here, in contrast to the free
electron, which can be found anywhere within the crystal.



As pointed out earlier, the potential energy of an electron is a function of its
position in the crystal. When the electrons are localized, the potential energy
variations due to location have also to be taken into account. We cannot assume
any longer the potential energy to be zero and use the kinetic energy in place of
the total energy, as we did in the case of the free electrons. The E–k relationship
shown in Fig. 14.1 is replotted in Fig. 15.2, taking into account the deviations
from the average potential energy. When there is no critical condition and the
electrons are not reflected, they have the average potential energy, which can be
taken to be zero. At a critical condition, however, the electron is described by a
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Fig. 15.1 The wave form of electrons are two standing waves when the Bragg law
is satisfied. The electron probability density � is shown for the two waves. At the
bottom, the potential energy variation as a function of electron position is sketched.
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Fig. 15.2 E–k plots show a break in the curve at the critical values of the wave
number k.
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standing wave and is therefore localized. When the wave form is a standing
cosine wave, the electron is close to an ion core (Fig. 15.1). Therefore, it has a
lower potential energy than the average. When the wave form is a standing sine
wave, the electron is farthest away from the ion cores and correspondingly has a
potential energy greater than the average. These deviations from the average
potential energy appear as a break in the E–k curve. The break occurring at a
critical value of k gives rise to an energy gap. Two groups of very closely
spaced energy levels called energy bands are separated by an energy gap at the
critical value of k. The magnitude of this energy gap is the difference in the
potential energy of the two electron locations.

When there is no critical condition, E varies as k2. So, the slope of the E–k
curve increases linearly with k. As the critical value of k is approached, the slope
decreases and becomes zero at the critical value. Starting from the inflection
point on the curve, the diffraction effects become increasingly important,
slowing down the electron continuously to a net velocity of zero at the critical
value. This is a strange effect in the sense that with increasing kinetic energy of
the electron, its velocity is decreasing! The effective mass of the electron,
denoted by m*, is negative in the region between the inflection point and the
critical condition in the E–k curve.

In the three-dimensional crystal, the electrons can move in any direction not
necessarily normal to the reflecting planes. The Bragg angle � can have any
value from 0 to 90°. Critical values of k will then correspond to � n�/(d sin �)
and not �n�/d, which we used for the one-dimensional case. Depending on the
value of �, reflection will occur at different values of k, even for the same set of
reflecting planes. Consider, for example, the first order reflection from a set of
parallel (l00) planes in a cubic crystal. The critical condition for this case is
k = ��/(d sin �), where d is the spacing between successive (100) planes. An
electron moving in a [l00] direction, which is perpendicular to the (l00) planes,
will have the critical condition at k = �/d, as sin � is one here. If the direction of
electron motion is gradually changed towards [110], the Bragg angle for
reflection from (100) planes decreases from 90°. Correspondingly, k increases to
larger values than the minimum of � /d. When the electron motion is along

[110], the Bragg angle is 45° and k = �/(d sin 45°) = 2� /d. If the electron
direction is further changed towards [010], k does not increase further, as
reflection now occurs from (010) planes instead of (100) planes. As (010) is in
the same family as (l00), d is the same for both. It is easy to see that the critical

condition for (010) reflection is k = 2 �/d, when the direction of electron
motion is [110] and decreases to �/d, as the direction of motion is changed to
[010]. Figure 15.3 illustrates this point. For all directions of electron motion,

2 �/d is the maximum value of k for first order reflection from the family of
{100} planes.

The E–k curves for electron motion along [100] and [110] directions are
shown in Fig. 15.4 for first order reflection from (100) planes. The gap in the

E–k curve occurs at k = �/d for [100] motion and at k = 2 � /d for [110]
motion. The effective gap is between the bottom line of the gap in the [110]



direction and the top line of the gap in the [l00] direction, as illustrated in
Fig. 15.4. This effective gap is called the forbidden gap, because the electrons
cannot take those values of energy that lie in the forbidden gap, regardless of
their direction of motion. The forbidden gap disappears, if the bottom line of the
gap for [110] direction lies above the top line of the gap in the [100] direction.
Such a situation will arise, when the potential energy of an electron is not a
strong function of location in a crystal. The energy bands on either side of a
critical value of k are said to overlap and there is no forbidden energy.

Figure 15.2 is the E–k plot for unidirectional motion of electrons. When all
directions of electron motion and all possible reflections are considered together, the
ranges of k that lie between the forbidden gaps are called Brillouin zones. The first
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Fig. 15.3 Direction of electron motion and reflecting planes in a cubic crystal.

E

[100]

0 �/d
k

E

[110]

0 2 �/d
k

Effective gap

Fig. 15.4 The effective forbidden gap refers to those energy values which an
electron cannot take, whatever be the direction of motion in the crystal.
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Brillouin zone contains all the energy levels up to the first E–k discontinuity, the second
zone contains all levels between the first and the second discontinuities and so on. The
first zone for an FCC crystal is a polyhedra bounded by planar surfaces of the {111} and
{200} types, these two corresponding to the first and the second allowed reflections for
the FCC lattice.

The simple energy band representation is adequate for our further
discussion. The outermost energy band that is full or partially filled is called the
valence band in solids. The band that is above the valence band and that is
empty at 0 K is called the conduction band. Solids are classified on the basis of
their band structure as metals, semiconductors and insulators.

Metals are those solids which have vacant electron energy states
immediately above the highest filled level of the valence band. This can happen
in two ways. In the first case, the valence band is only half-filled as shown in
Fig. 15.5a. As already discussed under metallic conductivity, the electrons here
can respond to an externally applied field, by acquiring extra velocity and
moving into the empty states in the top half of the valence band. In the second
alternative, a full valence band overlaps the conduction band as shown in
Fig. 15.5b so that there is no forbidden gap.
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Fig. 15.5 Metals have partially filled or overlapping bands.

Monovalent metals such as Cu, Ag and Au have one electron in the
outermost orbital. Correspondingly, the outermost energy band is only half full
in these metals. Divalent metals such as Mg and Be have overlapping conduction
and valence bands. Therefore, they also conduct even if the valence band is full.
The band structure of trivalent metals such as Al is similar to that of monovalent
metals, in that the outermost band is half full.

In elements of the fourth column, the electrons in the outermost orbital are
even in number, as in the divalent metals. The valence band is full, but there is
no overlap of the valence band with the conduction band here. Taking the case
of covalent diamond, the potential energy of electrons is a strong function of
their location in the crystal. Correspondingly, a forbidden gap exists and it is
relatively large in magnitude (5.4 eV), see Fig. 15.6a. As we move down the
fourth column to the elements below diamond, the electrons of the outermost
orbital are farther away from the nucleus. The effect of this increasing separation
is dominant over the effect of the increasing charge on the nucleus, so that the



electrons are less tightly bound to the nucleus, as we go down the column. The
potential energy of the electron is no longer a strong function of its location.
This reduces the energy gap from 5.4 eV in diamond to 1.1 eV in silicon
(Fig. 15.6b), 0.7 eV in germanium, and a mere 0.08 eV in gray tin. In lead, the
forbidden gap is zero.

Those materials which have an energy gap of about 2–3 eV or less are
called semiconductors and those with a gap of more than 3 eV are known as
insulators. In contrast to metals, both insulators and semiconductors have a finite
forbidden energy gap, the only difference between them arising from the
magnitude of the energy gap.

15.2 Intrinsic Semiconductors

In Chapter 14, we discussed the mechanism of conduction in metals. When an
external electric field is applied, the free electrons accelerate by moving into the
vacant quantum states immediately above the Fermi level. In semiconductors and
insulators, this is not possible, as there is a forbidden gap.

In order to conduct, the electrons from the top of the full valence band have
to move into the conduction band, by crossing the forbidden gap. The field that
needs to be applied to do this works out to be extremely large. Take the example
of silicon, where the forbidden gap is about 1 eV. This is approximately the
energy difference between a location close to an ion core and another location
away from the ion core. The distance between these two locations is about 1 Å
(10–10 m). Therefore, a field gradient of ~1 V/(10–10 m) = 1010 V m–1 is
necessary to move an electron from the top of the valence band to the bottom of
the conduction band. Such a high field gradient is not realizable in practice.
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Fig. 15.6 The difference between (a) an insulator and (b) a semiconductor is in
the magnitude of the energy gap.
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The other possibility by which this transition can be brought about is by
thermal excitation. At room temperature, the thermal energy that is available can
excite a limited number of electrons across the energy gap. This limited number
accounts for semiconduction. When the energy gap is large as in diamond, the
number of electrons that can be excited across the gap is extremely small. This
accounts for the very high resistance of insulators, recall Table 14.1.

In intrinsic semiconductors, the conduction is due to the intrinsic processes
characteristic of the crystal in question, without the influence of impurities. A
pure crystal of silicon or germanium is an intrinsic semiconductor. The electrons
that are excited from the top of the valence band to the bottom of the conduction
band by thermal energy are responsible for conduction. The number of electrons
excited across the gap can be calculated from the Fermi–Dirac probability
distribution:

P(E) = 
F

1
1 exp [( )/ ]E E kT� � (15.2)

The Fermi level EF for an intrinsic semiconductor lies midway in the
forbidden gap, as illustrated in Fig. 15.7. The probability of finding an electron
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Fig. 15.7 The Fermi level in an intrinsic semiconductor lies in the middle of the
energy gap.

here is 50%, even though energy levels at this point are forbidden. Then,
(E – EF) in the denominator of Eq. (15.2) is equal to Eg/2, where Eg is the
magnitude of the energy gap. For a typical semiconductor like silicon,
Eg = 1.1 eV, so that (E – EF) is 0.55 eV, which is more than twenty times larger
than the thermal energy kT at room temperature (= 0.026 eV). The factor unity
in the denominator can therefore be ignored, in comparison to the exponential
term, so that the probability P(E) of an electron occupying energy level E
becomes



P(E) = exp
2

�� �
	 

� �

gE

kT
(15.3)

The fraction of electrons at energy E is equal to the probability P(E). We
can then write for the number n of electrons promoted across the gap:

n = exp
2

�� �
	 

� �

gE
N

kT
(15.4)

where N is the number of electrons available for excitation from the top of the
valence band.

The promotion of some of the electrons across the gap leaves some vacant
electron sites in the valence band. These are called holes. As each excited
electron leaves back one hole, an intrinsic semiconductor contains an equal
number of holes in the valence band and electrons in the conduction band, that
is, ne = nh. Equation (15.4) gives the number of each of these species.

Under an externally applied field, the electrons, which are excited into the
conduction band by thermal means, can accelerate using the vacant states
available in the conduction band. At the same time, the holes in the valence band
also move, but in a direction opposite to that of the electrons. The conductivity
of the intrinsic semiconductor depends on the concentration of these charge
carriers, ne and nh. In the case of metals, we referred to the drift velocity
acquired by the free electrons in an applied field. Similarly, we can define the
mobility of conduction electrons and holes �e and �h as the drift velocity
acquired by them under unit field gradient.

Mobility = 
drift velocity
field gradient

= 
–1

–1

m s

V m
m2 V–1 s–1

We can then write the conductivity � of a semiconductor as

� = nee�e + nhe�h (15.5)

where e is the electronic charge and ne and nh are concentrations per unit
volume. The mobilities of electrons and holes in silicon and germanium are
listed in Table 15.1.

TABLE 15.1

Mobilities of Electrons and Holes in Silicon and Germanium

Species
Mobility at room temperature, m2 V–1 s–1

Silicon Germanium

Electrons 0.14 0.39
Holes 0.05 0.19
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Example 15.1 The resistivity of pure silicon at room temperature is
3000 ohm m. Calculate the intrinsic carrier density.

Solution The intrinsic charge carriers in pure silicon are electrons and
holes in equal numbers. From Eq. (15.5), we obtain

n = ne = nh = 
e h( )e
�

� ��

= 
19

1

(0.14 0.05) 3000 1.602 10� � � �

= 1.095 � 1016 m–3

For an intrinsic semiconductor, the number of charge carriers (electrons and
holes) is given by Eq. (15.4). This number is dependent on temperature in an
exponential way and, therefore, increases very rapidly with increasing
temperature. So, the conductivity also increases in a similar fashion with
temperature. The small temperature dependence of mobilities can be neglected,
as compared to the effect of temperature on the number of charge carriers. So, a
plot of the logarithm of conductivity against the reciprocal of temperature (in
kelvin) yields a straight line. The energy gap can be computed from the slope of
this straight line.

15.3 Extrinsic Semiconductors

In extrinsic semiconductors, the conduction is due to the presence of extraneous
impurities. The process of deliberate addition of controlled quantities of
impurities to a pure semiconductor is called doping. The addition of impurities
markedly increases the conductivity of a semiconductor. Consider a silicon
crystal which is doped with a fifth column element such as P, As or Sb. As
illustrated in Fig. 15.8a, the fifth column element, phosphorus in this case,

Fig. 15.8 Silicon doped with phosphorus from the fifth column of the periodic
table becomes an n-type semiconductor.
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substitutes for a silicon atom in the diamond cubic structure. Four of the five
electrons in the outermost orbital of the phosphorus atom take part in the
tetrahedral bonding with the four silicon neighbours. The fifth electron cannot
take part in the discrete covalent bonding. It is loosely bound to the parent atom.
It is possible to calculate an orbit for the fifth electron assuming that it revolves
around the positively charged phosphorus ion, in the same way as for the 1s
electron around the hydrogen nucleus. There is, however, one important
difference. The electron of the phosphorus atom is moving in the electric field of
the silicon crystal and not in free space, as is the case in the hydrogen atom.
This brings in the dielectric constant of the crystal into the orbital calculations,
and the radius of the electron orbit here turns out to be very large, about 80 Å as
against 0.5 Å for the hydrogen orbit. Such a large orbit evidently means that the
fifth electron is almost free and is at an energy level close to the conduction
band, as shown in Fig. 15.8b.

Excitation of the fifth electron into the conduction band takes place much
more readily than excitation from the valence band of the silicon crystal. The
phosphorus atom is said to donate its electron to the semiconductor. The energy
level of the fifth electron is called the donor level, see Fig. 15.8b. As the
elements to the right of the fourth column donate negative charges (electrons),
the semiconductors doped with them are called n-type semiconductors. The
energy required to excite the fifth electron into the conduction band is known as
the ionization energy, see Table 15.2.

TABLE 15.2

Ionization Energies for Some Elements in Silicon and Germanium (eV)

Impurity Silicon Germanium

n-type Phosphorus 0.044 0.012
Arsenic 0.049 0.013
Antimony 0.039 0.010

p-type Boron 0.045 0.010
Aluminium 0.057 0.010
Gallium 0.065 0.011
Indium 0.16 0.011

As compared to the energy gap, the ionization energy of an impurity atom is
very small. So, at room temperature, a large fraction of the donor level electrons
are excited into the conduction band. This fraction is much larger than the fraction
of electrons excited due to the intrinsic process, that is, from the valence band.
According to the law of mass action, the product of the number of electrons in the
conduction band and the number of holes in the valence band must be constant.
This condition drastically reduces the number of holes in the n-type semicond-
uctor. The electrons in the conduction band become the majority charge carriers.

Consider the alternative process of doping a silicon crystal with a third
column element such as Al, Ga or In. Aluminium has three electrons in the outer
orbital. While substituting for silicon in the crystal, it needs an extra electron to
complete the tetrahedral arrangement of bonds around it. The extra electron can
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At 0 K, the holes remain bound to the impurity atoms. As the temperature is
raised, the holes break away from the impurity atoms due to thermal excitation
and become available for conduction. The ionization energy to free a hole bound
to the impurity is approximately the same as the ionization energy of donor
electrons in the same crystal, see Table 15.2. The bound-hole levels are called
acceptor levels (aluminium accepts an electron) and are just above the valence
band, as shown in Fig. 15.9b. The fraction of holes created by thermal excitation
in doped silicon is much larger than those created by excitation of electrons into
the conduction band. The law of mass action holds good here also and the
positive holes become the majority charge carriers. Such an extrinsic
semiconductor is called a p-type semiconductor.

Equation (15.5) describes the conductivity of extrinsic semiconductors as
well. The only difference is that the number of electrons in the conduction band
and the number of holes in the valence band are not equal in the case of an
extrinsic semiconductor. One of the two dominates, depending on the type of the
extrinsic process.

Example 15.2 As the concentration of electrons in a semiconductor is
changed by changing the impurity level, the conductivity also changes. Show

that it passes through a minimum when ne = ni h e/� �  and find the minimum

value. Here ni is the intrinsic concentration.

come only from one of the neighbouring silicon atoms, thereby creating a vacant
electron site (hole) on the silicon. The aluminium atom with the extra electron
becomes a negative charge and the hole with a positive charge can be considered
to revolve around the aluminium atom, leading to the same orbital calculations
as above. This is illustrated in Fig. 15.9a.
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Fig. 15.9 Silicon doped with the third column element aluminium becomes a
p-type semiconductor.



Solution The conductivity of a semiconductor is given by

� = nee�e + nhe�h

Replacing nh in terms of ni and ne (ni
2 = nenh), we have

� = nee�e + ni
2e�h/ne

Noting that ni is a constant at constant temperature,

d� /dne = e�e – ni
2e�h/ne

2 = 0

for a minimum (the second derivative can be shown to be positive). So,

ne = ni h e/� �

Also,
ni

2 = ne
2�e/�h

Substituting this in the second equation above, we obtain

�min = 2nee�e

A typical plot of the logarithm of conductivity against temperature is shown
for an extrinsic semiconductor in Fig. 15.10. The plot can be divided into three
distinct regions. In the low temperature range (corresponding to large values of
1/T), the conductivity is an exponential function of temperature. The electrons
excited from the donor level to the conduction band (or the holes created by
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Fig. 15.10 The variation of log of conductivity with the reciprocal of temperature
for an extrinsic semiconductor.
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excitation to the acceptor level) become available in increasing numbers with
increasing temperature. So, this region is called the extrinsic region. From the
slope of the straight line in this region, the ionization energy of the impurity can
be calculated. At higher temperatures, there is the second region called the
exhaustion region. Here, the excitation of charge carriers due to impurities is
nearing completion, due to the exhaustion of unexcited impurity electrons or
holes. This is indicated by the flat region of almost zero slope. In this region, the
slope can even become positive as in Fig. 15.10, due to the dominance of the
temperature dependent mobility term in the conductivity equation. Increasing
temperature results in decreasing mean free path of the conduction electrons or
holes. So, the mobility decreases with increasing temperature. Above room
temperature, there is another linear region with a negative slope of large
magnitude, which corresponds to intrinsic conduction. The slope difference
between the extrinsic and intrinsic regions reflects the difference in magnitude
between the impurity ionization energy and the energy gap Eg.

For stability of operation of a semiconductor device, a relatively flat region,
where the conductivity does not vary appreciably with changes in ambient
temperature, is often desirable. On the other hand, if the device is to be used as
a thermistor for measuring temperature, maximum sensitivity in measurement is
desirable.

15.4 Semiconductor Materials

Silicon (Eg = 1.1 eV) is the most widely used semiconductor crystal. It is
available in abundance in the earth’s crust in the form of silica and silicates. It
has a moderately high melting point (1410°C), which is easily achieved in
modern zone refining and crystal growing apparatus. Germanium (Eg = 0.7 eV)
is the other elemental semiconductor crystal with a lower melting point (937°C).

Apart from these, there are a number of compound semiconductors formed
by combinations of equal atomic fractions of fifth- and third-column, or sixth
and second-column elements. The crystal structures of these compounds are
related to the diamond structure, as discussed in Chap. 5. Table 15.3 lists the
properties of some III–V compound semiconductors.

TABLE 15.3

Properties of Some Semiconductor Compounds

Compound Energy gap, eV
Mobility, m2 V–1 s–1

Melting point, °C
Electrons Holes

GaP 2.26 – 0.002 1350
AlSb 1.52 0.02 0.02 1050
GaAs 1.43 0.85 0.04 1240
InP 1.29 0.46 0.015 1070
GaSb 0.78 0.4 0.07 705
InAs 0.35 2.3 0.024 940
InSb 0.18 6.5 0.1 525



We also have amorphous (noncrystalline) semiconductors. The fact that the
local coordination and the interatomic distances characteristic of a crystal are
largely unchanged in the noncrystalline state makes the band model to be
approximately valid for the noncrystalline state as well.

15.5 Fabrication of Integrated Circuits

Si, Ge and GaAs are among the most important device materials. In all VLSI
(very large scale integration) circuits, silicon is the material and has edged out
Ge, which played an important role in the sixties. The advantages of Si over Ge
in terms of cost and properties are compared below.

Property Si Ge

Energy gap 1.1 eV 0.66 eV
Upper temperature limit 150°C 100°C
Junction leakage current less more
Breakdown strength higher lower
Oxide quality excellent water soluble and

unsuitable
Relative cost of electronic grade 1 10

GaAs and its ternary and quaternary derivatives are used in optoelectronic
devices, as these compounds have a direct energy gap (the direction of motion of
an electron during a transition across the energy gap remains unchanged). A
direct gap is necessary for efficient optoelectronic conversion. A combination of
Si and GaAs devices in integrated circuits is being developed. At present, over
98% of all devices are based on silicon only.

15.5.1 Production of Metallurgical Grade Silicon

The starting material is pure sand, which is available in plenty on earth’s crust.
Sand (SiO2) is heated with carbon in an electric furnace to reduce it according to
the reaction:

SiO2 + 2C � Si + 2CO (15.6)

The silicon thus obtained is of 99% purity and is called the metallurgical grade
silicon. This has to be purified further to a very low level of impurity content to
make it suitable for use in devices.

15.5.2 Semiconductor Grade Silicon

The semiconductor grade silicon has only a few parts per billion of impurities.
Starting from the metallurgical grade, it can be produced by the zone refining
process as discussed in Sec. 7.7. The other common method is a chemical
process.
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The metallurgical grade silicon is dissolved in HCl:

Si + 3HCl � SiHCl3 + H2 (15.7)

The product trichlorosilane (SiHCl3) is a liquid at room temperature. The
fractional distillation of this liquid removes chlorides of dopants and of other
impurities such as iron and copper and also SiCl4. A mixture of the purified
SiHCl3 and H2 is then evaporated and passed through a reactor, which contains
“slim rods” of high purity silicon. The gaseous mixture now undergoes the
reverse reaction:

SiHCl3 + H2 � Si + 3HCl (15.8)

Solid silicon is deposited on the heated ‘slim rods’, which grow radially. This
process can produce rods of semiconductor-grade, polycrystalline silicon up to
200 mm in diameter and 2–3 m long.

15.5.3 Single Crystal Growth

Single crystals of semiconductor grade silicon are grown either by the
Czochralski (CZ) method or by the float zone (FZ) method. The Czochralski
process (briefly referred to in Sec. 9.6) consists of a furnace with a gradient in
temperature, as shown in Fig. 15.11. A typical CZ apparatus weighs about 20

Fig. 15.11 The Czochralski (CZ) process of single crystal growth.
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tonnes, is 7 to 8 metres tall and holds a charge of 100 kg of silicon. The main
parts are the crucible, the susceptor, the heating element, power supply, seed
shaft, rotation mechanisms, doping gas source, vacuum systems and process
control through a microprocessor with sensors.

The crucible should have a melting point higher than that of silicon. High
melting point carbide crucibles such as TiC and TaC are unsuitable, as they
introduce metallic impurities. The best crucible material is found to be high purity
SiO2. The crucible slowly dissolves and introduces oxygen into the melt. The
susceptor is made of nuclear-grade graphite and is the source of carbon
contamination. Resistance heating is mostly used. The ambient is usually vacuum,
which prevents graphite oxidation and removes oxygen continuously as silicon
monoxide (SiO) vapour. Oxygen is interstitial in silicon and is electrically
inactive. However, on supersaturation during cooling, it precipitates as SiO2. The
stresses generated thereby can induce defects like dislocations in the crystal. The
carbon picked up from the susceptor is a substitutional impurity but is electrically
inactive. It can be indirectly harmful, as it promotes the precipitation of oxygen.

The semiconductor grade polycrystalline silicon is melted in the silica
crucible. A seed crystal of the desired orientation is made to touch the surface of
the melt. Two commonly used orientations for the axis of the crystal are �111�
and �100�. The handle holding the seed is slowly pulled upwards at a speed of
50 to 100 mm per hour. The temperature T is maintained at T = Tm at the liquid-
seed interface, at T < Tm above the interface and at T > Tm below (inside the
liquid). This avoids any nucleation of the solid crystal in the liquid and also
prevents remelting of the growing crystal. The handle to which the seed is
attached is rotated at 6 to 8 rpm and the crucible holding the liquid is rotated in
the opposite direction at 10 to 12 rpm. These rotations ensure uniformity in
temperature and avoid the appearance of hot or cold spots. By a suitable device,
the crucible is gradually lifted upwards to compensate for the falling level of the
liquid as the crystal grows. The crystal grows in the same orientation as the
seed, without the need for the formation of a grain boundary at the interface.
Crystal diameters up to 150–200 mm are possible.

If desired, the melt in the crucible of the CZ process can be doped with a
suitable dopant. The concentration of the dopant in the crystal and the liquid that
are in contact at the interface will in general be different from each other and
will be according to the tie-line rule, see Sec. 7.3. The ratio of the concentration
of the impurity (or dopant) in the solid cs to that in the liquid cl is known as the
segregation coefficient k. The k values listed below for common impurities
(except oxygen) are less than unity.

Al As B C Cu Fe P Sb O

0.002 0.3 0.80 0.07 0.0004 0.00001 0.35 0.023 1.25

This means that most impurities are left behind in the liquid. As the crystal
grows, the melt becomes progressively enriched in the impurity (or dopant). A
concentration gradient of the impurity thus develops along the axis of the grown
crystal in the CZ method.
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In the float zone (FZ) method, there is little chance of oxygen contamin-
ation, as no crucible is involved. The molten zone is held in position by the
surface tension forces. Also, the dopant can be introduced from the vapour
phase. If the partial pressure of the dopant gas is maintained constant, a uniform
concentration of the dopant all along the length of the rod can be obtained. The
float zone method, however, restricts the size of the crystal. Diameters larger
than 75 mm are prone to zone collapse. To ensure that the crystal grows in the
desired orientation, a seed is inserted at one end of the rod. The initial molten
zone should be centred around the interface between the seed and the rod.

The grown crystals are generally free of edge dislocations, but may contain
small dislocation loops arising from the condensation of supersaturated
vacancies. Dislocations may also be introduced by thermal stresses during
processing. Dislocations may play the following roles:

(i) They act as nucleation sites for precipitation of impurities, e.g., SiO2

from oxygen and AlFeSi from Al and Fe. The precipitates can in turn
generate dislocations and stacking faults due to stresses from volume
change and lattice mismatch at the interface.

(ii) Dislocations can act as sinks for metallic impurities. This effect is
beneficial in the ‘gettering’ process.

(iii) They can alter diffusion profiles by providing high diffusivity paths.

Many thousands of tonnes of silicon single crystals are grown annually.
They get converted into trillions of chips. A typical chip contains a million
devices. A microprocessor can be built into a single chip. 85% of the single
crystals are grown by the CZ method. Typical oxygen content in CZ crystals are
1018 atoms/cm3. CZ crystals are more suitable for highly-integrated low-power
devices. 15% of the crystals are grown in the zone refining apparatus by the FZ
method. Residual oxygen is about two orders of magnitude lower here. These
crystals are suitable for less-integrated or discrete high-power devices.

15.5.4 Wafer Manufacture

The seed and defective-end portions are removed from the grown crystal. As
precise control of diameter is not possible during growth, the crystal is ground to
be perfectly round. Before cutting the crystal into thin discs called wafers, the
orientation of the crystal should be determined. The wafer plane will have the
same Miller indices as the axis of the crystal, as it is perpendicular to it. If it is
(100) plane, it is necessary to locate the trace of the (010) or (001) plane on the
wafer plane. This is done accurately by a single crystal x-ray method. A flat
known as the primary flat ground on the surface of the crystal locates the crystal
orientation. It is used later to align precisely the circuits to be printed on the wafer
surface with respect to the cleavage planes (planes of easy fracture). A secondary
flat may be ground to indicate whether the grown crystal is n-type or p-type.

The crystal is then sawed into thin slices of about 100 �m thick wafers. The
inner diameter (ID) slicing is a common method. ID slicing uses a saw blade
whose cutting edge is the interior of an annulus. The saw blade is a thin sheet of



stainless steel with the inner rim impregnated with diamond powder. The wafer
is lapped and the edges are rounded off to avoid breakage of the brittle silicon at
points of stress concentration. To remove the damage and contamination during
the shaping operations, etching is done in acid tanks with mixtures of HF, HNO3

and acetic acid. Etching removes about 20 �m of the surface. Finally, polishing
is done to a mirror-like finish on wheels suspended with fine alumina (Al2O3)
powder.

15.5.5 Oxidation

Silicon has the unique ability to be oxidized into silica, which produces
a chemically stable, protective and insulating layer on the surface of the wafer.
The production of high quality ICs requires an understanding of the
basic mechanisms of oxidation (see Sec. 13.1) and the ability to form in a
controlled and repeatable fashion a high quality oxide. The functions of the
oxide layer are to:

(i) mask against diffusion or ion-implant;

(ii) passivate the surface electrically and chemically;

(iii) isolate one device from another; and

(iv) act as a component in MOS devices.

Thermal oxidation is the principal technique and is carried out between 900
and 1300°C in dry oxygen or steam with the following reaction occurring:

Si + O2 � SiO2 (15.9)

Si + 2H2O � SiO2 + 2H2 (15.10)

During oxidation, the Si–SiO2 interface moves into silicon. Experiments
have established that oxidation proceeds by the diffusion of the oxidizing species
(oxygen ion, oxygen atom or molecule) through the oxide layer to the Si–SiO2

interface. The volume increases during oxidation. The constraint to match the
oxide layer with the underlying silicon introduces stresses, which put the oxide
layer in compression. If the stresses in the oxide layer were tensile in nature, the
brittle layer will crack and will be unsuitable. The interface constraint also
generates dislocations and stacking faults inside the silicon near the interface.

For long oxidation times, the oxidation rate is parabolic, i.e., the oxide
thickness increases as the square root of time. As a function of temperature, the
oxidation rate follows the Arrhenius law (recall Sec. 2.4) with a linear plot of ln
(oxidation rate) versus l/T. The activation energy for the process is found to be
~120 kJ mol–l for dry oxidation and ~70 kJ mol–l for wet (steam) oxidation.

If the silicon had been doped before oxidation, the dopant tends to
redistribute itself in different concentrations in the two co-existing phases: Si and
SiO2. P, Ga, As and Sb dissolve more in Si than in silica; B behaves the opposite
way. The segregation coefficient k = cSi/cSiO2

 is between 10 and 20 for P, Ga, As
and Sb and less than one for B.
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15.5.6 Photolithography

Lithography, as used in the manufacture of ICs, is the process of transferring
geometrical shapes on a mask to the surface of a silicon wafer. The mask is to
be prepared first. An electron beam machine generates the design pattern
(reduced in size) and transfers it to a photosensitive glass called the photomask
on a small area of a few mm2. The photographic set-up is then moved to the
adjacent area and the glass is exposed again, and so on, in a step-and-repeat
fashion. As many identical areas are put on the mask as the number of chips that
will ultimately fit on the wafer.

The photomask is positioned above the oxidized surface of the wafer, the
wafer surface is coated with a photoresist solution and is exposed to an intense
source of radiation, as shown in Fig. 15.12a. Till recently, UV light from a
mercury lamp was used. Now, excimer lasers with wavelength in the range of
2480–1930 Å provide radiation of adequate intensity. (Excimer or excited dimer
means a molecule consisting of an excited atom and an atom in its unexcited
ground state.) After the exposure, when the photoresist is developed, it dissolves
away from those areas where the light has fallen, as illustrated in Fig. 15.12b. In
the next step of etching, see Fig. 15.12c, the etchant dissolves the oxide layer in
the exposed areas only. The photoresist is etch-resistant. After etching, the left-
over layer of photoresist is removed and the geometrical pattern is left behind in
the silica, see Fig. 15.12d. All the steps in the image transfer are thus complete.

Photomask

Photoresist

SiO2

Si

(b)(a)

Photoresist

SiO2

Si

(d)(c)

Fig. 15.12 The photolithographic process.

Photoresists can be positive or negative. Positive resists behave as described
above, i.e., they dissolve away from areas where the light has fallen. Negative
resists act in the opposite way. For example, polyisoprene combined with a
photosensitive compound is a negative resist. Once activated by the light source,
the compound transfers the absorbed energy to the polyisoprene chain molecules
and cross-links them. The cross-linked polymer is insoluble in the developer.



The etching or window cutting can be through an acid medium (wet
chemical etching) or by sputtering (dry etching). In reactive sputtering, a mixture
of CF4 and O2 is used in the discharge tube to generate a plasma, which is
weakly ionized gas mixture. When the plasma is directed onto the wafer surface,
the ions collide with atoms in the exposed areas of the wafer surface, transfer
their kinetic energy and eject the atoms out of the surface. The ions arrive
mostly at normal incidence and the degree of etch anisotropy is high as
compared to acid etching, i.e., the difference in the lateral dimension between
the etch image and the mask image is small. The etching is also required to be
selective, i.e., it should not remove the mask material or the underlying
substrate, in which the previously processed device elements may be present.

15.5.7 Doping

Impurity doping can be carried out by solid state diffusion under two conditions:
(i) a constant surface concentration of the dopant is maintained at a high enough
temperature so that the dopant diffuses in and creates a characteristic
concentration profile; and (ii) a constant total quantity of the dopant is first
deposited on the surface (predeposition) either by short-time annealing or by
other techniques such as ion implantation at a low temperature. The
concentration profile is then altered through a high temperature anneal in a non-
doping atmosphere (drive-in).

A p-n junction is created by diffusing into the bulk semiconductor through a
window in the oxide layer an impurity, say, a p-type, where the bulk crystal has
already been doped to be the n-type. In practice, the concentration-distance
profile of the dopant is approximated to two limiting cases: the abrupt junction
profile. This is the case in a shallowly-diffused junction or ion-implanted
junction. In the linearly-graded junction, the concentration profile is assumed to
change linearly with distance.

When the impurity is diffused in through a window, it moves downwards as
well as sideways. The final shape of the diffused region, instead of being a flat
box, becomes a box with bulging sides and spherical corners. This shape has an
important effect on the junction breakdown characteristics.

Avalanche multiplication is the most important mechanism of junction
breakdown. The avalanche breakdown voltage imposes an upper limit on the
reverse bias of diodes, the collector voltage of bipolar transistors and on the
drain voltage of MOSFETs. If the electric field is high, the carriers may carry
enough energy such that their collisions with atoms generate electron-hole pairs.
The newly-created pairs in turn generate more pairs by collisions and the
process multiplies like an avalanche, eventually causing breakdown. The
avalanche breakdown voltage decreases with increasing impurity concentration.
It is also less for cylindrical shape of the sides of the diffused region and when
the corners are spherical.

The diffusion parameters for common dopants are:

B P As Sb

D0 (cm2/sec) 0.76 3.85 24 0.214
Q (eV) 3.46 3.66 4.08 3.65
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The diffusion coefficients of the above dopants in SiO2 are several orders of
magnitude smaller than for Si. Hence for all practical purposes, the oxide acts as
a mask.

15.5.8 Ion Implantation

For doping at lower temperatures than those used in diffusion doping, ion
implantation is used. Here, ionized-projectile atoms are introduced into the wafer
with enough energy to penetrate the surface. Ion implantation is widely used for
shallow doping of n+ regions in the n-channel MOSFET and the base region of a
bipolar transistor. For B, P and As dopant ions, an energy range of 3–500 keV is
sufficient to implant them at a depth of 100–10,000 Å below the surface. The
depth of penetration is approximately proportional to the ion energy. Precise
control of depth and concentration of the dopant is possible. The ions produced
by a source such as a hot cathode or arc discharge are accelerated under the
potential and are projected onto the wafer, which is in electrical contact with a
target holder which in turn is connected to a charge integrator. Electrons from
the integrator neutralize the implanted ions as they come to rest in the wafer.
Photoresists, oxides, nitrides, etc. act as masks during ion implantation. After
implantation, a recovery anneal (see Sec. 9.8) is necessary to remove the excess
point imperfections generated by the collisions of the ions with the atoms of the
crystal. The recovery anneal is done by using a laser beam for local heating.

An interesting application of ion implantation is the introduction of high
doses of ionized argon gas through the backside of the wafer. These generate a
high density of crystal imperfections beneath the back surface. The damaged
structure can capture unwanted diffusing impurities such as Cu, Fe, Au, etc. The
process is called gettering. The damaged region with a high density of
imperfections may undergo recrystallization when the wafer is heated, yielding a
fine grain size locally. The grain boundaries thus generated also assist in gettering.

15.5.9 Epitaxial Growth

Epitaxial growth refers to growing of a crystal, using another crystal as the
substrate, such that the atomic arrangement is continuous across the interface
without the formation of a grain boundary. Homoepitaxy refers to silicon grown
on silicon; the substrate and the grown crystal usually differ in the level and type
of doping. Heteroepitaxy refers to a substantially different composition grown on
the substrate. Examples are AlxGa1-xAs grown on GaAs or a Si–Ge solid solution
grown on Si. The two common processes of epitaxial growth are the chemical
vapour deposition (CVD) and the molecular beam epitaxy (MBE).

In CVD of silicon, SiCl4 is commonly used as the source. The following
reaction occurs on the substrate surface:

SiCl4 + 2H2 � Si + 4HCl (15.11)

The rate of deposition may be controlled by the rate of the above reaction
and/or the rate of arrival/diffusing away of the reactants/products at the reaction



site. Hydrides of dopants (AsH3, PH3, etc.) are used as the source for
simultaneous doping of the growing layer. Growth rates are in the range of
0.2–2 �m/min. A perfectly clean surface free of native oxide is required for
epitaxial growth, as atom-to-atom contact is to be established. Etching with
unhydrous HCl at 1200°C is done to clean the surface. The temperature for the
reaction (15.11) is in the range of 1100–1200°C. This relatively high
temperature may lead to autodoping, which is the diffusion of the dopant already
present in the substrate into the growing layer through solid state diffusion or by
diffusing out into the vapour phase and reentering. This can result in
unintentional changes in dopant concentration profile.

In MBE, the temperatures used are lower: 400 to 800°C. Here autodoping is
minimized. There are no chemical reactions in MBE. In high vacuum,
evaporated silicon and the dopant are transported at high velocities to the
substrate. The relatively low temperature ensures the condensation of silicon and
the dopant on the substrate. Growth rates are in the range of 0.01 to 0.3 �m/min.

Non-epitaxial films may be deposited during IC fabrication for the purpose
of electrical insulation or chemical protection from the environment.
Polycrystalline Si, SiO2 and Si3N4 are usually deposited by the CVD process.
Si3N4 acts as a very good barrier to the diffusion of water and sodium. Sodium
from human sweat is known to enter the substrate and act as a fast-diffusing
carrier resulting in high junction leakage currents.

15.5.10 Metallization

Metallization or routing is the process of providing electrical connections
between different parts of the circuit. Aluminium is commonly used. It has a
high electrical conductivity and a low melting point for easy evaporation during
vacuum deposition. The vapour is produced by filament or electron-beam
evaporation. It is transported in vacuum to the substrate. Co-evaporation of Al
and Cu from an Al–Cu alloy results in a deposited Al layer with a small
percentage of Cu in solution. The addition of Cu helps in reducing
electromigration as discussed below.

Electromigration is the diffusion of an element under the influence of a
current flow during the operation of a device. Electromigration in aluminium is a
major problem in integrated circuits and is a common cause of failure of the
circuit. Al diffuses along the grain boundaries and causes cavities to form at
grain junctions, which coalesce and failure analogous to creep fracture ensues.
The rate of electromigration of Al can be drastically reduced by adding Cu to
the deposited Al. Cu acts by segregating to the grain boundaries of Al as a
prestep to precipitation, recall Sec. 9.5. This segregation drastically reduces the
diffusion coefficient of Al for grain boundary diffusion.

15.5.11 Circuit Simulation: Process simulation and integration

Several discrete steps in IC manufacture were outlined above. The sequence in
which these steps are executed depends on the design features of the circuit to
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be fabricated. In circuit simulation, the complete drawing of the circuit is broken
into different levels of IC processing, e.g., gate electrodes on one level, contact
windows on another level, and so on. These levels are called masking levels. The
final IC is manufactured by sequentially transferring the features from each
mask, level by level, to the wafer surface. Between two successive image
transfers by photolithography, an ion-implant, doping, oxidation and/or
metallization may take place.

After circuit simulation, it is also necessary to carry out a process
simulation. Suppose a CMOS process consists of nine lithographic steps, six ion
implantation and several diffusion, annealing and oxidation steps. The critical
steps in the process are simulated on a computer, noting that all steps are
strongly inter-related. Each of the thermal cycles in a process such as oxidation,
epitaxial growth and annealing can affect the vertical and lateral diffusion of the
dopants, interdiffusion between layers and so on. Developing a new process
especially with a new material requires careful evaluation of the sequence of
thermal cycles to be adopted.

Figure 15.13 illustrates a seven-mask process in building a circuit. The
entire circuit is built in each of the squares of the wafer, which are separated

Fig. 15.13 The building of an integrated circuit with seven masking steps.
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into chips later. The components of the circuit are arranged such that they
occupy minimal space and interconnections and external connections are made
as easy as possible. Miniaturization has been phenomenal in this process. We are
now in the submicron technology, where the size of each component is
0.3–0.2 �m. The number of components per chip of a few mm2 area was just 1
in 1960 and has now risen to several million. Currently, the most advanced
circuits contain a billion devices, with the size of each being ~1000 Å (0.1 �m).

After completion of all masking levels, the backside of the wafer may be
just polished or a thin layer of gold may be vapour deposited on the backside, if
the part is to be joined to another package later. The low melting temperature of
the eutectic in the Au–Si phase diagram (363°C) enables such joining at a later
stage at a relatively low temperature without causing any deterioration of the
properties of the fabricated circuit.

The numerous chips on the wafer surface are separated by scribing and
breaking either with a diamond-tip tool or a laser beam. The breaking is usually
made to coincide with easy cleavage planes of Si and is done precisely along the
boundaries of the repeating basic pattern. The chip then may be attached to a
metallic or ceramic base. Al2O3 (alumina) is the most common ceramic base. Its
high dielectric strength provides effective isolation between different parts of a
complex package.

15.6 Some Semiconductor Devices

A number of semiconductor devices such as junction rectifiers, transistors,
photocells, solar batteries and thermistors are known. They all use intrinsic or
extrinsic semiconductor crystals. The same crystal consists of regions with
different dopants giving them the n-type or the p-type characteristics. The
boundary between two regions of opposite characteristics is called a p-n
junction. It has special electrical properties such as the rectifying action. A three-
region crystal (p-n-p or n-p-n) exhibits transistor action. Here, the superposition
of the properties of the two junctions (p-n and n-p) close to each other acts as an
amplifier of electric signals. The small size, reliability, low cost and low power
consumption of the solid state devices have brought about a major revolution in
the electronics industry in the last two decades.

15.6.1 Junction Diodes

The rectifying action of a p-n diode can be understood on the basis of the
electronic structure of the semiconductor. When a pure semiconductor is doped
to become n-type, the Fermi level shifts up from the middle of the energy gap
towards the donor level. This is so because the position corresponding to 50%
probability of occupation moves up due to the relatively high concentration of
donor electrons in the conduction band. If the crystal is p-type, the Fermi level
shifts down towards the acceptor level. When the same crystal is doped to
become n-type on one side and p-type on the other side, the Fermi level has to
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be constant throughout the crystal in thermal equilibrium. This results in the
electron energy levels at the bottom of the conduction band in the n-part to be
lower than those in the p-part, by an amount equal to the contact potential eV0,
as shown in Fig. 15.14.

At equilibrium, there is no net current flowing across the p-n junction. The
concentration of electrons in the conduction band on the p-side is small. These
electrons can accelerate down the potential hill across the junction to the n-side,
resulting in a current I0 which is proportional to their number. The concentration
of electrons in the conduction band on the n-side is large in comparison, due to
the donor contribution. However, only a small number of these electrons can
flow to the p-side across the junction as they face a potential barrier. This small
number can be computed using the Boltzmann probability equation. At
equilibrium, the current from the n-side to the p-side and the current in the
opposite direction, from the p-side to the n-side, are the same, equal to I0. There
is an equal additional contribution to I0 from the flow of holes across the
junction. The concentration of holes is large in the p-region, as compared to the
n-region.

If an external voltage Vi is now applied to the crystal such that the p-side
becomes positive with respect to the n-side, the electron energy levels will
change as shown in Fig. 15.15a. Note that the potential for electrons is opposite
in sense to the conventional method of representing the sign of an electric
potential. The barrier at the junction is now lowered by an amount eVi, resulting
in a greatly enhanced current flow in the forward direction, that is, from the n-
side to the p-side. This change in barrier does not affect the flow of electrons in
the reverse direction, from the p-side to the n-side, as the flow here is still down
the potential hill. So, the applied voltage causes a large net current flow in the
forward direction:

n-side p-side

Conduction band
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n p
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Valence band

Fig. 15.14 The Fermi level is the same on both sides of a p-n junction.
The contact potential at the junction gives rise to an energy barrier eV0.
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Fig. 15.15 The forward and the reverse bias of a p-n junction.

If an external voltage Vi is now applied in the reverse direction, the potential
barrier for electrons at the junction is increased by an amount eVi, as shown in
Fig. 15.15b. This would drastically reduce the current flow from the n-side to
the p-side. In the reverse direction, the flow remains unchanged at I0. The net
current in the reverse direction from the p-side to the n-side is given by

Ireverse = 0 01 exp
� �� �� � �	 
� �� �� �

ieV
I I

kT
(15.13)

As the barrier height is increased by an amount eVi, there is the usual negative
sign within the Boltzmann exponential in Eq. (15.13).
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i ieV eV
I I

kT kT
(15.12)

The probability of jumps across a barrier is related to the height of the barrier
through the Boltzmann probability factor. Here, the height of the barrier is
lowered by an amount eVi, which explains the positive sign inside the
exponential in Eq. (15.12).
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From Eq. (15.12), we note that the forward current increases exponentially.
On the other hand, Eq. (15.13) indicates that the reverse current remains
constant at a small value I0. This characteristic explains how a p-n junction can
act as a rectifier. In Fig. 15.16, an alternating voltage is applied across the p-n
junction. When the voltage is in the forward direction (called forward bias) in
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Fig. 15.16 Current-voltage characteristics of a p-n junction for forward and
reverse bias.

one half of a cycle, the forward current increases exponentially with voltage. In
the second half of the cycle, the voltage is in the reverse direction (reverse bias)
and the current remains constant at the low equilibrium value of I0. The current
output varies as a function time as indicated in the figure.

15.6.2 The Junction Transistor

The transistor is a device used to amplify an electric signal. It consists of two
p-n junctions in the same crystal, arranged in the order n-p-n or p-n-p. In the
n-p-n transistor, one of the two junctions is forward biased and connected to the



input signal. The n-region here is called the emitter and the p-region is the base.
The other junction is reverse biased and connected to the output. The n-region at
the output end is called the collector. Any input voltage Vi would reduce the
contact potential at the emitter-base junction by an amount equal to eVi. This
would result in a large current flow from the emitter to the base region, as given
by Eq. (15.12). The width of the base region is kept as small as possible so that
the electrons flowing into the base region are not lost by recombination with the
holes that are dominant in the base region. In an ideal transistor, almost all the
electrons emitted reach the collector by flowing through the base and down the
potential hill at the base-collector junction. A small change in the input voltage
results in a large current from the emitter to the base and then on to the
collector. The current flowing through different regions being the same, this
large current can appear as a large voltage across the load resistor, if its
resistance is high. Thus amplification results.

The above is a description of a simple n-p-n transistor. A number of more
complex transistors are now known. Two promising types are MOSFET (metal-
oxide-semiconductor field-effect transistor) and CCD (charge-coupled device).
Details of the working of these devices are beyond the scope of this book. This
is, however, not to minimize their practical importance. For example, a single
computer now contains more than a million transistors (or one of its close
relations MOSFET or CCD).

15.6.3 Junction Lasers

Laser stands for Light Amplification by Stimulated Emission of Radiation. When
a p-n junction is forward biased, a large number of electrons flow across the
junction from the n-side to the p-side. This greatly increases the concentration of
electrons in the conduction band of the p-region, much above the equilibrium
value. These electrons eventually recombine with the holes in the p-region,
emitting in the process a coherent, monochromatic beam of light (the laser
beam). The wavelength of this radiation for a GaAs junction laser is 8700 Å.
This light emerges strongly where the junction meets the sidewalls of the crystal.
Mirrors are placed on opposite sides of the crystal to reflect the beam back and
forth until it builds up in intensity. Alternatively, the flat boundary between the
crystal and the air acts as a reflector.

As compared to silicon, the III–V semiconductor compound GaAs has the
advantages of high signal speed, low power consumption and large operating
temperature range. This combined with its laser properties makes it an ideal
material for use in optical fibre and satellite communications and sophisticated
supercomputers. The more recent development is the sandwich laser, in which a
laser-active GaAs layer is sandwiched between two laser-inactive Ga–Al–As
layers, one being p-type and the other n-type. The Ga–Al–As layers have larger
energy gaps than GaAs and confine electrons to the active region. The excellent
matching at the interface of the crystal structures of GaAs and Ga–Al–As (with
less than 1% difference in the lattice parameter) ensures minimum strain and
absence of plastic deformation during growth of the sandwich laser. The above
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sophisticated applications require dislocation densities in the grown crystal of less
than 107 m–2. Also special growth techniques are needed, with precise control of
the arsenic vapour pressure. As a semiconductor, GaAs is costly and will not
replace silicon, which will continue to be used for making inexpensive chips.

If the fabrication difficulties associated with the 4% lattice mismatch
between GaAs and Si is overcome, the monolithic GaAs/Si integration becomes
possible. This will result in substantial improvements in very large scale
integration (VLSI) performance, by adding the high-speed optoelectronic
capability of GaAs to the conventional Si digital chips. For example, GaAs/Ga–
Al–As optoelectronic interface units could provide high data-rate optical links to
replace metallic interconnections between Si and VLSI subsystems.

A number of p-n junction lasers have been discovered in recent years
extending the wavelength range from the far infrared to the ultraviolet region.
The range of lasing wavelengths extends from 5900 Å for (GaIn)P to 300,000 Å
for (PbSn)Te. Laser beams are used in a variety of applications such as carrier
waves in communication engineering, fabrication of electronic devices, drilling
holes in steel plates and for medical purposes, where a very localized heating is
needed. As many as 40 different eye problems are treated now by lasers!

15.6.4 Photon Detectors

The electrons in the valence band can be excited into the conduction band by
visible light, when the energy gap of a semiconductor is in the right range 1.60–
3.20 eV. The additional holes and electrons created by the incident light can lead
to an increase in the current in an appropriate external circuit. The current is a
direct measure of the incident light intensity. Photoconductors are devices used
for detecting and measuring light energy.

The sensitivity of a photoconductor is a maximum, if it remains essentially
an insulator in the dark, that is, with a minimum of thermal excitation of charge
carriers. Cadmium sulphide (Eg = 2.42 eV) is a good photoconductor and
responds to light in the green region. CdSe has a smaller gap of 1.74 eV,
corresponding to the red end of the visible spectrum. CdTe with a gap of
1.45 eV is further out in the infrared region. PbS, PbSe and PbTe photo-
conductors have energy gaps in the range of 0.3 eV. Photoconductors are used as
burglar alarms, for automatic door opening and for switching on street lights, as
the sun goes down.

�������

1. Electrons travelling through the periodic array of atoms in a crystal are
reflected when the Bragg equation is satisfied. The wave form of the
electrons at this critical condition is two standing waves corresponding to
two fixed electron locations of different potential energy. This gives rise to
a break in the E–k curve.
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2. The energy gap in the E–k curve occurs at different values of k for
different crystal directions of electron motion. The net gap taking into
account all directions of motion is called the forbidden gap. Electrons
cannot take the energy values that lie in the forbidden gap.

3. Solids are classified as metals, semiconductors and insulators according to
their band structure. Metals have partially filled bands or overlapping
bands. Both insulators and semiconductors have a finite forbidden gap, the
semiconductors having smaller gaps in the range of 1–3 eV.

4. The ability of a semiconductor or an insulator to conduct electricity
depends on thermal excitation and the presence of impurities. In pure
crystals, thermal excitation provides a small concentration of electrons in
the unfilled conduction band, with an equal number of holes at the top of
the valence band.

5. Impurities in an extrinsic semiconductor increase the concentration of
charge carriers of either the negative type (donor electrons) or the positive
type (acceptor holes).

6. The conductivity of a semiconductor is dependent on the number of charge
carriers, their mobility and the electronic charge. The number of charge
carriers is an exponential function of temperature, except in the exhaustion
region of an extrinsic semiconductor.

7. Silicon is the most important elemental semiconductor. Compound semi-
conductors provide a range of energy gaps.

8. The fabrication of an integrated circuit comprises of a number of steps
such as single crystal growth, wafer manufacture, oxidation, photolitho-
graphy, doping, epitaxial growth and metallization.

9. A p-n junction acts as a rectifier, allowing current to pass in one direction
only. The n-p-n junction is a transistor that amplifies electric signals.
Complex transistors such as MOSFET and CCD perform a number of
computer functions.

10. The III–V semiconductor compound GaAs has high signal speed and low
power consumption as compared to silicon. Its laser function makes it
ideally suited for use in satellite communications and supercomputers.

��	
����

15.1 Explain why lead and zinc with an even number of electrons in the outer
shell and a full valence band are conductors.

15.2 Estimate the temperature at which diamond will have the same
conductivity as silicon at room temperature.

Answer: 1470 K.
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15.3 Find the fraction of electrons excited into the conduction band in
germanium at 100 K, 300 K and 1200 K.

Answer: 2.3 � 10–18, 1.3 � 10–6 and 3.4 � 10–2.

15.4 Why does the conductivity of a semiconductor change with impurity
content? Compare this with the behaviour of metallic conductors.

15.5 The resistance of a sample of pure germanium has the following
temperature dependence:

Temperature, K 312 354 385 420

Resistance, ohm 11.8 2.33 0.90 0.35

Determine the energy gap in germanium.
Answer: 0.78 eV.

15.6 Specify three elements that you would add to pure silicon to make it an
extrinsic semiconductor of (i) the n-type, and (ii) the p-type.

15.7 The resistivity of intrinsic germanium at 27°C is 0.43 ohm m. Calculate
the intrinsic carrier density at 27°C. Assuming that the number of
electrons near the top of the valence band available for thermal excitation
is 5 � 1025 m–3, calculate the energy gap for germanium.

Answer: 2.5 � 1019 m–3, 0.75 eV.

15.8 Indium phosphide (InP) has an energy gap of 1.29 eV. The electron and
hole mobilities for this semiconducting compound are 0.46 and
0.015 m2 V–1 s–1, respectively at 300 K. Calculate its conductivity.

Answer: ~ 5 � 10–5 ohm–1 m–1.

15.9 The donor ionization energy in germanium doped with phosphorus is
0.012 eV. Calculate the fraction of donor electrons promoted to the
conduction band at 27°C, assuming a Boltzmann distribution.
Answer: 0.63.

15.10 Calculate the fraction of holes present at 300 K in silicon doped with
indium. The acceptor level is 0.16 eV above the top of the valence band.

Answer: 2 � 10–3.

15.11 Germanium is doped with 10–3 atomic fraction of antimony. Calculate the
electron and the hole densities in this extrinsic semiconductor. Assume
that the electron density in the conduction band is entirely that due to
donor excitation. Calculate the resistivity of this material at room
temperature.

Answer: 3.0 � 1025 m–3; 2.1 � 1013 m–3; 5.3 � 10–7 ohm m.

15.12 A rod of p-type germanium 10 mm long, and 1 mm dia has a resistance
of 100 ohm. What is the concentration of the impurity in this rod?

Answer: 6.2 � 1021 m–3.
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15.13 Calculate the drift velocity of an electron moving in a germanium crystal
in a field of gradient 1 kV m–1.

Answer: 390 m s–1.

15.14 5 g of n-type silicon doped with arsenic of conductivity 10 ohm–1 m–1 is
melted with 5 g of p-type silicon doped with aluminium having the same
conductivity. What is the conductivity of the resulting material?

Answer: 3.2 ohm–1 m–l.

15.15 The equilibrium current across an unbiased p-n junction is 10 �A.
Calculate the current when the junction is (i) forward biased by 0.1 V,
and (ii) reverse biased by 0.1 V.

Answer: 479 �A, 10 �A.

15.16 A transistor has a collector current of 5 mA, when the emitter voltage is
20 mV. At 30 mV, the current is 30 mA. Calculate the current, when the
emitter voltage is 40 mV.

Answer: 180 mA.

15.17 A CdTe photoconductor responds to a glowing cigarette. Explain why
this is so.

15.18 Determine the wavelength of the light from a GaAs laser, assuming that
the radiative transition occurs between the bottom of the conduction band
and the top of the valence band.

Answer: 8670 Å.

�������� ��	���� �����	��

1. The first reflection of free electrons in a BCC crystal occurs at the
following value of k

A. 2/a B. �a/�2 C. �/a D. �2�/a

2. If an electron is moving at 60° to the (100) plane in a cubic crystal of lattice
parameter a, the wave number k at the critical diffracting condition is:
A. �/a B. 2�/a C. �2�/a D. 2/�3 � �/a

3. The first Brillouin zone in Cu is bounded by planes of the type
A. 100, 110 B. 111 C. 111, 220 D. 111, 200

4. The energy gap in diamond is
A. 5.4 eV B. 2–3 eV C. 1.1 eV D. 0.08 eV

5. The field gradient (V m–1) required to accelerate an electron in cubic
diamond (Eg = 5.4 eV; a = 3.57 Å) over a distance equal to the atomic
radius is
A. 7 � 1010 B. 3.5 � 1010 C. 5.4 D. 1.5 � 1010
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6. The fraction of electrons excited across the energy gap in Ge (Eg = 0.7 eV)
at room temperature is

A. 0 B. l.7 � 10–12 C. 2 � 10–12 D. 1.3 � 10–6

7. During an electron transition across the energy gap in Si,

A. the momentum of the electron changes
B. the direction of motion of the electron changes
C. the potential energy of the electron changes
D. the kinetic energy of the electron remains constant

8. The energy gap in divalent metals is

A. very small B. fairly small C. zero D. large

9. If the electron positions corresponding to the standing wave solutions in
Ge (energy gap = 0.7 eV) differ by 1.22 Å, the field gradient in V m–1

required to promote an electron to the conduction band is

A. 0.85 � 1010 B. 0.57 � 1010 C. 106 D. 0.7

10. Pure silicon at 0 K is an

A. intrinsic semiconductor B. extrinsic semiconductor
C. metal D. insulator

11. The temperature at which the resistivity of pure diamond will equal that of
pure Si at room temperature is
A. above m.p. of diamond B. 3000 K

C. 300 K D. can’t be estimated without data

12. Ignoring variation in mobilities, the temperature at which pure Si will have
the same conductivity as pure Ge at 300 K is

A. 190 K B. 300 K C. 470 K D. 1470 K

13. The resistivity of pure silicon at 0°C is 3000 ohm m. The intrinsic carrier
density per cubic metre is (�e = 0.14 and �h = 0.05 m2 V–1 s–1)

A. 1.095 � 1016 B. 2.19 � 1016 C. 1018 D. zero

14. In an extrinsic semiconductor, in the region where mobility variation with
temperature is evident, the slope of log(conductivity) vs. l/T plot is

A. positive B. negative C. 0 D. infinity

15. The two most common doping elements in Si are

A. P B. B C. Sb D. Bi

16. The majority charge carriers in p-type Ge are

A. free electrons B. ions
C. holes D. conduction electrons

17. The temperature at which 50% of holes become available for conduction in
B-doped Si (ionization energy = 0.045 eV) is

A. 52°C B. 104°C C. 377°C D. 480°C

18. If the drift velocity of holes under a field gradient of 100 V m–1 is
5 m s–1, their mobility (in the same SI units) is
A. 0.05 B. 0.5 C. 50 D.500
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19. Tick the value of energy gap of Si in the following:

A. 0.08 eV B. 0.66 eV C. 1.1 eV D. 5.4 eV

20. For silicon doped with B,

A. ne �  nh B. nh �  ne C. nh �  ni D. nh = ne

21. Electron and hole mobilities in Si are 0.14 and 0.05 m2 V–1 s–l. The
electrical resistivity in ohm-m at 300 K of Si doped with B of
concentration equal to 1026 m–3 is (ionization energy of B = 0.045 eV)

A. 1.4 � 105 B. 2.55 � 10–6 C. 7.14 � 10–6 D. 1.25 � 10–6

22. Electron and hole mobilities in Si are 0.14 and 0.05 m2V–1s–1. 10 g of
n-type Si doped with As is melted with x g of p-type Si doped with Al,
both of the same dopant concentration, to yield Si of intrinsic conductivity.
x is equal to
A. 28 B. 10 C. 3.6 D. 1.8

23. The temperature at which 20% of the donor electrons are excited into
the conduction band in phosphorus-doped silicon (ionization energy
= 0.044 eV) is
A. 44°C B. –2°C C. 737°C D. 1022°C

24. Metallurgical grade Si has a purity of about
A. 99% B. 99.99% C. 99.999% D. 99.9999%

25. During purification of Si, the liquid that is produced by dissolving silicon
in HCl is
A. SiCl4 B. SiH2Cl2 C. SiHCl3 D. SiH4

26. Trichlorosilane is
A. SiHCl3 B. SiH2Cl2 C. SiH3Cl D. SiCl3

27. The quality of oxide on Ge is
A. excellent B. satisfactory C. unsuitable D. water soluble

28. As compared to the CZ method of crystal growth, the FZ method has the
following advantages:
A. larger diameter crystals can be grown
B. uniform doping is possible
C. oxygen contamination does not occur
D. incorporation of substitutional carbon is an advantage

29. To reduce the dopant concentration gradient along the grown crystal to a
minimum in the CZ process, the ratio cl/cs (c is concentration of dopant in
liquid or solid) should be
A. very low B. very high C. 0 D. near unity

30. As compared to Si, the electron mobility in GaAs is
A. slower by about five times B. same

C. faster by about six times D. faster by about 200 times
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31. The two common orientations during Si single crystal growth is

A. �111� �100� B. �110� �001�
C. �111� �101� D. �100� �001�

32. For lasing action, the energy gap of a semiconductor should be
A. direct gap B. indirect gap C. negative gap D. gap � 5 eV

33. GaAs has an energy gap of 1.43 eV. The wavelength of the radiation
emitted during an electronic transition in GaAs will be in the
A. visible range B. ultraviolet range

C. infrared region D. far ultraviolet region

34. In the Czochralski method, the temperature T at the liquid-seed crystal
interface is

A. = Tm B. < Tm C. > Tm D. none of these
35. If the activation energy for oxidation of Si is 120 kJ mol–l, the ratio of

oxidation rates at 1300 and 1100°C is

A. 3.8 B. 1.0 C. 7.5 D. 1.7

36. The thickness of the oxide layer grown on a wafer is 400 Å after 4 min.
After 16 min at the same temperature, it is

A. 6400 Å B. 1600 Å C. 800 Å D. 400 Å

37. The thickness of the SiO2 layer grown on a Si wafer is 400 Å after 5 min
at 1100°C. The thickness will be double after
A. 10 min B. 20 min C. 7.07 min D. 3.54 min

38. The typical temperature used for oxidation of a Si wafer is

A. 400°C B. 700°C C. 1100°C D. 1400°C

39. The advantages of ion-implantation over diffusion doping are

A. it is a low temperature process

B. point imperfections are not produced
C. shallow doping is possible

D. gettering is possible

40. The following can be grown epitaxially on Si without creating significant
distortion or imperfections

A. Si of a different doping B. SiO2

C. GaAs D. none of these

41. The grown single crystal generally contains

A. tilt boundaries
B. dislocation loops due to vacancy condensation

C. twin boundaries

D. grain boundaries

42. The segregation coefficient, k = cs/cl, for oxygen in silicon
A. 0.00001 B. 0.0004 C. 0.0002 D. 1.25
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43. The functions of an oxide layer during IC fabrication can be to

A. mask against diffusion or ion-implant
B. insulate the surface electrically

C. produce a chemically stable surface

D. increase the melting point of silicon

44. A negative resist
A. becomes more soluble after UV exposure

B. becomes less soluble after UV exposure

C. gets cross-linked
D. dissolves during acid etching

45. The main difficulty in monolithic integration of Si and GaAs is the
difference in the lattice parameters, which is about

A. 0.1% B. 4% C. 25% D. 100%

46. Electromigration in metallization refers to the diffusion (under the
influence of current) of

A. Al B. Cu in Al–Cu alloy
C. Si D. Na

47. Electromigration in an IC chip refers to

A. grain boundary diffusion of Al in Al interconnections
B. grain boundary diffusion of Cu in Al interconnections

C. diffusion of Si in Al interconnections

D. diffusion of oxygen in Si

48. A transistor has a collector current of 5 mA, when the emitter voltage is
20 mV. At 30 mV, the current is 30 mA. At 50 mV, it is
A. 80 mA B. 180 mA C. 480 mA D. 1080 mA

Answers

1. D 2. D 3. D 4. A 5. A

6. D 7. A, B, C, D 8. C 9. B 10. D
11. D 12. C 13. A 14. A 15. A, B

16. C 17. D 18. A 19. C 20. B, C

21. C 22. B 23. A 24. A 25. C
26. A 27. C, D 28. B, C 29. D 30. C

31. A 32. A 33. C 34. A 35. A

36. C 37. B 38. C 39. A, C, D 40. A
41. B 42. D 43. A, B, C 44. B, C 45. B

46. A 47. A 48. D
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CHAPTER

New and important applications based on the magnetic properties of materials
have come into prominence in the last two decades, supplementing such
traditional applications as in the making of an ordinary transformer core. Our
understanding of the microstructural factors that influence the magnetic
properties is now better than before. The control of microstructure for obtaining
the desired magnetic properties is today almost as important as the control
necessary for achieving the optimum mechanical properties.

We will first consider the terms and definitions used in magnetism, to be
followed by a discussion of ferromagnetism and related phenomena.
Ferromagnetic and ferrimagnetic materials are by far the most important from
the point of view of practical applications. Soft and hard magnetic materials are
discussed in the last two sections.

Units

 Quantity
 SI units  

Other unitsUnit  Symbol

Magnetic induction B weber per Wb m–2 gauss
Saturation induction Bs square metre or
Residual induction Br or tesla T
Magnetic field strength H
Coercive field Hc ampere per metre A m–1 oersted
Magnetization M
Magnetic permeability � henry per metre H m–1 _
Relative permeability �r – – –
Magnetic susceptibility � – – –
Magnetic moment m ampere metre2 A m2 –
Energy product BrHc joule per J m–3 –

cubic metre
Hysteresis loss
Eddy current loss watt W –
Frequency of alternating current hertz Hz per sec
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Constants

Permeability of free space �0 = 4� � 10–7 H m–1

= 1.257 � 10–6 H m–1

Bohr magneton �B = 9.273 � 10–24 A m2

(magnetic moment unit)

16.1 Terminology and Classification

The magnetic induction or magnetic flux density B (expressed in units of tesla
or weber per square metre) due to a magnetic field applied in vacuum is related
to the field strength H (in units of A m–1) as follows:

B = �0H (16.1)

where �0 is called the permeability of free space (vacuum). The units of
permeability are

B
H

= 
–2

–1

Wb m

A m
(Wb m–2 = N A–1 m–1)

= H m–1 (H = Wb A–1)

In SI units, the permeability of free space has a value of 4� � 10–7 H m–1. It was
originally defined to have a value of unity in cgs units.

If the field is applied to a solid medium, the magnetic induction in the solid
is given by a similar relationship

B = �H (16.2)

where �  is the permeability of the solid material through which the magnetic
lines of force pass. In general, �  is not equal to � 0. The ratio of � /� 0 is called
the relative permeability � r of the solid. The magnetic induction in a solid is
also defined by

B = � 0 (H + M) (16.3)

where M is called the magnetization of the solid. The magnetization is directly
related to the applied field H through the susceptibility of the medium �:

� = 
M
H

(16.4)

The orbital motion of charge carrying electrons in an atom is analogous to a
current carrying coil. When a magnetic field is applied to an atom, the motion of
the orbital electrons gets modified in such a way that a weak magnetic moment
opposing the field is induced. Diamagnetism is the result of this interaction. In a
diamagnetic solid, the magnetic lines of force due to an applied field are
repelled, as shown in Fig. 16.1a. The diamagnetic susceptibility is negative and
very small in magnitude, typical values of the order of –10–5. An important



exception, however, is a superconductor, which is perfectly diamagnetic with a
susceptibility value of –1. All the lines of force are repelled by the super-
conductor, thus making them useful for the purpose of shielding out magnetic
fields.

Some atoms and molecules possess intrinsic permanent magnetic moments.
In the absence of an externally applied field, the moments of the atoms in a
solid are randomly oriented with respect to one another and the solid as a whole
has no net magnetic moment. If an external field is applied, the magnetic
moments tend to align themselves parallel to the applied field, so as to lower
their potential energy. It is well known that a suspended magnetic needle aligns
itself spontaneously with the earth’s magnetic field. Similarly, there is a
spontaneous tendency for the permanent moments of the atoms of the solid to
align themselves in the direction of the field, thereby intensifying the lines of
force in the field direction. This phenomenon is called paramagnetism and is
illustrated in Fig. 16.1b. The aligning force on the permanent moments of the
atoms with ordinary magnetic fields is rather small, so that the paramagnetic
effect is weak. The paramagnetic susceptibility is small and positive, of the order
of 10–3. It decreases with increasing temperature, as thermal energy tends to
randomize the alignment.

Ferromagnetic solids are those in which the permanent magnetic moments
(due to electron spins) are already aligned due to bonding forces. The
susceptibility is very large and positive for ferromagnetic materials, in the range
102–105. They strongly attract the magnetic lines of force, as schematically
shown in Fig. 16.1c.

16.2 Magnetic Moments due to Electron Spin

Permanent magnetic moments can arise from three sources: the orbital magnetic
moment of the electrons corresponding to the quantum number ml, the spin
magnetic moment of electrons corresponding to the spin quantum number ms,
and the spin magnetic moment of the nucleus. Of these, the spin magnetic
moments of the electrons are the only ones that are important from our point of
view. We will discuss only this source of magnetism.

(a) (b) (c)

Fig. 16.1 (a) A diamagnetic solid repels slightly the magnetic lines of force. (b) A
paramagnetic solid weakly attracts the lines of force. (c) A ferromagnetic solid

attracts them very strongly.
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An electron can be crudely approximated to a charge-carrying particle
spinning about its axis and creating its own magnetic field. The magnetic
moment of an electron spin is taken as one unit, called the Bohr magneton �B. It
has a value of 9.273 � 10–24 A m2. The net magnetic moment of two electrons of
opposite spins is zero. Atoms or molecules that have quantum states all of which
have paired electrons have zero net magnetic moment. A number of atoms and
molecules, however, have unpaired electrons. For instance, the alkali metal
atoms have only one electron in the outermost s orbital. This electron is unpaired
and can align itself in an applied field giving rise to paramagnetism.

The order of filling of electron orbitals in atoms is given by Hund’s rule. An
atom with three electrons in a p orbital will have all three spins aligned, giving
rise to a net magnetic moment of three Bohr magnetons. On the other hand, an
atom with four electrons in the p orbital will have a net moment of only two
units, as the spin of the fourth electron is opposite to that of the first three.
Similarly, an atom with five electrons in a d orbital has a net magnetic moment
of five units. But an atom with nine electrons in the d orbital has a net moment
of only one. Seven electrons in an f orbital will give a net magnetic moment of
seven units.

This simple deduction of the net magnetic moment of an atom has to be
modified in the solid state, where the electron energy levels of the outermost
orbitals interact and form energy bands. In the transition metals, the energy
bands due to the 4s orbital and the 3d orbital may overlap to some extent. The
4s electrons spend some time in the 3d band. If the 3d electrons are five or more
in number, the spins of the overlapping 4s electrons must be opposite to that of
the unpaired 3d electrons. Such an overlap, therefore, reduces the net magnetic
moment. The iron atom with an outer electronic configuration of 3d64s2 has a
moment of 4 units as a free atom, but has a moment of only 2.2 as part of the
crystal. Similarly, cobalt with a configuration of 3d74s2 has a moment of 1.7 and
nickel with a configuration of 3d 84s2 has a moment of only 0.6 unit in the
crystal. In the case of gadolinium, the net magnetic moment of seven in the free
atom remains unchanged in the solid state, as there is no overlap of the 4f
orbitals with the other energy bands.

The magnetization of a solid is the sum of the magnetic moments in unit
volume of the solid.

Magnetization = magnetic moments/volume

= A m2/m3

= A m–1

Example 16.1 The saturation magnetization of BCC iron is 1750 kA m–1.
Calculate the net magnetic moment per iron atom in the crystal.



Solution

The lattice parameter of BCC iron = 2.87 Å

Volume of the unit cell = 2.873 � 10–30 m3

Number of atoms in the unit cell = 2

Net magnetic moment per atom = 1750 � 1000 � 2.873 � 10–30 � 1/2

= 2.068 � 10–23 A m2

In units of �B, the moment = 2.068 � 10–23/(9.273 � 10–24)

= 2.2

16.3 Ferromagnetism and Related Phenomena

Hund’s rule is a manifestation of the spin dependent electrostatic energy of the
electrons in an orbital. When the electrons have the same momentum and the
same spin, a certain distance must separate them from one another, in order to
be consistent with the Pauli exclusion principle. This physical separation tends to
increase their kinetic energy, but reduces the electrostatic repulsive energy
between them. Whether the electrons will align their spins or not will depend on
the sign of the net change in energy. The stable, energetically favoured order of
filling of electronic orbitals in atoms is given by Hund’s rule.

In the solid state, the outer electronic orbitals of neighbouring atoms overlap
and produce energy bands. Consider the overlapping and the formation of
energy bands in the first transition metals. At the left end of the series, the radius
of the 3d orbitals in the atoms is large enough to result in good overlap between
neighbours in the crystalline state. The 3d band then contains all paired up
electrons and there is no net magnetic moment in the crystal. We can say that
the atoms are antiferromagnetically coupled, as the magnetic moments of a pair
of atoms exactly cancel out.

As we go to the right in the transition series, the 3d orbitals shrink due to
greater attraction from the increasing charge on the nucleus and consequently
the overlap of the 3d orbitals decreases. The elements Fe, Co and Ni are in
special situation. The unpaired electrons in the 3d orbitals of neighbouring atoms
align their spins in a parallel fashion and thereby lower their spin dependent
electrostatic energy. This lowering is partly offset by the rise in the Fermi level
and the consequent increase in the average kinetic energy of the electrons. The
increase in the Fermi level is directly attributable to the greater physical
separation between electrons. The net gain in energy, Eunmagnetized – Emagnetized,
called the exchange interaction energy is a sensitive function of the ratio of the
atomic diameter to the 3d orbital diameter. This ratio for some of the first
transition elements is shown as follows:

Element Ti Cr Mn Fe Co Ni

datomic/d3d orbital 1.12 1.18 1.47 1.63 1.82 1.98
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It turns out that, only when this ratio lies between 1.5 and 2.0, the exchange
energy is positive and parallel spins are energetically favoured. Among the
common metals, only Fe, Co and Ni have positive exchange energy and are in
the spontaneously magnetized state. These metals or their ions form the basis of
the majority of magnetic materials.

No overlap of the d orbitals occurs in the higher transition series, as the d
electrons are strongly attracted to their respective nuclei, which have larger
positive charges. The only other elemental crystals where the exchange energy is
appreciable belong to the first rare earth series such as gadolinium, terbium and
dysprosium. Here, the 4f electrons align themselves in a parallel fashion.

Thermal energy tends to randomize the aligned spins, so that all
ferromagnetic materials become paramagnetic at a sufficiently high temperature.
The transition temperature at which all the spin alignment is lost is called the
Curie temperature. Just below the Curie temperature, the susceptibility can be
102 to 103, increasing with decrease in temperature, as the alignment becomes
more complete. The Curie temperature is a function of the magnitude of the
exchange energy. Cobalt that has the highest exchange energy has the highest
Curie temperature, 1400 K. Gadolinium with a small exchange energy has a
Curie temperature below room temperature.

Example 16.2 Which of the two solids, cobalt and gadolinium, has the
higher saturation magnetization at (i) 0 K, and (ii) 300 K?

Solution (i) At 0 K, the thermal energy kT, which tends to randomize the
spins, is zero. Therefore, all the spins remain aligned in both Co and Gd. As the
net magnetic moment of Gd is 7 per atom, as compared to 1.7 per atom in the
Co crystal, Gd will have the higher saturation magnetization. The actual values
will depend on the number of atoms per unit volume in the two cases.

(ii) At 300 K, Gd is above its Curie temperature of 289 K. Hence, Gd will
be paramagnetic at 300 K and will have negligible magnetization as compared to
Co, which has a much higher Curie temperature.

The interatomic distance can be changed within limits by alloying. For
example, manganese in the elemental form is not ferromagnetic. On alloying, the
exchange energy can become positive and the spins on neighbouring atoms can
become aligned if the Mn–Mn distance is increased by the right amount, so that
the ratio of the atomic diameter to the 3d orbital diameter falls in the range
1.5–2.0. This happens in Heusler alloys Cu2MnSn and Cu2MnAl, which are
ferromagnetic.

In some compounds, the constituent atoms may be antiferromagnetically
coupled, but can have different magnetic moments. This would give rise to a net
magnetic moment in each coupling and the sum of the moments of all the
couplings can result in magnetization that is comparable in order of magnitude
to ferromagnetism. This phenomenon is called ferrimagnetism and is compared
with ferromagnetism and antiferromagnetism in Fig. 16.2.



Ferrites of the general formula Me2+Fe3+
2 O2–

4 can be ferrimagnetic. The
divalent metal cation (Me2+) in the formula is usually Fe2+, Ni2+, Zn2+, Mg2+,
Co2+, Ba2+, Mn2+ or some combination of these ions. These compounds
crystallize mostly as the inverse spinel structure described in Chap. 5.

As an example of the incomplete cancellation of the magnetic moments,
consider the crystal of magnetite, Fe3O4. (Magnetite is the lodestone of the
ancient mariners.) The ferric ion, with two 4s electrons and one 3d electron
removed from the neutral iron atom, has a magnetic moment of 5 units and the
ferrous ion has 4 units. All the ferric ions in magnetite are antiferromagnetically
coupled, so that the net magnetic moment of the compound arises from the
ferrous ions only. The magnetization M calculated on the basis of 4 net magnetic
moments per Fe3O4 is in good agreement with the experimental value for
magnetite.

Example 16.3 In nickel ferrite, NiFe2O4, the ferric ions are antiferro-
magnetically coupled. The magnetization is due to the nickel ions. When zinc is
added to nickel ferrite, the magnetization of the crystal increases, even though
the zinc ions are not ferromagnetic. Explain how this could happen.

Solution Referring to Chap. 5, the inverse spinel structure of nickel
ferrite has all the Ni2+ and half of the Fe3+ ions in the octahedral sites. The other
half of the Fe3+ ions are in the tetrahedral sites. The ferric ions in the two sites
are antiferromagnetically coupled. When zinc substitutes for the ferric ions in the
tetrahedral sites, the antiferromagnetic coupling will not exactly cancel, as the
number of ferric ions in the octahedral sites will be more. This would increase
the magnetization, as there is an extra contribution from the uncoupled ferric
ions of the octahedral sites.

16.4 The Domain Structure

Iron has a high Curie temperature of 1041 K (768°C) and, consequently, almost
all the spins remain aligned at room temperature. Yet, at room temperature, an
ordinary piece of iron is not magnetic in the absence of an applied field. To
explain this discrepancy, Weiss conceived the idea of magnetic domains. The

(a) (b) (c)

Fig. 16.2 (a) Ferromagnetic, (b) antiferromagnetic, and (c) ferrimagnetic coupling
of electron spins in atoms denoted by arrows. The length of an arrow is a

measure of the magnetic moment of the atom.
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unmagnetized iron crystal consists of a number of domains and within each
domain, the spins of all the atoms are aligned. However, the spins of adjacent
domains are not parallel. Due to the random orientation of the domains with
respect to one another, the magnetic moments cancel out and the crystal as a
whole is not magnetic. In the presence of an external field, the domains tend to
align themselves with the field, resulting in a large net magnetization of the
solid. The process of magnetization of the iron crystal is not the aligning of the
electron spins of the different atoms, but it is the alignment of the various
domains, each of which is already ferromagnetic. The domain concept neatly
explains the magnetization behaviour of iron. Ample experimental evidence is
now available for the presence of magnetic domains.

The magnetostatic energy of a ferromagnetic solid can be reduced if a
number of domains are arranged such that no poles exist at the surface and no
lines of force go out of the material, as illustrated in Fig. 16.3. Hence, a single
domain tends to break up into several domains, even if this means an increase in
the domain boundary energy. The domain size does not decrease indefinitely, as
at some stage the increasing domain boundary energy would oppose this.
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16.5 The Hysteresis Loop

The B-H curve for a typical ferromagnetic material is shown in Fig. 16.4. As the
applied field H is increased, the magnetic induction B increases slowly at first
and then more rapidly. The rate of magnetic induction slows down again,
eventually attaining a saturation value Bs. With further increase in the magnetic
field, there is no increase in the induction. If the field is reversed, the induction
decreases slowly at first and reaches a residual value Br at zero field. Br

represents the amount of residual induction left in the specimen after the
removal of the field. If the application of the field is continued in the opposite
direction, the domains tend to reverse their alignment, so that the remaining

Fig. 16.3 (a) With one domain, the magnetic lines of force go out of the material.
(b) The magnetic lines do not go out if a number of domains are present.



induction is lost at a certain value of the reverse field called the coercive field
Hc. The process of reversal of domains continues to give a net magnetization in
the opposite direction. After saturation occurs in this direction, restoring the
original field direction completes the hysteresis loop.

There are two possible ways to align a random domain structure by
applying an external field. One is to rotate a domain in the direction of the field
and the other is to allow the growth of the more favourably oriented domains at
the expense of the less favourably oriented ones. If we compare the domain
structure with the grain structure of a polycrystalline material, the boundaries
separating the domains called domain walls are the analogue of grain
boundaries. The domain boundary energy is about 0.002 J m–2. The domain
walls, however, are some two orders of magnitude thicker than the grain
boundaries, because there is a gradual transition from one domain orientation to
the next across the wall. Also, the domain boundaries can exist within the grain.
Analogous to grain growth (Chap. 6), the domain walls can move such that the
more favourably oriented domains grow at the expense of others. In the earlier
stages of magnetization below the saturation region of the hysteresis curve,
domain growth is dominant. The growth is more or less complete as the
saturation region is approached. Thereafter, the most favourably oriented, fully
grown domain tends to rotate so as to be in complete alignment with the field
direction. The energy required to rotate an entire domain is more than that
required to move the domain walls during growth. Consequently, the slope of the
B-H curve decreases on approaching saturation.

Each time the hysteresis loop is traversed, energy equal to the area of the
loop is dissipated as heat. The power loss due to hysteresis in a transformer core
is dependent on the number of times the full loop is traversed per second.

Fig. 16.4 Magnetic induction B as a function of the applied field H for a
ferromagnetic material, tracing a hysteresis loop.
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Example 16.4 A transformer core is wound with a coil carrying an
alternating current at a frequency of 50 Hz. Assuming the magnetization to be
uniform throughout the core volume of 0.01 m3, calculate the hysteresis loss.
The hysteresis loop has an area of 60 000 units, when the axes are drawn in
units of 10–4 Wb m–2 and 102 A m–1.

Solution

Energy lost during each cycle

= Area of loop

= 10–4 � 102 � 60 000

= 600 J m–3

Volume of the transformer core = 0.01 m3

Energy lost in the core in each cycle = 600 � 0.01 = 6 J

Power loss due to hysteresis = 6 J � 50 Hz = 300 W

16.6 Soft Magnetic Materials

Soft magnetic materials are used in applications requiring frequent reversals of
the direction of magnetization. In soft magnetic materials, the hysteresis losses
must be kept down to a minimum. When the induction is large for a small
applied field, the loop area is small and the hysteresis loss is reduced. The key
factor in the design of a soft magnet is then to have easily moving domain walls.
Analogous to grain boundaries, the domain walls tend to get pinned down by
dislocation tangles, impurity atoms, voids and nonmagnetic precipitates and
inclusions. A cold-worked material has a high dislocation density. It should be
properly annealed to reduce the dislocation density and thereby facilitate easier
motion of the domain walls. Soft magnetic materials should be free of impurities
and inclusions. Nonmetallic soft magnets such as ferrites and garnets are prone
to inherit voids during the process of manufacture by powder compacting. The
microstructure is therefore critical in sophisticated applications using ferrites and
garnets.

Usually, there are easy and hard magnetization directions in a crystal. As
illustrated in Fig. 16.5, iron magnetizes more easily along the [100] direction
than along [111], which is the hard direction for iron. This property can be
exploited to reduce the area under the hysteresis loop by manufacturing
materials with a preferred orientation of grains. The preferred orientation can be
achieved by a suitable rolling schedule and final recrystallization to produce
what is called a texture. The same can also be achieved in some cases by casting
the liquid alloy in a metal mould. After the initial chilling against the mould
walls, long columnar grains form and grow in a direction perpendicular to the
mould wall, recall Sec. 9.6. The �100� directions often being the favoured



directions of growth, the columnar crystals are aligned along one of the �100�
directions. In the manufacture of ceramic magnets by powder compacting, a
field is superimposed across the die cavity before pressing so that the crystalline
particles of the powder orient themselves along directions of easy magnetization.

The other source of energy loss in soft magnets is the eddy current loss.
When the magnetic flux in a medium is changing, an emf is induced. As given
by Lenz’s law, the induced emf is proportional to the rate of change of flux and
hence to the frequency of the alternating current. The induced emf sets up eddy
currents in the medium and the power loss due to the eddy currents is equal to
V2/R, where V is the induced emf and R is the resistance of the medium.

Example 16.5 In a 440 V, 50 Hz transformer, the total iron loss is 2300 W.
When the applied voltage is 220 V at 25 Hz, the total iron loss is 750 W.
Calculate the eddy current loss at the normal voltage and frequency.

Solution The hysteresis loss and the induced emf are proportional to the
frequency. The eddy current loss is proportional to the square of the induced
emf. Let We and Wh be the eddy current and the hysteresis losses at 25 Hz. Then,

We + Wh = 750 W

At 440 V and 50 Hz, we have

4We + 2Wh = 2300 W
or

2We = 800 W
So,

Eddy current loss at the normal voltage and frequency

= 4We = 1600 W
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Fig. 16.5 An iron crystal magnetizes more easily along the [100] direction than
along [111].
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In recent years, metallic glasses produced from iron-base alloys containing
15–25% of (Si + B + C) offer substantial reduction in core losses. Such an alloy,
cooled at a rate of ~104 °C s–1 from the molten state, does not crystallize but
solidifies into a (ribbon-shaped) metallic glass. Owing to the larger
concentrations of the impurity atoms, the electrical resistivity is higher than that
for the Fe-4% Si alloy, thereby reducing eddy current losses. The absence of
grain boundaries in the glassy matrix reduces hysteresis losses. The total iron
losses can be reduced to 30–10% of that for the conventional Fe–Si alloy. Such
a reduction can save nearly a billion dollars in distribution transformers alone in
a developed country like the U.S. Soft magnets made of metallic glass are also
used in phonograph cartridges and audio and computer tape heads.

Fe–Si alloys are suitable for operation at power frequencies of 50–60 Hz.
They are not suitable in communications equipment, where high sensitivity and

Eddy current losses can be minimized by increasing the resistivity of the
magnetic medium. Iron which used to be the material for transformer cores is
now almost entirely replaced by an Fe–Si solid solution with about 4% silicon,
which has a substantially higher resistivity than pure iron, as illustrated in
Fig. 16.6. The reason for stopping at a concentration of 4% is due to fabrication
problems, as higher silicon content tends to make the iron brittle, see the
variation in the ductile-brittle transition temperature with silicon content in
Fig. 16.6. In addition, the transformer core is laminated such that the resistance
of the laminations is much more than that of a one-piece core.
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Fig. 16.6 Variation in magnetization, resistivity and ductile-brittle transition
temperature as a function of silicon content in Fe–Si alloys.



fidelity are required. Fe–Ni alloys such as Permalloy and Supermalloy are used
for this purpose. These alloys have a high initial permeability which reduces
considerably the area under the hysteresis loop. Hence, these alloys are suitable
for higher frequencies. For frequencies exceeding MHz, metals and alloys are
generally not suitable as soft magnets, as the eddy current losses are very high.
However, thin films of a Permalloy of about 2000 Å in thickness vapour-
deposited on a glass substrate have been used. Here, eddy current losses are not
significant because of the small thickness. The reversal of magnetization, which
occurs by domain rotation, is faster and switching speeds of ~ 0.1 �s can be
attained. The ferrimagnetic oxides, ferrites and garnets, are very suitable in the
high frequency range. Being electrical insulators, they have a much higher
resistivity than alloys. This reduces the eddy current losses to a negligible value.
The choice depends on the application. Nickel–zinc ferrites are used for audio
and TV transformers. Magnesium–manganese ferrites with a high resistivity are
used as microwave isolators and gyrators in the kHz and MHz range. With a
higher manganese to magnesium ratio than in the above, the ferrite has a nearly
rectangular hysteresis loop and is used for memory cores in computers. Garnets
such as Y3Fe5O12 (yttrium–iron–garnet) have a narrow resonance line width and
are widely used as microwave isolators in the very high frequency GHz range.
Table 16.1 lists the properties of some soft magnetic materials.

TABLE 16.1

Properties of Soft Magnetic Materials

Initial Electrical Hysteresis Saturation
Material relative resistivity, loss, induction,

permeability ohm m J m–3 Wb m–2

Commercial iron 250 0.1 � 10–6 500 2.2

Fe-4% Si 500 0.6 � 10–6 100 2.0

Fe–Si oriented 1500 0.6 � 10–6 90 2.0
Permalloy (45% Ni) 2700 0.55 � 10–6 120 1.6

Supermalloy 100,000 0.65 � 10–6 21 0.8

(79% Ni, 5% Mo)
Ni–Zn ferrite 200–1000 ~106 35 0.4

Mn–Zn ferrite 2000 ~106 40 0.3

16.7 Hard Magnetic Materials

Hard magnetic materials are used to produce permanent magnets. Hysteresis
losses are of no significance here, as no repeated reversals of the magnetization
is involved in a permanent magnet. The permanent magnets must have a high
residual induction Br and a large coercive force Hc. The area of the hysteresis
loop between Br and Hc represents the energy required to demagnetize a
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permanent magnet. The maximum value of this area is BrHc, called the
energy product. It must be as large as possible for permanent magnets. High
carbon steels and other low-alloy tungsten and chromium steels are used in
the martensitic condition as permanent magnets. The same factors that
improve the mechanical hardness impart better resistance to domain wall
motion in permanent magnets. Among the metallic alloys, the best knowns are
the Al–Ni–Co (alnico) alloys. These alloys are directionally solidified and
subsequently given a heat treatment in a magnetic field that enhances the desired
properties. The heat treatment at 800°C is known to result in a phase separation
into two phases of different compositions with different amounts of
magnetization. The phase with a larger magnetization precipitates as very fine
elongated particles embedded in the matrix of the other phase. It is difficult to
alter the direction of the magnetic moments in these fine elongated particles,
with the result that the energy product BrHc is increased. A similar idea is used
in the production of fine particle permanent magnets known as ESD (elongated
single domain) magnets. The particle thickness here is smaller than the domain
wall thickness so that each one of the particles is a single domain. A large field
is required to rotate these domains during reversal, as they cannot reverse by the
domain growth process. These particles are embedded in a nonmagnetic resin
matrix such that they are separated from one another and remain single domains.
Among the nonmetallic oxides used as permanent magnets is barium ferrite
(BaO�6Fe2O3), which has a high coercivity, more than 100 kA m–l, as illustrated
in Table 16.2. Recently, permanent magnets of cobalt alloyed with rare earth
elements have been developed with a very large energy product in the range of
200 kJ m–3, refer Table 16.2. Nd2Fe14B, an alloy discovered in 1984, has a still
higher energy product of 400 kJ m–3. The alloy is cooled from the molten state
at a cooling rate of 104 °C s–1 to produce an ultrafine grain size, which is in the
same range as the domain size (~1 �m). The domain walls here are effectively
pinned down by the grain boundaries.

TABLE 16.2

Properties of Hard Magnetic Materials

Material Br, Wb m–2 Hc, kA m–1 BrHc, kJ m–3

High carbon steel 0.90 3.98 3.58

(martensitic)
Tungsten steel (5% W) 1.05 5.57 5.85

Chromium steel (4% Cr) 0.95 5.17 4.91

Cobalt steel (36% Co) 0.95 18.31 17.40
Al–Ni–Co alloys 0.8–1.2 60–120 48–144

Barium ferrite 0.21 140 29.4

Cobalt rare-earths 1.0 200 200
Co5 (Sm, Pr)
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1. Diamagnetic materials repel magnetic lines of force, while paramagnetic
materials attract them. Ferromagnetic materials attract the lines of force
very strongly.

2. The permanent magnetic moment of an atom arises from various sources,
the most important of which is the spin of electrons in partially filled
electron shells. In units of Bohr magneton, the magnetic moment is equal
to the number of unpaired electrons. Due to overlapping of energy bands,
the net magnetic moment of an atom is less in the solid, as compared to
the free state of the atom.

3. The spins of electrons of neighbouring atoms are permanently aligned in
ferromagnetic materials, due to bonding forces. Among the common
elements, Fe, Ni and Co are ferromagnetic.

4. Ferrimagnetic materials have an antiparallel arrangement of electron spins,
but due to incomplete cancellation, there is a net magnetic moment that is
comparable in order of magnitude to that of ferromagnetic materials.

5. Even though the spins within a magnetic domain are aligned permanently
below the Curie temperature in a ferromagnetic material, the material is
magnetic only when an external field aligns the domains.

6. The B-H hysteresis curve can be understood in terms of domain growth
and domain rotation.

7. Soft magnetic materials should have low hysteresis losses and low eddy
current losses. Easy domain wall motion is the key factor in keeping the
hysteresis losses to a minimum. Increasing the electrical resistivity of the
magnetic medium reduces eddy current losses.

8. Hard magnetic materials must retain a large part of their magnetization on
removal of the applied field. Obstacles to domain wall motion should be
provided in permanent magnets, so that the energy product BrHc is large.

��	
����

16.1 Write down the equivalence of (i) weber, and (ii) henry in SI base units.

16.2 Show that

0

�

�
 = 1 + �

16.3 Show that, for a perfectly diamagnetic material, M = –H, � = –1 and
B = 0.
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16.4 Explain why copper crystal is diamagnetic, even though the copper atom
has an outer electron configuration of 3d104s1. The diamagnetic
susceptibility of copper is –0.5 � 10–5. For an applied field of 100 kA m–1,
find the induction B and the magnetization M.

Answer: 0.126 Wb m–2; –0.5 A m–1.

16.5 Deduce the net magnetic moment of Fe, Co and Ni from the electronic
configuration of the atoms.

16.6 The Curie temperatures of some elements are: Fe (768°C), Co (1127°C),
Gd (16°C), Ni (358°C), and Dy (–168°C). Arrange these in order of
increasing exchange energy.

16.7 Does a large magnetic moment per atom mean a high Curie temperature?
Explain.

16.8 Deduce the magnetic moment per formula of the following ferrites:
Fe3O4, NiFe2O4, CoFe2O4, and MnFe2O4. In Fe3O4, the ferric ions are
antiferromagnetically coupled. All the divalent cations have lost their 4s
electrons. Compare the deduced values with the listed values and explain
any discrepancy.
Answer: Deduced: 4, 2, 3, and 0 (MnO is antiferromagnetic).

Listed: 4.1, 2.4, 3.7 and 5.

16.9 Calculate the saturation magnetization of magnetite. The unit cell of
magnetite is cubic with a lattice parameter of 8.37 Å. There are 16 ferric
ions and 8 ferrous ions in the unit cell.

Answer: 510 kA m–1.

16.10 The speed of storing and reading out information from a computer core
is less than a microsecond. Why is it necessary to use a ferrite for this
application rather than a ferromagnetic alloy?

16.11 Explain how a high initial permeability in Fe–Ni alloys helps to reduce
the area under the hysteresis loop.

16.12 Explain the principle underlying the lamination of a transformer core,
indicating how you would design it with reference to the direction of the
eddy currents.

16.13 The total iron loss in a transformer core at normal flux density was
measured at 25 Hz and at 50 Hz and was found to be 250 W and 800 W
respectively. Calculate (i) the eddy current loss and (ii) the hysteresis loss
at 50 Hz.

Answer: (i) 600 W, and (ii) 200 W.

16.14 The electrical resistivity of iron increases by a factor of 6, on alloying
with 4% silicon. Estimate the decrease in eddy current losses for this
change in composition.

Answer: 83%.
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1. The units of magnetic permeability are
A. A m–1 B. Wb m–2 C. H m–1 D. Wb A–1 m–1

2. In base SI units, tesla is expressed as

A. N A–1 m–1 B. N A–1 m–3 C. kg m–2 s–2 A–1 D. kg s–2 A–1

3. In a paramagnetic material of susceptibility equal to 10–3, the induction in
Wb m–2 at an applied field of 100 kA m–1 is (�0 = 1.257 � 10–6 H m–1)

A. 0.1257 B. 0.1258 C. 4� � 10–7 D. none of these

4. The net magnetic moment of Fe atom in BCC crystal (a = 2.857 Å) is
2.2�B (�B = 9.273 � 10–24 A m2). The saturation magnetization of Fe at
0 K is
A. 0 B. 1750 kA m–1 C. 1750 A m–l D. 1750 A m–2

5. Gadolinium has a higher saturation magnetization than Co at

A. –273°C B. 25°C C. 290°C D. 769°C

6. The Curie temperature of cobalt is

A. 2000 K B. 1400 K C. 1040 K D. 650 K

7. The total iron loss in a transformer core at 25 Hz and 50 Hz is 250 W and
800 W, respectively. The eddy current loss at 25 Hz is
A. 100 W B. 150 W C. 200 W D. 600 W

8. Using a permalloy core (�r = 2700), a 19 m long 300 turn coil of a
conductor giving an induction of 7.5 T is to be made. The current in the
coil should be
A. 0 A B. 52 mA C. 7.4 A D. 140 A

9. The ratio of the atomic radius/3d shell radius of Mn, which normally
exhibits antiferromagnetic behaviour, is

A. 1.47 B. 1.63 C. 1.82 D. 1.98

10. The temperature of the antiferromagnetic-to-paramagnetic transition is
called

A. antiferromagnetic Curie temp. B. Curie–Weiss temp.
C. Neel temp. D. Debye temp.

11. The factors that obstruct domain wall motion in Fe are

A. dislocation tangles B. impurity atoms

C. voids D. nonmagnetic inclusions

12. The transition from the ferromagnetic to the paramagnetic state is named
after
A. Curie B. Curie–Weiss C. Neel D. Debye
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13. The magnetic moment of a ferric ion in nickel–zinc ferrite is

A. 5 B. 0

C. depends on Zn% D. 2.2

14. The saturation magnetization of magnetite with 16 ferric ions and 8 ferrous
ions in the cubic unit cell (a = 8.37 Å) is (�B = 9.273 � 10–24 A m2)

A. 1770 kA m–l B. 638 kA m–1 C. 506 A m–1 D. 506 kA m–1

15. If the saturation magnetization of magnetite is 510 kA m–1, that of nickel
ferrite in the same units is (Given: atomic number of Fe = 26; Ni = 28)

A. 255 B. 510 C. 1020 D. 340

16. To make the Mn atom ferromagnetic by alloying, the ratio of its atomic
radius-to-3d radius should be

A. constant B. increased C. decreased D. zero

17. In nickel–zinc ferrite with Zn/Ni atom ratio equal to 3/5, the number of
unpaired electron spins present per Ni0.625Zn0.375Fe2O4 is (assume that zinc
ions push the ferric ions from tetrahedral sites to octahedral sites and
change their spins)

A. 5 B. 3.75 C. 1.25 D. 4.5

18. The garnet crystal used in a microprocessor has the formula

A. YO.Fe2O3 B. Y3Fe5O12 C. YO.6Fe2O3 D. Y2O3.Fe2O3

19. The highest measured energy product in a permanent magnet is about

A. 800 J m–3 B. 80 kJ m–3 C. 400 kJ m–3 D. 400 J m–3

20. The magnetic energy product of Pr2Fel4B alloy is higher than that of a
martensitic carbon steel by a factor of about

A. 1.1 B. 5 C. 100 D. 1000

21. A suitable material for audio and TV transformers is

A. ferrite B. Fe-4% Si C. Fe-30% Ni D. very pure Fe

Answers

1. C, D 2. D 3. B 4. B 5. A

6. B 7. B 8. D 9. A 10. C

11. A, B, C, D 12. A 13. A 14. D 15. A

16. B 17. A 18. B 19. C 20. C

21. A
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CHAPTER

When classifying solids on the basis of their band structure, we referred to the
group of solids, called insulators, which have an energy gap of 3 eV or more,
recall Sec. 15.1. The large magnitude of the energy gap in an ideal insulator
precludes the possibility of electrons being excited from the valence band to the
conduction band by thermal means, much less so by an externally applied
electric field. Insulators are therefore very poor conductors of electricity, recall
the resistivity range for insulators from Table 14.1. Insulators are known as
dielectrics. Dielectric materials find extensive use in the electrical industry for
insulation purposes and as capacitors.

In this chapter, polarization processes in dielectric materials and their
temperature and frequency dependence are discussed. Besides, the causes of
electric breakdown are described. In the end, the nature of ferroelectric crystals
is considered briefly.

Units

 Quantity
SI units

Unit  Symbol

Flux density D coulomb per square metre C m–2

Electric field strength E volt per metre V m–l

Dielectric strength or or
newton per coulomb N C–1

Capacitance C farad or coulomb per volt F or C V–1

Dielectric constant of farad per metre F m–l

free space �0

Relative dielectric constant �r – –
Dipole moment coulomb metre C m
Polarization P
Saturation polarization Ps coulomb per square metre C m–2

Electronic polarizability farad metre squared F m2

Frequency � hertz (per second) Hz (s–1)
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Constants

Dielectric constant of free space �0 = 8.854 � 10–12 F m–1

Electronic charge e = 1.602 � 10–19 C

17.1 Polarization

The relation between the electric flux density D (charge per unit area in units of
C m–2) at a point in a material and the electric field strength E (force per unit
charge in units of N C–1 or V m–1) at that point in space is given by

D = �r�0E (17.1)

where �0 is the dielectric constant or permittivity of free space (vacuum) and �r

is the relative dielectric constant or relative permittivity of the material. �r is
dimensionless and is a property of the material related to its atomic structure. Its
value is 1 for free space and is greater than one for all materials. In SI units,
�0 = 8.854 � 10–12 farad per metre. �0 has this particular value as a result of
conversion from cgs units to SI units.

�0 = 
–2

–1

C m

V m�

�
r

D
E

 = F m–1

When an electric field is applied to a solid containing positive and negative
charges, the positive charges are displaced in the direction of the field towards
the negative end, while the negative charges are displaced in the opposite
direction. This displacement produces local dipoles throughout the solid. The
dipole moment per unit volume of the solid is the sum of all the individual
dipole moments within that volume and is called the polarization P of the solid.
As the polarization measures the additional flux density arising from the
presence of the material as compared to free space, it has the same units as D
and is related to it as follows:

D = �0E + P (17.2)

As may be seen by comparing Eq. (17.2) with Eq. (16.3), polarization P is
the electrical analog of magnetization M. Combining Eqs. (17.1) and (17.2), we
can write

P = �0 (�r – 1)E (17.3)

Macroscopically, the polarization or the relative dielectric constant can be
measured, using a parallel-plate capacitor. When a voltage V is applied to the
capacitor, with the plates separated by vacuum, a charge develops on the plates.
The capacitance C of the capacitor is a measure of this charge and is defined by

C = 0� A
d

(17.4)
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where A is the area of the parallel plates and d is the distance of separation
between them. If a dielectric material is inserted between the plates, the charge
on the plates increases due to polarization in the material. The capacitance is
now given by

C = �r�0 
A
d

(17.5)

�r and hence P can be determined by measuring the capacitance with and
without the dielectric.

Example 17.1 Calculate the relative dielectric constant of a barium titanate
crystal, which, when inserted in a parallel plate condenser of area 10 mm � 10 mm
and distance of separation of 2 mm, gives a capacitance of 10–9 F.

Solution Substituting the given values in Eq. (17.5), we obtain

�r = 
9 3

12 2 6

10 2 10

8.854 10 10 10

� �

� �

� �
� � �

= 2259

Polarization occurs due to several atomic mechanisms. Electronic
polarization (Fig. 17.1a) is the result of the displacement of the positively
charged nucleus and the (negative) electrons of an atom in opposite directions on
application of an electric field. On applying a field, the electron cloud around
the nucleus readily shifts towards the positive end of the field. Such a shift
results in a dipole moment within the atom, as a certain distance now separates
the nucleus and the centre of the electron cloud. The extent of this shift is
proportional to the field strength. As the dipole moment is defined as the product
of the charge and the shift distance, it is also proportional to the field strength.
The constant of proportionality is called the electronic polarizability �e of the
atom. For the inert gases, this polarizability increases with increasing volume of
the atom, as illustrated in Table 17.1. Electronic polarizability is independent of
temperature. Monoatomic gases exhibit only this kind of polarization.

TABLE 17.1

Electronic Polarizability �e of Inert Gases

Inert gas He Ne Ar Kr Xe

�e, 10–40 F m2 0.18 0.35 1.43 2.18 3.54

During chemical bonding, the atoms may acquire an excess negative or
positive charge and form an ionic bond. When an electric field is applied to an
ionic solid, cations and anions get displaced in opposite directions, see



No field Field

(a)

(b)

(c)

(d)

Fig. 17.1 Various polarization processes: (a) electronic polarization, (b) ionic
polarization, (c) orientation polarization, and (d) space charge polarization.

Fig. 17.1b. The ionic polarizability is due to this shift of the ions relative to
other oppositely-charged neighbours. It should be distinguished from electronic
polarization, where the electron cloud of an atom shifts with reference to its own
nucleus. Ionic polarization is also independent of temperature.

In methane molecule (CH4), the centre of the negative and the positive
charges coincide, so that there is no permanent dipole moment. On the other hand,
in CH3Cl, the positive and the negative charges do not coincide. The
electronegativity of chlorine being more than that of hydrogen (recall Table 4.4),
the chlorine atom pulls the bonding electrons to itself more strongly than
hydrogen. So, this molecule carries a dipole moment even in the absence of an
electric field. When an electric field is applied on such molecules, they tend to
align themselves in the applied field, see Fig. 17.1c. (Recall that atoms with
permanent magnetic moments tend to align themselves with the applied magnetic
field giving rise to paramagnetism.) The polarization due to this alignment is
called orientation polarization and is dependent on temperature. With increasing
temperature, the thermal energy tends to randomize the alignment.
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The fourth type of polarization is called the space charge polarization and
occurs due to the accumulation of charges at the electrodes or at the interfaces in
a multiphase material, see Fig. 17.1d. The ions diffuse over appreciable distances
in response to the applied field, giving rise to a redistribution of charges in the
dielectric medium.

The total polarization of a material is the sum of the contributions from the
various sources described above:

Ptotal = Pe + Pi + Po + Ps (17.6)

where the subscripts on the right refer to the four types: eletronic, ionic,
orientation and space-charge polarization.

17.2 Temperature and Frequency Effects

On application of an electric field, a polarization process occurs as a function of
time. The polarization P(t) as a function of time t is given by

P(t) = 1 exp
r

t
P

t

� �� �� �� 	
 �� � �
(17.7)

where P is the maximum polarization attained on prolonged application of a
static field and tr is the relaxation time for the particular polarization process.
Recall Eq. (10.15), where the relaxation arising from anelastic processes was
discussed. The relaxation time tr is a measure of the time scale of a polarization
process. It is the time taken for a polarization process to reach 0.63 of the
maximum value.

The relaxation times vary widely for different polarization processes.
Electronic polarization is extremely rapid and is essentially complete at the
instant the voltage is applied. Even when the frequency of the applied voltage is
very high in the optical range (~1015 Hz), electronic polarization occurs during
every cycle of the applied voltage.

Ionic polarization is slower than electronic polarization, as the displacement
involved here is that of the much heavier ion, as compared to the electron cloud in
the above case. The frequency with which ions can be displaced over a small
fraction of the interatomic distance will be of the same order as the lattice
vibration frequency (~1013 Hz). If an electric field of frequency in the optical
range (~1015 Hz) is now applied, the ions do not respond at all, as the time
required by an ion for one vibration is 100 times larger than the period of the
applied voltage. So, at optical frequencies, there is no ionic polarization. If the
frequency of the applied voltage is less than 1013 Hz, the ions have enough time to



Orientation polarization is even slower than ionic polarization. The
relaxation time for orientation polarization in liquid propyl alcohol is about
10–10 s and in solid ice, it is 3 � 10–6 s. It is evidently easier for the polar
molecules to reorient themselves in a liquid as compared to a solid. Orientation
polarization occurs, when the frequency of the applied voltage is in the audio
range, Fig. 17.2.

Space charge polarization is the slowest process, as it involves the diffusion
of ions over several interatomic distances. The relaxation time for this process is
related to the frequency of successful jumps of ions under the influence of the
applied field, a typical value being 102 Hz. Correspondingly, space charge
polarization occurs at machine frequencies (50–60 Hz).

Referring to Fig. 17.2, all the four types of polarization are present at
machine frequencies. As the frequency is increased, space charge, orientation
and ionic polarization become inoperative in that order. When several
polarization processes occur in a material, it follows that the dielectric constant
will decrease with increasing frequency of the applied voltage. The dielectric
constants of some typical dielectric materials are listed in Table 17.2 at
frequencies of 60 Hz and 106 Hz.

Space charge
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Electrical frequencies Optical

Power Audio Radio Infrared Visible
Frequency

Fig. 17.2 Frequency dependence of polarization processes and peak power losses
corresponding to each process.
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respond during each cycle. This is illustrated in Fig. 17.2, where the polarization
consists of only the electronic part at optical frequencies and increases to include
the ionic part, as the frequency is reduced to 1013 Hz in the infrared range.
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TABLE 17.2

Properties of Some Dielectric Materials

�r tan � � DielecticMaterial
60 Hz 106 Hz 106 Hz strength,

106 V m–1

Electrical porcelain 6 6 0.02 5

Steatite, MgO�SiO2 6 6 0.001 12
Fused silica 4 3.8 0.0001 10

Soda-lime-glass 7 7 0.005 10

Mica 8 5 0.0005 100
Nylon 6, 6 4 3.5 0.02 15

Polyethylene 2.3 2.3 0.0004 4

Polyvinylchloride 7 3.4 0.05 2
(plasticized)

Vulcanized rubber 4 2.7 0.003 25

Bakelite 4.4 4.4 0.028 15
Transformer oil 5 2.5 0.0001 10

When the period of the applied voltage is much larger than the relaxation
time of a polarization process, polarization is essentially complete at any instant
during each cycle. The charging current is 90° advanced in relation to the voltage,
as illustrated in Fig. 17.3a, so that no electrical energy is lost during charging.

I

V

I

V

I

V

�

(a) (b) (c)

Fig. 17.3 (a) and (b) There is no energy loss when the period of the ac voltage
does not match the relaxation time of a process. (c) When there is matching,

energy loss occurs, with the current leading the voltage by less than 90°.

When the period of the applied voltage is much shorter than the relaxation time
for a polarization process, the polarization does not occur at all. Here again, the
charging current is 90° advanced of the applied voltage, see Fig. 17.3b. When the
period is in the same range as the relaxation time, resonance occurs. Here, the
current leads the voltage by (90 – � ), as illustrated in Fig. 17.3c. �  is called the
loss angle and tan �  is taken as a measure of the electrical loss due to resonance.
The current can be factorized into a component at 90° to the voltage as in an ideal



capacitor and another component parallel to the voltage. The parallel component
is the real part and results in I 2R loss. The tan � values of some dielectric
materials at a frequency of 106 Hz are listed in Table 17.2.

The effect of temperature on the relative dielectric constant of a material can
be two-fold. In orientation polarization, the randomizing action of thermal
energy decreases the tendency for the permanent dipoles to align themselves in
the applied field. This results in a decrease in the dielectric constant with
increasing temperature. For example, �r for solid HCl decreases inversely with
temperature between 100 K and 160 K from 19 to 14. At the melting point of
160 K, it drops abruptly to 12, as there is an expansion on melting and the
number of molecules per unit volume decreases.

The other effect of temperature is to facilitate the diffusion of ions in space
charge polarization. Thermal energy may also aid in overcoming the activation
barrier for the orientation of polar molecules in the direction of the field. For
example, the relatively large polar molecule nitrobenzene is not able to reorient
itself in the solid state under an applied field and, therefore, does not exhibit
orientation polarization. However, on melting, the molecules have sufficient
thermal energy to orient themselves in the applied field. Correspondingly, the
relative dielectric constant increases here from 3 to 37 on melting, which is in
contrast to the behaviour of HCl described above.

17.3 Electric Breakdown

In practical applications, the failure or breakdown of a dielectric material is of
great concern to the engineer. In a dielectric, the charge displacement increases
with increasing field strength. Beyond a critical value of the field strength, there
is an electric breakdown due to the physical deterioration of the material. The
dielectric strength is defined as the breakdown voltage per unit thickness of the
material. The dielectric strengths of some common insulating materials are listed
in Table 17.2. Mica has one of the highest dielectric strengths and is widely used
for insulation purposes.

The intrinsic breakdown of a dielectric material is due to the excitation of
electrons into the conduction band across the energy gap under conditions of
excessive voltage. The excited electrons moving under a high accelerating force
can excite more electrons in turn, resulting in an avalanche of conducting
electrons and consequent physical breakdown. It is difficult to see how this can
occur in an ideal dielectric, where the energy gap is large. However, impurities
in the dielectric can create additional energy levels that lie in the energy gap
and can help in the excitation of electrons into the conduction band. An increase
in temperature aids the thermal excitation of electrons and can bring about the
intrinsic breakdown.

Thermal breakdown is due to the attainment of an excessive temperature in
the dielectric. The energy loss referred to earlier has to be dissipated as heat. If
the heat dissipated is less than the heat generated, there is a progressive increase
in the temperature of the dielectric, which may melt eventually.

Electric Breakdown 419
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17.4 Ferroelectric Materials

In materials known as ferroelectrics, the dielectric constants are some two orders
of magnitude larger than those in ordinary dielectrics. Barium titanate is a
ferroelectric with a relative dielectric constant of over 2000, compared to less
than 10 for ordinary dielectrics listed in Table 17.2. The difference in the
magnetic susceptibility between ferromagnetic and paramagnetic materials bears
a direct analogy to this difference in the values of the dielectric constants.
Following the nomenclature in magnetism, materials of very large dielectric
constants are called ferroelectrics. As in the ferromagnetic phenomenon, the
electric dipoles in a ferroelectric solid are all aligned in the same direction, even
in the absence of an electric field.

Defect breakdown is due to cracks and pores at the surface. To decrease the
possibility of surface shorting, insulators are designed with lengthened surface
paths. Moisture from the atmosphere can collect on the surface discontinuities
and result in breakdown. Glazing is done on ceramic insulators to make the
surface nonabsorbent. Gases can collect at pores and cracks and the breakdown
can occur due to a gas discharge. A graphic case of surface breakdown of an
insulator is shown in Fig. 17.4.

Fig. 17.4 Surface breakdown of an insulator. (L.H. Van Vlack, Physical Ceramics
for Engineers, by permission from Addison-Wesley, Reading, Mass.)



oxygen anions are at the face centres and the titanium ion is in the octahedral
void at the body centre. Only one out of four octahedral voids in the unit cell is
occupied and this corresponds to the chemical formula, with one titanium for
every four species of the other kinds: one barium plus three oxygen. Above
120°C, barium titanate is a cubic crystal with the ion locations as described
above. In this state, the centres of the negative and the positive charges coincide
and there is no spontaneous dipole moment. If the crystal is cooled to below the
(ferroelectric) Curie temperature of 120°C, the titanium ion shifts to one side of
the body centre as shown dotted in the front view of Fig. 17.5b. There is also a
displacement of the neighbouring oxygen anions. The crystal transforms from a
cubic to a tetragonal structure on cooling through 120°C. The c/a ratio of the
tetragonal cell is 4.03 Å/3.98 Å = 1.012. The centres of the positive and the
negative charges do not coincide any longer and local dipoles are created
throughout the crystal. The dipoles of neighbouring unit cells are all aligned
resulting in a large polarization in the solid.

Example 17.2 Calculate the polarization of a BaTiO3 crystal. The shift of
the titanium ion from the body centre is 0.06 Å. The oxygen anions of the side
faces shift by 0.06 Å, while the oxygen anions of the top and bottom faces shift
by 0.08 Å, all in a direction opposite to that of the titanium ion.

The ferroelectric phenomenon is discussed here with reference to the
classical example of barium titanate, BaTiO3. The cubic unit cell of barium
titanate crystal is shown in Fig. 17.5a. Barium ions are at the body corners, the

0.08 Å

0.06 Å 0.06 Å

Ti4+

O2–

Ba2+

Fig. 17.5 (a) Cubic unit cell of BaTiO3 crystal. (b) The dashed circle in the
middle of the front view shows the shifting of the titanium ion, on cooling
through the Curie temperature. The shift of the oxygen anions is also shown.
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Solution The dipole moments due to the effective number of each type
of ion in the unit cell are due to

(i) two O2– on four side faces: 2 � 2 � 1.6 � 10–19 � 0.06 � 10–10 C m;

(ii) one O2– on top and bottom: 1 � 2 � 1.6 � l0–19 � 0.08 � 10–10 C m; and

(iii) one Ti4+ at body centre: 1 � 4 � 1.6 � 10–19 � 0.06 � 10–10 C m

Total = 1.02 � 10–29 C m

Polarization is the sum of the dipole moments per unit volume. Ignoring the
effect due to the barium ions, we get

P = 
29

2 30

1.02 10

4.03 3.98 10

�

�

�
� �

 C m–2 = 0.16 C m–2.

At room temperature, a BaTiO3 crystal ordinarily exhibits no net
polarization, in the absence of an external field, even though the dipoles of
adjacent unit cells are aligned. The reason for this can be understood by
visualizing ferroelectric domains in the same way as ferromagnetic domains
discussed in Sec. 16.4. The application of the electric field tends to align the
domains in the direction of the field and we observe all the phenomena
associated with the hysteresis loop such as domain rotation and domain growth.
Figure 17.6 illustrates a ferroelectric hysteresis loop. The spontaneous

P

Ps

–Ec

0
E

Fig. 17.6 The hysteresis loop for a ferroelectric material, depicting applied field
E versus polarization P. Ps is spontaneous polarization.

polarization Ps is obtained by extrapolating the linear region of the curve
backwards to zero electric field. The ferroelectric Curie temperatures and the
spontaneous polarization Ps below the Curie point of some ferroelectric crystals
are listed in Table 17.3.



TABLE 17.3

Properties of Some Ferroelectric Crystals

Crystal Curie temperature, K Spontaneous polarization,
Ps, C m–2

BaTiO3 393 0.26
KNbO3 712 0.30

PbTiO3 763 0.50

KH2PO4 123 0.05

Ferroelectric crystals always exhibit the piezoelectric property, which is the
mechanical response of a crystal to an electric field or the electrical response to
a mechanical stress. With no external field, the centres of the positive and the
negative charges are separated by a distance d. If a compressive stress is applied
to the crystal, d decreases and a potential difference V develops between the two
ends of the crystal. V will be of the opposite sign if a tensile stress is applied. If
an external voltage is applied to a ferroelectric crystal, the separation distance d
increases (or decreases), thereby elastically straining the crystal. The most
important use of BaTiO3 is as a piezoelectric crystal in applications such as
microphones, phonograph pickups, strain gauges and sonar devices. The high
dielectric constant of ferroelectric crystals is also useful for storing energy in
small-sized capacitors in electrical circuits.

�������

1. The charge stored in a capacitor increases if a dielectric material is
inserted between the capacitor plates. This is due to the polarization in the
dielectric.

2. Several polarization processes such as electronic, ionic, orientation and
space charge polarization are known. They have widely varying relaxation
times.

3. The dielectric constant of a material is dependent on the frequency of the
alternating field applied and the temperature.

4. Electrical energy loss is a maximum when the relaxation time of a
polarization process matches the period of the alternating field.

5. Impurities, surface flaws such as cracks and pores and absorption of
moisture and gases on the surface are the main causes of electric
breakdown of a dielectric material.

6. Ferroelectric crystals are in the spontaneously polarized state and have
very large dielectric constants. They are useful as piezoelectric crystals and
as capacitors.
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17.1 The electric field strength can be expressed as V m–1 or as N C–1. Express
these in base SI units and show that they are equivalent.

17.2 Derive the units of �e from that of E and the dipole moment.

17.3 Find the capacitance of a layer of Al2O3 that is 0.5 �m thick and
2000 mm2 of surface area. �r = 8.

Answer: 2.83 � 10–7 F.

17.4 The electronic polarizability of helium is 0.18 � 10–40 F m2. Calculate its
relative dielectric constant at 0°C and 1 atm pressure.

Answer: 1.000 055.

17.5 Estimate the shift of the electron cloud with respect to the nucleus in an
argon atom, when a field of 105 V m–1 is applied.

Answer: 5 � 10–18 m.

17.6 The dielectric constant of polyethylene is independent of temperature,
while that of polyvinylchloride is not. Explain this difference in
behaviour on the basis of their monomer structures.

17.7 When ice melts into water, the dielectric constant increases, in contrast to
the decrease observed during the melting of HCl. Explain why this is so.

17.8 What is the variation expected in the loss factor in a sodium silicate
glass, when some of the Na+ ions are replaced by Rb+ ions? Explain.

17.9 Compare the hysteresis loops in Figs. 16.4 and 17.6. Explain why there is
a constant saturation induction Bs in Fig. 16.4, and no saturation value of
polarization in Fig. 17.6.

�������� ��	���� �����	��

1. The units of relative dielectric constant is
A. dimensionless B. F m–1 C. C V–1 D. F C–1

2. The units of �0 are
A. C m–2 B. H m–l C. F m–l D. dimensionless

3. The capacitance of a capacitor with a layer of Al2O3 (�r = 8) of 0.5 �m
thick and 1000 mm2 area is
A. 0.283 �F B. 0.142 �F C. 17 nF D. 3540 pF

4. Expressed in base SI units, the electronic polarizability has the units
A. F m2 B. C V–1 m–2 C. A2 kg–1 s4 D. A kg–1 m–2 s2
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5. If the electronic polarization of W is 4 � 10–7 C m–2, the average
displacement of the electrons relative to the nucleus is (W : at.no. 74,
BCC, a = 3.16 Å)

A. 3.9 Å B. 5.3 � 10–19 m C. 10.6 � 10–19 m D. 3.9 � 10–17 m

6. The shift of the electron cloud with respect to the nucleus of a helium atom
when a field of 105 V m–1 is applied is (�e for He = 0.18 � 10–40 F m2)

A. 5.6 � 10–18 m B. 6.2 � 10–19 m C. l.7 � 10–10 m D. l.7 � 10–18 m

7. Ionic polarization
A. decreases with temperature
B. increases with temperature
C. may increase or decrease with temperature
D. is independent of temperature

8. With increase in temperature, the orientation polarization in general
A. increases B. decreases C. is constant D. none of these

9. Among the common dielectric materials, the highest dielectric strength is
possessed by
A. mica B. transformer oil

C. PVC D. polyethylene

10. During melting, the relative dielectric constant

A. always increases B. always decreases

C. may increase or decrease D. none of these

11. The fraction of tetrahedral voids occupied by Ti4+ ion in BaTiO3 crystal is

A. 1/2 B. 1/4 C. 1/8 D. none of these

12. In the polarization versus field strength plot for a ferroelectric crystal, Ps

stands for

A. space charge polarization B. saturation polarization
C. spontaneous polarization D. none of these

13. A piezoelectric crystal has a Young’s modulus of 130 GPa. The uniaxial
tensile stress that must be applied to increase its polarization from 550 to
555 C m–2 is
A. 1.171 GPa B. 1171 MPa C. 2600 MPa D. 1.182 GPa

Answers

1. A 2. C 3. B 4. C 5. B

6. A 7. D 8. B 9. A 10. C

11. D 12. C 13. D
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Actinium
Aluminium
Americium
Antimony
Argon
Arsenic
Astatine

Ac
Al

Am
Sb
Ar
As
At

89
13
95
51
18
33
85

—
2.70

11.7
6.62
—

5.72
—

—
 9.99
20.77
18.4

—
13.09

—

14.9
23.1
—

10.9
—

  4.28
—

35
71
—
55
—
39
—

1050
 660
—

 630
–189
 817
 302

Atomic Density, Molar Thermal Young’s Melting
Element Symbol number 103 kg m–3 volume, expansion, modulus, point, °C

10–8 m3 10–6 K–1 GN m–2

Barium
Berkelium
Beryllium
Bismuth
Boron
Bromine

Ba
Bk
Be
Bi
B
Br

56
97
 4
83
 5
35

3.5
—

1.85
9.80
2.34
3.12

39.0
—

 4.90
21.3
 4.62
25.6

18.8
—

11.5
  13.41

 8.3
—

12.7
—

289
34

440
—

 714
—

1277
 271
2030
  –7

Cadmium
Calcium
Californium
Carbon (gr)
Cerium
Cesium
Chlorine
Chromium
Cobalt
Copper
Curium

Cd
Ca
Cf
C
Ce
Cs
Cl
Cr
Co
Cu
Cm

48
20
98
 6
58
55
17
24
27
29
96

8.65
1.55
—

2.25
6.77
1.90
—

7.19
8.85
8.96
—

13.0
25.86

—
 5.33
17.03
69.84

—
 7.23
 6.66
 7.09

—

30.6
22.4
—

 3.8
 8.5
97
—

 8.4
12.4
16.7
—

62
19.5
—

 8.3
30

   1.75
—

243
206
124

—

  321
  838

—
3550
  804
   28
 –101
1875
1495
1083

—

Dysprosium Dy 66 8.55 19.01 10.0 63 1407

Einsteinium
Erbium
Europium

Es
Er
Eu

99
68
63

—
9.15
5.25

—
18.28
28.98

—
12.3
33.1

—
73
15

—
1497
 826
(Cont.)
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Fermium
Fluorine
Francium

Fm
F
Fr

100
  9
 87

—
—
—

—
—
—

—
—

102

—
—

 1.7

—
–220
   27

Gadolinium
Gallium
Germanium
Gold

Gd
Ga
Ge
Au

 64
 31
 32
 79

 7.86
 5.91
 5.32
19.32

20.01
11.8
13.64
10.20

 8.28
18.1

  5.75
14.1

56
92.5
99
78

1312
   30
 937
1063

Hafnium
Helium
Holmium
Hydrogen

Hf
He
Ho
H

 72
  2
 67
  1

13.09
—

 6.79
—

13.64
—

24.3
—

  6.01
—

10.7
—

137
—
67
—

2222
–270
1461
–259

Krypton Kr  36 — — — —  –157

Lanthanum
Lawrencium
Lead
Lithium
Lutetium

La
Lw
Pb
Li
Lu

 57
103
 82
  3
  71

6.19
—

11.36
0.53
9.85

22.44
—

18.27
12.99
17.76

10.4
—

29.0
45

  8.12

38
—

15.7
11.5
84

 920
—

  327
  181
1652

Indium
Iodine
Iridium
Iron

In
I
Ir
Fe

 49
 53

 77
 26

 7.31
 4.94
22.5
7.87

15.71
25.7

8.54
7.1

31.4
—

  6.63
11.7

10.5
—

528  
210 

 156
 114
2454
1535

Magnesium
Manganese
Mendelevium
Mercury
Molybdenum

Mg
Mn
Md
Hg
Mo

 12
 25
101
 80
 42

1.74
7.43
—

13.55
10.22

14.0
7.39
—

14.81
9.39

25.7
22.6
—
61

  4.98

44
198

—
—

328

 650
1245

—
  –38
2610

Neodymium
Neon
Neptunium
Nickel
Niobium
Nitrogen
Nobelium

Nd
Ne
Np
Ni
Nb
N

No

 60
 10
 93
 28
  41
   7
102

7.00
—
—
8.90
8.57
—
—

20.61
—
—
6.59

10.8
—
—

  9.98
—

27.5
12.7

  7.07
—
—

38
—

100
193
105

—
—

1019
–249
  637
 1453
2468
–210

—

Atomic Density, Molar Thermal Young’s Melting
Element Symbol number 103 kg m–3 volume, expansion, modulus, point, °C

10–8 m3 10–6 K–1 GN m–2

Osmium
Oxygen

Os
O

 76
  8

22.57
—

8.43
—

 4.7
—

540
—

2700
–219

Palladium
Phosphorus

Pd
P

 46
 15

12.02
1.83

8.88
16.92

11.5
124

124
4.6

1552
   44
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Platinum
Plutonium
Polonium
Potassium
Praseodymium
Promethium
Protactinium

Pt
Pu
Po
K
Pr
Pm
Pa

78
94
84
19
59
61
91

21.45
19.5

—
 0.86
 6.77

—
15.4

9.09
12.27

—
45.47
20.82

—
15.00

 8.95
55
23
83

 6.79
9.0
7.3

170
96.5
25.5

3.5
33
42

100

1769
640
254

  64
919

1027
1230

Radium
Radon
Rhenium
Rhodium
Rubidium
Ruthenium

Ra
Rn
Re
Rh
Rb
Ru

88
86
75
45
37
44

5.0
—

21.04
12.44
 1.53
12.2

45
—
8.85
8.27

55.87
8.29

20.2
—

 6.63
 8.40
88.1
 9.36

16
—

460
372

2.7
410

700
–71

3180
1966
  39
2500

Samarium
Scandium
Selenium
Silicon
Silver
Sodium
Strontium
Sulphur

Sm
Sc
Se
Si
Ag
Na
Sr
S

62
21
34
14
47
11
38
16

 7.49
 2.99
 4.79
 2.33
10.49
0.97

 2.60
 2.07

20.07
14.89
16.48
12.06
10.28
23.67
34
15.5

10.4
10.0
36.9

3.07
19.2
70.6
20
64

34
79
58

103
80.5

8.9
13.5
19.5

1072
1539
 217
1410
 961
  98

768
119

Tantalum
Technetium
Tellurium
Terbium
Thallium
Thorium
Thulium
Tin (gray)
Titanium
Tungsten

Ta
Tc
Te
Tb
Tl
Th
Tm
Sn
Ti
W

73
43
52
65
81
90
69
50
22
74

16.6
—

 6.24
 8.25
11.85
11.66
 9.31
 7.30
 4.51
19.3

10.9
—

20.45
19.26
17.25
19.90
18.15
16.26
10.63
9.53

6.55
8.06

16.77
10.3
29.4
11.2
13.3

5.3
8.35

 4.59

181
370

41
57.5

8
74
75
52

106
396

2996
2130

450
1356

303
1750
1545

232
1668
3410

Uranium U 92 19.07 12.48 12.6 186 1132

Vanadium V 23 6.1 8.35 8.3 132 1900

Xenon Xe 54 — — — — –112

Ytterbium Yb 70  6.96 24.86 24.96 18 824
Yttrium Y 39  4.47 19.89 12.0 65 1509

Zinc Zn 30  7.13 9.17 29.7 92 420
Zirconium Zr 40  6.49 14.06 5.78 92 1852

Atomic Density, Molar Thermal Young’s Melting
Element Symbol number 103 kg m–3 volume, expansion, modulus, point, °C

10–8 m3 10–6K–1 GN m–2
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Density, Thermal Thermal Young’s Tensile %
Material 103 kg m–3 conductivity, expansion, modulus, strength, elongation

J, m–1 K–1 s–1  10–6 K–1 GN m–2 MN m–2

0.2% C Steel 7.86 50 11.7 210 350 30

0.4% C Steel 7.85 48 11.3 210 600 20

0.8% C Steel 7.84 46 10.8 210 800 8

18/8 stainless 7.93 15 9.0 210 700 65
steel

Gray cast iron 7.15 – 10.4 210 250 –

White cast iron 7.7 – 9.0 210 _ –

Brass (70 Cu 30 Zn) 8.5 120 19.8 110 400 50

Bronze (95 Cu 5 Sn) 8.8 80 18.0 110 600 30

Al2O3 3.8 29 9.0 345 – –

MgO 3.6 40 9.0 205 – –

Silica glass 2.2 1.2 0.54 70 50 –

Vycor glass 2.2 1.2 0.63 70 50 –

Borosilicate glass 2.4 1.0 2.7 65 50 –

Graphite 1.9 40 5.4 8 – –

Silicon carbide 3.17 12 4.5 350 – –

Vulcanized rubber 1.2 0.12 80 1–3 – –

Polyethylene 0.9 0.34 180 0.2 15–35 100–500
Polystyrene 1.05 0.08 60 3.0 55 3

Polytetra– 2.2 0.20 100 0.5 15–25 200–300
fluoroethylene

Polymethyl 1.2 0.20 90 3.5 55 5
methacrylate

Nylon 1.15 0.25 100 3.0 80 40–80
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Acceptor level, 366
Activated complex, 17
Activation energy, 16

for creep, 288
for diffusion, 184, 193–194
for dislocation motion, 271–272

Activation volume, 272–273
Age hardening, 222–223
Ageing, 221–223
Ag-Pt phase diagram, 155
Aircraft structural material, 222
Alclad, 185, 326
Al-Cu phase diagram, 220–221
Alkali metals, 58, 94
Alloy carbides, 219
Alloying elements in steel, 219
Alloy steels, 215–216, 219–220
Alnico alloys, 406
Al2O3-Cr2O3 phase diagram, 152–153
Alumel, 319
Alumina, 67, 102, 152–153, 163, 379
Aluminium, 71, 94, 185, 318, 319, 326,

365–366, 377
Aluminium alloys, 185, 220–222, 263
Amorphous semiconductors, 369
Anelastic behaviour, 249–252
Annealing of glass, 228
Annealing of steel, 215
Annealing twins, 141
Antiferromagnetism, 397, 399
Arrhenius equation, 16–17, 18, 184, 289,

373
Asbestos, 105, 106
ASTM grain size, 279–281
Athermal obstacles, 273, 274
Atomic diameter, 29, 64, 65
Atomic mass unit, 81
Ausforming, 220
Austempering, 220
Austenite, 165, 168, 215–217

Avalanche breakdown, 375
Avogadro’s number, 15

Bainite, 215, 218, 220
Bakelite, 107, 333, 418
Barium ferrite, 406
Barium titanate, 421–423
Basal plane, 36, 264, 275
Base, 379
Basis, 29, 85, 91
BCC crystals, 29, 94, 95, 97, 276
BCC space lattice, 25–26, 31
BCS theory, 345
B-H curve, 400–401
Binary phase diagrams, 151–156
Bohr magneton, 396
Boiling points, 67, 71, 74
Boltzmann’s constant, 13, 15
Bond energy, 63–64, 69–71, 75–76
Bonding, 63–73

and properties, 74–76
Bond length, 64
Boron, 189, 244, 365, 376
Bragg angle, 39, 358
Bragg law, 38, 356
Branching, 112, 244
Brasses, 164–165, 430
Bravais lattices, 25–29
Brillouin zones, 359–360
Brittle fracture, 300–303, 307–308
Bulk modulus, 242
Burgers circuits, 128–130
Burgers vectors, 128–133, 135, 270–272

Cadmium sulphide, 384
Capacitance, 413–414
Capacitor, 413, 423
Carbon nanotubes, 86–87

431



432 Index

Carburization, 186–187, 311
Carnot cycle, 289
Cast irons, 168–169, 251, 430
Cathodic protection, 327
Caustic embrittlement, 328
C-curves, 213, 215–216, 219
Cellulose, 110
Cement, 106
Cementite, 166–169, 214–215, 219
Ceramics and glasses, 3
Characteristic radiation, 37
Charge coupled device, 383
Chemical bonding (see Bonding)
Chemical vapour deposition, 376–377
Chromel, 319
Chromium, 29, 92, 219–220, 318–319,

327–328
Clay, 106
Cleavage direction, 106
Cleavage planes, 372, 379
Climb of dislocations, 135–136, 288
Close packing geometry, 88–91
Coalescence, 222, 290
Coarsening, 222, 290
Coatings, 326–327
Coercive field, 401, 406
Coiled molecules, 247, 255
Cold work, 228–229, 277–278, 285
Collector, 383
Collision time, 339
Columnar crystals, 226
Components, 149
Composite materials, 244–245
Concentration cell, 323–324
Concrete, 106
Conduction band, 360–366, 419
Conductivity

electrical, 74, 165, 194, 231,
339–340, 363, 366–368

thermal, 74, 430
Conductors, 333, 342, 360
Configurational entropy, 13–15, 124,

247–248
Constantan, 343
Contact angle, 210
Contact potential, 380
Coordination number, 85, 91, 97
Copolymers, 112,
Copper, 71, 74, 76, 164–165, 220–221,

223, 269, 271, 273, 281–282, 342
Coring, 158
Corrosion, 185–186, 319–328
Cotton, 110

Cottrell atmospheres, 133, 282
Coulomb attraction, 66
Covalent bond, 64, 68–70, 75
Covalent crystals, 83–88
Cracks, 219, 300–309, 311
Creep, 253, 287–290, 307–308
Creep-resistant materials, 289–290
Critical nucleus, 206
Critical resolved shear stress, 265, 267
Cross links, 111, 196, 247–248
Cross slip, 136–137, 278, 287
Crystal directions, 31–36
Crystallinity, 111–112
Crystallization, 224–226
Crystal planes, 32–36
Crystals

geometry of, 24–36
orientation, 372
structure determination of, 42–45
structure of, 7, 29–31, 83–106

Crystal systems, 25–28
Cubic crystals, 29–31, 85, 90, 100–101
Cubic space lattices, 25–26
Curie temperature, 298, 421–423
Czochralski method, 370–372

Damping capacity, 251–252
Dashpot model, 252–255
de Broglie wavelength, 334–335
Debye Scherrer camera, 41
Decarburization, 187–188, 311
Deformation, 261–286
Deformation twins, 141
Degradation, 107
Degree of polymerization, 108
Degrees of freedom, 149–150
Dendritic structure, 158–159
Density, 75–76, 83, 86, 112, 120, 427–430
Devices, 3
Dezincification, 328
Diamagnetism, 394–395
Diamond, 70, 85–86, 271, 274, 360–361
Diamond cubic structure, 44–45, 85–86
Dielectric constant, 365, 413, 417–418
Dielectric strength, 418–419
Diffractometer, 42, 43
Diffusion, 178–196

activation energy, 184, 193–195
coefficient, 179, 182–185, 192–193
interstitial, 190–192, 250–251
mechanisms of, 190–193
substitutional, 192–193
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Diffusional creep, 288
Diodes, 379–382
Dipole moment, 72, 415
Dislocations, 126–137, 267–286, 371

climb of, 135–136, 288
cross slip of, 136–137, 278, 287
density of, 133, 277–278, 285
edge, 126–128
elastic energy of, 131–132
in cubic crystals, 132
movement of, 134–137, 269–286
multiplication of, 274–275
pile up of, 277, 278, 279
screw, 129–130
sources, 274–275
width of, 270

Dispersion hardening, 290
Domain structure, 399–401
Donor level, 364–365
Doping, 189, 364, 375
Double bond, 69, 70
d-states, 54, 59–60, 75, 397–399
Ductile-brittle transition, 305–307, 404
Ductile fracture, 298–300, 307–308
Ductility, 167
Duralumin, 185–186, 220–222, 326
Dynamic recovery, 278

Ebonite, 111, 244
Eddy current loss, 403–405
Edge dislocation, 126–128
Einstein relationship, 55
Elastic anisotropy, 242
Elastic behaviour, 239–252
Elasticity, 239–252, 255
Elastic moduli, 239–246, 427–430
Elastomers, 110–111, 246–249
Electrical conductivity, 74, 165, 194, 231,

339–340, 363, 366–368
Electric breakdown, 419–420
Electrode potential, 320–321
Electromigration, 377
Electron, 54
Electron affinity, 61–62
Electron compounds, 97
Electron diffraction, 5
Electronegativity, 62, 415
Electronic polarization, 414, 416–417
Electronic structure, 7, 334–338, 356–360
Electron micrographs, 5, 279, 284, 299
Electron microscope, 5–6

Electron probability density, 56–58,
356–357

Electron probe microanalyzer, 6
Elements, 427–429
Elinvars, 246
Elongation, 164, 261–262, 277–278, 285,

430
Embryos, 206
Emitter, 383
Endurance limit, 311
Energy bands, 359–367
Energy gap, 359–367

direct, 369
in compounds, 368

Energy product, 406
Engineering materials, 2–3, 430
Engineering strain, 261
Engineering stress, 261, 299
Enthalpy, 12–13

of atomization, 64, 67
of formation, 124, 125
of fusion, 12
of motion, 191, 192

Entropy, 12–15
configurational, 14–15, 124, 247–248
thermal, 12, 15

Epitaxial growth, 376–377
Epoxy, 245
Equilibrium configurations, 11
Equilibrium diagrams (see Phase diagrams)
Error function, 181–182
ESD magnets, 406
Etch pits, 133
Ethylene, 107–109
Eutectic mixture, 157–158, 160–161
Eutectic phase diagram, 153–154
Eutectic reaction, 154, 156, 165
Eutectic temperature, 154–155
Eutectoid reaction, 155–156
Eutectoid steel, 166, 214–215
Exchange energy, 397–398
Excimer lasers, 374
Exhaustion region, 367–368
Explosive forming, 348
Extinction rules, 44–45
Extrinsic semiconductors, 364–368

Face centred cubic stacking, 89–90
Fatigue fracture, 310–311
Fatigue resistance, 187, 310–311
FCC crystals, 29–30, 90, 276
FCC space lattice, 25–26
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FCC stacking, 89–90
Fe, 64, 71, 94, 121–122, 268, 271,

273–274, 402–404
Fe-Fe3C phase diagram, 165
FeO, 123, 194
Fe3O4, 399
Fe phase diagram, 150–151
Fermi–Dirac statistics, 337, 362
Fermi energy (level), 337–338, 362,

379–380
Ferrimagnetism, 398–399
Ferrite phase, 166–167, 214–215, 282
Ferrites, 102, 399, 405, 406
Ferroelectric domains, 422
Ferroelectric materials, 420–423
Ferromagnetism, 395, 397–398
Fibre reinforcement, 244–245, 252
Fibres, 2, 109–110
Fick’s first law, 179–180
Fick’s second law, 180–182

applications based on, 182–189
solution to, 181–182

Field-ion micrograph, 6,122
Field-ion microscope, 6
Float zone method, 370, 372
Forbidden gap, 359–361
Forward bias, 380–382
Fourier’s law, 179
Four parameter model, 255
Fracture, 261–262, 298–311

brittle intergranular, 307–308
mechanism maps, 307–308

Fracture stress, 302
Fracture toughness, 304–305
Frank-Read source, 274–275, 276, 277
Free electrons, 71, 74

conduction by, 338–340
Free electron theory, 334–338
Free energy, 12–13
Frenkel defect, 122–123, 125, 193
Fullerenes, 86

Gallium arsenide, 368, 369, 383–384
Galvanic cell, 322–324
Galvanic protection, 326
Galvanic series, 321
Galvanized iron, 326
Garnets, 402, 405
Germanium, 70, 87, 361, 368, 369
Gibbs free energy, 13, 124
Gibbs phase rule, 148, 161
Glass transition, 226–228

temperature, 227–228

Glide of dislocation, 135
G-P zones, 223
Grain boundary, 138, 278–280

sliding, 288–289
Grain growth, 141, 231
Grain size, 225–226, 278–280, 286

ASTM number, 279–281, 286
Graphite, 84–85, 86

flakes, 169, 251
Gray cast iron, 169, 251, 430
Griffith criterion, 300–304
Ground state, 55
Growth kinetics, 211–212
Growth of crystals, 158, 204, 224,

370–372

Hall-Petch equation, 279, 286, 306
Halogens, 83
Hardenability, 219
Hard magnets, 405–406
Hardness of steel phases, 218
HCP crystal, 90–91, 92, 94, 275–276
HCP stacking, 90–92, 140
Heating elements, 88, 343
Heat of fusion, 12–13, 224
Heat treatment, 214–223, 225, 309
Heisenberg principle, 54
Heterogeneous nucleation, 209–211, 224
Heusler alloys, 398
Hexagonal close packing, 90–92
Hexagonal unit cell, 27, 29, 36
High angle boundaries, 139
High speed steel, 219
High temperature materials, 289–290
Holes, 363, 366
Homogeneous nucleation, 205–209
Hooke’s law, 239, 252
Hume-Rothery’s rules, 96, 152, 282, 286
Hund’s rule, 58, 397
Hybridized orbitals, 68
Hydrogen atom, 55–57
Hydrogen bond, 64, 72, 110, 244
Hydrogen electrode, 320
Hydrogen molecule, 68
Hysteresis loop, 251, 400–402

Ice, 73, 83
Icosahedron, 86–87
Ideal (perfect) crystals, 120, 266–268
Immobile dislocation, 277
Impact test, 305–306
Imperfections in crystals, 120–142
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Inconel, 319
Induction, 394
Inert gas configuration, 58, 66
Inert gases, 73
Inhibitors, 326
Insulators, 333, 361
Integrated circuits, 369–379
Interatomic forces, 63, 239–241
Interface, 139
Intergranular failure, 307–308, 309,

327–328
Intermediate structures, 97
Intermetallic compounds, 97
Internal energy, 12
Interphase boundary, 139
Interplanar spacing, 36, 39
Interstitial diffusion, 190–192
Interstitial impurity, 121–122
Interstitial voids, 93, 121–122
Interstitialcy mechanism, 191
Intrinsic semiconductors, 361–364
Invar, 246
Invariant reaction, 155–156
Invariant temperature, 155, 162
Ion exchange, 309
Ion implantation, 376
Ionic bond, 64, 65–67
Ionic conductivity, 194, 334
Ionic crystals, 97–102
Ionic diameter, 64
Ionization potential, 60–61
Iron (see Fe)
Isoprene, 110

Josephson junction, 347
Junction, 379–384

K
�
 radiation, 38

Kanthal, 319, 342, 343
Kinetics, 16–18
Kirchhoff’s law, 131
Kirkendall effect, 189–190

Laser, 102, 383–384
Lattice friction, 273
Lattice parameter, 29
Lattice vibration frequency (see Vibrational

frequency)
Laue technique, 40
Lead, 71, 94, 154, 171, 287

Levels of structure, 3–7
Lever rule, 159–162
Ligancy, 97–99
Line imperfections, 120, 126–137
Liquidus, 153, 154
Lithium, 222–223
Long-chain polymers (see Polymers)
Loss angle, 418
Low angle boundaries, 139–140

Machines, 3
Macromolecule, 107
Macrostructure, 4
Madelung constant, 67
Magnesia, 67, 163
Magnetite, 399
Magnetization, 394, 396, 400
Majority carriers, 365, 366
Malleable cast iron, 169
Manganin, 342, 343
Maraging steel, 285
Martempering, 220
Martensite, 215–220, 282, 323
Mask, 374, 378–379
Materials science and engineering, 1–2
Mattheissen rule, 340–341
Maxwell-Boltzmann statistics, 16, 206
Maxwell element, 252–254
Mean free path, 340
Mechanical properties, 75, 238–290, 430
Meissner effect, 344–345, 346
Melting points, 67, 70, 71, 427–430
Metallic bond, 71, 75, 271
Metallic crystals, 88–97, 271, 273–274,

360
Metallic glass, 203, 404
Metallization, 377
Metals and alloys, 2, 88–97
Metastability, 10–11
Metastable, 10, 11, 165, 219, 282
MHD generators, 347
Mica, 105, 106, 333, 418, 419
Microalloyed steels, 280–281
Microconstitutent, 157, 215
Microstructure, 4–5, 141, 157, 158, 166,

168, 169
Mild steel, 133, 168, 282–283, 430
Miller-Bravais indices, 36
Miller indices, 31–36
Miniaturization, 379
Mobility, 363, 368
Modulus, elastic, 240–243
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Molecular beam epitaxy, 376–377
Molecular crystal, 30
Monoatomic crystals, 29–30
Monomer, 106, 109, 110
MOSFET, 383

NaCl structure, 100–101, 133
Natural rubber, 110
Nd2Fe14B, 406
Necking, 261–262, 287, 298–299
Nernst–Einstein relation, 194
Neutrons, 54
Newton’s law of viscous flow, 252
Nichrome, 319, 342, 243
Nickel, 71, 94, 215, 219, 268, 273, 282,

290
Nitriding, 186
Nodular iron, 169
Noncrystalline state, 82–83, 226
Nonsteady state flow, 180
Normalized steel, 215
n-p-n junction, 382–383
n-type semiconductors, 365
Nuclear structure, 7
Nucleation and growth, 204
Nucleation kinetics, 205–211
Nucleus, 54

in nucleation, 206
Nylon, 109–110, 228, 418, 430

Octahedral coordination, 99
Octahedral voids, 93–94
Octahedron, 94
Ohm’s law, 179, 339
Opaque glasses, 223
Orbitals, 54–60
Ordered state, 97
Order of reflection, 39
Orlon, 109
Orthorhombic cell, 26, 28
Overageing, 222, 283, 286
Oxidation, 316–319, 373
Oxygen molecule, 69

Packing efficiency, 86, 91–92
Paramagnetism, 395
Partial dislocation, 132
Passivation, 325, 327
Pauli exclusion principle, 55, 66, 73, 335,

347

Pauling’s electronegatives, 62
Pb-Sn phase diagram, 154
Pearlite, 166–167, 214–215, 218
Peierls–Nabarro (P–N) stress, 270–271,

272, 273
Perfect crystal, 266–267
Periodic table, 55–60
Peritectic reaction, 156, 164, 165
Peritectic system, 155–156
Peritectoid reaction, 156
Permalloy, 405
Permanent magnets, 405–406
Permeability, 394
Permittivity, 413
Perovskite, 347
Petch equation, 279
Phase, 149
Phase rule, 148–149
Phase transformations, 201–231

applications, 213–231
free energy change in, 202–203
overall kinetics, 211–213
time scale, 203

Phenolformaldehyde, 244
Phonons, 340
Phosphates, 225, 328
Photoconductor, 384
Photolithography, 374–375
Photon detectors, 384
Photoresists, 374
Pi-bonds, 69
Piezoelectric device, 104, 251, 423
Pilling–Bedworth ratio, 316
Pinning action, 230
Pipe diffusion, 194
Pitting, 326
Planck’s constant, 55, 334
Plastic deformation, 260–286
Plasticizers, 112, 228
Plastics, 2, 107
Platinum, 6, 71, 343
p-n junction, 379–382
Point imperfections, 120–125
Poisson’s ratio, 242
Polarization, 324–325, 415–417, 422
Polyacrylonitrile, 109, 228
Polycrystalline, 23, 138
Polyester fibres, 110, 228
Polyethylene, 108–109, 228, 244, 333,

418, 430
Polyisoprene, 110–111, 228
Polymers, 2, 106–111, 228, 244, 245, 251,

307
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Polymethylmethacrylate, 109, 430
Polypropylene, 109, 228
Polystyrene, 109, 228, 430
Polytetrafluroethylene, 109, 430
Polyvinylchloride, 109, 228, 418
Porcelain, 333, 418
Portland cement, 106
Potential energy, 10–11, 63, 239, 240,

266–267, 356
Powder method, 41–42
Precipitates, 221–223
Precipitation, 220–223, 283–284
Precipitation hardening, 283–284, 286
Primary bonds, 64, 74, 244
Prismatic plane, 36, 264, 276
Properties

of elements, 427–429
of engineering materials, 430
structure correlation, 7

Protons, 54
p-states, 54–55, 57–60, 396
p-type semiconductors, 366
Pyramidal planes, 264, 276
Pyrex, 104
Pyroceram, 225–226, 309

Quantum numbers, 54–55, 336
Quantum states, 54–55, 336
Quartz, 104, 105, 251

Radius ratio, 98–101
Rapid solidification processing, 224
Rare earth elements, 60, 398, 406
Rate of a reaction, 16–18
Rayon, 110
Recovery, 229, 231, 278
Recrystallization, 138, 141, 229–230

temperature, 230
Rectifier, 382
Refractive index, 223
Refractory, 67, 170, 289, 308
Relaxation processes, 249–252
Relaxation time, 249–252
Residual induction, 400, 405–406
Residual stresses, 219, 309
Resistivity range, 333–334
Resistors, 343
Resolution, 3–5
Resolved shear stress, 265
Resonance, 418
Resonating bond, 84
Reverse bias, 381–383

Ring mechanism, 191
Rockwell hardness, 218, 219
Rotating crystal method, 40
Rubber, 110–111, 333, 418, 430

elasticity, 246–249
Ruby, 102

Scanning electron microscope, 5
Schottky defect, 122, 125, 193
Screw dislocations, 129–131, 278, 287

cross slip of, 136–137, 278, 287
Season cracking, 328
Secondary bonds, 64, 72–73, 74, 244
Seeding, 210
Semiconductor(s), 87, 333, 355–369,

379–384
devices, 379–384
doping of, 189, 364–365, 375–376
extrinsic, 364–368
intrinsic, 361–364
materials, 368–369

Sessile dislocation, 277
SG iron, 169
Shear modulus, 131, 242, 267
Shear strain, 252–254, 267
Shear strength, 267
Shear stress, 265–268
Shot peening, 311
Sigma bond, 69
Silica, 103–104, 105
Silicate

glasses, 225, 226–227
structural units, 105
structures, 104–106
tetrahedron, 103

Silicon, 70, 87, 271, 273, 308, 363–366,
369–370
doping of, 189, 364, 365, 375

Silicon carbide, 70, 87–88, 430
Silicon nitride, 289
Simple cubic crystal, 30, 136
Simple cubic space lattice, 25–26
Single crystals, 23, 138, 224, 370–372

creep of, 290
growth of, 224, 370–372
semiconductor, 370–372

Slip, 134–135, 263–265
Slip directions, 264
Slip lines, 264
Slip plane, 127, 264
Slip systems, 264
S-N curves, 312
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Soda-lime glass, 104, 226, 334
Sodium chloride, 100–101, 132–133, 244,

264, 271
Soft magnetic materials, 402–405
Solder alloy, 171, 325
Solidification, 157–158, 224
Solid solutions, 96–97, 102, 281–282, 286
Solid state devices, 87, 224, 355, 379–384
Solidus, 153, 154
Solute atoms, 121–122, 281–282, 286, 340
Solute drag effect, 230, 231
Solvus, 154
Space lattices, 24–31

definition, 24
sp2 bonds, 84
sp3 bonds, 68, 85, 100
Spheroidal graphite iron, 169
Spinels, 102, 405
Spin of electrons, 55, 395–396
Splat cooling, 203, 224
Spring-dashpot models, 252–255
Sputtering, 375
Stability, 10–11
Stable equilibrium, 11
Stacking faults, 140
Stainless steels, 263, 273, 318–319,

327–328, 430
Standard potential, 320
Steady state flow, 179–180
Steels,

phase diagram, 165–167
properties, 430
transformations in, 214–220
uses of, 168

Stiffness, 243
Strain energy, 131, 208, 216
Strain hardening (see Work hardening)
Strain rate, 262, 252–254, 271–272
Strain rate sensitivity, 262
Strength coefficient, 262
Strength of materials, data, 218, 285, 430
Stress cells, 324
Stress concentration, 279, 303, 311
Stress corrosion, 328
Stress intensity factor, 305
Stress-strain curve, 249, 250, 261–262,

277
Structure

determination of, 42–45
levels of, 3–7
–property relationships, 7–8

Structures, 3

Structure-sensitive property, 120
Styrofoam, 109
Substitutional impurity, 121
Substructure, 5–6
Superalloy, 290
Supercomputers, 383
Superconductors, 346–348
Supercooling, 203–206
Supermalloy, 405
Superplastic 262–263
Surface hardening, 186–187
Surface

energies, 137–138
imperfections, 137–141

Surfaces, 137–138
Susceptibility, 394–395
Symmetry, 28

Talc, 106
Tannins, 328
Teflon, 109
Tempering, 219, 309, 323
Tensile strength, 261, 430
Tensile stress-strain curve, 261–263
Terylene, 110
Tetragonal martensite, 217–218
Tetragonal unit cell, 26, 28
Tetrahedral angle, 68, 85
Tetrahedral coordination, 85, 103
Tetrahedral void, 93
Tetrahedron, 68
Texture, 402
Thermal conductivity, 430
Thermal energy, 11, 18, 179, 208, 212,

272–274, 287, 316, 362, 398, 419
Thermal expansion, 65, 75–76, 246,

427–430
Thermal stresses, 203, 219
Thermodynamic functions, 12–14
Thermoelectric potential, 343
Thermometers, 228, 343
Thermoplasts, 107
Thermosets, 107
Thoria, 290, 343
Tie line, 152–153, 159, 161–162
Tilt boundary, 139–140, 229
Titanium, 76, 94, 290
TiB2, 244
Tool steels, 219
Transistor, 379, 382–383
Transition metals, 59, 75–76, 271, 274,

397–398
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Transition temperature
ductile-brittle, 305, 404
glass, 227
superconducting, 344

Translucent glass, 223
Tremolite, 105
Trichlorosilane, 370
Triple bond, 70
Triple points, 151
True strain, 261
True stress, 261, 299
T-T-T diagrams, 213–214, 216
Tungsten, 71, 289, 343
Tungsten carbide, 219
Turbine blades, 289, 290
t vector, 128–131
Twin boundary, 140–141, 278–279
Twinning, 263–264
Twins, 141
Twist boundary, 140, 229

Ultimate tensile strength, 261
Unit cells, 7, 24–29, 85, 89–91, 100–101
Unstable equilibrium, 11, 267

Vacancy, 121
enthalpy of formation of, 124

Vacancy diffusion, 190
Valence band, 360–366
van der Waals bond, 64, 73, 244
Vibrational frequency, 15, 18, 191–193,

207
Viscoelastic behaviour, 252–255
Viscosity, 226–227, 252, 289

Viscous flow, 252–255, 289
VLSI, 369, 384
Voids in close packing, 93–94
Voigt-Kelvin element, 254–255
Von Mises criterion, 264
Vortex region, 346
Vulcanization, 111

Wafer, 372–373, 376, 378–379
Water molecule, 68, 72, 83
Wave form, 335–337, 356–357
Wave number, 334–335, 356–360
Whiskers, 269
White cast iron, 168, 430
White radiation, 37
Wood, 110
Work hardening, 261, 275–277, 285

X-rays
diffraction by, 37–41, 263
wavelengths of, 37–38

YBa2Cu3O7–x, 347–348
Yield point, 261, 282–283
Yield strength, 261, 285, 306
Young’s modulus, 240–243, 300–302,

427–430
Yttrium-iron-garnet, 405

Zinc, 71, 94, 164, 268, 281–282
ZnO, 87, 123, 194
ZnS, 87, 100
Zone refining, 170, 372
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