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PREFACE

The main goal of this book is to provide the mathematical background needed for
the study of linear circuits and systems in engineering. It is more rigorous than the
material found in most circuit theory books, and it is appropriate for upper-division
undergraduate students and first-year graduate students. The book has the following
features:

• A comparison of linear circuits and mechanical systems that are modeled by
similar ordinary differential equations. This provides a greater understanding
of the behavior of different types of linear time-invariant circuits and systems.

• Numerous tables and figures summarize several mathematical techniques and
provide example results. Although the focus of the book is on the equations used
in engineering models, it includes over 250 figures and plots generated using
MATLAB that reinforce the material and illustrate subtle points.

• Several appendices provide background material on set theory, series expan-
sions, various identities, and the Lambert W-function. An extensive summary
of important functions and their transforms encountered in the study of linear
systems is included in Appendix A.

• A brief introduction to the theory of generalized functions, which are defined by
their properties under an integral. This theory is connected to the Laplace and
Fourier transforms covered later, which are specific types of integral transforms
of time-domain functions.
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xiv PREFACE

After the overview in Chapter 1, which includes a brief review of functions and
calculus, the book is divided into two parts:

• Part I: Circuits and Mechanical Systems; Linear Equations and Matrices; Com-
plex Numbers and Functions (Chapters 2–4).

• Part II: Signals, Generalized Functions, and Fourier Series; Differential
Equation Models for Linear Systems; Laplace Transforms and Linear Systems;
Fourier Transforms and Frequency Responses (Chapters 5–8).

Chapter 2 describes circuits consisting of resistors (R), capacitors (C), and induc-
tors (L), as well as Kirchoff’s circuit laws and mesh and nodal analysis techniques.
There is a brief study of nonlinear diode circuits and then a discussion of some
mechanical systems that have the same time-domain properties as RL, RC, and RLC
circuits. Linear algebra and systems of linear equations are covered in Chapter 3,
along with the matrix determinant, matrix subspaces, LU and LDU decompositions,
and eigendecompositions. Equations that model the voltages and currents in a resis-
tive circuit are represented using matrices, and the solutions are derived using either
Cramer’s rule or Gaussian elimination. Chapter 4 contains a thorough discussion of
complex numbers, with material not covered in most books on linear circuits and
systems. It includes matrix representations of complex quantities, exponential rota-
tions on the complex plane, the constant angular velocity of time-varying complex
functions, and a brief discussion of quaternions.

Chapter 5 gives definitions of several signals that describe the dynamic behavior
of linear circuits and systems, including ordinary functions such as the exponential
function and singular functions like the Dirac delta function. A brief introduction
to the theory of generalized functions is provided, which illustrates several of their
properties and in particular how their derivatives are found. This chapter also includes
Fourier series representations of periodic signals and a view of their coefficients as
cross-correlations between the original signal and sinusoidal signals with increasing
frequency. First- and second-order ordinary differential equations used to model RL,
RC, and RLC circuits are then covered in Chapter 6. The solutions are derived entirely
in the time domain, and it is demonstrated that second-order linear systems can have
three types of responses depending on their parameter values. Phasor notation and
impedance for circuits with sinusoidal source signals are also discussed.

The final two chapters describe transform techniques for solving the ODEs
developed in Chapter 6 and for illustrating their frequency characteristics. Chapter 7
defines the unilateral and bilateral Laplace transforms, focusing on causal systems
with initial conditions. Several Laplace transform properties are proved, and these
are used to solve linear ODEs as well as linear circuits directly in the s-domain.
Partial fraction expansions for different pole configurations are discussed in detail,
and the significance of pole locations relative to the imaginary axis on the complex
plane is described. Finally, Chapter 8 covers the Fourier transform and describes
how it is related to the Laplace transform. Various first- and second-order filters
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are discussed, including the four basic types: low-pass, high-pass, band-pass, and
band-reject. These low-order filters are extended using high-order Butterworth filters
to generate sharper frequency responses. Amplitude modulation with and without
suppressed carrier is also briefly discussed.

Several appendices provide background material for the topics covered in this
book:

• Extensive summaries of 21 functions that include their Fourier and Laplace
transforms and various signal properties.

• Two tables of inverse Laplace transforms where the Laplace transform is given
first, so that the time-domain function is found without computing a partial
fraction expansion.

• Trigonometric identities, summation formulas, quadratic and cubic formulas,
derivatives, several integrals, and their properties.

• Set theory, set operations, Venn diagrams, and partitions.

• Series expansions, including Taylor, Maclaurin, and Laurent series, and the
different types of singularities.

• The Lambert W-function, which is useful for finding an explicit expression for
some nonlinear equations that cannot be solved using ordinary functions.

The book is designed for a two-quarter sequence or a single semester covering
continuous-time linear systems and related signals, represented by ordinary and sin-
gular functions. For a two-quarter sequence, the chapters might be covered as follows:

• Fall quarter: Chapters 1–5. Winter quarter: Chapters 6–8.

Depending on prerequisite courses, it may not be necessary to cover all the topics
on matrices in Chapter 3, in which case some of that chapter would serve as reference
material for related courses. This is probably the case for the semester system where
some material would be emphasized less in order to complete the chapters on the
Laplace and Fourier transforms. Since this book is mainly mathematical in nature,
it does not cover all circuit theory techniques as is usually done at the sophomore
level in electrical engineering programs. Instead, just enough material on circuits has
been included, as well as some mechanical systems, in order for the reader to learn
how systems of linear equations and ODEs are developed. It is the goal of this book
to provide a more comprehensive mathematical study of the various topics than is
usually done in circuits courses and to explain subtle points with examples and figures
throughout the chapters.

I would like to thank S. Chandrasekaran, R. Pauplis, and A. Nguyen-Le for dis-
cussions of some of the material in this book. I am indebted to my students in the
ECE 2 series on circuits and systems whose questions have provided the motivation
to write a book that focuses on mathematical models for signals and systems. Their
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xvi PREFACE

comments have led directly to some of the discussions and illustrative examples.
Finally, thanks to my editors at Wiley, B. Kurzman and A. Castro, for supporting
this project, and to R. Roberts and N. Swaminathan for their assistance during the
final stages of production.

J.J.S.
Santa Barbara, CA

October 2015
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NOTATION AND BIBLIOGRAPHY

We provide an overview of the notation used in this book.

• Lowercase i and 𝑣 represent currents and voltages that may or may not be
time-varying. If they are time-varying, we may explicitly write i(t) and 𝑣(t).

• Uppercase I and V represent constant currents and voltages.

• Bold lowercase b denotes a column vector, and bold uppercase A denotes a
matrix.

• Notation such as C(A) refers to the column space of matrix A and should not
be confused with the usual notation for a function such as f (t).

• Roman letters s are units (seconds), and italic letters s are variables (s = 𝜎 + j𝜔).
Similarly for F (farads), F (force), and so on.

• The notation ⟨f , 𝜙⟩ represents the generalized function f with test function 𝜙. It
should not be confused with the inner product notation ⟨x, y⟩, which is written
in this book using transpose xT y.

• In order to be concise, in many equations, expressions like 1∕2𝜋j are equivalent
to 1∕(2𝜋j).

In the glossary near the end of the book, there is a summary of the notation and
symbols used throughout the book: (i) general symbols and notation, (ii) Greek sym-
bols, (iii) calligraphic symbols (for different sets of numbers and transforms), (iv)
mathematical notation (including relational and arrow symbols), (v) physical param-
eter values (for circuits and mechanical systems), and (vi) abbreviations (acronyms).
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xviii NOTATION AND BIBLIOGRAPHY

At the end of the book, the bibliography contains many references that the reader
might find useful for further study of the topics in each of the chapters and the appen-
dices. References are not cited in the text except in cases for material that might be
less familiar and is not covered in most books on linear circuits and systems.
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ABOUT THE COMPANION WEBSITE

This book is accompanied by a companion website:
http://www.wiley.com/go/linearcircuitsandsystems

The website includes:

• Solutions Manual available for instructors

• MATLAB files for some problems

• Updated errata

http://www.wiley.com/go/linearcircuitsandsystems
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1
OVERVIEW AND BACKGROUND

1.1 INTRODUCTION

In this book, we develop and examine several mathematical models consisting of one
or more equations that are used in engineering to represent various physical systems.
Usually, the goal is to solve these equations for the unknown dependent variables,
and if that is not possible, the equations can be used to simulate the behavior of a
system using computer software such as MATLAB.1 In most engineering courses, the
equations are usually linear or can be linearized as an approximation, but sometimes
they are nonlinear and may be difficult to solve. From such models, it is possible to
design and analyze components of a proposed system in order to achieve required
performance specifications before developing a prototype and actually implementing
the physical system.

Definition: System A system is a collection of interacting elements or devices that
together result in a more complicated structure than the individual components alone,
for the purpose of generating a specific type of signal or realizing a particular process.

The term system, as used in this book, also describes several interrelated equations
called a system of equations, which are usually linear and can be represented by a

1MATLAB® is a registered trademark of The Mathworks, Inc., 3 Apple Hill Drive, Natick, MA.

Mathematical Foundations for Linear Circuits and Systems in Engineering, First Edition. John J. Shynk.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
Companion Website: http://www.wiley.com/go/linearcircuitsandsystems

http://www.wiley.com/go/linearcircuitsandsystems
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2 OVERVIEW AND BACKGROUND

matrix equation. The distinction between a physical system and a system of linear
equations will be evident from the specific application.

Definition: Mathematical Model A mathematical model is an equation or set of
equations used to represent a physical system, from which it is possible to predict the
properties of the system and its output response to an input, given known parameters,
certain variables, and initial conditions.

Generally, we are interested in the dynamic behavior of a system over time as it
responds to one or more time-varying input signals. A block diagram of a system with
single input x(t) and single output y(t) (single-input single-output (SISO)) is shown
in Figure 1.1(a), where t is continuous time. The time variable can be defined for the
entire real line : −∞ < t < ∞, but often we assume nonnegative +: 0 ≤ t < ∞.
In this scenario, a mathematical model provides the means to observe how y(t) varies
with x(t) over t, assuming known initial conditions (usually at t = 0), so that we
can predict the future behavior of the system. For the electric circuits described in
Chapter 2, the inputs and outputs are currents through or voltages across the cir-
cuit components. For convenience, Table 1.1 summarizes the notation for different
sets of numbers used in this book (though quaternions are only briefly discussed in
Chapter 4).

Figure 1.1(b) shows a linear SISO system with sinusoidal input cos(2𝜋fot) where
fo is ordinary frequency in hertz (Hz). As discussed in Chapter 7, a sinusoidal signal
is an eigenfunction of a linear system, which means that the output is also sinusoidal
with the same frequency fo. For such a signal, the output differs from the input by
having a different magnitude, which is A in the figure, and possibly a phase shift 𝜙.
This is an important characteristic of linear systems that allows us to investigate them
in the so-called frequency domain, which provides information about their properties
beyond those observed in the time domain.

In order to more easily solve for the unknown variables of a mathematical model,
the techniques usually require knowledge of matrices and complex numbers. The
matrices covered in Chapter 3 are useful for describing a system of linear equations

Systemx(t) y(t)

Input Output

Linear
system

cos(2π fot)

(a)

(b)

Acos(2π fot+ϕ)

Figure 1.1 Systems with a single input and a single output (SISO). (a) General system with
input x(t) and output y(t). (b) Linear system with sinusoidal input and output.
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MATHEMATICAL MODELS 3

TABLE 1.1 Symbols for Sets of Numbers

Symbol Domain x Set

 x ∈ (−∞,∞) Real numbers

+ x ∈ [0,∞) Nonnegative real numbers

 x ∈ {… ,−2,−1, 0, 1, 2,…} Integers

+ x ∈ {0, 1, 2,…} Nonnegative integers

 x ∈ {1, 2,…} Natural numbers

 x = a∕b with a, b ∈  and b ≠ 0 Rational numbers

 x = jb with j =
√
−1 and b ∈  Imaginary numbers

 x = a + jb with j =
√
−1 and a, b ∈  Complex numbers

 x = a + ib1 + jb2 + kb3 Quaternions

with i = j = k =
√
−1 and a, b1, b2, b3 ∈ 

with constant coefficients. Chapter 4 provides the motivation for complex numbers
and summarizes many of their properties. Chapter 5 introduces several different
waveforms that are used to represent the signals of a system: inputs, outputs, as well
as internal waveforms. These include the well-known sinusoidal and exponential
signals, as well as the unit step function and the Dirac delta function. The theory of
generalized functions and some of their properties are briefly introduced. Systems
represented by linear ordinary differential equations (ODEs) are then covered in
Chapter 6, where they are solved using conventional time-domain techniques. The
reader will find that such techniques are straightforward for first- and second-order
ODEs, especially for the linear circuits covered in this book, but are more difficult
to use for higher order systems.

Chapter 7 describes methods based on the Laplace transform that are widely used
in engineering to solve linear ODEs with constant coefficients. The Laplace trans-
form converts an ODE into an algebraic equation that is more easily solved using
matrix techniques. Finally, Chapter 8 introduces methods for analyzing a system in
the frequency domain, which provides a characterization of its frequency response to
different input waveforms. In particular, we can view linear circuits and systems as
filters that modify the frequency content of their input signals.

We focus on continuous-time systems, which means {x(t), y(t)} are defined with
support t ∈  or t ∈ + where the functions are nonzero. Discrete-time systems and
signals are defined for a countable set of time instants such as , +, or  . Different
but related techniques are used to examine discrete-time systems, though these are
beyond the scope of this book.

1.2 MATHEMATICAL MODELS

Consider again the system in Figure 1.1(a) and assume that we have access only
to its input x(t) and output y(t) as implied by the block diagram. There is no direct
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information about the internal structure of the system, and the only way we can learn
about its properties is by providing input signals and observing the output signals.
Such an unknown system is called a “black box” (because we cannot see inside), and
the procedure of examining its input/output characteristics is a type of reverse engi-
neering. We mention this because the mathematical models used to represent physical
devices and systems are typically verified and even derived from experiments with
various types of input/output signals. Such an approach yields the transfer charac-
teristic of the system, and for linear and time-invariant (LTI) systems, we can write
a specific transfer function as described in Chapter 7.

Example 1.1 Suppose input x of an unknown system is varied over  and we
observe the output y shown in Figure 1.2. This characteristic does not change with
time, and so we have suppressed the time argument for the input and output. The
plot of y is flat for three intervals: −∞ < x ≤ −2, −1 < x ≤ 2, and 3 < x < ∞, and it
is linearly increasing for two intervals: −2 < x ≤ −1 and 2 < x ≤ 3. For this piece-
wise linear function, the equation for each interval has the form y = ax + b where
a = Δy∕Δx is the slope and b is the ordinate, which is the point where the line crosses
the y-axis if it were extended to x = 0. For the first linearly increasing region, the slope
is obviously a = (1 − 0)∕[−1 − (−2)] = 1. When x = 0, the extended line crosses the
y-axis at y = 2, which gives b = 2. Similarly, for the second linearly increasing region,
a = (3 − 1)∕(3 − 2) = 2 and b = −3. The remaining three regions have zero slope but
different ordinates (these equations are of the form y = b), and so the overall transfer
characteristic for this system is

y =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

0, x ≤ −2

x + 2, −2 < x ≤ −1

1, −1 < x ≤ 2

2x − 3, 2 < x ≤ 3

3, x > 3.

(1.1)

The values of y match at the boundaries for each interval of x as shown in the figure.
The mapping in (1.1) is a mathematical model for a particular system that can be used
to study its behavior even if it is included as part of a larger system. Note that this

y

x−2

3

3 4

1

10−1

2

2

Figure 1.2 Input/output characteristic for the nonlinear system in Example 1.1.
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0 0.2 0.4 0.6 0.8 1
−6

−4

−2

0

2

4

6

t (s)

x(
t)

, y
(t)

Input and output waveforms

Input x(t)
Output y(t)

Figure 1.3 Output y(t) for the transfer characteristic in (1.1) in Example 1.1 with input
x(t) = 5 sin(2𝜋t) for t ∈ [0, 1].

input/output characteristic does not provide any direct information about the indi-
vidual components or the internal dynamics of the system. When the input x(t) is
a function of time, the output y(t) is also time varying. For example, suppose that
x(t) = 5 sin(2𝜋t) as illustrated in Figure 1.3 for one period of the sine function with
frequency fo = 1 Hz. The output y(t) is computed using (1.1) at each time instant on
the closed interval t ∈ [0, 1] in seconds (s). Observe that y(t) is truncated relative to
the input waveform due to this particular input/output mapping. Similar results for
y(t) can be derived for any input function x(t) by using the model in (1.1).

The output y(t) is not sinusoidal because the function in Figure 1.2 is piecewise
linear, and so, overall it is nonlinear. Sinusoidal signals are not eigenfunctions for
nonlinear systems as demonstrated in this example. Eigenfunctions and their defining
properties are covered later in Chapter 7. The fundamental frequency of the output in
Figure 1.3 is fo = 1 Hz because the waveform for all t ∈  consists of repetitions of
the 1 s segment dashed curve. The waveform within this segment also has variations,
which result in harmonics of fo. This means that sinusoidal components with integer
multiples of fo are also present in y(t). It is possible to determine these harmonics
using a Fourier series representation of y(t) as discussed in Chapter 5.

Example 1.2 Consider the following mapping:

y = 2x − 3, x ∈ , (1.2)
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which is one component of (1.1) with support extended to the entire real line, and so,
the input is not truncated. For x(t) = 5 sin(2𝜋t), the output of this system is

y(t) = 10 sin(2𝜋t) − 3, (1.3)

which has the same frequency fo = 1 Hz as the input; there are no harmonics of fo.
However, this system is not linear because it introduces a DC (“direct current”) com-
ponent at f = 0 Hz, which causes the output to be shifted downward, as illustrated
in Figure 1.4 (the dashed line). The function in (1.2) is actually affine because of the
nonzero ordinate b = −3. A linear function is obtained by dropping the ordinate:

y = 2x, x ∈ , (1.4)

which has the output in Figure 1.4 (the dotted line). This is a trivial system because
the peak amplitude 10 of the output is unchanged for any input frequency fo, and the
phase shift 𝜙 is always zero.

A linear system that is modeled by an ODE has a more complicated representation
than the simple scaling in (1.4), and the amplitude and phase of its output gener-
ally change with frequency fo. By varying the frequency of the input and observing
the output of a linear system, we can derive its frequency response. This representa-
tion of a system indicates which frequency components of a signal are attenuated or

0 0.2 0.4 0.6 0.8 1
−15

−10

−5

0

5

10

t (s)

x(
t)

, y
(t

)

Input and output waveforms

Input x(t)
y(t) affine system
y(t) linear system

Figure 1.4 Output y(t) for the transfer characteristics in (1.2) and (1.4) in Example 1.2 with
input x(t) = 5 sin(2𝜋t) for t ∈ [0, 1].



�

� �

�

MATHEMATICAL MODELS 7

amplified and whether they are shifted in time. Using this approach, the system can
be viewed as a type of filter that modifies the frequency characteristics of the input
signal. For example, a low-pass filter retains only low-frequency components while
attenuating or blocking high frequencies. It is useful in many applications such as
noise reduction in communication systems. The frequency response of a system is
investigated further in Chapter 8 where we cover the Fourier transform.

Example 1.3 An example of a system of linear equations is

a11y1(t) + a12y2(t) = x1(t), (1.5)

a21y1(t) + a22y2(t) = x2(t), (1.6)

where {y1(t), y2(t)} are unknown outputs, {x1(t), x2(t)} are known inputs, and {amn}
are constant coefficients. (Many books on linear algebra have x and y interchanged.
We use the form in (1.5) and (1.6) for notational consistency throughout the book,
where known x is the input and unknown y is the output.) These equations can be
viewed as a multiple-input multiple-output (MIMO) system as depicted in Figure 1.5.
It is straightforward to solve for the unknown variables {y1(t), y2(t)} by first rearrang-
ing (1.6) as

y2(t) = x2(t)∕a22 − a21y1(t)∕a22, (1.7)

and then substituting (1.7) into (1.5):

a11y1(t) + a12x2(t)∕a22 − a12a21y1(t)∕a22 = x1(t), (1.8)

which gives

y1(t) =
x1(t) − a12x2(t)∕a22

a11 − a12a21∕a22
=

a22x1(t) − a12x2(t)
a11a22 − a12a21

, (1.9)

and likewise for the other output:

y2(t) = x2(t)∕a22 − (a21∕a22)
a22x1(t) − a12x2(t)

a11a22 − a12a21

=
a11x2(t) − a21x1(t)

a11a22 − a12a21
. (1.10)

System

y1(t)x1(t)

Inputs Outputs

yN(t)xM(t)

Figure 1.5 Multiple-input and multiple-output (MIMO) system.
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The reader may recognize that if (1.5) and (1.6) are written in matrix form as
described in Chapter 3, then the denominator in (1.9) and (1.10) is the determinant
det(A) = a11a22 − a12a21 of the matrix

A ≜
[

a11 a12
a21 a22

]

. (1.11)

It is usually convenient to write such systems of equations in matrix form, because it is
then straightforward to examine their properties based on the structure and elements
of A. Moreover, we can write the solution of the linear equations Ay(t) = x(t) via the
matrix inverse as y(t) = A−1x(t), where for this two-dimensional matrix, the column
vectors are

x(t) ≜
[

x1(t)
x2(t)

]

, y(t) ≜
[

y1(t)
y2(t)

]

. (1.12)

For a numerical example, let the matrix elements be a11 = a21 = a22 = 1 and
a12 = −0.1, and assume the inputs are constant: x1(t) = 0 and x2(t) = 1. Then
from (1.9) and (1.10), we have the explicit solution y1(t) = 1∕11 ≈ 0.0909 and
y2(t) = 10∕11 ≈ 0.9091.

Example 1.4 In this example, we examine a nonlinear system to illustrate the diffi-
culty of solving for the output variables of such models. A MIMO system is described
by two equations, the first of which is nonlinear:

a11y1(t) + a12 exp (𝛼y2(t)) = x1(t), (1.13)

a21y1(t) + a22y2(t) = x2(t), (1.14)

where 𝛼 and the coefficients {amn} are constant parameters. This system is similar to
the one in Example 1.3, except that a12 multiplies the exponential function

exp (𝛼y2(t)) ≜ e𝛼y2(t)
, (1.15)

where e is Napier’s constant which is reviewed later in this chapter. The inputs are
again {x1(t), x2(t)}, and we would like to find a solution for {y1(t), y2(t)}. Unlike
the linear system of equations in the previous example, eliminating one variable by
substituting one equation into the other does not yield a closed-form solution because
of the exponential function. Figure 1.6(a) shows examples of these two equations,
obtained by plotting y1 versus y2 for the parameters used at the end of Example 1.3
and with 𝛼 = 4. Since {yn} must simultaneously satisfy both equations, it is clear
that the solution for this system of equations occurs where the two curves (solid and
dashed) in the figure intersect. One approach to finding the solution is iterative, where
an initial estimate is chosen for y2, from which it is possible to solve for y1 using
(1.14). This value for y1 is substituted into (1.13), which is rewritten as follows:

y2 = (1∕𝛼) ln((x1 − a11y1)∕a12), (1.16)
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Figure 1.6 Systems of equations. (a) Nonlinear system in (1.13) and (1.14) in Example 1.4
with 𝛼 = 4. (b) Linear system in (1.5) and (1.6) in Example 1.3.
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where ln (⋅) is the natural logarithm. This equation yields a new value for y2, which is
used in (1.14) to compute y1, and the procedure is repeated several times until {yn} no
longer change (up to some desired numerical precision), and so they have converged
to a solution. For the aforementioned parameters and initial value y2 = 0.2, we find
using MATLAB that the solution is y1 ≈ 0.5664 and y2 ≈ 0.4336, which is verified
by the intersecting curves in Figure 1.6(a). The first four iterations are denoted by
the dotted lines in the figure, which we see approach the solution. For comparison
purposes, Figure 1.6(b) shows the two lines for the linear system in Example 1.3 using
the same coefficient values. The solution is located where the two lines intersect:
y1 ≈ 0.0909 and y2 ≈ 0.9091. Since this system of equations is linear, we can solve
for y1 and y2 explicitly as was done in (1.9) and (1.10) (there is no need to perform
iterations).

We mention that it is possible to find a type of explicit solution for the system
of nonlinear equations in the previous example by using the Lambert W-function
described in Appendix F, which includes some examples. Nonlinear circuit equations
for the diode are briefly discussed in Chapter 2, and an explicit solution using the
Lambert W-function for a simple diode circuit is derived in Appendix F. Although
an explicit solution is obtained, it turns out that the Lambert W-function cannot be
written in terms of ordinary functions, and so, it must be solved numerically.

The transfer characteristic in Example 1.1 is static because it describes the output
y(t) for a given input x(t) independently of the time variable t. For many physical
systems, the transfer characteristic also depends on other factors, such as the rate at
which x(t) changes over time. This type of system is modeled by an ODE. In subse-
quent chapters, we describe techniques used to evaluate and solve linear ODEs for
systems in general as in Figure 1.1 and for linear circuits in particular.

Example 1.5 An example of a linear ODE is

d2

dt2
y(t) + a1

d
dt

y(t) + a0y(t) = x(t), t ∈ , (1.17)

where time t is the independent variable, y(t) is the unknown dependent variable,
and x(t) is the known dependent variable. For the system in Figure 1.1(a), x(t) is the
input and y(t) is the output. The coefficients {a0, a1} are fixed, and the goal is to find
a solution for y(t) given these parameters as well as the initial conditions y(0) and
y′(0). The superscript denotes the ordinary derivative of y(t) with respect to t, which
is then evaluated at t = 0:

y′(0) ≜ d
dt

y(t)
|
|
|
|t=0.

(1.18)

Equation 1.17 is a second-order ODE because it contains the second derivative of
y(t); higher order derivatives are considered in Chapter 7. An implementation based
on integrators is illustrated in Figure 1.7. This configuration is preferred in practice
because differentiators enhance additive noise in a system (Kailath, 1980), which
can overwhelm the signals of interest. Integrators, on the other hand, average out
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−a1
−a0

x(t) y(t)
d2

dt2
d
dt

∑

y(t) y(t)
Input Output

y (0)y ′(0)

Figure 1.7 Integrator implementation of a second-order linear ODE.

additive noise, which often has a zero average value. This implementation is obtained
by bringing the {a0, a1} terms of (1.17) to the right-hand side of the equation such
that the output of the summing element in the figure is

d2

dt2
y(t) = x(t) − a1

d
dt

y(t) − a0y(t). (1.19)

The cascaded integrators sequentially yield dy(t)∕dt and y(t). The solution to (1.17)
when x(t) = 0 and a0 = a1 = 2 is

y(t) = exp (−t)[2 sin(t) + cos(t)], t ∈ +
, (1.20)

where the nonzero initial conditions y(0) = y′(0) = 1 have been assumed. This wave-
form is plotted in Figure 1.8 (the solid line) from which we can easily verify the
initial conditions. It is straightforward to show that (1.20) is the solution of (1.19) by
differentiating y(t):

d
dt

y(t) = − exp (−t)[2 sin(t) + cos(t)] + exp (−t)[2 cos(t) − sin(t)]

= exp (−t)[cos(t) − 3 sin(t)], (1.21)

d2

dt2
y(t) = − exp (−t)[cos(t) − 3 sin(t)] + exp (−t)[− sin(t) − 3 cos(t)]

= exp (−t)[2 sin(t) − 4 cos(t)]. (1.22)

Substituting these expressions into (1.17) with a0 = a1 = 2, we find that all terms
cancel to give 0. By changing the coefficients, a different output response is obtained.
For example, when a0 = 2 and a1 = 3, the solution is purely exponential:

y(t) = 3 exp (−t) − 2 exp (−2t), t ∈ +
. (1.23)

This is also plotted in Figure 1.8 for the same initial conditions and input x(t) = 0
(the dashed line). The solutions in (1.20) and (1.23) are known as underdamped
and overdamped, respectively. It turns out that there is a third type of solution for
a second-order ODE called critically damped, which is obtained by changing the
coefficient values. All three solutions are discussed in greater detail in Chapters 6
and 7.
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Figure 1.8 Solutions for the second-order ODE in Example 1.5 with constant coefficients.
The input is x(t) = 0 and the initial conditions are nonzero: y(0) = y′(0) = 1.

1.3 FREQUENCY CONTENT

As mentioned earlier, the main goal of this book is to develop mathematical models
for circuits and systems, and to describe techniques for finding expressions (solutions)
for the dependent variables of interest. In addition, we are interested in the frequency
content of signals and the frequency response of different types of systems. This fre-
quency information illustrates various properties of signals and systems beyond that
observed from their time-domain representations.

The most basic signal is sinusoidal with angular frequency 𝜔o = 2𝜋 fo in radi-
ans/second (rad/s) and ordinary frequency fo in Hz. It turns out that all periodic
signals can be represented by a sum of sinusoidal signals with fundamental fre-
quency fo and integer multiples n fo for n ∈  called harmonics. For example, the
periodic rectangular waveform in Figure 1.9(a) has the frequency spectrum shown in
Figure 1.9(b), with the magnitude of each frequency component indicated on the ver-
tical axis. Lower harmonics have greater magnitudes, demonstrating that this wave-
form is dominated by low frequencies. This frequency representation for periodic
signals is known as the Fourier series and is covered in Chapter 5. Aperiodic sig-
nals, which do not repeat, have a frequency representation known as the Fourier
transform. Whereas the Fourier series consists of integer multiples of a fundamen-
tal frequency, the Fourier transform is a continuum of frequencies as illustrated in
Figure 1.10 for triangular and rectangular waveforms. Both of these signals are dom-
inated by low-frequency content.
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Figure 1.9 Periodic rectangular waveform. (a) Time-domain representation. (b) Magnitude
of frequency spectrum: Fourier series with harmonics n fo and fo = 1 Hz.
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Figure 1.10 Aperiodic waveforms. (a) Time-domain representation. (b) Magnitude of
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(a)

(b)

Figure 1.11 Two-dimensional image and spectrum. (a) Spatial representation. (b) Magnitude
of frequency spectrum in two dimensions. White denotes a greater magnitude. (The vertical
and horizontal white lines are the frequency axes where 𝜔1 = 0 and 𝜔2 = 0. A log scale is used
to better visualize variations in the spectrum.)

Although we focus on one-dimensional signals in this book, which are
generally a function of the independent variable time t, Figure 1.11 shows a
two-dimensional image and its frequency representation. The two independent vari-
ables in Figure 1.11(a) are given by the horizontal (width) and vertical (height) axes,
and the information contained in the image is indicated by a gray scale from white to
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black. Similarly, the magnitude of the spectrum in Figure 1.11(b) is represented by a
gray scale, with white denoting a greater magnitude for particular frequencies. Two
frequency variables {𝜔1, 𝜔2} are used in the Fourier transform of a two-dimensional
image (Bracewell, 1978); these are the horizontal and vertical axes in Figure 1.11(b).
Low frequencies are located around the center of the plot, and high frequencies
(positive and negative) extend outward to the edges of the spectrum plot. Once
again, we have a signal with mostly low-frequency content; in fact, the spectrum
is dominated by the white “star” located about the center where 𝜔1 = 𝜔2 = 0. This
occurs because there is not much spatial variation across the image in Figure 1.11(a).
In general, greater variations in the time/spatial domain correspond to higher
frequencies with greater magnitudes in the Fourier/frequency domain.

Systems are often designed to have a particular frequency response where some
frequencies are emphasized and others are attenuated. For example, a system that
passes low frequencies and attenuates high frequencies is called a low-pass filter.
Likewise, systems can be designed to have a high-pass, band-pass, or band-reject
frequency response. Conventional amplitude modulated (AM) radio is an example of
a system that incorporates band-pass filters to select a transmitted signal located in
a specific radio frequency channel. Such a channel is defined by a center frequency
and a bandwidth over which the signal can be transmitted without interfering with
other signals in nearby channels. The Fourier transform and different types of filters
are covered in Chapter 8.

In the rest of this chapter, we provide a review of some basic topics that the reader
has probably studied to some extent, and which form the basis of the material covered
throughout this book.

1.4 FUNCTIONS AND PROPERTIES

We begin with a summary of basic definitions for functions of a single independent
variable.

Definition: Function The function y = f (x) is a unique mapping from input x to
output y.

Although x yields a single value y, more than one value of x could map to the same
y. (Note, however, that it is possible to define multiple-output functions; an example
of this is the Lambert W-function discussed in Appendix F.)

Definition: Domain and Range The domain of function f (x) consists of those
values of x for which the function is defined. The range of a function is the set of
values y = f (x) generated when x is varied over the domain.

Example 1.6 For f (x) = x2, the natural domain is  (although it is possible to
restrict the domain to some finite interval), and the corresponding range is +. The
domain for f (x) = log(x) is + and its range is .
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Definition: Support The support of a function is the set of x values for which f (x)
is nonzero.

Example 1.7 The domain of the unit step function is :

u(x) ≜
{

1, x ≥ 0
0, x < 0,

(1.24)

but its support is +. Similarly, the domain of the truncated sine function sin(𝜔ot)u(t)
is  and its support is +. Even though sine is 0 for integer multiples of 𝜋, the
support is still + because sine is a continuous function and those points (which
form a countable set) are not excluded from the support.

Definition: Inverse Image and Inverse Function The inverse image x = f−1(y)
is the set of all values x that map to y. The inverse image of a function may not yield
a unique x. If a single x = f−1(y) is generated for each y, then f (x) is one-to-one and
the inverse image is equivalent to the inverse function x = f−1(y) ≜ g(y).

Example 1.8 For the quadratic function y = x2, it is obvious that each x ∈  gives a
single y. Solving for x yields x = ±

√
y. Since x is not unique for each y, the square root

is not the inverse function. An inverse function does not exist for y = x2. However,
x = f−1(y) = ±

√
y describes the inverse image; for example, the inverse image of

y = 9 is the set of values x = {−3, 3}. The one-to-one function y = 2x + 1 has inverse
function x = g(y) = (y − 1)∕2. The natural logarithm y = ln(x) is also one-to-one with
inverse function x = g(y) = exp (y).

Definition: Linear Function A linear function f (x) has the following two proper-
ties:

f (x1 + x2) = f (x1) + f (x2), f (𝛼x) = 𝛼 f (x), (1.25)

where 𝛼 ∈  is any constant.
The line representing a linear function necessarily passes through the origin:

y(x) = 0 when x = 0.

Example 1.9 The circuit model shown in Figure 1.12(a) for a resistor with resis-
tance R has the form 𝑣 = Ri known as Ohm’s law. It is a linear function:

𝑣1 = Ri1, 𝑣2 = Ri2 ⇒ 𝑣1 + 𝑣2 = R(i1 + i2) = Ri1 + Ri2, (1.26)

𝑣 = Ri ⇒ 𝛼𝑣 = R(𝛼i) = 𝛼Ri, (1.27)

where 𝑣 is a voltage and i is a current (both are defined in Chapter 2). An example of
a nonlinear function is the piecewise linear circuit model for a diode that is in series
with resistor R:

i =
{
(𝑣 − 𝑣c)∕R, 𝑣 ≥ 𝑣c
0, 𝑣 < 𝑣c,

(1.28)
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Figure 1.12 Device models used in Example 1.9. (a) Linear model for resistor R. (b) Non-
linear model for diode D with resistance R.

where 𝑣c is a cutoff voltage; typically 𝑣c ≈ 0.7 V (volt). Although this equation has
straight-line components (it is piecewise linear), overall it is nonlinear as depicted
in Figure 1.12(b) because it does not satisfy (1.25). Suppose 𝑣1 = −2 V such that
i1 = 0 A (ampere), and 𝑣2 = 1.7 V such that i2 = (1∕R) A. Then 𝑣1 + 𝑣2 = −0.3 V
⇒ i = 0 A, which is not equal to i1 + i2 = (1∕R) A.

The general equation y = ax + b for a line is not linear even though it is straight
and is used to describe the different parts of a piecewise linear function (as in
Example 1.1). A linear function based on the properties in (1.25) must pass through
the origin.

Definition: Affine Function Affine function g(x) is a linear function f (x) with addi-
tive scalar b such that the ordinate is nonzero:

g(x) = f (x) + b. (1.29)

An affine function does not satisfy either requirement in (1.25) for a linear function:

g(x1 + x2) = f (x1 + x2) + b ≠ g(x1) + g(x2) = f (x1) + b + f (x2) + b, (1.30)

g(𝛼x) = f (𝛼x) + b ≠ 𝛼g(x) = 𝛼f (x) + 𝛼b, (1.31)

where 𝛼 ∈  is any nonzero constant.

Definition: Continuous Function Function f (x) is continuous at xo if there exists
𝜖 > 0 for every 𝛿 > 0 such that

|x − xo| < 𝜖 ⇒ |f (x) − f (xo)| < 𝛿. (1.32)

More simply we can write

lim
𝜖→0

|f (xo + 𝜖) − f (xo)| = 0, (1.33)
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where 𝜖 is either positive or negative such that f (xo + 𝜖) approaches xo from the right
or the left, respectively.

All the functions shown in Figures 1.8 and 1.12 are continuous. An example of a
function that is continuous only from the right is shown in Figure 1.13. Approaching
xo from the left, the function jumps to the higher value b. A solid circle indicates that
the function is continuous approaching from the right, meaning that the function is b
at xo. A function that is continuous at xo from the left is similarly defined with the solid
and open circles in Figure 1.13 interchanged. If a function is left- and right-continuous
at xo, then it is strictly continuous at that point as defined in (1.32) and (1.33).

Functions of a real variable can have different types of discontinuities. The plot in
Figure 1.13 shows a function with a jump discontinuity. Another example is the unit
step function u(t) in (1.24), which is used extensively throughout this book. Similar
to the example in Figure 1.13, u(t) is continuous from the right but not from the left.
A function that is nowhere continuous is the Dirichlet function, given by

f (x) =
{

1, x ∈ 
0, x ∈  −, (1.34)

where is the set of rational numbers. It is not possible to accurately plot this function
using MATLAB (or any other mathematics software). Another type of discontinuity
is an infinite discontinuity, also called an asymptotic discontinuity. Examples include

f (x) = 1∕x, f (x) = 1∕(x − 1)(x − 2), (1.35)

where, in the first case, the discontinuity is at x = 0, and in the second case, there are
discontinuities at x = {1, 2}. The second function is plotted in Figure 1.14(a), which
we see is continuous except at the two points indicated by the vertical dotted lines.
With the terminology of functions of complex variables considered later in this book
(see Chapter 5 and Appendix E), these singularities are called poles.

Consider the function

f (x) = sin(x)
x

, (1.36)

x

f(x)

Continuous
from the right

xo

a

b

Figure 1.13 Example of a function with a discontinuity at xo.
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Figure 1.14 (a) Function with two pole singularities at x = {1, 2}. (b) Function with a remov-
able pole singularity at x = 0.
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which appears to have a pole at x = 0. It turns out, however, that this pole is cancelled
by the numerator such that f (0) = 1. This can be seen using L’Hôpital’s rule

d sin(x)∕dx|x=0

dx∕dx|x=0
= cos(0) = 1. (1.37)

Such singularities are called removable. This function, which is plotted in
Figure 1.14(b), is known as the unnormalized sinc function, and should not be
confused with the usual sinc function sinc(x) ≜ sin(𝜋x)∕𝜋x discussed in subsequent
chapters. Another example of a removable singularity is the following rational
function, where a factor in the numerator cancels the denominator:

f (x) = x2 − 1
x + 1

= x − 1, (1.38)

and so f (−1) = −2. A function with a singularity for which there is no limit is called
an essential singularity. The classic example is

f (x) = sin(1∕x), (1.39)

which is plotted in Figure 1.15. Observe that as x approaches 0, there is no single
finite value for the function.

Finally, ordinary functions can be divided into two basic types.
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Figure 1.15 Function with an essential singularity at x = 0.
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Definition: Algebraic Functions and Transcendental Equations An algebraic
function f (x) satisfies the following polynomial equation:

pn(x)f n(x) + … + p1(x)f (x) + p0(x) = 0, (1.40)

where {pm(x)} are polynomials in x and n ∈  (the natural numbers {1, 2,…}). All
other equations are transcendental equations, such as those containing exponential,
logarithmic, and trigonometric functions.

Example 1.10 Examples of algebraic functions are

f (x) = x4 + x2 − x + 1, f (x) =
√

x, f (x) = 1∕x2
, (1.41)

and examples of transcendental functions are

f (x) = log(x), f (x) = tan−1(x), f (x) = cos(x) tan(x). (1.42)

Both types of functions/equations are considered in this book. In Chapter 4, we
find that the solutions to some algebraic equations require complex numbers. The
class of ordinary functions is extended in Chapter 5 to generalized functions, which
include the Dirac delta function 𝛿(x) and its derivatives 𝛿(n)(x).

1.5 DERIVATIVES AND INTEGRALS

In this section, definitions for the ordinary derivative of a function of one independent
variable and its Riemann integral are reviewed.

Definition: Derivative The derivative of function f (x) is another function that
gives the rate of change of y = f (x) as x is varied.

The following notations are used to represent the derivative of y = f (x):

dy

dx
,

d
dx

f (x), f ′(x), ẏ, (1.43)

though the last form is usually reserved for the derivative of y(t) with respect to time
t: ẏ = dy∕dt. The derivative of a continuous function is generated from the following
limit:

d
dx

f (x) = lim
Δx→0

f (x + Δx) − f (x)
Δx

, (1.44)

where a secant line connects the points {x, f (x)} and {x + Δx, f (x + Δx)}. AsΔx → 0,
the family of secant lines approach the tangent line at x as shown for the function in
Figure 1.16. The next example demonstrates how to use this definition of the deriva-
tive for two of the functions in Example 1.8.
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x x+Δx

f(x)

f(x+Δx)

Secant line

Tangent line

Figure 1.16 Finite approximation of the derivative of f (x) at x.

Example 1.11 For y = x2:

dy

dx
= lim

Δx→0

(x + Δx)2 − x2

Δx
= lim

Δx→0

2xΔx + Δx2

Δx
= 2x, (1.45)

and for y = 2x + 1:

dy

dx
= lim

Δx→0

[2(x + Δx) + 1] − (2x + 1)
Δx

= lim
Δx→0

2Δx
Δx

= 2. (1.46)

For the latter affine function, the derivative is a constant equal to the slope. In general,
the derivative varies with x, as it does for the quadratic function f (x) = x2.

Example 1.12 Consider the derivative of the absolute value function y = |x|:

dy

dx
= lim

Δx→0

|x + Δx| − |x|
Δx

= lim
Δx→0

{
(x + Δx − x)∕Δx, x > 0
(−x − Δx + x)∕Δx, x < 0.

(1.47)

Thus, as Δx → 0:
dy

dx
=
{

1, x > 0
−1, x < 0.

(1.48)

Although the absolute value function is continuous at all points, its derivative does not
exist at x = 0 because the ratio in (1.47) is not defined there in the limit. However,
since this is usually not an issue in practice, d|x|∕dx = sgn(x) is often used where
sgn(x) is the signum function:

sgn(x) ≜
⎧
⎪
⎨
⎪
⎩

1, x > 0
0, x = 0
−1, x < 0.

(1.49)
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The derivative of function y(x) can be extended to include points where dy(x)∕dx is
not defined by using the theory of generalized functions, as discussed in Chapter 5.
This is even more evident for the derivative of the signum function:

d
dx

sgn(x) = 2𝛿(x), (1.50)

where 𝛿(x) is the Dirac delta function. This result cannot be derived using the differ-
ence approach in (1.44)

It is not necessary to use the limit in (1.44) to find derivatives because many
results have already been established for a wide range of functions. For convenience,
Appendix C summarizes the derivatives of several ordinary functions. The following
important properties of the derivative are provided without proof, which can be used
to derive results for more complicated functions.

• Addition and scalar multiplication:

d
dx

[𝛼f (x) + 𝛽g(x)] = 𝛼

d
dx

f (x) + 𝛽

d
dx

g(x), (1.51)

with 𝛼, 𝛽 ∈ .

• Product rule:
d
dx

[f (x)g(x)] = g(x) d
dx

f (x) + f (x) d
dx

g(x). (1.52)

• Quotient rule:

d
dx

f (x)
g(x)

= [1∕g2(x)]
[
g(x) d

dx
f (x) − f (x) d

dx
g(x)

]
. (1.53)

• Chain rule:
d
dx

f (g(x)) = d
dg(x)

f (g(x)) d
dx

g(x). (1.54)

As shown earlier, the independent variable of the function in a derivative is often
suppressed for notational convenience. For example, we usually just write dy∕dx,
which is the same as dy(x)∕dx; we also use y′(x) as was done for the initial condi-
tion y′(0) in Figure 1.7. For the nth-order derivative, a superscript is used: y(n)(x), or
multiple primes y′′(x), or multiple dots for time derivatives ÿ(t).

Example 1.13 The chain rule is useful for finding the derivative of a composite
function where the variable of one equation depends on another variable. Let the two
functions be

f (y) = 4y2 − y + 3, y = g(x) = x2 + 1. (1.55)

The derivatives are

d
dy

f (y) = 8y − 1 = 8g(x) − 1,
d
dx

g(x) = 2x, (1.56)



�

� �

�

DERIVATIVES AND INTEGRALS 25

0 0.5 1 1.5 2 2.5 3
−100

−50

0

50

100

150

200

t (s)

f(
t)

 (
m

),
 g

(t
) 

(m
/s

),
 h

(t
) 

(m
/s

2 )

Vehicle position, velocity, and acceleration

Position f(t)
Velocity g(t)
Acceleration h(t)

Figure 1.17 Vehicle position, velocity, and acceleration waveforms used in Example 1.14.

and the chain rule yields

d
dx

f (g(x)) = [8g(x) − 1]2x = 16x3 + 14x. (1.57)

This is verified by substituting g(x) into f (y) and differentiating once with respect
to x:

f (g(x)) = 4x4 + 7x2 + 6 ⇒
d
dx

f (g(x)) = 16x3 + 14x. (1.58)

Substituting one equation into the other is usually a tedious process, which is a step
the chain rule eliminates. The product and quotient formulas also simplify finding
derivatives because it is not necessary to multiply or divide the functions, respectively,
before computing derivatives.

Example 1.14 Suppose the position of a vehicle in meters (m) along one Cartesian
coordinate over time t is described by the following piecewise linear function:

f (t) =
⎧
⎪
⎨
⎪
⎩

100t, 0 ≤ t ≤ 1
−30t2 + 160t − 30, 1 < t ≤ 2
40t + 90, 2 < t ≤ 3,

(1.59)
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where the units of t are seconds (s). The distance traveled versus time is illustrated
in Figure 1.17 (the solid line). The velocity is the time derivative of this function,
denoted by g(t) = ḟ (t) with units m/s:

g(t) =
⎧
⎪
⎨
⎪
⎩

100, 0 ≤ t ≤ 1
−60t + 160, 1 < t ≤ 2
40, 2 < t ≤ 3.

(1.60)

In Figure 1.17, we see that the velocity is initially 100 m/s and then it decreases
linearly to 40 m/s (the dashed line). The acceleration is the time derivative of the
velocity h(t) = ġ(t) = f̈ (t), which has units m/s2:

h(t) =
⎧
⎪
⎨
⎪
⎩

0, 0 ≤ t < 1
−60, 1 ≤ t < 2
0, 2 ≤ t ≤ 3.

(1.61)

The vehicle has nonzero acceleration only when its velocity is decreasing from 100
to 40 m/s (it is actually a deceleration because h(t) is negative). Unlike the first two
functions, h(t) is not continuous.

Example 1.15 The derivative can be used to find saddle points, the minimum, or
the maximum of a function (if they exist). Consider the cubic function f (x) = (x − 1)3
plotted in Figure 1.18. The first derivative is f ′(x) = 3(x − 1)2 and the second deriva-
tive is f ′′(x) = 6(x − 1), both of which are also plotted in Figure 1.18. Observe that
f (x) has a saddle point at x = 1: the derivative f ′(x) (the dashed line) is 0 there, but
x = 1 is neither a maximum nor a minimum of f (x). The second derivative f ′′(x) is
also 0 at x = 1, which means that the quadratic function f ′(x) has a minimum there.
It is a minimum (and not a maximum) because the second derivative of f ′(x), given
by f (3)(x) = 6, is positive.

Definition: Indefinite Integral The indefinite integral of f (x) is another function
g(x) such that dg(x)∕dx = f (x).

The indefinite integral g(x) is also called the antiderivative, and so, integration is
the inverse operation of differentiation. It is represented by

g(x) = ∫ f (x)dx = F(x) + c, (1.62)

where c is a constant independent of x, and F(x) is the antiderivative when c = 0.
Thus, the antiderivative is not unique; instead, we say it is unique up to a constant.
The value of c is determined by boundary conditions.
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Figure 1.18 Cubic function f (x) = (x − 1)3 in Example 1.15 and its derivatives.

Example 1.16 For the scenario in Example 1.14, the velocity is the indefinite inte-
gral of acceleration:

g(t) = ∫ h(t)dt =
⎧
⎪
⎨
⎪
⎩

c1, 0 ≤ t ≤ 1
−60t + c2, 1 < t ≤ 2
c3, 2 < t ≤ 3,

(1.63)

where {cn} are constants that are determined by the boundary conditions for the
subintervals [0, 1], (1, 2], and (2, 3]. In order to continue, we need the initial velocity,
which in this case is 100 m/s, yielding c1 = 100. Similarly, the final velocity gives
c3 = 40 m/s. The middle coefficient is derived by assuming that the velocity does not
change instantaneously. Thus, at t = 1:

− 60 × 1 + c2 = 100 =⇒ c2 = 160 m∕s, (1.64)

which can also be derived at t = 2:

− 60 × 2 + c2 = 40 =⇒ c2 = 160 m∕s. (1.65)

Combining these terms gives the expression for g(t) in (1.60).
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Definition: Definite Integral The definite integral of function f (x) is a real number
derived from the indefinite integral with specific limits of integration:

g(b) − g(a) = ∫
b

a
f (x)dx. (1.66)

It gives the area under f (x) on the interval [a, b].
For a definite integral, the constant c appearing in (1.62) is of no concern because

it cancels when evaluated at the limits:

g(b) − g(a) = [F(b) + c] − [F(a) + c] = F(b) − F(a). (1.67)

Note that seemingly simple integrals require special attention. For example, it is not
clear how to evaluate

∫
b

a
f (x)dx = ∫

1

−1
(1∕x)dx, (1.68)

because f (x) = 1∕x has a singularity at x = 0. Such functions are sometimes called
pseudofunctions and the integral is improper.

Definition: Improper Integral The following integral is improper if f (x) is infi-
nite for some x in [a, b]:

∫
b

a
f (x)dx, (1.69)

or if a = −∞, b = ∞, or both.
In both situations, we must carefully evaluate the integral as demonstrated in the

next example.

Example 1.17 The following integral is improper because the function is
unbounded at x = 1:

∫
2

1

dx
x − 1

. (1.70)

This expression is examined by changing the lower limit to 𝜖 and letting 𝜖 → 1:

lim
𝜖→1∫

2

𝜖

dx
x − 1

= lim
𝜖→1

[ln (|2 − 1|) − ln (|𝜖 − 1|)] = ∞. (1.71)

Similarly, for

∫
∞

2

dx
x − 1

, (1.72)

we have

lim
𝜖→∞∫

𝜖

2

dx
x − 1

= lim
𝜖→∞

[ln (|𝜖 − 1|) − ln (|2 − 1|)] = ∞. (1.73)
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Both of these integrals are divergent. Suppose the denominator in (1.70) is squared:

∫
2

1

dx
(x − 1)2

. (1.74)

Then

lim
𝜖→1∫

2

𝜖

dx
(x − 1)2

= lim
𝜖→1

−1
x − 1

|
|
|
|

2

𝜖

= ∞, (1.75)

which is also divergent. However, the integral

∫
∞

2

dx
(x − 1)2

(1.76)

is convergent:

lim
𝜖→∞∫

𝜖

2

dx
(x − 1)2

= lim
𝜖→∞

−1
x − 1

|
|
|
|

𝜖

2
= 1. (1.77)

Although f (x) = 1∕
√

x − 1 is undefined at x = 1, the following integral is conver-
gent:

∫
2

1

dx
√

x − 1
= 2

√
x − 1||

|

2

1
= 2. (1.78)

The three functions in this example all have a singularity at x = 1 as shown in
Figure 1.19. Since 1∕

√
x − 1 is imaginary for x < 1, it is plotted only for x > 1.

Imaginary and complex numbers are covered in Chapter 4.

The definite integral in (1.66) is known as a Riemann integral in order to distin-
guish it from other types of integrals (such as the Lebesgue integral, which is beyond
the scope of this book). It can be defined in terms of the following Riemann sum:

∫
b

a
f (x)dx = lim

Δxn→0

N−1∑

n=0

f (xn)Δxn, (1.79)

such that N → ∞ with Δxn ≜ xn+1 − xn, x0 = a, and xN = b. In a Riemann sum,
the interval [a, b] on the x-axis is divided into nonoverlapping subintervals, which
together cover the entire interval. This collection of subintervals is called a partition
of [a, b]. Observe that we have used the smaller value xn of Δn for the argument of
f (xn), in which case the sum is known as a lower Riemann sum. If instead xn+1 is used,
then it is called an upper Riemann sum. In the limit as Δxn → 0, both sums converge
to the same quantity for a continuous function, giving the definite integral of f (x) on
[a, b]. Examples of the lower and upper Riemann sums are indicated by the shaded
regions in Figure 1.20.
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Figure 1.20 Lower and upper Riemann sums approximating the integral of f (x) on [a, b].

Although it is not necessary for the subintervals to have the same width, it is usu-
ally convenient to do so with Δxn = (b − a)∕N ≜ Δ for all n such that xn = a + nΔ
and (1.79) becomes

∫
b

a
f (x)dx = b − a

N
lim

N→∞

N−1∑

n=0

f (a + nΔ). (1.80)

Example 1.18 Consider again the functions in Example 1.8. The area under
f (x) = x2 on [0, 2] is

∫
2

0
x2dx = 2

N
lim

N→∞

N−1∑

n=0

(nΔ)2 = 8
N3

N−1∑

n=0

n2
, (1.81)
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where we have assumed equal-length subintervals and substituted Δ = 2∕N. A
closed-form expression in Appendix C for the last sum in (1.81) yields

∫
2

0
x2dx = lim

N→∞
(8∕N3)(1∕6)[(N − 1)N][2(N − 1) + 1]

= (8∕6) lim
N→∞

2N3 − 3N2 + N
N3

= 8∕3. (1.82)

Since the indefinite integral of f (x) = x2 is g(x) = x3∕3 + c, we confirm that the area
of f (x) on [0, 2] is 8∕3. For f (x) = 2x + 1 on [−1, 2]:

∫
2

−1
(2x + 1)dx = lim

N→∞
3
N

N−1∑

n=0

[2(−1 + nΔ) + 1]

= lim
N→∞

[

(18∕N2)
N−1∑

n=0

n − (3∕N)
N−1∑

n=0

1

]

, (1.83)

where Δ = 3∕N. The last sum is N, and using another closed-form expression from
Appendix C for the first sum in (1.83), the area is

∫
2

−1
(2x + 1)dx = lim

N→∞
(18∕N2)[(N − 1)N∕2] − 3 = 6. (1.84)

The indefinite integral of f (x) = 2x + 1 is g(x) = x2 + x + c, and from this we verify
that the definite integral on [−1, 2] is 6.

It is not necessary that the sum in (1.79) be used to derive integrals because many
results have already been established for a wide range of functions. Appendix C
includes some indefinite integrals as well as a few definite integrals. The following
important properties of integration are provided without proof.

• Integration by parts:

∫ 𝑤(x)d𝑣(x)
dx

dx = 𝑤(x)𝑣(x) − ∫
d𝑤(x)

dx
𝑣(x)dx. (1.85)

• Leibniz’s integral rule:

d
dx ∫

b(x)

a(x)
f (𝑣)d𝑣 = f (b(x)) d

dx
b(x) − f (a(x)) d

dx
a(x). (1.86)
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The following expressions are special cases that are used often in engineering
problems:

d
dx ∫

x

a
f (𝑣)d𝑣 = f (x), d

dx ∫
b

x
f (𝑣)d𝑣 = −f (x). (1.87)

Example 1.19 Consider the indefinite integral

f (x) = ∫ x exp (𝛼x)dx, (1.88)

where 𝛼 is a constant. In order to use integration by parts, we equate the
following: 𝑤(x) = x and d𝑣(x)∕dx = exp (𝛼x) which yield d𝑤(x)∕dx = 1 and
𝑣(x) = (1∕𝛼) exp (𝛼x). The expression in (1.85) gives

f (x) = (x∕𝛼) exp (𝛼x) − (1∕𝛼)∫ exp (𝛼x)dx, (1.89)

whose integral is straightforward to evaluate:

f (x) = (x∕𝛼) exp (𝛼x) − (1∕𝛼2) exp (𝛼x) + c

= [(𝛼x − 1)∕𝛼2] exp (𝛼x) + c, (1.90)

where c is the constant of integration. For an example of Leibniz’s integral rule,
consider

g(x) = ∫
x2

x
exp (𝛼u)du, (1.91)

which has derivative

d
dx

g(x) = exp (𝛼x2) d
dx

x2 − exp (𝛼x) d
dx

x

= 2x exp (𝛼x2) − exp (𝛼x). (1.92)

This is verified by performing the integration:

g(x) = (1∕𝛼)[exp (𝛼x2) − exp (𝛼x)], (1.93)

and then differentiating (using the chain rule):

d
dx

g(x) = (1∕𝛼)[2𝛼x exp (𝛼x2) − 𝛼 exp (𝛼x)], (1.94)

which simplifies to (1.92). Leibniz’s integral rule allows us to find the derivative in
(1.92) without first computing the integral in (1.91).

Derivatives and integrals appear in the linear ODEs and integro-differential
equations discussed in Chapters 6 and 7.
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1.6 SINE, COSINE, AND 𝝅

Next, we discuss some properties of sinusoidal functions and indicate how they arise
in practice. Consider the circle shown in Figure 1.21, which has unit radius r = 1
and is called the unit circle, and so, its circumference is 2𝜋. The famous constant
𝜋 = 3.141592653589… is the ratio of the circumference of any circle and its diame-
ter. Since it cannot be expressed as the ratio of two integers, 𝜋 is an irrational number
(of course, this also means that if the circumference of a circle is an integer, then its
diameter is not). The circumference in the figure can be divided into 360 equal lengths
(arcs), and each “pie slice” projected back to the origin is defined to have an angle
of 1∘. The distance along the unit circle yields the corresponding angle in radians.
The example in Figure 1.21 illustrates that an angle of 𝜋∕2 in the first quadrant rel-
ative to the positive horizontal axis is actually one-quarter distance along the circle
circumference of 2𝜋: 2𝜋∕4 = 𝜋∕2.

It is well known from trigonometry that sine of an angle formed by a right triangle
is defined as the ratio of the lengths of the distant side y and the hypotenuse r: sin(𝜃) ≜
y∕r. Similarly, cosine of 𝜃 is defined as the ratio of the lengths of the adjacent side of
a right triangle and its hypotenuse: cos(𝜃) ≜ x∕r. Since x2 + y2 = r2, we immediately
have that for any angle 𝜃:

sin2(𝜃) + cos2(𝜃) = 1, (1.95)

where either 𝜃 ∈ [0, 360∘] or 𝜃 ∈ [0, 2𝜋] radians. It is also clear from Figure 1.21 and
the connection between sine and cosine that

sin(𝜃 ± 𝜋∕2) = ± cos(𝜃), (1.96)

cos(𝜃 ± 𝜋∕2) = ∓ sin(𝜃). (1.97)

Plotting sine and cosine as functions of 𝜃, we find that sine lags cosine by 𝜋∕2 radians
(90∘).

Suppose now that the angle is written as 𝜃(t) = 𝜔ot so that it varies with time,
where 𝜔o is angular frequency with units of rad/s. Thus, with a fixed 𝜔o, any point
on the radial line from the origin to the circle with radius r has the same constant

Circumference
is 2π

Angle π/2 corresponds
to the distance along
the unit circle of the
first quadrant  

θ

Horizontal
axis

Vertical
axis

Figure 1.21 Unit circle with radius r = 1 and circumference 2𝜋.
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angular velocity as it sweeps counterclockwise with increasing t. This result follows
because the derivative is a constant d𝜃(t)∕dt = 𝜔o. From Figure 1.22, observe how
the functions sin(𝜔ot) and cos(𝜔ot) are generated. As time increases, cos(𝜔ot) is the
projection of the end of the radial line onto the horizontal axis; the cosine function
is the length of this projection as it varies over [−1, 1] (for r = 1). Likewise, sin(𝜔ot)
is the projection of the end of the radial line onto the vertical axis. A projection is
defined to be negative for cosine when it is located to the left of the origin on the
horizontal axis, and it is negative for sine when it is below the origin on the vertical
axis.

Summarizing, the time-varying functions sin(𝜔ot) and cos(𝜔ot) follow from the
usual definitions of the sine and cosine of an angle, except that the angle varies as
𝜃(t) = 𝜔ot. By convention, the angle is defined with respect to the positive horizontal
axis as depicted in Figure 1.22 for four different time instants (snapshots). These plots
illustrate why the sine and cosine functions are 90∘ out of phase with respect to each
other: as sin(𝜔ot) increases, cos(𝜔ot) decreases and vice versa. They are orthogonal
functions:

∫
b

a
sin(𝜔ot) cos(𝜔ot)dt = 0, (1.98)

sin(ωot1)

sin(ωot3)
sin(ωot4)

sin(ωot2)

cos(ωot2)cos(ωot1)

cos(ωot3) cos(ωot4)

(a) (b)

Unit circle

Unit circle

Unit circle

Unit circle

(c) (d)

ωot1

ωot3

ωot4

ωot2

Figure 1.22 Four snapshots of sine and cosine for time-varying angle 𝜃(t) = 𝜔ot with con-
stant angular velocity and t1 < t2 < t3 < t4.
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when (b − a)𝜔o is an integer multiple of 𝜋. This result is verified by using a trigono-
metric identity from Appendix C:

∫
b

a
sin(𝜔ot) cos(𝜔ot)dt = (1∕2)∫

b

a
[sin(2𝜔ot) + sin(0)]dt

= (−1∕4𝜔o) cos(2𝜔ot)|ba
= [cos(2𝜔oa) − cos(2𝜔ob)]∕4𝜔o, (1.99)

which is 0 when cos(2𝜔ob) = cos(2𝜔oa). Since cosine is periodic with period 2𝜋, we
require 2𝜔ob = 2𝜔oa + n2𝜋 for n ∈ , which means (b − a)𝜔o = n𝜋. Figure 1.23
shows a plot of (1.99) for a = 0 and 𝜔o = 1 rad/s as b is varied from 0 to 5𝜋. The
integral is 0 for b = {0, 𝜋, 2𝜋, 3𝜋, 4𝜋, 5𝜋}, and the maximum area is 1∕2 for this value
of 𝜔o. The orthogonality property is also evident from a geometric viewpoint because
the vertical and horizontal dashed lines in Figure 1.22 are orthogonal: they form the
previously mentioned right triangle. The fact that the radial line sweeps along a circle
gives rise to the specific smooth shapes of the sine and cosine waveforms, derived as
projections on the two axes.

Figure 1.24(a) shows the sine waveform in Figure 1.22 with 𝜔o = 1 rad/s. The
function approaches its maximum with a decreasing derivative, which is the cosine
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Figure 1.23 Orthogonality of sine and cosine for a = 0 and 𝜔o = 1 rad/s.
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Figure 1.24 Periodic waveforms. (a) Sine waveform sin(t) and its derivative cos(t).
(b) Triangular waveform and its rectangular derivative.
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Mass M

Spring
constant K

Rigid surface

Sinusoidal
oscillation

Figure 1.25 Mass on a spring influenced by gravity.

waveform also shown in the figure. (The orthogonality of these two waveforms is
also apparent from this figure.) This smooth behavior of its derivative is unlike that
of the triangular waveform in Figure 1.24(b) whose derivative is a constant until the
function reaches its maximum, at which point the derivative abruptly changes sign.
It turns out that many physical phenomena are modeled accurately using sinusoidal
functions. Apparently, many physical systems behave in a sinusoidal manner because
the underlying physics yield gradual variations rather than abrupt changes. This also
means that the physical mechanisms of many systems have the dynamic of constant
angular velocity along a circle on the plane as in Figure 1.22.

An example of a mechanical process is an object (mass) attached to a spring
as depicted in Figure 1.25. If the object is extended downward and released, its
up-and-down trajectory is sinusoidal. As the spring is stretched, its linear velocity
gradually decreases and it becomes exactly 0 at its maximum distance, just like a
sinusoidal waveform. This behavior is due to the physical properties of the spring
and the force of gravity. The object does not have constant linear velocity, and it
does not abruptly change direction at its minimum and maximum distance from the
rigid surface. The amplitude and frequency of the waveform depend on the mass M
of the object, the spring constant K, and the initial position of the object, which are
discussed further in Chapter 2.

We demonstrate in Chapter 4 that the sine and cosine axes as depicted in
Figure 1.21 can be represented on the complex plane, where the horizontal axis
(associated with cosine) is the real axis and the vertical axis (associated with sine)
is the imaginary axis. It turns out that both sine and cosine can be written together
using complex notation as follows:

exp (j𝜔ot) = cos(𝜔ot) + j sin(𝜔ot), (1.100)

where j ≜ √
−1 and exp (1) = e is Napier’s constant. This two-dimensional formula-

tion called Euler’s formula is widely used in engineering to represent signals and
waveforms, and exp (j𝜔ot) is an eigenfunction of a linear system as discussed in
Chapter 7.
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1.7 NAPIER’S CONSTANT e AND LOGARITHMS

Napier’s constant e is another important irrational number used in mathematics and
engineering. It is motivated by the following compound interest problem. Suppose
one has an initial monetary amount xo called the principal, which accumulates interest
at an annual percentage rate of 100r%. At the end of 1 year when a single interest
payment is made, the new principal is xo(1 + r), where for now we assume 0 < r ≤ 1.
Suppose instead that an interest payment is made after 6 months, and the total amount
available then accumulates interest until the end of the year. The amount after one-half
year is xo(1 + r∕2). Since this is the principal for the second half of the year, we have a
total amount of xo(1 + r∕2)(1 + r∕2) = xo(1 + r∕2)2 at the end of the year. Similarly,
by dividing the year into thirds, the amount at the end of the year is xo(1 + r∕3)3, and
in general, for n interest payments, the principal is xo(1 + r∕n)n at the end of 1 year.

It can be shown that for xo = 1 and r = 1 (corresponding to a 100% interest rate),
the limit is Napier’s constant:

lim
n→∞

(1 + 1∕n)n = e = 2.718281828459… (1.101)

This convergence to e is demonstrated in Figure 1.26. It is an interesting result that
the total monetary amount after 1 year of essentially continuous interest payments
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Figure 1.26 Convergence of (1 + 1∕n)n to e and its power series approximation, where n is
the upper limit of the sum in (1.104). (The individual points at integer n for the power series
have been connected by lines for ease of viewing.)
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(because n → ∞) is finite and given exactly by e. For general xo and r, the limit is

lim
n→∞

xo(1 + r∕n)n = xoer
, (1.102)

such that r > 0 results in a gain on the original principal xo, and r < 0 yields a loss.
These correspond to exponential growth and exponential decay, respectively.

The constant e has the following alternative representations.

• Limits:
e = lim

n→0
(1 + n)1∕n

, er = lim
n→0

(1 + n∕r)r∕n
. (1.103)

• Power series:

e =
∞∑

m=0

1
m!

. (1.104)

• Hyperbolic functions:
e = sinh(1) + cosh(1). (1.105)

Convergence of the power series sum in (1.104) with upper limit n instead of infin-
ity is shown in Figure 1.26. As n is varied over the 11 integers {0,… , 10}, we find
that the sum quickly approaches e; the first six values are 1, 2, 2.5, 2.6667, 2.7083,
and 2.7167.

The exponential function based on Napier’s constant is defined next, which is dis-
cussed further in Chapter 5.

Definition: Exponential Function The exponential function is

exp (x) ≜ ex
. (1.106)

It has domain  and range +.
The exponential function has the following properties.

• Product:
exp (x) exp (y) = exp (xy). (1.107)

• Ratio:
exp (x)
exp (y)

= exp (x∕y). (1.108)

• Derivative:
d
dx

exp (x) = exp (x). (1.109)

• Integrals:

∫ exp (x)dx = exp (x) + c, ∫
x

−∞
exp (𝑣)dv = exp (x), ∫

x

0
exp (𝑣)dv = exp (x) − 1.

(1.110)
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• Power series:

exp (x) =
∞∑

n=0

xn

n!
. (1.111)

• Hyperbolic functions:

exp (x) = cosh(x) + sinh(x), exp (−x) = cosh(x) − sinh(x). (1.112)

The last property gives cosh(x) = (1∕2)[exp (x) + exp (−x)] and sinh(x) =
(1∕2)[exp (x) − exp (−x)], which is similar to Euler’s formula for complex numbers
discussed in Chapter 4. The exponential functions in (1.112) and their hyperbolic
components are plotted in Figure 1.27.

The exponential function arises naturally in many engineering problems because
of its unique derivative and integral properties. This is demonstrated by the following
example in probability.

Example 1.20 The exponential probability density function (pdf) is

fX(x) =
{
𝛼 exp (−𝛼x), x ≥ 0

0, x < 0,
(1.113)

where the uppercase notation X denotes a random variable with outcomes x, and the
parameter 𝛼 > 0 determines the mean and variance of X. This pdf has domain ,
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Figure 1.27 Exponential and hyperbolic functions.
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support +, and range +. A valid pdf satisfies the following two conditions:

fX(x) ≥ 0, ∫
∞

−∞
fX(x)dx = 1. (1.114)

These are obviously true for the exponential pdf:

𝛼 exp (−𝛼x) ≥ 0, ∫
∞

0
𝛼 exp (−𝛼x)dx = − exp (−𝛼x)|∞0 = 1. (1.115)

Suppose instead that we are interested in another decaying function such as fX(x) =
ba−x ≥ 0 for a, b ≥ 0 and x ∈ +. The integral of this function is

b∫
∞

0
a−xdx = − ba−x

ln (a)
|
|
|
|

∞

0
= b

ln (a)
, (1.116)

where ln (⋅) is the natural logarithm defined next. In order for the integral to be 1, it
is necessary that b = ln (a), and so, we must have a > 1, yielding the following valid
pdf:

fX(x) = ln (a)a−x
, x ∈ +

, (1.117)

which has a maximum value of ln (a) at x = 0. Thus, other exponential-like decaying
functions are possible, but they require a leading coefficient, and so, they are not the
“natural” choice as is a = e with ln (a) = 1. The derivative and integral properties of
exp (x) eliminate such multiplicative scaling of the function. The same reasoning can
be used to justify e in the Gaussian pdf:

fX(x) =
1

√
2𝜋𝜎

exp (−(x − 𝜇)2∕2𝜎2), (1.118)

where 𝜇 and 𝜎 are its mean and standard deviation, respectively. Likewise, the pdf of
the Laplace random variable is

fX(x) =
1

2𝛼
exp (−|x|∕𝛼), (1.119)

with parameter 𝛼 > 0, which determines the variance 2𝛼2. The support for these last
two pdfs is the entire real line .

Finally, we consider logarithms and their connection to e.

Definition: Logarithm The logarithm of x is the exponent y with base b such that
by = x. It is written as logb(x) = y with domain + and range .

Perhaps the most familiar base is b = 10, which yields common logarithms.
Binary logarithms with b = 2 are used in the analysis of digital systems. Note that
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Figure 1.28 Logarithmic functions with different base b.

logb(1) = 0 for any b as depicted in Figure 1.28 where the base is varied from 2 to
10. The conversion formula of a logarithm from base b1 to base b2 is

logb2
(x) = logb1

(x)∕logb1
(b2). (1.120)

Example 1.21 For b = 10, the subscript is often omitted: log(x) (though in MAT-
LAB log has base e and log10 has base 10). Examples include log(1000) = 3 and
log(0.1) = −1. Integer powers of 2 are important numbers in digital systems because
their logic is based on the binary number system, usually represented by {0, 1}. Thus,
b = 2 such that log2(8) = 3, log2(64) = 6, log2(1∕2) = −1, and so on.

The following logarithm appears frequently in engineering applications.

Definition: Natural Logarithm The natural logarithm is

ln (x) ≜ loge(x), (1.121)

which has domain + and range . It is also defined by the definite integral:

ln (x) ≜ ∫
x

1
(1∕𝑣)dv. (1.122)
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Figure 1.29 Exponential and natural logarithm functions.

This is not an improper integral of the pseudofunction 1∕𝑣 because the limits of inte-
gration do not include the origin. From (1.121), we have

ln(exp (x)) = x, exp (ln(x)) = x, (1.123)

where it is assumed that x > 0 in the second equation. The exponential and natural
logarithm functions are plotted in Figure 1.29, where the vertical axis has been lim-
ited to 20 because the exponential function increases rapidly (e.g., exp (5) ≈ 148.41).
Observe the following properties: (i) ln (x) increases much more slowly than exp (x)
and (ii) ln (x) → −∞ as x → 0. We have also included the straight-line plot for
ln (exp (x)) = exp (ln (x)) = x, demonstrating that they are in fact inverse functions
of each other.

Logarithms have the following properties.

• Integrals:

∫ logb(x)dx = x[logb(x) − 1∕ ln (b)] + c, ∫ ln (x)dx = x ln (x) − x + c.

(1.124)

• Sum:

logb(x) + logb(y) = logb(xy). (1.125)
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• Difference:

logb(x) − logb(y) = logb(x∕y). (1.126)

• Exponent:

logb(xn) = nlogb(x). (1.127)

• Derivatives:
d
dx

logb(x) =
1

x ln (b)
,

d
dx

ln (x) = 1∕x. (1.128)

• Limit:

ln (x) = lim
n→∞

n(x1∕n − 1). (1.129)

• Power series:

ln (x) =
∞∑

n=1

(−1)n+1

n
(x − 1)n, ln (x + 1) =

∞∑

n=1

(−1)n+1

n
xn
. (1.130)

Example 1.22 From the identity 𝛼 = exp (ln (𝛼)), we can write

𝛼
𝑣 = exp (𝑣 ln (𝛼)). (1.131)

Suppose 𝑣 is a function of x such that

𝛼
𝑣(x) = exp (𝑣(x) ln (𝛼)). (1.132)

The right-hand side and the chain rule can be used to find the derivative of functions
of this form with x in the exponent:

d
dx

𝛼
𝑣(x) = d

dx
exp (𝑣(x) ln (𝛼))

= exp (𝑣(x) ln (𝛼)) ln (𝛼) d
dx

𝑣(x)

= ln (𝛼)𝛼𝑣(x) d
dx

𝑣(x), (1.133)

where (1.131) has been substituted in the final expression. This result is not the same
as the more commonly used derivative

d
dx

𝑣
n(x) = n𝑣n−1(x) d

dx
𝑣(x), (1.134)

where n in the exponent is a constant.



�

� �

�

NAPIER’S CONSTANT e AND LOGARITHMS 45

We conclude this section with proofs of the derivatives in (1.109) and (1.128) using
the limit definition of the derivative in (1.44). For the natural logarithm:

d
dx

ln (x) = lim
Δx→0

ln (x + Δx) − ln (x)
Δx

= lim
Δx→0

ln ((x + Δx)∕x)
Δx

. (1.135)

Multiplying and dividing by x and then using the exponent property yield

d
dx

ln (x) = lim
Δx→0

(x∕Δx) ln ((x + Δx)∕x)
x

= (1∕x) lim
Δx→0

ln ((1 + Δx∕x)x∕Δx), (1.136)

where 1∕x has been brought outside the limit. The second form of the limit for e in
(1.103) (with x in place of n) gives the final result:

d
dx

ln (x) = (1∕x) ln (e) = 1∕x. (1.137)

The derivative of exp (x) is obtained from the derivative of the natural logarithm and
the chain rule:

d
dx

ln (exp (x)) = 1
exp (x)

d
dx

exp (x) =⇒ d
dx

exp (x) = exp (x), (1.138)

where we have used the fact that the left-hand side equals 1.

PROBLEMS

MATHEMATICAL MODELS

1.1 Sketch the following transfer characteristic:

y =
⎧
⎪
⎨
⎪
⎩

0, x < 0
x2
, 0 ≤ x < 3

2x + 3, 3 ≤ x < 5
0, x ≥ 5,

(1.139)

and sketch its output y(t) when the input is the exponential function
x(t) = exp (t)u(t).

1.2 Repeat the previous problem for

y =
⎧
⎪
⎨
⎪
⎩

0, x < 0
2x, 0 ≤ x < 2
4, 2 ≤ x < 4

4 exp (−2(x∕2 − 4)), x ≥ 4,

(1.140)

and x(t) = 2tu(t).
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1.3 (a) For the linear system of equations in (1.5) and (1.6) with

A =
[

2 1
1 2

]

, (1.141)

solve for {y1, y2} given x1 = x2 = 1. (b) Repeat part (a) for

A =
[

2 2
2 2

]

. (1.142)

1.4 (a) For the nonlinear system in Example 1.4, iteratively solve for y1 and y2 by
using the same parameter values and inputs, except let the exponential param-
eter be 𝛼 = 5. (b) Describe the behavior of the iterations for 𝛼 = 2.

1.5 A diode circuit using an exponential model with a series resistor is represented
by the following system of equations:

a11 exp (𝛼y) + a12 = x, a21 + a22y = x, (1.143)

where the input x is a current (A) and the output y is a voltage (V). The coef-
ficients {amn} depend on the series resistor, the voltage source, and the diode
parameters. Iteratively solve for {x, y} using the following parameter values:
a11 = 10−15, a12 = −a11, a21 = 10−3, a22 = −a21, and 𝛼 = 40. Let the initial
value be y = 0.6 V.

1.6 A transistor circuit with a series resistor is represented by the following system
of equations:

a11y2 = x, a21y + a22 = x, (1.144)

where the input x is a current (A) and y is an output voltage (V). The coeffi-
cients {amn} depend on the series resistor, the voltage source, and the transistor
parameters. Let the parameter values be a11 = 0.5 × 10−3, a21 = −10−3, and
a22 = 5 × 10−3. Iteratively solve for {x, y} assuming the initial value y = 1 V.

FUNCTIONS AND PROPERTIES

1.7 Specify the domain, range, and support for the following functions, assuming
that x and y are real-valued. (a) y =

√
x2 − 1. (b) y = u(x − 2) (shifted unit step

function). (c) y = 1∕|x − 1|.

1.8 For real-valued f (x) = 1∕
√

x + 2 and g(x) = |x|, give the domain, range, and
support for the following functions. (a) y1 = f (x)∕g(x). (b) y2 = g(x)∕f (x). (c)
y3 = f (x)g(x).

1.9 Specify the inverse image for each function. (a) y1 = x2 − 5. (b) y2 =
|x − 1|∕

√
x. (c) y3 = sgn(x)u(x + 2).
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1.10 Find the range of values for x. (a) |(x − 1)∕x| < 2. (b) |x + 2| > 3x. (c) x2 +
|x| − 1 > 0.

1.11 Determine the values of x for which the following functions are continuous. (a)
y1 = 2x3 − x2 + x. (b) y2 = x∕(x2 − 1). (c) y3 = sgn(x − 2)sgn(x + 2).

1.12 Let {x1, x2} be the roots of the quadratic equation ax2 + bx + c = 0. Prove that
x1 + x2 = −b∕a and x1x2 = c∕a.

1.13 It can be shown that if f (x) is a polynomial with real coefficients such that
f (x1) < 0 and f (x2) > 0 for real {x1, x2}, then f (x) = 0 for some x between x1
and x2. Determine if this is the case for the following functions. (a) f1(x) =
x3 − 5x2 + 2x + 8 with x1 = 1 and x2 = 3. (b) f2(x) = x3 + 2x2 − 5x − 6 with
x1 = −2 and x2 = 0.

1.14 If function f (x) has a derivative at xo, then show using the following expression
that it is also continuous at xo:

lim
x→xo

|f (x) − f (xo)| = lim
x→xo

|
|
|
|
(x − xo)

f (x) − f (xo)
x − xo

|
|
|
|
. (1.145)

DERIVATIVES AND INTEGRALS

1.15 Find the derivative of y = x3 + 2x using the limit definition.

1.16 Repeat the previous problem for y =
√

x + 2.

1.17 Repeat Problem 1.15 for y = x2 + 1∕x assuming x ≠ 0.

1.18 (a) Use the product and chain rules to write an expression for

y = d
dx

gm(x)hn(f (x)), (1.146)

where {m, n} are constants. (b) Find the derivative of x2m exp (𝛼n sin(x)).

1.19 (a) Extend the chain rule to find an expression for

y = d2

dx2
f (g(x)). (1.147)

(b) Find the second derivative of exp (𝛼 sin(x)).

1.20 Determine which of the following improper integrals converge.

(a) ∫
∞

0
exp (−𝛼x) sin(x)dx. (b) ∫

4

2

dx
(x − 2)3

. (c) ∫
∞

0

dx
x2 + 4

.

(1.148)
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1.21 Consider the integral transform

X(𝜎) ≜ ∫
∞

0
x(t) exp (−𝜎t)dt, (1.149)

where 𝜎 is real-valued. Find X(𝜎) for x(t) = exp (−t)u(t) + u(t) and specify the
range of values for 𝜎 such that the integral is convergent.

1.22 The current i(t) in a series circuit with resistance R and inductance L is modeled
by the following first-order ODE:

L
d
dt

i(t) + Ri(t) = 0. (1.150)

(a) Verify that the solution of this equation has the form i(t) = i(0) exp (−𝛼t)u(t)
where i(0) is the initial current, and specify the constant 𝛼. (b) Find the value
of t such that the current is 1∕2e its initial value i(0).

1.23 Repeat the previous problem for the integral equation

(1∕L)∫ 𝑣(t)dt + 𝑣(t)∕R = 0, (1.151)

where 𝑣(t) is a voltage with initial value 𝑣(0).

SINE, COSINE, AND 𝝅

1.24 Prove the identity cos(𝜃2 − 𝜃1) = cos(𝜃1) cos(𝜃2) + sin(𝜃1) sin(𝜃2) using an
illustration on the unit circle.

1.25 (a) Repeat the previous problem for the double angle formula cos(2𝜃) =
cos2(𝜃) − sin2(𝜃), and (b) verify this result algebraically using the identity in
that problem.

1.26 Find the minimum and maximum of y = 3 cos(x) + 2 sin(x∕2) on the interval
x ∈ [0, 𝜋].

1.27 Solve sin2(𝜃) + 2 sin(𝜃) − 1 = 0 for 𝜃 ∈ [−𝜋∕2, 𝜋∕2].

1.28 For a general triangle whose sides have lengths x, y, and r, prove the law of
cosines:

x2 + y2 − 2xy cos(𝜃) = r2
, (1.152)

where 𝜃 is the angle formed by the x and y sides.

1.29 Show that
d
dx

sin−1(x) = 1
√

1 − x2
. (1.153)
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NAPIER’S CONSTANT e AND LOGARITHMS

1.30 (a) Use the natural logarithm to find an expression for the derivative of
y = f g(x)(x) with respect to x. (b) Find the derivative of y = xln(x).

1.31 From the logarithm sum property ln(y1y2) = ln(y1) + ln(y2), prove the product
property exp (x1 + x2) = exp (x1) exp (x2) where y = exp (x).

1.32 Use the fact that d ln(y)∕dx = (1∕y)dy∕dx to find the derivative of the following
functions. (a) y1 = x2

√
x − 1. (b) y2 = x2 cos(x).

1.33 Prove that the minimum of y = xx is located at x = e−1.

1.34 Solve ln(x − 1) − 2 ln(x) = ln(2) for x.

1.35 The time constant of the exponential function y = 2 exp (−t∕𝜏)u(t) is 𝜏 > 0. It
is the value of t such that y is 1∕e times its initial value of 2. (a) Give the number
of time constants such that y = 1∕5. (b) Repeat part (a) by approximating the
exponential function using the first two terms of the Maclaurin series expansion
in Appendix E.

COMPUTER PROBLEMS

1.36 For the model in Problem 1.1, use MATLAB to plot the input and output for
x(t) = 6 sin(2𝜋t) on the interval t ∈ [0, 1].

1.37 A transistor has the following input/output voltage transfer characteristic:

y =
⎧
⎪
⎨
⎪
⎩

A, x < 𝛼

A − 𝛽(x − 𝛼)2, 𝛼 ≤ x < y + 𝛼

complicated, x > y + 𝛼.

(1.154)

Find the upper bound for x in the second region of the transfer characteristic, and
approximate the third region using the exponential function y = yb exp (−𝛽(x −
xb))u(x − xb), where yb is the output when the input is x = xb. Repeat the pre-
vious problem using this model with input x(t) = 2 sin(2𝜋t) + 2 on the interval
t ∈ [0, 1]. Let the parameters be A = 5, 𝛼 = 1, and 𝛽 = 2.

1.38 For the model in Problem 1.5, use MATLAB to plot the two functions and show
the first few results of the iterative approach for finding the solution for {x, y}.
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2
CIRCUITS AND MECHANICAL
SYSTEMS

2.1 INTRODUCTION

In this chapter, we describe mathematical models for some circuit devices and
describe basic laws for voltages and currents in a circuit. The properties of
resistance, inductance, and capacitance are assumed to be due only to devices at
specific locations in a circuit; the connecting wires are ideal conductors. Such
lumped parameter circuit models yield linear ordinary differential equations (ODEs)
with constant coefficients (as opposed to partial differential equations (PDEs),
which are more difficult to analyze). We also cover some mechanical systems
that are described by similar ODEs, which should provide physical intuition for
analogous circuits and their components. These mathematical models represent
the input/output characteristics of the circuit devices without requiring information
about their underlying physics. They can be derived from measurements of actual
devices, and they usually apply only over a limited operating range for the current
and voltage. Although factors such as humidity and temperature can influence the
behavior of these devices, we assume ideal models.

A thorough analysis of the many types of circuits is beyond the scope of this
book. Instead, we focus on simple circuits that are modeled by first- and second-order
ODEs. The goal is to illustrate how ODEs arise in circuits and mechanical systems,
and in subsequent chapters, we describe techniques for solving for the unknown
variables. In Chapters 7 and 8 on the Laplace and Fourier transforms, we consider

Mathematical Foundations for Linear Circuits and Systems in Engineering, First Edition. John J. Shynk.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
Companion Website: http://www.wiley.com/go/linearcircuitsandsystems

http://www.wiley.com/go/linearcircuitsandsystems
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higher order system models without specifying the underlying physical systems. The
material on first- and second-order circuits and systems covered in this chapter should
provide some insights into the behavior of higher order system models.

2.2 VOLTAGE, CURRENT, AND POWER

We begin with some basic definitions.

Definition: Electric Circuit An electric circuit is a network of electrical devices
whose terminals are connected together by ideal conducting wires.

The linear circuit elements considered in this book are resistors, capacitors,
and inductors. We also briefly discuss diodes, which are nonlinear semiconductor
elements. Each of these devices can be represented by the system model given
previously in Figure1.1, where the input and output correspond to the current through
or the voltage across the device.

Definition: Elementary Charge The elementary charge qe ≈ 1.6021 × 10−19

coulombs (C) is the charge of a proton.

(C for coulomb should not be confused with italic C used later for the capacitor.)
The total charge q stored in an electric device such as a capacitor is the sum of
all elementary charges, and so the total positive charge is an integer multiple of qe.
Most books on electric circuits assume by convention that current is the flow of posi-
tive charge (proton charge), even though, in fact, electrons move through the device;
electron charge is the negative of proton charge. An example of a simple circuit is
shown in Figure 2.1, consisting of a battery (voltage source) and one of the devices
to be described later.

Definition: Current The current through a circuit device is the time rate of change
of charge:

i ≜ dq

dt
, (2.1)

which has units of amperes (A) defined as coulombs/second (C/s).

+

_

v Battery
Circuit
device

a

b

i

Voltage

Current

Figure 2.1 Simple circuit showing the relationship between voltage and current. Current i
(C/s) is the time rate of change for the charge through point a. Voltage 𝑣 (J/C) is the work
needed to move charge q from point b to point a.
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The current in Figure 2.1 is provided by the charge stored in the battery, and the
amount of i depends on the voltage 𝑣 and the type of circuit device. The model in
(2.1) for current is more intuitive than the model given next for voltage.

Definition: Voltage The voltage across a circuit device is the work (energy) 𝑤 in
joules (J) required to move charge q through the device:

𝑣 ≜ d𝑤
dq

, (2.2)

which has units of volts (V) defined as joules/coulomb (J/C).

Since work and energy have the same units, the voltage is the potential energy,
and so, it is also called the electric potential. Voltage is always defined across two
points in a circuit, whereas current is the flow of charge through a single point.

Energy in a circuit implies that power is associated with each of the circuit ele-
ments.

Definition: Power The instantaneous power of a circuit device is the rate of energy
delivered or absorbed:

p ≜ d𝑤
dt

, (2.3)

which has units of watts (W) defined as joules/second (J/s). The average power for
duration T is

P ≜ 1
T ∫

T

0
p(t)dt, (2.4)

which also has units of watts.

From the definitions of voltage and current, (2.3) can be rewritten so that the power
associated with a circuit element is the product of 𝑣 and i:

p = d𝑤
dq

dq

dt
= 𝑣i. (2.5)

Power is absorbed by a device when p > 0; otherwise, it is delivered by a device.
In Figure 2.1, the battery is an active device that provides power to the circuit. The
shaded device in the figure may be an active or passive element and may deliver or
absorb power.

A resistor always absorbs power, dissipating the energy as heat. Ideal capaci-
tors and inductors are capable of absorbing and delivering power because they are
energy-storage devices. Voltage and current sources can absorb or deliver power
depending on their placement in a circuit. Figure 2.2 shows a block diagram of a cir-
cuit element with two terminals. By convention, when the current i (flow of positive
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Circuit
device

i

v
+ −

Current

Voltage

Figure 2.2 Conventional labels of a circuit element. When i enters the positive terminal,
power is absorbed by the device; otherwise, it is delivering power.

charge) enters the positive terminal defined by the voltage 𝑣, the device is absorbing
power. However, if after analyzing the circuit it turns out that the value of i is negative,
then the device is actually delivering power. We use the standard voltage polarity and
current direction shown in the figure, and the analysis will yield negative values if 𝑣
has the opposite polarity or i is flowing in the opposite direction. The current entering
and leaving a two-terminal device must be the same.

For convenience, we have summarized the units of the various electrical quan-
tities in Table 2.1. Different notations for the voltage, current, and power are used
depending on whether or not they are time-varying (lowercase) or constant (upper-
case). These are summarized in Table 2.2. The reader should note that the same letter
may be used for different quantities, though usually with different fonts. For example,
italic W is used to denote constant work, whereas roman W is the abbreviation for
watts. Similarly, italic R denotes resistance while calligraphic  is the symbol repre-
senting all real numbers (see Table 1.1). The lowercase energy symbol e should not
be confused with Napier’s constant.

Example 2.1 Suppose the current through a device is sinusoidal:

i(t) = Am sin(𝜔ot), t ∈ , (2.6)

where Am is the maximum amplitude and 𝜔o is angular frequency. For the resistor
mentioned in Chapter 1 and discussed in the next section, the voltage and current are

TABLE 2.1 Electrical Symbols and Units

Property Symbol Units Related Units

Charge q, Q Coulomb (C) A s, F V
Current i, I Ampere (A) C/s
Voltage 𝑣, V Volt (V) J/C
Work 𝑤, W Joule (J) W s, C V
Energy e, E Joule (J) W s, C V
Power p, P Watt (W) J/s
Resistance R Ohm (Ω) J s/C2

Capacitance C Farad (F) C2/J
Inductance L Henry (H) J s2∕C2
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TABLE 2.2 Circuit Notation

Type Notation

Time-varying quantities e(t), i(t), p(t), q(t), 𝑣(t), 𝑤(t)
Constant quantities E, I, P, Q, V , W
Fixed device parameters C, L, R

0 0.5 1 1.5 2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t (s)

v(
t)

 (
V

),
 p

R
(t

) 
(W

),
 P

R
 (

W
)

Resistor voltage and power

v(t)=i(t)
pR(t)

PR

Figure 2.3 Voltage and power results in Example 2.1 for a sinusoidal current through a
resistor with To = 1 s, 𝜔o = 2𝜋 rad/s (fo = 1 Hz), Am = 1 A, and R = 1 Ω.

related as 𝑣(t) = Ri(t) (Ohm’s law), and the instantaneous power is

pR(t) = A2
mR sin2(𝜔ot) = (1∕2) A2

mR[1 − cos(2𝜔ot)], (2.7)

where the subscript is sometimes used to denote the particular device. Examples of
this voltage and power are illustrated in Figure 2.3 for 𝜔o = 2𝜋 rad/s and fo = 1 Hz.
Sinusoidal voltage and current are always in phase for a resistor, and, in this case,
they have the same value because R = 1 Ω. The power is nonnegative, which means
the resistor absorbs power; it always dissipates energy in the form of heat as men-
tioned earlier. The frequency of pR(t) is twice that of the voltage because the current
and voltage are perfectly aligned (in phase), and the product 𝑣(t)i(t) causes the neg-
ative portions of the waveform to become positive (the dashed line). The average
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power is

PR =
A2

mR

2To ∫
To

0
[1 − cos(2𝜔ot)]dt, (2.8)

where To ≜ 1∕fo is the period. Since the integral is performed over one period, the
term containing cosine is 0, yielding PR = A2

mR∕2. As expected, the power increases
with increasing waveform amplitude Am or a larger resistance R. For the waveforms
in Figure 2.3, PR = 1∕2 W (the dotted line) because all parameter values are 1.

Since power in many applications can have a wide range of values, it is often
convenient to represent it using logarithms.

Definition: Decibel (dB) The decibel (dB) is the logarithm of the ratio of two
powers:

PdB ≜ 10log10(P1∕P0), (2.9)

where P1 and P0 have the same units.

Although average power is used in the definition, it also applies to instantaneous
power. If the units of P0 and P1 are both milliwatts, for example, then it is not neces-
sary to convert into watts because the ratio handles common multiplier prefixes (10−3

in this case). The prefix “dec” of decibel means that it is one-tenth of a bel, which is
a unit rarely used in practice. In the next section, we show that the power dissipated
by a resistor R is PR = RV2, and so in decibels, we have

PdB = 10 log10(RV2
1∕RV2

0 ) = 20 log10(V1∕V0), (2.10)

where the exponent property of logarithms has been used to give the multiplier 20.
This demonstrates that it is possible to write the ratio of amplitudes in decibels, but
we must use the multiplicative factor 20 instead of 10. The square of an amplitude is
proportional to power.

A ratio is used in (2.9) so that the argument of the logarithm is dimensionless.
If P0 is not explicitly given in (2.9) then P0 = 1 W is assumed. We often write
PdB = 10 log10(P) with the understanding that the denominator of the argument is 1.
Sometimes it is convenient that the units of the denominator be milliwatts, in which
case dBm is used and we would write PdBm = 10 log10(P) where it is implied that
P is relative to 10−3 W.

The dB plot in Figure 2.4 illustrates how the dB formula compresses the horizontal
axis; for example, 20 W is mapped to 13.0103 dB. This compression becomes more
dramatic for large numbers: for example, 1 megawatt (MW) maps to 60 dB. Of course,
the quantity in dB is simply the exponent of the prefix (mega in this case) scaled by 10.
Observe that each doubling of power corresponds to a 3 dB increase on the vertical
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P
 (
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Power (dB)

Figure 2.4 Power in decibels. The dotted lines illustrate that doubling P from 1 to 2 W
corresponds to a 3 dB increase, quadrupling to 4 W yields a 6 dB increase, an eightfold increase
is 9 dB, and so on.

TABLE 2.3 Decimal Prefixes and Multipliers

Prefix Multiplier Prefix Multiplier

Atto (a) 10−18 Exa (E) 1018

Femto (f) 10−15 Peta (P) 1015

Pico (p) 10−12 Tera (T) 1012

Nano (n) 10−9 Giga (G) 109

Micro (μ) 10−6 Mega (M) 106

Milli (m) 10−3 Kilo (k) 103

Centi (c) 10−2 Hecto (h) 102

Deci (d) 10−1 Deca (da) 10

axis. This plot illustrates that multiplication is transformed to addition when using
the logarithm, which is a property discussed in Chapter 1.

Table 2.3 provides a summary of several decimal prefixes and their multipliers.
For example, 1 kV equals 1 × 103 V and 1 mA equals 1 × 10−3 A. The prefixes hecto
and deca are seldom used; instead, we would simply write 10 and 100 V, for example.
The very small and very large prefixes are useful when describing the wavelengths
and frequency bands of the high-energy end of the electromagnetic spectrum (see
Chapter 8).
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2.3 CIRCUIT ELEMENTS

For the system model in Figure 1.1, we may choose the input to be the current x(t) = i
through one device and the output to be the voltage y(t) = 𝑣 across another device in
a particular circuit. This is frequently done in circuit analysis for which it is possible
to derive a mathematical expression for y(t) in terms of x(t). Similarly, we can choose
x(t) = 𝑣 and y(t) = i in order to examine how a current varies due to changes in some
voltage. Such a system model provides the current-voltage characteristic (I-V) of the
circuit, which is perhaps the most widely used description for circuit devices. For the
resistor, capacitor, and inductor, the voltage and current are related to each other by
the following linear mathematical models:

resistor: 𝑣 = Ri, (2.11)

capacitor: i = C
d𝑣
dt

, (2.12)

inductor: 𝑣 = L
di
dt
, (2.13)

where R is resistance in ohms (Ω), C is capacitance in farads (F), and L is inductance
in henries (H). The I-V equation for a resistor is known as Ohm’s law. The device
symbols are summarized in Figure 2.5. Equations (2.11)–(2.13) are accurate mod-
els based on their physical properties and experiments using actual devices, and they
are used to represent the elements in various circuits. The voltage across a resistor
is proportional to the current, whereas for an inductor, the voltage is proportional to
the rate of change of the current. Similarly, the current through a capacitor is pro-
portional to the rate of change of the voltage. As mentioned earlier, these equations
apply only over some limited range of values for 𝑣 and i. For example, if the cur-
rent through a resistor exceeds some threshold, the device will be damaged and the
relation 𝑣 = Ri no longer applies. For notational convenience, the time argument of
i(t) and 𝑣(t) is often suppressed as is the case in (2.11)–(2.13). (Note that D for the
diode in Figure 2.5 is symbolic only; its I-V model is nonlinear and depends on the
saturation current and thermal voltage described later in this section.)

(b)(a)

(d)(c)

R

L

+ _v

+ _v

i

i

C

+ _v

i

+ _v

i
D

Figure 2.5 Circuit elements. (a) Resistor R. (b) Capacitor C. (c) Inductor L. (d) Diode D.
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A resistor impedes electron flow because it is constructed of materials such as car-
bon, which are not as conductive as copper or silver. This impedance causes electron
collisions and so heat is generated and a voltage appears across the device, which
means work is required to move electrons from one end of the resistor to the other
end. A capacitor stores electron charge when a voltage is applied across its termi-
nals. The simplest model of a capacitor consists of two parallel plates that are closely
spaced next each other but are not connected. When a voltage source is attached to
the terminals, electric charge accumulates on the plates until its voltage matches that
of the source. Current does not flow between the two plates. When the voltage source
varies, there is current flow in a capacitor circuit only due to charge flowing to and
from the plates through the external connecting circuit. When the voltage is fixed, a
capacitor acts like an open circuit and there is no current flow.

The energy stored in a capacitor is (Problem 2.11)

EC = 1
2

CV2 = Q2

2C
, (2.14)

where V is the fixed voltage across the capacitor. The last expression is due to the fact
that the total charge on the plates is related to the voltage as follows:

Q = CV . (2.15)

The voltage across an inductor is due to fluctuations in its magnetic field as the current
varies. If the current is constant through an inductor, then there is no voltage across
the device, and it is a short circuit that functions simply as an ideal wire. However,
with a constant current I, the following energy is stored in the inductor (Problem
2.12):

EL = 1
2

LI2
. (2.16)

For the capacitor and inductor, the stored energies EC and EL can be used to deliver
power to other parts of the circuit. When the voltage in (2.14) or the current in (2.16)
varies with time, the instantaneous power equations are

pC(t) =
d
dt

eC(t) = C𝑣(t) d
dt
𝑣(t), (2.17)

pL(t) =
d
dt

eL(t) = Li(t) d
dt

i(t), (2.18)

where eC(t) and eL(t) are time-varying versions of EC and EL. The expressions in
(2.17) and (2.18) are also derived from the product of 𝑣(t) and i(t), using (2.12) for
the capacitor current and (2.13) for the inductor voltage. As mentioned earlier, if these
quantities are positive, the devices are absorbing power; otherwise, they are delivering
power to the circuit.

Example 2.2 For the current in (2.6), the instantaneous power of inductor L is

pL(t) = A2
mL𝜔o sin(𝜔ot) cos(𝜔ot) = (1∕2) A2

mL𝜔o sin(2𝜔ot), (2.19)
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Figure 2.6 Voltage and power results in Example 2.1 for a sinusoidal current through an
inductor with 𝜔o = 2𝜋 rad/s (fo = 1 Hz), Am = 1 A, and L = 1 H.

where a trigonometric identity from Appendix C has been used to write the last result.
The current, voltage, and power are plotted in Figure 2.6 for Am = 1 A, L = 1 H, and
𝜔o = 2𝜋 rad/s. Observe that the voltage and current are 90∘ out of phase relative to
each other, which of course is due to the derivative in the inductor voltage model
of (2.13). The frequency of the instantaneous power is twice that of the current and
the voltage, and we see that the inductor absorbs power (pL(t) > 0) for two intervals
during one period of the current. Similarly, it delivers power for two intervals over
the same period. This occurs because the voltage 𝑣(t) and current i(t) are out of phase,
and it is their product that determines the sign of pL(t). The average power over one
period is obviously 0 (the dotted line) because an inductor absorbs and delivers equal
amounts of instantaneous power. Similar results can be shown for a capacitor.

Since the underlying physics of each device are not important for the material
covered in this book, it is only necessary that the reader understand expressions of the
form in (2.11)–(2.13). They will be used to develop ODEs that model the behavior of
linear circuits and systems. It is possible to rewrite the device model for the capacitor
in (2.12) as an integral by integrating both sides with respect to t:

C ∫
t

to

d𝑣(t)
dt

dt = ∫
t

to

i(t)dt. (2.20)
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The left-hand side becomes

C ∫
t

to

d𝑣(t)
dt

dt = C ∫
t

to

d𝑣(t) = C[𝑣(t) − 𝑣(to)], (2.21)

and the voltage is

𝑣(t) = 1
C ∫

t

to

i(t)dt + 𝑣(to), (2.22)

where 𝑣(to) is the initial voltage across the capacitor at time to (usually to = 0). This
model shows that the voltage across the capacitor increases or decreases depending
on the area of the current waveform on the interval [to, t]. If the area is negative, then
overall the current exits the capacitor and the voltage drops (thus, it delivers power to
the circuit). The opposite result occurs for positive area. The corresponding equation
for the inductor is

i(t) = 1
L ∫

t

to

𝑣(t)dt + i(to), (2.23)

where i(to) is the initial current through the device. It is interesting that the capacitor
and the inductor have a dual relationship: interchanging 𝑣(t) and i(t) and replacing C
with L in the capacitor model yield the inductor model. This property is exploited in
the design of circuits to have a dynamic behavior that would not be readily achieved
with the capacitor or the inductor alone.

Example 2.3 Suppose the current through a device has the triangular waveform

i(t) =
⎧
⎪
⎨
⎪
⎩

2t, 0 ≤ t < 1∕2

−2t + 2, 1∕2 ≤ t < 3∕2

2t − 4, 3∕2 ≤ t ≤ 2,

(2.24)

where the units of t are seconds (s) and those of i(t) are milliamperes (mA). If the
device is a resistor, then its voltage waveform is identical to that of i(t), but scaled as
𝑣R(t) = Ri(t). The voltage across an inductor is the derivative of (2.24), scaled by L:

𝑣L(t) =
⎧
⎪
⎨
⎪
⎩

2L, 0 ≤ t < 1∕2

−2L, 1∕2 ≤ t < 3∕2

2L, 3∕2 ≤ t ≤ 2,

(2.25)

which is a rectangular waveform. The voltage across a capacitor is the integral of
(2.24), scaled by 1∕C:

𝑣C(t) =
⎧
⎪
⎨
⎪
⎩

t2∕C, 0 ≤ t < 1∕2

(−t2 + 2t − 1∕2)∕C, 1∕2 ≤ t < 3∕2

(t2 − 4t + 4)∕C, 3∕2 ≤ t ≤ 2,

(2.26)
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which is a quadratic waveform (we have assumed that 𝑣C(0) = 0). Note that the
value of 𝑣C(t) at the end of the first time interval is used as the initial condition for
the equation that describes 𝑣C(t) for the second time interval, and similarly for the
third time interval. These results are depicted in Figure 2.7(a) for specific values of
{R,L,C}. The plot for the inductor shows an abrupt change in voltage, which is due
to the derivative in (2.13). The voltage for the capacitor is much smoother because
it is derived as the integral of the current in (2.22). The corresponding energy wave-
forms for the inductor and the capacitor are shown in Figure 2.7(b), along with iL(t)
and 𝑣C(t) for comparison. Observe that the energy waveforms are just scaled versions
of the voltage squared (for the capacitor) and the current squared (for the inductor),
as given by (2.14) and (2.16), respectively. Of course, the energy is always nonnega-
tive, and it is 0 only for zero current through the inductor and zero voltage across the
capacitor.

The previous example motivates additional properties of C and L.

• The voltage across capacitor C cannot change instantaneously.

• The current through inductor L cannot change instantaneously.

These properties follow from the integral equations in (2.22) and (2.23). It takes time
for the charge to accumulate in a capacitor, and so its voltage does not have any dis-
continuities. (We assume there are no impulsive voltage or current sources modeled
by the Dirac delta function, which is introduced in Chapter 5.) Similarly, it takes
time for the inductor magnetic field to build up, and so its current does not have any
discontinuities. On the other hand, because of the derivative models for C and L in
(2.12) and (2.13), respectively, the voltage across an inductor and the current through
a capacitor can change instantaneously.

If a voltage has the waveform in (2.24), then the same curves in Figure 2.7(a) are
obtained for the current along the vertical axis (especially since all device values are
1 in this example). However, the waveforms for the capacitor and the inductor would
be interchanged. This duality property of C and L is also evident from the units of
the device models in (2.11)–(2.13), given by ohms (Ω), farads (F), and henries (H),
respectively. These are related to the voltage in volts (V) and the current in amperes
(A) as follows:

R = 𝑣∕i =⇒ Ω = V∕A, (2.27)

C = i(dt∕d𝑣) =⇒ F = A(s/V) = s∕Ω, (2.28)

L = 𝑣(dt∕di) =⇒ H = V(s/A) = Ω s, (2.29)

where s is seconds. Thus, H is proportional to Ω, whereas F is proportional to its
inverse 1∕Ω, again showing the duality of the two devices.

The diode is a semiconductor device that has a nonlinear I-V characteristic. Sev-
eral models with increasing complexity have been developed for the diode. One of



�

� �

�

CIRCUIT ELEMENTS 65

0 0.5 1 1.5 2
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

t (s)

(a)

(b)

v 
(V

)
Voltages across circuit devices

vR(t)

vL(t)

vC(t)

0 0.5 1 1.5 2

−1

−0.5

0

0.5

1

t (s)

i L
(t

) 
(A

),
 v

C
(t

) 
(V

),
 e

L 
(J

),
 e

C
 (

J)

Energy of storage devices

iL(t)

vC(t)

eL(t)

eC(t)

Figure 2.7 Device results for the time-varying current in Example 2.3 with R = 1 Ω, L = 1
H, and C = 1 F. (a) Voltage waveforms. (b) Inductor and capacitor energy.
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Figure 2.8 Diode exponential characteristic in (2.30).

the simplest models has the piecewise linear characteristic shown in Figure 1.12(b)
and described by (1.28). Another model is based on the exponential function:

i =

{
Is[exp (𝑣∕nVT) − 1], 𝑣 ≥ 0

−Is, 𝑣 < 0,
(2.30)

where Is ≈ 10−15 A is the reverse-biased saturation current, VT ≈ 0.026 V (26 mV)
is the thermal voltage, and n ∈ [1, 2] depends on the device fabrication. This model
is illustrated in Figure 2.8 for two values of n. The diode is “on” (forward-biased) for
a positive voltage, and it is “off” (reverse-biased) for a negative voltage. The large
arrow of the diode symbol in Figure 2.5 indicates the forward-biased direction. The
curve in (2.30) can be approximated reasonably well by the piecewise linear diode
model shown in Figure 1.12(b). Typically, n = 1 is assumed in circuit courses such
that the voltage drop across the diode is approximately a constant 0.7 V, as seen in
Figure 2.8 (the solid line).

The circuit elements in Figure 2.5 do not provide any net energy to a circuit, and
so they are passive devices. Capacitors and inductors store energy derived from a
power source, but they do not provide any additional power. Though certain types of
diodes provide amplification and are considered to be “active” on that basis (as are
transistors), we assume that the diode is passive. The two active devices considered
in this book are voltage and current sources whose symbols are shown in Figure 2.9.
These power sources are ideal: Vs and Is remain constant when attached to any circuit.
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(a) (b)
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i

Figure 2.9 Power sources. (a) Voltage source Vs. (b) Current source Is.

This means that the I-V characteristic where i is plotted versus 𝑣 (as in Figure 2.2)
is a vertical line at 𝑣 = Vs for a voltage source, and a horizontal line at i = Is for a
current source. An example of a voltage source is the household battery, though it is
not ideal: its voltage actually drops with increasing current. A current source can be
implemented using transistors and operational amplifiers, which are active devices
covered in basic electronics courses. The terminals of a voltage source should not be
connected without some series resistance (or capacitance) in order to avoid a short
circuit and a large current (an infinite current in the ideal model). On the other hand,
since Is is fixed, the terminals of a current source must be connected to some circuit
so that its current flow is not interrupted.

2.4 BASIC CIRCUIT LAWS

Consider the simple resistive circuit shown in Figure 2.10, which can be viewed as
a system with input x(t) = Vs and output y(t) = 𝑣 across resistor R3. Of course, other
output variations are possible; for example, we might be interested in the voltage
across R2 or the current through R3. Two basic circuit laws, known as Kirchoff’s circuit
laws, are used to derive an equation for y(t) in terms of x(t),

• Kirchoff’s voltage law (KVL): The sum of all voltages across elements around
any closed loop is 0.

• Kirchoff’s current law (KCL): The sum of all currents entering any node of
connecting wires is 0.

R1 R3

R2

+
_Vs

i1 i2
+

_

v

Figure 2.10 Resistive circuit and voltage source Vs.
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Mathematically, the two laws are

KVL:
N∑

n=1

𝑣n = 0, KCL:
N∑

n=1

in = 0, (2.31)

where {𝑣n} are voltages across N devices in a loop and {in} are N currents entering
a node. In order to use these laws, we label the voltage polarity and give the cur-
rent direction for each device. If any of these polarities/directions are incorrect, those
quantities will turn out to have a negative sign at the end of the analysis.

Example 2.4 For the circuit in Figure 2.10, there are two loops with currents labeled
{i1, i2}. KVL yields two equations:

− Vs + (i1 − i2) R1 = 0, (i2 − i1) R1 + i2R2 + i2R3 = 0, (2.32)

where by convention we have assumed that a current enters the + terminal for each
resistor (see Figure 2.5). In the first loop, the current entering R1 is the difference of
the two labeled currents: i1 − i2, and the + terminal is located at the top of R1. For
the second loop, the situation is reversed: the + terminal is located at the bottom of
R1 and the current entering there is i2 − i1. The reverse situation occurs because we
have chosen both loop currents to flow in a clockwise direction. This example shows
that the actual current through a device is often a combination of the defined loop
currents. Solving the first equation for i1 and substituting it into the second equation
yields

i1 = Vs∕R1 + i2, (i2 − Vs∕R1 − R1i2) R1 + i2(R2 + R3) = 0, (2.33)

and the currents are

i2 =
Vs

R2 + R3
, i1 =

R1 + R2 + R3

R1(R2 + R3)
Vs. (2.34)

From Ohm’s law, the output voltage is 𝑣 = R3i2, and the input/output (transfer) char-
acteristic of the circuit is

𝑣 =
R3

R2 + R3
Vs. (2.35)

This result is an example of voltage division, which is discussed in the next section.
The voltage across R1 is Vs, and this divides across R2 and R3 depending on their
relative values as given by the ratio in (2.35). The current expressions in (2.34) can
also be derived using KCL. For the node at the top of the circuit just before R2, the
currents are summed:

i1 + i3 − i2 = 0, (2.36)
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where we have defined i3 to be the current entering the node from R1. Since i2 exits
the node, it has a minus sign in this expression. Using Ohm’s law, these currents are
rewritten in terms of the voltages Vs and 𝑣. Since the voltage across R1 is Vs, we have

i3 = −
Vs

R1
, i2 =

Vs

R2 + R3
, (2.37)

which shows that i3 is actually exiting the node because of the minus sign. The current
in the first loop is derived from (2.36):

i1 = i2 − i3 =
Vs

R2 + R3
+

Vs

R1
=

R1 + R2 + R3

R1(R2 + R3)
Vs, (2.38)

and so the same current results as in (2.34) are derived.

The analysis of all-resistive circuits yields a system of linear equations with the
number of equations equal to the number of loops or nodes. The matrix equation for
the currents in (2.32) is

[
R1 −R1
−R1 R1 + R2 + R3

] [
i1
i2

]

=
[

Vs
0

]

. (2.39)

The unknown variables {i1, i2} are solved by applying Cramer’s rule or Gaussian
elimination, both of which are described in Chapter 3.

Example 2.5 For the resistive circuit in Figure 2.10, assume that Vs = 10 V and
the resistors are all equal: R1 = R2 = R3 = 100 Ω. From the previous example, we
immediately find that the loop currents are i1 = 0.15 A and i2 = 0.05 A, and the volt-
age across R3 is 𝑣 = 5 V. This result is expected because the voltage across R1 is 10
V, and from voltage division, Vs splits equally across the other two resistors because
R2 = R3. Observe also that the current through R1 is i1 − i2 = 0.1 A, which verifies
that the voltage across R1 is 0.1 × 100 = 10 V.

2.4.1 Mesh-Current and Node-Voltage Analysis

The basic circuit laws KVL and KCL can be extended to more complicated circuits
by using techniques called mesh-current analysis and node-voltage analysis.

Definition: Mesh and Node A mesh is a closed loop in a circuit that does not
enclose any other loop. A node is a point in a circuit where two or more circuit ele-
ments are connected.

These two techniques are illustrated by finding the voltage 𝑣 in the circuit in
Figure 2.11.

Example 2.6 Observe in the figure that there are three meshes with currents labeled
{i1, i2, i3}. A mesh-current analysis uses KVL around each mesh to write voltage
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i1 i2 i3
100 mA

+ _
10 Ω

5 Ω 

5 Ω 

10 Ω 10 Ω 

v1 v2
2 V

v

+

_

Figure 2.11 Resistive circuit for the mesh-current and node-voltage analysis in Example 2.6.

equations in terms of these currents via Ohm’s law. However, since i1 = 100 mA,
only the two meshes on the right need to be examined:

5(i2 − i1) + 5i2 + 10(i2 − i3) = 0, (2.40)

10(i3 − i2) + 2 + 10i3 = 0, (2.41)

where we have used the conventional voltage polarity for each of the resistors. For
example, in the middle mesh, i2 enters the positive terminal of the vertical 10 Ω resis-
tor, and so i3 enters the negative terminal, resulting in the voltage 10(i2 − i3). For
the third mesh, the polarity of that resistor is reversed, and the voltage is 10(i3 − i2)
as given in (2.41). Substituting i1 = 0.1 A in (2.40) yields two equations in two
unknowns:

20i2 − 10i3 − 1∕2 = 0, 20i3 − 10i2 + 2 = 0, (2.42)

where the coefficients of {i2, i3} have been combined. Solving these equations
yields i2 = −1∕30 A and i3 = −7∕60 A, demonstrating that these currents actually
flow counterclockwise in the circuit. The output voltage is 𝑣 = 10i3 = −7∕6 V. For
a node-voltage analysis, technically there are five nodes, but only three of them
are essential nodes where three or more elements are connected. Two of these are
labeled with voltages {𝑣1, 𝑣2}, both of which are defined relative to the common
node at the bottom called the reference node. Using an alternative convention that
all currents exit a node, KCL and Ohm’s law yield

− i1 + 𝑣1∕5 + (𝑣1 − 𝑣2)∕5 = 0, (𝑣2 − 𝑣1)∕5 + 𝑣2∕10 + i3 = 0. (2.43)

Substituting i1 = 0.1 A, i3 = 𝑣∕10, and 𝑣2 = 𝑣 + 2, we have two equations and two
unknowns:

2𝑣1∕5 − 𝑣∕5 − 1∕2 = 0, 2𝑣∕5 − 𝑣1∕5 + 3∕5 = 0. (2.44)

Solving these yields 𝑣 = −7∕6 V, 𝑣1 = 2∕3 V, and 𝑣2 = 5∕6 V. This example demon-
strates that one of the analysis techniques is usually easier to implement. Because
of the 2 V source, we are not able to directly write an expression for i3 exiting the
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𝑣2 node; it is necessary that the third voltage 𝑣 be brought into the equations. The
mesh analysis is slightly easier because i1 is known, and as a result, only two mesh
equations are needed.

2.4.2 Equivalent Resistive Circuits

Two special cases of KVL and KCL arise in a circuit (or part of a circuit) involving
two resistors.

• Voltage division: For two resistors {R1,R2} in series, the overall voltage
Vs across them divides as

𝑣R1
=

R1

R1 + R2
Vs, 𝑣R2

=
R2

R1 + R2
Vs. (2.45)

• Current division: For two resistors {R1,R2} in parallel, the overall current Is
entering a common node divides as

iR1
=

R2

R1 + R2
Is, iR2

=
R1

R1 + R2
Is. (2.46)

The corresponding circuits are shown in Figure 2.12. Voltage division follows directly
from KVL and Ohm’s law:

i = 1
R1 + R2

Vs ⇒ 𝑣R1
= R1i =

R1

R1 + R2
Vs, (2.47)

and similarly for 𝑣R2
. Observe that the resistor numerators are interchanged for cur-

rent division in (2.46) compared with voltage division in (2.45). This result is due to
KCL and Ohm’s law:

𝑣R1
= 𝑣R2

⇒ iR1
R1 = iR2

R2 ⇒ iR2
= (R1∕R2)iR1

. (2.48)

R1 R2

+

_

vIs

R1

R2

vR1
+ _

+

_

vR2
+
_Vs i

(b)(a)

iR2
iR1

Figure 2.12 Series and parallel circuits. (a) Voltage division. (b) Current division.
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Substituting this expression into iR1
+ iR2

= Is yields

iR1
+ (R1∕R2) iR1

= Is ⇒ iR1
=

R2

R1 + R2
Is, (2.49)

and similarly for iR2
.

Example 2.7 From the previous results, we can determine how to combine two
resistors that are in series or in parallel with each other, resulting in an equivalent
resistance. For the series circuit in Figure 2.12(a), KVL shows that the voltage
across both resistors together must be Vs. Since they have the same current i, we
can write

Vs∕i = R1 + R2 = Rseries, (2.50)

showing that resistors in series add together. It is important to note that they must
have the same current in order to be considered in series. For the parallel circuit in
Figure 2.12(b), we have from KCL that

Is = iR1
+ iR2

= 𝑣∕Rparallel, (2.51)

where 𝑣 is the same voltage across each resistor. Applying Ohm’s law to the middle
expression yields:

𝑣∕R1 + 𝑣∕R2 = 𝑣∕Rparallel. (2.52)

Cancelling 𝑣 and solving for Rparallel, the equivalent resistance is

Rparallel =
1

1∕R1 + 1∕R2
=

R1R2

R1 + R2
. (2.53)

In order to combine parallel resistors as in (2.53), they must have the same voltage
across them, which is 𝑣 in this example. The equations in (2.50) and (2.53) are easily
extended to three or more resistors (see Problem 2.18).

Finally, we introduce two equivalent circuits that are used to represent an
all-resistive circuit by a single power source (voltage or current) and a single resistor.
They are known as Thévenin and Norton equivalent circuits, which are depicted in
Figure 2.13.

• Thévenin open circuit voltage: Voc is computed at the two terminals of interest.

• Norton short circuit current: Isc is computed at the two terminals of interest.

• Thévenin resistance: Rth = Voc∕Isc is the same for both equivalent circuits.
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RthIsc

Rth

+
_Voc

(b)(a)

Figure 2.13 Equivalent resistive circuits. (a) Thévenin. (b) Norton.
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+
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Figure 2.14 Resistive circuit used in Example 2.8. (a) Original open circuit showing Voc. (b)
Equivalent open circuit. (c) Original short circuit showing Isc. (d) Equivalent short circuit.

The resistance Rth is also derived by replacing all voltage sources with short
circuits and all current sources with open circuits. The equivalent resistance at the
terminals of interest is then computed. Each type of equivalent circuit is derived
from the other using Ohm’s law: Vth = IscRth and Isc = Vth∕Rth.

Example 2.8 Consider the circuit in Figure 2.14(a) consisting of four resistors and
a voltage source. The goal in this example is to replace the circuit with a Thévenin
equivalent as seen from the a–b terminals. The open-circuit voltage across R4 is
derived by first combining the resistors as follows: R3 and R4 are in series, and
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together they are in parallel with R2. Those three resistors have the following equiv-
alent resistance:

R5 =
R2(R3 + R4)
R2 + R3 + R4

, (2.54)

which is shown in Figure 2.14(b). Note that the voltage at terminals c–d is not the
same as that at terminals a–b. Voltage division across R5 yields

VR5
=

R5

R1 + R5
Vs =

R2(R3 + R4)
R1(R2 + R3 + R4) + R2(R3 + R4)

Vs, (2.55)

which also happens to be the voltage across R2 in the original open circuit. Thus,
voltage division across R4 gives the open-circuit voltage:

Voc =
R4

R3 + R4
VR5

=
R2R4

R1(R2 + R3 + R4) + R2(R3 + R4)
Vs. (2.56)

The short-circuit current is derived by connecting the a–b terminals such that R4 is
ignored and R3 is in parallel with R2, as shown in Figure 2.14(c). Their equivalent
resistance is

R6 =
R2R3

R2 + R3
, (2.57)

and voltage division across R6 in Figure 2.14(d) yields

VR6
=

R6

R1 + R6
Vs =

R2R3

R1(R2 + R3) + R2R3
Vs. (2.58)

Since VR6
is also the voltage across R3 of the original short circuit, we obtain its

current using Ohm’s law, which is also the short-circuit current:

Isc = VR3
∕R3 =

R2

R1(R2 + R3) + R2R3
Vs. (2.59)

Finally, the Thévenin resistance is the ratio of these two results:

Rth = Voc∕Isc =
R1R4(R2 + R3) + R2R3R4

R1(R2 + R3 + R4) + R2(R3 + R4)
, (2.60)

where Vs has cancelled. This last expression can also be derived by shorting the
voltage source and finding the overall equivalent resistance. In this case, R1 and R2 are
in parallel, which together are in series with R3, resulting in the equivalent resistance:

R7 =
R1R2

R1 + R2
+ R3 =

R1R2 + R3(R1 + R2)
R1 + R2

. (2.61)
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TABLE 2.4 Properties of Resistive Circuits

Property Formula

Series resistance Req = R1 + R2

Req = R1 + R2 + R3

Parallel resistance Req = R1R2∕(R1 + R2)
Req = R1R2R3∕(R1R2 + R1R3 + R2R3)

Voltage division (series resistors) VR1
= R1Vs∕(R1 + R2)

VR1
= R1Vs∕(R1 + R2 + R3)

Current division (parallel resistors) IR1
= R2Is∕(R1 + R2)

IR1
= R2R3Is∕(R1R2 + R1R3 + R2R3)

Thévenin and Norton equivalents Voc = RthIsc

Combining this expression with the parallel resistor R4 yields

Rth =
R4R7

R4 + R7
=

R1R2R4 + R3R4(R1 + R2)
R4(R1 + R2) + R1R2 + R3(R1 + R2)

, (2.62)

which is the same as (2.60). For a numerical example, let Vs = 10 V and assume that
all four resistors are 100 Ω. These yield Rth = 60 Ω, Voc = 2 V, and Isc = 1∕30 ≈
0.0333 A.

Properties for two and three resistors are summarized in Table 2.4. In the previous
examples, there is no time variation in an all-resistive circuit if the voltage or cur-
rent source remains fixed. Even if the voltage source were to change suddenly, the
currents through and the voltages across all devices in the circuit would theoretically
adjust instantaneously, without any rise time or fall time. When a circuit contains a
capacitor or an inductor, we find in the next two sections that the currents and volt-
ages require time to reach steady-state values in response to changes in the power
sources or changes to the circuit configuration due, for example, to a switch opening
or closing. They also depend on any nonzero initial voltage across or initial current
through L and C.

2.4.3 RC and RL Circuits

An example first-order circuit is shown in Figure 2.15 where R3 in Figure 2.10 has
been replaced by capacitor C. The order of such circuits is generally determined by
the number of capacitors and inductors, which is also the order of the ODE model.
From KVL, we can write

Vs = R2i2 + 𝑣. (2.63)
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i1 i2

Figure 2.15 First-order circuit with capacitor C.

Substituting the current equation for the capacitor in (2.12) given by i2 = Cd𝑣∕dt
yields a first-order linear ODE with constant coefficients:

R2C
d𝑣
dt

+ 𝑣 = Vs. (2.64)

If Vs = 0 and the initial voltage across the capacitor is 𝑣(0), then using the techniques
in Chapter 6 we find that the solution is

𝑣(t) = 𝑣(0) exp(−t∕R2C)u(t), (2.65)

where u(t) is the unit step function mentioned in Chapter 1, which equals 1 for t ∈ +

and is 0 otherwise. An exponentially decaying function is the characteristic behavior
of the voltages and currents of a first-order circuit with nonzero initial conditions.
The corresponding capacitor current is derived using (2.12):

i2(t) = −[𝑣(0)∕R2] exp(−t∕R2C) u(t) = −[𝑣(t)∕R2]u(t), (2.66)

which we find is in the opposite direction of that shown in the figure. The initial charge
in the capacitor dissipates as heat through resistor R2. The last result in (2.66) is due
to Ohm’s law because the voltage across the capacitor is the same as that across R2.
There are no oscillations as there can be for the second-order RLC circuit described in
the next section. Since Vs = 0, which means the voltage source is replaced by a short
circuit, none of the current flows through R1 because it must also have zero volts by
KVL. Thus, the two currents shown in the figure are actually equal: i1 = i2. When
Vs is nonzero, and especially if it is time-varying, the capacitor voltage and current
expressions are more complicated, as shown later in Chapter 6.

Example 2.9 For the RC circuit in Figure 2.15, assume that 𝑣(0) = 1 V and C = 100
μF. Figure 2.16 shows the exponential result in (2.65) for two different values of R2.
As discussed in Chapter 5, the time constant for the exponentially decreasing wave-
form exp(−t∕𝜏)u(t) is 𝜏 in the exponent. Observe that t = 𝜏 gives exp(−1) = 1∕e,
and so, one time constant is the time required for the function to decrease by a
factor of 1∕e ≈ 0.3679 times its initial value 𝑣(0). Since the time constant for this
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Figure 2.16 Exponentially decreasing voltage for the RC circuit in Example 2.9 with
C = 100 μF. The dotted lines denote one time constant for each curve: 𝜏 = 1 s and 𝜏 = 2 s.
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Figure 2.17 First-order circuit with inductor L.

RC circuit is 𝜏 = R2C from (2.65), the plot shows that the exponential function
decays more slowly for the larger value of R2. This is intuitively correct because a
larger resistance requires more time for the charge on the capacitor to be dissipated
as heat.

If the capacitor in Figure 2.15 is replaced by inductor L, similar equations are
derived for the current and voltage in Figure 2.17 using KVL and (2.63):

Vs = R2i2 + L
d
dt

i2. (2.67)
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TABLE 2.5 Equivalent Inductance and Capacitance

Property Formula

Series inductance Leq = L1 + L2

Leq = L1 + L2 + L3

Parallel inductance Leq = L1L2∕(L1 + L2)
Leq = L1L2L3∕(L1L2 + L1L3 + L2L3)

Series capacitance Ceq = C1C2∕(C1 + C2)
Ceq = C1C2C3∕(C1C2 + C1C3 + C2C3)

Parallel capacitance Ceq = C1 + C2

Ceq = C1 + C2 + C3

Assuming that Vs = 0 and the initial current through the inductor is i2(0) in the
direction shown in the figure, the solution of this first-order ODE is also exponential:

i2(t) = i2(0) exp(−R2t∕L)u(t). (2.68)

The time constant is 𝜏 = L∕R2, which obviously increases with increasing inductance
or decreasing resistance. As in the case of the RC circuit, the initial energy stored in
the inductor is dissipated as heat through R2. The corresponding inductor voltage is
derived from (2.13):

𝑣(t) = −R2i2(0) exp(−R2t∕L)u(t) = −R2i2(t)u(t), (2.69)

and so 𝑣 in the circuit is actually negative as it approaches 0.
Table 2.5 summarizes the series and parallel combinations for inductors and capac-

itors that are derived in Problems 2.23 and 2.24. The equations for equivalent induc-
tance are similar to those for equivalent resistance.

2.4.4 Series RLC Circuit

An example second-order circuit is shown in Figure 2.18, which has two energy stor-
age elements: capacitor C and inductor L. This is a series circuit because the same

R
+
_Vs C

L

+ _vR(t)

vC(t)

vL(t) _+

+

_

i

Figure 2.18 Second-order series circuit with resistor R, inductor L, and capacitor C.
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current i(t) flows through each device; an example of a parallel circuit where each
device has the same voltage is discussed in Chapter 6. KVL gives an equation that
models this circuit:

𝑣R(t) + 𝑣L(t) + 𝑣C(t) = Vs, (2.70)

where the subscripts on 𝑣 denote the three passive circuit elements. Substituting the
models in (2.11) and (2.12) for the resistor and inductor voltages yields

Ri(t) + L
d
dt

i(t) +
q(t)
C

= Vs. (2.71)

The voltage of the capacitor has been written in terms of the total charge q(t), which
follows from the model in (2.22):

𝑣C(t) =
1
C ∫

t

to

dq(t)
dt

dt + 𝑣(to)

=
q(t)
C

−
q(to)

C
+ 𝑣(to) =

q(t)
C

, (2.72)

where the last two terms have cancelled because q(to)∕C = 𝑣(to). Substituting
i(t) = dq(t)∕dt for the current in (2.71) gives a second-order ODE for the charge:

L
d2

dt2
q(t) + R

d
dt

q(t) + 1
C

q(t) = Vs. (2.73)

The corresponding equation for the current is derived from (2.71) by substituting
(2.22) in place of q(t)∕C:

Ri(t) + L
d
dt

i(t) + 1
C ∫

t

to

i(t)dt + 𝑣(to) = Vs. (2.74)

Differentiating and rearranging this expression yield another second-order ODE:

L
d2

dt2
i(t) + R

d
dt

i(t) + 1
C

i(t) = d
dt

Vs. (2.75)

Observe that (2.73) and (2.75) have the same form and coefficients, except that the
ODE for the charge q(t) depends on Vs, whereas that for the current i(t) depends on
the derivative of Vs.

It turns out that the solutions for equations such as (2.73) and (2.75) can take on
one of three possible forms depending on the relative values of the three parame-
ters {R,L,C}. Assuming Vs = 0 so that the ODE is homogeneous, all forms contain
exponentials as follows:

Overdamped: i(t) = [c1 exp(−𝛼1t) + c2 exp(−𝛼2t)]u(t), (2.76)

Underdamped: i(t) = exp(−𝛼t) [c1 cos(𝜔dt) + c2 sin(𝜔dt)] u(t), (2.77)

Critically damped: i(t) = [c1 + c2t] exp(−𝛼t)u(t). (2.78)
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The constant coefficients {c1, c2} are determined by the initial conditions {i(0), i′(0)},
and the parameters {𝛼, s1, s2, 𝜔d} depend on the specific values of {R,L,C} and the
type of damping. Derivations of these results and a description of the three types of
damping are provided in Chapter 6. They are mentioned here in order to qualitatively
describe the behavior of an RLC circuit, so we can see the similarity of the results
compared with those for the mechanical systems described in the next section. Damp-
ing refers to the exponential function weighting the sinusoidal waveforms in (2.77).
Observe that for the overdamped case, the current decays exponentially to 0, and with
two different time constants 1∕𝛼1 and 1∕𝛼2. The underdamped case also decays expo-
nentially to 0, but with one time constant 1∕𝛼, and it does so sinusoidally with damped
angular frequency 𝜔d. The exponential function in this case determines the envelope
of sine and cosine because they are multiplied together. The critically damped case
has an exponentially decaying term with time constant 1∕𝛼, but also a term that is the
product of t and an exponential function. Overall, i(t) tends to 0 for this case because
exp(−𝛼t) → 0 faster than t increases.

The resistor voltages 𝑣R(t) for the three cases are easily obtained by multiplying
(2.76)–(2.78) by R. The inductor voltages 𝑣L(t) are derived by taking derivatives of i(t)
and multiplying the terms by L. The capacitor voltages 𝑣C(t) are derived by integrating
the current, dividing by C, and adding any initial voltage 𝑣C(0).

Example 2.10 For the series RLC circuit with Vs = 0, suppose that R = 2.5 kΩ,
C = 1 μF, and L = 1 H. From the results in Chapter 6, it can be shown that this is
an overdamped system with 𝛼1 = 500 and 𝛼2 = 2000. The initial conditions for this
case yield the following system of equations:

i(0) = c1 + c2, i′(0) = −c1𝛼1 − c2𝛼2, (2.79)

which must be solved simultaneously for {c1, c2} given {i(0), i′(0)} and {𝛼1, 𝛼2}.
Assuming that i(0) = 1 mA and i′(0) = 1 mA/s, we find for the given values of
{𝛼1, 𝛼2} that the coefficients are c1 = 1.3340 and c2 = −0.3340 (with units mA),
and the overall solution is

i(t) = [1.3340 exp(−500t) − 0.3340 exp(−2000t)]u(t) mA. (2.80)

This response and the two individual components are plotted in Figure 2.19(a). If the
resistor value is decreased to 250 Ω, the underdamped case occurs and it takes longer
for the energy in the inductor and capacitor to dissipate. The parameters are 𝛼 = 125
and 𝜔d = 992.16 rad/s. The initial conditions for the underdamped case yield the
following equations:

i(0) = c1, i′(0) = 𝜔dc2 − 𝛼c1. (2.81)

For {i(0), i′(0)} used earlier, c1 = 1 and c2 = (1 + 125)∕992.16 ≈ 0.1270 (with units
mA), and the underdamped solution is

i(t) = exp(−125t)[cos(992.16t) + 0.1270 sin(992.16t)]u(t) mA. (2.82)
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R+
_Vs i

+ _v

D

Figure 2.20 Series diode circuit with resistor.

This current along with its components are plotted in Figure 2.19(b). Note that the
exponential envelope of i(t) and those of its individual components decay more slowly
than in the overdamped case because the exponent is −125 versus −500 and −2000.
Similar results can be derived for the critically damped case using the techniques in
Chapter 6.

2.4.5 Diode Circuits

Next, we consider the diode circuit in Figure 2.20 to illustrate once again the difficulty
encountered when solving systems that have nonlinear components. KVL yields the
following expression for the current:

− Vs + 𝑣 + Ri = 0 =⇒ i = (Vs − 𝑣)∕R. (2.83)

In order to continue, we need to incorporate one of the I-V models for the diode D.
The exponential model in (2.30) with n = 1 and i ≫ Is is given approximately by

i ≈ Is exp(𝑣∕VT ), (2.84)

which can be rearranged as
𝑣 = VT ln(i∕Is). (2.85)

Although we have two equations and two unknowns for this circuit, it is not possible
to explicitly solve for 𝑣 and i in terms of ordinary functions because of the natural
logarithm. An iterative procedure (Sedra and Smith, 2004) can be applied as discussed
in Chapter 1 where an estimate of 𝑣 is used in (2.83), and the resulting i is substituted
into (2.85) to refine the estimate of 𝑣. This procedure is repeated until 𝑣 and i converge,
as illustrated next in Example 2.11.

For the piecewise linear model in (1.28), the current is

i =

{
(𝑣 − 𝑣c)∕RD, 𝑣 ≥ 𝑣c

0, 𝑣 < 𝑣c,
(2.86)
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TABLE 2.6 Iterative Solution for Diode Circuit

Iteration Current i (A) Voltage 𝑣 (V)

1 0.0050 0.7603
2 0.0044 0.7569
3 0.0044 0.7571
4 0.0044 0.7571

where 𝑣c is the cutoff voltage and RD is the diode resistance, which is usually much
smaller than R of the circuit. Assuming 𝑣 > 𝑣c, the circuit is modeled by two linear
equations with two unknowns. Thus, equating the first expression in (2.86) with (2.83)
yields

(𝑣 − 𝑣c)∕RD = (Vs − 𝑣)∕R ⇒ 𝑣 =
R𝑣c + RDVs

R + RD
(2.87)

and

i =
Vs − 𝑣c

R + RD
. (2.88)

If 𝑣 ≥ 𝑣c in (2.87) as assumed, then this solution is valid; otherwise, the diode is off
(reverse-biased) such that i ≈ 0 and 𝑣 = Vs.

Example 2.11 For the series diode circuit in Figure 2.20, let Vs = 1.2 V and
R = 100 Ω. The diode parameters for the exponential model are Is = 10−15 A and
VT = 0.026 V. From (2.83) and (2.85) with initial estimate 𝑣 = 0.7 V, MATLAB
provides the results in Table 2.6. Since there is no change in the last iteration, those
values are the current through and the voltage across the diode. For the piecewise
linear model with RD = 10 Ω and 𝑣c = 0.6 V, (2.87) and (2.88) give i = 0.0055 A
and 𝑣 = 0.6545 V, which is a valid solution because 𝑣 > 𝑣c. The curves for the expo-
nential and piecewise linear models are illustrated in Figure 2.21. The circuit load
line is of the form i = a𝑣 + b (affine) with slope a = −1∕R and ordinate b = Vs∕R:

i = −𝑣∕R + Vs∕R ⇒ i = −0.01𝑣 + 0.012. (2.89)

Observe that the coordinates where the load line intersects the two diode model
curves match those derived earlier: for the exponential model i = 0.0044 A and
𝑣 = 0.7571 V, and for the piecewise linear model i = 0.0055 A and 𝑣 = 0.6545 V.
Appendix F shows how to find an explicit expression for the current of the diode
exponential model using the Lambert W-function.

Another iterative technique that can be used to solve a nonlinear equation is
Newton’s method (NM) (Kreyszig, 1979). For the diode circuit, we equate the



�

� �

�

84 CIRCUITS AND MECHANICAL SYSTEMS

0 0.5 1 1.5
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

v (V)

i (
A

)

Diode characteristics and load line

Exponential
Piecewise linear
Load line

Figure 2.21 Diode models and circuit load line used in Example 2.11.

current equations in (2.83) and (2.84), and then define the function f (𝑣) for the
unknown voltage:

(Vs − 𝑣)∕R = Is exp(𝑣∕VT ) ⇒ f (𝑣) ≜ Is exp(𝑣∕VT ) + (𝑣 − Vs)∕R. (2.90)

Starting with an initial voltage estimate denoted by 𝑣0, NM computes the next esti-
mate 𝑣1 as follows:

𝑣1 = 𝑣0 −
f (𝑣0)
f ′(𝑣0)

, (2.91)

where for the series diode circuit

f ′(𝑣) = (Is∕VT) exp(𝑣∕VT ) + 1∕R. (2.92)

The algorithm in (2.91) is repeated until 𝑣 no longer changes, and the corresponding
current i is derived using either (2.83) or (2.84).

Example 2.12 For the circuit parameters used in Example 2.11, Figure 2.22 shows
a plot of function f (𝑣) (the solid line) and the ratio f (𝑣)∕f ′(𝑣). These two curves inter-
sect at 𝑣 ≈ 0.7571 V (the dotted line) because both functions are 0 when the voltage
is the solution for this nonlinear circuit. With initial estimate 𝑣0 = 0.7 V, the follow-
ing voltage values are obtained: {0.8557, 0.8302, 0.8056, 0.7834, 0.7666, 0.7571} V
with final current value 0.0044 A. NM has the advantage that only one equation for
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voltage solution.

the voltage 𝑣 is evaluated for each iteration, and then i is computed at the end. The
disadvantage is that NM is a gradient technique, and so, convergence can be slow
because the derivative of f (𝑣) is quite flat for voltages below the solution as shown in
Figure 2.22.

In the rest of this chapter, we describe some mechanical systems that have the same
behavior as first- and second-order circuits, with parameters that are the mechanical
equivalents of {R,L,C}. These mechanical systems should be familiar to most read-
ers, and they should provide intuition about linear circuits. These are examples of
many systems (natural and human-made) that exhibit similar waveforms, such as an
exponential decay or sinusoidal oscillatory motion.

2.5 MECHANICAL SYSTEMS

First, we define momentum and review a basic law in mechanics.

Definition: Momentum The momentum of a body with mass M and velocity
𝑣 is M𝑣.

(Velocity 𝑣 should not be confused with voltage.) Newton’s second law states that the
change in momentum of an object is proportional to the net force F applied to it:

d
dt

M𝑣 = 𝛼F, (2.93)
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TABLE 2.7 Mechanical Symbols and Units

Property Symbol Units Related Units

Length L Meter (m)
Velocity 𝑣 Meters/s (m/s)
Acceleration a Meters/s2 (m/s2)
Mass M Kilogram (kg)
Force F Newton (N) kg m/s2

Weight W Newton (N) kg m/s2

Energy E Joule (J) N m
Power P Watt (W) J/s

where 𝛼 is the proportionality constant. Assuming that M is constant, this expression
can be written in terms of acceleration a as follows:

a ≜ d
dt
𝑣 =⇒ F = Ma, (2.94)

which is the well-known form of Newton’s second law. The units of the various quan-
tities have been chosen such that 𝛼 = 1; they are t in seconds (s), M in grams (g),
distance in centimeters (cm), a in cm/s2, and F in dynes (g cm/s2). Since F repre-
sents the net force acting on the mass, it is necessary that all forces be added together
with the appropriate signs and angles, indicating the directions from which they are
applied to the mass. The units for various mechanical quantities are summarized in
Table 2.7, where force F has units of newtons (N) (kg m/s2).

2.5.1 Simple Pendulum

A simple pendulum consists of a point object with mass M attached to a rigid horizon-
tal surface by a light string or rod as depicted in Figure 2.23. The pendulum oscillates
about a pivot point where the string is connected to the surface. (A compound pendu-
lum is a rigid body in place of the mass and string that rotates about some fixed pivot

Mass M

θ(t)

Length L

Gravitational
force Mg Torque τ

Pivot pointRigid surface

Figure 2.23 Simple pendulum.
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point.) The weight of the pendulum is Mg where g = 9.80665 m∕s2 is the acceleration
due to gravity. In the following model, we assume that the resistance caused by air
is negligible so that in theory the pendulum would continue to oscillate indefinitely.
The torque (rotational force) of the pendulum about the pivot point is

𝜏 = −MgL sin(𝜃(t)), (2.95)

where the angle 𝜃(t) is defined by the string and the vertical line perpendicular to
the surface, and L is the length of the string (not to be confused with inductance).
Since this expression is the weight Mg of the object multiplied by L sin(𝜃(t)), it is the
force in the direction of motion as shown in the figure. The minus sign is included
because this torque, which is called a restoring force, is in the opposite direction of
the defined angle 𝜃(t). The force Mg cos(𝜃(t)) is exactly balanced by the tension in the
string, and so, those two forces can be ignored because they do not affect the motion
of the pendulum. As a result, (2.95) is F on the left-hand side of Newton’s equation
in (2.94). The right-hand side is given by

Ma = I
d2

dt2
𝜃(t), (2.96)

where I ≜ ML2 is the moment of inertia and a is proportional to the angular acceler-
ation d2

𝜃(t)∕dt2. Combining (2.95) and (2.96) yields the following ODE:

I
d2

dt2
𝜃(t) + MgL sin(𝜃(t)) = Lx(t), (2.97)

where an external force Lx(t) has been included on the right-hand side, which is in the
opposite direction of MgL sin(𝜃(t)). This is a nonlinear ODE because of the sinusoidal
term, and so, it does not have a simple functional solution. However, it is possible to
linearize this equation by using the approximation sin(𝜃(t)) ≈ 𝜃(t) for small 𝜃(t), such
that

d2

dt2
𝜃(t) + (g∕L)𝜃(t) = (1∕ML) x(t), (2.98)

where I has been substituted and then divided on both sides of the equation. This
result is a second-order linear ODE as given previously in (1.17) with output
y(t) = 𝜃(t), input (1∕ML)x(t), and constant coefficients {a0 = g∕L, a1 = 0}. The
form of this ODE is similar to that in (2.75) derived for the series RLC circuit.

For the homogeneous ODE where the right-hand side of (2.98) is 0, the solution is
similar to that in (2.77) for the voltages and currents of an underdamped series RLC
circuit. Since there is no damping (the air resistance has been ignored), the solution
is sinusoidal with a constant envelope (𝛼 = 0 in (2.98)):

𝜃(t) = c1 cos(𝜔ot) + c2 sin(𝜔ot), (2.99)
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where 𝜔o ≜ √
g∕L is used in place of 𝜔d, and the coefficients {c1, c2} depend on

the initial conditions {𝜃(0), 𝜃′(0)}. By ignoring frictional effects, this solution is
technically undamped and the pendulum will oscillate indefinitely. It is also called
free, undamped, harmonic oscillation. Because (2.98) does not include the term
d𝜃(t)∕dt (a1 = 0 in the standard ODE notation), the result in (2.99) is the only
type of solution; the overdamped and critically damped solutions cannot happen.
The oscillation frequency fo = 𝜔o∕2𝜋 increases with smaller L and larger g, which
are physically intuitive results. The period of oscillation is To = 1∕fo = 2𝜋

√
L∕g.

Observe that

𝜃(0) = A cos(0) = c1, (2.100)

𝜃
′(0) = −c1𝜔o sin(0) + c2𝜔o cos(0) = c2𝜔o, (2.101)

and so the linearized solution is

𝜃(t) = [𝜃(0) cos(𝜔ot) + [𝜃′(0)∕𝜔o] sin(𝜔ot)] u(t). (2.102)

This expression can be written in terms of a single sinusoid as follows:

𝜃(t) =
[√

𝜃
2(0) + [𝜃′(0)∕𝜔o]2 cos(𝜔ot + 𝜙)

]

u(t), (2.103)

where 𝜙 = −tan−1(𝜃′(0)∕𝜃(0)𝜔o). Suppose at t = 0 the angle of the pendulum is
at its maximum and the initial velocity is 𝜃

′(0) = 0. Then the solution simplifies
to

𝜃(t) = 𝜃(0) cos(𝜔ot)u(t), (2.104)

which is the expected result: for small 𝜃(t), the pendulum angle is approximately
sinusoidal with maximum value given by the initial angle 𝜃(0). If 𝜃(0) = 0, which
means the pendulum is perfectly vertical, then the initial angular velocity 𝜃

′(0) must
be nonzero in order to have oscillations. In that case, 𝜙 = −90∘ and

𝜃(t) = [𝜃′(0)∕𝜔o] cos(𝜔ot − 90∘)u(t) = [𝜃′(0)∕𝜔o] sin(𝜔ot)u(t), (2.105)

which also follows from (2.102). Of course, if 𝜃(0) = 𝜃
′(0) = 0, then the pendulum

is at rest.
This mechanical example demonstrates that similar dynamic behavior occurs in

different types of physical systems. For the underdamped series RLC circuit, the cur-
rent is oscillatory because of the exchange of energy between the capacitor and the
inductor. The charge on the capacitor and the magnetic field of the inductor contin-
ually increase and decrease. For the pendulum, there is continuous transformation
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Mass M

θ(t)

Length L

Rigid surface

L cos(θ(t))

hd

Figure 2.24 Height and horizontal distance of the pendulum relative to the lowest point of
its trajectory.

between potential energy and kinetic energy. The potential energy is

Ep = Mgh, (2.106)

where h is the height of the pendulum above the lowest point of its trajectory. The
potential energy is maximum when the pendulum is at its maximum height, and it is
0 at the lowest point of its trajectory. From Figure 2.24, the height h is derived using
trigonometry as follows:

L = L cos(𝜃(t)) + h ⇒ h = L[1 − cos(𝜃(t))]. (2.107)

The kinetic energy is
Ek = (1∕2) M𝑣

2
, (2.108)

where 𝑣 is the velocity of the pendulum. The kinetic energy is maximum when the
angle is 0, and it is 0 when the pendulum is at its maximum height. The total energy
at any angle is a constant:

Et = (1∕2) M𝑣
2 + MgL[1 − cos(𝜃(t))], (2.109)

and for 𝜃max where 𝑣 = 0:

Et = MgL [1 − cos(𝜃max)]. (2.110)

This angle would typically be the starting point for the pendulum where it is held and
then released. Equating these two equations for Et and solving for (1∕2)M𝑣

2, we can
write an expression for the kinetic energy in (2.108) and the velocity for any angle:

Ek = MgL[1 − cos(𝜃max)] − MgL[1 − cos(𝜃(t))]

= MgL[cos(𝜃(t)) − cos(𝜃max)], (2.111)
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and
𝑣(t) =

√
2gL[cos(𝜃(t)) − cos(𝜃max)]. (2.112)

This equation does not include any directional information in 𝑣(t) because it was
derived from the kinetic energy, and so, it is actually the speed of the pendulum. The
maximum velocity occurs at 𝜃(t) = 0:

𝑣max =
√

2gL[1 − cos(𝜃max)]. (2.113)

It should be noted that the tangential velocity is related to the angular velocity d𝜃(t)∕dt
as follows:

𝑣(t) = L
d
dt
𝜃(t) = −L𝜔o𝜃(0) sin(𝜔ot), (2.114)

where (2.104) has been substituted and 𝜃(0) is in radians. This expression contains
the correct sign for 𝑣(t) as demonstrated in the next example.

Example 2.13 Let M = 1 kg such that Mg = 9.80665 newtons (N). Assume that
L = 1 meter (m) and 𝜃max = 0.0873 radians, which corresponds to 5∘. This angle is
sufficiently small for the pendulum approximation to be valid because sin(0.0873) ≈
0.0872. The total energy of the system is derived from the maximum potential energy:

Ep,max = MgL[1 − cos(𝜃max)] = 9.80665 × 0.0038 ≈ 0.0373 J, (2.115)

where J = N m denotes joules. Figure 2.25(a) shows trajectories for the potential
and kinetic energies in (2.106) and (2.111). The corresponding pendulum velocity is
shown in Figure 2.25(b). Observe that the magnitude of 𝑣(t) is maximum when Ek is
maximum, as expected; it is given by 𝑣max = 0.2732 m/s. The frequency and period
of oscillation for the pendulum are 𝜔o ≈ 3.1316 rad/s and To = 2𝜋

√
1∕9.80665 ≈

2.0064 s. This period is verified by the energy curves in the plots, which have a period
twice that of To because ek and ep have two maximums (and minimums) per period
of the pendulum. Finally, it is possible to calculate the maximum vertical distance of
the pendulum trajectory from (2.107):

hmax = L[1 − cos(5∘)] ≈ 0.0038 m, (2.116)

and the maximum horizontal distance from the vertical dashed line in Figure 2.24 is

dmax = L sin(5∘) ≈ 0.0872 m. (2.117)

The trajectories for the height h and horizontal distance d are provided in
Figure 2.25(c). Note that d can be negative because the vertical dashed line in
Figure 2.24 is located at 0 on the horizontal axis. Thus, the total horizontal distance
traveled is 2dmax ≈ 0.1743 m. Of course, dmax is much larger than hmax for the small
initial angle of 5∘.
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Figure 2.25 Pendulum energy, velocity, and distances in Example 2.13. (a) Potential energy,
kinetic energy, and total energy. (b) Velocity 𝑣. (c) Height h and horizontal distance d.
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Figure 2.26 Elements of a mechanical spring system, where 𝑣 is velocity, y is displacement
of the spring, and x is an external force. (a) Spring constant K. (b) Mass M. (c) Damping
constant B.
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v

Figure 2.27 Mass on a spring with damping device, which is the mechanical analog of the
series RLC circuit in Figure 2.18.

2.5.2 Mass on a Spring

Next, we derive the ODE for a system with a fixed mass on a spring and the compo-
nents summarized in Figure 2.26. Each element is characterized by a single parame-
ter: spring constant K (which depends on the type of spring), mass M, and damping
factor B (a type of resistance). Observe that each element has velocity 𝑣(t) (in a single
direction) and the spring has displacement y(t). An external force x(t) is also shown
for each element, though when the components are connected to each other, this force
would typically be applied only to the mass.

Figure 2.27 shows a system consisting of the mass attached to the spring and a
damping device, which in turn are attached to a rigid horizontal surface. The weight
of the mass is Mg, where g is the acceleration due to gravity given in the previous
section. The natural length of the spring without the mass attached is L. The spring
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has a restoring force described by Hooke’s law:

F = KLM , (2.118)

where LM is the additional length of the spring with the mass attached, and K is a
proportionality constant with units newtons/meter (N/m). When the mass is at rest,
the force due to gravity and the spring restoring force must be equal:

KLM = Mg. (2.119)

The ODE derived next represents the displacement y(t) of the mass from its
resting position. When the mass is above the horizontal solid line labeled y = 0 in
Figure 2.27, the displacement y(t) is negative, and y(t) > 0 when it is below.

Assume initially that there is no damping B. When the spring is stretched to length
LM + y(t) with y(t) > 0, the restoring force is

F1 = K[LM + y(t)] = Mg + K y(t), (2.120)

where (2.119) has been substituted. Let there be another force F2 = x(t) operating in
the same direction as the gravitational force. From Newton’s second law F = Ma, all
forces are added together with the appropriate signs as follows:

Mg − F1 + F2 = Mg − [Mg + K y(t)] + x(t) = m
d2

dt2
y(t), (2.121)

where a = d2y(t)∕dt2 is the acceleration of the mass. This yields the second-order
ODE:

M
d2

dt2
y(t) + K y(t) = x(t) ⇒

d2

dt2
y(t) + (K∕M)y(t) = (1∕M) x(t). (2.122)

This equation is identical to the linearized ODE for the simple pendulum in (2.98),
except for the different parameters. It is an undamped system because there is no term
containing the first derivative dy (t)∕dt. As a result, we can use the solution given
earlier but with the appropriate change of parameters. When x(t) = 0, the solution is

y(t) =
√

y2(0) + [y′(0)∕𝜔o]2 cos(𝜔ot + 𝜙)u(t), (2.123)

where 𝜙 = −tan−1(y′(0)∕y(0)𝜔o) and 𝜔o =
√

K∕M. The frequency of oscillation
increases with a larger spring constant and a smaller mass.

Suppose now that the damping element is included in the system as illustrated
in Figure 2.27. The damper is called a dashpot whose simplified model consists of
a piston inside a cylinder. It is similar to a shock absorber used in automobiles to
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mitigate up-and-down oscillations when the vehicle moves along a bumpy road. The
damping force is proportional to the velocity of the mass:

F3 = B
d
dt

y(t), (2.124)

with damping constant B, which has units N s/m. The direction of this force is always
opposite that of the movement of the mass, so it is subtracted on the left-hand side of
(2.121). Thus, (2.122) becomes

M
d2

dt2
y (t) + B

d
dt

y(t) + K y(t) = x(t), (2.125)

which we rewrite as

d2

dt2
y(t) + (B∕M) d

dt
y(t) + (K∕M)y(t) = (1∕M)x(t). (2.126)

This equation has a term with dy(t)∕dt because of the damping element. The ODE
has the same form as in (2.71) for the series RLC circuit in Figure 2.27, and so there
is a connection between the parameters of that circuit to those of the damped spring
system as summarized in Table 2.8. This electrical/mechanical analogy is known as
the force–voltage model because it assumes that a force acting on the mechanical
system is analogous to a voltage across a circuit device (Harman and Lytle, 1962).
The voltages across the three circuit elements are related to the forces associated with
the components of the mechanical system as follows.

TABLE 2.8 Electrical and Mechanical Analogs, Force-Voltage
Model: Series RLC Circuit and a Mass/Spring System with Damping

Electrical (units) Mechanical (units)

Charge q(t) (C) Displacement y(t) (m)
Current i(t) (A) Velocity 𝑣(t) = dy(t)∕dt (m/s)
Voltage 𝑣(t) (V) External force x(t) (N)
Resistance R (Ω) Damping constant B (N s/m)
Inductance L (H) Mass M (kg)

Capacitance C (F) Inverse of spring constant K (N/m)
Ohm’s law 𝑣(t) = Ri(t) Frictional force F = B𝑣(t)
Inductor voltage 𝑣(t) = Ldi∕dt Inertia F = Md𝑣∕dt

Capacitor voltage 𝑣(t) = q(t)∕C Hooke’s law F = Ky(t)
Resistor power Ri2(t) Frictional power B𝑣2(t)
Inductor energy (1∕2)Li2(t) (J) Kinetic energy (1∕2)M𝑣

2(t) (J)
Capacitor energy (1∕2)C𝑣

2(t) (J) Potential energy (1∕2K)x2(t) (J)
or (1∕2)q2(t)∕C (J) or (1∕2)Ky2(t) (J)
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• resistor 𝑣 = Ri ⇔ damping element F = B𝑣.

• capacitor 𝑣 = q∕C = (1∕C) ∫ idt ⇔ spring F = Ky = K ∫ 𝑣dt.

• inductor 𝑣 = L di∕dt ⇔ mass F = Ma = M d𝑣∕dt.

(The initial conditions associated with the integrals have been ignored in this com-
parison.)

It is clear that the circuit resistance R and the damping constant B serve the
same purpose in the two systems. A resistor impedes the flow of charge q(t), and
the damping element tends to reduce the variations of y(t). The current is the rate
at which the charge varies with time, and the velocity of the mass is the rate at
which its position changes. The equivalence of the capacitance C and the spring
constant K follows from the voltage and force equations. Recall that a capacitor
is an energy-storage device with energy (1∕2)C𝑣

2. Similarly, the potential energy
stored in a spring when it is stretched by an amount y is (1∕2)Ky2, which can be
rewritten as (1∕2)(Ky)2∕K = (1∕2)F2∕K where F = Ky is the force associated with
the spring (Hooke’s law). The equivalence of the inductance L and the mass M also
follows from the voltage and force equations because di∕dt is the electrical analog of
acceleration a = d𝑣∕dt. The energy stored in an inductor is (1∕2) Li2, and the kinetic
energy of the mass is (1∕2) M𝑣

2; current is analogous to velocity in the force-voltage
model.

2.5.3 Electrical and Mechanical Analogs

The previous results for a series RLC circuit and a damped mass/spring system
describe properties of a second-order system, with the relationships summarized in
Table 2.8. It is possible to derive similar results for a first-order RC circuit described
by the homogeneous ODE:

Ri + (1∕C)∫ idt = 0 ⇒
d
dt

i + (1∕RC) i = 0, (2.127)

where i = dq∕dt is the current. From Table 2.8, the ODE for an analogous mechanical
system is

Bv + K ∫ 𝑣dt = 0 ⇒
d
dt
𝑣 + (K∕B)𝑣 = 0, (2.128)

where 𝑣 = dy∕dt is the velocity of a point at the end of the spring. Figure 2.28
illustrates the two systems, where the mechanical system consists of a spring and a
damper; there is no mass as in the previous second-order case. Since there are no
driving forces, the solutions of these first-order ODEs are exponentially decaying
functions with time constants 𝜏 = 1∕RC and 𝜏 = K∕B, respectively. The energy
stored in the capacitor dissipates as heat through the resistor; there are no oscillations
as is possible in a second-order system. Similarly, the energy stored in the spring is
dissipated as heat in the damping device until there is no more movement. Since the
system is horizontal, the gravitational force has no impact on the velocity.
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Figure 2.28 First-order system analogs. (a) RC circuit. (b) Horizontal spring with damping.
(c) RL circuit. (d) Mass and frictional surface.

From Table 2.8, a mechanical analog for the series RL circuit can also be derived.
The ODE for the first-order RL circuit in Figure 2.28(c) is

d
dt

i + (R∕L)i = 0, (2.129)

and the mechanical analog is

d
dt
𝑣 + (B∕M)𝑣 = 0. (2.130)

In this example, the mass M is moving along a frictional surface (instead of being
connected to a damping device) as depicted in Figure 2.28(d). The force due to the
coefficient of friction B is proportional to the velocity:

F = B𝑣, (2.131)

whose direction is opposite that of the velocity shown in the figure. From Newton’s
second law, we have

F = Ma ⇒ −B𝑣 = M
d
dt
𝑣, (2.132)

which is the ODE in (2.130).
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Figure 2.29 (a) Parallel RLC circuit and (b) its mechanical analog. The dotted line is not a
connection in (b): it indicates that the vertical surface is a frame of reference.

We conclude this chapter by showing how to convert the parallel RLC circuit
in Figure 2.29(a) to its mechanical analog by using Table 2.8. KVL yields three
equations in terms of the labeled currents:

(i1 − i2) R = Vs, (2.133)

(i2 − i1) R + 1
C ∫

t

0
(i2 − i3) dt = 0, (2.134)

1
C ∫

t

0
(i3 − i2) dt + L

d
dt

i3 = 0, (2.135)

where we assume a zero initial voltage on the capacitor associated with the inte-
grals in the second and third equations. Since current translates to velocity, the first
mechanical equation is

(𝑣1 − 𝑣2) B = x(t). (2.136)

For the second and third equations, the integral yields charge, and so, the mechanical
analog is displacement y:

(𝑣2 − 𝑣1) B + K(y2 − y3) = 0, (2.137)

K(y3 − y2) + M
d
dt
𝑣3 = 0. (2.138)

The mechanical analog of the parallel RLC circuit is shown in Figure 2.29(b). The
equations in (2.136)–(2.138) could also have been derived starting with the mechan-
ical system in the figure. The last term in (2.138) is Newton’s second law F = Ma
where a = d𝑣3∕dt is acceleration.
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Finally, we mention that there is another model for electrical/mechanical systems
known as the force–current model. It can be viewed as the dual of the force-voltage
model with the following equivalences: mechanical force x(t)↔ current i(t), velocity
𝑣(t)↔ voltage 𝑣(t), mass M ↔ capacitance C, and inverse of spring constant 1∕K ↔
inductance L. The damping constant B and the resistance R are analogous in both force
models. Because of duality, the series RLC circuit in Figure 2.18 is the electrical ana-
log of the force-current model of the mechanical system in Figure 2.29(b). Similarly,
the parallel RLC circuit in Figure 2.29(a) is the electrical analog of the mechanical
system in Figure 2.27. The mechanical system problems given later consider only the
force-voltage model.

PROBLEMS

Voltage, Current, and Power

2.1 The current in a circuit is i(t) = 10 exp(−t)u(t) mA. Calculate the amount of
charge delivered after (a) 50 ms and (b) 200 ms.

2.2 The charge in a circuit varies over time as follows:

q(t) =

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

0, t < 0

2t2 + 1, 0 ≤ t < 1

3, 1 ≤ t < 2

−2t + 7 2 ≤ t < 3.5

0, t ≥ 3.5,

(2.139)

with units C for q(t) and seconds (s) for t. (a) Find an expression for the current
i(t). (b) Suppose the voltage across a device in the circuit is

𝑣(t) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

0, t < 0

1, 0 ≤ t < 2

t∕2, 2 ≤ t < 3.5

0, t ≥ 3.5,

(2.140)

which has units V. Give an expression for the instantaneous power p(t).

2.3 The voltage across a 60 W incandescent light bulb is sinusoidal with amplitude
peaks ±120 V. (a) Determine the amount of energy dissipated as heat every 15
minutes. (b) The frequency of the sinusoidal voltage is 60 Hz. Assuming the
current is in phase with the voltage, find expressions for the current i(t) and the
instantaneous power p(t).
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2.4 The current through resistor R = 10 Ω is

i(t) = cos(2𝜋t) + 2 sin(2𝜋t). (2.141)

(a) Give expressions for the instantaneous power p(t) and the average power P.
(b) Repeat part (a) if the argument of sine is changed to 4𝜋t.

2.5 Find the average power P with units W for each of the following cases. (a) 31
dB. (b) −14 dB. (c) 23 dBm.

Circuit Elements

2.6 The initial voltage on capacitor C = 0.01 μF is 𝑣(0) = 1 V. Find an expression
for the voltage on the interval t ∈ [0, 4] s if the current is

i(t) =

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

0, t < 0

0.1t, 0 ≤ t < 1

0.1t2
, 1 ≤ t < 2

−0.2t + 0.8, 2 ≤ t < 4

0, t ≥ 4,

(2.142)

with units μA. Give the voltage at t = 3 s and 4 s.

2.7 Suppose two capacitors C1 = 1 and C2 = 2 μF are connected in parallel with a
10 V source. (a) Specify the total charge on each capacitor. (b) Repeat part (a)
for C1 and C2 placed in series with the 10 V voltage source.

2.8 The initial current through inductor L = 2 mH is i(0) = 1 mA. Find an expres-
sion for the current on the interval t ∈ [0, 10] s if the voltage is

𝑣(t) =

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

0, t < 0

0.2t, 0 ≤ t < 3

0.6, 3 ≤ t < 8

−0.3t + 3, 8 ≤ t < 10

0, t ≥ 10,

(2.143)

with units mV. Give the current at t = 5 s and 9 s.

2.9 The voltage across inductor L = 1 H in a second-order RLC circuit is exponen-
tial as follows:

𝑣(t) = [2 exp(−10t) − exp(−5t)]u(t) V. (2.144)

(a) Find an expression for the instantaneous power. (b) Determine when the
inductor is absorbing power and delivering power.
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2.10 Repeat the previous problem for

𝑣(t) = 5 exp(−2t) cos(2𝜋t)u(t) V. (2.145)

2.11 The energy stored in a capacitor can be derived from the equation for power
p = 𝑣i because p is the rate of change of energy:

p = d
dt

eC = 𝑣C
d
dt
𝑣, (2.146)

where the capacitor current model has been substituted. From this expression,
derive the time-varying energy eC(t), giving a result similar to (2.14).

2.12 Use the approach in the previous problem to derive the energy eL(t) stored in
an inductor that is similar to (2.16).

2.13 Let the current through a capacitor be i(t) = 2 exp(−t)u(t) mA. (a) Find the
power absorbed by the capacitor. (b) Give an expression for the energy ec(t)
as a function of time.

2.14 Find the voltage drop across a diode using the exponential model with n = 1
and the parameters in (2.30) for (a) i = 2 mA and (b) i = 50 mA.

2.15 A diode and resistor R are in series with a 10 V voltage supply. Find R such that
the voltage drop across the diode is 0.7 V using the exponential model in (2.30)
with n = 1.

2.16 Suppose two identical diodes are placed in series. (a) Using the piecewise
linear model with 𝑣c = 0.6 V and RD = 10 Ω, find the current through these
diodes if the voltage across the combination is 5 V. (b) Repeat part (a) for
1 V across the combination.

Basic Circuit Laws

2.17 (a) Prove that for two resistors in parallel, Req is always less than R1 and R2
individually. Give an intuitive reason why this is the case. (b) Show that Req for
n equal-valued resistors R in parallel is R∕n.

2.18 (a) Use KVL to find Rseries for three resistors {R1,R2,R3} in series. (b) Use KCL
to find Rparallel for the three resistors in parallel.

2.19 For the resistive circuit in Figure 2.14, let R1 = 100 Ω, R2 = 50 Ω, R3 = 200 Ω,
and R4 = 75 Ω. (a) Find the equivalent resistance Req at terminals a–b. (b) Use
this result to find the Thévenin equivalent circuit.

2.20 (a) Find the Norton equivalent circuit at terminals a–b for the resistive circuit
in Figure 2.30. (b) Give the corresponding Thévenin equivalent circuit.

2.21 Repeat the previous problem if the circuit is modified to have a 100 Ω resistor
connecting terminals a–b.
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Figure 2.30 Resistive circuit used in Problems 2.20 and 2.21.
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Figure 2.31 Capacitor circuit used in Problem 2.22.
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Figure 2.32 Resistive circuit used in Problem 2.25.

2.22 Find Ceq at terminals a–b for the capacitor circuit in Figure 2.31.

2.23 Using the mathematical model for the inductor in (2.13) and the circuit laws
KVL and KCL, derive formulas for the equivalent inductance in Table 2.5.

2.24 Repeat the previous problem for the equivalent capacitance using the model in
(2.12).

2.25 Find 𝑣 and i for the circuit in Figure 2.32 using (a) mesh-current analysis and
(b) node-voltage analysis.

2.26 Repeat the previous problem for the circuit in Figure 2.33.
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Figure 2.33 Resistive circuit used in Problem 2.26.
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Figure 2.34 RC circuit used in Problem 2.27.

+
_10 V

200 Ω

150 Ω 150 Ω

Figure 2.35 Diode circuit used in Problem 2.28.

2.27 The circuit in Figure 2.34 is in steady state before the switch is opened at t = 0−,
which means the capacitor is an open circuit and i(0−) = 0 A. (a) Find 𝑣(0−).
Since the capacitor voltage cannot change instantaneously, 𝑣(0+) = 𝑣(0−) just
after the switch is opened. However, the current i can change instantaneously.
(b) Find i(0+).
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4 Ω
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_
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_
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i

Figure 2.36 Circuit with dependent current source used in Problem 2.29.

2.28 Let the voltage drop across the ideal diode in Figure 2.35 be fixed at 0.7 V.
(a) Find the current through the diode using KVL. (b) Repeat part (a) using
Norton’s equivalent circuit for the voltage source in order to combine the first
two resistors and then convert back to a Thévenin equivalent circuit, resulting
in a single circuit loop.

2.29 The circuit in Figure 2.36 has a dependent current source whose value is a func-
tion of the voltage 𝑣 across the 3 Ω resistor. Use any analysis technique to find
the voltage 𝑣 and current i.

Mechanical Systems

2.30 For the linearized angle model in (2.102) for the simple pendulum, let 𝜃(0) = 3∘
and 𝜃

′(0) = 0.1 rad/s. Find 𝜃max and 𝑣max for M = 1 kg and L = 1 m.

2.31 Suppose the angular motion in degrees for an unforced simple pendulum is

𝜃(t) = [5 cos(𝜋t) + 10 sin(𝜋t)]u(t). (2.147)

(a) Give the initial angle and initial angular velocity. (b) Specify the length L
of the string and the maximum velocity 𝑣max.

2.32 For a spring constant of K = 2 N/m, (a) determine the mass M such that the
spring is extended by 0.1 m and (b) find the period of oscillation To for an
undamped system.

+
_Vs L C

R

Figure 2.37 RLC circuit used in Problems 2.33 and 2.34.
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2.33 Using the force-voltage model summarized in Table 2.8, sketch the mechanical
system analog for the RLC circuit shown in Figure 2.37.

2.34 Repeat Problem 2.33 for the same circuit but with R and C interchanged.

2.35 Consider the ODE in (2.126) for the mass/spring system with damping. (a)
Assuming x(t) = 0 such that the ODE is homogeneous, show by direct sub-
stitution that y(t) = A exp(−𝛼t)u(t) is a solution, resulting in a second-order
algebraic equation in 𝛼. (b) Setting this equation equal to 0, find expressions
in terms of the parameters {B,K,M} such that the solutions for 𝛼 are (i) real
and (ii) complex. This is one approach taken in Chapter 6 to solve linear ODEs
with constant parameters.

Computer Problems

2.36 Use MATLAB to generate plots for the three types of damped current responses
given in (2.76)–(2.78) for c1 = c2 = 1 mA and 𝜔d = 2𝜋 rad/s. Choose values
for {𝛼, 𝛼1, 𝛼2} so that the exponential components have time constants in the
range 𝜏 ∈ (0, 0.5) s.

2.37 Repeat the computer simulation for the series diode circuit in Example 2.11
using MATLAB with Vs = 1.5 V and R = 125 Ω. (a) Use the same diode param-
eters and let the initial estimate of the voltage be 𝑣 = 0.75 V for the exponential
model. (b) Generate the corresponding results for the piecewise linear model.

2.38 Repeat Example 2.13 by using the same parameters except let 𝜃max = 6∘. Spec-
ify the total energy Et, the period To, 𝑣max, hmax, and dmax. Use MATLAB to
generate three plots similar to those in Figure 2.25.
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LINEAR EQUATIONS AND MATRICES

3.1 INTRODUCTION

In this chapter, we investigate the properties of systems of linear equations that are
represented by matrix equations. Such systems contain unknown variables and known
variables, and the goal is to solve for the unknown variables, given the coefficients
(parameters) that define the system. Gaussian elimination (GE) is an efficient method
that recursively solves for the unknown variables without having to find the inverse of
a matrix. We also discuss the determinant of a matrix, which is often used in circuit
courses instead of GE to solve for unknown voltages and currents.

The reader may want to study only the early parts of this chapter, which also covers
Cramer’s rule, and then return later to some of the more advanced topics such as the
four subspaces of a matrix and its eigendecomposition. The results in this chapter
are readily applied to the all-resistive circuits discussed in Chapter 2, which do not
have an exponential or sinusoidal time response like RC, RL, and RLC circuits that
are modeled by linear ODEs. However, these matrix techniques can also be applied to
the s-domain models discussed in Chapter 7 where ODEs are transformed to algebraic
equations. This procedure based on the Laplace transform is depicted in Figure 3.1.

Algebraic equations in the s-domain are similar to the equations derived for an
all-resistive circuit except the variables are complex-valued. Since these equations

Mathematical Foundations for Linear Circuits and Systems in Engineering, First Edition. John J. Shynk.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
Companion Website: http://www.wiley.com/go/linearcircuitsandsystems

http://www.wiley.com/go/linearcircuitsandsystems
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Time domain s-domain

Linear ODE
models

Real solution

Real matrix
representation

Algebraic
models

Complex matrix
representation

Complex solution

 Laplace
transform

Inverse
Laplace

transform

Figure 3.1 Time- and s-domain approaches to solving linear ODEs using matrix
representations.

are algebraic, it is straightforward to rearrange them as a matrix equation, which
can be solved using the techniques discussed in this chapter. The complex solutions
are then transformed to the time domain, yielding the usual real-valued functions of
time. Since the transformations are invertible, these solutions are identical to those
that would have been obtained using only time-domain techniques. This transforma-
tion approach is advantageous because the time-domain methods for solving linear
ODEs are generally more difficult, especially for high-order systems as discussed in
Chapters 6 and 7.

Later in this book, we focus on the solution path to the right of the vertical dotted
line in Figure 3.1. Although it is possible to express ODEs as systems of equations
using a matrix representation, as depicted by the path containing the lightly shaded
box, this topic is beyond the scope of the book and is only briefly discussed at the
end of Chapter 6.

3.2 VECTOR SPACES

We begin with a discussion of fields and vector spaces.

Definition: Field A field  is a set of numbers that is closed under addition and
multiplication:

x, y ∈  =⇒ x + y ∈  , x, y ∈  =⇒ xy ∈  . (3.1)

These conditions imply several other properties of a field such as the identities 0 + x =
x and 1 × x = x. In this book, either  =  (all real numbers) or  =  (all complex
numbers).
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TABLE 3.1 Vector Space Properties for v, v1, v2, v3 ∈  and
𝜶, 𝜶1, 𝜶2 ∈ 

Property Operation

Addition v1 + v2 ∈ 
Scalar multiplication 𝛼v ∈ 
Commutative v1 + v2 = v2 + v1

Associative (vectors) v1 + (v2 + v3) = (v1 + v2) + v3

Associative (scalars) 𝛼2(𝛼1v) = 𝛼1(𝛼2v)
Distributive (one scalar) 𝛼(v1 + v2) = 𝛼v1 + 𝛼v2

Distributive (two scalars) (𝛼1 + 𝛼2)v = 𝛼1v + 𝛼2v
Identity (0) 𝟎 ∈  =⇒ v + 𝟎 = v
Identity (1) 1 ∈  =⇒ 1 × v = v
Inverse −v ∈  =⇒ v + (−v) = 𝟎

Definition: Vector Space A vector space  over a field  is a collection of ele-
ments that is closed under addition and multiplication by a scalar.

The elements are called vectors even though they need not be the usual vectors in
Euclidean space (as discussed in the following example). Let v1 and v2 represent two
vectors in vector space  . Then the definition states

v1 + v2 ∈  , 𝛼v1 ∈  , (3.2)

where 𝛼 ∈  is a scalar. Since 𝛼 can be negative, the definition of a vector space also
implies subtraction of vectors. Additional properties of a vector space are given in
Table 3.1.

Example 3.1 The column vectors in N-dimensional N or N form a vector space:
v ≜ [𝑣1,… , 𝑣N]T , where each 𝑣n ∈  (or ∈ ) and the superscript T denotes vector
transpose:

v ≜
⎡
⎢
⎢
⎣

𝑣1
⋮
𝑣N

⎤
⎥
⎥
⎦

=⇒ vT = [𝑣1,… , 𝑣N]. (3.3)

Matrices in M×N or M×N with the form given later in (3.6) also form a vector space,
which are the focus of this chapter. A vector space may also consist of functions
{ fn(x)}, provided they satisfy the properties in Table 3.1. For example, they may be
the set of all polynomials of the form f (x) = a2x2 + a1x + a0 with {a0, a1, a2} ∈ .
The quaternions discussed in Chapter 4 comprise a four-dimensional vector space
over .

Generally, vectors in this chapter are defined to be column vectors, and row vectors
explicitly include the superscript T .
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3.3 SYSTEM OF LINEAR EQUATIONS

Consider the following system of linear equations:

a11y1 + a12y2 + … + a1NyN = x1

a21y1 + a22y2 + … + a2NyN = x2

⋮ ⋮

aM1y1 + aM2y2 + … + aMNyN = xM , (3.4)

where {yn} are unknown variables, {xm} are known variables, and {amn} are known
fixed coefficients (derived from the parameters of an underlying physical system, such
as a resistive circuit). This system of equations is the natural extension of one equation
with N independent variables {yn} to M equations with the same set of indepen-
dent variables. Although many books on linear algebra use the reverse notation with
{xn} and {ym} interchanged, we are interested in the arrangement in (3.4) because
from a system viewpoint, {xn} are multiple inputs and {ym} are multiple outputs for
which we want to solve. As described in Chapter 1, the equations in (3.4) represent
a multiple-input, multiple-output (MIMO) system with parameters {amn}. Generally,
the equations (rows) have different coefficients on the left-hand side and different
known variables on the right-hand side. The equations are linear because all terms
are only added or subtracted, and the exponent of each yn is 1; there are no higher
powers of yn, square roots, transcendental functions, and so on.

It is notationally and operationally convenient to write this set of equations in
matrix/vector form by defining the following column vectors:

y ≜
⎡
⎢
⎢
⎣

y1
⋮

yN

⎤
⎥
⎥
⎦

, x ≜
⎡
⎢
⎢
⎣

x1
⋮

xM

⎤
⎥
⎥
⎦

. (3.5)

If the elements of y are real-valued, then we can write y ∈ N×1, and so its transpose
is yT ∈ 1×N . When the dimensions are clear in a discussion, we will often write
y ∈ N for simplicity, in the same way we write the real-valued scalar as y ∈ 
instead of y ∈ 1.

Definition: Matrix Matrix A is a rectangular array of numbers or coefficients rep-
resenting numbers:

A ≜
⎡
⎢
⎢
⎢
⎣

a11 a12 … a1N
a21 a22 … a2N

⋮ ⋮ ⋮ ⋮
aM1 aM2 … aMN

⎤
⎥
⎥
⎥
⎦

, (3.6)

with M rows and N columns. For real elements, A ∈ M×N , and for complex ele-
ments A ∈ M×N .
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A square matrix with M = N is an important case discussed throughout this chapter.
Using A and the vector definitions in (3.5), it is possible to write (3.4) more compactly
as follows:

Ay = x. (3.7)

The mth element of x is generated by multiplying the mth row of A by y, element by
element, and the product terms are summed in the same way as in (3.4). To be more
specific, if we define the mth row vector of A as aT

m ≜ [am1,… , amN] (with the overbar
notation), then the mth element of x is

aT
my = am1y1 + … + amNyN =

N∑

n=1

amnyn = xm. (3.8)

The sum is performed over the second subscript of amn and, hence, over the columns
of A.

When a row vector multiplies a column vector, which is necessarily of the same
size, the result is a scalar as in (3.8); this is called an inner product of the two vectors.

Definition: Inner and Outer Products For vectors x ∈ N and y ∈ N , the inner
product xT y = yT x = c is a scalar. For vectors x ∈ M and y ∈ N , the outer product
xyT = M is an M × N matrix and yxT = N is an N × M matrix.

The inner product of two vectors is also known as the dot product and is sometimes
written as x ⋅ y. The vectors in an inner product commute because the result is a scalar:
cT = (xT y)T = yT x = c. This is not the case in general for an outer product whose
vectors need not have the same dimensions: (xyT )T = yxT ≠ xyT . The inner product
is used to describe the length (size) of a vector.

Definition: Vector Norm The vector norm of x is

‖x‖ ≜ √
xTx =

√

x2
1 + · · · + x2

N . (3.9)

The squared norm is written as ‖x‖2 = xT x.

An example of a vector with N = 2 elements is shown graphically in Figure 3.2,
where the two axes of x ∈ 2 in the Cartesian coordinate system correspond to the
two elements {x1, x2}. Of course, ‖x‖ provides no information about the location of
the vector on the plane. It is easy to verify that ‖x‖ is, in fact, the length of the vector
using trigonometry. The length of the horizontal dashed line is x1 = r cos(𝜙) where
r is the length of the hypotenuse of the right triangle, and the length of the vertical
dashed line is x2 = r sin(𝜙). The squared norm is

‖x‖2 = x2
1 + x2

2 = r2[cos2(𝜙) + sin2(𝜙)] = r2
, (3.10)

and so r = ‖x‖.
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x

Cartesian
coordinates

Length
of vector: r = ||x||

x1

x2

ϕ

Figure 3.2 Example vector x ∈ 2 with components {x1, x2}. Its length is ‖x‖ =
√

x2
1 + x2

2.

The angle 𝜙 is given by x1 = r cos(𝜙) or x2 = r sin(𝜙).

TABLE 3.2 Basic Matrix Properties for A ∈ M×N, B ∈ P×Q, and C ∈ R×S

Property Operation Restrictions

Addition F = A + B =⇒ fmn = amn + bmn M = P and N = Q
Subtraction F = A − B =⇒ fmn = amn − bmn M = P and N = Q

Product F = AB =⇒ fmn = aT
mbn N = P

Reverse product F = BA =⇒ fmn = b
T

man M = Q
Associative (AB)C = A(BC) N = P and Q = R
Distributive A(B + C) = AB + AC N = P = R and Q = S
Commutative AB ≠ BA Generally not commutative

Transpose (AB)T = BT AT N = P
Conjugate transpose (AB)H = BHAH N = P
Inverse (AB)−1 = B−1A−1 M = N = P = Q
Determinant det(AB) = det(A)det(B) M = N = P = Q
Trace tr(AB) = tr(BA) N = P and M = Q

Matrices are multiplied together using inner products of their rows and columns.
Let aT

m be the mth row of A and bn the nth column of B. Then, the mnth element
of matrix C = AB is the inner product cmn = aT

mbn. Matrices A and B need not be
square; however, the number of columns of A must match the number of rows of B.
For example, if A ∈ M×N and B ∈ P×Q, then we must have N = P for C = AB ∈
M×Q to be well defined. This result is unlike that for matrix addition where both
matrices must have the same dimensions because the mnth element of F = A + B is
fmn = amn + bmn. Basic properties of matrices are summarized in Table 3.2.

Usually when given a set of linear equations represented by (3.7), the goal is to
solve for the unknown vector y. In many problems, the number of equations equals
the number of variables (M = N) such that A is a square matrix. However, two other
types of systems also arise in practice:

• Overdetermined system M > N: more equations than unknown variables.

• Underdetermined system M < N: more unknown variables than equations.
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Both of these systems have a rectangular matrix A ∈ M×N . Depending on the spe-
cific coefficients {amn} and the values for M and N, a system of equations may have
(i) no solutions, (ii) a unique solution, or (iii) an infinity of solutions.

Definition: Consistent System A system of equations is consistent if at least one
solution exists; otherwise, it is inconsistent.

Definition: Trivial Solution A solution is trivial if all unknown variables are 0. If
at least one variable is nonzero, then the solution is nontrivial.

Definition: Nonsingular System A system of equations is nonsingular if it has
only one solution; otherwise, it is singular with no solution or an infinity of solutions.

Example 3.2 Consider the simplest nontrivial system of equations with M = 1
equation (one row) and N = 2 variables (two columns):

a11y1 + a12y2 = x1 =⇒ y2 = −(a12∕a11)y1 + x1∕a11, (3.11)

which has been rewritten as the equation of a line with slope −a12∕a11 and ordinate
x1∕a11 (assuming a11 ≠ 0). The ordinate is the value where the line intersects the
vertical axis on the y1–y2 plane. This underdetermined “system” of equations has an
infinity of solutions: for every y1 ∈ , there is a unique value for y2. An example of
this line is plotted in Figure 3.3 for a11 = a12 = 1 and x1 = 2 (the solid line). Suppose
a second equation is included in the system:

a21y1 + a22y2 = x2 =⇒ y2 = −(a21∕a22)y1 + x2∕a22, (3.12)

such that along with (3.11), matrix A is square with dimensions M = N = 2. This line
with a21 = 1, a22 = −1, and x2 = 1∕2 is also plotted in Figure 3.3 (the dashed line).
Observe that a unique solution exists where the two lines (solid and dashed) intersect.
Consider including a third equation:

a31y1 + a32y2 = x3 =⇒ y2 = −(a31∕a32)y1 + x3∕a32, (3.13)

with a31 = a32 = 1 and x3 = 1. This is the dotted line in the figure, which does not
intersect the solid line, and so, the system of two equations given by (3.11) and (3.13)
has no solution. This last case obviously occurs because the two lines are parallel to
each other. They have the same slope but different ordinates: y2 = −y1 + 2 versus
y2 = −y1 + 1. On the other hand, the system of equations represented by the dashed
and dotted lines for (3.12) and (3.13) also have a unique solution because they inter-
sect at a single point. Another case is obtained when (3.12) is proportional to (3.11),
which means there exists c ≠ 0 such that they are collinear:

c(a21y1 + a22y2) = a11y1 + a12y2 and cx1 = x2. (3.14)
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Systems of linear equations

a11 = 1, a12 = 1, x1 = 2

a21 = 1, a22 = −1, x2 = 1/2

a31 = 1, a32 = 1, x3 = 1

Figure 3.3 Systems of linear equations with a unique solution (solid and dashed lines, dashed
and dotted lines) and no solution (solid and dotted lines).

These equations are linearly dependent, and as a result, there is an infinity of solu-
tions as was the case for the single equation in (3.11). Collinear lines when plotted
as in Figure 3.3 are actually the same line. The two parallel lines shown in the figure
do not represent collinear equations. Parallel lines describe different properties of a
system, whereas collinear lines provide essentially the same information about a sys-
tem. Finally, if all three equations represented by the lines in Figure 3.3 are included
in the system of equations, then there is no solution: the three lines do not intersect
at any single point on the 2 plane. The system of three equations is inconsistent.

Example 3.3 Consider the resistive circuit in Figure 3.4. Kirchoff’s voltage law
(KVL) from Chapter 2 yields the following two equations for the loop currents:

100i1 + 100(i1 − i2) = 10, 100(i2 − i1) + 200i2 = 0, (3.15)

where we have combined the two series 100 Ω resistors on the right-hand side of the
circuit. Later in the chapter, we solve such systems of equations using determinants
and GE. Since there are only two variables, it is straightforward to find those quanti-
ties by first solving for i2 in the second equation and then substituting it into the first
equation:

i2 = i1∕5 =⇒ 100i1 + 100(2∕3)i1 = 10. (3.16)
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100 Ω
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Figure 3.4 Resistive circuit for Example 3.3.

Thus, i1 = 60 mA and i2 = 20 mA, which can then be used to determine the voltages
across each of the resistors via Ohm’s law 𝑣 = Ri. The current through the vertical
resistor on the left-hand side is i1 − i2 = 40 mA downward, and so, the voltage is
(i1 − i2)100 = 4 V with positive polarity on top. The voltage across the horizontal
resistor on the left-hand side is 6 V with positive polarity on the left. From voltage
division, we find that the voltages across the other two resistors are both 2 V.

3.4 MATRIX PROPERTIES AND SPECIAL MATRICES

Next, we summarize some general properties of matrices, including those that apply
only to square matrices. Assume that A, B, and C have appropriate dimensions for
matrix multiplication and addition as given in Table 3.2. Although matrices generally
do not commute, AB ≠ BA, one exception occurs when both matrices are diagonal.

Definition: Diagonal Matrix Matrix D is diagonal if the only nonzero elements
are located along the main descending diagonal from upper left to lower right.

Example 3.4 An example of the product of two diagonal matrices with M = N = 3
is

⎡
⎢
⎢
⎣

1 0 0
0 2 0
0 0 3

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

4 0 0
0 5 0
0 0 6

⎤
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

4 0 0
0 5 0
0 0 6

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

1 0 0
0 2 0
0 0 3

⎤
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

4 0 0
0 10 0
0 0 18

⎤
⎥
⎥
⎦

. (3.17)

These matrices obviously commute.

The elements along the main diagonal of a diagonal matrix need not all be of the
same value. If these elements are identical, then A = cI for c ∈  (c ≠ 0) where I is
the identity matrix.

Definition: Identity Matrix The identity matrix I is a square matrix whose ele-
ments are 0 except for 1s along the main descending diagonal.
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For N = 3, the identity matrix is

I =
⎡
⎢
⎢
⎣

1 0 0
0 1 0
0 0 1

⎤
⎥
⎥
⎦

. (3.18)

Sometimes a subscript on IN is used to indicate the size of the identity matrix, which
is necessarily square of size N × N. Likewise, we may use a subscript for the square
zero matrix 𝟎N . If the zero matrix is rectangular, then the notation 𝟎MN is used. Any
matrix multiplied by I is unchanged:

AI = A, IA = A, (3.19)

assuming proper matrix dimensions. For A ∈ M×N , the identity matrix is IN in the
first expression, whereas it is IM in the second expression. The identity matrix is
obtained by concatenating N unit vectors as follows:

I = [e1,… , eN], (3.20)

where the elements of column vector en ∈ N are all 0 except for 1 in the nth row.

Definition: Matrix Trace The trace of square matrix A is the sum of its diagonal
elements:

tr(A) =
N∑

n=1

ann. (3.21)

Matrix A need not be diagonal.
Properties of trace are summarized in Table 3.3.

TABLE 3.3 Matrix Trace Properties for A ∈ N×N

and B ∈ N×N

Property Operation

Definition tr(A) =
N∑

n=1

ann

Identity matrix tr(I) = N
Transpose tr(AT ) = tr(A)
Scalar product tr(cA) = ctr(A) (c ∈ )
Matrix product tr(AB) = tr(BA)
Addition tr(A + B) = tr(A) + tr(B)

Eigenvalues tr(A) =
N∑

n=1

𝜆n
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A triangular matrix is an important type of square matrix that appears in some matrix
decompositions.

Definition: Triangular Matrix The elements of a lower triangular matrix L are 0
above the main descending diagonal, and the elements of an upper triangular matrix
U are 0 below the main descending diagonal.

A diagonal matrix is a special case of a triangular matrix with nonzero elements only
on the main descending diagonal: it is both lower and upper triangular.

Definition: Matrix Inverse If it exists, the matrix inverse of square matrix A
denoted by A−1 satisfies AA−1 = I = A−1A.

In this case, A and A−1 commute to give I, whereas as mentioned before, matrices
do not commute in general. If the rows and columns are linearly independent, then
square matrix A ∈ N×N has an inverse.

Definition: Linearly Independent Columns The columns {an} of matrix A are
linearly dependent if nonzero {cn} exist such that

N∑

n=1

cnan = 𝟎. (3.22)

Otherwise, they are linearly independent.

Dependent columns can be written as a linear combination of each other. This means
there are “extra” columns in the system of equations that provide the same informa-
tion about the system as some combination of the other columns. The same definition
applies to the rows of A.

When A is square and its inverse exists, the solution to (3.7) is

y = A−1x. (3.23)

The solution y can also be derived using GE without finding the inverse of A, as
described later in this chapter.

Definition: Permutation Matrix A permutation matrix is a square matrix whose
elements are all 0 except for a single 1 in each row and column.

For N = 3, there are N! = 6 permutation matrices:

P213 =
⎡
⎢
⎢
⎣

0 1 0
1 0 0
0 0 1

⎤
⎥
⎥
⎦

, P321 =
⎡
⎢
⎢
⎣

0 0 1
0 1 0
1 0 0

⎤
⎥
⎥
⎦

, P132 =
⎡
⎢
⎢
⎣

1 0 0
0 0 1
0 1 0

⎤
⎥
⎥
⎦

, (3.24)
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P231 =
⎡
⎢
⎢
⎣

0 0 1
1 0 0
0 1 0

⎤
⎥
⎥
⎦

, P312 =
⎡
⎢
⎢
⎣

0 1 0
0 0 1
1 0 0

⎤
⎥
⎥
⎦

, P123 =
⎡
⎢
⎢
⎣

1 0 0
0 1 0
0 0 1

⎤
⎥
⎥
⎦

, (3.25)

where the subscript indicates the row numbers for the 1 in each column. All permuta-
tion matrices for arbitrary N can be obtained by interchanging one or more columns
of the identity matrix I, and so, the subscript also indicates the order of the columns
taken from I to generate P. Permutation matrices can also be derived systematically
from the unit vectors: there are N choices of en for the first column, N − 1 for the
second column, and so on until the last column for which there is only one unused
unit vector. Thus, there are

N × (N − 1) × … × 1 = N! (3.26)

permutation matrices including the identity matrix I = P12…N . Multiplying A on the
left by P causes the rows of A to be rearranged according to the subscript; similarly,
the columns of A are rearranged when it is multiplied by P on the right.

Example 3.5 Multiplying A on the left by P213 interchanges rows 1 and 2:

⎡
⎢
⎢
⎣

0 1 0
1 0 0
0 0 1

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

a11 a12 a13
a21 a22 a23
a31 a32 a33

⎤
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

a21 a22 a23
a11 a12 a13
a31 a32 a33

⎤
⎥
⎥
⎦

, (3.27)

and multiplying A on the right interchanges columns 1 and 2:

⎡
⎢
⎢
⎣

a11 a12 a13
a21 a22 a23
a31 a32 a33

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

0 1 0
1 0 0
0 0 1

⎤
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

a12 a11 a13
a22 a21 a23
a32 a31 a33

⎤
⎥
⎥
⎦

. (3.28)

Definition: Exchange Matrix Exchange matrix J is similar to the identity matrix,
except that the 1s are on the main counter-diagonal from upper right to lower left.
It is the permutation matrix with the subscripts written in reverse order: J ≜ PN … 21.
Sometimes the notation ̃I is used.

Multiplication of A on the left by J causes all rows of A to be rearranged in reverse
order, and likewise for the columns of A when it is multiplied on the right by J.

Definition: Elementary Matrix Elementary matrix E is a square matrix that per-
forms one of the following three types of row operations when multiplying A on the
left: (i) scales row m by c, (ii) interchanges rows m and n, or (iii) adds scaled row m
to row n. Multiplying A on the right by an elementary matrix modifies the columns
in the same way.
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An elementary matrix is derived by an elementary operation on the identity matrix.
Examples of the three types of elementary matrices and their notation for M = N = 3
are (i) scaling a row:

E2(c) =
⎡
⎢
⎢
⎣

1 0 0
0 c 0
0 0 1

⎤
⎥
⎥
⎦

=⇒ E2(c)A =
⎡
⎢
⎢
⎣

a11 a12 a13
ca21 ca22 ca23
a31 a32 a33

⎤
⎥
⎥
⎦

. (3.29)

The subscript specifies which row of I is scaled by c ∈  to give the elementary
matrix. (ii) Interchanging two rows:

E23 =
⎡
⎢
⎢
⎣

1 0 0
0 0 1
0 1 0

⎤
⎥
⎥
⎦

=⇒ E23A =
⎡
⎢
⎢
⎣

a11 a12 a13
a31 a32 a33
a21 a22 a23

⎤
⎥
⎥
⎦

. (3.30)

The subscripts denote which rows of I are interchanged to give the elementary matrix.
From this result, we see that a permutation matrix derived by interchanging exactly
two rows of I is also an elementary matrix. For N = 3, these correspond to P213, P321,
and P132. For general N, the following number of the N! permutation matrices are
elementary matrices:

(N − 1) + (N − 2) + … + 2 + 1, (3.31)

which from a closed-form expression in Appendix C is

N−1∑

n=1

n = (1∕2)(N − 1)N. (3.32)

(iii) Adding scaled row m to row n:

E31(c) =
⎡
⎢
⎢
⎣

1 0 0
0 1 0
c 0 1

⎤
⎥
⎥
⎦

=⇒ E31(c)A =
⎡
⎢
⎢
⎣

a11 a12 a13
a21 a22 a23

ca11 + a31 ca12 + a32 ca13 + a33

⎤
⎥
⎥
⎦

. (3.33)

The subscripts indicate the row and column of I where the scalar c ∈  is placed to
define the elementary matrix. When multiplied on the left by E31(c), the first row of
A scaled by c is added to the third row.

In summary, we find from the notation used in (3.29)–(3.33) that it is possible to
uniquely determine the type of elementary matrix from the subscripts and whether or
not there is an argument c. It is straightforward to verify that the elementary matrices
have the following inverses (see Problem 3.9):

E−1
m (c) = Em(1∕c), E−1

mn = Emn, E−1
mn(c) = Emn(−c). (3.34)

Since only the mth row of a matrix is scaled by c when multiplied on the left by Em(c),
it follows that if Em(c)Em(d) = I, then we must have d = 1∕c. The inverse for Emn is
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itself because interchanging rows m and n twice yields the original identity matrix:
EmnEmn = I =⇒ E−1

mn = Emn.
Elementary matrices can be used to find the inverse of a nonsingular matrix as

follows. Suppose we premultiply matrix A successively by elementary matrices until
the resulting row operations yield the identity matrix I. Let the product of those ele-
mentary matrices be denoted by E. Observe that

EA = I =⇒ EAA−1 = IA−1 =⇒ EI = A−1
, (3.35)

which demonstrates that the inverse of matrix A is generated by premultiplying the
identity matrix by the same product E of elementary matrices.

Example 3.6 In this example, we show for the following matrix how to obtain its
inverse by using elementary matrices:

A =
[

1 2
3 1

]

. (3.36)

The approach is facilitated by using the following augmented matrix:

[A | I] =
[

1 2 1 0
3 1 0 1

]

, (3.37)

and applying the elementary matrices to both components. First, E12(−3) adds row 1
scaled by −3 to the second row:

[E12(−3)A | E12(−3)I] =
[

1 2 1 0
0 −5 −3 1

]

. (3.38)

Next, E2(−5) scales the second row in the last expression:

[E2(−5)E12(−3)A | E2(−5)E12(−3)I] =
[

1 2 1 0
0 1 3∕5 −1∕5

]

. (3.39)

Finally, E21(−2) eliminates 2 in the upper right corner of A, yielding the desired
result:

[E21(−2)E2(−5)E12(−3)A | E21(−2)E2(−5)E12(−3)I] =
[

1 0 −1∕5 2∕5
0 1 3∕5 −1∕5

]

,

(3.40)
and so, the inverse is

A−1 =
[
−1∕5 2∕5

3∕5 −1∕5

]

. (3.41)

A similar approach is used in GE, where instead of computing the inverse of
a matrix, back-substitution is used to find the unknown variables y in Ay = x.
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The product EAy = Ex yields an upper triangular matrix U ≜ EA, for which it is
straightforward to solve for yN because the last row of U has only one nonzero
element. Once yN has been found, back-substitution successively solves for yN−1,
yN−2, and so on until reaching y1. It is not necessary to convert A to the identity
matrix in order to find y as was done to find A−1 in the previous example.

Definition: Matrix Rank The rank R of matrix A is the number of independent
columns, which is also the number of independent rows.

This definition does not require that the matrix be square.

Example 3.7 For the three equations/lines described in Example 3.2, the 3 × 2
matrix is

A =
⎡
⎢
⎢
⎣

1 1
1 −1
1 1

⎤
⎥
⎥
⎦

, (3.42)

whose rank obviously cannot exceed min(M,N) = min(3, 2) = 2. The first and third
rows are linearly dependent, whereas the first and second rows are not, and so, the rank
of this matrix is R = 2. It is also clear that the two columns are linearly independent.
We emphasize that the rank is not necessarily equal to min(M,N). For example, if
−1 in (3.42) is changed to 1, then all three rows are linearly dependent as are both
columns, and the rank is R = 1.

Definition: Symmetric Matrix Square matrix A is symmetric if AT = A and
skew-symmetric if AT = −A.

A diagonal matrix is always symmetric.

Definition: Hermitian Matrix Square matrix A is Hermitian if AH = A and
skew-Hermitian if AH = −A where AH ≜ (AT)∗ = (A∗)T .

The superscript ∗ denotes complex conjugation of every element in the matrix.
A complex number has the two-dimensional form c = a + jb with j ≜ √

−1; its
complex conjugate is c∗ = a − jb, which is discussed further in Chapter 4. The real
part of c is a and its imaginary part is b. The real part of c∗ is also a, but its imaginary
part is −b. A Hermitian (skew-Hermitian) matrix is equivalent to a symmetric
(skew-symmetric) matrix if all its elements are real.

Example 3.8 Example symmetric and skew-symmetric matrices are

A =
⎡
⎢
⎢
⎣

1 2 3
2 4 5
3 5 6

⎤
⎥
⎥
⎦

, B =
⎡
⎢
⎢
⎣

0 2 3
−2 0 5
−3 −5 0

⎤
⎥
⎥
⎦

, (3.43)
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from which we find that the diagonal elements of a skew-symmetric matrix must all
be 0. This result follows from the defining property bmn = −bnm and the fact that this
equation holds only when the elements are 0 for m = n. There is no similar restriction
for a symmetric matrix whose elements satisfy amn = anm. Example Hermitian and
skew-Hermitian matrices are

A =
⎡
⎢
⎢
⎣

1 2 + j 3 − j
2 − j 4 5 + 2j
3 + j 5 − 2j 6

⎤
⎥
⎥
⎦

, B =
⎡
⎢
⎢
⎣

0 2 + j 3 − j
−2 + j 0 5 + 2j
−3 − j −5 + 2j 0

⎤
⎥
⎥
⎦

, (3.44)

from which we find that the diagonal elements of a Hermitian matrix must all be
real. This occurs due to the defining property a∗mn = anm, which is valid for m = n
only when the imaginary part is 0. The corresponding equation for a skew-Hermitian
matrix is b∗mn = −bnm, which shows that the real parts of transposed elements have
the opposite sign and their imaginary parts have the same sign.

Definition: Idempotent Matrix Matrix A is idempotent if A2 = A which implies
Ak = A for k ∈  .

Definition: Nilpotent Matrix Matrix A is nilpotent if Ak = 𝟎 for k > N and some
integer N ∈  .

Example 3.9 An example of an idempotent matrix is the projection matrix that
arises in least-squares problems:

B = A(AT A)−1AT
, (3.45)

where (ATA)−1 is the inverse of ATA, and A ∈ M×N need not be a square matrix.
It is straightforward to verify that B is idempotent from the multiplication rules for
matrices:

B2 = A(AT A)−1ATA(AT A)−1AT = A(AT A)−1AT = B. (3.46)

A numerical example is

B =
⎡
⎢
⎢
⎣

1 0 0
0 1 0
2 0 0

⎤
⎥
⎥
⎦

=⇒ B2 =
⎡
⎢
⎢
⎣

1 0 0
0 1 0
2 0 0

⎤
⎥
⎥
⎦

. (3.47)

The identity matrix is the only idempotent matrix that is nonsingular. An example
nilpotent matrix is

A =
⎡
⎢
⎢
⎣

0 0 0
3 0 0
2 1 0

⎤
⎥
⎥
⎦

=⇒ A2 =
⎡
⎢
⎢
⎣

0 0 0
0 0 0
3 0 0

⎤
⎥
⎥
⎦

, (3.48)

with Ak = 𝟎 for k ≥ 3. It turns out that the eigenvalues of a nilpotent matrix, which
are defined later in this chapter, are all 0.
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Definition: Orthogonal and Unitary Matrices Square matrix A is orthogonal
if AT A = AAT = I, which implies AT = A−1. Square matrix A is unitary if AHA =
AAH = I, which implies AH = A−1.

Of course, a unitary matrix is equivalent to an orthogonal matrix when all its elements
are real.

Example 3.10 An important example of an orthogonal matrix is the following rota-
tion matrix:

A =
[

cos(𝜙) − sin(𝜙)
sin(𝜙) cos(𝜙)

]

, (3.49)

from which we find

AT A =
[

cos(𝜙) sin(𝜙)
− sin(𝜙) cos(𝜙)

] [
cos(𝜙) − sin(𝜙)
sin(𝜙) cos(𝜙)

]

=

[
cos2(𝜙) + sin2(𝜙) − cos(𝜙) sin(𝜙) + sin(𝜙) cos(𝜙)

− sin(𝜙) cos(𝜙) + cos(𝜙) sin(𝜙) sin2(𝜙) + cos2(𝜙)

]

= I.

(3.50)

This result holds for any angle 𝜙 ∈ [0, 2𝜋]. Equation (3.49) is a rotation matrix
because A in Ay = x rotates y by angle 𝜙 to give x, and without any change to its
length: ‖x‖ = ‖y‖. This is seen as follows:

x = Ay =
[

cos(𝜙)x1 − sin(𝜙)x2

sin(𝜙)x1 + cos(𝜙)x2

]

, (3.51)

with squared norm

xT x = cos2(𝜙)x2
1 + sin2(𝜙)x2

2 + 2 sin(𝜙) cos(𝜙)x1x2 + sin2(𝜙)x2
1

+ cos2(𝜙)x2
2 − 2 sin(𝜙) cos(𝜙)x1x2

= x2
1 + x2

2 = yT y. (3.52)

For positive 𝜙, A rotates y counterclockwise on the plane to x as depicted
in Figure 3.5. The coordinates of x are x1 = cos(𝜙)y1 − sin(𝜙)y2 < y1 and
x2 = sin(𝜙)y1 + cos(𝜙)y2 > y2. An example unitary matrix is

B = 1
√

2

[
1 exp(−j𝜙)

− exp( j𝜙) 1

]

, (3.53)

where exp( j𝜙) = cos(𝜙) + j sin(𝜙) is the complex exponential function discussed in
Chapter 4.
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Cartesian
coordinates

ϕ
Same length

x

y

||x||  =  ||y||

Figure 3.5 Vector y rotated counterclockwise by 𝜙 radians to x = Ay using the rotation
matrix in (3.49).

Definition: Toeplitz and Circulant Matrices Matrix A is Toeplitz if the elements
for every descending diagonal from upper left to lower right are identical within the
same diagonal. Toeplitz matrix A is circulant if each row can be derived by circularly
shifting the previous row by one element to the right.

For square circulant matrix A ∈ N×N , there are at most N unique elements, as
opposed to N2 for general square matrix A.

Example 3.11 A Toeplitz matrix for N = 3 has the following form:

A =
⎡
⎢
⎢
⎣

a b c
d a b
e d a

⎤
⎥
⎥
⎦

. (3.54)

This matrix is circulant if d = c and e = b:

A =
⎡
⎢
⎢
⎣

a b c
c a b
b c a

⎤
⎥
⎥
⎦

, (3.55)

which is uniquely specified by any row or column. A Toeplitz matrix is also specified
by any row or column provided it is symmetric (or Hermitian in the complex case),
as shown by making (3.54) symmetric with d = b and e = c:

A =
⎡
⎢
⎢
⎣

a b c
b a b
c b a

⎤
⎥
⎥
⎦

. (3.56)

Various special square matrices and their properties are summarized in Table 3.4.
(Although technically we could apply the Toeplitz property to rectangular matrices,
they are assumed to be square in the table.)

3.5 DETERMINANT

Next, we discuss the determinant of a square matrix, which is useful for writing an
explicit solution to the system of equations Ay = x provided that A is nonsingular. It
is also used to find the eigenvalues of A as described at the end of this chapter.
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TABLE 3.4 Special Square Matrices and Properties

Matrix Property

Diagonal D All elements are 0 except on the main descending diagonal
Lower triangular L All elements above the main descending diagonal are 0
Upper triangular U All elements below the main descending diagonal are 0
Identity I All elements are 0 except for 1s on the main diagonal
Permutation P Permutation of rows or columns of I
Exchange J All elements are 0 except for 1s on the main counter-diagonal
Elementary E Three types derived from I or P
Minor M Minor matrix of A with a row and column deleted
Inverse A−1 Rows/columns are linearly independent
Symmetric AT = A
Skew-symmetric AT = −A
Hermitian AH = A
Skew-Hermitian AH = −A
Idempotent Ak = A for k ∈ 
Nilpotent Ak = 𝟎 for k > N and some integer N ∈ 
Toeplitz Identical elements along the same descending diagonals
Circulant Each row is generated as a circular shift of the previous row

Definition: Determinant The determinant of square matrix A ∈ N×N is

det(A) =
N∑

n=1

amnAmn, (3.57)

where amn is the element in row m and column n. The scalar

Amn = (−1)m+n det(Mmn) (3.58)

is called a cofactor, and the minor matrix Mmn is derived from A by deleting its mth
row and nth column.

The determinant of A is computed by finding the determinants of successively
smaller minor matrices using cofactors defined along any row until 2 × 2 matrices
are reached.

Example 3.12 The basic 2 × 2 matrix

A =
[

a11 a12
a21 a22

]

, (3.59)

has the following minor “matrices”:

M11 = a22, M12 = a21, M21 = a12, M22 = a11, (3.60)
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with cofactors

A11 = a22, A12 = −a21, A21 = −a12, A22 = a11, (3.61)

and so, its determinant is

det(A) = a11A11 + a12A12 = a11a22 − a12a21. (3.62)

If instead cofactors for the second row are used, we obtain the same result:

det(A) = a21A21 + a22A22 = −a21a12 + a22a11. (3.63)

Example 3.13 For the 3 × 3 matrix

A =
⎡
⎢
⎢
⎣

a11 a12 a13
a21 a22 a23
a31 a32 a33

⎤
⎥
⎥
⎦

, (3.64)

the minor matrices are

M11 =
[

a22 a23
a32 a33

]

, M12 =
[

a21 a23
a31 a33

]

, M13 =
[

a21 a22
a31 a32

]

, (3.65)

M21 =
[

a12 a13
a32 a33

]

, M22 =
[

a11 a13
a31 a33

]

, M23 =
[

a11 a12
a31 a32

]

, (3.66)

M31 =
[

a12 a13
a22 a23

]

, M32 =
[

a11 a13
a21 a23

]

, M33 =
[

a11 a12
a21 a22

]

. (3.67)

Using cofactors for the first row, the determinant is

det(A) = a11 det M11 − a12 det M12 + a13 det M13

= a11(a22a33 − a32a23) − a12(a21a33 − a31a23)

+ a13(a21a32 − a31a22). (3.68)

It is easy to verify that the same determinant is obtained by using cofactors for either
the second or third row.

The determinant of A is unique, and it has the properties in Table 3.5. The property
for a triangular matrix also holds for a diagonal matrix because it is a special type of
triangular matrix.
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TABLE 3.5 Matrix Determinant Properties for A ∈ N×N and B ∈ N×N

Property Operation

Identity matrix det(I) = 1
Transpose det(AT ) = det(A)
Inverse det(A−1) = 1∕ det(A)
Scalar product det(cA) = cN det(A) (c ∈ )
Matrix product det(AB) = det(A) det(B)
Addition det(A + B) ≠ det(A) + det(B)

Eigenvalues det(A) =
N∏

n=1

𝜆n

Triangular matrix det(A) =
N∏

n=1

ann

Dependent rows/columns det(A) = 0

Definition: Adjugate Matrix The adjugate matrix of A contains its cofactors as
follows:

adj(A) ≜
⎡
⎢
⎢
⎣

A11 … AN1
⋮ … ⋮

A1N … ANN

⎤
⎥
⎥
⎦

, (3.69)

where the subscripts are transposed relative to {amn} of the original matrix A.

If we replace amn in the determinant expression of (3.57) with apn (for p ≠ m) and
keep Amn in the sum as follows:

N∑

n=1

apn Amn = 0, p ≠ m, (3.70)

then this change is equivalent to replacing the mth row of A with its pth row. As a
result, (3.70) is the determinant of a matrix with two identical rows, which is singular,
and as a result, the sum across columns is 0. Thus, the elements of the matrix product
Aadj(A) are all 0 except along the main descending diagonal where p = m:

Aadj(A) = det(A)I. (3.71)

The diagonal elements on the right-hand side are all of the form in (3.57) as m of amn
and Amn is varied from 1 to N, giving det(A). For the off-diagonal elements, the first
subscript of amn and Amn always differ, and (3.70) yields 0 for those terms. This is
easily verified for the 2 × 2 matrix in (3.59) where

adj(A) =
[

a22 −a12
−a21 a11

]

(3.72)
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and

Aadj(A) =
[

a22 −a12

−a21 a11

] [
a11 a12

a21 a22

]

=
[

a22a11 − a12a21 a22a12 − a12a22

−a21a11 + a11a21 −a21a12 + a11a22

]

=
[

det(A) 0

0 det(A)

]

. (3.73)

For nonsingular A, the product of (3.71) and A−1 yields

A−1 = 1
det(A)

adj(A), (3.74)

and an explicit solution for Ay = x is

y = 1
det(A)

adj(A)x. (3.75)

As mentioned earlier, it is possible to solve Ay = x using determinants and a
technique known as Cramer’s rule (although GE is more efficient). Cramer’s rule
is often used in circuit courses because it yields an explicit expression for each ele-
ment of y. Since A usually is not large in such circuits problems, complexity and
numerical stability issues associated with computing A−1 are not of concern when
using this approach. The mth element of y is

ym =
det(Am)
det(A)

, (3.76)

where the square matrix Am is generated from A by replacing its mth column with x:

Am ≜
⎡
⎢
⎢
⎣

a11 … a1,m−1 x1 a1,m+1 … a1N

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
aN1 … aN,m−1 xN aN,m+1 … aNN

⎤
⎥
⎥
⎦

(3.77)

The result in (3.76) follows from (3.75) by examining the column vector

adj(A)x =
⎡
⎢
⎢
⎣

A11 … AN1

⋮ … ⋮
A1N … ANN

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

x1
⋮

xN

⎤
⎥
⎥
⎦

, (3.78)

whose mth element is

N∑

n=1

Anmxn = det
⎡
⎢
⎢
⎣

a11 … a1,m−1 x1 a1,m+1 … a1N

⋮ … ⋮ ⋮ ⋮ … ⋮
aN1 … aN,m−1 xN aN,m+1 … aNN

⎤
⎥
⎥
⎦

= det(Am). (3.79)
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Comparing the left-hand side with (3.57), we find that xn has replaced amn and the
subscripts of Amn have been interchanged to Anm. The middle expression of (3.79)
follows because the sum is over the first subscript of Anm, instead of the second
subscript as in (3.57). The mth column of Am is vector x, and so, this expression is
det(Am). Since this result holds for every row of adj(A)x, we have the result in (3.76).
Thus, the solution y for the nonsingular system of equations Ay = x is derived by
computing N + 1 determinants {det(A), det(A1),… , det(AN)} and taking their ratios
according to (3.76).

Example 3.14 Consider the following system of linear equations:

⎡
⎢
⎢
⎣

1 2 4
3 4 1
2 3 1

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

y1
y2
y3

⎤
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

3
1
2

⎤
⎥
⎥
⎦

, (3.80)

for which the determinant is

det(A) = det
⎡
⎢
⎢
⎣

1 2 4
3 4 1
2 3 1

⎤
⎥
⎥
⎦

= 1(4 × 1 − 3 × 1) − 2(3 × 1 − 2 × 1) + 4(3 × 3 − 2 × 4) = 3.

(3.81)
The column-modified matrices containing x are

A1 =
⎡
⎢
⎢
⎣

3 2 4
1 4 1
2 3 1

⎤
⎥
⎥
⎦

, A2 =
⎡
⎢
⎢
⎣

1 3 4
3 1 1
2 2 1

⎤
⎥
⎥
⎦

, A3 =
⎡
⎢
⎢
⎣

1 2 3
3 4 1
2 3 2

⎤
⎥
⎥
⎦

, (3.82)

which have determinants {− 15, 12, 0}, respectively, such that the solution of Ay = x
is y = [−5, 4, 0]T .

It is important to note that Cramer’s rule can be used only when there is a unique
solution, which is often the case if a physical system such as an all-resistive circuit is
modeled correctly by Ay = x. The next example illustrates what happens when there
is an infinity of solutions because A is singular.

Example 3.15 Suppose instead that the system in Example 3.14 is

⎡
⎢
⎢
⎣

1 2 4
3 4 1
2 4 8

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

y1
y2
y3

⎤
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

3
1
6

⎤
⎥
⎥
⎦

, (3.83)

where the last row of A is a scaled version of the first row, and likewise for the last
element of x on the right-hand side. Since this matrix is singular, we immediately
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find that

det(A) = det
⎡
⎢
⎢
⎣

1 2 4
3 4 1
2 4 8

⎤
⎥
⎥
⎦

= 1(4 × 8 − 4 × 1) − 2(3 × 8 − 2 × 1) + 4(3 × 4 − 2 × 4) = 0,

(3.84)
which shows that Cramer’s rule cannot be used. When the system of equations is
inconsistent such that there are no solutions, matrix A is singular and again Cramer’s
rule cannot be used.

Example 3.16 Continuing with the resistive circuit in Example 3.3, the matrix
equation is [

200 −100
−100 300

] [
i1
i2

]

=
[

10
0

]

, (3.85)

whose right-hand side is a vector of voltages. The determinant is det(A) = 50, 000,
and using Cramer’s rule, the two currents are

i1 = det

[
10 −100
0 300

]

∕50, 000 = 3000∕50, 000 = 60 mA, (3.86)

i2 = det

[
200 10

−100 0

]

∕50, 000 = 1000∕50, 000 = 20 mA, (3.87)

which are the same results obtained earlier by a direct substitution of variables.

3.6 MATRIX SUBSPACES

There are four subspaces associated with matrix A ∈ M×N .

Definition: Subspace A subspace  of the vector space  = N is a subset of
those vectors such that

v ∈  , c ∈  =⇒ cv ∈  , v1, v2 ∈  =⇒ v1 + v2 ∈  . (3.88)

The first condition implies that the zero vector is always included in subspace 
(which, of course, is also in the vector space ).

Example 3.17 The following vectors describe various subspaces of  = 2:
{[

𝑣

0

]

∶ 𝑣 ∈ 
}

,

{[
𝑣1
−𝑣1

]

∶ 𝑣1 ∈ 
}

,

{[
𝑣1
−𝑣2

]

∶ 𝑣1, 𝑣2 ∈ 
}

. (3.89)

The first two cases describe lines on a plane, and the third case is equivalent to 2.
The following do not describe subspaces of 2 for c ≠ 0:
{[

𝑣

c

]

∶ 𝑣 ∈ 
}

,

{[
𝑣1

−𝑣1 + c

]

∶ 𝑣1 ∈ 
}

,

{[
𝑣1
𝑣

2
1

]

∶ 𝑣1 ∈ 
}

. (3.90)
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Although the first two cases describe lines, they do not pass through the origin: [0, 0]T
is not possible for nonzero c. The third case is nonlinear and does not satisfy (3.88)
as demonstrated by the following example:

v1 =
[

1
1

]

, v2 =
[

2
4

]

=⇒ v1 + v2 =
[

3
5

]

≠
[

3
9

]

, (3.91)

where the last vector is due to the form of the last set of vectors in (3.90).

For the system of linear equations Ay = x with A ∈ M×N , the right-hand side x
is a linear combination of the columns of A:

x =
N∑

n=1

ynan, (3.92)

where an denotes the nth column vector of A and yn is the nth element of y.

Definition: Column Space The column space C(A) of matrix A consists of all
vectors x ∈ M derived as linear combinations of the columns of A. The column
space is also called the range of A.

Equation (3.92) is an important property showing that x must be in C(A) for a solution
of Ay = x to exist. If x cannot be expressed as some linear combination of the columns
of A, then there is no y satisfying Ay = x.

Example 3.18 For A ∈ 3 (a vector), the system of linear equations is

⎡
⎢
⎢
⎣

a11
a21
a21

⎤
⎥
⎥
⎦

y1 =
⎡
⎢
⎢
⎣

x1
x2
x3

⎤
⎥
⎥
⎦

, (3.93)

which means the column space is a line in3 given by the left-hand side with y1 ∈ .
If the matrix is expanded to two columns as A ∈ 3×2:

⎡
⎢
⎢
⎣

a11 a12
a21 a22
a21 a23

⎤
⎥
⎥
⎦

[
y1
y2

]

=
⎡
⎢
⎢
⎣

x1
x2
x3

⎤
⎥
⎥
⎦

, (3.94)

then C(A) is a plane in 3 provided the two columns of A are linearly independent;
otherwise, C(A) is again a line in 3. Finally, for A ∈ 3×3:

⎡
⎢
⎢
⎣

a11 a12 a13
a21 a22 a23
a21 a23 a33

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

y1
y2
y3

⎤
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

x1
x2
x3

⎤
⎥
⎥
⎦

, (3.95)
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and C(A) ≡ 3 provided all three columns of A are linearly independent. In this
case, x can be any vector in 3 and a unique solution y ∈ 3 exists because A has an
inverse: y = A−1x. For the two overdetermined cases in (3.93) and (3.94), a solution
exists provided x ∈ C(A), but the solution is not unique as demonstrated in the next
example.

Example 3.19 For an overdetermined system with matrix (M = 3, N = 2)

A =
⎡
⎢
⎢
⎣

1 0
1 1
0 1

⎤
⎥
⎥
⎦

, (3.96)

a vector in the column space has the form

x =
⎡
⎢
⎢
⎣

x1
x2
x3

⎤
⎥
⎥
⎦

= Ay =
⎡
⎢
⎢
⎣

y1
y1 + y2

y2

⎤
⎥
⎥
⎦

. (3.97)

Since x has three components, it lies in the three-dimensional subspace 3. However,
as the components {x1, x2} are varied over 2, there is a restriction on the other
component: x3 = x2 − x1. This follows from the right-hand side: since x1 = y1 and
x2 = y1 + y2, we must have

x3 = y2 =⇒ x3 = x2 − y1 =⇒ x3 = x2 − x1. (3.98)

This equation for x3 defines the column space of A in 3, which is the tilted plane
shown in Figure 3.6 that passes through the origin x = 𝟎. The system Ay = x has a
solution y for any vector x located in this plane. Examples of vectors in C(A) gener-
ated from the right-hand side of (3.97) are

⎡
⎢
⎢
⎣

0
0
0

⎤
⎥
⎥
⎦

,

⎡
⎢
⎢
⎣

0
y2
y2

⎤
⎥
⎥
⎦

,

⎡
⎢
⎢
⎣

y1
y1
0

⎤
⎥
⎥
⎦

,

⎡
⎢
⎢
⎣

2
4
2

⎤
⎥
⎥
⎦

, (3.99)

where {y1, y2} are any real numbers for the middle two examples. Of course, the zero
vector 𝟎 is always in the column space for any matrix A. The solid line in Figure 3.6 is
defined by x3 = x2 − x1 = 0 for x1 = x2, and so, it lies in the column space. Examples
of vectors that are not in the column space of A are

⎡
⎢
⎢
⎣

1
1
1

⎤
⎥
⎥
⎦

,

⎡
⎢
⎢
⎣

0
y2

−y2

⎤
⎥
⎥
⎦

,

⎡
⎢
⎢
⎣

y1
y1 + 1

0

⎤
⎥
⎥
⎦

,

⎡
⎢
⎢
⎣

2
4
4

⎤
⎥
⎥
⎦

, (3.100)

assuming that y2 ≠ 0 in the second case. The dashed line in Figure 3.6 is the first vec-
tor in (3.100) scaled by 3, which we see does not lie in the column space represented
by the plane.
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0

1

2

3

0

1

2

3

−2

−1

0

1

2

−3

3

x1

Column space for A
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x 3

Figure 3.6 Column space of A in Example 3.19 is a plane in 3. The solid line on the plane
for x lies in the column space, whereas the dashed line does not.

Example 3.20 Continuing with Example 3.18, suppose A ∈ 3×4 such that the sys-
tem of linear equations is underdetermined:

⎡
⎢
⎢
⎣

a11 a12 a13 a14
a21 a22 a23 a24
a21 a23 a33 a34

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

y1
y2
y3
y4

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

x1
x2
x3

⎤
⎥
⎥
⎦

, (3.101)

which means that at most only three columns of A are linearly independent. The
column space is a subspace in 3: either a line, a plane, or 3 depending on the rank
of A: R = 1, 2, or 3, respectively. Consider

A =
⎡
⎢
⎢
⎣

1 0 0 1
0 1 0 0
0 0 1 0

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

y1
y2
y3
y4

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

y1 + y4
y2
y3

⎤
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

x1
x2
x3

⎤
⎥
⎥
⎦

, (3.102)

where the fourth column of A is identical to the first column and the matrix has rank
R = 3. This matrix is in the so-called row-echelon form described later in connec-
tion with GE. The right-hand side defines the column space, which is C(A) = 3

because y1, y2, y3, y4 ∈ . Thus, every x is in the column space, and the solution for
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y is not unique: y3 = x3, y2 = x2, and y1 + y4 = x1, which we write as

⎡
⎢
⎢
⎢
⎣

y1
y2
y3
y4

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

x1 − y4
x2
x3
y4

⎤
⎥
⎥
⎥
⎦

. (3.103)

The elements {y2, y3} are fixed by {x2, x3}, whereas once the free variable y4 (defined
later) is chosen to be any number in , the first variable is fixed at y1 = x1 − y4. As a
result, there is an infinity of solutions for this particular A. Underdetermined systems
have an infinity of solutions provided x is in the column space C(A).

Definition: Null Space The null space N(A) of matrix A consists of all column
vectors y ∈ N that satisfy

Ay = 𝟎. (3.104)

The null space is also called the kernel.

If A is square and nonsingular, then the null space is trivial: it contains only 𝟎, and
y = 𝟎 is the unique solution satisfying (3.104). This result follows because A−1 exists
and we can write

Ay = 𝟎 =⇒ y = A−1𝟎 = 𝟎. (3.105)

Example 3.21 Consider the following matrix for an underdetermined system of
equations:

A =
[

1 1 0
0 1 1

]

, (3.106)

and observe that

Ay =
[

y1 + y2
y2 + y3

]

. (3.107)

Setting this expression equal to 0, we find there are three variables {y1, y2, y3} but
only two equations: y1 + y2 = 0 and y2 + y3 = 0, which means that Ay = 𝟎 has an
infinity of solutions. Since y has three components, the null space of A is a subspace
of 3 defined by

y2 = −y1, y3 = −y2 =⇒ y3 = y1. (3.108)

As a result, the null space is given by all vectors of the form

y =
⎡
⎢
⎢
⎣

1
−1

1

⎤
⎥
⎥
⎦

y1, (3.109)

for any y1 ∈ . This line in 3 is depicted in Figure 3.7.
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Figure 3.7 Null space for A in Example 3.21 which is a line in 3.

The zero vector y = 𝟎 is in both the null space and the column space of A, and
those two subspaces intersect at 𝟎 as illustrated in the next example.

Example 3.22 The columns of the following matrix are not linearly independent:

⎡
⎢
⎢
⎣

1 3 1
0 2 1
2 6 2

⎤
⎥
⎥
⎦

y =
⎡
⎢
⎢
⎣

x1
x2
x3

⎤
⎥
⎥
⎦

, (3.110)

because the third row is twice the first row:

⎡
⎢
⎢
⎣

y1 + 3y2 + y3
2y2 + y3

2y1 + 6y2 + 2y3

⎤
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

x1
x2
x3

⎤
⎥
⎥
⎦

. (3.111)

In order for a solution to exist, we must have x3 = 2x1, in which case the column
space for this matrix is x = [x1, x2, 2x1]T with x1, x2 ∈ . The null space is derived
by setting (3.111) equal to 𝟎 and finding expressions for {y1, y2, y3}. Since the third
row is a scaled version of the first row, it can be ignored. Thus, we have

y1 + 3y2 + y3 = 0, 2y2 + y3 = 0, (3.112)

which means that the null space is defined by y = [y3∕2,−y3∕2, y3]T for y3 ∈ .
The column space for this matrix is a plane and the null space is a vector, both in
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Figure 3.8 Column space and null space for A in Example 3.22, which are a plane and a line,
respectively, in 3.

3 because A has three columns. These subspaces are depicted in Figure 3.8. This
property is true in general: the sum of the dimensions of the column space and the
null space equals the number of columns of A ∈ M×N .

Matrix A has two additional subspaces.

Definition: Row Space The row space R(A) of matrix A consists of all row vectors
xT ∈ N derived as linear combinations of the rows of A. This is equivalent to R(A) =
C(AT ).

Definition: Left Null Space The left null space L(A) of matrix A consists of all
row vectors yT ∈ M that satisfy yT A = 𝟎T . This is equivalent to L(A) = N(AT ).

The row space and left null space of a matrix involve linear combinations of the rows
of A. These four subspaces are discussed again after GE is covered in the next section.
It turns out that the column space and the left null space are orthogonal complements
in M , and the row space and null space are orthogonal complements in N .

Definition: Orthogonal Complement The orthogonal complement of subspace
 ∈ N , denoted by ⊥, consists of all vectors in N that are orthogonal to the
vectors in  .
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It is clear from the previous definition that subspace  and ⊥ together comprise
every vector in N :  ∪ ⊥ = N . (A brief review of set theory and set operations
is provided in Appendix C.)

Definition: Basis and Span A basis for a vector space in N is a set of vectors
that are linearly independent and span the vector space.

To span means that it is possible to write any other vector in the vector space as a
linear combination of the basis vectors. Methods of finding a basis for each of the
four subspaces are described below.

The four matrix subspaces and their dimensions are summarized in Table 3.6.
Note that the union R(A) ∪ N(A) = N comprises all N-dimensional vectors, and
similarly, C(A) ∪ L(A) = M comprises all M-dimensional vectors.

3.7 GAUSSIAN ELIMINATION

GE is a technique for solving a system of linear equations that does not explic-
itly produce the inverse of matrix A, only y of the system Ay = x. This approach
is advantageous because finding y = A−1x requires more computations and can be
numerically unstable. Let M = N = 3 such that the system of linear equations Ay = x
has the form

⎡
⎢
⎢
⎣

a11 a12 a13
a21 a22 a23
a31 a32 a33

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

y1
y2
y3

⎤
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

x1
x2
x3

⎤
⎥
⎥
⎦

. (3.113)

GE performs row operations simultaneously on A and the right-hand side x to obtain
an upper triangular matrix. This is done by subtracting scaled versions of the first
row from the second and third rows where aT

m defines the mth row:

aT
2 − (a21∕a11)a

T
1 −→ new second row, (3.114)

aT
3 − (a31∕a11)a

T
1 −→ new third row. (3.115)

TABLE 3.6 Summary of Four Subspaces for Matrix A ∈ M×N with
Rank R

Number of Size of
Subspace Basis Vectors Basis Vectors

Column space C(A) = L⊥(A) R M
Row space R(A) = C(AT ) R N
Null space N(A) = R⊥(A) N − R N
Left null space L(A) = N(AT ) M − R M
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The system of equations with the modified second row is

⎡
⎢
⎢
⎣

a11 a12 a13
0 a22 − (a21∕a11)a12 a23 − (a21∕a11)a13

a31 a32 a33

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

y1
y2
y3

⎤
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

x1
x2 − (a21∕a11)x1

x3

⎤
⎥
⎥
⎦

.

(3.116)

Observe the following results:

• This operation produces a 0 for the first element of the second row. If a21
happens to be 0, then it is not necessary to perform this row operation. If a11
happens to be 0, then the original first two rows should be interchanged. The
order of rows in a system of linear equations is not important, as long as the
corresponding elements of x are also interchanged. Of course, the elements of
y are not affected by row exchanges because they are weighted by the columns
of A.

• Element a11 in this row operation is called a pivot.

For the third row using again pivot a11, the modified system of equations is

⎡
⎢
⎢
⎣

a11 a12 a13
0 a22 − (a21∕a11)a12 a23 − (a21∕a11)a13
0 a32 − (a31∕a11)a12 a33 − (a31∕a11)a13

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

y1
y2
y3

⎤
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

x1
x2 − (a21∕a11)x1
x3 − (a31∕a11)x1

⎤
⎥
⎥
⎦

.

(3.117)

It is straightforward to see how this technique is extended to a matrix with any number
of rows. For notational convenience, we use tildes on the elements of the modified
system of equations:

⎡
⎢
⎢
⎣

a11 a12 a13
0 ã22 ã23
0 ã32 ã33

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

y1
y2
y3

⎤
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

x1
x̃2
x̃3

⎤
⎥
⎥
⎦

. (3.118)

This matrix equation has the same solution as the original system in (3.113). Next,
we perform a row operation on the third row, by subtracting a scaled version of
the modified second row. The pivot in this case is ã22 ≜ a22 − (a21∕a11)a12 (if ã22
happens to be 0, then the second and third rows should be interchanged). This yields
an upper triangular matrix on the left-hand side:

⎡
⎢
⎢
⎣

a11 a12 a13
0 ã22 ã23
0 0 ã33 − (ã32∕ã22)ã23

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

y1
y2
y3

⎤
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

x1
x̃2

x̃3 − (ã32∕ã22)x̃2

⎤
⎥
⎥
⎦

, (3.119)

whose modified elements in the third row can be rewritten using additional tildes:

⎡
⎢
⎢
⎣

a11 a12 a13
0 ã22 ã23
0 0 ̃̃a33

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

y1
y2
y3

⎤
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

x1
x̃2
̃̃x3

⎤
⎥
⎥
⎦

. (3.120)
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From this expression where the matrix is in row-echelon form, we can easily solve
for the variables using a sequence of operations called back-substitution starting with
the last row:

y3 = ̃̃x3∕ ̃̃a33, (3.121)

which is used to find y2:
y2 = (x̃2 − ã23y3)∕ã22, (3.122)

and then y1:
y1 = (x1 − a13y3 − a12y2)∕a11. (3.123)

These are the elements of y that satisfy the system of equations Ay = x. Equations
(3.113) and (3.120) are examples of equivalent systems of linear equations because
they have the same solution. Due to the mechanism used to derive the row-echelon
form, the rows of one system can be derived as linear combinations of the rows of the
other system, and the solution is unchanged.

Definition: Row-Echelon Form A matrix is in row-echelon form if the first
nonzero element of every row is located to the right of the first nonzero element of
the previous row.

This definition implies that the elements of a matrix in row-echelon form below the
leading nonzero element of a row are all zero. As a result, any all-zero rows are
located below rows with nonzero elements. The nonzero elements of this matrix have
an upper triangular form (sometimes called an upper trapezoidal form).

Since the vector of unknown variables y is not affected by GE operations, for
notational convenience, we can group A and x together in an augmented matrix:

⎡
⎢
⎢
⎣

a11 a12 a13 x1
a21 a22 a23 x2
a31 a32 a33 x3

⎤
⎥
⎥
⎦

. (3.124)

Suppose that GE yields the following row-echelon form for the augmented matrix:

⎡
⎢
⎢
⎣

a11 a12 a13 x1
0 ã22 ã23 x̃2
0 0 0 0

⎤
⎥
⎥
⎦

. (3.125)

This means that the three rows of A are not linearly independent: the matrix is singular
and the solution is not unique. Any real number can be chosen for y3, called a free
variable, which is used in back-substitution to solve for {y1, y2}. Such a variable
whose row has a zero pivot is “free” because it can take on any value in . Those
variables with nonzero pivots are called basic variables. If another value is chosen
for y3, then {y1, y2} necessarily change, but the solution is still valid for this system.
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Definition: Basic and Free Variables For a matrix in row-echelon form, those
variables of y with nonzero pivots are basic variables. All other variables of y are
free variables.

The number of nonzero pivots equals the rank R of matrix A. If GE yields:

⎡
⎢
⎢
⎣

a11 a12 a13 x1
0 0 0 0
0 0 0 0

⎤
⎥
⎥
⎦

, (3.126)

then any values can be chosen in 2 for the free variables {y2, y3}, and these are used
to solve for y1. Thus, for square matrix A with M = N, there will be a unique solution
if the final upper triangular matrix has all nonzero pivots, or there can be an infinity
of solutions because of at least one zero pivot. If GE yields the following form:

⎡
⎢
⎢
⎣

a11 a12 a13 x1
0 ã22 ã23 x̃2
0 0 0 x̃3

⎤
⎥
⎥
⎦

, (3.127)

then again the matrix is singular, but there are no solutions for nonzero x̃3. The sys-
tem of equations is inconsistent, which means the planes in 3 defined by the three
original equations do not intersect at any common points.

Example 3.23 An augmented matrix for the underdetermined system Ay = x trans-
formed to row-echelon form has the following symbolic representation:

⎡
⎢
⎢
⎢
⎢
⎣

p1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
0 p2 ⋅ ⋅ ⋅ ⋅ ⋅
0 0 0 p4 ⋅ ⋅ ⋅
0 0 0 0 0 p6 ⋅
0 0 0 0 0 0 ⋅

⎤
⎥
⎥
⎥
⎥
⎦

, (3.128)

where the leading {pm} are nonzero pivots. Clearly, there can be at most one nonzero
pivot in each row and column. The other entries denoted by ⋅ may or may not
be 0. The column located to the right of the vertical line is the transformed right-hand
side x of the original system. For this example, we find that {y1, y2, y4, y6} are basic
variables and {y3, y5} are free variables. Assuming the system is consistent, which
means that ⋅ in the last row is necessarily 0, the solution for y is not unique because
of the two free variables. Row-reduced echelon form is derived from row-echelon
form by dividing each row by its nonzero pivot such that the leading nonzero element
is 1. For the augmented matrix in (3.128), the row-reduced echelon form is

⎡
⎢
⎢
⎢
⎢
⎣

1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
0 1 ⋅ ⋅ ⋅ ⋅ ⋅
0 0 0 1 ⋅ ⋅ ⋅
0 0 0 0 0 1 ⋅
0 0 0 0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎦

, (3.129)
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where each row with a nonzero pivot has been divided by pm in that row. Of course,
the ⋅ entries in (3.128) are modified by these divisions (except for ⋅ in the last row,
which we have replaced with zero to have a consistent system). In order to solve for
the unknown vector y, it is not usually necessary to convert to row-reduced echelon
form because back-substitution is straightforward even for a nonzero pivot pm ≠ 1,
as demonstrated in the next example.

Example 3.24 Consider again the system in Example 3.14, which is written as fol-
lows using an augmented matrix:

⎡
⎢
⎢
⎣

1 2 4 3
3 4 1 1
2 3 1 2

⎤
⎥
⎥
⎦

. (3.130)

GE results in the following sequence of augmented matrices:

⎡
⎢
⎢
⎣

1 2 4 3
0 −2 −11 −8
0 −1 −7 −4

⎤
⎥
⎥
⎦

→
⎡
⎢
⎢
⎣

1 2 4 3
0 −2 −11 −8
0 0 −3∕2 0

⎤
⎥
⎥
⎦

, (3.131)

and back-substitution yields

y3 = 0, y2 = 4, y1 = −5. (3.132)

The 0 in the transformed x column in the last augmented matrix does not lead to an
infinity of solutions, as is the case when an entire row of the augmented matrix is 0.
Suppose that the last row of A in (3.130) is replaced as follows:

⎡
⎢
⎢
⎣

1 2 4 3
3 4 1 1
6 8 2 2

⎤
⎥
⎥
⎦

. (3.133)

Then (3.131) becomes

⎡
⎢
⎢
⎣

1 2 4 3
0 −2 −11 −8
0 −4 −22 −16

⎤
⎥
⎥
⎦

→
⎡
⎢
⎢
⎣

1 2 4 3
0 −2 −11 −8
0 0 0 0

⎤
⎥
⎥
⎦

, (3.134)

and back-substitution yields

y2 = 4 − (11∕2)y3, y1 = −5 + (3∕2)y3, (3.135)

where the free variable y3 is any value in . This infinity of solutions occurs because
the third row of (3.133) is an integer multiple of the second row, and so, they are
dependent and the original matrix is singular.
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Next, we examine the row-echelon form for rectangular matrices and the possi-
ble solutions for underdetermined and overdetermined systems of equations. For an
overdetermined system with M = 3 and N = 2, the possible row-echelon forms are

⎡
⎢
⎢
⎣

a11 a12 x1
0 ã22 x̃2
0 0 0

⎤
⎥
⎥
⎦

,

⎡
⎢
⎢
⎣

a11 a12 x1
0 ã22 x̃2
0 0 ̃̃x3

⎤
⎥
⎥
⎦

. (3.136)

The system on the left-hand side has a solution because N = 2 and there can be at
most two linearly independent rows, which is the reason the third row is 0 after the
row operations. Since there are no free variables, the unique solution is y2 = x̃2∕ã21
and y1 = (x1 − a12y2)∕a11. The system on the right-hand side has no solution if ̃̃x3 is
nonzero.

Example 3.25 For the system in (3.80), suppose the third column is dropped such
that the row-echelon form for the remaining system is

⎡
⎢
⎢
⎣

1 2
3 4
2 3

⎤
⎥
⎥
⎦

[
y1
y2

]

=
⎡
⎢
⎢
⎣

3
1
2

⎤
⎥
⎥
⎦

→
⎡
⎢
⎢
⎣

1 2 3
0 −2 −8
0 0 0

⎤
⎥
⎥
⎦

. (3.137)

This overdetermined system has unique solution y2 = 4 and y1 = −5 because the
columns are linearly independent, as illustrated by the three intersecting lines in
Figure 3.9. The system of equations represented by the three lines in Figure 3.3 is

0 1 2 3 4 5
−6

−5

−4

−3

−2

−1

0

y1

y 2

Systems of linear equations

a11 = 1, a12 = 2, x1 = 3

a21 = 3, a22 = 4, x2 = 1

a31 = 2, a32 = 3, x3 = 2

Figure 3.9 Overdetermined system of linear equations in Example 3.25 with a unique
solution.
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an example of an overdetermined system with no solution. The row-echelon form for
that case is

⎡
⎢
⎢
⎣

1 1
1 −1
1 1

⎤
⎥
⎥
⎦

[
y1
y2

]

=
⎡
⎢
⎢
⎣

2
1∕2

1

⎤
⎥
⎥
⎦

→
⎡
⎢
⎢
⎣

1 1 2
0 −2 −3∕2
0 0 −1

⎤
⎥
⎥
⎦

, (3.138)

which has the form of the right-hand side of (3.136).

Example 3.26 The following overdetermined system has been written in
row-echelon form:

⎡
⎢
⎢
⎣

1 0 x1
1 1 x2
0 1 x3

⎤
⎥
⎥
⎦

→
⎡
⎢
⎢
⎣

1 0 x1
0 1 x2 − x1
0 1 3

⎤
⎥
⎥
⎦

→
⎡
⎢
⎢
⎣

1 0 x1
0 1 x2 − x1
0 0 x3 − x2 + x1

⎤
⎥
⎥
⎦

. (3.139)

In order for a solution to exist, the last element on the right-hand side must satisfy
x3 = x2 − x1, which is the same condition on x3 given earlier in (3.97) and was derived
by examining the column space. There are no restrictions on {x1, x2}, and the solution
is y1 = x1 and y2 = x2 − x1.

Example 3.27 Assume that x = 𝟎 for the following system in row-echelon form:

⎡
⎢
⎢
⎣

1 3 1 x1
0 2 1 x2
0 0 0 x3 − 2x1

⎤
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

1 3 1 0
0 2 1 0
0 0 0 0

⎤
⎥
⎥
⎦

, (3.140)

such that all solutions for y are vectors in the null space. These are easily found
by back-substitution: the free variable y3 ∈  can be any value, y2 = −y3∕2, y1 =
−3y2 − y3 = y3∕2, and so, the null space consists of all vectors of the form: y =
y3[1∕2,−1∕2, 1]T . This corresponds to a line in 3 that passes through the origin.

The possible row-echelon forms for an underdetermined system with M = 2 and
N = 3 are [

a11 a12 a13 x1
0 ã22 ã23 x̃2

]

,

[
a11 a12 a13 x1
0 0 ã23 x̃2

]

, (3.141)

[
a11 a12 a13 x1
0 0 0 0

]

,

[
a11 a12 a13 x1
0 0 0 x̃2

]

. (3.142)

There is an infinity of solutions for the first case in (3.141): any y3 ∈  is a solution,
and the other variables are y2 = (x̃2 − ã23y3)∕ã22 and y1 = (x1 − a13y3 − a12y2)∕a11.
For the second case in (3.141), y3 = x̃2∕ã23 is fixed, any value for the free variable
y2 ∈  is a solution, and then y1 = (x1 − a13y3 − a12y2)∕a11. The two equations for
the first case in (3.142) are dependent (collinear), and so, there is an infinity of solu-
tions: y2 and y3 are free variables, which yield y1 = (x1 − a13y3 − a12y2)∕a11. The
second case in (3.142) has no solutions for nonzero x̃2.
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Example 3.28 The following system of equations and its row-echelon form are
underdetermined:

[
1 2 −2
2 −1 1

] ⎡
⎢
⎢
⎣

y1
y2
y3

⎤
⎥
⎥
⎦

=
[

4
3

]

→

[
1 2 −2 4
0 −5 5 −5

]

, (3.143)

which is similar to the first case in (3.141), such that it has an infinity of solutions
because y3 is a free variable. This result can be visualized by rewriting the original
two equations as follows:

y1 = 4 − 2y2 + 2y3, y1 = (3 + 2y2 − y3)∕2, (3.144)

and then varying {y2, y3} to generate two planes in three dimensions as illustrated in
Figure 3.10(a). The solutions correspond to the line where the two planes intersect.
From the row-echelon form in (3.143):

−5y2 + 5y3 = −5 =⇒ y2 = 1 + y3, (3.145)

y1 + 2y2 − 2y3 = 4 =⇒ y1 = 4 + 2y3 − 2y2 = 2, (3.146)

where y2 of (3.145) has been substituted into (3.146) so that y3 cancels to give y1 = 2.
Thus, the solution is

y =
⎡
⎢
⎢
⎣

2
1 + y3

y3

⎤
⎥
⎥
⎦

, (3.147)

for any y3 ∈ . This result is consistent with the line where the two planes intersect
in Figure 3.10(a): y1 is a constant 2 and y2 = y3 + 1 increases with increasing y3. If
the second equation in (3.143) is modified so that

[
1 2 −2
1 2 −2

] ⎡
⎢
⎢
⎣

y1
y2
y3

⎤
⎥
⎥
⎦

=
[

4
−4

]

→

[
1 2 −2 4
0 0 0 −8

]

, (3.148)

then there is no solution. The plot in Figure 3.10(b) shows that the two planes derived
from (3.148) and the following equations do not intersect:

y1 = 4 − 2y2 + 2y3, y1 = −4 − 2y2 + 2y3. (3.149)

From the previous discussions, we find that there is a connection between over-
and underdetermined systems and the column space and null space of A. If square
matrix A is nonsingular, then there is a unique solution: x lies in the column space
of A and the null space is trivial, containing only 𝟎. For underdetermined systems,
the matrix has fewer rows than columns, and it is not possible to have a unique
solution. Either there is an infinity of solutions or there are no solutions. These two
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System of linear equations

0

1

2

3

0

1

2

3
−2

0

2

4

6

8

10

y2
y3

y 1

System of linear equations

(a)

(b)
0

1

2

3

0

1

2

3
−10

−5

0

5

10

y2
y3

y 1

Figure 3.10 Plots of (3.144) and (3.149) in Example 3.28 for an underdetermined system.
(a) An infinity of solutions. (b) No solutions.
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cases occur because there are always free variables in the row-echelon form and the
system of equations may be inconsistent, respectively. In the first case, the null space
is nontrivial, and any vector in the null space that is added to a solution is also a valid
solution. This is seen as follows, assuming that y1 is a solution and y2 is a vector in
the null space of A:

A(y1 + y2) = x =⇒ Ay1 + Ay2 = x =⇒ Ay1 + 𝟎 = x, (3.150)

which demonstrates that y1 + y2 is also a solution.
For an overdetermined system, the matrix has fewer columns than rows, and as a

result, three types of solutions are possible: (i) unique, (ii) infinite, or (iii) none. In the
first case, there are no free variables, so the solution is unique provided M − R rows
of the modified x in row-echelon form are 0. Otherwise, we have the third case: no
solutions. For the second case, there are N − R free variables, and there is an infinity
of solutions provided that M − R rows of the modified x are 0. Otherwise, we again
have no solutions. When there is an infinity of solutions, the null space is nontrivial
and the property in (3.150) holds. For the unique overdetermined solution, the null
space is trivial, containing only 𝟎.

Table 3.7 summarizes the types of solutions for Ay = x when A is square and
rectangular. The size of the column space C(A) is determined by the number of basic
variables and the rank R, and the size of the null space is the number of free vari-
ables, which is N − R. The constraints on x mentioned in the table require that the
elements of the transformed x in row-echelon form be 0 for every zero row of the
upper triangular matrix. If the constraints are satisfied, at least one solution exists.

These results are also summarized symbolically next using augmented matrices
with dimensions M = N = 3 (square), M = 2, N = 3 (underdetermined), and M = 3,
N = 2 (overdetermined). The {pm} entries are nonzero pivots, and the ⋅ entries may
or may not be 0. Those entries labeled cn must be 0, corresponding to a constraint on

TABLE 3.7 Summary of Ay = x Solutions for A ∈ M×N with Rank R

Number Number
Matrix of Basic of Free Number
Dimensions Rank Variables Variables of Solutions

Square:
M = N R = M R 0 One: unique

R < M R N − R Infinite with M − R constraints on x
Underdetermined:

M < N R = M R N − R Infinite
R < M R N − R Infinite with M − R constraints on x

Overdetermined:
M > N R = N R 0 One: unique with M − R constraints on x

R < N R N − R Infinite with M − R constraints on x
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x needed for the system of equations to be consistent. If any cn is nonzero, then that
system of equations has no solutions.

• Square:

(i)
⎡
⎢
⎢
⎣

p1 ⋅ ⋅ ⋅
0 p2 ⋅ ⋅
0 0 p3 ⋅

⎤
⎥
⎥
⎦

, (ii)
⎡
⎢
⎢
⎣

p1 ⋅ ⋅ ⋅
0 p2 ⋅ ⋅
0 0 0 c1

⎤
⎥
⎥
⎦

. (3.151)

(iii)
⎡
⎢
⎢
⎣

p1 ⋅ ⋅ ⋅
0 0 p3 ⋅
0 0 0 c1

⎤
⎥
⎥
⎦

, (iv)
⎡
⎢
⎢
⎣

p1 ⋅ ⋅ ⋅
0 0 0 c1
0 0 0 c2

⎤
⎥
⎥
⎦

. (3.152)

Number of solutions: (i) one: unique, (ii) infinite if c1 = 0, (iii) infinite if c1 = 0,
and (iv) infinite if c1 = c2 = 0.

• Underdetermined:

(i)
[

p1 ⋅ ⋅ ⋅
0 p2 ⋅ ⋅

]

, (ii)
[

p1 ⋅ ⋅ ⋅
0 0 p3 ⋅

]

, (iii)
[

p ⋅ ⋅ ⋅
0 0 0 c1

]

.

(3.153)

Number of solutions: (i) infinite, (ii) infinite, and (iii) infinite if c1 = 0.

• Overdetermined:

(i)
⎡
⎢
⎢
⎣

p1 ⋅ ⋅
0 p2 ⋅
0 0 c1

⎤
⎥
⎥
⎦

, (ii)
⎡
⎢
⎢
⎣

p ⋅ ⋅
0 0 c1
0 0 c2

⎤
⎥
⎥
⎦

. (3.154)

Number of solutions: (i) one: unique if c1 = 0 and (ii) infinite if c1 = c2 = 0.

Thus, we can say in general that underdetermined systems tend to have infinitely
many solutions because there are always free variables, whereas overdetermined sys-
tems tend to have no solutions because there are always constraints on x.

Example 3.29 Continuing with the resistive circuit in Examples 3.3 and 3.16 where
it was solved by direct substitution and Cramer’s rule, respectively, the augmented
matrix and its row-echelon form are

[
100 200 10
200 300 0

]

=⇒
[

100 200 10
0 −100 −20

]

. (3.155)

Back-substitution yields

i2 = 20∕100 = 20 mA, 100i1 + 200i2 = 10 =⇒ i1 = (10 − 4)∕100 = 60 mA,

(3.156)
which are the same results as before.
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3.7.1 LU and LDU Decompositions

From the previous set of examples, we find that GE yields an upper triangular matrix
and then back-substitution is applied to solve for the unknown dependent variable
vector y. This procedure is equivalent to factoring matrix A into the product of a
lower (L) triangular matrix L and an upper (U) triangular matrix U, called an LU
decomposition. The steps used to derive U actually correspond to successive multi-
plication of A by elementary matrices of the form Emn(c) in (3.33) (shown for N = 3),
which adds a scaled row to another row. If a modified row has a zero pivot, then that
row is interchanged with the next row, which means A is multiplied by the appropriate
permutation matrix P.

Example 3.30 GE applied to the system in Example 3.24 is repeated here, except
that A is premultiplied by elementary matrices to achieve its row-echelon form. Since
we are interested in an LU decomposition for A, the right-hand side x is ignored in
this example. The three row operations are achieved successively as follows:

E21(−3)
⎡
⎢
⎢
⎣

1 2 4
3 4 1
2 3 1

⎤
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

1 2 4
0 −2 −11
2 3 1

⎤
⎥
⎥
⎦

, (3.157)

E31(−2)
⎡
⎢
⎢
⎣

1 2 4
0 −2 −11
2 3 1

⎤
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

1 2 4
0 −2 −11
0 −1 −7

⎤
⎥
⎥
⎦

, (3.158)

and

E32(−1∕2)
⎡
⎢
⎢
⎣

1 2 4
0 −2 −11
0 −1 −7

⎤
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

1 2 4
0 −2 −11
0 0 −3∕2

⎤
⎥
⎥
⎦

≜ U, (3.159)

which is the desired upper triangular matrix. It is important to note that in general
these matrices must be multiplied in this specific order so as to match the sequence
of GE operations. The overall product of these elementary is

E32(−1∕2)E31(−2)E21(−3) =
⎡
⎢
⎢
⎣

1 0 0
−3 1 0

−1∕2 −1∕2 1

⎤
⎥
⎥
⎦

, (3.160)

which is a lower triangular matrix with 1s along the main descending diagonal. Since
the inverse of Emn(c) is also an elementary matrix E−1

mn(c) = Emn(−c), multiplying the
matrix inverses in reverse order yields

E−1
21 (−3)E−1

31 (−2)E−1
32 (−1∕2) = E21(3)E31(2)E32(1∕2) =

⎡
⎢
⎢
⎣

1 0 0
3 1 0
2 1∕2 1

⎤
⎥
⎥
⎦

≜ L, (3.161)
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which is the desired lower triangular matrix. Observe that the subscripts of the ele-
mentary matrices give the locations of their arguments in this product matrix. The LU
decomposition is A = LU where U is the upper triangular matrix in (3.159) and L is
the lower triangular matrix in (3.161), derived as the product of the inverses of the
elementary matrices used to generate U, multiplied in reverse order. This is verified
as follows:

A = IA =
[
E−1

21 (−3)E−1
31 (−2)E−1

32 (−1∕2)
] [

E32 (−1∕2)E31 (−2)E21 (−3)
]

A

=
[
E21 (3)E31 (2)E32 (1∕2)

] [
E32 (−1∕2)E31 (−2)E21 (−3)

]
A

= L
[
E32 (−1∕2)E31 (−2)E21 (−3)

]
A = LU. (3.162)

If a zero pivot occurs after multiplication by an elementary matrix, then it is nec-
essary that A be premultiplied by a permutation matrix P to obtain its LU decomposi-
tion. For such cases, the decomposition actually is of the form PA = LU. Finally, the
corresponding LDU decomposition is obtained by writing U as the product of a diag-
onal matrix D and another upper triangular matrix with 1s along the main descending
diagonal. The diagonal elements of D are the diagonal elements of the original U,
and the new upper triangular matrix is derived from U by dividing each row by its
diagonal element. For this example, the LDU decomposition is

A =
⎡
⎢
⎢
⎣

1 0 0
3 1 0
2 1∕2 1

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

1 0 0
0 −2 0
0 0 −3∕2

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

1 2 4
0 1 11∕2
0 0 1

⎤
⎥
⎥
⎦

≜ LDU. (3.163)

LU and LDU decompositions can also be generated for rectangular matrices (see
Problem 3.28). For A ∈ M×N , the dimensions of the matrices are U ∈ M×N , D ∈
M×M , and L ∈ M×M . The upper triangular matrix U is always the same size as the
original matrix (which, of course, follows from GE). The diagonal matrix must be
square and its size is determined by the number of rows of A such that the diagonal
elements of the product DU match those of the LU decomposition. As a result, L
must also be square and of the same size as D.

Example 3.31 For the undetermined system of equations in Example 3.28,
row-echelon form is derived as follows:

E21(−2)
[

1 2 −2
2 −1 1

]

=
[

1 2 −2
0 −5 5

]

. (3.164)

The diagonal and lower triangular matrices are

D =
[

1 0
0 −5

]

, L = E−1
21 (−2) = E21(2) =

[
1 0
2 1

]

, (3.165)

and the LDU decomposition is

A =
[

1 0
2 1

] [
1 0
0 −5

] [
1 2 −2
0 1 −1

]

, (3.166)

whose product is given in (3.164).
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3.7.2 Basis Vectors

A basis for a subspace  is a set of vectors that are linearly independent and span
the subspace, so that every vector in  can be written as a linear combination of the
basis vectors. A basis is not unique because an equivalent basis can be derived as a
linear combination of another basis. Although the basis vectors can be normalized
so that each has unit length and the basis is unique, this is not necessary in practice.
In this section, a basis is found for each of the four subspaces of matrix A ∈ M×N ,
which has rank R. The procedure involves first transforming A to row-echelon form
U (Strang, 1980).

• Column space: The basis vectors for the column space of A are the columns of
A corresponding to those of U with nonzero pivots, which are associated with
the basic variables. There are R such columns, and the resulting vectors in C(A)
form a subset of M .

• Row space: Since the row operations used to derive U do not change the row
space, the R nonzero rows of U form a basis for R(A), which is a subset of N .

• Null space: The dimension of the null space is equal to the number of free vari-
ables of U, which is N − R (assuming N > R for nontrivial N(A)). The basis
vectors, which form a subset of N , are derived by sequentially setting each
free variable to 1 and the other free variables to 0, and then solving for the basic
variables of this modified y in the homogeneous system Uy = 𝟎.

• Left null space: From the LU decomposition A = LU, we can write L−1A = U
because the lower triangular matrix is square and invertible. Since the last M − R
rows of U are zero (assuming M > R for nontrivial L(A)), the corresponding
rows of L−1 form a basis for the left-null space. These rows are independent
because the elementary matrices that generate L are nonsingular.

As mentioned earlier, the row space and null space are orthogonal complements,
and these two vector subspaces together contain every vector in N . Since any vector
in these subspaces can be derived as a linear combination of their basis vectors, we
need to only show that the two sets of basis vectors are orthogonal in order to verify
this property. Let v1 be a vector in R(A), which means v1 is a vector in the column
space C(AT ), and so it can be written as a linear combination of the columns of AT :

v1 = AT c, (3.167)

for some coefficient vector c. Let v2 be a vector in N(A) and write the inner product

vT
2 v1 = vT

2 ATc, (3.168)

where (3.167) has been substituted. By combining the first two terms according to
the rules of matrix transposition, we have vT

2 AT = (Av2)T = 𝟎T because v2 is in the
null space of A. As a result, (3.168) is 0, proving that v1 ∈ R(A) and v2 ∈ N(A) are
orthogonal.
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Likewise, the column space and left null space are orthogonal complements, and
these two vector subspaces together contain every vector in M . The proof is similar
to the one used earlier. Let v1 be a vector in C(A) such that

v1 = Ac, (3.169)

for some coefficient vector c. If vT
2 is in the left null space of A, the inner product

is 0:
vT

2 v1 = vT
2 Ac = 0, (3.170)

where vT
2 A = 𝟎T has been substituted. The following example illustrates how to find

a basis for each of the four subspaces and demonstrates their orthogonality properties.

Example 3.32 The system of linear equations

[
1 2 2
2 4 4

] ⎡
⎢
⎢
⎣

y1
y2
y3

⎤
⎥
⎥
⎦

=
[

x1
x2

]

(3.171)

has the following augmented matrix and row-echelon form:

[
1 2 2 x1
2 4 4 x2

]

→

[
1 2 2 x1
0 0 0 x2 − 2x1

]

. (3.172)

There is a row of zeros because the two rows of the matrix are linearly dependent,
yielding a nontrivial left null space (the null space is also nontrivial because
N > M). The elementary matrix used to derive U is E21(−2) ≡ L−1. In order to have
a consistent set of equations, we must have x2 − 2x1 = 0, in which case there is an
infinity of solutions. This is an example of the underdetermined case in Table 3.7
with M = 2, N = 3, and R = 1, and so there are two free variables and only one basic
variable. A basis for the column space consists of the column of A corresponding to
the nonzero pivot column in U:

column space:

[
1
2

]

∈ 2
. (3.173)

The left null space is derived from the last row of E21(−2):

E21(−2) =
[

1 0
−2 1

]

=⇒ left null space:

[
−2

1

]

∈ 2
. (3.174)

These basis vectors for the column space and the left null space are orthogonal. The
row space is the nonzero row in U:

row space:
⎡
⎢
⎢
⎣

1
2
2

⎤
⎥
⎥
⎦

∈ 3
. (3.175)
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−3 −2 −1 0

(a) (b)

1 2 3
−3

−2

−1

0

1

2

3

x1

x 2

Column space and left null space for A

Column space
Left null space

0
1

2
3 0 1 2 3

−1

−0.5

0

0.5

1

−1.5

1.5

y2

Row space and null space for A

y1
y 3

Figure 3.11 Orthogonal subspaces of matrix A in Example 3.32. (a) Column space and left
null space. (b) Row space (plane) and null space (line).

The null space is obtained by solving for y in Ay = 𝟎 twice, first with {y2 = 1, y3 = 0}
and then with {y2 = 0, y3 = 1}:

[
1 2 2
0 0 0

] ⎡
⎢
⎢
⎣

y1
1
0

⎤
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

0
0
0

⎤
⎥
⎥
⎦

=⇒ y1 = −2, (3.176)

[
1 2 2
0 0 0

] ⎡
⎢
⎢
⎣

y1
0
1

⎤
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

0
0
0

⎤
⎥
⎥
⎦

=⇒ y1 = −2. (3.177)

The null space has two vectors, which are derived by substituting these values for y1
into the two column vectors on the left-hand sides of (3.176) and (3.177):

null space:
⎡
⎢
⎢
⎣

−2
1
0

⎤
⎥
⎥
⎦

,

⎡
⎢
⎢
⎣

−2
0
1

⎤
⎥
⎥
⎦

∈ 3
, (3.178)

which we see are orthogonal to the basis vector for the row space. The orthogonal
basis vectors for the column space and the left null space are plotted on the plane 2

in Figure 3.11(a). The vectors comprising the column space are of the form c[1, 2]T
for c ∈ , and so they are all collinear. Likewise, the vectors comprising the left null
space are of the form c[−2, 1]T . These subspaces together give every vector in 2 as
the linear combination c1[1, 2]T + c2[−2, 1]T for c1, c2 ∈ . The two basis vectors
for the null space form a plane in 3, and the basis vector for the row space is a line as
illustrated in Figure 3.11(b). These are orthogonal, and it is clear that any vector in3
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can be derived as the linear combination c1[−2, 1, 0]T + c2[−2, 0, 1]T + c3[1, 2, 2]T
for c1, c2, c3 ∈ .

3.7.3 General Solution of Ay = x

The general solution of the system of equations Ay = x has two components:

y = yp + yh, (3.179)

where yh is a solution to the homogeneous system Ay = 𝟎, and yp is the particular
solution of the system with nonzero x on the right-hand side. Thus, if the null space
of A is nontrivial, yh is nonzero and there is an infinity of solutions (as mentioned
earlier) given by yp + cyh:

A(yp + cyh) = Ayp + cAyh = Ayp + 𝟎 = x, (3.180)

where c ∈  is any real scalar. The particular solution is derived from the
row-echelon form:

Uyp = x̃, (3.181)

where x̃ = L−1x because U = L−1A. Back-substitution yields the elements of yp,
where typically the free variables (which are associated with zero pivots) are set to 0.
This is illustrated in the next example.

Example 3.33 The system in (3.133) has the row-echelon form

⎡
⎢
⎢
⎣

1 2 4
0 −2 −11
0 0 0

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

y1
y2
y3

⎤
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

3
−8

0

⎤
⎥
⎥
⎦

, (3.182)

with free variable y3, which means the dimension of the null space is 1. Setting y3 = 0,
back-substitution yields

− 2y2 − 11y3 = −8 =⇒ y2 = 4, y1 + 2y2 + 4y3 = 3 =⇒ y1 = −5, (3.183)

and the particular solution is yp = [−5, 4, 0]T . The homogeneous solution is derived
by setting y3 = 1 in (3.182), replacing the right-hand side with 𝟎 and solving for y:

− 2y2 − 11 = 0 =⇒ y2 = −11∕2, y1 + 2y2 + 4 = 0 =⇒ y1 = 7, (3.184)

which yields yh = [7,−11∕2, 1]T . Thus, the general solution is

y =
⎡
⎢
⎢
⎣

−5
4
0

⎤
⎥
⎥
⎦

+ c
⎡
⎢
⎢
⎣

7
−11∕2

1

⎤
⎥
⎥
⎦

, (3.185)



�

� �

�

152 LINEAR EQUATIONS AND MATRICES

for c ∈ . Although it is convenient to set the free variables to zero when deriving
yp, this is not necessary because a free variable can take on any value. Of course, this
follows from the form in (3.182), where if y3 is left as a variable, the solution is

−2y2 − 11y3 = −8 =⇒ y2 = −(11∕2)y3 + 4,

y1 + 2y2 + 4y3 = 3 =⇒ y1 = 7y3 − 5, (3.186)

which gives y = [7y3 − 5,−(11∕2)y3 + 4, y3]T . The reader can verify that this is a
solution for any y3 ∈ .

The expression in (3.179) can be viewed as a decomposition of the general solution
into two components that reveals basis vectors for the column space and the null space
of A. We find a similar decomposition in Chapter 6 for linear ODEs, in terms of a
homogeneous solution and a particular solution for the time-varying waveform y(t).

3.8 EIGENDECOMPOSITION

In this section, we describe another matrix decomposition that illustrates additional
properties of a system of linear equations.

Definition: Eigenvalues The eigenvalues of square matrix A are those 𝜆 satisfying
the following equation:

det(A − 𝜆I) = 0. (3.187)

The resulting expression is an Nth-order polynomial in 𝜆 called the characteristic
equation of matrix A:

𝜆
N + 𝛼N−1𝜆

N−1 + … + 𝛼1𝜆 + 𝛼0 = 0, (3.188)

where the coefficients {𝛼n} depend on the specific elements of A.

Definition: Eigenvectors The eigenvectors of square matrix A are the column vec-
tors v that satisfy the following equation for each unique eigenvalue 𝜆:

Av = 𝜆v. (3.189)

This expression is equivalent to

(A − 𝜆I)v = 𝟎, (3.190)

such that A − 𝜆I is a singular matrix for any eigenvalue.
From (3.187), we find that the eigenvalues are those values such that matrix A − 𝜆I

is singular, meaning that one or more of its rows (and columns) are linearly depen-
dent. The expression in (3.190) shows that an eigenvector for a particular 𝜆 is a
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nonzero vector such that a linear combination of the columns of A − 𝜆I is zero. This
means that A − 𝜆I has a nontrivial null space. Since a scaled version cv of the eigen-
vector v for c ≠ 0 is also an eigenvector (as is easily verified in (3.190)), unique
normalized eigenvectors are often used in practice. These are obtained by scaling v
as follows:

q ≜ v
√

vHv
= v

‖v‖
, (3.191)

which has unit squared norm:

qHq = vHv
√

vHv
√

vHv
= 1, (3.192)

where the superscript H for the complex conjugate transpose has been used because
in general the eigenvectors and eigenvalues could be complex. The complex
conjugate transpose of a vector is defined as follows: vH ≜ (vT )∗ = (v∗)T , where the
superscript ∗ denotes complex conjugation of every element in the vector
(see Chapter 4).

An eigenvector is a special vector in the sense that when it postmultiplies A, the
same vector is obtained though it is scaled by a constant: 𝜆v. Of course, this property
is not true for other vectors: Ay = x yields vector x in the column space of A, which
generally is not proportional to y. We will see a similar property for linear systems
modeled by ODEs with constant coefficients for which the sinusoidal functions are
eigenfunctions. This means that if the input of a linear system is cos(𝜔ot) with angular
frequency 𝜔o, then its output is also cosine with the same frequency, but possibly with
a different magnitude and phase shift: A cos(𝜔ot + 𝜙).

The eigenvalues and eigenvectors form another decomposition of matrix A.

Definition: Eigendecomposition The eigendecomposition of A is

A = Q𝚲Q−1
, (3.193)

where 𝚲 is a diagonal matrix containing its eigenvalues and Q is a matrix containing
the associated eigenvectors:

𝚲 ≜
⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝜆1 0 … 0

0 ⋱ ⋮

⋮ ⋱ 0

0 … 0 𝜆N

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, Q ≜ [q1,… ,qN], (3.194)

where each eigenvector has unit squared norm qH
n qn = 1, resulting in a unique eigen-

decomposition.

Example 3.34 The eigenvalues of

A =
[

2 1
1 2

]

(3.195)
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are derived by solving

det

([
2 − 𝜆 1

1 2 − 𝜆

])

= 0 =⇒ (𝜆 − 2)2 − 1 = 𝜆
2 − 4𝜆 + 3 = 0, (3.196)

yielding 𝜆1 = 1 and 𝜆2 = 3. The unit-norm eigenvectors are generated from (3.190):

[
(2 − 1) 1

1 (2 − 1)

]

q1 = 𝟎 =⇒ q1 = (1∕
√

2)
[

1
−1

]

, (3.197)

and [
(2 − 3) 1

1 (2 − 3)

]

q2 = 𝟎 =⇒ q2 = (1∕
√

2)
[

1
1

]

, (3.198)

resulting in the following unique matrix of eigenvectors:

Q =
(

1∕
√

2
)[

1 1
−1 1

]

. (3.199)

For this example, the eigenvalues and eigenvectors happen to be real, which is not the
case in general. Finally, we verify this eigendecomposition by multiplying together
all three matrices:

Q𝚲Q−1 = (1∕2)
[

1 1
−1 1

] [
1 0
0 3

] [
1 −1
1 1

]

= (1∕2)
[

1 3
−1 3

] [
1 −1
1 1

]

= (1∕2)
[

4 2
2 4

]

=
[

2 1
1 2

]

= A. (3.200)

Example 3.35 The eigenvalues of the rotation matrix A in (3.49) are derived by
solving the following equation:

det

([
cos(𝜙) − 𝜆 − sin(𝜙)

sin(𝜙) cos(𝜙) − 𝜆

])

= [cos(𝜙) − 𝜆]2 + sin2(𝜙) = 0. (3.201)

Rearranging this expression gives

cos2(𝜙) − 2𝜆 cos(𝜙) + 𝜆
2 + sin2(𝜙) = 𝜆

2 − 2𝜆 cos(𝜙) + 1 = 0, (3.202)

which is quadratic with solutions

𝜆1, 𝜆2 = cos(𝜙) ±
√

cos2(𝜙) − 1 = cos(𝜙) ± j sin(𝜙)

= exp(± j𝜙), (3.203)

where exp(± j𝜙) is the complex exponential function given earlier in (1.100) (the
identity in (3.203) is Euler’s formula and is discussed in Chapter 4). The two
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Real axis

Imaginary axis

exp( jϕ)
Complex
plane

exp(−jϕ)

ϕ
Unit length

−sin(ϕ)

cos(ϕ)

sin(ϕ)

−ϕ

Figure 3.12 Complex eigenvalues on the complex plane for the rotation matrix in (3.203) of
Example 3.35.

eigenvalues are represented on the complex plane in Figure 3.12, which is defined by
perpendicular axes for the real and imaginary components. Observe that the eigen-
values have symmetry on the complex plane where exp(−j𝜙) is a mirror image of
exp( j𝜙) about the real axis. They form a complex conjugate pair, which is necessary
because the elements of A are real. This conjugate symmetry is discussed further in
Chapter 4. For two values of 𝜙, the eigenvalues are real: (i) 𝜙 = 0 =⇒ 𝜆 = {1, 0}
and (ii) 𝜙 = 𝜋 =⇒ 𝜆 = { − 1, 0}. When 𝜙 = 𝜋∕2 or 3𝜋∕2, the eigenvalues are
strictly imaginary, and for all other values of 𝜙 ∈ [0, 2𝜋], they are complex. The
eigenvectors {q1,q2} are derived from

[
cos(𝜙) − exp( j𝜙) − sin(𝜙)

sin(𝜙) cos(𝜙) − exp( j𝜙)

]

q1 = 𝟎, (3.204)

[
cos(𝜙) − exp(−j𝜙) − sin(𝜙)

sin(𝜙) cos(𝜙) − exp(−j𝜙)

]

q2 = 𝟎. (3.205)

Substituting exp(± j𝜙) from (3.203) causes cosine to cancel in both equations such
that sine can be factored:

sin(𝜙)
[
−j −1
1 −j

]

q1 = 𝟎, sin(𝜙)
[

j −1
1 j

]

q2 = 𝟎. (3.206)

For nonzero sin(𝜙), the normalized eigenvectors are

q1 = 1
√

2

[
j
1

]

, q2 = 1
√

2

[
1
j

]

, (3.207)

and the eigendecomposition is

A = Q𝚲Q−1 = 1
√

2

[
j 1
1 j

] [
exp( j𝜙) 0

0 exp(−j𝜙)

] [
−j 1
1 −j

]
1
√

2
. (3.208)
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Multiplying these complex matrices together and using (3.203) give the original real
matrix A.

Example 3.36 It can be shown that the eigenvalues of an idempotent matrix are
either 0 or 1 (see Problem 3.16). This property can be used to construct idempotent
matrix B as follows:

B = ADA−1
, (3.209)

where A is any invertible matrix and D is a diagonal matrix with only 0s and 1s along
the main descending diagonal. It is straightforward to show that B constructed in this
manner is idempotent:

B2 = (ADA−1) (ADA−1) = AD2A−1
, (3.210)

and it follows that D2 = D because of the 1s and 0s on the main diagonal. Matrix D is
a trivial form of an idempotent matrix (recall that I is the only nonsingular idempotent
matrix). For example, let

A =
[

1 2
2 1

]

=⇒ A−1 =
[
−1∕3 2∕3

2∕3 −1∕3

]

. (3.211)

These yield the following two idempotent matrices:

D =
[

1 0
0 0

]

=⇒ B =
[
−1∕3 2∕3
−2∕3 1∕3

]

, (3.212)

D =
[

0 0
0 1

]

=⇒ B =
[

1∕3 −2∕3
2∕3 −1∕3

]

. (3.213)

3.9 MATLAB FUNCTIONS

We conclude this chapter with a brief summary of some of the MATLAB functions
that are useful for the preceding material. Detailed information can be found in the
online MATLAB documentation. (Unlike MATLAB, we use italic and bold symbols
in the following functions.)

• Identity matrix, zero matrix: eye(m) (size m × m), zeros(m, n) (size m × n).

• Transpose: A.
′ (nonconjugated), A′ (conjugate transpose).

• Norm: norm(v).
• Trace: trace(A).
• Determinant: det(A).
• Matrix inverse: inverse(A).
• Gaussian elimination: x = linsolve(A, y).
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• LU decomposition: [L,U] = lu(A).
• Eigendecomposition: [V,D] = eig(A). The columns of V are the eigenvectors

of A, and D is a diagonal matrix containing the eigenvalues.

PROBLEMS

System of Linear Equations

3.1 Determine which of the following subsets of 3 are subspaces for a, b ∈ .
(a) v1 = [a, b, 1]T . (b) v2 = [a, b, a − b]T . (c) v3 = [a, b, c]T for c ≥ 0. (d) v4 =
[a, 0, a + b]T .

3.2 (a) Write the following system of linear equations in matrix form Ay = x:

y1 + 2y2 − y3 = 4,

2y1 + 3y2 + y3 = 2,

y1 − 4y2 + 2y3 = −1, (3.214)

and find the vector norm ‖x‖. (b) Determine if any two rows of A are orthogonal
where aT

man = 0 for some m ≠ n.

3.3 Repeat the previous problem for

2y1 − y2 + 3y3 = 1,

y1 + 2y2 + 4y3 = −1,

2y1 − 3y2 + y3 = 2. (3.215)

3.4 Find a solution for the following upper triangular system of linear equations by
a back-substitution of variables starting with y3:

y1 − 2y2 + 2y3 = 1,

y2 − y3 = 2,

3y3 = 6. (3.216)

Verify your answer by writing the system in matrix form and show that Ay = x.

3.5 Repeat the previous problem for

2y1 + y2 − 4y3 = 2,

y2 + 2y3 = 1,

2y2 − y3 = −2. (3.217)
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3.6 (a) For column vectors v1 = [1, 2, 4]T and v2 = [3, 5, 4]T , give the outer prod-
ucts v1vT

2 ≜ A1 and v2vT
2 ≜ A2. (b) Demonstrate using w1 = [c1, c2, c3]T and

w2 = [1, 2, 3]T that the columns of B1 ≜ w1wT
2 and B2 ≜ w2wT

1 are linearly
dependent.

Matrix Properties

3.7 For the following matrices, show that (a) AB ≠ BA and (b) (AB)T = BT AT :

A =
⎡
⎢
⎢
⎣

1 3 −2
2 −4 1

−1 1 −3

⎤
⎥
⎥
⎦

, B =
⎡
⎢
⎢
⎣

2 −1 3
4 1 2
1 −2 5

⎤
⎥
⎥
⎦

. (3.218)

3.8 Prove the following properties of the trace of a matrix: (a) tr(cA) = ctr(A), (b)
tr(AB) = tr(BA), and (c) tr(A + B) = tr(A) + tr(B).

3.9 Verify the matrix inverses in (3.34) for each type of elementary matrix.

3.10 Show that any square matrix can be written as the sum A = B + C where B is
a symmetric matrix and C is a skew-symmetric matrix.

3.11 Determine if the columns of the following matrix are linearly independent:

A =
⎡
⎢
⎢
⎣

1 2 1
3 1 2
1 −3 0

⎤
⎥
⎥
⎦

, (3.219)

by solving for c1a1 + c2a2 + c3a3 = 𝟎 where an is the nth column of A.

3.12 Find the inverse of A using elementary matrices and the augmented matrix form
as was done in Example 3.6:

A =
⎡
⎢
⎢
⎣

2 3 −1
−1 −2 4

2 1 −3

⎤
⎥
⎥
⎦

. (3.220)

3.13 Verify the following property for vectors {x, y} and nonsingular matrix A:

(A + xyT )−1 = A−1 −
A−1xyT A−1

1 + yT A−1x
. (3.221)

3.14 Determine if either of the following matrices is idempotent or nilpotent:

(a) A =
⎡
⎢
⎢
⎣

1 −1 0
1 0 −1

−1 1 0

⎤
⎥
⎥
⎦

, (b) B =
⎡
⎢
⎢
⎣

−4 2 1
−10 5 2

0 0 1

⎤
⎥
⎥
⎦

. (3.222)
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3.15 Let A be an idempotent matrix. Specify if any of the following matrices are
idempotent: (a) I − A, (b) A − I, (c) AT , and (d) AAT .

3.16 Prove that the eigenvalues of an idempotent matrix are either 0 or 1.

Determinant and Matrix Subspaces

3.17 Find the determinant for each matrix in (3.218).

3.18 Find the adjugate matrix for each of the following matrices:

(a) A =
⎡
⎢
⎢
⎣

3 −1 2
2 4 −2
1 −1 2

⎤
⎥
⎥
⎦

, (b) B =
⎡
⎢
⎢
⎢
⎣

2 1 2 2
−1 3 4 1
−2 1 −3 5

1 2 1 −2

⎤
⎥
⎥
⎥
⎦

. (3.223)

3.19 Use Cramer’s rule to find the three currents labeled in Figure 3.13.

3.20 Repeat the previous problem for the four currents labeled in Figure 3.14.

5 V100 Ω

i1 i2

200 Ω+
_10 V

100 Ω100 Ω 200 Ω

+
_

i3

Figure 3.13 Resistive circuit for Problem 3.19.

100 Ω

i1 i2

200 Ω+
_10 V

100 Ω100 Ω

200 Ω

100 Ω

i4i3

200 Ω

5 V
+
_

Figure 3.14 Resistive circuit for Problem 3.20.
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3.21 Find a basis and the dimension for each of the four matrix subspaces for A in
(3.223).

3.22 Repeat the previous problem for A in (3.225).

3.23 (a) Show that the null space of B is a subset of the null space of AB. (b) Show
that the column space of AB is a subset of the column space of A.

Gaussian Elimination

3.24 Repeat Problem 3.19 using GE.

3.25 Repeat Problem 3.20 using GE.

3.26 For the following system of equations in augmented form, find all values of
𝛼 such that there are (a) infinite solutions, (b) no solutions, and (c) a unique
solution.

[A | x] =
⎡
⎢
⎢
⎣

1 1 −1 2
2 −1 2 1
1 1 𝛼

2 − 2 𝛼 + 1

⎤
⎥
⎥
⎦

. (3.224)

3.27 Find LU and LDU decompositions for the square matrices in Problem 3.18.

3.28 Repeat the previous problem for the rectangular matrices

(a) A =
⎡
⎢
⎢
⎣

2 1 3 1 1
4 1 −1 −2 3
1 4 −1 2 5

⎤
⎥
⎥
⎦

, (b) B =

⎡
⎢
⎢
⎢
⎢
⎣

3 1 −2
2 6 1
4 −1 1

−1 2 3
2 1 −4

⎤
⎥
⎥
⎥
⎥
⎦

. (3.225)

3.29 Solve for {y1, y2, y3} without multiplying together the two matrices:

⎡
⎢
⎢
⎣

2 0 0
1 2 0
1 1 2

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

1 3 0
0 2 1
0 0 1

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

y1
y2
y3

⎤
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

1
2
3

⎤
⎥
⎥
⎦

. (3.226)

3.30 Derive the particular solution yp and the homogeneous solution yh for the fol-
lowing system of equations:

⎡
⎢
⎢
⎣

1 0 −1 2
−2 1 3 −4

0 2 5 1

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

y1
y2
y3
y4

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

2
−1

1

⎤
⎥
⎥
⎦

. (3.227)

3.31 Repeat the previous problem for A in (3.225) and y = [ y1, y2, y3, y4, y5]T .
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3.32 Let A be a nonsingular matrix with rank R. Show that the determinant of its
adjugate matrix is

det(adj(A)) = [det(A)]R−1
. (3.228)

Eigendecomposition

3.33 Use the product property of the determinant and the eigendecomposition of A
to show that det(A) =

∏N
n=1 𝜆n.

3.34 Write the eigenvalues of (a) An for n ∈  and (b) A−1, both in terms of the
eigenvalues {𝜆1,… , 𝜆N} of nonsingular A.

3.35 The characteristic equation for matrix A in (3.188) is an Nth-order polynomial
in 𝜆. Show that 𝛼0 = det(A).

3.36 Find the eigendecomposition of A in (3.220).

3.37 Repeat the previous problem for A in (3.223).

3.38 When A = AT is a symmetric matrix, show that the eigendecomposition is A =
QDQH and the normalized eigenvectors are orthogonal: QHQ = I.

Computer Problems

3.39 Use eig in MATLAB to derive the eigendecomposition for B in (3.223).

3.40 Use mesh in MATLAB to generate the two planes in Figure 3.10(a) represent-
ing the linear equations in (3.144).

3.41 Use det in MATLAB and Cramer’s rule to find y in (3.227).
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4
COMPLEX NUMBERS AND
FUNCTIONS

4.1 INTRODUCTION

We first provide a brief review of different number systems. The natural numbers
consist of the set {1, 2,…} and are denoted by  . They are “natural” because they
are used to represent various numbers of objects in nature, such as the number of
apples on a tree. The natural numbers are closed under addition, which means

x ∈  , y ∈  =⇒ x + y ∈  . (4.1)

With subtraction, however, 0 and negative numbers must be included in the
set in order for it to be closed under addition, thus yielding the integers
 ≜ {… ,−2,−1, 0, 1, 2,…}. By including negative numbers in , a sense of
direction is implied. For example, we can take two steps forward or two steps back-
ward, which are represented by +2 and −2, respectively. We denote the nonnegative
integers by +, consisting of the union of  and 0: + ≜  ∪ {0}.

Division of the integers leads to the set of rational numbers , which have the
form a∕b with a, b ∈  and b ≠ 0. The fractional part of a rational number has a finite
number of digits, as is the case for 1∕2 = 0.5, or it repeats such as 1∕3 = 0.3333 …
The irrational numbers comprise all other real numbers: they cannot be expressed
as the ratio a∕b. This set, written as the difference  −, includes Napier’s con-
stant e = 2.7182818284… , 𝜋 = 3.1415926535… ,

√
2 = 1.4142135623… , and so

Mathematical Foundations for Linear Circuits and Systems in Engineering, First Edition. John J. Shynk.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
Companion Website: http://www.wiley.com/go/linearcircuitsandsystems

http://www.wiley.com/go/linearcircuitsandsystems
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Imaginary
numbers

Rational numbers Q

Natural
numbers

Integers

Complex numbers

Irrational
numbers

   – Q

Real numbers

Figure 4.1 Subsets of the complex numbers . (The imaginary numbers include the same
subsets as the real numbers, multiplied by j, but these are not shown for visual clarity. The
rectangles do not indicate the relative sizes of the subsets of .)

TABLE 4.1 Comparison of Infinite Sets

Infinite Sets with
Type Equivalent Cardinality

Countable , +,  , 
Uncountable , +,  −, [0, 1], , 

on. By definition, the fractional part of an irrational number does not have a finite
number of digits, nor does it repeat. The set of nonnegative real numbers (which
includes 0) is denoted by +. The notation for various sets of numbers was summa-
rized earlier in Table 1.1. Figure 4.1 shows several subsets of the complex numbers .
The rational numbers , the real numbers , and the complex numbers  are fields
(see Chapter 3), whereas the natural numbers  and the integers  are not because
they do not have multiplicative inverses.

Table 4.1 indicates the relative sizes of several subsets of ; it also includes the set
of imaginary numbers  discussed in the next section. A set of numbers is countable
if it is possible to place its elements in one-to-one correspondence with the integers.
Although  appears to have fewer elements than , these two sets actually have the
same size.

Definition: Cardinality The cardinality of a set is its number of elements. The
cardinality of set A is denoted by |A|.

The fact that  and  have the same cardinality is due to the nature of sets with an
infinity of elements. The infinite set consisting of the real numbers is quite different,
however, because for any two numbers n1 and n2, there exists an infinity of numbers
in between, as in the unit interval [0, 1]. This is not the case for the integers: for
example, there are no integers between 0 and 1.
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4.2 IMAGINARY NUMBERS

Next, we show how number systems can be extended beyond the set . Consider the
following quadratic equation:

x2 − 1 = 0 =⇒ x2 = 1, (4.2)

which has two real solutions: x = ±1. They are also called the roots of the equation.
Suppose now that (4.2) is modified slightly to

x2 + 1 = 0 =⇒ x2 = −1. (4.3)

Obviously, there is no real number such that when it is squared, −1 is obtained. In
order to solve such an equation, we must extend the set of numbers beyond , anal-
ogous to the extension of natural numbers  to the integers  for subtraction, and
similarly from  to the rational numbers  for division.

Definition: Imaginary Number An imaginary number is of the form jb where

j ≜ √
−1, (4.4)

and b ∈ .

Using this definition, (4.3) has two imaginary solutions: x = ±j because j2 = −1 and
(−j)2 = (−1)2j2 = −1. (Although i is used to represent

√
−1 in mathematics courses,

j is usually used in engineering because a circuit current is denoted by i.) The desig-
nation “imaginary” is actually a misnomer; the imaginary numbers  = j have as
much significance and validity as the real numbers. As discussed in the next section,
an imaginary number can be viewed as one coordinate of a complex number, which
is an extension of the real line to the complex plane.

If (4.2) and (4.3) are plotted as functions y = x2 − 1 and y = x2 + 1, as shown
in Figure 4.2(a), their solutions are found graphically by determining where the
curves intersect the x-axis defined by y = 0 (the dotted line). For y = x2 − 1,
the zero-crossings occur at x = ±1 as expected. Since y = x2 + 1 does not cross
the dotted horizontal line, x2 + 1 = 0 has no real solutions. It is clear from this
graphical interpretation that a real function without any zero-crossings has no real
solutions. Consider the cubic equations plotted in Figure 4.2(b), each of which has
a single zero-crossing. This means that those functions have only one real solution.
They factor as follows:

y = x3 − 1 = (x − 1)(x2 + x + 1), (4.5)

y = x3 + 1 = (x + 1)(x2 − x + 1), (4.6)

where the leading factors give real roots: x − 1 =⇒ x = 1 and x + 1 =⇒ x = −1.
The other factors, which are quadratic, are plotted in Figure 4.2(c), demonstrating
that they do not have any real solutions. It turns out that they have complex roots as
described in the next section.
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−2 −1.5 −1 −0.5 0 0.5

(a)

(b)

(c)
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x

y

Quadratic functions

y = x2 − 1
y = x2 + 1
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Cubic functions
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Quadratic factors

y = x2 + x + 1
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Figure 4.2 (a) Quadratic functions in (4.2) and (4.3). (b) Cubic functions in (4.5) and (4.6).
(c) Quadratic factors of the cubic functions.
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Example 4.1 Consider another quadratic equation:

x2 + 4 = 0 =⇒ x2 = −4, (4.7)

which also has no real solutions. By allowing the set of imaginary numbers  to be
included in the number system, it is clear that the two solutions are x = ± j2, which
are easily verified: (j2)2 = j24 = −4 and (−j2)2 = j2(−2)2 = −4.

We summarize the basic properties of j.

• Multiplication and division:

j2 = −1, j3 = −j, 1∕j = −j. (4.8)

• Addition and subtraction:

j + j = 2j, j − j = 0, jb ± j = j(b ± 1), (4.9)

for b ∈ .

Under algebraic operations, j behaves like any real number with the important excep-
tion that j2 = −1 by definition.

4.3 COMPLEX NUMBERS

Consider one of the quadratic factors mentioned in the previous section:

y = x2 + x + 1, (4.10)

which, using the quadratic formula for y = 0, we find does not have any real roots:

x1, x2 = −1 ±
√

12 − 4 × 1 × 1
2

= −1
2
±

√
−3

2
. (4.11)

By using j to “handle”
√
−3 =

√
−1

√
3 = j

√
3, we can write these solutions as the

following two complex numbers:

x1, x2 = −1
2
±

j
√

3
2

, (4.12)

which have real part −1∕2 and imaginary parts ±
√

3∕2. The other quadratic factor
in Figure 4.2(c), given by

x2 − x + 1 = 0, (4.13)

has solutions

x1, x2 =
1 ±

√
(−1)2 − 4 × 1 × 1

2
= 1

2
±

j
√

3
2

. (4.14)

From these two examples, we have the following definition of a complex number.
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Definition: Complex Number A complex number has the form:

c = a + jb, (4.15)

where {a, b} ∈  and j ≜ √
−1.

A complex number has two coordinates: a real part and an imaginary part that are
perpendicular to each other as illustrated in Figure 4.3. We use  =  + j to rep-
resent all complex numbers on the complex plane, which is also known as an Argand
diagram. The following notation is used for the real and imaginary parts of complex
number c:

Re(c) = a, Im(c) = b. (4.16)

Multiplication of two complex numbers yields

(a1 + jb1)(a2 + jb2) = a1a2 − b1b2 + j(a1b2 + a2b1), (4.17)

where j2 = −1 has been used to produce the term −b1b2. Consider the product

(a + jb)(a − jb) = a2 + b2
, (4.18)

which is strictly real. The multiplier a − jb, known as the complex conjugate of
c = a + jb, is denoted by c∗ = a − jb and is depicted in Figure 4.3 (sometimes the
notation c is used). It is important to note that −c = −a − jb is not the same as c∗.
The complex conjugate is useful for rewriting the ratio of complex numbers in the
standard form of (4.15):

1
a + jb

=
a − jb

(a + jb)(a − jb)
=

a − jb

a2 + b2
= a

a2 + b2
− j

b
a2 + b2

, (4.19)

which has real and imaginary parts a∕(a2 + b2) and −b∕(a2 + b2), respectively.
Observe that j is not included as part of the imaginary component; it simply denotes

Real axis

Imaginary axis

a

jb c = a + jb

Complex number

Complex
plane

c   = a − jb

Complex conjugate

−jb

Figure 4.3 Complex plane showing the coordinates of c = a + jb and c∗ = a − jb.
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that the quantity multiplying it is the imaginary part of the complex number. As a
result, we can view j in such an equation as a “marker” that indicates which part of
the expression is imaginary, corresponding to the vertical axis on the complex plane.
(The quantity j by itself, depending on the context, can also refer to the complex
number with real part 0 and imaginary part 1.) From the previous result, the ratio of
two complex numbers is written in standard form as follows:

a + jb

c + jd
=

(a + jb)(c − jd)
(c + jd)(c − jd)

= ac + bd
c2 + d2

+ j
bc − ad
c2 + d2

. (4.20)

For real function y = f (x), like those considered at the beginning of this chapter,
complex roots must occur as complex conjugate pairs. Thus, a polynomial with odd
degree must have at least one real root, as we found for the cubic equations in (4.5)
and (4.6). The other two roots may also be real or they could be complex, but they
must be a conjugate pair of the form shown in Figure 4.3. The roots of a polynomial
with even degree could be some combination of real roots and complex conjugate
pairs.

4.4 TWO COORDINATES

Returning to the interpretation that a complex number has two coordinates and j oper-
ates as a marker for the imaginary part, the solution to equations such as (4.10) can be
viewed as a generalization where x now has two components. This additional degree
of freedom, represented by the imaginary part of a complex number, allows for a
solution to exist in equations that have no real solutions.

Example 4.2 For example, substitute x = a + jb into (4.10) and rewrite it in terms
of its real and imaginary parts:

y = (a + jb)2 + (a + jb) + 1 =⇒ y = (a2 − b2 + a + 1) + j(2ab + b). (4.21)

There are now two parameters {a, b}, whereas before we simply had real x = a. The
real part of y in (4.21) is plotted in Figure 4.4(a) versus a and b, where we find that it
crosses the plane defined by Re(y) = 0. Since the original equation in (4.10) is real,
y must also be real, and the imaginary part in (4.21) must be constrained to 0:

2ab + b = 0 =⇒ b = 0 or a = −1∕2. (4.22)

We are not interested in the case b = 0 because that reduces the problem to real-valued
x = a. Thus, in order for y to be real, we must have x = −1∕2 + jb for the particular
quadratic equation in (4.10). Substituting a = −1∕2 into (4.21) gives

y = 3∕4 − b2 = 0 =⇒ b = ±
√

3∕2 =⇒ a + jb = −1∕2 ±
√

3∕2, (4.23)

which is exactly the solution in (4.12). The function in (4.21) for a = −1∕2 is shown
in Figure 4.4(b), which is a “slice” of the three-dimensional plot defined by the
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Figure 4.4 Plots of the quadratic function in (4.21) versus the {a, b} components of
x = a + jb. (a) Real part of y. (b) y for a = −1∕2.
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vertical plane at a = −1∕2. This quadratic function has two solutions where it crosses
the dotted line at y = 0.

From the previous discussions, we can view complex solutions to equations in
two ways: (i) when

√
−1 is encountered, j is used as a marker and we proceed to

find solutions using the algebra of complex numbers. (ii) Alternatively, the variable x
has two coordinates (real and imaginary parts) with an additional degree of freedom
so that solutions are possible. For the previous example, we found that y is real if
the solutions are of the form x = −1∕2 + jb with b ∈ . The plot of y versus b in
Figure 4.4(b) is located on the vertical dashed line in Figure 4.5 where a = −1∕2,
and the two complex solutions where y crosses the dotted line are represented by the
solid circles on the complex plane.

Example 4.3 Consider the quartic equation:

x4 − 2x3 + x2 + 2x − 2 = (x2 − 1)[(x − 1)2 + 1]

= (x − 1)(x + 1)(x − 1 + j)(x − 1 − j), (4.24)

which has two complex roots and two real roots. Figure 4.6 shows that this function
(the solid line) has two zero-crossings. The quadratic factor x2 − 1 has two zero-
crossings (two real roots), and the other quadratic factor (x − 1)2 + 1 = x2 − 2x + 2
does not have any zero-crossings, and so its two roots must be a complex conjugate
pair. Of course, the two zero-crossings of the quartic function coincide with those of
the quadratic factor x2 − 1 in (4.24).

4.5 POLAR COORDINATES

The previous examples shown on the complex plane are represented in the Carte-
sian coordinate system defined by the perpendicular real and imaginary axes. In this

Real axis

Imaginary axis

Complex
plane

a = −1/2

−1/2 − j√3/2

−1/2 + j√3/2

Figure 4.5 Complex plane showing the vertical axis (the dashed line) where y = x2 + x + 1
is real for complex x and the two complex solutions (the solid circles) of x2 + x + 1 = 0.
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−2
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1

2

3

x

y

Quartic function and quadratic factors

y = x4 − 2x3 + x2 + 2x − 2

y = x2 − 1

y = (x − 1)2 + 1

Figure 4.6 Quartic function and factors for Example 4.3.

Real axis

Imaginary axis

c = a + jb

Complex number

Complex
plane r = (a2 + b2)1/2

θ

θ = tan−1(b/a)

III

III IV
Quadrant
number

Figure 4.7 Complex plane showing the polar coordinates for complex number c.

section, we describe how to represent a complex number using polar coordinates.
Figure 4.7 shows a diagonal line connecting the origin and the point representing the
complex number c = a + jb. This same number is described using polar coordinates,
in terms of the radius r of the line and its angle 𝜃 relative to the positive real axis.
From trigonometry, we know

r2 = a2 + b2 =⇒ r =
√

a2 + b2
, (4.25)

where the positive square root is retained because r cannot be negative. Note that b2

is used in this equation, not (jb)2, because as mentioned previously, j is a marker used
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to identify the imaginary part of a complex number. The angle 𝜃 is derived from the
usual trigonometric formulas:

r cos(𝜃) = a =⇒ 𝜃 = cos−1(a∕r), r sin(𝜃) = b =⇒ 𝜃 = sin−1(b∕r), (4.26)

and the ratio of these two expressions yields

r sin(𝜃)
r cos(𝜃)

= b
a
= tan(𝜃) =⇒ 𝜃 = tan−1(b∕a). (4.27)

Thus, a complex number can be written using a second formulation.

Definition: Polar Form The polar form of a complex number is

c = a + jb = r∠𝜃 = |c|∠ arg(c), (4.28)

where the notation r∠𝜃 specifies the radius r = |c| and angle 𝜃 = arg(c) (argument of
c) on the complex plane relative to the positive real axis. The quantities |c| and arg(c)
are the magnitude and phase of c.

We demonstrate later how to perform algebraic operations with complex num-
bers written in polar form. The rectangular form a + jb in Cartesian coordinates is
generated from the polar form using (4.26).

Example 4.4 Consider again the quadratic factor x2 + x + 1 = 0, which has roots
x = −1∕2 ± j

√
3∕2. The polar coordinates of the roots are

r2 = (−1∕2)2 + (±
√

3∕2)2 = 1∕4 + 3∕4 =⇒ r = 1, (4.29)

and

𝜃 = tan−1(±(
√

3∕2)∕(−1∕2)) = tan−1(∓
√

3) = ∓tan−1(
√

3) = ±120∘. (4.30)

As a result, the following expressions are equivalent representations for the complex
solutions:

x1, x2 = −1∕2 ± j
√

3∕2 (rectangular form), (4.31)

x1, x2 = 1∠ ± 120∘ (polar form). (4.32)

This example illustrates that we must determine in which quadrant of the complex
plane the complex number is located in order to obtain the correct angle. These quad-
rants are labeled I–IV counterclockwise in Figure 4.7, and the corresponding signs
of the components {a, b} for a complex number are summarized in Table 4.2. For
quadrants II–IV, either 180∘ or 360∘ is added to tan−1(b∕a).
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TABLE 4.2 Angle 𝜽 Based on the Quadrant in
the Complex Plane

Quadrant {a, b} Angle 𝜃

I a > 0, b > 0 tan−1(b∕a)
II a < 0, b > 0 tan−1(b∕a) + 180∘
III a < 0, b < 0 tan−1(b∕a) + 180∘
IV a > 0, b < 0 tan−1(b∕a) + 360∘

Example 4.5 The complex number x = −1∕2 + j
√

3∕2 is located in quadrant II.
The inverse tangent function gives −60∘, and so, the actual angle is (−60 + 180)∘ =
120∘. Likewise, x = −1∕2 − j

√
3∕2 is located in quadrant III such that tan−1(b∕a) =

60∘ and 𝜃 = 60∘ + 180∘ = 240∘, which is the same as −120∘.

Next, we describe the difference between angles specified in degrees versus radi-
ans. Figure 4.8 shows the unit circle on the complex plane consisting of all complex
numbers with radius r = 1. Recall from geometry that the circumference of a circle is
𝜋d radians, where d = 2r is its diameter. The unit circle has circumference 2𝜋, which
is why angles on the complex plane are specified in radians. This is also the reason
why the trigonometric functions repeat with period 2𝜋; sine and cosine are defined
in terms of the horizontal and vertical axes for a unit circle (though not necessar-
ily on the complex plane). Angles in degrees are simply the corresponding values of
the unit circle divided into 360 equal intervals (“pie slices”). As a result, 2𝜋 ⇔ 360∘,
𝜋 ⇔ 180∘, 𝜋∕2 ⇔ 90∘, and so on. For convenience, we have provided in Table 4.3 the
conversions for several common angles, as well as the corresponding tangent values.

We conclude this section with a summary of the basic algebraic properties of com-
plex numbers in polar form, which are readily verified.

• Multiplication:
c1c2 = r1r2∠(𝜃1 + 𝜃2). (4.33)

• Division:
c1∕c2 = (r1∕r2)∠(𝜃1 − 𝜃2). (4.34)

Real axis

Complex
plane

Imaginary axis

0π

π/2

3π/2

2π

Unit circle

Figure 4.8 Angles in radians along the unit circle.
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TABLE 4.3 Angle 𝜽 in Radians and Degrees
Radians Degrees tan(𝜃) Radians Degrees tan(𝜃)
0, 2𝜋 0∘, 360∘ 0 𝜋 180∘ 0

𝜋∕6 30∘ 1∕
√

3 7𝜋∕6 210∘ 1∕
√

3

𝜋∕4 45∘ 1 5𝜋∕4 225∘ 1

𝜋∕3 60∘
√

3 4𝜋∕3 240∘
√

3

𝜋∕2 90∘ ∞ 3𝜋∕2 270∘ ∞
2𝜋∕3 120∘ −

√
3 5𝜋∕3 300∘ −

√
3

3𝜋∕4 135∘ −1 7𝜋∕4 315∘ −1

5𝜋∕6 150∘ −1∕
√

3 11𝜋∕6 330∘ −1∕
√

3

These are much easier to calculate than when c is expressed in rectangular form. In
order to add and subtract two complex numbers, it is necessary that they be con-
verted to rectangular form. In the next section, we show that it is more convenient to
represent complex numbers in polar form using the exponential function.

4.6 EULER’S FORMULA

Complex numbers expressed in polar form can also be written as

c = r exp(j𝜃), (4.35)

where exp(𝜃) is the ordinary exponential function, exp(j𝜃) is the complex exponential
function, and the units of 𝜃 are radians. The exponential function with exponent j has
a special identity known as Euler’s formula:

exp(j𝜃) = cos(𝜃) + j sin(𝜃), (4.36)

which is a complex number with real part cos(𝜃) and imaginary part sin(𝜃). (This
equation is similar to the expression in (1.112) for the exponential function written
in terms of hyperbolic functions, except here the exponential function is complex.)
Observe that (4.36) gives the complex number on the unit circle of the complex plane
at angle 𝜃. It has squared magnitude

| exp(j𝜃)|2 = cos2(𝜃) + sin2(𝜃) = 1, (4.37)

and the angle follows from the ratio of the imaginary and real parts:

𝜃 = tan−1

(
sin(𝜃)
cos(𝜃)

)

= tan−1(tan(𝜃)). (4.38)

Thus, any complex number with angle 𝜃 and magnitude r can be written by using the
exponential function in (4.35), and it is located on a circle of radius r on the complex
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Real axis

Imaginary axis

a = r cos(θ)

c = a + jb = r exp(jθ )

Complex number

Complex
plane

r = (a2 + b2)1/2

θ

b = r sin(θ)

r

θ = tan−1(b/a)

Figure 4.9 Complex plane showing rectangular coordinates and polar coordinates using the
complex exponential function for complex number c.
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Squared magnitude of Euler’s formula and its components

r2 cos2(θ)

r2 sin2(θ)

r2 cos2(θ) + r2 sin2(θ) = r2

Figure 4.10 Euler’s formula showing r2cos2(𝜃), r2sin2(𝜃), and r2cos2(𝜃) + r2sin2(𝜃) = r2 for
r = 2.

plane at angle 𝜃 with respect to the positive real axis as illustrated in Figure 4.9. A
plot of the squared magnitude |c|2 = r2cos2(𝜃) + r2sin2(𝜃) = r2 and its components
is shown in Figure 4.10, verifying that they in fact sum to a constant.

Euler’s formula simultaneously describes the sine and cosine of angle 𝜃 by
using two coordinates. Chapter 1 provided a review of the trigonometric definitions
sin(𝜃) ≜ y∕r and cos(𝜃) ≜ x∕r, where x is the projection of the hypotenuse of a
right triangle onto the horizontal axis, and y is its projection onto the vertical axis.
Euler’s formula represents both axes together as c = a + jb with real and imaginary
components a = r cos(𝜃) and b = r sin(𝜃). In the next chapter, Euler’s formula
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is used to write the complex exponential as a function of time (a waveform) as
exp(j𝜔ot) where 𝜔o is a constant angular frequency with units radians/second (rad/s).

In order to prove Euler’s formula, the derivative properties of the exponential func-
tion can be used. First, write the following product by substituting (4.36):

exp(−j𝜃) exp(j𝜃) = 1 = exp(−j𝜃)[cos(𝜃) + j sin(𝜃)] ≜ f (𝜃). (4.39)

Differentiating f (𝜃) with respect to 𝜃, the product rule yields

d
d𝜃

f (𝜃) = −j exp(−j𝜃)[cos(𝜃) + j sin(𝜃)] + exp(−j𝜃)[− sin(𝜃) + j cos(𝜃)]. (4.40)

By factoring exp(−j𝜃), this expression is rearranged using the basic algebraic prop-
erties of j:

exp(−j𝜃)([sin(𝜃) − sin(𝜃)] + j[cos(𝜃) − cos(𝜃)]) = 0. (4.41)

Since the derivative of (4.39) is 0, f (𝜃) must be a constant for every 𝜃. If we can find a
value for f (𝜃) for some 𝜃, called a boundary condition, then we know f (𝜃) for every 𝜃.
Since f (0) = exp(−j0)[cos(0) + j sin(0)] = 1, the function is f (𝜃) = 1, which verifies
the left-hand side of (4.39) and proves (4.36). It is also clear that

exp(−j𝜃) = cos(𝜃) − j sin(𝜃), (4.42)

because cos(−𝜃) = cos(𝜃) (an even function) and sin(−𝜃) = − sin(𝜃) (an odd func-
tion). From this expression, we have further verification of Euler’s formula:

exp(j𝜃) exp(−j𝜃) = cos2(𝜃) + sin2(𝜃) + j sin(𝜃) cos(𝜃) − j cos(𝜃) sin(𝜃)

= cos2(𝜃) + sin2(𝜃) = 1. (4.43)

The sine and cosine functions can be written in terms of complex exponentials as
follows:

exp(j𝜃) + exp(−j𝜃) = 2 cos(𝜃) =⇒ cos(𝜃) = (1∕2)[exp(j𝜃) + exp(−j𝜃)], (4.44)

exp(j𝜃) − exp(−j𝜃) = 2j sin(𝜃) =⇒ sin(𝜃) = (1∕2j)[exp(j𝜃) − exp(−j𝜃)], (4.45)

which are called Euler’s inverse formulas. An interesting result known as Euler’s
identity is obtained when 𝜃 = 𝜋:

exp(j𝜋) = cos(𝜋) + j sin(𝜋) =⇒ exp(j𝜋) + 1 = 0. (4.46)

Since exp(j𝜋) = ej𝜋 , this simple equation ties together the five fundamental numbers
in mathematics: 0, 1, j =

√
−1, 𝜋, and e. Of course, this result is readily visible

on the unit circle in Figure 4.8 at 𝜃 = 𝜋 where the complex number c = a + jb has
components a = −1 and b = 0. Multiplication and division are easily performed
using the complex exponential because the exponents add and subtract, respectively.
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• Multiplication:

c1c2 = r1 exp(j𝜃1)r2 exp(j𝜃2) = r1r2 exp(j(𝜃1 + 𝜃2)). (4.47)

• Division:

c1∕c2 =
r1 exp(j𝜃1)
r2 exp(j𝜃2)

= (r1∕r2) exp(j(𝜃1 − 𝜃2)). (4.48)

These operations use actual functions, whereas (4.33) and (4.34) show multiplica-
tion/division in terms of the notation ∠ for the angle.

Example 4.6 Consider the following equality:

cn = rn[cos(n𝜃) + j sin(n𝜃)], (4.49)

which is easily verified from its polar form:

cn = [r exp(j𝜃)]n = rn exp(jn𝜃). (4.50)

Applying Euler’s formula to the complex exponential with angle n𝜃 yields
[cos(𝜃) + j sin(𝜃)]n = cos(n𝜃) + j sin(n𝜃), known as de Moivre’s formula.

Several properties of complex numbers are summarized in Table 4.4. An expres-
sion for the nth root of a complex number is also included, which is derived by letting
the complex quantity d ≜ rd exp(𝜃d) be represented in the form c = r exp(𝜃) by defin-
ing d to be the nth root of complex c:

d ≜ n
√

c =⇒ c = dn
. (4.51)

As a result:
c = r exp(𝜃) = rn

d exp(n𝜃d), (4.52)

such that rd = n
√

r. From Euler’s formula, we know that equality is achieved when
n𝜃d = 𝜃 + 2m𝜋 for m = 0,… , n − 1. This occurs because the sine and cosine func-
tions are periodic with period 2𝜋, and adding an integer multiple of 2𝜋 to the argument
gives the same value for the complex exponential. As a result, 𝜃d = (𝜃 + 2m𝜋)∕n and
the nth root is

n
√

c = n
√

r[cos((𝜃 + 2m𝜋)∕n) + j sin((𝜃 + 2m𝜋)∕n)], m = 0,… , n − 1. (4.53)

A special case of (4.53) with r = 1, 𝜃 = 0, and c = 1 is known as the nth root of
unity:

n
√

1 = cos(2m𝜋∕n) + j sin(m𝜋∕n), m = 0,… , n − 1. (4.54)

The right-hand side defines n equally spaced points on the unit circle of the complex
plane. For n = 2, the two points have angles 𝜃 = {0, 𝜋}, and for n = 3, they have
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TABLE 4.4 Properties of Complex Numbers

Property Equation

Conjugation c∗ = a − jb, (c1 ± c2)∗ = c∗1 ± c∗2,
(c1c2)∗ = c∗1c∗2, (c1∕c2)∗ = c∗1∕c∗2

Squared magnitude |c|2 = cc∗ = a2 + b2

Negative −c = −a − jb
Inverse c−1 = c∗∕|c|2
Identities c × 1 = c, c + 0 = c

Polar form c = r exp(j𝜃) where r =
√

a2 + b2 = |c|
and 𝜃 = tan−1(b∕a)

Euler’s formula exp(j𝜃) = cos(𝜃) + j sin(𝜃)
Euler’s inverse formulas cos(𝜃) = [exp(j𝜃) + exp(−j𝜃)]∕2

sin(𝜃) = [exp(j𝜃) − exp(−j𝜃)]∕2j
Euler’s identity exp(j𝜋) + 1 = 0
de Moivre’s formula [cos(𝜃) + j sin(𝜃)]n = cos(n𝜃) + j sin(n𝜃)

such that cn = rn[cos(n𝜃) + j sin(n𝜃)]
nth Root n

√
c = n

√
r[cos(𝜃m∕n) + j sin(𝜃m∕n)],

where 𝜃m = 𝜃 + 2m𝜋 for m = 0,…, n − 1

nth Root of unity n
√

1 = [cos(𝜃m∕n) + j sin(𝜃m∕n)],
where 𝜃m = 2m𝜋 for m = 0,…, n − 1

Complex logarithm z = ln(c) = ln(r) + j𝜃
Addition c1 + c2 = (a1 + a2) + j(b1 + b2)
Subtraction c1 − c2 = (a1 − a2) + j(b1 − b2)
Multiplication c1c2 = r1r2 exp(j(𝜃1 + 𝜃2))

= (a1a2 − b1b2) + j(a1b2 + a2b1)
Division c1∕c2 = (r1∕r2) exp(j(𝜃1 − 𝜃2))

= [(a1a2 + b1b2) + j(a2b1 − a1b2)]∕(a2
2 + b2

2)
Commutative c1c2 = c2c1, c1 + c2 = c2 + c1

Associative c1c2c3 = (c1c2)c3 = c1(c2c3)
c1 + c2 + c3 = (c1 + c2) + c3 = c1 + (c2 + c3)

Distributive c1(c2 + c3) = c1c2 + c1c3

angles 𝜃 = {0, 2𝜋∕3, 4𝜋∕3}. The roots are easily remembered because they form the
vertices of a regular polygon on the unit circle with one vertex located at c = 1 where
𝜃 = 0. This is illustrated in Figure 4.11 for n = 4 where the vertices form a square
(the dashed lines). The result in (4.53) also gives the vertices of a regular polygon,
except they are located on a circle with radius n

√
r, and the polygon is rotated coun-

terclockwise by angle 𝜃 about the origin. When 𝜃 = 0 such that the polygon is not
rotated, c is obviously a real number. For example, when c = 2 and n = 4, we have
the same square as in Figure 4.11, except the roots (vertices) lie on a circle with radius
4
√

2 ≈ 1.1892.

Example 4.7 Euler’s formula can be used to perform rotations of vectors on the
complex plane. For any complex number c = r exp(j𝜃), the following multiplication
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Real axis

Complex
plane

Imaginary axis

0π

π/2

3π/2

2π

Unit circle

Figure 4.11 Roots of unity for n = 4, which form the vertices of a square.

causes c to be rotated counterclockwise by 𝜙 radians:

exp(j𝜙)c = exp(j𝜙)r exp(j𝜃) = r exp(j(𝜙 + 𝜃)). (4.55)

The radius is also changed by multiplying c by 𝛼 exp(j𝜙) instead of exp(j𝜙). Of
course, these results follow from the multiplication property in (4.47).

The trigonometric identities in Appendix C can be proved using Euler’s formula.

Example 4.8 For example, consider

exp(jx) exp(jy) = [cos(x) + j sin(x)][cos(y) + j sin(y)]

= cos(x) cos(y) − sin(x) sin(y)

+ j[sin(x) cos(y) + cos(x) sin(y)]. (4.56)

The left-hand side is

exp(jx) exp(jy) = exp(j(x + y))

= cos(x + y) + j sin(x + y). (4.57)

Equating the real and imaginary components of (4.56) with those of (4.57) yields
identities for the cosine/sine sum of angles:

cos(x + y) = cos(x) cos(y) − sin(x) sin(y), (4.58)

sin(x + y) = sin(x) cos(y) + cos(x) sin(y). (4.59)

Similar results can be derived for the other trigonometric identities (see Problems
4.13 and 4.14).

Next, we provide some insights into the connection between e, sine, and cosine of
Euler’s formula. In Chapter 1, we mentioned that the exponential function exp(x) is
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motivated by a compound interest problem, corresponding to exponential growth or
decay depending on the sign of x. The complex exponential exp(jx) does not exhibit
real exponential growth or decay: it has a constant magnitude of 1. Earlier, the deriva-
tive property of the exponential function was used to prove Euler’s formula. Here, we
show that the complex exponential is the only function that can be used to represent
the two-dimensional complex function cos(x) + j sin(x). Define

f (jx) ≜ cos(x) + j sin(x), (4.60)

whose derivative exists because sine and cosine are smooth differentiable functions.
Thus:

d
dx

f (jx) = − sin(x) + j cos(x), (4.61)

which can be rewritten as

d
dx

f (jx) = j[cos(x) + j sin(x)] = d
d(jx)

f (jx) d
dx

jx = jf ′(jx), (4.62)

where the chain rule has been used on the right-hand side, f ′(⋅) is the ordinary deriva-
tive of f (⋅), and −1 = j2 has been substituted into the second expression. Cancelling
j yields

f ′(jx) = cos(x) + j sin(x) = f (jx). (4.63)

Since the exponential function is the only function whose ordinary derivative is itself,
we must have f (jx) = exp(jx). As a result, sine, cosine, and e are connected because
of the derivative properties of these three functions.

We conclude this section with a definition of the logarithm for the complex expo-
nential function.

Definition: Complex Natural Logarithm The complex natural logarithm of c
is the complex number z such that exp(z) = c. Substituting c = r exp(j𝜃) yields z =
ln(r exp(j𝜃)) = ln(r) + j𝜃.

Observe that z is not unique: adding integer multiples of j2𝜋 yields the same value
for c:

exp(z) = exp(ln(r) + j𝜃 + j2𝜋n) = r exp(j𝜃) exp(j2𝜋n) = r exp(j𝜃) = c, (4.64)

because exp(j2𝜋n) = 1 for every n ∈ . This, of course, occurs because of the cycli-
cal nature of the unit circle as the angle defined relative to the real axis exceeds 2𝜋. In
order to avoid this ambiguity, we often take the principal value of z = ln(r) + j(𝜃 +
2𝜋n) such that the imaginary part 𝜃 + 2𝜋n ∈ [−𝜋, 𝜋].
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4.7 MATRIX REPRESENTATION

From the matrix material in Chapter 3, we find that a complex number c = a + jb can
also be represented in matrix form as follows (Eves, 1980):

C =
[

a −b
b a

]

, (4.65)

where the marker j is implied for the off-diagonal terms and we have used a bold
uppercase letter to be consistent with the notation in the previous chapter. It is clear
that the addition and subtraction of two complex numbers using this representation
yields the correct complex form:

C1 ± C2 =
[

a1 −b1
b1 a1

]

±
[

a2 −b2
b2 a2

]

=
[

a1 ± a2 −(b1 ± b2)
b1 ± b2 a1 ± a2

]

, (4.66)

and so does multiplication:

C1C2 =
[

a1 −b1
b1 a1

] [
a2 −b2
b2 a2

]

=
[

a1a2 − b1b2 −(a1b2 + b1a2)
a1b2 + b1a2 a1a2 − b1b2

]

. (4.67)

These matrices commute, which is not true in general:

C2C1 =
[

a2 −b2
b2 a2

] [
a1 −b1
b1 a1

]

=
[

a1a2 − b1b2 −(a1b2 + b1a2)
a1b2 + b1a2 a1a2 − b1b2

]

. (4.68)

This property is evident from the form on the right-hand side of (4.67) where inter-
changing the subscripts yields the same matrix in (4.68).

From c = Re(c) + jIm(c) and Euler’s formula with c = exp(j𝜃), we can write

C =
[

cos(𝜃) − sin(𝜃)
sin(𝜃) cos(𝜃)

]

, (4.69)

which is the rotation matrix discussed in Chapter 3. This matrix has determinant
cos2(𝜃) + sin2(𝜃) = 1, and it causes a two-dimensional vector to be rotated counter-
clockwise by angle 𝜃 on the plane defined by the two coordinates:

[
y1
y2

]

=
[

cos(𝜃) − sin(𝜃)
sin(𝜃) cos(𝜃)

] [
x1
x2

]

=
[

x1 cos(𝜃) − x2 sin(𝜃)
x1 sin(𝜃) + x2 cos(𝜃)

]

. (4.70)
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This result using a matrix is consistent with that derived when multiplying a complex
number by the complex exponential:

exp(j𝜃)(a + jb) = [cos(𝜃) + j sin(𝜃)](a + jb)

= [a cos(𝜃) − b sin(𝜃)] + j[a sin(𝜃) + b cos(𝜃)]. (4.71)

Finally, note that because of the form of the matrix representation, the squared
magnitude of c is generated from

CCT =
[

a −b
b a

] [
a b

−b a

]

=
[

a2 + b2 0
0 a2 + b2

]

= (a2 + b2)I = |c|2I, (4.72)

where we find that the matrix representing c∗ is the transpose of C. This result follows
because the imaginary elements of the matrix in (4.72) are 0. The squared magnitude
is also derived from the determinant (see Chapter 3) of the original matrix C:

|c|2 = det(C) = det

[
a −b
b a

]

= a2 + b2
, (4.73)

and we also have |c|2 =
√

det(CCT).

4.8 COMPLEX EXPONENTIAL ROTATION

In this section, we explore further the rotation properties of exp(j) on the complex
plane (Needham, 1999). If we start with the vector defined by 1 + j0 on the horizontal
real axis and multiply it by exp(j) (with 𝜃 = 1 rad), then it is rotated counterclock-
wise on the unit circle to exp(j) = cos(1) + j sin(1) ≈ 0.5403 + j0.8415. Similar to the
real exponential function discussed in Chapter 1, we examine the following limit for
finite n:

lim
n→∞

(

1 +
j

n

)n

= ej
, (4.74)

where from (1.102), xo = 1 has been substituted and real r has been replaced with
imaginary j. For integer values of n, the left-hand side is

n = 0 ∶ 1, (4.75)

n = 1 ∶ 1 + j, (4.76)

n = 2 ∶ (1 + j∕2)(1 + j∕2) = 3∕4 + j, (4.77)

n = 3 ∶ (1 + j∕3)(1 + j∕3)(1 + j∕3) = (8∕9 + j2∕3)(1 + j∕3)

= 2∕3 − j26∕27, (4.78)
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Figure 4.12 Components of the product (1 + j∕n)n on the complex plane. The point
exp(j) = 0.5403 + j0.8415 on the unit circle is denoted by •. (a) n = 2. (b) n = 5.

and so on for n ∈ +. The approximation (1 + j∕n)n for each n is a complex number
that can be plotted on the complex plane as a vector starting at the origin. This is
depicted in Figure 4.12(a) for n = 2 and the partial products leading up to the vector
in (4.77):

1 + j0, 1 + j∕2, (1 + j∕2)2 = 3∕4 + j. (4.79)

The three solid lines are connected together by two dashed lines, which turn out to
be perpendicular to the lower two solid lines.

This orthogonality property of the dashed lines is verified as follows. The lower
solid line extends along the horizontal axis to the point 1 + j0. Since the middle solid
line extends to 1 + j∕2, the lower dashed line is obviously perpendicular to 1 + j0
because the two vectors have the same real part = 1. For the upper solid line, consider
the triangle described by the three points: 0 + j0 (the origin), 1 + j∕2, and 3∕4 + j.
We demonstrate that it is a right triangle by showing that the squared magnitude
of the hypotenuse (the solid line defined by 3∕4 + j) equals the sum of the squared
magnitudes of the other two sides. Since the middle solid line is 1 + j∕2, the magni-
tude of the lower dashed line is derived from the difference (3∕4 + j) − (1 + j∕2) =
−1∕4 + j∕2. Thus, the vector lengths are

hypotenuse: (3∕4)2 + 12 = 25∕16, (4.80)

sum of other two sides: 12 + (1∕2)2 + (−1∕4)2 + (1∕2)2 = 25∕16, (4.81)

such that the angle between the upper dashed line and the middle solid line forming
the triangle is 90∘. This result can be shown for every such triangle with increasing n,
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as is apparent in Figure 4.12(b) where n = 5, with the solid lines given by the six
partial products

1 + j0, 1 + j∕5, (1 + j∕5)2 = 24∕25 + j2∕5 = 0.96 + j0.4,

(1 + j∕5)3 = 22∕25 + j74∕125 = 0.88 + j0.592,

(1 + j∕5)4 = 476∕625 + j96∕125 ≈ 0.7616 + j0.7680,

(1 + j∕5)5 = 380∕625 + j2876∕3125 ≈ 0.6080 + j0.9203. (4.82)

When the vector represented by 1 + j0 on the horizontal axis is multiplied by
exp(j), it is rotated counterclockwise exactly along the unit circle on the complex
plane. The approximation in (4.74) with finite n yields a series of vectors from the
partial products that form adjacent right triangles. The fact that each dashed line is
perpendicular to the immediate lower solid line forming the right triangle causes a
rotation in two dimensions rather an exponential growth in one dimension. As n is
increased, the triangles become smaller and they more closely follow the unit circle.
This is confirmed in Figure 4.13 where the magnitude of (4.74) starts to approach 1 for
relatively small n. In the limit as n → ∞, the rotation takes 1 + j0 to 0.5403 + j0.8415,
corresponding to angle 𝜃 = tan−1(0.8415∕0.5403) = 1 rad, which is 57.2968∘ and
is denoted by • in Figure 4.12. Of course, this angle is also evident from
exp(j) = cos(1) + j sin(1).

The rotation of 1 + j0 can be generalized to any angle 𝜃 ∈ [0, 2𝜋]; for example,
exp(j𝜋∕2) rotates 1 + j0 to be aligned with the vertical axis at 0 + j on the complex
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j/n
)n |
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Figure 4.13 Convergence of |(1 + j∕n)n| to 1.
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plane. As 𝜃 is increased, the vector moves counterclockwise along the unit circle
until 1 + j0 is reached when 𝜃 = 2𝜋, at which point it starts to traverse the unit circle
again. Rather than increase or decrease like the real exponential function, the complex
exponential is restricted by the successive right triangles to rotate counterclockwise
in two dimensions. For continuous rotation as n → ∞, the complex exponential lies
exactly on the unit circle and repeats itself with period 2𝜋. Similar behavior occurs for
negative 𝜃, except that the rotation is clockwise. Such rotations can also be performed
along any circle of radius r by using r exp(j𝜃).

Figure 4.14 illustrates the two types of exponential functions: complex
exp(±j𝜔ot) and real exp(±𝜎t), where 𝜎 > 0 and 𝜔o > 0 are real parameters, and
we have included time t in the exponents. Scaled complex exponential growth/rotation
is derived by multiplying these two functions:

exp(𝜎t) exp(j𝜔ot) = exp((𝜎 + j𝜔o)t) = exp(st), (4.83)

where s ≜ 𝜎 + j𝜔o is a complex variable (which is notation used extensively in sub-
sequent chapters). From the previous results, we find that if the complex exponential
is plotted in three dimensions by including the time axis t, it has a spiral trajectory as
it follows a circle with time-varying radius. For 𝜎 > 0, the radius increases, and for
𝜎 < 0, it decreases, as depicted in Figure 4.15.

Based on the previous observations, it is straightforward to once again connect
exp(j𝜃) to sin(𝜃) and cos(𝜃). From Figure 4.12, we find using trigonometry that

(a)

(b)

0 1

exp(−σ t) exp(σ t)

Real exponential
decay to 0

Real exponential
growth to ∞

σ > 0σ < 0
Real axis

Unit
circle

exp( jωot)

exp(−jωot)

Counterclockwise complex
exponential rotation

Clockwise complex
exponential rotation

0 1

j

−j

−1
Real axis

Imaginary axis

Figure 4.14 (a) Complex exponential rotation on the unit circle. (b) Real exponential growth
on the real axis.
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Figure 4.15 Scaled complex exponential function exp(𝜎t) exp(j𝜔ot) with 𝜔o = 10 rad/s. (a)
𝜎 = 0.3. (b) 𝜎 = −0.3.

sin(𝜃) is the projection of exp(j𝜃) onto the imaginary axis, and cos(𝜃) is its projection
onto the real axis. Using j for the imaginary axis and the notation for a complex num-
ber, these results lead directly to Euler’s formula. Projecting the increasing spiral in
Figure 4.15(a) onto the real axis yields the exponentially increasing cosine function
exp(𝜎t) cos(𝜔ot) shown in Figure 4.16(a), and likewise, the projection onto the
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imaginary axis is the exponentially increasing sine function exp(𝜎t) sin(𝜔ot) shown
in Figure 4.16(b). Of course, these weighted sine and cosine waveforms are nec-
essarily 90∘ out of phase with respect to each other. The decreasing functions in
Figure 4.16(b) are important in circuit and system analysis, as this decaying response
arises often in practical systems, such as the second-order RLC circuits discussed in
Chapter 2.

4.9 CONSTANT ANGULAR VELOCITY

As r exp(j𝜔ot) traverses a circle with fixed radius r and constant angular velocity
𝜔o, its projections onto the real and imaginary axes are r cos(𝜔ot) and r sin(𝜔ot),
respectively. Suppose we want to trace different geometric objects on the complex
plane with constant angular velocity, such as the square shown in Figure 4.17(a).
This can be done using r(t) exp(j𝜔ot), which now has a time-varying radius. As this
vector moves from angle 0 to 𝜋∕4, the length of the radius varies from 1 to

√
2. Since

the real part is fixed at 1 for this range of angles, we can use trigonometry on the right
triangle formed by the rotating vector to find an expression for r(t):

r(t) cos(𝜔ot) = 1 =⇒ r(t) = 1∕ cos(𝜔ot). (4.84)

The projection onto the imaginary axis is still sine, but scaled by r(t):

r(t) sin(𝜔ot) = sin(𝜔ot)∕ cos(𝜔ot) = tan(𝜔ot). (4.85)

When the angle is in the interval (𝜋∕4, 3𝜋∕4], the projection of the vector onto
the imaginary axis is a constant 1; likewise, it is a constant −1 for the interval
(5𝜋∕4, 7𝜋∕4]. In the second quadrant, the radius decreases from

√
2 to 1 over

(3𝜋∕4, 𝜋], yielding

r(t) cos(𝜋 − 𝜔ot) = 1 =⇒ r(t) = 1∕ cos(𝜋 − 𝜔ot) = −1∕ cos(𝜔ot), (4.86)
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Figure 4.17 Traversing geometric objects on the complex plane with constant angular veloc-
ity 𝜔o. (a) Square. (b) Diamond.
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and
r(t) sin(𝜔ot) = − tan(𝜔ot). (4.87)

By traversing the square, the overall projection onto the imaginary axis is

f1(𝜔ot) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

tan(𝜔ot), 0 ≤ 𝜔ot < 𝜋∕4
1, 𝜋∕4 ≤ 𝜔ot < 3𝜋∕4

− tan(𝜔ot), 3𝜋∕4 ≤ 𝜔ot < 5𝜋∕4
−1, 5𝜋∕4 ≤ 𝜔ot < 7𝜋∕4

tan(𝜔ot), 7𝜋∕4 ≤ 𝜔ot < 0.

(4.88)

The resulting periodic function is shown in Figure 4.18(a) for 𝜔ot ∈ [0, 2𝜋] (one
period). We have also included the sine wave for comparison which, of course, is
generated by tracing the unit circle and projecting it onto the imaginary axis. A wave-
form similar to (4.88) is obtained via a projection of the square onto the real axis; as
in the case of the unit circle, this waveform has a phase shift of 𝜋∕2 relative to that
in (4.88).

Obviously, the projection of r(t) exp(j𝜔ot) for time-varying r(t) is more compli-
cated than the sine waveform where r(t) is a constant. A circle is the only object on
the complex plane that produces sine on the imaginary axis and cosine on the real
axis. For geometric objects other than the circle, the projection does not have such
a simple harmonic behavior. In fact, it can be shown from the Fourier series repre-
sentation discussed in Chapter 5 that such projections can be expressed as the sum of
weighted sines and cosines with frequencies that are integer multiples of the funda-
mental frequency 𝜔o. The waveform in Figure 4.18(a) has a zero DC component and,
since it is an odd function, only sine terms appear in its Fourier series. The resulting
harmonics given by n𝜔o for n ∈ + are caused by the product r(t) sin(𝜔ot), which
can be viewed as a time-varying system with input sin(𝜔ot). This is in contrast to a
linear time-invariant (LTI) system with a sinusoidal input, whose output is also sinu-
soidal with the same single frequency, but possibly with a different amplitude and
phase. Harmonics do not appear in the output of an LTI system.

Similar results are obtained for other geometric objects on the complex plane,
such as the diamond in Figure 4.17(b), which has the projection onto the imaginary
axis shown in Figure 4.18(b). It is somewhat more difficult to derive this projection
because there are no regions where r(t) is constant as the diamond is traversed. Using
trigonometry, it can be shown that the projection onto the imaginary axis for constant
angular velocity 𝜔o is (see Problem 4.25)

f2(𝜔ot) =
⎧
⎪
⎨
⎪
⎩

sin(𝜔ot)∕[sin(𝜔ot) + cos(𝜔ot)], 0 ≤ 𝜔ot < 𝜋∕2
sin(𝜔ot)∕[sin(𝜔ot) − cos(𝜔ot)], 𝜋∕2 ≤ 𝜔ot < 𝜋

− sin(𝜔ot)∕[sin(𝜔ot) + cos(𝜔ot)], 𝜋 ≤ 𝜔ot < 3𝜋∕2
− sin(𝜔ot)∕[sin(𝜔ot) − cos(𝜔ot)], 3𝜋∕2 ≤ 𝜔ot < 2𝜋.

(4.89)

A similar waveform is derived for the projection onto the real axis, but it is shifted
by 𝜋∕2.
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Figure 4.18 Projection of r(t) exp(j𝜔ot) onto the imaginary axis when traversing geometric
objects on the complex plane. (a) f1(𝜔ot) when tracing a square. (b) f2(𝜔ot) when tracing a
diamond.
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Observe in Figure 4.18(a) that the magnitude of the sine waveform does not exceed
that of the square trace, as expected because the unit circle lies inside the square
on the complex plane in Figure 4.17(a). For the second case, the magnitude of the
diamond trace in Figure 4.18(b) does not exceed that of the sine waveform because
the diamond lies inside the unit circle in Figure 4.17(b). This diamond projection also
does not have a DC component, and its Fourier series has only sine terms because it
is an odd function.

4.10 QUATERNIONS

In the final section of this chapter, we briefly describe an extension of complex num-
bers , which are defined on a plane (two coordinates), to quaternions  defined
on a four-dimensional subspace (Hanson, 2006; Goldman, 2010). Although quater-
nions will not be used later in this book, we describe their properties to emphasize
that complex numbers are simply a two-dimensional extension of the real numbers:
 =⇒  =  + j, and so they form a subset of quaternions.

Unlike complex numbers, which can arise when solving algebraic equations,
quaternions were devised as a means to extend the rotation property of complex
numbers to three-dimensional space. This was achieved by including two additional
coordinates.

Definition: Quaternion A quaternion is a four-dimensional number of the form

h = a + ib1 + jb2 + kb3, (4.90)

where {i, j, k} are markers for the three components beyond a, and {a, b1, b2, b3} are
real numbers. These markers are all defined to be i = j = k ≜ √

−1, and the set of
quaternions can be expressed as  =  + i + j + k.

We have used i for one of the markers because {i, j, k} is the standard notation for
quaternions (there will be no confusion with the symbol i for current because we do
not return to quaternions in subsequent chapters). The three components using {i, j, k}
are called the extended imaginary part of the quaternion, and a is the usual real part. It
turns out that it is not sufficient to include only one additional coordinate of the form
a + ib1 + jb2 because there are inconsistencies with multiplication and division. It is
necessary that the fourth coordinate kb3 be included. (Quaternions can likewise be
extended to have additional coordinates. In order for multiplication to be consistent,
this extension to octonions has eight coordinates: one real and seven imaginary.)

The basic properties of the markers are

i2 = j2 = k2 = −1, ij = k, jk = i, ki = j. (4.91)

Unlike the other sets of numbers that we have considered, multiplication is not com-
mutative:

ji = −k, kj = −i, ik = −j. (4.92)
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From the products in (4.91) and (4.92), it is straightforward to show that

ijk = jki = kij = −1, ikj = jik = kji = 1. (4.93)

The product of two quaternions is

h1h2 = (a1 + ib11 + jb12 + kb13)(a2 + ib21 + jb22 + kb23)

= a1a2 − b11b21 − b12b22 − b13b23 + i(a1b21 + a2b11 + b12b23 − b13b22)

+ j(a1b22 + a2b12 + b13b21 − b11b23)

+ k(a1b23 + a2b13 + b11b22 − b12b21), (4.94)

whereas the reverse product is

h2h1 = (a2 + ib21 + jb22 + kb23)(a1 + ib11 + jb12 + kb13)

= a1a2 − b11b21 − b12b22 − b13b23 + i(a1b21 + a2b11 − b12b23 + b13b22)

+ j(a1b22 + a2b12 − b13b21 + b11b23)

+ k(a1b23 + a2b13 − b11b22 + b12b21). (4.95)

The signs of the last two terms of the resulting {i, j, k} multipliers are reversed for
h2h1 compared with those of h1h2. The quaternion conjugate is

h∗ = a − ib1 − jb2 − kb3, (4.96)

and similar to complex numbers, the following product is real:

hh∗ ≜ |h|2 = a2 + b2
1 + b2

2 + b2
3. (4.97)

All cross-terms in the squared magnitude have cancelled because of the properties in
(4.91) and (4.92).

The matrix representation for a quaternion is

H ≜
⎡
⎢
⎢
⎢
⎣

a b1 b2 b3
−b1 a −b3 b2
−b2 b3 a −b1
−b3 −b2 b1 a

⎤
⎥
⎥
⎥
⎦

, (4.98)

and like the matrix representation for a complex number, the quaternion conjugate h∗

is the transpose HT of this matrix. The squared magnitude |h|2 is derived from

HHT =
⎡
⎢
⎢
⎢
⎣

a2 + b2
1 + b2

2 + b2
3 0 0 0

0 a2 + b2
1 + b2

2 + b2
3 0 0

0 0 a2 + b2
1 + b2

2 + b2
3 0

0 0 0 a2 + b2
1 + b2

2 + b2
3

⎤
⎥
⎥
⎥
⎦

= (a2 + b2
1 + b2

2 + b2
3)I = |h|2I, (4.99)
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which yields |h|2 = 4
√

det(HHT ). It is also generated from the determinant of (4.98):

|h|2 = det(H). (4.100)

The fact that h1 and h2 do not commute can also be verified from their matrix repre-
sentations. However, hh∗ = h∗h, resulting in the same diagonal matrix HHT = HTH
in (4.99). A quaternion can also be expressed as a 2 × 2 matrix using complex numbers
as follows:

Hc =
[

a + jb1 b2 + jb3
−b2 + jb3 a − jb1

]

, (4.101)

where the subscript c emphasizes that it is a complex matrix of lower dimension
than H. We find that h∗ is represented by HH

c , where the superscript denotes com-
plex conjugation and transpose of its elements: HH

c = (HT
c )∗ = (H∗

c )T (as discussed
in Chapter 3). Thus,

HcHH
c = HH

c Hc =
[

a2 + b2
1 + b2

2 + b2
3 0

0 a2 + b2
1 + b2

2 + b2
3

]

= |h|2I, (4.102)

from which we conclude

|h|2 =
√

det(HcHH
c ). (4.103)

In order to understand rotations in three dimensions, we examine the three spher-
ical coordinates defined by

⎡
⎢
⎢
⎣

x1
x2
x3

⎤
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

r cos(𝜃) sin(𝜙)
r sin(𝜃) sin(𝜙)

r cos(𝜙)

⎤
⎥
⎥
⎦

, (4.104)

where 𝜃 is the azimuth angle in the x1–x2 plane, and 𝜙 is the inclination angle that
extends along the x3 axis as illustrated in Figure 4.19. Observe that the projection of
the vector onto the x1–x2 plane is r sin(𝜙), which is the length of the horizontal solid
line defined by 𝜃. The component of that line along the x1 axis is r sin(𝜙) cos(𝜃), and

x1

Inclination
angle

x2

x3

θ

φ

Azimuth
angle

Length r

Figure 4.19 Spherical coordinates in three dimensions. The angle of elevation is 90∘ − 𝜙.
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along the x2 axis it is r sin(𝜙) sin(𝜃). The component of the vector along the x3 axis
is determined only from the inclination angle of r cos(𝜙).

Rotations in three dimensions are performed as follows:

⎡
⎢
⎢
⎣

y1
y2
y3

⎤
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

1 0 0
0 cos(𝜃) − sin(𝜃)
0 sin(𝜃) cos(𝜃)

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

x1
x2
x3

⎤
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

x1
x2 cos(𝜃) − x3 sin(𝜃)
x2 sin(𝜃) + x3 cos(𝜃)

⎤
⎥
⎥
⎦

, (4.105)

⎡
⎢
⎢
⎣

y1
y2
y3

⎤
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

cos(𝜃) 0 sin(𝜃)
0 1 0

− sin(𝜃) 0 cos(𝜃)

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

x1
x2
x3

⎤
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

x3 sin(𝜃) + x1 cos(𝜃)
x2

x3 cos(𝜃) − x1 sin(𝜃)

⎤
⎥
⎥
⎦

, (4.106)

⎡
⎢
⎢
⎣

y1
y2
y3

⎤
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

cos(𝜃) − sin(𝜃) 0
sin(𝜃) cos(𝜃) 0

0 0 1

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

x1
x2
x3

⎤
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

x1 cos(𝜃) − x2 sin(𝜃)
x1 cos(𝜃) + x2 sin(𝜃)

x3

⎤
⎥
⎥
⎦

, (4.107)

where the first set of matrices with a 1 on the main diagonal are rotation matri-
ces denoted by R1, R2, and R3, respectively. In each case, one coordinate remains
unchanged so that a vector is rotated only in the plane defined by the other two coor-
dinates. Furthermore, the length of the vector remains fixed: for the first rotation with
vectors y and x, we have

‖y‖2 = x2
1 + [x2 cos(𝜃) − x3 sin(𝜃)]2 + [x2 sin(𝜃) + x3 cos(𝜃)]2

= x2
1 + x2

2cos2(𝜃) + x3sin2(𝜃) − 2x2x3 cos(𝜃) sin(𝜃)

+ x2
2sin2(𝜃) + x2

3cos2(𝜃) + 2x2x3 sin(𝜃) cos(𝜃)

= x2
1 + x2

2 + x2
3 = ‖x‖2

. (4.108)

Of course, this result follows from the fact that for the rotation matrix in (4.105),
RT

1 R1 = I and ‖y‖2 = xT RT
1 R1xT = ‖x‖2. The same results are obtained for R2 and

R3. It is possible to rotate a column vector anywhere in three dimensions with arbi-
trary angles by successively premultiplying it by these matrices. The final overall
rotation depends on the order that the matrices are multiplied because these matrices
do not commute.

Example 4.9 Examples of these rotations are illustrated in Figure 4.20. The original
vector is x = [1, 1, 1]T (the solid line) and the angle of rotation is 30∘. The three
rotation matrices for this angle are

R1 =
⎡
⎢
⎢
⎣

1 0 0
0 0.8660 −0.5
0 0.5 0.8660

⎤
⎥
⎥
⎦

, R2 =
⎡
⎢
⎢
⎣

0.8660 0 0.5
0 1 0

−0.5 0 0.8660

⎤
⎥
⎥
⎦

,
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0

0.5

1

1.5

0

0.5

1

1.5

0.5

1

0

1.5

x1

Effect of rotation matrices

x2

x 3

Figure 4.20 Rotation of vector x = [1, 1, 1]T (the solid line) in Example 4.9.

R3 =
⎡
⎢
⎢
⎣

0.8660 −0.5 0
0.5 0.8660 0
0 0 1

⎤
⎥
⎥
⎦

, (4.109)

and the rotated vectors generated by individually applying the matrices are

y1 =
⎡
⎢
⎢
⎣

1
0.3660
1.3660

⎤
⎥
⎥
⎦

, y2 =
⎡
⎢
⎢
⎣

1.3660
1

0.3660

⎤
⎥
⎥
⎦

, y3 =
⎡
⎢
⎢
⎣

0.3660
1.3660

1

⎤
⎥
⎥
⎦

. (4.110)

These are shown in Figure 4.20 as the dotted, dashed, and dash-dotted lines, respec-
tively. The squared norm of each rotated vector is 3, which is the squared norm of the
original vector: ‖x‖2 = 3.

Returning to the notation for quaternions, we can write

h = a + ib1 + jb2 + kb3 ≜ a + b, (4.111)

where b ≜ ib1 + jb2 + kb3. Since b has three components, it is similar to a vector, but
it does not have the same properties. The notation (a,b) is often used to represent
quaternions. An extension of Euler’s formula for quaternions is derived by letting
b1 = b2 = b3 = 1 in (4.111) and defining j ≜ i + j + k, yielding

exp(j𝜃) ≜ cos(𝜃) + j sin(𝜃) = cos(𝜃) + [i sin(𝜃) + j sin(𝜃) + k sin(𝜃)], (4.112)
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TABLE 4.5 Properties of Quaternions

Property Equation

Conjugate h∗ = (a,−b)
Squared magnitude |h|2 = hh∗ = a2 + bb∗ = a2 + b2

1 + b2
2 + b2

3
Product h1h2 = (a1a2 − b1b2, a1b2 + a2b1 + b1 × b2)
Inverse h−1 = h∗∕|h|2

where j likewise is not a conventional vector in this formulation. Quaternions have the
properties summarized in Table 4.5, which match those given earlier in (4.94)–(4.97).
The cross product in the table is

b1 × b2 = i(b12b23 − b13b22) + j(b13b21 − b11b23) + k(b11b22 − b12b21), (4.113)

which is not commutative: b2 × b1 ≠ b1 × b2.
Suppose that we would like to rotate the three-dimensional column vector x using

quaternions. This procedure is summarized in the following steps.

• Write x in the form x = ix1 + jx2 + kx3, and using the quaternion notation in
(4.111), define x = (0, x) with real part 0.

• Let 𝜃 be the desired angle of rotation and define the quaternion

h = (cos(𝜃∕2),q sin(𝜃∕2)), (4.114)

with q ≜ (iq1 + jq2 + kq3).
• The rotation is achieved by the product y = hxh∗.

Various rotations can be performed by choosing different values for the {qm}.

Example 4.10 Let x = ix1 + jx2 + kx3 represent a vector in 3 that is to be rotated
by 𝜃 = 90∘ with respect to the i axis. For this case, q = i and

h = (cos(45∘),q sin(45∘)) = (1∕
√

2,q∕
√

2)

= (1∕
√

2)(1 + i), (4.115)

which yields

y = hxh∗ = (1∕2)(1 + i)(ix1 + jx2 + kx3)(1 − i)

= (1∕2)[−x1 + ix1 + j(x2 − x3) + k(x2 + x3)](1 − i)

= (1∕2)(i2x1 − j2x3 + k2x2) = (0, ix1 − jx3 + kx2), (4.116)

where the marker multiplication rules in (4.91) and (4.92) have been used. We
mention again that the order of marker multiplications must be taken into account
to achieve the proper signs. Thus, the general form for the rotated vector is
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y = ix1 − jx3 + kx2. In order to illustrate the behavior of this rotation, consider four
cases:

x = i =⇒ y = i, (4.117)

x = j =⇒ y = k, (4.118)

x = k =⇒ y = −j, (4.119)

x = i + j =⇒ y = i + k, (4.120)

which are depicted in Figure 4.21. In the last case, x lies in the i–j plane and is rotated
to y in the i–k plane. For h = (1∕

√
2)(1 + i), the rotation is about the i axis and the

corresponding result is given in (4.105), which we repeat here for 𝜃 = 90∘:

⎡
⎢
⎢
⎣

x1
x2 cos(𝜃) − x3 sin(𝜃)
x2 sin(𝜃) + x3 cos(𝜃)

⎤
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

x1
−x3
x2

⎤
⎥
⎥
⎦

. (4.121)

This expression gives the same rotations from x to y as in Figure 4.21. Similar results
can be shown for different angles and rotations about the other axes (see Problems
4.29 and 4.30).

i

j

k

x

y 90°

(b)

(d)

i

j

k

x

y

90°

x

i
j

k

x = y

No rotation

(a)

ij

k

x

90°

(c)

y

Figure 4.21 Quaternion rotations for h = (1∕
√

2)(1 + i). (a) x = i. (b) x = j. (c) x = k.
(d) x = i + j.
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PROBLEMS

Complex Numbers

4.1 Rewrite the following ratios in the standard complex form a + jb:

(a) x =
2 + j3
4 − j2

, (b) y =
5 − j2
1 + 2j

, (c) z =
4 + j

1 − j
. (4.122)

4.2 For x and y in the previous problem, find expressions for (a) xy, (b) x − y, and
(c) xy∗, writing them all in the standard complex form a + jb.

4.3 Give the range of values for 𝛼 such that the following real-valued functions have
complex roots:

(a) f (x) = x2 + 𝛼x + 1, (b) g(x) = x2 + x + 𝛼, (c) h(x) = 𝛼x2 + x + 1.
(4.123)

4.4 Prove the triangle inequality for complex {x1, x2}:

|x1 + x2| ≤ |x1| + |x2|. (4.124)

4.5 Complex c = a + jb in rectangular form has squared magnitude |c|2 = a2 + b2.
Use this property to show |a| + |b| ≤ 𝛼|c| for 𝛼 =

√
2.

4.6 Describe the regions on the complex plane defined by the following real func-
tions of complex x:

(a) f (x) = ‖x| − 1| ≤ 1, (b) g(x) = ‖x| + 1| ≥ 1. (4.125)

4.7 The discriminant of the cubic equation x3 + ax + b = 0 is D = b2∕4 + a3∕27. A
function has complex conjugate roots when D > 0 and real roots when D < 0.
Verify this property for

(a) f (x) = (x − 2)(x2 + 2x + 2), (b) g(x) = (x + 1)(x2 − x − 2). (4.126)

Polar Coordinates

4.8 Rewrite the complex numbers {x, y, z} in polar form:

(a) x = 2 − j3, (b) y =
1 + j

1 − j
, (c) z =

2 + j

4 + j
. (4.127)

4.9 Convert the following complex numbers {x, y} into polar form, compute (a)
z1 = xy, (b) z2 = x∕y, and (c) z3 = xy∗, and then convert the results back to
rectangular form:

x = 3 − 2j, y = 1 + j. (4.128)

Verify your results by performing these operations using the rectangular form.
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4.10 Repeat the previous problem for

x =
1 + j

2 − j
, y =

3 + j

1 + j2
. (4.129)

4.11 Find the distance between two complex numbers written in polar form: (a)
exp(j2) and 3 exp(j). (b) 2 exp(−3j) and exp(2j).

4.12 The equation for a shifted circle centered at d on the complex plane is f (𝜃) =
| exp(j𝜃) − d|. Find 𝜃 such that f (𝜃) = 0 for (a) d = 1 and (b) d = 1 + j.

Euler’s Formula

4.13 Use Euler’s formula to verify the trigonometric identities:

(a) sin(x − y) = sin(x) cos(y) − cos(x) sin(y), (b) cos(2x) = cos2(x) − sin2(x).
(4.130)

4.14 Repeat the previous problem for

cos(x) − cos(y) = −2 sin((x + y)∕2) sin((x − y)∕2). (4.131)

4.15 Use Euler’s inverse formula for cos(x) to find the indefinite integrals of
(a) cos2(𝛼x) and (b) sin(x) cos(x).

4.16 The exponential function is written in (1.111) as the power series

exp(x) =
∞∑

n=1

xn

n!
. (4.132)

Use this expression and the power series expansions for sine and cosine in
Appendix C to verify Euler’s formula.

4.17 Write the following expressions in standard complex form using de Moivre’s
formula:

(a) x = (2 + j)6, (b) y = 1
(1 − 3j)4

. (4.133)

4.18 Find the roots for the following equations using the nth root formula in
Table 4.4:

(a) x3 = 64, (b) y3 = 8j. (4.134)

4.19 Find the square root for each of the following functions:

(a) x = −16j, (b) y = 2 − j, (c) z = 4 + 3j. (4.135)

Matrix Representation

4.20 For the complex numbers {x, y} in (4.128), write them as matrices C1 and C2.
(a) Demonstrate that these matrices commute in a product as shown in (4.67)
and (4.68). (b) Verify that C1CT

1 = |x|2I and C2CT
2 = |y|2I.
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4.21 The matrix representation for complex numbers can be expressed as

c = a + jb ⇔ aI + bR(𝜋∕2) = C, (4.136)

where the notation R(𝜋∕2) refers to the rotation matrix in (4.69) with 𝜃 = 𝜋∕2:

R(𝜋∕2) =
[

0 −1
1 0

]

. (4.137)

(a) Verify that CTC = (a2 + b2)I by writing it in terms of the matrices in (4.136).
(b) Find an expression for C2 using (4.136).

4.22 In order to examine additional properties of complex numbers written in matrix
form, expand the notation as follows for cn = an + jbn:

Can,bn
=
[

an −bn
bn an

]

. (4.138)

(a) Let the matrix inverse C−1
an,bn

represent

1
cn

= 1
an + jbn

. (4.139)

Specify the subscripts {𝛼, 𝛽} such that C−1
an,bn

= C
𝛼,𝛽

. (b) Find {𝛼, 𝛽} for the

expression Ca1,b2
C−1

a2,b2
= C

𝛼,𝛽
representing the ratio c1∕c2 = (a1 + jb1)∕(a2 +

jb2).

Complex Exponential Rotation and Constant Angular Velocity

4.23 The complex function exp((𝜎 + j𝜔)t) = exp(𝜎t)[cos(𝜔t) + j sin(𝜔t)] has
increasing sinusoidal components for 𝜎 > 0. Describe the behavior of the
ratio exp((𝜎1 + j𝜔1)t)∕ exp((𝜎2 + j𝜔2)t) relative to that of exp((𝜎1 + j𝜔1)t)
alone.

4.24 Consider the rectangle defined by x1 ≤ x ≤ x2 and y1 ≤ y ≤ y2 in Cartesian
coordinates. (a) Describe how the rectangle maps to the complex plane via the
transformation exp(z) for z = x + jy. (b) Suppose {x2, y2} increase with time t.
Describe how the mapping to the complex plane changes.

4.25 Derive the function f2(𝜔ot) in (4.89), generated when tracing a diamond on the
complex plane.

4.26 Derive the projection f (𝜔ot) of r(t) exp(j𝜔ot) onto the imaginary axis when trac-
ing the rectangle in Figure 4.22, assuming constant angular velocity 𝜔o.
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Figure 4.22 Rectangle on the complex plane for Problem 4.26.

Quaternions

4.27 Consider the quaternions h1 = 1 + i − j2 + k and h2 = 2 + 3i + j − 2k.
(a) Write the quaternion matrices {H1,H2} and determine if their product
H1H2 gives the same result as h1h2. (b) Repeat part (a) using the complex
quaternion matrices {Hc1

Hc2
}.

4.28 For the quaternions {h1, h2} below, find (a) h1h2, (b) h2h1, and (c) h−1
1 h2:

h1 = 1 + i − j − k, h2 = 2 − i + 2j + k. (4.140)

4.29 Examine the rotations for the four cases of x in Example 4.10 for 𝜃 = 45∘ and
q = j. Verify your results using the appropriate rotation matrix.

4.30 Consider a unit cube with one end point at the origin in 3 and extending into
positive {x1, x2, x3} with the furthest end point at (1, 1, 1). Determine how it is
rotated by a quaternion with q = i + j and 𝜃 = 90∘.

Computer Problems

4.31 Plot (1 + 2j∕n)n on the complex plane using MATLAB and verify that it
approaches exp(2j) ≈ −0.4161 + j0.9093 with increasing n.

4.32 Using MATLAB, plot f (𝜔ot) derived in Problem 4.26, along with sin(𝜔ot), and
explain how this projection differs from the square trace in Figure 4.18(a).

4.33 Perform the rotations in Example 4.10 using quatrotate in MATLAB for differ-
ent combinations of the angles {45∘, 90∘, 120∘} for (a) q = i and (b) q = i + j.
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5
SIGNALS, GENERALIZED FUNCTIONS,
AND FOURIER SERIES

5.1 INTRODUCTION

In this chapter, we describe several functions of a continuous variable that are used
to represent signal waveforms in many engineering applications. For the rest of the
book, we are interested in functions of the independent variable time t, which we refer
to as signals, such as the input x(t) and output y(t) of a linear system. The following
special function is useful for defining the support of another function when they are
multiplied together.

Definition: Indicator Function The indicator function is

I[a,b](t) ≜
{

1, t ∈ [a, b]
0, else,

(5.1)

where [a, b] is a closed interval: t ∈ [a, b] means a ≤ t ≤ b. Other intervals are
possible such as semi-open [a, b) =⇒ a ≤ t < b and (a, b] =⇒ a < t ≤ b, open
(a, b) =⇒ a < t < b, and even a set of discrete values {a,… , b} =⇒ t ∈ {a,… , b}.

Symbols for sets of numbers such as + and  can also be used for the subscript
of I, which should not be confused with the identity matrix I (which has bold font in
this book). The support, range, and domain of a function are defined in Chapter 1.

Mathematical Foundations for Linear Circuits and Systems in Engineering, First Edition. John J. Shynk.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
Companion Website: http://www.wiley.com/go/linearcircuitsandsystems
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Example 5.1 The sinusoidal waveform sin(𝜔ot)I[0,2𝜋](t) is nonzero only for 0 ≤ t ≤
2𝜋, and the exponential waveform exp(−t)I[0,∞)(t) is nonzero only for t ∈ +. If an
indicator function is not used, such as cos(𝜔ot), then the support is assumed to be the
entire real line t ∈  unless otherwise specified.

5.2 ENERGY AND POWER SIGNALS

Let x(t) be a real signal with domain t ∈ .

Definition: Energy and Power The energy of a signal is the area under the squared
function:

E ≜ ∫
∞

−∞
x2(t)dt. (5.2)

The average power of a signal is

P = lim
T→∞

1
2T ∫

T

−T
x2(t). (5.3)

(For circuits, the average power was defined in Chapter 2 in terms of the instantaneous
power p(t), and the energy was defined in terms voltage and charge.) For a particu-
lar signal, only one of these quantities is finite and nonzero: 0 < P < ∞ =⇒ E →
∞ or 0 < E < ∞ =⇒ P = 0. Some signals have infinite power (and thus infinite
energy). Thus, a signal can be classified into one of three types: (i) an energy signal,
(ii) a power signal, or (iii) an infinite power signal.

Definition: Energy Signal A waveform is an energy signal if 0 < E < ∞.

The average power P of an energy signal is necessarily zero.

Example 5.2 The rectangular function x(t) = I[0,1](t) has finite energy:

E = ∫
1

0
x2(t)dt = 1, (5.4)

and it has zero average power:

P = lim
T→∞

1
2T ∫

T

−T
I[0,1](t)dt = lim

T→∞
1

2T ∫
1

0
dt = 0. (5.5)

The one-sided exponential function x(t) = exp(−t)I[0,∞)(t) has finite energy:

E = ∫
∞

0
exp(−2t)dt = −(1∕2) exp(−2t)|∞0 = 1∕2, (5.6)
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and zero power:

P = lim
T→∞

1
2T ∫

T

0
exp(−2t)dt

= lim
T→∞

1
4T

[1 − exp(−2T)] = 0. (5.7)

It is clear from the previous example that ordinary finite-duration waveforms are
energy signals. Some infinite duration signals are energy signals, but often they are
power signals.

Definition: Power Signal A waveform is a power signal if 0 < P < ∞.

The energy E of a power signal is necessarily infinite.

Example 5.3 The cosine waveform with support t ∈  is a power signal:

P = lim
T→∞

1
2T ∫

T

−T
cos2(𝜔ot)dt

= lim
T→∞

1
4T ∫

T

−T
[1 + cos(2𝜔ot)]dt. (5.8)

The cosine term divided by 4T is 0 in the limit, which gives P = 1∕2. Since the area
under cos2(𝜔ot) is infinite, the energy of cos(𝜔ot) is E → ∞.

Example 5.4 The unit step function is a power signal, but the ramp function is
neither an energy signal nor a power signal: it has infinite power. For the unit step
function:

∫
∞

−∞
u2(t)dt = ∫

∞

0
dt =⇒ E → ∞, (5.9)

lim
T→∞

1
2T ∫

T

−T
u2(t)dt = lim

T→∞
1

2T ∫
T

0
dt =⇒ P = 1∕2, (5.10)

and for the ramp function:

lim
T→∞

1
2T ∫

T

−T
r2(t)dt = lim

T→∞
1

2T ∫
T

0
t2dt

= lim
T→∞

t3

6T

|
|
|
|

T

0
=⇒ P → ∞. (5.11)
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Generally, energy signals have finite duration or they decay to 0 “sufficiently
fast.” Power signals are typically periodic, and signals with infinite power tend to
be infinitely increasing (positively or negatively). This classification of signals will
be useful in Chapter 8 when we cover the Fourier transform. Energy signals always
have a Fourier transform, whereas power signals and signals with infinite power
may have a Fourier transform provided singular generalized functions are used in
the frequency-domain representation. Several important functions in engineering are
summarized in Appendix A, which includes their classification as energy, power, or
infinite power signals.

5.3 STEP AND RAMP FUNCTIONS

Similar to the indicator function, the unit step function is often used in engineering
to define the support of a function.

Definition: Unit Step Function The unit step function is

u(t) ≜ I[0,∞)(t). (5.12)

It is also called the Heaviside step function, and sometimes the symbol H(t) is used.

Although u(0) = 1∕2 in some applications, u(0) = 1 is used in this definition, and
so the unit step function is continuous from the right as discussed in Chapter 1. More
general step functions are obtained by scaling and shifting u(t):

𝛼u(t − 𝜏) = 𝛼I[𝜏,∞)(t), (5.13)

where 𝛼 is the amplitude and 𝜏 is the delay. Examples are shown in Figure 5.1. The
location of the discontinuity is found by examining the argument of the function:

u(t − 𝜏) = 1 when t − 𝜏 ≥ 0 =⇒ t ≥ 𝜏. (5.14)

When 𝜏 is positive, the step function is shifted to the right, and when it is negative,
the function is shifted to the left. The reverse situation occurs for argument t + 𝜏.
Of course, this shifting applies to any function of the form f (t − 𝜏) or f (t + 𝜏). Step
functions are used to model the effect of turning on a device, such as a voltage source
in a circuit.

Example 5.5 The sinusoidal waveform sin(𝜔ot)u(t) is nonzero only for t ∈ +,
and the exponential waveform exp(−t)[u(t) − u(t − 1)] is nonzero only for the finite
interval t ∈ [0, 1). Although the upper limit for t is a strict inequality (the semi-open
interval 0 ≤ t < 1), in practice, we can generally include equality: t ∈ [0, 1]. This
is done for most functions such as the rectangle function described in the next
section.
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Figure 5.1 Example step functions.

The following two-sided function is related to the unit step function.

Definition: Signum Function The signum function is

sgn(t) ≜
⎧
⎪
⎨
⎪
⎩

1, t > 0
0, t = 0

−1, t < 0,
(5.15)

which is also known as the sign function. It can be written as the difference of two
unit step functions:

sgn(t) = u(t) − u(−t). (5.16)

The signum function is related to the absolute value function as follows:

sgn(t) = t
|t|

, (5.17)

and it is the derivative of |t| except at t = 0 where the derivative is not defined. These
functions are shown in Figure 5.2.

Definition: Ramp Function The ramp function is

r(t) ≜ tu(t), (5.18)

which can also be written in terms of the absolute value function: r(t) = |t|u(t).
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It is related to the unit step function as follows:

r(t) = ∫
t

0
u(𝜏)d𝜏, u(t) = d

dt
r(t). (5.19)

In order to find the derivative of r(t) in (5.19), the product rule of differentiation
should be used

d
dt

r(t) =
( d

dt
t
)

u(t) + t
( d

dt
u(t)

)
= u(t) + t𝛿(t) = u(t), (5.20)

where 𝛿(t) ≜ du(t)∕dt is the Dirac delta function defined later. The so-called sampling
property of 𝛿(t)when it is multiplied by continuous function x(t) is x(t)𝛿(t) = x(0)𝛿(t),
such that the second term in the derivative is t𝛿(t) = 0. In order to properly discuss the
derivative of the unit step function, we need to expand ordinary functions to include
generalized functions.

Under integrals, the unit step function defines the range of integration, and it also
serves to define the support of the resulting integral. Thus, for the first expression in
(5.19):

r(t) = ∫
t

−∞
u(𝜏)d𝜏 = u(t)∫

t

0
d𝜏 = tu(t). (5.21)

Similar techniques are used for the indicator function when it defines the support
of a function. Example ramp functions obtained by integrating the step functions in
Figure 5.1 are shown in Figure 5.3.
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Figure 5.3 Example ramp functions.

5.4 RECTANGLE AND TRIANGLE FUNCTIONS

The two functions described in this section have finite support.

Definition: Rectangle Function The rectangle function is

rect(t) ≜ I[−1∕2,1∕2](t), (5.22)

which has unit width and unit height.

It is the solid waveform in Figure 5.4. The rectangle function can also be written
as the difference of two unit step functions:

rect(t) ≜ u(t + 1∕2) − u(t − 1∕2), (5.23)

where it is assumed that the right-hand side equals 1 at t = ±1∕2. The rectangle func-
tion is used to represent switching operations where a device is turned on and off, such
as a voltage source in a circuit. Like the unit step function, rect(t) is often scaled and
shifted; for example, the support of rect(t − 1∕2) is [0, 1]. Sometimes the rectangle
function is defined as follows:

rect(t) ≜
⎧
⎪
⎨
⎪
⎩

1, |t| < 1∕2
1∕2, |t| = 1∕2

0, |t| < 1∕2,
(5.24)
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Figure 5.4 Example rectangle functions.

which has the value 1∕2 at the discontinuities (similar to the alternative definition of
the unit step function). Generally, we use the definition in (5.22).

Example 5.6 The rectangle function 2rect(t − 1) has height 2, width 1, and is cen-
tered at t = 1. The width of a rectangle function is always 1, except when the variable
t is scaled. For example, 3rect(2t − 1) has height 3, is centered at 2t − 1 = 0 =⇒ t =
1∕2, and its width is found by determining the values of t such that the argument of
the function is ±1∕2:

2t − 1 = 1∕2 =⇒ t = 3∕4, 2t − 1 = −1∕2 =⇒ t = 1∕4. (5.25)

Subtracting these two quantities gives a width of 1∕2. These two examples are also
shown in Figure 5.4.

Definition: Triangle Function The triangle function is

tri(t) ≜ (1 − |t|)I[−1,1](t), (5.26)

which has unit area.

Observe that by combining a rectangle function and the signum function, the tri-
angle function is generated from the following integral:
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∫
t

−∞
rect(𝜏∕2)sgn(−𝜏)d𝜏 = I[−1,1](t)∫

t

−1
sgn(−𝜏)d𝜏

=
{ ∫ t

−1 d𝜏, −1 ≤ t < 0

∫ 0
−1 d𝜏 + ∫ t

0 (−1)d𝜏, 0 ≤ t ≤ 1,

=
{

t + 1, −1 ≤ t < 0
1 − t, 0 ≤ t ≤ 1,

(5.27)

which is the same as (5.26). The reversed signum function sgn(−t) serves to change
the sign of the rectangle function for t ≥ 0. It was also necessary to scale 𝜏 in the
rectangle function so that the width of the resulting triangle function is 2. Scaling t
by 1∕2 causes rect(t∕2) to have support [−1, 1], which is verified as follows:

t∕2 = ±1∕2 =⇒ t = ±1. (5.28)

Example triangle functions are shown in Figure 5.5.
It turns out that the triangle function is also obtained as the convolution of two unit

rectangle functions:

tri(t) = rect(t) ∗ rect(t) = ∫
∞

−∞
rect(t − 𝜏)rect(𝜏)d𝜏

= ∫
min(t+1∕2,1∕2)

max(−1∕2,t−1∕2)
d𝜏 = min(t + 1∕2, 1∕2) − max(−1∕2, t − 1∕2), (5.29)
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which has support t ∈ [−1, 1]. Evaluating this expression over two finite intervals for
t, given by [−1, 0) and [0, 1], we have

rect(t) ∗ rect(t) =
{

t + 1∕2 − (−1∕2), −1 ≤ t < 0
1∕2 − (t − 1∕2), 0 ≤ t ≤ 1,

(5.30)

which is the same as (5.27). The convolution operator ∗ should not be confused with
the superscript ∗ for the conjugate of a complex number. In the first line of (5.29),
rect(t − 𝜏) is a reversed rectangle function because 𝜏 is the variable of integration, and
it is shifted by t. This is not the same function as rect(𝜏 − t), which is not reversed.
Convolution is discussed in greater detail in Chapters 6 and 7.

The previous results illustrate the importance of choosing the appropriate argu-
ment of a function in order to properly scale and shift it in time when representing a
signal of interest.

Example 5.7 Consider two more cases for the rectangle function: rect((t − 1)∕2)
and rect(t∕2 − 1). For the first case:

(t − 1)∕2 = ±1∕2 =⇒ t − 1 = ±1 =⇒ t ∈ [0, 2]. (5.31)

The right-hand side is first scaled by 2 and then it is shifted by 1. For the second case:

t∕2 − 1 = ±1∕2 =⇒ t∕2 = 1∕2, 3∕2 =⇒ t ∈ [1, 3], (5.32)

and so the right-hand side is first shifted by 1 and then scaled by 2. Both of these
rectangular functions have width 2, but their end points are quite different.

5.5 EXPONENTIAL FUNCTION

The exponential function is used to model the behavior of many systems, both natural
and human-made. The standard exponential function was defined in Chapter 1, which
we repeat here but with independent variable t for continuous time:

exp(t) ≜ et, (5.33)

where Napier’s constant e = 2.71828182845… is the base of the natural logarithm.
Technically any function with the following form is called exponential:

x(t) = at, (5.34)

where a > 0 and a ≠ 1. We are generally interested only in the form of (5.33), which
has the following unique properties:

d
dt

exp(t) = exp(t), ∫
t

−∞
exp(t)dt = exp(t). (5.35)
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Figure 5.6 Increasing and decreasing exponential functions.

The standard exponential function is illustrated in Figure 5.6, along with a decaying
exponential whose exponent is negative: exp(−t).

Example 5.8 The derivative property in (5.35) is proved using a power series rep-
resentation of the exponential function (see Appendix E):

exp(t) = 1 + t + t2∕2! + t3∕3! + · · · (5.36)

Differentiating each term on the right-hand side with respect to t yields

d
dt

exp(t) = 0 + 1 + 2t∕2! + 3t2∕3! + · · · = exp(t). (5.37)

The derivative of the general exponential form in (5.34) is not the same function for
a ≠ e:

d
dt

at = at ln(a), (5.38)

where ln(⋅) is the natural logarithm. The power series in (5.36) can also be used to
prove the integral property of the exponential function (see Problem 5.9).

A decaying exponential starting at the origin can be written using the unit step
function as follows:

x(t) = exp(−t)u(t), (5.39)
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and a delayed version is given by

x(t − to) = exp(−(t − to))u(t − to). (5.40)

The function exp(−t)u(t − to) is not the same as the delayed version in (5.40); this
exponential function has not been shifted, and only its support has been changed to
t ≥ to. An exponential function that increases to a constant 1 is written as follows:

x(t) = [1 − exp(−t)]u(t). (5.41)

Such an expression is a model for signals in first-order RL and RC circuits that have
a voltage or current source. These right-sided exponential functions are illustrated in
Figure 5.7.

Definition: Time Constant The time constant of x(t) = exp(−𝛼t)u(t) with 𝛼 > 0 is
the time t = 𝜏 such that the amplitude of the function has decreased to 1∕e ≈ 0.3679
of its original value:

exp(−𝛼𝜏) = 1∕e =⇒ 𝜏 = 1∕𝛼. (5.42)

An exponential function has decreased to < 5% (≈ 0.0498) of its original value by
3𝜏. Several time constants (the vertical dotted lines) are illustrated in Figure 5.8 for
exp(−t)u(t). A decaying exponential function is often written in terms of its time
constant 𝜏 as follows:

x(t) = exp(−t∕𝜏)u(t). (5.43)
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With this form, integer values of t yield the function at integer multiples of the time
constant (as shown in Figure 5.8 for 𝜏 = 1).

5.6 SINUSOIDAL FUNCTIONS

Sinusoidal functions appear in many applications, and any periodic signal can be
represented by an infinite sum of weighted sines and cosines (the Fourier series expan-
sion discussed later in this chapter). Generalizing the sinusoids considered in Chapter
4 to be functions of time, we have

x1(t) = A sin(𝜔ot + 𝜙), x2(t) = A cos(𝜔ot + 𝜙), (5.44)

where A is the amplitude, 𝜔o is angular frequency, and 𝜙 is a phase shift. These
expressions can be written in terms of the ordinary frequency fo by substituting

𝜔o ≜ 2𝜋fo. (5.45)

As discussed previously for other functions,𝜙 > 0 causes sine and cosine to be shifted
to the left, and they are shifted to the right for 𝜙 < 0. The units of 𝜔o are rad/s, and
those of fo are hertz (Hz) = second−1 (sometimes called cycles/s). Thus, the argu-
ments of the functions in (5.44) are in radians as was the case for sin(𝜃) and cos(𝜃)
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Figure 5.9 Sinusoidal functions with amplitude A = 1.

in Chapter 4. The period (one cycle) of a sinusoid is To = 1∕fo with units of sec-
onds. Examples of sinusoidal waveforms with A = 1 are shown in Figure 5.9. Observe
that for 𝜔o = 1 rad/s, the period is To = 1∕fo = 2𝜋∕𝜔o = 2𝜋 s (the solid line in the
figure).

Next, we describe a time-varying version of the complex exponential function
introduced in Chapter 4. The general form is

x(t) = r exp(j(𝜔ot + 𝜙)) = r exp(j𝜙) exp(j𝜔ot), (5.46)

where 𝜔o is angular frequency as used earlier for the sinusoidal waveforms, r > 0 is
a constant magnitude, and 𝜙 is a constant phase. Using Euler’s formula and assuming
𝜙 = 0, we have

x(t) = r cos(𝜔ot) + jr sin(𝜔ot). (5.47)

The squared magnitude of this function is a constant for any 𝜔o and all t:

|x(t)|2 = r2[cos2(𝜔ot) + sin2(𝜔ot)] = r2, (5.48)

which means that x(t) is located on a circle with radius r on the complex plane. The
sine and cosine functions are 90∘ (𝜋∕2 radians) out of phase with respect to each
other, such that when sine is maximum or minimum, cosine is 0. This was depicted
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previously in Figure 4.10 where the argument is a fixed angle 𝜃. For r = 1, the func-
tion rotates counterclockwise on the unit circle as shown in Figure 5.10. It makes
a complete rotation when 𝜔ot is an integer multiple of 2𝜋, which corresponds to
t = 2𝜋n∕𝜔o = n∕f = nTo for n ∈ . This result follows because complete rotations
are achieved for integer multiples of the period To. The three-dimensional plot in
Figure 5.11 shows the spiral trajectory of (5.47) for r = 1 and 𝜔o = 10 rad/s as the
function rotates counterclockwise along the unit circle. Similar plots were shown pre-
viously in Figure 4.15, but with exponential weighting exp(𝜎t) that caused the spiral
to increase (𝜎 > 0) or decrease (𝜎 < 0) with increasing t.
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5.7 DIRAC DELTA FUNCTION

The derivative of the unit step function is the Dirac delta function:

𝛿(t) ≜ d
dt

u(t). (5.49)

It can be defined as follows.

Definition: Dirac Delta Function The Dirac delta function is an impulse located
at t = 0 that has zero width and unit area:

𝛿(t) =
{

0, t ≠ 0
undefined, t = 0, ∫

∞

−∞
𝛿(t)dt = 1. (5.50)

Although technically 𝛿(t) is not defined at t = 0, some books assume infinity. The
Dirac delta function is not an ordinary function because the area of an ordinary func-
tion is 0 if it is nonzero only at a countable number of points. We can view 𝛿(t) as a
symbol for a particular generalized function, and its most important feature is how it
behaves under an integral as discussed in the next section.

We can also view the Dirac delta function as the limit of rectangle functions, which
is an approach frequently used to describe its properties:

𝛿(t) = lim
a→0

(1∕a)rect(t∕a). (5.51)

Since the support of the standard rectangle function is t ∈ [−1∕2, 1∕2], we find that
the support of the right-hand side of (5.51) is −1∕2 ≤ t∕a ≤ 1∕2 =⇒ −a∕2 ≤ t ≤
a∕2. In the limit as a → 0, the width of the right-hand side approaches 0 and its height
approaches infinity, but its area is fixed at (1∕a)[a∕2 − (−a∕2)] = 1. Examples of the
right-hand side of (5.51) for finite values of a are shown in Figure 5.12, from which
we can visualize the rectangles approaching an impulse as a → 0.

The Dirac delta function is scaled and shifted according to 𝛼𝛿(t − 𝜏), which has
area 𝛼 and is located at t = 𝜏. Multiplication by a constant and shifting in time are
handled in the same way as ordinary functions, except that for the Dirac delta func-
tion, the area is scaled by 𝛼. This is readily seen when scaling (5.51) by 𝛼. An
arrow is used to represent the Dirac delta function as depicted in Figure 5.13, and
its height corresponds to the area. The delta functions in the figure, which are nec-
essarily nonoverlapping, can be written as a composite signal consisting of all three
impulses simply by adding them together:

x(t) = 𝛿(t) − 2𝛿(t − 1) + 2.5𝛿(t + 2). (5.52)

When a delta function is preceded by a minus sign, it is denoted by a downward
pointing arrow when plotted. It still has zero width, but its area is defined to be neg-
ative; this interpretation also follows by using a rectangle function with height −1∕a
in (5.51) and letting a → 0.
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The Dirac delta function has two useful properties involving continuous function
f (t).

• Sampling property:
𝛿(t − 𝜏)f (t) = 𝛿(t − 𝜏)f (𝜏). (5.53)

• Sifting property:

∫
∞

−∞
𝛿(t − 𝜏)f (t)dt = f (𝜏). (5.54)

When 𝛿(t) multiplies continuous function f (t), the sampling property yields
another Dirac delta function at the same location, but with area given by the value of
the function at t = 𝜏. The sifting property describes the behavior of the Dirac delta
function under an integral where the value of the function f (t) at t = 𝜏 is “sifted out.”
The result in (5.53) is still a Dirac delta function, whereas the result in (5.54) is a
real number.

Example 5.9 In this example, we prove the sifting property for 𝛿(t) in (5.54) with
𝜏 = 0, starting with a rectangle function:

(1∕a)∫
∞

−∞
rect(t∕a)f (t)dt = (1∕a)∫

a∕2

−a∕2
f (t)dt

= (1∕a)[F(a∕2) − F(−a∕2)], (5.55)

where F(t) is the antiderivative of f (t). Since the last expression in (5.55) is a finite
approximation of the derivative of F(t) at t = 0, we have

lim
a→0

(1∕a)[F(a∕2) − F(−a∕2)] = d
dt

F(t)
|
|
|
|t=0

= f (0), (5.56)

which shows

∫
∞

−∞
𝛿(t)f (t) = f (0). (5.57)

The sampling property can also be proved by starting with the rectangle function:

lim
a→0

(1∕a)rect(t∕a)f (t) = f (0)𝛿(t). (5.58)

As the rectangle function becomes increasingly narrow about t = 0, the fixed area
is scaled by f (0) so that in the limit we have an impulse with area f (0). For a delta
function at another point in time t = 𝜏, the appropriate shifted version of the rectangle
function is used to prove both properties (see Problem 5.13).

The sampling property of the Dirac delta function does not hold if f (t) = 𝛿(t); the
isolated product 𝛿(t)𝛿(t) is not defined. On the other hand, from the sifting property:

∫
∞

−∞
𝛿(t − 𝜏)𝛿(t)dt = 𝛿(𝜏), (5.59)
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Linear and
time-invariant
(LTI) system x(t) y(t)

OutputInput
h(t)

Impulse response
function

Figure 5.14 Linear time-invariant system with input x(t), output y(t), and impulse response
function h(t).

which is valid because this product of two delta functions is evaluated under an inte-
gral (which is actually a convolution). This will be evident from the definition of
generalized functions.

The Dirac delta function is a useful model in engineering for impulsive-type
signals, and it is used to generate the impulse response function of a linear and
time-invariant (LTI) system, which in turn describes the response of the system for
other types of input signals. Figure 5.14 shows a block diagram of a system with
input x(t) and output y(t). The impulse response h(t) for an LTI system is the output
generated when x(t) = 𝛿(t). It turns out that the output for any input x(t) is generated
by the convolution integral

y(t) = ∫
∞

−∞
h(𝜏)x(t − 𝜏)d𝜏 = h(t) ∗ x(t), (5.60)

which was mentioned earlier. This important integral is widely used in courses on
linear systems, and it is described further in Chapter 7, which also gives a precise
definition of an LTI system.

5.8 GENERALIZED FUNCTIONS

In this section, we provide a brief overview of generalized functions (Kanwal, 2004;
Strichartz, 1994), which is an extension of ordinary functions to include nonfunctions
such as the Dirac delta function and its derivative the unit doublet. As previously
mentioned, the defining characteristic of 𝛿(t) is its behavior under an integral:

∫
∞

−∞
𝛿(t − 𝜏)dt = 1, ∫

∞

−∞
𝛿(t − 𝜏)f (𝜏)d𝜏 = f (t), (5.61)

where it is assumed that function f (t) is continuous at t = 𝜏. The first integral shows
that 𝛿(t) has unit area, and the second integral is the sifting property where 𝛿(t)
extracts the value of f (t) at t = 𝜏. (The first integral is a special case of the sift-
ing property where f (t) = 1 for an interval that includes t = 𝜏.) It is important to
note that these integrals are only symbolic; they are not obtained in the limit from a
Riemann sum. Instead, we define 𝛿(t) to have these properties represented by the two
integrals.
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Example 5.10 Consider the right-sided function f (t) = exp(−𝛼t)u(t)whose support
is +. Using the product rule, its derivative is

d
dt

f (t) = −𝛼 exp(−𝛼t)u(t) + exp(−𝛼t)𝛿(t),

= 𝛿(t) − 𝛼 exp(−𝛼t)u(t), (5.62)

where the sampling property of the Dirac delta function has been used to give
exp(−𝛼t)𝛿(t) = exp(0)𝛿(t) = 𝛿(t). This result is not unexpected because of the
discontinuity at t = 0. The derivative of this function at the origin actually does
not exist in the usual sense; it is handled by including the Dirac delta function.
The product rule indirectly uses the theory of generalized functions by substituting
𝛿(t) = du(t)∕dt.

Before describing generalized functions, we need some background definitions.
Recall that the ordinary function f (t) is a mapping of the real number t (the input) to
a unique real number denoted notationally by f (t) (the output). Thus, a function can
be written as the ordered pair {t, f (t)}. This representation is extended to functionals
where instead of the number t, the function 𝜙(t) is used.

Definition: Functional Functional F(𝜙) is a mapping of function 𝜙 to a real num-
ber denoted by F(𝜙). It can be expressed as the ordered pair {𝜙,F(𝜙)}.

Although t is suppressed in this definition, 𝜙 is a function of t that we could write
explicitly as 𝜙(t), though do not for notational convenience. In this book, we are
interested in linear functionals that satisfy the following two properties:

F(𝜙1 + 𝜙2) = F(𝜙1) + F(𝜙2), F(c𝜙) = cF(𝜙), (5.63)

where {𝜙, 𝜙1, 𝜙2} are functions of t and c is a constant. In particular, we focus on
integrals of the form

F(𝜙) = ∫
∞

−∞
f (t)𝜙(t)dt, (5.64)

where uppercase F is the functional of 𝜙 associated with lowercase function f under
the integral. Since the integration is performed over the independent variable t, the
functional F(𝜙) depends on the particular 𝜙 and not t, which is why 𝜙 appears explic-
itly as an argument of F(𝜙).

Definition: Locally Integrable Function 𝜙(t) is locally integrable on  if the fol-
lowing integral exists:

∫T
|𝜙(t)|dt < ∞, (5.65)

where T is any closed interval on the real line .



�

� �

�

GENERALIZED FUNCTIONS 225

Existence means that the integral is finite as mentioned earlier. Since T is a closed
interval [a, b] with a < b, this definition eliminates open and semi-open intervals of
the form (−∞,∞), (−∞, a], and [b,∞).

Example 5.11 It is clear that any continuous function is locally integrable. How-
ever, not all such functions are globally integrable. For example, the integral of the
constant function 𝜙(t) = 1 is finite for any closed interval, but clearly it is not finite
over + = [0,∞). Likewise, 𝜙(t) = exp(t)u(t) and 𝜙(t) = tu(t) are locally integrable
but not globally integrable.

The basic definition of a generalized function requires that function 𝜙(t) in (5.64)
be locally integrable and it must have compact support.

Definition: Compact Support Function 𝜙(t) has compact support T if it is 0 for
|t| > K for some finite K < ∞, and so T is a bounded set on t ∈ .

Example 5.12 The support of the exponential function exp(−t)u(t) is T = +, and
that of the sinusoidal function cos(𝜔ot) is the entire real line T = . Neither of these
functions has a compact support. The support of the rectangle function is the bounded
interval T = [−1∕2, 1∕2], and so it is compact.

Definition: Smooth Function Function f (t) is smooth if it is infinitely differen-
tiable on its support: dnf (t)∕dtn exists for all n ∈  .

Of course, this definition includes functions whose derivatives are 0 after some
value for n.

Example 5.13 The sinusoidal waveforms cos(𝜔ot) and sin(𝜔ot) are smooth,
whereas the unit step and the rectangle functions are not. The quadratic function
x(t) = t2 for t ∈  is an example of a smooth function whose derivatives are 0 for
n > 2.

Definition: Test Function A test function 𝜙(t) has the following two properties:
(i) compact support T and (ii) smooth on t ∈ T .

Example 5.14 The following truncated exponential is a test function:

𝜙(t) = exp(−𝛼2∕(𝛼2 − t2))I[−𝛼,𝛼](t). (5.66)

It has compact support T = [−𝛼, 𝛼], and its first derivative is

d
dt
𝜙(t) = − 2t

(𝛼2 − t2)2
exp(−𝛼2∕(𝛼2 − t2))I[−𝛼,𝛼](t). (5.67)
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Figure 5.15 Test function in (5.66) and its derivative in (5.67) of Example 5.14 with 𝛼 = 1.

These are plotted in Figure 5.15 for 𝛼 = 1. It is clear that this function is infinitely
differentiable on T . Other possible test functions are considered in Problem 5.18. The
following rectangular function is not infinitely differentiable:

f (t) =
{
𝛼, |t| ≤ 1∕2𝛼
0, |t| > 1∕2𝛼,

(5.68)

and so it is not a test function even though f (t) has compact support. We mention,
however, that it is possible to describe the derivatives of the rectangle function in
terms of generalized functions. For example, its first derivative is a pair of Dirac
delta functions:

f ′(t) = 𝛼𝛿(t + 1∕2) − 𝛼𝛿(t − 1∕2), (5.69)

which follows intuitively from the derivative of the unit step function u′(t) = 𝛿(t).

Let the set  consist of all test functions (smooth with compact support) that have
the following properties:

• Linearity:𝜙1(t), 𝜙2(t) ∈  =⇒ c1𝜙1(t) + c2𝜙2(t) ∈  for every {c1, c2} ∈ .

• Derivatives: 𝜙(t) ∈  =⇒ dn
𝜙(t)∕dtn ∈  for every n ∈  .

• Product: 𝜙(t) ∈  =⇒ f (t)𝜙(t) ∈  for smooth function f (t).
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It is not necessary that the test functions all have the same support T , but they
should all be compact. The set of test functions  is defined for some domain Ω, in
which case we could write (Ω) to be more precise. For example, the domain could
be Ω = n, Ω = , Ω = [0, 1], and so on. We generally use the real line Ω = , and
thus, we simply write  for the set of test functions.

For Ω = , the following operations on 𝜙(t) yield another function in :

• Translation: 𝜙(t) ∈  =⇒ 𝜙(t − to) ∈  for finite to.

• Time scale: 𝜙(t) ∈  =⇒ 𝜙(𝛼t) ∈  for finite 𝛼 ≠ 0.

• Product: 𝜙(t) ∈  =⇒ g(t)𝜙(t) ∈  for smooth function g(t).

The product rule of differentiation for the last property yields a function in :

d
dt

g(t)𝜙(t) = g(t) d
dt
𝜙(t) + 𝜙(t) d

dt
g(t). (5.70)

The first term on the right hand-side is a function in  because d𝜙(t)∕dt has compact
support, and so that term also has compact support and is infinitely differentiable.
Similarly, the second term on the right-hand side is in  because g(t) is infinitely
differentiable by assumption and, of course, its product with 𝜙(t) has compact
support.

With the previous definitions and properties, we now define a generalized
function.

Definition: Generalized Function The linear functional F(𝜙) on the set  of test
functions is a generalized function provided it is continuous, satisfying

lim
m→∞

F(𝜙m) = F
(
lim

m→∞
𝜙m

)
= F(𝜙), (5.71)

where {𝜙m} is any sequence of test functions such that limm→∞𝜙m = 𝜙. A generalized
function is also called a distribution, and the commonly used notation is

⟨ f , 𝜙⟩ ≜ ∫
∞

−∞
f (t)𝜙(t)dt, 𝜙(t) ∈ , (5.72)

where on the left-hand side, the variable of integration t is usually suppressed.

Equation (5.71) states that if a sequence of test functions {𝜙m} ∈  converges
to test function 𝜙 ∈ , then the functional is continuous if it converges to the real
number F(𝜙). It can be shown that this property holds for the integral in (5.64).

From these definitions, we find that generalized functions are defined relative to
a set of test functions and how their product behaves under an integral. Whereas the
support for an ordinary function consists of points on the real line, the “support” for
a generalized function consists of the test functions. As a result, for such “functions”
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like 𝛿(t), which are not well defined for points on , they can be defined in terms of
how they operate under an integral when multiplying smooth functions. In summary:

ordinary function: point t =⇒ function {t, f (t)}, (5.73)

generalized function: test function 𝜙(t) =⇒ functional {𝜙,F(𝜙)} ≜ ⟨ f , 𝜙⟩, (5.74)

where {t, f (t)} and {𝜙,F(𝜙)} are ordered pairs for a function and functional, respec-
tively, and ⟨ f , 𝜙⟩ means the integral in (5.72) with integrand f (t)𝜙(t).

We use the notation in (5.72) instead of uppercase letter F because it is more
convenient to manipulate as shown next. The uppercase function F(⋅) is used in the
subsequent chapters on Fourier and Laplace transforms, which also have the integral
form in (5.64). In those chapters, generalized functions are defined on different classes
of test functions, which do not have compact support but decrease to 0 sufficiently
fast as t → ±∞.

The left-hand side of (5.72) is a number for f (t) and a specific test function 𝜙(t) ∈
. For a different 𝜙(t), a different number ⟨ f , 𝜙⟩ is usually produced, and it is the set
of these numbers for all 𝜙(t) that describe the distribution of f (t).

Definition: Dual Space The dual space of , denoted by ′, is the set of all dis-
tributions defined on . It is a generalization of ordinary functions that includes both
regular and singular distributions.

(Of course, the reader should not confuse ′ with the ordinary derivative. This is the
standard notation for the dual space.)

Next, we provide some useful properties of generalized functions and then explain
the difference between regular distributions and singular distributions.

• Product: For smooth functions f (t) and g(t):

⟨ fg, 𝜙⟩ = ⟨ f , g𝜙⟩ = ⟨g, f𝜙⟩. (5.75)

Proof: These expressions follow because g(t)𝜙(t) ∈  and f (t)𝜙(t) ∈ :

⟨ fg, 𝜙⟩ = ∫
∞

−∞
[f (t)g(t)]𝜙(t)dt = ∫

∞

−∞
f (t)[g(t)𝜙(t)]dt = ⟨ f , g𝜙⟩

= ∫
∞

−∞
g(t)[f (t)𝜙(t)]dt = ⟨g, f𝜙⟩. (5.76)

• Derivative:
⟨ f ′, 𝜙⟩ = −⟨ f , 𝜙′⟩. (5.77)

Proof: This result is verified using integration by parts (see Appendix C):

∫
∞

−∞

df (t)
dt

𝜙(t)dt = f (t)𝜙(t)|∞−∞ − ∫
∞

−∞

d𝜙(t)
dt

f (t)dt

= 0 − ⟨ f , 𝜙′⟩. (5.78)
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Generalized functions

Regular generalized
functions

Singular generalized
functions

Locally integrable  Not locally integrable

Figure 5.16 Types of generalized functions. (The rectangles do not indicate the relative sizes
of the subsets.)

Since test functions have compact support, the first term on the right-hand side is
0 and the second term is the desired result. The derivative property is especially
useful because we can describe the derivative of nonfunctions like the Dirac
delta “function” by using the right-hand side and the fact that the test functions
are infinitely differentiable.

• High-order derivatives: The previous result is readily extended as follows:

⟨ f (n), 𝜙⟩ = (−1)n⟨ f , 𝜙(n)⟩, (5.79)

where the superscript (n) denotes the nth ordinary derivative.

When f (t) is a locally integrable function, ⟨ f , 𝜙⟩ is called a regular generalized
function. As mentioned earlier, the definition of a generalized function expands the
concept of a function to include nonfunctions like 𝛿(t). This expanded space of func-
tions is depicted in Figure 5.16 where the additional elements, which are not locally
integrable functions, are called singular generalized functions.

Example 5.15 The unit step function u(t) and the ramp function r(t) are locally
integrable, and so they are regular distributions. The Dirac delta function 𝛿(t) and
its derivatives 𝛿

(n)(t) are not locally integrable, and so they are singular distribu-
tions. Regular generalized functions include ordinary functions like exp(−t), as well
as functions such as exp(−t)u(t) whose derivative has a Dirac delta function at the
origin. The rectangle function is a regular distribution, but its derivative 𝛿(t + 2) −
𝛿(t − 2) is a singular distribution.

Example 5.16 For f (t) = 𝛿(t), we have from its sifting property:

⟨𝛿, 𝜙⟩ = ∫
∞

−∞
𝛿(t)𝜙(t)dt ≜ 𝜙(0), (5.80)

where the right-hand side gives the distribution consisting of all test functions eval-
uated at t = 0. Again, this integral and the notation 𝛿(t) are only symbolic because
obviously we cannot partition the t axis into subintervals and define a Riemann sum
that converges to 𝜙(0).
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From (5.75), we have

∫
∞

−∞
g(t)𝛿(t)𝜙(t)dt = ∫

∞

−∞
𝛿(t)[g(t)𝜙(t)]dt = g(0)𝜙(0), (5.81)

assuming that g(t) is continuous at t = 0. The right-hand side is the distribution for
the product g(t)𝛿(t). Observe also that

g(0)𝜙(0) = g(0)∫
∞

−∞
𝛿(t)𝜙(t)dt = ∫

∞

−∞
g(0)𝛿(t)𝜙(t)dt. (5.82)

Comparing the first integral in (5.81) and the second integral in (5.82), we find that

g(t)𝛿(t) = g(0)𝛿(t), (5.83)

which is the sampling property of the Dirac delta function. This last result shows
how the notation ⟨ f , 𝜙⟩ can be used to find expressions for such quantities as g(t)𝛿(t).
A similar expression is easily derived for g(t)𝛿(t − to) using the same approach (see
Problem 5.19).

Example 5.17 Consider again the unit step function u(t), which is a regular distri-
bution:

⟨u, 𝜙⟩ = ∫
∞

−∞
u(t)𝜙(t)dt = ∫

∞

0
𝜙(t)dt, (5.84)

where u(t) determines the lower limit of integration. The right-hand side gives the
distribution consisting of the area of every test function defined on + (since the test
functions have compact support, there is actually a finite upper limit of integration).
From the generalized derivative property:

∫
∞

−∞

du(t)
dt

𝜙(t)dt = −∫
∞

−∞
u(t)d𝜙(t)

dt
dt = −∫

∞

0

d𝜙(t)
dt

dt

= −∫
∞

0
d𝜙(t) = −𝜙(t)|∞0 = 𝜙(0). (5.85)

The last result follows because 𝜙(t) has a compact support: lim
t→∞

𝜙(t) = 0. Since 𝜙(0)
equals the expression in (5.80), we find from the left-hand side of (5.85) that the
derivative of the unit step function is the Dirac delta function:

∫
∞

−∞

du(t)
dt

𝜙(t)dt = 𝜙(0) =⇒ d
dt

u(t) = 𝛿(t). (5.86)

This example shows that the derivative of a regular generalized function can be a
singular generalized function. It also illustrates how such operations as the derivative
of a function can be extended to nonfunctions by using test functions under integrals.
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TABLE 5.1 Basic Distributions

Generalized Function f (t) ⟨ f , 𝜙⟩ Type

Dirac 𝛿(t) 𝜙(0) Singular

Unit doublet 𝛿′(t) −𝜙′(0) Singular

Unit triplet 𝛿′′(t) 𝜙
′′(0) Singular

Unit step u(t) ∫ ∞
0 𝜙(t)dt Regular

Ramp r(t) ∫ ∞
0 t𝜙(t)dt Regular

Absolute value |t| ∫ ∞
0 t𝜙(t)dt − ∫ 0

−∞ t𝜙(t)dt Regular

Signum sgn(t) ∫ ∞
0 𝜙(t)dt − ∫ 0

−∞ 𝜙(t)dt Regular

TABLE 5.2 Properties of Generalized Functions at 𝛀 = 

Property Distributions

Equality ⟨ f , 𝜙⟩ = ⟨g, 𝜙⟩ =⇒ f = g

Linearity ⟨f + g, 𝜙⟩ = ⟨ f , 𝜙⟩ + ⟨g, 𝜙⟩

Product ⟨gf , 𝜙⟩ = ⟨ f , g𝜙⟩ = ⟨g, f𝜙⟩

Time shift ⟨f (t − 𝜏), 𝜙⟩ = ⟨ f , 𝜙(t + 𝜏)⟩
Time scale ⟨f (𝛼t), 𝜙⟩ = (1∕|𝛼|)⟨ f , 𝜙(t∕𝛼)⟩
Derivatives ⟨ f (n), 𝜙⟩ = (−1)n⟨ f , 𝜙(n)⟩

Even ⟨f (−t), 𝜙(t)⟩ = ⟨f (t), 𝜙(−t)⟩ = ⟨f (t), 𝜙(t)⟩
Odd ⟨f (−t), 𝜙(t)⟩ = ⟨f (t), 𝜙(−t)⟩ = −⟨f (t), 𝜙(t)⟩

Some basic distributions are summarized in Table 5.1. The derivative of the ramp
function is the unit step function, and the derivative of the absolute value function
is the signum function, all of which are regular distributions. The derivative of the
signum function is a singular distribution. These are covered in some of the problems
at the end of this chapter. Various properties of generalized functions are summarized
in Table 5.2 where g(t) is a smooth function and 𝛼 is nonzero.

The utility of the theory for generalized functions is evident from the table of
properties, where we find that an operation on function f (t) is “transferred” to the test
function, which is a smooth function with compact support. For example, the general
derivative property is ⟨ f (n), 𝜙⟩ = (−1)n⟨ f , 𝜙(n)⟩, which has the derivative 𝜙

(n)(t) on
the right-hand side. It may be that f (n)(t) is only symbolic, as is the case for 𝛿′(t), but
the right-hand side is well defined because 𝜙(t) is infinitely differentiable.

It is straightforward to extend the definition of a generalized function to complex
numbers Ω = . This domain for the test functions is needed when generalized func-
tions are encountered in subsequent chapters. For the Fourier transform in Chapter 8,
generalized functions are called tempered distributions based on a different class of
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test functions. Similarly, another class of test functions is assumed for the Laplace
transform in Chapter 7.

Example 5.18 Consider the quadratic function f (t) = t2u(t) whose derivative we
can write using the product rule:

d
dt

f (t) = u(t) d
dt

t2 + t2 d
dt

u(t)

= 2tu(t) + t2
𝛿(t) = 2tu(t), (5.87)

where the sampling property of the Dirac delta function has been used to drop t2𝛿(t).
The same result is derived using the theory of generalized functions and the derivative
property in Table 5.2:

⟨dt2u(t)∕dt, 𝜙⟩ = −⟨t2u(t), d𝜙(t)∕dt⟩ = −∫
∞

0
t2 d𝜙(t)

dt
dt, (5.88)

where the unit step function gives the lower limit of integration. Integration by parts
yields

− ∫
∞

0
t2 d𝜙(t)

dt
dt = −t2

𝜙(t)|∞t=0 + ∫
∞

0
2t𝜙(t)dt. (5.89)

The first term on the right-hand side is 0 because 𝜙(t) has compact support, and the
second term is the distribution ⟨2tu(t), 𝜙⟩ of the ramp function. Thus, from the equal-
ity property of distributions in Table 5.2:

⟨dt2u(t)∕dt, 𝜙⟩ = ⟨2tu(t), 𝜙⟩ =⇒ d
dt

t2u(t) = 2tu(t). (5.90)

Example 5.19 Returning to the exponential function in Example 5.10, we find its
derivative using the notation for generalized functions. From the generalized deriva-
tive property:

⟨d exp(−𝛼t)u(t)∕dt, 𝜙⟩ = −∫
∞

0
exp(−𝛼t)d𝜙(t)

dt
dt

= − exp(−𝛼t)𝜙(t)|∞t=0 − 𝛼 ∫
∞

0
exp(−t)𝜙(t)dt

= 𝜙(0) − 𝛼⟨exp(−t)u(t), 𝜙⟩. (5.91)

Thus,
d
dt

exp(−𝛼t)u(t) = 𝛿(t) − 𝛼 exp(−𝛼t)u(t), (5.92)

which is the same result as in (5.62).
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TABLE 5.3 Distribution and Test Function Notation

Test Functions {𝜙(t)} Property Dual Space Application

 compact support 𝜙(t) = 0 beyond |t| > K ′ Conventional
 exponential decay | exp(𝛼t)dn

𝜙(t)∕dtn| ≤ c  ′
⊂ ′ Laplace transform

 rapid decay |tpdn
𝜙(t)∕dtn| ≤ cn,p  ′

⊂ ′ Fourier transform

The product of two singular generalized functions is not defined. For example,
from the multiplication property, we might be tempted to write ⟨f1f2, 𝜙⟩ = ⟨f1, f2𝜙⟩
where f1(t) and f2(t) are singular functions. However, the product f2(t)𝜙(t) is no
longer a test function because it may not be smooth even though it still has compact
support. This problem does not occur with g(t)𝜙(t) for any smooth function g(t) as
given in Table 5.2.

Finally, we mention again that distributions can be defined for different types of
test functions as summarized in Table 5.3. In this chapter, we focused on test func-
tions with compact support, but it turns out that this is too restrictive for the Laplace
transform and the Fourier transform covered later. In all three cases, {𝜙(t)} must be
smooth; only the support changes as indicated in the table. The test functions in 
are defined on the entire real line , but these functions and their derivatives must
decay to 0 faster than exponential functions for every 𝛼 ∈ , c > 0, and n ∈ +.
Similarly, the test functions in  are defined on , but these functions and their
derivatives must decay to 0 faster than the reciprocal of polynomials; there must be
some finite cn,p for every n, p ∈ +. Since the space of test functions for these two
cases has been expanded from the conventional set  with compact support, the dual
space of each is a subset of ′ as indicated in the table and discussed in Chapters 7
and 8.

5.9 UNIT DOUBLET

In order to discuss the derivative of the Dirac delta function, we first use the limit
of a sequence of triangle functions to represent 𝛿(t). This approach is similar to the
sequence of rectangle functions used previously, except that the triangle function is
smoother. The standard triangle function has unit area:

tri(t) = (1 − |t|)I[−1,1](t). (5.93)

Scaling the argument, the Dirac delta function is obtained as the following limit:

𝛿(t) = lim
a→0

(1∕a)tri(t∕a). (5.94)

When a is increased, the width of the triangle decreases and its height increases while
maintaining unit area. Examples are shown in Figure 5.17.
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Figure 5.17 Triangle functions approaching 𝛿(t) in the limit.

The derivative of (5.94) is a pair of rectangle functions:

𝛿
′(t) = lim

a→0
[(1∕a2)rect(t∕a + 1∕2) − (1∕a2)rect(t∕a − 1∕2)], (5.95)

which are shown in Figure 5.18 for the three values of a used in Figure 5.17. These
rectangle functions do not have unit area. The area of each rectangle approaches infin-
ity because their width is a, but the scale factor is 1∕a2 (whereas 1∕a is used in (5.94)
for the limit that yields 𝛿(t)). However, although the area of each rectangle increases
as a → 0, the overall area of the function is 0 because the rectangles have opposite
signs about the origin. The symbol used for the unit doublet 𝛿′(t) has two arrows with
opposite directions as depicted in Figure 5.19 for

x(t) = 𝛿
′(t) − 2𝛿′(t − 1) + 2.5𝛿′(t + 2), (5.96)

which is the derivative of (5.52). The upward arrow is located “just to the left” of
the time instant defined by the argument, and the downward arrow is located “just
to the right.” Recall that scaled delta functions are depicted with height 𝛼 given by
their areas. We likewise vary the height of the arrows representing the doublet to
indicate the scale factor 𝛼, but the height does not represent the area (which is infinite
as mentioned earlier). Even though the overall area is 0, we must keep track of any
factor that scales 𝛿

′(t). The two arrows of the doublet are coupled; they cannot be
separated into two delta-like functions. Also note that when a doublet is preceded by
a minus sign, the two arrows are interchanged as shown in Figure 5.19 for−2𝛿′(t − 1).
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Figure 5.18 Derivatives of the triangle functions in Figure 5.17.
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δ(t) = u0(t) δ′(t) = u1(t)

r(t) = u−2(t) u(t) = u−1(t)

1

1 1
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Figure 5.20 The ramp function and its derivatives. (a) Ramp r(t). (b) Unit step
u(t) = dr(t)∕dt. (c) Dirac delta 𝛿(t) = d2r(t)∕dt2. (d) Unit doublet 𝛿′(t) = dr3(t)∕dt3.

Like the Dirac delta function, the unit doublet 𝛿′(t) is a singular generalized function
that is properly defined by its behavior under an integral.

There is a compact notation for various derivatives of the Dirac delta function. For
its first derivative:

u1(t) ≜ 𝛿
′(t) (5.97)

is often used for the unit doublet. By varying the subscript, we have the following
related notation:

u0(t) ≜ 𝛿(t), u−1(t) ≜ u(t), u2(t) = 𝛿
′′(t), (5.98)

and so on for the nth derivative. The second derivative of 𝛿(t) is called the unit
triplet. The ramp function and its derivatives using this notation are summarized in
Figure 5.20.

Next, we consider the derivative of 𝛿(t) using the properties of generalized func-
tions. Observe that

⟨𝛿′, 𝜙⟩ = ∫
∞

−∞
𝛿
′(t)𝜙(t)dt = −∫

∞

−∞
𝛿(t)𝜙′(t)dt = −𝜙′(0), (5.99)

where in the second integral, the sifting property of 𝛿(t) has been used at t = 0. Thus,
the first integral is the sifting property of 𝛿′(t) at t = 0. Suppose we multiply the unit
doublet 𝛿′(t) by the smooth function f (t). Integration by parts yields

⟨𝛿′f , 𝜙⟩ = ∫
∞

−∞
𝛿
′(t)f (t)𝜙(t)dt = 𝛿(t)f (t)𝜙(t)|∞−∞ − ∫

∞

−∞
𝛿(t)

d[f (t)𝜙(t)]
dt

dt. (5.100)
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The first term on the right-hand side is 0 because 𝜙(t) has compact support, and the
product rule applied to the second term gives

⟨𝛿′f , 𝜙⟩ = −∫
∞

−∞
𝛿(t)

[

f (t)d𝜙(t)
dt

+ 𝜙(t)
df (t)

dt

]

dt

= −f (0)𝜙′(0) − 𝜙(0)f ′(0), (5.101)

where the last expression is due to the sifting property of 𝛿(t). Substituting the inte-
grals in (5.80) and (5.99) yields

⟨𝛿′f , 𝜙⟩ = f (0)∫
∞

−∞
𝛿
′(t)𝜙(t)dt − f ′(0)∫

∞

−∞
𝛿(t)𝜙(t)dt

= ∫
∞

−∞
[f (0)𝛿′(t) − f ′(0)𝛿(t)]𝜙(t)dt, (5.102)

from which we have the sampling property of 𝛿′(t):

𝛿
′(t)f (t) = f (0)𝛿′(t) − f ′(0)𝛿(t). (5.103)

Additional properties of the unit doublet are summarized next.

• Area:

∫
∞

−∞
𝛿
′(t)dt = 0. (5.104)

Proof: This result can be inferred from the discussion following (5.95).
A derivation based on other properties of the doublet is considered in
Problem 5.28.

• Sifting property:

∫
∞

−∞
𝛿
′(t − 𝜏)f (𝜏)d𝜏 = f ′(t), (5.105)

provided that f (t) is continuous at t. Symbolically we can write this convo-
lution expression as f ′(t) = u1(t) ∗ f (t) where u1(t) is the alternative symbol
mentioned earlier for the unit doublet. For the nth derivative of the Dirac delta
function, it can be shown that this sifting property extends as

f (n)(t) = un(t) ∗ f (t) = u1(t) ∗ · · · ∗ u1(t)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

n times

∗ f (t). (5.106)

Proof: Using integration by parts, (5.105) is verified as follows:

∫
∞

−∞
𝛿
′(t − 𝜏)f (𝜏)d𝜏 = −𝛿(𝜏)f (t − 𝜏)|∞−∞ + ∫

∞

−∞
𝛿(t − 𝜏)f ′(𝜏)d𝜏 = f ′(t).

(5.107)
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The first term in the middle equation is 0 because 𝛿(t) is 0 for 𝜏 ≠ 0, and the
last result follows from the sifting property of the Dirac delta function. Thus,
𝛿
′(t) ∗ f (t) = 𝛿(t) ∗ f ′(t) = f ′(t). Note also that for t = 0:

∫
∞

−∞
𝛿
′(−𝜏)f (𝜏)d𝜏 = f ′(0), (5.108)

and since 𝛿
′(t) is an odd function, we have

∫
∞

−∞
𝛿
′(𝜏)f (𝜏)d𝜏 = −f ′(0). (5.109)

The previous results can also be derived using the generalized function approach
(see Problem 5.27).

• Product with t:
t𝛿′(t) = −𝛿(t). (5.110)

Proof: This property follows immediately from (5.103) with f (0) = 0 and
f ′(0) = 1. It is also verified by using the rectangle functions in (5.95) and the
fact that t is an odd function. Figure 5.21 shows that the product of the rectangle
functions and t are truncated ramp functions with negative amplitudes. Since
the rectangle functions are 0 beyond the interval [−a, a], we find that the ramps
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Figure 5.21 Multiplication of rectangle functions in Figure 5.18 with t.
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Figure 5.22 Multiplication of rectangle functions in Figure 5.18 with t2.

are truncated to have minimum value −1∕a. Thus, the product is actually a
truncated absolute value function:

(t∕a2)rect(t∕a + 1∕2) − (t∕a2)rect(t∕a − 1∕2) = −|t∕a2|I[−a,a](t), (5.111)

which has area −1 for every a. As a → 0, the height approaches minus infinity,
and the width specified by the indicator function approaches 0, yielding −𝛿(t).

• Product with t2:
t2
𝛿
′(t) = 0. (5.112)

Proof: This property also follows from (5.103) with f (0) = f ′(0) = 0. It is ver-
ified by multiplying the rectangle functions in (5.95) by t2 and taking the limit
as a → 0. This is depicted in Figure 5.22 where we see that as a is decreased
toward 0, the area of each component of the product decreases. This is due to the
fact that the magnitude of the product is always fixed at 1 because the exponent
of t matches that of a:

(t2∕a2)rect(t∕a + 1∕2) − (t2∕a2)rect(t∕a − 1∕2) = (t∕a)2I[−a,0](t) − (t∕a)2I[0,a].
(5.113)

Since the width of the function decreases according to the indicator functions,
the product approaches 0 as a → 0.

A summary of several properties of the Dirac delta function and its first and second
derivatives is provided in Table 5.4.
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TABLE 5.4 Properties of the Dirac Delta Function and Its Derivatives

Property Expression

𝛿(t) symmetry 𝛿(t) = 𝛿(−t) (even)

𝛿(t) sifting ∫ ∞
−∞ 𝛿(t − to)f (t)dt = f (to)

𝛿(t) convolution ∫ ∞
−∞ 𝛿(to − t)f (t)dt = f (to)

𝛿(t) product 𝛿(t − to)f (t) = 𝛿(t − to)f (to) (sampling)

𝛿(t) area ∫ ∞
−∞ 𝛿(t − to)dt = 1 (sifting with f (t) = 1)

𝛿(t) moment ∫ ∞
−∞ t𝛿(t)dt = 0 (sifting with f (t) = t and to = 0)

𝛿
′(t) symmetry 𝛿

′(t) = −𝛿′(−t) (odd)

𝛿
′(t) sifting ∫ ∞

−∞ 𝛿
′(t − to)f (t)dt = −f ′(to)

𝛿
′(t) convolution ∫ ∞

−∞ 𝛿
′(to − t)f (t)dt = f ′(to)

𝛿
′(t) product 𝛿

′(t − to)f (t) = 𝛿
′(t − to)f (to) − f ′(to)𝛿(t − to) (sampling)

𝛿
′(t) area ∫ ∞

−∞ 𝛿
′(t − to)dt = 0 (sifting with f (t) = 1)

𝛿
′(t) moment ∫ ∞

−∞ t𝛿′(t)dt = −1 (sifting with f (t) = t and to = 0)

𝛿
′(t) product 1 t𝛿′(t) = −𝛿(t) (sampling with f (t) = t and to = 0)

𝛿
′(t) product 2 t2

𝛿
′(t) = 0 (sampling with f (t) = t2 and to = 0)

𝛿
(2)(t) symmetry 𝛿

(2)(t) = 𝛿
(2)(−t) (even)

𝛿
(2)(t) sifting ∫ ∞

−∞ 𝛿
(2)(t − to)f (t)dt = f (2)(to)

𝛿
(2)(t) convolution ∫ ∞

−∞ 𝛿
(2)(to − t)f (t)dt = f (2)(to)

𝛿
(2)(t) product 𝛿

(2)(t)f (t) = f (0)𝛿(2)(t) − 2f ′(0)𝛿′(t) + f (2)(0)𝛿(t) (sampling)

𝛿
(2)(t) area ∫ ∞

−∞ 𝛿
(2)(t − to)dt = 0 (sifting with f (t) = 1)

𝛿
(2)(t) moment ∫ ∞

−∞ t𝛿(2)(t)dt = 0 (sifting with f (t) = t and to = 0)

𝛿
(2)(t) product 1 t𝛿(2)(t) = −2𝛿′(t) (sampling with f (t) = t and to = 0)

𝛿
(2)(t) product 2 t2

𝛿
(2)(t) = 2𝛿(t) (sampling with f (t) = t2 and to = 0)

5.10 COMPLEX FUNCTIONS AND SINGULARITIES

In this section, we consider functions of the complex variable z = x + jy and singu-
larities of a function (Brown and Churchill, 2009), which will be useful when the
Laplace transform is covered in Chapter 7.

Definition: Analytic Function A function f (z) of complex variable z is analytic at
zo if it is finite and infinitely differentiable at zo. This means f (zo) can be represented
by a Laurent series expansion with terms of the form (z − zo)n for n ∈ .

This definition is consistent with our notion of a continuous function that has no
discontinuities or points where f (z) or its derivatives are not defined. Analytic func-
tions that have no singularities are also called well-behaved and smooth.
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Definition: Entire Function Function f (z) that is analytic everywhere on the finite
complex x–y plane is called an entire function.

The finite complex plane  consists of all z = x + jy such that |x| < ∞ and
|y| < ∞.

Example 5.20 The following are entire analytic functions:

f (z) = exp(z), f (z) = z + z2
, f (z) = sin(z). (5.114)

It is clear from the definition that all polynomials of z are analytic functions. The
Laurent series for exp(z) is

exp(z) =
∞∑

n=0

zn∕n!, (5.115)

which is identical to the power series expansion of real-valued exp(x) with x replaced
by z. The Laurent series is discussed further in Appendix E. Likewise for sin(z):

sin(z) =
∞∑

n=0

(−1)nz2n+1∕(2n + 1)!, (5.116)

which can also be written as Euler’s inverse formula with complex z:

sin(z) = (1∕2j)[exp(jz) − exp(−jz)]. (5.117)

Note that unlike (5.115), j appears in the argument of the exponential functions in
this expression.

The function f (t) = 1∕z is analytic for all z except at z = 0, which is a singularity.

Definition: Singularity A singularity of function f (z) is a value of z where the
function or its derivatives are not defined. This value is also called a singular point.
A singular point zo is isolated if there exists a neighborhood 0 < |z − zo| < 𝜖 for some
𝜖 > 0 where the function is analytic.

For a singularity at z = zo, the Laurent series for the function about that point is

f (z) =
∞∑

n=−∞
cn(z − zo)n =

∞∑

n=0

cn(z − zo)n +
∞∑

m=1

c−m

(z − zo)m
, (5.118)

where we have split the first summation into two sums and then changed variables to
n → −m in the last sum to explicitly show the terms in the denominator. If the last
sum over m has only a finite number of nonzero {c−m}, then the singularity associated
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with the kth term c−k∕(z − zo)k is called a pole of order k at z = zo. It is called a simple
pole if k = 1. Examples of functions with poles include

f (z) = 1∕z, f (z) = 1∕(z + 1), f (z) = 1∕z(z − 1), (5.119)

which have singularities at zo = 0, zo = −1, and zo = {0, 1}, respectively. Poles are
discussed further in Chapter 7 where ODEs are solved using the Laplace transform.

If the last sum in (5.118) has an infinite number of terms, then the singularity
at z = zo is called an essential singular point. Examples of functions with essential
singular points include

f (z) = sin(1∕z), f (z) = exp(1∕z). (5.120)

If the last sum in (5.118) has no terms, then the singularity is removable, which means
the function is actually analytic at z = zo. Thus, we can write

lim
z→zo

(z − zo)f (z) = 0, (5.121)

which obviously follows from (5.118) when the last sum is 0. Examples include

f (z) = sin(z)∕z, f (z) = [1 − cos(z)]∕z. (5.122)

L’Hôpital’s rule applied to the first function evaluated at 0 yields

d sin(z)∕dz

dz∕dz

|
|
|
|z=0

= cos(z)|z=0 = 1, (5.123)

and for the second function:

d[1 − cos(z)]∕dz

dz∕dz

|
|
|
|z=0

= sin(z)|z=0 = 0. (5.124)

Plots of the three basic types of singularities are shown in Figure 5.23. In Chapter 7,
we will again see functions of a complex variable that have poles on the complex
plane.

5.11 CAUCHY PRINCIPAL VALUE

When performing integrations like those of the Fourier and Laplace transforms cov-
ered later, it is important that the integrals be properly defined for functions with
singularities. For example, f (t) = 1∕t is not defined at t = 0, in which case the domain
(0,∞) is often assumed. However, a problem arises if we attempt to integrate this
function as is done in (5.72) for a distribution:

⟨1∕t, 𝜙⟩ = ∫
∞

−∞
(1∕t)𝜙(t)dt. (5.125)
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Figure 5.23 Functions with singularities on the real axis at z = 0. (a) Simple pole: f (z) =
1∕z. (b) Essential singularity: f (z) = exp(1∕z). (c) Removable pole at z = 0 with f (0) = 0:
f (z) = [1 − cos(z)]∕z.
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This integral is not well defined, and so we need to place some restriction on how it
is performed. Suppose the integral is evaluated as follows:

⟨1∕t, 𝜙⟩ = lim
𝜖→0

[

∫
−𝜖

−∞
(1∕t)𝜙(t)dt + ∫

∞

𝜖

(1∕t)𝜙(t)dt

]

. (5.126)

It turns out that a different result is obtained using

⟨1∕t, 𝜙⟩ = lim
𝜖→0

[

∫
−𝜖

−∞
(1∕t)𝜙(t)dt + ∫

∞

2𝜖
(1∕t)𝜙(t)dt

]

, (5.127)

where 2𝜖 appears in the second integral. There is actually an infinity of results depend-
ing on how the integral is calculated near the singularity at t = 0. In order to handle
this problem, the Cauchy principal value (CPV) is used.

Definition: Cauchy Principal Value The CPV for the integral of function f (t)
with singularity at to is

lim
𝜖→0

[

∫
to−𝜖

−∞
f (𝜏)d𝜏 + ∫

∞

to+𝜖
f (𝜏)d𝜏

]

, (5.128)

where both limits proceed at the same rate toward to as 𝜖 is varied.

This definition is symmetric about to, unlike the form in (5.127) where the limits
include 𝜖 and 2𝜖. In order to be reminded that caution should be exercised when
integrating functions with singularities, the notation(f (t)) is used, indicating that the
CPV is computed for an integral. Thus, we would write ⟨(1∕t), 𝜙⟩ on the left-hand
side of (5.126). Other examples include (1∕(t − to)), (sgn(t)∕t2), and so on. Some
examples are plotted in Figure 5.24. The CPVs for ∫ ∞

−∞(1∕t)dt and ∫ ∞
−∞(1∕t3)dt are

both 0, whereas 1∕t2 is not integrable at t = 0.

Example 5.21 Consider integrating (1∕t3) on the interval [−1, 1]:

∫
−𝜖

−1
(1∕t3)dt + ∫

1

𝜖

(1∕t3)dt = (−1∕2t2)||
|

−𝜖

−1
+ (−1∕2t2)||

|

1

𝜖

= −1∕2𝜖2 + 1∕2 − 1∕2 + 1∕2𝜖2 = 0. (5.129)

Although the definition in (5.128) is symmetric about to, it may turn out that the
function is one-sided such that only one term is included. For example, (u(t)∕

√
t)

is 0 for t < 0 and has a singularity at t = 0. Applying (5.128) for t ∈ [0, 1∕4] yields

lim
𝜖→0∫

1∕4

𝜖

(1∕
√

t)dt = lim
𝜖→0

2
√

t||
|

1∕4

𝜖

= 1. (5.130)
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Figure 5.24 Functions with a singularity at t = 0.

5.12 EVEN AND ODD FUNCTIONS

The following properties of functions are useful in many applications, and in par-
ticular for the Fourier series representation of a signal that is presented later in this
chapter.

Definition: Even and Odd Functions Even function fE(t) and odd function fO(t)
have the following identities about t = 0:

fE(t) = fE(−t), fO(t) = −fO(−t). (5.131)

An even function is symmetric about t = 0, and an odd function is antisymmetric.

Any ordinary function can be decomposed into the sum of an even function and
an odd function:

f (t) = fE(t) + fO(t), (5.132)

where

fE(t) ≜ [f (t) + f (−t)]∕2, fO(t) ≜ [f (t) − f (−t)]∕2. (5.133)

The odd component is necessarily 0 at t = 0, and by definition, it has zero area:

∫
∞

−∞
fO(t)dt = 0. (5.134)
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TABLE 5.5 Properties of Even and Odd Functions

Function Property

fE(t)fO(t) Odd

f1E(t)f2E(t) Even

f1O(t)f2O(t) Even

fE(t) + fO(t) Neither

f1E(t) + f2E(t) Even

f1O(t) + f2O(t) Odd

dfE(t)∕dt Odd

dfO(t)∕dt Even

This is not the case for the even component:

∫
∞

−∞
fE(t)dt ≜ AE ≠ 0. (5.135)

As a result, the even component can be decomposed further as the sum of an even
component f̃E(t) ≜ fE(t) − AE that is shifted on the vertical axis so that it has zero
area and the constant AE, yielding

f (t) = AE + f̃E(t) + fO(t), (5.136)

where AE is the DC component of f (t). The Fourier series decomposition shown later
for a periodic signals has a similar form. Several properties of even and odd functions
are summarized in Table 5.5.

Example 5.22 An example of an even/odd decomposition is shown in Figure 5.25
for the following piecewise linear function:

f (t) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

0, t ≤ −3
−t, −3 < t ≤ 0
0, 0 < t ≤ 2

−3t + 6, 2 < t ≤ 3
0, t > 3,

(5.137)

whose mirror image about the vertical axis is

f (−t) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

0, t ≤ −3
3t + 6, −3 < t ≤ −2

0, −2 < t ≤ 0
t, 0 < t ≤ 3
0, t > 3.

(5.138)
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Figure 5.25 Example even and odd parts of a piecewise linear function. (a) f (t). (b) f (−t).
(c) fE(t). (d) fO(t). (e) f̃E(t). (f) AE.

The even part of the function is derived by considering four nonzero intervals for t:

fE(t) = [f (t) + f (−t)]∕2 =

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

0, t ≤ −3
t + 3, −3 < t ≤ −2
−t∕2, −2 < t ≤ 0
t∕2, 0 < t ≤ 2

−t + 3, 2 < t ≤ 3
0, t > 3,

(5.139)
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and likewise for the odd part:

fO(t) = [f (t) − f (−t)]∕2 =

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

0, t ≤ −3
−2t − 3, −3 < t ≤ −2
−t∕2, −2 < t ≤ 0
−t∕2, 0 < t ≤ 2

−2t + 3, 2 < t ≤ 3
0, t > 3.

(5.140)

The line for fO(t) is continuous on t ∈ [−2, 2] with value −t∕2 on the two inner
regions for t. The area of the even component is

AE = 2∫
2

0
(t∕2)dt + 2∫

3

2
(−t + 3)dt = 2t|20 + [(−t2∕2) + 3t]|32 = 1∕2. (5.141)

Thus, fE(t) is decomposed as f̃E(t) + AE where f̃E(t) is shifted downward by 1∕2, as
illustrated in Figure 5.25(e).

Example 5.23 In this example, we illustrate techniques for proving some properties
in Table 5.5. For the first property, define the product function

g(t) ≜ fE(t)fO(t) = −fE(−t)fO(−t) = −g(−t), (5.142)

where the definitions of an even and odd function have been used to generate the third
expression, which follows because

g(−t) = fE(−t)fO(−t). (5.143)

For the derivative property, define

h(t) ≜ d
dt

fE(t) =
d
dt

fE(−t) = d
d𝜏

fE(𝜏)
d𝜏
dt

, (5.144)

where we have used the fact that fE(t) is even, defined 𝜏 ≜ −t, and applied the product
rule for differentiation. The last derivative is d𝜏∕dt = −1, and substituting fE(𝜏) =
fE(−𝜏) yields

h(t) = − d
d𝜏

fE(−𝜏) = −h(𝜏) = −h(−t), (5.145)

demonstrating that the derivative of an even function is odd.

5.13 CORRELATION FUNCTIONS

The cross-correlation function of two signals is a useful measure of their similarity
and is widely used in signal processing and communications.
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Definition: Cross-Correlation Function The cross-correlation function of f (t)
and g(t) is

cfg(𝜏) = f (t) ⋆ g(t) ≜ ∫
∞

−∞
f (𝜏 + t)g(𝜏)d𝜏 = ∫

∞

−∞
g(𝜏 − t)f (𝜏)d𝜏, (5.146)

where in general 𝜏 ∈ .

This is not a symmetric operation: f (t) ⋆ g(t) ≠ g(t) ⋆ f (t); instead

f (t) ⋆ g(t) = g(−t) ⋆ f (t). (5.147)

The autocorrelation function is obtained when g(t) = f (t), which is a symmetric
(even) function: f (t) ⋆ f (t) = cff (𝜏).

Example 5.24 The cross-correlation function of two one-sided exponential
functions f (t) = exp(−t∕𝜏1)u(t) and g(t) = exp(−t∕𝜏2)u(t) with different time
constants is

cfg(𝜏) = ∫
∞

−∞
exp(−(𝜏 + t)∕𝜏1)u(𝜏 + t) exp(−t∕𝜏2)u(t)dt

= exp(−𝜏∕𝜏1)∫
∞

max(0,−𝜏)
exp(−t(𝜏1 + 𝜏2)∕𝜏1𝜏2)dt, (5.148)

where the lower limit of integration has been determined from u(t) and u(𝜏 + t) = 1
for 𝜏 + t > 0 =⇒ t ≥ −𝜏. Thus,

cfg(𝜏) =
𝜏1𝜏2

𝜏1 + 𝜏2
exp(−𝜏∕𝜏1) exp(−max(0,−𝜏)(𝜏1 + 𝜏2)∕𝜏1𝜏2). (5.149)

The cross-correlation function cgf (𝜏) is derived from this last expression by inter-
changing 𝜏1 and 𝜏2, which requires only that 𝜏1 be changed to 𝜏2 in the first exponen-
tial. The autocorrelation function is derived by setting 𝜏1 = 𝜏2 ≜ 𝜏o so that f (t) = g(t):

cff (𝜏) = (𝜏o∕2) exp(−𝜏∕𝜏o) exp(−2max(0,−𝜏)∕𝜏o)

= (𝜏o∕2) exp(−|𝜏|∕𝜏o), (5.150)

which has simplified by considering the two cases 𝜏 ≥ 0 and 𝜏 ≤ 0. These corre-
lation functions are shown in Figure 5.26 for 𝜏1 = 1, 𝜏2 = 2, and 𝜏o = 2. Observe
that with increasing 𝜏, all three correlation functions decrease, which is intuitive
because the exponential functions become less similar with greater relative shifts in
time. The autocorrelation function is always symmetric (the dotted line), whereas the
cross-correlation functions are not.
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Figure 5.26 Correlation functions in Example 5.24

Definition: Orthogonal Functions Two functions f (t) and g(t) are orthogonal if

∫
∞

−∞
f (t)g(t)dt = 0, (5.151)

which is equivalent to cfg(0) = cgf (0) = 0.

Example 5.25 Sine and cosine functions are orthogonal when integrated over an
integer multiple of 𝜋:

∫
𝜋

0
sin(t) cos(t)dt = (1∕2)∫

𝜋

0
[sin(2t) + sin(0)]dt

= −(1∕4) cos(2t)|𝜋0 = 0. (5.152)

From Table 5.5, we know that the product of an even function and an odd function
is odd. The area of an odd function is zero provided we integrate over the whole
function, or in the case of a periodic function, over one period. If sine and cosine are
shifted relative to each other, the integral is nonzero:

∫
2𝜋

0
sin(t + 𝜏) cos(t)dt = (1∕2)∫

2𝜋

0
[sin(2t + 𝜏) + sin(𝜏)]dt

= −(1∕4) cos(2t + 𝜏)|2𝜋0 + 𝜋 sin(𝜏)

= −(1∕4)[cos(2t) cos(𝜏)|2𝜋0 − sin(2t) sin(𝜏)|2𝜋0 ] + 𝜋 sin(𝜏).

(5.153)
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The first two terms in the last expression are 0, and the cross-correlation function is

∫
2𝜋

0
sin(t + 𝜏) cos(t)dt = 𝜋 sin(𝜏), (5.154)

which is 0 when 𝜏 = n𝜋 for n ∈ . The waveforms have a maximum positive correla-
tion of 𝜋 for 𝜏 = 𝜋∕2 ± 2𝜋n with n ∈ , as expected because the periodic waveforms
are exactly aligned for such shifts, and a maximum negative correlation of −𝜋 for
𝜏 = −𝜋∕2 ± 2𝜋n with n ∈ .

5.14 FOURIER SERIES

Let f (t) be a periodic function with period To such that the shape of the waveform
repeats every To seconds. A basic example is the sinusoid

f (t) = sin(2𝜋fot), t ∈ , (5.155)

where fo = 1∕To is ordinary frequency (Hz) and 𝜔o = 2𝜋fo = 2𝜋∕To is angular fre-
quency (rad/s). It is straightforward to show using a trigonometric identity that this
function repeats for integer multiples of To:

sin(2𝜋fo(t + nTo)) = sin(2𝜋fot) cos(2𝜋fonTo) + cos(2𝜋fot) sin(2𝜋fonTo)

= sin(2𝜋fot), (5.156)

because foTo = 1, and so cos(2𝜋n) = 1 and sin(2𝜋n) = 0 for n ∈ .

Definition: Periodic Function A periodic function f (t) with period To has the
following property for t ∈ :

f (t) = f (t + nTo), (5.157)

and for every n ∈ .

This definition assumes that f (t) extends infinitely in both directions of time.
A Fourier series representation of f (t) requires this condition; it does not apply to
functions that are “periodic” over some subset of , nor to aperiodic functions like
the exponential function. These types of waveforms (as well as periodic waveforms)
are represented in the frequency domain using the Fourier transform discussed in
Chapter 8.

We introduce the Fourier series as a definition and later demonstrate that the rep-
resentation holds for any periodic function.

Definition: Fourier Series The Fourier series of periodic function f (t) with period
To is the following infinite sum of terms:

f (t) = a0 +
∞∑

n=1

an cos(n𝜔ot) +
∞∑

n=1

bn sin(n𝜔ot), (5.158)
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with Fourier coefficients derived as

a0 ≜ 1
To ∫

to+To

to

f (t)dt, (5.159)

an ≜ 2
To ∫

to+To

to

f (t) cos(n𝜔ot)dt, (5.160)

bn ≜ 2
To ∫

to+To

to

f (t) sin(n𝜔ot)dt, (5.161)

where 𝜔o = 2𝜋fo and fo = 1∕To.

This is the trigonometric form of the Fourier series; later the exponential form is
given, which is often easier to compute. The lower limit to is chosen to facilitate eval-
uating the integrals; for many waveforms, to = 0 or −To∕2. Since the first coefficient
a0 is the average of the function over one period, it is the DC component of f (t). The
other integrals can be viewed as cross-correlations between f (t) and sines and cosines
having integer multiples of the fundamental frequency 𝜔o. The coefficients {an} and
{bn} indicate the degree to which f (t) is similar to cosine and sine, respectively, as
n𝜔o is varied. For integer n > 1, the frequencies {n𝜔o} are called harmonics of 𝜔o,
and the period of the nth harmonic is To∕n.

As discussed previously, any function (periodic or aperiodic) can be decomposed
into the sum of a constant, an even function, and an odd function. The Fourier series
in (5.158) is a specific example of a DC/even/odd decomposition where a0 is the
DC component,

∑∞
n=1 an cos(n𝜔ot) is the even component, and

∑∞
n=1 bn sin(n𝜔ot) is

the odd component. If f (t) happens to be an even function, then all {bn} are 0, and
likewise, all {an} are 0 if f (t) is an odd function. The DC component a0 = 0 if the
area of f (t) over one period is 0, which means the function has symmetry about the
horizontal axis. In general, all components with coefficients a0, {an}, and {bn} are
needed to represent a periodic function using a Fourier series.

Next, we verify the expressions in (5.159)–(5.161). For convenience and without
loss of generality, assume that to = −To∕2. Substituting (5.158) for a0 yields

1
To ∫

To∕2

−To∕2
f (t)dt = 1

To ∫
To∕2

−To∕2
a0dt +

∞∑

n=1

an ∫
To∕2

−To∕2
cos(n𝜔ot)dt

+
∞∑

n=1

bn ∫
To∕2

−To∕2
sin(n𝜔ot)dt = a0, (5.162)

because the area of sine and cosine over integer multiples of the period is 0.
For the {an} coefficients, we must use a different integer m when substituting
(5.158):
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2
To ∫

To∕2

−To∕2
f (t) cos(n𝜔ot)dt = 2

To
a0 ∫

To∕2

−To∕2
cos(n𝜔ot)dt

+ 2
To

∞∑

m=1

am ∫
To∕2

−To∕2
cos(n𝜔ot) cos(m𝜔ot)dt

+ 2
To

∞∑

m=1

bm ∫
To∕2

−To∕2
cos(n𝜔ot) sin(m𝜔ot)dt.

(5.163)

The first term on the right-hand side is 0. The trigonometric identities needed for the
other terms are the product formulas:

cos(n𝜔ot) cos(m𝜔ot) = (1∕2)[cos((n − m)𝜔ot) + cos((n + m)𝜔ot)] (5.164)

cos(n𝜔ot) sin(m𝜔ot) = (1∕2)[sin((n + m)𝜔ot) − sin((n − m)𝜔ot)]. (5.165)

Since n − m and n + m are also integers, all terms in the two summations of (5.163)
integrate to 0 except when m = n. Thus,

2
To ∫

To∕2

−To∕2
f (t) cos(n𝜔ot)dt =

an

To ∫
To∕2

−To∕2
cos(0)dt +

bn

To ∫
To∕2

−To∕2
sin(0)dt = an.

(5.166)
A similar derivation is used to verify the expression for bn (see Problem 5.37).

Example 5.26 Suppose we modify the rectangle function as follows:

g(t) ≜ rect(t∕T) =
{

1, −1∕2 ≤ t∕T ≤ 1∕2
0, else.

(5.167)

Dividing the argument t by T causes the standard rectangle function to be scaled
so that it has support t ∈ [−T∕2,T∕2]. A periodic function is generated from this
modified rectangle function by defining the following sum:

f (t) ≜
∞∑

n=−∞
g(t − nTo) =

∞∑

m=−∞
rect((t − mTo)∕T), (5.168)

where it is assumed that T < To, so the shifted rectangles do not overlap. An example
is shown in Figure 5.27(a) where the duration of 1∕2 s between rectangles is the same
as their width. The rectangle for a value of m is centered at (t − mTo)∕T = 0 =⇒ t =
mTo, and so the rectangles are centered at integer multiples of To. The Fourier series
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Figure 5.27 (a) Periodic function of rectangles with To = 1 and T = 1∕2. Fourier series
approximation including the DC term, (b) 5 cosine terms, and (c) 10 cosine terms.
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coefficients for this periodic function are readily computed by integrating over the
rectangle at the origin:

a0 = 1
To ∫

T∕2

−T∕2
(1) = T∕To, (5.169)

and

an =
2
To ∫

T∕2

−T∕2
cos(2𝜋nt∕To)dt = 2

To

To

2𝜋n
sin(2𝜋nt∕To)

|
|
|
|

t=T∕2

t=−T∕2

= 1
𝜋n

[sin(𝜋nT∕To) − sin(−𝜋nT∕To)]. (5.170)

The limits of integration are usually ±To∕2, but the rectangle at the origin is 0 beyond
±T∕2. Since sine is an odd function, we can combine the two terms in (5.170):

an =
2
𝜋n

sin(𝜋nT∕To) =
2T
To

sinc(nT∕To)

= sinc(n∕2), (5.171)

where
sinc(t) ≜ sin(𝜋t)

𝜋t
(5.172)

is the sinc function, which is shown in Figure 5.28 as a function of continuous time
t (note that 𝜋 is implicit in this definition). The sinc function in (5.171) for an is
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Figure 5.28 Functions sinc(t) and sinc2(t).
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evaluated only at integer multiples of T∕To = 1∕2. Finally, since rect(t) is an even
function and the integral for bn is performed over [−T∕2,T∕2], it is clear that every
bn = 0 because the product of rect(t) and sine is an odd function. Collecting together
all terms, the Fourier series representation for the periodic rectangular waveform in
(5.168) is

f (t) = (1∕2)

[

1 + 2
∞∑

n=1

sinc(n∕2) cos(2𝜋nt∕To)

]

. (5.173)

Figure 5.27(b) and (c) shows approximations of f (t) in Figure 5.27(a) when the upper
limit in (5.173) is n = 5 and 10, respectively. The weighting sinc(n∕2) is not a con-
tinuous function of time t; it is defined only for n ∈  . From the form of the sinc
function, we see that less weight is placed on higher harmonics, which is why a small
number of terms provide a good approximation of the original waveform. However, in
order to entirely remove the ripples (known as Gibbs phenomenon) in Figure 5.27(b)
and (c), all Fourier series terms must be included.

The Fourier series for a periodic signal is closely related to the Fourier transform of
an aperiodic waveform covered in Chapter 8. The Fourier transform of the rectangle
function, given by the waveform centered at the origin in Figure 5.27(a) but with
T = 1, is

F(𝜔) = ∫
∞

−∞
rect(t) exp(−j𝜔t)dt

=
sin(𝜔∕2)
𝜔∕2

= sinc(𝜔∕2𝜋), (5.174)

which is a continuous function of radian frequency𝜔, and whose magnitude decreases
according to 1∕𝜔. The Fourier coefficients of the periodic rectangular waveform
decrease in a similar manner according to 1∕n because sinc(n∕2) = 2 sin(𝜋n∕2)∕𝜋n.

Example 5.27 A periodic version of the triangle function is given by

f (t) =
∞∑

m=−∞
tri((t − mTo)∕T), (5.175)

with To = 1 and T = 1∕2 such that the repeated triangles are adjacent to each other
as shown in Figure 5.29(a). Its Fourier series coefficients are (see Problem 5.39):

a0 = T , an =
2To

n2
𝜋

2T
(n odd), an = 0 (n even), bn = 0. (5.176)

These coefficients decrease according to 1∕n2, which is faster than those of the
rectangle function. Using the trigonometric identity sin2(𝜃∕2) = (1∕2)[1 − cos(𝜃)],
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coefficient an can be rewritten as

an =
2To

𝜋
2n2T

sin2(𝜋n∕2) = (To∕2T)sinc2(n∕2)

= sinc2(n∕2), (5.177)

which is 0 for even n because the argument is n∕2. The squared sinc function is
shown in Figure 5.28. Observe in Figure 5.29(b) that the Fourier series approxima-
tion is quite accurate for only a few terms, unlike the rectangular waveform, which
has a ripple effect. This occurs because the triangle function more closely resembles
the cosine waveform, and it does not have any discontinuities as does the rectan-
gle function. The factor 1∕n2 means that relatively few terms are needed for a good
approximation because the {an} become small rather quickly with increasing n. The
waveform approximation in Figure 5.29(b) does not quite reach 0 or 1 (denoted by
the dotted line); additional Fourier series terms are needed to reach the minimum and
maximum values. The Fourier transform of the triangle function is

F(𝜔) =
sin2(𝜔∕2)
𝜔

2∕4
= sinc2(𝜔∕2𝜋), (5.178)

which decreases according to 1∕𝜔2, and so again we see a connection between the
Fourier series of a periodic function and the Fourier transform of the waveform for
one period.

The complex exponential form of the Fourier series is

f (t) =
∞∑

n=−∞
cn exp(jn𝜔ot), (5.179)

where cn is a complex Fourier coefficient:

cn = (1∕To)∫
to+To

to

f (t) exp(−j𝜔ont)dt. (5.180)

The lower limit of the summation for this representation is −∞ (whereas it is 1 for
the trigonometric form of the Fourier series). It is straightforward to show that the
exponential form is equivalent to the definition in (5.158) by first rewriting (5.179)
as follows:

f (t) = c0 +
∞∑

n=1

cn exp(jn𝜔ot) +
−1∑

n=−∞
cn exp(jn𝜔ot)

= c0 +
∞∑

n=1

cn exp(jn𝜔ot) +
∞∑

n=1

c∗n exp(−jn𝜔ot), (5.181)
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where we have changed variables to n → −n in the second sum and used the fact that
cn for negative n is the complex conjugate of cn for positive n because f (t) is real.
Thus, c0 = a0 must be real, and substituting cn ≜ (an − jbn)∕2 we have

f (t) = a0 + (1∕2)
∞∑

n=1

an[exp(jn𝜔ot) + exp(−jn𝜔ot)]

+(1∕2j)
∞∑

n=1

bn[exp(jn𝜔ot) − exp(−jn𝜔ot)], (5.182)

where we have used j∕2 = −1∕2j. Applying Euler’s inverse formulas to each term in
both sums for n ≥ 1 yields the Fourier series expansion in (5.158).

Example 5.28 For the periodic rectangle function in Example 5.26, the complex
Fourier series coefficients are

cn = (1∕To)∫
T∕2

−T∕2
exp(−jn𝜔ot)dt

= (−1∕jn𝜔oT)[exp(−jn𝜔oT∕2) − exp(jn𝜔oT∕2)]

= (2∕n𝜔oTo) sin(n𝜔oT∕2). (5.183)

This can be rewritten in terms of the sinc function by substituting 𝜔o = 2𝜋∕To:

cn = (T∕To)sinc(nT∕To). (5.184)

Since bn = 0 for this example, we can also use cn = (an − jbn)∕2 = an∕2 and substi-
tute an from (5.171) to produce the same result. These coefficients, which are all real
for this example, are plotted in Figure 5.30 for To = 1 and T = 1∕2. The exponential
Fourier series representation is

f (t) = (T∕To)
∞∑

n=−∞
sinc(nT∕To) exp(n𝜔ot)

= T∕To + (T∕To)
∞∑

n=1

sinc(nT∕To) cos(n𝜔ot), (5.185)

where from (5.182), we have a0 = T∕To, an = 2cn, and bn = 0. From (5.184),
we conclude that an = 0 for even n. The coefficients in Figure 5.30 for
n ∈ { − 5,… , 0,… , 5} were used to generate the approximation in Figure 5.27(b).

Example 5.29 The Fourier series for cos2(t) has only two terms. Since it is an even
function, the sine coefficients {bn} are 0 and the DC component is

a0 = 1
To ∫

To∕2

−To∕2
cos2(t)dt = 1

2To ∫
To∕2

−To∕2
[1 + cos(2t)]dt. (5.186)
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Figure 5.30 Fourier series coefficients for Example 5.28.

Since the period of cos(2t) is To∕2, it integrates to 0 and a0 = 1∕2. For the cosine
coefficients, we have

an = 2
To ∫

To∕2

−To∕2
cos2(t) cos(2𝜋nt∕To)dt = 1

To ∫
To∕2

−To∕2
[cos(2nt) + cos(2t) cos(2nt)]dt,

(5.187)
where𝜔o = 2𝜋∕To = 2 has been substituted because To = 𝜋 for cos2(t). The first term
in the last expression is 0 for all n ∈  , and the second term can be rewritten as

cos(2t) cos(2nt) = (1∕2)[cos(2(n − 1)t) + cos(2(n + 1)t)]. (5.188)

The integral of this expression is 0 except for the first term with n = 1. Thus

a1 = 1
𝜋 ∫

𝜋∕2

−𝜋∕2
(1∕2)dt = 1∕2, (5.189)

and the Fourier series is

cos2(t) = (1∕2)[1 + cos(2t)]. (5.190)

However, this is just the trigonometric identity used in the derivation, and so none of
this work was actually necessary. Whenever a function can be written directly as the
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sum of cosine and sine terms with arguments that are integer multiples of the funda-
mental frequency, then that result is the Fourier series of the waveform even though
the number of terms is finite. The Fourier series for sin2(t) is covered in Problem 5.41.

Example 5.30 A half-wave rectified sine function for one period has the following
form:

f (t) =
{

sin(t), 0 ≤ t ≤ 𝜋

0, 𝜋 < t ≤ 2𝜋,
(5.191)

with 𝜔o = 1 rad∕s. This is an example of a function that is neither even nor odd,
and so all Fourier series coefficients need to be examined, including the DC com-
ponent. However, because it is derived from a sine wave, it turns out that b1 = 1∕2
and all other sine coefficients are bn = 0 for n ≠ 1. Since the b1 term of the Fourier
series exactly matches f (t) when it is positive, it is clear that the DC component and
the cosine terms of the Fourier series are needed to cancel the negative part of the
sine cycle and give the rectified waveform. These coefficients are a0 = 1∕𝜋 and (see
Problem 5.42)

an =
{

0, n odd
(2∕𝜋)∕(1 − n2), n even,

(5.192)

which yields the Fourier series

f (t) = 1∕𝜋 + (1∕2) sin(t) + (2∕𝜋)
∑

n=2,4,…
[1∕(1 − n2)] cos(nt). (5.193)

These results are depicted in Figure 5.31. Three of the cosine terms are shown in
Figure 5.31(b), which tend to cancel the negative part of the sine wave given by the
dashed line in Figure 5.31(a). In Figure 5.31(c), we have included (1∕2) sin(t) (the
solid line) and the sum of the three cosine terms and the DC term, which shifts the sum
upward by 1∕2 (the dashed line). Observe that for one-half of the period, the cosine
terms reinforce the positive cycles of the shifted sine wave, bringing them closer to 1.
During the negative cycles, the cosine terms add to the shifted sine wave in order to
cancel those components, bringing them closer to 0. The dotted line in Figure 5.31(c)
is the result when five Fourier series terms are included: {b1, a0, a2, a4, a6}. This last
figure can also be viewed as an even/odd decomposition of the function given by the
dotted line: the dashed line is the even part plus the DC term, and the solid line is the
odd part.

5.15 PHASOR REPRESENTATION

The phasor representation of a sinusoidal signal is essentially a notation for represent-
ing the waveform using a complex number. Consider the cosine waveform in (5.44),
which we repeat here for convenience:

f (t) = A cos(𝜔ot + 𝜙), (5.194)
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where A, 𝜔o, and 𝜙 are the amplitude, angular frequency, and phase, all of which are
real-valued. We emphasize that for phasors, the support of f (t) is assumed to be the
entire real line t ∈ , as was the case for the Fourier series. From Euler’s formula:

A exp(j(𝜔ot + 𝜙)) = A cos(𝜔ot + 𝜙) + jA sin(𝜔ot + 𝜙), (5.195)

such that f (t) can be written as the real part of this expression:

f (t) = Re(A exp(j𝜔ot + j𝜙)). (5.196)

For an LTI system with a sinusoidal input (such as the series RLC circuit covered in
Chapter 2), the output is also sinusoidal with the same frequency, but usually with
a different amplitude and phase. For a linear circuit with fixed lumped-parameter
elements and a single sinusoidal voltage or current source, all internal voltages and
currents are sinusoidal with the same frequency. This property allows us to analyze
such systems more easily using phasors. The phasor approach is a preview of the
more general Laplace transform method used for LTI systems in Chapter 7, where
the voltage and current sources need not be sinusoidal and the support need not be
t ∈ .

In order to define a phasor, note that (5.196) can be rewritten as

f (t) = Re(A exp(j𝜔ot) exp(j𝜙)), (5.197)

where the product property of exponentials has been used.

Definition: Phasor A phasor is a notation that represents the cosine waveform
A cos(𝜔ot + 𝜙) as the following complex number:

F = A exp(j𝜙). (5.198)

The notation F = A∠𝜙 is also used.

Bold uppercase letters are usually used to denote phasors (which should not be
confused with the matrices covered in Chapter 3). A phasor retains only the amplitude
and phase of the sinusoid. The angular frequency is ignored because, after analyzing a
circuit using phasor notation, the corresponding time-domain waveform is generated
from (5.197) and (5.198) as follows:

f (t) = Re(F exp(j𝜔ot)). (5.199)

The phasor F is multiplied by a complex exponential function with the appropri-
ate angular frequency, and the real part yields the cosine waveform. The real part is
computed using Euler’s inverse formula:

f (t) = (1∕2)[F exp(j𝜔ot) + F∗ exp(−j𝜔ot)], (5.200)
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where the superscript ∗ denotes complex conjugation. However, this calculation is
not actually necessary because we know that the real part of (5.199) is a cosine.

Example 5.31 Suppose that F = a + jb =
√

a2 + b2 exp(j tan−1(b∕a)), which are
the rectangular and polar representations, respectively, for a complex number. Sub-
stituting this expression into (5.200) yields

f (t) = (1∕2)
[√

a2 + b2 exp(j𝜔ot + j tan−1(b∕a))

+
√

a2 + b2 exp(−j𝜔ot − j tan−1(b∕a))
]
, (5.201)

where the complex conjugate affects only the phase in the second component. Since
the square root factors from this expression, Euler’s formula yields

f (t) =
√

a2 + b2 cos(𝜔ot + tan−1(b∕a)). (5.202)

From this result, we find that it is not necessary to write the phasor in
polar/exponential form as in (5.200). Once F is known, its real and imaginary
parts {a, b} are used in (5.202) to directly write the time-domain waveform.

Phasors are usually defined in terms of a cosine. In order to derive the phasor for
the sine waveform in (5.44), we use the fact that sine and cosine are related by a 90∘
phase shift:

f (t) = A sin(𝜔ot + 𝜙) = A cos(𝜔ot + 𝜙 − 90∘). (5.203)

A cosine waveform is shifted 90∘ to the left of a sine waveform, so that the phasor for
(5.203) is

F = A exp(j(𝜙 − 90∘)). (5.204)

If the input of a system consists of several sinusoids with different frequencies, pha-
sors can still be used, by solving for the output for each frequency separately and
then adding together the final set of results in the time domain. This is known as
superposition, which is another characteristic of an LTI system.

Example 5.32 For the phasor of the sinusoidal function

f (t) = −A cos(𝜔ot + 𝜙), (5.205)

one might attempt to take into account the minus sign by using the trigonometric
identity cos(x + 𝜋) = − cos(x). This yields

f (t) = −A cos(𝜔ot + 𝜙) = A cos(𝜔ot + 𝜋 + 𝜙) =⇒ F = A exp(j(𝜋 + 𝜙)). (5.206)

However, this is not necessary (though it is acceptable) because A itself can be neg-
ative, and we can immediately just write F = −A exp(j𝜙). This also follows from
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(5.206) because exp(j𝜋) = −1. Although the exponential form of a phasor looks sim-
ilar to the polar form of a complex number, a phasor uses the amplitude of the cosine
(−A in this example) and not its magnitude |A|. Consider another example based on
the identity cos(x + 𝜋∕2) = − sin(x):

f (t) = −A sin(𝜔ot + 𝜙) = A cos(𝜔ot + 𝜋∕2 + 𝜙) =⇒ F = A exp(j(𝜋∕2 + 𝜙)).
(5.207)

This is the correct form for the phasor. Although exp(j𝜋∕2) = j and we could write
f (t) = Aj exp(j𝜙), this is not proper phasor form because the leading coefficient should
be real; instead, j𝜋∕2 is included in the angle component of the phasor.

5.16 PHASORS AND LINEAR CIRCUITS

Finally, we consider phasors for the voltages and currents of the circuit elements
discussed in Chapter 2. For a sinusoidal current i(t) = A cos(𝜔ot + 𝜙), the voltage
across a resistor from Ohm’s law 𝑣 = Ri is

𝑣(t) = RA cos(𝜔ot + 𝜙), (5.208)

which means the corresponding phasors are I = A exp(j𝜙) and V = RA exp(j𝜙). These
are complex numbers that specify the amplitude and phase of the real-valued voltage
and current waveforms, with the understanding that 𝑣(t) and i(t) are cosine functions
with the same frequency 𝜔o.

Definition: Impedance The impedance Z of a circuit device is the ratio of its
phasor voltage and phasor current: Z ≜ V∕I. It is a complex number of the form
Z = R + jX where R is the resistance and Z is the reactance.

Impedance is not a phasor: Z is not converted to a time-varying waveform as is done
in (5.199) for currents and voltages. The impedance is an I-V characterization of
a circuit element in the phasor domain, when all currents and voltages in a circuit
are sinusoidal with the same frequency and have been converted into phasors. The
impedance for a resistor is obviously its resistance: ZR = R. For an inductor with
sinusoidal current i(t) = A cos(𝜔ot + 𝜙):

𝑣(t) = L
d
dt

A cos(𝜔ot + 𝜙) = −𝜔oLA sin(𝜔ot + 𝜙), (5.209)

such that I = A exp(j𝜙) and V = −𝜔oLA exp(j(𝜙 − 𝜋∕2)). Thus, the impedance for
an inductor is

ZL = −𝜔oL exp(−j𝜋∕2) = j𝜔oL, (5.210)

where exp(−j𝜋∕2) = −j has been substituted. An ideal inductor has zero resistance
and its reactance is always positive. A similar result is obtained for the capacitor with
sinusoidal voltage 𝑣(t) = A cos(𝜔ot + 𝜙):

i(t) = C
d
dt

A cos(𝜔ot + 𝜙) = −𝜔oCA sin(𝜔ot + 𝜙), (5.211)
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TABLE 5.6 Phasor Impedance of Linear Circuit Elements

Device Impedance Z Resistance R Reactance X

Resistor R R 0
Inductor j𝜔oL 0 𝜔oL
Capacitor 1∕j𝜔oC 0 −1∕𝜔oC

R1 V

l2l1

R2

+
_VVs

+

_

1/jωoC

Figure 5.32 First-order circuit with capacitor C and sinusoidal voltage source.

which yields V = A exp(j𝜙), I = −𝜔oCA exp(j(𝜙 − 𝜋∕2)), and

ZC = −1∕𝜔oC exp(−j𝜋∕2) = 1∕j𝜔oC = −j∕𝜔oC. (5.212)

An ideal capacitor has zero resistance and its reactance is always negative. The
impedance results for these three passive circuit elements are summarized in
Table 5.6.

Since impedance Z = V∕I is an extension of Ohm’s law to complex quantities,
the voltages and currents in an RLC circuit can be determined using algebraic tech-
niques similar to those given earlier for an all-resistive circuit (see Chapter 2). This
approach assumes sinusoidal signals (extending to ±∞), and we must manipulate
complex quantities, which makes the analysis somewhat more cumbersome. This is
illustrated in the next example for an RC circuit.

Example 5.33 For the first-order circuit in Figure 2.15, assume that the voltage
source is sinusoidal Vs = A cos(𝜔ot) with phasor Vs = A. The modified circuit is
shown in Figure 5.32 with the capacitor labeled by its impedance ZC = 1∕j𝜔oC.
The voltage across the capacitor is given by the result in (2.35) with R3 replaced
by 1∕j𝜔oC:

V =
1∕j𝜔oC

R2 + 1∕j𝜔oC
Vs =

A
1 + j𝜔oR2C

. (5.213)

Rearranging this expression into the standard form for a complex number yields

V = A
1 + j𝜔oR2C

(
1 − j𝜔oR2C

1 − j𝜔oR2C

)

= A
1 + (𝜔oR2C)2

− j
𝜔oR2CA

1 + (𝜔oR2C)2
, (5.214)
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√

1 + (𝜔oR2C)2 and phase −tan−1(𝜔oR2C) of the output voltage
for the circuit in Example 5.33 with A = 1 V and R2 = 1000 Ω. (a) Amplitude. (b) Phase.
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which can be expressed as

V = A
√

1 + (𝜔oR2C)2
exp(tan−1(−𝜔oR2C)). (5.215)

The corresponding time-domain waveform is obtained by multiplying this result by
exp(j𝜔ot) and taking the real part:

𝑣(t) = A
√

1 + (𝜔oR2C)2
cos(𝜔ot − tan−1(𝜔oR2C)). (5.216)

This result is a scaled and shifted version of Vs, as are the other voltages in this circuit.
The amplitude and phase are plotted in Figure 5.33 for A = 1 V, R2 = 1000 Ω, and
two values of C. When 𝜔o = 0, corresponding to a DC voltage source, the impedance
ZC of the capacitor is infinite (an open circuit), so there is no current through R2 and all
the voltage is across the capacitor with zero phase. At the other extreme as 𝜔o → ∞,
the impedance ZC → 0 (a short circuit). The voltage across C approaches 0, and the
cosine waveform becomes increasingly shifted to the right because of the negative
phase in (5.215), which approaches−𝜋∕2 in the limit. These curves (the dashed lines)
are lower for the larger value of C, which is expected because it takes longer to charge
a larger capacitor and so its amplitude is smaller for the same frequency 𝜔o.

PROBLEMS

Step and Ramp Functions

5.1 Specify the support and range for the following functions:

(a) f (t) = u(t + 4), (b) g(t) = u(t + 2) − u(t − 3), (c) h(t) = r(t + 2) − r(t).
(5.217)

5.2 The unit step function can be used to create discontinuities in continuous func-
tions. Sketch the following functions:

(a) f (t) = exp(−t)u(t − 2), (b) g(t) = exp(−2|t|)[u(t + 1) − u(t − 2)],
(5.218)

(c) h(t) = sin(t)u(t − 𝜋∕2). (5.219)

5.3 Verify that the unit step function is derived from the following limits of smooth
sigmoidal functions:

(a) u(t) = 1∕2 + (1∕𝜋) lim
a→0

tan−1(t∕a), (5.220)

(b) u(t) = lim
a→0

1
1 + exp(−t∕a)

. (5.221)

The last expression with a = 1 is the logistic function.
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(a) (b)

f(t)

t (s)10

2

3.5

−2 2

1

g(t)

t (s)1

3.5

4.5

1

42

2.5

3

Figure 5.34 Waveforms for Problem 5.7.

5.4 Show that the ramp function can also be written as

(a) r(t) = (1∕2)(t + |t|), (b) r(t) = ∫
∞

−∞
u(𝜏)u(t − 𝜏)d𝜏. (5.222)

5.5 A sawtooth waveform can be constructed from a sum of weighted and shifted
ramp functions. Let the period of the function be To = 1 s with the first com-
ponent given by r(t)[u(t) − u(t − 1)]. (a) Write the sawtooth waveform as an
infinite sum of shifted versions of these components. (b) Modify your result
such that the period is To = 2 s and the maximum height of the waveform is
still 1.

Rectangle and Triangle Functions

5.6 A series of narrow rectangle functions can be used to sample a continuous wave-
form. Describe the resulting waveform when the following function multiplies
the ramp function r(t):

s(t) =
∞∑

n=0

rect(4(t − n) − 1∕2). (5.223)

5.7 Demonstrate how to write the waveforms in Figure 5.34 in terms of scaled and
shifted rect(t) and tri(t).

5.8 Express a periodic triangular waveform as an infinite sum of shifted versions
of tri(t), with the first component starting at t = 0. The waveform should have
a maximum height of 2, a period of To = 1 s, and the component triangle func-
tions should be adjacent to each other.

Exponential and Sinusoidal Functions

5.9 Prove the integral property of the exponential function using the power series
representation for exp(t).
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5.10 Determine the time when the following functions exceed 90% of their
maximum values: (a) f (t) = [2 − exp(−3t)]u(t) and (b) g(t) = [2 − exp(−t) −
exp(−2t)]u(t).

5.11 Determine if there is any time instant t ∈ [0, 2𝜋] for which cos2(t) + 3 sin(t) = 1.

5.12 The following function is an example of one type of waveform that can occur
for a voltage in an RLC circuit:

𝑣(t) = t exp(−t) cos(𝜔ot)u(t). (5.224)

Find the minimum and maximum values of 𝑣(t) as a function of 𝜔o.

Dirac Delta Function

5.13 Verify the sampling and sifting properties of the shifted Dirac delta function
𝛿(t − 𝜏) using the rectangle function as was done in Example 5.9.

5.14 Evaluate the following integrals:

(a) ∫
1

0
𝛿(t − 2)u(t + 2)dt, (b) ∫

∞

0
𝛿(𝜏 − 1) exp(−(t − 𝜏))d𝜏,

(5.225)

(c) ∫
∞

−∞
𝛿(𝜏) cos(t − 𝜏 − 1)d𝜏, (d) ∫

∞

−∞
(𝜏 + 2)𝛿(t − 𝜏 − 2)d𝜏.

(5.226)

5.15 Starting with a rectangle function approximation, find an expression for 𝛿(𝛼t)
in terms of 𝛿(t).

5.16 Determine how the following functions can be used to represent a shifted Dirac
delta function in the limit as the parameter 𝛼 is varied, and give the location 𝜏

of 𝛿(t − 𝜏):

(a) f (t) = 𝛼tri(𝛼(t + 1)), (b) g(t) = 1
√

2𝜋𝛼
exp(−(t − 2)2∕2𝛼2).

(5.227)

5.17 The following “comb” function can be used to generate equally spaced samples
of a continuous function:

s(t) =
∞∑

n=−∞
𝛿(t − n). (5.228)

Sketch the samples for (a) y1(t) = s(t) exp(−2|t − 1∕2|) and (b) y2(t) =
s(t) cos(t + 3∕4).

Generalized Functions

5.18 Determine if the following are valid test functions:

(i) 𝜙1(t) = exp(1∕t[t − 1])I[0,1](t), (ii) 𝜙2(t) = tri(2t − 1). (5.229)
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5.19 Using the approach leading to the result in (5.83), demonstrate the sampling
property g(t)𝛿(t − to) = g(to)𝛿(t − to), where g(t) is continuous at to.

5.20 (a) Verify that ⟨ f , 𝜙⟩ = ∫ ∞
0 t𝜙(t)dt in Table 5.1. (b) Use the properties of gen-

eralized functions to find the derivative of the ramp function r(t).

5.21 Based on a derivation similar to that leading to (5.86), derive the following
property starting with u(at + b):

𝛿(at + b) = (1∕|a|)𝛿(t + b∕a). (5.230)

5.22 Suppose function f (t) has a step discontinuity of size Δ at t = to. By writing
f (t) as the weighted sum of a unit step function and a smooth function, give an
expression for its generalized derivative.

5.23 Use the properties of generalized functions to show that the derivative of the
absolute value function |t| is the signum function sgn(t).

5.24 Repeat the previous problem to show that the second derivative of |t| is 2𝛿(t),
which is the first derivative of the signum function.

5.25 Use the properties of generalized functions to find expressions for the second
derivative of (a) f (t) = exp(−|t|) and (b) g(t) = exp(j𝜔o|t|).

5.26 Prove the even and odd properties of distributions given in Table 5.2.

Unit Doublet

5.27 Use the generalized function approach to derive the sifting property for the unit
doublet.

5.28 Show that 𝛿′(t) has area zero from the sifting and convolution properties of the
unit doublet.

5.29 Prove the following property using integration by parts:

f (t)𝛿(2)(t) = f (2)(0)𝛿(t) − 2f ′(0)𝛿′(t) + f (0)𝛿(2)(t). (5.231)

Singularities and Cauchy Principal Value

5.30 Describe the singularities of the following functions. (a) f1(z) = (z − 1)∕(z2 +
2)(z + 1). (b) f2(z) = tanh(z)∕z3. (c) f3(z) = (z4 − 1)∕(z2 + 1).

5.31 Find CPVs for

(a) ∫
∞

−∞
tdt, (b) ∫

∞

−∞
[1∕(t − 1)]dt, (c) ∫

∞

−∞
[sgn(t)∕t2]dt.

(5.232)

5.32 Derive the integral of (1∕x)u(x) by splitting it up into two parts on the intervals
[𝜖, 1] and (1,∞) and then letting 𝜖 → 0.
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Even and Odd Functions and Correlation

5.33 Decompose the following functions into even and odd components as in
(5.136) and sketch the results: (a) f (t) = tri(t − 1) and (b) g(t) = rect(t − 1) +
sgn(t + 1).

5.34 Prove the properties in rows two, three, and four of Table 5.5.

5.35 Derive the cross-correlation function cfg(𝜏) for f (t) = rect(t) and g(t) = tri(t).

5.36 (a) Show that the autocorrelation function of rect(t) is triangular. (b) Find an
expression for the autocorrelation function of tri(t).

Fourier Series

5.37 Verify the expression for bn in (5.161).

5.38 Derive the trigonometric Fourier series coefficients for the periodic rectangular
function in Figure 5.27(a) shifted to the right by 1∕4 s.

5.39 Find the Fourier series coefficients in (5.176) for the periodic triangular wave-
form.

5.40 One period of a periodic waveform is defined as follows:

x(t) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

0, −To∕2 ≤ t < −To∕4
16t∕To + 4, −To∕4 ≤ t < −To∕8

2, −To∕8 ≤ t < To∕8
−16t∕To + 4, To∕8 ≤ t < To∕4

0, To∕4 ≤ t < To∕2.

(5.233)

Find its complex exponential Fourier series.

5.41 Find the Fourier series for sin2(t).

5.42 Derive the Fourier series coefficients in (5.192) for the half-wave rectified sine
function.

Phasor Representation and Linear Circuits

5.43 Give phasor representations for the following sinusoidal waveforms, all of
which have support :

(a) f1(t) = 5 cos(2t − 𝜋∕3), (b) f2(t) = 2 sin(t + 𝜋∕4),

(c) f3(t) = −3 sin(4t − 𝜋∕6). (5.234)

5.44 Convert the following phasors to cosine waveforms, all with angular frequency
𝜔o = 5 rad/s:

(a) F1 = 10 exp(j𝜋∕6), (b) F2 = −2 exp(j𝜋∕3), (c) F3 = 5∠𝜋∕2. (5.235)
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+_
v(t)

1 H

3 sin(5t) A

2 cos(5t) V

0.2 F3 Ω 

1 Ω 

Figure 5.35 Second-order circuit with sinusoidal current and voltage sources for Problem
5.47.

5.45 Replace the capacitor in Figure 5.32 with an inductor L and find an expression
for the voltage across L using phasors.

5.46 Repeat the previous problem with a capacitor C in parallel with the inductor L,
resulting in a second-order RLC circuit.

5.47 Using phasors, find an expression for 𝑣(t) in Figure 5.35.

Computer Problems

5.48 Derive the Fourier series coefficients for a periodic rectangular function similar
to that in Figure 5.27(a), but with To = 1 s and T = 1∕4 s. Use MATLAB to plot
the Fourier series approximation including the DC term, (a) five cosine terms,
and (b) ten cosine terms.

5.49 The impedance for an RLC circuit is

Z =
1 − LC𝜔

2
o + jRC𝜔o

jC𝜔o
, (5.236)

with R = 100 Ω, C = 100 μF, and L = 2 mH. Use MATLAB to plot the magni-
tude and phase of complex Z as 𝜔o is varied.

5.50 Plot the functions in (5.139) and (5.140) for fE(t) and fO(t), respectively, using
Heaviside (the unit step) in MATLAB to truncate the piecewise linear sections.
Then add the two functions together and plot the results to verify the original
function f (t) in Figure 5.25(a).
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6
DIFFERENTIAL EQUATION MODELS
FOR LINEAR SYSTEMS

6.1 INTRODUCTION

In this chapter, we describe differential equations (DEs) that are used in engineering
to model the dynamics of a linear system with input x(t) and output y(t). By solving
for the dependent variable of a DE, we obtain an explicit form for y(t) as a function of
the independent variable time t. First- and second-order linear ordinary differential
equations (ODEs) are considered in this chapter, which model the most widely
studied systems in engineering circuits and systems courses. Higher order ODEs
are examined in the next chapter when the Laplace transform is covered, where
a transform-domain approach allows them to be solved more easily than using
time-domain methods.

As a preview, we summarize the basic solutions for linear systems, which turn out
to be combinations of ordinary functions and singular generalized functions.

• Decreasing exponential:

y(t) = exp(−𝛼t)u(t), (6.1)

with 𝛼 > 0.
• Sine and cosine:

y(t) = sin(𝜔ot)u(t), y(t) = cos(𝜔ot)u(t), (6.2)

where 𝜔o is angular frequency in rad/s.

Mathematical Foundations for Linear Circuits and Systems in Engineering, First Edition. John J. Shynk.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
Companion Website: http://www.wiley.com/go/linearcircuitsandsystems

http://www.wiley.com/go/linearcircuitsandsystems
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• Exponentially weighted sine and cosine:

y(t) = exp(−𝛼t) sin(𝜔ot)u(t), y(t) = exp(−𝛼t) cos(𝜔ot)u(t). (6.3)

• Exponentially weighted and ramped sine and cosine:

y(t) = t exp(−𝛼t) sin(𝜔ot)u(t), y(t) = t exp(−𝛼t) cos(𝜔ot)u(t). (6.4)

• Unit step function: y(t) = u(t).
• Dirac delta function: y(t) = 𝛿(t).
• Unit doublet: y(t) = 𝛿

′(t).

The majority of solutions in actual circuits tend to be the waveforms in (6.1)–(6.3),
as well as the unit step function and the Dirac delta function. Although we can write
ODEs for systems with solutions that include the ramp function r(t) and derivatives
of the Dirac delta function, they do not occur often in practice. When a function is
multiplied by the unit step function, t < 0 is excluded from its support. This is done
because we are usually interested in causal systems with input signals starting at some
finite time to ≥ 0. Although any time instant is possible, generally it is convenient to
use to = 0; the time axis can be shifted so that its origin is aligned with the start of
the input signal x(t).

6.2 DIFFERENTIAL EQUATIONS

We begin with some basic definitions of different types of DEs and then narrow our
discussion to only one kind of ODE examined in this chapter.

Definition: Ordinary Differential Equation A differential equation is an equa-
tion consisting of two or more variables that includes at least one derivative. It is ordi-
nary when dependent variables are functions of only a single independent variable.

For a system with input x(t) and output y(t), the dependent variables are x(t) and
y(t), and t is the independent variable. If a dependent variable is a function of two or
more independent variables, then we can have a partial differential equation (PDE)
depending on how the derivatives are arranged.

Example 6.1 The following equations are examples of ODEs:

first order:
d
dt

y(t) + 2y(t) = x(t), (6.5)

second order:
d2

dt2
y(t) − y(t) = 2x(t) + d

dt
x(t) ≜ f (t). (6.6)

Since the input x(t) is usually a known function in practice, the right-hand side of
(6.6) can be replaced by the composite function f (t). The goal is to solve for y(t) as
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a function of t given x(t) and its derivatives, as well as any nonzero initial conditions
for y(t) and its derivatives.

Example 6.2 The following equations are examples of PDEs with independent vari-
ables {t, 𝑣} where slightly different notation is used for the derivatives:

𝜕

𝜕t
y(t, 𝑣) + 3

𝜕

𝜕t
y(t, 𝑣) = x(t, 𝑣), (6.7)

𝜕
2

𝜕t𝜕𝑣
y(t, 𝑣) − 4y(t, 𝑣) = x(t, 𝑣). (6.8)

The goal is to solve for y(t, 𝑣) given the known function x(t, 𝑣) and any initial condi-
tions. PDEs arise as models for diffusion processes such as heat diffusion through
a piece of metal, and they are useful for describing wave phenomena in physics.
A simple diffusion equation is

𝜕

𝜕t
y(t, 𝑣) = 𝛼

2 𝜕
2

𝜕𝑣
2

y(t, 𝑣), (6.9)

where 𝑣 is position, t is time, and 𝛼 > 0 is a constant. PDEs are generally more diffi-
cult to solve than ODEs and are not considered further in this book.

Definition: Linear ODE An ODE is linear if the degree of the dependent variable
of every term in the sum is 1.

The most general form of the linear ODEs considered in this book and that are used
to describe linear time-invariant (LTI) systems is

aN
dN

dtN
y(t) + aN−1

dN−1

dtN−1
y(t) + · · · + a1

d
dt

y(t) + a0y(t)

= bM
dM

dtM
x(t) + bM−1

dM−1

dtM−1
x(t) + · · · + b1

d
dt

x(t) + b0x(t), (6.10)

which can be written more compactly using summation notation as

N∑

n=0

an
dn

dtn
y(t) =

M∑

m=0

bm
dm

dtm
x(t) ≜ f (t), (6.11)

where d0y(t)∕dt0 ≜ y(t) and d0x(t)∕dt0 ≜ x(t). For convenience in solving for y(t), we
often assume that the coefficient multiplying dNy(t)∕dtN in (6.10) is aN = 1.

A linear system is represented by a linear ODE, and a time-invariant system has
fixed coefficients {an, bm}, which are generally known or can be estimated. The order
of the ODE is max(M,N), and we are interested in finding y(t) for t ≥ to. Observe
that the exponents of {x(t), y(t)} in (6.11) are all 1, and so the ODE is linear. The
maximum degree of the differentials gives the order of the ODE; it does not specify
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whether or not the ODE is linear. For most of this chapter, only x(t)will be used on the
right-hand side with M = 0 and b0 = 1 in order to more easily illustrate how solutions
are derived without the added complexity of including the derivatives of x(t).

In order to solve for y(t), we also need N − 1 initial conditions, which are specific
values for the following derivatives evaluated at t = to:

dn

dtn
y(t)

|
|
|
|t=to

≜ y(n)(to), n = 0,…,N − 1. (6.12)

Sometimes these initial conditions are all 0. However, if the right-hand side of (6.10)
is 0, corresponding to a homogeneous ODE with no input, then at least one initial
condition must be nonzero. Otherwise, the solution is trivial: y(t) = 0 for t ≥ to.

Definition: Homogeneous ODE A linear ODE is homogeneous if we replace the
dependent variable y(t) by cy(t) and find that the constant c ≠ 0 factors and cancels
from the equation.

Example 6.3 This definition obviously holds for (6.11) when f (t) = 0:

N∑

n=0

an
dn

dtn
cy(t) = c

N∑

n=0

an
dn

dtn
y(t) = 0. (6.13)

If y(t) is a solution of the ODE, then cy(t) is also a solution; nonzero initial conditions
as described in the next section cause c to have a specific value.

6.3 GENERAL FORMS OF THE SOLUTION

The general solution of the linear ODE

N∑

n=0

an
dn

dtn
y(t) = x(t)u(t − to) (6.14)

can be partitioned into two parts:

y(t) = yh(t) + yp(t), t ≥ to, (6.15)

where yh(t) is the homogeneous solution obtained when the right-hand side is x(t) = 0,
and yp(t) is the particular solution derived for the specific nonzero input x(t). The
homogeneous solution is also called the complementary solution, and y(t) in (6.15) is
called the complete solution. As shown later, the homogeneous solution is found first,
which is usually straightforward to derive; yh(t) is the same for any input x(t). The
particular solution is generated by starting with yh(t) and modifying it for the specific
input x(t), which is usually more difficult to derive. The homogeneous solution is also
called the natural response of the system, and the particular solution is known as the
forced response.
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When the input is a step function, the solution of (6.14) can also be arranged to
have the following form:

y(t) = yt(t) + ys, t ≥ to, (6.16)

where yt(t) is the transient solution and ys is the steady-state solution. Of course,
(6.15) and (6.16) are the same y(t); the second form is derived from the first form by
isolating the steady-state part ys = lim

t→∞
y(t). By definition, the transient part decays as

lim
t→∞

yt(t) = 0, because we assume a stable system and so the output is bounded. Even
though the first form in (6.15) is derived when solving an ODE, the second form in
(6.16) is often more informative for practical systems such as linear circuits. In many
problems, we are interested in the steady-state solution for some voltage or current
of a circuit when a voltage or current elsewhere in the circuit has changed suddenly
and is modeled by a step function.

Definition: Linear System A system is linear if the output due to c1x1(t) + c2x2(t)
is c1y1(t) + c2y2(t) where y1(t) is the output for input x1(t), y2(t) is the output for input
x2(t), and {c1, c2} are constants.

It is clear that the system modeled by the ODE in (6.14) is linear because

N∑

n=0

an
dn

dtn
[c1y1(t) + c2y2(t)] = c1

N∑

n=0

an
dn

dtn
y1(t) + c2

N∑

n=0

an
dn

dtn
y2(t)

= c1x1(t) + c2x2(t). (6.17)

Definition: Linear Time-Invariant System A linear system is time-invariant if
y(t − 𝜏) is the output for input x(t − 𝜏) where 𝜏 > 0 is a time delay.

The linear system in (6.14) is also time-invariant because the coefficients {an} are
fixed:

N∑

n=0

an
dn

dtn
y(t − 𝜏) = x(t − 𝜏). (6.18)

As discussed in Chapter 1, nonlinear systems are generally difficult to solve, which
is one reason why many systems are modeled as linear in practice, even though the
solution may only be an approximate representation of the actual response to an input.
Similarly, time invariance is another property that allows for a relatively straightfor-
ward solution. It is evident that (6.14) would be more difficult to solve if {an} varied
with time, even if those variations are precisely known. Later we show that these two
properties of a system allow it to be completely specified by its response h(t) when
the input is the Dirac delta function: x(t) = 𝛿(t). Once h(t) is known, it can be used to
generate the output y(t) for any input via a convolution integral.
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6.4 FIRST-ORDER LINEAR ODE

A first-order linear ODE has the following form:

d
dt

y(t) + ay(t) = x(t)u(t − to), (6.19)

where a is a fixed known coefficient, time t is the independent variable, y(t) is a
dependent variable (the system output), and x(t) is another dependent variable, but
is a known function (the system input). The solution of this ODE for x(t) = 0 (the
homogeneous case) has the exponential form in (6.1), which will be derived in this
section.

Examples of circuits that are described by first-order ODEs are shown in
Figure 6.1. From Chapter 2, the current through the series capacitor is

i(t) = C
d𝑣C(t)

dt
, (6.20)

where 𝑣C(t) is its voltage. Solving for 𝑣C(t) yields (see (2.22))

𝑣C(t) = (1∕C)∫
t

to

i(t)dt + 𝑣C(to), (6.21)

where 𝑣C(to) is an initial voltage at time instant to ≥ 0. From Kirchoff’s voltage law
(KVL), the voltage 𝑣R(t) = Ri(t) across the resistor and 𝑣C(t) together must equal the

R
+
_Vsu(t−to) C

+

_

i(t)

RIsu(t−to) L

+

_

vL(t)

vC(t)

iL(t)

(a)

(b)

+ _vR(t)

iR(t)

Figure 6.1 First-order circuits. (a) Series RC circuit with voltage source Vsu(t − to). (b) Par-
allel RL circuit with current source Isu(t − to).
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source voltage:

Ri(t) + (1∕C)∫
t

to

i(t)dt + 𝑣C(to) = Vsu(t − to), (6.22)

where u(t − to) specifies that the voltage source has switched on at t = to, without
explicitly showing a switch in the circuit of Figure 6.1. Differentiating this expression
gives a first-order linear ODE for the current:

R
d
dt

i(t) + (1∕C)i(t) = Vs𝛿(t − to), (6.23)

where the Dirac delta function is the generalized derivative of u(t − to). Rearranging
this expression and dividing by R yield

d
dt

i(t) + (1∕RC)i(t) = (Vs∕R)𝛿(t − to). (6.24)

When the voltage source switches on, the voltage across the capacitor cannot change
instantaneously, which means the voltage across the resistor is Vs − 𝑣C(to), and so the
initial current is i(to) = [Vs − 𝑣C(to)]∕R.

Most books on circuits ignore the delta function (because they usually do not cover
generalized functions) and write the homogeneous ODE

d
dt

i(t) + (1∕RC)i(t) = 0, t ≥ to, (6.25)

with the understanding that the initial current i(to) is nonzero. This expression has the
form in (6.19) with y(t) = i(t), a = 1∕RC, and x(t) = 0. The reason the delta function
can be ignored is that the ODE solution is actually defined for t ≥ t+o , which is a time
instant chosen so that the solution of (6.22) includes any discontinuities or singular
functions at to. Thus, when differentiating (6.22), Vsu(t − to) is often treated as a con-
stant at t+o , and its derivative is 0 leading to (6.25). For simplicity, we will also write
such ODEs in homogeneous form with the initial condition specified separately. In
the next chapter on the Laplace transform, it will be necessary to distinguish between
t−o and t+o when solving ODEs, where t−o is “just before” any discontinuity at to, and
t+o is “just after.”

The voltage across the capacitor is derived by recognizing that it is the source
voltage minus the voltage across the resistor:

𝑣C(t) = Vsu(t − to) − Ri(t) = Vsu(t − to) − RC
d
dt
𝑣C(t), (6.26)

where i(t) from (6.20) has been substituted. Rearranging this expression gives a non-
homogeneous ODE with input x(t) = (Vs∕RC)u(t − to):

d
dt
𝑣C(t) + (1∕RC)𝑣C(t) = (Vs∕RC)u(t − to). (6.27)



�

� �

�

282 DIFFERENTIAL EQUATION MODELS FOR LINEAR SYSTEMS

TABLE 6.1 First-Order RL and RC Circuits

System Linear ODE Signals and Coefficients

General ODE dy(t)∕dt + ay(t) = x(t)

Series RC current y(t) = i(t), x(t) = 0
Series RC resistor voltage y(t) = 𝑣R(t), x(t) = 0
Series RC capacitor voltage y(t) = 𝑣C(t), x(t) = (1∕RC)Vsu(t − to)
Coefficient a = 1∕RC

Parallel RL voltage y(t) = 𝑣(t), x(t) = 0
Parallel RL resistor current y(t) = iR(t), x(t) = 0
Parallel RL inductor current y(t) = iL(t), x(t) = (R∕L)Isu(t − to)
Coefficient a = R∕L

These results are summarized in Table 6.1, which also includes the details for the
voltage 𝑣R(t) across the resistor (see Problem 6.4). It is important to note that even
though there is a voltage source in the circuit, an ODE can be homogeneous or non-
homogeneous depending on the particular dependent variable y(t). From the table, we
see that the ODE for y(t) = 𝑣R(t) is homogeneous, whereas it is nonhomogeneous for
y(t) = 𝑣C(t). As shown later, this means that the steady-state voltage of the resistor
is 0, while it is Vs for the capacitor.

For the parallel RL circuit, the voltage across the inductor is

𝑣(t) = L
diL(t)

dt
, (6.28)

and so its current is (see (2.23))

iL(t) = (1∕L)∫
t

to

𝑣(t)dt + iL(to), (6.29)

where iL(to) is the initial inductor current. The current 𝑣(t)∕R through the resistor and
iL(t) together must equal the current source:

𝑣(t)∕R + (1∕L)∫
t

to

𝑣(t)dt + iL(to) = Isu(t − to). (6.30)

Differentiating this expression and multiplying through by R yield a first-order homo-
geneous ODE for the inductor voltage:

d
dt
𝑣(t) + (R∕L)𝑣(t) = 0, t ≥ to. (6.31)

When the current source is switched on, the current through the inductor cannot
change instantaneously, and so all of Is passes initially through the resistor. This gives
an initial voltage of R[Is − iL(to)] across the parallel inductor. As in the previous RC
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−a

x(t) y(t)
d
dt

∑

y(t)
Input Output

Initial condition y(to)

Figure 6.2 Integrator implementation of a first-order ODE.

circuit, we have dropped the Dirac delta function that would have appeared after
differentiating (6.30), in favor of specifying the initial condition separately.

The current through the inductor is

iL(t) = Isu(t − to) − 𝑣(t)∕R = Isu(t − to) − (L∕R) d
dt

iL(t), (6.32)

where (6.28) has been substituted. Rearranging this expression gives a nonhomoge-
neous ODE with input x(t) = (R∕L)Isu(t − to):

d
dt

iL(t) + (R∕L)iL(t) = (R∕L)Isu(t − to). (6.33)

These results are also summarized in Table 6.1 along with details for the parallel
resistor current iR(t) (see Problem 6.5). Once iL(t) is found by solving (6.33), the
expression in (6.28) can be used to derive the time-varying voltage across the inductor
without having to solve an ODE for the voltage. An integrator implementation for
these first-order circuits is provided in Figure 6.2, with parameter a, input x(t), and
output y(t) given in Table 6.1. Although the initial condition is symbolically shown
entering the integrator, it is actually the initial value of the output as shown in the next
section.

6.4.1 Homogeneous Solution

For x(t) = 0, the first-order ODE in (6.19) can be rearranged as

d
dt

y(t) = −ay(t), t ≥ to, (6.34)

which is a special case of a separable ODE.

Definition: Separable First-Order ODE A first-order ODE is separable if it can
be written as the following product:

d
dt

y(t) = h1(t)h2(y(t)), (6.35)
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where h1(t) is a function of the independent variable t (it does not depend on y(t)),
and h2(y(t)) is a function of the dependent variable y(t).

For (6.34), it is clear that h1(t) = −a and h2(y(t)) = y(t) (we could also let h1(t) = 1
and h2(y(t)) = −ay(t)). The ODE in (6.35) is solved by dividing it by h2(y(t)), which
in our case yields

1
h2(t)

d
dt

y(t) = h1(t) =⇒ 1
y(t)

d
dt

y(t) = −a. (6.36)

Integrating both sides gives

∫
y(t)

y(to)

1
y(t)

dy(t) = −a∫
t

to

dt =⇒ ln(|y(t)|) − ln(|y(to|) = −a(t − to), (6.37)

where we recognize that the first integral is the natural logarithm. Thus, the solution
is an exponential function:

ln(|y(t)∕y(to)|) = −a(t − to) =⇒ y(t) = y(to) exp(−a(t − to))u(t − to). (6.38)

Since the exponential function is nonnegative, the absolute values can be dropped;
y(t) and y(to) necessarily have the same sign. If a > 0, the exponential function decays
to 0; otherwise, it grows to infinity. However, a cannot be negative for the circuits in
Figure 6.1 because the parameters {R,L,C} are all positive, and so the first-order RL
and RC circuits are stable. As mentioned earlier, the initial condition y(to) is assumed
to be nonzero for this homogeneous case.

An alternative approach to solving this ODE is to assume the basic form of the
solution and then find the specific parameters. Since the derivative of an exponential
function is another exponential function, y(t) = c exp(s(t − to)) can be substituted into
(6.19) and the equation holds:

sc exp(s(t − to)) + ac exp(s(t − to)) = 0, t ≥ to. (6.39)

Canceling common terms, we find that s + a = 0 =⇒ s = −a, which gives

y(t) = c exp(−a(t − to)), t ≥ to. (6.40)

The coefficient c is provided by the initial condition y(to):

y(to) = c exp(−a(to − to)) =⇒ c = y(to), (6.41)

yielding the result in (6.38). The expression s + a = 0 is called the characteristic
equation of the system, which is quite simple for a first-order linear ODE. We find
later that the characteristic equation for a second-order linear ODE has more structure
and leads to more complicated solutions for the system output y(t).
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Example 6.4 A special case of the first-order homogeneous ODE occurs when the
coefficient is a = 0 such that

d
dt

y(t) = 0, t ≥ to, (6.42)

whose solution is a constant:

y(t) = y(to)u(t − to). (6.43)

For an RC circuit without a voltage source, this means that R is infinite such that there
is only a capacitor with a nonzero initial voltage in an open circuit. For an RL circuit
without a current source, R = 0 and the circuit is shorted such that any initial current
in the inductor flows indefinitely around the loop. Obviously, the ODE in (6.34) does
not model a practical circuit when a = 0.

6.4.2 Nonhomogeneous Solution

The nonhomogeneous first-order ODE is somewhat more difficult to solve. One tech-
nique incorporates a function g(t) known as an integrating factor that multiplies each
term as follows:

g(t) d
dt

y(t) + ag(t)y(t) = g(t)x(t) = d
dt

g(t)y(t), (6.44)

where the last expression is a constraint on the form of g(t) that allows us to find a
solution. Observe that the right-hand side is the derivative of the second term on the
left-hand side (excluding the constant a), and so it is possible to cancel terms. Using
the product rule of derivatives on the right-hand side, (6.44) becomes

g(t) d
dt

y(t) + ag(t)y(t) = y(t) d
dt

g(t) + g(t) d
dt

y(t). (6.45)

Canceling the two outer terms of this equation and y(t) of the two inner terms yields
a homogeneous equation for g(t):

d
dt

g(t) − ag(t) = 0, t ≥ to. (6.46)

This expression is solved by rearranging it as follows:

dg(t)
g(t)

= adt =⇒ ln(|g(t)|) − ln(|g(to)|) = ∫
t

to

adt,

=⇒ |g(t)∕g(to)| = exp

(

∫
t

to

adt

)

, (6.47)

which yields
g(t) = g(to) exp(a(t − to)), t ≥ to. (6.48)
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The last expression in (6.47) is the reason why g(t) is called an integrating factor.
This approach is actually more general because a could be a function of time (see
Problem 6.7). However, since we are interested only in LTI systems with constant
coefficients, a factors from the integral and we obtain the result in (6.48), which
has a form identical to that of the homogeneous solution in (6.38) except that g(t)
has replaced y(t). The integrating factor with the constraint in (6.44) has essentially
suppressed the input x(t) and caused the nonhomogeneous ODE to become homoge-
neous, but with variable g(t). Continuing with the derivation, we need to replace g(t)
so that the solution is written in terms of the output y(t) and the input x(t). Differen-
tiating (6.48) yields

d
dt

g(t) = ag(to) exp(a(t − to)) = ag(t), (6.49)

which can be substituted into the second term on the left-hand side of (6.44):

g(t) d
dt

y(t) + y(t) d
dt

g(t) = g(t)x(t). (6.50)

Using the (reverse) product rule on the left-hand side gives

d
dt

g(t)y(t) = g(t)x(t), (6.51)

which has the solution

g(t)y(t) = ∫
t

to

g(t)x(t)dt + g(to)y(to), (6.52)

where g(to)y(to) is the initial condition of the product g(t)y(t). Finally, substituting
g(t) from (6.48) yields

g(to) exp(a(t − to))y(t) = g(to)∫
t

to

x(t) exp(a(t − to))dt + g(to)y(to), (6.53)

which can be rearranged to give an explicit expression for the output y(t):

y(t) = exp(−at)∫
t

to

x(t) exp(at)dt + y(to) exp(−a(t − to)), t ≥ to. (6.54)

Note that we cannot cancel the first two exponentials in (6.54) because t under the
integral is the variable of integration. In such cases, it is preferable to use another
variable such as 𝜏 to avoid any confusion:

y(t) = exp(−at)∫
t

to

x(𝜏) exp(a𝜏)d𝜏 + y(to) exp(−a(t − to))

= ∫
t

to

x(𝜏) exp(−a(t − 𝜏))d𝜏 + y(to) exp(−a(t − to)), t ≥ to, (6.55)
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which is the complete solution of (6.44). When x(t) = 0, the first term on
the right-hand side is 0 and this equation reduces to the solution in (6.38) for the
homogeneous ODE. The integral in (6.55) is the particular solution yp(t), and the
second term is the homogeneous solution yh(t) derived earlier.

Example 6.5 Continuing with the special case in Example 6.4, let a = 0 such that

d
dt

y(t) = x(t)u(t − to). (6.56)

The expression in (6.55) shows that the solution is an integrator:

y(t) = ∫
t

to

x(𝜏)d𝜏. (6.57)

This result also follows from the integrator implementation in Figure 6.2, which no
longer has a feedback path when a = 0.

6.4.3 Step Response

Suppose that x(t) = Ku(t − to) is a constant due to, for example, a voltage source
switching on at time instant t = to. Substituting this particular input into (6.55) yields

y(t) = (K∕a)[1 − exp(−a(t − to))] + y(to) exp(−a(t − to))

= [K∕a + [y(to) − K∕a] exp(−a(t − to))]u(t − to). (6.58)

The steady-state solution is ys = y(∞) = K∕a, assuming a > 0 for a stable system,
and the second term is the transient response yt(t), which decays to 0 as t → ∞. An
example is illustrated in Figure 6.3 for to = 0 with initial condition y(0) = 1. In the
unlikely event that y(to) = K∕a, the transient response cancels in (6.58) and the solu-
tion is a constant K∕a. For the example in Figure 6.3, this occurs when y(0) = 2: the
dashed line would be 0, and both the solid and dotted lines would be horizontal with
value 2.

6.4.4 Exponential Input

If x(t) = K exp(−b(t − to))u(t − to), then the particular solution from (6.54) with
y(to) = 0 and a ≠ b is

yp(t) = K ∫
t

to

exp(−b(𝜏 − to)) exp(−a(t − 𝜏))d𝜏

= K exp(−at + bto)∫
t

to

exp((a − b)𝜏)d𝜏, (6.59)
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Figure 6.3 First-order system response to a step input with to = 0, y(0) = 1, a = 1, and
K = 2.

which becomes

yp(t) =
K exp(−at + bto)

a − b
[exp((a − b)t) − exp((a − b)to)]u(t − to). (6.60)

Simplifying this expression and including the homogeneous solution from (6.54),
which does not depend on the specific x(t), yields the following complete solution:

y(t) = K
a − b

[exp(−b(t − to)) − exp(−a(t − to))]u(t − to)

+ y(to) exp(−a(t − to))u(t − to). (6.61)

An example is shown in Figure 6.4 for to = 0. When a > 0 and b > 0, the steady-state
value is ys = 0, which is intuitive because the input exponential decays to 0. There
are two modes of convergence to 0 because a and b yield different time constants.
When a = b, the second line in (6.59) is replaced with

yp(t) = K exp(−a(t − to))∫
t

to

d𝜏 = K(t − to) exp(−a(t − to)), (6.62)

and the complete solution is

y(t) = [K(t − to) + y(to)] exp(−a(t − to))u(t − to). (6.63)
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Figure 6.4 First-order system response to an exponential input with to = 0, y(0) = 1, a = 1,
b = 0.5, and K = 2.

Since the exponential decays to 0 faster than the ramp t − to increases to infinity for
a = b > 0, the steady-state solution is again ys = 0. For this case, there is only one
exponential waveform converging to 0, and y(t) has the appearance of the so-called
critically damped solution described later for second-order ODEs.

6.4.5 Sinusoidal Input

Suppose now that x(t) = cos(𝜔ot)u(t) with angular frequency 𝜔o, and assume zero
initial conditions. The output from (6.55) is

y(t) = ∫
t

0
cos(𝜔o𝜏) exp(−a(t − 𝜏))d𝜏

= exp(−at)∫
t

0
cos(𝜔o𝜏) exp(a𝜏)d𝜏, t ≥ 0, (6.64)

which is the particular solution; the homogeneous part is 0. This integral is

y(t) = exp(−at)
exp(a𝜏)
a2 + 𝜔

2
o

[a cos(𝜔o𝜏) + 𝜔o sin(𝜔o𝜏)]
|
|
|
|
|

t

0

= exp(−at)
(

exp(at)
a2 + 𝜔

2
o

[a cos(𝜔ot) + 𝜔o sin(𝜔ot)] − a

a2 + 𝜔
2
o

)
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= 1

a2 + 𝜔
2
o

[a cos(𝜔ot) + 𝜔o sin(𝜔ot)]u(t) −
a exp(−at)

a2 + 𝜔
2
o

u(t). (6.65)

The first term is the steady-state response and the second term is the transient
response, which is due to that fact that the cosine waveform starts at t = 0. For a > 0,
the transient part decays to 0, and using a trigonometric identity, we can write the
steady-state part as a cosine function with amplitude A and phase 𝜙:

ys(t) = A cos(𝜔ot − 𝜙)u(t). (6.66)

The trigonometric identity is

A cos(𝑣 − 𝜙) = [A cos(𝜙)] cos(𝑣) + [A sin(𝜙)] sin(𝑣), (6.67)

where in our case from (6.65):

𝑣 = 𝜔ot, A cos(𝜙) = a𝛼, A sin(𝜙) = 𝜔o𝛼, 𝛼 = 1

a2 + 𝜔
2
o

. (6.68)

The ratio of the sinusoidal quantities gives the phase on the left-hand side of (6.67):

sin(𝜙)
cos(𝜙)

= 𝜔o∕a =⇒ 𝜙 = tan−1(𝜔o∕a). (6.69)

The amplitude is derived as follows:

A2 = A2 cos(𝜙) + A2 sin(𝜙) = a2
𝛼

2 + 𝜔
2
o𝛼

2, (6.70)

which means

A = 𝛼

√

a2 + 𝜔
2
o = 1

√

a2 + 𝜔
2
o

. (6.71)

Thus, the following expression is equivalent to the steady-state part of (6.65):

ys(t) =
1

√

a2 + 𝜔
2
o

cos(𝜔ot − tan−1(𝜔o∕a))u(t). (6.72)

6.4.6 Impulse Response

For the input x(t) = 𝛿(t), the first term of (6.55) (with to = 0) becomes

∫
t

0
𝛿(𝜏) exp(−a(t − 𝜏))d𝜏 = exp(−at)∫

t

0
𝛿(𝜏) exp(a𝜏)d𝜏

= exp(−at)u(t), (6.73)
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where the second integral is 1 because of the sifting property of the Dirac delta
function. This particular solution of the ODE is known as the impulse response func-
tion of the system and is usually denoted by h(t). The initial condition, given by the
second term in (6.55) with to = 0, is ignored when computing h(t). Alternatively,
when the input is x(t) = 𝛿(t), as was the case in (6.25) for the first-order RC circuit,
we can ignore the first term in (6.55) and immediately derive the impulse response
function from the second term in (6.55) with to = 0 and y(to) = 1. It turns out that in
general for zero initial conditions, the following convolution integral describes how
to generate the output of an LTI system from its input x(t):

y(t) = ∫
t

0
x(𝜏)h(t − 𝜏)d𝜏, t ≥ 0. (6.74)

This result actually holds for a linear ODE of any order, although of course h(t)
depends on the specific ODE. The following notation is generally used to represent
this integral:

y(t) = h(t) ∗ x(t). (6.75)

(This operation is different from the cross-correlation function covered in Chapter 5,
which uses the symbol ⋆.)

For a linear system with zero initial conditions, it is shown later in this chapter that
the output can be written as the following integral from the principle of superposition:

y(t) = ∫
t

to

h(to, t)x(t)dt, t ≥ to, (6.76)

where h(to, t) is the notation for the response of the system for delayed input 𝛿(t − to).
Superposition is a defining characteristic of a linear system, where the output for the
sum of input waveforms is the sum of their individual responses. If the system is
also time-invariant, then h(to, t) is a function only of the time difference: h(to, t) =
h(t − to), leading to the convolution integral in (6.74). The impulse response function
completely specifies an LTI system, and it is used to represent high-order systems as
discussed in Chapter 7 where ODEs are solved by using the Laplace transform.

Definition: Causal Linear System A linear time-invariant (LTI) system is causal
when h(t − to) = 0 for t < to.

This property means that the present output of a causal system cannot be a function
of a future input. This can be illustrated from the convolution in (6.74) if we let the
upper limit extend to infinity and assume x(𝜏) = 0 for 𝜏 < 0:

y(t) = ∫
∞

0
x(𝜏)h(t − 𝜏)d𝜏, t ≥ 0. (6.77)
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Note that because of the upper limit of infinity, the input beyond 𝜏 = t is used to
compute y(t). This noncausal (and impractical) situation is handled when h(t − 𝜏) is 0
for t < 𝜏, which gives upper limit t as in (6.74). In particular for 𝜏 = 0, we must have
h(t) = 0 for t < 0, which is the definition for a causal system given in most books on
linear systems.

Example 6.6 When the input is x(t) = u(t), the output of the system is its unit step
response. In this example, we illustrate graphically how the convolution integral is
evaluated for h(t) = exp(−t)u(t). The integration in (6.74) is performed over the vari-
able 𝜏, and so for t = 0, we find that h(t) is reversed about the origin. As t is increased
beyond 0, h(t − 𝜏) is shifted to the right and the integral (area) of the product of
the overlapping functions is computed. For t < 0, there is no overlap and the inte-
gral is 0. Figure 6.5(a) shows the unit step function and the time-reversed and shifted
exponential function exp(−(t − 𝜏))u(t − 𝜏) for two values of t. The dashed line shows
exp(−(1 − 𝜏))u(−(1 − 𝜏)) relative to u(𝜏) (the solid line), and the integral is

∫
1

0
exp(−(1 − 𝜏))u(𝜏)d𝜏 = exp(−1)∫

1

0
exp(𝜏)d𝜏

= exp(−1)[exp(1) − exp(0)]

= 1 − exp(−1) ≈ 0.6321. (6.78)

Similarly, for the dotted line representing exp(−(2 − 𝜏))u(−(2 − 𝜏)):

∫
2

0
exp(−(2 − 𝜏))u(𝜏)d𝜏 = exp(−2)∫

2

0
exp(𝜏)d𝜏

= exp(−2)[exp(2) − exp(0)]

= 1 − exp(−2) ≈ 0.8647. (6.79)

This example illustrates the mechanism for computing a convolution where one of
the functions is reversed and shifted relative to the other function. Of course, it is
possible to derive y(t) directly from the convolution integral:

∫
t

0
exp(−(t − 𝜏))u(𝜏)d𝜏 = exp(−t)∫

t

0
exp(𝜏)d𝜏 = exp(−t)[exp(t) − 1]

= [1 − exp(−t)]u(t), (6.80)

which is plotted in Figure 6.5(b). The dotted lines in that plot denote the two values
of the integral given in (6.78) and (6.79) for t = 1 and 2 s, respectively. Usually, it is
helpful to sketch a diagram of the reversed and shifted function when performing a
convolution in order to determine the proper limits of integration.

Another convolution example is provided later in this chapter, and we verify using
the functions in the previous example that convolution is a symmetric operation.
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Figure 6.5 Convolution example for a first-order system with impulse response function
h(t) = exp(−t)u(t) and input x(t) = u(t). (a) Reversed exponential function for two values of
t (note that the horizontal axis is 𝜏). (b) Overall output y(t) = x(t) ∗ h(t).
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6.5 SECOND-ORDER LINEAR ODE

A second-order linear ODE has the following form:

d2

dt2
y(t) + a1

d
dt

y(t) + a0y(t) = x(t)u(t − to), (6.81)

where the coefficients {a0, a1} are fixed. The solution to this equation is more com-
plicated to derive than it was for the first-order ODE, and in fact, there are three types
of solutions depending on the values of the coefficients {a0, a1}. In order to simplify
the derivations, we assume to = 0 throughout this discussion. From the results of the
previous section, we know that a simple time shift of the input x(t) yields the same
time shift for the output y(t). This is due to the fact that the system represented by the
ODE is LTI. Thus, all the solutions derived in this section can be modified to handle a
shifted input (and any initial conditions at to > 0) generally by replacing all instances
of t with t − to in the final expression for y(t).

Figure 6.6 shows examples of linear circuits that are represented by second-order
ODEs. The voltages across the devices in the series circuit sum to 0, which results in
an integro-differential equation in terms of the current i(t):

Ri(t) + L
d
dt

i(t) + (1∕C)∫
t

0
i(t)dt + 𝑣C(0) = Vsu(t), (6.82)

where 𝑣C(0) is the initial capacitor voltage. Differentiating this expression gives

d2

dt2
i(t) + (R∕L) d

dt
i(t) + (1∕LC)i(t) = (Vs∕R)𝛿(t), (6.83)

R
+
_Vsu(t)

i(t)

RIsu(t) L

(a)

(b)

+

_

v(t)C

C

L

+ _vR(t)

vC(t)

vL(t) _+

+

_

iR(t)

iC(t)

iL(t)

Figure 6.6 Second-order RLC circuits. (a) Series circuit with step voltage source Vsu(t).
(b) Parallel circuit with step current source Isu(t).
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where 𝛿(t) is the generalized derivative of u(t). As in the case of the first-order ODE,
we ignore the Dirac delta function on the right-hand side, yielding the homogeneous
equation:

d2

dt2
i(t) + (R∕L) d

dt
i(t) + (1∕LC)i(t) = 0, (6.84)

and assume a nonzero initial current i(0). Similarly, the currents in the parallel circuit
must sum to 0, which leads to an integro-differential equation in terms of the voltage
𝑣(t):

𝑣(t)∕R + (1∕L)∫
t

0
𝑣(t)dt + iL(0) + C

d
dt
𝑣(t) = Isu(t), (6.85)

where iL(0) is the initial inductor current. Differentiating this equation also yields a
homogeneous ODE:

d2

dt2
𝑣(t) + (1∕RC) d

dt
𝑣(t) + (1∕LC)𝑣(t) = 0, (6.86)

where again the delta function has been ignored and we assume a nonzero initial
voltage 𝑣(0). Both of these circuit results are summarized in Table 6.2.

Consider next the voltage across the resistor in the series RLC circuit given by
𝑣R(t) = Ri(t). Replacing i(t) with 𝑣R(t)∕R in (6.84) yields an ODE for the resistor
voltage:

d2

dt2
𝑣R(t) + (R∕L) d

dt
𝑣R(t) + (1∕LC)𝑣R(t) = 0. (6.87)

For the inductor voltage, i(t) = (1∕L) ∫ t
0 𝑣L(t)dt + 𝑣L(0) is substituted into (6.84):

(1∕L) d
dt
𝑣L(t) + (R∕L2)𝑣L(t) + (1∕L2C)∫

t

0
𝑣L(t)dt + (1∕LC)𝑣L(0) = 0. (6.88)

TABLE 6.2 Second-Order RLC Circuits

System Linear ODE Signals and Coefficients

General ODE d2y(t)∕dt2 + a1dy(t)∕dt + a0y(t) = x(t)

Series current y(t) = i(t), x(t) = 0
Series resistor voltage y(t) = 𝑣R(t), x(t) = 0
Series inductor voltage y(t) = 𝑣L(t), x(t) = 0
Series capacitor voltage y(t) = 𝑣C(t), x(t) = (1∕LC)Vsu(t)
Coefficients a0 = 1∕LC, a1 = R∕L

Parallel voltage y(t) = 𝑣(t), x(t) = 0
Parallel resistor current y(t) = iR(t), x(t) = 0
Parallel inductor current y(t) = iL(t), x(t) = (1∕LC)Isu(t)
Parallel capacitor current y(t) = iC(t), x(t) = 0
Coefficients a0 = 1∕LC, a1 = 1∕RC
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Differentiating this expression gives another homogeneous ODE:

d2

dt2
𝑣L(t) + (R∕L) d

dt
𝑣L(t) + (1∕LC)𝑣L(t) = 0, (6.89)

which has the same form as (6.87). For the capacitor voltage, we use the fact that
𝑣C(t) + 𝑣L(t) + 𝑣R(t) = Vsu(t), so that (6.87) and (6.89) are added as follows:

d2

dt2
[𝑣L(t) + 𝑣R(t)] + (R∕L) d

dt
[𝑣L(t) + 𝑣R(t)] + (1∕LC)[𝑣L(t) + 𝑣R(t)] = 0. (6.90)

Substituting 𝑣L(t) + 𝑣R(t) = Vsu(t) − 𝑣C(t) yields

d2

dt2
[Vsu(t) − 𝑣C(t)] + (R∕L) d

dt
[Vsu(t) − 𝑣C(t)] + (1∕LC)[Vsu(t) − 𝑣C(t)] = 0.

(6.91)
The voltage Vsu(t) vanishes in the first two terms after differentiating, again by ignor-
ing the resulting delta function and assuming nonzero initial conditions. Thus, the
second-order ODE for the capacitor voltage is nonhomogeneous:

d2

dt2
𝑣C(t) + (R∕L) d

dt
𝑣C(t) + (1∕LC)𝑣C(t) = (1∕LC)Vsu(t). (6.92)

The ODEs for the remaining quantities of the parallel RLC circuit, one of which is
nonhomogeneous, are also summarized in Table 6.2 (see Problem 6.11). An integra-
tor implementation for these second-order circuits is provided in Figure 6.7, which
symbolically shows that two initial conditions for y(t) are needed. This system is the
same for the series and parallel circuits, only the coefficients and the input and output
are different.

6.5.1 Homogeneous Solution

Let x(t) = 0 in (6.81) and, as was done for the first-order ODE, assume the solution
of the homogeneous second-order ODE has the exponential form y(t) = c exp(st).
Substituting this expression into (6.81) gives

s2c exp(st) + sa1c exp(st) + a0c exp(st) = 0, t ≥ 0. (6.93)

−a1

−a0

x(t) y(t)
d2

dt2
d
dt

∑

y(t) y(t)
Input Output

y(0)y ′(0) Initial conditions

Figure 6.7 Integrator implementation of a second-order ODE.
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The result after canceling terms is the second-order characteristic equation:

s2 + a1s + a0 = 0, (6.94)

which describes the dynamics of the system independently of the specific input and
initial conditions of the output. The quadratic formula gives two solutions:

s1, s2 = −a1∕2 ±
√

(a1∕2)2 − a0. (6.95)

Typically, the following quantities are defined when the second-order ODE is derived
for a linear circuit:

𝛼 ≜ a1∕2, 𝜔
2
o ≜ a0, (6.96)

where 𝛼 is Neper frequency and 𝜔o is the resonant frequency, both of which have
units rad/s (resonance is discussed later in Chapter 8 for a series RLC circuit). There
are three possible forms of the solution depending on the discriminant, which is the
expression under the square root in (6.95). The following names have been given to
these system responses:

• Overdamped: a0 < (a1∕2)2 =⇒ 𝛼
2
> 𝜔

2
o =⇒ real and distinct {s1, s2}:

s1, s2 = −𝛼 ±
√

𝛼
2 − 𝜔

2
o. (6.97)

• Underdamped: a0 > (a1∕2)2 =⇒ 𝛼
2
< 𝜔

2
o =⇒ complex conjugate {s1, s2}:

s1, s2 = −𝛼 ± j
√

𝜔
2
o − 𝛼

2 = −𝛼 ± j𝜔d, (6.98)

where we have defined the damped angular frequency 𝜔d ≜
√

𝜔
2
o − 𝛼

2 for
nonzero 𝛼.

• Critically damped: a0 = (a1∕2)2 =⇒ 𝛼
2 = 𝜔

2
o =⇒ real and repeated {s1, s2}:

s1 = s2 = −𝛼. (6.99)

Since both roots in the overdamped case satisfy (6.81) when x(t) = 0, the most
general form of the solution is a linear combination of the two exponentials:

y(t) = [c1 exp(s1t) + c2 exp(s2t)]u(t). (6.100)

The components of this expression are independent of each other, which means that
one term cannot be derived from the other by scaling it with a constant. There are
two modes for the exponentials given by {s1, s2}, and they converge to 0 because the
input is 0 and we assume a stable system such that Re(s1) < 0 and Re(s2) < 0.
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For the underdamped case, (6.98) yields

y(t) = exp(−𝛼t)[d1 exp(j𝜔dt) + d2 exp(−j𝜔dt)]u(t), (6.101)

where the common exponential term has been factored, and {d1, d2} have been used
for the coefficients; these are intermediate quantities needed before defining the final
set of coefficients. Substituting Euler’s formula for each complex exponential and
rearranging the equation give:

y(t) = exp(−𝛼t)[(d1 + d2) cos(𝜔dt) + j(d1 − d2) sin(𝜔dt)]u(t)

= exp(−𝛼t)[c1 cos(𝜔dt) + c2 sin(𝜔dt)]u(t), (6.102)

where c1 ≜ d1 + d2 and c2 ≜ j(d1 − d2). Since d1 and d2 must be a complex conjugate
pair in order for y(t) to be real, d1 − d2 is imaginary such that {c1, c2} are real-valued.
The homogeneous solution for complex roots is an exponentially weighted sum of
sine and cosine functions; the exponential function forms an envelope about the sinu-
soids as demonstrated later. It is possible to rewrite (6.102) as a single cosine term as
follows:

y(t) = r exp(−𝛼t) cos(𝜔dt − 𝜙)u(t), (6.103)

where 𝜙 ≜ tan−1(c2∕c1) is a phase shift and r ≜
√

c2
1 + c2

2 is the magnitude. We refer
to this solution as the polar form due to its similarity to the polar form used for com-
plex numbers in Chapter 4. It is straightforward to verify that (6.103) is the same as
(6.102) by using the following trigonometric identities (see Problem 6.12):

cos(x − y) = cos(x) cos(y) + sin(x) sin(y) (6.104)

sin(tan−1(x)) = x
√

1 + x2
, cos(tan−1(x)) = 1

√
1 + x2

. (6.105)

An example is provided in Figure 6.8(a) with 𝛼 = 0 such that exp(−𝛼t) = 1 (the
envelopes of the sinusoids are constant). The figure shows the individual components
of (6.102) and their sum given by the polar form in (6.103). Figure 6.8(b) has the same
y(t) except with 𝛼 = 0.06 rad/s so that it is exponentially weighted. The envelope of
r exp(−𝛼t) cos(𝜔dt − 𝜙) is the weighted exponential r exp(−𝛼t), which we see is an
upper bound for the function. The negative function −r exp(−𝛼t) is also included in
envelope plots to show the lower bound.

For the critically damped case, the two roots of the characteristic equation are
identical, so it is not possible to use the sum of exponential terms as in the previous
cases because they would not be independent. It is easy to verify that y(t) = c1 exp(st)
with s = s1 = s2 = −𝛼 is one solution of the homogeneous ODE. The other solution
is obtained using a technique where each y(t) in the homogeneous ODE is multiplied
by f (t). The goal is to find f (t) such that the product f (t)y(t) = f (t)c1 exp(st) is the
other solution of the ODE, and by construction, it is independent of c1 exp(st).
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Figure 6.8 The cosine form in (6.103) with 𝜔d = 1 rad/s, c1 = 2, and c2 = 1 such that
r ≈ 2.2361 and 𝜙 ≈ 0.4636 rad. (a) 𝛼 = 0 and components of y(t) from (6.102). (b) 𝛼 = 0.06
rad/s and the exponential envelope.
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The product rule for the second derivative of f (t)y(t) is

d2

dt2
f (t)y(t) = d

dt

[
f (t) d

dt
y(t) + y(t) d

dt
f (t)

]

= 2
d
dt

f (t) d
dt

y(t) + f (t) d2

dt2
y(t) + y(t) d2

dt2
f (t). (6.106)

Substituting this expression and the first derivative of f (t)y(t) into (6.81) (with
x(t) = 0) yields

2
d
dt

f (t) d
dt

y(t) + f (t) d2

dt2
y(t) + y(t) d2

dt2
f (t)

+ a1f (t) d
dt

y(t) + a1y(t) d
dt

f (t) + a0f (t)y(t) = 0. (6.107)

Collecting terms together according to the order of the derivative of f (t), we have

y(t) d2

dt2
f (t) +

[
2

d
dt

y(t) + a1y(t)
] d

dt
f (t)

+
[

d2

dt2
y(t) + a1

d
dt

y(t) + a0y(t)
]

f (t) = 0. (6.108)

This ODE for f (t) has the same form as the original ODE for y(t), except that its
“coefficients” are functions of time. The expression in the last set of brackets is 0
because it is the original homogeneous ODE and y(t) is a solution. The derivative of
the first solution y(t) = c1 exp(−𝛼t) is

d
dt

y(t) = −𝛼c1 exp(−𝛼t) = −𝛼y(t) = −(a1∕2)y(t), (6.109)

such that the expression in the first set of brackets in (6.108) is also 0. Thus, (6.108)
simplifies considerably to

d2

dt2
f (t) = 0, (6.110)

where the leading y(t) has canceled. The solution of this equation is f (t) = t, so that
the second solution of the ODE is the ramped exponential y(t) = c2t exp(−𝛼t). Com-
bining the two results gives the overall solution for the critically damped case:

y(t) = (c1 + c2t) exp(−𝛼t)u(t). (6.111)

It is clear that these two components are not linear combinations of each other because
t multiplies c2 exp(−𝛼t). All three solutions for the homogeneous second-order ODE
are summarized in Table 6.3.

Since we are interested in stable systems, 𝛼 = a1∕2 > 0 for all three cases so that
the exponential functions in each solution decrease to 0. However, it is possible to
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TABLE 6.3 Second-Order Homogeneous ODE Solutions

System Linear ODE Signals and Parameters

Homogeneous ODE d2y(t)∕dt2 + a1dy(t)∕dt + a0y(t) = 0
Solution y(t) = [c1y1(t) + c2y2(t)]u(t)
Overdamped y1(t) = exp(s1t), y2(t) = exp(s2t)
Underdamped y1(t) = exp(−𝛼t) cos(𝜔dt), y2(t) = exp(−𝛼t) sin(𝜔dt)
Critically damped y1(t) = exp(−𝛼t), y2(t) = t exp(−𝛼t)

Parameters s1,2 = −𝛼 ±
√
𝛼

2 − 𝜔
2
o, 𝛼 ≜ a1∕2, 𝜔2

o ≜ a0, 𝜔d ≜ √
𝜔

2
o − 𝛼

2

Overdamped c1 = [s2y(0) − y′(0)]∕(s2 − s1), c2 = [y′(0) − s1y(0)](s2 − s1)
Underdamped c1 = y(0), c2 = [y′(0) + 𝛼y(0)]∕𝜔d

Critically damped c1 = y(0), c2 = y′(0) + 𝛼y(0)

have 𝛼 = 0 for the underdamped solution where the sine and cosine terms maintain a
constant envelope as in Figure 6.8(a). In this case, 𝜔d = 𝜔o and the system is called
undamped. For the overdamped case, we also require a0 ≥ 0 for a bounded solution.
If a0 < 0, then the square root in (6.95) exceeds a1∕2 and it is possible for one or
both roots to be positive, resulting in exponentials that increase unbounded. For linear
circuits, this restriction is enforced because R, L, and C are all positive, leading to the
positive square root of 𝜔2

o.
A critically damped response occurs for any set of coefficients along the solid

curve a0 = a2
1∕4 shown in Figure 6.9. The roots are complex above the curve and real

below the curve. All three solutions have the same conditions on {a0, a1} for bounded-
ness, as indicated by the upper right quadrant formed by the dotted lines in the figure.
The shaded region corresponds to bounded solutions for the overdamped case.

Example 6.7 Examples of the three types of solutions y(t) and the components
{y1(t), y2(t)} from Table 6.3 are shown in Figure 6.10. The decay rate of the over-
damped solution is dominated by the term with the negative root s1 = −0.1. The
underdamped solution is similar to the result in Figure 6.8(a) (the dotted line) except
that it has exponential weighting with 𝛼 = 0.1. The shape of the critically damped
curve closely follows that of the term with multiplier t (the dashed line), but of course
both terms decay to 0 because exp(−t)u(t) → 0 faster than the ramp t → ∞. In this
example, the same coefficients {c1 = 2, c2 = 1} were used for each solution.

Example 6.8 Consider a special case of (6.81) with x(t) = 0 (homogeneous) and
a1 = 0:

d2

dt2
y(t) + a0y(t) = 0, (6.112)

which has the characteristic equation

s2 + a0 = 0. (6.113)
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Figure 6.9 Plot of a0 = a2
1∕4 where the discriminant is 0 (shown only for a1 ∈ [−2, 2]). The

roots are real for {a0, a1} below the curve and complex for {a0, a1} above the curve. For a
bounded solution, all three cases require a0 ≥ 0 and a1 > 0 (the upper right quadrant formed
by the dotted lines). The bounded overdamped solution is located within the shaded region.

If a0 > 0 (which would be the case for an RLC circuit because a0 = 1∕LC), then
the roots form a complex conjugate pair {s1, s2} = ±j

√
a0, and the solution y(t) is

undamped. This result also follows from Figure 6.9, corresponding to a0 along the
vertical dotted line. Moreover, since the roots are strictly imaginary, the solution is

y(t) = [c1 cos(𝜔ot) + c2 sin(𝜔ot)]u(t), (6.114)

which does not decay to 0, similar to the results in Figure 6.8(a). The frequency is
𝜔d = 𝜔o = 1∕

√
LC, and the coefficients {c1, c2} depend on the initial conditions (as

they do for all three types of second-order solutions). From this result, we find that the
middle term a1dy(t)∕dt in the second-order ODE is needed for the solution to decay
to 0. This is evident from Table 6.2 for the series and parallel RLC circuits where
a1 = R∕L and a1 = 1∕RC, respectively. The resistor in each case dissipates the initial
circuit energy stored in C or L. Without a resistor, the voltages and currents oscillate
sinusoidally without any damping as t → ∞.

Example 6.9 Another special case occurs when a0 = 0 such that

d2

dt2
y(t) + a1

d
dt

y(t) = 0, (6.115)
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Figure 6.10 Examples of homogeneous solutions with coefficients c1 = 2 and c2 = 1.
(a) Overdamped (s1 = −0.1 and s2 = −0.6). (b) Underdamped (𝛼 = 0.1 rad/s and𝜔d = 1 rad/s).
(c) Critically damped (𝛼 = 0.2 rad/s).
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which has the characteristic equation

s2 + a1s = 0. (6.116)

The two roots are s1 = 0 and s2 = −a1 = −2𝛼, and since they are real and distinct,
the overdamped expression in (6.100) is used:

y(t) = [c1 + c2 exp(−2𝛼t)]u(t). (6.117)

This result has an exponentially decaying component and a fixed component that
depends on c1, which in turn is derived from the initial conditions y(0) and y′(0). Note,
however, that this situation would not apply in a practical sense to the second-order
RLC circuits in Figure 6.6 because a0 = 1∕LC = 0 and nonzero a1 means C → ∞
and L → ∞ for the series and parallel circuits, respectively (see Table 6.2).

6.5.2 Damping Ratio

In most engineering courses on linear circuits, the second-order ODE in (6.81) is
often written as

d2

dt2
y(t) + 2𝜁𝜔o

d
dt

y(t) + 𝜔
2
oy(t) = x(t), (6.118)

where 𝜁 is the damping ratio and 𝜔o is the resonant frequency previously given in
(6.96). The characteristic equation using this notation is

s2 + 2𝜁𝜔os + 𝜔
2
o = 0, (6.119)

which has roots
s1, s2 = −𝜁𝜔o ± 𝜔o

√
𝜁

2 − 1. (6.120)

The advantage of this notation is that the three types of solutions for the second-order
homogeneous ODE are readily determined by the value of 𝜁 .

• Overdamped 𝜁 > 1:

s1, s2 = −𝜁𝜔o ± 𝜔o

√
𝜁

2 − 1. (6.121)

• Underdamped 𝜁 < 1:

s1, s2 = −𝜁𝜔o ± j𝜔o

√
1 − 𝜁

2 = −𝜁𝜔o ± j𝜔d. (6.122)

• Critically damped 𝜁 = 1:
s1 = s2 = −𝜁𝜔o. (6.123)
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Since 𝛼 = 𝜁𝜔o where −𝛼 is the exponent of the exponential in (6.96), 𝜁 is a
dimensionless ratio:

𝜁 = 𝛼

𝜔o
. (6.124)

For fixed 𝜔o, the damping ratio determines the exponential decay rate for each of the
three types of solutions. It is particularly useful for the underdamped case where it
indicates the degree to which the sine and cosine terms decrease. For small 𝜁 (close
to 0), the solution is highly oscillatory and takes longer to decay than when 𝜁 is close
to 1. When 𝜁 = 0, the sinusoids do not decay; this is the undamped solution where
the roots are strictly imaginary as discussed in Example 6.8.

Using this notation, we have the following expressions for the three types of homo-
geneous solutions.

• Overdamped 𝜁 > 1:

y(t) = [c1 exp(
√
𝜁

2 − 1𝜔ot) + c2 exp(−
√
𝜁

2 − 1𝜔ot)] exp(−𝜁𝜔ot)u(t).
(6.125)

• Underdamped 𝜁 < 1:

y(t) = [c1 cos(𝜔dt) + c2 sin(𝜔dt)] exp(−𝜁𝜔ot)u(t). (6.126)

• Critically damped 𝜁 = 1:

y(t) = [c1 + c2t] exp(−𝜁𝜔ot)u(t). (6.127)

These formulations are interesting because they show that all three solutions have a
common exponentially decaying term. They differ by the expressions in the brackets:
exponential functions for overdamped, sinusoidal functions for underdamped, and
step and ramp functions for critically damped.

Example 6.10 Figure 6.11 shows examples of the three types of solutions for a
second-order ODE with different values for the damping ratio 𝜁 . For all three cases,
c1 = c2 = 1 and 𝜔o = 0.3 rad/s. Using the values of 𝜁 in the figure, the two real
roots for the overdamped case are s1 ≈ −0.7854 and s2 ≈ −0.1146. For the criti-
cally damped case, 𝛼 = 0.3 rad/s, and for the underdamped case, 𝛼 = 0.15 rad/s and
𝜔d ≈ 0.2598 rad/s. These plots are typical waveforms for the three types of solutions.
Overdamped y(t) is the sum of two decaying exponentials, and so it decreases to 0
with two modes (time constants). This is evident by the dashed line where we see
relatively rapid decay initially, which is due to the root −0.7854, and then the rest of
the curve is dominated by the root −0.1146. The transition between the two modes
occurs approximately around t = 3 s, and we can see that the curve in that region has a
bend, which is not due to a single exponential. Underdamped y(t) (the solid curve) has
an oscillatory behavior that is damped down by the exponential weighting. Although
y(t) is the sum of sine and cosine, recall that it can be written as a single cosine with
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Overdamped: ζ = 1.5
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Figure 6.11 Second-order ODE solutions for Example 6.10.

amplitude
√

c2
1 + c2

2 =
√

2 and phase shift tan−1(c2∕c1) = 45∘. The curve does not

actually reach
√

2 just past t = 0 because of the multiplicative exponential function.
Critically damped y(t) initially increases because of the ramp t, but eventually the
exponential function dominates the solution and brings the output to 0 (the dotted
curve).

6.5.3 Initial Conditions

It is straightforward to verify that the two initial conditions for each of the three ODE
solutions are as follows with y′(0) ≜ dy(t)∕dt|t=0.

• Overdamped:
y(0) = c1 + c2, y′(0) = c1s1 + c2s2. (6.128)

• Underdamped:
y(0) = c1, y′(0) = 𝜔dc2 − 𝛼c1. (6.129)

• Critically damped:
y(0) = c1, y′(0) = c2 − 𝛼c1. (6.130)

The quantities on the left-hand side of each pair of equations would be given in a
problem statement or they can be determined for a particular circuit or system, from
which we solve for {c1, c2} because there are two equations and two unknowns. It is
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interesting that the solution for the overdamped case requires solving a second-order
system of equations, whereas c1 is found directly for the other two cases, from which
c2 is also easily found. The coefficients for the overdamped case are derived by invert-
ing a matrix:

[
1 1

s1 s2

][
c1
c2

]

=
[

y(0)
y′(0)

]

⇒

[
c1
c2

]

= 1
s2 − s1

[
s2y(0) − y′(0)
y′(0) − s1y(0)

]

. (6.131)

The equations for the coefficients are also summarized in Table 6.3.
In the next chapter on the Laplace transform, it will be necessary to distinguish

between t = 0− (“just before” t = 0) and t = 0+ (“just after” t = 0). The function
values at these two time instants are usually called initial conditions, though there
is actually a difference for some functions. For example, the unit step function has
u(0−) = 0 and u(0+) = 1. In order to avoid confusion, we will refer to quantities such
as x(0−) as an initial state and x(0+) as an initial condition (or initial value). Thus, the
equations in (6.128)–(6.130) are technically based on the initial conditions at t = 0+.

6.5.4 Nonhomogeneous Solution

For the nonhomogeneous ODE in (6.81), we start with the general form of the solution
for the homogeneous ODE:

y(t) = [c1y1(t) + c2y2(t)]u(t), (6.132)

where {y1(t), y2(t)} correspond to one of the three types of solutions in Table 6.3
based on the characteristic equation. The constants {c1, c2} are replaced with func-
tions {g1(t), g2(t)} so that we can use a technique called variation of parameters:

y(t) = g1(t)y1(t) + g2(t)y2(t). (6.133)

From the product rule, the derivative yields four terms:

d
dt

y(t) = g1(t)
d
dt

y1(t) + y1(t)
d
dt

g1(t) + g2(t)
d
dt

y2(t) + y2(t)
d
dt

g2(t). (6.134)

In order to solve for g1(t) and g2(t), the following condition allows us to cancel terms
(similar to that done for the integrating factor of the nonhomogeneous first-order
ODE):

y1(t)
d
dt

g1(t) + y2(t)
d
dt

g2(t) = 0, (6.135)

which simplifies (6.134) to

d
dt

y(t) = g1(t)
d
dt

y1(t) + g2(t)
d
dt

y2(t). (6.136)
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Differentiating this result yields

d2

dt2
y(t) = g1(t)

d2

dt2
y1(t) +

d
dt

g1(t)
d
dt

y1(t) + g2(t)
d2

dt2
y2(t) +

d
dt

g2(t)
d
dt

y2(t). (6.137)

The expressions in (6.133), (6.136), and (6.137) are substituted into the second-order
nonhomogeneous ODE in (6.81), which we rearrange by collecting terms that multi-
ply {g1(t), g2(t)} and their derivatives:

[

a0y1(t) + a1
d
dt

y1(t) +
d2

dt2
y1(t)

]

g1(t) +
[

a0y2(t) + a1
d
dt

y2(t) +
d2

dt2
y2(t)

]

g2(t)

+
[ d

dt
y1(t)

] d
dt

g1(t) +
[ d

dt
y2(t)

] d
dt

g2(t) = x(t). (6.138)

The first two terms are 0 because {y1(t), y2(t)} are assumed to be solutions for the
homogeneous ODE which appears in both brackets, so that (6.138) reduces to

[ d
dt

y1(t)
] d

dt
g1(t) +

[ d
dt

y2(t)
] d

dt
g2(t) = x(t). (6.139)

This result along with (6.135) are used to find {g1(t), g2(t)} for a particular x(t),
which when substituted into (6.133) give the nonhomogeneous solution. These two
equations can be written in matrix form as follows:

[
y1(t) y2(t)

dy1(t)∕dt dy2(t)∕dt

] [
dg1(t)∕dt
dg2(t)∕dt

]

=
[

0
x(t)

]

. (6.140)

The inverse of the matrix is

[
y1(t) y2(t)

dy1(t)∕dt dy2(t)∕dt

]−1

= 1
W(t)

[
dy2(t)∕dt −y2(t)
−dy1(t)∕dt y1(t)

]

, (6.141)

and the solution of (6.140) is

[
dg1(t)∕dt
dg2(t)∕dt

]

= 1
W(t)

[
−x(t)y2(t)
x(t)y1(t)

]

, (6.142)

where we have defined the determinant

W(t) ≜ y1(t)
d
dt

y2(t) − y2(t)
d
dt

y1(t). (6.143)

For this ODE problem, W(t) is called the Wronskian of {y1(t), y2(t)}.
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Definition: Wronskian The Wronskian of N differentiable functions {fn(t)} is the
following determinant:

W(t) = det

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

f1(t) · · · fN(t)

f ′1(t) · · · f ′N(t)

⋮ · · · ⋮

f (N−1)
1 (t) · · · f (N−1)

N (t)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (6.144)

where the matrix contains ordinary derivatives of each function with respect to the
independent variable t.

Integrating the elements of (6.142) yields

g1(t) = −∫
t

0
x(t)[y2(t)∕W(t)]dt + g1(0), (6.145)

g2(t) = ∫
t

0
x(t)[y1(t)∕W(t)]dt + g2(0), (6.146)

and substituting these into (6.133) gives the general form of the solution for the
second-order nonhomogeneous ODE:

y(t) = y1(t)
[

−∫
t

0
x(t)[y2(t)∕W(t)]dt + g1(0)

]

u(t)

+ y2(t)
[

∫
t

0
x(t)[y1(t)∕W(t)]dt + g2(0)

]

u(t). (6.147)

It is important to note that W(t) is part of both integrands and must be included when
performing the integrations for a specific input x(t); in general, they cannot be factored
out. The expression in (6.147) can be rearranged into the sum of the homogeneous
solution and the particular solution (given by two integrals with input x(t)):

y(t) = [c1y1(t) + c2y2(t)]u(t) − y1(t)
[

∫
t

0
x(t)[y2(t)∕W(t)]dt

]

u(t)

+ y2(t)
[

∫
t

0
x(t)[y1(t)∕W(t)]dt

]

u(t), (6.148)

where the constants {g1(0), g2(0)} have been replaced with {c1, c2}, which follow
from (6.132) and (6.133) for the homogeneous solution.

Next, for each of the three types of solutions for a second-order ODE, we derive
expressions for W(t). For the overdamped solution in (6.100):

W(t) = s2 exp(s1t) exp(s2t) − s1 exp(s2t) exp(s1t)

= (s2 − s1) exp((s1 + s2)t). (6.149)
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For the underdamped case in (6.102):

W(t) = exp(−𝛼t) cos(𝜔dt)[−𝛼 exp(−𝛼t) sin(𝜔dt) + 𝜔d exp(−𝛼t) cos(𝜔dt)]

− exp(−𝛼t) sin(𝜔dt)[−𝛼 exp(−𝛼t) cos(𝜔dt) − 𝜔d exp(−𝛼t) sin(𝜔dt)]

= exp(−2𝛼t)[−𝛼 cos(𝜔dt) sin(𝜔dt) + 𝜔dcos2(𝜔dt)

+ 𝛼 sin(𝜔dt) cos(𝜔dt) + 𝜔dsin2(𝜔dt)]. (6.150)

Since the cos(𝜔dt) sin(𝜔dt) terms cancel, this equation simplifies to

W(t) = 𝜔d exp(−2𝛼t), (6.151)

where sin2(𝜔dt) + cos2(𝜔dt) = 1 has been used. For the critically damped case in
(6.111):

W(t) = exp(−𝛼t)[exp(−𝛼t) − 𝛼t exp(−𝛼t)] + t exp(−𝛼t)𝛼 exp(−𝛼t)

= exp(−2𝛼t)(1 − 𝛼t + 𝛼t) = exp(−2𝛼t). (6.152)

The Wronskians for the three cases, which are all decaying exponentials, are sum-
marized in Table 6.4 where we have also included expressions for the terms in small
brackets multiplying x(t) in the integrands of (6.148).

Substituting the Wronskian results into the general ODE solution in (6.148) for
y(t) yields the following complete solutions for the three second-order cases.

• Overdamped:

y(t) = [c1 exp(s1t) + c2 exp(s2t)]u(t)

+ 1
s2 − s1

[

∫
t

0
x(𝜏)[exp(s2(t − 𝜏)) − exp(s1(t − 𝜏))]d𝜏

]

u(t).

(6.153)

TABLE 6.4 Wronskians for Second-Order Linear ODE

System Wronskian and Integrand Terms

General form W(t) = y1(t)dy2(t)∕dt − y2(t)dy1(t)∕dt
Overdamped W(t) = (s2 − s1) exp((s1 + s2)t)

y1(t)∕W(t) = exp(−s2t)∕(s2 − s1)
y2(t)∕W(t) = exp(−s1t)∕(s2 − s1)

Underdamped W(t) = 𝜔d exp(−2𝛼t)
y1(t)∕W(t) = exp(𝛼t) cos(𝜔dt)∕𝜔d

y2(t)∕W(t) = exp(𝛼t) sin(𝜔dt)∕𝜔d

Critically damped W(t) = exp(−2𝛼t)
y1(t)∕W(t) = exp(𝛼t)
y2(t)∕W(t) = t exp(𝛼t)
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• Underdamped:

y(t) = [c1 cos(𝜔dt) + c2 sin(𝜔dt)] exp(−𝛼t)u(t)

+ 1
𝜔d

[

∫
t

0
x(𝜏) exp(−𝛼(t − 𝜏)) sin(𝜔d(t − 𝜏))d𝜏

]

u(t). (6.154)

• Critically damped:

y(t) = [c1 + c2t] exp(−𝛼t)u(t)

−
[

∫
t

0
x(𝜏)(t − 𝜏) exp(−𝛼(t − 𝜏))d𝜏

]

u(t). (6.155)

The initial conditions in (6.128)–(6.130) derived for the three types of homo-
geneous solutions and summarized in Table 6.3 are also used for the coefficients
{c1, c2} in the previous expressions. The integrals in (6.153)–(6.155) are convolu-
tions between the input x(t) and the impulse response functions for the three cases
and are discussed later in this chapter.

6.6 SECOND-ORDER ODE RESPONSES

In this section, we examine the responses of the three types of second-order systems
to step and Dirac delta functions.

6.6.1 Step Response

When the input x(t) = Ku(t) is a step function, (6.148) becomes

y(t) = [c1y1(t) + c2y2(t)]u(t) − Ky1(t)
[

∫
t

0
[y2(t)∕W(t)]dt

]

u(t)

+ Ky2(t)
[

∫
t

0
[y1(t)∕W(t)]dt

]

u(t), (6.156)

where K has been factored from the integrals and the lower limit of integration allows
us to drop u(t) from the integrand. Using the results from the previous section, we
summarize the complete solutions for each of the three cases as follows.

• Overdamped:

y(t) = [c1 exp(s1t) + c2 exp(s2t)]u(t) + K
s1(s2 − s1)

[1 − exp(s1t)]u(t)

− K
s2(s2 − s1)

[1 − exp(s2t)]u(t). (6.157)
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Combining the terms yields

y(t) = [c1 − K∕s1(s2 − s1)] exp(s1t)u(t)

+ [c2 + K∕s2(s2 − s1)] exp(s2t)u(t) + (K∕s1s2)u(t) (6.158)

= [b1 exp(s1t) + b2 exp(s2t) + K∕s1s2]u(t), (6.159)

where K∕s1s2 is the steady-state response, the two exponential terms comprise
the transient response, and we have defined the constants b1 ≜ c1 − K∕s1(s2 −
s1) and b2 ≜ c2 + K∕s2(s2 − s1). The denominator of the last term simplifies to

s1s2 =
(

−𝛼 +
√

𝛼
2 − 𝜔

2
o

)(

−𝛼 −
√

𝛼
2 − 𝜔

2
o

)

= 𝛼
2 − 𝛼

2 + 𝜔
2
o = a0, (6.160)

yielding
y(t) = [b1 exp(s1t) + b2 exp(s2t) + K∕a0]u(t). (6.161)

When substituting (6.158) and x(t) = Ku(t) into the ODE of (6.81), the deriva-
tives remove the constant term K∕a0 so that for a stable system, the third term
on the right-hand side of (6.159) is a0(K∕a0) = K as t → ∞, verifying that the
steady-state solution is in fact K∕a0.

• Underdamped:

y(t) = [c1 cos(𝜔dt) + c2 sin(𝜔dt)] exp(−𝛼t)u(t) −
K∕𝜔d

𝛼
2 + 𝜔

2
d

× [𝛼 sin(𝜔dt) + 𝜔d cos(𝜔dt)] exp(−𝛼t)u(t) + K

𝛼
2 + 𝜔

2
d

u(t). (6.162)

Combining the terms, we have

y(t) =

(

c1 −
K

𝛼
2 + 𝜔

2
d

)

exp(−𝛼t) cos(𝜔dt)u(t)

+

(

c2 −
K𝛼∕𝜔d

𝛼
2 + 𝜔

2
d

)

exp(−𝛼t) sin(𝜔dt)u(t) + (K∕a0)u(t) (6.163)

= [b1 cos(𝜔dt) + b2 sin(𝜔dt)] exp(−𝛼t)u(t) + (K∕a0)u(t), (6.164)

where b1 ≜ c1 − K∕(𝛼2 + 𝜔
2
d) and b2 ≜ c2 − K𝛼∕𝜔d(𝛼2 + 𝜔

2
d). The last term on

the right-hand side of (6.162) is the steady-state solution, which is identical to
the result for the overdamped case in (6.161) when 𝜔d is substituted:
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K

𝛼
2 + 𝜔

2
d

= K

𝛼
2 + 𝜔

2
o − 𝛼

2
= K∕a0, (6.165)

yielding the final expression in (6.164).

• Critically damped:

y(t) = [c1 + c2t − (K∕𝛼2)(𝛼t + 1)] exp(−𝛼t)u(t) + (K∕𝛼2)u(t). (6.166)

Combining the terms gives

y(t) = [(c1 − K∕𝛼2) + (c2 − K∕𝛼)t] exp(−𝛼t)u(t) + (K∕a0)u(t) (6.167)

= [b1 + b2t] exp(−𝛼t)u(t) + (K∕a0)u(t), (6.168)

where b1 ≜ c1 − K∕𝛼2 and b2 ≜ c2 − K∕𝛼, and the expression has been written
in terms of the transient and the steady-state responses. Since 𝜔2

o = 𝛼
2 for criti-

cal damping, K∕𝛼2 = K∕a0 in (6.166), which is the same steady-state solution
found for the other two cases.

For convenience, we have rearranged the equations based on the initial conditions
and summarized the step response results for all three cases in Table 6.5. This table
differs from Table 6.3 as follows: (i) nonhomogeneous with step input x(t) = Ku(t),
(ii) the solutions include the steady-state output ys = K∕a0, and (iii) the coefficients
{b1, b2} necessarily depend on K (unlike {c1, c2}, which are used in the complete
solution of (6.148)). Of course when K = 0, all the results in this table reduce to the
homogeneous solutions in Table 6.3.

6.6.2 Step Response (Alternative Method)

The coefficients {c1, c2} for the three types of ODE solutions were derived from
the initial conditions {y(0), y′(0)} using only the homogeneous part. The particular

TABLE 6.5 Second-Order ODE Solutions for Step Input

System Linear ODE Signals and Parameters

ODE with step input d2y(t)∕dt2 + a1dy(t)∕dt + a0y(t) = Ku(t)
Solution y(t) = [b1y1(t) + b2y2(t) + K∕a0]u(t)
Overdamped y1(t) = exp(s1t), y2(t) = exp(s2t)
Underdamped y1(t) = exp(−𝛼t) cos(𝜔dt), y2(t) = exp(−𝛼t) sin(𝜔dt)
Critically damped y1(t) = exp(−𝛼t), y2(t) = t exp(−𝛼t)

Parameters s1,2 = −𝛼 ±
√
𝛼

2 − 𝜔
2
o, 𝛼 ≜ a1∕2, 𝜔2

o ≜ a0, 𝜔d ≜ √
𝜔

2
o − 𝛼

2

Overdamped b1 = [s2(y(0) − K∕a0) − y′(0)]∕(s2 − s1)
b2 = [y′(0) − s1(y(0) − K∕a0)]∕(s2 − s1)

Underdamped b1 = y(0) − K∕a0, b2 = [y′(0) + 𝛼(y(0) − K∕a0)]∕𝜔d

Critically damped b1 = y(0) − K∕a0, b2 = y′(0) + 𝛼(y(0) − K∕a0)
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solution was then added to the homogeneous solution to give the complete solu-
tion in each case. In this section, we provide an alternative method for generating
the complete solution of the nonhomogeneous ODE when the input x(t) = Ku(t) is a
step function. Since the {b1, b2} multiplying the exponentials in (6.159), (6.164), and
(6.168) are just coefficients, they can be derived directly from the initial conditions
as follows.

• Overdamped:

y(0) = b1 + b2 + K∕a0, y′(0) = b1s1 + b2s2. (6.169)

• Underdamped:

y(0) = b1 + K∕a0, y′(0) = 𝜔db2 − 𝛼b1. (6.170)

• Critically damped:

y(0) = b1 + K∕a0, y′(0) = b2 − 𝛼b1. (6.171)

Observe that the initial condition y′(0) yields the same equations for {b1, b2} as in
the homogeneous case for {c1, c2}. However, the equations differ for y(0), which
include the steady-state component K∕a0. For the overdamped case, the coefficients
are derived using matrix notation as follows:

[
1 1

s1 s2

][
b1
b2

]

=
[

y(0) − K∕a0
y′(0)

]

⇒

[
b1
b2

]

= 1
s2 − s1

[
s2[y(0) − K∕a0] − y′(0)
y′(0) − s1[y(0) − K∕a0]

]

. (6.172)

For the underdamped case:

b1 = y(0) − K∕a0, b2 = [y′(0) + 𝛼[y(0) − K∕a0]]∕𝜔d , (6.173)

and for the critically damped case:

b1 = y(0) − K∕a0, b2 = y′(0) + 𝛼[y(0) − K∕a0]. (6.174)

Thus, for the step input x(t) = Ku(t), the coefficients of the complete solution can be
derived from {y(0), y′(0)} using one of two approaches:

• Compute {c1, c2} for (6.158), (6.163), or (6.167) using (6.128), (6.129), or
(6.130), respectively, which are based on the homogeneous solution.

• Compute {b1, b2} for (6.159), (6.164), or (6.168) using (6.172), (6.173), or
(6.174), respectively, which are based on the complete solution.
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We verify that indeed the two approaches are equivalent by demonstrating that
{b1, b2} can be derived from {c1, c2} for the coefficient expressions in (6.158),
(6.163), and (6.167).

• Overdamped:

c1 − K∕s1(s2 − s1) =
s2y(0) − y′(0)

s2 − s1
− K∕s1(s2 − s1)

= 1
s2 − s1

[s2y(0) − y′(0) − s2K∕a0] = b1, (6.175)

c2 + K∕s2(s2 − s1) =
y′(0) − s1y(0)

s2 − s1
+ K∕s2(s2 − s1)

= 1
s2 − s1

[y′(0) − s1y(0) + s1K∕a0] = b2. (6.176)

• Underdamped:

c1 −
K

𝛼
2 + 𝜔

2
d

= y(0) − K

𝛼
2 + 𝜔

2
d

= y(0) − K∕a0 = b1, (6.177)

c2 −
K𝛼∕𝜔d

𝛼
2 + 𝜔

2
d

= [y′(0) + 𝛼y(0)]∕𝜔d −
K𝛼∕𝜔d

𝛼
2 + 𝜔

2
d

= [y′(0) + 𝛼y(0) − K𝛼∕a0]∕𝜔d = b2. (6.178)

• Critically damped:

c1 − K∕𝛼2 = y(0) − K∕a0 = b1, (6.179)

c2 − K∕𝛼 = y′(0) + 𝛼y(0) − 𝛼K∕a0 = b2. (6.180)

Example 6.11 Examples of the step response for the three types of solutions are
shown in Figure 6.12. The same set of parameters from Figure 6.10 were used in
these computer simulations, with K∕a0 = 1 such that y(t) → 1 in all three cases. Since
K∕a0 simply adds to y1(t) + y2(t), the dotted lines in Figure 6.10 are raised by 1 to
produce these results. The same values for {b1, b2} were used for each of the three
cases.

Example 6.12 In this example, we demonstrate that the component terms of a
second-order ODE do in fact sum to give the input waveform. Consider the over-
damped ODE:

d2

dt2
y(t) + 2

d
dt

y(t) + 0.5y(t) = 2u(t), (6.181)
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Figure 6.12 Examples of step-response solutions with coefficients b1 = 2, b2 = 1, and
K∕a0 = 1. (a) Overdamped (s1 = −0.1 and s2 = −0.6). (b) Underdamped (𝛼 = 0.1 rad/s and
𝜔d = 1 rad/s). (c) Critically damped (𝛼 = 0.2 rad/s).
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whose characteristic equation has roots

s1, s2 = −1 ±
√

1 − 0.5 = −1 ± 1∕
√

2 ≈ −1.7071,−0.2929. (6.182)

Since the input is a step function, we have from (6.159):

y(t) = [b1 exp(s1t) + b2 exp(s2t) + 4]u(t), (6.183)

with derivatives

d
dt

y(t) = [b1s1 exp(s1t) + b2s2 exp(s2t)]u(t), (6.184)

d2

dt2
y(t) = [b1s2

1 exp(s1t) + b2s2
2 exp(s2t)]u(t). (6.185)

The unit step functions have not been differentiated because we are interested in
the solution for t ≥ 0+ where they are constant (similar to the reason given earlier
when we ignored the Dirac delta functions, resulting in homogeneous ODEs). In this
context, u(t) is used to indicate the support of y(t) and its derivatives. Substituting
(6.183)–(6.185) into the ODE and collecting the terms on the left-hand side yield

d2

dt2
y(t) + 2

d
dt

y(t) + 0.5y(t) = [b1(s2
1 + 2s1 + 0.5) exp(s1t)

+ b2(s2
2 + 2s2 + 0.5) exp(s2t) + 0.5(4)]u(t). (6.186)

Both expressions in parentheses are the characteristic equation, and since {s1, s2} are
its roots, these terms are 0, which leaves only the last term 2u(t). This is the right-hand
side of the ODE, which verifies that the solution is correct. Assume for convenience
that b1 = b2 = 1. Figure 6.13(a) shows the solution y(t) (the solid line) along with
its first and second derivatives (the dashed and dotted lines). The weighted sum of
these waveforms using the coefficients in the ODE gives exactly 2u(t) at every time
instant (the dash-dotted line), which is the forcing function x(t) in this example (the
right-hand side of the ODE). These results are repeated with coefficients a0 and a1
interchanged:

d2

dt2
y(t) + 0.5

d
dt

y(t) + 2y(t) = 2u(t), (6.187)

which corresponds to an underdamped system with parameters 𝛼 = 0.25 rad/s and
𝜔d ≈ 1.3919 rad/s. In this case, the solution is

y(t) = [b1 exp(−𝛼t) cos(𝜔dt) + b2 exp(−𝛼t) sin(𝜔dt) + 1]u(t), (6.188)

which has derivatives

d
dt

y(t) = −b1[𝛼 exp(−𝛼t) cos(𝜔dt) + 𝜔d exp(−𝛼t) sin(𝜔dt)]u(t)

+ b2[−𝛼 exp(−𝛼t) sin(𝜔dt) + 𝜔d exp(−𝛼t) cos(𝜔dt)]u(t), (6.189)
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Figure 6.13 Components of the second-order ODE in Example 6.12. (a) Overdamped.
(b) Underdamped.

d2

dt2
y(t) = b1[𝛼2 exp(−𝛼t) cos(𝜔dt) + 𝛼𝜔d exp(−𝛼t) sin(𝜔dt)]u(t)

− b1[−𝛼𝜔d exp(−𝛼t) sin(𝜔dt) + 𝜔
2
d exp(−𝛼t) cos(𝜔dt)]u(t)

+ b2[𝛼2 exp(−𝛼t) sin(𝜔dt) − 𝛼𝜔d exp(−𝛼t) cos(𝜔dt)]u(t)

− b2[𝛼𝜔d exp(−𝛼t) cos(𝜔dt) + 𝜔
2
d exp(−𝛼t) sin(𝜔dt)]u(t). (6.190)
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Combining all these terms according to (6.187) yields 2u(t) as shown in
Figure 6.13(b); all other terms cancel because the characteristic equation is 0
(see Problem 6.19).

6.6.3 Impulse Response

The impulse response function h(t) is derived from (6.148) by ignoring the homoge-
neous part (the first two terms), which means the initial conditions are 0. Substituting
x(t) = 𝛿(t) into the last two terms of (6.148) gives

y(t) = −y1(t)y2(0)∕W(0) + y2(t)y1(0)∕W(0), (6.191)

where the sifting property of the Dirac delta function has been used. From the expres-
sions for {y1(t), y2(t)} in Table 6.3 and the Wronskians in Table 6.4, we have the
following results generated by substituting t = 0 for each of the three second-order
cases.

• Overdamped: y1(0)∕W(0) = y2(0)∕W(0) = 1∕(s2 − s1):

h(t) = 1
s2 − s1

[exp(s2t) − exp(s1t)]u(t). (6.192)

• Underdamped: y1(0)∕W(0) = 1∕𝜔d, y2(0)∕W(0) = 0:

h(t) = (1∕𝜔d) exp(−𝛼t) sin(𝜔dt)u(t). (6.193)

• Critically damped: y1(0)∕W(0) = 1, y2(0)∕W(0) = 0:

h(t) = t exp(−𝛼t)u(t). (6.194)

Note that {y1(0), y2(0)} are the initial component values from the expressions in
Table 6.3; they are not the initial conditions {y(0), y′(0)}, which are assumed to be
0 when computing the impulse response function h(t). These expressions are sum-
marized in Table 6.6. Using the impulse response function, the complete solution in
(6.148) with 0 initial conditions is written more generally as follows:

y(t) = ∫
t

0
x(𝜏)h(t − 𝜏)d𝜏, (6.195)

where one of the three impulse response functions in (6.192)–(6.194) is used depend-
ing on the type of ODE. This is the convolution integral discussed earlier for the three
cases in (6.153)–(6.155).

6.7 CONVOLUTION

The integral in (6.195) follows from the fact that superposition holds for an LTI sys-
tem. The variable of integration is 𝜏, and the resulting output is a function of time t.
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TABLE 6.6 Second-Order ODE Impulse Response Function

System Linear ODE Impulse Response Function and Parameters

ODE with impulse input d2y(t)∕dt2 + a1dy(t)∕dt + a0y(t) = 𝛿(t)
Overdamped h(t) = [exp(s2t) − exp(s1t)]u(t)
Underdamped h(t) = [exp(−𝛼t) sin(𝜔dt)∕𝜔d]u(t)
Critically damped h(t) = t exp(−𝛼t)u(t)
Parameters s1,2 = −𝛼 ±

√
𝛼

2 − 𝜔
2
o, 𝛼 ≜ a1∕2, 𝜔2

o ≜ a0, 𝜔d ≜ √
𝜔

2
o − 𝛼

2

If the output of the system is y1(t) for input x1(t) and is y2(t) for x2(t), then the output
for input x1(t) + x2(t) is y1(t) + y2(t). As discussed in Chapter 1, nonlinear systems
do not have this property. In general, it is convenient to let the convolution integral
have infinite limits:

y(t) = ∫
∞

−∞
x(𝜏)h(t − 𝜏)d𝜏, (6.196)

where t on the left-hand side corresponds to the location of the shifted impulse
response function h(t − 𝜏) on the right-hand side. The support of each function
determines the actual limits of integration, as demonstrated later in two examples.

Consider representing the input waveform x(t) approximately by a sum of nonover-
lapping rectangles for t ≥ 0. From Chapter 5, the standard rectangle function is

rect(t) ≜
{

1, |t| ≤ 1∕2

0, else.
(6.197)

For a shifted rectangle with width Δ and starting at t = 0, the argument of the rect-
angle function is modified to rect(t∕Δ − 1∕2). Similarly, a rectangle of width Δ and
starting at t = Δ is rect(t∕Δ − (1 + 1∕2)), which is adjacent to the previous shifted
rectangle. The nth shifted rectangle is rect(t∕Δ − (n + 1∕2)), and x(t) can be approx-
imated by the following sum of adjacent rectangles:

x(t) ≈
N−1∑

n=0

x(nΔ)rect(t∕Δ − (n + 1∕2)), (6.198)

where N is the number of rectangles under the function up to time instant t. All
rectangles have width Δ, and x(nΔ) is the height of the nth rectangle given by the
value of the function at t = nΔ (the leading edge of the rectangle). This “staircase”
approximation is depicted in Figure 6.14 where the first two rectangles are labeled
x(0)rect(t∕Δ − 1∕2) and x(Δ)rect(t∕Δ − 3∕2). Multiplying and dividing by Δ yield

x(t) ≈
N−1∑

n=0

[x(nΔ)Δ](1∕Δ)rect(t∕Δ − (n + 1∕2)), (6.199)
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Figure 6.14 Approximation of a continuous-time waveform by a sum of adjacent shifted
rectangle functions, each of width Δ.

such that (1∕Δ)rect(t∕Δ − (n + 1∕2)) has width Δ, height 1∕Δ, and unit area. This
form explicitly shows that the nth term is a rectangle with area x(nΔ)Δ. For small Δ,
the nth term is approximated by a shifted Dirac delta function with area x(nΔ)Δ (see
Chapter 5):

x(t) ≈
N−1∑

n=0

[x(nΔ)Δ]𝛿(t − nΔ), (6.200)

This expression is only an approximation because Δ is not quite 0. Since h(t) is the
impulse response function for the LTI system, the output for input 𝛿(t − nΔ) is h(t −
nΔ), and so the approximate output for the input model in (6.199) is (Lathi, 1965)

y(t) ≈
N−1∑

n=0

[x(nΔ)h(t − nΔ)]Δ. (6.201)

In the limit as N → ∞, nΔ → 𝜏, and Δ → d𝜏, this sum becomes the convolution
integral in (6.196) (but with the lower limit 0).

Example 6.13 Figure 6.15 illustrates how two rectangular functions are convolved.
The functions have different heights but the same support t ∈ [0,T]. From the first
integral of (6.196) for the convolution of x(t) and h(t), observe in Figure 6.15(a) that
x(t) has been reversed and shifted to give x(t − 𝜏). As t > 0 varies, the function shifts
to the right and the convolution is computed as the area of the product of the two
functions. This is illustrated by the shaded regions for a value of t > 0. Mathemati-
cally, it is convenient to write the rectangular functions as indicator functions so that
the convolution integral is

y(t) = 2∫
∞

−∞
I[0,T](t − 𝜏)I[0,T](𝜏)d𝜏. (6.202)

The second indicator function restricts the integration to 𝜏 ∈ [0,T], and the first indi-
cator function restricts it as follows:

t − 𝜏 ≥ 0 =⇒ 𝜏 ≤ t, t − 𝜏 ≤ T =⇒ 𝜏 ≥ t − T , (6.203)
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Figure 6.15 Convolution of two functions. (a) Reversed and shifted input x(t − 𝜏). (b)
Impulse response function h(𝜏). (c) System output y(t) = h(t) ∗ x(t).

which gives 𝜏 ∈ [t − T , t]. The indicator functions are dropped when the limits of
integration are applied:

y(t) = ∫
min(t,T)

max(0,t−T)
d𝜏. (6.204)

From Figure 6.15, we see four cases for t: (i) t < 0, (ii) 0 ≤ t ≤ T , (iii) T < t ≤ 2T ,
and (iv) t > 2T . For cases (i) and (iv), the shifted function x(t − 𝜏) does not overlap
h(𝜏), which means y(t) is 0 for those intervals of t. In fact, we find from these two
cases that the support for y(t) is [0, 2T]. For case (ii), the limits of integration are
{0, t}:

y(t) = ∫
t

0
d𝜏, 0 ≤ t ≤ T , (6.205)

and for case (iii), they are {t − T ,T}:

y(t) = ∫
T

t−T
d𝜏, T ≤ t ≤ 2T . (6.206)

These integrals are straightforward to evaluate, and so using indicator functions, we
have

y(t) = tI[0,T](t) + (2T − t)I(T ,2T](t), (6.207)

which is the triangular function shown in Figure 6.15(c).

Example 6.14 In this example, we verify that convolution is a symmetric operation
for x(t) = u(t) and h(t) = exp(−t)u(t), which we examined earlier in Figure 6.5. First,
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h(t) is reversed:

y(t) = ∫
∞

−∞
u(𝜏) exp(−(t − 𝜏))u(t − 𝜏)d𝜏 = ∫

t

0
exp(−(t − 𝜏))d𝜏

= exp(−t) exp(𝜏)|t0 = [1 − exp(−t)]u(t), (6.208)

where the unit step functions have determined the limits of integration in the sec-
ond line. The unit step function has been included in the final expression to give the
support of y(t). Likewise, by reversing x(t) instead:

y(t) = ∫
∞

−∞
exp(−𝜏)u(𝜏)u(t − 𝜏)d𝜏 = ∫

t

0
exp(−𝜏)d𝜏

= − exp(−𝜏)|t0 = [1 − exp(−t)]u(t). (6.209)

Since x(t) = u(t), this output shown in Figure 6.5(b) is the step response of a system
with impulse response function h(t) = exp(−t)u(t).

6.8 SYSTEM OF ODEs

Finally in this chapter, we show how to write an ODE as a system of equations where
each equation is a first-order ODE written in terms of states of the system. Consider
the Nth-order linear ODE with fixed coefficients {a0,…, aN−1}:

dN

dtN
y(t) + aN−1

dN−1

dtN−1
y(t) + · · · + a1

d
dt

y(t) + a0y(t) = x(t). (6.210)

Define N states as follows:

y0(t) ≜ y(t), y1(t) ≜ d
dt

y(t),…, yN−1(t) ≜ dN−1

dtN−1
y(t), (6.211)

such that (6.210) can be rewritten as

dN

dtN
y(t) = x(t) − a0y0(t) − a1y1(t) − · · · − aN−1yN−1(t). (6.212)

(The subscripts on y(t) should not be confused with the different solutions considered
earlier for second-order ODEs.) Defining the state vector y(t) ≜ [y0(t),…, yN−1(t)]T
yields the matrix formulation

d
dt

⎡
⎢
⎢
⎢
⎣

y0(t)
⋮

yN−2(t)
yN−1(t)

⎤
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎣

0 1 0 · · · 0
⋮ 0 1 0 ⋮

· · · 0
0 · · · 0 1

−a0 −a1 · · · −aN−1

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

y0(t)
⋮

yN−2(t)
yN−1(t)

⎤
⎥
⎥
⎥
⎦

+
⎡
⎢
⎢
⎢
⎣

0
⋮
0

x(t)

⎤
⎥
⎥
⎥
⎦

, (6.213)
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which can be written as
ẏ(t) = Ay(t) + bx(t), (6.214)

where b ≜ [0,…, 0, 1]T is the input vector and A is the state transition matrix. This
equation is still an Nth-order linear ODE with constant coefficients, but it has been
expanded into N equations that together represent the original expression in (6.210).
Note that the minus signs in (6.212) are included in the definition of A.

Example 6.15 For N = 2, the linear ODE is

d2

dt2
y(t) + a1

d
dt

y(t) + a0y(t) = x(t), (6.215)

for which the state transition matrix and input vector are

A =
[

0 1
−a0 −a1

]

, b =
[

0
1

]

. (6.216)

The eigenvalues of this matrix are derived by solving the following equation:

det

([
−𝜆 1
−a0 −a1 − 𝜆

])

= 𝜆(𝜆 + a1) + a0 = 𝜆
2 + a1𝜆 + a0 = 0, (6.217)

which has the same form as the characteristic equation in (6.94) but with 𝜆 in place of
s. Thus, the eigenvalues of A yield the same information about the system as the roots
of the characteristic equation. These are also the poles of the system as discussed in
Chapter 7 where the Laplace transform is used to solve ODEs.

The matrix equation in (6.214) is homogeneous when x(t) = 0, as is the case for
the original ODE. For a first-order homogeneous ODE

d
dt

y(t) + ay(t) = 0, (6.218)

we know that the solution is

y(t) = y(0) exp(−at)u(t), (6.219)

where y(0) is a nonzero initial condition and we have dropped the subscript on a0.
Likewise, the homogeneous solution for (6.214) can be written as

y(t) = exp(At)y(0)u(t), (6.220)

where
y(0) ≜ [y(0), y′(0),…, y(N−1)(0)]T (6.221)
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contains N initial conditions and exp(At) is the matrix exponential. Since y(0) is a
column vector, it must be multiplied on the left by matrix exp(At).

Definition: Matrix Exponential The matrix exponential exp(At) for A ∈ N × N

is the following power series:

exp(At) ≜ I + At + (1∕2)A2t2 + · · · =
∞∑

n=0

Antn∕n!, (6.222)

where A0 = I is the identity matrix.

The matrix exponential is an extension of the power series expansion for the ordinary
exponential function:

exp(at) =
∞∑

n=0

(at)n∕n!, (6.223)

with a ∈ . An integrator implementation of a third-order ODE is shown in
Figure 6.16 where {y1(t), y2(t)} are the internal states. The only state that is directly
observable at the output is y0(t) = y(t), which of course is the overall output of the
system. In general, for an Nth-order ODE, N − 1 states are internal to the system
and are not directly observed at the output.

Next, we show that (6.220) is the solution of (6.214) with x(t) = 0. Substituting
y(t) and (6.222) yields

d
dt

exp(At)y(0) = d
dt

( ∞∑

n=0

Antn∕n!

)

y(0) =
∞∑

n=1

(Anntn−1∕n!)y(0)

= A
∞∑

n=1

(An−1tn−1∕(n − 1)!)y(0) = A exp(At)y(0), (6.224)

−a2

−a1

x(t)
∑

Input

d2

dt2
y(t) = y2(t) d

dt
y(t) = y1(t)

y ′′(0) y ′(0) y(0)

y(t) = y0(t)

Output

−a0

d3

dt3
y (t)

Figure 6.16 Integrator implementation of a third-order ODE.
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TABLE 6.7 Properties of the Matrix Exponential

Property Equation

Derivative d exp(At)∕dt = A exp(At)
Product A exp(At) = exp(At)A
Inverse [exp(At)]−1 = exp(−At)
Exponent exp(A(t1 + t2)) = exp(At1) exp(At2)
Identity exp(𝟎) = I

where the derivative causes the lower limit of the sum to become n = 1 because
dI∕dt = 𝟎 (the zero matrix). The left-hand side is ẏ(t) and the right-hand side is Ay(t),
thus verifying the solution in (6.220). Additional properties of the matrix exponential
are summarized in Table 6.7.

Example 6.16 The second-order ODE in (6.181) can be written with x(t) = 0 (the
homogeneous case) as follows:

d
dt

[
y0(t)
y1(t)

]

=
[

0 1
−0.5 −2

] [
y0(t)
y1(t)

]

. (6.225)

The matrix exponential is

exp(At) = I +
[

0 1
−0.5 −2

]

t +
[
−0.25 −1

0.5 2

]

t2 + · · · , (6.226)

for which a closed-form solution is not easy to find. However, if the matrix has the
eigendecomposition (see Chapter 3)

A = Q𝚲Q−1, (6.227)

where 𝚲 is a diagonal matrix containing the eigenvalues of A, and the columns of
Q are the corresponding normalized eigenvectors, then a closed-form expression is
straightforward. Substituting (6.227) yields

exp(At) = exp(Q𝚲Q−1t) = Q exp(𝚲t)Q−1. (6.228)

The last expression where Q and Q−1 have factored from the exponent is easily shown
by using the power series expansion in (6.224). Since 𝚲 is diagonal of the form

𝚲 =
⎡
⎢
⎢
⎢
⎣

𝜆1 0 · · · 0
0 ⋱ ⋮
⋮ ⋱ 0
0 · · · 0 𝜆N

⎤
⎥
⎥
⎥
⎦

, (6.229)
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it is clear that

exp(𝚲t) =
⎡
⎢
⎢
⎢
⎣

exp(𝜆1t) 0 · · · 0
0 ⋱ ⋮
⋮ ⋱ 0
0 · · · 0 exp(𝜆Nt)

⎤
⎥
⎥
⎥
⎦

. (6.230)

This result follows because𝚲n is also diagonal for any n ∈  , and each diagonal term
is derived from a power series expansion based on that eigenvalue. The original matrix
exponential exp(At) is then generated by pre- and postmultiplying (6.230) by Q and
Q−1, respectively. For this example, the eigenvalues are real: 𝜆1, 𝜆2 = −1 ± 1∕

√
2 ≈

{− 0.2929,−1.7071}, and the eigenvector matrix is

Q =
[

0.9597 −0.5054
−0.2811 0.8629

]

. (6.231)

The matrix exponential is then derived from the last expression in (6.228):

exp (At) =
[

0.9597 −0.5054
−0.2811 0.8629

] [
exp(−0.2929t) 0

0 exp(−1.7071t)

]

×
[

1.2578 0.7368
0.4097 1.3990

]

, (6.232)

and the components of the homogeneous solution in (6.220) are

y0(t) = [1.2071y(0) + 0.7071y′(0)] exp(−0.2929t)u(t)

− [0.2071y(0) + 0.7071y′(0)] exp(−1.7071t)u(t), (6.233)

y1(t) = −[0.3536y(0) + 0.2071y′(0)] exp(−0.2929t)u(t)

+ [0.3536y(0) + 1.2071y′(0)] exp(−1.7071t)u(t), (6.234)

where y0(t) = y(t) is the output of the system. If y1(t) = y′(t) is integrated, the expres-
sion for y(t) in (6.233) is derived (see Problem 6.33).

Another way to solve for exp(At) is to use the following identity for A ∈ N × N :

exp(At) =
N−1∑

n=0

𝛼n(t)An, (6.235)

where A0 = I. This result is due to the Cayley–Hamilton theorem where it can be
shown that every AM for M ≥ N can be written as a linear combination of lower pow-
ers of A (Kailath, 1980). Thus, the higher order terms in the power series expansion
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are combined with the lower order terms, resulting in the finite sum in (6.235). This
requires an appropriate set of coefficients that are derived by solving

⎡
⎢
⎢
⎣

𝛼0(t)
⋮

𝛼N−1(t)

⎤
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

1 𝜆1 𝜆
2
1 · · · 𝜆

N−1
1

⋮ ⋮ ⋮ · · · ⋮
1 𝜆N 𝜆

2
N · · · 𝜆

N−1
N

⎤
⎥
⎥
⎦

−1
⎡
⎢
⎢
⎣

exp(𝜆1t)
⋮

exp(𝜆Nt)

⎤
⎥
⎥
⎦

. (6.236)

Example 6.17 Continuing with the previous example, the coefficients in (6.236)
are

[
𝛼0(t)
𝛼1(t)

]

=
[

1 −0.2929
1 −1.7071

]−1 [
exp(−0.2929t)
exp(−1.7071t)

]

=
[

1.2071 −0.2071
0.7071 −0.7071

] [
exp(−0.2929t)
exp(−1.7071t)

]

, (6.237)

and the matrix exponential is

exp(At) = [1.2071 exp(−0.2929t) − 0.2071 exp(−1.7071t)]I

+ [0.7071 exp(−0.2929t) − 0.7071 exp(−1.7071t)]
[

0 1
−0.5 −2

]

.

(6.238)

Postmultiplying this expression by [y(0), y′(0)]T gives (6.233) and (6.234).

For the nonhomogeneous case with nonzero x(t), the output is derived from a
matrix convolution:

y(t) = exp(At)y(0) + ∫
t

0
exp(A(t − 𝜏))bx(𝜏)d𝜏. (6.239)

The first term on the right-hand side is the homogeneous solution discussed earlier,
and the second term is the particular solution. Of course, if the initial conditions are
0, then the right-hand side includes only the convolution between x(t) and the matrix
impulse response function h(t) = exp(At)bu(t). Since the input is a scalar in (6.210),
the column vector b contains all zeros except for 1 in the last position. As a result,
the convolution in (6.239) is actually a set of convolutions between the last column
of exp(At) and x(t).

In order to verify (6.239), we first multiply (6.214) by exp(−At):

exp(−At)ẏ(t) = exp(−At)Ay(t) + exp(−At)bx(t). (6.240)

Bringing the first term on the right-hand side to the left-hand side, we recognize the
product rule of differentiation:

exp(−At)ẏ(t) − exp(−At)Ay(t) = d
dt

exp(−At)y(t), (6.241)
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where the derivative property in Table 6.7 has been used. Thus,

d
dt

exp(−At)y(t) = exp(−At)bx(t), (6.242)

and integrating both sides yields

exp(−At)y(t)|t0 = exp(−At)y(t) − y(0) = ∫
t

0
exp(−A𝜏)bx(𝜏)d𝜏. (6.243)

Multiplying the last two expressions by exp(At) gives

y(t) − exp(At)y(0) = ∫
t

0
exp(A(t − 𝜏))bx(𝜏)d𝜏, (6.244)

which completes the proof.

Example 6.18 For matrix A in Example 6.16, the matrix exponential is given in
(6.232). Assuming zero initial conditions y(0) = 𝟎, we need to consider only the last
column of exp(A(t − 𝜏)) in (6.239) because b = [0, 1]T . Thus,

y(t) = ∫
t

0

[
0.7071 exp(−0.2929(t − 𝜏)) − 0.7071 exp(−1.7071(t − 𝜏))

−0.2071 exp(−0.2929(t − 𝜏)) − 1.2071 exp(−1.7071(t − 𝜏))

]

x(𝜏)d𝜏.

(6.245)
For x(t) = 𝛿(t), the first element of the vector in (6.245) is the impulse response func-
tion h(t) from x(t) to y(t). The unit step response is also derived from this first element
when x(t) = u(t):

y(t) = ∫
t

0
[0.7071 exp(−0.2929𝜏) − 0.7071 exp(−1.7071𝜏)]u(t − 𝜏)d𝜏, (6.246)

where for convenience we have interchanged the arguments of the exponentials and
u(t). Since u(t − 𝜏) gives the upper limit of integration, it can be dropped from the
integrand, and the step response is produced by integrating the two terms:

y(t) = −(0.7071∕0.2929) exp(−0.2929𝜏)|t0 + (0.7071∕1.7071) exp(−1.7071t)|t0
= 2.4141[1 − exp(−0.2929t)]u(t) − 0.4142[1 − exp(−1.7071t)]u(t). (6.247)

The steady-state value as t → ∞ is y(∞) = 2.4141 − 0.4142 ≈ 2.
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PROBLEMS

Differential Equations

6.1 Determine which of the following ODEs are linear and give the order of each:

(a)
d2

dt2
y(t) + 2

d
dt

y(t) + 2y2(t) = x(t), (b)
d3

dt3
y(t) + 3y(t) d

dt
y(t) + y(t) = x(t).

(6.248)

6.2 Repeat the previous problem for

(a)
d2

dt2
y(t) + 3

( d
dt

y(t)
)2

+ 2y(t) = x(t), (b)
d
dt

y(t) + 2x(t)y(t) + y(t) = x(t).
(6.249)

6.3 Verify that the following functions are solutions of the ODEs:

(a)
d2

dt2
y(t) − 4

d
dt

y(t) + 3y(t) = 0 ⇒ y(t) = [exp(t) + exp(3t)]u(t), (6.250)

(b)
d2

dt2
y(t) + 4

d
dt

y(t) + 4y(t) = 0 ⇒ y(t) = t exp(−2t)u(t). (6.251)

First-Order Linear ODE

6.4 Derive the linear ODE that models the voltage across the resistor in Figure 6.1
and given in Table 6.1.

6.5 Repeat the previous problem for the current through the resistor.

6.6 Determine if the following first-order ODEs are separable:

(a)
d
dt

y(t) = t + (t − 1)y(t) − 1, (b)
d
dt

y(t) + ty2(t) = 2t2. (6.252)

6.7 If the coefficient a in (6.44) is a function of time a(t), then the integrating factor
in (6.47) is

|g(t)∕g(to)| = exp

(

∫
t

to

a(t)dt

)

. (6.253)

Use this generalization to find the solution for

d
dt

y(t) − ty(t) = u(t), (6.254)

which is a nonhomogeneous ODE with input u(t). Assume nonzero initial con-
dition y(0).
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6.8 (a) Give the solution y(t) for the first-order ODE with exponential input

d
dt

+ 2y(t) = exp(−t)u(t), (6.255)

which has initial condition y(0) = 0. Determine how the solution is modified
for input (b) x(t) = exp(−(t − 1))u(t − 1) and (c) x(t) = exp(−(t − 1))u(t).

6.9 A first-order system has impulse response function h(t) = exp(−3t)u(t). Use
convolution to find the output y(t) for input x(t) = 2u(t − 1).

6.10 Repeat the previous problem for the rectangular input x(t) = u(t) − u(t − 1).

Second-Order Linear ODE

6.11 Verify the three current results in Table 6.2 for the parallel RLC circuit by
deriving expressions for the ODEs.

6.12 Show that (6.102) and (6.103) are the same underdamped solution for a
second-order linear ODE.

6.13 Determine the type of homogeneous solution for the series RLC circuit for
the following component values, and specify the damping ratio 𝜁 and resonant
frequency 𝜔o. (a) R = 100 Ω, L = 1 mH, and C = 5 μF. (b) R = 10 Ω, L = 2
mH, and C = 5 μF. (c) R = 1000 Ω, L = 1 mH, and C = 20 μF.

6.14 Repeat the previous problem for the parallel RLC circuit using the same com-
ponent values.

6.15 (a) For the device parameters L = 1 mH and C = 10 μF of the series RLC cir-
cuit, specify the range of values for R for the three types of homogeneous
solutions. (b) Give expressions for the three homogeneous solutions for the
capacitor voltage 𝑣C(t) assuming initial conditions 𝑣C(0) = 5 V and 𝑣

′
C(0) = 1

V/s.

6.16 Repeat the previous problem for the parallel RLC circuit.

6.17 Derive the second-order linear ODE for the capacitor voltage of the RLC circuit
in Figure 6.17.

6.18 Repeat the previous problem for the circuit in Figure 6.18.

Second-Order ODE Responses

6.19 Combine the results in (6.188)–(6.190) for the ODE in (6.187) to verify that
y(t) is its solution.

6.20 (a) Find the complete solution for the ODE

d2

dt2
y(t) + 2

d
dt

y(t) + y(t) = 2u(t), (6.256)
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+
_Vs L C

R

Figure 6.17 Second-order RLC circuit with voltage source Vs for Problem 6.17.

+
_Vs CL

R1 R2

Figure 6.18 Second-order RLC circuit with voltage source Vs for Problem 6.18.

assuming zero initial conditions. (b) Give the impulse response function h(t).

6.21 Repeat the previous problem for

d2

dt2
y(t) + 3

d
dt

y(t) + y(t) = exp(−t)u(t). (6.257)

6.22 (a) Find the value of a1 such that the output y(t) is critically damped and write
the homogeneous solution for

d2

dt2
y(t) + a1

d
dt

y(t) + 2 = x(t). (6.258)

(b) Give the step response of this system assuming initial conditions y(0) =
y′(0) = 1.

6.23 (a) Find the range of values for a0 such that the output y(t) is overdamped and
write the homogeneous solution for

d2

dt2
y(t) + 2

d
dt

y(t) + a0 = x(t). (6.259)

(b) Give the response of this system for x(t) = rect(t − 1∕2) assuming initial
conditions y(0) = y′(0) = 1.
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Convolution

6.24 Convolve the following two functions and include a sketch showing their over-
lap as t is varied:

f (t) = u(t − 1), g(t) = rect(t − 1). (6.260)

6.25 Repeat the previous problem for

f (t) = g(t) = tri(t − 1). (6.261)

6.26 Repeat Problem 6.24 for

f (t) = exp(−t)u(t), g(t) = [1 − exp(−2t)]u(t). (6.262)

6.27 For the second-order system in Problem 6.22, find the unit step response using
convolution.

6.28 Cross-correlation is equivalent to convolution when one of the functions is
reversed. Determine which of the following are equivalent to f (t) ∗ g(t): (a)
f (t) ⋆ g(−t), (b) f (−t) ⋆ g(t), (c) g(t) ⋆ f (−t). Find expressions for all cases by
using the functions in Problem 6.24.

6.29 Prove the associative property of convolution: [f (t) ∗ g(t)] ∗ h(t) = f (t) ∗
[g(t) ∗ h(t)].

6.30 Prove the derivative property of convolution: d[f (t) ∗ g(t)]∕dt = [df (t)∕dt] ∗
g(t) = [dg(t)∕dt] ∗ f (t).

System of ODE Equations

6.31 Specify matrix A for the ODE in Problem 6.21 and give the homogeneous
solution for y(t) assuming initial conditions y(0) = y′(0) = 1.

6.32 (a) Find matrix A for the following third-order ODE:

d3

dt3
y(t) + 6

d2

dt2
y(t) + 11

d
dt

y(t) + 6y(t) = x(t). (6.263)

(b) Given that one eigenvalue is 𝜆1 = −1, find the other two eigenvalues.

6.33 Show that the integral for y1(t) with limits {0, t} is the same expression as
y0(t) = y(t) in (6.234).

6.34 Write an expression for the solution y(t) of the second-order ODE in (6.21)
assuming zero initial conditions y(0) = 𝟎.
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Computer Problems

6.35 Find the unit step response for the following system using the alternative initial
condition method with coefficients {b1, b2}:

d2

dt2
y(t) + 2

d
dt

y(t) + 5y(t) = u(t). (6.264)

Plot the individual components {y1(t), y2(t)} of the solution as well as the com-
plete response using MATLAB.

6.36 Consider the following homogeneous third-order system:

d3

dt3
y(t) + 6

d2

dt2
y(t) + 11

d
dt

y(t) + 6y(t) = 0. (6.265)

(a) Give the system matrix A and use MATLAB to approximate exp(At) with
five terms in its power series. (b) Find the eigendecomposition of A using eig
and give an exact expression for the matrix exponential. (c) Derive the coeffi-
cients {𝛼0(t), 𝛼1(t), 𝛼2(t)} used in the finite form for exp(At) in (6.235).

6.37 (a) Use dsolve in MATLAB to solve the ODE in part (a) of Problem 6.6 with
initial condition y(0) = 2 and plot the resulting function. (b) Repeat part (a) for
the ODE in Problem 6.36 with y(0) = y′(0) = y′′(0) = 1.

6.38 Repeat the previous problem using ode45 to numerically solve the ODEs. For
the third-order system, it will be necessary to write it as a system of three
equations in terms of matrix A.

6.39 Convolve the two functions in Problem 6.24 using conv in MATLAB and plot
the result. The functions can be implemented using heaviside and rectangu-
larPulse.
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LAPLACE TRANSFORMS AND
LINEAR SYSTEMS

7.1 INTRODUCTION

In this chapter, we describe a complex-variable technique for solving linear ordinary
differential equations (ODEs) more easily than using the time-domain methods of the
previous chapter, especially for high-order systems (greater than second order). This
technique also provides additional insight into the behavior of linear time-invariant
(LTI) systems beyond that observed in the time domain. The Laplace transform is a
particular integral transform of signal x(t) that yields a function X(s) of the complex
variable s ≜ 𝜎 + j𝜔 in the frequency domain, which is also called the s-domain. This
transformation is invertible such that for some X(s) in the s-domain, it is possible
to uniquely transform it to the time domain, yielding x(t). The result for a system is
identical to the solution that would be obtained entirely in the time domain using the
ODE techniques from Chapter 6. The advantage of using the Laplace transform is
that it converts an ODE into an algebraic equation of the same order that is simpler
to solve, even though it is a function of a complex variable.

By way of analogy, this transformation is similar to that of logarithms, which are
used to multiply two numbers or functions. For example, in order to compute the
product xy, we can first transform x and y using logarithms and then add those results:

z = log(x) + log(y), (7.1)

Mathematical Foundations for Linear Circuits and Systems in Engineering, First Edition. John J. Shynk.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
Companion Website: http://www.wiley.com/go/linearcircuitsandsystems
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where without loss of generality we have assumed that the base of the logarithm is 10.
The final product in the original domain is then computed as

xy = 10z. (7.2)

The reason for using logarithms is that usually it is easier to perform additions instead
of multiplications. The Laplace transform and the logarithm are techniques for con-
verting uniquely from one domain to another domain, where it is easier to perform
certain operations in the second domain.

7.2 SOLVING ODEs USING PHASORS

Before defining the Laplace transform, we describe how to solve ODEs using the
phasor notation for sinusoidal signals that was covered in Chapter 5. The phasor
approach has signal restrictions, and so, it is not as general as the Laplace transform.
Since the phasor representation of a signal assumes that it is sinusoidal and extends
for all time t ∈ , the results described in this section are not realizable solutions in
practice because the signal duration is doubly infinite. However, phasors do provide
insight into the properties of a system, and we see later that solving ODEs using the
Laplace transform yields similar types of results for more general signals, including
the generalized functions discussed in Chapter 5.

Consider the following nonhomogeneous first-order ODE with sinusoidal input:

d
dt

y(t) + ay(t) = cos(𝜔ot), t ∈ , (7.3)

where a is a constant and 𝜔o is angular frequency with units rad/s. This equation for
the dependent variable can be solved by converting y(t) into a phasor:

y(t) = A cos(𝜔ot + 𝜙) −→ Y exp ( j𝜔ot), (7.4)

where Y ≜ A exp ( j𝜙) is the phasor, A is its amplitude, and 𝜙 is its phase. With this
notation, the ODE becomes

d
dt

Y exp ( j𝜔ot) + aY exp ( j𝜔ot) = exp ( j𝜔ot), (7.5)

where the cosine on the right-hand side of (7.3) has been replaced by the corre-
sponding complex exponential. Since Y does not depend on t, the derivative is easily
computed and exp ( j𝜔ot) cancels from both sides of (7.5):

j𝜔oY + aY = 1, (7.6)

which is now an algebraic equation. Solving this expression yields

Y = 1
a + j𝜔o

= 1

a2 + 𝜔
2
o

(a − j𝜔o), (7.7)
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where the numerator and denominator have been multiplied by the complex conjugate
a − j𝜔o. Converting into polar form, the magnitude of Y is

|Y| = 1
√

a2 + 𝜔
2
o

, (7.8)

and its phase is
arg (Y) = tan−1(−𝜔o∕a). (7.9)

The final phasor can be written in two ways:

Y = 1
√

a2 + 𝜔
2
o

∠tan−1(−𝜔o∕a) (7.10)

= 1
√

a2 + 𝜔
2
o

exp (tan−1(−𝜔o∕a)). (7.11)

The time-domain waveform y(t) is derived by multiplying this expression with
exp ( j𝜔ot) and taking the real part, yielding

y(t) = 1
√

a2 + 𝜔
2
o

cos(𝜔ot − tan−1(𝜔o∕a)), t ∈ , (7.12)

where we have used the fact that tangent is an odd function to extract the minus
sign. This is the same expression as the steady-state response in (6.72) as t → ∞,
which was derived for a first-order ODE with input cos(𝜔ot)u(t). Obviously, the
phasor approach allowed for much simpler calculations compared with the ODE
time-domain techniques developed in the previous chapter.

Example 7.1 For the ODE in (7.3), let 𝜔o = 4 rad/s and a = 2 such that

|Y| = 1
√

a2 + 𝜔
2
o

= 1∕2
√

5 ≈ 0.2236, arg(Y) = tan−1(−𝜔o∕a) ≈ −1.1071,

(7.13)
which has the time-domain solution

y(t) = 0.2236 cos(4t − 1.1071), t ∈ . (7.14)

This waveform is plotted in Figure 7.1 along with cos(4t), which is the right-hand side
of (7.3) (the input waveform of the ODE). The output voltage modeled by the ODE
has the same frequency but a reduced amplitude, and it is shifted to the right (delayed)
relative to the input cosine. As mentioned previously, this behavior is characteristic
of an LTI system.
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Figure 7.1 Cosine functions for the first-order ODE in Example 7.1.

For the second-order ODE in (6.81), we have using phasors

d2

dt2
Y exp ( j𝜔ot) + a1

d
dt

Y exp ( j𝜔ot) + a0Y exp ( j𝜔ot) = exp ( j𝜔ot), (7.15)

which, after canceling the exponentials, yields the algebraic equation

− 𝜔
2
oY + j𝜔oa1Y + a0Y = 1 =⇒ Y =

a0 − 𝜔
2
o − j𝜔oa1

(a0 − 𝜔
2
o)2 + (𝜔oa1)2

. (7.16)

The magnitude and phase are

|Y| = 1
√

(a0 − 𝜔
2
o)2 + (𝜔oa1)2

, arg (Y) = tan−1

(
𝜔oa1

𝜔
2
o − a0

)

, (7.17)

and the time-domain waveform is

y(t) = 1
√

(a0 − 𝜔
2
o)2 + (𝜔oa1)2

cos

(

𝜔ot + tan−1

(
𝜔oa1

𝜔
2
o − a0

))

, t ∈ . (7.18)

Although these expressions are more complicated than those for the first-order ODE,
the output is still a cosine waveform with the magnitude and phase in (7.17). Since
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the input cosine has been active for all t ∈ , there is no transient response and the
result in (7.18) is the steady-state response.

As mentioned after (7.12), a phasor solution also corresponds to the steady-state
response of a system even if the input cosine is active starting at a finite time such as
cos(𝜔ot)u(t). It is intuitive that as t → ∞, the transient response tends to 0 (assuming a
stable system), and the asymptotic solution is a cosine with the appropriate amplitude
and phase. Phasors are useful for finding the steady-state response of a circuit only if
the voltage and current sources are sinusoidal. If the input is a linear combination of
sinusoidal signals with different frequencies, then superposition can be used to find
the overall solution (see Chapter 5). For more general signals, the Laplace transform
provides both the transient response and the steady-state response of an LTI system
for signals starting at a finite time (such as t = 0).

7.3 EIGENFUNCTIONS

Consider again the first-order ODE in (7.3):

d
dt

y(t) + ay(t) = 0, (7.19)

where we have replaced the cosine function on the right-hand side with 0 so that
the equation is homogeneous. If the initial condition y(0) is nonzero, then we know
from Chapter 6 that the form of the solution is exponential y(t) = c exp (𝛼t)u(t), where
𝛼 < 0 is a function of a, and the coefficient c depends on y(0). Substituting y(t) into
(7.19) yields

𝛼c exp (𝛼t) + ac exp (𝛼t) = c exp (𝛼t)(a + 𝛼) = 0. (7.20)

Assuming finite t such that the exponential is nonzero and finite, we find from the
right-hand side that the exponent is 𝛼 = −a. The initial condition yields

y(0) = c exp (−at)u(t)|t=0 = c, (7.21)

and the solution is a decaying exponential for a > 0:

y(t) = y(0) exp (−at)u(t). (7.22)

A nonzero function that has the property in (7.20), where its substitution results in a
scaled version of itself, is called an eigenfunction of that system. This is due to the
fact that the derivative of the exponential function is another exponential function:

d
dt
[c exp (𝛼t)] = 𝛼c exp (𝛼t), (7.23)

and it extends to derivatives of any order:

dn

dtn
[c exp (𝛼t)] = 𝛼

nc exp (𝛼t). (7.24)



�

� �

�

340 LAPLACE TRANSFORMS AND LINEAR SYSTEMS

An eigenfunction is similar to an eigenvector of a matrix (see Chapter 3):

Ax = 𝜆x, (7.25)

where the eigenvector x (a column vector) appears on the right-hand side of the
equation and is scaled by the eigenvalue 𝜆. In (7.23) and (7.24), 𝛼 and 𝛼

n are the
eigenvalues of the differential operators d∕dt and dn∕dtn, respectively, and exp (𝛼t)
is the eigenfunction.

Definition: Eigenfunction An eigenfunction of a linear operator L is a function
such that L operating on it yields a scaled version of the same function.

In matrix algebra with Ax = 𝜆x, the operator is the matrix A, and for LTI systems
modeled by an ODE, it is the derivative.

For the second-order homogeneous ODE:

d2

dt2
y(t) + a1

d
dt

y(t) + a0y(t) = 0, (7.26)

we know that a solution is of the form y(t) = c exp (st), where s may be complex even
though the coefficients are real. Substituting y(t) into (7.26) yields

s2c exp (st) + a1sc exp (st) + a0c exp (st) = (s2 + a1s + a0)c exp (st) = 0. (7.27)

Assuming finite t, the term c exp (st) cancels from the equation, and then we can solve
the characteristic equation s2 + a1s + a0 = 0 to find its eigenvalues, which may be
(i) real and distinct, (ii) real and repeated, or (iii) a complex conjugate pair. These
three cases were examined in the time domain in Chapter 6. The usefulness of the
Laplace transform for solving linear ODEs follows from the fact that the exponential
function is an eigenfunction of LTI systems.

7.4 LAPLACE TRANSFORM

The Laplace transform is a specific type of integral transform.

Definition: Integral Transform An integral transform is an integral that maps a
function of one variable to a different function of another variable:

X(p) ≜ ∫
t2

t1

x(t)k(p, t)dt, (7.28)

where k(p, t) is called the kernel function. Uppercase letters are usually used to
represent integral transforms.
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TABLE 7.1 Integral Transforms

Kernel Transform Variable

exp (−st) Laplace transform Complex s = 𝜎 + j𝜔
exp (−j𝜔t) Fourier transform Imaginary j𝜔
1∕𝜋(p − t) Hilbert transform Real p
tp − 1 Mellin transform Real p

2t∕
√

t2 − p2 Abel transform Real p

Examples of different kernels are summarized in Table 7.1. These transforms are
useful for a range of applications, though we focus on the Laplace transform and the
Fourier transform.

Definition: Bilateral Laplace Transform The bilateral Laplace transform is an
integral transform with kernel k(s, t) = exp (−st):

X(s) ≜ ∫
∞

−∞
x(t) exp (−st)dt, (7.29)

where by convention a minus sign is included in the exponent, and s ≜ 𝜎 + j𝜔 is a
complex variable. The following notation is used for the bilateral Laplace transform:

b{x(t)} = X(s), x(t)
b−−−→X(s). (7.30)

In some mathematics books, real-valued variable p is used instead of s in the def-
inition of the Laplace transform. However, since the roots associated with an ODE
can be complex-valued as shown in Chapter 6, it is advantageous to use complex s in
(7.29). The kernel exp (−st) of the Laplace transform is an eigenfunction of an LTI
system that causes an ODE in the time domain to become an algebraic equation in
the s-domain.

The values of s for which (7.29) yields a finite transform X(s) is called the region
of convergence (ROC). There are four ROCs depending on the type of function
x(t): (i) finite duration t1 ≤ t ≤ t2, (ii) right-sided t ≥ t1, (iii) left-sided t ≤ t2, and
(iv) two-sided t ∈ . Although we consider some functions for cases (iii) and (iv),
we are concerned mainly with finite duration and right-sided functions, as is the case
in most courses on circuits and systems.

If the function represents the impulse response h(t) of a system, we are interested
in whether or not that system is stable.

Definition: Stable System A system with impulse response function h(t) is stable
if it is absolutely integrable:

∫
∞

−∞
|h(t)|dt < ∞. (7.31)

This property is also known as bounded-input bounded-output (BIBO) stability.
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Example 7.2 Examples of stable systems and their ROCs are given as follows and
illustrated in Figure 7.2.

finite duration∶ h1(t) = u(t) − u(t − T)∶ entire s-plane, (7.32)

right-sided stable∶ h2(t) = exp (−at)u(t)∶Re(s)> a with a> 0, (7.33)

right-sided marginally stable∶ h3(t) = u(t)∶Re(s) > 0, (7.34)

right-sided unstable∶ h4(t) = exp (at)u(t)∶Re(s) > a with a > 0. (7.35)

When the ROC is the entire s-plane, we can also write s ∈ . Because of the unit step
function u(t), these examples are nonzero only for t ≥ 0. Such systems with impulse
response function h(t) starting at or after t = 0 are called causal.

Definition: Causal System An LTI system with impulse response function h(t) is
causal if h(t) is nonzero only for t ≥ 0.

Re(s)

Im(s)

(a)

(c)

Re(s)

Im(s)

0

Re(s)

Im(s)

(b)

Re(s)

Im(s)

(d)

a

−a

Figure 7.2 The s-plane and region of convergence (ROC) for X(s). (a) Finite-duration func-
tion. ROC: entire s-plane. (b) Stable right-sided function. ROC: Re(s) > −a with a > 0.
(c) Marginally stable right-sided function. ROC: Re(s) > 0. (d) Unstable right-sided function.
ROC: Re(s) > a with a > 0.
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For a linear system modeled by an ODE, we are generally interested in right-sided
signals (or finite-duration signals) starting at the origin, and the unilateral (one-sided)
Laplace transform is used to solve the ODE. In such cases, the dependent variable y(t)
and its derivatives may have nonzero initial values.

Definition: Unilateral Laplace Transform The unilateral Laplace transform is

X(s) ≜ ∫
∞

0−
x(t) exp (−st)dt, (7.36)

where t = 0− is used in the event there is a singular function at the origin such as 𝛿(t)
or its derivatives. The following notation is used for the unilateral Laplace transform:

{x(t)} = X(s), x(t)

−−→X(s). (7.37)

Generally, the unilateral Laplace transform is known simply as the Laplace transform.
For notational convenience, we often write the lower limit as 0 with the understanding
that it is actually 0−. Later it will be necessary to distinguish between 0− and 0+: “just
before” t = 0 and “just after” t = 0, respectively. For example, the unit step function
u(t) is defined to be 0 at t = 0− and it is 1 at t = 0+.

Definition: Initial State and Initial Condition The initial state of the output y(t)
of a system modeled by an ODE is y(0−) and its initial condition is y(0+).

In the initial value theorem (IVT) presented later, the initial condition is called the
initial value. For example, the solution y(t) = exp (−𝛼t)u(t) has initial value y(0+) =
1, but its initial state is y(0−) = 0.

Example 7.3 In this example, we derive the Laplace transform for each type of
system in (7.32)–(7.35) and illustrate how the ROC is determined. For (7.33):

H2(s) = ∫
∞

−∞
exp (−𝛼t)u(t) exp (−st)dt

= ∫
∞

0
exp (−(s + 𝛼)t)dt

= − 1
s + b

exp (−(s + 𝛼)t)
|
|
|
|

∞

0
, (7.38)

where u(t) gives the lower limit of integration. This system is stable provided 𝛼 > 0
so that exp (−𝛼t)u(t) decays to 0. When evaluating the last expression at the limits
of integration, the exponent must satisfy Re(s + 𝛼) > 0 =⇒ Re(s) > −𝛼 in order for
the transform to exist (be finite). Thus, the ROC is found by placing a bound on
the exponent such that the exponential is 0 when evaluated at t → ∞. The Laplace
transform is

H2(s) =
1

s + 𝛼

, ROC: Re(s) > −𝛼. (7.39)
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This function is not defined at s = −𝛼, which is why this point on the s-plane is not
included in the ROC; such a singularity is called a pole (see Chapter 5 and Appendix
E). From this result, we expect for the finite duration signal in (7.32) that there will
be no unboundedness issues because the limits of integration are finite:

H1(s) = ∫
1

0
exp (−st)dt = −1

s
exp (−st)

|
|
|
|

1

0

= 1
s
[1 − exp (−s)], ROC: s ∈ , (7.40)

where the step functions have provided both limits of integration. Since these limits
are finite, there is no need to restrict s; the ROC is the entire s-plane. Note that s = 0
is not of concern because l’Hôpital’s rule shows that the transform is bounded and
well defined for that value:

H1(0) =
d
ds
[1 − exp (−s)]||

|s=0

d
ds

s||
|s=0

= 1. (7.41)

Although there appears to be a pole at s = 0 in (7.40), it is actually a removable
singularity as discussed in Chapter 5. For the third function in (7.34):

H3(s) = ∫
∞

0
exp (−st)dt

= −1
s

exp (−st)
|
|
|
|

∞

0
= 1

s
, ROC: Re(s) > 0. (7.42)

The Laplace transform of this waveform has a pole on the imaginary axis where
s = j𝜔. Systems with one real pole or two complex conjugate poles on the imaginary
axis are called marginally stable. Finally, for the unstable system in (7.35):

H4(s) = ∫
∞

0
exp (𝛼t) exp (−st)dt

= − 1
s − 𝛼

exp (−(s − 𝛼)t)
|
|
|
|

∞

0
= 1

s − 𝛼

, ROC: Re(s) > 𝛼. (7.43)

Thus, the Laplace transform can be derived for an unstable system provided the ROC
exists. From these examples, we find that a right-sided system with poles is stable if
they all lie in the left half of the s-plane: Re(s) < 0. When there are poles in the right
half of the s-plane for a right-sided system, then it is unstable. Since the ROC must lie
to the right of all poles (again, for a right-sided system), we conclude that the system
is stable if the ROC includes the j𝜔 axis, as it does in Figure 7.2(a) and (b).
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Example 7.4 Next, we illustrate how to compute the Laplace transform of the gen-
eral exponential function x(t) = 𝛽

−𝛼tu(t) with 𝛼 > 0 and 𝛽 ≠ e:

∫
∞

0
𝛽
−𝛼t exp (−st)dt = ∫

∞

0
exp (ln(𝛽−𝛼t) − st)dt

= ∫
∞

0
exp (−(𝛼 ln(𝛽) + s)t)dt, (7.44)

where properties of exp (⋅) and ln(⋅) have been used. Thus,

{𝛽−𝛼tu(t)} = −
exp (−(𝛼 ln(𝛽) + s)t)

𝛼 ln(𝛽) + s

|
|
|
|

∞

0
= 1

𝛼 ln(𝛽) + s
, (7.45)

which has ROC Re(s) > −𝛼 ln(𝛽). The pole is located at s = −𝛼 ln(𝛽), and the func-
tion is bounded only for 𝛽 ≥ 1 (and 𝛼 > 0). When 𝛽 = e, the previous result in (7.39)
for exp (−𝛼t)u(t) is obtained. This example illustrates that the “natural” choice for the
exponential function is 𝛽 = e, which avoids extra terms like ln(𝛽) in (7.45).

Example 7.5 For a causal system represented by a linear ODE or an
integro-differential equation, the input is usually assumed to be multiplied by
the unit step function, which must be taken into account when finding the Laplace
transform. This is illustrated for the following first-order ODE:

d
dt

y(t) + ay(t) = bu(t), (7.46)

whose Laplace transform is

sY(s) − y(0−) + aY(s) = b∕s =⇒ Y(s) = b
s(s + a)

+
y(0−)
s + a

, (7.47)

which can be expanded as

Y(s) =
b∕a

s
−

b∕a

s + a
+

y(0−)
s + a

. (7.48)

The corresponding time-domain function is

y(t) = (b∕a)u(t) + [y(0−) − b∕a] exp (−at)u(t). (7.49)

The steady-state response is (b∕a)u(t), and the last term is the transient response,
which decays to 0. It is necessary that 1∕s be included on the right-hand side of the
first equation in (7.47) so that the correct causal solution is obtained. If 1∕s is missing,
then there would be no steady-state term on the right-hand side of (7.49), which is
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incorrect because the right-hand side of (7.46) is nonzero for t ∈ +, implying a
nonzero steady-state solution for y(t).

Example 7.6 We briefly consider another integral transform. For the kernel
function:

k(p, t) = 1
𝜋(p − t)

, (7.50)

with real-valued p, we have the Hilbert transform:

X(p) = 1
𝜋 ∫

∞

−∞

x(t)
p − t

dt. (7.51)

This expression is actually a convolution between a system with impulse response
function h(t) = 1∕𝜋t and input x(t):

X(p) = 1
𝜋t

∗ x(t). (7.52)

For x(t) = cos(𝜔ot):

X(p) = −(1∕𝜋)∫
∞

−∞

cos(𝜔ot)
p − t

dt, (7.53)

which can be evaluated by changing variables to 𝑣 ≜ p − t and using a trigonometric
identity for cosine:

X(p) = −(1∕𝜋)∫
∞

−∞

cos(𝜔o(𝑣 + p))
𝑣

d𝑣

= −(1∕𝜋)∫
∞

−∞

[
cos(𝜔o𝑣) cos(𝜔op)

𝑣

−
sin(𝜔o𝑣) sin(𝜔op)

𝑣

]

d𝑣. (7.54)

The first term is 0 because the ratio cos(𝜔o𝑣)∕𝑣 is an odd function. Thus

X(p) = (1∕𝜋) sin(𝜔op)∫
∞

−∞

sin(𝜔o𝑣)
𝑣

d𝑣 = sin(𝜔op), (7.55)

which simplifies because the improper integral is 𝜋. This result is easily verified
because the following ratio known as the sinc function has unit area:

sinc(x) ≜ sin(𝜋x)
𝜋x

, (7.56)

where 𝜋 is implicit on the left-hand side. As a result, changing variables to 𝜔o𝑣 = 𝜋u
in (7.55) yields

∫
∞

−∞

sin(𝜔o𝑣)
𝑣

d𝑣 = ∫
∞

−∞

sin(𝜋u)
𝜋u∕𝜔o

(𝜋∕𝜔o)du = 𝜋 ∫
∞

−∞
sinc(u)du = 𝜋, (7.57)
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TABLE 7.2 Laplace Transform Pairs: Impulsive, Step, and Ramp

Time-Domain x(t) Laplace Transform X(s) ROC (𝜎 = Re(s))

𝛿(t) 1 s ∈ 
𝛿
(n)(t) sn s ∈  (n ∈ )

rect(t) 2 sinh(s∕2)∕s s ∈ 
tri(t) 4 sinh2(s∕2)∕s2 s ∈ 
u(t) 1∕s 𝜎 > 0
u(−t) −1∕s 𝜎 < 0
sgn(t) 2∕s 𝜎 = 0 (Except s = 0)
r(t) 1∕s2

𝜎 > 0
tnu(t) n!∕sn+1

𝜎 > 0 (n ∈ )
|t| 2∕s2

𝜎 = 0 (Except s = 0)

where 𝜔o has canceled. It is a well-known result that the Hilbert transform of cosine
is sine. The Hilbert transform is useful for studying amplitude modulated (AM)
signals in analog communication systems. In particular, it can be used to model
single-sideband (SSB) AM modulation as described later in Problem 8.25.

The Laplace transform is important for linear systems modeled by an ODE with
constant coefficients because the ODE is transformed to an algebraic equation, as was
demonstrated for the second-order system in (7.26), resulting in s2 + a1s + a0 = 0.
This characteristic equation of the system is solved for s, and the s-domain solution
is transformed to the time-domain solution y(t) for the ODE.

Definition: Inverse Laplace Transform The inverse Laplace transform is

x(t) = 1
2𝜋j ∫

c+j∞

c−j∞
X(s) exp (st)ds, (7.58)

where the integration is performed along any vertical line on the s-plane as long as c
is located in the ROC. The following notation is used:

−1{X(s)} = x(t), X(s)
−1

−−−−→ x(t). (7.59)

It turns out that for LTI systems, it is not necessary to compute this integral; instead,
a partial fraction expansion (PFE) can be used to write a rational s-domain function
as a sum of simpler functions called partial fractions for which the inverse transforms
are readily found using a table of Laplace transform pairs such as Tables 7.2 and 7.3.

7.5 LAPLACE TRANSFORMS AND GENERALIZED FUNCTIONS

In this section, we derive Laplace transforms using the theory of generalized functions
(distributions) that was discussed in Chapter 5. This requires that we define another
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TABLE 7.3 Laplace Transform Pairs: Exponential and Sinusoidal (𝜶 > 0 and 𝝎o > 0)

Time-Domain x(t) Laplace Transform X(s) ROC (𝜎 = Re(s))

exp (−𝛼t)u(t) 1∕(s + 𝛼) 𝜎 > −𝛼
[1 − exp (−𝛼t)]u(t) 𝛼∕s(s + 𝛼) 𝜎 > 0
exp (𝛼t)u(−t) −1∕(s − 𝛼) 𝜎 < 𝛼

exp (−𝛼|t|) 2𝛼∕(𝛼2 − s2) −𝛼 < 𝜎 < 𝛼

exp (−𝛼t2)
√
𝜋∕𝛼 exp (s2∕4𝛼) s ∈ 

tn exp (−𝛼t)u(t) n!∕(s + 𝛼)n+1
𝜎 > −𝛼 (n ∈ )

tn exp (𝛼t)u(−t) −n!∕(s + 𝛼)n+1
𝜎 < 𝛼 (n ∈ )

cosh(𝛽t)u(t) s∕(s2 − 𝛽
2) 𝜎 > |𝛽|

sinh(𝛽t)u(t) a∕(s2 − 𝛽
2) 𝜎 > |𝛽|

cos(𝜔ot)u(t) s∕(s2 + 𝜔
2
o) 𝜎 > 0

sin(𝜔ot)u(t) 𝜔o∕(s2 + 𝜔
2
o) 𝜎 > 0

t cos(𝜔ot)u(t) (s2 − 𝜔
2
o)∕(s2 + 𝜔

2
o)2

𝜎 > 0
t sin(𝜔ot)u(t) 2𝜔os∕(s2 + 𝜔

2
o)2

𝜎 > 0
exp (−𝛼t) cos(𝜔ot)u(t) (s + 𝛼)∕[(s + 𝛼)2 + 𝜔

2
o] 𝜎 > −𝛼

exp (−𝛼t) sin(𝜔ot)u(t) 𝜔o∕[(s + 𝛼)2 + 𝜔
2
o] 𝜎 > −𝛼

t exp (−𝛼t) cos(𝜔ot)u(t) [(s + 𝛼)2 − 𝜔
2
o]∕[(s + 𝛼)2 + 𝜔

2
o]2

𝜎 > −𝛼
t exp (−𝛼t) sin(𝜔ot)u(t) 2𝜔o(s + 𝛼)∕[(s + 𝛼)2 + 𝜔

2
o]2

𝜎 > −𝛼

type of test function because the kernel exp(−st) does not have a compact support
(Kanwal, 2004).

Definition: Test Function of Exponential Decay A test function of exponential
decay has the following two properties: (i) 𝜙(t) is infinitely differentiable (smooth)
and (ii) all derivatives of 𝜙(t) decrease to 0 more rapidly than the exponential function
exp (𝛼t) as t → ∞ for every 𝛼 ∈ . The second property can be written as

|
|
|
|
exp (𝛼t) dn

dtn
𝜙(t)

|
|
|
|
< c, |t| → ∞, (7.60)

for every c > 0 and n ∈ +.

We denote this class of test functions by  .

Definition: Distribution of Exponential Growth A distribution of exponential
growth ⟨x, 𝜙⟩ is a linear functional on the set  written as

⟨x, 𝜙⟩ ≜ ∫
∞

−∞
x(t)𝜙(t)dt, 𝜙(t) ∈  . (7.61)

A function of exponential growth satisfies

|
|
|
|

dn

dtn
x(t)

|
|
|
|
≤ c exp (𝛼t), (7.62)
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as |t| → ∞ for some 𝛼 ∈  and c > 0. The dual space of distributions of exponential
growth is denoted by  ′.

The linearity and continuity properties of functionals discussed in Chapter 5 also
apply to  . Since any test function with compact support satisfies (7.60),  has been
expanded to  such that  ⊂  . Some distributions in ′ are not defined for (7.61),
and as a result,  ′

⊂ ′.
The definition in (7.60) also includes complex test functions, which are needed

for the Laplace transform because of the complex exponential 𝜙(t) = exp (−st). For
distribution x(t), the Laplace transform can be written as

⟨x, exp (−st)⟩ = ∫
∞

−∞
x(t) exp (−st)dt. (7.63)

The expression on the left-hand side applies to any generalized function defined on
 , including singular distributions.

Example 7.7 The Laplace transform of the Dirac delta function is

⟨𝛿, exp (−st)⟩ = ∫
∞

−∞
𝛿(t) exp (−st)dt = 1, (7.64)

which follows from the sifting property of 𝛿(t) (also from its definition). For its first
derivative, the unit doublet 𝛿′(t):

⟨𝛿′, exp (−st)⟩ = ∫
∞

−∞
𝛿
′(t) exp (−st)dt

= 𝛿(t) exp (−st)|∞−∞ − ∫
∞

−∞
𝛿(t) d

dt
exp (−st)dt

= −
⟨
𝛿,

d
dt

exp (−st)
⟩
= ⟨𝛿, s exp (−st)⟩ = s, (7.65)

which is the derivative property in (5.77). For the second derivative:

⟨𝛿(2), exp (−st)⟩ = −
⟨
𝛿
′
,

d
dt

exp (−st)
⟩
= ⟨𝛿′, s exp (−st)⟩, (7.66)

and repeating this operation yields

⟨𝛿(2), exp (−st)⟩ = −
⟨
𝛿, s

d
dt

exp (−st)
⟩
= ⟨𝛿, s2 exp (−st)⟩ = s2. (7.67)

It is clear from these cases that for the nth derivative:

⟨𝛿(n), exp (−st)⟩ = sn. (7.68)
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The unilateral Laplace transform can also be defined for distributions of exponen-
tial growth by replacing (7.63) with

⟨x, exp (−st)⟩ = ∫
∞

0−
x(t) exp (−st). (7.69)

Most of the properties of the bilateral Laplace transform are the same for the unilateral
transform, except for its derivative properties. For the first derivative:

⟨x′, exp (−st)⟩ = ∫
∞

0−
x′(t) exp (−st)dt

= x(t) exp (−st)|∞0− − ∫
∞

0−
x(t) d

dt
exp (−st)dt

= 0 − x(0−) + s⟨x, exp (−st)⟩ = sX(s) − x(0−). (7.70)

The main difference in this expression is that the lower limit of integration is finite, in
which case exp (0) = 1, resulting in the term x(0−). Recall that the initial state x(0−) is
not the initial condition of the time-domain waveform as used in Chapter 6 on ODEs.
In this chapter, we denote the initial condition by x(0+), which is also called the initial
value.

Example 7.8 For the unit step function x(t) = u(t), these two initial quantities are
x(0−) = 0 and x(0+) = 1, which are also the values for x(t) = exp (−𝛼t)u(t). Nonzero
x(0−) can arise in a circuit that is in steady state before an input is applied at time 0.
For example, the current through an inductor might be some nonzero iL(0−) before a
circuit switch is closed; this is its initial state. Since the current in an inductor cannot
change instantaneously, it turns out that iL(0−) = iL(0+). Similarly, since the volt-
age across a capacitor cannot change instantaneously, 𝑣C(0−) = 𝑣C(0+). However, in
general, we find that x(0−) ≠ x(0+), and in many problems x(0−) = 0.

For the second distributional derivative:

⟨x(2), exp (−st)⟩ = x′(t) exp (−st)|∞0− − ∫
∞

0−
x′(t) d

dt
exp (−st)dt

= s⟨x′, exp (−st)⟩ − x′(0−). (7.71)

Substituting the result from (7.70) yields

⟨x(2), exp (−st)⟩ = s2⟨x, exp (−st)⟩ − sx(0−) − x′(0−)

= s2X(s) − sx(0−) − x′(0−). (7.72)

For the nth derivative, a similar result is obtained:

⟨x(n), exp (−st)⟩ = snX(s) −
n−1∑

m=0

sn−m−1x(m)(0−). (7.73)
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Example 7.9 Consider the one-sided exponential function, which has a discontinu-
ity at the origin: x(t) = exp (−𝛼t)u(t). Its derivative from the product rule is

d
dt

exp (−𝛼t)u(t) = exp (−𝛼t) d
dt

u(t) + u(t) d
dt

exp (−𝛼t)

= 𝛿(t) exp (−𝛼t) − 𝛼 exp (−𝛼t)u(t)

= 𝛿(t) − 𝛼 exp (−𝛼t)u(t), (7.74)

where the sampling property of the Dirac delta function has been used for the first
term of the third line. From the expression in (5.77) for distributional derivatives:

⟨ d
dt

exp (−𝛼t)u(t), 𝜙(t)
⟩
= −⟨exp (−𝛼t)u(t), 𝜙′(t)⟩

= −∫
∞

0
exp (−𝛼t) d

dt
𝜙(t)dt

= − exp (−𝛼t)𝜙(t)|∞0 − 𝛼 ∫
∞

0
exp (−𝛼t)𝜙(t)dt

= 𝜙(0) − 𝛼⟨exp (−𝛼t)u(t), 𝜙(t)⟩. (7.75)

The leading term 𝜙(0) is the distribution of the Dirac delta function, and the result in
(7.74) is verified. The Laplace transform is derived by substituting 𝜙(t) = exp (−st):

⟨ d
dt

exp (−𝛼t)u(t), exp (−st)
⟩
= exp (0) − 𝛼⟨exp (−𝛼tu(t), exp (−st)⟩

= 1 − 𝛼

s + 𝛼

= s
s + 𝛼

, (7.76)

which has ROC Re(s) > −𝛼. This is the same expression derived using (7.70):

⟨x′, exp (−st)⟩ = s
1

s + 𝛼

− 0 = s
s + 𝛼

, (7.77)

with x(0−) = 0.

We return to generalized functions in Chapter 8 on Fourier transforms where the
transforms can yield singular distributions such as the Dirac delta function and its
derivatives. Tables 7.2 and 7.3 provide a summary of several Laplace transform pairs,
most of which are right-sided functions. The ROC for each case is specified in terms
of 𝜎, which is the real part of s = 𝜎 + j𝜔. Appendix B has several inverse Laplace
transform pairs where the transform is given first. The reader might find these use-
ful because it is not necessary to perform a PFE on the transforms with multiple
poles. Extensive summaries for several functions and their transforms are provided
in Appendix A.
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7.6 LAPLACE TRANSFORM PROPERTIES

In this section, we prove several properties of the Laplace transform that are useful
for finding the transforms of nonstandard signals and impulse response functions.
Most of the properties extend to the bilateral Laplace transform, which is defined for
t ∈ ; differences are mentioned for some cases.

• Linearity:
{a1x1(t) + a2x2(t)} = a1X1(s) + a2X2(s). (7.78)

Proof: Since integration is a linear operation:

∫
∞

0
[a1x1(t) + a2x2(t)] exp (−st)dt = a1 ∫

∞

0
x1(t) exp (−st)dt

+ a2 ∫
∞

0
x2(t) exp (−st)dt

= a1X1(s) + a2X2(s). (7.79)

The ROC must hold for the sum of the two functions, which means it is the
intersection of the individual ROCs: ROC1 ∩ ROC2.

• Time shift:

{x(t − to)u(t − to)} = exp (−tos)X(s), to > 0. (7.80)

The unit step function is also delayed to emphasize that the shifted function is
0 for t < to. Proof: The change of variables 𝜏 ≜ t − to =⇒ t = 𝜏 + to yields

∫
∞

to

x(t − to) exp (−st)dt = exp (−sto)∫
∞

0
x(𝜏) exp (−s𝜏)d𝜏

= exp (−sto)X(s), (7.81)

and the ROC is unchanged. We assume to > 0 so that the function shifts only
to the right and remains causal. (For the bilateral Laplace transform, there is no
restriction on to.)

• Time scaling:

{x(𝛼t)} = 1
𝛼

X(s∕𝛼), 𝛼 > 0. (7.82)

Proof: The change of variables 𝜏 ≜ 𝛼t =⇒ t = 𝜏∕𝛼 yields

∫
∞

0
x(𝛼t) exp (−st)dt = (1∕𝛼)∫

∞

0
x(𝜏) exp (−(s∕𝛼)𝜏)d𝜏

= (1∕𝛼)X(s∕𝛼). (7.83)
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If the original ROC is Re(s) > −a for a > 0, then the new ROC is
Re(s∕𝛼) > −a =⇒ Re(s) > −𝛼a. We assume 𝛼 > 0 so that time is not
reversed: it is expanded for 𝛼 > 1 and contracted for 𝛼 < 1. (For the bilateral
Laplace transform, 𝛼 can be negative, in which case the scale factor in (7.83)
is 1∕|𝛼|; the argument of the transform is still s∕𝛼.)

• Frequency shift:
{ exp (sot)x(t)} = X(s − so). (7.84)

Proof: From the Laplace transform definition:

∫
∞

0
x(t) exp (sot) exp (−st)dt = ∫

∞

0
x(t) exp (−(s − so)t)dt

= X(s − so). (7.85)

If the original ROC is Re(s) > −a for a > 0, then the new ROC is Re(s − so) >
−a =⇒ Re(s) > Re(so) − a = so − a. Since we consider only real signals in
the time domain, so is real-valued so that the product x(t) exp (sot) is real.

• Derivatives:

{ dn

dtn
x(t)

}
= snX(s) −

n−1∑

m=0

sn−m−1 dmx(t)
dtm

|
|
|
|
|
|t=0−

= snX(s) −
n−1∑

m=0

sn−m−1x(m)(0−), (7.86)

where x(m)(t) is the mth ordinary derivative of x(t), and x(m)(0−) is the initial
state “just before” t = 0. The ROC is unchanged unless sn cancels all s terms in
the denominator of X(s), in which case the ROC is determined by the remain-
ing poles in the denominator. (For the bilateral Laplace transform, the sum in
(7.86) is 0.) Proof: This was derived earlier in (7.70)–(7.73) using the general-
ized function approach.

• Integral:


{

∫
t

0
x(t)dt

}

= 1
s

X(s). (7.87)

Proof: This result is also proved using integration by parts. In order to avoid
confusion with the notation, the variable of integration in (7.87) is replaced
with 𝜏:

∫
∞

0 ∫
t

0
x(𝜏)d𝜏 exp (−st)dt = −(1∕s) exp (−st)∫

t

0
x(𝜏)d𝜏

|
|
|
|
|

∞

t=0

+ (1∕s)∫
t

0
x(t) exp (−st)dt

= 1
s

X(s). (7.88)
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The first term on the right-hand side of the first line is 0 as t → ∞ because it is
assumed that exp (−st) → 0 faster than x(t) increases as t → ∞ (the integral is
finite). The ROC is Re(s) > 0 because of the 1∕s term (which is a pole at s = 0)
unless, of course, X(s) already has one or more poles at s = 0, in which case the
ROC is unchanged.

• Convolution:
{x(t) ∗ h(t)} = X(s)H(s), (7.89)

where

x(t) ∗ h(t) ≜ ∫
t

0
x(𝜏)h(t − 𝜏)d𝜏 = ∫

t

0
x(t − 𝜏)h(𝜏)d𝜏. (7.90)

This is a symmetric property: {h(t) ∗ x(t)} = {x(t) ∗ h(t)} = H(s)X(s) =
X(s)H(s). The limits of integration are determined by the fact that x(t) and h(t)
are causal: in the first integral, the lower limit is 0 because x(𝜏) is nonzero for
𝜏 ≥ 0, and the upper limit is t because h(t − 𝜏) is nonzero for t − 𝜏 ≥ 0 =⇒
𝜏 ≤ t. Proof: From the identity exp (−st) = exp (−s(t − 𝜏)) exp (−s𝜏):

{x(t) ∗ h(t)} = ∫
∞

0 ∫
t

0
x(𝜏)h(t − 𝜏) exp (−st)d𝜏dt

= ∫
∞

0 ∫
t

0
x(𝜏) exp (−s𝜏)h(t − 𝜏) exp (−s(t − 𝜏))d𝜏dt. (7.91)

This type of double integral is not straightforward to evaluate because the outer
integral is defined over t, which is the upper limit of integration for the inner inte-
gral. This can be handled by recognizing that the integration is performed over
the shaded region in Figure 7.3(a) defined by the line t = 𝜏 for t ≥ 0: the inner
integration is performed horizontally over 𝜏 ∈ [0, t] and the outer integration is
performed vertically over t ∈ [0,∞). However, note from Figure 7.3(b) that the
integration can be performed instead over t ∈ [𝜏,∞) and then over 𝜏 ∈ [0,∞).
As a result, the integrals are interchanged and (7.91) is rewritten as

{x(t) ∗ h(t)} = ∫
∞

0 ∫
∞

𝜏

x(𝜏) exp (−s𝜏)h(t − 𝜏) exp (−s(t − 𝜏))dtd𝜏. (7.92)

t: τ → ∞ 

t = τ

ττ

t t

(a) (b)

t = τ

τ: 0 → t 

Figure 7.3 Region of integration for proving the convolution property of the Laplace trans-
form. (a) Horizontally over 𝜏 ∈ [0, t] and vertically over t ∈ [0,∞). (b) Vertically over
t ∈ [𝜏,∞) and horizontally over 𝜏 ∈ [0,∞).
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Changing variables to 𝑣 ≜ t − 𝜏 yields 0 for the lower limit of the inner integral:

{x(t) ∗ h(t)} = ∫
∞

0 ∫
∞

0
x(𝜏) exp (−s𝜏)h(𝑣) exp (−s𝑣)d𝑣d𝜏

= ∫
∞

0
x(𝜏) exp (−s𝜏)d𝜏 ∫

∞

0
h(𝑣) exp (−s𝑣)d𝑣

= X(s)H(s), (7.93)

which allows us to split the integrals into a product. The overall ROC is the
intersection of the individual ROCs: ROCx ∩ ROCh.

• Cross-correlation:
{x(t) ⋆ h(t)} = X(−s)H(s), (7.94)

where

x(t) ⋆ h(t) ≜ ∫
∞

max(0,−t)
x(𝜏)h(t + 𝜏)d𝜏 (7.95)

= ∫
∞

max(0,t)
x(𝜏 − t)h(𝜏)d𝜏. (7.96)

This is not a symmetric property: {h(t) ⋆ x(t)} = H(−s)X(s) ≠ X(−s)H(s).
The limits of integration are determined by the fact that x(t) and h(t) are causal:
the lower limit for the first integral is the maximum of 0 and −t because x(𝜏) is
nonzero for 𝜏 ≥ 0 and h(t + 𝜏) is nonzero for t + 𝜏 ≥ 0 =⇒ 𝜏 ≥ −t. Similar
reasoning leads to a different lower limit for the second integral. We use the
following notation for cross-correlation functions (see Chapter 5):

cxh(t) ≜ x(t) ⋆ h(t), chx(t) ≜ h(t) ⋆ x(t). (7.97)

When h(t) = x(t), cxx(t) = x(t) ⋆ x(t) is the autocorrelation function of x(t).
Proof: The proof is similar to that used for convolution, requiring the slightly
different identity exp (−st) = exp (−s(t + 𝜏)) exp (s𝜏):

{x(t) ⋆ h(t)} = ∫
∞

−∞ ∫
∞

max(0,−t)
x(𝜏) exp(s𝜏)h(t + 𝜏) exp(−s(t + 𝜏))d𝜏dt

= ∫
0

−∞ ∫
∞

−t
x(𝜏) exp(s𝜏)h(t + 𝜏) exp(−s(t + 𝜏))d𝜏dt

+ ∫
∞

0 ∫
∞

0
x(𝜏) exp(s𝜏)h(t + 𝜏) exp(−s(t + 𝜏))d𝜏dt, (7.98)

where the outer integral defined over t has been split into a sum so that the
lower limit max(0,−t) of the inner integral can be evaluated. As was done for
the convolution property, the order of integrations performed over the variables
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τ: −t → ∞ 
τ τ

t t

(a) (b)

t = −τ t = −τ

t: −τ → 0

Figure 7.4 Region of integration for the first term in (7.98) for proving the cross-correlation
property of the Laplace transform. (a) Horizontally over 𝜏 ∈ [−t,∞) and vertically over
t ∈ (−∞, 0]. (b) Vertically over t ∈ [−𝜏, 0] and horizontally over 𝜏 ∈ [0,∞).

is changed for the first term on the right-hand side to that of the shaded region
in Figure 7.4(b):

(x(t) ⋆ h(t)) = ∫
∞

0 ∫
0

−𝜏
x(𝜏) exp (s𝜏)h(t + 𝜏) exp (−s(t + 𝜏))dtd𝜏

+ ∫
∞

0 ∫
∞

0
x(𝜏) exp (s𝜏)h(t + 𝜏) exp (−s(t + 𝜏))dtd𝜏. (7.99)

Changing variables to 𝑣 ≜ t + 𝜏 yields

(x(t) ⋆ h(t)) = ∫
∞

0 ∫
𝜏

0
x(𝜏) exp (s𝜏)h(𝑣) exp (−s𝑣)d𝑣d𝜏

+ ∫
∞

0 ∫
∞

𝜏

x(𝜏) exp (s𝜏)h(𝑣) exp (−s𝑣)d𝑣d𝜏. (7.100)

The inner integrals are combined and the double integral is split into a product:

(x(t) ⋆ h(t)) = ∫
∞

0
x(𝜏) exp (−(−s)𝜏)d𝜏 ∫

∞

0
h(𝑣) exp (−s𝑣)d𝑣

= X(−s)H(s), (7.101)

which completes the proof. The overall ROC is the intersection of the individual
ROCs: ROCx ∩ ROCh.

• Product:

{x(t)h(t)} = 1
2𝜋j ∫

c+j∞

c−j∞
X(𝑣)H(s − 𝑣)d𝑣, (7.102)

where the integral is performed along a vertical line 𝜎 = c in ROCx (or in
ROCh if the integrand terms are interchanged). If ROCx is Re(s) > −𝛼x and
ROCh is Re(s) > −𝛼h for positive {𝛼x, 𝛼h}, then the ROC of the product is
Re(s) > −𝛼x − 𝛼h, which is expanded to the left on the s-plane when both terms
are nonzero. The product property is the dual of the convolution property,
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where in this case the convolution is performed in the s-domain and the
functions are multiplied in the time domain. Proof: Substituting the inverse
Laplace transform in (7.58) for x(t) and interchanging the integrals yields

{x(t)h(t)} = 1
2𝜋j ∫

∞

0 ∫
c+j∞

c−j∞
X(𝑣)h(t) exp (𝑣t) exp (−st)d𝑣dt

= 1
2𝜋j ∫

c+j∞

c−j∞
X(𝑣)∫

∞

0
h(t) exp (−(s − 𝑣)t)dtd𝑣

= 1
2𝜋j ∫

c+j∞

c−j∞
X(𝑣)H(s − 𝑣)d𝑣. (7.103)

The last integration is performed in the ROC for X(s) because the inverse trans-
form for x(t) is substituted here. The ROC for H(s − 𝑣) is Re(s − 𝑣) > −𝛼h =⇒
Re(s) > −𝛼h + 𝑣, and since the integration performed over 𝑣 can be done just
to the right of −𝛼x, we have an overall ROC of Re(s) > −𝛼h − 𝛼x.

• Time product:

{tnx(t)} = (−1)n dn

dsn
X(s). (7.104)

The ROC is unchanged because Re(s) > 0 for tnu(t) and we have used the ROC
expression given earlier for the product property. Proof: Although this is a spe-
cial case of the product property with h(t) = tnu(t), it is easier to start with the
right-hand side of (7.104):

dn

dsn
X(s) = dn

dsn ∫
∞

0
x(t) exp (−st)dt

= ∫
∞

0
x(t) dn

dsn
[exp (−st)]dt

= ∫
∞

0
(−1)ntnx(t) exp (−st)dt. (7.105)

The derivative is simple to evaluate because only exp (−st) depends on s. Mov-
ing (−1)n to the left-hand side completes the proof.

• Time division:

{x(t)∕t} = ∫
∞

s
X(𝑣)d𝑣, (7.106)

assuming that x(t)∕t is defined as t → 0+. The ROC is unchanged. Proof: Start-
ing with the right-hand side:

∫
∞

s
X(𝑣)d𝑣 = ∫

∞

s ∫
∞

0
x(t) exp (−𝑣t)dtd𝑣

= ∫
∞

0
x(t)∫

∞

s
exp (−𝑣t)d𝑣dt. (7.107)
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TABLE 7.4 Properties of the Laplace Transform

Property Function Laplace Transform

Linearity a1x1(t) + a2x2(t) a1X1(s) + a2X2(s)
Time shift x(t − to) exp (−tos)X(s)
Time scaling x(𝛼t) (1∕|𝛼|)X(s∕𝛼)
Frequency shift exp (sot)x(t) X(s − so)
Derivatives dnx(t)∕dtn snX(s) −

∑n−1
m=0 sn−m−1x(m)(0−)

Integral ∫ t

0 x(𝜏)d𝜏 (1∕s)X(s)
Double integral ∫ t1

0 ∫ t2
0 x(𝑣)d𝑣d𝜏 (1∕s2)X(s)

Convolution x(t) ∗ h(t) X(s)H(s)
Cross-correlation x(t) ⋆ h(t) X(s)H(−s)

Product x(t)h(t) (1∕2𝜋j) ∫ 𝜎+j∞
𝜎−j∞ X(𝑣)H(s − 𝑣)d𝑣

Time product tnx(t) (−1)ndnX(s)∕dsn

Time division x(t)∕t ∫ ∞
s X(𝑣)d𝑣

Performing the inner integration yields

∫
∞

s
X(𝑣)d𝑣 = ∫

∞

0
[x(t)∕t] exp (−st)dt, (7.108)

which is the Laplace transform of x(t)∕t provided it exists.

These properties of the Laplace transform are summarized in Table 7.4.

Example 7.10 A simple example of the time division property is x(t) = (tn∕t)u(t)
for n ≥ 1, which we know has Laplace transform (n − 1)!∕sn:

{(tn∕t)u(t)} = ∫
∞

s
(n!∕𝑣n+1)d𝑣, (7.109)

where {tn} = n!∕sn+1 has been substituted. Thus,

{(tn∕t)u(t)} = −(n!∕n𝑣n)|∞s = (n − 1)!∕sn, (7.110)

of which the ramp function is a special case:

{r(t)∕t} = ∫
∞

s
(1∕𝑣2)d𝑣 = −1∕𝑣|∞s = 1∕s. (7.111)

This is the Laplace transform of the unit step function, as expected. For most of the
functions in Tables 7.2 and 7.3, this property cannot be used because x(t)∕t is not
defined at the origin. An exception is the sine function (see Problem 7.16).
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Example 7.11 For the product of two exponential functions exp (−2t)u(t) and
exp (−3t)u(t), it is easy to see that the ROC is Re(s) > −2 − 3 = −5 because we
can just combine the exponents as x(t) = exp (−5t)u(t) and compute the transform.
Suppose the product is x(t) = 𝛿(t) exp (−2t)u(t), which from the sampling property is
x(t) = 𝛿(t), and so, the ROC is the entire s-plane: Re(s) > −∞− 2 = −∞ =⇒ s ∈ .

Example 7.12 In this example, we verify the derivative property for the following
function, which has a discontinuity at t = 0:

x(t) = exp (−𝛼t) cos(𝜔ot)u(t), (7.112)

with 𝛼 > 0 and 𝜔o > 0. The product rule of derivatives yields

d
dt

x(t) = −𝛼 exp (−𝛼t) cos(𝜔ot)u(t) − 𝜔o exp (−𝛼t) sin(𝜔ot)u(t)

+ exp (−𝛼t) cos(𝜔ot)𝛿(t). (7.113)

From the sampling property of the Dirac delta function, the last term is 𝛿(t), and the
final result is

d
dt

x(t) = 𝛿(t) − exp (−𝛼t)[𝛼 cos(𝜔ot) + 𝜔o sin(𝜔ot)]u(t). (7.114)

The Laplace transform of (7.112) is (see Table 7.3)

X(s) = s + 𝛼

(s + 𝛼)2 + 𝜔
2
o

, (7.115)

which has ROC Re(s) > −𝛼. Assuming x(0−) = 0, the derivative property of the
Laplace transform for y(t) ≜ dx(t)∕dt gives

Y(s) = sX(s) = s(s + 𝛼)
(s + 𝛼)2 + 𝜔

2
o

. (7.116)

This expression can be rearranged as follows:

Y(s) = 1 −
𝛼s + 𝛼

2 + 𝜔
2
o

(s + 𝛼)2 + 𝜔
2
o

= 1 −
[

𝛼

s + 𝛼

(s + 𝛼)2 + 𝜔
2
o

+ 𝜔o
𝜔o

(s + 𝛼)2 + 𝜔
2
o

]

, (7.117)

which has the inverse Laplace transform in (7.114).

Because the Laplace transform is defined with lower limit 0−, we must take into
account any discontinuities at the origin, which means the Dirac delta function should
appear in (7.114). However, for the exponentially weighted sine function, there is no
Dirac delta function as shown in the next example.
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Example 7.13 The exponentially weighted sine function is

x(t) = exp (−𝛼t) sin(𝜔ot)u(t), (7.118)

and its derivative is

d
dt

x(t) = −𝛼 exp (−𝛼t) sin(𝜔ot)u(t) + 𝜔o exp (−𝛼t) cos(𝜔ot)u(t)

+ exp (−𝛼t) sin(𝜔ot)𝛿(t). (7.119)

Since sin(0) = 0, the last term is 0 due to the sampling property of the Dirac delta
function:

d
dt

x(t) = exp (−𝛼t)[𝜔o cos(𝜔ot) − 𝛼 sin(𝜔ot)]u(t). (7.120)

The Laplace transform of x(t) is (from Table 7.3)

X(s) =
𝜔o

(s + 𝛼)2 + 𝜔
2
o

, (7.121)

with ROC Re(s) > −𝛼. The derivative property of the Laplace transform for
y(t) = dx(t)∕dt yields

Y(s) = sX(s) =
s𝜔o

(s + 𝛼)2 + 𝜔
2
o

, (7.122)

which does not have a leading 1, verifying that there is no Dirac delta function in
the inverse Laplace transform in (7.120).

Example 7.14 In order to illustrate how the convolution and cross-correlation of
two functions differ, suppose that x(t) = u(t) and h(t) = exp (−t)u(t). Convolution
yields the right-sided expression

y(t) = ∫
∞

0
u(𝜏) exp (−(t − 𝜏))u(t − 𝜏)d𝜏

= exp (−t)u(t)∫
t

0
exp (𝜏)d𝜏 = exp (−t)u(t) exp (𝜏)|t0

= exp (−t)[exp (t) − 1]u(t) = [1 − exp (−t)]u(t), (7.123)

where u(t) has been included because t must be nonnegative. Its Laplace transform is

Y(s) = 1
s
− 1

s + 1
= 1

s(s + 1)
, (7.124)
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Re(s)=σ
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0

Overall ROC
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Figure 7.5 Region of convergence (ROC) for the Laplace transform in (7.130) of the
cross-correlation function cxh(t) in Example 7.14, with poles at s = {0,−1}.

with ROC Re(s) > 0. The cross-correlation of these two functions is two-sided:

cxh(t) = ∫
∞

max(0,−t)
u(𝜏) exp (−(t + 𝜏))u(t + 𝜏)d𝜏

= exp (−t)∫
∞

max(0,−t)
exp (−𝜏)d𝜏

= exp (−t) exp (−max(0,−t)), (7.125)

which can be written as

cxh(t) =
{

1, t < 0
exp (−t), t ≥ 0

= u(−t) + exp (−t)u(t), (7.126)

and it is understood that the function is 1 at the origin (this is an example of a wave-
form where it is convenient to use u(0) = 0.5 because the two functions overlap at
t = 0). Its bilateral Laplace transform is

Cxh(s) = ∫
0

−∞
exp (−st)dt + ∫

∞

0
exp (−(s + 1)t)dt

= −1
s
+ 1

s + 1
= −1

s(s + 1)
, (7.127)

whose ROC is the intersection of Re(s) < 0 and Re(s) > −1, corresponding to the
vertical strip on the s-plane shown in Figure 7.5: −1 < Re(s) < 0. The ROC is located
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between the poles at s = {0, 1}, which are denoted by X and are described further in
a subsequent section. The individual Laplace transforms are

X(s) = 1
s
, H(s) = 1

s + 1
, (7.128)

which confirm the results in (7.124) and (7.127):

Y(s) = X(s)H(s) = 1
s(s + 1)

, (7.129)

Cxh(s) = X(−s)H(s) = − 1
s(s + 1)

. (7.130)

It is straightforward to show that the other cross-correlation function is also
two-sided:

chx(t) =
{

exp (t), t < 0
1, t ≥ 0

= exp (t)u(−t) + u(t), (7.131)

which has bilateral Laplace transform

Chx(s) =
1

−s + 1
+ 1

s
= 1

s(−s + 1)
, (7.132)

and ROC 0 < Re(s) < 1 (see Problem 7.13). The cross-correlation functions and y(t)
in (7.123) are plotted in Figure 7.6. The cross-correlation plots are reversed relative
to each other, and the convolution result y(t) increases to 1 (the solid line). Since
x(t) = u(t), the output y(t) is the step response of the system with impulse response
function h(t). All three functions in the time domain, y(t), cxh(t), and chx(t), have an
isolated step function due to s in the denominator of their transforms.

Example 7.15 For the following Laplace transform with ROC Re(s) > −1:

X(s) = 2
s + 1

+ 2
s + 3

exp (−4t) + s
s + 2

, (7.133)

the time-domain waveform is

x(t) = 2 exp (−t)u(t) + 2 exp (−(t − 4)t)u(t − 4) + d
dt

exp (−2t)u(t)

= 2 exp (−t)u(t) + 2 exp (−(t − 4)t)u(t − 4) − 2 exp (−2t)u(t) + 𝛿(t), (7.134)

where various properties of the Laplace transform have been used. The Dirac delta
function appears because the last term in (7.133) is an improper rational function.
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Figure 7.6 Cross-correlation functions and the convolution result in Example 7.14.

Thus, the last two terms of (7.134) can also be derived by applying long division to
s∕(s + 2) of (7.133):

s
s + 2

= 1 − 2
s + 2

−1

−−−−→ 𝛿(t) − 2 exp (−2t)u(t), (7.135)

which confirms the results in (7.134).

Example 7.16 Finally, we give an example that illustrates a subtle difference
between the derivative and integral properties of the Laplace transform. The I-V
model for the inductor and its Laplace transform are given by

𝑣(t) = L
d
dt

i(t)

−−→V(s) = sLI(s) − Li(0−), (7.136)

where i(0−) is the current before any changes at t = 0, such as a switch opening or
closing in the circuit; it is the initial state. Now consider the integral form for the
inductor model and its Laplace transform:

i(t) = 1
L ∫

t

0−
𝑣(t)dt


−−→ I(s) = V(s)∕sL. (7.137)

The integral property of the Laplace transform in (7.87) does not include i(0−) as
does the derivative property. Solving (7.136) for I(s) yields

I(s) = V(s)∕sL + i(0−)∕s, (7.138)
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which is not the same as the result in (7.137). The reason for this discrepancy is due to
the fact that the time-domain expression in (7.137) is incorrect when i(0−) is nonzero.
If a dependent variable defined by an integral has a nonzero initial value, then it must
be added as follows (the correct expression is also given in (2.23)):

i(t) = 1
L ∫

t

0−
𝑣(t)dt + i(0−). (7.139)

Furthermore, this term acts as a step function because it appears in the expression for
t ∈ +. Thus, when taking the unilateral Laplace transform of (7.139), the transform
of the constant i(0−) is i(0−)∕s, and the correct result in (7.138) is obtained.

The previous example illustrates that when taking the Laplace transform of an
integral in an integro-differential equation, we must include any nonzero values of
the function at t = 0− and consider them to be step functions. An example of this is
given by the integro-differential equation in (6.82) for a series RLC circuit, repeated
here

Ri(t) + L
d
dt

i(t) + (1∕C)∫
t

0
i(t)dt + 𝑣C(0−) = Vsu(t), (7.140)

which includes 𝑣C(0−) for the capacitor voltage. The Laplace transform of this
equation is

RI(s) + sLI(s) − Li(0−) + I(s)∕sC + 𝑣C(0−)∕s = Vs∕s, (7.141)

where the derivative property yields Li(0−). Since 𝑣C(0−) and the voltage supply Vs
are constants starting at t = 0, corresponding to step functions, they are divided by s
in the transformation.

7.7 INITIAL AND FINAL VALUE THEOREMS

The two theorems in this section are useful for finding the initial value x(0+) and
the final value limt→∞x(t) of the time-domain function x(t) directly from the Laplace
transform X(s) without having to find its inverse Laplace transform.

• Initial value theorem (IVT):

lim
t→0+

x(t) = lim
s→∞

sX(s). (7.142)

Since t = 0+, the value of the function is found just after any discontinuity at the
origin; it is the initial condition. Proof: From the derivative property in (7.86):

∫
∞

0−

d
dt

x(t) exp (−st)dt = sX(s) − x(0−). (7.143)
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Splitting the integral about 0 to [0−, 0+] ∪ (0+,∞) gives

∫
0+

0−

[ d
dt

x(t)
]

exp (−st)dt + ∫
∞

0+

[ d
dt

x(t)
]

exp (−st)dt = sX(s) − x(0−).
(7.144)

In the first integral, s = 0 can be substituted because the exponential function is
continuous:

∫
0+

0−

[ d
dt

x(t)
]

exp (−st)dt = ∫
0+

0−

d
dt

x(t)dt = x(0+) − x(0−). (7.145)

Substituting this result into (7.144) and rearranging the expression gives

x(0+) + ∫
∞

0+

[ d
dt

x(t)
]

exp (−st)dt = sX(s), (7.146)

where x(0−) has canceled. The proof is completed by letting s → ∞ on both
sides of the last expression such that the integrand tends to 0.

There are some subtleties associated with the IVT. It is important to note that there
is a difference between the function at t = 0− and the initial value at t = 0+. Any
nonzero values at t = 0− such as 𝑣(0−) in a circuit are needed when solving an ODE,
and they must be included in the Laplace transforms. The initial voltage 𝑣(0+), on the
other hand, is the initial value of the solution of the ODE. In some problems, these
two quantities are the same, as is the case for the voltage across a capacitor, which
cannot change instantaneously. However, in general, we cannot assume that 𝑣(0−)
equals 𝑣(0+), and it is necessary that they be used properly when solving ODEs in
the s-domain.

If there is a discontinuity at the origin due to a step, then

d
dt

x(t)
|
|
|
|t=0

= [x(0+) − x(0−)]𝛿(t) (7.147)

should be substituted into (7.145):

∫
0+

0−
[x(0+) − x(0−)]𝛿(t)dt = x(0+) − x(0−), (7.148)

where the sifting property of the Dirac delta function has been used. Thus, the IVT
holds for step functions. For x(t) = 𝛿(t), the derivative is the unit doublet d𝛿(t)∕dt =
𝛿
′(t) and

∫
0+

0−
𝛿
′(t) exp (−st)dt = − d

dt
exp (−st)

|
|
|
|t=0

= s, (7.149)

where the sifting property of 𝛿′(t) has been used for the right-hand side. Since the
Dirac delta function is defined to be 0 at t = 0+, the second integral in (7.144) is
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necessarily 0. The right-hand side of (7.144) is s because X(s) = 1 and x(0−) = 0,
so that the equation is valid for the Dirac delta function. However, note that (7.142)
is infinite in this case, which demonstrates that the IVT is not useful for impulsive
functions at the origin.

• Final value theorem (FVT):

lim
t→∞

x(t) = lim
s→0

sX(s). (7.150)

Proof: The derivative property is also used to prove this theorem:

lim
s→0− ∫

∞

0−

d
dt

x(t) exp (−st)dt = ∫
∞

0−

d
dt

x(t)dt = x(t)|∞t=0− = x(∞) − x(0−).
(7.151)

Equating this with (7.143) gives

lim
s→0−

sX(s) − x(0−) = x(∞) − x(0−), (7.152)

and canceling x(0−) completes the proof. It is not necessary to distinguish
between 0− and 0+ in the final value theorem (FVT) because we are interested
in x(t) as t → ∞.

Observe that the variables of the two domains for these two properties have an inverse
relationship: s → ∞ for x(0+) and s → 0 for x(∞), which are often mistakenly inter-
changed in practice.

Example 7.17 For the transform in (7.172), the IVT yields

lim
s→∞

s(s + 𝛼)
(s + 𝛼)2 + 𝜔

2
o

= 1, (7.153)

which follows because both the numerator and the denominator are dominated by s2

as s approaches ∞. The FVT gives

lim
s→0

s(s + 𝛼)
(s + 𝛼)2 + 𝜔

2
o

= 0. (7.154)

Both of these results are consistent with the time-domain waveform given later in
(7.172).

Example 7.18 Consider the unit step and ramp functions, which have transforms

x1(t) = u(t)

−−→X1(s) =

1
s
, (7.155)

x2(t) = r(t)

−−→X2(s) =

1
s2
, (7.156)
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both with ROC Re(s) > 0. The IVT yields

x1(0+) = lim
s→∞

s
s
= 1, x2(0+) = lim

s→∞
s
s2

= 0, (7.157)

and the FVT gives

x1(∞) = lim
s→0

s
s
= 1, x2(∞) = lim

s→0

s
s2

= ∞. (7.158)

The FVT is valid for the Dirac delta function and its derivative 𝛿
(n)(t), which have

Laplace transforms 1 and sn, respectively:

lim
t→∞

𝛿(t) = lim
s→0

s = 0, lim
t→∞

𝛿
(n)(t) = lim

s→0
sn+1 = 0. (7.159)

However, the IVT is not useful in either case as mentioned previously:

lim
t→0+

𝛿(t) ≠ lim
s→∞

s = ∞, lim
t→0+

𝛿
(n)(t) ≠ lim

s→∞
sn+1 = ∞, (7.160)

whereas we know that these singular generalized functions are defined to be 0 at
t = 0+. The FVT does not hold for undamped or ramped sinusoidal functions, which
is easily verified from the transform tables (also, see the discussion in Appendix B).

7.8 POLES AND ZEROS

The Laplace transform of a linear ODE with constant coefficients is a ratio of poly-
nomials in s called a rational function. This follows from (6.10), which we repeat
here:

aN
dN

dtN
y(t) + aN−1

dN−1

dtN−1
y(t) + · · · + a1

d
dt

y(t) + a0y(t)

= bM
dM

dtM
x(t) + bM−1

dM−1

dtM−1
x(t) + · · · + b1

d
dt

x(t) + b0x(t). (7.161)

Assuming y(n)(0−) = 0, its Laplace transform is

aNsNY(s) + aN−1sN−1Y(s) + · · · + a1sY(s) + a0Y(s)

= bMsMX(s) + bM−1sM−1X(s) + · · · + b1sX(s) + b0X(s), (7.162)

which can be rewritten as

Y(s)
X(s)

=
bMsM + bM−1sM−1 + · · · + b1sX(s) + b0

aNsN + aN−1sN−1 + · · · + a1s + a0
, (7.163)

where X(s) and Y(s) in (7.162) have been factored and written as a ratio.
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Definition: Transfer Function The transfer function of an LTI system is the
rational function

H(s) ≜ Y(s)
X(s)

, (7.164)

where X(s) and Y(s) are the Laplace transforms of its input and output, respectively.
The initial states are assumed to be 0.

A rational function can be categorized as one of two possible types.

Definition: Proper and Improper Rational Functions The rational func-
tion H(s) = Y(s)∕X(s) is proper if the numerator order M is less than N of the
denominator. Otherwise, it is an improper rational function.

For improper rational functions, the IVT cannot be used because h(t) would include
some combination of the Dirac delta function and its derivatives. However, by using
long division, it is possible to isolate those singular components and apply the IVT to
the remaining part that is in proper form, for which we can determine its initial value
at t = 0+ by ignoring impulses at the origin. The significance of proper and improper
rational functions will become evident later when we discuss the PFE technique for
finding the inverse Laplace transform of H(s).

Assume for now that M = N. Then from the polynomials in (7.163), it is clear that
the numerator and denominator can be factored into a product as follows:

H(s) =
N∏

n=1

s − zn

s − pn
, (7.165)

where {zn} and {pn} are the roots of the two polynomials. The numerator is 0 for
s = zn and the denominator is 0 for s = pn. These roots may be complex-valued, and
they may be repeated. If any root is complex of the form cn + jdn, then its complex
conjugate cn − jdn must also be a root because the coefficients {an, bn} of H(s) are
assumed to be real-valued.

Definition: Poles and Zeros The poles of transfer function H(s) are s = pn such
that lims→pn

H(s) → ±∞, and the zeros are s = zn such that lims→zn
H(s) → 0.

The transfer function H(s) is undefined when s is evaluated at a pole (recall that the
ROC excludes all poles). The locations of the poles of a transfer function yield infor-
mation about the impulse response function h(t) in the time domain.

Example 7.19 Consider the transfer function

H(s) = 2s
(s + 1)(s + 2)

, (7.166)
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which can be rewritten as follows:

H(s) = 4
s + 2

− 2
s + 1

. (7.167)

This formulation is a PFE that can be verified by the reverse operation of combining
terms over a common denominator:

H(s) = 4(s + 1) − 2(s + 2)
(s + 1)(s + 2)

= 2s
(s + 1)(s + 2)

. (7.168)

This system has two real poles in the left half of the s-plane, and thus, we know from
Table 7.3 that H(s) is the Laplace transform of two exponential functions:

h(t) = 4 exp (−2t)u(t) − 2 exp (−t)u(t), (7.169)

which have individual ROCs Re(s) > −1 and Re(s) > −2, respectively. The overall
ROC is the intersection of these two regions: (Re(s) > −1) ∩ (Re(s) > −2) = Re(s)
> −1. This is an example of a general result: the ROC of a right-sided function for a
stable system is the region on the s-plane just to the right of the pole with the smallest
magnitude. A stable system has poles located only in the left half of the s-plane. The
system in (7.168) also has a real zero at s = 0. Figure 7.7(a) shows a pole-zero plot
for H(s) where X denotes the pole locations and O indicates the zero location.

There are four types of poles with the following inverse transforms:

real pole∶ b
s + a

−1

−−−−→ b exp (−at)u(t), (7.170)

repeated real poles∶ b
(s + a)2

−1

−−−−→ bt exp (−at)u(t), (7.171)

complex poles∶ s + a

(s + a)2 + 𝜔
2
o

−1

−−−−→ exp (−at) cos(𝜔ot)u(t), (7.172)

repeated complex poles∶
(s + a) − 𝜔

2
o

[(s + a)2 + 𝜔
2
o]2

−1

−−−−→ t exp (−at) cos(𝜔ot)u(t). (7.173)

s-Plane

Re(s)=σ Re(s)=σ

Im(s)=ω Im(s)=ω

−1−2

s-Plane

j

−j

XX XX

X

X

0

(a) (b)

−1−2 0

Figure 7.7 Pole-zero plots. (a) H(s) in (7.166). (b) X(s) in (7.172) with a = 1 and 𝜔o = 1
rad/s.
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Distinct real poles correspond to exponential functions in the time domain, and
distinct complex conjugate poles correspond to decaying sinusoidal functions.
Distinct poles are also called simple poles. For a second-order ODE, the first case
in (7.173) (with real poles) is an overdamped system and the third case in (7.172)
(with complex poles) is underdamped. If the complex poles lie on the imaginary axis
(a = 0), then the sinusoidal function does not have any exponential weighting. This
is the so-called undamped case because the cosine does not decay to 0. Repeated
poles correspond to an exponentially weighted cosine function that is multiplied by
t, which is a ramped cosine. Such systems are called critically damped (although
(7.173) grows unbounded if a = 0).

Consider the right-sided cosine function x(t) = exp (−at) cos(𝜔ot)u(t), which has
the Laplace transform in (7.172). Its pole-zero plot on the s-plane is illustrated in
Figure 7.7(b) for a = 1 and 𝜔o = 1 rad/s. Since X(s) is a complex-valued function,
we can examine its magnitude after substituting s = 𝜎 + j𝜔, with a = 0 in order to
simplify the expression:

|X(s)| =
|𝜎 + j𝜔|

|(𝜎 + j𝜔 + j𝜔o)(𝜎 + j𝜔 − j𝜔o)|

=
√
(𝜎 + j𝜔)(𝜎 − j𝜔)

√
[𝜎 + j(𝜔 + 𝜔o)][𝜎 − j(𝜔 + 𝜔o)][(𝜎 + j(𝜔 − 𝜔o)][(𝜎 − j(𝜔 − 𝜔o)]

, (7.174)

where complex conjugate terms have been substituted into the numerator and the
denominator in order to cancel all terms containing j. Multiplying all pairs of terms
yields the final expression:

|X(s)| =
√
𝜎

2 + 𝜔
2

√
[𝜎2 + (𝜔 + 𝜔o)2][𝜎2 + (𝜔 − 𝜔o)2]

. (7.175)

The logarithm of this function is plotted versus 𝜎 and 𝜔 in Figure 7.8 (the loga-
rithm is used to show greater dynamic range). Observe that there is a zero at s =
0 where 20 log(|X(s|) → −∞, and there are complex conjugate poles at s = ±j𝜔o
where 20 log(|X(s|) → ∞. (Of course, the poles and zeros in the figure have finite
values because of the finite resolution of the grid used in MATLAB to generate the
three-dimensional plot.) The ROC is Re(s) > 0, which is denoted by the grid to the
right of the solid line at 𝜎 = 0. Several more examples of |X(s)| for important wave-
forms used in linear systems are provided in Appendix A.

It turns out that the dynamic characteristics of the time-domain function x(t) can
be determined from the pole locations on the s-plane. This is illustrated in Figure 7.9
for the transforms in (7.170) and (7.172), as well as

real pole at origin∶ 1
s

−1

−−−−→ u(t), (7.176)

complex poles on imaginary axis∶ s

s2 + 𝜔
2
o

−1

−−−−→ cos(𝜔ot)u(t). (7.177)



�

� �

�

POLES AND ZEROS 371

−2
−1

0
1

2

−2

0
2

−30

−20

−10

0

10

20

30

Re(s) = σ

|X(s)| of right−sided cosine function

Im(s) = ω

20
 lo

g(
|X

(s
)|

)

Figure 7.8 Truncated magnitude of the Laplace transform and its ROC for the right-sided
cosine function in (7.172) with a = 0 and 𝜔o = 1 rad/s.

If the poles are moved further to the left, |a| increases and the exponential functions
in (7.170) and (7.172) decay to 0 more quickly; they have a smaller time constant 𝜏.
Of course, these functions decay more slowly if the poles are moved to the right, and
when they lie on the imaginary axis, we have the functions in (7.176) and (7.177),
which do not decay to 0. The waveforms grow unbounded if any pole is located in the
right half of the s-plane; generally, we are not concerned with such signals and sys-
tems in this book. If the complex conjugate poles are moved upward and downward
away from the origin, then the frequency 𝜔o of the sinusoids in (7.172) and (7.177)
increases.

The zeros of X(s) do not change the basic shape of x(t), except when the rational
function is improper, in which case x(t) would include a combination of the Dirac
delta function and its derivatives. The zeros are related to time shifts (delays) in x(t).
For example, the Laplace transform of the right-sided sine function is

x(t) = sin(𝜔ot)u(t)

−−→X(s) =

𝜔o

s2 + 𝜔
2
o

. (7.178)

Comparing this with the cosine function, which is shifted by 90∘, we find that the
only difference between their Laplace transforms is the zero in (7.177). The zeros
also affect the frequency characteristics of x(t), which are determined by examining
X(s) on the imaginary axis where s = j𝜔 (𝜎 = 0). The resulting function X(𝜔) is the
Fourier transform of x(t), which is the topic of Chapter 8. Fourier transforms are
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exp(−at)u(t)

exp(−at)cos(ωot+ϕ)u(t)

cos(ωot+ϕ)u(t)

u(t)

s-Plane

Stable left-half
plane (σ < 0)

Unstable right-half
plane (σ > 0)

Marginally
stable (σ = 0)

Re(s)=σ

Im(s)=ω

X

X

X

X

X

X

Figure 7.9 Four sets of pole locations. (i) x(t) = u(t) with real pole at the origin (s = 0).
(ii) x(t) = exp (−at)u(t) with real pole on the real axis (s = −a). (iii) x(t) = cos(𝜔ot + 𝜙)u(t)
with complex conjugate poles on the imaginary axis (s = ±j𝜔o). (iv) x(t) = exp (−at) cos(𝜔ot +
𝜙)u(t) with complex conjugate poles on the left half of the s-plane (s = a ± j𝜔o).

useful for describing the frequency content of a signal and the frequency response of
an LTI system.

7.9 LAPLACE TRANSFORM PAIRS

The Laplace transforms for exp (−𝛼t)u(t), u(t), and 𝛿
(n)(t) were derived in (7.39),

(7.42), and (7.68), respectively. In this section, we derive a few more transforms for
some of the signals described in Chapter 5.

7.9.1 Constant Function

First, we point out a subtlety involving a constant function and the unilateral Laplace
transform that can arise when analyzing linear circuits with nonzero initial conditions.
Consider the following integral equation for the current in a parallel RL circuit (see
Figure 2.29 with C and Vs removed):

iL(t) = iR(t) =⇒ (1∕L)∫
t

0−
𝑣(t)dt + i(0−) = 𝑣(t)∕R, (7.179)

where 𝑣(t) is the voltage across both elements and i(0−) is the initial current, which
is treated as a constant. Although the bilateral Laplace transform of a constant does
not exist, the unilateral Laplace transform exists because of the 0 lower limit:

∫
∞

0−
i(0−) exp (−st)dt = i(0−)∕s, (7.180)

http://www.wiley.com/go/linearcircuitsandsystems
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with ROC Re(s) > 0. Thus, the one-sided Laplace transform of a constant gives the
same result as that of a step function. This property is used later when we examine
circuits that are modeled by integro-differential equations and solve them using
Laplace transform techniques. Note, however, that i(0−) is not a step function in
(7.179) even though the unilateral Laplace transform of the equation yields

V(s)∕sL + i(0−)∕s = V(s)∕R. (7.181)

Since the current in an inductor cannot change instantaneously, which means i(0−) =
i(0+), the initial state i(0−) in (7.179) is not a step function. The s dividing i(0−) in
(7.180) is due only to the finite lower limit of the unilateral Laplace transform.

7.9.2 Rectangle Function

For the standard rectangle function x(t) = rect(t) = I[−1∕2,1∕2](t) where I(t) is the indi-
cator function, the bilateral Laplace transform is used:

X(s) = ∫
1∕2

−1∕2
exp (−st)dt = −

exp (−st)
s

|
|
|
|

1∕2

−1∕2

=
exp (s∕2) − exp (−s∕2)

s
=

2 sinh(s∕2)
s

, (7.182)

whose ROC is the entire s-plane because the function has finite duration; the apparent
pole at s = 0 is removable. For the shifted (causal) rectangle function x(t) = u(t) −
u(t − 1):

X(s) = ∫
∞

0−
[u(t) − u(t − 1)] exp (−st)dt

= ∫
1

0
exp (−st)dt = [1 − exp (−s)]∕s

=
2 exp (−s∕2) sinh(s∕2)

s
. (7.183)

This result can also be derived using the time-shift property of the Laplace transform
in Table 7.4 with to = 1∕2. Another derivation uses the Laplace transform of the unit
step function:

u(t)

−−→ 1

s
, u(t − 1)


−−→

exp (−s)
s

=⇒ x(t) = u(t) − u(t − 1)

−−→X(s) = [1 − exp (−s)]∕s. (7.184)

Although u(t) and u(t − 1) individually have ROC Re(s) > 0 and there appears to be
a pole at s = 0 (as mentioned earlier), note from l’Hôpital’s rule that

lim
s→0

[1 − exp (−s)]∕s = lim
s→0

d
ds

[1 − exp (−s)] = 1, (7.185)
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since the derivative of the denominator is also 1. As a result, the Laplace trans-
form of any finite rectangle function actually has no poles and the ROC is the entire
s-plane. This is due to the fact that u(t − 1) exactly cancels u(t) for t ≥ 1, yielding
a finite-duration function. In fact, for any finite-duration waveform written with unit
step functions, l’Hôpital’s rule can be used to show that the apparent poles are remov-
able.

Example 7.20 Let the exponential function be weighted by unit step functions as
follows:

x(t) = exp (−𝛼t)[u(t − 1) − u(t − 2)], (7.186)

which has finite duration. The Laplace transform is

X(s) = ∫
∞

0
exp (−𝛼t)[u(t − 1) − u(t − 2)] exp (−st)dt

= ∫
2

1
exp (−(s + 𝛼)t)dt

= [exp (−(s + 𝛼)) − exp (−2(s + 𝛼))]∕(s + 𝛼), (7.187)

whose ROC is the entire s-plane because the apparent pole at s = −𝛼 is removable.
The derivative of the numerator is

lim
s→−𝛼

d
ds

[exp (−(s + 𝛼)) − exp (−2(s + 𝛼))]

= lim
s→−𝛼

[− exp (−2(s + 𝛼)) + 2 exp (−(s + 𝛼))]

= 2 − 1 = 1, (7.188)

and the derivative of the denominator is obviously 1.

7.9.3 Triangle Function

The standard triangle function is also centered about the origin: x(t) ≜ (1 −
|t|)I[−1,1](t). Its Laplace transform is

X(s) = ∫
1

−1
(1 − |t|) exp (−st)dt

= ∫
0

−1
(1 + t) exp (−st)dt + ∫

1

0
(1 − t) exp (−st)dt. (7.189)



�

� �

�

LAPLACE TRANSFORM PAIRS 375

Substituting the integral ∫ t exp (−st)dt = − exp (−st)(st + 1)∕s2 from Appendix C
yields

X(s) = −[exp (−st)∕s + exp (−st)(st + 1)∕s2]|0−1

−[exp (−st)∕s − exp (−st)(st + 1)∕s2]|10
= −1∕s − 1∕s2 + exp (s)∕s + exp (s)(1 − s)∕s2

− exp (−s)∕s + exp (−s)(s + 1)∕s2 + 1∕s − 1∕s2
. (7.190)

Canceling and combining terms give the transform

X(s) = [exp (s) + exp (−s)]∕s2 − 2∕s2. (7.191)

This can be factored as follows, resulting in the hyperbolic sine function:

X(s) =
[exp (s∕2) − exp (−s∕2)]2

s2
=

4sinh2(s∕2)
s2

, (7.192)

whose ROC is the entire s-plane because the apparent double poles at the origin are
removable. This Laplace transform is the square of that for the standard rectangle
function, which follows from the fact that the triangle function is the convolution of
two rectangle functions and X(s) is the product of the two transforms in the s-domain.

Example 7.21 The time product in Table 7.4 can be used to verify the Laplace
transform of the triangle function. From (7.189), we have three integrals:

X(s) = ∫
1

−1
exp (−st)dt + ∫

0

−1
t exp (−st)dt − ∫

1

0
t exp (−st)dt. (7.193)

The first term on the right-hand side is the Laplace transform of the rectangle function
rect(t∕2) given by [exp (s) − exp (−s)]∕s, where the time-scaling property has been
applied to the second line of (7.182). Initially ignoring the multiplicative t, the second
integral is the Laplace transform of the shifted rectangle function rect(t + 1∕2) given
by exp (s∕2)[exp (s∕2) − exp (−s∕2)]∕s, and the third integral is the Laplace transform
of rect(t − 1∕2) given by exp (−s∕2)[exp (s∕2) − exp (−s∕2)]∕s. Combining all the
three terms, we have from the time product property:

X(s) =
exp (s) − exp (−s)

s
− d

ds

exp (s) − 1

s
+ d

ds

1 − exp (−s)
s

=
exp (s) − exp (−s)

s
−

exp (s)
s

+
exp (s) − 1

s2

+
exp (−s)

s
−

1 − exp (−s)
s2

, (7.194)

and canceling some terms yields the expression in (7.190).
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7.9.4 Ramped Exponential Function

For the ramped exponential function

x(t) = t exp (−𝛼t)u(t), (7.195)

the Laplace transform is

X(s) = ∫
∞

0−
t exp (−𝛼t) exp (−st)dt

= −
t exp (−(s + 𝛼)t

s + 𝛼

|
|
|
|

∞

0
+ 1

s + 𝛼 ∫
∞

0
exp (−(s + 𝛼)t)dt, (7.196)

where integration by parts has been used to remove t from the integrand. The first
term is 0 when evaluated at the two limits. The last integral is the Laplace transform
of exp (−𝛼t)u(t):

X(s) = 1
(s + 𝛼)2

, (7.197)

which has ROC Re(s) > −𝛼. Successive application of integration by parts is used to
derive the Laplace transform of more general ramped exponential functions:

x(t) = tn exp (−𝛼t)u(t)

−−→X(s) = n!

(s + 𝛼)n+1
. (7.198)

The case for n = 2 is included in Problem 7.11.

7.9.5 Sinusoidal Functions

The Laplace transforms of sinusoidal functions are easily handled by using Euler’s
formula and the previous result for an exponential function. For x(t) = cos(𝜔ot)u(t):

X(s) = 1
2 ∫

∞

0
[exp ( j𝜔ot) + exp (−j𝜔ot)] exp (−st)dt

= −
exp (−(s − j𝜔o)t)

s − j𝜔o

|
|
|
|

∞

0
−

exp (−(s + j𝜔o)t)
s + j𝜔o

|
|
|
|
|

∞

0

= 1
2

(
1

s − j𝜔o
+ 1

s + j𝜔o

)

, (7.199)

which has ROC Re(s ± j𝜔o) = Re(s) > 0. This result holds even though the exponen-
tial functions are complex; the ROC is determined only by exp(−𝜎t), which weights
the sinusoidal exp (±j𝜔ot). Rewriting (7.199) over a common denominator gives

X(s) = s

s2 + 𝜔
2
o

. (7.200)
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The Laplace transform for x(t) = sin(𝜔ot)u(t) = (1∕2j)[exp ( j𝜔ot) − exp (−j𝜔ot)]u(t)
can be derived from (7.199) by subtracting the two terms and dividing by j:

X(s) = 1
2j

(
1

s − j𝜔o
− 1

s + j𝜔o

)

=
𝜔o

s2 + 𝜔
2
o

, (7.201)

which also has ROC Re(s) > 0. Both of these functions have complex conjugate poles
on the imaginary axis at s = ±j𝜔o, and the cosine function has a zero s = 0 at the
origin.

From the derivation leading to (7.199), it is straightforward to find the
Laplace transform for the exponentially weighted cosine function x(t) =
exp (−𝛼t) cos(𝜔ot)u(t) by using s + 𝛼 in place of s:

X(s) = 1
2

(
1

s + 𝛼 − j𝜔o
+ 1

s + 𝛼 + j𝜔o

)

= s + 𝛼

(s + 𝛼)2 + 𝜔
2
o

, (7.202)

which has ROC Re(s + 𝛼) > 0 =⇒ Re(s) > −𝛼, assuming 𝛼 > 0 for a bounded
function. Similarly for the exponentially weighted sine function x(t) = exp (−𝛼t)
sin(𝜔ot)u(t):

X(s) =
𝜔o

(s + 𝛼)2 + 𝜔
2
o

, (7.203)

which also has ROC Re(s) > −𝛼. This function has complex conjugate poles at s =
−𝛼 ± j𝜔o, which are located on a vertical line defined by s = −𝛼 to the left of the
imaginary axis for 𝛼 > 0. The exponentially weighted cosine function also has a zero
at s = −𝛼. The poles are easily determined by the fact that s2 + 𝜔

2
o has roots at s =

± j𝜔o, which means (s + 𝛼)2 + 𝜔
2
o has roots at s + 𝛼 = ± j𝜔o =⇒ s = −𝛼 ± j𝜔o.

Some additional Laplace transforms in Tables 7.2 and 7.3 are derived in the prob-
lems at the end of this chapter.

7.10 TRANSFORMS AND POLYNOMIALS

In this section, we provide some insight into how the Laplace transform converts
(“transforms”) time-domain functions into rational polynomials that are easier to
manipulate. The most important input functions of a linear system are sinusoidal:

exp ( j𝜔ot), cos(𝜔ot), sin(𝜔ot), (7.204)

where 𝜔o is angular frequency with units of rad/s. All three are eigenfunctions of an
LTI system because the sinusoidal functions can be written in terms of the complex
exponential using Euler’s inverse formulas:

cos(𝜔ot) = (1∕2)[exp ( j𝜔ot) + exp (−j𝜔ot)], (7.205)

sin(𝜔ot) = (1∕2j)[exp ( j𝜔ot) − exp (−j𝜔ot)], (7.206)
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and similarly, Euler’s formula gives the complex exponential in terms of sine and
cosine. This is significant because the kernel of the Laplace transform is also a com-
plex exponential, and as a result, the exponents of its integrand can be combined
algebraically. We demonstrate this with an example.

Example 7.22 Consider again the Laplace transform of exp (−𝛼t)u(t):

∫
∞

0
exp (−𝛼t) exp (−st)dt = ∫

∞

0
exp (−(s + 𝛼)t)dt

= − 1
s + 𝛼

exp (−(s + 𝛼)t)
|
|
|
|

∞

0
. (7.207)

The upper limit of infinity determines the ROC such that the last expression is 0 when
evaluated at t → ∞. The ROC for this right-sided function is Re(s) > −𝛼. The finite
lower limit is important because when 0 is substituted into the last expression, the
exponential function is 1 and the result is a rational polynomial in s:

{ exp (−𝛼t)u(t)} = 1
s + 𝛼

. (7.208)

We emphasize that this result is due to the fact that when exponential functions are
multiplied, their exponents add or subtract, resulting in an algebraic expression when
integrated and the limits of integration are substituted. This is the mechanism by
which the Laplace integral converts functions and ODEs to algebraic equations in
the complex variable s.

Polynomials are also obtained when generalized functions appear in the
time-domain function:

u(t)

−−→ 1∕s, 𝛿(t)


−−→ 1, 𝛿

′(t)

−−→ s. (7.209)

A polynomial can be weighted by exponential functions of the form exp (−sto) when
signals are delayed by to, and they also appear for finite duration waveforms such
as the rectangle and triangle functions. This is not a problem, however, because the
characteristic equation that determines the poles of a system is a polynomial in s;
exponential terms that appear in the numerator of a transfer function are handled
after performing a PFE of the rational part.

Example 7.23 For example, suppose the ODE for a system is

d2

dt2
y(t) + 3

d
dt

y(t) + 2y(t) = u(t − 1), (7.210)

which has Laplace transform

(s2 + 3s + 2)Y(s) = exp (−s)∕s =⇒ Y(s) =
exp (−s)

s(s + 1)(s + 2)
. (7.211)
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The PFE is performed by first factoring the exponential multiplier:

Y(s) = exp (−s)
[

A1

s
+

A2

s + 1
+

A3

s + 2

]

, (7.212)

where A1 = 1∕2, A2 = −1, and A3 = −1∕2. As shown later in this chapter, these are
obtained as follows:

A1 = lim
s→0

s
1

s(s + 1)(s + 2)
, A2 = lim

s→−1
(s + 1) 1

s(s + 1)(s + 2)
, (7.213)

A3 = lim
s→−2

(s + 2) 1
s(s + 1)(s + 2)

. (7.214)

Thus, the inverse Laplace transform of the expression in brackets in (7.212) is

[
A1

s
+

A2

s + 1
+

A3

s + 2

] −1

−−−−→ [1∕2 − exp (−t) − (1∕2) exp (−2t)]u(t), (7.215)

and from the time shift property of the Laplace transform, the leading exp (−s) delays
the overall function by 1:

y(t) = [1∕2 − exp (−(t − 1)) − (1∕2) exp (−2(t − 1))]u(t − 1). (7.216)

This is the expected system output if the input unit step is delayed by to = 1 s.

Next, we elaborate on the fact that the exponent used in the kernel of the Laplace
transform is complex: s = 𝜎 + j𝜔. Suppose that 𝜔 = 0 and instead we use the follow-
ing integral as the Laplace transform:

{x(t)} = ∫
∞

0
x(t) exp (−𝜎t)dt. (7.217)

As mentioned earlier, some books define the Laplace transform in this way with a
real exponent, and this form is useful for many functions such as exp(−𝛼t)u(t), where
from (7.208):

X(𝜎) = 1
𝜎 + 𝛼

, (7.218)

with ROC 𝜎 > −𝛼. By using a real kernel, the s-domain function is restricted to the
real axis on the s-plane. From the previous discussion on poles and zeros, this restric-
tion obviously does not allow us to fully examine more general functions such as
x(t) = exp (−𝛼t) cos(𝜔ot)u(t), which has the Laplace transform in (7.202) with com-
plex conjugate poles. Substituting s = 𝜎 in that expression yields

X(𝜎) = 𝜎 + 𝛼

(𝜎 + 𝛼)2 + 𝜔
2
o

, (7.219)
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which also has ROC 𝜎 > −𝛼. This transform has a zero at 𝜎 = −𝛼, and the poles are
computed as follows:

(𝜎 + 𝛼)2 + 𝜔
2
o = 0 =⇒ 𝜎 = −𝛼 ± j𝜔o. (7.220)

This is the same situation encountered in Chapter 4 when we attempted to solve the
quadratic equation x2 + 1 = 0, which has no solutions if the roots are restricted to be
real numbers. The result in (7.219) is correct, but X(𝜎) is the Laplace transform of
exp (−𝛼t) cos(𝜔ot)u(t) evaluated only on the real axis of the s-plane. In most engi-
neering problems, it is preferable to utilize the entire s-plane and let s be a complex
variable in the Laplace transform.

Suppose instead that 𝜎 = 0 in the Laplace transform such that

X(𝜔) = ∫
∞

−∞
x(t) exp (−j𝜔t)dt. (7.221)

This integral is the Fourier transform, and as mentioned earlier, it provides informa-
tion about the frequency content of a signal or the frequency response of a system. It
is the Laplace transform evaluated on the imaginary axis, provided the ROC includes
this axis. If this is not the case, then in the limit there may be singular functions on the
j𝜔 axis, or else the Fourier transform does not exist. For the exponentially weighted
cosine function, the Fourier transform is

X(𝜔) =
j𝜔 + 𝛼

( j𝜔 + 𝛼)2 + 𝜔
2
o

=
j𝜔 + 𝛼

𝛼
2 + 𝜔

2
o − 𝜔

2 + j2𝛼𝜔
. (7.222)

Unlike X(𝜎), which is strictly a real function, X(𝜔) is complex in general and it can be
expressed in polar form with magnitude |X(𝜔)| and phase 𝜃(𝜔). The Fourier transform
is examined further in Chapter 8.

7.11 SOLVING LINEAR ODEs

Using the derivative property of the Laplace transform, it is straightforward to solve
linear ODEs with nonzero initial states. Consider the second-order nonhomogeneous
ODE:

d2

dt2
y(t) + a1

d
dt

y(t) + a0y(t) = x(t), (7.223)

which has Laplace transform

s2Y(s) − sy(0−) − y′(0−) + a1sY(s) − a1y(0−) + a0Y(s) = X(s). (7.224)

Solving this expression for Y(s) yields two rational function components:

Y(s) = X(s)
s2 + a1s + a0

+
(s + a1)y(0−) + y′(0−)

s2 + a1s + a0
. (7.225)
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The first term on the right-hand side gives the transfer function of the system H(s) ≜
Y(s)∕X(s) assuming zero initial states {y(0−), y′(0−)}. Both terms in (7.225) have the
same set of poles, and so, they have the same type of response: (i) overdamped, (ii)
underdamped, or (iii) critically damped.

Similarly, integro-differential equations can be solved using the derivative and
integral properties of the Laplace transform. An example integro-differential equation
is

d
dt

y(t) + a1y(t) + a0 ∫
t

0
y(t)dt + a0y(0−) = ∫

t

0
x(t)dt, (7.226)

where y(0−) is the initial state for the output of the system associated with the first
integral. We assume that x(0−) associated with the integral on the right-hand side is
zero. The Laplace transform yields

sY(s) − y(0−) + a1Y(s) + a0Y(s)∕s + a0y(0−)∕s = X(s)∕s, (7.227)

where the second y(0−) is divided by s because it appears as a step when using the
one-sided Laplace transform. Factoring Y(s) yields

Y(s)(s + a1 + a0∕s) = X(s)∕s + y(0−) − a0y(0−)∕s. (7.228)

Multiplying through by s and solving for Y(s), we have

Y(s) = X(s)
s2 + a1s + a0

+
(s − a0)y(0−)
s2 + a1s + a0

. (7.229)

Observe the similarity between the s-domain results in (7.225) and (7.229). Differ-
entiating the integro-differential equation in (7.226) yields the ODE in (7.223). We
demonstrate in the next example that by applying the Laplace transform derivative
property to (7.229), we generate the expression in (7.225).

Example 7.24 Define the left-hand side of (7.226) to be g(t) and the right-hand side
to be f (t). Differentiating this equation gives

d
dt

g(t) = d
dt

f (t), (7.230)

which has Laplace transform

sG(s) − g(0−) = sF(s) − f (0−) = X(s). (7.231)

Since F(s) = X(s)∕s and we have assumed x(0−) = 0 such that f (0−) = 0, the
right-hand side of (7.231) is X(s). For the left-hand side of (7.231):

g(0−) = d
dt

y(t)
|
|
|
|t=0−

+ a1y(0−) + 0 + a0y(0−) = y′(0−) + y(0−)(a1 + a0), (7.232)



�

� �

�

382 LAPLACE TRANSFORMS AND LINEAR SYSTEMS

where the third term in the middle expression is 0 because the integral is 0 when the
upper limit is t = 0−. Since G(s) is the left-hand side of (7.227), we have

sG(s) = s2Y(s) − sy(0−) + a1sY(s) + a0Y(s) + a0y(0−). (7.233)

Substituting this expression into (7.231) and using (7.232) yields

s2Y(s) − sy(0−) + a1sY(s) + a0Y(s) − y′(0−) − a1y(0−) = X(s), (7.234)

where a0y(0−) has cancelled. This is identical to the equation in (7.224), and so we
have the transform Y(s) in (7.225).

The previous example demonstrates that although the ODE in (7.223) and the
integro-differential equation in (7.226) are models for the same system, they lead to
slightly different results in the way that initial states appear in the solution for Y(s).
This occurs because (7.223) is the derivative of (7.226), the derivative property of the
Laplace transform introduces the initial states in a different way, and moreover, we
have the derivative quantity y′(0−). Of course, when the initial states are all 0, the
solution for Y(s) is identical for both system models and it depends only on the input
X(s).

In general for linear ODEs with constant coefficients, the Laplace transform gives
an expression for Y(s) that can be written as a rational function. The Laplace transform
of a third-order ODE is a cubic equation of the form Y(s)(s3 + a2s2 + a1s + a0) =
X(s)∕s, and so on for higher-order ODEs. All of these algebraic equations can be
factored into an expansion of terms with (i) distinct real poles, (ii) repeated real poles,
(iii) complex poles, or (iv) repeated complex poles. A PFE factorization makes it is
easy to find the inverse Laplace transform of the individual components using a table
of transforms such as those in Tables 7.2 and 7.3.

7.12 IMPULSE RESPONSE AND TRANSFER FUNCTION

For a linear ODE with constant coefficients, the output is derived as a convolution of
its impulse response function h(t) and the input x(t):

y(t) = h(t) ∗ x(t) = x(t) ∗ h(t), (7.235)

assuming zero initial states. This was demonstrated in Chapter 6 for first- and
second-order systems in the time domain, and it also holds for higher order LTI
systems. From the convolution property of the Laplace transform, the output is the
product of transforms:

Y(s) = H(s)X(s) = X(s)H(s), (7.236)

where H(s) = {h(t)} is the transfer function and X(s) = {x(t)} is the input. From
this expression, we find that the impulse response function of a system is generated
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x(t)

X(s)

y(t)=h(t)*x(t)
h(t)

H(s)

Input Output

Impulse response
function

Transfer function

Y(s)=H(s)X(s)

Figure 7.10 Time- and s-domain representations for an LTI system.

when x(t) = 𝛿(t), which means X(s) = 1 =⇒ Y(s) = H(s), and so the transfer func-
tion and impulse response function are a Laplace transform pair. These results are
depicted in Figure 7.10. Once H(s) is found for a particular ODE, the response of
the system for any input is derived using (7.236); the inverse Laplace transform then
yields the output y(t) for that particular input.

Example 7.25 Consider the third-order ODE

d3

dt3
y(t) + 6

d2

dt2
y(t) + 11

d
dt

y(t) + 6y(t) = x(t), (7.237)

which has zero initial states. Its Laplace transform yields

s3Y(s) + 6s2Y(s) + 11sY(s) + 6Y(s) = X(s), (7.238)

from which we have

H(s) = Y(s)
X(s)

= 1
s3 + 6s2 + 11s + 6

. (7.239)

The transfer function can be factored as

H(s) = 1
(s + 1)(s + 2)(s + 3)

, (7.240)

which reveals the poles of the system: p1 = −1, p2 = −2, and p3 = −3, and it is now
straightforward to perform a PFE:

H(s) =
1∕2

s + 1
− 1

s + 2
+

1∕2

s + 3
, (7.241)

which has the impulse response function

h(t) = [(1∕2) exp (−t) − exp (−2t) + (1∕2) exp (−3t)]u(t). (7.242)
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The step response of the system is derived by multiplying H(s) by the Laplace trans-

form of x(t) = u(t)

−−→X(s) = 1∕s:

Y(s) = 1
s(s + 1)(s + 2)(s + 3)

=
1∕6

s
−

1∕2

s + 1
+

1∕2

s + 2
−

1∕6

s + 3
, (7.243)

which has inverse transform

y(t) = [1∕6 − (1∕2) exp (−t) + (1∕2) exp (−2t) − (1∕6) exp (−3t)]u(t) (7.244)

and a steady-state value of 1∕6. The responses for other inputs are derived using the
same approach, which we find is easier than solving the original third-order ODE in
the time domain.

The convolution between input signal x(t) and impulse response function h(t) is

y(t) = ∫
∞

−∞
x(𝜏)h(t − 𝜏)d𝜏 = ∫

∞

−∞
h(𝜏)x(t − 𝜏)d𝜏, (7.245)

where the support of each function determines the limits of integration. Depending
on the specific functions under the integrals, one form may be easier to compute than
the other. This occurs because the variable of integration is 𝜏 so that the function
with argument t − 𝜏 is reversed and shifted. In the next two examples, we perform
convolutions in the time domain and verify the results using the s-domain convolution
property Y(s) = H(s)X(s).

Example 7.26 Previously in Example 6.13, we demonstrated how to convolve
two rectangular functions, which of course have finite duration, resulting in a
finite-duration triangular function. In this example, one of the functions is rectan-
gular h(t) = u(t) − u(t − T), but the other function is the unit step x(t) = u(t), such
that their convolution has infinite duration. It is somewhat easier to use the second
integral in (7.245) where the infinite-duration input x(t) is reversed and shifted. This
will be evident in the following because the finite-duration function determines the
lower limit of integration, whereas the upper limit of integration depends on the
specific time shift t. Figure 7.11(a) shows the reversed and shifted unit step function
(note that the horizontal axis is the variable of integration 𝜏). Figure 7.11(b) shows
the rectangle function in terms of the variable 𝜏. The goal when evaluating the
convolution integral is to determine how these two functions overlap for different
values of t, resulting in a nonzero integral. It is clear that for t < 0, there is no
overlap and the convolution integral is 0. The shaded regions in Figure 7.11(a) and
(b) indicate the amount of overlap between these two functions for 0 < t < T . The
resulting area from the integral for this particular t is illustrated by the point in
Figure 7.11(c): t × 1 = t. As t is increased toward T , the amount of function overlap
increases, and so the output also increases. Initially, the limits of integration are
{0, t}. When t exceeds T , the upper limit becomes T because the impulse response
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x(t−τ) = u(t−τ) h(τ) = u(τ)−u(τ−T)

τ τ
Tt

(a) (b)

1
1

(c)
t

Area = t

t

y(t)

T

T

(d)

t

Figure 7.11 Convolution. (a) x(t) = u(t) is reversed and shifted by t: x(𝜏 − t) = u(𝜏 − t) with
variable of integration 𝜏. (b) h(𝜏) = u(𝜏) − u(𝜏 − T) with variable of integration 𝜏. (c) Area of
overlapping functions (shaded regions) gives y(t) for 0 < t < T . (d) Convolution result y(t).

function has finite duration, and from that point on the convolution gives a constant
value. From (7.245), the convolution integral is written as

y(t) = ∫
∞

−∞
u(t − 𝜏)[u(𝜏) − u(𝜏 − T)]d𝜏

= ∫
min(t,T)

0
d𝜏 = min(t,T)u(t), (7.246)

where the unit step functions have defined the limits of integration. The lower limit
is derived from u(𝜏) =⇒ 𝜏 ≥ 0, and the upper limit is derived using u(t − 𝜏)u
(t − T) =⇒ min(t,T). The waveform for y(t) is shown in Figure 7.11(d), which is
linearly increasing until t = T , at which point it remains constant:

y(t) =
⎧
⎪
⎨
⎪
⎩

0, t < 0
t, 0 ≤ t ≤ T
T , t > T .

(7.247)

For this example, we needed to consider three intervals for t, and we demonstrated
that it is usually convenient to sketch plots as in Figure 7.11 to verify the limits of
integration in (7.246) and determine the degree of overlap between the two functions.
If we view x(t) as the input of a system with impulse response function h(t), then y(t)
in the figure is the system output. The s-domain output is

Y(s) = 1
s

[
1
s
−

exp (−sT)
s

]

= 1
s2

−
exp (−sT)

s2
, (7.248)
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and the inverse Laplace transform yields two ramp functions, of which the second
one is shifted by T:

y(t) = r(t) − r(t − T). (7.249)

This is a more compact way of writing the result in (7.247), and it is straightforward to
verify that y(t) in (7.249) is fixed at T for t ≥ T by subtracting the two ramp functions.

Example 7.27 The convolution of x(t) = u(t) and h(t) = exp (−t)u(t) was con-
sidered in Examples 6.6 and 7.14, where in the second case it was compared to
cross-correlations of the two functions. The time-domain result is

y(t) = ∫
∞

−∞
u(t − 𝜏) exp (−𝜏)u(𝜏)d𝜏

= ∫
t

0
exp (−𝜏)d𝜏 = [1 − exp (−t)]u(t), (7.250)

which is causal and increases exponentially to 1 in the limit as t → ∞. The output in
the s-domain is

Y(s) =
(1

s

)( 1
s + 1

)
= 1

s
− 1

s + 1
, (7.251)

which has inverse Laplace transform

y(t) = u(t) − exp (−t)u(t), (7.252)

and is the same result as in (7.250).

Since the output of an LTI system is a convolution between its input and impulse
response function, we can determine the overall impulse response function for a
cascade of systems h1(t) and h2(t). Let the intermediate signal be s(t) = h1(t) ∗ x(t)
and the overall output be y(t) = h2(t) ∗ s(t). From the convolution integral:

y(t) = ∫
∞

−∞
s(𝜏)h1(t − 𝜏)d𝜏

= ∫
∞

−∞ ∫
∞

−∞
x(𝑣)h1(𝜏 − 𝑣)h2(t − 𝜏)d𝑣d𝜏, (7.253)

where the convolution for s(t) has been substituted, and we have used a different inte-
gration variable 𝑣 in order to avoid confusion with 𝜏. Interchanging the two integrals
yields

y(t) = ∫
∞

−∞ ∫
∞

−∞
h1(𝜏 − 𝑣)h2(t − 𝜏)x(𝑣)d𝜏d𝑣

= ∫
∞

−∞ ∫
∞

−∞
h1(t − 𝑣 −𝑤)h2(𝑤)d𝑤x(𝑣)d𝑣, (7.254)



�

� �

�

PARTIAL FRACTION EXPANSION 387

Composite impulse
response function h(t) = h1(t)*h2(t)

Composite transfer
function H(s) = H1(s)H2(s)

x(t)

X(s)

Input
h1(t) h2(t)

H1(s) H2(s)

y(t) = h(t)*x(t)

Output

Y(s) = H(s)X(s)

Figure 7.12 Cascaded LTI systems.

where we have changed variables to 𝑤 ≜ t − 𝜏 in the last expression. The inner inte-
gral is a convolution with argument t − 𝑣:

h(t − 𝑣) ≜ ∫
∞

−∞
h1(t − 𝑣 −𝑤)h2(𝑤)d𝑤. (7.255)

The overall output is the convolution of this composite impulse response function h(t)
and the input:

y(t) = ∫
∞

−∞
h(t − 𝑣)x(𝑣)d𝑣, (7.256)

demonstrating that y(t) = h(t) ∗ x(t) = h1(t) ∗ h2(t) ∗ x(t) as depicted in Figure 7.12.
From this result, we find in the s-domain that the composite transfer function is (see
Problem 7.21)

H(s) = H1(s)H2(s). (7.257)

7.13 PARTIAL FRACTION EXPANSION

The Laplace transform of a linear ODE is a rational function of polynomials in s with
the following form:

X(s) = N(s)
D(s)

≜ sM + bM−1sM−1 + · · · + b1s + b0

sN + aN−1sN−1 + · · · + a1s + a0
, (7.258)

where N(s) is the numerator polynomial, which determines the zeros, and D(s) is the
denominator polynomial, which determines the poles. A rational function is in proper
form if the numerator order is strictly less than the denominator order: M < N. In the
event that M ≥ N, long division is used to rewrite X(s) as the sum of two terms where
one term is a polynomial in s and the second term is a proper rational function:

X(s)= sM−N+cM−1sM−N−1+· · ·+c1s + c0 +
dN−1sN−1 + dN−2sN−2 + · · · + d1s + d0

sN + aN−1sN−1 + · · · + a1s + a0
.

(7.259)
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The leading polynomial with coefficients {cm} is the quotient, and the numerator
polynomial with coefficients {dm} is the remainder. This was illustrated earlier in
Example 7.15. The inverse Laplace transforms of the leading terms of (7.259) are the
Dirac delta function and its derivatives:

sM−N + cM−1sM−N−1 + · · · + c1s + c0

−1

−−−−→ 𝛿
(M−N)(t) + cM−1𝛿

(M−N−1)(t) + · · · + c1𝛿
′(t) + c0𝛿(t). (7.260)

Example 7.28 For the improper form with M = N = 2:

X(s) =
s2 + b1s + b0

s2 + a1s + a0
, (7.261)

long division is performed by matching powers of s as follows:

s2 + b1s + b0

s2 + a1s + a0
= 1 +

(b1 − a1)s + b0 − a0

s2 + a1s + a0

= 1 + (b1 − a1)
s + (b0 − a0)∕(b1 − a1)

s2 + a1s + a0
. (7.262)

The inverse Laplace transform of 1 is 𝛿(t), and the inverse Laplace transform of the
second term on the right-hand side depends on the type of poles as discussed next.

The goal of a PFE is to write N(s)∕D(s) as a sum of simpler terms such that the
order of the polynomial in each denominator is 1 or 2. A PFE can be viewed as
the reverse operation of writing a sum of terms over a common denominator. For a
linear ODE with constant coefficients, there are only four types of partial fractions
to consider in the expansion:

• Distinct real poles of the form s − p = 0 such that s = p.

• Distinct complex conjugate poles of the form (s + 𝛼 − j𝛽)(s + 𝛼 + j𝛽) =
(s + 𝛼)2 + 𝛽

2 = 0 such that s1, s2 = −𝛼 ± j𝛽.

• Repeated real poles of the form (s − p)n = 0 such that s1 = p,… , sn = p.

• Repeated complex conjugate poles of the form (s + 𝛼 − j𝛽)n(s + 𝛼 + j𝛽)n =
[(s + 𝛼)2 + 𝛽

2]n = 0 such that s1, s2 = −𝛼 ± j𝛽,… , s2n−1, s2n = −𝛼 ± j𝛽.

7.13.1 Distinct Real Poles

In order to proceed, it is necessary that the denominator be factored to explicitly show
the poles. In general for distinct real poles, we have

X(s) = N(s)
(s − p1) · · · (s − pN)

, (7.263)
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for which the PFE is

X(s) =
N∑

k=1

Ak

s − pk
. (7.264)

We assume that (7.263) is in proper form and it is stable, which means all pk ≤ 0.
Although in some books N(s) is factored into zeros, this is not necessary to find the
residues {Ak}. The mth residue is

Am = lim
s→pm

(s − pm)X(s), (7.265)

which can be verified from (7.264) as follows:

Am = lim
s→pm

(s − pm)
N∑

k=1

Ak

s − pk

= Am + lim
s→pm

N∑

k=1,k≠m

Ak(s − pm)
s − pk

= Am. (7.266)

Since the poles are distinct, there are no further cancellations in the sum such that
when s → pm all terms except Am tend to 0. The resulting inverse Laplace transform
is a sum of exponential functions:

x(t) =
N∑

k=1

Ak exp (pkt)u(t), (7.267)

where the rate of decay for each term depends on its pole location on the s-plane. The
time constant for the kth term is 𝜏k = −1∕pk (recall that pk is negative for a stable
system), and the exponential functions with poles closest to s = 0 decay more slowly
to 0. Since the overall ROC of X(s) is the intersection of the ROCs for the individual
components in the PFE, it follows that the ROC lies just to the right of the pole with
the smallest magnitude. This is depicted in Figure 7.13 for X(s) with three distinct
real poles.

Example 7.29 Consider a second-order system with transfer function in proper
form:

H(s) = 5s
s2 + 3s + 2

=
A1

s + 1
+

A2

s + 2
, (7.268)

which has poles at s1, s2 = {−1,−2}. The two residues are

A1 = lim
s→−1

(s + 1) 5s
(s + 1)(s + 2)

= lim
s→−1

5s
s + 2

= −5, (7.269)

A2 = lim
s→−2

(s + 2) 5s
(s + 1)(s + 2)

= lim
s→−2

5s
s + 1

= 10, (7.270)
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X

Im(s)=ω

Re(s)=σ

s-Plane

Overall ROC

XX

Figure 7.13 Overall region of convergence (ROC) for a transform with three distinct real
poles.

and the PFE is
H(s) = − 5

s + 1
+ 10

s + 2
. (7.271)

The ROC is the intersection of the two individual ROCs: {Re(s) > −1} ∩ {Re(s) >
−2} = Re(s) > −1. It is straightforward to verify that the original numerator is
derived by collecting terms over a common denominator:

H(s) = −5(s + 2) + 10(s + 1)
(s + 1)(s + 2)

= 5s
(s + 1)(s + 2)

. (7.272)

The time-domain function from Table 7.3 is

h(t) = [10 exp (−2t) − 5 exp (−t)]u(t). (7.273)

Example 7.30 Since it is usually difficult to find the poles for high-order polyno-
mials, we can resort to mathematics software such as MATLAB. The command for
finding a PFE is

[r,p,k] = residue(b, a), (7.274)

where {b, a} are vectors containing the coefficients of the numerator and denomi-
nator polynomials, respectively. (We have used bold notation to emphasize that the
various quantities are vectors, though, of course, they are not bold in MATLAB.) The
column vectors {r,p} contain the residues and poles, respectively, and the row vec-
tor k contains the coefficients of the polynomial derived by long division in the event
that the rational function is not in proper form. It is possible to generate the original
rational function from the PFE by rearranging (7.274) as follows:

[b, a] = residue(r,p,k). (7.275)
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For the rational function:

H(s) = 5s
s3 + 6s2 + 11s + 6

, (7.276)

with b = [5, 0]T and a = [1, 6, 11, 6]T , MATLAB gives

r =
⎡
⎢
⎢
⎣

−7.5
10

−2.5

⎤
⎥
⎥
⎦

, p =
⎡
⎢
⎢
⎣

−3
−2
−1

⎤
⎥
⎥
⎦

, k = [], (7.277)

where the notation in the last term is an empty vector, meaning H(s) is in proper form.
Thus, the PFE is

H(s) = 10
s + 2

− 7.5
s + 3

− 2.5
s + 1

, (7.278)

with ROC Re(s) > −1, and the time-domain function is

h(t) = [10 exp (−2t) − 7.5 exp (−3t) − 2.5 exp (−t)]u(t). (7.279)

7.13.2 Distinct Complex Poles

Similar results are obtained for rational functions with distinct complex conjugate
poles. The PFE has the following form:

X(s) =
N∕2∑

k=1

Ak

s − pk
+

N∕2∑

k=1

A∗
k

s − p∗k
, (7.280)

where the superscript ∗ denotes complex conjugation. Each sum extends only to N∕2,
and N is even because for each complex pole pk, its complex conjugate p∗k must also
be present so that X(s) has real coefficients. Of course, if H(s) also has real poles,
then N could be odd and the upper limit of the summations would need to be adjusted
accordingly. Observe in (7.280) that we need only find {Ak} for N∕2 terms in the PFE
because the other residues are derived via complex conjugation. Similar to (7.266),
the mth residue is derived by multiplying X(s) with s − pm:

Am = lim
s→pm

(s − pm)
N∕2∑

k=1

Ak

s − pk
+ lim

s→pm
(s − pm)

N∕2∑

k=1

A∗
k

s − p∗k
, (7.281)

and canceling that term from the denominator of the first sum:

Am = Am + lim
s→pm

N∕2∑

k=1,k≠m

Ak(s − pm)
s − pk

+ lim
s→pm

N∕2∑

k=1

A∗
k(s − pm)
s − p∗k

= Am, (7.282)
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where Am∕(s − pm) has been factored in (7.281). Note that s − pm does not cancel
s − p∗m in the second summation, and so, its limit is 0. Once the N∕2 residues {Am}
are found, it is a simple matter to conjugate them for the second sum in (7.280).
Finally, we can rewrite (7.280) as

X(s) =
N∕2∑

k=1

Ak(s − p∗k) + A∗
k (s − pk)

(s − pk)(s − p∗k )

=
N∕2∑

k=1

(Ak + A∗
k )s − (Akp∗k + A∗

k pk)
s2 − (pk + p∗k )s + pkp∗k

, (7.283)

which is equivalent to

X(s) = 2
N∕2∑

k=1

Re(Ak)s − Re(Akp∗k)
s2 − 2Re(pk) + |pk|

2
, (7.284)

where Re(Ak) ≜ (Ak + A∗
k )∕2. This result confirms that the PFE has only real coeffi-

cients.

Example 7.31 Suppose (7.268) is modified so that it has complex conjugate poles:

H(s) = 5s
s2 + 2s + 2

=
A1

s + 1 + j
+

A∗
1

s + 1 − j
. (7.285)

The complex residue A1 is derived in the same way as is done for distinct real poles,
except, of course, the algebra for complex variables must be used:

A1 = lim
s→−1−j

(s + 1 + j) 5s
(s + 1 + j)(s + 1 − j)

= lim
s→−1−j

5s
s + 1 − j

=
−5 − 5j

−2j
= (5∕2)(1 − j). (7.286)

The other residue is the complex conjugate of A1, yielding the PFE

H(s) =
(5∕2)(1 − j)

s + 1 + j
+

(5∕2)(1 + j)
s + 1 − j

. (7.287)

This result is verified by bringing the two terms over a common denominator:

H(s) =
(5∕2)(1 − j)(s + 1 − j) + (5∕2)(1 + j)(s + 1 + j)

s2 + 2s + 2

= (5∕2)
s(1 − j) − 2j + s(1 + j) + 2j

s2 + 2s + 2
= 5s

s2 + 2s + 2
. (7.288)
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In order to prove that a PFE with residue A1 must include its complex conjugate
A∗

1, we examine one such pair where A2 is used in place of A∗
1:

A1

s − p
+

A2

s − p∗
=

A1(s − p∗) + A2(s − p)
s2 − (p + p∗)s + pp∗

. (7.289)

The denominator has real coefficients because p + p∗ = 2Re(p) and pp∗ = |p|2, as
was shown in (7.284). The numerator is

N(s) = (A1 + A2)s − (A1p∗ + A2p). (7.290)

The coefficient of s is real only when A2 = A∗
1

such that the imaginary parts cancel:
A1 + A2 = 2Re(A1). From this choice of A2, the other term of N(s) is also real:

A1p∗ + A∗
1p = A1p∗ + (A1p∗)∗ = 2Re(A1p∗), (7.291)

which was illustrated in (7.284). Thus, we must have the form in (7.280) for complex
conjugate poles and real polynomial coefficients.

Next, consider a second-order system with only two complex conjugate poles,
which we rewrite by expressing the poles in terms of their real and imaginary parts
p = −𝛼 + j𝛽 and p∗ = −𝛼 − j𝛽 for 𝛼 > 0, yielding

H(s) = A
s + 𝛼 − j𝛽

+ A∗

s + 𝛼 + j𝛽
. (7.292)

The inverse Laplace transform is

h(t) = [A exp ((−𝛼 + j𝛽)t) + A∗ exp ((−𝛼 − j𝛽)t)]u(t)

= exp (−𝛼t)[A exp ( j𝛽t) + A∗ exp (−j𝛽t)]u(t), (7.293)

where the real exponential function common to both terms has factored. In order
to continue, A is written in polar form A = |A| exp ( j𝜃) with phase component 𝜃 ≜
tan−1(Im(A)∕Re(A)). Substituting this expression yields

h(t) = |A| exp (−𝛼t)[exp ( j(𝛽t + 𝜃)) exp (−j(𝛽t + 𝜃))]u(t)

= 2|A| exp (−𝛼t) cos(𝛽t + 𝜃)u(t). (7.294)

Using the trigonometric identity cos(x + y) = cos(x) cos(y) − sin(x) sin(y), we can
also write this expression in sine/cosine form:

h(t) = 2|A| exp (−𝛼t)[cos(𝜃) cos(𝛽t) − sin(𝜃) sin(𝛽t)]u(t). (7.295)

As a result, (7.294) or (7.295) can be used directly for any pair of complex conjugate
poles without having to repeat the previous derivations, though, of course, we must
find the residue A.

The previous results imply some special cases for complex conjugate poles.
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• Im(A) = 0 =⇒ |A| = A and 𝜃 = 0:

h(t) = 2A exp (−𝛼t) cos(𝛽t)u(t). (7.296)

In this case, the terms of (7.292) can be combined over a common denominator
as follows:

H(s) =
A(s + 𝛼 + j𝛽) + A(s + 𝛼 − j𝛽)

(s + 𝛼)2 + 𝛽
2

= 2A(s + 𝛼)
(s + 𝛼)2 + 𝛽

2
. (7.297)

This is the same result as in (7.202) with 𝜔o = 𝛽, except for the factor of 2A.
• Re(A) = 0 =⇒ 𝜃 = 90∘:

h(t) = −2|A| exp (−𝛼t) sin(𝛽t)u(t). (7.298)

By combining (7.292) over a common denominator and using A = jB such that
|A| = B, we have

H(s) =
jB(s + 𝛼 + j𝛽) − jB(s + 𝛼 − j𝛽)

(s + 𝛼)2 + 𝛽
2

= −2B𝛽

(s + 𝛼)2 + 𝛽
2
. (7.299)

This is the same result as in (7.203) with 𝜔o = 𝛽, except for the factor of −2B.

Example 7.32 For H(s) in (7.285) with the PFE in (7.287), we have |A| =√
12 + (−1)2 =

√
2 and 𝜃 = tan−1(−1) = −45∘ such that the inverse Laplace

transform from (7.294) is

h(t) = 2
√

2 exp (−t) cos(t − 45∘)u(t). (7.300)

The form in (7.295) with cos(−45∘) =
√

2∕2 and sin(−45∘) = −
√

2∕2 yields

h(t) = 2
√

2 exp (t)[(
√

2∕2) cos(t) − (
√

2∕2) sin(t)]u(t)

= 2 exp (−t)[cos(t) − sin(t)]u(t). (7.301)

This sine/cosine form can be derived directly from H(s) by rearranging it into the
sum of two terms. For convenience, we repeat the Laplace transforms in Table 7.3
for exponentially weighted cosine and sine functions:

exp (−𝛼t) cos(𝛽t)u(t)

−−→ s + 𝛼

(s + 𝛼)2 + 𝛽
2
, (7.302)

exp (−𝛼t) sin(𝛽t)u(t)

−−→ 𝛽

(s + 𝛼)2 + 𝛽
2
. (7.303)
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The denominator for complex conjugate poles always has the form in these two
expressions. Thus, it is only necessary that H(s) be rewritten as the weighted sum
of these two transforms, from which it is possible to write h(t) using the sine/cosine
form. There are two steps to this procedure. First, the denominator is written as earlier
by completing the square (see Appendix C):

H(s) = 5s
s2 + 2s + 2

= 5s
(s2 + 2s + 1) + 1

= 5s
(s + 1)2 + 1

, (7.304)

which gives 𝛼 = 1 and 𝛽 = 1. Second, the numerator is written as a weighted sum of
s + 𝛼 = s + 1 and 𝛽 = 1 with weights {a, b}:

H(s) = a(s + 1) + b × 1

(s + 1)2 + 1
, (7.305)

from which a(s + 1) + b = 5s =⇒ a = 5 and a + b = 0 =⇒ b = −5. These yield

H(s) = 5(s + 1)
(s2 + 2s + 1) + 1

− 5
(s2 + 2s + 1) + 1

, (7.306)

which has inverse Laplace transform

h(t) = 5 exp (−t) [cos(t) − sin(t)] u(t). (7.307)

We summarize the two methods of finding the inverse Laplace transform of H(s)
for a pair of complex conjugate poles:

H(s) = N(s)
s2 + a1s + a0

= N(s)
(s + 𝛼 − j𝛽)(s + 𝛼 + j𝛽)

, (7.308)

where H(s) is assumed to be in proper form. For the cosine form of h(t), the
residue is

A = lim
s→−𝛼+j𝛽

N(s)
s + 𝛼 + j𝛽

=
N(−𝛼 + j𝛽)

2j𝛽
, (7.309)

from which we have |A|, 𝜃 = tan−1(Im(A)∕Re(A)), and

h(t) = 2|A| exp (−𝛼t) cos(𝛽t + 𝜃)u(t). (7.310)

For the sine/cosine form, we complete the square in the denominator and then use the
resulting quantities to rewrite H(s) as the sum of two terms:

H(s) = N(s)
(s + 𝛼)2 + 𝛽

2
= a(s + 𝛼)

(s + 𝛼)2 + 𝛽
2
+ b𝛽

(s + 𝛼)2 + 𝛽
2

, (7.311)

where {a, b} are derived such that a(s + 𝛼) + b𝛽 = N(s). The inverse Laplace trans-
form is

h(t) = exp (−𝛼t) [a cos(𝛽t) + b sin(𝛽t)] u(t). (7.312)

We provide another example of the second technique.
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Example 7.33 The following transfer function has complex conjugate poles:

H(s) = s − 3
s2 + 4s + 13

= s − 3
(s + 2)2 + 9

, (7.313)

where we have completed the square in the denominator, yielding 𝛼 = 2 and 𝛽 = 3.
In order to split this expression into the sum of two terms, the following equation is
solved:

a(s + 2) + 3b = s − 3 =⇒ a = 1 and b = −5∕3. (7.314)

Thus
H(s) = s + 2

(s + 2)2 + 9
− (5∕3) 3

(s + 2)2 + 9
, (7.315)

and the inverse transform is

h(t) = exp (−2t) [cos(3t) − (5∕3) sin(3t)] u(t). (7.316)

Finally, since complex conjugate roots can always be written as (s + 𝛼)2 + 𝛽
2,

this form can be used as the starting point to write polynomials in the standard form
s2 + a1s + a0 = s2 + 2𝛼s + 𝛼

2 + 𝛽
2. The fact that the roots are complex is verified

again by using the quadratic formula:

s1, s2 =
−2𝛼 ±

√
4𝛼2 − 4(𝛼2 + 𝛽

2)
2

= −𝛼 ± j𝛽, (7.317)

where 𝛼 > 0 is assumed for a stable system. This last result appears in (7.292).

7.13.3 Repeated Real Poles

Finding the PFE for repeated real poles requires more work than for distinct poles,
which we illustrate with the following simple example:

X(s) = s
(s − p1)(s − p2)2

=
A0

s − p1
+

A1

(s − p2)2
+

A2

s − p2
. (7.318)

Using results from Table 7.3, the inverse Laplace transform is

x(t) = [A0 exp (p1t) + A1t exp (p2t) + A2 exp (p2t)] u(t), (7.319)

where the second term is a ramped exponential function. Observe that in addition
to the term with denominator (s − p2)2, we also need to include in (7.318) a partial



�

� �

�

PARTIAL FRACTION EXPANSION 397

fraction with denominator s − p2 . The reason for this can be seen by combining all
three terms over a common denominator:

X(s) =
A0(s − p2)2 + A2(s − p2)(s − p1) + A1(s − p1)

(s − p1)(s − p2)2

=
(A0 + A2) s2 + (2A0p2 + A2p2 + A2p1 + A1) s + (A0 p2

2 + A2p1p2 − A1p1)
(s − p1)(s − p2)2

,

(7.320)

where coefficients for the different powers of s have been collected together in the
numerator. If the s − p2 term is not included in (7.318), which corresponds to setting
A2 = 0 in (7.320), then

X(s) =
A0s2 + (2A0p2 + A1) s + (A0 p2

2 − A1p1)
(s − p1)(s − p2)2

. (7.321)

Comparing this expression with (7.318), we see that (7.321) does not have enough
parameters to give the correct numerator. For the specific numerator in (7.318):

A0 = 0, A0p2
2 − A1p1 = 0, (7.322)

and so, it is not possible to have 2A0p2 + A1 = 1. There are three terms in the numer-
ator of (7.321), but there are only two available parameters {A0,A1} when A2 = 0
(the poles {p1, p2} are fixed and cannot be adjusted to give the correct numerator).
By including the partial fraction with A2 in (7.318), there is a sufficient number of
parameters to produce the numerator in the first equation of (7.318), which can be
seen from (7.320):

A0 + A2 = 0, 2A0p2 + A2(p1 + p2) + A1 = 1, (7.323)

A0p2
2 + A2p1p2 − A1p1 = 0. (7.324)

These three equations with three unknowns can be written in matrix form:

⎡
⎢
⎢
⎣

1 0 1
2p2 1 p1 + p2
p2

2
−p1 p1p2

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

A0
A1
A2

⎤
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

0
1
0

⎤
⎥
⎥
⎦

. (7.325)

Solving this matrix equation yields the residues for the PFE. The situation in (7.321)
with only two parameters corresponds to an underdetermined system of linear
equations that has no solution:

⎡
⎢
⎢
⎣

1 0
2p2 1
p2

2 −p1

⎤
⎥
⎥
⎦

[
A0
A1

]

=
⎡
⎢
⎢
⎣

0
1
0

⎤
⎥
⎥
⎦

. (7.326)
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Rearranging this in row-echelon form (see Chapter 3) yields

⎡
⎢
⎢
⎣

1 0
0 1
0 0

⎤
⎥
⎥
⎦

[
A0
A1

]

=
⎡
⎢
⎢
⎣

0
1
p1

⎤
⎥
⎥
⎦

. (7.327)

Since we assume that p1 ≠ 0 (otherwise there is no need to find a PFE for this Laplace
transform), a solution does not exist; for the double pole (s − p2)2, the PFE must
include a term with denominator s − p2.

For the more general case with repeated poles (s − pk)m:

X(s) = N(s)
(s − p1)(s − p2)m

, (7.328)

it is necessary that partial fractions with poles {(s − p2)m−1
,… , (s − p2)2, s − p2} be

included. This follows from the fact that when the PFE terms are collected over a
common denominator, the numerator will be of the form

N(s) = bmsm + · · · + b1s + b0. (7.329)

In order to represent an arbitrary numerator N(s), an equation is needed for each coef-
ficient bk. There must be m + 1 equations for the m + 1 coefficients, from which m + 1
residues {Ak} are computed. Residue A0 is associated with s − p1, and {A1,… ,Am}
are associated with {(s − p2)m,… , (s − p2)2, s − p2}, respectively:

X(s) =
A0

s − p1
+

A1

(s − p2)m
+

A2

(s − p2)m−1
+ · · · +

Am

s − p2
. (7.330)

Combining all terms over a common denominator leads to a complicated numerator,
and so, the matrix representation used to solve for the parameters is also complicated.
The inverse Laplace transform is

x(t) = A0 exp (p1t) u(t) +
[

A1

(m − 1)!
tm−1 +

A2

(m − 2)!
tm−2 + · · · + Am

]

exp (p2t) u(t),
(7.331)

which shows that m repeated poles yield an exponential function in the time domain
that is weighted by a sum of terms containing t with exponents ranging from 0 to
m − 1.

Example 7.34 Consider the following fourth-order system with repeated poles:

H(s) = 2s
(s + 1)(s + 3)3

=
A0

s + 1
+

A1

(s + 3)3
+

A2

(s + 3)2
+

A3

s + 3
. (7.332)
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Although there are four residues in this example, A0 can be found separately, so the
matrix needed for solving the other three residues has rank 3. For the pole at s = −1:

A0 = lim
s→−1

2s
(s + 3)3

= −1∕4. (7.333)

For the other residues, we examine the transfer function when combined over a
common denominator:

H(s) =
A0(s + 3)3 + A1(s + 1) + A2(s + 1)(s + 3) + A3(s + 1)(s + 3)2

(s + 1)(s + 3)3
, (7.334)

whose numerator is

N(s) = A0(s3 + 9s2 + 27s + 27) + A1(s + 1)

+ A2(s2 + 4s + 3) + A3(s3 + 7s2 + 15s + 9)

= (A0 + A3)s3 + (9A0 + A2 + 7A3)s2

+ (27A0 + A1 + 4A2 + 15A3)s + (27A0 + A1 + 3A2 + 9A3). (7.335)

Setting this equation equal to the actual numerator 2s after substituting A0 = −1∕4
and equating coefficients of sm gives three equations in three unknowns as follows:

⎡
⎢
⎢
⎣

0 1 7
1 4 15
1 3 9

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

A1
A2
A3

⎤
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

9∕4
35∕4
27∕4

⎤
⎥
⎥
⎦

. (7.336)

Solving this matrix equation using MATLAB yields A1 = 3, A2 = 1∕2, and A3 = 1∕4.
Note that in this case, we can immediately find A3 from the coefficient for s3 in (7.335)
because A0 is already known: A0 + A3 = 0 =⇒ A3 = −A0 = 1∕4. As a result, the
other residues can be derived using a lower dimension matrix equation:

[
1 4
1 3

] [
A1
A2

]

=
[

5
9∕2

]

, (7.337)

which yields A1 = 3 and A2 = 1∕2. We can simplify further by recognizing that A1
is derived in a manner similar to that used to find A0 as follows:

A1 = lim
s→−3

(s + 3)3H(s) = lim
s→−3

2s
s + 1

= 3. (7.338)

Since {A0,A1,A3} are now known, A2 = 1∕2 can be found from any one of the three
coefficients of sm in (7.335) containing A2:

9A0 + A2 + 7A3 = 0, 27A0 + A1 + 4A2 + 15A3 = 2, 27A0 + A1 + 3A2 + 9A3 = 0.
(7.339)
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From the previous discussion, we find that it is straightforward to compute the
parameters of a PFE for the case of repeated real poles, but it may be tedious to solve
the resulting matrix equation when there are many poles. However, as shown for the
previous example, it is often possible to solve for some residues using the distinct
pole method, which in turn can be substituted into the coefficient equations derived
from the numerator in order to reduce the size of the matrix equation needed to solve
for the remaining residues.

There is an alternative method for handling repeated poles that is based on
derivatives with respect to s. We illustrate this procedure for the system in (7.318).
The first two residues {A0,A1} are computed in the usual manner:

A0 = lim
s→p1

(s − p1) X(s), A1 = lim
s→p2

(s − p2)2X(s). (7.340)

The approach used for these two equations cannot be used for A2, which is seen as
follows:

A2 = lim
s→p2

(s − p2)
[

A0

s − p1
+

A1

(s − p2)2
+

A2

s − p2

]

= 0 + lim
s→p2

A1

s − p2
+ A2, (7.341)

because the middle term on the right-hand side is undefined (infinite) in the limit. This
problem is handled by multiplying X(s) instead with (s − p2)2 and then differentiating
the expression with respect to s before taking the limit:

A2 = lim
s→p2

d
ds

[

(s − p2)2
A0

s − p1
+ A1 + A2(s − p2)

]

= lim
s→p2

[

2(s − p2)
A0

s − p1
− (s − p2)2

A0

(s − p1)2
+ 0 + A2

]

= A2, (7.342)

which is the desired result. Multiplying by (s − p2)2 eliminates the denominator of
the A1 term in (7.341), while ensuring that A0 and A2 are multiplied by either s − p2
or (s − p2)2 so they tend to 0 as s → p2. For the more general case in (7.328), it is
clear that for all terms with denominators of the form (s − p2)k, for k = 1,… ,m, the
Laplace transform X(s) is multiplied by (s − p2)m (with the highest power m), and then
we successively differentiate (s − p2)mX(s) with respect to s and take the limit after
each derivative to produce the residues {A1,… ,Am}, respectively. The only caveat is
that each result must be scaled by (m − 1)!, which we demonstrate for (7.328):

(s − p2)mX(s) = (s − p2)m
A0

s − p1
+ A1 + (s − p2) A2 + · · · + (s − p2)m−1Am.

(7.343)

Residue A1 is generated when s → p2 because all other terms tend to 0. Differentiating
once eliminates the A1 term; residue A2 then appears explicitly in the expression, and
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all other terms tend to 0 as s → p2 because they are multiplied by positive powers of
s − p2. The other residues are derived by continuing this process. In particular, we
have after m − 1 derivatives:

dm−1

dsm−1
(s − p2)mX(s) = dm−1

dsm−1
(s − p2)m

A0

s − p1
+ [(m − 1) × · · · × 2 × 1]Am.

(7.344)
For any partial fraction with poles other than p2, we always obtain the form in the first
term on the right-hand side of (7.344) where it is multiplied by (s − p2)m with a power
exceeding the order of the derivative, and there are no cancellations in the numerator
and the denominator. Thus, in the limit as s → p2, such terms always tend to 0. The
last term in (7.344) is premultiplied by (m − 1)! because of the m − 1 derivatives,
which in the limit yields the desired residue:

Am = 1
(m − 1)!

lim
s→p2

dm−1

dsm−1
(s − p2)mX(s). (7.345)

For all parameters {A1,… ,Am} associated with s = p2, the general expression for the
kth residue is

Ak =
1

(k − 1)!
lim
s→p2

dk−1

dsk−1
(s − p2)mX(s), (7.346)

for k = 1,… ,m (with 0! ≜ 1). Note that the exponent of s − p2 is always m for any
value of k in this expression.

For the Laplace transform in (7.318), the inverse transforms associated with A0
and A2 are

A0

s − p1

−1

−−−−→ A0 exp (p1t) u(t), (7.347)

A2

s − p2

−1

−−−−→ A2 exp (p2t) u(t). (7.348)

For the partial fraction with residue A1, the inverse Laplace transform of (7.197) is
the ramped exponential function:

A1

(s − p2)2
−1

−−−−→ A1t exp (p2)tu(t), (7.349)

and so, the overall inverse Laplace transform is

x(t) = [A0 exp (p1t) + (A1t + A2) exp (p2t)] u(t). (7.350)

Example 7.35 For the transfer function in Example 7.34, the residue for the pole
at s = −1 is still derived using the approach described in (7.333), which yielded
A0 = −1∕4. Likewise, A1 is derived in the same manner as at the end of that example,
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which yielded A1 = 3. The remaining two residues are generated using the derivative
approach:

A2 = lim
s→−3

d
ds

2s
s + 1

= lim
s→−3

[
2

s + 1
− 2s

(s + 1)2

]

= 1∕2, (7.351)

and

A3 = (1∕2) lim
s→−3

d2

ds2

2s
s + 1

= (1∕2) lim
s→−3

d
ds

[
2

s + 1
− 2s

(s + 1)2

]

= (1∕2) lim
s→−3

[

− 2
(s + 1)2

− 2
(s + 1)2

+ 4s
(s + 1)3

]

= 1∕4, (7.352)

which are the results obtained by solving (7.336). Note that the denominator of the
last term with (s + 1)3 is negative because of the odd exponent: (−3 + 1)3 = −8. From
(7.198), the inverse Laplace transform of (7.332) is

h(t) = [A0 exp (−t) + [(A1∕2)t2 + A2t + A3] exp (−3t)] u(t)

= [(−1∕4) exp (−t) + [(3∕2)t2 + (1∕2)t + (1∕4)] exp (−3t)] u(t). (7.353)

This impulse response function for the fourth-order system is plotted in Figure 7.14,
which we see has a more complex behavior than second-order overdamped, under-
damped, and critically damped systems. The components due to the simple real pole
and the repeated pole are shown separately.

7.13.4 Repeated Complex Poles

Finally, we consider the case of repeated complex conjugate poles, which is illustrated
by the following simple case:

X(s) = s
(s − p1)(s − p2)2(s − p∗2)2

. (7.354)

This Laplace transform has a real pole at s = p1 and repeated complex conjugate
poles at s = p2 and s = p∗2, where in general p2 = −𝛼 + j𝛽 and p∗2 = −𝛼 − j𝛽. Its PFE
has the form

X(s) =
A0

s − p1
+

A1

(s − p2)2
+

A∗
1

(s − p∗2)
2
+

A2

s − p2
+

A∗
2

s − p∗2
, (7.355)

where from earlier results we know that for distinct complex poles, the residues must
occur as complex conjugate pairs because the coefficients of X(s) are real. Even
though the residues are complex, they are computed in the same way as was done
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Figure 7.14 Impulse response function h(t) and its components from Example 7.35.

for repeated real poles, such as the derivative approach discussed at the end of the
previous section:

A0 = lim
s→p1

(s − p1)X(s), (7.356)

A1 = lim
s→p2

(s − p2)2X(s), (7.357)

A2 = lim
s→p2

d
ds

(s − p2)2X(s). (7.358)

The last two results also give the other two residues A∗
1 and A∗

2. For m repeated
complex poles, the formula in (7.346) is used, and again the results are copied over
for the conjugated residues.

For the real pole in (7.354):

A0

s − p1

−1

−−−−→A0 exp (p1t) u(t), (7.359)

and for the terms associated with A2, we have from (7.294):

A2

s − p2
+

A∗
2

s − p∗2

−1

−−−−→ 2|A2| exp (−𝛼t) cos(𝛽t + 𝜃2) u(t), (7.360)
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with 𝜃2 = tan−1(Im (A2)∕Re (A2)). The inverse Laplace transform for the {A1,A
∗
1}

terms is a ramped version of (7.360) (see Problem 7.29):

A1

(s − p2)2
+

A∗
1

(s − p∗2)2
→ 2|A1|t exp (−𝛼t) cos(𝛽t + 𝜃1) u(t), (7.361)

with 𝜃1 = tan−1(Im (A1)∕ Re (A1)). If the repeated pole in (7.354) is extended to order
m, then the inverse Laplace transform is

x(t) = A0 exp (p1t)u(t) + 2

[
|A1|

(m − 1)!
tm−1 cos(𝛽t + 𝜃1) +

|A2|

(m − 2)!
tm−2 cos(𝛽t + 𝜃2)

+ · · · + |Am| cos(𝛽t + 𝜃m)] exp (−𝛼t)u(t), (7.362)

where each cosine has the same frequency and exponential weighting, but a different
phase 𝜃k = tan−1(Im (Ak)∕Re (Ak)), magnitude |Ak|, and factorial weighting.

Example 7.36 Suppose the Laplace transform is

H(s) = s
(s + 1)(s2 + 4)2

, (7.363)

which has a real pole at s = −1 and repeated complex conjugate poles at s = ±j2
(located on the imaginary axis). The residues of the PFE in (7.355) are

A0 = lim
s→−1

s
s2 + 4

= −1∕5, (7.364)

A1 = lim
s→−j2

s
(s + 1)(s − j2)2

=
−j2

(−j2 + 1)(−j2 − j2)2
= (1∕40)( j − 2), (7.365)

A2 = lim
s→−j2

d
ds

s
(s + 1)(s − j2)2

= lim
s→−j2

[
1

(s + 1)(s − j2)2
− s

(s + 1)2(s − j2)2
− 2s

(s + 1)(s − j2)3

]

. (7.366)

The three terms of A2 are somewhat more complicated to evaluate than A0 and A1:

A2 =
1

(−j2 + 1)(−j4)2
+

j2

(−j2 + 1)2(−j4)2
+

j4

(−j2 + 1)(−j4)3

= −(1∕80)(1 + j2) + ( j∕200)(4 + 3j) + (1∕80)(1 + j2)

= (1∕200)(4 + 3j). (7.367)

It is not necessary to combine the partial fractions associated with residues {A1,A
∗
1}

and {A2,A
∗
2}; instead, we can immediately write the inverse Laplace transform using
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Figure 7.15 Impulse response function h(t) and its components from Example 7.36.

the cosine forms in (7.294) and (7.361) with 𝛼 = 0 and 𝛽 = 2:

h(t) = [−(1∕5) exp (−t) + (1∕4
√

5) cos(2t − tan−1(2))

+(1∕20)t cos(2t + tan−1(3∕4))] u(t). (7.368)

Since the poles are on the imaginary axis, these cosine terms are not exponentially
weighted. The factor of t in the third term on the right-hand side causes the cosine to
grow unbounded, which, of course, is due to the repeated complex conjugate poles.
From this example, we find that the two terms associated with the repeated complex
poles must have the same frequency, but their magnitudes and phase shifts generally
differ because the residues A1 and A2 are not usually identical. The fifth-order impulse
response function is plotted in Figure 7.15, along with its individual components due
to the single real pole and the repeated complex conjugate poles. This function is
quickly dominated by the cosine functions (the dotted line) because the exponential
component (the dashed line) quickly tends to 0.

Table 7.5 provides a brief summary of the PFE residues and inverse Laplace trans-
forms for the four different types of poles. For repeated poles, only the results for two
poles are included; the residues for higher order repeated poles are computed using
(7.346), and the inverse transforms for real and complex repeated poles are given in
(7.331) and (7.362), respectively.
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TABLE 7.5 Partial Fraction Expansion for X(s)

Type of Pole Residue Inverse Transform

Real p A = lim
s→p

(s − p)X(s) exp (pt)u(t)

Repeated real p A = lim
s→p

d[(s − p)X(s)]∕ds t exp (pt)(u(t)

Complex p = −𝛼 + j𝛽 A = lim
s→p

(s − p)X(s) 2|A| exp (−𝛼t) cos(𝛽t + 𝜃)u(t)

Repeated complex p A = lim
s→p

d[(s − p)X(s)]∕ds 2|A|t exp (−𝛼t) cos(𝛽t + 𝜃)u(t)

Example 7.37 We conclude this section with a discussion of the three types of
second-order system responses for the polynomial in (6.119), which we include in
the following transfer function:

H(s) = 1

s2 + 2𝜁𝜔os + 𝜔
2
o

, (7.369)

where 𝜁 is the damping ratio and 𝜔o is the resonant frequency. The poles are given
by

s1, s2 = −𝜁𝜔o ± 𝜔o

√
𝜁

2 − 1, (7.370)

and the type of system depends on the value of 𝜁 :

overdamped∶ 𝜁 > 1 =⇒ s1, s2 = −𝜁𝜔o ± 𝜔o𝜁d (7.371)

underdamped∶ 𝜁 < 1 =⇒ s1, s2 = −𝜁𝜔o ± j𝜔d (7.372)

critically damped∶ 𝜁 = 1 =⇒ s1 = s2 = −𝜁𝜔o, (7.373)

where 𝜔d ≜ 𝜔o

√
1 − 𝜁

2, and we have defined 𝜁d ≜ √
𝜁

2 − 1 for convenience in the
following derivation. For the underdamped system, the transfer function is

H(s) = 1
(s + 𝜁𝜔o + j𝜔d) (s + 𝜁𝜔o − j𝜔d)

= 1

(s + 𝜁𝜔o)2 + 𝜔
2
d

. (7.374)

The Laplace transform pair for the exponentially weighted sine function is

exp (−𝛼t) sin(𝛽t) u(t)

−−→ 𝛽

(s + 𝛼)2 + 𝛽
2

, (7.375)

from which we have the impulse response function:

h(t) = (1∕𝜔d) exp (−𝜁𝜔ot) sin(𝜔dt)u(t). (7.376)

The transfer function for the critically damped system is

H(s) = 1
(s + 𝜁𝜔o)2

, (7.377)
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which we find in Table 7.3 is an exponentially weighted ramp function:

h(t) = t exp (−𝜔ot) u(t), (7.378)

where 𝜁 = 1 has been substituted. For the overdamped system, we perform a PFE:

H(s) = A
s + 𝜔o(𝜁 + 𝜁d)

+ B
s + 𝜔o(𝜁 − 𝜁d)

, (7.379)

with residues

A = 1
s + 𝜔o(𝜁 − 𝜁d)

|
|
|
|s=−𝜔o(𝜁+𝜁d)

= − 1
2𝜔o𝜁d

(7.380)

B = 1
s + 𝜔o(𝜁 + 𝜁d)

|
|
|
|s=−𝜔o(𝜁−𝜁d)

= 1
2𝜔o𝜁d

. (7.381)

Thus, the impulse response function for the overdamped system is

h(t) = (1∕2𝜔o

√
𝜁

2 − 1)[exp (−𝜔o(𝜁 −
√
𝜁

2 − 1)t)

− exp (−𝜔o(𝜁 +
√
𝜁

2 − 1)t)]u(t). (7.382)

The purpose of this example is to investigate these three systems when 𝜁 is close to 1,
in order to determine how the waveforms change when transitioning from one type
of second-order system to another. Toward this end, we examine the underdamped
response in (7.376) with 𝜁 = 1 − a, and the overdamped response in (7.382) with
𝜁 = 1 + a, both for small a > 0 so they are close to being critically damped. The three
impulse response functions are illustrated in Figure 7.16 for 𝜔o = 1 rad/s and three
values of a. Figure 7.16(a) shows the critically damped response, which we see is
essentially the same as the other two responses for small a = 0.1 (the solid lines). With
increasing a, Figure 7.16(b) shows that the underdamped response extends higher
and lower than the critically damped response, whereas the overdamped response
in Figure 7.16(c) does not have as much variation. This example demonstrates that
for the same transfer function but different 𝜁 , the critically damped response is the
transition waveform (𝜁 = 1) from a strictly exponential response (𝜁 > 1) to one that
is sinusoidal (𝜁 < 1). Even though the three equations for h(t) are quite different in
general, they become equivalent as 𝜁 → 1, and the transition across systems is con-
tinuous.

The previous results can also be verified by using power series expansions for
the sine and exponential functions (see Appendix C). For the underdamped impulse
response function in (7.376), 𝜔d is very small for 𝜁 ≈ 1, which means sin(𝜔dt) ≈ 𝜔dt
and

h(t) ≈ (1∕𝜔d) exp (−𝜔ot)𝜔dtu(t) = t exp (−𝜔ot) u(t), (7.383)
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Figure 7.16 Impulse response functions for second-order systems with 𝜔o = 1 rad/s.
(a) Critically damped with 𝜁 = 1. (b) Underdamped with 𝜁 = 1 − a. (c) Overdamped with
𝜁 = 1 + a.
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which is the critically damped response. For the overdamped response, we factor the
common exponential function:

h(t) = (1∕2𝜔o

√
𝜁

2 − 1) exp (−𝜔ot)

×
[
exp (𝜔ot

√
𝜁

2 − 1) − exp (−𝜔ot
√
𝜁

2 − 1))
]

u(t). (7.384)

The exponential power series is approximated by exp(±x) ≈ 1 ± x for small x. Thus

h(t) ≈ (1∕2𝜔o

√
𝜁

2 − 1) exp (−𝜔ot) × (2𝜔ot
√
𝜁

2 − 1) u(t) = t exp (−𝜔ot) u(t),
(7.385)

which again is the critically damped response.

7.14 LAPLACE TRANSFORMS AND LINEAR CIRCUITS

In this section, we demonstrate how to solve for circuit voltages and currents using
the Laplace transform. The approach is similar to that described earlier using phasors
for sinusoidal signals, though here the signals can be more general and start at a
finite time.

The time-domain V-I and I-V models for the three passive circuit elements are

resistor∶ 𝑣R(t) = RiR(t), iR(t) = 𝑣R(t)∕R, (7.386)

inductor∶ 𝑣L(t) = L
diL(t)

dt
, iL(t) = (1∕L)∫

t

0
𝑣L(t) dt + iL(0−), (7.387)

capacitor∶ 𝑣C(t) = (1∕C)∫
t

0
iC(t) dt + 𝑣C(0−), iC(t) = C

d𝑣C(t)
dt

. (7.388)

Using properties of the Laplace transform, the corresponding s-domain expressions
are provided in Table 7.6, which includes the time-domain initial states: i(0−) for the
inductor and 𝑣(0−) for the capacitor. These follow from the derivative property of
the Laplace transform:

𝑣L(t) = L
diL(t)

dt


−−→VL(s) = sLIL(s) − LiL(0−), (7.389)

iC(t) = C
d𝑣C(t)

dt


−−→ IC(s) = sCVC(s) − C𝑣C(0−), (7.390)

which can be rearranged to give the other two expressions in the table:

IL(s) = VL(s)∕sL + iL(0−)∕s, (7.391)

VC(s) = IC(s)∕sC + 𝑣C(0−)∕s. (7.392)

These results can also be derived directly from the integral forms in (7.387) and
(7.388), as long as the initial states are treated as step functions as shown in



�

� �

�

410 LAPLACE TRANSFORMS AND LINEAR SYSTEMS

TABLE 7.6 s-Domain Impedance of Linear Circuit Elements

Device Impedance Z(s) V-I Transform I-V Transform

Resistor R V(s) = RI(s) I(s) = V(s)∕R
Inductor sL V(s) = sLI(s) − Li(0−) I(s) = V(s)∕sL + i(0−)∕s
Capacitor 1∕sC V(s) = I(s)∕sC + 𝑣(0−)∕s I(s) = sCV(s) − Cv(0−)

(a)

sL

V(s)

+

_

_
+Li(0−)

1/sC

(b)

V(s)

+

_

v(0−)/s _+

(d)

V(s)

+

_

1/sCCv(0−)

(c)

i(0−)/s sL

+

_

I(s)

I(s)

I(s)

I(s)

V(s)

Figure 7.17 s-Domain circuit element models with initial states. (a) Inductor series model.
(b) Capacitor series model. (c) Inductor parallel model. (d) Capacitor parallel model.

Example 7.16. Series and parallel circuit implementations of these equations are
illustrated in Figure 7.17. Either configuration can be used, but one is usually
more useful depending on the rest of the circuit. These are essentially Thévenin
and Norton equivalent circuits (see Chapter 2) with impedance Z(s) in place of
resistance R. The s-domain impedance Z(s) ≜ V(s)∕I(s) is calculated by assuming
zero initial states (which, of course, was not an issue in the phasor definition of
impedance Z ≜ V(𝜔)∕I(𝜔) because the signals are assumed to be sinusoidal with
doubly infinite duration). When analyzing a circuit, each element is replaced by
its s-domain impedance, and the initial state is included as an independent voltage
source or an independent current source.

Example 7.38 Consider again the first-order RC circuit in Figure 5.32, for which
we want to find 𝑣(t) for a general voltage input 𝑣s(t). The circuit is repeated in
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R1

R2

Vs(s)

+

_

V(s)

I1(s) I2(s)

1/sC_+

Figure 7.18 First-order circuit with capacitor C and voltage supply Vs(s).

Figure 7.18, except that the phasor impedance 1∕j𝜔C has been replaced with the
s-domain impedance 1∕sC. Since we are interested in the output voltage 𝑣(t), the
V-I transform for C in Table 7.6 is used, assuming a zero initial state. All quantities
have been transformed to the s-domain, and the usual techniques for the analysis of
resistive circuits can be used for this circuit. In this case, voltage division yields the
desired result:

V(s) =
1∕sC

1∕sC + R
Vs(s) =

1∕RC

s + 1∕RC
Vs(s), (7.393)

which has a pole at p = −1∕RC. If 𝑣s(t) = 𝛿(t), then this ratio is the transfer function
H(s), and the corresponding impulse response function h(t) is exponential:

h(t) = (1∕RC) exp (−t∕RC)u(t). (7.394)

If 𝑣s(t) = u(t), then a PFE can be used to find the component terms:

V(s) =
1∕RC

s(s + 1∕RC)
=

A1

s
+

A2

s + 1∕RC
, (7.395)

where

A1 =
1∕RC

s + 1∕RC

|
|
|
|s=0

= 1, A2 =
1∕RC

s

|
|
|
|s=−1∕RC

= −1. (7.396)

Thus, the output voltage (step response of the circuit) has steady-state and transient
components:

𝑣(t) = u(t) − exp (−t∕RC) u(t) = [1 − exp (−t∕RC)] u(t). (7.397)

Example 7.39 Figure 7.19(a) shows the series RLC discussed in Chapter 2, but
with a step function voltage source. Kirchoff’s voltage law (KVL) in the time domain
yields Vsu(t) = 𝑣R(t) + 𝑣L(t) + 𝑣C(t) and the following integro-differential equation:

L
d
dt

i(t) + Ri(t) + 1
C ∫

t

0
i(t) dt + 𝑣C(0−) = Vsu(t), (7.398)
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which includes the initial capacitor voltage 𝑣C(0−). Differentiating this expression
gives a second-order ODE that models the circuit current:

L
d2

dt2
i(t) + R

d
dt

i(t) + 1
C

i(t) = Vs𝛿(t), (7.399)

which eliminates the constant 𝑣C(0−). In this example, we show three methods of
solving for the current i(t) using s-domain techniques: (i) transform (7.398) to the
s-domain, (ii) transform (7.399) to the s-domain, and (iii) find the current directly
in the s-domain using the circuit in Figure 7.19(b), with the inductor and capacitor
replaced by their s-domain models from Figure 7.17. (i) The Laplace transform of
(7.398) is

sLI(s) − Li(0−) + RI(s) + I(s)∕sC + 𝑣C(0−)∕s = Vs∕s, (7.400)

where the unilateral Laplace transform of the constant 𝑣C(0−) is 𝑣C(0−)∕s. Solving
for I(s) yields

I(s) =
si(0−) + Vs∕L − 𝑣C(0−)∕L

s2 + (R∕L)s + 1∕LC
. (7.401)

The type of circuit (overdamped, underdamped, critically damped) depends on the
specific parameter values for {R,L,C}. (ii) The Laplace transform of (7.399) is

Ls2I(s) − sLi(0−) − Li′(0−) + RsI(s) − Ri(0−) + I(s)∕C = Vs, (7.402)

R

Vsu(t) C

L

+ vR(t)

vC(t)

_ _+ vL(t)

+

_

i

R

Vs/s 1/sC

sL

VL(s) _+ VR(s)      + _

I(s)

vC(0−)/s

VC(s)

+

_

_ +

(a)

(b)

Li(0−)

_+

_+

_+

Figure 7.19 Second-order series circuit with resistor R, inductor L, and capacitor C.
(a) Time-domain model. (b) s-Domain model.
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and solving for I(s) yields

I(s) =
si(0−) + Ri(0−)∕L + Vs∕L − 𝑣C(0−)∕L + i′(0−)

s2 + (R∕L)s + 1∕LC
. (7.403)

This expression is equivalent to that in (7.401) because the derivative i′(0−) can be
written in terms of the circuit voltages using 𝑣L(t) + 𝑣C(t) + 𝑣R(t) = Vsu(t):

𝑣L(0−) = L
d
dt

i(t)
|
|
|
|t=0−

=⇒ i′(0−) = (1∕L) [Vsu(0−) − Ri(0−) − 𝑣C(0−)]

= −(1∕L) [Ri(0−) + 𝑣C(0−)], (7.404)

where Vsu(0−) = 0 because of the unit step function. Substituting this result into
(7.403) causes the Ri(0−)∕L term to cancel, resulting in the same expression as in
(7.401). This last step would normally be necessary in practice because derivative
quantities such as i′(0−) are not typically given in a problem statement. (iii) Finally,
from the s-domain model in Figure 7.19(b) and KVL, we have

VR(s) + VL(s) + VC(s) = Vs∕s

=⇒ RI(s) + sLI(s) − Li(0−) + I(s)∕sC + 𝑣C(0−)∕s = Vs∕s, (7.405)

which is the same expression as in (7.400). This last result demonstrates that it is
often simpler to work directly in the s-domain using the models in Figure 7.17, rather
than first finding an integro-differential equation or an ODE in the time domain, and
then transforming them to the s-domain. The corresponding time-domain current i(t)
is then derived via a PFE, which is straightforward because the rational function is in
proper form.

Example 7.40 Suppose we want to find the voltages 𝑣R(t), 𝑣C(t), and 𝑣L(t) for the
circuit in Figure 7.19(a). Since an expression has already been found in (7.401) for
the s-domain current I(s), and we have its time-domain waveform from a PFE, it is
easy to find these quantities either in the time domain or the s-domain without writing
another ODE. For the resistor:

𝑣R(t) = Ri(t) =⇒ VR(s) = RI(s), (7.406)

and for the inductor:

𝑣L(t) = L
d
dt

i(t) =⇒ VL(s) = sLI(s) − L𝑣L(0−). (7.407)

The initial voltage is derived from KVL: 𝑣R(0−) + 𝑣L(0−) + 𝑣C(0−) = Vsu(0−) = 0,
which yields

𝑣L(0−) = −𝑣C(0−) − Ri(0−). (7.408)
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Finally, for the capacitor:

𝑣C(t) =
1
C ∫

t

0−
i(t) dt + 𝑣C(0−) =⇒ VC(s) = I(s)∕sC + 𝑣C(0−)∕s. (7.409)

It may be easier to differentiate or integrate the current in the time domain as in
the first expressions of (7.407) and (7.409), rather than perform additional PFEs on
the corresponding Laplace transforms.

Example 7.41 Finally, we derive the Thévenin equivalent circuit as seen by Vsu(t)
in Figure 7.19(a). The Thévenin impedance is derived by short circuiting the inde-
pendent voltage sources due to the initial states:

Zth(s) = R + sL + 1∕sC. (7.410)

The open circuit voltage depends only on the initial states because the current I(s) is
zero:

Voc(s) = 𝑣C(0−)∕s − Li(0−). (7.411)

The Norton equivalent circuit has the same impedance, and the short circuit current
is derived by dividing (7.411) and (7.410):

Isc(s) =
𝑣C(0−)∕s − Li(0−)

sL + R + 1∕sC
=

𝑣C(0−)∕L − si(0−)
s2 + (R∕L)s + 1∕LC

. (7.412)

The two equivalent circuits in the s-domain are shown in Figure 7.20. These can be
used to verify the circuit current derived in the previous example. From the Thévenin
equivalent circuit:

I(s) =
Vs∕s − Voc(s)

Zth(s)
=

Vs∕s − 𝑣C(0−)∕s + Li(0−)
R + sL + 1∕sC

, (7.413)

which is the same as (7.401). From the Norton equivalent circuit and Kirchoff’s cur-
rent law (KCL):

I(s) =
Vs∕s

Zth(s)
− Isc(s) =

Vs∕L

s2 + (R∕L)s + 1∕LC
−

𝑣C(0−)∕L − si(0−)
s2 + (R∕L)s + 1∕LC

, (7.414)

which is also the same as (7.401).

(a)

+
_

+
_

Zth(s)

+
_ Isc(s)

(b)

Voc(s) Zth(s)Vs/s Vs/s

Figure 7.20 s-Domain equivalent circuits. (a) Thévenin. (b) Norton.
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PROBLEMS

Solving ODEs Using Phasors

7.1 Solve the following first-order ODE using phasors:

d
dt

y(t) + 2y(t) = sin(t), t ∈ . (7.415)

Give the magnitude and phase of Y, and then write an expression for y(t).

7.2 Repeat the previous problem for the second-order system:

d2

dt2
y(t) + 3

d
dt

y(t) + 2 y(t) = cos(2t + 45∘), t ∈ . (7.416)

7.3 Demonstrate how to solve the following integro-differential equation using
phasors:

d
dt

y(t) + ∫
t

−∞
y(t) dt + y(t) = cos(t − 30∘), t ∈ . (7.417)

Eigenfunctions

7.4 Determine if y1(t) = sin(𝜔ot) or y2(t) = exp ( j𝜔ot) are eigenfunctions of the
following ODEs:

(a)
d2

dt2
y(t) + 2y(t) = 0, (b)

d
dt

y(t) + 2y(t) = 0. (7.418)

7.5 Find all eigenfunctions for the following third-order ODE by assuming
y(t) = exp (st) with complex s = 𝜎 + j𝜔:

d3

dt3
y(t) + d2

dt2
y(t) + 4

d
dt

y(t) + 4y(t) = 0. (7.419)

Laplace Transform

7.6 (a) Show that the ROC for the bilateral Laplace transform of x(t) = exp (−2|t|)
is a strip on the s-plane centered about the imaginary axis. (b) Repeat part (a)
for y(t) = exp (−(t − 1))u(t − 1) + exp (3t)u(−t).

7.7 (a) Demonstrate that for even function x(t), the bilateral Laplace transform
becomes

X(s) = ∫
∞

0
x(t) exp (−𝜎t) cos(𝜔t)dt, (7.420)

and determine if X(s) is also even. (b) Find a similar expression for odd x(t) and
determine if X(s) is odd.
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1

3

2

x(t)

t (s)

(a)

1

2

3

y(t)

t (s)

(b)

45 5

Figure 7.21 Time-domain functions for Problem 7.10.

7.8 Find the Laplace transform and specify the ROC for each of the following:

(a) x(t) =
∞∑

n=0

𝛿(t − nTo), (b) y(t) =
∞∑

n=0

f (t − nTo), (7.421)

with To > 0. The support of f (t) is [0,To∕2] and its Laplace transform is F(s)
with ROCf .

7.9 Repeat the previous problem for

(a) x(t) = sin(𝜔ot + 𝜙)u(t), (b) y(t) = rect(t − 1∕2) cos(𝜔ot). (7.422)

7.10 Find the Laplace transforms for x(t) and y(t) in Figure 7.21.

7.11 Use integration by parts to find the Laplace transform of x(t) = t2 exp (−𝛼t)u(t).

7.12 Verify that the inverse Laplace transform equation in (7.58) is correct by direct
substitution of X(s) from (7.29).

Laplace Transform Properties

7.13 Derive the cross-correlation function in (7.131) and its bilateral Laplace
transform in (7.132).

7.14 Find the Laplace transform for d2x(t)∕dt2 using the derivative property:

x(t) = 2 exp (−t)u(t) + exp (−2t)u(t − 1). (7.423)

7.15 For right-sided h(t), use the time-shift property to find the inverse Laplace
transform of

H(s) =
s exp (−s) + exp (−2s)

s2 + 5s + 6
. (7.424)

7.16 Use the time-division property to find the Laplace transform for [sin(𝜔ot)∕t]u(t).
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7.17 Find the initial and final values for the following Laplace transforms, and verify
your results from the time-domain waveforms:

(a) Y1(s) =
s − 2

s2 + 3s
, (b) Y2(s) =

s2

s2 + 1
, (c) Y3(s) =

s
s2 + 7s + 12

.

(7.425)

Solving Linear ODEs

7.18 Solve the following ODE by transforming it to the s-domain:

d2

dt2
y(t) + 2

d
dt

y(t) + 2y(t) = u(t), (7.426)

with initial states y(0−) = y′(0−) = 1.

7.19 Repeat the previous problem for

d3

dt3
y(t) + 4

d2

dt2
y(t) + 9

d
dt

y(t) + 10y(t) = u(t), (7.427)

which has one real pole at s = −2 and initial states y(0−) = y′(0−) = y′′(0−)
= 1.

7.20 Assuming y(0−) = y′(0−) = 0, use Laplace transforms to solve for y(t):

d2

dt2
y(t) + 6

d
dt

y(t) + 9y(t) = 4 exp (−t)u(t). (7.428)

Impulse Response and Transfer Function

7.21 Starting with the double integral in (7.253), take the Laplace transform and
verify that the transfer function of two cascaded LTI systems with impulse
response functions h1(t) and h2(t) is the product H1(s)H2(s).

7.22 Repeat the derivation in (7.253) for the output of two cascaded systems assum-
ing {x(t), h1(t), h2(t)} are all causal so that the limits of the convolution integrals
are {0, t}.

7.23 Find the transfer function H(s) for the system represented by the ODE in
Problem 7.5.

7.24 (a) Find the transfer function H(s) and use it to derive (b) the step response and
(c) the ramp response for the following impulse response function:

h(t) = [exp (−2t) + (1∕2) exp (−t)]u(t). (7.429)

7.25 For the transfer function

H(s) = s
(s + 1)(s + 3)

, (7.430)
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X(s)

Input Output

Y(s)

H1(s)
_
+

Feedback

H2(s)

Σ

Figure 7.22 System with feedback for Problem 7.26.

substitute s = j𝜔 (which gives the Fourier transform), and find expressions for
(a) the magnitude |H(𝜔)| and (b) the phase ∠H(𝜔).

7.26 (a) Derive the transfer function H(s) from X(s) to Y(s) for the feedback system
in Figure 7.22. (b) Find the poles for H(s) for the following system components:

H1(s) =
1

s + 2
, H2(s) =

2
s + 3

. (7.431)

Convolution

7.27 Convolve the following functions and verify your results by finding the
inverse Laplace transform of H(s)X(s). (a) x(t) = u(t − 1) and h(t) = u(t + 1).
(b) x(t) = exp (−t)u(t) and h(t) = exp (−2t)u(t).

7.28 Repeat the previous problem for (a) x(t) = tri(t − 1) and h(t) = rect(t).
(b) x(t) = r(t) and h(t) = exp (−t)u(t).

Partial Fraction Expansion

7.29 Verify the Laplace transform pair for repeated complex poles in (7.361).

7.30 Find the inverse Laplace transform for the following transfer functions,
assuming right-sided time-domain functions:

(a) H1(s) =
s + 1

s2 + 5s + 6
, (b) H2(s) =

s
2s2 + 4s + 4

. (7.432)

7.31 Repeat the previous problem for

(a) H1(s) =
s2

s2 + 4s + 3
, (b) H2(s) =

s
s2 + 4s + 4

. (7.433)

7.32 Repeat Problem 7.30 for the following transfer functions, assuming two-sided
time-domain functions:

(a) H1(s) =
s + 2

s2 − s − 2
, (b) H2(s) =

s2 + 1
s2 − s − 6

. (7.434)
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s-Plane

Re(s)=σ

Im(s)=ω

j2

−j2

−1−2−3

X

X

X X
0

Figure 7.23 pole-zero plot for Problem 7.35.

7.33 Find the PFE for H(s) using (a) the derivative approach for repeated poles and
(b) the matrix approach described in Example 7.34:

H(s) = s2

(s + 5)2(s + 2)
. (7.435)

7.34 Repeat the previous problem for

H(s) = 3s
(s + 1)(s2 + 4)2

. (7.436)

7.35 Find the inverse Laplace transform for the system H(s) represented by the
pole-zero plot in Figure 7.23

7.36 Specify the system impulse response function h(t) if its unit step response is

y(t) = [1∕3 − (1∕2) exp (−t) + (1∕6) exp (−3t)] u(t). (7.437)

Laplace Transform and Linear Circuits

7.37 For the parallel RLC circuit in Figure 7.24, use a nodal analysis in the s-domain
to find the current through the inductor for t ∈ +. Assume nonzero initial
states 𝑣C(0−) and iL(0−).

R L+
_Vsu(t) C

iL(t)

vC(t)

+

_

Figure 7.24 Parallel RLC circuit for Problem 7.37.
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7.38 Repeat the previous problem for the RLC circuit in Figure 7.25

7.39 (a) Find an expression for the voltage 𝑣(t) across the capacitor in Figure 7.26
using a nodal analysis in the s-domain, assuming 𝑣C(0−) = 0 and
iI(0−) = 2 mA. (b) Find an equation for the capacitor current i(t) starting
with V(s) in the s-domain. (c) Verify your result in part (b) by starting with 𝑣(t)
in the time domain.

Computer Problems

7.40 Use residue in MATLAB to find the poles and perform a PFE for the following
transforms, and plot the time-domain functions h1(t) and h2(t):

(a) H1(s) =
5

s4 + 4s3 + 4s2 + 4s + 3
, (b) H2(s) =

s − 1
s5 + 4s4 + 9s3 + 10s2

.

(7.438)

7.41 Specify the transfer function for the following third-order ODE:

d3

dt3
y(t) + 4

d2

dt2
y(t) + 5

d
dt

y(t) + 2 = u(t). (7.439)

R1 L+
_Vsu(t)

iL(t)

vC(t)

R2

C

+

_

Figure 7.25 RLC circuit for Problem 7.38.

2u(t) V 1 μF 100 Ω 
+
_

iL(t)

v(t)

1 H

+

_

i(t)

Figure 7.26 RLC circuit for Problem 7.39.
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For a unit step input, use residue to find the PFE for Y(s) and then obtain an
expression for the time-domain function y(t). The MATLAB function lsim can
be used to numerically solve the ODE in (7.439):

y = lsim(b, a, x, t), (7.440)

where {b, a} are the coefficient vectors defining the ODE, t is a vector of time
instants, and x contains the corresponding input samples. Use lsim to generate
y, plot these values versus time, and compare the resulting curve to y(t) derived
earlier via the PFE. Although a for residue includes the pole at s = 0 due to the
unit step input, that pole is excluded in a for lsim; instead samples of x should
be generated using the function heaviside.

7.42 MATLAB generates Laplace transforms and inverse Laplace transforms by
using syms to indicate that the variables t and s are symbolic. Once the
functions x(t) or X(s) are defined, the transform commands are laplace and
ilaplace. Use these to verify several of the transform pairs in Table 7.3. Also,
transform some nonstandard functions such as x(t) = t exp (−t) cos(t) sin(t)u(t),
and include delays in one or more arguments to see how the Laplace transforms
change.
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8
FOURIER TRANSFORMS AND
FREQUENCY RESPONSES

8.1 INTRODUCTION

In this chapter, we describe another integral transform that can be viewed as a special
case of the bilateral Laplace transform defined on the imaginary axis of the s-plane
and generally for all t ∈ . In contrast to the unilateral Laplace transform whose
lower limit of integration is zero, thus implying initial states and initial conditions,
the Fourier transform is generally used to provide information about the frequency
content of a signal or the frequency response of a linear time-invariant (LTI) system.
As such, it is similar to a Fourier series except that the signals need not be periodic.

One important application of the Fourier transform is its description of an LTI
system as a filter that enhances or removes certain frequency bands of a signal. For
example, a low-pass filter emphasizes low frequencies, including the DC term, while
rejecting high frequencies. Although DC usually refers to “direct current” in a circuit,
it also corresponds to f = 0 Hz when describing the frequency content of a signal. The
other major types of filters are high-pass, band-pass, and band-reject (also called
band-stop). For sinusoidal waveforms, the angular frequency 𝜔 in radians/second
(rad/s) is related to natural frequency f in hertz (Hz) (cycles/second) as follows:

𝜔 = 2𝜋f = 2𝜋∕T , (8.1)

where T = 1∕f is the period in seconds (s). Another parameter associated with a
sinusoidal waveform is its wavelength, which takes into account the speed of light.

Mathematical Foundations for Linear Circuits and Systems in Engineering, First Edition. John J. Shynk.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
Companion Website: http://www.wiley.com/go/linearcircuitsandsystems
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Definition: Wavelength The wavelength of a waveform with frequency f is

𝜆 ≜ c∕f , (8.2)

where c ≜ 299,792,458 m/s is the speed of light.

From this ratio, the units of wavelength are (m/s)/(cycles/s) = m/cycle, which means
the wavelength is the distance in meters of one period T of the waveform. The speed
of light is usually approximated by 300,000 km/s, which is the number used to derive
the wavelengths of the different bands of the electromagnetic spectrum in Table 8.1;
most of these are defined by the International Organization for Standardization (ISO,
2007). Of course, we are most familiar with the visible spectrum, but it is actually
a very small band of frequencies. The other well-known band is the radio frequency
band, which is exploited for various forms of communication. (Note that the audible
and microwave frequency bands in the table overlap the radio band.) Table 8.2 sum-
marizes the various nomenclature defined by the International Telecommunication
Union (ITU, 2000) for radio frequency subbands. The United States government has
allocated certain frequency bands for many different communications applications;
some examples are mentioned in the table. Although frequencies in the ultra low

TABLE 8.1 Electromagnetic Spectrum

Frequency Band Frequency Range f Wavelength 𝜆

Audible 20 Hz–20 kHz 15,000 km–15 km
Radio 300 Hz–300 GHz 1,000 km–1 mm
Microwave 300 MHz–300 GHz 1 m–1 mm
Infrared 300 GHz–395 THz 1 mm–760 nm
Visible 395 THz–789 THz 760 nm–380 nm
Ultraviolet 750 THz–30 PHz 400 nm–10 nm
X-rays 30 PHz–300 EHz 10 nm–1 pm
Gamma rays 300 EHz–30,000 EHz 1 pm–10 fm

TABLE 8.2 ITU Nomenclature for Radio Frequency Bands

Frequency Band Frequency Range f Example Usage

Ultra low frequency (ULF) 300–3,000 Hz Seismic activity
Very low frequency (VLF) 3–30 kHz Maritime mobile
Low frequency (LF) 30–300 kHz Aeronautical mobile
Medium frequency (MF) 300–3000 kHz AM radio
High frequency (HF) 3–30 MHz Amateur radio
Very high frequency (VHF) 30–300 MHz FM radio, VHF television
Ultra high frequency (UHF) 300–3000 MHz UHF television, cellular
Super high frequency (SHF) 3–30 GHz Satellite television
Extremely high frequency (EHF) 30–300 GHz Radio astronomy
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frequency (ULF) band have not been allocated for specific applications, they are often
associated with seismic activity.

Radio frequency applications are implemented by combining a low-frequency
message signal with a sinusoidal waveform called the carrier. It is the frequency of
the carrier that determines the specific transmission band as summarized in the tables.
The process of “combining” a message signal with a carrier is called modulation, as
in amplitude modulation (AM) and frequency modulation (FM). These methods are
easily examined in the frequency domain by using Fourier transform techniques. AM
is covered later in this chapter, while FM is beyond the scope of this book (it is a
nonlinear process).

8.2 FOURIER TRANSFORM

The Fourier transform is an integral transform with kernel exp(−j𝜔t).

Definition: Fourier Transform The Fourier transform of x(t) is

X(𝜔) ≜ ∫
∞

−∞
x(t) exp(−j𝜔t)dt, (8.3)

which can be written in terms of natural frequency f by substituting 𝜔 = 2𝜋f :

X( f ) = ∫
∞

−∞
x(t) exp(−j2𝜋ft)dt. (8.4)

The following notation is used:

{x(t)} = X(𝜔) or X( f ), x(t)

−−→X(𝜔) or X( f ). (8.5)

The Fourier transform of x(t) exists if the following Dirichlet conditions hold:

• Absolutely integrable:

∫
∞

−∞
|x(t)|dt < ∞. (8.6)

• Bounded discontinuities: A finite number of bounded discontinuities in any
finite-duration interval [a, b] ⊂ .

• Bounded variation: A finite number of minima and maxima in any
finite-duration interval [a, b] ⊂ .

Observe from (8.3) that

|X(𝜔)| =
|
|
|
|∫

∞

−∞
x(t) exp(−j𝜔t)dt

|
|
|
|

≤ ∫
∞

−∞
|x(t) exp(−j𝜔t)|dt = ∫

∞

−∞
|x(t)|dt, (8.7)
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where we have used the fact that the complex exponential has unit magnitude. Thus,
if (8.6) holds, then the Fourier transform is at least bounded. These three conditions
are sufficient but not necessary. For example, there are functions that are not abso-
lutely integrable but have Fourier transforms; these include the unit step function, the
signum function, the absolute value function, as well as periodic functions like sine
and cosine. Such waveforms have Fourier transforms provided X(𝜔) is allowed to
include singular functions: the Dirac delta function and its derivatives.

The Fourier transform always exists if the region of convergence (ROC) of the
Laplace transform of x(t) includes the imaginary axis. For these cases, X(𝜔) is
generated from X(s) by substituting s = j𝜔. In fact, many books use the notation
X( j𝜔 ) where j is explicitly shown in the argument because the Fourier transform is
often derived as X(j𝜔) = X(s)|s=j𝜔. However, for notational simplicity, we use X(𝜔)
throughout this chapter and in the appendices. Moreover, it is possible for X(𝜔) to be
real-valued, and so j may not actually appear in those transforms (although it does
for most functions summarized in Tables 8.3 and 8.4).

The inverse Fourier transform is

x(t) = 1
2𝜋 ∫

∞

−∞
X(𝜔) exp(j𝜔t)d𝜔, (8.8)

TABLE 8.3 Fourier Transform Pairs: Impulsive, Step,
and Ramp

Time Domain x(t) Fourier Transform X(𝜔)

1 2𝜋𝛿(𝜔)
𝛿(t) 1
∑∞

m=−∞ 𝛿(t − mT) (2𝜋∕T)
∑∞

m=−∞ 𝛿(𝜔 − 2𝜋m∕T)
𝛿(n)(t) ( j𝜔 )n

rect(t) sinc(𝜔∕2𝜋)
tri(t) sinc2(𝜔∕2𝜋)
u(t) 𝜋𝛿(𝜔) + 1∕j𝜔

u(−t) 𝜋𝛿(𝜔) − 1∕j𝜔

sgn(t) 2∕j𝜔

r(t) j𝜋𝛿′(𝜔) − 1∕𝜔2

r(−t) −j𝜋𝛿′(𝜔) − 1∕𝜔2

tnu(t) jn
𝜋𝛿

(n)(𝜔) + n!∕( j𝜔 )n+1

|t| −2∕𝜔2

1∕
√
|t|

√
2𝜋∕|𝜔|

1∕t −j𝜋sgn(𝜔)
1∕t2

𝜋|𝜔|

sinc(t) rect(𝜔∕2𝜋)
sinc2(t) tri(𝜔∕2𝜋)
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TABLE 8.4 Fourier Transform Pairs: Exponential and Sinusoidal (𝜶 > 0 and 𝝎o > 0)

Time Domain x(t) Fourier Transform X(𝜔)

exp(−𝛼t)u(t) 1∕(𝛼 + j𝜔)
[1 − exp(−𝛼t)]u(t) 𝜋𝛿(𝜔) + 𝛼∕( j𝜔𝛼 − 𝜔

2)
exp(𝛼t)u(−t) 1∕(𝛼 − j𝜔)
exp(−𝛼|t|) 2𝛼∕(𝜔2 + 𝛼

2)
exp(−|t|)sgn(t) −j2𝜔∕(𝛼2 + 𝜔

2)
exp(−𝛼t2)

√
𝜋∕𝛼 exp(𝜔2∕4𝛼)

tn exp(−𝛼t)u(t) n!∕(𝛼 + j𝜔)n+1

tn exp(𝛼t)u(−t) −n!∕(𝛼 + j𝜔)n+1

cos(𝜔ot)u(t) j𝜔∕(𝜔2
o − 𝜔

2) + (𝜋∕2)[𝛿(𝜔 + 𝜔o) + 𝛿(𝜔 − 𝜔o)]
cos(𝜔ot) 𝜋[𝛿(𝜔 + 𝜔o) + 𝛿(𝜔 − 𝜔o)]
cos2(𝜔ot) 𝜋

2[𝛿(𝜔 + 𝜔o) + 𝛿(𝜔 − 𝜔o) + 2𝛿(𝜔)]
exp(−𝛼t) cos(𝜔ot)u(t) (𝛼 + j𝜔)∕[(𝛼 + j𝜔)2 + 𝜔

2
o]

t cos(𝜔ot)u(t) (j𝜋∕2)[𝛿′(𝜔 − 𝜔o) + 𝛿
′(𝜔 + 𝜔o)] − (𝜔2 + 𝜔

2
o)∕(𝜔2

o − 𝜔
2)2

t exp(−𝛼t) cos(𝜔ot)u(t) [(𝛼 + j𝜔)2 − 𝜔
2
o]∕[(𝛼 + j𝜔)2 + 𝜔

2
o]2

sin(𝜔ot)u(t) 𝜔o∕(𝜔2
o − 𝜔

2) + (j𝜋∕2)[𝛿(𝜔 + 𝜔o) − 𝛿(𝜔 − 𝜔o)]
sin(𝜔ot) j𝜋[𝛿(𝜔 + 𝜔o) − 𝛿(𝜔 − 𝜔o)]
sin2(𝜔ot) 𝜋

2[𝛿(𝜔 + 𝜔o) − 𝛿(𝜔 − 𝜔o) + 2𝛿(𝜔)]
exp(−𝛼t) sin(𝜔ot)u(t) 𝜔o∕[(𝛼 + j𝜔)2 + 𝜔

2
o]

t sin(𝜔ot)u(t) (𝜋∕2)[𝛿′(𝜔 − 𝜔o) − 𝛿
′(𝜔 + 𝜔o)] + j2𝜔o𝜔∕(𝜔2

o − 𝜔
2)2

t exp(−𝛼t) sin(𝜔ot)u(t) 2𝜔o(𝛼 + j𝜔)∕[(𝛼 + j𝜔)2 + 𝜔
2
o]2

and in terms of f :

x(t) = ∫
∞

−∞
X(f ) exp(j2𝜋ft)df . (8.9)

The Fourier transform pairs in (8.4) and (8.9) are symmetric, whereas the Fourier
transform pairs in (8.3) and (8.8) require the leading constant 1∕2𝜋. Proof of the
inverse transform in (8.8) is shown by substituting X(𝜔) and rearranging the two
integrals:

1
2𝜋 ∫

∞

−∞
X(𝜔) exp(j𝜔t)d𝜔 = 1

2𝜋 ∫
∞

−∞ ∫
∞

−∞
x(𝜏) exp(−j𝜔𝜏) exp(j𝜔t)d𝜔d𝜏

= 1
2𝜋 ∫

∞

−∞
x(𝜏)∫

∞

−∞
exp(j(t − 𝜏)𝜔)d𝜔d𝜏, (8.10)

where a different variable of integration 𝜏 has been used for the Fourier transform
X(𝜔). The inner integral is the inverse Fourier transform of a constant, which is a
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shifted Dirac delta function 2𝜋𝛿(t − 𝜏) (shown later). Thus, from the sifting property
of 𝛿(t), we complete the proof:

1
2𝜋 ∫

∞

−∞
X(𝜔) exp(j𝜔t)d𝜔 = ∫

∞

−∞
x(𝜏)𝛿(t − 𝜏)d𝜏 = x(t). (8.11)

Recall that the inverse Laplace transform is an integral over the complex variable s,
and it is preferable to use a partial fraction expansion (PFE). The inverse Fourier
transform is just as easy to compute as the Fourier transform; the only difference is
the positive argument of exp(j𝜔t) and the multiplicative factor 1∕2𝜋 in (8.8).

Example 8.1 From Table 7.2, the Laplace transform of x(t) = exp(−𝛼t)u(t) for
𝛼 > 0 is

X(s) = 1
s + 𝛼

. (8.12)

Since the ROC Re(s) > −𝛼 includes the j𝜔 axis, we can immediately write

X(𝜔) = 1
j𝜔 + 𝛼

=
𝛼 − j𝜔

𝛼
2 + 𝜔

2
. (8.13)

This result is verified from the definition of the Fourier transform:

X(𝜔) = ∫
∞

0
exp(−𝛼t − j𝜔t)dt

= 1
𝛼 + j𝜔

exp(−𝛼t − j𝜔)
|
|
|
|

∞

0
. (8.14)

Evaluating this expression at the upper limit gives 0 because 𝛼 is positive, and we
obtain the result in (8.13). Observe that x(t) is absolutely integrable:

∫
∞

−∞
| exp(−𝛼t)u(t)|dt = ∫

∞

0
exp(−𝛼t)dt

= − 1
𝛼

exp(−𝛼t)
|
|
|
|

∞

0
= 1∕𝛼 < ∞. (8.15)

The magnitude of X(s) is derived by substituting s = 𝜎 + j𝜔 and separating the real
and imaginary parts as follows:

|X(s)| = 1
|𝜎 + j𝜔 + 𝛼|

= 1
√
(𝜎 + 𝛼)2 + 𝜔

2
. (8.16)

This expression with 𝛼 = 1 is plotted in Figure A.13(d), which we repeat here in
Figure 8.1(a). (The logarithm is used in the plot to show a greater dynamic range
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Figure 8.1 Laplace and Fourier transforms of the right-sided exponential function with
𝛼 = 1. (a) Truncated 20 log(|X(s)|) with ROC (lower horizontal grid). (b) 20 log(|X(𝜔)|), cor-
responding to 20 log(|X(s)|) viewed along the 𝜎 = 0 axis.

for ease of viewing.) The magnitude of the Fourier transform corresponds to |X(s)|
evaluated at s = j𝜔, which means 𝜎 = 0 in (8.16):

|H(𝜔)| = 1
√
𝛼

2 + 𝜔
2

. (8.17)

This result is shown in Figure 8.1(b), and is valid because the imaginary axis is
located within the ROC. The Laplace transform provides useful information about
the time-domain function from the locations of its poles and zeros (see Figure 7.9).
Since (8.12) has a pole on the real axis, we know that x(t) is an exponential
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function. The time constant of x(t) decreases if the pole is moved further to the left of
the imaginary axis, which means the exponential function decays to 0 more rapidly.

The Fourier transform X(𝜔) provides information about the frequency content of
x(t). If h(t) is the impulse response function of a system, then H(𝜔) is its frequency
response. For this example, we see that X(𝜔) in Figure 8.1(b) has the characteristic
of a low-pass signal because frequencies about DC are emphasized. Of course, this
is due to the pole located on the real axis at 𝜎 = −1, which causes the shape of |H(s)|
in Figure 8.1(a).

Example 8.2 Suppose instead that 𝛼 < 0 in the previous example such that x(t) is
not absolutely integrable and X(𝜔) does not exist. From Chapter 7, we know that the
Laplace transform exists: it is also given by (8.12) but with ROC Re(s) = 𝜎 > −𝛼,
which does not include the imaginary axis for −𝛼 > 0. If s = j𝜔 is substituted into
(8.12), then the same expression in (8.13) is obtained. However, this is incorrect
because (8.12) holds only for Re(s) > −𝛼 > 0. Since Re(s) = 0 for the Fourier trans-
form, we cannot use the result in (8.13) for this function; the Fourier transform does
not exist for x(t) = exp(−𝛼t)u(t) when 𝛼 < 0 because the function grows unbounded
exponentially.

Example 8.3 The Fourier transform of the Dirac delta function x(t) = 𝛿(t) is a con-
stant for all frequencies:

X(f ) = ∫
∞

−∞
𝛿(t) exp(−j2𝜋ft)dt = 1, f ∈ , (8.18)

where the sifting property of 𝛿(t) has been used (see Chapter 5). All frequencies
appear equally for the Fourier transform of 𝛿(t), which is the only “function” whose
spectrum is flat over f ∈ . From the duality property discussed later, we conclude
that the Fourier transform of a constant x(t) = 1 is the Dirac delta function:

X(f ) = ∫
∞

−∞
exp(−j2𝜋ft)dt = 𝛿(f ), (8.19)

which is derived in Example 8.5 starting with the rectangle function. The Fourier
transform written in angular frequency is the same:

X(𝜔) = ∫
∞

−∞
𝛿(t) exp(j𝜔t)dt = 1, 𝜔 ∈ , (8.20)

but the inverse transform is slightly different:

1
2𝜋 ∫

∞

−∞
(1) exp(j𝜔t)d𝜔 = 𝛿(t) =⇒ ∫

∞

−∞
(1) exp(j𝜔t)d𝜔 = 2𝜋𝛿(t), (8.21)

which has the factor 2𝜋. Thus, the Fourier transform in angular frequency of a con-
stant is

{1} = ∫
∞

−∞
(1) exp(−j𝜔t)dt = 2𝜋𝛿(𝜔). (8.22)
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The Fourier transform can also be viewed as a decomposition of a waveform into
its frequency components, as is the case for the Fourier series of a periodic function.
The difference here is that 𝜔 ∈  is a continuous variable, whereas only the funda-
mental frequency 𝜔o and its harmonics n𝜔o for n ∈  appear in the Fourier series
expansion.

Definition: Spectrum The spectrum of signal x(t) is its Fourier transform X(𝜔).
It is a frequency-domain representation of the time-domain signal that indicates the
relative strength of its frequency components for the continuous variable 𝜔 ∈ .

The electromagnetic spectrum in Table 8.1 summarizes various frequency bands.
The band in which a signal is located determines its wavelength and energy. Addi-
tional properties of a signal depend on the actual shape of the spectrum; for example,
it might have a “notch” (low magnitude/high attenuation) for a narrow band of fre-
quencies.

Example 8.4 The Fourier transform of the rectangle function x(t) = rect(t) is

X(f ) = ∫
1∕2

−1∕2
exp(−j2𝜋ft)dt

= 1
j2𝜋f

[
exp(j𝜋f ) − exp(−j𝜋f )

]

=
sin(𝜋f )
𝜋f

≜ sinc(f ), (8.23)

where 𝜋 is suppressed in the definition of the sinc function. The Fourier transform in
angular frequency is

X(𝜔) = 1
j𝜔

[exp(j𝜔∕2) − exp(−j𝜔∕2)]

= (2∕𝜔) sin(𝜔∕2) = (2𝜋∕𝜔)sinc(𝜔∕2𝜋). (8.24)

Observe from Euler’s formula that the integral in (8.23) can be written as

X(f ) = ∫
1∕2

−1∕2
cos(2𝜋ft)dt − j∫

1∕2

−1∕2
sin(2𝜋ft)dt = ∫

1∕2

−1∕2
cos(2𝜋ft)dt. (8.25)

The second integral is 0 because the rectangle function is even, sine is an odd func-
tion, and their product is an odd function that integrates to 0 for these symmetric
limits of integration. For an even function, the Fourier transform reduces to the cosine
transform. Figure 8.2(a) shows a plot of the rectangle function and its product with
cos(2𝜋ft) for f = 2 Hz and 6 Hz. Since the argument of the cosine function is an inte-
ger multiple of 𝜋, the integrals (areas) of these products are 0. This is evident from
the figure where we see exactly two periods of the cosine function for f = 2 Hz and
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Figure 8.2 Product of rectangle function and two cosine functions. (a) f is an integer multiple
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Vertical dotted lines denote frequencies f = 7∕4 = 1.75 Hz and 23∕4 = 5.75 Hz, giving sinc(f )
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where f = 2 Hz and f = 6 Hz.
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exactly 6 periods for f = 6 Hz. These integrals correspond to zero-crossings of the
sinc function in Figure 8.2(c) (denoted by the vertical dashed lines). The frequen-
cies of the cosine functions in Figure 8.2(b) are noninteger multiples of 2𝜋, so that
the sinc function is nonzero at f = 7∕4 Hz and f = 23∕4 Hz (denoted by the vertical
dotted lines in Figure 8.2(c)). The corresponding values of sinc(f ) are −0.0909 and
−0.0277, respectively.

The curves in Figure 8.2(b) and (c) also illustrate the cross-correlation property of
the Fourier transform. The lower frequency cos(5𝜋t∕2)rect(t) resembles the rectangle
function more than cos(21𝜋t∕2)rect(t), which explains why the magnitude of the sinc
function decreases with increasing frequency.

Example 8.5 Next, we examine the Fourier transform of a function that is not
absolutely integrable. For the constant function x(t) = c for t ∈ , we start with the
rectangle function and extend it at both ends by scaling its argument:

c = lim
𝛼→∞

c rect(x∕𝛼). (8.26)

From the previous example and the time-scaling property of the Fourier transform
given later:

{rect(x∕𝛼)} = sinc(𝛼f ), (8.27)

which yields
{c} = lim

𝛼→∞
c sinc(𝛼f ) = c𝛿(f ). (8.28)

This result is to be expected because the Fourier transform of the Dirac delta function
is a constant. This Fourier transform does not exist in the usual sense of the definition,
but instead exists in the limit.

Example 8.6 Consider the signum function

sgn(t) =
⎧
⎪
⎨
⎪
⎩

−1, t < 0
0, t = 0
1, t > 0.

(8.29)

It is not straightforward to derive its Fourier transform from the definition:

∫
∞

−∞
sgn(t) exp(−j2𝜋ft)dt = ∫

0

−∞
(−1) exp(−j2𝜋ft)dt + ∫

∞

0
(1) exp(−j2𝜋ft)dt,

(8.30)
from which we find that neither integral is finite. Instead, we compute the Fourier
transform in the limit by first writing the signum function as the limit of two expo-
nential functions:

sgn(t) = lim
a→0

[exp(−at)u(t) − exp(at)u(−t)] = u(t) − u(−t). (8.31)



�

� �

�

434 FOURIER TRANSFORMS AND FREQUENCY RESPONSES

The Fourier transform of the function in brackets is

∫
∞

−∞
[exp(−at)u(t) − exp(at)u(−t)] exp(−j2𝜋ft)dt = ∫

∞

0
exp(−at) exp(−j2𝜋ft)dt

−∫
0

−∞
exp(at) exp(−j2𝜋ft)dt.

(8.32)

The first integral on the right-hand side was computed in Example 8.1 with a = 𝛼,
and by a change of variables in the second integral, we obtain a similar result:

∫
∞

−∞
[exp(−at)u(t) − exp(at)u(−t)] exp(−j2𝜋ft)dt = 1

j2𝜋f + a
− 1

−j2𝜋f + a

=
−j4𝜋f

4𝜋2f 2 + a2
. (8.33)

Taking the limit as a → 0 gives the Fourier transform of the signum function:

∫
∞

−∞
sgn(t) exp(−j2𝜋ft)dt = 2

j2𝜋f
= 1

j𝜋f
, (8.34)

which is strictly imaginary.

Example 8.7 The Fourier transform of the unit step function is derived by writing
it in terms of the signum function and a constant:

u(t) = (1∕2)[sgn(t) + 1]. (8.35)

Thus

∫
∞

−∞
u(t) exp(−j2𝜋ft)dt = (1∕2)

[
1

j𝜋f
+ 𝛿(f )

]

= 1
j2𝜋f

+ (1∕2)𝛿(f ), (8.36)

and in terms of angular frequency:

∫
∞

−∞
u(t) exp(−j𝜔t)dt = 1

j𝜔
+ 𝜋𝛿(𝜔). (8.37)

Recall from Chapter 7 that the Laplace transform of the unit step function is

{u(t)} = 1
s

, (8.38)

which has ROC Re(s) > 0. Thus, the Fourier transform for this case is not derived by
substituting s = j𝜔, and this is because the ROC does not include the imaginary axis.
Instead, we must derive the Fourier transform in the limit, which was achieved by
starting with the signum function and a constant, or by using the generalized function
methods described later. The spectrum of the unit step function has a DC component
because of the Dirac delta function at the origin.
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8.3 MAGNITUDE AND PHASE

For fixed 𝜔, the Fourier transform is a point on the imaginary axis of the complex
plane. Since the spectrum X(𝜔) is generally complex-valued, it can be written as the
product of two functions of 𝜔 as follows:

X(𝜔) = |X(𝜔)| exp(j𝜃(𝜔)), (8.39)

where X(𝜔) is its magnitude and 𝜃(𝜔) is its phase. There are two methods for deriving
these functions as illustrated in the next example.

Example 8.8 In the first method, X(𝜔) is written in rectangular complex form c =
a + jb. The only difference compared with simple complex numbers is that {a, b, c}
here are functions of 𝜔. For the Fourier transform in Example 8.1:

X(𝜔) = 1
𝛼 + j𝜔

= 𝛼

𝛼
2 + 𝜔

2
+ j

−𝜔
𝛼

2 + 𝜔
2

. (8.40)

Since |c| =
√

a2 + b2 from Chapter 4, we have in this case

|X(𝜔)| =
[

𝛼
2

(𝛼2 + 𝜔
2)2

+ 𝜔
2

(𝛼2 + 𝜔
2)2

]1∕2

= 1
√
𝛼

2 + 𝜔
2

. (8.41)

The phase component is tan−1(b∕a), which for X(𝜔) is

𝜃(𝜔) = tan−1(−𝜔∕𝛼) = −tan−1(𝜔∕𝛼). (8.42)

Combining these results gives an expression that is equivalent to (8.40):

X(𝜔) = 1
√
𝛼

2 + 𝜔
2

exp(−tan−1(𝜔∕𝛼)). (8.43)

This form is useful because now it is possible to plot the two terms separately versus
𝜔: they are real-valued functions as depicted in Figure 8.3 for two values of 𝛼. If the
𝜔-axis is extended, it is clear from (8.41) and (8.42) that |X(𝜔)| → 0 and 𝜃(𝜔) → 90∘.
In the second method, the magnitude and phase for the numerator and denominator
are found separately and then combined:

X(𝜔) = 1
𝛼 + j𝜔

= 1
√
𝛼

2 + 𝜔
2 exp(tan−1(𝜔∕𝛼))

. (8.44)

The overall magnitude is derived by dividing the numerator and denominator mag-
nitudes. Subtracting the numerator and denominator phases gives the overall phase,
and so again we have the result in (8.43).
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Figure 8.3 Magnitude and phase of first-order X(𝜔) in Example 8.8. (a) Magnitude.
(b) Phase.
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The magnitude gives the strength of X(𝜔) for a particular frequency 𝜔, and the
phase determines the delay (time shift) of x(t) in the time domain. The magnitude
and phase are also important when H(𝜔) is derived from the transfer function H(s) of
a system, in which case they describe the frequency response of a filter operating on
the input signal.

The magnitude and phase have the following two basic properties for real-
valued x(t).

• Even magnitude |X(𝜔)|:
|X(𝜔)| = |X(−𝜔)|. (8.45)

Proof: Since x(t) is real:

X(−𝜔) = ∫
∞

−∞
x(t) exp(j𝜔t)dt = X∗(𝜔). (8.46)

Taking the absolute value of both sides completes the proof: |X(−𝜔)| =
|X∗(𝜔)| = |X(𝜔)|.

• Odd phase 𝜃(𝜔):
𝜃(𝜔) = −𝜃(𝜔). (8.47)

Proof: This also follows from (8.46):

arg(X(−𝜔)) = arg(X∗(𝜔)) = − arg(X(𝜔)). (8.48)

The last step is due to the definition of the phase: 𝜃(𝜔) = tan−1(Im(X(𝜔))∕
Re(X(𝜔)). Conjugating X(𝜔) changes the sign of the imaginary part, and we
use the fact that arctangent is an odd function.

8.4 FOURIER TRANSFORMS AND GENERALIZED FUNCTIONS

The function x(t) is a mapping of each t ∈  to the number represented by x(t), which
we can write as the ordered pair {t, x(t)}. The functional X(𝜙) is a mapping of the
function 𝜙(t) to the number X(𝜙) via the integral

X(𝜙) = ∫
∞

−∞
x(t)𝜙(t)dt, (8.49)

which we write as X(𝜙) = ⟨x, 𝜙⟩ for notational convenience. A distribution is a func-
tional as defined earlier with the additional properties discussed in Chapter 5. Recall
that the set  of test functions {𝜙(t)} have compact support, and the dual space of dis-
tributions defined on  is denoted by ′. Since exp(−j𝜔t) of the Fourier integral does
not have compact support, the Fourier transform of the distribution x(t) is not defined.
This situation requires that we expand  to a new set of test functions  , called test
functions of rapid decay, which are also known as Schwartz functions (Kanwal, 2004).
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Consider Parseval’s theorem for two functions, which is discussed later in this
chapter:

∫
∞

−∞
x(t)𝜙∗(t)dt = ∫

∞

−∞
X(f )Φ∗(f )df , (8.50)

and note that the integrand on the left-hand side can be written as

x(t)𝜙∗(t) = −1{X(f )}𝜙∗(t), (8.51)

where the inverse Fourier transform has been substituted for x(t). Similarly for the
integrand on the right-hand side of (8.50)

X(f )Φ∗(f ) = X(f )[{𝜙(t)}]∗ = X(f )−1{𝜙(t)}, (8.52)

where we have assumed that x(t) and 𝜙(t) are real-valued. The last expression is
derived as follows:

[{𝜙(t)}]∗ = ∫
∞

−∞
𝜙(t)[exp(−j2𝜋f )]∗dt = ∫

∞

−∞
𝜙(t) exp(j2𝜋f )]dt, (8.53)

which is the inverse Fourier transform −1{𝜙(t)}, with the variables t and f inter-
changed. Combining (8.51) and (8.52) according to (8.50) yields

∫
∞

−∞
−1{X(f )}𝜙(t)dt = ∫

∞

−∞
X(f )−1{𝜙(t)}df , (8.54)

which we can write using distribution notation:

⟨−1{X(f )}, 𝜙(t)⟩ = ⟨X(f ),−1{𝜙(t)}⟩. (8.55)

As we have seen previously with the derivative property for distributions, the oper-
ation on the distribution is “transferred” to the test function, which is smooth and
well-defined. Instead of the derivative, in this case it is the inverse Fourier transform.
This result illustrates why test functions with compact support cannot be used with
Fourier transforms because even if 𝜙(t) has compact support, this is generally not
the case for its inverse transform −1{𝜙(t)} on the right-hand side of (8.55). Thus,
the test functions of  with compact support must be extended to include rapidly
decreasing test functions, and this leads to the set of Schwartz functions.

Definition: Rapidly Decreasing Test Function A rapidly decreasing test function
𝜙(t) has the following two properties: (i) 𝜙(t) is smooth and (ii) all derivatives of 𝜙(t)
decrease to 0 more rapidly than the inverse of a polynomial:

|
|
|
|
tp dn

dtn
𝜙(t)

|
|
|
|
< cn,p, as |t| → ∞, (8.56)
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Figure 8.4 Example Schwartz functions and a bounding inverse polynomial 1∕t2.

where cn,p ∈ + is a coefficient that may vary with {n, p, 𝜙} such that the inequality
holds for every n ∈ + and p ∈ +.

A test function 𝜙(t) of  is also in  because it is 0 outside its compact support.
Example Schwartz functions that are not elements of  include 𝜙1(t) = exp(−𝛼|t|),
𝜙2(t) = exp(−𝛼t2), and 𝜙3(t) = tq exp(−𝛼t2) for 𝛼 > 0 and q ∈ +. These functions
are plotted in Figure 8.4 for 𝛼 = 1 and q = 1, all of which are bounded by 1∕t2 so
that (8.56) is satisfied for n = 0 (the nondifferentiated 𝜙(t)) with cn,p = c0,2 = 1. It is
clear that an upper bound can be found for these functions for any n by an appropriate
choice for cn,p.

Next, we define distributions based on the Schwartz test functions.

Definition: Tempered Distribution A tempered distribution ⟨x, 𝜙⟩ is a linear func-
tional on the set  written as

⟨x, 𝜙⟩ ≜ ∫
∞

−∞
x(t)𝜙(t)dt, 𝜙(t) ∈  . (8.57)

This definition is essentially the same as that for classical distributions, except that
 has replaced . Likewise, the dual space ′ of all distributions is replaced by  ′,
which is the set of all tempered distributions. Since the test functions of  are not as
“strict” as those in  (which have compact support), the number of functions x(t) for
which (8.57) holds is less than the number when using . As a result,  ′

⊂ ′: every
tempered distribution in  ′ must also be in ′. By expanding the set of test functions
to  , the Fourier integral is well defined for tempered distributions in  ′.
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Example 8.9 The distribution for u(t) is in ′ and  ′ because the following is
defined for both classes of test functions:

⟨u, 𝜙⟩ = ∫
∞

−∞
u(t)𝜙(t)dt = ∫

∞

0
𝜙(t)dt. (8.58)

This is obvious when 𝜙(t) has compact support (for ), and it is also the case when
𝜙(t) ∈  because of the upper bound in (8.56). Observe, however, that a function
like exp(t2) is a distribution in ′ because it is locally integrable and the {𝜙(t)} have
compact support, whereas it is not a distribution in ′ because it grows too fast relative
to the rapidly decreasing test functions in  . It does not have a Fourier transform.

A tempered distribution is also called a distribution of slow growth.

Definition: Function of Slow Growth For a function of slow growth, there exist
c, 𝛼 ∈ + and p ∈ + for n ∈ + such that

|
|
|
|

dn

dtn
x(t)

|
|
|
|
≤ c|t|p, as |t| > 𝛼. (8.59)

Observe that (8.59) is essentially the “dual” of (8.56), and so all functions of slow
growth have tempered distributions (though slow growth is not a requirement).

The reason that tempered distributions are important in this chapter is that all ele-
ments of  ′ have a Fourier transform, which is not the case for every distribution in
′. The Fourier transform X(𝜔) of tempered distribution x(t) is

⟨{x}, 𝜙⟩ = ⟨x,{𝜙}⟩, (8.60)

The left-hand side of this expression is

⟨{x}, 𝜙⟩ = ∫
∞

−∞
X(𝜔)𝜙(𝜔)d𝜔 = ∫

∞

−∞ ∫
∞

−∞
x(t) exp(−j𝜔t)𝜙(𝜔)dtd𝜔, (8.61)

where 𝜔 is the usual independent variable of X(𝜔). If x(t) is a regular function, then
the inner integral on the right-hand side of (8.61) is the standard Fourier transform;
otherwise, for singular functions such as the Dirac delta function, it is symbolic. Inter-
changing the integrals yields the right-hand side of (8.60):

⟨{x}, 𝜙⟩ = ∫
∞

−∞
x(t)∫

∞

−∞
𝜙(𝜔) exp(−j𝜔t)d𝜔dt

= ∫
∞

−∞
x(t)Φ(t)dt = ⟨x,Φ⟩ = ⟨x,{𝜙}⟩, (8.62)

where

Φ(t) = ∫
∞

−∞
𝜙(𝜔) exp(−j𝜔t)d𝜔. (8.63)
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The notation in the last expression may be somewhat confusing because t and 𝜔 are
interchanged from the usual definition of the Fourier transform, which occurs because
the integrals are interchanged in (8.62). (We saw the same type of interchange earlier
when discussing Parseval’s theorem.) However, Φ(t) is still the Fourier transform of
a test function with argument 𝜔 replaced by t. The next example illustrates how to
interpret (8.60) where the Fourier transform integral operates on 𝜙 of the right-hand
side of (8.61).

Example 8.10 Consider the singular distribution 𝛿(t − to). From (8.60), we have

⟨{𝛿(t − to)}, 𝜙⟩ = ⟨𝛿(t − to),Φ⟩ = ∫
∞

−∞
𝛿(t − to)∫

∞

−∞
𝜙(𝜔) exp(−j𝜔t)d𝜔dt

= ∫
∞

−∞
𝜙(𝜔) exp(−j𝜔to)d𝜔 = ⟨exp(−j𝜔to), 𝜙⟩, (8.64)

where we have used the sifting property of the Dirac delta function to give to in the
exponent of the exponential. The Fourier transform of the Dirac delta function has
been “transferred” to the Fourier transform of the test function. Thus, from the first
entry in each of the angle brackets of the first and second lines, we have {𝛿(t −
to)} = exp(−j𝜔to), and in particular for to = 0, the Fourier transform of 𝛿(t) is 1.

The Fourier transform of the derivative of a tempered distribution is easily found
using (8.60):

⟨{x′}, 𝜙⟩ = ⟨x′,Φ⟩ = −⟨x,Φ′⟩, (8.65)

where the derivative property of distributions has been used for the last result.

Example 8.11 The Fourier transform of the unit doublet 𝛿′(t) is derived as follows:

⟨{𝛿′}, 𝜙⟩ = ⟨𝛿′,Φ⟩ = −⟨𝛿,Φ′⟩. (8.66)

Since 𝜙(t) is a smooth function, the derivative property of the Fourier transform
(shown later) yields

Φ′(t) = −j𝜔{𝜙}. (8.67)

Combining (8.66) and (8.67) gives

⟨{𝛿′}, 𝜙⟩ = −⟨𝛿,−j𝜔{𝜙(𝜔)}⟩

= ⟨{𝛿}, j𝜔𝜙⟩ = ⟨j𝜔{𝛿}, 𝜙⟩. (8.68)

From the first element of the first and last set of angle brackets, we have {𝛿′} =
j𝜔{𝛿} = j𝜔 because {𝛿} = 1.
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8.5 FOURIER TRANSFORM PROPERTIES

Several Fourier transform properties in terms of angular frequency𝜔 and ordinary fre-
quency f are summarized in Tables 8.5 and 8.6, respectively. Two tables are included
because there are subtle differences for some properties; for example, those involv-
ing integrals of Fourier transforms have the multiplicative factor 1∕2𝜋 when using
𝜔, but not when using f . Also, the term 𝜋X(0)𝛿(𝜔) for the integral property becomes
(1∕2)X(0)𝛿(f ) because of the scaling property of the Dirac delta function, 𝛿(𝛼𝜔) =
𝛿(𝜔)∕|𝛼|, such that

𝛿(𝜔) = 𝛿(2𝜋f ) = 𝛿(f )∕2𝜋. (8.69)

Most of the properties of the Laplace transform carry over to the Fourier transform;
differences for some cases are mentioned.

• Time scaling: The Fourier transform of a time-scaled waveform is

{x(𝛼t)} = 1
|𝛼|

X(𝜔∕𝛼). (8.70)

TABLE 8.5 Properties of the Fourier Transform X(𝝎)

Property Function Fourier Transform

Linearity c1x1(t) + c2x2(t) c1X1(𝜔) + c2X2(𝜔)
Time shift x(t − to) exp(−j𝜔to)X(𝜔)
Time scaling x(𝛼t) (1∕|𝛼|)X(𝜔∕𝛼)
Frequency shift exp(j𝜔ot)x(t) X(𝜔 − 𝜔o)
Derivatives dnx(t)∕dtn (j𝜔)nX(𝜔) (n ∈  )

Integral ∫ t

−∞ x(𝜏)d𝜏 (1∕j𝜔)X(𝜔) + 𝜋X(0)𝛿(𝜔)
Convolution x(t) ∗ h(t) X(𝜔)H(𝜔)
Cross-correlation x(t) ⋆ h(t) X(𝜔)H(−𝜔)
Autocorrelation x(t) ⋆ x(t) |X(𝜔)|2

Product x(t)h(t) (1∕2𝜋) ∫ ∞
−∞ X(𝑣)H(𝜔 − 𝑣)dv

Cosine modulation x(t) cos(𝜔ot) (1∕2)[X(𝜔 − 𝜔o) + X(𝜔 + 𝜔o)]
Sine modulation x(t) sin(𝜔ot) (1∕2j)[X(𝜔 − 𝜔o) − X(𝜔 + 𝜔o)]
Time product tnx(t) jndnX(𝜔)∕d𝜔n

Time area ∫ ∞
−∞ x(t)dt X(0)

Frequency area x(0) (1∕2𝜋) ∫ ∞
−∞ X(𝜔)d𝜔

Duality X(t) 2𝜋x(−𝜔)
Energy ∫ ∞

−∞ x2(t)dt (1∕2𝜋) ∫ ∞
−∞ |X(𝜔)|2d𝜔

Even/odd components x(t) = xE(t) + xO(t) X(𝜔) = XE(𝜔) − jXO(𝜔)
Even function Real and even x(t) Real and even X(𝜔)
Odd function Real and odd x(t) Imaginary and odd X(𝜔)



�

� �

�

FOURIER TRANSFORM PROPERTIES 443

TABLE 8.6 Properties of the Fourier Transform X(f )

Property Function Fourier Transform

Linearity c1x1(t) + c2x2(t) c1X1(f ) + c2X2(f )
Time shift x(t − to) exp(−j2𝜋f to)X(f )
Time scaling x(𝛼t) (1∕|𝛼|)X(f∕𝛼)
Frequency shift exp(j2𝜋fot)x(t) X(f − fo)
Derivatives dnx(t)∕dtn (j2𝜋f )nX(f ) (n ∈  )

Integral ∫ t

−∞ x(𝜏)d𝜏 (1∕j2𝜋f )X(f ) + (1∕2)X(0)𝛿(f )
Convolution x(t) ∗ h(t) X(f )H(f )
Cross-correlation x(t) ⋆ h(t) X(f )H(−f )
Autocorrelation x(t) ⋆ x(t) |X(f )|2

Product x(t)h(t) ∫ ∞
−∞ X(𝑣)H(f − 𝑣)dv

Cosine modulation x(t) cos(fot) 𝜋[X(f − fo) + X(f + fo)]
Sine modulation x(t) sin(fot) (𝜋∕j)[X(f − fo) − X(f + fo)]
Time product tnx(t) jndnX(f )∕df n

Time area ∫ ∞
−∞ x(t)dt X(0)

Frequency area x(0) ∫ ∞
−∞ X(f )df

Duality X(t) x(−f )
Energy ∫ ∞

−∞ x2(t)dt ∫ ∞
−∞ |X(f )|2df

Even/odd components x(t) = xE(t) + xO(t) X(f ) = XE(f ) − jXO(f )
Even function Real and even x(t) Real and even X(f )
Odd function Real and odd x(t) Imaginary and odd X(f )

Unlike the unilateral Laplace transform, 𝛼 can be negative because the Fourier
transform is a two-sided integral, which causes a time reversal in addition to
time scaling. Proof: Changing variables to 𝜏 ≜ 𝛼t ⇒ t = 𝜏∕𝛼 for 𝛼 > 0 yields

∫
∞

−∞
x(𝛼t) exp(−j𝜔t)dt = 1

𝛼 ∫
∞

−∞
x(𝜏) exp(−j(𝜔∕𝛼)𝜏)d𝜏, (8.71)

and for 𝛼 < 0, the integration limits must be interchanged:

∫
∞

−∞
x(𝛼t) exp(−j𝜔t)dt = 1

𝛼 ∫
−∞

∞
x(𝜏) exp(−j(𝜔∕𝛼)𝜏)d𝜏

= − 1
𝛼 ∫

∞

−∞
x(𝜏) exp(−j(𝜔∕𝛼)𝜏)d𝜏, (8.72)

Equations (8.71) and (8.72) together give (8.70).

• Time shift: A time-shifted waveform has the following Fourier transform:

{x(t − to)} = exp(−j𝜔to)X(𝜔), (8.73)
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where to ∈ . For to > 0, the waveform is shifted to the right, and for to < 0,
it is shifted to the left. Recall that only to > 0 was allowed for the unilateral
Laplace transform, meaning the function could only be delayed. Proof: From
the transformation of variables 𝜏 = t − to:

{x(t − to)} = ∫
∞

−∞
x(t − to) exp(−j𝜔t)dt

= ∫
∞

−∞
x(𝜏) exp(−j𝜔(𝜏 + to))dt. (8.74)

Factoring exp(−j𝜔to) completes the proof.
• Frequency shift: This property is the dual of a time shift:

{exp(j𝜔ot)x(t)} = X(𝜔 − 𝜔o). (8.75)

Proof: Similar to the expression in (8.74):

∫
∞

−∞
x(t) exp(j𝜔ot) exp(−j𝜔t)dt = ∫

∞

−∞
x(t) exp(−j(𝜔 − 𝜔o)t)dt. (8.76)

We recognize that the last result is the Fourier transform of x(t) with 𝜔 replaced
by 𝜔 − 𝜔o.

• Duality: The duality property is straightforward for the Fourier transform
expressed in natural frequency f :

{x(t)} = X(f ) =⇒ {X(t)} = x(−f ). (8.77)

For the Fourier transform based on angular frequency 𝜔, the duality property is

{x(t)} = X(𝜔) =⇒ {X(t)} = 2𝜋x(−𝜔), (8.78)

which includes the factor 2𝜋. Proof: Starting with the inverse Fourier transform

x(t) = ∫
∞

−∞
X(f ) exp(j2𝜋ft)df , (8.79)

we let t → −t:

x(−t) = ∫
∞

−∞
X(p) exp(−j2𝜋pt)dp, (8.80)

where the variable of integration has been replaced with p. Replacing t with f
on both the sides completes the proof:

x(−f ) = ∫
∞

−∞
X(p) exp(−j2𝜋pf )dp = {X(p)}. (8.81)

The proof for the Fourier transform with angular frequency is considered in
Problem 8.13.
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• Area: The area of a function is derived from X(𝜔) as follows:

∫
∞

−∞
x(t)dt = X(0). (8.82)

The DC component X(0) indicates whether or not the function has zero area.
Proof: This property follows directly from the definition of the Fourier trans-
form:

X(f )|f=0 = ∫
∞

−∞
x(t) exp(−j2𝜋f )dt

|
|
|
|f=0

= ∫
∞

−∞
x(t)dt. (8.83)

• Derivatives: The Fourier transform of the nth derivative of a function is related
to that of the original function:

 { dn

dtn
x(t)

}
= (j𝜔)nX(𝜔). (8.84)

Proof: The inverse Fourier transform yields

dn

dtn
x(t) = dn

dtn

[
1

2𝜋 ∫
∞

−∞
X(𝜔) exp(j𝜔t)d𝜔

]

=
(j𝜔)n

2𝜋 ∫
∞

−∞
X(𝜔) exp(j𝜔t)d𝜔 = (j𝜔)nx(t). (8.85)

Taking the Fourier transform of both sides completes the proof.
• Convolution: In Chapters 6 and 7, we demonstrated that for an LTI system with

zero initial states, the output y(t) is derived from the input x(t) by a convolution:

y(t) = ∫
∞

−∞
h(𝜏)x(t − 𝜏)d𝜏 = ∫

∞

−∞
x(𝜏)h(t − 𝜏)d𝜏, (8.86)

where h(t) is the system impulse response function. The corresponding opera-
tion in the s-domain is

Y(s) = H(s)X(s) = X(s)H(s), (8.87)

and so in the frequency domain, we have

Y(𝜔) = H(𝜔)X(𝜔) = X(𝜔)H(𝜔). (8.88)

Proof: Taking the Fourier transform of y(t) yields

∫
∞

−∞
y(t) exp(−j𝜔t)dt = ∫

∞

−∞ ∫
∞

−∞
x(𝜏)h(t − 𝜏) exp(−j𝜔t)d𝜏dt, (8.89)

where one of the convolution integrals has been substituted. Changing variables
to 𝑣 ≜ t − 𝜏 gives

∫
∞

−∞
y(t) exp(−j𝜔t)dt = ∫

∞

−∞ ∫
∞

−∞
x(𝜏)h(𝑣) exp(−j𝜔(𝑣 + 𝜏))d𝜏d𝑣, (8.90)
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which splits into a product

∫
∞

−∞
y(t) exp(−j𝜔t)dt = ∫

∞

−∞
x(𝜏) exp(−j𝜏)d𝜏 ∫

∞

−∞
h(𝑣) exp(−j𝜔𝑣)d𝑣. (8.91)

Each of the three integrals is a Fourier transform, proving the result in (8.88).

• Integral: The Fourier transform of the integral of a function is somewhat more
complicated:


{

∫
t

−∞
x(t)dt

}

= X(𝜔)
j𝜔

+ 𝜋X(0)𝛿(𝜔), (8.92)

where from a previous property X(0) is the area of x(t). If the signal has no DC
component, then the term containing the Dirac delta function is dropped (many
textbooks assume this condition for simplicity). Proof: This result is proved by
rewriting the integral as a convolution with u(t):

∫
t

−∞
x(t)dt = ∫

∞

−∞
x(𝜏)u(t − 𝜏)d𝜏 = x(t) ∗ u(t). (8.93)

The upper limit on the left-hand side is due to the fact that u(t − 𝜏) = 1 for

t − 𝜏 ≥ 0 =⇒ 𝜏 ≤ t. From the convolution property:

{x(t) ∗ u(t)} = X(𝜔)
[

1
j𝜔

+ 𝜋𝛿(𝜔)
]

, (8.94)

where the term in brackets is the Fourier transform of the unit step function.
Thus


{

∫
t

−∞
x(t)dt

}

= X(𝜔)
j𝜔

+ 𝜋X(𝜔)𝛿(𝜔). (8.95)

The sampling property of the Dirac delta function yields the final result because
X(𝜔)𝛿(𝜔) = X(0)𝛿(𝜔).

• Parseval’s theorem: This theorem provides an identity for finding the energy of
a waveform from its Fourier transform:

∫
∞

−∞
x2(t)dt = 1

2𝜋 ∫
∞

−∞
|X(𝜔)|2d𝜔, (8.96)

where we note the factor of 1∕2𝜋 on the right-hand side. (Earlier, we used
a different form of this theorem involving two functions when discussing
the Fourier transform and generalized functions.) It is used to determine the
amount of energy contributed by different frequency bands to the overall
energy of a signal (see Problem 8.21). Proof: Substituting the inverse Fourier
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transform on the left-hand side and using different variables under the integrals
yield

∫
∞

−∞
|x(t)|2dt = 1

4𝜋2 ∫
∞

−∞ ∫
∞

−∞
X(𝜔1) exp(j𝜔1t)d𝜔1 ∫

∞

−∞
X∗(𝜔2) exp(−j𝜔2t)d𝜔2dt

= 1
4𝜋2 ∫

∞

−∞ ∫
∞

−∞ ∫
∞

−∞
exp(−j(𝜔2 − 𝜔1)t)dtX(𝜔1)X∗(𝜔2)d𝜔1d𝜔2.

(8.97)

In order to continue, |x(t)|2 = x(t)x∗(t) is used even though x(t) is assumed
to be real so that the second exponential on the right-hand side has the cor-
rect sign. In the second equation, the innermost integral is the Fourier trans-
form of a constant with frequency 𝜔2 − 𝜔1, which we know is 2𝜋𝛿(𝜔2 − 𝜔1).
Thus

∫
∞

−∞
x2(t)dt = 1

2𝜋 ∫
∞

−∞ ∫
∞

−∞
𝛿(𝜔2 − 𝜔1)X(𝜔1)X∗(𝜔2)d𝜔1d𝜔2

= 1
2𝜋 ∫

∞

−∞
X(𝜔2)X∗(𝜔2)d𝜔2 = 1

2𝜋 ∫
∞

−∞
|X(𝜔)|2d𝜔, (8.98)

where the sifting property of the Dirac delta function has been used to evaluate
the inner integral and complete the proof.

• Even and odd symmetry: Since any function can be expressed as the sum of even
and odd components x(t) = xE(t) + xO(t), we find that (8.3) can also be written
as

X(𝜔) = ∫
∞

−∞
[xE(t) + xO(t)] cos(𝜔t)dt − j∫

∞

−∞
[xE(t) + xO(t)] sin(𝜔t)dt

= ∫
∞

−∞
xE(t) cos(𝜔t)dt − j∫

∞

−∞
xO(t) sin(𝜔t)dt

≜ XE(𝜔) − jXO(𝜔), (8.99)

where XE(𝜔) and −XO(𝜔) are the even/real and odd/imaginary parts, respec-
tively, of X(𝜔). The following properties are also concluded in the event that
x(t) is strictly even or odd:

even x(t) =⇒ X(𝜔) is real and even. (8.100)

odd x(t) =⇒ X(𝜔) is imaginary and odd. (8.101)

Proof: For the second line in (8.99), the symmetric integral of the product of
odd xO(t) and even cos(𝜔t) is 0, and likewise for the product of even xE(t) and
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odd sin(𝜔t). The even and odd properties of the components in the last line of
(8.99) are verified as follows:

XE(−𝜔) = ∫
∞

−∞
xE(t) cos(−𝜔t)dt = ∫

∞

−∞
xE(t) cos(𝜔t)dt = XE(𝜔), (8.102)

XO(−𝜔) = ∫
∞

−∞
xO(t) sin(−𝜔t)dt = −∫

∞

−∞
xO(t) sin(𝜔t)dt = −XO(𝜔). (8.103)

From these results, we find that using exp(−j𝜔t) as the kernel in the Fourier
transform integral (instead of sine or cosine alone) allows it to handle functions
with even and odd parts, yielding a transform that has even and odd parts.

Example 8.12 The Fourier transform of the ramp function r(t) = tu(t) can be
derived from the time product in Table 8.5 with n = 1:

{r(t)} = j
d

d𝜔
{u(𝜔)} = j

d
d𝜔

[𝜋𝛿(𝜔) + 1∕j𝜔]

= j𝜋𝛿′(𝜔) − 1∕𝜔2
, (8.104)

where 𝛿′(𝜔) is a generalized derivative. Using the time scaling property with 𝛼 = −1
in Table 8.5, the Fourier transform of the left-sided ramp function r(−t) = −tu(−t) is

{r(−t)} = j𝜋𝛿′(−𝜔) − 1∕𝜔2 = −j𝜋𝛿′(𝜔) − 1∕𝜔2, (8.105)

where we have used the fact that the unit doublet is an odd generalized function.

Finally, we describe how the Fourier transform integral can be interpreted as the
cross-correlation of waveform x(t) with the complex exponential function exp(j𝜔t)
(this is not the cross-correlation property given in the tables). From Euler’s formula

X(𝜔) = ∫
∞

−∞
x(t) cos(𝜔t)dt − j∫

∞

−∞
x(t) sin(𝜔t)dt, (8.106)

we find that X(𝜔) is the degree to which x(t) is similar to a cosine waveform and a sine
waveform, both having the same frequency 𝜔. Since j can be viewed as a marker for
the imaginary component of a complex number (see Chapter 4), the Fourier trans-
form simultaneously performs two cross-correlations. Thus, using the notation for
cross-correlation in Chapter 5, (8.106) can be written as

X(𝜔) ≜ cxc(𝜔) − jcxs(𝜔), (8.107)

where cxc(𝜔) is the cross-correlation function of x(t) with cos(𝜔t), and cxs(𝜔) is the
cross-correlation function of x(t) with sin(𝜔t). Note that the argument is 𝜔 to indicate
the sinusoidal frequency, instead of the lag 𝜏, which is 0 because the functions in
(8.106) are not shifted. This correlation interpretation is similar to that used for the
Fourier series in Chapter 5. The difference here is that x(t) need not be periodic and
the domain is 𝜔 ∈ , whereas for the Fourier series, x(t) must be periodic with period
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To and only integer multiples of the fundamental frequency 𝜔o = 2𝜋∕To are used to
generate the Fourier series coefficients.

The product property (also called modulation) is considered next in the context of
a communication system based on AM.

8.6 AMPLITUDE MODULATION

Consider the following sinusoidal signal with angular frequency 𝜔o:

c(t) = A cos(𝜔ot), (8.108)

which has Fourier transform

C(𝜔) = A𝜋𝛿(𝜔 − 𝜔o) + A𝜋𝛿(𝜔 + 𝜔o). (8.109)

In a communication system, such a waveform is called the carrier because signal
information is “carried” across the channel at this frequency. Let x(t) be an arbi-
trary signal with Fourier transform (spectrum) X(𝜔). Modulation is defined to be the
product of these two waveforms in the time domain:

y(t) = x(t)c(t) = c(t)x(t), (8.110)

which, of course, is a symmetric operation like convolution. However, since 𝜔o in a
communication system is usually much greater than the highest frequency component
of the message signal x(t), we say that x(t) modulates c(t) (Haykin, 2001).

The transform of this product is

Y(𝜔) = ∫
∞

−∞
c(t)x(t) exp(−j𝜔t)dt. (8.111)

Substituting the inverse Fourier transform for each signal yields

Y(𝜔) = 1
(2𝜋)2 ∫

∞

−∞ ∫
∞

−∞
C(u) exp(jut)du∫

∞

−∞
X(𝑣) exp(j𝑣t)d𝑣 exp(−j𝜔t)dt,

(8.112)
where different variables of integration have been used to avoid confusion across
terms. Rearranging this expression yields

Y(𝜔) = 1
(2𝜋)2 ∫

∞

−∞ ∫
∞

−∞
C(u)X(𝑣)∫

∞

−∞
exp(−j(𝜔 − u − 𝑣)t)dtdud𝑣. (8.113)

The innermost integral with respect to t is the Fourier transform of a constant, which
is the Dirac delta function 2𝜋𝛿(𝜔 − u − 𝑣). Thus,

Y(𝜔) = 1
2𝜋 ∫

∞

−∞ ∫
∞

−∞
C(u)X(𝑣)𝛿(𝜔 − u − 𝑣)dud𝑣. (8.114)

Integrating over 𝑣, the sifting property of the Dirac delta function yields the final
result:

Y(𝜔) = 1
2𝜋 ∫

∞

−∞
C(u)X(𝜔 − u)du, (8.115)
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which is a convolution in the frequency domain (scaled by 1∕2𝜋). Integrating instead
over u would give the symmetric result:

Y(𝜔) = 1
2𝜋 ∫

∞

−∞
X(𝑣)C(𝜔 − 𝑣)d𝑣. (8.116)

This result is not surprising because of the duality property of the Fourier transform:
convolution in the time domain gives a product in the frequency domain, and so we
would expect that a product in the time domain yields a convolution of their Fourier
transforms. The only difference is the 1∕2𝜋 scaling factor, which appears because
we have written the convolution using angular frequency 𝜔. This term is not present
when using ordinary frequency f (see Problem 8.23):

Y(f ) = ∫
∞

−∞
C(u)X(f − u)du = ∫

∞

−∞
X(u)C(f − u)du. (8.117)

For the cosine carrier c(t) and arbitrary x(t), the output in the frequency domain is

Y(𝜔) = A
2𝜋 ∫

∞

−∞
𝜋[𝛿(𝜔 − 𝜔o − 𝑣) + 𝛿(𝜔 − 𝜔o − 𝑣)]X(𝑣)d𝑣

= (A∕2)X(𝜔 − 𝜔o) + (A∕2)X(𝜔 + 𝜔o). (8.118)

Thus, modulation in the time domain causes the spectrum of x(t) to be shifted both
right and left in the frequency domain, centered at ±𝜔o and scaled by A∕2. This type
of modulation is called AM with suppressed carrier, or double-sideband AM with
suppressed carrier. The carrier is suppressed because only the signal spectrum X(𝜔)
appears at ±𝜔o; there are no Dirac delta functions in Y(𝜔) as there are in C(𝜔). Of
course, the delta functions are not present in the expression because of the sifting
property of the Dirac delta function used to derive (8.118).

Example spectra associated with AM are illustrated in Figure 8.5 for a signal with
the following (ideal) rectangular spectrum:

X(𝜔) =
{

2, |𝜔| ≤ 𝜔c
0, else

= 2rect(𝜔∕2𝜔c), (8.119)

where 𝜔c is the cutoff frequency for this low-pass response. Observe that the spec-
trum has been replicated at ±𝜔o and scaled by a factor of 1∕2 (we assume A = 1
for the carrier). The corresponding waveform y(t) is called a narrowband passband
signal because 𝜔c ≪ 𝜔o and its positive and negative components are centered about
±𝜔o. In this communications application, the low-pass waveform x(t) is called a base-
band signal. The double-sideband description refers to the fact that the components
of Y(𝜔) are even functions about 𝜔o, which occurs because X(𝜔) is even about the
origin and x(t) is a real waveform. Because of this symmetry, the modulated signal
has redundancy, and so it is possible to remove either the upper or the lower side-
band at ±𝜔o without losing information about the message. Such a modulated signal,
which is more complex to implement and demodulate, is called single-sideband AM,
and is considered in Problem 8.25.

http://www.wiley.com/go/linearcircuitsandsystems
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Figure 8.5 Amplitude modulation. (a) Carrier spectrum C(𝜔) with A = 1. (b) Baseband sig-
nal spectrum X(𝜔). (c) AM with suppressed carrier: Y(𝜔) = X(𝜔) ∗ C(𝜔). (d) Conventional
AM: Y(𝜔) = C(𝜔) + kX(𝜔) ∗ C(𝜔).

Example 8.13 Let the (artificial) message signal be

x(t) = cos(𝜋t∕4), (8.120)

which has frequency fm = 1∕8 Hz (𝜔m = 𝜋∕4 rad/s). The carrier c(t) has A = 1 and
𝜔o = 2𝜋 rad/s, which corresponds to fo = 1 Hz such that the message signal has a
lower frequency. Figure 8.6 shows these signals along with the modulated waveform
y(t) for a duration of 10 s. We have also illustrated the envelope of the modulated
signal in Figure 8.6(c) (the dotted curves), which are plus and minus replicas of the
message waveform x(t). The information/message x(t) of the modulated signal y(t) is
contained in this envelope. The composite signal y(t) is transmitted across a commu-
nication channel, and a receiver is designed to extract x(t) from y(t) and thus obtain
the original message. Of course, the channel introduces impairments such as noise so
that the detected signal x̂(t) is only an estimate of x(t).

The receiver for AM with suppressed carrier is somewhat complicated due to the
fact that the plus and minus envelopes usually intersect each other as illustrated in
Figure 8.6(c). The details of various detection methods are beyond the scope of this
book, but we can provide some intuition by examining the waveform for conventional
AM where the transmitted waveform y(t) includes the carrier signal c(t). This is done
by modifying (8.110) as follows:

y(t) = [1 + kx(t)]c(t) = A[1 + kx(t)] cos(𝜔ot), (8.121)
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Sinusoidal modulation: message signal x(t)
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Sinusoidal modulation: modulated signal y(t)

Figure 8.6 Sinusoidal modulation of Example 8.13. (a) Carrier c(t) with A = 1. (b) Modu-
lating signal x(t). (c) AM with suppressed carrier y(t). The dotted lines show the envelope of
the waveform, corresponding to overlapping ±x(t) waveforms.
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whose frequency domain representation is

Y(𝜔) = A[1 + kX(𝜔)] ∗ [𝜋𝛿(𝜔 − 𝜔o) + 𝜋𝛿(𝜔 − 𝜔o)]

= A𝜋𝛿(𝜔 − 𝜔o) + A𝜋𝛿(𝜔 − 𝜔o) + (Ak∕2)X(𝜔 − 𝜔o) + (Ak∕2)X(𝜔 + 𝜔o)

= C(𝜔) + (Ak∕2)X(𝜔 − 𝜔o) + (Ak∕2)X(𝜔 + 𝜔o), (8.122)

which includes the transform C(𝜔) of the carrier. The advantage of this form is that
by proper choice of k, it is possible to separate the plus and minus envelopes shown in
Figure 8.6(c) so they no longer overlap. This is illustrated in Figure 8.7 for two values
of the amplitude sensitivity k. Since these envelopes do not intersect each other, a
simple envelope detector can be used to recover the top (positive) envelope, which
is exactly x(t) (assuming no channel impairments). If an envelope detector is applied
to the waveform in Figure 8.6(c), it will recover only the positive dotted waveform,
which we know is not correct for the message signal in Figure 8.6(b). By including k
in the modulation process and scaling x(t), Figure 8.7 shows a positive envelope that
is the message x(t).

In order to avoid the overmodulation that can occur in AM with suppressed carrier,
we need to ensure that the term in brackets in (8.121) does not change sign. Since
communication signals tend to have an average (mean) near zero, the sign of x(t)
usually changes often. By scaling x(t) with k and adding 1 to kx(t), the positive and
negative envelopes of the modulated signals will not have any zero crossings. Thus,
we require that for all t:

|kx(t)| < 1. (8.123)

It is also assumed that 𝜔c ≫ 𝜔o so there is no confusion as to which signal is the
carrier (with much higher frequency) and which is the message. The actual magni-
tude of the envelope is not important because it can always be scaled after detection,
and in fact, the received signal is usually amplified at some point in the receiver cir-
cuit. The variations and relative amplitudes of the waveform over time determine the
information content.

Although conventional AM allows for a simple receiver, such as an RC circuit with
postfiltering and buffering, the disadvantage is that power is wasted by not suppress-
ing the carrier. Power is also wasted because both sidebands are transmitted; this can
be reduced using single-sideband (SSB) modulation as mentioned in Problem 8.25.

8.7 FREQUENCY RESPONSE

In Chapter 7, we examined linear systems in the s-domain and defined the transfer
function of a system to be the ratio of the output signal transform Y(s) and the input
signal transform X(s):

H(s) ≜ Y(s)∕X(s), (8.124)

which follows from the convolution of x(t) and h(t) in the time domain. This definition
for H(s) assumes that all initial states are zero, such as the initial voltage across a
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Figure 8.7 Conventional AM y(t) of Example 8.13 with amplitude sensitivity k for the signal
waveform x(t) and carrier c(t) in Figure 8.6. (a) k = 0.5. (b) k = 0.9.

capacitor in an RC circuit. The transfer function provides insight into the properties
of h(t). In particular, we found that the locations of the poles on the s-plane indicate
the degree to which the system has an exponential or sinusoidal response:

• Real poles in the left half of the s-plane =⇒ decaying exponential.

• Complex conjugate poles in the left half of the s-plane =⇒ damped sinusoid.

• Complex conjugate poles on the imaginary axis =⇒ undamped sinusoid.
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Next, we demonstrate that the pole locations determine another feature of a system
called its frequency response H(𝜔), which is derived from H(s) by substituting s = j𝜔,
assuming that the ROC includes the imaginary axis. For the linear circuits and systems
covered in this book, H(𝜔) is a rational function: it is the ratio of two polynomials of
the single variable 𝜔 (because Re(s) = 𝜎 = 0 in the substitution s = j𝜔).

8.7.1 First-Order Low-Pass Filter

We begin with definitions of the three different frequency bands for a low-pass filter,
which are summarized in Figure 8.8.

Definition: Passband, Stopband, and Transition Band The passband of a
low-pass filter is the frequency range [0, 𝜔c] where |H(𝜔)| decreases from its
maximum Hmax at 𝜔 = 0 to Hmax∕

√
2 at the cutoff frequency 𝜔c. The transition

band is the frequency range (𝜔c, 𝜔min] where 𝜔min is the frequency correspond-
ing to Hmin ≜ |H(𝜔min)|. The stopband is the frequency range (𝜔min,∞) where
|H(𝜔)| < Hmin.

The maximum Hmax is usually determined by the gain at 𝜔 = 0, whereas 𝜔min and
Hmin are given as specifications for the desired width and depth of the transition band
of the filter. Thus, a narrow transition band depends on the following: (i) how close
𝜔min is to 𝜔c, (ii) how close Hmin is to 0, and (iii) the order of the denominator of the
transfer function (the number of poles).

Consider the first-order system:

H(s) = a
s + a

=⇒ H(𝜔) = a
j𝜔 + a

, (8.125)

with real parameter a > 0, ROC Re(s) > −a, and impulse response function

h(t) = a exp(−at)u(t). (8.126)

Hmin

|H(ω)|

Hmax

ωc

StopbandPassband

Transition
band

3 dB down
from maximum

ωmin
ω (rad/s)

(1/√2) Hmax

Figure 8.8 Magnitude response of a low-pass filter showing the passband, transition band,
and stopband.
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The magnitude |H(𝜔)| is derived from

|H(𝜔)|2 = H(𝜔)H∗(𝜔) = a2

(j𝜔 + a)(−j𝜔 + a)

= a2

𝜔
2 + a2

, (8.127)

which is necessarily real. Thus,

|H(𝜔)| = |a|
√
𝜔

2 + a2
. (8.128)

The phase is derived by writing H(𝜔) in rectangular complex variable form:

H(𝜔) =
a(−j𝜔 + a)

(j𝜔 + a)(−j𝜔 + a)
= a2

𝜔
2 + a2

− j
a𝜔

𝜔
2 + a2

, (8.129)

and then taking the ratio of the imaginary and real parts as follows:

𝜃(𝜔) = tan−1(−𝜔∕a). (8.130)

This system has the characteristic of a low-pass filter because it passes low frequen-
cies and rejects high frequencies:

lim
𝜔→0

|H(𝜔)| = 1, lim
𝜔→∞

|H(𝜔)| = 0. (8.131)

The bandwidth is defined to be the cutoff frequency 𝜔c where |H(𝜔)|2 is one-half
its maximum value, which is Hmax = 1 for the low-pass filter in (8.125). Thus, the
following expression is solved for 𝜔c:

|H(𝜔c)|2 = (1∕2)|H(0)|2 =⇒ a2

𝜔
2
c + a2

= 1∕2 =⇒ 𝜔c = a. (8.132)

At this frequency, the magnitude is |H(𝜔c)| = 1∕
√

2 ≈ 0.7071 and the phase is 𝜃 =
tan−1(−1) = −45∘. These are indicated by the dotted lines in Figure 8.9 for a = 1.

Since this is only a first-order filter with a single pole, it turns out that the
bandwidth 𝜔c and the depth of the stopband defined by Hmin at 𝜔min are competing
specifications. If we want a narrower transition band for the same depth of the
stopband, then a smaller cutoff frequency is required as illustrated in the next
example.

Example 8.14 For the filter response in Figure 8.9 with 𝜔c = a = 1, let the original
specification be 𝜔min = 4 rad/s, corresponding to

Hmin = 1
√

42 + 12
≈ 0.2425. (8.133)
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Figure 8.9 Low-pass filter. (a) Magnitude response. (b) Magnitude response in dB. (c) Phase
response. The vertical dotted lines denote the cutoff frequency 𝜔c = 1 rad/s.
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Suppose we want this value for Hmin to occur instead at 𝜔min = 3 rad/s, which means
a new cutoff frequency 𝜔c must be found. This is the same as finding a new value for
a as follows:

Hmin = 0.2425 = a
√

𝜔
2
min + a2

= a
√

32 + a2
. (8.134)

Solving this expression for a yields

a2 = 9(0.2425)2

1 − (0.2425)2
≈ 0.5623 =⇒ a = 𝜔c ≈ 0.7499. (8.135)

Rounding this value to 0.75 rad/s, the new transfer function is

H(s) = 0.75
s + 0.75

=⇒ |H(𝜔)| = 0.75
√
𝜔

2 + 0.5625
. (8.136)

Plots of |H(𝜔)| for this new cutoff frequency and the previous one at 𝜔c = 1 rad/s
are shown in Figure 8.10. The bandwidth of the filter has been reduced to 𝜔c = 0.75
rad/s, but the width of the transition band is narrower: 3 − 0.75 = 2.25 rad/s versus the
previous 4 − 1 = 3 rad/s. If we want to keep the same cutoff frequency, then higher
order filters with more poles are needed, such as that provided by the Butterworth
filter discussed at the end of this chapter.
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0.4
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0.8
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Magnitude response

ωc = 1

ωc = 0.75

Figure 8.10 Magnitude response of a low-pass filter with different cutoff frequencies
denoted by the two vertical dotted lines on the left. The two vertical dotted lines on the right
show the upper bound of the transition band for each case.



�

� �

�

FREQUENCY RESPONSE 459

Figure 8.9(b) shows the magnitude response in dB given by

10 log(|H(𝜔)|2) = 20 log(|H(𝜔)|), (8.137)

which is done to provide a greater dynamic range than what is observable in a linear
plot. In particular, the logarithmic plot allows us to easily view very small values of the
magnitude (≪ 1), which is important when examining the depth of the stopband. This
advantage is not so obvious for this first-order low-pass filter because it has a wide
transition band; it is not a sharp filter. The logarithmic plot is more advantageous for
filters with a narrow transition band such as a high-order Butterworth filter. Observe
in Figure 8.9(b) that the magnitude at the cutoff frequency 𝜔c is approximately 3 dB
down from its maximum of 0 dB at 𝜔 = 0. This, of course, follows from the definition
of 𝜔c:

10 log(|H(𝜔c)|2) = 10 log(1∕2) = −10 log(2) ≈ −3.0103 dB. (8.138)

The magnitude and phase can also be derived by computing them separately for
the numerator (N) and denominator (D):

H(𝜔) = N(𝜔)
D(𝜔)

=⇒ |H(𝜔)| = |N(𝜔)|
|D(𝜔)|

, 𝜃(𝜔) = 𝜃N(𝜔) − 𝜃D(𝜔). (8.139)

The magnitude components divide and the phase components subtract because
they appear in the exponent of the exponential functions in polar form. Using this
approach, it is not necessary to rewrite H(𝜔) in rectangular complex variable form
as demonstrated in the next section.

8.7.2 First-Order High-Pass Filter

The following modified first-order transfer function has a zero at the origin:

H(s) = s
s + a

=⇒ H(𝜔) =
j𝜔

j𝜔 + a
, (8.140)

with impulse response function:

H(s) = 1 − a
s + a

=⇒ h(t) = 𝛿(t) − a exp(−at)u(t). (8.141)

The last term is the impulse response function of the previous low-pass filter, and
so we find that the output y(t) for the high-pass filter is generated by subtracting the
low-pass response from the input x(t):

y(t) = h(t) ∗ x(t) = x(t) − ax(t) ∗ exp(−at)u(t). (8.142)

The magnitude response is

|H(𝜔)| =
|j𝜔|

|j𝜔 + a|
= |𝜔|

𝜔
2 + a2

, (8.143)
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Figure 8.11 Magnitude response of high-pass filter showing the passband, transition band,
and stopband.

and the phase is

𝜃(𝜔) = tan−1 (𝜔∕0) − tan−1(𝜔∕a) = 90∘ − tan−1(𝜔∕a). (8.144)

This transfer function has the characteristic of a high-pass filter:

lim
𝜔→0

|H(𝜔)| = 0, lim
𝜔→∞

|H(𝜔)| = 1. (8.145)

The typical magnitude response of a high-pass filter is shown in Figure 8.11. The
cutoff frequency is found by solving

|H(𝜔c)|2 =
a2
𝜔

2
c

𝜔
2
c + a2

= 1∕2 =⇒ 𝜔c = a, (8.146)

which is the same as the previous low-pass filter. The magnitude and phase responses
of this filter for a = 1 are shown in Figure 8.12, where the vertical dotted lines denote
the cutoff frequency 𝜔c = 1 rad/s. At this frequency, the magnitude is |H(𝜔c)| =
1∕

√
2 ≈ 0.7071 and the phase is 𝜃 = 90∘ − tan−1(1) = 45∘. As is the case for the

low-pass filter, 𝜔min and Hmin are the filter specifications: the desired width of the
transition band and the depth of the stopband.

There are two other standard filter frequency responses: band-pass and band-reject
(also called band-stop). Both of these require at least a second-order polynomial in
the denominator of the transfer function H(s).

8.7.3 Second-Order Band-Pass Filter

The typical magnitude response for a band-pass filter is shown in Figure 8.13. The
following second-order transfer function has complex conjugate poles at s = −𝛼 ± j𝛽
with 𝛼, 𝛽 > 0:

H(s) =
a1s

s2 + a1s + a0
= 2𝛼s

(s + 𝛼 + j𝛽)(s + 𝛼 − j𝛽)
. (8.147)
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Figure 8.12 High-pass filter. (a) Magnitude response. (b) Magnitude response in dB.
(c) Phase response. The vertical dotted lines denote the cutoff frequency 𝜔c = 1 rad/s.
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Figure 8.13 Magnitude response of band-pass filter showing the passband, two transition
bands, and two stopbands.

This is not the most general form for a second-order band-pass filter because it does
not allow for distinct real poles (corresponding to an overdamped system). This sys-
tem is underdamped in general or critically damped in the event that 𝛽 = 0. A more
general transfer function for a band-pass filter is considered later. The frequency
response of (8.147) is

H(𝜔) =
j2𝛼𝜔

[𝛼 + j(𝜔 + 𝛽)][𝛼 + j(𝜔 − 𝛽)]
, (8.148)

its magnitude response is

|H(𝜔)| = 2𝛼|𝜔|
√
[𝛼2 + (𝜔 + 𝛽)2][𝛼2 + (𝜔 − 𝛽)2]

, (8.149)

and the phase is

𝜃(𝜔) = 90∘ − tan−1((𝜔 + 𝛽)∕𝛼) − tan−1((𝜔 − 𝛽)∕𝛼). (8.150)

A band-pass filter has five parameters:

• Center frequency 𝜔o where |H(𝜔)| is maximum.

• Lower cutoff frequency 𝜔c1
where |H(𝜔c1

)|2 = (1∕2)|H(𝜔o)|2.

• Upper cutoff frequency 𝜔c2
where |H(𝜔c2

)|2 = (1∕2)|H(𝜔o)|2.

• Bandwidth BW ≜ 𝜔c2
− 𝜔c1

.

• Quality factor Q ≜ 𝜔o∕B.

The quality factor Q is a dimensionless quantity that is a measure of the width (sharp-
ness) of the filter transition band relative to its center frequency.
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It is straightforward to show that the center frequency for this filter is (see
Problem 8.28)

𝜔o =
√
𝛼

2 + 𝛽
2, (8.151)

with |H(𝜔o)| = 1. In order to find the two cutoff frequencies {𝜔c1
, 𝜔c2

}, the following
expression is solved for 𝜔c:

4𝛼2
𝜔

2
c

[𝛼2 + (𝜔c + 𝛽)2][𝛼2 + (𝜔c − 𝛽)2]
= 1∕2, (8.152)

which becomes
𝜔

4
c − (6𝛼2 + 2𝛽2)𝜔2

c + (𝛼2 + 𝛽
2)2 = 0. (8.153)

This is a quadratic equation in 𝜔
2
c with solution (see Problem 8.28)

𝜔
2
c = 3𝛼2 + 𝛽

2 ± 𝛼

√
9 + 4𝛽2 − 𝛼

2. (8.154)

The square root of this equation yields four frequencies; however, two of those fre-
quencies correspond to negative 𝜔c (which occur because the impulse response func-
tion is real); the positive cutoff frequencies are

𝜔c1
=
√

3𝛼2 + 𝛽
2 − 𝛼

√
9 + 4𝛽2 − 𝛼

2
, (8.155)

𝜔c2
=
√

3𝛼2 + 𝛽
2 + 𝛼

√
9 + 4𝛽2 − 𝛼

2
, (8.156)

with 𝜔c2
> 𝜔c1

. The bandwidth is the difference of these two quantities. The
magnitude and phase characteristics of this filter for 𝛼 = 1 and 𝛽 = 3 are shown
in Figure 8.14, where 𝜔o ≈ 3.1623 rad/s, 𝜔c1

≈ 2.3166 rad/s, 𝜔c2
≈ 4.3166 rad/s,

and B = 2 rad/s. The phase response extends for 180∘ over [−90∘, 90∘], and it is
exactly 0 at the center frequency 𝜔o. (The range of angles is only 90∘ for a single
pole as shown previously for the low-pass and high-pass filters.) The magnitude
plots are asymmetric because the frequency ranges about 𝜔o differ: [0, 𝜔o) versus
(𝜔o,∞). For higher order filters and a larger center frequency, it is possible to design
band-pass filters with a more symmetric response about 𝜔o.

8.7.4 Second-Order Band-Reject Filter

In order to implement a filter with a band-reject frequency characteristic, it is neces-
sary that complex conjugate zeros be included in the transfer function:

H(s) =
s2 + a0

s2 + a1s + a0
=

(s + j𝛾)(s − j𝛾)
(s + 𝛼 + j𝛽)(s + 𝛼 − j𝛽)

, (8.157)

which has the same denominator as the band-pass filter. We have chosen a numer-
ator with zeros exactly on the imaginary axis at s = ±j𝛾 = ±j

√
𝛼

2 + 𝛽
2 so that
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Figure 8.14 Band-pass filter. (a) Magnitude response. (b) Magnitude response in dB. (c)
Phase response. The vertical dotted lines denote the center frequency 𝜔o ≈ 3.1623 rad/s and
the lower and upper cutoff frequencies {𝜔c1

, 𝜔c2
≈ 2.3166, 4.3166} rad/s with a bandwidth of

BW = 2 rad/s.
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Figure 8.15 Magnitude response of band-reject filter showing two passbands, two transition
bands, and the stopband.

H(𝜔) = 0 at 𝜔 = ±𝛾 . The typical magnitude response for a band-reject filter is
shown in Figure 8.15.

Using results from the previous band-pass filter, we find that the squared magni-
tude is

|H(𝜔)|2 = (𝜔2 − 𝛼
2 − 𝛽

2)2

[𝛼2 + (𝜔 + 𝛽)2][𝛼2 + (𝜔 − 𝛽)2]
, (8.158)

and

|H(𝜔)| = |𝜔2 − 𝛼
2 − 𝛽

2|
√
[𝛼2 + (𝜔 + 𝛽)2][𝛼2 + (𝜔 − 𝛽)2]

. (8.159)

The center frequency is obtained when the numerator is 0, which yields

𝜔o =
√
𝛼

2 + 𝛽
2, (8.160)

and is the same as 𝜔o for the band-pass filter, by design for this particular numerator.
The two cutoff frequencies {𝜔c1

, 𝜔c2
} are found by solving

(𝜔2
c − 𝛼

2 − 𝛽
2)2

[𝛼2 + (𝜔c + 𝛽)2][𝛼2 + (𝜔c − 𝛽)2]
= 1∕2. (8.161)

Rearranging this expression yields the quartic equation in (8.153), and so this
band-reject filter has the same cutoff frequencies as the previous band-pass filter.

The phase is derived from H(s) with s = j𝜔:

H(𝜔) = 𝛼
2 + 𝛽

2 − 𝜔
2

𝛼
2 + 𝛽

2 − 𝜔
2 + j2𝛼𝜔

, (8.162)
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which gives

𝜃(𝜔) = −tan−1

(
2𝛼𝜔

𝛼
2 + 𝛽

2 − 𝜔
2

)

. (8.163)

The magnitude and phase characteristics of this filter for 𝛼 = 1 and 𝛽 = 3 are shown in
Figure 8.16. Observe that the magnitude plot in dB clearly illustrates the band-reject
nature of the filter because the gain actually tends to −∞ at 𝜔o. There is a disconti-
nuity in the phase at 𝜔o because the denominator of the phase expression in (8.163)
changes sign at 𝜔2 = 𝛼

2 + 𝛽
2 = 𝜔

2
o, where the magnitude response is 0 dB.

It should be evident from the previous discussions that the type and quality of a
filter are determined by the pole and zero locations relative to the real and imaginary
axes. Thus, it is possible to design filters that meet the desired frequency response
specifications by judiciously placing a sufficient number of poles and zeros on the
s-plane. Since the filter should have real coefficients, a transfer function with complex
poles and zeros must include their complex conjugates.

8.8 FREQUENCY RESPONSE OF SECOND-ORDER FILTERS

In this section, we describe the standard transfer functions for different types of
second-order filters. Although band-pass and band-reject filters require at least
second-order denominator polynomials, we show that low-pass and high-pass filters
can also be implemented using second-order polynomials by an appropriate choice
of the transfer function numerator.

• Low-pass filter:

HLP(s) =
𝜔

2
o

s2 + 2𝜁𝜔os + 𝜔
2
o

, |HLP(𝜔)| =
𝜔

2
o

√

(𝜔2
o − 𝜔

2)2 + (2𝜁𝜔o𝜔)2
.

(8.164)
|HLP(𝜔)| = 1 for 𝜔 = 0 and |HLP(𝜔)| = 0 as 𝜔 → ∞.

• High-pass filter:

HHP(s) =
s2

s2 + 2𝜁𝜔os + 𝜔
2
o

, |HHP(𝜔)| =
𝜔

2

√

(𝜔2
o − 𝜔

2)2 + (2𝜁𝜔o𝜔)2
.

(8.165)
|HHP(𝜔)| = 0 for 𝜔 = 0 and |HHP(𝜔)| = 1 as 𝜔 → ∞.

• Band-pass filter:

HBP(s) =
2𝜁𝜔os

s2 + 2𝜁𝜔os + 𝜔
2
o

, |HBP(𝜔)| =
|2𝜁𝜔o𝜔|

√

(𝜔2
o − 𝜔

2)2 + (2𝜁𝜔o𝜔)2
.

(8.166)
|HBP(𝜔)| = 0 for 𝜔 = 0 and as 𝜔 → ∞, |HBP(𝜔)| = 1 for 𝜔 = 𝜔o.
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Figure 8.16 Band-reject filter. (a) Magnitude response. (b) Magnitude response in dB.
(c) Phase response. The center frequency 𝜔o, cutoff frequencies {𝜔c1

, 𝜔c2
}, and bandwidth

BW are the same as those in Figure 8.14 for the band-pass filter.
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• Band-reject filter:

HBR(s) =
s2 + 𝜔

2
o

s2 + 2𝜁𝜔os + 𝜔
2
o

, |HBR(𝜔)| =
|𝜔2

o − 𝜔
2|

√

(𝜔2
o − 𝜔

2)2 + (2𝜁𝜔o𝜔)2
.

(8.167)
|HBR(𝜔)| = 1 for 𝜔 = 0 and as 𝜔 → ∞, |HBR(𝜔)| = 0 for 𝜔 = 𝜔o.

The damping ratio 𝜁 and resonant frequency 𝜔o were mentioned in Chapter 7. The
numerator for each H(s) has been chosen so that |H(𝜔)| = 1 at either 𝜔 = 0, 𝜔 = 𝜔o,
or as 𝜔 → ∞ depending on the type of filter. With these specific transfer functions,
we show later that the cutoff frequencies are all proportional to 𝜔o, and the propor-
tionality constant varies with the damping ratio 𝜁 .

When describing the type of filter, its transfer function should be evaluated at s = 0
and as s → ∞. Observe that |H(s)| for the low-pass filter and the band-pass filter
both approach 0 as s → ∞ because the order of the denominator exceeds that of the
numerator. The numerator and denominator for the high-pass and band-reject filters,
on the other hand, have the same order which is why |H(s)| is nonzero as s → ∞.

The roots of the denominator polynomial for each filter are the poles

p1, p2 = −𝜁𝜔o ±
√

𝜁
2
𝜔

2
o − 𝜔

2
o = −𝜔o𝜁 ± 𝜔o

√
𝜁

2 − 1, (8.168)

and so there are three different cases, as covered in Chapter 7, which we repeat here
for convenience:

• Distinct real poles (𝜁 > 1, overdamped):

p1, p2 = −𝜔o𝜁 ± 𝜔o

√
𝜁

2 − 1. (8.169)

• Complex conjugate poles (𝜁 < 1, underdamped):

p1, p2 = −𝜔o𝜁 ± j𝜔o

√
1 − 𝜁

2. (8.170)

• Repeated real poles (𝜁 = 1, critically damped):

p1 = p2 = −𝜔o𝜁 . (8.171)

For the underdamped case, the quantity 𝜔d ≜ 𝜔o

√
1 − 𝜁

2 is called the damped res-
onant frequency; it is the frequency of the sinusoidal waveform in the time domain
obtained via an inverse Laplace transform.

The pole–zero plots for these four filters are illustrated in Figure 8.17 for the
underdamped case (𝜁 < 1) with complex conjugate poles. Figure 8.18(a) shows the
magnitude of the two poles for 𝜔o = 2 rad/s as 𝜁 is varied from 0 to 2. For 𝜁 > 1,
the poles are distinct, as mentioned earlier, whereas for 𝜁 ≤ 1, the magnitude of each
pole is a constant 2 because they form a complex conjugate pair. The pole locations
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Figure 8.17 Pole–zero plots for underdamped second-order filters. (a) Low-pass.
(b) High-pass. (c) Band-pass. (d) Band-reject.

on the s-plane are shown in Figure 8.18(b) for the same variation in 𝜁 . For 𝜁 > 1, one
pole moves to the left and the other pole moves to the right on the real axis. When
𝜁 < 1, the pole that moved right now traces a circle of radius 2 in the clockwise direc-
tion (the solid line), while the other pole moves counterclockwise on the same circle
(the dashed line). Of course, these traces are mirror images of each other because the
poles must form a complex conjugate pair for a second-order polynomial with real
coefficients.

The magnitude response for each of the four types of filters with 𝜔o = 1 rad/s
and variable 𝜁 is shown in Figures 8.19 and 8.20. It is clear that 𝜔o is the “cen-
ter” frequency of the band-pass and band-reject filters where |H(𝜔)| is maximum
(= 1) and 0, respectively. Observe from Figure 8.19 that the low-pass and high-pass
responses always intersect each other at 𝜔o = 1 rad/s as 𝜁 and the bandwidth are var-
ied. The magnitude response of the low-pass and high-pass filters at this frequency is

|HLP(𝜔o)| = 1∕2𝜁 = |HHP(𝜔o)|. (8.172)

The cutoff frequency for the low-pass filter is derived by solving

|HLP(𝜔c)| =
𝜔

2
o

√

(𝜔2
o − 𝜔

2
c)2 + (2𝜁𝜔o𝜔c)2

= 1∕
√

2, (8.173)

from which we have a quadratic equation in 𝜔
2
c :

𝜔
4
c + 2𝜔2

o(2𝜁2 − 1)𝜔2
c − 𝜔

4
o = 0. (8.174)
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Figure 8.18 Poles for a second-order system with 𝜔o = 2 rad/s as the damping ratio 𝜁 is
varied from 0 to 2. (a) Magnitude of poles versus 𝜁 . (The solid and dashed lines merge at the
horizontal line for 𝜁 < 1, corresponding to complex conjugate poles, which of course have
the same magnitude.) (b) Poles on the s-plane. The vertical dotted line is the boundary where
the two real poles for 𝜁 > 1 move to the left and right on the real axis.

The solution for 𝜔2
c is

𝜔
2
c = −(2𝜁2 − 1)𝜔2

o + 2𝜔2
o

√
𝜁

4 − 𝜁
2 + 1∕2, (8.175)

where only the positive square root is allowed so that the overall right-hand side is
nonnegative:

𝜔c = 𝜔o

√

−(2𝜁2 − 1) + 2
√
𝜁

4 − 𝜁
2 + 1∕2. (8.176)
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Figure 8.19 Magnitude response for second-order systems: low-pass and high-pass filters
with 𝜔o = 1 rad/s. (a) Underdamped: 𝜁 = 1∕2. (b) Critically damped: 𝜁 = 1. (c) Overdamped:
𝜁 = 3∕2. The vertical dotted lines show 𝜔o and the cutoff frequency 𝜔c for both filter types.
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Figure 8.20 Magnitude response for second-order systems: band-pass and band-reject filters
with 𝜔o = 1 rad/s. (a) Underdamped: 𝜁 = 1∕2. (b) Critically damped: 𝜁 = 1. (c) Overdamped:
𝜁 = 3∕2. The vertical dotted lines show 𝜔o and the cutoff frequencies {𝜔c1

, 𝜔c2
}, which are the

same for both filter types.
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For 𝜔o = 1 rad/s and 𝜁 = {1∕2, 1, 3∕2}, we obtain the following set of positive cutoff
frequencies: {1.2720, 0.6436, 0.3742} rad/s, respectively, as shown by the vertical
dotted lines in Figure 8.19. A similar equation is obtained for the high-pass filter:

|HHP(𝜔c)| =
𝜔

2
c

√

(𝜔2
o − 𝜔

2
c)2 + (2𝜁𝜔o𝜔c)2

= 1∕
√

2, (8.177)

which gives
𝜔

2
c = (2𝜁2 − 1)𝜔2

o + 2𝜔2
o

√
𝜁

4 − 𝜁
2 + 1∕2, (8.178)

where again only the positive square root is retained. Thus,

𝜔c = 𝜔o

√

(2𝜁2 − 1) + 2
√
𝜁

4 − 𝜁
2 + 1∕2, (8.179)

which differs from (8.176) only by the negative leading term under the outer square
root (a similar result was obtained in the previous section). For 𝜔o = 1 rad/s and
𝜁 = {1∕2, 1, 3∕2}, the positive cutoff frequencies are {0.7682, 1.5538, 2.6721} rad/s,
respectively. For the low-pass filter, the bandwidth is given by the cutoff frequency 𝜔c
relative to 𝜔 = 0. The bandwidth for a high-pass filter is not as easily defined because
the dominant magnitude response extends from 𝜔c to 𝜔 → ∞.

In order to find the cutoff frequencies that define the bandwidth BW for the
band-pass filter, we examine

|HBP(𝜔c)| =
2𝜁𝜔o|𝜔c|

√

(𝜔2
o − 𝜔

2
c)2 + (2𝜁𝜔o𝜔

2
c)2

= 1∕
√

2. (8.180)

Squaring and rearranging this expression yield

(2𝜁𝜔o𝜔c)2 = (𝜔2
o − 𝜔

2
c)2. (8.181)

Taking the square root of both sides, we have

𝜔
2
o − 𝜔

2
c = ±2𝜁𝜔o𝜔c =⇒ 𝜔

2
c ± 2𝜁𝜔o𝜔c − 𝜔

2
o = 0, (8.182)

which is a quadratic equation in 𝜔c. Thus, four cutoff frequencies are obtained:

𝜔c = ±𝜁𝜔o ±
√

(𝜁𝜔o)2 + 𝜔
2
o, (8.183)

which we label as follows:

± 𝜔c1
= ±𝜔o(−𝜁 +

√
𝜁

2 + 1), ±𝜔c2
= ±𝜔o(𝜁 +

√
𝜁

2 + 1), (8.184)

with𝜔c1
< 𝜔c2

. Although negative−𝜁 appears in𝜔c1
, the square-root term exceeds 𝜁 ,

and so when they are added together, a positive cutoff frequency is obtained. For𝜔o =
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1 rad/s and 𝜁 = {1∕2, 1, 3∕2}, the positive cutoff frequencies are {0.6180, 1.6180},
{0.4142, 2.4142}, and {0.3028, 3.3028} rad/s, respectively. These results are denoted
by the vertical dotted lines in Figure 8.20. The original quartic equation in (8.181) also
yields the negative cutoff frequencies {−𝜔c1

,−𝜔c2
}, which occur because the mag-

nitude is an even function (which, of course, is due to the fact that the second-order
system has real coefficients). The difference of each pair of numbers with the same
sign yields the bandwidth in each case:

BW ≜ 𝜔c2
− 𝜔c1

= 𝜁𝜔o − (−𝜁𝜔o) = 2𝜁𝜔o, (8.185)

which is the coefficient of s in the denominator of the transfer function. The same
equations for the cutoff frequencies of the band-reject filter are obtained by solving

|HBR(𝜔c)| =
|𝜔2

o − 𝜔
2
c|

√

(𝜔2
o − 𝜔

2
c)2 + (2𝜁𝜔o𝜔c)2

= 1∕
√

2. (8.186)

Rearranging this expression yields

2(𝜔2
o − 𝜔

2
c)2 = (𝜔2

o − 𝜔
2
c)2 + (2𝜁𝜔o𝜔c)2, (8.187)

which is identical to (8.181), and so the cutoff frequencies are the same as those in
(8.184).

The band-pass and band-reject results derived in terms of 𝜔o and 𝜁 are simi-
lar to those in the previous section, which were expressed in terms of the poles
p1 = −𝛼 + j𝛽 and p2 = −𝛼 − j𝛽. Substituting 𝜔o =

√
𝛼

2 + 𝛽
2 and 𝜁 = 𝛼∕

√
𝛼

2 + 𝛽
2

into (8.184) yields the same expressions as in the previous section for the band-pass
and band-reject filters. This equation for 𝜁 is derived by equating the numerators of
the two representations of the second-order band-pass filter such that 2𝛼s = 2𝜁𝜔os,
solving for 𝜁 , and substituting 𝜔o. However, the transfer functions used in this section
are more general because they allow for all three types of systems: underdamped,
overdamped, and critically damped. The results in the previous section are not com-
pletely general because they assume complex conjugate poles: the same 𝛼 is used
for the two poles. Thus, it is not possible to implement an overdamped system with
distinct poles using (8.148) and (8.162), nor is it possible to implement an undamped
system with 𝛼 = 0 because the transfer functions would be either 0 or fixed at 1. A
critically damped system is possible when 𝛽 = 0, resulting in a transfer function with
double poles at p1 = p2 = −𝛼.

Summarizing the second-order transfer functions with identical poles given at the
beginning of this section, these filters operate as low-pass, high-pass, band-pass, or
band-reject depending on the type of numerator. The pole locations of the denom-
inator determine the type of damping. The transfer functions for the high-pass and
band-reject filters are actually improper, and in order to derive the corresponding
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TABLE 8.7 Transfer Function Limits for Series RLC Circuit with Denominator
s2 + (R∕L)s + 1∕LC

Output y(t) H(0) H(∞) H(s) Numerator Filter Type

y1(t) = 𝑣R(t) 0 0 (R∕L)s Band-pass

y2(t) = 𝑣L(t) 0 1 s2 High-pass

y3(t) = 𝑣C(t) 1 0 1∕LC Low-pass

y4(t) = 𝑣L(t) + 𝑣C(t) 1 1 s2 + 1∕LC Band-reject

y5(t) = 𝑣R(t) + 𝑣L(t) 0 1 s2 + (R∕L)s High-pass
y6(t) = 𝑣R(t) + 𝑣C(t) 1 0 (R∕L)s + 1∕LC Low-pass

impulse response functions, long division must be performed before writing a PFE.
For the high-pass filter:

HHP(s) = 1 −
2𝜁𝜔os + 𝜔

2
o

s2 + 2𝜁𝜔os + 𝜔
2
o

, (8.188)

and for the band-reject filter:

HBR(s) = 1 −
2𝜁𝜔os

s2 + 2𝜁𝜔os + 𝜔
2
o

. (8.189)

Both of these filters have a Dirac delta function in the time domain; the low-pass and
band-pass filters do not. It is interesting to note from the expressions in (8.188) and
(8.189), compared with those in (8.164)–(8.167), that the transfer functions of the
four second-order filters are related as follows:

HBR(s) = HLP(s) + HHP(s) = 1 − HBP(s), (8.190)

HBP(s) = 1 − HLP(s) − HHP(s) = 1 − HBR(s). (8.191)

These results are consistent with the series RLC circuit results shown in Table 8.7
(which are discussed in the next section), where we find that a band-reject response
is produced across L and C together, and a band-pass response is produced across R.
Similarly, a high-pass response is derived across L, whereas low-pass and band-pass
responses are derived across C and R, respectively. A different low-pass response
is derived across C and R together, but note that this overlaps with the band-pass
response across R. Likewise, a different high-pass response is derived from L and R
together, but this also overlaps with the band-pass response across R.

8.9 FREQUENCY RESPONSE OF SERIES RLC CIRCUIT

Next, we consider the second-order series RLC circuit shown in Figure 8.21 and
demonstrate that depending on where the output is selected, the four second-order
filters described in the previous section are all possible. For input x(t) = Vs𝛿(t), we
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Figure 8.21 Second-order series RLC circuit with resistor R, inductor L, and capacitor C.

consider the following output voltages: y1(t) = 𝑣R(t), y2(t) = 𝑣L(t), y3(t) = 𝑣C(t),
y4(t) = 𝑣L(t) + 𝑣C(t), y5(t) = 𝑣R(t) + 𝑣L(t), y6(t) = 𝑣R(t) + 𝑣C(t), and y7(t) =
𝑣R(t) + 𝑣L(t) + 𝑣C(t). From Kirchoff’s voltage law (KVL), the last case is identical
to Vs, and so it need not be considered any further: its transfer function is 1. The
other six cases are summarized in Table 8.7. In order to physically generate y6(t), R
and L should be interchanged in the circuit. Using the Laplace transform techniques
in Chapter 7, voltage division yields the output in the s-domain for y1(t):

Y1(s) =
R

R + sL + 1∕sC
Vs. (8.192)

The transfer function is

H1(s) =
(R∕L)s

s2 + (R∕L)s + 1∕LC
, (8.193)

and the magnitude of its frequency response is

|H1(𝜔)| =
(R∕L)|𝜔|

√
(1∕LC − 𝜔

2)2 + (𝜔R∕L)2
. (8.194)

It is clear from this voltage division that the same denominator appears in the mag-
nitude response for every case; only the numerator varies as shown in Table 8.7. The
other five cases are provided as follows:

H2(s) =
s2

s2 + (R∕L)s + 1∕LC
, |H2(𝜔)| =

𝜔
2

√
(1∕LC − 𝜔

2)2 + (𝜔R∕L)2
, (8.195)

H3(s) =
1∕LC

s2 + (R∕L)s + 1∕LC
, |H3(𝜔)| =

1∕LC
√
(1∕LC − 𝜔

2)2 + (𝜔R∕L)2
, (8.196)

H4(s) =
s2 + 1∕LC

s2 + (R∕L)s + 1∕LC
, |H4(𝜔)| =

|1∕LC − 𝜔
2|

√
(1∕LC − 𝜔

2)2 + (𝜔R∕L)2
, (8.197)

H5(s) =
s2 + (R∕L)s

s2 + (R∕L)s + 1∕LC
, |H5(𝜔)| =

√
(𝜔R∕L)2 + 𝜔

4

√
(1∕LC − 𝜔

2)2 + (𝜔R∕L)2
, (8.198)
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H6(s) =
(R∕L)s + 1∕LC

s2 + (R∕L)s + 1∕LC
, |H6(𝜔)| =

√
(𝜔R∕L)2 + (1∕LC)2

√
(1∕LC − 𝜔

2)2 + (𝜔R∕L)2
. (8.199)

Comparing with the standard second-order denominator in (8.164)–(8.167), we find
that 𝜔o = 1∕

√
LC rad/s and 2𝜁𝜔o = R∕L ⇒ 𝜁 = (R∕2)

√
C∕L. The resonant fre-

quency 𝜔o is the frequency where the inductor and capacitor impedances cancel each
other:

j𝜔L + 1
j𝜔C

= j(𝜔L − 1∕𝜔C) = 0. (8.200)

Solving this expression yields 𝜔
2
o = 1∕LC, in which case the circuit appears to be

purely resistive with resistance R, a condition known as resonance.
The type of filter can generally be determined by substituting 𝜔 = 0 and 𝜔 → ∞.

These results are also summarized in Table 8.7, where we see that the numerators
of the first four cases correspond exactly to the standard second-order transfer func-
tions in (8.164)–(8.167). Thus, we can use the expressions for the cutoff frequencies
derived in the previous section. The second set of low-pass and high-pass filters, H5(s)
and H6(s), do not have the standard forms as in (8.164) and (8.165). The numerator of
the low-pass filter H6(s) has a zero at s = −1∕RC, whereas H3(s) does not have any
(finite) zeros. The high-pass filter H5(s) has zeros at s = 0 and s = −R∕L, whereas
both zeros of H2(s) are located at the origin. It is interesting that for this simple RLC
circuit, 18 different types of frequency responses are possible because each transfer
function can realize any of the three types of damping: underdamped, overdamped,
and critically damped.

The cutoff frequency for the second high-pass filter H5(s) is determined by solving
the following equation for 𝜔c:

(𝜔cR∕L)2 + 𝜔
4
c

(1∕LC − 𝜔
2
c)2 + (𝜔cR∕L)2

= 1∕2. (8.201)

Rearranging this expression yields a quadratic equation in 𝜔
2
c :

𝜔
4
c + (R∕L2 + 2∕LC)𝜔2

c + 1∕(LC)2 = 0, (8.202)

of which the only valid positive solution is

𝜔c =
√

−(R2∕2L2 + 1∕LC) + (1∕2L)
√

R4∕L2 + 4R2∕LC + 8∕C2. (8.203)

The cutoff frequency for the second low-pass filter H6(s) is (see Problem 8.31)

𝜔c =
√

(R2∕2L2 + 1∕LC) + (1∕2L)
√

R4∕L2 + 4R2∕LC + 8∕C2. (8.204)

Observe that these two cutoff frequencies have similar expressions, except that the
leading term in (8.203) is negative. Although the equations are quartic in 𝜔c for both
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cases, the inner square root is not subtracted because that would yield a complex
number.

Example 8.15 In this example, we show the magnitude response for each of the
different types of filters summarized in Table 8.7. Let R = 2500 Ω, L = 1 H, and
C = 1 μF such that 𝜔2

o = 1∕(1 × 10−6) ⇒ 𝜔o = 1000 rad/s and 2𝜁𝜔o = 2500 ⇒
𝜁 = 2500∕2000 = 1.25. Thus, the denominator polynomial is overdamped with real
poles

p1, p2 = −1000(1.25) ± 1000
√
(1.25)2 − 1 = −500, 2000. (8.205)

Figure 8.22 shows the frequency response for each of the six filters. Observe again that
the band-pass and band-reject filters intersect at the two cutoff frequencies {𝜔c1

, 𝜔c2
}.

They both have bandwidth BW = 2500 rad/s and quality factor Q = 0.4. The second
high-pass filter has a sharper transition band due to (R∕L)s in the numerator, causing
|H5(𝜔)| to increase more rapidly for small𝜔. Likewise, the magnitude response of the
low-pass filter H6(s) increases initially because of the zero in the numerator; the other
low-pass filter has only a constant in the numerator. Figure 8.23 shows the results
when the resistor value is decreased to R = 1000 Ω, resulting in an underdamped
circuit with 𝜁 = 0.5 and complex conjugate poles

p1, p2 = −1000(0.5) ± j1000
√

1 − (0.5)2 ≈ −500 ± j866. (8.206)

These plots have sharper transition bands than with the larger resistor, and the quality
factor for the band-pass and band-reject filters is now Q = 1 with smaller bandwidth
BW = 1000 rad/s.

8.10 BUTTERWORTH FILTERS

In the previous sections, we investigated first- and second-order transfer functions and
their frequency responses. It turns out that for such low-order systems, the transition
from passband to stopband is relatively gradual. In order to have a faster transition
and more precise frequency filtering, corresponding to a narrow transition band (a
sharp filter), it is necessary that high-order polynomials be used in the denominator
of the transfer function.

Although many different high-order filters have a narrow transition band, there are
three well-known filters that offer different frequency characteristics:

• Butterworth filter: Maximally flat response in the passband.
• Chebyshev filter: Narrower transition band than the Butterworth filter, but at the

expense of ripple in either the passband or the stopband.
• Elliptic filter: Narrower transition band than either the Butterworth or Cheby-

shev filters, but at the expense of ripple in both the passband and the stopband.

For the rest of this chapter, we consider only the Butterworth filter.
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Figure 8.22 Frequency responses of overdamped series RLC circuit in Example 8.15 with
𝜔o = 1000 rad/s and 𝜁 = 1.25. (a) Band-pass and band-reject filter responses. (b) Two
high-pass filter responses. (c) Two low-pass filter responses. The vertical dotted lines show
𝜔o and the cutoff frequencies, {𝜔c1

, 𝜔c2
} or 𝜔c, for each type of filter.
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Figure 8.23 Frequency responses of underdamped series RLC circuit in Example 8.15 with
𝜔o = 1000 rad/s and 𝜁 = 0.5. (a) Band-pass and band-reject filter responses. (b) Two high-pass
filter responses. (c) Two low-pass filter responses. The vertical dotted lines show 𝜔o and the
cutoff frequencies, {𝜔c1

, 𝜔c2
} or 𝜔c, for each type of filter.
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8.10.1 Low-Pass Filter

Definition: Butterworth Low-Pass Filter A Butterworth low-pass filter has the
following magnitude response in the frequency domain:

|H(𝜔)| = |K|
√

1 + (𝜔∕𝜔c)2n
, (8.207)

where K is the DC gain, 𝜔c is the cutoff frequency, and n ∈  (a natural number).

The cutoff frequency is defined in the usual manner; it is the frequency where the
squared magnitude is one-half its maximum value:

|H(𝜔c)|2 = K2

1 + (𝜔c∕𝜔c)2n
= K2∕2. (8.208)

The magnitude response in (8.207) is plotted (in dB) in Figure 8.24 for K = 1, 𝜔c =
𝜋 rad/s, and three values of n. Observe that all three curves intersect each other at
the cutoff frequency where the magnitude is ≈ −3 dB, as expected because for any
n ∈  :

20 log(|H(𝜔c)|) = 20 log(K∕
√

2) = 10 log(2) ≈ −3 dB, (8.209)

with K = 1. These plots illustrate that the transition band becomes narrower with
increasing n, corresponding to more poles in the denominator of H(s). In fact, in the
limit as n → ∞, the squared magnitude response is rectangular:

lim
n→∞

|H(𝜔)|2 =
⎧
⎪
⎨
⎪
⎩

K2
, |𝜔| < 𝜔c

K2∕2, |𝜔| = 𝜔c
0, |𝜔| > 𝜔c.

(8.210)
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Figure 8.24 Magnitude response of Butterworth low-pass filter.
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This result follows by examining the denominator of the square of (8.207): for |𝜔| <
𝜔c, the ratio is 𝜔∕𝜔c < 1 and (𝜔∕𝜔c)2n → 0. Similarly, for |𝜔| > 𝜔c, the ratio is
|𝜔∕𝜔c| > 1 and (𝜔∕𝜔c)2n → ∞. For |𝜔| = 𝜔c, the ratio is a constant (𝜔∕𝜔c)2n = 1
for all n.

It is possible to determine the size of n needed to achieve a specific transition band
using the following relationship in the stopband:

|H(𝜔min)| =
Hmax

√
1 + (𝜔min∕𝜔c)2n

≤ Hmin. (8.211)

The two ratios Hmax∕Hmin and 𝜔min∕𝜔c together specify n, which is derived by squar-
ing (8.211) and taking logarithms:

log((Hmax∕Hmin)2 − 1) ≤ n log((𝜔min∕𝜔c)2). (8.212)

The smallest integer value of n satisfying the inequality is chosen:

n ≥ log((Hmax∕Hmin)2 − 1)
log((𝜔min∕𝜔c)2)

. (8.213)

The base of the logarithm does not matter in this calculation because of the ratio of
logarithms. Since Hmax and 𝜔c are usually known for a particular problem, we find
from this expression that there are two degrees of freedom for choosing n: Hmin and
the corresponding angular frequency𝜔min. This is evident from Figure 8.24. Consider
the curve for n = 3 with Hmax = 1 and 𝜔c = 𝜋 rad/s. The transition band could be
defined by any pair of values {𝜔min,Hmin} along the dotted curve; these values depend
on the problem specifications as illustrated by the next example.

Example 8.16 Let Hmax = 1 and 𝜔c = 𝜋 rad/s, and suppose we want the end of the
transition band to be at𝜔min = 1.5𝜔c with magnitude Hmin = Hmax∕20. The condition
in (8.213) yields

n ≥ log(400 − 1)
log(2.25)

≈ 7.3853, (8.214)

from which we choose n = 8. The resulting magnitude response is shown in
Figure 8.25 (the solid curve). The dotted lines intersect at the specified end of the
transition band:

𝜔min = 1.5𝜋 ≈ 4.7124 rad/s, Hmin = 1∕20 ⇒ ≈ −26.02 dB. (8.215)

The magnitude response curve lies below this point, which, of course, is due to the
fact that n must be an integer in (8.213). The inequality in (8.213) ensures that the
magnitude response will meet or exceed the transition band specification. For conve-
nience, we have also included the frequency response curves for n = 10 and n = 12
to illustrate how steep the transition band becomes with increasing n.
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Figure 8.25 Magnitude response of Butterworth low-pass filter. The dotted lines intersect at
the desired transition band specification, showing that n = 8 is sufficient.

Converting the squared magnitude response |H(𝜔)|2 = H(𝜔)H(−𝜔) to its
s-domain equivalent by substituting s = j𝜔 =⇒ 𝜔 = s∕j, we have the transfer
function product

H(s)H(−s) = K2

1 + (s∕j𝜔c)2n
. (8.216)

(Note that H(s)H(−s) is not the same as |H(s)|2 used in the summaries of Appendix
A.) Furthermore, only H(s) is the transfer function of the system with poles in the left
half of the s-plane. The poles of H(−s) are the mirror image of those of H(s) about
the imaginary axis, and they are located in the right half of the s-plane. The reason
for the form in (8.216) is due to the squared magnitude |H(𝜔)|2 = H(𝜔)H(−𝜔) with
j𝜔 replaced by s, yielding H(s)H(−s). However, we emphasize that the physical filter
is derived only from H(s). The poles of (8.216) are found by solving

1 + (s∕j𝜔c)2n = 0 =⇒ s2n = −(j𝜔c)2n. (8.217)

In order to continue, we use the fact that j = exp(j𝜋∕2) and −1 = exp(jm𝜋) for odd
positive integer m. The last expression can be written as −1 = exp(j(2k − 1)𝜋) for
k ∈  . Thus,

s2n = 𝜔
2n
c exp(j(2k − 1)𝜋) exp(j𝜋2n∕2) = 𝜔

2n
c exp(j(2k + n − 1)𝜋), (8.218)

and so the 2n poles of (8.216) are

pk = 𝜔c exp(j(2k + n − 1)𝜋∕2n), k = 1,… , 2n. (8.219)
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Figure 8.26 Butterworth poles on the s-plane for H(s)H(−s) and n = 2.

These are equally spaced on a circle with radius 𝜔c on the complex plane. For
example, when n = 2, the poles are

p1 = 𝜔c exp(j3𝜋∕4) = 𝜔c(−1 + j)∕
√

2, p2 = 𝜔c exp(j5𝜋∕4) = 𝜔c(−1 − j)∕
√

2,
(8.220)

p3 = 𝜔c exp(j7𝜋∕4) = 𝜔c(1 − j)∕
√

2, p4 = 𝜔c exp(j9𝜋∕4) = 𝜔c(1 + j)∕
√

2,
(8.221)

which are depicted in Figure 8.26. Poles {p1, p2} form a complex conjugate pair asso-
ciated with H(s), and poles {p3, p4} form a complex conjugate pair for H(−s), which
are the mirror image of the other two poles about the imaginary axis. The poles of
stable H(s) are necessarily located in the left half of the s-plane, which correspond to
k = 1,… , n, for the general case in (8.219). Table 8.8 summarizes the denominator
polynomials and gives the poles in the left half of the s-plane for orders up to n = 8
and with 𝜔c = 1 (along the unit circle). Thus, H(s) is given by

H(s) = K̃
∏n

k=1(s − pk)
, (8.222)

where the denominator is the nth-order polynomial in Table 8.8, which we have writ-
ten as a product of the poles in the left half of the s-plane. The constant K̃ in the
numerator is determined by the desired gain at some frequency, usually 𝜔 = 0 for
a low-pass filter. For example, if we want unity DC gain, then substituting s = 0 in
(8.222) yields K̃ =

∏n
k=1 |pk|, where we have used magnitude because the {pk} are

generally complex.

8.10.2 High-Pass Filter

Definition: Butterworth High-Pass Filter A Butterworth high-pass filter has the
following magnitude response in the frequency domain:

|H(𝜔)| = |K|
√

1 + (𝜔c∕𝜔)2n
, (8.223)

where K is the DC gain, 𝜔c is the cutoff frequency, and n ∈  .



�

� �

�

BUTTERWORTH FILTERS 485

TABLE 8.8 Butterworth Low-Pass Filter Poles (𝝎c = 1)

Order n Denominator Polynomial Poles {pk}

1 s + 1 −1

2 s2 +
√

2s + 1 −0.7071 ± 0.7071j

3 (s + 1)(s2 + s + 1) −1,−0.5 ± 0.8660 j

4 (s2 + 0.7654s + 1) −0.3827 ± 0.9239j

(s2 + 1.8478s + 1) −0.9239 ± 0.3826j

5 (s + 1)(s2 + 0.6180s + 1) −1,−0.3090 ± 0.9511j

(s2 + 1.6180s + 1) −0.8090 ± 0.5878j

6 (s2 + 0.5176s + 1) −0.2588 ± 0.9659j

(s2 +
√

2s + 1) −0.7071 ± 0.7071j

(s2 + 1.9319s + 1) −0.9659 ± 0.2587j

7 (s + 1)(s2 + 0.4450s + 1) −1,−0.2225 ± 0.9749j

(s2 + 1.2470 + 1) −0.6235 ± 0.7818j

(s2 + 1.8019s + 1) −0.9010 ± 0.4339j

8 (s2 + 0.3902s + 1) −0.1951 ± 0.9808j

(s2 + 1.1111s + 1) −0.5555 ± 0.8315j

(s2 + 1.6629s + 1) −0.8314 ± 0.5556j

(s2 + 1.9616s + 1) −0.9808 ± 0.1950j

This expression has a form identical to (8.207) of the Butterworth low-pass filter,
except that 𝜔 and 𝜔c have been interchanged. It is straightforward to show that the
bound on n is (see Problem 8.33)

n ≥ log((Hmax∕Hmin)2 − 1)
log((𝜔c∕𝜔min)2)

, (8.224)

where 𝜔c and 𝜔min in (8.213) have been interchanged.
In order to derive the s-domain expression for H(𝜔)H(−𝜔), we substitute 𝜔 = s∕j,

yielding

H(s)H(−s) = K2

1 + (j𝜔c∕s)2n
. (8.225)

This result is also derived from the low-pass equation in (8.216) via the transforma-
tion s∕𝜔c → 𝜔c∕s. Factoring the (j𝜔c∕s)2n component, we find that the Butterworth
high-pass filter actually has multiple zeros at the origin:

H(s)H(−s) =
K2(s∕j𝜔c)2n

1 + (s∕j𝜔c)2n
, (8.226)

where the denominator now matches that of the Butterworth low-pass filter. Thus,
(8.226) has 2n poles equally spaced about a circle with radius 𝜔c on the s-plane,
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just like the Butterworth low-pass filter. But it also has 2n zeros at the origin, which
convert the low-pass response to a high-pass response. The transfer function of the
Butterworth high-pass filter is obtained from (8.222) by including sn in the numerator:

H(s) = K̃sn

∏n
k=1(s − pk)

, (8.227)

where K̃ is chosen to have some desired gain at a particular frequency, usually at 𝜔 →
∞ for a high-pass filter. We can verify that this transfer function has the response of
a high-pass filter by noting that H(0) = 0 and lims→∞H(s) = K̃, similar to the results
found for the second-order transfer function in (8.165).

Example 8.17 Suppose we want to design a Butterworth high-pass filter with the
same magnitude specifications used for the Butterworth low-pass filter in Example
8.16: Hmax = 1 and Hmin = Hmax∕20, but with 𝜔c = 1.5𝜋 rad/s and 𝜔min = 𝜋 rad/s
(these are reversed compared with the low-pass specifications). The order of the
high-pass filter from (8.224) is

n ≥ log(400 − 1)
log(2.25)

≈ 7.3853 =⇒ n = 8, (8.228)

which is necessarily the same result as that of the low-pass filter because the width
of the transition band is the same 𝜔c − 𝜔min = 0.5𝜋. Figure 8.27 shows the resulting
magnitude response (the solid curve). The dotted lines intersect at the end of the
transition band with specifications

𝜔min = 𝜋 ≈ 3.1416 rad/s, Hmin = 1∕20 ≈ −26.02 dB. (8.229)

The results for n = 10 and 12 are also shown.
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Figure 8.27 Magnitude response of Butterworth high-pass filter. The dotted lines intersect
at the desired transition band specification, showing that n = 8 is sufficient.
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8.10.3 Band-Pass Filter

A Butterworth low-pass filter can be transformed into a band-pass filter by substitut-
ing 𝜔c = 1 and replacing s in (8.216) with

s −→
s2 + 𝜔c1

𝜔c2

s(𝜔c2
− 𝜔c1

)
, (8.230)

where {𝜔c1
, 𝜔c2

} are the lower and upper cutoff frequencies of the band-pass fil-
ter. Because of the specific pole structure of the Butterworth low-pass filter, only
these two frequencies need to be specified. The center frequency and other features
of the frequency response are determined from the resulting denominator polyno-
mial. In this section, however, we do not consider this nonlinear mapping any further
and instead focus on a combination of the previous low-pass and high-pass filters.
Problem 8.36 considers an example of the transformation in (8.230) starting with the
low-pass filter HLP(s) = 1∕(s + 1).

A band-pass filter with the Butterworth filter characteristic (maximally flat in the
passbands) is also achieved by placing a low-pass filter in cascade with a high-pass fil-
ter, as depicted in Figure 8.28. Since the intermediate output is YLP(𝜔) = HLP(𝜔)X(𝜔)
and the overall output is Y(𝜔) = HHP(𝜔)YLP(𝜔), it is clear that the band-pass transfer
function is the product:

HBP(𝜔) = HLP(𝜔)HHP(𝜔) = HHP(𝜔)HLP(𝜔), (8.231)

which, of course, is commutative. In order for the product to function properly as
a band-pass filter, we see from Figures 8.25 and 8.27 that the magnitude responses
must overlap to some extent in the two transition bands. If the cutoff frequencies of
the low-pass and high-pass filters are denoted by 𝜔cL

and 𝜔cH
, respectively, then we

must have 𝜔cL
> 𝜔cH

for overlapping transition bands. Otherwise, the stopband of
the low-pass filter will reject frequencies passed by the high-pass filter, and similarly,
the stopband of the high-pass filter will reject frequencies passed by the low-pass
filter. In order to prevent this, the two cascaded Butterworth filters should have cutoff
frequencies that satisfy

𝜔cL
≥ 2𝜔cH

, (8.232)

Input Output

High-pass
filter HHP(ω)

Low-pass
filter HLP(ω)

Band-pass filter HBP(ω) = HLP(ω)HHP(ω)

X(ω) YLP(ω) YBP(ω)

Figure 8.28 Band-pass filter implemented as a cascade combination of low-pass and
high-pass filters.
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as demonstrated in the next example. A cascade band-pass filter with the property in
(8.232) is called a broadband filter. It is shown later for a specific example that if this
condition is not satisfied then the low-pass and high-pass filter responses do not have
much overlap and the overall passband is relatively narrow. Moreover, the gain at the
center frequency 𝜔o is no longer unity, though this could be modified by a follow-on
gain circuit.

Example 8.18 In this example, we implement a band-pass filter with center
frequency 𝜔o = 4 rad/s and a bandwidth of BW = 𝜔c2

− 𝜔c1
= 4 rad/s. This is

achieved by choosing 𝜔cH
= 2 rad/s and 𝜔cL

= 6 rad/s, which satisfy the condition
in (8.232) because 𝜔cL

= 3𝜔cH
. Using the low-pass formula in (8.213) for n, let

Hmax = 1, Hmin = 0.1, and 𝜔min, L = 𝜔cL
+ 1 = 7 rad/s. Thus, 20 log(1∕0.1) = −20

dB and

n ≥ log(100 − 1)∕ log((7∕6)2) ≈ 14.9046 =⇒ n = 15. (8.233)

For the high-pass filter, we choose similar parameters: Hmax = 1, Hmin = 0.1, and
𝜔min,H = 𝜔cH

− 1 = 1 rad/s such that 20 log(1∕0.1) = −20 dB and (8.224) gives

n ≥ log(100 − 1)∕ log((2∕1)2) ≈ 3.3147 =⇒ n = 4. (8.234)

The magnitude responses for the low-pass and high-pass filters are shown in
Figure 8.29(a) and (b), respectively, where we see they meet their individual spec-
ifications. The overall band-pass response generated as the product of the low-pass
and high-pass responses is provided in Figure 8.29(c).

Example 8.19 Suppose now that we modify the cutoff frequencies to be 𝜔cL
= 4.5

rad/s and 𝜔cH
= 3.5 rad/s, which do not satisfy (8.232). Let the center frequency

and values for {Hmin,Hmax} remain unchanged. Assuming that the two values for
𝜔min are again 1 rad/s away from the cutoff frequencies, giving 4.5 + 1 = 5.5 rad/s
and 3.5 − 1 = 2.5 rad/s, the order n is 12 and 7, respectively, for the low-pass and
high-pass filters. The resulting frequency response of the band-pass filter is shown
in Figure 8.30, which we see is not as broadband as the response in Figure 8.29(c),
and its magnitude is slightly lower at the center frequency. This occurs because the
low-pass and high-pass frequency responses have less overlap, which for the cas-
cade structure reduces the gain of the frequency components around 𝜔o, creating a
narrower passband.

8.10.4 Band-Reject Filter

Similar to the band-pass filter, a Butterworth band-reject filter can be derived from
a Butterworth low-pass filter by substituting 𝜔c = 1 rad/s and replacing s in (8.216)
with

s −→
s(𝜔c2

− 𝜔c1
)

s2 + 𝜔c1
𝜔c2

, (8.235)
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Figure 8.29 Band-pass filter implemented as a cascade combination of Butterworth low-pass
and high-pass filters. (a) Low-pass response with 𝜔cL

= 6 rad/s (n = 15). (b) High-pass
response with 𝜔cH

= 2 rad/s (n = 4). The dotted lines in (a) and (b) intersect at the specifi-
cations for Hmin and 𝜔min. (c) Band-pass response with 𝜔o = 4 rad/s and bandwidth BW = 4
rad/s. The vertical dotted lines in (c) denote 𝜔o and {𝜔c1

, 𝜔c2
}.
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Butterworth magnitude response: band-pass

Figure 8.30 Band-pass filter frequency response of Example 8.19. The vertical dotted lines
denote 𝜔o and {𝜔c1

, 𝜔c2
}.

where {𝜔c1
, 𝜔c2

} are the lower and upper cutoff frequencies of the band-reject filter.
This is the inverse of the transformation in (8.230) used to generate a band-pass
Butterworth filter. As in the previous section, we do not consider this mapping
approach any further, and instead focus on another combination of the low-pass and
high-pass filters. Problem 8.37 examines the band-reject transformation starting with
the low-pass filter HLP(s) = 1∕(s + 1).

For a band-reject filter, the goal is to attenuate a narrow band of frequencies while
retaining relatively flat passbands above and below the rejected frequencies. This
cannot be achieved using the cascade structure in Figure 8.29 because the stopband
of the low-pass filter removes high frequencies, and the stopband of the high-pass
filter removes low frequencies. Instead, we use the parallel implementation shown in
Figure 8.31 where the filter outputs are added together:

YBR(𝜔) = YLP(𝜔) + YHP(𝜔), (8.236)

which has transfer function

HBR(𝜔) = HLP(𝜔) + HHP(𝜔). (8.237)

Since the low-pass filter allows low frequencies to pass, and the high-pass filter allows
high frequencies to pass, it is possible to attenuate a band of frequencies between these
two passbands by judiciously aligning their stopbands. This is illustrated in the next
example.

Example 8.20 As in Example 8.18, let the center frequency of the band-reject filter
be 𝜔o = 4 rad/s and the bandwidth be BW = 4 rad/s. This means the cutoff frequency
of the low-pass filter is 𝜔cL

= 2 rad/s and that of the high-pass filter is 𝜔cH
= 6 rad/s.
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Input Output

High-pass
filter HHP(ω)

Low-pass
filter HLP(ω)

Band-reject filter

HBR(ω) = HLP(ω) + HHP(ω)

X(ω)

YLP(ω)

YHP(ω)

∑
YBP(ω)

Figure 8.31 Band-reject filter implemented as a parallel combination of low-pass and
high-pass filters.

Also as in Example 8.18, let the frequency 𝜔min for each component filter be 1 rad/s
from the cutoff frequency with Hmin = 0.1. Thus, (8.213) for the low-pass filter yields

n ≥ log(100 − 1)∕ log((3∕2)2) ≈ 5.6665 =⇒ n = 6, (8.238)

and (8.224) for the high-pass filter gives

n ≥ log(100 − 1)∕ log((6∕5)2) ≈ 12.6017 =⇒ n = 13. (8.239)

The results are shown in Figure 8.32. Steeper transition bands are achieved by using
higher order low-pass and high-pass filters in (8.237) (see Problem 8.40).

Example 8.21 Next, we modify the cutoff frequencies to be {𝜔cL
= 3, 𝜔cH

= 5}
rad/s, which just barely satisfy the broadband condition in (8.232). The center
frequency and {Hmin,Hmax} remain unchanged for the component low-pass and
high-pass filters. If the values for 𝜔min are 1 rad/s away from the cutoff frequencies,
we have 3 + 1 = 4 rad/s and 5 − 1 = 4 rad/s, which yield n = 8 and 11, respectively,
for the low-pass and high-pass filters. The resulting frequency response of the
band-reject filter is shown in Figure 8.33, which is narrower and not as deep as
the response in Figure 8.32(c). This occurs because the low-pass and high-pass
frequency responses have greater overlap, which for the parallel structure allows
more frequency components to have a higher gain, and so the degree of rejection
is less.

Although we used only Butterworth filters to demonstrate how to implement
band-pass and band-reject filters with cascade and parallel architectures, respectively,
these implementations can be used for any type of filter such as the Chebyshev and
elliptic filters mentioned earlier.
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Figure 8.32 Band-reject filter implemented as a parallel combination of Butterworth
low-pass and high-pass filters. (a) Low-pass response with𝜔cL

= 2 rad/s (n = 6). (b) High-pass
response with 𝜔cH

= 6 rad/s (n = 13). The dotted lines in (a) and (b) intersect at the specifi-
cations for Hmin and 𝜔min. (c) Band-reject response with 𝜔o = 4 rad/s and bandwidth BW = 4
rad/s. The vertical dotted lines in (c) denote 𝜔o and {𝜔c1

, 𝜔c2
}.
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Butterworth magnitude response: band-reject

Figure 8.33 Band-reject filter frequency response of Example 8.21. The vertical dotted lines
denote 𝜔o and {𝜔c1

, 𝜔c2
}.

PROBLEMS

Fourier Transform

8.1 Determine which of the following functions are absolutely integrable.
(a) x1(t) = exp(t2)u(−t). (b) x2(t) = sin(𝜔o∕t)[u(t − 1) − u(t − 2)].
(c) x3(t) = 1∕(1 + t2).

8.2 Determine if any of the functions in the previous problem are square integrable:

∫
∞

−∞
|x(t)|2dt < ∞. (8.240)

8.3 Find the Fourier transform of u(to − t) for any to ∈ .

8.4 The Fourier transform of x(t) = exp(𝛼t) does not exist for 𝛼 > 0. Find the
Fourier transform for the time-limited function y(t) = x(t)[u(t + T) − u(t − T)]
with T > 0.

8.5 Suppose the Fourier transform is defined as

X(𝜔) ≜ 1
√

2𝜋 ∫
∞

−∞
x(t) exp(−j𝜔t)dt. (8.241)

Derive the corresponding Fourier transform inversion formula.

8.6 Derive the inversion formula for the Fourier cosine transform:

Xc(𝜔) = ∫
∞

−∞
x(t) cos(𝜔t)dt. (8.242)
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8.7 Use the Laplace transform and a PFE to find the inverse Fourier transform of

X(𝜔) = 5
2 − 𝜔

2 + 2j𝜔
, (8.243)

by first rewriting the denominator in terms of s = j𝜔.

Magnitude and Phase

8.8 Derive the magnitude and phase for

X(𝜔) =
𝛼 + j𝜔

(𝛼 + j𝜔)2 + 𝛽
2

. (8.244)

8.9 Find the magnitude and phase for (a) Y1(𝜔) = X1(𝜔)X2(𝜔) and (b) Y2(𝜔) =
X1(𝜔) + X2(𝜔) where

X1(𝜔) =
2
j𝜔

, X2(𝜔) = exp(−j𝛼𝜔). (8.245)

8.10 The Hilbert transform of x(t) in the Fourier transform domain is

Y(𝜔) = −jsgn(𝜔)X(𝜔). (8.246)

Show how the magnitude and phase for X1(𝜔) and X2(𝜔) in the previous prob-
lem are altered by the Hilbert transform.

8.11 Derive the following phase of X(𝜔) for the rectangle function in
Appendix A:

𝜃(𝜔) = 𝜋sgn(𝜔)
∞∑

n=1

rect([|𝜔| − (4n − 1)𝜋]∕2𝜋). (8.247)

8.12 (a) Derive the following magnitude of the Laplace transform for the rectangle
function in Appendix A:

|X(s)| =
2
√

cosh2(𝜎∕2) cos2(𝜔∕2) + sinh2(𝜎∕2)sin2(𝜔∕2)
√
𝜎

2 + 𝜔
2

, (8.248)

and (b) show that it reduces to |X(𝜔)| = |sinc(𝜔∕2𝜋)| on the imaginary axis.

Fourier Transforms and Properties

8.13 Prove the duality property in (8.78).

8.14 Derive the Fourier transform for x(t) = 1∕t2 given in Table 8.3.

8.15 Repeat the previous problem for x(t) = tnu(t).
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8.16 Find the Fourier transform for each of the following functions:

(a) x1(t) =
2

𝛼
2 + t2

, (b) x2(t) = sin(t)∕t. (8.249)

8.17 Repeat the previous problem for

(a) x1(t) = exp(t − 1)u(−t − 1), (b) x2(t) = exp(−|t|)rect(t∕2). (8.250)

8.18 Derive the Fourier transforms in Table 8.4 for (a) cos2(𝜔ot) and (b) sin2(𝜔ot)
using the product property.

8.19 (a) Find |X(𝜔)| and 𝜃(𝜔) for X(s) = 3∕s(s + 2). (b) Find H(s) from H(𝜔) =
4∕(1 + j𝜔)(2 − 𝜔

2).

8.20 Assuming X(𝜔) = exp(−𝜔2), (a) find the Fourier transform of

y(t) = 2x(t − 1) + 4
d
dt

x(t) − 3tx(t − 2), (8.251)

and (b) verify your result by finding x(t).

8.21 Find the energy in the frequency band 𝜔 ∈ [−2𝜋, 2𝜋] for the standard rectangle
function in Appendix A.

Amplitude Modulation

8.22 Suppose the carrier waveform c(t) = sin(𝜔ot) is modulated by a message signal
x(t) with the rectangular spectrum in Figure 8.5(b). Give an expression for the
modulator output Y(𝜔) for (a) AM with suppressed carrier and (b) conventional
AM. Sketch plots similar to those in Figure 8.5.

8.23 Derive the modulation property in (8.117) for the Fourier transform based on
the natural frequency f .

8.24 At a receiver, the transmitted signal x(t) in (8.110) with a cosine carrier is mul-
tiplied by r(t) = cos(𝜔ot). (a) Show how it is possible to recover the message
signal x(t) using this approach followed by a low-pass filter. (b) Suppose instead
that r(t) = cos(𝜔ot + 𝜙) where 𝜙 is a nonzero fixed phase shift. Determine if the
message signal can be recovered using the approach in part (a).

8.25 Quadrature amplitude modulation (QAM) has the following transmitted signal
y(t) = x1(t) cos(𝜔ot) + x2(t) sin(𝜔ot) where {x1(t), x2(t)} are two message sig-
nals that may or may not be independent. Let x1(t) have a rectangular spectrum
and suppose x2(t) is generated by filtering x1(t) with the Hilbert transform fil-
ter H(𝜔) = −jsgn(𝜔). Find and sketch the resulting spectrum Y(𝜔) for this SSB
modulation.



�

� �

�

496 FOURIER TRANSFORMS AND FREQUENCY RESPONSES

Frequency Response

8.26 For the first-order RC circuit in Figure 8.34, find transfer functions from the
voltage source to the voltage across (a) the horizontal resistor R and then across
(b) the capacitor C. Describe the type of frequency response for each case and
find the cutoff frequencies.

8.27 Repeat the previous problem with the capacitor C replaced by inductor L.

8.28 Derive the expressions in (8.151) and (8.154) for the resonant frequency 𝜔o and
the cutoff frequency 𝜔c of the second-order band-pass filter in (8.148).

8.29 Derive the range of values for the proportionality constants weighting 𝜔o in
(8.176), (8.179), and (8.184) that specify the filter cutoff frequencies for (a)
underdamped and (b) overdamped systems.

Frequency Response of RLC Circuit

8.30 For the series RLC circuit, let R = 1000 Ω and L = 1 H. Determine the range of
values for C to have (a) an underdamped circuit and (b) an overdamped circuit.
In each case, give the range of values for the resonant frequency 𝜔o.

8.31 Derive the cutoff frequency in (8.204) for the low-pass filter H5(s) in (8.198) of
the series RLC circuit.

8.32 (a) Find the transfer function from the voltage source Vs to the voltage across
the inductor for the RLC circuit in Figure 8.35. (b) Derive an expression for the
cutoff frequencies and specify the type of frequency response.

Vs vC

vR

R

R

C

+

+

−

−

+

−

Figure 8.34 First-order RC circuit with resistor R and capacitor C.

Vs
vC(t)

i(t)vL(t)

vR(t)

+

+

+

−

−

+

−

− R

L

C

Figure 8.35 Second-order RLC circuit with resistor R, inductor L, and capacitor C.
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Butterworth Filters

8.33 Derive the bound on n in (8.224) for the Butterworth high-pass filter.

8.34 Determine the size n of a low-pass Butterworth filter with Hmax = 1 and cutoff
frequency𝜔c = 𝜋 rad/s for each of the following specifications. (a)𝜔min = 1.2𝜋
rad/s and Hmin = Hmax∕20. (b) 𝜔min = 1.4𝜋 rad/s and Hmin = Hmax∕30.

8.35 Determine the size n of a high-pass Butterworth filter with Hmax = 1 and cutoff
frequency 𝜔c = 3𝜋 rad/s for each of the following specifications. (a) 𝜔min = 2𝜋
rad/s and Hmin = Hmax∕20. (b) 𝜔min = 𝜋 rad/s and Hmin = Hmax∕30.

8.36 Design a Butterworth band-pass filter using the transformation in (8.230), start-
ing with the first-order Butterworth low-pass filter HLP(s) = 1∕(s + 1). The cut-
off frequencies are 𝜔c1

= 800 rad/s and 𝜔c2
= 1200 rad/s. Specify the resonant

frequency 𝜔o and the type of damping.

8.37 Repeat the previous problem using the transformation in (8.235) for the Butter-
worth band-reject filter.

8.38 Design a Butterworth band-pass filter using a cascade of low-pass and high-pass
filters with the following specifications: 𝜔o = 2000 rad/s, 𝜔cL

= 2200 rad/s,
𝜔cH

= 1800 rad/s, 𝜔min,L = 2300 rad/s, and 𝜔min,H = 1700 rad/s. Let Hmax = 1
and Hmin = 0.1 for the low-pass and high-pass filters.

Computer Problems

8.39 The MATLAB command freqs(b, a) plots the magnitude and phase of a system
given its transfer function coefficients:

H(s) =
bMsM + bM−1sM−1 + · · · + b1s + b0

aNsN + aN−1sN−1 + · · · + a1s + a0
. (8.252)

The vectors contain the coefficients in reverse order: b = [bM ,… , b0]T and a =
[aN ,… , a0]T . The angular frequency and the magnitude axes are logarithmic,
and the phase axis is in degrees. Use freqs to plot the frequency response for
the following second-order systems:

(a) H1(s) =
4

s2 + 5s + 4
, (b) H2(s) =

s2 + 4
s2 + 2s + 2

. (8.253)

8.40 The MATLAB command [z,p, k] = butter(n, 2𝜋f , ‘ftype’,‘s’) provides the
zeros z, poles p, and gain k for a Butterworth filter given the order n and the
cutoff frequency f in Hz. The argument “ftype” specifies the type of filter:
“low,” “high,” “band-pass,” or “stop.” The command [b, a] = zp2tf(z,p, k)
converts the zeros and poles into the transfer function coefficients in reverse
order (as defined in the vectors following (8.252)). Repeat the band-reject
filter design in Example 8.20 that is a parallel combination of low-pass and
high-pass Butterworth filters. Use butter to design higher order filters so that



�

� �

�

498 FOURIER TRANSFORMS AND FREQUENCY RESPONSES

the transition bands are steeper than those in Figure 8.32(c). The command
sys = tf(b, a) creates a transfer function representation based on the numerator
and denominator coefficients. Once these are generated for the low-pass and
high-pass filters, denoted by sysL and sysH, their parallel combination is
produced as sysP = parallel(sysL, sysH). The numerator and denominator
coefficients are derived from [b, a] = tfdata(sysP,‘v’), and these are used
in freqs to generate plots of the magnitude and phase for the band-reject
filter. The argument ‘v’ returns the numerator and denominator coefficients as
vectors (instead of as cell arrays).
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INTRODUCTION TO APPENDICES

In the following appendices, some background material is included to supplement the
topics covered in the chapters.

• Appendix A: Additional properties of the Laplace transform and the Fourier
transform are discussed. Extensive summaries of several functions and their
transforms are provided for ease of reference. The summaries are organized as
follows: impulsive functions, piecewise linear functions (such as the unit step
and ramp functions), exponential functions, and sinusoidal functions. One-sided
and two-sided functions are included, and some of the exponential and sinu-
soidal functions are weighted by the ramp function.

• Appendix B: Two tables of inverse Laplace transforms are provided where the
transforms are given first, some with multiple poles, so that the time-domain
function can be found without performing a partial fraction expansion. There
are also discussions of an improper rational Laplace transform, an unbounded
system, and a double integrator with feedback.

• Appendix C: Several identities, derivatives, and integrals are summarized.
Additional topics include completing the square, quadratic and cubic formulas,
and closed-form expressions for infinite and finite summations.

• Appendix D: This appendix gives a brief review of set theory. Properties of set
operations are summarized, and Venn diagrams are included to describe some
of the properties.

• Appendix E: Series expansions and different types of singularities are covered.
These include the Taylor series, the Maclaurin series, and the Laurent series for
complex functions.

• Appendix F: The final appendix discusses the Lambert W-function, which can
be used to write explicit expressions for the solutions of nonlinear equations.
It includes examples of a nonlinear diode circuit and a nonlinear system of
equations.
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EXTENDED SUMMARIES OF
FUNCTIONS AND TRANSFORMS

In this appendix, we summarize several functions used in the book and provide
expressions for their Fourier transforms and Laplace transforms.

A.1 FUNCTIONS AND NOTATION

The following notations are used for time-domain functions and frequency-domain
transforms:

x(t) general function of time,
X(s) Laplace transform of x(t),
X(𝜔) Fourier transform of x(t) (angular frequency),
X(f ) Fourier transform of x(t) (natural frequency).

Independent variables:

t continuous time (s),
f natural frequency (Hz),
s complex variable (of Laplace transform),
𝜎 real part of s,
𝜔 imaginary part of s, angular frequency (rad/s).

Mathematical Foundations for Linear Circuits and Systems in Engineering, First Edition. John J. Shynk.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
Companion Website: http://www.wiley.com/go/linearcircuitsandsystems
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Basic functions:

𝛿(t) Dirac delta,
u(t) unit step,
cos(𝜔ot) cosine,
sin(𝜔ot) sine,
exp(−𝛼t)u(t) exponential,
r(t) = tu(t) ramp.

Parameters:

𝜔o specific angular frequency used in sine and cosine,
fo specific natural frequency used in sine and cosine,
To period of sine and cosine,
𝛼 exponent of decaying exponential,
E energy,
P power.

Some combinations of these functions are the solutions of linear ODEs with
constant coefficients. Examples include the exponentially weighted cosine function
exp(−𝛼t) cos(𝜔ot)u(t) and the ramped and exponentially weighted sine function
t exp(−𝛼t) sin(𝜔ot)u(t). We also consider some two-sided functions such as the
Gaussian function exp(−𝛼t2).

A.2 LAPLACE TRANSFORM

The Laplace transform is derived from the following improper integral:

X(s) = ∫
∞

−∞
x(t) exp(−st)dt, (A.1)

which has a region of convergence (ROC) on the complex plane of the form Re(s) =
𝜎 > a for right-sided functions and a < 𝜎 < b for two-sided functions (we do not
explicitly consider left-sided functions with ROC 𝜎 < b, though of course they are
part of two-sided functions). If the ROC includes the imaginary axis (s = j𝜔), then the
function is bounded (stable); otherwise it may be unbounded. For example, the ROC
of the ramp function r(t) = tu(t) is 𝜎 > 0, and clearly the function grows without
bound. For the signals and systems considered in this book, the Laplace transform
generally is the ratio of two polynomials (a rational function):

X(s) = N(s)
D(s)

=
∏M−1

m=0 (s − zm)
∏N−1

n=0 (s − pn)
. (A.2)

The roots {zm} of the numerator polynomial N(s) are called zeros, and {pn} of
the denominator polynomial D(s) are called poles. The poles largely determine the
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time-domain properties of a function; the reader will observe the following trends in
the summaries:

• Functions with sin(𝜔ot) or cos(𝜔ot) have complex conjugate poles with imagi-
nary parts ±j𝜔o.

• Functions with exp(−𝛼t)u(t) have poles with real part −𝛼.

• Functions with tu(t) have repeated poles.

The summaries specify the s-plane locations for finite poles and zeros; poles at infinity
are not considered. For example, the Laplace transform X(s) = s has a zero at s = 0,
which could be interpreted as a pole at s = ∞. Similarly, X(s) = 1∕s has a pole at
s = 0, which could also be viewed as a zero at s = ∞.

Plots of |X(s)| are shown on the s-plane for the various functions. The magnitude
is derived by substituting s = 𝜎 + j𝜔 and finding the real and imaginary parts of the
complex-valued function. For example, the Laplace transform of x(t) = cos(𝜔ot)u(t)
is

X(s) = s

s2 + 𝜔
2
o

=
𝜎 + j𝜔

(𝜎 + j𝜔)2 + 𝜔
2
o

, (A.3)

from which we have

|X(s)| =
√
𝜎

2 + 𝜔
2

√
[𝜎2 + (𝜔 + 𝜔o)2][𝜎2 + (𝜔 − 𝜔o)2]

. (A.4)

Note that X(s) exists only in the ROC, which for (A.3) is 𝜎 > 0. However, the
magnitude |X(s)| is plotted on the entire s-plane so that the poles and zeros can be
seen, even though the ROC does not include any poles.

There are some Laplace transforms in this appendix whose ROC is the line defined
by 𝜎 = 0, but excluding s = 0 (the origin on the s-plane). This is demonstrated for the
signum function, which we model using two exponential functions:

sgn(t) = lim
𝛼→0

[exp(−𝛼t)u(t) − exp(𝛼t)u(−t)]. (A.5)

The function in brackets is shown in Figure A.1 for two nonzero values of 𝛼. The
Laplace transform of (A.5) is

X(s) = −∫
0

−∞
exp(𝛼t) exp(−st)dt + ∫

∞

0
exp(−𝛼t) exp(−st)dt

= ∫
0

∞
exp((s − 𝛼)t)dt + ∫

∞

0
exp(−(s + 𝛼)t)dt

= 1
s − 𝛼

+ 1
s + 𝛼

= 2s
s2 − 𝛼

2
, (A.6)

with ROC given by the strip −𝛼 < 𝜎 < 𝛼. In the limit as 𝛼 −→ 0, the Laplace trans-
form is (sgn(t)) = 2

s
, (A.7)
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Figure A.1 Signum function and exponential function approximation in (A.5).

whose ROC is 𝜎 = 0. However, note that s = 0 must be excluded because a single
pole is located there. This is also evident from the last expression in (A.6), which is
zero for s = 0 before taking the limit. The Laplace transform of the signum function
is essentially equivalent to its Fourier transform because the ROC forces 𝜎 = 0 in
exp(−st), yielding exp(−j𝜔t).

A.3 FOURIER TRANSFORM

In the summaries, Fourier transforms are given as a function of angular frequency
𝜔. The corresponding expressions in terms of natural frequency f are generated by
substituting 𝜔 = 2𝜋f . An exception to this rule is the Dirac delta function whose
scaling property yields

𝛿(𝜔 − 𝜔o) −→ 𝛿(2𝜋f − 2𝜋fo) =
1

2𝜋
𝛿(f − fo). (A.8)

The factor of 1∕2𝜋 must be included when converting delta functions of 𝜔 to natural
frequency f . For its derivative the unit doublet, the scale factor is 1∕4𝜋2:

𝛿
′(𝜔 − 𝜔o) −→ 𝛿

′(2𝜋f − 2𝜋fo) =
1

4𝜋2
𝛿
′(f − fo). (A.9)

As mentioned in Chapter 7, the Laplace transform is more general than the Fourier
transform because of the complex variable s = 𝜎 + j𝜔 of exp(−st), which results in
an ROC where X(s) is defined. Given that we have an expression for the Laplace
transform X(s), the corresponding Fourier transform X(𝜔) can be derived from X(s)
depending on the type of ROC:
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• The ROC includes the j𝜔 axis and has the form a < 𝜎 < b with a < 0 and b > 0:

X(𝜔) = X(s)|s=j𝜔. (A.10)

This holds for finite-duration functions, right-sided functions with b = ∞, and
left-sided functions with a = −∞.

• Either a = 0 or b = 0 of a < 𝜎 < b. This means that one or more singular gen-
eralized functions are located on the j𝜔 axis, and these must be included in the
Fourier transform:

X(𝜔) = X(s)|s=j𝜔 + singular generalized functions. (A.11)

• Neither of these cases: X(𝜔) does not exist.

All of the functions summarized in this appendix have a Fourier transform, but they
may not have a Laplace transform as described later.

The first case in (A.10) is obviously straightforward. For the second case in (A.11)
with singular generalized functions on the imaginary axis, the Fourier transform
exists in the limit. Consider the Laplace transform X(s) = 1∕s of the unit step
function x(t) = u(t), which has ROC 𝜎 > 0. Clearly, the following improper integral
is not defined:

∫
∞

−∞
u(t) exp(−j𝜔t)dt = ∫

∞

0
exp(−j𝜔t)dt. (A.12)

However, suppose we approximate u(t) by the exponential function x(t) =
exp(−𝛼t)u(t) and let 𝛼 −→ 0 after computing its Fourier transform. Since the
Laplace transform of x(t) is

X(s) = 1
s + 𝛼

, (A.13)

its Fourier transform is

X(𝜔) = 1
j𝜔 + 𝛼

= 𝛼

𝜔
2 + 𝛼

2
−

j𝜔

𝜔
2 + 𝛼

2
. (A.14)

In the limit as 𝛼 −→ 0, the second term in the final expression is −j∕𝜔, and the first
term becomes the Dirac delta function 𝜋𝛿(𝜔). This last result is derived by recog-
nizing that the first term is the Fourier transform of (1∕2) exp(−𝛼|t|). From the area
property of Fourier transforms:

1
2𝜋 ∫

∞

−∞

𝛼

𝜔
2 + 𝛼

2
d𝜔 = (1∕2) exp(−𝛼|t|)|t=0 = 1∕2, (A.15)

which demonstrates that the area of 𝛼∕(𝜔2 + 𝛼
2) is 𝜋 for any 𝛼. In the limit as 𝛼 −→ 0,

the first term in (A.14) is zero for 𝜔 ≠ 0, and it is 1∕𝛼 −→ ∞ for 𝜔 = 0. (A similar
model of the Dirac delta function was presented in Chapter 5 as the limit of rectangle
functions.) Thus, the Fourier transform of the unit step function is
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X(𝜔) = 1
j𝜔

+ 𝜋𝛿(𝜔). (A.16)

In general for N distinct poles on the j𝜔 axis at 𝜔 = 𝜔n, the Fourier transform is

X(𝜔) = X(s)|s=j𝜔 + 𝜋

N∑

n=1

𝛿(𝜔 − 𝜔n). (A.17)

For X(s) = 1∕s2, we have

X(𝜔) = − 1
𝜔

2
+ j𝜋𝛿′(𝜔), (A.18)

and for a repeated pole at 𝜔 = 𝜔o of order m, the Fourier transform includes deriva-
tives of the Dirac delta function:

X(𝜔) = X(s)|s=j𝜔 + 𝜋

j m−1

(m − 1)!
𝛿
(m−1)(𝜔 − 𝜔o), (A.19)

which holds for m ≥ 1 with 0! ≜ 1.
Since s = 𝜎 + j𝜔 is used in the Laplace transform with 𝜎 ≠ 0, it is generally

true that X(s) exists for functions x(t) that do not have a Fourier transform. This
result follows because, in effect, x(t) is multiplied by exp(−𝜎t), and so the product
x(t) exp(−𝜎t) might be absolutely integrable for some range of values for 𝜎, which of
course defines the ROC. However, it turns out that there are some functions that have
a Fourier transform (in the limit), but do not have a bilateral Laplace transform. In
this appendix, they are the following two-sided functions: the constant 1, cos(𝜔ot),
and sin(𝜔ot). The Laplace transforms of these functions do not exist for any s ≠ 0,
and for the line defined by 𝜎 = 0 (excluding s = 0), the Laplace transform is zero as
shown later.

A.4 MAGNITUDE AND PHASE

The spectrum of a signal and the frequency response of a system can be written in
terms of their magnitude and phase as follows:

X(𝜔) = |X(𝜔)| exp(j𝜃(𝜔)). (A.20)

If X(𝜔) is written in rectangular form X(𝜔) = XR(𝜔) + jXI(𝜔) where {XR(𝜔),XI(𝜔)}
are the real and imaginary parts, respectively, then

|X(𝜔)| =
√

X2
R(𝜔) + X2

I (𝜔), 𝜃(𝜔) = tan−1(XI(𝜔)∕XR(𝜔)). (A.21)

When XI(𝜔) = 0, this does not mean |X(𝜔)| = XR(𝜔) because XR(𝜔) could be neg-
ative. Instead, when the imaginary part is 0, we have |X(𝜔)| = |XR(𝜔)|. If |XR(𝜔)|
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removes sign information about X(𝜔), then the phase component will be nonzero.
This is illustrated for the rectangle function rect(t) whose Fourier transform is

X(𝜔) = sinc(𝜔∕2𝜋), (A.22)

which is negative for specific intervals of 𝜔. Obviously this expression is real, and so
we have

XR(𝜔) = sinc(𝜔∕2𝜋), XI(𝜔) = 0, |X(𝜔)| = |sinc(𝜔∕2𝜋)|. (A.23)

The phase is strictly zero for all 𝜔 where X(𝜔) is nonnegative. When X(𝜔) is negative
for some 𝜔, we must take into account a nonzero phase by multiplying |X(𝜔)| with
exp(±j𝜋) = −1 for those particular regions of 𝜔. The phase is 𝜋 for positive 𝜔 and
−𝜋 for negative 𝜔. For the sinc function in (A.22), this leads to the rectangular phase
shown later in Figure A.11(c).

Figure A.2(a) shows a plot of tan(𝜔) where 𝜔 is in radians, which we see repeats
every 𝜋 radians. The inverse tangent function tan−1(x) shown in Figure A.2(b) asymp-
totically approaches ±𝜋∕2 as x −→ ±∞. The radian units can be changed to degrees
by multiplying the result by 180∘∕𝜋, giving the equivalent range [−90∘, 90∘]. The
composite functions tan−1(tan(𝜔)) and tan(tan−1(x)) are shown in Figure A.3. Due
to the periodic nature of the waveform in Figure A.2(a), we find that tan−1(tan(𝜔))
is also periodic, but with the ramp (sawtooth) waveform in Figure A.3(a). For the
other case tan(tan−1(x)) with nonperiodic tan−1(x) in Figure A.2(b), the exact inverse
is obtained: tan(tan−1(x)) = x as shown in Figure A.3(b).

We illustrate the sawtooth behavior of the phase for the shifted Dirac delta function
whose Fourier transform is X(𝜔) = exp(−j𝜔ot). From Euler’s formula:

exp(−j𝜔to) = cos(𝜔to) − j sin(𝜔to), (A.24)

with phase

𝜃(𝜔) = tan−1(− sin(𝜔to)∕ cos(𝜔to)) = −tan−1(tan(𝜔to)), (A.25)

which is the negative of the waveform in Figure A.3(a) (with x replaced by 𝜔to). This
phase is plotted later (with units of degrees) in Figure A.4(c). A similar derivation
is used for the phase of the Fourier transform for the unit doublet shown later in
Figure A.5(c).

Finally, we comment on the magnitude and phase of a Fourier transform involving
the Dirac delta function 𝛿(𝜔) or its derivative the unit doublet 𝛿′(𝜔). Since these gen-
eralized functions are defined by their properties under an integral, the meaning of
|𝛿(𝜔)| and |𝛿′(𝜔)| is not clear. By definition, we let |𝛿(𝜔)| = 𝛿(𝜔), and so the phase
is zero. This approach is consistent when the Dirac delta function is viewed as the
limit of increasingly narrow rectangle functions. The magnitude of the doublet is less
clear. Recall that it is represented graphically by two pulses at the origin with oppo-
site directions: upward for 𝜔 = 0− and downward for 𝜔 = 0+ (it is zero in between
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Figure A.2 Tangent functions. (a) tan(𝜔). (b) tan−1(x).

at 𝜔 = 0). Thus, we represent |𝛿′(𝜔)| on a plot by two closely spaced upward arrows,
with the understanding that these pulses must be kept together as one symbol (as are
the up and down impulses of the unit doublet). In order to represent the phase on a
plot, we use the analogy of the signum function X(𝜔) = −jsgn(𝜔), which has unit
magnitude and phase

∠X(𝜔) = −(𝜋∕2)sgn(𝜔) =
⎧
⎪
⎨
⎪
⎩

𝜋∕2, 𝜔 < 0
0, 𝜔 = 0

−𝜋∕2, 𝜔 > 0.
(A.26)

http://www.wiley.com/go/linearcircuitsandsystems
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Figure A.3 Composite tangent functions. (a) tan−1(tan(𝜔)). (b) tan(tan−1(x)).

For the unit doublet j𝛿′(𝜔), the Kronecker delta function is used to symbolically
represent the phase at two points with opposite sign about the origin (like the signum
function):

∠j𝛿′(𝜔) = (𝜋∕2)(𝛿[𝜔 − 0−] − 𝛿[𝜔 − 0+]), (A.27)

where

𝛿[𝜔] ≜
{

1, x = 0
0, x ≠ 0.

(A.28)
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A.5 IMPULSIVE FUNCTIONS

A.5.1 Dirac Delta Function (Shifted)

Parameters: to > 0. Support: t = to. Range: singular generalized function.

x(t) = 𝛿(t − to) ≜
{

undefined, t = to
0, t ≠ to, ∫

∞

−∞
𝛿(t − to)dt = 1,

X(s) = exp(−sto), ROC: entire s-plane, poles: none, zeros: none,

|X(s)| = exp(−𝜎to), X(𝜔) = exp(−j𝜔to),

|X(𝜔)| = 1, 𝜃(𝜔) = −tan−1(tan(𝜔to)).
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Figure A.4 Shifted Dirac delta function with to = 1 s. (a) x(t) = 𝛿(t − to). The Dirac delta
function has area 1. (b) |X(𝜔)|.
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Figure A.4 Shifted Dirac delta function (continued). (c) 𝜃(𝜔). (d) 20 log (|X(s)|) and ROC:
entire s-plane (lower grid).

• Phase from X(𝜔) = cos(𝜔to) − j sin(𝜔to):

𝜃(𝜔) = tan−1(− sin(𝜔to)∕ cos(𝜔to)) = −tan−1(tan(𝜔to)). (A.29)

(𝜃(𝜔) = 0 for to = 0.)

• Identities:

𝛿(t − to) =
d
dt

u(t − to), 𝛿(t − to) =
d2

dt2
r(t − to), (A.30)

f (t)𝛿(t − to) = f (to)𝛿(t), ∫
∞

−∞
f (t)𝛿(t − to)dt = f (to). (A.31)

(Assumes f (t) is continuous at t = to.)
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A.5.2 Unit Doublet (Shifted)

Parameters: to > 0. Support: t = to. Range: singular generalized function.

x(t) = 𝛿
′(t − to) =

{
undefined, t = to

0, t ≠ to, ∫
∞

−∞
𝛿
′(t − to)dt = 0,

X(s) = s exp(−sto), ROC: entire s-plane, poles: none, zeros: s = 0,

|X(s)| =
√
𝜎

2 + 𝜔
2 exp(−𝜎to), X(𝜔) = j𝜔 exp(−j𝜔to),

|X(𝜔)| = |𝜔|, 𝜃(𝜔) = tan−1(cot(𝜔to)).
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Figure A.5 Shifted unit doublet with to = 1 s. (a) x(t) = 𝛿(t − to). Each component of the
coupled impulses has infinite area. (b) |X(𝜔)|.
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Figure A.5 Shifted unit doublet (continued). (c) 𝜃(𝜔). (d) 20 log (|X(s)|) and ROC: entire
s-plane (lower grid).

• Phase from X(𝜔) = j𝜔[cos(𝜔to) − j sin(𝜔to)] = j𝜔 cos(𝜔ot) + 𝜔 sin(𝜔to):

𝜃(𝜔) = tan−1(cos(𝜔to)∕ sin(𝜔to)) = tan−1(cot(𝜔to)). (A.32)

(For to = 0, 𝜃(𝜔) = lim
a→0

tan−1(𝜔∕a) = (𝜋∕2)sgn(𝜔).)

• Identities:

𝛿
′(t − to) =

d
dt
𝛿(t − to), 𝛿

′(t − to) =
d2

dt2
u(t − to), (A.33)

f (t)𝛿′(t − to) = f (to)𝛿′(t − to) − f ′(to)𝛿(t − to), f (t) ∗ 𝛿
′(to − t) = f ′(to).

(A.34)

(Assumes f (t) is continuous at t = to.)
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A.6 PIECEWISE LINEAR FUNCTIONS

A.6.1 Unit Step Function

Parameters: none. Support: t ∈ +. Range: x(t) ∈ {0, 1}.

x(t) = u(t) ≜ I+(t), X(s) = 1
s
,

ROC: 𝜎 > 0, poles∶ s = 0, zeros: none,

|X(s)| = 1
√
𝜎

2 + 𝜔
2
, X(𝜔) = 1

j𝜔
+ 𝜋𝛿(𝜔) (exists in the limit),

|X(𝜔)| = 1
|𝜔|

+ 𝜋𝛿(𝜔), 𝜃(𝜔) = −(𝜋∕2)sgn(𝜔).
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Figure A.6 Unit step function. (a) x(t) = u(t). (b) Truncated |X(𝜔)|. The Dirac delta function
has area 𝜋.
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Figure A.6 Unit step function (continued). (c) 𝜃(𝜔). (d) Truncated 20 log (|X(s)|) and
ROC: 𝜎 > 0 (lower grid excluding line at 𝜎 = 0).

• Power signal:

P = lim
T→∞

1
T ∫

T∕2

0
dt = 1∕2. (A.35)

• Phase from X(𝜔) = −j∕𝜔:

𝜃(𝜔) = lim
a→0

tan−1(−1∕a𝜔) = −(𝜋∕2)sgn(𝜔). (A.36)

• Identities:

d
dt

u(t) = 𝛿(t), d
dt

r(t) = u(t), (A.37)

u(t) = 1
2𝜋 ∫

∞

−∞

(
1
j𝜔

+ 𝜋𝛿(𝜔)
)

exp(j𝜔t)d𝜔 = (1∕2)sgn(t) + 1∕2. (A.38)
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A.6.2 Signum Function

Parameters: none. Support: t ∈ . Range: x(t) ∈ {−1, 0, 1}.

x(t) = sgn(t) ≜
⎧
⎪
⎨
⎪
⎩

1, t > 0

0, t = 0

−1, t < 0,

X(s) = 2
s
,

ROC∶ 𝜎 = 0 (except s = 0), poles∶ s = 0, zeros: none,

|X(s)| = 2
√
𝜎

2 + 𝜔
2
, X(𝜔) = 2

j𝜔
(exists in the limit),

|X(𝜔)| = 2
|𝜔|

, 𝜃(𝜔) = −(𝜋∕2)sgn(𝜔).
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Figure A.7 Signum function. (a) x(t) = sgn(t). (b) Truncated |X(𝜔)|.
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Figure A.7 Signum function (continued). (c) 𝜃(𝜔). (d) Truncated 20 log (|X(s)|) and ROC:
𝜎 = 0 (solid line excluding s = 0).

• Power signal:

P = lim
T→∞

1
T ∫

T∕2

−T∕2
dt = 1. (A.39)

• Phase from X(𝜔) = −j2∕𝜔:

𝜃(𝜔) = lim
a→0

tan−1(−2∕a𝜔) = −(𝜋∕2)sgn(𝜔). (A.40)

• Identities:
d
dt

sgn(t) = 2𝛿(t), sgn(t) = 2u(t) − 1, (A.41)

sgn(t) = d
dt
|t| = t∕|t| = |t|∕t (excluding t = 0). (A.42)
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A.6.3 Constant Function (Two-Sided)

Parameters: none. Support: t ∈ . Range: x(t) ∈ {1}.

x(t) = 1, X(s) = does not exist (bilateral),

ROC: none, poles: none, zeros: none,

X(𝜔) = 2𝜋𝛿(𝜔) (exists in the limit),

|X(𝜔)| = 2𝜋𝛿(𝜔), 𝜃(𝜔) = 0.
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Figure A.8 Two-sided constant function. (a) x(t) = 1. (b) |X(𝜔)|. The Dirac delta function
has area 2𝜋.
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• Power signal:

P = lim
T→∞

1
T ∫

T∕2

−T∕2
dt = 1. (A.43)

• Phase: 𝜃(𝜔) = 0 because X(𝜔) is real and nonnegative.

• Identity:

x(t) = 1
2𝜋 ∫

∞

−∞
2𝜋𝛿(𝜔) exp(j𝜔t)d𝜔 = ∫

∞

−∞
𝛿(𝜔)d𝜔. (A.44)

• Unlike the absolute value function, the constant function does not have a bilat-
eral Laplace transform even though the two functions have some similarity:

b{1} = ∫
0

−∞
exp(−st)dt + ∫

∞

0
exp(−st)dt

= (−1∕s) exp(−st)|0−∞ + (−1∕s) exp(−st)|∞0 = −1
s
+ 1

s
. (A.45)

Although the two individual ROCs match those of the absolute value function,
𝜎 = 0 (excluding s = 0) is not the ROC for (A.45) because the two terms can-
cel each other. This result is also derived from the Laplace transform of the
two-sided exponential function:

b{1} = lim
𝛼→0

2𝛼
𝛼

2 − s2
= 0. (A.46)

• Unilateral Laplace transform:

{1} = ∫
∞

0
exp(−st)dt = 1

s
, (A.47)

with ROC 𝜎 > 0. This result is identical to the Laplace transform of the unit
step function. It arises when solving an integro-differential equation where
the integral term has a nonzero initial state. For example, the voltage across a
capacitor may be nonzero 𝑣C(0−), and so it is treated as a constant (not a step
function because this voltage cannot change instantaneously). Its unilateral
Laplace transform is 𝑣C(0−)∕s, which is similar to a step function, but occurs
only because the lower limit of the transform is t = 0−.
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A.6.4 Ramp Function

Parameters: none. Support: t ∈ +. Range: x(t) ∈ +.

x(t) = tu(t), X(s) = 1
s2
,

ROC∶ 𝜎 > 0, poles∶ s = 0 (double), zeros∶ none,

|X(s)| = 1
𝜎

2 + 𝜔
2
, X(𝜔) = − 1

𝜔
2
+ j𝜋𝛿′(𝜔) (exists in the limit),

|X(𝜔)| = 1
𝜔

2
+ 𝜋|𝛿′(𝜔)|, 𝜃(𝜔) = 𝜋sgn(𝜔) + (𝜋∕2)(𝛿[𝜔 − 0−] − 𝛿[𝜔 − 0+]).
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Figure A.9 Ramp function. (a) x(t) = tu(t). (b) Truncated |X(𝜔)|. The coupled upward
arrows represent 𝜋|𝛿′(𝜔)|.
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Figure A.9 Ramp function (continued). (c) 𝜃(𝜔). The solid circle at 𝜔 = 0+ and the × at
𝜔 = 0− represent the phase of the doublet. (d) Truncated 20 log(|X(s)|) and ROC: 𝜎 > 0 (lower
grid excluding the solid line).

• Infinite power signal:

P = lim
T−→∞

1
T ∫

T∕2

0
t2dt = lim

T→∞
1
T
(T3∕24) −→ ∞. (A.48)

• Identities:

r(t) = (t + |t|)∕2, r(t) = u(t) ∗ u(t), u(t) = d
dt

r(t), (A.49)

r(t) = − 1
2𝜋 ∫

∞

−∞
(1∕𝜔2) exp(j𝜔t)d𝜔 + 1

2𝜋 ∫
∞

−∞
j𝜋𝛿′(𝜔) exp(j𝜔t)d𝜔

= − 1
2𝜋 ∫

∞

−∞
(1∕𝜔2) exp(j𝜔t)d𝜔 + t∕2 = (t∕2)sgn(t) + t∕2. (A.50)
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A.6.5 Absolute Value Function (Two-Sided Ramp)

Parameters: none. Support: t ∈ . Range: x(t) ∈ +.

x(t) = |t|, X(s) = 2
s2

,

ROC∶ 𝜎 = 0 (except s = 0), poles∶ s = 0 (double), zeros∶ none,

|X(s)| = 2
𝜎

2 + 𝜔
2
, X(𝜔) = − 2

𝜔
2

(exists in the limit),

|X(𝜔)| = 2
𝜔

2
, 𝜃(𝜔) = 𝜋sgn(𝜔).
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Figure A.10 Absolute value function. (a) x(t) = |t|. (b) Truncated |X(𝜔)|.
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Figure A.10 Absolute value function (continued). (c) 𝜃(𝜔). (d) Truncated 20 log (|X(s)|) and
ROC: 𝜎 = 0 (solid line excluding s = 0).

• Infinite power signal:

P = lim
T→∞

2
T ∫

T∕2

0
t2dt = lim

T→∞
1
T
(T3∕12) −→ ∞. (A.51)

• Fourier transform from ramp functions (using (8.104) and (8.105)):

{|t|} = {r(t)} + {r(−t)}

= [j𝜋𝛿′(𝜔) − 1∕𝜔2] + [−j𝜋𝛿′(𝜔) − 1∕𝜔2] = −2∕𝜔2
, (A.52)

• Identities:

|t| = t sgn(t), |t| = r(t) + r(−t), (A.53)

sgn(t) = |t|∕t = t∕|t|, sgn(t) = d
dt
|t| (excluding t = 0). (A.54)
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A.6.6 Rectangle Function

Parameters: none. Support: t ∈ [−1∕2, 1∕2]. Range: x(t) ∈ {0, 1}.

x(t) = rect(t) ≜ I[−1∕2,1∕2](t), X(s) =
2 sinh(s∕2)

s
, X(𝜔) = sinc(𝜔∕2𝜋),

ROC: entire s-plane, poles: none (removable), zeros: none,

|X(s)| =
2
√

cosh2(𝜎∕2)cos2(𝜔∕2) + sinh2(𝜎∕2)sin2(𝜔∕2)
√
𝜎

2 + 𝜔
2

,

|X(𝜔)| = |sinc(𝜔∕2𝜋)|, 𝜃(𝜔) = 𝜋sgn(𝜔)
∞∑

n=1

rect([|𝜔| − (4n − 1)𝜋]∕2𝜋).
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Figure A.11 Rectangle function. (a) x(t) = rect(t). (b) |X(𝜔)|.
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Figure A.11 Rectangle function (continued). (c) 𝜃(𝜔). (d) 20 log (|X(s)|) and ROC: entire
s-plane (lower grid).

• Energy signal:

E = ∫
1∕2

−1∕2
dt = 1. (A.55)

• Phase: Since X(𝜔) changes sign periodically, the phase function is a square
waveform. The phase is negative during intervals of duration 2𝜋 given by 𝜔 ∈
[k2𝜋, (k + 1)2𝜋] for k = ±1,±3, · · · (odd integer values). These regions can be
represented by the rectangle function rect([|𝜔| − (4n − 1)𝜋]∕2𝜋) for n ∈  .
Scaling the sum of the shifted rectangles by 𝜋sgn(𝜔) gives 𝜃(𝜔).

• Identities:

rect(t) = u(t + 1∕2) − u(t − 1∕2), d
dt

rect(t) = 𝛿(t + 1∕2) − 𝛿(t − 1∕2).
(A.56)
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A.6.7 Triangle Function

Parameters: none. Support: t ∈ [−1, 1]. Range: x(t) ∈ [0, 1].

x(t) = tri(t) ≜ (1 − |t|)I[−1,1](t), X(s) =
4sinh2(s∕2)

s2
,

ROC: entire s-plane, poles: none (removable), zeros: none,

|X(s)| =
4[cosh2(𝜎∕2)cos2(𝜔∕2) + sinh2(𝜎∕2)sin2(𝜔∕2)]

𝜎
2 + 𝜔

2
,

X(𝜔) = |X(𝜔)| = sinc2(𝜔∕2𝜋), 𝜃(𝜔) = 0.
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Figure A.12 Triangle function. (a) x(t) = tri(t). (b) |X(𝜔)|.
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Figure A.12 Triangle function (continued). (c) 20 log (|X(s)|) and ROC: entire s-plane
(lower grid).

• Energy signal:

E = ∫
1

−1
(1 − |t|)2dt = 2∫

1

0
(1 − 2t + t2)dt = 2∕3. (A.57)

• Phase: 𝜃(𝜔) = 0 because X(𝜔) is real and nonnegative.

• Fourier transform from Laplace transform:

X(𝜔) =
4sinh2(j𝜔∕2)

(j𝜔)2
=

[exp(j𝜔∕2) − exp(−j𝜔∕2)]2

(j𝜔)2

=
sin2(𝜋𝜔∕2𝜋)
(𝜋𝜔∕2𝜋)2

= sinc2(𝜔∕2𝜋). (A.58)

(A similar approach is used for the Fourier transform of the rectangle function.)

• Identities:

tri(t) = rect(t) ∗ rect(t), d
dt

tri(t) = −sgn(t)I[−1,1](t). (A.59)
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A.7 EXPONENTIAL FUNCTIONS

A.7.1 Exponential Function (Right-Sided)

Parameters: 𝛼 > 0. Support: t ∈ +. Range: x(t) ∈ [0, 1].

x(t) = exp(−𝛼t)u(t), X(s) = 1
s + 𝛼

,

ROC∶ 𝜎 > −𝛼, poles∶ s = −𝛼, zeros∶ none,

|X(s)| = 1
√
(𝜎 + 𝛼)2 + 𝜔

2
, X(𝜔) = 1

𝛼 + j𝜔
,

|X(𝜔)| = 1
√
𝛼

2 + 𝜔
2
, 𝜃(𝜔) = −tan−1(𝜔∕𝛼).
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Figure A.13 Right-sided exponential function. (a) x(t) = exp(−𝛼t)u(t). (b) Normalized
|X(𝜔)|.
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Figure A.13 Right-sided exponential function (continued). (c) 𝜃(𝜔). (d) Truncated
20 log (|X(s)|) with 𝛼 = 1 and ROC: 𝜎 > −1 (lower grid excluding the solid line).

• Energy signal:

E = ∫
∞

0
exp(−2𝛼t)dt = 1∕2𝛼. (A.60)

• Identities:

d
dt

exp(−𝛼t)u(t) = 𝛿(t) − 𝛼 exp(−𝛼t)u(t), (A.61)

d
dt
[1 − exp(−𝛼t)]u(t) = 𝛼 exp(−𝛼t)u(t). (A.62)
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A.7.2 Exponential Function (Ramped)

Parameters: 𝛼 > 0. Support: t ∈ +. Range: x(t) ∈ [0, 1∕𝛼e].

x(t) = t exp(−𝛼t)u(t), X(s) = 1
(s + 𝛼)2

,

ROC∶ 𝜎 > −𝛼, poles∶ s = −𝛼 (double), zeros∶ none,

|X(s)| = 1
(𝜎 + 𝛼)2 + 𝜔

2
, X(𝜔) = 1

(𝛼 + j𝜔)2
,

|X(𝜔)| = 1
𝛼

2 + 𝜔
2
, 𝜃(𝜔) = −2tan−1(𝜔∕𝛼).
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Figure A.14 Ramped exponential function. (a) x(t) = t exp(−𝛼t)u(t). (b) Normalized |X(𝜔)|.
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Figure A.14 Ramped exponential function (continued). (c) 𝜃(𝜔). (d) Truncated
20 log (|X(s)|) with 𝛼 = 1 and ROC: 𝜎 > −1 (lower grid excluding the solid line).

• Energy signal:

E = ∫
∞

0
t2 exp(−2𝛼t)dt

= −t2 exp(−2𝛼t)∕2𝛼 − exp(−2𝛼t)(2𝛼t + 1)∕4𝛼3|∞0

= 1∕4𝛼3
. (A.63)

• Identities:

d
dt

t exp(−𝛼t)u(t) = (1 − 𝛼t) exp(−𝛼t)u(t), (A.64)

d2

dt2
t exp(−𝛼t)u(t) = 𝛿(t) − (2𝛼 − 𝛼

2t) exp(−𝛼t)u(t). (A.65)



�

� �

�

532 EXTENDED SUMMARIES OF FUNCTIONS AND TRANSFORMS

A.7.3 Exponential Function (Two-Sided)

Parameters: 𝛼 > 0. Support: t ∈ . Range: x(t) ∈ [0, 1].

x(t) = exp(−𝛼|t|), X(s) = −2𝛼
(s − 𝛼)(s + 𝛼)

,

ROC∶ −𝛼 < 𝜎 < 𝛼, poles∶ s = ±𝛼, zeros∶ none,

|X(s)| = 2𝛼
√
(𝛼2 − 𝜎

2 + 𝜔
2)2 + 4𝜎2

𝜔
2
, X(𝜔) = 2𝛼

𝛼
2 + 𝜔

2
,

|X(𝜔)| = 2𝛼
𝛼

2 + 𝜔
2
, 𝜃(𝜔) = 0.
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Figure A.15 Two-sided exponential function. (a) x(t) = exp(−𝛼|t|). (b) Normalized |X(𝜔)|.

http://www.wiley.com/go/linearcircuitsandsystems
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Figure A.15 Two-sided exponential function (continued). (c) Truncated 20 log (|X(s)|) with
𝛼 = 1 and ROC: −1 < 𝜎 < 1 (lower grid excluding the two solid lines).

• Energy signal:

E = ∫
∞

−∞
exp(−2𝛼|t|)dt = 2∫

∞

0
exp(−2𝛼t)dt = 1∕𝛼. (A.66)

• Phase: 𝜃(𝜔) = 0 because X(𝜔) is real and nonnegative.

• Laplace transform from one-sided exponential functions:

b{exp(−𝛼|t|)} = {exp(−𝛼t)u(t)} + b{ exp(𝛼t)u(−t)}

= 1
s + 𝛼

+ 1
−s + 𝛼

= −2𝛼
s2 − 𝛼

2
. (A.67)

• Identity:

d
dt

exp(−𝛼|t|) = −𝛼 exp(−𝛼|t|)sgn(t) (excluding t = 0). (A.68)

The scaled function (𝛼∕2) exp(−𝛼|t|) is the Laplace probability density func-
tion with unit area, zero mean, and variance 2∕𝛼2. The energy result in (A.66)
follows from the unit area property, but with variance 𝜎

2 = 1∕2𝛼2 because of
the factor of 2 in the exponent:

∫
∞

−∞
𝛼 exp(−2𝛼|t|)dt = 1 =⇒ E = 1∕𝛼. (A.69)
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A.7.4 Gaussian Function

Parameters: 𝛼 > 0. Support: t ∈ . Range: x(t) ∈ [0, 1].

x(t) = exp(−𝛼t2), X(s) =
√
𝜋∕𝛼 exp(s2∕4𝛼),

ROC: entire s-plane, poles: none, zeros: none,

|X(s)| =
√
𝜋∕𝛼 exp((𝜎2 − 𝜔

2)∕4𝛼), X(𝜔) =
√
𝜋∕𝛼 exp(−𝜔2∕4𝛼),

|X(𝜔)| =
√
𝜋∕𝛼 exp(−𝜔2∕4𝛼), 𝜃(𝜔) = 0.
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Figure A.16 Gaussian function. (a) x(t) = exp(−𝛼t2). (b) Normalized |X(𝜔)|.
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Figure A.16 Gaussian function (continued). (c) 20 log (|X(s)|) with 𝛼 = 1 and ROC: entire
s-plane (lower grid).

• Energy signal:

E = ∫
∞

−∞
exp(−2𝛼t2)dt =

√
𝜋∕2𝛼. (A.70)

• Phase: 𝜃(𝜔) = 0 because X(𝜔) is real and nonnegative.

• Identity:
d
dt

exp(−𝛼t2) = −2𝛼t exp(−𝛼t2). (A.71)

The scaled function
√
𝛼∕𝜋 exp(−𝛼t2) is the Gaussian probability density func-

tion with unit area, zero mean, and variance 𝜎
2 = 1∕2𝛼. The energy result in

(A.70) follows from the unit area property, but with variance 𝜎2 = 1∕4𝛼 because
of the factor of 2 in the exponent:

∫
∞

−∞

√
2𝛼∕𝜋 exp(−2𝛼t2)dt = 1 =⇒ E =

√
𝜋∕2𝛼. (A.72)
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A.8 SINUSOIDAL FUNCTIONS

A.8.1 Cosine Function (Two-Sided)

Parameters: 𝜔o = 2𝜋fo > 0. Support: t ∈ . Range: x(t) ∈ [−1, 1].

x(t) = cos(𝜔ot), X(s) = does not exist (bilateral),

ROC: none, poles: none, zeros: none,

X(𝜔) = 𝜋𝛿(𝜔 + 𝜔o) + 𝜋𝛿(𝜔 − 𝜔o),

|X(𝜔)| = 𝜋𝛿(𝜔 + 𝜔o) + 𝜋𝛿(𝜔 − 𝜔o), 𝜃(𝜔) = 0.
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Figure A.17 Two-sided cosine function with 𝜔o = 1 rad/s (To = 2𝜋). (a) x(t) = cos(𝜔ot).
(b) |X(𝜔)|. Each Dirac delta function has area 𝜋.
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• Power signal:

P = lim
T→∞

1
T ∫

T∕2

−T∕2
cos2(𝜔ot)dt

= lim
T→∞

1
T ∫

T∕2

−T∕2
(1∕2)[1 + cos(2𝜔ot)]dt = 1∕2. (A.73)

• Phase: 𝜃(𝜔) = 0 because X(𝜔) is real and nonnegative.

• The bilateral Laplace transform does not exist because all terms cancel (as was
the case for the constant function in (A.45)):

b(cos(𝜔ot)) = ∫
0

−∞
cos(𝜔ot) exp(−st)dt + ∫

∞

0
cos(𝜔ot) exp(−st)dt

= 1
2 ∫

0

−∞
[exp(−(s − j𝜔o)t) + exp(−(s + j𝜔o)t)]dt

+1
2 ∫

∞

0
[exp(−(s − j𝜔o)t) + exp(−(s + j𝜔o)t)]dt

= −1
2(s − j𝜔o)

+ −1
2(s + j𝜔o)

+ 1
2(s − j𝜔o)

+ 1
2(s + j𝜔o)

. (A.74)

• Identity (Euler’s inverse formula):

cos(𝜔ot) = 1
2𝜋 ∫

∞

−∞
[𝜋𝛿(𝜔 + 𝜔o) + 𝜋𝛿(𝜔 − 𝜔o)] exp(j𝜔t)d𝜔

= (1∕2)[exp(−j𝜔ot) + exp(j𝜔ot)]. (A.75)
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A.8.2 Cosine Function (Right-Sided)

Parameters: 𝜔o = 2𝜋fo > 0. Support: t ∈ +. Range: x(t) ∈ [−1, 1].

x(t) = cos(𝜔ot)u(t), X(s) = s

s2 + 𝜔
2
o

,

ROC∶ 𝜎 > 0, poles∶ s = ±j𝜔o, zeros∶ s = 0,

|X(s)| =
√
𝜎

2 + 𝜔
2

√
([𝜎2 + (𝜔 + 𝜔o)2][𝜎2 + (𝜔 − 𝜔o)2]

,

X(𝜔) =
j𝜔

𝜔
2
o − 𝜔

2
+ 𝜋

2
𝛿(𝜔 + 𝜔o) +

𝜋

2
𝛿(𝜔 − 𝜔o) (exists in the limit),

|X(𝜔)|= |𝜔|

|𝜔2
o−𝜔

2|
+ 𝜋

2
𝛿(𝜔+𝜔o)+

𝜋

2
𝛿(𝜔 − 𝜔o),

𝜃(𝜔) = (𝜋∕2)sgn(𝜔∕(𝜔2
o−𝜔

2)).

−10 −5 0 5 10

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t (s)

c
o

s
(ω

ot
)u

(t
)

Right−sided cosine function

(a)

Figure A.18 Right-sided cosine function with 𝜔o = 1 rad/s (To = 2𝜋). (a) x(t) =
cos(𝜔ot)u(t).



�

� �

�

SINUSOIDAL FUNCTIONS 539

−10 −5 0 5 10
−200

−150

−100

−50

0

50

100

150

200

ω (rad/s)

θ(
ω

) 
(°

)

θ(ω) of right−sided cosine function

−2 −1
0

1 2

−2

0

2
−30

−20

−10

0

10

20

30

Re(s) = σ 

|X(s)| of right−sided cosine function

Im(s) = ω 

2
0

lo
g
(|

X
(s

)|
)

(c)

(d)

−10 −5 0 5 10
0

0.5

1

1.5

2

2.5

3

3.5

4

ω (rad/s)

|X
(ω

)|

|X(ω)| of right−sided cosine function

(b)

Figure A.18 Right-sided cosine function (continued). (b) Truncated |X(𝜔)|. Each Dirac delta
function has area 𝜋∕2. (c) 𝜃(𝜔). (d) Truncated 20 log (|X(s)|) and ROC: 𝜎 > 0 (lower grid
excluding the solid line).
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• Power signal:

P = lim
T→∞

1
T ∫

T∕2

0
cos2(𝜔ot)dt

= lim
T→∞

1
T ∫

T∕2

0
(1∕2)[1 + cos(2𝜔ot)]dt = 1∕4. (A.76)

• Phase:

𝜃(𝜔) = lim
a→0

tan−1(𝜔∕a(𝜔2
o − 𝜔

2)) = (𝜋∕2)sgn(𝜔∕(𝜔2
o − 𝜔

2)). (A.77)

• Identity:

cos(𝜔ot)u(t) = 1
2𝜋 ∫

∞

−∞

[
j𝜔

𝜔
2
o − 𝜔

2
+ 𝜋

2
𝛿(𝜔 + 𝜔o) +

𝜋

2
𝛿(𝜔 − 𝜔o)

]

exp(j𝜔t)d𝜔

=
j

2𝜋 ∫
∞

−∞

𝜔

𝜔
2
o − 𝜔

2
exp(j𝜔t)d𝜔 + (1∕2) cos(𝜔ot)

= (1∕2) cos(𝜔ot)sgn(t) + (1∕2) cos(𝜔ot), (A.78)

where the signum function causes the two terms to cancel for t < 0.
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A.8.3 Cosine Function (Exponentially Weighted)

Parameters: 𝛼 > 0, 𝜔o = 2𝜋fo > 0. Support: t ∈ +.
Range: x(t) ∈ [− exp(−𝛼𝜋∕𝜔o), 1].

x(t) = exp(−𝛼t) cos(𝜔ot)u(t), X(s) = s + 𝛼

(s + 𝛼)2 + 𝜔
2
o

,

ROC∶ 𝜎 > −𝛼, poles∶ s = −𝛼 ± j𝜔o, zeros∶ s = −𝛼,

|X(s)| =
√
(𝜎 + 𝛼)2 + 𝜔

2

√
[(𝜎 + 𝛼)2 + (𝜔 + 𝜔o)2][(𝜎 + 𝛼)2 + (𝜔 − 𝜔o)2]

,

X(𝜔) =
𝛼 + j𝜔

(𝛼 + j𝜔)2 + 𝜔
2
o

,

|X(𝜔)|=
√
𝛼

2+𝜔
2

√
[𝛼2+(𝜔+𝜔o)2][𝛼2+(𝜔−𝜔o)2]

,

𝜃(𝜔) = tan−1(𝜔∕𝛼) − tan−1((𝜔 + 𝜔o)∕𝛼) − tan−1((𝜔 − 𝜔o)∕𝛼).
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Figure A.19 Exponentially weighted cosine function with 𝜔o = 1 rad/s (To = 2𝜋). (a) x(t) =
exp(−𝛼t) cos(𝜔ot)u(t) with 𝛼 = 1∕2.
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Figure A.19 Exponentially weighted cosine function (continued). (b) |X(𝜔)|. (c) 𝜃(𝜔).
(d) Truncated 20 log (|X(s)|) with 𝛼 = 1 and ROC: 𝜎 > −1 (lower grid excluding the solid
line).
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• Energy signal:

E = ∫
∞

0
exp(−2𝛼t)cos2(𝜔ot)dt

= (1∕2)∫
∞

0
exp(−2𝛼t)[1 + cos(2𝜔ot)]dt

= 1∕4𝛼 + 𝛼∕4(𝛼2 + 𝜔
2
o) = (2𝛼2 + 𝜔

2
o)∕4𝛼(𝛼2 + 𝜔

2
o). (A.79)

• Phase: The fluctuations on each side of the origin are due to tan−1((𝜔 ± 𝜔o)∕𝛼).
• Identities:

d
dt

exp(−𝛼t) cos(𝜔ot)u(t) = 𝛿(t) − [𝛼 cos(𝜔ot) + 𝜔o sin(𝜔ot)] exp(−𝛼t)u(t),

(A.80)

∫
t

0
exp(−𝛼t) cos(𝜔ot)u(t)dt =

exp(−𝛼t)
𝛼

2 + 𝜔
2
o

[𝜔o sin(𝜔ot) − 𝛼 cos(𝜔ot)]u(t)

+ 𝛼

𝛼
2 + 𝜔

2
o

u(t). (A.81)
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A.8.4 Cosine Function (Exponentially Weighted and Ramped)

Parameters: 𝛼 > 0, 𝜔o = 2𝜋fo > 0. Support: t ∈ +. Range: complicated.

x(t) = t exp(−𝛼t) cos(𝜔ot)u(t), X(s) =
(s + 𝛼)2 − 𝜔

2
o

[(s + 𝛼)2 + 𝜔
2
o]2

,

ROC∶ 𝜎 > −𝛼, poles∶ s = −𝛼 ± j𝜔o (double pair), zeros∶ s = −𝛼 ± 𝜔o,

|X(s)| =

√

[(𝜎 + 𝛼)2 − 𝜔
2 − 𝜔

2
o]2 + 4(𝜎 + 𝛼)2𝜔2

[(𝜎 + 𝛼)2 − 𝜔
2 + 𝜔

2
o]2 + 4(𝜎 + 𝛼)2𝜔2

,

X(𝜔) =
(𝛼 + j𝜔)2 − 𝜔

2
o

[(𝛼 + j𝜔)2 + 𝜔
2
o]2

,

|X(𝜔)| =

√

(𝛼2 − 𝜔
2 − 𝜔

2
o)2 + 4𝛼2

𝜔
2

(𝛼2 − 𝜔
2 + 𝜔

2
o)2 + 4𝛼2

𝜔
2

,

𝜃(𝜔) = tan−1(𝜔∕(𝛼 + 𝜔o)) + tan−1(𝜔∕(𝛼 − 𝜔o))

−2tan−1((𝜔 + 𝜔o)∕𝛼) −2tan−1((𝜔 − 𝜔o)∕𝛼).
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Figure A.20 Exponentially weighted and ramped cosine function with 𝜔o = 1 rad/s
(To = 2𝜋). (a) x(t) = t exp(−𝛼t) cos(𝜔ot)u(t) with 𝛼 = 1∕2.
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Figure A.20 Exponentially weighted and ramped cosine function (continued). (b) |X(𝜔)|.
(c) 𝜃(𝜔). (d) Truncated 20 log (|X(s)|) with 𝛼 = 1 and ROC: 𝜎 > −1 (lower grid excluding the
solid line).
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• Energy signal:

E = ∫
∞

0
t2 exp(−2𝛼t)cos2(𝜔ot)dt

= (1∕2)∫
∞

0
t2 exp(−2𝛼t)[1 + cos(2𝜔ot)]dt

= 1∕8𝛼3 + (𝛼3 − 3𝛼𝜔2
o)∕8(𝛼2 + 𝜔

2
o)3. (A.82)

• Phase: The fluctuations on each side of the origin are due to
tan−1((𝜔 ± 𝜔o)∕𝛼).

• Identity:

d
dt

t exp(−𝛼t) cos(𝜔ot)u(t) = (1 − 𝛼t) exp(−𝛼t) cos(𝜔ot)u(t)

+ 𝜔ot exp(−𝛼t) sin(𝜔ot)u(t). (A.83)
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A.8.5 Sine Function (Two-Sided)

Parameters: 𝜔o = 2𝜋fo > 0. Support: t ∈ . Range: x(t) ∈ [−1, 1].

x(t) = sin(𝜔ot), X(s) = does not exist (bilateral),

ROC: none, poles: none, zeros: none,

X(𝜔) = j𝜋𝛿(𝜔 + 𝜔o) − j𝜋𝛿(𝜔 − 𝜔o) (exists in the limit),

|X(𝜔)| = 𝜋𝛿(𝜔 + 𝜔o) + 𝜋𝛿(𝜔 − 𝜔o), 𝜃(𝜔) = (𝜋∕2)(𝛿[𝜔 + 𝜔o] − 𝛿[𝜔 − 𝜔o]).
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Figure A.21 Two-sided sine function with 𝜔o = 1 rad/s (To = 2𝜋). (a) x(t) = sin(𝜔ot).
(b) |X(𝜔)|. Each Dirac delta function has area 𝜋.
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Figure A.21 Two-sided sine function (continued). (c) 𝜃(𝜔). The solid circles at 𝜔 = ±𝜔o

represent the phase of the Dirac delta component.

• Power signal:

P = lim
T→∞

1
T ∫

T∕2

−T∕2
sin2(𝜔ot)dt

= lim
T→∞

1
T ∫

T∕2

−T∕2
(1∕2)[1 − cos(2𝜔ot)]dt = 1∕2. (A.84)

• Phase: 𝜃(𝜔) is nonzero only at ±𝜔o.

• The bilateral Laplace transform does not exist because all terms cancel (as was
the case for the two-sided cosine function):

b(sin(𝜔ot)) = ∫
0

−∞
sin(𝜔ot) exp(−st)dt + ∫

∞

0
sin(𝜔ot) exp(−st)dt

= 1
2j ∫

0

−∞
[exp(−(s − j𝜔o)t) − exp(−(s + j𝜔o)t)]dt

+ 1
2j ∫

∞

0
[exp(−(s − j𝜔o)t) − exp(−(s + j𝜔o)t)]dt

= −1
2j(s − j𝜔o)

− −1
2j(s + j𝜔o)

+ 1
2j(s − j𝜔o)

− 1
2j(s + j𝜔o)

. (A.85)

• Identity (Euler’s inverse formula):

sin(𝜔ot) = 1
2𝜋 ∫

∞

−∞
[𝜋j𝛿(𝜔 + 𝜔o) − 𝜋j𝛿(𝜔 − 𝜔o) exp(j𝜔t)]d𝜔

= (1∕2j)[exp(j𝜔ot) − exp(−j𝜔ot)]. (A.86)
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A.8.6 Sine Function (Right-Sided)

Parameters: 𝜔o = 2𝜋fo > 0. Support: t ∈ +. Range: x(t) ∈ [−1, 1].

x(t) = sin(𝜔ot)u(t), X(s) =
𝜔o

s2 + 𝜔
2
o

,

ROC∶ 𝜎 > 0, poles∶ s = ±j𝜔o, zeros∶ none,

|X(s)| =
𝜔o

√
([𝜎2 + (𝜔 + 𝜔o)2][𝜎2 + (𝜔 − 𝜔o)2]

,

X(𝜔) =
𝜔o

𝜔
2
o − 𝜔

2
+

j𝜋

2
𝛿(𝜔 + 𝜔o) −

j𝜋

2
𝛿(𝜔 − 𝜔o) (exists in the limit),

|X(𝜔)| =
𝜔o

|𝜔2
o − 𝜔

2|
+ 𝜋

2
𝛿(𝜔 + 𝜔o) +

𝜋

2
𝛿(𝜔 − 𝜔o),

𝜃(𝜔) = 𝜋sgn(𝜔∕(𝜔2
o − 𝜔

2)) + (𝜋∕2)(𝛿[𝜔 + 𝜔o] − 𝛿[𝜔 − 𝜔o]).
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Figure A.22 Right-sided sine function with 𝜔o = 1 rad/s (To = 2𝜋). (a) x(t) = sin(𝜔ot)u(t).
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Figure A.22 Right-sided sine function (continued). (b) Truncated |X(𝜔)|. Each Dirac delta
function has area 𝜋∕2. (c) 𝜃(𝜔). The solid circles at 𝜔 = ±𝜔o represent the phase of the Dirac
delta component. (d) Truncated 20 log (|X(s)|) and ROC: 𝜎 > 0 (lower grid excluding the solid
line).
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• Power signal:

P = lim
T→∞

1
T ∫

T∕2

0
sin2(𝜔ot)dt

= lim
T→∞

1
T ∫

T∕2

0
(1∕2)[1 − cos(2𝜔ot)]dt = 1∕4. (A.87)

• Identity:

sin(𝜔ot)u(t) = 1
2𝜋 ∫

∞

−∞

[
j𝜔o

𝜔
2
o − 𝜔

2
+

j𝜋

2
𝛿(𝜔 + 𝜔o) −

j𝜋

2
𝛿(𝜔 − 𝜔o)

]

exp(j𝜔t)d𝜔

=
j

2𝜋 ∫
∞

−∞

𝜔o

𝜔
2
o − 𝜔

2
exp(j𝜔t)d𝜔 + (1∕2) sin(𝜔ot)

= (1∕2) sin(𝜔ot)sgn(t) + (1∕2) sin(𝜔ot), (A.88)

where the signum function causes the two terms to cancel for t < 0.
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A.8.7 Sine Function (Exponentially Weighted)

Parameters: 𝛼 > 0, 𝜔o = 2𝜋fo > 0. Support: t ∈ +. Range: complicated.

x(t) = exp(−𝛼t) sin(𝜔ot)u(t), X(s) =
𝜔o

(s + 𝛼)2 + 𝜔
2
o

,

ROC∶ 𝜎 > −𝛼, poles∶ s = −𝛼 ± j𝜔o, zeros∶ none,

|X(s)| =
𝜔o

√
[(𝜎 + 𝛼)2 + (𝜔 + 𝜔o)2][(𝜎 + 𝛼)2 + (𝜔 − 𝜔o)2]

,

X(𝜔) =
𝜔o

(𝛼 + j𝜔)2 + 𝜔
2
o

,

|X(𝜔)| =
𝜔o

√
[𝛼2 + (𝜔 + 𝜔o)2][𝛼2 + (𝜔 − 𝜔o)2]

,

𝜃(𝜔) = −tan−1((𝜔 + 𝜔o)∕𝛼) − tan−1((𝜔 − 𝜔o)∕𝛼).
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Figure A.23 Exponentially weighted sine function with 𝜔o = 1 rad/s (To = 2𝜋).
(a) x(t) = exp(−𝛼t) sin(𝜔ot)u(t) with 𝛼 = 1∕2.
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Figure A.23 Exponentially weighted sine function (continued). (b) Normalized |X(𝜔)|.
(c) 𝜃(𝜔). (d) Truncated 20 log (|X(s)|) with 𝛼 = 1 and ROC: 𝜎 > −1 (lower grid excluding
the solid line).
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• Energy signal:

E = ∫
∞

0
exp(−2𝛼t)sin2(𝜔ot)dt

= (1∕2)∫
∞

0
exp(−2𝛼t)[1 − cos(2𝜔ot)]dt

= 1∕4𝛼 − 𝛼∕4(𝛼2 + 𝜔
2
o) = 𝜔

2
o∕4𝛼(𝛼2 + 𝜔

2
o). (A.89)

• Phase: The fluctuations on each side of the origin are due to tan−1((𝜔 ± 𝜔o)∕𝛼).
• Maximum magnitude:

|X(𝜔)|max =

{
𝜔o∕(𝛼2 + 𝜔

2
o) at 𝜔 = 0, 𝛼 ≥ 𝜔o

1∕2𝛼 at 𝜔 = ±
√

𝜔
2
o − 𝛼

2
, 𝛼 < 𝜔o.

(A.90)

• Identities:

d
dt

exp(−𝛼t) sin(𝜔ot)u(t) = [𝜔o cos(𝜔ot) − 𝛼 sin(𝜔ot)] exp(−𝛼t)u(t), (A.91)

∫
t

0
exp(−𝛼t) sin(𝜔ot)u(t)dt = −

exp(−𝛼t)
𝛼

2 + 𝜔
2
o

[𝜔o cos(𝜔ot) + 𝛼 sin(𝜔ot)]u(t)

+
𝜔o

𝛼
2 + 𝜔

2
o

u(t). (A.92)
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A.8.8 Sine Function (Exponentially Weighted and Ramped)

Parameters: 𝛼 > 0, 𝜔o = 2𝜋fo > 0. Support: t ∈ +. Range: complicated.

x(t) = t exp(−𝛼t) sin(𝜔ot)u(t), X(s) =
2𝜔o(s + 𝛼)

[(s + 𝛼)2 + 𝜔
2
o]2

,

ROC: 𝜎 > −𝛼, poles∶ s = −𝛼 ± j𝜔o (double pair), zeros∶ s = −𝛼,

|X(s)| =
2𝜔o

√
(𝜎 + 𝛼)2 + 𝜔

2

[(𝜎 + 𝛼)2 − 𝜔
2 + 𝜔

2
o]2 + 4(𝜎 + 𝛼)2𝜔2

,

X(𝜔) =
2𝜔o(𝛼 + j𝜔)

[(𝛼 + j𝜔)2 + 𝜔
2
o]2

,

|X(𝜔)| =
2𝜔o

√
𝛼

2 + 𝜔
2

(𝛼2 − 𝜔
2 + 𝜔

2
o)2 + 4𝛼2

𝜔
2
,

𝜃(𝜔) = tan−1(𝜔∕𝛼) − 2tan−1((𝜔 + 𝜔o)∕𝛼) − 2tan−1((𝜔 − 𝜔o∕𝛼).
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Figure A.24 Exponentially weighted and ramped sine function with 𝜔o = 1 rad/s (To = 2𝜋).
(a) x(t) = t exp(−𝛼t) sin(𝜔ot)u(t) with 𝛼 = 1∕2.
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Figure A.24 Exponentially weighted and ramped sine function (continued). (b) |X(𝜔)|.
(c) 𝜃(𝜔). (d) Truncated 20 log(|X(s)|) with 𝛼 = 1 and ROC: 𝜎 > −1 (lower grid excluding the
solid line).
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• Energy signal:

E = ∫
∞

0
t2 exp(−2𝛼t)sin2(𝜔ot)dt

= (1∕2)∫
∞

0
t2 exp(−2𝛼t)[1 − cos(2𝜔ot)]dt

= 1∕8𝛼3 − (𝛼3 − 3𝛼𝜔2
o)∕8(𝛼2 + 𝜔

2
o)3. (A.93)

• Phase: The fluctuations on each side of the origin are due to tan−1((𝜔 ± 𝜔o)∕𝛼).
• Identity:

d
dt

t exp(−𝛼t) sin(𝜔ot)u(t) = (1 − 𝛼t) exp(−𝛼t) sin(𝜔ot)u(t)

+ 𝜔ot exp(−𝛼t) cos(𝜔ot)u(t). (A.94)
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APPENDIX B

INVERSE LAPLACE TRANSFORMS

In this appendix, we provide additional unilateral Laplace transform pairs in
Table B.1 and B.2, giving the s-domain expression first. These tables are useful
because they include results with multiple poles, and so a partial fraction expansion
(PFE) is avoided (though the reader should be familiar with that approach for
finding inverse Laplace transforms of rational functions). All functions in this table
are right-sided, which means the region of convergence (ROC) lies to the right of
the pole with the smallest magnitude on the left-half of the s-plane, including the
imaginary axis. For a transform with three nonzero poles, they have been arranged
as −c < −b < −a such that the ROC is 𝜎 = Re(s) > −a.

In the following sections, we consider three Laplace transform pairs, describe the
corresponding ordinary differential equations (ODEs), and give integrator implemen-
tations for the systems, one of which is a double integrator modified by feedback.

B.1 IMPROPER RATIONAL FUNCTION

Consider the improper Laplace transform in Table B.1:

H(s) = s + d
s + a

, (B.1)

Mathematical Foundations for Linear Circuits and Systems in Engineering, First Edition. John J. Shynk.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
Companion Website: http://www.wiley.com/go/linearcircuitsandsystems
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TABLE B.1 Inverse Laplace Transforms: Step, Ramp, and Exponential

Laplace Transform X(s) Time-Domain x(t) ROC

1 𝛿(t) s ∈ 
s 𝛿

′(t) s ∈ 
1∕s u(t) 𝜎 > 0

1∕s2 tu(t) 𝜎 > 0

1∕sn [tn−1∕(n − 1)!]u(t) (n ∈  ) 𝜎 > 0

1∕(s + a) exp(−at)u(t) 𝜎 > −a

1∕(s + a)2 t exp(−at)u(t) 𝜎 > −a

1∕(s + a)n [tn−1∕(n − 1)!] exp(−at)u(t) (n ∈  ) 𝜎 > −a

(s + d)∕(s + a) 𝛿(t) + (d − a) exp(−at)u(t) 𝜎 > −a

1∕s(s + a) (1∕a)[1 − exp(−at)]u(t) 𝜎 > 0

(s + d)∕s(s + a) (1∕a2)[d − d exp(−at)
+ (a2 − ad)t exp(−at)]u(t) 𝜎 > 0

1∕s2(s + a) (1∕a2)[exp(−at) + at − 1]u(t) 𝜎 > 0

1∕s(s + a)2 (1∕a2)[1 − exp(−at) − at exp(−at)]u(t) 𝜎 > 0

1∕(s + a)(s + b) [1∕(b − a)][exp(−at) − exp(−bt)]u(t) 𝜎 > −a

(s + d)∕(s + a)(s + b) [1∕(b − a)][(d − a) exp(−at)
− (d − b) exp(−bt)]u(t) 𝜎 > −a

1∕s(s + a)(s + b) (1∕ab)[1 − b exp(−at)∕(b − a)
+ a exp(−bt)∕(b − a)]u(t) 𝜎 > 0

(s + d)∕s(s + a)(s + b) (1∕ab)[d − b(d − a) exp(−at)∕(b − a)
+ a(d − b) exp(−bt)∕(b − a)]u(t) 𝜎 > 0

1∕(s + a)(s + b)(s + c) [exp(−at)∕(c − a)(b − a)
+ exp(−bt)∕(c − b)(a − b)
+ exp(−ct)∕(b − c)(a − c)]u(t) 𝜎 > −a

(s + d)∕(s + a)(s + b)(s + c) [(d − a) exp(−at)∕(c − a)(b − a)
+ (d − b) exp(−bt)∕(c − b)(a − b)
+ (d − c) exp(−ct)∕(b − c)(a − c)]u(t) 𝜎 > −a

which has a real pole at s = −a and a real zero at s = −d. Long division yields

H(s) = 1 + d − a
s + a

, (B.2)

and so the inverse Laplace transform is

h(t) = 𝛿(t) − (d − a) exp(−at)u(t). (B.3)

This impulse response function includes a direct path from the input x(t) to the output
y(t) of the system. An integrator implementation of the system is shown in Figure B.1,
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TABLE B.2 Inverse Laplace Transforms: Sinusoidal and Hyperbolic

Laplace Transform X(s) Time-Domain x(t) ROC

𝜔o∕(s2 + 𝜔
2
o) sin(𝜔ot)u(t) 𝜎 > 0

s∕(s2 + 𝜔
2
o) cos(𝜔ot)u(t) 𝜎 > 0

a∕(s2 − b2) sinh(bt)u(t) 𝜎 > |b|

s∕(s2 − b2) cosh(bt)u(t) 𝜎 > |b|

(s + d)𝜔o∕(s2 + 𝜔
2
o)

√
d2 + 𝜔

2
o sin(𝜔ot + 𝜃)u(t)

with 𝜃 = tan−1(𝜔o∕d) 𝜎 > 0

(s − 𝜔
2
o∕d)d∕(s2 + 𝜔

2
o)

√
d2 + 𝜔

2
o cos(𝜔ot + 𝜃)u(t)

with 𝜃 = tan−1(𝜔o∕d) 𝜎 > 0

[s sin(𝜃) + 𝜔o cos(𝜃)]∕(s2 + 𝜔
2
o) sin(𝜔ot + 𝜃)u(t) 𝜎 > 0

[s cos(𝜃) − 𝜔o sin(𝜃)]∕(s2 + 𝜔
2
o) cos(𝜔ot + 𝜃)u(t) 𝜎 > 0

𝜔
2
o∕s(s2 + 𝜔

2
o) [1 − cos(𝜔ot)]u(t) 𝜎 > 0

2𝜔os∕(s2 + 𝜔
2
o)2 t sin(𝜔ot)u(t) 𝜎 > 0

(s2 − 𝜔
2
o)∕(s2 + 𝜔

2
o)2 t cos(𝜔ot)u(t) 𝜎 > 0

𝜔
3
o∕s2(s2 + 𝜔

2
o) [𝜔ot − sin(𝜔ot)]u(t) 𝜎 > 0

2𝜔3
o∕(s2 + 𝜔

2
o)2 [sin(𝜔ot) − 𝜔ot cos(𝜔ot)]u(t) 𝜎 > 0

(s2 − 𝜔
2
o)s∕(s2 + 𝜔

2
o)2 [cos(𝜔ot) − 𝜔ot sin(𝜔ot)]u(t) 𝜎 > 0

2𝜔os2∕(s2 + 𝜔
2
o)2 [sin(𝜔ot) + 𝜔ot cos(𝜔ot)]u(t) 𝜎 > 0

(s2 + 3𝜔2
o)s∕(s2 + 𝜔

2
o)2 [cos(𝜔ot) + 𝜔ot sin(𝜔ot)]u(t) 𝜎 > 0

(𝜔2
o1 − 𝜔

2
o2)∕(s

2 + 𝜔
2
o1)(s

2 + 𝜔
2
o2) [(1∕𝜔o2) sin(𝜔o2t)

− (1∕𝜔o1) sin(𝜔o1t)]u(t) (𝜔o1 ≠ 𝜔o2) 𝜎 > 0

𝜔o∕[(s + a)2 + 𝜔
2
o] exp(−at) sin(𝜔ot)u(t) 𝜎 > −a

(s + a)∕[(s + a)2 + 𝜔
2
o] exp(−at) cos(𝜔ot)u(t) 𝜎 > −a

b∕[(s − a)2 + b2] exp(−at) sinh(bt)u(t) 𝜎 > −a + |b|

(s − a)∕[(s − a)2 + b2] exp(−at) cosh(bt)u(t) 𝜎 > −a + |b|

(s + d)𝜔o∕[(s + a)2 + 𝜔
2
o] [𝜔o cos(𝜔ot) + (d − a) sin(𝜔ot)]

× exp(−at)u(t) 𝜎 > −a

[(s + a)2 − 𝜔
2
o]∕[(s + a)2 + 𝜔

2
o]2 t exp(−at) cos(𝜔ot)u(t) 𝜎 > −a

2𝜔o(s + a)∕[(s + a)2 + 𝜔
2
o]2 t exp(−at) sin(𝜔ot)u(t) 𝜎 > −a

Output

y(t)

Input

x(t)

d−a
−a

v(t)v(t)
dt
d

Σ Σ

Figure B.1 Integrator implementation of an improper first-order transfer function.
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which is similar to the one given earlier in Figure 6.2 except for the direct input/output
path (and we have assumed zero initial conditions). The corresponding ODE for the
ratio in (B.2 ) is

d
dt
𝑣(t) + a𝑣(t) = (d − a)x(t), (B.4)

where 𝑣(t) is the output of the integrator.

B.2 UNBOUNDED SYSTEM

Next, we examine the following Laplace transform in Table B.2:

H(s) =
2𝜔os

(s2 + 𝜔
2
o)2

, (B.5)

with impulse response function

h(t) = t sin(𝜔ot)u(t). (B.6)

This system grows unbounded because of the double poles, which yield the ramp t.
Since the poles are located on the imaginary axis, there is no exponential damping.
Note that the final value theorem does not hold for this system; it gives a value of 0,
which is obviously incorrect. This is due to the undamped sinusoidal nature of h(t),
which has an average value of 0 over one period.

The ODE for this system is derived by rewriting H(s) = Y(s)∕X(s) as

(s4 + 2𝜔2
os2 + 𝜔

4
o)Y(s) = 2𝜔osX(s), (B.7)

which yields
d4

dt4
y(t) + 2𝜔2

o
d2

dt2
y(t) + 𝜔

4
oy(t) = 2𝜔o

d
dt

x(t). (B.8)

An integrator implementation of this system is shown in Figure B.2, which also
includes a differentiator for the input. It is the repeated nature of the two sets of
double integrators along with the specific feedback coefficients that cause the system
to be unstable. This is due to the fact that two cascaded integrators without feedback
have Laplace transform 1∕s2, which corresponds to the ramp function r(t).

We mention that it is possible to remove the differentiator so that only integrators
are used in the implementation. This is easily done by noting in Figure B.2 that the
input signal is not fed back until after the second integrator. Thus, we can move x(t)
to the right of the first integrator and drop the derivative as shown in Figure B.3. Note,
however, that the first two integrator output labels are no longer the same as those in
Figure B.2 because the derivative of x(t) is no longer present in the first summation.
The second set of integrator labels is unchanged because the signals in that section
of the implementation are the same as before.
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Input

x(t)

Output

y(t)2ωo

−ωo
4−2ωo

2

d
dt

dt4
d4

y(t)
dt3
d3

y(t)
dt2
d2

y(t) y(t)
dt

d

Σ

Figure B.2 Integrator/differentiator implementation of an unstable system with repeated
poles.

Input

x(t) Output

y(t)
y(t)

dt

d

Σ Σ

2ωo

dt2
d2

y(t)

−ωo
4−2ωo

2

Figure B.3 Integrator-only implementation of an unstable system with repeated poles.

B.3 DOUBLE INTEGRATOR AND FEEDBACK

As mentioned in the previous section, the inverse Laplace transform of 1∕s2 is the
ramp function r(t), which obviously grows without bound. Here, we demonstrate how
to modify the pole locations with feedback as illustrated in Figure B.4. Feedback is

Input

x(t)

Input

x(t)

Output

y(t)

Output

y(t)v(t)

∑

(a)

(b)

−ωo
2

Figure B.4 (a) Double integrator implementation of the ramp function h(t) = r(t) and (b)
using feedback to modify the pole locations.
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important for stability in control systems; this topic was not covered in Chapter 7,
though an example is considered in Problem 7.26.

The system in Figure B.4(b) is analyzed in the s-domain by first writing V(s) =
X(s) − aY(s) for the intermediate signal and then substituting this into the expression
for the output:

Y(s) = V(s)∕s2 = [X(s) − 𝜔
2
oY(s)]∕s2. (B.9)

Solving for Y(s) yields

Y(s)(1 + 𝜔
2
o∕s2) = X(s)∕s2 =⇒ H(s) = Y(s)∕X(s) = 1∕(s2 + 𝜔

2
o), (B.10)

whose poles are located at s = ±
√

−𝜔2
o =⇒ s1, s2 = ±j𝜔o, and the impulse

response function is now sinusoidal:

h(t) = (1∕𝜔o) sin(𝜔ot)u(t), (B.11)

which is a marginally stable system. Observe that negative feedback is used in this
implementation. If +𝜔2

o is used instead, then the poles are located at s1, s2 = ±𝜔o,
corresponding to an unstable system because one of them is located on the right-half
of the s-plane. This simple example illustrates how feedback can be used to modify
a system and the importance of using negative feedback for proper pole placement.

http://www.wiley.com/go/linearcircuitsandsystems
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APPENDIX C

IDENTITIES, DERIVATIVES, AND
INTEGRALS

C.1 TRIGONOMETRIC IDENTITIES

• Basic identities:

cos(x) cos(y) = (1∕2)[cos(x − y) + cos(x + y)], (C.1)

sin(x) sin(y) = (1∕2)[cos(x − y) − cos(x + y)], (C.2)

sin(x) cos(y) = (1∕2)[sin(x − y) + sin(x + y)], (C.3)

cos(x ± y) = cos(x) cos(y) ∓ sin(x) cos(y), (C.4)

sin(x ± y) = sin(x) cos(y) ± cos(x) sin(y), (C.5)

cos(x ± 𝜋∕2) = ∓ sin(x), sin(x ± 𝜋∕2) = ± cos(x), (C.6)

sin(tan−1(x)) = x
√

1 + x2
, cos(tan−1(x)) = 1

√
1 + x2

, (C.7)

Mathematical Foundations for Linear Circuits and Systems in Engineering, First Edition. John J. Shynk.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
Companion Website: http://www.wiley.com/go/linearcircuitsandsystems

http://www.wiley.com/go/linearcircuitsandsystems
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tan(x) = sin(x)
cos(x)

, tan−1(x) − x = −tan−1(x), (C.8)

cos2(x) = (1∕2)[1 + cos(2x)], sin2(x) = (1∕2)[1 − cos(2x)]. (C.9)

• Rectangular and polar forms:

r cos(x + 𝜙) = r cos(𝜙) cos(x) − r sin(𝜙) sin(x), (C.10)

≜ a cos(x) − b sin(x), (C.11)

a = r cos(𝜙), b = r sin(𝜙), r =
√

a2 + b2
, 𝜙 = tan−1(b∕a). (C.12)

• Euler’s formulas:

cos(x) = (1∕2)[exp (jx) + exp (−jx)], (C.13)

sin(x) = (1∕2j)[exp (jx) − exp (−jx)], (C.14)

exp (± jx) = cos(x) ± j sin(x), exp (j𝜋) = −1. (C.15)

• Hyperbolic functions:

sinh(x) = (1∕2)[exp (x) − exp (−x)], (C.16)

cosh(x) = (1∕2)[exp (x) + exp (−x)], (C.17)

tanh(x) = sinh(x)
cosh(x)

=
exp (2x) − 1

exp (2x) + 1
, (C.18)

cosh2(x) − sinh2(x) = 1, cosh(x) ± sinh(x) = exp (±x), (C.19)

cosh(x + y) = cosh(x) cosh(y) + sinh(x) sinh(y), (C.20)

sinh(x + y) = sinh(x) cosh(y) + cosh(x) sinh(y), (C.21)

cos(x + jy) = cos(x) cosh(y) − j sin(x) sinh(y), (C.22)

sin(x + jy) = sin(x) cosh(y) + j cos(x) sinh(y). (C.23)

C.2 SUMMATIONS

• Infinite sums:
∞∑

n=0

xn = 1
1 − x

, |x| < 1, (C.24)

∞∑

n=m

xn = xm

1 − x
, |x| < 1, (C.25)
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∞∑

n=1

nxn = x
(1 − x)2

, |x| < 1, (C.26)

∞∑

n=1

n2xn = x(1 + x)
(1 − x)3

, |x| < 1. (C.27)

• Finite sums:

N∑

n=0

xn =

{(
1 − xN+1

)
∕(1 − x), x ≠ 1

N + 1, x = 1,
(C.28)

N∑

n=1

nxn =

{
x
[
1 − (N + 1)xN + NxN+1

]
∕(1 − x)2, x ≠ 1

(1∕2)N(N + 1), x = 1.
(C.29)

C.3 MISCELLANEOUS

• Minimum:
min(x, y) ≜ (1∕2)(x + y − |x − y|), (C.30)

• Maximum:
max(x, y) ≜ (1∕2)(x + y + |x − y|), (C.31)

• Factorial:
n! ≜ n × (n − 1) × · · · × 2 × 1, (C.32)

• Binomial coefficient: ( n
m

) ≜ n!
m!(n − m)!

. (C.33)

C.4 COMPLETING THE SQUARE

The quadratic equation
f (x) = ax2 + bx + c, (C.34)

can be rewritten in the form

f (x) = a(x + d1)2 + d2, (C.35)

with
d1 = b∕2a, d2 = c − b2∕4a. (C.36)
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This result is verified by factoring a in (C.34), adding and subtracting b2∕4a2, and
rearranging the expression as follows:

f (x) = a
[
x2 + (b∕a)x

]
+ c

= a
[
x2 + (b∕a)x + b2∕4a2 − b2∕4a2] + c

= a
[
x2 + (b∕a)x + b2∕4a2] + c − b2∕4a, (C.37)

which becomes
f (x) = a(x + b∕2a)2 + c − b2∕4a (C.38)

and matches (C.35).

C.5 QUADRATIC AND CUBIC FORMULAS

The two roots of the quadratic equation in (C.34) are given by the quadratic formula:

x = −b ±
√

b2 − 4ac
2a

. (C.39)

The types of roots are determined by examining the discriminant

Δ ≜ b2 − 4ac, (C.40)

resulting in three different cases:

Δ > 0 =⇒ two distinct real roots, (C.41)

Δ = 0 =⇒ two repeated real roots, (C.42)

Δ < 0 =⇒ two complex conjugate roots. (C.43)

These are illustrated in Figure C.1(a), where we find that the function f (x) crosses the
horizontal axis (f (x) = 0) twice (the solid line, distinct real roots) or not at all (the
dash-dot line, complex roots). For repeated real roots (the dashed line), the function
touches the horizontal axis at one point. Since c = 1 for all three cases, the three
curves intersect each other at x = 0 with value f (0) = 1.

The general form for a cubic equation is

f (x) = ax3 + bx2 + cx + d = 0, (C.44)

which has three roots. The discriminant is

Δ ≜ 18abcd + b2c2 − 4b3d − 4ac3 − 27a2d2, (C.45)
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−3 −2 −1 0 1 2
−2

−1

0

1

2

3

4

x

f(
x)

Quadratic equations

a = c = 1, b = 2, Δ = 0
a = c = 1, b = 3, Δ = 5 

a = b = c = 1, Δ = −3 

−4 −2 0 2 4

x

6
−8

−6

−4

−2

0

2

4

6

8

f(
x)

Cubic equations

a = b = d = 1, c = −4, Δ = 169
a = 2, b = −3, c = 0, d = 1, Δ = 0
a = 1, b = −3, c = 3, d = −1, Δ = 0
a = b = c = d = 1, Δ = −16 

(a)

(b)

Figure C.1 (a) Quadratic equations. (b) Cubic equations.

and the three different cases are

Δ > 0 =⇒ three distinct real roots, (C.46)

Δ = 0 =⇒ one real root and two repeated real roots, (C.47)

or three repeated real roots, (C.48)

Δ < 0 =⇒ one real root and two complex conjugate roots. (C.49)
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Two types of repeated roots can occur when Δ = 0 as illustrated in Figure C.1(b),
where the function f (x) crosses the horizontal axis three times (the solid line, distinct
real roots) or only once (the dotted line, one real root and two complex conjugate
roots). When there are one real root and two repeated real roots, the function crosses
the horizontal axis once and touches it at another value of x (the dashed line). For
three repeated real roots, the function touches the horizontal axis at a one point (the
dash-dotted line). Since d = 1 for three of the cases, those curves intersect each other
at x = 0 with value f (0) = 1.

Example C.1 The three types of roots for a quadratic equation are easily verified
by examples. (i) Two distinct real roots: f (x) = (x − 1)(x − 2) = x2 − 3x + 2. (ii) Two
repeated real roots: f (x) = (x − 1)2 = x2 − 2x + 1. (iii) Two complex conjugate roots:
f (x) = (x − j)(x + j) = x2 + 1. These are the only cases; it is not possible to have a
single complex root if the coefficients {a, b, c} are real-valued. The discriminants
are Δ = {1, 0,−4}, respectively. The four types of roots for a cubic equation are also
verified by examples. (i) Three distinct real roots: f (x) = (x − 1)(x − 2)(x − 3) = x3 −
6x2 + 11x − 6. (ii) One real root and two repeated real roots: f (x) = (x − 1)(x − 2)2
= x3 − 5x2 + 8x − 4. (iii) Three repeated real roots: f (x) = (x − 1)3 = x3 −
3x2 + 3x − 1. (iv) One real root and two complex conjugate roots: f (x) =
(x − 1)(x − j)(x + j) = x3 − x2 + x − 1. The discriminants are Δ = {4, 0, 0,−16},
respectively.

The three roots of a cubic equation can be derived using different methods; we
present one approach known as Cardan’s solution assuming a = 1. By first defining

p ≜ c − b2∕3, q ≜ 2b3∕27 − bc∕3 + d, r ≜ −1∕2 + j
√

3∕2, (C.50)

and

s1 =
3
√

−q∕2 +
√

q2∕4 + p3∕27, s2 =
3
√

−q∕2 −
√

q2∕4 + p3∕27, (C.51)

the three roots are

x1 = −b∕3 + s1 + s2, (C.52)

x2 = −b∕3 + rs1 + r∗s2, (C.53)

x3 = −b∕3 + r∗s1 + rs2, (C.54)

where r∗ is the complex conjugate of r.

Example C.2 We verify the formulas in (C.52)–(C.54) for two of the cases in the
previous example:

f (x) = (x − 1)3 = x3 − 3x2 + 3x − 1 =⇒ p = q = 0, (C.55)
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which yield s1 = s2 = 0 and x1 = x2 = x3 = −(−3)∕3 = 1. For

f (x) = (x − 1)(x − 2)2 = x2 − 5x2 + 8x − 4 =⇒ p = −1∕3, q ≈ 0.0741, (C.56)

we have s1 = s2 = −1∕3 (the square roots in (C.51) are 0). Since s1 = s2:

x1 = 5∕3 − 2∕3 = 1, (C.57)

x2 = 5∕3 − (1∕3)(r + r∗) = 5∕3 − (2∕3)Re(r)

= 5∕3 + 1∕3 = 2 = x3. (C.58)

This example illustrates additional properties of the cubic equation regarding
repeated roots. For Δ = 0, there are three repeated roots when p = q = 0 because
s1 = s2 = 0. These are determined completely by the b coefficient: x1 = x2 = x3 =
−b∕3. When the square roots in (C.51) are 0, we have the case of one real root and two
repeated roots with s1 = s2 = 3

√
q∕2 such that rs1 + r∗s2 = s1(r + r∗) = 2s1Re(r).

Thus, x1 = −b∕3 + 2s1 and x2 = x3 = −b∕3 − s1.

C.6 DERIVATIVES

• Product rules:

d
dx

f (x)g(x) = f ′(x)g(x) + f (x)g′(x), (C.59)

d
dx

f (x)g(x)h(x) = f ′(x)g(x)h(x) + f (x)g′(x)h(x) + f (x)g(x)h′(x), (C.60)

d2

dx2
f (x)g(x) = 2f ′(x)g′(x) + f (x) d2

dx2
g(x) + g(x) d2

dx2
f (x), (C.61)

d
dx

f m(x)gn(x) = f m−1(x)gn−1(x)
[
mg(x)f ′(x) + nf (x)g′(x)

]
, (C.62)

dn

dxn
f (x)g(x) =

n∑

m=0

( n
m

) dn−m

dxn−m
f (x) dm

dxm
g(x), (C.63)

with d0f (x)∕dx0 ≜ f (x).
• Quotient rules:

d
dx

f (x)
g(x)

=
g′(x)
f (x)

−
f (x)g′(x)

g2(x)
, (C.64)

d
dx

f m(x)
gn(x)

=
f m−1(x)
gn−1(x)

[
mg(x)f ′(x) − nf (x)g′(x)

]
. (C.65)
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• Exponent rules:

d
dx

bf (x) = ln(b)bf (x) d
dx

f (x), (C.66)

d
dx

f g(x)(x) = g(x)f g(x)−1(x) d
dx

f (x) + ln(f (x))f g(x)(x) d
dx

g(x). (C.67)

• Chain rules:

d
dx

f (g(x)) = g′(x) d
dg(x)

f (g(x)), (C.68)

d2

dx2
f (g(x)) = d2

dx
g(x) d

dg(x)
f (g(x)) +

[ d
dx

g(x)
]2 d2

dg(x)2
f (g(x)). (C.69)

• Leibniz’s integral rules:

𝜕

𝜕𝑣 ∫
b(𝑣)

a(𝑣)
f (u, 𝑣)du = ∫

b(𝑣)

a(𝑣)

𝜕

𝜕𝑣

f (u, 𝑣)du + f (b(𝑣), 𝑣) 𝜕
𝜕𝑣

b(𝑣) − f (a(𝑣), 𝑣) 𝜕
𝜕𝑣

a(𝑣),

(C.70)

d
dx2 ∫

x2

x1

f (x)dx = f (x2), (C.71)

d
dx1 ∫

x2

x1

f (x)dx = −f (x1). (C.72)

• Basic derivatives:

d
dx

xn = nxn−1, (C.73)

d
dx

√
x = 1∕2

√
x, (C.74)

d
dx

exp (𝛼x) = 𝛼 exp (𝛼x), (C.75)

d
dx

ln(x) = 1∕x, (C.76)

d
dx

logb(x) = logb(e)∕x. (C.77)

• Trigonometric:

d
dx

cos(x) = − sin(x), d
dx

sin(x) = cos(x), (C.78)

d
dx

cos−1(x) = − 1
√

1 − x2
,

d
dx

sin−1(x) = 1
√

1 − x2
, (C.79)
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d
dx

tan(x) = sec2(x), d
dx

tan−1(x) = 1
1 + x2

, (C.80)

d
dx

cosh(x) = sinh(x), d
dx

sinh(x) = cosh(x). (C.81)

C.7 INDEFINITE INTEGRALS

• Polynomial:

∫
dx

a + bx
= (1∕b) ln(a + bx), (C.82)

∫
x

a + bx
dx = x∕b − (a∕b2) ln(a + bx), (C.83)

∫
dx

(a + bx)2
= −1∕(a + bx)b, (C.84)

∫
x

(a + bx)2
dx = (1∕b2)

[
ln(a + bx) + a∕(a + bx)

]
, (C.85)

∫
dx

a2 + x2
= (1∕a)tan−1(x∕a). (C.86)

• Logarithmic:

∫
dx
x

= ln(x), (C.87)

∫
f ′(x)
f (x)

dx = ln(f (x)), (C.88)

∫ ln(x)dx = x ln(x) − x, (C.89)

∫ x ln(x)dx = (x2∕2) ln(x) − x2∕4. (C.90)

• Exponential:

∫ exp (𝛼x)dx = exp (𝛼x)∕𝛼, (C.91)

∫ x exp (𝛼x)dx =
[
(𝛼x − 1)∕𝛼2] exp (𝛼x), (C.92)

∫ b𝛼xdx = b𝛼x∕𝛼 ln(b). (C.93)
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• Trigonometric:

∫ cos(ax)dx = (1∕a) sin(x), (C.94)

∫ sin(ax)dx = −(1∕a) cos(x), (C.95)

∫ x cos(ax)dx = (1∕a2) cos(ax) + (x∕a) sin(ax), (C.96)

∫ x sin(ax)dx = (1∕a2) sin(ax) − (x∕a) cos(ax), (C.97)

∫ x2 cos(ax)dx = (2x∕a2) cos(ax) +
[
(a2x2 − 2)∕a3] sin(ax), (C.98)

∫ x2 sin(ax)dx = (2x∕a2) sin(ax) −
[
(a2x2 − 2)∕a3] cos(ax), (C.99)

∫ exp (𝛼x) cos(ax)dx = exp (𝛼x) [𝛼 cos(ax) + a sin(ax)] ∕(𝛼2 + a2),

(C.100)

∫ exp (𝛼x) sin(ax)dx = exp (𝛼x) [𝛼 sin(ax) − a cos(ax)] ∕(𝛼2 + a2),

(C.101)

∫ x exp (𝛼x) cos(ax)dx = x exp (𝛼x) [𝛼 cos(ax) + a sin(ax)] ∕(𝛼2 + a2)

− exp (𝛼x)(𝛼2 − a2) cos(ax)∕(𝛼2 + a2)2

− 2a𝛼 exp (𝛼x) sin(ax)∕(𝛼2 + a2)2, (C.102)

∫ x exp (𝛼x) sin(ax)dx = x exp (𝛼x) [𝛼 sin(ax) − a cos(ax)] ∕(𝛼2 + a2)

− exp (𝛼x)(𝛼2 − a2) sin(ax)∕(𝛼2 + a2)2

+ 2a𝛼 exp (𝛼x) cos(ax)∕(𝛼2 + a2)2. (C.103)

C.8 DEFINITE INTEGRALS

• Integration by parts:

∫
x2

x1

f (x)g′(x)dx = f (x2)g(x2) − f (x1)g(x1) − ∫
x2

x1

g(x)f ′(x)dx. (C.104)
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• Exponential (𝛼 > 0):

∫
∞

0
xn exp (−𝛼x)dx = n!∕𝛼n+1

, n ∈  , (C.105)

∫
∞

0
exp (−𝛼x) cos(bx)dx = 𝛼∕(𝛼2 + b2), (C.106)

∫
∞

0
exp (−𝛼x) cos(bx)dx = 𝛼∕(𝛼2 + b2), (C.107)

∫
∞

0
x exp (−𝛼x) sin(bx)dx = 2𝛼∕(𝛼2 + b2)2, (C.108)

∫
∞

0
x exp (−𝛼x) cos(bx)dx = 𝛼∕(𝛼2 + b2), (C.109)

∫
∞

0
exp (−𝛼x) sin(bx)dx = (𝛼2 − b2)∕(𝛼2 + b2)2, (C.110)

∫
∞

0
exp (−𝛼x2)dx = (1∕2)

√
𝜋∕𝛼, (C.111)

∫
∞

0
x exp (−𝛼x2)dx = 1∕2𝛼. (C.112)

• Trigonometric:

∫
𝜋

0
sin(ax) sin(bx)dx = ∫

𝜋

0
cos(ax) cos(bx)dx = 0, a, b ∈ , a ≠ b,

(C.113)

∫
𝜋

0
sin(ax) cos(ax)dx = ∫

𝜋∕a

0
sin(ax) cos(ax)dx = 0, (C.114)

∫
𝜋

0
sin(ax) cos(bx)dx =

{
2a∕(a2 − b2), a − b odd

0, a − b even,
(C.115)

∫
𝜋

0
sin2(ax)dx = ∫

𝜋

0
cos2(ax)dx = 𝜋∕2, (C.116)

∫
∞

−∞

sin(x)
x

dx = 𝜋, ∫
∞

−∞

sin(𝜋x)
𝜋x

dx = 1. (C.117)
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• Polynomial:

∫
∞

0

a
a2 + x2

dx = 𝜋∕2, (C.118)

∫
∞

0

dx
√

a2 − x2
= 𝜋∕2. (C.119)
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APPENDIX D

SET THEORY

This appendix provides a brief review of set theory.

D.1 SETS AND SUBSETS

Some basic definitions and examples are covered in this section.

Definition: Set A set is a collection of objects or numbers that represent those
objects. The components of a set are called its elements or points.

In this book, we consider only sets with numerical elements.

Example D.1 Set A = {… ,−1, 0, 1,… } consists of all integers, which are denoted
by . The elements of set B = (−∞,∞) are the real numbers . Note that ±∞ do not
correspond to real numbers; they are symbols frequently used in mathematics, such
as when taking limits of the form n → ∞. Additional examples of sets include the
closed interval C = [0, 1] of real numbers, the natural numbers D =  , and so on.
Sets A and D are discrete, while sets B and C are continuous.

Sets of numbers can also be described by equations.

Example D.2 Set A = {x + 1 ∶ x ≥ 1} = [2,∞) is continuous; in this context, the
colon means “such that,” and the statement defines the set of all x + 1 such that x ≥ 1.

Mathematical Foundations for Linear Circuits and Systems in Engineering, First Edition. John J. Shynk.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
Companion Website: http://www.wiley.com/go/linearcircuitsandsystems

http://www.wiley.com/go/linearcircuitsandsystems
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The set B = {x2 − 1 ∶ x = 0, 1, 2} = { − 1, 0, 3} is discrete. The values of x to the
right of the colon give the support of the function that describes the set.

The next definition involves specific relationships between two sets.

Definition: Subset A ⊂ B and Equality A = B Set A is a subset of B if all elements
of A are also in B. The notation A ⊆ B allows for situations where A and B might be
equal. Sets A and B are equal when A ⊂ B and B ⊂ A such that they have exactly the
same elements and A = B.

Example D.3 Example subsets include +
⊂ ,  ⊂ , and [0, 1) ⊂ [0, 1] ⊂

+. Additional examples include  ⊂ ,  ⊂ , and {0, 1, 4, 9} ⊂ {x2 ∶ x ∈ +}.
An example of set equality is +\{0} =  , where the backslash operator (defined
in the next section) removes element 0 from the set of nonnegative integers +,
yielding the natural numbers  .

In order to define set operations, especially set complement, we need to specify
the set of all elements.

Definition: Universal Set 𝛀 The universal set Ω is the set of all elements. It is
also called the universe, and in probability, it is known as the sample space.

Example D.4 When we are interested in functions of continuous x, the universal
set could be the real line Ω = , the nonnegative real line Ω = + (which includes
zero), or even an interval such as Ω = [0, 10]. For discrete x, the universal set might
be the entire set of integers Ω =  or a subset such as the natural numbers Ω =  .

Definition: Set Complement Ac The complement Ac contains all elements of Ω
that are not in A. It can be written as Ac = {x ∶ x ∉ A}, and the notation A is often
used.

The Venn diagram in Figure D.1 is a useful graphic for visualizing the relationships
of various sets. The universal set of all elements is represented by the rectangle, and
subsets of Ω are represented by the circles. When sets have common elements, their
circles overlap in a Venn diagram, and when a set is a subset of another set, one circle
lies entirely within the other circle as depicted in Figure D.1(b). Unless otherwise
specified, we assume that all elements of Ω are contained within the circles.

Example D.5 Suppose the universal set is the open interval Ω = (0, 2) and we are
interested in the set A = (0, 1]. Then Ac = (1, 2). If the universal set is extended toΩ =
(0,∞), then Ac = (1,∞). Since ±∞ are symbols, we always use open or semi-open
intervals of the form  = (−∞,∞) and + = [0,∞).

Definition: Empty Set 𝝓 The empty set 𝜙 is the set without any elements. It is also
called the null set, and it is the complement of the universal set: 𝜙 = Ωc.
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(a) (b)

A
B

A

B C

ΩΩ

Figure D.1 Venn diagrams. (a) Overlapping sets A and B. (b) Subset C ⊂ B and complement
A = Bc.

D.2 SET OPERATIONS

The two basic set operations are union and intersection.

Definition: Union A ∪ B The union of sets A and B consists of all elements in A,
B, or both. It can be written as

A ∪ B = {x ∶ x ∈ A or x ∈ B}, (D.1)

and is easily extended to multiple sets such as A ∪ B ∪ C.

Example D.6 For continuous Ω = , let A = [0, 1], B = (0, 2), and C = [1, 2].
Then A ∪ B = [0, 2), A ∪ C = [0, 2], and B ∪ C = (0, 2]. For discrete Ω = +,
let D = {0, 2, 4, 5}, E = {1, 2, 5}, and F =  . Then D ∪ E = {0, 1, 2, 5},
D ∪ F = + = Ω, and E ∪ F =  .

Definition: Intersection A ∩ B The intersection of sets A and B consists of all
elements common to both. It can be written as

A ∩ B = {x ∶ x ∈ A and x ∈ B}, (D.2)

and is easily extended to multiple sets such as A ∩ B ∩ C. Notationally, it is more
convenient to write AB and ABC.

Example D.7 For the continuous Ω in Example D.6, AB = (0, 1], AC = {1}, and
BC = [1, 2). For the discrete Ω in that example, DE = {2, 5}, DF = {2, 4, 5}, and
EF = {1, 2, 5}.

The commutative, associative, and distributive properties of union and intersection
are summarized in Table D.1.

Definition: Mutually Exclusive Sets A and B are mutually exclusive if AB = 𝜙.
Such sets are also called disjoint.
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TABLE D.1 Properties of Set Operations

Properties Expressions

Commutative A ∪ B = B ∪ A, AB = BA
Associative (A ∪ B) ∪ C = A ∪ (B ∪ C), (AB)C = A(BC)
Distributive A ∪ (BC) = (A ∪ B)(A ∪ C), A(B ∪ C) = (AB) ∪ (AC)
Mutually exclusive AB = 𝜙

Difference A − B = A\B = ABc

Exclusive or A ⊕ B = (A − B) ∪ (B − A) = A ∪ B − AB
De Morgan’s laws (A ∪ B)c = AcBc, (AB)c = Ac ∪ Bc

(a) (b)

A
B

A
B

CC

ΩΩ

Figure D.2 Venn diagrams. (a) Collectively exhaustive sets. (b) Partition of Ω.

Obviously, A and Ac are mutually exclusive for any A: AAc = 𝜙. Mutually exclusive
sets can be used to partition the universal set.

Definition: Collectively Exhaustive and Partition Sets {An} are collectively
exhaustive when ∪nAn = Ω. They cover every element in the universal set. If all
{An} are mutually disjoint, then they form a partition of Ω.

Figure D.2 shows examples of collectively exhaustive sets and a partition for three
sets {A,B,C}. Such sets are not unique; the universal set can be partitioned in dif-
ferent ways. The simplest type of partition is some set A and its complement Ac:
A ∪ Ac = Ω.

Example D.8 For Ω = , sets A = (−∞, 0), B = [0, 1], and C = (1,∞) form a par-
tition, whereas C = (−∞, 1] and D = [0,∞) are collectively exhaustive.

Table D.1 summarizes three additional set operations, which can be written in
terms of union, intersection, and complement. The difference A − B = A\B consists
of all elements in A except those in common with B. From the Venn diagram in
Figure D.3(a), it easy to verify that A − B = ABc. The exclusive or operation is known
as the symmetric difference:
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(a) (b)

A B A B

ΩΩ

Figure D.3 Set operations (results are shaded). (a) Difference A − B = ABc. (b) Exclusive or
(symmetric difference) A ⊕ B = (A − B) ∪ (B − A) = ABc ∪ AcB = A ∪ B − AB.

A ⊕ B = (A − B) ∪ (B − A)

= ABc ∪ AcB = A ∪ B − AB. (D.3)

It removes the overlapping regions of two sets as illustrated in Figure D.3(b). Observe
that every expression in (D.3) is symmetric: interchanging A and B gives the same
results. Finally, De Morgan’s laws in the table are two expressions derived by comple-
menting the union and intersection of two sets. These can be proved by examining an
individual element: if x ∈ (A ∪ B)c, then x ∉ A and x ∉ B. Thus, x ∈ Ac and x ∈ Bc,
yielding

(A ∪ B)c = AcBc. (D.4)

The proof for the other form of De Morgan’s law is similar.
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APPENDIX E

SERIES EXPANSIONS

In this appendix, we describe power series expansions for function f (z) with complex
argument z. A power series is a sum of powers of z − zo given by (z − zo)n for nonneg-
ative integers n ∈ +. We also describe the Laurent series expansion for which n can
also be negative. The corresponding expansions for function f (x) with real argument
x are derived from f (z) by replacing z with x.

E.1 TAYLOR SERIES

The Taylor series expansion of smooth function f (z), which is infinitely differentiable
at z = zo on the complex plane, is

f (z) =
∞∑

n=0

f (n)(zo)
n!

(z − zo)n =
∞∑

n=0

cn(z − zo)n, (E.1)

where the derivative notation means

f (n)(zo) ≜ dn

dzn
f (z)

|
|
|
|z=zo.

(E.2)

The coefficients of the expansion are

cn ≜ f (n)(zo)
n!

, (E.3)

Mathematical Foundations for Linear Circuits and Systems in Engineering, First Edition. John J. Shynk.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
Companion Website: http://www.wiley.com/go/linearcircuitsandsystems
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Imaginary axis y Complex plane

ROC

Real axis x

R

zo

Figure E.1 Radius R defining a circle of points about zo for which a Taylor series is
convergent.

which we note includes the factorial term in the denominator. Generally, there is a
circle with radius R about zo that defines a region for z on the complex plane for
which the series is convergent to a finite value (usually a different value for each z).
Outside of this radius, the series is divergent. This region of convergence (ROC) is
depicted in Figure E.1, and it is shown next that the circle boundary (the solid line) is
not included in the ROC. The ROC in this context involving a circle is also called the
radius of convergence. (The ROC for the Laplace transform in Chapter 7 is a vertical
strip on the complex plane, and so a radius does not apply in that case.) For real x,
the circular ROC reduces to an open interval of the form (a, b) on the real line with
a, b ∈ .

Example E.1 Consider the function

f (z) = 1
1 − 2z

=
∞∑

n=0

(2z)n

= 1 + 2z + 4z2 + 8z3 + · · · , (E.4)

which has been expanded as a Taylor series about zo = 0. It is convergent provided
|2z| < 1, and so the ROC on the complex plane is the circle defined by |z| < 1∕2 (the
strict inequality excludes the circle boundary). The coefficients are {cn = 2n}, and
are derived using (E.2):

f ′(z) = 2
(1 − 2z)2

, f (2)(z) = 8
(1 − 2z)3

, f (3)(z) = 48
(1 − 2z)4

, (E.5)

and so on. Thus, the general form is

f (n)(zo) =
2nn!

(1 − 2zo)n+1
=⇒ cn = 2n

(1 − 2zo)n+1
. (E.6)

Substituting zo = 0 into (E.6) yields

f (n)(z)|z=0 = 2nn! =⇒ cn = 2n. (E.7)
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For the expansion about zo = 1, we still use (E.6), but zo = 1 is substituted:

f (n)(z)|z=1 = (−1)n+12nn! =⇒ cn = (−1)n+12n. (E.8)

This yields

f (z) =
∞∑

n=0

(−1)n+12n(z − 1)n

= −1 + 2(z − 1) − 4(z − 1)2 + 8(z − 1)3 − · · · , (E.9)

which converges for |2(z − 1)| < 1 =⇒ |z − 1| < 1∕2. The expansions in (E.4) and
(E.9) converge in nonoverlapping regions (circles) on the complex plane.

From the previous example, we see that a Taylor series for function f (z) can be
derived about different points on the complex plane. Of course, it is the same function,
but different series expansions will have different ROCs. Thus, when using series
representations of f (z), it is important to choose an appropriate expansion point zo
depending on the application.

E.2 MACLAURIN SERIES

When a Taylor series expansion is defined about zo = 0, it is called a Maclaurin series:

f (z) =
∞∑

n=0

f (n)(0)zn

n!
=

∞∑

n=0

cnzn. (E.10)

The expansion in (E.4) of Example E.1 is actually a Maclaurin series.

Example E.2 The Maclaurin series of f (z) = cos(z) is derived by finding the deriva-
tives:

f ′(z) = − sin(z), f (2)(z) = − cos(z), f (3)(z) = sin(z), (E.11)

and so the general expression after substituting z = 0 is

f (n)(z)|z=0 =
{
(−1)n, n even
0, n odd.

(E.12)

Thus, the Maclaurin series expansion is

cos(z) =
∞∑

n=0

(−1)nz2n

(2n)!

= 1 − z2∕2 + z4∕24 − z6∕720 + · · · , (E.13)
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Figure E.2 Maclaurin series approximation of cos(x) for real-valued x with three and four
nonzero expansion terms added together.

where we have used 2n instead of n in the sum to ensure that only the z terms with
even exponents are nonzero. It can be shown that the ROC is the entire complex plane
z ∈ . The cosine function for real-valued x and a few nonzero terms from the
Maclaurin series expansion are shown in Figure E.2. Observe that the series
approximation is relatively accurate for small x (< 2); for larger x, increasingly more
nonzero terms from the expansion are needed for an accurate approximation. The
Maclaurin series expansion for the sine function has a form similar to (E.13), except
that only the terms with odd exponents are nonzero:

sin(z) =
∞∑

n=0

(−1)nz2n+1

(2n + 1)!

= z − z3∕6 + z5∕120 − z7∕5040 + · · · , (E.14)

whose ROC is also the entire complex plane.

Several Maclaurin series expansions are summarized in Table E.1. The last entry

(1 + z)𝑣 =
∞∑

n=0

(
𝑣

n

)
zn (E.15)

is a special series known as the binomial series expansion that holds for any complex
exponent 𝑣 ∈ . It is based on the generalized binomial coefficient:

(
𝑣

n

) ≜ 𝑣(𝑣 − 1) · · · (𝑣 − n + 1)
n!

, (E.16)
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TABLE E.1 Maclaurin Series Expansions

Function Series ROC

sin(z)
∑∞

n=0 (−1)nz2n+1∕(2n + 1)! z ∈ 
cos(z)

∑∞
n=0 (−1)nz2n∕(2n)! z ∈ 

sinh(z)
∑∞

n=0 z2n+1∕(2n + 1)! z ∈ 
cosh(z)

∑∞
n=0 z2n∕(2n)! z ∈ 

tan−1(z)
∑∞

n=0 (−1)nz2n+1∕(2n + 1) |z| < 1
exp(z)

∑∞
n=0 zn∕n! z ∈ 

ln(1 + z)
∑∞

n=0 (−1)n+1zn∕n |z| < 1
1∕(1 − z)

∑∞
n=0 zn |z| < 1

1∕(1 − z)2
∑∞

n=0 nzn−1 |z| < 1

(1 + z)𝑣
∑∞

n=0

(
𝑣

n

)
zn |z| < 1

where n ∈ +. This binomial coefficient is 0 for integer n < 0, and it is equal to
1 for n = 0. Example binomial coefficients for real-valued noninteger 𝑣 = 3.5 are
summarized in Table E.2, where we see that the coefficients can be negative for n >

𝑣 + 1 = 4.5. If 𝑣 = m ∈ + is a nonnegative integer, then one of the terms in the
numerator of (E.16) is 0 for m > n. As a result, (E.16) for this case reduces to the
standard binomial coefficient:

(m
n

) ≜ m!
(n − m)!n!

, (E.17)

and there is a finite number of terms in the series expansion of (E.15):

(1 + z)m =
m∑

n=0

(m
n

)
zn. (E.18)

Since the sum is finite, the ROC is the entire complex plane z ∈ . This last expres-
sion is a special case of the binomial formula with x = 1 (also called the binomial
theorem):

(x + y)m =
m∑

n=0

(m
n

)
xm−nyn. (E.19)

Example E.3 In this example, we examine the binomial series expansion in
Table E.1 for integer and noninteger 𝑣. For integer 𝑣 = m = 3, the binomial coeffi-
cients are summarized in Table E.2, where we see that only four terms are nonzero.
Figure E.3(a) shows a plot of (1 + x)3 for real-valued 0 ≤ x < 1, along with the
sum in (E.18) having only two and three terms of the binomial series expansion
(of course, including all four terms in the sum yields exactly the original function).
Observe that the plot for three terms in the sum is reasonably close to the actual
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TABLE E.2 Example Binomial Coefficients
(

𝒗

n

)

n 𝑣 = 3.5 𝑣 = 3

0 1 1
1 3.5 3
2 (3.5)(2.5)∕2 = 4.375 3
3 (3.5)(2.5)(1.5)∕6 = 2.1875 1
4 (3.5)(2.5)(1.5)(0.5)∕24 = 0.2734375 0
5 (3.5)(2.5)(1.5)(0.5)(−0.5)∕120 = −0.02734375 0
6 (3.5)(2.5)(1.5)(0.5)(−0.5)(−1.5)∕720 = 0.0068359375 0

function. Figure E.3(b) shows a plot of (1 + x)3.5 along with the sum in (E.15)
containing only two, three, and four terms. In this case, including four terms in the
sum yields a close approximation of the original function, which is expected because
the binomial coefficients in Table E.2 become small rather quickly with increasing
n. Although we could extend the horizontal axis beyond x = 1 in both plots, this
should not be done in Figure E.3(b) if the number of terms in the binomial expansion
approaches infinity because the series is divergent for x ≥ 1.

E.3 LAURENT SERIES

The Taylor series in (E.1) does not allow for expansions around singular points on
the complex plane. For example, the function f (z) = 1∕(1 − z) in Table E.1 has a
singularity at z = 1 where it is unbounded, which is why the ROC is |z| < 1 for the
expansion about zo = 0. The Laurent series expansion allows for expansions around
singular points, and it can be viewed as an extension of the Taylor series to include
negative integers n:

f (z) =
∞∑

n=−∞
cn(z − zo)n, (E.20)

where the sum is now doubly infinite. This expression can be rewritten as

f (z) =
∞∑

n=0

cn(z − zo)n +
∞∑

m=1

cm

(z − zo)m
, (E.21)

where we have split the sum into two parts and changed variables in the second sum
to m ≜ −n in order to emphasize that (z − zo)m actually appears in the denominator
for negative n. The coefficients {cn} in (E.20) are computed from f (z) as follows:

cn = 1
2𝜋j∮C

f (z)
(z − zo)n+1

dz. (E.22)

The integration is performed counterclockwise along a closed contour C within the
ROC that encloses z = zo and where f (z) is analytic (see the definition in Chapter 5).
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Figure E.3 Binomial series expansions for (1 + x)𝑣. (a) Integer 𝑣 = m = 3. (b) Noninteger
𝑣 = 3.5.

This is evident from the second sum in (E.21) where f (z) may not be defined (is
infinite) at z = zo. There are three basic types of singularities (also called singular
points):

• Poles: The second sum in (E.21) has a finite number of terms.

• Essential singular points: The second sum in (E.21) has an infinite number of
terms.

• Removable singular points: The second sum in (E.21) has no terms, so the
expansion reduces to a Taylor series.



�

� �

�

590 SERIES EXPANSIONS

Imaginary axis y Complex plane

ROC

Real axis x

R1

R2

zo

Figure E.4 Radii {R1,R2} defining annulus of points about zo for which a Laurent series is
convergent.

These singularities are discussed further in Chapter 5.
In order for the first sum in (E.21) to be convergent, we require

|z − zo| < R1 (E.23)

for some radius R1 > 0 that defines a circle centered at zo as depicted in Figure E.4.
This result is identical to that required for a Taylor series, as expected because (E.1)
is the same expression as the first sum in (E.21). Similarly, in order for the second
sum in (E.21) to be convergent, we must have

1
|z − zo|

< R2 =⇒ |z − zo| > R2, (E.24)

which yields a region extending beyond a circle of radius R2 > 0 because the (z − zo)m
terms appear in the denominator. This is also shown in Figure E.4, where it is clear that
for both sums of the Laurent series to be convergent the radii must satisfy R2 < R1,
and so the ROC is the intersection of the regions on the complex plane defined by
(E.23) and (E.24). The shaded region in the figure is called an annulus (which is a type
of ring), and within this ROC f (z) is analytic. The contour of integration in (E.22) is
performed counterclockwise in the shaded region enclosing z = zo; the contour need
not be circular, but it should form a closed path.

Example E.4 Consider again the function f (z) = 1∕(1 − z) which we would like to
expand again about zo = 0, as was done in Table E.1 using a Taylor series, but in this
case let the ROC be |z| > 1. This function has a real pole at z = 1. In order to have
the type of ROC in (E.24), the summation in (E.20) is performed over negative n or,
equivalently, over positive m with z − zo in the denominator as in (E.21). Observe that

0∑

n=−∞
zn =

∞∑

m=0

1
zm

= 1
1 − 1∕z

, (E.25)

where we have changed variables to m = −n and used the closed-form expression for
a geometric series (see Appendix C). This result can be rearranged as follows:

1
1 − 1∕z

= z
z − 1

= 1 + 1
z − 1

= 1 − f (z). (E.26)
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Thus,

1 − f (z) =
∞∑

m=0

1
zm

=⇒ f (z) = 1 −
∞∑

m=0

1
zm

= −
∞∑

m=1

1
zm

, (E.27)

where the leading 1 has canceled the m = 0 term in the sum. The last expression is the
Laurent series expansion of f (z) about zo = 0 with ROC |z| > 1, which is the region
outside the singularity. In this example, all coefficients have the same value cm = −1.

When the second sum of (E.21) is 0, the coefficients are computed using (E.6),
and when the first sum is 0, they are derived using the theory of residues. The residue
technique is widely used to evaluate the inverse z-transform for discrete-time signals
and systems. The z-transform is closely related to the Laplace transform in Chapter 7,
but it assumes that the function is nonzero only for discrete values of time, whereas
the Laplace transform assumes continuous time t.
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APPENDIX F

LAMBERT W-FUNCTION

In this appendix, we give a brief overview of the Lambert W-function and illus-
trate how it is used to write an explicit expression for the nonlinear diode circuit
in Chapter 2.

F.1 LAMBERT W-FUNCTION

The Lambert W-function (Corless et al., 1996) for real-valued x is the solution 𝑤 of
the following equation:

x = 𝑤 exp (𝑤). (F.1)

It is not possible to write 𝑤 explicitly as a function of x in terms of the ordinary
functions described in this book. For example, if we take the logarithm of both sides:

ln(x) = ln(𝑤) +𝑤, (F.2)

it is still not possible to solve explicitly for𝑤. Figure F.1(a) shows a plot of (F.1), from
which we see there is a region where two values of 𝑤 map to x. It is straightforward
to show that this region is the open interval 𝑤 ∈ (−∞, 0). The dotted line at x = −1∕e
is the minimum value of x (where 𝑤 = −1), and the dashed line at x = −1∕2e is an
example where two values of 𝑤 map to a single x. The solution of (F.1) is

𝑤 = W(x), (F.3)

Mathematical Foundations for Linear Circuits and Systems in Engineering, First Edition. John J. Shynk.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
Companion Website: http://www.wiley.com/go/linearcircuitsandsystems
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Figure F.1 (a) Inverse of Lambert W-function. (b) Lambert W-function (inverse image of
the function in (a)).

where W(x) is the notation for the Lambert W-function and its argument is the
left-hand side of (F.1). Since the solution W(x) is a function of x, (F.1) is often
written as

x = W(x) exp (W(x)). (F.4)

There are only a few results for W(x) that are obvious from the form in (F.4),
such as

x = 0 =⇒ 0 = 0 exp (0) = 0 =⇒ W(0) = 0, (F.5)

x = e =⇒ e = W(e) exp (W(e)) =⇒ W(e) = 1, (F.6)

x = −1∕e =⇒ −1∕e = W(−1∕e) exp (W(−1∕e)) =⇒ W(−1∕e) = −1. (F.7)
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In general, numerical methods are needed to evaluate W(x) for other values of x. The
derivative of W(x) is derived by rearranging (F.4) as

W(x) = x exp (−W(x)), (F.8)

and using the product and chain rules:

W′(x) = exp (−W(x)) + x exp (−W(x))W′(x), (F.9)

which yields

W′(x) =
exp (−W(x))

1 + x exp (−W(x))
. (F.10)

Multiplying and dividing the last expression by x, it simplifies as follows when using
(F.8):

W ′(x) = W(x)
x + xW(x)

. (F.11)

Observe that W′(0) = 1 from (F.5) and (F.10), W′(e) = 1∕2e from (F.6) and (F.11),
and W ′(−1∕e) −→ ∞ from (F.6) and (F.11).

The Lambert W-function can be examined by rearranging the plot in Figure F.1(a)
so that the horizontal axis is x and the vertical axis is W(x). The result shown in
Figure F.1(b) is a curve representing the Lambert W-function for x ∈ [−1∕e, 5]. The
horizontal lines are now vertical lines in the new plot, located at the same values of
x. Figure F.1(b) demonstrates that W(x) is actually multivalued: every x ∈ (−1∕e, 0)
maps to two values of W(x). Thus, W(x) is not the inverse function of the plot in
Figure F.1(a); it is called the inverse image (see the definition in Chapter 1). Note
from the figure that W(0) = 0, W(−1∕e) = −1, W ′(0) = 1, and W ′(−1∕e) −→ ∞, as
shown earlier. The Lambert W-function is complex-valued for x < −1∕e.

From Figure F.1(b), we find that W(x) = −1 is the dividing point between the
two sets of values of W(x) derived from the same x. The branch of the function
for W(x) ≥ −1 is denoted by W0(x), and that for W(x) ≤ −1 is W−1(x). Although
an explicit expression cannot be derived for W(x), the plot in Figure F.1(b) can be
used to find W(x) given a specific value for x. The particular application determines
if W0(x) or W−1(x) should be used when x ∈ (−1∕e, 0).

An equation is solved in terms of the Lambert W-function if it can be rearranged
in the form of (F.4), as demonstrated by the next example.

Example F.1 Consider the following nonlinear equation for which there is no
explicit solution for x:

ax + bx = 0. (F.12)

In order to write this in the form of (F.1), we use the identity exp (ln(b)) = b assuming
b > 0:

ax + [exp (ln(b))]x = 0 =⇒ ax + exp (x ln(b)) = 0. (F.13)
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Solving for 1∕a yields
1∕a = −x exp (−x ln(b)), (F.14)

which almost has the form in (F.1). Multiplying both sides by ln (b) gives the desired
right-hand side:

ln(b)∕a = −x ln(b) exp (−x ln(b)), (F.15)

where in the notation of (F.4), the left-hand side is x and the term multiplying the
exponential function is W(x). Thus,

W(ln(b)∕a) = −x ln(b) =⇒ x = −W(ln(b)∕a)∕ ln(b), (F.16)

which is the desired solution for x. Suppose that a = b = 3. Then using the
MATLAB function lambertw, we find that x = −W(ln(3)∕3)∕ ln(3) ≈ −0.2526
with W(ln(3)∕3) ≈ 0.2775. This is verified by the original equation in (F.12):
3(−0.2526) + 3−0.2526 = 0.

Once the form in (F.4) is derived, the steps for writing x in terms of W(x) are as
follows, using the result in (F.15) as an example.

• The left-hand side of (F.4) is the argument of W(⋅), which is ln (b)∕a in the
previous example, yielding W(ln(b)∕a).

• The quantity multiplying the exponential function in (F.4) equals W(⋅), which
for the previous example is −x ln(b).

• Equating these two terms gives the desired equation W(ln(b)∕a) = −x ln(b).
• In the final step, we solve for x, which yields (F.16) for the previous

example.

Example F.2 The following equation also has no explicit solution in terms of ordi-
nary functions:

a + bxx = 0. (F.17)

Rearranging this expression and taking logarithms yields (assuming −a∕b > 0):

ln(−a∕b) = x ln(x), (F.18)

and
ln(−a∕b) = ln(x) exp (ln(x)). (F.19)

Thus,
W(ln(−a∕b)) = ln(x) =⇒ x = exp (W(ln(−a∕b)). (F.20)

The equation in (F.17) is plotted in Figure F.2 for a = 3 and b = −3 (the solid line).
Observe that it has a real solution because it crosses the horizontal dotted line at 0. The
MATLAB function lambertw gives x = 1, which is easily verified in (F.17) (actually,
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Figure F.2 Nonlinear equation of Example F.2.

the solution is obvious for these values of a and b). Observe that when b = 3, the
dashed line does not cross the horizontal line at 0, which means it does not have a
real solution. However, as we know from Chapter 4, it has a complex solution. Thus,
it is not necessary to restrict −a∕b > 0 as earlier; the logarithm yields a complex
number for a negative argument, and W(x) is also complex. The result for a = b = 3
is 1.6904 + j1.8699, which can be verified by substitution into (F.17). (Likewise, we
need not restrict b in Example F.1: allowing b < 0 causes W(x) to be complex.)

F.2 NONLINEAR DIODE CIRCUIT

The Lambert W-function can be used to write a solution for the diode circuit
described in Chapter 2 (Banwell and Jayakumar, 2000; Ortiz-Conde et al., 2000),
without having to use the iterative techniques discussed there. Recall that the relevant
I-V equations for the diode in series with resistor R and voltage source Vs are

i = (Vs − 𝑣)∕R, i = Is exp (𝑣∕VT), (F.21)

with Is = 10−15 A and VT = 0.026 V. Substituting the first equation 𝑣 = Vs − iR into
the second equation yields

i = Is exp ((Vs − iR)∕VT ), (F.22)

which has only one independent variable i. In order to proceed, the function is rear-
ranged as follows:

i = Is exp (Vs∕VT ) exp (−iR∕VT ) =⇒ Is exp (Vs∕VT) = i exp (iR∕VT ). (F.23)
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Multiplying both sides by R∕VT gives the desired form in (F.4):

(IsR∕VT ) exp (Vs∕VT ) = (iR∕VT ) exp (iR∕VT), (F.24)

which yields
W((IsR∕VT ) exp (Vs∕VT )) = iR∕VT , (F.25)

and the following equation for the current:

i = (VT∕R)W((IsR∕VT ) exp (Vs∕VT )). (F.26)

Example F.3 For Vs = 1.2 V and R = 100 Ω, we find from lambertw that
i ≈ 0.0044 A, and the voltage is 𝑣 ≈ 0.7571 V from 𝑣 = Vs − iR. Substituting this
voltage into the second equation of (F.21) verifies i given by lambertw, and these
two values match those generated by the iterative method in Example 2.11.

F.3 SYSTEM OF NONLINEAR EQUATIONS

Finally, we show how to solve the nonlinear equations in (1.13) and (1.14), which we
repeat as follows:

a11y1(t) + a12 exp (𝛼y2(t)) = x1(t), (F.27)

a21y1(t) + a22y2(t) = x2(t). (F.28)

Solving the second equation for y1(t) and substituting it into the first equation yields

a11[x2(t) − a22y2(t)]∕a21 + a12 exp (𝛼y2(t)) = x1(t). (F.29)

For notational convenience, we drop the time argument and define the following quan-
tities: c1 ≜ −a11x2∕a21 and c2 ≜ −a11a22∕a21 such that

c2y2 + a12 exp (𝛼y2) = x1 + c1. (F.30)

Multiplying by 𝛼 exp (−𝛼y2)∕c2 gives

𝛼y2 exp (−𝛼y2) + 𝛼a12∕c2 = 𝛼(x1 + c1) exp (−𝛼y2)∕c2, (F.31)

so that y2 now multiplies the exponential function on the left-hand side (recall that
we need to rearrange this expression to have the form in (F.4) in order to solve for
y2). Next, we bring the first exponential to the right-hand side and factor it from the
two terms:

𝛼a12∕c2 = 𝛼(−y2 + x1∕c2 + c1∕c2) exp (−𝛼y2). (F.32)
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In the last step, we multiply by exp (𝛼(x1 + c1)∕c2) to obtain the final form:

(𝛼a12∕c2) exp (𝛼(x1 + c1)∕c2)

= 𝛼(−y2 + x1∕c2 + c1∕c2) exp (𝛼(−y2 + x1∕c2 + c1∕c2)), (F.33)

yielding

y2 = (x1 + c1)∕c2 − (1∕𝛼)W((𝛼a12∕c2) exp (𝛼(x1 + c1)∕c2))

= x2∕a22 − a21x1∕a11a22

− (1∕𝛼)W((−𝛼a12a21∕a11a22) exp (−𝛼a21(x1 − a11x2∕a21)∕a11a22)), (F.34)

where {c1, c2} have been substituted so that the expression is written in terms of the
original parameters.

Example F.4 The parameters in Example 1.4 are 𝛼 = 4, a11 = a21 = a22 = 1,
a12 = −0.1, x1 = 0, and x2 = 1, such that (F.34) becomes

y2 = 1 − (1∕4)W((0.4) exp (4)). (F.35)

The lambertw function gives y2 ≈ 0.4336, and from (F.28) we have

y1 + y2 = 1 =⇒ y1 ≈ 0.5664, (F.36)

which are the same values generated by the iterative technique in Example 1.4.
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GLOSSARY

SUMMARY OF NOTATION

0−: lower limit of integral includes singular functions at 0

0+: lower limit of integral excludes singular functions at 0

𝟎: zero matrix

a: acceleration (m/s2)

a: real part of complex c

ã, ̃̃a: modified elements of matrix A in row-echelon form

arg(c): argument (angle) of complex number c

adj(A): adjugate matrix of A
a: column of matrix A
aT : row of matrix A
b: base of logarithm or imaginary part of complex c

A: ampere (C/s)

Amn: cofactor of matrix A
A: matrix

AT : matrix transpose

AH: matrix transpose and complex conjugation

Mathematical Foundations for Linear Circuits and Systems in Engineering, First Edition. John J. Shynk.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
Companion Website: http://www.wiley.com/go/linearcircuitsandsystems
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A−1: matrix inverse

B: damping constant (N s/m)

BW: bandwidth

c: complex number or speed of light

c(t): carrier waveform in amplitude modulation

cfg(𝜏): cross-correlation function

C: coulomb

C: capacitor, capacitance (F), or contour of integration

C(A): column space of matrix A
C: matrix representation for complex numbers

d: distance (m)

det(A): determinant of matrix A
dB: decibel

D: diode symbol

e: Napier’s constant 2.718281828459… or energy (J)

e: unit vector

exp(At): matrix exponential

E: energy (J)

E: elementary matrix

f : natural frequency (Hz)

fE(t): even function

fO(t): odd function

F: farad

F: force (N)

F(x): antiderivative of f (x)
F: phasor of function f (t)
g: gram

g: acceleration due to gravity (m/s2)

g(t): integrating factor

h: height (m) or quaternion

h(t): impulse response function

H: henry

H(s): transfer function

H(𝜔): frequency response

H: matrix representation for quaternions

i: current (A)

{i, j, k}: quaternion markers

I: constant current (A) or moment of inertia
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I(t): indicator function

I: identity matrix or phasor current
̃I: exchange matrix

j:
√
−1, imaginary marker of complex number

J: joule

J: exchange matrix

k(p, t): kernel of integral transform

K: spring constant (N/m)

logb(⋅): logarithm with base b

ln(⋅): natural logarithm with base e

L: inductor, inductance (H), or length (m)

L(A): left null space of matrix A
L: lower triangular matrix

m: meter

M: mass (g)

Mmn: minor matrix

max(⋅): maximum

min(⋅): minimum

n!: factorial(
n
m

)
: binomial coefficient

N: newton

N(A): null space of matrix A
p: instantaneous power (W) or matrix pivots

pn: transfer function pole

P: average power (W)

P: permutation matrix

q: charge (C)

Q: total charge (C) or circuit quality factor

q: normalized eigenvector

Q: matrix of normalized eigenvectors

r: radius

r(t): ramp function

rect(t): rectangle function

R: resistor, resistance (Ω), matrix rank, or radius

R(A): row space of matrix A
R: rotation matrix

s: second

s: complex variable s = 𝜎 + j𝜔
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sgn(t): signum function

sinc(t): sinc function

t: time (s)

tr(A): trace of matrix A
T: period (s)

tri(t): triangle function

u(t): unit step function

un(t): compact notation for ramp, step, Dirac delta, and doublet

U: upper triangular matrix

𝑣: voltage (V) or velocity (m/s)

V: constant voltage (V)

V: phasor voltage

𝑤: work (J)

W: watt or Lambert W

W(t): Wronskian

W(x): Lambert W-function

x̃, ̃̃x: modified elements of vector x in row-echelon form

X: reactance

X(f ): Fourier transform of x(t) (natural frequency)

X(𝜔): Fourier transform of x(t) (angular frequency)

X(s): Laplace transform of x(t)
yh(t): homogeneous solution of ODE

yp(t): particular solution of ODE

ys: steady-state step response

yt(t): transient step response

yh: homogeneous solution vector of matrix equation

yp: particular solution vector of matrix equation

z: complex variable of series expansions

zn: transfer function zero

Z: impedance

GREEK SYMBOLS

𝛼: Neper frequency (rad/s)

𝛿[𝜔]: Kronecker delta function

𝛿(t): Dirac delta function

𝛿
′(t): unit doublet

𝛿
′′(t): unit triplet

𝛿
(n)(t): nth derivative of Dirac delta function



�

� �

�

GLOSSARY 605

Δ: discriminant or a small interval

Δx: small interval on x

𝜆: eigenvalue or wavelength
𝚲: diagonal matrix of eigenvalues

𝜔: angular frequency (rad/s) or imaginary part of complex variable s

𝜔c: center/cutoff frequency or carrier frequency

𝜔d: damped 𝜔o

𝜔o: specific angular frequency or resonant frequency

Ω: ohm or universal set

𝜋: 3.14159265358979323846…
𝜙: angle (radians or degrees) or empty set

𝜙(t): test function
Φ(𝜔): Fourier transform of test function

𝜎: real part of complex variable s

Σ: summation

𝜏: time constant, delay (s), or torque

𝜃: angle (radians or degrees)
𝜁 : damping ratio

CALLIGRAPHIC SYMBOLS

: complex numbers
: set of test functions with compact support

′: dual space for 
 : set of test functions of exponential decay

 ′: dual space for 
 : field

{ ⋅ }: Fourier transform

−1{ ⋅ }: inverse Fourier transform
: quaternions

: imaginary numbers
{ ⋅ }: unilateral Laplace transform

b{ ⋅ }: bilateral Laplace transform
−1{ ⋅ }: inverse Laplace transform

 : natural numbers {1, 2, · · · }
: rational numbers
(f (t)): use Cauchy principal value

: real numbers (−∞,∞)
+: nonnegative real numbers [0,∞)
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: subspace or set of test functions of rapid decay

⊥: orthogonal complement of subspace 
 ′: dual space of 
 : vector space

: integers {… ,−2,−1, 0, 1, 2,…}
+: nonnegative integers {0, 1, 2,…}

MATHEMATICAL NOTATION

∗: convolution or complex conjugation superscript

⋆: correlation

−→: to next step


−→

: Fourier transform

−1
−→

: inverse Fourier transform


−→

: Laplace transform

−1
−→

: inverse Laplace transform

=⇒: implies

≜: defined as

≡: equivalent to

(a,b): quaternion

∠𝜃: angle 𝜃 of polar form

⟨f , 𝜙⟩: generalized function f with test function 𝜙

<: less than

≪: much less than

≤: less than or equal to

>: greater than

≫: much greater than

≥: greater than or equal to

∈: element of

∉: not an element of

|t|: absolute value of t

‖v‖: vector norm

‖v‖2: vector squared norm

f−1(y): inverse image of function y = f (x)
ẋ: derivative with respect to time

x′: ordinary derivative

x′′: second ordinary derivative

x(n): nth ordinary derivative
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|A|: cardinality of set A

A ⊂ B: A is a subset of B

Ac, A: complement of set A

A ∪ B: union of sets

A ∩ B, AB: intersection of sets

A − B, A∖B: difference of sets

A ⊕ B: exclusive or of sets

PHYSICAL PARAMETERS

g: acceleration due to gravity (9.80665 m/s2)

qe: elementary charge (1.6021 × 10−19 C)

Is: saturation current (10−15 A)

VT : thermal voltage (0.026 V)

ABBREVIATIONS

a: acceleration

arg: argument

A: ampere

AM: amplitude modulation

BP: band-pass

BR: band-reject

C: coulomb

CPV: Cauchy principal value

dB: decibel

DC: direct current

DE: differential equation

EHF: extremely high frequency

F: farad

FM: frequency modulation

FVT: final value theorem

g: gram

GE: Gaussian elimination

H: henry

HF: high frequency

HP: high-pass

Hz: Hertz
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ISO: International Organization for Standardization
ITU: International Telecommunication Union
I–V: current–voltage characteristic
IVT: initial value theorem
J: joule
KCL: Kirchoff’s current law
KVL: Kirchoff’s voltage law
LDU: lower triangular/diagonal/upper triangular matrix decomposition
LF: low frequency
LP: low-pass
LTI: linear and time-invariant
LU: lower/upper triangular matrix decomposition
m: meter
MF: medium frequency
MIMO: multiple-input multiple-output
N: newton
NM: Newton’s method
oc: open circuit subscript
ODE: ordinary differential equation
PDE: partial differential equation
PFE: partial fraction expansion
QAM: quadrature amplitude modulation
rad: radian
RC: resistor/capacitor circuit
RL: resistor/inductor circuit
RLC: resistor/inductor/capacitor circuit
ROC: region of convergence or radius of convergence
s: second
sc: short circuit subscript
SHF: super high frequency
SISO: single-input single-output
SSB: single sideband
th: Thévenin subscript
ULF: ultra low frequency
UHF: ultra high frequency
V: volt
V–I: voltage–current characteristic
VLF: very low frequency
VHF: very high frequency
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INDEX

nth root of unity, 178
s-domain, 335
s-plane, 342
z-transform, 591
MATLAB functions, 156

butter, 497
conv, 334
det, 156
dsolve, 334
eig, 157, 334
eye, 156
freqs, 497
heaviside, 273, 334, 421
ilaplace, 421
inverse, 156
lambertw, 596
laplace, 421
linsolve, 156
log10, 42
lsim, 421
lu, 157
mesh, 161
norm, 156
ode45, 334
parallel, 498
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quatrotate, 202
rectangularPulse, 334
residue, 390, 420
syms, 421
tfdata, 498
tf, 498
trace, 156
zeros, 156
zp2tf, 497

Abel transform, 341
absolute value function, 209, 522
absolutely integrable, 341, 425
acceleration due to gravity, 87
adjugate matrix, 124
affine, 6
ampere (A), 55
amplitude modulation (AM), 449

amplitude sensitivity, 453
conventional AM, 451
double-sideband, suppressed carrier, 450
overmodulation, 453
quadrature (QAM), 495
receiver, 451, 495
single-sideband (SSB), 450, 495
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analytic function, 240
angles, table of radians and degrees, 175
annulus, 590
antiderivative, 26
Argand diagram, 168
argument (angle), 173
augmented matrix, 118
autocorrelation function, 249
azimuth angle, 194

back-substitution, 137
bandwidth, 456
basic variables, 137
basis, 135
binomial coefficients, 567

generalized, 587
table of, 588

binomial formula, 587
binomial series expansion, 586
bounded discontinuities, 425
bounded variation, 425
bounded-input bounded-output (BIBO) stability,

341
Butterworth filters, 478

band-pass, 487
broadband, 488
cascaded low-pass and high-pass, 487
low-pass transformation, 497

band-reject, 488
low-pass transformation, 497
parallel low-pass and high-pass, 490

high-pass, 484
transfer function, 486

low-pass, 481
table of poles, 485
transfer function, 484

capacitor, 60
impedance, 265, 409

Cardan’s solution, 570
cardinality, 164
Cartesian coordinate system, 109
Cauchy principal value (CPV), 244
causal system, 276, 291, 342
Cayley–Hamilton theorem, 327
characteristic equation, 152, 284, 340
Chebyshev filters, 478
circulant matrix, 122
collectively exhaustive, 580
column space (range), 129
comb function, 270
compact support, 225
completing the square, 395, 567
complex exponential function, 175, 218

rotation property, 183
spiral trajectory, 186, 219
trigonometric identities, 180

complex functions, 240
complex numbers, 168

nth root of unity, 178
conjugate, 168
magnitude and phase, 173
matrix representation, 182
polar form, 173
quadrants, 174
squared magnitude, 179
standard form, 168
table of properties, 179
two coordinates, 169

complex plane, 168
unit circle, 174

compound interest, 38
constant angular velocity, 34, 189
constant function (two-sided), 518

limit of rectangle functions, 433
convolution, 291, 319

and Laplace transform, 354
graphical illustration, 292, 321, 385
in s-domain, 356
matrix, 328

correlation functions, 248
and Laplace transform, 355

cosine function, 34, 217
exponentially weighted, 189, 393, 541

envelope, 298
exponentially weighted, ramped, 270, 404, 544
right-sided, 538
two-sided, 536

cosine transform, 431
coulomb (C), 54
Cramer’s rule, 126
cross-product, 197
cubic formula, 568
current, 54
current division, 71
current source, 67
current-voltage characteristic (I–V), 60

damped angular frequency, 80, 297
damping factor, 92
damping ratio, 304, 468
dashpot, 93
de Moivre’s formula, 178
De Morgan’s laws, 581
decibel (dB), 58
decimal prefixes and multipliers, 59
derivatives, 22, 572

chain rule, 24, 572
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generalized, 230
limit definition, 22
product and quotient rules, 24, 571

determinant, 122
Wronskian, 308

diode circuits, 64
exponential model, 66
iterative solution, 83
Lambert W-function solution, 597
piecewise linear model, 18

Dirac delta function, 220
impulse response function, 223
limit of rectangle functions, 220, 321
limit of triangle functions, 233
sampling property, 222
sifting property, 222
table of properties, 240

direct current (DC), 6, 246, 252
Dirichlet conditions, 425
Dirichlet function, 19
discontinuities, 19
discriminant, 568
distributions see generalized functions, 227
domain, 16
double integrator, 563
dual space, 228
duality, 444
dynes, 86

eigendecomposition, 152
eigenfunction, 37, 339
eigenvalues and eigenvectors, 152
electrical and mechanical analogs, 94, 95
electrical circuits, 54

s-domain models, 410
diodes, 82
impedance, 266
Kirchoff’s laws, 67
lumped parameter, 53
parallel RLC, 96
passive elements, 55
RC and RL, 75
series RLC, 78
table of notation, 57
table of symbols and units, 56
type of damping, 79

electromagnetic spectrum, 424
elementary charge, 54
elementary matrix, 116
elliptic filters, 478
empty set, 578
energy, 55, 206

of capacitor and inductor, 61
pendulum, 88

entire function, 241
envelope, 80, 298
envelope detector, 453
equivalent circuits

inductance and capacitance, 78
Norton, 72
resistive, 75
Thévenin, 72

Euler’s formulas, 37, 154, 175, 566
extension to quaternions, 196
trigonometric identities, 180
vector rotations, 180

Euler’s identity, 177
even and odd functions, 245

table of properties, 246
exchange matrix, 116
exponential function, 8, 39, 214, 390, 528

complex, 175, 218
ramped, 398, 530
time constant, 216
two-sided, 532

exponential growth and decay, 39

factorial, 567
farad (F), 60
field, 106
filters, 423

bandwidth, 456
Butterworth, 478
center frequency, 462
Chebyshev, 478
cutoff frequency, 455, 462
damped resonant frequency, 468
damping ratio, 468
elliptic, 478
first-order, 455

high-pass, 459
low-pass, 455

magnitude in dB, 459
magnitude response, 458
passband, 455
phase response, 459
quality factor, 462
resonant frequency, 468
second-order, 460, 466

band-pass, 462, 473
band-reject, 463, 474
high-pass, 469
low-pass, 469

series RLC circuit, 475
stopband, 455
transition band, 455
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final value theorem (FVT), 366
force-current model, 97
force-voltage model, 94
Fourier series, 251

exponential form, 258
trigonometric form, 251

Fourier transforms, 256, 425, 504
and generalized functions, 437
cross-correlation, 433, 448
frequency response, 455
inverse, 426
magnitude and phase, 435, 506
properties, 442

amplitude modulation (AM), 449
area, 445
convolution, 445
derivatives, 445
duality, 444
even and odd symmetry, 447
frequency shift, 444
integral, 446
Parseval’s theorem, 446
product, 449
time scaling, 442
time shift, 443

table of properties, 442, 443
table of transform pairs, 426, 427

free variables, 138
frequency, 2

angular, 33, 56, 177, 217, 275, 423
carrier, 425
channels, 16
content, 12
damped angular, 80, 297
damped resonant, 468
fundamental, 190, 252
Neper, 297
ordinary, 217
resonant, 297, 406, 468

frequency domain, 335, 425
frequency response, 12, 453
functionals, 224, 437
functions, 16

MATLAB, 156
absolute value, 209, 521
affine, 6, 18
algebraic, 22
analytic, 240
as ordered pairs, 224
comb, 270
compact support, 225
complex, 240
complex exponential, 175, 218
composite, 24

constant (two-sided), 517
continuous, 19
continuous from the right, 19
correlation, 249
cosine, 34

exponentially weighted, 276, 540
exponentially weighted, ramped, 270, 276,

543
right-sided, 275, 537
two-sided, 536

Dirac delta, 220, 276, 510
Dirichlet, 19
even and odd, 245
exponential, 8, 39, 214, 275, 528

ramped, 529
two-sided, 532

Gaussian, 533
generalized, 223, 347
hyperbolic, 566
indicator, 205
Kronecker delta, 509
Lambert W, 593
linear, 17
locally integrable, 224
logistic, 268
minimum and maximum, 26, 567
natural logarithm, 43
of exponential growth, 348
of slow growth, 440
orthogonal, 35, 250
periodic, 251
piecewise linear, 4
ramp, 209, 519
rational, 367
rectangle, 211, 524
saddle point, 26
Schwartz, 439
signum, 24, 209, 516
sinc, 255, 346, 431
sine, 34

exponentially weighted, 276, 551
exponentially weighted, ramped, 276, 554
right-sided, 275, 548
two-sided, 546

smooth, 225
test function, 225
triangle, 212, 525
trigonometric, 33
unit doublet, 234, 276, 512
unit step, 208, 276, 514
unit triplet, 236
zero-crossings, 165
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Gaussian elimination (GE), 135
Gaussian function, 534
generalized functions, 223

continuous linear functional, 227
distribution, 227
distribution of exponential growth, 348
dual space, 228
generalized derivative, 230
singular, 229
table of properties, 231
tempered distribution, 439
test function, 225

Gibb’s phenomenon, 256
gram (g), 86

harmonic oscillation, 88
harmonics, 190, 252
Heaviside step function, 208
henry (H), 60
Hermitian matrix, 119
Hilbert transform, 346
Hooke’s law, 93
hyperbolic functions, 566

idempotent matrix, 120, 156
identity matrix, 113
impedance, 265, 410
improper rational function, 559
impulse response function, 223, 291, 382

causal, 291
matrix, 328

inclination angle, 194
inductor, 60

impedance, 265, 409
initial conditions, 278, 343
initial states, 307, 343
initial value theorem (IVT), 364
inner product, 109
integral transforms, 340

Abel, 341
cosine, 431
Fourier, 425
Hilbert, 346
kernel, 340
Mellin, 341
table of, 341

integrals, 26, 573
convergent, 29
definite, 28, 575
divergent, 29
improper, 28
indefinite, 26, 573
Leibniz’s rule, 31, 572
Riemann, 29

integrating factor, 285
integration by parts, 31, 574
integro-differential equation, 294, 381
International Organization for Standardization

(ISO), 424
International Telecommunication Union (ITU),

424
inverse function, 17
inverse image, 17
iterative techniques, 82

joule (J), 55

kernel, 340
kinetic energy, 89
Kirchoff’s circuit laws, 67
Kronecker delta function, 509

l’Hôpital’s rule, 21, 242
Lambert W-function, 593
Laplace transforms, 335, 502, 559

s-plane, 342
and generalized functions, 347
bilateral, 341
conversion to polynomials, 377
impulse response function, 383
inverse, 347
and linear circuits, 409
magnitude, 370, 503
poles and zeros, 367, 502
properties, 352

convolution, 354
cross-correlation, 355
derivatives, 353
final value theorem (FVT), 366
frequency shift, 353
initial value theorem (IVT), 364
integral, 353
linearity, 352
product, 356
time division, 357
time product, 357
time scaling, 352
time shift, 352

region of convergence (ROC), 341
solving ODEs, 105, 380
table of properties, 358
table of transform pairs, 347, 348, 559,

560
transfer function, 367, 382, 453
unilateral, 343
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Laurent series, 241, 588
left null space, 134
linear and time-invariant (LTI) systems, 279
locally integrable, 224
logarithms, 41, 335

complex, 181
logistic function, 268
LU and LDU decompositions, 146

Maclaurin series, 585
mass on a spring, 37, 92
mass on frictional surface, 96
mathematical models, 2, 3

diode, 64
resistor, capacitor, inductor, 60

matrices, 108
MATLAB functions, 156
adjugate, 125
augmented, 118
back-substitution, 137
characteristic equation, 152
cofactor, 123
Cramer’s rule, 126
determinant, 122

table of properties, 125
diagonal, 113
eigendecomposition, 153
elementary, 116
exchange, 116
Hermitian and skew-Hermitian, 119
idempotent, 120, 156
identity matrix, 113
inverse, 115
linearly independent columns, 115
LU and LDU decompositions, 146
matrix exponential, 325
minor, 123
multiplication, 110
nilpotent, 120
orthogonal and unitary, 121
overdetermined and underdetermined systems,

110
permutation, 115
pivot, 136
rank, 119
rotation, 121, 182, 195

eigendecomposition, 154
row-echelon form, 137
row-reduced echelon form, 138
square matrix, 110

table of properties, 123
state transition matrix, 324
subspaces, 128

basis, 148

orthogonal complement, 135
table of dimensions, 135

symmetric and skew-symmetric, 119
table of matrix properties, 110
Toeplitz and circulant, 122
trace, 114

table of properties, 114
triangular, 115

matrix convolution, 328
matrix exponential, 325

and Cayley–Hamilton theorem, 327
table of properties, 326

matrix impulse response function, 328
mechanical systems, 85

table of symbols and units, 86
Mellin transform, 341
mesh, 69
mesh-current analysis, 69
modes of convergence, 288
moment of inertia, 87
momentum, 85

Napier’s constant, 38
Neper frequency, 297
newton (N), 86
Newton’s method, 83
Newton’s second law, 86
nilpotent matrix, 120
node-voltage analysis, 69
nodes, 69

essential and reference, 70
Norton equivalent circuit, 72

in s-domain, 414
notation, 501
null space (kernel), 132
numbers, 2, 163

complex, 168
countable, 164
imaginary, 165
irrational, 33
octonions, 192
quaternions, 192
rational, 163
symbols, 3
table of cardinality, 164

octonions, 192
Ohm’s law, 60
ohm, 60
ordinary differential equations (ODEs), 53, 79,

276
complete solution, 278
first-order, 76, 280

characteristic equation, 284
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exponential input, 287
for RL and RC circuits, 282
homogeneous solution, 284
impulse response, 290
initial condition, 284
integrator implementation, 283
nonhomogeneous solution, 285
separable, 283
sinusoidal input, 289
step response, 287

homogeneous solution, 278
initial conditions, 278
Laplace transform solutions, 380
linear and time-invariant (LTI), 277
natural and forced solutions, 278
order of, 278
particular solution, 278
phasor solutions, 336
second-order, 294

characteristic equation, 297
convolution, 319
critically damped, 80, 297
damping ratio, 304
damping transition, 407
homogeneous solution, 296
impulse response, 319
initial conditions, 306
initial states, 307
integrator implementation, 296
modes, 297
nonhomogeneous solution, 307
overdamped, 79, 297
RLC circuits, 295
stable, 300
step response, 311, 313
undamped, 301
underdamped, 79, 297
variation of parameters, 307
Wronskian, 309

system of ODEs, 323
third-order, integrator implementation, 325
transient and steady-state solutions, 279

ordinary frequency, 217
orthogonal complement, 134
orthogonal functions, 250
orthogonal matrix, 121
outer product, 109
overmodulation, 453

Parseval’s theorem, 438
partial differential equation (PDE), 276
partial fraction expansion (PFE), 387

distinct complex poles, 391
distinct real poles, 388

improper rational function, 387, 559
and linear circuits, 411
long division, 388
repeated complex poles, 402
repeated real poles, 396
residues, 389
second-order systems, 406
table of residues, 406

partition, 29, 580
pendulum, 86

compound, 87
energy, 89
simple, 86

period, 218, 251, 423
periodic function, 251
permutation matrix, 115
phase shift, 217
phasors, 263

circuit analysis, 266
impedance, 266
of sine, 264
solving ODEs, 336
superposition, 264

pivot, 136
pivot point, 86
polar coordinates, 171
polygon, regular, 179
potential energy, 55, 89
power, 55, 206

of capacitor and inductor, 61
instantaneous and average, 55

power series, 583
principal and interest, 38
principal value, 181
probability density function (pdf), 40
pseudofunctions, 28

quadrants, of complex plane, 174
quadratic formula, 568
quadrature amplitude modulation (QAM), 495
quaternions, 192

conjugate, 193
extended imaginary part, 192
matrix representations, 193
rotations, 197
table of properties, 197

radio frequency bands, 424
ramp function, 209, 520
range, 16
rank, 119
rational functions, 367

poles and zeros, 368
proper and improper, 368
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reactance, 265
rectangle function, 211, 524

derivative, 226
rectangular and polar forms, 566
rectified sine waveform, 261
region of convergence (ROC), 341, 584
residues, 389
resonance, 477
resonant frequency, 297, 406, 468
reverse engineering, 4
Riemann sum, 29
rotation matrix, 121, 182, 195
rotations, 179

complex exponential, 183
complex numbers, 180
quaternions, 197
in three dimensions, 195

row space, 134
row-echelon form, 137
row-reduced echelon form, 138

saddle point, 26
saturation current, 66
Schwartz functions, 438
series expansions, 583

binomial, 586
Laurent, 241, 588
Maclaurin, 585

table of, 587
matrix exponential, 325
Taylor, 583

set theory, 577
sets, 577

collectively exhaustive, 580
complement, 578
De Morgan’s laws, 581
difference, 580
empty set, 578
exclusive or, 581
intersection, 579
mutually exclusive, 579
partition, 580
subset, 578
table of operations, 580
union, 579
universal set, 578

sign function, 209
signals, 205

baseband, 450
energy and power, 206
frequency content, 12
passband, 450

signum function, 24, 209, 516
limit of exponential functions, 433, 503

simple pole, 242
sinc function, 255, 346, 431
sine function, 34, 217

envelope, 80
exponentially weighted, 189, 552
exponentially weighted, ramped, 555
rectified, 261
right-sided, 549
two-sided, 547

singularities, 589
essential, 21, 242, 589
isolated, 241
poles, 19, 242, 344, 589
removable, 21, 242, 344, 589

smooth function, 225
span, 135
spectrum, 12, 431
speed of light, 424
spherical coordinates, 194
spring constant, 37, 92
state transition matrix, 324

eigendecomposition, 326
eigenvalues, 324

states, 323
subspace, 128
summations, closed forms, 566
superposition, 264, 291, 319
support, 17
symmetric matrix, 119
system of equations, 7, 108

basic and free variables, 138
consistent, 111
constraints, 145
equivalent, 137
Gaussian elimination (GE), 135
homogeneous, 151
linearly dependent, 112
nonlinear, 8, 598

iterative solution, 8, 83
Newton’s method, 83

nonsingular, 111
of ODEs, 323
overdetermined and underdetermined, 111, 140
particular solution, 151
table of solutions, 144
trivial solution, 111

systems, 1
cascaded, 386
causal, 276, 342
convolution, 320
frequency response, 12
impulse response function, 291
integrator implementation, 10, 283, 296, 325
linear and time-invariant (LTI), 279
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marginally stable, 344
modeled by ODEs, 275
multiple-input multiple-output (MIMO), 7,

108
natural and forced responses, 278
poles and zeros, 368
second-order damping, 407
single-input single-output (SISO), 2
stable, 341
time-varying, 190
transient and steady-state responses, 279
unbounded, 562
with feedback, 563

tangent function, 507
inverse, 173, 507

Taylor series, 583
test functions, 225

of exponential decay, 348
properties, 226
rapidly decreasing, 438
Schwartz, 439
with different support, 233

Thévenin equivalent circuit, 72
in s-domain, 414

theory of residues, 591
thermal voltage, 66
time constant, 76, 216
Toeplitz matrix, 122
torque, 87
trace, 114
transfer characteristic, 4
transfer function, 368, 382, 453
triangle function, 212, 526

as convolution of rectangle functions, 213

trigonometric identities, 565

unit circle, 174
unit doublet, 233

limit of rectangle functions, 234
sampling property, 237
sifting property, 237
table of properties, 240

unit step function, 208
limit of exponential functions, 505

unit triplet, 236
table of properties, 240

unitary matrix, 121
universal set, 578

variation of parameters, 307
vector space, 107

basis and span, 135
table of properties, 107

vectors, 108
collinear, 111
inner and outer products, 109
norm, 109
unit vector, 114

Venn diagram, 578
volt (V), 55
voltage division, 71
voltage source, 66

watt (W), 55
wavelength, 424
well-behaved function, 240
work, 55
Wronskian, 308

for second-order ODE, 309
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