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Introduction

The vibratory environment found in the majority of vehicles essentially consists
of random vibrations. Each recording of the same phenomenon results in a signal
different from the previous ones. Characterization of a random environment
therefore requires an infinite number of measurements to cover all the possibilities.
Such vibrations can only be analyzed statistically.

The first stage consists of defining the properties of the processes comprising all
the measurements, making it possible to reduce the study to the more realistic
measurement of single or several short samples. This means evidencing the
stationary character of the process, making it possible to demonstrate that its
statistical properties are conserved in time, then its ergodicity, with each recording
representative of the entire process. As a result, only a small sample consisting of
one recording has to be analysed (Chapter 1).

The value of this sample gives an overall idea of the severity of the vibration, but
the vibration has a continuous frequency spectrum that must be determined in order
to understand its effects on a structure. This frequency analysis is performed using
the power spectral density (PSD) (Chapter 2) which is the ideal tool for describing
random vibrations. This spectrum, a basic element for many other treatments, has
numerous applications, the first being the calculation of the rms value of the
vibration in a given frequency band (Chapter 3).

The practical calculation of the PSD, completed on a small signal sample,
provides only an estimate of its mean value, with a statistical error that must be
evaluated. Chapter 4 shows how this error can be evaluated according to the analysis
conditions, how it can be reduced, before providing rules for the determination of
the PSD.
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The majority of signals measured in the real environment have a Gaussian
distribution of instantaneous values. The study of the properties of such a signal is
extremely rich in content (Chapter 5). For example, knowledge of the PSD alone
gives access, without having to count the peaks, to the distribution of the maxima of
a random signal (Chapter 6), and in particular to the response of a system with one
degree-of-freedom, which is necessary to calculate the fatigue damage caused by the
vibration in question (Volume 4). It is also used to determine the law of distribution
of the largest peaks, in itself useful information for the pre-sizing of a structure
(Chapter 7).



List of symbols

The list below gives the most frequent definition of the main symbols used in
this book. Some of the symbols can have another meaning which will be defined in
the text to avoid any confusion.

a Threshold value of 40 or
maximum of 40

A Maximum of A(t)
A(t) Envelope of a signal
b Exponent
c Viscous damping constant
Ej( ) First definition of error

function
E2( ) Second definition of error

function
Erf Error function
E( ) Expected function of...

f Frequency of excitation
fsamp. Sampling frequency

fmax Maximum frequency
f0 Natural frequency
g Acceleration due to gravity
G Particular value of power

spectral density
G( ) Power spectral density for

0<f <QO
G( ) Measured value of G( )

h
h(t)

k
K
t_
~t

e(t)

'4)

L
Lr

Cross-power spectral density

Interval (f/f0) or f 2 / f j

Impulse response
Transfer function

Stiffness
Number of subsamples
Value of 40
Mean value of 41)
Average maximum of Np

peaks
Rms value of 40

Rms value of C(t)

Generalized excitation
(displacement)
First derivative of 40

Second derivative of 40

Given value of 40
Rms value of filtered signal

L( Q) Fourier transform of 4 0
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L( Q) Fourier transform of i( t)
m Mean
M Number of points of PSD
Ma Average number of maxima

which exceeds threshold per
unit time

M n Moment of order n
n Order of moment or

number of degrees of
freedom

na Average number of
crossings of threshold a per
unit time

n^ Average number of
crossings of threshold a with
positive slope per unit time

n o Average number of zero-
crossings per unit time

Average number of zero-
crossings with positive slope
per second (average
frequency)

np Average number of maxima
per unit time

N Number of curves or
number of points of signal or
numbers of dB

Np Number of peaks

Na Average numbers of
crossings of threshold a with
positive slope for given
length of time

NQ Average number of zero-
crossings with positive slope
for given length of time

no

P N ( )

P
PSD

Q(u)

r
rms
r(0
R
R*u

R(f)

s
Sn

Average number of positive
maxima for given length of
time
Probability density

Probability density of largest
maximum over given
duration
Probability
Power spectral density

i < • " - " - ' '

2VI -r

Probability that a maximum
is positive

Probability that a maximum
is negative
Probability density of
maxima of £(t)
Q factor (quality factor)
Distribution function of
maxma o
Probability that a maximum
is higher than given
threshold
Irregularity factor
Root mean square (value)
Temporal window
Slope in dB/octave
Cross-correlation function
between ^(t) and u(t)
Fourier transform of r(t)
Auto-correlation function
Standard deviation
Value of constant PSD
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s( ) Power spectral density for
-oo < f < +00

t Time
T Duration of sample of signal
Ta Average time between two

successive maxima
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Average of highest peaks
Generalized response
First derivative of u(t)
Second derivative of u(t)
Rms value of x(t)

Rms value of x(t)

Absolute acceleration of
base of one-degree-of-
freedom system

XJTOS Rms value of x(t)
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a Risk of up-crossing

Xn Variable of chi-square with
n degrees of freedom

St Time step
§( ) Dirac delta function
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u(t)
u(t)
u(t)
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x(t)
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half-power points or
frequency step of the PSD

AF Bandwidth of analysis filter
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y £U Coherence function between
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(p Phase
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order n
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( 2 * f )
£ Damping factor
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Chapter 1

Statistical properties of a random process

1.1. Definitions

1.1.1. Random variable

A random variable is a quantity whose instantaneous value cannot be predicted.
Knowledge of the values of the variable before time t not does make it possible to
deduce the value at the time t from it.

Example: the Brownian movement of a particle.

1.1.2. Random process

Let us consider, as an example, the acceleration recorded at a given point on the
dial of a truck travelling on a good road between two cities A and B. For a journey,
recorded acceleration obeys the definition of a random variable. The vibration
characterized by this acceleration is said to be random or stochastic.

If n journeys are performed, one obtains as many different V(t) curves, each
recording having a random character.

We define as a random process or stochastic process the ensemble of the time

functions [^(t)) for t included between - <» and +00, this ensemble being able to be
defined by statistical properties [JAM 47].



2 Random vibration

Random movements are not erratic in the common meaning of the term, but
follow a well defined law. They have specific properties and can be described by a
law of probability.

The principal characteristic of a random vibration is simultaneously to excite all
the frequencies of a structure [TUS 67]. In distinction from sinusoidal functions,
random vibrations are made up of a continuous range of frequencies, the amplitude
of the signal and its phase varying with respect to time in a random fashion [TIP 77],
[TUS 79], So the random vibrations are also called noise.

Random functions are sometimes defined as a continuous distribution of
sinusoids of all frequencies whose amplitudes and phases vary randomly with time
[CUR 64] [CUR 88].

1.2. Random vibration in real environments

By its nature, the real vibratory environment is random [BEN 6la]. These
vibrations are encountered:

- on road vehicles (irregularities of the roads),

- on aircraft (noise of the engines, aerodynamic turbulent flow around the wings
and fuselage, creating non-stationary pressures etc) [PRE 56a],

- on ships (engine, swell etc),

- on missiles. The majority of vibrations encountered by military equipment, and
in particular by the internal components of guided missiles, are random with respect
to to time and have a continuous spectrum [MOR 55]: gas jet emitted with large
velocity creates important turbulences resulting in acoustic noise which attacks the
skin of the missile until its velocity exceeds Mach 1 approximately (or until it leaves
the Earth's atmosphere) [ELD 61] [RUB 64] [TUS 79],

- in mechanical assemblies (ball bearings, gears etc), etc.

1.3. Random vibration in laboratory tests

Tests using random vibrations first appeared around 1955 as a result of the
inability of sine tests to excite correctly equipment exhibiting several resonances
[DUB 59] [TUS 73]. The tendency in standards is thus to replace the old swept sine
tests which excite resonances one after the other by a random vibration whose
effects are nearer to those of the real environment.
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Random vibration tests are also used in a much more marginal way:

-to identify the structures (research of the resonance frequencies and
measurement of Q factors), their advantage being that of shorter test duration,

- to simulate the effects of shocks containing high frequencies and difficult to
replace by shocks of simple form.

1.4. Methods of analysis of random vibration

Taking into account their randomness and their frequency contents, these
vibrations can be studied only using statistical methods applied to the signals with
respect to time or using curves plotted in the frequency domain (spectra).

Table 1.1. Analysis possibilities for random vibration

1
RANDOM

MECHANICAL
VIBRATION

X
STUDY IN
THE TIME
DOMAIN

\

/

~

\

STATISTICAL
PROPERTIES

OF THE PROCESS

STATISTICAL
PROPERTIES

OF THE SIGNAL

STATISTICAL
PROPERTIES

OF THE RESPONSE
OF A ONE D.O.F.

SYSTEM

/

\

f

ENSEMBLE
AVERAGES

TIME
AVERAGES

INSTANTANEOUS
VALUES

DISTRIBUTION

MAXIMA
DISTRIBUTION

FOURIER

RESPONSE OF
AN IDEAL

RECTANGULAR
FILTER

/
\

FOURIER
TRANSFORM

POWER
SPECTRAL DENSITY

RESPONSE OF
A ONE D.O.F.
MECHANICAL

SYSTEM

EXTREME
RESPONSE SPECTRUM

FATIGUE
DAMAGE SPECTRUM

One can distinguish schematically four ways of approaching analysis of random
vibrations [CUR 64] [RAP 69]:

- analysis of the ensemble statistical properties of the process,



4 Random vibration

- methods of correlation,

- spectral analysis,

- analysis of statistical properties of the signal with respect to time.

The block diagram (Table 1.1) summarizes the main possibilities which will be
considered in turn in what follows.

The parameters most frequently used in practice are:

- the rms value of the signal and, if it is the case, its variation as a function of
time,

- the distribution of instantaneous accelerations of the signal with respect to
time,

- the power spectral density.

1.5. Distribution of instantaneous values

1.5.1. Probability density

One of the objectives of the analysis of a random process is to determine the
probability of finding extreme or peak values, or of determining the percentage of
time that a random variable (acceleration, displacement etc) exceeds a given value
[RUD 75]. Figure 1.1 shows a sample of a random signal with respect to time
defined over duration T.

Figure 1.1. Sample of random signal
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The probability that this function £(t) is in the interval i, I + M is equal to the
percentage of time during which it has values in this interval. This probability (or
percentage of time) is expressed mathematically:

Prob|/ [1.1]

To precisely define p(^), it is necessary to consider very small intervals M and
of very long duration T, so that mathematically, the probability density function is
defined by:

p(/) = limit limiti [1.4]

1.5.2. Distribution function

Owing to the fact that p(l) was given for the field of values of e(t), the
probability that the signal is inside the limits a < e(t) < b is obtained by integration
from [1.2]:

Tb
Prob [a < 4t) < b] = J d£ [1.5]

Since the probability that ^(t) within the limits -oo, + oo is equal to 1 (absolutely
certain event), it follows that

[1.6]

[1.7]

and the probability that t exceeds a given level L is simply

Prob [L <
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There exist electronic equipment and calculation programmes that make it
possible to determine either the distribution function, or the probability density
function of the instantaneous values of a real random signal £(t). Figure 1.2 shows
how one passes from the signal ^(t) to the probability density and the distribution
function.

Figure 1.2. Distribution of instantaneous values of the signal

Among the mathematical laws representing the most usual probability densities,
one can distinguish two particularly important in the field of random vibrations:
Gauss's law and Rayleigh's law.

1.6. Gaussian random process

A Gaussian random process f.(i) is one such that the ensemble of the instantaneous
values of i(t} obeys a law of the form:

expi- [1.81

where m and s are constants. The utility of the Gaussian law lies in the central limit
theorem, which establishes that the sum of independent random variables follows a
roughly Gaussian distribution whatever the basic distribution.

This the case for many physical phenomena, of parameters which result from a
large number of independent and comparable fluctuating sources, and in particular
the majority of vibratory random signals encountered in the real environment
[BAN 78] [CRE 56] [PRE 56a].
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A Gaussian process is fully determined by knowledge of the mean value m
(generally zero in the case of vibratory phenomena) and of the standard
deviation s.

Moreover, it is shown that:

- if the excitation is a Gaussian process, the response of a linear time-invariant
system is also a Gaussian process [CRA 83] [DER 80];

- the vibration in part excited at resonance tends to be Gaussian.

For a strongly resonant system subjected to broad band excitation, the central
limit theorem makes it possible to establish that the response tends to be Gaussian
even if the input is not. This applies when the excitation is not a white noise,
provided that it is a broad band process covering the resonance peak [NEW 75]
(provided that the probability density of the instantaneous values of the excitation
does not have too significant an asymmetry [MAZ 54] and that the structure is not
very strongly damped [BAN 78] [MOR 55]).

In many practical cases, one is thus led to conclude that the vibration is
stationary and Gaussian, which simplifies the problem of calculation of the response
of a mechanical system (Volume 4).

1.7. Rayleigh distribution

Rayleigh distribution of which the probability probability has the form:

e 2 s 2 [L9]
s

(t. > 0) is also an important law in the field of vibration for the representation of:

-variations in the instantaneous value of the envelope of a narrow band
Gaussian random process,

- peak distribution in a narrow band Gaussian process.

Because of its very nature, the study of vibration would be very difficult if one
did not have tools permitting limitation of analysis of the complete process, which
comprises a great number of signals varying with time and of very great duration,
using a very restricted number of samples of reasonable duration. The study of
statistical properties of the process will make it possible to define two very useful
concepts with this objective in mind: stationarity and ergodicity.
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1.8. Ensemble averages: 'through the process'

1.8.1. n order average

Figure 1.3. 'Through the process' study

Let us consider N recordings of a random phenomenon varying with time l l(t)

[i € (l, N)J for t varying from 0 to T (Figure 1.3). The ensemble of the curves ' t(i)

constitutes the process | l^(t)|. A first possibility may consist in studying the

distribution of the values of i for t = tj given [JAM 47].

If we have (N) records of the phenomenon, we can calculate, for a given tl5 the
mean [BEN 62] [BEN 63] [DAY 58] [JEN 68]:

[1.10]
N

If the values ^(t) belong to an infinite discrete ensemble, the moment of order n
is defined by:

[1.11]

(E[ ] = mathematical expectation). By considering the ensemble of the samples at

the moment tj, the statistical nature of ^tj) can be specified by its probability

density [LEL 76]:
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M

and by the moments of the distribution:

if the density p t i ] exists and is continuous (or the distribution function). The

moment of order 1 is the mean or expected value; the moment of order 2 is the
quadratic mean.

For two random variables

The joint probability density is written:

P(/I» ll' ^2> t2J= lun

and joint moments:

, J " J

1.8.2. Central moments

The central moment of order n (with regard to the mean) is the quantity:

E{[4t,)-m]n}= Urn -IP4)-ml" [1.16]
^ J N->co N •_,

in the case of a discrete ensemble and, for p(^) continuous:

[1.17]

1.8.3. Variance

The vor/ance is the central moment of order 2
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[U8]

By definition:

S . f

-2 m p[4t,)] d^t,) + m2 } "p[4t,)] d/

1.8.4. Standard deviation

The quantity s^ \ is called the standard deviation. If the mean is zero,
*

2
When the mean m is known, an absolutely unbiased estimator of s is

2

. When m is unknown, the estimator of s is ^ where
N N-l

m ' = —
N
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Example

Let us consider 5 samples of a random vibration
given time t = tj (Figure 1.4).

and the values of i at a

Figure 1.4. Example of stochastic process

If the exact mean m is known (m = 4.2 m/s2 for example), the variance is
estimated from:

S2 = (2 - 4.2)* + (5 - 4.2? + (2 - 4.2? + (4 - 4.2? + (7 - 4.2f 2\2

S2 = = 3.64 (m/s2)2

If the mean m is unknown, it can be evaluated from

m = —
2 + 5 + 2 + 4 + 7 20 2= — = 4 m/s

5 5

s2 = — = 4.50 (m/s2)2

4
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1.8.5. Autocorrelation function

Given a random process '^(t), the autocorrelation function is the function
defined, in the discrete case, by:

R( t l , t1 + t)= lim -2/4',) I4 t i+^) [L22]

[1-23]

or, for a continuous process, by:

[1-24]

1 .8.6. Cross-correlation function

Given the two processes {t(t)} and |u(t)} (for example, the excitation and the
response of a mechanical system), the cross-correlation function is the function:

[1.25]

or

R(T)= lim — Z/A' iJ -Xt i 4

N-»°oN j

The correlation is a number measuring the degree of resemblance or similarity
between two functions of the same parameter (time generally) [BOD 72].

1.8.7. Autocovariance

Autocovariance is the quantity:

C(t,,tl +T) = R(t,,t, -f t)-<(t,) ^ +,) [1.28]

C(ti,t} +T) = R\t1,t1 + T) if the mean values are zero.
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We have in addition:

R(t,,t2) = R(t2 ,t,) [1.29]

1.8.8. Covariance

One defines covariance as the quantity:

[1.30]

1.8.9.Stationarity

A phenomenon is strictly stationary if every moment of all orders and all the
correlations are invariable with time t} [CRA 67] [JAM 47] [MIX 69] [PRE 90]
[RAP 69] [STE 67].

Figure 1.5. Study of autostationarity

The phenomenon is wide-sense for weakly) stationary if only the mean, the mean
square value and the autocorrelation are independent of time tj [BEN 58]
[BEN61b][SVE80].

If only one recording of the phenomenon ^(t) is available, one defines
sometimes the autostationarity of the signal by studying the stationarity with n
samples taken at various moments of the recording, by regarding them as samples
obtained independently during n measurements (Figure 1 .5).

One can also define strong autostationarity and weak autostationarity.
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For a stationary process, the autocorrelation function is written:

R(T)= lim - ( 0 ) '*M [L31]

N

NOTES.
Based on this assumption, we have:

R(-r) =

R(-t) =

R(-T) = R(T) [1.32]

(R is an even function oft) [PRE 90],

R(0) = E{/(0) ^0)} = E{^2(t)} [1.33]

R(0) is ?/?^ ensemble mean square value at the arbitrary time t

We have

yielding

± 2 E 4 0 ^ T + E T > 0

R(0) ± 2 R(T) + R(0) > 0

and

R(0)^|R(T)| [1.34]

As for the cross-correlation function, it becomes, for a stationary process,



Properties

1.

R#U
Indeed

lim —
N-»oo
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[1.35]

N

[1.36]

2. Whatever T

1.9. Temporal averages: 'along the process'

1.9.1. Mean

Figure 1.6. Sample of random signal

[1.37]
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Let us consider a sample l(t) of duration T of a recording. It can be interesting
to study the statistical properties of the instantaneous values of the function g(t).
The first possibility is to consider the temporal mean of the instantaneous values of
the recording.

We have:

= lim — P4t)dt [1-38]
T->oo2T ~T

if this limit exists. This limit may very well not exist for some or for all the samples
and, if it exists, it may depend on the selected sample ^(t); but it does not depend on

time(l}.

For practical reasons, one calculates in fact the mean value of the signal ^(t)
over one finite duration T:

?(t)dt [1.39]

1.9.2. Quadratic mean - rtns value

The vibration t(i) results in general in an oscillation of the mechanical system
around its equilibrium position, so that the arithmetic mean of the instantaneous
values can be zero if the positive and negative values are compensated. The
arithmetic mean represents the signal poorly [RAP 69] [STE 67]. Therefore it is
sometimes preferred to calculate the mean value of the absolute value of the signal

t)|dt [1.40]

and much more generally, by analogy with the measurement of the rms value of an
electrical quantity, the quadratic mean (or mean square value) of the instantaneous
values of the signal of which the square root is the rms value.

The rms value (root mean square value) If^ = \-c (t) is the simplest statistical

characteristic to obtain. It is also most significant since it provides an order of
magnitude of the intensity of the random variable.

1. One defines too x(t) from:

1 T 1 T/0

lim — f x(t) dt ou lim — f x(t) dt
T^oo T * V ' T-voo T J-T/2 V '
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If one can analyse the curve l(t) by dividing the sample of duration T into N

intervals of duration Atj (i e [l, N]), and if ^ is the value of the variable during

the interval of time At i5 the mean quadratic value is written:

!?At, *?Ati 4 AtN [1.41]

with T = 2^i Atj • If the intervals of time are equal to (At) and if N is the number of

points characterizing the signal, T = N At and:

Figure 1.7. Approximation to the signal

If all Atj tend towards zero and if N -> oo, the quadratic mean is defined by
[BEN 63]:

= - f/2(t)dt
T 0

[1.42]

(or by
_T
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1.9.3. Moments of order n

As in the preceding paragraph, one also defines:

- moments of an order higher than 2; the moment of order n is expressed:

« lim — fV(t)dt
2 T T

central moments: that of order n is defined by:

fin = EJkt) -40]° j = lim — j ^kt) -^(t)]" dt [1.44]
1. J T-»co 2 T ~!

For a signal made up of N points of mean i:

1N i=l

1.9.4. Variance - standard deviation
2

The central moment of order 2 is the variance, denoted by s^:

[1.45]

is called the standard deviation.

Signal made up of N points:

i=l

1.9.5. Skewness

The central moment of order 3, denoted by [13, is sometimes reduced by division

[1.46]
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One can show [GMU 68] that fj/3 is characteristic of the symmetry of the

probability density law p(^) with regard to the mean ^(t); for this reason, n'3 is
sometimes called skewness.

Figure 1.8. Probability densities with non-zero skewness

Signal made up of N points:

(j,3 = 0 characterize a Gaussian process.

For ji'3 > 0, the probability density curve presents a peak towards the left and for
fi'3 < 0, the peak of the curve is shifted towards the right.

1.9.6. Kurtosis

4.
The central moment of order 4, reduced by division by s^, is also sometimes

considered, for it makes it possible estimation of flatness of the probability density
curve. It is often termed kurtosis [GUE 80].

[1.47]
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Signal made up of N points:

N

|x'4 = 3 For a Gaussian process.

fi'4 < 3 Characteristic of a truncated signal or existence of a sinusoidal
component ( u'4 = 1.5 for a pure sine).

H'4 > 3 Presence of peaks of high value (more than in the Gaussian case).

Figure 1.9. Kurtosis influence on probability density
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Examples

1. Let us consider an acceleration signal sampled by a step of At = 0.01 s at 10
points (to facilitate calculation), each point representing the value of the signal for
time interval At

2 _ x + X + - - . - H
xrms ~ ~

T = N At = 10 . 0.01 s

0.1

*ms = 3-8 (m/s2)2

and

Xrms =1-95

This signal has as a mean

l + 3 + 2 + - - - + (-2)+0 n -
m = ^—'- 0.01 = -0.4 m/s2

0.1
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And for standard deviation s such that

1 ^(" \2

T^-l*i-mJ At|

s2 = -U(l + 0.4)2 + (3 + 0.4)2 + (2 + 0.4)2 + (0 + 0.4)2 + (-1 + 0.4)2 + (- 3 + 0.4)2

S2=3.64 (m/s2)2

s = 6.03 m/s2

2. Let us consider a sinusoid x(t) = xm sin(Q t + cp)

xm

|x(t)|=
2 ..

x =

(for a Gaussian distribution, |x(t)| » 0.798 s ).

1.9.7. Temporal autocorrelation function

We define in the time domain the autocorrelation function R^(T) of the
calculated signal, for a given T delay, of the product t(t) l(t + T) [BEA 72]
[BEN 58] [BEN 63] [BEN 80] [BOD 72] [JAM 47] [MAX 65] [RAC 69] [SVE 80].

Figure 1.10. Sample of random signal
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[1.48]

 [1-49]

The result is independent of the selected signal sample i. The delay i being
given, one thus creates, for each value of t, the product £(t) and ^(t + T) and one
calculates the mean of all the products thus obtained. The function R^(t) indicates
the influence of the value of t at time t on the value of the function i at time t + T .
Indeed let us consider the mean square of the variation between ^(t) and ^(t + t),

One notes that the weaker the autocorrelation R^(T), the greater the mean square

of the difference [^(t)-^(t + t)] and, consequently, the less ^(t) and 4t + t)
resemble each other.

Figure 1.11. Examples of autocorrelation functions

The autocorrelation function measures the correlation between two values of
considered at different times t. If R/ tends towards zero quickly when T
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becomes large, the random signal probably fluctuates quickly and contains high
frequency components.

If R^ tends slowly towards zero, the changes in the random function are
probably very slow [BEN 63] [BEN 80] [RAC 69].

R^ is thus a measurement of the degree of random fluctuation of a signal.

Discrete form

The autocorrelation function calculated for a sample of signal digitized with N
points separated by At is equal, for T = m At, to [BEA 72]:

[1.51]

Catalogues of correlograms exist allowing typological study and facilitating the
identification of the parameters characteristic of a vibratory phenomenon [VTN 72].
Their use makes it possible to analyse, with some care, the composition of a signal
(white noise, narrow band noise, sinusoids etc).

Figure 1.12. Examples of autocorrelation functions
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Calculation of the autocorrelation function of a sinusoid

40 = tm sin(Q t)

T) = — J
*

sin Ot sin Q t + i dt

[1-52]

The correlation function of a sinusoid of amplitude lm and angular frequency Q

4is a cosine of amplitude — and pulsation H. The amplitude of the sinusoid thus
2

can, conversely, be deduced from the autocorrelation function:

[1.53]
max

1.9.8. Properties of the autocorrelation function

1. Re(o)=Ep(t)]=£2(t) = quadratic mean

[1.54]

For a centered signal (g = 0], the ordinate at the origin of the autocorrelation
function is equal to the variance of the signal.

2. The autocorrelation function is even [BEN 63] [BEN 80] [RAC 69]:

R,(T) =* R,(-r) [1.55]

3.

R,M|<R,(0) V x CL56]

If the signal is centered, R^(T) — » 0 when T — » QO. If the signal is not centered,

R.,(T) ->• ~t when T -> QO.
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4. It is shown that:

[1.57]

[1.58]

Figure 1.13. Correlation coefficient

NOTES.
1. The autocorrelation function is sometimes expressed in the reduced form:

MO) 

[1.59]

or the normalized autocorrelation function [BOD 72] or the correlation coefficient

p^(i) varies between -1 and+l

p^ = 1 if the signals are identical (superimposable)

p^ = -1 if the signals are identical in absolute value and of opposite sign.

2. If the mean m is not zero, the correlation coefficient is given by
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1.9.9. Correlation duration

Correlation duration is the term given to a signal the value TO oft for which the
function of reduced autocorrelation p^ is always lower, in absolute value, than a
certain value pf .co

Correlation duration of:

- a wide-band noise is weak,

- a narrow band noise is large; in extreme cases, a sinusoidal signal, which is
thus deterministic, has an infinite correlation duration.

This last remark is sometimes used to detect in a signal ^(t) a sinusoidal wave
s(t) = S sin Q t embedded in a random noise b(t) :

[1.60]

The autocorrelation is written:

R,(T) = RsM + Rb(T) [1.61]

If the signal is centered, for T sufficiently large, Rb(t) becomes negligible so
that

S2

R^(T) = RS(T) = — cos Q T t1-62!
2

This calculation makes it possible to detect a sinusoidal wave of low amplitude
embedded in a very significant noise [SHI 70a].

Examples of application of the correlation method [MAX 69]:

- determination of the dynamic characteristics of a systems,

- extraction of a periodic signal embedded in a noise,

- detection of periodic vibrations of a vibratory phenomenon,

- study of transmission of vibrations (cross-correlation between two points of a
structure),

- study of turbubences,

- calculation of power spectral densities [FAU 69],

- more generally, applications in the field of signal processing, in particular in
medicine, astrophysics, geophysics etc [JEN 68].
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1.9.10. Cross-correlation

Let us consider two random functions ^(t) and u(t); the cross-correlation
function is defined by:

1 f T
= lim I A t )u ( t + T)dt [1-63]

2T -T

The cross-correlation function makes it possible to establish the degree of
resemblance between two functions of the same variable (time in general).

Discrete form [BEA 72]

If N is the number of sampled points and T a delay such that T = m At , where At
is the temporal step between two successive points, the cross-correlation between
two signals t and u is given by

, N-m

N - m

1.9.11. Cross-correlation coefficient

Cross-correlation coefficient P^U(T) or normalized cross-correlation function or
normalized covariance is the quantity [JEN 68]

^/R,(0) Ru(0)

It is shown that:

If t(\) is a random signal input of a system and u(t) the signal response at a
point of this system, p^u(t) is characteristic of the degree of linear dependence of
the signal u with respect to I. At the limit, if ^(t) and u(t) are independent,

If the joint probability density of the random variables /(t) and u(t) is equal to
p(4 u),
the form:

u), one can show that the cross-correlation coefficient p^ u can be written in
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[1.66]

where m^ mu s^ and su are respectively the mean values and the standard

deviations of ^(t) and u(t) .

NOTE.
For a digitized signal, the cross-correlation function is calculated using the

relation:

1 N

R,u(m At) = - £>(p At) u[(p-m) At] [1-67]

1.9.12. Ergodicity

A process is known as ergodic if all the temporal averages exist and have the
same value as the corresponding ensemble averages calculated at an arbitrary given
moment [BEN 58] [CRA 67] [JAM 47] [SVE 80].

A ergodic process is thus necessarily stationary. One disposes in general only of
a very restricted number of records not permitting experimental evaluation of the
ensemble averages. In practice, one simply calculates the temporal averages by
making the assumption that the process is stationary and ergodic [ELD 61].

The concept of ergodicity is thus particularly important. Each particular
realization of the random function makes it possible to consider the statistical
properties of the whole ensemble of the particular realizations.

NOTE.
A condition necessary and sufficient such that a stationary random vibration

^(t) is ergodic is that its correlation function satisfies the condition [SVE 80].

liml f r f ,_ l l R ( T ) d t = o [1-68]
T^«T M T;

-where R^(T) is the autocorrelation function calculated from the centered variable
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1.10. Significance of the statistical analysis (ensemble or temporal)

Checking of stationarity and ergodicity should in theory be carried out before
any analysis of a vibratory mechanical environment, in order to be sure that
consideration of only one sample is representative of the whole process. Very often,
for lack of experimental data and to save time, one makes these assumptions without
checking (which is regrettable) [MIX 69] [RAC 69] [SVE 80].

1.11. Stationary and pseudo-stationary signals

We saw that the signal is known as stationary if the rms value as well as the
other statistical properties remain constant over long periods of time.

In the real environment, this is not the case. The rms value of the load varies in a
continuous or discrete way and gives the shape of signal known as random pseudo-
stationary. For a road vehicle for example, variations are due to the changes in road
roughness, to changes of velocity of the vehicle, to mass transfers during turns, to
wind effect etc.

The temporal random function ^(t) is known as quasi-stationary if it can be
divided into intervals of duration T sufficiently long compared with the
characteristic correlation time, but sufficiently short to allow treatment in each
interval as if the signal were stationary. Thus, the quasi-stationary random function
is a function having characteristics which vary sufficiently slowly [BOL 84].

The study of the stationarity and ergodicity is an important stage in the analysis
of vibration, but it is not in general sufficient; it in fact by itself alone does not make
it possible to answer the most frequently encountered problems, for example the
estimate of the severity of a vibration or the comparison of several stresses of this
nature.

1.12 Summary chart of main definitions (Table 1.2) to be found on the next page.



Table 1.2 Main definitions

Moment
of order n

Central
moment of

order n

Variance

Autocorrelat
ion

Cross-
correlation

Through the process (ensemble averages)

Stationarity if all the averages of order n are
independent of the selected time tj .

Along the process (temporal averages)

Ergodicity if the temporal averages are equal to the
ensemble averages.
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Chapter 2

Properties of random vibration
in the frequency domain

The frequency content of the random signal must produce useful information by
comparison with the natural frequencies of the mechanical system which undergoes
the vibration.

This chapter is concerned with power spectral density, with its properties, an
estimate of statistical error necessarily introduced by its calculation and means of
reducing it. Following chapters will show that this spectrum provides a powerful
tool to enable description of random vibrations. It also provides basic data for many
other analyses of signal properties.

2.1. Fourier transform

The Fourier transform of a non-periodic ^(t) signal, having a finite total energy,
is given by the relationship:

L(Q) = (t) e-lQt dt [2-1]
-00

This expression is complex; it is therefore necessary in order to represent it
graphically to plot:

- either the real and the imaginary part versus the angular frequency Q,

- or the amplitude and the phase, versus Q. Very often, one limits oneself to
amplitude data. The curve thus obtained is called the Fourier spectrum [BEN 58].
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The random signals are not of finite energy. One can thus calculate only the
Fourier transform of a sample of signal of duration T by supposing this sample
representative of the whole phenomenon. It is in addition possible, starting from the
expression of L(n), to return to the temporal signal by calculation of the inverse
transform.

[2.2]

One could envisage the comparison of two random vibrations (assumed to be
ergodic) from their Fourier spectra calculated using samples of duration T. This
work is difficult, for it supposes the comparison of four curves two by two, each
transform being made up of a real part and an imaginary part (or amplitude and
phase).

One could however limit oneself to a comparison of the amplitudes of the
transforms, by neglecting the phases. We will see in the following paragraphs that,
for reasons related to the randomness of the signal and the miscalculation which
results from it, it is preferable to proceed with an average of the modules of Fourier
transforms calculated for several signal samples (more exactly, an average of the
squares of the amplitudes). This is the idea behind power spectral density.

Figure 2.1. Example of Fourier transform

In an indirect way, the Fourier transform is thus very much used in the analysis
of random vibrations.
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2.2. Power spectral density

2.2.1. Need

The search for a criterion for estimating the severity of a vibration naturally
results in examination of the following characteristics:

- The maximum acceleration of the signal: this parameter neglects the smaller
amplitudes which can excite the system for a prolonged length of time,

- The mean value of the signal: this parameter has only a little sense as a
criterion of severity, because negative accelerations are subtractive and the mean
value is in general zero. If that is not the case, it does not produce information
sufficient to characterize the severity of the vibration,

- The rms value: for a long time this was used to characterize the voltages in
electrical circuits, the rms value is much more interesting data [MOR 55]:

- if the mean is zero, the rms value is in fact the standard deviation of
instantaneous acceleration and is thus one of the characteristics of the statistical
distribution,

-even if two or several signal samples have very different frequency
contents, their rms values can be combined by using the square root of the sum of
their squares.

This quantity is thus often used as a relative instantaneous severity criterion of
the vibrations [MAR 58]. It however has the disadvantage of being global data and
of not revealing the distribution of levels according to frequency, nevertheless very
important. For this purpose, a solution can be provided by [WIE 30]:

- filtering the signal ^(t) using a series of rectangular filters of central frequency
f and bandwidth Af (Figure 2.2),

- calculating the rms value L^g of the signal collected at the output of each

filter.

The curve which would give Lrms with respect to f would be indeed a

description of the spectrum of signal t(t), but the result would be different
depending on the width Af derived from the filters chosen for the analysis. So, for a
stationary noise, one filters the supposed broad band signal using a rectangular filter
of filter width Af, centered around a central frequency fc, the obtained response
having the aspect of a stable, permanent signal. Its rms value is more or less constant
with time. If, by preserving its central frequency, one reduces the filter width Af,
maintaining its gain, the output signal will seem unstable, fluctuating greatly with
time (as well as its rms value), and more especially so if Af is weaker.
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Figure 2.2. Filtering of the random signal

To obtain a characteristic value of the signal, it is thus necessary to calculate the
mean over a much longer length of time, or to calculate the mean of several rms
values for various samples of the signal. One in addition notes that the smaller Af is,
the more the signal response at the filter output has a low rms value [TIP 77].

L2

To be liberated from the width Af, one considers rather the variations of —
Af

with f. The rms value is squared by analogy with electrical power.

2.2.2. Definition

If one considers a tension u(t) applied to the terminals of a resistance R = 1 Q,
passing current i(t), the energy dissipated (Joule effect) in the resistance during time
dt is equal to:

d E = R i 2 ( t ) d t = i 2 ( t ) [2.3]
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Figure 2.3. Electrical circuit with source of tension and resistance

The instantaneous power of the signal is thus:

and the energy dissipated during time T, between t and t + T, is written:

[2.4]

[2.5]

The total energy of the signal is therefore:

P(t) depends on time t (if i varies with t). It is possible to calculate a mean power in
the interval T using:

 [2-6l

[2.7]

[2.8]

By analogy with these calculations, one defines [BEN 58] [TUS 72] in vibration
mechanics the mean power of an excitation ^(t) between -T/2 and +T/2 by:

and total mean power:

 

[2.9]
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where

J.*T=*(t) for| t<T/2

|^T=0 for|t|>T/2

Let us suppose that the function ^T(t) has as a Fourier transform LT(f).
According to Parseval's equality,

p.10]

yielding, since [JAM 47]

* [2.11]

Pm = lim - (""VrMl2 df = lim - J°° LT(f)P df [2.12]
T->«>T -°° T-»ooT °

This relation gives the mean power contained in f(t) when all the frequencies
are considered. Let us find the mean power contained in a frequency band Af . For
that, let us suppose that the excitation ^(t) is applied to a linear system with constant
parameters whose weighting function is h(t) and the transfer function H(f) . The
response rT(t) is given by the convolution integral

r T ( t ) = | h ( X ) M t - X ) d X [2.13]1 JQ 1

where X is a constant of integration. The mean power of the response is written:

Pmresponse =^1(^(0^ [2.14]

i.e., according to Parseval's theorem:

2 fT, , tf
P = lim — I R-rlf I df f) 1^1mresponse T 'p JU I 1 v /I L^-1-'J

If one takes the Fourier transform of the two members of [2.13], one can show
that:

RT(f) = H(f) LT(f) [2.16]

yielding
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^response '̂ f f N'f Ll(ff df P-171

Examples

1 . If H(f ) = 1 for any value of f,

P = l i m r2lLTOf df = p . [2.18]rmresponse _ rmmput

a result which a priori is obvious.

Af Af
2. IfH(f) = l f o r O < f - — <f <f + —

2 2

H(f) = 0 elsewhere

In this last case, let us set:

|2

GT(f)="L T ( f )^ [2.20]

The mean power corresponding to the record ^j(t), finite length T, in the band
Af centered on f, is written:

T(f)df [2.21]

and total mean power in all the record

P(f,Af) = lim T 4 " 2 GT(f) df [2.22]

One terms power spectral density the quantity:

lim^ [2.23]
T-»oo Af
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In what follows, we will call this function PSD.

Figure 2.4. Example of PSD (aircraft)

NOTE.
By using the angular frequency Q, we would obtain:

with

[2.24]

[2.25]

Taking into account the above relations, and [2.10] in particular, the PSD G(f)
can be written [BEA 72] [BEN 63] [BEN 80]:

[2.26]

where ^T(t, Af) is the part of the signal ranging between the frequencies f - Af/2
and f + Af/2. This relation shows that the PSD can be obtained by filtering the
signal using a narrow band filter of given width, by squaring the response and by
taking the mean of the results for a given time interval [BEA 72]. This method is
used for analog computations.
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The expression [2.26] defines theoretically the PSD. In practice, this relation
cannot be respected exactly since the calculation of G(f) would require an infinite
integration time and an infinitely narrow bandwidth.

NOTES.

- The function G(f) is positive or zero whatever the value off.

- The PSD was defined above for f ranging between 0 and infinity, which
corresponds to the practical case. In a more general way, one could define S(f)
mathematically between - oo and + <x>, in such a way that

S(-f) = S(f) [2.27]

- The pulsation Q = 2 n f is sometimes used as variable instead off. 7/"Gn(Q)
is the corresponding PSD, we have

G(f) = 2 TC GQ(Q) [2.28]

The relations between these various definitions of the PSD can be easily
obtained starting from the expression of the rms value:

= fG(f)df =
«u

One then deduces:

G(f) = 2 S(f) [2.30]

f(f\ 'j — /"• ^o^ r^? ^ 11

G(f) = 4 n Sn(Q) [2.32]

NOTE.

A sample of duration Tqfa stationary random signal can be represented by a
Fourier series, the term aj of the development in an exponential Fourier series
being equal to:

2 7 i k t
sin

d; —
1
 T

J-T/2

T

dt
2 n k t

cos
T

The signal t(t) can be written in complex form
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P.34]

1 / v
where ck = — ̂ ctj - Pj ij

2

77ze power spectral density can also be defined from this development in a
Fourier series. It is shown that [PRE 54] [RAC 69] [SKO 59] [SVE 80]

T-»oo 2 Af

The power spectral density is a curve very much used in the analysis of
vibrations:

- either in a direct way, to compare the frequency contents of several vibrations,
to calculate, in a given frequency band, the rms value of the signal, to transfer a
vibration from one point in a structure to another, ...

- or as intermediate data, to evaluate certain statistical properties of the vibration
(frequency expected, probability density of the peaks of the signal, number of peaks
expected per unit time etc).

NOTE.
The function G(f), although termed power, does not have the dimension of it.

This term is often used because the square of the fluctuating quantity appears often
in the expression for the power, but it is unsuitable here [LAL 95]. So it is often
preferred to name it 'acceleration spectral density' or 'acceleration density'
[BOO 56] or 'power spectral density of acceleration' or 'intensity spectrum'
[MAR 58].

2.3. Cross-power spectral density

From two samples of random signal records ^j(t) and ^(t)' one defines the
cross-power spectrum by

T-»oo

if the limit exists, Lj and L2 being respectively the Fourier transforms of ^(t) and
^ ( t ) calculated between 0 and T.
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2.4. Power spectral density of a random process

The PSD was defined above for only one function of time ^(t). Let us consider
the case here where the function of time belongs to a random process, where each

function will be noted J t(t). A sample of this signal of duration T will be denoted

by10T(t) , and its Fourier transform ̂ (f). Its PSD is

'LT(f)
iGT(f) =

By definition, the PSD of the random process is, over time T, equal to:

[2.37]

n being the number of functions ! i(\) and, for T infinite,

G(f) = lim GT(f) [2.39]
T->oo

If the process is stationary and ergodic, the PSD of the process can be calculated
starting from several samples of one recording only.

2.5. Cross-power spectral density of two processes

As previously, one defines the cross-power spectrum between two records of
duration T each one taken in one of the processes by:

9 'T* 'T
[ G T ( f ) = l 2 [2-40]

T

The cross-power spectrum of the two processes is, over T,

Z'GT(f)

n

and, for T infinite,
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G(f) = lim GT(f) [2.42]

2.6. Relation between PSD and correlation function of a process

It is shown that, for a stationary process [BEN 58] [BEN 80] [JAM 47] [LEY 65]
[NEW 75]:

[2.43]

[2.44]

[2-45]

[2.46]

[2.47]

G(f)=2 r°R(T)
J-OO

R(T) being an even function of T, we have:

G(f) = 4 J°° R(T) cos(2 it f t) dr

If we take the inverse transform of G(f) given in [2.43], it becomes:

i.e., since G(f) is an even function of f [LEY 65]:

R(T)= J°°G(f)cos(27tf T)

and

NOTE.

R(Q) = r (t) = ff G(f) df = (rms value)^

These relations, named Wiener-Khinchine relations', can be expressed in terms
of the angular frequency Q in the form [BEN 58] [KOW 69] [MIX 69]:

[2.48]

[2.49]

G(Q) = - R(T) cos(Q T) di
71 °

R(t)= j°°G(Q)cos(QT)dT
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2.7. Quadspectrum - cospectrura

The cross-power spectral density G^u(f) can be written in the form [BEN 80]:

where the function

C^u(f) = 2 J R j u ( t ) cos(2 it f T) (h [2-51]
— GO

is the cospectrum or coincident spectral density, and where

Q^f) = 2 J^R^r) sin(2 w f T) dt f2-52]
—CO

is the quadspectrum or quadrature spectral density function.

We have:

Rfti W = Jr[C^u(f) cos(2 * f T) + Q*u(f) sin(2 * f T)] df f2>54]

[2.55]

[2.57]

2.8. Definitions

2.8.1. Broad-band process

A broad-band process is a random stationary process whose power spectral
density G(Q) has significant values hi a frequency band or a frequency domain
which is rigorously of the same order of magnitude as the central frequency of the
band[PRE56a].
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Figure 2.5. Wide-band process

Such processes appear in pressure fluctuations on the skin of a missile rocket (jet
noise and turbulence of supersonic boundary layer).

2.8.2. White noise

When carrying out analytical studies, it is now usual to idealize the wide-band
process by considering a uniform spectral density G(f) = G0.

Figure 2.6. White noise

A process having such a spectrum is named white noise by analogy with white
light which contains the visible spectrum.

An ideal white noise, which is supposed to have a uniform density at all
frequencies, is a theoretical concept, physically unrealizable, since the area under the
curve would be infinite (and therefore also the rms value). Nevertheless, model ideal
white noise is often used to simplify calculations and to obtain suitable orders of
magnitude of the solution, in particular for the evaluation of the response of a one-
degree-of-freedom system to wide-band noise. This response is indeed primarily
produced by the values of the PSD in the frequency band ranging between the half-
power points. If the PSD does not vary too much in this interval, one can compare it
at a first approximation to that of a white noise of the same amplitude. It should
however be ensured that the results of this simplified analysis do indeed provide a
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correct approximation to that which would be obtained with physically attainable
excitation.

2.8.3. Band-limited white noise

One also uses in the calculations the spectra of band-limited white noises, such
as that in Figure 2.7, which are correct approximations to many realizable random
processes on exciters.

Figure 2.7. Band-limited white noise

2.8.4. Narrow-band process

A narrow-band process is a random stationary process whose PSD has
significant values in one frequency band only or a frequency domain whose width is
small compared with the value of the central frequency of the band [FUL 62].

Figure 2.8. PSD of narrow-band noise

The signal as a function of time i(i) looks like a sinusoid of angular frequency
Q0, with amplitude and phase varying randomly. There is only one peak between
two zero crossings.
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Figure 2.9. Narrow-band noise

It is of interest to consider individual cycles and envelopes, whose significance
we will note later on.

If the process is Gaussian, it is possible to calculate from G(Q) the expected
frequency of the cycles and the probability distribution of the points on the envelope

These processes relate in particular to the response of low damped mechanical
systems, when the excitation is a broad-band noise.

2.8.5. Pink noise

A pink noise is a vibration of which the power spectral density amplitude is of
inverse proportion to the frequency.

2.9. Autocorrelation function of white noise

The relation [2.45] can be also written, since G(f) = 4 re S(n) [BEN 58]
[CRA 63]:

[2.58]

If S(Q) is constant equal to S0 when Q varies, this expression becomes:

where the integral is the Dirac delta function S(T) , such as:
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6(t) -> oo when T -» 0

6(r) = 0 when T = 0 [2.60]

f 5(t) dt = 1

yielding

R(T) = 2 TI S0 5(i) [2.61]

NOTE.
If the PSD is defined by G(Q) in (0, <x>), this expression becomes

R(T) = * ̂ - 8(1) [2-62]
2

[2-63]

T = 0, R -> oo. Knowing that R(0) w e<ywa/ to the square of the rms value,
the property of the white noise is verified (infinite rms value).

Figure 2.10. Autocorrelation of a -white noise

It is noted in addition that the correlation is zero between two arbitrary times.

An ideal white noise thus has an infinite intensity, but has no correlation
whatever between past and present [CRA 63].



50 Random vibration

2.10. Autocorrelation function of band-limited white noise

J 1

Figure 2.11. Band-limited white noise Figure 2.12. Autocorrelation of
band-limited white noise

From the definition [2.58], we have, if S(Q) = S0 [FUL 62],

[2.64]

[2.65]

[2.66]

[2.67]

[2.68]

is finite. If T tends towards zero, R(T) -» 2 S0 (^ ~^i) (scluare of the rms value).
The correlation between the past and the present is nonzero, at least for small
intervals. When the bandwidth is widened, the above case obtains.

R(T) can be also written

The rms value, given by [BEN 6la]
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NOTES.
1 . The result obtained for a -white noise process is demonstrated from this

particular case when Qj = 0 andQ2 ~* °°' indeed, if £±2 = ft,

4S0 Q2 t . Q2 t 2S0
R(t) = - cos - sin - = - sin Q2

 T

T 2 2 T

7/Q2 -> oo [2.61] t

R(T) -> 2 7i S0 5(i)

Conversely, //R(t) has this value,

S(Q) = —
271

AQ AQ . .
2. ^Twe 5er Qj = Q0 -- and Q2 = Q0 + - , R(T) can be written [COU 70]:

2 2

/ x 4 S0 / v T AQ
R(T) = — 5L cos

/ v f
(Q0 T) sid

\

R(0) -^ 2 S0 AQ

RT 2 T AQ
p = —7-7 = cos ̂ OT SIn

R(0) TAQ 2
[2.70]

3. If in practice, the noise is defined only for the positive frequencies, the
expressions [2.66] and [2.68] become

[2-72]
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2.11. Peak factor

The peak factor or peak ratio or crest factor Fp of a signal can be defined as the

ratio of its maximum value (positive or negative) to its standard deviation (or to its
rms value). For a sinusoidal signal, this ratio is equal to -s/2 (» 1.414). For a signal
made up of periodic rectangular waveforms, it equals 1 while for saw tooth
waveforms, it is approximately equal to 1.73.

In the case of a random signal, the probability of finding a peak of given
amplitude is an increasing function of the duration of the signal. The peak factor is
thus undefined and extremely large. Such a signal will thus necessarily have peaks
which will be truncated because of the limitation of the dynamics of the analyser.
From it will result an error in the PSD calculation.

Let us consider a random signal ^(t) of rms value lrms . If the signal filtered in a

filter of width Af has its values truncated higher than I Q , the calculated PSD is
equal to

Af Af

Let us set:

Fp = -̂ - [2-73]

[2.74]

The error will thus be, at frequency f,

= 100
G(f)J

with

G ' ( f ) _ / % ( f ) / A f 4(f) [2?5]

G(f)

It is shown that [PIE 64], for a Gaussian signal, the error varies according to the
peak factor Fp according to the law

e = 100(l-p) [2.76]
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where

p = 2 Fp
2 |°p(x) dx + 2 P p(x) dx - 2 Fp p(x)

and

p(x) = -— exp
/27l

[2.77]

[2.78]

The variations of the error e according to Fp are represented in Figure 2.13.

Figure 2.13. Error versus peak factor (according to [PIE 64])

The calculation of p can be simplified if it is noted that:

_^_ ^_ jc_

JL f F p e ~ 2 dx+-4= f" e ~ 2 dx-f-4- f °e~ 2 dx = 1
J-« J-F -F

and that the probability density is symmetrical about the y-axis:

|p(x) dx-!-
2

p is then written:

*» r?2 2 £Pp(x)dx-2Fp P(Fp)
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p = 2 (l - Fp
2) £ p(x) dx + Fp

2 - 2 Fp p(pp) [2.79]

The integral I P p(x) dx can be calculated using the error function, knowing that

this function can be defined in the form [LAL 94] (Appendix A4.1):

[2.80]

2.12. Standardized PSD/density of probability analogy

Standardized PSD is the term given to the quantity [WAN 45]:

It is noticed that the standardized PSD and the probability density function have
common properties:

- they are nonnegative functions,

- they have an unit area under the curve,

-if we set R(Q) = J GN(u) du, R(fl) increases in a monotonous way from

zero (Q = 0) to 1 (for Q infinite). R(Q) can thus be regarded as the analogue of the
distribution function of G(Q).

2.13. Spectral density as a function of time

In practice, the majority of the physical processes are, to a certain degree,
nonstationary, i.e. their statistical properties vary with time. Very often however, the
excitation is clearly nonstationary over a long period of time, but, for small intervals,
which are still long with respect to the time of response of the dynamic system, the
excitation can be regarded as stationary. Such a process is known as '•quasi-
stationary '. It can be analysed for two aspects [CRA 83]:

- study of the stationary parts by calculation of PSD whose parameters are
functions slowly variable with time,

- study of the long-term behaviour, described for example by a cross probability
distribution for the parameters slowly variable with PSD.
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The non-stationary process can also be of short duration. This is particularly the
case of a mechanical oscillator at rest suddenly exposed to a stationary random
excitation; there is a phase of transitory response, therefore nonstationary. Many
studies have been conducted on this last subject [CHA 72] [HAM 68] [PRI 67]
[ROB 71] [SHI 70b]. Various solutions were obtained, among those of T.K.
Caughey and H.J. Stumpf [CAU 61] (Volume 4), R.L. Barnoski and J.R. Maurer
[BAR 69] and Y.K. Lin [LIN 67]. Other definitions also were proposed for PSD of
nonstationary phenomena [MAR 70].

2.14. Relation between PSD of excitation and response of a linear system

One can easily show that [BEN 58] [BEN 62] [BEN 63] [BEN 80] [CRA 63]:

- if the excitation is a random stationary process, the response of a linear system
is itself stationary,

- if the excitation is ergodic, the response is also ergodic.

Let us consider one of the functions ' ̂ (t) of a process (whether stationary or
not); the response of a linear system can be written:

'u(t) = J°°h(X) ^( t -X)dX [2.82]

yielding:

'uft , ) 'u(t2)=J\(X) ^( t i -XJdX Jo°°h(u) J 4 t 2 - M ) d n

M'l) %)= hWhGi) Xti-x) V(t2-u)dXdn [2.83]

Ensemble average

R u ( t l 5 t 2 ) = E[u(tj) U(t2)j [2.84]

M'l, 0 = I0°° J*MX) h(u) R,(tl - X, t2 - u) dX dn [2.85]

where

- X, t2 - »i) = E[^t, - X) 4t2 - u)] [2.86]
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Example of a stationary process

In this case,

Ru(t l512) = RU(0, t2 - tj) = Ru(t2 - tj = RU(T)

and

( \ - f °Ru W - 1 [2.87]

In addition, we have seen that [2.43]:

G(f)=2 p°R(T)e-27tifTdT
J-oo

The PSD of the response can be calculated from this expression [CRA 63]
[JEN 68]:

Gu(f) = 2

Gu(f) = 2

R f (T + A. - n)dXdji <h

H(f) G,(f)

u(f) = |H(f)|2G,(f)

Depending on the angular frequency, this expression becomes:

Gu(0)=

[2.88]

[2.89]

NOTE.
This result can be found starting with a Fourier series development of the

excitation ^(t). Let us set u(t) as the response at a point of the system. With each
frequency fj , the response is equal to H j times the input (Hj = a real number). So
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u(t) can also be expressed in the form of a Fourier series, each term o/u(t) being
equal to the corresponding term of i(i) modified by the factor Hj and phase (pj:

u j Hj sin| —^ t + <p| I [2.90]
j

i.e.

/ \ -̂< [ . 2 TC j t . 2 7C J t
Ult)= > U;H; COS (0: S1H h SU1 CO: COS

V ' J^J J J I ' J rp T J rp

The rms value o/u(t) is equal to

2 *• • 2
C O S ^ C ; -t-— S1IT

When T -» oo,

2 f d f [2-93]

Knowing that, if Gu(f) w ^e PSD of the response, urms = fGu(f)df , #

u(f) = H2(f)G,(f) [2.94]

is method can be used for the measurement of the transfer function of a
structure undergoing a pseudo-random vibration (random vibration of finite
duration, possibly repeated several times). The method consists of applying white
noise of duration T to the material, in measuring the response at a point and in
determining the transfer function by term to term calculation of the ratio of the input
and output coefficients of the Fourier series development.

2.15. Relation between PSD of the excitation and cross-power spectral density
of the response of a linear system

'•><«) =,0

u(t) Vt + t)^ f°°hU) Xt) ^t + t-X)
»A
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If the process is stationary, the ensemble average is:

and the cross-spectrum:

Gu(f) = 2 fY27t i f t

Gft,(f) =

= H(f)G,(f)

NOTE.
If we set:

[2.95]

Gfc(f)-|A(fJ «"«

the transfer function H(f) can be written, knowing that the PSD G^(f) is a real
Junction

G/(f) [2.96]

2.16. Coherence function

The coherence function between two signals ^(t) and u(t) is defined by
[BEN 63] [BEN 78] [BEN 80] [ROT 70]:

[2.97]
G ( f\ /"• t f \( ( ( t ) Gm(t)

This function is a measure of the effect of input on response of a system.

In an ideal case,

G/u = H(f) G/>f
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and

y^u is in addition zero if the signals ^(t) and u(t) are completely uncorrelated.
In general, y^u lies between 0 and 1 for the following reasons:

- presence of noise in measurements,

- nonlinear relation between l(t) and u(t) ,

- the response u(t) is due to other inputs than

Let us consider the case where noise exists only with the response. Setting G
the PSD of the response without noise and Gnn that of the noise alone, it becomes:

Guu( f) = Gw + G n n

where

Gw =
[2.98]

yielding

[2.99]

The quantity jfu Guu \sr\amedcoherentouputpowerspectrum.

2 Guu ~Gnn Gnn

G

[2.100]

If the noise is present only on the input, we set ^(t) = a(t) + m(t) where a(t) is
the pure signal and m(t) the noise. We have in the same way, for the PSD,
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[2.101]

[2.102]

2.17. Effects of truncation of peaks of acceleration signal

The example below makes it possible to highlight the influence of a truncation of
the peaks of a random acceleration signal on its power spectral density.

2.17.1. Acceleration signal selected for study

The signal considered is a sample of duration 1 second of a white noise over a
bandwidth 10 - 2500 Hz, of rms value xrms= 49.9 m/s2 (PSD amplitude:
1 (m/s2)2/Hz, sampling frequency: 8192 Hz). This signal was truncated with various
acceleration values: ±5 x rms 

±4.5 x^ ..., until ±0.5 Xj

Figure 2.14. Truncated signals
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2.17.2. Power spectral densities obtained

The spectral densities of these signals were calculated between 10 Hz and
10000 Hz. We observe from the PSD (Figure 2.15) that:

-truncation causes the amplitude of the PSD to decrease uniformly in the
defined bandwidth (between 10 Hz and 2500 Hz);

-this reduction is only sensitive if one clips the peaks below 2x^5

approximately;

- truncation increases the amplitude of the PSD beyond its specified bandwidth
(2500 Hz). This effect is related to the mode of truncation selected (clean cut-off at
the peaks and no nonlinear attenuation, which would smooth out the signal in the
zone concerned).

Figure 2.15. PSD of the truncated signals
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Chapter 3

Rms value of random vibration

3.1. Rms value of a signal as function of its PSD

We saw that [2.26]:

G(f) = lim - JT4(t» Af) dt

G(f) is the square of the rms value of the signal filtered by a filter Af whose
width tends towards zero, centered around f. To obtain the total rms value 1^$ of
the signal, taking into account all the frequencies, it is thus necessary to calculate

The notation 0 means that integration is carried out in a frequency interval

covering f = 0, while 0+ indicates that the interval does not include the limiting

case f = 0. In a given frequency band fj , f2 ($2 >

The square of the rms value of the signal in a limited frequency interval f}, f2 is
equal to the area under the curve G(f) in this interval. In addition:
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f>(f)df = [3.3]

where

2 .is the variance of the signal without its continuous component and

^ is the standard deviation of the signal.

Figure 3.1. Non-zero lower limit of the PSD

In addition,

is the mean value of the signal. We thus have:

4 n s = s f + W 2

Lastly, for f * 0, we have:

f G(f)df = 0

A purely random signal does not have a discrete frequential component.

[3.4]

[3.5]

[3.6]

NOTE.
The mean value I corresponding to the continuous component of the signal can

originate in:

— shift due to the measuring equipment, the mean value of the signal being
actually zero. This component can be eliminated, either by centring the signal I
before the calculation of its PSD, or by calculating the PSD between fj = 0 + e and

f2 (E being a positive constant different from zero, arbitrarily small),
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- permanent acceleration, constant or slowly variable, corresponding to a rigid
body movement of the vehicle (for example, static acceleration in phase propulsion
of a launcher using propellant). One often dissociates this by filtering such static
acceleration of vibrations which are superimposed on it, the consideration of static
and dynamic phenomena being carried out separately. It is however important to be
able to identify and measure these two parameters, in order to be able to study the
combined effects of them, for example during calculations of fatigue strength, if
necessary (using the Goodman or Gerber rule, ... cf. Volume 4) or of reaction to
extreme stress.

Static and dynamic accelerations are often measured separately by different
sensors, vibration measuring equipment not always covering DC the component.
Except for particular cases, we will always consider in what follows the case of zero
mean signals. We know that, in this case, the rms value of the signal is equal to its
standard deviation.

Obtained by calculation of a mean square value, the power spectral density is an
incomplete description of the signal ^(t). There is loss of information on phase. Two
signals of comparable nature and of different phases will have the same PSD.

Example

Let us consider a stationary random acceleration x(t) having an uniform power
spectral density given by:

G*(f) = 0.0025 (m/s2)2/Hz

in the frequency domain ranging between fj = 10 Hz and f2 = 1 000 Hz, and zero
elsewhere.

Figure 3.2. PSD of a signal having a continuous component
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Let us suppose in addition that the continuous component of the signal is equal
to x = 2 m/s2. Let us calculate the rms value and the standard deviation of the
signal. The mean square value of the signal is given by the relation [3.5]:

2 — 7 o f°° / x

* =* + 4 = J 0 - G x ( f ) d f

> ? = J>,(f)df

/4000
I 0.0025 df
40

? = (1000 - 10) 0.0025 = 2.475 (m/s2)2

x = 4 (m/sy

yielding the mean square value

x2 = 4 + 2.475 = 6.475 (m/s2)2

and the rms value

Vx2 « 2.545 m/s2

while the standard deviation is equal to s^ = 1.573 m/s

The random signals are in general centered before the calculation of the
2 2spectral density, so that x = s^.

3.2. Relations between PSD of acceleration, velocity and displacement

Let us set as ^(t) a random signal with Fourier transform L(f) ; by definition, we
have:

L(f)= ( t )e-2* i f tdt [3-7]
J-OO

and

*(t)= pL(f)e2 7 t i f tdf [3.8]
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yielding

By identification, it becomes:

 
[3.10]

The conjugate expressions of L(f) and of L(f) are obtained by replacing i by
-i. If Gf(f} and G-,(f) are respectively the PSD of <(t) and of )?(t), one thus

obtains, since these quantities are functions of the products L*(f) L(f) and

L*(f) L(f) [LEY 65] [LIN 67],

yielding

and, in the same way,

[3.12]

[3.13]

[3.14]

NOTES.
1. These relations use an integral with respect to the frequency between 0 and

+ oo. In practice, the PSD is calculated only for one frequency interval (fj, f^. The
initial frequency f| is a function of the duration of the sample selected; this duration
being necessarily limited, f| cannot be always taken as low as would be desirable.

The limit f2 is if possible selected sufficiently large so that all the frequency
content is described. It is not always possible for certain phenomena, if only because
of the measuring equipment. A value often used is, for example, 2000 Hz. However,
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the integral necessary for the evaluation of i^f^ includes a term in f which makes
it very sensitive to the high frequencies.

In the calculation of all the expressions utilizing ^nng, as will be the case of the
irregularity parameter r which we will define later, the result could be spoilt having
considerable error in the event of a inappropriate choice of the limits fj and f2.

J. Schijve [SCH 63] considers that the high frequency/small amplitude peaks
have little influence on the fatigue suffered by the materials and proposes to limit
integration to approximately 1000 Hz (for vibratory environments of aircraft type).

2. It is known that the rms value of a sinusoidal acceleration signal is related to
the corresponding velocity and the displacement by

"l = 2 K f e = ( 2 n f ) 2 e [3.15]

These relationships apply at first approximation to the rms values of a very
narrow band random signal of central frequency f.

This makes it possible to demonstrate differently the relations [3.13] and [3.14].

The PSD of a signal l(t) is indeed calculated while filtering £(t) using a filter of
width Af whose central frequency varies in the definition interval of the PSD, the
result being squared and divided by Af for each point of the PSD. One thus obtains
[CUR 64] [DEE 71] [HIM 59]:

G-?=(27if)2Ge [3.16]

/ r-\^ /-i { r\ f\^ /-< f? 171

yielding [OSG 69] [OSG 82]:

and

o,(f)2 , [3

One can deduce from these relations the rms value of the displacement of a very
narrow band noise [BAN 78] [OSG 69]:
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(-3 2Q1
l ]

3.3. Graphical representation of PSD

We will consider here the most frequent case where the vibratory signal to
analyse is an acceleration. The PSD is the subject of four general presentations:

- the first with the frequency on the x axis (Hz), the amplitude of the PSD on the
y axis [(m/s2)2/Hz], the points being regularly distributed by frequency (constant
filter width Af throughout the whole range of analysis);

1
- the second, met primarily in acoustics problems, uses an analysis in the — *

n
octave, the filter width being thus variable with the frequency; one finds more often
in this case the ordinates expressed in decibels (dB). The number of decibels is then
given, by:

/-!

ndB = 101og [3.21]
GO

where

G is the amplitude of the measured PSD.
G0 is a reference value, selected equal to 10~12 (m/s2)2/Hz in general,

or, if we consider the rms value in each band of analysis, by

nd B=201og — [3-22]
ao

where

a = rms value of the signal in the selected band of analysis,
a0= reference value of (10"6 m/s2);

1
- sometimes, the analysis in — *" octave is carried out by indicating in ordinates

n
the rms value obtained in each filter. For a noise whose PSD varies little with the
frequency (close to white noise), the rms value obtained varies with the bandwidth
of the filter,

-the relationships [3.17] show that the PSD can also be plotted on a four-
coordinate nomographic grid on which can be directly read the PSD value for
acceleration, velocity and displacement [HIM 59].
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Figure 3.3. Four-coordinate representation [HIM 59]

3.4. Practical calculation of acceleration, velocity and displacement rms values

3.4.1. General expressions

The rms values of acceleration, velocity and displacement are more particularly
useful for evaluation of feasibility of a specified random vibration on a test facility
(electrodynamic shaker or hydraulic vibration machine). Control in a general way
being carried out from a PSD of acceleration, we will in this case temporarily
abandon the generalized co-ordinates. We saw that the rms value x^s of a random

vibration x(t) of PSD G(f) is equal to:

The rms velocity and displacement corresponding to this signal of acceleration
are respectively given by:

[3.23]

[3.24]



Rms value of random vibration 71

In the general case where the PSD G(f) is not constant, the calculation of these
three parameters is made by numerical integration between the two limits f} and f2

of the definition interval of G(f). When G(f) can be represented by a succession of
horizontal or arbitrary slope straight line segments, it is possible to obtain analytical
expressions.

3.4.2. Constant PSD in frequency interval

Figure 3.4. Constant PSD between two frequencies

In this very simple case where the PSD is constant between
G(f) = G0, yielding:

and f2,

[3.25]

[3-26]

[3.27]

NOTES.
The rms displacement

acceleration:
can be also written as a Junction of rms
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x

[3.28]

[3.29]

3.4.3. PSD comprising several horizontal straight line segments

Figure 3.5. P5D comprising horizontal segments

We then have [SAN 63]:

[3.30]

[3.31]

[3.32]
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3.4.4. PSD defined by a linear segment of arbitrary slope

It is essential in this case to speciiy in which scales the segment of straight line is
plotted.

Linear-linear scales

Between the frequencies f} and f2, the PSD G(f) obeys G(f) = a f + b, where a
and b are constants such that, for f = f l 5 G = G} and for f = f2, G = G2, yielding

G 2 ~ G 1a = and b =
f 2 - f ,

G2 - f2

f , - f 2

[3.33]

[3.34]

[3.35]
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Linear-logarithmic scales

Figure 3.6. Segment of straight line in lin-log scales

The PSD can be expressed analytically in the form:

lnG = a f + b

[3.36]

[3.37]

f e e fe"
Knowuig that I —— df = + a J df, this integral can be calculated

f2 f f
by a development hi series (Appendix A4.2):

af 2. a I c ^ ci n r-nf e af a f a f
J df = hi f I + — + + • • • + + • • •

1! 2 2! n n!

In the same way,
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The integral is calculated like above, from (Appendix A4.2):

a f

-I-
af a fe e
— d f = - j -

f 4 3 f3 3 f3

af

df

af af 2 afe e a e a e
— df = -

3f3 6 f: + - f—
6 f 6 f

df

[3.38]

Particular case where G2 =

In this case,

[3.39]

[3.40]

[3.41]

Logarithmic-linear scales

In these scales, the segment of straight line has as an analytical expression:

G = a l n f + b

with a =

m s =a( f 2 l n f 2 - f 1 l n f 1 )+ ( f 2 - f 1 ) (b 

[3.42]
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Figure 3.7. Segment of straight line in log-lin scales

a Infi Info 1 1 a + bi o

4*H fl f2

2 a In f t In f 2 I a + 3 b 1

Logarithmic-logarithmic scales

Figure 3.8. Segment of straight line in logarithmic scales

The PSD is such that:

hiG(f) = l n G 1 + b ( l n f - l n f 1 )

whence

[3.43]

[3-44]

The constant b is calculated from the co-ordinates of the point f2, G2
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In

b =

Rms acceleration [PRA 70]:

—
mic

f 2 G 2 -

b + 1
[3.45]

If b = - 1:

;:2 Adf
*, 7

[3.46]

,2 _ G! r> f b-2 d f

1 G,
-1 = _L _L_ 5l_^il [3.47]

Ifb = l:

The parameter b can be equal to 1 only if — = — , the commonplace case

= G2 and fj = f2 being excluded. On this assumption, G = Gj — and
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1 'G!h£
2* V f , fj

vm s= — .Piln^ [3.48]

x2 =•'••rmc

, 16*4f4

xnns ~
, GI \^r .1[UJ J

1 G- [3.49]

Ifb = 3:

x _^ OLin*k
™ " 4 ^ K f,

[3.50]

In logarithmic scales, a straight line segment is sometimes defined by three of
the four values corresponding to the co-ordinates of the first and the last point,
supplemented by the slope of the segment. The slope R, expressed in dB/octave, can
be calculated as follows:

- the number N of dB is given by

G2
N = 10 Iog10 -+ [3.51]

- the number of octaves n between fj and f2 is, by definition, such as — = 2n,

yielding:

n =

and

R = 10 log,0(2)
Iog10

f2/fl

[3.52]
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= 101og10(2)b«3.01b [3.53]

R .Let us set a = 101ogio(2). It becomes, by replacing b by — in the preceding
a

expressions [CUR 71]:

R + a

If R * -a :

xrms ~
R + a

-1 [3.54]

This can be also written [SAN 66]:

•A-rrr

or [OSG 82]:

h°2

* + l
a

aG-

f, G, f2 G2

a

a + R

R.
f,V

[3.55]

[3-56]

Reference [SAN 66] gives this expression for an increasing slope and, for a
decreasing slope,

f i G ,

a

[3.57]

if R * -a , or

1-i'

UJ
[3.58]
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For R = -a :

[3.59]

If R * a :

vrms ~
a Gj

4 7t2 (R - a) f{

R-a

W t t -'UJ
a G2

4 7t2 (R - a) f2

R-a"

< - f f ' ] a

L UJ [3.60]

For R = a :

v2 -* — [3.61]

If R * 3 a :

m~\6n

For R =

xL

Figures

R-3a

G ( c \ /"•
1 2 I * 1 2

4f ,3(R-3a) UJ 16*4f2
3(R-3c

3a:

1 G} j/2 1 G2 ^fj

16714 ff " ̂  167I4 f2
3 "f!

R-3a"

1 2 r>> >;^v-i
\ U L3.62J
0 UiJ

[3.63]

x2 fi v2 f? x2

3 9 3 10 inrl 3 11 re^nprtivelv -hnw rms ! rms —'4 * rms

i GJ Gj

versus —, for different values of R.

Abacuses of this type can be used to calculate the rms value of x, v or x from a
spectrum made up of straight line segments on logarithmic scales [HIM 64].
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Figure 3.9. Reduced rms acceleration versus and R

Figure 3.10. Reduced rms velocity versus Figure 3.11. Reduced rms Displacement
f2/f] andR versus f 2 / f j

3.4.5. PSD comprising several segments of arbitrary slopes

Whatever the scales chosen, the rms value of a PSD made up of several straight
line segments of arbitrary slope will be such as in [OSG 82] [SAN 63]:
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x = Yx2 [3-64]tms JZ~i Urns

being calculated starting from the relations above. In the same way:

v™= |>.vf_ [3.65]

and

Xrmc

3.5. Case: periodic signals

It is known that any periodic signal can be represented by a Fourier series in
accordance with:

= L0 + Ln sin(2 7i n f,

Power spectral density [2,26]:

G(f)= lira - j4( t , Af)dt
T-»ooTAf °
Af->0

is zero for f * fn (with fn = n f t) and infinite for f = f n since the spectrum of
is a discrete spectrum, in which each component Ln has zero width Af .

If one wishes to standardize the representations and to be able to define the PSD
f 00

J G(f)of a periodic function, so that the integral J G(f) df is equal to the mean square

value of ^(t), one must consider that each component is related to Dirac delta
function, the area under the curve of this function being equal to the mean square
value of the component. With this definition,

n=0
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where ^Sn is the mean square value of the n* harmonic ^n(t) defined by

J(t)dt [3.69],2
-rmsn

1

n ~ n f ,

(n = 1,2, 3,...). ln(t) is the value of the n* component and

[3.70]

where T is arbitrary and i is the mean value of the signal l(t). The Dirac delta
function §(f - n fj] at the frequency fn is such that:

and

S(f-fn) =

[3.71]

[3.72]

for f *• fn (E = positive constant different from zero, arbitrarily small). The
definition of the PSD in this particular case of a periodic signal does not require
taking the limit for infinite T, since the mean square value of a periodic signal can
be calculated over only one period or a whole number of periods.

Figure 3.12. PSD of a periodic signal

The chart of the PSD of a periodic signal is that of a discrete spectrum, the
amplitude of each component being proportional to the area representing its mean
square value (and not its amplitude).
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We have, with the preceding notations, relationships of the same form as those
obtained for a random signal:

[3.73]
li ^ \ /

n=0

'o+ " "
n=l

[3.75]

and, between two frequencies fj and f; (fj = i fj - 8, f; = j fj + e, i and j integers,

[3.76]

Lastly, if for a random signal, we had:

J f
f_+G(f)df = 0 [3-77]

we have here:

fo(f)df = fn forf = n f i [378]

* [0 for f * n ^ et f * 0

The area under the PSD at a given frequency is either zero, or equal to the mean
square value of the component if f = n fj (whereas, for a random signal, this area is
always zero).

3.6. Case: periodic signal superimposed onto random noise

Let us suppose that:

4t) = a(t) + P(t) [3.79]

a(t) = random signal, of PSD Ga(f) defined in [2.26]
p(t)= periodic signal, of PSD Gp(f) defined in the preceding paragraph.
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The PSD of *(t) is equal to:

G,(f) = Ga(f) + Gp(f) [3.80]

G,(f) = G a ( f ) + Z46( f - f n ) P.81]
n=0

where

fn = « f,

n = integer e (0, °o)

fj= fundamental frequency of the periodic signal

in = mean square value of the n* component ^n(t) of ^(t)

The rms value of this composite signal is, as previously, equal to the square root
of the area under G «(f) .
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Chapter 4

Practical calculation
of power spectral density

Analysis of random vibration is carried out most of the time by supposing that it
is stationary and ergodic. This assumption makes it possible to replace a study based
on the statistical properties of a great number of signals by that of only one sample
of finite duration T. Several approaches are possible for the calculation of the PSD
of such a sample.

4.1. Sampling of the signal

Sampling consists in transforming a vibratory signal continuous at the outset by
a succession of sample points regularly distributed in time. If 5t is the time interval
separating two successive points, the sampling frequency is equal to fsamp = 1 / 8t.

So that the digitized signal is correctly represented, it is necessary that the sampling
frequency is sufficiently high compared to the largest frequency of the signal to be
analysed.

A too low sampling frequency can thus lead to an aliasing phenomenon,
characterized by the appearance of frequency components having no physical
reality.
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Example

Figure 4.1 thus shows a component of frequency 70 Hz artificially created by the
sampling of 200 points/s of a sinusoidal signal of frequency 350 Hz.

Figure 4.1. Highlighting of the aliasing phenomenon due to under-sampling

Shannon's theorem indicates that if a function contains no frequencies higher
than fmax Hz, it is completely determined by its ordinates at a series of points

spaced 1/2 fmax seconds apart [SHA 49].

Given a signal which one wishes to analyse up to the frequency fmax , it is thus
appropriate, to avoid aliasing

- to filter it using a low-pass filter in order to eliminate frequencies higher than
fmax (the high frequency part of the spectrum which can have a physical reality or
noise),

-to sample it with a frequency at least equal to 2fmax [CUR87] [GIL88]
[PRE 90] [ROT 70].

NOTE.
fNyquist = fsamp. /2 » called Nyquist frequency.

In practice however, the low-pass filters are imperfect and filter incompletely the
frequencies higher than the wanted value. Let us consider a low-pass filter having a
decrease of 120 dB per octave beyond the desired cut-out frequency (fmax). It is
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considered that the signal is sufficiently attenuated at - 40 dB. It thus should be
considered that the true contents of the filtered signal extend to the frequency
corresponding to this attenuation (f_40 ), calculated as follows.

Figure 4.2. Taking account of the real characteristics of the low-pass filter for the
determination of the sampling frequency

An attenuation of 120 dB per octave means that

-120 =

where AQ and Aj are respectively the amplitudes of the signal not attenuated

(frequency fmax ) and attenuated at -40 dB (frequency f_4Q ).

Yielding

-120 = 1*2

and

f-40
log 2

= 10 3 «L26
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The frequency f_40 being the greatest frequency of the signal requires that,

according to Shannon's theorem, fsamp = 2 f_4o , yielding

fsamp. _

The frequency f_4Q is also the Nyquist frequency

This result often resulted in the belief that Shannon's theorem imposes a
sampling frequency at least equal to 2.6 times the highest frequency of the signal to
be analysed.

We will use this value in the followings paragraphs.

4.2. Calculation of PSD from rms value of filtered signal

The theoretical relation [2.26] which would assume one infinite duration T and a
zero analysis bandwidth Af is replaced by the approximate relation [KEL 67]:

where '(.^ is the mean square value of the sample of finite duration T, calculated at
the output of a filter of central frequency f and non zero width Af [MOR 56].

NOTE.
Given a random vibration l(t) of white noise type and a perfect rectangular

filter, the result of filtering is a signal having a constant spectrum over the width of
the filter, zero elsewhere [CUR 64].

The result can be obtained by multiplying the PSD G0 of the input l(t) by the
square of the transmission characteristic of the filter (frequency-response
characteristic) at each frequency (transfer function, defined as the ratio of the
amplitude of the filter response to the amplitude of the sinewave excitation as a
function of the frequency. If this ratio is independent of the excitation amplitude, the
filter is said to be linear).

In practice, the filters are not perfectly rectangular. The mean square value of
the response is equal to G0 multiplied by the area squared under the transfer
function of the filter. This surface is defined as the 'rms bandwidth of the filter '.
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If the PSD of the signal to be analysed varies with the frequency, the mean
square response of a perfect filter divided by the -width Af of the filter gives a point
on the PSD (mean value of the PSD over the width of the filter). With a real filter,
this approximate value of the PSD is obtained by considering the ratio of the mean
square value of the response to the rms bandwidth of the filter Af , defined by
[BEN 62], [GOL 53] and [PIE 64]:

Af =
H(f)

H,
dt [4.2]

•where H(f) is the frequency response function of the (narrow) band-pass filter used
and Hmax its maximum value.

4.3. Calculation of PSD starting from Fourier transform

The most used method consists in considering expression [2.39]:
^ r~ ~i

GM(f) = lim - d |L(f, T)P
- L J

[4.3]

NOTES.
1. Knowing that the discrete Fourier transform can be written [KAY81]

L ( m T ) - T y i c::f t 2 * j m
N ̂  J 1 N1X1 j=o v N

[4.4]

r/ze expression of the PSD can be expressed for calculation in the form [BEN 71]
[ROT 70]:

G(mAf) = -
N

N-l

i exp -1

j=o

m [4.5]
N

where 0 < m < M and Cj = j 5t.

2. The calculation of the PSD can also be carried out by using relation [2.26],
by evaluating the correlation in the time domain and by carrying out a Fourier
transformation (Wiener-Khintchine method) (correlation analysers) [MAX 86].
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The calculation data are in general the following:

- the maximum frequency of the spectrum,

- the number of points of the PSD (or the frequency step Af ),

- the maximum statistical error tolerated.

4.3.1. Maximum frequency

Given an already sampled signal (frequency fsamp. ) and taking into account the

elements of paragraph 4.1, the PSD will be correct only for frequencies lower than

^ max = * ' 2-

4.3.2. Extraction of sample of duration T

Two approaches are possible for the calculation of the PSD:

- to suppose that the signal is periodic and composed of the repetition of the
sample of duration T,

- to suppose that the signal has zero values at all the points outside the time time
corresponding to the sample.

These two approaches are equivalent [BEN 75]. In both cases, one is led to
isolate by truncation a part of the signal, which amounts to applying to it a
rectangular temporal window r(t) of amplitude 1 for 0 < t < T and zero elsewhere.

If l(i) is the signal to be analysed, the Fourier transform is thus calculated in
practice with f(t) = ^(t) r(t).
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Figure 4.3. Application of a temporal window

In the frequency domain, the transform of a product is equal to the convolution
of the Fourier transforms L(Q) and R(£i) of each term:

F(Q) = J L(o>) R(Q - G>) dco

(CQ is a variable of integration).

[4.6]

Figure 4.4. Fourier transform of a rectangular waveform
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The Fourier transform of a rectangular temporal window appears as a principal
central lobe surrounded by small lobes of decreasing amplitude (cf. Volume 2,

Chapter 1). The transform cancels out regularly for Q a multiple of (i.e. a
T

1
frequency f multiple of —). The effect of the convolution is to widen the peaks of

T
the spectrum, the resolution, consequence of the width of the central lobe, not being

1
able to better Af = —.

T

The expression [4.6] shows that, for each point of the spectrum of frequency Q
2n

(multiple of ), the side lobes have a parasitic influence on the calculated value of
T

the transform (leakage). To reduce this influence and to improve the precision of
calculation, their amplitude needs to be reduced.

t

Figure 4.5. The Manning window

This result can be obtained by considering a modified window which removes
discontinuities of the beginning and end of the rectangular window in the time
domain.

Many shapes of temporal windows are used [BLA 91] [DAS 89] [JEN 68]
[NUT 81].

One of best known and the most used is the Manning window, which is
represented by a versed sine function (Figure 4.5):

/ x i f 2 7 C0r(t) = - 1-cos [4.7]
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Figure 4.6. The Bingham -window [BIN 67]

This shape is only sometimes used to constitute the rising and decaying parts of
the window (Bingham window, Figure 4.6).

Weighting coefficient of the window is the term given to the percentage of rise
time (equal to the decay time) of the total length T of the window. This ratio cannot
naturally exceed 0.5, corresponding to the case of the previously defined Harming
window.

Examples of windows

The advantages of the various have been discussed in the literature [BIN 67]
[NUT 81]. These advantages are related to the nature of the signal to be analysed.
Actually, the most important point in the analysis is not the type of window, but
rather the choice of the bandwidth [JEN 68]. The Harming window is nevertheless
recommended.

The replacement of the rectangular window by a more smoothed shape modifies
the signal actually treated through attenuation of its ends, which results in a
reduction of the rms duration of the sample and in consequence in a reduction of the
resolution, depending on the width of the central lobe.

One should not forget to correct the result of the calculation of the PSD to
compensate for the difference in area related to the shape of the new window. Given
a temporal window defined by r(t), having R(f) for Fourier transform, the area
intervening in the calculation of the PSD is equal to:

Q = J4* |R(f)|2 df [4.8]
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From Parse val's theorem, this expression can be written in a form utilizing the N
points of the digitized signal:

[4.9]
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Table 4.1. The principal windows

Window
type

Bingham
(Figure

4.6)

Hamming

Hanning

Parzen

Flat top

Kaiser-
Bessel

Definition

/ x i ! [io
ft f 1 .. , . 4 1 _L J~/-»C

7t(t-9T/lo)~|{
T\l) — ' ' *\L + COS j

2 I 1 T JJ
T 9T

for 0 < t < — and < t < T
10 10

r(t\ ft fl8 4. fi A.&

for 0 < t
T J

< T

/ . ] F (2*tyi
r ( t 1 ... . .. 1 /-rvc — .11; — 1 COS

2 L V T J,
for 0 < t < T

r(t) = l-6^— -1

T
for — < t

4

r(t) = 2 1-

T
for 0 < t < — anc

4

( } f271

f 2t 3

+ 6 1
J T

3T

4

2 t T

T J
3T

i — < t < T
4

\ ( 9 ^
1 , 1 10£ ^«J 1 t 1

COS^ t j - r x ^ u ,̂  T ,J

- 0.388 cosf 3 — 1 1 + 0.032 cosf 4 — t j
I T J V T j

for 0 < t < T

r(t)= 1-1.24 cosf — 1 1 + 0.244 cosf 2 — 1|I T J \ T ;
- 0.00305 cosf 3 — t)

1 T J
for 0 < t < T

Compensation
factor

1/0.875

1/0.3974

1/0.375

1/0.269643

1/3.7709265

1/1.798573
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The multiplicative compensation factor to apply in order to take account of the
difference between this area and the unit area of a rectangular window are thus equal
tol/Q[DUR72].

4.3.3. Averaging

We attempt in the calculations to obtain the best possible resolution with the data
at our disposal, which results in trying to plot the PSD with the smallest possible
frequency step. For a sample of duration T, this step cannot be lower than 1/T. With
this resolution, the precision obtained is unacceptable. Several solutions are
possible:

- to carry out several measurements of the phenomenon, to calculate the PSD of
each sample of duration T and to proceed to an average of the obtained spectra,

- if only one sample of duration T is available, to voluntarily limit the resolution
by accepting an analysis step Af larger than 1/T and to carry out an averaging
[BEN 71]:

- either by calculating the average of several frequential components close to
the considered spectrum component, separated by intervals 1/T, when the noise to be
analysed can be comparable to a white noise. If the average is carried out on K PSD,
the average obtained is assigned to the central frequency of an interval of width
equal to K/T (which characterizes the effective resolution of the PSD thus
calculated),

- or by dividing up the initial sample of duration T into K subsamples (or
blocks) of duration AT = T/K which will be used to calculate K spectra of
resolution I/AT and their average [BAR 55] [MAX 81]:

The results of these two approaches are identical for given duration T and given
resolution [BEN 75]. It is the last procedure which is the most used. The window,
rectangular or not, is applied to each block.

4.3.4. Addition of zeros

The smallest interval Af between two points of the PSD is related to the duration
1

of the block considered by at least Af = —. The calculation of the PSD is carried
AT

out at M points with distances of Af between 0 and fsamp./2 (fsamp. = sampling
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frequency of the signal). As long as this condition is observed, it is said that the
components of the spectrum are statistically independent.

Figure 4.7. Addition of zeros at end of the signal sample

One can however add components to the spectrum to obtain a more smoothed
curve by artificially increasing the number of points using zeros placed at the end of
the block (leading to a new duration AT > AT).

Figure 4.8. The addition of zeros increases the number of points of the PSD

Although the components added are no longer statistically independent, the
validity of each individual component remains whole.

The additional points of the PSD thus obtained lie between the original points
corresponding to the duration AT and are on the continuous theoretical curve.

The resolution is unchanged. All the components have an equal validity in the
analysis [ENO 69]. One should attach no importance particularly to the components

1
spaced out at —, except that they constitute an ensemble of independent

AT
components. An equivalent unit could be selected by considering the points at the
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frequencies (l + 8f )/T, (2 4- 5f )/T etc where 8f is an increment ranging between 0
and 1 [BEN 75].

4.4. FFT

J.W. Cooley and J. Tukey [COO 65] developed in 1965 a method named Fast
Fourier Transform or FFT making it possible to reduce considerably the computing
time of the Fourier transforms.

A FFT analyser functions with a number of points which is [MAX 86]:

-a power of 2 for the Cooley-Tukey algorithms and those which derive
from them,

- a product of integral powers of prime numbers (Vinograd's algorithm).

With the Cooley-Tukey's algorithm, the computing time of the transform of a
signal defined by N points is proportional to N Iog2 N instead of the theoretically

necessary value N .

Table 4.2. Speed ratio for FFT computation

Number of
Points

256

512

1024

2048

4096

Number of points of the
Fourier transform

128

256

512

1024

2048

N
Speed ratio •

Iog2 N

32

56.9

102.4

186.2

341.3

Calculations of PSD are done today primarily using the FFT, which also has
applications for the calculation of coherence functions (square of the amplitude)
[CAR 73] and of convolutions. This algorithm, which is based in practice on the
discrete Fourier transform, leads to a frequency sampling of the Fourier transform
and thus of the PSD.
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NOTES.
1. Whilst in theory equivalent, the FFT and the method using the correlation can

lead in practice to different results, -which can be explained by the non cognisance of
the theoretical assumptions due to the difficulties of producing the analysers
[MAX 86]. J. Max, M. Diot and R. Bigret showed that a correlation analyser
presents a certain number of advantages such as:

- a greater flexibility in the choice of the frequency sampling step, facilitating
the analysis of the periodic signals,

- a choice more adapted to the conditions of analysis of the signal.

2. When these algorithms are used to calculate the Fourier transform of a shock,
one should not forget to multiply the result by the duration T of the treated signal.

4.5. Particular case of a periodic excitation

The PSD of a periodic excitation was defined by [3.68]:

n=0

The PSD of such an excitation being characterized by very narrow bands
centered on the frequencies fn , the calculation of G'(f) supposes that l(t] is
analysed in sufficiently narrow filters Af. The PSD is approximated by:

YT/ Af

n=0 ^

rn can be obtained either by direct calculation of:

T o n
 2

1 k
with T = — or T = —, i.e. by calculation of the mean value:

*n fn

7; = - PLnsin27ifn dt = -Ln [4.13]
T ° n

T having the same definition. It is noted that:
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[4'M]

1

T must be multiple of — .If it is not the case, the error is all the weaker since the
fn

number of selected periods is larger. For a periodic excitation, the measurment or
calculation accuracy is only related to the selected width Af of the chosen filter (the
signal being periodic and thus determinist, there is no error of statistical origin
related to the choice of T).

4.6. Statistical error

4.6.1. Origin

Let us consider a stationary random signal whose PSD we wish to determine.
The characteristic of such a signal being precisely to vary in a random way, the PSD
obtained is different according to the moment at which it is calculated.

Figure 4.9. Estimates of the PSD for various signal samples

Let us consider the PSD G(f) evaluated at frequency f starting from a sample of
duration T chosen successively between the times t0 and t0 + T, then t0 + T and
t0 + 2 Tetc.

The values of G(f ) thus calculated are all different from each other and different
also from the exact value G(f). We have:

G(f)= lim-
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The true PSD is thus the mean value of the quantities G(f) estimated at various
times, when their number tends towards the infinity. One could also define the
standard deviation s of G(f). For N values,

s =
N - l

and, for N -> <x>

12

[4.16]

[4.17]s= lim s
N-»°o

s being the true standard deviation for a measurement G(f), is a description of
uncertainty of this measure. In practice, one will make only one calculation of G(f)
at the frequency f and one will try to estimate the error carried out according to the
conditions of the analysis.

4.6.2. Definition

Statistical error or normalized rms error is the quantity defined by the ratio:

£ _ S _ 4 [4.18]

(variation coefficient) where t ̂  is the mean square value of the signal filtered in
the filter of width Af (quantity proportional to G(f)) and s 2 is the standard

*

deviation of the measurement of
finite duration T.

related to the error introduced by taking a

NOTE.
We are interested here in the statistical error related to calculation of the PSD.

One makes also an error of comparable nature during the calculation of other
quantities such as coherence, transfer function etc (cf. paragraph 4. 12).
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4.7. Statistical error calculation

4.7.1. Distribution of measured PSD

V
If the ratio s = •=£=• is small, one can ensure with a high confidence level that a

4
measurement of the PSD is close to the true average [NEW 75]. If on the contrary s
is large, the confidence level is small. We propose below to calculate the confidence
level which can be associated with a measurement of the PSD when s is known. The
analysis is based on an assumption concerning the distribution of the measured
values of the PSD.

2
The measured value of the mean square z of the response of a filter Af to a

random vibration is itself a random variable. It is supposed in what follows that z
can be expressed as the sum of the squares of a certain number of Gaussian random
variables statistically independent, zero average and of the same variance:

p / nx2(t)d t + /J J

'2T/n ..2/

'T/n X (t'dt + ""' JT(l-l/n)
[4.19]

One can indeed think that z satisfies this assumption, but one cannot prove that
these terms have an equal weight or that they are statistically independent. One notes

however in experiments [KOR 66] that the measured values of z roughly have the
distribution which would be obtained if these assumptions were checked, namely a
chi-square law, of the form:

X2 = X2 + X2 + X3
2 + -+Xn [4.20]

If it can be considered that the random signal follows a Gaussian law, it can be
shown ([BEN 71] [BLA 58] [DEN 62] [GOL 53] [JEN 68] [NEW 75]) that

2

measurements G(f) of the true PSD G(f) are distributed as G(f) — where xn *s

n
the chi-square law with n degrees of freedom, mean n and variance 2 n (if the mean
value of each independent variable is zero and their variance equal to 1 [BLA 58]
[PIE 64]).

Figure 4.10 shows some curves of the probability density of this law for various
values of n. One notices that, when n grows, the density approaches that of a normal
law (consequence of the central limit theorem).
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Figure 4.10. Probability density: the chi-square law

NOTE.

Some authors [OSG 69] consider that measurements G(f) are distributed more
2

Y

like G(f) , basing themselves on the following reasoning. From the values
n-1

Xj, X2, X3, • • • , Xn of a normally distributed population, of mean m (unknown
value) and standard deviation s, one can calculate

—.\2(x1-x) +(x2-x) +(x3-x) + ... + (xn-x)
[4.21]

-where

[4.22]

(mean of the various values taken by variable X by each of the n elements). Let us
consider the reduced variable

X: -X [4.23]
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The variables Uj are no longer independent, since there is a relationship
between them: according to a property of the arithmetic mean, the algebraic sum of

the deviations with respect to the mean is zero, therefore ^(Xj - X] = 0, and

consequently, = 0 yielding:

In the sample of size n, only n -1 data are really independent, for if n — 1
variations are known, the last results from this. If there is n -1 independent data,
there are also n -1 degrees of freedom.

The majority of authors however agree to consider that it is necessary to use a
law with n degrees of freedom. This dissension has little incidence in practice, the
number of degrees of freedom to be taken into account being necessarily higher than
90 so that the statistical error remains, according to the rules of the art, lower than
15% approximately.

4.7.2. Variance of measured PSD

The variance of G(f) is given by:

SG(f) ~
G(O Xn

SG(f) ~ . n .
var [4.24]

However the variance of a chi-square law is equal to twice the number of
degrees of freedom:

Var

yielding

2 G2(f) G2(f)
o1" *) ______ n O
S G(f )~ 2 _ 2 n ~ 2

[4.25]

[4.26]

n n

The mean of this law is equal to n.
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4.7.3. Statistical error

Figure 4.11. Statistical error as function of the number ofdof

G(f) =
G(f)

G(f) = G(f)

The statistical error is thus such as:

[4.27]

2 SG(f)
£ — .. _ - ..<•>

G(f)

[4.28]

s is also termed 'standarderror'.
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4.7.4. Relationship between number of degrees of freedom, duration and
bandwidth of analysis

This relation can be obtained, either using a series expansion of

E^ [G(f ) - G( f ) j r , or starting from the autocorrelation function.

From a series expansion:

It is shown that [BEN 61b] [BEN 62]:

TAf 576

variability

[4.29]

bias

Except when the slope of the PSD varies greatly with Af, the bias is in general
negligible. Then

2
8 =

E{[6(f)-G(f)f 1

G2(f) TAf

This relation is a good approximation as long as e is lower than approximately
0.2 (i.e. for T Af > 25).

[4.30]

The error is thus only a function of the duration T of the sample and of the width
Af of the analysis filter (always assumed ideal [BEA 72] [BEN 63] [NEW 75]).

Figure 4.12. Statistical error
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Figure 4.12 shows the variations of this quantity with the product TAf. The
number of events n represented by a record of white noise type signal, duration T,
filtered by a filter of width A f , is thus, starting from [4.28]:

n = 2 A f T [4.31]

Definition

The quantity n = 2 Af T is called number of degrees of freedom (dof).

From the autocorrelation function

Let us consider ^(t) a vibratory signal response collected at the output of a filter
of width Af. The mean square value of i(i) is given by [COO 65]:

2 2Setting t^f the measured value of \^, we have, by definition:

e =

,2 ,2
ft/2

[4.32]

"Af
8 =

However, we can write:

9

.4
AAf ~

:Af

dv

i.e., while setting t = u and t = v-u = v- t ,
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yielding

dt

where D{T) is the autocorrelation coefficient. Given a narrow band random signal,
we saw that the coefficient p is symmetrical with regard to the axis i = 0 and that p
decrease when T| becomes large. If T is sufficiently large, as well as the majority of
the values oft:

2
S =

•Af

2 fT f+oo 2/ x
— j dt J P

2(l) dT
T^ 0 -00

yielding the standardized variance 8 [BEN 62]:

2 _ 2 f+oo

T '

.

*

[4.33]

[4-34]

Particular cases

1. Rectangular band-pass filter

We saw [2.70] that in this case [MOR 58]:

cos 2 7t fft T sin 7i Af T
P(T) =

TC T Af

yielding

2 22 4 foo cos 2 7i f0 T sin rc Af T
s » — J T—T

rn ^o 2 2 Ar.2T u 71 T Af
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2
e *

1

TAf

and [BEN 62] [KOR 66] [MOR 63]:

[4.35]

Example

For e to be lower than 0.1, it is necessary that the product T Af be greater than
100, which can be achieved, for example, either with T = 1 s and Af = 100 Hz, or
with T = 100 s and Af = 1 Hz. We will see, later on, the incidence of these choices
on the calculation of the PSD.

2. Resonant circuit

For a resonant circuit:

/ \ ^ r- -ft t AfP(T) = cos 2 7t f0 T e

yielding

2 4 f ° ° 2 ~ -, -2 it T Af ,E « — J cos 2 7i f0 T e dt

00 -27iiAf

[4.36]

4.7.5. Confidence interval

Uncertainty concerning G(f) can also be expressed in term of confidence
interval. If the signal ^(t) has.a roughly Gaussian probability density function, the

G(f) X2 - / v
distribution of , for any f, is the same as —. Given an estimate G(f) obtained

G(f) n
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from a signal sample, for n = 2 Af T events, the confidence interval in which the

true PSD G(f) is located is, on the confidence level (l - a):

n G(f)
2

Cn, l-oc/2 , a/2

[4.37]

2 2
where xn a/2 and %n i_ot/2 ^

ave n degrees of freedom. Table 4.3 gives some values
2

of %n a according to the number of degrees of freedom n for various values of a.

•/
Figure 4.13. Values of%n a with respect to the number of degrees of freedom and ofo.

Figure 4.13 represents graphically the function xa with respect to n,

parameterized by the probability a.

Example

99% of the values lie between 0.995 and 0.005. One reads from Figure 4.13,

for n = 10, that the limits are %2 = 25.2 and 2.16.
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Figure 4.14. Example of use of the curves Xn a(n)

Example

Figure 4.14 shows how in a particular case these curves can be used to evaluate
numerically the limits of the confidence interval defined by the relation [4.37].

Let us set n = 10. One notes from this Figure that 80% of the values are within
the interval 4.87 and 15.99 with mean value m = 10. If the true value of the mean
of the calculated PSD S0 is m, it cannot be determined exactly, nevertheless it is
known that

4.87 S

10

15.99

10

2.05 S0 > m > 0.625 S0
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20
21
22
23
24

25
26
27
28
29

30
40
50
60

70
80
90
100

40.0
41.4
42.8
44.2
45.6

46.9
48.3
49.6
51.0
52.3

53.7
66.8
79.5
92.0

104.2
116.3
128.3
140.2

37.6
38.9
40.3
41.6
43.0

44.3
45.6
47.0
48.3
49.6

50.9
63.7
76.2
88.4

100.4
112.3
124.1
135.8

34.2
35.5
36.8
38.1
39.4

40.6
41.9
43.2
44.5
45.7

47.0
59.3
71.4
83.3

95.0
106.6
118.1
129.6

31.4
32.7
33.9
35.2
36.4

37.7
38.9
40.1
41.3
42.6

43.8
55.8
67.5
79.1

90.5
101.9
113.1
124.3

28.4
29.6
30.8
32.0
33.2

34.4
35.6
36.7
37.9
39.1

40.3
51.8
63.2
74.4

85.5
96.6
107.6
118.5

23.8
24.9
26.0
27.1
28.2

29.3
30.4
31.5
32.6
33.7

34.8
45.6
56.3
67.0

77.6
88.1
98.6
109.1

19.3
20.3
21.3
22.3
23.3

24.3
25.3
26.3
27.3
28.3

29.3
39.3
49.3
59.3

69.3
79.3
89.3
99.3

15.5
16.3
17.2
18.1
19.0

19.9
20.8
21.7
22.7
23.6

24.5
33.7
42.9
52.3

61.7
71.1
80.6
90.1

12.4
13.2
14.0
14.8
15.7

16.5
17.3
18.1
18.9
19.8

20.6
29.1
37.7
46.5

55.3
64.3
73.3
82.4

10.9
11.6
12.3
13.1
13.8

14.6
15.4
16.2
16.9
17.7

18.5
26.5
34.8
43.2

51.7
60.4
69.1
77.9

9.59
10.3
11.0
11.7
12.4

13.1
13.8
14.6
15.3
16.0

16.8
24.4
32.4
40.5

48.8
57.2
65.6
74.2

8.26
8.90
9.54
10.2
10.9

11.5
12.2
12.9
13.6
14.3

15.0
22.2
29.7
37.5

45.4
53.5
61.8
70.1

7.43
8.03
8.64
9.26
9.89

10.5
11.2
11.8
12.5
13.1

13.8
20.7
28.0
35.5

43.3
51.2
59.2
67.3
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More specific tables or curves were published to provide directly the value of the
limits [DAR 72] [MOO 61] [PIE 64]. For example, Table 4.4 gives the confidence
interval defined in [4.37] for three values of 1 - a [PIE 64],

Table 4.4. Confidence limits for the calculation of a PSD [PIE 64]

Degrees

of

freedom

n

10

15

20

25

30

40

50

75

100

150

200

250

300

400

500

750

1000

5000

Confidence interval limits relating to a measured power spectral density
G(f) = l

(l- a) = 0.90

Lower
limit

0.546

0.599

0.637

0.662

0.685

0.719

0.741

0.781

0.806

0.833

0.855

0.870

0.877

0.893

0.901

0.917

0.934

0.971

Higher
limit

2.54

2.07

1.84

1.71

1.62

1.51

1.44

1.34

1.28

1.22

1.19

1.16

1.15

1.13

1.11

1.09

1.08

1.03

(l - a) = 0.95

Lower
limit

0.483

0.546

0.585

0.615

0.637

0.676

0.699

0.743

0.769

0.806

0.826

0.847

0.855

0.877

0.885

0.909

0.917

0.962

Higher
limit

3.03

2.39

2.08

1.90

1.78

1.64

1.54

1.42

1.35

1.27

1.23

1.20

1.18

1.15

1.14

1.11

1.09

1.04

(l - a) = 0.99

Lower
limit

0.397

0.457

0.500

0.532

0.559

0.599

0.629

0.680

0.714

0.758

0.781

0.800

0.820

0.840

0.855

0.877

0.893

0.952

Higher limit

4.63

3.26

2.69

2.38

2.17

1.93

1.78

1.59

1.49

1.37

1.31

1.27

1.25

1.21

1.18

1.15

1.12

1.05

Multiply the lower and higher limits in the table by the measured value G(f ) to
obtain the limits of the confidence interval of the true value G(f).
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NOTE.

When n > 30, -^2 x,n follows a law close to a Gaussian law of mean ^2 n -1

and standard deviation 1 (Fisher's law). Let \ be a normal reduced variable and a
a value of the probability such that

Probjx <k(a)]=l-a [4.38]

where k is a constant function of the probability a.

For example:

a

k(a)

90%

1.645

95%

1.960

99%

2.58

We have

Prob^/2n-l -k(a)< && < J2*-1 + k(a)j

yielding the approximate value of the limits 0/Xn

[4.39]

Prob
L/2n-l -k(a)|2 2 L/2n-l + k(a

_vy_i_.. \ /J < V ^ -?-"-- - -_- - - . - - - __ . ! - - _ , - - [4.40]

G(f) G
and that of the confidence interval limits of (since the probability of— is the

G(f) G

same a
V

s r/rar of—):
n

Prob 2n ^G ( f )^ 2n

[v/2-n-TT + k(a)]
2 ~ G(f ) " [fi^i _ k(a)]

2
— 1 n [4.41]

For large values qfn [n > 120], i.e. for E small, it is shown that the chi-square
law tends towards the normal law and that the distribution of the values o/G(f) can
itself be approximated by a normal law of mean n and standard deviation ^2 n
(law of large numbers). In this case,
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Figures 4.15 to 4.18 provide, for a confidence level of 99%, and then 90%:

— variations in the confidence interval limits depending to the number of degrees
of freedom n, obtained using an exact calculation (chi-square law), by considering
the Fisher and Gauss assumptions,

- the error made using each one of these simplifying assumptions.

These curves show that the Fisher assumption constitutes an approximation
acceptable for n greater than 30 approximately (according to the confidence level),
•with relatively simple analytical expressions for the limits.

Figure 4.19. Confidence limits (G/G)

Figure 4.20. Confidence limits (G/G) [MOO 61]
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G G
The ratio — (or —, depending on the case) is plotted in Figures 4.19 and 4.20

G G
with respect to n, for various values of the confidence level.

Example

Let us suppose that a PSD level G = 2 has been measured with a filter of width
Af = 2.5 Hz and from a signal sample of duration T= 10 s. The number of

degrees of freedom is n = 2 T Af = 50 (yielding s = ..• = 0.2). Table 4.4

gives, for 1 - a = 0.90 :

0.741G<G<1.44G

i.e. 1.482 < G < 2.88 if G = 2. Reading from the curves in Figure 4.21, for
n = 50,

y-^

— < 0.69 on the confidence level 5%,
G

s~<
— < 1.35 on the confidence level 95%.
G

With a confidence level of 90%, we thus have:

0.69 < — < 1.35
G

i.e.

1.35 0.69

0.74G<G<1.44G

1.48<G <2.88

For e < 0.1 [PIE 64], we can see that the relative error between the true PSD
and the calculated PSD lies between ± SA with a confidence level of 68%, i.e. thatG
during approximately 68% of the time, the exact PSD lies between G(f) ± SA :
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From this inequality, can be written [PIE 64]:

[4.44]

[4.45]

The confidence limits on the 68% level are plotted in Figure 4.21 for n ranging
between 2 and 1000, then ranging between 20 and 1000.

Figure 4.21. Confidence limits at the 68% level

IB3

NOTE.
At confidence level 1 - a = 68%, the expressions [4.37] and[4.45] show that

[4.46]



122 Random vibration

yielding

S =

2
X

[4.47]

•where, if E < 0.2, 8 » , one deduces:

 [4.48]

77»s expression is applicable for any nfor confidence level 68% and any a -when
n w large.

Figure 4.22. G/G as function of frequency of filter and length of analysis [CUR 64]

Figure 4.22 shows the variations of:

G _ true PSD (large T)

G measured PSD
with respect to the central frequency of the filter, for various lengths of analysis, at

central frequency
the confidence level 80% and for a ratio = 10 [CUR 64].

Af
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Central frequency of the filter (Hz)

Figure 4.23. G/G as function of frequency of the filter and probability

Figure 4.23 is parameterized, in the same axes, by the probability.

Figures 4.22 and 4.23 are deduced from Figure 4.21 as follows: for a given f,
f G G

Af = — is calculated, then, for a given T, n = 2 Af T, yielding — and —.
10 G G

Example

We want to calculate a PSD with a statistical error less than 17.5% at
confidence level 95%. At this level 95%, we have ±1.96 times the standard error.
The standard error should thus not exceed:

e = — = 8.94%
1.96

Knowing e, the calculation conditions can be chosen from
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4.7.6. Expression for statistical error in decibels

2 2While dividing, in [4.40], <^2 xn by its mean value, i.e. xn

2 n-1

becomes

Prob
[V2n-l-k(a)f

2 n - l

2

2 [v 1 *^ "-n ,̂ LA
" 2 n - l "

2

2"

2 n - loZ
2

[4.49]

The error can be evaluated from —, i.e. -^—^-y, in the form
G 2 n ~ ]

= 10 log10 [4.50]

It is raised, according to n, by

»10
2 n - l

= 10 1 +
2 k(a) k2(a)

12 n -1 2 n -1
[4.51]

Figure 4.24 shows the variations of sdB with the number of degrees of freedom
n.

If k(a) = 1, there is a 68.27% chance that the measured value is in the interval
±1 SA/ f \ and an 84.13% chance that it is lower than 1 S£/f\. Then:

8dB = 10 log10

2 1

/2 n -1 2 n -1
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Figure 4.24. Statistical error in dB

d.o.f. number

Figure 4.25. Statistical error approximation

The curves in Figure 4.25 allow comparison of the exact relation [4.50] with the
approximate relation [4.52]: the approximation is good for n > 50.
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Example

If it is required that s = ±0.5 dB , i.e. that s = ± 12.2 % , it is necessary, at
confidence level 84%, that TAf = 67.17, or that the number of degrees of
freedom is equal to n = 2 T Af « 135.

If A

variatioi

f = 24 Hz,

is of the PSI

n

50

100

250

T i n4 ° j1 - 1U - ^..i

(0.122fAf
) are, in the interval [BAN

Lower limit (dB)

-1.570

-1.077

-0.665

5 s. At confidence level 90%, the

78]:

Upper limit (dB)

1.329

0.958

0.617

4.7.7. Statistical error calculation from digitized signal

Let N be the number of sampling points of the signal x(t) of duration T,
M the number of points in frequency of the PSD
fsamp the sampling frequency of the signal

f
fmax the maximum frequency of the PSD, lower or equal to -samp

2.6
(modified Shannon's theorem, paragraph 4.1)

5t the time interval between two points.

We have:

T = N 5 t [4.53]

[4.54]
2M
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NOTE.
M points separated by an interval Af lead to a maximum frequency

f
= M Af = -samp' . To fulfill the condition of paragraph 4.3.1, it is necessary

to limit in practice the useful field of the PSD to fmax*

lsamp.

2.6

If we need a PSD calculated based on M points, we need at least AN = 2 M
points per block. Since the signal is composed of N points, we will cut up it into

N T
K = blocks of duration AT = —.

2M K

Knowing that fsanm = —:
St

Af =
2 M 8 t

yielding

i.e.

[4.55]
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Example

N = 32 768 points M = 512 points T = 64 s

yielding

2M = 1 024 points per sample

N
K = = 32 samples (of 2 s)

2 M

K 32 N 32768
Af = — = — = 0.5 Hz fsamp = — = = 512 points/s

T 64 T 64

32768

Even if M Af = 512 0.5 Hz = 256 Hz, we must have, in practice,

2.6 2.6

4.8. Overlapping

4.8.1. Utility

One can carry out an overlapping of blocks for three reasons:

- to limit the loss of information related to the use of a window on sequential
blocks, which results in ignorance of a significant part of the signal because of the
low values of the window at its ends [GAD 87];

- to reduce the length of analysis (interesting for real time analyses) [CON 95];

- to reduce the statistical error when the duration T of the signal sample cannot
be increased. We saw that this error is related to the number of blocks taken in the
sample of duration T. If all the blocks are sequential, the maximum number K of
blocks of fixed duration AT (arising from the frequency resolution desired) is equal
to the integer part of T/AT [WEL 67]. An overlapping makes it possible to increase
this number of blocks whilst preserving their size AT.
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Overlapping rate

The overlapping rate R is the ratio of the duration of the block overlapped by the
following block over the total duration of the block.

This rate is in general limited to the interval between 0 and 0.75.

Figure 4.26. Overlapping of blocks

Overlapping in addition makes it possible to minimize the influence of the side
lobes of the windows [CAR 80] [NUT 71] [NUT 76].

4.8.2. Influence on number of degrees of freedom

Let N be the number of points of the signal sample, N' (> N) the number of
points necessary to respect the desired statistical error with K blocks of size
AN(N'=KAN). The difference N'-N must be distributed over K- l possible
overlappings [NUT 71]:

N'-N = (K-l ) R A N

yielding

N'-N N'-N .. ...
R = = [4.56]

AN (K-l) N'-AN

For R to be equal to 0.5 for example, it is necessary that N'= 2 N - AN.

Overlapping modifies the number of degrees of freedom of the analysis since the
blocks cannot be regarded any more as independent and noncorrelated. The



130 Random vibration

estimated value of the PSD no longer obeys a one chi-square law. The variance of
the PSD measured from an overlapping is less than that calculated from contiguous
blocks [WEL 67]. R. Potter and J. Lortscher [POT 78] showed however that, when
K is sufficiently large, the calculation could still be carried out on the assumption of
non overlapping, on the condition the result could still be corrected by a reduction
factor depending on the type of window and the selected overlapping rate. The
correlation as a function of overlapping can be estimated using the coefficient:

r(t)r[t + ( l-R)AT]dt
[4.57]

Table 4.5. Reduction factor

Window

Rectangle

Bingham

Hamming

Hanning

Parzen

Flat signal

Kaiser-Bessel

Correlation coefficient C

R = 25%

0.25000

0.17143

0.02685

0.00751

0.00041

0.00051

0.00121

R = 50%

0.50000

0.45714

0.23377

0.16667

0.04967

-0.01539

0.07255

R = 75%

0.75000

0.74286

0.70692

0.65915

0.49296

0.04553

0.53823

Coefficient \i

R = 50%

0.66667

0.70524

0.90147

0.94737

0.999509

0.99953

0.98958

R = 75%

0.36364

0.38754

0.47389

0.51958

0.67071

0.99540

0.62896

4.8.3. Influence on statistical error

When the blocks are statistically independent, the number of degrees of freedom
is equal ton = 2K = 2 T A f whatever the window. With overlappings of K blocks,
the effective number of blocks to consider in order to calculate the statistical error is
given [HAR 78] [WEL 67]:

-forR = 50%by:

K50 =
1 K

2 22 CSQ% 2 c50%

[4.58]
'50%

K K
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-for R = 75% by:

K *
75% ~ ~, T~2 T~2 ^ ~ 2 2 2 T~21 + 2 C75% + 2 c50o/0 + 2 c2s% _ c75o/0 + c50% + 3 C25o/0

K K2

= u« K [4.59]
2

1 + 2 C75% + 2 C50% + 2 C25%

(the approximation being acceptable for K > 10). Under these conditions, the
statistical error is no longer equal to 1/vK , but to:

e = [4.60]

The coefficient |i being less than 1, the statistical error is, for a given K, all the
larger as overlapping is greater. But with an overlapping, the total duration of the
treated signal is smaller, which makes it possible to carry out more quickly the
analyses in real time (control of the test facilities). The time saving can be calculated
from [4.56]:

N'-N T-T
n _

N'-AN T-AT

(AT =duration of a block). To avoid a confusion of notations, we will let To be the
duration of the signal to be treated with an overlapping and T the duration without
overlapping. We then have:

N'-N T-TO

N'-AN T-AT

yielding

TO = T ( I - R ) + R A T [4.6i]

Since R < 1 and AT « T, we have in general To « T (l - R) . The time saving
T

is thus approximately equal to — « (l - R) .
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Example

T = 25 s, Af = 4 Hz (i.e. K = T Af = 100), s0 = 0.1 (without overlapping).
With R = 0.75 and a Hanning window, p,«0.52; yielding

E = 1/^/0.52 x 25 x 4 » 0.139. But this result is obtained for a signal of duration

T0 « (l - 0.75) 25 « 6.25 s.

If we consider now a sample of given duration T, overlapping makes it possible
to define a greater number of blocks. This K1 number can be deducted from [4.56]:

N - R A N
N'=

1-R

yielding, if N ' = K ' A N

K - R
K' =

1-R
[4.62]

The increase in the number of blocks makes it possible to reduce the statistical
error which becomes equal to:

1
8 =

K - R

1-R

= S0
1-R

[4.63]

Example

With the data of the above example, the statistical error would be equal to

1 - 0.75
S«8 0 * 0.693 80 = 0.0693.

4.8.4. Choice of overlapping rate

The calculation of the PSD uses the square of the signal values to be analysed. In
this calculation the square of the function describing the window for each block thus
intervenes in an indirect way, by taking account of the selected overlapping rate R.
For a linear average, this leads to an effective weighting function r^^t) such as
[GAD 87]:
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[4.64]

where T is the duration of the window used (duration of the block),
i is the number of the window in the sum,
K is the number of windows at time t

Figure 4.27. Ripple on the Manning -window Figure 4.28. Manning \vindo\vfor R = 0.75
(R = 0.58;

Figure 4.29. Ripple amplitude versus 1 - R

With the Harming window, one of the most used, it can be observed (Figure

4.27) that there is a ripple on r^^t), except when 1 - R is of the form 1 / p where
p is an integer equal to or higher than 3 (Figure 4.28). The ripple has a negligible
amplitude when 1-R is small (lower than 1/3) [CON 95] [GAD 87]. This
property can be observed in Figure 4.29, which represents the variations of the ratio
of the maximum and minimum amplitudes of the ripple (in dB) with respect to
1-R.
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This remark makes it possible to justify the use, in practice, of an overlapping
equal to 0.75 which guarantees a constant weighting on a broad part of the window
(the other possible values, 2/3, 3/4, 4/5, etc..., are less used, because they do not
lead as 3/4 to a integer number of points when the block size is a power of two).

4.9. Calculation of PSD for given statistical error

4.9.1. Case: digitalization of signal is to be carried out

Given a vibration ^(t), one sets out to calculate its power spectral density
between 0 and fmax with M points (M must be a power of 2), for a statistical error

not exceeding a selected value 8. The procedure is summarized in Table 4.6
[BEA 72] [LEL 73] [NUT 80].

Table 4.6. Computing process of a PSD starting from a non-digitized signal

The signal of total duration T (to be defined) will be cut out in K blocks of unit
duration AT, under the following conditions:

f samp. — 2-6 tmax

_ *samp.
*• Nyquist

£r

fA f 1Nyquist
M

st *
*samp.

A N = 2 M

N - 2 M
N " s 2

T = N8t

Y N

2M

AT = — ( = 2 M 6 t = — )
K Af

Condition to avoid the aliasing phenomenon
(modified Shannon's theorem).

Nyquist frequency [PRE 90].

Interval between two points of the PSD (this
interval limits the possible precision of the analysis
starting from the PSD).

Temporal step (time interval between two points of
the signal), if the preceding condition is observed.

Number of points per block.

Minimum number of signal points to analyse hi
order to respect the statistical error.

Minimum total duration of the sample to be
treated.

Number of blocks.

Duration of one block.
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Calculation of — |L/f )| for
AT ' ^

each point of the PSD, where
f = mAf ( 0 < m < M )

-t-^f
K fcf AT 1V *

Calculation from the FFT of each block.

Averaging of the spectra obtained for each of the
K blocks (stationary and ergodic process)

With these conditions, the maximum frequency of the PSD computed is equal to
f'max = ^Nyquist • But it is preferable to consider the PSD only in the interval

(0, fmax).

NOTE.
It is supposed here that the signal has frequency components greater than fmax

and that it was thus filtered by a low-pass filter to avoid aliasing. If it is known that
the signal has no frequency beyond fmax, this filtering is not necessary and

f' = f1 max Lmax -

4.9.2. Case: only one sample of an already digitized signal is available

If the signal sample of duration T has already been digitized with N points, one
can use the value of the statistical error to calculate the number of points M of the
PSD (i.e. the frequency interval Af), which is thus no longer to be freely selected
(but it is nevertheless possible to increase the number of points of the PSD by
overlapping and/or addition of zeros).

Table 4.7. Computing process of a PSD starting from an already digitized signal

Data: The digitized signal, fmax and 8.

fp Asamp.1 max

fr- Lsamp.
ifnaX 2.6

5t- l

*samp.

Theoretical maximum frequency of the PSD
preceding note).

(see

Practical maximum frequency.

Temporal step
signal).

(time interval between two points of the
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T
N = —

8t

M ~ N s 2

2

,, *samp.
* Nyquist

A f Nyquist

M
AN = 2 M

K- N

2M

Number of signal points of duration T.

Number of points of the PSD necessary to respect the
statistical error (one will take the number immediately
beneath that equal to the power of 2).

Nyquist frequency.

Interval between two points of the PSD.

Number of points per block.

Number of blocks. Etc

If the number of points M of the PSD to be plotted is itself imposed, it would be
necessary to have a signal defined by N' points instead of N given points (N < N').
One can avoid this difficulty in two complementary ways:

- either by using an overlapping of the blocks (of 2 M points). One will set the
overlapping rate R equal to 0.5 and 0.75 while taking smallest of these two values
(for a Harming window) which satisfies the inequality:

- R 2 M

u. N
<8

When it is possible, overlapping chosen in this manner makes it possible to use
N' N - 2 M R

K' blocks with K' = , where [4.56] N'= ;
2 M 1-R

- or, if overlapping does not sufficiently reduce the statistical error, by fixing this
rate at 0.75 to benefit as much as possible from its effect and then to evaluate the
size of the blocks which would make it possible, with this rate, to respect the
statistical error, using:

[1-R AN

U N
< E

The value AN thus obtained is lower than the number 2 M necessary to obtain
the desired resolution on the PSD. Under these conditions, the number of items used
for the calculation of the PSD is equal to:
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N' =
N - 0.75 AN

1 - 0.75

and the numbers of blocks to K'= N'/AN. One can then add zeros to each block to
increase the number of calculation points of the PSD and to make it equal to 2 M.

2 M K'-N'
For each block, this number is equal to . This is however only an

K'
artifice, the information contained in the initial signal not evidently increasing with
the addition of zeros.

4.10. Choice of filter bandwidth

4.10.1. Rules

It is important to recall that the precision of calculation of the PSD depends, for
given T, on the width Af of the filter used [RUD 75]. The larger the width Af of the
filter is, the smaller the statistical error s and the better the precision of calculation
of G(f). However, this width cannot be increased limitlessly [MOO 61]. The larger
Af is, the less the details on the curve obtained, which is smoothed. The resolution
being weaker, the narrow peaks of the spectrum are not shown any more [BEN 63].
A compromise must thus be found.

Figure 4.30 shows as an example three spectral curves obtained starting from the
same vibratory signal with three widths of filter (3.9 Hz, 15.625 Hz and 31.25 Hz).
These curves were plotted without the amplitude being divided by Af, as is
normally the case for a PSD.

Frequency (Hz)
5 6

xi82

Figure 4.30. Influence of width of filter
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One observes in these conditions, the area under the curve calculated for
Af = 15.625 Hz is approximately half of that obtained for Af = 31.25 Hz. In the
case of a true PSD, division by Af gives the same area for whatever the value of Af.

We note in addition on these curves that the spectrum obtained for Af = 15.6 Hz
is very much smoothed; in particular, the peak observed for Af = 3.9 Hz has
disappeared. To choose the value of Af, it would be necessary to satisfy two
requirements:

1. The filter should not be broader than aquarter of the width of the narrowest
resonance peak expected [BEN 61b] [BEN 63] [FOR 64] [MOO 61] [WAL 81];

2. The statistical error should remain small, with a value not exceeding
approximately 15%.

If the first condition is observed, the precision of the PSD calculation is
proportional to the width of the filter. If, on the contrary, resonances are narrower
than the filter, the precision of the estimated PSD is proportional to the width of the
resonance of the specimen and not to the width of the filter. To solve this problem,
C.T. Morrow [MOR 58], and then R.C. Moody [MOO 61] suggested making two
analyses, by using the narrowest filter first of all to emphasize resonances, then by
making a second analysis with a broader filter in order to improve the precision of
the PSD estimate.

Other more complicated techniques have been proposed (H. Press and J.W.
Tukey for example [BLA 58] [NEW 75]).

4.10.2. Bias error

Let us consider a random signal ^(t) with a constant PSD (white noise)
G^(f) = G^Q applied to a linear system with transfer function of one-degree-of-

freedom [PIE 93] [WAL 81]:

0 being the natural frequency and Q the quality factor of the system). The response
u(t) of this system has the following PSD:

G



Practical calculation of power spectral density 139

G [4.66]

Let us analyse this PSD, which presents a peak at f = f0, using a rectangular
filter of width AF centered on fc, with transfer function [FOR 64]:

[4.67]

We propose to calculate the bias error made over the width between the half-
power points of the peak of the PSD response and on the amplitude of this peak
when using an analysis filter AF of nonzero width. For given fc, the PSD calculated
with this filter has a value of:

[4.68]

df 

[4.69]

It is known [LAL 94] (Volume 4, Appendix A3) that the integral
f dh

Consequently,
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AF In

[4.72]

i.e.

Arc tan 

[4.73]
AF

However, by definition, the bandwidth between the half-power points is equal to
fn

Af = —, yielding:
Q

[4.74]

At the half-power points, the calculated spectrum has a value:

where fc = f0 + . One deduce that:

[4.75]
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GF _Q fo
G^ 2 AF

AfF + AF AfF - AF
Arc tan Arc tan

Af Af

[4.76]

From [4.74], [4.75] and [4.76], it becomes:

AF

Af

Afp + AF

L Af

AfF-AF]

Af J
[4.77]

Figure 4.31. Width of the peak at half-power versus width of the analysis/liter
(according to [FOR 64])

Af,AfF AF
The curve in Figure 4.31 gives the variations of - against — after numerical

Af Af
resolution. It is noted that the measured value Aff of the width of the peak at half-
power is obtained with an error lower than 10% so long as the width of the analysis
filter is less than half the true value Af .

AF AfFF
Setting x = — and y = - .

Af ' Af

Arc tan x = Arctan(y + x) - Arctan(y-x)

a-b
Knowing that Arc tan a - Arc tan b = Arc tan , we have:

1 + ab

Arc tan x = Arc tan
2x
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2 X 2 2
This yields x = r- anc* v = x + ̂  i-e<

1 + y -x

AfF

Af

"(AF? "

UfJ +1_ "
[4.78]

In addition, the peak of the PSD occurs for f = f0:

[4.79]

yielding the relationship between the measured value of the peak and the true value:

[4.80]GF(f0) Af AF
pV u; = — Arc tan —
PG AF Af

Figure 4.32 shows the variations of this ratio versus AF/Af. If AF = — Af
4

according to the rule previously suggested,

and

^--Jl + p-l -1-<BO«Af V U

= 4 Arc tan- « 0.98

Figure 4.32. Amplitude of peak versus filter width
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Under these conditions, the error is about 3% of Af and 2% of the peak.

Example

Let us consider a one-degree-of-freedom system of natural frequency
fo =100 Hz and quality factor Q = 10 , excited by a white noise. The error of
measure of the PSD response peak is given by the curve in Figure 4.32.

If AF = 5 Hz:

0

f̂o

yielding:

GF

100

= 0.92

Q 10
For f0 = 50 Hz and Q = 10, one would obtain similarly — AF = —

f0 50

G

PG

= 0.78 .
G

4.10.3. Maximum statistical error

When the phenomenon to be analysed is of short duration, it can be difficult to
obtain a good resolution (small AF ) whilst preserving an acceptable statistical error.
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Example

Frequency (Hz)

Figure 4.33. Influence of analysis filter
width for a sample of given duration

Frequency (Hz)

Figure 4.34. Influence of analysis filter
•width for constant statistical error

Figure 4.33 shows, as an example, the PSDs of same signal duration
22.22 seconds, calculated respectively with AF equal to 4.69 Hz; 2.34 Hz and
1.17 Hz (i.e. with a statistical error equal to 0.098, 0.139 and 0.196).

We observe that, the more detailed the curve (AF small), the larger the
statistical error. Although the duration of the sample is longer than 20 s, a
resolution of the order of one Hertz can be obtained only with an error close to
20%.

A constant statistical error with different durations T and widths AF can lead to
appreciably different results. Figure 4.34 shows three calculated PSD of the same
signal all three for e = 19.6 %, with respectively:

T = 22.22 s

7 = 11.11 s

T = 5.555 s

and AF = 1.17 Hz

and AF = 2.34 Hz

and AF = 4.69 Hz

The choice of AF must thus be a compromise between the resolution and the
precision. In practice, one tries to comply with the two following rules: AF less than
a quarter of the width of the narrowest peak of the PSD, which limits the width
measurement error of the peak and its amplitude to less than 3%, and a statistical
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error less than 15% (which corresponds to a number of degrees of freedom n equal
to approximately 90). Certain applications (calculation of random transfer functions
for example) can justify a lower value of the statistical error.

Taking into account the importance of these parameters, the filter width used for
the analysis and the statistical error should always be specified on the power spectral
density curves.

4.10.4. Optimum bandwidth

A.G. Piersol [PIE 93] defines the optimum bandwidth AFop as the value of AF

minimizing the total mean square error, sum of the squares of the bias error and of
the statistical error:

e ~ 8bias + sstat

The bias error calculated from [4.80] is equal to:

Af [4.82]

Figure 4.35. Total mean square error

where Af is the width between the half-power points of the peak. Whence:
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Af
— Arc tan — -1
AF

AF

Af, AFT
[4.83]

Figure 4.35 shows the variations of bias error, statistical error and e with AF.

Error s has a minimum at AF = AFop. The optimum bandwidth AFop is thus

obtained by cancelling the derivative of E with respect to AF. This research is
carried out numerically.

Figure 4.36. Optimum bandwidth versus peak frequency and duration of the sample

The curves in Figure 4.36 show AFop versus f0, for

values of duration T.

If AF/Af < 0.4, the bias error can be approximated by:

1 fAFN 2

= 0.05 and for some

[4.84]

Then,

AF 1

9 Af4 T AF
[4.85]
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Whence, by cancelling the derivative,

9 F4 1/5

4 T
2

4/5

rl/5
[4.86]

Figure 4.37 shows the error made versus the natural frequency f0, for various
values of T.

Figure 4.37. Comparison of approximate and Figure 4.38. Comparison of the optimum
exact relations for calculation of optimum bandwidth with the standard rules

bandwidth

It can be interesting to compare the values resulting from these calculations with
the standard rules which require four points in the half-power interval (Figure 4.38).
It is noted that this rule of four points leads generally to a smaller bandwidth in
general. The method of calculation of optimum width must be used with prudence,
for it can lead to a much too large statistical error (Figure 4.39, plotted for
| = 0.05).

To confine this error to the low resonance frequencies, A.G. Piersol [PIE 93]
suggested limiting the optimum band to 2.5 Hz, which leads to the curves in
Figure 4.40.
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Figure 4.39. Statistical error obtained using Figure 4.40. Statistical error obtained using
the optimum bandwidth the optimum bandwidth limited to 2.5 Hz

By plotting the variations of Af/AFop, one can also evaluate, with respect to f0,

the number of points in Af which determines this choice of AF0_, in order to

compare this number with the four points of the empirical rule. Figures 4.41 and
4.42 show the results obtained, for several values of T, with and without limitation
of the AFopband.

Figure 4.41. Number of points in Af
resulting from choice of optimum bandwidth

Figure 4.42. Number of points in Af
resulting from the choice of optimum

bandwidth limited to 2.5 Hz
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4.11. Probability that the measured PSD lies between ± one standard deviation

We saw that the approximate relation s =
1

TAf
is acceptable as long as

8 < 0.20. In this same range, the error on the measured PSD G (or on G/G) has a
roughly Gaussian distribution [MOO 61] [PRE 56a]. Let us set s = SA to simplify

the notations. The probability that the measured PSD is false by a quantity greater
than 0 s (error in the positive sense) is [MOR 58]:

P =
1 ,da

[4.87]

If we set v = —, P takes the form:
s

P = Adv

Knowing that:

2 fx _ 2
Erf(x) = — I e-t dt [4.88]

Figure 4.43. Probability that the measured PSD lies between ± 1 standard deviation

P can be also written, to facilitate its numerical calculation (starting from the
approximate expressions given in Appendix A4):
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p = - 1-Er —
IV2,

[4.89]

The probability of a negative error is identical. The probability of an error
outside the range ± 0 s is thus equal to:

I

[4.90]

Example

6=1

e = 2
P = 68.26 %

P = 95%

4.12. Statistical error: other quantities

The statistical error related to the estimate of the mean and mean square value is,
according to the case, given by [BEN 80]:

Table 4.8. Statistical error of the mean and the mean square value

Ensemble
averages

Temporal
averages

Mean
estimation

N H

Error

^xV^

^__^_^__

Estimate of tiie
mean square

value
Error

IN
1

Calculations of the quantities defined in this chapter are carried out in practice on
samples of short duration T, subdivided into K blocks of duration AT [BEN 71]
[BEN 80], by using filters of non-zero width Af. These approximations lead to the
errors in Table 4.9.
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Table 4.9. Other statistical errors

Quantity Z Error s

Direct PSD yy

Cross PSD
Pxy(f)

Coherence Y x Wxy
Pxy(f)

Gyy(f)

Px(f)xy T A

Transfer function
Pxy(f)

P x(f)xy

These expressions can be used with an estimated value P of the correlation
coefficient instead of P (unknown); one then obtains approximate values of er,

when er is small (i.e. er < 0.20 ), which can be limited at the 95% confidence level

using:

z ( l - 2 e r ) < Z < z ( l + 28 r)

where Z is the true value of the parameter and Z its estimated value.

Figure 4.44 shows the variations of the error made during the calculation of the

transfer function Hw(f) , given by:



152 Random vibration

1/2

'xy 2 T A f

for various values of nd = T Af.

H(f) =
xy'

G x ( f )
H(f)|

H(f) = measured transfer function
H(f) = exact function [BEN 63] [GOO 57].

[4.91]

Figure 4.44. Statistical error related to the calculation of the transfer function

It is shown that, if

H(f)-H(f)
P = Prob

H(f)
< sin er and

P = l-
-v^(f)cos2e

[4.92]

where n is the number of degrees of freedom, equal to 2 T Af.
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In(l-P)
n =

In
1-vxy

[4.93]

Figure 4.45. Number of dof necessary for the Figure 4.46. Number of dof necessary for
statistical error on the transfer function to be the statistical error on the transfer function to

lower than 0.10 with probability P be lower than 0.05 with probability P

The statistical error resulting from the calculation of the autocorrelation Rx is
given by [VIN 72]:

1
A reasonable value of T for the calculation of Rv is T = — . For the cross-

AfsJ
correlation Rv:

[4.95]

TAf
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4.13. Generation of random signal of given PSD

4.13.1. Method

The method of generation of a random signal varying with time of given duration
T from a PSD of maximum frequency f,^ includes the following stages:

- calculation of the temporal step St =
*samp. ^-" ^max

- choice of the number M of points of definition of the PSD (power of two),

T
- calculation of the number of signal points: N = —,

5t

- possibly, modification of N (and thus of the duration) and/or of M in order to
respect a maximum statistical error e0 (for a future PSD calculation of the generated

M eg
signal), starting from the relation — < —, maintaining M equal to a power of two,

N 2

- calculation of the frequency interval between 2 points of the PSD Af = samp ,
2M

- for each M points of the PSD, calculation at every time t = k 8t (k = constant
integer between 1 and N) of a 'sinusoid'

- of the form: m x(t)=mxmax sin(2 n f t + cpm) ,

- of duration T,

- of frequency fm = m df (m integral such that 1 < m < M ),

- of amplitude ^2 G(fm) Af [where G(fm) is the value of the given PSD at

the frequency fm, the amplitude of a sinusoid being equal to twice its rms value],

-of random phase cpm, whose expression is a function of the specified
distribution law for the instantaneous values of the signal,

- sum of the M sinusoids at each time.
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4.13.2. Expression for phase

4.13.2.1. Gaussian law

It is shown that one can obtain a normal distribution of the signal's instantaneous
values when the phase is equal to [KNU 98]

9m = 27i^-21nr1cos(27ir2 ) I4-96!

or

' ' " [4-97]<pm =

In these expressions, rt and r2 are two random numbers obeying a rectangular
distribution in the interval [0, 1].

Definition

A random variable r has an uniform or rectangular distribution in the interval
[a, b] if its probability density obeys

1
p(r)- bll "•"•*" [4.98]

[0 for r < a or r > b

If a random variable is uniformly distributed about [0, 1], the variable
a + b

y = a + ( b - a ) r is uniformly distributed about [a, b], having a mean of and
2

b-a
standard deviation s =2 V3

4.13.2.2. Other laws

We want here to create a signal whose instantaneous values obey a given
distribution law F(x). This function being nondecreasing, the probability that
x < X is equal to [DAH 74]:

P(x < X) = P[F(x) < F(X)] [4.99]
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Let us set F(x) = r where r is a random variable uniformly distributed about
[0,1]. It then becomes:

p[F(x)<F(x)] = P[r<F(X)] [4.100]

From definition of the uniform distribution, P(r < R) = R where R is an
arbitrary number between 0 and 1, yielding P(x < X) = P[r < F(X)] = F(X). To
create a signal of distribution F(x), it is necessary thus that:

F(x) = r

The problem can also be solved by setting:

F(x) = l-r

Examples

[4.101]

[4.102]

1. Signal of exponential distribution: the distribution is defined by
(Appendix Al)

F(X) = l- -XX

From [4.102],

l-e-
Xx = l - r

yielding

I n r
X — ~~"

and

cpm = -2 TT
I n r

[4.103]

[4.104]

[4.105]

[4.106]

2. Signal with Weibull distribution: from (Appendix A.I)

\<x

1- exp
X-s

-e
X > s

0 X<8

it is shown in a similar way that we must have:

[4.107]
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(v-s)(-lnr)1/a [4.108]

[4.109]
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Chapter 5

Properties of random vibration
in the time domain

5.1. Averages

5.1.1. Mean value

The mean value of a random vibration l(i) calculated over duration T,

= -5(t)dtm

is related to the difference between the positive and negative areas ranging between
the curve e(t) and the time axis [ORE 81].

The mean m of a centered signal is zero, so this parameter cannot be used by
itself alone to correctly evaluate the severity of the excitation.

Figure 5.1. Random vibration -with non-zero mean
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The mean value is equal to the absolute value of the parallel shift of the Ot axis
necessary to cancel out this difference. A signal ^(t) of mean m, can be written:

*(t) = m + /(t) t5-2]

where £ (t) is a centered signal. This mean value is in general a static component
which can be due to the weight of the structure, to the manoeuvrings of an aircraft,
to the thrust of a missile in phase propulsion etc. In practice, one often considers this
mean to be zero.

5.1.2. Mean quadratic value; rms value

The rms value is calculated from the mean quadratic value of the instantaneous
values of the signal. The dispersion of the signal around its mean is characterized by:

= - J 2dt = - (t) dt [5.3]
0

c.2
s =

2
It is pointed out that s is the variance of the distribution of the instantaneous

values of ^(t) and that s is the standard deviation. Two signals having very different
frequency contents, corresponding to very dissimilar temporal forms, can have the
same mean quadratic value. In this expression, the rms value takes into account the
totality of the frequencies of the signal.

If the mean m is zero, the standard deviation s is equal to the rms value of the
signal

NOTE.
On the assumption of zero mean, one can however note a difference between the

standard deviation and the rms value -when the latter is calculated starting from the
power spectral density, which does not necessarily cover the -whole ofthefrequential
contents of the signal, in particular beyond 2000 Hz (value often selected as upper
limit of the analysis band). The rms value is then lower than the standard deviation.
The comparison of the two values makes it possible to evaluate the importance of the
neglected range.
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Example

Vibratory environment on an aircraft, represented by acceleration as function
of time:

1. Taxi 7. Maximum velocity at low altitude
2. Takeoff 8. Climbing turn
3. Climb 9. Deceleration
4. Cruise at high altitude 10. Landing approach
5. Maximum velocity at high altitude 11. Touchdown
6. Cruise at low altitude

Figure 5.2. Rms acceleration recorded on a aircraft during flight [KAT 65]

Figure 5.3. Rms value of vibrations measured on a satellite during launch
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It is very useful to plot the variations of the rms value against time (sliding mean
on n points), hi order to:

-choose the time intervals over which the rms value varies little: each
corresponding phase can then be characterized by a PSD,

- study the very short duration phenomena (nonstationary phenomena). The
analysis for example measure the number of times that the rms value crosses a given
threshold with respect to the amplitude of this threshold (rms value of the total
signal or of the response of a one-degree-of-freedom mechanical system of constant
Q factor, generally equal to 10, whose natural frequency varies in the useful
frequency band) [KEL 61].

The variation of the rms value with time has also been used as a monitoring tool
the correct operation of rotating machinery based on a statistical study of their
vibratory behaviour [ALL 82] [PAR 82].

5.2. Statistical properties of instantaneous values of random signal

The analysis of the statistical properties of the instantaneous values of a random
signal i(t) is based primarily on the work of S.O. Rice [RIC 44] and of S.H.
Crandall [CRA 63]. One is more particularly interested in the study of the
probability density of the instantaneous values of the signal and in that of the peaks
(positive and negative maximum amplitude).

This study results in considering simultaneously at a given time f(t) and its

derivatives J?(t) and J?(t) which respectively represent the value of the signal, its
slope and its curvature at the time t. These parameters are in particular associated
with a multidimensional normal probability density function of the form [BEN 58]:

[5.4]

for the research of the distribution law of the peak values.

5.2.1. Distribution of instantaneous values

The distribution of the instantaneous values of the parameter describing the
random phenomenon can very often be represented by a Gaussian law [MOR 75].
There can of course be particular cases where this assumption is not justified, for
example, for vibrations measured on the axle of a vehicle whose suspension has just
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compressed an elastic thrust after deflection of the dampers (non linear behaviour in
compression only).

5.2.2. Properties of derivative process

Let us consider a stationary random vibration ^(t) and its derivative J?(t),
defined by:

>(t)= lim
At-»0

4t + At)-^(t)

At

With the condition that

lim
At-»0

At) -

At
= 0

[5.5]

[5.6]

Average value of the derivative process

This is

= lim E
At->0 At

If the process is stationary,

yielding

t = 0

[5.7]

[5.8]

NOTE.
The autocorrelation R^(t) presents an absolute maximum for T = 0. One thus

has R (0 ) < 0.

= lim E
At-»0 At

[5.9]

= R'^(O) [5.10]
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The derivative of the autocorrelation function of a derivable process is:

- continuous and derivable at any point,

- even.

It is thus cancelled for t = 0, yielding

E* e = o [5.11]

There is no correlation between a stationary process £(t) and the derivative
process J?(t) (whatever the distribution law).

Mean square of the derivative

T2~+ At) - t(t)

At
= 2

(At)

[5.12]

A stationary process ^(t) is thus derivable in the mean square sense if and only if
its correlation function R ( T ) contains a continuous second derivative.

Correlation function of the process and its derivative

1. By definition [1.48], R#M = EJJ?(t) J?(t + T)]

R,,(T)= lim lO"™1' -"vt + At2)-
At, At-

R f t(t)= lim

At,->0

R- > (T)= lim
At,->0

At2 - At|) - R^(T - At]) - R^(T + At2) -

At

At,
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R»M = -—T—=-R;W [5.13]

R./T) = lim d <(t) —^1

At->0 L At

« / \ ,. \ *R / ( T ) = lim -
At->OL

R ( i )_
dR^)

dt

In the same way:

At

[5.14]

dt
[5.15]

In a more general way, if r and u are the m* derivative processes of
and n* of u(t), one has, if the successive derivatives exist,

R. m >. . ( n >=t- i ) r [5.16]

Variance of the derivative process

Since E[^J = 0 , the variance s-^ is equal to

[5.17]

[5.18]

Power spectral density of the derivative process

By definition [2.45]:
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i Q tR,(t) = S,(Q) e d Q
C *— QO *

Knowing that:

i Q) S,(Q) e' n T dQ

This yields

Q2

_oo
dQE\t2] = J SV(Q) dQ = J

I J t'_oo t w_

and of the same way [MOR 56] [NEW 75] [SVE 80]:

E[?! = J S-,(Q) dQ = J Q4 S,(Q) dQ
•'- <• --

= Q

[5.19]

[5.20]

[5.21]

[5.22]

[5.23]

[5.24]

NOTES.
The autocorrelation functions of the derivative processes oft(t) depend only on

T. The derivatives of a stationary process are stationary functions. However, the
integral of a stationary function is not necessarily stationary.

The result obtained shows the existence of a transfer function H(Q) between
l(t) and its derivatives:

S^(Q) = |H(Q)|2 S,(Q) [5.25]

S-^(Q) = |H(Q)|4 S,(n) [5.26]

where

H(Q) = i Q
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5.2.3. Number of threshold crossings per unit time

Let us consider a stationary and ergodic random vibration £(t); and p(£), the
probability density function of the instantaneous values of ^(t). Let us seek to

determine the number of times per unit time na the signal crosses a threshold chosen
a priori with a positive slope.

Let us set na the number of occasions per unit time that the signal crosses the
interval a, a + da with a positive or negative arbitrary slope, da being an very small
interval corresponding to the time increment dt. We have, on average,

n; = -*- [5-27]
2

Let us set nQ the number of occasions per unit time that the signal crosses the

threshold a = 0 with a positive slope (n^ gives an indication of the average

frequency of the signal). Let us set finally 40 the derivative of the process 40 and
b the value of 40 when i = a. Let us suppose that the time interval dt is
sufficiently small that the variation of the signals between t and t + dt is linear. To

a-40
cross the threshold a, the process must have a velocity 40 greater than

dt

The probability of crossing is related to the joint probability density p(l,l)

between t and 't . Given a threshold a, the probability that:

a<40 £a + da
, [5.28]

and

b < l(t) < b + db

is thus, in a time unit,

p(a,b) da db = PJa < f(t) < a + da, b < i?(t) < b + db] [5.29]

Setting ta the time spent in the interval da:

da
<a = - [5.30]

PI

(ta being a primarily positive quantity). The number of passages per unit tune in the

interval a, a + da for J?(t) = b is thus:



168 Random vibration

p(a, b) da db
= |b| p(a, b) da [5.31]

and the average total number of crossings of the threshold a, per unit time, for all the

possible values of <?(t) is written:

n a = f~|b |p(a,b)db=:2n;

where

f oo / . \I p / , /

[5.32]

[5.33]

This expression is sometimes called the Rice formula. The only assumption
considered is that of the stationarity. One deduces some, for a = 0,

and

n „+ fII rt II r» •?
b p(a, b) db

+ f+°°. ino no J |b|p(0,b)db

[5.34]

[5.35]

These expressions can be simplified since the signals ^(t) and l(t) are
statistically independent:

[536]

Then,

and

na = p(a)

n "

db

n0 nj p(0)

Lastly, if 7r(J?) is an even function of b,

7l(b) = 7t(-b)

[5.37]

[5.38]
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yielding

na = 2 p(a) f° b 7i(b) db [5.39]

Particular case

If the function l(t) has instantaneous values distributed according to a Gaussian

law, zero mean and variance l^ms, such that

e 2i?™ [5-40]

it comes, starting from [5.37]:

_ _ b
et-<x> b "

na = p(a)
b 2*2- » [5.41]

or snce n s even,

21 p(a) [5.42]

If the instantaneous acceleration is itself distributed according to a Gaussian law
(0, ^rms):

[5.43]

1 e
 2^- ?-J [5.44]

and [LEY 65] [LIN 67] [NEW 75] [PRE 56a] [THR 64] [VAN 75]:

a

[5.45]
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n a =n

a2

e 2<-

[5.46]

[5.47]

Figure 5.4. Probability density of instantaneous values of a random signal

Since

•rtns = f°G(n) dO = R(0)

= f°Q2 G(Q) dO = -R*(o

[5.48]

[5.49]

[5.50]

there results [DEE 71] [VAN 75]:

l

n 2 n + - 'na z na
K

fa2 G(Q) dn*
Jo(Q) dn

exp
I ^

a2 >j

. ̂ 2) /z

' crms /

[5.51]

na is the mean number of crossings of the threshold a per unit time.
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n^ is the mean number of crossings of the threshold a with positive slope and per
unit time.

5.2.4. Average frequency

Let us set [PAP 65] [PRE 56b]:

1
n0 =

J Q2 G(Q) dQ

Too

J G(Q)dQ. Jo

2 1 1 R(2)(0)

7i V R(0)

[5.52]

Depending on f, n0 becomes [BEN 58] [BOL 84] [CRA 63] [FUL 61] [HUS 56]
[LIN 67] [POW 58] [RIC 64] [SJO 61] [SWA 63]:

n 0 n + On0 - 2 n0 -2

1
f°° 9 IT"J r G(f ) df 2

£o<f)df J

[5.53]

The quantity n0 {average or expected frequency) can be regarded as the
frequency at which energy is most concentrated in the spectrum (apparent frequency
of the spectrum).

Band-limited white noise

6(f)

f2 f

Figure 5.5. PSD of a band-limited white noise
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If the PSD is defined by

G(f) = G0 for f] < f < f2

G(f) = 0 elsewhere

we have

[5.54]

[5.55]

Ideal low-pass filter

Iff, = 0,

2
V3

[5.56]

a narrow band noise

6(f)'

Figure 5.6. F5D o/a narrow band noise

Let us consider a random vibration of constant PSD G(Q) = G0 in the interval
, zero elsewhere. We have [COU 70] [NEW 75]:
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Figure 5.7. PSD of a narrow band noise

Let us set Af = 2 s . We have fj = f0 - e and f2 = f0 - s, yielding

and

[5.57]

[5.58]

[5.59]
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HO tends towards f0 when Af tends towards zero. For whatever f0, n0 is equal

to or higher than f0.

In the case of the response of a linear slightly damped one-degree-of-freedom

system, n^ will be thus in general close to the natural frequency f0 of the system.

5.2.5. Threshold level crossing curves

Threshold level crossing curves give, depending on the threshold a, the number
of crossings of this threshold with positive slope. These curves can be plotted:

- either from the time history signal by effective counting of the crossings with
positive slope over a duration T. For a given signal, the result is deterministic,

- or from the power spectral density of the vibration, by supposing that the
distribution of the instantaneous values of the signal follows a Gaussian law to zero
mean. One obtains here the expected value of the number of threshold crossings a
over the duration T [LEA 69] [RIC 64]:

[5.60]

with n^= expected frequency defined in [5.53]:
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foo 7

+2 1 f °(f> df
Ilrt =

Jo°°G(f)df

The knowledge of G(f) makes it possible to calculate n0 and ^nns, then to plot

Na as a function of the threshold value a. In practice, one generally represents a

with respect to Na, the first value of Na being higher or equal to 1. For N^ = 1,

0 = [5.61]

a0 is, on average, the strongest value of the signal observed over a duration T.

Figure 5.9. Example of threshold level crossing curve for a Gaussian signal

N;
The curve in Figure 5.9 shows the variations of with respect to ,

A -* T TN

plotted starting from the expression:
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Figure 5.10. Largest peak, on average, over a given duration

The variations of

Figure 5.10:
rms

+as function of the product n0 T are represented in

It is observed that it is possible to obtain, in very realistic situations,

combinations of n^ and T such that the ratio —— is equal to or higher than 5. For

this, it is necessary that:

+ ~ . 25/2n0 T > e

njT>2.710 5

For T = 600 s it is necessary that n+ > 447 j^z

T = 3600 s n J > 74.5 Hz

T = 4 hours n£>18 .6Hz
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h\
i

x

x

\^

4

;̂ \

-

\

:

;

19-*
8.8 1.8 2.8 3.8 4.8 5.8

a It rms

Figure 5.11. Time necessary to obtain, on Figure 5.12. Probability of crossing a given
average, a given maximum level, versus the threshold, versus the threshold value

average frequency

Figure 5.11 indicates the duration T necessary to obtain a given ratio aQ/^,

as function of n.

u+
"a

Figure 5.13. Noteworthy points on the threshold level crossings curve

For a = 0,

Nj = N£ = nj T

The probability that the signal crosses the level a with a positive slope and that

a < t < a + Aa is equal to Nj Aa/Nj £^5 .
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Figure 5.14. Values of the signal in the interval a, a + da, after crossing threshold a with
positive slope

The probability that ^(t) is higher than a is equal to:

da [5.62]

P = e Ll™ da

Knowing that the error function can be written:

J u 2 fu -T"
Erfl— = - J e 2 du

/T J V «r 0v v ^ y i TT

and that:

[5.63]

resulting in, if u =

P = e 2 du [5.64]
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This yields, after standardization:

P(u>
rms

1-Erf
rms

Figure 5.12 shows the variations of P(U >
Oand5.

for

[5.65]

ranging between

Figure 5.15. Example of threshold level crossing curve

Example

Let us consider a random acceleration defined over a duration T = 1 hr by its
PSDG(f):

G(f) = G! = 0.1 mV/Hz from 10 Hz to 50 Hz

G(f) = G2 = 0.2 mV/Hz from 50 Hz to 100 Hz

G(f) = 0 elsewhere

xLs = (50 +10) 0.1-K100 - 50) 0.2= 14 (m / s2)2
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*nns=3.74m/S2

From [5.53]:

+2 0.1 (50 -10) + 0.2 (100 -50)

3 x™

2
Hz

nj = 66.8 Hz

and [5.60]:

NT = 66.8 3600 e z 1<f = 2.42 14
a

28

Figure 5.16. Example of curve threshold level crossings

The threshold which is only exceeded once on average over the duration T has
an amplitude

a0 = 3.74^/2 In 66.8 3600 = 18.62 m/s2

These threshold level crossings curves were used to compare the severity of
several random vibrations [KAZ 70], to evaluate their damage potential or to reduce
the test duration. This method can be justified if the treated signal is the stress
applied to a part of a structure, with just one reserve, which is the non immediate
relation between the number of peaks and the number of threshold level crossings; it
is not, on the other hand, usable starting from the input signal of acceleration. The
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threshold crossings curve of the excitation x(t) is not representative of the damage
undergone by a part which responds at its natural frequency with its Q factor. In
random mode, one cannot directly associate a peak of the excitation with a peak of
the response.

NOTES.
\.All the relations of the preceding paragraphs can be applied either to the

vibration input on the specimen, or to the response of the specimen.

2. ONERA proposed, in 1961 [COU 66], a method of calculation of the PSD
G(f) of a stationary and Gaussian random signal starting from the average number
of zero level crossings, its derivative and the rms value of the signal. The process
can be extended to non Gaussian processes.

5.3. Moments

Many important statistical properties of the signal considered (excitation or
response) can be obtained directly from the power spectral density G(Q) and in
particular the moments [VAN 79].

Definition

Given a random signal ^(t), the moment of order n (close to the origin) is the
quantity:

dtn/2 = lim
1 f+T

2 T dtn/2
dt [5.66]

J

(if the derivative exists). The moment of order zero is none other than the square of
the rms value t^:

Mn =

M0 = G(f) df

The moment of order two is equal to:

Mo = [5.67]
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However, by definition,

R(t) = G(Q) cos QT dQ [5.68]

If we set:

S(i) = E[#t)£(t + T)] [5.69]

, . fw 7 d R(T) r, _„,
S(t) = I Q2 G(Q) cos QT dQ = - ' [5-70]

0 dT2

(if R exists). We have, for i = 0 .

S(T) = J°° Q2 G(Q) dn [5.71]

In the same way, if:

[5.72]

, . d4R(t) fco 4
T(T) = - — = I Q4 G(Q) cos QT

4

it becomes, for T = 0,

M = -

[5.73]

T(0) = J°° Q4 G(Q) dQ [5.74]

yielding [KOW 69]:

M2 =-R(o)= r°Q2G(Q)dQ = (27i)2 f°f2G(f)df = ^2
7ns [5.75]

G(Q)dQ = (27t)4 |°f4 G(f)df = /^ [5-76]

More generally, the n* moment can be defined as [CHA 72] [CHA 85] [DEE 71]
[PAR 64] [SHE 83] [SWA 63] [VAN 72] [VAN 75] [VAN 79]:
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Mn = J°° Qn G(Q) da = R(n)(0)
[5.77]

or

M =

(n integer) where

n j fn G(f) df

R(2n)(0) = (-!)" J Q2nG(Q) dO [5.78]

Mn are the moments of the PSD G(Q) with respect to the vertical axis f = 0.

Application

One deduces from the preceding relations [CRA 68] [CHA 72] [LEY 65]
[PAP 65] [SHE 83]:

no
1

271

1
/ Y-

M2 2

,MoJ
[5.79]

[5.80]

NOTES.
Some authors [CHA 85] [FUL 61] [KOW 69] [VAN 79] [WIR 73] [WIR 83]

define Mn by:

M n = f" f" 0(f) df [5.81]

which leads to [BEN 58] [CHA 85]:

nn =
M [5.82]

(sometimes noted Q^) [VAN 79],
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5.4. Average frequency of PSD defined by straight line segments

5.4.1. Linear-linear scales

fST

with

where

MO= r o(f)df
I?

G(f) = af + b

'2 =

M = (2n

2 f2 G(f) df

[5.83]

[5.84]

Figure 5.17. PSD defined by a straight line segment on linear axes
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This yields, after having replaced a and b by their value according to fj, f2, Gj
and G2 [BEN 62],

tf-fj1

+" 4 3 [5.85]no - fj - c
- fl

2) + (f2G, - f,G2) (f2 - f,)

Particular cases

= G2 = G0 = constant

fl + f l f 2 + f2 [5.86]
f o - f

If fj = 0 and if G = GQ until f2, there results:

nf = -*- [5.87]

i.e.:

nj = 0.577 f2 [5.88]

£
If the PSD is a narrow band noise centered around f0, we can set f { = f0 — and

2

fj = f0 + - [BEN 62], yielding:
2

n:2 = f. + — [5-89]
12

If 8 - > 0 ,

no -^
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5.4.2. Linear-logarithmic scales

In this case, the PSD is represented by:

lnG = a f + b [5.90]

M 0 = 2 e d f = e [5.91]

f 2 e a f + b df

After integration by parts, it becomes, if a * 0,

af+b
M2 = (2*)2 i-y- (a2 f2 -2 a f + 2) [5-92]

yielding

af,+b/ 2 f2 ~ ~ ~\ af.+b/ 2 f2 ~ f ~
u2 e 2 la f2 - 2 a f2 + 2! - e ' la fj -2 a ft + 2+<fc [5.93]
0 2 / af ,+b af .+blla 2 ~ 1/ af ,+b af .+b\le 2 -e ' I

the constants a and b being calculated starting from the co-ordinates of the points fls

Gj, £> and G->.I' 2, £

Particular case

G2 = Gl5

(a = 0)

[5.94]

[5-95]

and

+2 _ f2 ~fi _ fi + f 1 f2 + f2 [5 96]
n° ~ 3 ( f 2 - f i ) ~ 3
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5.4.3. Logarithmic-linear scales

G(f) = a l n f + b

M,0= f2 ( a l n f + b)df

a ( f t a f ) J | + ( f 2 - f 1 ) ( b - a )

(2rc)2 P2 f 2 ( a l n f + b)dfJf, v '

a | lnf 2 - - a Infi -- +b

f3 a In f 2 — + b -fl3 a f l n f _ r
1 3yH]

a (f2 In f2 - fi In fi)+ (f2 - fj)(b - a)

Particular case

Gj = G2 = G0 = constant

In this case, a = 0 and b = G0, yielding:

and

f3 f3 f2

+2 *2 ~ M Mn0 =

[5.97]

[5.98]

[5.99]

[5.100]

[5.101]
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5.4.4. Logarithmic-logarithmic scales

G(f) = G, -

the constant b being such that b =
In G2/Gj

I n f f

Mn= r G — df =
M

( i fb*- l ) :

M2 = (27t)2 JJ2 f2 G(f) df = (27t)2 ^±

(if b* -3). It yields:

n =
° "b + 3f b + 1 - f b + 1

Ifb = -l:

and

In —

f 2 _ f 2

M2 = (27i)2 G! f, L

n =
r2-f2

2 In f2/f,

[5.102]

[5.103]

[5.104]
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Ifb = -3:

f \
1 1

VM

M2 = (27t)2 G! ff In —

+2 ,2 f2
 2 ta f2/fl

O = 2 fl f2 f2 f2
r ~r

[5.105]

NOTE.
If the PSD is made up o/n straight line segments, the average frequency n0 is

obtained from:

[5.106]n+2 1 1=1no =7~-r~fT

5.5. Fourth moment of PSD defined by straight line segments

The interest of this parameter lies in its participation, with M0 and M2 already

studied, in the calculation of n and r.

5.5.1. Linear-linear scales

By definition.

MA=(2nr I rG(f)df

G(f) = a f+ b

yielding:
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MA = UTI

G2 — GI f2Gj - fjG2
where a = and b =

f f f f*2 ~ M h ~ M

Particular cases

1. Gj = G2 = G0 =constant, i.e. a = 0 and b = G0:

M4=(27t)4

2. fj = 0

4Fa 6 + b
4 L6 2 5

3. = 0 and G0 = constant

[5.107]

[5.108]

[5.109]

[5.110]

5.5.2. Linear-logarithmic scales

a =

b =

In G2/G,

f 2 - f L

f2 In Gj - fj In G2

U = f G ( f ) d f =(2*>4 jf f 4 e a f + b df [5.111]

After several integrations by parts, we obtain, if a * 0,
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M4 =
(2*)' af2+b 12 K 24 f, 24

a a a a

af,+b—p '
4 4ff 12 ff 24 f, 24

fj + —y—
a a

M [5.112]

Particular cases

1. Gj = G2 = G0 =constant Then, a = 0 and b = In G0

f5 f5
~ 1 2 ~ *

2. f = 0 and a = 0

12 ,24 241 24
e - | I 2— f 2

J + — f|-— f 2 + — |-
a a a a y a

and, if Gt = G2 = G0

M4 = (2;t)4 GO —

[5.113]

[5-114]

[5.115]

5.5.3. Logarithmic-linear scales

G = aln f + b

4 = (27r)4 J 2 f4 ( a l n f + b ) d f
*i

M4 = (2n)4 a In f> - — a taf!-- +b

where

GO — Gi Go
a = ~ L and b = -^-

Inf

In f2/f,

[5.116]
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Particular cases

= G2 = G^ = constant, i.e. a = 0 and b = G(

M 4 =(27r) 4 -

Iff, =0:

M4 =

f112 -

I G0

[5.117]

i

5.5.4. Logarithmic-logarithmic scales

yielding, if b * -5,

Gi ff5-^5

M4 = (2*)T-£J —
ff b + 5

or

M4 =
(271)

Ifb = -5:

[5.118]

M4 = (27t)1 ff
f

b —
[5.119]

Particular case

If Gj = G2 = GJQ = constant and if b * -5
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b + 5 M) [5.120]

NOTE.
If the PSD is made up ofn horizontal segments, the value 0/"M4 is obtained by

calculating the sum:

[5.121]

5.6. Generalization; moment of order n

In a more general way, the moment Mn is given, depending on the case, by the
following relations.

5.6.1. Linear-linear scales

The order n being positive or zero,

n+1
IV!

5.6.2. Lin

M

-e

n - \^t 1 \12 M 1 + \12 h ]
Ln + 2v ' n + P '_

ear-logarithmic scales

(^nlcaf,+b[ n n , n(n - 1) 2 n
n ^Ttj 1C t2 I2 + 2 I2 "+

[ L a a a

af.+bLn n.n-I n(n ~ ]) n-2
 n!]l

|rl M + 2
 rl ""+ n !

L a a a J J

[5.122]

[5.123]

5.6.3. Logarithmic-linear scales

\ ^n+l

Mn = (2;t)n m f , -
n + l

d l n f j
V n + l

+ b [5.124]

( n > 0 )
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5.6.4. Logarithmic-logarithmic scales

^ Mi+1 ^ r-n+1 ^ r.b+n+1 ^
. .„ U') to — Oi it . ._ (ji to - Oi it

Mn = (27i)ln -̂ -̂  - — — = (27i)n -g- - - }— - [5.125]
b + n + 1 fj b + n + 1

Ifb = -(n + l):

M n=(2j n f 1
n + 1G 1 ln-^- [5.126]



Chapter 6

Probability distribution of maxima
of random vibration

6.1. Probability density of maxima

It can be useful, in particular for calculations of damage by fatigue, to know a
vibration's average number of peaks per unit time, occurring between two close
levels a and a + da as well as the average total number of peaks per unit time.

NOTE.
One is interested here in the maxima of the curve which can be positive or

negative (Figure 6.1).

Figure 6.1. Positive and negative peaks of a random signal
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For a fatigue Analysis, it -would of course be necessary to also count the minima.
One can acknowledge that the average number of minima per unit time of a
Gaussian random signal is equal to the average number the maxima per unit time,
the distributions of the minima and maxima being symmetrical [CAR 68].

A maximum occurs when the velocity (derivative of the signal) cancels out with
negative acceleration (second derivative of signal).

This remark leads one to think that the joint probability density between the

processes ^(t), J?(t) and £(t) can be used to describe the maxima of t(t}. This

supposes that ^(t)l is derivable twice.

S.O. Rice [RIC 39] [RIC 44] showed that, if p(a, b, c) is the probability density

so that ^(t), i?(t) and £(t) respectively lie between a and a + da, b and b + db, c
and c + dc, a maxiimum being defined by a zero derivative and a negative curvature,
the average number the maxima located between levels a and a + da in the time
interval t, t + dt (Window a, a + da, t, t + dt) is:

CO
= -dt c p(a, 0, c) dc [6.1]

where, for a Gausldan signal as well as for its first and second derivatives [CRA 67]
[KOW63]:

p(a, 0, c) i (27i)~3/2 |M ~1/2 exp
a" + n33 c + 2 u13 a c

2|M| J
[6.2]

with

M =

-t2
^

2

-t rms

[6.3]

Let us recall trjat:

The determinatnt JMJ is written:
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M = £2 (t2 "t2 -i4 \=|m| crms V-rms crms crms;

|M = M 0 M 2 M 4 ( l - r 2 )

2
rms "t2 (l-r2)^rms v * /

if

I2
^ rms M

[6.4]

[6.5]

[6.6]

R is an important parameter named irregularity factor. |M| is always positive.
The cofactors y.i\ are equal, respectively to:

^13 = ^rms = M2

^33 = -ftns t2m* = M0 M2

yielding

va = -da dt f (2s)-3/2

, /M 0 M 2 M 4 ( l - r 2 )

exp
2 2 2M 4 a + M 0 M 2 c + 2 M 2 a c

2 M0 M 2 M 4 ( l - r 2 )

da dt (27i)"3/2 ~2M 0 ( l - r 2 )

dc

V

'0

-oc

It) M2

c exp

M 4 (

2

l-r2)

r \
1 | 2 2 M2 ac 1
/ 2\ C +

M 4 ( l - r 2 ) t M0 J_
dc

[6.7]

[6.8]

[6.9]

[6.10]
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2M0(l-r2)

c exp"] —
2 M, II -r2)

c + —-a
v Mo

M
dc

dli dt
v, = -

2 M 0 ( l - r 2 ) 2 M 0 ( l - r 2 )

M4 ( l - r 2 )

M2 1c + a expj
V M0 J

M;

Mo J

2 M4 | l -
dc-

M2 a fo
J exPl

M

M,
c + —-a.

2 1VU1-
dc

M

Let us set v =
2 M,

and w = Vv . It becomes:

v. = -
^ M 0 M 2 M 4 ( l - r 2 )

e 2 M < ] M 4
a 2 r 2 /2M 0 ( l - r 2 ) _v

e dv
—00

12 a/M0

0

After integration![BEN 58] [RIC 64],

(27i)~3/i da dt

dw

v =
M0 IIV12
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+\fir(2

Mff2

'A/MO"

a2

2M f te ° 1 + Erf
a r

i.e.

where

va = «n q(a) da dtra "p

(average number of maxima per second), n^can be also written:

R(4)(0)

[6-11]

[6.12]

[6.13]

[6.14]

NOTE.
va can be written in the form [RIC 64]:

-R(2)(0)

2R(0))/R^4 )(0)R

J2 k R(0)
r~ (2) ^

(0)

( (2[RV

2 k

a

2R(0)

) \2ll

:R(0)

")

If [ V2kR(0)J_

[([6.15]

where

= R(0)R(4)(0)-[R(2)(0)]" [6.16]

The probability density of maxima per unit time of a Gaussian signal whose
amplitude lies between a and a + da is thus [BRO 63] [CAR 56] [LEL 73] [LIN 72]:
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q(a) =
XI7 r a

1 + Erf
a r

[6.17]

{ 2 fx _X2
where Erf(x) = —p J e dX (Appendix A4.1). The probability so that a

•Jit °
maximum taken ramdomly is, per unit time, contained in the interval a, a + da is

q(a)da . If we set m = , it becomes:

va I a 1 da
— = q(a) da = q(u) du = d
dt VrmsJ^rms

[6.18]

yielding [BER 77] [CHA 85] [COU 70] [KOW 63] [LEL 73] [LIN 67] [RAV 70]
[SCH 63]:

^-r2 "

& 6

U

2(i-r<) r

2

u2

u e 2

r—

1 + Erf
r u

Ij'MJj
[6.19]

The statistical distribution of the minima follows the same law. The probabilty
density q(u) is thus the weighted sum of a Gaussian law and Rayleigh's law, with
coefficients function of parameter r. This expression can be written in various more
or less practical foims according to its application. Since:

where

foo _X2 fX

I e A dl = -Jn = 2 JJ-oo J0

2 r°° -x2
Erf(x) = l--—J e* dA, [6.20]

it becomes:

2 -

q(u) = —±r- e
21-r2

u e
1 foo

- — r J _ r u [6.21]
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Setting A, = — in this relation, we obtain [BEN 61b] [BEN 64] [HIL 70]
V2

[HUS 56] [PER 74]:

2 -

q( x V I - r 2(l-r2)
u) = e 7 + r u 1- foo

J ru e 2 dt [6.22]

One also finds the equivalent expression [BAR 78] [CAR 56] [CLO 75]
[CRA 68] [DAY 64] [KAC 76] [KOW 69] [KRE 83] [UDW 73]:

2 -

q(u) = —-——e

where

[6.23]

t

<**)=-£=/*' 2 dt

r u
V =

q(u) = Vl-r 2 e 2 r u
/ -V27i I - r

u2

ri/,,\ A/i - 2 2mu^ — v i ~ r e

v2

e 2

— + v O(v)
V27i

[6.24]

or
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q(u) = Vl- r 2 e 2
d<E(v)

L dv

q(u) = Vl- [6.25]

dv

Particular cases

1. Let us suppose that the parameter r is equal to 1, q(u)then becomes, starting
from [6.19], knowiiitg that Erf(co) = 1,

q(u) = ue 2 [6.26]

which is the probability density of Rayleigh's law of standard deviation equal to 1.
a

Since u = - anid:

q(a) da = q^u) du =
a da

[6.27]

it becomes

q(a)=*)= 4- .' [6.28]

2.1fr = 0,

q(u) = -—re 2

V27T

[6-29]

(probability density of a normal ie Gaussian law). There exists in this (theoretical)
case an infinite number of local maxima between two zero crossings with positive
slope.

We will reconsider these particular cases.
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6.2. Expected number of maxima per unit time

It was seen that the average number of maxima per second (frequency of
maxima) can be written [6.13]:

np = J_ PL
27i WM2

Taking into account the preceding definitions, the expected maxima frequency is
also equal to [CRA 67] [HUS 56] [LIN 67] [PAP 65] [PRE 56a] [RJC 64] [SJO 61]:

1 R<4)(0) rms [6.30]

nP =
271

:—oo
G(Q)dQ

rms

£

2

f+oo 2

J n2 G(Q) dQ

r G(f) df
f+oo 2
I f 2 G ( f ) d f

[6.31]

In the case of a narrow band noise such as that of Figure 5.6, we have:

1 / 1
[6.32]

i.e.

co0
[6'331

n_ is thus approximately equal to n0: there is approximately 1 peak per zero

crossing; the signal resembles a sinusoid with modulated amplitude.

NOTE.
Using the definition of expression [5.81],

[CHA 85] :

would be written [BEN 58]

„+ M4
"p =
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Starting from the number of maxima va lying between a and a + da in the time
interval t, t -t- dt, olie can calculate, by integration between ^ and t2 for time, and
between - oo and + o> for the levels, the average total number of maxima between tj
and t2:

= — r— q(a)dadt

Per second,

1 fjvl. f-t
n ;=— M-J q(a)da

27i y M2
r-co

i FM,nP =
i y M2

and, between tj and t2,

V dt,

[6.34]

[6.35]

Application to the case of a noise with constant PSD between two frequencies

Let us consider a vibratory signal l(t) whose PSD is constant and equal to G0

between two frequencies fj and f2 (and zero elsewhere) [COU 70]. We have:
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This yields

1
+np-

1 f ̂  _ f 5 2J I2 Ij ^

_5f2 3 -d

[6.36]

Iff

[6.37]

Af Af
If £ = f0 and f2 = fo H (narrow band noise Af small).

2 2

Af

2;

f \2 f

+^ ,2
np = fO

1 + 2
Af

L 2 f 0 J

1

5

Af

l2f(J

Af

[6.38]

IfAf

np Af
Figure 6.2 shows the variations of— versus —.

fo fo
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Fligure 6.2. /ivera^e number of maxima per second of a
narrow band noise versus its width

6.3. Average time interval between two successive maxima

This average time is calculated directly starting from rip [COU 70]:

[6.39]

In the case of a narrow band noise, centered on frequency f0:

xm -> — when Af -> 0.
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Figure 6.3. Average time interval between two successive maxima of a
narrow band noise versus its width

6.4. Average correlation between two successive maxima

This correlation coefficient [p(tm)] is obtained by replacing T by Tm in equation

[2.70] previously established [COU 70]. If we set:

Afg

it becomes:

Figure 6.4 shows the variations of jpj versus 5.

The correlation coefficient does not exceed 0.2 when 8 is greater than 0.4.

We can thus consider the amplitudes of two successive maxima of a wide-band
process as independent random variables [COU 70].
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Figure 6.4. Average correlation between two successive maxima of a
narrow band noise versus its bandwidth

6.5. Properties of the irregularity factor

6.5.1. Variation interval

The irregularity factor:

iLs _ -R(2)(o)

can vary in the interval [0,1]. We have indeed [PRE 56b]:

Mo JV G(Q) dQ
"0

According to Sch ware's inequality,

J Q2 G(iQ) dn < J J G(Q) dD J J°° Q4 G(Q) dQ

i.e.

[6.42]

[6.43]

Since M2 ^ 0, it becomes:
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0<
M-

<1 [6.44]

Another definition

The irregularity factor r can also be defined like the ratio of the average number
of zero crossings per unit time with positive slope to the average number of positive
and negative maxima (or minima) per unit time. Indeed,

M
r = [6.45]

Example

Let us consider the sample of acceleration signal as a function of time
represented in Figure 6.5 (with few peaks to facilitate calculations).

Figure 6.5. Example of peaks of a random signal

The number of maxima in the considered time interval At is equal to 8, the
number of zero-crossing with positive slope to 4 yielding:

The parameter r is a measure of the width of the noise:

- for a broad band process, the number of maxima is much higher than the
number of zeros. This case corresponds to the limiting case where r = 0. The
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maxima occur above or below the zero line with an equal probability [CAR 68]. We
saw that the probability density of the peaks then tends towards that of a Gaussian
law [6.29]:

:-e 2q(u) =

- when the number of passages through zero is equal to the number of peaks, r is
equal to 1 and the signal appears as a sinusoidal wave, of about constant frequency
and slowly modulated amplitude passing successively through a zero, one peak
(positive or negative), a zero, and so on. We are dealing with what is called a
narrow band signal, obtained in response to a narrow rectangular filter or in
response of a one-degree-of-freedom system of rather high Q factor (higher than 10
for example).

Figure 6.6. Narrow band signal

All the maxima are positive and the minima negative. For this value of r, q(u)
tends towards Rayleigh's law [6.26]:

q(u) = u e 2

The value of the parameter r depends on the PSD of the noise via n0 and n_ (or

the moments M0, M2 and M4). Figure 6.7 shows the variations of q(u) for r
varying from 0 to 1 per step Ar = 0.15 .
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Figure 6.7. Probability density function of peaks for various values ofr

Example

The probability that u0 < u < u0 + Au is defined by:

nu K+AU
— =J q(u)du
nR -o

where nR is the total number of occurrences.

For example, the probability that a peak exceeds the rms value is approximately
60.65%. the probability of exceeding 3 times the rms value is only approximately
1.11%[CLY64].

NOTES.
1. Some authors prefer to use the parameter k = 1/r [SCH 63] instead of r.

Others, more numerous, prefer the quantity [CAR 56] [KRE 83]:

[6.46]

(sometimes noted z) whose properties are similar:

- since r varies between 0 and 1, q lies between 0 and 1,
— q is close to 0 for a band narrow process and close to 1 for a wide-band

process,
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- q = 0 for a pure sinusoid with random phase [UDW 73].

One should not confuse this parameter q with the quantity

r.m.s. value of the slope of the envelope of the process
q = - : - ? often noted using the

r. m.s. value of the slope of the process
same letter; this spectral parameter also varies between 0 and 1 (according to the
Schwartz inequality) and is function of the form of the PSD [VAN 70] [VAN 72]
[VAN 75] [VAN 79]. It is shown that it is equal to the ratio of the rms value of the
envelope of the signal to that of the slope of the signal itself. To avoid any confusion,
it will hereafter be noted qg (Volume 5).

2. The parameter r depends on the form of the PSD and there is only one
probability density of maxima for a given r. But PSD of different forms can have the
same r.

3. A measuring instrument for the parameter r f"R meter") has been developed
by the Bruel andKjaer Company [CAR 68] .

6.5.2. Calculation of Irregularity factor for band-limited white noise

The following definition can be used:

r2_ ™t

M 0 M 4

-f [6-47]

M2 = (2 nf ]2 G f2 df = (2 n) G L [6-48]Jf, 3

M4 = (2 n)4 Jf
f2 G f4 df = (2 n)4 G f-^- [6-49]

yielding

. 5 (rf-^f
[6.50]
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i.e., if h = —,

V5
If f2 -> fj, h -> 1 and r -» 1. If f2 -» oo, h -» oo and r -> —.

When the bandwidth tends towards the infinite, the parameter r tends towards

— = 0.7454 . This is also true if ft -> 0 whatever value f2 [PRE 56b].

The limiting case r = 0 can be obtained only if the number of peaks between two
zero-crossings is very large, infinite at the limit. That is for example the case for a
composite signal made up of the sum of a harmonic process of low frequency f2 and
of a band-limited process at very high frequency and of low amplitude compared
with the harmonic movement.
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L.P. Pook [POO 76] uses as an analogy the rectangular filter - a one-degree-of-
f0

freedom mechanical filter in which Af = — = 2 £ f0 to demonstrate, by considering
Q

that the band-limited PSD is the response of the system (f0, Q) to a white noise, that:

r = 
[6.52]

8 90

«_

6 75

8.78
0.

Figure 6.9. Irregularity factor of band-limited-white noise versus damping factor

It is noted that r -> 1 if £ -» 0.

NOTE.
77ze parameter i of a narrow band noise centered on frequency f0, whose PSD

has a width Af, is written, from the above expressions [COU 70] [RUD 75]:
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r =
no

1
1 + -

3

Af

[6.53]

1 + 2
f VAf 1

+-
Af

4

6.5.3. Calculation of irregularity factor for noise of form G = Const, f

Figure 6.10. PSD of a noise defined by a straight line segment in logarithmic scales

The moments are expressed

[6.54]

b+3

M2 = (2 Tif f{ G! In-^

;f

if b = -3

[6.55]
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G, b+5
2

M4=(27i)4 ff G! I n - -

-f!b+5) i f b* -5

if b = -5

[6.56]

Case: -l, b * -3, b * -5

Let us set h = -- . Then:

2 _ (hb+3-l)

(b + 3)2 (hb + I- l)(hb + 5- l)
[6.57]

The curves of Figures 6.11 and 6.12 show the variations of r(h) for various
values of b (b < 0 and b > 0).

Figure 6.11. Irregularity factor versus h, for Figure 6.12. Irregularity factor versus h, for
various values of the negative exponent b various values of the positive exponent b

For b < 0, we note (Figure 6.11) that, when b varies from 0 to - 25, the curve,
always issuing from the point r = 1 for h = 1 goes down to b = -3, then rises; the
curves for b = -2 and b = -4 are thus superimposed, just as those for b = -1 and
b = -5. This behaviour can be highlighted in a more detailed way while plotting, for
given h, the variations of r with respect to b (Figure 6.13) [BRO 63].
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Figure 6.13. Irregularity factor versus the exponent b

We observe, moreover, that, for b = 0, the curve r(h) tends, for large h, towards

r0 = — = 0.7454. All occurs then as if f, were zero (signal filtered by a low-pass
3

filter).

Case: b = -1

MA = f, G, In —

yielding

h2-!
r = [6.58]



218 Random vibration

Case: b = -3

i
/ \

1 1

M2 = (2 TC) ' fj3 Gt In —

2 h I n h
r =

h2-!

This curve gives., for given h, the lowest value of r.

[6.59]

Case: b = -5

M0 =
/ \

1 1

M2 = -(2 7t)

/ \
1 1

4 r-5 ~ , f2M4 = (2 n) ff G! In

r = [6.60]

6.5.4. Study: variations of irregularity factor for two narrow band signals

Let us set Af = f2 - fj in the case of a single narrow band noise. The expressions
[6.47], [6.48] and [6.49] can be approximated by supposing that Af being small, the
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f l + f 2frequencies f,and f2 are close to the central frequency of the band f0 = . We
2

have then:

M0 = G Af

and

M2 « (2 7i)2 G Af

M4 * (2 7i)4 G Af

Now let us apply the same process to a two narrow bands noise whose central
frequencies and widths are respectively equal to f0, Af0 and f], Afj.

B(f)

Bl

Figure 6.14. Random noise composed of two narrow bands

With the same procedure, the factor r obtained is roughly given by [BRO 63]:

\2

2r —
( 2 7 r ) 4 ( A f 0 f 0

2 G 0 + A f 1 f 1
2 G 1 ) ^

(Af0 G0 + Af, Gj) (2 7t)4 (Af0 f0
4 G0 + Afj f,4 Gj

'
f Afl1 1 _1_ *i1^

Af, f2

Af0 f0
2

\
GI

G0>

f
1 +

V

G!

GO
Af, i

Af0 f

4 ^

b GoJ

[6.61]
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fl Afl GlFigures 6.15 and 6.16 show the variations of r with — and of . It IS
Af0 G0

observed that if — = 1, r is equal to 1 for whatever
Af0 G0

Figure 6.15. Irregularity factor of a two
narrow band noise

Figure 6.16. Irregularity factor of a two
narrow band noise

These results can be useful to interpret the response of a two-degrees-of-freedom
linear system to a white noise, each of the two peaks of the PSD response being able

to be compared to a rectangle of amplitude equal to Qj times the PSD of the
n ffl

excitation, and of width At = — — [BRO 63].
2 Q

6.6. Error related to the use of Rayleigh's law instead of complete probability
density function

This error can be evaluated by plotting, for various values of r, variations of the

ratio [BRO 63]:

q(u)

P r(u)

where q(u) is given by [6.19] and where p r(u) is the probability density from
Rayleigh's law (Figure 6.17):
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p r(u) = u e 2

When u becomes large, these curves tend towards a limit equal to r. This result
can be easily shown from the above ratio, which can be written:

q(u) \ l - r e

p r(u) fin u

' r

2
1+Erf

r u

v \ ~r /

[6.62]

Figure 6.17. Error related to the approximation of the
peak distribution by Rayleigh 's law

It is verified that, when u becomes large,

these curves that:

- this ratio is closer to 1 the larger is r,

q(u)

Pr(u)
-> r. One notes in addition from

- the greatest maxima tend to obey a law close to Rayleigh's, the difference being
related to the value of r (which characterizes the number of maxima which occur in
alternating between two zero-crossings).
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6.7. Peak distribution function

6.7.1. General case

From the probability density q(u), one can calculate by integration the
probability that a peak (maximum) randomly selected among all the maxima of a
random process be higher than a given value (per unit time) [CAR 56] [LEY 65]:

Q (u) = J°° q(u) du = r e 1-
r u [6.63]

where

P(XO) is the probability that the normal random variable x exceeds a given

threshold x0. If u-»oo, P(XO) -> 1 and Qp(u) -> 0. Figure 6.18 shows the

variations of QP(u) for r = 0; 0.25; 0.5; 0.75 and 1.

Figure 6.18. Probability that apeak is higher than a given value u

NOTES.
1. The distribution function of the peaks is obtained by calculating 1 - Qp(u).

2. The function Qp(u) can also be -written in several forms.
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Knowing that:

A =
1 1 0 2e L

1 1 fXoA/2 _x>
= -—— I e

tf*ere results [HEA 56] [KOW 63]:

j _

Q (u) = - i l -Erf)
2

+ — e
2

1 + Erf

or

QD(u) = - Erfc Erf

r u

r u

[6.64]

[6.65]

This form is most convenient to use, the error Junction Erf being able to be
approximated by a series expansion with very high precision (cf. Appendix A4.1).
One also sometimes encounters the following expression:

Qn(u) = l- if

rr~ J ^

2

2 71

3. For /arge u [HEA 56],

_^_
Q p (u )*re 2 .

fu/^e-
" -^

[6.66]

yielding the average amplitude of the maximum (or minimum):
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171 [6.67]
2

6.7.2. Particular case of narrow band Gaussian process

For a narrow band Gaussian process (r = 1), we saw that [6.28]:

/ \ a 2 f2

q(aj= -^— e ""*
"rms

The probability so that a maximum is greater than a given threshold a is then:

a2

Q (a)=e~~2~7L [6.68]

It is observed that, in this case [5.38],

yielding

d[p(a)]/da
q(a) = — [6.69]

p(0)

These two last relationships suppose that the functions f.(i) and J?(t) are
independent. If this is not the case, in particular if p(/)is not Gaussian, J.S. Bendat
[BEN 64] notes that these relationships nonetheless give acceptable results in the
majority of practical cases.

NOTE.
The relationship [6.28] can also be established as follows [CRA 63] [FUL 61]

[POW 58]. We showed that the number of threshold level crossings -with positive

slope, per unit time, na is, for a Gaussian stationary noise [5.47]:

•where
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_n0 = —
271

The average number of maxima per unit time between two neighbouring levels a
and a + da must be equal, for a narrow band process, to:

_
na ~ na+da ~

da
da

yielding, by definition of q(a),

nD q(a) da = - — - da
da

The signal being assumed narrow band, rip = rig. This yields

1 dn+
q(a) = —-

da

and

<•)=

/f w shown that the calculation of the number of peaks from the number of

threshold crossings using the difference na - na+da is correct only for one perfectly
narrow band process [LAL 92]. In the general case, this method can lead to errors.

Figure 6.19. Threshold crossings of a narrow Figure 6.20. Threshold crossings of a wide-
band noise band noise
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Particular case -where f} -> 0

We saw that, for a band-limited noise, r when fj -» 0. Figures 6.21 and
-X

6.22 respectively show the variations of the density q(u) and of

P(a < u tms) = 1 - Qp(u) versus u, for r = —.

Figure 6.21. Peak probability density of a Figure 6.22. Peaks distribution function of
band-limited noise with zero initial a band-limited noise with zero initial

frequency frequency

6.8. Mean number of maxima greater than given threshold (by unit time)

The mean number of maxima which, per unit time, exceeds a given level
a = u .^5 is equal to:

Ma = np Qp(u> [6.70]

i u I ur
If a is large and positive, the functions P , and P •,

zero; yielding:

Qp * r e"

f l - r f l - r
tend towards

[6-71]

and
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Ma * np r e [6.72]

noi.e. [RAC 69], since r = -J,
np

[6.73]

This expression gives acceptable results for u>2 [PRE 56b]. For u < 2 , it
results in underestimating the number of maxima. To evaluate this error, we have

exact value
plotted in Figure 6.23 variations of the ratio of M0:

approximate value

P QpOO Qp(») e"2/2

- "V2
'

with respect to u, for various values of r. This ratio is equal to 1 when r = 1 (narrow
band process).

Figure 6.23. Error related to the use of the approximate expression of the average
number of maxima greater than a given threshold

-V/2
« r e '

— 2A>
e u ' (same result as for large a).This yields Qp(u) * r e " '* and Ma «

In these two particular cases, the average number per second of the maxima located
above a threshold a is thus equal to the average number of times per second which
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€(t) crosses the threshold a with a positive slope; this equivalent to saying that there
is only one maximum between two successive threshold crossings (with positive
slope). For a narrow band noise, one thus has:

Ma = n! QD(a)

[6.74]

NOTE.

, 4 - 7 /
The expression [5.47] (n& = HQ e ""*) is an asymptotic expression for large a

[PRE 56b]. The average frequency n0 =
1 Q2 G(Q) dQ

is independent
27C

V "0
of noise intensity and depends only on the form of the PSD. In logarithmic scales,
[5.47] becomes:

In na = In HQ

In na iy thus a linear function of a , the corresponding straight line having a slope

~—. One often observes this property in practice. Sometimes however, the

curve (in na, a 1 resembles that in Figure 6.24. It is in particular the case for

turbulence phenomena. One then carries out a combination of Gaussian processes
[PRE 56b] -when calculating:

k̂

^ Pi n+(a) [6.75]

where Pi is a coefficient characterizing the contribution brought by the P

component and naj is the number of crossings per second for this f1 component. If it

is supposed that the shape of the atmospheric turbulence spectrum is invariant and

that only the intensity varies, n0 is constant. A few components then often suffice to
representing the curve correctly.
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Figure 6.24. Decomposition of the number of threshold crossings
into Gaussian components

One can for example proceed according to the following (arbitrary) steps:

-plot the tangent at the tail of the observed distribution ©;

- plot the straight line (D starting from the point of the straight line 1 which
underestimates the distribution observed by a factor 2, and tangent to the higher
part of the distribution;

—plot straight line ® from @ in the same way.

The sum of these three lines gives a good enough approximation of the initial
curve. The slopes of these lines allow the calculation of the squares of the rms
values of each component. The coefficients Pj are obtained from:

Mi(a) = P1nJe [6.76]

for each component. Each term Mj can be evaluated directly by reading the
ordinate at the beginning of each line (for a = Q), yielding

[6.77]
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6.9. Mean number of maxima above given threshold between two times

If a is the threshold, and tj and t2 the two times, this number is given by
[CRA 67] [PAP 65]:

[6.78]

6.10. Mean time interval between two successive maxima

Let T be the duration of the sample. The average number of positive maxima
which exceeds the level a in time T is:

M a T=njQ(a )T

and the average time between positive peaks above a is:

1
a Ma

1

np +Q(a)

For a narrow band noise,

1 1

M
T =1a

1

n Q ( a ) n Q(a )

[6.79]

[6.80]

or

Ta =

M

M2

[6.81]

[6.82]
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6.11. Mean number of maxima above given level reached by signal excursion
above this threshold

noThe parameter r = —— makes it possible to compare the number of zero-

crossings and the number of peaks of the signal. Another interesting parameter can
be the ratio Nm of the mean number, per unit time, of maxima which occur above a
level a0 to the mean number, per unit time, of crossings of the same level a0 with
positive slope [CRA 68].

The mean number, per unit time, of maxima which occur above a level a0 is
equal to:

Ma = np q(u) du [6.83]
0 uo

where u0 = —— and q(u) is given by [6.19]. The mean number, per unit time, of
*rms

crossings of the level a0 with positive slope is [5.47]:

+ + 2na = n0 e

This yields

M

[6.84]

[6.85]

Figure 6.25 shows the variations of Nm versus u0, for various values of r.

It is noted that Nm is large for small u0 and r: there are several peaks of
amplitude greater than u0 for only one crossing of this u0 threshold.
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Figure 6.25. Average number of maxima above a given level through excursion
of the signal above this threshold

For large u0, Nm decreases quickly and tends towards unity for whatever r. In
this case, there is on average only one peak per level crossing. During a time interval
tj -10, the average number of maxima which exceed level a is:

[6.86]

and seek the rms valueLet us replace the rms value lrms by CTms

another random vibration which has the same number n_ of peaks so that, over time

t3 - 12 = tj - 10, we have [BEN 61b] [BEN 64]:

[6.87]

It is thus necessary that:

[6.88]
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If the two vibrations follow each other, applied successively over tj -10 and
t2 -tj, the equivalent stationary noise of rms value ^5 applied over:

which has the same number of maxima np exceeding the threshold a as the two

vibrations lms and £ms , is such that:I illdi I HIS-> 7

M a T = M a ( t 1 - t 0 )

and

M,

f \
a

[6.90]

This yields

T =

and

-

p
a

.

\ 1 0

a

L

a
a

[6.91]

[6.92]

This expression makes it possible to calculate the value of ^nnSea (for a *• 0).
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6.12. Time during which the signal is above a given value

Figure 6.26. Time during which signal is above a given value

Let a be the sel<jcted threshold; the time during which ^(t) is greater than a is a
random variable [RAC 69]. The problem of research of the statistical distribution of
this time is not yet solved.

One can however consider the average value of this time for a stationary random
process. The average time during which one has a < ^(t) < b is equal to:

T [6.93]

and, if b -» oo, the time for which £(t) > a is given by:

[6.94]

(^rms = rms value of ^t)). This result is a consequence of the theorem of
ergodicity. It should be noted that this average time does not describe in any way
how time is spent above the selected threshold. For high frequency vibrations, the
response of the structure can have many excursions above the threshold with a
relatively small average time between two excursions. For low frequency vibrations,
having the same probability density p as for the preceding high frequencies, there
would be fewer excursions above the threshold, but longer, with the excursions
being more spaced.
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Proportion of time during -which l(i) > a

Given a process ^(t) defined in [0, T] and a threshold a, let us set [CRA 67]:

ri(t)=l i f< t )>a l
\ [6.951

r|(t) = 0 elsewhere j

and

t = mT [6.96]

the proportion of time during which l(i) > a , the average of Z0 is:

1 fi
= ~ J mT! dt = mnm

 0

mz = p[/(t) > a]

( a ^mz =!_((,_!_ [6.97]
UimsJ

where ^s = MQ = R(0) and ((>( ) is the Gaussian law. The variance of Z0 is of the

a*
f A -7- InT
form — e rm when T —> oo.

K T

6.13. Probability that a maximum is positive or negative

These probabilities, respectively qj^ and q^, are obtained directly from the
expression of Qp(u). If we set u = 0, it becomes [CAR 56] [COU 70] [KRE 83]:

, 1 + r
q;ax=—

^max = 1~ (lmaX
 since' for u eclual to ~ °°> Qp(u)=

yielding

[6-99]
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q^ax is me percentage of positive maxima (number of positive maxima divided

by the total number of maxima), q^ the percentage of negative maxima [CAR 56].
These relations can be used to estimate r by simply counting the number of positive
and negative maxima over a rather long time.

J_

2 '
For a wide-band process, r = 0 and

For a narrow band process, r = 1 and q^ = 1, q^ = 0.

6.14. Probability density of positive maxima

This density has the expression [BAR 78] [COU 70]:

= -- q(u)
1 + r

[6.100]

6.15. Probability that positive maxima is lower than given threshold

Let u be this threshold. This probability is given by [COU 70]:

P(u) = l Qp(u)
1 + r

yielding

1 + r 1 + r
-P 2 1 + Erf

u r

[6.101]

[6.102]

6.16. Average number of positive maxima per unit time

The average number of maxima per unit time is equal to [BAR 78]:

+ = r
P *

0

—00 '—OC

i.e. [6.13]

[6.103]
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(the notation + means that it is a maximum, which is not necessarily positive). The
average number of positive maxima per unit time is written:

n p > o = fJ-O

lp>0
1

471
[6.104]

6.17. Average amplitude jump between two successive extrema

Being given a random signal l(t), the total height swept in a time interval
(- T, T) is [RIC 64]:

FJ-T d/(t)

dt
dt

Let dn(t) be the random function which has the value 1 when an extremum

occurs and 0 at all the other times. The number of extrema in (- T, T) is J dn(t).

Figure 6.27. Amplitude jump between two successive extrema

The average height hT between two successive extrema (maximum - minimum)
in (- T, T) is the total distance divided by the number of extrema:
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p — _L F
-T dt ^ 2T ~

dt
[6.105]

f dn(t) -1 f
~T 2T ~

dn(t)

If the temporal averages are identical to the ensemble averages, the average
height h is:

r r~= lim hT=

lim — F
2T ~T dt

dt

lim — I dn(t)
2T ~T

[6.106]

where np is the number of extrema per unit time.

For a Gaussian process, the average height h of the rises or falls is equal to
[KOW 69] [LEL 73] [RIC 65] [SWA 68]:

[6.107]

or

[6.108]

For a narrow band process, r = 1 and:

h = J2n [6.109]

This value constitutes an upper limit when r varies [RIC 64].

NOTE.
Calculation ofh can be also carried out starting from the average number of

crossings per second of the threshold [KOW 69]. For a Gaussian signal, this
number is equal to [5.47]:

The total rise or fall (per second) is written:
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£°0 l+«> jf2 r-

na da = n0 I e "•* da = J2n n0 lt
30 J-00

This yields the average rise or fall [PAR 62]:

h - * -
nn n.

•rms

[6.110]

[6.111]

Example

Let us consider a stationary random process defined by [RIC 65]:

<*»)-

G(Q) = 0

-rms for (3 G>0 < Q, < (00

elsewhere

J.R. Rice and P.P. Beer [RIC 65] show that:

h I 10~Ji

For P = 0 (perfect low-pass filter),

h

If J3 -> 1 (narrow band process),

[6.112]

[6.113]

[6.114]

[6.115]
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Chapter 7

Statistics of extreme values

7.1. Probability density of maxima greater than given value

Let us consider a signal ^(t) having a distribution of instantaneous values of
probability density p(/)and distribution function

Let A,N be a new random variable such thatXN = max^peak. . XN is the largest
i=l,n l

peak obtained among the Np peaks of the signal ^(t) over a given duration. The

distribution function of XN is equal to:

and the probability density function to:

[7.2]

If the probability Q that a maximum is higher than a given value is used,
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we have

. , . ,XI ~1

[7.3]N -1

where Np [l -Q(^')] p is the probability of having \Np -l) peaks less than a

value t among the Np peaks.

7.2. Return period

The return period T(X) is the number of peaks necessary such that, on average,
there is a peak equal to or higher than X. T(x) is a monotonous increasing function
ofX.

T(X) = —^— [7.4]
l-P(X)

where P(X) is related to the distribution of t. It becomes:

T(X) [l - P(X)] = T(X) Prob(x > X) = 1 [7.5]

7.3. Peak I expected among N_ peaks

is the value exceeded once on average in a sample containing Np peaks. We

) = !- — [7.6]
' P

and

Np ft*

The return period of ^ is equal to:

P.7]
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7.4. Logarithmic rise

The logarithmic rise ctN characterizes the increase in the expected maximum £p

in accordance with the Napierian logarithm of the sample size:

<*N ^ Np)

From [7.6], we have

p
yielding

and

d(ln Np)
Np p(/p) =

i.e.

7.6. Variance of maximum

[7.8]

aN =Np

7.5. Average maximum of N_ peaks

t [7.10]
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7.7. Mode (most probable maximum value)

/ \
Let us set t M such that PN(^M j *s maximum. The calculation of

gives:

(<M) = 0

= 0

[7.12]

7.8. Maximum value exceeded with risk a

This value, noted ^N , is defined by:

a is the probability of recording a maximum value higher than

peaks.

[7.13]

among Np

7.9. Application to case of centred narrow band normal process

7.9.1. Distribution function of largest peaks over duration T

If it be considered that the maxima are distributed according to a Rayleigh
density law

f i "N
£

= -j e;XP|
sf 2 si

and if it be supposed that the peaks of the narrow band random signal are themselves
randomly distributed (a broad assumption in a strict sense, because such a signal
may have a correlation between consecutive peaks), the probability that an arbitrary
peak ^eafc is lower than a given value i is equal to:

exp -
2 si
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We obtain, from the above relationships, the distribution function of the largest
peaks

(l < i < Np I. PN is the probability that each of the Np peaks is lower than £, if the

peaks are independent [KOW 69]. Figure 7.1 shows this probability for some values

of no T (equal to Np since, for a narrow band noise, np = HQ), plotted versus

u =

Figure 7.1. Distribution function of largest peaks of a narrow band noise

Figure 7.2 presents the variations of the function QN = 1 - PN , QN being the
probability so that the largest peak is higher than a given value U during a length of
time T.
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NOTES.
1. For N_ large (i.e., in practice, for sf/l<Q.2) [KOW69], we have

[7.15]

Figure 7.2. Probability that the largest peak is higher than a given value

2. This relation can be written in the form:

t
= J-21ri{l-exp[(ln P N ) / N

"«

Figure 7.3 shows the variations ofl/s^ versus Np,for various values o/PN.

[7.16]

Figure 7.3. Amplitude of the largest peak against number of peaks,
for a given probability
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7.9.2. Probability that one peak at least exceeds a given threshold

The probability that one peak at least exceeds the threshold t is equal to:

1-e 2 s ] [7.17]

V /

where (1 < i < N 1, yielding the probability so that a maximum ^peak. lies between

i.e.

1- 1-e25 ' [7.18]

7.9.3. Probability density of the largest maxima over duration T

The probability density of the largest maxima is thus

r. \ r. f2

1- exp [7.19]

or, while noting \ = j

Over time T, the number of maxima higher than u = is
I,-rms

v = Q ( u ) N ,

[7.20]

[7.21]
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where v is such that 0 < v < Np.

p N (u)du = -N
N -1

dQ

PN(U) du = N - Q(u)]

pN(u) du = d

[7-22]

For large u, we can accept that Q(u) can be approximated by [CAR 56]:

Q(u) « r e
[7.23]

(Rayleigh's law). For large Np, we have, on average, for a given duration T,

In addition, we still have v = ND Q(U), yielding, since r = 1,

and

+ T 2v « n0 T e z

pN (u)du = d exp

[7.24]

[7.25]

From the relationship [7.25], we can express, by integration, this density in the
form:

PN(U) = n(, T u expj -

1
2u

— + n0 T exi
2

( 2Y1]u

—1 2Jj j
[7.26]
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Figure 7.4 shows the variations of PN(U) for various values of n0 T between
102andl08.

Figure 7.4. Probability density of the largest maximum over duration T

Each one of these curves gives the distribution law of the largest maximum over
duration T of n signal samples to be studied (Figure 7.5).

Figure 7.5. Largest peak of a sample of given duration

Figure 7.6 shows this same probability density for nj T = 3.6 10 to 3.6 10 ,

superimposed over the probability density curve of the instantaneous values of the
random signal (Gauss's law).
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Figure 7.6. Probability densities of peaks and highest maxima

7.9.4. Average of highest peaks

u

The relation [7.24] makes it possible to express u according to v:

On the assumption that In(n0 T| is large compared to In(v), A.G. Davenport

[DAV 64] deduces the average value of £Q:

2s] [7.27]

i.e., after a MacLaurin series development and an integration by parts [KOW 69]
[LON 52]:
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[7.28]

For large values of Np, M.S. Longuet-Higgins [KRE 83] [LON 52] shows that

one can use the asymptotic expression

[7.29]

where e is the Euler's constant equal to 0.577 215 664 90 ... (cf. Appendix A4.3), the
/ \~3/2

difference with the whole expression being about I In N_ I [UDW 73].

Figure 7.7. Comparison of the approximate Figure 7.8. Average of the highest peaks
average value of the distribution of the highest

peaks to the exact value

The approximation is very good [CAR 56] , even for small Np (error less than

3% for all Np > 2 and less than 1% if N > 50).
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NOTE.
On the assumption ln(n0T]» ln(v).

The ratio

In v

In H T

+ In H T

In n0 T 2 1 n n j T
+ 1

[7.30]

is small with regard to the unit if\\ « 2 In n0 T. The approximation [7.29] is very
acceptable for a narrow band process, i.e. for r close to 1 [CAR 56] [POO 76].

7.9.5. Standard deviation of highest peaks

On the same assumptions, the standard deviation of the largest peak distribution
is calculated from

X = V uo~( uo) '

Tt 1

~"D V l̂n l̂)

5
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Figures 7.8 and 7.9 respectively show the average u0 and the standard deviation

su as a function of n0 T. We note on these curves that, when n^ T increases, the
average increases and the standard deviation decreases very quickly.

We notice in Figure 7.10 that the slope of the curve PN(u) increases with n^ T,
result in conformity with the decrease of su.

Figure 7.10. Probability density of the largest peaks close to unity

7.9.6. Most probable value

The most probable value of t corresponds to the peak of the probability density
lm

curve defined by [7.19], i.e. to the mode £m (or to the reduced mode m = ——). If

we let v =

d

dv

, it occurs when
v ¥ " "e/

1/2 -v
v' e = 0

i.e. when [PRA 70] [UDW 73]

v = In N_ -hi 1- [7.32]

If N is large
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v * l n N ,

yielding the most probable value

m =

[7.33]

[7.34]

m = [7.35]

7.9.7. Value of density at mode

[7.36]

A typical example of the use of the preceding relations relates to the study of the
distribution of the wave heights, starting from an empirical relationship of the
acceleration spectral density [PIE 63].

7.9.8. Expected maximum

The expected maximum ^ is such that

= 1-exri —

% =

N,

In N

2 si
[7.37]

[7.38]

7.9.9. Average maximum

( *]
( 2s2

t)

f'- '/
2
 exP

s^

( 2 \r
^ 2S{J

[7.39]
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7.9.10. Maximum exceeded with given risk a

) f ^4
I 2sj j_

IN.

!N« = .2 In

[7.40]

[7.41]

i.e., for a « 1,

[7.42]

One finds in Table 7.1 the value of the parameters above defined from the

relationships [7.29] [7.31] [7.35] [7.36] for some values of nj T.

Table 7.1. Examples of values of parameters from the highest peaks distribution law

+ -rn0 T

3.6 102

3.6 103

3.6 104

3.6 105

3.6 106

uo

3.5993

4.1895

4.7067

5.1725

5.5999

Su0

0.3738

0.3169

0.2800

0.2535

0.2334

X/UQ

10.386 10-2

7.565 10'2

5.949 10'2

4.901 10"2

4.168 1Q-2

m

3.4311

4.0469

4.5807

5.0584

5.4948

PNm

1.2622

1.4888

1.6851

1.8609

2.0214

It is noted that su /u0 is always very small and tends to decrease when n0 T

increases. Table 7.2 gives, with respect to n^ T, the values of Q = 1 - P for u = u0

and u = m.
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Table 7.2. Examples of values of parameters from the highest peaks distribution law

HOT

102

103

104

3.6 104

105

3.6 105

106

3.6 106

107

108

uo

3.2250

3.8722

4.4264

4.7067

4.9188

5.1725

5.3663

5.5999

5.7794

6.1648

Q(«O)

0.4239

0.4258

0.4267

0.4271

0.4273

0.4275

0.4277

0.4279

0.4280

0.4282

m

3.0349

3.7169

4.2919

4.5807

4.7985

5.0584

5.2565

5.4948

5.6777

6.0697

Q(m)

0.6321

0.6321

0.6321

0.6321

0.6321

0.6321

0.6321

0.6321

0.6321

0.6321

It is noticed that, for whatever n^ T, Q(UO) and Q(m) are practically constant.

In many problems, one can suppose that with slight error the highest value is
equal to the average value u0 . It is also noted that the average is higher than the

mode, but the deviation decreases when n0 T increases.

Over one hour of vibrations and for an average frequency n0 of the signal

varying between 10 Hz and 1000 Hz, one notes that the average u0 varies between

4.7 and 5.6 times the rms value lims (Figure 7.8 and Table 7.2). The amplitude of

the largest peak therefore remains lower than 5.6 1^$.

The amplitude of the probability density to the mode increases with respect to

T (Figure 7. 11).
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Figure 7.11. Value of density of largest peak at the mode

7.10. Wide-band centered normal process

7.10.1. Average of largest peaks

The preceding calculations were carried out on the assumption of a narrow band
noise (r « l). For a wide-band noise (r * 1), D.E. Cartwright and M.S. Longuet-
Higgins [CAR 56] show that the average value of the largest peak in a sample of Np

peaks is equal to:

[7.43]

(e = 0.57721566490...= Euler's constant). One obtains the relationship [7.29] for

r= 1, Np being then equal to n0 T. Let us set ^m2 as the rms value of the peak

distribution, where

2
= + r [7.44]

u
Figure 7.12 shows the variations of —pzr with respect to r, for various values of

Vm2
N p .

uoFor large N p, ~p=r is a decreasing function of r. When the spectrum widens,

the average value of the highest peak decreases. When r -> 0 (Gaussian case), the
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expression [7.43] cannot be used any more, the quantity r Np becoming small

compared to unity. The general expression is complicated and without much interest.
R.A. Fisher and L.H.C. Tippett [CAR 56] [FIS 28] [TIP 25] propose an asymptotic
expression of the form,

UQ =
s m

+ n

where m is the mode of the distribution of maxima, given in this case by

m

m e

[7.45]

[7.46]

Figure 7.12. Average value of the highest Figure 7.13. Average value of the highest
peak of a wide-band process versus the peak of a wide-band process versus the

irregularity factor number of peaks

The distribution [7.19] is thus centered around this mode for large ND.

From [7.46], it becomes:

yielding
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One can show that u0 converges only very slowly towards this limit.

Figure 7.14. Mode of the distribution law of Figure 7.15. Average value of the highest
the highest peaks of a peaks Ofa wide-band noise

wide-band noise over duration T

7.10.2. Variance of the largest peaks

The variance is given by [FIS 28]

The standard deviation is plotted against N_ in Figure 7.16.
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Figure 7.16. Standard deviation of the distribution law of the
highest peaks of a wide-band noise

Table 7.3 makes it possible to compare the values of calculated from

[7.28] with those given exactly by L.H.C. Tippet for some values of N [TIP 25].

Table 7.3. Comparison of exact and approximate values of

NP
M

E(/)

s<

Relation [7.28]

L.H.C. Tippett

10

1.43165

1.70263

1.53875

20

1.74393

1.99302

1.86747

100

2.37533

2.58173

2.50758

200

2.61467

2.80726

2.74604

500

2.90799

3.08549

3.03670

1000

3.11528

3.28326

3.24138

7.11. Asymptotic laws

The use of exact laws of probability for extreme values, established from the
initial distribution law of the instantaneous values or from the distribution law of the
maxima, leads to calculations which quickly become very complicated.

They can be simplified by treating only the tail of the initial law, but with many
precautions because, as one well imagines, several asymptotic laws can be used in
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this domain. Moreover, the values contained therein, of weak probability, appear
only occasionally and the real law is not well known.

7.11.1. Gumbel asymptote

This approximation is used for the distribution functions of the exponential type,
which tend towards 1 at least as quickly as exponential for the great values of the
variable [GUM 54]. This asymptotic law applies in particular to the normal and
lognormal laws. Let us consider a distribution function which, for x large, is of the
form

P(x) = l-aexp(-bx) [7.49]

The constants a and b are selected according to the law being simulated. If, for
example, we want to respect the values of the expected maximum xp and the

logarithmic increase aN :

[7-50]

(x

In comparing these expressions with those derived from the P(X) law, it
becomes:

- = a e ~ b X p [7.52]

a N = N p a b e " b X p f7-53]

yielding
r ,b = aN

I _ L a *

[3V

The adjusted distribution function around x_ is thus
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P(x) = 1 - — exp[- ctN (x - [7.54]

For large Np, one obtains an approximate value of the distribution function of

the extreme values making use of the relationship

which yields

PN(x) * exp|-exp[-aN (x -xp)j [7.55]

7.11.2. Case: Rayleigh peak distribution

We have

If we set x = u sx and if the reduced variable TJ = aN I x - x_ I is considered, we

have

= . /21nN p ( v u- > /21nN p

The distribution function is expressed as

PN(x) = exp[-exp(-T|)]

while the probability density is written:

= exp[-Ti-exp(-Ti)]

[7.56]

[7.57]

[7.58]
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Figure 7.17. Probability density of extreme
values for a Rayleigh peak distribution

Figure 7.18. Distribution function of
extreme values for a Rayleigh peak

distribution

7.11.3. Expressions for large values 0/Np

Average maximum

where e = 0.57722 ... (Euler's constant).

Standard deviation of maxima

K 1

aN

SN =

[7.59]

[7.60]

Probability of an extreme value less than x_

1
PN(XP)*-* 0.36788 [7.61]
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7.12. Choice of type of analysis

The prime objective is to simplify the analysis by reducing the number and
duration of the signals studied. The starting datum is in general composed of one or
more records of an acceleration time history. If there are several records, the first
step is to carry out check of the stationarity of the process and, if it is the case, its
ergodicity. If one has only one record, one checks the autostationarity of the signal
and its ergodicity. These properties make it possible to reduce the analysis of the
whole of the process to that of only one signal sample of short duration (a few tens
of seconds for example).

This procedure is not always followed and one often prefers to plot the rms value
of the record with respect to time (sliding average on a few tens of points). In a
complementary way, one can add the time variations of skewness and kurtosis. This
work makes it possible to identify the various events characteristic of the
phenomenon, to isolate the shocks, the transitional phases and the time intervals
when, the rms value varying little, the signal can be analysed from a sample of short
duration. It also makes it possible to make sure that the signal is Gaussian.

The rms value irms of the signal gives an overall picture of the excitation

intensity. It can be useful to calculate the average E(l) = m . If it differs from zero,
one can either centre the signal, if it is estimated that the physical phenomenon has
really zero average and that the DC component is due to an imperfection of
measurement, or calculate the rms value of the total signal and the standard

deviation s = ̂ l^s - m .

In order to have a precise idea of the frequential content of the vibration, it is
also important to calculate the power spectral density of the signal in a sufficiently
broad range not to truncate its frequency contents. If one has measurements carried
out at several points of a structure, the PSDs can be used to calculate the transfer
functions between these various points. The PSDs are in addition very often used as
source data for other more specific analyses.

The test facilities are controlled starting from the PSD and it is still from the PSD
that one can most easily evaluate the test feasibility on a given facility: calculation of
the rms value of acceleration (on all the whole frequency band or a given band), of
the velocity and displacement, average frequency etc.

The autocorrelation function is a little more specific mode of analysis . We saw
that this function is the inverse Fourier transform of the PSD. Strictly, there is no
more information in the autocorrelation than in the PSD. These two functions
however underline different properties of the signal. The autocorrelation makes it
possible in particular to identify more easily the periodic signals which can be
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superimposed on the random vibration (measurement of the periods of the periodic
components, measurement of coherence time etc) [VIN 72].

The identification of the nature of the probability density law of the
instantaneous values of the signal is seldom carried out, for two essential reasons
[BEN61b]:

- this analysis is very long if one wants points representative of the density
around 3 to 4 times that of the rms value lnns (a recording lasting 18.5 minutes is

necessary to estimate the probability density to 4 £ms of a normal law with an error

of 30%);

- the tendency is generally, and sometimes wrongly, to consider a priori that the
signal studied is Gaussian. Skewness and kurtosis are however simple indicators to
use.

Peak value distribution

The distribution of the peak values is especially useful to know when one wishes
to make a study of the fatigue damage. The parameter as function of time to study
must be, in this case, not acceleration at the input or in a point of the specimen, but
rather the relative displacement between two given points (or better, directly strains
or stresses in the part). The maxima of this displacement are proportional to the
maximum stresses in the part on the assumption of linearity. We saw that if the
signal is Gaussian, the probability density of the distribution of the peak values
follows a law made up of the sum of a Gaussian law and Rayleigh law.

Extreme values analyis

This type of analysis can also be interesting, either for studies of fatigue damage,
or for studies of damage due to crossing a threshold stress, while working under the
same conditions as above.

It can also be useful to determine these values directly on the acceleration signal
to anticipate possible disjunctions of the test facility as a result of going beyond its
possibilities.
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Table 7.4. Possibilities of analysis of random vibrations

Threshold level crossings

The study of threshold crossings of a random signal can have some interest in
certain cases:
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- to reduce the test duration by preserving the shape of the PSD and that of the
threshold level crossings curve (by rotation of this last curve) [HOR 75] [LAL 81].
This method is little used;

- to predict collisions between parts of a structure or to choose the dimension of
the clearance between parts (the signal being a relative displacement);

- to anticipate disjunctions of the test facility.

7.13. Study of envelope of narrow band process

7.13.1. Probability density of maxima of envelope

It was previously shown how one can estimate the maxima distribution of a
random vibration.

Another method of analysing the properties of the maxima can consist in
studying the smoothed curve connecting all the peaks of the signal [BEN 58]
[BEN 64] [CRA 63] [CRA 67] [RJC 44].

Figure 7.19. Narrow band vibration and its envelope

Given a random vibration ^(t), one can use a diagram giving t(t) with respect to
l(l). For a sinusoidal movement, one would have:

= A sin o)0 t

j?(t) = A (DO cos o>0 t

[7.62]

[7.63]

and the diagram - according to £(t) would be a circle of radius A, since:
co0
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r(0+ [7.64]

Figure 7.20. Study of the envelope of a sinusoidal signal and of a narrow band signal

The envelope of this sinusoid is made up of two straight lines: ± A. In the case
of a narrow band random signal, envelope A is a time function and can be regarded
as the amplitude of a function of the form [DEE 71]:

u(t) = A(t) sin[co0 t + 6(t)] [7.65]

in which A(t) and the phase 0(t) are random functions that are supposed to be
slowly variable with co0. There are in reality two symmetrical curves with respect to

the time axis which are envelopes of the curve i(i).

By analogy with the case of a pure sinusoid, A(t) can be considered the radius

of the image point in the diagram l(t), l(t):

(A > 0), where

sin[6(t)]

co0 cos[6(t)]
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The probability that the envelope lies between A and A + dA is equal to the
£

joint probability that the curves i and — are located in the hatched field ranging
co0

between the two circles of radius A and A + dA (Figure 7.21).

Figure 7.21. Probability that the envelope lies between A and A + dA

Consider the corresponding two dimensional probability density p I, — |. We
I <°o,

have:

d x d — =co0 p(t,t)dld
l^o )

t} ('<} tI, — Idtdl — = p(A sin 0,A co0 cos 0)A dA d0

did = q(A, 0) dA d6

where

q(A, 0) = A p(A sin 0, A co0 cos 0)

[7.66]

[7.67]

The probability density function q(A) of the envelope A(t) is obtained by
making the sum of all the angles 0:
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d0 [7.68]

Let us suppose now that the random vibration ^(t) and its derivative i?(t) are

statistically independent, with zero averages and equal variances sf = s? (= ^s),

according to a two dimensional Gaussian law:

[7.69]

2 s J _
[7.70]

and

q(A) = — exp -
2 si

[7.71]

(A > 0). The probability density of the envelope A(t) follows Rayleigh's law.

Figure 7.22. Probability density of envelope A(t)

NOTES.
1. The probability density q(A), calculated at a given time t, is independent oft,

the process being supposed stationary.
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One could calculate this density from an arbitrary signal £(i) . The result would

be independent of the sample chosen in t(\) if the process is ergodic [CRA 63] .

2. The density q(A) has the same form as the probability density q(a) of
maxima [CRA 63]. It is a consequence of the assumption of a Gaussian law for i(i)

and l(t). In the case of a narrow band noise for which this assumption would not be
observed, or if the system were nonlinear, the densities q(A) and q(a) would have
different forms [BEN 64] [CRA 61].

When the process has only one maximum per cycle, the maxima have the same
distribution as its envelope (this remark is strictly true when r = 1).

When the number of maxima per second increases and tends towards infinity, it
has been seen that the distribution of maxima becomes identical to that of the
instantaneous values of the signal (Gaussian law) [CRA 68].

Figure 7.23. Probability that the envelope exceeds a given threshold AQ

The probability that the envelope exceeds a certain given value A0 is obtained
by integrating q(A) between A0 and infinity.

jQQ

P(Envelope> A0)= | q(A)dA

P(Envelope 1= exp
2s?
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Table 7.5. Examples of probabilities of threshold crossings

AO^

0.5

1

2

3

P

0.8825

0.6065

0.1353

0.0111

7.13.2. Distribution of maxima of envelope

S.O. Rice [RIC 44] showed that the average number of maxima (per second) of
the envelope of a white noise between two frequencies fa and fb is:

N« 0.64110 (fb-f a)

A

[7.72]

Let us set v = — . If v is large (superior to 2.5), the probability density q(v)

can be approximated by:

E

q(v)~ *6 (v2
MV/ 0.641 10 V

v2

lie 2 [7.73]

and the corresponding distribution function by:

=Q(A rnax
0.64110

ve [7.74]

QA is the probability that a maximum of the envelope chosen randomly is lower

than a given value A = v s^. The functions q(v) and QA are respectively plotted in
the general case (arbitrary v) on Figures 7.24 and 7.25.
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Figure 7.24. Probability density of
envelope maxima

Figure 7.25. Distribution Junction of
envelope maxima

Figure 7.26. Comparison of distribution functions

Figure 7.26 shows, by way of comparison, the distribution functions of:

-the instantaneous values of the signal (Gaussian law) (A):

1
P = -

2
Erfl-

v

- the maxima of the signal [6.64] (B),

- the instantaneous values of the envelope (Rayleigh's law) (C): P = 1 - e 2 ,
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- the maxima of the envelope (curve given by S.O. Rice [RJC 44]) (D).

7.13.3. Average frequency of envelope of narrow band noise

It is shown that [BOL 84]:

<PM =
[7.75]

-rms

where

^rms = rms value of the noise l(t)

0 = average pulsation of the noise \2 n f0)

f0 = average frequency o

For a signal t(t) whose PSD G(f) is constant between frequencies fj and f2 and
centered on f0, this relationship leads to:

i.e. to:

1/2
[7.76]
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Summary tables of the main results

Table 7.6 (a). Main results

Parameter

Number of crossings
of a threshold a with

positive slope per unit
time

Average frequency

Moments

Irregularity factor

Probability density of
the maxima

Average number of
maxima per second

Average time
between two

successive maxima
(narrow band noise)

Relation

[5.47]

[5.53]

[5.79]

[5.77]

[6.6]

[6.19]

[6.13]

[6.31]

[6.40]

Expression

a2

2£2
— n ~ *» nnsa ~ "0 e

1

+ [ J 0
C °f 2 G(f)df"p ! ^

nO ~ foo ~ J
J G(f)df 2n\MQ

Mn = (27t)n 1°° fn G(f) df

r /Ls M2 R<2)(0)

'L*L VMoM4 ^/R(0)R(4>(0)

/ u2 "2F f )
Vl-r z 2(l-rM r -~T ru

n(n\ - r " ' 4- 11 p 2 1 4- Frf

^ 2 ^ ^(..^J

1

a+ i"ir f 4 G( f>d f? i pu
P J4* f2 G(f ) df 2« l( M2

ir r v t
1 Af 1 2

i+- —
1 3(2 fj

rm /- \2 /- \4
fO Af 1 Af

1 _1_ O _L
1 2 +L UfoJ s U f o J J
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Average correlation
between two

successive maxima
[O.HlJ P- '

2*5

54lV2 ( ^ y/2 f y2 ^

1 + 262 +-

tf
1 + —

L 3 J

1+T
1+2S2+ —

v. 5 )

1 + —

S4

v. + +TJ

Table 7.6 (b). Main results

Parameter

Distribution function
of the peaks

Average number of
maxima greater than
a threshold a per unit

time

Average number of
positive maxima per

second

Average time interval
between the maxima

Average time interval
between the maxima
(narrow band noise)

Probability so that a
maximum is positive

or negative

Time during which
the signal is above a

given value

Average amplitude
jump between two
successive maxima

Relation

[6.64]

[6-74]

[6.104]

[6.80]

[6.82]

[6.98]

[6.99]

[6.93]

[6.107]

Expression

r i .' r
/ * 1 J u r ~ , i" uQ ( u ) = - 1-Erd . +-e 2 1 + Erf .

2 [^(l-r2)] 2 [^2(l-r2)

a2 a2

M ] I4 e 2^e l |M2 e 2Mft
a 2 7 i V M 2 27t\M0

/ N

+ 1 JM^ IM^
R p 4 7 i ^ M 0

+ i y M 2 J

1 1
np . .

Ma nj Q(a)

a:

Mn 2M
T _ O TT H 0 0= / 7t e

M2

+ 1+r _ 1-r
^max ~ 'Imax ~~

2 2

t1

— f> 1 9 #2

T . 1 r * CrmS fl/?1ab 1 / e "*•
4^nnsV2 7 C

h = V2^r^rms
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Probability density of
the largest peaks [7.19] n ( t\ XTPNUJ- Np

" f * }}1 m-r-J ...1 cxri
I 2sU

Np-l / , >i \ r
2 cxn 2

"7 1 2sJ,

Table 7.6 (c).

Parameter

Probability density of
the largest maximum

over duration T

Average for the large
values of the number

of peaks
(narrow band noise)

Standard deviation
(narrow band noise)

Most probable value
(mode)

Maximum exceeded
with a risk a.

Average for the great
values of the number
of peaks (wide-band

noise)

Standard deviation

(wide-band noise)

Probability density of
the envelope of a

narrow band
Gaussian process

Relation

[7.26]

[7.29]

[7.31]

[7.35]

[7.41]

[7.43]

[7.48]

[7.71]

Expression

f r 2 ( 2\ii
/ \ +T J U + T U 1pN(u) = n0 Tuexpl- — + n 0 T e x p \

[h \ 2JJ j
— / / , \ £
n -.- \") Inl n Tl -Lu° - r Ullno Tj ' / / }

V2 ^("o T)

K 1

"•• " v? JT.̂ )
m = ^21n(njT)

a |o In c

'N«T Vo-ar-''
/ / \ e

T7 ~ /O Inl r "NI 1 _Lu0 ~ J^ inir N p i i , «-
^21n(rNp)

2 22 7t m

6 (ra2 + 1)
2

A | A 2 ]
q(A) - 2

 exp 2
S^ 2 S^

C L. v -1
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Distribution of
maxima of the

envelope of a narrow
band process

Average frequency of
the envelope of a

narrow band noise of
constant PSD

[7.73]

[7.76]

I*
a(v}~ V 6 ( 2 «) 2<4\yj ~ iv lie

0.641 10 v '

f j + f ! f 2 + f 2 . v 2

°PM ID IM +12/ + 1o

1/2
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Al. Laws of probability

Al.l. Gauss's law

This law is also called the Laplace-Gauss or normal law.

Probability
density

Distribution
function

Mean

Variance
(central moment

of order 2)

1 fx-mY
1 1

r^-L-l r 2^- S J

m = mean
PW - . c s - sianuam ueviauon

s yJ2 n

The law is referred to as reduced centered normal if m = 0 and
s = l.

T<( ~y\ - p/v - Y^I^A; - i ^x ^ A; —
s/

Reduced varial

If E] is the error function

TT^T\ 1 _L T7nu i + iii _
2 L IV2 J.

1 fx-mY

f X e 2 ^ s ^ dx— j e ax
27i -00

x -m.1 .̂ *
s

X - m
where T —

s

M

s
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Central
moments

Moment of
order 3 and
skewness

Kurtosis

Median and
mode

: keven(k = 2 r):
CT f4* k ~T , 2 r ! 2 ri , — , 1 t r> ^ rit - . "̂

"k"V^ J- * ^'Vr!

k odd (k = 2 r + 1)

^2 r+1 = °

0

,1' ^ 1M-4- ~T~ 3

s

0

A1.2. Log-normal law

Probability
density

p(x) =

my=mean

s = standard deviation of the normal random variable y = In x

>(y)dy = dy

The log-normal law is thus obtained from the normal law by the

change of variable x = ey.

1 In x-nr
Distribution

function

Mean

F(X) = P(x < X) = (
X 1 2 s

x s,
dx

m = E(X) = e 2
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Variance
(central moment

of order 2)

Expressions for
, 2my and sv

with respect to

E(X) and s

Variation
coefficient

Moment
of order j

Central moment
of order 3

Skewness

Central moment
of order 4

Kurtosis

Median

sWm'+S> (eS '-l)=m2(eS '-l) s2 = [E(x)]2v2

, -o v = V eS> - 1
sy

2 ( s2 ~} my+T v = variation
s =| e y - l l e coefficient

i f 2 i r 2 i
r / M 1 s 2 s

m In T7f v l .— In 1 -L - c In 1 -i.mv — mi Jivxn — in i + sv — in i -t- ^
2 L E2(x)J u E2(x)J

my = ln[E2(x)] -- ln[s2 + E2(x)] sy = -lnJE2(x)J + ln[s2 + E2(x)j

It is noted that the transformation x = ey applies neither to E(X),

nor to s .

1 / 2\
mv = In x = In m - — In 1 + v

2 V ' f7
v = Ve y -1

sy = ln(l + v2)

If v is the variation coefficient of x, we have also m = x Vl + v

If two log-normal distributions have the same variation
coefficient, they have equal values of s (and conversely).

i , ,
jmj+- j' s;

V. - e 2A j - e

/ 2 \3/2 -f2m + s ^ ) / 2 \2 , .
^=(es '-lj ^ (es'+2j = m 3 ( v 6

 + 3v4)

Xi-^.fe^-l¥e^H-2T-v3
 + 3»

s V J\ )

^ 4 ( 12 , 10 ,^ 8 1£ 6 , 4\A4 = m l v + 6 v + I 5 v + l 6 v + 3 v l

-i = v8 + 6 v6 + 15 v4 + 16 v2 + 3
s

m
x = e y
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Mode

-s"

For this value, the probability density has a maximum equal to
s!

[AIT 81] [CAL 69] [KOZ 64] [PAR 59] [WIR 81] [WIR 83].

NOTES.
1. Another definition can be: a random variable x follows a log-normal law if

and only ify = \nxis normally distributed, with average mv and variance st,.
J *

2. This law has several names: the Galton, Me Alister, Kapteyn, Gibrat law or
the logarithmic-noiTnal or logarithmo-normal law.

3. The definition of the log-normal law can be given starting from base 10
logarithms (y = Iog10 x):

log,0 x-my

p(x) = n
x s fin In 10

[Al.l]

With this definition for base 10 logarithms, we have:

my = Iog10 x

my4log10(s^/0.434)
m = 10L 2

s;/0.434 ,
V = 'ViU y / -1

[A1.2]

[A1.3]

[A1.4]

m =log10x--log10(l + v2) [A1.5]
2 v '

sy =0.434 Iog10(l + v2) [A1.6]

Hereafter, we will consider only the definition based on Napierian logarithms.
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4. Some authors make the variable change defined by y = 20 log x, y being
expressed in decibels. We then have:

[ALT]

f 20
- «since - « 75.44 .

5. Depending on the values of the parameters my and sy, it can sometimes be

difficult to imagine a priori which is the law which is best adjusted to an enseble of
experimental values. A method allowing for choosing between the normal law and
the lognormal law consists in calculating:

s
- the variation coefficient v = — ,

m

X3
- the skewness —,

s

X4
- the kurtosis —r,

4
S

knowing that

n

m)
[A1.9]

n

\3

n

and
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Ifskewness is close to zero and kurtosis close to 3, the normal law is that which

*3
15 best adjusted. If v < 0.2 and — « 3, the log-normal law is preferable.

v

A1.3. Exponential law

This law is often used with reliability where it expresses the time expired up to
failure (or the time 'interval between two consecutive failures).

Probability density

Distribution function

Mean

Moments

Variance (central moment
of order 2)

Central moments

Variation coefficient

Moment of order 3
(skewness)

Kurtosis

p(x) = A e - X x

F(X) = P ( x < X ) = l - e ~ X X

mj = E(x) = —
A

n ! n
m'™Im-'

2 1

S = n̂
^n = l + -"n-l

A

v = l

, ^3 ,3 .u3 = — = A +3
s

^ = ^4 + 4 A3 + 12

A1.4. Poisson's law

It is said that a random variable X is a Poisson variable if its possible values are
countable to infinity x0, x l? x2..., xk..., the probability that X = xk being given by:

Pk =
r_
k !

[A1.12]

where X, is an arbitrary positive number.
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One can also define it in a similar way as a variable able to take all on the integer
values, a countable infinity, 0, 1,2, 3..., k..., the value k having the probability:

k !
[A1.13]

The random variable is here a number of events (we saw that, with an
exponential law, the variable is the time interval between two events).

The set of possible values n and their probability pk constitutes the Poisson law
for parameter A.. This law is a discrete law. It is shown that the Poisson law is the

A.
limit of the binomial distribution when the probability p of this last law is equal to —

k
and when k tends towards infinity.

Distribution function

Mean

Moment of order 2

Variance (central
moment of order 2)

Central moments

Variation coefficient

Skewness

Kurtosis

v~> ?k

F(X) = P ( 0 < x < X ) = X 6 "^— - ( n < X < n + l)
k=0 k !

oo ,k

mj = E(X) = ̂  k e — = A.

k=0 k !

m2 = A. (A. + 1)
2 is = A,

u3 = A.

H4 = X + 3),2

1v = vf
1

^3 =~FVA
1 + 3A-..'

M-4 -
A

NOTES.
1. Skewness u/3 being always positive, the Poisson distribution is dissymmetrical,

more spread out on the right.
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2,Ifk tends towards infinity, u'3 tends towards zero and u'4 tends towards 3.

There is convergence from Poisson 's law towards the Gaussian law. When X, is
large, the Poisson distribution is very close to a normal distribution.

A1.5. Chi-square law

Given v random variables Uj , u2..., uv, supposed independent reduced normal,
i.e. such that:

du.

one calls chi-square law with v degrees of freedom (v independent variables) the
2

probability law of the variable xv defined by:

[AL15]

2
The variables U; being continuous, the variable % is continuous in (0,<x>).

NOTES.
2

1 . The variable % can also be defined starting from v independent non reduced

normal random variables Xj whose averages are respectively equal to nij = E x

and the standard deviations Sj, while referring back to the preceding definition with

Xj -nij 2 V"1 2
the reduced variables u j = - and the sum xv = / .. ui •

2. The sum of the squares of independent non reduced normal random variables
does not follow a chi-square law.

Probability density

v= number of degrees of freedom

r= Euler function-second kind (gamma function)
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Mean

Moment of order 2

Standard deviation

Central moments

Variation coefficient

Skewness

Kurtosis

Mode

V

m2 = v(2 + v)

s = y 2 v

u2 = 2 v u3 = 8 v u4 = 12 v (v + 4)

v=J!
f j \ \

v

v-f-4t *>

v

M = v-2

This law is comparable to a normal law when v is greater than 30 approximately.

Al .6. Rayleigh 's law

Probability density

Distribution function

Mean

Median

Rms value

X"

( \ X 2v 2

p(x) = — e
v

v is a constant

X2

F(X) = P ( x < X ) = l-e 2y2

|7t

m = ^~ V

X = v^2 In 2 » 1.1774v

,g?) = vV2
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Variance

Moment of order k

Central moments

Variation coefficient

Skewness

ICurtosis

Mode

2 ( ^1 2 f 4 ^ ">
s = 2-- v = --lira '

\ 2) U )

If k is odd ( 2 r ) » HT
/"L- Or 1\ TYI I - \; ""(k-.i-l) m^.! 2 r r ! ^ | 2

v

If k is even m = 2
r r! v2 r

(k = 2r) 2 r

H0 = 1 jij - 0

r ^ 2 f^" / •*
.2=l2--jv2 - ,3 = J-(j[-3)v3

/4

f i t

a- F 7 l ~ 3 -06311a il 1/1 v-oj i i

' 2 f2 -« f
I 2)

( i ̂
L 3* 4

^ 4 = | 8 - — - v
I 4 ;

b _ 3 2 - 3 u 2

(4-^

M = v

Reduced law

If we set u = —, it becomes, knowing that p( x) = — e
s s

, . 1 x 2s2 ! 9 ] / v
p(x} = e = - u e z =-p(u)

s s

[A1.16]



Appendices 289

[ x i dx
p(u) du = p(u) J — = s p(x) — = p(x) dx

\sJ s

Table Al.l. Particular values of the Rayleigh distribution

[A1.17]

X

V

1

1.5

2

2.5

3

3.5

4

4.5

5

(x X]
Probj - > —

Vv \)

0.60653

0.32465

0.13534

4.3937 10'2

1.1109 10"2

2.1875 10"3

3.355 10-4

4.01 10'5

3.7 10"6

A1.7. Weibull distribution

Probability
density

Distribution
function

Mean

Median

a ( x -8^1 ( x -z\
i \ Pp(xj = j v - a U-e j U-sy

[0 x < s

a and v= positive constants

M CA.LJ y\. ^ o

. U-8J j

0 X<8

m = 8 + (v-e) I|l + ~
V a/

X = s + (v-e)(ln2)1/a
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Variance

Mode

s2 = (v-s)2 <H)-rHJ
M = e + (v-e)| l-- |

V oJ

[KOZ 64] [PAR 59].

NOTE.
One sometimes uses the constant r\ = v - s in the above expressions.

A1.8. Normal Laplace-Gauss law with n variables

Let us set x1? ^2—> xn n random variables with zero average. The normal law
with n variable Xj is defined by its probability density:

2|M| u
xi x j

[A1.18]

where |M| is the determinant of the square matrix:

Un2

[A1.19]

U:; = El X:, X; I =moments of second order of the random variablesy \ * j>
M y = cofactor of |iy in |M|.

Examples

1. n =
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with

M H = 1

-E(xf) -

yielding

/ \(x,) = 2s2 [A1.20]

which is the probability density of a one dimensional normal law as defined
previously.

2. n = 2

P(X!> exp
L 2|M|

+M]2 Xj x2 + M21 x2 x, + M22 x2
[A1.21]

with

M-22

) = E(x2 XL) = ^1 = P sl S2 M12 = - = M 21

p is the coefficient of linear correlation between the variables Xj and x2 , defined by:

p=
COV^X^ [A1.22]

s(xl) S(X2)

where cov^Xt ,^2 ) is the covariance between the two variables Xj and x2 :
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cov(XbX2) = J r°[x, -E(X1)][x2-E(X2)]p(x1,x2)dx1 dx2 [A1.23]
J J-OO

Covariance can be negative, zero or positive. Covariance is zero when x} and x2

are completely independent variables. Conversely, a zero covariance is not a
sufficient condition that Xj and x2 be independent.

It is shown that p is included in the interval [-1, l]. p = 1 is a necessary and
sufficient condition of linear dependence between Xj and x2.

Yielding

)(x l 5 x 2 ) =

NOTE.
If the averages were not zero, we would have

I .
/ 7 cxpl / 2\

2 7 t S l s 2 V l - p 2 1 1 -P )
L

f \xl
Vs! )

2 / \2~]
*1*2 *2 1

" P
sl S2 \S2J J

[A1.24]

-2p

1 1 >
V * '

v f l - v l - v Pi v \ 1 v P/v 1 1Xj - t ( X { ) X2 - i^X2; | X2 ~ *\X2) |
+ l 1

sl S2 V S2 J J

Y Tpi Y. 1

V Sl /

\2

[A 1.25]

If p = 0, we can write p(x, ,x2 j= p(x, Jbvx? / ( \ L 2srP(X!) = z=re
Sj 71

X,

2s;I \ 1 2s"and p(x2| = —— e 2 . Xj and x2 are independent random variables.
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It is easily shown, by using the reduced centered variables t, = and

x -
to =

sl

dx = 1

Indeed, with these variables,

1

2 71 Sj S2

exp

and

L - p t2
Let us set u = \ and calculate

1 f l*-L/v, "> / ~> I

7~ J J e " e~* d tzdu

271

i.e.

J2n

We thus have

f-HJO f+00 / v

J p(u) du J p(t2) dt2 =

e~ l2 /^ dt,

—oo —oo

[A 1.26]

[A1.27]

[A1.28]

[A 1.29]

[A1.30]

[A1.31]

NOTE.
// is shown that, if the terms u^ are zero when i * j, /.e if all the correlation

coefficients of the variables X| and X: are zero (\ * j), we have:
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|in 0 - 0

0 '-. ••• 0

0 ••• '-. 0

o o o un

[A1.32]

Ml =

and

[A1.33]

[A1.34]

For normally distributed random variables, it is sufficient that the cross-
correlation functions are zero for these variables to be independent.

^1.9. Student law

The Student law with n degrees of freedom of the random variable x whose
probable value would be zero for probability density:

p(x) =

n + 1 n+i

[A1.35]
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A2. l/nth octave analysis

Some analysers make it possible to express the power spectral densities
calculated in dB from an analysis into 1/3 octave. We propose here to give the
relations which make it possible to go from such a representation to the traditional
representation. We will place ourselves in the more general case of a distribution of
the points in l/nth octave.

A2.1. Center frequencies

A2.1.1. Calculation of the limits in l/nth octave intervals

By definition, an octave is the interval between two frequencies fj and f2 such
f

that — = 2. In l/nth octave, we have

i.e.

[A2.1]

log 2
Iogf2=logf1 + [A2.2]
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Example

Analysis in 1/3 octave between fj = 5 Hz and f2 = 10 Hz.

log fa = log 5 + - = 0.7993

fa = 6.3 Hz

log fb = log fa

fb = 7.937 Hz

= 0.8997

f c = f 2 =

A2.1.2. Width of the interval Af centered around'f

The width of this interval is equal to

Af = upper limit - lower limit

Figure A2.1. Frequency interval

Let a be a constant characteristic of width Af (Figure A2.1) such that:

(log f + log a) - (log f - log a) = [A2.3]
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yielding

[A2.4]

One deduces

f
Af = a f - - [A2.5]

a

[A2.6]

This value of Af is particularly useful for the calculation of the rms value of a
vibration defined by a PSD expressed in dB.

Example

For n = 3 , it becomes a « 1.122462...and Af « 0.231563...f . At 5 Hz, we

that have Af = 1.15 Hz.

A2.2. Ordinates

We propose here to convert the decibels into unit of amplitude [(m/s2)2/Hzj. We
have, if x^g is the rms value of the signal filtered by the filter (f, Af ) defined

above:

*ref
[A2.7]

xref is a reference value. If the parameter studied is an acceleration, the reference

value is by convention equal to 1 um/s = 10"6 m/s (one finds sometimes 10"5 m/s
in certain publications).

Table A2.1 lists the reference values quoted by Standard ISO/DIS 1683.2.
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Table A2.1. Values of reference (Standardise 1683 [ISO 94])

Parameter

Sound pressure
level

Acceleration level

Velocity

Force level

Power level

Intensity level

Energy density
level

Energy

Formulate (dB)

201og(p/p0)

201og(x/x0)

201og(v/v0)

201og(F/F0)

101og(p/P0)

10 log(l/I0)

101og(w/W0)

10 log(E/E0)

Reference level

20 uPa in air
1 uPa in other media

1 fim/s

1 nm/s

1 uN

IpW

1 pW/m2

1 pJ/m3

IpJ

Yielding

*rmS = xref 1020

The amplitude of the corresponding PSD is equal to

N

/-. _ xref

Af Af

G =

or

log
/ n - l f G

[A2.8]

[A2.9]

[A2.10]

[A2.ll]
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Example

If xref = 10~5 m/s2

N
-- 10

1010

Af

and if n = 3

N
-- 10

2I/6 1010
/-i _

21/3-! f
N

1010

N
10

0.23 f

If, at 5 Hz, the spectrum gives N = 50 dB,

50
—10

21/6 1010

G * 8.6369 10"6 (m/s2)2/Hz

A3. Conversion of an acoustic spectrum into a power spectral density

A3.1. Need

When the real environment is an acoustic noise, it is possible to evaluate the
vibratory levels induced by this noise in a structure and the stresses which result
from it using finite element computation software.

At the stage of writing of specifications, one does not normally have such a
model of the structure. It is nevertheless very necessary to obtain an evaluation of
the vibratory levels for the dimensioning of the material.
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To carry out this estimate, F Spann and P. Patt [SPA 84] propose an approximate
method based once again on calculation of the response of a one-degree-of-freedom
system (Figure A3.1).

Figure A3.1. Model for the evaluation of the effects of acoustic pressure

Let us set:

P = acoustic pressure

GP = power spectral density of the pressure

A = area exposed to the pressure

P - effectiveness vibroacoustic factor

M = mass of the specimen and support unit.

The method consists of:

- transforming the spectrum of the pressure expressed into dB into a PSD Gp

expressed in (N/m2)2/Hz,

-calculating, in each frequency interval (in general in the third octave), the
response of an equivalent one-degree-of-freedom system from the value of the PSD
pressure, the area A exposed to the pressure P and the effective mass M,

- smoothing the spectrum obtained.

A3.2. Calculation of the pressure spectral density

By definition, the number N of dB is given by

P P A T HN = 201og]0— [A3.1]

—5P0 = reference pressure = 210 N/m"
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P = rms pressure = GP Af

For a 1/n* octave jfilter centered on the frequency fc , we have

A f = 2 [A3.2]

yielding

P0 10"'" I [A3.3]

Af

In the particular case of an analysis in third octave, we would have

and

2l/6 i

P0 10N/20)

4.32
[A3.4]

[A3.5]

A3.3. Response of an equivalent one-degree-of-freedom system

Figure A3.2. One-degree-of-freedom system subjected to a force
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Let us consider the one-degree-of-freedom linear system in the Figure A3..2,
excited by a force F applied to mass m. The transfer function of this system is equal
to:

F F
(l-h2)2

 + hVQ2|m

[A3.6]

y and z being respectively the absolute response and the relative response of the
mass m, and

At resonance, h = 1 and

H = — [A3.7]
m

The power spectral density GF of the transmitted force is given by:

G F = ( p A ) 2 G P [A3.8]

(F = P A P) and the PSD of the response y to the force F applied to the one-degree-
of-freedom system is equal, at resonance, to:

G

m

- Q
(Po

,l/2n
,l/2n

[A3.9]

[A3.10]

[A3.ll]

In the case of third octave analysis,

mJ 2 V 6 _ .
,1/6

[A3.12]



Appendices 303

F. Spann and P. Part set Q = 4.5 and £ = 2.5 ; yielding

,= 126.6 - GP [A3-13]
m

A4. Mathematical functions

The object of this appendix is to provide tools facilitating the evaluation of some
mathematical expressions, primarily integrals, intervening very frequently in
calculations related to the analysis of random vibrations and their effect on a one-
degree-of-freedom mechanical system.

A4.1. Error function

This function, also named probability integral, is the subject of two definitions.

A4. 1 . 1 . First definition

The error function is expressed:

E,(x) -^fV
./7 Jo

[A4.1]

If x -> oo, Ej(x) tends towards Eloo which is equal to

'!d, = l [A4.2]

u
and if x = 0, Ej(0) = 0. If we set t = — — , it becomes

V2

\ u

x I 2 fx — du

u"

2 du [A4.3]
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Figure A4.1. Error function E](x)

One can express a series development of Ej(x) by integrating the series

development of e between 0 and x:

2
E1(x) =

3 5
X X

2n+l

x-
1!3 215 n!(2n

[A4.4]

This series converges for any x. For large x, one can obtain the asymptotic
development according to [ANG 61] [CRA 63]:

E,(x)*l
xVTt

1 1.3 1.3.5

2x 2 22x4 23x6

,U5. . . (2n-3)
K~l) •—x— 1-1

~n-l 2n-2
2 x

For sufficiently large x. we have

-X"

[A4.5]

[A4.6]

If x = 1.6, E:I(X)= 0.976, whilst the value approximated by the expression
above is

* 0.973.
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For x = 1.8 , Ej(x)« 0.9877 instead of 0.890.

2 n - l
The ratio of two successive terms, equal to —, is close to 1 when n is close

x
2

to x . This remark makes it possible to limit the calculation by minimizing the error
on E)(x).

NOTE.
E(x) is the error function and [l-E(x)], noted ERFC(x), is the

C complementary error function').

2 foO 2

ERFC(x) = — J e dt [A4.7]

2 _

Function Ej(x) = -— J e dt
f _ t

J



306 Random vibration

Table A4.1. Error function E|(x) (continuation)

X

0.025

0.030

0.075

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

0.300

0.325

0.350

0.375

0.400

EjU)

0.02820

0.05637

0.08447

0.11246

0.14032

0.16800

0.19547

0.22270

0.24967

0.27633

0.30266

0.32863

0.35421

0.37938

0.40412

0.42839

AE,

0.02820

0.02817

0.02810

0.02799

0.02786

0.02768

0.02747

0.02723

0.02697

0.02666

0.02633

0.02597

0.02558

0.02517

0.02474

0.02427

X

0.425

0.450

0.475

0.500

0.525

0.550

0.575

0.600

0.625

0.650

0.675

0.700

0.725

0.750

0.775

0.800

E!(X)

0.45219

0.47548

0.49826

0.520500

0.54219

0.56332

0.58388

0.60386

0.62324

0.64203

0.66022

0.67780

0.69478

0.711156

0.72693

0.74210

AE1

0.2380

0.02329

0.02278

0.02224

0.02169

0.02113

0.02056

0.01998

0.01938

0.01879

0.01819

0.01758

0.01698

0.01638

0.01577

0.01517

X

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

1.025

1.050

1.075

1.100

1.125

1.150

1.175

1.200

Et(x)

0.75668

0.77067

0.78408

0.79691

0.80918

0.82089

0.83206

0.84270

0.85282

0.86244

0.87156

0.88021

0.88839

0.89612

0.90343

0.91031

AE!

0.01458

0.01399

0.01341

0.01283

0.01227

0.01171

0.01117

0.01064

0.01012

0.00962

0.00912

0.00865

0.00818

0.00773

0.00731

0.00688
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1.225

1.250

1.275

1.300

1.325

1.350

1.375

1.400

1.425

1.450

1.475

1.500

1.525

1.550

1.575

1.600

1.625

0.91680

0.92290

0.929863

0.93401

0.93905

0.094376

0.94817

0.95229

0.95612

0.95970

0.96302

0.9661 1

0.96897

0.97162

0.97408

0.97635

0.97844

0.00649

0.00610

0.00573

0.00538

0.00504

0.00472

0.00441

0.00412

0.00383

0.00356

0.00332

0.00309

0.00286

0.00265

0.00246

0.00227

0.00209

1.650

1.675

1.700

1.725

1.750

1.775

1.800

1.825

1.850

1.875

1.900

1.925

1.950

1.975

2.000

2.025

2.050

0.98038

0.98215

0.98379

0.98529

0.98667

0.98793

0.989090

0.99015

0.99111

0.99199

0.99279

0.99352

0.99418

0.99478

0.99532

0.99781

0.99626

0.00194

0.00177

0.00164

0.00150

0.00138

0.00126

0.00116
0.00106

0.00096

0.00088

0.00080

0.00073

0.00066

0.00060

0.00054

0.00049

0.00045

2.075

2.100

2.125

2.150

2.175

2.200

2.225

2.250

2.275

2.300

2.325

2.350

2.375

2.400

2.425

2.450

2.475

2.500

0.99666

0.99702

0.99735

0.99764

0.99790

0.99814

0.99835

0.99854

0.99871

0.99886

0.99899

0.9991 1

0.99922

0.99931

0.99940

0.99947

0.99954

0.99959

0.00040

0.00036

0.00033

0.00029

0.00026

0.00024

0.00021

0.00019

0.00017

0.00015

0.00013

0.00012

0.00011

0.00009

0.00009

0.00007

0.00007

0.00005

Approximate calculation ofE^

The error function can be estimated using the following approximate
relationships [ABR 70] [HAS 55]:

E1(x) = l-(a1 t + a 2 t 2 + a 3 t
3 + a4 t

4 +a 5 t
5 )e x +e(x)

where

t = (0 < x < oo)
1 + px

|s(x)|< 1.5 10~7
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p = 0.327 5911 a3 =1.421 413 741
a, = 0.254 829 592 a4 = - 1.453 152 027
a2 = -0.284 496 736 a5 = 1.061 495 429

E^x) = 1 - (a, t + a2 t
2 + a3 t

3) e"x" + e(x) [A4.9]

t = s(\\<2.5 10~5

1 + px

p - 0.470 47 a2 = - 0.095 879
a, = 0.348 024 2 a3 = 0.747 855 6

Other approximate relationships of this type have been proposed [HAS 55]
[SPA 87], with developments of 3rd, 4th and 5th order. C. Hastings also suggests the
expression

1
E l ( X ) = 1 " ~ 2 3 4 5 606" [A4.10]

(1 + a j x + a2 x + a3 x + a4 x + a5 x + a6 x )

a, = 0.070 523 078 4 a4 = 0.000 152 014 3
a2 = 0.042 282 012 3 a5 = 0.000 276 5672
a3 = 0.009 270 527 2 a6 = 0.000 043 063 8

(0<x<oo)

Derivatives

dEj(x) 2
- =

dx VTC
[A4.ll]

d2E,(x) 4 _X2
- YJ-=— p x e x [A4.12]

dx VTI
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Approximate formula

The approximate relationship [DEV 62]

= Jl-exd-
f 4 x 2 ^

1-Tj
[A4.13]

gives results of a sufficient precision for many applications (error lower than some
thousandths for whatever x).

A4.1.2. Second definition

The error function is often defined by [PAP 65] [PIE 70]:

t2

1
E2(x) = — zr e 2 dt [A4.14]

V27r °

With this definition

MEib
E2(x)= W2y [A4.15]

9

yielding

[A4.16]

Applications

- = f ' e'̂ dx . [A4.17]
a jt i a a.

where a and (3 are two arbitrary constants [PIE 70] and
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Properties of E 2 ( x )

E2(x) tends towards 0.5 when x -> <x> :

E = I e 2 dt = 0.5
*

[A4.19]

E2(0)= 0

E2(-x) = -E2(x)

1 fx
Function E2(x) = J dt

Table A4.2. Error Junction E2(x)

X

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

E2(x)

0.01994

0.03983

0.05962

0.07926

0.09871

0.11791

0.13683

0.15542

0.17364

0.19146

0.20884

0.22575

0.24215

0.25804

0.27337

0.28814

AE2

0.01994

0.01989

0.01979

0.01964

0.01945

0.01920

0.01892

0.01859

0.01822

0.01782

0.01738

0.01691

0.01640

0.01589

0.01533

0.01477

X

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

1.45

1.50

1.55

1.60

E2(x)

0.30234

0.31594

0.32894

0.34134

0.35314

0.36433

0.37493

0.38493

0.39435

0.40320

0.41 149

0.41924

0.42647

0.43319

0.43943

0.44520

AE2

0.01420

0.01360

0.01300

0.01240

0.01180

0.01119

0.01060

0.01000

0.00942

0.00885

0.00829

0.00775

0.00723

0.00672

0.00624

0.00577

x

1.65

1.70

1.75

1.80

1.85

1.90

1.95

2.00

2.05

2.10

2.15

2.20

2.25

2.30

2.35

2.40

E2(x)

0.45053

0.45543

0.45994

0.46407

0.46784

0.47128

0.47441

0.47725

0.47982

0.48214

0.48422

0.48610

0.48778

0.48928

0.49061

0.49180

AE2

0.00533

0.00490

0.00451

0.00413

0.00377

0.00344

0.00313

0.00284

0.00257

0.00232

0.00208

0.00188

0.00168

0.00150

0.00133

0.00119
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2.45

2.50

2.55

2.60

2.65

2.70

2.75

2.80

2.85

2.90

2.95

0.49286

0.49379

0.49461

0.49534

0.49598

0.49653

0.49702

0.49744

0.49781

0.49813

0.49981

0.00106

0.00093

0.00082

0.00072

0.00064

0.00055

0.00049

0.00042

0.00037

0.00032

0.00028

3.00

3.05

3.10

3.15

3.20

3.25

3.30

3.35

3.40

3.45

3.50

0.49865

0.49886

0.49903

0.49918

0.49931

0.49942

0.49952

0.49960

0.49966

0.49972

0.49977

0.00024

0.00021

0.00017

0.00015

0.00013

0.0001 1

0.00010

0.00008

0.00006

0.00006

0.00005

3.55

3.60

3.65

3.70

3.75

3.80

3.85

3.90

3.95

4.00

0.49841

0.49984

0.49987

0.49989

0.49991

0.49993

0.49994

0.49995

0.049996

0.49997

0.00004

0.00003

0.00003

0.00002

0.00002

0.00002

0.00001

0.00001

0.00001

0.00001

Figure A4.2. Error function E2(x)
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Approximate calculation 0/E2(x)

The function E2(x) can be approximated, for x > 0, by the expression defined
as follows [LAM 76] [PAP 65]:

E2(x)*i 1 - (a t + b t + c t + d t4 + e t5)e [A4.20]

where

t =
1

1 + 0.2316418 x

c=1.421 413741

a = 0.254 829 592 b = -0.284 496 736

d = -1.453 152027 e= 1.061 405 429

The approximation is very good (at least 5 decimal points).

NOTE.
With these notations, the function E2(x) is none other than the integral of the

Gauss function:

G(x) = —re 2

V27I

Figure A43. Comparison of the error function E2(x) andofG(\)
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Figure A4.3 shows the variations ofG(x) and o/E2(x) for 0 < x < 3. We thus
have:

exp
TC

2 a V 2
du= - a E, -— tA4-21]

Calculation of x for E2(x) = E0

The method below applies if x is positive and where 0 < EQ < 0.5 [LAM 80].
One calculates successively:

z = V-21n(l-2E0)

and

x = g0 + g, z + g7 z
2 + • • • + g10 z

10 [A4.22]

where

g0 = 6.55864 10"4 g6 = -1.17213 10~2

g,=-0.02069 g 7 = 2.10941 10'3

g2 = 0.737563 gg = _2.18541 10"4

g3=-0.207071 g9 = 1.23163 10-5

g4 = -2.06851 10~2 g10 = -2.93138 10~7

g5 =0.03444

For negative values, one will use the property

E2(-x) = -E2(x)

NOTE.
Ej X

To calculate x from given Ei set E2 = —, calculate x, and then ——.
1 /O2 V2
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A4.2. Calculation of the integral J ea / xn dx

One has [DWI 66]:

f e a x , , a x a2 x2 a3 x3 a11 xn

I - dx = ln|x| + - + -- + -- + •-• + -- +-. [A4.23]
x 1! 2 2! 3 3! n n!

yielding, since

. . a x a x / . a *f e e a f e
I - dx = -- - + - I - -dx [A4.24]
J n / ,\ n-1 , •> n-1 L J

x (n -1) x n-1 x

fe~ e"~ ae~ a" * e a" * f e
I dx = - r 7 + —J n r ,\ n-1 / ,\ / »\ n-2 / ,\ , / ,\ , J

x ( n - l ) x ( n - l ) ( n - 2 ) x (n - l ) !x (n- l ) ! x

[A4.25]

A4.3. Euler's constant

Definition

1 1
e = lim 1 + — H— + — - In n

2 n
[A4.26]

8 « 0.577 215 66490...

An approximate value is given by [ANG 61]:

1

2

i.e.

s « 0.577 2173...

Applications

It is shown that [DAY 64]:

I In X e X dX = -e [A4.27]Jr\
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and that

foo1 (ln
X)2 e dX = - +

6
[A4.28]

AS. Complements to the transfer functions

A5.1. Error related to digitalization of transfer function

The transfer function is defined by a certain number of points. According to this
number, the peak of this function can be more or less truncated and the measurement
of the resonance frequency and Q factor distorted [NEU 70].

Any complex system with separate modes is comparable in the vicinity of a
resonance frequency to a one-degree-of-freedom system of quality factor Q.

Figure A5.1. Transfer Junction of a one dof system close to resonance

Let us set y as the value of the quality factor read on the curve, Q being the true
value.

X f read resonance frequency ,M . ,.„
Let us set P = — and a = — = . When a is different

Q f0 true resonance frequency

from unity, one can set a = 1 - 8, if 5 is the relative deviation on the value of the
resonance frequency. For 5 = 0, one has a = 1 and (5 = 1. For 8 * 0, P is less than
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one. The resolution error is equal to eR = 1~(3. The amplitude of the transfer
function away from resonance is given by y such that:

2

2 < +«y — ~^=~T/ — ̂  — 2 [A5J]
a n2 l i _ , v 2 ) +a

2

a (1-a)
1 + —r 1 +2 1"r 2 ' 2

Q Q 2 ( l -aT+a 2 Q V

For large Q, we have

Q 2 ( l -a 2 )

2
i.e., replacing a by 1 - 8 and supposing Q large compared to 1,

[A5.4]
1 - 2 8 + 4 Q2 S2

and

•/I - 2 6 + 4 Q
[A5.5]
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Figure A5.2. Digitalization ofn points of the
transfer function between the

half-power points

Figure A5.3. Effect of a too low a
sampling rate

)2 » 2 8, i.e. if Q2

-2\-V2

26

[A5.6]

[A5.7]

Let us suppose that there are n points in the interval Af0 between the half-power
points, i.e. n -1 intervals. We have:

5 = l-a = l -— [A5.8]

Afn
[A5.9]

yielding

6 = M* 1

2 ( n - l ) f 0 2 ( n - l ) Q
[A5.10]

-> si.e., since 8R « 2 a o ,
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[A5.ll]

Figure A5.4 shows variations of the error SR versus the number of points n in
Af0. To measure the Q factor with an error less than 2%, it is necessary for n to be
greater than 6 points.

Figure A5.4. Error of resolution versus number of points in Af

NOTE.
In the case of random vibrations, the frequency increment Af is related to the

sampling frequency fs by the relationship

Af = [A5.12]
2 M

where M is the total number of points representing the spectrum. Ideally, the
increment Af should be a very small fraction of the bandwidth Af0 around
resonance. The number of points M is limited by the memory size of the calculator
and the frequency fs should be at least twice as large as the highest frequency of the
analysed signal, to avoid aliasing errors (Shannon's theorem). A too large Af leads
to a small value of n and therefore to an error to the Q factor measurement.
Decreasing fs to reduce Af (with M constant) can lead to poor representation of the
temporal signal and thus to an inaccuracy in the amplitude of the spectrum at high
frequencies. It is recommended to choose a sampling frequency greater than 6 times
the largest frequency to be analysed [TAY 75J.
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A5.2. Use of a fast swept sine for the measurement of transfer functions

The measurement of a transfer function starting from a traditional swept sine test
leads to a test of relatively long duration and requires in addition material having a
great measurement dynamics.

Transfer functions can also be measured from random vibration tests or by using
shocks, the test duration being obviously in this latter case very short. On this
assumption, the choice of the form of shock to use is important, because the transfer
function being calculated from the ratio of the Fourier transforms of the response (in
a point of the structure) and excitation, it is necessary that this latter transform does
not present one zero or too small an amplitude in a certain range of frequency. In the
presence of noise, the low levels in the denominator lead to uncertainties in the
transfer function [WHI 69].

The interest of the fast linear swept sine resides in two points:

- the Fourier transform of a linear swept sine has a roughly constant amplitude in
the swept frequency range. W.H. Reed, A.W. Hall, L.E. Barker [REE 60], then
R.G. White [WHI 72] and R.J. White and R.J. Pinnington [WHI 82] showed that the
average module of the Fourier transform of a linear swept sine is equal to:

X(o>) = ~^b [A5.13]
2 V b

where xm= amplitude of acceleration defining the swept sine

f 2 - f ,
b = - = sweep rate

and that, more generally,

X =
x

[A5.14]

where f is the sweep rate for an arbitrary law.
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Example

Linear sweep: 10 Hz to 200 Hz
Durations: 1 s - 0.5 s - 0.1 s and 10 ms
xm=10ms'2

Depending on the case, the relationship [A5.14] gives 0.3627 - 0.256 - 0.1147
or 0.03627 (m/s).

Figure A5.5. Example of fast swept sine

Figure AS .6. Examples of fast swept sine Fourier transforms
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- sweeping being fast (a few seconds or a fraction of a second, depending on the
studied frequency band), the mechanical system responds as to a shock and does not
have time to reach the response which it would have in steady state operation or
with a slow sweep (Q time the excitation). Accordingly, the dynamics of the
necessary instrumentation is less constraining and measurement is taken in a domain
where the non linearities of the structure are less important.

The Fourier transform of the response must be calculated over the whole
duration of the response, including the residual signal after the end of sweep.

A5.3. Error of measurement of transfer function using a shock related to signal
truncation

With a transient excitation, of shock type or fast swept sine, the transfer function
is calculated from the ratio of the Fourier transforms of response and excitation:

HO 0) -^4 [A5..5]
X(ifl)

where

X(i Q) = \**x(t) e~ iQt dt [A5.16]

Y( in)= yWe'^'dt [A5.17]
— OO

If x(t) is an impulse unit applied to the time t = 0, we have X(i Q) = 1 for

whatever Q and (Volume 1, expression [3.115]):

H(ifl) = f °h ( t )e~ i n t dt [A5.18]

where h(t) is the impulse response. For a single-degree-of-freedom system of
natural frequency f0 (Volume 1, relationship [3.114]),

i f.\ U ~~S Wfi l • /1 i-£
h(t) = .. e sin V I - ^ <o0 t [A5.19]
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yielding the complex transfer function

, x 1

2
CO

1-T
V

(0

CO,

[A5.20]

The relationship [A5.18] could be used in theory to determine H\i Q) from the

response to an impulse, but, in practice, a truncation of the response is difficult to
avoid, either because the decreasing signal becomes non measurable, or because the
time of analysis is limited to a value tm [WHI 69]. The effects of truncation have
been analysed by B.L. Clarkson and A.C. Mercer [CLA 65] who showed:

- that the resonance frequency can still be identified from the diagram vector as
ds

the frequency to which the rate of variation in the length of arc with frequency, —,
df

is maximum,

-but that the damping measured from such a diagram (established with a
truncated signal) is larger than the true value.

These authors established by theoretical analysis that the error (in %) introduced
by truncation is equal to:

e (%) = 100 11

-£co t ^ 1 2 2 2 ^1
]-e ° m l 1 + ̂ a ) 0 T m + - ^ <°0 T mJ

1-e ° ra ^1 + q O)Q TmJ

[A5.21]

Figure A5.7. Error of measured value of£, due to truncation of the signal
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It is seen that if | co0 Tm > 1, the error of the measured value of £ is lower than
5%.

It is noted that one can obtain a very good precision without needing to analyse
extremely long records. For example, for f0 = 100 Hz and £ = 0.005 , a duration of
2 s led to an error less than 5% (£ co0 im =1).

A5.4. Error made during measurement of transfer functions in random vibration

2.The function of coherence y is a measurement of the precision of the calculated
value of the transfer function H(f) and is equal to [2.97]:

2 [A5.22]

Figure A5.8. Error of measurement of the Figure A5.9. Error of measurement of the
transfer function in random excitation transfer function in random excitation versus

versus y, for K = 20 the probability, for K = 20
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Figure A5.10. £ra>r of measurement of the Figure A5.11. Error of measurement of the
transfer function in random excitation transfer function in random excitation

versus y, for P = 0.90 versus K, for P = 0.90

If the system is linear and if there is no interference, y =1 and the calculated

value of H(f) is correct. If y < 1, the error in the estimate of H(f) is provided
with a probability P by:

[A5.23]

where K is the number of spectra (blocks) used to calculate each PSD [WEL 70].

Figure A5.12. Error of measurement of the transfer
function in random excitation versus K, for y = 0.5
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A5.5. Derivative of expression of transfer function of a one-degree-of-freedom
linear system

Let us consider the transfer function:

1

l - h2 + 2i
H((D) =

where

(0

<x>0

through multiplication of the denominator's conjugate quantity, we obtain

H(co) = ( l - h J A - 2 i ^ h A

if we set

[A5.24]

A =
1

yielding

with

dH

dh

dA

dh

dH

/ ? \ OA
- 2 h A - 2 i 4 A + l - h 2

; dh

\ d A dA
h i [A5.25]

dh

dAf -> 1 OA
= -2(h + i 4) A + 1 - h^ - 2 ̂  h i —

dh L J dh

[A5.26]

[A5.27]
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Synopsis of five volume series:
Mechanical Vibration and Shock

This is the third volume in this five volume series.

Volume 1 is devoted to sinusoidal vibration. The responses, relative and
absolute, of a mechanical one-degree-of-freedom system to an arbitrary excitation
are considered, and its transfer function in various forms defined. By placing the
properties of sinusoidal vibrations in the contexts of the environment and of
laboratory tests, the transitory and steady state response of a single-degree-of-
freedom system with viscous and then with non-linear damping is evolved. The
various sinusoidal modes of sweeping with their properties are described, and then,
starting from the response of a one-degree-of-freedom system, the consequences of
an unsuitable choice of the sweep rate are shown and a rule for choice of this rate
deduced from it

Volume 2 deals with mechanical shock. This volume presents the shock response
spectrum (SRS) with its different definitions, its properties and the precautions to be
taken in calculating it. The shock shapes most widely used with the usual test
facilities are presented with their characteristics, with indications how to establish
test specifications of the same severity as the real, measured environment. A
demonstration is then given on how these specifications can be made with classic
laboratory equipment: shock machines, electrodynamic exciters driven by a time
signal or by a response spectrum, indicating the limits, advantages and
disadvantages of each solution.

Volume 3 examines the analysis of random vibration, which encompass the vast
majority of the vibrations encountered in the real environment. This volume
describes the properties of the process enabling simplification of the analysis, before
presenting the analysis of the signal in the frequency domain. The definition of the
power spectral density is reviewed as well as the precautions to be taken in
calculating it, together with the processes used to improve results (windowing,
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overlapping). A complementary third approach consists of analyzing the statistical
properties of the time signal. In particular, this study makes it possible to determine
the distribution law of the maxima of a random Gaussian signal and to simplify the
calculations of fatigue damage by avoiding direct counting of the peaks (Volumes 4
and 5).

Having established the relationships which provide the response of a linear
system with one degree of freedom to a random vibration, Volume 4 is devoted to
the calculation of damage fatigue. It presents the hypotheses adopted to describe the
behaviour of a material subjected to fatigue, the laws of damage accumulation,
together with the methods for counting the peaks of the response, used to establish a
histogram when it is impossible to use the probability density of the peaks obtained
with a Gaussian signal. The expressions of mean damage and of its standard
deviation are established. A few cases are then examined using other hypotheses
(mean not equal to zero, taking account of the fatigue limit, non linear accumulation
law, etc.).

Volume 5 is more especially dedicated to presenting the method of specification
development according to the principle of tailoring. The extreme response and
fatigue damage spectra are defined for each type of stress (sinusoidal vibrations,
swept sine, shocks, random vibrations, etc.). The process for establishing a
specification as from the life cycle profile of the equipment is then detailed, taking
account of an uncertainty factor, designed to cover the uncertainties related to the
dispersion of the real environment and of the mechanical strength, and of another
coefficient, the test factor, which takes into account the number of tests performed to
demonstrate the resistance of the equipment.

This work is intended first and foremost for engineers and technicians working
in design teams, which are responsible for sizing equipment, for project teams given
the task of writing the various sizing and testing specifications (validation,
qualification, certification, etc.) and for laboratories in charge of defining the tests
and their performance, following the choice of the most suitable simulation means.


